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Preface
 

Feedback has been one of the more fascinating concepts of technology for

centuries, from sixteenth century furnaces that controlled their own tempera-

ture to contemporary theories of social interaction. The intuitive understanding

of feedback systems at the most elementary level has been made more difficult

than necessary by an “endless chain of dependencies” that seems to arise

whenever we attempt to analyze a feedback system.

In a system of three interacting things, for example, when thing A4 affects

thing B and thing B, in turn, affects thing C, we feel ourselves to be on firm

ground in our understanding of the system, even if we do not know all the
details of the interactions between 4 and B or between B and C. We have a
mental picture that follows a cause-and-effect path sequentially from 4 to B

to C.

If C turns around and affects A, however, our mental picture of the

interactions is no longer so clear. By introducing feedback from C to A, we

establish an endless chain of dependencies. The mathematics of the process is

well established, but the schema, or mental picture, is more complex than it

need be. At this point we become involved with the mathematical analysis of

the whole process to make sure that we have accounted for everything. We run

the risk of getting bogged down in mathematical detail and losing sight of what

we are trying to accomplish.

This book adopts a basic change in outlook that greatly simplifies feedback

analysis and design. It allows us to retain a clear mental picture of the

interactions. In the view developed in this book, we assume that the system

vii
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output at C is known. (It must, after all, satisfy some design specification, for
example.) Then one part of A is known—the part that comes directly from C
through a feedback path. But if the output at C is known, we can infer the
input at B from the characteristics of the connecting path from B to C. If we

know the input at B, we can similarly infer the contribution to 4 implied by
the input at B (through the characteristics of the connecting path from A4 to B).

Finally, we add the two contributions to A to find the total input to the
system. We can thus find the loss of the system—the input divided by the

output. No endless chain of dependencies arises, and our mental picture is one
of sequential reasoning through the two paths from output to input, in this
case from C to A.

To express the distinction between the new theory and the old, we use the
term ““anticausal analysis” to describe the direction of analysis from output to

input.

By applying this change in point of view to many practical areas of circuit

analysis and design, we show (1) how it can be used in studying feedback
systems and (2) how it is applied to the problems of circuit design. One of the
chief benefits of the new approach is that we obtain a traceable path from the

initial, rough design approximations to the final, exact analysis and design.
Most of the examples in this book come from electrical circuits, where I have

had most of my experience. Examples from audio frequency design to designs
of microwave integrated circuits are employed; a uniform approach is adopted
over the whole range.

Knuth has said that “the enjoyment of the tools one works with is, of course,
an essential ingredient of successful work.”* An object of this book is to
provide the reader with an enjoyable set of tools for designing feedback
systems. I hope thatit will also kindle interest in circuit theory and design.

For readers who would like to apply the methods developed here directly to
obtain individual designs of their own, or to check the designs given in the

book, 31 programs are given in three appendices. They are written for the

Hewlett-Packard HP 41C or 41CV calculator and cover most aspects of the

material in the book.

Among these programs is one that synthesizes feedback systems for a

prescribed performance. Another converts the HP 41C calculator into a

“two-port network calculator.” Included are the four basic functions of addi-

tion, subtraction, multiplication and the matrix inverse, as well as lead inter-

change operations (e.g., conversion from common emitter to common base or

common collector), all available at the touch of a button. This “calculator

within a calculator” is itself programmable, and means are provided for

converting numerical results into network properties, including loss, input and

output impedances, and sensitivities as functions of frequency.

These programs were originally written as an aid to the author to assure

himself that the approaches taken could be expressed algorithmically. I believe

*Quoted by J. A. Ball in his preface to Algorithms for RPN Calculators, Wiley, New York, 1978.
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that they have turned out to be more generally useful as teaching tools in
themselves. To avail oneself of this feature, a calculator must be acquired (with
printer and card reader). Alternatively, the programs of interest can be

rewritten for the computer in the reader’s own operating system and language.

This book is intended for upper-division undergraduate students of electrical
engineering and for professionals who have an interest in designing feedback
systems and circuits. It arose from notes written for an in-hours two semester

course that I taught at Bell Laboratories. After finishing the book, the reader
should be able to design feedback systems in a very direct way, with confi-

dence in the sensitivities of the important design specifications to the devices

and components used. I hope that the reader will also be motivated to do
original work in this area.
The book is intended for either individual or classroom study at several

levels of reader involvement. A good overview of the subject can be obtained

by reading the book and following the mathematical developments. To become
adept at applying the methods in actual circuit design, the reader should
complete the homework problems. Further study is facilitated by the fully
documented calculator programs in the appendices.

ORGANIZATION OF THE BOOK

The subject matter is separated into three hierarchical levels: (1) the system

level, (2) the circuit level, and (3) the device level. In the interests of clarity in
both thought and programs, interaction between hierarchical levels has been

restricted to adjacent levels to the fullest extent possible. The book is divided
into two parts. Part 1 concerns the relationship between system and circuit

levels, and Part 2 concerns the interactions between circuit and device levels. In

Part 2 the system considerations of Part 1 are also included.

Separation into hierarchical levels is helpful in breaking the design process

into manageable pieces, particularly in the design of monolithic integrated

circuits. It is also invaluable in rational programming of the design on the

calculator or computer.

FRED D. WALDHAUER

Holmdel, NewJersey

January 1982
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Chapter 1

Feedback Amplifiers:
An Alternate Foundation

 

Modern feedback theory may be said to have begun on the Lackawanna Ferry

between Hoboken, New Jersey and Manhattan on the morning of August 2,
1927. Harold Black was a passenger on his way to work at Bell Laboratories,
where he had been working for some six years on the problem of reducing

distortion in amplifiers to be used in repeaters for telephone transmission. On
a blank space in his copy of The New York Times, he drew the diagram and

wrote the equation shown in Fig. 1.1."'> The diagram has become a common-
place in fields far removed from telephone transmission, appearing in books

and journals on control theory, system theory, biology, cybernetics, sociology,

and economics. The diagram and the equation represent the canonical view of

feedback.

Pinpointing the beginning of feedback theory at this event is arbitrary,

perhaps, since Maxwell had analyzed what we recognize as a feedback system
—the flyball governor—some 60 years earlier.> This analysis was based on

inventions that preceded it over several centuries, including furnace regulators

of Cornelius Drebble from the sixteenth century, windmill regulators of Mead

and others, and steam engines of James Watt in the eighteenth and nineteenth

centuries.*
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Output y (x)
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Output ~ u

Input ~ 1—up

Figure 1.1. Black’s feedback diagram and equation.

 

Nevertheless, Black’s diagram and equations were central because they
established a language with which to talk about feedback systems. This

language was later picked up and used in many other disciplines, after Nyquist

and Bode had contributed their mathematical insights to problems of amplifier

design in the face of inherent instability.>® In this and the following chapters,

we investigate an alternative interpretation of the set of facts represented by

Black’s diagram and equation. We begin by briefly reviewing feedback under
the aspect of the canonical theory introduced by Black.

1.1 CANONICAL FEEDBACK DIAGRAM AND EQUATION

Black was seeking a way of reducing distortion in electronic amplifiers to be
used as repeaters for telephone transmission, where even small amounts of
distortion would build up to unacceptable levels in many tandem repeaters. To

see how the circuit represented by the system diagram in Fig. 1.1 does this, we
now develop Black’s equation from the diagram. A source signal is applied to
the input of an electronic amplifier or active path that amplifies it by a factor u

and presents it to the output. A fraction B of the output signal is fed back to

the input of the amplifier through a feedback path and is of polarity ap-
propriate to reduce the active path input signal. The reason that this reduces

distortion in the amplifier is that the undistorted portion of the output signal

almost cancels the signal from the source, but the distorted component is not

canceled. Its presence at the active-path input tends to cancel the distortion in
the active path: it may be regarded as a corrective predistortion applied to the

input of the amplifier.
To make these ideas quantitative, we derive Black’s equation from the

diagram in Fig. 1.1. The output y is related to the input x by solution of the

following simultaneous equations:

y=pe (1.1-1)

e=x+By (1.1-2)
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Substituting (1.1-2) in (1.1-1), we obtain Black’s equation

y:T—M_,LE" (1.1-3)

This has been called the fundamental formula of control theory.” The quantity
pB is the loop gain, and 1—pup is the return difference, so called because if the

loop is broken (e. g. at e), and 1 V is applied at the right side of the break, the

signal returned to the input is uB, and the difference between this signal and
the originating 1 Vis 1 —pup.
A note on signs is in order. For the closed-loop gain to be stable, it is

necessary (but not sufficient) for the sign of either p or 8 to be negative. We

take up the question of stability in later chapters.

The benefits of feedback are considerable. To see the effect of feedback on
distortion, we add a distortion generator e, in series with the output of the

active path, as shown in Fig. 1.1. This generator represents a distortion signal

generated in the amplifier. Thus eq. (1.1-1) becomes

y=pe+te, (1.1-4)

Solving this simultaneously with eq. (1.1-2), we have

  T 1
= x+ e 1.1-5P TwB Tg (1.1-5)

The distortion is reduced by the factor 1 —uB. For a substantial reduction in

distortion, therefore, the magnitude of 1—pufB must be large: factors of 30th

—100 are common. The beneficial effects of feedback are seen to come from the
denominator of the gain expression 1 —pup, the return difference.

Another benefit of feedback important to Black’s repeaters is the stabiliza-
tion of gain. An accumulation of gain deviations in many tandem repeaters

could lead to overload for an increase in gain and to reduction in signal : noise

ratio for a reduction in gain. Bode defined the term “sensitivity” to describe
the ratio of the per unit variation in closed-loop gain K=y/x to a small per
unit variation in p:

gk dK/K _ dnK
“oodp/p dinp

 (1.1-6)

From this equation we can find the sensitivity of the closed-loop gain K to the

active-path gain p:

ok dK p_ 1-pBtup p(1—ppB)

Yoodp K (1-pg)’ H
 

=1=u3 (1.1-7) 
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This equation says that a 1% variation in p will cause a 1/(1—pfB) percent
variation of closed-loop gain. For the canonical diagram in Fig. 1.1, the
sensitivity is simply the reciprocal of the return difference. The sensitivity can
be found for any parameter in an amplifier. The sensitivity of K to 8 for the
fundamental equation is

__uB ]SB_I—;;,B (1.1-8)

If p.=—1000 and B=0.1, for example, the sensitivity to variations in p is
1/101, and sensitivity to S8 is 100/101. The basic assumption is that the value
of B is well controlled (e.g., a ratio of resistors), so that high sensitivity to 8 is
tolerable whereas the value of u is much less well controlled.

The effect of feedback on noise and other unwanted disturbances is most
easily calculated by referring the noise to the input of the amplifier; this is

common practice for characterizing and specifying noise. Noise originating
internally in the active path is represented in Fig. 1.2. The active path has been

 

 

 

   

 

   
Figure 1.2. By representing all noise sources in the amplifier by an equivalent noise source at the

input, noise may be removed from the feedback loop.
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split into two (noiseless) portions p, and p,, and a noise source is added

between them. This is equivalent to the second diagram, in which the noise
source has been divided by p, and moved to the input of the active path. Any

other noise sources in the amplifier may be similarly treated, so that the

equivalent input noise source n; will serve to represent them all. To compare
the noise performance of the amplifier with and without feedback, we can

write

y=pBy+px+pn, (1.1-9)

px+pn,=T 1.1-10Y= (1.1-10)

Feedback reduces the gain and the noise by the same amount at the output.

Thus the signal/noise ratio, keeping the input signal constant, is unchanged by
the feedback. If noise n, is injected at the output, we may find n,=n,/p and
use it in eq. (1.1-10) to find that the noise is reduced by the factor 1 —uB and
that the signal/noise ratio is improved by this factor.

For the fundamental feedback diagram, the benefits of feedback can be
summarized to include reduction of distortion and active-path gain variation

by a factor of 1—pupB, and an improvement in signal/noise ratio ( for given
output signal level) of the same factor. At the input, the signal must also rise by
1 —pB to maintain the given output, so that the improvement in signal/noise

ratio comes from the increased input signal.
We have defined two concepts for the canonical diagram that require further

discussion: (1) return difference, the denominator of eq. (1.1-3); and (2)

sensitivity, in eq. (1.1-6).

Bode made these two concepts precise for general circuits, not just for the

canonical diagram due to Black. He chose return difference as the primary

concept because, as he said,it “most nearly agrees with the usual conception of

feedback.”® In the following section we introduce an alternate formulation of

the problem in which return difference disappears but in which sensitivity
retains the general meaning given to it by Bode.
The benefits of feedback are not attainable without some cost. First, the gain

is reduced by the factor 1 —pufB so that additional active-path gain must be

provided. A more important and fundamental limitation arises because of
bandwidth limitations in the active path and signal propagation delay around the

feedback loop. These effects can cause unsatisfactory dynamic behavior such

as ringing and overshoot of the output signal, and even instability. Much of
what follows in this and later chapters is concerned with these fundamental

limitations and the optimization of performance in their presence. The means

by which this is done in this book is considerably simplified by taking an

approach that is quite different from the one taken above. We begin the study

of the new approach in the following section. In Section 1.3 we discuss

bandwidth limitations in the active path. Propagation delay is studied later in

this chapter and in Chapter 5.
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1.2 AN ALTERNATE FOUNDATION FOR FEEDBACK THEORY

Harold Black wrote his equation on his copy of The New York Times as the
circuit gain of the feedback amplifier. He could as easily have expressed his
result as circuit loss, merely the reciprocal formulation of eq. (1.1-3):

x:(fi—fi)y (1.2-1)

in which the input x and the active-path input e are expressed in terms of the
output y. The negative sign of B arises because feedback signals were defined

as adding to e in the previous section; now they are seen to subtract from
e(y)=(1/pn)y. Fig. 1.3 contrasts the summation of signals under the conven-

tional and reciprocal formulations. The quantity (1/u)— B is the loss ratio.
Loss was used to express the characteristics of transmission lines, to which his

repeaters were to be applied, so that the concept of loss as the reciprocal of

gain would not have been strange. The loss of a repeater amplifier would have
had to be a number less than one. If Black had expressed his result in this way
the development of feedback theory might well have taken a different direc-
tion. This book builds feedback theory from this alternate point of view. It is

shown later that the description of feedback can thereby be simplified substan-
tially.?
One conceptual problem with the reciprocal equation concerns the common-

sense notion of causality. When we write an equation that says that the input x
depends on the output y, we express a mathematical relationship: x is
functionally dependent on y. We know, on the other hand, that x causes y. Most

equations that we write in engineering and science are expressed in cause-and-

effect form, in which the effect is expressed as functionally dependent on the
cause. No doubt this is why Black wrote his equation in the way he did. The

output y depends on the input x; thus it seems “natural” to write the equation

 

 

 

+

By

x(y) ~ * ely)

x(y) =e—py +

= (4 —Bly

—By
 

Figure 1.3. Canonical feedback diagram under the reciprocal formulation.
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as y=f(x). In this way the mathematical description follows the causal
description. When the mathematical description proceeds in an “anticausal”
direction, it seems unnatural.

Consider Black’s situation when he developed feedback, however. He knew
the output he wanted. It was to be an undistorted signal. After many years of

effort, he finally found how to modify the input signal to obtain the desired

output. In this sense the reciprocal equation can be read as the answer to the

question regarding what input signal is needed to give the required output

signal. The reciprocal equation can be considered conceptually as a “designer’s
equation.” Although it takes some getting used to, the reciprocal formulation is

as intuitively satisfying as the canonical one.

How should we interpret eq. (1.2-1)? The loss ratio of the equation is simply
the sum of two components—the loss of the active path and the B loss. The

loss of the active path is the reciprocal of p and is the loss ratio when the 8

path is set to zero, that is, when the feedback is removed. Likewise, B is the loss

ratio when 1 /p is set to zero, that is when the loss of the active path vanishes,

or when the gain goes to infinity. The equation contains no denominator; thus

the return difference as defined previously is unity.

Let us repeat the gain stability and distortion calculations of the previous

section for the reciprocal formulation. Although there is no return ratio or

return difference, the physical quantities representing the performance of the
amplifier must remain the same. Denoting the ratios x/y=1/K=L, the loss
ratio, we rewrite eq. (1.2-1) as

_1 ]L_p B (1.2-2)

Applying the sensitivity definition of eq. (1.1-6) to this equation, we find that
dL/d(1/pn)=1, so that

1w
=T TR

1

“1-uB

Therefore, the sensitivity of L to 1 /u is the same as that of K to pu, as we would

expect since the loss equation is merely a different description of the same
physical situation.

There is one important difference, however. The sensitivity under the

reciprocal formulation is also applicable for large changes in the parameter 1/p.

since for a change A(1/p), we have

 (1.2-3)

1L=——i B

AL=AT
[
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Hence

AL A(l/p)
L (1/p)-8

so that

AL/L _ ol — 1/}1, i

A1/,() S T—R (1.2-4)

where S,L/u is now the sensitivity for large parameter changes and is not a

function of the parameter change (see Problem 1). Suppose, for example, that

1/ is 0.01 and B is —0.01, so that L=0.11. The sensitivity of L to 1/p is
1/11, or 0.0909. Then, if 1/p vanishes, that is, changes by —100% (a large
change, indeed), the percentage change in L would be —9.09%, bringing it
down to 0.1, or — 8.

Sum Rule for Sensitivities

The property of the sensitivity of the sum of several elements to one of those
elements will be important in later work. If Z=a+b+c, then 92/da=a, so

that S*>=a/(a+b+c)=a/Z. We call this the sum rule for the sensitivity of a
sum of elements to one of these elements. Furthermore, it is true for a large per
unit change in element a.

As an example, consider the series combination of two resistors, one of 10 €2,
and the other of 90 2. The sensitivity of the total resistance to the 10 £
resistance is 10,/100, or 0.1. If the 10 € resistance increases by 10% or 1 {, the

total resistance increases by 1%. Similarly, the sensitivity of the total to the 90

Q@ resistor is 0.9. If this increases by 10%, or 9 {, the total increases by
0.9X10%, or 9%. In feedback theory based on the alternate, reciprocal founda-

tion, this particularly simple interpretation of sensitivity applies fairly gener-

ally because loss expressions tend to be sums.

Returning to the loss equation [eq. (1.2-2)], the sensitivity loss with respect to
B can be written directly:

O e— (1.2-5)

This is the negative of the sensitivity of K to B given in eq. (1.1-8). Although

this expression is also true for large changes in B, the sensitivity of K to 8 given

in eq. (1.1-8) is not. The fact that they are equivalent for small parameter

changes is evident from the definition of sensitivity given in eq. (1.1-6) and

because In u= —In(1 /u), so that

S“Z—SJ/“Z—SI“/UZSI'//: (1.2-6)
v
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which says, for example, that a 1% change in v produces the same change in u
as a —1% change in 1 /v.

Distortion Analysis

The analysis of distortion reduction by feedback is different in character under
the reciprocal formulation and substantially simpler. It does, however, require

a considerable reorientation in thinking about the problem. Instead of a pure
sine-wave input producing a distorted output, for example, we now reverse the
picture to find out what predistortion is required on the input signal to produce

a pure sine-wave output. Where the input and output are related by a nonlinear

function, either formulation can be used. The latter one, however, has not been

used extensively and may be unfamiliar. Under the reciprocal formulation, the

output signalis the independent variable, and the distortion-producing nonlin-

earity can be related directly to it. As we see later, this gives a more intuitively

satisfying description of the effect of feedback on nonlinearity.
Let us assume that the input—output relationship of the active path can be

represented by a power series, in which the input e is instantaneously depen-
dent on the output y

e(y)=a,ta,yta,y*+ayy? (1.2-7)

This equation states that the error signal input e(y) can be regarded as the

sum of a direct current (dc) term a, a linear term a, y, a parabolic term a, y2,

and a cubic term a, y>. Each term is plotted separately in the first column in

Fig. 1.4, using (arbitrarily chosen) values of the a coefficients: a,= —0.01;
a,=0.02; a,=0.02; and a;=0.05. The sum of the components is shown at the
bottom of the column. For small-output signals, the totalis fairly linear, but as

the signal increases, the nonlinearity rises rapidly.
We now can find the effect of adding negative feedback on this nonlinearity.

As before, the negative feedback path is assumed to be linear and to add no dc

term. We take the amount of negative feedback (again an arbitrary choice for

illustration) to be —B=0.06, or three times as large as the linear term. The

feedback signal adds to the linear term (and to the total) by (1.2-1) but does

not add to the dc, the parabolic, or the cubic terms. This is shown in the

second column in Fig. 1.4. The totals for each of the terms are shown

in the third column in Fig. 1.4, which shows only the linear term increased by

the feedback. The bottom row shows the sum taken vertically: in the first

column is the nonlinear output—input function of the nonlinear active path; in

the second, the linear feedback; and in the third, the total of the two.

Clearly, feedback has improved the linearity, and it has done this by

increasing the linear term of the series at the input, leaving the distortion

products and the dc offset unaffected. We can obtain a quantitative measure of

the improvement by differentiating eq. (1.2-7):

de
d—y:a1+2a2y+3a3y2 (1.2-8)
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We can normalize the coefficients to the linear term as follows:

e _o |4 202y, Bey”= . s (1.2-9)

in which the second term in the brackets is a measure of the parabolic (or

 

  

Active path Feedback path Total

a0 1 +0.05 iy H+0.05
11__1_] 1414]

—1 40 +1 0
—0.05 —4—0.05

 
  
 
 

        
Figure 1.4. Static input-output characteristics for a nonlinear feedback system. The first four
rows give the dc offset, the linear component, and the parabolic and cubic components; the fifth
row gives the total. The first column is the contribution to the input by the active path; the second

is that of the feedback path; and the third is the total of the two.
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quadratic) distortion and the third term is similarly a measure of the cubic
distortion. Higher-order nonlinearities are absent, but their presence would not
affect the discussion. When we add the feedback signal — By to the right side
of eq. (1.2-7), we obtain x(y), the input signal with feedback. When this

modified equation is differentiated, we obtain

%gzwar—fi)+2a2y+3aly2 (1.2-10)

When this expression is normalized to its linear term, we obtain

dx p 2y ey
&(=B=g+g (1.2-11)

Comparing the second and third terms in the brackets with the similar terms of
eq. (1.2-9), we see that both parabolic and cubic measures of distortion have

been reduced by the factor a,/(a;—B). (Note that for negative feedback,

either &, or B must be negative, but not both.) But «, is just 1/u, the
small-signal value of the loss, so that the individual distortion components are
each multiplied by

 = (1.2-12)

as obtained in the previous section.

Figure 1.4 clarifies several points that were obscure under the conventional
formulation. First, for a given output (note that the output is plotted as the
abscissa in the curves in Fig. 1.4), addition of linear feedback does not change
the nonlinear components at the input. It does change the linear component of
input, however, and this input tends to swamp out the nonlinear components.
Hence the nonlinear components are reduced relative to the linear component.
In this sense the output-input characteristic with feedback, shown in the lower
right graph, is more linear than that without feedback. Second, the dc offset a,
is unchanged by the application of feedback.

It is useful to think of the undistorted output signal as the desired signal and the

nonlinear terms in the input signal as corrective predistortion signals needed

(along with the undistorted component of input signal) to obtain the desired output

signal. Since the output is undistorted, feedback can only increase the undistorted

input signal required while leaving the predistortion components unchanged.

The situation depicted in Fig. 1.4 corresponds to negative feedback, in which

the slope of x(y) is increased when feedback is applied; that is, the loss

increases, or the gain is reduced. Suppose that we now change the sign of the

feedback and let —fB= —0.06, as shown in Fig. 1.5, leaving the active path
unchanged. This corresponds to positive or regenerative feedback and for the

illustrative numbers chosen leads to an x(y) whose slope becomes negative
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Figure 1.5. Positive feedback: (a) the active-path contribution; (b) the feedback contribution;

(¢) the total.

over a region near the origin. In this example y is a multivalued function of x
for the functional dependencies of the conventional formulation. Under the
reciprocal formulation, however, x is a single-valued function of y. The type of
curve shown in the right-hand graph in Fig. 1.5 is encountered in various

unstable circuits such as flip-flops, multivibrators, and oscillators. In this book

we are concerned primarily with negative feedback.

The discussion to this point has sought to point out the advantages in clarity

that are obtainable simply by taking the output signal of a feedback system as

the independent variable and finding the input signal that is required to obtain

that output. Another aspect of this simplification is that equations written

under the reciprocal formulation are more easily solved. The reason for this is
that where nonlinearities exist, they are more directly related to the output

rather than the input signal, so that we can find an explicit expression for the
input in terms of the output. The reverse is generally not the case. The circuit

example described in Example 1 will serve to illustrate this point.

Example 1. Consider the common emitter transistor circuit in Fig. 1.6, in
which an external emitter resistor has been added to improve the linearity. The

small-signal input voltage may be approximated by applying Ohm’s law:

dV,=(r,+R)dI, (1.2-13)

where r, 1s the (incremental) emitter resistance, given by r,=kT/ql; I.=1-+i,,
the dc quiescent value and the signal current, respectively; and k7/q 1s 0.026 V

 

Figure 1.6. Common emitter transistor with

emitter resistor feedback for linearization. 
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at room temperature, so that r,=26 § at J,=1 mA. In this equation r, may be
interpreted as the reciprocal of the active-path gain, which is a transconduc-
tance. The value R may be interpreted as — 3, so that eq. (1.2-13) corresponds
to eq. (1.2-1). Thus we can integrate (1.2-13) after the appropriate substitutions

to yield

 KT  di, |
Vh_—(—]— IC+iC+R/dl(,

Zgln(l+—li)+Ric+VB (1.2-14)
q Ic

where the constant Vj is the dc base-to-common voltage consisting of V., the
dc bias voltage from base to emitter, and R/, the dc drop across R. The dc
bias voltage from base to emitter V. is about 0.7 V at 1 mA for silicon
transistors. For values of i, smaller than the quiescent value, we can expand

the In function in a power series:

(AT R)i AT (L L Ly )V,,-—(qIC-i-R)l(.-%- 7 (27 +3y +4y + (1.2-15)

where y=i/1. The first term is linear in i/ .. The second term represents the
distortion. Just as in Fig. 1.4, the linear term is increased by the feedback and
the distortion terms are unaffected by it. The feedback signal is the voltage
across R arising from the output current flowing through it. By the sum rule,

the distortion terms have been reduced by the factor r,/(r,+ R). The sensitivity
of V, to r, has been reduced by the same factor.
Although it is easy to visualize these relations in the reciprocal formulation,

it is not as obvious how they can be put in the form of Black’s canonical
feedback equation and diagram. However, if we set g,=1/r,, calling g,
transconductance, we can write

Em
A=T74 dv, (1.2-16)

From this the canonical diagram in Fig. 1.1 can be drawn with p=g, and

—B=1/R. Note that the canonical diagram is not a circuit diagram, but rather

a diagram relating signal variables. We discuss this later when we study more

general diagrams of this type—signal flow graphs. In eq. (1.2-14) g, =ql/kT,

so the equation can be written

ql,

A= 1T+ glR dv, (1.2-17)

In this equation /., and V), both appear on the right side; the separation of
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variables that made eq. (1.2-13) easy to integrate is not obtained under the

conventional formulation.

1.3 FEEDBACK AROUND A FREQUENCY-DEPENDENT ACTIVE PATH

The study of feedback systems primarily involves their dynamic behavior,

which can be treated by differential equations in the time domain, or by

frequency domain methods. We study dynamic behavior in the frequency

domain in Chapters 2 and 3. This section introduces the subject by considering

feedback around an active path that has a simple frequency response cutoff,

one in which the high-frequency gain is inversely proportional to frequency. A

single transistor or an internally compensated operational amplifier (such as

type 741) have high-frequency characteristics of this type. We are interested

here in developing and comparing the mathematical descriptions of such an
amplifier under the canonical and the reciprocal formulations.

We assume that the low-frequency active-path gain is p, and that its

behavior as a function of the angular frequency w is given by

Fo

" Thingne (1>©

where 7, remains to be defined. Since p is a complex quantity, two numbers are

required to represent it at any given frequency. We could represent it by its
real and imaginary parts, for example. Perhaps the most familiar and useful

way to represent pu is by its magnitude and phase. We can write

b=e (13-2)

Taking natural logarithms, we obtain

In p=In|y| +,60 (1.3-3)

Expressed in this way, we have as our two numbers the log of magnitude

(expressed in nepers) and the phase (expressed in radians). As a matter of
convention, we change the measure of magnitude from nepers to decibels: the

magnitude is 20log,,|u|. We also change the measure of phase from radians to
degrees by multiplying by 180/7. A plot of these two quantities as a function

of frequency on a log scale is called a Bode diagram or plot.

Figure 1.7 shows a Bode diagram of p. At low frequencies the magnitude is

p, and the phase is zero. If p were to have a phase reversal, the phase would be

180° without affecting the magnitude. At high frequencies the magnitude falls

at 6 dB per octave (20 dB per decade) in a straight-line relationship. It crosses
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Figure 1.7. Bode diagram of an active path including a simple frequency cutoff at w =1/p7.

the unity gain (0 dB) ordinate at an angular frequency of w=1/7,, the unity
gain frequency. At a frequency of w=1/p,7,, the denominator of u is j+/1, so

that the magnitude is less than the low-frequency value by a factor of y2, or 3

dB. This is called a corner frequency and, because it is concave downward,is a

downward corner frequency. The dashed lines represent the asymptotes of the

response.
The pocket calculator is useful for sketching Bode diagrams on semilogarith-

mic graph paper; such sketches are useful aids to understanding and are part
of the language of feedback systems. In this simple case the real and imaginary

parts of the denominator are converted to polar coordinates, and the magni-

tude is divided into the numerator. The log,, of the result is taken and
multiplied by 20 to obtain the magnitude ordinate. The phase is just the

negative of the phase of the denominator.
We now wish to find the effect of connecting a feedback network to the

active path defined by eq. (1.3-1). From the canonical equation, we have

_ KK=

1—uB

__FPo
1+jpomw

-TT (1.3-4)

- 1 +jpmw
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For example, if we take 8= —0.1, u,=100, and 7,=1.0, we have

100
A 141000 (1.3-5)

. —10
kB= T100w (1.3-6)

1141000
= 1B= T100w (1.3-7)

and, finally,

100
k= 11+/100w (1.3-8)

Bode diagrams for these four quantities are plotted in Fig. 1.8.
At low frequencies p=100, so that 20log|u|=40 dB. At w=0.01, it has a

downward corner frequency above which it begins to fall with frequency at a
rate of 20 dB per decade. The phase is tan™'(7,wp,). The curve of the loop
gain pf with = —0.1 is of the same shape in magnitude, moved down by 20
dB, and the same shape in phase, moved 180° because of the negative sign of
B. The uB curve crosses the 0 dB line (unity gain) at w=0.1. This is termed the

loop-gain crossover frequency. The return difference 1 —pS has a magnitude of

11 (20.8 dB) at low frequencies, and a downward corner at w=0.01, the same

as ufB. At high frequencies, however, it must equal unity (0 dB) so thatit has an
upward corner at w=0.11. The phase of the return difference is zero at both
very low and very high frequencies and reaches a minimum of —57° at
w=0.033. Finally, the closed-loop gain K is p divided by 1—pfB; on the dB

magnitude scaleit is the difference between the p and return difference curves.
The phase of K is also the difference between the p and 1 —pf curves.

This completes the description under the conventional formulation. In

addition to the forward-path gain and the feedback loss, we investigated their

product (the loop gain) and the sum of unity plus the loop gain (the return

difference) to determine the closed-loop gain. Hence five quantities must be
evaluated as functions of frequency. Four of them are shown in the Bode plot;

the fifth, 8, is a constant here and was not shown, butit, too, would generally
be a function of frequency. Let us now contrast this description with that
under the reciprocal formulation, in which we find the closed-loop /oss rather
than gain.

The loss of the active path is found by taking the reciprocal of eq. (1.3-1):

1 1

L 0
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Figure 1.8. Bode diagrams for p, uf8, 1 —pB, and K for a feedback system incorporating a simple

cutoff in the active path.

For convenience, we let 1 /u,=a, and 1/p=L,, so that

L,=a,+jmw (1.3-9)

Next, we find the closed-loop loss L by adding the feedback contribution to

the input:

L=a,~B+jm (1.3-10)

Taking the values used in Example 1, namely, 8= —0.1, a;,=0.01 (p,=100),



20 Feedback Amplifiers: An Alternate Foundation

and 7,=1.0, we have

L(jw)=0.014+0.14+jw

=0.11+jw (1.3-11)

Contrast this result with that of (1.3-8). Under the reciprocal formulation, loop

gain and return difference are spurious quantities; we need consider only the
sum of the active path contribution to the input L, and the feedback contribu-
tion S.

Bode diagrams of the three quantities of interest, shown in Fig. 1.9, are more
easily interpreted than those in Fig. 1.8. The feedback simply adds to a,,

thereby raising the frequency at which the magnitude of the frequency-sensitive

term equals that of the constant (dc) term. The shapes of the curves for L, and

L are identical; the magnitude curve is shifted up and to the right by the
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Figure 1.9. Bode diagrams for L,, B, and L for the feedback system described under the
reciprocal formulation.



Feedback Around a Frequency-Dependent Active Path 21

feedback, and the phase curve is simply moved to the right. Seen in the light of
the reciprocal formulation, the conventional view is awkward. Stated in a more

positive way, the reciprocal formulation simplifies the description of feedback
processes in the frequency domain, and in a way similar to the one that we
found for distortion in the previous section. In Chapter 4 we make the
mathematical nature of this simplification more precise.
We can interpret this simplification in terms of the canonical block diagram

in the following way. The expression for the frequency cutoff of the active path
given in eq. (1.3-1) bears a striking resemblance to the fundamental feedback
equation (1.1-3); u, corresponds to p, and jwT, corresponds to —. Just as we

eliminated the denominator in the fundamental feedback equation by use of
reciprocal formulation, we eliminate the denominator of the active-path ex-

pression when we use its reciprocal. This suggests that we can view the

forward-path gain in eq. (1.3-1) and Fig. 1.10a as a canonical feedback

(a)

   —jw   
(b)

   —ag — jwT,   
(c)

Figure 1.10. Alternate, equivalent representations of a frequency-dependent active path.
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structure (shown in Fig. 1.10b). Accordingly, we can eliminate the denomina-
tor from the expression by using the reciprocal formulation, as we have done
before for p,.

Figure 1.10c¢ goes one step further. The remaining active-path element p, is
also placed in the feedback path. It appears as a feedback element — 1 /p,= —a,
around an infinite gain amplifier or an amplifier whose loss is zero. With that
refinement, we see that the loss 1 /u=L, of the active path is given directly by
eq. (1.3-9). Furthermore, — B can be added to the feedback path in Fig. 1.10¢
to obtain the loss of eq. (1.3-10). It is clear that, mathematically, we can assign
physical effects in the amplifier to either the feedback or the forward paths
according to our choice. As we proceed, it will become apparent that this is
also physically true. The concept of a zero loss amplifier is a valuable one

widely used in working with operational amplifier circuits. We generalize this
result for two- and three-port networks later.

To recapitulate, Fig. 1.10a represents the conventional view of the active
path, with the path gain p,/(1 +jwT1) multiplying the input signal to obtain
the output. Figure 1.10¢, on the other hand, represents the active path under
the reciprocal formulation, with the input signal equal to the negative of the
path gain of the “feedback” path. Since input e of the zero-loss amplifier must
be zero for any finite output, input signal x is forced to cancel the signal from
the output exactly. Clearly, the two representations are equivalent, but with the

functional dependencies reversed.

Example 2. The purpose of this example is to move the discussion from the
abstract canonical feedback diagrams in Fig. 1.10 to a more physical represen-

tation of feedback structures. Consider the circuit in Fig. 1.11a, in which an
operational amplifier is connected as a unity gain, noninverting amplifier. The
negative differential input is connected directly to the output. Differential
input voltage v, is amplified by the factor u: v,=pv,, where v,=v,—v,=v,—
pv,. Hence

1

 

Ud:mvi (13-12)

and

__ Kv,= l+pv’ (1.3-13)

This is in the form of the canonical equation, with 8= —1. Figure 1.11b gives

an equivalent circuit in which a dependent generator pv, represents the

forward or active path. The input admittance is small and has been ignored in
this simple model. The operational amplifier is represented solely by the
voltage-controlled voltage source and is described causally since the controlled

source both depends on v, and is caused by it. The expressions “depends on v,”
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Figure 1.11. (a) Unity gain amplifier using an operational amplifier; (») conventional depen-
dent-generator equivalentcircuit; (c¢) equivalent circuit using a generator dependent on the output

voltage, connected to the input of a zero-loss amplifier.
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and “caused by v,” are often taken to mean the same thing, so that the

distinction between the two concepts needs clarification.

The same circuit, this time described under the reciprocal formulation, is

shown in Fig. 1.11c¢ and makes the distinction clear. In this description the
active path is described by an ideal amplifier that has a dependent generator
connected in series with its input lead. The ideal amplifier is defined as having

zero input current and voltage for any finite output current and voltage. No

numbers are needed to describe it; its function is to bring both the voltage and

current at its input to zero. This circuit element is discussed further in Section

1.7 and later chapters. A nonideal operational amplifier does have a nonzero

input voltage, however, and this is represented in Fig. 1.11¢ by the dependent
generator v,= L,v, connected in series with the ideal amplifier input. This
representation of the operational amplifier is equivalent to that in Fig. 1.115,
but the cause of the output v, is represented by a dependent generator Lv,.

Hence the functional dependency is set up in an “anticausal” direction, so that
whereas v, is caused by v,, v, depends on v,.

Over most of its frequency range, the voltage loss ratio of a simple voice

frequency operational amplifier is given by

%:La(s):ao—{—frls (13-]4)

o

in which the Laplace transform complex frequency variable s replaces jw. This
change is made here for notational convenience; it will take on additional

meaning in Chapter 2. The value of a, for most operational amplifiers is

negligible (typically 10 ~>, or 100 dB of gain).

The loss of the voltage followercircuit is found by adding the voltages in the
input loop in Fig. 1.11¢. Thus, assuming negligible input current, we have

e;=v,tvu,

or

56—(s)=1+ms (1.3-15)
Yo

which is a loss response with a single upward corner frequency at w=1 /7, and

unity loss up to this frequency. This expression is not accurate for most

operational amplifiers because usually there is significant delay of signals
between input and output. The means for handling delays in feedback systems

is treated in Chapter 5.

1.4 NONLINEARITIES IN DYNAMIC SYSTEMS

The combination of nonlinear components with frequency-dependent ones has

always been troublesome. The reciprocal formulation allows us to deal simply
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Figure 1.12. Circuit for study of a nonlinear dynamic system. Either G or C may be a nonlinear
function of the voltage acrossit, in this case the output voltage.

with a type of nonlinearity problem that will be important to us later on. The

problem concerns Fig. 1.10¢, in which either a, or 7, (or both) may be
nonlinear functions of the signal applied to them. In Fig. 1.10¢ the applied

signal voltage is equal to the output signal since the signal voltage at the input

1S zero.

To make the problem more concrete, we translate this system in Fig. 1.10¢

to the circuit shown in Fig. 1.12. In this circuit we connect a feedback
admittance consisting of a conductance and a capacitance around an infinite

gain operational amplifier. This latter is just the amplifier in Fig. 1.11¢c, in
which v,=0. The problem of the previous paragraph can now be translated

into circuit terms; that is, we must determine what input voltage is required to
obtain a prescribed output voltage when either G or C (or both) are nonlinear

functions of the output voltage.

Taking the output voltage as a function of time, the feedback elements will
be instantaneous functions of this output voltage, so we must use a time

domain description of the signal variables. We may rephrase the question as:

“What is the generator voltage as a function of time to obtain a prescribed

output voltage waveform?” This is a classic problem; one engineering applica-

tion is that of generating a linear sweep voltage (a ramp function) for a cathode

ray tube. In this application the output is to be a voltage that linearly increases

with time. When this voltage is delivered by a nonlinear circuit, the input

waveform must be predistorted to obtain the linear output. The problem is to

find the input waveform for a given set of nonlinearities in the amplifier. Most

television sets, for example, include such predistortion circuits to correct for

nonlinear deflection systems.
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We consider first the case of a nonlinear conductance and a linear capaci-

tance. The input voltage to the circuit is expressed as a function of the output
voltage v, by

eG(t)z—RGlfG(vo)dvol—RGCcz)t" (1.4-1) 

To take the analysis further, we need an expression for the nonlinearity of
G(v,). If we assume a nonlinearity of the type given in eq. (1.2-8),

G(v,)=G,(14+2a,0y+3a;0?) (1.4-2)

we have

 
d

eG(t):—RG(leo+G,azvf+G,a3vg+C ;t) (1.4-3)

where we have written dv,/dt for the time derivative of the output voltage.
Thus, for any prescribed output waveform, we obtain the input waveform by
adding the four terms of the equation.

As an example, suppose that the specified output is to be a ramp of —1
V/us for a duration of 4 ps, starting at v,=0 and r=0. We use a consistentset
of units to avoid unnecessary conversions; our fundamental units here are
volts, milliamperes, and microseconds, leading to kilohms, millisiemens, and

nanofarads. Find the required input waveform if G,=0.1 mmho, R;=1 k{,

C=0.1 nF, and a,=a;=0.1. Then v,= —¢, v>’=t? v2=—t;, and dv,/dt is a
step of —1.0 V. The input waveform is given by

eg(1)=(0.1/—0.01724+0.013+0.1)u(¢) (1.4-4)

where u(t) is a unit step. Note that units are consistent: (mmho) (kf2)=1, and

(nF) (k2)= ps. The waveform is plotted in Fig. 1.13.
Next, consider the case of a linear conductance and a nonlinear capacitance

in the circuit shown in Fig. 1.12. In this case the current through the

capacitance is given by

=40 _d0 do,
'“TTdt T dv, dt (1.4-5)

But since Q=C(v,)-v,, we obtain

d|C(v,)v dC
EJQZ [ ( 0) 0] :C(UO)+UO (vo) (14'6) 
dv, dv, dv

o
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Figure 1.13. Derivation of the input waveform required to obtain a prescribed negative-going
ramp at the output.

Thus

dC(v,) l dv, (147)
iC:[C(Uo)+Do—_dv =

Since the current through the (linear) conductance is just Guv,, we have for the
generator voltage

C(vo)+vo%vvo)]%} (1.4-8)
o

 

e(1)= —RG{GUO+

We cannot go further without knowing the relationship between C(v,) and

v,. Let us assume as an example that over some range of v,, C(v,) can be

represented by the function

C(v,)=Cy(1+kv,) (1.4-9)
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Figure 1.14. Input waveforms at (¢) 0.025 MHz and (5) 0.25 MHz to obtain a pure sinusoidal

output waveform from the circuit shown in Fig. 1.12.

Then v,(dC/dv,) becomes C, kv,, so that the input voltage becomes

d
e(1)=—R| Go, + Cy(1+2kv,) ;t” (1.4-10) 

As in the previous example with linear capacitance, if we know v, at the outset,

we can find dv,/dt so that the input voltage time waveform can be found

immediately.

As an example, let R;=1 k@, G=0.1 mmho, ¢;,=0.1 nF. Let us find the
required input voltage waveform if the output is to be an undistorted sine

wave: v,=Asinwt, with w in our consistent set of units—megaradins per
second). From eq. (1.4-10), we can write the input waveform directly:

e;(1)=—R;GAsinwt

—R;CyAwcos wt(1+2kA sinwt) (1.4-11)
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Since cos wtsinwt= 5 sin2 wt,

e;(1)=—0.14sinwr—0.14wcos wt

—0.14%wksin2wt (1.4-12)

The first two terms constitute the linear part of the input signal, and the third
term represents the corrective predistortion required to obtain a pure sine-wave

output. The latter term rises as the square of the amplitude, whereas the linear
terms rise in proportion to the amplitude. Figure 1.14 shows the input
waveform for 4=1, k=0.2, at two frequencies, w=7/20 ( f/=0.025=MHz)

and w=7/2 ( f=0.25 MHz).

The preceding analyses were made for nonlinear elements in the feedback
network of an ideal operational amplifier. These analyses apply equally well to

nonlinearities in the forward path of the canonical diagram if these forward
path nonlinearities can be expressed as functions of the output signal variable.

The equivalent diagrams in Fig. 1.10 show the translation of circuit parameters
back and forth between the feedback and the active paths of the canonical
diagram. In the case of the nonlinear conductance, for example, the analysis

would be the same if the feedback conductance were absent and if the forward
path consisted of a transresistance of R,,=1/G=1/G(1+2a,v,+3a;0?).
Similarly, the feedback capacitance could be represented in the frequency

domain as a forward-path transimpedance, Z,,=1/jwC(v,). In either case,if
there is an output-dependent nonlinearity in the forward path, it is more
convenient to transform it to a feedback network, as in Fig. 1.10c¢, to allow an

analysis such as that carried out previously.

1.5 SENSITIVITIES FOR FREQUENCY-DEPENDENT LOSS RATIOS

As in the case of the sum of series resistors, the sensitivity of the sum of several

elements 2 to one of those elements a, is simply a/2. Since the loss ratio in eq.
(1.3-10) is such a sum, we may obtain the sensitivity of L to each of its
component parts directly.
Thus for

L=a,tjor,— B (1.5-1)

we can use the sum rule to write

L_ ay= 1.5-2
Sa, ap—Btjer, ( )

The sensitivity of L to a, is a complex function of frequency. At zero

frequency the result is just that obtained in Section 1.2. But how should we

interpret the frequency dependence of the sensitivity and the fact that it is a

complex quantity?
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For a simple interpretation of sensitivity as a complex function of frequency,
consider the series combination of a resistor R and an inductor L. Whatis the
sensitivity of the total series impedance to the resistance? To the inductance?
From the sum rule,

7 R
SR =m (1 .5-3)

and

z_ JwL )SE= Rt7oL (1.5-4)

At dc the sensitivity of the impedance to the resistance is unity, whereas at
high frequencies the sensitivity is zero. The opposite is the case for the
inductor.

Since the sensitivity is a complex quantity, we need two numbers to specify
it—the real and imaginary parts or the magnitude and the phase. Both
interpretations are of interest and are developed in the following paragraphs.

Real and Imaginary Parts

Since the form of egs. (1.5-2) and (1.5-3) is the same, we can develop the

interpretation of the real and imaginary parts of the sensitivity for either the
impedance or the loss ratio.
Bode plots separately express the magnitude and phase of loss polynomial L.

Let us now find the sensitivities of the magnitude and phase of L to a,,.
Expressing L in terms of its magnitude and phase, we obtain

L=|Le’ (1.5-5)

and taking In L,

In L=In|L|+,0 (1.5-6)

The definition of sensitivity is given in eq. (1.1-6) as

. dinL “" dina, (1.5-7)

Substituting (1.5-6) into (1.5-7), we obtain

din|Lsi= 2ol db (1.5-8)* 
% dlna, ’dna,

*I believe that this substitution and the ensuing result were first formulated by E. J. Angelo, Jr. in
1955 (MRI research report R-449-55, PIB-379, “Design of Feedback Systems”).
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Thus the real part of the sensitivity of L to a1s the sensitivity of the magnitude
of L toay:

Re{S)}=SsIH (1.5-9)

The real part of the sensitivity gives us the per unit change in |L| for a small

per unit change in a,. Equivalently, it expresses the ratio of the decibel change
in |L| to a small decibel change in a,. The imaginery part is df/(da,/a,), the
change in 6 for a small per unit change in a,,. If a, were to increase by 1%, for
example, da,/a,=0.01, the change in  would be

d6| 4a,=001 Im{S}}
agp

 
(1.5-10)

The sensitivity of the phase to a,, Sfo, is the per unit change in the phase for a

small per unit change in a,. It is generally not a useful quantity by itself, since
we are seldom interested in the per unit change of an angle. Thus we usually

use the Im{SaLO}. This is related to S,fo as follows:

 dé
Im{S“II)} = daO/a()

i do/6

- day/a,
 

=0s’ (1.5-11)
ag

We call this quantity the angular phase sensitivity to distinguish it from Sfo. It

is the measure of phase sensitivity that is usually of interest. The complete

expression for the sensitivity in rectangular form is

SL=SIH+;6S]
ag agp

Returning to the example of eq. (1.5-1), we can write

L] — # _Sa() Re{ 2~ B j'r,w] (1.5-12)

6S° :Im{——aO } (1.5-13)
o a,—B+jmw

The magnitude and angular phase sensitivities to B8 are given by similar

expressions in which the numerators are replaced by . The magnitude and

phase sensitivities to 7, are given by similar expressions in which the numerator
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is replaced by j7,w. This latter fact relies on the relationship

Sy =Sk (1.5-14)
JTIw

since at any frequency, jw is a constant, so that dln jw=0. Thus

dinL din L _dinL ___,

din jor, _ dinr +dinjo _ dlnr, > (1.5-15)
 

T

The magnitude and angular phase sensitivities for the example, with a,=0.01,

B=—0.1, and 7,=1, are shown in Fig. 1.15. The magnitude sensitivities give
the percent change in |L| for a 1% change in the parameter. At low frequencies,
for example, the sensitivity to a, is 0.01/(0.01+0.1)=0.091, so that a 10%
change in a,, would cause a 0.91% change in |L|, or a 1 dB change in a, would
cause a 0.091 dB change in |L|. Therefore, the sensitivity to a, is small and
drops with frequency. The sum of the magnitude sensitivities is unity (of
course). At low frequencies |L| is mostly sensitive to 8 and at high frequencies,
to 7,.

The phase sensitivities are expressed as the imaginary part of S-=6S?, as
noted previously, with  in degrees. In this example, a 10% change in the

parameter would give a change in @ equal to 10% of the scale value. (Similarly,
a +1 dB change in the parameter value would give a change in 6 equal to
+12.2% of the scale value, since a +1 dB change is equivalent to a +12.2%
change.) The maximum ordinate value for 0Sf: is 29°. Thus a 10% change in T,
will cause a maximum change in phase of 2.9°, at w=0.11.

Several sensitivity relationships help to ease the calculation of sensitivities.

We encountered one of these relationships in Section 1.2, namely

dinl/y —dlny _ 

 

1/y — = — QY -

S dln x dln x S (1.5-16)

Another relationship we use is

._dlnx _ dlny)_'_ )

S-"_dlny_(dlnx =175 (1.5-17)

If k 1s a constant, we can write

dink+dlny dlny _v
ky — —

S, dln x dln x X
 (1.5-18)

If 4 and v are functions of x, we can use the alternate definition of sensitivity
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to obtain

 uto_— —

S dx/x uto

 1 du/u vdv/v)
Cutv udx/x dx/x

 —_ 1 u U=(uS*+0S?)

d(uto)/(uto) _ 1 ( du_ do )
dx/x dx/x

(1.5-19)

Table 1.1 is a collection of sensitivity relationships that have a twofold

purpose: (1) the relationships will be found convenient in working with
sensitivities; and (2) perhaps more important, they serve to familiarize us with
the concept of sensitivity. In Problem 12 the reader is asked to derive each of
these expressions from the definition of sensitivity. Most can be derived in one

or two lines.

Table 1.1 Sensitivity Relationships®¢
 

17 S¢=—ImS;X ¢ X

)

8 SKU... =84S0+ ...
X

1
9 ST=(uSoS)

10 S)=-5"=-5},=SI{
11 SH/e=51-S¢
12 SS=ys;

13 sh=_t gX ln y X

1 §F=58¢

2 S)'=nS;

3 Sy=1/8;

4 Sy=S8, -S+S8;S+ - where y=y(u,, u,,...

5 S/=SV+jo,8¢

6 S=ResS’

I un)

 

“Coordinates y, u, v are single-valued differential functions of x.
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Figure 1.16. Magnitude of the sensitivities of loss to «,, 7;, and B for the simple binomial loss

ratio. The fourth diagram gives the sensitivity of loss to the active-path loss z,.

Sensitivity Magnitude

The complex quantity sensitivity can be expressed by its magnitude and phase

as well as by its real and imaginary parts. This is of particular importance
when we are interested in distortion reduction or other benefits of feedback
that involve the swamping out of undesirable effects (signals) by the feedback

signal. In such cases the phase is not of great importance; we are interested in

the ratio of the magnitude of the feedback signal relative to the active-path

signal. In Fig. 1.16 the magnitudes (in decibels) of the sensitivities of loss to a,,
7,, and B corresponding to the example are plotted as a function of frequency.
(Note the scale difference between the a sensitivity and the remaining curves.)

These curves are useful in estimating the distortion reduction afforded by
feedback. Suppose that a, is nonlinear, as discussed in Section 1.2. The

magnitude of the sensitivity of loss to a, tells us specifically how much
reduction we may expect in distortion products from this particular nonlinear-

ity, and similarly from the curves for 7, and B. The fourth curve, which is for

the sensitivity of loss to 7,=a,+s, is also included to relate sensitivity to
return difference as defined under the conventional formulation.

Relationship Between Sensitivity and Return Difference

Let us now form the sensitivity of the loss to the active-path loss:
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This is the ratio of the input contribution of the active path to the input to the
total input. We now take the reciprocal of this sensitivity:

1
—=1- ’3

St ‘
a

Hence the reciprocal of the sensitivity is the return difference as found under

the conventional formulation. Therefore, the magnitude of the sensitivity is the
reciprocal of the magnitude of the return difference for the canonical diagram
in Fig. 1.1.

Under the reciprocal formulation there is no return difference or loop gain,

but the sensitivity is the same for the two formulations. For this reason, we

assert the primacy of the concept of sensitivity rather than that of return
difference to describe feedback structures. The two concepts are quite different

at a fundamental level. Whereas sensitivity is a physical property of a struc-
ture, return difference is not. The latter depends largely on the way we (1)
define the signal variables and (2) assign the different parts of the structure to
the active path or to the feedback path. We have seen (in Fig. 1.10) that we can

assign the total structure to the active path (in Fig. 1.10a) or to the feedback
path (in Fig. 1.10d). As we analyze feedback structures in greater detail in

later chapters, we see that this ambiguity of assignment carries through to the

most basic levels of analysis so that return difference can be defined only with
respect to arbitrary choices. In relation to the physical phenomenon it is to

represent, sensitivity may be said to be a “well-formed” parameter, whereas

return difference is not.

Sensitivity is a useful concept because it keeps things in proportion. It helps
quantify our ideas about what is and what is not important in a system—puts
the effect of variations of system parameters on a common basis. The basis

here has been the per unit change in the magnitude and phase of the loss ratio,
but the concept can be applied, often usefully, to any quantity dependent on

several parameters. It can be applied in situations where the component

parameters and their variations are only partially known or completely un-

known but where the sensitivity can be determined experimentally.

The concept of market elasticity is an example.'® Here, we are interested in

knowing how much the market for a product will decrease when the price is

raised. We can sometimes find out by changing the price in a test market area

and determining the effect on sales. If we raise the price 10% and if the sales

fall off by 5%, we say that the market elasticity is —0.5. This is just the

definition of sensitivity we have been discussing here, but with the difference

that the sensitivity is found by experiment without knowing the parameters or

their quantitative relations that went into establishing it. Armed with this

knowledge, we are in a better position to find the reason for the elasticity and

can make a better judgment as to whether to market the product or how to

improveit.
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1.6 THE REFERENCE CONDITION

A key difference between the conventional approach and that taken under the
reciprocal formulation is highlighted by the notion, introduced by Bode, of the

reference condition. Bode used this idea to clarify a situation that does not arise
for Black’s simple canonical diagram: when a portion of the input signal leaks

through the feedback network to the output, an output signal will exist even

when p=0 (or, as Bode said, “when the tube is dead”). We treat this situation

in a later chapter. The point is that a reference condition was defined by
setting u=0.

Under the reciprocal formulation we define a reference condition by setting

L,=1/p=0. In this reference condition the active path becomes a zero-loss
(infinite gain) amplifier. Thus in the reference condition, L= —f. The refer-

ence condition for the canonical feedback diagram thereby serves to define .
This concept will serve to clarify relationships in feedback amplifiers,

particularly in what are conventionally called multiple-loop feedback amplifiers.

It is in this area that Bode’s theory exhibits its greatest difficulty. We see later

that under the reciprocal formulation the “multiple loops” disappear, so that
these structures present no special difficulties and, indeed, do provide an

improvement over the single-loop design that Bode envisioned.!'

Use of the infinite gain reference condition is at least implicit in a second
equation that Black wrote down on his copy of The New York Times in 1927.:

Gainzé(%) (1.6-1)

in which B emerges as the reciprocal of the gain when the loop gain uf8 goes to
infinity.

The zero-loss reference condition, or null reference, is one of the most useful

concepts the reader will encounter in this book. It has been introduced in its
single-dimensional form in this chapter, but it is extended to two-port net-

works in Chapter 6 and in a three-dimensional version in the discussion of
differential and operational amplifiers in Chapter 12. This is useful because it
allows us to build up transmission functions and characteristics starting out

with a clean slate; each physical effect that causes a departure from zero loss
(infinite gain) is a portion of the sum of all such physical effects. All are added

on a common basis so that we can compare their relative effects.

1.7 AN ANALOGY FROM PROJECT MANAGEMENT

A main feature of the alternative foundation for feedback theory is the focus

on the output as the goal.'? Making the output the independent variable (or,

later, the set of variables) is a bold step, but with ample precedent. Taking the

output as the known (or independent) variable presumes that you know where

you are headed (even if you do not). It can be likened to the project
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management technique known as PERT (project evaluation and review tech-
nique),'’ used to make sure that a project keeps on course toward a specific
objective.

To manage a project by way of PERT, the goal (the output) first must be

specified in as much detail as possible and a specific end date set. Then each

element that goes into making the final goal is analyzed, particularly with
respect to what materials must be present, what labor input is needed, and
most crucially, how long that element will take to do. Project evaluation and
review technique recognizes that many subprojects will have to come together
at points well before completion of the total project, and these are treated in
the same way as the whole project. These subprojects and their goals provide a
main feature of PERT: they provide specific milestones that can be identified
ahead of time so that when they are reached, the project status can be

measured against the original plan. The central idea of PERT is to start with
the project goal and work backward in time to the specific milestones along the
way to identify the subprojects that must be done on schedule to ensure timely
project completion.
The PERT technique consists of measuring the difference between where the

project is and should be at any given milestones. If it is where it should be, no
additional steps apart from those detailed in the original plan need be taken. If
a subproject is late, however, two alternatives must be considered: first, if it is

not on the original critical path, the situation is reevaluated to find whether it
has “gone critical,” in which case the second alternative comes into play. This
second alternative, when the milestone i1s missed, calls for increased effort on

the critical subproject or a rescheduling of the whole project.
Although the analogy between this management system and the feedback

system under the aspect of the reciprocal formulation is rough, it is useful in
two ways: (1) it takes the perhaps unfamiliar idea of analyzing a feedback

system by working backward in time and shows how this concept has been
used in another field; and (2) PERT worksif it is applied properly. The same
may be said for feedback analysis and design under the reciprocal formulation.

1.9 SUMMARY

A brief review of the problem that led to Black’s invention and canonical
feedback equation was given at the beginning of this chapter. This equation

forms the foundation of classical feedback theory. An alternate foundation,

introduced in Section 1.2, substituted loss (the reciprocal of gain) for gain in
the canonical feedback equation. Under this reciprocal formulation of the
feedback problem, return difference is eliminated, and analysis of the effects of

feedback on gain stability (sensitivity), nonlinearity, and noise is simplified.

In Section 1.3 we applied the reciprocal formulation to an active path with a

simple high-frequency cutoff. We found that the reciprocal formulation simi-

larly simplifies the description of the active path itself. We next studied a
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nonlinear dynamic system in which the nonlinearity can be expressed as a
function of the output signal variable.

In Section 1.5 we developed the sensitivity concept for systems that include

frequency dependencies, including high-frequency cutoffs and transport delay.

In Section 1.6 we defined a null reference condition for feedback systems: a
system is said to be in the reference condition when the loss of the active path
is zero (i.e., when the gain is infinite). Finally, in Section 1.7 we drew an
analogy between the analysis of systems under the reciprocal formulation with
the PERT technique of project management.

PROBLEMS

1 To see why the definition of sensitivity given in Section 1.1 is restricted
to small per unit variations of u, assume that u changes by a sizable

amount Ap, and find an expression for

L_ AK/K

oo Ap/p
 

in which S’ is the sensitivity for large variation of the parameter p. The

expression must, of course, be equivalent to eq. (1.1-7) for small

changes of pu.

2 Let the transfer characteristic of the p path of the feedback system of
Fig. 1.1 be given by the nonlinear relationship

y=petp,e’
Thus

dy
de = +3.“«3e2

If p,=100, u;=10, and B=1.1, find K=dy/dx and show that the
distortion term ep,e? is reduced by a factor about equal to the sensitiv-

ity.

3 In the text we took as a measure of nonlinearity of L the values of the

coefficients 2a,/(a;, —) and 3a;/(a, — ). Another measure of nonlin-

earity is the sensitivity of L to the output signal variable y. Applying the

definition of sensitivity to eq. (1.2-10), derive an expression for S’.

Next, derive S!/* using eq. (1.2-8). Whatis the ratio of these sensitivi-

ties, and what is the significance of the ratio?

4 Consider two resistors in parallel, R, and R,. Draw a canonical
feedback diagram whose output is the voltage across the pair and whose
input is the current through the pair. Let p=R,. What is 8? Find the

sensitivity of the parallel resistance to R,. Repeat the procedure, this

time letting the output be the current and the input the voltage.
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5 The active path of a feedback system as illustrated by either Fig. 1.1 or

1.3 is described by the following equation:

y=k,In(e+1)

where the error e 1s given by

e=x+tk,y

Sketch the input-output characteristic for values of kK, =10 and k,=0
and —0.5. Let y vary from —10 to 10.

The output of a bipolar transistor differential amplifier is related to its

input voltage (the differential input voltage between their minus and

plus input terminals) by the equation

U4

0.052
 y=Atanh

where v, is the input differential voltage, y is the output voltage, and 4

is the small-signal voltage gain. When feedback is connected around

this amplifier as shown in Fig. 1.17, we obtain e; as the sum of the
feedback-path and active-path signals:

e;—=R;Gsy+v,

Sketch the static input-output characteristic with and without feedback

if A=10 and R;G=0.1. For each case, what is the small-signal ratio
for y=0? For y=9 V?

The sensitivity of loss ratio to large changes in a parameteris called the

large-signal sensitivity and i1s

gL AL/L ,dinL

* " Ax/x dinx
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Figure 1.17.
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Gg = 0.1 mmho

——AWW——

|
. +

_ Figure 1.18.

  

Show that the large-signal sensitivity is equal to

L
L r

S;=1— 7

where L is the loss ratio with x taking its nominal value and L, is the
loss ratio with x taking a reference value (i.e., the worst-case value of x).

8 The circuit in Fig. 1.18a is a unity gain inverting amplifier. For this
circuit, use the reciprocal formulation to derive an expression for L in

terms of ¢,, G, and R. Put the equation in the form of L=¢,—f,

where ¢ 1s the time constant of the operational amplifier modified by

the circuit immittances G and R;. With r,=—0.15jw, sketch Bode
plots of ¢, B, and L. Define B as the loss of the circuit with 7, =0.

9 If the feedback conductance in Problem 8 is replaced by a 100 pF

capacitor (0.1 nF), the circuit becomes an integrator (because the output

time response is the integral of the input signal with respect to time).
Sketch Bode plots of 7, B, and L for this circuit.

10 A silicon diode is connected from the output to the input of an ideal
operational amplifier as shown in Fig. 1.19. The conductance of the

diode is given by g,=ql,/kT=1,/0.026. Find an expression for the
input current to the circuit as a function of the output voltage. If
the diode voltage is given by v,=kT/qIn1,/I, and if I, =102 mA,
find the constant of integration and plot a graph of input current

against output voltage. Ignore diode capacitance.

 

  

— Figure 1.19.
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11 The capacitance of the (reverse-biased) collector junction of a transistor

varies with collector bias voltage according to the relation

C'COJ
Ge=0
(1Veg/o)™

Typical values for ¢. and m_ are 0.85 and 0.33 V, respectively. We may
model the effect of this capacitance on the input current to the
transistor by connecting such a capacitance from the output to the
negative input of an ideal operational amplifier, as shown in Fig. 1.19.
Obtain an expression for the input current of the model as a function of

output voltage.

12 Derive each sensitivity expression in Table 1.1.

13 Use the sum rule to obtain a simpler derivation of eq. (1.5-19). [ Hint:
Use eq. (1.5-7).]
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Chapter 2
 

Polynomials of Loss:
Various Descriptions

of Polynomials

In Section 1.3 we saw that an amplifying device that has a simple high-frequency
cutoff can be represented under the reciprocal formulation by a binomial in the

frequency variable. The loss ratio of the device, in other words, is represented

by the sum of a dc or low-frequency constant and a term that is linear in

frequency. In this chapter we extend the study of frequency dependencies of
the loss ratio to polynomials of higher degree. In the interests of clarity, we

restrict the discussion largely to polynomials in the frequency variable, which

represent low-pass loss ratios.

The chapter gives several computational tools that will be used in the rest of

the book and that are available mostly in packaged computer programs.

Section 2.1 analyzes a simple feedback configuration under the reciprocal

formulation.

Section 2.2 describes the scaling in frequency and amplitude of loss poly-

nomials, and includes analysis of linear, quadratic, and cubic polynomials.

Section 2.3 describes Newton’s method for obtaining the roots of polynomi-

als and may be familiar to some readers. The section also gives a brief review

43
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of Laplace transform theory to relate time domain specifications to the general
problem of establishing performance specifications for feedback systems, with
emphasis on settling time.

Section 2.4 evaluates polynomials of loss for s=jw as they relate to Bode and
Nyquist diagrams. Although this may be familiar, the reverse process described
in Section 2.5 (viz., finding the polynomial coefficients from the Bode diagram)
is less familiar but is useful in feedback system design.

Section 2.6 derives coefficients of various polynomials that may be used as

system response specifications. Included are Butterworth, Bessel, and
Chebyshev polynomials and a cookbook for finding them. The frequency

scaling deserves attention, as it differs from that of some other texts.

Section 2.7 treats a central concern of the book—namely, sensitivities of loss

to the polynomial coefficients. This section is essential to later work.

2.1 A FEEDBACK AMPLIFIER

Electronic amplifiers provide us with particularly simple and practical exam-
ples of feedback structures because signals are all in electrical form. Figure
2.1a shows a three-stage transistor feedback amplifier. For the purposes of this
initial look at feedback amplifiers, we can replace the transistors by the

approximate representations in Fig. 2.1b, in which the amplification function is
performed by an ideal amplifier and the amplification is degraded from the
ideal by a resistance in the common lead of the amplifier. Finite bandwidth
comes about by connecting a capacitance in shunt with the input. The model

with the ideal amplifier is an anticausal model in that the amplification
function is idealized and the departure from the ideal comes about from

feedback element r. It is mathematically equivalent to the causal model also

shown in Fig. 2.1b, which incorporates a dependent generator.

For the anticausal model, the input voltage and current are easily obtained

as a function of the output current:

vy, =i, (2.1-1)
€ C

i,=rCsi=7si, (2.1-2)

in which r and C are intended for the ith stage of the amplifier. The product

rC=r is the unity loss time constant. The reciprocal of the unity loss time

constant is the (angular) frequency at which the current loss (or gain) is unity.

For the bipolar transistor, C is the diffusion capacitance and is roughly

proportional to collector current; r is the emitter resistance and is inversely

proportional to collector current. To a first approximation, 7 is constant with

collector bias current. In this sense 7 is a more fundamental constant of the

device than is C. We can represent this on the circuit diagram as in Fig. 2.1c, in

which an output-current-dependent current generator connected across the
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input terminals replaces the capacitance. The two representations are equiva-

lent, but the current generator more closely represents the physical situation.
These matters are discussed in Chapter 7.

The transistoris incorporated into the three stage amplifier in Fig. 2.1d. This
circuit can be analyzed by inspection if we enter the problem in an appropriate
way, as follows. Assume an output signal voltage of unity. The signal current

to be supplied by the third stage is then G; =G, +G flowing out of the
collector,since the unit output voltage creates a signal current in both G, and
Gr. We ignore the current induced in G, by the voltage at the input of the
amplifier to which the other end of G is connected (it will be small if the
amplification is sizable). With current G; flowing out of its collector, the input
voltage of the third stage will be —r;G;, and the input current to that stage is
— 135G;. This latter is, in turn, the current flowing out of the second stage;
thus we can write the input voltage and current for the second stage. We then
repeat the process for the first stage; this gives us the input voltage and current
to the active path of the amplifier:

—r,5,7,Gs> (2.1-3)Uin(active) -

: — ’r o3
lin(active)_ - TITZT3GLS (2 1'4)

To the input current, we now add the feedback current from the output.
Again ignoring the current induced in G by v,,, the feedback current is
—Grv,, so that with feedback we obtain

in®

iin=—(Gp+mmnG;s?) (2.1-5)

The source or generator voltage is obtained from

€=V,iRg (2.1-6)

where v;, = 0,crive)» SO that

e=—(RGGr+rmnGys+RemnnGys®) (2.1-7)

=—(ap+a,;s+a,s’+a,s?) (2.1-8)

If we replace the unit output voltage by v,, we obtain the loss ratio e;/v, as a
polynomial in the frequency variable s; thus a,=R;Gg, a,=0, a,=r1,1,G},
and a;=R;7,1,73G}.
When we express the response of the amplifier as loss rather than gain, we

find a simple sum of terms rather than the more complex feedback concepts of

forward-path gain and feedback loss. “Loop gain” becomes an irrelevant

concept in this formulation. The feedback loss simply adds to the active-path

loss.
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’Suppose that the total load conductance G; is 10 mS (millisiemens). Further,
suppose that R;=1.0 kQ, r,=r,=r,=0.1 kQ, C,=C,=C;=10 pF, and G.=
0.01 mS. Then 7,=7,=7;=1.0 ns, and

L(s)=—(0.01+0.0s+1.0s2+10s%) (2.1-9)*

The loss has thus been written as a function of frequency for this amplifier

essentially by inspection. This loss function can be shown to be unstable, so

that the amplifier is useless. Before going on to make it into a stable structure,
however, we should know more about polynomials themselves and what

characteristics of them make for desirable loss functions. As we see later, the

missing linear coefficient of (2.1-9) guarantees instability, although its presence

does not assure stability. Problem 1 shows one way of providing the missing
coefficient.

2.2 ALTERNATE DESCRIPTIONS OF POLYNOMIALS

As in the case of the six blind men gathered around an elephant and putting

their impressions together to try to describe it, polynomials can take on

different descriptions, each of which gives us added insights to their properties.
In this and the following section we explore several of these descriptions and

their relationships. It is desirable to be able to pass easily back and forth
between these descriptions for a full understanding of what is involved.
The “primary description”is the polynomial itself—a sum of terms in power

of the frequency variable s:

L(s)= é a:s' (2.2-1)

when we establish the units in which s is expressed and the values of the a;, we
have specified the polynomial completely. A fully equivalent polynomial is

obtained when we scale the polynomial in amplitude by dividing through by
the dc term a,:

L(s)=a, 3 zla—"s" (2.2-2)
i=0 70

At very high frequencies a Bode plot of the polynomial is asymptotic to a

straight line whose slope 1s 20n dB per decade of frequency. The frequency at

*Equations involving physical quantities are expressed in this book in a self-consistent set of units
to avoid the necessity for unit conversions. In this example, the volt, the milliampere, and the
nanosecond are taken as the fundamental set of units, consistent with the picofarad, kilohm,
millisiemen, and gigaradian per second units.
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which this line intersects the dc value of loss is termed the asymptotic cutoff

frequency, w,. The polynomial may be scaled in frequency by changing the
frequency variable to a new one, p=s/w,. Here, p is the frequency normalized
to the asymptotic cutoff frequency.

A polynomial scaled to its dc value and asymptotic cutoff frequency can be
written

  

n—1

L(p)=ay|1+ X b, p'+p" (2.2-3)
i=1

where

_ 5
p @,

By the definition of w, as the frequency at which the high-frequency asymptote

intersects the dc value, we can write

Thus the b, in (2.2-3) are

 

The advantage of this normalized form is that the character of the polynomial
is more easily seen. We have made the first and last coefficients in the brackets

unity, so that two fewer coefficients need be dealt with. The shape of the Bode
plot remains unchanged. Scaling of the dc value shifts the Bode plot up or
down, whereas scaling of the frequency shifts it to the left or right. The

normalization of (2.2-3) shifts the dc value and cutoff frequency of the

polynomial in the brackets both to unity.

In feedback system design, where the degree of the polynomials that we deal

with are relatively low, the reduction to the normalized form is significant. In a

system described by a cubic polynomial, for example, only two (rather than

four) numbers describe the dynamics of the system. The other two numbers are

there, of course; they allow us to rescale the solution to the dc loss and cutoff

frequency of the original problem.
The loss polynomial of the amplifier of the previous section can be normal-

ized as follows. First, dividing by the dc term, we obtain

L(s)=-0.01(1+0.0s+100s241000s*) (2.2-4)
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setting

a.\1/3
wOZ(a—O) =0.1 Grad/s (2.2-5)

we have

L(p)=-0.01(1+0.0p+p>+p?) (2.2-6)

The character of all normalized cubic polynomials such as this is established by
the linear and quadratic coefficients b, and b,.

Binomial Loss Ratios

For a binomial—a polynomial that has only a dc term and a term linear in
frequency—the center term in the brackets of (2.2-3) vanishes, and we have

L(p)=ay(1+p) (2.2-7)

where it is seen that the binomial in normalized form has no distinguishing
features. All have the Bode plot given in Fig. 1.6; variation of a, shifts the

Bode plot up or down, and variation of the asymptotic cutoff frequency shifts
it left or right, with no change in shape. The root of the binomial is real, at
p=—1,0r at s= —w,.

Quadratic Loss Ratios

A quadratic in the frequency variable

 

L,(s)=ay,+a;s+a,s? (2.2-8)

=a,(1+b,p+p?) (2.2-9)

where

b= a4,

aop

and

has only one parameter to distinguish it, the value of b,; b, is twice the
damping factor §:

(== (2.2-10)
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or the reciprocal of the quality factor Q:

0=1 (22-11)
bl

Bode plots for the quadratic loss ratio are given in Fig. 2.2 for various values of
the damping factor. Values of { greater than unity have not been included in

this plot; where { is greater than unity, the quadratic can be factored into two
real, linear factors, each of which has the Bode plot in Fig. 2.2. These can then

be added to obtain the Bode plot of the quadratic. Note, however, that for

{>1, the value of w, will in general be different for the two factors, so that the

cutoff frequencies will be displaced from one another.
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For {>1, root locations for the quadratic loss ratio are found by solving eq.
(2.2-9):

Pi Pa=8E187 (2.2-12)

since s=pw,,

S1,8,— _Shwoijwo\'l“fz

In polar form these roots are

s;,=w,e (2.2-13)

where

@=cos¢

the root locations for the quadratic are equidistant from the origin at |s| = w,,

independent of the damping factor. As the damping factor is varied, the locus
of the roots is a circle of radius w, centered on the origin, as shown in Fig. 2.3.
The angle of the phasors is independent of w, and depends only on 6. The
roots enter the right half of the s plane for negative damping values. As we see
in Section 2.5, the significance of any root entering the right half of the s plane
is that the physical device represented by the function becomes unstable.

 

 

._]'wa 
Figure 2.3. Root locations for quadratic loss ratios as a function of the damping.
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Cubic Loss Ratios

Loss polynomials of higher degree can be built up as the product of linear and

quadratic terms. As an example, we reconsider the cubic polynomial. The

normalized cubic polynomial

L(p)=1+b,p+b,p*+p>=0 (2.2-14)

contains one real root and two other roots that may be either real or complex,
so we can factor the polynomial as

L(p)=(1+p2p)(l+%+p—22) (2.2-15)
p

where p is the asymptotic bandwidth of the quadratic factor and {/p is its
damping coefficient. (Note that 1/p? is the asymptotic bandwidth of the
simple factor.) Multiplying these two factors, we obtain the b coefficients as

bl:p2+27f (2.2-16)

bz:i2 +2¢p (2.2-17)
P

For positive b coefficients, the necessary and sufficient conditions for stability

are that {>0, so the quadratic roots remain in the left half plane. Hence

2{=b,p—p>0

2{= %2 — % >0

or

b,>p? (2.2-18)

b2>% (2.2-19)

Multiplying these two inequalities, we obtain the stability condition as

b,b,>1 (2.2-20)

The stability condition merely tells us the constraints on b, and b, to avoid
oscillation. More stringent restrictions on the b coefficients are required if the

response is to conform to a useful performance specification. One possibility is
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to restrict the damping coefficient of the quadratic term to be greater than a
given value (or to be equal to a specified value). To this end, egs. (2.2-16) and
(2.2-17) have been used to obtain the b coefficients for various values of the

damping coefficient and are plotted in Fig. 2.4.
In Fig. 2.4 the stability borderline is a line of —1 slope passing through the

point at which b,=b,=1, corresponding to zero damping. Above and to the

right ofthis line, curves of constant values of quadratic damping from 0.01 to 1

are plotted. The curve for { =0 and 1 separate the b,, b, plot into three regions:
below and to the left of the {=0 line is the region of unstable operation; above
and to the right of the {=1 curve is a region in which all three cubic roots are
real; the region between represents the set of b values for which a pair of the
roots is complex but stable, with the third root on the negative real axis. Lines
of constant values of p are also plotted.
The line for p=1 is of particular interest. It has a slope of +1 and passes

through the point b,=b,=1. It represents the value of p for which all three
roots lie on the unit circle in the p plane (a circle of radius w, in the s plane). It

passes through the point 2,2, a polynomial of maximally flat amplitude, to be

discussed later, and the point 3,3, at which all three roots are at p= —1 on the
p plane (—w, on the s plane).

For values of p less than unity, the importance of the real root is less: for
values of p of 0.5 or less, the real root may be ignored for most purposes, as we

now show. For this value of p, eq. (2.2-15) becomes

L(p)=(1+0.25p)(1+4¢p+4p?) (2.2-21)

Thus the asymptotic bandwidth of the quadratic factor is 0.5, and at this cutoff
frequency the effect of the simple, real factor is not greatly different from unity
since the real root occurs at p= —4, eight times the quadratic cutoff. Taking
p=jw, we can evaluate L( jw) as

L(jw)=(14j250)(1+j4w—40?) (2.2-22)

Evaluating this at w=0.5, the effect of dropping the real factor is to introduce

an error of 10log(1+0.1252)=0.067 dB and a phase error of tan~"0.125=7.1°.
Hence the region above the p=0.5 curve in Fig. 2.4 is one for which quadratic

analysis is generally adequate. As p is reduced, the importance of the real root

drops rapidly, as p?. The roots of the remaining quadratic are given directly by

the plot in Fig. 2.4 in terms of the b coefficients.

Conversely, as p increases above unity, the importance of the real root

increases, and that of the quadratic pair decreases. To be able to ignore the

quadratic factor, however, it is not sufficient that the quadratic cutoff, or

quadratic asymptotic cutoff be at a much higher frequency than the real factor

cutoff. It is also necessary that the damping factor be sufficiently high to

prevent the loss ratio in the cutoff region from staging a return to low values of
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Figure 2.5. Bode plots of three cubic loss ratios.

loss ratio at high frequencies, of the sort shown in curve C in Fig. 2.5. This plot
of L(jw) is for the values b,=2, and b,=0.8, point C in Fig. 2.4. This

corresponds to a damping coefficient of 0.1, which gives a sharp dip in the loss

ratio (a peak of gain), which is usually an unsatisfactory response.

For comparison, two other curves are shown in Fig. 2.5. For curve A, the

loss ratio 1s dominated b the quadratic factor. This curve is drawn for 5,=0.8
and b,=2, point 4 in Fig. 2.5. Curve B shows the loss ratio for the maximally
flat amplitude case, with b, =b,=2 (point B). For this case, neither factor is
dominant.

Is there a region in Fig. 2.4 that can be said to be controlled by the real root,
so that the cubic can be approximated by a simple first-degree cutoff? To be

able to ignore the quadratic factor, we need merely to ensure that the quadratic
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Figure 2.6. Root diagram for determining conditions under which the quadratic roots of a cubic

may be ignored.

factor roots lie more deeply in the left half of the p plane than the real root, as

depicted in Fig. 2.6. In Fig. 2.6 the real part of the quadratic factor is taken to
be n times as large as the real root. Thus we can write

p§=— (2.2-23)

Substituting this inequality in egs. (2.2-16) and (2.2-17), we have

b =p?+ =2 (2.2-24)

 (2.2-25)

Thus, for values of the b coefficients that satisfy these equations and for

0<¢<1, the quadratic roots can often be ignored. For n=35, the worst error (at

the real root asymptotic cutoff frequency of 0.04w,) occurs for {=1 and is 0.07
dB and 10°. The equation for the borderline case is obtained by substituting

equal signs in (2.2-24) and solving for b, as a function of b,:

1+2n

b,

  -I-2n( by )2 (2.2-26)
b= 14+2n
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This equation is plotted on Fig. 2.4 as a double line for n=35; to the right of
this curve, the quadratic factor may be dropped.

For feedback systems only a restricted area of Fig. 2.4 is of interest in the
sense of exhibiting cubic response. In this area the roots may be found from

the b coefficients by reading p and { from the plot: these are then used with eq.

(2.2-15) to obtain the roots.

Stabilizing the Amplifier in Section 2.1

Readers who have completed Problem 1 will have already found that the
addition of a feedback capacitor C, in parallel with G does essentially one
thing: it adds a term — R;Crs to the loss ratio, thereby converting eq. (2.1-9)
to

R.C
L(s):—0.01(1+—0@6f5+10052+100053) (2.2-27)

In normalized form, p=s/10. With R;=1.0 k{2,

L(p)=—0.01(1+10Cp+1.0p>+1.0p*) (2.2-28)

In this equation b,= 1.0 for any C, so that the locus on Fig. 2.4 as C, is varied
is the horizontal line for b,=1.0. When Cy. 1s zero, the loss is in the unstable
region. When Cr=0.1, b, =1.0, and the loss is on the border of instability. The
damping of the quadratic roots reaches a maximum for b, =3, or for C=0.3
pF, giving

L(p)=-0.01(1+3p+p>+p?) (2.2-29)

A measure of its margin against instability is the value of damping of the

quadratic roots, which is about 0.2, according to Fig. 2.4. This corresponds to a

value of 6 (in Fig. 2.6) of 78°. This margin is small, only 12° away from
instability.

Addition of Load Capacitance to the Amplifier

To begin the study of higher-order polynomials, consider the amplifier de-

scribed in Section 2.1 driving an additional load of 10 pF of capacitance

connected directly across the load. Can we find the loss ratio by inspection

again, as we did in the earlier case? By superposition, the load capacitance adds

new terms to the loss, terms we can find by substituting C,;s for G; in eq.
(2.1-7) and including only terms containing C, . Thus the change in loss caused

by capacitance is

Ae,=rm,1,Cs>+ R17,mCps * (2.2-30)

and the new equation for the loss of the amplifier is found by adding these two
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terms to (2.1-7):

L(s)=r;Gr+R;Crs+rmnGys?

+ (R711G+rmmCL)s?

+R17,7Cy5* (2.2-31)

The loss polynomial is now a quartic. Note the ease with which the expression
is obtained through superposition. This facility is lost when the analysis
proceeds from input to output.
When C, =10 pF, the added terms are 1.0s> and 10s*; thus

L'(s)=—(0.01+0.3s+1.0s2+11s3+105*) (2.2-32)

What are the characteristics of this polynomial? Is it stable? Where do its roots
lie? In the following sections we answer these questions for polynomials in
general. For the present, we can use normalization to get some idea of the
characteristics of the polynomial. To compare it with the cubic for the
amplifier without load capacitance, we set p=10s for comparison purposes
and obtain

L'(p)=—0.01(1+3p+1.0p2+1.1p3+0.1p*) (2.2-33)

From this equation we see that at the cubic cutoff frequency ( p=1.0), the
quartic term is about 10% of the magnitude of the quadratic and cubic terms,
leading us to believe that the effect of the quartic term is modest. On the other
hand, the margin against instability is small, so the small change may be
enough to cause instability. To resolve these questions, further study of
polynomials is indicated.

Calculator Programs

A good way to consolidate what has been discussed is to commit the relation-
ships to a program for the computer or calculator. By having to tell the

machine exactly what is to be done, the concepts become clearer and misun-

derstandings are corrected. In addition, when later work requires that we make

use of these concepts, they are available to us in their most directly useful
form, so that we do not have to go back over the material. For these reasons,

calculator programs are given in the appendix at the end of the book with
explanations of how they have been developed. Readers who are interested in
working with the concepts to be developed are urged to obtain either a
calculator or time on a computer facility and to follow the development of
these programs.

Five programs have been developed in conjunction with the concepts of this

section. The first two scale polynomials of any degree up to eighth. A third
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builds up polynomials from linear and quadratic factors. The fourth finds the
roots of a quadratic equation, and the fifth finds the roots of a cubic. All are

explained in Appendix A.

2.3 ROOTS OF POLYNOMIALS BY NUMERICAL ANALYSIS

Roots of polynomials of degree higher than the cubic are usually determined
by numerical analysis—a sort of directed trail-and-error approach. An initial

guess of the location of a root of a given function L(s) is made; the function is

evaluated at this value of s. If L,(s)=0, the guess was right and the root is
found. If L,(s)#0, some method is used to improve the guess, and the process

is repeated. Many approaches to the problem of improving the guess have been

devised. For finding roots of polynomials, where the roots may be complex,

Newton’s method is satisfactory. A brief explanation of the method is given

here since we find it useful later on. For a complete discussion of the method,
see, for example, Chapter 2 of Atkinson’s work,' or Conte and de Boor.?

To begin, we assume real roots of L(s) since this is easier to depict

graphically. Let the nth guess of the root of L(s) be s,. For Newton’s method,
the (n+ 1)th guess is

_L(s)
"I,
 (2.3-1)

To find the (n+ 1)st guess, we must evaluate the function and its derivative at

s,, divide the latter into the former, and subtract the result from s,. The
process is repeated until the magnitude of L(s) falls below a small error € at

which point the evaluated root has satisfactory accuracy. The process is
depicted in Fig. 2.7, in which the first guess was s=0. The tangent to the curve
at s=0 is drawn; where it intersects the s-axis is given by eq. (2.3-1). This
becomes the second guess for s, where a second tangentis drawn to find s,; the

processis repeated until |L(s)| is sufficiently small.
For a polynomial, we must evaluate the function

L(s)= 2 a,s' (2.3-2)
i=0

and its derivative

L'(s)= Y ia;s'™! (2.3-3)
i=0

a process most easily carried out on a computer or a calculator. A program for
implementing Newton’s method for polynomials up to twelfth degree (extenda-

ble by adding memory register locations) is given in Appendix A.



60 Polynomials of Loss: Various Descriptions of Polynomials

Second guess

 

31—, .
/ Initial guess

Figure 2.7. Use of Newton’s method for finding a real root of L(s)=0.

 
The example in Fig. 2.7 is drawn for the quadratic function

L(s)=—3.0+2s+s? (2.3-4)

whose derivative is

L'(s)=2+2s (2.3-5)

Taking s=0 as a first guess, we have L(0)= —3.0 and L’(0)=2, so that the

second guess for s is 1.5. To obtain the third guess, we evaluate L(1.5)=2.25

and L’(s)=35, so that

2.25
S3:1.5—?:1.05

A calculator tape showing the convergence on the root at s=1 is shown in Fig.

2.8. When |L(s)| becomes less than e=10 "%, the root is approximated accu-
rately enough, and the polynomial is deflated—that 1s, divided by the root

factor. The processis repeated for the remaining polynomial, which in this case



Roots of Polynomials by Numerical Analysis 61

SF b8
XE@ “ROOTS”

rROOTS

DEG?
2 RN

POLY, ASC. ORDEE
R28= -3.0B6ES
R21= 2,880ER
Rz22= 1.0900EH

0K?
RUN

. AaEa

. 2358
JAZE-1
L44E-3
72E-7
.BgEe
. AaRg

e
e

n
o
u
w
o
o

o
n
o
n

0
D

e
l

P
O
P
T
)

r
e
o
r
e

0

POLY, RSC. ORDER
R28= 3.988E8
R2i= 1.0@8EH

3.0B8E8
@, 88E"d
-3. 0008

L
L
5

Figure 2.8. Calculator tape showing convergence on the real roots

ERE of a polynomial. Magnitude of loss | L| is shown on calculator tape.

is just 3+s, with the derivative 1.0. Since the deflated polynomial is linear in
this example, the root is found immediately. (Why?)

The program automatically determines the starting point, in such a way that
it usually finds the smallest roots first for better accuracy. The initial guess
should include an imaginary part. The reason for this is that for real s, both

L(s) and its derivative are real. Hence if the initial guess is also real, successive

guesses will never depart from the real axis according to eq. (2.3-1). Starting
out with an imaginary part of s avoids this trap. (A special subroutine in the
program does this automatically if the value of s becomes real during the

iterations.) For purposes of the example in Fig. 2.8, we overrode the initial

guess of j1.5, substituting s=0.

For an example containing complex roots, let

L(s)=1+2s+2s%*+53 (2.3-6)

whose derivative 1s

L'(s)=2+4s+3s? (2.3-7)
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Let us take s=j1 as an initial guess (the program takes s=0.20+;0.46 but j1

illustrates the process more clearly). Then L(s)=—1+/1,=y2 /135° and

L'(s)=—1+,;4=4.123/104.0°, so that the new value of s to be tried is

1.414 /135°

4.123 /104.0°

= —0.2941+;0.8235 (2.3-8)

thus beginning the process of converging on the root at —0.5+;0.866. The
calculator tape shown in Fig. 2.9 illustrates the convergence. After the complex
root is found, the original polynomial is deflated by the quadratic factor of this
root and its complex conjugate, following which the remaining rootis found.
The program in Appendix A will usually find roots without difficulty,

including finding its own starting point— the initial guess for the root position.
Where difficulty is encountered, an interactive mode is provided, allowing for
variation of starting point and strategy.

SF a6
AEQ "ROOTS®

ROOTS
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3.6088  RUN

POLY, ASC. ORDER
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L=8.08EA
5=-1.00800

Figure 2.9. Calculator tape showing convergence for a polynomial
END with complex roots using Newton’s method.
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Time Domain Performance’

Factoring loss polynomials has one important application in the study of
feedback systems—namely, establishing the performance of the system in the

time domain. The stability characteristics of the system are most clearly seen

by observing its behavior as a function of time. The output of a system
characterized by a loss polynomial L(s) is described in terms ofits input signal
X(s) by

X(s)
Y(s)= () (2.3-9)

For the following development, we take X(s) as the Laplace transform of unit
step, equal to 1/s. This will give us the step response of the system. Where the
loss polynomialis factored, we can write

_ 1

Cs(s=A)(5=Ay) - (5N)a,
 Y(s) (2.3-10)

where the factor s in the denominator comes from X(s). If all roots of the

denominator are distinct (no multiple roots), this equation can be written as

the sum of factors by the method of partial fractions:

 

 

_kO kl k2 knY(s)= S +S_}\] +S_>\2+ +s_}\n (2.3-11)

_ko c ki=+ g . (2.3-12)

where the A; may be real or complex. The inverse Laplace transform of this
sum is equal to the inverse Laplace transform of each term and is the
superposition of a series of time responses; thus

()= ket (2.3-13)
i=0

the k; in either of these equations are termed the residues. Where the A, are real
(and separate) there are three cases of interest: negative, zero, and positive

values of A. Step responses for these three cases are shown in Fig. 2.10 for

values of A of —1, 0, and +1, corresponding respectively to a decaying
exponential, a step, and a growing exponential. The latter case represents an

unstable time response.

Where the A; are complex, they must occur in conjugate pairs, which then
can be paired. The residues are also complex conjugate, so we can write the
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Figure 2.10. Time responses for system with a single real root: (a) positive; (b) zero; (c¢)
negative.

frequency response for each pair, letting A =a +8,

k k*
— 4 pY,(s) ~s—a+jB s—a—jB (23-14)

The corresponding time response is

(2.3-15)

=e®(ke+k*e) (2.3-16)

Expressing the residue k, in polar form, k,=pe’’ and k¥=pe /’; we can
write the time response as

y(1)=pe®[e/P H04/BO] (2.3-17)

=2pe*cos(Bt+8) (2.3-18)

equation

For either real or complex roots, the residue at the jth root is found from the

. (S_Aj)X(S)

J L(s)
s

(2.3-19)
>\/
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Figure 2.11. Time responses for system with one pair of complex roots whose real part is (a)

zero, (b) negative, and (¢) positive.

Since s—A; 1s a factor of L(s), it must be factored out before the evaluation of

the residue is done. With L(s) in factored form, X(s) is divided by each factor

A, —A; except, of course, A,—A,=0.
The step responses for three pairs of complex conjugate root positions are

shown in Fig. 2.11 for positive, zero, and negative values of the real part of the

roots. When the real part is zero, a sinusoidal signal results. Note that for just

the single pole pair on the jw axis, the angle of the residue is 90°, so that eq.
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(2.3-19) gives a sinusoidal response. Negative real parts yield an exponentially

decaying sinusoid, whereas positive real parts yield a growing exponential,
which is an unstable condition.

Settling Time

The time taken for a system to come to within a small percentage error of its
final value is often important. Analog-to-digital converters constitute a typical
example. Such converters sample the signal periodically and hold the value of

the sample while it is being processed into a digital code. Required accuracies
are often uncommonly high. In the case of a coder that is to produce a 14 bit
code for each sample, the analog sample is to be held to within a fraction of
the smallest step, which is 2% of the maximum amplitude, about 30 parts per
million (ppm).
A feedback amplifier is often called on to amplify the held sample. One

measure of its suitability for this purpose is its settling time, the time taken for

it to settle to within a given fraction (e.g., 30 ppm) ofits final value under the
excitation of a step input. Where the amplifier loss is described by a poly-
nomial, settling time may be regarded as a property of the polynomial itself.
Since time responses die away exponentially, we may expect that (1) settling
time 1s related to the time constant of the exponential decay term—a in the
term ke~ * or in the term k,e*cos(Bt+68)—and (2) only the root(s) nearest

the jw axis will be involved, as the effect of other roots will have died away

earlier in time. The residue at the root in question also affects settling time, but

unless it is very small (i.e., unless the root is canceled by a pole of loss), the
effect of the residue constant is small. Thus we can write

keuT=¢ (2.3-20)

where e is the allowable error after 7, nanoseconds and «; is the distance from
the j axis of the pole (or pole-pair) nearest the axis. The settling time is given

by

—Ine+Ink, —
=T lne (2.3-21)
S

Q; Q;

 

As an example, the roots of the amplifier described in Section 2.1 with 0.3 pF
added as in Problem 2 are at —0.0361 and at —0.0319+,0.163 Grad/s, so

that the complex roots dominate the settling time. For this amplifier to settle to
within 30 ppm of the final value would take about [—1In(30X10~¢]/0.0319=

330 ns.

The complete step response of this amplifier is shown in Fig. 2.12. The initial
slow start of the response comes about because the real root is close to the jw
axis. The vertical scale has been expanded for >200 ns to show the settling of
the waveform.
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Figure 2.12. Step response, normalized to unity output, for the amplifier in Section 2.1 stabilized

by a 0.3 pF feedback capacitance.

24 POLYNOMIAL EVALUATION

The most common method of presenting transfer functionsis by the Bode plot

—magnitude in decibels and phase in degrees versus log frequency for s =jw.
With s=jw, a simpler method of evaluation is possible, allowing us to evaluate
the polynomial on a calculator in less than 40 program steps. The polynomial

is split into its even and odd parts, each of which is expressed in nested form.

A seventh-degree polynomial, for example, may be written

L(jw)=a0~w2[a2—w2(a4—w2a6)]

+jw{a,—wz[a3—w2(a5—w2a7)]} (2.4-1)

To find the imaginary part of L( jw), a, is multiplied by —w? and a5 is added

to it; the result is multiplied by —w? and a, is added to it; this result is then

multiplied by —w? and a, is added to it. This result is then multiplied by w to
give the imaginary part. The real part is obtained similarly. To obtain a Bode

diagram, the real and imaginary parts are converted to polar form, and the

magnitude is converted to decibels. The polynomial evaluation program in

Appendix A uses this method.
The program was used to generate the Bode plots in Fig. 2.13 for the

amplifier in Section 2.1, both with and without the stabilizing feedback

capacitance of 0.3 pF. The Bode plot with C=0 is characteristic of unstable

systems: the phase decreases with frequency at a frequency near the right half

plane roots. Stable behavioris illustrated by the curve for C.=0.3 pF, which

shows rising phase as the lossrises.



68 Polynomials of Loss: Various Descriptions of Polynomials

 

+20 T T T T TTT] T T T T 717

+10

Lo
ss
,
d
B

o

—=10

+100°

P
h
a
s
e

o

—100°   ] L1 l L1 1
0.01 0.1 1.0
 

Figure 2.13. Bode plots for amplifier with stable and unstable loss ratios.

The same program can be used to generate different plots of the same

information, termed a Nyquist diagram, where the real part of L( jw) is plotted
against the imaginary part at various frequencies. The length of the phasor

from the origin to the curve is the magnitude of L( jw), and the angle of this

phasor with the real axis is the phase. The magnitude is zero at each root of

L(s); thus the origin of this diagram corresponds to all root locations on the s

plane.

It is shown (in the theory of functions of complex variables) that the Nyquist

diagram is a conformal mapping of the s plane onto the L(s) plane; the

Nyquist diagram maps the jo axis onto the L(jw) plane. The meaning of

“conformal”in this context is that angles are preserved in the mapping process

—a small square on the s plane will map to a small square on the L( jw) plane.

Facing north on thejw axis in the s plane, the right half plane is to one’s right.
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On the Nyquist diagram the map of the right half plane exists to the right of
the map of the jw axis facing in the direction of increasing frequency.

Examples of Nyquist diagrams for linear, quadratic, and cubic loss ratios are
given in Fig. 2.14; in each case we have mapped not only thejw axis, but also a

small pennant arbitrarily placed in the right half plane. The pennant has no
significance except to convey a “feel” for the mapping process and the kinds of
distortions it introduces in the shapes of things. Consider the linear loss ratio

  

  

 

 
 

given as

L(s)=1+ms (2.4-2)
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Setting s=o0+jw, we find the real and imaginary parts of L,(s) as

L(o+jw)=1+or +jwT, (2.4-3)

If we set 0=0, s=jw so that we have the map, on the L,(s) plane, of the jw
axis. There 1s one root of L(s) at s= —1/7,+/0; this point (of course) maps to

the point 0+;0 on the L(s) plane: any roots of a loss function or of the

characteristic equation map to the point 0+;0 for any L(s). The map of L,(s)
looks like the s plane itself, except that the imaginary axis is displaced one unit

to the left, and the size is scaled by the factor 7,. The pennantis to the right of
the imaginary axis and is scaled appropriately. The figure is drawn with the

map of the negativejw axis shown as a dashed line. As one walks north along

the jw axis of the s plane, the right half plane is to the right; correspondingly,
as one walks along the map of thejw axis on the L(s) plane, the map of thejw
axisis likewise on the right, since angles are preserved.
The map of the quadratic function is drawn in exactly the same way. For

small values of w, the map is similar to the linear case since the —w? term is
negligible. As the frequency increases, this term bends the map to the left in
the parabolic shape shown. The map of both roots are at 0+;0. The pennant is
bent and larger than in the linear case. The cubic function includes the —jw?
factor, thus causing the map to descend at high frequencies. In all three cases

the origin is in a region that is a map of the left half plane; all three cases are
stable.
An elegant theory of stability based on complex variable theory was given

by Nyquist in the early 1930s. It is not needed now because of the ease with
which we can find the roots of polynomials on a computer or a calculator. The
Nyquist diagram, on the other hand, is of help in understanding and interpret-
ing stability problems that arise in feedback systems, particularly those includ-
ing transport delays, to be discussed in Chapter 5.

Unstable loss ratios are shown in Fig. 2.15. For the linear case, we take the

example

L(s)=1—ms (2.4-3)

As w is increased from zero, L( jw) moves negatively, so that the right half
plane maps to the region to the left of L( jw); therefore, L(s) has a root in the

right half plane, and the system is unstable. The quadratic loss ratio is unstable
for the same reason; the presence of the —w? term bends L( jw) to the left as

before, but the right half plane is to the left of the curve.

The unstable cubic function illustrated in Fig. 2.15 has all positive coeffi-

cients, so that the right half plane is to the right of the map near w=0;

evidently this instability is of a type different from those of the first two cases.

Here, the cubic coefficient is large enough to cause the map to intersect the real

axis between the origin and the point at 1+;0. The region corresponding to the
right half plane includes the origin, so that the system is unstable. Only two of
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Figure 2.15. Nyquist diagrams of unstable loss ratios.

the three roots of the characteristic equation are in the right half plane. The

Nyquist diagram shows that the point at the origin is shaded twice by the right

half plane, once for positive frequencies and once for negative frequencies.

This superposition of layers of the right half plane is common in more

complicated Nyquist diagrams; in the stretching process of mapping, the

several layers that may result are called Riemann surfaces.

With this background we can replot the information of the Bode plot in Fig.

2.13 as a Nyquist diagram. Figure 2.16 shows Nyquist diagrams for Cr=0.3

pF and for O pF as well as two other cases. For C=0.3 pF, the origin is to the
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Figure 2.16. Nyquist diagrams amplifier loss with feedback capacitors of 0, 0.1, and 0.3 pF. The

dashed line shows the effect of adding 10 pF of load capacitance.

left of the map of the jw axis as we proceed in a direction of increasing
frequency, so that the system is stable. The angle of the phasor from the origin
to the curve increases with increasing frequency. For C.=0, on the other hand,

the origin is to the right of the curve as we move in the direction of increasing

frequency; the system is unstable.

Two other cases are also of interest. When C=0.1 pF, the map of the jw

axis passes through the origin of the Nyquist diagram. This indicates that roots

of L(s) exist on the jw axis as in the top time response in Fig. 2.11. Note that

the map of the jw axis passes through the origin twice—once for positive
frequencies and once for negative (not shown). Hence there are two roots on

the jw axis. In this case the phase “switches” by 180° as we pass through the

origin.

The dashed line in Fig. 2.16 shows the effect of adding load capacitance of

10 pF to the amplifier in Section 2.1. The amplifier is stable since the origin is

to the left of the curve, but the loss 1s smaller than without the load

capacitance, since the curve passes closer to the origin. The loss approaches a

minimum for w=0.16 and is about equal to the low-frequency loss.
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2.5 EVALUATION OF THE POLYNOMIAL COEFFICIENTS FROM L(jw)

The inverse process to finding the Bode diagram from the polynomial is to find
the polynomial coefficients from values of L(jw) that might come from
measurements or from a computation. This process is closely allied to the
modeling process and to the approximation problem. In the modeling process we
wish to develop a model—a mathematical model first, then a physical model—
that matches a set of measurements of frequency response. In particular, we
are interested in a polynomial model that we later show can be translated into
a physical structure. The existence of such a model is proved in a theorem by
Weierstrass.'

Let L(jw) be continuous for w,<w<w,, and let €>0. Then there is a
polynomial P( jw) for which

L(jw)—P(jw)<e, w,<w<w, (2.5-1)

A proofis given in the reference. The theorem states that given a polynomial of
sufficiently high degree, we can model any continuous frequency response to
any desired degree of accuracy.
The approximation problem is the same problem with the frequency re-

sponse now supplied as a performance specification rather than a measured
response. The two problems are similar in that in either case we are given an

arbitrary function and wish to find a polynomial approximation to it.
Here, we are interested in the more restricted problem of finding the

coefficients of a polynomial of known degree, given a minimum amount of
data about its frequency response. With this simpler process under our belts,

we shall be able to translate back and forth between the polynomial and its
representation on a Bode plot. We shall also have a better understanding of
modeling and of the approximation problem.
A simple example illustrates the process. Suppose that we know that a

function is a binomial in frequency and that we wish to find a, and a, where

L(s)=aqytas (2.5-2)

Then

L(jw)=a,tja,w (2.5-3)

To find a, and a,, we merely find the real and imaginary parts of L( jw) and

equate the former to a, and the latter to a,w. Thus a measurement at a single
frequency suffices to obtain the coefficients. Since each measurement of L( jw)

gives us two numbers (a real and imaginary part), we can obtain two coeffi-

cients from each measurement.

To evaluate the coefficients of a quadratic or a cubic polynomial, the value

of L(jw) at two separate frequencies must be available, whereupon we can
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write

Re[L(jw,)]IaO—azw:;‘ (2.5-4)

Re[ L(jw,)] =a,—a,w} (2.5-5)

Solving these equations simultaneously, we obtain

a,= wziwz {@3Re[L(jw,)]—wiRe[(Ljw,)]} (2.5-6) 

and

a,= —— (Re[L(jo,)] ~Re[ L(jw,)]} (2.5-7)
2

Wy Wy

 

Similar equations for the imaginary parts give a, and a5 since

Im[L(jw)]=w(a,—a;0?)

 

 

giving

] {w%lm[L(jwl)] _ w%lm[L(jwz)]} (2.5-8)

and

0= wzlwz {Im[L“Eljw])] B Im[LoEzjwz)] } (2.5.9)

Evaluation of quadratic and cubic coefficients from loss magnitude and phase
will be useful in the work ahead; a program for this evaluation is given in

Appendix A. Similar procedures are also used for higher-degree polynomials.

The case of the quartic or quintic polynomials is given here; the extension to

yet higher-degree polynomials will be obvious from this discussion.

