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Preface

Feedback has been one of the more fascinating concepts of technology for
centuries, from sixteenth century furnaces that controlled their own tempera-
ture to contemporary theories of social interaction. The intuitive understanding
of feedback systems at the most elementary level has been made more difficult
than necessary by an “endless chain of dependencies” that seems to arise
whenever we attempt to analyze a feedback system.

In a system of three interacting things, for example, when thing A affects
thing B and thing B, in turn, affects thing C, we feel ourselves to be on firm
ground in our understanding of the system, even if we do not know all the
details of the interactions between 4 and B or between B and C. We have a
mental picture that follows a cause-and-effect path sequentially from A4 to B
to C.

If C turns around and affects 4, however, our mental picture of the
interactions is no longer so clear. By introducing feedback from C to A, we
establish an endless chain of dependencies. The mathematics of the process is
well established, but the schema, or mental picture, is more complex than it
need be. At this point we become involved with the mathematical analysis of
the whole process to make sure that we have accounted for everything. We run
the risk of getting bogged down in mathematical detail and losing sight of what
we are trying to accomplish.

This book adopts a basic change in outlook that greatly simplifies feedback
analysis and design. It allows us to retain a clear mental picture of the
interactions. In the view developed in this book, we assume that the system
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output at C is known. (It must, after all, satisfy some design specification, for
example.) Then one part of 4 is known—the part that comes directly from C
through a feedback path. But if the output at C is known, we can infer the
input at B from the characteristics of the connecting path from B to C. If we
know the input at B, we can similarly infer the contribution to 4 implied by
the input at B (through the characteristics of the connecting path from A4 to B).

Finally, we add the two contributions to A4 to find the total input to the
system. We can thus find the loss of the system—the input divided by the
output. No endless chain of dependencies arises, and our mental picture is one
of sequential reasoning through the two paths from output to input, in this
case from C to A.

To express the distinction between the new theory and the old, we use the
term “anticausal analysis” to describe the direction of analysis from output to
input.

By applying this change in point of view to many practical areas of circuit
analysis and design, we show (1) how it can be used in studying feedback
systems and (2) how it is applied to the problems of circuit design. One of the
chief benefits of the new approach is that we obtain a traceable path from the
initial, rough design approximations to the final, exact analysis and design.

Most of the examples in this book come from electrical circuits, where 1 have
had most of my experience. Examples from audio frequency design to designs
of microwave integrated circuits are employed; a uniform approach is adopted
over the whole range.

Knuth has said that “the enjoyment of the tools one works with is, of course,
an essential ingredient of successful work.”* An object of this book is to
provide the reader with an enjoyable set of tools for designing feedback
systems. I hope that it will also kindle interest in circuit theory and design.

For readers who would like to apply the methods developed here directly to
obtain individual designs of their own, or to check the designs given in the
book, 31 programs are given in three appendices. They are written for the
Hewlett-Packard HP 41C or 41CV calculator and cover most aspects of the
material in the book.

Among these programs is one that synthesizes feedback systems for a
prescribed performance. Another converts the HP 41C calculator into a
“two-port network calculator.” Included are the four basic functions of addi-
tion, subtraction, multiplication and the matrix inverse, as well as lead inter-
change operations (e.g., conversion from common emitter to common base or
common collector), all available at the touch of a button. This “calculator
within a calculator” is itself programmable, and means are provided for
converting numerical results into network properties, including loss, input and
output impedances, and sensitivities as functions of frequency.

These programs were originally written as an aid to the author to assure
himself that the approaches taken could be expressed algorithmically. I believe

*Quoted by J. A. Ball in his preface to Algorithms for RPN Calculators, Wiley, New York, 1978.
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that they have turned out to be more generally useful as teaching tools in
themselves. To avail oneself of this feature, a calculator must be acquired (with
printer and card reader). Alternatively, the programs of interest can be
rewritten for the computer in the reader’s own operating system and language.

This book is intended for upper-division undergraduate students of electrical
engineering and for professionals who have an interest in designing feedback
systems and circuits. It arose from notes written for an in-hours two semester
course that I taught at Bell Laboratories. After finishing the book, the reader
should be able to design feedback systems in a very direct way, with confi-
dence in the sensitivities of the important design specifications to the devices
and components used. I hope that the reader will also be motivated to do
original work in this area.

The book is intended for either individual or classroom study at several
levels of reader involvement. A good overview of the subject can be obtained
by reading the book and following the mathematical developments. To become
adept at applying the methods in actual circuit design, the reader should
complete the homework problems. Further study is facilitated by the fully
documented calculator programs in the appendices.

ORGANIZATION OF THE BOOK

The subject matter is separated into three hierarchical levels: (1) the system
level, (2) the circuit level, and (3) the device level. In the interests of clarity in
both thought and programs, interaction between hierarchical levels has been
restricted to adjacent levels to the fullest extent possible. The book is divided
into two parts. Part 1 concerns the relationship between system and circuit
levels, and Part 2 concerns the interactions between circuit and device levels. In
Part 2 the system considerations of Part 1 are also included.

Separation into hierarchical levels is helpful in breaking the design process
into manageable pieces, particularly in the design of monolithic integrated
circuits. It is also invaluable in rational programming of the design on the
calculator or computer.

FRED D. WALDHAUER

Holmdel, New Jersey
January 1982
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Chapter 1

Feedback Amplifiers:
An Alternate Foundation

Modern feedback theory may be said to have begun on the Lackawanna Ferry
between Hoboken, New Jersey and Manhattan on the morning of August 2,
1927. Harold Black was a passenger on his way to work at Bell Laboratories,
where he had been working for some six years on the problem of reducing
distortion in amplifiers to be used in repeaters for telephone transmission. On
a blank space in his copy of The New York Times, he drew the diagram and
wrote the equation shown in Fig. 1.1.":2 The diagram has become a common-
place in fields far removed from telephone transmission, appearing in books
and journals on control theory, system theory, biology, cybernetics, sociology,
and economics. The diagram and the equation represent the canonical view of
feedback.

Pinpointing the beginning of feedback theory at this event is arbitrary,
perhaps, since Maxwell had analyzed what we recognize as a feedback system
—the flyball governor—some 60 years earlier.> This analysis was based on
inventions that preceded it over several centuries, including furnace regulators
of Cornelius Drebble from the sixteenth century, windmill regulators of Mead
and others, and steam engines of James Watt in the eighteenth and nineteenth
centuries.*
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Figure 1.1. Black’s feedback diagram and equation.

Nevertheless, Black’s diagram and equations were central because they
established a language with which to talk about feedback systems. This
language was later picked up and used in many other disciplines, after Nyquist
and Bode had contributed their mathematical insights to problems of amplifier
design in the face of inherent instability.>® In this and the following chapters,
we investigate an alternative interpretation of the set of facts represented by
Black’s diagram and equation. We begin by briefly reviewing feedback under
the aspect of the canonical theory introduced by Black.

1.1 CANONICAL FEEDBACK DIAGRAM AND EQUATION

Black was seeking a way of reducing distortion in electronic amplifiers to be
used as repeaters for telephone transmission, where even small amounts of
distortion would build up to unacceptable levels in many tandem repeaters. To
see how the circuit represented by the system diagram in Fig. 1.1 does this, we
now develop Black’s equation from the diagram. A source signal is applied to
the input of an electronic amplifier or active path that amplifies it by a factor u
and presents it to the output. A fraction B of the output signal is fed back to
the input of the amplifier through a feedback path and is of polarity ap-
propriate to reduce the active path input signal. The reason that this reduces
distortion in the amplifier is that the undistorted portion of the output signal
almost cancels the signal from the source, but the distorted component is not
canceled. Its presence at the active-path input tends to cancel the distortion in
the active path: it may be regarded as a corrective predistortion applied to the
input of the amplifier.

To make these ideas quantitative, we derive Black’s equation from the
diagram in Fig. 1.1. The output y is related to the input x by solution of the
following simultaneous equations:

y=pe (1.1-1)
e=x+fBy (1.1-2)
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Substituting (1.1-2) in (1.1-1), we obtain Black’s equation

y= 1—“,Lﬁx (1.1-3)

This has been called the fundamental formula of control theory.” The quantity
pB is the loop gain, and 1—pp is the return difference, so called because if the
loop is broken (e. g. at e), and 1 V is applied at the right side of the break, the
signal returned to the input is pf8, and the difference between this signal and
the originating 1 V is 1 —pup.

A note on signs is in order. For the closed-loop gain to be stable, it is
necessary (but not sufficient) for the sign of either p or 8 to be negative. We
take up the question of stability in later chapters.

The benefits of feedback are considerable. To see the effect of feedback on
distortion, we add a distortion generator e, in series with the output of the
active path, as shown in Fig. 1.1. This generator represents a distortion signal
generated in the amplifier. Thus eq. (1.1-1) becomes

y=pete, (1.1-4)

Solving this simultaneously with eq. (1.1-2), we have

__ K 1
= x+ e 1.1-5
T AR A (1.1-5)

The distortion is reduced by the factor 1 —uB. For a substantial reduction in
distortion, therefore, the magnitude of 1—puB must be large: factors of 30th
-100 are common. The beneficial effects of feedback are seen to come from the
denominator of the gain expression 1 —puf, the return difference.

Another benefit of feedback important to Black’s repeaters is the stabiliza-
tion of gain. An accumulation of gain deviations in many tandem repeaters
could lead to overload for an increase in gain and to reduction in signal : noise
ratio for a reduction in gain. Bode defined the term “sensitivity” to describe
the ratio of the per unit variation in closed-loop gain K=y /x to a small per
unit variation in p:

gk dK/K _dinK
“oodp/p dinp

(1.1-6)

From this equation we can find the sensitivity of the closed-loop gain K to the
active-path gain p:
ko dK p_1-pBtup p(1—kB)

Sh=
Yoodp Ko (1-pg)’ W

=1=.8 (1.1-7)
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This equation says that a 1% variation in p will cause a 1/(1—uf) percent
variation of closed-loop gain. For the canonical diagram in Fig. 1.1, the
sensitivity is simply the reciprocal of the return difference. The sensitivity can
be found for any parameter in an amplifier. The sensitivity of K to 8 for the
fundamental equation is

T (1.1-8)

If p=—1000 and B=0.1, for example, the sensitivity to variations in pu is
1/101, and sensitivity to B is 100,/101. The basic assumption is that the value
of B is well controlled (e.g., a ratio of resistors), so that high sensitivity to 8 is
tolerable whereas the value of p is much less well controlled.

The effect of feedback on noise and other unwanted disturbances is most
easily calculated by referring the noise to the input of the amplifier; this is
common practice for characterizing and specifying noise. Noise originating
internally in the active path is represented in Fig. 1.2. The active path has been

Figure 1.2. By representing all noise sources in the amplifier by an equivalent noise source at the
input, noise may be removed from the feedback loop.
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split into two (noiseless) portions u, and p,, and a noise source is added
between them. This is equivalent to the second diagram, in which the noise
source has been divided by p, and moved to the input of the active path. Any
other noise sources in the amplifier may be similarly treated, so that the
equivalent input noise source n; will serve to represent them all. To compare
the noise performance of the amplifier with and without feedback, we can
write

y=uBy+px+pn, (1.1:9)
px+pn;

= 1.1-10

S (1.1-10)

Feedback reduces the gain and the noise by the same amount at the output.
Thus the signal /noise ratio, keeping the input signal constant, is unchanged by
the feedback. If noise n,, is injected at the output, we may find n,=n_/p and
use it in eq. (1.1-10) to find that the noise is reduced by the factor 1 —ufB and
that the signal /noise ratio is improved by this factor.

For the fundamental feedback diagram, the benefits of feedback can be
summarized to include reduction of distortion and active-path gain variation
by a factor of 1—uf, and an improvement in signal /noise ratio ( for given
output signal level) of the same factor. At the input, the signal must also rise by
1—ppB to maintain the given output, so that the improvement in signal /noise
ratio comes from the increased input signal.

We have defined two concepts for the canonical diagram that require further
discussion: (1) return difference, the denominator of eq. (1.1-3); and (2)
sensitivity, in eq. (1.1-6).

Bode made these two concepts precise for general circuits, not just for the
canonical diagram due to Black. He chose return difference as the primary
concept because, as he said, it “most nearly agrees with the usual conception of
feedback.”® In the following section we introduce an alternate formulation of
the problem in which return difference disappears but in which sensitivity
retains the general meaning given to it by Bode.

The benefits of feedback are not attainable without some cost. First, the gain
is reduced by the factor 1 —puf so that additional active-path gain must be
provided. A more important and fundamental limitation arises because of
bandwidth limitations in the active path and signal propagation delay around the
feedback loop. These effects can cause unsatisfactory dynamic behavior such
as ringing and overshoot of the output signal, and even instability. Much of
what follows in this and later chapters is concerned with these fundamental
limitations and the optimization of performance in their presence. The means
by which this is done in this book is considerably simplified by taking an
approach that is quite different from the one taken above. We begin the study
of the new approach in the following section. In Section 1.3 we discuss
bandwidth limitations in the active path. Propagation delay is studied later in
this chapter and in Chapter 5.
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1.2 AN ALTERNATE FOUNDATION FOR FEEDBACK THEORY

Harold Black wrote his equation on his copy of The New York Times as the
circuit gain of the feedback amplifier. He could as easily have expressed his
result as circuit /oss, merely the reciprocal formulation of eq. (1.1-3):

x:(ﬁ—ﬁ)y (1.2-1)

in which the input x and the active-path input e are expressed in terms of the
output y. The negative sign of B arises because feedback signals were defined
as adding to e in the previous section; now they are seen to subtract from
e(y)=(1/n)y. Fig. 1.3 contrasts the summation of signals under the conven-
tional and reciprocal formulations. The quantity (1/u)—p is the loss ratio.
Loss was used to express the characteristics of transmission lines, to which his
repeaters were to be applied, so that the concept of loss as the reciprocal of
gain would not have been strange. The loss of a repeater amplifier would have
had to be a number less than one. If Black had expressed his result in this way
the development of feedback theory might well have taken a different direc-
tion. This book builds feedback theory from this alternate point of view. It is
shown later that the description of feedback can thereby be simplified substan-
tially.®

One conceptual problem with the reciprocal equation concerns the common-
sense notion of causality. When we write an equation that says that the input x
depends on the output y, we express a mathematical relationship: x is
functionally dependent on y. We know, on the other hand, that x causes y. Most
equations that we write in engineering and science are expressed in cause-and-
effect form, in which the effect is expressed as functionally dependent on the
cause. No doubt this is why Black wrote his equation in the way he did. The
output y depends on the input x; thus it seems “natural” to write the equation

x + f\ e=x+ By
+
By
x(y) N\ e(y)
x(y) =e— By +
= (%—B)y
—By

Figure 1.3. Canonical feedback diagram under the reciprocal formulation.
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as y=f(x). In this way the mathematical description follows the causal
description. When the mathematical description proceeds in an “anticausal”
direction, it seems unnatural.

