

ERAMCO SYSTEMS

HP-41

MLDL-ROM

Machine Language Development System

MLDL. operating system eprom

CONTENTS

Introduction. ces ccecccnccecaccancannas

Installation.c.cceucecacananas .

Organisation of the instruction set............c0.c..
MDL write functions. ccc ececctvcncacnsssancacnoosases

Utility functions. ® = 3 v a ® 9 9S 8 GW Se Pe aD ES Ss EW EU EO OW OP ESD ee

Update functi ONS. cs evoeeovonscsanasvssosesansaas * ov ee ee a vs 0

Appendix As Input / Output ® = &a 5 4 6 J vo we em en ® ¢ Oe ® ®» eo "m0 Be OE

Appendix B: Programmability.....cccevevecnccnscens "= 9 & 9 ew

Appendix C: Messages...... wes

Appendix D: XROM numbers.......... Crease teeressves

Appendix E: XROM and FAT structure... cceceeccncaccess

Appendix F: Interrupting Foints........ «tree wnnanna .

Appendix G: Assembly language informaticn.......

Function INndeX.vocceccnssaccansasnces - "Be aaa ® © «a =u ®» 8 pO 2 ow

Care and Warranty....... ® 4 v v8 "SES 9 WB SB A GS 9 EO eR TEE PE eS

How to set up your own EROM page. .cccecccecscosasansas

Page 2

W
N

(
S
E
S
H
N
C
R
C
H

A @®

46

47

29

6&0

MLDL operating system eprom

INTRODUCTION

This manual deals with the ERAMCO MLDL operating system eprom. To

get a full understanding of all the routines and functions in
this eprom set, it is advisable to read through this manual
carefully before operating any of the functions or routines.

INSTALLATION

Follaw the instructians of your ERAMCO MLDL-baox carefully when

installing the eprom set in your box. It may be necessary to bend

the feet of the two eproms slightly inward to make them fit

easily into the eprom sockets. Do not forget toc enable the page

on which you insert the eproms (far more detailed information on
how to insert the eproms, consult your hardware manual of the

ERAMCO MLDL-box). A lower address is the most appropiate page
for insertion af the eprom. This provides a quick access to the

routines and functions available in the ERAMCO MLDL-eprom set.

ORGANISATION OF THE INSTRUCTION SET

As you will soon discover the routines and functions in this
eprom set are divided into three sections. The first section

contains all the functions and routines that will change anything
in the MLDL-ram you are working on. So always be careful when

using any of these functions. A single mistake can destroy the
whole 4K ram block that is under development.

The second section contains the functions that facilitates
working with the MLDL~ram. They do not change anything in the ram

but will provide a quicker access to the ram (LROM will tell you
almost immediately where you can continue with writing in the ram
or where you can store a User-code program).

The third and last section in fact belongs tao the two mentioned

above. However, this is a seperate section to keep compatible
with the xrom numbers of an older version.

Page 3

MLDL operating system eprom

Note : All inputs which has to be placed in the alpha-register
are related to hexadecimal

In the description of the functicns it is assumed, that you have
one MLDL ram page available for exercising the examples. To

ensure that the examples work out in the way we have described

them, is it necessary to clear one block and to place it at the
proper page. Place the first block off your MLDL ram at page 7.
This is easily achieved by turning the apprapriate (left) hex

rotary switch to 7. Disable the block by switching the left

enable switch down (off). Toc avoid problems with the second
block, it is advisable to switch this block of too.

After these preparations we can clear the whole black. Input for

this is 7 in ALPHA. Now execute the function CLEL. For detailed
information of it's operation see page 14.

Switch the MLDL ram page on line by switching the left enable
switch to the ON state. It is naw ready for the examples.

INPUT : All the hexadecimal input in the ALPHA register is

checked on valid data. Data is valid only, if it

consists of the hexadecimal characters. These characters

are the numbers from @ upto 2? and the letters A through

F. Any other character in ALFHAR will tause an error. The

display will show DATA ERROR.
If the errar occurs in a function during a running
program, the error will be displayed and the program is

halted at the instruction, that caused the error.

OUTPUT : Every function in this MDL rom that gives an
hexadecimal output to the ALFHA register, will

automaticcally execute an AVIEW after it has put it's
data into the ALPHA register. Sc, if you are using for

example the function LOCA in a program, it is not

necessary to do a AVIEW after the function. (Otherwise
the result will be displayed twice. In conjunction with

the printer your results will also be printed twice.

Page 4

MLDL operating system eprom

MLDL WRITE FUNCTIONS

RAMWR (RAM WRite)
XROM 11,01

This non programmable function allows the user to read every word

in a ROM, EPROM, or MLDL-ram (EROM J). In case of MLDL-ram it is

also possible to change or write in this MLDL-ram. The addresses

and data are prompted for and given in hexadecimal form. This

function will redefine the keyboard as long as it is used to make

hexadecimal input easier.

After calling this function it will prompt For the absolute

address in ROM. The following keys are now active: 0-9, A-F,
back—-arrow and the on key. The back—~arraw key is used in the

usual way to correct the last given input. NULL will be displayed

if you held the last input-key. When you release this key after
NULL is displayed, you will be prompted again for the address.

Pressing back-arrow without input causes the function to exit to
narmal operation of the HF-41.

The address and three prompt signs are shown in the display (

ARRA ___ YY. From now on the keyboard is defined as follows:

-STO0 will give you the data at this and the following

addresses. Each address and the data are displayed for about

8.5 sec. Fressing any key accept the R/S or the ON key, will

slow down the listing of the data that is displayed. The R/S

key will stop the listing at any desired place. The ON key

will switch off the machine in the usual way.

Example : If you press RAMWR and fill in the prompt with

XFDS (X represents the page the MDL rom is
located) you will see 93. This is the last
letter of the xrom name of the MLDL rom. if you
press STO, you will see the whole name of the rom,
displayed one character at the time. Stop the

display after you have seen JIE@. This is the end

of the xrom name.

Page 5

MLDL operating system eprom

~TAN or BST decreases the address by one. This enables you to
go through the listing by hand.

Example : After you have stopped the listing in the previous

example, you can see the first letter of the xraom

name, by pressing TAN or BST once. The display
shows XFFD @0S.

-SST increases the address by one, making it possible to step
through the listing by hand.

Example : Pressing SST once places you at the end af the

xrom name. The display shows XFFE 3IE@. Fressing

SST once more places you at address XFDF with data

B72.

-back—arrow asks you for a new address if there is no data
input. Otherwise it will operate in the usual way to correct
the last input.

Example : Fress back~arrow once. You are prompted for the
new address. Fill in the prompt with 2FFE. This

address contains the revision level of the second

operating system rom. The number represents the

position of the letter in the alphabet. So if you
see B86, your revision level is F.

-"e", "iv, "2", "3" (numberkey’'s B8,1,2,3) are interpreted
as new data. In this way wrong data input is prevented,

because the First character of a data word can only be

@,1,2 or 3. For the rest of the data input the hexadecimal

keyboard is available again. Halding the last data key will
NULL the input function and after releasing the key will
prompt for new data. With the back-arrow key it is possible

tc correct the last given input. The address will be

increased by one after completion of data input. This will
facilitate the writing of long programs.

Page &

Example

MLDL operating system eprom

We will initialize our ram block with a name.

Therefore we have to go to page 7. Press back-
arrow once and fill in the prompt with 7800. At

this address the XROM number of our rom is
located, and we have to give the ram block an XROM
number before writing to it. This is necessary,

for RAMWR checks this address every time we write

to ram. If it is zerc, the message NO ROM is given

and we are asked for an address again.

The XROM number we will use is I1. This is the

same XROM number as the cardreader, so to aveid
problems you should disconnect your cardreader.
After this is done, we can start writing to our

MLDL. ram. Press back-arrow again and goto address

788&. The first thing to do, is to give the MLDL

ram block a name. The name we are going to use is
NEWUSER @1.

This name is coded as follows :

Address Data Comment

7086 @B1 1 end of the name
787 az @

7888 ez space

7289 ai rR

708A Ras E

708E 213 S

708C a15 U
728D 217 W

7@A8E 205 E

708F QQE N start of the name

7290 JE@ start of function

The name can easily be entered by pressing the

data words after each other. If you make a mistake
during entry, you can correct it with the back-

arrow key. If you discover the mistake after you

have finished the data word, you can go back with
BST or TAN and try it again. With AFAT we will
complete the initialization of our MLDL ram page.
Frese backarrow twice to exit the RAMWR mode.

Page 7

MLDL operating system eprom

You can exit this function, when you are in input-mode, by means
of pressing the back-arrow key twice.

If you are at address $8008 and you try to do a backstep, you

will find yourself at $20@1. This is done to avoid an unexpected

wrap around to $FFFF. If you really want to backstep tao $FFFF you
have to press backarrow once and continue at this address.

WARNING : Be careful with the addresses from xFF4 up tc xFFA.

These addresses are scanned by the operating system of

your calculator. It's possible that the calculator will

crash when these adresses contain error data. For more
information see appendix F.

MMTORAM (Main Memory TO RAM)
XROM 11,02

The function MMTDRAM is used to copy a program from main memory

in the calculator to the desired MLDL-ram page in a MLDL-box. All

the necessary translations for a good operation of this program

are made automatically. The Function Access Table (FAT) is

updated at the same time with the new Global Labels of the
program. For good operation of this function it is necessary - to
initialize the MLDL-ram in the proper way.

Freparation of the MLDL-ram: You need a block of ram words that

is long enough to hold the desired program. The length of the

program can be found with the help of CBT (see CBT). Add two to
this number of bytes and you have the number of bytes that will

be needed for the program when loaded into the MLDL-ram. Now you

must find a block in the ram space that is large enough. Write
down the starting address of this block. BE CAREFUL Addresses in

ram are given in hexadecimal form, but the length of the program

(by CBT) is given in decimal farm. Key into ALPHA the starting
address of the block (it's advisable to leave about 20 words

between the starting address of the block where the program will

be written and the first empty word in the ram you have found,
for future revisions).

When you are initializing a 4K block of MLDL ram automatically

with the help of IPAGE, you do not have to do all of this. The

lcading address will be automatically given by IPAGE. Also the
tirst next empty word will be returned by MMTORAM to the ALFHA

register, to make loading easier.

Page B

MLDL operating system eprom

User flags @ and 1 can be set or cleared to achieve the desired
private status

flag @ : flag 1 : status
1 ’

emoe

cleared : cleared ' program open

cleared { set i program apen, after COFY

i : private

set : cleared : program private

set : set { program private

With the help of these two user flags it is possible to make the

program completely private in the MLDL-ram, e.g. you can not go

into FPRGM mode to examine the program and it is not possible to

copy the program into the main memory with the help of the COPY

function. A partly private status is also possible. In this case

it is possible to examine the program, but after copying it into

the main memory it will be private. The third option means no

security at all. Frograms are now free toc examine and to copy (

compare with e.g. the math module).Flease note that changes in

the program are only passible when it is stored in main memary (
see the manual of the calculator for it’s behavior when you are

in rom J).

With user flag 3 you can have the option to delete the numeric

labels in a program. (for more information about this option see

CMFDL).

When this flag is set, nothing unusual will happen. The pragram

is first compiled and then loaded into MLDL-ram with the desired
private status according to the settings of flag @ and 1.

If this flag is cleared to the contrary, the program will be

loaded with all numeric labels deleted. (if this is possible)

MMTORAM can be executed after these preperations regarding the

user flags. The functian will prompt for the name of the program
that has to be copied. It is enough to press ALPHA twice when

the program counter is already set in the wanted program.
Otherwise you must enter the name of the program in the same way

as with CLF or COFrY.

MMTORAM calls one of the two present compilers, depending on the

status of user flag J and will compile the program (for messages

during compilation see COMFILE). When the program is compiled,
the message LOADING FGM will be displayed. When the whole process

is finished, a tone will sound and the message READY will be

displayed.

Page 9

MLDL operating system eprom

When the function has been finished, it will return the address

of the next free byte in MLDL-ram. Be carefull. If you are
loading manually, this is the address of the first byte after the

program. It dcesn’t have to be necessarily empty. Whenever you
are loading, with the MLDL-page initialized with IFAGE, it will
be the next free byte available.