The quintic polynomial can be written

L(jw)=ay—a,0*+a,w*+jo(a,—a;0*+as0®) (2.5-10)

so that by measuring L( jw) at three frequencies, w,, w,, and w;, we can write

the matrix equation

N H1 —w w||ag ReL(jw,)

1 —w} w||a,|=|ReL(jw,) (2.5-11)

Tw3 W3 44 Re L( jws)

H

P
k N H
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A similar equation can be written for the odd coefficients, replacing the real
part on the right by the imaginary part divided by w. We then invert the matrix
to obtain the coefficients:

a, 1 —w! |7 ReL(jw,)

a, |=|1 —w! o Re L(jw,) (2.5-12)

a, 1 —w] w3 Re L( jw,)

and similarly

2 —1 Im L(.]wl)
a, 1 —w] ] —_—

w)

ImL(jw
a, =1 —w —(1—2) (2.5-13)

)

Im L( jw,)
a 1 _(4.)2 w4 —_—5 3 3 @

Expressed more compactly,this is

a,=F 'ReL(jw;), ieven (2.5-14)

ImL(jw,
ai:F'—%, i odd (2.5-15)

where F ~! is the inverse frequency matrix of egs. (2.5-11) and (2.5-12).

In general, an nXn frequency matrix must be inverted to evaluate the

coefficients of a polynomial of degree 2n—1 or 2n—2. The frequencies should

be chosen appropriately to give reasonable computational accuracy. The lowest

frequency will give most information on a, and a, and should be chosen where
the sensitivity of L( jw) to these two coefficients is reasonably high—a change
in either a, or a, should change L( jw,) significantly—and similarly for the
remaining coefficients. A discussion of these sensitivities is given in Section 2.7.
A reasonable choice of frequencies for many useful polynomials is to separate

the frequencies (three for a quintic) by an octave or two on either side of the

asymptotic cutoff frequency. A program for finding the coefficients of up to a

quintic polynomial using this procedure is given in Appendix A.

2.6 POLYNOMIAL PERFORMANCE SPECIFICATIONS:

THE SYNTHESIS PROBLEM

The discussion so far has concerned the analysis of polynomials, with applica-

tion to the loss of feedback systems. In the example in Section 2.1 we found

the amplifier to be unstable and took the expedient of adding a feedback
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capacitor to stabilize it. We then analyzed the stabilized system. Do we need to
“take what we get” and hope to stumble on a satisfactory solution? As we see
throughout the remainder of this book, this is not the case. In this section we

develop the characteristics of polynomials that give desirable performance for

various applications. This is a special case of the more general approximation
problem for equalizers and filters where a rational function—the ratio of two
polynomials—may be called for. Here, we restrict ourselves to polynomials.

We furtherrestrict the discussion to polynomials of the low-pass type, in which

the dc coefficient is not zero.

The field of satisfactory low-pass loss polynomials is represented here by

three types plus an interpolation between two of them. The first are
the Butterworth or maximally flat amplitude (MFA) polynomials; the second
the Bessel or maximally flat delay (MFD) polynomials; and the third are the
Chebyshev or equiripple polynomials. The interpolation yields a set of transi-

tional polynomials intermediate between the MFA and MFD polynomials.

Butterworth Polynomials

Flat frequency response, by which is meant constancy of the magnitude of

L(jw), 1s prized in as diverse areas as loudspeakers and frequency-division

multiplex telephone transmission systems. In both cases phase response is
thought to be less important than flatness of the magnitude function, and for
the same reason—the ear is relatively insensitive to phase distortion. The
Butterworth polynomials (as well as the Chebyshev polynomials to be dis-
cussed later) provide an approximation to flatness within a given band up to

the cutoff frequency, beyond which the loss rises at a rate dictated by the

degree of the polynomial at 20n dB per decade (or 6n dB per octave). The
squared magnitude of L( jw) is given by

L(jw)2:1+w2” (2.6-1)

This function is seen to be unity at w =0, and its first derivative is

dL( jw)’

dw

It is zero at w=0. Similarly, all derivatives up to the (2n— 1)st are zero at w =0,

which is why (2.6-1) is termed a maximally flat amplitude function. The square

of the loss magnitude at w=1 is equal to 2 for any value of n, so that

L(j1)=V2, or 3 dB.
There are 2n roots of eq. (2.6-1) equally spaced on a unit circle, as shown for

n=4 and n=35 in Fig. 2.17; there are no roots on the jw axis for any n.

Geometric considerations give the root locations as*

=2nw?" ! (2.6-2)

jRkontl -3), k=1,2,....2n (2.6-3)se=exp= 3

*For a more detailed treatment, see M. Van Valkenburg, [Introduction to Modern Network

Synthesis, Wiley, New York, 1960, p. 373 ff.
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Figure 2.17. Root locations of Butterworth polynomials of fourth and fifth degrees.

It is easy to show that

L(s)=L(—ys) (2.6-4)

or that

L(s)’=L(s)L(—s) (2.6-5)

[Note that magnitude signs are not needed on the right-hand side, since the
phase of L(s)L(—s) is zero.] Since we are interested in a stable loss poly-
nomial, we simply associate the right half plane roots with L(—s) and the left
half plane roots with L(s) and take the latter for the desired MFA polynomial.
The polynomial coefficients are obtained by multiplying the factors corre-
sponding to the n left half plane roots together. A calculator program that does
this is given in Appendix A, and the first six MFA polynomials thus obtained
are given in Table 2.1.

Bode plots for the first five MFA polynomials are given in Fig. 2.18. As
shown previously, the loss at the asymptotic cutoff frequency is 3 dB for any n,
and the cutoff slope rises with n. The phase curves show increasing phase

distortion as n increases. These and most other phase curves to be presented
have been modified to remove linear phase, or constant delay. This makes the

departure from linear phase—phase distortion—clearer. Linear phase amounts

to a simple time delay and does not change the relative phase of the signal

components passing through the amplifier or system. When it is removed, as

here, the higher-order delay terms—parabolic, cubic, and so on—are more

easily seen. In terms of the normalized polynomial, we obtain

L(p)=1+b,p+b,p*+ --- +p" (2.6-6)

We plot a phase-reduced polynomial L( p):

L,(p):(l+b,p+b2p2+ +p")e"’"’ (2.6-7)



78 Polynomials of Loss: Various Descriptions of Polynomials

Table 2.1 Normalized MFA, MFD, and Transitional Polynomials
 

MFA

1+p

1+141p+p,

1+2p+2p*+p°

1+2.61p+3.41p2+2.61p°+p*

14+3.24p+5.24p*+5.24p3+3.24p*+p°

1+3.86p+7.46p>+9.14p>+7.46p* +3.86p° +p°Q
A
N

&
W
N

-

MFD

1+p

14+ 1.73p+p?

14+2.47p+2.43p+p?

14+3.20p+4.39p2+3.12p° +p*

14+3.94p+6.89p2+6.78p> +3.81p*+p°

1+4.67p+9.92p>+12.36p>+9.62p* +4.50p° +p°A
N

&
W
N

-

Transitional (m=0.5)

1+p

14+ 1.56p+p?

1 -+-2.22p-+—2.20pz-+—p3

1+2.89p+3.87p2+2.85p> +p*

14+3.57p+6.01p2+5.96p>+3.51p*+p°

1+4.25p+8.60p2+10.63p> +8.47p*+4.17p° +p°®A
N

&
W
N

=

 

At low frequencies, the phase of the original polynomialis simply tan™'b,w.

This 1s the value of the phase removed by the exponential, giving zero resulting
phase at low frequencies.

Bessel Polynomials

The set of MFD polynomials may be derived from the following relationship
for the (normalized) b coefficients’:

bk: Gt ()" 2o(n—k)k! \2n!

where n is the degree of the polynomial. This equation was programmed on the

calculator to obtain the normalized coefficients in Table 2.1. Bode diagrams
are shown in Fig. 2.19, again with b,w radians removed from the phase curve.

This phase curve is seen to fall off monotonically with frequency, giving rise to
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Figure 2.18. Bode diagrams of Butterworth polynomials offirst to fifth degree. Flat delay (linear
phase) has been removed from the phase curves.

the MFD designation. The delay provided is b, units of time and is flat up to

the asymptotic cutoff frequency, above which the delay becomesless.

Transitional Polynomials

The MFA and MFD polynomials represent two possible low-pass-system or

amplifier specifications, the first appropriate where flatness of loss magnitude

is the prime consideration and the second, where flatness of delay is desired. It

is convenient to have an intermediate performance specification for cases in

which simultaneous requirements are placed on both frequency and transient

response.
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Figure 2.19. Bode diagrams of MFD polynomials with flat delay removed.

A set of transitional polynomials, intermediate between the MFA and MFD
polynomials, can be generated as follows. Calling the transitional polynomial

coefficients b,r, and the MFA and MFD polynomial coefficients b,yand
b, mrpp> WE set

ka:bkMFDm'bkMFA(I- (2.6-9)

where 0<m<1 is the interpolation factor. For m=0, the response is MFA,

and for m=1, the response is MFD. For m=0.5, the polynomial coefficients

are the geometric mean between those of the MFA and MFD polynomials.

The coefficients for this case are given in Table 2.1.* Bode diagrams are given

in Fig. 2.20, again with b,w radians removed from the phase curve.

*The concept of transitional polynomials between MFA and MFD responses was introduced by

Peless and Murakami.® Their method differs from that given here in that they used the MFA and
MFD polynomials in factored form and used the factor m to interpolate between sets of pole
positions, interpolating the angle of the root linearly and the magnitude of the root geometrically.
Their method gives negligibly different results but involves more computation.
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Figure 2.20. Bode diagrams of transitional polynomials with m =0.5; flat delay removed.

The step responses of the MFA, MFD, and transitional polynomials are
compared in Fig. 2.21. These curves give the output time responses for a unit

step input. By comparing the waveforms of the responses, we can judge which
of the three polynomial types will be suitable for a given application; we may
wish to use an interpolation factor different from m=0.5 given in Fig. 2.21c.

The MFA responses exhibit considerable overshoot, over 8% for the third

degree (not shown) and 12% for the fourth degree; the corresponding over-

shoot for the MFD responses is less than 1%. The MFD responses have the

property of simultaneously minimizing rise time and bandwidth, a most useful
property for systems where bandwidth limitations are needed to reduce noise.

Chebyshev Polynomials

Another set of polynomials that finds considerable use are the Chebyshev

polynomials, which focus on providing an accurate match to the magnitude of

the loss. By removing the MFA restriction on the derivatives and replacing it

by the restriction that the response not deviate by more than a given amount



 

 

 

   

1= —

- 2/ af 6

5f— ]

0 0 5 10 15
(a)

1.__

— 2 af 6 n

5— |

0
0 5 10 15

(b)

11— ]

[~ 2 4 6 7

5— ]

0 n 1
0 5 10 15

t ——

(c)

Figure 2.21. Step responses of Butterworth, MFD, and transitional polynomials of unit asymp-

totic bandwidth.
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over a given bandwidth, a larger useful bandwidth may be obtained for a given
asymptotic cutoff frequency. Furthermore, a sharper out-of-band cutoff slope
can be obtained near the cutoff frequency. Chebyshev polynomials have found

use in a wide range of systems where good transient performance is not

important.

Where MFA and MFD polynomials are each specified by a single number
—the degree of the polynomial (for a given frequency and amplitude normali-
zation)—the Chebyshev polynomials require an additional parameter, the
allowable in-band ripple, as illustrated in the magnitude response in Fig. 2.22.

The frequency is scaled to the maximum frequency for which the magnitude
response is within the specification. As for the MFD polynomials, we give a
“cookbook” for rustling up Chebyshev polynomials. For the theory behind it,

the reader should consult Van Valkenburg* or Guillemin® (both treatments are
insightful).
The procedure for obtaining the Chebyshev polynomial of degree n for a

given ripple amplitude r (in decibels) is to define a constant € as follows:

e=(107/10—1)"/? (2.6-10)
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Figure 2.22. Loss (in dB) of Chebyshev polynomials of fifth and sixth degrees. Ripple width is
1 dB.
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We then define the value of a second constant S for the polynomial from the
relation

1 1
B= " sinh - (2.6-11)

or alternatively, by trigonometric identity

1 (1 I
,B—nln(€+ 2+1) (2.6-12)

€

Next, we find each root of the nth degree MFA polynomial, converting the

root position into rectangular form. We then multiply the imaginary part of the
MFA root by cosh B and the real part by sinh 8. This is the corresponding root
of the Chebyshev polynomial whose maximum deviation from flat response is r
decibels from unity up to a normalized frequency of unity. Note that the

corresponding Butterworth loss polynomial has a magnitude of 1.414, or 3 dB
at this (unity) frequency.

As an example, suppose that we desire a ripple amplitude of 0.2 dB up to a
frequency of 1 Grad/s for a third-degree Chebyshev polynomial. From (2.6-10),
€=0.217, and from (2.6-11), $=0.744, giving sinh $=0.815 and cosh 8=1.290.

The cubic Butterworth polynomial has a real root at o= —1. For the

Chebysheyv,this is multiplied by sinh B, giving the real root at —0.815. The real
part of the Butterworth complex roots are at 6= —0.5, so the real parts of

the Chebyshev complex roots are at 0= —0.407. The imaginary part of the
Butterworth roots are at =;0.866; these are multiplied by cosh 8, giving the
imaginary parts of the Chebyshev roots at *;1.117. With the root positions
thus defined, we can multiply the factors to obtain the Chebyshev cubic
polynomial with 0.2 dB ripple up to 1 Grad/s:

Leg(s)=141.8045+1.41552+0.8683s° (2.6-13)

A program that follows this procedure to obtain Chebyshev polynomials of

any degree (up to seventeenth) and ripple (in decibels) is given in Appendix A.

The asymptotic bandwidth of this polynomial is slightly wider than that of

the Butterworth polynomial used in its construction, by a factor of

(1,/0.8684)'/2=1.048. We could, of course, normalize the Chebyshev poly-
nomial to unit asymptotic bandwidth:

Ley(p)=1+1.891p+1.554p+p? (2.6-14)

Thus allowing us to place this polynomial in the diagram in Fig. 2.4. The

polynomial in eq. (2.6-13), on the other hand, has known accuracy up to w=1;

since this was the reason for using the Chebyshev polynomial in the first place,

this is the normalization to be used in comparing it with the Butterworth

polynomial, for example.
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If we renormalize the Butterworth polynomial such thatit also has response
within 0.2 dB up to unity frequency, it can be compared directly with the
Chebyshev polynomial. For the Butterworth, we can solve eq. (2.6-1) to give
the frequency at which the loss has increased by 0.2 dB:

0.)0_2:(100‘2/10_ 1)'/2"

For n=3, w,,=0.601; normalizing the Butterworth to this frequency, we

Ly(p)=1+1.2025+0.722452+0.2171s>
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Figure 2.23. Bode diagrams comparing Chebyshev and Butterworth polynomials (each has a
maximum in-band error of 0.2 dB): («) in-band performance; (b) performance in cutoff region.
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This can be compared directly with the polynomial in (2.6-13); both have 0.2

dB maximum magnitude error up to the normalized cutoff.
The loss of the Chebyshev and Butterworth functions, plotted in Fig. 2.23,

show their relative performance in magnitude and phase both in band in Fig.
2.23a and in the cutoff region in Fig. 2.23b. The Chebyshev function exhibits
its 0.2 dB error at w=0.5 and 1.0, whereas the Butterworth has an error of this

amount only at 1.0. Up to 0.9 w,, the phase performance of the Chebyshev
function is superior to the Butterworth. Out of band, the Chebyshev poly-
nomial has 12 dB more loss (asymptotically) than the Butterworth; in general,
for small €, the Chebyshev out-of-band attenuation is 3(»— 1) times that of the

Butterworth. In the frequency domain the Chebyshev polynomialis superior to

the Butterworth, in general.
The roots of the Chebyshev and Butterworth cubic polynomials are shown in

Fig. 2.24, and the responses to a unit step are given in Fig. 2.25. Here, the
Chebyshev polynomial does not do as well. The overshoot is somewhat worse,
and the settling time is twice that of the Butterworth function, as seen in the
expanded portion of the step response plot. The poorer settling time could
have been predicted from the root diagram in Fig. 2.24: the real part of the
complex Chebyshev roots is only half that of the Butterworth roots.

There is another aspect to the relative evaluation of polynomials as perfor-
mance specifications for systems—sensitivity of the loss to the polynomial
coefficients, as discussed in Section 2.7.
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2.7 SENSITIVITIES OF LOSS TO THE POLYNOMIAL COEFFICIENTS

We have discussed the relative merits of several polynomial types in their
application as characteristic polynomials for feedback systems. Any of them, to

be useful, must be realized by hardware whose characteristics may vary from
the specified values. We should like to select a polynomial for realization that

is insensitive to such variations, one that is ‘“rugged.” We have seen, for

example, that the Chebyshev series of polynomials are capable of realizing

wide bandwidth when compared with the Butterworth polynomials, but we

suspect that such polynomials may be somewhat “touchy” in requiring accu-

rate “tuning.” To quantify the notions of ruggedness and touchiness, we can
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define a measure that can be obtained with little more trouble than that

involved in the evaluation of the polynomial in magnitude and phase.
The measure is the sensitivity of the loss to the value of each of the

polynomial coefficients as a function of frequency. As noted in Chapter 1,
sensitivity is a complex number, the real part of which is the sensitivity of the

loss magnitude to the coefficient and the imaginary part of which is a measure

of the sensitivity of the phase to the coefficient. Either (or both) can be used

depending on which one is important in the application. As a measure of
“touchiness,” we adopt the magnitude of the sensitivity as a function of
frequency since this includes both sensitivities in a single measure.
From the sum rule, the sensitivity of loss to the value of coefficient q; is

given by

 Sk=— (2.7-1)

This is the contribution of the ith term of the polynomial to the total. If we
have evaluated L( jw) at a given frequency by the method given in Section 2.4,

it is a trivial matter to divide it into a,«’ to obtain the sensitivity of L( jw) to

a;. As stated in the previous paragraph, we take the magnitude of the

sensitivity as a convenient single measure; in some applications it may be

desirable to emphasize magnitude or phase sensitivity, simply by converting
magnitude and phase of (2.7-1) into rectangular form.

Figure 2.26 compares the loss and the sensitivities of loss to the polynomial

coefficients for three standard cubic polynomials, the MFD, the Butterworth,

and the Chebyshev with 0.2 dB ripple width. The normalization for these
curves is different from that in the previous section. Here we give each of the

polynomials a unit asymptotic bandwidth; Table 2.1 gives the polynomials for
the MFD and Butterworth cases, and eq. (2.6-14) gives the polynomial for the

Chebyshev case. This is the appropriate normalization when bandwidth perfor-
mance is limited by the devices (transistors) used since the final asymptote will

be essentially the same for all three cases.

Table 2.2 compares the performance of these three polynomials on the bases
of magnitude and phase of response, sensitivities of loss to the polynomial

coefficients, and settling times. In both magnitude and phase, the Chebyshev

polynomial gives broader band performance than the other two by a wide
margin. At values of w/w, below 0.6, it also has superior sensitivity perfor-

mance. The peak sensitivities are higher, however, so we might expect the

margin against instability to be poorer than the other two polynomials. Also,

its settling times are longer, as noted previously, even with the different

normalization used here.

Note that the conclusions here are for the simplified device model intro-

duced in Section 2.1. When more accurate models are developed (later), delay

becomes more important, and higher-degree polynomials arise in a more
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Table 2.2 Comparison of Cubic MFD, Butterworth, and Chebyshev
(0.2 dB Ripple) Polynomials (Same Asymptotic Cutoff)
 

 

MFD Butterworth Chebyshev Unit

Response =0.1 dB 0.20 0.60 0.94 w/wg
Phase =1.0° 0.65 0.25 0.70 w/w,
Sensitivities”

a, 0.3 0.6 —0.6 dB
a, —6.0 —6.0 —8.5 dB
as —19.0 —18.0 —18.5 dB

Peak sensitivities
a 2.0 32 5.2 dB
a, 2.0 32 42 dB
as, 0 0 23 dB

Settling times”
To 1% 6 10 11. ns
To 0.01% 13 18 23 ns
 

‘At w/wy=0.5.

PFor wy=1 Grad/s.

complete description. Although this complicates the stability question some-
what, the principle of direct realization of polynomial coefficients still applies.

In Chapter 3 we see how to investigate the sensitivity of loss to each of the

components and devices of a feedback system, including the effect of the
choice of the loss polynomial.

PROBLEMS

1 Find a polynomial expression for the amplifier in Fig. 2.1 in which a
capacitor Cg is connected in parallel with the feedback conductance G.
In finding the current through Cg, ignore the input voltage of the first

transistor, and also ignore the shunt loading of C, on the output stage.

Suppose that the load conductance of the amplifier in Fig. 2.1 is equal

to the reciprocal of the common lead resistance of the third-stage

device. Whatis the input voltage of the third stage for an output voltage
of 1.0 V? Whatis the effect on the input voltage and current of the third

stage of paralleling it with »n identical transistors? (This is similar in
effect to using an output-stage device n times larger than the earlier

stages.)

Given the following polynomials, find (1) whether they are stable, (2)

the damping factor of any quadratic roots, and (3) the asymptotic
cutoff frequency. Normalize each polynomial.

a L(s)=0.1+2s5+20s2+100s°

b L(s)=0.014+0.45+20s%24+1250s>
¢ L(s)=0.140.055+210524+100s
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Sketch a Bode diagram of the loss magnitude and phase of the amplifier
of Fig. 2.1 with 0.3 pF capacitor in parallel with G.

Find the settling time to within 100 ppm for the amplifier in Section 2.1

if the feedback capacitance is made 0.2 pF.

Find the approximate settling time to within 0.01 percent for the
amplifier of Section 2.1 with C=0.30 pF with a load capacitance of 10

pF. Note that this requires you to solve a quartic polynomial for its
roots.

Find the step response for the loss polynomial

L(s)=1+2s+2s%+s3

for values of time from zero to 15 ns (with s given in gigaradians per
second).

A doublet is a closely spaced pole and zero. If a doublet is included in
the loss of an amplifier, the effect on the step response is to introduce a
decaying exponential with a time constant equal to the reciprocal of the
doublet frequency. The residue in the pole is small because of the

cancellation introduced by the zero. Estimate the effect on the settling
time to 0.01% in Problem 7 if the loss is multiplied by the doublet
(1+100s)/(1+101s). (Develop an expression for the time response of

the doublet itself, ignoring the other roots of the loss, and find its

settling time.)

Sketch Nyquist diagrams of the amplifier of Section 2.1 in which
capacitor Cr 1s connected in parallel with G, and where C.=0.9 pF;
repeat for C.=1.1 pF. Sketch Bode plots for the two cases.

The amplifier in Fig. 2.1 with circuit values given in Section 2.1 has an
unknown value of feedback capacitance connected in parallel with G.
The amplifier is measured and found to have the following loss and
phase at 0.05 and 0.1 Grad/s:

L(j.05)=—38.77dB /49.4°

L(j0.1)=—40.00 dB /90°

Find the value of the feedback capacitance.

The active path of an amplifier is known to have cubic polynomial

response. It is measured at two frequencies: w, =0.05, w,=0.1 Grad/s,
with the following result:

L(j.05)=51.1dB /153.4°

L(j0.1)=—39.0 dB /206.6°

Feedback is to be added to this amplifier with loss equal to —40 dB,

constant with frequency. Will the resulting amplifier be stable?
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12 An amplifier is to be designed to have —30 dB of loss and an amplitude
characteristic that is not to deviate from flat loss by more than 0.05 dB
up to a frequency of 1.0 Grad/s. Assuming a design roughly like that of

Fig. 2.1 in which all three transistors have the same time constant and
that bandwidth is controlled by the cubic coefficient R7,7,7,G,, find
the required values of the transistor time constant if the amplifier is
realized by (1) MFA, (2) MFD, and (3) Chebyshev polynomials.
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Chapter 3

Elements of Feedback

Synthesis:
A Case Study

 

Several basic aspects of the new theory are explained in this chapter through a

case study concerning the design of a feedback amplifier. The longer-term goal

is to enable us to choose a feedback configuration—a circuit configuration—
that is uniquely appropriate for a given application and to design it to meet a
set of performance specifications. The goal is too general to realize fully, butit
should be kept in mind as we try to come close. Several concepts are

introduced in this chapter related to feedback synthesis, analysis, and perfor-

mance variability. The case study provides us with a framework or paradigm

that will help to make these concepts intuitive.

3.1 AN AMPLIFIER WITH BUTTERWORTH RESPONSE

We saw in Section 2.1 how the loss polynomial of the simple model used there

could be written by inspection by starting at the amplifier output and proceed-

ing to add terms to the voltage and currents as one proceeded toward the
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input. The loss expression, from egs. (2.1-7) and (2.2-27), is

=a,+a;s+a,s’+a,s’

a
=a0(1+£1—s+&sz+—3s3) (3.1-1)

ap ap ap

Suppose now that we wish the amplifier voltage loss to be given by one of the
polynomials in Section 2.6. Then we might write the polynomial

b b b
L(s)=a0(1+—l—s+ —22s2+—§s3) (3.1-2)

Wo Wy W,

To obtain Butterworth response, we would make b,=b,=2 and b;=1. To
synthesize the desired polynomial, we equate coefficients of like degree of egs.

(3.1-1) and (3.1-2) within a set of constraints on the components and device

parameters that might take various forms.

Suppose, for example, that the desired polynomial is specified completely,
including the dc loss a, and the asymptotic bandwidth w,. Equating the cubic
coefficients, we can write

ayb, 

 

 

Wo

wr

wWo

w (log scale) l
R

0 i
I

|
|

#
20 log |L|, dB |— g 20 log (a3 w?3)

|
|

- :
Point determined from | /

eq. (3.1-4)— |
20 log ag ——;fl-—--———— 

/
/

Figure 3.1. Bode diagram for the proposed amplifier showing the relation of the final asymptotic
loss to the dc loss; b5 is unity. wy =(ay/RgT773G1)"% wr=(/RsmmmG,)" 3.
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If terminating immittances R; and G, are also specified, the product of the
transistor time constants must be selected to give the desired bandwidth.
Usually, however, the transistor time constants are known at the outset (at
least approximately) so that it is more appropriate to find what dc loss can be
achieved for a given set of transistors:

3 3
_ 4w RemmymGrw

o~ b3 b3

 (3.1-4)

This constraint between a, and a; is shown graphically in Fig. 3.1. In the

following case study we assume that the transistors are given and that the dc

loss is to be found using (3.1-4).

To realize Butterworth response, we must set the remaining three coefficients

of (3.1-1) equal to those of like degree of (3.1-2), so that a;=ayb,/wj, or

3

aO—%IO (3.1-5)
3

b 2

al——‘—%if’flzo (3.1-6)

b
az—z—zz—“’—o:o (3.1-7)

These four equations—including (3.1-4)—are the basic synthesis equations for
designing a feedback amplifier with a prescribed cubic loss ratio. For the
circuit in question, these equations can be written in terms of the device
parameters and components:

3
77,736w0y _R

—RG+ —¢ - 0 (3.1-8)
3

—RtRO (3.19)
3

b,R G
—rmmGt = IR (3.1-10)

by

The second term in each equation is known at the outset since the desired

polynomial, the source and load immittances, and the transistor time constants
are all given. To synthesize the polynomial, at least one free variable must

remain for each coefficient. Terms G and C, are the free variables for a, and
a,, respectively; we must take r, as the free variable for a, since the other
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parameters are specified. Thus the values are

3
_"1,136W,Gy b, (3.1-11)

b,1,7,7G w>
CF:___IILZ[:fl (3.1-12)

3

b,R
p=—2-¢N%g:“"o (3.1-13)

For purposes of later comparisons, we use the set of numbers given in Section

2.1 for the device parameters and components:

7,=7,=7,=1.0ns

R;=1.0kQ

G,=10mS

wy=0.1 Grad/s

For Butterworth response, we then obtain G.=0.01 mS, Cr=0.2 pF, and

r,=0.20 k.
To obtain a, in the preceding design, we took r, as a free variable since there

were no others. In practice, we may wish to specify r, independently (e.g., for

best noise performance; thus we might add a component that will give us
control of the a, parameter for fixed r,. We might, for example, add a
conductance G, between the input of the third stage and the common lead
(ground) as shown in Fig. 3.2. Whatis its effect on the loss of the amplifier?
Since the system is linear, we can use superposition to analyze the change in

loss due to the addition.
The input voltage to the third stage for unit output voltage is —r;G,, so the

current through G, is —G,;rG,, a dc (constant) term. The second stage in
supplying this current has an added input current of 7, s times this amount. The

input current of the first stage is —,s times the second-stage input current,
and the first-stage input voltage is —r, times that, giving

By adding this change in loss to that given in (3.1-4), we obtain the loss

polynomial of the modified amplifier. Its coefficients are

a,=—RGy (3.1-15)
a,=—R;Cr—rGG, (3.1-16)

a,=—rnnG,—R;1,1,GyrG, (3.1-17)

a,=—R;n7,1G, (3.1-18)
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Figure 3.2. An amplifier capable of providing cubic Butterworth response: (a) circuit diagram;

(b) loss magnitude versus frequency.

These four equations constitute a complete set of analysis equations for the

amplifier in Fig. 3.2. By substituting these coefficient values in the synthesis
equations (3.1-5) to (3.1-7), we can solve for the values of the free variables G,

Cr, and Gj;; thus

 
b,w r T

G,=| = 0——‘)—3- 3.1-19
’ ( by Rgm n ( )

3
_T7,730Wy

Gr b, (3.1-20)

as before, and

2

A)Tch (3.1-21)
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Note that for a sufficiently high value of r;, G; may assume a negative value.
This is because r, causes the a, coefficient to be higher than the desired value.
In this case r, should be reduced (e.g., by increasing the dc current in the first

stage for a bipolar transistor). Alternatively, the amplifier may be characterized
as a quadratic design; the performance specification polynomial can be changed
to reflect this by reducing b;, for example, or by increasing w,. (With b,
reduced to zero, the loss is a quadratic polynomial. Small values of b,

approximate this.)

Equations (3.1-19) to (3.1-21) constitute a set of design equations for the

amplifier, giving the feedback elements explicitly in terms of the other device
and component values and the desired polynomial. The design is for an
amplifier of given bandwidth for devices that have a given time constant. In
this design a; contains only the time constants and the source and load
immittances, so that the design is of minimum loss (maximum gain) for the
devices used and for the polynomial chosen.

With the circuit values given in Fig. 3.2, with b,=b,=2 for the cubic
Butterworth, and with w,=0.1 Grad/s, these equations give

G,=10.0 mS

Cr=0.1 pF

Gr=0.01 mS

In the discussion that follows we refer to this amplifier design as Design A. A

Bode diagram for the loss as a function of frequency is shown in Fig. 3.2b. The

loss polynomial for this design is given by (3.1-1), for which we can now fill in
the numbers:

L(5)pesign a=0.01+0.25+25>+10s> (3.1-22)

The design of this feedback amplifier has involved working primarily with the

specified polynomial and scaling it properly. Problem 1 deals with the same

material for a Chebyshev design with the same initial specifications on band-
width and on the devices to be used.
The key to the design was to provide means for the independent control of

a, since we already had control of the other three coefficients. What were the
means, exactly? We were seeking a signal that was an undifferentiated version

of the output signal so that the cascaded combination of the first two stages

would give the desired s? term. The input voltage of the third stage is just such

a voltage; G, converts it to a current to allow the first two stages to work on it.
The common lead resistor of the third stage r; makes the output current

observable as a voltage at the input of the third stage. Control of a, is thereby

exercised by selecting G,.

If r; is nonlinear, or variable, the preceding method is not a good way to

secure the desired response. For a nonlinear r,, the input voltage of the third
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stage will be nonlinearly related to the output, and this nonlinearity will be
converted to a current nonlinearity by G; and will be passed through to the
amplifier input as a required predistortion to obtain an undistorted output, as
discussed in Chapter 1. If ry varies, the a, and a, coefficients will vary,
reducing response accuracy. A further objection to this method is that the

response is load dependent since the part of the input signal arising from G

and Cp are output voltage related and are not dependent on G,, whereas the
parts of the amplifier input signal related to G, are directly dependent on G,.
A better method of providing the desired response is by use of local

feedback; one such method is shown in Fig. 3.3, in which a feedback conduc-
tance is connected from output to input of the third stage. To see how this
works, we make two approximations initially; we remove them later. We
assume that the feedback conductance G, is negligible compared with the load
and that the input voltage of the third stage is negligible compared with its
output voltage. With these assumptions, we can immediately write the equation
for the change in loss due to G,; the increase in third-stage input current is
— G,v,, leading to an increase of amplifier input current of —7,7,G,s? and an
increase in input voltage of —r,7,G,s, so that

AL'GZZ_(rszst+R071Tszsz) (3.1-23)

For this approximate analysis, the form of the change in loss due to G, is the
same as that for G;, where G, replaces G,r;G, in eq. (3.1-14). Since the G,
design gave G;=10 mS, G,=10 mS, and ,=0.01 k2, we obtain G,=1.0 mS

for this design. Next, we turn to an exact analysis of the third stage with G,

feedback. The amplifier with local feedback around the third stage is called
Design B.

3.2 FEEDBACK OVER AN INDIVIDUAL STAGE

In this section we take a more detailed view of the third stage introduced in
Fig. 3.3. We make an exact analysis of the stage using the simple device model
to introduce and define four separate concepts concerning feedback. Later we

G,

  

T3Si03 r3

Figure 3.3. An improved third stage for the amplifier
shown in Fig. 3.2.
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Figure 3.4. Individual feedback stage: («) an equivalentcircuit for the feedback resistor; (b) an

equivalent laddercircuit for the stage.

see how this can be applied in general to feedback structures; our purpose here
is to show how these four concepts arise in a simple case. The key to defining

the four concepts is to describe the feedback network—in this case conduc-
tance G,—by its two-port parameters. In Fig. 3.4a the feedback conductance

is represented by an equivalent network containing four elements—two cur-

rent generators and two conductances. On first glance this substitution seems

an unlikely way to simplify the analysis since we now have four elements
rather than one to deal with. As we see later, however, this separation will

allow us to define four distinct aspects of feedback.
The feedback resistor in isolation can be represented by its two-port y

parameters, defined in the equations

L =ynv;1ty0,

I,=Yy 0, TYnv, (3-2'1)

In matrix form this is

ol _[yu Yo

[iz]_[)’zz )’22][02] (3.2-2)

or, stating it more compactly,
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If the conductance of the feedback resistor is G,, direct analysis of the circuit
gives

[iz}—[ — 0, G,_] b2 (324

This is the set of equations represented by the equivalent circuit in Fig. 3.4a.
One advantage of this representation of the feedback resistor is that it allows
us to represent the amplifier in Fig. 3.4a by an equivalent ladder circuit, shown
in Fig. 3.4b.

The equivalent ladder can be analyzed by starting at the output and working
toward the left to the input. The currents and voltages are shown in Fig. 3.4.
The advantage of working in this direction is that the analysis proceeds
sequentially. With one exception—the G,v; generator connected across the
output of the device—we never encounter an undefined variable, one whose
value has not yet been found. What is more, the one exception can usually be
ignored as negligible; when v, is found, it can be evaluated, and any required
correction can be made. In this simple case there is no need for this expedient;

we do an exact analysis.
The output current of the device in Fig. 3.4b is given by inspection as

i,3=(G,+G)v,— Gy, (3.2-5)

This current flows through the common lead resistance r; of the device, giving
an input voltage of —r; times this current; thus

U,—_—_I’3(G2+GL)DO+r3sz, (3.2'6)

This can be written

_ ”3(Gz+GL)
v,= —G.r, (3.2-7)

The input current is comprised of the current through the shunt admittances

plus the current contributed by the dependent generator — G,v,:

i,)=(G,+Cys)v,— Gy, (3.2-8)

or

Output loading Input loading

| /
G,+G G,+CP=— (G,+G,)r(G+ Gs) +G, o, (3.2-9)

! 1—-G,ry ‘
 

/

Direct feedthrough Feedback
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Equations (3.2-7) and (3.2-9) give a complete description of the linear proper-
ties of the device model with feedback. The latter equation can be written

1+rG G+G
i=— fii — 1i—r36f73s v, (3.2-10)

This equation gives i; as a binomial in the frequency variable. In this form it is

easily incorporated into the equations for the design of the amplifier in Fig.
3.3.

Representing the feedback resistor by its two-port elements—two conduc-

tances and two dependent generators—nicely separates the four effects of
applying feedback mentioned at the beginning of this section. The conduc-
tances represent input and output loading, and the generators represent signal
transfer through the feedback resistor in either direction. In particular, we can
identify y,,=G, as the input loading, a shunting of the input due to the
feedback resistor. Similarly, y,,=G, 1s the output loading. The purpose in

applying feedback in the first place is y,,= —G,; the G,v, generator at the
input augments the input current by an amount proportional to the output
voltage. Where there is distortion, for example,it is this generator that swamps
it out, in the sense of the discussion of Section 1.2. Finally, y,, = G, gives direct
feedthrough of the input voltage signal, converted to a current by the feedback

resistor and added to the current to be supplied by the transistor. As noted,
this is usually small. Therefore, feedback conductance G, has four roles in the
operation of the stage. These are indicated by the arrows in eq. (3.2-9).

The sizes of the four effects are the key to understanding the feedback

process. Where feedback is applied to achieve a particular object, one usually
thinks (in terms of the preceding example) of what y,, will do. It is important

to know how the other three aspects affect the outcome of applying feedback.
To this end, we evaluate the ratio of input current to output voltage as we add

in the four effects of G, to the stage represented in Fig. 3.4. The stage response
is a binomial in the frequency variable, a,+a,;s. In Table 3.1 we give the

binomial coefficients first for G,=0; in the next four rows we successively add

in the effects of y,,,1, V»,, and y,,. The last row gives the exact response. For
the case studied, the input augmentation or feedback accounts for 90% of both

a, and a;; input loading accounts for about 10% of a,; output loading for

about 10% of a, and direct feedthrough for about 0.1% of a, and 1% of a,.

Table 3.1 Successive Approximations to Loss of Eq. (3.2-9)
 

 

Approximation yn N2 Y2 V2 ayp a

No feedback 0 0 0 0 0 1.0

Add input augmentation 0 —1 0 0 1.0 1.0
Add input loading 1 —1 0 0 1.1 1.0
Add output loading 1 —1 0 1 1.11 1.1

Add direct feedthrough 1 —1 —1 1 1.111 1.111
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The description of feedback as a combination of four distinct effects
corresponding to the four two-port parameters of the feedback network will
allow us to develop a general method for the analysis and classification of
feedback structures; we discuss this later. Note that the outer feedback

network G, Cr of either design can be treated in exactly the same way as the
local feedback around the third stage, with feedback admittance Y.=Gr+ Cgs
of the outer loop represented by its four y parameters.

3.3 SYNTHESIS OF DESIGN B

We can find the polynomial coefficients of the amplifier in Fig. 3.5a by
straightforward circuit analysis. To do this, we use the equivalent ladder circuit
in Fig. 3.5b. The equivalent ladder is drawn just as for the single stage (which
is incorporated into it). For the three-stage amplifier, however, the outer
feedback circuit is also expressed in terms of its y parameters. The input and

output loading ( y,;=y,,= Yr) are placed in shunt with the input and output of
the amplifier. The two generators corresponding to y,,=y,, = — Y are also
connected at input and output.

To avoid cluttering the equations with nonessentials, we ignore the effects of

all but y,, for the outer feedback path. When we ignore y,,, we ignore Gof

about 0.01 mS relative to the source conductance of 1 mS and Cy. of about 0.1
pF relative to C,=10 pF; both are 1% corrections. When we ignore y,,, yis

compared with the load conductance, which is 10 times the source conduc-
tance, so that the correction is even less. If we ignore y,,, we can certainly
ignore y,, since the current through it is less than that through y,, by the ratio

v,,/v,, the voltage loss of the amplifier active path. Hence, the approximation
is a good one. When the equations are used by the computer, it is easy to
incorporate these small effects.

Circuit analysis to find the polynomial coefficients proceeds as in Section
2.1, starting at the output and proceeding toward the input. With the simplify-

ing assumptions made in the previous paragraph—the same as those made
implicitly in the earlier analysis—we can find the equations for the polynomial

coefficients by direct substitution in the earlier analysis. Only the third stage
has changed. The input current of the third stage of Design A is

iisoay=— (G316 + 716G,5)v, (3.3-1)

whereas the input current of the feedback stage is given by eq. (3.2-10):

-[14nG,  G,*G,
BB TG, 2 116,
 (3.3-2)

By substituting the constant and linear terms of (3.3-2) for those of (3.3-1) in

eqs. (3.1-15) to (3.1-18), we obtain the polynomial coefficients of the amplifier
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in Fig. 3.3 directly. Making the approximation that r,G,< 1, we have

a,=—R;Gg (3.3-3)

a,= —R;Cr—rin,G,(1+nG,) (3.3-4)

a,= —rnn(G,+G,)—R;11(1+nG,)G, (3.3-5)

a,=—R;m15,n5(G,+G,) (3.3-6)

The denominator (due to direct feedthrough) has been ignored since its effect

on the coefficients is 1% or less.
The four equations for the coefficients complete the analysis of the amplifier

in Fig. 3.5a. To synthesize the amplifier to realize a prescribed set of coeffi-
cients such as the cubic Butterworth, we substitute these four equations into

the synthesis equations, (3.1-5) to (3.1-7), and solve them for the values of G,,

Cr, and G. The solution is found by direct substitution if G, is found first
since a,#f(Cr, G¢). Although there are many terms, the solution is straight-
forward; with b;=1, we have

GLT3(b2w0RGTl_r1) 

  

 

 

G,= 3.3-7
2 RG"](I+"3GL)_"3(b2‘°0R071_"1) ( )

Also

—4 —a3w(3) 3

G G

and finally

c.=_4 n1,G,(1+nG,)

e R R

b.G r7G,(1+rG
— 1 F_ 1°2 2( 3 L) (3-3_9)

Wy R

With the device parameters and circuit values used for Design A, and again

assuming Butterworth response with w,=0.1 Grad/s, we obtain G,=1.0 mS,
Gr=0.011 mS, and Cr=0.11 pF, thus completing Design B. The loss poly-

nomial is a little different from that of Design A, because G, loads the output

stage:

L(s)D,ssign= —(0.011+0.225+2.2s2+11s?) (3.3-10)

The two designs now completed give essentially the same performance, at

least for nominal values of the components and terminating immittances.
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There are significant differences in sensitivity, however. Design B is superior
because the a, coefficient is realized (in part) by feedback from the output

voltage. The following sections clarify and quantify the differences between the

two designs.

3.4 SENSITIVITIES OF THE POLYNOMIAL COEFFICIENTS TO THE

DEVICES AND COMPONENTS

In cases where device characteristics or circuit component values may vary, we

are interested in how such variations affect the polynomial coefficients. As we

saw in Chapter 1, it is a simple matter to obtain the sensitivities by the sum
rule. For Design B, we use egs. (3.3-3) to (3.3-6) to find the sensitivities of the

polynomial coefficients to the component and device parameter values by

inspection. The sensitivity of coefficient a, to component x is found from the
equation for g; by dividing all terms that include x by the total, which is a,.

Thus the sensitivity of a, to G or to R; is unity since G and Rare included
in the only term in the equation for a,. The sensitivity of a, to any other
components or device parameters is zero. The sensitivity of a, to Cris less than
unity because other terms that do not contain Cy as a factor add to a,. Thus

 S=— — ReCr _ TReCr (3.4-1)
* RCr—rimGy(1+1,G,) a,

Since the amplifier in Fig. 3.3 contains five components including R and G,

and six device parameters, there are 11 such sensitivity expressions for each
coefficient, or 44 in all. They are all shown in Table 3.2. A similar table could

be prepared for Design A. The numerical values of the component sensitivities
for both designs are given in Table 3.3. The sensitivities are similar except for
the sensitivities to r; and G,.
The values given in Table 3.3 can be obtained as previously or may be

obtained by perturbing the value of each component in turn by a small

percentage and reanalyzing the circuit by using eqgs. (3.3-3) to (3.3-6). Program

“AN1” in Appendix B analyzes Design B by using these equations, and

program “SCX” finds the sensitivities of coefficients to components by this

method.

The array or matrix of sensitivities shown in Table 3.3 is presented to show
the dimensions of a complete sensitivity analysis for a simple model of a

practical amplifier design. It will also be useful later in finding the statistical
variation in the loss from variations of the component values. Where entries

are zero, the coefficient of the column in which the zero 1s found 1s not affected

by the component (or device parameter) in question. One row—that for

r,—contains only zero entries; had we known this, r, could have been omitted
from the model. When the model is improved to include other immittances,

such as output-to-input feedback capacitance over each device, r, will be found

to have a small but nonzero effect on performance.
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Table 3.2 Sensitivities of Polynomial Coefficients to Device Characteristics and

Component Values for Design B
 

 

 

  

xS s ¢ s

Components

—R;Cr _R07172(1+V3GL)62
R 1 —

7

__G1en

ML/M2

1

a, a,

Gr 1 0 0 0

—R.C
C- 0 et 0 0

a)

G 0 —nmGy(1+1nG,) —Gy[nmmtR(1+nG,)] G,

2 a, a, GL+ Gz

G 0 _r172G2r3GL —Gl‘(r|7273+RGT17‘2r3G2) GL

L al (12 GL+ Gz

Devices

_RG"'l"'z(l’*‘raGL)Gz
T 0 0 _ 1

a,

_rszGz(1+r3(;1.) _r17273(G1.+Gz)

n O Y a4, 01 2

—rtG,(14+rG. 0 172 2( 3 L) 1 1

a

r 0 0 0 0

—rr7m(G,+G. 0 0 172 3( L 2) 1

a,

0 —nmG,n0, —R;mimnGyG) 0

3 a, a4,1 2
 

The sensitivity of the coefficients to r; is of particular interest because of the

role of ry in establishing the nonlinear performance and variability of loss, as

noted previously. From Table 3.2, we see that the sensitivities of a, and a, to r;
are zero. The sensitivities of a, and a, to ry for Design B are

—nnG,nG
S = —Nnbahty =0.045 (3.4-2)

a,

—R G,G
S42—e=0.045 (3.4-3)

ry a2
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Table 3.3 Numerical Values of Sensitivities of Polynomial Coefficients

to Component and Device Parameter
 

 

 

Design A/Design B

X S0 S S S

Components

R 1 0.5 0.5 1

Gr 1 0 0 0

Cr 0 0.5 0 0

G,/G, 0 0.5 0.5/0.55 0/0.09

G, 0 0.5/0.045 1/0.5 1/0.91

Devices

T 0 0 0.5 1

r 0 0.5 0.5 0

T, 0 0.5 1 1

ry 0 0 0 0

T3 0 0 0.5 1

r 0 0.5/0.045 0.5/0.045 0

 

To compare these results with those for Design A, we obtain the sensitivities by

inspection of egs. (3.1-16) and (3.1-17):

S= L=0.5 (3.4-4)
a,

—R;mmG3nG)St = =0.5 (3.4-5)
a,

The effect of a change in ry 1s roughly 10 times worse for Design A than for

Design B. If control for G, 1s better than that of r;, the response of the latter
design will retain its accuracy in the face of changes of r; considerably better

than will Design A. Nonlinearity of r; will cause nonlinearity of the whole

amplifier for either design at high frequencies where a, and a, are important,

but Design B will be affected by an order of magnitude less than Design A in
this respect.

A calculation of the sensitivity of the coefficients to the load conductance
shows a similar desensitization of a, and a, in the second design. The
interpretation here is that the response is less sensitive to load immittance

variations for Design B; this is equivalent to saying that the output impedance

is lower for Design B. The effect of feedback on impedances is discussed in

more detail later on.
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To explain these facts by saying that feedback reduces distortion and gain
variations is imprecise. Feedback is an elusive notion, although sensitivity is
not. Both designs include local feedback in the third stage: r; provides an input
voltage to the third stage that is proportional to output current. In Design A,
G, converts this to a current that must be provided by the earlier stages. In
Design B, on the other hand, G, provides this current directly from the output
voltage of the amplifier. Feedback is present in either case, but in the first

design it was provided by an immittance elementr; thatis subject to variation,
whereasthis effect is minimized in the second. Note that the residual sensitivity
to ry in Design B comes about because of the input loading by G, on the third
stage—y,, of the feedback network in the terminology introduced in Section

3.2. It is considerably easier to quantify the effects of feedback through the

concept of sensitivity than by attempting to define the notion of feedback
quantitatively. “Feedback”in the sense of loop gain has a precise definition for
any particular way of looking at a system, butit is subject to the view that we

adopt. Sensitivity, on the other hand, is a property of the physical system and
does not vary with the method we choose to describe it. This is why we adopt
sensitivity as the primary concept of feedback systems. These ideas are

developed further in Chapter 4.

3.5 SENSITIVITIES OF LOSS TO INDIVIDUAL COMPONENTS AND DEVICE

PARAMETERS

We are only part way to our goal of finding the variation of loss as a function
of frequency due to variation of the values of the components and device
parameters of a feedback system. In this section we combine loss-to-coefficient
sensitivities with coefficient-to-componentsensitivities.'*?

In Chapter 2, we found the sensitivities of loss to the coefficients of the loss
polynomial and presented them as a series of Bode plots, one for each
coefficient. In Section 3.4 we found the sensitivities of each coefficient to each
component and device parameter. It now remains to combine these two sets of

sensitivities to obtain the sensitivities of the loss to each component and

parameter of the system. From Table 1.1 we can write

SH(jw)= 3 SE-s& (3.5-1)
i=0

where x; denotes the value of the jth component or device parameter of the

system. To obtain the total sensitivity of L(jw) to component x;, we must

account for the effect of component x; on all the a; and sum the resulting
sensitivities, each of which is a complex number.

This central concept can be illustrated by using the two amplifier designs

completed previously. Let x; be r; of Design A, for example. We have

calculated that the sensitivities of a, and a, are both 0.5 for this design, and
the loss polynomial is Butterworth; the sensitivities of loss to a, and a, were
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calculated in Chapter 2 for this case, and we can write

SL

n Design A

=0.5SL+0.5S% (3.5-2)

where the sum is a phasor sum. (Since the sensitivities of a, and a; to ry are
both zero, they do not appear in the sum.) For Design B, the sensitivities of
loss to a, and a, were both 0.045, so the sensitivities of loss to r; have the same
frequency shape but are less by a factor of 0.045/0.5, or 21 dB. These
calculations were carried out and are plotted as Bode diagrams in Fig. 3.6,
using program “SLX” in Appendix B. The curves also tell us just how sensitive
each design is to r;. At the asymptotic cutoff frequency, for example, distortion
caused by nonlinearity of r; is not reduced at all in Design A, whereasit is
reduced by 21 dB for Design B. (Where we speak of distortion at a single
frequency, we mean intermodulation products caused by signals in the im-
mediate vicinity of the frequency.)
Note that the sensitivities of loss to the coefficients are the same in the two

equations, (3.5-2) and (3.5-3), since they are related only to the loss poly-
nomial, Butterworth in both cases. Separating those sensitivities dependent on
the polynomial and those dependent on the components is a valuable clarifica-

tion. Stability questions, for example, concern only the coefficient sensitivity,
not the component sensitivity; to produce a stable design, one must choose a
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Figure 3.6. Magnitudes of the sensitivities of loss to device parameter r; as a function of
frequency for Designs A and B.
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stable loss polynomial and then ensure that it is realized as planned. The loss
polynomial appears in the denominator of the sensitivity function, so that
poles of the sensitivity function (zeros of the loss polynomial) must not be
allowed to creep into the right half plane.
We have expressed the magnitude of the sensitivity in decibels. In this form it

is the negative of what is commonly understood as feedback: when one says
that there is 20 dB of feedback in an amplifier, he means that the sensitivity of

loss to some element is —20 dB. Since we have seen that the sensitivity to each
element or component is different in general, it follows that the feedback—in
this commonly understood sense—is different for each element. Where the

term “feedback” is used, therefore, the element to which it refers must be

specified. We have seen in this section how sensitivities may be added to obtain
the total sensitivity; the complex components must be added separately to
obtain the total.
At this point we should clarify the relationship between the magnitude of

sensitivity and its real and imaginary parts, already discussed in Section 1.6.

Suppose that we express the loss of an amplifier at some frequency in polar

form: with a the attenuation (in nepers) and S the phase in radians, we have

L=e* /B (3.5-3)

Now let some component x change by Ax, causing a new value of L, say, L’:

L+AL=L=e~*/F# (3.5-4)

Figure 3.7a shows these two loss phasors. The change AL is also shown. If we
divide L’ by L, thatis, if we normalize to L, we have

%:H—Azlizexp[a'—afl(fi’—fi)] (3.5-5)

The phasor diagram for this equation is shown in Fig. 3.7b. If we take the
natural log of this equation, for small AL, we have

1n(1+ATL)=a’—a+j(,B’—B) (3.5-6)

_AL
L

Clearly, from Fig. 3.7b, the real part, a’—a, gives the per unit change in the
magnitude of L’/L (or equivalently, the change in nepers) and the imaginary

part, 8’— B, the change in the angle (in radians) of L’/L. The magnitude of

AL/L gives a measure of the effect of Ax on L: we know that the phasor L’/L
will terminate on a circle of radius AL/L centered at +1, as shown. Thus

when we are given the magnitude of AL/L, we know only that the resulting
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Divide by L

Error circle of radius = %

 

|SL| does not distinguish L' from L'’

(c)

Figure 3.7. Phasor diagrams indicating the relationship between the magr.itude and real and
imaginary parts of the variation of loss and the sensitivity of loss to component x;.

loss will be within the bound defined by the circle; we lose the information

about the relative effects of Ax on the magnitude and phase of L( jw). For

determining the effect of feedback on distortion, this is all the information that

is needed. The distortion component is proportional to AL/L; the improve-
ment in linearity is the reciprocal of this, or the magnitude of feedback. The
practice of specifying the magnitude of feedback arose in this way; as a general

single measure of the benefits of feedback,it is adequate.
The preceding comments are directed to the variation of L from variation of

component x. The sensitivity of L to X is obtained by dividing the variation

AL/L by the scalar Ax/x. The phasor diagram for sensitivity is the same as
that for variation of L, expanded by the factor x/Ax; we concentrate on the

portion of the diagram at +1 in Fig. 3.7b or 3.7c. The magnitude of the
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sensitivity defines a circle whose radius is the reciprocal of the feedback
magnitude.

If we are interested in the variation of magnitude (or phase), we should take

the real (or imaginary) parts of the sensitivity, as shown in Fig. 3.8. Note that

at low frequencies (in the band of interest) the primary effect of r; variation is
on the phase of L rather than on the magnitude. Comparison of effects

expressed in angles with those expressed in magnitudes implies a common

basis for the comparison. The basisis that of eq. (3.5-6), in which an in-phase

per unit change in L is equivalent to the change in nepers, and a quadrature

per unit change in L is equivalent to the change in radians. Hence, for
example, a change of 0.1 Np (0.86 dB) is comparable with a change of 0.1 rad
(5.7°)
As noted previously, the sensitivity of loss to G, should be better for Design

B than for Design A. In Fig. 3.9 the magnitude of the sensitivities of loss to G,

are plotted for both designs. The equations for the plots are obtained from

Table 3.3. Design A is given in eq. (3.5-8), and Design B is given in eq. (3.5-9):

 

   
   

  

   

 

 

 

SEG=0.58E+1.0SL+1.08E (3.5-8)
L 1 2 3

S§EU©)=0.045554+0.5S%+0.91SF (3.5-9)
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Figure 3.8. Real and imaginary parts of the sensitivities of loss to r; for Designs A and B.
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Figure 3.9. Magnitude of the sensitivities (in dB) of loss to G;for Designs A and B.

3.6 VARIATION OF LOSS AND PHASE FROM COMPONENT AND DEVICE

VARIATIONS

The total variation of loss is found by adding the products of the component

variations and their respective losses to component sensitivities. For small
changes, the variation in magnitude is found by adding the real parts of the

product and the variation in phase by adding the imaginary parts:

AL Ax;
—=3 —LRe|St (3.6-1)
L j xj [ J]

To express the change in decibels, this must be multiplied by 20log e=8.69

dB/Np:

argT—2jImSL (3.6-2)

The variations of the components are usually known only statistically. The per
unit component variation Ax;/Xy 1s a random variable, and we are interested in

the statistical properties of the loss, which is the complex sum of several
random variables. The components may vary in a deterministic way; the mean

value of the variation due to temperature of all the resistors on an integrated
circuit chip, for example, may very together. Superimposed on this may be a
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smaller random variation characterized by its variance, or the square root of
the variance, the standard deviation. For a sum of normally distributed
random variables, the mean value of the sum is the sum of the mean values,

and the variance of the sum is the sum of the individual variances. Letting p,
be the mean value of the variation of AL/L and o, the standard deviation of
AL/L, we can write

p.=2p,(ReSt+/ImSE) (3.6-3)
J

where the real part is the variation in the magnitude of AL/L and the
imaginary part the variation in phase. Similarly, the standard deviation of

AL/Lis

o= S 02| (Rest)'+j(ims:)’| (3.6-4)
J

For each x;, the sensitivity in the preceding expressionsis the phasor sum of
n+1 terms for a polynomial of degree n, as given by eq. (3.5-1). This
summation is to be done for each of the j components using the coefficient-to-

component sensitivity matrix values such as those given for Design B in Table
3.3. Calculator program “STAT” in Appendix B evaluates the mean and
standard deviation of the loss and phase as given in (3.6-3) and (3.6-4) for a

system that has a arbitrary number of components for which the coefficient-to-

component sensitivity matrix values are known (they are found by Program
“SCX” and a system analysis program, as described in Section 3.4).
To illustrate the calculation, the simple circuit in Fig. 3.10 is used; the

amplifier is considered ideal, so that the loss is given by

 

 

     

L=—R(G+Cs) (3.6-5)
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Figure 3.10. Circuit for calculation of mean and standard deviation of loss and phase variation.
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The coefficient-to-component sensitivity matrix is written by inspection:

seoo sal [1 1

Sy=18¢ Sg¢|=[1 O (3.6-6)
Seo Sa| |0 1

Suppose that R=G=C=1.0 and that we wish the mean and standard devia-
tion at an angular frequency of 0.5 (in a consistent set of units). Then the
loss-to-coefficient sensitivities are given by

 L_9 _ 1 _ .
Sao 1 17,05 0.8—j0.4

_ j0.5a, _jos .
«= LTT1405 =0.2+,0.4

This can be written as a column vector:

L

Sa0

LS, I

0.8—;0.4

0.2+,0.4
SL: =

a;
(3.6-7)

    

Premultiplying this vector by the matrix of (3.6-6), we obtain the loss-to-
component sensitivities as

Sk 1.0 + ;0

Sc=|S&|=|08—,0.4 (3.6-8)

Sk 0.2 + 0.4

Now suppose that the mean values of the resistors change by —10% and that

the mean value of the capacitance does not change. Suppose also that the

standard deviation of the change in both resistors and capacitors is 2%. The
mean value of the loss variation is obtained by premultiplying the column

vector in (3.6-8) by a row matrix of mean values of the component changes:

p,=[—0.1 01 0]|[1.0 0
0.8 |+j| 0.4
02] [04

   

=—0.02—,0.04

in nepers and radians. Converting to decibels and degrees,

p,=—0.17dB and —2.29°
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This change in mean values could be eliminated by using a capacitor that has a
+10% change in mean value to match the resistor change.
To find the standard deviation of the loss variation, we form a row matrix of

the variances of the three components and postmultiply it by the squared value

of the real and imaginary parts of (3.3-8):
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Figure 3.11. Mean and standard deviation of loss and phase for Design B.
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from which we obtain

0, =0.0259+0.0113

Thus the standard deviation of the loss change is 0.23 dB and 0.65°. A similar

calculation can be made at other frequencies to obtain the variation of p and o
with frequency.
The loss variation (mean and standard deviation) for the Design B amplifier

is shown as a function of frequency in Fig. 3.11, calculated in the same way as
for the simple three-componentcircuit. In this calculation the mean value of all
resistors were assumed to change by —10% (conductances by +10%) and
capacitors by 0%. The mean value of time constants of the transistors were
assumed to change by —10%. The standard deviations of the components were

all assumed to be 1%; the device parameter standard deviations were assumed

to be 5%. Program “STAT” was used for the calculation; the program and a
sample calculation for Design B are given in Appendix B. Thusit is reasonably
straightforward to obtain the loss variation as a function of component and
device variations.

3.7 SYNTHESIS BY ITERATION OF ANALYSIS: NEWTON’S METHOD

Analysis of circuits can always be done; if the process becomes too tedious by
hand calculation, we can turn to the computer for help. Such analysis can
provide us with the polynomial coefficients as well, although most present
computer circuit analysis programs do this at best indirectly. Such programs
can be modified to obtain the coefficients, or they can be found by use of a
program such as “RCU” in Appendix A, starting with the loss and phase at
several frequencies. The synthesis process—finding a small set of feedback
immittances to give us the desired polynomial coefficients—can often be done

analytically, but this is unnecessary if we have selected a configuration for
which there exists a dominant element that controls each coefficient. In the case
study, such elements were G, Cr, and G, or G, for a, a,, and a,, respectively.
Intuitively, we know that if we analyze the circuit for its polynomial coeffi-
cients and find that one of them is smaller than we desire, we can increase its

dominant element. The amount of the increase will be some function of the

differences between the desired coefficient and the coefficient obtained from
the analysis. If we can approximate this function, we should be able to reduce

this difference and try again. The process can be repeated until the difference

is negligible. When this procedure is carried out for all coefficients (perhaps
simultaneously), we should be able to converge on a design. Thus in Design B
if a, 1s too small, increase C; or if a, 1s too small, increase G,. When we

increase G,, however, the effective output loading G,+ G, increases, and the

value of a, changes slightly, changing the value of C, that will be required.

This effect is small, however, since the sensitivity of a, (or a;) to G, is
small—only 0.091 in Table 3.3—so that by going through the process a few
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times we should converge on the right numbers for the design. In this section
we show how this is to be done and put the intuitive notion on a firmer
mathematical basis.
We begin by defining three variables representing the error of the poly-

nomial coefficients for a given cubic system. From the synthesis equations

(3.1-5) to (3.1-7), we define

3

ao“—'a;)—(:o—ao (3.7-1)

b 2

alz%—a, (3.7-2)

b2:_2_a39.9_ 5 (3.7-3)

b,

where in each case the first term on the right represents the desired value of the
polynomial coefficient and the second term is the value of the coefficient as
calculated from the analysis of the circuit or system. Next, we define a set of
free variables, x,, x,, and Xy =X; representing the dominant elements. For

Design B, they would be G, Cr, and G,, for example. The three a, will be

functions of the x; since we assume the x; to be dominant in determining the
coefficients:

a;=f(x9, X1, X) =f,(x;) (3.7-4)

For each of the three a;, we take partial derivatives with respect to each of the
x;, giving an array of nine partial derivatives known as the Jacobian matrix, or

Jacobian, written compactly as

d(ay, @, a,) e,

d(XOaxl’XZ) _a_'xj (37-5)

The total differential of &, may be written

_ 0oy da day
day= 9%, dx,+ 9, dx,+ o, dx, (3.7-6)

The total differential change of the error in the dc coefficient is made up of
changes that arise from each of the three x,. The change in all three a, can be

written as

Jda.
da, %

! axj
dx; (3.7-7)
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For Design B, this expression can be written as

Oy day  dagda dG
0 0G. 0C. 0G, F

_ 9q da, da,
da, = 3G, aC, G, dCy. (3.7-8)

do, Q%2 0% O o

This equation tells us the direction each of the «; will go in response to changes
in G, Cg, and G,. It is easy to evaluate from the analysis equations, (3.3-3) to

(3.3-6), and the equations defining the «;, (3.7-1) to (3.7-3). Taking «, for

example, we use (3.7-1) to obtain

3day _ wp da;  da,

3G, b, 3G, 3G, Ra (3.7-9)

[We use (3.3-6) to obtain da;/dG=0 and (3.3-3) to obtain da,/dG.= —R.]
With the equations programmed on a calculator or a computer, we perturb the

value of G by a small amount (say, 1%) and find the change in «,, «,, and a,.
Dividing these changes by AG., we obtain the first column of the Jacobian. We
then repeat the process for C. and G, to obtain the whole matrix. For the set
of circuit values used in Section 3.3 for Design B, for example, the Jacobian is

dog] [—-1 0  0.001][dG,
da, [=| 0 —1 —0.09|| dC, (3.7-10)
da, 0 0 —1|| 46,

In this matrix the dominant relationships are along the principle diagonal; the
off-diagonal elements are less important, arising from the small dependence of

a, on G,. For Design A, this dependence is absent, and the Jacobian is a

diagonal matrix (with no off-diagonal elements). The negative signs of the

elements along the principal diagonal are merely an expression of the phase
reversal in the amplifier; all polynomial coefficients are negative.

What is needed for design is the direction in which to change the elements
Gg, Cr, and G, to bring the a; to zero. We obtain the desired result by
premultiplying both sides of (3.7-8) by the inverse of the Jacobian; in compact

form, this is

da, |dxj:(g;) da, (3.7-11)
J

The inverse exists by virtue of our assumption of a dominant element for each



Synthesis by Iteration of Analysis: Newton’s Method 121

a;; each element gives a nonzero entry along the principal diagonal. Equation
(3.7-11) gives us just what we need to form an iterative design method to find
the values of the dominant elements, the x;. If we replace the differential of a,
by the total desired change, which is «; itself, we obtain from the equation the
change in each x; required for the next iteration, that is, x,, ;)=X,=Ax;.
By analogy with Newton’s method and eq. (2.3-1), we write

da, !
xj(nfl):xj(n)-— —a’—x" Qa; (3.7-12)

J

which is merely an extension of Newton’s method to three dimensions.

The inverse of the Jacobian of (3.7-10) for Design B is found to be

Grin+) Gy —1 0 —0.001 ag

Cetn+n |=| Crmy |—| 0 —1 0.090 o, (3.7-13)

Gan+1) Gan) 0 0 —1]|

Program “SJ”, which implements this equation, is given in Appendix B. It

finds the Jacobian as outlined previously, inverts it, and determines the values

of the three x; by iteration. The circuit analysis program is separate from the
synthesis program, so that the synthesis can be applied to any circuit having
three dominant elements and yielding cubic polynomial response. General

purpose computer analysis programs such as SPICE can be used, but the
polynomial coefficients must be obtained from loss and phase information
usually supplied by such programs; program “RCU” can be used for this

purpose.
An iterative process is itself a feedback process—the result of a computation

is compared with a reference, and the difference (or error) is used in a new

computation to tend to correct the error. Nonconvergence is the equivalent of
instability. We can illustrate convergence in Design B. Where the approximate
analysis equations of Section 3.3 are used, convergence is not only assured, but
is completed in one step because the a; are linear in the x; for egs. (3.3-3) to
(3.3-6). Because ofthis linear relationship, all partial derivatives of the Jacobian

are constants, not a function of the x- Hence the direction of movement of the

x; from the arbitrary) starting point to the final value lies along a straight line;

convergence is immediate.

If the program is modified to include the denominator, 1—r,G,, left out of
the approximate equations, convergence becomes dependent on the starting

point. With ;=0.01 k{2, a value of G, in excess of 100 mS (an outlandish
value) causes the sign of the denominator to reverse, so that the phase reversal

of the third stage is lost. Hence the feedback of the outer path becomes
regenerative, and the design converges on an incorrect set of values. More

reasonable starting points will assure convergence on the correct values.
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The device model shown in Fig. 3.1 is too crude to provide us with a viable

design. It has been used to illustrate design principles and to develop sensitiv-
ity relationships in a definite way without burdening the development with
more detail than is necessary. We develop accurate models later and show how
they are to be incorporated into the design process. Many of the changes
required in the model, such as adding collector capacitance (or drain to gate

capacitance) and dc leakage at the input (1/h, for bipolar transistors), do not
change the general outlines of the design but do change the values of the
feedback immittances obtained. One aspect left out here is central to feedback
system design: signal delay may profoundly affect the design process. We
study the effects of delay in Chapter 5, where we modify the analysis to include

it. The design procedure given in this section remains, but delay is found to
alter the Jacobian in such a way that for sufficiently large delays, the design

becomes unrealizable. It is usually necessary, therefore, to consider delays in

even an approximate model of feedback systems.

PROBLEMS

1 Compare the dc loss obtainable for an amplifier with the circuit in Fig.
3.2 that is to have response of =0.1 dB up to w,=0.1 Grad/s using (a)
Butterworth response and (b) Chebyshev response. Note that the ripple
width for the Chebyshev case and the error tolerance for the Butterworth
case are both 0.2 dB. Assume cubic responses. For equal dc losses,
compare the amplifier bandwidths obtainable for the two responses.

2 An amplifier that has the configuration and device parameters of Fig. 3.2
is measured and found to have the following values of loss magnitude
and phase at frequencies of

 
w Loss, dB Phase

0.05 —28.60 70.53°

0.2 —10.67 —160.6°

Find the values of G, Cr, and G; if G,=10 mS and R;=1.0 k2.

3 Assume that r,=kT/ql-;=0.026/1-,. Find the sensitivities of the four
coefficients, a, to a, to r; for a redesigned version of Design B in which
I-;=10 mA. The redesign is again to give Butterworth cubic response,
and all other device parameters remain the same as in the text. Repeat
the problem for Design A.

4 Using the transistor model in Fig. 3.1 with r,=r,=r,=0.010 kQ and
C,=C,=(C;=10 pF, design a 200 MHz amplifier to operate from a
0.100 k€2 source into a 0.100 k2 load. Let the response be Butterworth

cubic. How much dc loss is there? Find the sensitivity of loss to r; at the
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cutoff frequency. Repeat this problem, using Chebyshev response with
0.5 dB ripple.
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Chapter 4
 

Signal Flow Graphs
of Polynomials,

Rational Functions,
and Circuits

The design processis in part a uniting of response requirements as polynomials

or rational functions and the circuits that are to provide them. Thus far we

have used the polynomial coefficients as a common ground for expressing the

requirements on and the characteristics of a feedback system, obtaining the

system coefficients from the circuit immittances by reasonably straightforward
circuit analysis. In the design process, another step is required at the outset—to

establish the circuit or system topology. This step is the one least amenable to

codification into a cut-and-dried procedure. The existence of tens of thousands

of circuit patents attests to the creative nature of this step.

It is often helpful to express system requirements in topological form; if this

can be done, the requirements may themselves suggest possible system realiza-

tions. Signal flow graphs provide a way of expressing both circuit characteris-
tics and system requirements topologically and provide a common topological

language to talk about both. We begin the study of this valuable design tool by

briefly stating the rules for forming signal flow graphs.
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4.1 INTRODUCTION TO SIGNAL FLOW GRAPHS* AND SEQUENTIAL

MATRICES

Signal flow graphs' provide us with a clear way of ordering our thoughts about
the relationships among the constants and variables of a mathematical expres-
sion. More important, they can be used to relate systems and circuits to the

mathematical expressions that describe them. They are a branch of the study of
topology from a mathematical point of view and also bear a close relationship
to the study of circuit configurations or circuit topology. In this section we
develop rules to allow us to draw signal flow graphs directly from mathemati-

cal expressions, and we begin the process of drawing signal flow graphs from
circuit diagrams.

Definitions

A signal flow graph is a graph containing nodes (or vertices) and branches (or
edges) connecting them. The branches are directed, as indicated by the arrow
in the simple two-node, single branch signal flow graph in Fig. 4.1a. This
graph is a representation of the equation y =bx, where x is the transmitting
node, y is the receiving node, and b is the value of the branch connecting them.
Node x is unaffected by the branch leaving it. In Fig. 4.1b, for example, a
second branch whose tail is connected to x also has signal x transmitted along
it, to be multiplied by its branch value. In the figure, a second branch has its

nose connected to y contributing signal z to y; this graph depicts the equation
y=bx+z. Figures 4.1c and 4.1d establish the addition and multiplication
properties of signal flow graphs. The equivalence expressed in Fig. 4.1¢ follows

directly from Fig. 4.1b. A node may act as both transmitting and receiving
nodes, as in node z in Fig. 4.1d, where z =ax; in this graph we also have y=bz,

so that the equivalence of Fig. 4.1d is established directly.
The operations of factoring and its opposite, distribution, are shown in Fig.

4.2 and follow directly from the preceding.

The terms “independent” and “dependent” nodes are relative terms relating
to individual branches. An independent node transmits signals down a branch
whose tail is connected to it, so it might equally well be called a transmitting

node. Similarly, a dependent node is a receiving node that has at least one

branch whose nose is connected to it.

A node that has no incoming branches is a source node; it is where the

analysis of the system begins. Similarly, a sink node has no outgoing branches;
it is where the analysis of the system terminates. There may be more than one

sink or source node in a system.

Closed Loops

Where a closed loop exists, as in Fig. 4.3, the analysis may be carried out by

solution of simultaneous equations. For clarity in system analysis,it is well to

define source and sink nodes for the system in question. Where no such nodes

*Such a graph is sometimes called a directed graph, or digraph.p
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Figure 4.3. A signal flow graph containing a closed loop. Sequential matrices for this graph are

shown in parts b and c.

are evident, they may be added by adding a branch with branch value unity

between it and the existing graph node(s). Thus in Fig. 4.3, node x was added
as a source node and y as a sink node, with unity gain branches connecting x

to x” and y’ to y. Thus, by inspection of the graph, we set

y=y’

yl:axl
(4.1-1)

x'=x+by’

from which we obtain

_ ax _
y———————l_ab (4.1-2)

Alternatively, we can sum all path products from input to output as the
signal traverses from x to x” and y’ to y. The first such path has path product
a; to this we add the path x to x” and y’ to y through b to x” again through a to

y” and to y; a third path flows around the feedback path twice, and so forth for
an infinite number of traverses, giving the sum

y={a[1+ab+(ab)2+(ab)3+ ]}x (4.1-3)

summing the series, with ab<1,

_ax

Y 1—ab
 (4.1-4)

as before. Where |ab| <1, the first few terms of (4.1-3) may be sufficiently
accurate to avoid having to deal with the denominator of (4.1-4).
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Sequential Matrices

The signal flow graph shown in Fig. 4.3 is the same as the canonical feedback
diagram in Fig. 1.1 as given by Black. The graph in Fig. 4.3a may be

represented as a matrix, shown in Fig. 4.3b. Each transmitting node in the
graph appears as a column label, with the source node at the left. Each
receiving node appears as a row label with the sink node at the bottom. The

value of a branch connecting two nodes appears in the matrix where the row

and column intersect. For example, node y’ receives signal transmitted from

node x’ through branch a, so that a appears in row y’ and column x’.
In examining the topological structure of mathematical relationships, a

similar matrix, called an adjacency matrix or incidence matrix, in which the

branch values are replaced by ones merely to indicate their existence, is also

used. For an interesting discussion of such matrices and some of the problems
that they deal with, see Martin Gardner’s column in Scientific American,
March 1980.2
The matrix in Fig. 4.3 includes not only the branch values, but orders the

nodes in sequence from source to sink to correspond with our concept of the
flow of signals through the system. To emphasize this distinguishing feature—
one that includes our concept of how the system works—we term this a
sequential matrix. In Fig. 4.3b the principal diagonal describes the forward
path causally, and we call the corresponding matrix a causal sequential matrix.
Conversely, where the forward path is described under the reciprocal formula-

tion, the associated matrix is termed an anticausal sequential matrix.

In this way, the forward path appears along the principal diagonal of

the matrix, and the feedback path elements appear below it. We see in the

following that in an anticausal sequential matrix, on the other hand, the

feedback path elements appear above the principal diagonal.

Note that to write a sequential matrix from a signal flow graph, no nodes
may exist off the path from source to sink; this path must contain all signal
flow graph nodes. It is always possible to arrange a signal flow graph in this
way (if we allow branches with zero branch value) since branches that span

more than one node (in either direction) are allowed.

In Fig. 4.3c the signal flow graph is shown for the same structure, except

that the forward path a is defined anticausally—the loss 1s 1 /a. The sign of b
changes as a result of the revision of functional dependencies, as described in
Chapter 1. Note that node x’ is now a sink node, so that the unity gain branch
between x and x’ can be dropped; similarly, y” is now a source node, so that

the other unity gain branch can also be dropped, leading to the two-node

graph in Fig. 4.3c. The anticausal sequential matrix degenerates to a single
element here.
A signal flow graph between source and sink nodes containing no closed

loops is termed a cascade graph. 1t is particularly easy to evaluate because one

merely adds all path products between the source and sink nodes. No de-
nominators appear in the total. Conversely, loops appearing in a signal flow
graph are equivalent to denominators that are not unity.
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4.2 SIGNAL FLOW GRAPHS OF CIRCUITS

Signal flow graphs offer us a particularly clear way of deciding how we wish to
analyze a circuit; it makes specific the ordering of functional dependencies.

Active Low-Pass Filter

As an example of the use of signal flow graphs and sequential matrices,
consider the low-pass RC activefilter in Fig. 4.4.> The circuit incorporates an

operational amplifier that we take (for the moment) to be ideal, as it has no

input current to either input lead and no differential voltage between the two
input leads for any finite output signal.

Taking the output voltage as the independent signal variable, the voltage

between either input lead and ground is nv,, where n=R,/(R;+R,), as

shown in the signal flow graph. The rest of the flow graph follows directly, as
does the sequential matrix. Thus v, implies that current v,C,s flows through C,
and R,, giving voltage v, as nv,(1+ R,C,s). Given this voltage and the output
voltage, we can determine the current through C, as [n(1+R,C,s)—1]C,sv,;
finally, we add this to i, to determine the input current, which is multiplied by
R, to obtain the drop across R,. To this we add v, to obtain e. The processis
straightforward because there are no feedback loops in the signal flow graph,
thus allowing the loss to be written by enumerating all paths from v, to e:

Z—G Zn{l-i- l(Rl'*'Rz)Cz“l'Rlcl(1~ %)]S+R1R2CIC232] (4-2'1)
o

Since 0=n=1, the damping factor for this circuit can be made as small as

desired (even negative) by a suitable choice of n.

In this analysis the operational amplifier was assumed to be ideal. Actual
operational amplifiers approach the ideal, except that the voltage between the
two input leads increases with frequency; the voltage loss is not zero. Ordinary
voice frequency operational amplifiers are arranged to have a differential input
voltage v, given approximately by

v,=T,50, (4.2-2)

where 7, 1s the unity voltage loss time constant.* We can incorporate this

nonideal behavior simply by replacing n in eq. (4.2-2) by n+ s, which is

equivalent to adding a branch 7,5 between v, and v; in the signal flow graph. In
the sequential matrix, 7,s 1s added to n wherever the latter appears.

The feedback network consisting of R; and R, adds an input voltage
[R;/(R;+R,)]v, to the operational amplifier input. This is quite different
from the feedback networks of the case studies in Chapter 3, in which an input
current proportional to the output voltage was added. We can develop an

*For the type 741 operational amplifier, for example, 7,~160 ns, giving a unity gain (or loss)
frequency of 1 MHz.
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Figure 4.5. Development of the resistive feedback path as an equivalent ladder circuit.

equivalent ladder network for this case. In Fig. 4.5 the feedback network is
replaced as before by a two-port equivalent circuit. In this case, however, we
use the h parameters to describe the feedback network; the h parameters are
defined by

v, =hy i, thp,

The h parameters are given in terms of the resistances R; and R, by

R;R, R,

R;+R R;+R
DE P (4.2-4)

R, 1

~ R,*+R, R,+R,
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The equivalent network is connected to the operational amplifier as in Fig.

4.5b. Just as in Section 3.2, the four two-port parameters correspond to input

loading (h,,), feedback (h,,), direct feedthrough (4,,), and output loading

(h,,). Parameters h,, and h,, affect only the output current of the operational
amplifier; by our assumption (a good one) that the input voltage and current
are not functions of the output current, neither parameter affects circuit

operation and does not appear in the expression for the loss. According to our
assumption that the amplifier input current is zero, A, is similarly absent since
no voltage appears across h,,, so that the only effect of the feedback is to add
voltage generator h,v, in series with the negative input lead. This generator
can equally well be placed in series with the positive input lead, as shown in
Fig. 4.5¢, where it is in series with the forward path amplifier loss generator
7,50,. The circuit in Fig. 4.5¢ can be used to draw an equivalent ladder circuit
for the active filter. Such an analysis serves the function of making specific our
assumptions about the circuit (e.g., that the amplifier input is unaffected by the
output loading or direct feedthrough).

When the output is connected directly to the negative input in the circuit in

Fig. 4.4, n=1, and the resulting circuit is called a unity gain follower. In this

case (4.2-4) gives h,,=h,,=0 and h,,= —h,,= 1. Since both loading terms are
zero, this is an example of lossless feedback. Also, since the feedback network

includes no storage elements (inductances or capacitances) the feedback net-

work is termed nonenergic. These topics will be considered further in Part 2.

Design B Output Stage

As a second example of the use of signal flow graphs and sequential matrices,
we reconsider the output stage of Design B, previously analyzed in Section 3.2.

In that stage the loss of the forward path was not sufficiently small to

completely disable the effects of feedback network loading and direct

feedthrough. We now see how these subsidiary effects of feedback enter the
signal flow graph and sequential matrix.

In Fig. 4.6a we have reproduced the equivalent ladder circuit for the stage

from Fig. 3.4 and immediately below it, the signal flow graph with nodes

corresponding to the signals at circuit nodes in the equivalent ladder. Signal

flow graph node i 5, for examples, comprises three components: G,v,, G,v,,
and — G,v,; all nodes are established in this way. The anticausal sequential
matrix is shown in Fig. 4.6b. Feedback conductance G, appears four times in
the matrix, corresponding to the four roles of G, in the circuit: input loading
¥11» input augmentation or feedback — y,,, direct feedthrough — y,,, and
output loading y,,. Note that the matrix can be written as a sum of the active
path and feedback circuit matrices:

Fin3 yu 0y Cys 0 0 Up3

v =] 0 O O |+ 0 —r, O i (4.2-5)

I3 ya 0 yp 0 0 G, v
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Figure 4.6. Signal flow graph and sequential matrix for the third stage of Design B for the
anticausal formulation.

In the total, only the direct feedthrough element y,, = — G, appears below the
principal diagonal. Even though y,,=y,,, »,; 1s usually unimportant because
the input voltage is much smaller than the output voltage (we see counterexam-
ples in Section 4.4). Hence the resulting matrix is essentially an upper triangular

matrix, a matrix in which all elements below the principal diagonal are zero.

The signal flow graph corresponding to an upper triangular matrix is a cascade

graph. Note that the sequential matrix in Fig. 4.3 is not upper triangular but
that the matrix in Fig. 4.4 is. The matrix on the left in eq. (4.2-5) is the
two-port y matrix discussed in Section 3.2, built out to include signal node i;

the latter is needed to describe the matrix on the right, a diagonal matrix that
gives the loss of the active path.
The graph contains one loop; it can be removed by replacing the branch

from i, to v,; by —r;/(1—G,ry). In Design B this amounted to a 1%
correction or r;. When this is done, the loss i;,;/v, 1s found by adding the
paths:

lin3/Vo= — Gy~ (Gt Go)nlG,1 G) (4.2-6)
1 —nG,
 

as before.
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We can now compare the causal and anticausal formulations of the feedback
problem for this simple (but practical) case. We begin as before with the active

path, but we invert each of the branches, as shown in Fig. 4.7, to give the
output as a function of the input. We then add the four effects of the feedback
to it, as shown in Fig. 4.7. When this is done, we find that we no longer have

source and sink nodes, so that we add new ones, giving the complete signal
flow graph for the circuit. The (causal) sequential matrix is given in Fig. 4.7d;

it has increased to a 5X5 matrix to accommodate the feedback network
elements. The same y-parameter description of the feedback conductance has
now moved below the principal diagonal, where it forces us to solve simulta-
neous equations to account for the effects of y,,, y,,, and y,,. The usually
unimportant y,, is on the principal diagonal, and is incorporated by simple
addition. This matrix can be split into two portions, as in the anticausal case:

v, 0 0 0 0 O 1 0 0 0 0 v,
v, 0O 0 0 0 O 0 R, 0 0 0 i

Iy _|| 2 0 y, 0 0 + 0 0 -—g, 0 0 Up3
1

Vp3 0 0 0 0 O 0 O 0 G 0 Iin

Iin Yz 0 y, 0 1 0 O 0 0 1 i

(4.2-7)
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0 I 0 0 0 0

0 0 R, 0 0 0

iy ~G, 0 — 3, +G, 0 0

Up3 0 0 0 1/C;ss 0

i G, 0 -G, 0 I       
Figure 4.7. Causal formulation of the signal flow graph and sequential matrix for Design B.
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The causal description is at its essence more complex than the anticausal
description, not because the matrix has grown larger, necessarily, but because
the feedback elements make their major contributions below the principal
diagonal of the sequential matrix. Evaluation of the gain from (4.2-7) entails
considerably more work than evaluation of the loss from eq. (4.2-5), although

the results of the two computations must be reciprocals of one another. It
might be argued that with the computer available, the work is easily done in
either case. But we are interested in more than analysis; we wish to retain
control over a design. For this purpose, and for the purpose of understanding,

the simpler description is the more appropriate one.
The anticausal formulation is simpler because the effect of the feedforward

of y,, i1s much smaller than that of the feedback of y,,. With y,,=y,,, the
reason for this disparity resides in the active path itself. The signal level at the
output is much larger than that at the input; hence the signal flow from output
to input is much larger than that from input to output. Furthermore, the direct

feedthrough signal at the output is compared with a large output signal,
whereas the feedback signal at the input is compared with the very small signal

at the active path input. Thus even a modest amount of gain allows us to

ignore the direct feedthrough.

4.3 FEEDBACK DESCRIPTION OF AN ACTIVE RESONATOR

A circuit that combines the two types of feedback shown in Figs. 4.4 and 4.6 is

the bandpass resonator shown in Fig. 4.8.% Negative feedback of the y-parameter

type is connected around the operational amplifier through R, and C,.
Positive feedback of the h parameter type is applied to the positive input lead
of the amplifier through a resistive divider, represented as a dependent voltage

generator, as in Fig. 4.4. The circuit is called a single-amplifier biquad, so called
because with the use of additional resistors (which may or may not be
connected for different applications), it is capable of realizing any rational
function consisting of a ratio of quadratic polynomials’:

2aptasta,s
L(s)=
(s) d0+d1s+d2s2

(4.3-1)

In the form shown in Fig. 4.8, the circuit is a simple resonator with d,, and d,
equal to zero and d,=1. Control of the damping of the numerator is effected

by the positive feedback network consisting of R, and R,, which applies a
portion n of the output voltage to the positive input of the operational
amplifier (opposite to that of the Sallen-Key circuit of Fig. 4.4). Our purpose is

to understand how (1) the circuit functions and (2) to adjust the amount of

positive feedback to minimize variations in the resonant frequency or the Q

value of the resonator in the presence of variations in the passive circuit
elements and the amplifier.®
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Figure 4.8. (a) Single-amplifier Biquad active resonator circuit; (b) signal flow graph for
y-parameter feedback portion of circuit giving Ly; (c¢) signal flow graph for 4-parameter feedback

and amplifier portion giving Ln and La.

Analysis by Separation

Analysis of the circuit is easily done by treating the y- and h-parameter

feedback networks separately and superimposing their effects. A signal flow

graph for the y feedback is shown in Fig. 4.8b; in this graph we assume the

positive feedback to be zero and the amplifier to be ideal (7,=0), so that the

signal at node v; is zero. The graph transmission is the portion of the circuit
loss attributable to the y feedback and can be written by inspection:

 I Rp CpL(s)= [RACAS + R, (1+ C. ) +RBCBS] (4.3-2)



Feedback Description of an Active Resonator 137

A signal flow graph for evaluating the h-feedback loss is shown in Fig. 4.8¢
and is drawn assuming the y feedback to be absent (e.g., by activating the nv,
node, but assuming the signal at v, itself to be zero). In this graph both the
positive feedback and the amplifier loss voltages appear in series. Since we are

interested in the separate contributions of the amplifier loss and the positive
feedback, we write equations for their losses separately, again by inspection:

 _ 1 Rp CpLh(s)_n[RACAS + R, (1+ C, )+1+RBCBs] (4.3-3)

and for the amplifier

 —__ 1 fl Cp 2L,(s)= 71( R.C, +) R, (l+ C, )+1(s+RBCBs ) (4.3-4)

The loss of the circuit including the two types of feedback loss and the
amplifier loss is given by

L(s)=L,(s)+L,(s)+L,(s) (4.3-5)

As usually designed, L(s) provides a resonance with low Q, perhaps from 1 to
4 (a damping of 0.5 to 0.125). At resonance L, and L, are both real since the
first and third terms of (4.3-2) cancel, as do those of (4.3-3). The two losses are

of opposite sign, however, so the damping reduced, or the Q value is increased.
The combined effect at resonance (s=jw,) of L(s) and L,(s) is to reduce the

loss compared with that of each of them separately. Furthermore, |L,(jwo)|>
|L,(jw,)| for the circuit to be stable; the negative feedback is of larger
magnitude than the positive feedback. Note that at resonance L,(jw,) is
purely imaginary because of the assumed form of the amplifier loss —j7,w. In

addition, the loss of the combined feedback networks should be much larger

than the amplifier loss if the amplifier variations are not to affect circuit
operation appreciably.

Resonator Description

These considerations are all expressed in the Bode diagram in Fig. 4.9 for a
“good” resonator design. The three component losses are shown separately, as

well as the combined feedback loss, and are drawn with straight-line (asymp-

totic) approximations except near resonance. Four frequencies are defined in

the Bode diagram in Fig. 4.9 with respect to the unity loss line: from eq. (4.3-2)

we obtain

1

- R,

 (4.3-6)Wy
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Figure 4.9. Bode diagram showing separate loss components of the active resonator.

and

wp=L (4.3-7)
Z RyCg

The resonant frequency is the geometric mean:

1
Wy=— (4.3-8)

VR4C4R 5Ch

Finally, the amplifier loss becomes dominant above the crossover frequency:

 W= ~— (4.3-9)

so that the crossover frequency is about at the unity loss frequency of the
amplifier. In a good design, as we see later, n<1 for this circuit.

At this point we introduce the mathematical simplification that C, = Cy. It
is easily shown that from eq. (4.3-2) the damping is minimized for L, when this
is the case, but it is not as easily shown that the sensitivities are thereby
minimized. Since the development is clarified by the assumption we adoptit.
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At resonance, five loss parameters are defined in the Bode diagram in Fig.
4.9, all of which are used presently. They are, in order of decreasing magni-

tude, L, L, L, Lg, and L, L, is the loss at which the asymptotes of L,

intersect. This is the point from which we measure the circuit Q values; from
purely geometrical considerations we obtain

L=—,/-% (4.3-10)*

L=—-2-% (4.3-11)

From (4.3-3) the positive feedback of the 4 network at resonance is

R
Lhzn(1+2—3):n (4.3-12)

RA

Loss Ly is the total feedback loss, the sum of L, and L,:

RB

Note that L, is negative and L, is positive, so that L, is smaller than either, as

shown in Fig. 4.9. This is the mechanism by which Q is increased through the
positive feedback. Finally, from (4.3-4) the amplifier loss at resonance is

. Rp .
L,=—jmw, l+2R— =~ —jT,0, (4.3-13)

A

For the case where the loss i1s feedback controlled (so that the amplifier does
not affect circuit operation greatly), we also have the approximation that the

loss L of the circuit at resonance is close to Lg.

We can now define Q (the nominal Q of the whole circuit) and Q, (the Q

associated with L) in terms of the loss parameters. Thus from (4.3-10) and

(4.3-11) we obtain

Yy

[

B (4.3-15)

*The sign of L, is taken as negative to agree with L. For stable operation, the complete circuit

includes a phase reversal:
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and with (4.3-12),

1 L+L, L+L,L
—== 4.3-16
Q (1—-n)L, L, L, ( )

Also, the change in Q is given by

1 1 L,
—= 4.3-17070, L (4317

For a strictly mathematical development, it is unnecessary to introduce these
expressions for Q, butit is intuitively useful to do so.

Sensitivities

We can now direct the sensitivities of loss to each of the three components of
loss by direct application of the sum rule. The sensitivity of loss to L, from
(4.3-15) and (4.3-16)is

L, LJ/L, 9
 

 

SE= ~— e~ 4.3-18
Ly L+L,+L, Lg/L, Q, ( )

and that to L, from (4.3-17) 1s

SL = L, :Lh/le_l/Q_l/Qo
b L+L,+L, Lg/L, 1/Q

SE= 2.2 4.3-19
b Qo Qo ( )

The magnitudes of the sensitivities of loss to each of the feedback components

at resonance is thus given by the vertical distance between the indicated loss
parameters in the Bode diagram. The sensitivity to the amplifier loss is given

by

L L '
SL,,:—a~a4 _J__T_'oiQ_Q_ (4'3_20)

L_V+Lh+LapLB ‘/RB/RA

From (4.3-15) this becomes

Sli,zszQoleo

and is found by adding (and subtracting) the appropriate vertical intervals

along the ordinate at w,.
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Effect of Amplifier Variations

The deviation of the loss due to variations in 7, is given by

0,=0,S)S} (4.3-21)

in which o, is the standard deviation of 7,; the magnitude of the sensitivity of
L, to 7, is unity, so we can write

for the standard deviation of loss due to amplifier variations.

The sensitivity expressions developed in the preceding paragraphs also can
be used to determine the variation of loss that results from variation in the

passive elements, as shown in Chapter 3. To shorten the story, we ignore

variations in the capacitors; it can be shown that if their variation is of the

same order as that of the resistors, their contribution to the loss variation is

small; the details can be found in Fleischer®. At resonance, it should noted

that variation in the capacitors varies the resonant frequency as well as the real

part of the loss. Here, as in Chapter 3, we are interested in the magnitude of the

loss variation, |AL/L|; its real part represents the change in magnitude of L
and its imaginary part, the phase. The change in resonant frequency can be
found from the latter at resonance by the standard relationship between the
phase and frequency of a tuned circuit at resonance:

Aw 0
~20 (4.3-23)

where @ is the phase shift in radians corresponding to the imaginary part of
AL/L. By finding the magnitude of AL/L, we are simply finding an upper
bound on the change in the real and imaginary parts of the loss variation.

Where the Q change or the resonant frequency change is individually of special
interest, a two-dimensional analysis should be used.

Effect of Passive Component Variations

To find the sensitivities of L to the passive components, we use relation 9 from

Table 1.1, which can be written (e.g., taking sensitivity of loss to R g)

Sk,=SSk, SL,Sr4+S{.Sk (4.3-24)

At resonance, from (4.3-18) and (4.3-19),

Sk= 5. (Sk—sk)
The third term in (4.3-24) is negligible according to our assumption that the
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network is feedback dominated. From (4.3-2), we obtain

Sg:= (4.3-25)

and from (4.3-3) or (4.3-12), and applying the sum rule,

2Rz/R
Lh:—B4 -Sg* TT2R,/R, (4.3-26)

If we use (4.3-3), we must remember that at resonance the dc and quadratic

terms cancel. From (4.3-10) and (4.3-15), this expression can be written

 1
Ski= 4.3-27
ke 202+1 ( )

where L, is set by the ratio of R, and R, and is insensitive to the values of R,
and R, so that the sensitivity of L to Ry is set by the L, contribution. We
ignore this term relative to unity, giving

SfiBz—QQ—O (4.3-28)

Since Ry and R, always appear as a ratio, the sensitivity of L to R, is

—Q/Q,- A similar argument gives the magnitude of sensitivity of loss to R,
and R, also as about Q/Q,,.

Physically, the chief determining element of L, at resonance is the ratio

Rg/R,, and that of L, is n; the positive feedback increases the sensitivities of
loss to each of the four circuit resistors by the factor Q/Q, by the sum rule in
which the sum is the small difference between relatively large quantities. Hence

the sensitivities to the passive elements are increased by the positive feedback
by the factor Q/Q,.

The optimization procedure can be interpreted in another way. On the log

plot in Fig. 4.9 vertical linear distances represent ratios of losses. The distance
between the L, curve and the Lg curve represents an increase in sensitivity of
loss to the components that make up L, (e.g., R, and Rp). The vertical

distance between L, and L,, on the other hand, represents the decrease in

sensitivity of the circuit loss Ly to the amplifier time constant. The effect of

amplifier time constant variations, which are large, is reduced by the factor

L,/Lg, whereas the effect of R, and Rjp variations, which are small, is
increased by the factor L,/Lg. An optimum is found where the two contribu-
tions to the variation are equal. (It is true that the amplifier variations tend to

change the resonant frequency and the component changes tend to change the

Q, but we have chosen to take the magnitude of the variation as our error

measure.)
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The total variation of loss from the resistors is found by adding the
individual variations on a root sum of squares (rss) basis so thatif the standard

deviation of each of the resistors is o, the total variation is V46,=20,. We
take 20, as the composite standard deviation of the passive elements; for a
more detailed summary of the variations from the passive elements, see

Fleischer®. The deviation from passive element variations can thus be written

approximately as

oLB=2oRQ20 (4.3-29)

Optimization of the Resonator

The total deviation of the closed-circuit loss 1s found by adding (4.3-22) and
(4.3-29) on an rss basis:

2 2 2oL—oLd+oLB

so that

0 2

0} =(20,00,7,w, )2+ (ZUR—Q—O) (4.3-30)

To minimize this expression, we choose Q, to make the two contributors

equal, so that

2

( L) _ 94719

Qo ORr

Then, from (4.3-15), the optimum ratio of resistors is

Rp _ oami (4.3-31)B
R, 4op

Note that the optimum ratio of R;/R, does not depend on the required circuit

Q; the effect of the amplifier deviations is reduced and the effect of the passive

elements is increased by the same factor as the positive feedback is increased.

The variation of the loss, however, is directly proportional to Q. For the

optimum ratio of Rgz/R ,, the closed circuit variation is given by (4.3-30) as

0, =20Qy20z0,T,0, (4.3-32)

The loss variation includes both variation of flat loss and Q variation, and in

equal amounts if the variations due to passive elements and the amplifier add
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in phase (in general, they do not, but we are content here to ignore the phase

information, obtaining an upper bound on the variation of either the loss or
the resonant frequency variation.) The factor of 2 can be seen from the Bode

diagram, in which both L, and 1/Q, are proportional to yRz/R,. Loss L, is
proportional to the flat loss variation and 1 /Q,, to the Q variation, so that an
upper bound on the Q variation is given by

0p=0Vy20z0,7 0, (4.3-33)

An upper bound on the variation of the resonant frequency is given through
(4.3-23) by

0,,=V20R0,TW, (4.3-34)

which is invariant with circuit Q.

Program “OPTRES” in Appendix B calculates the circuit values and devia-
tions for this circuit for given values of the standard deviations of the amplifier
time constant, the impediance level, the amplifier time constant, the required
Q, and the resonant frequency. For a 741-type amplifier with 7,=0.158 103
ms, typical values of 6,=0.15, 0,=0.0012, 9 =20, and w,=2= krad/s (2kHz),
the optimum design is that plotted in the Bode diagram in Fig. 4.9. The
standard deviation of loss is 3.4%, the Q variation 1.7%, and the percent

variation of the resonant frequency, 0.085%. The latter two figures are an

upper bound, assuming in each case that all the variation is concentrated in it.

Frequency Compensation

Performance variations of the active resonator are proportional to /7@, , the

magnitude of the amplifier loss at the resonant frequency. This loss can be

decreased by the use of Tfrequency compensation, as shown in Fig. 4.10a.

As we see in Chapter 5 (Fig. 5.3), amplifier loss in voice frequency opera-
tional amplifiers is usually controlled by an internal feedback capacitance. This

controls the amplifier response to give a loss magnitude proportional to

frequency. By substituting the 7 network in Fig. 4.10a for the capacitor, we

obtain a double integration over a limited frequency range. In the Bode

diagram for the amplifier loss in Fig. 4.10b the loss 7,5 has been replaced by

2
I ’7']’7'2S _

in effect providing a double integration below a frequency of 1/7,, as shown.

This frequency is chosen to be much lower than w. (to affect the phase of

L(jw-) as little as possible at crossover) but higher than the resonant

frequency of the resonator. At resonance the denominator magnitude of

(4.3-35) is roughly unity, and the numerator is reduced by the factor 7,w,, in
effect giving more distance on the Bode diagram between Lg(jw,) and
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Figure 4.10. Effect of T frequency compensation in the operational amplifier.

L,(jwy). Such an arrangement considerably enhances the Q that can be

achieved at high audio frequencies for a given maximum deviation. In practice,

the advantage of frequency compensation is somewhat less than indicated

because the amplifier variation increases. As we see in Chapter 5, the loss j7,w

of the simply compensated operational amplifier is achieved by internal
feedback; when this is removed, as by eq. (4.3-35), internal amplifier variations

are swamped out less.

The main theme of this section has been that we can separate a circuit such

as the resonator into loss components corresponding to the different feedback

paths, analyze them separately with individual signal flow graphs and loss
equations, and analyze the result simply by adding the components. The

sensitivities all have a direct physical interpretation, made explicit on the Bode

diagram of the three components of loss.



146 Signal Flow Graphs of Polynomials, Rational Functions, and Circuits

4.4 SIGNAL FLOW GRAPH REPRESENTATION OF RATIONAL FUNCTIONS

In one sense the design of a feedback system may be regarded as a means for
bringing the coefficients of the circuit polynomial into 1:1 correspondence
with a performance polynomial, such as one of those described in Section 2.6.
Since we have the means to express the circuit loss as a signal flow graph (or its

associated sequential matrix), it is intuitively helpful to put the performance
polynomial into this form as well. This topological interpretation of polynomi-
als will move us closer to a solution of the problem of selecting a circuit
configuration for a proposed feedback system. There are several forms in
which polynomials may be represented as signal flow graphs; some useful ones
for a cubic polynomial are given in this section. The source node for the graph
is shown on the right (to correspond with the system output) and is set equal to
unity; the input is then the loss polynomial, represented by the “signal” at the
sink node of the graph.
The polynomial as a sum of powers of s (Fig. 4.11a) is represented as a

graph with only a source and sink node; one branch is drawn for each term. In
this form each branch represents a path product for an individual polynomial
coefficient. By dividing an individual path product by the total L(s), we obtain
the sensitivity of the loss to the coefficient of that path as we saw in Section
2.6. Each of these paths may be broken down further into sums of products of

component values, as shown in Fig. 4.115 for the cubic path, from which we
may obtain the component sensitivities. Where the path consists of a single

product, the sensitivities of the coefficient to the components of the path are all
unity. Where there exist parallel paths, the sensitivities are obtained by the sum

rule. The graph in Fig. 4.11a may be considered to contain six branches with
values proportional to s, counting an s’ branch as having i s-branches in
tandem. The six branches are redundant: only three s branches are required for

a cubic polynomial. Two of several possible graphs using the minimum number
are given in Fig. 4.12.

k3$

Figure 4.11. Signal flow graph for a poly-
ks kys nomial expressed as a sum of powers of s. An

kas example of factors of the cubic term is shown
L(s) 1 in b. Component sensitivities are: Sg? = Sg?

=1 SE=K;3/(K;+ K,): Sgi= Ky /(K3 +
(b) K,).
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Figure 4.12. Signal flow graphs and sequential matrices of polynomials in nested form

The graph in Fig. 4.12a corresponds to writing the polynomial in nested

form:

L(s)=ay+s(a,+s(a,+say)) (4.4-1)

The sequential matrix corresponding to the graph is upper triangular. An

alternative representation is given in Fig. 4.12b. In each case the a, branch

represents “overall feedback”—feedback over the entire graph from source to

sink, and the a, branch represents “local feedback” over a single s branch.

Other feedback branches represent intermediate cases; in general, the distance

of an element in the matrix from the principal diagonal is a measure of the

comprehensiveness of the feedback it supplies.

The polynomial can also be represented in factored form, as shown in Fig.
4.13 for the cubic. Where the polynomial is of odd degree, at least one root

must be real, giving the parallel branches s and a in Fig. 4.13. Complex roots
occur in pairs and can be represented as shown. The resulting matrix includes
elements only along the principal diagonal and along the diagonal immediately

above it. Since any polynomial can be uniquely represented by its factors, it
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Figure 4.13. Signal flow graphs and sequential matrices of polynomials in factored form.

may be represented in this form, with all matrix elements real. Where all roots
are real, the matrix consists only of elements along the principal diagonal. This

special case is depicted in Fig. 4.135b.

What prevents us from realizing the polynomials of Fig. 4.12 directly, using

a single active device for each place where s is called for, and a feedback path

(e.g., passive conductance) wherever a coefficient is called for? The answeris

that the feedback elements give components of loss that are of the wrong sign.

Using a feedback conductance in the case study designs of Chapter 3, for

example, created an input current of —Gv,, not Grv,. Feedback over a single

stage works because the active element also includes a phase reversal. This is

not a coincidence—it is a natural outcome since the single-stage characteristics

also arose from passive feedback (e.g., the common lead r in the device in Fig.

2.1). It is also workable for feedback over three stages, or any odd number of

stages, but when we come to feedback over two stages, the paradigm breaks

down, and we have positive feedback. That is why we needed a capacitor Cr in

the amplifier designs of Chapter 3.

In Chapter 2 we also represented polynomials in s by their magnitude and

phase for s=jw to plot Bode and Nyquist diagrams. Signal flow graphs for the
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Figure 4.14. Signal flow graph for the evaluation of a polynomial for s = jw (in nested form).

cubic in this form are shown in Fig. 4.14. The point here is that a signal flow

graph can be drawn for any of the several ways of expressing polynomials that
were discussed in Chapter 2. The signal flow graph is a way of representing
algebraic relationships graphically. Whether equations, matrices, or flow graphs
are used is a matter of personal preference; it is useful to be familiar with more

than one method to give us the means for checking our results in difficult or
(temporarily) confusing situations.