Consider Black’s situation when he developed feedback, however. He knew
the output he wanted. It was to be an undistorted signal. After many years of
effort, he finally found how to modify the input signal to obtain the desired
output. In this sense the reciprocal equation can be read as the answer to the
question regarding what input signal is needed to give the required output
signal. The reciprocal equation can be considered conceptually as a “designer’s
equation.” Although it takes some getting used to, the reciprocal formulation is
as intuitively satisfying as the canonical one.

How should we interpret eq. (1.2-1)? The loss ratio of the equation is simply
the sum of two components—the loss of the active path and the B loss. The
loss of the active path is the reciprocal of p and is the loss ratio when the 8
path is set to zero, that is, when the feedback is removed. Likewise, 8 is the loss
ratio when 1/p is set to zero, that is when the loss of the active path vanishes,
or when the gain goes to infinity. The equation contains no denominator; thus
the return difference as defined previously is unity.

Let us repeat the gain stability and distortion calculations of the previous
section for the reciprocal formulation. Although there is no return ratio or
return difference, the physical quantities representing the performance of the
amplifier must remain the same. Denoting the ratios x/y=1/K=L, the loss
ratio, we rewrite eq. (1.2-1) as

_1_ .
L=-—8 (1.2-2)

Applying the sensitivity definition of eq. (1.1-6) to this equation, we find that
dL/d(1/m)=1, so that

w1/
Sip=t L (/)-8
o
R (1.2-3)

Therefore, the sensitivity of L to 1/p is the same as that of K to pu, as we would
expect since the loss equation is merely a different description of the same
physical situation.

There is one important difference, however. The sensitivity under the
reciprocal formulation is also applicable for large changes in the parameter 1/p
since for a change A(1/u), we have

1
L=——
p B

AL=at
n
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Hence
AL _ A(l/m)
L (1/p)—8
so that
AL/L o _ /u )
A(/m)/(/w) S T /w)—B (12-4)

where SIL/‘L is now the sensitivity for large parameter changes and is not a
function of the parameter change (see Problem 1). Suppose, for example, that
1/p is 0.01 and B is —0.01, so that L=0.11. The sensitivity of L to 1/ is
1/11, or 0.0909. Then, if 1/p vanishes, that is, changes by —100% (a large
change, indeed), the percentage change in L would be —9.09%, bringing it
down to 0.1, or —§B.

Sum Rule for Sensitivities

The property of the sensitivity of the sum of several elements to one of those
elements will be important in later work. If £=a+b+c, then 02 /da=a, so
that S*=a/(a+b+c)=a/Z. We call this the sum rule for the sensitivity of a
sum of elements to one of these elements. Furthermore, it is true for a large per
unit change in element a.

As an example, consider the series combination of two resistors, one of 10 €2,
and the other of 90 Q. The sensitivity of the total resistance to the 10
resistance is 10,/100, or 0.1. If the 10 € resistance increases by 10% or 1 , the
total resistance increases by 1%. Similarly, the sensitivity of the total to the 90
Q resistor is 0.9. If this increases by 10%, or 9 €, the total increases by
0.9X10%, or 9%. In feedback theory based on the alternate, reciprocal founda-
tion, this particularly simple interpretation of sensitivity applies fairly gener-
ally because loss expressions tend to be sums.

Returning to the loss equation [eq. (1.2-2)], the sensitivity loss with respect to
B can be written directly:

Sk= (1.2-5)

__—B
(1/n)—B
This is the negative of the sensitivity of K to B8 given in eq. (1.1-8). Although
this expression is also true for large changes in 8, the sensitivity of K to 8 given
in eq. (1.1-8) is not. The fact that they are equivalent for small parameter
changes is evident from the definition of sensitivity given in eq. (1.1-6) and
because In u= —In(1/u), so that

D (129
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which says, for example, that a 1% change in v produces the same change in u
asa —1% change in 1 /v.

Distortion Analysis

The analysis of distortion reduction by feedback is different in character under
the reciprocal formulation and substantially simpler. It does, however, require
a considerable reorientation in thinking about the problem. Instead of a pure
sine-wave input producing a distorted output, for example, we now reverse the
picture to find out what predistortion is required on the input signal to produce
a pure sine-wave output. Where the input and output are related by a nonlinear
function, either formulation can be used. The latter one, however, has not been
used extensively and may be unfamiliar. Under the reciprocal formulation, the
output signal is the independent variable, and the distortion-producing nonlin-
earity can be related directly to it. As we see later, this gives a more intuitively
satisfying description of the effect of feedback on nonlinearity.

Let us assume that the input—output relationship of the active path can be
represented by a power series, in which the input e is instantaneously depen-
dent on the output y

e(y)=apta,y+a,y’+a,y? (1.2-7)

This equation states that the error signal input e(y) can be regarded as the
sum of a direct current (dc) term a,, a linear term a, y, a parabolic term a, y?,
and a cubic term a, y*. Each term is plotted separately in the first column in
Fig. 1.4, using (arbitrarily chosen) values of the a coefficients: a,= —0.01;
a,=0.02; a,=0.02; and a;=0.05. The sum of the components is shown at the
bottom of the column. For small-output signals, the total is fairly linear, but as
the signal increases, the nonlinearity rises rapidly.

We now can find the effect of adding negative feedback on this nonlinearity.
As before, the negative feedback path is assumed to be linear and to add no dc
term. We take the amount of negative feedback (again an arbitrary choice for
illustration) to be —f=0.06, or three times as large as the linear term. The
feedback signal adds to the linear term (and to the total) by (1.2-1) but does
not add to the dc, the parabolic, or the cubic terms. This is shown in the
second column in Fig. 1.4. The totals for each of the terms are shown
in the third column in Fig. 1.4, which shows only the linear term increased by
the feedback. The bottom row shows the sum taken vertically: in the first
column is the nonlinear output—input function of the nonlinear active path; in
the second, the linear feedback; and in the third, the total of the two.

Clearly, feedback has improved the linearity, and it has done this by
increasing the linear term of the series at the input, leaving the distortion
products and the dc offset unaffected. We can obtain a quantitative measure of
the improvement by differentiating eq. (1.2-7):

de

d—y=a1+2a2y+3a3y2 (1.2-8)
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We can normalize the coefficients to the linear term as follows:

de _ o (14202 30r?

g . . (1.2-9)

in which the second term in the brackets is a measure of the parabolic (or

Active path Feedback path Total
a0 1 +0.05 4 H+0.05 _,
I O IR I I I, .
—1 0 +1 0
—0.05 —-—0.05

Figure 1.4. Static input-output characteristics for a nonlinear feedback system. The first four
rows give the dc offset, the linear component, and the parabolic and cubic components; the fifth
row gives the total. The first column is the contribution to the input by the active path; the second
is that of the feedback path; and the third is the total of the two.
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quadratic) distortion and the third term is similarly a measure of the cubic
distortion. Higher-order nonlinearities are absent, but their presence would not
affect the discussion. When we add the feedback signal — By to the right side
of eq. (1.2-7), we obtain x(y), the input signal with feedback. When this
modified equation is differentiated, we obtain

Z—;Z(a,——ﬁ)+2a2y+3a3y2 (1.2-10)

When this expression is normalized to its linear term, we obtain

dx 20,y | 3eyy?
Z=(q,-p) |1+ 222 + 2L
dy (@ =8) =B a—B

(1.2-11)
Comparing the second and third terms in the brackets with the similar terms of
eg. (1.2-9), we see that both parabolic and cubic measures of distortion have
been reduced by the factor «,/(a;—pB). (Note that for negative feedback,
either a; or B must be negative, but not both.) But «; is just 1/u, the
small-signal value of the loss, so that the individual distortion components are
each multiplied by

a 1

‘11_,3: 1—pB

(12-12)

as obtained in the previous section.

Figure 1.4 clarifies several points that were obscure under the conventional
formulation. First, for a given output (note that the output is plotted as the
abscissa in the curves in Fig. 1.4), addition of linear feedback does not change
the nonlinear components at the input. It does change the linear component of
input, however, and this input tends to swamp out the nonlinear components.
Hence the nonlinear components are reduced relative to the linear component.
In this sense the output-input characteristic with feedback, shown in the lower
right graph, is more linear than that without feedback. Second, the dc offset a,,
is unchanged by the application of feedback.

1t is useful to think of the undistorted output signal as the desired signal and the
nonlinear terms in the input signal as corrective predistortion signals needed
(along with the undistorted component of input signal) to obtain the desired output
signal. Since the output is undistorted, feedback can only increase the undistorted
input signal required while leaving the predistortion components unchanged.

The situation depicted in Fig. 1.4 corresponds to negative feedback, in which
the slope of x(y) is increased when feedback is applied; that is, the loss
increases, or the gain is reduced. Suppose that we now change the sign of the
feedback and let —B= —0.06, as shown in Fig. 1.5, leaving the active path
unchanged. This corresponds to positive or regenerative feedback and for the
illustrative numbers chosen leads to an x(y) whose slope becomes negative
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ﬁyT —0.1 x(y)T —0.1

——0.1 —-1—0.1

Figure 1.5. Positive feedback: (a) the active-path contribution; (b) the feedback contribution;
(¢) the total.

over a region near the origin. In this example y is a multivalued function of x
for the functional dependencies of the conventional formulation. Under the
reciprocal formulation, however, x is a single-valued function of y. The type of
curve shown in the right-hand graph in Fig. 1.5 is encountered in various
unstable circuits such as flip-flops, multivibrators, and oscillators. In this book
we are concerned primarily with negative feedback.

The discussion to this point has sought to point out the advantages in clarity
that are obtainable simply by taking the output signal of a feedback system as
the independent variable and finding the input signal that is required to obtain
that output. Another aspect of this simplification is that equations written
under the reciprocal formulation are more easily solved. The reason for this is
that where nonlinearities exist, they are more directly related to the output
rather than the input signal, so that we can find an explicit expression for the
input in terms of the output. The reverse is generally not the case. The circuit
example described in Example 1 will serve to illustrate this point.

Example 1. Consider the common emitter transistor circuit in Fig. 1.6, in
which an external emitter resistor has been added to improve the linearity. The
small-signal input voltage may be approximated by applying Ohm’s law:

dV,=(r,+R)dl, (1.2-13)

where r, is the (incremental) emitter resistance, given by r,=kT/ql ; I.=1-+i,,
the dc quiescent value and the signal current, respectively; and kT /g is 0.026 V

IC

Figure 1.6. Common emitter transistor with
emitter resistor feedback for linearization.
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at room temperature, so that r,=26 £ at /.=1 mA. In this equation r, may be
interpreted as the reciprocal of the active-path gain, which is a transconduc-
tance. The value R may be interpreted as — (3, so that eq. (1.2-13) corresponds
to eq. (1.2-1). Thus we can integrate (1.2-13) after the appropriate substitutions
to yield

kT [ di, .
i b +R [di,
Zﬂln(l+%)+Ri(,+ v, (1.2-14)
q c

where the constant Vj is the dc base-to-common voltage consisting of Vg, the
dc bias voltage from base to emitter, and R, the dc drop across R. The dc
bias voltage from base to emitter V. is about 0.7 V at 1 mA for silicon
transistors. For values of i, smaller than the quiescent value, we can expand
the In function in a power series:

(K R); + KT( L2y Ly Loa )
V”_(qlc +R)1(+ p (2y tav gt (1.2-15)

where y=i /I.. The first term is linear in i .. The second term represents the
distortion. Just as in Fig. 1.4, the linear term is increased by the feedback and
the distortion terms are unaffected by it. The feedback signal is the voltage
across R arising from the output current flowing through it. By the sum rule,
the distortion terms have been reduced by the factor r, /(r,+ R). The sensitivity
of V), to r, has been reduced by the same factor.

Although it is easy to visualize these relations in the reciprocal formulation,
it is not as obvious how they can be put in the form of Black’s canonical
feedback equation and diagram. However, if we set g,=1/r,, calling g,
transconductance, we can write

8m
dl.= 1+ngth (1.2-16)
From this the canonical diagram in Fig. 1.1 can be drawn with p=g, and
—pB=1/R. Note that the canonical diagram is not a circuit diagram, but rather
a diagram relating signal variables. We discuss this later when we study more
general diagrams of this type—signal flow graphs. In eq. (1.2-14) g,,=ql /kT,
so the equation can be written

ql,

U= T gl R

dv, (1.2-17)

In this equation /. and V), both appear on the right side; the separation of
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variables that made eq. (1.2-13) easy to integrate is not obtained under the
conventional formulation.

1.3 FEEDBACK AROUND A FREQUENCY-DEPENDENT ACTIVE PATH

The study of feedback systems primarily involves their dynamic behavior,
which can be treated by differential equations in the time domain, or by
frequency domain methods. We study dynamic behavior in the frequency
domain in Chapters 2 and 3. This section introduces the subject by considering
feedback around an active path that has a simple frequency response cutoff,
one in which the high-frequency gain is inversely proportional to frequency. A
single transistor or an internally compensated operational amplifier (such as
type 741) have high-frequency characteristics of this type. We are interested
here in developing and comparing the mathematical descriptions of such an
amplifier under the canonical and the reciprocal formulations.

We assume that the low-frequency active-path gain is p, and that its
behavior as a function of the angular frequency w is given by

Mo

:W (1.3-1)

I

where 7, remains to be defined. Since p is a complex quantity, two numbers are
required to represent it at any given frequency. We could represent it by its
real and imaginary parts, for example. Perhaps the most familiar and useful
way to represent u is by its magnitude and phase. We can write

n=lue” (13-2)
Taking natural logarithms, we obtain
In p=In|p|+,0 (1.3-3)

Expressed in this way, we have as our two numbers the log of magnitude
(expressed in nepers) and the phase (expressed in radians). As a matter of
convention, we change the measure of magnitude from nepers to decibels: the
magnitude is 20log ,|u|. We also change the measure of phase from radians to
degrees by multiplying by 180 /7. A plot of these two quantities as a function
of frequency on a log scale is called a Bode diagram or plot.

Figure 1.7 shows a Bode diagram of p. At low frequencies the magnitude is
i and the phase is zero. If u were to have a phase reversal, the phase would be
180° without affecting the magnitude. At high frequencies the magnitude falls
at 6 dB per octave (20 dB per decade) in a straight-line relationship. It crosses
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40

30

20

20 loglul, dB

log  —=
Figure 1.7. Bode diagram of an active path including a simple frequency cutoff at w =1/p,7,.

the unity gain (0 dB) ordinate at an angular frequency of w=1/7,, the unity
gain frequency. At a frequency of w=1/p,7,, the denominator of p is j+/1, so
that the magnitude is less than the low-frequency value by a factor of 2, or 3
dB. This is called a corner frequency and, because it is concave downward, is a
downward corner frequency. The dashed lines represent the asymptotes of the
response.