A CAT 2 or a CAT x (x is the pagenumber of the MLDL-ram where the

program has been written on) will show you the updated FAT with

the new labels.

Noting down the start and end-address cf the used block will
allow you to make changes without address mistakes.

For an example of how to lcad your user code programs in the MLDL

box, we rever to How to set up your own EROM page. There a
complete description is given how to set up a MLDL ram page for
loading user-code programs.

AFAT (Append FAT entry)

XROM 11,03

The function AFAT enables the user to update the FAT, e.g. to
append the starting address of a routine that has been written in

the MLDL-ram. Functions are anly accessable to the HF-41 when
they have an entry in the FAT. This also holds true for programs

that are transferred to the MLDL-ram. The function MMTORAM takes
care of this automaticaly.

Input for AFAT is in the format UOFAAA. AAA 1s the start—address
of the function within a page, P is the page number where the
function is loaded, 0 is an offset and U tells the HP-41 if the
routine is a M-code routine or a User code program.

U=@ M-code function. The address points to the first word that
is executable
U=2 User code routine. The address points to a Global Label

Example : AAA=3FF The start of the function or routine is found

at X3FF.

Page 10Q

MLDL operating system eprom

In order to understand the interaction of O and F it is necessary
to realise that EFROM and MLDI.-ram can be placed at every wanted

page, e.g. at any desired port. It must also be kept in mind that
an EPROM or MLDL-ram page contains only 4K. The value of FP is

only pointing to the page where the MLDL-ram is positioned at at

this moment. The value of P will change when you address the
MLDL-ram to a different page. Opposite to this is the behavior of

the value for 0. 0 1s a constant added to the pagenumber. It will

not change when you place the MLDL-ram at a different page. The
constant 0 allows you the possibility ta execute functions and
routines from another page other than the one where the FAT entry

is lodged. So it is evident that the page which is called must

always be O pages further in the memory.

Example + The page that contain the FAT is at page 8B, and the

page that contain the routine i1tsel+t is at page CC,
address is 490. We want to make an entry for a User-
code routine with AFAT.

The value of 0 (the offset) is C - 8 = 4

The value of P (page containing the fat) is B.

The value of ARA (start-address } is 490.

The value of U (M- or User code) is 2.

We do now need the following input for AFAT

248490

When we move the first ROM ta another address we must also move

the second ROM the same number of pages in the same direction if

the value of O is something else then zero. Leading zero’'s in the
input can be omitted

Page 11

MLDL operating system eprom

Example : For our MLDL ram we have written the rom name with the
help of RAMWR. To be able to see the rom name when we
are executing a catalog 2, we have to place the xrom

name entry into the FAT. This is done with AFAT.

We do have a functien name, so the digit representing U

will be zero.

The rom name is not located at ancther page, sc the

offset is alsc zera.

We are wcrking at page 7, s0 the value of F will be 7.

The starting address of the function 1s the First

executable ward of the function and 13 in our case
located at @92.

This results in a total entry {tor AFAT af BQ70%9

Ags leading zerao’'s can be omitted, we can use 7098 as

the entry address for RAFAT. Write the entry intc ALFNA.

Go out of ALFHA and execute AFAT. I+ vou do now a

catalog 2 you will see NEWUSER 81 in the display when

the catalog routine has arrived at page 7. «(1+ vou

have no printer or timer module, 1t will be the first
name that appears in the catalog.

DFAT (Delete FAT entry)

XROM 11,84

The function DFAT is used when you want to delete an entry from

the FAT. The function or routine which 15 deleted will be
invisible for the HF-31 after execution of DFAT. The XROM numbers

af all the rcutines and functions that came after the deleted
function in the FAT, will get one lower. Fay attention to this
fact when you use functions or routines from the ram you are

working cn. The same input format 1s used as with AFAT. The

difference 1s that you do not need to specity the value of LU.

Sa the input format will be OFAAAR (offset J), (page), (atidresc

}.

DFAT will search in the page with number F and delete the

specified entry. Leading zeros may be omitted.

Page 12

MLDL operating system eprom

Example : In the example of the function AFAT we have added the

function name to the FAT, to give the MLDL ram page a

name. We will add another name to the FAT, USER 01, by
appending a name to the FAT with address 708D. (for
detailed instructions how to append an entry to the FAT

see AFAT).

If you execute a catalog 2, you will see NEWUSER 81 and
after this USER Ql. The last entry has ta be removed.

This is easily accomplished by getting the right entry
address into ALPHA and execution af DFAT.

Give in ALFHA the entry address cf USER 21. This

address is 708D. Get out of ALFHAR and execute DFAT.

With a catalog Z you can check, that the entry has been

removed. You should only see NEWUSER @1 in the catalog.

MOVE (MOVE ram block)
XROM 11,85

The function MOVE allows the user to move certain parts in a ROM,
EPRCM or MLDL-ram to another place. Keep in mind that you can
only move into MLDL-ram. MOVE makes it possible to insert words

or delete words at any place in the MLDL-ram. It is also

advisable to copy only small routines or functions from another

page to the MLDL-ram page you are working on.

The input format in ALPHA is as follows : BEBBEEEEDDDD

BBEB gives the starting address of the block that has to be moved
(it is the first word that will be maved 1}.

EEEE gives the end-address of the block that has to be moved (it
is the last word that will be moved J).

DDDD gives the address of the first word af the block where the
source block will be copied.

The function will accept a destination address within the
eriginal block.

Page 13

MLDL. operating system eprom

Example : We want to copy the rom name to another part of the

rom, to be able ta make some changes and to use it as a

second header. This second name has to start at address
7DDE. The rom name is located at 78846 to 7090.

The begin address is 786
The end address is 7290

The destination address is 7DDE

Thig gives a total entry for move of 788678997DDE.
Enter this in ALFHA and execute MOVE.

With the help of RAMWR you can check, that the word at

7DDE is 8B1 and at 7DEB is 3E@. These are the first and
last words of the rom name.

CLBL (Clear ram Black)

XROM 11,06

Clearing a block of MLDL-ram is done with the help of CLBL. Input
is in ALPHA in the format BEBBEEEE.

EBBE is the first word of the block that has to be cleared.

EEEE is the last word of the block that must be cleared.

Execution of CLBL puts zero in all the addresses between the
given ones, including the start and end addresses.

Example : We discover after some time, that we don’t want to use
the second rom name after all. We cauld leave it in the

ram page, but for good housekeeping we want it to be

cleared. This is accomplished by getting the right

begin and end address into ALFHA and execution of CLEL.

Switch to ALPHA and give as input the start and end

address of the block of code we created with MOVE. The

starting address of this block is 7DDE (destination
address when we moved). The end address is 7DEB (this
we have found with RAMWR).

So the total entry for CLEL is 7DDE7DEB. Get out of
ALFHA and execute CLBL. With RAMWR you can check, that

the wards at the specified addresses are deleted.

Page 14

MLDL operating system eprom

Another option of CLBL is to clear a whole 4K block at once. Far
this input P in ALFHA. FP represents the pagenumber of the page
you want to clear. ##&x ATTENTION #%#% This last option is
dangerous. It operates like MEMORY LOST, but in this case it is a

memory loss of the specified MLDL-ram page.

Example : Switch the other page of MLDL ram to page 6. Bet into
ALFHA and give the address of the page to be cleared (

& J). Get out of ALPHA and execute CLBL. Now you can

switch the second MLDL ram page on line by setting the
right enable switch to the ON position.

COPYR (COPY Rom page)

XROM 11,07

The function COFYR enables the user to copy an entire page of ROM

or MLDL-ram to another page of MLDL-ram. This gives you the

oppartunity to change anything you want in the just copied block

of ROM.

Input is in ALFHA and has the format SD.

S is the page from where the copy has to be made (Source).

D is the page to which the copy is destined (Destination).

This function will sound a low tone to indicate the completion of
the function.

Example : We want to make a capy of our working MLDL ram page.

This could be done with mave by giving as input
700@7FFF&60BQ. But this will take longer and asks for a

more complicated input. Therefore we will make use of

COFYR. The input for this example is 76 in ALFHA. When

this is done, the function COFYR can be executed. After

the tone has sounded we can check, 1f the second rom is

available by executing a catalog Z. You will now see

the romname NEWUSER 01 appearing twice in the catalog.

Page 15

MLDL operating system eprom

ROMSUM
XROM 11,08

To check if a ROM is still in good shape HEWLETT-FACKARD has put
a checksum in each ROM. With the function ROMSUM you are able to

compute this checksum and put it at the proper place in the MLDL-

ram you are developing. The checksum is calculated by adding all

the words on this page, take modulo 255 and put the remainder in

xFFF.

The input is P in ALPHA. F is the page number cf the MLDL-ram you

want to update the checksum.

Example : To be able to detect if our rom is still in good shape,
we are going to compute the checksum of the rom. Give

the address of the rom in ALPHA. Attention, we are
using the second MLDL ram page now, so the input will

be 6 instead of 7. Get back to normal operation mode

again and execute the function ROMEUM. This will take a
few seconds. During this time the display will remain

blank.

When the function is completed, you can check if the

checksum is calculated in the proper way. This is

achieved by keying into the X-register the used xrom
number Il. Now execute ROMCHKX. The display will change
into 31 ee-@@ TST. After a few seconds it will change

to 31 ee—-@e DK.

{ Remember 3I1 ics the xrom number we used for our MLDL

ram page J.

REG>ROM (REGisters to ROM)

XROM 11,89

This function is the opposite of ROM>REG (far more information on
this function see at ROMVOREG). This routine will translate the

registers with it's 5 words/register back into 5S different words
and place them at the praper addresses in a MLDL-ram page.

The input in the Y-register determines where the data will be put

back in the M.DL-ram. JI different options are available to

achieve this.

Page 1é

MLDL operating system eprom

1. "Y"= @ The block will be placed at the same

location as where the original was (if the
original was located from B83IFF to 845é¢ it

will be restored at the same addresses.

2. "Y'= Pp FP represents a page number that is created

with the help of COD. The block will now be

loaded at the same relative addresses from
which it came from but at a different pagel

if the original was located at 83FF to 84356

it will be restored at FIFF to F45&).

3. Y = EBBB Here BEEBE represents the start—address
where the block will be stored (BEBB >=

B212 1). The block will be loaded starting

at the address given by FEBBEE independent

from the original start-address of the
block.

The X-register must hold the number of the register that contains

the first data words of the black that has toc be read back (
actually the first register contains a header that is used by
REG>ROM and is made by ROM>REG).

Writing entire 4K blocks of MDL-ram from a storage medium is
facilitated by the functions SAVERGOM and GETROM.

Example : Let us assume, that you have used the function ROM>REG

before. This can be accomplished by getting ta the

example of ROM>REG at page 23. Here the romname is

loaded to the registers in order to save it on magnetic
cards or a cassette drive.

First we will load the data back to it's original
place. To see this really happening, we must first
clear the block, where the data is located. This is

done by CLBL.. Put in ALFHA the begin and end address of
the block to be cleared (70867@89@). Execute CLEL to

remove the data from the MLDL ram page.

Page 17

MLDL operating system eprom

We can now restore the data by getting it back with
REG >*ROM.
First we are gaing to get it back to the original place
in the MLDL ram page. This is necessary in order to get
our rom—name back. Input for this is zero in register Y

and zera in the X-register. The data will be loaded

back at it’s original place. You can check this with
RAMWR.

We also want the data loaded back at a completely
different page. Therefore it is needed to get the page

number into the Y register This is accomplished with

the function CoD. Place 1n ALFHA the letter

representing the page we want to store tc (6). After

getting out of ALFHA we execute COD. The display will
change a little. Now press 8 to move the binairy

representation of the page to the Y register and get

the address cf the header register in the X register.

Now execute REGIROM. You will find at the addresses

£A8E to 6890 the data that also is located at 7084 to

7090.

