
ERAMCO

SYSTEMS

ES B&B11A

ERAMCO MLDL-OFPERATING SYSTEM EPROM

OWNERS MANUAL

January 1986

Printed in the Netherlands (c) Eramcao systems 1986

MLDL operating system eprom

CONTENTS

Introduction...... Fm Em EsER AREER ARR TRE AA. ce mamaan

Installation... ..ccicnnr eens cccnanacesannnnasnsannsnnnns

Organisation of the instruction set..................

MLDL write functions. icici cranes sneer acansnnnns

Utility functions... i mimic cc tii c cscs nanansnansn

Update functions.c. iii cits ccn ena nnnncsnnnnnsns

Appendix A: Input 7/7 Output........c.cccaann sr asssaena=

Appendix B: Frogrammability.....cccceccirnecncnnnnnnn

Appendix CC: Messages... ccc accc cian ncannnsannanennnns

Appendix D: XROM numbers... ccc einen inns seinen nnns

Appendix E: XROM and FAT structure.cnccnaneeensns

Appendix F: Interrupting Points... acces ecnnneenns

Appendix G: Assembly language information............

Function IndeX...ceceeeeennnansacannasnannsnssnnnnnsn

Care and Warranty.cnuuenan.- PR mR TRS ANNE RE Eran

How to set up your own EROM page... ... ccc innnnnna

Page 2

N
a
u
d
u
u

C
l

43

MLDL operating system eprom

INTRODUCTION

This manual deals with the ERAMCO MLDL operating system eprom. To

get a full understanding of all the routines and Functions in

this eprom set, 1t 1s advisable to read through this manual

carefully before operating any of the functions or routines.

INSTALLATION

Follow the instructions of your ERAMCO MLDL-box carefully when

installing the eprom set in your box. It may be necessary to bend

the feet of the two eproms slightly inward to make them fit

easily 1nto the eprom sockets. Do not forget to enable the page

on which you insert the eproms (for more detailed information on

how to insert the eproms, consult your hardware manual of the

ERAMCO MLDL-box J). A lower address 1s the most appropiate page

for insertion of the eprom. This provides a quick access to the

routines and functions available in the ERAMCO MLDL-eprom set.

ORGANISATION OF THE INSTRUCTION SET

As vou will soon discover the routines and functions in this

eprom set are divided into two sections. The First section

contains all the functions and routines that will change anvthing

in the MLDL-ram you are working on. So always be careful when

using any of these functions. A single mistake can destroy the

whole 4K ram block that is under development.

The second section contains the functions that facilitates

working with the MLDL-ram. They do not change anything in the ram

but will provide a quicker access to the ram (LROM will tell you

almost immediately where you can continue with writing in the ram

or where you can store a User—code program).

Note : All inputs which has to be placed in the alpha-register

are related to hexadecimal

Page 3

MLDL operating system eprom

In the description of the functions it 1s assumed, that you have

one MLDL ram page available for exercising the examples. To

ensure that the examples work out in the way we have described

them, 1s 1t necessary to clear one block and to place it at the

proper page. Flace the first block off your MLDL ram at page A.

This 1s easily achieved by turning the appropriate (left) hex

rotary switch to A. Disable the block by switching the left

enable switch down (off). To avoid problems with the second

block, it is advisable to switch this block of too.

After these preparations we can clear the whole block. Input for

this 1s A 1n ALFHA. Now execute the function CLBL. For detailed

information of it's operation see page 14.

Switch the MLDL ram page on line by switching the left enable

switch to the ON state. It 1s now ready for the examples.

INPUT = All the hexadecimal input in the ALPHA register is

checked on valid data. Data 1s valid only, 1+ 1it

consists of the hexadecimal characters. These characters

are the numbers from BO upto 9 and the letters A through

F. Any other character in ALPHA will cause an error. The

display will show DATA ERROR.

If the error occurs in a function during a running

program, the error will be displayed and the program is

halted at the instruction, that caused the error.

OUTPUT : Every function in this MLDL rom that gives an

hexadecimal output to the ALPHA register, will

automaticcally execute an AVIEW after it has put it's

data into the ALPHA register. So, if you are using for

example the function LOCA in a program, 1t is not

necessary to do a AVIEW after the function. (Otherwise

the result will be displayed twice. In conjunction with

the printer your results will also be printed twice.

Page 4

MLDL operating system eprom

MLDL WRITE FUNCTIONS

AFAT Append FAT entry

XROM 18,81

The function AFAT enables the user to update the FAT, e.g. to

append the starting address of a routine that has been written in

the MLDL-ram. Functions are only accessable to the HP-41 when

they have an entry in the FAT. This also holds true for programs

that are transferred to the MLDL-ram. The function PMMTORAM takes

care of this automaticaly.

Input for AFAT 1s 1n the format UOPAAA. AAA 1s the start—address

of the function within a page, P is the page number where the

function 1s loaded, 0 1s an offset and U tells the HF-41 1+ the

routine 1s a M-code routine or a User code program.

U=0 M—code function. The address points to the first word that

1s executable

U=2 User code routine. The address points to a Global Label

Example : AAA=3FF The start of the function or routine is found

at X3FF.

In order to understand the interaction of 0 and P 1t is necessary

to realise that EPROM and MLDL-ram can be placed at every wanted

page, e.g. at any desired port. It must also be kept in mind that

an EPROM or MLDL-ram page contains only 4K. The value of P is

only pointing to the page where the MLDL-ram is positioned at at

this moment. The value of FP will change when you address the

MLDL-—ram to a different page. Opposite to this is the behavior of

the value for 0. 0 1s a constant added to the pagenumber. It will

not change when you place the MLDL-—ram at a different page. The

constant 0 allows vou the possibility to execute functions and

routines from another page other than the one where the FAT entry

is lodged. So it is evident that the page which 1s called must

always be 0 pages further in the memory.

Example : The page that contain the FAT 1s at page 8, and the

page that contain the routine i1tseif 1s at page LC,

address 1s 498. We want to make an entry for a User-—

code routine with AFAT.

Page 5

MLDL operating system epram

The value of 0 (the offset) 1s CTC — 8 = 4

The value of P (page containing the fat) is 8.

The value of AAA (start—address) is 4904.

The value of U { M— or User code) is 2.

We do now need the following input for AFAT

248490

When we move the first ROM to another address we must also move

the second ROM the same number of pages in the same direction if

the value of 0 is something else then zero. Leading zero’'s in the

input can be omitted

Example : For our MLDL ram we will write the rom name with the

help of ASS5M.

This name is coded as follows :

Address Data Comment

Ad8se Qe1l 1 end of the name

aBaBs7 asa a

ABBY azu space

ABBY Biz R

ABBA Bas E

&a8e @a13 S

ABBC ais uU

AaasDh @ai7 W

ADBE ads E

Aagr ave N start of the name

AAF6 SEB start of the {function

Enter AS5M mode and set the address to ABB5. Make sure

vou are in user off mode and key in the data words as

given. The address is automatically increased every

time. See alsa AS5M for more details.

To be able to see the rom name when we are executing a

catalog 2, we have to place the xrom name entry into

the FAT. This is done with AFAT.

We do have a function name, so the digit representing U

will be zero.

The rom name is not located at another page, so the

offset is also zero.

We are working at page A, so the value of F will be A.

The starting address of the function is the first

executable word of the function and 1s In our case

located at B98.

Page 6&6

MLDL operating system eprom

This results in a total entry for AFAT of B60ABIG

As leading zero’'s can be omitted, we can use ABFA as

the entry address for AFAT. Write the entry into ALPHA.

Go out of ALPHA and execute AFAT. If you do now a

catalog 2 you will see NEWUSER @1 in the display when

the catalog routine has arrived at page A. { 1¥ vou

have no printer or timer module, 1t will be the first

name that appears in the catalog.

Page 7

MLDL operating system eprom

CLBL Clear ram Block

XROM 160,082

Clearing a biock of MLDL-ram is done with the help of CLEL. Input

is 1n ALPHA in the format BEBBEEEE.

EBBE 1s the first word of the block that has to be cleared.

EEEE 1s the last word of the block that must be cleared.

Execution of CLBL puts zero in all the addresses between the

given ones, including the start and end addresses.

Example : We discover after some time, that we don’t want to use

a certain part of the rom. We could leave it in the ram

page, but for good housekeeping we want 1t to be

cleared. This 1s accomplished by getting the right

begin and end address into ALPHA and execution of CLBL.

Switch to ALPHA and give as input the start and end

address of the block of code we want to clear. The

starting address of this block 1s 7DDE and end address

is 7/DESB

So the total entry for CLBL is 7DDE7DEB. Get out of

ALPHA and execute CLBL. With AS55M you can check, that

the words at the specified addresses are deleted.

Another option of CLBL is to clear a whole 4K block at once. For

this input FP in ALPHA. P represents the pagenumber of the page

vou want to clear. #%%% ATTENTION *#%% This last option is

dangerous. It operates like MEMORY LOST, but in this case it is a

memory loss of the specified MLDL-ram page.

Example : Switch the other page of MLDL ram to page B. Get into

ALFHA and give the address of the page to be cleared (

B J). Get out of ALPHA and execute CLBL. Now you can

switch the second MLDL ram page on line by setting the

right enable switch to the ON position.

Page 8

MLDL operating system eprom

COPYR COPY Rom page

XROM 16,84

The function COPYR enables the user to copy an entire page of ROM

or MLDL-ram to another page of MLDL-ram. This gives you the

opportunity to change anything you want in the just copied block

of ROM.

Input is in ALFHA and has the format 5D.

S is the page from where the copy has to be made { Source).

D is the page to which the copy is destined {(Destination J.

This function will sound a low tone to indicate the completion of

the function.

Example : We want to make a copy of our working MLDL ram page.

This could be done with move by giving as input

ADDBAFFFBOBA. But this will take longer and asks for a

more complicated input. Therefore we will make use of

COPYR. The input for this example 1s AB in ALPHA. When

this 1s done, the function COPYR can be executed. After

the tone has sounded we can check, if the second rom is

available by executing a catalog 2. You will now see

the romname MEWUSER @1 appearing twice in the catalog.

Page 9

MLDL operating system eprom

CRNAME CReate NAME

XROM 18,85

This Function requires the input of a name for a function in the

Alpha register. The functions name is written in reversed order

to H™MLDL-ram in the correct format for a function name. Also the

FAT entry is automatically created with the function AFAT. For

more information on the formats used see AFAT. It 1s not possible

to create a function name on another page using the offset digit

d.

The last letter of the function name is written at the current

David Assem address. This allows you to enter the assembler mode

and start writing the desired function immediately, without

searching for the start adddress of the function first.

Example : We will add a second name and FAT entry to our MLDL-ram

page. Use AS55M to step to the desired address, in this

case we will go to address ABBS. Leave AS55M mode and

write the name of the new function in the Alpha

register, for example USER 81. Now execute CRNAME. A

tone will sound and the message READY 1s displayed. The

Alpha register contents is replaced by a hexadecimal

address, but this address is of no use.

Execution of a catalog 2 will show you the new function

name USER B81 in the catalog after NEUSER @1.

Fage 10

MLDL operating system eprom

DFAT Delete FAT entry

XROM 18,86

The function DFAT is used when you want to delete an entry {from

the FAT. The function or routine which 1s deleted will be

invisible for the HF—-41 after execution of DFAT. The XROM numbers

of all the routines and functions that came after the deleted

function in the FAT, will get one lower. Fay attention to this

fact when you use functions or routines from the ram you are

working on. The same input format is used as with AFAT. The

difference is that you do not need to specify the value of U.

So the input format will be OFAAA (offset),(page),(address

}.

DFAT will search in the page with number FP and delete the

specified entry. Leading zeros may be omitted.

Example : In the example of the function AFAT we have added the

function name to the FAT, to give the MLDL ram page a

name. If you execute a catalog 2, you will see NEWUSER

Bl and after this USER 8&1. The last entry has to be

removed.

This 1s easily accomplished by getting the right entry

address into ALPHA and execution of DFAT.

Give in ALPHA the entry address of USER 01. This

address 1s A@HS. Get out of ALPHA and execute DFAT.

With a catalog 2 vou can check, that the entry has been

removed. You should only see MEWUSER 81 in the catalog.

Page 11

MLDL operating system eprom

GETROM GET ROM image
XROM 10,07

This is the counterpart of the SAVEROM function. Input format is

the same, so the name must be in alpha and the page number must

be 1n x. For more information on the format of the files, we

refer to the function S5AVEROM.

Getrom will read back the contents of the rom file and put it in

the desired ram page. There is no checking done to see if the

specified page 1s actually a ram page. This 1s to aliow you to

get a rom file to a page that is not switched on.

Example : If you have saved a rom File on tape, we can

demonstrate 1t coming back. First of all clear the page

we are working on. This is done with CLEL. You probably

know by now how this function works, so it is left up

to you to clear the block. Put in ALFHA the name of the

file we want to read back, e.g. USERL. In the X

register the page address should be entered to which we

want the rom read back. In our case this will be page

B. Now the function GETROM can be executed. After 1t

has finished, you can check if it is back again in the

usual way with a CAT 2.

Page 12

MLDL operating system eprom

IPAGE Initialize rom FAGE

XROM 1@,@8

This function sets up a ram page to load user programs and/or

assembler code functions. The entire specified page 1s cleared

and the specified xrom number and the name in alpha are written

at the appropriate places. This we have already done manually

when we explained AFAT. With this function 1t will be much

easier.

Input For this function in ALPHA is the name of the rom. This

name must be from one to 11 characters. As it 1s the name of the

rom 1it 1s advisable to make it at least 8 characters. This has

two reasons. First, a function name of more then 7 characters can

not be executed. Second and more important is the fact that the

CAT function of the HF-41 CX searches for names that are longer

then 7 characters. So, 1f you use a name of less then 8

characters, the rom name will not show up in the header catalog

of the HP-41 CX. This is also the case with the CCD module, a

module likely to spread out as much as the PPC rom. Second thing

to give as input is the MLDL ram page number to be initialized.