The pocket calculator is useful for sketching Bode diagrams on semilogarith-
mic graph paper; such sketches are useful aids to understanding and are part
of the language of feedback systems. In this simple case the real and imaginary
parts of the denominator are converted to polar coordinates, and the magni-
tude is divided into the numerator. The log,, of the result is taken and
multiplied by 20 to obtain the magnitude ordinate. The phase is just the
negative of the phase of the denominator.

We now wish to find the effect of connecting a feedback network to the
active path defined by eq. (1.3-1). From the canonical equation, we have

n
K=
1—uB

Mo
_ 1+jp,mw (13.4)
] koB '

B 1 +ju,mw
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For example, if we take 8= —0.1, u,=100, and 7,=1.0, we have

100

=10
M= T 100w (1.3-6)
o 1141000
1= 1B= 1100w (1.3-7)
and, finally,
100
k= 11+,100w (1.3-8)

Bode diagrams for these four quantities are plotted in Fig. 1.8.

At low frequencies p=100, so that 20log|u|=40 dB. At w=0.01, it has a
downward corner frequency above which it begins to fall with frequency at a
rate of 20 dB per decade. The phase is tan~'(7,wp,). The curve of the loop
gain puB with 8= —0.1 is of the same shape in magnitude, moved down by 20
dB, and the same shape in phase, moved 180° because of the negative sign of
B. The uB curve crosses the 0 dB line (unity gain) at w=0.1. This is termed the
loop-gain crossover frequency. The return difference 1 —pf8 has a magnitude of
11 (20.8 dB) at low frequencies, and a downward corner at w=0.01, the same
as pufB. At high frequencies, however, it must equal unity (0 dB) so that it has an
upward corner at w=0.11. The phase of the return difference is zero at both
very low and very high frequencies and reaches a minimum of —57° at
»=0.033. Finally, the closed-loop gain K is p divided by 1—puf; on the dB
magnitude scale it is the difference between the p and return difference curves.
The phase of K is also the difference between the p and 1—p8 curves.

This completes the description under the conventional formulation. In
addition to the forward-path gain and the feedback loss, we investigated their
product (the loop gain) and the sum of unity plus the loop gain (the return
difference) to determine the closed-loop gain. Hence five quantities must be
evaluated as functions of frequency. Four of them are shown in the Bode plot;
the fifth, 8, is a constant here and was not shown, but it, too, would generally
be a function of frequency. Let us now contrast this description with that
under the reciprocal formulation, in which we find the closed-loop /oss rather
than gain.

The loss of the active path is found by taking the reciprocal of eq. (1.3-1):

l = L +jmw
L )



Feedback Around a Frequency-Dependent Active Path 19
| I I | I

40 N —]

Gain dB

10— [1—wupl —

—90°

Phase

—180° [ —

—270° | | | |
0.001 0.003 0.01 0.03 0.1 0.3 1
w —=

Figure 1.8. Bode diagrams for p, pB, 1 —pfB, and K for a feedback system incorporating a simple
cutoff in the active path.

For convenience, we let 1 /u,=a, and 1 /p=L,, so that
Lu:aO+jle (]3-9)

Next, we find the closed-loop loss L by adding the feedback contribution to
the input:

L=a,—B+jmw (1.3-10)

Taking the values used in Example 1, namely, 8= —0.1, a,=0.01 (p,=100),
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and 7,=1.0, we have
L(jw)=0.014+0.1+jw

=0.11+jw (1.3-11)

Contrast this result with that of (1.3-8). Under the reciprocal formulation, loop
gain and return difference are spurious quantities; we need consider only the
sum of the active path contribution to the input L, and the feedback contribu-
tion B.

Bode diagrams of the three quantities of interest, shown in Fig. 1.9, are more
easily interpreted than those in Fig. 1.8. The feedback simply adds to a,
thereby raising the frequency at which the magnitude of the frequency-sensitive
term equals that of the constant (dc) term. The shapes of the curves for L, and
L are identical; the magnitude curve is shifted up and to the right by the

° | |
20 log |L|
______ 20 log |81
—20 L]
3 20 log |L, |
3 = a1
77 u
//
—40 . —
;LP’ A
180° \
/B
[
g
a.
| |

0.001 0.01 0.1 1.0
W —>-

Figure 1.9. Bode diagrams for L
reciprocal formulation.

, B, and L for the feedback system described under the

a
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feedback, and the phase curve is simply moved to the right. Seen in the light of
the reciprocal formulation, the conventional view is awkward. Stated in a more
positive way, the reciprocal formulation simplifies the description of feedback
processes in the frequency domain, and in a way similar to the one that we
found for distortion in the previous section. In Chapter 4 we make the
mathematical nature of this simplification more precise.

We can interpret this simplification in terms of the canonical block diagram
in the following way. The expression for the frequency cutoff of the active path
given in eq. (1.3-1) bears a striking resemblance to the fundamental feedback
equation (1.1-3); p, corresponds to p, and jwT, corresponds to — . Just as we
eliminated the denominator in the fundamental feedback equation by use of
reciprocal formulation, we eliminate the denominator of the active-path ex-
pression when we use its reciprocal. This suggests that we can view the
forward-path gain in eq. (1.3-1) and Fig. 1.10a as a canonical feedback

Mo
1+ jeor g
(a)
+
Ko —
+
—jwry
(b)
+
+
—ag — jwTy

(c)

Figure 1.10. Alternate, equivalent representations of a frequency-dependent active path.
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structure (shown in Fig. 1.10b). Accordingly, we can eliminate the denomina-
tor from the expression by using the reciprocal formulation, as we have done
before for p,.

Figure 1.10c¢ goes one step further. The remaining active-path element p, is
also placed in the feedback path. It appears as a feedback element —1/p,= —a,
around an infinite gain amplifier or an amplifier whose loss is zero. With that
refinement, we see that the loss 1 /u=L, of the active path is given directly by
eq. (1.3-9). Furthermore, — 8 can be added to the feedback path in Fig. 1.10¢
to obtain the loss of eq. (1.3-10). It is clear that, mathematically, we can assign
physical effects in the amplifier to either the feedback or the forward paths
according to our choice. As we proceed, it will become apparent that this is
also physically true. The concept of a zero loss amplifier is a valuable one
widely used in working with operational amplifier circuits. We generalize this
result for two- and three-port networks later.

To recapitulate, Fig. 1.10a represents the conventional view of the active
path, with the path gain p/(1+jwT n,) multiplying the input signal to obtain
the output. Figure 1.10¢, on the other hand, represents the active path under
the reciprocal formulation, with the input signal equal to the negative of the
path gain of the “feedback” path. Since input e of the zero-loss amplifier must
be zero for any finite output, input signal x is forced to cancel the signal from
the output exactly. Clearly, the two representations are equivalent, but with the
functional dependencies reversed.

Example 2. The purpose of this example is to move the discussion from the
abstract canonical feedback diagrams in Fig. 1.10 to a more physical represen-
tation of feedback structures. Consider the circuit in Fig. 1.11a, in which an
operational amplifier is connected as a unity gain, noninverting amplifier. The
negative differential input is connected directly to the output. Differential
input voltage v, is amplified by the factor p: v,=pv,, where v,=v,—v,=v,—
pv,. Hence

v;= 1+Mv,- (1.3-12)
and
__M
0= T Y (1.3-13)
This is in the form of the canonical equation, with 8= — 1. Figure 1.11b gives

an equivalent circuit in which a dependent generator pv, represents the
forward or active path. The input admittance is small and has been ignored in
this simple model. The operational amplifier is represented solely by the
voltage-controlled voltage source and is described causally since the controlled
source both depends on v, and is caused by it. The expressions “depends on v,”
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Figure L.11. (a) Unity gain amplifier using an operational amplifier; (») conventional depen-
dent-generator equivalent circuit; (c¢) equivalent circuit using a generator dependent on the output
voltage, connected to the input of a zero-loss amplifier.
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and “caused by v,” are often taken to mean the same thing, so that the
distinction between the two concepts needs clarification.

The same circuit, this time described under the reciprocal formulation, is
shown in Fig. 1.11c and makes the distinction clear. In this description the
active path is described by an ideal amplifier that has a dependent generator
connected in series with its input lead. The ideal amplifier is defined as having
zero input current and voltage for any finite output current and voltage. No
numbers are needed to describe it; its function is to bring both the voltage and
current at its input to zero. This circuit element is discussed further in Section
1.7 and later chapters. A nonideal operational amplifier does have a nonzero
input voltage, however, and this is represented in Fig. 1.11c¢ by the dependent
generator v,=L, v, connected in series with the ideal amplifier input. This
representation of the operational amplifier is equivalent to that in Fig. 1.115,
but the cause of the output v, is represented by a dependent generator L ,v,.
Hence the functional dependency is set up in an “anticausal” direction, so that
whereas v, is caused by v,, v, depends on v,.

Over most of its frequency range, the voltage loss ratio of a simple voice
frequency operational amplifier is given by

%ZLa(s)Zao—Prls (1.3-14)

o

in which the Laplace transform complex frequency variable s replaces jw. This
change is made here for notational convenience; it will take on additional
meaning in Chapter 2. The value of a, for most operational amplifiers is
negligible (typically 10 ~>, or 100 dB of gain).

The loss of the voltage follower circuit is found by adding the voltages in the
input loop in Fig. 1.11¢. Thus, assuming negligible input current, we have

e;=v,tv,
or

%6~ (s)=14ms (1.3-15)
)

which is a loss response with a single upward corner frequency at w=1/7,, and
unity loss up to this frequency. This expression is not accurate for most
operational amplifiers because usually there is significant delay of signals
between input and output. The means for handling delays in feedback systems
is treated in Chapter 5.

14 NONLINEARITIES IN DYNAMIC SYSTEMS

The combination of nonlinear components with frequency-dependent ones has
always been troublesome. The reciprocal formulation allows us to deal simply
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Figure 1.12. Circuit for study of a nonlinear dynamic system. Either G or C may be a nonlinear
function of the voltage across it, in this case the output voltage.

with a type of nonlinearity problem that will be important to us later on. The
problem concerns Fig. 1.10¢, in which either a, or 7, (or both) may be
nonlinear functions of the signal applied to them. In Fig. 1.10¢ the applied
signal voltage is equal to the output signal since the signal voltage at the input
is zero.

To make the problem more concrete, we translate this system in Fig. 1.10¢
to the circuit shown in Fig. 1.12. In this circuit we connect a feedback
admittance consisting of a conductance and a capacitance around an infinite
gain operational amplifier. This latter is just the amplifier in Fig. 1.11¢, in
which v,=0. The problem of the previous paragraph can now be translated
into circuit terms; that is, we must determine what input voltage is required to
obtain a prescribed output voltage when either G or C (or both) are nonlinear
functions of the output voltage.

Taking the output voltage as a function of time, the feedback elements will
be instantaneous functions of this output voltage, so we must use a time
domain description of the signal variables. We may rephrase the question as:
“What is the generator voltage as a function of time to obtain a prescribed
output voltage waveform?” This is a classic problem; one engineering applica-
tion is that of generating a linear sweep voltage (a ramp function) for a cathode
ray tube. In this application the output is to be a voltage that linearly increases
with time. When this voltage is delivered by a nonlinear circuit, the input
waveform must be predistorted to obtain the linear output. The problem is to
find the input waveform for a given set of nonlinearities in the amplifier. Most
television sets, for example, include such predistortion circuits to correct for
nonlinear deflection systems.
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We consider first the case of a nonlinear conductance and a linear capaci-
tance. The input voltage to the circuit is expressed as a function of the output
voltage v, by

eG(t)=—RG[fG(vo)dvo]—RGCaZZ" (1.4-1)

To take the analysis further, we need an expression for the nonlinearity of
G(v,). If we assume a nonlinearity of the type given in eq. (1.2-8),

G(v,)=G,(1+2a,0y+3a;0?) (1.4-2)

we have

d
eG(t):—RG(G,U,,+G,a203+G,a3ug+C ;’) (1.4-3)

where we have written dv,/dt for the time derivative of the output voltage.
Thus, for any prescribed output waveform, we obtain the input waveform by
adding the four terms of the equation.

As an example, suppose that the specified output is to be a ramp of —1
V /us for a duration of 4 us, starting at v,=0 and r=0. We use a consistent set
of units to avoid unnecessary conversions; our fundamental units here are
volts, milliamperes, and microseconds, leading to kilohms, millisiemens, and
nanofarads. Find the required input waveform if G,=0.1 mmho, R;=1 k{2,
C=0.1 nF, and a,=a;=0.1. Then v,= —1, v>=t% v3= —t;, and dv,/dt is a
step of —1.0 V. The input waveform is given by

e(1)=(0.1—0.012+0.01£+0.1)u(r) (1.4-4)

where u(t¢) is a unit step. Note that units are consistent: (mmho) (k2)=1, and
(nF) (kQ)= pus. The waveform is plotted in Fig. 1.13.

Next, consider the case of a linear conductance and a nonlinear capacitance
in the circuit shown in Fig. 1.12. In this case the current through the
capacitance is given by

, =49 _do do,

'TTar T v, dr (1.4-5)
But since Q=C(v,)-v,, we obtain
d|C ac
o _d[C(e)v] _ ., 4C(0) (1.4-6)

dv dv, dv

(4 o
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Figure 1.13. Derivation of the input waveform required to obtain a prescribed negative-going

ramp at the output.

Thus
) dC(vO) dvn
IC:[C(UO)‘FUDT]W (14-7)

Since the current through the (linear) conductance is just Gv,, we have for the

generator voltage

eg(t)Z—RG{GvU+ c(uo)ﬂﬁ%’—")]%} (1.4-8)

We cannot go further without knowing the relationship between C(v,) and
v,. Let us assume as an example that over some range of v,, C(v,) can be

represented by the function

C(v,)=C,(1+kv,) (1.4-9)



28 Feedback Amplifiers: An Alternate Foundation

o1l
t, us
N 40
L o 1 | 1 |
s 10 20 30 50
f=0.025 MHz
_0.1 —_—
(a)
0.2}
0.1}
t, USs —>
>
T o 1 | | 1
S 1 2 3 4 5
—0.1—
f=0.25 MHz
—0.2
(b)

Figure 1.14. Input waveforms at («) 0.025 MHz and (/) 0.25 MHz to obtain a pure sinusoidal
output waveform from the circuit shown in Fig. 1.12.

Then v,(dC/dv,) becomes C, kv,, so that the input voltage becomes

d
eo(1)=—Ry| Go,+ Co(1+2kv,) ;” (1.4-10)

As in the previous example with linear capacitance, if we know v, at the outset,
we can find dv,/dt so that the input voltage time waveform can be found
immediately.