Signal Flow Graphs of Ratios of Polynomials

Rational functions or ratios of polynomials can also be represented by signal
flow graphs or matrices. Where a denominator polynomial is present, the
associated signal flow graph will contain loops—that is, will not be a cascade
graph. The signal flow graph and sequential matrix for a ratio of two cubic
polynomials are shown in Fig. 4.15. The denominatoris found as the sum of all
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Figure 4.15. Signal flow graph and sequential matrix for a rational function.
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loop gains subtracted from unity for this case in which all feedback loops
“touch”—that is, have at least one node in common. The graph gain is given

by

2 3apta;sta,s tass

g e 2 31—d;s—d,s"—d;s
 L(s)= (4.42)

As before, loops in the graph give entries in the sequential matrix below the
principal diagonal. For an anticausal sequential matrix, such entries do not
affect the characteristic equation of the system, so that stability of the system,
for example, is not affected. It should not be inferred that denominators never

affect stability, however. Where the direct feedthrough loop does not touch a
feedback branch as in the signal flow graph in Fig. 4.6a, for instance, the
feedback branch stands alone when added to the forward-path loss, with the
latter including a denominator. Therefore, the feedback branch must be
multiplied by the denominator to put the whole expression over a common
denominator, as in eq. (4.2-6).

In low-pass systems containing no denominator of loss, or where the
departure of the denominator from unity is incidental, we have seen that we
can eliminate loop gains from the system description by suitable choice of
independent signal variables in the circuit. Can this also be done for systems
that have nonunity denominators? As we have seen, such systems are char-
acterized by having a feedforward path, or a direct feedthrough path. If we

select some internal node as the independent variable, loop gains can indeed be
eliminated in the general case, as we shall show. Let the system loss be defined
by the ratio of two polynomials:

col) _2) (44
 

We can then write

eg(s) _ v,(5) 2

N(s) D(s)
  v,(s) (4.4-4)

where v,(s) represents the internal signal node we seek, at least within a

constant factor [since we do not have information on the separate constant

factors that might multiply N(s) and D(s) independently]. Whereas v, is

depicted here as a signal voltage, it might be a current or other signal variable
in mechanical systems, for example. We can then write

ec=N(s)v, (4.4-5)

and

v,=D(s)v, (4.4-6)
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Figure 4.16. Cascade signal flow graphs for an

(b) all-pass rational function.

By this step we have divided the system into two: the first equation is the
anticausal representation of the feedback portion of the system, and the second

is the causal representation of the feedforward portion. Since both portions are
defined in terms of polynomials, loop gains have been eliminated from both;

each of the two equations is representable by a cascade signal flow graph or an
upper triangular sequential matrix. The numerator and the denominator can
then be considered separately, although in a design, the two portions will have
common components, such as integrators. A signal flow graph for the two

equationsis given in Fig. 4.16a.

All-Pass Network

As an example of the use of this technique in the design of a circuit, suppose

that we wish to realize a simple all-pass network (so called because the

magnitude of the loss is uniform over the entire frequency range):

 _1+0.5s _ N(s)
L($)=1=055 ~ D(s) (4.4-7)

Then we have

e.=(1+0.5s5)v, (4.4-8)

and

v,=(1—0.5s)v, (4.4-9)
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Figure 4.17. A circuitrealizaticn.

A signal flow graph for these two equations is given in Fig. 4.16b, in which we
have chosen to give the 0.5s branch a negative sign for ease of realization since
simple integrators usually include a phase reversal. A circuit that realizes the
desired function is shown in Fig. 4.17a and its signal flow graph, in Fig. 4.17b.

The latter differs from the signal flow graph in Fig. 4.16b because the summing

node current of the integrator is not directly observable; we must pass it

through the input resistor to convert it to a voltage. we then pass the entire
input voltage to the feedforward summing node 2, including the constant term.
By making G,=2, the input constant term is canceled and one of opposite

polarity substituted, giving

ec=—(1+0.55)v, (4.4-10)

and

0,=140.55—2=—(1—0.55)o0, (4.4-11)

as required. We have identified the internal node v, within the constant factor
of — 1.
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Loudspeaker Equalizer

As a second example of extending the synthesis procedure to include poles of
loss, we consider an equalizer to extend the bass response of a closed-box
loudspeaker. It is well known that a loudspeaker mounted in a sealed enclosure
exhibits a quadratic cutoff, such as shown in Fig. 4.18a. The cutoff is
characterized by its mechanical resonant frequency established by the mass of
the cone and the net compliance of the cone suspension and the air in the

enclosure. The Q of the resonance—or the damping (1/2Q)—1is affected by
the degree of coupling to the source and by the source impedance. (The

damping rises roughly with the size of the magnet and the reciprocal of
the source impedance.) The resonant frequency varies with the reciprocal of
the volume of the sealed box. The resonant frequency can be lowered by
increasing the mass of the cone. Since the low-frequency response falls off at
12 dB per octave, however, each octave of response obtained in this way
reduces the efficiency and increases the power required for a given sound level
by about 16 times. Thus electronic equalization is attractive. The equalizer
cancels the mechanical resonance of the loudspeaker and substitutes an electri-
cal resonance at a lower frequency. The required equalizer loss is shown in Fig.
4.18b.

Taking w, and w,, as the respective electrical and mechanical resonant
frequencies and Q, and Q,, the respective values of Q, we can write the loss of

the equalizer as

1+(1/Q,.)(s/w,)+(s/w,)’
(@0n/@)’ +(1/Q N ©p/00,)s/0+ (5/00,)°
 L(s)= (4.4-12)

where we have scaled the denominator to be equal to the numerator at high
frequencies. If we take the speaker resonance to be 0.1 kHz and the equalizer
resonance to be 0.040 kHz, for example, and assume that the Q of both

resonances are unity, the equalizer required is

+ 2L(s)= L Hast16s
= (4.4-13)
6.25+10s+ 1652

with s expressed in kilorads per second. (With resistances in kilohms, capaci-

tances will be in microfarads.) The numerator of this expression is recognized
as the loss of an active filter discussed in Section 4.2, the Sallen-Key circuit
with n=1. From eq. (4.2-1), there are four circuit elements to realize a, and a,;

they are R|, R,, C,, and C,. Choosing R, =R,=100 k{2, we can find C, and
G, from (4.2-1) with n=1:

e

U—G:1+(R1+R2)C2s+R]R2C1C2s2 (4.4-14)
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Thus from the middle term we have C,=4/200=0.02 pF and from the
quadratic term, C, =16/[(0.02)(100)?]=0.08 uF. This realizes the numerator of

(4.4-13):

e;=(1+4s+16s52%)v, (4.4-15)

with v, the output voltage of the operational amplifier.
To realize the denominator, we use feedforward from the input, summing it

with the signal from the output of the filter in a second operational amplifier,
as shown in Fig. 4.18c. A signal flow graph is shown in Fig. 4.184. With this
arrangement, we can write for v,:

v,= —[(14+45+165%)GrrR -+ GyRz+ CyR 5] v,

={(1+GyRp)+(4+CyR[)s+16GxRS?} v, (4.4-16)

But this is to be equal to the denominator in (4.3-13), so we can set the terms

in powers of s equal individually. Setting the quadratic terms equal, we obtain
GrrR=1 and setting the dc terms equal, GyR =5.25. If we let R=100 k{2,
then Gp-=0.01 mS and G,=0.0525 mS (19.0 k). Finally, we adjust the
damping to match that of the loudspeaker by making 4+ C,R =10, or

C,=0.06 uF, thus completing the design.
The key idea involved here is the change from feedback to feedforward. The

value Gis a feedforward conductance only because the voltage at its right
side is virtually zero and the voltage at its left side is the nonzero e,. What

little signal current fed back to the input through Gis short-circuited by the
source. This same source, however, does feed signal current to the input

summing node of the second amplifier, where it affects the output. Signal
levels, then, determine the role—feedback or feedforward—that a conductance

will play when it is connected from one point on a cascaded network to

another.

Here we can only touch on the fascinating subject of active filter design.
Fortunately, there are several sources available on this subject. Moshytz’ has

characterized and typed the various possible active filter circuits, including
detailed analysis. The main point is that cascade signal flow graphs for a

proposed system can help us to formulate a system or circuit configuration to

realize it.

In certain important cases it is impossible to secure the favorable ratio of

signal levels that we have enjoyed here. Where feedforward is to be applied
directly to the output of a power amplifier, such as for purposes of distortion

reduction,® the output signal is unavoidably high, leading to a significant

amount of incidental feedback unless steps are taken to eliminate it. In such

cases directional couplers—unidirectional coupling devices—are employed to

eliminate or reduce the feedback.’
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4.5 WHAT IS FEEDBACK? WHAT IS LOOP GAIN?

The arbitrary nature of models of feedback systems has been recognized for

decades. Mason and Zimmermann put it most succinctly in 1960':

A feedback loop is a closed chain of dependency, a closed path of signal
flow in a system diagram [italics added]. Since the relationships among the
signals in a given physical system may be represented as any one of the
numberof different system diagrams, some containing feedback loops and
some not, it can be argued that the presence or absence of “feedback” in
the “system” is more a matter of viewpoint that of physical reality.
Nevertheless, many physical systems are, by the very philosophy of their
design, strongly associated with diagrams containing loops, and in such
cases, we find it comfortable to speak of the physical arrangementitself as
a feedback system.

9 ¢The key words here are “physical reality,” “very philosophy of design,” and
“comfortable.” Feedback begins to emerge as a teleological concept—having
to do with the purposes of the designer, and not with the physical system itself.
It attaches itself to the philosophy of design for the comfort of the designer.
Note, however, the association of “feedback” and “loop” in the quote. In this

section we intend to break this association.

In these pages methods for analyzing and designing feedback systems have

been developed that eliminate loop gains from the system description. Feed-

back itself has not been eliminated from the system: feedback is defined'' as

“the returning of a portion of the output (of a system or a portion thereof) to the

input.” That aspect of feedback is retained in this book. What has been shown,

however, is that there is a systematic way to reduce or eliminate the closed
chain of dependencies that make thinking about feedback systems difficult.
One key connection is broken, namely, the previously assumed equivalence of
“feedback™ and “loop gain.” By so doing, the analysis and design of feedback
systems is made more transparent and direct. By use of anticausal analysis,
feedback is taken as a returning of a portion of the output to the input, where

it augments or swamps out the forward path input signal that was required to

produce that output. Once that key connection—between feedback and loop
gain—is broken, the “comfort” of the designer is enhanced by the relative ease

of the mathematics of addition as opposed to division.

We value models for their simplicity as well as their accuracy. Ptolemy’s

heliocentric model of the solar system, for example, gave results as accurate (at

the time) as the Copernican geocentric one, but the latter was simpler and
eventually prevailed. The changeover involved a conceptual leap from the

geocentric to the heliocentric view, a leap that involved redefining “earth” as
something that might actually move. As Thomas Kuhn relates'?:

Consider... the men who called Copernicus mad because he proclaimed

that the earth moved. They were not just wrong or quite wrong. Part of
what they mean by “earth” was fixed position. Their earth, at least, could
not be moved. Correspondingly, Copernicus’ innovation was not simply to



What is Feedback? Whatis Loop Gain? 157

move the earth. Rather, it was a whole new way of regarding the problems
of physics and astronomy, one that necessarily changed the meaning of
both “earth” and “motion.” Without those changes the concept of a
moving earth was mad.

Kuhn calls such changes of the terms in which a problem is seen as a
“paradigm shift” and discusses the difficulty of communication across the
divide between the two competing paradigms. The parallel to our subject is
direct. If what one means by “feedback” is loop gain, to say that feedback
exists without loop gain is mad. To get a clear picture of what is meant by

“anticausal analysis,” it is essential to distinquish between these two concepts

of feedback and loop gain. Loop gain is defined precisely for any given
description of a physical situation. Feedback, on the other hand,is a higher-level

concept that is difficult to define precisely in any given situation but that is
useful nonetheless.
The conceptual leap needed in anticausal analysis is involved with our

notions of causality and cannot be dismissed lightly. No departure from the

principle of causality is involved; the analysis of the active path, in proceeding
from output to input, is done in a direction from effect to cause and hence is
termed anticausal. The active path itself is, of course, a causal structure. As we

have seen, however, many of the effects in active devices such as emitter

resistance in transistors can be viewed as feedback; what does constitute a

cause-and-effect relationship? We take a closer look at this question in Chapter
7, but for present purposes, we can say that there is a transport phenomenon,
complete with delay and dispersion, involved in every active device. In the
transistor it does not involve the emitter resistance, which is a feedback

element in the dictionary sense of returning a portion of the output (current) to
the input (as a voltage). The transport of charge carriers defines cause and

effect in the transistor.
To sharpen the distinction between feedback and loop gain, consider the two

descriptions of a source connected to a load in Fig. 4.19. A Thevenin source
e, R1s connected to a load conductance G,. There is no feedback here—no
returning of the output to the input—except under a strained definition. There
is loop gain, however, as seen in the flow graph, equal to R;G,. With a
high-resistance source (relative to 1/G,), the loop gain is large. Figure 4.19

also shows a Norton source i;, G; connected to a load resistance. Here, the
loop gain is G;R,. If the two descriptions are of the same circuit, the loop

gains are reciprocals of one another—if one is 10, the other is 0.1. The

anticausal representation of either source, on the other hand, gives no loop

gain, as seen in the signal flow graphs.

Suppose that the source resistance is high. Then we know that the Norton

representation 1s in some sense more appropriate than the Thevenin representa-

tion—we can pretty much ignore the source conductance in finding the load

voltage or current. This forms a basis for rating models on a criterion of

appropriateness: one model of a system is more appropriate than anotherifit

involves less loop gain. Thus two representations of the same circuit—with no
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Figure 4.19. Three signal flow graphs and models of a source connected to a load with varying

amounts of loop gains from 10 to zero.

feedback—yield two different values of loop gain in the causal description; the
one with the smaller loop gain is the more appropriate. But in the anticausal

description, neither representation has any loop gain; both are equally ap-
propriate.

The break between “feedback™ and “loop gain”is clear under the anticausal

formulation of the feedback problem. As we have seen, loop gains (usually

small or incidental) arise in anticausal analysis, but they are not connected

with the feedback aspects of the problem; rather, they involve feedforward.
The problem of defining the feedback network and the forward path network
is not a central concern if the concept of loop gain is not needed.

Consider the transistor stage with feedback shown in Fig. 4.20; here, the
feedback network is simply the conductance G connected from collector to
base. But the transistor includes (internally) a collector junction capacitance
that can be shown separately from the transistor, as in Fig. 4.20b. Are we

justified in assigning this capacitance to the forward path, when its circuit

function and topological position are similar to those of the feedback network?

Tradition, starting with Bode,'?® has it that the collector capacitance belongs
with the feedback path. On the other hand, the capacitance is nonlinear with
voltage; thus if feedback is applied to reduce distortion, it should be consid-
ered part of the forward path. The question is moot for the anticausal
formulation because the loss is simply the sum of the three contributions (the

active path without the capacitance, the capacitance, and the feedback conduc-
tance). Sensitivity analysis replaces considerations of loop transmission and

return difference, and the latter concepts are no longer needed.

Now that we have demonstrated the existence of loop gain without feedback,

and feedback without loop gain, the break between these concepts is on a firm

logical foundation.
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(b ) and forward paths in a simple structure.

PROBLEMS

1

2

3

Write an expression for the sensitivity of the loss of the low-pass filter in
Fig. 4.4 to the unity loss time constant of the operational amplifier used.

(Use the sum rule.)

The single-amplifier biquad (SAB) is a type of active filter that realizes

transfer functions that consist of a ratio of quadratic functions. The loss
of an SAB is given by

eg  agta;sta,s?

v, 1+d;s+d,s?

In Fig. 4.21 two such SABs are shown; in Fig. 4.21a the loss is low pass,
with d,=d,=0, and in Fig. 4215 the loss is bandpass, with d,=d,=0.
Draw signal flow graphs and write the sequential matrices for each of

these circuits. (Note that the voltage divider is returned to the positive
input of the amplifier, unlike the Sallen-Key circuit in Fig. 4.4.)

Show that the polynomial whose sequential matrix is

s=k, 0 0 0 0 O
0 s—k, 0 0 0 0
0 0 s b 0 0
0 0 0 s—ky 0 0
0 0O 0 0 s b
0 0 0 0 0 s—k,

is stable if and only if all £, are negative.
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Figure 4.21.

4 Write the causal and anticausal sequential matrices for the feedforward

and feedback portions of the circuit in Fig. 4.17c. Compare these with

the causal and anticausal sequential matrices of the circuit taken as a

whole.

5 Design an active filter section that has the transfer function

 14s+s?

1+0.5s2
L(s)
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Chapter S
 

Signal Delay
in Feedback Systems

Delay plays a central role in feedback systems. When the gain is turned up too
far in a public address system, some of the loudspeaker output finds its way to

the microphone, and the system oscillates at one or more of the natural

frequencies of the system, including the modes of vibration of the room, the

loudspeaker, and the microphone element. Acoustical delay between the

loudspeaker and the microphone make control of the phase shift impossible,

and the phase shift itself may be many thousands of degrees. The solution, of

course, is to increase the loss of the feedback path by directing the loudspeaker

energy away from the microphone and finally, to turn down the gain. In this

example feedback is an undesirable side effect in the effort to make an orator

audible. Similar problems attend the design of systems and circuits that include

feedback to improve performance.

Feedback and feedforward both involve the addition of signals at a circuit

node. We have treated the addition by use of dependent generators in an

equivalent ladder circuit. Wherever addition of signals occurs, the possibility of
signal cancellation—somewhere on the finite s plane—arises. Where feedback

is involved, such cancellation causes the loss to go to zero at points on the s

plane at which the cancellation occurs, thus leading to the possibility of

162
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instability. With feedforward, on the other hand, such cancellation causes the

gain to fall to zero: no instability is thereby created. Thus, in feedback systems,
a fundamental limit on the amount of delay is imposed by stability considera-

tions. No such fundamental limit exists for feedforward systems, where large
delays can be used, for example, to bring a set of signals into synchronism

after time-consuming signal processing has produced results at different times
with an unwanted time variation.

5.1 FEEDBACK AROUND A PURE DELAY

In the time domain a signal f(¢) may be delayed asit travels along a path, so

that its delayed version is f(¢t—7,), where 7, 1s the amount of delay. This delay
may be represented in the frequency domain by the shifting theorem; the
Laplace transform of the delayed signal is

C{f(t—7;)}=e ™F(s) (5.1-1)

where F(s) is the Laplace transform of f(¢). If we set s=jw, we see that the

effect of the delay is to add an amount of phase e ~/™“ to the phase of F( jw),
an amount of phase that increases linearly with frequency.

If we place feedback around an active forward path consisting of a pure
delay as shown in Fig. 5.1a, we can representits loss as

L(s)=b+ae™ (5.1-2)

Roots of the characteristic equation L(s)=0 are found by taking the loga-

rithm:

s=—ln(—2)ijgfl, §<0, n=0,1,2,...

. n=1,23,... (5.1-3)
2n—1

s:lln(g)ij—————(n)W b,  —>0T, T, a

In either case the roots lie in the right half plane for |b/a|>1, so that for
stability, the loss of the active path must exceed the loss of the feedback path.

The Nyquist diagram in Fig. 5.1b shows the separate terms of the sum of eq.
(5.1-2); b is a fixed phasor, whereas the exponential multiplying a rotates its

phase in a counterclockwise direction. Since this is a map of the jw axis, the

area to the left of the curve, the inside area of the circle, is a map of the left

half plane. Unless a<<b, the point L( jw)=0 will lie in the right half plane.

The Bode diagram for this function exhibits a comb filter response typical of

delay networks (Fig. 5.1¢).
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Figure 5.1. Feedback around an active path consisting of pure delay giving comb-filter response.

5.2 A CLASSIC FEEDBACK EQUATION

In Section 5.1 we saw that where the bandwidth is unlimited in a feedback

system, the loss of the active path must, for stability, exceed that of the

feedback path, and that when the limit is approached, the loss will oscillate

between zero and twice the forward-path loss, with a period of oscillation (in

the frequency domain) equal to 1/7,, where 7, is the delay. Thus benefits of
feedback in improving sensitivity performance, which rely on the feedback

path loss substantially exceeding the forward-path loss, are not available for

this case. To obtain these benefits, the bandwidth must be restricted by an
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amount that is related to the total delay of the feedback and forward paths, the
loop delay.
The simplest way to restrict the bandwidth is to introduce an integration in

the forward path, leading to the equation for the loss:

L'(s)=b+1/se™ (5.2-1)

Since this equation expresses in its simplest form the limitations in the
application of feedback, we term it the classic feedback equation. When it is
normalized to a dc value of unity, it becomes the loss equation for a unity gain
follower: setting 7,=7,/b and L(s)=L'(s)/b,

L(s)=1+mse™* (5.2-2)

In addition, we may normalize the frequency variable as we did in Chapter 2
for polynomial loss ratios. By changing the frequency variable to s, we can
write (5.2-2) in a normalized form:

L(*rls)zl+(7]s)exp[:—‘:('r,s)] (5.2-3)

The character of the equation is expressed, within a translation in magnitude

or in frequency, by only one parameter, 7,/7,. Because of its simplicity in
expressing the basic limitation imposed by delay in feedback systems, the

equation is worth studying in some detail. It is also of practical significance
and turns up surprisingly often.

Application of the Classic Feedback Equation

Before studying the equation, we take a brief look at one such example, the
741-type operational amplifier. We look into operational amplifiers later in
some detail; here, we are interested in its frequency response, the source of the

delay, and how 7, is controlled in the circuit.
An approximation to the circuit of the amplifier is shown in Fig. 5.2a. The

circuit consists of four parts. Transistors Q, and Q, form an input differential

pair; Q, and Q, provide dc level shifting and are lateral pnp transistors

(described below); these transistors feed a current mirror, which functions to

add i, to i, as shown; and finally, there is a high-gain amplifier whose response

is dominated by feedback capacitor Cr. For our purposes, we can simplify the

diagram further by analyzing the half-circuit in Fig. 5.2b, since the input stage

is assumed to be balanced. A signal flow graph for the circuit (Fig. 5.2¢) has

four tandem branches corresponding to the four parts just described. The input

voltage is v,/2, half the differential input voltage, since we are considering the

half-circuit. This voltage consists of the drop across the emitter resistances of

Q, and Q,, a total of 2i,r,.
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Figure 5.2. A representation of the 741-type operational amplifier.

The delay in the circuit is accounted for by Q,, the lateral pnp transistor,

connected in the common base configuration. All other transistors concerned

with signal processing (as opposed to dc bias) are npn transistors with

dimensions controlled by impurity diffusion vertically into a slice of silicon,

giving exceedingly small dimensions along which the signal must travel be-

tween emitter and collector. To make transistors of the pnp type without

increasing the complexity of transistor processing, these transistors are made

with emitter, base, and collector placed side by side. Their critical dimensions

are defined by the horizontal geometry (photolithographic masks) and are
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between 10 and 100 times those of the npn transistors. As a result, signals
traversing Q, (and Q,) encounter significant delay 7,; thus i, =i,e™".
The current mirror, using npn transistors, gives a broadband loss of 1.

Finally, the amplifier with feedback capacitor Cr around it is of extremely high
gain and is virtually totally controlled by the capacitance. Multiplying the four
branches of Fig. 5.2¢, we obtain

L(s)= £ =2r,Cpse™ (5.2-4)
o

Comparing this with (5.2-2), we can identify the time constant 2r,Cp with 7,.
The 741 operational amplifier was designed as a general-purpose amplifier

for which a stringent application from a stability standpoint is the unity gain
follower shown in Fig. 5.3. The circuit is shown in Fig. 5.3a, and its equaivalent
circuit is given in Fig. 5.3b. We find the loss of this circuit by adding unity to

(5.2-4), giving the classic feedback equation of (5.2-2). The 741 is a particularly

pure case of a feedback design controlled almost entirely by delay.

Nyquist Diagrams

We can plot a Nyquist diagram for L(jw) in eq. (5.2-2) by calculating the

magnitude and phase of the active path:

[La(jw)] —Tw

m
arg L(jw)= 5 10 (5.2-5)

We then convert these to rectangular form and add unity to the real part,
giving the rectangular coordinates of L(jw). Figure 5.3¢ shows Nyquist
diagrams for three values of 7,/7,. They are similar in shape to those of Fig.
2.15 for linear, quadratic, and cubic polynomials. This is hardly surprising
since the power series expansion for e™* is

(Tds)z (Tds)3

2! * 3!
  e=1+7,5+ + - (5.2-6)

For sufficiently small values of 7,, we are justified in truncating the series; as 7,

rises, we need more and more terms to make the approximation accurate. The

curve for the largest value of 7,/7, in Fig. 5.3¢ is drawn for an unstable case;
the point L( jw)=0 lies in the map of the right half plane. There are two such

roots in the right half plane. As the frequency is increased, the Nyquist

diagrams (for positive frequency) are all logarithmic spirals with an infinite

number of encirclings of the origin. There are an infinite number of left half

plane roots for all three curves. The one for maximum delay puts a single pair
of roots in the right half plane. The value 7,/7, =7/2 is the boundary value
between stable and unstable performance.
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Figure 5.3. Equivalent representations of the amplifier connected as a unity gain follower.

Nyquist diagrams for the classic feedback equation with three ratios of delay to control time

constants are shown in part c.

Root Locus Diagram for the Classic Feedback Equation: Analysis

The Nyquist diagrams give insight into the behavior of the classic feedback

equation. Further insight is afforded by finding the root locations themselves

on the s plane as 7,/7, is varied. To find the roots, we rewrite the characteristic

equation L(s)=0 from (5.2-2) as

Ts=—e

=e’"exp[ —7,(0+jw)] (5.2-7)

in which we have substituted s=0+jw, and e/"= — 1. We can also express the



A Classic Feedback Equation 169

frequency variable s in polar form: s=pe’?; when this is substituted on the left
side of the equation, we have

npe’’=exp[—10+j(7—10)] (5.2-8)

Taking logarithms of the two sides and equating the real and imaginary parts

separately, we have

InTp=—1,0 (5.2-9)

and

0=7m—T1,0 (5.2-10)

These equations relate the magnitude and phase of the roots of the equation to
the real and imaginary parts of the roots. The previous sentence provides the
key to solving (implicitly) for the roots for any value of delay. For zero delay,
the equation has one real root at 1,6= —1. As the delay is increased, we see
that a second real root moves into the finite part of the 7,s plane from — oo

and the first root moves to the left from — 1. As the delay is increased further,
the two roots coalesce and then become complex. We show that the point of
coalescence occurs at 1,0= —e, and it occurs for a value of 7,/7,=1/e, as
shown in Fig. 5.4a. For mathematical convenience, we divide the process of
finding the locus of roots in two: first we find the locus for real roots and then
for complex roots.

For real roots, w=0, so that 7,w=0, or §=m, as seen in eq. (5.2-10). This

equation gives no information about the root locations, but for this case, 0 =p,
so that (5.2-9) can be written

In(—70)=—1,0 (5.2-11)

To plot the root locus for real roots, we assign values to 7,0 and find the

resulting values of 7, and o:

y__In(Zmo) (5.2-12)
Ty T\0

If we assign 7,0 = —2, for example, this equation gives 7,/1,=0.347. A value of
—4 for 7,0 also gives 7,/7,=0.347; therefore, the two roots corresponding to
7,/7=0.347 are at 10= —2 and —4. The maximum value that can be found
for 7,/7, using this equation occurs for 1,6= —e, and 7,/7, for this value is
(obviously) 1/e. This 1s the point of coalescence for the two real roots. Larger

values of delay give a pair of complex roots.

To calculate the locus for complex roots, we assign values of the angle of the

root. Thus we take 7,w as a dummy variable. Since w/o0=tanf= —tan7,w by
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Figure 5.4. Root locus diagram for varying 7, /7, for the classic feedback equation. Higher-degree

roots are shown in part b.

definition, we can write (5.2-9) as

AW _ TqW

o InTp
 =tanT,w

The geometric relationships are shown in Fig. 5.4b; thus

TW
T]pzexpm (52-13)

Since we can obtain 6 from (5.2-10) using the given dummy variable, we have
found the position of the roots of the characteristic equation. Note that p is w,

for a quadratic pair of roots as defined in Chapter 2 and that 6 is the angle

whose cosine is the negative of the damping factor {; thus

{=—cosf@=cos Tw
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Next, we must find the value of 7,/7, associated with the root position that we
have just determined.

Expressing the root positions in rectangular coordinates, we have

T,0= -exp(%)cos T, (5.2-14)

and

T,W

frlw:exp( TG )sin T, (5.2-15)
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From the latter equation, we find 7,/7, as

Ta _ Ta® (5.2-16)
T T|W

These equations were programmed on the calculator to obtain the root locus
diagrams in Fig. 5.4; the program, “CFE”, is given in Appendix B. It is an
example of a program written to clarify relationships, since a fair amount of

mental juggling is involved. Once the root locus is found, there is no need for
the program, since all root loci for the classic feedback equation are similar.

In Fig. 5.4a, as noted previously, the locus begins at 7,.s= —1+,0 for 7,=0.

As the delay is increased, the root moves along the real axis away from the

imaginary axis, and a second root moves in from — oo. The two roots coalesce
at s= —e+;0 at a value of 7,/7, of 1/e, whereupon the roots become complex.

For values of 7,/71, above 1 /e, there are no real roots in the finite s plane. The
phasor diagram in Fig. 5.4b shows the relationships among the quantities of
eqs. (5.2-13) to (5.2-16). At a value of 7,w of 7/4 (a damping value of 0.707),

t,/7 is about 0.5, and for 7,w of 7/2, the damping value is zero and the roots
enter the right half plane for w=1. As noted earlier, there are an infinite

number of roots; to find them, 7, may be increased without bound. The dashed
line shows the second pair of roots to appear. This set of roots crosses over into

the right half plane for 7,w equal to 57/2, or one complete revolution more

than the first set.

Significance of the Root Locus

The important thing to notice about this root locus is that for values of delay

that are sufficiently small to prevent instability (a value of 7,/7, less than 7/2,
or 1.57) only the first pair of roots are important in determining the dynamics of

the system. All other roots are remote. Therefore, the response of the classic

feedback equation is essentially quadratic even for values of 7, large enough to

reach instability.

Thus, even for 7,/7, equal to 7/2, the nearest higher-degree roots are over
four times more remote from the origin than the unstable roots. For smaller

values of delay yielding more useful loss functions, these higher-degree roots

are much more remote. In Fig. 5.4c¢ we show the root locus over a wider range
of root locations on the s plane. The second and third pair of roots that appear

have larger values of delay. Such roots are of consequence only after the first

pair of roots have passed into the right half plane, except that they do cause

delay of the overall closed-circuit transfer function.

Such delays are normally inconsequential in a feedback system since the
dynamics of the system are unaffected except for the translation in time.

However, if the system is, in turn, part of a larger feedback system, a

metasystem, such external delays must be taken into account in the design of
that system. We see an example of this later in this chapter, where we add

delay to Design B of the Chapter 3 case study.
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Thus the loss of the classic feedback equation has only one pair of essential
roots and is a quadratic. This greatly simplifies the study of delay in feedback
structures. We now obtain the quadratic constants that approximate the delay
function with the use of a technique that will be useful in the design of
feedback systems incorporating delay.

Linear and Quadratic Approximations to the Classic Feedback Equation

The function e™* can be represented by its power series, given by eq. (5.2-6).
When this series is truncated, both magnitude and phase errors attend the
approximation. Figure 5.5 gives these errors as a function of the phase angle

being approximated for the linear approximation

e=1+ms (5.2-17)

and the quadratic approximation

(Tds )2

2
 e=1+r1,5+ (5.2-18)

Thus, for example, the linear approximation is in error by 0.5 dB at a

frequency at which the delay causes 20° of phase shift. Similarly, the quadratic
approximation error is 0.5 dB where the delay introduces 48° of phase shift.
Figure 5.5 also gives the error in phase, as well as the total magnitude of error
in percent (without information as to whether the phase or the magnitude is in
error).

If we try to apply this approximation to the classic feedback equation

directly by substituting the linear approximation for e™* in (5.2-2), we indeed
obtain a quadratic, but the error curves in Fig. 5.5 do not lead us to expect

good accuracy for phase angles greater than 15 or 20°. Still, we know that a

quadratic function can approximate the classic feedback equation. The ques-
tion is how to find it. The key is to remove the phase of the remote roots of the

equation before attempting to find the quadratic.

This can be done by writing the classic feedback equation as follows:

L(s)_—_eBTds(e_BT‘ls‘*‘TlseATds) (52-19)

in which the delay has been divided between the forward and feedback paths

as shown in the signal flow graph in Fig. 5.6. The delay term outside the

brackets may be considered the effect of all roots except the two smallest roots,

which are to be approximated by a quadratic that replaces the terms within the

brackets. To force (5.2-19) into the desired form (quadratic plus delay), we

represent the second delay term by the first two terms of the power series:

etS =1+Ar,s (5.2-20)
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o Bds m Figure 5.6. Signal flow graph showing an ar-

e; o 4 v, bitrary division of delay between the causal

Yin Ty sT (feedback) and anticausal (forward) paths.

 

and the first delay term by the first three terms of the power series:

2
(B"'ds)

2

Multiplying (5.2-20) by 7,5 and adding it to (5.2-21), we obtain the quadratic
approximation to the classic feedback equation. The sum of 4 and B should
add to unity and be proportioned to minimize the approximation error.
Roughly speaking, the quadratic approximation of (5.2-21) is twice as good as
the linear approximation of (5.2-20), so that B=24=0.67. We can find values
of A and B that match the quadratic roots exactly for any given delay; the
values for 7,/7,=0.5, for example, are 4 =0.29 and B=0.70, as calculated by

equating the approximation to the exact value term by term. The approxima-

tion is

e Brus=1—Br,s+ (5.2-21)

 

2
BT(r,7, ( sd)

 

]sz} (5.2-22)L’(s):eBT"s{l +(7,—B7;)s+

where B is obtained by setting the second term equal to (2cos@)/p, and 4 is

obtained by setting the third term equal to 1 /p?, with 6 and p given by (5.2-10)

and (5.2-13). The approximation is good: a root locus for the approximating

quadratic as 7,/7, 1s varied in Fig. 5.7 for fixed values of 4 and B of 0.3 and
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0.7. Bode plots of the exact function and the approximation are virtually
indistinguishable for usable amounts of delay; at the point of instability, the
delay for the approximation is about 9% low.
Where the delay is sufficiently small to cause a pair of well-separated real

roots, a linear approximation will suffice for delay. For this approximation, we
let A=0 in (5.2-20) and let e 2«*=1—B7,s in (5.2-21), with B=1. The
expression for loss is

L(s):e”s[l+(7l—1'd)s] (5.2-23)

Again, the external delay does not affect the dynamics of the system under
study but must be taken into accountif it is a part of a metasystem.

Design of Systems Governed by the Classic Feedback Equation

Design of a feedback system described by the classic feedback equation
requires that we find only one parameter to be specified for a given low-

frequency loss, namely, the damping factor. In the unity gain follower using
the 741 amplifier, for example, we wish to know the value of C (the
compensation capacitor) to give a desired quadratic polynomial loss.

For design, it is convenient to use a frequency normalization that is different

from that given in (5.2-3). Here, we take 7,5 as our normalized frequency

variable, so that the classic feedback equation becomes

L(7,s)=1+ }(Tds)ew (5.2-24)
d

The locus of roots of this equation for varying 7, /7, is given in the root locus
diagram in Fig. 5.8a, plotted for a fixed unit delay. The numbers along the
curve are values of 7, /1, needed to obtain the desired root positions. The curve
is drawn for unity dc loss, as in the unity gain follower application. For other
values of dc loss, the indicated value of 7, should be multiplied by the dc loss.

For given values of 7, and the desired damping factor, we obtain the band-
width and control time constant by the previously developed equations; thus

 

T,0=cos '¢{ (5.2-25)

From the geometry in Fig. 5.85b,

__ Ta® -
P T,5IN T, W (5.2-26)

and from (5.2-13)

_ 1 Tqw
= 0 exp( tan 7,0 ) (5.2-27)
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Figure 5.8. Root locus diagram for the classic feedback equation as 7, /7, is varied. This is the
root locus for design of a system.

For the 741 operational amplifier connected as a unity gain follower, the delay

of the lateral pnp transistor is about 0.08 us. If we wish the damping factor to
be 0.707, we have

T
W= g rad

so that

/4
27TfO:m=13.9 Mrad/s

or f,=2.21 MHz. Finally, we need a control time constant of

_ 1 /4 _
=139 e"p( tan'n/4)_0'158 s
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In the 741 this time constant is 2r,Cr, as we saw in eq. (5.2-4). The value of r,
for the bipolar transistors is kT/ql~-=0.026/1-, with I~ in milliamperes. The
collector currents for the input stage are about 0.01 mA, so that 2r,=5.2 k;

then C=0.158/5.2=0.03 nF, or 30 pF.

Slew Limiting

Another type of delay encountered in feedback systems is nonlinear in char-
acter and is also clearly illustrated by the 741 operational amplifier. If a
sufficiently large signal is applied to the input one side of the differential pair
will be turned off (i.e., will conduct no current), whereas the current through

the other side will double, from 0.01 to 0.02 mA. Under these conditions, the

output will not follow the input since Cr can only charge at the rate set by the

maximum current flowing into it, 0.02 mA. The rate of change of output

voltage with time is constant under the slew-limited condition and is

do, I _002mA _= .= 003 nF ~067V/ks (5.2-28) 

Thus for the output voltage to change from —12 to +12 V, for example, takes
36 s, a much longer delay time than applies under linear conditions. This does
not affect the stability of the unity gain follower since the forward-path loss is
high under these conditions, but if the amplifier is itself a part of a metasys-
tem, the external delay caused by the slew limitation may indeed cause
instability.

If we attempt to reduce slew-limiting delay by increasing the dc collector
current of the first stage to charge the capacitor faster, the value of r, drops in

proportion. To maintain the control time constant, Cr will have to rise; hence
there is no net improvement in slew rate. Thus the lateral transistor delay
indirectly controls the slew rate as well as the control time constant. One
method to break this chain of dependencies is to add a resistor in series with r,.
Such a resistor will not, of course, be dependent on collector current, so that

the control time constant can be set independently of the first-stage collector

current.
We can conclude a key fact about the effect of delay of feedback systems

from this section, as well as certain relationships about polynomial approxima-

tions to delay. Feedback is an additive process, where signals to be added have

a common cause (the input) but arise in differing time frames, or signal epochs.

We have seen in this section that the stability requirement puts severe limits on
the amount of delay that can be accommodated. We have taken the classic

feedback equation as our case study here because ofits simplicity and practical

importance.

This equation places 90° of phase (from j7,w) in the forward path plus that

induced by delay. The limitation on delay for this case can be simply stated: at

the frequency at which the magnitude of the feedback signal equals that of the
forward-path input signal (the loss crossover frequency) delay must cause less
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than 90° of additional phase shift. With 90° of additional phase, the loss goes
to zero on the jw axis; with more than 90°, the zero of loss is in the right half

plane. The amount by which the total phase is less than 180° is called the phase
margin. The amount of phase that can come from the delay must be less than
90° by an amount equal to the phase margin. We do not emphasize the

concept of phase margin here because it, like loop gain, is a subjective concept
that depends on how the system is viewed. Here, the meaning of the feedback
path and forward path are clear, so we can define the phase margin without
ambiguity.

The most important result of this section is that the delay in the classic

feedback equation can be accurately approximated by increasing the degree of

the polynomial of loss by one—a quadratic approximation to the closed circuit
loss is amply accurate for even small phase margins. For systems of higher

degree, the loss usually includes additional phase from lumped elements giving
more phase than the 90° of the classic equation. For these systems, the amount

of delay must be less than 90°, making the approximation even better.

5.3 DEVICE TRANSIT-TIME DELAY AND KIRCHOFF’S LAW

The limitation on the bandwidth of the 741-type amplifier is directly attribut-
able to the delay in a common base stage utilizing the slow lateral pnp transistor
structure. A mere 0.08 ps of delay in this transistor requires correction

(through the control time constant 7,) that limits the performance of the
amplifier to audio frequencies, as we saw in the active resonator circuit in

Chapter 4.

All transistors include this same delay mechanism—the time it takes for

charge carriers to traverse the physical distance from emitter to collector, or

from source to drain. If all the carriers starting out at a given time from the
emitter or source move in lockstep as they traverse this distance, the output

signal current waveform will be a perfect replica of the emitter input signal

current, except that it will be delayed in time. In physical devices, the transit

time of carriers is a random variable, leading to dispersion of the signal, as
shown in Fig. 5.9a.

Dispersion of the signal also arises from RC time constants involving emitter
and base resistances and junction capacitances in the bipolar transistor and

similar effects in other devices such as FETs. The delay is itself the essential

limitation to performance, however, so that we can gain insight into the

high-frequency performance of transistors by initially ignoring the dispersion

and assuming that the carriers remain in phase in their trip from emitter or

source to collector or drain.

The question addressed here is as follows. When the transistor is connected

in the common emitter configuration, as in the amplifiers of the case study in

Chapter 3, we assumed there that it behaves as a perfect integrator. In light of

the preceding discussion, is this a valid assumption? Or is there a delay

associated with the integration that must be taken into account?
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The answer is provided by applying Kirchoff’s current law to the transistor.

If we assume unit current flowing out of the collector, then the current flowing

into the emitter is advanced in time by 7., the time for carriers leaving the

emitter to reach the collector. We can represent the transit time delay in the

common base transistor roughly as an ideal transistor (with no delay) that has

a delay line connected in cascade with its emitter lead, as shown in Fig. 5.95.

The delay line, represented in the figure by a short piece of coaxial cable, has a
time delay equal to 7. By Kirchoff’s current law, the current flowing our of the

base is the difference, so that in the frequency domain, we obtain

%é:efrs_l (5.3-1)

This can be written

l._b:e’T,:S/Z(eTFS/z_eATFs/Z) (53-2)
i,



Device Transit-Time Delay and Kirchoff’s Law 181

If we substitute s =jw, we have

b _@1/D(@i(Tre/D _ o~ j(1r0/2))
¢

—/(r/D) in T—sz (5.3-3)

At low frequencies the small-angle approximation sin x =Xx applies, so that

i_b~ ' fl ZT_ -i —TFwexp]( > +2) (5.3-4)
c

which is the equation for the loss of an integration with delay.

Bode Plots for a Device with Transit Time Delay

In Fig. 5.10 the solid-line plots give the magnitude and phase calculated from
€q. (5.3-3). The broken straight line on the magnitude curve is the low-frequency
asymptotic loss, equal to the approximation of (5.3-4). The asymptote is a good
approximation up to the unity loss frequency, where the magnitude is 0.5 dB
greater than the function itself. The phase is represented exactly by (5.3-4). In
terms of the complex frequency variable, (5.3-4) can be written

;—" =T.5e"F/? (5.3-5)
c

as in Fig. 5.9¢. Thus in the extreme case of ignoring dispersion, the transistor
in the common emitter connection does behave as an ideal integrator with
delay of half the transit time. Note that the transit time itself provides the
integrating time constant in the common emitter connection.

The dashed curve in Fig. 5.10 is drawn for a less extreme case, in which 7. is
made up of two components, one the transit time delay without dispersion and
the other an RC time constant arising from the combination of the emitter

resistance and emitter junction capacitance. Thus, letting 7,represent the total

delay time from emitter to collector, we obtain

Tec:"eqe'*""r (5.3-6)

The case shown is for these two time constants equal to half the previous

transit time. The resulting delay is three-fourths that of the extreme curve, and

the magnitude is equal to the low-frequency asymptote to well beyond the

unity loss frequency.

In practical circuits, particularly integrated circuits, there will be additional

sources of phase shift from parasitic capacitances in combination with lossy

elements. A chief example is the phase shift induced by the base resistance of
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the transistor in combination with interstage shunt parasitic capacitance aris-
ing from, for example, the collector-to-substrate capacitance of the previous

stage.
The circuit and the signal flow graph are shown in Fig. 5.11, from which we

obtain the current loss:

L

re(C1+Cp)s

 

1+r, L P

— [re(Cl + Cp)s+rerbCles2] e™’

C,C
oS (5.3-7)

 

C,+C,°



Incorporating Delay Into Design B 183

 

 

 

 

lin b

— VWA
: +

1p

vlr‘l Cp I C] T vb

. =

Cy =—
r

1

Cps vy i vp i,
[ -t - O —— O O U,

Vin Cis —reTds G,
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circuit.

The second factor in the brackets gives the additional phase shift referred to.

Where the phase shift is small, we can replace the factor by a delay term e"*,
where

¢S (5.3-8)TB:rb—— -

C,+C,

The advantage of treating this factor as a delay is that it may then be lumped

with (added to) 7, and the delay of other stages.

The conclusion here is that a common emitter stage behaves as an integrator

with an amount of delay that is of the same order as the unity loss time
constant. Base resistance contributes to this delay when the effects of parasitic

capacitances commonly encountered in integrated circuits are included.

5.4 INCORPORATING DELAY INTO DESIGN B

The equations for Design B introduced in Section 3.3 used a crude model for

the devices, leaving out not only delay, but several other effects such as current

defect ratio, §=1/h,, of the transistors. When all such effects are incorpo-
rated (we develop an accurate transistor model later), the equations become

impossibly tedious. We now take an important step in maintaining control and

understanding of the design process, namely, consolidating or “chunking” the

equations into more than one hierarchical level.* For our purposes in this

book, three such levels are sufficient: (1) the system level, (2) the circuit level,

and (3) the device level. For Design B, the system level corresponds to the

*The inelegant term “chunking” is taken from D. R. Hofstadter’s elegant book, Godel, Escher, and
Bach,' which suggested ways of organizing this section.
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overall loss equations, and the circuit level corresponds to the analysis of the

individual stages. We postpone a detailed discussion of the third level until
later, being content to get along with an informally derived device model for
the time being.
At the system level, Design B can be represented by the signal flow graph in

Fig. 5.12a, in which A4 (s) represents the outer feedback path and Z,, D,, and
Y;, suitably delayed, represent the individual stage losses. In Fig. 5.12b the

individual stage delays have been moved out of the forward path and placed to

give equivalent performance, with the feedback path now incorporating the

delay. The external delay is unimportant to the analysis of the system, as noted

in Section 5.2.

The reason for the transition from Fig. 5.12a to 5.12b is to maintain a loss

polynomial of minimum degree when the delay function is approximated by a
polynomial. In Section 5.2 we showed that in a stable feedback system delay
may be approximated by a quadratic polynomial. The feedback path loss
function is of first degree; when multiplied by the quadratic delay approxima-

tion, the feedback and forward paths are each cubic functions, so that their

sum is also cubic.

The equation for the voltage loss ratio of the amplifier is the only equation

written at the system level:

L(s)e ""=Ap(s)e”"+ Z,(s) Dy(s) Ys(s) (5.4-1)

in which external delay has been incorporated on the left side and 7, is the sum
of the stage delays. To program this equation on the calculator or computer,
the stage loss functions must be multiplied together to obtain the forward-path
loss polynomial; 4 ,(s) is then multiplied by the quadratic delay approxima-

tion and the resulting polynomial added term by term to the forward-path loss

polynomial.
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™ =Ta1 + Taz + 743 Figure 5.12. Signal flow graph of the Design B

(b) amplifier at the system level.
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Feedback-Path Analysis

The feedback path consists of G, and C in parallel; these supply a current
that flows through R, so that with the quadratic approximation, we have

G Tz%CFS3

2 2

(5.4-2)

Analysis of the First and Second Stages

The circuits and signal flow graphs for the first two stages are given in Fig.
5.13; the stage losses (with delay removed) can be written by inspection. The

term Z,(s) 1s the generator voltage divided by the first-stage output current

——
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r
—(81+T18)igy 

—r
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—(81 + 115)
(a) First stage
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Ie le2
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(b) Second stage

Figure 5.13. Circuit and signal flow graph for (a) first stage and (b) second stage.
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and has units of impedance:

Z\(s)=—[r+(8,+Gpr)RG+(7,+Cpr)Rgs] (5.4-3)

The G and Cg terms account for the input loading of the outer feedback path,
and 6, is the current defect ratio of the first stage, ignored in Chapter 3. The
second-stage current loss ratio is simply

D,(s)=—(8,tms) (5.4-4)

Third-Stage Analysis

The third stage, with its local feedback, is also a feedback system in the sense

of this section. It can by analyzed in a two-step hierarchy. This has already
been done in deriving eq. (3.2-9), rewritten here with some notational changes
and adding delay 7,, to the forward path:

G;(8;+G,ry + 135 )e™*
 es5Y,(s)=—|G, + (5.4-5)

in which 7,=r;C; of the earlier equation; we have also added the current defect
ratio term. The delay term on the left makes this equation correspond to the
signal flow graph in Fig. 5.124; delay has not yet been removed. When the
delay is removed, this equation can be written

 

Yi(s)=—[G,e"+Gy(Ay+1s)] (5.4-6)

where

G,=G,+G,+Gx (5.4-7)

_8+GynA==Gor. (5.4-8)

and
.

7= 1_é2r3 (5.4-9)

The output loading of both feedback paths is incorporated into G;, and the
leakage caused by the input loading of G, is incorporated in A;; the direct
feedthrough denominator is incorporated in the latter two equations.

For small values of delay, we can approximate the delay by a linear term, so

that

Yy(s)=—[G,+A3G; +(G}—G,1y3)s] (5.4-10)

a binomial in the frequency variable.
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Analysis of the Complete Circuit

To analyze the circuit on the calculator, eq. (5.4-10) is programmed and the
coefficients stored. Then eq. (5.4-4) gives the coefficients of the second stage,

and these are multiplied by those of the third stage; the process is repeated for
the first stage. Finally, eq. (5.4-2) is evaluated and added to the result, giving
the loss of the entire circuit, less the external delay. This is done in program

“AN2” in Appendix B.
In the design of the amplifier we established the values of three dominant

elements to realize the desired loss polynomial. In the earlier designs we

ignored delay; we might suspect that delay affects the design of the amplifier
in an important way and that if delay becomes sufficient, the design will
become unrealizable, at least for a prescribed bandwidth. For lesser amounts
of delay, the dominant elements G5, Cr, and G, will change as the delay is
increased.

Synthesis of Designs for Various Values of Delay

To see how delay affects the design of the amplifier, program “AN2” was used

with program “SJ”, the synthesis program described in Chapter 3. In this way,

several designs were made for various assumed amounts of individual stage
delays from zero to 3.0 ns (all three delays were assumed equal). Naturally,
only one value of delay is correct for a given device; we vary the delay for
tutorial purposes to show the effect on the design.
As shown in Section 5.3, for normal transistors the delay will be roughly

between one-half and one times the transit time, or 0.5—-1 ns for the devices

assumed here. The required values of G,, C, and G (the dominant elements)
were found by synthesizing the amplifier assuming various values of delay.

Each such synthesis resulted in a set of values for the dominant elements; these
are plotted as a function of delay in Fig. 5.14. The value of dc loss obtained by
the synthesisis also plotted.

 2.0 T [ T I T
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100110    
Individual stage delay, ns

Figure 5.14. Dominant element values as a function of delay for Design B.
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As the delay is increased G, must be increased correspondingly. The reason
is clear qualitatively from eq. (5.4-2), in which the delay decreases the quadratic
coefficient by RCr7p; G, mustrise to replace the lost portion of the quadratic
coefficient. [Note that in these curves the individual stage delay is shown on
the abscissa, whereas 7, in eq. (5.4-2) is the total delay of the three stages.]

In the approximate analysis in Chapter 3 the defect current ratio of the
transistors was ignored. When it is included, it increases the quadratic loss

term so that G, is not required to be as high as before. Figure 5.15 shows the

effect on G, of varying (all three) § values from 0 to 0.02. The design is not

adversely affected by increasing current defect ratio, provided that this ratio is

well controlled. The sensitivity of the loss to § can be found by using program

“SLX” with program “AN2”, both in Appendix B. Clearly, the sensitivities of

loss to any or all components and device parameters of the amplifier can be
found in this way. If a statistical analysis of the effect of component variations

is required, program “STAT” can be invoked. In all, a complete picture of the
performance of an amplifier realized as shown can be derived from the simple

programs described in Appendix B, or from similar programs written for the

computer. The calculator programs are compatible in using memory register

locations in common.
In this design the greatest complications arose in the analysis of the third

stage, rather than in either the first two stages, the feedback path, or their
combination. The reason is that where the gain of an amplifier stage is low, we
cannot justify simplifying assumptions that are appropriate in the high-gain
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Figure 5.15. Resulting design as a function of the defect current ratio § =1/h/, (equal for the
three stages).
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case (e.g., ignoring direct feedthrough is an example); thus a more complete
analysis 1s required. The third stage is a good case in point; the local feedback
must be analyzed fully to maintain accuracy. In Section 5.5 we extend the

accuracy of the third-stage analysis by using a quadratic delay approximation.

5.5 QUARTIC SYNTHESIS: ADDITION OF LOAD CAPACITANCE

If we use a quadratic approximation for the delay of the output stage, the loss

polynomial of the amplifier becomes a quartic. The extension to a quartic is
worthwhile; it becomes unavoidable when a sufficiently large load capacitance
is added to the amplifier. The first question to be settled concerns what

polynomial we should use as a specification for the design. In the cubic design
we used a Butterworth polynomial, an arbitrary but reasonable choice. Can we

substitute a quartic polynomial that gives essentially the same performance,
and if so, what is it?

Finding a Suitable Quartic Polynomial

By “same performance” we adopt the following notion. When a higher-degree

polynomial is substituted, both the in-band sensitivities and the out-of-band
stability margin are potentially affected. The in-band sensitivities of loss to the
polynomial coefficients (for the polynomial normalized to unity loss) are given
by b(w/w,) by the sum rule since the in-band loss is unity. Hence, to
maintain the same in-band sensitivities, the coefficients that are important in
band (the ones of lower degree) should be the same for both the quartic and

the cubic. The out-of-band stability margin can be measured by the damping
of the roots nearest the jw axis: if this damping is kept the same, the margin
against instability will be essentially unaffected. These two rules tell us what to
look for in a quartic polynomial. For the cubic Butterworth, b,=1 and b,=2.
The damping of the roots nearest the jw axis is 0.5 for the cubic (the angle of
the roots with the jw axis is 30°). These are the numbers to be emulated by the

required quartic.
We could try a quartic Butterworth polynomial, but as the discussion of

Section 2.5 shows, the angle of the roots nearest the jw axis is only 22.5° for

this polynomial, giving an inadequate stability margin. The Bessel polynomials

have better stability margins, so that we should go in this direction. Consider,

for example, the transitional polynomial with m=0.5 given in Table 2.1 or by

program “POLYTBL”:

L(p)=1+2.89p+3.87p*+2.86p°+p* (5.5-1)

Next, we normalize or scale this polynomial by frequency transformation

(using Program “N”’) to obtain b, =2, so that the in-band sensitivity to b, is the
same as the cubic: letting ¢=(2.89/2.0)p, we have

L(g)=1+2g+1.85¢>+0.94¢°+0.23¢* (5.5-2)
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The roots of this polynomial (from program “ROOTS”) are at s,,=

1.40/ =158.7°and s5 4, = 1.496 +119.8°. The pair of roots nearer the jw axis
are at an angle of 29.8°, so that the out-of-band stability margin remains the
same as the cubic. (Had we not been so lucky on the first try, we would have
repeated the procedure for different values of m in the transitional polynomial
until the requirements were met.)

Equation (5.5-2) gives us a normalized quartic polynomial that has essen-

tially cubic Butterworth behavior. The frequency response also remains the
same in band, as a computation using program “BODE” would show. The
quartic term in (5.5-2) represents an upper limit dictated by stability require-
ments. If the amplifier has a value of b, that is less than the value shown, the
stability margin becomes greater. The in-band response scarcely changes at all
since the sensitivity to the quartic coefficient in band is b,(w/w,)*, negligible
for w less than w,. Therefore, we can monitor the value of b, in the analysis of

the amplifier, making sure that it remains within bounds. We do not have to
synthesize this coefficient—just make sure that it is smaller than or equal to the
requirement.

Control of the Cubic Coefficient

When a sufficiently large load capacitance is added to the output of the
amplifier, the third-stage loss becomes a quadratic function even in the absence
of delay. Delay tends to reduce the damping of this quadratic. A fourth control
elementis thus needed in addition to G, Cr, and G,, one to control the cubic

coefficient of the entire amplifier, or the damping of the output-stage quadratic.
A capacitor Cy connected in parallel with G,, shown in Fig. 5.16, will serve this
function; it is analogous to the feedback capacitance in the 741 amplifier. It
provides the control time constant for the output stage. The equation for the
output stage may be derived from (5.4-6) by replacing G; and G, by Y, and
Y,, where

Y;=G;+Cys

and

Y,=G,+ Cgs (5.5-4)

With this replacement, the third stage is characterized by the equation

Y;(s)=—(G,+Cpgs)e™+(A+1s)(G;+C}s) (5.5-5)

where

,_8;+G,nA= 1=G,r, (5.5-6)

’— T3+CBr3 (5 5_7)
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Figure 5.16. Circuit diagram of the third stage showing addition of control capacitance Cp.

and

r(Cz+G,7))
Ty=Ttesz3" (5.5-8)

The denominators in these equations represent the increase in dc loss due to
direct feedthrough, which is usually small. Equation (5.5-8) includes a small
increase in third-stage delay arising from the direct feedthrough. This direct-

feedthrough delay arises because the base input voltage of the third stage

causes a current to flow directly to the output through Cg. This adds the term

—ry(Cg+ G,7;) to the denominator and gives a right half plane pole of loss.
Since it is a small effect, we can replace the pole by an equivalent delay that

gives the same phase response, as expressed by the second term in (5.5-8).

We now represent the third stage delay by the quadratic approximation, so

that

Yy(5)= =G+Gy+(Cp—Gytps +15G, +A'Cy)s

G
+ [( _2503 —Cp ) TD3+T3/CI:l s? (5.5-9)
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This equation, and egs. (5.4-2) to (5.4-4) (for the feedback path and the first

two stages), constitute a complete analysis of the amplifier with capacitive load
and control (by Cp). The quadratic delay approximation assures accuracy in

all practical cases. An analysis program for Design B incorporating this

equation is given as program “AN3” in Appendix B.
The effect of load capacitance on the design is shown in Fig. 5.17, showing

the polynomial coefficients in Fig. 5.17a and the dominant circuit elements in
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Fig. 5.17b as functions of the load capacitance. The plots were obtained using
program “AN3” with “SJ”, with Cy chosen as zero until b, exceeds the limit set
by eq. (5.5-2). For larger values of C,, Cy is chosen (by trial and error, or

“manualiteration™) to give b,=0.23.
Values of load capacitance greater than 40 pF require correction by Cy. In

this region the increase in the cubic coefficient caused by Cy means that the dc
loss increases rapidly, and G, also increases rapidly. For sufficiently high
values of load capacitance, the design becomes impractical at the given cutoff
frequency. In such cases an emitter follower can be added at the output, as
shown in Fig. 5.18.

In this case the loss polynomial of the amplifier becomes a quintic. A

suitable quintic may be found as shown previously for the quartic, in which the

in-band sensitivities and the out-of-band stability margin are preserved. To
realize such a quintic as a circuit, means must be provided to synthesize the
quartic term; a straightforward method is to add a capacitance from the input
of the emitter follower to ground, as shown in Fig. 5.18. In this case the cubic

term would be provided largely by Cp since the equivalent load conductance at

the output of the third stage is small. Use of an emitter follower is then a way
of reducing the sensitivity of loss to the load conductance and capacitance.
As we have noted, the transistor model used here is a crude one; better ones

are developed later. It is important to emphasize here that changes in the

model will not change the design in any fundamental way. It will model more
accurately the values of the time constants and delay and the low-frequency
loss. But the physical device is adequately represented qualitatively by the time
constant, the delay, and the low-frequency loss. Even parasitics encountered in
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integrated circuits will be accommodated within the present framework. It is
because of this fact that the separation into hierarchies works well: there is not
a large interaction among the hierarchies, in this case between the device level

and the circuit level, thus allowing us to solve subproblems of quite manage-

able size.

5.6 A PRACTICAL 300 MHz AMPLIFIER

Now that delays can be accounted for, we can use the synthesis procedure to

design a practical version of the case study amplifier with 300 MHz band-

width, useful in repeaters for high-speed digital transmission. In lieu of a

complete transistor model, we estimate the time constants and delays on an
informal basis, anticipating results to be derived later.
The amplifier, shown in Fig. 5.19, operates between 75 § impedances, with

matching resistors included in the amplifier to minimize signal reflections in
the cables connected to the amplifier. AC coupling is used at both input and
output. The amplifier is assumed to be realized as a silicon integrated circuit in

which the transistors are isolated by reverse-biased semiconductor junctions.

The circuit is similar to Design B, except that diodes have been connected in
series with the base leads of the second and third stages to provide dc voltage
bias for the first and second transistor collectors. Shunt conductances con-
nected between base and ground draw 1.0 mA through these diodes, giving
them a dynamic resistance of about 0.030 k2. The dc drop across the diodes is
roughly 0.75 V, as is the base to ground voltage of the transistors, so that the
dc collector voltage of the first and second stages is 1.5 V. The dynamic
resistance of the diodes adds to the effective base resistance of the second and
third stages.

To obtain the values of the stage time constants and delays as well as the dc
current losses, we must descend to the third level of the hierarchy of equations

—to the device level. For the present, we take the following equations to
approximate the stage characteristics. First, the individual stage dc current

losses are

A=8,+grg, (5.6-1)

where r;; is the total emitter resistance of the ith stage, including the dynamic
diode resistance and the emitter contact resistance, r);:

s Tei*

_ kT;= alc +r/. (5.6-2)

The voltage drop across this resistance, proportional to output current, drives a

current through g;, the conductance used to draw current through the biasing

diodes, increasing the dc loss of the stage.

This same voltage drop drives a frequency-dependent current through any

shunt capacitance at the base, thereby increasing the stage time constant,
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which is given by

Ti:TFi+rEi(C' '+CPTi)+rb(i+l)C‘jei jei (5.6-3)

in which 7, is the forward transit time of the transistor, C,; is the emitter
junction capacitance, and Cpy, is the total parasitic shunt capacitance at the
base node of the transistor. Where applicable, this parasitic capacitance

includes the collector-to-substrate capacitance of the previous transistor (obvi-

ously absent for the first stage), the collector junction capacitance of both the

previous stage and the ith stage (output loading of the previous stage and

input loading of the ith stage), and any wiring or other shunt capacitance of
the interstage. The series biasing diodes add shunt parasitic capacitance. Thus
for the three stages, we obtain

Cpr1 =Gt G, (5.6-4)

Crr=Cent GutGt() (5.6-5)

CPT3 =Ll+ C}'cZ + Cjc3 + Cp3 (5 6-6)

The last term on the right of eq. (5.6-3) adds to the stage time constant in the
following way. The input current to the following (i+ 1)st stage almost all
flows through the total base resistance of that stage, creating a voltage at the

collector of the ith stage. This voltage causes a current to flow through the
collector junction capacitance that adds to the input current of the ith stage
and augments the time constants of the stage. The base resistance ry includes
the series 0.03 k{2 dynamic resistance of the biasing diodes.

Finally, the stage delays are estimated by the equation

7CpriTFi
=—+4r.C..+R,——————

Td Bi 7,15Cpr
i 2 ei~jci (5.6-7)

The first term on the right is the transit time delay, discussed in Section 5.3,

assuming no dispersion. The second term is the equivalent delay introduced by

the direct-feedthrough term. The third term is the equivalent delay introduced

by the base resistance and parasitic capacitance, discussed in Section 5.3.

These device-level equations are programmed on the calculator in program

“DEV” in Appendix B, which stores the results in memory locations required

by program “AN2” or “AN3”. Program “SJ”, in conjunction with the analysis

program, then does the amplifier synthesis. Thus program “DEV”, working at

the device level, provides the data for program “AN3”, working at the circuit

level. This program allows program “SJ”, working at the system level, to

synthesize the feedback amplifier, giving the circuit values in Fig. 5.19. Device

parameters and details of the computation are given in Appendix B.
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DC Bias Design

DC voltages for the first and second stages have been provided by the series
diodes; the desired collector currents of 1.0, 4.0, and 8.0 mA and the output

collector voltage must now be supplied. The latter voltage should be 3.0-4.0 V
to handle the output signal voltage linearly. The output voltage is the sum of
the collector voltage of the second stage and the drop across G,, found by the
synthesis to be 2.23 mS; hence

4+1
VCE3:1'5+EZ3°74V

a satisfactory value.

The dc current flowing through Gis (Vg3 — Vgg)GE, OF

I1.,=(3.74—0.75)(0.0395) =0.148 mA

The first-stage base current is 1., =0.01 mA; the remainder of I, must be
drawn off by a conductance between base and ground of the first stage. Its
resistance 1s

0.75

Rer= gqag—o01 >k

Direct currents for the output and second stages are provided by a pnp

transistor acting as a current source. Such circuits are described in detail later;

the pnp transistor must provide the sum of I, I;,, and I, or 13.15 mA. The
sum of the first-stage collector current and the diode bias current (2 mA) is

provided through a resistor that activates the diode of the current source. Its
value 1S (Vo= Vg — Vyes)/2.0, where V¢ is the diode drop of the current
source (~0.75 V). Hence the first-stage load resistance is (8 —1.5—0.75)/2=

2.88 k). The current source is designed to give the required ratio of diode to

transistor current (2/13.15), by making the areas of the diode and transistor in

this ratio. The only effect of the current source on the synthesis is to add a

shunt capacitance to the output collector of about 2.0 pF. This added to the
collector-to-substrate capacitance of the output transistor and wiring capaci-
tance brings the total parasitic load capacitance to about 2.5 pF, a value

incorporated into the design. The collector junction capacitance of the output

stage is incorporated into the design as Cy in the analysis program.

Variation of Loss

A complete sensitivity study of the amplifier may be made by using program

“SCX” to find the coefficient-to-component sensitivities. This program oper-
ates in conjunction with “AN2” or “AN3”. The sensitivities thus calculated

can be used to find the sensitivity of loss to the components at any given

frequency by use of program “SLX”. This program is a “stand alone”; each set
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of coefficient-to-component sensitivities must be entered manually. Finally,
the standard deviation of loss and phase can be calculated by using
program “STAT”. This is illustrated with numerical results for this design in
Appendix B.

5.7 QUANTIZED FEEDBACK

A feedback technique thatillustrates the handling of delay in the time domain
as opposed to the frequency domain analysis used in Section 5.17 is quantized
feedback. It is used in digital transmission (PCM) systems to eliminate the

necessity for transmission of low frequencies.* In this brief treatment, we do
not discuss the details of digital transmission, but rather focus on the quan-
tized feedback arrangementitself. A practical quantized feedback arrangement
and design are given in this section. The design is programmed in Appendix B
if further studyis desired.

In Fig. 5.20 the decision circuit of a digital regenerator is shown, with a noisy
digital signal at its input. The function of the decision circuit is to observe the
signal at a time near the center of the pulse or time slot and to generate a new
pulse for transmission to the following regenerator some distance away. The

decision circuit may be a clocked flip-flop, for example, and must have a
minimum of a one-half time-slot delay. At high digital rates, a master-slave

flip-flop is often used, causing a full time slot of delay.
If the signal is ac coupled, the pulse waveform will exhibit sag, as shown in

Fig. 5.20b. Since the flip-flop threshold is set at the center of the extremes of
voltage, this sag reduces the margin against errors that might be induced by a

large noise spike, for example. The worst case of such sag would occur with a

long string of pulses of like polarity.

The output of the decision circuit is a (delayed) replica of the input, so that
the possibility exists of removing the sag by adding a filtered signal from the

output to the input of the decision circuit. This i1s quantized feedback— the
output signal that is filtered and fed back to the input is quantized to a discrete

set of signaling levels, two in the example discussed here.

Simple Quantized Feedback System with Single Forward-Path Cutoff

A simple quantized feedback system is shown in Fig. 5.21a, in which a simple

low-frequency cutoffis placed in the forward path and a complementary filter
is placed in the feedback path. The time responses of the forward-path signal

and the feedback signal and their sum are shown for a long string of positive

pulses. The forward-path signal is a simple exponential decay, given by the

equation

u(t)xh(t)=ke "/n (5.7-1)

*Other methods of suppression of low-frequency transmission in digital systems include line

coding (e.g., bipolar or AMI—alternate mark inversion—in which successive pulses are inverted in
polarity) and dc restoration, but these are substantially less efficient than quantized feedback.

+In this discussion we assume 100% duty factor pulses.
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Figure 5.21. Simple quantized feedback arrangement showing waveforms for a long string of
positive pulses beginning at r =0. Feedback restores pulse baseline starting after r = 7.

in which u(7) is the unit step function used to represent the long string of

pulses and is convolved with A(t), the impulse response of the forward-path

cutoff; k| is the residue in the root of the ac cutoff; and 7, is the cutoff time
constant. After time r=r,, the decision circuit generates an output signal of

fixed amplitude, and the quantized feedback signal becomes available. It must

be complementary to the forward-path signal:

u(t—'rd)*q(t—q-d):l—kze*(f—m)/fl (5.7_2)
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in which u(t—,) 1s the unit step delayed by the decision circuit, convolved

with ¢g(t—7,), the impulse response of the feedback filter; and k, is the residue
of the feedback filter root. For the two signals to cancel after r=7,, the two

time constants must be equal, so we can write

ke/M=k,eTm/m (5.7-3)

or

k,=k,e/m (5.7-4)

Thus if the signal amplitude of the input signal to the forward path equals that
of the decision circuit output, perfect cancellation after the delay time requires
a gain factor in the forward path of e™/™. The time responses are shown in
Fig. 5.21b.

For delay times greater than one-half time slot, the error at the sampling
instant in the first time slot, as =75/2 (where 7, 1s the width of a time slot) is
not zero; it is given by

(’Td_TB)/z
xpT—l~1E,=e¢

where E,| is the error, normalized to unity amplitude. If the delay is equal to
one time slot, for example, and the low-frequency cutoff is 0.02 f; (7,=
277,/0.02), the error will be 6.5%.
The resulting filters are given by translation back to the frequency domain:

kTSHE)= 1 (5.7-5)

or

—p iH(s)=k, T rrs (5.7-6)

a simple low-frequency cutoff with a gain factor. Similarly,

1 _ky k,T,
~0(s) =~ rs (5.7-7)

Since at t=17,, q(¢)=0, and by our normalization to unit amplitude, k,=1, we

have k,=1, so that

Q(s)= 1_+177 (5.7-8)

Here, we have found the filter functions by working in the time domain,

using the residues as derived by observing the constraints on the time domain
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performance. Essentially the same result can be obtained in the frequency
domain by observing that

H(s)+Q(s)e "==1 (5.7-9)

If we take the quantized feedbackfilter as that given above, we obtain H(s) as

l+7s—e™
H(s)= = (5.7-10)

Replacing the delay term by 1—7,s, we have

. (71+Td)s
H(S)_—T;’ITS_ (5.7-11)

which again is a low-frequency cutoff with a gain factor of (,+7,)/7, ~e™/™,

as before. This involves a straight-line approximation to the time response

during the first time slot, which is accurate for usable values of delay.
The simple quantized feedback system described previously is seldom used

because the error in the first (and all succeeding) time slots can be removed for

all practical purposes by use of a quadratic cutoff in the quantized feedback
filter instead of the linear one used previously, with negligible extra cost.

Quantized Feedback System with a Quadratic Cutoff

To see why addition of a single-filter section enhances the operation of

quantized feedback greatly, consider the quantized feedback filter shown in

Fig. 5.22. It uses three equal resistors and two equal capacitors. The transfer
function is easily written by inspection of the signal flow graph (which takes
the quantized feedback current as the independent variable and finds the
decision circuit output voltage):

U4 1
— = ——~ =3R+4R*Cs+R’C?s?
lin Q(S)

:3R(1+Rcs)(1+¥s) (5.7-12)

A second root, at three times the frequency of the first, is supplied by the extra

section. The step response of this filter is given by the inverse Laplace

transform of

%Q(S):m (5.7-13)

where 7,=RC and 7,=RC/3; thus

u(t)xq(1)=1—kye "/M—k,e "/ (5.7-14)
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Figure 5.22. Quadratic feedback filter with equal R and C values and signal flow graph for

analysis. Step response has zero slope at the beginning of the step.

The key advantage of the extra section is that the initial slope of the feedback

time response is zero, as shown in Fig. 5.22b, instead of the large slope for the
single section filter. When this response is delayed and added to a complemen-
tary u(z)*h(t), the slope of h(¢) must also be zero at r=7,. Thus, during the

first time slot the slope is low and the error is consequently small at the first

sampling instant.

To calculate the complementary forward path filter, we can work in either

the frequency or time domains. In the frequency domain, using eq. (5.7-9), we

have

H(s)= (1 +(Tlli)f,ls;(zzi)TZsé — 1y (5.7.15)
 

Using a quadratic approximation to e ~ ™*, we obtain

(T,+72+Td)s+[7172—(7(12/2)]s2

(1+7,5)(1+7,s5)
 H(s)= (5.7-16)

which can be split into an ac cutoff, a gain factor, and a doublet (pole-zero
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pair):

=g 57
with

K=1+%fl (5.7-18)

and

__— nn(/2) (5.7-19)
T, +t7t7,

Figure 5.23 shows the two-section filter, which altogether includes two capaci-
tors and fourresistors. The values of the elements were determined for a digital
transmission system with a signaling rate of 50 Mbaud (50 MHz), a regenera-

tor delay of 0.03 us (1.5 time slots), and a quantized feedback cutoff frequency

(1/277,) of 1 MHz. The feedback filter resistors were (arbitrarily) chosen as

3.0 k{2, and the impedance level of the doublet section was chosen to give a
ratio of decision circuit output voltage to the input voltage to the doublet

section of 10. An asymptotic Bode plot of the feedback and forward path

filters is shown in Fig. 5.2354.

Although the frequency domain design is direct, it does not tell us the error
in the time response. Of course, we can find this error easily enough by use of
the inverse Laplace transform, but since the time domain performance is the
essential point here, we rederive the preceding result directly in the time

domain.

For the quadratic quantized feedback filter, the time response of the forward
path is

u(t)*h(t)=ke /" +ke'/ (5.7-20)

When t=7,, we know that this step response must be exactly unity, giving us

one equation relating the two unknowns, the residues. But we also know that

the slope of the time response is zero. We take the derivative of the equation

k k
%[u(t)*h(t)]:—T—:e"/"—T—;e"/Tl (5.7-21)

giving us a second equation relating the residues. Setting =7, in these two

equations, we have

kie /Mtkye T/m=] (5.7-22)

k k
_.l.e'fd/7|+.-2e_7d/T2:O (57-23)
T T
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Figure 5.23. (a) Complete quadratic quantized feedback arrangement for a 50 Mbaud digital
regenerator; (b) Asymptotic Bode plots for the feedback and forward path filters.

from which we obtain

 e™/m (5.7-24)

 ky=— —2— ¢/ (5.7-25)

With these residues we can obtain the filter parameters directly, but we also

obtain the time response from (5.7-20) and can thus find the time domain

performance.

For the values of system parameters used to obtain the design of Fig. 5.23,

the time response is shown in Fig. 5.24, expanded to show the error. As

expected, the error is zero at r=7, and is maximum at r=0. At the first

sampling instant, the error is 3%.



206 Signal Delay in Feedback Systems

 

l ' r | ' l '
F,/Fg =0.02

7d=1b17g

1.1 }— Linear —

Total, h(t) + q (¢)
u(t) * hit) (all cases)
 

  

     

   

Quadratic

 

N
Linear ™\

+ quadratic

-~Ty—>

(1.5 time

slots)

01—

~ ult—714) *qlt—75) -  1
 

Sampling instants

0 1 2 3 4 5

Time, units of 75

Figure 5.24. Time responses for linear, quadratic, and combination quantized feedback config-

urations.

Combination of Quadratic and Linear Filter Cutoff

This approach—of setting the derivative of the time response to zero at the

delay time—is far better than the simple linear quantized feedback. We can do

somewhat better by removing the restriction on the derivative and forcing the

response to be correct at the first sampling instant. For this case, the error at

all sampling instants is zero for decision circuit delays up to 1.5 time slots. One

consequence of this is that the quantized feedback filter must provide a signal
with finite slope at t=7,, which means that it will also include a numerator.
Since this is a minor correction, and will cost only one resistor,it is worthwhile.

The procedure for the design of this linear plus quadratic quantized feedback

configuration is given in Appendix B, with calculator program “PCM” that

calculates all circuit values and prints out the time domain performance.
A comparison of the time domain performance for the linear, quadratic, and

linear-plus-quadratic quantized feedback configurations is given in Fig. 5.24.

In all three cases the ratio of the quantized feedback cutoff frequency to the
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signaling rate is 0.02, and the delay is 1.5 time slots. Only in the linear plus
quadratic configuration discussed in Appendix B is the correction perfect at all
sampling instants, but the error in the pure quadratic case is small. On the
other hand, the extra cost of the quadratic plus linear configuration is only one
resistor, and Appendix B gives a program for finding it and the remaining

components; thus it must be regarded as the appropriate choice for systems

that have decision circuits with up to 1.5 time slots of delay.
For greater amounts of delay, higher-degree systems are appropriate. Such

large amounts of delay are found only in unusual cases, one of which is in the

T4M digital transmission system, in commercial service since 1975. In this

system, operating at 274 Mbaud/s, the decision circuit is realized with discrete
components, with considerable analog delay in addition to a full time slot of
sampling delay. Total delay is nearly three time slots, and a special filter
maintains the response of the forward path for the delay time until the

quantized feedback signal becomes available. Integrated circuit systems have
considerably less delay; lower-speed systems will usually have delays approach-
ing the sampling delay of the decision circuit.
The pulse amplitude of the decision circuit output and that of the incoming

pulse must be equal if zero error is to be attained. Automatic amplitude
adjustment of the incoming pulse to a reference voltage [e.g., automatic gain
control (AGC) or an automatic equalization adjustment] is virtually always

used in regenerators for pulse transmission, so that close tracking of the AGC

reference and the power supply that controls the output pulse amplitude of the

decision circuit is advisable.
The sensitivity of the quantized feedback system to its components is not

difficult to ascertain. If we consider the sensitivity in the frequency domain, we
see from Fig. 5.23b that the overall channel is made up of two additive
components whose sum is roughly unity. According to the sum rule, any

contributor that is larger than unity will have a sensitivity larger than unity.
For the case of H(s), the asymptotic response in midband is +3.7 dB, but the
actual response never reaches the asymptote and has a maximum of about 1

dB, giving a maximum sensitivity of 1.1. This is sufficiently close to unity to

consider quantized feedback components as having roughly the same sensitiv-

ity as other equalizer components.
We have by now established a framework for considering feedback system

design, illustrated at some length by reference to the case study amplifier. We

have explained the design method in detail for a single amplifier to enable us

to thoroughly understand what is involved. In the following chapters we show

how this method can be extended to any circuit or feedback configuration. We

are able to draw an equivalent ladder network and write the circuit loss
equations by inspection as we have learned to do it here for the case study

amplifier. To do this, we must introduce another level into our hierarchy of

circuit equations: to avoid getting bogged down in detail, we need a method of

chunking voltage and current into a single variable. This, in turn, requires a

deeper understanding of two-port networks, which is the subject of Chapter 6.
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PROBLEMS

Signal Delay in Feedback Systems

1 Show that a stable quadratic that has complex roots

L(s)=a,+a,s+a,s?

can be represented accurately by

L(s)=aye7(14+7,5e™*)

 

 

where

6

T4~ 5sin

1 exp 2
T P tang

and

p:(@)l/2

a,

_a,p0= bcos 2a,
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Chapter 6
 

Two-Port Analysis of
Circuits and Devices

The representations of the loss of circuits in the previous chapters were scalar
equations, usually giving the ratio of input generator voltage to output voltage
as a single scalar variable. Since both input and output current must also be

taken into account, the source and load immittances became a part of the

equations for the loss. Since any network exists as a separate entity, apart from

particular terminating immittances, characterization of such a network requires
that we recognize both voltage and current explicitly at its input and output.
This is the function of two-port analysis of networks;it is applicable at each of

the three hierarchical levels studied in this book: the system level, the circuit
level, and the device level.

The purpose of this chapteris to introduce two-port network descriptions of
circuits and devices with particular focus on their transmission properties. The
two-port network description most appropriate for this purpose is the ABCD

or transmission matrix, as we show. This matrix corresponds to the reciprocal

formulation of the feedback problem and allows us to extend the type of
analysis already presented to more general systems.

The two-port network description of a circuit or device allows us to express

its properties independent of its source and load. We can then build up more

211
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elaborate structures from combinations of two-port networks. If such a struc-
ture has a single input and a single output port, it can be described by a single
two-port matrix; the equation for this matrix can be written as a function of
the matrices of the devices and circuits of which it is constructed.

6.1 ALTERNATIVE DESCRIPTIONS OF TWO-PORT NETWORKS

A two-port network, shown in Fig. 6.1a is characterized completely by con-

straints among the signal variables at its two ports. The constraint that
distinguishes a two-port network from a network that has four access leads is

that the current entering one lead of a given port must be equal to the current
leaving the other lead of the same port. The signal variables may be taken in
pairs: we might, for example, take the port voltages as one pair and the port
currents as the other. If we wish to find the port currents in terms of the port
voltages, for example, we may write

L=y,Ty, (6-1'1)

I,=y0; Y0, (6-1‘2)

The y,; are all admittances and are defined implicitly by these equations. Their
definitions are

 
 

o= di, short-circuit input (6.1-3)
B, admittance .

_0i, reverse (6.1-4)
Yi2™ 90, |, —¢’ transadmittance '

Yy = di, forward (6.1-5)
9o|,o transadmittance '

di short-circuit output
Y= ; . P (6.1-6)

dv, 0,=0 admittance

i ip
—_—

+ +
v Two-port v

! network 2

   
 

i] i2

Figure 6.1. A two-port network signal variables defined.



Alternative Descriptions of Two-Port Networks 213

V4 v2

Y22

 

Figure 6.2. Graphical representations of the y-parameter equations: (a) signal flow graph; (b)

equivalentcircuit.

In matrix form eqgs. (6.1-1) and (6.1-2) may be written

dij:yjkdvk(j,kZI,Z) (6.1-7)

where di; 1s the signal current vector, dv, is the signal voltage vector, and the
Vjx are the admittance or y parameters. For the y-parameter description of a

two-port network, di; is the dependent signal vector, and dv, is the independent
signal vector.

Graphic interpretations of the preceding relationships are given in Fig. 6.2.
In Fig. 6.2a eqs. (6.1-1) and (6.1-2) are represented by a signal flow graph in

which the two nodes representing the independent variables are shown as
hollow circles. An equivalent circuit is given in Fig. 6.2b, in which admittances

represent y,, and y,, and dependent generators represent the transadmittances.

The graphical representations are completely equivalent to the equations.

The character of a two-port description depends on our choice of the pair of
signal variables that is to be the independent signal vector. (The other pair, of
course, becomes the dependent signal vector.) There are six possible permuta-

tions in this choice, leading to six sets of two-port parameters. For each of

these choices, we may write a set of equations analogous to egs. (6.1-1) to

(6.1-7).

ABCD or General Circuit Parameters

The two-port matrix of particular interest in this chapter is the transmission, or

ABCD matrix.* For this matrix, the output voltage and current are the

independent variables, and the input voltage and current are the dependent

*This matrix has also been called the chain matrix, and its elements have been termed the chain, or

general circuit parameters.
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e )l 619
The output current for which these parameters are defined is —i,, to make the
direction of current flow at the output agree with that of the input of a
following cascaded network. This two-port description gives the input signal
vector, the input excitation, as a function of the output signal vector, or the
output response. Therefore, it corresponds to the reciprocal formulation de-
scribed in Part 1.

The definitions of the parameters are implicit in eq. (6.1-8):

variables, so that

 

 

 

4= dv, reciprocal of

90, ;=0 open-circuit voltage gain

_ 0oy, negative reciprocal of
B==i , _ (6.1-9)

(—iy) 0,=0 forward transadmittance

C= i, reciprocal of

v, ,.2:0’ forward transimpedance

0i negative reciprocal ofD= 1 g P

a(—i,) by=0. short-circuit current gain 

Note that the ABCD parameters are all reciprocals or negative reciprocals of
the four forward transfer or gain parameters. For example, B is —1/y,, of the
y parameters described previously. The other forward transfer parameters are
described in the following paragraphs.
A signal flow graph and equivalent circuit for a two-port described by its

ABCD parameters is shown in Fig. 6.3. The tail of each branch of the signal
flow graph originates at a node representing an independent circuit variable,

and the nose points toward a dependent variable node. The branch value
multiplies the value of the independent variable and adds the result to the
dependent variable.

The equivalent circuit in Fig. 6.3b shows the four parameters as dependent
voltage and current generators connected at the input of an ideal amplifier,

defined as an amplifier whose input voltage and current are zero for any finite
output voltage and current.! For an ideal amplifier, each element of the matrix

in eq. (6.1-8) is zero, and the matrix is the null matrix.

The equivalent circuit in Fig. 6.3b expresses the essence of anticausal

analysis as applied to two ports. Since the input voltage and current of the

ideal amplifier are identically zero, the actual input voltage and current of the
network are attributed entirely to the dependent voltage and current generators

at the input.



Alternative Descriptions of Two-Port Networks 215

  
(c)

Figure 6.3. Signal flow graph and equivalent circuit for the 4 BCD parameters.

Since these generators are dependent on the output current and voltage, they
provide feedback around the ideal amplifier by the definition of feedback given
in Section 4.5. Furthermore, the feedback is of four types corresponding to the
four parameters.

A Feedback, also termed series input parallel output feedback, augments the
input voltage in proportion to the output voltage. B Feedback, or series input
series output feedback, augments the input voltage in proportion to output
current. Similarly, C and D feedback augment the input current in proportion

to the output voltage and current, respectively.

The matrix equation (6.1-8) may be written in compact form:

u,=Tu, (6.1-10)

where u, and u, are the input and output signal vectors, respectively

0y 0,

“l1] 272

2 4
and
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In Fig. 6.3¢ this equation is represented by a simpler graph, a transmission

matrix signal flow graph (TMSFG), which connects u, to u, through T.

In this graph the matrix 7 premultiplies the output signal vector and adds
the result to the input signal vector. The transmission matrix signal flow graph
is similar to an ordinary (scalar) signal flow graph, except that each graph node

now represents a signal vector—a voltage and a current at a particular point in
a circuit. Such a point is termed a circuit vector node, defined as a node of the
circuit that has only two connectionsto it. This restriction allows the current at
the node to be defined uniquely. The voltage is also defined uniquely, so that
the vector represented by the TMSFG node is unequivocally defined. We can
thus refer to the vector in our equations rather than to the currents and

voltages themselves.
The simplification of the equations thereby effected is important to one of

our main goals here and in Chapter 7: this enables us to write the circuit
equations of most feedback circuits by inspection. By chunking voltage and
current together, the equations become simpler; the computer can be called on

to do the detailed work of sorting out currents and voltages.
So far, we have defined two of the six possible sets of two-port parameters

obtainable by permuting the signal voltage and current variables. All six are
summarized in Fig. 6.4, which shows the signal flow graph and equivalent
circuit for each.” As in Fig. 6.2a, the independent variable nodes of the signal
flow graph are shown as open circles. In the first four parameter sets, one
independent variable is taken from the input and the other from the output.
Therefore, one branch of each must proceed from an input node to an output

node as, for example, the branch y,, of the y parameters. Each such branch
carries a 21 subscript. These are the four forward transfer parameters whose
reciprocals comprise the ABCD parameters; thus

A=—  B=—— (6.1-11)

1
C=— D=——

221 hy

In last entry in Fig. 6.4 the inverted ABCD parameters are obtained by taking

the inverse of the ABCD matrix; A, is the determinant of the ABCD matrix.

Parameter Conversions

The six descriptions of Fig. 6.4 are six views of the same network, so that it

must be possible to convert from one set of parameters to another by
performing the necessary algebra. Since all six are of use in the text that

follows, Appendix C gives a general procedure and a calculator program
“CNV” for effecting the conversion.

By use of this procedure (perhaps in two steps), any set of the six parameter

sets may be expressed in terms of any other set. In Table 6.1 the conversion of
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Figure 6.4. Signal flow graph and equivalent circuits for six possible sets of two-port parameters.
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the z, y, h, and g parameters from and to the ABCD parameters is given. The
table also includes the conversion back and forth between the ABCD parame-
ters and a set of parameters to be discussed in the following paragraphs, the
scattering parameters.

S Parameters

Two-port measurements of components and devices are often expressed by
their scattering or S parameters.
The S parameters are not obtained by simply permuting the signal variables,

but rather by forming linear combinations of voltage and current at each port.

These parameters were originally introduced to characterize waveguide and

microwave components, where a wave rather than a voltage and current
description of the signal is more appropriate.>* Although we describe the S

parameters with respect to the port voltages and currents of a two-port

network, we briefly introduce them in their original wave formulation.
In Fig. 6.5 we show a network that has incident waves a, and a, impinging

on its input and output ports and reflected waves b, and b, emanating from
these same two ports. The S parameters are defined under the wave formula-
tion in terms of these four wave signals:

b S S a

b, S Snlla;

These equations give the values of the waves emanating from the two ports as

functions of the waves incident on the ports.

The definitions of the S parameters, implicit in eq. (6.1-12), are

 
 

 

  

b : : .
S= =t , input reflection coefficient

al (12:0

S;,=— , reverse transfer coefficient (6.1-13)
az a =0

b, .
Sy == , forward transfer coefficient

al (12:0

b, : .
S, =— , output reflection coefficient

a2 a, =0

11 i2
—_— —

a, + + az
— -

by V4 I: S, :l Y2 b,
-~ >

   
Figure 6.5. Two-port network with signal variables defined as incident and reflected waves at

input and output.
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where S, and S,, simply give the ratio of the reflected wave to the incident
wave at the input and output ports, respectively, with the incident wave at the
opposite port equal to zero. The transfer coefficients, on the other hand, give
the ratio of the wave emanating from one port due solely to the incident wave
at the other port. For example, S,, gives the ratio of b,, the wave traveling to
the right at the output in Fig. 6.5, to a,, the wave impinging on the input from
the left. This coefficient is also called the insertion gain, a quantity we have
occasion to use later.

To relate the S parameters to the six parameter sets discussed previously, the
incident and reflected waves must be translated into port voltages and cur-
rents. We define the S parameters for the useful special case in which the
parameters are related to a resistive characteristic impedance R,=1/G,. (For
the extension to the more general cases including differing, complex character-
istic impedances at input and output, and for n ports, see Weinberg.*) The

incident and reflected waves can be written in terms of the port voltages and

currents as

1
a,=— (v, +i, R 6.1-14k \/R‘O(k k 0) ( )

1
E(Uk——ikRO)

The port signal variables for the S parameters are not simply permutations of
the voltages and currents of the parameter sets studied earlier but are linear

combinations of them. Thus eq. (6.1-12) can be rewritten

{vl_ilROl:[Sll S,

v,—iHR Sn Sy

b,= (6.1-15)

(6.1-16)

  

v,+i,R,

in which the factor 1/ \/IT , appearing on both sides, has been canceled.

The S parameters are appropriately used with matched or nearly matched

circuits, where the reflections are small. The impedance may be 50 or 75 {2, for

example. The ABCD parameters may also be normalized to such an impedance

(rather than being normalized to the impedance unit in the system of units

being employed, such as 1 kQ or 1 Q). Thus B=B/R,,, and C=CR,,. Table 6.1
gives the conversion between ABCD and S parameters for the case in which

both parameter sets are normalized to the same impedance.

F Parameters

Still another set of two-port parameters, the transfer, or F parameters, is also

based on the wave formulation.*> The set is analogous to the ABCD parame-

ters in that the two input signal variables constitute the pair of dependent

variables and the two output signal variables constitute the independent
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variables. The signal pairs are the incident and reflected waves at a given port:

v, =R, Ei Er

Ei F;r

(6.1-17)

     

v, ti, R,

v,— i, R,

These parameters are useful in the cascading of waveguide and microwave

components. Note that the output signal vector is written such that v,—i,R,
the wave emanating from the output, is the incident wave for a two-port

connected in cascade at the output. This is analogous to the use of —i, as the

output signal current variable for the ABCD matrix.

The theory developed here is based on the ABCD parameters. It might also

have been developed by using F parameters, since both parameter sets are at

their essence feedback or anticausal in nature. The ABCD parameters are more
appropriate for lumped parameter circuits and the F parameters for the wave
or distributed formulation.

As technology advances, the frequencies dealt with increase; this tends to
favor a distributed, or F parameter, formulation. A countervailing tendencyis
for the size of circuits to be scaled down, favoring the simpler lumped

parameter approach. In the recent past, size reduction has been realized to an

extent that is greater than bandwidth expansion (with some important excep-
tions). Hence the lumped parameter ABCD description appears more ap-

propriate to present-day technology.

Classification of Two-Port Networks

To facilitate the classification of two-port parameter sets, we use Fig. 6.6 to

introduce the concept of signal epochs. In the figure a generator is connected

through a transmission line to a two-port network, the output of which is then

transmitted to a load network through another transmission line. Suppose that
the generator emits a short pulse. As we trace the signal transmission from

generator to load, we can identify four “time frames” or epochs corresponding
to the arrival of the pulse at (1) the generator output, (2) the two-port input, (3)
the two-port output, and (4) the load input. These epochs will differ from each
other by the delay of the intervening networks.
The networks may cause the pulse to be dispersed in time—spread out—

making the definition of delay somewhat fuzzy, but in a general way, we can

say that the voltage and current at a given port occur simultaneously, whereas

the voltage and currents at different ports are separated into individual epochs.

The distinction is one that is useful in cases (as in Chapter 5) where a transfer

function is expressed as a rational function with a delay. The delay defines the

difference in epochs at input and output.

For the classification of two-port parameters, we can conveniently divide

them into mixed-epoch and separate-epoch parameter sets. A mixed epoch set is

one whose associated signal vectors include components from more than one

epoch, as, for example, the y parameters, in which the independent signal

vector consists of v, from the input epoch and v, from the output epoch. Each
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Figure 6.6. Introduction of the concept of signal epochs.

Table 6.2 C(lassification of Two-Port Networks
 

 

  
 

Separate-Epoch Sets Mixed-Epoch Sets

v _[A B] Uy orl Ao hi ], [Ul]_[zn zlz] 1y

Voltage I C DIJ| 1 Iy hyy  hy |02 o] |zn 2:mf|4,
and o

current [_Z]ZL[D B” v,.] il ya Yillu Ll 81 8n]|Y

I ALC 4] —i i [yva ryallv: v, |82 822]|is

Wave UI_I:IZ() _ F, F, Uz+’:220 v, =i Zy _ S Spf|lotiZ

v, ti,Z, F, F,||v."i,2, v,~ 1,7, Sy SuflvatiaZ

       

 

signal vector of a separate-epoch parameter set, on the other hand, consists of
components exclusively from a single epoch, as for the ABCD parameters,

where the independent signal vector consists of v, and i,.
Table 6.2 summarizes the two-port descriptions of this section. The parame-

ter sets have been divided into separate- and mixed-epochsets; they are further

divided into parameters that employ voltages and currents separately as signal
variables and those employing waves as signal variables.*

*The subscripts employed for the F parameters, i and r, refer to “incident” and “reflected” waves,
respectively. The order of the subscripts agrees with the mixed-epoch parameter convention, where

V2, for example, refers to the ratio v,/i;. A similar convention could be employed for the
ABCD parameters, called the K parameters by Belevitch.’> Thus K, would refer to the inpur
voltage: output voltage ratio, equal to 4. Similarly, B=K,;, C=K,,., and D=K,,.
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6.2 APPROPRIATE APPLICATIONS OF THE VARIOUS TWO-PORT

DESCRIPTIONS

Why do we introduce so many sets of two-port parameters? In principle, any

one of them can be used for the analysis of any two-port; hence the introduc-
tion of the eight sets of parameters in Table 6.2 may seem redundant, or
superfluous. Having access to these various descriptions may be likened to
having an adequate vocabulary with which to utter a good sentence. Each
parameter set introduced in Section 6.1 is uniquely appropriate under certain
circumstances and so conveys a particularly direct understanding of the

particular circumstance for which it is appropriate. In this section we begin the
task of finding where each parameter set previously introduced fits into circuit
analysis and design.
The term “appropriateness” is related in some sense to whether a certain

circuit description “feels” right. A less fuzzy measure of appropriateness is
proposed here: one circuit description is considered more appropriate than
anotherif its use leads to less loop gain in the circuit description. Since loop

gains form an “endless chain of dependencies,” analysis is clearer without

them.
Suppose, for example, that we apply known voltages to each port of a

two-port network and that we wish to find the port currents. The appropriate

description of this two-port is the y-parameter description since we need to
merely write the matrix equation i;=y;,v,, obtaining the currents directly

without solution of simultaneous equations and without the introduction of

any feedback loops, or denominators. However, if we wish to apply a known
voltage to the output and a known current to the input, the # parameters
would be the appropriate choice (see Fig. 6.4). Similar considerations attend

the use of z and g parameters. We use all four descriptions later.

Causal Analysis of an Amplifier

Suppose now that we have an amplifier operated between a Thevenin source

and a load conductance as shown in Fig. 6.7. The amplifier is a two-port
network described by its y parameters. For this circuit, we can write the

following five equations:

h=ynv, tynt, (6.2-1)

=210, T)n0, (6.2-2)

v,=e,—i|R; (6.2-3)

v,= 0, (6.2-4)

and

v,=—R,i, (6.2-5)
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(b)

Figure 6.7. Analysis of a two-port amplifier described by its y parameters. v, /e;=—y, R,/

[1+Reyn+ Ry + RGR(yi1ya = yiayn)l

These five equations are diagramed in the signal flow graph in Fig. 6.7b,

which is drawn to evaluate the gain of the circuit, proceeding from e, to v,.
Note that three loops appear in the signal flow graph. At the input the loop

gain is —y,, Rand at the output, —y,, R, . The third loop includes both input
and output and has the gain y,, y,,R;R. They introduce corresponding loop
gain terms in the denominator of the gain expression, as shown. By either
signal flow graph reduction or simultaneous solution of egs. (6.2-1) to (6.2-5),

the gain is evaluated as shown by the gain expression in Fig. 6.7. For

sufficiently low values of R; and R, the loop gains can be small, and the
circuit description can be an appropriate one. More often, however, these

feedback loops constitute a block to a direct, intuitive understanding of circuit
operation.

Anticausal Analysis

The preceding analysis corresponds to a causal approach—finding the output

for a given input. Consider what happens when the analysis proceeds in the

opposite direction—what input is required to give a preassigned output? Of

the five equations given above, we first change two: eq. (6.2-3) must now
define e;:

and since v, is now a source node, we must now invert eq. (6.2-5) to give
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Figure 6.8. Anticausal analysis of an amplifier described by its y parameters.

where G, =1/R,. These two equation modifications serve to interchange the
roles of the source and sink nodes of the signal flow graph in Fig. 6.7; the

independent variable is now v,, at the output. In Fig. 6.8 the revised five
equations are diagramed in a signal flow graph that exhibits two peculiarities:

(1) the node voltage v, is no longer defined by any signal variables since no

branches lead to it; and (2) i, is defined twice, as v,G, and as y,,0,+y,,0,.
Clearly, some functional dependencies must be reversed to make a usable

signal flow graph.
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We note parenthetically that the graph in Fig. 6.8b has been termed a
disconnected graph because it has two dependent nodes for the same variable.
It is also peculiar in that it has two source nodes; one, v,, is intended, and the

other, v, is not.

The resolution of these improprieties in the graph in Fig. 6.8b is found by
reversing the signal dependencies of certain branches of the graph. To main-
tain the anticausal direction of analysis, we cannot reverse the signal depen-
dencies of the terminating networks at either the input or the output, so we are

forced to alter the signal dependencies in the two-port network itself. Therefore,
we solve for v, in (6.2-2):

o=i22, (6.2-8)
Y21 Y21

Equations (6.2-1), (6.2-4), (6.2-6), (6.2-7), and (6.2-8) constitute a consistent set

of equations for the anticausal direction of analysis. These five equations are
diagramed in Fig. 6.8¢, in which the output voltage is the source node of the
graph and eis the sink node.
Take a careful look at Fig. 6.8¢c. It is a cascade graph, one without feedback

loops. By our criterion of appropriateness introduced at the beginning of this
section, this description is appropriate. By reversing the signal dependencies in
eq. (6.2-8), we made v, a dependent variable for the two-port network. But i,

was already a dependent variable in the y-parameter description, so that the
reversal of the v, —i, signal dependency has altered the two-port description
from one using y parameters to one using ABCD parameters, as shown in Fig.
6.8d. The equivalence of Figs. 6.8¢ and 6.8d can be seen by separate evaluation
of the ABCD parameters in Fig. 6.8c and comparing them with those given in
Table 6.1:

A:—%— B=—yL
21 21

6.2-9
_. _Inrn _Yn ( )C=y,—=12  p=-_=2U

Y21 Y21

Note that the minus signs on B and D originate from the ABCD parameter
sign convention on the output current.

By use of the anticausal direction of analysis, we were forced to an ABCD

parameter description of the two-port network. Although we originated the
discussion with y parameters in this example, the result would be the same if
we were to use h, z, or g parameters. The same doubling of one of the output
variables and the same lack of definition of one of the input variables would
occur. By solving for the undefined input variable, we would find that we have
again expressed the two-port in terms of its ABCD parameters.

The mixed-epoch parameters in Table 6.2 each have a set of input and

output terminations that remove feedback or loop gain from a circuit in which
the two-port is connected between a Thevenin source and a load. These are the
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Table 6.3 Terminating Impedances for Which Loop Gains are Zero for
Various Two-Port Parameter Descriptions
 

 

Parameter Direction
Set Z; Z, of Analysis

h Infinite 0 Causal
Mixed-epoch sets z Infinite Infinite Causal

y 0 0 Causal
g 0 Infinite Causal
S R, R, Causal

Separate-epoch sets ABCD All All Anticausal
F All All Anticausal

DBCA None“ None* Causal
 

“Yields disconnected signal flow graph (see text).

terminations for which these parameter sets are uniquely appropriate; they are
shown in Table 6.3. Under any other terminations, the circuit description
contains loop gains that tend to obscure circuit operation, making the descrip-
tion a less appropriate one.

Table 6.3 also includes the three separate-epoch parameter sets discussed

previously and shows that no feedback loop gains arise under any terminating

conditions for the ABCD and transfer parameter sets, making them uniquely
appropriate for describing the circuit. Both sets of parameters operate in the
anticausal direction of analysis. The one parameter set that operates in the
causal direction, the DBCA, or inverted ABCD parameters, does not yield a
connected signal flow graph. When path inversion is used to correct this

difficulty, the description is converted to one of the other descriptionslisted in
Table 6.3; thus the inverted ABCD parameters are not appropriate for describ-
ing the circuit for any terminations. We conclude that the ABCD parameters

are uniquely appropriate to describe the simple circuit shown using a voltage-
current (rather than wave) description of the signal variables. Similarly, the

transfer parameters are uniquely appropriate where the wave description is

used.

Figure 6.9 illustrates the calculation of the loss (reciprocal gain) of an

amplifier circuit whose amplifying element is described at the outset by its

ABCD parameters. Note that the output current i, is defined as flowing
outward from the output port, so that i= —i, in Fig. 6.84. The signal flow

graph in Fig. 6.9 and the TMSFG in Fig. 6.9¢ contain no feedback loops, so
that we may obtain the voltage loss ratio e/v, as the sum of all path products
in Fig. 6.9b or, alternatively, as the matrix product in Fig. 6.9¢:

L[ RG][?j g”él (6.2-10)

=A+BG,+R.C+RDG, (6.2-11)
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Figure 6.9. Direct analysis of the loss of an amplifier by use of the 4 BCD matrix.

Several properties of the ABCD matrix are illustrated in Fig. 6.10. In Fig.

6.10a the cascade property is shown, where i, , =i,z and v,,=v,5. The ABCD
matrix of several cascaded networks is the matrix product of the ABCD

matrices of the constituent networks, taken in order. The ABCD matrices of a

series impedance and a shunt admittance are shown in Fig. 6.10b and that of
their cascade connection, in Fig. 6.10c. Note from Table 6.1 that for any
network

hAD—BC=A,=—-12=2 _J2__2%n (6.2-12)
hyy  zy Wy 821

For a passive network, AD— BC=1; for a unilateral network, AD— BC=0. For

the latter case, excitation at the output of the network produces no response at

the input.

It is worthwhile at this point to restate the definition of an ideal amplifier,
also termed a nullor’:

Definition: An ideal amplifier is an amplifier whose ABCD matrix is the null

matrix.

From eq. (6.2-11) we can write for the ideal amplifier

L=A+BG,+CR;+R;DG,=0 (6.2-13)
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Figure 6.10. The ABCD matrices of simple circuits.

since e;/v,=0 by definition. Since the terminations are arbitrary and are
assumed to be nonzero, A, B, C, and D must be zero individually.

An Intuitive Approach to the ABCD Parameters

An important benefit of the ABCD parameters is that they facilitate the

understanding of circuits. To realize this benefit, one has to develop a direct

“feel” for what each parameter represents. We have already begun this process

in this chapter; here, we mention some relationships that will be familiar to

many in their causal form but perhaps less so in anticausal form.

