ERAMCO
SYSTEMS

ES B&B11A
ERAMCO MLDL-OPERATING SYSTEM EPROM

OWNER 'S MANUAL

January 1986

Printed in the Netherilands (c) Eramcao systems 1986

MLDL operating system eprom

CONTENTS
Introduction...... Pmemesssarssmsmanasn e mammasmmessaan 3
Installation... ... nnnnann nammmmmann i, 3
Organisation of the instruction set.................. 3
MLDL write functions.............. cwmwmsmmamemnanea=n= S
Utility functions. .- .- iin it cnnscnenenrnennsenseanan 20
Update functions.t i it ics s nncnannnncnmnnnnsns 32
Appendix A: Input / Output......cccoinicaaan.n seeemaanan 38
Appendix B: Frogrammability....ccemcencarncnanennnnnns 48
Appendix C: Messages.....cccccccacnnnannaresncanennnns 41
Appendix D: XROM numbers... ... cmncn i ncsn e nnencennas 43
Appendix E: XROM and FAT structure.. ..o ecnnnanans 44
Appendix F: Interrupting Points...c.cceciniricnnnnscnns 46
Appendix G: Assembly language information............ 47
Function IndexX...ceaecicacnanenceacnnanscaanannsnnnnsess 52
Care and Warranty........incunue.- s maEmmmasmsmesaaE = (=Y"]
How to set up your own EROM page... ... ncicnaans &2

Page 2

MLDL operating system eprom

INTRODUCTION

This manual deals with the ERAMCO MLDL operating system eprom. To
get a full understanding of all the routines and Functions 1in
this eprom set, 1t 1is advisable to read through this manual
carefully before operating any of the functions or routines.

INSTALLATION

Follow the instructions of your ERAMCO MLDL-box carefully when
installing the eprom set in your box. It may be necessary to bend
the Ffeet of the two eproms slightly inward to make them it
easily 1into the eprom sockets. Do not forget to enable the page
on which you insert the eproms (for more detailed information on
how to insert the eproms, consult your hardware manual of the
ERAMCO MLDL-box). A lower address is the most appropiate page
for insertion of the eprom. This provides a quick access to the
routines and functions available in the ERAMCO MLDL-eprom set.

ORGANISATION OF THE INSTRUCTION SET

fis you will soon discover the routines and functions in this
eprom set are divided into two sections. The first section
contains all the functions and routines that will change anvthing
in the MLDL-ram you are working on. 8So always be careful when
using any of these functions. A single mistake can destroy the
whole 4K ram block that is under development.

The second section contains the functions that facilitates
working with the MLDL-—ram. They do not change anything in the ram
but will provide a quicker access to the ram (LROM will tell vyou
almost immediately where you can continue with witing in the ram
or where yvou can store a User—code program).

Note : All inputs which has to be placed in the alpha-register
are related to hexadecimal

Page 3

MLDL operating system eprom

In the description of the functions it is assumed, that you have
one MLDL ram page available for exercising the examples. To
ensure that the examples work out in the way we have described
them, 1s it necessary to clear one block and to place it at the
proper page. FPlace the first block off your MLDL ram at page A.
This 1s easily achieved by turning the appropriate (left) hex
rotary switch to A. Disable the block by switching the left
enable switch down (off). To avoid problems with the second
block, it is advisable to switch this block of too.

fAfter these preparations we can clear the whole block. Input for
this 1is A in ALFHA. Now execute the function CLBL. For detailed
information of 1it’'s operation see page 14.

Switch the MLDL ram page on line by switching the left enable
switch to the ON state. It 1s now ready for the examples.

INPUT = All the hexadecimal input in the ALPHA register is
checked on wvalid data. Data is wvalid only, 1f it
consists of the hexadecimal characters. These characters
are the numbers from @ upto ? and the letters A through
F. Any other character in ALPHA will cause an error. The
display will show DATA ERROR.

I+ the error occurs in a function during a running
program, the error will be displayed and the program is
halted at the instruction, that caused the error.

OuUTPUT : Every function in this MLDL rom that gives an
hexadecimal output to the ALPHA register, will
automaticcally execute an AVIEW after it has put it’'s
data into the ALPHA register. So, 1f you are using for
example the function LOCA in a program, it is not
necessary to do a AVIEW after the function. (Dtherwise
the result will be displayed twice. In conijunction with
the printer your results will also be printed twice.

FPage 4

MLDL operating system eprom

MLDL WRITE FUNCTIONS

AFAT fAppend FAT entry
XROM 168,81

The Ffunction AFAT enables the user to update the FAT, e.g. to
append the starting address of a routine that has been written in
the MLDL-ram. Functions are only accessable to the HP-41 when
they have an entry in the FAT. This also holds true for programs
that are transferred to the MLDL-ram. The function MMTORAM takes
care of this automaticaly.

Input for AFAT is in the +format UOPAAA. AAA 1s the start—address
of the +function within a page, P is the page number where the
function is loaded, 0O is an offset and U tells the HF-41 if the
routine is a M-code routine or a User code program.

U=@a M—code function. The address points to the first word that

is executable
U=2 User code routine. The address points to a Global Label

Example : AAA=3FF The start of the function or routine is found
at X3FF.

In order to understand the interaction of O and P it is necessary
to realise that EPROM and MLDL-ram can be placed at every wanted
page, e.g. at any desired port. It must also be kept in mind that
an EFROM or MLDL-ram page contains only 4KK. The value of P 1is
only pointing to the page where the MLDL-ram is positioned at at
this moment. The wvalue of P will change when you address the
MLDL—ram to a different page. Opposite to this is the behavior of
the value for 0. 0 1s a constant added to the pagenumber. It will
not change when you place the MLDL-ram at a different page. The
constant 0 allows you the possibility to execute functions and
routines from another page other than the one where the FaAT entry
is lodged. So it 1s evident that the page which is called must
always be 0 pages further in the memorvy.

Example : The page that contain the FAT is at page 8, and the
page that contain the routine i1tseif i1s at page C,
address 1is 490. We want to make an entry for a User-—
code routine with AFAT.

Page 5

MLDL operating system epraom

The value of 0 (the offset) is C — B = 4

The value of P (page containing the fat}) is 8.
The value of AAA (start—address) is 49@.

The value of U (M— or User code) is 2.

We do now need the following input for AFAT

248490

When we move the first ROM to another address we must also move
the second ROM the same number of pages in the same direction if
the value of 0 is something else then zero. Leading zero’'s in the
input can be omitted

Example : For our MLDL ram we will write the rom name with the
help of AS55M.
This name is coded as follows =

Address Data Comment

ABB6 1 1 end of the name
a@ag7 asa @

ABB8 826 space

ABBY? a1z R

ARBA Bas E

&a88 @13 S

ABBC ais U

ABBD B1i7 W

ADBE aes E

aagr BBE N start of the name
AR76 SEB start of the function

Enter AS5M mode and set the address to AB85. Make sure
you are in user off mode and key in the data words as
given. The address is automatically increased every
time. See alsao AS5M for more details.

To be able to see the rom name when we are executing a
catalog 2, we have to place the xrom name entry intao
the FAT. This is done with AFAT.

We do have a function name, so the digit representing U
will be zero.

The rom name is not located at another page, so the
offset is also zero.

We are working at page A, so the value of F will be A.
The starting address of the function is the first
executable word of the function and is in our case
located at B@76.

Page &

MLDL operating system eprom

This results in a total entry for AFAT of BODABIE

As leading zero’'s can be omitted, we can use ABPA as
the entry address for AFAT. Write the entry into ALPHA.
Go out of ALPHA and execute AFAT. I+ you do now a
catalog 2 you will see NEWUSER @1 in the display when
the catalog routine has arrived at page A. { 1+ vyou
have no printer or timer module, it will be the first
name that appears in the catalog.

Page 7

MLDL operating system eprom

CLBL Clear ram Block
XROM 10,02

Clearing a biock of MLDL-ram is done with the help of CLEL. Input
is in ALPHA in the format BEBBEEEE.

EBEBBB is the first word of the block that has to be cleared.

EEEE is the last word of the block that must be cleared.
Execution of CLBL puts zero in all the addresses between the
given ones, including the start and end addresses.

Example : We discover after some time, that we don't want to use
a certain part of the rom. We could leave i1t in the ram
page, but for good housekeeping we want 1t to be
cleared. This 1s accomplished by getting the right
begin and end address into ALPHA and execution of CLBL.
Switch to ALPHA and give as input the start and end
address of the block of code we want to clear. The
starting address of this block is 7DDE and end address
is 7DESB
So the total entry for CLBL is 7DDE7DEB. Get out of
ALPHA and execute CLBL. With AS5M you can check, that
the words at the specified addresses are deleted.

Another option of CLEL is to clear a whole 4K block at once. For
this input F in ALPHA. P represents the pagenumber of the page
you want to clear. *¥%% ATTENTION *##%% This last option is
dangerous. It operates like MEMORY LOST, but in this case it is a
memory loss of the specified MLDL-ram page.

Example : Switch the other page of MLDL ram to page B. Get 1into
ALFHA and give the address of the page to be cleared (
B). 0Get out of ALPHA and execute CLBL. Now you can
switch the second MLDL ram page on line by setting the
right enable switch to the OM position.

Page B

MLDL operating system eprom

COPYR COPY Rom page
XROM 16,84

The function COPYR enables the user to copy an entire page of ROM
or MLDL-ram to another page of MLDL-ram. This gives vyou the
opportunity to change anything you want in the just copied block
of ROM.

Input is in ALFHA and has the ftormat 5D.
S is the page from where the copy has to be made { Source).
D is the page to which the copy is destined {(Destination).

This function will sound a low tone to indicate the completion of
the function.

Example : We want to make a copy of our working MLDL ram page.
This could be done with move by giving as input
ADPBAFFFBOBAB. But this will take longer and asks for a
more complicated input. Therefore we will make use of
COPYR. The input for this example is AB in ALPHA. When
this is done, the function COPYR can be executed. After
the tone has sounded we can check, if the second rom is
available by executing a catalog 2. You willi now see
the romname MNEWUSER B1 appearing twice in the catalog.

Page 2

MLDL operating system eprom

CRNAME CReate NAME
XROM 18,85

This Ffunction requires the input of a name for a function in the
Alpha register. The functions name is written in reversed order
tao MLDL-ram in the correct format for a function name. Also the
FAT entry is automatically created with the function AFAT. For
more information on the formats used see AFAT. It is not possible
to create a function name on another page using the offset digit
a.

The last letter of the function name is written at the current
David Assem address. This allows you to enter the assembler mode
and start writing the desired function immediately, without
searching for the start adddress of the function first.

Example : We will add a second name and FAT entry to our HMLDL-ram
page. Use AS55M to step to the desired address, in this
case we will go to address ABB3. Leave AS55M mode and
write the name of the new Ffunction in the Alpha
register, for example USER #@1. DNow execute CRNAME. A
tone will sound and the message READY is displiayed. The
Alpha register contents is replaced by a hexadecimal
address, but this address is of no use.

Execution of a cataleg 2 will show you the new function
name USER ®1 in the catalog after NEUSER @l.

FPage 108

MLDL operating system eprom

DFAT Delete FAT entry
XROM 18,86

The Function DFAT is used when you want to delete an entry from
the FAT. The function or routine which is deleted will be
invisible for the HF—-41 after execution of DFAT. The XROM numbers
of all +the routines and functions that came after the deleted
function in the FAT, will get one lower. Fay attention to this
fact when you use functions or routines from the ram you are
working on. The same input format is used as with AFAT. The
difference is that you do not need to specify the value of U.

So the input format will be OFPAAA (offset), { page), (address
y.

DFAT will search in the page with number P and delete the
specified entry. Leading zeros may be omitted.

Example : In the example of the function AFAT we have added the
function name to the FAT, to give the MLDL ram page a
name. I+ you execute a catalog 2, you will see NMEWUSER
Bl and atter this USER @1. The last entry has to be
removed.

This 1is easily accomplished by getting the right entry
address into ALPHA and execution of DFAT.

Give 1in ALPHA the entry address of USER @1. This
address 1s G@BHES3. Get out of ALPHA and execute DFAT.
With a catalog 2 vou can check, that the entry has been
removed. You should only see NEWUSER 81 in the catalog.

Page 11

MLDL operating system eprom

GETROM GET ROM image
XrROM 1@,07

This is the counterpart of the SAVEROM function. Input format is
the same, so the name must be in alpha and the page number must
be 1in x. For more information on the format of the files, we
refer to the function SAVEROM.

Getrom will read back the contents of the rom file and put it in
the desired ram page. There is no checking done to see if the
specified page 1s actually a ram page. This is to allow you to
get a rom file to a page that is not switched on.

Example : I¥f vyou have saved a rom Ffile on tape, we can
demonstrate it coming back. First of all clear the page
we are working on. This is done with CLBL. You probably
know by now how this function works, so it is left up
to you to clear the block. Put i1n ALFHA the name of the
file we want to read back, e.g. USERI1. In the X
register the page address should be entered to which we
want the rom read back. In our case this will be page
B. HNow the function GETROM can be executed. After it
has finished, vyou can check if it is back again in the
usual way with a CAT 2.

Page 12

MLDL operating system eprom

IPAGE Initialize rom FAGE
XROM 1@,88

This function sets up a ram page to load user programs and/or
assembler code functions. The entire specified page is cleared
and the specified xrom number and the name in alpha are written
at the appropriate places. This we have already done manually
when we explained AFAT. With this function it will be much
easier.

Input For this function in ALFHA i1s the name of the rom. This
name must be from one to 11 characters. fAs i1t is the name of the
rom it is advisable to make it at least 8 characters. This has
two reasons. First, a function name of more then 7 characters can
not be executed. Second and more important is the fact that the
CAT Ffunction of the HP—-41 CX searches for names that are longer
then 7 characters. So, if vyou use a name of 1less then 8
characters, the rom name will not show up in the header catalog
of the HP—41 CX. This is also the case with the CCD module, a
module likely to spread out as much as the PPC rom. Second thing
to give as input is the MLDL ram page number to be 1initialized.
This page number is given in the X register. {(in decimal)

bWhen the function is executed, it will prompt you for the xrom
number of the page. There is no checking done on the input,
because it i1s possible to use other xrom numbers, but you can not
execute a function in a rom with a xrom number higher then 31, so
it 1is advisable to use a xrom number between 1 and 31. See for
the already used xrom numbers appendix D.