This page number is given in the X register. (in decimal)

when the function is executed, it will prompt you +or the xrom

number of the page. There is no checking done on the input,

because it is possible to use other xrom numbers, but you can not

execute a function in a rom with a xrom number higher then 31, so

it 1s advisable to use a xrom number between 1 and 31. Gee for

the already used xrom numbers appendix D.

The name that will be written to MLDL ram consists of the last

eleven characters in the alpha register.

Output of the function is in alpha the address of the first empty

word as it 1s used for the function HFMTORAM.

Example : We will now initialize our page with the help of IPAGE.

Give the desired name in ALPHA. We will make use of the

same name as we used in the examples before. It will be

NEWUSER 801. Give the right page number in the X

register (180). Now execute the function IFAGE. At the

prompt the desired xrom number can be given. We will

make use of xrom number 21. This is the xrom number for

user roms. After a short while a tone will sound and

the message READY will be in the display. Fressing

ALPHA once gives you the first free byte available to

load from. This will be address ABP2.

Page 13

MLDL operating system eprom

MMTORAM Main Memory TO RAM

XKOM 18,89

The function MHTORAM is used to copy a program from main memory

in the calculator to the desired MLDL-ram page in a MLDL-box. All

the necessary translations for a good operation of this program

are made automatically. The Function Access Table (FAT is

updated at the same time with the new Global Labels of the

program. For good operation of this function it is necessary to

initialize the MLDL-ram in the proper wavy.

Preparation of the MLDL-ram: You need a block of ram words that

is 1ong enough to hold the desired program. The length of the

program can be found with the help of CBT (see CBT J). Add two to

this number of bytes and you have the number of bytes that will

be needed for the program when loaded into the MLDL-ram. Now you

must find a block in the ram space that is large enough. Write

down the starting address of this block. BE CAREFUL Addresses 1n

ram are given in hexadecimal form, but the length of the program

(by CBT) is given in decimal form. Key into ALPHA the starting

address of the block (it's advisable to leave about 26 words

between the starting address of the block where the program will

be written and the first empty word in the ram you have found,

for future revisions).

When vou are initializing a 4K block of MLDL ram automatically

with the help of IPAGE, you do not have to do all of this. The

loading address will be automatically given by IPAGE. Also the

first next empty word will be returned by MMTORAM to the ALFHA

register, to make loading easier.

User flags @ and 1 can be set or cleared to achieve the desired

private status

flag @ i tlag 1 i status

cleared i cleared : program open

cleared i set ‘ program open, after COPY

i i private

set i cleared i program private

set i set i program private

With the help of these two user flags it 1s possible to make the

program completely private in the MLDL-ram, e.g. you can not go

into FPRGM mode to examine the program and it is not possible to

copy the program into the main memory with the help of the COPY

function.

Page 14

MLDL operating system eprom

A partly private status 1s also possible. In this case 1t 1s

possible to examine the program, but after copying it into the

main memory 1t will be private. The third option means no

security at all. Frograms are now free to examine and tao copy (

compare with e.g. the math module).Flease note that changes in

the program are only possible when it is stored in main memory (

see the manual of the calculator for it’s behavior when you are

in rom J).

With user flag 3 you can have the option to delete the numeric

labels in a program. (for more information about this option see

CHMFDL).

When this flag is cleared, nothing unusual will happen. The

program 1s first compiled and then loaded into MLDL-ram with the

desired private status according to the settings of fiag @ and 1.

I+ this fiag is set to the contrary, the program will be loaded

with all numeric labels deleted. (1f this 1s possible }

MMTORAM can be executed after these preperations regarding the

user +lags. The function will prompt for the name of the program

that has to be copied. It 1s enough to press ALFHA twice when

the program counter 1s already set in the wanted program.

Otherwise you must enter the name of the program in the same way

as with CLF or COPY.

MMTORAM calls one of the two present compilers, depending on the

status of user +lag 2% and will compile the program (for messages

during compilation see COMPILE). When the program is compiled,

the message LOADING FGM will be displayed. When the whole process

1s Finished, a tone will sound and the message READY will be

displayed.

When the function has been finished, it will return the address

of the next free byte in MLDL-ram. Be carefull. If you are

loading manually, this is the address of the first byte after the

program. It doesn’t have to be necessarily empty. Whenever you

are loading, with the MLDL-page initialized with IFAGE, it will

be the next free byte available.

A CAT 2 will show you the updated FAT with the new labels.

Noting down the start and end—address of the used block will

allow you to make changes without address mistakes.

For an example of how to load your user code programs in the MLDL

box, we rever to How to set up your own EROM page. There a

complete description is given how to set up a MLDL ram page for

loading user—code programs.

Page 135

MLDL operating system eprom

ROMSUM create ROMSUM of page

XROM 180,11

To check if a ROM 1s still in good shape HEWLETT-FACEARD has put

a checksum in each ROM. With the function ROMSUM you are able to

compute this checksum and put 1t at the proper place in the MLDL-

ram you are developing. The checksum 1s calculated by adding all

the words on this page, take modulo 235 and put the remainder in

xFFF.

The input 1s F in ALFHA. FP 1s the page number of the MLDL-ram you

want to update the checksum.

Example : To be able to detect 1f ow rom is still in good shape,

we are going to compute the checksum of the rom. Give

the address af the rom in ALPHA. Attention, we are

using the second MLDL ram page now, so the input will

be B instead of A. Get back to normal operation mode

again and execute the function ROMSUM. This will take a

few seconds. During this time the display will remain

blank.

When the function is completed, you can check if the

checksum 1s calculated in the proper way. This 1s

achieved by keying into the X-register the used xrom

number 21. Now execute ROFMCHEX. The display will change

into 21 e@-eEe TST. After a few seconds 1t will change

to 21 eE-EE& OK.

(Remember 21 is the xrom number we used for our MLDL

ram page J).

Page 16

MLDL operating system eprom

MOVING M—code

Introduction

Moving mcode around within PMLDL-ram {(EROM) has been made easier

for the ‘m—coder’ by use of several versinons of a prgram called

MOVE.

Initially Mcode prgrammers moved block of words in MLDL-ram with

the REGXROM & ROMFREG routines developed by Paul Lind and Lynn

Wilkins. The MOVE routine From the ASS5EMBLER 3 eprom set

automated the procedure. This process required a lot of data

registers to be available in main RAM for temporary storage.

Eventually, the ERAMCO HMMLDL operating system contained a MOVE

routine which did not use any main memory from the HF-41.

To be more specific the HP-41's operating system uses this

feature of absolute addressing for the following i1tems:

1: jumps —forward or backwards— atfttfer checking the

carry flag,

entries in the FAT and

(relocaeablie) xeq’'s and goto’'s.Ad
BI

The fact that programs written in assembly language use absolute

addressing to execute subroutines might be confusing, but once

understood this feature is not difficult to use.

However the confusing starts all over when a block of mcode words

is moved, meaning that the absolute addresses on which these

words reside, are changed.

After this has been done all features using absolute addresses

must be updated, something guite tedious 1+ the user has to check

manually 4695 words of mcode each time some part of a routine 1s

moved.

The MOVE routine as described here, like other move routines,

will allow you to move Fcode around in MLDL-ram. Unlike previous

move routines, it will update port dependent XE and GOTO

instructions and FAT labels (if present) when using the DAVID-

Assembler eprom set. User flags 8 and 1 (i+ set) allow you to

DISABLE specific parts of the updating process for port dependent

XEQ@'s and ©GOTO's, while user flag Z (if set) will EMABLE the

routine that CLEARs the source block or any portion thereof that

is not overwritten by the MOVE operation.

Page 17

MLDL operating system eprom

usar flag CLEAR SET

a enable UFDBL disable UFDBL

i enable UPD4E disable UPD4K

2 disable CLEAR enable CLEAR

UPDFAT 1s disabled when the second word in the FAT is temporarily

set to O00, while the user defined DA-Ass labels are only updated

when this eprom set is plugged in and enabled.

Changes which should be made to jumps (for instance JNC +1C or JC

—2D}) after a block of

mcode words has been moved are very local problems as these

jumps can only cover 63 words (hex: +3F) forward or &4 words

(hex: —48) backwards. The main thing for the user regarding jumps

is not to forget to update the relevant jumps atter a block of

mcode words has been moved, meaning that 1+ Mcode words have been

moved within the span of a jump instruction to, insert or delete

Mcode words the Jump distance of the relevant JNC or JC

instruction also has to be increased or decreases with the same

number of steps.

Automatic updating of jumps 1s not covered by any of the programs

in this set of routines.

Each of the tasks done by MOVE is performed by a subroutine that

can also be used seperately, thus giving the programmer greater

flexibility. These subroutines are:

aj) uUrbDLBL UrDdate LaBels as provided by the DA—-Ass

eprom set.

bl) UFDFAT UPFDate Function Address Table.

c)} UFDBL UFPDate port dependent XEG's and GOT0's within the

block that was moved.

d) UPD4K UFDate port dependent XE 's and GO0TO's in the rest

of the 4K page.

e) CLEAR Clear the source block, or any remaining part

thereof atter the move has been accomplished.

Updating the DA-Ass labels is done by the program UFDLBL or the

program MOVE uses UFDLBL as a subroutine.

Updating the FAT is done by the program UFDFAT or the program

MOve which uses UFDFAT as a subroutine.

Updating relocateable xeq’'s and goto’'s is dealt with by the

program UrPDBL and by its supplementary program UPD4E, which are

also part of the main program MOVE.

Page 18

MLDL operating system eprom

uUrDLBL, UPDFAT, UPDBL, UFD4K and CLEAR can be used individually,

one at a time. However, manual procedures are time comsuming and

they allow errors to slip in. Therefor, the MOVE routine was

created for your convenience; it allows you to execute the whole

procedure with a single functin, automatically.

For a thorough understanding of all programs each routine will be

explained seperately after which MOVE will be discussed giving

the user a complete pcture of this set of routines.

Throughout this write-up reference will be made to the required

addressing setup in the alpha register for the programs to

exzcute correctly. This reference to the required addressing

scneme will be done in the following form:

BBBBEEEEDDDD

where:

BEEBE 1s the begin address (first word) of the block to be

moved.

EEEE 1s the end address (last word) of the block to be

moved.

DDDD 1s the new starting address of the first word of the

block to be moved.

in order to understand the descriptions that follow, the reader

might feel the need to acquant himsel+t with the following topics:

Extended FAT addressing. This 1s covered in the appendix.

Page 19

MLDL operating system eprom

UPDBL UFDate BLock

XROM 18,12

XEGl's and BGOTO’'S are two byte instructions to absolute addresses.

As long as these addresses cannot be changed by the user {like

the 12k operating system, the timer module and the HFIL module;

the card reader and the diagnostic rom} this king of XEG@'s and

GOT0's will suffice.

However most plug-in modules are made port independant which

means that the standard kind of two byte XE@'s and GOTO 's are not

useable anymore (e.g. 1f a module resides in port 1 an xeqg may

call a subroutine at absolute address B77F, but when plugged in

port 3 the same call should nou be made to absolute adress C77F).

To cover this kind of addressing HP has provided the three byte

port independable {or relocateable) XEl's and GOTO 's. These are

XEfl's and G0TO0's to certain routines in the main operating system

which use the 18 bit data word that immediately follows the XEG

ar GOTO instruction to create the address to which the

relocateablie XEG or GOTO should be addressed, depending on the

present page in which the routine resides.

Unfortunately a ten bit word is not large enough to cover a

complete 4k addressing space and therefore the 4k addressing

space has been split up into 4 equal parts each addressing 1k of

the total block of 48%4 addresses. these 4 kinds of relocateabile

“xeq's and goto’'s are referred to in this text as “absolute”

relocateable XELG's and GOTO'S.

HF has included a fifth possibility —referred to in this text as

"option 53"- to do a relocateable xeqg or goto to an address within

the same 1k block in which the relocateable xeq or goto 1s

residing.

The main advantage in using option 5S relocateable xeq’s and

gaoto’'s 1s the fact that the subroutine in the main frame

operating system which covers this type of relocateable xeq or

goto does not call a subroutine. This means that there is one

more return level available on the return stack for the calling

program.

This feature of the option 5 relocateable XEG's may be used to

advantage when writing sophisticated Fcode programs that use

several subroutine levels: the HP-41 CPU subroutine stack is only

4 levels deep.

Page 28

MLDL operating system eprom

Function Address Up.codes

rel. Xe ist 1k X0O0 — X3FF 34% ,08C,dab

rel. GOTO ist 1k X000 -— X3FF 341 ,88C,dab

rel. XEG 2nd 1k X400 — XJ/FF 34D ,0BC,dab

rel. GOTO 2nd 1k 400 — X7FF 365,08C,dab

rel. XE 3rd 1k X800 - XBFF 3%1,08BC,dab

rel. GOTO 3rd 1k XB0OO — XBFF 289.08C,dab

rel. XEQ 4th 1k XCOO0 — XFFF IBS ,08C,dab

rel. GOTO 4th 1k XCOO — XFFF 2AD,08C dab

rel. XEO same lk 379 ,03C,dab

rel. GOTO same 1k 359 ,03C,dab

{dab = data byte used by main frame to make up the address of the

relocateable XEG or GOTO).

It should be noted that the address of the third byte (data byte)

of a relocateabel XEW or GOTO defines the 1k block in which the

relocateable XEG@ or GOTO 1s residing (i.e. a three byte

relocateable XER@ or GOTO at addresses B3IFE, B3FF and 8488 resides

in the second 1k block of mcode words at page 8: from 8488 upto

and including B7/FF).

When a block of mcode words has been moved, the following items

within this block of mcode words need to be checked for a

possible update:

i: all relocateable XEG's and GOTO’'s within the moved block

pointing towards addresses also

within the moved block.

option 5 relocateable XEG's and GOTO’'s withing the moved

block pointing towards addresses outside the moved block.

fd

UFDBL is a program which takes caare of this updating of

relocateable XEG's and GOTO 's residing within the moved block of

mcode words.