As an example, let R;=1 k@, G=0.1 mmho, C;=0.1 nF. Let us find the
required input voltage waveform if the output is to be an undistorted sine
wave: v,=Asinw?, with w in our consistent set of units—megaradins per
second). From eq. (1.4-10), we can write the input waveform directly:

e;(1)=—R;GAsinwt

—R;CyAwcos wi(1+2kAsinwt) (1.4-11)
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Since cos wtsin wt= 73 sin2wt,
eg(1)=—0.14sinwr—0.14wcos wt

—0.14%0ksin2wt (1.4-12)

The first two terms constitute the linear part of the input signal, and the third
term represents the corrective predistortion required to obtain a pure sine-wave
output. The latter term rises as the square of the amplitude, whereas the linear
terms rise in proportion to the amplitude. Figure 1.14 shows the input
waveform for A=1, k=0.2, at two frequencies, w=7/20 ( f=0.025=MHz)
and w=7/2 ( f=0.25 MHz).

The preceding analyses were made for nonlinear elements in the feedback
network of an ideal operational amplifier. These analyses apply equally well to
nonlinearities in the forward path of the canonical diagram if these forward
path nonlinearities can be expressed as functions of the output signal variable.
The equivalent diagrams in Fig. 1.10 show the translation of circuit parameters
back and forth between the feedback and the active paths of the canonical
diagram. In the case of the nonlinear conductance, for example, the analysis
would be the same if the feedback conductance were absent and if the forward
path consisted of a transresistance of R, =1/G=1/G(1+2a,0,+3a;0?).
Similarly, the feedback capacitance could be represented in the frequency
domain as a forward-path transimpedance, Z, =1 /jwC(v,). In either case, if
there is an output-dependent nonlinearity in the forward path, it is more
convenient to transform it to a feedback network, as in Fig. 1.10c¢, to allow an
analysis such as that carried out previously.

1.5 SENSITIVITIES FOR FREQUENCY-DEPENDENT LOSS RATIOS

As in the case of the sum of series resistors, the sensitivity of the sum of several
elements = to one of those elements a, is simply a/Z. Since the loss ratio in eq.
(1.3-10) is such a sum, we may obtain the sensitivity of L to each of its
component parts directly.

Thus for

L=aq+jor,—f (1.5-1)
we can use the sum rule to write

L—__Jo 152
Sa, ay—Btjwr (1.5-2)
The sensitivity of L to a, is a complex function of frequency. At zero
frequency the result is just that obtained in Section 1.2. But how should we
interpret the frequency dependence of the sensitivity and the fact that it is a
complex quantity?
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For a simple interpretation of sensitivity as a complex function of frequency,
consider the series combination of a resistor R and an inductor L. What is the
sensitivity of the total series impedance to the resistance? To the inductance?
From the sum rule,

R
zZ__ -
SR———————R ol (1.5-3)
and
z_ _JwL -
SL——R oL (1.5-4)

At dc the sensitivity of the impedance to the resistance is unity, whereas at
high frequencies the sensitivity is zero. The opposite is the case for the
inductor.

Since the sensitivity is a complex quantity, we need two numbers to specify
it—the real and imaginary parts or the magnitude and the phase. Both
interpretations are of interest and are developed in the following paragraphs.

Real and Imaginary Parts

Since the form of egs. (1.5-2) and (1.5-3) is the same, we can develop the
interpretation of the real and imaginary parts of the sensitivity for either the
impedance or the loss ratio.

Bode plots separately express the magnitude and phase of loss polynomial L.
Let us now find the sensitivities of the magnitude and phase of L to a,.
Expressing L in terms of its magnitude and phase, we obtain

L=|Lle’ (1.5-5)
and taking In L,
In L=In|L|+,6 (1.5-6)

The definition of sensitivity is given in eq. (1.1-6) as

din L
L = -
w™ dina, (1.5-7)
Substituting (1.5-6) into (1.5-7), we obtain
din|L
L L (1.5-8)*

% dlna, ’dna,

*I believe that this substitution and the ensuing result were first formulated by E. J. Angelo, Jr. in
1955 (MRI research report R-449-55, PIB-379, “Design of Feedback Systems”).
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Thus the real part of the sensitivity of L to a, is the sensitivity of the magnitude
of L to ay:

Re({Sk}=sIH (1.5-9)
The real part of the sensitivity gives us the per unit change in |L| for a small
per unit change in a,. Equivalently, it expresses the ratio of the decibel change
in |L| to a small decibel change in a,. The imaginery part is d6 /(da,/a,), the
change in 6 for a small per unit change in a,. If a, were to increase by 1%, for
example, da,/a,=0.01, the change in § would be

d8| 4, =001 Im{S%}

dg

(1.5-10)

The sensitivity of the phase to a,, Sfo, is the per unit change in the phase for a
small per unit change in a,. It is generally not a useful quantity by itself, since
we are seldom interested in the per unit change of an angle. Thus we usually
use the Im{S}. This is related to Sfo as follows:

Im{S\} a0

af day/a,

—g do /0
~day/a,

=0s’ (1.5-11)

a9

We call this quantity the angular phase sensitivity to distinguish it from Sfo. It
is the measure of phase sensitivity that is usually of interest. The complete
expression for the sensitivity in rectangular form is

SL=SIH+j6s)

ag dg

Returning to the example of eq. (1.5-1), we can write

|Ll — _ % -

S Re[ pp—: jnw} (1.5-12)

6s’ :Im{4ao ] (1.5-13)
o a,—B+jmw

The magnitude and angular phase sensitivities to B8 are given by similar
expressions in which the numerators are replaced by 8. The magnitude and
phase sensitivities to 7, are given by similar expressions in which the numerator
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is replaced by j7,w. This latter fact relies on the relationship

Sk =Sk (1.5-14)

JTiw
since at any frequency, jw is a constant, so that dIn jw=0. Thus

dinL din L _dnL __,
din jer, _ dint, tdinjeo _ dinr, > (1.5-15)

Ti

The magnitude and angular phase sensitivities for the example, with a,=0.01,
B=—0.1, and 7,=1, are shown in Fig. 1.15. The magnitude sensitivities give
the percent change in |L| for a 1% change in the parameter. At low frequencies,
for example, the sensitivity to a, is 0.01 /(0.01+0.1)=0.091, so that a 10%
change in a, would cause a 0.91% change in |L|, or a 1 dB change in a, would
cause a 0.091 dB change in |L|. Therefore, the sensitivity to a, is small and
drops with frequency. The sum of the magnitude sensitivities is unity (of
course). At low frequencies |L| is mostly sensitive to 8 and at high frequencies,
toT,.

The phase sensitivities are expressed as the imaginary part of S*=6S?, as
noted previously, with 6 in degrees. In this example, a 10% change in the
parameter would give a change in 6 equal to 10% of the scale value. (Similarly,
a +1 dB change in the parameter value would give a change in 6 equal to
+12.2% of the scale value, since a +1 dB change is equivalent to a +12.2%
change.) The maximum ordinate value for ﬂSfl is 29°. Thus a 10% change in T,
will cause a maximum change in phase of 2.9°, at w=0.11.

Several sensitivity relationships help to ease the calculation of sensitivities.
We encountered one of these relationships in Section 1.2, namely

dinl/y _ —dlny _ p (1.5-16)

1/y— =
S dln x dln x x

Another relationship we use is

S diny

_dinx _[diny\"' y
(dlnx) =1/8; (1.5-17)

If k is a constant, we can write

dink+dlny dlny
dln x ~dinx ¥

Sky= (1.5-18)

If u and v are functions of x, we can use the alternate definition of sensitivity
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to obtain

utov—
SyTr=

d(utv)/(utv) 1 ( du N dv )
dx /x Cuto\dx/x  dx/x

_ 1 du/u dv/v)
utv udx/x de/x

= —— (uS!+0S?) (1.5-19)

Table 1.1 is a collection of sensitivity relationships that have a twofold
purpose: (1) the relationships will be found convenient in working with
sensitivities; and (2) perhaps more important, they serve to familiarize us with
the concept of sensitivity. In Problem 12 the reader is asked to derive each of
these expressions from the definition of sensitivity. Most can be derived in one
or two lines.

Table 1.1 Sensitivity Relationships® ¢

1 s0=s;

2 5=ns!

3 Sy=1/8"

4 SI=850-SH+S S+ - where y=y(u,, uy,...,u,)
5 Sy=sV+j¢, S

6 SY=Res;

1
7 Sh=—ImS;
X ¢. X

)

8 SYC... =SS+ .-

9 Sx"+"+"':m%(u55+055+“')
10 Si=-8/"==58}, =St
11 S¢/r=8¢—s¢
12 S7=yS)
13 s:"-"z—l—-s;'
: Iny

“Coordinates y, u, v are single-valued differential functions of x.
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Figure 1.16. Magnitude of the sensitivities of loss to a, 7, and B for the simple binomial loss
ratio. The fourth diagram gives the sensitivity of loss to the active-path loss ¢,,.

Sensitivity Magnitude

The complex quantity sensitivity can be expressed by its magnitude and phase
as well as by its real and imaginary parts. This is of particular importance
when we are interested in distortion reduction or other benefits of feedback
that involve the swamping out of undesirable effects (signals) by the feedback
signal. In such cases the phase is not of great importance; we are interested in
the ratio of the magnitude of the feedback signal relative to the active-path
signal. In Fig. 1.16 the magnitudes (in decibels) of the sensitivities of loss to a,
7, and B corresponding to the example are plotted as a function of frequency.
(Note the scale difference between the a, sensitivity and the remaining curves.)

These curves are useful in estimating the distortion reduction afforded by
feedback. Suppose that a, is nonlinear, as discussed in Section 1.2. The
magnitude of the sensitivity of loss to a, tells us specifically how much
reduction we may expect in distortion products from this particular nonlinear-
ity, and similarly from the curves for 7, and 8. The fourth curve, which is for
the sensitivity of loss to 7,=a,+7,s, is also included to relate sensitivity to
return difference as defined under the conventional formulation.

Relationship Between Sensitivity and Return Difference

Let us now form the sensitivity of the loss to the active-path loss:

L

L a
L,

L,—B
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This is the ratio of the input contribution of the active path to the input to the
total input. We now take the reciprocal of this sensitivity:

1
— =1-uB
SL I

I
L,

Hence the reciprocal of the sensitivity is the return difference as found under
the conventional formulation. Therefore, the magnitude of the sensitivity is the
reciprocal of the magnitude of the return difference for the canonical diagram
in Fig. 1.1.

Under the reciprocal formulation there is no return difference or loop gain,
but the sensitivity is the same for the two formulations. For this reason, we
assert the primacy of the concept of sensitivity rather than that of return
difference to describe feedback structures. The two concepts are quite different
at a fundamental level. Whereas sensitivity is a physical property of a struc-
ture, return difference is not. The latter depends largely on the way we (1)
define the signal variables and (2) assign the different parts of the structure to
the active path or to the feedback path. We have seen (in Fig. 1.10) that we can
assign the total structure to the active path (in Fig. 1.10a) or to the feedback
path (in Fig. 1.10d). As we analyze feedback structures in greater detail in
later chapters, we see that this ambiguity of assignment carries through to the
most basic levels of analysis so that return difference can be defined only with
respect to arbitrary choices. In relation to the physical phenomenon it is to
represent, sensitivity may be said to be a “well-formed” parameter, whereas
return difference is not.

Sensitivity is a useful concept because it keeps things in proportion. It helps
quantify our ideas about what is and what is not important in a system—puts
the effect of variations of system parameters on a common basis. The basis
here has been the per unit change in the magnitude and phase of the loss ratio,
but the concept can be applied, often usefully, to any quantity dependent on
several parameters. It can be applied in situations where the component
parameters and their variations are only partially known or completely un-
known but where the sensitivity can be determined experimentally.

The concept of market elasticity is an example.'® Here, we are interested in
knowing how much the market for a product will decrease when the price is
raised. We can sometimes find out by changing the price in a test market area
and determining the effect on sales. If we raise the price 10% and if the sales
fall off by 5%, we say that the market elasticity is —0.5. This is just the
definition of sensitivity we have been discussing here, but with the difference
that the sensitivity is found by experiment without knowing the parameters or
their quantitative relations that went into establishing it. Armed with this
knowledge, we are in a better position to find the reason for the elasticity and
can make a better judgment as to whether to market the product or how to
improve it.
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1.6 THE REFERENCE CONDITION

A key difference between the conventional approach and that taken under the
reciprocal formulation is highlighted by the notion, introduced by Bode, of the
reference condition. Bode used this idea to clarify a situation that does not arise
for Black’s simple canonical diagram: when a portion of the input signal leaks
through the feedback network to the output, an output signal will exist even
when p=0 (or, as Bode said, “when the tube is dead”). We treat this situation
in a later chapter. The point is that a reference condition was defined by
setting p=0.

Under the reciprocal formulation we define a reference condition by setting
L,=1/p=0. In this reference condition the active path becomes a zero-loss
(infinite gain) amplifier. Thus in the reference condition, L= — . The refer-
ence condition for the canonical feedback diagram thereby serves to define S.

This concept will serve to clarify relationships in feedback amplifiers,
particularly in what are conventionally called multiple-loop feedback amplifiers.
It is in this area that Bode’s theory exhibits its greatest difficulty. We see later
that under the reciprocal formulation the “multiple loops” disappear, so that
these structures present no special difficulties and, indeed, do provide an
improvement over the single-loop design that Bode envisioned.!

Use of the infinite gain reference condition is at least implicit in a second
equation that Black wrote down on his copy of The New York Times in 1927:

Gain:%(—l%) (1.6-1)

in which B emerges as the reciprocal of the gain when the loop gain p8 goes to
infinity.

The zero-loss reference condition, or null reference, is one of the most useful
concepts the reader will encounter in this book. It has been introduced in its
single-dimensional form in this chapter, but it is extended to two-port net-
works in Chapter 6 and in a three-dimensional version in the discussion of
differential and operational amplifiers in Chapter 12. This is useful because it
allows us to build up transmission functions and characteristics starting out
with a clean slate; each physical effect that causes a departure from zero loss
(infinite gain) is a portion of the sum of all such physical effects. All are added
on a common basis so that we can compare their relative effects.

1.7 AN ANALOGY FROM PROJECT MANAGEMENT

A main feature of the alternative foundation for feedback theory is the focus
on the output as the goal.'’ Making the output the independent variable (or,
later, the set of variables) is a bold step, but with ample precedent. Taking the
output as the known (or independent) variable presumes that you know where
you are headed (even if you do not). It can be likened to the project
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management technique known as PERT (project evaluation and review tech-
nique),’® used to make sure that a project keeps on course toward a specific
objective.

To manage a project by way of PERT, the goal (the output) first must be
specified in as much detail as possible and a specific end date set. Then each
element that goes into making the final goal is analyzed, particularly with
respect to what materials must be present, what labor input is needed, and
most crucially, how long that element will take to do. Project evaluation and
review technique recognizes that many subprojects will have to come together
at points well before completion of the total project, and these are treated in
the same way as the whole project. These subprojects and their goals provide a
main feature of PERT: they provide specific milestones that can be identified
ahead of time so that when they are reached, the project status can be
measured against the original plan. The central idea of PERT is to start with
the project goal and work backward in time to the specific milestones along the
way to identify the subprojects that must be done on schedule to ensure timely
project completion.