The name that will be written to MLDL ram consists of the last
eleven characters in the alpha register.

Output of the function is in alpha the address of the first empty
word as it is used for the function HMMTORAM.

Example : We will now initialize our page with the help of IPAGE.
Give the desired name in ALPHA. We will make use of the
same name as we used in the examples before. It will be
NEWUSER @81. Give the right page number in the X
register (180). Now execute the function IFPAGE. At the
prompt the desired xrom number can be given. We will
make use of xrom number 21i. This is the xrom number for
user roms. After a short while a tone will sound and
the message READY will be in the display. FPressing
ALFHA once gives you the first free byte available to
load from. This will be address ABTZ2.

Page 13

MLDL operating system eprom

MMTORAM Main Memory TO RAM
XROM 18,89

The Ffunction MHTORAM is used to copy a program from main memory
in the calculator to the desired MLDL-ram page in a MLDL-box. All
the necessary translations for a good operation of this program

are made automatically. The Function Access Table (FAT)} is
updated at the same time with the new Global Labels of the
praogram. For good operation of this function it is necessary to

initialize the MLDL-ram in the proper way.

Preparation of the MLDL—ram: You need a block of ram words that
is long enough to hold the desired program. The length of the
program can be found with the help of CBT { see CBT). Add two to
this number of bytes and you have the number of bytes that will
be needed for the program when loaded into the MLDL-ram. Now you
must find a block in the ram space that is large enough. HWrite
down the starting address of this block. BE CAREFUL Addresses in
ram are given in hexadecimal form, but the length of the program
(by CBT) is given in decimal form. Key into ALPHA the starting
address of the block (it's advisable to leave about 26 words
between the starting address of the block where the program will
be written and the first empty word in the ram you have found,
for future revisions).

When vyou are initializing a 4K block of MLDL ram auvtomatically
with the help of IPAGE, vyou do not have to do all of this. The
loading address will be automatically given by IPAGE. Also the
first next empty word will be returned by MMTORAM to the ALPHA
register, to make loading easier.

User +flags @ and 1 can be set or cleared to achieve the desired
private status

fliag @ i flag 1 i status
cleared i cleared H program open
cleared i set H program open, after COPY
i d private
set i cleared i program private
set i set H program private

With the help of these two user flags it is possible to make the
program completely private in the MLDL-ram, e.g. vyou can not go
into FPRGM mode to examine the program and it is not possible to
copy the program into the main memory with the help of the COPY
function.

Page 14

MLDL operating system eprom

A partly private status is also possible. In this case it 1is
possible to examine the program, but atter copying it into the
main memory it will be private. The third option means no
security at all. Programs are now free to examine and ta copy (
compare with e.qg. the math module).Flease note that changes 1in
the program are only possible when it is stored in main memory (
see the manual of the calculator for it’'s behavior when you are
in rom).

With wuwuser flag 3 you can have the option to delete the numeric
labels in a program. (for more information about this option see
CHMFDL).

When this Fflag is cleared, nothing unusual will happen. The
program is first compiled and then loaded into MLDL-ram with the
desired private status according to the settings of flag @ and 1.
If this flag is set to the contrary, the program will be loaded
with all numeric labels deleted. { if this is possible)

MMTORAM can be executed after these preperations regarding the
user flags. The function will prompt for the name of the program
that has to be copied. It 1is enough to press ALFHA twice when
the program counter 1s already set in the wanted program.
Otherwise vou must enter the name of the program in the same way
as with CLF or COPY.

MMTORAM cells one of the two present compilers, depending on the
status of user +flag 3 and will compile the program (for messages
during compilation see COMFILE). When the program is compiled,
the message LOADING FGM will be displayed. When the whole process
is Ffinished, a tone will sound and the message READY will be
displayed.

When the function has been finished, it will return the address
of the next free byte in MLDL-ram. Be carefull. If vyou are
loading manually, this is the address of the first byte after the
program. It doesn’'t have to be necessarily empty. Whenever vyou
are loading, with the MLDL-page initialized with IFAGE, it will
be the next free byte available.

A CAT 2 will show you the updated FAT with the new labels.
Noting down the start and end—address of the used block will
allow vyvou to make changes without address mistakes.

For an example of how to load youwr user code programs in the MLDL
box, we rever to How to set up your own EROM page. There a
complete description is given how to set up a MLDL ram page {for
loading user—code programs.

Page 15

MLDL operating system eprom

ROMSUM create ROMSUM of page
XROM 18,11

To check if a ROM is still in good shape HEWLETT—-FACKARD has put
a checksum in each ROM. With the function ROMSUM you are able to
compute this checksum and put it at the proper place in the MLDL-
ram you are developing. The checksum 1s calculated by adding all
the words on this page, take modulo 255 and put the remainder in
xFFF.

The input i1is F in ALFHA. F is the page number of the MLDL-ram you
want to update the checksum.

Example : To be abie to detect if our rom is still in good shape,
we are going to compute the checksum of the rom. Give
the address aof the rom in ALPHA. Attention, we are
using the second MLDL ram page now, so the input will
be B instead of A. Get back to normal operation mode
again and execute the function ROMSUM. This will take a
few seconds. During this time the display will remain
blank.

When the function is completed, vyou can check if the
checksum 1is calculated 1in the proper way. This 1is
achieved by keying into the X-register the used xrom
number 21. MNow execute ROMCHEKX. The display will change
into 21 &@-e8E TS5T. After a few seconds 1t will change
to 21 @E-sE& Ok.

(Remember 21 is the xrom number we used for our MLDL
ram page).

Page 16

MLDL operating system eprom

MOVING M-—code

Introduction

Moving mcode around within MLDL-ram (EROM) has been made easier
for the “m—coder’ by use of several versinons of a prgram called
MOVE.

Initially Mcode prgrammers moved block of words in MLDL-ram with
the REG-XROM % ROMXREG routines developed by Paul Lind and Lynn
Wilkins. The MOVE routine Ffrom the AS5EMBLER 3 eprom set
automated the procedure. This process required a 1ot of data
registers to be available in main RAM For temporary storage.
Eventually, the ERAMCO FLDL operating system contained a MOVE
routine which did not use any main memory from the HF-41.

To be more specific the HP-41i's operating system uses this
feature of absolute addressing for the following items:

iz jumps —forward or backwards— aftfer checking the
carry flag,

entries in the FAT and

(relocaeablel) xeq’'s and goto’s.

A M

The fact that programs written in assembly language use absolute
addressing to execute subroutines might be confusing, but once
understood this feature is not difficult to use.

However the confusing starts all over when a block of mcode words
is moved, meaning that the absolute addresses on which these
words reside, are changed.

After this has been done all features using absolute addresses
must be updated, something guite tedious if the user has to check
manually 4625 words of mcode each time some part of a routine 1is
maved.

The ©MOVE routine as described here, 1like other move routines,
will allow you to move Ficode around in MLDL-ram. Unlike previous
move routines, it will update port dependent XEG& and GOTO
instructions and FAT labels (it present}) when using the DAVID-
Assembler eprom set. User flags @ and 1 (if set) allow you to
DISABLE specific parts of the updating process for port dependent
X¥E&@'s and G0OT0's, while user fiag 2 {(if set) will ENABLE the
routine that CLEARs the source block or any portion thereof that
is not overwritten by the MOVE operation.

Page 17

MLDL operating system eprom

user flag CLEAR SET
@ enable UPDEBL disable UFDEL
1 enable UPD4E disable UPD4K
2 disable CLEAR enable CLEAR

UPDFAT is disabled when the second word in the FAT is temporarily
set to 000, while the user deftined DA-Ass labels are only updated
when this eprom set is plugged in and enabled.

Changes which should be made to jumps (for instance JNC +1C or JC
—2D}) after a block of

mcode words bhas been moved are very local problems as these
jumps can only cover 63 words t(hex: +3F) forward o- &4 words
(hex: —48) backwards. The main thing for the user regarding jumps
is not to forget to update the relevant jumps atter a block of
mcode words has been moved, meaning that 1+ Mcode words have been
moved within the span of a jump instruction to, insert or delete
Mcode words the Jjump distance of the relevant JNC or Jc
instruction also has to be increased or decreases with the same
number of steps.

Automatic updating of jumps i1is not covered by any of the programs
in this set of routines.

Each of the tasks done by MOVE is performed by a subroutine that
can also be used seperately, thus giving the programmer greater
flexibility. These subroutines are:

al) UrPDLBL UFPDdate LaBels as provided by the DA—-Ass
eprom set.

b) UFDFAT UFDate Function Address Table.

c) UFDBL UFDate port dependent XEG's and GO7T0's within the
block that was moved.

d) UPD4K UFDate port dependent XEG@'s and GOTO's in the rest
of the 4K page.

e} CLEAR Clear the sowrce block, or any remaining part
thereof aftter the move has been accomplished.

Updating the DA-fAss labels is done by the program UFDLBL or the
program PFMOVE uses UFDLBL as a subroutine.

Updating the FAT is done by the program UFPDFAT or the program
MOve which uses UFDFAT as a subroutine.

Updating relocateable xeq’'s and goto’s is dealt with by the
program UFDBL and by its supplementary program UFD4E, which are
also part of the main program MOVE.

Page 18

MLDL operating system eprom

UrPDLBL, UPDFAT, UPDBL, UFPD4K and CLEAR can be used individually,
one at a time. However, manual procedures are time comsuming and
they allow errors to slip in. Therefor, the MOVE routine was
created for yow conveniences it allows you to execute the whole
procedure with a single functin, automaticalilvy.

For a thorough understanding of all programs each routine will be
explained seperately after which HOVE will be discussed giving
the user a complete pcture of this set of routines.

Throughout this write—up reference will be made to the reguired
addressing setup in the alpha register for the programs to
exz=cute correctly. This reference to the required addressing
schneme will be done in the following form:

BBBBEEEEDDDD
where:
BEEEE 1is the begin address {(first word) of the block to be
moved.
EEEE 1s the end address (last word) of the block to be
moved.

DDDD 1is the new starting address of the first word of the
block to be moved.

In order to understand the descriptions that follow, the reader

might feel the need to acquant himself with the following topics:
Extended FAT addressing. This is covered in the appendix.

Page 19

MLDL operating system eprom

UPDBL UFPDate BLock
XROM 18,12

XEG's and GOTO'S are two byte instructions to absoiute addresses.
fAs long as these addresses cannot be changed by the user {like
the 12k operating system, the timer module and the HFIL module;
the card reader and the diagnostic rom) this king of XEB@'s and
GO07T0's will suffice.

However most plug—in modules are made port independant which
means that the standard kind of two byte XE@'s and GOTO's are not
useable anvymore {(e.g. 1f & module resides in port 1 an xeq may
call a subroutine at absolute address 877F, but when plugged in
port 3 the same call should nou be made to absolute adress C77F).
To cover this kind of addressing HF has provided the threes byte
port independable {(or relocateable) XEG's and GOTO's. These are
¥Efl's and G070's to certain routines in the main operating system
which use the 18 bit data word that immediately follows the XE&
ar G0OTO instruction to create the address to which the
relocateablie XEG or GOTO should be addressed, depending on the
present page in which the routine resides.

Untortunately a ten bit word is not large enocugh to cover a
complete 4k addressing space and therefore the 4k addressing
space has been split up into 4 equal parts esach addressing 1k of
the total block of 40%&4& addresses. these 4 kinds of relocateable
xeq's and goto’'s are referred to in this text as “absolute®
relocateable XEGl's and GOTO'S.

HFPF has included a fifth possibility —referred to in this text as
"option 5'— to do a relocateable xeq or goto to an address within
the same 1k block in which the relocateable xeq or goto is
residing.

The main advantage in using option S relocateable xeq’'s and
goto’'s 1s the fact that the subroutine in the main frame
operating system which covers this type of relocateable xeq or
goto does not call a subroutine. This means that there is one
more return level available on the return stack for the calling
program.

This feature of the option 5 relocateable XE&'s may be used to
advantage when writing sophisticated FMcode programs that use
several subroutine levels: the HPF-41 CPU subroutine stack is only
4 levels deep.

Page 208

MLDL operating system eprom

Function Address Op.codes

rel. XEG ist 1k X000 — X3FF 34%,08BC,dab
rel. GOTO ist 1k X000 - X3FF 341 ,88C,dab
rel. XEG 2nd 1k X400 - X7FF 34D ,08C,dab
rel. GOTG Z2nd 1k X400 — X7FF I465,08C,dab
rel. XE& Srd 1k X800 — XBFF 3%1,0BC,dab
rel. GOTO 3rd 1k X800 — XBFF 89 ,.,08C,dab
rel. XEQ 4th 1k XCOO — XFFF IB5,08C,dab
rel. GOTO 4th 1k XC0OO0 — XFFF ZAD,08C,dab
rel. XEO same 1k 379,03C,dab
rel. GOTO same 1k 3569,03C,dab

{dab = data byte used by main frame to make up the address ot the

relocateable XER or GOTO).

It should be noted that the address of the third byte {(data byte)
of a relocateabel XEW or GOTO defines the 1k block in which the
relocateable XEE& or GOTO is residing (i.e. a three byte
relocateable XE@ or GOTO at addresses B3IFE, B3IFF and 8480 resides
in the second 1k block of mcode words at page 8: {from 8488 upto
and including B7FF).

When a block of mcode words has been moved, the following items
within this biock of mcode words need to be checked +for a
possibie update:

i: all relocateable XEG's and GOTO's within the moved block
pointing towards addresses also

within the moved block.
option 5 relocateable XE@'s and GOTO's withing the moved
block pointing towards addresses outside the moved block.

I

UFDBL 1is a program which takes caare of this updating of
relocateable XEG's and GOTO's residing within the moved block of
mcode words.