A411 relocateable xeq’'s and goto’'s are checked against the

performed move and checked for a possible update.

Before a relocateable xeq or goto is rewritten a check is made 1+

it 1s possible to rewrite this relocateable xeqg or goto using

option 5. Only if it is NOT possible to rewrite a relocateabie

eq or goto by using option 5 will the absolute form be used,

thus ensuring minimum useage of the return stack by the

relocateable xeq’'s or goto’'s.

Page 21

MLDL operating system eprom

UPD4K UFDate 4K byte
XROM 18,15

This program supplements the program UFDBL. UrDBL updates

relocateable XEfi's and GOTO’'s within the moved block. You must

also update port dependent XEG's and GOTO's that branch to

routines within the block of Mcode that is moved. This job 1s

done by UFD4K.

After a block of mcode words has been moved UFDBL takes care of

updating the relocateable XE&'s and GOTO’'s within the moved

block. However outside the moved block there may also exist

relocateable XEfi's and GOTO 's which refer to subroutine addresses

within the moved block and which need updating.

Special attention must be paid to the handling of absolute

relocateabel xeq’'s and goto’s by UPD4K (and UPDEL as well):

A check is made against the addresses involved in the move of a

block of mcode words and i+ needed an update will take place. IF

an update is needed UPD4K will first try to use the option & form

and only if this is NOT possible will the absolute form be

chosen.

Note: It must be thoroughly understood that here

lies a crucial pitfall for the careless or naive user. If a

block of mcode 1s moved 1t may involve option 9

relocateable XER’'s or GOTO 's which can not abe rewritten in

their original form after teh move because a 1k boundary

has been crosed. If this option 5S relocateable xeq also

fills up the return stack then one return address will be

lost because there is one return level less available for

absolute relocateable XE 's.

For instance the extended function page in the new HP=41CX

draws heavily upon subroutines and when trying to extract

some of the new functions the user might run against the

above mentioned problem which is inherent in moving PMmcode

around within HMLDL-ram.

Another special feature of UFD4Ki1is the fact that not a complete

4k page minus the moved block is chekcked. The following areas

are excluded from a check by UFD4EK:

i: addresses X000 and X001

2: the FAT (except when the word at address X001 is zero).

3: the original {cld) block of mcode words or -—-in case of

overwriting the old block— the remainder part thereof+t.

4: the new block of mcode words.

a: addresses XFF4upto and including XFFF

Page 22

MLDL operating system eprom

Points 1 and 5 fall in the error catagory and are explained under

"ERROR MESSAGES". Point 4 —updating the moved block— is explained

in "USING UPDEL", leaving points 2 and 3 for further explanation.

There 1s no need to update the old block as this will 1n most

cases not be used anymore and which will probably be cleared as

well. This seems especially advisable with regards to the

remaining part of a block that is parially overwritten. See

"USING CLEAR" +or further details.

However there 1s an argument in favor of not updating the old

block of mcode words. Not updating and not clearing the old block

of mcode words gives the user the opportunity to create a

workable copy of a subroutine which can be used for experimenting

without disturbing the original block of mcode words, which (e.g.

atter a unsuccessfull experiment) can be re—-instituted {oer

normal use while the experimental block just have to be cleared.

{(Re—instituting the old block can be done very easily by setting

up the alpha register with the EBBBEEEE of the new block followed

by a DDDD which chould now be the begin address of the old block,

then execute UFPD4K followed by executing CLEAR).

Finally, UFD4K does noet updadte the FAT under normal conditions.

The FAt containds address pointers, not program instructions.

Thus, 1+ UFD4EKE did check the FAT space, 1t could at best scramble

pointers that look like a port dependent XEG or GOTO. Updating

the FAT can be defeated by setting the word at address X001 to

zero, ie. by implying that there are no address pointers in the

FAT. This trick allows voy to copy a block of code without

altering the FAT, since UFDFAT will now not recognize the FAT as

FAT anymore. This procedure is sometimes convenient. However,

there 1s a possible pitfall associated with the use of extended

FAT addressing: there 1s a remote possibility that a FAT pointer

will read as BBC or 83C (indicating an offset of either 3 or

pages). These pointers could be misinterpreted as a port

dependent XEGL or GOTO.

Just to be complete a description of this bug is included here.

With reference ot "USING UPDFAT" and the article "EXTENDED FAT

ADDRESSING" in the appendix there exists the very unlikely

possibility that a disquised FAT-entry is interpreted as a

relocateable XE& or GOTO.

The second word in a three byte relocateable XE& or GGTO 1s

always 0BC for option 3 relocateable XE(@'s and GOTO 's. IF a OBC

or 03C exists in a FAT as the first word of a two byte FAT-entry

this indicates an offset eiter 8 or 3 pages ahead. HF has upto

now only used l-page offsets in two specific cases: in the Bk

NAVIGATION rom and in the Bk REAL ESTATE rom and even 1n these

cases for user—coded programs only.

Page 23

MLDL operating system eprom

But just suppose that in a "disquised" FAT there is an entry of

which the First word is 03C. If the last word of the two byte

FAT—entry immediately ahead is 379 or 36% then UPD4K (only in

case of a disquised FAT) will interpret this combination of bytes

{(379,03C or 369, SC) as an option 5 relocateable xeq or goto.

If this relocateabele xeqg or goto points towards an address

within the moved block then an unwanted change in the disguised

FAT will be made.

However the First digit of the second word of a two byte FAT-

entry should always be 0 (zero). Therefore in the example 379 and

369 are 1ilegal words in the FAT.

Nevertheless the HF-41's operating system does not check the

first digit of the second word of a FAT—-entry but uses the last

two digits of the word to make up the starting address of a

program, thus making a correct working FAT possible even with

this error.

To sum up all the factors which are involved before this bug can

bite:

: an 1llegal word must exists in the FAT (1.e.379 or 367).

2: offset page addressing to Flcode routines must exist in the

FAT.

Z: points 1 and £2 must meet each other in the right

combination.

4: the FAT must be disguised to enable UFD4E to check this area

of a 4k page.

To be 168074 sure that noting of the above can ever happen, 1t

seems adviseable to give every 4k page of PMLDL-ram its own name,

a FAT which only refers to functions or programs within its own

page, a revision code of its own and a corretly updated checksum

at the end of the 4k page.

Page 24

MLDL operating system eprom

UPDFAT UFDating FAT entries

XROM 16,13

When a block of mcode words has been moved within a specified

page, entries in the FAT pointing to addresses within the moved

block must also be updated.

The program UFDFAT —also used as a subroutine by the program

MOVE— takes care of this problem.

Several aspects regarding an update of the FAT must be taken into

account:

i: the size of the FAT.

2: entries pointing towards user—coded programs within the same

page.

3: entries pointing towards Mcode programs within the same

page.

4: entries pointing towards user—coded programs on another

page.

5: entries pointing towards mcode programs on another page.

Aspects 4 and 9 signify a very specialized use of the FAT and

this kind of useage of the FAT will normally not be made by the

mcode—programmer. However HF uses these possibilities, e.g. in

the NAVIGATION rom and in the REAL ESTATE rom, so in order to

give the user some knowledge of what might be possible with FAT

entries an article has been appended to this write-up explaining

this ultimate use of the FAT.

As 1t is the philosophy of this set of routines to work on just

one page at a time aspects 4 and 5S are not relevant. They will

however be taken into account by UPDFAT and when encountered will

be lett unchanged.

Aspects 2 and 3 are those FAT—-entries which are checked updated

if they point towards addresses which have been changed by the

move of mcode words.

The procedure to update a FAT-entry 1s basically the same for

user coded entries as for mcode entries, however there is one

significant difference:

UPDFAT 1s able to distinguish between thes two kind of FAT-

entries and 1f a FAT—-entry points towards a user coded program

the mcode words at all addresses are compared against the

addresses within the FAT. It should be realized that a user

coded program starts with two header bytes which should not be

forgotten when performing a move.

I+ however a FAT—-entry points towards a mcode program UPDFAT does

NOT take into account the first word of the moved block.

Page 25

MLDL operating system eprom

The reason behind this is the fact that just before a starting

address of a program which resides in the FAT as a Fcode function

there must always be a FAT-name of at least one byte. By

disregarding the address of the {originally First

byte of a moved block of Mcode words it 1s now possible to create

extra addresses for mcode words between the name of this mcode

program and the first byte of the program without updating the

FAT which in this case should indeed not be dane as the name of

the program is not moved.

The size of the FAT is determined by two specific items. First

the hex—-value at address X001 gives the number of valid FAT-

entries while a double 000 NOP indicates the end of the FAT.

UPDFAT only uses the hex—value at address Xl to determine the

end address of hte FAT therby giving the user the opportunity to

skip this automatic feature otf the prgram MOVE.

Check the hex—value of the word at address X00O1, charge it into

the NOP value 000 and the FAT will not be updated when the

program MOVE is used. UFPDFAT does not recognize the FAT when 1t

is ‘Ydisquised" in this way theprogram MOVE will assume that

there 1s not FAT.

After using this option the user is responsible for re—enterring

the value of the original word at address X001, thereby re-

insitituting the FAT. I+ this last tact is forgotten the HPF-41

will not recognize any FAT—entries anymore at the page concerned.

Normally the user does not have to be concerned about the FAT. I+

a move of a block of mcode words 1s done the pragram UFDFAT, by

itselt or as part of the main program HOVE, will take care of any

necessary updates of the FAT. However, there are occasions when

you may not want to automatically update the FAT. See the UFD4AK

and CLEAR write-up {further on.

Only in some very incidental cases might it be necessary to skip

the automatic update of the FAT.

Page 26

MLDL operating system eprom

CLEAR CLEAR block
XROM 18,03

Generally, programmers have found that any portion of MLDL-ram

that does not hold useful code should be cleared. This allows you

to Find unused space when you want to add a new routine, and 1t

reduces the risk ot spectecular crashes when you make a mistake.

Therefor when you relocate code (as opposed to making a copy),

vou should clear the source block or any portion thereof

that you do not overwrite when you use MOVE.

This task, when done manually is time consuming and it is easy to

make mistakes. CLEAR will do the job for vou. If the block has to

be moved only a few places (to clearing the remainder 1s

especially helpful, since the presence of 6680 nops will not

affect a running program, provided all relevant jumps have been

updated.

A special note regarding the automatic use of CLEAR as a

subroutine in the program FOVE is given here:

automatic execaution of CLEAR by the program MOVE 1s indicated

by setting user +lag 2. This 1s opposite to the use oft user fiags

8d and 1 which must be clear to do there assigned functions. This

protocol has been set up intentionally as clearing a part of

Mcode words can give some quite surprising results 1+ the user 1s

not Fully aware of what is going on. Furthernmore forgetting to

set user +lag 2 does not do any harm and can be easily corrected

by executing CLEAR after using HOVE with the same addressing

scheme still residing in the alpha register.

Note that there is a function named CLBL in this operating system

to, that enables you to do the same thing. As input format and

usage of this {function 1s quite different from CLEAR, we decided

to include it in the operating system.

Page 27

MLDL operating system eprom

UPDLBL UFDate assm LaBels

XROM 16,14

This subroutine works in close concert with the DAVID-Assembler

eprom set. This 1s a 4K module which give the user full control

over the HP-41 CFU operation. One of the many features contained

in this eprom set is the fact that the user may insert at random

addresses self defined labels for easy reference during program

developoment or when annotating Mcode programs. These labels will

reside 1in a special buffer in the HF-41 main memory and will

remain there as long as the DA-Ass eprom set is plugged in and

enabled. When the HF-41 1s turned on while the DA-Ass epprom set

is not present this buffer will be cleared automatically.

When moving FMcode words in MLDL-ram the addresses of the user

defined labels have to be updated like the relocateable XEli's and

GOTO 's otherwise they will not refer to the correct starting

addresses anymore. UFDLBL takes care of this process

automatically.

As the DA-Ass eprom set 1s an external 4K EROM block for this set

of programs, special routines have been created within this set

of programs which make 1t possible to refer to routines within

the DA-Ass eprom set. These routines are such that they can find

the DA-Ass eprom set at page as long as the DA-Ass eprom set 1s

addressed above page 7.

Of course special attention is being paid to the fact that this

set of programs still have to work correctly when the DA-Ass

eprom set is not available. Therefor, if the DA-Ass eprom set 1s

not available MOVE will simply skip over this subroutine. If the

DA-Ass eprom set 1s available but there is no buffer containing

labels again when used as a subroutine from PFOVE, UFDLBL will be

automatically skipped.

On the other hand when UPDLBLi1is used as a stand alone program the

above mentioned error conditions will stop the program UPDLEL.

Apart from the error/ready messages which are available to the

other subroutines, the following messages are used by UPDLBL as

stand alone program:

NONEXISTENT with tone 4 indicates the fact that UPDLBL can not

find the DA-Ass eprom set.

NO LABELS with tone 7 indicates the fact that altought the DA-

Ass eprom set available there is no butter

containing user detined labels.

READY with tone 7 indicates the successfull completion of

UFDLBL. as stand alone program, the error message

NONEXISTENT will be displayed and the program is

stoped.

Page 28

MLDL operating system eprom

MOVE MOVE mcode

XROM 18,109

MOVE 1s the main program of this set of routines which ties all

the forgoing subprograms together in one user friendly program.

Earlier versions of MOVE made use of a prompting HEX-keyboadr

which — do to shortage of space in this new ERAMCO FMLDL operating

eprom set — had to be deleted. All references by the user in the

alpha register.

The error checking as described in this manual, related to the

entering of addreses in the alpoha register still remain valid.