The last option of REGP»ROM is to restore the data at

completely different addresses. If we don’t want to

have the data at address 7884, but at address 7AEE

instead, we must make use of the last option of
ROM>REG. Now we have to specify the starting address in
the Y register. This is done as with the previous
example. Flace in ALFHA the starting address (7AEE

and execute COD. Again the display may differ from what

you are used to. Fress @ to enter the starting address

to Y and place the first register to use into the X
register.

After these initial actions the function REG*ROM can be

executed. After termination you can check with RAMWR to

see if the data really got there.

Page 1B

MLDL operating system eprom

XROM 11,10

This is not a normal function. It does not do anything when

executed but it is used as a spacer from write routines and
application routines within the MLDL-ram . One possible

application is to use it as a NOP. It will also terminate data
input without raising the stack.

Page 19

M_DL operating system eprom

UTILITY FUNCTIONS

COMPILE
XROM 11,11

The function COMFILE places in every numerical G70 and XEQ the

distance to that numerical label. Programs prepared with the help

of COMFILE will usually run faster than programs that have to

calculate these distances while running. Two byte B0TO’'s that can
not make the distance will be transformed to three byte BGCOTO's.

Therefore your program can be made longer by this routine and it

is required tc have at least three registers left after the
program. {(.END. REG xxx with xxx not equal to zero).

Compile prompts for the name of the program you want to compile.
Input is in the same way as with the mainframe functien CLF. So

if you are not in the program you want to compile, you must ingut

the complete name. Otherwise it is possible to press ALFHA twice.
The function will first pack the program (FACKING), then handle

the two byte GOTO's (COMFL 2B G) and if needed (in this case

compile has found a 2 byte GTO that can not make it and will
replace it with a three byte G70, thus causing insertion of null

bytes that have to be packed as well } repeat this sequence.
After this is done it will continue with the three byte’'s GOTQ's

and XE&°'s (COMFL 3B G/X J). After the routine is finished it will

put the message READY in the display. Labels not found will give
the error condition NO LEL xx, with the number xx as the label
not found. When you switch to program mode you will find the
program step that caused the error condition.

If the program has the END. as last statement instead of a

normal END, 1i1t will change the .END. into a normal one. This is

done for MMTORAM, which expects a program to be terminated with a

normal END.

To be able to change the .END. into a normal one, the compiler

needs at least one empty register after the program. During the

initial packing of the program a check is made to see if there is

at least one register available. If this is nat the case, the

program will terminate with the message TRY AGAIN. If so you
should decrease the number of allocated memory registers. (

change size)

Fage 2@

MLDL operating system eprom

After execution of compile you will be placed at the first step

of the program.

Deleting steps or adding steps in a program, will change the

status of the program into a decompiled one. Reusing the compiler
will speed up the execution after the editing session.

Example : Create the next program in your calculator

@1 LBL “TST 18 GTD 16

02 LBL QQ 19 LBL 17

a2 LBL 01 20 BEEP

R4 GTO @2 21 GTO Qa

BS LBL @S 22 LBL ©z2
Bs GTD a4 23 GTC 83
@7 LBL @5 24 LBL @4

88 GTO V6 25 GTC @S

9 LBL @7 26 LBL @Q&

1@ GTO @8B 27 GTO @7

11 LBL @9 28 LBL @8
12 GTO 10 29 GTQ a9

13 LBL 11 30 LBL 1@
14 GTO 12 31 GTO 11

15 LBL 13 32 LBL 12

16 GTO 14 33 B70 13
17 LBL 15 34 LBL 14

33 GTO 1S
36 LBL 1&
I7 GTO 17

I+ you execute this program after you have loaded it,

you will notice the significant time it takes before

you hear the first beep. You will hear the second one

much sooner. Stop the program and goto step 1. Delete
the superfluous label 081.

Execute the function COMPILE. You will be prompted for
the name of the program to be compiled. Press ALPHA

twice, since we are in the program already. (It's also
possible to give the full name of the program (TST) »).

Now the message FACKING is displayed. If you do not
have enough room after the program, COMPILE will

terminate with the message TRY AGAIN. Then the messages

CMPL 2B G and CMFL JE G/X will be showed shortly after

each other. When the compiler is through these
messages, a tone will be sounded and the display gives

the message READY.

Page 21

MLDL operating system eprom

If you press PRGM once, you will find yourself at the

start address of the program. Press PRGM once more and

press R/S. Notify the fact that there is no delay
before the first beep sounds.

Gato step one once mare and delete label 022. Execution

of COMFILE will give the error message NO LEBEL @0. I+

you go into PRGM made you will be at the step that
caused the error, step 19. Please restore the program

with LBL @2@8 at step 01 again,because we are going to

use this program again in the example of CMPDL.

LOCA (LOCAte word)

XROM 11,12

This function allows you to locate a data—word in a 4K bleck of

ROM, EFROM or MLDL-ram.

The input format in ALPHA is as follows: BEBEBDDD.

BBBB specifies the address from where LOCA starts searching in
the 4K block. Actually it will start at BEBE + 1 to allow

repeated search in the block. NONE will be displayed when the

wanted data (DDD) is not found in this 4K block. Whenever a

data-word is found, it will be displayed together with the

address at which it is found. The data in ALPHA (adress + word)

will be replaced with the data found.This makes it possible to

continue searching for the same word.

Example : With a small user code program youd can easily print out

all the occurrences of an instruction in a rom or MLDL

ram page. Create the following user code program (make
sure you saved the TST program)

@1 LBL ‘LOCATE 25 ACFF
@2 ‘ADD + DATA B85 LBL 01
B32 AON @7 LOCA
@4 FROMPT @8 GTO @i1

Input for this program could be a starting address like

X80 and the data top search for could be 8480. This

would give you a complete list of all the MLDL WRITE
instructions in the MLDL rom. Enter for X the page
address where the MLDL rom is located (usually page F
).

Fage 22

MLDL operating system eprom

LROM (Last ROM word)

XrROM 11,13

LLROM searches backwards for the last non zero word in a block

beginning at a given start-address. Input is AAARA in ALFHA. The
display will give the address of the last non zero word and the
value at this address. NONE will be returned when the black
between the start address and the beginning of this 4K page does

not contain any word (other than zero }.

This function can be very useful when the end-address of the last

program entered has to he found. In this case the easiest way is
to put xFF4 into ALPHA and execute LROM. It will give you the
address of the last word that is occupied by the program.

Example : If we want to find out where we can load our next user
cade programs, we could search for empty space with the

help of RAMWR, but this would be rather cumbersome. To

avoid this, we are going to use the function LROM. In

this case we want to search cn page 7, starting from

the end and working backwards. Input for this is 7FFF

in ALFHA. Execution of LROM will return 7AF73EB to the
display after a short search time. This tells us, that
the next available word in our rom is at address 7RAF8.

I+ we are searching on a completely empty page, LROM

will return the message NONE to the display, because it

can not find any word unequal to zero on the page. Try
this with page 5 for example. Input for this is SFFF in

ALFHA. Execute LROM. After a short while the message

NONE will be displayed.

COD «(CODe)
XROM 11,14

The hexadecimal number in the AlLFHA-register is converted to it's

-bit-representation and this will be placed in the X-register.

The contents of the ALFHA-register is unchanged. The stack will

be rolled up and the value in the X-register before COD was
executed is placed in the LASTX-register.

The display won't be intelligable after the function COD has been

executed. For the synthetic programmer this will sound normal.

Page 23

MLDL operating system eprom

Example : Input in ALPHA the hexadecimal address of our romname
and the start address of our romname (70B67890).

Execute COD after placing the address in ALFHA. If we

change the display format to fix 9, the display will

look like this Q@.2000728 <0 Save this coded

representation of the address, for we are using it to

demonstrate an example with DECOD.

These s0 called non normalized numbers (NNN's) should

not be used to make calculations, for they can hang up
the calculator for quite some time. Also they can not

be stored and recalled in the sz.ne mannner as normal

numbers, for they are normalized after being recalled.

This is easily dzmonstrated by pressing STR @1 and RCL

@1 after each other. The result is a zero X register.

DECOR (DCCCDe)
XROM 21,15

The function DECOD is the cpposite of the function COD. It will

translate a -bit-representation in the X-register to the same

hexadecimal form as is used by the function COD. The output is

given in the ALPHA-register. When DECOD is executed manually
DECOD will also give the hexedecimal representation in the

display.

Example 1: We are going to use the same number as we have created

with the function COD. First clear the ALFHA register.

Now we must get back our just created number. If you do

a RDN, it will come back to the X register. Execute the
function DECOD. The hexadecimal representation of the

number will appear in the display. If you press back-

arrow once, it will disappear and the nonnormalized

number is viewed again. Go into ALFHA and discover the
hexadecimal representation here.

Fage 24

MLDL operating system eprom

ROMCHKX (ROMCHeck by X-reg.)
XROM 11,16

This function enables you to check if a ROM or MLDL~-ram is still

in good shape. Important though is the fact that a ROM or MLDL-

ram must contain a good cemputed checksum (see ROMEUM for the
definition of the checksum). HP rom’'s will always contain a good
checksum. During the test the XROM number is displayed along with
the short form of the name and the revision number of the ROM. If
the ROM or the MLDL~ram doesn’t contain this short name aor the

revision number, the display will show @-¢e,

Input in the X-register, the XROM number of the ROM or MLDL-ram
you want to test (an example is 30 for the cardreader). During

the test XX NN-RR TST will be displayed. XX is the XROM number of

the ROM that is tested, NN is the shortened name and RR is the

revision number.

Output of ROMCHKX is the display XX NN-RR BAD (indicates a bad

ROM) or the display XX NN-RR OK (indicates a good ROM) These

outputs will be given only when the function is executed from the

keyboard.

The behavior of ROMCHKX will be different when it is executed in

a pragram; when a ROM is found to be gocd it will dao the next
step in the program. Else it will skip the next step (compare

the function FS?: the rule do if true is in force 1.

When there is no ROM present with the desired XROM number the

message ND ROM XX will be displayed. Again it’s behavior in PRGM

mode is different. It will act as if the ROM is bad and skip the
next line.

Example : We can check if the MLDL operating system eprom is
still good. For this we need an input of 11 in the X
register (this is the xrom number of the MLDL rom).

When we execute the function ROMCHKX, the display will
change to 11 AS- A TST. This indicates that the rom
with xrom number 11 is under test. The revision code of

this rom is AS A. After a short time the display will
change to 11 AS- A OK . When we execute ROMCHKX with a
xrom number that is not present it will say NO ROM nn.
This can be tried with zero in the X register because a

rom never can have xrom nr BQ. The display will show ND
ROM QQ after ROMCHKX has been executed.

Page 25

MLDL operating system eprom

ROM>REG (ROM to REBisters)
XROM 11,17

All the credits for this functicn and its counterpart (REG>ROM)

go tao Paul Lind and Lynn Wilkins who have written these two
routines. ROMMREG places S words of 10 bits each in one HF-41

register. To avoid damage to the stored data it is saved as alpha
data. This guarantees an optimal use of the available registers
in the main memory of the calculator. Because of these functions

it is now passible to store the routines and functions that are

written in a MLDL~ram on tape ar cards and they make it easier

to exchange M-code with other users.

Tao transfer complete blocks roms ta and from tape the functions
SAVEROM and GETROM are incorporated in this rom.

The input for this function must be given in the Y-register. It
has the form BBEBEEEE.

BBRB is the address of the first word to store.
EEEE is the address of the last word to store.

This input has to be in binary and right Justified. This is

achieved by putting the BBEBEEEE form in ALFHA and executing COD

after this. The binary representation can be transferred to the

Y-register by means of keying in a number in the X-register. The
X-register halds the number of the first data register that will
be used as data store. (normally this will be register 02)

If the number of registers needed, exceeds the number of free

registers you will get the error message NONEXISTENT.

There is also output from this function. In the LASTX-register
the last used register is given. By subtracting X from LASTX you

will get the number of used registers minus 1. If you add 1 to

this you will get the number of registers needed to store the
desired MLDL-ram block.