11 relocateable xeq’'s and goto’'s are checked against the
performed move and checked for a possible update.

Before a relocateable xeq or goto is rewritten a check is made i+t
it 1is possible to rewrite this relocateable xeq or goto using
option 5. Only if it is NOT possiblie to rewrite a relocateable
xeq or goto by using option 5 will the absolute form be used,
thus ensuring minimum useage of the return stack by the
relocateablie xeqg’'s or goto’s.

Page 21

MLDL operating system eprom

UPD4aK UFDate 4K byte
XROM 183,13
This program supplements the program UFDBL. UrDBL updates

relocateable XEf&i's and GOTO's within the moved block. You must
also update port dependent XEG's and GOTO0's that branch to
routines within the block of Fcode that is moved. This job 1is
done by UFD4K.

After a block of mcode words has been moved UFDEL takes care of
updating the relocateable XER's and GOTO's within the moved
block. However outside the moved block there may also exist
relocateable XEll's and G070 's which refer to subroutine addresses
within the moved block and which need updating.

Special attention must be paid to the handliing of absolute
relocateabel xeq’s and goto’s by UPD4K (and UPDEBL as well):

A check is made against the addresses involved in the move of a
block of mcode words and i+t needed an update willi take place. irF
an update is needed UPD4K will first try to use the option S form
and only if this is NOT possible will the absolute form be

chosen.

Mote: It must be thoroughly understood that here
lies a crucial pitfall for the careless or naive user. If a
block of mcode is moved 1t may involve option S

relocateable XER's or GOT0O's which can not abe rewritten in
their original form aftter teh move because a 1k boundary
has been crosed. If this option 5 relocateable xeq also
fills up the retwn stack then one return address will be
lost because there is one return level less available for
absolute relocateable XEQ's.

For instance the extended function page in the new HP=41CX
diraws heavily upon subroutines and when trying to extract
some of the new functions the user might run against the
above mentioned problem which is inherent in moving PFmcode

around within MLDL-ram.

Another special feature of UFD4Kis the fact that not a complete
4k page minus the moved block is chekcked. The following areas
are excluded from a check by UFD4K:
addresses X000 and X001
the FAT {(except when the word at address X001 is zerol.
the original (old) block of mcode words or —-in case of
overwriting the old block— the remainder part thereoft.
4z the new block of mcode words.

H addresses XFF4upto and including XFFF

[N

Page 22

MLDL operating system eprom

FPoints 1 and S5 fall in the error catagory and are explained under
"ERROR MESSAGES". Point 4 —updating the moved block— is explained
in "USING UPDELY, leaving points 2 and 3 for further explanation.

There 1is no need to uvupdate the old block as this will in most
cases not be used anymore and which will probably be cleared as
well. This seems especially advisable with regards to the
remaining part of a block that is parially overwritten. See
"USING CLEAR" for further details.

However there 1s an argument in favor of not updating the old
block of mcode words. hNot wvpdating and not clearing the old block
of mcode words gives the user the opportunity to create a
workable copy of a subroutine which can be used for experimenting
without disturbing the original block of mcode words, which (e.g.
aftter a unsuccessfull experiment) can be re—instituted foer
narmal use while the experimental block just have to be cleared.
{(Re—instituting the old block can be done very easily by setting
up the alpha register with the BBEBBEEEE of the new block followed
by a DDDD which chould now be the begin address ot the old block,
then execute UFPD4K followed by executing CLEAR).

Finally, UFD4K does noet updadte the FAT under normal conditions.
The FAt containds address pointers, not program instructions.
Thus, if UFD4KE did check the FAT space, it could at best scrambie
pointers that look like a port dependent XEG or GOTO. Updating
the FAT can be defeated by setting the word at address X001 to
zero, 1ie. by implying that there are no address pointers in the
FAT. This trick allows vyoy to copy a block of code without
altering the FAT, since UFDFAT will now not recognize the FAT as
FAT anymore. This procedure i1s sometimes convenient. However,
there 1is a possible pitfall associated with the use of extended
FAT addressing: there is a remote possibility that a FAT pointer
will read as BBC or @3C {(indicating an offset of either 3 or
pages) . These pointers could be misinterpreted as a port
dependent XEG or GOTO.

Just to be complete a description of this bug is included here.
With reference ot "USING UPDFAT" and the article "EXTEMDED FAT
ADDRESSING" in the appendix there exists the very unlikely
possibility that a disquised FAT-entry is interpreted as a
relocateable XEE& or GOTO.

The second word in a three byte relocateable XE& or GO0TO 1is
always OBC for option S relocateable XE@'s and GOTO 's. IF a 0OB8C
or 03C exists in a FAT as the first word of a two byte FAT-entry
this indicates an offset eiter 8 or 3 pages ahead. HF has upto
now only used l-page offsets in two specific cases: in the B8k
NAVIGATION rom and in the Bk REAL ESTATE rom and even 1in these
cases for user—coded programs only.

Page 23

MLDL operating system eprom

But just suppose that in a "disquised" FAT there is an entry of
which the first word is 0O3C. If the last word of the two byte
FAT—entry immediately ahead is 379 or 346% then UPD4KE (only in
case ot a disquised FAT) will interpret this combination of bytes
{(379,03C or 349, 03C) as an option 5 relocateable xeq or goto.
I+ this relocateabele xeg or goto points towards an address
within the moved block then an unwanted change in the disquised
FAT will be made.

However the +irst digit of the second word of a two byte FAT-

entry should always be 0 (zero). Therefore in the example 379 and
369 are 1ilegal words in the FAT.
Nevertheless the HPF-41's operating system does not check the

first digit of the second word of a FAT—entry but uses the last
two digits of the word to make up the starting address of a
program, thus making a correct working FAT possible even with
this error.

To sum wup all the factors which are involved before this bug can
bite:
: an illegal word must exists in the FAT (1.e.379 or 3&%).
2: offset page addressing to Hcode routines must exist in the
FAT.
Z: points 1 and 2 must meet each other 1in the right
combination.
4: the FAT must be disguised to enable UFD4E to check this area
of a 4k page.

To be 18804 sure that noting of the above can ever happen, it
seems adviseable to give every 4k page of MLDL-ram its own name,
a FAT which only refers to functions or programs within its own
page, a revision code of its own and a corretly updated checksum
at the end of the 4k page.

Page 24

MLDL operating system eprom

UPDFAT UFDating FAT entries
XROM 180,13

When a block of mcode words has been moved within a specified

page, entries in the FAT pointing to addresses within the moved
block must also be updated.
The program UFDFAT —also used as a subroutine by the program

MOVE— takes care of this problem.
Several aspects regarding an update of the FAT must be taken into
account:

i: the size of the FAT.

2: entries pointing towards user—coded programs within the same
page.

J: entries pointing towards Mcode programs within the same
page.

4: entries pointing towards user—coded programs on another
page.

S5: entries pointing towards mcode programs on another page.

Aspects 4 and S signify a very specialized use of the FAT and
this kind of useage of the FAT will normally not be made by the
mcode—programmer. However HF uses these possibilities, e.g. in
the NAVIGATION rom and in the REAL ESTATE rom, so in order to
give the user some knowledge of what might be possible with FAT-—
entries an article has been appended to this write—up explaining
this ultimate use of the FAT.

As it is the philosophy of this set of routines to work on just
one page at a time aspects 4 and 5 are not relevant. They will
however be taken into account by UFDFAT and when encountered will
be lett unchanged.

Aspects 2 and 3 are those FAT—entries which are checked updated
it they point towards addresses which have been changed by the
move of mcode words.

The procedure to update a FAT-entry is basically the same for
user coded entries as ftor mcode entries, however there is one
significant difference:

UPDFAT 1s able to distinguish between thes two kind of FAT-
entries and if a FAT—-entry points towards a user coded program
the mcode words at all addresses are compared against the
addresses within the FAT. It should be realized that a user
coded program starts with two header bytes which should not be
forgotten when performing a move.

I+ however a FAT—-entry points towards a mcode program UPDFAT does
NOT take into account the first word of the moved block.

Page 25

MLDL operating system eprom

The reason behind this is the fact that just before a starting
address of a program which resides in the FAT as a Mcode function
there must always be a FAT-name of at 1least one byte. By
disreqgarding the address of the {original} First
byte of a moved block of Mcode words it 1s now possible to create
extra addresses for mcode words between the name of this mcode
program and the first byte of the program without updating the
FAT which in this case should indeed not be done as the name of
the program is not moved.

The size of the FAT is determined by two specific items. First
the hex—value at address X001 gives the number of wvalid FAT-
entries while a double 000 NOFP indicates the end of the FAT.
UPDFAT only uses the hex—value at address X001 to determine the
end address of hte FAT therby giving the user the opportunity to
skip this automatic feature of the prgram FOVE.

Check the hex—value of the word at address X001, change it 1into
the NOP wvalue 000 and the FAT will not be updated when the
program MOVE is used. UFDFAT does not recognize the FAT when 1t
is ‘'disgquised" in this way theprogram MOVE will assume that
there is not FAT.

After using this option the user is responsible for re—enterring
the wvalue of the original word at address X001, thereby re-
insitituting the FAT. If this last fact is forgotten the HF-41
will not recognize any FAT—entries anymore at the page concerned.
Normally the user does not have to be concerned about the FAT. I+
a move of a block of mcode words is done the program UFPDFAT, by
itself or as part of the main program FHOVE, will take care of any
necessary updates aof the FAT. However, there are occasions when
you may not want to awvtomatically update the FAT. See the UFD4K
and CLEAR write—up further on.

Only in some very incidental cases might it be necessary to skip
the automatic update of the FAT.

Page 26

MLDL operating system eprom

CLEAR CLEAR block
XROM 13,03

Generally, programmers have found that any portion of MLDL-ram
that does not hold useful code should be cleared. This allows you
to +Find unused space when you want to add a new routine, and 1t
reduces the risk of spectecular crashes when you make a mistake.
Thereftor when you relocate code {(as opposed to making a copy),
vyou should clear the source block or any portion thereof
that you do not overwrite when you use PMOVE.

This task, when done manually is time consuming and it is easy to
make mistakes. CLEAR will do the job for vou. I+ the block has to
be moved only a few places (to clearing the remainder 1is
especially helpful, since the presence of 660 nops will not
affect a running program, provided all relevant jumps have been
updated.

A special note regarding the automatic use of CLEAR as a
subroutine in the program MOVE is given here:

automatic execaution of CLEAR by the program MOVE is indicated
by setting user tlag 2. This is opposite to the use of user flags
@8 and 1 which must be clear to do there assigned functions. This
protocol has been set up intentionally as clearing a part of
Mcode words can give some gquite surprising results if the user is
not Fully aware of what is going on. Furthernmore forgetting to
set user flag 2 does not do any harm and can be easily corrected
by executing CLEAR after using MOVE with the same addressing
scheme still residing in the alpha register.

hNote that there is a function named CLBL in this operating system
to, that enables you to do the same thing. fAs input format and
usage of this function is quite different from CLEAR, we decided
to include it in the operating system.

Page 27

MLDL operating system eprom

uPDLBL UFPDate assm Labels
XROM 16,14

This subroutine works in close concert with the DAVID-Assembler
eprom set. This is a 4K module which give the user full control
over the HP-41 CFU operation. One of the many features contained
in this eprom set is the fact that the user may insert at random
addresses self defined labels for easy reference during program
developoment or when annotating Mcode programs. These labels will
reside in a special buffer in the HF-41 main memory and will
remain there as long as the DA-Ass eprom set is plugged in and
enabled. When the HF-41 is tuwrned on while the DA—-Ass epprom set
is not present this buffer will be cleared automaticalily.

When moving FMcode words in MLDL-ram the addresses of the user
defined labels have to be updated like the relocateable XEG's and
G070°'s otherwise they will not refer to the correct starting
addresses anymore. UFDLBL takes care of this process
auvtomatically.

As the DA-Ass eprom set is an external 4K EROM block for this set
of programs, special routines have been created within this set
of programs which make it possible to refer to routines within
the DA-Ass eprom set. These routines are such that they can find
the D&-Ass eprom set at page as long as the DA-Ass eprom set 1s
addressed above page 7.

O0f course special attention is being paid to the fact that this
set of programs still have to work correctly when the DA-Ass
eprom set is not available. Therefor, i1+t the DA-Ass eprom set 1s
not available MOVE will simply skip over this subroutine. I+ the
DA-Ass eprom set 1s available but there is no buffer containing
labels again when used as a subroutine from MOVE, UFDLBL will be
automatically skipped.

On the other hand when UPDLBLis used as a stand alone program the
above mentioned error conditions will stop the program UPDLEL.
Apart from the error/ready messages which are available to the
other subroutines, the following messages are used by UPDLBL as
stand alone program:

NONEXISTENT with tone 4 indicates the fact that UPDLBL can not
find the DA-Ass eprom set.

NO LABELS with tone 7 indicates the fact that altought the DA-
Ass eprom set available there is no butter
containing user deftined labels.

READY with tone 7 indicates the successfull completion of

UFDLBL. as stand alone program, the error message
NONEXISTENT will be displayed and the program is
stoped.

Page 28

MLDL operating system eprom

MOVE MOVE mcode
XROM 103,18

MOVE 1is the main program of this set of routines which ties all
the forgoing subprograms together in one user friendly proaogram.
Earlier wversions of FMOVE made use of a prompting HEX—keyboadr
which — do to shortage of space in this new ERAMCO FLDL operating
eprom set — had to be deleted. All references by the user in the
alpha register.

The ervor checking as described in this manual, related to the
entering of addreses in the alpoha register still remain wvalid.
Furthermore int the ERAMCO operating eprom set additional error
checking 1is done to make sure that the digits entered in the
alpha register are valid hex—digits. (G-9 and A-F)

For a complete guide on how MOVE performs extensive error
checking on the entered addresses BEBBEEEEDDDD refer to the ERROR
MESSAGES.