Furthermore int the ERAMCO operating eprom set additional error

checking 1s done to make sure that the digits entered in the

alpha register are valid hex—digits. (6-9 and A-F)

For a complete guide on how MOVE performs extensive error

checking on the entered addresses BEBBEEEEDDDD refer to the ERROR

MESSAGES.

while MOVE has been created to perform all the subroutines fully

automatic some user influence upon the actions of MOVE is

possible. The user +lags @, 1 and 2 are used to give the user

control over MOVE:

i. 1f user flag 8 1s set MOVE will NOT update the moved block.

« 1f user Flag 1 1s set MOVE will NOT update the remainder

part of the 4k block.

3a 1f user flag 2 1s clear MOVE will MOT clear the old block or

the remainder thereof.

|

Furthermore when an automatic update of the FAT is unwanted the

FMicode word at address XG@@ (refer to UPDFAT for further
information). IS PAdyaes = XOON Hh old pe pak TE ANG

The last feature i1incorparated in FOVE is an update of user

defined labels when using the DAVID-Assembler eprom set. Actually

this update is the first thing being done by HOVE after error

checking the entered adresses. MOVE automatically searches for

the DA-Ass eprom set which may reside anywhere above page 7 and

if Found checks the presence of the special label buffer in the

HP—41 main memory. I¥ found any labels residing in this buffer

and referring to addresses contained in the block of Mcode words

being moved, will be updated automatically.

For more details on how to use user defined labels reter to the

DA—-Ass manual.

Page 29

MLDL operating system eprom

Users of this set of routines who do not use the DA-ass eprom set

do not have to be concerned about any consequenses as MOVE will

automatically skip over the subroutine UPDLBL when the DA-Ass

eprom set 1s not present.

DISPLAY MESSAGES.

Te keep the user informed about what is going on, MOVE and 1ts

subprograms use several kind of messages which will be displaved

when relevant.

Use is also made of the tone function of the HF-41 to inform the

user when the program needs attention:

i. when a program is successfully completed tone 7 will sound

2. if an error condition develops tone 4 will sound

The display messages also fall in three catagories:

1. program messages

2. ready messages

J. error messages

it should be realized that a routine may be finish so quickly

that the accompanyng message disappears befor the user will be

able to read 1t.

FROGRAM MESSAGES.

LABEL UPDATE used by: HOVE UPDLBL

Indicating that the user defined DA-Ass labels are being updated.

In most of the cases this update is performed so quickly that

this message only appears very briefly in the display.

MOVING BL used by: MOVE

Indicating that the program 1s moving a specified block ot Mcode

words. At the end of the move the FAT (Funtion Address Table}

will be automatically updated i+ the word at address X001 1s

other than 000.

Page 30

MLDL operating system eprom

UPDATING BL used by: MOVE UPDBL

Indicating that the mved block of Pcode words 1s being searched

for relocateable XEGO's and GOTO's and if found will be updated.

UFDATING 4 used by: MOVE UFPD4K

Indicating that the remainder part {anything exept the FAT, the

pld block or the remainder part of the old biock and the new

block) 1s being searched for relocateablie XEll's and GOTO's which

will be updated i+ needed.

CLEARING BL used by: MOVE CLEAR

Indicating that the old block or the remainder part thereof is

now being cleared.

READY MESSAGES (+tone 7)

HEADY used by: MOVE UPDLBL UPDBL UFD4E CLEAR

This message will be displayed when a routine has been

succestully completed.

FROM PAGE X used by: HOVE UPD4E CLEAR

This message will be displayed when a routine has been

succesfully completed. However it also reminds the user to check

the setting of the user flags 1 and 2.

I+ a block of Fcode 1s being moved from one page to another only

the concerned block can be updated. It 15 assumed that there are

no relocateable XEil's and BOTO's on the new page already relating

to the just entered block otf Ficode words, neither will this set

of routines clear an old block of Mcode words which does not

reside on the same page as the newly entered block of FMcode

words.

If user flag 1 1s clear the user specifies an update of the

remainder part of the 4k page and i+ user flag 2 is set the user

specities a clearing of the old biock of Mcode words. As the

program 1s restricted against use outside a single specified page

1t disregards the setting of these flags thereby protecting the

user against errors. However the user is kindly reminded of his

sloppiness regarding the use fof flags 1 and 2.

Page 31

MLDL operating system eprom

Note : User +lags @, 1 and 2 are used only by the program MOVE.

The routines when used as stand alone programs do not

relate to these flags. Therefor, if for instance the user

forgets to set user flag 2 to specify a clearing of the

old block simply execute CLEAR to do so after using MOVE

with the addresing scheme BBEBBEEEEDDDD still residing 1n

the alpha register.

NO LABELS used by: UrFDLEBL

This message will be displayed if UPDLBL is used as a stand alone

program with the DA-Ass eprom set plugged in and enabled but no

special label buffer present in main memory

FAT UFDATED used by: UFDFAT

After succesfully updating the FAT this message will be

displayed, but only when the subprogram UPDFAT 1s used as a stand

alone program.

When the FAT is updated by the main program MOVE this message

will be suppressed. At the completion of MOVE instead the message

READY will be displayed.

ERROR MESSAGES (+tone 4)

XROM NR=00 used by: MOVE

There is no memory connected to the destination page or 1t 1s

switched off or the PFLDL-ram (EROM) is not initialized.

DODD NOT EROM used by: HOVE

Destination address is NOT MLDL-ram (EROM).

A "write" check 1s made to address XFFF by first increasing the

checksum by one, checking the new value and then decreasing this

to 1ts original value.

If double addressing exists (e.g a plug-in rom and MLDL-ram

addressed to the same page) the checksum of the MLDL-ram block

will be changad to an unexpected value, because the ‘read’ will

be done to the HMLDL-ram.

Page 32

MLDL operating system eprom

Regarding the ERAMCO ES5-HMLDL 1 it should be realized that only

the ‘read’ part of the ram blocks can be switched off. The

‘write’ function will always be active. I+ both ram blocks of the

ES MLDS 1 are addressed to the same page then block II takes

priority cancelling out block I of the mldl-ram.

The possibility of a change of the checsum 1s regarded acceptable

in the event on double addressing as by using MOVE you should

expect the checksum to change anyway.

NONEXISTENT used by: UPDLBL

When UFDLEBL 1s exucuted as a stand alone program this message

will be displayed while program execution is stoped if the DA-Ass

eprom set 1s not plugged in and enabled.

ADDRESS ERR used by: MOVE UFDLBL UFDFAT

urFDBL UFD4EK CLEAR.

This error message will be displayed when:

1. there are more than 12 characters in the alpha register.

2. there are less than 12 characters in the alpha register.

3. EEEE 1s not on the same page as BBBHH.

4, EEEE 1s a lower address than BBBB.

DDDD < X002 used by: MOVE UPDLBL UPDFAT

UPDBL UFPD4E CLEAR.

This set of routines does not allow a move which would cause a

chnge of words at addresses X000 and X001. The words at thes

addresses {specifying the xrom nr. and the nr. of FAT-entries)

are considered too critical to be used in automatic changing of

mcode words. Changing these words should be done manually.

If you want to load a block of mcode words starting at address

XOOO or X001 do as follows to circumvent the restricted use of

thes addresses:

Load the block at any place within the 4k page making sure that

the First word is loaded at an address higher than X001 and that

the last word loaded is at an address lower than XFF4.

Check the words which are to be loaded at addresses X000 and X001

and load them manually. Now move the remainder part of your mcode

block starting From the third word to the destination address

X002.

Page 33

MLDL operating system eprom

END > XFF3 used by: MOVE UPDLBL UPDFAT

UrFDBL UFPD4E CLEAR.

Not only does this set of routines restrict against the use of

the addresse X000 and X00i, the same applies to the block of

addresses at the end of a page starting from address XFF4. XFF4

upto and including XFFA are the so-called interrupt-points and

XFFB upto and including XFFE contain the xrom revision code. XFFF

contains the checksum of the 4k block.

Moving a block of EROM words into the interrupt jump addresses

will usually crash your HP-41. The sole reedy 1s to disable the

MLDL-read. Then you can clear these interrupt points. I+ you are

unlucky, the accident could iIoad garbage into random lodations of

the MLDL-ram. I+ this happens, your best bet 1s to reset the

entire system: Clear the MLDL-ram, MASTER CLEAR the HF-41 then

reload your software.

For the above good reasons the programs this set of routines will

not load words into the interrupt area. Any changes tao the

interrupt area must be done manually, with full knowledge of the

associated conseguenses.

I+ however vou do want to copy a routine that uses these

interrupts, First copy the routine anywhere into your FLDL

without the interrupt Jump instructions) in the interrupt area.

Maw move this block of PFicode words to its desired position and

only after this has been accomplished manually enter the required

interrupt Jump instructions.

DATA ERROR used by: FMOVE UPDLEL UFDFAT

UFDEL UPD4K CLEAR.

This main frame error message will be displayed 1+ the address

scheme 1n the aljha register does contain an illegal hex digits.

Only ©-% and A-F are valid hex digits and any other characters

residing in the alpha registers upon execution of any program

will generate this erroro messag.

note: this error message will not crate tone 7.

FGM ABORTED used by: MOVE UPDBL UFPD4K

While any of these routines are running, continuous scanning of

the kevboard 1s done to check if the ON key or the R/S has been

hit.

Page 34

MLDL operating system eprom

I+ so the routine 1s stopped immediately and the HP-41 is turned

off when the ON key was hit or PGM ABORTED 1s displayed when the

R/5 key was hit. It should be realized that when this features is

used the program stops and exits at whatever address it is ant

the moment of hitting the OM key or the R/5 kev. If this feature

is used without a solid knowledge of what is going on a whole

block of 4k MLDL-ram might be left in a uncertain state regarding

the reliocateable XEll's and GOTO 's.

note : The program MOVE may take up to 15 seconds before

completion, so be patient before stopping the program

MOVE.

XROM 18,16

This 1s not a normal function. It does not do anything when

executed but 1t is used as a spacer from write routines and

application routines within the MLDL-ram . One possible

application 1s to use it as a NOP. It will also terminate data

input without raising the stack.

Page 35

MLDL operating system eprom

UTILITY FUNCTIONS

CBT Count BYtes

ROM 18,17

This function counts the number of bytes that is occupied by a

program. The END statement is taken in account. At the prompt the

name of the desired program must be keyed in or if you are

already in the desired program press ALPHA twice { compare with

the function CLF J).

Output is given in the display only. The stack and the ALFHA-

register are left undisturbed.

I+ wou try to get the length of a program that is resident in a

rom module the error message ROM 1s given.

Example : At the explanation of COMPILE we will write a short

user code program to demonstrate you the advantages of

COMFILE. Execute COMPILE once more on this program to

make sure the program 1s as compact as possible. Now

vou can find out how long the program actually is. if

vou execute CBT and press ALFHA twice, the display will

change to 68 BYTES. This is the length of your program

including the END statement

Remember this length for you will see that the use of

CHMFDL will significantly decrease the number of used

bytes, thus giving vou a lot of memory back.

Page 36

MLDL operating system eprom

CHMPDL CorMPile and Delete Labels

XROM 16,18

This 1s in fact nearly the same function as the normal COMPILE.

Therefore we are refering to COMPILE for the set up of the flags

and the input format for COMPILE. They are both equal.

The only difference is that this function will delete the numeric

labels in the program while compiling. This shortens the program

and speeds 1t up. This can be done, because the HF-41 remembers

where to jump to in the jump and execute functions. So atter the

first run of a program, the HF-41 knows the distances to all the

labels and will always jump this distance. It does not matter 1+

there 1s a label or not. Theretore the labels can easily be

deleted. Only when the program contains indirect jumps or xeq’s

is 1t impossible to do so. This 1s due to the +tact, that the HP-

41 can not remember all the possible addresses of all labels 1n

the program. For this reason you can not use this function when

the program contains a GTO 1nd or XE ind.

The program respects all the local labels. So the labels A

through J and the labels a through e are respected and will not

be deleted. This 1s necessary because the HFP-41 searches for them

when you use them from the keyboard.

When this function is executed, it will make use ot the user

registers to hold the addresses of the deleted labels. Therefore

make swe that the number of allocated registers is more then the

number of labels in the programs. If you don't take care of this

the calculator might crash.

To protect the compiled status as much as possible we change the

terminated by the (END. This protects you from accidently writing

at the end ot the program if you want to continue at the end of

the programmemory with new programs.

During program compilation, you will see the following messages

after each other. FACE ING

CoMFL 2B G

COrMFL 3B G/X

FACK ING

COMFL 2

COmMFL 32

READY

o
o
m G

G/X

Page 37

MLDL. operating system eprom

The compiler makes use of the normal compiler. First the whole

program is compiled to find out where to jump to. Then all the

LEBEL 's are deleted and their addresses are remembered in the user

registers. This is done during the packing stage. After this the

program is complled again. When the function is through you are

at the beginning of the program.

The user registers contain the information where the program

resided and where the specified labels in the program were. The

structure of a register is as follows 18855550LLLANN. The first

two digits indicate alpha type of data. The 5555 part gives you

the start address of the program in program counter format. The

Lill part gives you the address of the label in the packed

program without the labels. The MN part gives you the deleted

label at this address.

xample : We will compile the program that we use by the example

of COMPILE. This time we are going to compile it with

CMPDL. This is easily done. First make sure we have

enough empty registers by setting the size to 18 or

greater. We can now execute CMFDL. At the prompt give

the name of the program : T8T. After the compiler has

finished we can see the results. Just run the program.

Again there is no delay in the first beep. Also notify

the fact that the flying goose does not move anymore.

This 1s because the goose only moves one place to the

right whenever the program encounters a label. But

since all labels are deleted, 1t is not necessary

anymore to move the goose. I+ vou stop the program and

execute the function CBT, vou will get as result 48

BYTES. This implies that we have saved 280 bytes of

memory, and in this case it means that the program is

shortened by roughly one third of it’s original length.

Page 3B

MLDL operating system eprom

CoD CODe alpha in hex string

XROM 16,19

The hexadecimal number in the ALPHA-register 1s converted to it's

—-bit-representation and this will be placed 1n the X-register.

