ERAMCO SYSTEMS

HP-41
MLDL-ROM

Machine Language Development System

MLDl. operating system eprom

CONTENTS

Introduction.cescececcccsocacccncacna
Installation.....cicceencevcacananas f e e m e e aeae. cessvens
Organisation of the instruction set.......c..cc00uc..
MLDL write functions..cccecetconccncseccacncoacansone
Utility functions..c.cccvvecccncrcnnasocncsnocnneasnsea
Update functionsS...cceeoccccnavssosceannaaccsencesns

Appendix A: Input 7/ Dutput..............

Appendix B: Programmability..c.ccccrriecncnnscereannasne
Appendix C: MessageS..c.cccascccvacen -
Appendix D: XROM numbers......ccecavee.
Appendix E: XROM and FAT structure...cceceeecsss
Appendix F: Interrupting Foints
Appendix G: Assembly language information.......

"% e

Function Index....cccecsaccasvccscancncan A,

Care and Warranty.......cvvcecenccssonsacnacencnnsos

How to set up your own EROM pPage..cececccscosnsensos

Page 2

W
ISESRUNCRENY

A
iy

4&

47

=9

&0

MLDL operating system eprom

INTRODUCTION

This manual deals with the ERAMCO MLDL ogperating system eprom. To
get a full understanding of all the routines and functions in
this eprom set, it is advisable to read through this manual
carefully before operating any of the functions or routines.

INSTALLATION

Follaw the instructians of your ERAMCO MLDL-bax carefully when
installing the eprom set in your box. It may be necessary to bend
the feet of the two eproms slightly inward to make them fit
easily into the eprom sockets. Do not forget tc enable the page
on which you insert the eproms (far more detailed information on
how to insert the eproms, consult your hardware manual of the
ERAMCO MLDL-box). A lower address is the most appropiate page
for insertiaon af the epram. This provides a quick accese to the
routines and functions available in the ERAMCO MLDL-eprom set.

ORGANISATION OF THE INSTRUCTION SET

As you will soon discover the routines and functions in thig
eprom set are divided into three sections. The +first section
contains all the functions and routines that will change anything
in the MLDL-ram you are working on. So always be careful when
using any of these functions. A single mistake can destroy the
whole 4K ram block that is under develaopment.

The second section contains the functions that facilitates
working with the MLDL~ram. They do not change anything in the ram
but will provide a quicker access to the ram (LROM will tell you
almost immediately where you can continue with writing in the ram
or where you can store a User~code program).

The third and last section in fact belongs ta the two mentioned

above. However, this is a seperate section to keep compatible
with the xrom numbers of an older version.

Page 3

MLDL operating system eprom

Note : All inputs which has to be placed in the alpha-register
are related to hexadecimal

In the description of the functicns it is assumed, that you have
one MLDL ram page available for exercising the examples. Tao
ensure that the examples work out in the way we have described
them, is it necessary to clear one block and to place it at the
proper page. Place the first block off your MLDL ram at page 7.
This is easily achieved by turning the apprapriate (left) hex
rotary switch to 7. Disable the block by switching the 1le+ft
enable switch down (0ff). To avoid prablems with the second
block, it is advisable to switch this block of too.

After these preparations we can clear the whcole black. Input for
this is 7 in ALFPHA. Now execute the function CLEL. For detailed
information of it's operation see page 14.

Switch the MLDL ram page on line by switching the left enable
switch to the ON state. It is naow ready for the examples.

INPUT ¢ All the hexadecimal input in the ALPHA register is
checked on valid data. Data is wvalid only, if it
consists of the hexadecimal characters. These characters
are the numbers from @ upto ? and the letters A through
F. Any other character in ALFHA will cause an error. The
display will show DATA ERROR.

I1f the errar occurs in a function during a running
program, the error will be displayed and the program is
halted at the instruction, that caused the error.

OUTPUT

Every function in this MLDL rom that gives an
hexadecimal output to the ALFHA register, will
automaticcally execute an AVIEW after it has put it's
data into the ALPHA register. Sc, if you are using for
example the function LOCA in a program, it is not
necessary to do a AVIEW after the function. (ODtherwise
the result will be displayed twice. In conjunction with
the printer your results will alsec be printed twice.

Page 4

MLDL gperating system eprom

MLDL WRITE FUNCTIONS

RAMWR (RAM WRite)
XROM 11,01

This non programmable function allows the user to read every word
in a ROM, EPROM, or MLDL-ram (EROM). In case of MLDL-ram it is
also possible to change or write in this MLDL-ram. The addresses
and data are prompted for and given in hexadecimal form. This
function will redefine the keyboard as long as it is used to make
hexadecimal input easier.

After calling this function it will prompt +for the absolute
address in RCOM. The follawing keys are now active: -9, A-F,
back—-arrow and the on key. The back—arraow key is used in the
usual way to correct the last given input. NULL will be displayed
if you hald the last input-key. When you release this key after
NULL is displayed, you will be prompted again for the address.
Pressing back—-arrow without input causes the function to exit to
narmal operation of the HF-41.

The address and three prompt signs are shown in the display (
ARARA ___). From now on the keyboard is defined as follows:
-STO0 will give you the data at this and the following
addresses. Each address and the data are displayed for about
0.5 sec. Fressing any key accept the R/S or the ON key, will
slow down the listing of the data that is displayed. The R/S
key will stop the listing at any desired place. The ON key
will switch off the machine in the usual way.

Example : If you press RAMWR and fill in the prompt with
‘ XFDS (X represents the page the MLDL rom is
laocated) you will see @93. This is the last
letter of the xrom name of the MLDL rom. if vyou
press ST0, you will see the whole name of the rom,
displayed one character at the time. Stop the
display after you have seen JIE@. This is the end
of the xrom name.

Page 3

MLDL operating system eprom

~TAN or BST decreases the address by one. This enables you to
go through the listing by hand.

Example : After you have stopped the listing in the previgus
example, you can see the first letter of the xrom

name, by pressing TAN or BST once. The display
shows XFFD @@=.

-SST increases the address by one, making it possible to step
through the listing by hand.

Example : Fressing SST once places you at the end aof the
xrom name. The display shows XFFE 3E@. Fressing

SST once more places you at address XFDF with data
2.

-back=-arrow asks you for a new address if there is no data
input. Otherwise it will operate in the usual way to correct
the last input.

Example : PFress back-arrow once. You are prompted for the
new address. Fill in the prompt with 2FFE. This
address contains the revision level of the second
operating system rom. The number represents the
position of the letter in the alphabet. So if vyou
see BB6, your revision level is F.

-"e", "“i1v, "2", "3" (numberkey’'s 8,1,2,3) are interpreted
as new data. In this way wrong data input is prevented,
because the Ffirst character of a data word can only be
@,1,2 or 3. For the rest of the data input the hexadecimal
keyboard is available again. Halding the last data key will
NULL the input function and after releasing the key will
prompt for new data. With the back-arrow key it is possible
toc correct the 1last given input. The address will be
increased by one after completion of data input. This will
facilitate the writing of 1long programs.

Page &

Example

MLDL operating system eprom

We will initialize our ram block with a name.
Therefore we have to go to page 7. Fress back-
arrow once and fill in the prompt with 7802. At
this address the XROM number of our rom is
located, and we have to give the ram block an XROM
number before writing to it. This is necessary,
for RAMWR checks this address every time we write
to ram. If it is zerc, the message NO ROM is given
and we are asked for an address again.

The XROM number we will use is I1. This is the
same XROM number as the cardreader, so to aveid
problems you should disconnect your cardreader.
After this is done, we can start writing to our
MLDL. ram. FPress back-arrow again and goto address
70846. The first thing to do, 1is to give the MLDL
ram block a name. The name we are going toc use is
NEWUSER @1.

This name is coded as follows :

Address Data Comment
7286 @2B1 1 end of the name
7087 aze @
7888 " pl | space
7289 ai2 K
7@8A as E
708E 813 S
708C 215 4]
788D 217 W
7@8E 285 E
708F QQE N start of the name
7298 3EB start of function

The name can easily be entered by pressing the
data words after each other. If you make a mistake
during entry, you can correct it with the back-
arrow key. If you discover the mistake after vyou
have finished the data word, you can go back with
BST or TAN and try it again. With AFAT we will
complete the initialization of ocur MLDL ram page.
Fress backarrow twice to exit the RAMWR mode.

Page 7

MLDL operating system eprom

You can exit this function, when you are in input-mode, by means
of pressing the back—-arrow key twice.

If you are at address $800@ and you try to do a backstep, you
will find yourself at $20@1. This is done to avoid an unexpected
wrap around to $FFFF. If you really want to backstep to $FFFF yaou
have to press backarrow once and continue at this address.

WARNING : Be careful with the addresses from xFF4 up to xFFA.
These addresses are scanned by the operating system of
your calculator. It’'s possible that the calculator will
crash when these adresses contain error data. For more
information see appendix F.

MMTORAM (Main Memory TO RAM)
XROM 11,02

The function MMTORAM is used to copy a program from main memory
in the calculator to the desired MLDL-ram page in a MLDL-box. All
the necessary translations for a good operation of this program
are made automatically. The Function Access Table (FAT) is
updated at the same time with the new Global Labels of the
program. For good operation of this function it is necessary - to
initialize the MLDL-ram in the praper way.

Freparation of the MLDL-ram: You need a block of ram words that
is 1long encugh to hold the desired program. The length of the
program can be found with the help of CBT (see CBT). Add two to
this number of bytes and you have the number of bytes that will
be neaded for the program when loaded into the MLDL-ram. Now you
must find a block in the ram space that is large enough. Write
down the starting address of this block. BE CAREFUL Addresses in
ram are given in hexadecimal form, but the length of the program
(by CET) is given in decimal farm. Key into ALPHA the starting
address of the block (it’'s advisable to leave about 20 words
between the starting address of the block where the program will
be written and the first empty word in the ram ycu have found,
for future revisions).

When you are initializing a 4K block of MLDL ram automatically
with the help of IFPAGE, vyou do not have to do all of this. The
lopading address will be automatically given by IPAGE. Also the
first next empty word will be returned by MMTORAM to the ALFHA
register, to make loading easier.

Page B

MLDL operating system eprom

User flags @ and 1 can be set or cleared to achieve the desired
private status

flag @ : flag 1 : status
1 "’
——— - ; — =- - N ——
cleared H cleared ' program open
cleared i set H program apen, after COFY
i ; private
set H cleared : program private
sat : set H program private

With the help of these two user flags it is possible to make the
program completely private in the MLDL-ram, e.g. you can not go
into PRGM mode to examine the program and it is not possible to
copy the program into the main memory with the help of the COPY
function. A partly private status is also possible. In this case
it is possible to examine the program, but after copying it into
the main memory it will be private. The third option means no
security at all. Frograms are now free to examine and to copy ¢
compare with e.g. the math module).Flease note that changes in
the program are only passible when it is stored in main memary (
see the manual of the calculator for it’'s behavior when you are
in rom).

With wuser +flag 3 you can have the option to delete the numeric
labels in a program. (for more information about this option see
CEMFDL).

When this flag is set, nothing unusual will happen. The pragram
is first compiled and then loaded intoc MLDL-ram with the desired
private status according to the settings of flag @ and 1.

If this +flag is cleared to the contrary, the program will be
loaded with all numeric labels deleted. (if this is possible)

MMTORAM can be executed after these preperations regarding the
user flags. The functian will prompt for the name of the program
that has to be copied. It is enough to press ALPHA twice when
the program counter is already set in the wanted program.
Dtherwise you must enter the name of the program in the same way
as with CLF or COFY.

MMTORAM calls one of the two present compilers, depending on the
status of user flag I and will compile the praogram (for messages
during compilation see COMFILE). When the program is compiled,
the message LOADING FBM will be displayed. When the whole process

is finished, a tone will sound and the message READY will be
displayed.

Page 9

MLDL operating system eprom

When the function has been finished, it will return the address
of the next free byte in MLDL-ram. Be carefull. If you are
loading manually, this is the address of the first byte after the
program. It decesn’t have to be necessarily empty. Whenever you
are loading, with the MLDL-page initialized with IFAGE, it will
be the next free byte available.