While MOVE has been created to perform all the subroutines fully
automatic some user influence upon the actions of HMMOVE is
possible. The user ftlags @, 1 and 2 are used to give the user
control over HOVE:

1. 1f user flag ¥ is set MOVE will NOT update the moved block.
- if wuser +Flag 1 is set PMOVE will MOT update the remainder
part of the 4k block.
3. 1f user flag 2 is clear MOVE will MOT clear the old block or
the remainder thereof.

I

Furthermore when an automatic update of the FAT is unwanted the

FMcode word at address X608 (refer to UPDFAT Ffor +further
information?). Sk DAy OOV Ay ld e g2t T ODO

The last feature incorparated in FMOVE is an update of user
defined labels when using the DAVID-Assembler eprom set. Actually
this update is the first thing being done by MOVE after error
checking the entered adresses. MOVE automatically searches for
the DA-Ass eprom set which may reside anywhere above page 7 and
itf Ffound checks the presence of the special label buffer in the
HP—41 main memory. I¥ found any labels residing in this buffer
and referring to addresses contained in the block of dHMcode words
being moved, will be updated automatically.

For more details on how to use user defined labels refer to the
DA—Ass manual.

Page 29

MLDL operating system eprom

Users of this set of routines who do not use the DA—-ass eprom set
do not have to be concerned about any consequenses as MOVE will
automatically skip over the subroutine UPDLBL when the DA-fiss
eprom set is not present.

DISPLAY MESSAGES.

Te keep the user informed about what is going on, MOVE and 1its
subprograms use several kind of messages which will be displaved

when relevant.
Use 1is also made of the tone function of the HF-41 to inform the
user when the program needs attention:

i. when a program is successtully completed tone 7 will sound
2. if¥ an error condition develops tone 4 will sound

The display messages also fall in three catagories:
1. program messages
2. ready messages
3. error messages
It should be realized that a routine may be finish so qguickly

that the accompanyng message disappears befor the user will be
able to read 1t.

PROGRAM MESBABGES.

LABEL UPDATE used by: FOVE UFDLBL

Indicating that the user defined DA-Ass labels are being updated.
In most of the cases this update is performed so guickly that
this message only appears very briefly in the display.

FMOVINMG BL used by: FOVE
Indicating that the program is moving a specified block of Fcode
words. At the end of the move the FAT {(Funtion Address Table}

will be automatically updated it the word at address X001 1is
other than 000.

Page 30

MLDL gperating system eprom

UPDATING BL used by: MOVE UPDBL

Indicating that the mved block of PMcode words is being searched
for relocateable XEGi's and GOTO's and 1+ found will be updated.
UFDATING 4 used by: MOVE UFPD4K

Indicating that the remainder part {anything exept the FAT, the
olid block or the remainder part of the old biock and the new
block) is being searched for relocateable XEG@'s and GOTO's which
will be updated i+ needed.

CLEARING BL used by: MOVE CLEAR

Indicating that the old block or the remainder part thereof is
now being cleared.

READY MESS5AGES (+tone 7)
READY used by: FOVE UPDLBL UFPDBL UFD4K CLEAR
This message will be displayed when a routine has been

succesfully completed.

FROM FAGE X used by: FOVE UPD4E CLEAR

This message will be displayed when a routine has been
succesfully completed. However it also reminds the user to check
the setting of the user flags 1 and 2.

I+ a block of PMcode is being moved from one page to another only
the concerned block can be updated. It 1s assumed that there are
no relocateable XE&l's and B07T0's on the new page already relating
to the just entered block of FMcode words, neither will this set
of routines clear an old block of Mcode words which does not
reside on the same page as the newly entered block of Mcode
words.

If user flag 1 is clear the user specifies an update of the
remainder part of the 4k page and if user flag 2 is set the user
specifies a clearing of the old block of Mcode words. As the

program 1is restricted against use outside a single specified page
it disregards the setting of these flags thereby protecting the
user against errors. However the user is kindly reminded of his
sloppiness regarding the use fof flags 1 and 2.

Page 31

MLDL operating system eprom

Note : User +flags @, i and 2 are used only by the program HMOVE.
The routines when used as stand alone programs do not
relate to these flags. Therefor, if for instance the user
forgets to set user flag 2 to specify a clearing of the
old block simply execute CLEAR to do so after using MMOVE
with +the addresing scheme BEBBEEEEDDDD still residing 1in
the alpha register.

NO LABELS used by: UrFrbDLBL

This message will be displayed if UPDLBL is used as a stand alone
program with the DA-Ass eprom set plugged in and enabled but no
special label buffer present in main memory

FAT UFDATED used by: UFDFAT

After succesfully updating the FAT this message will be
displayed, but only when the subprogram UPDFAT is used as a stand
alone program.

Wwhen the FAT is updated by the main program MOVE this message
will be suppressed. At the completion of MOVE instead the message
READY will be displayed.

ERROR MESSAGES (+tone 4)

AROM NR=00 used by: MOVE

There is no memory connected to the destination page or it 1is
switched off or the PLDL-ram (EROM) is not initialized.

DDDD NOT EROM used by: HOVE

Destination address is NOT FMLDL—ram (EROM).

A "write"” check i1s made to address XFFF by first increasing the
checksum by one, checking the new value and then decreasing this
to its original value.

If double addressing exists {(e.g a plug—-in rom and HMLDL—ram
addressed to the same page) the checksum of the MLDL—ram block
will be changad to an unexpected value, because the ‘read’ will
be done to the MLDL-ram.

Page 32

MLDL operating system eprom

Regarding the ERAMCO ES5-MLDL 1 it should be realized that only
the ‘read” part of the ram blocks can be switched aoff. The
‘write’ function will alwavs be active. If both ram blocks of the
ES HMLDS 1 are addressed to the same page then block II takes
priority cancelling out block I of the mldl-ram.

The possibility of a change of the checsum is regarded acceptable
in the event on double addressing as by using MOVE vyou should
expect the checksum to change anyway.

NONEXISTENT used by: UPDLBL

When UFDLBEL 1is exucuted as a stand alone program this message
will be displayed while program execution is stoped i1+ the DA-Ass
eprom set is not plugged in and enabled.

ADDRESS ERR used by: MOVE UFDLBL UFDFAT
UFDBL UFD4E CLEAR.

This error message will be displayed when:
1. there are more than 12 characters in the alpha register.
2. there are less than 12 characters in the alpha register.
3. EEEE is not on the same page as BBBH.
4. EEEE is a lower address than BBBB.

DDDD < X002 used by: MMOVE UPDLEL UPDFAT
UPDEBL UFPD4E CLEAR.

This set of routines does not allow a move which would cause a
chnge of words at addresses X000 and X001. The words at thes
addresses {(specitying the xrom nr. and the nr. of FAT-entries)
are considered too critical to be used in automatic changing of
mcode words. Changing these words should be done manually.

If vyou want to load a block of mcode words starting at address
X000 or X001 do as follows to circumvent the restricted use of
thes addresses:

Load the block at any place within the 4k page making sure that
the Ffirst word is loaded at an address higher than X001 and that
the last word loaded is at an address lower than XFF4.

Check the words which are to be loaded at addresses X000 and X001
and load them manually. Now move the remainder part of your mcode
block starting +rom the third word to the destination address
X002.

FPage 33

MLDL operating system eprom

END > XFF3 used by: MOVE UPDLBL UPDFAT
UFDBL UFPD4E CLEAR.

Not only does this set of routines restrict against the use of
the addresse X000 and X001, the same applies to the block of
addresses at the end of a page starting from address XFF4. XFF4
upto and including XFFA are the so-called interrupt-points and
XFFB upto and including XFFE contain the xrom revision code. XFFF
contains the checksum of the 4k block.

Moving a block of EROM words into the interrupt jump addresses
will usually crash vour HP-41. The sole reedy i1s to disable the
MLDL-read. Then you can clear these interrupt points. If you are
unlucky, the accident could ioad garbage into random lodations of
the MLDL—ram. I+ this happens, your best bet is to reset the
entire system: Cliear the MLDL—ram, MASTER CLEAR the HF-41 then
reload your software.

For the above good reasons the programs this set of routines will
not 1load words 1into the interrupt area. #Any changes to the
interrupt area must be done manually, with full knowledge of the
assoclated consequenses.

I+ however vyou do want to copy 2 routine that uses these
interrupts, Ffirst copy the routine anywhere into vyour HMLDL
without the interrupt Jjump instruction{s) in the interrupt area.
Maw move this block of PFcode words to i1ts desired position and
only after this has been accomplished manually enter the reguired
interrupt jump instructions.

DATA ERROR used by: HMOVE UPDLBL UFDFAT
UFDEL UPD4K CLEAR.

This main frame error message will be displayed 1f the address
scheme in the alj;ha register does contain an illegal hex digits.
Only ©-92 and A-F are wvalid hex digits and any other characters
residing in the alpha registers upon execution of any program
will generate this erroro messag.

note: this error message will not crate tone 7.

PGM ABORTED used by: MOVE UPDBL UFD4K
While any of these routines are running, continuous scanning of

the keyboard is done to check i+ the ON key or the R/S has been
hit.

Page 34

MLDL operating system epraom

I¥f so the routine is stopped immediately and the HP—-41 is twned
off when the ON key was hit or PGM ABORTED is displayed when the
R/5 key was hit. It should be realized that when this features is
used the program stops and exits at whatever address it is ant
the moment of hitting the OM key or the R/5 kev. If this feature
is used without a solid knowledge of what is going on a whole
block of 4k MLDL-ram might be left in a uncertain state regarding
the relocateable XE&'s and GOTO 's.

note : The program HMOVE may take uwvup to 15 seconds before
compietion, so be patient before stopping the program
MOVE.

XrROM 18,16

This 1s not a normal function. It does not do anything when
executed but 1t 1is used as a spacer from write routines and
application routines within the MLDL—ram . One possible
application 1is to use it as a NOP. It will also terminate data
input without raising the stack.

Page 35

MLDL aoperating system eprom

UTILITY FUNCTIONS

CBT Count BYtes
XROM 189,17

This function counts the number of bytes that is occupied by a
program. The END statement is taken in account. At the prompt the
name of the desired program must be keyed in or 1+ vyou are
already 1in the desired program press ALPHA twice { compare with
the function CLF).

Butput is giwven in the display only. The stack and the ALFHA-
register are left undisturbed.

i+ wvyou try to get the length of a program that is resident in a
rom module the error message ROM is given.

Example : At the explanation of COMFPILE we will write a short
user code program to demonstrate you the advantages of
COMFILE. Execute COMPILE once more on this program to
make sure the program is as compact as possible. bMNow
vou can find out how long the program actually is. if
vou execute CBT and press ALPHA twice, the display will
change to &8 EBYTES. This is the length of your program
including the END statement
Remember this length for you will see that the use of
CHMPDL will significantly decrease the number of used
bytes, thus giving you a lot of memory back.

Page 36

MLDL operating system eprom

CHMPDL CoMPile and Delete Labels
XROM 16,18

This 1s in fact nearly the same function as the normal COMFILE.
Therefore we are refering to COMPILE for the set up of the flags
and the input format for COMFILE. They are both equal.

The only difference is that this function will delete the numeric
labels in the program while compiling. This shortens the program
and speeds it up. This can be done, because the HPF-41 remembers
where to jump to in the jump and execute functions. So after the
first run of a program, the HF-41 knows the distances to all the
labels and will always jump this distance. it does not matter 1+
there 1s a label or not. Therefore the labels can easily be
deleted. Only when the program contains indirect jumps or xeq’s
is it impossible to do so. This is due to the fact, that the HP-—
41 can not remember all the possible addresses of all labels in
the program. For this reason you can not use this function when
the program contains a GT0 ind or XEG@ ind.

The program respects all the local labels. So the labels A
through J and the labels a through e are respected and will not
be deleted. This 1s necessary because the HP-41 searches for them
when you use them from the keyboard.

When this function is executed, 1t will make use of the user
registers to hold the addresses of the deleted labels. Theretfore
make swe that the number of allocated registers is more then the
number of labels in the programs. I+ you don’'t take care of this
the calculator might crash.

To protect the compiled status as much as possible we change the
terminated by the .(END. This protects you from accidently writing
at the end of the program if you want to continue at the end of
the programmemory with new programs.

During program compilation, vyou will see the foliowing messages
atter each other. FACE ING

COoMPL 2B G

COMFL 3B G/X

FACK ING

COMFL 2B &

COMFL 3B Gr/X

READY

Page 37

MLDL operating system eprom

The compiler makes use of the normal compiler. First the whole
program is compiled to find out where to jump to. Then all the
LBl 's are deleted and their addresses are remembered in the user
registers. This is done during the packing stage. After this the
program is compiled again. When the function is through you are

at the beginning of the program.

The user registers contain the information where the program
resided and where the specified labels in the program were. The
structure of a register is as follows 1885555 LLLEANN. The first
two digits indicate alpha type of data. The 5555 part gives you
the start address of the program in program counter format. The
LLllL part gives vyou the address of the 1label in the packed
program without the labels. The NN part gives you the deleted
label at this address.

Example : We will compile the program that we use by the example
of COMFILE. This time we are going to compile it with
CMPDL. This 1is easily done. First make sure we have
enough empty registers by setting the size to 18 or
greater. We can now execute CHMFDL. At the prompt give
the name of the program : T87T. After the compiler has
finished we can see the results. Just run the program.
Again there is no delay in the first beep. Also notify
the +fact that the flving goose does not move anymore.
This 1is because the goose only moves one place to the
right whenever the program encounters a label. But
since all labels are deleted, it is not necessary
anymore to move the goose. If vyou stop the program and
execute the function CBT, vou will get as result 48
BEYTES. This implies that we have saved 20 bytes of
memory, and 1in this case it means that the program is
shortened by roughly one third of it’'s original length.

Page 38

MLDL operating system eprom

cap CODe alpha in hex string
XROM 18,19

The hexadecimal number in the ALPHA-register is converted to it’'s
—-bit-representation and this will be placed in the X-register.
The contents of the ALFHA-register is unchanged. The stack will
be rolled up and the value in the X-register before COD was
executed is placed in the LASTX-register.

The display won’'t be intelligable atter the function COD has bezen
executed. For the synthetic programmer this will sound normal.