The contents of the ALPHA-register is unchanged. The stack will

be rolled up and the value in the X-register before COD was

executed is placed in the LASTX-register.

The display won't be intelligable after the function COD has been

executed. For the synthetic programmer this will sound normal.

Example : Input in ALPHA the hexadecimal address of our romname

and the start address of our romname (ABB56ABIE).

xecute COD after placing the address in ALPHA. I+ we

change the display format to fix 9, the display will

iook iike this @.886B6G788 T& Save this coded

representation of the address, for we are using :t to

demonstrate an example with DECOD.

These so called non normalized numbers (NNN's) should

not be used to make calculations, +or they can hang up

the calculator for quite some time. Also they can not

be stored and recalled in the same mannner as normal

numbers, For they are normalized after being recalled.

This is easily demonstrated by pressing 570 81 and RCL

Bl after each other. The result is a zero X register.

Page 39

MLDL operating system eprom

COMPILE COMPILE program

XROM 10,20

The function COMPILE places in every numerical GTO and XE& the

distance to that numerical label. Programs prepared with the help

of COMPILE will usually run faster than programs that have to

calculate these distances while running. Two byte GOTO's that can

not make the distance will be transformed to three byte GOTO 's.

Therefore your program can be made longer by this routine and it

is required to have at least three registers left after the

program. (.END. REG xxx with xxx not equal to zero).

Compile prompts for the name of the program you want to compile.

Input is in the same way as with the mainframe function CLF. Go

if you are not in the program you want to compile, you must input

the complete name. Otherwise it is possible to press ALPHA twice.

The function will first pack the program {(PACKING J), then handle

the two byte GOTO's (COMFL 2B 6) and if needed (in this case

compile has found a 2 byte GTO that can not make 1t and will

replace it with a three byte G74, thus causing insertion of null

bytes that have to be packed as well) repeat this seguence.

After this is done it will continue with the three byte’'s GOTO's

and XEG's (COMFL 3B G/X J). After the routine 1s Finished 1t will

put the message EEADY in the display. Labels not found will give

the error condition NO LBL xx, with the number xx as the label

not found. When you switch to program mode you will find the

program step that caused the error condition.

If the program has the .END. as last statement instead of a

normal END, it will change the .ERND. into a normal one. This 1s

done for MMTORAM, which expects a program to be terminated with a

normal END.

To be able to change the .END. into a normal one, the compiler

needs at least one empty register after the program. During the

initial packing of the program a check is made to see 1+ there is

at least one register available. If this is not the case, the

program will terminate with the message TRY AGAIN. I+ so0 you

should decrease the number of allocated memory registers. (

change size)

After execution of compile you will be placed at the first step

of the program.

Deleting steps or adding steps in a program, will change the

status of the program intc a decompiled one. Reusing the compiler

will speed up the execution after the editing session.

Page 44

Example

MLDL operating system eprom

Create the next program in your calculator

ai LBL “T5T 18 GTO 16

a2 LBL G&6 ig LBL 17

8% LBL @1 28 BEEP

a4 GTO 82 21 GTO 08

a5 LBL 63 22 LBL @Z2

Bs GTO @4 23 GT0 8:3

B87 LEBEL @5 24 LBL 84

B88 GTO 8s 25 B70 @5

87 LBL 6&7 26 LBL 6&6

19 GTO @8 27 GTO @7

11 LEBEL 8% 28 LBL @B8

12 674 18 29 GTO 89

13 LEBEL 11 S38 LBL 1@

i4 670 12 31 670 11

15 LBL 13 32 LBL 12

1& GTO 14 33 B10 13

17 LBL 15 4 LBL 14

35 B70 15

26 LBL 16

37 GTO 17

I+ vou execute this program atter you have loaded 1t,

vou will notice the significant time 1t takes before

you hear the first beep. You will hear the second one

much sooner. Stop the program and goto step 1. Delete

the superfluous label 81.

Execute the function COMPILE. You will be prompted for

the name of the program to be compiled. Press ALPHA

twice, since we are in the program already. (It's also

possible to give the full name of the program (TST) 1}.

Now the message FACKINMG 1s displaved. I+ you do not

have enough room after the program, COMFILE will

terminate with the message TRY AGAIN. Then the messages

CHFL 2B 6G and CMPL 3B G/X will be showed shortly atter

each other. When the compiler 1s through these

messages, a tone will be sounded and the display gives

the message READY.

I+ you press FRGHM once, vou will find yourself at the

start address of the program. Press FPRGM once mare and

press (/5. Notify the tact that there 1s no delay

before the first beep sounds.

Page 41

MLDL operating system eprom

Goto step one once more and delete label 88. Execution

of COFMFILE will give the error message NO LBL @@. I+

vou go into FPRGM mode you will be at the step that

caused the error, step 19. FPlease restore the program

with LBL 88 at step 81 again,because we are going to

use this program again in the example of CHPDL.

Page 42

MLDL operating system eprom

DECOD DECODe non normalized number into alpha

XROM 18,21

The Function DECOD is the cpposite of the function COD. It will

translate a —-bit-representation in the X-register to the same

hexadecimal form as is used by the function COD. The output is

given in the ALPHA-register. When DECOD 1s executed manually

DECOD will also give the hexedecimal representation in the

display.

Example : We are going to use the same number as we have created

with the function COD. First clear the ALFHA register.

Now we must get back our just created number. If you do

a RDM, 1t will come back to the X register. Execute the

function DECOD. The hexadecimal representation of the

number will appear in the display. I+ you press back-

arrow once, 1t will disappear and the nonnormalized

number 1s viewed again. bo into ALPHA and discover the

nexadecimal representation here.

Page 43

MLDL operating system eprom

DISASS DisSaSSemble m—code

XROM 16,22

This function behaves in the same manner as the DISTOA function

of the David Assembler rom. However, this function also decodes

the FAT, function names, the polling points at the end of a rom

and the revision and checksum codes in the proper way.

Output of the function is also send to the Alpha register, but

the format is a little different.

A line of machine code always starts with 7 blanks, except in the

case there 1s a label at that address. In this case the first &

places on the line are used to display the label.

This feature already makes it a lot easier to read dissassembled

listings, as the labels are not any more in between the code

itsel+.

Alos the FAT is printed correctly. The start address of the

function and its function name are displayed. Also the number of

the FAT entry is displayed. Fay attention to the fact, that this

entry number usually 1s not the real XROM number.

Furthermore when the name of a {function 1s encountered the

display will show the string FUNCTION FRAME.

At the end of the rom the polling points are given a name. In

this case 1t 1s easily seen, which entry point 1s used and

wherefor it 1s used.

For more information on input and output see also the manual of

the David Assembler rom.

Page 44

MLDL operating system eprom

Laca LOCAte word

XROM 18,23

This Function allows you to locate a data—word in a 4K block of

ROM, EPROM or MLDL-ram.

The input format in ALFHA is as follows: BBBBEDDD.

BEEBE specifies the address from where LOCA starts searching in

the 4K block. Actually 1t will start at BBBE + 1 to allow

repeated search in the block. NONE will be displayed when the

wanted data (DDD }) is not found in this 4K block. Whenever a

data-word is found, it will be displayed together with the

address at which it is found. The data in ALPHA (adress + word)

will be replaced with the data found.This makes i1t possible to

continue searching for the same word.

Example : With a small user code program you can easily print out

all the occurrences of an instruction in a rom or HMLDL

ram page. Create the foliowing user code program (make

sure you saved the T5T program)

@1 LEBEL "LOCATE Bs AOFF

BZ "ADD + DATA v6 LBL 61

83 AON a7 LOCA

84 FROMFPT g8 GTO 81

Input for this program could be a starting address like

X0B@ and the data to search for could be 848. This

would give you a complete list of all the MLDL WRITE

instructions in the MLDL rom. Enter for X the page

address where the MLDL rom is located (usually page F

J

Page 45

MLDL operating system eprom

LROM Last EOM word

XROM 16,2

LROM searches backwards for the last non zero word in a block

beginning at a given start—address. Input is AAAA in ALPHA. The

display will give the address of the last non zero word and the

value at this address. NONE will be returned when the block

between the start address and the beginning of this 4K page does

not contain any word { other than zero J.

This function can be very useful when the end-address of the last

program entered has to be found. In this case the easiest way is

to put xFF4 into ALFHA and execute LROM. It will give you the

address of the last word that is occupied by the program.

Example : If we want to find out where we can load our next user

code programs, we could search for empty space with the

help of RAMWR, but this would be rather cumbersome. To

avoid this, we are going to use the function LROM. In

this case we want to search on page A, starting From

the end and working backwards. Input for this is AFFF

in ALPHA. Execution of LROM will return ABF78B3EE8 to the

display after a short search time. This tells us, that

the next available word in our rom 1s at address ABI.

If we are searching on a completely empty page, LROH

will return the message NOME to the display, because 1t

can not find any word unequal to zero on the page. Try

this with page & for example. Input for this is SFFF in

AlFHA. Execute LROM. After a short while the message

NOME will be displayed.

Fage 46

MLDL operating system eprom

ROMCHEKX ROMCHeck by X-reg

XROM 18,25

This function enables you to check if a ROM or MLDL-ram 1s still

in good shape. Important though is the fact that a ROM or MLDL-

ram must contain a good computed checksum { see ROFMSUM for the

definition of the checksum). HF rom’s will always contain a good

checksum. During the test the XROM number is displayed along with

the short form of the name and the revision number of the ROM. If

the ROM or the MLDL-ram doesn't contain this short name or the

revision number, the display will show @8E-EE.

Input in the X-register, the XROM number of the ROM or HMLDL-ram

you want to test { an example is 31 for the cardreader). During

the test XX NN-RR T5T will be displayed. XX is the XROM number of

the ROM that is tested, NM 1s the shortened name and RR 1s the

revision number.

Output of ROMCHEX is the display XX NN-RR BAD (indicates a bad

ROM 3} or the display XX MiM-RR OK { indicates a good ROM } These

outputs will be given only when the function is executed from the

keyboard.

The behavior of ROMCHEX will be different when 1t is executed in

a programs; when a ROM is found to be good it will do the next

step in the program. Else it will skip the next step (compare

the function F577: the rule do 1+ true 1s in force J.

When there 1s no ROM present with the desired XROM number the

message NO ROM XX will be displayed. Again it’s behavior in FRGM

mode 1s different. It will act as i+ the ROM is bad and skip the

next line.

Exampie : We can check i+ the MLDL operating system eprom is

still good. For this we need an input of 18 in the X

register { this is the xrom number of the MLDL rom 2}.

When we execute the function ROMCHEKX, the display will

change to 18 05-7B T5T. This indicates that the rom

with xrom number 18 is under test. The revision code ot

this rom is 05-7EB. After a short time the display will

change to 1@ 05-78 Ok . When we execute ROMCHEX with a

xrom number that is not present it will say NO ROM nn.

This can be tried with zero in the X register because a

rom never can have xrom nr B88. The display will show NO

ROM B83 after ROMCHEKEX has been executed.

Page 47

MLDL. operating system eprom

SAVEROH SAVE ROM image to mass storage

XROM 183,26

With this function you can save the contents of an entire rom on

cassette tape. The input format for this function is a name 1in

the alpha register and the desired page number 1n x.

A File will be created on tape of 648 registers, occupying 208

records.

Because there are a lot of users who have been using the Mountain

Computer eprom burner set with the functions READROM and WRTROM

we also included a user code program to be able to read back rom

files in the old B24 {tormat. This is the program ‘RROM 1n

appendix H.

The file identifier on tape for the new file created by SAVEROH

is ¥ ©B7. This means that the files are presented in the DIR as :

NAME ?2,5 648

We have chasen for a nonexistant file type to be sure that the

data 1s not accidently destroyed. Therefore the file 1s also

automatically secured after creation. SAVEROM saves 7 records per

file compared to WRTROM or "WROM. Now you will be able to get the

maximum number of roms on your tape (e.g. 24 files J.

To get the maximum number of files on your tape it 1s recommended

to do a NEWM with 27 File directory entry's. You can write 12

files on each side of the tape then. After having written 12

files you should protect the tape from rewinding from one side to

the other by creating a dummyfile "ENDTAFE" of 3B8 registers.

Example : If you have a cassette drive you can try the {following

example. We will save the contents of our rom at page A

on tape and read it back with GETROM. bGive a filename

in ALFHA, {for example USERI1.

We have the name in ALFHA and now we have to give the

page address in the X register. In our example this

will be 180. Execute S5AVEROM. You will hear the cassette

drive working for some time. If vou watch the drive

closely, you will notice that it writes 20 blocks after

each other.

When the drive 1s ready again you could do a DIR and

see as entry 1n the directory oft the tape our Just

created romtfile. It will be in the form as described

under the function description,

e.g. USER1 27,5 &H48.