Page 2&4

MLDL gperating system eprom

Example : We will save our romname in the user registers. This
block of registers is also used for the example of the
function REG>ROM. To execute this function properly, we

have to give the block to be saved in a binary

representation in the Y register. In the previous

example we have already created the address in the

ALPHA register, so we only have to execute the function

COD. This gives us the binary representation of the

block to be saved in the X register. We want tao save

the block in the user registers starting at register

22, so we have to enter zero into the X register. Fress

2. This also moves the binary representation of the
block to be saved to the Y register.

After these preparations the function ROM>REG can be

executed. Fressing LASTX gives us the last used

register. This means we needed 4 registers to store the
block (3-@ + 1).

MNEM (MNEMonics
XROM 11,18

This function will give in conjunction with DISASM the name of a
M-code instruction that is fetched with DISASM. The mnemonics

that are used are the so called HP-mnemonics (there are also FFC
(Jacebs) mnemonics). The mnemonics are left as a string in the
I-register. Eventual surplus information (jump-distance, value,

field specifications) is given in the T-register. In case of two

word instructions the LASTX-register is used. The following User-
code program makes it possible to translate every ROM that you
want.

Page 27

MLDL operating system eprom

Example : With the following user code program you are able to

print out the machine code aon a rom page.

21 LBL ‘mdis Name of program

R2 CLST initialize the stack registers
83 STO L initialize the LAST X-register

24 SF 21 makes program stop at aview

PS ‘start add? ask for start—address

26 ADN make ready for input

@7 FROMPT ask and wait for input
R28 ACFF leave the ALFHA mode

@2 COD put the start-address 1n X

10 LBL @1 start of the loop

11 DISASM get the instruction

12 AVIEW view the address, value and the
character

13 MNEM build the mnemonic in the stack

14 CLA initialize the ALFHA-register

15 ARCL Z get the first part of the mnemonic
1&6 "@ append a space

17 ARCL 7 get the second part of the mnemonic
18 AVIEW view the mnemonic

19 GTO Ot restart the loop

This routine is meant to be used in ‘manual ’ mode. For

use with the printer it must be rewritten. The chaoice
is up to the user.

DISAEM (DISASeMbler)

XROM 11,19

The function DISASM makes it possible to put the contents of ROM

into the display. At the same time the character representation
from the word is given in the display.

Input: The X-register must contain the address of the wanted word
(this can be done with the help of COD).

Dutput: The X-register will be incremented by one to make it easy

to use DISASM in a loop. The Y-register holds the binary value of

the address and the data at this address (these values can be

made visible with DECOD J). The ALFHA-register contains AARRA WWW L

Page 28

MLDL operating system eprom

AAAA is the address of the wanted word.

WWW is the value of this word.

L is the character representation of the word.

There are two ways to represent characters in the HP-41. One way

is the use of the ASCII standard. The other way is derived from
this standard by subtracting 4@ [hex] from the codes in the range
from 4Q@ hex through SF [hexl. This gives you codes that lay in
the range from @ hex to 1F [hexl. These are the codes, that are
used for the display. Therefore DISASM will translate these codes
to narmal characters.

Example : To see how the function DISASM is used see the function
MNEM and the related user code program ta print the

contents of a rom with microcode functions.

CAT (CATalog)

XROM 11,20

The function CAT gives you a selective CAT 2. This routine is

especially useful when you have to examine the catalog of a ROM

that is located at a higher numbered port. When the system is
loaded with a lot of roms it will take a long time befare you
arrive at the desired ROM (maybe you must go through the TIMER,

FRINTER, IL-MODULE before you reach the wanted ROM). The

function prompts in the same way as the CAT function of the HP-

41. The prompt can be answered with the hex digits B~F (CAT will
redefine the keyboard in the same way as RAMWR J). Entering digits

8-3 results in the normal CAT function from the HP-41. Digits S-F
will start the catalog at the wanted page. For further details we

refer to the manual of the HF-41.

Users of an HF-41CX have to be careful using this function. In

some cases there have been crashes reported, due ta changes in

the functioning of the CAT function of the HP-41CX. This is
highly dependant of the contents of the status registers.

Page 29

MLDL operating system eprom

Example : 1f the MLDL rom is installed at page F (this will
usually be the case, when the box is delivered to you
straight from the supplier }) you would see with a
normal CAT 2 all the functions of the roms that are
physically located before the MLDL rom. At least one is

located there at the moment, and that is the test rom,

we are working on in our examples. So if you do a
normal CAT 2 you will first see NEWUSER B81. To skip
this part, we can start our catalog at page F. Execute

the function CAT and fill the prompt with the digit F.

The catalcg will start up immediately at page F thus

showing the contents ot the MLDL rom.

CBT (Count BYtes)

XROM 11,21

This function counts the number of bytes that is occupied by a

program. The END statement is taken in account. At the prampt the

name of the desired program must be keyed in or if you are
already in the desired program press ALPHA twice (compare with

the function CLP)}.

Output is given in the display only. The stack and the ALPHA-
register are left undisturbed.

If you try to get the length of a program that is resident in a
rom module the error message ROM is given.

Example : At the explanation of COMPILE we have written a short
user code program to demonstrate you the advantages of
COMPILE. Execute COMFILE once more on this program to
make sure the program is as compact as possible. Now

you can find out how long the program actually is. If
you execute CBT and press ALFHA twice, the display will

change to &B BYTES. This is the length of your program
including the END statement

Remember this length for you will see that the use of

CMFDL will significantly decrease the number of used
bytes, thus giving you a lot of memory back.

Page 30

MLDL operating system eprom

SYNT (SYNTesize }

XROM 11,22

With this function you can create two— and some three bytes

instructions in program memory without using the bytegrabber.

Data for this function needs to be given in the X- and Y-
register. The first byte of the instruction (decimal coded) is
given in the X-register. The second byte is given in the Y-
register. SYNT will place the instruction after the program line

where the program counter is pointing at that moment. ATTENTION :

this routine works both in PRGM and RUN mode. Therefore you must
be very careful when assigning SYNT to a key. Carelessly pressing

the assigned key will produce an unwanted line in your program or
even worse.

Example : 159 ENTER™ 3B execute SYNT will give a TONE 8 in your
program which is completely different from the normal

TONE 8. An input of 247 in X and Y will give you a byte

grabber.

GE ¢(Go to .End)

XROM 11,23

This function is a sort of replacement of the GT0.. function of

the HF—-41. It will put you at the end of program memory, but it

is not packing the memory. Furthermare it does not put an end to

the last program in memory. When you do not know where you are in
main memory use BE and you are at a familiar place again.

This routine will display B83 REG NNN and also circumvents the
line number bug in the HF-41 operating system.

XROM 11,24

This is just a seperater for the second and third section. Far

more details see page 16.

Page 31

MLDL operating system eprom

UPDATE FUNCTIONS

SAVEROM
XROM 11,25

With this function you can save the contents of an entire rom on

rassette tape. The input farmat for this function is a name in

the alpha register and the desired page number in x.

A file will be created on tape of 64@ registers, occupying 22

records.

Because there are a lot of users who have been using the Mountain

Computer eprem burner set with the functions READROM and WRTROM
we also included a user code program to be able to read back rom

files in the old B24 format. This is the program ‘RROM in

appendix H.
The file identifier on tape for the new file created by SAVEROM

is £ 07. This means that the files are presented in the DIR as :

NAME 27:8 640

We have chosen for a nonexistant file type to be sure that the

data is not accidently destroyed. Therefore the file 1s also
automatically secured after creation. SAVEROM saves 7 records per

file compared to WRTROM or ‘WROM. Now you will be able to get the

maximum number of roms on your tape (e.g. 24 files J).

To get the maximum number of files on your tape it is recommended

to do a NEWM with 27 file directory entry's. You can write 12
files on each side of the tape then. After baving written 12
files you should protect the tape from rewinding from one side to

the other by creating a dummyfile "ENDTAPE" of 300 registers.

Page 32

ML_DL operating system eprom

Example : If you have a cassette drive you can try the following

example. We will save the contents of our rom at page 7
on tape and read it back with GETROM. Give a filename
in ALPHA, for example USER1. Since we have our rom at
page 7, were also the HFIL module resides, we have to

move it to another page. This could be page 5. If you

can not use this page, place your rom at another page.

I¥f =o replace in the following example the pagenumber
with your new page number

We have the name in ALPHA and naw we have to give the

page address in the X register. In cur example this

will be 5S. Execute SAVEROM. You will hear the cassette

drive working for some time. If you watch the drive

closely, you will notice that it writes 20 blocks after
each other.

When the drive is ready again you could do a DRIR and
see as entry in the directory of the tape our Just

created romfile. It will be in the form as described

under the function description,

e.g. USER1 7745 640.

GETROM
XROM 11,26

This is the counterpart of the SAVEROM function. Input format is
the same, so the name must be in alpha and the page number must

be in x. For more information on the format of the files, we
refer to the function SAVERDM.
Getrcm will read back the contents of the rom

the desired ram page. There is no checking
specified page is actually a ram page. This

get a rom file to a page that is not switched

Example : If you bave saved our rom file

file and put it in

done to see if the

is to allow you to
on.

on tape, we can

demonstrate it coming back. First of all clear the page
we are working on. This is done with CLBL. You probably
know by now how this function works, so it is left up

to you to clear the block. Fut in ALFHA the name of the
file we want to read back, e.g.

register the page address should be
USER1L. In the X

entered to which we

want the rom read back. In our case this will be page

S. Now the function GETROM can be executed. After it

has finished, you can check if it is back again in the

usual way with a CAT 2.

Page 33

MLDL operating system eprom

CHMPDL
XROM 11,27

This is in fact nearly the same function as the normal COMPILE.

Therefore we are refering to COMPILE for the set up of the flags
and the input format for COMFILE. They are both equal.

The only difference is that this function will delete the numeric

labels in the program while compiling. This shortens the program

and speeds it up. This can be done, because the HF-41 remembers

where to jump to in the jump and execute functions. So after the

first run of a program, the HP-41 knows the distances to all the

labels and will always jump this distance. It does not matter if

there is a label or not. Therefore the labels can easily be

deleted. Only when the program contains indirect jumps or xeq's
is it impossible to do sao. This is due to the fact, that the HF-

41 can not remember all the possible addresses af all labels in

the program. For this reason you can not use this function when
the program contains a G6T0 ind or XERQ ind.

The program respects all the local labels. So the labels A
through J and the labels a through e are respected and will not
be deleted. This is necessary because the HF-41 searches for them

when you use them from the keyboard.

When this function is executed, it will make use of the user

registers to hald the addresses of the deleted labels. Therefore
make sure that the number of allocated registers is more then the

number of labels in the programs. If you don't take care of this

the calculator might crash.

To protect the compiled status as much as possible we change the

terminated by the .END. This protects you from accidently writing

at the end of the program if you want to centinue at the end of

the programmemary with new programs.

During program compilation, you will see the following messages
after each other. FACKING

COMFL 2B 6G
COMFL 3B GrX
FACKING

COMFL 2B G

COMFPL 3B G/X

READY

Page 34

MLDL aperating system eprom

The compiler makes use cof the normal compiler. First the whole

program is compiled to find out where to jump to. Then all the
LBL's are deleted and their addresses are remembered in the user
registers. This is done during the packing stage. After this the
program is compiled again. When the function is through you are
at the beginning of the program.

The user registers contain the information where the program
resided and where the specified labels in the program were. The
structure of a register is as follows 1Q2SSSSLLLLENN. The first

two digits indicate alpha type af data. The SSSS part gives you

the start address af the program in program counter format. The

LLLL part gives you the address of the label in the packed

program without the labels. The NN part gives you the deleted

label at this address.

Example : We will compile the program that we used by the example

of COMPILE again. This time we are going to compile it
with OCMPDL. This is easily done. First make sure we

have enough empty registers by setting the size to 18

or greater. We can now execute CMPDL. At the prompt
give the name of the program : TST. After the compiler

has finished we can see the results. Just run the

program. Again there is no delay in the first beep.

Also notify the fact that the flying goose does not

move anymore. This is because the goose only moves one
place to the right whenever the program encounters a

label. But since all labels are deleted, it is not

necessary anymore to move the goose. If you stop the

program and execute the function CBT, you will get as

result 48 BYTES. This implies that we have saved 20

bytes of memory, and in this case it means that the

program is shortened by roughly one third of it’s

original length.