Example : Input in ALPHA the hexadecimal address of our romname

and the start address of our romname (AOBLHABZE).
Execute COD after placing the address in ALFPHA. I¥ we
change the display format to fix 9, the display will
1ook iike this @.88867808 T8 Save this coded
representation of the address, for we are using 1t to
demonstrate an example with DECOD.
These so called non normalized numbers (NMN's) should
not be used to make calculations, +or they can hang up
the caliculator for guite some time. Also they can not
be stored and recalled in the same mannner as normal
numbers, +Ffor they are normalized after being recalled.
This is easily demonstrated by pressing 5T0 81 and RCL
@1 after each other. The result is a zero X register.

Page 3%

MLDL operating system eprom

COMPILE COMPILE program
XROM 10,20

The Ffunction COMPILE places in every numerical 670 and XE& the
distance to that numerical label. Programs prepared with the help
of COMPILE will usually run faster than programs that have to
calculate these distances while running. Two byte GOTO's that can
not make the distance will be transformed to three byte GOTO's.
Therefore vyour program can be made longer by this routine and it
is reguired to have at least three registers 1left after the
program. (.END. REG xxx with :ux not equal to zerol.

Compile prompts for the name of the program you want to compile.
Input 1is in the same way as with the mainframe function CLF. ©GCo
if you are not in the program you want to compile, you must input
the compiete name. Otherwise it is possible to press ALPHA twice.
The function will first pack the program (PACKING), then handle
the two byte GOTO's (COMFL 2B G) and if needed (in this case
compile has found a 2 byte GTO that can not make it and will
replace it with a three byte GTO, thus causing insertion of null
bytes that have to be packed as well) repeat this seguence.
After this is done it will continue with the three byte’'s GOTO's
and XEG's (COMFL 3B G6/X). After the routine is finished it will
put the message READY in the display. Labels not found will give
the error condition NO LBL xx, with the number xx as the label
not Ffound. When you switch to program mode you will +Find the
program step that caused the error condition.

I+ the program has the .END. as last statement instead of a
normal END, it will change the .END. into a normal one. This 1is
done for MMTORAM, which expects a program to be terminated with a
normal END.

To be able to change the .END. into a normal one, the compiler
needs at least one empty register aftfter the program. During the
initial packing of the program a check is made to see if there is
at least one register available. If this is not the case, the
program will terminate with the message TRY AGAIN. I+ so vyou
should decrease the number of allocated memory registers. {
change size)

After execution of compile you will be placed at the first step
of the program.

Deleting steps or adding steps in a program, will change the

status of the program intoc a decompiled one. Reusing the compiler
will speed up the execution after the editing session.

Page 48

Exampie

MLDL operating system eprom

Create the next program in your calculator

@1 LBL "TST 18 G670 16
B2 LBL @@ i% LBL 17
8% LBL @1 28 BEEP
@4 GTO 82 21 GTO @8
@3 LBL 63 22 LBL @2
Bs GTO @4 23 B67T0 @3
B7 LEBL @5 24 LBL @4
B8 GT0 86 23 670 @5
87 LBL @7 26 LBL @&
i@ GTO @B 27 BTO @7
i1 LEL 8% 28 LBL @B
12 G670 1@ 29 GT0 @89
13 LBL 11 S LBL 18
i4 G700 12 31 670 11
15 LBL 13 32 LBL 12
16 GTO 14 33 670 13
17 LBL 15 4 LBL 14
35 670 15
Z6 LBL 16
37 670 17

I¥f vyou execute this program after you have loaded 1t,
you will notice the significant time it takes before
you hear the first beep. ¥You will hear the second one
much sooner. Stop the program and goto step 1. Deiete
the superfluous label 81.

Execute the function COMPILE. You will be prompted +or
the name of the program to be compiled. Press ALPHA
twice, since we are in the program already. (It's also
possible to give the full name of the program (TS8T) }.
Now the message FACKING is displaved. I+ you do not
have enough room after the program, COMFILE will
terminate with the message TRY AGAIN. Then the messages
CHMFL 2B G and CMPL 3B G/X will be showed shortly aftter
each other. When the compiler 1is through these
messages, a tone will be sounded and the dispiay gives
the message READY.

I+ vyou press FRGM once, vou will find youwrself at the
start address of the program. FPress FPRGM once more and
press (/5. Notify the ftact that there 1s no delay
betore the first beep sounds.

Page 41

MLDL operating system eprom

Goto step one once more and delete label B@. Execution
of COMFILE will give the error message MO LBL @8. It
vou go into PRGM mode you will be at the step that
caused the error, step 19. Flease restore the program
with LBL 88 at step @1 again,because we are going to
use this program again in the example of CHMFDL.

Page 42

MLDL operating system eprom

DECOD DECODe non normalized number into alpha
XROM 18,21

The +Function DECOD is the cpposite of the function COD. It will
transiate a -bit-representation in the X-register to the same
hexadecimal form as is used by the function COD. The output is
given in the ALPHA-register. When DECOD is executed manually
DECOD will also give the hexedecimal representation in the
display.

Example : We are going to use the same number as we have created
with the function COD. First clear the ALPHA register.
Now we must get back our just created number. I+ you do
a RDN, 1t will come back to the X register. Execute the
function DECOD. The hexadecimal representation of the
number will appear in the display. I¥ you press back-—
arrow once, 1t will disappear and the nonnormalized
number is vieswed again. Go into ALFPHA and discover the
hexadecimal representation here.

Page 43

MLDL operating system eprom

DISASS DISASSemble m—code
XROM 18,22

This Ffunction behaves in the same manner as the DISTOA function
of the David Assembler rom. However, this function also decodes
the FAT, Ffunction names, the polling points at the end of a rom
and the revision and checksum codes in the proper way.

Output of the function is also send to the Alpha register, but
the format is a little different.

A line of machine code always starts with 7 blanks, except in the
case there is a label at that address. In this case the first &
places on the line are used to display the label.

This feature already makes it a lot easier to read dissassembled
listings, as the 1labels are not any more in between the code
itsel+f.

Alos the FAT 1is printed correctliy. The start address of the
function and its function name are displayed. Also the number of
the FAT entry is displayed. Fay attention to the fact, that this
entry number usually is not the real XROM number.

Furthermore when the name of a Ffunction 1s encountered the

display will show the string FUNMCTION FRAME.
At the end of the rom the polling points are given a name. In
this case it 1is easily seen, which entry point 1is used and

wherefor it is used.
For more information on input and ouwtput see also the manual of
the David Assembler rom.

Page 44

MLDL aperating system eprom

LacAh LOCAte word
XROM 18,23

This function allows you to locate a data—word in a 4K block of
ROM, EPROM or MLDL-ram.

The input format in ALFHO is as follows: BEBEDDD.

BEBE specifies the address from where LOCA starts searching 1in
the 4K block. Actually 1t wiill start at BBBEBE + 1 to allow
repeated search in the block. HNONE will be displayed when the
wanted data (DDD) is not found in this 4K block. Whenever a
data-word is found, it will be displayed together with the
address at which it is found. The data in ALPHA (adress + word)
will be replaced with the data found.This makes it possible to
continue searching for the same word.

xample : With a small user code program you can easily print out
all the occurrences of an instruction in a rom or MLDL
ram page. Create the following user code program {(make
sure you saved the T5T program)

@1 LBL "LOCATE B85 AOFF
B2 "ADD + DATA B6 LBL @61
8= AON 67 LOCA
84 FPROMPT @8 GTO @i

Input for this program could be a starting address like
X@8@ and the data to search for could be 848. This
would give vyou a complete list of all the MLDL WRITE
instructions 1in the MLDL rom. Enter for X the page
address where the MLDL rom is located (usually page F
y.

Page 45

MLDL operating system eprom

LROM iast ROM word
XROM 168,249

LROM searches backwards for the last non zero word in a block
beginning at a given start—address. Input is AAAA in ALPHA. The
display will give the address of the last non zero word and the
value at this address. NONME will be retwned when the block
between the start address and the beginning of this 4K page does
not contain any word {(other than zero).

This function can be very useful when the end—-address of the last
program entered has to be found. In this case the easiest way 1is
to put xFF4 into ALFHA and execute LROM. It will give vou the

address of the last word that is occupied by the program.

Example : If we want to find out where we can load our next user
code programs, we could search for empty space with the
help of RAMWR, but this would be rather cumbersome. To
avoid this, we are going to use the function LROM. In
this case we want to search on page A, starting From
the end and working backwards. Input for this is AFFF
in ALPHA. Execution of LROM will return ABFE3ED to the
display after a short search time. This tells us, that
the next available word in our rom is at address ABY1.
If we are searching on a completely empty page, LROHM
will return the message NUOME to the display, because 1t
can not find any word unequal to zero on the page. Try
this with page T for example. Input for this is SFFF in
Al FHA. Execute LREOM. After a short while the message
NOME wi1ill be displayed.

Page 46

MLDL operating system eprom

ROMCHKX ROMCHeck by X-reg
XROM 18,25

This function enables you to check if a ROM or MLDL—ram 1is still
in good shape. Important though is the fact that a ROM or MLDL-
ram must contain a good computed checksum { see ROMSUM for the
definition of the checksum). HF rom’'s will always contain a good
checksum. During the test the XROM number is displayved along with
the short form of the name and the revision number of the ROM. I+
the ROM or the MLDL-ram doesn 't contain this short name or the
revision number, the display will show GE8-EE.

Input in the X-register, the XROM number of the ROM or MLDL-ram
you want to test { an example is 31 for the cardreader). During
the test XX NN-RR TS5T will be displayed. XX is the XROM number of
the ROM that iz tested, BN is the shortened name and RR is the
revision number.

Output of ROMCHEX is the display XX MN-RR BAD (indicates a bad
ROM)} or the display XX MNN—RR OK { indicates a good ROM 3} These
outputs will be given only when the function is executed from the
keyboard.

The behavior of ROMCHEX will be different when 1t is executed 1n
a program; when a ROM is found to be good it will do the next
step in the program. Else it will skip the next step (compare
the function F57: the rule do if true is in force).

When there is no ROM present with the desired XROM number the
message NO ROM XX will be displayed. Again it’'s behavior in PRGM
mode 1s different. It will act as i+ the ROM is bad and skip the
next line.

Exampie : We can check if the MLDL operating system eprom 1is
still good. For this we need an input of 18 in the X
register { this is the xrom number of the MLDL rom).
When we execute the function ROMCHKEX, the display will
change to 18 05-7B T5T. This indicates that the rom
with xrom number 18 is under test. The revision code of
this rom is 05-7B. After a short time the display will
change to 1@ 05-75 OK . When we execute ROMCHEX with a
xrom number that is not present it will say NO ROM nn.
This can be tried with zero in the X register because a
rom never can have xrom nr B8. The display will show NO
ROM B8 atter ROMCHEX has been executed.

Page 47

MLDL operating system eprom

SAVEROM SAVE ROM image to mass storage
XROM 183,26

With this function you can save the contents of an entire rom on
cassette tape. The input format for this function is a name 1in
the alpha register and the desired page number in x.

A File will be created on tape of 648 registers, occupying 28
records.

Because there are a lot of users who have been using the Mountain
Computer eprom burner set with the functions READROM and WRTROM
we also included a user code program to be able to read back rom
files in the o0ld B24 format. This is the program ‘RROM in
appendix H.

The File identifier on tape for the new file created by SAVEROH
is ¥ ©7. This means that the +files are presented in the DIR as :

NAME 27,5 648

We have chosen for a nonexistant file type to be sure that the
data 1is not accidently destroyed. Therefore the file 1s also
autamatically secured atter creation. SAVEROM saves 7 records per
file compared to WRTROM or “WROM. Now you will be able to get the
maximum number of roms on yvour tape (e.g. 24 files).

To get the maximum number of files on your tape it is recommended
to do a NEWM with 27 Ffile directory entry’s. You can write 12
files on each side of the tape then. After having written 12
files you should protect the tape from rewinding from one side to
the other by creating a dummyfile "ENDTAFE" of 388 registers.

Example : If you have a cassette drive you can try the following
example. We will save the contents of our rom at page A
on tape and read it back with BETROM. BGive a filename
in ALFHA, for example USERI1.

We have the name in ALFHA and now we have to give the
page address in the X register. In our example this
will be 1@. Execute SAVEROM. You will hear the cassette
drive working +or some time. I+ yvou watch the drive
closely, you will notice that it writes 20 blocks after
each other.

When the drive 1s ready again you could do a DIR and
see as entry 1n the directory ot the tape our Jjust
created romfile. It will be in the form as described
under the function description,

e.g. USER1 77,5 548.

Page 48

XROM

18,81
18,82
13,83
10,04
10,05

13,86
19,07

18,08

18,09
16,10

16,11
1@,12
18,13
18,14
10,15

18,16
18,17
18,18
18,19
10,20
18,21
10,22
1@,23
13,24
12,25
18,26

covomow>T

NAME

AFAT
CLBEL
CLEAR
COFYR
CRNAME

DFAT
GETROM

IFAGE

MMTORAM

HMOVE

ROMSUM
UFDEL
UPDFAT
UPDLBL
UPD4

CBT
CHMPDL
cop
COMPILE
DECOD
DISASS

LocAa

LROM
ROMCHKX
SAVERDOM

MLDL operating system epram

APPENDIX A
INPUT

UoFARa in ALPHA

F / BEBBEEEE in Al FHA
BEBBBEEEEDDDD

SD in ALFHA

function name

OorFPAAA 1n ALPHA

name in ALPHA

dec. page in X

name in ALPHA

dec. page in X

xrom at prompt

BEBB in ALFHA

tlags @, 1 and 3
BEEBEEEEDDDD in ALPHA

F in ALPHA

BEBEBEEEEDDDD
BEBBEEEEDDDD
BBEBEBEEEEDDDD
BBBBEEEEDDDD

name at prompt
name of program
hex in ALPHA
name of program
binary in X

BEBBDDD in ALFHA
BBBE in ALFPHA
XROM in X

name in ALFHA
dec. page in X

address digit

OuUTPUT

FAT updated

block cleared
block is cleared
copied block
name add and FAT
updated

FAT updated

4K of tape in ram

desired page cleared
name + Xrom in page
load addr. in ALFHA
stored program

block is moved and
updated

romsum in xFFF
moved block updated
FAT updated

assm labels updated
not moved block
updated

length of program
short comp. program
binary in X
compiled program
hex in ALFHA
mnemonic @ ALFPHA
AAGADDD / NONE
AGAADDD / NONE

bad / ok do if true
4K in file on tape

begin address digit
data digit or destination digit

end—address digit

offset digit

page number digit

source digit
user digit

FPage 49

MLDL operating system eprom

APPENDIX B

PROGRAMMING AND THE MLDL EPROM SET

Maost functions provided by the ERAMCO MLDL-EPROM can be entered
in program whenever the eprom—set is plugged in an ERAMCO MLDL-
box connected to the calculator. When the ERAMCO MLDL-box
containing the eprom set 1s connected program lines with eprom
functions are displayed and printed as standard functions.