A CAT 2 or a CAT x (x is the pagenumber of the MLDL-ram where the
program has been written on) will show you the updated FAT with
the new labels.

Noting down the start and end-address cf the used block will
allow you to make changes without address mistakes.

For an example of how to lcad your user code programs in the MLDL
box, we rever to How to set up your own EROM page. There a
complete description is given how to set up a MLDL ram page for
locading user-code programs.

AFAT (Append FAT entry)
XROM 11,83

The function AFAT enables the user to update the FAT, e.g. to
append the starting address of a routine that has been written in
the MLDL-ram. Functions are anly accessable to the HF-41 when
they have an entry in the FAT. This also holds true for programs
that are transferred to the MLDL-ram. The function MMTORAM takes
care of this automaticaly.

Input for AFAT is in the format UOFAAA. AAA 1s the start—-address
cf the function within a page, P is the page number where the
function is loaded, 0O is an offset and U tells the HP-41 if the
routine is a M-code routine or a User code program.

U= M-caode function. The address points to the first word that
is executable
U=2 User code routine. The address points to a Global Label

Example : AAA=3FF The start of the function or routine is <found
at X3FF.

Page 10

MLDL operating system eprom

In order to understand the interaction of 0O and F it is necessary
to realise that EFROM and MLDI.-ram can be placed at every wanted
page, e.g. at any desired port. It must alsoc be kept in mind that
an EPROM or MLDL-ram page contains only 4K. The value of F is
only pointing to the page where the MLDL-ram is positioned at at
this moment. The value of P will change when you address the
MLDl.-ram to a different page. Opposite to this is the behavior of
the value for 0. 0O is a constant added to the pagenumber. It will
not change when you place the MLDL-ram at a different page. The
constant 0 allows you the possibility ta execute functicons and
routines from another page other than the one where the FAT entry
is 1lodged. So it is evident that the page which is called must
always be 0 pages further in the memorvy.

Example : The page that contain the FAT is at page 8, and the
page that contain the routine itsel+t is at page C,
address 1is 490. We want to make an entry for a User-
code routine with AFAT.

The value of 0 (the offset)} is C - B8 = 4

The value of P (page containing the fat) is B.
The value of ARA (start—address)} is 49@.

The value of U (M- or User code) is 2.

We do now need the following input for AFAT

248492
When we mave the first ROM ta another address we must also move

the second ROM the same number of pages in the same direction if

the value of 0O is something else then zero. Leading zero’'s in the
input can be omitted

Page 11

MLDL operating system eprom

Example : For our MLDL ram we have written the rom name with the
help of RAMWR. To be able to see the rom name when we
are executing a catalcg 2, we have to place the xrom
name entry into the FAT. This is done with AFAT.

We do have a functiaon name, so the digit representing U
will be zero.

The rom name is not located at ancther page, so the
offset is alsc zera.

We are wcrking at page 7, s0 the value of F will be 7.
The starting address of the function 1is the Ffirst
executable ward of the function and 13 in our case
located at @%02.

This resultse in a total entry for AFAT of Q7092

As 1leading zero’'s can be omitted, we can use 7092 as
the entry address for AFAT. Write the entry intc ALFNA.
Go out of ALFHA and execute AFAT. I+ you do now a
catalog Z ycu will see NEWUSER 81 1n the display when
the catalog routine khas arrived at page 7. (S A &

yau
have no printer or timer module, 1t will be the first
name that appears in the catalog.

DFAT (Delete FAT entry)

XROM 11,84

The function DFAT is used when you want to delete an entry +Fronm

the FAT. The Ffunction or routine which 15 deleted will be
invisible for the HF-41 after execution of DFAT. The XROM numbers
af all the rcutines and functions that came after the deleted
function in the FAT, will get one lower. Fay attention to this
fact when you use functions or routines from the ram vyou are
working cn. The same input format i1is used as with AFAT. The
difference i1s that you do not need to specity the value of U.

Sa the input format will be OFAAA (cffset)}, (page), (
Y.

DFAT will search in the page with number F and delete the
spezified entry. Leading zeros may be omitted.

acidrecsc

Page 12

MLDL operating system eprom

Example : In the example of the function AFAT we have added ¢the
function name to the FAT, to give the MLDL ram page a
name. We will add another name to the FAT, USER 01, by
appending & name to the FAT with address 7@8D. (for
detailed instructions how to append an entry to the FAT
see AFAT).

If you execute a catalng 2, you will see NEWUSER 81 and
after this USER Bl. The last entry has ta be remaved..
This 1is easily accomplished by getting the right entry
address into ALPHA and execution of DFAT.

Give in ALFHA the entry address c¢cf USER @1, This
address 1is 708D. Get cut of ALFHA and execute DFAT.
With a catalog Z you can check, that the entry has been
removed. You should only see NEWUSER @1 in the catalag.

MOVE (MOVE ram block)
XROM 11,05

The function MOVE allaws the user to move certain parts in a ROM,
EPROM or MLDL-ram to another place. Keep in mind that you can
only move into MLDL-ram. MOVE makes it possible to insert words
or delete words at any place in the MDL-ram. It is also
advisable to copy only small routines or functions from another
page to the MLDL-ram page you are working on.

The input format in ALPHA is as follows : EBEBBEEEEEDDDD

BBEB gives the starting address of the block that has to be moved
(it is the first werd that will be maoved).

EEEE gives the end-address of the block that has to be moved (it
is the last word that will be moved).

DDDD gives the address of the first word af the block where the
source block will be copied.

The function will accept a destination address within the
original block.

Page 13

MLDL. operating system eprom

Example : We want to copy the rom name to anaother part of the
rom, to be able to make some ehanges and to use it as a
second header. This second name has to start at address
7DDE. The rom name is lacated at 7884 to 70%90.

The begin address is 7e86
The end address is 7290
The destination address is 7DDE

Thig gives a total entry for move of 788&789Q7DDE.
Enter this in ALFHA and executes MOVE.

With the help of RAMWR you can check, that the word at
7DDE is 8B1 and at 7DEB is 3E@. These are the first and
last words of the rom name.

CLBL (Clear ram Black)
XROM 11,06

Clearing a block of MLDL-ram is done with the help of CLBL. Input
is in ALPHA in the format BEBBEEEE.

BBBE is the first word of the block that has to be cleared.

EEEE is the last word of the block that must be cleared.
Execution of CLBL puts zero in all the addresses between the
given ones, including the start and end addresses.

Example : We discover after some time, that we don’'t want to use
the second rom name after all. We cauld leave it in the
ram page, but for good housekeeping we want it to be
clearad. This is accomplished by getting the right
begin and end address into ALFHA and executicn of CLEL.
Bwitch to ALFHA and give as input the start and end
address of the block of code we created with MOVE. The
starting address of this block is 7DDE (destination
address when we moved). The end address is 7DEB (this
we have found with RAMWR).

So the total entry for CLEL is 7DDE7DEB. Get out of
ALFHA and execute CLBL. With RAMWR you can check, that
the wards at the specified addresses are deleted.

Page 14

MLDL operating system eprom

Another option of CLBL is to clear a whole 4K block at once. Far
this input P in ALFHA. P represents the pagenumber of the page
you want to clear. ###x ATTENTION #%#% This last option is
dangerous. It operates like MEMORY LOST, but in this case it is a
memeory loss of the specified MLDL-ram page.

Example : Switch the other page of MLDL ram to page &. Bet into
ALFHA and give the address of the page to be cleared (
&). Get out of ALPHA and execute CLBL. Now you can
switch the second MLDL ram page ©on line by setting the
right enable switch to the ON pasition.

COPYR (COPY Rom page)
XROM 11,07

The function COFYR enables the user to copy an entire page of ROM
or MLDL-ram to another page of MLDL-ram. This gives vyou the

oppartunity to change anything you want in the just copied block
of ROM.

Input is in ALFHA and has the format SD.
S is the page from where the copy has to be made (Source).
D is the page to which the copy is destined (Destination).

This function will sound a low tone to indicate the completion of
the function.

Example : We want to make a capy of our working MLDL ram page.
This could be done with mave by giving as input
70007FFF60@0. But this will take longer and asks for a
more complicated input. Theretore we will make use of
COFYR. The input for this example is 76 in ALFHA. When
this is done, the function COFPYR can be executed. After
the tone has sounded we can check, if the second rom is
available by executing a catalog Z. You will now see
the romname NEWUSER @1 appearing twice in the catalog.

Page 15

MLDL operating system eprom

ROMSUM
XROM 11,@8

To check i¥ a ROM is still in good shape HEWLETT-FACKARD has put
a checksum in each ROM. With the function ROMSUM you are able to
compute this checksum and put it at the proper place in the MLDL-
ram you are developing. The checksum is calculated by adding all
the words on this page, take modulo 255 and put the remainder in
xFFF.

The input is P in ALPHA. F is the page number of the MLDL-ram you
want to update the checksum.

Example : To be able to detect if our rom is still in good shape,

we are going to compute the checksum of the rom. Give
the address of the rom in ALPHA. Attention, we are
using the second MLDL ram page now, so the input will
be é instead of 7. Get back to normal operation mode
again and execute the functicn ROMSUM. This will take a
few seconds. During this time the display will remain
blank.,
When the function is completed, vyou can check if the
checksum 1is calculated in the proper way. This is
achieved by keying into the X-register the used xrom
number 31. Now execute ROMCHKX. The display will change
into 31 ee-@@ TST. After a few seconds it will change
to 31 ee—@e DK.

{ Remember 31 is the xrom number we used for our MLDL
ram page).

REG>ROM (REGisters to ROM)
XROM 11,89

This function is the opposite of ROM>REG (faor more information on
this function see at ROMPREG). This routine will translate the
registers with it's 5 words/register back into S different words
and place them at the proper addresses in a MLDL-ram page.

The input in the Y-register determines where the data will be put

back in the MDL-ram. 3J different options are available ¢to
achieve this.

Page 1é

M_DL operating system eprom

1. "Y"= @ The block will be placed at the same
location as where the original was (if the
original was located from B83FF to 8456 it
will be restored at the same addresses.

2. "Y'= F P represents a page number that is created
with the help of COD. The block will now be
loaded at the same relative addresses from
which it came from but at a different page(
if the original was located at 83FF to 84356
it will be restored at FIFF to F45¢c).

3. Y = EBBB Here BREEB represents the start—address
where the block will be stored (BEBB >=
B21@). The block will be loaded starting
at the address given by EBBEE independent
from the oariginal start—-address of the
block.

The X-register must hold the number of the register that contains
the Ffirst data words of the blaock that has tc be read back (
actually the first register contains a header that is used by
‘REG>ROM and is made by ROM>REG).

Writing entire 4K blocks of MLDL-ram from a storage medium is
facilitated by the functians SAVEROM and GETROM.

Example : Let us assume, that you have used the function ROM>REG
before. This can be accomplished by getting ta the
example of ROM>REG at page 23. Here the romname is
loaded to the registers in order to save it on magnetic
cards or a cassette drive.

First we will 1load the data back to it’'s original
place. To see this really happening, we must first
clear the block, where the data is located. This is
done by CLBL. Fut in ALFHA the begin and end address of
the block to be cleared (708467892). Execute CLEL to
remove the data from the MLDL ram page.

Page 17

MLDL operating system eprom

We can now restore the data by getting it back with
REG»>ROM.

First we are gaing to get it back to the original place
in the MLDL ram page. This is necessary in order to get
our rom—name back. Input for this is zero in register Y
and zera in the X-register. The data will be loaded

back at it°s original place. You can check this with
RAMWR.

We also want the data loaded back at a completely
different page. Therefore it is needed to get the page
number into the Y register This is accomplished with
the function CobD. Place in ALFHA the letter
representing the page we want to store tc (&6). After
getting out of ALFHA we execute C0OD. The display will
change a little. Now press B8 toc move the binairy
representation of the page to the Y register and get
the address cof the header register in the X register.
Now execute REGIROM. You will find at the addresses
£A8& to &8990 the data that also is located at 788& to
7090.