Parameter A4 is the voltage loss with open-circuited output. In Fig. 6.11a we

have a circuit whose voltage gain is the ratio R,/R,. Parameter 4 is the
reciprocal of this, G;R .. In either case the guiding principle is that the current
through R, and Ris the same, so that the voltage drops are in proportion to



230 Two-Port Analysis of Circuits and Devices

Y

   
(a) (1;)

Ye
 

   

Z YI, v,s
é

s
y

¢
 

lin

   

 
d)

Figure 6.11. Circuits illustrating combining relationships in 4 BCD matrices of a single gain stage.

the resistances. The A parameter is made up of terms of this sort—the product

of an output shunt admittance and a series impedance in the common lead.
There is another set of products that go to make up A, shown in Fig. 6.115,
and terms of this type are also familiar; they are the product of a series input
impedance and an output-to-input feedback conductance. Where both effects
exist in the same circuit as in Fig. 6.11c, 4 is approximately the sum of the two
effects:

A=Y,Z,+ Y,Z, (6.2-14)

The relationship is approximate because direct feedthrough causes a de-

nominator to appear, equal to 1—Y.Z,. The approximation is a good one

where the feedback immittances are not too large and provides a convenient

way of thinking about such circuits. These two effects can be added together,
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at least approximately, because we deal here with loss rather than gain. Losses
add directly, as do series impedances, whereas gains combine in a way similar
to parallel impedances.

Similarly, D 1s the current loss with short-circuit output. It can also be
regarded as being made up of two types of term, as illustrated in Fig. 6.11d,
which includes a shunt input admittance and a series output impedance as well
as Z and Y. For this circuit

D~Y,Z,+Y:Z, (6.2-15)

Parameters B and C are simpler and may be considered centralto single-stage

analysis. Roughly,

B=2Z, (6.2-16)

and

C=Yr

An exact analysis of the circuit in Fig. 6.11d is simple to write:

-1 Z.Y z
T,=—5< ECF £ (6.2-17)

1-Z,.Y| Yr Z.Yr

Where Z.Y, is much smaller than unity, we obtain

0 Z;
Td——[YF 0 ] (6.2-18)

in which the approximation merely involves dropping the effects of input and
output loading and direct feedthrough.

If we replace the ideal amplifier by a transistor, several of the transistor

effects combine directly with the circuit effects; the transistor includes emitter

resistance (1/g,,), which can be combined with Z,; it also includes collector-
to-base capacitance, which can be combined with Y. In the following chapter

we develop a more detailed transistor equivalent circuit, but the simple

combining relationships developed here will facilitate our understanding of

transistor operation.
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Chapter 7

Feedback Analysis of
the Bipolar Transistor

 

Every form of feedback is exhibited by the bipolar transistor. Therefore, it
serves well as an introduction to two-port feedback as it relates to a physical

device. To understand the feedback aspects of transistor operation, we must

describe the physical operation of the transistor in some detail. By so doing,

physical interactions are clarified and the reasons for adopting a feedback

description (or ABCD matrix description) are demonstrated.
At its core, the ABCD matrix of a bipolar transistor is given by

Ope| 0 r,

iy | | Ces §+1,8

in which we have expressed the base-emitter voltage and base current in terms

of the collector-emitter voltage and the collector current. Four “core” parame-

ters describe the transistor itself: 7, is the emitter resistance kT/gl., C,. is the
collector junction capacitance, § is the defect currentratio, equal to 1/h,, or

1/B in conventional terms, and 7, is the unity current loss (or gain) time

constant, equal to 1 /27f, where f; is the unity current loss frequency.

 

[ i] (7.0-1)

233
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Figure 7.1. A “core” equivalent circuit for the bipolar transistor.

An equivalent circuit that expresses this core matrix is given in Fig. 7.1. The
main effects not included in the core equivalent circuit are the base resistance
r, at the input and a shunt admittance at the output. In addition, transit time

delay must be taken into account at frequencies above about one-tenth
the unity gain cutoff frequency. In the sections to follow, we show how this
core matrix and equivalent circuit are related to the physical properties of

the transistor. We begin with dc analysis of the transistor and show how the
equivalent circuit relates to standard equivalent circuits now used. Dynamic
effects are then added. Finally, a set of equations is developed that allows us to
derive the ABCD parameters of the complete transistor from the equivalent
circuit at any voltage and current bias and at any frequency, within wide
limits. Another set of equations is developed that allows us to find the
equivalent circuit elements from ABCD parameters, enabling us to use two-port
measurements directly to find the equivalent circuit. Calculator programs for

both equation sets are given in Appendix C.

7.1 PHYSICAL DESCRIPTION

Transistors are available in many sizes tailored to various applications from

minuscule microwave transistors to low-frequency power transistors. The

principles of operation are remarkably similar over many orders of magnitude
of collector current. To establish a clear point of reference, we focus on a

particular transistor design, an integrated circuit transistor whose horizontal

geometry is shown in the plan view of Fig. 7.2a. A sketch of the transistor

showing its vertical geometry is given in Fig. 7.2b, and a filamentary slice of

the active portion of the transistor is shown in Fig. 7.2¢. The processing steps

by which this structure is manufactured is beyond our scope here but is amply

described in the literature.'">
In Fig. 7.2a the emitter contact and the emitteritself is a stripe of length Z,

and width Y. (The coordinate directions agree with convention—the x
direction is reserved for the vertical geometry, with x increasing toward the
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Figure 7.2. A bipolar transistor in a monolithic junction-isolated integrated circuit.

collector.) To maximize the bandwidth, the width of the emitter Y, is as small
as possible, consistent with economical manufacture.® Many considerations of

the horizontal geometry are established by the accuracy with which areas can

be delineated—the minimum feature size that can be reproduced with good
yields at low cost. If we take the minimum feature size as Y,, then Y,.=Y,,.
Different features will have differing values of Y,in general, but this is beyond
the level of detail to be covered here. Where Y, is 5 um, for example, the

processing rules by which the integrated circuit are made will be characterized
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as having a 5 pm geometry. The length of the emitter Z, will be established by
the maximum collector current to be conducted, with a minimum value, of

course, given by Y,.
The base contact is made by stripes on either side of the emitter, also Z,

long. Where Z,. is longer than about 10Y,, several interdigitated stripes can be
used. For low-current transistors where Z, would be very short, a wraparound
base structure can be used, and a circular emitter is sometimes employed. The

object here is to make the ohmic base resistance small. Where this is not

important, simple rectangles can be used for both base and emitter.
The collector contact is spaced near the base contact but may be farther

than Y, away to avoid voltage breakdown laterally between the collector and

the base. The collector contact is made to a highly doped n ™ region that serves
as a low-resistance path to the epitaxial layer, which serves as the collector

region of the transistor. The epitaxial layer is a thin skin of lightly doped
silicon, grown by vapor deposition. As we shall see later, the light doping gives
the collector desirable characteristics.

In an integrated circuit the transistor is isolated from the rest of the
semiconductor chip by an isolation diffusion that interposes a reverse-biased

junction completely around the transistor, extending down to the substrate on

which the integrated circuit is made.

Vertical Geometry

The vertical geometry is that under the emitter contact in Fig. 7.2b along the

line AA’. This line passes through the active area of the transistor. From top to

bottom it encounters the emitter contact metal, the n* emitter region (n*
designates an n region of heavy doping), the p-type base region, the (lightly

doped) n~ collector epitaxial region, and the n * buried layer, which provides a

low-resistance conductive path to the collector contact. Below the buried layer

is the p-type substrate, the starting material or wafer.
The processing steps by which this vertical geometry is realized are suc-

cinctly described, for example, in Gray and Meyer.” We are interested here in

the function of each layer.

Figure 7.2¢ shows a filamentary slice of the transistor along the line AA4".

The transistor section is divided into emitter, base, collector (epitaxial), and

buried layers. The emitter depth may be as small as 0.2 pum for a microwave

transistor, or upward of 5 um for a power transistor. Base widths are of the

same order as the emitter. The collector epitaxial layer width varies over a wide

range: for microwave transistors, it may be less than 1 pm, whereas a power

transistor may have a width of 100 pm or more. Metallurgical junctions

separate base and emitter, base and collector, and buried layer and substrate.

Note that there is no junction between the epitaxial layer and the buried layer

since the semiconductor does not change conductivity type.

Derivation of Electrical Properties

Intrinsic silicon, silicon that has no impurities, conducts electricity by means of

movable charge carriers, both holes and electrons. The number of such charge
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carriers is small: there are only 1.45X 10 ~ % such carriers of each type per cubic
micrometer at room temperature. When impurities are added, the conductivity
rises. Donor-type impurity atoms that have a valence of 5 donate an electron
to the conduction process since only four of the outer electrons are needed to

complete the lattice. Similarly, acceptor atoms with a valence of 3 remove an

electron from the valence band, leaving a hole that becomes available for

conduction. In equilibrium,it can be shown that

np=n? (7.1-1)

where n and p are the densities of electrons and holes in a given semiconductor

and n, is the density of both holes and electrons in intrinsic material. If 10*
donor atoms per cubic micrometer were added to intrinsic silicon, for example,

n would increase by 10* um™? and p would decrease to (1.45X 10~ 2)?/10%=
2.1X10"% um™3. For this material, electrons are the majority carriers and
holes, the minority carriers.

When equilibrium is disturbed, the charge carriers move under two in-

fluences; (1) if the density of carriers is not uniform, a density gradient will

cause the carriers to move in the direction of decreasing density, like perfume

molecules diffusing through a room (this motion of carriers is diffusion) and (2)

when there is a field present, the carriers are accelerated by it; this is motion by

drift. The velocity of carriers in a drift field does not continue to accelerate as
it would in free space; energy is removed from the carriers by collisions with

the lattice. The process can be likened to the travel of steel balls bumping
down an inclined plane studded with nails. At sufficiently high voltages, the

velocity of carriers saturates at a value termed the scattering limited velocity.

When oppositely doped semiconductors are in intimate contact, they form a
junction. In the accepter-doped p region, holes (the majority carriers) tend to

diffuse across the junction under the influence of the density gradient since the

number of holes in the » region is extremely small. Similarly, electrons in the

donor-doped n region tend to diffuse into the p region. This process cannot

continue for long, because as the carriers move, they leave behind the fixed

charges on the nuclei of the doping atoms. An electric field is thereby created

that halts the movement of charge. This field, integrated across the junction,
produces a built-in voltage that creates a barrier to further movement of

majority carrier charge.

On the other hand, any minority carriers that find themselves near the

junction will be swept across it, accelerated by the built-in voltage. Therefore,

density of minority carriers near the junction is virtually zero.

The fundamental basis of transistor action is to introduce controlled num-

bers of charge carriers (electrons for an npn transistor) in the immediate

vicinity of the collector junction (on the base side). Once there, they will be

given energy by being swept across the reverse-biased collector junction. This is

the basis of gain in the bipolar transistor. At low frequencies the action of the

collector junction itself is virtually ideal, with all charge carriers swept across

the junction.



238 Feedback Analysis of the Bipolar Transistor

 

Emitter

depletion

n region P n

Collector

E B depletion C

region     
Po

te
nt

ia
l

—
—
—
—

 

 
 

0 Wg

X—

(a)

n, (0)

=
=°~

0 Wg

X=

(b)

Figure 7.3. Physical processes in the biopolar transistor: (a) potential diagram; (b) minority

carrier density in the base region.

The charge carriers are introduced near the collector junction by injection
across the emitter junction into the base region under the influence of an
applied forward bias potential. Once in the base, the charges diffuse toward
the collector under the influence of a density gradient. Two separate physical

processes are evident here; (1) the injection of minority carrier electrons into

the base region and (2) transport across the base region by diffusion (see Figs.

7.3a and 7.3b)

The potential diagram in Fig. 7.3a shows a large reservoir of electrons in the
emitter region, held back from flowing into the base by the potential barrier

created by the fixed charge mentioned previously. When the barrier is lowered

by applying forward bias to the emitter junction, some electrons have enough

thermal energy to surmount the barrier and increase the concentration of
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minority carrier electrons on the base side of the emitter junction. This process
is governed by Maxwell-Boltzmann statistics at ordinary temperatures; the
electron concentration is given by

np(O)anoexpzq?Vbe (7.1-2)

which states that the charge density in the base region at the edge of the

emitter junction n,(0) is exponentially related to the applied voltage across the

emitter junction V. The equilibrium charge density n,, is the charge density
with zero applied bias and is given by eq. (7.1-1) and the following discussion
as

n,=-— (7.1-3)

where N,is the acceptor doping density in the base.

Charges thus injected into the base region diffuse toward the collector
junction under the influence of a density gradient; the density of minority
carrier charge at the collector edge of the base region is virtually zero. The

equation governing this motion is the diffusion equation:

dn (x)_ p iI,=—q4,D,—2 (7.1-4) 

in which ¢ is the magnitude of the electronic charge, A4, is the area of the
emitter, D, is a constant of proportionality (in pm?/ns) called the diffusion

constant, and dn(x)/dx is the density gradient. As seen in Fig. 7.3b, the

density gradient is assumed to be constant (departure from the assumption
does not greatly alter the basic notions involved). Under these conditions we

can write

dx B
  

dn,(x) n,(0)
W (7.1-5)

in which Wy is the width of the base region. The minority carrier current can
then be written

_q4,D,n,(0) (7.16)
n WB *

Note that g is the magnitude of the electronic charge of either an electron or a

hole. The sign is carried by the assumed direction of 7,,. This equation holds for

the condition of zero bias as well as forward bias. Hence we can write an

expression for I, the saturation current, defined as the minority carrier
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(electron) current that flows under conditions of zero emitter bias voltage:

 

_ quDnnpo
I=T (7.1-7)

Substituting (7.1-2) for n,,, we have

gA.D,n} AD,n}
I= = (7.1-8)

WBNAB NG

in which we have substituted the Gummel number N for Wy N, 5. The Gummel
number is the number of dopant atoms in the base per unit area of the emitter
and is typically 3X10* atoms per square micrometer of emitter area. This

saturation current is small, indeed. For every square micrometer of emitter

area, the saturation current is only some 10 electrons per second.

Dividing (7.1-6) by (7.1-7), we obtain

1, n,(0)

Is_ n
 (7.1-9)

po

Substituting this equation into (7.1-2), we obtain the base-emitter voltage as a
function of the electron current;

v, ="y (7.1-10)

Circuit Characteristics Related to the Physical Description

When the minority carriers reach the collector, they fall over the potential drop
and appear at the collector lead as collector current, so that

1.=1, (7.1-11)

This seemingly trivial equation expresses the gain mechanism of the transistor
in idealized form and should not be dismissed lightly. This equation is not

exactly true because some of the minority carrier electrons recombine with
holes in the base region and are lost before they reach the collector. In a

water-over-the-dam analogy, this is equivalent to evaporation of the water

before it reaches the edge of the dam. The effect is negligible in most modern

transistors. Another, more important, departure to be considered later is that I,
is delayed relative to I, by the transit time in the device, taking I, as the
current at the base side of the emitter junction. For now, we use (7.1-11) in its

idealized form, so that form (7.1-10) we have the base emitter voltage as a

function of collector current;

kT 1
V, =—In-== 7.1-12be q IS ( )



Physical Description 241

 

 

   
 

   

1.0
l l I

5 2
: 0.05

S 5

0 | | | 0
108 1076 1074 102 1 100

I., mA (a)

0.05
l [ l [ /

0.02 —

8

0.01}— —

0.005 1 1 | |
0.01 0.1 1 10 100

I., mA

(b)

Figure 7.4. Variation of V), and defect current ration § with collector current.

The logarithmic relationship between V,, and I, of (7.1-12) holds over a
remarkable range of currents of a billion to one. The accuracy is limited at

high currents by emitter contact resistance, giving a linear increase in voltage

with currents in addition to the logarithmic one. Also, at high currents

high-level injection effects increase the slope of the V,,/I, curve by a factor of
roughly 2. The plot in Fig. 7.4a shows the relationship. The error curve gives a
typical departure from the logarithmic relationship.

Base current arises in modern transistors primarily by injection of holes
from the base into the emitter. This is also shown in the potential diagram in

Fig. 7.3. Holes are majority carriers in the base, and they encounter the same
voltage barrier (in the reverse x direction and with opposite polarities) as for

electrons. Therefore, we might expect an analogous hole injection into the

emitter, governed by an equation like that of (7.1-2), except that the densities
are hole densities rather than electron densities. These holes must come from

the base contact since there are essentially no holes in the collector. Thus the

injected hole current becomes the base current, or the “defect” current. In

good transistors, this current is held to a minimum by doping the base more
lightly than the emitter. In this way, the density of holes (majority carriers) in

the base is much smaller then the density of electrons (majority carriers) in the

emitter. Thus, we can write

N
I,,:Kjvfllc_:é‘](. (7.1-13)

DE

where N, is the impurity (acceptor) density in the base and Nj. is the
impurity (donor) density in the emitter. The term K is a constant, given
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roughly by

— WD,

K— LeDn

(7.1-14)

in which D, is the diffusion constant for holes in the n-type emitter, D, is the
diffusion constant for electrons in the p-type base, Wj is the width of the base,

and L, is an analogous quantity for the emitter. It is the diffusion length for
holes in the emitter; since the emitter is heavily doped and the population of
electrons is high, holes reaching the emitter region tend to recombine with

electrons before they reach the emitter contact.

The defect current ratio is not constant with collector current; a typical
variation is given in Fig. 7.4b, which shows that § increases at extremes of low
and high currents. At low currents there is an increase in recombination in the
emitter depletion region, primarily near the surface of the semiconductor.®
When the density of minority carriers injected into the base becomes

sufficient to be comparable with the density of acceptor atoms in the base,
performance begins to deteriorate. A good way to grasp this intuitively is to
consider that the minority carrier charge passing through the base region acts
effectively to increase the effective acceptor doping density in the base region
(remember that the acceptor atoms have a negative fixed charge, which is

effectively increased by the minority carriers). It does not matter whether the
minority carriers are flowing—they still change the character of the base
region in the same way as do the stationary acceptor atoms. That is to say, the
number of holes in the base is increased (by charge neutrality). This causes

increased hole injection into the emitter (see Fig. 7.3b) with its consequent
increase of the defect current. Hence § increases under high-level injection
conditions. This was first noted by Webster® and is termed base region
conductivity modulation. (As the doping density rises, so does the conductivity.)

The three key concepts of the bipolar transistor are expressed by egs.
(7.1-11), (7.1-12), and (7.1-13). They are summarized in an historical account of

the development of the transistor by one of its inventors.!? In his words, they

are the following:

1. Minority carrier injection into the base layer which increases exponen-
tially with forward emitter bias,

2. Application of reverse voltage at the collector junction,

3. Favorable geometry and doping levels so as to obtain good emitter to
collector efficiency.

7.2 STATIC EQUIVALENT CIRCUITS

The three key concepts are represented in Fig. 7.5; in Fig. 7.5a current flow in

the silicon semiconductor is shown, and in Fig. 7.5 each of the three effects is

represented by an equivalent circuit element in the static case. The reverse-
biased collector junction is represented by the ideal amplifier; when minority
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Figure 7.5. Representation of the three key concepts of the transistor: (a) current flowing in
silicon; (b) an equivalent circuit representation.

carriers reach the base side of the collector junction (represented by the
common lead of the ideal amplifier), they disappear, leaving no trace in the

base circuit. In the act of “falling off the edge,” they produce neither any base

current nor any base-emitter voltage.*
Thus the ideal amplifier is a circuit representation of the collector junction

and its action is described by eq. (7.1-11). The diode in series with the common

lead represents the emitter junction and produces the base-emitter voltage,
given by eq. (7.1-12). The incremental resistance of this diode is r,, the emitter

resistance; this resistance is a feedback resistance because it returns a signal

(voltage) to the input in proportion to the output signal (current). The

dependent current generator connected in shunt with the input represents
the hole injection into the emitter, given by eq. (7.1-13). It is proportional to

the collector current (through the defect current ratio) and is likewise a

feedback generator, returning a portion of the output signal (current) to the

input (as a signal current).

*This is an approximation, but a good one. We explore departures later when we consider the
effects of collector voltage.
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Figure 7.6. Development of the relationship between the Ebers-Moll transport model and the

circuit in Fig. 7.5b (forward-active operation).

The transistor may be considered to be a feedback structure, in which the
ideal amplifier representing the collector junction is the forward path and both
the emitter diode and the defect generator are feedback elements. Thus the
circuit in Fig. 7.5b represents the three key effects in the transistor with 1:1
correspondence between the equivalent circuit elements and the physical
phenomena, with transistor action specifically represented by the ideal ampli-
fier. This brings us to a clearer view of anticausal analysis; the feedback

elements entirely determine the characteristics of the transistor; without them,

the ABCD matrix is null. By analyzing the feedback paths causally, that is,

from output to input, we find the values of the two-port parameters. Since we

think of cause and effect flowing from input to output, the analysis is called

anticausal, but it is worthwhile noting that causal evaluation and summation of

feedback path signals define the method.

Relationship to the Ebers-Moll Model

The representation in Fig. 7.5b is fully equivalent to the Ebers-Moll transport*

model of the transistor biased for forward-active operation, that is, with

*The term “transport model” is used here to distinguish it from the injection model; the latter is the

model originally proposed by Ebers and Moll. The distinction between the two is described in

Reference 11, and the advantages of the transport model are pointed out.
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reverse-biased collector and forward-biased emitter. This circuit is shown in
Fig. 7.6a. “In this latter circuit, which has formed the basis for much transistor

modeling, a collector current is represented by a current generator, and the
current flowing through the emitter diode includes both the hole and electron
currents; the voltage across the emitter diode is assumed to be created by
electron current acting alone. It is an awkward circuit because too much is left

for interpretation that is not specifically given in the circuit itself. Since the

circuit has been widely used, it is worth relating the new circuit to it.

Thefirst step is to remove the hole current from the diode, simply by placing
a dependent defect-current generator around the diode as shown in Fig. 7.6b.
When this is done, the current through the short circuit between nodes B and
B’ is identically zero. This short circuit shares the qualities of an open circuit;
the short circuit cannot be removed, however, because the voltage between B

and B’ must be identically zero. The element required to replace the short

circuit is the nullator, introduced by Carlin.* It is a pathological element that

simultaneously constrains the voltage across it and the current through it to be

zero.
The current generator I, representing the collector junction is also inap-

propriate. By labeling the generator /,, we make its current arbitrary—an
independent variable. The voltage across it (or across any current generator) is
also arbitrary. This element precisely fits the definition of a norator also
introduced by Carlin. He defined it as a two-terminal singular (pathological)

element whose voltage and current are both arbitrary. Replacing the short
circuit by a nullator and the current generator by a norator, we obtain the

equivalent circuit in Fig. 7.6c. The use of the nullator and the norator to
represent the transistor was first recognized by Mitra'? and has been discussed

by Moschytz."
Where a nullator and a norator are combined as in Fig. 7.6¢, they form a

nullor, or an ideal amplifier. As pointed out by Carlin, whereas the nullator

and the norator are pathological elements, the nullor or the ideal amplifier is

not. Its use in the transistor equivalent circuit makes the addition of various
circuit and parasitic effects in the transistor particularly easy to accommodate.

By putting the transport model on a firmer circuit theoretical basis, we have
transformed it to the equivalent circuit in Fig. 7.5b.
A corresponding small-signal equivalent circuit is given in Fig. 7.7a, drawn

by replacing the diode by its dynamic resistance and the generator by its

small-signal equivalent. The difference between the large- and small-signal
defect current generators is not great; in most designs the difference can be

neglected.

The two-port ABCD matrix for this simple model is given directly as

S 121
*See Reference 7 of Chapter 6.
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Figure 7.7. Small signal equivalent circuits cor-
responding to the Ebers-Moll model.

 

As noted in Chapter 1, these equations can be integrated to obtain the
nonlinear behavior of the transistor by replacing r, and § by their respective

functions of collector current. Only the boundary conditions have been lost in
deriving the small-signal model.
Two small-signal equivalent circuits often used for conventional analysis are

shown in Figs. 7.7b and 7.7¢c. In Fig. 7.7b the functions of the ideal amplifier
(collector junction) and the emitter diode resistance are combined to form a
dependent g, generator, (g, =1/r,). Separate representation of the collector
junction is inconvenient or impossible in the conventional formulation because
of the infinite gain involved. Defect current is represented by a resistance
connected from base to the common lead and has the value 1/8g,, or h,r,.
Similarly, the circuit in Fig. 7.7¢ combines the function of the (ideal) collector
junction with the feedback of the defect generator feedback in a current-

controlled current source i,/8, or h,i,. Base-emitter input voltage arises by
connecting a resistor in series with the base lead.

Although all three circuits in Fig. 7.8 give the same answers to network

problems, the conventional circuits are thermodynamically incorrect in predic-

ting too much noise. There is shot noise associated with both the collector and
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Figure 7.8. Static collector characteristics of two transistors: (a) light collector doping [Np- =
10%um™3, N,g=10"um™ 3 Wy(5V)=03 pm]; (b) heavy collector doping [Npc=10% pm™?,

N,g=10° pm~3, Wg(5V)=0.3 pm].

base currents, but no thermal noise as would be expected in the circuits in Figs.
7.8b and 7.8c. We discuss the subject of noise in devices in Chapter 11.
The circuit in Fig. 7.8a is appropriate for anticausal analysis and can be

used to define a reference condition for the transistor. The reference condition
is obtained by setting feedback effects elements r, and § to zero, giving an
ABCD matrix that is null. This is an example of an extremely useful type of
equivalent circuit and associated matrix; we term it the null reference equivalent
circuit.

7.3 EFFECTS OF COLLECTOR VOLTAGE

The equivalent circuit and two-port parameters derived in Section 7.2 are

completely insensitive to collector voltage and must be considered approxima-

tions. There are three effects of collector voltage on the static characteristics of

transistors:

1 Early effect, in which the width of the base region decreases as the

collector voltage increases (the width of the collector depletion layer

increases with voltage).
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2 Saturation, where the reverse bias on the collector voltage is insufficient
to prevent injection of minority carrier electrons from the collector into

the base region.

3 Avalanche multiplication, which causes breakdown of the collector junc-
tion at sufficiently high voltages.

A fourth effect, encountered where the collector is highly doped, is punch-
through, in which the base narrows so much due to Early effect that the
collector reaches the emitter. We concentrate first on Early effect since this
affects the characteristics of the transistor over the entire useful operating
range of collector voltages. Saturation and avalanche effects tend to set limits

on signal voltage excursion at the collector; these are discussed in the para-
graphs that follow.

Early Effect

As described in Section 7.1 the field across the collector junction is provided
by fixed charge of the dopant atoms caused by diffusion of the movable charge

across the junction barrier. Movement of this charge stops when enough fixed
charge is “exposed” to create this field. As the collector voltage is increased,
increasing amounts of fixed charge must be so exposed, so that the depletion

region—the region devoid of movable charge—must widen to support the

increased voltage. Where the doping is light, more movement of the depletion

region is required to expose a given amount of charge. In most transistors, the
collector is more lightly doped than the base, so that the depletion region
widens primarily into the collector. Nevertheless, movement into the base does
take place, so that the base width becomes narrower as the collector voltage is

increased.

The chief effect of this narrowing is to affect the diffusion of carriers across
the base. According to eq. (7.1-6), as Wy becomes smaller, the minority carrier

current I, increases for a given value of n,(0). Since n,(0) is set by V,,, the

minority carrier current (or the collector current) must increase for a fixed
value of V.. Hole injection into the emitter is unaffected by the base width, so
that the defect current— the base current—is likewise unaffected. This can be
seen graphically in the static characteristics of two transistors plotted in Fig.

7.8. In Fig. 7.8a the transistor is of the normal variety in which the collector

doping level is lower than that of the base (by a factor of 10 here). The
transistor in Fig. 7.8b is of a different type* in which the collector doping is 10

times higher than the base doping. In each case the tangent to the static
characteristics (drawn for constant values of base current) intersects the

current axis at a voltage of —V,, called the Early voltage. Although this

voltage varies with collector voltage and current, it is roughly constant for a

given transistor. In Fig. 7.9a V, 1s 35 V and in Fig. 7.9, 7 V.

From the geometry of these characteristics we see that we can model Early

effect by adding a shunt conductance between collector and emitter, as shown

*This is isoplanar transistor, a proprietary process of Fairchild Semiconductor, Inc.
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Figure 7.9. Derivation of collector conductance from geometrical considerations. The effect on

the equivalent circuit is shown in part b.
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in Fig. 7.9b. The value of the conductance is given by the geometry in Fig. 7.9a

as

= I 7.3-18ce™ VA+I/('e ( -7 )

The increased minority carrier current (or collector current) is seen to pass

through the external conductance rather than through the transistor model

itself. In this way the base-emitter voltage relationship is preserved while the

collector (and emitter) currents are increased by the amount observed.

In terms of the transistor geometry and doping levels, it can be shown that

the Early voltage can be expressed by the equation

Vit V.= gNGWTC (7.3-2)

where Nis the Gummel number in the base and Wis the width of the
collector depletion region; ¢q is the magnitude of the electronic charge, 1.6 X

10 ~7 pC, and e is the dielectric permittivity in silicon, 1 X10~* pF/um. The
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width of the depletion region is given by

 
2eV 1/2

‘ ) (7.3-3)W.. .=

re (qNPC

in which N,is a function of the base and collector doping, given by the sum
of their reciprocals

1
+ (7.3-4)

1 1

NPC NAB NDC

where N, is the donor concentration in the collector region. The curves shown
in Fig. 7.8 were drawn by applying these equations but are typical of measured
static characteristics. Equation (7.3-3) assumes uniform doping levels in the
base and collector. Although this is not a good approximation to the actual
doping profile, the results given here are not greatly affected. For example,
with V,,=3 V, N,,=10° um~3, and Np-=10* pm~?3, the depletion width is
0.64 pm from eq. (7.3-3). Then, from (7.3-2), with N;=3X10%, V,+V,,=31V,

and V,=28 V.
The effect on the ABCD matrix of the Ebers Moll transport model is found

simply by post multiplying its ABCD matrix by that for the shunt conduc-
tance:

Ube _ 0 re 1 0 vce

[ib]__[o 6”gce IHic] (7.3:5)
vbe regce re vce

[ ie ]:_[Sgce 6 ][ iC } (73_6)

If we replace r, and g, by their functions of current and voltage, we obtain

 

: il
be q(V_+_) ch ce

= (7.3-7)
i olc 8 i
’ VitVe ¢

Suppose that a transistor operating at V.z=3.0 V and /-=1.0 mA has

6=0.01 and V,=20 V. It should thus have an ABCD matrix at room
temperature, from (7.3-7), of

T,(0)=~—
[ 0.00113 0.026 k (7.3-8)
0.00043 mS 0.01

Is this an accurate picture of the low-frequency two-port parameters of a

transistor? Two-port measurements were made on a microwave transistor with
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Figure 7.10. Comparison of measured and calculated A BCD parameters of a microwave transis-

tor for currents in the range 0.01-30 mA at dc.

2.5 pm geometry at low frequencies with the results shown in Fig. 7.10;
agreement is close to the calculated values even without accounting for the
variation of ¥V, with collector current. At high currents B departs from the
calculated values because of emitter contact resistance r,, as does 4.

Saturation

In a topological sense the transistor is symmetrical—a base region sandwiched

between two junctions. By reversing the voltages on both junctions, we convert

the emitter junction to a collector junction and vice versa. In this reverse-active

operation, the transistor is a poor one because it violates the third of the three

key concepts listed in Section 7.1; the geometry and doping levels are distinctly

unfavorable in most transistors. The collector junction is usually not doped

more heavily than the base; when it is made into an emitter by application of

forward bias, the emitter efficiency is small and the dc current loss is large.

Hole injection across the forward biased collector junction is consequently

high, with values of the defect current ratio §, typically greater than unity.
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Figure 7.11. Operation in the saturated region: (a) hole and electron flow; () equivalentcircuit
as the superposition of two transistors; (c¢) equivalent circuit for operation at edge of the

forward-active region.

In the saturated region forward bias is applied across both junctions

simultaneously, so that electrons are emitted across both junctions as shown in

Fig. 7.11a. The analysis of this more complicated case is eased by the concept

of superposition. As in normal, forward-active operation, electrons crossing the

emitter junction are collected by the collector junction, even though the

collector bias is not in the reverse direction. Collector action takes place
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because of the built-in voltage at the collector junction: as long as the forward

bias is smaller than the built-in voltage, a small potential hill exists, allowing
the electrons to be collected. (Such a small potential hill exists at the emitter
junction in Fig. 7.3, for example.)

The same situation exists for electrons emitted across the collector junction,
now forward biased. For these electrons, the small potential hill at the emitter

allows their collection. In effect, we have two transistors in one, with electrons

being emitted across both junctions and being collected by their opposite

counterparts. The fact that their effects can be superimposed was first recog-

nized by Ebers and Moll, who then developed the equivalent circuit bearing
their name. The circuit is shown in Fig. 7.11b, modified from the original by
the development given in Fig. 7.6. In Fig. 7.11a, electron and hole currents
for the two transistors are shown schematically, with the minority carrier
concentration diagrams shown separately for the two, along with their super-

position. The equivalent circuit is shown in Fig. 7.11b. When the collector is
reverse biased, the lower transistor becomes inoperative and disappears from

the circuit. Typically, §, is greater than unity, and the currents supplied by the
lower transistor to the base and collector of the upper transistor are of the
same order of magnitude.

From the standpoint of the junction voltages, the regions of operation are
shown in Fig. 7.12, which plots V,, against V,, for various values of collector
current. Normal operation of the transistor occurs in the relatively narrow
shaded area in the first quadrant; inverse operation is shown in the similar

shaded area in the third quadrant. In either case normal operation extends a
little way into the second quadrant, but this area is dominantly controlled by
saturation. Below and to the right of the shaded regions is the cutoff range.
The remainder of the V,,—V,, plane is the burn-out region: if a transistor is
measured to be operating in this region, you may be sure it is burned out since

a healthy transistor cannot sustain forward voltages of more than 0.8—-1.0 V.
The facts represented by Fig. 7.3 are a useful aid to troubleshooting. By dc
measurement of V,, and V,,, the region of operation of a given transistor in a

circuit can be established and an estimate ofits health made.
We are concerned mainly with the effect of saturation as it affects the limits

of operation in the forward-active region. In this region, when the collector

voltage becomes sufficiently low, the lower transistor in Fig. 7.11b begins to

conduct. Since the contributions of this transistor are roughly the same at both

base and collector of the upper transistor and the base current is two orders of

magnitude less than the collector (by the factor §,), the only significant effect

is on the base current. We can represent the effect of saturation on operation

at the edge of the forward-active region by the circuit in Fig. 7.11¢, in which

saturation is represented by an added current generator §,/, connected from
base to emitter. To complete the equivalent circuit, we must now find /, in

terms of the collector current and voltage. Although the 4,1, generator is
actually connected between the base and the collector, which can be repre-

sented by two identical current generators, one from base to emitter and a
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Figure 7.12. Operating regions of the biopolar transistor.

second from emitter to collector, the second generator can be ignored, sinceit

is small compared with the collector current.

From eq. (7.1-10) we can write for the forward transport current

 

 

qVpeI=Igexp k7b” (7.3-9)

Similarly, for the reverse transport current, we have

qv.I.=Igexp — ka (7.3-10)

Note that I is the same for the two equations; I is a property of the base

region, in common for the two junctions. Since V=V, —V,,, the latter
ce
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equation can be written

 

 

v, V
I,=Isexp qkj”f’ exp — T]C‘E

_ qVee=1I,exp— T (7.3-11)

vV
=]exp—% (7.3-12)

which gives the reverse transport current in terms of the collector-emitter
voltage of the intrinsic transistor—the voltage not including voltage drops in
bulk resistances, notably the collector series resistance.

The effect of saturation on the ABCD parameters is found immediately from
(7.3-12). Since the input generator is

 

Ib=8IC=6fIf+6,I, (7.3-13)

we have

o gVD=§,+8,exp T (7.3-14)

Hence the effect on D is to add the second term on the right (reversed in sign
to agree with the output current sign convention). Although §, is large, the
exponential term causes it to disappear for even a small positive V_,. Satura-
tion also affects C since the input current is a function of the collector voltage.
We find C by taking the partial derivative of the base current with respect to
v
ce*

__ 54l qVee
C= Texp KT’ V.>0 (7.3-15) 

Saturation is thus characterized by a sudden increase in the magnitude of both
C and D and establishes a sharp limit on signal excursion at low collector
voltages. The increase is due to a large amount of highly nonlinear feedback of

both output voltage and current to the input current.

Avalanche Multiplication and Breakdown'*

At sufficiently high electric fields in the junction depletion region, hole-electron

pairs are generated by impact ionization. This occurs chiefly at the metallurgi-
cal junction, where the field is highest. When a hole-electric pair is generated,

the field causes the hole to accelerate toward the base region. If it reaches the

base, it contributes to the base current; similarly, the electron accelerates

toward the collector, where it contributes to the collector current. As they
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Figure 7.13. Avalanche breakdown voltage as a function of the doping densities on either side of
the junction.'* For high doping levels, breakdown is by field emission or tunneling,'®

move, they may collide with an atom in the lattice. If they have gained enough
energy, they may loosen one of the bound electrons, creating another hole-

electron pair, which also contributes to the flow of holes to the base and
electrons to the collector. Avalanche breakdown occurs when the field becomes
sufficiently high that the junction voltage no longer increases with the current
through it. The breakdown voltage is a function of the doping level on either
side of the junction; the relationship is shown in Fig. 7.13, which plots the
breakdown voltage as a function of the composite doping level N,, given by

 

_ NyNpNp= N, TN, (7.3-16)

The breakdown voltage is given by the empirical equation

2

Ver= = 40 (7.3-17)
2gNp 1+ 11og(10/N,)

At high doping concentrations, field emission or tunneling breakdown occurs
before avalanche breakdown. This is discussed further in the paragraphs that

follow.

At voltages much lower than breakdown, avalanche multiplication causes

significant changes in transistor characteristics. Empirically, the process is

described as a multiplication of the collector current by a factor M given by
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Figure 7.14. (a) Effect of avalanche multiplication represented as a current generator; (b) effect

on equivalent circuit.

Miller’s formula'?

1
- 3<n<7 7.3-18

1_(Vce/VBR)n ( )

Since the change in collector current is equal to the change in base current, the
effect can be represented as shown in Fig. 7.14a, by a current generator

between collector and base that has the value (M—1)I. The total current
flowing into the collector is MI.. The change in base current alters the
operation of the transistor long before a significant change in collector current
occurs, just as for saturation discussed previously. Therefore, the equivalent

circuit in Fig. 6.4a is a good approximation; the change in base current due to

avalanche multiplication is then given by

Vee |
AIh:— m 1(, (7.3-19)

which is a function of both V_, and /.. As for saturation, both C and D are
changed:

   
oI (v, \""C=—t =— 2T ( ) (7.3-20)
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and

Vee |D=1’ 0—( VBR) (7.3.-21) 

where §, is the current defect ratio in the absence of avalanche multiplication.
Note that the base current vanishes when §,=(V,./Vzz)"; the voltage at which
this occurs is called the sustain voltage, given by

Vsus:6(])/nVBR (73'22)

The effect of avalanche multiplication becomes important under high-voltage

conditions. Its effect on circuit design is illustrated in the discussion of output

stages in Chapter 8.

7.4 DYNAMIC PHYSICAL EFFECTS IN THE BIPOLAR TRANSISTOR

In this section we describe the physical effects in the bipolar transistor that
affect accurate modeling of high-frequency performance. We are interested in
the transit time and junction capacitances as well as the variation with
collector current and voltage of these parameters. We can then develop an
equivalent circuit suitable for a wide range of biases and frequencies, from dc

to the vicinity of current gain cutoff.

Transit Time

Minority carriers traveling across the base region constitute a “block™ of

moving charge. The amount of charge involved can be calculated by integrat-
ing the charge density over the volume of the base region under the emitter.
The charge density is given by the plot in Fig. 7.3c; the cross-sectional area of
the emitter is A, and the base width is Wj. This block of charge must be equal
to the product of the minority carrier current and the base transit time, so that
we can write

n (0
TBIn:quWB—-——pé) (7.4-1)

where n,(0)/2 is the area under the plot in Fig. 7.3¢ and 5 is the base transit

time. Substituting the expression for I, from (7.1-6) into this equation, we

obtain the base transit time as

W2

=3l;’ (7.4-2) 

This expression is correct only for the case of uniform base doping and

low-level injection. In most transistors the carriers move under the influence of
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an electric field as well as by diffusion. When this is taken into account, the

minority carrier density departs from the straight-line relationship in Fig. 7.3c.
This is usually accounted for by an additional factor n in the denominator,
which has a value between 1 and 5:

Wy
BT D,
 (7.4-3)

It can be shown'® that 7 is given in terms of the acceptor concentrations at the
emitter junction N,5(0) and at the collector junction N,z(W3) by

_ In(k)’
n—m (74-4)

where

Where k=10, for example, =2, so that the transit time is halved by the

presence of a field. With N, z(0)=10° p~3 and N, z(W;)=10* pum~? and an
average diffusion constant of 2.0 pm?/ns, a base width of 0.3 pm would yield a
base transit time of 0.011 ns.

In the collector depletion region the electrons move at the scattering limited

velocity v, =100 pm/ns, so that the transit time of carriers through this region
is

T, =— (7.4-6)

where Wiis given by (7.3-3). The transit time is not the signal delay through
this region. Unlike the base transit time where the signal delay and carrier
delay are the same, the signal current at the collector is created by the
movement of the collector-side edge of the depletion region. This movement
begins at the instant that electrons enter the depletion region from the base.

Electrons entering the collector depletion region induce a charge on the

opposite side of the region. This takes place at the speed of light, virtually
instantaneously, so that the delay through the collector depletion region is less

than the delay of carriers. A step change in the minority carrier current
entering at the base will cause a ramp of output collector current until the
wave front of the step reaches the collector edge of the depletion region, as

shown in Fig. 7.15. Therefore, the average delay of the carriers is only one-half
the transit time. With a depletion width of 1.0 um, for example, the delay

signal delay through the collector depletion region would be 1 /(2X100)=0.005

ns. Adding this to the previously calculated 0.011 ns of base transit time gives
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a total transit time through the base region and collector depletion region of
0.016 ns.

Kirk Effect'”- '8

We have seen in the preceding paragraphs that the presence of minority

carriers in the base acts to increase the effective base doping level (Webster

effect). When these same minority carriers enter the collector depletion region,
they become majority carriers and act to reduce the effective doping density
there. When the minority carrier density entering the collector depletion region

becomes greater than the collector doping level, this collector region is trans-
formed into a part of the base region! In effect, the base region is pushed out

toward the collector. Since this increases the base width, the base transit time is

increased. Furthermore, as the effective doping density in the collector deple-

tion region is reduced, the latter region widens. Transit time 7, increases, at

least until the depletion region widens into the buried layer. (The higher

doping density in the buried layer effectively stops this movement.) Figure 7.16

illustrates both effects: a typical net doping profile is given for both zero

collector current and for a collector current large enough to make the density

of moving carriers in the collector depletion region equal to half the collector

doping density.

Metallurgical junction
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Figure 7.16. Change in effective doping density in the collector due to electron flow,illustrating
Kirk effect.
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The Kirk current i1s defined as the current that effectively cancels the
collector doping. It can be estimated by assuming a carrier velocity equal to the
scattering limited velocity in the collector depletion region, so that

IKirk:quNDCvx (74-7)

For Np=10% pm™? and 4,=500 pm?, for example, I,=80 mA. The details
of the increase of transit time with collector current depend on the shape of the
doping density in the collector, but a good general rule is that 7, increases
according to the expression

 (1) =1 (low)

 

1+ ( L )2] (7.4-8)
IKirk

for currents well below the Kirk current.

The transit time is also a function of collector voltage; as the collector

voltage is increased; the base region becomes narrower and the depletion

region widens. The net effect is to shorten the transit time. The effect can be
modeled by the equation

V)=(V)| 32 )F’ (7.49)
ce2

 

in which the constant I'. is to be determined by measurements at different
voltages. A typical variation of 7, with voltage is shown in Fig. 7.17, for which
I'. is approximately 0.18.

Collector Junction Capacitance

The junction capacitances are given by the standard parallel plate capacitance
formula, C=¢€A/d, where ¢ is the dielectric permittivity in silicon, 1X10~*

pF/pm; A4 is the plate area; and d is the distance between the plates, in this
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Figure 7.17. Typical variation of 7, and collector capacitance with collector voltage.
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case the width of the depletion region. Thus

€A,
 

 

C.= W (7.4-10)

and

€A,
C.= W, (7.4-11)

For the collector, the depletion region width is given by

2¢(V,,+9..) |'/?
re= [————6(> ¢“)} (7.4-12)

qNpc

2¢V.\'/?
=| === 7.4-13

( qNpc ) ( )

where Np- is given by (7.3-16), and ¢,is the collector “built-in” voltage. This
is the equation for a step junction; a graded junction would have a variation
with voltage to the one-third power. In practice, the variation of collector
voltage is determined experimentally, and the collector capacitance variation
with voltage is determined by

Vo €
C}C( Vce2 ) - QC( I/cel ) ( 7(—‘1 )

ce2

(7.4-14)

where I'- is the collector grading coefficient, usually 0.33-0.5. Typical variation
is shown in Fig. 7.17.

Emitter Junction Capacitance

The emitter junction is a step junction, for which the depletion width is

2€(¢ie—Vbe) 172
Wepe=|———— 7.4-15
T [ qN,5(0) ( )

in which we have made the (very good) approximation that Npp=N,4(0),

where the latter is the base doping density at the emitter edge of the base
region. The emitter is doped so heavily relative to the base that the approxima-

tion is valid. Combining (7.4-15) with (7.4-11), we have

€qN, B(O) ]1/2
Cje:Ae[m (7.4-16)
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Notice that C, is insensitive to collector voltage but is a function of collector
current through V,,.

Evaluation of (7.4-16) poses two problems: we must evaluate both N, g(0)
and ¢,,—V,,. We can estimate N,g(0) from the emitter breakdown voltage
BV, shown in Fig. 7.13." At base doping densities above about 7X 103
pm~ 3, breakdown occurs by field emission. Transistors are usually designed to
avoid this region since operation under field emission breakdown conditions
tends to cause an irreversible increase in the defect current. In the avalanche
breakdown region, the curve in Fig. 7.13 can be modeled by the equation

 

70 \2°
N, (0 :3.2><105(—'—) 7.4-17AB( ) BVEBO ( )

The voltage ¢,,— V,, 1s obtained from the relation

kT, Npg—V,,=—1In 7.4-18
¢1e be q np(()) ( )

where N, is the emitter doping density, about 2X 107 pm™?, and n,(0) is the
minority carrier density at the emitter edge of the base region. We can find
n,(0) from eq. (7.1-6), substituting I, for I,

1CWBn,(0)= 2 (7.4-19) 

for uniform base doping. Where the base doping is nonuniform, we can
substitute N;/N,5(0) for Wy. Thus

A
b~ Vbe=k71Tln —’}- (7.4-20)

C

where I'; is a function of the doping and geometry and is given by

_ qNDENAB(O)DnN, (7.4-21)Iy

With D,=1.2 pm?/ns, Np2X 107 pm™3, N, 5(0)=3X10° pm™?, and N;=3 X
104 pm™ 2, T=40.
Combining egs. (7.4-16), (7.4-17), and (7.4-20), we obtain for C,

 

€q 1/2 70 1.25

C.,=4004, (—) 7.4-22
/ (kT/q)ln(FEAe/Ic)] BVpo ( )

This equation expresses the dependence of C,, on the collector current (or more
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Figure 7.18. Emitter junction capacitance as a function of collector current calculated from
(7.4-23).

accurately, on the current density) and can be written

 
B FEAe)_]/z( 70 )l,25

G 0.0lAe(ln I BV, (7.4-23)

at room temperature. The variation of C;, with collector currentfor a transistor
with 4,=250 pm?, T;=40 and BV,z,=7.0 V, is shown in Fig. 7.18. The
dashed curves are intended to illustrate the sensitivity of C,, to I'; and do not
necessarily represent practical transistor designs. These curves show C;, when
', is changed by an order of magnitude in either direction.
The term C,is usually modeled as a function of V,, rather than I, as used

here. Although the V,, functional dependence is direct, it is inappropriate in
the forward bias region. This is because the sensitivity of C,, to V},, is relatively
high, giving rise to unnecessary inaccuracy in its estimation. It has often been

noted that with enough forward bias, C;,, becomes infinite. This occurs when
¢,.,— V). goes to zero; clearly, this can not occur until the injected minority
carrier density is equal to the emitter doping density. At this point the collector

current is far above the Kirk current (since N,;>N,); thus the transistor
is not operative. Attention to modeling this portion of the C,, versus V,, curve
is therefore unnecessary. The difficulty is automatically avoided when C, is

expressed in terms of either charge densities or collector current rather than in
terms of V..

Summary of Bias Dependencies

This completes the analysis of the elements that control high-frequency behav-

ior in the transistor and their variation with bias. The variation of r,=kT/ql,
with current will also affect the performance at high frequencies and will

dominate the variation of parameters with bias at low currents.
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Table 7.1 Variation of Equivalent Circuit Parameters with Transistor Size

and Collector Bias
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The variations of the equivalent circuit element values with bias are sum-

marized in Table 7.1. Also included in this table are the variations of these
values as the horizontal geometry of the transistor is scaled; these variations

are approximate but are useful in optimizing transistor size in an analog
integrated circuit.

7.5 BROADBAND EQUIVALENT CIRCUIT

The purpose of this section is to obtain a set of equations for the ABCD
parameters in terms of the equivalent circuit parameters and also to derive the
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equivalent circuit parameters in terms of the ABCD parameters. Both descrip-
tions are useful: the ABCD description can be used directly in circuit design,
but it must be determined under the bias conditions of the circuit. The
collector voltage and current are directly related to the equivalent circuit
parameters, as we saw in Section 7.4.

Rather than measure the transistor ABCD parameters at each bias condition
used in the circuit, we can evaluate the ABCD parameters at one or two bias

conditions and translate these ABCD parameters to equivalent circuit parame-
ters. We can then revise the equivalent circuit for the desired bias condition
and calculate the ABCD parameters under the new bias condition.

For analog integrated circuit design, the characteristics of the transistor must
be accurately determined since mistakes are costly. This evaluation need only
be done once, however, if an accurate equivalent circuit is developed along
with an accurate evaluation of the bias dependencies defined in Section 7.4.
The equations developed in this section for translating back and forth between

the ABCD and equivalent circuit parameters are programmed for the calcula-

tor in Appendix C.
A complete functional equivalent circuit that models the two-port parame-

ters with good accuracy from dc to well beyond the unity loss frequency is

given in Fig. 7.19a. Since we rarely need an equivalent circuit to such high
frequencies, we derive from it the simpler circuit shown in Fig. 7.19b, good to
about w;/3. We use the more accurate circuit as a guide to developing the
simpler circuit. Where analysis and design are limited to less than w;/10, the
delay terms in the generator of in Fig. 7.19b may be dropped, giving phase
errors in the range of 2-6°.
To show transit time delay schematically, the circuit in Fig. 7.19a includes a

delay line (represented as a small piece of coaxial cable) in the common lead of
the ideal amplifier with an amount of delay, 75+ 7,/2=7. From the transit
time argument in Section 5.3, this delay line causes a base current component
to flow equal to 7zsi, and also includes a delay equal to 75/2 if dispersion in
the delay line is ignored. The emitter junction capacitance C, is connected

from base to emitter; the current through it is induced by the voltage across r,,

which i1s

vy, =r,ei, (7.5-1)

The current through C,, adds to the base current.

Development of 7, and 7,

The total transit time from emitter to collector is increased by the time

constants of two RC sections illustrated in the transistor common base

equivalent circuit in Fig. 7.20. The first consists of the r,C, section at the
emitter, whose current loss is 1 +7,C,,s. Since the time constantis small, we can
approximate it (as in Chapter 5) by the delay term e’-“*. Similarly, the bulk
collector resistance between the depletion layer and the collector contact and

the collector junction capacitance give a collector delay equalto r.C,.
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Figure 7.19. Broadband equivalent circuits for the bipolar transistor: (a) complete model,

accurate to beyond f; (b) simplified model, accurate to about f/3.

Transit time delay may be combined with the emitter time constant r,C,, and
the collector time constant r,C,. to give a total emitter-to-collector delay of

Tx7.=r,C, +t 15+ 5evje +rc(jjc (75'2)

where 7 includes the collector time constant r,C,.
When the transistor is connected in the common emitter configuration, the

input loading term of C,, is in parallel with C,,, giving an additional term

proportional to frequency. When this is added to 7,, we obtain the common
emitter unity gain time constant 7., given by

Tr=1,=rgC, (7.5-3)
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Figure 7.20. Development of 7, as a cascade of delay terms.

The variation of 7, with collector current is dominated at low collector currents
by the emitter time constant and at high currents by Kirk effect. The variation

of 7, with collector current is shown in Fig. 7.21.
If we are interested in separating 7 from 7, we can do so by measuring D

or 7, at two (or more) collector currents; we then form the products of 7, and
the current at which it is measured:

kT
e=Tele 7(qe+cjc)

kT
Tradley=Trler T 7(C}e+ C.) (7.5-4)

Subtracting the two equations, we obtain

Io—7p1o= TTIICI_;T2 C2 (7.5-5)
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Figure 7.21. Variation of 7, with collector current, showing the effects of emitter time constant at
low currents and Kirk effect at high currents. The circles are measured points.
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This equation omits the effects of high-level injection, so that the currents
should not be too high. Alternatively, we can modify the equation to take this
into account. It is not difficult to show that if I, is the Kirk current, then

_ Tridley =Tey (7.5-6)
TF— 2 2

]Cl(1+ICI/IKirk) _IC2(1+IC2/1Kirk)

The reason for separating 7 from 7, is to be able to derive the ABCD

parameters for use in circuit analysis at any set of bias conditions (except deep

saturation).

Collector Capacitance as a Feedback Element

The collector capacitance C, is a feedback element topologically the same as
the G, feedback analyzed in Section 3.2. The feedback gives a frequency-
dependent input current that is dependent on the output voltage, drawn as a

voltage-dependent current source connected across the input terminals. The
direct feedthrough can be represented as a voltage-dependent current generator
connected across the output; this generator puts a loop in a signal flow graph
that might be drawn for the equivalentcircuit.
By the same set of equations used in Section 3.2, replacing G, by C,s, direct

feedthrough causes a denominator to appear:

Denominator=1-r,C,s (7.5-8)

This denominator has a magnitude close to unity to beyond the unity loss
crossover. When it is retained, the equivalent circuit is valid to beyond f;. At
frequencies somewhat below this, it increases the phase linearly with frequency

and can be approximated as a delay of all four two-port ABCD parameters, so
that the denominator can be eliminated.

Bulk Resistances

The output loading places a capacitance of C;. across the output. It can be
lumped with other output parasitic capacitances, including C,, the collector-
to-substrate capacitance, where the transistor is connected in the common

emitter configuration.

The equivalent circuit includes bulk resistances in series with the three leads.
In the collector this is the resistance between the collector depletion region and
the collector contact (see Fig. 7.2) including the portion of the epitaxial region

not swept out by the depletion region, the buried layer, and the connection

from the buried layer to the collector contact. This resistance separates C,.
from C,so that they are notstrictly in parallel; the effect is to add a delay r,C;,
to the transit time delay, as indicated earlier.

The resistance in series with the emitter lead is the emitter contact resistance
r., only of importance at high collector currents;it is about 1-2 2.
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ABCD Parameters From the Equivalent Circuit

The complete ABCD parameters are found by premultiplying the matrix of the
core parameters by the series r, matrix and postmultiplying the result by the
shunt C/,s matrix. When this is done, we obtain the following expressions for
the ABCD parameters, suitable for programming on the computer or calcula-
tor:

—A :gcere+rb(kb(jjc+6cc/e)s+rbTTCc,eS2

—B=(rgt+rd+rr;s)e™

—C=0g..t8p+ (Cjc+8ccle)S+TTCcleS2

—D=(8+7;5)e™™ (7.5-9)

Several terms (e.g., 8..77» omitted from — C) have been omitted as negligible;
the remaining terms give an accurate set of parameters at any bias and

frequency up to wr/3. Some of the terms of 4 and C should include delay, but
this has been neglected. A new term, k,, has been introduced in the linear term

of A to account for the distributed nature of the base end of the collector
capacitance. The collector capacitance appears across the entire length of r,, so
that it is incorrect to place it all inside the base resistance. This only affects 4
significantly in the frequency range of interest. The factor k,, which is less
than one, is the proportion of the total collector capacitance connected to the
inner end of r, in a two-lump model of C,. Factor k, is necessary to avoid
overestimating the value of A.

The equations for obtaining the ABCD parameters from the equivalent
circuit, as well as the bias dependencies of the equivalent circuit elements, have

been incorporated into program “E-A” in Appendix C. A program such as

this, written for the calculator or computer, allows us to find the ABCD

parameters under any bias conditions or frequency, suitable for calculating the

properties of circuits incorporating transistors. The equivalent circuit element

values form the starting point for finding the ABCD parameters in this

program.

Equivalent Circuit Elements from Two-Port Parameters

If the ABCD parameters at a known set of biases and frequency are available,
the equivalent circuit elements can be found by turning the equations around
to derive the element values from the ABCD parameters. To separate 7, from

7, D must be evaluated at two frequencies (or more); alternatively, 7 can be

estimated from known physical properties of the transistor. Similarly, if high

current injection levels are to be used, the Kirk current for the transistor must

be known, or measurements must be made at several high currents to model

the Kirk current. If the collector doping density is known, the Kirk current can

be estimated from eq. (7.4-7). Similarly, the voltage dependence factors must
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be known or estimated. The sensitivities are low so that rough estimates are
usually satisfactory.
Program “A-E” in Appendix C gives the equations used to obtain the

equivalent circuit values from the ABCD parameters. If a library of transistor
characteristics as used in computer-aided design programs is available, the
transistors may be analyzed by such programs to obtain the ABCD parameters

(from the defining equations for these parameters); this may be used as a

starting point.
If such information is not available and a discrete transistor design is to be

used, manufacturer’s specifications usually give typical values of at least the
core parameters, 7.=1/27f, 8, and Cj(_; r, can be estimated from k7T/ql.

These are the sensitive parameters; errors in the other parameters will not

greatly affect the design. The delay should be estimated in feedback applica-
tions at high frequencies. A suitable value of delay is 7,/2 at reasonably high
currents; this increases as the current is decreased and is r,C,. (from direct
feedthrough) at low currents.
Measurements of the ABCD parameters of a microwave integrated circuit

transistor are shown in the plots in Fig. 7.22. The crosses on the figure are

points calculated by using program “E-A” to find the ABCD parameters from
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Figure 7.22. Measured ABCD parameters on an integrated microwave transistor. Crosses repre-
sent values calculated from the equivalentcircuit of Fig. 7.195.
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the equivalent circuit. The equivalent circuit parameters were obtained from
the measurements by using program “A-E” and averaging the results of

measurements at six frequencies. Appendix C gives the details.
The purpose of this chapter has been to show that the basic building block

of active circuits can be described in terms of feedback and loadng effects on a

zero-loss forward path with delay. Each physical phenomenon taking place in

the transistor, linear or nonlinear, can be described compactly and efficiently

by its effect on one or more of the ABCD parameters. The most important

physical effects, those described by the core equivalent circuit, affect only one
of the ABCD parameters. All other effects—and there are many—can be
evaluated and compared with the core parameters to assess their importance.

With an 4BCD parameter description, the various effects are simply additive
at the input of the device. The ABCD parameters afford a way of cataloging

the many effects in a readily understandable way.
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Chapter 8

Two-Port Feedback Analysis
 

Selection of a circuit configuration capable of meeting a set of system require-

ments is perhaps the most subtle problem in circuit design. Once a satisfactory
configuration is at hand, many methods exist for optimizing performance by

use of the computer. Here and in Chapter 9 we develop methods by which the

computer or calculator can aid in the choice of and in the appropriate

modification of circuit configurations to meet these requirements.

There is a close relation between circuit structure and the polynomial
coefficients of the ABCD parameters, as we have seen for the bipolar transis-
tor. The same is true of circuits that employ combinations of transistors. The

first-degree coefficient of C in an inverting amplifier, for example, should bring

to mind an equivalent capacitance connected from input to output, as for the

collector capacitance of the transistor. When the characteristics of the entire

network are expressed by its ABCD parameters, we can find not only where in

the circuit a given configuration is deficient, but what to do aboutit.

8.1 CLASSIFICATION OF FEEDBACK TYPES

Each element of the ABCD matrix corresponds to one of four possible

feedback types listed in Table 8.1. Each of these elements may be considered

the feedback loss around an ideal amplifier. An example of this is the bipolar
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Table 8.1 Classification of Feedback types
 

 

Feedback Controlling
Type Observe Control Parameter

A or SIPO v, Vin A
B or SISO i, Vin B

C or PIPO v, iin C
D or PISO i i D< mn

 

transistor itself. For the core equivalent circuit in Fig. 7.1, the active path
consists of the ideal collector junction with the null ABCD matrix representing
it; the only nonzero elements are feedback elements. The equation B= —r,
gives series input—series output (SISO) feedback, or more simply B feedback;
C= —C,s gives parallel input—parallel output (PIPO), or C feedback; D=8+

75 gives parallel input series output (PISO), or D feedback. Series input—
parallel output (SIPO), or A feedback,is virtually absent in the core equivalent
circuit.

Operational amplifiers such as the 741 amplifier, on the other hand, are
characterized almost solely by A feedback: As seen in Fig. 5.2, the feedback

comes about as a combination of B feedback on the input stage and C
feedback on the high-gain stage. In ABCD matrix notation, the (simplified) 741
amplifier can be represented as a cascade of a B-feedback amplifier and a
C-feedback amplifier:

_ 10 2r|1 0 O
Tn= [O 0 HCFS 0] (8.1-1)

:__[2rECFs O] (8.1-2)

0 0

We have ignored the delay for simplicity. If we were to invert the order of the

stages, with the differential pair at the output (a “gedanken experiment”), we

would obtain a different result:

[ o o]fo 2
T]47_—[CFS OHO O] (8.1-3)

o 0
= _[0 2,;,ch] (8.1-4)

so that a C-feedback amplifier followed by a B-feedback amplifier yields a
D-feedback amplifier.

Note that the tandem combination of two (ideal) B-feedback amplifiers (or

two C-feedback amplifiers) yields the null matrix (an ideal amplifier).
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FOLYS
ABCD MATRIX )

0OF AECD MATREIX A-PiLY -

TRANSISTOR aF
TREAHESISTOR RAA= -8,86811

FREQ., GHZ = @.1@@g RA1= -8.0@60
FRER.. GHZ = @,4@an RA2= -2.AR08

ABCD, MAG.+PH: RAI= -§.1432-87
ABCD, MAG.+PH:

B: B:

a:

RAl= 9.9038 ) ) Rad= -0.0051 -4
RA2= -1082,2474 Ral= 8.81%4 RES= -8.8014

R@z2= -76.1781 RB6= -2.8615-85

B: ] RO7= -1.5796-87
H:

RAZ=  §.8052 C
RB4= -178.4143 Rel= 8.806]

Rad4= -145,3328 Ra3= -B.6AIS

C: RA9= -8.2297 -
C: R18= -8.8178

RES= 9.143% Ril= -1.8214-85
RAG= -88.7323 RAS=  4,584n

RAG= -79,7403 1
I

I: Riz= -0.0182
Ra7=  9.8225 o RiZ= -8.0322 -
RAG= -116.3418 Re7= @.@511 Ri4= -8,0005

R@g= -94,9995 R15= -3.83230-94

(a) (b) (c)

Figure 8.1. The ABCD matrices of a transistor at two frequencies and the corresponding ABCD

polynomial coefficients.

A convenient classification system for amplifying networks is provided by
the ABCD matrix. Whether the feedback is unitary (only one nonzero element

as in the 741) or hybrid (more than one nonzero element as in the transistor),

the network is characterized by the dominant element(s) in its ABCD matrix,

as expressed by Table 8.1. Thus the 741 is a unitary feedback amplifier with 4
feedback, and the transistor is a hybrid feedback structure, containing (domi-

nantly) B, C, and D feedback. In the latter case, which of these types of

feedback are more important depends on the circuit in which the transistor is

used. With a low admittance source and a low impedance load, for example, D

will tend to dominate.

Several circuits are described here and in Chapter 9—circuits that may form

parts of analog integrated circuits in common use. The properties of these

circuits are perhaps most easily appreciated through a feedback description—

that is, an ABCD description. To become familiar with numerical values, we

illustrate circuit calculations using the transistor whose ABCD parameters were
plotted in Fig. 7.21. Its ABCD parameters at V., =3V, I.=8 mA are listed in
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the calculator printout in Fig. 8.1; the listing gives the magnitude and phase of

the ABCD parameters at frequencies of 0.1 and 0.4 GHz.

Polynomial Coefficients of the ABCD Parameters

These 16 numbers can be translated into four polynomial coefficients for each
of the four ABCD parameters by the method described in Section 2.5,
implemented on the calculator by program “RCU” in Appendix A. Since we
often have occasion to make this transformation for the four parameters

together, in one operation, this program has been expanded to give this facility.
Appendix C gives the modified program, “T>P3”; it is used as a subroutine in
circuit analysis procedures to be described in this chapter.

The polynomial coefficients derived through use of the program are shown
in Fig. 8.1c. As we expect, the core coefficients of the transistor are plainly in

evidence. We might even recall the sizes of the numbers from Sections 7.4 and
7.5: referring to eq. (7.5-9), the dc coefficient of B, by= —0.0051, is —r, in
kilohms; the first-degree coefficient of C, ¢,= —0.229, is the negative of the
collector capacitance in picofarads; similarly, d,=—0.0102 is —6& and d,=

—0.0322 is —7,. The negative signs give the phase reversal. Higher-degree
coefficients represent the more complex effects described in Chapter 7, includ-
ing excess phase effects. They are small since the transistor has a single
high-frequency cutoff.
We have thus represented the transistor as a hybrid feedback amplifier,

obtaining its ABCD polynomial coefficients from the magnitude and phase
of its ABCD parameters at two frequencies. By combining the matrices of
transistors in ways to be described, we can find the polynomial coefficients of

circuits with many transistors. Before proceeding to this central concern of the
chapter, we take a brief look at what we can do with these coefficients once we

have them.

We restrict the examples to descriptions by cubic polynomials, although it
should be recognized that by carrying along the matrix calculations at three

frequencies, we can obtain quintic polynomial coefficients; seventh-degree

coefficients would require magnitude and phase at four frequencies, and so

forth. The extension of this method to finding the coefficients of the numerator

and denominator of rational functions is given in Chapter 9.

All circuits described here are adequately represented by a cubic polynomial

description. This serves to show the method without undue complexity in the
calculations. When the method is realized on the computer (as opposed to the

calculator used here), the additional burden imposed by going to higher-degree

polynomials is not large.

82 NETWORK LOSS AND PORT IMMITTANCES

Given the ABCD matrix of a network that has load conductance G, connected
to the output port, we can write

v,=(A+BG,)v, (8.2-1)
i =(C+DG,)v, (8.2-2)
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Since the Thevenin source voltage eis v;+ R;i,;, we obtain the loss L, as in
eq. (6.2-11);

e
Lf:fi2:A+BGL+RGC+RGDGL (8.2-3)

The input admittance Y, 1s the ratio of (8.2-2) to (8.2-1):

Y_i_ C+ DG,

‘v, A+ BG,
1

(8.2-4)

The output impedance is found by setting e to zero and exciting the network
from the output. To do this, we must find the inverse of the ABCD matrix:

A Bl ' 1 [D —B]
[C D] T AD—BC|-C 4 (8.2-5)

This matrix relates the output voltage and current to the input signal variables
with the signs of the currents shown in Fig. 8.2a; we take the positive direction

of i, and i, into the network, so that the defining equation for the ABCD
matrix is written

Vil T4 B] U,
[il]—[C D [_iz (8.2-6)

When we take the inverse, we have

 

   

 
 

 

   

0 1 D —B] v,
. = : 2-7[—u] AD—BC[—C A [n (8:27)

or

253 1 D B] 2
| == : 2-[u] AD—BC[C A [—n (8:2:8)

i —ip
- ABlL =

+ cC D +

vy v2

(a)

_iz i1
—_— A B —1 R

eol | T
V2 U1

Figure 8.2. Sign convention for currents in a

two-port for finding the inverse of the ABCD

(b) matrix.
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Which gives the proper sign relationships for the inverse ABCD matrix in
accordance with the ABCD sign convention. We now can find the output
impedance as the v,/i, ratio; setting eto zero, and noting that v,= —iR,
we have

B+DR
ZO_m; (8.2'9)

Network Characteristics from the Polynomial Coefficients

We can use the polynomial coefficients in Fig. 8.1c to find rational expressions
for the voltage loss, input admittance, and output impedance of the transistor
for given source and load impedances. These operations are illustrated in Fig.
8.3a; egs. (8.2-3), (8.2-4), and (8.2-9) are implemented in program “P3>LA”
described in Appendix C. Figure 8.3a shows the polynomial coefficients of L,
and the numerator and denominator coefficients of Y, and Z,, using 0.075 K
source and load resistances. The program also finds the normalized polynomial
coefficients as discussed in Section 2.2. For the single transistor, it is ap-
propriate to scale the polynomial to its first-degree coefficient since the
transistor has a single dominant cutoff. The cutoff frequency is calculated to

be 0.173 GHz, and the dc loss is —22.0 dB, as shown in Fig. 8.3b. In the

normalized polynomial (NP) listing the quadratic coefficient is virtually negli-
gible, as is the cubic coefficient.
The polynomials give us the performance of the amplifier over the frequency

range, as seen in Fig. 8.3c. These numbers are obtained by using program
“FR”, also described in Appendix C. The loss in Fig. 8.3¢ is that of a simple
cutoff. The input admittance at dc from eq. (8.2-4) is effectively D/B since C
and A are small at dc; hence Y;(0)=6/r;=0.0102/0.00511=2.0 mS. At higher
frequencies the imaginary part gives the input capacitance as 8.5 pF. The
output impedance is more complicated; at dc it is 1/g.. (the Early conduc-
tance); in parallel with this is the series combination of a capacitance of about

4.0 pF and a series resistance.

The analysis of the network is the beginning of the design process. Later in

this chapter we see how the response and immittances can be tailored to arrive

at desired values. To this end, we now find the relative contributions of A,

BG,, R;C, and R;DG, of (8.2-3) to the network loss L,. In Fig. 8.4a these
components are listed directly as calculated by program “NMR”. At dc the

loss is —0.0797, of which —0.0682 is contributed by B and —0.0102 is

contributed by D, with the contributions of 4 and C virtually negligible as seen

by comparing the dc coefficients.

At higher frequencies, inspection of the first-degree coefficients shows that D

is the main contributor (through 7). In Fig. 8.4b the coefficients from Fig.

8.4a are divided by the coefficients of L, of corresponding degree. This gives a
list of sensitivities of each of the coefficients of L, to its four contributors. This
enables us to find the major contributors to loss and also those that may be



ggpsgtg HRM RUN
R bH=1, 4=

LA
Ré4= 9.6750 )
R45= 9.8758 R6= 1.8000 F L, d8 PH

0K? - FO= 8.1725
U p.818 -21.95 -176.68

a# B.822 -21.99 -172.97
LR POLY: B.846 -21.69 -164.29

R28= -8,08797 9.108 -20.89 -149.5¢
R28= -0.8737 -21.9664d8 B.215 -18.18 -126.983
R2l= -8.8736 B.464 -13.89 -184.69
R22= -9, 08823 NP: 1,008 -6.72 -86.13
R23= -8.1246-86 2.154 8.58 -65.97

R4B= 1,080 YIN
E R41= 1,008 F RE I
N R42= 0.8414

. R4I= 0.0001 9.010  2.825 6.552
R24= -8.1393 8.822 2.965 1.188
R25= -8.6578 GTO M7 9.846 2.248  2.543
R26= -8.8237 RUN 9.108 3.869 5.327
R27= -9.0081 R-FR 8.215 6,356 18.115

2P1 FHIN, MAX: IHC. P.464  15.225 13,981
b 1,008 25.263 9.97%

. R47= 0.08628 2.154 28,138 2.5%
R28= -8,8693 R48= 4.2832

R29= -8.8243 R49= 2.1544 20
R38= -0.0018 F RE M
R31= -2.9285-86 P35, SFBG

0K? 8.018 2.184 -2.857
Z0: 8.822 8.817 -1.5%
N (d) .84 8.399 -8.815

8.188 8.179 -R.39%
R32= -8.8839 8.215 8,149 -A,195
R33= -.08838 8.464 8,137 -B.112
R34= -8.0081 1.888 8,115 -9.833
R33= -4.4381-87 2,154 8.874 -a.874

1 (c)

R35= -8.08814
R37= -8.8231
R33= -0.0028
R39= -2.18084-86

(a)

Figure 8.3. Calculated network values for the transistor of Fig. 8.1 with 75 § source and load: (a)

polynomial coefficients of loss and rational functions giving the input admittance and output
impedance; (b) scaled polynomial loss values; (¢) loss and immittances as functions of frequency.
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CF a2 R-NHE
SF a4 HORM. ABCD

KED “NMR"
NORM. RABCD NRM. TO SPEC? SF @2

OR TO YL? SF 93
NRM. TO SPEC? SF 82 T0 FO? CFLGS
OR T0 ¥L? SF 83 SF 83
T0 FO? CFLGS RUN

RUN A
A

R24= @.8148
R24= -8.8011 25= 28,8811
R25= -9.8068 R26= 8.2784
R26= -9.0003 R27= 98.1882
R27= -3.1432-87

B/RL
B/RL

R24= 6.3548 <«
R24= -0.8682 R25= 8.2486
R25= -98.8183 R26= §.8978
R26= -9.0083 R27= 8.2592
R27= -2.1061-86

CRG
CRG

R24= 8,8833
R24= -8.8003 R25= 8.2334
R25= -8.8172 R26= 9.4551
R26= -8.8813 R27= 8.1681
R27= -1.3661-96

DRG/RL
IRG/RL

R24= 8.1279 <
R24= -0.0182 R2S= #.4370
R25= -8.8322 R26= B8.1767
R26= -8.9805 R27= B.4724
R27= -3.8388-96

TOTAL
TOTAL

R28= 1.980@
R28= -8.8797 < R29= 1.A00@
R29= -B.8736 R39= 1.P988
R30= -9,8828 R31= 1.9068
R31= -8.1246-86

DONE

(a) (b)

Figure 84. The ABCD polynomial coefficients normalized to the source and load immittances. In
part b these values area divided by the loss polynomial coefficients to give sensitivities of loss to

each ABCD polynomial coefficient.
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neglected. Thus the sensitivity of dc loss to ry is 0.85, or 85%; the sensitivity to
4 is 0.13. The remaining terms add up to 0.02 and may be neglected. At higher
frequencies the sensitivity of loss to 7, is 0.44. All first-degree ABCD coeffi-
cients contribute to the high-frequency loss, with 4 contributing least (0.08).

In Figs. 8.3 and 84 we have shown an example of the type of circuit
calculation that relates performance of the network to the device characteris-

tics. We have shown the calculation for a simple transistor stage, considering it
as a hybrid feedback amplifier. More complex two-port circuits can be
analyzed in the same way, as we see later.

Effect of Feedback on Port Immittances

The effect of the four types of unitary feedback on the input and output

immittances is seen directly in egs. (8.2-4) and (8.2-9). A feedback reduces both

Y, and Z_; when it acts alone, it drives both to zero. D feedback, on the other
hand, drives both the input impedance and the output admittance toward zero.

B feedback drives both input and output admittances toward zero, and C

feedback does the same for input and output impedances. These statements

express ideal relationships. Thus if an amplifier with low-input admittance and
low-output impedance is desired, A feedback should be used. Such an amplifier
is characterized by its voltage loss; its input admittance can be viewed as an

input conductance in parallel with an input capacitance. In simple cases these

will be constant with frequency, so that the description in terms of voltage loss

and input admittance has direct physical meaning. The output impedance will

(again in simple cases) be the series combination of a resistance and an

inductance, so that again there is a simple physical picture of the output port.
Similar descriptions of the other three feedback types and their port immit-

tances and input-output characteristics can also be made; they are summarized

in Fig. 8.5a-d. We use the terms L, and L, to designate the voltage and

current losses in A- and D-feedback amplifiers, respectively. The term Zj is
e;/i, and is the reciprocal of the transadmittance in the conventional formula-
tion. Similarly, Y-=i;/v, is the reciprocal of the transimpedance in a C-
feedback amplifier.

Expressions like that in eq. (8.2-3) can be written for each of the other three

amplifier types. Thus for the B-feedback network, we relate the input voltage

to the output current:

Zy=AR,+B+R_.CR,+RD (8.2-10)

=L,R, (8.2-11)

For C and D feedback, we replace the Thevenin source by its Norton

equivalent i, G;; we then have

Yo=L=G,L, (8.2-12)
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and

Lp=-L=GeL,R, (8.2-13)
o

The port immittances in each case are given by egs. (8.2-4) and (8.2-9) or their

reciprocals.
The voltage and current losses L, and L, are dimensionless; the Z, has

dimensions in kilohms and Y. has dimensions in millisiemens. We use the
generic term “loss” for any of the four functions where a statement can be
made about the four without distinguishing among them. Equations derived
for L, can be translated to Zg, Y., or L, through egs. (8.2-11) to (8.2-13).

Figure 8.5¢ describes the S-parameter formulation of network loss; it is
appropriate where 4, B, C, and D are in proper relationship to drive S,, and

S,, to zero, that is, to make the input and output impedances equal to R . This

is discussed further in the paragraphs that follow.

Effect of Series and Shunt Port Immittances

The effect of a shunt admittance at the input of a network is easily found by
premultiplying the ABCD matrix of the network by that for the shunt
admittance:

|1 0]|l4 B

7”_[Y J[C D]

_| 4 B
—{C+AY D+BY] (8.2-14)

A conductance G added from base to emitter of a transistor, for example, will

add Grp to D of the transistor. Figure 8.6 shows the results of adding
immittances at the output or input of a network in all four possible ways.

We now have occasion to express the four operations depicted in Fig. 8.6 in

a compact, operational matrix notation. We call the four operations
Z(T),Z(T), Y(T), and Y(T) for adding an impedance to the input, an

impedance to the output, an admittance to the input, and an admittance to the
output, respectively. The argument of the function Z,(7') is the original ABCD

matrix. Thus we adopt the notation

ZKTF{é ?Hé g] (8.2-15)

Also

ZATF{g gHé ?] (8.2-16)
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Note carefully that in the latter equation Z, post multiplies the 4BCD matrix.
Similarly

Y,(T):[IY ?H’é g] (8.2-17)

and

Y,)(T):[é g“ly ?] (8.2-18)

Since part of the process of designing networks will be to tailor ABCD

parameters to secure desired characteristics, it is well to be familiar with these

relationships. We illustrate their use in Section 8.3.

 

   

  

 

   

  

 

   

  

 

   

  

AW~
[A+CZ B+DZ]

C D

(a)

Z

—AAM—
[A B+AZ]
C D+CZ

(h)

Y [C+AAY D+BBY]

(¢)

v [y b]

(d)
Figure 8.6. Effects of series and shunt port immittances.
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83 FEEDBACK TYPES AND THEIR COMBINATIONS: CONTROL OF

IMMITTANCES

An 1deal A-feedback amplifier can be represented as shown in Fig. 8.7a, in

which an ideal transformer with turns ratio n , adds a voltage n,v, to the ideal
amplifier input voltage (zero for the ideal amplifier). An equivalent circuit for

the ideal transformeris shown in Fig. 8.7b, which is recognizable from Fig. 6.4
as the h-parameter equivalent circuit of the transformer taken as a two-port.

Since the transformer is lossless, 4, and 4 ,, are zero. Since the input current to
the ideal amplifier is zero, the input current to the amplifier with feedback is
also zero. The input voltage consists entirely of the feedback voltage —n,v,=

—h,,v, and is not a function of the output current. Hence, the transmission
matrix has only one nonzero element:

e
 

  

 

 

(a)

ny 1 1‘1

—— —
+

+ +

U v2 N v —MN4 i1

(b)

o~ l\ .—(R ! —
T - l// TT

|
|

Uy @ Vo

l—nA i] =0

|
1  

(c)

Figure 8.7. Idcal A4 feedback.
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so that from eqgs. (8.2-4) and (8.2-9), Y; and Z, are both zero. The feedforward

current generator at the output is null because the input current to the ideal
amplifier is zero; the transformer current is therefore constrained to be zero.

A Lossless Hybrid Feedback Amplifier (Symmetric)

Suppose now that we add a second transformer as shown in Fig. 8.8 that has a

secondary winding in series with the output so that it senses the output
current; its primary winding augments the input current by n,i. The equiva-
lent circuit generators for this transformer are added to the circuit as shown in

Fig. 8.8b. Now, both the input current and the voltage are augmented so that
the transmission matrix for the circuit becomes

v, _ n, 0 v,

= 6
Note that the feedforward voltage across the secondary of the n,, transformer
1S not zero; it is nn4v,. It faces the output of an ideal amplifier, however, so
there is no effect on circuit operation when the amplifier is ideal.
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Figure 8.8. Combined ideal 4 and D feedback.
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The input admittance of this circuit is given by (8.2-4) as

Y=—¢G, (8.3-3)

and the output impedance, from (8.2-9), is

Z,="2R, (8.3-4)
o

n,

Where n,=n,, the input impedance is equal to the load impedance and the
output impedance is equal to the source impedance. This circuit, with transis-
tor(s) replacing the ideal amplifier and using nonideal transformers, is of
practical significance in providing a resistive termination at the amplifier input
without adding the thermal noise of a resistor. We explore this in more detail
later. Both 4 and D feedback are termed symmetric feedback.

This brings us to the fifth diagram in Fig. 8.5. If we load the output of the
hybrid feedback amplifier that has n,=n, with R, its input impedance will
likewise be R; insofar as the amplifier is ideal, §,,=5,,=0, and the S-
parameter description of the network becomes appropriate. The insertion loss

1/8S,, 1s given by

L:l[A+B/R(pLROC+D] (8.3-5)
S, 2

as seen from Table 6.1. The value of 1/8S,, is thus one-half L, (or L,) when
R;=R,and G, =1/R,,. The factor of 2 arises because 1/S,, compares the loss
when the amplifier is in place to the loss when the amplifier is removed and the
source 1s connected directly to the load, in which case e/v,=2.
Where S|, and S,, depart from zero, reflections appear at input and output.

We can characterize the reflection coefficients by use of Table 6.2 which gives

_A+B/R,—R,C—D
" A+B/R,TR,C+D (8.3-6)

and

g - —AtB/R,—RCHD
2" A+B/R,+R,C+D
 (8.3-7)

Clearly, with A=D and B=C=0, both S,, and §,, must be zero. We can also
see that if we make B/R,=R,C nonzero, we can still retain zero reflection
coefficients.
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An Antisymmetric Hybrid Feedback Amplifier

To understand this case, consider the ideal amplifier with B feedback shown in
Fig. 8.9a. Its input voltage is —i,R; there is no input current, so its transmis-

sion matrix is

0 R

TB:_[O 0]

Similarly, the C-feedback amplifier in Fig. 8.95 with R=0 has the transmission
matrix

(8.3-8)

0O O

TC:_[G 0]

What happens when both types of feedback are applied simultaneously? We

develop a simple method of calculating such cases in the following paragraphs.

For the present, we use the method developed to obtain egs. (3.2-7) and

(3.2-10) in Section 3.2 for the circuit of Fig. 3.3. An equivalent ladder circuit

was given in Fig. 3.4. If we set 7,=0 there and replace r; by R, G, by G, and
G,v, by i, we obtain

(8.3-9)

 __~1 |RG R]
Tpe= 1—RG[ G RG (8.3-10)

If we make RG=1, the loss of this circuit goes to infinity; it becomes a
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Figure 8.9. Antisymmetric feedback: (a) B feedback; (b) combined B and C feedback.
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balanced bridge. If RG<1, however, it is the antisymmetric version of the

circuit in Fig. 8.8a. (We could make the analogy exact by use of lossless
gyrators to provide B and C feedback.) In any case, if we make R and G

complementary, that is R/G=R}, we obtain zero values for S,, and S,, as
shown by (8.3-6) and (8.3-7).

If we ignore the RG products in (8.3-10), we obtain the sum of the matrices
of (8.3-8) and (8.3-9);

 

_ 0 R

whereupon the input admittance is, from (8.2-4)

G 1 1
Y=——= 8.3-12

R G, R}, ( )

and the output impedance is, from (8.2-9)

Z = 5L = R_%) (8 3 13)

° GR; R, o

Thus a higher source impedance gives a lower output impedance, and similarly
for the input admittance. The antisymmetrical hybrid feedback amplifier tends

to gyrate the impedance at the opposite port, whereas the symmetrical hybrid
feedback amplifier tends to transform it.

A Unilateral Feedback Amplifier

These opposing tendencies can be canceled by making 4D= BC. When this is
done, the determinant of the ABCD matrix vanishes and the inverse goes to
infinity. From eq. (8.2-8) the reverse transmission vanishes, and the amplifier
becomes unilateral. In this important special case, the input admittance is

independent of the load and the output impedance is independent of the
source. As an example, suppose that

0.1 00%

Then AD—BC=0, and for any G,, the numerator and denominator factors

containing G, cancel, so that

140G,

and similarly for any R,

_ 0.01+0.1R;
ZO—W—O.I KQ (8.3-16)
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Separate control of each of the ABCD parameters can be achieved by
combining the feedback paths in Figs. 8.8(a) and 8.9(b), as shown in Fig. 8.10.

Note that of the four feedforward paths, only one, the Gv; generator,is effective
in modifying the transmission matrix where the amplifier is ideal. There is no
input current to the ideal amplifier, so that the n, transformer current is
constrained to be zero. The feedforward voltages Ri; and n v, are in series with
the output of an ideal amplifier and hence have no effect. The C-feedback
conductance G, however, is connected to the input where there is a nonzero
voltage; this creates the only effective feedforward current, v,G.
An equivalent circuit that takes into account only nonzero effects in this

circuit (with ideal amplifier) is shown in Fig. 8.10b. An exact analysis of this
network’s transmission matrix would show that

1 n,+RG R
Tasco=~"1"%rgG G(1+n,+n,—A,) n,+RG (8.3-17)

This matrix is the sum of those of egs. (8.3-2) and (8.3-10), except for the term
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Figure 8.10. Application of all four feedback types to an ideal amplifier.
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multiplying G in C. It is

O=1-A—D+A~1 (8.3-18)

and arises from the nonzero feedforward current through G. This circuit shows
in principle that any combination of the four feedback types can be realized
physically. The transformers make this a simple matter since we can arrange

the polarities of the A- and D-feedback circuits arbitrarily. When the con-
straint is introduced that no transformers be used, the problem of combining
symmetric and antisymmetric feedback types becomes more difficult.

The reason is that pure A or D feedback types tend to have no phase
reversal, whereas B and C feedback generally include a phase reversal. Four
generic feedback types are shown in Fig. 8.11 without transformers. In the
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Figure 8.11. Four generic feedback types; symmetric types have no phase reversal. A C-feedback

amplifier with series inputresistance is shown in parte.
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symmetric types, separate positive and negative inputs, as in an operational

amplifier, are required and no phase reversal is included. In Fig. 8.1le an

A-feedback amplifier is shown with a phase reversal, but the transmission

matrix also includes a nonzero C= — . This is basically a C-feedback ampli-
fier to which a series input resistance has been added and must be counted a
hybrid feedback amplifier.

Example: A Single-Stage Hybrid Feedback Amplifier. The bipolar transistor

itself is a hybrid feedback amplifier, as noted previously. Suppose that we wish

to provide an amplifier stage with a simple cutoff and with both input and
output impedances matched to 75 € source and load. Can we modify or
augment the internal feedback processes in the transistor to achieve this result?
Design freedom is limited in a single stage, but it is instructive to see what can

be done to control the impedancesin this case. It will also make the advantages
of multistage circuits clearer in a precise way.

We wish the input and output impedances to be equal, so we know that A4

should be equal to D. With the impedances both 0.075 k{2, we know that the
ratio B/C should be (0.075)?. Furthermore, this should be true for the ABCD

polynomial coefficients of each degree individually. Inspection of the poly-

nomial coefficients in Fig. 8.1c shows that ais an order of magnitude smaller
than d, and that a, is only one-fifth d,. Both a, and a, must be increased. The
value of \/b,/c, is 1.21 k; hence ¢, must be increased greatly. But b, /c, is
0.077 k2, almost exactly right. To increase ¢, we add a feedback resistor from

collector to base as shown in Fig. 8.12, increasing the magnitude of ¢, by about

G. Hence since b,/(c,+ G) must equal R, we obtain

byGp=—" —
(0.075)

=0.903

Co

This brings ¢, into approximate balance with b,; ¢, already balances b,.

1.10

VW 

 
0.075 0.010  

0.05

[ | T°-
Z;=0.075 Z, =0.075

0.075
€.

 
Figure 8.12. A single-stage hybrid feedback amplifier.
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To increase the magnitude of a,,, we could add a shunt conductance to the
output as in Fig. 8.6d or add a series resistance to the input, as in Fig. 8.6a.
Choosing the latter, we have

or

R ;=1(0.0102—0.0011)0.903

=0.010 kQ

To increase a, by a series impedance at the input, we should add an induc-
tance. Instead, we add a shunt capacitance C, at the output. Its value is given

approximately by

coby=d,—a,

so that

_ 0.0322—0.0060 _
o~ 0.00511 >.1pF

In these equations we have ignored interaction terms; the series input resistor
affects B (slightly) and the output capacitance affects C. In particular, the
output capacitor increases c,. To reduce this effect, a resistor is connected in
series with C,, and the value of C, is reduced to 4.0 pF, as in Fig. 8.12. (This

was done in a second iteration.)

The analysis of the resulting circuit is shown in Fig. 8.13. In Fig. 8.13a the

ABCD parameters of the circuit in Fig. 8.12 are shown (the means for

calculating these for this and other circuits are discussed in Section 8.1 and
Appendix C). The loss polynomial of the circuitis also given; in Fig. 8.13b the
cutoff frequency is 0.24 GHz and the dc loss is —15.4 dB. The variation of loss
Y. and Z, are given as a function of frequency; the cutoff is simple and the
impedances are roughly 0.075 k{2 up to the cutoff frequency.

Departures from matched impedances can be analyzed by use of the list of

coefficients normalized to the loss polynomial coefficients as shown in Fig.

8.13c¢. This is a list of sensitivities of loss to the polynomial coefficients of the

ABCD parameters and is useful in discovering why the impedances depart

from the desired values. Each coefficient of 4 (or B) should equal the

corresponding coefficient of D (or C).

In Fig. 8.13¢, for example, a,=0.0880 and d,=0.0882, giving close agree-

ment. Similarly, b,=0.4166 and c¢,=0.4072, also good agreement. Thus we

were successful in making a,=d, and almost successful in making b,= R}c,.
For the first-degree coefficients, ¢, is a bit too large. Since ¢, i1s primarily
caused by the collector capacitance, it cannot be reduced easily except by

raising the dc collector voltage. Also, a, is less than d,, indicating that C,
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Figure 8.13. Calculated values for the amplifier shown in Fig. 8.12: (¢) ABCD parameters; (b)
loss and immittances as functions of frequency; (c¢) sensitivities of loss to individual 4ABCD

parameter coefficients.
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should be raised. We do not raise it because of its effect on c,. As seen in Fig.
8.13a, ¢, dominates the quadratic loss coefficient, tending to increase the input
admittance and to reduce the output impedance at high frequencies. Raising C,
also reduces the bandwidth of the stage; thus a balance must be sought
between loss and impedance performance. The sensitivity list helps to achieve
such a balance in the design process.

That the cubic coefficients of B and D change sign is caused by the
denominator—the pole of loss arising from the resistor in series with C,. The
purpose of the resistor is to reduce the quadratic coefficient, which it does.
Since the cubic coefficient of A and C is negligible, when the phase of the

denominator is taken into account, the equivalent polynomial coefficient is

negative. In the frequency range of interest, the phase introduced by the

denominator is equivalent to that of a negative cubic polynomial coefficient.

The negative coefficient comes about by attempting to model the rational

function—including a pole of loss—by a polynomial. Although close agree-
ment is obtained in the frequency range of interest in this case, an extension of
the modeling process to include denominators is often helpful and sometimes
essential. This extension is given in Section 9.2.

In this single transistor design the departure from desired performance may
be larger than desired. The purpose of the exercise is to show how the ABCD
parameter polynomial coefficients can be manipulated to force the perfor-
mance toward the desired characteristics. Performance can be improved by
using a greater number of transistors. To do this easily, we need the means for
finding the ABCD parameters of combinations of transistors.

84 GENERAL METHOD OF TWO-PORT ANALYSIS'

In this section we develop a method of two-port analysis that is applicable in
general to any linear or quasilinear two-port network. The method is useful not
only in developing circuit insight, but in providing an easily programmable

procedure for exact network evaluation. It is based on ladder network analysis
by means of cascaded networks described by their ABCD (or cascade) parame-

ters. The basis for the method is the notion that any two-port network can be
represented as an equivalent ladder with the addition of coupling (through
dependent voltage or current generators) between nonadjacent circuit nodes of

the ladder. For simplicity, we restrict the discussion to networks employing
resistors, capacitors, and active devices, although it may be extended to include

inductors. We begin the discussion of the method by briefly reviewing simple
ladder evaluation; the discussion is then extended to include the coupling
mentioned previously, in which the concept of spanning networks is introduced.
Several examples of its use are then given.
The two-port parameters of ladder networks, passive or active, are particu-

larly easy to evaluate. This is true because each element of the ladder network

can be represented by an ABCD matrix: the ABCD matrix of a ladder made up

of such elements is simply the product of the ABCD matrices of the constituent
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two-ports. Two two-ports, for example, have the product

p—_— A, B,||4, B, _ A,A,+B,C, A,B,+B,D, (8.4-1)

"2 1c, D,||C, D, C,A,+D,C, C,B,+D,D, '

The ladder may be made up of transistors, combinations of immittances, or

any other network whose two-port parameters are defined.
The ABCD matrices of transistors can be obtained by measurement, as

discussed in Chapter 7. To make one set of measurements applicable to
transistors of different sizes and dc operating conditions, an equivalent circuit
can be derived along with scaling rules and bias dependencies to obtain
transistor ABCD matrices over a wide range of conditions. The relationships
were derived in Chapter 7 and programs are given in Appendix C.
The ABCD matrices of series impedances and shunt admittances containing

resistances and capacitances are found as illustrated in Fig. 8.14. To make the
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Figure 8.14. Shunt admittances and series impedances in Foster-like form.
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immittances general, they are expressed in Foster-like form, with series imped-
ances expressed as the parallel combination of a resistor and a capacitor and
the dual arrangement for shunt admittances. These immittances are incorpo-
rated into a ladder network by multiplication; Fig. 8.6 gives the results.

Evaluation of ladder networks is a simple matter, therefore, although the
amount of hand calculations is prohibitive, even for networks of modest size.

The operations are easily programmed for calculator or computer. Here and
the following section, we assemble a set of equations for matrix operations to
be incorporated in a calculator program. With these operations, we can work
with matrices on the calculator or computer in the same way that we deal with

numbers on a simple four function (programmable) calculator. With practice,

the interpretation of the ABCD parameters becomes second nature; we have
begun the intuitive understanding of the individual ABCD parameters in the
study of the bipolar transistor and in the hybrid feedback amplifier in the
previous section.

Equivalent Ladder Networks

The technique of analyzing ladder networks by multiplying cascaded networks

can be extended to any two-port by use of an equivalent ladder representation

of the two-port.! This may seem surprising until it is realized that a wire

connection between two circuit nodes can be represented as shown in Fig. 8.15.
Two nodes of an arbitrary grounded two-port have a wire connection between

them in Fig. 8.15a. In Fig. 8.15b the wire connection has been replaced by an
ideal transformer with unity turns ratio. In Fig. 8.15¢ the transformer has, in

turn, been replaced by its h-parameter equivalent circuit model, with A ,=1

and h,,= — 1. The step represented by Fig. 8.15b is unnecessary but may aid

understanding. Naturally, there are two ways to show the equivalent circuit for
a wire connection—we could have used the g-parameter representation of the

ideal transformer, as in Fig. 8.15d. Which one is correct is determined by the

following considerations.
Suppose that the network is a ladder network except for the wire connection.

If it is not, other such connections may be pulled out of the network and
treated as we are treating this one. Then the equivalent dependent current

generator can be connected to the ladder where it adds a current to the node to
which it is connected. The voltage generator cannot be connected to a node of

the ladder, however, since its zero internal impedance would short-circuit the

ladder. It must be connected as in Fig. 8.16a, in series with a shunt element of

the ladder. 1t can be replaced by a pair of voltage generators as in Fig. 8.16a,

where they add to the voltage at the input and output of the ladder section

containing the shunt element.
The transformation shown in Fig. 8.16a is a useful one, which we have

occasion to use later, particularly in the noise analysis in Chapter 11. Voltage

sources can be shifted from one branch to each of the other two branches

without affecting the circuit equations at the network terminals. This has been

termed the Blakesley transformation.?
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Figure 8.15. Putting arbitrary circuit connections into equivalent ladder form.
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Figure 8.16. Equivalent series-arm voltage generators replace a shunt-arm generator in parts «

and b. Two grounded current generators replace a single generator in part c.

An analogous transformation of current sources has also been used previ-
ously, as in Fig. 7.14, shown here in Fig. 8.16¢. Clearly, the two representations

in Fig. 8.16¢ are equivalent since the net current at each of the terminals is the

same.

Unity Gain Follower

Figure 8.17a illustrates the use of an equivalent ladder network for a unity gain

(or unity loss) follower circuit. It is a feedback circuit since 100% of the output

voltage is returned to the input through a direct connection to the emitter of

the first stage; v, 1s in series with the input loop consisting of the source, the

base-emitter path, and v,. In Fig. 8.17b the wire connection between the
emitter of the first transistor and the collector of the second has been replaced
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Figure 8.17. Unity gain follower circuit and its equivalent ladder network.
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by a voltage generator v, connected to the emitter and a current generatori,
connected to the output. In Fig. 8.17c the voltage generator has been replaced

by a pair of voltage generators connected in series with the base and collector
of the first stage. The base voltage generator is recognized as feedback over the

whole amplifier; the second generator is local feedback over the output stage.
The current generatoris the feedforward, or direct feedthrough. The circuit in
Fig. 8.17c¢ 1s an equivalent ladder network for the circuit in Fig. 8.17a.

It 1s important to remember that the flow of functional dependencies is from
output to input—in the anticausal direction. Thus we start with a known
output voltage and current and proceed toward the input calculating the
currents and voltages at each successive circuit node. When we come to the

node to which the voltage generator is connected, we simply add the output

voltage to the voltage calculated for the network to the right of the voltage
generator. We do this for each voltage generator as we come to it.

We can represent the effect of each feedback generator by an ABCD matrix
that has only one nonzero element. The input voltage to be added is given by

o slalleli] e
For the unity gain follower, 4, of the spanning network is unity, as indicated
in eq. (8.4-2). Later in this section we discuss the A-feedback pair, in which 4,
can be less than unity. The added input current is zero, and the output current

has no effect. The matrix in this equation is represented by the symbol §,,

having only one nonzero element. The subscript A indicates A4 feedback, for

which output voltage is observed and input voltage is augmented or controlled.
This matrix represents the loss of the circuit when the forward path or active

path is in its reference condition. Two S, matrices, one for the local feedback

and one for the overall feedback, must be considered. The matrix for the local

feedback generator is the negative of that for the overall feedback matrix.

Calculation of 4BCD Parameters of the Circuit

How do we calculate the ABCD parameters of the circuit from the ABCD

parameters of the transistors? Let us begin by ignoring the incidental feedfor-
ward to make the main thrust clear. Let the ABCD matrices of the first and

second transistors be 7, and 7,, respectively. The ABCD matrix of the circuit

can be written by inspection:

Tyr=B4+T\[—B4+T5] (8.4-3)

To T,, we add the local feedback matrix —f,; we then premultiply the
combination by T;; finally, we add the overall feedback. This picture of the

unity gain follower is complete except for relatively unimportant details
considered next.
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Incidental Feedforward

The feedforward generator can be taken care of in the same way as the
feedback generators, but in a causal direction. We first define a feedforward
matrix F,; it tells us how much current is to be added to the output in response
to the emitter current of the first stage. It is advantageous to define the
feedforward matrix in terms of the signal at the point(s) in the circuit where
the feedback generators are applied, that is, at the base and collector of the

first stage rather than at the emitter. Since i, =i,+i_., we can split the output
current generator into two parts, F,i. and F,i,, where

FAz[g ?]:[g _‘}12]] (8.4-4)

for the unity gain follower.
To account for feedforward, we note that for the ladder signal variables, that

is, the series currents and shunt voltages, there are two points where feedfor-
ward takes place in the ladder, corresponding to the addition of the first-stage
collector current and the base current to the output. We begin, as before, with
T,. We note that the local feedback generator is encountered next, so that at
this point feedforward of i;, must be added to the output. To do this, we invert
T,, add —F, to it, and invert the combination. This operation reflects the fact

that feedforward simply adds at the output. We then proceed as before until

we come to the next feedback generator. We then invert the combination—the

transmission matrix calculated thus far, add F,, and reinvert. Finally, B, is

added to the result. The equation representing the ABCD matrix of the unity
gain follower is

—1

TUF:,BA+(FA+{T,[—,BA+(—FA+T2_‘)_1]}_1) (8.4-5)

Note that the B, matrix is always followed by an F matrix within a single
parenthesis and that the F matrix itself is followed by an inverted expression.

Such equations are thus easily checked for accuracy since when written in this

form, they express the “rocking back and forth” between inverted and nonin-

verted ABCD matrices. When feedforward can be ignored, the inversions drop
out.

A program to calculate the ABCD matrix including feedforward requires a
subroutine for calculating the matrix inverses. Using eq. (8.4-5), the program

would start with 7,, invertit, subtract F,, invert the combination, subtract 8,,

multiply the result by T, invert the combination, add F,, invert, and finally
add B,. Note that as stages of gain are added, the elements of the ABCD

matrix become smaller and smaller. Hence the inverse grows larger and larger

so that the effect of adding F, becomes smaller and smaller. Thisis illustrated
by the calculations shown in Fig. 8.18 of the ABCD parameters of the circuit
with the first stage operating at 1.0 mA and the second at 8.0 mA. The first



General Method of Two-Port Analysis

ABCD MATEIX
aoF

UHITY FOLL.

FREQ.. GHZ = 8.3158

ABCD, MAG. +PH:

ABCD MATEIX
aoF

UNITY FOLL.

FREQ.., GHZ = 8.7168

ABCD, MAG.+PH:

303

ABCD MATEIX
aF

UNITY FOLL.

FREG.. GHZ = 8,31¢8

ABCD, MAG.+PH:

fi: n: n:

RA1= 8,9918 RA1= 8.9928 oAl 9,992
RE2= 1.8849 ReZ= 1.8926 e 1oy

B: Bl B:

RA3= &.9823 RE3= 0.8823 .
R84= 94,8316 RB4= 91,8296 SSL 35?3;

C C: C

RES= 8,183 RES=  8.1554 .
Ré6= 111,253 RB6= 11,6834 e

D b: 1

RA7= 6.0868 RE7= 0.8859 - cRE7=  0.8859RAS= 1560958 RA3= 152.2938 REB= 152, 1368

(@) (b) (©)
Figure 8.18. The ABCD matrix of the unity gain follower: (a) ignores direct feedthrough; (b)
adds feedthrough of output-stage local feedback; (c¢) is the exact calculation. Input transistor is

small npn at 3 V, 1 mA; output is large transistor at 3 V, 8 mA.

calculation, (Fig. 8.18a) ignores all feedforward; the second, (Fig. 8.18b) takes

into account only the output stage local feedforward, and the third (Fig. 8.18¢)

gives the exact result. The overall feedforward is entirely negligible, but the

local feedforward reduces the phase of D by about 4°. The equation for the
second calculation, ignoring only the overall feedforward,is

TUF:3A+Tl[—BA+(—FA+T2“)_'] (8.4-6)

Spanning Networks: Feedback and Feedforward

The return of a portion of the output of a system to the input (feedback) by

practical circuit means usually carries with it the feeding of a portion of the

input to the output (feedforward). It may not be clear at the outset whether the

feedforward or the feedback is dominant, so we need a term to designate such

a network without reference to its function in the network. We choose the term
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“spanning network” to designate any network whose function is to add signals
at a pair of nonadjacent circuit vector nodes. Our object in this section is to
show (1) how the spanning network can be expressed by a set of ABCD
matrices and (2) how these matrices can be combined with that of the original

network to give the ABCD matrix of the combination.
Where the spanning network is complicated and contains several circuit

elements (active elements can be included) a formal approach can be taken.