Page 48

XROM

18,81
16,62
13,83

168,84
18,85

13,066
19,07

16,88

18,09

1@,1@

18,11
18,12
18,13
1@,14
10,15

18,16
18,17
1@,18
i@,19
10,20
18,21
1@,22
1@,23
18,24
18,25
18,26

c
o
v
a
o
a
m
o
o
>

NAME

AFAT

CLEL

CLEAR

COFYR

CRNAME

DFAT

GETROM

IFAGE

FMMTORAM

FMOVE

ROMSUM

UrDBL

UPDFAT

UrFDLBL

UFD4K

CHT

CHMPDL

CoD

COMPILE

DECOD

DISASS

Loca
LROM

ROMCHKX

SAVERDOM

MLDL operating system eprom

APPENDIX A

INPUT

UorFafda in ALPHA

F / BEBBEEEE in ALFHA

BEBBEEEEDDDD

SD in ALFHA

function name

OFAAA 1n ALPHA

name in ALPHA

dec. page in X

name in ALPHA

dec. page in X

xrom at prompt

BEEBE in ALPHA

+lags 6, 1 and =

BEEBEEEEDDDD in ALPHA

F in ALPHA

BBEBEEEEDDDD

BEBBEEEEDDDD

BEBERBEEEEDDDD

BBBBEEEEDDDD

name at prompt

name of program

hex in ALPHA

name of program

binary in X

BEBBDDD in ALFHA

BBBE in ALPHA

XROM 1n X

name in ALPHA

dec. page in X

address digit

ouTPuUT

FAT updated

block cleared

block is cleared

copied block

name add and FAT

updated

FAT updated

4K. of tape 1n ram

desired page cleared

name + Xrom in page

load addr. in ALFHA

stored program

block is moved and

updated

romsum in xFFF

moved block updated

FAT updated

assm labels updated

not moved block

updated

length of program

short comp. program

binary in X

compiled program

hex in ALPHA

mnemonic a ALPHA

AAAADDD / NONE

AGAADDD / NONE

bad / ok do if true

4K in tile on tape

begin address digit

data digit or destination digit

end—address digit

offset digit

page number digit

source digit

user digit

Page 4%

MLDL operating system eprom

APPENDIX B

PROGRAMMING AND THE MLDL EPROM SET

Mast Functions provided by the ERAMCO MLDL-EPROM can be entered

in praogram whenever the eprom—set is plugged in an ERAMCO MLDL-

box connected to the calculator. When the ERAMCO MLDL-box

containing the eprom set 1s connected program lines with eprom

functions are displayed and printed as standard functions.

I+ the box is disconnected, these program lines are displayed and

printed as XR0OM functions with two identification numbers. The

first number —11- indicates that the functions are provided 1in

the ERAMCO MLDL-EPROM. The second number ildentifies the

particular function. The XROM numbers +or the ERAMCO MULDL-EPROM

are listed below.

Function XROM Number: Function XROM Number: Function XROM Number

aFAT XROM 16,81 | DFAT XROM 1@,84 | SAVEROM XROM 16,26
CET XROM 18,17 ! DISASS XROM 1@,22 | UPDEL XROM 1@,12
CLBL XROM 18,82 | GETROM XROM 18,87 ! UFDFAT XROM 18,13
CLEAR XROM 18,83 | IFAGE XROM 18,08 | UPDLEL XROM 18,14
CHPDL XROM 1@,18 |! LOCA XROM 1@,23 | UPD4E XROM 13,15
COD XROM 18,19 | LROM XROM 1@,24 | —— XROM 18,1
COMPILE XROM 192,28 | MMTORAM XROM 180,89 i
COPYR XROM 18,84 ! MOVE XROM 1@,18
CRNAME XROM 18,05 ! ROMCHKX XROM 18,25 |
DECOD XROM 10,21 | ROMSUM XROM 1B,11 |!

Underlined tunctions are not programmable.

If program lines using the ERAMCO MLDL eprom are entered when the

eprom set 1s not connected, the function 1s recorded and

displayed as XEU followed by the function name. Program execution

will be slowed down by lines in this form because the calculator

will First search in main memory for a program or program line

with the specified label.

Page 5G

MLDL operating system eprom

APPENDIX C

MESSAGES

This is a list of messages and errors related to the functions in

the ERAMCO MLDL-EPROM set. When any of these errors are generated

the attempted function is not performed, except as noted.

DISPLAY

BAD MLDL

ENTRY >&64

GTO/XEG IND

NO ENTRY

NO HF IL

NO LBL xx

NONE

NMONEXISTENT

NO ROM

NO ROM xx

FUNCTION

RAMWR

AFAT

CHFDL

MMTORAM

DFAT

SAVERDOM

GETROM

COMRILE

CMrPDL

MMTORAM

LROM

LOCA

—all-

ROMFREDG

RaMuR

ROMCHKX

MEANING

The MLDL ram page is malfunctioning.

There are already 64 entry's 1n the FAT.

The program contains G70 or XEGQ ind

statements.

No such entry exists in the FAT.

The HPIL module 1s not plugged in.

The GTO or XEG has no corresponding LBL

in this program.

The whole block 1s empty.

There is no such word in the block from

start—address up to the end of the page.

The ERAMCO MLDL-EPROM set is not plugged

in or is disabled or is malfunctioning.

There are not enough registers available

to store the specified block.

An attempt has been made to write to an

page which does not have a valid XROM

number at the first address of this

page.

The ROM with the given XROM number is not

plugged in or disabled.

Page 51

DISPLAY

NO WRITE

FAGE > pr
ob
e

Ut

ROM

wx hN—-RR BA&D

xx N-RR OH

COMFL ZB ©

coMPLL 3B G6/X

LOADING FGM

FACK ING

READY

MLDL operating system eprom

FUNCTION

RAMKWR

GETROM

IFAGE

SAVEROM

MEFR

MHTORAM

COMPILE

CHFDL

CBT

ROMCHKX

ROMCHEX

COMPILE

CHMFDL

MMTORAM

COMPILE

CHPDL

MHMTORAM

HMHTORAM

COMPILE

CHMFPDL

MMTORAM

COMPILE

CHPDL

IFAGE

MHMTORAM

APPENDIX C

MEANING

The data 1s not written at the desired

address. It 1s impossible to write to an

EFROM or ROM page. Also vou can not

write at a disabled page.

There is an invalid pagenumber in reg X.

The named program doesn’t exist in main

memory but 1s found in ROM

The ROM with the XROM number xx 1s bad.

The EOM with the XR0OM number xx is ok.

The 2 byte GTO0's are handied.

The = byte GTO 's and XEG's are handled.

The program is loaded to MLDL ram.

ff byte is deleted and the program is

packed to reduce the length of the

program.

The function 1s ready.

Page 52

MLDL operating system eprom

APPENDIX D

XROM numbers range from 1 up to 31 inclusive. fis quite a few

ROM’ 's are available at the moment of this writing it is advisable

to

modules.

ROM name i

———senttne, tn SeS—

choose a XR0OM number with care to avoid conflicts with

+ Only a small number of this ROM,

were made and are not stocked or sold byROM,

Those

and

functions

(1.2.

other

KOM name + XROM ID | XRrRO™M ID

MAaTH 61 i SECUR i 19 =

STAT I i i CLINLARBR i 19 =

SURVEY i @3 + AVIATION 19 =

FINANCE I i i MONITOR P19 ® +

STANDARD i BS i STRUCT-B i 19 %

CIR ANAL i Bb i © PPC 1981 i 28

STRUCT-A i @7 i ASEEMBLER 3 i 21

STRESS i @g i IL-DEVEL 22

HOME Mi ag + 1/70 i 23

GAMES i ig = i IL-DEVEL i 24

C FPC 1981 i 18 = i —EXTFCN i 25

AUTODUP : ig * i —TIME- i 26

REAL EST i i1 i — WAND i 27

MACHINE i 2 i —MASS ST i 28

THRML i 3 i (= CTL FNS -

NAVIG i i4 i HP-IL MODULE)

PETROL i ia i —PRINTER i 29

FETROL i i6 i CARD READER i 38

FLOTTER i 17 i PRPC ROM 2 277 1 31

FLOTTER i i8 i ERAMCO-MLDL i 18
—rn———

marked with an asterisks share their

not be used in the HP-41 at the same

the same XROM ID the one at the

lowest numbered port) will be accessed first and

So use discretion when choosing

should

the

will be i1gnored.

with

an early version of

HP.

identifying

time.

lowest

XROM number if you want to avoid these kind of problems.

Page 53

other

IL-DEVEL

number,

Of two

address

the

YOU Own

MLDL operating system eprom

APPENDIX E

XROM STRUCTURE

XROM's are located at whole 4k blocks of addresses. The lowest

addresses in an XR0OM, and a few of the highest have special func-—

tions. The remainder may be filled in any way. The locations in

the 4k blocks must be filled by ten bit words, giving 2718 diffe-—

rent codes. They may be read as instructions, or as alpha-numeric

data. The following summary, adapted from J. Schwartz’ January

i832 FFPC Conference paper, should be taken into account when

studying an application ROM, e.g. the MLDL-ROM. A listing can

easily be prepared by using the MLDL-ROM functions DISASM and

MINE.

Relative Function of code at that address

address (hex)
————————————f—————————————So—————— —— — a

Xgaa The XROM ID number in hexadecimal digits.

Xgal The number of functions in the XROM (m},

including the XROM name.

XBaz-= Address of XROM name

Xaa4-35 Address of first routine, program, etc.

Xgps-7 Address of second routine, etc.

Xa@g2+2n Address of nth routine

X8l3+2n

XQB2+2m Address of last (m th) routine

X0a3+2m {m < &4)

X004+2m Compulsory null -— GGG.

XPas+Zm Compulsory null — G&G.
it £3 is

Page 54

MLDL operating system eprom

Add. of name Mame of ROM (running backwards)

Add. of Fn# 1 Start of Fn# 1 code

it Il I

Add. of Fn 2 Start of Fn#¥ 2 code

XFFr4-A Special interrupt jump locations (see table J).

XFFB-E ROM name abbreviation and revision #.

XFFF ROM checksum for diagnostic use

Word pairs containing function addresses:

First word of pair: a a

@

b 0 a 0 ail alld a7 aB

Second word of pair: @é a7 ab ad ad ald aZ2 al ab

This results in the following address in this 4k block 1+ 0000 1s

zero:

ps p22 pl pd all ald a ad a7 ad ad ad a3 aZ al ald

Where p@-3 is the bit representation of the 4k page number and

a@d—11 represent the relative offset from the beginning of the

page. hen 0000 is not equal to zero it must be added to p#@d-3. For

more information see the function AFAT.

I+ the two words would read B83, OFF this would represent a

starting address of a function at address X3FF (hex). The bit b

in the first word indicates USER code or microcode. i+ set the

address 1s the start of a USER code program (e.g. 288, B84Al in the

printer module 1s address &8Al1, start of USER code program

"ERELOT")

Page 55

xFF4

xFFS

xFF&
RFF7

xFF8

XFFQ

“FFA

Do

doing.

MLDL operating system eprom

APPENDIX F

THE SPECIAL INTERRUPT POINTS

Interrupts during F5E loop.

Interrupts after each program line.

Wake-up with no key down.

Interrupts when turned of+.

Interrupts when peripheral fiag 1s set.

wake-up with ON key.

Wake-up after memory lost.

not use these points uniess you know exactly what

Careless use of these points may cause CRASHES.

Page 56

you are

MLDL operating system eprom

ASSEMBLY LANGUAGE INFORMATION

SHORT REVIEW OF THE HP-—41 INSTRUCTIONS

The HF41 CFU has three main arithmetic registers: A,B and C.

These are 56 bits long (14 nibbles) and instructions can operate

in various "fields" of the register.

i 13 0 12 11 1@ g 8 7 & 5 4 S12 11 8H i

i i i X88 i i

i : ALL P= :
iL———t———————————+t:

i M5 i*i i S & X :

ALL The whole register

Mantissa

Mantissa 5ign

eXponent Sign

eXponent and Sign off exponent

p
d mn

SX

@R : At specified pointer

R<— : +rom digit R to digit @

FE : Between FP and #

There are two pointers FP and G, of which the value is 8-13. Une

of them is selected at the time (through slct p or slct qi, the

selected pointer is called R. These are three extra fields, which

depend on the value of the pointer), R<- {up to R, From digit KR

to digit 8) and F—-& (between pointer F and &, must be greater

than Pl.

There 1s a register 6G, 8 bits long, that may be copied to or

from or exchanged with the nibbles KR and R+1 of register Cu.

{(R<=12). There are 14 flags, 8-13, of which flags 6-7 are located

in the 8-bits ST (status) register, and there is a 8-bits TONE

register TT, of which the contents floats every machine cycle

through a speaker.

Page 357

MLDL operating system eprom

Then there are two auxilary storage registers, PM and N, which

can operate only in the field ALL. They are 5&6 bits long.

There is a 16-bit program counter, which addresses the machine

language, and a KEY register of 8-bits, which is loaded when a

key 1s pressed. The returnstack 1s 4 addresses long and 1s

situated in the CPU itself.

The CFU may be in HEX or DEC mode. In the last mode the nibbles

act as if they can have a value from § to %.

The USER-code RAM is selected by Cis%xkl through RAM 5LCT, and

can be written or read through WRITE DATA or READ DATA. I+ chip @

1s selected (RAM address B88 to BOF) the 1&6 stack registers may

be addressed by WRIT and READ @ to 15.

Feripherals {such as display, card reader, printer } may be

selected by Cls%x] through FRPH select or by SELF (see page 1%).

The mnemonics are a kind of HASIC structure.

Arithmetic instructions (operate on a specitied field:

A=@ C=i C=C+1 PALE

E=i A=A+1 C=C+A 7a#C

C=@ A=A+EH C=A-C PA#D

a >B A=Aa+C C=8-C HKSHFA

B=A A=A—1 C=—C-1 RSHFB

A< »C A=48—8 TEES RSHFC

a=>C_ A=A-C 2CHEG LSHFA

Cx *B C=C+C 2a<C

CLRF, SETF, FFSET, ?R=. 7F1 {peripheral flag set?) , RCR (rotate

right) have a parameter @-1i3.

LDeR {(lpad C at Ry and S5ELF (select peripheral) have a parameter

WRIT and READ have a parameter 8-15, called

B(Ty, 1{(Z), 2{(¥), SX), 4{Ly, SM}, &M}, 70), BFP}, Fi),

ig¢i—-y, iidalr, 12{b), 13{cr, 14{d), 1S{e}).

Page 5B

MLDL operating system eprom

Jumps:

There are two classes jumps:

a. JNC (Jump 1+ no carry) and JC (jump i+ carry). These

instructions provide to jump relative IF in positive

direction or 489 in negative direction.

b. NC BO and PC GO. These instuctions provide to jump to an

absolute 146 bits address.

NC X@! and PC XG are jump—subroutine instructions to absolute

addresses. (remember the return stack is just 4 addresses long).