The last option of REGP»ROM is to restore the data at
completely different addresses. If we don’'t want to
have the data at address 7884, but at address 7AEE
instead, we must make use of the 1last option of
ROM>REG. Now we have to specify the starting address in
the Y register. This 1is done as with the previous
example. Flace in ALFHA the starting address (7AEE)
and execute COD. Again the display may differ from what
you are used to. Fress @ to enter the starting address
to Y and place the first register to use into the X
register.

After these initial actions the function REG*ROM can be
executed. After termination you can check with RAMWR to
see if the data really got there.

Page 18

MLDL operating system eprom

XROM 11,10

This is not a normal function. It does not do anything

when
executed but it is used as a spacer from write routines and
application rautines within the MLDL-ram . One possible

application is to use it as a NOF. It will also terminate data
input without raising the stack.

Page 19

M_DL operating system eprom

UTILITY FUNCTIONS

COMPILE
XROM 11,11

The function COMFILE places in every numerical &T70 and XEQ the
distance to that numerical label. Programs prepared with the help
of COMFILE will usually run faster than programs that have to
calculate these distances while running. Two byte B0OTO’s that can
not make the distance will be transformed to three byte GOTO's.
Therefore your program can be made longer by this routine and it
is required toc have at least three registers 1left after the
program. (.END. REG xxx with xxx not equal to zero).

Compile prompts for the name of the program you want to compile.
Input 1is in the same way as with the mainframe function CLF. So
i¥ you are not in the program you want to compile, you must ingut
the complete name. Otherwise it is possible to press ALFHA twice.
The function will first pack the program (FACKING), then bhandle
the two byte GOTU's (COMFL 2B G) and if needed (in this case
compile has found a 2 byte GTOD that can not make it and will
replace it with a three byte GT0, thus causing insertion of null
bytes that have to be packed as well)} repeat this sequence.
After this is done it will continue with the three byte’'s GOTQR's
and XER°'s (COMFL 3B G/X). After the routine is finished it will
put the message READY in the display. Labels not found will give
the error condition NO LEL xx, with the number xx as the 1label
not found. When vyou switch to program mode you will find the
program step that caused the error condition.

If the program has the .END. as last statement instead of a
normal END, it will change the .END. into a normal one. This is

done for MMTORAM, which expects a program to be terminated with a
normal END.

Toc be able to change the .END. into a normal one, the compiler
needs at least aone empty register after the program. During the
initial packing of the program a check is made to see if there is
at 1least one register available. If this is naot the case, the
program will terminate with the message TRY AGAIN. If so vyou
should decrease the number of allocated memory registers. (
change size)

FPage 2@

ML DL operating system epram

After execution of compile you will be placed at the first step
of the program.

Deleting

steps or adding steps in a program, will change the

status of the program into a decompiled one. Reusing the compiler
will speed up the execution after the editing session.

Example :

Create the next program in your calculator

@1 LBL °TST 18 GTD 16
92 LBL B0 12 LBL 17
a2 LBL @1 20 BEEPF
@4 GTO @z 21 G770 ee
@5 LBL @3 22 LBL B2
@6 GTD 84 23 GT0 @83
@7 LBL @5 24 LBL Q4
@88 GT0 V6 25 GT0 8S
7 LBL @7 26 LBL @&
1@ GTO @8 27 GTO @7
11 LBL @9 28 LBL @8
12 GTO 1@ 29 GTQ 89
13 LBL 11 I8 LBL L@
14 GTO 12 31 GTO 11
15 LBL 13 32 LBL 12
16 670 14 33 B70 13
17 LBL 15 34 LBL 14
35 GTO 1S
36 LBL 16
37 GTO 17

I¥f vyou execute this program after you have loaded it,
you will notice the significant time it takes before
you hear the first beep. You will hear the second one
much sooner. Stop the program and goto step 1. Delete
the superflucus label B81.

Execute the function COMPILE. You will be prompted for
the name of the program to be compiled. Press ALFHA
twice, since we are in the program already. (It‘'s also
possible to give the full name of the program (TST)).
Now the message FACKING is displayed. If you do not
have enough room after the program, COMPILE will
terminate with the message TRY AGAIN. Then the messages
CMPL 2B G and CMFL 3E G/X will be shaowed shortly after
each other. When the compiler is through these
messages, a tone will be sounded and the display gives
the message READY.

Page 21

MLDL operating system eprom

If you press PRGM once, vyou will find yourself at the
start address of the program. FPress PRGM once more and
press HR/S. Notify the fact that there is no delay
before the first beep sounds.

Gato step one once mare and delete label @2. Executian
of COMFILE will give the error message NO LEL @0. I+f
you go into PREM mode you will be at the step that
caused the error, step 19. Please restore the program
with LBL @8 at step @1 again,because we are going to
use this program again in the example of CMPDL.

LOCA (LOCAte word)
XROM 11,12

This function allows you to locate a data—-word in a 4¥ bleck of
ROM, EPROM or MLDL-ram.

The input format in ALFHA is as follows: BEBEBDDD.

BBBB specifies the address from where LOCA starts searching in
the 4K block. Actually it will start at BEBE + 1 to allow
repeated search in the block. NONE will be displayed when the
wanted data (DDD 2 is not found in this 4K block. Whenever a
data-word 1is found, it will be displayed together with the
address at which it is found. The data in ALPHA (adress + word)
will be replaced with the data found.This makes it possible tao
continue searching for the same word.

Example : With a small user code preogram you can easily print out
all the occurrences of an instruction in a rom or M™MLDL
ram page. Create the following user tode program (make
sure you saved the TST program)

@1 LBL "LOCATE @5 ACFF
@2 °‘ADD + DATA @34 LBL 01
B2 AON @7 LOCA
@4 FROMPT @8 670 @1

Input for this program cculd be a starting address like
X0 and the data to search for could be 84@. This
would give vyou a complete list of all the MLDL WRITE
instructions in the MLDL rom. Enter faor X the page
address where the MLDL rom is located (usually page F
).

Fage 22

MLDL operating system eprom

LROM (Last ROM word)
XROM 11,13

LROM searches backwards for the last non zero word in a block
beginning at a given start-address. Input is AAAA in ALFHA. The
display will give the address of the last non zero word and the
value at this address. NONE will be returned when the black
between the start address and the beginning of this 4K page does
not contain any ward (other than zero).

This function can be very useful when the end-address aof the last
program entered has to be found. In this case the easiest way is
to put xFF4 into ALFHA and execute LROM. It will give you the
address of the last word that is occupied by the program.

Example : If we want to find out where we can load our next user
cade programs, we could search faor empty space with the
help of RAMWR, but this would be rather cumbersome. To
avoid this, we are going to use the function LROM. In
this case we want to search cn page 7, starting from
the end and working backwards. Input for this is 7FFF
in ALFHA. Execution of LROM will return 7AF73EB to the
display after a short search time. This tells us, that
the next available word in our rom is at address 7RFB.
I+ we are searching on a completely empty page, LROM
will return the message NONE to the display, because it
can not find any word unequal to zero on the page. Try
this with page 5§ for example. Input for this is SFFF in
ALFHA. Execute LROM. After a short while the message
NONE will be displayed.

COD (CODe)
XROM 11,14

The hexadecimal number in the ALFHA-register is converted to it‘s
-bit-representation and this will be placed in the X-register.
The contents of the ALFHA-register is unchanged. The stack will
be rolled up and the value in the X-register before COD was
executed is placed in the LASTX-register.

The display won 't be intelligable after the function COD has been
executed. For the synthetic programmer this will sound normal.

Page 23

MLDL operating system eprom

Example : Input in ALPHA the hexadecimal address of our romname

and the start address of our romname (70B672890).
Execute COD after placing the address in ALFHA. 1§ we
change the display format to fix 9, the display will
lo0k like this Q@.2000728 <0 Save this coded
representation of the address, for we are using it to
demonstrate an example with DECOD.
These so0 called non normalized numbers (NNN°'s) should
not be used to make calculations, for they can hang up
the calculator for quite some time. Also they can not
be stored and recalled in the sz.ne mannner as normal
numbers, for they are normalized after being recalled.
This is easily dezmonstrated by pressing S8T0 @1 and RCL
@1 after each octher. The result is a zero X register.

DECOD (DZCODe)
XROM 21,15

The function DECOD is the cpposite of the function COD. It will
translate a -bit-representation in the X-register to the same
hexadecimal form as is used by the functiom COD. The output is
given in the ALFHA-register. When DECOD is executed manually
DECOD will also give the hexedecimal representation in the
display.

Example 1 We are going to use the same number as we have created
with the function COD. First clear the ALFHA register.
Now we must get back our just created number. If you do
a RDN, it will come back to the X register. Execute the
function DECOD. The hexadecimal representation of the
number will appear in the display. If you press back-
arrow once, it will disappear and the nonnormalized
number is viewed again. Go into ALFHA and discover the
hexadecimal representation here.

Fage 24

MLDL operating system eprom

ROMCHKX (ROMCHeck by X-reg.)
XROM 11,16

This function enables you to check if a ROM or MLDL~ram is still
in good shape. Impartant though is the fact that a ROM or MLDL-
ram must contain a good cemputed checksum (see ROMSUM +or the
definition of the checksum). HP rom’s will always contain a good
cHecksum. During the test the XROM number is displayed along with
the shaort ferm of the name and the revision number of the ROM. If
the ROM or the MLDL~ram doesn’'t contain this short name aor the
revision number, the display will shaow @-¢e,

Input in the X-register, the XROM number of the ROM or MLDL-ram
you want to test (an example is 3P for the cardreader). During
the test XX NN-RR TST will be displayed. XX is the XROM number of
the ROM that is tested, NN is the shortened name and KRR is the
revision number.

Output of ROMCHKX is the display XX NN-RR BAD (indicates a bad
ROM) or the display XX NN-RR OK (indicates a good ROM) These

outputs will be given only when the function is executed from the
keyboard.

The behavior of ROMCHKX will be different when it is executed in
a pragram; when a ROM is found to be gocd it will da the next
step in the program. Else it will skip the next step (compare
the function FS?7: the rule do if true is in farce }.

When there is no ROM present with the desired XROM number the
message ND ROM XX will be displayed. Again it’'s behavior in PRGM
mode is different. It will act as if the ROM is bad and skip the
next line.

Example : We can check if the MLDL operating system eprom is
still good. For this we need an input of 11 in the X
register (this is the xrom number of the MLDL rom).
When we execute the function ROMCHKX, the display will
change to 11 AS5- A TST. This indicates that the rom
with xrom number 11 is under test. The revision code of
this rom is AS A. After a short time the display will
change to 11 AS- A OK . When we execute ROMCHKX with a
xrom number that is not present it will say NO ROM nn.
This can be tried with zero in the X register because a
rom never can have xrom nr BA. The display will show ND
ROM @@ after ROMCHKX has been executed.

Page 25

MLDL operating system eprom

ROM>REG (ROM to REGisters)
XROM 11,17

All the credits for this functicn and its counterpart (REGXROM)
go tao Paul Lind and Lynn Wilkins who have written these two
routines. ROM>REG places S words of 1@ bits each in one HF-41
register. To avoid damage to the stored data it is saved as alpha
data. This guarantees an optimal use of the available registere
in the main memory of the calculator. Because o0f these functions
it is now possible to store the routines and functions that are
written in a MLDL~ram on tape ar cards and they make it easier
to exchange M-code with other users.

To transfer complete blocks roms to and from tape the functiaons
SAVERDOM and GETROM are incorporated in this rom.

The input for this function must be given in the Y-register. It
has the form BBEBEEEE.

BBRB is the address of the first word to store.

EEEE is the address of the last word to store.

This input has to be in binary and right Jjustified. This is
achieved by putting the BBBEEEEE form in ALFHA and executing COD
after this. The binary representation can be transferred to the
Y-register by means of keying in a number in the X-register. The
X-register halds the number of the first data register that will
be used as data store. (normally this will be register 80)

I¥f the number of registers needed, exceeds the number of free
registers you will get the error message NONEXISTENT.

There 1is also output from this function. 1In the LASTX-register
the last used register is given. By subtracting X from LASTX you
will get the number of used registers minus 1. If you add 1 to
this vyou will get the number of registers needed to store the
desired MLDL-ram block.