The PERT technique consists of measuring the difference between where the
project is and should be at any given milestones. If it is where it should be, no
additional steps apart from those detailed in the original plan need be taken. If
a subproject is late, however, two alternatives must be considered: first, if it is
not on the original critical path, the situation is reevaluated to find whether it
has “gone critical,” in which case the second alternative comes into play. This
second alternative, when the milestone is missed, calls for increased effort on
the critical subproject or a rescheduling of the whole project.

Although the analogy between this management system and the feedback
system under the aspect of the reciprocal formulation is rough, it is useful in
two ways: (1) it takes the perhaps unfamiliar idea of analyzing a feedback
system by working backward in time and shows how this concept has been
used in another field; and (2) PERT works if it is applied properly. The same
may be said for feedback analysis and design under the reciprocal formulation.

19 SUMMARY

A brief review of the problem that led to Black’s invention and canonical
feedback equation was given at the beginning of this chapter. This equation
forms the foundation of classical feedback theory. An alternate foundation,
introduced in Section 1.2, substituted loss (the reciprocal of gain) for gain in
the canonical feedback equation. Under this reciprocal formulation of the
feedback problem, return difference is eliminated, and analysis of the effects of
feedback on gain stability (sensitivity), nonlinearity, and noise is simplified.
In Section 1.3 we applied the reciprocal formulation to an active path with a
simple high-frequency cutoff. We found that the reciprocal formulation simi-
larly simplifies the description of the active path itself. We next studied a
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nonlinear dynamic system in which the nonlinearity can be expressed as a
function of the output signal variable.

In Section 1.5 we developed the sensitivity concept for systems that include
frequency dependencies, including high-frequency cutoffs and transport delay.
In Section 1.6 we defined a null reference condition for feedback systems: a
system is said to be in the reference condition when the loss of the active path
is zero (i.e., when the gain is infinite). Finally, in Section 1.7 we drew an
analogy between the analysis of systems under the reciprocal formulation with
the PERT technique of project management.

PROBLEMS

1 To see why the definition of sensitivity given in Section 1.1 is restricted
to small per unit variations of u, assume that p changes by a sizable
amount Ay, and find an expression for

L_ AK/K
" Ap/u

in which S/ is the sensitivity for large variation of the parameter p. The
expression must, of course, be equivalent to eq. (1.1-7) for small
changes of p.

2 Let the transfer characteristic of the u path of the feedback system of
Fig. 1.1 be given by the nonlinear relationship

y=petpse’
Thus

d

d_i =p,+3pqe?

If u,=100, p;=10, and B=1.1, find K=dy/dx and show that the
distortion term ep,e? is reduced by a factor about equal to the sensitiv-
ity.

3 In the text we took as a measure of nonlinearity of L the values of the
coefficients 2a, /(a; — ) and 3a; /(@ — 8). Another measure of nonlin-
earity is the sensitivity of L to the output signal variable y. Applying the
definition of sensitivity to eq. (1.2-10), derive an expression for SF.
Next, derive S!/* using eq. (1.2-8). What is the ratio of these sensitivi-
ties, and what is the significance of the ratio?

4 Consider two resistors in parallel, R, and R,. Draw a canonical
feedback diagram whose output is the voltage across the pair and whose
input is the current through the pair. Let p=R,. What is 8? Find the
sensitivity of the parallel resistance to R,. Repeat the procedure, this
time letting the output be the current and the input the voltage.
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5 The active path of a feedback system as illustrated by either Fig. 1.1 or

1.3 is described by the following equation:
y=k,In(e+1)
where the error e is given by
e=x+tk,y

Sketch the input-output characteristic for values of k; =10 and k,=0
and —0.5. Let y vary from — 10 to 10.

The output of a bipolar transistor differential amplifier is related to its
input voltage (the differential input voltage between their minus and
plus input terminals) by the equation

Uy
0.052

y=Atanh

where v, is the input differential voltage, y is the output voltage, and A4
is the small-signal voltage gain. When feedback is connected around
this amplifier as shown in Fig. 1.17, we obtain e; as the sum of the
feedback-path and active-path signals:

ec=RsGgy+to,

Sketch the static input-output characteristic with and without feedback
if A=10 and R;G=0.1. For each case, what is the small-signal ratio
for y=0? For y=9 V?

The sensitivity of loss ratio to large changes in a parameter is called the
large-signal sensitivity and is

AL/L ,dinL
L—
S Ax/x ¢dlnx

Gy
AW
Rg
WW—= >_L__o
j + +

G

Figure 1.17.
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Gg = 0.1 mmho

MWW

R =10kQ

741

Figure 1.18.

Show that the large-signal sensitivity is equal to

L
St=1--+
L
where L is the loss ratio with x taking its nominal value and L, is the
loss ratio with x taking a reference value (i.e., the worst-case value of x).

8 The circuit in Fig. 1.18a is a unity gain inverting amplifier. For this
circuit, use the reciprocal formulation to derive an expression for L in
terms of ¢,, G, and R. Put the equation in the form of L=1¢,— 8,
where ¢/ is the time constant of the operational amplifier modified by
the circuit immittances G and R;. With ¢, = —0.15jw, sketch Bode
plots of ¢/, B, and L. Define B as the loss of the circuit with 7, =0.

9 If the feedback conductance in Problem 8 is replaced by a 100 pF
capacitor (0.1 nF), the circuit becomes an integrator (because the output
time response is the integral of the input signal with respect to time).
Sketch Bode plots of ¢,, 8, and L for this circuit.

10 A silicon diode is connected from the output to the input of an ideal
operational amplifier as shown in Fig. 1.19. The conductance of the
diode is given by g,=ql,/kT=1,/0.026. Find an expression for the
input current to the circuit as a function of the output voltage. If
the diode voltage is given by v,=kT/qln1,/1, and if I,.=10"'> mA,
find the constant of integration and plot a graph of input current
against output voltage. Ignore diode capacitance.

—A—

— Figure 1.19.
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11 The capacitance of the (reverse-biased) collector junction of a transistor
varies with collector bias voltage according to the relation

C'('O

J

Ge="T0
(I Veg/dc)™

Typical values for ¢, and m_ are 0.85 and 0.33 V, respectively. We may
model the effect of this capacitance on the input current to the
transistor by connecting such a capacitance from the output to the
negative input of an ideal operational amplifier, as shown in Fig. 1.19.
Obtain an expression for the input current of the model as a function of
output voltage.

12 Derive each sensitivity expression in Table 1.1.

13 Use the sum rule to obtain a simpler derivation of eq. (1.5-19). [ Hint:
Use eq. (1.5-7).]
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Chapter 2

Polynomials of Loss:
Various Descriptions
of Polynomials

In Section 1.3 we saw that an amplifying device that has a simple high-frequency
cutoff can be represented under the reciprocal formulation by a binomial in the
frequency variable. The loss ratio of the device, in other words, is represented
by the sum of a dc or low-frequency constant and a term that is linear in
frequency. In this chapter we extend the study of frequency dependencies of
the loss ratio to polynomials of higher degree. In the interests of clarity, we
restrict the discussion largely to polynomials in the frequency variable, which
represent low-pass loss ratios.

The chapter gives several computational tools that will be used in the rest of
the book and that are available mostly in packaged computer programs.

Section 2.1 analyzes a simple feedback configuration under the reciprocal
formulation.

Section 2.2 describes the scaling in frequency and amplitude of loss poly-
nomials, and includes analysis of linear, quadratic, and cubic polynomials.

Section 2.3 describes Newton’s method for obtaining the roots of polynomi-
als and may be familiar to some readers. The section also gives a brief review
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of Laplace transform theory to relate time domain specifications to the general
problem of establishing performance specifications for feedback systems, with
emphasis on settling time.

Section 2.4 evaluates polynomials of loss for s=jw as they relate to Bode and
Nyquist diagrams. Although this may be familiar, the reverse process described
in Section 2.5 (viz., finding the polynomial coefficients from the Bode diagram)
is less familiar but is useful in feedback system design.

Section 2.6 derives coefficients of various polynomials that may be used as
system response specifications. Included are Butterworth, Bessel, and
Chebyshev polynomials and a cookbook for finding them. The frequency
scaling deserves attention, as it differs from that of some other texts.

Section 2.7 treats a central concern of the book—namely, sensitivities of loss
to the polynomial coefficients. This section is essential to later work.

2.1 A FEEDBACK AMPLIFIER

Electronic amplifiers provide us with particularly simple and practical exam-
ples of feedback structures because signals are all in electrical form. Figure
2.1a shows a three-stage transistor feedback amplifier. For the purposes of this
initial look at feedback amplifiers, we can replace the transistors by the
approximate representations in Fig. 2.1b, in which the amplification function is
performed by an ideal amplifier and the amplification is degraded from the
ideal by a resistance in the common lead of the amplifier. Finite bandwidth
comes about by connecting a capacitance in shunt with the input. The model
with the ideal amplifier is an anticausal model in that the amplification
function is idealized and the departure from the ideal comes about from
feedback element r. It is mathematically equivalent to the causal model also
shown in Fig. 2.1b, which incorporates a dependent generator.
For the anticausal model, the input voltage and current are easily obtained
as a function of the output current:
V=i, (2.1-1)

e (&

i,=rCsi =1si, (2.1-2)

in which r and C are intended for the ith stage of the amplifier. The product
rC=r is the unity loss time constant. The reciprocal of the unity loss time
constant is the (angular) frequency at which the current loss (or gain) is unity.

For the bipolar transistor, C is the diffusion capacitance and is roughly
proportional to collector current; r is the emitter resistance and is inversely
proportional to collector current. To a first approximation, 7 is constant with
collector bias current. In this sense 7 is a more fundamental constant of the
device than is C. We can represent this on the circuit diagram as in Fig. 2.1c, in
which an output-current-dependent current generator connected across the
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Figure 2.1. Three-stage feedback amplifier and device equivalent circuit for analysis.
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input terminals replaces the capacitance. The two representations are equiva-
lent, but the current generator more closely represents the physical situation.
These matters are discussed in Chapter 7.

The transistor is incorporated into the three stage amplifier in Fig. 2.1d. This
circuit can be analyzed by inspection if we enter the problem in an appropriate
way, as follows. Assume an output signal voltage of unity. The signal current
to be supplied by the third stage is then G; =G, + G flowing out of the
collector, since the unit output voltage creates a signal current in both G, and
Gr. We ignore the current induced in G by the voltage at the input of the
amplifier to which the other end of G is connected (it will be small if the
amplification is sizable). With current G; flowing out of its collector, the input
voltage of the third stage will be — r;G;, and the input current to that stage is
— 7,5G. This latter is, in turn, the current flowing out of the second stage;
thus we can write the input voltage and current for the second stage. We then
repeat the process for the first stage; this gives us the input voltage and current
to the active path of the amplifier:

—r11Gls? (2.1-3)

% in(active) =

—71,nG, s’ 2.1-4
1120

lin(active) =

To the input current, we now add the feedback current from the output.
Again ignoring the current induced in Gp by v, the feedback current is
—Grv,, so that with feedback we obtain

in=—(Gpt+m1mG]s%) (2.1-5)

n

The source or generator voltage is obtained from

eg=vintinRg (2.1-6)

where v;, =0, acrive)» SO that
e¢=—(RsGrtrmmGis’+RommmGys®) (2.1-7)
=—(aota;stays’+ays’) (2.1-8)

If we replace the unit output voltage by v,, we obtain the loss ratio e; /v, as a
polynomial in the frequency variable s; thus a,=R;Gf, a,=0, a,=r 1G],
and a;=R;7,1,7,G .

When we express the response of the amplifier as loss rather than gain, we
find a simple sum of terms rather than the more complex feedback concepts of
forward-path gain and feedback loss. “Loop gain” becomes an irrelevant
concept in this formulation. The feedback loss simply adds to the active-path
loss.
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Suppose that the total load conductance G; is 10 mS (millisiemens). Further,
suppose that R;=1.0 kQ, r,=r,=r,=0.1 k@, C,=C,=C;=10 pF, and G=
0.01 mS. Then 7,=7,=7,=1.0 ns, and

L(s)=-(0.014+0.0s+1.052+10s%) (2.1-9)*

The loss has thus been written as a function of frequency for this amplifier
essentially by inspection. This loss function can be shown to be unstable, so
that the amplifier is useless. Before going on to make it into a stable structure,
however, we should know more about polynomials themselves and what
characteristics of them make for desirable loss functions. As we see later, the
missing linear coefficient of (2.1-9) guarantees instability, although its presence
does not assure stability. Problem 1 shows one way of providing the missing
coefficient.

2.2 ALTERNATE DESCRIPTIONS OF POLYNOMIALS

As in the case of the six blind men gathered around an elephant and putting
their impressions together to try to describe it, polynomials can take on
different descriptions, each of which gives us added insights to their properties.
In this and the following section we explore several of these descriptions and
their relationships. It is desirable to be able to pass easily back and forth
between these descriptions for a full understanding of what is involved.

The “primary description” is the polynomial itself—a sum of terms in power
of the frequency variable s:

L(s)= é as' (2.2-1)
i=0

when we establish the units in which s is expressed and the values of the a;, we
have specified the polynomial completely. A fully equivalent polynomial is
obtained when we scale the polynomial in amplitude by dividing through by
the dc term a:

L(s)=a, 3, %si (2.2-2)
i=0 "0

At very high frequencies a Bode plot of the polynomial is asymptotic to a
straight line whose slope is 20n dB per decade of frequency. The frequency at

*Equations involving physical quantities are expressed in this book in a self-consistent set of units
to avoid the necessity for unit conversions. In this example, the volt, the milliampere, and the
nanosecond are taken as the fundamental set of units, consistent with the picofarad, kilohm,
millisiemen, and gigaradian per second units.
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which this line intersects the dc value of loss is termed the asymptotic cutoff
frequency, w,. The polynomial may be scaled in frequency by changing the
frequency variable to a new one, p=s/w,. Here, p is the frequency normalized
to the asymptotic cutoff frequency.

A polynomial scaled to its dc value and asymptotic cutoff frequency can be
written

n—1

1+ b;p'+p"

i=1

L(p)=a, (2.2-3)

where

P

By the definition of w, as the frequency at which the high-frequency asymptote
intersects the dc value, we can write

Thus the b, in (2.2-3) are

The advantage of this normalized form is that the character of the polynomial
is more easily seen. We have made the first and last coefficients in the brackets
unity, so that two fewer coefficients need be dealt with. The shape of the Bode
plot remains unchanged. Scaling of the dc value shifts the Bode plot up or
down, whereas scaling of the frequency shifts it to the left or right. The
normalization of (2.2-3) shifts the dc value and cutoff frequency of the
polynomial in the brackets both to unity.