PMirtscelaneous instructions:

ST=@ C=06 5T=T7 FOWOFF

CLREEY Cb STAT SLCT F

PEEY C=H S5T=C SLECT ©

R=R-1 M=C C=87 R=

R=R+1 CM ST<>C PLOWBAT

G=C T=5T XG->60 A=B=C=0

GOTO ADR (CL&: 31 “EC RTN FUSH { CL&6:31 0)

C=KEY PHC RTM FOF { EL&:230 1)

SETHEX RTN GOTO KEY

SETDEC N=C RAM SLCT

DSFOFF C=N WRITE DATA

DSTTOG CM READ DATA

FETCH 5X C=C or A FRPH SLOT

WRIT S%X (for HLDL) C=C and A

Note : various arithmetic and all test instuctions may set the

carry flag. This flag keeps set only one machine cycle, so

a Jump dependent on this flag must be immediate after the

arithmetic or test instruction, otherwise the carrytflag

will always be cleared.

Page 59

CLASS @ OPERATIONS

MLDL operating system eprom

-
o
-

44 BCA} 1B4 | 3AA S204 -— |

84 | 884 : 344 : B84 1 144 1 284 © 184

pi Ad 1 324 1 224 | BZ4 | BAA | BAA © 164 1 ZA4 1 174 1 264 | BER © IAA | 364 1 2E4 1 IEA 1 SEA

gi 384 1 384

CLRF

SELP

Al 1 3td

AC + 120: 260 + BEC + IAC § 360 1 2EC § — 1 —

r
aBRIT pi 828 | B6E | BAB t BES 1 128 : 168 ¢ IAB 1 LIEB 1 228 | 268 © 2A8 288 1 3Z8 | J&B |

2C1 B60 1 BAC © 160

r
di 8

JCC Ek2Lo)i 2BC § 13C § 27C { @FC 1 IB

3

1 23C 1 830 1 BJC © @8BC + 17

FPage &@

OPERATION

Write *C® to RAM memory or to the selected device in register p of the selected black

Set the carry flag if peripheral flag p is set

Read °C" from RAH memory or the selected device to register p in the selected block

Load p into “C* at nibble pointed at by pointer and decreaent pointer

Rotate "LC® right by p digits

Set the carry flag if the active pointer equals p

Set the active pointer to p

Transter control to the desired peripheral p

Set the carry flag it systea flag p is set

Clears systema flag number p

Sets systea tlag nusber p

No operation

P

P

P

p

P

k

P

MNENONIC

HOP
CLRF
SETF
WSET p

LDER
=

SELP

WRIT
I
READ
RCR

HNEMONIC HEX

UNUSED

UNUSED

UNUSED

UNUSED

ST=8

CLRKEY

KEY

R=R-1

R=R+1

UNUSED

B=C

C=h

C46

UKUSED

H=C

C=H

LOH

UNUSED

1=51

5T=T1

STO

UNUSED

5T=L

£=8T1

COST

14-360

PUROFF

SLCT P

SLCT @

x34

x74

xB4

xF4

3C4

3C8

SCC

304

30C

2i8

838

898

208

118

158

158

108

218

258

298

208

318

338

398

308

822

848

ang

aca

MLDL operating system eprom

CLASS @ SPECIAL INSTRUCTION HEX CODES

OPERATION

Hot in use

-

Clears flag 8 to 7 { *5T° register)

Clears the "key pressed’ flag

Set the carry flag when a key has been pressed

Decresent the current pointer

Incresent the current pointer

Hot in use

Copy digits r,r+I from *C* to *5"

Copy "6" into digits r,r#l froe °C°

Exchange "6° with digits r,r#] from *C*®

Not in use

Copy *C* into "H®

Copy "H® into *C*

Exchange *C" with "H*

Hot in use

Copy "ST" into *T®

Copy °T" into ®S57°

Exchange "ST" with "T°

Not in use

Copy digits 1, # from °C® into "ST"

Copy "57" into digits 1, & from °C*

Exchange digits {, 8 from “C* with "ST"

Drop stack to convert XB into 60

Go to standby mode

Select "P® as the active pointer

Select "RB" as the active pointer

HNENONIC

C=KEY

SETHEX

SETDEC

DSPOFF

DSPTO6

C RTH

NC RTN

RTH

UNUSED

N=C

C=N

CON

LDI

PUSH

pap

UNUSED

60TO KEY

RAH SLCT

URUSED

HEX

228

268

2h8

ZEB

328

Jo

Jad

Jed

83a

278

aba

are

138

178

Ba

iF

238

278

288

WRITEDATA 2FQ

FETCH

C=C OR 4

338

378

£=C ARD A 3b@

PRPHSLCT

7P=0

HDWBAT

fA=B=C=R

6070 ADR

Page 61

3rd

128

isd

1A8

1E@

OPERATION

Copy key register into digit 4, 3 of *C*

Use hexadecisal arithaetic

Use decimal aritheetic

Turn off the display

Togale the state of the display

Return from subroutine if the carry is set

Return fros subroutine if carry flag cleared

Do a subroutine return always

Not in use

Copy *C" into "N°

Copy °"N® into °C°

Exchange "C* with °N”

Load next rom word into digits 2-8 of *C°

Push address digits 6-3 in *C® onto stack

Pop address froa stack into digits 6-3 of °C®

Hot in use

Load key register into lower 8 bits of “PL”

Set ras address to digits 2-8 of °C*

Hot in use

rite register *C* to the selected register

Load 2-8 of "C" fros roa address 6-3 of °C*

Logical or of "C* with "A" bit by bit

Logical aed of "C" with "A* bit by bit

Set peripheral address to digit 2-8 of “C*

Set the carry flag if the pointers are equal

Set the carry flag if low battery

Clear registers "A* “B® and *C*

Copy digits 6-3 of "CL" into the *PC*

Class

consist of two consecutive ROM words of the following format

A>

a

Hiss

Fe

i

fia

Ai1=s—Aa

second

table shows values for pp :

pp MNEMONIC

aa MC XQ

gi C Xx

18d NC BO

a1 C GO

Example :

instructions

MLDL operating system eprom

CLASS 1 INSTRUCTIONS

Aa A= Ao Ay

Bi Aaa Ai fio

Ag ©B 1

Ae p Fp

1s the 16-bit address to branch to. The pp field of

word determines what type of instruction it is.

OPERATION

execute subroutine if carry 1s clear

execute subroutine 1+ carry is set

goto rom address

goto rom address

NC GO 8232 which jumps

coded as :

all Ba1s 81

Bogs 8218 14

if carry is clear

1f carry 1s set

to the memory lost routine

= {CTY as first word

Haha as second wordI

Page 6&2

are absolute GOTOs and EXECUTEs. They

the

The next

1s

FIELD

ALL

i

gh

x8

S&X

ER

R<—

FQ

MLDL operating system eprom

CLASS 2 FIELDS @F OPERATION

AREA OF OPERATION

All digits.

Mantissa digits 12 — 3.

Mantissa sign digit 135.

Exponent sign digit ZZ.

At exponent digits 2 — @.

At digit specified by the current pointer.

Up to and including pointer from the right.

from pointer FP, left up to ¢, including pointers.

Page 63

MNEMONIC

m
w
D
v

8
8

A
l
l
o
a

ll
A
l

D
>

0
)

S
t

+
+

mm
O
w

O
m

=A+1

A=A—RB

A=A—1

A=A-C

C=C+C

C=A+C

C=C+1

C=A-C

C=C-1

C=8-C

=—C-1

BFA

?C#0

PACE

?A<B

AFH

7?AF#C

RSHFA

RSHFB

RSHFC

LSHFA

T
D
D

O
0
O
0
D
D
T
I
0
O
W
D

MLDL operating system eprom

CLASS 2 INSTRUCTIONS

OPERATION @R

clear A “a2

clear BE B22

clear C a4:

exchange A with B Be2

copy A 1nto B B82

exchange A with C aAaz

copy B into C ac:

exchange B with C BE>22

copy C into A 182

add B into A 122

add C into A 142

increment A 162

subtract B from A 182

decrement A 1A2

subtract C from A 1C2

double C 1EZ

add A into C 282

increment C 222

A-C into C 242

decrement C 262

complement C 282

nines complement C 2A2

set carry flag 1+ B#80 2C2

set carry flag 1+ C#B 2EZ2

set carry flag 1+ A<C 382

set carry flag 1+ A<B 322

set carry flag 1+ A¥@ 342

set carry flag i+ AFC 3I&62

shift A right 1

shift C right 1

shift A left 1

digit 382 :
shift B right 1 digit 3A2 3

digit 3C2
digit 3IE2

Page &4

-—al

R<—

aaa

az2a

84a

Bsa

B8A

BAA

CA

BEA

180A

124A

14A

186A

184A

1AA

1CA

1EA

280A

224A

244A

26A

28A

2A6

2CA

2EA

S8a

32

344A

366A

3S8A

SAA

SCA

SEA

ALL

BiGE

a2E

a4E

B6E

B8E

BAE

BCE

OEE

16E

12E

14E

16E

iBE

1AE

iCE

1EE

20E

22E

24E

26E

28E

2AE

2CE

2EE

SBE

32E

S4E

I6E

SBE

SAE

SCE

SEE

PQ

ai2

32

52

a72

B72

BB2

@ap2

GF2

112

32

152

172

192

1B2

iD2

iF2

212

232

252
272

292

2B2

2D2

2F2

312

332

332

S72

372
ao
Jt

(A
Ad

m
o
w

F
R
A

XS

@a1s6

B36

B56

Baza

A746

B86

@D6

bré&

116

136

156

176

196

iB&

iD&

iFé&

216

23

256

276

296

2Bé&

2D&

2F6

316

336

356

376

326

3Bé&

Dé

SF6&

A1A

B3Aa

BSA

a7a

BIA

BBA

BDA

brA

11A

134A

135A

174A

19A

1BA

1DA

1FA

214

23A

25A

27A

294

2BA

2DA

2FA

31A

B1E

BSE

ASE

a’E

BoE

BBE

ODE

are

11E

13E

15E

17E

19

1BE

1DE

1FE

21E

23E

25E

27E

29E

ZBE

2DE

2FE

S1E

333A 33
355A

37A

374

SBA

ZDA

SFA

33E

S7E

SPE

SBE

SDE

IFE

MLDL. operating system eprom

CLASS 3 INSTRUCTIONS

DISTANCE JNC-— JC— JNC+ JC+ DISTANCE JNC- JC— JNC+ JC+

+/— 81 SFB 3FF OB GBF +/— B82 SFX 3F7 B13 817

+/— B83 SEB 3EF #@1B @i1ir +/— B64 IES 3IE7 B23 B27

+/—- B85 SDE 3DF @ZB @QZ2F +/— @B& DS ED7 833 637

+/— @7 CB ZCF 2B @3r +/— @8 SCZ 367 @43% 847

+/—- @9 SBE 3BF 4B @4F +/— BA SBI SB7 @53% B57

+/— @GB SAB 3AF B58 @35F +/— @C IAS IA7 B63 B&7

+/— @D IPE 39F B&B B&F +/— BE 295 397 B87 @77

+/— @F 388 3I8BF B7B 67F +/— 18 383 387 @83z 887

+/—- 11 378 37F @8BEB B8F +/—- 12 373 377 BF73 BF7

+/— 13 368 34F @98 6B%9F +/— 14 363 67 BAS BAT

+/— 15 35 I5F BAB AF +/— 16 35% 3537 BRS 6B7

+/— 17 348 3IZ4F BBB GBF +/— 18 343 347 BCs @aCc7

+/— 19 33B IEF Ce BCF +/— 1A 333 337 @Dhz BD7Y

+/— 1B 3Z2B 32F @DB @DF +/— 1C 323 327 BES BET

+/— 1D 31B 31F BEE B@EF +/— 1E 31% 317 @BF3 @arF7

+/— 1F Sd IBF B@FB @FF +/7— 28 Sas 387 183 187

+/—- 21 2FB ZFF 18B 18F +/— 22 ZF Z2F7 113 117

+/— 23 ZEB 2ZEF 11B 11F +/— 24 2ES 2E7 123 127

+/— 23 2D 2DF 12B 1Z2F +/— 26 203 207 23 1357

+/—= 27 2CB 2CF 13B 13F +/— 28 283 207 143% 147

+/- 29 ZBB 2BF 14B 14F +/— 2A ZBE 2B7 153 157

+/— 2B 2B 2AF 15B 15F +/— 2C 2A3 2A7 163 1&7

+/— 2D 298 29F 1&6B 16F +/— 2Z2E 29% 297 173 177

+/- 2 288 2BF 17B 17F +/— 328 283 287 183 187

+/—- =1 27 Z27F 18B 18F +/—- 2 273 277 193 197

+/—- 33 268 26F 19B 19F +/— 34 263% 267 1A3Z 1A7

+/—- 35 2538 Z25F 1AB 1AF +/—- 3&6 253 237 183 1E7

+/- 37 24B 24F 1BB 1BF +/— ZB 245 247 1C3 1C7

+/— 39 238 23 iCB 1CF +/— 3A 233 237 1pR3 1D7

+/— 3B 228 Z22F 1DB 1DF +/- 3 223 227 1E3 1E7

+/— 3D 2B ZiF 1EB 1EF +/— 3E 213 217 1FE IF7

+/— IF 28 28 1FB 1FF +/— 48 263 2867 —— ———

Class 3 instructions aliow the program to jump up to 63 words

forward or backward from its present location. The mnemonics are

JNC and JC.

Page &35

MLDL operating system eprom

ROM CHARACTER TABLE

lower 4! @ { 1 ! 2 1 3 1 4! 5 1&1! 7181! %:aiBI!C!D:!

u @ i @!AIBIC!IDIE!F IG IHI!I!J!K!L!MHI
p mimimmmmmem meeeeefeeeemem
p 1 FIR IRIS IT IUYV IW YX LY LZ DENT
eg ———jm——imidemmmmmmmem feeeeee
- Por LH DE KDR PCL Yow +h, =

ZT 1 @ 1112131415167 1819 1g bat =

4 1 i-tatlbtiecid!e! : : ; EE

Mote : The colon (ZA) displays as a boxed star. The comma (20) is

also the lett facing goose when used in a function name or

display and the period (2E) 1s also the right facing

goose.