I+ the box is disconnected, these program lines are displayed and
printed as XR0OM functions with two i1dentification numbers. The
first number —11- indicates that the ftunctions are provided 1in
the ERAMCO MLDL-EPROM. The second number identifies the
particular function. The XROM numbers for the ERAMCO MLDL-EPROM
are listed below.

Function XROM Number ! Function XROM Numberi Function XROM Number

arAaT XROM 16,81 ! DFAT XROM 18,06 | SAVEROM XROM 16,26
CET XROM 18,17 ! DISASS XROM 1@,22 ! UPDEL XROM 16,12
CLBL XROM 18,82 ! GETROM XROM 18,87 ! UFDFAT XROM 18,13
CLEAR XROM 18,83 | IPAGE XROM 18,88 | UPDLBL XROM 10,14
CMPDL XROM 13,18 ! LOCA XROM 1@,23 | UPD4E XROM 10,15
COD XROM 18,19 | LROM XROM 1@,24 | —— XROM 18,16
COMPILE XROM 190,28 : MMTORAM XROM 18,09
COPYR XROM 18,84 ! MOVE XROM 18,18 !
CRNAME XROM 18,05 ! ROMCHKX XROM 18,25 !
DECOD XROM 1@,21 | ROMSUM XROM 18,11 |

Underlined functions are not programmable.

I+ program lines using the ERAMCO MLDL eprom are entered when the
eprom <=et is not connected, the Ffunction is recorded and
displayed as XEG followed by the function name. Program execution
will be slowed down by lines in this form because the calculator
will +First search in main memory for a program or program line
with the specified label.

Page 58

MLDL operating system eprom

APPENDIX C

MESSAGES

This is a list of messages and errors related to the functions in
the ERAMCO MLDL-EPROM set. When any of these errors are generated
the attempted function is not performed, except as noted.

DISPLAY

BAD MLDL

ENTRY 264

GTO/XEGQ IND

NO ENTRY

NO HFIL

NO LBL xx

NONE

NOMEXISTENT

NO ROM

NO ROM xx

FUNCTION

RAMWR

aFAT

CHFEDL
MMTORAM

DFAT

SAVEROM
GETROM

COMPILE
CMrPDL
MMTORAM

LROM
LOCA

—all-—

ROMXREG

RAMWR

ROMCHKX

MEANING
The MLDL ram page is malfunctioning.
There are already 64 entry’'s in the FAT.

The program contains GT0 or XEG ind
statements.

No such entry exists in the FAT.

The HFIL module is not plugged in.

The GTO or XER has no corresponding LBL
in this program.

The whole block is empty.
There i1s no such word in the block from
start—address up to the end of the page.

The ERAMCO MLDL-EPROM set is not plugged
in or is disabled or is malfunctioning.
There are not enough registers available
to store the specified block.

An attempt has been made to write to an

page which does not have a valid XROM
number at the first address of this
page.

The ROM with the given XROM number is not
piugged in or disabled.

Page 51

DISPLAY

NO WRITE

FAGE =

et
t

ROM

¥ MNN-RR EBAD

#x Nh-RR Ok

COMFL 2B G

CoMPL 3B G6/7X

LOADING FGHM

FACKING

READY

MLDL operating system eprom

FUNCTION

RAMUWR

GETROM
IFAGE
SAVEROM

MEFPR
MHTORAM
COMPILE
CHFDL
CET

ROMCHKX

ROMCHEX

COMPILE
CHMPDL
MMTORAM

COMFILE
CHMPDL
MHMTORAM

MMTORAM

COMPILE
CHMPDL
METORAM

COMPILE
CHMPDL
IFAGE
MMTORAM

APPENDIX C

MEANING

The data i1is not written at the desired
address. It i1s impossible to write to an
EFROM or ROM page. Also you can not
write at a disabled page.

There is an invalid pagenumber in reg X.

The named program doesn’t exist in main
memory but is found in ROM

The ROM with the XROM number xx is bad.

The EOM with the XR0OM number xx is ok.

The

b3

byte GTO's are handied.

The = byte GT0O's and XEG's are handled.

The program is loaded toc MLDL ram.
fi byte is deleted and the program is
packed to reduce the length of the

program.

The function is ready.

Page 52

MLDL operating system eprom

APPENDIX D

XROM numbers range from 1 up to 31 inclusive. As quite

a few

ROM's are available at the moment of this writing it is advisable
to choose a XROM number with care to avoid conflicts with other

modules.

ROM name i XROM ID | ROM name { XROM ID
MATH i 61 i SECUR i 19 %
STAT i @82 i CLINLAR i 19 =
SURVEY i @3 + AVIATION i 19 =
FIMARNCE i @4 i MOMITOR P19 % +
STANDARD HE 7 i STRUCT-B i 19 %
CIR ANAL HE i [i ©T PPC 1981 i 20
STRUCT—-A i @7 t ASSEMBLER 3 P21
STREGS i @8 i IL-DEVEL 22
HOME PN i i 170 P23
GAMES i i@ = i IL-DEVEL i 24

C FPC 1981 i 18 = i —EXTFCN i 25
AUTODUP H i@ » i —TIME- i 26
REAL EST i1t i — WAND i 27
MACHINE i i2 i —MAsS5 ST i 28
THRML i 13 i (= CTL FNS — 1
NAVIG i 14 i HP-IL HMODULE) ¢
FETROL i i3 i —PRINTER 29
PETROL i isé6 i CARD READER i 3@
FLOTTER i 17 i PRC ROM 2 7?27 1 31
PLOTTER i i8 i ERAMCO-MLDL i 18

+ Only a small number of this ROM, an early version of
ROM, were made and are not stocked or sold by HP.

Those marked with an asterisks share their identifying
and should not be used in the HP-41 at the same time.
functions with the same XROM ID the one at the lowest
(i.e. the Ilowest numbered port) will be accessed first
other will be ignored. So use discretion when choosing
AROM number if you want to avoid these kind of problems.

Page 53

It -DEVEL

number,
Of two
address
and the
YOUr own

MLDL operating system eprom

APPENDIX E

XROM STRUCTURE

XROM's are located at whole 4k blocks of addresses. The lowest
addresses in an XROM, and a few of the highest have special func-—
tions. The remainder may be filled in any way. The locations in
the 4k blocks must be filled by ten bit words, giving 2718 diffe-
rent codes. They may be read as instructions, or as alpha—-numeric
data. The following summary, adapted from J. Schwartz dJanuary
i¥BZ FFPC Conference paper, should be taken into account when
studying an application ROM, e.g. the MLDL-ROM. A listing can
easily be prepared by using the MLDL-ROM functions DISASH and
MNEM.

Relative Function of code at that address
address (hex)

X@aaa The XROM ID number in hexadecimal digits.

Xo\ai The number of functions in the XROM (m},
including the XROM name.

XBB2-= Address of XROM name

Xaa4-5 fAddress of first routine, program, etc.

XBas-7 Address of second routine, etc.

X@@2+2n fiddress of n'th routine

X8R3+2n

X0B32+2m Address of last (m th}) routine

X@a3+2m {m < &4)

X004+2m Compulsory null - &6G6.

XBB5+2m Compulsory null — G&A.

it 13 i3

Page 54

MLDL operating system eprom

fidd. of name Mame of ROM (running backwards)

fidd. of Fn# 1 Start of Fn# 1 code

11 I 1

Add. of Fn# 2 Start of Fn# 2 code

XFF4-—A Special interrupt jump locations (see table).
XFFE-E RO name abbreviation and revision #.
XFFF ROM checksum +for diagnostic use

Word pairs containing function addresses:
First word of pair: b @ g] g 0 =ail aléd a9 ag
Second word of pair: @ B8 a7 ab& a5 a4 a3 a2 al a@

This results in the following address in this 4k block 1+ 0000 is
zero:
pE p2 pi pB alil ald a% aB a7 ad a5 ad aZ aZ al =@

wWhere p@-3 is the bit representation of the 4k page number and
a@—-11 represent the relative offset from the beginning of the
page.khen 0000 is not equal to zero it must be added to p@-3. For
more information see the function AFAT.

I¥ the two words would read B8B83, OFF this would represent a
starting address of a function at address X3FF {(hex). The bit b
in the first word indicates USER code or microcode. I¥f set the
address is the start of a USER code program (e.g. 288, B84l in the
printer module 1s address &8Al1, start of USER ceode program
HERELOT")

Page 55

xFF4
xFFS
xFF&
®FF7
xFF8
xFF9
xFFA

Do

doing.-

MLDL operating system eprom

APPENDIX F

THE SPECIAL INTERRUPT POINTS

Interrupts during FS5E loop.

Interrupts after each program line.
Wake—up with no key down.

Interrupts when turned of+f.

Interrupts when peripheral fiag is set.
wake—up with ON key.

Wake—up after memory laost.

not use these points uniess you know exactiy what vou

Careless use of these points may cause CRASHES.

Page 356

are

MLDL operating system eprom

ASSEMBLY LANGUAGE INFORMATION

SHORT REVIEW OF THE HP—41 INSTRUCTIONS

The HF41 CFU has three main arithmetic registers: A,H and C.
These are 546 bits long (14 nibbles) and instructions can operate
in various "fields"” of the register.

[
&l

[
[N]
[
[
-
=
{1
3]
~}
o
t
B
i

o
o

e
|
|
|
+
|
E
|
|
|
|
+
|
W 4 = en = -
|
|

)
.,

a

In
=
-

X
g}

The whole register

Mantissa

Mantissa 5S5ign

eXponent Sign

eXponent and Sign off exponent

i}

-
mn

S&X

@k = At specified pointer
R<— : +rom digit R to digit @
FE@ : Between F and @

There are two pointers P and @, of which the value is B-13. One
of them is selected at the time (through slct p or slct g, the
selected pointer is called R. These are three extra fields, which
depend on the value of the pointer), R<- {(up to R, from digit R
to digit @) and F-& (between pointer F and &, G must be greater
than FPi.

There 1is a register G, B bits long, that may be copied to or
from or exchanged with the nibbles R and R+1 of register C.
(R<=12). There are 14 flags, B-13, of which flags 6-7 are located
in the 8-bits 8T (status) register, and there is a B-bits TONE
register T, of which the contents floats every machine cycle
through a speaker.

Page 57

MLDL operating system eprom

Then there are two auxilary storage registers, M and N, which
can ogperate only in the field AlLL. They are 5& bits long.

There is a lé—-bit program counter, which addresses the machine
language, and a KEY register of B-bits, which is loaded when a
key 1is pressed. The returnstack is 4 addresses long and 1is
situated in the CPU itsel+f.

The CPU may be in HEX or DEC mode. In the last mode the nibbles
act as if they can have a value from @ to %.

The USER-code RAM is selected by Cis%x1 through RAM S5LECT, and
can be written or read through WRITE DATA or READ DATA. I+ chip @
is selected (RAM address B@8 to OBF) the 1é& stack registers may
be addressed by WRIT and READ @& to 15.

FPeripherals {such as display, card reader, printer J may be
selected by Cils%:i through FRPH select or by SELF (see page 1%).

The mnemonics are a kind of B&SIC structure.

Arithmetic instructions (operate on a specitied field}

A=@ C=B C=C+1 ?HLB

BE=@ A=A+1 C=C+A TAHHT

C=@ A=A+H C=A-C TA#D

A< xB A=A+C C=8-C RSHFA
B=A A=A—1 C=-C—-1 RSHFB
A< >l A=4—b B#D RSHFC
A=C A=A—-C 7CHE LSHFA
C{*B C=C+C ?a<C

CirF, S8SETF, 7FSET, ?R=. 7F1 {(peripheral flag set?) , RCR (rotate
right) have a parameter @-13.

LD&ER {lpad C at R}y and SELF {(select peripheral) have a parameter
b-F.

WRIT and READ have a parameter #B-135, called

@(TY, 1(Z), 2(Y), 3{X), 4{L), S, &), 7(0), BIF), 9,
1B¢i—-y, ii{ay, 12¢b), 13(cy, 14(d), 15(e).

Page 58

MLDL operating system eprom

Jumps:
There are two classes jumps:

2. JNC (Jump 1if no carry) and JC {(jump iFf carry). These
instructions provide to Jjump relative 3IF in positive

direction or 48 in negative direction.

b. PNC GO and 7C GO. These instuctions provide to jump to an
absolute 146 bits address.

PNE XE and PC XG are jump—subroutine instructions te absolute
addresses. (remember the return stack is just 4 addresses long).

il scelaneous instructions:

ST=@ C=06 5T=T FOWOFF
CLREEY C<xb ST<>T SLCT P
PEEY C=M ST=C SLCT @&
R=R—-1 M=C C=8T PR=u
R=R+1 =M ST<>C TLOWBAT
G5=C T=5T XG->60 A=B=C=0
G070 ADR (CL&:=31 7CORTN FUSH { CL6:31)

C=KEY PNMC RTH FOF { CL&:31)

SETHEX RTN GOTO EKEY

SETDEC N=C RAM SLCT

DSFOFF C=N WRITE DATA

DSTTOG C<xN REARD DATA

FETCH S&X C=C or A FRPH SLCT

WRIT S%X (for HMLDL) E=C and A4

Note : various arithmetic and all test instuctions may set the
carry flag. This +flag keeps set only one machine cycle, so
a Jump dependent on this flag must be immediate after the
arithmetic or test instruction, otherwise the carryflag
will always be cleared.