The two-port parameters of the spanning network can be found by straightfor-

ward ABCD analysis. The ABCD parameters are then converted to the set of
parameters suitable to the type of feedback introduced by the spanning
network, & parameters for A4 feedback, z parameters for B feedback, y parame-
ters for C feedback, or g parameters for D feedback. We now illustrate this by
analysis of a widely used circuit.
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Figure 8.19. An A-feedback pair.
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The A-Feedback Pair

As an example, the A-feedback pair in Fig. 8.19 uses a voltage divider
consisting of Ry and R, as a spanning network. The divider is connected
across the output port, and the tap is connected to the input emitter. The

ABCD parameters of the divider are, from Fig. 8.14

1 o][1 R, 1 R,
T.=| 1 = 1 R, (8.4-7)
sp - - +_

r, '[|° ! R, I*R,

We then convert the ABCD parameters to h parameters, using Table 6.1:

ReRp R
R.+R, R.+R,

h iV: (84‘8)

o Ry I
R,*R,  R,*R,

The spanning network can be interpreted as an ideal transformer with turns
ratio R./(R+R) with a series loading resistance /,, at the input and a
shunt loading conductance 4,, at the output, as shown.
The analysis of the amplifier then proceeds directly with the loading

elements considered part of the forward path; the generators are then treated

as described previously in the unity gain case. The B8, matrix is obtained from

h,,, the F matrix, from 4,,; the input and output loading matrices—call them

H, and J,—are obtained from h,, and h,,, so that we have for these four
ABCD matrices:

_JEL_ O‘
B,=| Ry+R, (8.4-9)

0 0]

[0 0
E=1, Ry (8.4-10)

R,+R,

| R.R,
H,= R,+R, (8.4-11)

10 1

1 0]
J,= 1 I (8.4-12)

| Rp+Rp   
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The B, and F, matrices are treated as in the unity gain follower case, replacing
unity there by the ratio R/(Rg+R). The output loading matrix J, simply
postmultiplies 7,, thereby adding a shunt conductance 1/(Rz+R) to its
output. The H, matrix is that for a series impedance, but this impedance is in
series with the emitter of the first stage, where it introduces local B feedback

on that stage.
Thus for a given nominal amplifier loss, if the impedance of the spanning

network (voltage divider) is made high to reduce the output loading, the input
stage local feedback increases, and vice versa.
The characteristics of the first stage with B feedback are easily obtained in

the text that follows. For the present, we represent the ABCD matrix of the
first-stage transistor with B feedback as 7,5, so that we can write the
transmission matrix equation for the circuit as

TApr:BA+TlB(_BA+T2JA) (8.4-13)

in which we have ignored the direct feedthrough. When direct feedthrough is
not ignored, the expression is similar to that of (8.4-5):

TApr:BA+(FA+TIB{_BA+[_FA+(T2JA)—I]_1}—I) | (8.4-14)

in which the ABCD matrix T, remains to be found from T, and H,.
Exact evaluation of the effect of a spanning network involves four matrices,

illustrated for the case of the A-feedback pair by egs. (8.4-9) to (8.4-12). The

four types of feedback can all be treated in the way we treated the A-feedback
pair by finding the B and F matrices to be added at the appropriate equivalent
ladder network nodes and finding the input and output loading immittance
matrices. Table 8.2 shows the four matrices for each type of feedback. Because

Table 8.2 Feedback, Feedforward, Input Loading, and Qutput

Loading A BCD Matrices for the Four Feedback Types
 

 

Type of

Feedback B F H J

y [h,z 0] [0 0 ] 1 hy, 1 0
0 0 0 _hzl O l h22 1

B [0 _212] [O _221] 1z, 1 zy
0 0 0 0 0 1 | 0 1

c [ 0 0] [ 0 0] 1 0] (1 0]
yiz 0 yu O D’n 1_ | V22 1

D [0 0 ] [g2| 0] [ 1 0] 1 g,]
0 —sgn 0 0 [ g 1 0 1    
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of the sign difference in the output current convention between the ABCD and
mixed-epoch parametersets, the signs of all entries in the second column of the
B and F matrices are negative.

Whereas Table 8.2 shows four separate matrices generated from a single 4, z,
y, or h matrix, the information content is that of the original matrix. The
matrices in Table 8.2 serve to direct the computation of the effect of the
spanning network. Program “SP” in Appendix C shows a compact way of
implementing the computation; only the original ABCD matrix of the original
network and the A, z, y, or g parameters of the spanning network are stored.

Equations such as (8.4-14) or (8.4-16) are programmed directly as they appear,

as illustrated in Appendix C. Program “SP” is used in conjunction with
programs “CNV” and “ABCD”, both described in Appendix C. Program
“CNV” converts two-port matrices by the equations in Table 6.1. Program
“ABCD” comprises a set of subroutines that enable the user to find the ABCD

parameters of two-port networks from their constituent parts, converting the

calculator into a programmable network calculator. The basis for some of the
subroutines of “ABCD” remain to be developed in Chapter 9; with this work

completed, the combination of programs (all in program memory) enables us

to find the ABCD parameters of any two-port network.
We may use Table 8.2 to generate the ABCD matrix of the first stage of the

A-feedback pair with B feedback. The spanning network is just A, =
RrR;/(R+Rr)=R, so that the four spanning network matrices are, from
Table 8.2

BBZ[g _OR], FB:[g _oR] (8.4-15)

HB:[(I) _IR]’ JB:[(I) —IR] (8.4-16)

and the ABCD matrix of the stage is

—17-1T,3=Bp+ | Fy+ (HyT,Jp) '] (8.4-17)

An equivalent laddercircuit is shown in Fig. 8.20 to aid in the interpretation of

this equation. For circuits as simple as this (and for many circuits of greater

complexity), permutative feedback (Section 9.1) offers a computationally sim-

pler means of generating the 4BCD matrix of the network.

Each element of the ABCD matrix of a network can be interpreted as a

feedback element or a network connected around an amplifier of zero loss. For

the bipolar transistor, this expresses the physical interactions more naturally

than do conventional equivalent circuit representations. For the B feedback in

Fig. 8.20, this becomes particularly clear. When an external emitter resistance
is added, the feedback merely adds to the internal feedback of the device;

B= —(R+r). Certainly, if R is to be considered feedback, then r; can also
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(a)

 

 

(b)
Figure 8.20. Circuit and equivalent ladder for B-feedback stage.

be considered feedback. There is no nonarbitrary way to define one as
feedback and the other as part of the forward path.

PROBLEMS

1 For the D-feedback circuit in Fig. 8.21, write expressions for the 8, F),
H), and Jj, matrices, and write the equation for the transmission matrix
of the circuit.

2 Repeat Problem 8.21 for the B-feedback circuit in Fig. 8.22.

 
 

 

 

Figure 8.21.
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Figure 8.22.
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Figure 8.23.

3 The circuit in Fig. 8.23 combines 4 and D feedback. Write the transmis-

sion matrix equation for this circuit ignoring direct feedthrough.
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Chapter 9
 

Analog Integrated
Circuit Design:

Feedback and Feedforward

When we apply the concepts of feedback and feedforward to two-port net-
works, we find that they represent nothing more than coupling between

nonadjacent circuit nodes of a ladder network—either passive or active.

Therefore, the subject of this book encompasses all circuits that have one input

and one output port. Feedback cannot be defined more restrictively than this

in a nonarbitrary way. Thus feedback theory can be made a foundation of
two-port network theory. What can be done for the two-port network can be
extended to networks that have more than two ports—we explore examples of

this in Chapter 12.

This would not be of particular interest, except that by anticausal methods,

feedback becomes easier to analyze and becomes a powerful circuit analysis
tool in its own right. In this chapter we apply feedback concepts to simplify the

analysis and design of elements of analog integrated circuits, a subject that has

been treated elsewhere.!*> The coverage here is not as extensive as that in the

references, and the reader is urged to consult them for information on further

areas in this field. Applying the methods of this book to the problems treated

in the references may well yield new and worthwhile results.

310
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We begin by introducing a markedly useful technique for finding the ABCD
parameters of combinations of transistors and other circuit elements. This
technique consists of finding the ABCD matrix of a three-terminal network
(e.g., a transistor or a combination of transistors) when the input or output
leads are permuted, or interchanged. Many circuits can be analyzed quite
simply this way, including the case study Design B amplifier in Chapter 3.
We then analyze the transmission and output admittance characteristics of

current mirror circuits, which are forms of D-feedback amplifiers. The problem
of accurately sensing the output current in B- and D-feedback amplifiers
concludes the chapter.

9.1 PERMUTATIVE OR LEAD-INTERCHANGE FEEDBACK®

A feedback transformation of a three-terminal network arises from interchang-
ing the output and common leads of the network, as shown in Fig. 9.1a, where
the original network is taken for illustrative purposes as a common emitter

transistor whose output lead is the collector. After the permuting process, the

collector is the common lead between the input and the output. This is a

feedback process because the original output voltage is preserved (except for a

sign change) and the output voltage is connected in series with (or is returned

to) the input. The process is termed output permutative feedback.

Similarly, we may interchange the input leads of the original network as

shown in Fig. 9.1b. In this case, termed input permutative feedback, the input

voltage is reversed in sign, and the output current is returned to the input.
Where the original network is a transistor, input permutative feedback yields a
common base stage.

The function of this section is to find the ABCD parameters of the input or

output permuted network from those of the original network. These two
transformations are extremely useful in understanding feedback networks and
in calculating their characteristics.

A Composite Matrix for a (Grounded) Two-Port

To write the expressions for the ABCD parameters of any network whose input

or output leads are permuted, we begin by writing a composite matrix for the

network—one that gives the voltage and current of all three possible ports in

terms of the voltage and current at one of the ports: with the sign convention

given in Fig. 9.1c, we can write

v, A B 0,

i C D iy
v, 1 0
o=l o | (9.1-1)
Uy 1-4 —B



   
        
  

 
 

   

Original network

T 1 T

! ! Feedback l

| : network |

| I
L _| 1]

o —0

Permuted

network

O O O & O

(a) (b)

 

(c)

Figure 9.1. Feedback by permutation of leads: («¢) common collector stage; (b) common base

stage; (¢) sign convention used for composite matrix in eq. (9.1-1).
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where v;=v,—v, and i;=i,—i,. With this composite matrix, we can derive the
ABCD parameters of the permuted networks very easily. If we permute

the output leads, for example, Fig. 9.1 shows that the input voltage is — v; and
the input currentis i,, so that from the fifth row of the matrix we have

Note that v, and i, on the right side of the equation come from the column on
the right side of (9.1-1); eq. (9.1-2) is simply a literal reading of the fifth line of

(9.1-1) with the sign changed to obtain v,,. Similarly, from the second line of

(9.1-1), we obtain

i,=i,= Cv,+ Di, (9.1-3)

Combining (9.1-2) and (9.1-3) into a matrix, we obtain

—0 A—1 Bl][v,

e o]l 014
With the output leads permuted, the output signal variables are —i; and —v,,

so that from the third and sixth rows, we find the output in terms of v, and i,:

SHE S e
Inverting this matrix as in eq. (8.5-2), we have

Dl e
Substituting this in (9.1-4) and performing the indicated multiplication, we

obtain

— ;4 ] 0 —B][ —v,

[ i ]_fi[—c —DH—:‘J (9.1-7)

0=1-A—D+A, (9.1-8)

where

as in eq. (8.3-18). For the common collector transistor, this equation is written

Ope 1 ¢ —B Uec

in which @ is close to unity over the entire useful frequency range of the

transistor.
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By an exactly similar process, we find the ABCD parameters of a network
with its input leads permuted. The input signal consists of —v, and i; and the
output signal, of v; and i,, so that we use rows 1 and 6 of the composite matrix
for the first two equations and rows 4 and 5 for the second two equations. The
result is

—o ] 1 —A —B][uv,

[ i ]—m[—c 6 H] ®.1-9)

where 6 is given in (9.1-8).

Common Base and Common Collector Parameters

The pair of permuting equations, (9.1-7) and (9.1-9), are useful for both insight
and calculations involving feedback. Where the ABCD parameters of a transis-
tor are available, as from the equivalent circuit discussed in Chapter 7, the

common collector and common base parameters can be found directly. Figure
9.2 shows the common emitter parameters of a transistor at 0.4 GHz, with the
common base and common collector parameters on either side; B is in

kilohms, and C in millisiemens.

Note that the magnitude of D for the common emitter case is 0.0811; since

the measurement was made at 0.4 GHz, the value of f; for this transistor is

ABCD MATREI¥

aF

COMMON BASE

FREQ., GHZ = B.4996

ABCD, MWAG,+PH:

A:

RA1= 8.8135
ReZ2= 182.9684

B:

RA3= 0.8661
RB4= 33.80656

C:

RA3= 86.5367
RB6= 99,3923

D:

RB7= 1.8126
Re3= 4.4298

ABCD MATEIX
OF

cComMON EMIT.

FREG., GHZ = B.4808

ABCD. MAG.+PH:

f:

Ré1= 8.8154

RB2= -76.1781

B:

R83- B.@@61

RAd4= -145.3328

C:

kA5= 90.5846

RB6= -79.7483

HE

Re7= 8.8811

RA3= -94.9993

ABCD MATRIX
OoF

COMMON COLL

FREQ.., GHZ = 8.4808

ABCD, MAG. +PH:

f:

RB1= 8.9987
RA2= B.7862

B:

R83= 0.00868
RB4= 38,8838

C:

R83= 8.5786
Réb= 93.6748

I:

Re7= 8,888
RB3= 88.4156

Figure 9.2. Comparison of the A BCD parameters of the common emitter, common collector, and

common base stages at 400 MHz.
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0.4/0.0811, or 49 GHz. We can also estimate the collector capacitance from

the magnitude of C; it 1s 0.58/(0.4 X27) or 0.23 pF. The rest of the parameters
can also be found, as discussed in the modeling section of Chapter 7 and in

program “A>E” in Appendix C.
The values of the common base ABCD parameters correspond closely with

the common emitter parameters except for D where unity has been added. The

approximation given at the beginning of this section is good, then. The phase
of D—4.4°—should give us the value of transit delay including the emitter
time constant r,C,. Translating to radians and dividing by the angular
frequency, the transit time is 0.031 ns, which corresponds to the value found in

Chapter 8. Note that the common base transistor includes this effectively as a
delay of the current signal from input to output. (To compare the phase of the
common emitter and common base parameters in Fig. 9.2, subtract 180° from

the common base parameters.)

The common collector parameters are also similar to those for the common
emitter parameters except for 4, where unity has been added. Note that the
phase of A4 is only 0.7°, indicating an absence of delay. This also applies to D;

when 180° is subtracted from the phase of D, the common collector stage has

4.6° less phase than that of the common emitter stage.

Cascode Stage

The lead permutation process and programs are useful for more than finding

the common collector and common base parameters of transistors. Suppose
that we wish to calculate the ABCD parameters of a cascode stage. Figure 9.3a
shows the circuit, which consists of the tandem combination of a common

emitter and a common base stage. We begin with the ABCD parameters, in
Fig. 9.3b, of the second stage, permute its input leads to obtain the common

base parameters, and then premultiply the resulting matrix by that for the
first-stage common emitter parameters. A program for doing this is shown in
connection with program “ABCD” in Appendix C. The cascode ABCD

parameters at 0.4 GHz are shown in Fig. 9.3c.

As is characteristic of the cascode stage, 4 and C drop by one order of

magnitude. The common base stage removes the output voltage from the
collector of the first stage; this is what gives the cascode stage its salient
character. An unfortunate characteristic is that the delay is increased by the

common base stage. In the example, the phase of D (at 0.4 GHz) is increased

over the common emitter stage by 6° and B, by 5°.

Emitter-Coupled Pair

The emitter-coupled pair may be considered the tandem combination of a

common collector and a common base stage, as shown in Fig. 9.4a. Other

characteristics of this type of stage, including common mode rejection, are

considered in Chapter 12. The ABCD parameters of the combination are found

by permuting the input leads of the second-stage transistor, permuting the

output leads of the first transistor, and multiplying the two matrices with



 

(a)

(b)

ABBCD MATRIX ABCD MATRIX

oF OoF

XS5TR., Z2V.2HMA CASCODE £TGE

FREQ., GHZ = @,4@@0 FREG.. GHZ = 8.4800

ABCH, MAG.+PH: ABCD, MAG.+PH:

R: A:

RAi= 8,8154 Rél= 8.883%

pA2= -76.1781 Raz= -42.3333

B: B:

Re3= @,@851 RB3= 8.8851

Rad4= -145.3328 Réd= -148.8339

£ C:

R83= 8.5846 RA5= 8.8562

RA6= -79.7483 RB6= 7.3769

I: I:

Ra7= 8,834 Ra7= 8.8847

R83= -94.9995 R@8= -88.8795

(c)

Figure 9.3. A cascode stage, with A BCD parameters.

316



 

 

 

 

vo

P

v

—Vee T
(a)

v()

(b)

ABCD MATRIX ABCD MATRIXaF - '
ASTR 2V, 1HMA EM. SELD PR.

FREQ., GHZ = B.31¢68 FREQ., GHZ = 8.3168

ABCE. MAG.+PH: ABCD, MAG.+PH:

'R
A:

RB1= @,@i89 PAi= 8.8244
PRZ= -82.7726 RA2= 99,9482

B:
B:

E@3= 8.8328 = @RB4= -164.18% §2§ ?%aig:}:a;

C:
C:

RAS= 8,1751731
RA5= @.@14R

R86= -88.3338 RAG= -178.9771

I:
I:

Ra7= 8,8732 = 790RBG= -96. 1132 §§§ 359;@52

(c)

Figure 9.4. An emitter-coupled pair.
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results at 0.3 GHz given in Fig. 9.4c. Note that B doubles, since the emitter
resistances of the two transistors are in series, with the output current passing
through both. Also, C virtually disappears for the same reason as in the
cascode case. Except for those two changes (and the lack of a phase reversal),
the characteristics are similar to a common emitter stage.

Darlington Pair

The Darlington pair in Fig. 9.5a provides an interesting example of the use of
lead permutation for determining network characteristics. As shown in Fig.
9.5b, the circuit can be considered the tandem combination of two common

collector stages that, in combination, have their output leads permuted.
At this point we introduce some notation; let us call P[T] the result of

permuting the input leads of ABCD matrix T and similarly P,[T'] for permut-

ing the output leads. If T, and 7, are the common emitter ABCD matrices for
the first and second transistors of a Darlington pair, we can write the ABCD
matrix of the first common collector stage as P,[7,] and similarly for the

second stage, P[T,]; thus we can write

Tpu=P,[P,[T\]*P,[T3]] (9.1-10)

 

 

 

 

(b)

Figure 9.5. A Darlington pair.
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ABCD MRATEIX
oF

DARL. PARIR

FREQ., GHZ = 8.315%

ABCD. MAG. +PH:

f:

RAl= 8.8386

RE2= -8@,9683

B:

RA3= 8.8869

Red= -138.8368

C:

R85= 8.1825

Rég= -73.3887

I:

RA7= @.8853

R83= -31.5954

(c)

Figure 9.5. Continued.

in which * is the matrix multiplication operation. The result of this computa-
tion at 0.3 GHz is the transmission matrix shown in Fig. 9.5c¢.

B and C Feedback

The permuting operation gives us a particularly simple way to calculate the

ABCD parameters of many circuits whose circuit equations are otherwise
complex. Consider, for example, a network with both B and C feedback,

shown in Fig. 9.6. If we begin the analysis by permuting the output leads of the

network before applying the feedback, we find that the C feedback path

becomes a shunt admittance across the input terminals of the permuted

network. Similarly, Fig. 9.6b shows that the B-feedback impedance is now an

impedance in series with the output. Both feedback paths are then incorpo-

rated by the operations of Fig. 8.6—simple cascade multiplications. After
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Figure 9.6. Combination B and C feedback calculated by topological manipulation.
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performing these operations, the output leads are again permuted as in Fig.
9.6¢, giving the ABCD parameters with B and C feedback. All four effects of
feedback, feedforward, and input and output loading are thus taken care of in

this simple set of operations.
In operational notation the transmission matrix of the network with B and C

feedback can be expressed compactly as

Tsc=P,[ Z,(Y,(P,[T,]))] (9.1-11)

where T, 1s the original network. The operation Y,(7') denotes premultiplica-
tion by the ABCD matrix of a shunt admittance, as illustrated in Fig. 8.6¢, and
Z, denotes postmultiplication by the ABCD matrix of a series impedance as in

Fig. 8.6b. This expression is a compact way of writing the two-port matrix of
any networkthat has either C or B feedback or both in which the feedback

path is representable as a two-terminal immittance. It is also a computational
algorithm for finding the matrix. Compare eq. (9.1-11) with the algebraic

expression for the same circuit found by applying feedback B and C succes-

sively to the original network:

1 A+ CR+BG—RGE B—R6

1+ CR+BG—RGO Cc—G6o D+ CR+BG—RGE

(9.1-12)

Tpe=

where 6 is given by eq. (9.1-8). Equation (9.1-11) is simpler than (9.1-12), a
result of moving up one step in hierarchical level to the two-port formulation.

Design B of Our Case Study

Design B in the Chapter 3 case study can be described as the combination of

an output stage with C feedback in tandem with two common emitter stages
and having overall C feedback. We can thus write the ABCD matrix of the

Design B amplifier by using the permutation algorithm. The permuting opera-

tions are shown in sequence in Fig. 9.7 and can be written

Tpe B:Pa[YiF(Po[Tl *Tz*Pa[Yiz(Po[T3])]])] (9.1-13)

This expression constitutes a program for the evaluation of the transmission

matrix of the Design B amplifier. The evaluation begins by starting with the

innermost expression 75, permuting its output leads, premultiplying by the

admittance G,, and again permuting the output leads. This resulting ABCD
matrix is then premultiplied by 7,, and then T,. The output leads of the

resulting ABCD matrix are permuted, and this matrix is premultiplied by the

matrix of Y.=(Gy+ Crs). Finally, the output leads of the combination are
permuted, giving the ABCD matrix of the amplifier.
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(d)

Figure 9.7. Analysis of Design B by output lead permutation.

The analysis of our Design B case study amplifier is finally reduced to a
one-line calculator program, where the calculator is the special type given in
program “ABCD” in Appendix C.

The permuting operations provide a way of analyzing a surprisingly general
class of feedback structures by repeated application of egs. (9.1-7) and (9.1-9).

Yet it cannot always be applied. The A- and D-feedback pairs of the previous

chapters, for example, cannot be analyzed in this way; thus the general method
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must be employed. (Note, however, that the local B feedback in these circuits
can be analyzed by permutative feedback.) One general rule can be stated:
permutative feedback analysis can be done if either the feedback network or
the active path is ungrounded. In the Design B example both the G, and the Y,

feedback paths had no connection to ground, so that the permutative analysis
could proceed. We see an example of permutative feedback applied to a

grounded feedback path with ungrounded active path in Section 9.2.

9.2 CURRENT SOURCES AND CURRENT MIRRORS

In several circuits discussed so far we have incorporated dc current sources—
ideal devices that provide dc bias current without otherwise affecting circuit
operation. In this section we show how such sources can be realized and how
we can estimate their departure from ideal performance. These circuits can also
be used as amplifying circuits; for this application, we are interested not only

in how their output admittance departs from zero, but also in their transmis-

sion characteristics. We see that these circuits can also serve as broadband

amplifiers, which are useful in feedforward applications.
An ideal current source has the transmission matrix

Tesgdean = [8 _On] (9.2-1)

Thus the input currentis n times the output current, and from egs. (8.2-4) and
(8.2-9), the input impedance and the output admittance are zero. These are the

characteristics of an ideal D-feedback amplifier.

Simple Current Source (Mirror)

A simple current source is shown in Fig. 9.8a and includes a diode-connected
transistor and an output transistor. If the resistors are made zero, the base-
emitter voltage of the two transistors is the same, thus enabling us to write

Vo= kT In T _ kT In I
q I, q I,

The ratio 1, /1, is equal to Ig,/I,. If the areas of the two transistors are
equal and the temperature is the same, I, =I,, so that I, =1,.* The output
current is 7, taken as unity in Fig. 9.84; the input current is /) plus the base
currents of the two transistors; thus at low frequencies, ignoring collector

voltage effects for the moment, we obtain

D=—(1+28)=—1 (9.2-3)

 (9.2-2)

If the diode area is r times the transistor emitter area, the equation becomes

D=—r—(14r)8~ —r (9.2-4)

*The doping density is also assumed to be the same.
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Figure 9.8. Simple current mirror: (a) circuit; (b) effect of equal emitter resistors on current

unbalance (with R, =0, current unbalance is assumed to be 20%); (¢) and (d) finding the ABCD

matrix of the current mirror by topological manipulation.

Thus if the diode area is smaller than the transistor area, the input current is

smaller than the output current by the factor r. The value of n in eq. (9.2-1) is

about equal to the diode: transistor area ratio.

The current mirror i1s almost always used with resistors in series with the

emitters of Q, and Q,, for several reasons: (1) any unbalance in the transistors
is reduced greatly; (2) the circuit tends to be quite noisy, and the resistors

reduce the noise (as we see in Chapter 11); and (3) the output admittance at all

frequencies is reduced. With resistors, equating base voltages, we obtain

Icl kT 1('2
H :1(2R152+“‘"'1n

I q I,
I,R,+ In  (9.2-5)
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This transcendental equation can be solved iteratively on the calculator; where

the voltage drop across the resistors is (nominally) greater than k7/¢, conver-
gence 1s rapid in the logarithmic form given. For R, voltage drops less than
kT/q, the equation should be converted to exponential form, raising e to the

expressions on either side of the equation. The improvement in current balance

is shown in Fig. 9.1b as a function of the voltage drop across Ry, and R,,
assuming an unbalance in saturation currents of 20%. For a resistive drop of
only kT/q (0.026 V), the unbalance is halved, and for a drop of 10 kT/g, the

unbalance is reduced to less than one-tenth the saturation current unbalance.
At low frequencies, the circuit input resistance is that of the diode in series

with R,, since it is much smaller than that of the transistor. The output
conductance is essentially g, for R =0, and decreases as Ris increased. In
most applications the source resistance for the circuit is high, and the load
conductance is high compared with g__, so that the circuit is characterized by
its D parameter.

We can estimate the high-frequency transmission of the circuit by adding 7,5

to 6 whereverit appears in Fig. 9.8a. Thus, approximately, —D=1+2§+271.s,

giving a high-frequency cutoff at approximately half the unity loss frequency
of the transistor. The situation is actually somewhat more complicated, as we
see later.
To obtain the transmission properties of the circuit over the complete

frequency range, we start with the ABCD parameters of the transistors. We
then operate on these parameters with the immittance and permuting operators

previously defined, as indicated in Fig. 9.8¢ for the diode and Fig. 9.84 for the
transistor. For the diode, we permute the output leads P,[7,]; postmultiply by
the ABCD matrix for the series resistor R,, giving Z,(P,[T,]); and then
premultiply by the Y matrix for the collector-to-base short circuit, giving
Y(Z,P,[T,])). We use a large capacitance (e.g., 10'* pF) in series with zero

resistance for the short circuit. The final step is to permute the output leads,

giving the ABCD matrix of a shunt diode. This procedure is repeated for the
transistor, omitting the Y; operation, as shown in Fig. 9.84. The ABCD matrix

of the current mirror is obtained by premultiplying that of the transistor by
that for the shunt diode. Although this procedure is elaborate to describe, each

operation represents only one or two button pushes on the calculator (either to

calculate by hand or to program the calculator).

Suppose that we wish to find the parameters of a current mirror operating at

1.0 mA and a collector voltage of 1.5 V. We assume R, =R;,=0.10 k. The
ABCD parameters of the output transistor at this bias condition for a 95 pm?

transistor are given in Fig. 9.9a, as obtained from the equivalent circuit in

Chapter 7 by using program “E>A” in Appendix C. The diode transistor

parameters are similar, except that they are translated to a collector voltage of

0.75 V. Following the procedure outlined previously, we find the ABCD

parameters of the current mirror, shown in Fig. 9.9 at a frequency of 0.316

MHz.

Note in Fig. 9.9 that the magnitude of D is 1.02=1+26 and that the phase
has departed from 180° by only 12.7° at this frequency. The output admittance
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TRANSISTOR CURE. MIRROR A-POLY:
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R83= -8.8881
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B
R81= @,8257 Rai= 8.8498
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B: B: RB6= -0.0885

RB7= -2.2883-85
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L: C: Ré8= -8.8181
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RB3= 18,2389 Ras= B.6879 Rig= -8.8298
RB6= -78.8343 RA6= -88.1385 Rii= -8,p087

B: D: I

RB7= B.8846 R87= 1.8217 Ri2= -1.8229
R88= -95.2124 R8g= -167.3354 Ri3= -B.1148

Ri4= -B.886%
(a) (b) R15= -@,8882

(o)

Figure 99. The ABCD parameters of current mirror (b) from those of the transistor (a) and
diode. In part ¢ these parameters are converted into polynomial coefficients.

for a high-source impedance is, according to eq. (8.2-9)

Y_A+CRG~C

°" B+DR,D (9.2-6)

Since D is approximately — 1, the output admittance is just —C, or 0.60 mS at

0.316 GHz. Since the phase is near 90°, the output admittance is that of a
capacitor of 0.6/(270.316)=0.3 pF.

By repeating the calculation at two frequencies, we can obtain the poly-
nomial coefficients of the ABCD parameters by use of program “T>P3” in
Appendix C. The results shown in Fig. 9.9¢ were obtained by using 0.0316
GHezas the second frequency; several other pairs of frequencies were tried with

negligibly different results.

Turning now to the current loss expressed by the D polynomial in Fig. 9.9¢,

we normalize the polynomial to its cubic coefficient with the use of eq. (2.2-3)
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to obtain the character of the cubic. The D polynomial can be written

D=—1.023(14+0.1115+0.06552+0.00025°) (9.2-7)

=—1.023(1+1.92p+1.92p*+p?) (9.2-8)

where p=0.0584s. The surprising result is that the loss is essentially Butter-
worth cubic, with a cutoff frequency of 1/(270.0584)=2.7 GHz. The result is

surprising because of its cubic character and because of its wide bandwidth.
Consider the bandwidth first. The unity loss frequency of the transistor is

obtainable from the magnitude of D in Fig. 9.9a as f/|D|=0.316/0.0846 =3.7
GHz. The bandwidth of the current mirror is more than half the unity loss

frequency of the transistor. On the other hand, the first term of the (unnormal-
ized) cubic is approximately 27, taking into account the larger value of 7 of

the diode (because of its lower operating voltage). Hence the simple model
discussed earlier is only good up to modestly high frequencies (e.g., 0.5 GHz).

The transmission of the current mirror is “broadbanded” by an equivalent

inductance of the diode arising from r, of the diode transistor and an
equivalent effect in the transistor. We need not be concerned with the details
here; the exact calculation picks up these small but significant effects. As Fig.
2.18 shows, the cubic Butterworth polynomial can be represented accurately up

to halfits cutoff frequency by a pure delay, so that, up to a frequency of about

1.5 GHz, we can represent the current loss of this current mirror by

D=—1.023¢0111s (9.2-9)

The delay term in the exponent is d,/d, from Fig. 9.9¢. The low-frequency
value of D is dominant over a wide frequency range. Where the source
impedance to the mirror is high and the load impedance is low, the perfor-
mance of the circuit is close to that of the ideal current mirror matrix of
(9.2-1).

Wilson Current Source*

The simple current source can be improved, as to both input to output current
ratio accuracy and output conductance by use of the Wilson current source,

shown in Fig. 9.10. In this circuit the simple current source Q,, Q, is

incorporated as a spanning network on an output transistor Q,. To analyze

this circuit, we can make simple estimates of the ABCD parameters and check

them by an exact calculation, as in the previous case.

To estimate D and B, assume that a unit collector flows in the output

transistor. The base current is then §, as shown. The base voltage is 2r,

including the drop across the diode, so that B is twice that of the simple
current source. The reason for the accurate current ratio of unity for the

Wilson current source can be seen by inspection of the currents in Fig. 9.10b.

Assuming a unit output current into the collector of Q5, the emitter current of
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Figure 9.10. Wilson current source: (a) circuit; (b) circuit analysis of dc current transmission;

(¢) circuit analysis of 4 and C.
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Q, 1s 1+6. The base currents of Q, and Q, (the diode transistor) are both

approximately 8, so that the currentin the collector of Q, is 1 —4§. This current
1s mirrored at the collector of Q,. When the base current of Q, is added to this,
we obtain the input current as unity, with all terms linear in § having canceled.
(Second-order terms do not cancel: the base currents of Q, and Q, are both
slightly smaller than & since the collector currents of both transistors are
slightly smaller than unity.)
The exact value is found by analysis of the simple current source spanning

network. The spanning network is characterized by its g parameters, of which

only g,, is of prime significance. But g,, is the current gain, the reciprocal of D
of the simple current source, which we found in (9.2-3) to be 1+24. Hence

!

The input current to the diode is 1+86, so the total input current to the cir-

cuit 18

1+8 287
1+D=0+ 1155 =1 1525

  (9.2-11)

Since §< 1, current accuracy is much better for this circuit than for the simple
current source. Thus B is twice that of the simple current mirror, and D is

closely unity. This correction extends at least partially to high frequencies since
the collector current of the spanning network transistor falls with frequency as
the base current of the output transistor rises, giving some cancellation.

To estimate A and C, we use the open-circuited output in Fig. 9.10¢ and
assume 1 V at the output. The incremental current through g_., of the output

transistor flows upward through r, of the output transistor as shown, giving

A=—r,g,, (this circulatory current does not flow through the spanning

network). Hence the base current of the output transistor is —dg,,, and this

current also flows into the diode of the spanning network, as shown. The

same current flows out of the collector of the spanning network, so that
the input current of the circuit for unit output voltage is —268g,,; this is the
estimate of C.
The estimate at low frequencies of the ABCD matrix of the Wilson current

source from the preceding considerations is about

r.g. 2r
TWlsn: o [ zggg(:e 15“ (92-12)

The output conductance is C/D as before and is thus 28g,,, a factor of 24
smaller than that of the simple current source. This is the chief advantage of
the Wilson source and to a great extent eliminates Early effect from the circuit.

The high-frequency transmission of the circuit can be estimated with the aid
of the simplified equivalent circuit in Fig. 9.11. In it, the current mirror
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Figure 9.11. Circuit for estimating the high-frequency performance of the Wilson current source.

spanning network has been replaced by its g-parameter, dependent generator

equivalent circuit. The output of the mirror spanning network is connected to
the base of Q, whereas the input is connected to the emitter circuit, so that in

finding the g parameters from the ABCD parameters, the latter matrix must be
inverted before the conversion to g parameters is effected. The feedback
generator is —1 /D, where D is given by (9.2-7), or as approximated by (9.2-8).

Parameter g,, is the output admittance of the current mirror, which we found
to be that of a 0.3 pF capacitor. Parameter g,, is the input impedance of the

current mirror. For this initial estimate, we take g,, as b, of the polynomial
coefficients in Fig. 9.9¢. The feedforward is neglected for the present.

Assuming an output current of unity, we find the input current by inspec-
tion of Fig. 9.11. The input base current to Q, is 7,s (ignoring § of the

transistors for this high-frequency calculation). The spanning network adds a
current to the input equal to the emitter current of Q4 delayed by the delay of
the spanning network as found in the current mirror analysis. The input
current, ignoring the 0.3 pF output capacitance of the spanning network, is
thus

=15t (1+7,s)e™ (9.2-13)

We then add the current through the output capacitance of the spanning

network. To do this, we must estimate the voltage across it: it is approximately
R+rg;+rg, =R’ multiplied by the emitter current 1+7,s. The total input
current for unit output current into the collector of Q; is —Dy, the D
parameter of the Wilson current source, and is given by

—Dy,=RCs(1+7ps)+1ps+(1+775)e

=(RCH1;)s+RCirps?+(1+775)e ™™ (9.2-14)

Multiplying both sides by e™* has the effect of removing the external (closed-

loop) delay, as noted in Chapter 5. Letting R;C;+1,=,, and changing the
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order of the terms, we obtain

—eDy=1 +7Ts+(7,s+R’ECifrTsz)e’ds (9.2-15)

Except for the 7,5 term and the R.C,7;s? term in the brackets, this is the
classic feedback equation discussed in Section 5.2. To ensure stability, we can
infer that 7, must be made large enough to ameliorate the effect of delay.
Clearly, this may be done by increasing either R or by adding capacitance
across the input of the circuit.
The values of the rational function coefficients describing the circuit can be

found by evaluating the ABCD parameters at a number of frequencies and
converting these measurements to coefficients by use of the rational function
evaluation procedure given in Chapter 2. Since a transistor is included in the
spanning network, we must include the effect of the denominator as well as the
numerator. The procedure described in Chapter 2 is expanded in Section 9.3 to
rational functions, including denominators. First, we find the ABCD parame-

ters of the Wilson current source.
To find the ABCD parameters, we may first evaluate the spanning network

parameters and convert them to g parameters. These are added to the equiva-
lent ladder network consisting of the output transistor. It is often simpler and

more interesting to use topological manipulation to find the 4BCD parameters.

Figure 9.12 describes such a method using lead permutation, inversion, and

multiplication (cascading) of ABCD matrices. Five operations are needed, each

available on the calculator (using program “ABCD” in Appendix C) at the

push of one or two buttons.
The procedure begins with the ABCD parameters of the simple current

mirror such as those given in Fig. 9.9b. In Fig. 9.12a the output leads of the
current mirror are permuted. In Fig. 9.12b the resulting ABCD matrix is

inverted and the result stored. (In each part of the figure, the result of a

previous operation is enclosed in a box drawn with dashed lines.) In Fig. 9.12¢
the ABCD parameters of Qare read in and the input leads permuted. In Fig.
9.12d the result of the step in Fig. 9.12b is cascaded with that in Fig. 9.12¢.

Finally, the input leads of the combination are permuted, giving the ABCD

parameters of the Wilson current source. To prove thatit is indeed that of the
desired circuit, note that the input terminal of the circuit is connected to the
base of Q, and the collector of Q,; the output is connected to the collector of

Q,; and the two resistors are connected to the common lead.
Although this procedure is lengthy to describe, the algorithm is compact. It

is in a way similar to putting a picture puzzle together, turning pieces to see

how they may fit together. Perhaps a better analogy is to chemical bonding;

the transistors (the molecules) fit together according to various rules, which

relate to directions of biases and current and voltage levels, rather than to

attractive forces.

Once we have a program, the ABCD parameters can be evaluated for as

many frequencies as we choose. We can obtain two rational function coeffi-
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Figure 9.12. Analysis of Wilson current source by topological manipulation.

cients for each such evaluation and for each parameter. Since we have been
concerned primarily with polynomial evaluation, it is worthwhile at this point

to review what is involved in finding the numerator polynomial when a

denominator is present.

9.3 EVALUATION OF THE NUMERATOR POLYNOMIAL COEFFICIENTS OF

A RATIONAL FUNCTION (WITH KNOWN DENOMINATOR

COEFFICIENTS)

The feedback current of the Wilson current source includes a denominator (in

fact, the numerator is unity). Thus the loss of the circuit includes this

denominator, whose coefficients were found in Section 9.2. They are listed as
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the D polynomial coefficients in Fig. 9.11¢. The rationale for this is that the
current loss of the circuit is the sum of the feedback current and the D
parameter of Q;, so that the current loss must include this denominator. This

provides the immediate motivation for this section, but the application is quite

general. We can often analyze the spanning network, find its denominator
coefficients (if any), and use this knowledge to evaluate the numerator coeffi-

cients from calculations (or measurements) of the loss and phase of the circuit

at several frequencies.
In this section we find the coefficients of a cubic numerator in the presence

of a cubic denominator; the extension to functions of any degree will be clear.
It will be found that the evaluation is merely a slight extension to the method
of polynomial coefficient evaluation given in Section 2.5. The extension is
easily applied to programs “RCU” and “RQU” in Appendix A and to
“T>P3” in Appendix C (it is included in the latter program).

Let the loss of a circuit be expressed by the rational function

2 3apta;sta,s +ass
 

Ls)= 1+ds+d,s*+d,s’ (9:3-1)

The term L(s) may be expressed in terms of two even functions ofs:

L(s)=M(s)+sN(s) (9.3-2)

Thus

L(jw)=M+jwN (9.3-3)

where M and N are real (for s=jw). The denominator can also be split into

real and imaginary parts:

D(jw)=1—d,w*+jw(d,+dw?) (9.3-4)

The product L( jw) D(jw) is equal to the numerator polynomial A( jw), so that

A(jw)=a,—a,w?+jw(a,—a;w?) (9.3-5)

Since both L( jw) and D( jw) are presumed known (at two frequencies in this

case), we can equate the real and imaginary parts of the product with the real

and imaginary parts of A( jw), respectively.

We may then proceed exactly as in Section 2.5, replacing L(jw) in that

section by the product L( jw) D(jw). Thus the real part of L(jw)D(jw) is

Re[L(jo) D(jo)]=M(1—dyw?)—Nw*(d,—d;w?®)

=a,—a,w’ (9.3-6)
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and the imaginary part is

Im[L(jw)D(jw)] =M(

w

=a,—a,w’ (9.3-7)

By evaluating the circuit at two frequencies, we obtain four equations, allowing
us to solve for the four a, coefficients; the equations are given by egs. (2.5-6) to

(2.5-9), in which we must replace L(jw) by L(jw)D(jw). The change is

CMN DEM: de=i CHN DEH: de=1

di, d2, d3: di, d2, d3:

R44= B.1148 R44= 8.1148

R45= 8.0863 R43= 8.0062

R46= 8.0882 R46= 0.8082

FPOLYS FOLYS

A-POLY: A-POLY:

Rae6= -8.8886 Rea= -@.8885

R81= -8.8281 R81= -8.0281
R82-= -8.080848 R82= -8.0843

RO3= -B.8086 R83- -8.0886

B B

Ré4= -8.1618 R84= -8.1618

R85= -8.8322 R85= -8.8322

RB6= -8.080829 RO6= -8.8829

R87- -08.08882 Re7- -8.0082

C C

Rag= 8.08841 R88= 8.8133

R89= -8.2323 Ra9= -8.2329

Rig= -8.8356 Ri8= -8.08483

R11= -8.8842 Ri1= -8.80898

D D

Ri2= -8.9994 R12= -8.9938

R13= -8.1663 Ri3= -8.3282

Ri4= -8.8174 R14= -8.08484

R13= -8.081¢6 R15= -8.0044

(a) (d)

Figure 9.13. Polynomial coefficients for the A BCD parameters of the Wilson current source, with
known common denominator coefficients: (a) without input capacitor; (b) with added input

capacitor; (¢) with current transmission loss.
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equally applicable to matrix equations for the quintic polynomial given in egs.
(2.5-12) and (2.5-13).
The modification to the programs consists of replacing M—the real part of

L(jw)—by M(1—d,w*)—Nw*(d,—d,w?) and replacing N by M(d,—d,w?)+
N(1—d,w?). This has been done in program “T>P3” in Appendix C.
The operations of Fig. 9.12 were carried out at two frequencies (0.1 and 1.0

GHz), and the results were translated into polynomial coefficients by using

program “T>P3”, as shown in Fig. 9.13a. The current transmission loss of the
circuit is shown plotted in the lower curve in Fig. 9.13¢ and is a Bode plot of
the rational function given by the D polynomial divided by the common
denominator polynomial, all listed in Fig. 9.13a.

A hazardous dip in loss in this plot indicates that the circuit is close to
instability in the vicinity of 1.4 GHz. (A repetition of the entire calculation
using frequencies of 1.0 and 1.5 gave negligibly different results, but the
low-frequency loss was slightly in error.) The complex roots of the numerator
cubic polynomial are at 1.43 GHz at an angle of 100.4°, giving a damping

factor of only 0.18. (The real root is at —1.26 GHz.) As noted in Section 9.2,

the circuit stability margin can be improved by adding capacitance across the

input terminals. The effect of adding 1 pF at the input is shown in the
polynomial in Fig. 9.13b, and the resulting Bode plot is shown in the upper
curve in Fig. 9.13¢. Although stability is improved, the margin is still rather
small: the complex roots of the numerator have moved to 1.16 GHz at an angle

of =109.6°, giving a damping factor of 0.34. The real root moves to —0.67

GHz.

The output admittance of the circuit for high source impedance is given by
C/D, as noted previously. Since D= —1, the output admittance polynomial
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Figure 9.13. Continued.
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coefficients are the negative of the C polynomial in Fig. 9.134 or 9.13b. In both
cases the output conductance (c,) is shown in negative and very small. A
calculation at a lower frequency would show that it is actually slightly positive.
The important coefficient is c¢,, which is the negative of the output capacitance,
0.23 pF. This is a bit smaller than that found previously for the simple current
mirror (0.3 pF). The Wilson current mirror provides a drastic improvement
only in the output conductance, not the capacitance. This improvement, as well

as the more accurate dc current ratio, is bought at the price of a potential
stability problem, so the circuit should be used with care.

94 ACTIVE LOADS

An important application for current mirror circuits is the provision of an

active load for signal circuits such as the emitter-coupled pair. In this service

the current mirror acts as a spanning network whose prime function is that of
feedforward rather than feedback; hence this technique is of interest in

developing the theory of spanning networks.
A differential pair with a current mirror active load is shown in Fig. 9.14a.

Our purpose is (1) to give a general description of its operation and then (2) to

find the ABCD parameters of the network including it.
The collector signal currents of the two transistors of an emitter-coupled pair

are opposite in direction and almost exactly equal in magnitude. By mirroring

the output of one and adding it to the other, the output current of the pair is
doubled for a given input; put the other way around, D of the pair is halved.
The basic operation of the circuit is to add a signal to the output from a point
earlier in the circuit; hence the purpose of the circuit is to add feedforward to
(1) raise the current gain by a factor of 2 and (2) double the output current

capability of the emitter-coupled pair.
As we have noted, any spanning network provides both feedback and

feedforward; usually one or the other is incidental to the purposes of the
network. For this circuit, the feedback is incidental and is for practical

purposes negligible.

The circuit is redrawn in Fig. 9.14b, where Q, is shown as an emitter

follower and Q, is a common base stage. The mirror is drawn as a spanning

network that has the collector current of Q, as its input; this current is
mirrored by Q, and added to the output current of Q,.
The current relationships are shown in Fig. 9.14b. Assuming a unit collector

current of Q,, the emitter current is 1+ §, which is also the emitter current of

Q,. (We 1gnore any admittance of the emitter current source; its effect is
described in Chapter 12.) The collector current of Q, is also unity, and this

current forms the input of the current mirror. The current gain of the mirror is
—1/D, or 1/(1+28); the output current of the mirror is added to the circuit
output, so that the output current of the circuit is i, +i_, or 1+1/(1+29),
approximately 2.
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Figure 9.14. Use of a simple current mirror as an active load for a (noninverting) differential pair.
Active load is treated as a feedforward spanning network.
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These relationships are formalized in Fig. 9.14¢ in which the current mirror
spanning network is represented by its & parameters. The desired effect is
represented by the output generator h,,i.; h,, represents output loading by
the current mirror and is small. At the input side 4, is the impedance of the
diode and current mirror resistor in series; h,,v, is a feedback voltage, the
current mirror input voltage: output voltage ratio. Its effect on circuit opera-

tion is negligible since it faces a high-impedance collector and is very small in

the first place.

Since both the differential pair and the spanning network are grounded, we
cannot calculate the ABCD parameters by lead permutation exclusively; the
general method described in Chapter 8 must be employed. A program for this
was written, and the results are shown in Fig. 9.15a for a differential pair

operating at 1.0 mA with a supply of 5 V. In this calculation the parallel
combination of 0.1 k§ and 1.0 pF was connected between the base of Q, and

ground to account for a feedback network to be applied later. The frequency is
0.316 GHz.

ABCD MATRIX ABCID MATRIX

OF OF
NON—-INY D.F. INY D.FP.

FRER., GHZ = 8.31623 FREQ., GHZ = 8.31623

ABCD. MAG.+PH: ABCD. MAG.+PH:

'R f:

Réi= B.84936 R81= B.83c1e

Re2= 188.32621 Ré2= -72.29834

B: B:

RO3=  0.83447 RE3=  9.83491
Rod4= 27.12182 RB4= -151.6886%

€ C:

R8S= 8.83377 RES= 8.1497%
RB6= 181.58833 RB6= -74.49825

D b:

RA7= 8.84658 RA7= 8.83687

Ra8= 93.77776 R88= -86.96787

(a) (b)

Figure 9.15. The ABCD parameters of differential pairs with active load: (a) noninverting; (b)

inverting.



 

  
(a)
 

 

 

  

   
(c)

Figure 9.16. Inverting differential pair with active load: (a) circuit; (b) circuit redrawn; (c¢)
analysis by topological manipulation.
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The value of B is approximately that for a single transistor since only half
the output current flows through the emitter resistances of Q, and Q,. The
value of C is extremely small and is a negative conductance (with a 12 dB per
octave positive slope with frequency). The value of D is likewise small,
corresponding to a unity loss time constant of 0.0465/(27 <0.316)=0.23 ns.
This value is a little more than half the 7, of the transistors; the feedforward
makes the differential pair broader in bandwidth than the common emitter
stage.

The circuit in Fig. 9.14 is a noninverting stage. A differential pair that has a
phase reversal is obtained by exchanging the roles of the bases of Q, and Q,,
as shown in Fig. 9.16a. This circuit may be redrawn as in Fig. 9.16b; the

spanning network can now be taken as the conductor from the collector of Q,
to the output. Since this spanning network is ungrounded, we can calculate the
ABCD parameters of the circuit by a series of lead permutations, as shown in
Fig. 9.16c. The characteristics of the circuit were calculated in this way, with
the results shown in Fig. 9.15b. The transistors and circuit are the same as for
the noninverting circuit except for the exchange of bases of Q, and Q,.
Note that B remains essentially unchanged except for the phase reversal.

This is to be expected since B is essentially the sum of the emitter resistances of
Q, and Q, divided by 2. The value of C increases since the collector

capacitance of Q, is now connected between circuit input and output. How-
ever, D becomes smaller, primarily because /,, of the spanning network is no
longer in series with the collector of Q,, thus eliminating the collector time
constant 4,,C;., from D.
The ABCD matrices of the inverting and noninverting stages are not

identical. This leads to imperfect common mode rejection at high frequencies, a
subject we discuss in Chapter 12.

9.5 ACCURATE OUTPUT CURRENT SENSING: B AND D FEEDBACK

The current mirror circuits are examples of D feedback in which a circuit that
is basically a B-feedback amplifier is converted to D feedback by addition of a

shunt conductance at the input, as in Fig. 8.6¢. The effect of B feedback is

minimized by operating the circuit from a high-source impedance. Other

configurations in which D feedback is provided alone—without incidental B

feedback—are also possible. One of the simplest of such configurations is

shown in Fig. 9.17, in which the output current is sensed at the emitter of the
second stage. This emitter voltage causes a current to flow through Gto the

input, where it augments the input current. Where the internal feedback paths
of the individual transistors can be ignored (i.e., the transistors are in their

reference condition), the ABCD matrix of the combination contains only one

nonzero element, in the D position. Therefore, it is a unitary D-feedback

amplifier.

Sensing the output current at the emitter of the output stage has serious
limitations for critical applications. Since the emitter current contains not only
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(a)

  

 

(b)

Figure 9.17. A D-feedback pair is shown in part a. In part b a Darlington pairis substituted for

the output transistor to obtain accurate output current sensing.

the output current but the base current as well, the resulting feedback current
is proportional not only to the output current, but to the base current. Thus if

the base current is nonlinearly related to the collector current, the feedback

current, and hence the input current, will contain a nonlinear component when

the output current is perfect. The problem here is the imperfect sensing of the

output current and may be all but eliminated by making the emitter current

more closely approximate the output current. One method is to substitute a

Darlington pair for the output transistor as shown in Fig. 9.17b, in which bias

current for the first transistor of the pair is provided by the resistor between

the emitters. According to Kirchoff’s current law, the difference between the

(composite) emitter current and the output current is the base current of the

first transistor of the pair, a current that is a factor § smaller than the base

current of the simple stage. Almost perfect output current sensing can be

achieved in this way.
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—

 
 

Figure 9.18. A B-feedback amplifier with accurate output current sensing.

Adding the transistor that converts the output stage to a Darlington pair
raises the degree of the characteristic polynomial by 1. For unit output current,

the base current of the simple output stage contains a term proportional to s

(and some delay due to transit time). When the Darlington pair transistor is
added, its base current contains a term proportional to s2. To retain control of

the intermediate polynomial coefficient, a capacitor may be connected from
collector to base of the output transistor, as discussed in Section 5.5.
Another method for accurately sensing the output current is shown in the

B-feedback amplifier in Fig. 9.18. In this circuit Q, and Q, operate as an
emitter-coupled pair, so that the collector signal currents of the two transistors
are almost exactly equal and opposite, as are the base currents. The three series

diodes provide collector bias voltage for Q,. The collector current of Q, is
divided by the resistive feedback network and causes a feedback voltage to
appear at the emitter of Q,. It follows that this component of feedback is
almost perfect. The base current of Q,, however, also flows through the

external emitter resistance of Q, (through the collector-emitter path of this

transistor), giving imperfect output current sensing. This component is canceled

by the equal and opposite base current of Q,, so that the emitter voltage of the

first stage is solely proportional to the output current.

PROBLEMS

1 Find expressions for the input resistance and output conductance of the

simple current mirror with a diode that has an emitter area r times that
of the transistor.

2 Find the approximate low-frequency input current and output conduc-

tance for the current mirror stage in Fig. 9.19.

3 The circuit of Fig. 9.20 is a cascode current source. Find its input current

for unit output current and its output conductance.
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Chapter 10

Output-Stage Design
 

Output stages of operational amplifiers, power supply regulators, and in
general any analog signal processing circuit may be called on to provide signals

at a power level that causes the signal to vary over the complete bias range of
the output device or devices. As we saw in Chapter 7, the transmission
parameters vary with bias, so that the loss of the circuit will be dependent on
the signal level. It follows that the input signal is a nonlinear function of the
output current and voltage. Three sources of nonlinearity discussed in Chapter

7 strongly affect output stages and are dealt with here: (1) emitter junction

nonlinearity; (2) avalanche multiplication; and (3) saturation.

We begin by considering a single transistor used as an output stage;

operation is restricted to the single quadrant of the I.-V, plane in which the
transistor is in its forward-active region of operation. The collector current can

vary above and below its quiescent value, generally from nearly zero to twice

its quiescent value. Where the signal varies above and below a quiescent value,

operation is termed Class A. The power input from the power supply is

constant in this class of operation and is independent of signal level. Power

dissipation in the output stage tends to be high and is highest in the absence of

signal since none of this constant poweris delivered to the load. Hence Class A

operation requires considerable standby power in the absence of input signals.

The discussion is then extended to include push-pull operation with the use of
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two devices. This adds one extra quadrant to the signal range and improves
efficiency by roughly a factor of 2, still retaining Class A operation.

In the next section Class B operation, in which the standby poweris reduced
or removed, 1s considered. In this class of operation the power input from the

power supply depends on the input signal; considerably less power is dis-
sipated in the devices. It is a natural choice for higher-power integrated
circuits.

In both classes of operation nonlinearities are much more easily analyzed as
predistortion at the input to produce a desired output waveform—a sinusoid,
for example. Since nonlinearities occur in both input current and voltage, the
nonlinearities can be added at the input (through the source impedance) to
give the total nonlinearity, as discussed in Chapter 1. Many problems of the
conventional formulation, such as defining and eliminating transient distor-
tion, for example, do not arise in this approach. Drive requirements for the
output stage are formulated compactly, making the design of the driver stage
simple and direct.
The final section of this chapter is devoted to a description of the variation

of transistor dc characteristics with temperature. Means are developed to
design circuits that have a prescribed variation of currents and voltages with
temperature. As examples, the design of band-gap voltage reference circuits' is
described, as well as the design of the temperature-dependent quiescent current
for Class B output stages to maintain low-distortion operation over the

operating temperature range.

10.1 A COMMON EMITTER OUTPUT STAGE

In the circuit in Fig. 10.1a the upper transistor Q, supplies a quiescent current
I, to the lower transistor @, a common emitter amplifier. Current I, is
adjusted in the absence of signals to give a quiescent output voltage of zero.

(The adjustment may be made by feedback from the output terminal and is not
shown in Fig. 10.1a.) Transistor Q, is a current source transistor as discussed
in Section 9.2. The I.-V,, plane for Q, (the collector characteristics) is shown
in Fig. 10.1b; the light lines show 7, and V,, for various values constant of base
current, but these lines are immaterial for the present discussion. From Fig.
10.1a, we can write

I,=1,~1 (10.1-1)cl 0

and

V
cel
=V+ Ve (10.1-2)

Since V,=i, R,, we can write the equation for the load lines shown in Fig.
10.156

V.=—I1.R +(VectIyR,), V. >0 (10.1-3)
ce
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(b)

Figure 10.1. Common emitter output stage with current source: (a) circuit; (b) output character-

istics and load lines.
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or

[=—C—< 4, (10.1-4)

Three load lines are shown in Fig. 10.16; the solid line is drawn for

R, =Vcc/Ip, and the dashed lines are for values of R, above and below this
value. The slope of the load line is 1 /R, =G,. For values of R, equal to or
greater than V../I,, the output voltage can swing from a little above — V- to
a little below + V. At the lower limit, saturation of Q, prevents a further
excursion, whereas at the upper limit, saturation of the current source transis-

tor prevents a further positive excursion. These limits can be reached only if
the collector junction breakdown voltage Vg, 1s much higher than V... If it is
not, avalanche breakdown of the transistors will restrict operation to a smaller

range and may even lead to destruction of the transistors. This case is studied
in the text that follows. For the present discussion, we assume high breakdown

voltages for Q, and Q,. For values of R, less than V./I,, the positive voltage
limit is a little less than IHR,, whereas the lower limit remains at a little

greater than — V., so that the positive and negative limits are unsymmetrical.
Maximum (symmetrical) power output is obtained for R, =V,-/1,. The

maximum sinusoidal output signal, ignoring the small saturation voltage,is

V,max = Veesin ot (10.1-5)
om

so that the maximum output poweris

 

VZ

Pomax:%sinzwt (10.1-6)
L

Vée
= 1 —cos2wt 10.1-7T ) (10.1-7)

which has an average value of V2-/2R,. The efficiency, defined as the ratio of
output power to power input from the power supplies, may be obtained by

finding the total power from the positive and negative supplies. The formeris

Io,Vec and is constant. The latter is IV.., where I, varies sinusoidally from
zero to 21, and has an average value of /,; the average power from the lower

supply is also Vi1,Since 1,=V-/R , the efficiency is

:ECI_Q/EZL (10 1-8)
Weel, 4 '

or 25%.
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Anticausal Distortion Analysis

The input drive required to secure a desired output is fundamental to the

design of output stages; both input voltage and current must be taken into
account. The input voltage to the common emitter stage is

kT Icl _E nIQ_IO V, =—In— 10.1-9
be q Ig q I ( )

I 1
= Eln—g (1— i)

q Ig IQ

kT 1
:VBE+—ln(l——") (10.1-10)

q IQ

where V. is the quiescent value of V,, and is (kT/q)In( 1,/15). The second
term is the (nonlinear) input signal required to obtain an output current of /.
The second term, plotted in Fig. 10.2, exhibits considerable curvature. The
input signal for a perfectly sinusoidal output signal is shown in Fig. 10.2, and

is seen to be distorted. It is plotted for an output signal amplitude of 90% of
Vees for illustrative purposes, Veis 20 V, R, is 1.0 k€2, and I, is 20 mA.
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Figure 10.2. Transfer characteristic for input voltage as a function of output voltage, showing
nonlinearity of BG,.
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Note that in a “good” design the output signal will be almost sinusoidal and
the input voltage of the output stage will be predistorted as in the example
here. The predistortion may be obtained automatically by overall feedback;

regardless of the means used, the base voltage of the output stage, observed on
an oscilloscope, will resemble the wave shown in the Fig. 10.2. The importance
of this concept becomes increasingly clear as we proceed and becomes essential

in the design of Class B amplifiers.
To obtain numerical values for the effects of this nonlinearity, we can obtain

the harmonic distortion of the input waveform for a sinusoidal output signal.
We begin (as earlier, in Section 1.2) by expanding (10.1-10) in a power series:

from the expansion of In(1—y), we obtain

 

kT .Y2 ,Y3 ,Y4

=

"

g Yt t3 T (10.1-11)

where y=1,/1,. If we then set

1,= Alcos wi (10.1-12)

then

qV., A?’cos? wt  A’cos® wt
— - — + . e -T A cos wt+ > 3 + (10.1-13)

Each power of the cosine function cos* wz can be written

cos kwt
Y +f(wt) (10.1-14) cosk wr=

The first term on the right gives the kth harmonic of the wave. The second

term contains terms of lower harmonics. Where & 1s even (odd), the second

term contains all even (odd) harmonics of lower order than k.

Using standard trigonometric identities, we can write for (10.1-13)

QY _A? 34* 54° ) ( A* A )
T =4 (1+—32 +—96 + +A 1+—4 +—8 + COS wt

A? A?  54° A? 342
+T(1+7+7+---)Cos2wt+fi(l+T+---)Cos3wt

A*
+§—2—(1+A2+ v )cosdwt+ -- (10.1-15)

Note that 4 is a normalized amplitude; when A =1, the peak value of the

output current is /,. When A is considerably less than unity, the higher-degree

terms of A become negligible, and the second term on the right of (10.1-14) can
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Figure 10.3. Harmonic distortion of the input signal to obtain a sinusoidal output for the emitter
junction nonlinearity. The dashed lines show the third and fourth harmonics of the output for a

sinusoidal input excitation.

be ignored. The harmonic products of the predistorted signal voltage are
shown as a function of level by the solid lines of the plots in Fig. 10.3. They are

shown as a percentage of the fundamental for the second, third, and fourth
harmonics. The second harmonic is proportional to the signal level, and the

third harmonic is proportional to the square of the signal level.

Comparison with Causal Distortion Analysis

Anticausal distortion analysis finds the input predistortion required to produce

a desired output waveform. We used a sinusoid as the desired waveform in the

preceding analysis, but the principle applies to any desired waveform. If the

gain falls to zero (or the loss rises to infinity), as in the case of cutoff or

saturation, the required input signal rises to infinity or becomes unbounded.

Similarly, the input predistortion becomes unbounded. On the other hand, if
we apply a high-level sinusoidal input signal to an amplifier that saturates at

high levels, the output distortion is not infinite, or unbounded. The two ways

of specifying distortion are quite different, therefore.

In general, the input predistortion as a percentage of the fundamental
contains considerably greater high-order harmonics than does the output signal

for sinusoidal input excitation. Hence the drive requirement for a distorting

output stage at high frequencies is greater than one might expect from the
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distortion products expressed as a percentage of output signal for input
sine-wave excitation.
As an example, consider the emitter junction nonlinearity and compare the

powerseries coefficients for the two representations. If we define a normalized
input variable x" as ¢V, /kT and an output variable 1, /1, =y, we can write
the input-output relation in the anticausal case as in (10.1-11):

x'=In(1-7) (10.1-16)

.Y_i

| l
Il |

I
8

i

The amplitude of the coefficients of the power series decrease as the order of

the term. On the other hand, the causal representation can be expressed as

 =~ § ~ (10.1-17)

In this direction the amplitudes of the coefficients decrease as the factorial of
the order of the term, a much more rapid decrease. The ratio of the amplitudes

of the power series coefficients for the two descriptions is thus (n—1)!. Thus
the second harmonic term is the same for either direction of analysis, the third

harmonic is twice as large in the anticausal direction as in the causal, and the
fourth harmonic is six times as large. The third and fourth harmonics of the

output distortion as a percentage of the fundamental are shown by the dashed
lines in Fig. 10.3.

Evidently, analysis of distortion in the anticausal direction is considerably

more sensitive than in the causal direction. The reason for this difference is

that in the forward direction, any predistortion is itself distorted in passing
from input to output. If the incremental gain is low, for example, the

predistortion signal will suffer attenuation by the very distortion it is trying to
correct. Consequently, it must be larger to overcome this effect. This is the

“endless chain of dependencies” that is characteristic of analysis in the forward
direction and is avoided by proceeding in the anticausal direction.

Input Current Drive Requirements

The base current required to secure a given output voltage and current includes
both static and dynamic components; both are important to output circuit

design. In the simplest case the static input current is given by —487.. The
transfer characteristic I, versus V, (or 1)) for this case is nearly linear since 6 is
only mildly nonlinear over the range of signals. In this case current drive
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0471

 

 

V,, volts

Figure 10.4. Transfer characteristic for input current as a function of output voltage, showing
nonlinearity introduced by avalanche multiplication for a collector junction breakdown voltage of

100 V.

provides more linear operation than does voltage drive, and a high-impedance

source gives lower distortion than does a low-impedance source.
Output stages are often called on to provide considerable output voltage. If

the avalanche breakdown voltage is not sufficiently high, avalanche multiplica-
tion can change the static drive requirements significantly. This is illustrated in

Fig. 10.4, which shows the transfer characteristic for currents for the case in
which the positive and negative supplies are each 20 V and the avalanche
breakdown voltage is 100 V. Two characteristics are shown; the solid line is

drawn for an avalanche multiplication exponent of #=4 in the equation for the

base current (see Section 7.5):

V n

I,=— 3———‘1) 10.1-18: ( L (10.1-18)

The base current becomes zero for V,, =V,; with §=0.01, we obtain

Vo= Vgr(8)"/"=100(0.01)"% (10.1-19)

=32V

The base current of the lower transistor in Fig. 10.1 thus goes to zero for an

output voltage of +12 V and becomes negative for greater voltages. Hence

current drive will cause high distortion and, if overall feedback is used, can
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cause instability since the incremental loss undergoes a phase reversal at high
collector voltages of Q,. Voltage drive removes the difficulty but causes its own
distortion as described previously.

The dashed curve in Fig. 10.4 is drawn for n=35 in eq. (10.1-18); the sustain

voltage in this case is 40 V, removing the reversal in the slope of the transfer
characteristic, but causing considerable curvature for positive voltages. Note

that the curvature of the characteristic is of sign opposite from that for the

emitter junction nonlinearity, so that by choice of a suitable source impedance,
some distortion cancellation can be effected. Such cancellation has been used
in submarine cable repeaters where the transistors are manufactured with
extremely well-controlled characteristics (and are consequently costly). In
ordinary design, such cancellation should be avoided because although the

emitter junction nonlinearity is well controlled, avalanche multiplication sel-

dom is.
The conclusion from this discussion is that the sustain voltage should be

equal to or greater than the total supply voltage 2Vto be free of the input

current reversal. It is possible to design satisfactory circuits with sustain

voltages less than this value, simply by degrading the effective defect current

with added shunt input conductance. This increases the current drive require-
ment, however, so that the overall tradeoffs must be examined.

When the sustain voltage is made adequately large—greater than the total
supply voltage—the input current as a function of output voltage becomes
reasonably linear.

The dynamic current drive requirement is set primarily by the collector
capacitance of Q,. This capacitance must be charged and discharged through

the output voltage for each cycle of the output signal. In many designs, from

audio to microwave frequencies, the charging of this capacitance establishes
the current level at which the driver must operate. Failure to provide this
amount of driver capability will lead to slope overload, or slew rate limiting, as

shown in Fig. 10.5. The driver current capability is easily found for any given

worst-case output signal. Suppose, for example, that the output stage is to

provide a full amplitude signal at a frequency of 25 MHz and that the collector
capacitance is 2 pF. The maximum slope of a 20 V sinusoid at 25 MHz is

found by differentiating

V. =20sin27(0.025)¢ (10.1-20)

d
dvt" =20(27)(0.025)cos 2(0.025)1 (10.1-21) 

The maximum slope occurs at the zero crossing and is 7 V/ns. The maximum

current to be supplied by the driver is thus

dv
i=C—2| =63mA (10.1-22)

dt |,—
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Figure 10.5. Slope overload (slew limiting) introduced by inadequate driver output current
capability.

The quiescent current of the driver stage must be equal to or greater than 6.3

mA to meet the requirement without slope overload. Failure to provide this
drive capability results in transient overload. Conversely, with adequate drive
capability, transient distortion products do not arise.*

The main sources of distortion are usually those discussed previously. Other

sources may be of importance in special circumstances. Under high-level
injection conditions, the defect current ratio rises, (Webster effect). At high
frequencies Kirk effect may cause a sudden increase in the current loss time
constant in transistors too small for the application. Early effect can cause

nonlinearity, but low-load impedances usually swamp this effect.

10.2 LINEARITY IMPROVEMENT

Linearity of the output stage may be improved by adding B feedback. Figure
10.6a shows a resistor in series with the emitter of Q, that augments the input

voltage by v,R/R, and this component of input voltage is linearly related to
the output voltage and current. Note that the input distortion voltage is

unchanged by the feedback (actually, the voltage drop across R subtracts from

the output voltage capability, thus causing the distortion for a given output

level to increase slightly). The transfer characteristic is linearized by the

addition of a linear component to V,, so that the distortion component tends
to be swamped out.

Another method for linearizing the voltage drive requirement is to use an

emitter follower output stage, as shown in Fig. 10.6b6. In this case the full

output voltage is added to the input, and the linearity of the output stage is

greatly improved. Again, the distortion products at the input for sine-wave

*It has been (erroneously) stated in many sources (particularly in audio publications) that feedback

“causes” transient intermodulation. This is clearly not the case, as the preceding discussion
indicates. The cause is lack of driver stage capability.
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Figure 10.6. Introduction of feedback to swamp out nonlinearity of input voltage: (a) B
feedback; (b) emitter follower (output permutative feedback).
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output do not change from those of the common emitter configuration; they are

swamped out by the addition of the output voltage. The input voltage is given

by

v,,=(A+BG,)v, (10.2-1)

Except for the lack of a phase reversal, B is the same as in the common emitter

configuration. However, A4 is changed from zero to unity. The harmonic

products of the input waveform for sinusoidal output can be estimated simply
by multiplying the values given in Fig. 10.3 by the sensitivity to B, which is
BG,/(A+ BG,). Since BG,;<A, the harmonics are greatly reduced. In a sense,
however, the linearity problem has been transferred to the driver stage since
the latter stage now must provide slightly more than the output voltage to drive

the output stage. It does this at much lower current, however, so the method is

viable.

The dynamic current drive requirement also becomes greater. The reason for

this is that the driver now has to charge its own collector capacitance to the
output voltage as well as that of the output transistor. In addition, in an

integrated circuit, the driver must also charge its own collector-to-substrate
capacitance through the same voltage change. The current drive requirement

imposed by these capacitances is found as in the above slew rate calculation,

substituting the total capacitance at the base node of the output stage for the
collector capacitance of the output stage.

With its large input voltage drive requirement, it would seem that the emitter
follower is a poor choice for an output stage. Yet it is widely used and thus
must provide a further benefit over a common emitter stage with feedback over
its driver stage(s). Indeed, it does. As we saw earlier, the common collector

stage 1s unique because it does not include transit time delay from input to

output. Thus it is easier to stabilize and to realize a prescribed response than is
the common emitter stage. This can be of major importance particularly where
the current loss time constant (and hence delay) of the output transistor is

larger than those of the earlier stage transistors.

Push-Pull Operation

The single-ended common emitter or common collector stages discussed previ-

ously need rarely be used because, with few extra parts, the circuit can be

rearranged to be twice as efficient. By converting the current source to an

active load, as discussed in Section 9.4, the current source transistor can be

made to contribute signal current to the load. In Fig. 10.7a the emitter follower

circuit in Fig. 10.6b has been thus converted, with the emitter of the driver

stage arranged to drive the active load. Such an arrangement is termed a

push-pull circuit because when the upper transistor conducts heavily (negative

signal applied to the base of the driver), the lower transistor conducts lightly,

so that more of the current of the upper transistor reaches the load. The upper

transistor pushes current into the load. When positive signals are applied to the
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Figure 10.7. Push-pull output stage with the use of an active load: («) circuit; (b) equivalent
laddercircuit.

driver, the lower transistor conducts heavily and the upper transistor conducts

lightly. The lower transistor pulls current from the load.
With the same quiescent current as in the single-ended case, the load current

can rise almost to 2/, and fall to —21,, for the same voltage change as in the

single-ended case. The load resistance for maximum output power is thus

Vec/21,, half that of the single-ended case. This assumes that the two output
transistors contribute equally to the load, a circumstance that does not occur

automatically but that must be made to happen by appropriate arrangement of
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the driving signals to the two transistors. Since both transistors contribute to
the load, the sine-wave efficiency becomes 50%, twice that of the single-ended
case. The actual efficiency is less than this because the full output voltage of
V¢ is not obtainable. At the upper limit the V,, drop of Q. subtracts from the
maximum obtainable driver voltage, as does the drop in the load conductance
G,p of the driver. At the lower limit the voltage drops across Ry and V,, of Q.
limit the swing.
The combination of output stage and driver is capable of providing broad-

band voltage loss at high-power efficiency for Class A operation. For best
efficiency, the active load should supply half the output signal current. This

establishes the relationship among the four immittances in Fig. 10.7, namely,
G., Y. p, Zg, and R;. The signal current through Y, j, is v,Y, ;, since the output
voltage appears across it. This current flows through Q, and into the active
load spanning network input. To provide half the output current v,G;/2, the
current gain 4,, of the spanning network must be

_G./2
h21 YLD (10.2-2)

With Qin its reference condition, 4,, is given by

Z
hy = 7{2- (10.2-3)

SO wWe can write

ReGyp _
Y,pZp= 2 n (10.2-4)

where —n is the voltage loss of the whole circuit in its reference condition. The

magnitude of the voltage loss is chosen to give the bandwidth required and
may be in the range of 0.1-0.4. The bandwidth obtainable is somewhat less
than nf;. For a given G, and n, (10.2-4) gives the value of R, required to

obtain equal current contributions from Q. and Q. It also gives the relation

between Y, ;, and Z,.
The value of Y, ;, is determined by the output-stage drive requirement and

consists of the dc load conductance of the driver stage in parallel with the total

parasitic capacitance to ground at the base node of Q.. This capacitance

includes the collector-to-base capacitance of Q. and Q,, the collector-to-

substrate capacitance of Q,, and any wiring capacitance or other parasitics.
With unit output voltage, the voltage at the base of Q, is —n, so that the

current flowing through C,., i1s (1+n)C,p, giving a total effective node
capacitance of

GTrc
Crp=Cict(1+n)Cp+CoptT (10.2-5)
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The last term on the right accounts for the base charge of Q; it is divided by 2
because half the output current is supplied by the lower transistor. Base charge
1s given by I-7; to this we can add the charge on the emitter capacitance, thus
rendering the total base charge roughly I-7,=v,G,7,. The term C,, is the
dominant element in the design of this output stage. The dc quiescent current
of the driver is established by C;,, and the slew rate requirement as

| dv,
ico=Crp—" (10.2-6)

With a total C,, of 1.5 pF, for example, and a required slew rate of 4 V/ns,
the driver quiescent current should be 6.0 MA.

For a given supply voltage, we find G, ,, from the dc relation

I— CD _Grp=55— (10.2-7)

Hence the slew rate requirement (and the supply voltage) determines the

essential features of the design. The variable Z, has the same time constant as
Y,, and is the parallel combination of resistor Ry and capacitor Cg; the
capacitance should include the input capacitance of Q.. The variable Ris
purely resistive (for zero load capacitance). In the actual realization, a purely

resistive R, reduces the bandwidth of Q,, so that a small capacitance is

connected in parallel with R . to compensate the stage.

This output stage has been used in a broadband integrated operational

amplifier.” In that application n=0.30, and the bandwidth is about 1.0 GHz.
Other push-pull arrangements for Class A amplifiers are possible; we next

discuss Class B circuits, for which Class A versions are always possible simply
by raising the quiescent current sufficiently that the transistors remain in

conduction at all times.

10.3 CLASS B OUTPUT STAGES

The chief failing of Class A stages is that they consume the same power under
idling conditions as when they deliver signals to the load. In Class B circuits,
on the other hand, the quiescent current is nominally zero; the collector

current rises in response to input signal. Consequently, Class B circuits

consume little standby power. Where the signal is of an intermittent type, such

as in analog speech, the energy saving of Class B circuits can be much larger

than a comparison of efficiencies under large-signal conditions would suggest.

The large-signal efficiency of a Class B circuit (under conditions of maximum

sine-wave excitation) approaches 78.6% (100X/4), found by integrating the

total power into the circuit and dividing it into the output power. This is to be

compared with 50% for the ideal Class A push-pull stage.

The design of Class B circuits is controlled by the same considerations of

drive requirements as in the Class A case, but in addition, the switching on and
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off of the output transistors must also be considered. The circuit in Fig. 10.7
could be used in Class B, for example, but when the upper transistor is
conducting, the output impedance is considerably lower than when the lower

transistor is conducting. It is advantageous in Class B designs to use circuits
that exhibit symmetry under positive and negative signal excitation.

With their greater efficiencies, Class B circuits can be used to provide
considerably greater power than Class A circuits by using transistors of the
same heat-dissipating ability and size; consequently, temperature variations in

the Class B circuits under variations in signal conditions will be much greater

than those of Class A circuits. Therefore, temperature stability and prevention

of transistor burnout become more important.

Crossover Distortion

A central problem in Class B circuits arises from the turning off of one or the
other transistor in the vicinity of zero output signal. In effect, the nonlinearity
of input voltage that occurred in Fig. 10.2 at the positive extreme of output
voltage now occurs for each transistor in the vicinity of zero output current,
giving rise to crossover distortion. The effect is shown in extreme form in the

circuit in Fig. 10.8, in which npn and pnp emitter followers are connected in

series for dc currents and in parallel for signals. When the driver transistor

conducts heavily, the lower transistor conducts current from the load; when

the driver transistor conducts less heavily than the current source, the upper

transistor conducts current from the positive supply to the load. When the

driver conducts a current equal to the current source, neither transistor

conducts. Figure 10.8b shows the transfer characteristic. To provide a sine-wave

output, the input voltage must switch suddenly as shown. If the driver is
incapable of this, considerable distortion will result, no matter how much

feedback is provided around the whole amplifier, including the driver. The

driver is required to charge the collector capacitances of the output transistors
as well as the base charge /7, and to do it rapidly.
The capacitive charging currentis given by C(dV,,/dt); the derivative of the

input waveform in Fig. 10.8 is shown in Fig. 10.9 and is reasonably sinusoidal

except at the transitions, where spikes of current are necessary to switch the

transistor. If the driver cannot provide these spikes, feedback will not correct

the problem. This is equivalent to the slope overload problem of Class A

amplifiers discussed previously. There, the solution was to increase the driver

capability; here, the problem can be eliminated by the combination of two

techniques: the first (and most important) is to provide a nonzero quiescent

current I, for the output transistors by adding biasing diodes or diode-

connected transistors between the bases of the output transistors as shown in

Fig. 10.10. This technique alone goes a long way toward solving the problem

and allows overall feedback to reduce distortion to manageable amounts.

When forward bias is added, both transistors contribute to the output over a

signal range near zero.
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Figure 10.8. Class B output stage with severe crossover distortion. The voltage transfer character-
istic and required predistortion are shown in part b.
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Figure 10.9. Input voltage and current waveforms for the Class B stage shown in Fig. 10.8. Where

this stage is used in a feedback amplifier, these waveforms can be observed with an oscilloscope.
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Figure 10.10. Use of forward bias to reduce crossover distortion.

362



Class B Output Stages 363

The second technique is to add emitter resistors to the output transistors,
thus allowing minimization of crossover distortion for a given value of I,,.

Rather than developing the transfer characteristic itself, we treat the slope of
the transfer characteristic. Hence linearity is measured by the constancy of the
derivative. This is a more sensitive indicator of nonlinearity. From (10.2-1) the

slope is given by

dv.
de =A+BG, (10.3-1)

o

 

In this equation 4 is unity (for the emitter follower) and is linear. The

nonlinearity is concentrated in B; the A feedback helps to swamp out this
nonlinearity. Therefore, we need only investigate the variation of B with output

current to determine the input voltage nonlinearity.
In the circuit shown in Fig. 10.10, transconductances add, so that with

q,,—ql/kT, we can write

1kT 1
B gm1 t 8m2 B q I,+1,

 (10.3-2)

Under quiescent conditions, I, =1,=1,, so that B=kT/21, half the value for
either transistor. On the other hand, under maximum signal conditions one

transistor is cut off, so that B=kT/ql,,.
Between these extremes of current, we can find B by finding /, and /, and

substituting them in (10.3-2). This is easily done by assuming a value for /, and

finding the value of 7, from it, given a desired value of /,. When 1, is found,
we can obtain /,, the output current, from

1,=1—1, (10.3-3)

which allows us to plot B as a function of /. This is an example of using an
internal variable in the circuit and finding the input and output from it, rather

than starting at either the input or the output. The procedure allows us to write

a sequential series of equations.
Given /,, we can write

kT 1,V,q=—In=tbel q IS (10.3-4)

The diodes in Fig. 10.10 provide a bias voltage V5 that biases the output

transistors to the desired quiescent current /,. The design of the bias network
will be considered later; the present analysis does not require us to know V.
The base emitter voltage V,., of the second transistoris given by V., — Vg, SO
we can write

L=Isexpi(—Vio) (10.3-5)
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where the negative sign arises from the direction assumed for I, (V,, is a
negative quantity for a pnp transistor). Hence

I
IZ:ISexpk—"T- ( Vis— k—qT 1n1—;) (10.3-6)

_ Is2 qVss
—I—lexp T (10.3-7)

We eliminate Vyp from this equation by noting that when I,=1,=1,, we have

qV
 13=1%exp k;” (10.3-8)

so that by dividing (10.3-7) by (10.3-8), we obtain

12

Il

and

151021,—1— (10.3-10)
I

Multiplying by I, and solving the quadratic, we can obtain /; in terms of I,
and /. Substituting this back into (10.3-2), we obtain B as

B:——z—kz————z— (10.3-11)
q Io +(2IQ)

This relation is plotted in Fig. 10.11 for I,=5 mA, showing the variation of

B over a current range of —100 to + 100 mA. The linearizing effect of adding

AR, is also shown in the plot, with R, =0.1 k§ (giving a maximum output
voltage range of =10 V). Although the percentage variation of B is large, the

stage 1s reasonably linear. The voltage loss—found by multiplying the ordinate

by R,—varies from a minimum of about unity for large output to a maximum

of 1.026 at zero output, a total variation of 0.22 dB.

This is the differential loss over the operating range; its reciprocal is the

differential gain, which is 0.22 dB /lower at zero output than at maximum
output. Differential gain is a linearity specification often used for video

amplifiers.® Clearly, the differential gain in decibels is equal to the negative of

the differential loss. Since the latter is a measure of input predistortion and the

former is one of output distortion, the two specifications in decibels are equal

and opposite. Where the nonlinearity is large, the harmonic content of the
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Figure 10.11. Terms AR, and B as functions of output current for the circuit shown in Fig.
10.10. Their sum is the voltage loss of the circuit and shows differential loss variation.

input predistortion may be significantly different from the output distortion, as
we have seen in Section 10.1.
The remaining nonlinearity can be reduced by adding resistors in series with

each emitter. Suppose, for example, that we add resistors nominally equal to

kT
=— (10.3-12)

ql,
E

Under maximum signal conditions, the collector current is large on one side,

and r; approaches zero, so that B for the stage approaches R ;. At zero signal,

B of each transistor is 2R ;;, and the combined B is also R ; thus there is some

correction of the nonlinearity.

To obtain the variation of B with output signal when emitter resistors are

added, we proceed as before, adding the emitter resistor voltage drops; thus

Vbe2:Vbel+(1l+I2)RE_ Vig (10.3-13)

By the same substitutions used above, the equation corresponding to (10.3-9)
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becomes

qR g-I—(—T—(zlg—l,—lz) (10.3-14)
12

Q
I,= —exp2 Il

Since I, appears in the right-side exponential, this transcendental equation is
best solved byiteration on the calculator. It converges quickly for I,<1,,. Since

the equation is symmetrical in /, and I,, the solution for one side is the same

as the one for the other, and we have the solution for the complete signal

range.
We can then find B as the parallel combination of B for the individual

transistors:

B=||—| +|—— (10.3-15)
kT kT
— +R — +RE qu E

The output current is found from (10.3-3); thus we select a value of I, and

calculate 7,, B, and I,. The results for various values of Rare plotted in Fig.
10.12, which clarifies the selection of R .. The curves are drawn for the same
currents as those in Fig. 10.11. When Rtakes on its nominal value R,=
kT/ql,, differential loss is minimized for the situation in which the quiescent
current is small compared with the maximum current. For the case shown, with
I,x=20(1,), a smaller value of R gives slightly better distortion perfor-

mance. Large values of R give poorer distortion performance. As I, is
increased, the curves retain their shape, with the value of B reduced and the

abscissa stretched by the ratio of the new I, to the value (5 mA) used in the

plots.

In general, a value of R between the nominal value kT/ql, and half this
value should be used. Whatever value is chosen, the optimum will vary with

absolute temperature as well as I,,. By making I, proportional to absolute

temperature, a fixed value of R can be used to attain the optimum. We show

in Section 10.4 how a prescribed variation of I, with temperature can be
obtained.

Output-Stage Bias Circuits

The output-stage quiescent current is chosen by considerations such as those
described for the optimum design for low distortion. The driver quiescent

current is established by consideration of the input current drive requirements

as discussed for both Class A and Class B circuits. Since these two quiescent

currents are determined in the design by distinctly separate considerations, the

designer should have the circuit means for separately determining them. Figure

10.13 gives several such means. The transistor: diode area ratio is a primary
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Figure 10.12. Term B as a function of output current for various values of linearizing resistors

RE' REn = kTO/qIQ

way to set 1,/1,, but this may be inconvenient. If the output transistors are to
handle high power, for example, they will be large and will take up much room

on an integrated circuit chip. To have the diodes take up comparable area to
provide their simple biasing function would be wasteful of silicon area. The
solution is to use smaller diodes (that have a higher voltage at a given current)
and to reduce the effect of their higher voltage by one of the techniques

illustrated in Fig. 10.13. Driver current can also be increased by adding a
conductance Gz between the output stage bases as shown in Fig. 10.13a. This

conductance can also be applied to any of the other circuits in Fig. 10.13.

In Fig. 10.13a—c a resistive drop is added to or subtracted from the
base-emitter drops of the transistors, changing the ratio of /,/1, by the factor
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Figure 10.13. Circuits for obtaining separate control of output-stage and driver-stage quiescent

currents. The circuit shown in part d should be avoided (see text).

qV,/kT:

IQ_ Ig qV,

1, ISdexp kT
 (10.3-16)

In Fig. 10.13a V.= —2R1,; in Fig. 10.13b, V,=—2R;1;; and in Fig. 10.13c,
V,.=2R,I,.
Two other circuits often used are given in Figs. 10.13d and 10.13e. The

circuit in Fig. 10.134 multiplies V. of the transistor by the factorn=1+R/R,
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(ignoring base current) where #n is near 2. For this case,

I 1y_nkTy12kTo
q Ig, q I

From which we obtain

I n/2

4 ) (10.3-17)-
© > ISd

This circuit is sensitive to the exact value of n; the sensitivity is

S,,’Qzfilni
2 gy

With n=2, the sensitivity is typically 20-30. This circuit, therefore, does not

give good control of I, and should be avoided. Much better sensitivity is

exhibited by the circuit in Fig. 10.13e, in which the base-emitter drops of a
Darlington pair provides bias for the output transistors.
The design of these bias circuits must take temperature effects into account;

the matter is discussed in detail in the following section.
Note that when the Class B output stage is designed for low distortion,

dynamic crossover distortion effects vanish along with the static effects that
caused them. The requirements on driver current capability are then estab-

lished, as in the Class A case, by the slew requirements of the stage—the input
capacitance (including base charge or diffusion capacitance) and the maximum

required value of dV,_/dt.
Avalanche multiplication effects are reduced in Class B operation compared

with Class A because the transistor with high instantaneous V,, across it is
reverse biased; therefore, the collector current to be multiplied by the multipli-
cation factor M is much smaller than in the Class A case. Input current

linearity is thus improved by Class B operation. The conclusion is that where
the optimum value of R, is used, Class B circuits can exhibit favorable
linearity performance compared with Class A circuits.

Burn-Out Protection

If the output of the amplifier is inadvertently short-circuited to one of the

supply voltages, the collector current may rise to destructive levels. To avoid

this, protector transistors @, and @, are connected as in Fig. 10.14. When
the output current becomes high enough, the protecting transistor conducts,

shunting some base current drive from the output transistor and preventing the

damaging increase. Both output transistors can be protected in this way. When

R is kT/ql,, the voltage drop across R, under quiescent conditions is kT/q

volts (about 0.026 V), so that the protector transistor is turned off. Not until
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Figure 10.14. Output-stage burn-out protection.

this voltage rises to the vicinity of 0.7 V (depending on the ratio of the areas of
the output and protector transistors) does the protector transistor conduct

significant current relative to the base drive current. The ratio of the maximum
value of the output current to the quiescent current is thus approximately
0.7/0.026=27 and is about right to protect the output transistor without
interfering with normal operation.

104 EFFECTS OF TEMPERATURE IN THE BIPOLAR TRANSISTOR

The base-emitter voltage of the transistor is strongly temperature dependent.

Fortunately, it is also well controlled, so that circuits can be designed for

predictable temperature performance. Base current is also temperature depen-

dent but less predictable. In newer integrated circuits this dependence is small.

The effect of base current variations can be reduced by use of low-impedance

designs. Where precise temperature characteristics are desired, the combination

of low-impedance design and recognition of the temperature dependence of

V,. in the design is required. In this section we derive the temperature
dependence of V,, and investigate its effects on circuit designs.
To find V,, as a function of temperature, we begin by dividing the equation

for V,, by the absolute temperature:

v, I
""I—/Sln—L

q I
- (10.4-1)

In the expression on the right, I is proportional to D,n?, from eq. (7.1-8). The1

temperature dependence of both of these quantities is discussed in the text that
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follows; the most important temperature dependenceis that of n2, which is an
exponential function of temperature. Thus /g is also an exponential function of
temperature. When the logarithm is taken in (10.4-1), V,, becomes an essen-
tially linear function of temperature.
From eq. (7.3-9) in Chapter 7 we can express the saturation current /¢ at

temperature 7 in terms of its value I, at a reference temperature 7;, thus:

1 n?D
= (10.4-2)
Iso  niyD,

where n; and n,, are the intrinsic carrier concentrations at 7 and 7,, and D,
and D,are the diffusion constants at the two temperatures. It is the intrinsic
carrier concentration that is an exponential function of temperature. Its
variation causes the major portion of the V,, temperature dependence. Physical

considerations give the intrinsic concentration in terms of V,,, the band-gap
voltage. For silicon, this voltage, extrapolated to zero absolute temperature,
equals 1.205 V. The ratio of intrinsic concentrations is given by*

n} :(I)BCXP Veo (L _ l) (10.4-3)2\ T, kK \T, T
  

The diffusion constant is also a (relatively slight) function of temperature,

approximated as

 
D, (T)\°
D, —( To) (10.4-4)

where o depends on the doping density in the base and the transistor geometry
and is typically about 0.8. Thus I/I, can be written

3—0

715—:(%) exp Zg(%—%) (10.4-5)
S0 0 0

In (10.4-1) I, may also be a function of temperature; this depends on the

requirements of the particular circuit design. We may, for example, require

that I, remain constant with temperature. In the Class B design for low

distortion described in the previous section we require that the quiescent

current be a linear function of temperature to minimize the crossover distor-

tion. In many designs we can approximate the desired temperature dependence

by

 

)g (10.4-6)

where £ takes the values 0 and 1 in the two examples cited.
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The change in V,,/T from its value at the reference temperature is found
from (10.4-1) as

  Vbe _ VbeO :E(]n I(' —1In IS )

T T, q 1, Ig

which from (10.4-5) and (10.4-6)is

 Vee  Voeo __mk, T 11
T T, g In T, + Ve T T (10.4-7)

where n=3—o0—§. Multiplying by 7T and rearranging, we can write

—y (v -y L _nkT T
Vhe_ Vgo (Vgo VbeO) TO q n TO (104 8)

Differentiating this expression with respect to temperature, we obtain

dV, V,,+(nkT, — Vebe _ _ g (nkTy/q) bo—filnl (10.4-9)

dT T, g T,
  

The first term on the right-hand side of the equation, which is much larger

than the second, is constant with temperature and characterizes the tempera-

ture dependence of V), accurately over a wide operating range centered at 7j,.

The second is a correction term that is temperature dependent. It is zero at Tj,.

A plot of V,, versus temperature is shown in the upper portion of Fig. 10.15

for two values of collector current, 100 and 1.0 mA. Both curves are a linear

approximation to the actual variation of V,, with temperature; the dashed line
gives the actual curve in the 1 mA case, and the deviation from linearity is

shown (expanded) as a correction curve below. This correction is essentially

independent of collector current and applies to both curves.

The curves are plotted for a value of n of 2.2. Note that the intercept voltage

V, 1s the same for both straight-line approximations. From Eq. (10.4-8) the

intercept voltage is given by

kT,
V=V, + 10go
 (10.4-10)

With n=2.2 and T7,=300°K, the intercept voltage is 1.205+2.2(0.026)=

1.262 V.
For purposes of general circuit design, the slight curvature of the tempera-

ture characteristic of V,, can be ignored, so we can write

. T
Vhe:Vl_(Vl_Vbeo)To (10.4-11)
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Figure 10.15. Base-emitter voltage as a function of temperature for a transistor operated at two

currents two orders of magnitude different. Variation is linear within the correction given in the
lower diagram.

This is an extremely useful equation for the design of networks to have a
prescribed temperature performance, as we shall see in the text that follows. It

shows the negative variation of V,, with temperature in terms of quantities that
are readily ascertained. We can choose any desired value of Tj; V, will be a
slight function of 7, and V,, a strong function. Equations (10.4-8) and
(10.4-10) may be used to find values of V, and V,,, for any new reference
temperature. The importance of selecting a reference temperature ap-
propriately is that the curvature correction is zero at the reference temperature.

Hence T, should be selected at the center of the temperature range over which

a design is to work.

The V,, difference between two transistors has a positive variation with
temperature and is found by subtracting their logarithmic expressions:

kT J,

Je2C
Vietl = Vper=—1In (10.4-12)

where J.=1_./A, is the collector current density. The saturation current density
I¢/A, is assumed to be the same for the two transistors. By operating two

transistors at different current densities, we have a readily available voltage
source with a positive temperature coefficient. The curvature of the V),
variation of the two transistors cancels, so that this positive variation is more

linear than the negative variation of V,, of (10.4-11). By combining both
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effects—negative and positive—much design freedom exists for obtaining
desired temperature performance of circuits.

A Band-Gap Voltage Reference*

Widlar’s band-gap reference provides an excellent illustration of a practical
application of the relationships derived previously. The object is to obtain a
voltage reference whose output is independent of temperature. The principle is
to add a voltage proportional to the difference between two base-emitter
voltages (with positive temperature coefficient) to the base-emitter voltage of a
transistor (with negative temperature coefficient) such that the temperature

variations cancel. Many circuits employing the principle have been devised;

perhaps the simplest is shown in Fig. 10.16.° It employs an operational
amplifier that will be taken as ideal for purposes of explanation. The effect of
nonzero input offset voltage is discussed later.

In this circuit diode voltage V, is established by feeding a current from the

output through R , to the positive input of the operational amplifier. A smaller
current 1s fed to diode B through Rz and R .. Since the voltages across R, and
R g are the same, the currents are in inverse relation to the resistances. Since
diode voltage V; is smaller than V,, a small voltage appears across R. The
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Figure 10.16. Basic band-gap reference circuit. A start-up circuit has been added in part b.
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current through R, which also flows through R, is given by

_Ya" VsI R, (10.4-13)

The output voltage of the circuit is given by the sum of V, and the drop across

Ry and is

R
VOZVA-!-R—i(VA-VB) (10.4-14)

In this equation ¥, has a negative temperature coefficient, and V, —V; has a
positive temperature coefficient. The resistor ratio multiplies ¥, — V and also
multiplies its positive temperature coefficient. For one value of this ratio, the
temperature coefficients will cancel, and the output voltage will not be a

function of temperature. We can find this ratio by substituting the diode
voltage of eq. (10.4-11) for the two diodes in (10.4-14):

_ T T Ry T

VO_VI(1 To)+VAO( To)+RC(VAO VBO)( To)

T R
=V,— T [Vl_ Vio™ ‘R_B(VAO_ VBO)] (10.4-15)

0 c

This voltage, V,, will be constant with temperature if the second term is made
zero. Under these conditions the output voltage is V;, the intercept voltage.
Because V; is closely equal to the band-gap voltage, this voltage reference

circuit is termed a band-gap reference. The value of R to give an output
voltage of V, is found by setting the second term to zero and is

VAO_VBOR.=-%_8p (10.4-16)
¢ VI_ VAO B

If the diode saturation currents are the same, then

fllnfiVio— Vgo= 10.4-17a0~ Vo=~ 0 ( )

Note that when the output voltage V,=V/,

1=(w-v,) (10.4-18)
RA

1 T T

—R—A[V"V'(l‘fi)“%i]
1 T=zViVa1 (10.4-19)
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and hence is a linear function of temperature. Thus the value of £ in eq.
(10.4-6) is unity, so that n=2—o. Therefore, from eq. (10.4-10) the value of V,

to be used in this circuit design is,

21— 0)kT,
V,=1.205+ (—‘;)——0 (10.4-20)

For 6=0.8, V;,=1.236 V for T,=300°K.

Design Example

An example of the design of a band-gap reference is given in Fig. 10.165, in
which two diodes that have V;,=0.736 V at 1.0 mA (at 300°K) are used
(Is=5X10"" mA). With ,=1.236 V, the voltage across R , is 0.500 V, and
the current through it is 1.0 mA, making R,=0.5 k€. If we make R ;=5.0 k{2,
I;=0.1 mA; V,,— Vp, 1s then

kT,

and from (10.4-16)

_0.05%9 =
R-= 0,500 R 5=0.599 k{2 (10.4-22)

thus completing the design.

The design example given here is sensitive to the input offset voltage of the
operational amplifier. The offset voltage adds to V,. To see its effect, we
assume that the offset is proportional to temperature. The reason for this
assumption is that the offset arises because of the V,, difference of the
amplifier differential input transistors. This difference is thus proportional to
temperature. We can represent the offset as

v= Veo(1+ %) (10.4-23)

where V,, is the value of V, at T;,. The offset is in series with V,, so that we
find its effect by adding it to V, where it appears in eq. (10.4-14). The terms to

be added to (10.4-15) to account for the offset are obtained from (10.4-23).

They can be expressed as the sum of a temperature-independent term and a

temperature-sensitive term:

_ Ry T RyAVO—(1+ RC)VeO+ T (1+ RC)VeO (10.4-24)

Thus both the output voltage and its temperature variation are affected by the

offset voltage of the amplifier.
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With an input offset voltage of 1.0 mV, for example, the error in the output
voltage would be 1+Ry/R-=9.4 mV, and the temperature coefficient would
be 9.4/300=0.031 mV/°C. The problem here is that the difference voltage
V,— Vy 1s too small; when 1t is amplified, the error voltage is also amplified by
the same amount.
To minimize the effect, the difference voltage can be increased by reducing

the current density in diode B relative to diode 4 by increasing the (1) current
ratio I, /I, and (2) area of diode B relative to diode A, thereby reducing the

current density in diode B. A third method is to use several diodes in series for
both A and B, thereby reducing the relative effect of the offset. Clearly, a
low-drift amplifier should be used. To evaluate the improvement realized by

the first two methods, suppose that the area of diode B is increased by a factor
of 10 over that of A and that the current ratio is increased to 40:1. Then, from

(10.4-12), we obtain

Vio— Vgo=0.1558 V (10.4-24)

With V,—V,,=0.5 V, Rz/Rthen becomes

R, 0500
R = 0558 =22 (10.4-25) 

The output error for 1 mV offset then becomes 1+ Rz/R, or 421 mV, about
a factor of 2 improvement. For improved accuracy, see Kujik>.

The circuit in Fig. 10.16a is bistable as a result of the positive feedback path

from the output through R, to the positive amplifier input. One stable state is
the desired one, with an output voltage of V. In this state the feedback signal
to the negative input dominates; the positive feedback is minimal because of

the low impedance of diode 4. With zero output voltage, however, the low

resistance of R , and the high impedance of diode 4 serve to keep the voltage

at zero. To prevent the circuit from remaining in this state, a start-up circuit
has been added in Fig. 10.16b. If the voltage at the positive input is zero,

current flows through diode C into the positive input, turning the circuit on. As

soon as this occurs, the voltage across diode A diverts the start-up current from
diode C to diode D, where it has no effect on circuit operation.

10.5 CLASS B OUTPUT STAGE BIAS DESIGN FOR PRESCRIBED

TEMPERATURE DEPENDENCE

We found in Section 10.3 that crossover distortion can be reduced in a Class B

amplifier by adding emitter resistors having the value

R,= kT
=— (10.5-1)

ql,
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This equation shows that the added resistors should have a positive tempera-
ture coefficient. Alternatively, we can use fixed resistors if the quiescent
current is increased with temperature, that is, if we impose the condition that

 

lg T
L- (10.5-2)
lyo T

where 1, is the quiescent current at a reference temperature. Then

kT,
R,— (10.5-3)

ql00

In the discussion that follows, we show how this prescribed variation of I, can

be obtained with a driver current source that is independent of temperature.
Consider the circuit in Fig. 10.17a operating under quiescent conditions. It

includes resistors R as given by (10.5-3). Thus the base-to-base output stage
input voltage can be written

so that from (10.4-11) we can write

V, kT,\ T
%:Vl_ (VI_VheO)_TO ?(; (10.5-5)

in which the term kT,/q is the drop across the emitter resistor at Tj,.
The base-to-base voltage appears across the diode network. In this network

we have added resistor 2R, for convenience in adjusting the driver current
relative to the output quiescent current. Thus we can write

Vs T
T:VI_[(VI_VdO)]TO+Ide (10.5-6)

Subtracting this equation from (10.5-5), we obtain

kT

q |T

The quantity in the parentheses is not a function of temperature; we also

assume that R, is temperature insensitive. Hence /, must be proportional to

temperature:

It follows from this equation and (10.5-2) that the diode current to quiescent
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Figure 10.17. Circuit illustrating the bias circuit design of a Class B amplifier for a given
temperature performance.
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current ratio is independent of temperature. This ratio is given by

1, 1 q
— =—=exp7 (Rpl,p,—R,IIQ IQO kTO( EXQO d dO)

Since R 1,,=kT;/q, the ratio becomes

I . qR149Iy —exp(l KT, (10.5-9)

Thus for R ,=0, the diode current is e times the output-stage quiescent current

(for equal emitter areas of diode and transistor); the diode current (the driver

quiescent current) decreases as R ; 1s increased.
We may wish to increase the driver current relative to the quiescent current.

If the area of the diodes is smaller than the transistors to save room on an
integrated circuit chip, for example, the driver current may become too small
to satisfy the drive requirement. The circuit in Fig. 10.17b is a method for

increasing Ipg/l,. The equations for this circuit are the same as those
developed previously, with — R, replacing R ,.

We can alternatively obtain a driver current that is independent of tempera-

ture, by connecting a conductance in parallel with the diodes, as shown in Fig.
10.17. Since the diode current increases with temperature and Vg, falls with
temperature, there exists some value of Gy for which the total driver-stage
current is independent of temperature. It is found by writing the expression for
the driver current:

T

0

Applying (10.5-5), we have

kT,
Inr=2G5V,+ [1,,0—203,,( Vi—V,.0— 7" )] ?T (10.5-11)

0

For the driver current to be independent of temperature, the second term must

be zero. The driver current is then given simply by the first term:

so that

Gpp= DR (10.5-13)BB 2Vl .

Since the driver current is known at the outset (from current drive require-

ments), we obtain G, immediately.
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To find 1,, and R ,, we set the second term in (10.5-11) to zero, from which

kT,

With 1,and 1, known, we obtain R, from (10.5-9) as

kT, ( Ido)
R,=—|1-In— 10.5-15

4 ql49 IQO ( )

Note that 2R, is to be added to the circuit. Where R, becomes negative, the
circuit in Fig. 10.17b must be used, for which the equations are slightly
different, since the conductance is placed across the base-emitter drops of the
diodes rather than the transistors. The equations for this case are left as an

exercise.
The principles illustrated by the two examples—the band-gap reference and

the Class B bias design—can be applied to many situations in which a desired
variation of current or voltage is to be obtained. The basic equations are
(10.4-11) and (10.4-12).
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Figure 10.18. Circuit designed to provide both output-stage and driver-stage quiescent currents

proportional to temperature.
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Another way to provide a quiescent current that is proportional to tempera-
ture is to ensure that the driver quiescent current is also proportional to
current; in this case Gz5 would be removed from the circuit. A simple way to
obtain this driver current temperature variation is shown in Fig. 10.18, in
which the base of the driver current source is connected to a (temperature-
independent) band-gap reference source. When this is done, we can write

Vi=VieotIpRp

or

kTy\ T
Vie=Vi—\Vim Voeo™ — 7*;+1DRD

so that

_Vi= Vo 1

b Rp T,

which has the desired temperature dependence.

PROBLEMS

1 In the circuit in Fig. 10.19, find the value of Ry if I, is 1.0 mA, constant
with temperature, for the output current to be proportional to absolute
temperature, given by

TIc=1.055

Find R,.

2 In the circuit of Problem 1, find the values of R, and Rif the output
collector current is to vary with temperature as

B T1C_1.0(1+k300)

1 mAl

 

%RB RE Figure 10.19.
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where £=0.1. Repeat for k= —0.1. What is the temperature coefficient

in each case, expressed in percent per degree Celsius?

3 Find the output voltage of the band-gap reference in Fig. 10.165 with an

ideal operational amplifier at temperatures of 250, 300, and 350°K,
taking curvature of V,, with temperature into account.
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Chapter 11
 

Noise and Input Stages

Noise imposes a lower limit on the signal level that can be processed by
systems. In an information transmission system a signal is transmitted through

some transmission medium (space, copper cable, glass fiber, etc.) to a remote

receiver whose maximum usable distance from the transmitter is controlled by
noise introduced by its own amplifying devices, in addition to external noise.
To maximize this distance, we are interested in minimizing the noise. In this

chapter we investigate the basic sources of noise in devices and circuits and

shown how the noise can be calculated.

The standard method of specifying noise in circuits and devices is by

an input noise network containing a series noise voltage generator and a

shunt noise current generator that together represent the contributions of all

the noise sources in the circuit or device."'? The translation of any one internal

noise source to the input is accomplished through use of the ABCD matrix of
the network between it and the input. However, since noise signals from

independent physical noise sources in a network must be added on a power

basis, care must be exercised when combining noise from several sources.