In feedback system design, where the degree of the polynomials that we deal
with are relatively low, the reduction to the normalized form is significant. In a
system described by a cubic polynomial, for example, only two (rather than
four) numbers describe the dynamics of the system. The other two numbers are
there, of course; they allow us to rescale the solution to the dc loss and cutoff
frequency of the original problem.

The loss polynomial of the amplifier of the previous section can be normal-
ized as follows. First, dividing by the dc term, we obtain

L(s)=—0.01(14+0.0s+100s241000s?) (2.2-4)
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setting
as \\/3
wOZ(—a—O) =0.1 Grad /s (2.2-5)

we have

L(p)=—0.01(1+0.0p+p*+p?) (2.2-6)
The character of all normalized cubic polynomials such as this is established by
the linear and quadratic coefficients b, and b,.

Binomial Loss Ratios

For a binomial—a polynomial that has only a dc term and a term linear in
frequency—the center term in the brackets of (2.2-3) vanishes, and we have

Ll(P):ao(l+P) (2.2-7)

where it is seen that the binomial in normalized form has no distinguishing
features. All have the Bode plot given in Fig. 1.6; variation of a, shifts the
Bode plot up or down, and variation of the asymptotic cutoff frequency shifts
it left or right, with no change in shape. The root of the binomial is real, at
p=—1,orat s=—w,.

Quadratic Loss Ratios

A quadratic in the frequency variable

L,(s)=a,+a,s+a,s? (2.2-8)
=a,(1+b,p+p?) (2.2-9)
where
b= 4,9
a4y
and

_{ % 172
wo— —0_2

has only one parameter to distinguish it, the value of b;; b, is twice the
damping factor §:

(-t (2.2-10)
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Figure 2.2. Bode plots for quadratic loss ratios.
or the reciprocal of the quality factor Q:
o=1 (22-11)
b,

Bode plots for the quadratic loss ratio are given in Fig. 2.2 for various values of
the damping factor. Values of { greater than unity have not been included in
this plot; where { is greater than unity, the quadratic can be factored into two
real, linear factors, each of which has the Bode plot in Fig. 2.2. These can then
be added to obtain the Bode plot of the quadratic. Note, however, that for
{>1, the value of w, will in general be different for the two factors, so that the
cutoff frequencies will be displaced from one another.



Alternate Descriptions of Polynomials 51

For {>1, root locations for the quadratic loss ratio are found by solving eq.
(2.2-9):

Pis Pa=§E1-82 (2.2-12)

since s=puw,,

5158, = —{wyF w1 —¢?

In polar form these roots are
51 ,=w,e (2.2-13)
where
0=cos ¢

the root locations for the quadratic are equidistant from the origin at |s|=w,,
independent of the damping factor. As the damping factor is varied, the locus
of the roots is a circle of radius w, centered on the origin, as shown in Fig. 2.3.
The angle of the phasors is independent of w, and depends only on 6. The
roots enter the right half of the s plane for negative damping values. As we see
in Section 2.5, the significance of any root entering the right half of the s plane
is that the physical device represented by the function becomes unstable.

—jWo

Figure 2.3. Root locations for quadratic loss ratios as a function of the damping.
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Cubic Loss Ratios

Loss polynomials of higher degree can be built up as the product of linear and
quadratic terms. As an example, we reconsider the cubic polynomial. The
normalized cubic polynomial

L(p)=1+b,p+b,p*+p*=0 (2.2-14)

contains one real root and two other roots that may be either real or complex,
so we can factor the polynomial as

L(p)=(1+pp)

2
1+&+”—) (2.2-15)
p p2

where p is the asymptotic bandwidth of the quadratic factor and {/p is its
damping coefficient. (Note that 1/p* is the asymptotic bandwidth of the
simple factor.) Multiplying these two factors, we obtain the b coefficients as

bI:p2+27f (2.2-16)
1
b2:§+2§p (2.2-17)

For positive b coefficients, the necessary and sufficient conditions for stability
are that {>0, so the quadratic roots remain in the left half plane. Hence

28=b,p—p*>0
b
=21
PP
or
b,>p (2.2-18)
1
by>— (2.2-19)
P

Multiplying these two inequalities, we obtain the stability condition as
b,by,>1 (2.2-20)

The stability condition merely tells us the constraints on b, and b, to avoid
oscillation. More stringent restrictions on the b coefficients are required if the
response is to conform to a useful performance specification. One possibility is
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to restrict the damping coefficient of the quadratic term to be greater than a
given value (or to be equal to a specified value). To this end, egs. (2.2-16) and
(2.2-17) have been used to obtain the b coefficients for various values of the
damping coefficient and are plotted in Fig. 2.4.

In Fig. 2.4 the stability borderline is a line of —1 slope passing through the
point at which b, =b,=1, corresponding to zero damping. Above and to the
right of this line, curves of constant values of quadratic damping from 0.01 to 1
are plotted. The curve for { =0 and 1 separate the b,, b, plot into three regions:
below and to the left of the {=0 line is the region of unstable operation; above
and to the right of the {=1 curve is a region in which all three cubic roots are
real; the region between represents the set of b values for which a pair of the
roots is complex but stable, with the third root on the negative real axis. Lines
of constant values of p are also plotted.

The line for p=1 is of particular interest. It has a slope of +1 and passes
through the point b,=b,=1. It represents the value of p for which all three
roots lie on the unit circle in the p plane (a circle of radius w, in the s plane). It
passes through the point 2,2, a polynomial of maximally flat amplitude, to be
discussed later, and the point 3,3, at which all three roots are at p= —1 on the
p plane (—w, on the s plane).

For values of p less than unity, the importance of the real root is less: for
values of p of 0.5 or less, the real root may be ignored for most purposes, as we
now show. For this value of p, eq. (2.2-15) becomes

L(p)=(14+0.25p)(1+4¢p+4p?) (2.2-21)

Thus the asymptotic bandwidth of the quadratic factor is 0.5, and at this cutoff
frequency the effect of the simple, real factor is not greatly different from unity
since the real root occurs at p= —4, eight times the quadratic cutoff. Taking
p=jw, we can evaluate L( jw) as

L(jw)=(14j.250)(1+j4¢w—40?) (2.2-22)

Evaluating this at w=0.5, the effect of dropping the real factor is to introduce
an error of 101log(1+0.125%)=0.067 dB and a phase error of tan™ " 0.125=7.1°.
Hence the region above the p=0.5 curve in Fig. 2.4 is one for which quadratic
analysis is generally adequate. As p is reduced, the importance of the real root
drops rapidly, as p?. The roots of the remaining quadratic are given directly by
the plot in Fig. 2.4 in terms of the b coefficients.

Conversely, as p increases above unity, the importance of the real root
increases, and that of the quadratic pair decreases. To be able to ignore the
quadratic factor, however, it is not sufficient that the quadratic cutoff, or
quadratic asymptotic cutoff be at a much higher frequency than the real factor
cutoff. It is also necessary that the damping factor be sufficiently high to
prevent the loss ratio in the cutoff region from staging a return to low values of
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Figure 2.5. Bode plots of three cubic loss ratios.

loss ratio at high frequencies, of the sort shown in curve C in Fig. 2.5. This plot
of L(jw) is for the values b;=2, and b,=0.8, point C in Fig. 2.4. This
corresponds to a damping coefficient of 0.1, which gives a sharp dip in the loss
ratio (a peak of gain), which is usually an unsatisfactory response.

For comparison, two other curves are shown in Fig. 2.5. For curve 4, the
loss ratio is dominated b the quadratic factor. This curve is drawn for b, =0.8
and b,=2, point 4 in Fig. 2.5. Curve B shows the loss ratio for the maximally
flat amplitude case, with b, =b,=2 (point B). For this case, neither factor is
dominant.

Is there a region in Fig. 2.4 that can be said to be controlled by the real root,
so that the cubic can be approximated by a simple first-degree cutoff? To be
able to ignore the quadratic factor, we need merely to ensure that the quadratic
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Figure 2.6. Root diagram for determining conditions under which the quadratic roots of a cubic
may be ignored.

factor roots lie more deeply in the left half of the p plane than the real root, as
depicted in Fig. 2.6. In Fig. 2.6 the real part of the quadratic factor is taken to
be n times as large as the real root. Thus we can write

n
p$=— (2.2-23)

p

Substituting this inequality in egs. (2.2-16) and (2.2-17), we have
5, 2n
by=p"+ — (2.2-24)
p

b= 211 (2.2-25)

Thus, for values of the b coefficients that satisfy these equations and for
0<¢{<1, the quadratic roots can often be ignored. For n=5, the worst error (at
the real root asymptotic cutoff frequency of 0.04w,) occurs for {=1 and is 0.07
dB and 10°. The equation for the borderline case is obtained by substituting
equal signs in (2.2-24) and solving for b, as a function of b,:

_1+2n
=%,

+2n( by )2 (2.2-26)

by 1+2n
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This equation is plotted on Fig. 2.4 as a double line for n=35; to the right of
this curve, the quadratic factor may be dropped.

For feedback systems only a restricted area of Fig. 2.4 is of interest in the
sense of exhibiting cubic response. In this area the roots may be found from
the b coefficients by reading p and { from the plot: these are then used with eq.
(2.2-15) to obtain the roots.

Stabilizing the Amplifier in Section 2.1

Readers who have completed Problem 1 will have already found that the
addition of a feedback capacitor C in parallel with G does essentially one
thing: it adds a term — R ;Cps to the loss ratio, thereby converting eq. (2.1-9)
to

R;C
L(s):—0.01(1+Tc6f5+100s2+1000s3) (2.2-27)

In normalized form, p=s/10. With R;=1.0 k{2,
L(p)=—0.01(1+IOCFp+1.0p2+1.Op3) (2.2-28)

In this equation b, = 1.0 for any Cp, so that the locus on Fig. 2.4 as Cy.is varied
is the horizontal line for b,=1.0. When C is zero, the loss is in the unstable
region. When C=0.1, b, =1.0, and the loss is on the border of instability. The
damping of the quadratic roots reaches a maximum for b,=3, or for C=0.3
pF, giving

L(p)=-001(1+3p+p*+p?) (2.2-29)

A measure of its margin against instability is the value of damping of the
quadratic roots, which is about 0.2, according to Fig. 2.4. This corresponds to a
value of @ (in Fig. 2.6) of 78°. This margin is small, only 12° away from
instability.

Addition of Load Capacitance to the Amplifier

To begin the study of higher-order polynomials, consider the amplifier de-
scribed in Section 2.1 driving an additional load of 10 pF of capacitance
connected directly across the load. Can we find the loss ratio by inspection
again, as we did in the earlier case? By superposition, the load capacitance adds
new terms to the loss, terms we can find by substituting C,s for G; in eq.
(2.1-7) and including only terms containing C, . Thus the change in loss caused
by capacitance is

Ae;=rmmCo s+ R ;1 7,mCr st (2.2-30)

and the new equation for the loss of the amplifier is found by adding these two
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terms to (2.1-7):
L(s) =r;Gp+R;Cps+rmmGys?
+(RgmmmGy+ 11 C)s?
+R ;71,1 Cps* (2.2-31)

The loss polynomial is now a quartic. Note the ease with which the expression
is obtained through superposition. This facility is lost when the analysis
proceeds from input to output.

When C; =10 pF, the added terms are 1.0s3 and 10s*; thus

L'(s)=—(0.01+0.35+1.05s2+11s3+10s%) (2.2-32)

What are the characteristics of this polynomial? Is it stable? Where do its roots
lie? In the following sections we answer these questions for polynomials in
general. For the present, we can use normalization to get some idea of the
characteristics of the polynomial. To compare it with the cubic for the
amplifier without load capacitance, we set p=10s for comparison purposes
and obtain

L'(p)=—-0.01(1+3p+1.0p>+1.1p>+0.1p*) (2.2-33)

From this equation we see that at the cubic cutoff frequency ( p=1.0), the
quartic term is about 10% of the magnitude of the quadratic and cubic terms,
leading us to believe that the effect of the quartic term is modest. On the other
hand, the margin against instability is small, so the small change may be
enough to cause instability. To resolve these questions, further study of
polynomials is indicated.

Calculator Programs

A good way to consolidate what has been discussed is to commit the relation-
ships to a program for the computer or calculator. By having to tell the
machine exactly what is to be done, the concepts become clearer and misun-
derstandings are corrected. In addition, when later work requires that we make
use of these concepts, they are available to us in their most directly useful
form, so that we do not have to go back over the material. For these reasons,
calculator programs are given in the appendix at the end of the book with
explanations of how they have been developed. Readers who are interested in
working with the concepts to be developed are urged to obtain either a
calculator or time on a computer facility and to follow the development of
these programs.

Five programs have been developed in conjunction with the concepts of this
section. The first two scale polynomials of any degree up to eighth. A third
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builds up polynomials from linear and quadratic factors. The fourth finds the
roots of a quadratic equation, and the fifth finds the roots of a cubic. All are
explained in Appendix A.

2.3 ROOTS OF POLYNOMIALS BY NUMERICAL ANALYSIS

Roots of polynomials of degree higher than the cubic are usually determined
by numerical analysis—a sort of directed trail-and-error approach. An initial
guess of the location of a root of a given function L(s) is made; the function is
evaluated at this value of s. If L (s)=0, the guess was right and the root is
found. If L,(s)#0, some method is used to improve the guess, and the process
is repeated. Many approaches to the problem of improving the guess have been
devised. For finding roots of polynomials, where the roots may be complex,
Newton’s method is satisfactory. A brief explanation of the method is given
here since we find it useful later on. For a complete discussion of the method,
see, for example, Chapter 2 of Atkinson’s work,' or Conte and de Boor.?

To begin, we assume real roots of L(s) since this is easier to depict
graphically. Let the nth guess of the root of L(s) be s,. For Newton’s method,
the (n+ 1)th guess is

_L(sy) ]
St =5 T 0 ) (2.3-1)

To find the (n+ 1)st guess, we must evaluate the function and its derivative at
s,, divide the latter into the former, and subtract the result from s,. The
process is repeated until the magnitude of L(s) falls below a small error e at
which point the evaluated root has satisfactory accuracy. The process is
depicted in Fig. 2.7, in which the first guess was s=0. The tangent to the curve
at s=0 is drawn; where it intersects the s-axis is given by eq. (2.3-1). This
becomes the second guess for s, where a second tangent is drawn to find s,; the
process is repeated until |L(s)| is sufficiently small.

For a polynomial, we must evaluate the function

L(s)= Y a,s' (2.3-2)
i=0
and its derivative
L'(s)= Y ia;s' ™! (2.3-3)
i=0

a process most easily carried out on a computer or a calculator. A program for
implementing Newton’s method for polynomials up to twelfth degree (extenda-
ble by adding memory register locations) is given in Appendix A.
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Second guess

31—
/ Initial guess

Figure 2.7. Use of Newton’s method for finding a real root of L(s)=0.