Page 59

MLDL operating system eprom

CLASS @ OPERATIONS

-

| BBG | 948 | 868 [60O © 168 { 148 | 168 | 108 | 288 | 248 | Z88 i 208 © 388 | 348 i 388 | 3@

NOP

MO -) -

3

B4 | B84 | 344 | 8B4 | 144 | 284 | 184 | 244 | 8C4 | 184 :
p i 388 i 388 1 288 | @80 : @48 : BOO ; 148 : 288 ¢ 168 : 248 : @CB : 188 Qi 348 : 268 % -— 1 —

p i 3041 3841 2

CLRF
SETF

i24C 1 8CCH IBCV 34C P 2CC 4 — % —-

=]

#C | 88C i B4C [@BC | 14C ¢ 2BC © 18

~

FSET p 1 38C 1 38C ¢

78 1 308

[2e]

38

"

L]

p i 818 i B5@ i 898 | BDB : 11@ [158 | 196 : iD@ i 218 1 258 1 298 : 208 1

LDeR

pi3nd 0 324 1 224 | BZ4 | 864 1 BA4 1 164 1 Z2R4 § 124 | 264 | BE4 | 1A4 | 34 1 2E4 1 LE4 | JE4

SELP

A 1 3td

AC ¢ 12C + 26C © BEC § 1AC 1 360 ¢ 2EC % —— & —

7

8 i B6B ¢ BAB [BES i 128 ¢ 168 ¢ 1A i LEB i 228 | 268 1 2AB : 268 : 328 | 3J&b &

o

pi 8

BRIT

2

€1 860 ¢ BAC © 160

4

i 8
p i B38 i 878 { 8BS [@FB i 136 1 178 1 1B8 § IFG 1 238 1 278 1§

B8 : 3fé

"

38 1 378 1

[Le]

B8 © 2FB

3C ¢ Z3C ¢ @3C 1 B7C ¢ @BC ¢+ 17C ¢ 2BC ¢ 13C § 27C { @FC : 1B

[}

fi

TE 2L - -

el

L]

OPERATION

HNENONIC

No operation

HOP

Clears system flag nuaber p
Sets systea flag nusber p

P
P

CLRF
SETF

Set the carry flag if systea flag p is set

WSET p

Load p into “C" at nibble pointed at by pointer and decreaent pointer
Set the carry flag if the active pointer equals p

Set the active pointer to p

4
f
£
P

LDeR
i

Transfer control to the desired peripheral p

SELP

Hrite *C*® to RAM meaory or to the selected device in register p of the selected black

Set the carry flag if peripheral flag p is set

?

KRIT
*1

Read °"C* fros RN memory or the selected device to register p in the selected block

Rotate °"C* right by p digits

?

READ
RCR

FPage &8

HNEMONIC HEX
UNUSED x34
UNGSED %74
UNUSED xB4
UNUSER xF4
ST=4 3C4
CLRKEY 3CB
7KEY 3CC
fk=R-1 304
R=R+1 3nc
UHUSER 818
6=C 838
C=h 898
RO 208
UKUSED 118
H=C 138
C=H 198
COR 108
UNuses 218
1=81 258
5T=1 298
STOT 208
UNUSER 318
5T=L 358
£=5T 398
LOST 308
ig->60 828
POBOFF 868
SLCT P BAB
SiCra ecd

MLDL operating system eprom

CLASS @ SPECIAL INSTRUCTION HEX CODES

OPERATION
Not in use
Clears flag B to 7 (*5T® register)

Llears the 'key pressed’ flag

Set the carry flag when a key has been pressed

Decresent the current pointer
Incresent the current pointer

Hot in use

Copy digits r,r+I from *C* to *5"

Copy "6" into digits r,r#1 froe °C*
Exchange "B® with digits r,r#i fros *C*

Hot in use

Copy °C*® into *H*
Copy *H" into *C*
Exchange "C" with "H*

Hot in use

Copy *57" into *T"
Copy "T" into °57°
Exchange *ST" with *T*

Not in use

Copy digits 1, @ from *C® into *ST"
Copy °57" into digits 1, @ fros *C"
Exchange digits 1, @ from "C* with ®57"

Drop stack to convert X8 into 60
6o to standby mode

Select “P® as the active pointer
Select ®B" as the active pointer

HNENONIC

C=KEY

SETHEX
SETDEC
DSPOFF

0SPT06
€ RTH
NC RTN
RTH

LINUSED
N=C
E=H
LON

LDl
PUSH
pae
URUSED

60TO KEY
RAH SLCT
UKUSED

HEX

228
248
2h8
ZE8

3z8
LT
3a8
Ied

838
878
#Bd
eré

138
178
1B8
iFB

238
278
ZB8

WRITEDATA 2F8

FETCH
C=C OR 4

358
378

£=C ARD A 3p@

PRPHSLET

=0

L OWBAT

A=B=C=8

6070 ADR

Page 61

3ra

128
168
178
1E@

OPERATION

Copy key register into digit 4, 3 of *(*
Use hecadecisal arithaetic

Use decieal aritheetic

Turn off the display

Togale the state of the display

Return from subroutine if the carry is set
Return fros subroutine if carry flag cleared
Do a subroutine return always

Not in use

Copy *C® into °N®
Copy "N* into °C*
Exchange "C® with °N°

Load next rom word into digits 2-8 of *C*
Push address digits 6-3 in *C*® onto stack
Pop address from stack into digits &-3 of *C*
Kot in use

Load key register into lower 8 bits of "PC*
Set ras address to digits 2-# of ("

Hot in use

Hrite register °C* to the selected register

Load 2-8 of "C" fros roa address 46-3 of “C*
Logical or of *C° with *A" bit by bit
Logical aed of °C" with "3 hit by bit
Set peripheral address to digit Z-8 of “C"

Set the carry fiag if the pointers are equal
Set the carry flag if low battery

Ciear registers "A* *B* and *C*

Copy digits 6-3 of "C" into the *PC"

MLDL operating system eprom

CLASS 1 INSTRUCTIONS

Class 1 instructions are absolute GOTOs and EXECUTEs. They
consist of two consecutive ROM words of the following format :

A As As Aa Ax Az A1 A © 1

.

Haiss fii1a Baix A1z Flga Ara fie fAia o 24

Ais—Apy 1s the 16—-bit address to branch to. The pp field of the
second word determines what type of instruction it is. The next
table shows values for pp :

pp MNEMONIC OPERATION

B@ pNC XQ execute subroutine if carry 1s clear
i C Xx& execute subroutine i1f carry is set
1@ NC B0 goto rom address if carry is clear

a1 C GO gotcoc rom address 1f carry is set

Exampie : NC GO 8232 which jumps to the memory lost routine 1is
coded as =

h11 Bais 61
bogs 918 1@

GC2? as first word
d¥da as second word

Page &2

MLDL operating system eprom

CLASS 2 FIELDS @F OPERATION

FIELD AREA OF OPERATION

ALL All digits.

] Mantissa digits 12 — 3.

M5 Mantissa sign digit 135.

X5 Exponent sign digit 2.

S&X At exponsnt digits 2 — @.

&R At digit specified by the current pointer.

R<— Up to and including pointer from the right.

Fa from pointer P, left up to €&, including pointers.

Page &3

MNEMONIC

m\v'D\/"S&S

DL 0OWD
w

0

o

oAl Al

i
I E0DO0D0ODDIDDD D0
OT I T+++TTT¥+Y

%I>DI!ﬁI?Or]

I OO0~ 000 0= 0w

L

Uf?ﬂf??[jrlb

J e
0w
o
88
[

?A<C
?A<{B
7AFA
PAFC
REHFA
RSHFB
RSHFC
LSHFA

MLDL operating system eprom

CLASS 2 INSTRUCTIONS

OPERATION

clear A

clear B

clear C
exchange A with
copy A into B
exchange A with
copy B into C
exchange B with
copy C into A
add B into A
add C into A
increment A
subtiract B from
decrement A
subtiract C from
double C

add A into C
increment C

A-C into C
decrement C
complement C

nines compliement C

set carry +flag
set carry flag
set carry flag
set carry flag
set carry flag
set carry tlag

if
if
1f
if
if
it

B0
C#B
A<C
A<B
AF0
AFC

shift A right 1 digit
shift B right 1 digit
shift C right 1 digit

shift A left

1 digit

an2
222
a4:2
Be2
B82
anz
@acz2
oE>2
182
122
142
162
182
1A2
ic2
1EZ2
282
222

242
2862
282
262
2C2
2EZ2
382
I3

R A
342
362

382

3AZ 3

IC2
SEZ2

Page &4

R<—

aaa
aza
a4a
BoAa
a8A
BAA
BCA
@EA
18A
124
144
164
i8A
1AA
iCA
1EA
28A
22A
24A
24A
2BA
2AA
2CA
2EA
38a

=2

<
-t

344 3

36A
38A
3AA
3CA
SEA

ALL

BGE
@azE
a4E
@&E
B8E
@AE
BCE
QEE
18E
12E
14E
1&6E
i8BE
1AE
iCE
1EE
20E
22E
24E
26E
28E
2AE
2CE
2EE
IBE
3Z2E

I6E
SBE
SAE
3CE
JEE

PQ

a1z

32
32
@72
B2
B2
@D2
BF2
112
132
152
172
192
1B2
ipz
iF2
212
232
252
272
292
2B2
2D2
2F2
312
332
332
372
3IF2
B2
3D2

3IF2

XS

@14
836
BS6
@76
09s
BBé6
@D6
BF &
116
136
156
176
126
iBé&
iDbé6
iFé
216
236
256
276
296
2Bé&
2D&
2F&
3146
334
356
376
396
3Bé&
3Dé
3F&

a1iA
B3ha
BSA
a74a
B2A
BBA
BhA
brFA
11A
134
13A
174
19A
1BA
1DA
iFA
214
23A
254
274
294
2BA
2DA
2FA
31A
33A
3I5A
374
39A
SBA
DA
3FA

B1E
B3E
B5E
@7E
BIE
BOBE
@DE
@FE
11E
13E
15E
17E
17E
1BE
1DE
iFE
21E
23E
25E
27E
29E
ZBE
2DE
2FE
IS1E

T
~t ot

35E
37E
39E
IBE
3DE
IFE

MLDL aperating system eprom

CLASS 3 INSTRUCTIONS

DISTANCE JNC—- JC— JNC+ JC+ DISTANCE JNC- JC— JNC+ JC+
+/— @1 3SFE 3FF @OBdr G6F +/— @2 3F3Z 3F7 @813 Bi17
+/— @83 SEB 3EF @1iB @ir +/— G4 IES 3EV @23 827
+/— B35 3DE 3DF @2B @2F +/— @& D3 ED7 3% @837
+/— @7 =CB 3CF B3IB @3r +/— @8 303 3C7 @43 @47
+/— @9 SBE 3BF B@4EB @4F +/— B4 IpE EB7 @53 857
+/— @B 3B 3AF B5B @5F +/— @C 3IAZ 3A7 8463 B&T
+/— @D 3IPR 39F @B&6B B&F +/— BE P9I 397 B7Z @77
+/— @F 8B 3IBF @7B B7F +/— 1@ 383F 387 @gz 887
+/— 11 37 37F @BE 68F +/—- 12 373 377 @93 @97
+/— 13 36B 36F B98B GFF +/— 14 63 367 BAT BAT
+/—- 15 358 35F BAE @AF +/— 16 353 357 8BS 657
+/= 17 348 3I4F @BB @BF +/— 18 343 47 @GC3 @Cc7
+/— 19 33 3ISF @Ce BCF +/— 1A 333 337 @D=E BD7
+/— 1B 328 32F @DB @DF +/— 1C 323 327 BEZT 8E7
+/— 1D J1B 31F BEEBE B@EF +/— 1E 313 317 WBF3 @rF7
+/— 1F @y 3IBF BFB OFF +7/— 28 3Bs 387 183 187
+/—- 21 2FB ZFF 18R 186F +/—= 22 2F3 Z2F7 113 117
+/— 23 ZEB ZEF 11B 1iF +/— 24 ZES 2BV 123 127
+/— 25 2DB 2DF 128 1ZF +/— 26 203 207 23 7
+/—= 27 2CB 2Z2CF 13B 13F +/— 2B 203 2C7 143 147
+/- 29 Z2BB ZBF 14B 14F +/— 24 =B 2B7 153 157
+7/— 2B 26B 2AF 15B 15SF +/— 2C 2AZ 2AT7 163 1467
+/—- 2D 298 29F 1&6B 16F +/—- 2E 295 297 173 177
+/—- 2F 288 2BF 17B 17F +/— 38 283 287 183 187
+/—- 31 27 Z27F 18BB 18F +/—- 32 2735 277 193 197
+/— 33 26B 2Z26F 19B 19F +/— 34 263 267 143 1A7
+/— 35 258 25F 1AB 1AF +/—- 3 253 257 1B3 1H7
+7/— 37 24B 24F 1BB 1BF +/— =8 243 247 1C3 1C7
+/— 39 23 23F 1CB ICF +/— 34 235 237 1b3 1D7
+/— 3B 228 Z2F 1DB 1DF +/— 3 223 227 1EZ 1E7
+/— 3ZD 2iB 2iF 1EB 1EF +/— 3ZE 213 217 1FE 1F7
+/— 3F 288 28 1FB IFF +/— 48 263 2867 @ —-—— ——

Class 3 1instructions aliow the program to jump up to &3 words
forward or backward from its present location. The mnemonics are
JNE and JC.