Page 24

MLDL operating system eprom

Example : We will save our romname in the user registers. This

block of registers is also used for the example of the
function REG>ROM. To execute this function properly, we
have to give the block to be saved in a binary
representation in the Y register. In the previous
example we have already created the address in the
ALPHA reqgister, so we only hbave to execute the function
COD. This gives us the binary representation of the
block to be saved in the X register. We want to save
the block in the user registers starting at register
82, so we have to enter zero into the X register. Fress
@. This also moves the binary representation of the
block to be saved to the Y register.
After these preparations the function ROMIREG can be
executed. Fressing LASTX gives us the last used
register. This means we needed 4 registers to store the
bleck (3-@ + 1).

MNEM (MNEMonics)
XROM 11,18

This function will give in conjunction with DISASM the name of a
M-code instruction that is fetched with DISASM. The mnemonics
that are used are the so called HF-mnemonics (there are also FFC
(Jacebs) mnemonics). The mnemonics are left as a string in the
I-register. Eventual surplus information (jump-distance, value,
field specifications) is given in the T-register. In case af two
word instructions the LASTX-register is used. The fcllowing User-

code program makes it possible to translate every ROM that vyaou
want.

Page 27

MLDL operating system eprom

Example ¢ With the following user code program you are able to
print ocut the machine code an a rom page.

21 LBL ‘mdis Name of program

P2 CLST initialize the stack registers

83 STO L initialize the LAST X-register

@4 SF 21 makes program stop at aview

RS ‘start add? ask for start—address

Q6 ADN make ready for input

@7 FROMPT ask and wait for input

@8 ACFF leave the ALFHA mode

@% COoD put the start-address in X

10 LBL @1 start of the loop

11 DISASM get the instruction

12 AVIEW view the address, value and the
character

13 MNEM build the mnemonic in the stack

14 CLA initialize the ALFHA-register

15 ARCL Z get the first part of the mnemonic

1& '@ append a space

17 ARCL T get the second part of the mnemaonic

18 AVIEW view the mnemonic

19 GTO Q1 restart the loap

This routine is meant to be used in ‘manual '’ mode. For

use with the printer it must be rewritten. The chaoice
is up to the user.

DISASM (DISASeMbler)
XROM 11,19

The function DISASM makes it possible to put the contents of ROM

into the display. At the same time the character representation
from the word is given in the display.

Input: The X-register must contain the address of the wanted word
(this can be done with the help of COD).

Dutput: The X-register will be incremented by ane to make it easy
to use DISASM in a loop. The Y-register holds the binary value of
the address and the data at this address (these values can be
made visible with DECOD). The ALFHA-register contains AARA WWW L

Page 28

MLDL operating system eprom

AAAA is the address of the wanted word.
WWW is the value of this word.
L is the character representation of the word.

There are two ways to represent characters in the HP-41., One way
is the use of the ASCII standard. 7The other way is derived from
this standard by subtracting 4@ [hex] fraom the codes in the range
from 4@ hex through SF [hexl. This gives you codes that lay in
the range fraom @ hex to 1F [hexl. These are the codes, that are
used for the display. Therefore DISASEM will translate these codes
ta narmal characters.

Example : To see how the function DISASM is used see the function
MNEM and the related user code pregram ta print the
contents of a rom with microcade functions.

CAT ¢ CATalog)
XROM 11,20

The function CAT gives you a selective CAT 2. This routine is
especially useful when you have to examine the catalog of a ROM
that 1is located at a bhigher numbered port. Whan the system is
loaded with a lot of roms it will take a long time befare vyou
arrive at the desired ROM (maybe you must go through the TIMER,
FRINTER, IL-MODULE before you reach the wanted ROM). The
function prompts in the same way as the CAT function of the HP-
41. The prompt can be answered with the hex digits B~F (CAT will
redefine the keyboard in the same way as RAMWR). Entering digits
B8-3 results in the normal CAT function from the HP—-41. Digits S-F
will start the catalocg at the wanted page. For further details we
refer ta the manual of the HP-41,.

Users of an HF-41CX have to be careful using thie function. In
some cases there have been crashes reported, due ta changes in
the functioning of the CAT function of the HFP-41CX. This is
highly dependant of the contents of the status registers.

Page 29

MLDL operating system eprom

Example : If the MLDL rom is installed at page F (this will
usually be the case, when the box is delivered to you
straight #rom the supplier) you would see with a
normal CAT 2 all the functions of the roms that are
physically located before the MLDL rom. At least one is
lacated there at the moment, and that is the test rom,
we are working on in our examples. So if vyou do a
normal CAT 2 you will first see NEWUSER B81. To skip
this part, we can start our catalocg at page F. Execute
the functien CAT and fill the prompt with the digit F.
The catalcg will start up immediately at page F thus
showing the contents ot the MLDL rom.

CBT (Count BYtes)
XROM 11,21

This function counts the number of bytes that is occupied by a
program. The END statement is taken in account. At the prompt the
name of the desired program must be keyed in or if vyou are
already in the desired preogram press ALPHA twice (compare with
the function CLP).

Output 1is given in the display only. The stack and the ALPHA-
register are left undisturbed.

If vyou try to get the length of a program that is resident in a
rom module the errcor message RUOM is given.

Example : At ¢the explanation aof COMPILE we have written a short
user code program to demonstrate you the advantages of
COMPILE. Execute COMFILE once more cn this program to
make sure the program is as compact as possible. Now
yvou can find out how long the program actually is. 1f
you execute CBT and press ALFHA twice, the display will
change to &8 BYTES. This is the length of your program
including the END statement
Remember this length for you will see that the use of
CMFDL will significantly decrease the number of used
bytes, thus giving you a lot of memory back.

Page 30

MLDL ogperating system eprom

SYNT (SYNTesize)}
XROM 11,22

With this function you can create two— and some three bytes
instructions in program memory without using the bytegrabber.
Data for this function needs to be given in the X- and Y-
register. The first byte of the instruction (decimal coded) is
given in the X-register. The second byte is given in the Y-
register. SYNT will place the instruction after the program line
where the praogram counter is pointing at that moment. ATTENTION :
this routine works both in PRGM and RUN made. Therefcocre you must
be very careful when assigning SYNT to a key. Carelessly pressing
the assigned key will produce an unwanted line in your program or
even worse.

Example : 159 ENTER™ SB execute SYNT will give a TONE 8 in vyour
program which is completely different from the normal
TONE 8. An input of 247 in X and Y will give you a byte
grabber.

GE (Go to .End)
XROM 11,23

This function is a sort of replacement of the GT0.. function of
the HF—-41. It will put you at the end of program memery, but it
is not packing the memory. Furthermare it does not put an end to
the last program in memory. When you do not knocw where you are in
main memory use BGE and you are at a familiar place again.

This routine will display B8 REG NNN and also circumvents the
line number bug in the HF-41 operating system.

XROM 11,24

This is just a seperator for the second and third section. Far
more details see page 16.

Page 31

MLDL operating system eprom

UPDATE FUNCTIONS

SAVEROM
XROM 11,25

With this function you can save the contents of an entire rom on
cassette tape. The input farmat for this function is a mname in
the alpha register and the desired page number in x.

A file will be created on tape of 6480 registers, occupying 2@
records.

Because there are a lot of users who have been using the Mountain
Computer eproem burner set with the functions READROM and WRTROM
we also included a user ccde program to be able to read back rom
files in the old B24 format. This is the program ‘RROM in
appendix H.

The File identifier on tape for the new file created by SAVEROM
is £ @7. This means that the files are presented in the DIR as :

NAME 27,8 640

We have chosen for a nonexistant file type to be sure that the
data is not accidently destroyed. Therefore the file 1is also
automatically secured after creation. SAVEROM saves 7 records per
file compared to WRTROM or °‘'WROM. Now you will be able to get the
maximum number of roms on your tape (e.g. 24 files).

Tc get the maximum number of files on your tape it is recommended
to do a NEWM with 27 file directory entry’'s. You can write 12
files on each side of the tape then. After bhaving written 12
+iles you should protect the tape from rewinding from one side to
the other by creating a dummyfile "ENDTAPE" of 300 registers.

Page 32

ML_DL operating system eprom

Example : If you have a cassette drive you can try the following
example. We will save the contents of our rom at page 7
on tape ancd read it back with GETROM. Give a filename
in ALPHA, for example USER1. Since we have our rom at
page 7, were also the HFPIL mcdule resides, we have to
move it to another page. This could be page 5. 1f you
can not use this page, place your rom at another page.
If so replace in the following example the pagenumber

with your new page number

We have the name in ALPHA and naow we have to give the
page address in the X register. In our example this
will be S. Execute SAVEROM. You will hear the cassette
drive working for same time. If you watch the drive
closely, you will notice that it writes 20 blocks after

each other.

When the drive is ready again you could do a DIR and

see as entry in the directory of

the tape our Jjust

created romfile. It will be in the form as cdescribed

under the function description,
e.g. USER1 77,85 &£4@.

GETROM
XROM 11,256

This is the counterpart of the SAVEROM function. Input format is
the same, sa the name must be in alpha and the page number must
be in x. For more information on the format of the files, we

refer to the function SAVERDOM.

Getrcm will read back the contents of the rom
the desired ram page. There is no checking
specified page is actually a ram page. This
get a rom file to a page that is not switched

Example : If you bave saved our rom file

file and put it in
done to see if the
is to allow you to
an.

on tape, we can

demonstrate it coming back. First of all clear the page
we are working on. This is done with CLBL. You probably

know by now how this function works,

so it is left wup

to you to clear the block. Fut in ALFHA the name of the

file we want to read back, e.g.
register the page address should be

USERt. In the X
entered to which we

want the rom read back. In our case this will be page

S. Now the function GETROM can be

executed. After it

has finished, vyau can check if it is back again in the

usual way with a CAT 2.

Page 33

MLDL operating system eprom

CHMPDL
XROM 11,27

This is in fact nearly the same function as the mormali COMFILE.
Therefore we are refering to COMPILE for the set up of the flags
and the input format for COMFILE. They are both equal.

The only difference is that this function will delete the numeric
labels in the program while compiling. This shortens the program
and speeds it up. This can be done, because the HF-41 remembers
where to jump to in the jump and execute functions. So after the
$irst run of a praogram, the HP-41 knows the distances to all the
labels and will always jump this distance. It does naot matter if
there is a 1label or not. Therefore the labels can easily be
deleted. Only when the program contains indirect jumps or xeq's
is it impossible to deo sao. This is due to the fact, that the HF-
41 can not remember all the possible addresses af all labels in
the program. For this reason you can not use this function when
the program contains a GTO ind or XERQ ind.

The program respects all the local labels. So the labels A
through J and the labels a through e are respected and will not
be deleted. This is necessary because the HF-41 searches for them
when you use them from the keyboard.

When this function is executed, it will make use of the user
registers to haold the addresses af the deleted labels. Therefore
make sure that the number of allocated registers is more then the
number of labels in the programs. If you don’'t take care of this
the calculator might crash.

To protect the compiled status as much as possible we change the
terminated by the .END. This protects you from accidently writing
at the end of the program if you want to centinue at the end of
the programmemary with new programs.

During program compilation, vyou will see the following messages
after each other. FACKING

cCoMFPL 2B G

COMFL 2B G/X

FACKING

COMFL 2B G

COMPL 3B G/X

READY

Page 34

MLDL oaperating system eprom

The compiler makes use cof the normal compiler. First the whole
program is compiled to find out where to jump to. Then all the
LBL's are deleted and their addresses are remembered in the user
registers. This is done during the packing stage. After thies the
program is compiled again. When the function is through you are
at the beginning of the pragram.

The user registers contain the infarmation where the program
resided and where the specified labels in the program were. The
structure of a register is as follows 1Q@@SSSSLLLLENN. The first
two digits indicate alpha type af data. The SS88 part gives you
the start address aof the program in program counter format. The
LLLL part gives you the address of the 1label in the packed
program without the labels. The NN part gives you the deleted
label at this address.