IPAGE
XROM 11,28

This function sets up a ram page to load user programs and/or

assembler code functions. The entire specified page is cleared
and the specified xrom number and the name in alpha are written

at the appropriate places. This we have already done manually

when we explained RAMWR and AFAT. With this function it will be

much easier.

Page 35

MLDL operating system eprom

Input for this functicn in ALPHA is the name of the rom. This
name must be from one to 11 characters. As it is the name of the

rom it is advisable to make it at least B characters. This has
two reasons. First, a function name of more then 7 characters can

not be executed. Second and more important is the fact that the

CAT function of the HP-41 CX searches for names that are longer
then 7 characters. So, if you use a name of less then 8

characters, the rom name will not show up in the header catalog

of the HP-41 CX. This is also the case with the CCD module, a
module likely to spread out as much as the FPPC ram. Second thing
to give as input is the MLDL ram page number toc be initialized.
This page number is given in the X register. (in decimal)

When the function is executed, it will prompt you for the xram
number of the page. There is no checking done an the input,

because it is possible to use other xrom numbers, but you can not

execute a function in a rom with a xram number higher then I1, so

it is advisable to use a xrom number between 1 and Ji. See fcr

the already used xrom numbers appendix D.

The name that will be written to MLDL ram consists of the first

eleven characters in the alpha register when you have no more

then 12 characters. If you have more then 12 characters in alpha
the name will be the first 11 characters that are left in the

display after having it displayed. In other words the first 11
characters of the last 12 characters in the alpha register will
be used and write into MLDL ram.

When you have less then 11 characters the last character can be

an underscore.

Output of the function is in alpha the address of the first empty
word as it is used for the function MMTORAM.

Example = We will now initialize our page with the help of IPAGE.

First switch the MLDL ram page back from page 5 to page
7. Give the desired name in ALFHA. We will make use of

the same name as we used in the examples before. It

will be NEWUSER @1. Give the right page number in the X

register (7 3. Now execute the function IFABE. At the
prompt the desired xrom number can be given. We will
make use of xrom number 21. This is the xrom number for

user roms. After a short while a tone will sound and

the message READY will be in the display. Fressing

ALFHA once gives you the first free byte available to

load from. This will be address 7092.

Page 36

MLDL aperating system eprom

MKPR
XROM 11,29

This function allows you to make your programe private, even if

you do not have a card reader. The function will respect the
compiled status of the program. At the prompt you must fill in

the name of the program that has tc become private or if you want

to make the current program private press alpha twice.

Example : If we want to secure aur program compiled with CMFDL
from accidently being altered we could make it private.

Execute private and fill in the prompt with TST. 1f you

switch to program mode you will now discover that the
program is private.

Page 37

XROM

11,21
11,02

11,83
11,04
11,85
11,04
11,27
11,28
11,09

11,10
11,11
11,12
11,13
11,14
11,15
11,16
11,17

11,18
11,19

11,20
11,21
11,22

11,23

NAME

RAMWR

MMTORAM

AFAT
DFAT
MOVE
CLBL
COPYR
ROMSUM
REG >ROM

Anny

COMFILE
LOCA
LROM
cop
DECOD
ROMCHKX
ROM>REG

MNEM
DISASM

CAT
CBT
SYNT

GE

M.DL operating system eprom

APPENDIX A

INPUT

@-F hex

BEEBE in ALFHA
flags @, 1 and 3
UOFAAA in ALFHA
OPAAA in ALFHA
BEEBEEEEDDDD in ALPHA
F / EBBBEEEE in ALPHA
SD in ALPHA
P in ALPHA
@/P/BBBE in reg Y
first reg in X

name of program
BBEBDDD in ALPHA

BBBE in ALFHA

hex in ALPHA

binary in X

XROM in X

BREBEEEE in reg Y
first reg in X

AAAADDD in Y

BEEB in X

F at prompt

name at prompt

X first dec. byte
Y second dec. byte

pc. at .END.

Page 38

OUTPUT

word in ram

stored program

FAT updated

FAT updated

block is moved

block cleared

copied block

romsum in xFFF

data in ram

compiled program
AAARADDD / NONE

ARRADDD / NONE

binary in X

hex in ALPHA

bad / ok do if true

data in registers

last reg in LASTX
mnemonic in Z and T

BBBE + 1 in X

ARARADDD in Y

cat from page F

length of program

instruction after pc.

XROM

11,24
11,25

11,27
11,28

NAME

SAVERDM

GETROM

CMPDL
IPAGE

MKPR

MLDL operating system eprom

SHORT FORM LETTER

c
o
v

O
o
M
m
M
o
w
W
D

APPENDIX A

INPUT OUTPUT

name in ALPHA 4K 1n file on tape
dec. page in X

name in ALPHA 2K of tape in ram
dec. page in X

name of program short comp. program

name in ALPHA desired page cleared

dec. page in X name + xrom in page
xrom at prompt load addr. in ALFHA

name of program private program

REPRESENTING

address digit

begin address digit

data digit or destination digit
end-address digit

offset digit
page number digit
source digit

user digit

Page 39

MLDL operating system eprom

APPENDIX B

PROGRAMMING AND THE MLDL EPROM SET

Most functions provided by the ERAMCO MLDL-EPROM can be entered

in program whenever the eprom-set is plugged in an ERAMCO mLDt-
box connected to the calculator. When the ERAMCO MLDL-box

containing the eprom set is connected program lines with eprom

functions are displayed and printed as standard functions.

If the box is disconnected, these program lines are displayed and
printed as XROM functions with two identification numbers. The
first number -11- indicates that the functions are provided in

the ERAMCDO MLDL-EFPROM. The second number identifies the
particular function. The XROM numbers for the ERAMCO MLDL-EFPROM
are listed below.

Function XROM Number! Function XROM Number! Function XROM Number

AFAT XROM 11,83 | DISASM XROM 11,19 |! RAMWR XROM 11,01
CAT XROM 11,28 | BE XROM 11,23 {| REG>ROM XROM 11,09
CBI XROM 11,21 ! GETROM XROM 11,26 {| ROMCHKX XROM 11,16
CLBL XROM 11,06 ! IPAGE XROM 11,28 { ROMSUM XROM 11,28
CMPDL XROM 11,27 ! LDCA XROM 11,12 ! ROM>RES XROM 11,17
CoD XROM 11,14 ! LROM XROM 11,13 ¢ SAVEROM XROM 11,25
COMPILE XROM 11,11 ! MKPR XROM 11,29 ! SYNT XROM 11,22
COPYR XROM 11,87 ! MNEM XROM 11,1B | -—- XROM 11,12
DECOD XROM 11,15 ! MMTORAM XROM 11,82 § —-—- XROM 11,24
DFAT XROM 11,84 ! MOVE XROM 11,05 |

Underlined functions are not programmable.

If program lines using the ERAMCO MLDL eprom are entered when the

eprom set is not connected, the function is recorded and

displayed as XEQ followed by the function name. Frogram execution

will be slowed down by lines in this form because the calculator

will first search in main memory for a program or program line
with the specified label.

Page 40

ML_DL operating system eprom

APPENDIX C

MESSAGES

This is a list of messages and errors related te the functions in

the ERAMCO MLDL-EPROM set. When any of these errors are generated
the attempted function is not perfarmed, except as noted.

DISPLAY

BAD MLDL

ENTRY>&4

BTO/XER IND

NO ENTRY

NO HPIL

NO LBL xx

NONE

NONEXISTENT

NOC ROM

NO ROM xx

FUNCTION

RAMWR

AFAT

CMPDL
MMTORAM

DFAT

SAVEROM
GETROM

COMPILE

CMPDL

MMTORAM

LROM

LOCA

—-all-—

ROM>REG

RAMMWR

ROMCHKX

MEANING

The MLDL ram page is malfunctioning.

There are already 64 entry's in the FAT.

The program contains GTO or XEQ ind
statements.

No such entry exists in the FAT.

The HPIL module is not plugged in.

The GTO or XEQ has no corresponding LEBEL
in this program.

The whole block is empty.
There is no such word in the block from
start-address up to the end of the page.

The ERAMCO MLDL-EPROM set is not plugged
in or is disabled or is malfunctioning.
There are not enough registers available
to store the specified block.

An attempt has been made to write to an

page which does not have a valid XROM

number at the first address of this

page.

The ROM with the given XROM number is nat
plugged in or disabled.

Page 41

DISPLAY

NO WRITE

PAGE > 13

ROM

xx NN-RR BAD

xx NN-RR OK

CoMPL 2B ©

COMPL 3B G/X

LOADING PGM

PACKING

READY

MLDL operating system eprom

FUNCTIDN

RAMWR

GETROM
IPAGE
SAVEROM

MKPR
MMTORAM
COMPILE
CHMPDL
CBT

ROMCHKX

ROMCHKX

COMPILE
CMPDL
MMTORAM

COMPILE
CMPDL
MMTORAM

MMTORAM

COMPILE
CMPDL
MMTORAM

COMPILE
CMPDL
IPAGE
MMTORAM

APPENDIX C

MEANING

The data is not written at the desired

address. It is impossible to write to an

EPROM or ROM page. Also you can not

write at a disabled page.

There is an invalid pagenumber in reg X.

The named program doesn’t exist in main

memory but is found in ROM

The ROM with the XROM number xx is bad.

The ROM with the XROM number xx is ok.

The 2 byte GTO’'s are handled.

The 3 byte G7T0’'s and XEfl's are handled.

The program is loaded to MLDL ram.

A byte is deleted and the program is

packed tao reduce the length of the
program.

The function is ready.

Page 42

M.DL operating system eprom

APPENDIX D

XROM numbers range from 1 up to 31 inclusive. As quite a few

ROM's are available at the moment of this writing it is advisable

to choose a XROM number with care to avoid conflicts with other
modules.

ROM name { XROM ID

ROM name i XROM ID

MATH 1 21 t SECUR P12 =»

STAT i B2 { CLINLAE P19 =
SURVEY } =x i AVIATION P19 =

FINANCE i Ba i MONITOR {19 » +

STANDARD { @5 i STRUCT-B VP 19 »

CIR ANAL i as i C PPC 1981 i 20

STRUCT-A : B27 i ASSEMBLER 3 i 21

STRESS i @s t IL-DEVEL ' 22

HOME MN i av i 1/0 i 23

GAMES ’ 10 = i IL-~-DEVEL 1 24

C PPC 1981 i! 10 = \ —EXTFCN i 25
AUTODUR i 10 = {i -TIME- i 26

REAL EST : i iv — WAND i 27

MACHINE vr 12 i —MASS ST i! 28

THRML P13 i (- CTL FNS - |

NAVIG : 14 + HP-IL MODULE)

PETROL i 13 + —PRINTER 1 29

PETROL HE VS i CARD READER 7 3@

PLOTTER : 17 i PPC ROM 2 2727 | 31

PLOTTER : iB i ERAMCO-MLDL HEE §

+ Only a small number of this ROM, an early version of IL-DEVEL
RCM, were made and are not stocked or sald by HP.

Those marked with an asterisks share their identifying number,
and should not be used in the HP-41 at the same time. Df two
functions with the same XROM ID the one at the lowest address

(i.e. the lowest numbered port) will be accessed first and the

other will be ignored. So use discretion when choosing your own
XROM number if you want to avoid these kind of problems.

Page 43

MLDL operating system eprom

APPENDIX E

X ROM STRUCTURE

XROM‘s are located at whole 4k blocks of addresses. The lowest

addresses in an XROM, and a few of the highest have special func-

tions. The remainder may be filled in any way. The leccations in

the 4k blocks must be filled by ten bit words, giving 2718 diffe~

rent codes. They may be read as instructions, or as alpha-numeric

data. The follawing summary, adapted from J. Schwartz’ January

1983 PPC Conference paper, should be taken into account when
studying an application ROM, e.g. the MLDL-RDOM. A listing can

easily be prepared by using the MLDL-ROM functions DISASM and
MNEM.

—— lt sm mw ———

Relative Function of code at that address

address (hex)

serttn, ms.