Page &35

MLDL operating system eprom

ROM CHARACTER TABLE

lower 4! @ { 1 ! 2 1 3 1 4 !5 1 &! 7 i81%1AaAiBIC!ID!E
el et B e e e e B R R R e e e

u @ {1 @!A!BI!IC!D!E'FIGBIH!I!J!KE!IL!MI!HN

p : e e B et R e R B R e e e e

p 1 {FI@IRISITIUIV WX YL ZEEE NN DT

B el T B B R B e B e e e e e e R

-2 T T T T A A T A N SN S S G T N T S ST S SR B B
T 1@ 1121314156708 9 gt =1
4 1 i-taibicid!e! oo -

Mote : The colon (3FA) displays as a boxed star. The comma (2C) is
also the left facing goose when used in a function name or
display and the period (2E) is also the right facing
goose.

You get the hexadecimal code of a character by taking the number
in the upper? column and place the number in the lower row behind
it. Last step is to place a zeroc in front of the number.

Example : The hexadecimal code of the letter W is B17.
0+f the egual sign it is 83D

FUNCTION NAMES

When a function is executed, the operating system checks the ROM
words containing the +irst two characters of the function name
and the two words immediately following. The catalog table entry
far a microcode function { both mainframe and XROM functions }
points to the first word of executable code. The function name is
listed in reverse order immediately preceding the first word of
executable code.

Page &4

MLDL operating system eprom

Example : This example shows you how a normal function name is

coded.
18aCE @81 & Hex @88 added to indicate end of name.
18CF Bac L
i @83 C
18D1 seux First executable word of CLA.

FUNCTION PROMPTING

To +tell the operating system that the end of the function name
has been reached, add 888 hex to the final character. To provide
a prompt set the top two bits in the first two characters of the
function name by adding the hex constants in the following table

NULL IND &
i8T 2ND aipha alpha #dig. ind stack stack none example

868 any X CLAa,CLST
186 Gas X X CLF,COFY
igeé 1686 3.4 SIZE

i 204 X

iga Z@6 i X CAT , TONE
268 Bbad 2 X X STO0,RCL
2868 108 2 X X 5To,RCL
DA i 17 Ba T3 17; 2 X F87,5F
2868 280 X 2 X

0B B6d X 2 LEL

6 1808 X 2 X XE@{alpha)
I8 200 X 2

388 o6 X 2 X X{.ddd? 570

The operating system examine these ROM bits and executes a prompt
(1i¥ the appropiate bits are set) before the function is executed.
These prompts are only executed when you execute the function
from the keyboard. However, when the function is executed in a
program there will be no prompt at all. Take care of this.

I+ the prompt accepts an alpha string, the input data is loaded
into the & register, right justified in reverse order in ASCII.

Example : Execution of the function ASN with the alpha argument

"COFYY will load O8 80 @8 59 58 4F 4C into the @&
register before the function is executed.

Page &7

MLDL operating system eprom

I+ the prompt is numeric the input data is lpaded into the ¥YAY
register in binary. Whenever the prompt also accepts indirect,
the value in the "A" register is increased with hex &0.

Example : Execution of the functiecn RCL with a numeric argument
of 95 will retwn B8 66 B8 B0 B0 BB 37 1in the "A"
register.

I+ the prompt would have been filled in with IND 35,
the "A" register contains 80 58 868 08 B BY B7.

PROGRAMMABILITY

Two other ROM words of a microcode function are examined by the
operating system. The +First executable word, if a nop {666) ,
indicates that the function is non—-programmable. This means that
if you execute the function in program mode, it executes rather
than being entered as a program line. SIZE, ASN and CLF are non-—
programmable functions.

If the Ffirst two executable words of a XROM function are both
zero, then the function is both non—programmable and executes
immediately. This means that no function name is displayed and
that the function will not NULL. The function is executed when
the key is pressed rather than when the key is released. FRGM,
SHIFT and back—arrow are non—programmable, immediate executing
functions. NMote that unless your routine checks for key release,
and the key to which your function is assigned is held down, the
function will be executed repeatedly until the key is released.
These two words affect the function operation only 1f the
calculator is in PRGM mode. In RUN mode, they are ignored.

Example : these are a few examples of function name promptings.

1202 @897 W 1185 @9% Y i2CC @85 E
1203 @85 E 116 @1 P 120D BGBE N
iZp4 189 1 iia7 @dF O i2CE 3@8F O
12D5 216 W 1198 183 C 12CF 114 71

Page &B

FUNCTION

REGFROM. ...

MLDL operating system eprom

FUNCTION

INDEX

ROMCHE X . i s s st s s smsnncanannennnansnnns frseamanansen
ROMEUM. « c s s s memsceesnnausenancsnaeansnennncssansnsnsns

ROM>REG.. ...
SAVEROM. « v - &

FPage &%

PAGE

@

R

E T}

MLDL operating system eprom

CARE AND WARRANTY

Eprom care

Store the eprom set in a dry and clean place. HMake sure that the
feet of the eprom’s are protected against bending. UOtherwise a
pin could brake from the eprom and make i1t worthless. Do not
connect any external power supply to the eproms. Frotect the
eproms against static charges, otherwise irrepairable damage to
the eproms can result. Do not remove under any circumstances the
labels on the eproms for these labels protect the eproms against
lposing there data by accident through too much U.V. light on the
eprom’s.

Limited 186 day’'s warranty

The B83128A ERAMCO MLDL-Eprom set is warranted against defects in
materials and workmanship affecting electronic performance, —but
not software content— for 186 day’'s from the date of original
purchase. If vou sell your unit or give it as a gift the warranty
is automatically transferred to the new owner and remains 1in
effect For the original 188 days period. During the warranty
period we will repair or at our option replace at no charge a
product that proves to be defective, provided you return the
product, shipping prepaid, to ERAMCO SYSTEMS or their official
service representative.

FPage 7@

MLDL operating system eprom

CARE AND WARRANTY

WHAT IS5 NOT COVERED

This warranty doesn’'t apply if the product has been damaged by
accident, misuse or as the result of service or modification by
other than ERAMCO SYS5TEMS or their official service
representative.

No other express warranty is given. Any other implied warranty of
merchantability or fitness is limited to the 188 days period of
this written warranty. In no event shall ERAMCO SYSTEMS be liable
for consequential damages. This liability shall in no way exceed
the catalcg price of the product at the moment of sale.

Obligation to HMake Changes

Products are sold on the basis of specifications applicable at
the time of manufacture. ERAMCO SYSTEMS shall have no obligation
to modify or update products once sold.

Page 71

MLDL operating system eprom

HOW TO SET UP YOUR OWN EROM PAGE

This part of the manual wiil tell you exactly how to set up an
Erom image in youwr MLDL-box. This is done with the help of a few
user code routines that are loaded into the MLDL Erom pages. It
vyou foillow the instructions to the letter, nothing can go wrong.
And with the help of these instructions you should be able to set
up your own Eram image.

step 1

The first thing that has to be done is to clear the Erom page you
want to work at and to set the Erom block to the proper page.
Therefore vyou must set the first block with the left rotary
switch at page A. Set the rotary switch of the other block to
page E. Disable both the switches to the letft of the leftmost
rotary switch (pull them down). Wkhen you set the switches in
this position, vyou can compare the results of your actions with
the resuits that will be given in this appendix.

step 2

Now we will first clear both Erom pages. Key in alpha mode the
single character "A". Go out alpha mode and execute CLBL (+for
more details see page 14) Repeat this sequence with the single
character "E" 1in alpha. At this moment yvour Erom pages should
both be clear. NMow you can enable both the Erom pages by pushing
the both switches up. Don’t expect anything to happen yet. Both
pages are still empty.

step 3

Before doing anything else we have to make sure that both pages
are empty. Key in alpha "AFFF". Now execute LROM. The display
should read "‘none’. I+ this 1s not the case you should control
the setting of the switches and try step 2 again. This is done in
the same way for the second block, except you now have to key in
aipha "EFFF". The reading of the display should be again ‘none’.
I+ this isn’'t the case return to step 2.

Page 72

MLDL operating system eprom

step 4

To allow the HF-41 to find anything that is plugged into the
system it uses the first word on every page starting from page 3.
If this word doesn’'t contain a valid identifier, it can’'t execute
a routine or function located at that page. Therefore we will
continue with the setting of these identifiers for both Erom
pages. In fact this identifier is the xrom number of a module. To
avoid any problems with other modules it is recommended in this
stage to unplug all vyour modules.

Also the name of the rom module has to be added. For this the
function IPAGE is used. It is enough to put the rom name into the
ALFHA register. After this you give the 4K page address in the X
register. bMNow you can execute the function IFAGE. It will praompt
yvou for a XROM number. To avoid problems we choose as XROM number

the number 21.

Note : In this manual we described two ways to set up an Erom
image. First time we did this with the function RAMWR (see
page S5). For this is guite a cumbersomz way to prepare an
Erom image we did incorporate the function IFPAGE (see page
Z5). Here we already gave you an example of how to create
your own Erom image.

Example : We will create one Erom image with xrom number 21 and
as name "TEST ROM 1A". For this we make use aof the RAM
page that is controlled by the lett rotary and enabling
switch. The block is already cleared and enabled 1in

step 2. The block i=s addressed at page "A". Now we have
all relevant data for the block, so we can initialize
it.

Key into ALPHA the name of the module and into the X
register the address of the RAM page that will hold the
Erom image. This address is 18.

Execute the function IFAGE. At the prompt you answer
with the desired xrom number E.G. 2i. After a while a
tone will sound and the message READY is displayed.

Page 73

MLDL operating system eprom

step 35

From now on the HPF—-41 can recognize anything that is written into
Erom block one. So lets give it a try. First of all we have to
create a little program in main memory that is to be stored 1in
the Erom block.

We will use the following program: LBL "test
LBL 81
BEEF
GTO @1
END

step &

You have now created a program in the memory of your calculator.
But we wanted to have this program in the MLDL-box, because it is
using up the last free bytes we had. That’'s no problem. UWe only
have to use FMTORAM to get the program in the Erom page we want
it. For this we have to initialize a few things.

When we have initialized our Erom page manually (without use of
IPAGE), we have to give the starting address for our program.
This address will be the first word to be used by HMMTORAM. Do not
use the reserved words in an Erom image in which you are to load
your programs (see appendix E and appendix Fl.

I+ vyou work with IFPAGE however, the starting address is already
given in the ALFHA register. #Hhen you have to use the ALFPHA
register between two sessions of loading programs, it 1is
advisable to keep the contents of the ALPHA register in a normal
data storage register, or to note it down {be carefull saving the
address in a storage register, for MATORAM can clear all the user
registers, when it makes use of CHMFDLY. This is handy for future
use. I+ you lost the address however, vyou can +ind it back with
the help of LROM. Increase the address given by LROM with one,
and you have the new starting address to store at.

Second thing we have to initialize is the setting of flags & and
i, to achieve the desired private status of the loaded program.
There are four pptions for these flags. For a full description of
these options we rever to the function FMMTORAFM at page B.

Page 74

MLDL operating system eprom

Third and last initialisation we have to make is the setting of
flag 3. MMTORAM decides on this flag wether it shall use CMPDL or
the normal COMPILE function when it is loading a program. See the
function CHMPDL for the difference between the two compilers.

Example : We are going to load the program described at step 3.
This program has to be loaded in a nonprivate, complete
open status. Furthermore we do not want the numeric
labels to be deieted.

We do not have to give the starting address, for this
is given in ALPHA by the +function IPAGE.

For a complete open, nonprivate status flags @ and 1
have to be cleared.

Fiag 3 has to be set for we do not want the numeric
labels to be deleted.

When these settings are made, the function MMTORAM can

be executed. You will see the messages of the compiler
and then the message "LOADING FGH". When MMTORAM 1s
finished a tone will sound and the message "READY" 1is

displayed. The program is now loaded in the Erom image
and is ready for use.

Note : If you switch to ALPHA vou will see that the
starting address is changed. It now points to
the +First +Free byte atter the just Iloaded
program. This provides an easy way of loading
subsequent programs.

step 7

First thing we will do is deleting the program from main memory.
When you have done this, you should still be able to execute test

for it has been stored in the Erom page. 8o give it a +try. You
will hear the familiar beesping every time the program is looping.
Stop execution of the program and switch to PRGM mode. Whenever

you try to insert or delete a program step, vou will see the
message 'ROM . This proves that the program has realy been loaded
into thes MLDL-box. The program is also included in catalog 2. If
vou execute CAT 2 you will see the label test showing up in vyour
display sooner or later, depending on the amount of other roms
that are plugged into the system.

Page 75

MLDL operating system eprom

When you want to store more and other programs, you can follow
the described procedure starting at step 5.

Load also the programs described on page 21 (T5T) and 28 (MDIS).
Load the TST program with flag 3 cleared. Look at the program
after you have deleted it in main memory. As you will see,; it
does not contains the numeric labels any more. This and the fact
that it is in ROM now, will speed up the execution quite a I1ot.
Load the MDIS program with fiags 1 and 3 set. The program will be
open in the erom page, but as socon as it is copied back to main
memory, it will be private.

This 1is the end of the description of our PMLDL ROM operating
system. We hope you will enjoy to work with this rom. If you have
any complaints or wishes you want to see in a future rom, please
et us know. We will take these in account as much as possible.

ERAMCO SYSTEMS
W. van Alcmade str. 54
1785 LS Den Helder
The Netherlands

Page 7646

	Cover
	Contents
	Introduction
	Installation
	Organisation of the instruction set
	MLDL write functions
	AFAT
	CLBL
	COPYR
	CRNAME
	DFAT
	GETROM
	IPAGE
	MMTORAM
	ROMSUM

	Moving M-code
	Introduction
	UPDBL
	UPD4K
	UPDFAT
	CLEAR
	UPDLBL
	MOVE

	Utility functions
	CBT
	CMPDL
	COD
	COMPILE
	DECOD
	DISASS
	LOCA
	LROM
	ROMCHKX
	SAVEROM

	Appendix A: Input 7/7 Output
	Appendix B: Programmability
	Appendix C: Messages
	Appendix D: XROM numbers
	Appendix E: XROM and FAT structure
	Appendix F: Interrupting Points
	Appendix G: Assembly language information
	Function Index
	Care and Warranty
	How to set up your own EROM page