Example : We will compile the program that we used by the example
of COMPILE again. This time we are going to compile it
with OCMPDL. This is easily done. First make sure we
have encugh empty registers by setting the size to 18
or greater. We can now execute CMPDL. At the prompt
give the name of the program : TST. After the compiler
has Ffinished we can see the results. Just rum the
program. Again there is no delay in the first beep.
Also notify the fact that the flying goose does not
move anymore. This is because the goose cnly moves one
place to the right whenever the program encounters a
label. But since all labels are deleted, it is not
necessary anymore to move the goose. If you stop the
program and execute the function CBT, vyou will get as
result 48 BYTES. This implies that we have saved 20
bytes of memory, and in this case it means that the
program is shortened by roughly one third aof it°'s
original length.

IPAGE
XROM 11,28

This functicn sets up a ram page to load user programs and/or
assaembler code functions. The entire specified page is cleared
and the specified xrom number and the name in alpha are written
at the appropriate places. This we have already done manually
when we explained RAMWR and AFAT. With this function it will be
much easier.

Page 35

MLDL operating system eprom

Input for this functicn in ALPHA is the name of the rom. This
name must be from one to 11 characters. As it is the name of the
rom it is advisable to make it at least B characters. This has
two reasons. First, a function name of maore then 7 characters can
not be executed. Second and more important is the fact that the
CAT function of the HP-41 CX searches for names that are longer
then 7 characters. So, if vyou wuse a name of less then 8
characters, the rom name will not show up in the header catalog
of the HP—41 CX. This is also the case with the CCD module, a
module likely to spread out as much as the FPC ram. Second thing
to give as input is the MLDL ram page number to be initialized.
This page number is given in the X register. (in decimal)

When the function is executed, it will prompt you for the xraom
number of the page. There is no checking done an the input,
because it is possible to use other xrom numbers, but you can not
execute a function in a rom with a xrom number higher then I1, so
it is advisable to use a xrom number between 1 and J1. See for
the already used xrom numbers appendix D.

The name that will be written to MLDL ram consists of the first
eleven characters in the alpha register when you have no more
then 12 characters. If you have more then 12 characters in alpha
the name will be the first 11 characters that are left in the
display after having it displayed. 1In other words the first 11
characters of the last 12 characters in the alpha register will
be used and write into MLDL ram.

When you have less then 11 characters the last character can be
an underscore.

Output of the function is in alpha the address of the first empty
ward as it is used for the function MMTORAM.

Example = We will now initialize our page with the help of IPAGE.
First switch the MLDL ram page back from page 5 to page
7. Give the desired name in ALFHA. We will make use of
the same name as we used in the examples before. It
will be NEWUSER @1. Give the right page number in the X
register (7). Now execute the function IFABE. At the
prompt the desired xrom number can be given. We will
make use of xrom number 21. This is the xrom number for
user roms. After a short while a tone will sound and
the message READY will be in the display. Fressing
ALFHA once gives you the first free byte available to
load from. This will be address 7@%92.

Page 3é&

MLDL agperating system eprom

MKPR
XROM 11,29

This function alleows you to make your programs private, even if

you do not have a card reader. The function will respect the

compiled status of the program. At the prompt you must fill in

the name of the program that has tc become private or if you want

to make the current program private press alpha twice.

Example : If we want to secure cur program compiled with CMFDL
from accidently being altered we could make it private.
Execute private and fill in the prompt with TST. 1f you
switch to program mode you will now discover that the
praogram is private.

Page 37

XROM

11,21
11,02

11,83
11,04
11,05
11,04
11,87
11,08
11,09

11,10
11,11
11,12
11,13
11,14
11,15
11,16
11,17

11,18
11,19

11,20
11,21

11,22

11,23

NAME

RAMWR
MMTORAM

AFAT
DFAT
MOVE
CLBL
COPYR
ROMSUM
REG>RDOM

COMFILE
LOCA
LROM
coD
DECOD
ROMCHKX
ROM>REG

MNEM
DISASM

CAT
CBT
SYNT

GE

M.DL operating system eprom

APPENDIX A

INPUT

@-F hex

BBEB in ALFHA

flags @, 1 and 3
UCFAAA in ALFHA

OPAAA in ALFHA
BEEBEEEEDDDD in ALPHA
F / EBBEBEEEE in ALFHA
SD in ALPHA

P in ALPHA

@/P/BBBE in reg Y
tirst reg in X

name of program
BBEEBDDD in ALPHA
BEBE in ALFPHA

hex in ALPHA
binary in X

XROM in X
BREBEEEE in reg Y
first reg in X
AAAADDD in Y

BEEB in X

F at prompt

name at prompt

X first dec. byte
Y second dec. byte
pc. at (END.

Page 38

OUTPUT

waord in ram
stored program

FAT updated
FAT updated
block is moved
block cleared
copied block
romsum in xFFF
data in ram

compiled program
AAARADDD / NONE
AARAADDD / NONE
binary in X

hex in ALFHA

bad /7 ok do if true
data in registers
last reg in LASTX
mnemonic in Z and T
BBBE + 1 in X
AAAADDD in Y

cat from page F
length of program
instruction after pc.

MLDL operating system eprom

APPENDIX A
XROM NAME INPUT OUTPUT
1 1 ’24 —
11,25 SAVEROM name in ALPHA 4K in file on tape
dec. page in X
11,26 GETROM name in ALPHA 2K of tape in ram
dec. page in X
11,27 CMPDL name of program short comp. program
11,28 IPAGE name in ALPHA desired page cleared
dec. page in X name + xrom in page
xrom at prompt load addr. in ALFHA
11,29 M™MKPR name of program private program
SHORT FORM LETTER REPRESENTING
2] address digit
B begin address digit
D data digit or destination digit
E end-address digit
a] affset digit
P page number digit
-] source digit
u user digit

Page 39

MLDL operating system eprom

APPENDIX B

PROGRAMMING AND THE MLDL EPROM SET

Most functions provided by the ERAMCO MLDL-EPROM can be entered
in preogram whenever the eprom-set is plugged in an ERAMCO MLDt -
box connected to the calculator. When the ERAMCO MLDOL-box
containing the eprom set is connected program lines with eprom
functions are displayed and printed as standard functions.

I+ the beox is disconnected, these program lines are displayed and
printed as XROM functions with two identification numbers. The
first number -11- indicates that the functions are provided in
the ERAMCO MLDL-EFPROM. The second number identifies the
particular function. The XROM numbers for the ERAMCUO MLDL-EPROM
are listed below.

Function XROM Number! Function XROM Number ! Function XROM Number

AFAT XROM 11,83 | DISASM XROM 11,19 ! RAMWR XROM 11,01
CAT XROM 11,28 | BE XROM 11,23 { REG>ROM XROM 11,89
CBY XROM 11,21 ! BETROM XROM 11,26 ! ROMCHKX XROM 11,16
CLBL XROM 11,06 ! IPAGE XROM 11,28 | ROMSUM XROM 11,08
CMPDL XROM 11,27 ! LDCA XROM 11,12 ! ROM>REG XROM 11,17
coD XROM 11,14 : LROM XROM 11,13 ¢ SAVEROM XROM 11,25
COMPILE XROM 11,11 ! MKPR XROM 11,29 ! EBYNT XROM 11,22
COPYR XROM 11,87 ! MNEM XROM 11,1B } -— XROM 11,102
DECOD XROM 11,15 ! MMTDRAM XROM 11,82 § —-— XROM 11,24
DFAT XROM 11,34 ! MOVE XROM 11,05 !

Underlined functions are not programmable.

If program lines using the ERAMCO MLDL eprom are entered when the
eprom set is not connected, the function is recorded and
displayed as XER followed by the function name. Program execution
will be slowed down by lines in this form because the calculator
will first search in main memory for a program or program line
with the specified label.

Page 4@

ML.DL operating system eprom

APPENDIX C

MESSAGES

This is a list of messages and errcrs related to the functions in
the ERAMCO MLDL-EPROM set. When any of these errors are generated
the attempted function is not perfarmed, except as noted.

DISPLAY
BAD MLDL
ENTRY>&4

GTO/XERQ IND

NO ENTRY

NO HPIL

NO LBL xx

NONE

NONEXISTENT

NO ROM

ND ROM xx

FUNCTION
RAMWR
AFAT

CMPDL
MMTORAM

DFAT

SAVEROM
GETROM

COMPILE
CMPDL
MMTORAM

LROM
LocA

-all-

ROM>REG

RAMWR

ROMCHKX

MEANING
The MLDL ram page is malfunctioning.
There are already 64 entry’'s in the FAT.

The program contains GTO er XEE ind
statements.

No such entry exists in the FAT.
The HPIL module is not plugged in.

The GTO or XE& has no corresponding LEL
in this program.

The whole block is empty,
There is no such word in the block fraom
start-address up to the end of the page.

The ERAMCO MLDL-EPROM set is not plugged
in or is disabled or is malfunctioning.
There are not enocugh registers available
to store the specified block.

An attempt has been made to write to an

page which does not have a valid XROM
number at the first address of this
page.

The ROM with the given XROM number is nat
plugged in or disabled.

Page 41

MLDL operating system eprom

APPENDIX C

DISPLAY FUNCTION MEANING

NO WRITE RAMWR The data is not written at the desired
address. It is impossible to write to an
EPROM or ROM page. Also you can not
write at a disabled page.

PAGE > 139 GETROM There is an invalid pagenumber in reg X.
IPAGE
SAVEROM

ROM MKPR The named program doesn’'t exist in main
MMTORAM memory but is found in ROM
COMFILE
CMPDL
CBT

xx NN—-RR BAD ROMCHKX The ROM with the XROM number xx is bad.

xx NN-RR OK ROMCHKX The ROM with the XROM number xx is ok.
CoOMPL 2B G COMFPILE The 2 byte GTO0°'s are handled.
CMPDL
MMTORAM
COMPL 3B G/X COMPILE The 3 byte GT0’'s and XEfl's are handled.
CMPDL
MMTODRAM
LOADING PGM MMTORAM The program is loaded to MLDL ram.
PACKING COMPILE A byte is deleted and the program is
CMPDL packed to reduce the length of the
MMTORAM program.
READY COMPILE The function is ready.
CMPDL
IPAGE
MMTORAM

Page 42

MLDL operating system eprom

APPEND1IX D

XROM numbers range from 1 up to 31 inclusive. As quite a few
ROM°s are available at the moment of this writing it is advisable
to choose a XROM number with care to avoid conflicts with other
modules.

ROM name i XROM ID ! ROM name { XROM ID
MATH T Bt { SECUR V19 =
STAT i B2 { CLINLAB 119 %
SURVEY - et ! AVIATION P19
FINANCE i B4 ! MONITOR {19 ® o+
STANDARD { @5 i STRUCT-B ! 19 »
CIR ANAL i Bé& i C PPC 1981 H]
STRUCT-A HE". ¥ 4 i ASSEMBLER 3 P21
STRESS i @es ! IL-DEVEL ' 22
HOME M L " L i I/0 123
GAMES H 10 = i IL~-DEVEL 1 24

C PPC 1981 | 10 = ! —-EXTFCN it 25
AUTODUP P12 = i -TIME- I 26
REAL EST LD & § ' = WAND P 27
MACHINE V12 i —=MASS ST i 28
THRML HE. =4 i (- CTL FNS - !
NAVIG H 14 i HP-IL MODULE)
PETROL i 185 } —PRINTER 129
PETROL P16 i CARD READER -1
PLOTTER I 4 i PPC ROM 2 2?27 ! 3t
PLOTTER : iB ! ERAMCD-MLDL HES B §

+ 0Only a small number of this ROM, an early version of IL-DEVEL
ROM, were made and are not stocked or sald by HP.

Those marked with an asterisks share their identifying number,
and should not be used in the HP-41 at the same time. DBf two
functions with the same XROM ID the one at the lowest address
(i.e. the 1lowest numbered port) will be accessed first and the
other will be ignored. So use discretion when choosing your own
XROM number if you want to avoid these kind of problems.

Page 43

MLDL operating system eprom

APPENDIX E

XROM STRUCTURE

XRCM‘s are located at whole 4k blocks of addresses. The lawest
addresses in an XROM, and a few of the highest have special func-
tions. The remainder may be filled in any way. The locations in
the 4k blocks must be filled by ten bit words, giving 2718 diffe~
rent codes. They may be read as instructions, or as alpha-numeric
data. The follawing summary, adapted from J. Schwartz’' January
1983 PPC Conference paper, should be taken into account when
studying an applicatien ROM, e.g. the MLDL-RDM. A listing can

easily be prepared by using the MLDL-ROM functicns DISASM and
MNEM.