The example in Fig. 2.7 is drawn for the quadratic function
L(s)=-3.0+2s+s? (2.3-4)
whose derivative is
L(s)=2+2s (2.3-5)

Taking s=0 as a first guess, we have L(0)= —3.0 and L’(0)=2, so that the
second guess for s is 1.5. To obtain the third guess, we evaluate L(1.5)=2.25
and L’(s)=5, so that

2.25

S3:1.5_T:1.05

A calculator tape showing the convergence on the root at s=1 is shown in Fig.
2.8. When |L(s)| becomes less than e=10"*, the root is approximated accu-
rately enough, and the polynomial is deflated—that is, divided by the root
factor. The process is repeated for the remaining polynomial, which in this case
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Figure 2.8. Calculator tape showing convergence on the real roots
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is just 3+s, with the derivative 1.0. Since the deflated polynomial is linear in
this example, the root is found immediately. (Why?)

The program automatically determines the starting point, in such a way that
it usually finds the smallest roots first for better accuracy. The initial guess
should include an imaginary part. The reason for this is that for real s, both
L(s) and its derivative are real. Hence if the initial guess is also real, successive
guesses will never depart from the real axis according to eq. (2.3-1). Starting
out with an imaginary part of s avoids this trap. (A special subroutine in the
program does this automatically if the value of s becomes real during the
iterations.) For purposes of the example in Fig. 2.8, we overrode the initial
guess of j1.5, substituting s=0.

For an example containing complex roots, let

L(s)=1+2s+2s%+s3 (2.3-6)
whose derivative is

L'(s)=2+4s+3s? (2.3-7)



62 Polynomials of Loss: Various Descriptions of Polynomials

Let us take s=j1 as an initial guess (the program takes s=0.20+,0.46 but j1
illustrates the process more clearly). Then L(s)=—1+j1,=y2 /135° and
L'(s)=—1+,4=4.123/104.0°, so that the new value of s to be tried is

1.414 /135°
4.123 /104.0°
= —0.2941+,0.8235 (2.3-8)

5,=j1

thus beginning the process of converging on the root at —0.5+,;0.866. The
calculator tape shown in Fig. 2.9 illustrates the convergence. After the complex
root is found, the original polynomial is deflated by the quadratic factor of this
root and its complex conjugate, following which the remaining root is found.

The program in Appendix A will usually find roots without difficulty,
including finding its own starting point— the initial guess for the root position.
Where difficulty is encountered, an interactive mode is provided, allowing for
variation of starting point and strategy.

SF a8
XEQ "ROOTS®
ROOTS
DEG?
J.eeae  RUN

POLY, ASC. ORDER
R28= 1.800E8
R21= 2.888E0
R22= 2.000t0
R23= 1.600E8

0K?
RUN

W
W oo
A i e

.B006+-£128.08

POLY, ASC. ORDER
R28= 1.B00E8
R21= 1.800E8

L=1.41E@
L=1.08E-18
L=8,88E8
S=-1.0600
Figure 2.9. Calculator tape showing convergence for a polynomial
END with complex roots using Newton’s method.
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Time Domain Performance’

Factoring loss polynomials has one important application in the study of
feedback systems—namely, establishing the performance of the system in the
time domain. The stability characteristics of the system are most clearly seen
by observing its behavior as a function of time. The output of a system
characterized by a loss polynomial L(s) is described in terms of its input signal
X(s) by

X(s)

Y(s)= ()

(2.3-9)

For the following development, we take X(s) as the Laplace transform of unit
step, equal to 1/s. This will give us the step response of the system. Where the
loss polynomial is factored, we can write

_ 1
- s(s=A)(s—=Ay) -~ (s—A,)a,

Y(s) (2.3-10)

where the factor s in the denominator comes from X(s). If all roots of the
denominator are distinct (no multiple roots), this equation can be written as
the sum of factors by the method of partial fractions:

— k0 kl n
Y(s)—T+s_}\] +s_}\2+ +s_>\" (2.3-11)

_ko, o K

=+ g p— (2.3-12)

where the A; may be real or complex. The inverse Laplace transform of this
sum is equal to the inverse Laplace transform of each term and is the
superposition of a series of time responses; thus

y(1)=3 ke (2.3-13)
i=0

the k; in either of these equations are termed the residues. Where the A, are real
(and separate) there are three cases of interest: negative, zero, and positive
values of A. Step responses for these three cases are shown in Fig. 2.10 for
values of A of —1, 0, and +1, corresponding respectively to a decaying
exponential, a step, and a growing exponential. The latter case represents an
unstable time response.

Where the A; are complex, they must occur in conjugate pairs, which then
can be paired. The residues are also complex conjugate, so we can write the
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Figure 2.10. Time responses for system with a single real root: (a) positive; (b) zero; (c)
negative.

frequency response for each pair, letting A=a+8,

Y (s)= K + i 2.3-14
”(s)-s—a+jB s—a—jB (23-14)

The corresponding time response is

yp(t)—_-kpe(a+jﬂ)t+k;e(a—jﬁ)l

(2.3-15)
=e(k,eP'+kxe ) (2.3-16)
Expressing the residue k, in polar form, kI,Zpef"y and k;‘Zpe‘fo; we can
write the time response as
yy(1)=pe[e/ B0+ /BT O] (2.3-17)

=2pe*cos(Br+6) (2.3-18)

For either real or complex roots, the residue at the jth root is found from the
equation

(s—A,)X(s)
kj:—L(—.STT— (2.3-19)

s=A,;
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Figure 2.11. Time responses for system with one pair of complex roots whose real part is (a)
zero, (b) negative, and (¢) positive.

Since s—A g is a factor of L(s), it must be factored out before the evaluation of
the residue is done. With L(s) in factored form, X(s) is divided by each factor
A, —A, except, of course, A,—A,=0.

The step responses for three pairs of complex conjugate root positions are
shown in Fig. 2.11 for positive, zero, and negative values of the real part of the
roots. When the real part is zero, a sinusoidal signal results. Note that for just

the single pole pair on the jw axis, the angle of the residue is 90°, so that eq.
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(2.3-19) gives a sinusoidal response. Negative real parts yield an exponentially
decaying sinusoid, whereas positive real parts yield a growing exponential,
which is an unstable condition.

Settling Time

The time taken for a system to come to within a small percentage error of its
final value is often important. Analog-to-digital converters constitute a typical
example. Such converters sample the signal periodically and hold the value of
the sample while it is being processed into a digital code. Required accuracies
are often uncommonly high. In the case of a coder that is to produce a 14 bit
code for each sample, the analog sample is to be held to within a fraction of
the smallest step, which is 2 ' of the maximum amplitude, about 30 parts per
million (ppm).

A feedback amplifier is often called on to amplify the held sample. One
measure of its suitability for this purpose is its settling time, the time taken for
it to settle to within a given fraction (e.g., 30 ppm) of its final value under the
excitation of a step input. Where the amplifier loss is described by a poly-
nomial, settling time may be regarded as a property of the polynomial itself.
Since time responses die away exponentially, we may expect that (1) settling
time is related to the time constant of the exponential decay term—a in the
term ke~ or in the term k,e* cos(Br+60)—and (2) only the root(s) nearest
the jw axis will be involved, as the effect of other roots will have died away
earlier in time. The residue at the root in question also affects settling time, but
unless it is very small (i.e., unless the root is canceled by a pole of loss), the
effect of the residue constant is small. Thus we can write

ke %T=¢ (2.3-20)

where € is the allowable error after 7, nanoseconds and «; is the distance from

the j axis of the pole (or pole-pair) nearest the axis. The settling time is given
by

—lne+lnk, —
T.= j . “Ine (2.3-21)

s
a; a;

As an example, the roots of the amplifier described in Section 2.1 with 0.3 pF
added as in Problem 2 are at —0.0361 and at —0.0319%;0.163 Grad/s, so
that the complex roots dominate the settling time. For this amplifier to settle to
within 30 ppm of the final value would take about [—1n(30X107°]/0.0319=
330 ns.

The complete step response of this amplifier is shown in Fig. 2.12. The initial
slow start of the response comes about because the real root is close to the jw
axis. The vertical scale has been expanded for 1>200 ns to show the settling of
the waveform.
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Figure 2.12. Step response, normalized to unity output, for the amplifier in Section 2.1 stabilized
by a 0.3 pF feedback capacitance.

24 POLYNOMIAL EVALUATION

The most common method of presenting transfer functions is by the Bode plot
—magnitude in decibels and phase in degrees versus log frequency for s=jw.
With s=jw, a simpler method of evaluation is possible, allowing us to evaluate
the polynomial on a calculator in less than 40 program steps. The polynomial
is split into its even and odd parts, each of which is expressed in nested form.
A seventh-degree polynomial, for example, may be written

L(jw)Zao—wz[az—wz(a4—wzaé)]
+jw{al—wz[a3—w2(a5—wza7)]} (2.4-1)

To find the imaginary part of L( jw), a, is multiplied by —w? and a5 is added
to it; the result is multiplied by —w? and a, is added to it; this result is then
multiplied by —w? and a, is added to it. This result is then multiplied by w to
give the imaginary part. The real part is obtained similarly. To obtain a Bode
diagram, the real and imaginary parts are converted to polar form, and the
magnitude is converted to decibels. The polynomial evaluation program in
Appendix A uses this method.

The program was used to generate the Bode plots in Fig. 2.13 for the
amplifier in Section 2.1, both with and without the stabilizing feedback
capacitance of 0.3 pF. The Bode plot with Cr=0 is characteristic of unstable
systems: the phase decreases with frequency at a frequency near the right half
plane roots. Stable behavior is illustrated by the curve for Cx=0.3 pF, which
shows rising phase as the loss rises.
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Figure 2.13. Bode plots for amplifier with stable and unstable loss ratios.

The same program can be used to generate different plots of the same
information, termed a Nyquist diagram, where the real part of L( jw) is plotted
against the imaginary part at various frequencies. The length of the phasor
from the origin to the curve is the magnitude of L( jw), and the angle of this
phasor with the real axis is the phase. The magnitude is zero at each root of
L(s); thus the origin of this diagram corresponds to all root locations on the s
plane.

It is shown (in the theory of functions of complex variables) that the Nyquist
diagram is a conformal mapping of the s plane onto the L(s) plane; the
Nyquist diagram maps the jw axis onto the L( jw) plane. The meaning of
“conformal” in this context is that angles are preserved in the mapping process
—a small square on the s plane will map to a small square on the L( jw) plane.
Facing north on the jw axis in the s plane, the right half plane is to one’s right.
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On the Nyquist diagram the map of the right half plane exists to the right of

the map of the jw axis facing in the direction of increasing frequency.

Examples of Nyquist diagrams for linear, quadratic, and cubic loss ratios are
given in Fig. 2.14; in each case we have mapped not only the jw axis, but also a
small pennant arbitrarily placed in the right half plane. The pennant has no
significance except to convey a “feel” for the mapping process and the kinds of
distortions it introduces in the shapes of things. Consider the linear loss ratio

given as
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Figure 2.14. Nyquist sketches for linear, quadratic, and cubic stable loss ratios.

L(s)=1+2s+2s2+53

\ -/
\

\

Se




70 Polynomials of Loss: Various Descriptions of Polynomials

Setting s=0+jw, we find the real and imaginary parts of L,(s) as
L(o+jw)=1+0or+jor (2.4-3)

If we set =0, s=jw so that we have the map, on the L (s) plane, of the jw
axis. There is one root of L(s) at s= —1/7,+/0; this point (of course) maps to
the point 04,0 on the L(s) plane: any roots of a loss function or of the
characteristic equation map to the point 0+;0 for any L(s). The map of L,(s)
looks like the s plane itself, except that the imaginary axis is displaced one unit
to the left, and the size is scaled by the factor 7,. The pennant is to the right of
the imaginary axis and is scaled appropriately. The figure is drawn with the
map of the negative jw axis shown as a dashed line. As one walks north along
the jw axis of the s plane, the right half plane is to the right; correspondingly,
as one walks along the map of the jw axis on the L(s) plane, the map of the jw
axis is likewise on the right, since angles are preserved.

The map of the quadratic function is drawn in exactly the same way. For
small values of w, the map is similar to the linear case since the —w? term is
negligible. As the frequency increases, this term bends the map to the left in
the parabolic shape shown. The map of both roots are at 0+;0. The pennant is
bent and larger than in the linear case. The cubic function includes the —jw?
factor, thus causing the map to descend at high frequencies. In all three cases
the origin is in a region that is a map of the left half plane; all three cases are
stable.

An elegant theory of stability based on complex variable theory was given
by Nyquist in the early 1930s. It is not needed now because of the ease with
which we can find the roots of polynomials on a computer or a calculator. The
Nyquist diagram, on the other hand, is of help in understanding and interpret-
ing stability problems that arise in feedback systems, particularly those includ-
ing transport delays, to be discussed in Chapter 5.

Unstable loss ratios are shown in Fig. 2.15. For the linear case, we take the
example

L/(s)=1—ms (2.4-3)

As o is increased from zero, L( jw) moves negatively, so that the right half
plane maps to the region to the left of L( jw); therefore, L(s) has a root in the
right half plane, and the system is unstable. The quadratic loss ratio is unstable
for the same reason; the presence of the —w? term bends L( jw) to the left as
before, but the right half plane is to the left of the curve.

The unstable cubic function illustrated in Fig. 2.15 has all positive coeffi-
cients, so that the right half plane is to the right of the map near w=0;
evidently this instability is of a type different from those of the first two cases.
Here, the cubic coefficient is large enough to cause the map to intersect the real
axis between the origin and the point at 1+;0. The region corresponding to the
right half plane includes the origin, so that the system is unstable. Only two of
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Figure 2.15. Nyquist diagrams of unstable loss ratios.

the three roots of the characteristic equation are in the right half plane. The
Nyquist diagram shows that the point at the origin is shaded twice by the right
half plane, once for positive frequencies and once for negative frequencies.
This superposition of layers of the right half plane is common in more
complicated Nyquist diagrams; in the stretching process of mapping, the
several layers that may result are called Riemann surfaces.

With this background we can replot the information of the Bode plot in Fig.
2.13 as a Nyquist diagram. Figure 2.16 shows Nyquist diagrams for C=0.3
pF and for O pF as well as two other cases. For C=0.3 pF, the origin is to the



72 Polynomials of Loss: Various Descriptions of Polynomials

0.10

Ljw plane

7 0.08
0.06
0.04
L j0.01
0.02
0.06
0.04
0.08

016d

| / 1
/ 0015  —001 —0.005
/
/
) 0.12
/
I C’: =0.1
0184
/
w=0.14

Figure 2.16. Nyquist diagrams amplifier loss with feedback capacitors of 0, 0.1, and 0.3 pF. The
dashed line shows the effect of adding 10 pF of load capacitance.

left of the map of the jw axis as we proceed in a direction of increasing
frequency, so that the system is stable. The angle of the phasor from the origin
to the curve increases with increasing frequency. For C=0, on the other hand,
the origin is to the right of the curve as we move in the direction of increasing
frequency; the system is unstable.