You get the hexadecimal code of a character by taking the number

in the upper? column and place the number in the lower row behind

it. Last step is to place a zero in front of the number.

Example : The hexadecimal code of the letter W is B17.

0+ the equal sign 1t 1s 83D

FUNCTION NAMES

When a function is executed, the operating system checks the ROM

words containing the +irst two characters of the function name

and the two words immediately following. The catalog table entry

for a microcode function (both mainframe and XROM functions

points to the first word of executable code. The function name is

listed in reverse order immediately preceding the first word of

executable code.

Page &6

E « F

MN 1 O

- 1 7

MLDL operating system eprom

Example : This example shows you how a normal function name is

coded.

18CE @E81 £ Hex B88 added to indicate end of name.

iaCF Bac LoL

iad @83 CC

i801 HMMM First executable word of CLA.

FUNCTION PROMPTING

To tell the operating system that the end of the function name

has been reached, add 888 hex to the final character. To provide

a prompt set the top two bits in the first two characters of the

function name by adding the hex constants in the following table

NULL IND 2

i5T 22ND alpha alpha #dig. ind stack stack none example

BEd any X CLA,CLST

18a Eas X xX CLF ,COFY

ide 166 3.4 SIZE

ig 288 x

18a S68 i X CAT, TONE

28a aaa 2 Xx X sTO,RCL

28a 1084 2 X X S5TO,RCL

268 Zoe 2 X F572 ,5F

26a 38d X 2 x

S88 66d X 2 LBL

Zoe 180 X 2 Xx XE (alpha)

S88 200 X 2

38d od X 2 X X{.ddd?} GTO

The operating system examine these ROM bits and executes a prompt

(1+ the appropiate bits are set) before the function is executed.

These prompts are only executed when you execute the function

from the kevboard. However, when the function is executed in a

program there will be no prompt at all. Take care of this.

I+ the prompt accepts an alpha string, the input data is loaded

into the 8 register, right justified in reverse order in ASCII.

Example : Execution of the function ASN with the alpha argument

"COPY" will load G8 880 88 59 58 4F 4C into the @

register before the function is executed.

Page &7

MLDL operating system eprom

I+ the prompt 1s numeric the input data is lpaded into the "A"

register in binary. Whenever the prompt also accepts indirect,

the values 1n the "A" register 1s increassd with hex 60.

Example : Execution of the function RCL with a numeric argument

of 595 will return 80 60 B88 BE B80 BB 37 in the "A"

register.

If the prompt would have been filled in with IND 35,

the "A" register contains 88 68 68 B88 BY BE BY.

PROGRAMMABILITY

Two other ROM words of a microcode function are examined by the

operating system. The First executable word, if a nop {Bas) ,

indicates that the function is non—programmable. This means that

1¥ you execute the function in program mode, 1t executes rather

than being entered as a program line. SIZE, ASN and CLF are non-—

programmable functions.

If the first two executable words of a XROM function are both

zero, then the function is both non—programmable and executes

immediately. This means that no function name is displayed and

that the function will not NULL. The function is executed when

the key 1s pressed rather than when the key 1s released. FPRGM,

SHIFT and back—arrow are non—programmable, immediate executing

functions. Note that unless your routine checks for key release,

and the key to which your function 1s assigned is held down, the

function will be executed repeatedly until the key is released.

These two words affect the function operation only 1+ the

calculator 1s 1n FRGM mode. In RUN mode, they are ignored.

Example : these are a few examples of function name promptings.

12D2 897 HW 1165 89% Y i2CC 885 E

1203 685 E 1166 @i6 P 1200 BBE WN

iZp4 189 1 1187 @@drFr Oo i2CE 3@aF 0

12D 216 WV i198 1843 C 12C0F 114 7

Page 6&8

MLDL operating system eprom

FUNCTION

REGROM. a css sensei semen nacssnaannneeanssssnsnmesxns

FUNCTION INDEX

ROMCHEXX. ss cess sss msnnssssnsesnnansnsannsnassnnannssnsss

ROMGUM. cc see mesma scm macnsesnncnsansnsnnmncansnnnnnnns

ROM SHRED. sc sss s sss snare sean ansnansssnmsnnsnnnnmennns

SAVEROM. a i cs cee m mca aa

Page &%9

PAGE

MLDL operating system eprom

CARE AND WARRANTY

Eprom care

Store the eprom set in a dry and clean place. Make sure that the

feet of the eprom’s are protected against bending. Otherwise a

pin could brake from the eprom and make it worthless. Do not

connect any external power supply to the eproms. Frotect the

eproms against static charges, otherwise irrepairable damage to

the eproms can result. Do not remove under any circumstances the

labels on the eproms for these labels protect the eproms against

loosing there data by accident through too much U.V. light on the

eprom’s.

Limited 1B day's warranty

The 831284 ERAMCO MLDL-Eprom set is warranted against defects in

materials and workmanship affecting electronic performance, -—but

not software content— for 188 day's from the date of original

purchase. If you sell your unit or give 1t as a gift the warranty

is automatically transferred to the new owner and remains 1in

effect For the original 1B8 days period. During the warranty

period we will repair or at our option replace at no charge a

product that proves to be defective, provided you return the

product, shipping prepaid, to ERAMCO SYSTEMS or their official

service representative.

Page 78

MLDL operating system eprom

CARE AND WARRANTY

WHAT IS NOT COVERED

This warranty doesn’t apply i+ the product has been damaged by

accident, misuse or as the result of service or modification by

other than ERAMCO SYSTEMS or their official service

representative.

No other express warranty is given. Any other implied warranty of

merchantability or fitness is limited to the 188 days period of

this written warranty. In no event shall ERAMCO SYSTEMS be liable

for consequential damages. This liability shall in no way exceed

the catalecg price of the product at the moment of sale.

Obligation to Hake Changes

Products are sold on the basis of specifications applicable at

the time of manufacture. ERAMCO SYSTEMS shall have no obligation

to modify or update products once sold.

Page 71

MLDL operating system eprom

HOW TO SET UP YOUR OWN EROM PAGE

This part of the manual wiil tell you exactly how to set up an

Erom image in your MLDL-box. This is done with the help of a few

user code routines that are loaded into the MLDL Erom pages. It

vou follow the instructions to the letter, nothing can go wrong.

And with the help of these instructions you should be able to set

up your own Erom image.

step 1

The first thing that has to be done is to clear the Erom page you

want to work at and to set the Erom block to the proper page.

Therefore vou must set the first block with the left rotary

switch at page A. Set the rotary switch of the other block to

page E. Disable both the switches to the left of the leftmost

rotary switch (pull them dawn J). khen you set the switches in

this position, you can compare the results of your actions with

the results that will be given in this appendix.

step 2

Now we will first clear both Erom pages. Key in alpha mode the

single character "A". Go out alpha mode and execute CLBL (for

more details see page 14) Repeat this sequence with the single

character "E" in alpha. At this moment vour Erom pages should

both be clear. Now you can enable both the Erom pages by pushing

the both switches up. Don’t expect anything to happen yet. Both

pages are still empty.

step 3

Before doing anything else we have to make sure that both pages

are empty. Key in alpha "AFFFY. Now execute LROM. The display

should read ‘none’. I+ this 1s not the case you should control

the setting of the switches and try step 2 again. This is done in

the same way for the second block, except you now have to key in

aipha "EFFF". The reading of the display should be again ‘none’.

I+ this isn’t the case return to step 2.

Page 72

MLDL operating system eprom

step 4

To allow the HP-41 to find anything that is plugged into the

system it uses the first word on every page starting from page 3.

If this word doesn’t contain a valid identifier, it can’t execute

a routine or function located at that page. Therefore we will

continue with the setting of these identifiers for both Erom

pages. In fact this identifier is the xrom number of a module. To

avoid any problems with other modules it is recommended in this

stage to unplug all your modules.

Also the name of the rom module has to be added. For this the

function IPAGE is used. It is enough to put the rom name into the

ALFHA register. After this you give the 4K page address in the X

register. Mow vou can execute the tunction IFAGE. It will prompt

you for a XROM number. To avoid problems we choose as XROM number

the number 21.

Note : In this manual we described two ways to set up an Erom

image. First time we did this with the function RAMUWR (see

page 5). For this is quite a cumbersome way to prepare an

Erom image we did incorporate the function IFAGE (see page

25). Here we already gave you an example of how to create

your own Erom image.

Example : We will create one Erom image with xrom number 21 and

as name "TEST ROM 1A". For this we make use af the RAM

page that is controlled by the lett rotary and enabling

switch. The block is already cleared and enabled 1in

step 2. The block i= addressed at page "A". Now we have

all relevant data for the block, so we can 1nitialize

it.

Fey into ALPHA the name of the module and into the X

register the address of the RAM page that will hold the

Erom image. This address is 18.

Execute the function IFAGE. At the prompt you answer

with the desired xrom number E.G. 21. After a while a

tone will sound and the message READY 1s displayed.

Page 73

MLDL operating system eprom

step 5

From now on the HF-41 can recognize anvthing that 1s written into

Eram block one. So lets give it a try. First of all we have to

create a little program in main memory that is to be stored 1n

the Erom block.

We will use the following program: LBL "test

LBL @1

BEEF

GTO @1

END

step &

You have now created a program in the memory of your calculator.

But we wanted to have this program in the MLDL-box, because it 1s

using up the last free bytes we had. That's no problem. We only

have to use FMTORAM to get the program in the Erom page we want

it. For this we have to initialize a few things.

When we have initialized our Erom page manually (without use of

IFAGE), we have to give the starting address for our program.

This address will be the first word to be used by FMTORAM. Do not

use the reserved words in an Erom image in which you are to load

your programs {see appendix E and appendix FJ).

I+ vou work with IFAGE however, the starting address 1s already

given in the ALFHA register. When you have to use the ALPHA

register between two sessions of loading programs, it 1s

advisable to keep the contents of the ALPHA register in a normal

data storage register, or to note it down (be carefull saving the

address in a storage register, for MATORAM can clear all the user

registers, when it makes use of CHFDL). This 1s handy for future

use. I+ you lost the address however, vou can find it back with

the help of LROM. Increase the address given by LROM with one,

and you have the new starting address to store at.

Second thing we have to initialize is the setting of flags 6 and

i, to achieve the desired private status of the loaded program.

There are four options for these flags. For a full description of

these options we rever to the function HMMTORAM at page 8B.

Page 74

MLDL operating system eprom

Third and last initialisation we have to make is the setting of

flag 3. MMTORAM decides on this flag wether it shall use CMPDL or

the normal COMPILE function when it is loading a program. See the

function CHFPDL for the difference between the two compilers.

Example : MWe are going to load the program described at step 3S.

This program has to be loaded in a nonprivate, complete

open status. Furthermore we do not want the numeric

labels to be deleted.

We do not have to give the starting address, for this

is given in ALPHA by the function IPAGE.

For a complete open, nonprivate status flags 8 and 1

have to be cleared.

Fiag 3 has to be set for we do not want the numeric

labels to be deleted.

When these settings are made, the function MMTORAM can

be executed. You will see the messages of the compiler

and then the message "LOADING FGM". When MMTORAM 1s

finished a tone will sound and the message "READY" 1s

displayed. The program is now loaded in the Erom image

and is ready for use.

Note : If you switch to ALPHA vou will see that the

starting address 1s changed. It now points to

the first +ree byte atter the just loaded

program. This provides an easy way of loading

subsequent programs.

step 7

First thing we will do is deleting the program from main memory.

When you have done this, you should still be able to execute test

for it has been stored in the Erom page. So give it a try. You

will hear the familiar beeping every time the program is looping.

Stop execution of the program and switch to PRGM mode. Whenever

you try to insert or delete a program step, vou will see the

message ‘ROM’. This proves that the program has realy been loaded

into the MLDL-box. The program is also included in catalog 2. I+

vou execute CAT 2 you will see the label test showing up in your

display sooner or later, depending on the amount of other roms

that are plugged into the system.

Page 75

MLDL operating system eprom

When vou want to store more and other programs, you can follow

the described procedure starting at step 5S.

Load also the programs described on page 21 (T5T) and 28 (MODIS).

Load the TST program with flag 3 cleared. Look at the program

after you have deleted it in main memory. As you will see, it

does not contains the numeric labels any more. This and the fact

that it is in ROM now, will speed up the execution quite a lot.

Load the MDIS program with fiags 1 and & set. The program will be

open in the erom page, but as soon as it is copied back to main

memory, it will be private.

This 1s the end of the description of our HMLDL ROM operating

system. We hope vou will enjoy to work with this rom. If you have

any complaints or wishes you want to see in a future rom, please

iet us know. We will take these in account as much as possible.

ERAMCO SYSTEMS

W. van Alcmade str. 54

1785 LS Den Helder

The Netherlands

Page 7&6

	Cover
	Contents
	Introduction
	Installation
	Organisation of the instruction set
	MLDL write functions
	AFAT
	CLBL
	COPYR
	CRNAME
	DFAT
	GETROM
	IPAGE
	MMTORAM
	ROMSUM

	Moving M-code
	Introduction
	UPDBL
	UPD4K
	UPDFAT
	CLEAR
	UPDLBL
	MOVE

	Utility functions
	CBT
	CMPDL
	COD
	COMPILE
	DECOD
	DISASS
	LOCA
	LROM
	ROMCHKX
	SAVEROM

	Appendix A: Input 7/7 Output
	Appendix B: Programmability
	Appendix C: Messages
	Appendix D: XROM numbers
	Appendix E: XROM and FAT structure
	Appendix F: Interrupting Points
	Appendix G: Assembly language information
	Function Index
	Care and Warranty
	How to set up your own EROM page