—— ——

Relative Function of code at that address
address (hex)
X220 The XROM ID number in hexadecimal digits.
XQa1 The number of functicns in the XROM (m),
including the XROM name.
Xea2-3 Address of XROM name
X2@e4-5 Address of first routine, program, etc.
Xeaas-7 Address of second routine, etc.
”n L L] "
X@az+2n Address of n’'th routine
X083+2n
X222+2m Address of last (m°'th) routine
X2@3+2Zm (m < &4)
X2Aa3+2m Compulsory null - 200.
X2a5+2m Compulsory null - Q@a.

FPage 44

MLDL operating system eprom

Add. of name Name of ROM (running backwards)

" "

[1® “"
Add. of Fn## § Start of Fn# 1 code

" | 1] "
Add. of Fn¥ 2 Start of Fn# 2 code

n " «w

1) 1] "

XFF4-A Special interrupt jump locations (see table).
XFFB-E ROM name abbreviation and revision #.
XFFF ROM checksum for diagnostic use

Word pairs containing function addresses:

First waord of pair: b @ 0 8] O D all ai@ a9 aB
Second word of pair: B @ a7 a& a5 a4 al a2 al a@d

This results in the following address in this 4k block if 0000 is
zera:

P2 p2 pl p@ all al@ a9 aB a7 asé aS a4 a3 a2 al a@

Where p@-3 is the bit representation of the 4k page number and
ald-11 represant the relative offset from the beginning of the
page.When 0000 is not equal to zero it must be added to p@-3. For
more information see the function AFAT.

If the two words would read 883, OFF this would represent a
starting address of a function at address XIFF (hex). The bit b
in the first word indicates USER code or microcode. If set the
address is the start of a USER code praogram (e.g. 200, BAl in the

printer module is address &6BAl1, start of USER code program
"PRPLOT™)

Page 45

xFF4
%xFFS
xFF&
xFF7
xFF8
xFF9
xFFA

Do

doing.

MLDL. operating system eprom

APPENDIX F

THE SPECIAL INTERRUPT POINTS

Interrupts during PSE loop.

Interrupts after each program line.
Wake—~-up with no key down.

Interrupts when turned off.

Interrupts when peripheral flag is set.
wake—-up with ON key.

Wake—-up after memory lost.

not wuse these points unless you know exactly what you

Careless use of these points may cause CRASHES.

Page 46

are

MLDL. operating system eprom

ASSEMBLY LANGUAGE INFORMATION

SHORT REVIEW OF THE HP-41 INSTRUCTIDNS

The HP41 CPU has three main arithmetic registers:

A,B and C.

These are 56 bits long (14 nibbles) and instructions can operate
in varicus "fields" of the register.

112 12 11 1@ 9 =} 7) S 4 312 11 @ !

! : H : H

H H ! XS | H

i H ALL 1<==>1 {

i< +e— + + >

! MS ! M H 5 & X H

i<—2>1i< i< >t
ALL : The whole register

M $ Mantissa

MS : Mantissa Sign

XS : eXpaonent Sign

S&X : eXponent and Sign off exponent

@R : At specified pointer
R<(- : from digit R to digit @
PR : Between P and &

There are two paginters P and R, of which the value is B-13. One
of them is selected at the time (through slct p or slct q), the
selected pointer is called R. These are three extra fields, which
depend on the value of the pointer), R<{- (up to R, from digit R

to digit @) and P-@ (between pointer P and @, & must be greater
tharn P).
There is a register G, 8 bits long, that may be copied to or

from or exchanged with the nibbles R and R+1 of register C.
{R<=12). There are 14 flags, B-13, of which flags B-7 are located
in the 8-bits ST (status) register, and there is a B-bits TONE
register T, of which the contents floats every machine cycle
through a speaker.

Page 47

M_.DL operating system eprom

Then there are two auxilary storage registers, M and N, which
can operate only in the field ALL. They are 36 bits long.

There is a 16~bit program counter, which addresses the machine
language, and a KEY register of 8-bits, which is loaded when a
key is pressed. The returnstack is 4 addresses 1long and is
situated in the CFU itsel+f.

The CPU may be in HEX or DEC mode. In the last mode the nibbles
act as if they can have a value from @ to 9.

The USER-code RAM is selected by Cls%x1 through RAM SLCT, and
can be written or read through WRITE DATA or READ DATA. 1f chip O
is selected (RAM address Q0@ to B@@F) the 16 stack registers may
be addressed by WRIT and READ @ to 185.

Peripherals (such as display, card reader, printer) may be
selected by Cis&xl through PRFH select or by SELP (see page 1%).

The mnemocnics are a kind of BASIC structure.

Arithmetic instructions (operate on a specified field)

A=0 C=B C=C+1 7R<B
B=0 A=A+1 =C+A 2A#C
C=2 A=A+B C=A-C ?A#D
ALOB A=A+C C=a-C RSHFA
B=A A=A-1 =-C-1 RSHFE
ALC A=A—-B 7B#8 RSHFC
A=C A=A—-C ?C#0 LSHFA
C<>B C=C+C ?A<LC

CLRF, SETF, ?FBET, ?R=. ?F1 (peripheral flag set?) , RCR (rotate
right) have a parameter B-12.

LD@R (load € at R) and SELP (select peripheral) have a parameter
B‘F -

WRIT and READ have a parameter 8-135, called

@(T), 1(Z), 2(Y), (X}, 4(L), S(M, &N, 7D, BIP), D),
1@¢i~), 11¢a), 12¢d), 13(c), 14(d), 15(e).

Page 48

MLDL operating system sprom

Jumps:
There are two classes jumps:

JNC (jump if no carry) and JC (jump if carry). These
instructions provide to Jjump relative 3F in positive
direction aor 4@ in negative direction.

b. ?NC GO and ?C GO. These instuctions provide tao jump toc an
absolute 16 bits address.
PNC XB and ?C XB are jump-subroutine instructions to absolute
addresses. (remember the return stack is just 4 addresses long).
Miscelanecus instructions:
5T=0 C=G ST=T FOWOFF
CLRKEY C<>6 ST<>T SLCT P
?KEY C=M ST=C SLCT @
=R—1 M=C C=8T P=Q
R=R+1 C<>M ST<>C PLOWBAT
G=C T=ST XxQ->60 A=B=C=0
GOTO ADR (CC6:31) ?C RTN PUSH (CL&:31)
C=KEY ?NC RTN POP { CC&:31
SETHEX RTN GOTO KEY
SETDEC N=C RAM SLCT
DSPOFF C=N WRITE DATA
DSTTOG C<ON READ DATA
FETCH S&X C=C or A PRFH SLCT
WRIT S%kX (for MLDL) C=C and A
Note : various arithmetic and all test instuctions may set the

carry flag. This flag keeps set only one machine cycle, so
a jump dependent on this flag must be immediate after the
arithmetic ar test instruction, otherwise the carryflag
will always be cleared.

Page 4%

MLDL gperating system eprom

CLASS & OPERATIONS

PV 12 113 V14 1S

P12

e ee

—-—

-

-

3111

gl

ZRE8

oo me ae ev =

LES $

nEEs|

- e —- wa -

288

SEEE
E=ER
N o o ot

e ou s we =

o388

s €N N ¢

BIIZ

- e - -
TIBE
- a8 o
e mm ve aw -
- o
-l -
-— au o» oOF

e meo oo we ~

GEEE

ZEEE

IZ8N

on ww as - -

S2RH

- ,r o= es sa o= o=

- W= W

11

29C 1 110 1 25C & #DC ¢
284 1124 | 264 | BEA

SC i
8|

CISED 294 1 114 0 254 1 804 ¢
e
{

]
'
1
1
1

158 0 198 0 1D@ 1 218 0 25B 1 29) 28 0 3N

894
9
A4

} 398 1 308
—_ -

OPERATION

NNERONIC

Sets systea flag number p
Set the carry flag if systes flag p is set

Clears systea flag numbher 3

Mo operatioa

11

Set the carry flag if the active pointer equals p

Set the active pointer to p

Load p into °C* at nibble pointed at by pointer and decresent pointer
Transter control to the desired peripheral p

@ W W

Eeud

Read “C" froa RAN sesory or the selected device to register § in the selected black

Writa "C* to RAM sesory or to the salected device ia register p of the selected block
Rotate °C" right by p digits

Set the carry flaq if peripheral flag p is set

’

RIT
Fl1

READ p
RCR

Page S@

MLDL operating system eprom

CLASS B SPECIAL INSTRUCTION HEX CODES

MERMIC HEX OPERATION MENOMIC HEX OPERATION

MUSED 234 Mot io use C=XEY 228 Caopy key register into digit 4, 3 of °C"
INUSED x74¢ ° * SETHEZ 258 Use hexadecisal arithmetic

UNUSED xB4 * ¢ SETDEC 2A@ Use decimal arithaetic

UNUSED xF4 °® ® DSPOFF 2£% Turn off the display

5T=3 304 Clears flag 8 to 7 ("ST" register } DSPTDE 320 Toggle the state of the display

CLRKEY 3CB Clears the ‘key pressed’ flag C RTH 350 Return from subroutine if the carry is set
HEY 3CC Set the carry flag when a key bas been pressed NC RTN 348 Return from subroutine if carry §1ag cleare
R=R-1 304 Decreseat the current painter RIN 2 Do a subroutine return alsays

R=R+1 30C Increseat the current painter

UMUSED 818 Not in use UNUSED 832 Not in use

B<L 858 Copy digits r,r#! froa °C° to °8° = 878 Copy °C* into °N*

C=6 898 Copy °6° into digits r,7#! froa °C* C=% 888 Copy "X° intg °C*

€O 808 Exchange "G° with digits r,r¢1 fros °C* COM BF1 Exchange “C° with °N*

UNUSED 118 Not im use LB 130 Load next rom word into digits 2-8 of °C°
H=C 158 Copy °C* into "A° PUSH 178 Push address digits &-3 in "C" onto stack
L= 198 Copy °N°® into °C" Pap iB8 Pop address from stack into digits &-3 of *
con 10B Exchange °C® with °N* UMUSED IFR Not in use

UNUSED 218 Mot in use 80T XEY 23@ Load key register into loser 8 bits of °PC*
1=57 258 Copy °ST® into °T" RAM SLLT 273 Set ras address ta digits 2-8 of °C°

ST=T 298 Copy °*T° into °"ST* UNUSED 2B Not im use

STOT 28 Exchange °ST® with °T° WRITEDATA Z¥¥ Write register “C" to the selected register
UNUSED 318 Not in use FETCH 333 Load 2-B of °C* from ros address &3 of °C*
ST=C 358 Copy digits |, ® froa °C* into "ST" C=COR A 3/ Logical er of "C° with "A® bit by bit

C=S1 398 Copy °ST" into digits I, @ fros °C* C=C AND A JB® Logical aed of °C® with “A" bit by bit
COsT 308 Exchange digits 1, @ froe "C° with °ST° PRPHSLET IFE Set peripheral address to digit 2-8 of *C*
I0-)60 @20 Drop stack to convert IR into GO 7R 128 Set the carry flag if the pointers are equa
POMOFF B8 &o to standby sode TLOMBAT 148 Set the carry flag if low dattery

SLCT P 8AB Select °P" as the active pointer #=B=C=8 1AR Clear registers ®A® *8" and °C°

SLCT @ BEB Select *B" as the active pointer §0TD ADR 1EB Copy digits &-3 of °C* into the °*FC°

Page S1

MLDL operating system eprom

CLASS 1 INSTRUCTIONS

Class 1 instructions are absolute GOTOs and EXECUTEs. They
consist of two consecutive ROM words of the following format :

A= (2 PY Ao Aa A= Az A, fRa B 1
Ais Aaa Aiz RAix ARiy Aie As Ae p p

A:n-fRe 1is the 146-bit address to branch to. The pp field of the

secand word determines what type of instruction it is. The next
table shows values for pp :

pp MNEMONIC OPERATION

88 NC X@ execute subroutine i1¥ carry is clear
a1 C X@ execute subrecutine if carry is set
1@ NC GO goto rom address if carry is clear
a1 C GO goto rom address if carry is set

Example ¢ NC B0 8232 which jumps to the memory last routine

isg
coded as :

2011 BAIB B1 = PCT as first word
20038 Y2103 10 = BPA as second word

Page 52

FIELD

ALL

MS
XS
S&X
@R
R{-
FQ

MLDL operating system eprom

CLASS 2 FIELDS OF OPERATIODON

AREA OF OPERATION

All digits.