Two other cases are also of interest. When Cr=0.1 pF, the map of the jw
axis passes through the origin of the Nyquist diagram. This indicates that roots
of L(s) exist on the jw axis as in the top time response in Fig. 2.11. Note that
the map of the jw axis passes through the origin twice—once for positive
frequencies and once for negative (not shown). Hence there are two roots on
the jw axis. In this case the phase “switches” by 180° as we pass through the
origin.

The dashed line in Fig. 2.16 shows the effect of adding load capacitance of
10 pF to the amplifier in Section 2.1. The amplifier is stable since the origin is
to the left of the curve, but the loss is smaller than without the load
capacitance, since the curve passes closer to the origin. The loss approaches a
minimum for ®=0.16 and is about equal to the low-frequency loss.
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2.5 EVALUATION OF THE POLYNOMIAL COEFFICIENTS FROM L(jw)

The inverse process to finding the Bode diagram from the polynomial is to find
the polynomial coefficients from values of L(jw) that might come from
measurements or from a computation. This process is closely allied to the
modeling process and to the approximation problem. In the modeling process we
wish to develop a model—a mathematical model first, then a physical model—
that matches a set of measurements of frequency response. In particular, we
are interested in a polynomial model that we later show can be translated into
a physical structure. The existence of such a model is proved in a theorem by
Weierstrass.'

Let L(jw) be continuous for w,<w<w,, and let ¢>0. Then there is a
polynomial P( jw) for which

L(jw)—P(jw)<e, w,<w<w, (2.5-1)

A proof is given in the reference. The theorem states that given a polynomial of
sufficiently high degree, we can model any continuous frequency response to
any desired degree of accuracy.

The approximation problem is the same problem with the frequency re-
sponse now supplied as a performance specification rather than a measured
response. The two problems are similar in that in either case we are given an
arbitrary function and wish to find a polynomial approximation to it.

Here, we are interested in the more restricted problem of finding the
coefficients of a polynomial of known degree, given a minimum amount of
data about its frequency response. With this simpler process under our belts,
we shall be able to translate back and forth between the polynomial and its
representation on a Bode plot. We shall also have a better understanding of
modeling and of the approximation problem.

A simple example illustrates the process. Suppose that we know that a
function is a binomial in frequency and that we wish to find a, and a, where

L(s)=agta;s (2.5-2)

Then

L(jw)=ay+jaw (2.5-3)

To find a, and a,, we merely find the real and imaginary parts of L( jw) and
equate the former to a; and the latter to a,w. Thus a measurement at a single
frequency suffices to obtain the coefficients. Since each measurement of L( jw)
gives us two numbers (a real and imaginary part), we can obtain two coeffi-
cients from each measurement.

To evaluate the coefficients of a quadratic or a cubic polynomial, the value
of L(jw) at two separate frequencies must be available, whereupon we can
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write
Re[ L(jw,)]=a,—aw} (2.5-4)
Re[ L(jw,)] =a,—a,w} (2.5-5)
Solving these equations simultaneously, we obtain

4=~ (Re[ Lo ~eiRe[(Liw)])  (256)

and

a,= 21 {Re[L(jw,)]—Re[L(jw,)]} (2.5-7)

2
W; — W)

Similar equations for the imaginary parts give a, and a, since

Im[L(jw)] :w(a, —a3w2)

giving

L] {wglm[L(jw])]_w?Im[L(f‘*’z)]} (2.5-8)
and

1 {Im[L(jwl)]_Im[L(j“’Z)]} (2.5-9)

Evaluation of quadratic and cubic coefficients from loss magnitude and phase
will be useful in the work ahead; a program for this evaluation is given in
Appendix A. Similar procedures are also used for higher-degree polynomials.
The case of the quartic or quintic polynomials is given here; the extension to
yet higher-degree polynomials will be obvious from this discussion.

The quintic polynomial can be written

L(jo)=ay—aw*+aw*+jo(a,—aw+ase’) (2.5-10)

so that by measuring L( jw) at three frequencies, w,, w,, and w;, we can write
the matrix equation

)
N

1 —w) wjl|ag Re L(jw,)
1 —w} w||a,|=|ReL(jw,) (2.5-11)
Twy w3 ]| a4 Re L(jw;)

»

—
5]
£
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A similar equation can be written for the odd coefficients, replacing the real
part on the right by the imaginary part divided by w. We then invert the matrix
to obtain the coefficients:

a, 1 —w! o} || ReL(jw,)
a|=|1 —w} o} Re L( jw,) (2.5-12)

FN

a, 1 —w! W Re L( jw,)

and similarly

[T s ][ mLGe) ]
a, I —w] _—
W,
ImL(jw
a =1 -2 o %2) (2.5-13)
ImL(jw
as 1 —w% w‘; —7:21 1)
Expressed more compactly, this is
a,=F 'ReL(jw,), ieven (2.5-14)
Im L(jow,
a,zFﬂ#, i odd (2.5-15)

where F ! is the inverse frequency matrix of egs. (2.5-11) and (2.5-12).

In general, an nXn frequency matrix must be inverted to evaluate the
coefficients of a polynomial of degree 2n—1 or 2n—2. The frequencies should
be chosen appropriately to give reasonable computational accuracy. The lowest
frequency will give most information on g, and a, and should be chosen where
the sensitivity of L( jw) to these two coefficients is reasonably high—a change
in either a, or a, should change L(jw,) significantly—and similarly for the
remaining coefficients. A discussion of these sensitivities is given in Section 2.7.
A reasonable choice of frequencies for many useful polynomials is to separate
the frequencies (three for a quintic) by an octave or two on either side of the
asymptotic cutoff frequency. A program for finding the coefficients of up to a
quintic polynomial using this procedure is given in Appendix A.

2.6 POLYNOMIAL PERFORMANCE SPECIFICATIONS:
THE SYNTHESIS PROBLEM

The discussion so far has concerned the analysis of polynomials, with applica-
tion to the loss of feedback systems. In the example in Section 2.1 we found
the amplifier to be unstable and took the expedient of adding a feedback
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capacitor to stabilize it. We then analyzed the stabilized system. Do we need to
“take what we get” and hope to stumble on a satisfactory solution? As we see
throughout the remainder of this book, this is not the case. In this section we
develop the characteristics of polynomials that give desirable performance for
various applications. This is a special case of the more general approximation
problem for equalizers and filters where a rational function—the ratio of two
polynomials—may be called for. Here, we restrict ourselves to polynomials.
We further restrict the discussion to polynomials of the low-pass type, in which
the dc coefficient is not zero.

The field of satisfactory low-pass loss polynomials is represented here by
three types plus an interpolation between two of them. The first are
the Butterworth or maximally flat amplitude (MFA) polynomials; the second
the Bessel or maximally flat delay (MFD) polynomials; and the third are the
Chebyshev or equiripple polynomials. The interpolation yields a set of transi-
tional polynomials intermediate between the MFA and MFD polynomials.

Butterworth Polynomials

Flat frequency response, by which is meant constancy of the magnitude of
L(jw), is prized in as diverse areas as loudspeakers and frequency-division
multiplex telephone transmission systems. In both cases phase response is
thought to be less important than flatness of the magnitude function, and for
the same reason—the ear is relatively insensitive to phase distortion. The
Butterworth polynomials (as well as the Chebyshev polynomials to be dis-
cussed later) provide an approximation to flatness within a given band up to
the cutoff frequency, beyond which the loss rises at a rate dictated by the
degree of the polynomial at 20n dB per decade (or 6n dB per octave). The
squared magnitude of L( jw) is given by

L(jo)'=1+w (2.6-1)
This function is seen to be unity at =0, and its first derivative is

dL(jw)’ _

1o 2nw?" ! (2.6-2)

It is zero at w=0. Similarly, all derivatives up to the (2n— 1)st are zero at w=0,
which is why (2.6-1) is termed a maximally flat amplitude function. The square
of the loss magnitude at w=1 is equal to 2 for any value of n, so that
L(j1)=V2, or 3 dB.

There are 2n roots of eq. (2.6-1) equally spaced on a unit circle, as shown for
n=4 and n=35 in Fig. 2.17; there are no roots on the jw axis for any n.
Geometric considerations give the root locations as*

2k—n+
sk:exp(j—k——:—l-%), k=1,2,....2n (2.6-3)

*For a more detailed treatment, see M. Van Valkenburg, Introduction to Modern Network
Synthesis, Wiley, New York, 1960, p. 373 ff.
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Figure 2.17. Root locations of Butterworth polynomials of fourth and fifth degrees.

It is easy to show that

L(s)=L(—s) (2.6-4)
or that

L(s)’=L(s)L(—s) (2.6-5)

[Note that magnitude signs are not needed on the right-hand side, since the
phase of L(s)L(—s) is zero.] Since we are interested in a stable loss poly-
nomial, we simply associate the right half plane roots with L(—s) and the left
half plane roots with L(s) and take the latter for the desired MFA polynomial.
The polynomial coefficients are obtained by multiplying the factors corre-
sponding to the » left half plane roots together. A calculator program that does
this is given in Appendix A, and the first six MFA polynomials thus obtained
are given in Table 2.1.

Bode plots for the first five MFA polynomials are given in Fig. 2.18. As
shown previously, the loss at the asymptotic cutoff frequency is 3 dB for any n,
and the cutoff slope rises with n. The phase curves show increasing phase
distortion as n increases. These and most other phase curves to be presented
have been modified to remove linear phase, or constant delay. This makes the
departure from linear phase—phase distortion—clearer. Linear phase amounts
to a simple time delay and does not change the relative phase of the signal
components passing through the amplifier or system. When it is removed, as
here, the higher-order delay terms—parabolic, cubic, and so on—are more
easily seen. In terms of the normalized polynomial, we obtain

L(p)=1+b,p+b,p*+ -+ +p" (2.6-6)
We plot a phase-reduced polynomial L,( p):

L(p)=(1+b,ptbyp>+ -+ +p")e b7 (2.6-7)
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Table 2.1 Normalized MFA, MFD, and Transitional Polynomials

MFA

1+p

1+141p+p,

1+2p+2p*+p?

14+2.61p+3.41p*+261p>°+p*
143.24p+524p%+524p>+3.24p* +p>
1+3.86p+7.46p*+9.14p> +7.46 p* +3.86p° + p°

A N & W N -

MFD

1+p

1+1.73p+p?

1+2.47p+2.43p+p?
14+3.20p+4.39p%+3.12p+p*
14+3.94p+6.89p%+6.78p>+3.81p*+p°
1+4.67p+9.92p>+12.36p> +9.62 p*+4.50p° + p®

A N & W N -

Transitional (m=0.5)

1+p

14+ 1.56p+p?

1+2.22p+220p%+p?
1+2.89p+3.87p2+2.85p+p*
14+3.57p+6.01p>+5.96p>+3.51p*+p°
1+4.25p+8.60p>+10.63p> +8.47p*+4.17p° +p®

A N & W N -

At low frequencies, the phase of the original polynomial is simply tan™'b,w.
This is the value of the phase removed by the exponential, giving zero resulting
phase at low frequencies.

Bessel Polynomials

The set of MFD polynomials may be derived from the following relationship
for the (normalized) b coefficients®:

 (2n—k)! n! \(n=k)/n
k‘(n—k)!k!'(m) (2.6-8)

where n is the degree of the polynomial. This equation was programmed on the
calculator to obtain the normalized coefficients in Table 2.1. Bode diagrams
are shown in Fig. 2.19, again with b,w radians removed from the phase curve.
This phase curve is seen to fall off monotonically with frequency, giving rise to
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Figure 2.18. Bode diagrams of Butterworth polynomials of first to fifth degree. Flat delay (linear
phase) has been removed from the phase curves.

the MFD designation. The delay provided is b, units of time and is flat up to
the asymptotic cutoff frequency, above which the delay becomes less.

Transitional Polynomials

The MFA and MFD polynomials represent two possible low-pass-system or
amplifier specifications, the first appropriate where flatness of loss magnitude
is the prime consideration and the second, where flatness of delay is desired. It
is convenient to have an intermediate performance specification for cases in
which simultaneous requirements are placed on both frequency and transient
response.
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Figure 2.19. Bode diagrams of MFD polynomials with flat delay removed.

A set of transitional polynomials, intermediate between the MFA and MFD
polynomials, can be generated as follows. Calling the transitional polynomial
coefficients b,,, and the MFA and MFD polynomial coefficients b\, and
b, mpps WE set

ka:bkMFDm'bkMFA(l - (2.6-9)

where 0<<m<1 is the interpolation factor. For m=0, the response is MFA,
and for m=1, the response is MFD. For m=0.5, the polynomial coefficients
are the geometric mean between those of the MFA and MFD polynomials.
The coefficients for this case are given in Table 2.1.* Bode diagrams are given
in Fig. 2.20, again with b, radians removed from the phase curve.

*The concept of transitional polynomials between MFA and MFD responses was introduced by
Peless and Murakami.® Their method differs from that given here in that they used the MFA and
MFD polynomials in factored form and used the factor m to interpolate between sets of pole
positions, interpolating the angle of the root linearly and the magnitude of the root geometrically.
Their method gives negligibly different results but involves more computation.
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Figure 2.20. Bode diagrams of transitional polynomials with m =0.5; flat delay removed.

The step responses of the MFA, MFD, and transitional polynomials are
compared in Fig. 2.21. These curves give the output time responses for a unit
step input. By comparing the waveforms of the responses, we can judge which
of the three polynomial types will be suitable for a given application; we may
wish to use an interpolation factor different from m=0.5 given in Fig. 2.21c.
The MFA responses exhibit considerable overshoot, over 8% for the third
degree (not shown) and 12% for the fourth degree; the corresponding over-
shoot for the MFD responses is less than 1%. The MFD responses have the
property of simultaneously minimizing rise time and bandwidth, a most useful
property for systems where bandwidth limitations are needed to reduce noise.

Chebyshev Polynomials

Another set of polynomials that finds considerable use are the Chebyshev
polynomials, which focus on providing an accurate match to the magnitude of
the loss. By removing the MFA restriction on the derivatives and replacing it
by the restriction that the response not deviate by more than a given amount
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Figure 2.21. Step responses of Butterworth, MFD, and transitional polynomials of unit asymp-
totic bandwidth.
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over a given bandwidth, a larger useful bandwidth may be obtained for a given
asymptotic cutoff frequency. Furthermore, a sharper out-of-band cutoff slope
can be obtained near the cutoff frequency. Chebyshev polynomials have found
use in a wide range of systems where good transient performance is not
important.

Where MFA and MFD polynomials are each specified by a single number
—the degree of the polynomial (for a given frequency and amplitude normali-
zation)—the Chebyshev polynomials require an additional parameter, the
allowable in-band ripple, as illustrated in the magnitude response in Fig. 2.22.
The frequency is scaled to the maximum frequency for which the magnitude
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