Calculation of the total noise is found by integrating the noise over the
frequency range of interest. The spectral density of noise referred to the

network input is often a simple function of frequency, simplifying the integra-

tion. The effect of equalization on the input noise network generators is

developed.
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A separate section 1s devoted to the effects of feedback and feedforward on
noise.

11.1 SOURCES OF NOISE IN ELECTRICAL CIRCUITS

Electrical noise may be defined generally as an unwanted signal. We usually
think of noise in somewhat more restricted terms, as a random variation in the
voltage or current of a circuit. Such variations arise in many ways, the more
important of which are listed in Table 11.1. In this chapter we focus primarily
on thermal and shot noise that arises in resistors, diodes, and transistors.

Shot Noise*>

Shot noise in pn junctions arises by the discrete nature of charge flow since
charge is quantized into units of g. As it crosses the junction, each electron (or
hole) constitutes an impulse of current. The sum of all such impulses con-

stitutes the dc current I. The time of each event is random, giving rise to a
noise current superimposed on the dc that can be shown to be the mean square

value of the fluctuation of direct current /, given by

i2=2qIAf (11.1-1)

where Af is the frequency band over which the fluctuation (or noise) is

evaluated. In our consistent set of units, g=1.6X10"7 pC, I is in milli-

amperes, and Af is in gigahertz. Thus in a 100 MHz band, the noise associated

with a current of 10 mA will be

iy ems =13.2X10 77X 10X0.1

=0.566X10 "3 mA

Table 11.1 Summary of Major Electrical Noise Sources®
 

Natural sources

Circuit noise

Thermal noise

Shot noise

1 /f or excess noise

Received noise

Atmospheric noise

Galactic noise

Synthetic sources

Received interference

Hum
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“¢2 = 2kT Afrg

Y €§7= 2q1 Af

_ kT Af
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Figure 11.1. Representation of diode noise.

 

or 0.566 uA. Equation (11.1-1) implies that the spectral response of shot noise
is flat with frequency; this holds up to extremely high frequencies, roughly the
reciprocal of the transit time of carriers across the diode depletion region. The
spectral distribution is given the name “white noise,” by analogy with visual
light in which all frequencies are present.*

Since shot noise arises from the occurrence of a large number of indepen-
dent events, the amplitude distribution of the noise is Gaussian by the central
limit theorem. The distribution has a mean value given by the direct current 7,

and eq. (11.1-1) gives the variance of the distribution.
The dynamic resistance 7, of a diode is given by kT/ql. Equation (11.1-1)

can be written in terms of this resistance by replacing g/ by kT/r,:

I
N

_ 2kTAf- (11.1-2)l

The mean square noise voltage across the diode junction can be found by
multiplying the mean square diode noise current by r;:

e2 =2kTAfr, (11.1-3)

The noise equivalent circuit for the forward-biased diode can be drawn as a
noiseless diode in parallel with a mean square noise current represented as a

current generator, as in Fig. 11.1a, or alternatively as the noiseless diode in

series with a mean square voltage generator, as in Fig. 11.15.

Thermal Noise®

Fluctuating electrical charge in a circuit—Brownian motion of electrons—

generates thermal noise, first observed by Johnson at the output of a vacuum
tube amplifier in 1927. In a resistor these fluctuations give rise to noise power
(at temperatures above absolute zero) that can be extracted from the resistor. If

*The analogy is incorrectly drawn since white light consists of equal amounts of light in each

wavelength interval rather than in each frequency interval. We adopt conventional terminology

here.
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two resistors at the same temperature are connected together, there will be an

exchange of noise power between them with power flow equal in the two
directions. If the temperatures are different, there will be a net power flow
from the hotter resistor to the cooler one.
The circuit representation of thermal noise in a resistance R is a Thevenin

voltage generator in series with a noiseless resistance that has the mean square

value

esr =4kTAfR (11.1-4)

where Af is the band over which the noise is of interest. In terms of the

thermal voltage, V,=kT/q=0.026 V at room temperature,

€2, =4V,.gAfR (11.1-5)

A resistor of 1 k€2 will exhibit an rms thermal noise voltage in a 100 MHz band
of

 

e =10.104X1.6X107x0.1X 1nRrms

=40.7X10"°V

A Norton source can also be used to represent the noise, in which case the

mean square noise current is given by

i2,=4kTAfG (11.1-6)

=4V,gAfG (11.1-7)

For a 1 k{2 resistor, G =1 mS, so the rms value of the noise current over the

same 100 MHz band will be 40.7 X 107¢ mA.
The spectrum of thermal noise is flat and may be considered white noise. As

the amplitude distribution 1s Gaussian, thermal and shot noise are virtually
indistinguishable as observed in a circuit. However, there are differences;

thermal noise is temperature dependent whereas shot noise is not and shot

noise depends on current, whereas thermal noise does not.

Thermal noise is used as a standard of comparison or measure of noise from

various sources. Thus the noise equivalent resistance R, of a noise source is
defined for a voltage noise source e, as

eZ

R.= 3%Ta] (11.1-8) 

and is the resistance whose thermal noise would give a mean square voltage of

e2. The noise equivalent resistance of a resistor exhibiting thermal noise is the
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resistance itself. The noise equivalent resistance of a shot noise source such as

the diode described by eq. (11.1-3) would be

R~ (11.19)

Noise equivalent conductance G, is similarly defined for a current noise source

i, as

;2
G":W (11.1—10)

Thus the noise equivalent conductance of the diode described by eq. (11.1-2) is

1
Gd‘—‘"z—;;
n

(11.1-11)

Note that these noise equivalent immittances do not denote a physical circuit
immittance. They provide a means for expressing the mean square value of a

noise voltage or current and are given in kilohms or millisiemens. Their chief

value is in conveying the magnitude of noise of a circuit in familiar terms and

also in simplifying noise equations.

One-Over-f Noise

A type of noise less well understood than those described previously is 1/f
noise, also called excess noise, fluctuation noise, or flicker noise. It arises in such

a broad range of physical phenomena that it may in some way mirror a subtle

statistical property of the world.” From the record of annual flood levels of the

Nile River to the wobbling of the earth’s axis or the flickering of a flame, 1/f

statistics are ubiquitous.® In electric circuits and devices, 1/f noise may be
caused by fluctuations in the conductivity of the medium, as in fluctuations in

the number of carriers available to take part in the conduction process.’ In

transistors, traps associated with defects and heavy-metal atoms in the emitter

junction depletion layer capture conduction carriers and release them; the time

constants involved in this process may be extremely long, giving a noise thatis

concentrated in the low-frequency portion of the spectrum.'”

Flicker noise current has a mean square value given by

I
I
Iy =K a
I

Af, I<y<2 (11.1-12)

where K is a constant, / is the direct current raised to a power vy, and « is an

exponent near unity. We take both y and a as unity in what follows.

Unlike shot or thermal noise, the spectrum of 1/f noise is not flat with

frequency; thus the noise equivalent conductance for this noise will depend on
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Slope = —10 dB/decade
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the frequency range over which the noise is evaluated. In the earliest transis-
tors, 1 /f noise was the dominant noise source over the entire useful frequency
range. As processing improved, 1 /f noise dropped drastically; now it is of little
practical consequence in the bipolar transistor. Typically, 1/f noise may
exceed the sum of shot and thermal noise below a frequency of 0.1-1 kHz.

The equivalent input mean square noise current of a typical transistor is
shown in Fig. 11.2 as a function of frequency; the contributions of (shot and
thermal) white and 1 /f noise are equal at 1 kHz (10 ~® GHz) in this example,
so that

 

KI”
=4kTG 11.1-1310"6 nS ( )

where G, is the noise equivalent conductance due to shot noise in the
transistor. If we take G,¢=0.2 mS, for example (we evaluate noise in the
transistor in the text that follows), we can evaluate KI:

KI=4X4X10"9X0.2X10"¢=3.2X10' mA?

Suppose that we wish to find the total noise in the audio band from 20 to
20,000 Hz. We integrate over this range:

- 2% —15

i,z,T:/fz(3.2><10_9+32+0)df (11.1-14)

:3.2><10_9(f2—f1+]0“’1n%)
1

We can express the total as a noise equivalent conductance by dividing by

4kTAf, where Af is the total frequency range, or 1.998 X 10 ~°> GHz (20 kHz),
so that

 (11.1-15)
—6

G,,T:O.z(1+ 10 fz)
fz_fl nf_l
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for the numbers assumed, G,=0.27 mS, a modest increase over that for shot
noise alone.

If the lower limit of integration is extended to zero to find the total noise for
a dc amplifier, the integral becomes infinite. Zero frequency, on the other
hand, exists only conceptually. If we extend the lower limit to one cycle per
year (3X 10 ~'7 GHz), the noise conductance rises only to 0.47 mS because the
In function approaches — oo so slowly. Reducing the lower limit by another
factor of 20X 10° gives us one cycle since the beginning of the universe and
raises G, to 0.71 mS.
The point here is that we can express noise as an equivalent conductance (or

resistance) even if it is not flat with frequency. Such an expression may not be

meaningful, however, as in the latter two preceding examples. Temperature
variations will swamp out such small noise currents at low frequencies. One
theory of the origin of 1/f noise (by Voss and Clarke) suggests that it is due to
thermal equilibrium temperature variations.'' The single number G, fails to
take into account the character of the noise; in the audio band, 1/f noise

sounds different—more “rumbly”—than shot noise; below the audio band,it

behaves as “dc drift.” Often, weighting curves are used in noise measurements
to equalize the subjective importance of noise over a band of frequencies,
emphasizing noise in frequency bands where it is most annoying, for example.

We have devoted more space here to 1/f noise than to the other, more
important sources of noise. This is because we do not treat it in any further
detail in the text that follows since its effects are so small in silicon transistors.

New devices often exhibit considerable 1/f noise, which is reduced as device
processing is better understood and refined. For silicon devices, the reduction
took place rapidly. The gallium arsenide FET still exhibits high 1/f noise at
the time of this writing.

11.2 NOISE IN TRANSISTORS, DIODES, AND CURRENT SOURCES

Noise arises in the bipolar transistor from three primary sources, all uncorre-
lated: (1) shot noise associated with the minority carrier electron flow (or the

collector current); (2) shot noise of the hole current injected into the emitter

from the base, or base current; and (3) thermal noise of the base resistance.

(This is for an npn transistor. For a pnp, interchange “hole” and “electron.”)

These three sources are shown in the equivalent circuit in Fig. 11.3. (Where

applicable, a 1 /f noise generator is connected in parallel with the base current

noise generator; an avalanche noise generator would be connected from

collector to base. We ignore these here.)
In the equivalent circuit collector shot noise is represented by a current

generator i,¢ between the collector and emitter terminals; the base current
shot noise is represented by a current generatori,¢ between the internal base
and emitter terminals, and the base resistance thermal noise is represented by a

series voltage generator e, zr. The values of the generators are expressed as
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2
€nBT 0 i

DMNW— =

3
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Figure 11.3. Three primary noise sources in the bipolar transistor.

mean square values:

 i20g =2qIAf= 2kTAf (11.2-1)

%zquBAfzquICAfzzk—Y;Affi (11.2-2)

2, =4kTAfr, (11.2-3)

Each of these three noise generators may be expressed as equivalent noise

immittances—the value of resistances or conductances that would have the

same thermal noise as exhibited by the actual noise generator. Thus by
dividing each generator by 4kTAf, we obtain

1
T (11.2-4)

5
Gups= 75 (11.2-5)

R, 5r=r, (11.2-6)

Note that at 300°C, 4kT=1.66X10"*% pJ. Multiplying this factor by the

bandwidth Af in gigahertz and by the noise equivalent resistance in kilohms

(or conductance in millisiemens) gives the square of the noise voltage (or

current) in volts (or milliamperes). Collector shot noise, therefore, is equivalent

to connecting the noise current generator of a resistor of 2r, from collector to

emitter; for /- =1 mA, for example,it is equivalent to connecting the noise

current of a 52  resistor from collector to emitter. In this example base shot
noise is equivalent to connecting the noise current of a 5.2 k{2 resistor from
base to emitter, assuming 6 =1 /hg. =0.01.
We can illustrate the use of equivalent noise immittances and the calculation

of noise at various points in a circuit by a few simple examples. In what
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follows, we find the noise associated with a diode-connected transistor and also

the simple current source discussed in Chapter 9.
Diodes exhibit shot noise that have a noise equivalent conductance of 1/2r,,

where r, is the dynamic resistance of the diode. Where the diode is formed
from a transistor with the base and collector shortcircuited, it also exhibits

series thermal noise voltage; this is most easily seen from the equivalent circuit
in Fig. 11.4a, in which the three transistor noise sources are shown explicitly.
We now introduce a series of generator transformations like those shown in
Fig. 8.14b (the Blakesley transformation) and Fig. 8.14¢ (the current genera-

tor splitting transformation). The object is to place these noise sources at the
diode terminals, taken here as the base and emitter terminals of the transistor.

As a first step, we replace the base shot noise generator by one connected

directly across the terminals, as shown in Fig. 11.45b. This figure shows only the
portion of the circuit in the dotted box of Fig. 11.4a. The transformation is
effected by splitting the base shot noise generator in two with one across the
input terminals and one across the base resistance. This latter generator can be
replaced by its Thevenin equivalent as shown in the third diagram of Fig.

11.4b. Note that in obtaining the noise voltage in this way, we must multiply
the (squared) current by r} to obtain the (squared) voltage.

In Fig. 11.4¢ the results of this transformation are shown in the complete

circuit, with the two (uncorrelated) series voltage generators representing the

thermal noise of r, and the shot-noise-induced voltage across r,. Note that in
labeling these generators, we have dropped the factor 4kTA f, which multiplies

them in Fig. 11.4a. We then obtain the final circuit in Fig. 11.4d by moving
these voltage generators through the input node, giving a series generator at the

input and another in series with the collector of the transistor. This latter
generator may be ignored since it is a voltage generator in series with the
high-impedance collector of the transistor. All significant noise sources have

been moved to the terminals, and the transistor with its collector-to-base short

circuit can be represented as a noiseless diode, as shown in the second diagram
in Fig. 11.4c. In this diagram we have replaced r,/(1+38) by its equivalent

diode resistance r,.
As a final step, we can convert the current source and diode resistance to a

Thevenin (squared) voltage by multiplying the current 1/2r, by the square of

the diode resistance r;, so that the total noise voltage can be represented by a

total noise equivalent resistance

&rz r
R,p=ry* Tb +5; (11.2-7)

e

At low currents the second term can be dropped. In a pn junction diode the r,

term is absent since the total thermal noise is associated only with contact

resistance, which is usually negligible.

It is usually convenient to represent all sources of noise in a network by

noise generators at the network input. This procedure is formalized in the
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following section. Here, we adopt a less formal approach to find the equivalent

input noise generators (at low frequencies) for a transistor and then use these

results to find the input noise as well as the output noise of the simple unity
loss current source discussed in Chapter 9.

Figure 11.5a shows a transistor with its three physical noise sources as

discussed previously. Two of these sources, the base resistance thermal noise
and the base current shot noise, are already at the input (we ignore the small
voltage contribution of r?/2r, caused by the base shot noise current flowing
through r, discussed immediately above). It remains to transform the collector

shot noise generator to the input. This output noise causes both an input noise
voltage and noise current. The input noise voltage (squared) is found by

multiplying the output noise current (squared) by r? (parameter B? of the

7, .

7" Noiseless    

  

 

 

 
 

Diode Transistor

r
Ty +§e

 

 

I
I
I
|
I
]

|

I
(c)

Noiseless Noiseless

2r, +7r,
Gm' = 2

Te

 

 

(d)

Figure 11.5. Noise equivalentcircuit for a current source.
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transistor); thus

(11.2-8)

The input noise current is similarly found by multiplying the (squared)
collector shot noise current by 8% (parameter D? of the transistor); thus

62

GnCS: y (11.2'9)

Note that this contribution is less than that of the base current shot noise by a
factor of § and can be ignored. Therefore, the effect of collector shot noise at

low frequencies is equivalent to an input noise voltage represented by r,/2, as
shown in Fig. 11.5b.

In Fig. 11.5¢ the diode is connected across the transistor input terminals,
with its noise represented by the series noise voltage generator (squared). The

noise voltage 1s approximated as r,+r,/2; for clarity, we have dropped terms
containing & as a factor. The voltage contributions of the diode and transistor
are about equal. The contribution of the transistor base current shot noise is
found by multiplying the current generator (squared) by the diode resistance
r,=r,, giving ér,/2; this is a factor of § below the noise voltage contribution of
the collector shot noise and is also ignored.

In Fig. 11.5d the series Thevenin noise voltages are summed and represented

as a Norton current source across the input; the total noise voltage (squared) is

divided by the squared resistance of the diode r?. The equivalent input noise
current (squared) is represented by the equivalent input conductance G,;:

 

_ 1, 2n—r—e+ rez (11.2-10)

for § <1. The term 1/r, is the total collector shot noise contribution of the
diode and transistor (twice the value of either one). The term 2r, /r? is the
base resistance thermal noise of the transistor and diode, translated to current

through the diode resistance. This latter term can be large: at a collector

current of 1.0 mA and a base resistance of 0.1 k{2, the total noise conductance

is, for example

1 0.2

G, = 0.0262 + 0.026
 

=38.5+295.9=334.3 mS
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Notice that the base resistance thermal noise contribution is eight times that of
the collector shot noise in this example (on a squared current, or power, basis).

For the unity loss current mirror, the equivalent noise current can be placed
at either the input or the output without a change in value since the current
loss is unity. Hence the equivalent output noise G,1s equal to G,,.

Figure 11.6a shows a way to quiet the current mirror by adding equal

resistors in series with the diode and the transistor emitter. On the surface it
seems paradoxical that we can quiet the current mirror by adding resistors that

are themselves noisy. The resistors add 2R, to the total equivalent noise

voltages of the input loop in Fig. 11.5¢. Representing all noise sources at the

input including thermal noise in both added resistors, we obtain for the total
noise equivalent resistance at the input

R, =2(r,+Rg)+r,

2(rb + Rl:) re    
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Figure 11.6. Noise equivalent conductance of a simple current source as a function of added

series resistance.
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where the emitter series resistor noise has been added in series with the diode.

The total input mean square noise current can be expressed as a shunt input

conductance, obtained by dividing R,; by the square of the diode-resistor series
impedance:

2(r,+Rg)+r
Gni:(b—b)z" (11‘2_11)

(re+RE)

This noise current can be moved directly to the output since the current gain is
unity; hence G,,=G,,. The variation of G,, with R, is shown in Fig. 11.6b;

no

clearly, even a smallvalue of R reduces the noise 31gn1f1cantly.

Noise in Field Effect Transistors

The equivalent circuit of a field effect transistor (FET) with equivalent noise
sources is shown in Fig. 11.7. The latter comprise thermal noise in the channel,

which can be represented as an output current generator connected from drain

to source, and shot noise from gate leakage current. The thermal noise

component has been shown to be'?

—4kTAf(%) (11.2-12)

where

g, =— (11.2-13)

in which r, is the channel resistance and g,, is the transconductance. The shot
noise associated with the gate leakage current 1s

i2gs =2ql,Af (11.2-14)

 

   

 
-2
IaGs

  

 

Figure 11.7. Noise equivalent circuit for an FET.
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Flicker noise is of some consequence in FETs and may be represented by a
current generator in parallel with the thermal noise generator. Its value is

1,

f

As in the case of the bipolar transistor, circuit calculations are more
conveniently handled by representing all noise at the input of the device. We
show next that this is a simple application of anticausal analysis.

Af (11.2-15)2
inor =K

11.3 EQUIVALENT INPUT NOISE NETWORK

Each resistor in a two-port network will exhibit thermal noise; each transistor
will exhibit shot noise and thermal noise. To characterize the network, we are

interested in the total noise, summed from all these sources. If the network 1s

characterized by its z parameters, for example, we might express the total by a
pair of equivalent series noise voltages in the equation

[vl]:[zll 212]

Uy 21 Z»

To find these noise voltages conceptually, at least, we need only set i; and i, to
zero by open-circuiting the ports (for signals in the frequency range of interest)

and measuring the noise voltages at input and output. An equivalent circuit
corresponding to (11.3-1) is given in Fig. 11.8a. Three other sets of equations

and equivalent circuits similar to these can be found using the 4, y, and g

parameters for the network. The y parameters, for example, would require

i,
e”‘} (11.3-1)
en2
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Figure 11.8. Equivalent noise models of two-ports: (¢) impedance parameter formulation; (b)

ABCD parameter formulation.
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equivalent shunt noise current generators at input and output whose noise
currents would flow in short circuits connected to the input and output
terminals.
When the network is described by its ABCD parameters, the noise is

represented by equivalent input noise voltage and current generators connected
as shown in Fig. 11.8b. As in Fig. 11.8a, the network itself is noiseless, with all

noise sources represented by the equivalent input generators, given by the

equations

v, A Bl[v, e,
1=l ol (11.3-2)

This equation is the standard way of specifying noise of a two-port network
because of several advantages that become apparent later.

When the noise of a network is specified in this way, we can separate the

noise from the rest of the network in an equivalent noise network, as shown in

Fig. 11.8b. If two noisy networks are connected in tandem, as shown in Fig.

11.9a, the equivalent noise network of the combination is given in Fig. 11.9b as

er%T = e_rgl +|A1|zg +1B, ZE

2= i2, +|C\[ e, +|D 2, (11.3-3)

in which we have added the noises on a power basis and have (temporarily)

ignored correlations among them. This equation can be generalized by

“2:“—,2;:+|T12E+|T1T22-L‘—5;+ (11-3'4)n

where u?2 is a column vector of the total mean square noise referred to the
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Figure 11.9. Cascaded noise networks.
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input; the u,,, similarly represent the noise network currents and voltages of

the individual networks of the combination. The 7, are the ABCD matrices of
the individual networks. Clearly, if the gain of the first network is high, thatis,

if the ABCD parameters are sufficiently small, then e, ~e¢,, and i,,~i,; we
can ignore the noise contribution of the second network in this case.

nl»

Correlation Between e, and i,

An individual physical noise source in a network will in general contribute to

both e, and i, of the equivalent noise network. In summing the total noise at
the input, these components representing the source should be added on a

voltage or current basis rather than on a power basis. This complicates the

bookkeeping involved since we must keep track of n correlations where there

are n independent physical noise sources in the network.

A convenient way to include the effects of correlations is to calculate the
total effect at the input of each physical source independently and to add the

contributors (all uncorrelated) on a power basis. If the source impedance is Z.,

for example, we would obtain from noise source A4 the total input noise
e,4 11,42 (added on a voltage basis because they are completely correlated),

similarly for noise source B, and so on. We then square each contribution and
add them for all sources to obtain the total input noise power.
The equivalent input noise resistance from a single mean square current

noise source contained in a network is found as follows:

mj

‘[12 ] [A B]   ] (11.3-5)

2

:|Bj+ ZGD_,| G, (11.3-6)

Similarly, the equivalent input noise resistance from a single mean square

voltage noise source is

R,,=|A4,+ZCk| (11.3-7)

By adding the input noise voltage components within the magnitude brackets,

correlation between input noise current and voltage is taken into account. The

complete input noise of a network is found by summing over all current and

voltage noise sources in the network:

2
mT2 IAk+ZCklnk+ 2 |Bj+ZGDj| an (1 1 3'8)

J

where the ABCD parameters in the summations are those between the individ-

ual noise source R, or G,;and the input of the network, and R,7 is the total
noise equivalent input resistance of the network, including all sources of noise

in the network.
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This formulation is general and allows us to find the noise characteristics for
any network and source impedance. It may, of course, also be formulated on
an input noise conductance basis by using the relation

Gor=R,,r(Ys)’ (11.3-9)

where Y.=1/Z..
As an example, let us find the input noise equivalent resistance of a bipolar

transistor from the three primary noise sources in Fig. 11.5a expressed by egs.

(11.2-4) to (11.2-6). The three contributions are analyzed separately.

Collector Shot Noise

The collector shot noise generator is connected to the output of the transistor

so that the ABCD parameters of the transistor itself are the relevant ones: for

the core transistor plus r,, we have

—B=r,+r(8+jm;w) (11.3-10)

—D=6+jr,0 (11.3-11)

To combine the two terms, we multiply D by Z., add it to B and take the
squared magnitude. For example, Z; might be R;+/L;w, where Lis a source

inductance. For simplicity, we assume a resistive source; adding L. gives a

quadratic term in frequency and can be included where necessary. Thus from

(11.3-8) we obtain the noise equivalent input resistance due to collector shot

noise:

Rcs= |re+rh(6+TTS)+RG(8+TTS)|2GnCS (11.3-12)

To find the squared magnitude of the first term, we square the dc term and the
s term and add them:

Rcs= { [re+8(rh+RG)]2+("b+RG)2T%‘*’2} %
e

82(r,+R;).  (r,+R)Tiw?
+

2r, 2r
e

 :%+6(rb+R6)+ (11.3-13)

The second and third collector shot noise terms are found to be negligible if

6< 1 from considerations discussed in the text that follows, so that

 
2.2

re 2 T W

e

Note that r, appears in the numerator of the first term (the dc term) and in the
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denominator of the second (high-frequency) term. Thus high quiescent collec-

tor current reduces low-frequency noise at the expense of high-frequency noise,

considering only the collector shot noise contribution.

Base Current Shot Noise

The base current shot noise generator appears at the input; only the base

resistance separates it from the input terminals. Hence the relevant ABCD
matrix is that for the series resistance r,:

so that

B=r, (11.3-15)

D=1 (11.3-16)

From (11.2-5) and (11.2-8), we obtain the noise equivalent input resistance

from base current shot noise:

0

2r
e

 
RiIIBS:(rb+RG)2 (113'17)

The base shot noise term is 1 /8 larger than the third collector shot noise term
of (11.3-13), thus justifying dropping the latter term.

Flicker noise, where not negligible, should be added at this point and is also
multiplied by (r,+R)?* to find its contribution to the noise equivalent input
resistance.

Base Resistance Thermal Noise

The noise voltage associated with the base resistanceis already at the input. In

terms of eq. (11.3-7), 4A=1 and C=0 since the ABCD matrix is the unit matrix.

Hence

R, g7="r, (11.3-18)

The source resistance will also have noise associated with it with equivalent

resistance R ;. The thermal noise contributions of r, and R justify dropping

the second collector shot noise term of (11.3-13).

The total noise equivalent input resistance for the transistor is given by the

sum of the three contributions:

Voltage Current

r, 8+ 12w?
Rivr==5+1, +(@+Ra?—z?~ (11.3-19)

CS BT BS CS
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This equation shows that the input noise voltage is dominated at low frequen-
cies by r, thermal noise and collector current shot noise; which is greater
depends on the collector current. The contributions will be equal for /.=
kT/2qrg. The input noise current is dominated by base current shot noise at

low frequencies and by collector shot noise at high frequencies. The crossover
between the two is at

5
o

0= =2mfp/8 (11.3-20)
T

The mean square input noise voltage is thus

e2 =4kTR,.(f)df (11.3-21)

where we have replaced Af by df; since the noise voltage is proportional to

frequency, it is clear that to find the total noise, we must integrate over the
desired frequency range. The frequency characteristics of the network follow-
ing the noise network must be taken into account when the integration is
performed, and this is the subject of Section 11.4.

Input Noise Network for FETs

Exactly the same procedure described for the bipolar transistor can be applied
to the FET. The approximate 4BCD parameters of the FET are, by inspection

of the equivalent circuit in Fig. 11.7,

A=—ry 840 (11.3-22)

B=—r, (11.3-23)

C=—C,ys (11.3-24)

D=—ry(C,+Cpy)s (11.3-25)

We can define a total input noise equivalent resistance R,;,; as before; the
contribution from drain shot noise is given by eq. (11.3-6) as

RinDS:(B+DRG)zGr1DS

2
=it [raR6(Cot Coa) @] Gps (11.3-26)

From eq. (11.2-12),it follows that G, ,s=2/(3r,,), and we obtain

RinDS:%rch[l+RzG(Ggs+ng)2w2] (113-27)

To this we add the noise voltage generated by the gate leakage flowing through
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the source resistance R, giving the total input noise equivalent resistance

RinT:

Ryr=3ra[ 1+ RE(Gyyt G,)] + REG,g (11.3-28)

The FET is often used with high-impedance sources. It is usually more
convenient to use a noise conductance formulation for this case; such sources

are often capacitive, and the source capacitance can be incorporated conveni-

ently into the total noise conductance. Letting the source admittance be

Y,=G+ C;s (the subscript G refers to the generator rather than the gate), we
can use (11.3-9) to write the total input equivalent noise conductance

G,,7=(BY;+D)'G,ps+G,es (11.3-29)

2

- [I’CiGé' + rc%( CG+ Cgs + ng) wz] Gn DS+ GnGS

%rCh[Gé+(CG+Cgs+ng)2w2] +G,qs (11.3-30)

The capacitance thus also contributes to noise and is incorporated in parallel
with the gate-source capacitance and the input loading of the gate-drain

capacitance.

A conductance formulation of bipolar transistor input noise is given in
Section 11.4.

Noise Figure and Noise Temperature

Noise figure is a measure of noise performance of a network defined as

Total noise
F=— . —

Noise engendered by input termination
 (11.3-31)

It can be found by considering only the source and the equivalent noise

network in Fig. 11.8b since the remainder of the network is noiseless. The noise

figure is unaffected by the input immittance of the network, for example.
Where the source is resistive and e, and i, are uncorrelated, for example, we
can write

2 2 p2e, ti,R;

F=1% 2kTarr, (11.3-32)

Where e, and i, are correlated, the correlation is incorporated as shown in
Section 11.3. In terms of R,,;, we can write from (11.3-21)

R +R, R,
F=—Ynl =4 ol (11.3-33)

RC RCJ 7
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Since R,,;1s in general a function of frequency, we can define F as a spot noise
figure at a single frequency. To find the noise figure for a network over a band
of frequencies, the noise must be integrated over the band.

In terms of the noise equivalent resistance and conductance, the noise figure
can be written

RniF=1+ 2" +G, R, (11.3-34)ni
G

where R, is proportional to e? and G,, is proportional to i2. Clearly, this
expression reaches a minimum when the second and third terms are equal; we
can adjust the source resistance to make them equal, in which case we find the

optimum source resistance for noise as

RniRoom=1/ G (11.3-35)
ni

 

When R,; and G, are correlated the situation becomes more complicated.
Furthermore, if they are functions of frequency, the optimum source imped-
ance may not be resistive. This case is covered by Rothe and Dahlke.'
Note that the noise figure is not a function of the input impedance (or any

other circuit property) of the (noiseless) network following the equivalent input
noise network.

The noise temperature is related to the noise figure through the equation

T,=Ty(F—1) (11.3-36)

where T; is the standard temperature (usually taken as 293°K. It is the

equivalent temperature of the source whose available noise power is given by

kTAf. Using (11.3-34), (11.3-36) can be written

 RniL=T| %" +G,R, (11.3-37)

11.4 INTEGRATION TO FIND THE TOTAL NOISE

As we have seen, the noise generated by devices is frequency sensitive, either

because of the noise source itself, as in 1 /f noise, or because of the frequency

characteristics of the device. The noise extends over a wide frequency range,

well beyond the frequency range of interest in most cases. To obtain a

meaningful measure of the noise, we must apply a weighting function to the

noise to filter out the irrelevant components—the components outside the

frequency range of interest.

To do this correctly, we need to know the characteristics of the detection

process. Where the detector is the ear/brain, for example, noise above 20 kHz
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is irrelevant to noise evaluation; even in the auditory range, large differences in

sensitivity at different frequencies exist, so that noise at 4 kHz, for example,is

more important than noise at 100 Hz. If the ear receives the message through a

telephone receiver the characteristics of the receiver must also be taken into
account. Standard weighting curves have been developed to account for the
varying sensitivity of the ear and telephone receiver with frequency.
One further example: if the detector is a decision circuit of a regenerator in a

digital transmission system, the noise on the signal applied to the decision
circuit can cause errors, converting ones to zeros and vice versa. Often, a noise

filter 1s placed ahead of the decision circuit to minimize the noise while having
as little degrading effect on the signal pulse as possible.

In either of these examples we must combine the frequency sensitivity of the
input noise network generators with the weighting function to find the total
noise. We must integrate the product of the frequency-sensitive noise and the

weighting function over the complete frequency range. Representation of the
noise at the network input makes this a fairly straightforward procedure. This
is because the input noise generators are usually polynomials in the frequency
variable, allowing us to combine the noise with the weighting function on a

coefficient-by-coefficient basis. We can then sum up the total noise power from
each term of the noise polynomial. In this section we illustrate the process by
finding the noise produced by transistors in typical situations; the technique
can be extended to any network, as is clear later.

We let H( f) represent the weighting function for the noise. Since we are
interested only in the magnitude of the noise, we multiply the mean square
noise contribution by |H( f)|* so that the total equivalent noise at the input
becomes, from eq. (11.3-21)

ey =4KT[" 1H(f)R(/) df (1141)
It 1s helpful in calculations to normalize the frequency variable. Letting
v=f/y, dv=df/f,, and we can write

E:“kTfi)fow'H(V)lszT(V)dV (11.4-2)

where f, is a bandwidth that may be defined in several ways depending on the

application. For an ideal low-pass filter,it is the cutoff frequency. In a digital

transmission system it can be taken as the Nyquist frequency (half the

signaling rate). The basis of the choice is to give intuitive meaning to the

calculations; as long as we are consistent, the calculations will be correct for

any such choice.

Often, R,,(v) has a relatively simple variation with frequency, as in the
bipolar transistor, that can be expressed as

R,;=R,+R» (11.4-3)
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For eq. (11.3-19), for example, we obtain

r4+R.)S
RO:%+rh+(—”—5rL (11.4-4)

and

r,+ R 12(27f,)
Rlzw (11.4-5)

Thus (11.4-2) becomes

el=4kTf(R,Z,+R,Z)) (11.4-6)

where

So= [H(»)Pdv (11.4-7)
0

and

S=[Pdv (11.4-8)
0

For any required channel shape H(v), these integrals are readily evaluated

numerically on the calculator or computer and are incorporated in (11.4-6) to

find the total noise. Three examples are given here.

If H(») is the transmission of an ideal low-passfilter, as in Fig. 11.10a.

H(v)=1, 0<w<l
) 11.4-

0, otherwise ( %)

we have

I
2= dv=1o=

and

I
S = vidv=1= [van=

If H(v) 1s a cubic Butterworth low-pass function, as in Fig. 11.1054, then

12

H(V) B 1+ »2

 (11.4-10)

We can most easily evaluate 2, and ¥, by numerical integration; when this is
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Figure 11.10. Power response of weighting networks for noise: (a) ideal filter; (b) cubic

Butterworth response.

done, we obtain

2,=1.04

2,=0.482

Comparing these integrals with those for the ideal filter, the low-frequency

noise is almost the same, but high-frequency noise is noticeably larger.

One final example of noise integration shows the effect of including high-

frequency equalization in H(»)". In a digital fiber optic transmission system,
shown schematically in Fig. 11.11, a laser generates light signal pulses. When a

one is transmitted, the laser is on for the full pulse period, and for a zero it is

off for the same period. The fiber is assumed here not to disperse the pulses

significantly, but attenuation of the signal i1s large; thus noise of the receiver

preamplifier may cause errors at the detector. Equalization is provided with the

requirement that it cause (ideally) no intersymbol interference (the pulse ampli-

tude at the center of any given time slot is independent of any other pulses in

the pulse stream) and that it minimize the noise by minimizing the bandwidth;

more accurately, the equalizer is to minimize an integral of the type in eq.

(11.4-2).
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Figure 11.11. Block diagram of digital fiber optic transmission system receiver.

Several equalizer functions give zero intersymbol interference; an often-used
function is the cosine rolloff characteristic:

H(v)=1, 0<|p|<1-P

=4|1=singz(r—1)[,  1-B<p|<1+A

=0 otherwise (11.4-11)

The frequency is normalized to the Nyquist frequency (half the signaling rate).

The constant B8 characterizes the channel; for 8=0, the cutoff is that of an

ideal filter with cutoff at the Nyquist frequency; for S=1, we obtain a full

cosine rolloff. This type of function tends to minimize noise as well as giving

zero intersymbol interference. In the absence of equalization, the effect of

noise is minimized with 8=0 since this minimizes the high-frequency noise of

the devices.

To obtain this frequency characteristic at the detector, we must take into

account the shape of the transmitted pulse, which has the spectrum

_ sin(7v/2)

P(v) mv/2
(11.4-12)

The channel following the preamplifier must incorporate an equalizer that has

a compensating characteristic, a sinx/x or sinc correction. Therefore, the
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overall transmission characteristic of the channel following the input noise
network is given by

Ty/2 2
HT(V)zZ[W , o<pp|<1-—8

{(7v/2)[1=sinm(v—1)/28] )}

4[sin(7v/2)]* ’

=0 otherwise (11.4-13)

 1-B<|y|<1+B

This is the required channel shape and is shown plotted for various values of 8

in Fig. 11.12. Notice that for $=0, considerable equalization near the Nyquist

frequency is required; for larger values of 8, less equalization is required below
the Nyquist frequency, but there is more response above it. Hence there will be
a value of B intermediate 0 and 1 that gives minimum noise, depending on the
relative values of 7, and R,. Although the expressions for the channel are
complicated, they are easily integrated numerically on the calculator, with
values of 2, and 2, given in Table 11.2. For 8=0.7, for example, Z,=1.13, so
that the effect of the equalization is to increase the flat (white) noise contribu-

tion by about 0.5 dB. The value of Z,=0.49 is comparable to that for the cubic
Butterworth cutoff. To find the total noise, of course, the characteristics of the

noise network must be taken into account.

Where high-impedance sources must be considered, an admittance formula-
tion of device noise is considerably more convenient than the impedance
formulation given previously. Such sources are often limited in noise perfor-
mance by their capacitance, so it is helpful to incorporate the source capaci-

tance in such a formulation. Applying eq. (11.3-9) to egs. (11.4-4) and (11.4-5)
and letting Y,=G;+jwC,;, we obtain the following equations for the noise of

the bipolar transistor in the admittance formulation:

G,=G,+Gv’ (11.4-14)

The individual components are evaluated as before, taking correlations into

account by adding currents arising from the three noise sources just as we

added voltages in eqgs. (11.3-5) to (11.3-8):

G,n;=(Y;B+D)’G,, (11.4-15)

G,.=(Y.A+C)’R,, (11.4-16)

Following the earlier procedure, we obtain

5GO:G(%(%Jrr,,)+(1+r,,c;c)23 (11.4-17)
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Figure 11.12. Required equalization for digital fiber optic transmission system with raised cosine

response for various values of the rolloff factor 8; 100% duty factor transmitted pulse is assumed.

and

2

2 [Tl(1+rbGG)] ridG,=(27f,) T—+C§- r,,+2”—re (11.4-18)

where

=1+ (GtGt C)r, (11.4-19)

This is a result similar to that for the FET derived in Section 11.3. Because r,, is
connected between C,, and (g, a quadratic term appears that has been ignored.
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Table 11.2 Values of Weighting Function
Integrals for a Cosine Rolloff Channel with
sin x/x Correction”
 

 

B 2 Z

0 1.37 0.567
0.2 1.28 0.490
0.5 1.17 0.452
0.7 1.13 0.486
0.85 1.12 0.555
1.0 1.13 0.695
 

“This table and the associated analysis are largely

adapted from Personick.'? The frequency normal-
ization in the reference is to twice the Nyquist
frequency, whereas we use the Nyquist frequency.

Thus values of X, are twice as large here, and

values of Z, are eight times as large.

It is ordinarily of no consequence to the noise; the added root does not affect

the magnitude of the response, but only the phase, as discussed in Chapter 5.
The origins of noise sources in eqgs. (11.4-17) and (11.4-18) are readily

identified. Squared terms all belong to the transmission functions, so the

original noise terms appear as the first power. Terms including § come from

base shot noise current. Terms involving r, (without &) arise from the collector
noise. Terms with r, (to the first power) are from thermal noise in 7.

The total mean square input noise current is given by

i=4kTf,(G,Z,+G,Z)) (11.4-20)

To 1llustrate the use of these concepts and equations, we now find the

optimum collector current at which to operate the first-stage transistor of a
preamplifier for a fiber optic digital transmission system with a 274 Mband/s

signalling rate. At the receiver the light is detected by a pin photodiode whose

output current iis related to the incident light power P by the relation'

ic=R,P (11.4-21)

where R, is the responsivity of the diode in milliamperes per milliwatt, and P 1s

given in milliwatts; R, is inversely proportional to the photon energy (and

thus proportional to A, the wavelength of the light). It is also proportional to 7,

the quantum efficiency of the diode, including the fiber-diode interface. It can
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be expressed as

R,=0.81nA (11.4-22)

Note that the current (not the square of the current) is proportional to the light

power.
It is usual to express the noise characteristics of a lightwave receiver by its

sensitivity, defined as the minimum signal power needed to achieve a certain

bit errorrate, often taken as one error in 10° pulses, or 10 ~°. The ratio of peak

signal to rms noise required to achieve a 10 ~ ° bit errorrate is 6.0,'* so that the
sensitivity, expressed in dBm (dB referred to 1 mW)is given by

S=101 Ot
RO

where i,is interpreted as the rms value of the noise current. The equation can
be written

 

36( iinT)z )

2
o

S=5log (11.4-23)

Through these equations, we can investigate the effect of varying collector
current or any of the other parameters controlling the noise performance.

In Figs. 11.13 and 11.14 receiver sensitivity is plotted as a function of

collector current for various values of 8 and current defect ratio. In plotting

 —38 T T T T T

S,
d
B
m

 

  L 1 | II | I L 11 llll

005 0.1 0.3 1.0 2.0
I, mA

 —41

Figure 11.13. Fiber optic receiver for 274 Mbaud/s transmission system; receiver sensitivity as a
function of the cosine rolloff factor 8. § =0.005. R,=1.0, ¢, =0.8 pf, G;=0.01 mS, G,,=0.2

mS.
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Figure 11.14. Fiber optic receiver sensitivity as a function of first-stage collector current for
various values of 8. C,, =0.8, G;=0.01, G,,=0.2, R,=1.0, 3 =0.7.

these curves we assumed a transistor having r, =0.11 k& and in Fig. 11.13,
6 =0.005. The values of r, and 7, vary with collector current as described in
Chapter 7; the forward transit time was taken as 0.027 ns; also, G =0.4 pf,

and C;, =0.12 pF. Circuit values were G; =0.01 mS and C; =0.8 pF, including
the PIN diode capacitance and input parasitic capacitance. The first-stage load

conductance was 0.2 mS. Responsivity was taken as 1.0 mA/mW.
The first plot gives a basis for choosing B; sensitivity is best for B8 in the

range 0.5-0.7. For small values of B, the peaking near the Nyquist frequency
increases the noise. For large values of 8, the added bandwidth increases the

noise. Larger values give a gentler rolloff that is easier to realize in an equalizer

circuit, so we choose a value of S8 of 0.7. The larger value also makes the timing
of the detection process less critical.

The effect of reducing base current shot noise is shown in Fig. 11.14, in
which sensitivity is plotted as a function of collector current for various values

of & from 0.01 to zero. The latter value removes the base current and its shot

noise, allowing the stage to operate at higher collector currents for minimum

sensitivity.

To see the effects of the various individual sources of noise, these sources
can be compared at the input by the amount they contribute to the total input

noise equivalent conductance. These components are plotted as a function of

collector current in Fig. 11.15 and include contributions from both G, and G,
in eqs. (11.4-7) and (11.4-8). (For any individual noise contributor, the compo-

nents of G, and G, add on a power basis because they appear in quadrature.)

In addition to the three primary sources of transistor noise, the noise contribu-

tions of G; and G, (the load resistance of the first stage) are also shown. The
value of these conductances depends on the choice of f,; they may be

interpreted as the conductances that would give an equal noise contribution to

the actual sources if the channel were an ideal filter with cutoff at the Nyquist

frequency.
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Figure 11.15. Noise equivalent input conductances representing five sources of noise in the first

stage of a fiber optic receiver. The total noise is also shown.

As collector current is increased in Fig. 11.15, the base shot noise rises

linearly, as we would expect. The contributions from the base and G, thermal

noise is independent of current. Collector shot noise initially falls with increase

of current since 7, 1s reduced with increased current. As 7, flattens with
current, the noise begins to rise, giving a minimum. Finally, the effect of G,

falls as the square of the current because of the drop ofr,.
The total noise conductance exhibits a minimum for /-=0.3 mA. At this

value the noise current is given

inr= VAKTG1

 

=/(1.66X 10 ~#)(0.137)(0.11)

=15.8X10"°mA
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The light power needed for 10~ bit error rate is thus given as

6(15.8X10 ©)
P=—M— —

R()

=949%X10 *mW

and the sensitivity is —40.2 dBm. If /. were increased to 1 mA, for which
((1;{3:0.17 mS, the sensitivity would be degraded by 10log,/0.17/0.11 =0.99

The PIN diode is back-biased, and its conductance is negligible, as is its

noise contribution. The inclusion of Gis to allow base bias current to be
applied to the transistor. The value chosen is small, as is its noise contribution,

but care must be taken in providing temperature-stable bias.

 

 

0.3 mA
—

+

1.5V

ABCD MATRIX ABCD MATRIX FOLYS

OF OF

TRANSISTOR 1ST STARGE A-POLY:

FRER.. GHZ = B.1608 FREG., GHZ = @.1988 Rea= -@,8193
Réi= -#,8309

ABCD, MAG,+PH: ABCD, MAG.+PH: Ra2= -@.@024
R@3= -2.4479-85

f: f:

B

Rei= 8.8182 RBi= 8.8269

R@2= -98.8676 Re2= -133.7816 Re4= -8.8%1¢
RB5= -8.88%4

B: B: Rec= -8, 0882
R@7= -2.73z1-86

RE3= 6.8917 Re3= 8.8917

RB4= -176,2981 R@4= -176.2981 C

C: C: Rag= @.eae7
RA9= -8.1464

R@3= 6.8740 Res= 8.8927 Rig= -8.843Z

RBE= -84.2968 RB6= -88.7563 Ri1= -8.8822

I: D: D

RB7= 8.0429 R@7= 8.8882 Riz= -8.8113
R88= -182.7694 R@8= -95.30852 Ri3= -8.1395

Ri4= -2.8052 @
R15= -@.ne82

Figure 11.16. First-stage transmission matrix for the fiber optic receiver.
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Analysis of the Optimized Input Stage

This input stage was designed for optimum noise performance without consid-

eration of its transmission performance. It was intended to form the first stage

of a feedback preamplifier, with the total preamplifier design being required to

give satisfactory transmission performance. The design of the complete pre-
amplifier is discussed in the text that follows after discussion of certain

preliminaries. For that design, we need to know the transmission characteris-
tics of the noise-optimized input stage.

The input stage is shown in Fig. 11.16a with the shunt admittances assumed
in the preceding development. The collector current is 0.3 mA, and the

collector voltage is assumed to be 1.5 V. The ABCD matrix of the transistor at
100 MHz is given in Fig. 11.16b and the ABCD matrix of the circuit is given in

Fig. 11.16¢. The polynomial coefficients of the circuit, obtained from evalua-

tion of the ABCD matrix at two frequencies (100 and 316 MHz), are shown in

Fig. 11.6d. The A and B polynomials are of no consequence since the source

admittance is already in place; the input current arising from 4 and B is

already taken into account in C and D. When the stage is operated into a a low

load impedance of the rest of the amplifier (this will be the case), only D 1s of

importance. The dc coefficient of D is unimportant to the response; the linear

coefficient is 0.14 ns, and the quadratic coefficient, —0.0092, implies a delay of

approximately 0.0092/0.14=0.066 ns. These two numbers characterize the
essentials of the first-stage response, a unity loss time constant of 0.14 ns, and

a delay of 0.066 ns.

11.5 EFFECTS OF FEEDBACK AND FEEDFORWARD ON NOISE

Any network with or without feedback can be analyzed as described in Section
11.4. Since the bipolar transistor is itself a feedback network, as we have shown

in Chapter 6, we have already analyzed the noise in a feedback configuration.
Nevertheless,it is useful to define the effects of feedback on noise since we
may know the noise characteristics of a given network and wish to know its
noise characteristics when feedback is applied without going through the

complete analysis described in Section 11.4.
We have seen that when feedback is applied to a network, four effects are to

be considered: input augmentation, or feedback; output augmentation, or

feedforward; and input and output loading. When noise is expressed as an

input noise network, it i1s obvious that input augmentation has no effect on

noise since the network itself is noiseless; there is no noise to be fed back.

Although this is obvious in one sense, it is also subtle in another, so let us

consider examples.

Noise in the Common Collector and Common Base Stages

The technique of moving voltage generators through circuit nodes and splitting

current generators discussed in connection with Fig. 8.16 can sometimes be
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Figure 11.17. Input noise of (a¢) common collector stage, (b) common base stage, and (c)

emitter-coupled pair.

used to evaluate the effects of feedback quickly. Three examples of this

technique are shown in Fig. 11.17.

In Fig. 11.7a we obtain the equivalent input noise network for the common

collector stage from that of the common emitter noise network. The voltage

generator is already at the input, where it remains in the common collector

stage. The noise current generator can be split into two generators, one across

the input terminals and one across the output. The output generator represents

fed-forward noise. Its effect at the input is small; it augments the input noise

voltage slightly, after being multiplied by B of the common collector stage,

roughly r,. It also modifies the input noise current slightly, after being
multiplied by D. Both effects can be neglected. The chief effect on noise
performance of using a common collector stage as an input stage is to make

the circuit susceptible to the noise input voltage of a following stage; since the

voltage loss is unity, the second-stage noise voltage translates to the input

undiminished by first-stage loss.
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In the case of the common base stage in Fig. 11.17b, the input noise voltage
generator can be passed through the base of the transistor, resulting in two
noise generators, one in series with the input and one in series with the output.

Since the common base stage has considerable voltage gain, the (feedforward)

generator in series with the output can be neglected; thus the input noise

network remains essentially unchanged compared to the common emitter

stage. Since the current loss of the common base stage is unity, however, the

input noise current of a following stage translates to the input of the common

base stage without reduction.

Noise in the Differential Pair

The noise of a differential pair with one base grounded is the tandem
connection of the common collector and common base stages as shown in Fig.
11.17¢, so we can immediately find its noise performance. With 4 of the

common collector equal to unity, the input noise voltage is the sum—on a

power basis—of the input noise voltage of each transistor. The noise equiva-
lent resistance of the differential pair is thus

R,ipp=r.t2r, (11.5-1)

in which the small term from base shot noise r?8/r, has been dropped for
simplicity.
The noise current of the second stage (the common base stage) is reduced by

D of the first stage, so the noise current of the combination is essentially that
of the first stage alone. Therefore, the noise equivalent input conductance is

just that of the transistor:

G 8 T%wz
ni(DP) 2r,  2r,

e

 (11.5-2)

where the first term on the right is base current shot noise and the second term

is collector shot noise multiplied by |D|>. Where both bases of the pair have
signals applied to them, the noise currents of both must be taken into account.

They can be multiplied by the squared magnitude of the respective source

impedances (for each of the two sources) to obtain the total equivalent input

noise resistance. The differential pair is treated as a three-port in Chapter 12,

where common mode characteristics are considered.

Lossless Transformer Feedback

The common collector stage is susceptible to the noise input voltage of a

following stage, as noted. We can reduce this susceptibility by using lossless

transformer feedback, shown in Fig. 11.18. The output voltage is stepped down

by the factor n, (with n, less than unity) and added to the input voltage,
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Figure 11.18. The effect of ideal transformer A feedback on noise.

420



Effects of Feedback and Feedforward on Noise 421

giving the transmission matrix (ignoring direct feedthrough) or

TA:[A "4 B] (11.5-3)
C D

The input noise network of the original transistor is shown inside the trans-

former winding in Fig. 11.18a; it can be moved outside as shown in Fig. 11.18b

by splitting the current generator as shown. The current generator connected

across the transformer winding can then be passed through the transformer to
the output circuit, as shown in Fig. 11.18¢. Its value is n ,i, and is smaller than
that for the common collector stage by the factor n,. It can be neglected, so
the input noise network is the same as that for the common emitter stage.

The input noise voltage of a following second stage can be translated to the

input of the first stage through the matrix of (11.5-3); thus it is reduced

approximately by the factor n,, the value of A for the circuit with the
transistor in its reference condition.

Lossy Feedback

All examples of feedback in this section have been lossless in the sense that

there was no dissipation in the feedback networks. There has also been an

additional restriction, namely, that no energy be stored in the feedback

networks; such networks are termed nonenergic.'> The ideal transformer stores

no energy, nor do the wires that permute the leads in the common collector or
common base connections. As a result, the only effect of the connecting the

feedback network was to modify the noise by feedthrough or feedforward. In

this section we remove this restriction, first by adding a dissipationless feed-
back network (by using a feedback capacitor) and then by adding a feedback
conductance.

An amplifier with capacitive C feedback is shown in the first stage shown in

Fig. 11.19a. Input current signals are integrated by capacitor Cr and the
amplifier; capacitor C. differentiates the signal so that the combination
provides flat response. What is the effect of the feedback on the noise

represented by generators e,; and i,,? In Fig. 11.19b the equivalent ladder
circuit is drawn. The output loading and feedforward have negligible effect on

the noise and are shown dotted. At the input, current generator Cpsv,
represents the feedback and 1s noiseless; shunt capacitor Cp represents input

loading by the feedback capacitor. It contributes no noise itself, but it

enhances the noise originating with e,,. Without C, feedback, the equivalent

input noise conductance is, from (11.3-9)

Gir= G(i+Gni+G(%Rni (11.5-4)

in which correlations between e,,; and i, have been ignored. When C1s added
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Figure 11.19. Effect of capacitive feedback on noise.

to the circuit, the noise conductance becomes

G,yr=Gg+G,+(GE+D}w?)R,, (11.5-5)

thereby adding C#w?R,; to the total.
When a feedback conductance replaces the feedback capacitance, as shown

in Fig. 11.20, thermal noise is contributed by the feedback conductanceitself;
thus

G,7=G;+Gp+G,+(G.+Gr)’R,, (11.5-6)

in which the first G, term represents the thermal noise contribution and the
term in the parentheses gives the enhancement of the effect of R,; by the input
loading of the feedback network. Capacitive feedback, therefore, can give
better noise performance than can conductive feedback. This can be important

in critical applications.

Fiber Optic Preamplifier Incorporating the Optimized First Stage

In the previous section we found the optimum collector current for low noise

in a transistor used as the first stage of a preamplifier For a 274 Mband/s

fiber optic digital transmission system. The signal source is a PIN photodiode.
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Figure 11.20. Effects of conductive feedback on noise.

The optimization was carried out without regard for transmission require-

ments, but the stage was analyzed for its transmission properties. Such a stage
is of value only if it can be incorporated into a larger system that has

satisfactory transmission characteristics; conversely, such a system must not

have a significantly adverse effect on noise performance.

What do we mean by “satisfactory transmission performance?” As we saw in

Part 1, we require low sensitivity to device and component variations in band

and adequate margin against instability out of band. The procedure adopted
for ensuring these properties is to select a suitable loss polynomial that has the

desired response and sensitivity and to realize it by a circuit that does not

introduce high-component-sensitivity problems. For purposes of roughing out

a design, we adopt a cubic maximally flat delay polynomial of sufficient

bandwidth (400 MHz) to maintain low sensitivity in band to the device

parameters that introduce the frequency cutoff.

The design then requires that we synthesize the required polynomial coeffi-

cients under the constraint that the first stage operate at the optimum collector

current for noise (a collector current at which the device time constants are

considerably larger than we would choose from transmission considerations

alone).

An additional constraint is that the synthesis of the polynomial coefficients

should not introduce a significant increase in noise over that contributed by
the optimized first stage.
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Figure 11.21. Fiber optic receiver preamplifier design with the use of capacitive overall feedback.

The design constraints are satisfied by the circuit shown in Fig. 11.21, in

which specific networks are designated to control each of the required poly-

nomial coefficients. We assume the desired loss polynomial to be the ratio of

input current to output current:

—L(s)=ay,+a,;s+a,s*+ass’ (11.5-7)

The circuit is best described by identifying the elements that determine each

coefficient in turn.

Coefficient a1s established by the current divider consisting of Y. and Y;
over most of the frequency range it is a capacitive divider, becoming resistive

at very low frequencies. (The resistors provide dc base bias for the first stage

and limit the dynamic range for low-frequency signals arising from long strings

of signal pulses of like polarity.) The mechanism by which a, is established by

this divider can be understood by noting that the collector current of Q; is

closely equal to the output current of the amplifier. This collector current is

divided by the Y., Y, current divider, giving a value of a,, of

Cr __Gr
T CHC, GG, (11.5-8)a

If the low-frequency current loss is 0.01 (—40 dB), for example, we would

make C,=99C, and G,=99G. The time constants of Y, and Y, are equal so as
to give flat response to dc. The values of C, and Gare typically 0.1 pF and

0.01 mS, respectively.

The remaining three polynomial coefficients all contain 7,, the first-stage

time constant, as a factor. This time constant, evaluated as 0.14 ns in the

previous section, is the constraint introduced by the noise optimization.
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Coefficient a, 1s synthesized by use of resistor R, and conductance G,. The
voltage at the emitter of Q, is R.i,. (Let R, include the emitter resistance of
the common base stage.) This voltage drives a current R,G,i, through G|,
whereupon it is multiplied by D of the first stage, or 7,s. Thus a, is given

approximately as

a,~R,G,T, (11.5-9)

Coefficient a, 1s synthesized in the same way as a,, except that we replace G,

by the susceptance C,s; therefore, a, 1s given by

a,~R,C,r, (11.5-10)

Coefficient a; comes about from the product of the time constants of the
three transistors Q,, Q,, and Q, connected in tandem and is given roughly by

a,~T,T,T3 (11.5-11)

where 7] includes not only the current loss time constant of Q;, but the time

constant R .C,;, where C,; is the shunt parasitic capacitance of the Q,— Q,
interstage, roughly 0.5 pF. These time constants are the basic physical con-
straints on amplifier gain—bandwidth performance and are not easily changed.

Hence, as in Section 3.1, we adjust the low-frequency loss to obtain the

required bandwidth of 0.4 GHz. Thus we set

ay=a;w} (11.5-12)

Other effects such as r,C,. products also affect the coefficients and add
delay, or, equivalently, increase the degree of the loss polynomial. These effects

have been taken into account in a complete design of the circuit in Fig. 11.21

using the methods developed in the earlier chapters; the simple analysis given
here gives equivalent results if we take 7,=0.16 ns, 7,=0.055 ns, and 7,=0.06
ns. With R,=0.158 k€2, G, =0.75 mS, and C,=0.3 pF (this latter includes C,,
of Q,, with which it is essentially in parallel), we obtain for the loss poly-

nomial:

—L(s)=0.0196+0.01905+0.00765>+0.001245°> (11.5-13)

This polynomial in normalized form becomes

—L(p)=0.0196(1+2.43p+2.44p*+p?) (11.5-14)

where p=s5/(2X0.4). This is close to the maximally flat delay cubic given in

Table 2.1, with a dc loss of —34.1 dB.

The design of the preamplifier is thus roughed out with the use of a simple

integrator model for each transistor. A more thorough analysis would show



426 Noise and Input Stages

that delay in the transistors and due to parasitics controls the gain that can be
achieved for a given required bandwidth and shape. For the design given here,

the gain can be increased by lowering the value of R,. The more complete
analysis indicates that R, must have a minimum value to assure out-of-band
stability. These considerations are beyond the scope of this chapter but can be
investigated by methods already discussed in previous chapters.
To account for integrated circuit process variations,it is desirable to include

means for adjusting the response—adjusting the relative values of the poly-
nomial coefficients—in the completed circuit. This can be accomplished in this
circuit by changing the dc collector current of the first stage, which changes 7,.

This changes a,, a,, and a5, but not a,, and changes the relative values of b,

and b,. Since b, and b, control the in-band response shape, and because the
sensitivity of the in-band response shape to the cubic coefficient is much
smaller than to b, and b,, as discussed in Section 2.6, we obtain good control
of the response shape by this simple strategy. First-stage dc collector current
lower than nominal increases b, relative to b,, and vice versa.

Noise in Current Sources and Active Loads

Although feedforward is usually inconsequential to noise performance, such is

not always the case. In the differential amplifier with active load shown in Fig.
11.22a, the collector current of the first transistor is fed forward through the

simple current mirror to the output, doubling the current gain of the combina-
tion. Development of the equivalent ladder network is shown in Figs. 11.2256

and 11.22¢. In Fig. 11.22b the circuit is simply redrawn showing only the

essential elements. In Fig. 11.22¢ the current mirror is replaced by the i/2
generator, as described in Chapter 9; the noise of the current mirror is

represented by the outpur noise equivalent conductance G,,, whose value is
given by eq. (11.2-11) as described previously. (Since the current gain of the

circuit is unity, the equivalent noise input conductance is equal to the output
noise conductance.) Hence

_ 2(r,+Ry)+r,
iR (11.5-15)

no

The noise equivalent input immittances of the differential pair are given by

(11.5-1) and (11.5-2). To express G,, by equivalent input immittances, we

multiply G,, by the squared magnitudes of B and D of the differential pair
with the feedforward in place, as indicated in Fig. 11.22¢, for which

B=r, (11.5-16)

and

D=1(8+1rs) (11.5-17)



 

  

   
D = 17(6 + 7r58)

(c)

Figure 11.22. Differential pair with active load to show effect of feedforward on noise.
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Note that whereas B of the differential pair alone is 2r,, the active load
supplies half the output current, giving the value shown. Since the transistors
of the pair and the active load all have equal collector currents,r, is the same

for all transistors, and the total noise equivalent input resistance for the circuit

becomes

2(r,tRy)tr,
R,,,:re+2rb+rez 5

(r€+R1:')

(11.5-18)

Often, differential pairs are operated at low currents, making r, dominant over

r,. If we ignore r, and set R =0, the value of R, reduces to 2r,. Hence the
active load doubles the input noise equivalent resistance. Usually r, cannot be

ignored, however. As we saw in Section 11.2, addition of R helps considerably
in reducing the noise contribution of r,.
Note that it is not the feedforward itself that causes the noise in this circuit.

Rather, it is the noisy character of the current mirror. If the same current

mirror were used as a simple current source to supply the collector of the

second stage, its noise power contribution to the input of the differential pair
would be four times as large since B would double, and it enters into R/as
|B|>. The feedforward actually acts to reduce the noise contribution of the

current source by increasing the gain of the pair.

In the 741 operational amplifier, current mirror feedforward is employed as

described previously. The output noise of the current mirror is the same as that
described previously, but the presence of the pnp level shifter transistors

doubles the value of B to 2r, and also doubles the input noise equivalent
resistance. Hence the noise contribution of the current mirroris four times that
of the circuit in Fig. 11.22, and the input contribution is twice as large; for this
circuit, therefore, we obtain

2(r,tR;)+r
R,,,.(741):2re+4r,,+4r3—(”—i2—" (11.5-19)

(re+RE)

With collector currents of 0.012 mA, R=1.0 k@, and r,=0.5 k{2, the noise

equivalent input resistance is about 16 k2. Note that even with r, and R . set to
zero, the noise equivalent input resistance of the 741 amplifier is 6r,; with

collector currents of 12 p A, r,=2.2 k{2, and R,; would then be 13 k2, of which
two-thirds comes from the current mirror.
The noise equivalent input conductance is found by multiplying G, , by the

square magnitude of D. For either the circuit in Fig. 11.22 or in the 741

amplifier, this contribution is much smaller at low frequencies than the base
shot noise contribution of the input stage §/2r,. With a collector current of
0.012 mA and with §=0.01, the value of G,; at low frequencies is 0.0023 mS.
The optimum source resistance for the 741 amplifier is thus 83 k{2, from eq.

(11.3-34), and the noise figure at this source resistance is 1.4 dB, from eq.

(11.3-33).
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Chapter 12
 

Differential and
Operational Amplifiers

Differential amplifiers have two input ports. Such an amplifier processes the

difference in voltage between the two ports; it may combine the signals at
a single output port, as in most operational amplifiers, or it may present a
balanced output signal. Where a single output port is provided, the circuit is a

three-port network, so that the two-port ABCD characterization previously

discussed must be modified. The main purpose of this chapter is to show how
this modification should be made. We wish to analyze differential amplifiers in
such a way that loop gains disappear from the description; thus the analysis is

sequential, straightforward, and appropriate.

The small-signal properties of a two-port can be expressed at any given

frequency by four parameters (magnitude and phase) relating the input and

output current and voltage. For a three-port there are three currents and

voltages to be interrelated and thus nine complex numbers to represent it. The

increased complexity of this three-port has been handled in many ways since

the introduction of the differential dc amplifier. Several books appearing in the

literature have been concerned exclusively with differential amplifiers.' > The
treatment given here is distinctly different from the earlier treatments and 1s in
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keeping with a principle that can be stated as follows:

In a class of things to be represented by a model, the model parameters
should be so chosen that an ideal member of that class shall have no

numbers to describe it.

This is the principle of the null reference matrix and was encountered for two

ports in the ideal two-port amplifier. By choosing to represent two-port

amplifiers by their ABCD or transmission matrices, an ideal two-port amplifier
was found to have all four parameters zero. Nonideal operation can then be

analyzed as the sum of several small effects, added to a base or datum of zero.

In this chapter we describe the differential amplifier and the operational

amplifier such that all nine parameters representing it are zero for an ideal

member of the class.

12.1 DEFINITION OF SIGNALS AND CHOICE OF INDEPENDENT

VARIABLES

An operational amplifier such as that shown in Fig. 12.1a has a single output

port with port voltage v, and current i/, and two input ports with voltages v,
and v, to ground and currents 7, and i,. The amplifier is arranged to be

sensitive to the difference between v, and v,; this is the differential input

voltage v,:

v, =V, 0, (12.1-1)

 

 

2 1iuen
+

Va Vd

——

vS

 

 

 

 

(b)
Figure 12.1. Definition of signals in an operational or differential amplifier. In Fig. 12.15 an ideal
transformer is used to clarify the definition of differential and common mode signals.
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Ideally, this differential voltage is zero for any finite output voltage and
current. The amplifier is also arranged to be insensitive to the average value of
v, and v,. This average value is the common mode input voltage v,:

=ttt (12.1-2)
’ 2

We can also define a differential input current i ;:

i,= i]—;—lg (12.1-3)

and a common mode input signal current i:

i=i i, (12.1-4)

Ideally, since i, and i, are zero, both i, and i are zero.
These definitions can be given a physical interpretation by use of an ideal

transformer at the input, as shown in Fig. 12.15. The differential voltage

appears across the primary of the transformer and the common mode voltage

appears at the center-tap of the transformer secondary. Note that because i,

(or i,) flows through only half of the secondary, the factor of 2 appears in the

denominator of eq. (12.1-3).

The differential and common mode voltages given by (12.1-1) and (12.1-2)

are the standard IEEE definitions of these terms. To preserve power relation-
ships for the differential and common mode signals, we obtain the differential

and common mode current definitions of (12.1-3) and (12.1-4). Unfortunately,

these latter definitions are not those commonly used in specifying operational

amplifier characteristics in manufacturer’s data sheets. The commonly used

definitions give twice the value for i, and half the value of i_. For technical
consistency, we adopt the current definitions of (12.1-3) and (12.1-4), bearing

in mind that manufacturer’s data must be interpreted in this light.

Null Reference Matrix for a Differential Amplifier

Of the six signal variables of interest, three are ideally zero: in an ideal

operational amplifier v,, i, and i, are all zero. In accordance with the null

reference matrix principle, we may immediately write the appropriate matrix

description of an operational amplifier by taking the ideally null variables as

the dependent variable and the remaining three as the independent variables,

so that the null reference matrix is given by the equation

i, (12.1-5)
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An ideal operational amplifier then is described by the null matrix: each of
the nine elements is zero. Each of the nine elements is a function of the
independent variables in general, so that (12.1-5) is a nonlinear differential
description of the operational amplifier where the functional dependencies are

known. It is also a complete description of the three-port, which requires nine

elements for its full characterization. Many of the elements often can be
ignored; elementary operational amplifier circuit analysis often ignores all the

elements, regarding the amplifier as ideal. In what follows, we define each

element and evaluate it in typical cases.

Null Reference Matrix Elements: Definitions

The differential amplifier matrix in eq. (12.1-5) is more easily understood and

remembered when partitioned as shown. The submatrix in the upper left

position is the differential ABCD matrix relating the differential input signal

vector to the output signal vector, with the common mode voltage set to zero.
Thus

_ avd i =0Tel K (12.1-6)

9
B, =—4|o,=0 (12.1-7)

? alO U_\.:O

N
C, =—2]i,=0 (12.1-8)

¢ a'UO U_‘:O 
%,

= _—4|v,=0 -Duy =gt (12.1-9)

Note that we adopt the convention that with the variables as defined in Fig.

12.1b, these parameters all exhibit a phase reversal.

Common Mode Rejection Ratio and Admittance

The column submatrix in the upper right corner of the matrix in eq. 12.1-5,

{A,,,C,,}, represents the common mode rejection, the differential input signal
required to make both the output voltage and current zero in the presence of a

nonzero common mode input voltage. Thus

 

av
Ads:g,f (12.1-10)

i,=0

di
Cds:a—v‘i v,=0 (121-11)

 
i,=0
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1V

 

  
Figure 12.2. Schematic representation of the common mode rejection parameters 44, and C;,.

where A4, is the common mode rejection ratio quoted in operational amplifier
data sheet specifications (usually expressed in decibels )* and C,, is a common

mode rejection admittance, usually ignored in operational amplifier data sheets.

to gain intuitive insight into these two parameters, recourse to their measure-

mentis useful.
Figure 12.2 shows a conceptual measurement scheme for determining the

common mode rejection parameters of a differential or operational amplifier.

Note that in eqgs. (12.1-10) and (12.1-11) both v, and i, must be set to zero
simultaneously. This is done by connecting the input of an ideal amplifier to
the output of the amplifier under test. By applying a 1 V input signal to the
common mode input terminal of the circuit in Fig. 12.2 and measuring the
voltage that appears across the differential input terminals, we obtain a

numerical measure of the common mode rejection ratio 4,,. Similarly, by

measuring the voltage across the 1 k{2 resistor in the feedback lead, we obtain,

directly, the value of C,, in millimhos.
As a practical matter, the common mode rejection parameters are usually

too small to be measured in this way. By placing attenuation in the feedback

path we can make the common mode signal large enough to be measured at the

second amplifier output. Numerically, 4,, and C,; should be as small as
possible, and ideally zero.

Common Mode Input Current and Admittance

The row submatrix in the lower left position of the matrix in eq. (12.1-5),

[C,,, D,,], relates the output signal vector to the common mode input current,
50°

*Common mode rejection is taken here as the reciprocal of that usually used (or the negative if
expressed in dB).
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with the common mode input voltage set to zero. Thus

 
iS

Cso U_o i,=0 (121-12)

vs=0

Dso—;l,i oo (12.1-13)
?lps=0 

Finally, the scalar Y, in the lower right corner is the common mode input
admittance, which can be found numerically as the common mode input

current in Fig. 12.2. This is the current engendered solely by the common
mode voltage, with the output current and voltage preset to zero.

DC Definitions of the Dependent Variables

The dc values of the three dependent signal variables are also of interest in

applications of differential amplifiers and operational amperes. The total (dc
and ac) differential input voltage V,, and the current /,, and the common

mode current /,, can be written as the sum of the ac part given by (12.1-5)
and the dc values. This equation is similar in form to that used to express noise
in a two-port, as in eq. (11.3-1);

Vd VOS U,

L =] Los |+ Myl i, (12.1-14)
cm IB vs

where M,is the null reference matrix given in (12.1-5) and the dc values of
the dependent signal variables are defined thus:

Vos input offset voltage Vi—V,

I input offset current (1,—1,)/2
I input bias current I,+1,

With Vg, I,g, and Iz simultaneously applied to the amplifier, the output
voltage and current and the common mode input voltage are all zero. This

defines these three dc quantities.

In the following section we analyze a specific differential stage to give

physical significance to each of the nine elements of the M,, matrix and to the

dc values of the three dependent variables.

It should be noted that the output current from an operational amplifier

flows through a load and returns through the (positive and negative) power

supply leads. We assume that the power supply leads are grounded in the

following analysis and thus can ignore the effects of signal currents and
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voltages at the power supply ports. Without this assumption, an operational

amplifier becomes a five-port network, with 25 parameters to characterize it.
One group of these parameters that models the power supply rejection is

important and is discussed later.

12.2 DC ANALYSIS OF A DIFFERENTIAL AMPLIFIER STAGE

In Section 12.4 we present a general method of analysis of the differential
amplifier stage that will enable us to find its characteristics by use of transis-
tors or any other three-terminal amplifying devices or combinations of devices.

In this section we consider the analysis of such a stage by use of bipolar

transistors with a current mirror active load. Such a stage is of practical

importance since it forms the input stage of many operational amplifiers. The

analysis brings out many essential features of the stage.
To simplify the analysis we shall initially ignore Early effect and base

resistance, and adopt the Ebers-Moll model (Chapter 7) for the transistor. We

further restrict the discussion to dc or low frequencies. The circuit is shown in
Fig. 12.3. The current mirror is ideal (for the present) because the collector

current of Q,, 1., 1s accurately mirrored as a current source feeding the
collector of Q,. An 1deal current source I, provides emitter current for the
two transistors; its shunt admittance is assumed negligible.

 

  
 

V_

Figure 12.3. Differential pair with current mirror load.
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Bias and Output Circuit Constraints

The basic constraint that gives the differential pair its characteristic rejection
of common mode signals is that the emitter signal currents of the two emitters

are equal and opposite. This constraint can be represented by Kirchoff’s

current law at the emitter node:

We are interested in establishing (1) the relationship betwen the output current

and voltage, and (2) the input differential current and voltage. This relation-
ship depends on the output coupling arrangement, taken here as the current
mirror active load circuit in Fig. 12.3. For this arrangement, we can write

1,=1,—1, (12.2-2)

Substituting this equation in (12.2-1), we find I, in terms of the output current
I,
o

 _ I+ (148,)1, 1 ( Tpg

21146
(.]—W—z +IO) (12.2-3)

Similarly

T(18I, 1 1y
ffmz__i(ws L) (12.2-4) 

In the expressions on the right the approximation has been made that

1+6,=1+6,=1+56.
The magnitude of the quantity /,./(1+8)=—1_,.. is the maximum posi-

tive or negative current /_.. that can be obtained from the differential pair
with active load. It is obtained with large positive or negative differential signal
applied to the stage. Hence we can write

1
Ic'l:_%(l—FY):IC(I-*_Y) (12.2-5)

and

Iomaxo= (1-y)=1(1-y) (12.2:6)

where /- is the quiescent collector current of either transistor and y=1_/1.,
is defined as the signal intensity.
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Input Differential and Offset Voltages

The input differential voltage is obtained by subtracting V,,, from V,;:

  
I I

deg(ln I“ —In 1‘2) (12.2-7)
S1 S2

kT( Icl ISZ)
In +1ln ==

Ic2 IS]

_kT(, 1ty I,)
In +1n 12.2-8

q( 1—y I, ( )

=v,+ Vg (12.2-9)

in which the first term in the brackets is identified with the input differential

signal voltage and the second term with the input offset voltage.
In this simple model the ratio of saturation currents is the single contributor

to the offset voltage. We evaluate other contributors later on.

The input signal voltage can also be written (by trigonometric identity) as

v,= &qT tanh™'y (12.2-10)

This function is plotted as a solid line in Fig. 12.4.

Since y=1,/1.., it follows that v, is a function of the output current but is
not a function of the output voltage or the common mode input voltage for
this simple transistor model. The Ebers-Moll model, with its ideal collector

junction, gives complete voltage isolation of the input circuit from the output
circuit; the ideal emitter current source likewise completely isolates the input
circuit from ground or the power supplies. Hence the common mode rejection
is complete, with 4, of eq. (12.1-5) equal to zero.

It is also true that for this model, the input signal and the offset voltage are

independent of the unbalance between §, and 9§, since V,, of the two transistors
depend only on the collector current (not the emitter current). Since the ratio of

collector currents is established by the current mirror, any inequality in these

currents will cause an offset voltage to arise since such an inequality is

indistinguishable from a (dc) signal. If we should use a simple current mirror,

for example, we saw in Chapter 8 that the input current to the mirror is

(1+26)1.,giving a ratio of the two currents of 1+24. With §=0.01, for
example, the resulting offset voltage would be

V,s(mirror) = qu In1.02

=(0.026) (0.02)=0.00052 V

or 0.5 mV.
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Figure 12.4. Differential input voltage as a function of output current signal intensity. Dashed

line represents the differential input voltage contribution from added emitter resistors.

An offset nulling adjustment is often provided that allows the ratio of the
current mirror to be modified to bring the total offset voltage to zero.

Null Reference Matrix Parameters

The small-signal parameters of the stage are found by differentiating the
expression for v, with respect to the independent variables of (12.1-5). As we
have seen, A,, and A4, are both zero since the stage is insensitive to output or
common mode voltages. The value of B,is negative of the slope of the curve
of Fig. 12.4 and is found by differentiating (12.2-10), giving

 

bao=31, 77 I,

_kT ]
qlc 1—v2

_dv, _2kT d
Oanh_'y)

(12.2-11)

where /- is the quiescent current of either transistor, equal to I,/2(1+46). The
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V_

Figure 12.5. Differential amplifier with linearizing emitter resistors.

term |B,| is a minimum for zero signal intensity and rises as the signal
intensity increases in either direction.

The nonlinearity of B,, can be reduced by adding B feedback—adding
emitter resistors in series with each emitter, as shown in Fig. 12.5. This simply

augments the input differential voltage by a linear term, shown by the dashed
line in Fig. 12.4, giving the total input shown by the broken line. The linearized
input voltage becomes

IV=L tanh'y +1n7BR,—(148,)1(1-7)R

(12.2-12)

This expression can be split into signal and offset terms as in the following

equations:

2kT
D‘/’:—q tanh™'y +(1+8)I-y(Rz +Ry) (12.2-13)

and

. kT 1
Voszj nfi?+IC[RE|—R52+(8|_82)(R51+R52)] (12-2‘]4)
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in which we have added the saturation current to the offset equation. Note that
the offset voltage 1s now a function of the difference between §, and §, as well
as the difference between R, and R, since the emitter current includes the
base current as well as the collector current.
The input differential voltage and B,, similarly become functions of the

defect current 8. From (12.2-5), I-=1,.,/2, so that the new value of —B,,
obtained by differentiating (12.2-13), is

KT 1 Ryt Ry,—B, = +(1+8do qIC 1_"}/2 ( )
 (12.2-15)

Augmentation due to B feedback is essentially (R, + R,)/2. The denomina-
tor factor of 2 arises because of the feedforward provided by the active load.
The input differential current as defined in (12.1-3) is simply (/,6,—

1,,8,)/2; from (12.2-5), we have

/= IC(I_Y)8I_IC(1_Y)82
 

 

 

d 2

I-y(8,+8 I-(6,—6

2 2

Since I.y=—1,/2, we have

I1,(6,+6 I-(8,—6d:_ 0( 1 2)+ C( 1 2) (12.2_17)

4 2

—i], (12.2-18)

As before, we have split I, into signal and offset components. Neither is a
function of either V, or V,, so that C,, and C,, of (12.1-5) are both zero. We
obtain D, by differentiating (12.2-17) with respect to 1, giving

— 6l_+_82=" (12.2-19)

We now have the first and second rows of the matrix of (12.1-5), and with the

offset equations, the first and second rows of (12.1-14).

Common Mode and Bias Current

To complete the dc analysis of the differential amplifier, we find the common

mode input current. It is given by

1,=18 +1.,8, (12.2-20)

=1-(1+y)8,+1-(1—7v)9,

8, —8
1(,",:10‘72 +1.(8,+8,) (12.2-21)

1,=i+1I, (12.2-22)
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from which we conclude that C,, and Y, are both zero, and D,, is given by

6,—6
—D,,= —‘2—2 (12.2-23)

and the bias current is given by the second term in (12.2-21):

1,=1.(8,+86,) (12.2-24)

This completes the dc analysis of the differential amplifier using the Ebers-
Moll transistor model, with both all-dc and small-signal terms accounted for.
The equations for the stage may be written as in eq. (12.1-14):

 

kT  Ig,V —In—= v,
¢ q I,

1, |= 8';82% i

|

(122-25)

Icm (81+82)IC Us

 

in which I-.=1../2(1+6). This 1s the matrix equation when no emitter
resistors are added. With emitter resistors, the equation is modified as shown

previously.

We can conclude from the upper left submatrix that where the Ebers-Moll

approximation is valid, the small-signal input voltage is that of a common

emitter stage. But the input circuit may have an arbitrary common mode signal
applied to it with no effect on the output. The differential input currentis half
that of a common emitter stage for a given output current.

For critical applications, we next consider the effects of collector voltage.

12.3 EFFECT OF COLLECTOR VOLTAGE ON DC OFFSETS

Integrated circuits allow good matching of transistors so that small offsets

result. When this is the case, the unbalance introduced by Early effect can

become significant. We illustrate this by determining the dc offset arising from

Early effect in the transistors in Fig. 12.6. In this circuit we know intuitively

that balanced operation with low offset voltage is secured by making the
collector voltages of Q, and Q, equal.

More particularly, we know that V. is a function of the saturation current
I and also that I is a function of the Gummel number N, as given in eq.
(7.1-8). But N, the number of dopant atoms per square micrometer in the

base, depends on the base width, which is dependent on collector voltage.

hence if the collector voltages are not balanced, the saturation currents will

differ in the two transistors, and an offset voltage will arise. Collector voltage
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Figure 12.6. Circuit for the analysis of the effect of collector voltage.

balance is often realized in practice, as in the 741 amplifier where the collectors
of the differential stage are connected to points that are both two diode drops
more positive than the negative power supply.
To illustrate the effect of unequal collector voltages on offset performance,

we connect the collector of Q, to a point one diode drop less than the positive
supply, and the collector of Q, to a point 10 V less positive than the supply, as
shown in Fig. 12.6.

Early effect is described geometrically in Fig. 7.13, for which we can write

Ie __ Ic
V. VetV (123D

where /2 is the collector current in the absence of Early effect and V, is the
Early voltage. The value of 12 will be taken as equal in Q; and Q,. The two
current mirror currents are equal to the currents of the differential pair, so we
can write

  Ver ) (12.3-2)
V..

2, 1+ “3)=1°(1+
C3( VAP “ V;tN
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and

  
V.. 7

134(1+ VC“):Igz(H VC”) (12.3-3)
AP AN

in which V. is the Early voltage for the pnp current mirror transistors and is

negative and V,, is that for the npn transistors and is positive. For the circuit
in Fig. 12.6, taking the common mode input voltage as zero and V.=V, — Vg,
=—0.7 V, we have

Vep1r=Veet Vs — V=15V (12.3-4)

Vepa=V,— V=57V (12.3-5)

Vepy=Vgps=—0.7V (12.3-6)

Vepa=—Vee=V,)=—10V (12.3-7)

The input offset voltage contributed by Early effect V¢, is found as the
differential input voltage, given by

 

 

Va=Vose= % In g; (12.3-8)

:%[ln(l+%) —ln(H—%) +ln(l+%) —ln(1+ I;:i}' )}

(12.3-9)

If we take V,,=—50 V and V,,, =100 V, the offset changes by

Vos=0.026(In1.014—1n1.20+1n 1.057 —In 1.15)

Current mirror Differential pair (12.3-10)

= —0.00438 —0.00219

= —0.0066 V

A sizable offset (6.6 mV) thus arises from unequal collector voltages of the

current mirror and differential pair. The contribution of the current mirror is

larger because of the smaller Early voltage of the pnp transistors.

If we make the approximation that for small x, In(1+x)=x, (12.3-9)

becomes

 kT VCE3 T VCE4 + Vc152_ VCEI
12.3-11

q Vir Van ( )
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Note that the collector voltage differences for the current mirror and the
differential pair are equal in magnitude and of a sign to make the two terms in
the brackets add, so that we can write

kT kT

aVin  qVap

 
VOSE:( ) AV (12.3-12)

The two terms in the brackets of this equation are recognizable as the A

parameters of the npn and the pnp transistors (see Section 7.5), sometimes

called the Early factor. Hence we can write for the Early component of the
offset voltage

Vose™ —(AppntA4,,,) AVcp (12.3-13)pnp )

an equation that applies to both offset and small-signal voltages.

In this approximation the emitter voltage, equal to the common mode input

voltage less the average base emitter drop of the differential pair, drops out. To

a first approximation, therefore, the offset is unaffected by the common mode
input voltage.

Effect on Common Mode Rejection

We can also use the preceding development to find the effect of collector

voltage differences on the common mode rejection. For this purpose, however,

the approximation of (12.3-11) leads to perfect common mode rejection since

the latter is a second-order effect. If we use the exact expression [eq. (12.3-9)],

however, we find the common mode rejection ratio (CMRR) as V¢/ Vs or
V,s/ Vg, by either differentiating (12.3-9) with respect to V. or changing V. by

1 V and finding the change in V.. With V.= —0.7 V, the CMRR becomes
2010 ~°, or —94 dB. It is a slight function of V., as shown in the plot in Fig.

12.7. When the collector voltages are made equal, the CMRR contribution

from Early effect drops out.
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Figure 12.7. Common mode rejection as a function of common mode input voltage for the circuit

shown in Fig. 12.6.
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Figure 12.8. Differential amplifier with superior common mode rejection.

Where better common mode suppression is required, more elaborate circuits
may be substituted for each of the transistors of the differential pair. To reduce

the effect of Early conductance, for example, each transistor may be replaced

by a cascode stage, with the bases of the common base transistors connected to
the common emitter point for signals, as shown in Fig. 12.8. Note that a
Wilson current mirror loads the stage since the advantage of the cascode

connection would be largely lost with a simple current mirror. Why? A Wilson

current source is used in the emitter circuit to further improve common mode

rejection.
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124 GENERAL ANALYSIS OF THE DIFFERENTIAL STAGE

There are many possible variations of the basic differential stage that allow
superior performance over the basic stage discussed in Section 12.3. A Darling-

ton pair, for example, might be used to reduce the input bias current or to

reduce the differential and common mode input currents. A cascode stage
might replace the transistors of the pair, as noted previously, or a pair of FET
transistors may be used to reduce input currents.

A general analysis method that enables us to evaluate the performance of
these and other alternatives can be formulated according to the method shown
in Fig. 12.9. Each element of the differential pair is represented by its ABCD

parameters, and input and output coupling networks are connected to the

input and output to represent the source and load arrangements. Each ABCD

matrix might be a single transistor as discussed previously or may be a

collection of transistors whose configuration is intended to provide some

desired performance features.

The input coupling network may involve merely a change in the definition of

input variables as discussed in Section 12.1. Such a transformation may be
represented by an ideal transformer, shown in Fig. 12.1b. The output coupling
network might be a current mirror, for example, as discussed previously, or it

might simply be a single-ended output from one collector of the pair.

Generation of the Null Reference Matrix

We now find the null reference matrix elements of the circuit in Fig. 12.9 as
functions of the ABCD parameters of the individual pair elements. The
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Figure 12.9. Separation of differential amplifier into three sections for general analysis.
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differential and common mode characteristics of the pair can then be evaluated

over the frequency range of interest.

The procedure to be followed in finding the null reference matrix involves

three steps. First, we find the input voltage and current of the two pair

elements:

Vpel A, B, 0 0 V1

|| G P 0 O (12.4-1)
Upe2 0 0 4, B, Uce2

Ip2 0 0 G D, Ie)

Next, we obtain the input transformation matrix by rewriting egs. (12.1-1),

(12.1-3), and (12.1-4) in matrix form:

v, 1 0 —1 011 vpe

id . 0 % 0 _% ihl

i1Tlo 1 0 1| v (12.4-2)
Ipa

This gives us the desired input variables in terms of the input variables of the

individual transistors; we can obtain them in terms of the output variables of

the transistors by postmultiplying this matrix by the transistor matrix in

(12.4-1):

U4 A, B, — A4, — B, Ucel

: C, D, G, D, .
il=l> 73 ~ 72 72 lea (12.4-3)

is Cl Dl CZ D2 U('e2

1o

This is as far as we can take the analysis without considering the specific

output load arrangement and the basic differential amplifier constraint of
(12.2-1), Kirchoff’s current law at the emitter node. The third step is to express

the column vector on the right in terms of the variables v, i, and v,. At this
point we make the simplifying assumption that the common mode input
voltage is equal to the signal voltage v, at node E in Fig. 12.9:

v,~ 0, (12.4-4)

To investigate the effect of current mirror unbalance, we employ a current

mirror active load on the pair. We assume that the output current to input

current ratio of the mirror is m (rather than unity), as shown in Fig. 12.10.

Furthermore, by setting m =0, we can find the characteristics of a single-ended

output load arrangement.
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YI',    

Figure 12.10. Differential amplifier with current mirror load that has a current mirror ratio of m.

The current mirror may be considered a feedforward spanning network

characterized by its & parameters. In Chapter 9 we showed that /#,, may usually

be neglected, as may #4,,. Output admittance h,, of the mirror may be
incorporated into the load; it is generally small, and at high frequencies it is
capacitive. The capacitance can be added to the parasitic capacitance of the
output node to ground. For our purposes, only 4, =m is of importance.

Furthermore, we have seen that the current mirror is a broadband stage (of the

order of the unity loss frequency) so that the frequency dependence of 4.,

usually can be ignored.

With the foregoing in mind, we can write the following relationship between

the output currents of the two pair elements:

—i,=—mi,+i, (12.4-5)

We now invoke the basic differential amplifier constraint at the emitter node in

Fig. 12.10:

iy +i,+0,Y,=0 (12.4-6)

The emitter currents can be related to v, and i, of the pair elements by eq.
(12.4-7), from the sixth row of eq. (9.1-1) in Chapter 9 with appropriate

attention to the signs:

i,=—Cv,,—(1-D)i, (12.4-7)
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in which i, is considered positive flowing into the emitter. The basic constraint

becomes

—C10. = (1=D))i4 =Gy= (1= D,)io+ Y0,=0 (12.4-8)

Substituting (12.4-5) in this equation, we can solve for i:

 

 

 

 

. Clvcel+c2vce2+(1-DZ)io— YEve
ig= —D, +m(1-D,) (12.4-9)

But, since v, =0

Vel = — 0, (12.4-10)

and

V02 =0,— 0, (12.4-11)

so that

Cuo,+(1—-D,)i, —(C,+C,+Yr)v_i(.l: 2% ( 2) od( 1 2 E) e (124_12)

where

d=1-D,+m(1—-D,) (12.4-13)

Using (12.4-5), we can also solve for —i _,:

. mCyv,—(1-D,)i,—m(C;+C,+ Yp)v,
—i,,= 7 (12.4-14)

We can write these equations in matrix form:

V01 0 0 —1 v,
_ C 1— D, C,+C,+Y, ;

S N d d 0

v(.ez - 1 0 _1

. mC, 1—- D, _m(C,+C,+Yy)
) d d d U,

(12.4-15)

The final step in finding the null reference matrix for the stage is to

premultiply the matrix in (12.4-15) by that in (12.4-3), using the approximation

in (12.4-4), whereupon we obtain the matrix given in Table 12.1. This null
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reference matrix gives us the small-signal performance of the differential

amplifier within the approximation that the common emitter voltage is equal

to the common mode voltage. This matrix may be partitioned as follows;

 

Tdo Tds

™=, Y]

The expressions for the elements of the null reference matrix appear com-

plicated. Nevertheless, they can give us considerable insight into the operation
of the stage. To illustrate this, we take m=1 (ideal current mirror load) and

observe each element in turn.

Differential Two-Port Submatrix

The differential submatrix T, is given by

—A4, B

I,=—| ¢ = (12.4-16)
- D

in which we have ignored B,— B, and have assumed 1—D,=1—D,; B and D
are the average values of these parameters for the two transistors. This matrix

is that of a transistor similar to each of the transistors of the pair, except that

the input current is halved as a result of the active load. This equation for 7,
gives the differential performance of the pair over the complete frequency

range in familiar terms.

The two-port matrix in eq. (12.4-16) is a two-port description of the

differential amplifier. It is a complete description for applications in which the

common mode rejection and common mode input current are unimportant.

The 2X2 matrix may be used with the two-port analysis of Chapters 8 and 9 in
these applications.

Common Mode Rejection Submatrix

The common mode rejection submatrix in Table 12.1 is nominally zero when

the ABCD parameters of the two transistors are equal. Therefore, we can

obtain good common mode rejection over a wide frequency range by keeping

the parameters closely matched. We have seen that 4 is minimized at low

frequencies by making V,,,=V..,. Hence the dc collector voltages should be
equal, and the signal voltage at the output should be minimized to minimize

AA and AC in Table 12.1.

To minimize the second term of 4, in the Table 12.1, both factors can be
minimized separately. The first factor, B, —mB,, tends to be small even where

m departs from unity. Ignoring base resistance, B,=k7T/ql, and B,=kT/ql,.
But the current mirror controls the split of the current between the transistors

of the pair, making I,=ml, so that mB,=kT/ql,, equal to B,. This is true
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only for zero differential signal current (or zero signal intensity), so that when

signals are applied, the common mode rejection suffers.
To see the effect of signal-induced current unbalance, we assume that m=1

and write B, — B, as a function of the signal current intensity as discussed in
Section 12.2:

kT 1 1
mo()

kT 2y
= 12.4-17

ql, 1—vy?2 ( )
 

Under signal conditions, therefore, the common mode rejection rapidly wor-
sens as the signal intensity departs from zero. Under slewing conditions, where
y approaches unity, |B,— B,| becomes very large, and common mode signals

easily pass through the amplifier unless the second factor of the right-hand
term in 4 ,, in Table 12.1 is made small. The variation of B, — B, with signal
intensity is shown in Fig. 12.11, as given by (12.4-17).

To minimize the second factor, (C,+ C,+ Y,)/d, we note that C, and C, are
negative admittances whereas Y. is usually a positive admittance. We can

 

Ic (B1 - BZ),

Volts

— 0.05 —

 

— —0.05 —

   
Figure 12.11. Difference between B of the two transistors as a function of signal intensity.
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make these admittances roughly cancel to improve the CMRR. At low frequen-

cies C,=—¥6,8,., and C,=—¥0,g,.,. By use of a Wilson or cascode current
source, Y, can be brought to the same vicinity as —(C, + C,). As seen from eq.
(9.2-12) and the associated discussion, the output conductance of the Wilson
current source is 24g.; 8. for the current source is twice that for the
individual transistors of the pair; thus the current source conductance is
roughly twice too large to cancel the collector conductances of the pair.

Common Mode Rejection at High Frequencies

Common mode rejection tends to deteriorate at high frequencies because of

collector capacitances of the two transistors and the output capacitance of the

current source. Although we can find the common mode rejection parameters
A, and C,; from the expressions in Table 12.1, it is intuitively useful to see
how these three capacitances affect common mode performance individually

and in combination. Their individual effects are analyzed with the help of the
three diagrams in Fig. 12.12.
When a common mode voltage v, appears at the bases of the pair,it drives

currents through the collector capacitances to the collectors. In Fig. 10.12a,
only G, is considered, with C;, and Cg (the emitter current source capaci-
tance) ignored. The current through G, is G,sv;, and it divides at the
collector node. Ignoring base currents, we see that one part, i, /(1+m), flows
through the diode of the current source. The other part, mi_/(1+m), flows
down through the collector and into the emitter of the second transistor. This

latter current supplies the current into the current source transistor; thus no
output current change occurs (in accordance with the definitions of 4,, and
C,,)- This current causes a differential input voltage to appear, given by

mi,
v,= T(1) (12.4-18) 

When C,, is added to the second transistor, the current also splits at the
collector, except that in this case the current mirror current is into the

transistor and is mi.,/(1 +m). The rest of the current, i,/(1 +m), flows down

through the second transistor and up through the first, causing a differential
input voltage to appear, given by

—_ ic2=T() (12.4-19) 
U4

 

Finally, we add C, to the circuit, causing current C.sv, to flow into the
emitter source output admittance. This current divides according to the current

mirror division, so the differential input voltage caused by Cy. is given by

 _ Ik _ ]
= Te mres) (12.4-20)

 U4



 

   

 

  
 

   ’nil.‘l'.'
1+m 1+ m
— —_—

T
Cr

 

 

(c)

Figure 12.12. Analysis of the three contributors to CMRR at high frequencies in a bipolar
differential amplifier.
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We find the CMRR of (12.1.10) at high frequencies by adding these three

components of input differential voltage and dividing by v,. Thus we can write

r,tr, Cps

T(mGa=Ga)st 17Ads: J Jc § 1_+;m(
 F, —mr,,) (12.4-21)el

The first term is minimized by making mC,,= C,, as closely as possible and

by minimizing the values of r,; at high frequencies, common mode rejection 1s

aided by operating at reasonably high currents. (Note, however, that we have

ignored r, in this analysis.) The second term is minimized by operating at low

signal intensity; thus the difference term is minimized. If we set B= —r, and

C=—C,s 1n eq. (12.4-21), the equation can be manipulated to give the value

of 4, 1n Table 12.1. A similar analysis gives C,, by considering the differential
input current caused by the three components of capacitive currents, and this

value also corresponds to C,, in Table 12.1.

Common Mode Input Current Parameters

The common mode current submatrix 7.
so’

is given by

 
C

Tw:[ 5 0] (12.4-22)
* 1-D

and the common mode input admittance is

 

_ [ C,H+ G+ Y,
Y”:—zc-D(-‘—#) (12.4-23)
> 1—D

_ DY,
=—20——=% (12.4-24)

1—D

=—2C—-DY, (12.4-25)

This is the parallel combination of the collector-to-base admittance of the two

transistors and the current source admittance reduced by the factor D. This

completes the analysis of the null reference matrix. The exact values of the

elements given in Table 12.1 are easily programmed, so that the effect of the

approximations made here may be found.

125 OPERATIONAL AMPLIFIERS

An operational amplifier consists of the tandem combination of a differential

stage or section and a two-port amplifier. It is characterized by the same set of

independent and dependent signal variables as the differential amplifier; the

output voltage and current and the common mode input voltage are taken as

the independent signal variables. We can write the null reference matrix as the
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product of the null reference matrix of the differential stage and the two-port
matrix of the amplifier: the latter matrix is “built out” to a 3X3 matrix as

follows:

  
 

U4 Ay, By, Ayl 42 By| Off v,

Ly Cio Dyy| Cis G Dy| 01114, ( 12.5-1 )

Ls Cso Dso | sz 0 0 | 1 Us

ud — Tdo Tds TZ 0 u,

iS 7‘;‘() YYS O 1 i()

_ I,T, Tu||u,

- 7;0T2 Yss io

  

where T, 1s the ABCD matrix of the two-port amplifier. The most important

difference between the small-signal characteristics of the operational and

differential amplifiers is that the differential submatrix of the differential

amplifier is postmultiplied by the ABCD matrix of the two-port. The common
mode rejection properties and the common mode input admittance of the

differential stage are retained in the operational amplifier.

In the 741 operational amplifier, for example, the ABCD parameters of the

output section are entirely dominated by C,, which is the negative of the

feedback admittance of the frequency compensation capacitor. The voltage loss

of the 741 i1s given by B,C,. As discussed in Chapter 5, there is considerable
signal delay in the lateral pnp level shifter transistors; thus

Bd()(741):2re97"s (12.5-4)

Therefore, the voltage loss of the 741 (the dominant loss) is given by 2r,C.Se™’.

The term C, is chosen so that unity is added to (12.5-4), the loss of the

resulting unity gain follower is quadratic Butterworth. The common mode

properties are those of the input differential stage.
The two-port used to convert a differential stage to an operational amplifier

usually has other specific large-signal requirements. These are illustrated by the

two circuits in Fig. 12.13. In Fig. 12.13a the output two-port is an emitter

follower circuit. The amplifier output signal voltage therefore appears at the

output of the differential stage, which means that if the output voltage

becomes more negative than the input common mode voltage, the input

transistors will saturate. This seriously restricts the allowable output voltage

range of the amplifier. Put the other way around, for a given output voltage

range, the input common mode voltage is restricted.

The limitation is removed in the circuit in Fig. 12.13b, in which a ( pnp)

common emitter stage replaces the emitter follower. This arrangement enables



Vi

  
 

   
V_

(b)

Figure 12.13. Connection of a two-port amplifier (a transistor) to the output of a differential

stage to form an operational amplifier: two simple alternatives.
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the output voltage to range over almost the entire span of the power supply
voltages from the negative to the positive power supply voltage limited only by
the small drops required by the transistor and the current source.

The key to this improved capability is that a collector junction is interposed

between the differential stage output and the output of the amplifier, in this
case the collector junction of the common emitter pnp transistor. This can be
done only because of the availability of transistors of both conductivity types.

It also affords isolation of the signal path from the power supplies, giving good
power supply rejection.

The arrangement of Fig. 12.135 is that used in the 741 amplifier, except that

the simple common emitter stage is replaced by a Darlington pair to give

higher current gain. Also, in the 741 amplifier a Class B emitter follower

output stage is added to give both current gain and higher output signal

current capability. The extremely high current gain (or extremely small value
of D) ensures that the input current of the two port is dominated by current
through C.
A further consequence of use of the circuit in Fig. 12.13b rather than Fig.

12.13a is that the collector voltages of the differential pair remain virtually

equal (0.7 V less than the positive supply) over the entire signal range of the

amplifier. As noted previously,this is the condition required for good common

mode rejection properties under conditions of high differential signal excita-

tion.*

An All-npn Operational Amplifier

Why even mention the circuit in Fig. 12.13a if the performance of that in Fig.

12.13b is superior in so many ways? The circuit in Fig. 12.13a is used where

transistors of both conductivity types are not available in the same integrated

circuit, or where the performance of one conductivity type is unequal to the

performance requirements. In the 741, for example, the poor performance of

the lateral pnp transistor restricts the amplifier to the audio range, and not
even to the top of that range in critical applications, as we have seen in Section

4.3.
A broadband operational amplifier using only npn transistors is shown in

Fig. 12.14.° The differential pair is conventional, and an emitter follower Q. is

used as the first stage of the two-port amplifier. A level shifter Q. couples the

emitter follower output to a Class A output stage such as that shown in Fig.

10.7 and as discussed in Section 10.1.
The output stage is arranged to have a voltage gain of 3, so that one-third of

the output voltage appears at its input. With transistors that have an f; of 4

GHz, the gain is constant with frequency to about 1 GHz. The level shifter

(described in the following paragraphs) has roughly unity voltage loss as does

*Strictly speaking, common mode rejection is defined for a differential output signal of zero. It is
desirable, however, for the amplifier to retain this rejection over the entire range of differential

signal excitation.
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the emitter follower driving it. Thus the output voltage of the differential pair

is also one-third of the output voltage of the amplifier. The linear frequency
term 1s obtained by connecting a capacitor Cr from the base of the emitter

follower to signal ground.

All subcircuits of the amplifier have been discussed previously except the
level shifter. Figure 12.15 shows the level shifter as providing a resistive dc
voltage drop connected to the base of Q. The collector of Q. is connected to
the input, giving unity D feedback. The feedback causes the response to be
broadband. The capacitor around the series dc drop resistor compensates for
shunt capacitance of the current source; the shunt conductance in parallel with

the current source maintains flat response over the entire frequency range. The

current source itself has a positive temperature coefficient to cancel the
negative temperature coefficient of the base-emitter drops from the differential

stage output through the base-emitter drops of Q., Qr, QOp, and Q, to the

 

   
   

 
 

 
 

   
 

   

   
 

(b)

Figure 12.15. Level shifter analysis for all-npn operational amplifier.
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negative power supply rail. The collector voltage of the differential pair output
transistoris thereby held constant with temperature.

Level shifter response is readily analyzed by using the permutative feedback
concept of Section 9.1. When drawn as in Fig. 12.15b, the ABCD parameters
of the level shifter can be written by inspection as

TLs:PI[TN*Po[Ta]] (12.5-5)

where T), is the ABCD matrix of the voltage divider network (Z, Y;) and Tis
that of the common emitter transistor. For a nominal voltage loss of 1.10, Z;
should be made one-ninth of 1/Y;. The parasitic capacitance C, is the
capacitance between the bottom electrode of C, and the substrate of the
integrated circuit, typically one-fourth of C,. The ABCD matrix of its admit-
tance premultiplies 7,¢ of eq. (12.5-5). The voltage loss of the level shifter is
flat with frequency to the vicinity of one-third of f; of the transistor. If the
compensating resistance in parallel with the current source is omitted, a

doublet of response is introduced with a magnitude of 1.1.
The feedback from the collector to the input of the level shifter effectively

reduces the series impedance of the level shifter to the vicinity of 30 2.
The dc gain of the amplifier is limited by the differential-stage load resistor.

Ignoring the loading of the emitter follower, the dc loss of the differential pair
is 2r,/R;. Since the collector current is V,/R, , the loss 1s 2kT/qV,. With
V, =3V, for example, the dc loss of the differential pair is 0.052/3=0.017, or
— 35 dB; with the output stage loss of —9.5 dB (one-third) and a level shifter
loss of +1 dB, the nominal loss of the amplifier is —43.5 dB. This loss is high

for an operational amplifier and is a consequence of using transistors of only
one conductivity type.

Operational Amplifier with Complementary Transistors

Availability of transistors of both conductivity types enhances design freedom.

Where both types are similarly broadband, the bandwidth restriction of the
lateral pnp transistor of the 741 amplifier is avoided. More care is required in

the design, however, since all signal path transistors contribute to the rise of
loss at high frequencies. Hence the loss polynomial requires more attention
than the narrow-band 741.