Mantissa digits 12 - 3.

Mantissa sign digit 13.

Exponent sign digit 2.

At exponent digits 2 - Q.

At digit specified by the current peinter.

Up to and including pointer from the right.

fram pointer F, left up to Q, including pointers.

Page 53

MNEMONIC

=0
B=@
C=0
AL >R
B=A
A< >C
C=B
C<>B
A=C
A=A+B
A=A+C
A=A+1
A=A-B
A=A—1
A=A-C
C=C+C
C=A+C
C=C+1
C=A-C
C=C-1
C=0~-C
C=-C-1
TB#0
7C#2
?6<C
?A<B
?0#3
?A#C
RSHFA
RSHFRB
RSHFC
LSHFA

MLDL operating system eprom

CLASS 2 INSTRUCTIONS

OPERATION

clear A

clear B

clear C
exchange A with
copy A into B
exchange A with
copy B into C
exchange B with
copy C into A
add B into A
add C into A
increment A
subtract B fraam
decrement A
subtract C from
double C

add A into C
increment C
A-C into C
decrement C
camplement C

nines complement C

set carry flag
set carry flag
set carry flag
set carry flag
set carry flag
set carry flag

if
if
i€
if
if
if

B#0
C#2
ALC
A<B
A#=0
AZC

shift A right 1 digit
shift B right 1 digit
shift C right 1 digit

shift A left

1 digit

@Bz
a2z
24z
Q&2
B2
AA2
ecz2
@2
122
122
142
1462
182
1ARZ2
1c2
1E2
282
222

242

262
282

282

2Cc=2
<E2
32z
322
342
362
382
3A2
3c2

Page 54

S&X

es
@26
244
Q56
286
AL
acs
QES
186
126
146
164
186
1A4
1C6
1E5
286
224
246
266
286
2R&
2Cs
<2E&
IRs
26
346
366
286
AL
3Cs
3E&L

R<—

agA
aza
24a
Bé&A
B8A
DAA
@acA
QEA
12A
124
14A
14A
18A
1AA
1CA
1EA
20A
22A
24A
2&A
Z2BA
2ARA
2CA
2EA
33A
I2A
34A
I&6A
38A
TAA
3CA
3EA

ALL

@BE
@2E
Q4E
@&E
RBBE
BAE
BCE
QEE
18E
12
14
16E
i8E
1AE
1CE
1EE
20t
22E
24E
26E
2BE
2AE
2CE
2EE
J2E
32

34E
J&E
JBE
ZAE
ICE
3EE

PQ

212
232
252
@72
@92
2B2
apz2
@rz
112
132
152
172
192
1B2
iD=
1F2
212

32
252
272
292
2p2
202
2F2
312
332
352
372
392
3IB2
3Dz

IF2

Xs

81&
A
256
@746
896
@Bé
@Dé&
BF&
11&
136
15&
17&
196
1B6&
1D&
1Fé
216
236
2356
276
296
2Bé
2Dé&
2F 4
T14
33&
354
376
396
IB&
3D&
IF&

M

1A
22A
@esA
27a
294a
2EA
apA
aFA
11A
13A
15A
17A
194
1BA
1DA
1FA
21aA
23A
25A
274
29A
2BA
2DA
2FA
31A
33A
ISA
3I7A
3IFA
3SBA
3DA
3FA

S

R1E
B2k
OZE
B7E
Q%E
QEE
apE
@reE
11€
1ZE
1SE
17E
19€E
1BE
1DE
1FE
21E
23E
Z5E
27E
29E
ZBE
ZDE
2FE
J1E
I3

3ISE
I7E
3%E
3BE
IDE
3FE

operating system eprom

CLASS 3 INSTRUCTIONS

DISTANCE JNC- JC- JNC+ JC+ DISTANCE JNC- JC-
+/- 81 IJFB J3IFF Q@B QOF +/- B2 IF3 3IF7
+/—- @3 JEB 3EF 81B @l1F +/— @4 IET JE7
+/- @5 JIDB 3DF B2B B2F +/—- B& IDZT 3D7
+/— 87 3CB 3ICF @3B B3F +/—- @28 ICT 37
+/— @9 3IBE JIBF B4B QA4F +/—- BA 3B 32B7
+/~ @B 3AB 3JIAF BSB @SF +/- 2C 2AZ 3A7
+/- @D 39B 3%F @&6B B&F +/—- RE 393 397
+/— BF IBB IBF @7B OQ7F +/~ 1@ 383 2Z87
+/- 11 3I7B 3I7F @8B OEF +/—- 12 I72 377
+/=- 13 34B TI&F ©9B @9F +/~ 14 ILI 367
+/- 138 ISR 3ISF BAB @AF +/= 16 353 357
+/=- 17 34B JI4AF @BB @FBF +/- 18 343 347
+/- 19 33B 3I3F @cB @QCF +/—- 1A 33T IT3I?7
+/— 1B 3I2B 32F @DB BDF +/— 1C 22 3227
+/= 1D 318 31F BEBR BEF +/- 1E I13 317
+/— 1F 30B 3I@BF @FB OFF +/- 20 Ie3 zaz
+/- 21 <FE 2FF 1@8B 18F +/=- 22 2F3 2F7
+/- 23 2EB 2EF 11B 11F +/- 24 2ET 2E7
+/- 23 ZDB 2DF 1ZB 12F +/~ 26 2D3 2D7
+/=- 27 2CB 2CF 13B 13F +/~ 28 2CcT 2C7
+/=- 29 2BEB 2BF 14B 14F +/- 2A 283 2B7
+/- 2B 2AE 2AF 1SB 15F +/- 2C 2R3 2A7
+/- 2D 29B 29F 16B 16F +/- 2E 293 297
+/—- 2F 28B 28BF 17B 17F +/- 322 283 287
+/- 31 278B 27F 18B 18F +/~- 32 273 277
+/- 33 26B 26F 19B 19F +/~- 34 263 267
+/- 38 25B 25F 1AB 1AF +/- 36 253 257
+/=- 37 24B 24F 1BB 1BF +/—- 38 243 247
+/- 3% 23B 23F 1CB 1ICF +/—- 3A 22 237
+/- ZB 22B 22F 1DB 1DF +/- 3C 223 227
+/- 3D 21B 21F 11ER 1EF +/~ 3E 213 217
+/- 3F 20B 2BF 1FB 1IFF +/- 408 203 217
Class instructions allow the program to jump up
forward or backward from its present locaticn. The
JNC and JC.

Page 55

JNC+

@13
223
asz3s
@43
253
&3
Q73
283
@93
BAZ
2B3
acs
@p3
RE3
RFZ
102
113
123
133
143
1532
163
173
1B3
193
1AZ
1B3
1C2
1D3
tET
1F3

o

to &3
mNemon

JC+

17
@27
az7
@47
eas7
"1-¥4
@77
87
av7
QA7
Re7
ecv
an7
QBE7
aF7
ia7
117
127
137
147
157
1467
177
1B7
197
1A7
1B7
iC7
1D7
17
1F7

words
ics are

MLDL operating system eprom

ROM CHARACTER TABLE

!
|
|

lower 4! B ! 1 121 31 4:!S 16171815 !A!B!C!D!E
R D B B B el el D D Dt Rtk Ey g

u 2 !@!AIBICI!IDI!IEIFIGIH!II!IJIIK!L!M!N
o B el el e L (Y Py (Y IISNRY PR P B!
P 1 IPIBIR!S!ITIUIVINW!XIY!>Z!ID?INTITI
e L T e B e L B i D I ¥ Euy prvusay ey
- T B T N A T T N T T S N T S TPV S S S
2 R e e e B B B B B e R el T
T 1@ 1121331451617 :i8:19 14z < =15

R Dt L B B e B B B el etk Fy (U B
4 ! i~tatblieitdle! 1t ot 4 pry#y
fmmm e f e e e e e e |} | e | e | e e

Note : The colon (JA) displays as a boxed star. The comma (2C) is
also the left facing goose when used in a function name or
display and the period (2E) is also the right facing
goose.

You get the hexadecimal code of a character by taking the number
in the upper2 column and place the number in the lawer row behind
it. Last step is to place a zerno in front of the number.

Example : The hexadecimal code of the letter W is @17.
0+ the equal sign it is @3ID

FUNCTION NAMES

When a function is executed, the operating system checks the ROM
words containing the first two characters of the function name
and the two words immediately following. The catalcg table entry
for a microcaode function { both mainframe and XROM functions)
points to the first word of executable code. The function name is
listed in reverse order immediately preceding the first word of
executable code.

Page 5é

- AT ma WE ae BE e ee WY =D e ee

MLDL operating system eprom

Example : This example shows you how a normal function name is
caded.

10CE @81 A Hex 880 added to indicate end of name.
1aCF @@C L

ieD@ @83 C

1@D1 xxx First executable word of CLA.

FUNCTION PROMPTING

To tell the operating system that the end of the function name
has been reached, add BB? hex to the final character. To provide
a prompt set the top two bits in the first two characters of the
function name by adding the hex constants in the following table
H

NULL IND &
1ST 2ZND alpha alpha #dig. ind stack stack none example

2@ any X CLA,CLST
1@ Q02 X X CLP,COPY
120 10@ 3,4 SIZE

120 200 X

120 308 1 X CAT,TONE
200 e 2 X X STO,RCL
200 1B0@ 2 X X STO.RCL
200 200 2 X FS?,SF
200 3@ X 2 X

Joe @eQ X 2 LBL

320 100 X 2 X XERQ<(alpha)
Joe 209 X 2

Iga 300 X 2 X X(.ddd) GTOD

The operating system examine these ROM bits and executes a prompt
(if the appropiate bits are set) before the function is executed.
These prompts are only executed when you execute the function
$rom the keyboard. However, when the function is executed in a
program there will be ne prompt at all. Take care of this.

If the prompt accepts an alpha string, the input data is loaded
into the B register, right justified in reverse order in ASCII.

Example : Execution of the function AEN with the alpha argument

“COPY" will 1load 00 2@ 0@ S? SB 4F 4C into the &
register before the function is executed.

Page 57

MLDL. operating system eprom

I¥f the prompt is numeric the input data is locaded intoc the "a"
register in binary. Whenever the prompt also accepts indirect,
the value in the "A" register is increased with hex 68.

Example : Execution of the function RCL with a numeric argument
aof S5 will return 08 20 20 02 82 @2 37 in the “"A"
register.

I¥f the prompt would have been filled in with IND S5,
the "A" register caontains 02 2@ @0 02 22 @2 B7.

PROGRAMMABILITY

Two other ROM words of a microcode function are examined by the
operating system. The +First executable word, if a nop (@2@),
indicates that the function is non-programmable. This means that
if you execute the function in program mode, it executes rather
than being entered as a program line. 8SIZE, ASN and CLP are nan-—
programmable functions.

I+ tha Ffirst two executable words of a XROM function are baoth
zera, then the Ffunctiocn is both non—-programmable and executes
immediately. This means that no function name is displayed and
that the function will not NULL. The function is executed when
the key is pressed rather than when the key is released. PRGM,
BHIFT and back—-arrow are non—programmable, immediate executing
functions. Note that unless your routine checks for key releasae,
and the key toc which your function is assigned is held down, the
function will be executed repeatedly until the key is released.
These two words affect the functicn operation only if the
calculator is in FRGM mode. In RUN made, they are ignored.

Example : these are a few examples of function name promptings.