"

X20 The XROM ID number in hexadecimal digits.

Xaai1 The number of functions in the XROM (m),

including the XROM name.

Xea2-3 Address of XROM name

XR@84-5 Address of first routine, program, etc.
Xaas-7 Address of second routine, etc.

n " n

X@AZ+2n Address of n’'th routine

X033+2n
” ki »

X@202+2m Address of last (m°th) routine

X2@S+2Zm (m < &4)
X2Aa3+2m Compulsory null - 200.

X@@5+2m Compulsory null - QA@aA.

Page 44

MLDL operating system eprom

Add. of name Name of ROM (running backwards)
"

o 1 “"

Add. of Fn# I Start of Fn# 1 code

Add. of Fn# 2 Start of Fn 2 code

XFF4-A Special interrupt jump locations (see table).

XFFB-E ROM name abbreviation and revision #.

XFFF ROM checksum for diagnostic use
I

Word pairs containing function addresses:
First ward of pair: b © 0 8] D D all ail@ a9 aB

Second word of pair: @ @ a7 a& aS a4 al a2 al al

This results in the following address in this 4k block if 000OC
zera:

PI p2 pl pl all al@ a7 aB a7 ab aS a4 a3 a2 al a@

is

Where p@-3 is the bit representation of the 4k page number and
ad-11 represent the relative offset from the beginning of the
page.When 0000 is not equal to zero it must be added to p8-3. For
more information see the function AFAT.

If the two words would read 883, @FF this would represent a
starting address of a function at address X3IFF (hex). The bit ©b
in the first word indicates USER code or microcode. If set the
address is the start of a USER code program (e.g. 2008, BAl in the

printer module is address 60A1, start of USER code program

“"PRPLOT™)

Page 405

xFF4
xFF3

xFFé&

xFF7

xFFB8

xFF9

xFFA

Do
doing.

MLDL. operating system eprom

APPENDIX F

THE SPECIAL INTERRUPT POINTS

Interrupts during PSE loop.
Interrupts after each program line.
Wake-up with no key down.
Interrupts when turned off.

Interrupts when peripheral flag is set.

wake-up with ON key.
Wake-up after memory lost.

not use these points unless you know exactly what

Careless use of these points may cause CRASHES.

Page 44

you are

MLDL. operating system eprom

ASSEMBLY LANBUAGE INFORMATION

SHORT REVIEW OF THE HP-41 INSTRUCTIONS

The HP41 CPU has three main arithmetic registers: A,B and C.
These are 56 bits long (14 nibbles) and instructions can operate
in varicus "fields" of the register.

P13) 12 11 1@ 9 8 7 6 S # I +2 11 @ !

: : : : :

: : i XS | :

i ! ALL 1 ==> {
1 < + - + + >!

i MS | M ! S & X :

i<—2>1i< — wes >i< >i

ALL : The whole register

Mm : Mantissa

MS : Mantissa Sign

XS : eXponent Sign
S&X : eXponent and Sign off exponent

@R 1: At specified pointer

R<{— : from digit R to digit @

PQ : Between P and

There are two pointers P and R, of which the value is B-13. One

of them is selected at the time (through slct p or slct q), the

selected pointer is called R. These are three extra fields, which

depend on the value of the pointer), R<{- (up to R, from digit R
to digit 8) and P-@ (between pointer P and @, & must be greater

than PJ.

There is a register G, 8 bits long, that may be copied to or

from or exchanged with the nibbles R and R+1 of register C.

(R<=12). There are 14 flags, B-13, of which flags 8-7 are located
in the 8-~bits ST (status) register, and there is a B-bits TONE

register T, of which the contents floats every machine cycle

through a speaker.

Page 47

MLDL operating system eprom

Then there are two auxilary storage registers, M and N, which

can operate only in the field ALL. They are 56 bits long.

There is a 16~bit program counter, which addresses the machine

language, and a KEY register of 8-bits, which is loaded when a

key is pressed. The returnstack is 4 addresses long and is

situated in the CFU itsel+.

The CPU may be in HEX or DEC mode. In the last mode the nibbles
act as if they can have a value from @ to 9.

The USER-code RAM is selected by Cls%x1 through RAM SLCT, and

can be written or read through WRITE DATA or READ DATA. If chip ©
is selected (RAM address @@Q@ to @B8F) the 1&6 stack registers may
be addressed by WRIT and READ @ to 13.

Feripherale (such as display, card reader, printer) may be

selected by Cis&xl through PRFH select or by SELP (see page 19).

The mnemonics are a kind of BASIC structure.

Arithmetic instructions (operate on a specified field)

A=@ C=B C=C+1 7RA<B

B=0 A=A+1 C=C+A ?A#C

C=0 A=A+B C=A-C 7A#D

ALOR =A+C C=0-C RSHFA
B=A A=A-1 C=-C-1 RSHFE

ALC A=A—-B 7B#8 RSHFC
A=C A=A—C ?CH#0 LSHFA

C<>B C=C+C 7A<LLC

CLRF, SETF, ?FSET, ?R=. ?Fl (peripheral flag set?) , RCR (rotate
right) have a parameter 0-12.

LD@R (load C at R) and SELP (select peripheral) have a parameter
a-F.

WRIT and READ have a parameter 98-135, called
A(T), 1(Z), 2(Y), T(X), 4(L), SM, &tN), 7D, BP), 9),
1@¢i-), 11¢ad, 12¢b), 13(c), 14(d), 1S(e).

Page 48

b.

NC

MLDL operating system sprom

Jumps:

There are two classes jumps:

JNC (jump if no carry) and JC (jump if carry). These

instructions provide to Jump relative 3F in pasitive

direction or 48 in negative direction.

PNC GO and ?C GO. These instuctions provide tao jump to an
absolute 16 bits address.

XR and ?C XB are jump-subroutine instructions to absolute

addresses. (remember the return stack is just 4 addresses long).

Miscelanecus instructions:

ST=8 C=6 ST=T FOWOFF

CLRKEY C<>6 STL>Y SLCT P

KEY C=M ST=C SLCT @

=R—1 M=C =5T ?P=Q

R=R+1 COM ST<>C PLOWBAT

G=C T=ST XQ->G0 A=B=C=0

GOTO ADR (CL&6:31) ?C RTN PUSH (CL&:3])

C=KEY ?NC RTN POP { CL&:231
SETHEX RTN GOTO KEY

SETDEC N=C RAM SLCT

DSFOFF C=N WRITE DATA
DSTTOG C<2>N READ DATA

FETCH S4X C=C or A PRFH SLCT
WRIT S%X (for MLDL) C=C and A

Note : various arithmetic and all test instuctions may set the
carry flag. This flag keeps set only one machine cycle, so
a jump dependent on this flag must be immediate after the

arithmetic ar test instruction, otherwise the carryflag
will always be cleared.

Page 4%

MLDL gperating system eprom

CLASS § OPERATIONS

sl 112 T1314 GISi 18

w
a

E
d

]337~
»

=~=

1
]

-
-
—
w
w
e
=

|
1

a
8
8

I
I
T

2
8

—
m
e
n
E
a

2
8
8

S
I
S

N
N
N
N

w
w

e
e

w
u

c
w

=

S
E
R
E

31
T

2REE
o
n

ome
i
h s4h

1258 1 29% 0 208 0 3180 ISB 39 1 308
34
3%
364

o
o

3
4
8
s

-
—

w
a

e
e

o
S

L
d

a
p
b

I
~

N
d

C
N

I
d

T
V

§
E
E
8

B
Z
3
C
H

E
3
8
E

3gRE
F
L
L

SEES
Z
E
N
E
R

I
N
E

”
M
a
M

S
8
8
4

a
.

M
a
f
a
,

n
y

B
r
i
s

OPERATIONMNERONIC

®zLy

-
£

gy
~
%

1
x
7

=
i

S
E
S

s
i
a

$EE
#8

.%
2
5
8
%

o
-

W
m

M
W

1

Load p into °C" at nibble pointed at by pointer and decresent pointer

Set the carry flag if the active pointer equals p

Set the active pointer top
Transfer control to the desired peripheral p

L
e
u

Read °C" froa RAN sesory or the selected device to register p in the selected black

Writa "C° to RAM sesory or to the selected device ia register p of the selected block

Rotate "C" right dy p digits

Set the carry flaq if peripheral flag p is set

Page S@

MERIC HEX

used x34
UNUSED x74

UNUSED xBA

UNUSED xF4

sT=3 C4

CLRXEY CB

EY 3CC

R=R-1 304

R=R+1 35C

UNUSED B18

B<C 858

C=6 298

C(»% 808

UNUSED 118

m= 158

C=H 198

Cin 108

UNUSED 218
1=57 258
ST=] 298

STOT 28

UNUSED 318

HE 358
C=S1 396
COST 308

10-60 #28

POWOFF 88

CTP AAR

SCTa kd

MLDL operating system eprom

CLASS B SPECIAL INSTRUCTION HEX CODES

OPERATION

Rot in use

Clears flag 8 to 7 ("ST° register }
Clears the ‘key pressed’ flag

Set the carry flag when a key has been pressed
Decreseat the current pointer

Increseat the current painter

Not in use

Copy digits r,r#! froa *C* to 6°

Copy “6° into digits r,7¢#! froa °C°
Exchange "6" with digits r,r¢! $ros °C*

Not ia use

Copy *C* into "A"

Copy N° into °C"
Exchange °C" with °A°

Rot in use
Copy °ST° into °T*
Copy °° into *ST*
Exchange °ST® with "T°

Not ia use
Copy digits |, B froma *L" into "ST"
Copy "ST" into digits I, @ ros “C°

Exchange digits 1, @ {ros “C® with °ST®

Drop stack to convert IQ into GO

bo to standby sode

Select °P* as the active pointer
Select *0" as the active pointer

Page Si

MNENOMIC HEI

C=XEY 28
SETHEZ 258
SETIEC 2Ad
DSPOFF 2£%

DSPIDE 328
LC RTH 358
NC RIN 3a8
RN x

UNUSED B32
N=C 87s
C= aes
CON Fi

LB 131
PUSH 178
POP 188
UNUSED IFR

5070 XEY 238
RAR SLCT 273
UNUSED 288
WRITEDATA Z0

FETCH 32
C=CORA 37%
C=C AND A TBe
PRPHSLET WF8

he 120
TLOWBAT 148
A=B=C=8 1AR
§010 ADR IER

OPERATION

Capy key register into digit 4, 3 of °C"

Use hexadecimal arithmetic

Use decimal arithaetic

Turn off the display

Toggle the state of the display

Return from subroutine if the carry is set

Return from subroutine if carry flag cleare

Do a subroutine return alsays

Bot in use

Copy °C* into °N°

Copy *X* into °C*

Exchange "C° with °N*

Load next roa word into digits 2-8 of °C°

Push address digits &-3 in °C" onto stack

Pop address from stack into digits &-3 of *
Not in use

Load key register into lower 8 bits of "PC*
Set ras address to digits 2-4 of °C"
Rot im use

Write register "C" to the selected register

Load 2-B of °C" fros ros address &3 of °C*
Logical er of "C* with "A® bit by bit

Logical aed of °C" with ®A" bit by bit
Set peripheral address to digit 2-8 of °C"

Set the carry flag if the pointers are equa

Set the carry flag if low battery
Clear registers °A® "8° and °C*
Copy digits 4-3 of °C* into the *PC°

MLDL operating system eprom

CLASS 1 INSTRUCTIONS

Class 1 instructions are absolute GOTOs and EXECUTEs. They
consist of two consecutive ROM words of the following format :

Az Aa Aw Aa A= fn A. fa © 1

Aim Aaa Aiz= Aix Aiy Ais ARe Ae p p

Aio-Re is the 16-bit address to branch to. The pp field of the
secand word determines what type of instruction it is. The next
table shows values for pp :

pp MNEMONIC OPERATION

0 NC XQ execute subroutine 1¥ carry is clear

a1 C Xa execute subrcutine if carry is set

1@ NC GO goto rom address if carry is clear
a1 C GO goto rom address if carry is set

Example : NC G0 8232 which jumps to the memory last routine is
coded as

2211 BAIG B1 = PCT as first word
22008 O10 10 = PDA as second word

Page 52

FIELD

ALL

MS
XS
S5&X
eR
RI-
FQ

MLDL operating system eprom

CLASS 2 FIELDS OF OPERATION

AREA OF OPERATION

All digits.
Mantissa digits 12 - 3.