Figure 12.16 shows a classic design for an operational amplifier of this type.*
All circuits have been discussed except for the two transistors, Q, and Qy, used
to bias the output stage. The bias provided is equal to the base-emitter drops of

the two transistors less the drop across the resistor connected between the
collectors. The resistive drop reduces the output quiescent current relative to
that of the driver. Although this circuit is bistable (i.e., a flip-flop) when

connected to a low-impedance source, it is stable here, where it is fed from
current source Q.

The loss polynomial for this circuit is effectively a cubic plus delay if a
capacitive load is to be accommodated. The loss of the amplifier (without



463

 0

 

 
 

T\

Q
4

O
s

C
r

  

 

 

§R
2

 

 

 
 
 
Y  

Fi
gu

re
12

.1
6.

Op
er

at
io

na
l
am
pl
if
ie
r
us

in
g
np
n
a
n
d
p
n
p

tr
an

si
st

or
s
of

si
mi

la
r
de
si
gn
.

 



464 Differential and Operational Amplifiers

external feedback) is given by

L(s)=(ag+a;s+a,s+a,s®)e™ (12.5-6)

In this equation the delay comprises the excess phase delay in one transistor of
the input pair in Q, and effective delay introduced by base resistance of the

input differential pair (r,,/r,,)7,. (Because of the current mirror, which is
broadband,this term is only half the total for r,, and r,5.) The dominant cubic
term 1s C,7,,737,, and controls the bandwidth that can be achieved with
capacitive loading. The a, term is G,8,,8,r,,, usually negligible compared with
the externally applied feedback. The middle two coefficients are the sums of

terms; a, 1s controlled by the term Cgr,, as for the 741 amplifier. Quadratic
term a, may be controlled by adding shunt capacitor C, to ground from the

bases of the output stage. There is already considerable parasitic capacitance to
substrate at this node, so that C, may not be needed. In this case the quadratic

term (plus delay) controls the bandwidth that can be provided. Addition of C,

makes the amplifier less sensitive to a variety of loads at the cost of bandwidth.

A specific loss polynomial (e.g., Butterworth) can be obtained for only one
value of external feedback and overall loss. With external feedback, the

polynomialis

L(s)=,80+(a0+a,s+a252+a3s3)e”s

Each coefficient of the active path contains r,, (or r,5) as a factor, however, so
that by varying the quiescent current of the differential pair, we can make the
coefficients track the externally applied feedback. At least approximately,
therefore, the desired polynomial can be realized over a wide range of feedback
simply by adjusting the current supplied by the differential pair emitter current
sink. The slew rate, given as 21-,/C, will rise as the loss is reduced; the unity
loss condition gives the most sluggish slew rate.

Where (as here) the delay is not excessive, the loss can be represented as a

quartic with no delay as discussed in Chapter 5. The quartic can be selected to

give sensitivity performance equivalent to polynomials of lower degree in band

and to give a specified out-of-band margin against oscillation, as discussed in

Chapter 5.

Operational Transconductance Amplifier>

Most operational amplifiers are characterized by a nonzero value of 4 in the

null reference matrix, at least in the cutoff region. The operational transcon-
ductance amplifier (OTA), shown in Fig. 12.17, is characterized by its nonzero

value of B, the reciprocal ofits transconductance. The circuit is formed from a
differential pair whose output is connected to a system of current mirrors that

provide for combining current signals from the two sides of the pair. The

current mirrors also provide downward level shift to the circuit output.
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466 Differential and Operational Amplifiers

Assuming all current mirrors to have a unity current ratio, the signal
currents can be obtained in terms of the output current as shown in Fig. 12.17.

The low-frequency null reference matrix for the amplifier can be derived as
follows. The signal current in each transistor of the differential pairis i,/2; the
collector bias current is I, 5-/2, so we have

2kT 1  0 0
9l pc 1—v2

Myz= 5 (12.5-8)
0 = 0

2

0 d 0

High-frequency behavior is dominated by the output capacitance of the

circuit, consisting of the collector capacitances of the output transistors and

the collector-to-substrate capacitance of the lower current mirror. This adds
the term C,B,, to A,, of the null reference matrix. Output capacitance serves
the function of Cp of the 741 amplifier in cutting off the gain at 6 dB per
octave. Where lateral pnp transistors are used in the upper current mirrors and
the common base stages, the delay is large, as in the 741 amplifier. Because two
pnp transistors are used effectively in common base tandem connection,

the delay is twice that of the 741, so where the delay controls stability, the
bandwidth is half that of the 741. With full-bandwidth pnp transistors, the

circuit can be used for broadband applications.

Since B,, is inversely proportional to the differential stage bias current, the
output current of the circuit is proportional to the product of the input voltage
and the bias current. Thus the circuit can be used as a signal multiplier or a

variolosser in an AGC system. One signal is applied conventionally to the
differential input, and the other is applied to the I,bias lead.
The slew rate of this amplifier is limited by output capacitance connected to

ensure stability. For a large differential input voltage, the amplifier output

current is limited by /5., the total bias current of the input pair. Therefore,
the maximum rate at which the output capacitance can be charged sets the slew

rate at [, 5/C,; with I,,-=20 pA, for example, and C,=30 pF. The slew rate
is 0.02/30=0.67 V/us, as in the 741 amplifier. Since the compensation
capacitance is external to the amplifier circuit, it can be omitted from the chip
and added to the external circuit. Therefore, it can be tailored to the applica-

tion more easily than in the 741 amplifier. The maximum slew rate is then
limited by parasitic capacitances, including collector-to-substrate and collector
junction capacitances of the output transistors.

Application of an Operational Amplifier with Low Output Admittance

It is often said that an ideal operational amplifier should have zero output
impedance. Here, we have an operational amplifier whose output admittance is

ideally zero. Are there applications where this property are desirable? One
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nonlinear application where low output admittance is desirable is in the signal
rectifier shown in Fig. 12.18, which is useful in analog-to-digital conversion.®

In this circuit, when the upper diode is conducting (i.e., for positive output),
the upper output voltage is clearly i;, — R, and the lower output is zero,
assuming the differential input voltage to be zero. When the lower diode is
conducting, the upper output voltage is zero and the lower is i.,,— R ,. Since
the conducting diode has a voltage drop of roughly 0.7 V, the amplifier output

waveform in response to a ramp input must be as shown in Fig. 12.18. This
voltage must undergo a rapid change at the transition where conduction shifts

from one diode to the other. This transition is limited by the slew rate of the

amplifier, which seriously limits the accuracy of the rectifier for high frequen-
cies. If a 741 amplifier were to be used, for example, the change transition
would take 1.4 V/0.67 V/us=2.1 ps, the time taken for the compensation

capacitance C to charge through the two diode drops.
However, if the OTA configuration is used, the compensation capacitance

need not be connected across the output terminals directly since the amplifier
operates without significant feedback in the transition region. The capacitance
can be connected to ground at the circuit output terminals on the other side of

the diodes, where the voltage does not change rapidly. Since the amplifier need
not supply the large charging current, the voltage at the amplifier output can

change much more rapidly than in the case of the 741 amplifier.

Rg

  (
\
\

=
1

§
+
§

  

 
Figure 12.18. Signalrectifier circuit illustrating use of circuit shown in Fig. 12.17.
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126 POWER SUPPLY ISOLATION

We have used a 3 X3 matrix to represent the operational amplifier even though
it has (usually) five external leads. The two extra leads, the positive and
negative supply leads, carry the output signal current and can be considered

part of the active circuit of the amplifier. Thisis illustrated in Fig. 12.19, which

shows the output and power supply signal currents for an operational amplifier
with a Class B output stage, such as the 741 under sine-wave excitation. Since
the input lead currents are negligible, the sum of the two power supply signal
currents must equal the output current, as shown. With both power supply

leads connected firmly to signal ground, the power supply currents have no

effect and can be ignored. In this usual case, the 3X3 matrix description is
complete.
The power supply signal currents can perform a useful function, as shown in

Fig. 12.20, in which the currents are used to drive a pair of output power
transistors to obtain high slew rate.” The output of the operational amplifieris
connected to ground through a low-resistance R to obtain drive current for

I,

 

 

1,=1, —I_

 

 

 

Figure 12.19. Power supply current waveforms for a 741 operational amplifier with a sine-wave

output current.
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Figure 12.20. A circuit that uses power supply lead currents to drive a booster amplifier.’

 

 

 

  

 

  

the output transistors. Note that to improve the slew rate, the output voltage of
the operational amplifier must be smaller than that of the output transistors.
For the internal frequency compensation of the operational amplifier to work,

the operational amplifier output is connected to the circuit output through a
capacitor C,. Since this causes the operational amplifier output voltage to rise

with frequency, the compensation capacitor now provides a quadratic rather
than linear coefficient to the loss polynomial. The needed linear coefficient is
provided by the external 10 pF capacitor connected from output to negative
input. The constant coefficient of the loss polynomial is provided by the 51 k2
feedback resistor; R;=5.1 k{2, giving a loss of 0.1 for the current.
The approximate loss response of this circuit can be written by inspection,

ignoring the loss of the output transistors, which are of broader bandwidth
than the operational amplifier. Thus, ignoring YRrelative to unity, we

obtain

R.C,s
L(S):RGGF-FRGCFS-FAdo(S)m (12.6-1)

in which 4,,~0.155¢%%" for the 741 amplifier. The equation can be used to
proportion the coefficients of the loss polynomial.

Power Supply Rejection

Power supply rejection measures the ability of the amplifier to ignore signal
voltages that (inadvertently) appear on the power supply leads. Such signals
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may arise from othercircuits fed from the same power supply, for example. As
in noise analysis, the disturbance on the power supply is referred to the
differential input. Therefore,it is similar in concept to common mode rejection
and is ideally zero.*

We can expand the null reference matrix to include power supply rejection
simply by adding power supply signal (noise) voltages as a pair of independent
variables and power supply currents as the dependent variables, whereupon the
null reference matrix becomes

 

Uy Ayo By Ay Auy Aun 0,

id Ca’o Ddo Cds Cdp Cdn io

is - Cso Dso Yss Y;p Y;n vs (126‘2)

'y Go Dpo Y| Yo Yo B

in Cno Dno ),ns )/np Ynn Uy

in which subscripts p and n refer to the positive and negative supplies,

respectively.

In this matrix the 3X3 submatrix in the upper left is the same as that in eq.
(12.1-5). The power supply rejection is given for the positive and negative
supplies by the column matrices at the upper right, {4,,,C,,} and {4,,,C,,},
respectively. These submatrices give the differential input voltage and current
that must be applied to cancel the effects of power supply ripple. The row
matrix |Y,Y| gives the effect of power supply ripple on the input common
mode current. The bottom two rows give the power supply signal currents in
terms of the five independent variables and are seldom of interest, except in a

circuit such as that in Fig. 12.20, where this current drives an output booster
amplifier. For this case, the column matrix {D,,, D,,} gives the signal current;
the remaining terms represent spurious effects, usually small. The addition of
the four extra port variables is seldom necessary, but the addition of the power
supply voltages may be helpful where power supply rejection is to be investi-

gated. Where this is the case, the upper 3X5 matrix is appropriate to present

all the relevant information.

Where transistors of both conductivity types can be employed, power supply
voltage rejection can be very high. The reason for this is that all internally used
dc currents can be supplied through collector junctions of transistors, whose

impedance is high. Such collector junctions effectively separate the circuit into
isolated sections; the operational amplifier is separated into three such sec-

tions: the input section, the output section, and the power supply section. This
is illustrated in the diagram in Fig. 12.21, in which dotted lines give the

sectioning. The dotted lines cut the circuit only through collector junctions and

*Power supply rejection is usually expressed as a (large) number, the higher the better. As in the
case of common mode rejection, we use the reciprocal formulation.
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can be considered a collector junction cut-set. It is this double isolation that
gives operational amplifiers such as the 741 their special properties of common
mode rejection (input isolation) and power supply rejection (output isolation).

Conclusion

The concept of the null reference matrix can be extended to various multiport
circuits. The key to the extension is the definition of the ideal case. The
elements of the matrix then depict the various types of departure from the

ideal case. The extension to multiple input—multiple output nonlinear systems,

which is beyond our scope here, is treated by Desoer® and requires more

algebraic dexterity than needed here.
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Appendix A
 

Programs for
Manipulating Polynomials

This first appendix contains 11 programs for investigating and manipulating
polynomials. It allows us to represent polynomials in the frequency variable s
in any of several forms: as polynomial coefficients, scaled in frequency and
amplitude in any way we choose; as root positions on the complex s plane; or

as Bode or Nyquist diagrams. If the information we have is expressed in any
one of these three forms, it can be translated to either of the other forms. One

program, “POLYTBL”, generates polynomials suitable for various system
applications— Butterworth, Bessel, Chebyshev, and others. Another, “SLC”,
finds the sensitivity of loss to each polynomial coefficient as a function of

frequency.

Perhaps the biggest hurdle in using prepackaged programs is in getting

started. The Hewlett—Packard HP 41C or HP 41CV calculator facilitates this
process because of its alpha or word-use capability. To make repeated consul-

tation of the appendixes unnecessary, the programs have been made interac-

tive. The machine prompts the user for input data by name and tells the user
how the data should be entered. Output data are identified. The next few

paragraphs indicate what must be done to get started and how the input data

are to be placed where needed.

473
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HP 41C CONFIGURATION

For convenience, the same configuration of the calculator is used in all
programs in this appendix. For the older HP 41C, two memory modules are
required for the larger programs, and these are assumed to be present. For the

newer HP 41CV, maximum user memory is contained in the machine. Many of
the programs can be used together, and the larger capacity of the HP 41CV is
convenient here. The HP 41C can be updated to the same capacity as the
newer machine by obtaining a “quad memory module”; this is recommended
for owners of the older machine. Total program memory required for all 11
programs in Appendix A is under 4.6 kbytes, or less than 37 kbits. Maximum
data memory SIZE required is 36 data registers.

Several peripherals are available for this calculator, including a card reader
(strongly recommended), a printer (needed in later appendixes), and a wand

for reading bar code, an alternative to the card reader. In the later appendixes
we find it convenient to record data, and the user may want to record

programs of his or her own. Since the card reader is necessary for this and the
wand functions only to read, not to write, the latter is not needed here.

The program is either keyed in from the program listing or is read into the
machine from magnetic cards. It is run by pressing “XEQ filename”, where
“filename” is the name of the program. The program must contain a label with
a filename, such as LBL “N”.

For input data, the programs prompt the user by way of the display or the
printer where available. The user keys in the requested data and presses the
R/S key.
Data output will be displayed or will appear on the printed tape identified

by suitable alpha characters in a form that should make its meaning clear.
Data output can also be directed to magnetic cards by using the function
WDTAX (write data under control of the number in the X register). If we key
in 20.023 XEQ WDTAX, for example, the machine will prompt for a magnetic

card. When this card is passed through the machine, the data in registers
R20-R23 will be written into the first four data locations on the card. (There

are 16 data locations on each side of a card.) Data obtained in this way can be
used as input data to other programs. For further information, the operating
manual should be consulted.

APPENDIX A PROGRAMS

Polynomial Scaling and Roots

A-1 “N” Polynomial scaling in frequency and amplitude.
A-2 “PF” Polynomial coefficients from linear and quadratic factors.
A-3 “Q” Roots of quadratic equation.
A-4 “Cu” Roots of cubic equation.
A-5 “ROOTS” Polynomial root extraction by Newton’s method.
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Evaluation in Time and Frequency

A-6 “TIME” Step response of systems with cubic loss ratios.
A-7 “BODE” Evaluation of rational functions in s for s = jw; Bode and Nyquist

diagrams.

A-8 “RCU” Evaluation of cubic polynomial coefficients from loss and phase (reverse
cubic evaluation).

A-9 “RQU” Evaluation of quintic polynomial coefficients from loss and phase.

Polynomial Specifications

A-10 “POLYTBL” Standard performance specification polynomials: Butterworth,
Chebyshev, maximally flat delay, transitional.

A-11 “SLC” Sensitivity magnitude of a rational function to its coefficients.

A-1 PROGRAM “N”: POLYNOMIAL SCALING (MAY USE “X-Y”)

This program scales a given polynomial in its dc value and its frequency as

discussed in Section 2.2. In effect, it moves the Bode plot of the polynomial up
or down and to the right or left. It can be used, for example, to scale a

standard performance polynomial such as those given in Table 2.1 to a desired
loss and cutoff frequency. (Such standard performance polynomials can be

generated by using program “POLYTBL” in this appendix.)
To use the program, load it into the calculator from the keyboard or from a

magnetic card. Then execute (XEQ) “N”, as shown in the first example (see

Fig. Al.1). The program prompts for the degree of the polynomial (call it

polynomial A). In the example the number 3 was pressed, followed by R/S.

The polynomial coefficients stored in registers ROO—R03 are then displayed in
sequence or are printed if the printer is connected. If these are not the correct

numbers, store the correct ones in ascending order in registers ROO—RO03 (for a

quintic polynomial, this would be from ROO to R05). Press R/S, and the

coefficients of polynomial 4, are displayed or printed. If they are correct,

press R/S, and the machine prompts for b,, the dc coefficient of the desired,

scaled polynomial B. In the example 0.1 was keyed in (a loss of 0.1, or —20

dB). The ratio of the cutoff frequencies of the two polynomials is then called

for. Here, the user has a choice of responding by keying in the frequency ratio

if it is known or by ignoring the prompt by pressing R/S, as was done in the

example. In this latter case the frequency ratio is calculated from coefficient

data to be supplied by the user, namely, the value of b,,, the value of the Mth

b coefficient. In the example we chose to make the quadratic coefficient b,
equal to 0.1. The calculator prompts for M, to which we respond by pressing 2

and R/S. It then asks for b,,, to which we respond by pressing 0.1, R/S. The

frequency ratio is then calculated and displayed or printed. Finally the

coefficients of polynomial B are displayed or printed. As seen in the example,

polynomial B is stored in registers R10-R13. In the second example this
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CLRG
XEG *N-

SCHLE FPOLY

POLY A
DEG?

3 RUM
R8- @.988Ed
Ri= B.PAGER
R2= 9.0088E8
R3= B.PABEH

0K?
1 ST0 @8
ST0 83

2 570 &1
ST0 82

RUN
R8= 1.ABREH
R1= 2.080E6
R2= 2.888EE
R3= 1.006EH

0K?
RUN

POLY B
ba?

A RUN
FeB-Fap?

RUN
bH:

¥?
2 RUN

bM?
1 RUK

Fep/Fan=7.871E-1

R18= 1.ABBE-1
Rii= 1.414E-1
Ri2= 1.808E-1
R13= 3.536E-2

Figure Al.1.

Programs for Manipulating Polynomials

AEQ@ "N"

SCRLE POLY

POLY A
DEG?

o
l RUN

RB= 1.0008E8
Ri= Z2.9@8te
R2= 2.888E4
R3= 1.0@8E8

0K?
RUK

POLY B
ba?

FeB/FaR?

Ri8= 1.@08E-!
Ri1= 1.488E-1
R12= 9.808E-2
R13= 3.438E-2

XEQ =N"
SCALE FOLY

POLY A
DEG?

ke= 1.@00ce
Ri= 3.206E8
R2= 4.296E8
R3= 3.128E8
R4= 1.068E6

oKz
RUK

POLY B
ba?

1 RUN

Program “N”: examples.

FBB/FaA?
RUN

bM:

N2
3 RUN

bM?
{ RUN

FBB/FBA=6.844E-!

Rig= 1.808E8
Ri1= 2.198E4@
Ri2= 2.856E8
Ri3= 1.900E8
R14= 2.193E-1

XEQ "¥-Y"
XEG “"N"

SCALE POLY

POLY R
DEG?

4  RUN
R6= 1.086E8
Ri= 2.19¢E8
k2= 2.856E8
R3= 1.AA8ER
Rd= 2.193E-1

0K?
RUH

POLY B
b@?

.81 RUN
FeB/Fen?

4 RUN

R18= 1.808E-2
Ril= 8.768E-3
Ri2= 3.298E-3
R13= 6.488E-4
Ri4= 5.613E-5

procedure is repeated except that the frequency ratio is given as 0.7. The

resulting polynomial is then printed out directly.

In the third example (starting at the bottom of the second column) a quartic
MFD polynomial from Table 2.2 is stored in registers RO0O-R04. It is then

normalized to its cubic coefficient, to reduce the sensitivity of loss to its

higher-degree coefficients; the cubic coefficient is reduced to 1.0 from 3.12,

and the quartic coefficient is further reduced. We pay for this reduced

sensitivity in bandwidth: as seen in the printout, F,;/F;,,=0.68, so that 32% of
the bandwidth is sacrificed. Next, we wish to scale the polynomial in amplitude

and frequency to make it a loss polynomial for (say) a preamplifier with
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Figure A1.2. Programs “N” and “X-Y”: listing.
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81¢LBL M- 48 Y% 93 ARCL X

82 5F 21 49 ADY 94 "p= =

83 5F 12 98 "F@B/FeR=- 95 845y

@4 =SCALE POLY" 31 ARCL X% 96 SCI 3

85 AYIEW 92 AVIEK 97 5F 29

86 CF 12 98 ARCL IND X

87 ADY 93+LBL 61 a3 CF 22

88 "POLY A" 24 STD 28 188 AVIEH

89 AYIENW 23 RCL 89 181 F5? 22

18 =DEG?" 36 FRC 182 5TO IND ¥

11 PROMPT 37 1 183 FS2C 22
121 E-3 58 + 184 %Y

13 * 29 570 a9 185 ISC ¥

14 570 @9 68 11 186 GTO @4
61 570 19 187 EHL

15¢LBL 83 CAT i

16 RCL A9 62¢LBL 85 LBL™H

17 XEG 84 63 RCL 18 END 18 BYTES

18 ADY 64 RCL @8 LBLTY-Y

19 =0K?" 63 7 .END. 34 BYTES

28 PROMPT 66 RCL IND @9
21 FS? 22 67 %

22 GT0 83 63 RCL 280 B1eLBL =X-Y-

23 "POLY B" 69 RCL 89 ?2 i@

24 AYIEN 78 IHT 43 570 19

25 "b@?" 71 Y4 a4 .@ag

26 PROMPT 72 % 3 570 B9

27 570 1@ 73 5TO IND 19

28 CF 22 74 156 19 d6¢LBL 87

29 "F@p-/Fap?- 79 DEG @7 RCL IND @9

38 PROMPT 76 1SG 89 88 %{> INE 19

31 F§? 22 77 GTO @5 89 STO IND @9

32 G70 81 78 RCL 89 18 I5G 19

33 “pM:- 79 FRC 11 DEG

34 AYIEM 88 168.81 12 I5C @9

35 "M 81 + 13 GT0 @7

36 PROMPT 82 ADY 14 RN

37 570 19 §3 XEQ 84 15 .END,

38 RCL o8 84 TOME 9
39 RCL IND 19 85 RTN

48 7
41 RCL 18 86¢LBL 84
42 7 87 FIx 8
43 "bN?- 88 CF 29
44 PROMPT 89 "R"
45 * 98 ENTER?t

46 RCL 19 91 ROHY
47 1/% 92 RND

—40 dB of loss and a bandwidth of 0.4 GHz. To do this, we copy the results of

the first calculation into registers RO0O—R04 to begin a second scaling. The

copying is done by use of a program “X-Y” that simply exchanges the

contents of RO0—R0O8 with those of R10-R18. (This data manipulation is
useful in later programs as well; the program listing is shown after program

“N”; see Fig. Al1.2.)
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The second scaling begins by setting b,=0.01 (—40 dB loss) and Fyz/F,,=
0.4; the polynomial coefficients for the preamplifier are shown at the bottom
of the printout.

Detailed Program Description

Since this is the first program, we describe it in more detail than later
programs. Referring to the program listing, the first step is the program label.
The second sets flag 21, the printer enable flag. When the printer is plugged in,
flag 21 is automatically set, so the step is redundant; but without the printer,
setting this flag stops the running program each time an AVIEW step is
encountered, allowing the user to see the display at leisure. To start the

program running again, poke the R/S key. Steps 03-07 title the program.
Steps 08 and 09 indicate that polynomial A4 is to be displayed.

Steps 10 and 11 prompt the user to supply the degree of the polynomial to

be scaled; steps 12-14 calculate and store (in R09) an index number used to

control the display. If the degree is 3, for example, the index number is 0.003,
indicating that registers RO0O—RO03 are to be displayed. After label 03, the index
number is recalled and a display subroutine is executed. (Where a printer is
available, this subroutine can be replaced by the single command “PRREGX”,
print the contents of the registers indicated by the number in the x register.
This command is contained in a read-only memory (ROM) in the printer and
does not exist in the calculator.) Without a printer, the register contents are

displayed one at a time and are advanced in sequence by pressing R/S. When

used without the printer, the subroutine also allows the contents of the
displayed register to be changed or corrected one at a time. It is described
later. Step 18 advances the printer tape if it is connected.

Steps 19 and 20 prompt the user with “OK?”. If the displayed polynomial is

correct, press R/S. If not, store the correct number(s) in the indicated registers

and press R/S. Flag 22 (at step 21) is set whenever keyboard input is
encountered. (Flag 22 is cleared in subroutine 04.) If a correction was made,

step 22 sends us back to label 03, and the display is repeated. When the

numbers are correct, press R/S in response to “OK?” and arrive at steps 23

and 24, thus indicating that the characteristics of polynomial B are now to be

dealt with. The AVIEW command stops the program when no printer is

connected; press R/S to continue. The program then prompts for b,, the dc

coefficient of the scaled polynomial, and stores it in R10.

Steps 29 and 30 prompt for the frequency scaling ratio Fy, /F,z. Keying in a

number in response to this prompt automatically sets flag 22 and sends us to
label 01 (at step 53). If the ratio is not known, press R/S; steps 33-52

calculate the frequency scaling ratio from user-supplied values of two coeffi-
cients of the scaled polynomial b, and b,,, where M is the degree of the second

coefficient to be used. The term M is prompted for as is b,,; the frequency

scaling ratio is obtained from the equation

Fop ( aoby ) M

Fy4 ayby
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where M is stored in R19 (at step 37) and is used as an index to retrieve a,, (at
step 39): a,, is divided into a, at step 40, and the result is divided by b,.
Finally, b,, is prompted for: when supplied, it multiplies the previous result,

giving the value in the brackets of the equation. The term M is then recalled,

inverted, and raises the quantity in the brackets to 1/M. The resulting
frequency scaling ratio is stored in R20 at step 54.

Indirect storage indices are calculated for polynomials 4 and B in steps

55-60. The fractional part of the number in R09 is 0.003 for a third-degree

polynomial; since we wish to calculate the b, starting with b,, we add 1 and

store 1.003 in R09. We want to store b, in R11, so that 11 is stored in R19, the

index for polynomial B.

Steps 62-73 calculate the b, according to the equation

a;b, ( Fyp )i
b=——|+—

ap Fou

and store the result in the register indicated by the number in R19. The next

three steps increment the indices in R09 and R19 by one; “DEG” at step 75 is

a “no operation” step that keeps the “ISG” (increment and skip if greater)

from skipping step 76. When this step raises the number in R09 to 4.003 (for a

cubic polynomial), it skips step 77. The next four steps develop the index for

displaying the final resulting polynomial by subroutine 04. The tone signals

that the computation is complete.

Subroutine 04

This subroutine can be used with or without a printer. Where a printer is
available, it 1s shorter and takes less time to use “PRREGX”, as noted

previously. Without a printer, however, this subroutine has an interesting
feature that allows the user to change the value of the number in the register
being displayed.

With the number 10.013 in the x register, for example, this subroutine

displays (or prints) the contents of R10—R13, as shown in the examples. By use
of FIX 0 and CF 29 (clear flag 29), the number in x after rounding will appear

as “10” without a decimal point. We use ARCL X to append the contents of X
(10) to “R” and then append “=", giving “R10=". Before rounding, however,

we copy the number in X into Y so as to have it available as a complete index

(10.013). We then convert to SCI 3 format, set flag 29, and use ARCL IND X

to append the number in register R10 into the alpha register for viewing by

AVIEW. Before AVIEW, we clear flag 22, so that when AVIEW stops the

program, we can change the contents of R10 should they need correction.

With no keyboard input, flag 22 remains clear and the following four steps

are skipped; the number in X is incremented by one, and we go back to label
04 for the next register display. If there was keyboard input, however, the

number in X is stored in the register indicated by the number in Y (because of

the keyboard input, the number formerly in X is now in Y). The number in Y

is then brought back to X, and operation continues as before.
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Registers

Registers for program “N” are as follows:

R0O0-RO8 Polynomial A4

RO9 Loop index for A
R10-R18 Polynomial B

R19 Loop index for B; also M

R20 Fyp/Fy,

Registers for program “X-Y”are as follows:

R00-R08 Register set X
R0O9 Loop index for X

R10-RI18 Register set Y

R19 Loop index for Y

A-2 PROGRAM “PF”: POLYNOMIAL COEFFICIENTS FROM LINEAR AND

QUADRATIC FACTORS

This program multiplies linear or quadratic factors together to obtain the

coefficients of the product polynomial. It can build a polynomial (of up to
ninth degree) from individual factors. This is useful in feedback synthesis

procedures.

The beginning polynomial is stored in data registers starting at R0OO; if it is

desired to start from scratch to build a polynomial, store 1 in R0O0. The
program multiplies the starting polynomial by a linear or quadratic factor. By
a prompt, the program asks for the degree of the starting polynomial (to start
from scratch, respond with 0). The program then asks for b,, b,, and b,. These
values should be keyed in successively, each followed by pressing R/S. If the
multiplier is to be a linear factor, zero should be keyed in for b,. The

multiplication is then carried out, and the resulting polynomial coefficients are
displayed or printed. To multiply by more factors, execute “B”, and key in

the b, b,, and b, coefficients as before. The resulting polynomial coefficients

are in registers starting at R00O and are displayed or printed.

To continue building the polynomial, there is no need to go to the beginning
of the program. Merely execute “B” to start the process at the point at which

the new factors are keyed in.

In the example in Fig. A2.1, polynomials having roots of increasing multi-

plicity at s= — 1 are generated.

Program Description

This program (see the listing in Fig. A2.2) is similar in several ways to program

“N”, particularly the way in which the input and output data are handled. The
same display subroutine is used (at label 04), and the initial polynomial

coefficients are displayed and corrected in the same way. Following label “B”,
the six registers above the highest-degree term register are cleared to make
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1 5T0 @
STO @1

{EQ "PF"
BUILD FOLY

POLY a
DEG?

1 RUN
Rea= 1.@A0ER
Rei= {.B08ER

0K?
RUN

POLY b:
bé, bl. b2

I RUN
I RUN
2 RUH

Ree= {.@RGER
Réi= 2.@00E8
Re2= {.GRBER

AEQ -P-
bé, bi. b2

i RUM
2 RUH
1 RUH

Ree= |, 86aER
Rai= 4,@eacd
R@2= 6.000E8
RA3= 4,ABAEH
Ra4= |, @aBER

XEQ P~
bé, hi. b2

! RUN
1 RUN
@ RUH

RéB= {.@A8ER
Rai= 5.088E8
Ré2= 1.B@8E]
R@3= |.868E1
RB4= 5.A88ER
R@5= 1.808E8

Figure A2.1. Program “PF”: examples.

room for the polynomial. This is done by locating the six statistics registers at

the desired location with “2REG IND X” and clearing them. The program

prompts for quadratic coefficients b,, b,, and b,. To multiply by a linear term,
zero must be keyed in for b,. If it is zero, flag 09 is set. Steps 40—45 provide

register R18 with an index equal to one or two greater than the degree of the

initial polynomial, depending on whether the multiplier is a linear or a

quadratic term. The actual multiplication is carried out at label 03 for both
linear and quadratic terms; where the multiplier is a quadratic, subroutine 06 is

called on.



aieLBL "PF"
a2 SF 21
@3 SF 12

84 “BUILE POLY"
85 AYVIEW
86 CF 12
a7 ADY
88 “POLY A"
a3 AVIEW
1@ “DEG?"
{1 PROMPT
12 570 17

{3¢+LEL 81
14 RCL 17
13 1 E-2
16 *
17 XEQ @84
1g =oK?"
19 PRONPT
28 FS? 22
21 GT0 81
22 “POLY B"
23 AYVIERW

24¢LBL E
25 RCL 17
26 1
27 +

28 ZREG IND X
2% CLE

3¢ “b8. b1, b2-
31 PROMPT
3z 510 1@
33 STOP
34 STO 1
35 STOP
36 570 12
37 CF 89
38 X=a?
33 SF 89
48 RCL 17
41 STO 18
42 1
43 57+ 18§
44 FC? 89
45 57+ 18

Figure A2.2.

46¢4LBL 83
47 RCL IND 18

43 RCL 18
49 *
38 DSE 18
21 DEG

32 RCL IND 18
33 RCL 1N
34 *
35+
a6 FC7 89
a7 XE@ 86
98 I5G 18
39 DEG

68 STO IND 18
61 DSE 18
62 GT0 83
63 2
64 FS? 89
65 1
66 5T+ 17
67 RCL 17
63 1 E-3
69 *
76 ¥EG 84
71 TOKE 9
72 RTH

730LBL 96
74 DSE 12
75 DEG
76 RCL 18
77 %482
78 GT0 85
79 RIN

8¢ RCL IND 18
81 RCL 12
82 #
83 +
84 2OY

85¢LBL 83
86 RDK
87 1SG 12
88 DEG
89 RTH

Program “PF”: listing.

LBLTPF
LBLTP
END

98+LBL B4
M FIN @
92 CF 29
31 “Re-
94 ENTER?
93 20Y
96 RKD
97 ARCL ¥
98 "= -
99 XOY
1a@ SCT 2
1af SF 29

182 ARCL IHD X
183 COF 22
184 AYIEW
183 F5? 22

186 STO IWD Y
187 FS7C 22
188 XY
189 156 ¥
118 G0 84
111 END

CAT &

223 BYTES



Program “Q”’: Quadratic Equation

Program “PF”: Registers

R00-R09
R10
R11
R12
R13-R16
R17
R18

Polynomial

by
b,
b,
Not used
Degree of initial polynomial
Loop index

A-3 PROGRAM “Q”: QUADRATIC EQUATION

483

This program finds the roots of a quadratic equation. Load the program and
execute “Q”. The program will prompt for the coefficients in ascending order:
a,, a,, a,. Enter these and press R/S. The roots are then printed. Listing and
examples of program “Q” are given in Fig. A3.1.

gleLBL "2~
Bz "ab. al,

43 PROM
84 570
45 STOP
85 870
87 STOF
83 570

By+LEL
18 RCL
itz
iz 7
12 REL
14 7
15 CHS

16 570
i7 12
{8 ROL
19 REL
28 7
21 -
22 *ROO
23 AYIE

24 CLR
xxaz
oo
CHS

& SORT

o
W
T

L
N

I ARCL
RYIE

33 Ay
34 RTH

Le
d

C
o
d
e
l

Ca
d
P
P
O

P
O

od
P
O

b
t
O

0
D

00
0
)

a2

PT

ag

ai

R ta
d

a5
Bz

T5:

W

12

X
W

ARCL 83
u!_ +_J-

35eLBL 12
76 SORT ] SEQ

37 ST a4 ad, al. aZ:

38 RCL |3 1. @808

33+ 25688

48 ARCL ¥ o {.2888

41 "k, ¢ RGOTS

43 RLL 82 -1.BRAGE +-JB, 5086

47 ROL 84
g - ’ ¥EG

S RRCL ¥ 38, al. aZ:

& AYIEW 1.688346 AVIEW
;;flw 1,5808

2 END {.2068

CAT ¢ ROOTS:

LBLTS ) -8.3228, -2.6128

END 24 BYTES .

a8, al, 22

.8188

.1aae
1,80088

ROOTS:

Figure A3.1.

-§,8588 +-J8,8%65

Program “Q”: listing and examples.

FUH
RUH
UK

fin

B

RUK
RUR
RUH

RUK
RUN
RUK
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The equation for which the roots are found is

aygta,x+a,x*=0

Program Description

The quadratic coefficients are stored in ascending order in response to a
prompt in steps 02—-08. The discriminant is then calculated in steps 10-21. At

step 25 its sign is tested; if positive, we go to label 12 to form the two real

roots. If negative, we continue to find the complex roots. In either case the
roots are displayed, and if a printer is connected, are printed.

Program “Q”: Registers

R0OO0 a,

RO1 a,

R02 a,

RO3 a,/(2ay)

R04 Discriminant

A-4 PROGRAM “CU”: ROOTS OF CUBIC EQUATION

This program finds the roots of a cubic polynomial. On execution of “CU”, the
program prompts for the cubic polynomial coefficients in ascending order: a,,
a,, a,, and a,. After these are given, the program prints out the roots. Where
there are complex roots, the locations are given in either rectangular form
(clear flag 01) or in polar form (set flag 01). The equation programmed is

2 3_apta;sta,s tays’=0

Examples and listing of program “CU”are given in Figs. A4.1 and A4.2.

Program Description

This program is adapted from one written for the HP 45 (nonprogrammable)

calculator by F. O. Simons, Jr. and R. C. Harden. Since the HP 45 had but one

storage register, much use is made of the stack memory. While newer machines

make this stack manipulation unnecessary, it is retained here as rather a

curiosity.* The program is fast: finding the three roots takes about 15 seconds.

Thefirst section of the program (up to step 54) calculates the discriminant of

the cubic equation. If this is zero, two roots are real and equal, and these roots

are calculated in subroutine B. If it is negative, the roots are real and separate

*For a complete description and explanation of such stack manipulations, see J. A. Ball’s
Algorithms for RPN Calculators, Wiley, 1978.
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XEG ~CU®

ad, al, a2, al:

{.Ba68 FUN

3.68a8 RUH

3.8888 RUH

1.6888 RiH

XE@ ~Cu-
ad, al. a2, al:

1.@aa8 RUH

4. 8885 RUH

4, 8084 RUN

1.8888  RUN

485

ROGTS: ROCTS:
-1.0686 -6.3828
-1.8@86 -Z.0188
-1. 8088 -1,R048

SF 81
. XEg -Ci= XEQ “CU-

al, al. a2, ad: al, al, a2, al:
.aing RUK {.6088 RUH
. 28ag RUH 1.0888 RUN

2.0888 RUH 1.8008 RUN

16,8668 FUH 1.08888 RUH
ROOTE: ROOTS:
-@, 1988 -1.8908

CHPLY ROOTS: ) CHPLY PDGTS:

f.168884128, aaae 1.B888:9E, BAAB

CF 8
®EG LU XEG -CU-

afh, al, a2, a¥: a, al, a2, al:
1.6808 RN 1.8888 RUN
2.4788 RUN 1.068088 RUN
Z.4388 RUK 1.8888 RUN
1.6888 RUN 1.08808@ RUK

ROOTS: ROOTS:
-6.9385 -1.0688

CHMPLY ROOTS: CHPLE ROOTS:
1.83674136. 3219 8.08000+.11,00088

Figure A4.1. Program “CU”: examples.

and are calculated in subroutine C. If it is positive, two of the roots are
complex, and the roots are calculated in subroutine A.
When there are two equal roots, round-off error may produce a small but

nonzero discriminant. For this reason, the discriminant is rounded (at step 47)

to direct the operation to subroutine B.

Program “CU”’: Registers

RO1 Used

RO2 Real root

R03,R04 Two other roots

RO5 ag/as

R0O6 a,/a
RO7 a,/as



486

aleLBL “CU"
@82 =al, al. a2, ald:"

83 PRONPT
84 ST0 85
85 STOP
86 STO 86
87 STOP
88 ST0 87
89 STOP
18 5T/ 85
11 5T/ 86
12 5T/ @7
13 RCL 87
14 3
15 7
16 5T0 81
17 RCL 86
18 6
19 7
28 ENTER?
21 ENTERt
22 2
23 #
24 RCL 81
25 ENTERt
26 *
27 -
23 ENTERt
29 ENTER?
38 RIN
31 RDN
32 +
33 RCL 81
34 x
35 RCL 85
36 2
37/
38 -
39 RIN
48 *
41 *

Programs for Manipulating Polynomials

42 RIN
43
44 KOY
45 RIN
46 +
47 ~ROOTS: "
48 AYIEW
49 CLA
56 ¥=07
51 GT0 B
52 %(@?
53 GT0 C
54 GT0 A

a5¢LBL 3@
36 SF @8
37 ARCL @2
98 XE@ 18
39 ARCL 83
68 XEQ 18
61 ARCL @4

62¢LBL 18
63 AYIEW
64 PSE
65 CLA
66 RTN

67¢4LBL 31
68 ARCL 82
69 XEQ 18
78 RCL 84
71 RCL 83
72 FS7 81
73 R-P
74 ADY

73 “CHPLX ROOTS:®

76 AYIEW
77 PSE
78 CLA
79 ARCL X

Figure A4.2. Program “CU”: listing.

88 FC? a1
81 "k+J-
g2 FS? 8!
83 k"
84 ARCL Y
85 XEQ 18
86 RTH

87¢LBL R
88 KO
89 RDK
98 SORT
91 ENTERt
92 RIN
97 -
94 ENTERt
95 RIN
96 RDN
97 +
98 RIN
99«
188 ¥=67
181 GTD 81
182 3
163 17%
184 CHS
185 Y4X
186 *
187 RDN
188 *
189 x=67
118 GT0 @7
111 3
12 1%
113 CHS
114 Y4X

115+LBL @3
116 *
117 ENTERt
118 RIK

A-5 PROGRAM “ROOTS”: POLYNOMIAL ROOT EXTRACTION BY

This program finds the roots of polynomials up to twelfth degree, using
Newton’s method.* For accuracy, it finds the roots of the polynomial roughly

in order of increasing size. A subroutine chooses a starting point that usually

causes the smallest root to be found first. When the root is found, the

*The core of this program is due to R. K. Brush, in High Level Math, HP67/HP97 User’s Library

NEWTON’S METHOD

Solutions, Hewlett Packard, Corvallis, OR, May 1978.



119 + 138 * 197 ACOS
128 RCL 01 159 GT0 @3 195 3
121 - 199
122 570 @2 168¢LBL B 2808 XY
123 RCL 01 161 RDN 281 RIM
124 + 162 RDN 202 ENTERt
125 -2 163 ENTER? 283 C0S
126 7 164 * 204 XOOY
127 RCL 81 165 3 205 128
128 - 166 17% 206 +
129 570 03 167 SF 25 287 £0S
138 RDN 168 CHS 202 RIN
131 - 169 1% 209 *
132 2 70 * 218 RCL 81
133 7 171 ENTER? 211 -
134 3 172 ENTER? 212 §T0 82
135 SQRT 173 + 213 RDK
136 * 174 RCL 81 214 ENTER?
137 570 @4 175 - 215 RDN
138 GTO 31 176 STO 82 216 *

177 RDN 217 RCL @1
139¢LBL 01 178 RCL 61 218 -
148 3 179 + 219 ENTER?
141 17X 188 CHS 226 ST0 83
142 CHS 181 570 @3 221 RDN
143 * 182 5T0 84 222 RIN
144 * 183 GTO 38 223 ACOS
145 RDN 224 128
146 * 184¢LBL C 225 +
147 %=87 185 RDN 226 C05
148 GT0 82 186 CHS 227 #
149 3 187 SGRT 228 RCL @1
158 1/% 188 ENTER? 229 -
151 CHS 189 ENTERt 2308 STO 84
152 ¥1¥ 199 3 231 GT0 3@
153 GT0 @3 191 1/% 232 END

192 Y4¥ CAT 1
154¢LBL 82 193 2 LBLTCY

155 194 * END 326 BYTES
156 17X 195 RDH
157 CHS 196 /
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Figure A4.2. Continued.

polynomial is deflated (the root is removed by synthetic division), and the

process is repeated to find the next root. Where the root is complex, both roots

are removed and the polynomial is reduced in degree by two. The process 1s

usually automatic, continuing until all roots are found.

To use the program (with or without printer), load it into the machine, and

store the polynomial whose roots are to be found in ascending order starting

with g, in R20, a, in R21, and so forth up to any desired degree, limited only

by the number of storage registers available. Clear flag 00 to suppress printout
of the convergence process. Execute “ROOTS”, and the machine will display

“POLY ROOTS” and prompt for the degree of the polynomial. A high-pitched
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tone accompanies any demand for data from the user. Key in the degree, and

press R/S. The polynomial is then displayed and printed. Without a printer

connected, the machine stops after displaying each coefficient; if a change is to

be made, key in the new value and press R/S;if the displayed value is correct,

just press R/S. At the end of the coefficient display, the user is prompted by
“OK?”. If so, press R/S; if not, make necessary changes and press R/S.

The rest of the process is automatic, and with printer connected, continues

until all roots have been found and printed. Without printer, the machine stops
after each root or root pair has been found to allow recording. In either case

the finding of a root or a root pair is accompanied by a small fan-fare (BEEP).

The coefficients of the deflated polynomial are then displayed. When the
degree of the deflated polynomial reaches zero, the root finding is terminated.

After each iteration, two tones are sounded and the magnitude of L(s) is

displayed while the next iteration is being performed. If there is a problem with

convergence, these L(s) values can be observed and corrective action taken.

A tolerance of 10 ~® on |L(s)| is automatically stored in register R09 by the

program. This may be changed when the program prompts for changes, at

which time the polynomial can be checked and corrected if necessary. Flag 00
may be set to observe convergence in the event of difficulty. If flag 05 is set,

the starting point for roots after the first will take the previously found root as
the starting point: the first printed value of L(s) (with flag 00 set) will be the

residue for a previously calculated simple root. It will be related to the residues

for complex roots: the magnitude of L(s) is twice the magnitude of each
residue, and the phase of L(s) is the phase of the upper residue less 90°.

Program Description

The overall plan of the program is given in the flow chart in Fig. AS.1,

containing five main sections labeled A through E. Section A initializes the
calculator and allows a check of the input data. It also calls on Sections B, C,

D, and E as subroutines and is the control program. It includes a display
routine, subroutine 01, which was described in Appendix A-1 (as subroutine

04).
Section B calculates the starting point, described in the following para-

graphs. Section C calculates a root or pair of complex roots of the polynomial

and displays or prints the result. Section D deflates the original polynomial by

synthetic division, reducing its degree by one or two. Roots of the deflated
polynomial are then subjected to the same treatment until all roots are found.

Section E ends the computation.

Root finding by Newton’s method is discussed in Section 2.5 and in most

texts on numerical analysis; for more detail, see References 1 and 2 in Chapter

2. As discussed in that chapter, we first estimate the location of the smallest

root. Subroutine B does this. To find the starting point automatically, each
coefficient a; of the polynomial is divided into a, and the result raised to

the 1/i power. The smallest of the resulting numbers establishes the starting
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Polynomial

 

  
A “ROOTS"

   

DEG = 0?

 

  

 
List polynomial.

  

 No
oK?

 

B Calculate starting

point

   

 

END E
   

 

  

 

  

c Calculate and
display roots

D Deflate

polynomial      

 

Figure AS.1. Flow chart for program “ROOTS".

point—the initial value of s—whose magnitude 1s taken as

1/ia
|s|:min(——9)

i a;

The phase is taken as 180/i+¢ if a, and a, are of the same sign, and ¢ if they
are of opposite sign, where ¢ is set (arbitrarily) at 7° in the program (at step

120) as discussed in the following paragraphs. The value of L(s) is calculated
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in subroutine C. If it is zero, the estimate was correct and the root is printed

out. If the value of L(s) is less than the allowable tolerance, the result is

likewise printed out, except that an additional iteration is performed first. If
the value of L(s) is larger than the tolerance, a new value of s is calculated
from

 

which is subtracted from the previous value of s to obtain the new value.
The flow chart in Fig. AS5.2 diagrams the operation of section C of the

program. After setting the first iteration flag 02 (after label C), |L(s)| is
calculated (labels 03, 13, and 23) and severaltests are made. If |L(s)|=0, the C

 

  

XEQC
C

Set flag 02

c

03 Calculate L(s)
   

   ——————i   L nonconv?

05 L Display -

Calculate L' (s) Loin
and

As 04

  
 

 

    
      

   Set Im[s] =0

   
      

Display Display

complex roots real root

Return

Figure AS5.2. Flow chart for section C of program “ROOTS”.
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subroutine is exited and the root or roots are displayed by subroutine 04,
which detects whether the root is real or complex. If L(s) is less than tolerance

€, the subroutine is also exited, except that if this occurs on the first iteration, a

second iteration is done. If |L(s)| is larger than the previously calculated value,
another iteration is performed with a smaller change in s (the change is
halved). Sometimes the change in L(s) is nil, and the iteration continues

without improvement. To exit in this case, the current and previous values of
|L(s)| are compared. If they are the same, the value of |L(s)|=L,,, is printed,
and the value(s) of the root(s) is(are) printed. Often, L. will be satisfactorily

small and the calculation can proceed to find the remaining roots. If it is not,
as indicated by the display of L min’® the calculation can be aborted and a new

starting point can be chosen by changing the angle at step 120.

In most cases convergence will proceed normally below the decision box,

where L'(s) is calculated and As is found from L(s) and L’(s) (labels 05, 06,

XEQ "RCOOTS" ¥EQ *ROOTS®

FOOTS ROOTS

DEG? DEG?
12,9008 RUKN 5.86888 RUY

POLY. ASC. ORDER POLY, ASC. ORDER
R28= |.@8BER R28= 1.@88E8

RZi= @.@8eE" R2i= 5.488ER

R22= @.RAAER R22= 1.888E{

R23= 8.PR8BER RZ3= 1.806E!L

24= @.PRAER R24= 5.088ER

R25= @.888E8 R25= 1.888E8
R2o= 9.888EE

R27= B.BRBER K2

R28= A.PABEA RUN

R29= B.A60E0 8=8,9772+-4-179.9¢

R38= @.P86ED

R31= @,800E" S=1.83765+-4184, 84
R32= 1.AQ0BER

§=-8.9784
0K?

RUN ENI
§=1.000a+-{15.80

5=1.0088+-{-165. 00

S=1.08R0+-£185.08

5=1,80R0+-£43.08

5=1.A008+-473. 088

5=1.008R08+-4-135.96

END

Figure A53. Program “ROOTS”: examples.

XEQ "ROOTS"

ROOTS
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16, and 23). The iteration proceeds until exited by one of the means described

in the previous paragraph.

Examples

Use of program “ROOTS”is illustrated in Figs. A5.3 and A5.4. The program

listing 1s given in Fig. AS.5. For the first example, we find the roots of the
equation

s24+1=0

which has 12 roots equally spaced about the origin on the unit circle. The root
positions are symmetrical not only about the real axis, but about the imaginary
axis as well. Because of these symmetries, if the first guess were to be either on
the real or imaginary axes, convergence would be impossible since succeeding

XE@ "ROOTS"

DEG?
¢ RUK

POLY. ASC. ORDER
R28= 5.248E2
R21= 1.387E4
R22= 1.313E4
R23= £.769E3
R24= 1.968E2
R25= 3.228E2
R26= 2.880E!
R27= 1.8ABER

0K?
RUH

LMIN=1,8R68E-6
LHIN=1.6068E-¢
5=-3.00802

LKIN=3,8808C-7
LKIN=8.8R088E-7
5=-4,000¢

5=-5.0408

S=-£, BAGE

5=-7.8008

EHE Figure AS54. Program “ROOTS”: examples (continued).
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Figure AS5.5. Program “ROOTS”: listing.

93 ABS

99 ECL 8

186 RCL @6

el -

182 INT

{83 1%

184 743

185 RCL A2

186 ¥{=Y?

187 XEQ @2

188 ISG ai

189 GT0 b

118 RCL 82

111 178

112 ST0 1@

113 RCL 84

114 1

115 +

1i6 98

117 =

118 RCL @3

119

128

121 +

122 570 1

123 RCL 18

124 P-R

125 S70 14

26 XO

127 570 1t

128 RTH

"
,

-

129¢LBL 82
138 XY
131 570 &2
132 RCL 81
133 RCL 85
134 -
135 IHT
136 570 83
137 BTN

1484BL ¢
141 CF 21
142 F57 o8
143 SF 21
144 XEQ @2
145 R-F
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146 CLA
147 TONE 3
148 TOHE 3
149 "L="
158 SCI 2
151 ARCL X
152 AYIEH
153 CLA
154 FIX 4
1535 ¥=07
156 GT3 14
157 RCL 89
158 ¥3Y?
159 GTO 84
168 RIKN
16l RCL 17
162 FS7C 82
163 GTD 85
164 ¥3Y?
165 GTG 85
166 RDK
167 STO a2
168 XO¥Y
169 STO 84
178 RCL 16
171 RCL 15
72 R-P
173 XY
174 RDN
175 RCL 11
176 RCL 18
177 B-F
178 XY
179 RIN
186 7
181 RCL 29
182 ¥:V7
183 670 15
184 2
185 &7/ 15
186 ST/ 16
187 RCL 1@
188 RCL 15
189 -
198 STO 18
191 REL 11
192 RCL 16
193 -
194 STG 11
195 GT0 ¢

196+LBL 83
197 RCL 6@
193 RCL 86
199 +
288 570 @5
281 8
282 ENTERt
283 @

2adelBL 12
285 RCL IND @5
26 +
267 XEQ 2
288 DSE @
209 GT0 1

218 RCL IND @3
211 +
212 RTH

213+LBL 84
214 FS2C @2
215 GT0 @83
216 RCL 11
217 X=@?
218 GTO 14
219 ABS
228 RCL @89
221 X{=Y?
222 GTD 14
221
224 ST0 11
225 GT0 ¢

226+LBL 14
227 SF 21
228 RCL 86
229 STO @5
238 RCL 11
231 X+87
232 DSE @3
233 X847
234 GT0 24
235 RCL 18
236 BEEP
237 CLH
238 =§="
239 ARCL ¥
248 AVIEH
241 ADY
242 RTH

Figure AS.S. Continued.

243+LBL 24
244 BEEP
245 =§="
246 RCL 11
247 RCL 18
248 R-P
249 ARCL X
258 FIX 2
231 “h+=£"
252 ARCL Y
253 AYIEM
254 FIX 4
253 ADY
256 RTN

257+LBL 85
258 RIN
239 570 17
268 XOY
261 570 18
262 XEQ @6
263 R-F
264 ¥=87
265 GT0 15
266 17%
267 RCL 17
268 *
269 CHS
278 XY
271 CHS
272 RCL 18
273 ¢+
274 XOY
275 P-R
276 STO 15
277 RCL 18
273 +
279 STO 18
288 XOXY
281 S0 16
282 RCL 11
283 +
284 STO 1
283 670 ¢

286+LBL 15
287 TONE &
283 TONE 9
289 5F 21
298 "IMIN="
291 ARCL 82



292 AYIEMW
293 ADY
294 FC? a8
295 CF 21
296 GTO &4
297 RTH

298¢LBL 23

299 ST0 12
3ae RCL 11
Je1 *
Jez X0V
383 ST0 13
Je4 RCL 18
385 *
386 +
Je7 RCL 12
383 RCL 18
389 *
318 RCL 11
311 RCL 13
32 *
N3 -
314 RTH

J15¢LBL 86
316 RCL @8
317 RCL 86
318 +
319 570 @5
30 @
321 ENTERt
32z @

J23+LBL 16
324 RCL 85
325 RCL 86
326 -

327 RCL IND @5
328 *
329 +
338 DSE 85
331 XER 23
332 15C @5
333 DEG
334 DSE 85
335 GTO 16
336 RTN

J37¢LBL D
332 CF 84

339 CF a1
348 RCL 1!
341 X+8?
342 SF 81
343 RCL @8
344 RCL 86
345 +
346 570 @5
347 @
348 156 @9
349 DEG

358 STO IND 85
351 ISGC 85
352 DEG

353 5TO IND 85
334 RCL 86
353 ST0 @5

J56¢LBL d
357 ISG @85
358 DEG
359 FS? 8l
368 I5GC @85
361 DEG

362 RCL IND 85
363 DSE @5
364 DEG
363 FS? @1
Jo6 DSE 85
367 DEG

368 STO IND 85
369 ISC @5
378 DEC
371 RCL @8
372 RCL @5
373 RCL 86
374 -
375 ¥(=Y?
376 GTO d
377 1
378 FS? @l
379 2
388 RCL @8
381 -
382 CHS
383 STO @8
384 RCL 18
385 2
386 *
387 ST0 12
388 RCL 18

Figure AS.5. Continued.

LELTROOTS
ERD

389 X2
398 RCL 11
391 X2
392 +
393 CHS
394 570 14
395 F57 @l
3% GT0 @7
397 RCL 18
398 570 12
399 @
488 ST0 14

401+LBL 87
482 RCL 08
483 RCL 86
484 +

485 STO 85

486+LBL 88
467 1SGC 85
488 DEG

489 RCL IND 85
418 RCL 14
411 *
412 DSE 85

413 RCL IND 85
414 RCL 12
413 *
416 +
417 DSE @5
418 DEG

419 ST+ IND 85
428 RCL 85
421 RCL 86
422 -
421 H8?
424 GT0 88
425 RCL 08
426 RTH

427+LBL E
428 “END"
429 AYIEN
438 ADY
431 END

CAT !

672 BYTES
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guesses could never leave the axis; roots on either side of the axis (real or
imaginary) would pull equally; therefore, the initial phase offset (of 7°) is used.
As shown, all 12 roots are found without difficulty. Running times tend to be

long because many iterations are performed. It takes about 20 min to find all
12 roots and 5 min to find the first pair.

The second example finds five multiple roots at s= — 1, a characteristically

difficult case for accuracy with this method. The difficulty arises because all

five roots contribute to driving L(s) to zero, so that L(s) becomes smaller than

the tolerance even for values of s a small distance away from the actual root
position. Accuracy can be improved somewhat by tightening the tolerance on
L(s). Running time for all five roots is about 10 minutes.

The third example illustrates the convergence process. With flag 00 set, the
real root of a cubic MFA function is found. The process is then repeated to
find the other two roots. The starting point is found as before, and L(s) is

found and displayed. Throughout the process L(s) decreases in magnitude
until it drops below the tolerance, after which one further iteration is per-
formed. The root is then displayed.

A fourth example shows the solution for a seventh-degree polynomial:

L(s)=(s+1)(s+2)---(s+7)

=5"+285%+3225°+19605*+ 676953

+13,13252+ 13,0685+ 5040

For a discussion of the factoring of this polynomial and the extreme sensitivity
of the root positions to the exact values of the coefficients, see References 1

and 2 in Chapter 2. A change of the quadratic coefficient from 13,132 to
13,133, for example, changes six of the seven real roots to complex pairs!

Factoring of this polynomial shows how the program behaves when L(s)

becomes small but fails to converge. When finding the root at s= —3.000, L(s)

fails to go to zero and finds a minimum at 10 ~ ¢, (Note that compared with the

dc loss, this is more than 200 dB down.) The value of s at this value of loss is

negligibly different from the true root position. With the value of L.

displayed, judgment can be exercised as to whether the value of s is a good

estimate of the root position. In this case it clearly is. A check is available: by

using program “PF”, the root factors derived can be multiplied together and

should give the original polynomial.

A-5 Program “ROOTS”: Registers

ROO Degree

RO1 Starting point loop index

R0O2 (ao/ai)l/i
RO3 |L(s)| from previousiteration
R04 /L(s) from previous iteration

RO5 Loop index
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R06 Loop index beginning value
RO7 Not used

RO8 Not used

R0O9 Tolerance ¢

R10 Re[s]

R11 Im[s]

R12 Used

R13 Used

R14 Used

R15 Re[As]

R16 Im[As]

R17 |L(s)|

R18 LL(s)

R19 Used

R20- Polynomial

A-6 PROGRAM “TIME”: STEP RESPONSE OF CUBIC WITH COMPLEX

ROOTS (USE WITH “CU”)

This program calculates the step response for structures exhibiting cubic loss

polynomials having a pair of complex roots. Its purpose is to illustrate the
calculation of time response as discussed in Section 2.3. It is intended to be
used with program “CU” which finds the roots of a cubic equation; alterna-

tively, the real root can be stored in register R02, and the real and imaginary
parts of either complex root can be stored in R03 and RO04, respectively. To

exercise the latter option, flag 00 should be set. Examples and listing of

program “TIME” are given in Figs. A6.1 and A6.2.

The program calculates the residues by use of eq. (2.3-19); it normalizes the
residues to a final value of unity. It then calculates the time response by use of
eq. (2.3-13) for the real root and a root at s=0 for the step excitation; the
complex root response is calculated from (2.3-18) and added. The program
prompts for a time step; it then starts at r=0 and computes the response in

equal increments of time. When a printer is used, the program must be stopped
manually by pressing R/S. At each time point the time and the response are

printed as shown in the examples.
The first example gives the (normalized) time response of the amplifier

described in Section 2.1, stabilized with a 3 pF capacitor connected between

input and output. The second example is the time response for a system with

cubic Butterworth response. The third example is for a maximally flat delay

response.
Without a printer, the program stops at every point where printing would

occur as shown in the examples. To continue, press R/S. When it comesto the

response list, the time is shown on the left side of the display, and the response
is on the right side. To advance to the next time point, press R/S.
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KEG “TIME® KEQ "TIME® ¥EQ “TIME"
STEP RESF. STEP RESF. STEP RESPF.

ak, al, a2. a3 aé, al, a?, al: aB, al. a2, al:

l.6868  RUH 1.0888  RUK 1.8888  RUK
3.8888  RUM 2.8888  RUM 2.4782  RUNM
1.8808  RUN 2,888 RUN 2.4388  RUN
1.8882  RUH 1.0888  RUN 1.6888  RUN

ROGTE: ROOTS: ROOTS:

-8, 3611 -1.0888 -@.9285

CHPLR ROOTS: CHPLY, ROOTS: CHPLY ROOTS:
1.66414181.8673 1.80084120, 688F 1.83674136.3219
E@ Ka Ke
1.0888 1.0000 1.08098

Ki ki Ki

-1.8376 -1.6@00 -1.9712

2P 4+98 2KP 4499 2KP 449
B.2252 1.1547 1.8246
176.3937 -188,RAE 147.8424

TIME STEP? TINE STEP? TIME 5TEP?
l.pesg  RUK 1.9888  RUN 1.8088  RUN

.00 8.0AgaRe 9.80 @.00000 8.00 ©.60800
1.86 8.11417 1.88 9.89361 1.86 @.82980
2.08 8.498%7 2.80 8,44539 2.00 £,38193
3.08 @.71517 3.08 8.81697 3.80 8.68667
4,80 8,73812 4,88 1.83121 4.88 8.88467
3.08 B.78411 5.84 1.88120 5.88 B.97592
6.06 8.88792 6.80 1.84841 6.80 1.08392
7.88 8.94836 7.60 1.98673 7.08 1.88634
8.68 8.93638 .89 B.98695 8.88 1.80292
.82 9.94803 9,89 9,98787 9.08 1.90838
18.82 8.97603 18.88  9,99457 18.88 #.99951
11.88 8.98628 11.08 1.0084¢ 11.88 @,99952
12.98  8,98371 12.88 1.88235 12,88 8,99975
13.88 8.98768 12,88 1.088167 13.88 8.99992
14,88 8.99585 14,82 1.60845 14,08 1.00080
15.88 8.99673 15.06 9,99974 15.89 1.06081

Figure A6.1. Program “TIME”: examples.

Program “TIME”: Registers

R0OO —
RO1 Used

RO2 Real root

RO3 Real part, complex roots
R0O4 Imaginary part, complex roots

RO5 Time

RO6 Time step

RO7 K,



AieLBL "TIME"
82 CF 82
83 SF 21
84 SF 12

85 "STEP RESP.-
86 AYIEH
a7 CF 12
ag ALY
89 FIX 4
18 FC? @8
11 ¥EQ =Cy~
12 F37C 88
13 GTO 11

14 XEQ “RES"

15¢LBL “T"
16 ADY
17 TONE S

18 “TIME STEP?"
19 PROMPT
28 STO 86
21 CLA
22 ADY
23 8
24 5T0 83

25¢LBL 18
26 RCL 83
27 RCL 84
28 *
29 R-1
38 RCL 10
3+
32 SIN
33 RCL 85
34 RCL 43
35 %
6 EtX
7k

Figure A6.2.

37 ARCL X
38 AYIEW
39 CLA
68 FIY 4
61 RCL 86
62 5T+ @5
63 GTO 1@
64 RTN

ho+LBL 11
6o CLX
67 1/
68 RTN

69¢LBL "RES"
78 "Ke-
71 AYIEW
72 CLA
731
74 570 &7
75 ARCL @7
76 AYIEW
77 RCL 83
78 Xt2
79 RCL @4
88 X12
81 +
82 RCL 82
83 CHS
84 *
85 1/%
86 STO 11
87 ADY
88 -K1-
89 AYIENW
98 CLA
91 RCL @2
92 RCL 63
93 -
94 Xt2
95 RCL 64
9% %tz

Program “TIME

LELTTIME
LBL™T
LBLTRES
END

1 listing,.

97 +
98 RCL @2
99+
188 17X
fa1 RCL 11
182 /
183 570 a2
184 ARCL @8
185 AYIEW
186 ADY

187 =2KP £+98"
188 AVIEW
189 CLA
118 RCL &3
1t 2
112 *
113 RCL 82
114 -
115 RCL @4
116 *
117 RCL @3
118 Xt2
119 RCL 64
128 Xt2
121 -
122 RCL @3
123 RCL 82
124 *
125 -
126 R-P
127 RCL 84
128 *
129 17%
138 RCL 11
131 7
132 ST0 @9
133 XOY
134 CHS
135 STO0 18
136 ARCL 89
137 AYIEN
138 CLA
139 ARCL 18
148 AYIEW
141 CLR
142 END

CAT 1

227 BYTES
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RO8 k 1
R09, 10 2kp

R11 Used

R12 f(t)

A-7 PROGRAMS FOR EVALUATION OF RATIONAL FUNCTIONS

A series of three alternative programs and a subroutine used in common by

each is described here. All three programs evaluate rational functions having
numerator and denominator polynomials of up to seventh degree. They can be

used for plotting Bode or Nyquist diagrams. The first program, “BODE”, is

intended primarily for use without a printer, whereas the second and third

require a printer. The first program is called by two names, “BODER” and
“BODEH”, depending on whether the frequency is expressed in radians per
second or in hertz, respectively. The second and third programs are identical
except that one, “BORAD”, works with the frequency expressed in radians per

second (or gigaradians per second), and the other, “BHZ” uses frequency in

hertz (or gigahertz). These latter programs work the same as the first, adding
the feature that the frequency is automatically incremented, either linearly or

logarithmically.

Programs “BODER” and “BODEH” (Use with “FN”)

Use of this program is illustrated in the first example, which shows the

printout when the printer is connected (see Fig. A7.1). The left-justified
printing is what one sees in the display, with or without printer. The right-
justified printing is what the user keys in from the keyboard. To demonstrate

how the program is used, we begin by clearing all registers (XEQ CLRG) and

executing “BODER”. The display prompts for the degree of the numerator.
Suppose that we wish to find the response of a cubic maximally flat delay

polynomial;

L(s)=1+247s+2.43s°+s3

We then key in 3 for the degree and press R/S. The display shows R0O=0.000EO,

since we cleared all registers. The numerator polynomial is stored in registers

R0O0-RO7, so we key in 1 and press R/S. The display then shows R1=0.000EO0;

we key in 247 and R/S, and so forth. After keying in 1 for the cubic

coefficient, the display prompts for the degree of the denominator polynomial;

we key in 0, and the display prompts with R10=0.000E0. We key in 1, R/S,

and the display prompts with “OK?”. At this point, if we wish to correct a

mistake, we can store the revised number in the indicated register, and the

process of keying in the data will be repeated when R/S is pressed. In the

absence of changes, the display will prompt with “2PIF= * to which we

*We use “2PIF” or X F for 27 F to indicate angular frequency w in these programs.



respond by pressing .2. The display reads “2PIF =0.2000until the response in
dB and phase is displayed, in about 5 seconds.

With the printer connected, the prompt “2PIF= ” appears in the display

immediately following the printing of the response, prompting for the next

frequency. Without a printer, the response remains in the display until R/S 1s

pressed, at which point the frequency prompt appears in the display.

At this point in the example, the printer was switched to “Manual” opera-

tion to suppress the printing of prompts and user input in order to remove

redundant printing. To plot a Nyquist diagram it is helpful to express the

response in rectangular form; this can be done by setting flag 01, as shown in

the second column. When the rational function has been stored, the input steps
may be skipped by using the command XEQ “E”.

Programs for Evaluation of Rational Functions 501

CLRG £ o1 ¥EQ "BODEH"

"BODEE" 5 NUM DEG?XE@ "BODEF SPIF = B. 1068 10008 RON

NUM DEG? 8,976 +J8. 246 _ -
3.8082  RUH 770 7. 20 RG= 1.8@4E8 o

Re= 8.BBAEH :

B { RUN 2F1F = 9.2008 R1= 2.470E0
Ri= 8.0RRER 8.903 +J8.48¢ o RUH

2.47  RUM o R2= 2.438ER

R2= @,PRRER 2PIF = @, 30a8 RUK

T 243 RN 8.781 +J8.714 R3= 1.800E6
- ; ' RUNR3= @.008EE 1 " oPIF = §.4906

8.611 +J8.924 DEN DEG?

; 8  RUM
DEN DEG? 2

I 1 Rig= 1,@@0ER _

R18= @.B60E0 . RUN
1 RUN gkf

0K? F = 6,8200

2PIF = B.83d8, 417.78

.2888  RUK .
. F = @,8488

2PIF = 8.2000 - —

82208, £28.29 8.34dB, 435,33
F = 8.8588

2FIF - 8.79d8. 453.%5
2PIF = f.3088
8.49dB. £42.42 F = B.B%AE

1.4348. £(76.98
2PIF = @.4068
8.8948, £56.32 F o= p.1908

2.31dB. £88.21
2PIF = 8.5608 ¢

F = @,8258
2PIF = @.c086 @962 +J8,382
2.089dB. 484.3%

F = @.8408
2PIF = @.7888 B.247 +J@. 605

2.92d8. £97.83

Figure A7.1. Programs “BODEH” and “BODER”: examples.
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Programs “BORAD” and “BHZ” (Use with “FN”")

Programs for Manipulating Polynomials

To try this program for the first time (see Figs. A7.2 and A7.3), clear all
registers (XEQ CLRG) and XEQ BORAD. You will see the printed output

shown in the first example. Suppose that we wish to find the loss of a cubic
Butterworth polynomial. When the program prompts for NUM DEG?, press 3
and then R/S. The coefficients of the numerator (currently all zero, since we
cleared the registers) are printed, with the registers in which they are contained

NUK DEG?
3

Reg= 8. 0068
Rel= @, nees
RB2= 8.8688
RA3= @&, n6a8

DEM LEG?
é

Rig= @&, 0008
ak?

1i

2

NU¥ BEGC?
3

Rea= 1, B6ea8
Rél= 2.9888
Rez=  2.8004
RG3= 1.008E

DEN DER?
@

Rig= 1.neeg
0K*?

dFMIH, RAY

R24= B.8086
RZ23= 6.8@eg

PTS/DEC:

R26= 8, 08e8

CLRS

XEG "BORAD"

.Aaae  RUH

.0682  RUH

.BaBa ST A8
510 Az
570 18

.a@aR 570 B!
STO Bz

RN

.aeae  RUN

LGERA  RUR

RUN

0K?

legg 570 24

3.8888 5T 25

3.6888 5T0 26

RUN

£FHIN. HAX

R24= @, 1888

2%=  1.60888

PT5/IEC:

R2t= 3,@688

DE?

RiK

&F dk PH

a.1p8 @.88 11.48
8.215 6.88 24,89
B.464 B84 33,51
1.6 .81 135.88
2,154 28.84 -145.5

Figure A7.2. Program “BORAD”: Example I.

SF @l
XE@ “BORAL"

NUE DEG?
J.oage  RUN

Raa= 1|, Baeoe
Rai= 2.8888
RA2= Z.0088
Rei= 1,068

DEN DEG?
6,288 RN

Rig= 1.d0888
0K?

RUH
ZFMIN. HOE

R24= . 104%
RZ5= 1,680

PTS/IEC:

R26=  2.0808

0K?
RUK

&F RE 1IN

B.168  8.936 8,199
B.215  B.987 .47
A.464  B.567 0.928
1,808 -1.082 1{,P06
2,154 -8.2§3 -5.69
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(on the left). The program then prompts for denominator degree. Since we

want the loss of a polynomial, with no denominator, press 0 and then R/S.

The single denominator coefficient is in R10 and is also zero.
The next prompt is “OK?”. Well, it certainly isn’t. Not only is everything

zero, but we're asked to divide by zero! So store 1 in R0O0O and R0O3 and 2 in

RO1 and RO2 to place the cubic polynomial in the proper registers. Next, store
1 in R10, so that we don’t divide by zero. Press R/S, and repeat the preceding

steps, except that this time the numbers are in the registers.

CF &4 SF B4
XEQ "BORAD" XEQ "BIRAD"

HUK DEG? HUM DEG?
3.0008  RUN 3.8808  RUN

RB#= 1,068 RO= 1,980
RB1=  2.4760 RE1=  2.4788
RB2=  2.4308 RE2=  2.4360
R83= 1.9808 RE3= 1.0808

DEN DEG? DEN DEG?
3.8008 RN 3.8096  RUN

RiG= 1,800 RIG= 1.9EA0
Ril= -2.4708
Riz= 2.4368
Ri3= -1.0868
oKz

4FEIH, HAX

R24= B.8258
R23= 1.088E

PTS/DEL:

R26= £.5429

0K?

&F de

8.825 6.6
8.835 8.e8
a.858 0.8
a.a871 6.8
8.168 0.9
é.141 8.0
€.268  E.08
8,287 6,88
8.482  @.e@
8,366  @.0@
6.888 @.e8
[.121  o.08

RUH

RUN
pH

7.88
18.81
14,13
28,81
28,38
48,82
36,39
86,88
113.83
139.27
221.54
234,93

Rl1= -2.4708
Ri2= 2.4368
R13= -1.0808
0K?

AFHIKN. NAY

R24= 9.8238
25= 1,588

FTS/DEC:

R26= 6.6439

0K?

B - de

.
"

D
P
D
)

L
N

v
l
T

R
e
l
R
e

X
D
e

30
D
L
R

L
R

o
D
S

s

Q
D

L
N
P
P

P
O
e
e
D
D

0
D

o
o

-

B
T

o
O
y

@
m
m
m
m
m
@
m
m
m
m
m

W
D
D
D
D
D
D

D

— - — e
l
—

é,
8.
8.
a.
8.
a.
8.8
a.
8.
a.
a.
8.

eFigure A7.3. Program “BORAD”: Example 2.

PH

8.8
8.08
.08
8.8
f.08

-8.81
-8.82
-8.85
-8.18
-6.84
-4.96
-23.34

RUN

RUN



504 Programs for Manipulating Polynomials

When prompted by “OK?”, press R/S and the program prompts for the

minimum and maximum frequencies and the number of points per decade, all
of which are currently zero. We then store an appropriate set of numbers in the
indicated registers, and these are then listed as in the case of the coefficients.

Finally, when the numbers are as we wish them, we press R/S and a list is
printed giving the frequency (angular) and the magnitude (in decibels) and
phase (in degrees). By setting flag 01, the response is printed in rectangular

form, as shown in the example.

In this way any rational function having numerator and denominator up to

seventh degree can be evaluated. Program “BHZ” (see Fig. A7.4) operates
identically with the frequency expressed in hertz (or gigahertz). Only one of

these two programs should be in the machine at one time; since they are
virtually identical and contain the same global labels, there is the possibility of
returning to the wrong program from subroutine “FN™.

In a second example an all-pass function consisting of maximally flat delay
polynomials for numerator and denominator is evaluated. Here, we use two

KEQ "BHZ" {F’

NUM DEG?

3.86a8 RUK RZ24= B.6842

R25= 8.1751

Rea= 1.8688

Ra1= 2.4708 P/D

Rez= 2.4388

Re3= 1.d608 R26= 6.6439

DEN DEG? 0K?

3.0008 RUK RUN

F dB PH

Rig= 1.p008

Ril= -2.4788 @.824 @.68 7.68

Ri2= 2.4308 8.6 0.08 18.81

Ri3= -1.0808 8.683 @8.88 14.15

0K? 8.811 @.08 28.81

RN 8.816 8.88 23.38

<F> 8.823 @8.88 48.82

8.832 8.88 56.39

R24= 8.8258 8.845 @.08 88.80

R25= 1.1888 B.864 8.88 113.83

a.a%98 8.88 159.27

P/D 8.127 @8.88 221.54

R26= 6.6439

0K?

PI

Z.6868 *

ST/ 24

3Ts 23

RUN

Figure A74. Program “BHZ”: example.
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points per octave (6.64 point per decade) to observe the linearity of the phase
with frequency. Note that doubling the frequency doubles the phase with good
precision up to an angular frequency of about 0.5.

This example 1s useful in demonstrating one other capability of the program
—to remove linear phase. By setting flag 04, the linear phase contributed by
the linear coefficients of both numerator and denominator is removed, with the

results shown.

Program Description: “BODE”

Program “BODE” (see listings in Figs. A7.5) itself is a control program that

calls on two subroutines, “FN” and “K” (see Fig. A7.6) to do most of the

work. It also contains the display subroutine, “DX”, which is used when no

printer is present. A flow chart for the program is shown in Fig. A7.7. It first

calls on “FN” to get the desired function coefficients into the correct registers,

@1¢LBL "BOLER* 32 FC? 82 65 F5? 83
82 CF @z 331 G670 11 66 KED “§*
83 GT0 i@ 34 2 67 ADY

33 ¥ 68 GTO E
@4¢LBL "BODEH* 36 PI 69 RTH

85 SF @2 7 *
78eLBL D"

@6eLBL 18 J8+LBL 11 7IFIE @
87 SF 21 39 STO 28 72 CF 29
g CF 82 48 XEQ “K- 73 *R*
89 SF @9 41 FI¥ ¢ 74 ENTERY

42 F57 @1 75 ¥iY

18¢LBL ¥" 43 FIX 3 76 RND
11 XE@ "FN" 44 RCL 22 77 ARCL ¥
12 ~0K?- 45 RCL 22 78 “F= "

13 TOME & 46 F57 81 79 RO
14 PROMPT 47 P-R ge SCI 3
15 F§? 22 43 F5? 81 81 SF 29
16 GT0 "y 49 GTD 83 82 ARCL IND ¥

58 L0G 83 CF 22
17¢LBL E 51 28 84 TONE 6
18 FIX 4 32 * 85 PROMPT
19 SF 21 86 F5? 22
28 CLA S3¢LEL 85 87 STG IND Y
21 FC? @2 54 RND 88 FS2C 22
22 ~2pI" 3 RECL % 89 X{OY
23 "HF = - 36 FC? 8l 98 156 X
24 TONE 9 57 “FdB, & 91 GT0 “D¥"
25 PRONPT 58 FS? @1 92 ENI

26 RARCL ¥ 39k H CAT 1
27 FC? 55 68 XOoY LBL"EODER
28 CF 21 61 RND LBL"BODEH
29 AVIEW 62 ARCL ¥ LBL™Y
38 5F 21 63 TONE 8 LBLD¥

31 CLA 64 AYIEW END 285 BYTES

Figure A7.S. Programs “BODEH” and “BODER”: listing.



BI+LBL "FH"
az @
@3 "NUN -
24 XEQ 1@
a RCL 18

a6 STO @8
87 ADY
a2 18.81
@9 SF 68
16 "DEN -
11 XE@ 18
12 CF 22
13 RTN

14¢LBL 18
15 "FDEG?"
16 TONE 9
17 PROMPT
18 570 18
191 E3
28 7
2l +
22 FC? 53
23 XE@ "DE"
24 F57 53
25 PRREGX
26 RCL 18
27 1.887
28 +
29 18.81
38 XOY
31 FS?C 68
32 +
33 STO 89

34¢LBL @3
35 CLX

36 X{> IND @89
37 156 @9
38 GTO a3
39 RTN

480LBL K"
41 RCL 28
42 K12

Figure A7.6.

43 CHS
44 570 21
45 RCL 97
46 *
47 RCL @3
48 +
49 RCL 21
o8 *
a1 RCL @3
32+
a3 RCL 21
34 *
95 RCL @1
36 +
37 RCL 20
a8 *
39 RCL @6
68 RCL 21
61 *
62 RCL 84
63 +
64 RCL 21
65 *
66 RCL 82
67 +
68 RCL 21
69
76 RCL 60
71+
72 R-P
73 ST0 22
74 ST0 31
73 ROY
76 STO 23
77 RCL 17
78 RCL 21
79 *
88 RCL 15
81 +
g2 RCL 21
83 *
84 RCL 13
85 +
86 RCL 21
87 *

Subroutines “FN” and “K”: listing.

LBLTFN
LBL™K
END

g3 RCL 11
83 +
9@ RCL 2@
9 =
92 RCL 16
93 RCL 21
94 *
95 RCL 14
9 +
97 RCL 21
93 *
93 RCL 12
188 +
1el RCL 21
182 *
183 RCL 189
184 +
185 R-P
186 ST/ 22
187 ST0 3@
188 XOY
189 ST- 23
118 FS? 84
111 XEQ 84
112 RTN

113¢LBL 04
114 RCL 23
115 RCL 01
116 RCL 0@
117 7
118 RCL 11
119 RCL 18
128 7
121 -
122 RCL 28
123 *
124 R-D
125 -
126 RCL 22
127 P-R
128 R-P
129 XOY
138 STO 23
131 END

CAT 1

219 BYTES
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|
Display numerator
and denominator
and prompt for

changes

UBODEH

 

  

  

“FN” UDX”

 
       

   
 To start here, XEQ “E"’
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function

and

display

 

uKu

          

IIFNI’ IIKII

[ |
Calculate L(jw)

 
 

  Display function

and prompt

for degree

XEQ “DX" No

I

Clearregisters ]
above polys Remove linear phase

 

   
 

Yes
 

     
   

 
RTN RTN

Figure A7.7. Flow charts for program “BODE” and subroutines “FN” and “K”.

and it prompts for changes. At label “E” it prompts for the frequency at which

the function is to be evaluated and puts the frequency in radians per second

into R20. It then calls on subroutine “K” to evaluate the function. Finally, at

label 05, it displays the results of the calculation in the desired form as

controlled by flag 01. (Flag 03 is used for program “SLC”, to be described in

Section A-11.)
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Subroutine “FN”

As noted previously, this subroutine prompts for the degree of numerator and
denominator and displays the coefficients of each, allowing the user to change
them, one at a time. It also clears the registers (label 03) such that the

coefficients above the highest degree are zero (up to the seventh degree).

Subroutine “K”

This subroutine evaluates the numerator and the denominator separately and

divides the latter into the former. It uses the polynomial in nested form, as
described in Chapter 2. This subroutine could be much shorter (about 40 steps)
by use of indirect addressing. We use the longer form because it cuts execution
time roughly in half—from 8 to 4 s. The magnitudes of the numerator and the
denominator are stored in R30 and R31 for use in program “SLC”. Linear
phase is removed in subroutine 04 when flag 04 is found to be set.

B1+4LBL -BORAD- 33 FC? 81 &5 GI0 85
82 CF 83 34 ~dB PH" 66 LOG

35 F57 a1 67 28
B3¢LBL ¥ 36 "RE In- 68 %

84 XEQ “Fj- 37 ACR

a5 =0K?- 38 PRBUF 69¢LBL 85
86 PROMPT 33 ADY 78 RND
@7 F57? 22 48 RCL 26 71 ACE

88 GT0 =y~ 41 F5? 68 2
42 GT0 83 73 ACA

89+LBL 82 47 174 74 200
18 FI¥ 4 44 181X 75 RHD

11 =4FMIN, MAX" 76 ACE
12 RVIEM 43¢LBL 83 77 PRBUF
13 24,825 46 570 27 78 F57 83
{4 PRREGK 47 RCL 24 79 XE@ -G-
13 ABY 43 570 28 38 FIX 4
16 F5? @ 81 RCL 27
17 =4F INC" 49¢/BL 11 82 FC7 oa
18 FC? @a o8 XE@ "K* 83 5T 28

19 "PTS/BEC:" a1 CLA 84 F57 @a
28 AYIEW 52 RCL 28 85 5T+ 28
21 26 33 FIX 3 86 RCL 25
22 PRREGX 24 RND 87 RCL 28
23 RDY 33 ACY 88 X{=Y?
24 COF 22 6 = " 8% 670 1
25 "0K?- 37 ACA 98 END
26 PROMPT 38 FC? a1 CAT ¢
27 F5? 22 39 FiX 2 LRLTFN

26 GT0 a2 68 RCL 23 LBLTK
29 & 61 RCL 22 EHD 216 BYTES
38 = 4F- 62 F5? 81 LBLTBORAD
31 AcH 63 P-R LBL™Y
32 SKPCHR 64 FS5? @1 EHD 221 BYTES

Figure A7.8. Program “BORAD”: listing,.



Figure A7.9.

Programs for Evaluation of Rational Functions

Program “BHZ”: listing.

A1+4LBL "BHZ" 38 PRBUF 74 LOG
82 CF 83 39 ADY 75 26

48 RCL 26 7 %
B3eLBL "v- 41 FS? @@

84 XEQ “FN- 42 GT0 83 774LBL 85
85 =0K?" 43 1% 78 RHD
86 PRONPT 44 181X 79 ACK
87 F5? 22 ga - -
88 GT0 -y~ 45¢LBL 83 81 ACA

46 S70 27 82 ¥

B9+LBL 82 47 PI 83 RND
18 FIX 4 48 2 34 ACY
11 “(F3- 49 * 85 PRBUF
12 AYIEH 98 RCL 24 86 F5? 83
13 24.825 3l * 87 XE@ *5"
14 PRREGY 52 570 29 88 FIX 4
15 ADY 89 PI
16 FS? 88 93¢LBL 11 99 2
17 F INC" 34 XEG “K° 9] *
18 FC? @9 55 CLA 92 RCL 27
19 “p/D" 36 RCL 28 93 FC7? @9
28 AYIEW 57 PI 94 ST+ 28
21 26 58 2 95 *
22 PRREGK 39 * 9% F5? 88
23 AV 6@ 7 97 ST+ 28
24 CF 22 61 FI¥ 3 93 PI
25 =0K?" 62 RND 93 2
26 PROMPT 63 ACK 188 *
27 F§? 22 64 = - 181 RCL 25
28 GT0 82 65 ACA 182 *
29 6 66 FC7 81 183 RCL 28
- F 67 FIX 2 184 ¥{=Y?
31 ACA 68 RCL 23 185 670 11
32 SKPCHR 69 RCL 22 186 END
33 FC? 81 78 F5? 61 CAT 1

34 ~dB PH" 71 P-R LBLBHZ
35 F5? 81 72 F5? @l LBL™Y

3% "RE  IN- 73 G670 &3 END 224 BYTES
37 ACA .EHD. 83 BYTES

Programs “BORAD” and “BHZ”

These programs operate in the same way as the “BODE” program except for

automatic frequency stepping and data format. In the program listings (see

Figs. A7.8 and A7.9) frequency incrementing is provided by the steps following

label 02, which also provides the heading for the columns of figures. The

program terminates when the frequency exceeds the maximum value chosen (in

R25) and is contained in the last six steps of “BORAD” and the last nine steps

of “BHZ”.
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Programs for Evaluating Rational Functions: Registers

R00-RO7 Numerator polynomial
RO8 Degree of numerator

R09 Loop index for numerator

R10-R17 Denominator polynomial

R18 Degree of denominator

R19 Loop index for denominator
R20 Angular frequency w
R21 — w?
R22 Magnitude of L( jw)

R23 Phase of L( jw)

R24 F.i
R24 F,.
R26 F increment or points/decade
R27 Frequency incrementing constant

R28* Coefficient index for sensitivity

R29* Loop index for coefficient
R30* Magnitude of numerator polynomial
R31 Phase of numerator polynomial

R32* Magnitude of denominator polynomial
R33 Phase of denominator polynomial

A-8 PROGRAM “RCU”: REVERSE CUBIC EVALUATION

This and the following program “RQU” (reverse quintic evaluation) are useful

in modeling structures having polynomial loss characteristics. Program “RCU”
evaluates the coefficients of L(jw) at two frequencies. It implements egs.
(2.5-6) to (2.5-9), allowing the user to model measured or calculated structures

whose loss response is known to be cubic polynomial in character and whose

frequency response is known in magnitude and phase at two frequencies.

Flags are used to accommodate various cases. If the magnitude is expressed

in dB, clear flag 01; if a ratio, set flag Ol. If the frequency is expressed in

gigaradians per second, clear flag 02; if in gigahertz set flag 02. The frequency

and the loss and phase data are stored in R10-R15; the polynomial is stored in

R0O0-RO03.
To use the program afterit is loaded into the machine, “RCU”is executed.

(See Fig. A8.1.) All flag status and data required are asked for by prompts.

With no printer, execution halts at each prompt for input data, allowing the

user to modify the data, as in program “BODE”. With the printer connected,

the input data are printed without halting the program. This is shown in the

first example. If halting the program with printer connected is desired, set flag
00, as shown in the second column of the examples, in which the data are

*Used for Program “SLC”



Program “RCU": Reverse Cubic Evaluation

AEG =RCU- SF @2
EVYAL CU COEF AEQ "RCU"

511

AEQ "RLCU"
EVAL CU COEF

EVAL CU COEF
d8? CF @1
GHZ? SF 82 dB? CF @i

GHZ? SF 82
dF1: 8.5688

dB: @.8788 4F1: 8.5088
PH: £8,28088 RUN

dB: 8.8786
4F2: {,A008 8698 RUH
dB: 3.@lea PH: £8.2088
PH: 135. 6008 68.2668  RUN

COEF: 4F2: 1.8084
ad = 1.8813 RUH
al = 1,299 dB: 3.2108
ac = 2.8613 RUN
a3 = 8.9995 PH: 135, 0068

RUN

COEF:
aB = 1.o@ee
al = 2.8885
aZ = 2,08868
ad = {.8865

Figure A8.1. Program “RCU”: examples.

dB? CF 81
GHZ? SF 82

dF1: 8.5808
.2688  RUN

dB: B.8698
2288  RUN

PH: 68,2668
28.2988  RUN

4F2: 1.0886
.7ag@  RUN

dB: 3.8148
2.9288  RUN

PH: 135.0606
97.8788  RUN

COEF:
aé = 1.08084
al = 2.47684
az = 2.43¢7
ad = 8.9933

CF @@
AEQ "RCU"

EVAL CU COEF

dB? CF 81
GHZ? SF 82

4F1: 8.2808
db: 8.2208
PH: 28.2%4

dF2: 8.7884
dB: 2.9208
PH: 97.2188

COEF:

ad = 1.8884
al = 2.4784
a2 = 2.4387
a3 = 8.9993

modified slightly. Both examples start with the data for a cubic Butterworth

polynomial and find the corresponding coefficients. In the third column of the

examples, loss and phase are changed to those of the first example of the

“BODE” program, and the coefficients for the maximally flat delay poly-
nomial are found. We then clear flag 00 to show the printed output for this

condition. Round-off error in the loss and phase introduces slight errors in the

coefficients.
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Program Description

This program (Fig. A8.2) implements egs. (2.5-6) through (2.5-9). The data are

placed in the appropriate registers in the first 38 steps; subroutine 04 is

essentially the same data display subroutine used in “BODE”. The calculation

is done in steps 39-121, and the output display is done by subroutine 06. The
calculation takes less than 5 seconds, and somewhat more with the printer

connected.

@leLEL ~RCU" 43 FI
B2 5F Zi 44 #
83 SF 12 43 5T+ 18

84 "EVAL CU COEF- 48 57+ {7
83 AYIEK

85 CF {2 47¢LBL 82
a7 ALY 45 RCL 13

a8 =de? CF a1 43 Bt
@3 AVIEW o8 RCL 18

ia "GhZ? SF @2~ a1 &2
11 AVIEM 3z -
2 ALY 32 1/%

13 18 34 570 87
14 570 &4 a2 CHS
15 CLA 36 570 @83
16 FC? 82 37 RCL i@
17 "gn 38 Xt
18 "FFi® 3% #
19 XEG 84 68 ST0 a2
28 F5? 81 &1 RCL 13
21 "MG" 62 212
22 FC? &l 63 RCL &7
23 “dé" b4 *

24 XEG 84 63 STO 86
23 "PH* &6 ADY
26 XEQ B4 67 “COEF:*
27 A &3 AYIEM
g FC? @2 69 RCL 12

29 =& 78 RCL 1]
J@ “HF2- 71 FC? @l
31 XEG 84 72 XEQ @8
32 F3? 8l 73 P-E
33 "MG- 74 STO 16
34 FC? 81 73 KOy
35 =dp" 76 RCL 18
36 KEQ B4 77/
37 "PH- 72 570 17
38 XEG 84 79 RCL 15

88 RCL 14
I9¢LBL @82 gl FC7 8l
48 FC? B2 82 XEQ @@
41 GT0 @3 83 P-R
4z 2 84 570 12

Figure A8.2. Program “RCU”: listing.
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Program “RCU”: Registers

R00-RO3

RO04

RO5

R06-R09

R10-R15

R16-R19

32 RCL 88
33 RCL 18
94
95 +
9% ST0 88
97 RCL 86
32 RCL 17
39 =
188 RCL 83
iei RCL 19
ia2 =
183 +
184 570 @
185 RCL &7
186 RCL 16
1687 *

188 RCL 89
189 RCL 18
118 =
111 +
{12 ST @2
113 RCL 87
114 RCL 17
115 *
116 RCL 99
117 RCL 19
115 =
119 +
128 570 &3
121 .883

{22¢LBL 86
123 =a®
124 ENTERt
125 BOY
126 FIX 8
127 RHD

LBLRCE
END

Figure A8.2. Continued.

Cubic coefficients (results)

Input data index

Used

Input data: F,, L; F,, L,.
Used

513

128 CF 29
29 ARCL X
138 °F = -
131 FIX 4

132 ARCL IND X
133 AVIEN
134 X0V
135 CLA
136 ISG X
137 GT0 86
138 RTN

139+LBL 8@
148 28
141 #

142 181X
143 RN

144¢LBL 84
145 RCL IND 84

146 RHI
147 " -
148 ARCL X
149 CF 22
158 F5? 89
151 PRONPT
152 FC? 08
153 AYIEN
154 FC? 22
155 610 85
156 XOY
157 RIN

138 STO IND 84

139¢LBL 85
168 CLA
161 156 84
162 DEG
163 END

CAT 1

299 BYTES
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A-9 PROGRAM “RQU”: POLYNOMIAL COEFFICIENTS FROM LOSS AND

PHASE FOR QUINTIC POLYNOMIALS (USE WITH “MTR”)

This program extends the “RCU” program for up to quintic polynomials.
Operation is the same as “RCU” except that the program requires loss and
phase at three frequencies as noted in Chapter 2.
The program implements egs. (2.5-12) and (2.5-13). The input data are the

three frequencies at which L( jw) is evaluated and the three values of loss
magnitude and phase at these frequencies. A subroutine, “MTR”, which must
be loaded in with “RQU”, inverts the frequency matrix and performs the

matrix multiplication, thereby finding the six coefficients of the polynomial.
Use of the program is self-explanatory in that the flag options are displayed

or printed when the program is executed (XEQ “RQU”), as seen in the first

example (see Fig. A9.1). After the flag options are listed, the input data is

WL
AL

1 10 COE! SF a3 KEG ROU"

gééETiéSEUEF FEQ “Ral” QUIHTIC COEF
GUIHTIC COEF FROM LOSS

dE? OF @ FROM LOSS

(HZ?, SF gz dB? CF &

DATA ON CARDS? d? CF @t GHZ?, SF 82
o g GHZ?. SF 82 DATA ON CARIS?

IATA ON CARDS? SF &3
SF 82 READ DATAdF1 = B.588E

RUK
de = B.7548

7978 RUH
PH = 68,5288

63,5088 RUN

4FZ = 1, 6BEE
LR

db = 33,2678
J.4378 RN

PH = 136.6088
136.5388  EUM

dF3 = Z.00u8

14,3848
14,9368 RUM

PH = -11Z,8626
-113.9888  EUH

dE

1. @aa8E
2,7899
2.4938
1.411%
B.4z88
8.6446

18,8188 WITAX

ad

ac

1
]

-,
0
1

f
n
o
n
o
n

i =

ad

as

Figure A9.1.

RERD DATR

dF1 = 8.50808
db = 8,7588
PH = 68.5188

dF2 = 1.@0608
db = Z.2788
PH = 136.6380

dF3 = 2.4688
dg = 14,3608
PH = -112, 5688

al = 8.9944
al = 2.3084
a2 = 2.4883
ad = 1.4528
ad = B.4348
ad = B.864c

Program “RQU”: examples.

£F1 = 8.5088
dB = 8.737¢
PH = 68,5688

iF2 = 1,680
4 = 1.4378
PH = 136.5300

4F3 = 2.0808
dB = 14,3588
PH = -113.9808

al = 1,0ea8
al = 2,3899
az = 2.4988
al = 1.4119
a4 = B.4208
ad = B.8448
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displayed or printed, giving the frequencies and the loss and phase values at
the three frequencies. As in “RCU”, when no printer is connected, program
execution halts at each prompt for input data; if this is desired when
the printer is connected, set flag 00. This was done in the first column of the

examples; flag 00 was cleared in the remaining columns. To evaluate the
quintic polynomial coefficients, clear flag 01 if the loss magnitude is in
decibels, set flag 02 if the frequencies are in hertz (or gigahertz), and press

R/S. The resulting printout will give the coefficients.

The program can be used for polynomials of any degree up to quintic. For

polynomials up to cubic, however, program “RCU”is shorter and faster. This
program takes about five times as long as “RCU”.

In the examples a quartic polynomial actually encountered in the design of a

fiber optic preamplifier is given by

L(p)=1+2.19p+2.06p>+p*+0.22p*

For purposes of the examples, this polynomial will be inflated in two ways.

Both have the effect of adding approximately 0.2 ns of delay to the poly-

nomial. In the first, we add the delay by multiplying the polynomial by e%27:

L,(p)=(1+2.19p+2.06p>+p3+0.22 p*
)e2»

At frequencies of 0.5, 1.0, and 2.0 for w/w,, the magnitude and the phase of

this polynomial with delay are

L,(j.5)=0.754dB /68.518°

L,(j1.0)=3.267dB /136.677°

L,(j2.0)=14.304dB / —112.862°

This polynomialis evaluated for its coefficients in the first example.
In the second example the original quartic is inflated by a linear factor

(1+0.2p) approximating the delay:

L,(p)=(142.19p+2.06p>+p*+0.22p*)(1+0.2p)

=1+2.39p+2.498p2+1.14p>+0.42p*+0.044p°

and the evaluation of the polynomial by “BODE”gives

L,(j0.5)=0.797 dB /68.499°

L,(j1.0)=3.437dB /136.528°

Ly(j2.0)=14.949 dB / —113.979°

In the second example the coefficients of this polynomial are evaluated.
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Program Description

Input data are treated similarly to those in program “RCU”, with the frequen-

cies and losses placed in registers R10-R18 in the first part of the program.
(See Figs. A9.2 and A9.3.) Note that this portion calls on subroutine A, which
in turn calls on 04, the display subroutine for the input data.
At label B, subroutine “M” in “MTR”is called. This subroutine places the

frequency matrix described in Section 2.6 in RO0-RO08; this matrix is then

BieLRL "ROU- 43 * 27 RIN

82 SF 21 44 5T* 18 84 ST IND 89
@3 5F 172 S ST+ {3

@4 “QUINTIC COEF- 46 5T+ 16 SSeLEL 85
@5 RYIEW 86 155 89

@6 “FROM L05S* 47¢LEL B 37 DEG
g7 AVIEN 45 CLD 38 CLA
a8 CF 12 43 XER M- 29 RTH
35 any SE KER ©

18 487 CF 81° a1 AY 9geLEL 6!
11 AYIEW 52 FC? 82 91 70

12 = CHZ?. SF @z 53 RTH 57 /

13 AYIEW 34 P1 93 104%
14 18 5 2 54 RTH
15 $70 @9 wmro o

16 "DATA O CARDS?" 37 51/ 18 9SeLEL ©
17 AYIEW 38 5T/ 13 9% RCL 12

18~ GF p3 33 517 1e 37 ROL 11
19 AVIEK 68 RTH 98 FC7 @1

28 “READ DATR- o 99 XEQ B
21 F§7 @3 6i¢LBL R 188 F-R
22 AYIEH 62 ALY 181 70 28
27 {6,818 63 AER B4 182 RO

24 FS73 €4 FC7 81 182 RCL 18
25 RETAY 65 "db 184 ¢

26 CLA 66 F37 A1 185 570 3!
27 FL7 @7 &7 "HAG" 186 RCL 15
ag g 62 XEQ 84 187 RCL 14

29 "HFL" 63 "PH* 162 FC? 81
38 ¥ED A 169 ¥EG 01
31 FC7 @2 7BeLEL B4 118 P-R
2 d 71 RCL IND 83 111 ST0 32
37 =HF2° 72 RN 112 80Y
74 ¥ED @ 73 k= 113 RCL 132
35 FC7 82 74 ARLL # 144 7

3 g 75 OF {5 670 12
37 CHFI 7 ;g;gsfi 116 RCL 18
38 ¥EO A 77 AYIEK 117 RCL 17
39 FC7 A2 78 FS7 B8 113 FO7 @t
48 GTO B 79 PRONFT 119 ¥EQ A1
41 2 88 FL? 22 128 F-F
42 PI 81 GT0 @5 121 5T0 3¢

g2 2OY 33 %Oy

Figure A9.2. Program “RQU": listing.
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{23 RCL 16
{24 7

123 578 35 {64¢LBL 86

126 ¥EGQ 82 165 @

127 RCL 86 166 RCL 31

128 570 81 167 XEG @7

125 RCL @7 168 RCL 33

138 570 83 169 XEG 87

131 RCL 88 {7@ RCL 35

132 ST0 85 171 XEQ 87

133 RCL 3@ 172 RTH

134 ST0
135 RCL 32 173¢LBL 87

136 570 33 174 RCL IND 19

137 RCL 34 175 *

138 570 35 176 +

139 XEg 82 177 3

148 RCL 86 178 5T+ 19

141 STO @a 179 RIN

142 RCL 87 188 RTH

142 ST0 82
144 RCL 88 181+LBL 18

145 ST 84 182 =a"

146 ADY 183 ENTERt

147 883 184 §OY

143 XEQ 18 185 FIx @

149 RTH 186 CF 29
{57 RHE

158+LBL B2 183 ARCL X

151 2@ 183 *} = -

152 ST 19 198 FIX 4

153 XEQ 86 191 ARCL IND ¥

154 ST 85 192 AVIEH

135 21 193 CLR

156 570 19 194 KO

157 ¥EG 86 195 ISG ¥

158 STO @7 196 GTG 18

159 22 197 END

168 ST0 19 ot t

161 XEG 86 LBLTREU
162 570 88 END 423 BYTES

163 RTH

Figure A9.3. Subroutine “MAT”: listing.

inverted in “MTR” and the inverse is stored in R20-R28. In subroutine C,

which is then called on, the column vector consisting of the real part of L( jw)

and the imaginary part divided by the frequency is set up in R30-R35. The

matrix multiplication is carried out in subroutine 02, first for the imaginaries

and then for the reals. This completes the calculation. Output data are

displayed in subroutine 10.

Program “RQU”: Registers

R0O0-RO8 Frequency matrix

R00-RO05 Quintic polynomial coefficients
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BleLBL “HAT"
a2¢LBL 88
83 8
84 STO 19
85 RCL 86
86 RCL 88
87 XE@ 89
88 RCL 94
89 RCL 89
18 XEQ 83
11 RCL 83
12 RCL &7
13 XEG 89
14 CHS
15 RCL &3
16 RCL 28
17 XEQ 89
18 RCL 81
19 RCL @9
28 XEQ 89
21 RCL 82
22 RCL 87

23+LBL 89
24 156 19
25 DEG

26 RCL IND 193
27 *
28 *
29 +
38 RN

JieLBL “H"
321
33 ST0 81
34 570 82

570 @3
RCL 1@

]
L
Y

Y
|

2:

=
4
r
o
C
n

e
l

39 STO B4
48 12
41 570 &
42 ECL 13
43 %12
44 CHS
45 570 @83

45 X2
47 STG 83
48 RCL 15
49 %42
56 CHS
51 570 @6
52 %12
53 570 @9
54 XEQ 88
35 17%

56 RCL 81
57 RCL @9
R
59 RCL 83
68 RCL 87
61 KEQ 23
62 ST0 24
63 CLX
f4 RCL 83
63 RCL 84
66 *
67 RCL 81
£8 RCL 86
&9 XEG 83
78 5TD 25
71 CLY

83 RCL 82
34 RCL @4
83 XEf a3
36 510 28
87 LLX
88 RCL a2
39 RCL 88
8 *

Figure A9.4. Continued.