1Z2D2 @97 W 1185 @99 Y 12CC @85 E
12D3 9eS E 1186 @12 P 12CD B@RE N
1204 129 1 1187 Q@@F O 12CE 2@F O
12D 216 V 1108 122 C 12CF 1184 7

Page 5B

MLDL operating system eprom

FUNCTION INDEX

FUNCTION

cAT..Ql ------- ® e ®m om0 v manm ® W e o5 @09 eEE RSB aY eSS ss st

T ------- S v wueooww®eonwwae ® & e P S0 wEE9O S vE WSS e NS ®EE S0

CLBL-----Il----l-.-.--..----o.c---.o.---.----..---'

91y

PDL.I.I-I.I‘--.-....I‘.I'-l.-...-.ll.-ll. --------

CDD--.--.A-----.-..-..--.-'---.- --------- a4 s 00 gwaa

co

NPILE.II..D-l..-.-l-.‘.l.. --------- ® % e 06" uwoEB e ean

CDPYRI-‘I.!.--...Il-....l.l.l...l.....l‘l.‘--IQIII-

DE
DF
DI

CDD. ----- " ® PO MR ® O N ON e P ENS S e R NE PSS eE " e P
AT-..Q'I..l........l‘.-....-.-....l...I--I-O...--

SASH-.-.-'c..-.-DQ--.l-----o...- ------ > e a0 0 e 000 vae

BEII.---‘Il---.‘ll..---l.--lo.-v.-.o-.-..o----n'u.-

GE
IP
Lo

LRD".IIL--COC.---....--o-l--.'I.---o.--.-u -------

TRDN--‘-..-.-u--ot----o-.‘-----...0.---...-------
AGE-......---‘.------o---..-----.------n---u-o..o
CA.U...--.'.I.D..I'..l'.lll..‘Il.....l'll.ln-.."

"KPR‘.I.llll.l...l.-...l.ll.'.-.‘..--.I.-I-'-II-I..

HNEHIO.I-.I.'Q..-...--...C..-Il...-.l.....'.l--.'..

M

TDRAHIl-..I--I-.I...-l.'.“III..I....III...I....I

HGVE‘...-.--.'..--.....--.-“--I.Ql'.llII'I..IIIIOI

RO

HWR-.-----------.----o-.------------------.- -----

REG)RD”Il.'...'l...‘..‘l'..‘-I-".II-I..--.-!'..-.-.

RO

"CHKX--.-----I.---n--n---h-.--.--..ou----li--..--

RUHSU"-I...IO..OIIQ. ------ ¥ O 0O & ma0SSanrD PE S s e

RO
SA
sy

s

-

H)REE'U.'....II..l.....-".--.'I.--‘l.l..-l.---..
VERD"..A:.-...--n..----c.----..n-------a--..----n
NT.-‘-..-.----.---n...-.l-'l.---n--. ----- ® e ® e eno0o0

"2 2 E P B 00T RO NP PEONN ST SEDEYEYRONSPSE RSOSSN AN COR SN

Page 59

PAGE

1@
29
S0
14
34

n
B

20
13
24
12
28
31
33
35
22
23
37

27
1z

16
25
16
26

32

31
19
31

MLDL operating system eprom

CARE AND WARRANTY

Eprom care

Store the eprom set in a dry and clean place. Make sure that the
feet of the eprom’s are protected against bending. Otherwise a
pin could brake from the eprom and make it worthless. Da not
cannect any external power supply to the eproms. FProtect the
eproms against static charges, otherwise irrepairable damage to
the eproms can result. Do not remove under any circumstances the
labels on the epraoms for these labels protect the eproms against
loosing there data by accident through too much U.V. light on the
eprom’s.

Limited 180 day s warranty

The 83120A ERAMCD MLDL —Eprom set is warranted against defects in
materials and workmanship affecting electronic performance, -~but
not software content- for 1BQ day’'s from the date of original
purchase. If you sell your unit or give it as a gift the warranty
is automatically ¢transferred toc the new cwner and remains in
effect +For the original 188 days period. During the warranty
pericd we will repair or at our option replace at no charge a
product that proves to be defective, pravided you return the
product, shipping prepaid, to ERAMCO SYSTEMS or their official
. s@rvice representative.

Page &0

MLDL operating system eprom

CARE AND WARRANTY

WHAT IS NOT COVERED

This warranty doesn’'t apply if the product has been damaged by
accident, misuse or as the result of service or modification by
other than ERAMCO SYSTEMS or their official gervice
representative.

Na other express warranty is given. Any other implied warranty of
merchantability or fitness is limited to the 180 days period of
this written warranty. In no event shall ERAMCO SYSTEMS be liable
for consequential damages. This liability shall in no way exceed
the catalcog price of the product at the moment of sale.

Obligation tao Make Changes

Products are scld on the basis of specifications applicable at
the time of manufacture. ERAMCO SYSTEMS cshall have no obligation
to madify or update products once sold.

Page 61

MLDL operating system eprom

HOW TO SET UP YOUR OWN EROM PAGE

This part of the manual wiil tell you exactly how to set wup an
Erom image in your MLDL-box. This is done with the help of a few
user code routines that are l1caded into the MLDL Erom pages. If
you follow the instructions to the letter, nothing can go wrong.
And with the help of these instructions you should be able to set
up your own Erom image.

step 1

The first thing that has to be done is to clear the Erom page you
want to work at and te set the Erom block to the preper page,
Therefore you must set the first block with the 1left rotary
switch at page A. Set the rotary switch ¢ the other block to
page E. Disable both the switches to the left of the leftmost
rotary switch (pull them down). When you set the switches in
this pcsition, you can compare the results of your actions with
the results that will be given in this appendix.

step 2

Now we will first clear both Erom pages. Key in alpha mode the
single character “"A". CGo out alpha mode and execute CLBL (for
more details see page 14) Repeat this sequence with the single
character "E" in alpha. At this moment your Erom pages should
bath be clear. Now you can enable both the E€rom pages by pushing
the both switches up. Don’'t expect anything to happen yet. BEoth
pages are still empty.

step 3

Before doing anything else we have toc make sure that both pages
are empty. Kay in alpha "AFFF". Now execute LROM. The display
should read "none’. I¥f this is not the case you should caontrol
the setting of the switches and try step 2 again. This is done in
the same way for the second block, except you now have to key in
alpha "EFFF". The reading of the display should be again ‘ncne’.
If this isn’'t the case return to step 2.

Fage &2

MLDL operating system eprom

step 4

To allow the HP-41 to find anything that is plugged intec the
system it uses the first word on every page starting from page 5.
If this word doesn’t contain a valid identifier, it can’‘t execute
a routine or function located at that page. Therefore we will
continue with the setting of these identifiers for both Erom
pages. In fact this identifier is the xrom number of a module. To
avoid any problems with other modules it is recommended in this
stage to unplug all your modules.

Also the name of the rom mocdule has to be added. For this the
function IPAGE is used. It is enough to put the rom mame inta the
ALPHA register. After this you give the 4K page address in the X
register. Now you can execute the function IFAGE. It will prompt
you for a XROM number. To avoid problems we choose as XROM number
the number 221.

Nete : In this manual we described two ways to set up an Erom
image. First time we did this with the function RAMWR (see
page 5). Far this is quite a cumbersome way to prepare an
Erom image we did incorporate the function IPAGE (see page
35). Here we already gave you an example of how to create
your awn Erom image.

Example : We will create one Erom image with xrom number 21 and
as name “"TEST ROM 1A". For this we make use of the RAM
page that is controlled by the left rotary and enabling
switch., The block is already cleared and enabled 1in
step 2. The block is addressed at page "A". Now we have
all relevant data for the black, so we can initialize
it.

Key into ALFHA the name of the module and into the X
register the address aof the RAM page that will held the
Erom image. This address is 1@.

Execute the function IPAGE. At the prompt you answer
with the desired xrom number E.G. 21. After a while a
tone will sound and the message READY is displayed.

Page A3

MLDL operating system eprom

step 3

From naw on the HP-41 can recognize anything that is written into
Erom block one. So lets give it a try. First of all we have tao
create a little program in main memory that is to be stored in
the Erom block.

We will use the following program: LBL ‘test
LBL @1
BEEF
GTC @1
END

step &

You have now created a program in the memory of your calculator.
But we wanted to have this program in the MLDL-box, because it is
using up the last free bytes we had. That’'s no problem. We only
have to use MMTORAM to get the program in the Erom page we want
it., For this we have to initialize a few things.

When we have initialized ocur Erom page manually (without use aof
IPAGE), we have to give the starting address for our program.
This address will be the first word to be used by MMTORAM. Do naot
use the reserved wards in an Erom image in which you are to load
your programs (see appendix E and appendix F).

I+ you work with IPAGE however, the starting address is already
given in the ALPHA register. When you have toc use the ALFHA
register between two sessions of loading programs, it is
advisable to keep the contents of the ALFHA register in a normal
data storage register, or to note it down (be carefull saving the
address in a storage register, for MMTORAM can clear all the user
registers, when it makes use of CMPDL). This is handy for future
use. If you lost the address however, vyou can find it hack with
the help of LROM. Increase the address given by LROM with one,
and you have the new starting address to stcocre at.

Second thing we have to initialize is the setting of flags @ and
1, to achieve the desired private status of the lcaded program.
There are four options for these flags. For a full description of
these options we rever to the function MMTORAM at page B.

Page 64

MLDL operating system eprom

Third and last initialisation we have to make is the setting of
flag I. MMTORAM decides on this flag wether it shall use CMPDL or
the normal CDOMPILE function when it is loading a program. See the
function CMPDL for the difference between the two compilers.

Example : We are guoing to load the pragram described at step S.
This program has to be loaded in a nonprivate, complete
open status. Furthermare we do not want the numeric
labels to be deleted.

We do not have to give the starting address, for this
is given in ALPHA by the function IFAGE.

Fer a complete cpen, nonprivate status flags @ and 1
have to be cleared.

Flag 3 has to be set for we do not want the numeric
labels to be deleted.

When these settings are made, the function MMTORAM can
be executed. You will see the messages of the compiler
and then the message "LOADING PGM". When MMTORAM is
finished a tone will scund and the message “"READY" is

displayed. The program is now loaded in the Eram image
and is ready for use.

Note : If you switch to ALFHA you will see that the
starting address is changed. 1t now paints to
the +Ffirst Ffree byte after the Jjust loaded
program. This provides an easy way of leading
subsequent programs.

step 7

First thing we will do is deleting the prograh from main memory.
When you have done this, you should still be able to execute test
for it has been stored in the Erom page. So give it a try. You
will hear the familiar beeping every time the program is looping.
Stop execution of the program and switch to PRGM mode. Whenever
you try ta insert or delete a program step, you will see the
message "ROM°. This proves that the program has realy been loaded
into the MLDL-box. The program is alsc included in catalog 2. If
you execute CAT 2 you will see the label test showing up in your
display sooner aor later, depending on the amount of other roms
that are plugged into the system.

Page &5

MLDL operating system eprom

When you want to store more and pther programs, you can follow
the described procedure starting at step 5.

Load also the programs described on page 21 (TST! and Z8 (MDIS).
Locad the TST program with flag 3 cleared. Look at the praogram
after you have deleted it in main memory. As you will ses, it
dnes not contains the numeric labels any more. This and the fact
that it is in ROM now, will speed up the execution quite a lot.
Load the MDIS program with flags 1 and 3 set. The program will be
gpen in the eram page, but as soon as it is copied back to main
memory, it will be private.

This is the end of the description of our MDL ROM operating
system. We hope you will enjoy to work with this rom. If you have
any complaints or wishes you want to see in a future rom, please
let us know. We will take these in account as much as possible.

ERAMCO SYSTEMS
W. van Rlcmade str. 54
1785 LS Den Helder
The Netherlands

Page &6

	Cover
	Contents
	Introduction
	Installation
	Organisation of the instruction set
	MDL write functions
	Utility functions
	Update functions
	Appendix A: Input / Output
	Appendix B: Programmability
	Appendix C: Messages
	Appendix D: XROM numbers
	Appendix E: XROM and FAT structure
	Appendix F: Interrupting Points
	Appendix G: Assembly language information
	Function Index
	Care and Warranty
	How to set up your own EROM page