Mantissa sign digit 13.
Exponent sign digit 2.
At exponent digits 2 - @.
At digit specified by the current pecinter.

Up to and including pointer from the right.

fram pointer F, left up to RQ, including pointers.

Page 53

MLDL operating system eprom

CLASS 2 INSTRUCTIONS

MNEMONIC OPERATION @R SX R<{—- ALL PQ XS ™M S

A=0 clear A 082 PBL ABA OBE 212 081s O1A BLE
B=@ clear B @22 8246 A2A BE B32 036 238 BIE
C=0 clear C B42 2446 B4A Q4E BS2 O56 RSA OSE

A<>R exchange A with B B62 Bb6 BLA BLE B72 0746 7A B7E
B=A copy A into B B82 O84 BBA BBE Q92 896 294A Q%E
A<>C exchange A with C BAZ BAL DARA DAE RB2 BB& DEA OEE
C=B copy B into C @C2 @C4 BCA RCE @D2 @D& PDA ODE
C<{>B exchange B with C @QE2 QELS QEA QEE @FZ OFé6 QFA @FE
A=C copy C into A 122 186 1RA IPE 112 116 11A 11E
A=A+B add B into A 122 126 122A 128 132 136 13A 13E

A=A+C add C into A 142 146 114A 14E 152 156 1SA 1ISE
=A+1 increment A 162 1&6& 16A 16E 172 17& 117A L7E

A=A-B subtract B fram A 182 1846 1BA 18E 192 196 19A 19E

A=A—1 decrement A 1R2 1Aé 1AA 1AE 1BZ 1B&6 1BA 1BE
A=A-C subtract C from A 1C2 1C46 1CA 1CE 1D2 1D& 1DA 1DE
C=C+C double C 1E2 1E5 1EA 1EE 1F2 1Fé6 LFA IFE
C=A+C add A into C 202 2086 208A 20t 212 216 21A 21E
C=C+1 increment C 222 226 22A 22E 232 236 23A 2TE
C=A-C A-C into C 242 246 244A ZT4E 252 25é6 25A TSE
C=C-1 decrement C 262 2646 226A 26E 272 276 274 27E
C=0-C complement C 282 286 ZBA 2BE 292 296 29A 29E
C=-C-1 nines complement C 2A2 2A& 2AA 2AE 2B2 2B& 2BA 2Z2BE
TB#0 set carry flag if B#@ 2C2 2C6 2CA 2CE 202 2D& 2DA ZDE
C+#0 set carry flag if C#Q 2E2 ZE& 2EA 2EE 2FZ 2F46 2FA ZFE
?20<C set carry flag if AKC 3082 IBS IBA IRE IT12 IT14 I1A ILE
?A<B set carry flag if AKB 322 326 I2A 3I2E 3I3I2 3I3& IZA IT
?A#D set carry flag if As#0 3I42 346 I4A I4E 3IS52 ISL ISA 3ISE

?A#C set carry flag if AC 362 3&6 IEA TLE I72 3I76 I7A ITTE

RSHFA shift A right 1 digit 3IB2 3886 338A IBE 392 I946 IFA 3I9E
RSHFB shift B right 1 digit 3IA2 3A& IAA ZAE IBZ IB4 IBA IBE
RSHFC shift C right 1 digit 3IC2 3Cé& ICA ICE 3ID2 IDS IDA IDE
LSHFA shift A left 1 digit 3JIE2 3E&L IEA 3EE 3IF2 IFS IFA IFE

Page S4

MLDL operating system eprom

CLASS 3S INSTRUCTIONS

DISTANCE JNC- JC- .JNC+ JC+ DISTANCE JNC- JC- JNC+ JC+

+/- 01 SFB J3FF Q@@B OF +/- B2 IFS JSF7 13 017
+/- @3 JEB 3IEF @1B QIF +/~ B84 SEZ 3JE7 82 27
+/= @5 SDB 3DF @2Z2EB =F +/— 86 SDE 3D7 @Q3I3 @37
+/—- @7 3CB 3ICF B3IB O3F +/— 08 SCT 3IC7 Bas 47
+/— 09 3IBE J3IBF @4B QAF +/= BA 3BS 2ZB7 SZ 057
+/~ @B 3AB 3IAF ASB SF +/- @c SAS ZA7 B63 B&7
+/=- @D 39B 3%F 6B B&F +/—- @E 393 3I97 @72 77
+/— OF 3I8B J3I8F @7B Q7F +/~ 10 S83 3I87 ee 87
+/- 11 37B 3I7F @8B O8F +/— 12 373 377 @93 @97
+/- 13 34B JI4&F @FB @9F +/~ 14 S63 3&7 BATS QA7
+/~ 13 ISB 3ISF @AB QAF +/- 16 333 357 @B3 B87
+/= 17 34B JI4F @BB OBF +/- 18 342 247 @CZT ecCc7
+/- 19 S3IB 3I3F @CB OCF +/- 1A 33IT 3ITI7 BDI @an7
+/— 1B I2B 32F @DB @DF +/— 1C 22 327 BEI BE7
+/= 1D S1B 3I1F BEB BEF +/=- 1E S13 317 RFI @F7
+/= LF 30B IBF OFE OFF +/- 20 Ja3 327 102 1@7
+/- 21 <FE 2FF 1@B 10F +/- 22 [FS 2F7 113 117
+/~ 23 2EB 2E8F 11B 11F +/—- 24 2EC 2E7 123 127
+/= 23 2DB 2DF 1ZB 12F +/-~ 26 2D3 2D7 133 137
+/= 27 2CB 2CF 13B 13F +/~ 28 2C3 2C7 143 147
+/- 29 2BEB ZBF 14B 14F +/= 2A 283 2B7 153 157
+/- 2B 2AE 2AF 15B 15F +/- 2C 2A3 2A7 163 147
+/=- 2D 298 29F 146B 16F +/- 2E 293 297 173 177
+/~ 2F 28B 28BF 17B 17F +/- 3@2 28% 287 1BZ 1B7
+/- 31 27B 27F 18B 18F +/- 32 273 277 193 197
+/= 33 26B 26F 19B 19F +/~ 34 263 267 1A3 1A7
+/= 38 23B 25F 1AB 1AF +/- 36 253 257 1B3S 1B7
+= I7 24B 24F 1BB 1BF +/—- 38 242 247 ICT C7
+/= 3% 23B 23F 1CB 1ICF +/— 3A 23 237 1D3I 1D7
+/- 3B 22B 22F 1DB IDF +/- 3C 223 227 ETI 1E7
+/- 3D 21B 21F 1EB 1EF +/~ 3E 213 217 1F3 1F7
+/- JF 20B 28F 1FB LFF +/- 408 283 287 ~==— ———

Class 3I instructions allow the program to jump up to 63 words
forward or backward from its present location. The mnemonics are

JNC and JC.

Page 535

MLDL operating system eprom

ROM CHARACTER TABLE

lower 4: B ! 1 1 21 31 4:!Si61718B!51AIEBE!C!IDI!E!F
fm mmm mmm fmm fem ee fee fmm mmm fmm memfefe|

u 2 t@!AIBI!IC!D!EIFI!BIiH!I!JIIKIL!M!NI!I
o Jr fmm fmm fmm fmm fem fmm fem fmm fefmeefemeen|
Pp 1 IPI@IR!S!ITIU!V IW! XY !!Z!ILD?INGTI
@ mm=ime—leme lemme ome lem fee me fe fee fmfmm | fm fan me
F200 TL ET els LR Cy ee =,
2 domme fmm fmm fmm mmmmm mmmfmfmmeee emme | mefn|en|

T 1B! 1121314: 5617i8B19% 1:3 << 1=12>1"
mmm fmm fmm fmm fmm mee frm fee fe fm me fe mee fm memem|
4 {i~tatbieidlie! t+ + + 1 1 :

fmm mmm mmm fmm oem fe fmm fmm fmm fm | oe} : ! t | | i I i i ! 1 { | | | | |

Note : The colon (JA) displays as a boxed star. The comma (2C) is
also the left facing goose when used in a function name ar

display and the period (2E) is also the right facing
goose.

You get the hexadecimal code of a character by taking the number
in the upper2 column and place the number in the lawer row behind
it. Last step is to place a zero in front of the number.

Example : The hexadecimal code of the letter W is 017.
0+ the equal sign it is A3D

FUNCTION NAMES

When a function is executed, the operating system checks the ROM

words containing the first two characters of the function name
and the two words immediately following. The catalcg table entry

for a microcode function (both mainframe and XROM functions)

paints to the first word of executable code. The function name is
listed in reverse order immediately preceding the first word of
executable code.

Page 56

MLDL operating system eprom

Example : This example shows you how a normal function name is
coded.

18CE O81 A Hex 080 added to indicate end of name.

1aCF @@C L

ieD@ 83 CC
1@D1 xxx First executable word of CLA.

FUNCTION PROMPTING

To tell the operating system that the end of the function name
has been reached, add BB@ hex toc the final character. To provide
a prompt set the top two bits in the first two characters of the

function name by adding the hex constants in the fcllowing table

NULL IND %
1ST 2ZND alpha alpha #dig. ind stack stack none example

—— ~~ rb

eee any X CLA,CLST
100 Q02 X X CLF ,COPY
120 10@ 3,4 SIZE
120 200 X
120 300 1 X CAT,TONE
200 ue 2 X X STO,RCL

200 1@@ 2 X X STO,RCL
200 200 2 X FS?,SF
200 3.’ X 2 Xx
Ie @eq X 2 LBL
S20 100 X 2 X XEQ<{(alpha)
J00 200 X 2
Ia 300 X 2 X X(.ddd? GTO

The operating system examine these ROM bits and executes a prompt

(if the appropiate bits are set) before the function is executed.
These prompts are only executed when you execute the function

from the keyboard. However, when the function is executed in a
program there will be no prompt at all. Take care of this.
If the prompt accepts an alpha string, the input data is loaded

into the @ register, right justified in reverse order in ASCII.

Example : Execution of the function ASN with the alpha argument

"COPY" will load 000 R22 82 5S? SB 4F 4C into the R
register before the function is executed.

Page 57

MLDL operating system eprom

If the prompt is numeric the input data is loaded into the "A"
register in binary. Whenever the prompt also accepts indirect,

the value in the "A" register is increased with hex 68.

Example : Execution of the function RCL with a numeric argument
of S55 will return 20 20 PQ 02 B82 O28 37 in the "A"
register.

If the prompt would have been filled in with IND S55,
the "A" register contains 22 2 QQ G2 22 @2 BY.

PROGRAMMABILITY

Two other ROM words of a microcode function are examined by the

operating system. The First executable word, if a nop (@2@),
indicates that the function is non—-programmable. This means that

if you execute the function in program mode, it executes rather

than being entered as a program line. SIZE, ASN and CLP are non-
programmable functions.

If tha First two executable words of a XROM function are bath
zera, then the function is bath non-programmable and executes
immediately. This means that no function name is displayed and
that the function will not NULL. The function is executed when

the key is pressed rather than when the key is released. PREM,
SHIFT and back—-arrow are non—~programmable, immediate executing

functions. Note that unless your routine checks for key release,
and the key toc which your function is assigned is held down, the

function will be executed repeatedly until the key is released.
These two words affect the function operation only if the
calculator is in FRGM mode. In RUN made, they are ignored.

Example : these are a few examples of function name promptings.

12D2 @97 W 1185 899 Y 12CC @e8S E
12D3 @eS E 1106 O12 P 12CD BRE N
1204 189 1 1187 @oF 0 12CE 2BF ©
12DS 216 V 1108 1123 C 12CF 114 7

Page 3B

MLDL operating system eprom

FUNCTION INDEX

FUNCTION

AFATceecnscansonsscencess » a mu Sa ® a @ & 9 wv a & 8 "2 @ = Su see aD

CAT .ccveacsnacase ® Be 5 ® 9m a ® ® we oF & SS %» VEE BD SEP ESSE Ss ss tua

Ce
CL

T.. ee ® um "a ® » vw & 6 ®» ® » vw ea a ps0 we QOS ve 9 eS ene ae FEE PO ews

Bl oc cevonmeavaaonacncaonesmnosntosieaneseseasnsennrsssesns

CMPDLccc ccnvssanncsonsecasssensoasnsansnsssmnaancseasasnss

COD. cvoscosnosnmasasonnsaissenmancnsensnssnsconsessusaa

coMPILE.ccsonancsensnanascnssnas ® = » a» as "$v 068 nw 9 Bh ven

COPYR. cece rsaanacecessancsevaennsssansanoesnnscstsovennnas

DE
DF
D1
CE
GE
IP

CoD ® & & uw vw 9 OD FO @ AE ® OS OB VE nF OD CGA Ss eee EEE PSE" ee CEES

AT. ®» eS 9 8 «EN PO FES RN PENSE EOS SE aR PEST YO en EE aS dye REN

SASM. @ a & a $ 6 6 0 8 8 SS hess EE Pw EG OO HE SS eT BEA eS RS YS

TROM ® mE RS eRe EAS eT EES EET ee 2 OE PERO Se ATP e Ee Ee RY ew

AGE . cc cet caaunnsnensanmsesnnossnsanvanassnsanassssssssse

LOCA. css scons vosnovncasnsmrvsananvasacssnsasnssssnssasse

LRDOM. ca saceosacsvevescsnntsssssaacnsnsonsssns ~~ ve 5 Bm A eg a =

MPR. seas nsassssassnnnsoscsensssnseacssnnnsenannmasnses

MNEM. tc ctv ncenuossncnencoasonwnnnosoennsusnvanssnsneea

MMTORAM. cc ccs uceanasvnnsossscssmosasnsnsocenassssnasess

MOVE. cccoasacssasennsosnsanssadnnnncnsssasaracsensesss

ROMWR. ¢c cc cece case astsemensasnmsoasessosansnmssasesass=oss

REGOROM.e ces sasncroesrnennsossonnassassnansosaansvacesosas

ROMOHKX ec ce unesancsrnacocsesnsoanensenonnnavsssecsssan

ROMSUM. . cc ccevevessavseansonvescanasssannsossnsansonsas

RO
SA
SY
hrtes

M>RES. *e we 8S OE OP OBE EE sew EP ew ar? Ee DESY A Se Pe aE

VEROM. ® 6 ® ¢ 8 ¢ & 2 9° 2 SA ns SSE ee POSE BD av EP I Ee OES amen

NT. ®P ® ® © 9 8 Fv OWE OO hav EO OS date PSH A EE EES Ee ES eRe ee Be»

lalEE EEE EE EE EE EE EE EE EE ET EE EE EE EE EE EE EET EE EEE ES

Page 59%

PAGE

10
29
SQ
14
34
»z
owSo?

29
15
24
12
28
ol
33
3
22
23
37
27

12
S
16
25
16
26
32
31
19
31

MLDL operating system eprom

CARE AND WARRANTY

Eprom care

Store the eprom set in a dry and clean place. Make sure that the

feet of the eprom’s are protected against bending. Otherwise a
pin could brake from the eprom and make it worthless. Da not

cannect any external power supply to the eproms. FProtect the

eproms against static charges, otherwise irrepairable damage to
the eproms can result. Do not remove under any circumstances the
labels on the eproms for these labels protect the eproms against

loecsing there data by accident through too much U.V. light on the
eprom’s.

Limited 180 day's warranty

The 83128A ERAMCO MLDLEprom set is warranted against defects in
materials and workmanship affecting electronic performance, -~but
not software content- for 1BQ day's from the date of original
purchase. If you sell your unit or give it as a gift the warranty

is automatically transferred toc the new owner and remains in

effect for the original 188 days period. During the warranty

period we will repair or at our option replace at no charge a
product that proves to be defective, provided you return the
product, shipping prepaid, to ERAMCO SYSTEMS or their official
 s@rvice representative.

Page 6&0

MLDL operating system eprom

CARE AND WARRANTY

WHAT 1S NOT COVERED

This warranty doesn't apply if the product has been damaged by

accident, misuse or as the result of service or modification by
other than ERAMCO SYSTEMS ar their official service
representative.

Na other express warranty is given. Any other implied warranty of

merchantability or fitness is limited to the 180 days period of
this written warranty. In no event shall ERAMCO SYSTEMS be liable

for consequential damages. This liability shall in no way exceed

the catalog price of the product at the moment of sale.

Obligation ta Make Changes

Products are scold on the basis of specifications applicable at
the time of manufacture. ERAMCO SYSTEMS shall have no obligation
to modify or update products once sold.

Page 61

MLDL operating system eprom

HOW TO SET UP YOUR OWN EROM PAGE

This part of the manual wiil tell you exactly how to set up an

Erom image in your MLDL-box. This is done with the help of a few
user code routines that are 1lcaded into the MLDL Ercm pages. 1+

you follow the instructions to the letter, nothing can go wrong.
And with the help of these instructions you should be able to set
up your own Erom image.

step 1

The first thing that has to be done is to clear the Erom page you
want to work at and te set the Erom block to the prcper page.
Therefore you must set the first block with the left rotary
switch at page A. Set the rotary switch cf the other block to

page E. Disable both the switches to the left of the leftmost
rotary switch (pull them down). When you set the switches in

this pcsition, you can compare the results of your actions with

the results that will be given in this appendix.

step 2

Now we will first clear both Erom pages. Key in alpha mode the

single character "A". Go out alpha mode and execute CLEL (for
more details see page 14] Repeat this sequence with the single

character "E" in alpha. At this moment your Erom pages should

both be clear. Now you can enable both the Erom pages by pushing

the bath switches up. Don’t expect anything to happen yet. Both
pages are still empty.

step 3

Before doing anything else we have to make sure that both pages

are empty. Kay in alpha "AFFF". Now execute LROM. The display

should read ‘none’. I+ this is not the case you should control

the setting of the switches and try step I again. This is done in

the same way for the second block, except you now have to key in
alpha "EFFF". The reading of the display should be again ‘none’.
I+ this isn't the case return tao step Z.

Page &2

MLDL operating system eprom

step 4

To allow the HP-41 to find anything that is plugged inte the
system it uses the first word on every page starting from page 5.
If this ward doesn’t contain a valid identifier, it can’t execute
a routine or function located at that page. Therefore we will

continue with the setting of these identifiers for both Erom
pages. In fact this identifier is the xrom number of a module. To
avoid any problems with other modules it is recommended in this
stage to unplug all your modules.

Also the name of the rom module has to be added. For this the

function IPAGE is used. It is enough to put the rom name into the

ALPHA register. After this you give the 4K page address in the X
register. Now you can execute the function IFAGE. It will prompt
you for a XROM number. To avoid problems we choose as XROM number
the number 221.

Note : In this manual we described two ways to set up an Erom

image, First time we did this with the function RAMWR (see
page 5). For this is quite a cumbersome way to prepare an
Erom image we did incorporate the function IPAGE (see page
35). Here we already gave you an example of how to create
your awn Erom image.

Example : We will create one Erom image with xrom number 21 and
as name "TEST ROM 1A". For this we make use of the RAM

page that is controlled by the left rotary and enabling
switch. The block is already cleared and enabled in

step 2. The block is addressed at page "A". Now we have

all relevant data for the black, so we can initialize
it.
Key into ALPHA the name of the module and into the X
register the address of the RAM page that will held the
Erom image. This address is 12.
Execute the function IPAGE. At the prompt you answer
with the desired xrom number E.G. 221. After a while a
tone will sound and the message READY is displayed.

Page A3

MLDL operating system eprom

step 3S

From now on the HP-41 can recognize anything that is written into

Erom block one. So lets give it a try. First of all we have ta

create a little program in main memory that is to be stored in
the Erom block.

We will use the following program: LBL ‘test
LBL 21
BEEF

GTC 21

END

step &

You have now created a program in the memory cf your calculator.

But we wanted to have this program in the MLDL-box, because it is
using up the last free bytes we had. That's no problem. We only

have to usa MMTORAM to get the program in the Erom page we want
it, For this we have to initialize a few things.

When we have initialized cur Erom page manually (without use of
IPAGE), we have to give the starting address for our program.
This address will be the first word to be used by MMTORAM. Do not

use the reserved wards in an Erom image in which you are to load
your programs (see appendix E and appendix F).
If you work with IPAGE however, the starting address is already
given in the ALPHA register. When you have tc use the ALFHA
register between two sessions of loading programs, it is

advisable to keep the contents of the ALFHA register in a normal

data storage register, or to note it down (be carefull saving the
address in a storage register, for MMTORAM can clear all the user
registers, when it makes use of CMPDL). This is handy for future
use. If you lost the address however, you can find it back with
the help of LROM. Increase the address given by LROM with one,
and you have the new starting address to store at.

Second thing we have to initialize is the setting of flags @ and
1, to achieve the desired private status cf the loaded program.
There are four options for these flags. For a full description of
these options we rever top the function MMTORAM at page B.

Page 64

MLDL operating system eprom

Third and last initialisation we have to make is the setting of
flag FT. MMTORAM decides on this flag wether it shall use CMPDL or
the normal COMPILE function when it is loading a program. See the
function CMPDL for the difference between the two compilers.

Example : We are going to load the pragram described at step 5.

This program has to be loaded in a nonprivate, complete
open status. Furthermcre we do not want the numeric
labels to be deleted.

We do not have to give the starting address, for this

is given in ALPHA by the function IPAGE.
Fer a complete open, nonprivate status flags @ and 1
have to be cleared.
Flag 3 has to be set for we do not want the numeric
labels to be deleted.

When these settings are made, the function MMTORAM can

be executed. You will see the messages of the compiler
and then the message "LOADING PGM". When MMTORAM is
finished a tone will scund and the message "READY" is
displayed. The program is now loaded in the Eram image
and is ready for use.

Note 2 If you switch to ALFHA you will sge that the

starting address is changed. It now paints to
the first free byte after the just loaded

program. This provides an easy way of loading

subsequent programs.

step 7

First thing we will do is deleting the prograh from main memory.
When you have done this, you should still be able to execute test

for it has been stored in the Erom page. Sc give it a try. You
will hear the familiar beeping every time the program is looping.
Stop execution of the program and switch to PRGM mode. Whenever
you try ta insert or delete a program step, you will see the
message ‘ROM. This proves that the program has realy heen loaded

into the MLDL~-box. The program is alsc included in catalog 2. If
you execute CAT 2 you will see the label test showing up in your
display sooner or later, depending on the amount of other roms

that are plugged into the system.

Page 65

MLDL operating system eprom

When you want to store more and other programs, you can follow

the described procedure starting at step 5.

Load also the programs described on page 21 (TST) and 28 (MDIS).

Ltcad the TST program with flag 3 cleared. Look at the program

after you have deleted it in main memory. As you will see, it
does not contains the numeric labels any more. This and the fact
that it is in ROM now, will speed up the execution quite a lot.
Load the MDIS program with flags 1 and 3 set. The program will be

open in the eram page, but as soon as it is copied back to main
memory, it will be private.

This is the end of the description of our MDL ROM operating
system. We hope you will enjoy to work with this rom. If you have

any complaints or wishes you want to see in a future rom, please

let us know. We will take these in account as much as possible.

ERAMCO SYSTEMS

W. van Alcmade str. S54

1785 LS Den Helder

The Netherlands

Page &é&6

	Cover
	Contents
	Introduction
	Installation
	Organisation of the instruction set
	MDL write functions
	Utility functions
	Update functions
	Appendix A: Input / Output
	Appendix B: Programmability
	Appendix C: Messages
	Appendix D: XROM numbers
	Appendix E: XROM and FAT structure
	Appendix F: Interrupting Points
	Appendix G: Assembly language information
	Function Index
	Care and Warranty
	How to set up your own EROM page