LBLTHET
LEL™H
END

31 ROL &2

32 KCL 83

93 XEG 83

94 374 24

95 CLX

9 RCL 82
97 RCL 86
9% *

9% RCL 83

i6@ RCL 85
18] XE@ 83
142 570 22
183 CLX
184 RCL 85
185 RCL 89
{86 *
187 RCL 86
188 RCL 88
189 XEQ 63
118 570 28

1ii CLX

{12 RCL 86

113 RCL &7
114 *

119 RCL &4
116 RCL 89
117 XEQ 83
118 570 23
119 CLX
128 RCL 84

121 RCL 83

122 *
{23 RCL 85

124 RCL &7
125 XE@ 83
126 57D 26
127 RTH

125+LBL 83
129 %
138 -
131 #
132 END

LaT |

,_ 1
)

4
rr
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R06-R08 Temporary coefficient storage

RO9 Input data loop index
R10-R18 F,L;FE,L;E, L,
R19 Loop index

R20-R28 Inverse frequency matrix

R30-R35 Real and imaginary loss column vector

A-10 PROGRAM “POLYTBL”: STANDARD PERFORMANCE SPECIFICATION

POLYNOMIALS (CAN BE USED WITH “MFD” AND “CH”)

This program provides a library or table of standard loss functions: maximally

flat amplitude (Butterworth), maximally flat delay (Bessel), transitional be-
tween the two (Peless and Murikami), and Chebyshev. Equations used by the

program are discussed in Section 2.5.
To use the program, load it into the machine and execute “POLYTBL” (see

Fig. A10.1). The program will prompt for the degree desired; after this has
been supplied, the program will ask for one of six options. There are four main

functions and two modified functions available. The main four can be assigned
keys (in user mode), for example: “B” for Butterworth, “C” for Chebyshev,

“D” for maximally flat delay, and “TAN” for transitional. Each program will

ask for the degree of the polynomial desired. In addition, the Chebyshev
program will ask for the ripple width in decibels, and the transitional poly-

nomial program will ask for the interpolation constant m, 0=m=1, where

m=0 is for MFD and m=1 is for Butterworth. The desired polynomial is then

printed out. Polynomials up to sixteenth degree can be found.

The two modified functions, “DL” and “MFA”, are obtained by executing
“DL” or “MFA”. Function “DL” is a renormalized MFD function to obtain
Bessel polynomials normalized to unit delay (hence b, is made unity). It is

useful for delay line analysis and design. Function “MFA” is the same as

Butterworth but normalized in frequency to give a maximum in-band error (in

dB) as specified by the user. If 3.0 dB is specified, the ordinary Butterworth

polynomial is obtained, but any other error such as 0.1 dB may be specified.
The dc values of all polynomials except even-degree Chebyshev are normal-

ized to unity; even-degree Chebyshev polynomials have a dc value equal to

unity times the ripple width expressed as a ratio. Various frequency normaliza-

tions have been used in the literature. We choose an asymptotic cutoff

frequency of unity for the Butterworth, the maximally flat delay and the

transitional polynomials. The Chebyshev is normalized to the upper edge of

the ripple width channel (it remains within the ripple specification up to unity

frequency).

For convenience, “POLYTBL” has been broken into three parts, so that the

user need not load in more of the program than is needed. The control

program carries the label “POLYTBL” and is combined with “BUT” and
“MFA”, the Butterworth polynomial generator programs (see Fig. A10.2). The



XEE "POLYTBL"
FOLY THEBELE

DEG?
j.emmr  RUN

B, C. D. TR, DL. WFA?
AEG “BUT"

BUTTERWORTH

a2f= 1.88a0
a2l= 2.p0e8
a22= 2.080e
az2i= 1.98048

ASK “WFR® 11
XEQ "NFR"

MFA

ERROR TOL.. dB?
2888 RUN

a2e= 1. a8aa
azl= 1.282¢
alé= 8.7224
azi= 8.217!

XEQ “MFD"
MFT
alh= 1.08848
azl= 2.4k62
ald= 2.4329
azi= 1.9ea8

AEG "DL"
oLy

a2f= 1,000¢
azl= .@a@a
al22= @.4808
azl= 8,8667

520

Figure A10.1.

(el “TR"
TERAHSITIONAL
N7

o888 RUN
azh= |,uAea
azl= 2.2289
az2= 2.2858
azi= 1,080

XEG “CH"
CHEBYSHEY
RIPPLE. dB?

2888 RUK
azl= 1,468
a2l= 1.8838
a22= 1.4148
a23= 8.8684

XEQ "POLYTEL"
FOLY TRELE

DEC?
12.0888  RUNH

B, C. D, TR, DL. WFA?
AEQ “CH"

CHEEBYSHEY
RIPPLE. dB?

8388 EUM
32h= 1,Ba5%
azl= 18,1582
a22= 52.8473
azd= 172.6728
al24= 425.4421
a2i= 821.6344
azt= 1218,585%1
az7= 15%4,169%4
a2f= 1767.5058
az29= 13512795
alB= 1833, 1645
all= 415.6738
al2= 228.3809

Program “POLYTBL”: examples.

XEQ "POLYTEL"
FOLY THRELE

DEG?
J.eeBa  RUM

B, C. B TR, DL, MFR?
XEQ “CH"

CHEEBYSHEY
RIPPLE. dE?

.2BBE  RUM
az= 1.06088
a2l= 1.863%
az2= 1.4148
a23= 8.8684

20,8868
XEG "¥-"
¥EQ ==

SCHLE FOLY

POLY R
DEG?

3.Bo68 RLH
R8= 1.BABEE
Ri= 1.884E#
R2= 1.415E8
R3= 5.684E-1

gK?
RUN

POLY E
ba?

{ RiH

FeB-Fep?
RUH

bi:

L
I FUK

bH?
1 Rl

FeB-FeR=1,B43E¢

kie= 1.606cE
Ril= 1.891c@
Ri2= 1.554E8
kil= 1.0806E#
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" 48 150 & 79 YH

i2 41§70 &1 S8 ¥

i 42 RN 81 ST0 IND (4

14 g2 150 16
55 43¢LBL "MFR" 83 DEL

oLy 44 §F 12 34 156 14

@7 AYIEK 45 "MFR" 8% O7G 15

B CF 12 46 AVIEW 8 GTO “P-

85 any 47 [F i2

i@ 28,82 45 ADY greLBL "BUT"

11 STD &4 49 &F 85 88 [F a4

12 =DEG?" 38 TONE ¢ 89 SF 12

13 TOKE 3 31 "ERROR TOL.. dB?" 9 “BUTTERWORTH"

14 PRONFT 3¢ PROMPT 91 e?IEE

15 STD 88 33 18 9§ CF 12

16 ADY 34 7 93 ADY

17 "8, C, B, TE. = 3 184 ’

18 =FDL. MFEZ" 36 1 94+BL "FO"

13 PROMPT ar - 95 RCL @6

58 RCL ae 9 2

2u+LEL -P" 3% 2 7 -

21 RCL @9 68 * 95 2

2z 1 B2 178 99 s

&3 s 62 V1% 188 570 @c

24 RCL 84 3570 14 18 @

23 + 64 KER “FR* 182 570 81

63 CF €5 183 STG &2

Zo¢LBL 8] 66 RCL B4 a4 |

27 "a" 67 RCL @8 185 STO IND @4

23 ENTER? 68 1 E2 186 RCL @4

29 RO 69 4 187 RCL @

JBFIX & 78+ 188 t

31 CF 29 711 189 570 @83

32 FRLD 72 570 16 118 2

33 AREL X 73+ ill 5T+ 85

34 F= - 74 570 14 11z @

J5FIX 4 113 570 19

36 ARCL IND 2 7O¢LBL 16 .

37 AVIEM 76 RCL IND 14 114¢LBL {1

33 CLA 77 RCL 18 115 570 IND 83

39 RO 78 RCL 16 116 DSE @5

Figure A10.2. Programs “POLYTBL”, “BUT”, and “MFA”: listing.

Bessel polynomials generated by “MFD” and “DL” as well as the transitional

polynomial generator, “TR” are contained in a second program (see Fig.

A10.3) that must be run with “POLYTBL”. Finally, “CH” (see Fig. A10.4), the

Chebyshev polynomial generator, is in a separate program that also must be

run with “POLYTBL”.
All six options are illustrated in the accompanying examples of Fig. A10.1,

which generate six cubic polynomials, one of each type possible with the

program, and one twelfth-degree Chebyshev polynomial with 0.05 dB ripple.

Once generated, polynomials up to eighth degree can be scaled to any desired

dc loss and cutoff frequency by using program “N’’.
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117 670 11
112 RCL 82
119 2
126 /
121 FRE
22 Y=
127 5F 86
124 %87
125 XEQ 18

126#LBL 12
127 RCL 82
128 RCL @4
129 +
138 STO @2
131 2
132 ST+ &3
133 XE@ "TH*
134 XEQ "ML"
133 2
136 ST+ @2
137 1
138 ST+ @&l
133 RCL 86
148 RCL @
141 X{=Y?
142 G756 12
143 FC? @5
144 GTG P~
145 RTH

146¢LBL =TH"
147 RCL @8
148 1
149 -
138 RCL 8l
151 2
152 *
cK
oo

154 RCL 8@

155 7

156 98
157 *
158 (05
139 2
168 *
161 570 12
162 1
163 ST0 13
164 STO 1]
165 F5? 84
166 XE@ "TC"
167 RTH

163¢LBL "ML"
169 RCL INT 83

178 RCL 11
171 *
172 DSE @3
173 DEG

174 RCL IND 83
175 RCL 12
176 *
177 +
178 DSt a2
179 DEG

186 RCL IND 83
18! RCL 13
g2 #
183 +
184 2

185 57+ @3
186 RIK

187 570 IHL 83
138 DISE 82
189 GT0 “HML-
198 RTH

191¢LBL 1@
192 .5
193 S7- @6
134 1

Programs for Manipulating Polynomials

135 §78 21
19¢ ST0 @2
197 FS7 84
198 ¥EG H
199 RTH

268+BL H
281 RCL 89
282 ST 21
283 RTH

2B4eLBL "¥--
285 510 19
286 .8n38
287 STO0 89

288eLBL 67
289 RCL IND @9

218 %4> 19
211 STO IND @9

212 156 19
213 DEG
214 156 @89
215 CT0 &7
216 END

CAT 1

LBLTPCLYTBL
LBL'F
LBLTMFR
LBLTEUT
LBLTFR
LBL™TH
LBLHL
LBLT¥-
END 432 BYTES

Figure A10.2. Continued.

An example of scaling is given in the third column of the examples. Since the

scaling program, “N”, operates on a polynomial in registers RO0O-R08 and
“POLYTBL” leaves the generated polynomial in registers starting with R20,

the latter polynomial (up to eighth degree) must be moved to the lower-

numbered registers. This could be done manually, but it is easier and more
accurate to have a program do this for us, as did program “X-Y” in Appendix

A-1. Program “X-” exchanges the locations of two sets of nine registers; the

first set is in ROO—-RO8; the second set begins with a number that is keyed in

before executing “X-”. Thus the steps 10, XEQ “X-” would exchange the



Program “POLYTBL": Standard Performance Specification Polynomials

BleLBL "DL"
82 SF 12
83 =hLy-
a4 AYIEE
i3 ALY
ae CF 12

SF 85
AEG "FI-
CF 83
REL 21
570 18
RCL B4
RCL o8

-
R
G
R
S =

,.
.
—
D
D

2D
P
t
s

e
t

-
S
T
N

s
e
t
o

ea
et

e
D
D
e
O
L

P D C
F
Y
R
b
e

21eLBL 17
22 RCL IND 14

22 RCL 14
24 RCL 16
25 YH¥
26 7

27 5T0 IND 14
28 ISG 16
23 IEG
e I50 14
3670 17
32 670 -p-

J3¢LBL "NFD"
34 CF 85
35 5F 12
36 “HFD"
37 RVIEM
38 CF 12

J9¢LEL "FI"
48 RCL B@
41 570 a1
42 1

47 5T+ @
44 28
3 570 @3

& RCL 6@
7 RCL 8!
55 -
3 FACT
&

|o

RCL 8l
RCL @8

w
d
g

g
P
T

Le
d

T
R

k
e
D

S

o
h]

74 RCL 81

76 RCL @3
7F

78 570 82
2 RIN
# F5? 82
i ZEQ 13

82 570 IMD &2
82 IS; 8
84 DEG
85 D5k B
SHI 3

S
e

523

 

Boo
cte

e
t
I

0

=

1B24LEL “TR"
182 5F 12

184 “TRAHSITIONAL"

LELTIL
LBLTHED
LEL'FT
LELTTE
ERD

e
183

i
187
188
189
116
111
112
113
114
115
116
117
118
119
28
121
a0
i

£is

Figure A10.3. Programs “MFD”, “TR”, and “DL”: listing.

AYIEH

iF 82
IIHP:.IH

PRORPT
510 17
RCL oa
5710 @l
570 16
SF 85
ZEG “FR"
CF &3
RCL 16
570 e
ZEQ “FD"
CF a2
570 =p-

ERE
LAT

3 BYTES

numbers in registers RO0—R08 with those in R10-R18. This short program is

incorporated in “POLYTBL” for convenience.

In the example, we key in 20, XEQ “X-” to move the cubic Chebyshev

contained in R20-R23 down to R0O0-RO03. (The remaining five of the eight

registers moved play no part in the ensuing calculation.) The Chebyshev cubic,

scaled to unity cutoff frequency, is shown in the example.
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B1+LBL “CH" 35 2 67 GT0 15

82 SF 1?2 36 ¢ 63 RTH

@3 ~CHEBYSHEY" 37 570 83
84 AVIEW 32 RCL @8 6IeLBL “TC"

85 CF 12 39 RCL @7 76 RCL 12

86 "RIPPLE, dB?" 48 + 712

87 PROMPT 41 2 72 7

88 ENTERt 42 / 73 ACOS
89 18 43 STO 88 74 1

18 7 44 SF B4 75 P-R

11 184% 45 SF 83 76 RCL @9

12 570 18 46 RCL a8 77 %

131 47 ¥EQ "FA" 78 KM
14 - 48 CF 85 79 RCL 8%
15 1% 49 CF 84 28 *

16 570 8% 58 F5? 86 81 Xy
17 1 51 XEG 14 g2 R-P

18 + 52 GT0 =p- 83 17%

19 SORT 84 842
20 RCL @8 J3¢LBL 14 85 ST0 13
21 SORT 34 RCL 94 86 3O
22 + 55 RCL 88 87 COS
23 LK 96 1 E3 38 2

24 STD @9 37/ 89 *
25 RCL @8 38 + 98 RCL 13
26 7/ 59 §T0 19 g1 SERT

27 STO @9 68 RCL 18 92 %

28 E4Y 61 SORT 93 §T0 12

29 570 @2 62 ST0 17 94 END
36 RCL 89 CAT
31 CHS 63¢LBL 15 LBLTCH
32 Ef¥ 64 RCL 17 LBLTTC
33 ST0 @7 65 ST# IND 19 END 153 BYTES

34 - 66 I5G 19

Figure A104. Program “CH”: listing.

Program “POLYTBL” and Associated Programs: Registers

ROO Degree of desired polynomial

RO1-R19 Used
R20- Polynomial (result)

A-11 PROGRAM “SLC”: SENSITIVITY MAGNITUDE OF A RATIONAL

FUNCTION TO ITS COEFFICIENTS (USE WITH “BODE” AND “FN”)

This program (see Figs. A11.1 and A11.2), used in conjunction with any one of

the three evaluation programs, “BODE”, “BORAD”, or “BHZ”, evaluates the

sensitivities of the function L( jw) to its numerator and denominator coeffi-

cients. It is (of course) also applicable to polynomials, by setting the denomina-

tor to unity.
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To use the program, several cards must be loaded into the machine: “SLC”
itself, one of the three evaluation programs, and their associated subroutine

“FN”. By executing “SLC”, these other programs are automatically invoked
where needed. The user should be concerned only with the prompts for input
data from the various programs. When program “BODE”is used, no printer is
needed, although it is helpful; the other two evaluation programs require a
printer.

To try the program, load “SLC”, “BODE”, and “FN” into the machine; the
process is illustrated in the first example of Fig. Al1.1. As in “BODE”, the

program prompts for the numerator and denominator degrees and coefficients.
For the example, we used the Chebyshev polynomial normalized to unity

asymptotic cutoff (it was already in the machine from the discussion of
“POLYTBL”). After setting the input data, the prompt “2PIF= ” appears, to

which the response is .2. (Remember: When the printer is used, what the
calculator doesis left-justified and what you key in is right-justified.) The loss

and phase are then calculated and displayed, followed by a display of each of
the numerator coefficient sensitivities and the same for the denominator
coefficients. In this case, the denominator is unity as is the sensitivity of loss to

d,. The display then prompts for the next frequency, and the process is
repeated, as shown.

For users with a printer, the same example is repeated by use of program
“BORAD” instead of “BODE”. Flag 00 is set to obtain a linear frequency
increment. The results are the same, but the frequency is incremented auto-
matically.

To show the evaluation of denominator coefficient sensitivities, we use an

all-pass function having the numerator of the preceding example and an
identical denominator except that the sign of the odd coefficients is changed.
Such a function will have a magnitude of unity at all frequencies, and the
sensitivity magnitudes of the numerator and denominator coefficients should
be identical for each degree. The results are shown in the third column of the

examples.

Program Description

This program extends the sensitivity analysis in Chapter 2 to include the

sensitivities of the numerator and denominator coefficients of a rational

function. Invoking the sum rule for sensitivities (chapter 1), we obtain

L_ aisi/D(s) . a:s'1

%= N(5)/D(s) N(s)
 

where

 



KEQ =SLC®

L
S

coef 1

NUM DEG?

3.8888 RUN

Re8= 1.p9808

RB1= 1.8987

R82= 1.5544

R83= 1.0088

DEN DEG?

8.6880 RUN

Rig= 1.6608

0K?

RUN

2PIF =

2688 RUN

2PIF = 8.2800
2.874B, £21.34

5. L TO COEF:
HUM

i3: -42.8! db
i2: -24.28 db
i1: -8.52 db
18: -6.87 db

DEN
118: 8.008 db

1.8886  RUN
2PIF = 1.0888
8.424B, £121.9%8

5, L T0 COEF:
HUM
13: -8.42 db
i2: 3.41 db
il: 5,12 db
18: -8.42 db

DEN
118: 8,96 db

2PIF =

526

XEG =SLC-

L
s

coef 1

NUM DEG?

Rég=
R81=
RB2=
R@3=

3.0088  RUN

1. 6068
1.8%67
1.5544
1.8008

DEN DEG?

R18=
0K?

8.8888  RUN

1. 8668

RUN
AFMIH. HAY

R24=
R25=

8. 2808
2. 0688

&F INC

R26=

0K?

&F

8.288  0.87

S L

NUM

i3:

i2:

il:

i8:

DEN

8.2004

RUN
dB PH

21.54

10 COEF:

-42.41 db
-24.28 db
-8.52 db
-8.87 db

118: 6.688 db

8.488  8.19

5, L TD COEF:
HUM

13:

12:

Figure A11.1.

-24.86 db
-12.27 db

Program “SLC”: examples.

XE@ =SLC-

L
S

coef i

NUM DEG?

3. 0008

Red= 1.0008
Réi= 1,897
RB2= 1.5544
Ré3= 1.0806

DEN DEG?

J.8008

RiB= 1.0ees
Ri1= -1.8987
R12= 1.5544
R13= -1.6008
0K?

2PIF =

. 2808
2PIF = 8.2088
8.884B. ¢43.858

S, L TO COEF:
HUK
i3: -42.81 db
12: -24.28 db
11: -8.52 db
i8: -8.87 db

BEH
113: -42.81 db
112: -24,28 db
111: -8.52 db
i18: -8.87 db

2PIF =
1. aaag

2PIF = 1, @888
8.884B, £243.83

5, L TO COEF:
HUN

RUN

RUN

RUN

RUH

RUN



Program “SLC™: Sensitivity Magnitude of a Rational Function to its Coefficients 527

Sensitivities of L(s) to the denominator coefficients is found similarly, since
from Table 1.1 (Chapter 1),

si/t=s
Therefore, by the sum rule

 

ol _ d;s'/N(s) _ ds'

@ D(s)/N(s)  D(s)

Since we are concerned here with the magnitudes of sensitivities, the minus sign

i1s of no significance. This program finds and lists the sensitivities of both

numerator and denominator coefficients.
The program,listed in Fig. A11-2,is in two sections, labeled “SLC” and “S”.

The first section titles the program, sets flag 03, and executes “V”’; the latter is
a global label contained in each of the three polynomial evaluation programs.

82 Ay 33 AVIEM 63 ¢ )

@3 5F {2 34 XEQ @7 62 flgg

84 FC? 55 35 SF 18 63 gua

5 CF 21 36 "DEN" 66 20

@6 = L 37 AVIEH 7%

87 AVIEM 38 %EG 83 §§ F;i z

83 = §- 29 RTH 63 RHD

89 AVIEK 7 8SLEI¥

18 SF 13 4@+LBL 87 71 H dB

i1 = COEF I* 41 SF 13 32 RH'EH

12 AYIEM 42 = 1= 7 F£§ i

13 CF 3 43 CF 13 74 156 29

14 CF 12 44 18 3@ DEG )

15 ADY 45 RCL 28 76 DSE 28

16 SF 82 46 F57 18 77 DEE

17 CF @1 47 + 78 DSE 23

18 5F 21 43 FI% @ 79 610 82

19 CF a4 49 CF 29 8@ RTH

o ot atoLEL 63
. 57 ROL 28 32 RCL 18

22¢LBL "§* 53 RCL 28 83 10 28

23 RCL 88 54 Y1 gi il.fllfl

24 ST4 55 DSE 29 St

25 1 0 56 DEG 8(3 STo ,_*:

26 + 57 RCL IND 29 87 XEQ @2

27 870 29 58 ¥ 88 END
28 AV 59 FC? 18 _— CAT 1

29 5, L TO COEF:* 68 RCL 31 LEL‘iLC

28 AYIEW 61 FS? 18 LEL™S N
i CF 8 END 29-.! BYTES

Figure A11.2. Program “SLC”: listing.



528 Programs for Manipulating Polynomials

In these programs, after the function is evaluated in magnitude and phase,
program execution is directed to the sensitivity evaluation section “S” of this
program. In program “BODE”, for example, at step 65 flag 03 is tested. If set,
“S” 1s executed.

Section “S” evaluates and prints the numerator sensitivities using subroutine
02, and the denominator sensitivities using subroutine 03 (which, in turn, calls
on subroutine 02).

Program “SLC”: Registers

R0O0-R27 Used by associated programs
R28 Coefficient index for sensitivity
R29 Loop index for coefficient
R30 Magnitude of numerator polynomial
R31* Phase of numerator polynomial
R32 Magnitude of denominator polynomial
R33* Phase of denominator polynomial

*Used in later programs.



Appendix B

Feedback Analysis
and Synthesis Programs

 

The 12 programs in Appendix B can be divided into three groups. The first five
programs deal with the analysis of circuits and an evaluation of sensitivities of
the circuit loss to its polynomial coefficients and to its component and device

parameters. The statistical variation of loss i1s also considered, given the
statistical variation of device and component parameters.
The second group gives three synthesis programs. The first is a general

synthesis program for systems whose loss polynomial (cubic or quartic) is
controlled by dominant feedback elements. These are varied in such a way that
the loss polynomial converges on a desired one in a series of iterations. The

second illustrates the design of an active filter (a resonator) as discussed in

Section 4.3. The third illustrates the design of an equalizer whose loss is a ratio

of polynomials—a biquadratic function.

The third group shows how delay is incorporated into system and circuit

design. Thefirst of the programs, “CFE”, finds the locus of roots of the classic

feedback equation when the delay is varied. The second consists of two similar

programs, each of which incorporates delay into the Design B case study
amplifier. Both can be used with the general synthesis program. The third of

these delay programs develops the characteristics of a transistor as a binomial

loss function with delay in a way that is suitable for use with analysis

529



530 Feedback Analysis and Synthesis Programs

programs. Finally, program “PCM” gives the design of a quantized feedback
system for removing dc wander from an ac coupled digital signal. In a
quantized feedback system, the delay of the feedback signal governs the

performance.
As we begin to use the calculator for more complex jobs involving a

considerable amount of input data, a printer becomes almost essential to be
able to scan the data. The calculator display is simply not large enough to do

the job. The programs described here and in Appendix C are written assuming

the presence of a printer. It is possible to convert the programs for use without
the printer by the use of the prompting system used, for example, in program
“RQU” in Appendix A. Similarly, the printer command, “PRREGX” can be
replaced by “XEQ 04” where label 04 is the subroutine given in program “N”.

APPENDIX B PROGRAMS

Analysis of Circuits, Including Sensitivities

B-1 Program “CM”: Lists components and device parameters for Design B. No
computations are performed.

B-2 Program “ANI1”: Simple analysis of Design B; delay is not taken into

account.

B-3 Program “SCX”: Calculation of coefficient-to-component sensitivities for a

feedback system. Used in conjunction with an analysis program (e.g.,
“AN1").

B-4 Program “SLX”: loss-to-component sensitivities as a function of frequency.

B-5 Program “STAT”: mean and standard deviation of loss and phase for a
system.

Synthesis

B-6 Program “SJ”: general feedback system synthesis.

B-7 Program “OPTRES”: finds optimum design of a single-amplifier biquad
resonator (discussed in Chapter 4).

B-8 Program “LED”: design of an equalizer for the bass response of a
loudspeaker, illustrating rational function synthesis.

The Effects of Delay

B-9 Program “CFE”: finds the root locations and root locus of the classic
feedback equation. Loci are found for variation of either the control time
constant or the delay.

B-10 Programs “AN2” and “AN3”: analysis by binomial factors of the Design B

amplifier using a two-step hierarchy of equations. Includes delay, load
capacitance, and stabilizing capacitance.

B-11 Program “DEV”: finds the individual stage dc loss, time constant and delay

from the transistor characteristics and parasitics, and dc collector currents for
the transistors of the Design B amplifier.

B-12 Program “PCM”: quantized feedback design for a PCM system.



Program “CM”: Design B Parameter 531

B-1 PROGRAM “CM”: DESIGN B PARAMETERS

This program lists the components and device parameters of the Design B
amplifier described in Chapter 3. It serves the function of giving the user the
register locations and values of the parameters in registers R41-R61 and also

serves as a checklist to ensure that all parameters are included. (see Fig. B1.1).

This program also lists the system requirements expressed as a quartic
polynomial (the quartic coefficient may be zero) and a cutoff frequency. These
are stored in registers R36—R39, with the cutoff frequency in R40. To use the
program, execute “CM”. No calculations are made in this program. This
program was written to be used in conjunction with analysis programs such as

“ANT1”, “AN2”, or “AN3” as well as the synthesis program “SJ”, all given in
this appendix.
A listing like this one is intended for use in the analysis and synthesis of

other amplifiers or feedback systems of arbitrary configurations in which three

dominant control elements can be identified and used to realize a given set of

g1¢LBL “CH" 34 AV

82 =5/16/88" 35 "T1-T3:"
83 5F 12 36 AVIEM

#4 -DES. B PAR." 37 53.835
a5 AYIEW 38 PRREGZ

85 CF 12 39 ADY
87 ALY 48 =Tdi-3"

ag -GF, CF, G2:° 41 RVIEMW
a3 AVIEH 42 56.858

18 = = X@, X1, %2:" 43 PRREGX
i1 AVIEH 44 ALY

12 41.843 45 =CL, CB, G3:"

13 PRREGX 45 AVIEW
14 ADY 47 59,861

13 *RG. GL:" 43 PRREGY

16 AVIEH 49 ADY
17 45.84¢ 58 "bi-bd"
18 PRREGX 51 AVIEH
19 ADY 52 36,839
28 5F 13 53 PRREGX
21 "RI-R3" o4 ADY

22 AYIEM 55 =2PI F@°

23 CF 13 56 AYIEW

24 47.849 37 48

25 PRREG 58 PRREGH

26 ADY 29 ADY

27 & 68 -0K?"

28 ACCHR 61 PROMPT
29 ~i-3:- &2 END

38 AcA CAT i

31 PRBUF LEL™CH
32 98,852 ERD 221 BYTES

32 PRREGH

Figure B1.1. Program “CM”: listing.
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polynomial coefficient requirements. For each such design, a program carrying

the label “CM” should be written or adapted from this program. In all such
programs the three dominant elements are stored in R41-R43. Registers

R45-R61 (this may be extended if the capacity of the machine allows) are
available for storing circuit parameters—dc losses, stage time constants, de-
lays, and the like. This program was written to be used in conjunction with

analysis programs such as “AN1”, “AN2”, or “AN3” as well as the synthesis

program “SJ”, all given in this appendix.

An example of the output of this program is given in Section B-2, where the

program is used to identify the values of the components of the amplifier

analyzed by program “AN1”. In the example note that the components are

identified by both name and register location in which they are to be found. To
change any component, store the new value in the indicated register.

1 Program “CM”: Registers

R35 Index
R36-R39 Normalized polynomial
R40 F0
R41-R43 Gr, Cr, G,
R45-R61 Components

B-2 PROGRAM “AN1”: ANALYSIS OF DESIGN B

This program implements the analysis given in eqgs. (3.3-3) to (3.3-6) (in

Chapter 3), calculating a,, through a,. Those equations include the assumption
that r;G, <1, and the program makes this assumption with flag 04 cleared. If
flag 04 is set, it includes the effect of the denominator 1— r,G,; the equations
programmed in the latter case are

 

a,=— R;Gp

rlT2G2(l+r3GL)
a,=—R;Cpr———F—F—1 —nG,

_ RGTl”sz(l+’3G1‘)+”17273(62+G1‘)

a2_ l-r:;Gz

_ RG7'17273(G2+GL)
a,=— ————F————————

1—nrG,

Thus the program calculates the polynomial coefficients in the simple case

discussed in Chapter 3 and does not consider delay, input defect current of the

devices, and similar factors. It is intended to demonstrate the use of programs

“SCX”, “SLX”, and “SJ” in a simple case.

For a listing of the component and device parameters needed for this

program, execute program “CM” and store the desired values in the indicated



REL 45
AEQ “CH"

DES. B PARAE.

RG, GL:

Rd43= 1.0888
R46= 10,048

ri-r3

R47= B

Rd48= A,

R49= 8

w
o
n
o
n

O
O

D
G
R

O
B

=
0
0
O

O
O

0
M
O

R3Z= 1, @Go8
R34= 1.06a8
RS5= 1. BEa8

Tdi-3

. Rage
. Baag
. anae

Figure B2.1.

e n -

|

D
O

CL, CB. GZ:

RS9= B,0808
Rod= @, A688
R&i= @.0608

o
0

bi-hd

Rie= 2.0088
R37= 2.0008
R3g= 1.0008
R3%= 9.0808

2PI F#

RdB= 0.10@8

0KE?

XE@ "RHL"

DES. B

INCL. FEEDTHRU?
SF @4

fi= -p.811@

21= -8,2268
22= -2.260e
3=

SF 84
AEQ “ANL"

DES. E

INCL. FEEDTHRUZ
SF Bd

R28= -0.9i18
R21= -8.2211
2= -2.2222
AT= € §1413123= -i1.111d

“CM” and “ANI1": examples.
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534 Feedback Analysis and Synthesis Programs

ALeLBL “ANL" 41 FS? 94 81 ST- IND 18
82 ALY 42 RCL 02 82 RCL @2
83 5F 12 43 FS? 94 83 FS? 84
84 “IES. B 44 / 84 ST IND 18
85 AVIEW 45 CHS 85 RCL 45
@6 CF 12 46 RCL 45 86 RCL 53
a7 ADY 47 RCL 42 87 *

88 “INCL. FEEDTHRU?" 48 * 88 RCL 54
89 AVIENW 49 - 89 *
18 -SF 84" 58 ISG 18 98 RCL 35

11 AYIEW 51 DEG 9] *
12 20,819 52 STO IND 18 92 CHS
13 ST0 18 53 RCL 46 93 ENTER?
14 XEQ “AN" 54 RCL 49 94 RCL 46
15 28.823 55 % 95 RCL 43
16 PRREGX 56 1 96 +
17 RTH 57 + 97 *

58 RCL 532 98 ISG 18
18¢LBL “AN" 59 % 99 DEG
19 1 6@ RCL 45 188 STO IND 18
28 RCL 43 Bl * 181 RCL 82
21 RCL 49 62 CHS 182 FS? 84
22 * 63 RCL 47 183 ST+ IND 18
23 - 64 RCL 55 184 RTN
24 STO 82 65 * 185 .EHD.
25 RCL 45 66 -

26 RCL 41 67 RCL 54
27 * 68 *
28 CHS 69 RCL 43

29 STO IND 18 78 *
38 RCL 46 71 156G 18 LBLTCH
31 RCL 49 72 DEG END 221 BYTES
32 * 73 STO IND 18 LBL "ANL
331 74 RCL 46 LBLTAN
34 + 75 RCL 47 EKD 211 BYTES
35 RCL 43 76 * .ENI. 87 BYTES
36 * 77 RCL 54
37 RCL 54 78 *

38 * 79 RCL 55
39 RCL 47 80 *
49 *

Figure B2.2. Program “ANI1": listing.

registers. To use the program, execute “AN1”. The polynomial coefficients are

stored in R20-R23 and are printed.

Example

The example in Fig. B2.1 shows the analysis of the Design B amplifier, both

ignoring and including the effect of feedforward, or direct feedthrough in the
third stage. Preceding the analyses, execute “CM” to display the component
values and device parameters, then execute “ANI1”. The program listing is

shown in Fig. B2.2.



Program “SCX”: Sensitivities of Coefficients to Components 535

B-3 PROGRAM “SCX”: SENSITIVITIES OF COEFFICIENTS TO

COMPONENTS (USE WITH “CM” AND “AN”)

This program calculates the sensitivity of each cubic polynomial coefficient to
a specified component or device parameter. The system containing these
parameters is analyzed in a separate program carrying the label “AN”. The

%EQ “CM-
DES. B PAR.

GF. CF, G2: bl-b4
= X8, X1, ¥2:

R36= 2.000 S, ¥ = 44, 5, %= 58,
R41= 0.811 R37= 2.000
R42= 0.110 R38= 1.000 RIB= 0,080 RI8= 9.009
R43= 1.060 R39= 0.069 RI1= 9,009 R31= 9.002

R32= @.96Q R32= 0.a88

RG: GL: 2P1 F@ RI3= 9.00@ R33= 9.060

R45= 1.008 Rd@= ©.108 5, %X = 45, 5, ¥= 5i.

R46= 10.000
0K? R3a= 1.@9A RIg= @.0080

ri-r3 CF o9 R31= @.5088 R-fl: 8.608

XEQ *5CH" R32= 08.568 Rg R32= 8.808
R47= 8.108 RII= 1.004 R33= @.008

R43= 9.100 ai ) )

R49=- 0.810 = S, ¥ = 4%, 5, 8= %2

a1-3: RI8= @.060 R3a= @.008
i=8.,1.2.3 Rit= 8.845 Gy R31= 9.000

R50= ©.000 RI2= 9,500 R32= 9.809
RS1= 9.000 % REGISTERS? RI3= 9.989 R33= @.008
R52= 9.000 41,8558 RUN -

5, %= 4, 5, %= 47 5. K= 93

T1-T3:

R38= 1.008 R3A= @.080 R38= 0.808
R53= 1.098 R31= @.000 R31= 8.568 R31=9.008
R4= 1.008 RI2= B.PA0 GF RI2= @9.588 1 2= 9,589

RS5= 1.080 R33= 9.A@8 RI3= @, @06 R33= 1.@8@

Tdi-3 5, %= 42, §, %= 48 S, 8= M

R36= 0,060 R38= 9,004 R38= B,@6R R38= B.BBB

R57= ©.060 R31= 9.568 R31= 9.000 r R31= @.568

R38= 9.000 R32= 0.088 Cp R32= @.008 2 R32= 1.009
R33= 9.800 R33= 9.008 Ri3= 1.008

CL, CB, G3:
§, X = 43, 5, K= 49, 8. %= 55

R59= 0.000
R66= 0,008 R38= 0.000 R3A= @.000 R38= 9.008

R61= 0.000 R31= 0.588 G, R31= 9.845 R31= 0.008
R32= 0.545 R32= 8.845 T3 R32= 0.508
R33= 0.091 R33= 0.008 R33= 1.009

Figure B3.1. Program “SCX”: example.
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component value is stored in register X, where X can be any register not used
by “SCX”. (Program “CM” can be used to locate the parameters.) It is used
here to calculate the sensitivities of the components of Design B in Chapter 3,
as given in Table 3.3. When executed, the program prompts for the X register
desired. If the sensitivity of the a; to Gof Design B is required, for example,

key in 41, the register containing G. If sensitivities of several or all compo-
nents are desired, key in 41.0nn, where nn is the register of the last component

desired. The program will calculate sensitivities for all components in registers

R41-Rnn.

AeLBL "SCH* 47 1 ot 1
a2 Ay 44 - e AT
a3 5F 12 45 570 33 0 23 BYTES
B4 5F 13 46 RLL 15 U
g5 - Al 47 RCL 22 LBt
86 AVIEM 48 END 284 BYTES47 CF 13 49 1 CELTSEY
gg - g S8 - ST oo ouTCe
89 BYIEN 5170 32 Rl 138 BYTES
- 52 RCL 14 .

"{ 2

11 AYIEM 53 RCL 2 PRKE
12 ADY 54 7 I

USER KEYS:13 1.81 55 jif‘?ggg
14 570 19 56 - 1 e1zE
15 §F 13 57§70 3 4

16 “1=2.1,2,3" 58 RCL 12 {5 wopye
17 AYIEN 59 RCL 28 31 Preess
13 ADY 68 / T3 pND
19 CF 12 ol ] -23 PRFLAGS28 CF 13 62 - 4o
21 ADY 51 570 38 Se enii-

7 "¥ REGISTERS?® £4 RCL 19 _;; por
23 PROMPT £5 1 e
24 STB4 66 - 25 pReny

67 5T/ 3 i-63 PRRU25eLEL 81 e
26 IREG 28 €3 877 31 77 WDTay
27 CLE 78 5T/ 38 T4 RoTas
28 ZREG 13 ME R D
29 £L2 72 ACA @R Coon
38 20.819 73 ROL 84 PRFLAGS
31 870 18 74 FI¥ 8 i

STRTUS:32 %EQ “AN" 75 ALY A76e 878
33 RCL 19 76 PREUF oot

34 5T IND B4 7TFIE 3 -
19 13.812 78 38,433 F1Y 4
3% 8T0 18 79 PRREGY "
37 KEQ "AN- 28 ADY L
38 ROL 19 31 FIX 4 Fubas:

39 517 IND o4 32 136 4 Lo
48 RCL 16 23 £T0 81 f e eLEGE
41 ROL 23 24 .EHD. F a7 CLERR
4 F a4 CLERR

Figure B3.2. Program “SCX”: listing.



Program “SLX": Sensitivity of Loss and Phase to Component X 537

In operation, the nominal coefficient values are calculated and stored in
R20-R23. Next, the component whose sensitivities are sought is changed by
1%, and the polynomial coefficients are recalculated, this time storing them in

R13-R16. The differences are calculated, divided by the nominal value, and

multiplied by 100. The result is then printed out for the four cubic coefficients.

Example

The example shows the calculation of the coefficient to component sensitivities

for each circuit element of Design B in Chapter 3. It is run with programs

“CM” and “AN1” in the machine. Program “CM?”is executed first to give the

component values. Program “SCX” is then run (see Fig. B3.1.) In response to

the prompt for the X registers, the number 41.055 is keyed in order to calculate

the sensitivities to all components in registers R41-R55. The resulting listing
appears in Table 3.3. The program listing is given in Fig. B3.2.

B-4 PROGRAM “SLX”: SENSITIVITY OF LOSS AND PHASE TO

COMPONENT X

This program developes the data for plots such as those in Figs. 3.6 and 3.9. It
is similar to program “SLC” in Appendix A, except that the separate sensitivi-
ties of the real and imaginary parts for each coefficient are added together to
give the sensitivity of loss to the given component. Input data required are the
polynomial coefficients (entered here as positive numbers), to be stored in

registers RO0O—RO0#n, and the coefficient-to-component sensitivities for the given

component (e.g., as obtained from program “SCX”) to be stored in R10-R1n.

The program prompts for the minimum and maximum frequencies and the
frequency increment (flag 00 set) or the number of points per decade (flag 00

cleared). The program prints the sum of the real and imaginary parts of the

component sensitivities expressed in dB and degrees.

Examples

The sensitivity of loss to r; of Design B as a function of frequency is shown in
the example (see Fig. B4.1.) The coefficient-to-component sensitivities of the

example in Section B-3 (the bottom four numbers of column 3) are stored in

R10-R13, and the polynomial (from program “AN”) is stored in RO0-RO03.

The program is then run. A linear frequency increment is obtained (as in
“BORAD?”) by setting flag 00. The sensitivity of loss to r; is then found as a

function of frequency, as plotted in Fig. 3.6.

This process i1s repeated in columns 2 and 3 of Fig. B4.1 to find the

sensitivities of loss to G, and to 7,.
Note that unlike program “SCX”, which must be run with an analysis

program such as “AN1” in program memory, this program does not use other

programs in the machine. Program “SLX” is listed in Fig. B4.2.
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AEG "SL¥"
SEHS., LOSES
TO CMFPHT =

DEG?
J.0aEe  RUM

5, COEF T ¥

Ri8= @.80a8
R11= 9.8458
Ri2= 8.8458
R13= 8.0008
oK?

FUN

L POLY:

Rég= @.eiia

Rai= @, 2z22e#

Raz= 2.2868

R83i= 11.0608

0K?

RUN

£FHIH MAE

R24= 8.8208

R25= 8.2008

&F INC

R26= @8.@Za#

0K?

RUK

L
s

£F db DEG

g.82a8 -34.7 78.7

B.08488 -28.2 £4.5

8.08688 -24.2 45,8

g.agee -2i.7 24.2

8.1e8kg -28.5 8.8

B.tzas -21.5 -24.1

8.1d48m -22.6 -34.4

g.1688 -23.83 -44.3

8.1888 -25.8 -51.2

f.2e888 -2¢.8 -56.3

Figure B4.1.

column: 7,.

Program “SLX”: Registers

RO1-R0O7

RO8

RO9

R10-R17

Feedback Analysis and Synthesis Programs

XER "SLY"
SE""IE- r

TO CHMPHT
Lass

L
Ca ]

BeG?
3. 060

5, COEF T X:

Rig= @&, 0668
Ril= B8.8438
Ri2= 8.5068
Ri3= 8.96%8
0K?

L POLY:

Reg= @.8118
Rai= a.22e#
Rez= 2.2008
Ra3= 11.60@a
0K?

AFMIH, HAE

R24= &, 0208
RZ3= 8.2088
dF IRC

26= B.8268
0K?

L
S -

=
&F de DEG

B.8288 -27.7 141.%
8.84p@ -15.9  146.6
f.8682 -8.4 127.%
8.e388 -3.5 1@7.1
8.1em8 -8.2 34.3
8.1208 8.2 63.1
8.1488 8.4 51.3
B.1688 B.4 42,2
#.1888 8,2 353.¢6
8.2e88 8.1 38.%

Loss polynomial coefficients

Degree of loss polynomial

Used
Sensitivities of polynomial coefficient to component

RUH

RilK

RUN

SEHS .

TO CHPHNHT

DEG?

3.888:

S, COFF 1O ¥:

Rig= @&, @ess

Rit= 8.5888

i2= 1.@888

Ri3= 1.6808

0K

L POLY

kog= @.81i8

pai= @.22ed

kaz= 2.2888

Re3= 11,0488

0K?

£FHIN.BAY

R24= @,8208

R23= @, 2608

{F IHD

R26= 9B.8208

0K?

L
S -

=

&F dB DEG

a.6288 -13.6

g.8488 -6.7 &

8.8hBE -2.8 7

g.esme 1.3 &f

g.1868 1.8

B.1268 3.3

g.1488 3.8

B.leme 2.t

8.1888 2.2

g.2e88 1.9

JEB
LOSS

  

it Y
2

RUK

KUH

RiN

Program “SLX”: examples (Design B). Left column: r;; middle column: G,; right
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BieLR 36 570 @9 7l E

B:v g 7 (522 72 WYIEK
87 F12 73 CF 12

B4 “SENS, LOSS® I4LEL 83 74 i
BS AVIEK 33 CLY 75 ACA

: aTh PHDHT Yo 48 ¥{> IND 89 763d CH
Bb g? gwi?& ’ 41 155 @9 77 SKPCHR

@8 OF 12 42 GT0 83 78 ~de
83 ALY 43 OF 22 79 ACA

’ 44 “0R?™ 88 SKEPCHE
; 45 PROMPT 81 ~DEG"1B4LEL B E

{1 “DEg?™ 46 FS7 22 32 ACA
12 PROMPT 47 670 82 83 PRBUF

17 570 88 84 ADY
14 *S, COEF TO %:- 40¢LBL @4 85 RCL 26

15 AYIEW 43 FIZ 4 86 F57 @@

161 E3 58 = FHIN, HAX" 87 GT0 85
17 S1 AYIEK 88 17X
15 18.81 22 24,825 89 1atx
g 4 53 PRREGY
8 ' 8528 PRRECY 34 FS7? o4 9BeLBL g3

21 -g}:';«) 39 "4F INC* 91 5T0 21

22 CF 2 56 FC? @8 92 RCL 24
23 PROMFT 57 "PTS/DEC:" 93 ST0 28

24 F5? 22 38 AVIEN
25 CT0 81 59 26 944LEL C

68 PRREGZ 95 XEI? E

264LBL 87 &1 CF 22 96 FEQ H

27 -L POLY:* 62 "0K7" 97 FIX 4
28 AVIEW 63 PRONFT 98 ROL 27
29 RCL @8 64 F57 22 93 FC7 99
36 1 £3 65 GTO 4 188 ST+ 26
. 66 SF 12 181 FS? 08
32 7L 162 ST+ 28
32 FRREGE 67 L

37 ROL 83 63 AVIEM 183 RCL 25

34 Log7 63 5 - 104 RCL 28
75 4 78 AVIEW 185 $(=Y?

Figure B4.2. Program “SLX”: listing.

R18, R19 —
R20 Angular frequency

R21 Used

R22,R23 Loss magnitude and phase
R24, R25 Foins Froax
R26 Points/decade (CF00) or XF increment
R27 Used

R28 Degree index
R29 Loop index

R30-R33 —
R34, R35 Real and imaginary parts of sensitivities

R36 Sensitivity loop index



540

186 G70 C
187 BTN

165¢LBL E

183 RCL 26

118 %12

111 CHS

112 510 24

113 RCL @7

114 =

115 RCL @5

116 +

117 RCL 21

118 *

119 RCL 63

1268 +

121 RCL 28

122 *

123 RCL @1

124 +

125 RCL 28

126 *

127 RCL 86

128 RCL 21

129 *

138 RCL 84

131 +

132 RCL 21

133 %

134 RCL @82

135 +

{36 RCL 21

137 *

138 RCL B8

139 +

148 R-F

Feedback Analysis and Synthesis Programs

141 570 22
142 XY
143 ST0 23
144 RTH

145¢LBL A
146 @
147 570 34
143 STQ 35
149 RCL @8
158 ST0 28
151 1
132 +
133 570 29
154 9
135 +
136 ST0 36

197¢LBL a
138 RCL 28
159 RCL 28
168 Y4X
161 DSE 29
162 DEG

163 RCL IND 29
164 +
165 RCL 22
166 +
167 STO 37

168 RCL IND 36
169 *
178 9@
171 RCL 28
172 *
173 RCL 23
174 -

Figure B4.2. Continued.

LBLTSLY
END

175 XY
176 P-R
177 ST+ 34
178 XY
179 5T+ 35
188 FIX 4
181 156 29
182 DEG
183 DSE 28
184 DEG
185 DSE 36
186 DEG
187 DSE 29
188 GT0 a
189 CLA
198 ARCL 28
191 RCL 33
192 RCL 34
193 R-P
194 ¥=8?
195 1 E-8
196 LOG
197 28
198 *
199 " -
280 FIX 1
281 ARCL X
282 - -
283 ARCL Y
264 AVIEM
285 FIX 4
286 END

car 1

431 BYTES

B-5 PROGRAM “STAT”: MEAN AND STANDARD DEVIATION OF LOSS AND

PHASE

This program calculates the mean and standard deviation of the loss in db and

phase in degrees at a given frequency (see Figs. B5.1 to B5.4). The mean and

standard deviation of the variation of each of the components of a system must
be known or estimated. Required input data are the polynomial coefficients, to

be stored in R20-R2n. Other input data are called for as the program runs,

including the number of components.

Equations are developed in Section 3.5. Coefficient-to-component sensitivi-

ties such as those given in Table 3.3 are keyed in manually as called for by

prompts in the program. The mean and standard deviation for the variation of

each component are also keyed in manually. Since there are many key entries

to be made, an identifying tone system has been included: a different set of
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two tones is sounded for each sensitivity value, and a different set of tones is
sounded for component mean and standard deviation entry.
A list of coefficient-to-component sensitivities is required, as previously

calculated for the system using program “SCX” in conjunction with an

analysis program for the system such as program “AN1” for the Design B
amplifier. Such a program produces a list of sensitivities: as shown in the
example for “SCX”, for a cubic system there are four sensitivity values for
each component, and these are printed out in groups of four.

These are the sensitivity values to be entered manually in running this

program. The program then calculates the sensitivity of loss to each coefficient
and multiplies it by the keyed in sensitivity to obtain the sensitivity of loss to
the component, a complex quantity. To calculate the mean of the loss varia-

tion, this latter sensitivity is multiplied by the mean of the component
variation and added to a running sum of such loss variations. To calculate the

standard deviation, this sensitivity is multiplied by the standard deviation of
the component value, squared, and added to a running sum of squared

deviation values. Real and imaginary components of the preceding summed
values are added separately. Thus there are two running sums for the mean
and two more for the standard deviation.
When the specified number of components have been processed in this

fashion, the total of the real part of the mean gives the magnitude change in
nepers; this is converted to dB. The imaginary part of the mean sum gives the

phase change in radians, and this is converted to degrees. The standard
deviation is handled in exactly the same way, except that the square root of the
real and imaginary parts is taken before conversion to db and degrees.

In using the program, wait for the tone before keying in the component
sensitivities or means and standard deviations. If data are keyed in incorrectly
for any component, it can be reentered when the prompt “OK?” appears. If
the data are correct, press R/S. If the data are no good (“NG”), press N and
R/S. In the latter case program execution returns to the beginning of data

entry for the component. This is illustrated in Fig. BS.1.
Example 1 carries out the calculation for the circuit in Fig. 3.10 by using the

numbers cited in Section 3.6. The coefficient to component sensitivities are

give in eq. (3.6-6); we take R as X0, G as X1, and C as X2. In Example 1 there

are three components, the degree is unity, and we analyze the statistical

variation at an angular frequency of 0.5. The polynomial is L =1+ s, and the

two coefficients are printed. The loss is then calculated, and the program

prompts for the coefficient-to-component sensitivities. The response i1s 1 for

the sensitivity of a, to X0 and 1 for that of a, to X0; we mistakenly keyed in

37. The program then prompts for the mean of the variation of X0, 0.1, and

the standard deviation of X0, 0.02. The error prompt comes next. Since 37 is

incorrect, we press N and R/S and reenter the data, as shown. The program

then steps to the next component. When data for all three have been keyed in

correctly, the mean of the loss variation in decibels and degrees is calculated

and printed, followed by the standard deviation.
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XEQ =STAT-

MEANM AHD RUK

STDh. DEV. S, COEF. TO Xi?

LOSS + FH. 1.68888 RUH

#.0804 RUH
NO. OF CHPNTS? 17

3.B0088 RUN A RUN

DEG? gl?

1.0888 RUN .82 RUN
{F? 0K? R/S

.8a8 RUN NG? H. R/S

RUN

POLY S, COEF. 70 X27?

8.8888 RUK
Res= |.8888 1.8888 RUN

Rai= 1.0066 pe?
0K? 8 RUH

RUN a2?
LOSS: .8z RUN

1.8 dB, £26.6 DEG 0K? B/5

NG? H, R/S
S, COEF. TO X@? RUN

1.6888 RUN oL =

37.0008 RUN -8.17 dB. £-2.29 DEG
»a?

-1 RUN gL =

q8? 8.23 dB, £8.65 DEG

.82 RUK

0K? R/S

NG? N, R/S

N RUN

3, COEF. TO X8?

1.08088 RUK

{.0088 RUN

»a?

-1 RUN

g8?

.82 RUN

0K? R/S

NG? N, R/S

Figure B5.1. Program “STAT”: Example 1.

In the Example 2 (Fig. B5.2) the component sensitivities are taken from the

example given for program “SCX” in this appendix. Only components with
nonzero sensitivities (of which there are 10) are included. Total running time

for all 10 components is under 10 minutes including data entry.

Note that in the program listing (see Fig. B5.3) four steps are not program-

mable from the keyboard but were added to the program by using the bar code

wand. The steps are numbers 148, 155, 181, and 199 and include the lowercase

Greek characters p and o. If a wand is not available, substitute keyboard-

accessible symbols for the mean and standard deviation. If a wand is available,

p and o can be placed in the program line by reading the bar code given under



XE@ ~STRT-
MERN AND
STD. DEVY.
LOSS + PH.

NO. OF CMPNTS?
19.8888  RUN

DEG?
3.8008  RUN

iF?
1888 RUN

POLY

REG= B.9118
ROl= @.2208
RE2= 2.2000
RE3= 11.8000
0K?

RUN
LOSS
-36.2 dB. £135.8 DEG

5, COEF. TG X8?
i.a888 RUN

#.08888 RUN

#.0000 RUN

8.0680 RUN

va?

. RUN

g8?

.81 RUN

0K? R/S

NG? H, R/S

RUH

S, COEF. 70 %17

8.08888 RUN

. 5808 RUN

8.080868 RUN

g.8888 RUH

pi?

8 RUR

ai?

.81 KUK

0K? R/S

NG? H. R/S

RUK

S, COEF. 10 %27

8.8088 RUN

. 5868 RUN

. 5458

.4918

p?

A

g2?

.81

0K? R/5

NG? ¥, R/S

S, COEF. T0 ¥3?

1.80888

. 5aaa

. 3868

1.080808

p3?

-1

g3?

.Bi

0K? RsS

HG? N R/S

S, COEF. TO 247

8.9688

. 8458

. 4508

. 9894

pd?

.1

g4?

B

0K? R/S

NG? H. R/S

S, COEF. TG ¥5?

8.0088

.J68a

. 3868

8.08088

¥3?

-1

03?

B3

0K? R/S

NG? H, R/S

S, COEF. TD X&7?

#.6688

.A458

L8458

#.08888

RURN
RUH

RUK

RUH

RUK

RUH
RUN
RUH
RUH

RUH

RUN

RUH

RUKH
RUN
RUN
RUH

RiK

RUK

RUN

RUN
RUN
RUN
RUN

RUN

RUN

RUN

RUN
RUK
RUN
RUK

v6?

g6?

.85

0K? R/S

NG? H, R/S

S, COEF. TO X7?

8.88ea

6.0888

. J88a

1.8888

p??

-1

a7?

B3

0K? R/S

NG? N, R/S

5, COEF. TO ¥g§?

#.0888

. SAgg

1.8888

1.8088

pg?

-4

08?

OK? E/%

HG? N, P/S

5, COEF. 70 X922
8. 8088

8.0888

. 3888

1.0688

»9?

-1

737

B3

JK? R/S

HG? N, R/S

sl =

-1.35 dB, 4-14.61 DEG

aL =

8.62 dB. £3.86 DEG

Figure B5.2. Program “STAT”: Example 2.

RUN

RUH

RUN

RUN
RUN
RUN
RUN

RUN

RUN

RUN

RUN
RUN
RUN
RUN

RiJN

RUN

RUN

RUN
RUK
RUH
RiUN

RUK

RUN

RUN
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44 QK7 86 STOP
2 o PROMPT 7 STC IND Y
ANEe 46 F57 22 88 RIDH

g4 OVIEH 47 70 @l 89 RCL 3¢
&5 "STL. DEV.* 48 =L0G5:" 98 -

49 AVIEE 91 156 &
&7 58 CLA 92 GT0 @2

o1 HEB E 93 Pt
52 FIX 1 34 Bt
33 RCL 22 95 "N"
24 LOG 96 RETO Y

12 "HO, 95 28 97 ROK
36 # 98 "0K? Rs5"

 

L
N

o P o o A
T

e

“DER?"

 

37 RKD
38 ARCL X

29 AVIEW
188 "H5? N, R/S"

1@l PROMPT

1 F

i5

16 PROMPT 33 *k dB. &7
17 57 &8 ARCL 22 182 AsT0 3

18 =4 &1 =k DEG" 183 AOFF

19 PRI 62 AVIEW 184 X2Y?

2B ST &3 ADY 185 GT0 88
21 18, 186 RIN

22 §Ti pdelB B 187 RIN

23 AIY 65 8 182 GTO @7

A6 570 28

2deLEL @1 &7 ST0 29 189+BL @5

25 “POLY" 68 ZREC I8 ISL]

76 AVIEM 8% [LE 111 STO 24

7 18,8 {12 ST0 25

22 870 34 7a+LBL @7 {13 RCL 18

29 RoL @f 71 CLA 114 570 19

6 1 E2 72 5, COEF. 1O %= 115 RCL 36

it 7IRCL 35 116 +

37 570 i 74 FIX & 117 510 37

33 PRREGY 73 CF 29
4 RCL RS 76 ARCL % {15+BL 14

35 .87 Fii 119 RCL IKD 37

36+ 78 AVIEK 126 FIX 4

37 570 38 79 RCL 1% 121 RCL IND 19

22 %

33¢L0L B2 GeeLBL a2 123 RCL 2@

81 TOKWE IND 35 124 RCL 19

82 TONE IND ¥ 125 RCL 18

BIFIX 4 126 -

34 RCL 36 127 Y%

3%+ 128 *

 

Figure BS.3. Program “STAT”: listing.

the program listing.* Note that while u is a displayable character, o appears in

the display as a “wagon wheel” (a square wheel at that). Both print nicely,

however.

*These bar codes are taken from a bar code character table in W. C. Wickes, Synthetic
Programming on the HP-41C, Larken Publications, College Park, MA, 1980.



129
138
131
132
133
134
135
136 F
137
138
139
148
141
142
143
144
145
145
147
148
149
158
151
152
153
154
1535

RCL 22

REL 19
RCL 15

L

156 19
GTO 14
FIX 8
-

ARCL 25
-l_-?n

AYIEK
TOKE &

STOP
510 26
7

ARCL 25
H!_?n

-~

-
]
e
l oL 24

RCL 26
¥

o7+ 28

RCL 35
RCL @9
¥yy?
G0 &7
-UL =

2 AVIEK
1 CLA
RCL 28
Et¥

LOG
187 28
128
189 FIx 2
198 ARCL ¥

191 °F 4B, &°
192 RCL 29
193 R-D
194 ARCL ¥
195 =+ DEG"
196 AYIEH
197 CLA
198 ALY
199 =qL ="
2088 AVIEM
2@l CLA
282 RCL 3!
283 SORT
2084 E1¥
285 LOG
206 28
287 *
208 ARCL ¥

209 °F 4B, &°
218 RCL 33
211 SORT
212 R-1
213 ARCL X
214 ~F DEG"
215 AVIEM
216 CLA EKD

I <

T
L
N
e

o
G
O

=
)

=
g
m
e
d
)

=
)

3

B
k
b

o
t

oo
t
k
e
o

k
e

oo
t
k
e

e
k

Bo
rc
e
(
s

e
t

O
Q
D

0
0

Q
D

Q
D

N
B

G
l

P
O
e

X
D

— o
0
o

Figure B5.3. Continued.

LBLTETAT

217 FIZ 4
218 RN

219¢LBL E
226 RCL 28
221 12
222 CHS
223 570 21
224 RCL &
223 *
226 RCL 83
227 +
228 RCL 21
229 *
238 RCL 82
231 +
232 RCL 21
233 *
234 RCL @l
233 +
236 RCL 28
237 *
238 RCL 86
239 RCL 21
248 *
241 RCL B4
242 +
243 RCL 21
244 *
243 RCL @2
246 +
247 RCL 21
243 *
249 RCL 28
258 +
251 R-F
252 570 22
253 XY
254 5T0 22
233 ERE

545
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Program “STAT”: Registers

R0O0-RO7 Loss polynomial coefficients
RO8 Degree

R09 Number of components

R10-R17 Buffer store for S§’ values
RI18 Sensitivity index

R19 Coefficient index
R20 Angular frequency w
R21 — w?
R22, R23 Loss magnitude and phase
R24 Sum of real part S
R25 Sum of imaginary part S,
R26 Mean of component variation

R27 Sigma of component variation
R28 Magnitude variation of the mean in nepers
R29 Phase variation of the mean in radians
R30-R35 Statistics registers

R31 Square of standard deviation of loss (nepers)?

R33 Square of standard deviation of phase (radians)?
R35 Component index
R36 10.010
R37 Index for coefficient-to-component sensitivities

B-6 PROGRAM “SJ”: GENERAL FEEDBACK SYSTEM SYNTHESIS (USE

WITH “MAT” AND “AN”)

This program implements the synthesis method discussed in Section 3.7 and is
generally applicable to the synthesis of linear and quasilinear single-input,
single-output systems, or systems that can be cast into this form. This applies
to systems whose loss can be expressed by a polynomial of up to fourth degree.
Within these limitations the synthesis program is not tied to any specific

system. The characteristics of the specific system are contained in an analysis

program, written according to guidelines given in conjunction with the descrip-

tion of programs “AN2” and “AN3” in this appendix. Program “SJ” calls on

such an analysis program as well as a component identification program,
“CM”, also tied to a specific system. In addition, program “MAT” a general
matrix inversion and multiplication program described later in this section, is

required.
To make sufficient room in program memory of the HP 41C for these

programs, three memory modules must be used; this means that the printer
and the card reader must be used alternately in the fourth plug-in slot. When

this is done, 544 bytes (77.7 registers) are available in the program memory for
the “AN” and “CM” programs. The HP 41CV contains all user memory

internally, so that printer and card reader can be used together. In this
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machine 990 bytes are available for the other programs. The HP 41C with a
quad memory module also has the larger capacity.

Program “SJ” operates by finding numerical values of the nine partial
derivatives of eq. (3.7-8), three at a time, relating three dominant feedback

elements to three polynomial coefficients under at least partial control of these

elements. It does this by calling on the analysis program (which must carry the
label “AN”) to analyze the system in the nominal case—that is, with the three

dominant elements that have their initially selected values. It then perturbs the
value of each of these elements by 1% one at a time and recalculates the

coefficients, again using the analysis program. The 1% change in each coeffi-

cient is then divided by the change in the element to obtain the partial

derivative. In this process the analysis program is invoked four times, once for

the nominal case and once when each dominant elementis perturbed. The nine
partial derivatives thus found yield a Jacobian matrix that is then inverted by
use of program “MAT”.

The inverted matrix is then postmultiplied by a column vector whose three

components are the functions whose values are to approach zero. These

functions are the difference between the desired values of the polynomial
coefficients and the values actually obtained in the nominal case. The three

vector components resulting from this multiplication give the change in the
values of the three dominant elements needed for the next iteration.
The feedback system is then reanalyzed by using the revised values of the

dominant elements to obtain revised polynomial coefficient values. These
values are normalized and compared with the design specification. If dif-
ferences still exist, the process is repeated.

This procedure will usually converge in a few iterations even where the

coefficient values are not as strongly tied to the dominant elements as they are
in the Design B examples shown.

Provision is made in program “SJ” for monitoring a quartic coefficient in

case the analysis program calculates it. If the quartic coefficient is found to be

greater than the value stored in register R39, the iteration halts, allowing the
user to modify the circuit to reduce the quartic. An example of this is given in
Chapter 5, where Cp 1s introduced into Design B for this purpose. Alterna-
tively, the design specification can be modified at this point. In either case, the
iteration can proceed from this point.

Program “MAT”

This auxiliary program inverts a 3X3 matrix and multiplies it by a column

vector. It is adapted with minimal changes from the HP-67 Standard Pac,

pages 10-01-10-07 and L10-01.

Memory locations of the data have been coordinated among the several

programs involved in analysis, synthesis, and sensitivity analysis. The organiza-

tion of the data is shown in Fig. B6.1.
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Reg.
#

69

Used

— 60

AN’
Circuit components

IICMII

— 45

Dominant components

Polynomial spec. and cutoff

I
“AN"’ Modified polynomial

Y 30

l ’

AYN Nominal polynomial “SJ”

15

“MAT"’ M_atrix and

l inverse

0

Figure B6.1. Diagram showing data register locations for the various programs and subroutines

used with program “SJ”.

Examples

Two examples serve to show how “SJ” operates. Both use analysis program
“AN1” for the Design B amplifier; the first program ignores direct feedthrough

(see Fig. B6.2), whereas the second (see Fig. B6.3) takes it into account. As

noted in the text, convergence in the first example is immediate since the

relation between the dominant components and the coefficients is linear. In the

second example three iterations are required to complete the convergence from

a remote starting point (compare the initial and final values of G, Cr, and

G,).
The first two examples show the synthesis of a Design B amplifier having a

Butterworth cutoff response. The third example (see Fig. B6.4) compares the

synthesis for Chebyshev (0.2 dB ripple width) and MFD responses at the same

asymptotic bandwidth. This is the appropriate comparison where the transistors

control the bandwidth. The component values (except for the 3 dominant

components) were the same for all cases; printing of the components was

suppressed (by a trivial program change) in the latter two examples. Note that
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F @

I:-a'.fzist!';”f;if CL, Ck. G2

JAL. SYH. PS9= 7,00
- o R6A=  ©,080

DES. B FAR. Rél=  8.090

GF. OF, G2:
= B, %1, K2 bi-bd

Ral= 16,000 Efif E-ggg
R4Z=  16.060 a7 2.bae
Rdi= 18,098 E33= 1,n04

- - RI9= 0,060

b B 2P1 Fa
R45= 1,906 ]
R46= 16,008 R4d= 8.100

{-r2 oK?
rl=rs

le

R47= @,188 AB, Bl LHE:

&= @ i6R

§i§= 5'5?3 Rél= 8.8118
” ‘ R42= 0.110%
a1-3 R43= 1.BAae

P5E= @, 964 38, bl-b4:

o P2A= -8.8118
T RZ1= 2,000%

7. 72= 2.0608
ri-T ROI= 1,ERA

R24= 9.4a808
R53= 1.0oa

§§§i §'gg§ DONE

Tdi-1

RSE=  0.008
RS7=  B.00¢
5g- @, 000

Figure B6.2. Program “SJ”: example using “AN1” ignoring direct feedthrough (clear flag 04).

G, (X2) for the MFD case is about 3 times that for the Chebyshev and 13

times that for the Butterworth design. To compare the performance as to

magnitude and phase response and coefficient sensitivities, see Fig. 2.26.

It should be emphasized that these designs ignore delay and thus are not

practical. Designs developed in Chapter 5 and later in this appendix include

delay and are practical. Listings for programs “SJ” and “MAT” are given in

Figs. B6.5 and B6.6.
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5F 4
OF a8

RER "S-
JAC. SY¥H. oL, CB, 6I:

ad, bl-b4:

DES. B PAE. RS9=  §.0RR
PoE=  2.999 R28= -8.8111

GF, CF, G2 Rél= @.800 R21= 2.8871
= X6, ¥i. X2 R22= 2.8879

bi-hd R23= 1.0097
R41= i@.08R R24= §.0098
R42= 10,008 Ri6= 2.000
R43= 10,898 RI7= 2,084 A8 HL K2

R38= 1.000
RG, GL: R79= 4,008 Rél= @.e111

R42= B.1111
R45= |.008 2P1 Fé R43= 1.0000
Rd6= 16.@00

R4A= 8,180 al; bl-b4:

ri-r3

0K? R28= -0.8111
R47= @.108 RUK R21= 2,000

R43= 0.108 B, %1 K2 R22= 2.0000
R49= 0,818 R23= 1.0008

R4l= B.8111 R24= 8.08888

t1-3: R42= @.1111
R43= 11,8273 DOKE

R58= £.@99
R51= 4,980 a#, bl-b4:
R52= @.00%

R20= -6.8111
T1-T3: R21= 2.8427

R22=  2.9269
RS3= 1.M@0 R23= 1.8843
RS4= 1,000 R?24=  §.0BAR6
R55= 1.086

9. X1 %2
Td1-3

R41= B.8111
RS6= @.0@e R42= @.1111
RS7= 0.008 R4I= 1.@071
R58= @.000

Figure B6.3. Program *“SJ”: example using “AN1” with direct feedthrough (clear flag 04).

B-7 PROGRAM “OPTRES”: OPTIMUM ACTIVE RESONATOR DESIGN

This program uses the development described in Section 4.3 to design an active
resonator that has equal contributions to loss variation from the passive

elements and from the amplifier. The program requires estimates of the
standard deviations of the amplifier time constant and the passive resistors; the

deviations of the capacitors are assumed to be sufficiently small not to affect

the outcome significantly. Other input data required are the resonant frequency

(in R16) the required Q (in R15), the amplifier time constant 7, (in R06), and



REQ "S- AER =S4~

JAC. SYHN. JAC. S%

bi-bd bi-bé

R3e= 1.891 R36= 2.478
R37= 1.3%4 R37= 2.438
R38= 1.0088 R38= 1.888
R39= 4.008 R39= @.886

2P F@ 2P Fa

Rid= @.188 Rdd= 8.188

] 0K?
RUH RUN

%8, ¥1 .X2: id, ¥t ¥2:

R41= B.8166 Rdl= 8.8117
Rd2= 8,1415 R42= B.1214
R43= 8.53348 Rd3= 1.5836

aé, bl-b4: ad, bi-b4:

R2d= -8.08166 Re8= -8.8117

R21= 1.8931 R2i= 2.4791

R22= 1.5578 R22= 2.4488
R23= 1.8882 R23= 1.8689
R24= 8.0888 R24= 8.0008

%8, 21 X2 8, A1 ,¥2:

R4l= 8.8185
R42= 8.1413
Rd43= 8.5307

Rd41= 8.8117
R4z2= B.1214
R43= 1.4943

ad, bi-h4: ad, bl-bd:

R2B= -8.8186 Re8= -8.8117
RZi= 1.8997 R21= 2.4788

22= 1.5544 R22= 2.4368

R23= 1,dad0 R23= !.G008

R24= @, 00604 R24= 8.0808

DONE LaHE

Figure B6.4. Program “SJ”: examples comparing Chebyshev (0.2 dB) (left column) and MFD
(right column) synthesis (same asymptotic cutoff).
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leLBL "5 41 39.829
82 *5/16/88" 42 ST 18 3; £§F i?
83 SF 12 43 %EQ -AN" 83 RCL 48

B4 *JAC. SYN." 44 RCL 19 84 %
85 AVIEK 45 ST/ IND 44 -
86 CF 12 46 RCL 32 SsngRringals87 ADY 47 RCL 22 87 1
88 FC? @@ 48 - 8g -
89 XEQ *CH- 49 STO IND 16
18 5F 88 58 RCL 3 399§Ck 4

51 RCL 21 91 2
114LBL 85 52 - 92 ST+ 16
12 FC? 82 53 DSE 16 93 RIN13 CF 21 54 STO IND 16 94 ST/ IND 16
14 ZREG 29 93 RCL 3@ 95 [SE 16
15 CLE 56 RCL 2@ 96 ST/ IND 1616 CF 85 57 - 97 DSE 16
17 1.81 98 DSE 16 98 ST/ IND 16
18 570 19 59 STO IND 16 99 RTN
19 28,819 68 RCL 33
28 570 18 61 RCL 23 18@+LBL 2221 XEQ AN 62 - 181 RCL 2322 26.824 63 RCL 40 182 RCL 4853 :§REGX 64 * 183 *
4 43 65 RCL 38

25 STO 44 66 7 :g; ECL *
26 9 67 STO 17 186 STO 1@
27 ST0 16 68 RCL 37 187 grn it28 XEQ D 69 * 188 570 12
29 ISE 44 78 2 189 RCL 3;
38 DSE 16 71 ST+ 16 118 ST* 123 XEQ D 72 RIM 111 RCL 22
32 DSE 44 73 ST- IND 16 112 57- 12
33 DSE 16 74 ISE 16 113 RCL 4834 XEQ D 73 RCL 48 114 5T+ 1835 6T 22 76 ST 17 115 5T# 11

77 RCL 17 116 RCL 36J64LBL D 78 RCL 36 117 5T+ 1137 SREG 38 79 % 118 RCL 21
38 CLS 88 ST- IND 16 119 ST- 11
39 RCL 19 128 RCL 48

48 ST* IND 44

Figure B6.5. Program “SJ”: listing.

the frequency compensation time constant 7, (in R07). If double-slope frequency

compensation is absent, a large time constant is to be stored in RO7 (e.g.,

10°7)). In addition, the impedance level (we chose 10 k) is stored in R24. The

program calculates the optimum value of R, /R gz from (4.3-31):

2
TS

1+ 7,5

R, oL

R, 4o, (B7-1)
 where L,=
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121 ST+ 1@ 161 ST* 22 CaT22 REL 20 : : o122 feL 20 162 ST* 23 LBL™S.123 5718 163 ST* 24 END 446 BYTES24 1009 164 RCL 4@ LBL"MAT125 PRREGY 165 ST22 LBL T INY126 ADV L2 166 ST+ 24 LBL ™MLla7 18,017 167 %12 ENI 263 BYTES128 PRREC 168 ST+ 23 LBLCHjmv 169 ST 24 ENT 222 BYTES

3 YEQ "MIL- 178 28,024 LBL"ANE1;§2.fit+ ML 171 PRREGY LBL AN132 51441 172 ADY END 319 BYTES33 VIEK ¥ 173 FI¥ 3 JEND. 83 BYTES134 RIM
'RN 174 RCL 22

135 5T+ 42 175 RCL 37
136 YIEW ¥ 176 -
137 ifl? ) 177 RNI
133 ;T. 43 178 §287
139 VIEW ¥ 179 SF
140 A0V 188 RCL 21
141 FI¥ 4 181 RCL 36142 SF 21 182 -143 *¥8, X1 120" 183 RNI
14: gvlgu_ 184 Y287
145 41,043 185 SF A
146 Pefitcn 186 “DONE"
147 A 187 FC? a1

188 AYIEM
1484LEL 30 189 FC2C A1
149 TREG 20 198 RTH
158 LT
151 28,019 1914LEL 96
152 SIE {8 ) 192 5F @@
153 YEQ AN 193 RCL 39

] 194 RCL 24
I540LBL 87 195 *3bd LIN."

155 295 bi-bd: 196 %37};3 g;;&gfi 197 PROMPT
57 RCL 48 193 GTO @5

158 RCL 28 199 END
159 7
168 ST+ 21

Figure B6.5. Continued.

The values of R , and R are calculated individually from the impedance level:

R,
Rp=RoRp/Ry, Ry=———= (B7-2)

VRy /R,
Then 1/Q, is obtained from (4.3-15)

1 2
—= B7-3
Qo (Ry/R,)? ( )
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@1eLBL "MAT" 41 XEQ @7 21 ECL Af

@2¢LBL 18 42 RCL @2 g2 RCL 85

8z a 43 RCL @7 83 #

A4 GTO @5 g4 RCL B2

444EL @7 85 RCL A4

a5+LEL 11 45 156 13 86 XEG 63

86 3 46 DEG 87 ST0 Ad

87 GTO 85 47 RCL THD 1% 88 CL¥

48 * 89 RCL 43

AgeLBL {2 49 * 98 RCL ag

89 6 o8 + 9l

18 GTD @5 31 RTH 92 RCL 82
93 RCL 89

11eLBL 13 S24LBL "IHV* 94 YEQ 93

12 9 33 ¥EG 15 95 570 81

4 177 9 CL¥

13¢LEL 65 35 ADY 97 RCL @2

14 STO 15 36 PR 98 RCL B¢

15 XEQ @6 37 RCL 81 39 *

16 XEQ 86 38 RCL 89 188 RCL 43

39 * 181 RCL @5

17¢LBL 8¢ 68 RCL 83 182 AEQ @3

18 Rt 61 RCL 97 183 ST0 83

19 ISG 15 62 ¥EG 83 184 CL¥

28 DEG 63 5TO 12 185 RCL @5

21 STO IND 15 64 CL% 186 RCL @9

22 RTH 63 RCL @3 187 *

66 RCL 84 188 RCL 96

23¢LBL 15 67 * 189 RCL @8

24 8 68 RCL 81 118 XEG @2

25 ST0 15 69 RCL 0% 111 570 @82

26 RCL 86 78 JEQ A3 112 CL¥

27 RCL a5 71 §T0 14 113 RCL @6

28 XEQ @7 72 CLX 114 RCL #7

29 RCL B4 73 RCL @2 113 *

38 RCL R9 74 RCL @7 116 RCL 24

31 XEQ 87 75 % 117 RCL A9

32 RCL 85 76 RCL a1 118 XER @82

33 RCL @7 77 RCL 88 119 STO 86

34 ZEQ @7 78 XEQ 83 126 CL¥

35 CHS 79 5T0 15
36 RCL @3 88 CLX
37 RCL 08
38 AEQ @7
39 RCL a1
48 RCL 89

Figure B6.6. Program “MAT”: listing.

We then obtain the positive feedback ratio n from

 

n 1 1 1
=—\|=—=]=b B7-4

1—n 20, ( Q, 0 ) ( )

whereupon

b
n=-— (B7-5)
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121 RCL a4 161 REL 13
122 RCL @2 162 RTH
123 #
124 RCL 85 163¢LBL 81
125 RCL @7 164 &
126 XEQ €3 165 RCL 1@
127 RCL 15 166 XEQ @4
128 RCL @@ 167 RCL 11
129 XEQ 12 168 XEC @4
138 RCL @2 169 RCL 12
131 RCL @1 178 AEQ @4
132 RCL @2 171 ETH
133 XEQ 1@
134 RCL @6 172¢LBL A4
135 RCL 13 173 RCL IND 15
136 RCL 14 174 *
137 XER 11 175 +
138 CL¥ 176 13
139 RTK 177 5T+ 15

178 RIH
148¢LBL @3 179 RTH
141 * 188 END
142 -
143 *
144 RTH

145¢LBL "HUL"
146 1
147 5T0 15
148 XEQ @i
149 570 13
158 2
151 570 15
152 XEQ @1
153 570 14
154 3
155 570 15
136 XEG a1
157 ST0 @4
158 @
139 RCL @4
168 RCL 14

Figure B6.6. Continued.

We take C, = Cy, so that

C,=Cp=— (B7-6)A B ROwO

The nominal loss at resonance 1s given by

1 [R,
Lis.nom =51 7 B7-7

res., nom. Q RA ( )
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The sensitivities of loss to the amplifier loss and the passive components at
resonance are

L R
Sk= -l—fi— oL, 2 (B7-8)

—Q_ yRg /R, ?

and

QSg=— B7-9R QO ( )

The standard deviation of loss is computed from (4.3-30):

, op \? 1/2

0, =20 (04/100 +(3 (B7-10

 

Finally, the upper bound on the Q and resonant frequency deviations is
calculated for the optimized case from (4.3-33) and (4.3-44)

0o < QY2007 (B7-11)

and

0,<Yy200,7w, (B7-12)

Examples

Two examples are given (see Fig. B7.1), as described in Section 4.3. In
Example 1 a simple 741-type amplifier is used (7, =1.59X 10 ~ % ms) to realize

a 2.0 kHz resonator with a Q of 20. Note that the units used are volts,

milliamperes, and milliseconds, so that derived units are kilohms, microfarads,

kilohertz, and kiloradians per second. Impedance level R, is taken as 10 k2.

The standard deviation of the amplifier time constant is 15%, and that of the
resistors is 0.12%. All results are printed, including the amplifier loss at

resonance 1/Q, and circuit loss at resonance. The sensitivities of loss to the
amplifier (0.16) and the resistors (10) are also printed. Following this, the

standard deviation of loss at resonance is given (3.4%) followed by its interpre-

tation as an upper bound on the standard deviation of Q(1.7%) and the

resonant frequency (0.085%). Finally, all circuit values are printed.
Example 2 (in Fig. B7.1) repeats this procedure for a 10 kHz resonator with

the use of an amplifier having double slope (“T”’) compensation. Sensitivity

performance, even at 10 kHz, is twice as good as the simple 2 kHz resonator.

Program “OPTRES”listing is given in Fig. B7.2.



Program: “LED”: Loudspeaker Equalizer Design

Example 1.

La = TlS

fo = 2 kHz

{EG "OFTRES

OFTIMUM
RESOHRTOR
DESIGH

IHPHT:

oi; oF

REY= g, 1598
Ri@= &,8B17

R

R@&= 1,592-4

Fil= 28, 8888

Ri2= 12,3654

RESUHLTE:

. QT orCco
Lz A7 ¢e

t/Gd = 858

Figure B7.1.

CEMSTTIUTTIOS.
SEKsiiiviiibs:

 

  RT REL, Of

OPTIMOR COSE:

UPPEF BOUKE 0w

ol

a&F/F

RA. RE. CA. CB. H:

Rai= 42 6+@g
R@2=  2.58+88
Rai= 7.96-83
RB4= 7.9%-83
Ras=  {R1,-43

DOKE.

Example 2.

T. T 52
- 12

a 1 + T:ZS
L

AER "OPTREEC

OFT IMUM
RESONATOR
DESIGH

THPUT:

ad, af:

RE9=
Rif=

o
L
]

o

Program “OPTRES”: examples.

557

R

Raf= 18 Gans

La: Ti, T2

rBe=  1,3%2-64
RE7= 7.958-84

g, 2P1 FI:

ril= 2d.0aed
Ri2= £2.8319

RESHLTE:

La AT REL.
-n6.83d6 { 177.14

e

c
o1708 = &,

LR AT RES. = -44,8%E

SENSITIVITIES:

AT RES. OF L TO

La: @.63088

R: 4,997%

gL = 17.8-82

OFTIMUM CRSE:

UPPER BODUNE ON

all

o&F/F

g,43-83
424, -85

RA. BB, CA, CB. W:

RE1= 8A.8+aE
Re2= 1.23+88
RE3= 1.39-82
Ra4= 1.39-42
Rai= 24.4-83

DOKE.

B-8 PROGRAM “LED”: LOUDSPEAKER EQUALIZER DESIGN

This program (see Figs. B8.1 and BS8.2) illustrates the design of an equalizer

network having a biquadratic response requirement; the focus is on the

feedforward aspects of the design since the feedback portion was already done

in the Sallen-Key analysis in Chapter 4.

The program finds the values of the circuit elements for the low-frequency

equalization of a closed-box loudspeaker for the circuit in Fig. 4.15, as
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@1#LBL "OPTRES" 41 11,812 21 ROL @9
g2 of 12 42 PRREGZ gz %

a3 Ay 43 AV 23 ROL 18

84 *OPTIMUR" 44 -1 84 ¢
25 AYVIEW 45 ROL @7 25 510 15

86 "RESONATOR™ 46 RCL 12 36 SORT
87 AYIEW 47 # 87 RCL 88

a3 *DESIGH® 48 173 g8 *

89 AVIEH 43 CH3 29 STO @2

18 CF 12 38 R-F 33 RCL 1S
11 DV 5117 g1 /

12 “INPUT: 52 RCL 12 32 5T0 81
13 AYIEH 33 % 32 RCL 15

14 ADy 34 RCL @6 34 SERT

15 & 31 % 35 2
16 ACCHR 36 X0 % ¥
7R " a7 CHS 97 370 15

13 AcA 58 570 14 33 ROL 11
13 g 59 XY 93 1%

28 RCCHR 68 510 13 188 -
2{ "R:" 61 ADY 181 RCL 16
22 ACA &2 “FESULTS:" 182 =i/p8 = =

23 PREUF &3 RYIEW 183 ACA
24 3.81 64 ADV 164 ACY
25 PRREGY 63 LOG 185 PRBUF
26 ADV &5 28 186 *
27 "RO" 67 % 187 2
28 AYIEW &8 "Ls AT RES." g2 s

29 @ 63 AYIEW 189 ENTER*
I8 PRREGY 78 FIX 2 118 ENTERt
31 ADY 71 ALE 1111

2 *La: L. T2 72 =db < 112 +
I3 AYIEHW 73 ACA 113 7
34 501 3 74 RCL 14 114 570 85
35 6.887 73 ACK 115 RCL 12
36 PRREGY 76 AlY 115 RCL @8
37 ADV 77 AV 117 *
35 FIX 4 78 RCL 13 113 1%

39 g, 2P FO:- 794 119 570 &3
48 AVIEW 88 < 128 ST0 84

Figure B7.2. Program “OPTRES”: listing.

discussed in Section 4.4. Input data consists of the resonant frequency of the

loudspeaker, its actual Q, the resonant frequency desired, and the Q desired.

The values of R,, R,, and Rare also specified initially. The program finds
values of C,, C,, 1/G,,, G, and 1 /G.

Example

The example shows the computation for the speaker and equalizer discussed in

section 4.4. Registers R10-R12 contain the numerator coefficients, and R13-

R15 contain the denominator coefficients.
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121 RCL 13 161 RCL 14 281 *

122 SORT 162 * 282 2
123 RCL 11 163 ACE 243 *
124 7 164 ADY 284 SORT
125 LEG 165 9 283 RCL 11
126 24 166 ACCHE 286 *

127 167 "L =~ 287 ACX
128 ALY 168 ACA 208 ADY
12% ~L- 163 RCL 89 289 3
138 ACA {78 RCL 13 218 RCCHR
131 5 171+ 211 2
32 ACCHR 172 RCL 16 212 ACCHR

133 * AT RES, = - 173 7 213 "F/F ="
134 RCA 174 Bt 214 ACA
135 RIK 175 RLL 14 215 RDK
136 ACX 176 RCL 1 216 RDN
137 =dB" 177 * 217 RCL 11
138 ACA 17§ 512 218 7/
139 PRBUF 173 ¢+ 21% AC¥
148 ADY 138 SORT 228 ALY

141 "SENSITIVITIES:® 181 RCL 11 221 ALY
142 AYIEW gz * 222 R4, RB, CA, CB."

143 AT RES. OF L TO- 133 2 223 "k N:-
144 AVIER 184 224 RYIEM
145 "La: ® 85 ENG 2 225 1.883
{46 ACA 156 RCX 226 PRREGY
147 RCL 13 187 PRBUF 227 Ay
145 SaRT 132 ALY 228 “DONE."
149 17% 185 =CPTIRUM CRSE:" 22% AVIEH
158 RCL 11 198 AYIEM 238 FIX 4
151 * 191 "UPPER BOUND ON" 231 AW
152 RCL 13 192 AVIER 232 ADY
133 * 193 9 233 ERD
134 570 a8 194 ACCHE
155 FIX 4 195 "¢ = = CAT I
136 ACX 196 ACA LBLTOPTRES
37 ALY 197 RCL @9 ENE 513 BYTES
138 *R: - 193 RCL 18 .END. 85 BYTES
159 ACA 199 =
168 RCL 11 28@ RCL 12

Figure B7.2. Continued.

B-9 PROGRAMS “CFE” AND “DE”: CLASSIC FEEDBACK EQUATION

Program “CFE” calculates the root loci as the delay or the control time

constant is varied in the equation

L(s)=1+ 1;se™* (B9-1)

Two normalizations are used; the first, obtained by executing “CFE”, normal-

izes the frequency variable to the control time constant 7,. Setting p = 7,s,

L(p)=1+ pel«r (B9-2)

where we have set T, =1, /7,.
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$EQ "LED" |
SPER EG DES K-

BE, 0%, FE. FS Rif= {,GH8g

I Ril= 4.BE08
Rig= Ri2= 16,8005
Ri7= -
Rig= I:

R19=
RiZ= &.2562

Ri, BRI, EF. Ri4= 1D, B0HE
Bij= 15,0868

REi= 188.0828 .

RE2= 188, basd Ci, 2

RE3= 188, 568
RE3=
RE9=

1760, 0. 1/GFF

F28=  19.847¢
R2i= B.8cHE
R22= @8o8d8

Figure B8.1. Program “LED”: example.

For real roots, as shown in section 5.2, we have w =0 and p = o, so that

In(—0)=—0T,

or

r,=-o) (89-3
o

For complex roots, p =0 + jw; as noted in the text, we choose as a dummy

variable the angle T,w. This is the angle from the negative real axis to the line

passing through the origin and the root position. From egs. (5.2-14) to (5.2-16),

we find o, w, and T}, and these are displayed or printed (no printer is required

for this program).

Use of the program is illustrated in the example shown in Fig. B9.1. After

executing “CFE”, the program prompts the user to set flag 04 if the dummy

variable angle T,w is to be expressed in degrees. The program then prompts for

the dummy variable.

If the angle is zero, the roots are real, and the program prompts for sigma

(o). It then displays the position of the root on the real axis and calculates and

displays T,. If the data are other than zero, the program calculates the complex

root position and displays it. It then calculates 7, and displays it. The program

then repeats the prompt for the next angle. By responding with an angle

greater than 360°, higher-order root locations can be found.



Programs “CFE” and “DE’: Classic Feedback Equation 561

 

BielBL "LEL" 41 RCL 17 81 570 22

T 42 577 14 g2 RCL 12

83 =SPKE. ER." 43 1 83 RCL 18

B4 AYIEM 44 570 1@ 84 RCL 85

85 CF 12 45 M. 85 *

8o ADY 46 AVIEW 8 -

87 "0E., @5, FE. F5° 47 18.812 87 RCL a2

88 AVIEM 43 PRREGX g8 7

89 16,819 49 ADY 89 1/%

18 PRREGY 58 =D~ 98 570 2@

i1 ADY 51 AYIEW 91 RCL 14

12 "R1, R2, RF:" 52 13.815 92 RCL 11

13 AVIEH 33 PRREGH 93 RCL 83

14 1,083 34 ADY 94 *

15 PRREGY 35 RCL 11 % -

16 ADY 36 RCL &1 9% RCL A3

17 RCL 18 57 RCL &2 a7 /

18 PI 58 + 98 576 2t

19 2 39/ 99 ~1/G0, CO, {/GFF"

28 68 570 a9 1G5 GYVIFH

2l #* Bl RCL 12 1@i 2B.822

22 174 62 RCL 81 182 PRREGE

23 570 1 63 7 187 BRIV

24 312 64 RCL @2 184 .FHL.

25 570 12 63 7

26 570 1 66 RCL @9 AT

27 RCL 19 67 / {EITIER

28 RCL 18 &8 5T0 @S 274 BYTES

29 / 89 “Ci, C2:-

38 212 78 AVIEH PREEYE

31 570 13 71 8,889

32 874 14 72 PRREG
33 RCL 19 73 ADY
34 PI 74 RCL 12
352 73 RCL 15
36 * 76/

7 * 7 570 85
38 87/ 14 78 RCL 83

39 RCL 16 79 7 T

48 57/ 11 ga /% PR

 

Figure B8.2. Program “LED: listing.

The second normalization, corresponding to that used to plot the root locus

in Fig. 5.8, is obtained by executing “DE” (see Fig. B9.2). Here, the frequency

variable is normalized to the delay time, so that p = 7,s. Hence

L(p)=1+T,pe? (B9-4)

where we have set T, = 7, /7,. In this case we can write for the real roots

In(—oT,)=—0
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XEQ@ “CFE"
TD+OMEGA:
IN DEG? SF 84

Td#0MEGR?
SF 84

8.888  RUN
SIGHR?

-1.868  RUN
5= -1.0808 +Jo.a00
Td = 9.868

Td#0MEGA?
8.868  RUN

SIGNA?
-1.368  RUN

§= -1.508 +Jo.068
Td = 8.278

Td+#QMEGA?
8.888  RUN

SICHA?
-2.888  RUN

5= -2.068 +Jo.008
Td = 6.347

Td*ONEGR?
6.888  RUN

SIGHA?
-2.388  RUN

5= -2,500 +Ja.0e8
Td = 8.367

Td+#0MEGR?
8.088  RUN

SIGHR?
-4.868  RUN

S= -4.880 +J8.000
Td = 8.347

Td#0NEGAR?
8.988  RUN

SIGMA?
-18.868  RUN

S= -10.088 +J8.808
Td = 8.238

or

Figure B9.1.
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Td#0MEGAR?
15.888  RUN

§= -2.566 +J8.688
Td = 8.381

Td+0MEGR?
36.068  RUN

5= -2.145 +J1.238
Td = 8.423

Td*0MEGA?
45.088  RUN

§= -1,551 +J1.551
Td = 8.586

Td«0MEGA?
68.688  RUN

§= -8.915 +J1.585
Td = 8.661

Td#(MEGA?
73.068  RUN

§= -8.368 +J1.372
Td = 8.954

Td#OMEGA?
98.088  RUN

S= 1.745E-18 +J1.000
Td = 1.571

Td«0HEGA?
185.888  RUN

§= 8.158 +J8,591
Td = 3.188

Td+#QMEGA?
126.088  RUN

5= 8.149 +J8.238
Td = 8.184

 

Program “CFE”: examples.

Td+#OMEGR?
398.808  RUN

114,216,932 +J65,943.177
Td = 1.832E-4

Td#0MEGR?
428,808  RUN

§= -34.434 +J39.642
Td = 8.123

Td+0MEGA?
435.888  RUN

5= -1.979 +J7.386
Td = 1.828

Td«0MEGR?
420.888  RUN

§= -34.434 +J59.642
Td = 8.123

Td+OMEGR?
425.088  RUN

§= -13.432 +J28.884
Td = 8.258

Td+OMECA?
438.808  RUN

5= -5.252 +J14.431
Td = 8.528

(B9-5)

We can then specify ¢ and find the value of the control time constant at that
value.
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%R “DE
OMEGA?

OMEGE? T BB RN
oo b.ee RN §= -1.800 +J8., 810
DIUHQ:‘ Tl =9 ?IS

-.B18  RUN -
§= -B.B18 +8,ARA 0
Ti = 191,065 HEEH S8 RUN
N ?T :@;9§§:+JE.SEE

8.098  RUN S
S1GHA7 QHEGR?

§= -8.1898 +J‘;égg e S= -@, 647 + |:ggg KlT1 = 11,852 =150

OMEGA? baae RN OMEGA?
Lo LU 1,582 RUM

| ] } 3= -8.186 +J1,506-.588  RUN Ti = 8.748S= -8.508 +J0, A88 PR
Th=3.2% OMEGA?
. 1.5768  RUN

OHEGA? f= £ 77@F-
B.808  RUN T f'g‘?EflS HL7!SIGHR? S

-1.808  RUN
5= -1.888 +Je, 086 OREGR? 2.888  RUN
Tl =2.718 $= 8.915 +J2.000
. T1 = 8.187

8.80g RUH OMEGAR?

SIGHAT e R 3.808 UM
) -ee R $= 21,846 +J3. 008
§= -2.84@ +)a, 088 T = 2.4R7E-11
Ti = 3,695 S

ONEGA? EsE? PI8.008  RGM
SIGHA? 5‘333 ;-4.808  RUN 2050 e5= -4,900 +J8. 208 78 UK
TL = 13.658 5= 1.371E-8 +J7.854

T = 8.127
Figure B9.2. Program “CFE”, subroutine “DE”: examples.

For complex roots, we choose a value of w as the dummy variable (since the

normalization is to unit delay) and obtain the root positions by the equations

 T,0 = —exp ta(;l)w COS W (B9-6)

sin w (B9-7) T,w=¢ex
! Planw
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B1eLEL "CFE" Th= 74 RCL B8
82 SF 21 38 ARCL A3 75 5

@3 ~TD#OMEGA: - 39 AYIEW 76 STG 83
a4 AYIEH 48 CLA 77 1%

85 "IN DEC? = 41 G746 “DE" 78 STO &4

B8& “FSF 84" 79 RTH

87 AVIEM 424LBL C
8 CLR 47 ADY gaelBL R

44 "HOMEGA?" 3t B
B9¢LEL B 3 PRONPT 8z 570 @2
18 CF 23 46 FL7 B4 83 “SIGHAT"
11 (LA 47 B-I 84 PROMPT
12 =Tds~ 48 EHTERY 85 5T 6!

12 ¥EG C 43 TAH 26 CHS
14 "5= - 38 x=e7 a7 F37 a2
15 ARCL @1 31 GT0 R 38 GT0 3
16 “+ +J° 92 BOH 89 LH
17 ARCL @2 a3 I-k 9@ RCL 8!
12 AYIEW 34 570 ae 91 s
19 74 = = 33 R-I 32 CHS
28 ARCL A4 36 TRH 93 87D a4
21 AYIEK 37 RCL @@ 34 1
22 GT0 B 28 RO 95 570 3

39/ 9% FTH

2IeLBL “DE" 68 ETX
24 CF 84 &1 570 &5 I7¢LEL z
25 §F 21 62 CHS 38 ¥
26 SF B8 63 RCL 66 9% RCL B

27 CLA 64 R-I i
28 XEO © &5 05 181 CHS
29 RCL 24 b6 * 162 570 &3
38 5T+ @ 67 ST0 @i 183 1
35T 82 68 RCL 85 184 STO @4
32 gz - 63 RCL @@ 185 END
32 ARCL o1 78 Rl CAT ¢
H o4 71 SN LELTCFE
35 ARCL a2 72 * LBLTIE
36 AYVIEW 73 570 @2 END 213 BYTES

Figure B9.3.

Since we started with a given value of w, we find 7, from the second equation
and divide it into the first to obtain o.

Registers

Six registers are used. The dummy variable is stored in R00, ¢ and w are stored

in RO1 and RO2, 7is in R0O3, and 7}, is in R04; ROS5 is also used. The program

is listed in Fig. B9.3.

B-10  PROGRAMS “AN2” AND “AN3”: ANALYSIS PROGRAMS FOR DESIGN

B WITH DELAY

These two programs analyze the Design B amplifier with fewer simplifying

approximations than used in the analysis given in chapter 3. Program “AN2”



Programs “AN2" and “AN3" Analysis Programs for Design B with Delay 565

is a simple program that establishes the framework on which the more
elaborate program, “AN3” 1s based. Program “AN2” treats the amplifier
polynomial as a cubic, with delay assigned to the feedback path. Program

“AN3” treats the amplifier as a quartic and includes the effects of load

capacitance C; and third-stage input-output capacitance Cp. The latter can be
augmented to exert separate control of the third-stage characteristics in the
presence of arbitrary amounts of delay and load capacitance. The analysis also
includes interstage shunt parasitic capacitance and series base resistance.

Each program includes a global label “AN” to allow its use with program

“SJ)” (that program calls on “AN” as a generic analysis program to be used in

synthesis by inversion of a 3X3 Jacobian matrix). Each can be used for
analysis only, simply by calling for “AN2” or “AN3”. Register R18 contains

the address of the registers to be used to store the polynomial coefficients of

the analysis.
The analysis is carried out in an essentially two-step hierarchy of circuit

equations: the characteristics of each stage are analyzed and stored (as a
binomial in frequency plus delay). The stage binomials are then multiplied

together to give the loss of the active path. Finally, the feedback polynomial
coefficients (including the effect of delay) are added to the result. The final loss

polynomial is stored in the registers determined by the address in R18, and the
results are printed (when the program is used for analysis only).
To use the programs it is convenient to clear the machine and use a status

card to reestablish the machine status. Programs “SJ”, “MAT”, “AN2” or

“AN3”, and “CM” are then read into the machine and all flags cleared.*

Circuit data can be read into the memory registers from a previously recorded

card; registers R36—R61 are filled by using the card and the command 36.061

RDTAX. Then “SJ”is executed.

Examples

The equations programmed for “AN2” are given in Section 5.4, and those for

“AN3”, in Section 5.5. The examples shown in Figs. B10.1 and B10.2 are for
the 300 MHz amplifier design described in Section 5.6; in using “AN2”, C, is
not taken into account, nor is Cz. The effect of these capacitances on the
design is seen by comparing the two examples. Load capacitance can be

important to the design.

Values of the device parameters were obtained from program “DEV”, to be

described later. In each case the initial values of the dominant elements were

(arbitrarily) set to unity.

*When either of these programs is used with “SJ”, the HP 41C without the quad memory module
requires three memory modules, thus requiring the card reader and printer to share the fourth
plug-in port of the calculator.
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NEQ 5" ]
JAC. SYH. bl-bd

R36= 2.688

DES. B PAE. R37= 1.858

5. R33= 8.948

i R33= 8.230

R41= 1,808 2P1 Fo
R42= 1.068
R43= 1.809 RdB= 1.885

RG, GL: aK?

RUN

R45= B.158 28, A1 ,¥2:

Rd6= 4£.678
Rdl= 8.8134

ri-r3 R42= 8,8875

R43= 8.6349

R47= B8.82%
R48= 8.889 al, bi-bd:

R49= 9.885
R28= -8.8824

£1-3: Rz2i= Z.8048

R22= 1.8534

R58= 6.918 R23= 8.9394

RS1= @.819 R24= 8.8808

R32= 8.818
XBJ X1 .-XZZ

T1-7T3:

Rd4li= B.8134

R33= 8.181 Rd4z2= B4.8875

Rod= B.876 R43= B.8329

R33= 8.843
ad, bi-bd:

Tdi-3

R28= -8.08824

R56= 8.858 R21= 2.8888

R37= 8.115 R22= 1.8584

E58= 8.114 RZ23= B.9408

R24= @.0088

CL, CB, G3:

DONE

R39= 0.8042

Red= 0.068

Rel= 2.0808

Figure B10.1. Program “AN2”: example.

Loss Variation

Once the design is completed, the sensitivity of the polynomial coefficients to

the components may be evaluated by using program “SCX”, as shown in Fig.

B10.3. The sensitivities thus generated can then be used to find the mean and

standard deviation of the variation of loss and phase of the amplifier by using

program “STAT"”as illustrated in Fig. B10.4. To evaluate accuracy, the means

and standard deviations of the individual components must be found. The
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AED =LAn
JAC. SYH. bl-bd

R36= 2,008
s. E.

e B FAE RI7= 1.83568
R38= 10,9460

GF, CF, G2: 8= 0.

= xg' Xl} XE
EZ-“ '4.5353

2P1 F@
R4l= 1,B068

4 z2= AlRaz= 1.008% R4B= 1.8950
R43= 1.B0AR

0K?_— .86, GL -

O— X8, ¥l ,%2:

R46= 6.6760 Rél= 8,839
er3 R4Z= 0.819

3 R4Z= 1.9511

R47= 9.0280 o
R4S= @.B895 38, bl-bd:
R49=  0.8053 T

4io2 R21= 1.9285
222 1,7786
223= @ a3RSB= 0.2109 e aa

RS1= 9.8185 ‘ £ EE08

Riz= 8.01%0 X8, %1 .52

T-13: Rél= B.8395
) R4Z= 9.8187

RS3= 9. 1883 L,
|:| = 918764 Rd‘:':- én':-.‘:l?

55= 8.8446 6 blobd.

Tdi-3 R28= -@,8073
2= 2.0007RS6=  0.6501 e oo

RS7= @.1155 o ot= g RZ3= @.948RRS3= 0.1148 Rote g 201

CL! EB: GEZ DQHE

Rel= 1.3308

Figure B10.2. Program “AN3”: example.

values used here are merely estimates and are not necessarily typical. Care

should be taken to obtain good estimates for the particular integrated circuit

process being used.

Preparation of an Analysis Program “AN” for Other Systems

To take advantage of the synthesis program and the several programs for

sensitivity analysis, the reader should be able to write an analysis program for
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t 2SHETYY. al T0 ¥X
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RN LB

MEAH AHD ) RUN @
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LOSS + PH. EUK

RUH
RUH
RUN

& RUN
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19,8068  RUN

o
d

P
o
d
D
N

L
l

[
~

c
r

e
l

o O
y

3 i f D!

3 RUN .1338  RUM
38 RUN .12%98  RUM

RUN B R
RiH L8318 RUN

i.Gage  RUR

«
w
o
a

g
P
P
O

. 1588 P
#

¥ ' .81 Rl .4 BUN

B.9425 %% 7
RUH | 8 RUK RUH

SHSTYY. al TC ¥ ¥9,7
POLY 8158 RUR 8878 RUH

. 8358 FLH L a3%8 pUH

-8, 4873 2638 RUM L8478 RUH
8877 3348 RUN 8378 RUM_E= ‘

-8.9838 v 4.7 , v 9.7
-3.80818 .81 RUH .1 RUN

P
l

P
o
r
P
l
P

La
d
P
l

e
t

3
5

A
S
R
A
G

L, dB+PH: 81 RUN ' d RUK
-42,3974 ¥ SNSTYY. &I T0 ¥ 5.7 SNSTYY. 3l 10 ¥ 18.7?

-122.8885  **x 1788 RUN @.2088  RUN
L7288 RUN L8988 RUK

SHSTYY. al 70 ¥ 8.7 3278 RUH L7388 RUM

i RUM 2338 RUN 5438 RUK

" o
l

-
‘

wE
n.
o

"

L RilH p 5.7 ) o 18,7

Bo38 RUH L85 RiN .1 -

L8838 RBUH 73,

1

o - e
t

RUH

" 2R
y

" h

I83 RUM
Bl RUM SHETYY. al T0 X &. SHSTYY, al T0 -

&  RUN g.a
B RUN 7
B 8

e -
"

RUN
RUH

R
R
N
e
b

81 RUH

"
-

"
"

<
R

e
R
)

X
e

SHETWY. 3l TO ¥ 1.7 8 RUN 1.B368 RN

g.peas  RUH 58 RUH £33 RUN
JI56E  RUM ¥ 6.7 ¢ 11,7

-.1998  RUH 85 RUH . RUM
1128 RUH 7 6.7 7 i1.?

RUN" fro
rsk

e

p 17 .65 RUN

. RUH

81 RUN

Figure B10.4. Example: statistical analysis of 300 MHz amplifier at 150 MHz.

569
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SNSTVY, al T0 % 12.7 SHSTYY, al TO 16.7 RESULTS :
B.8830  RUN B.E8RE  RUN X
258 RUN JERSE RUM "
298 RUM JERER  RUE
TR RUN 3718 RUM dB= 8.4127

v 12,7 b 16,7 PH= &.2864
4 RUN 85 RUN

g 12.? g i6.7 ot

4 RUN 85 RUM )
SHSTYY, al T0 ¥ 13,7 SNSTVY. al TO ¥ 17.7 dB= B.4215

R.B0RE  RUN §.8908  RUN PH= 4.7528
8728 RUK 8218 RUM
- 8148 RUN 2128 RUN
L6385 RUN L3238 RUM

v 13,7 p 7.7

4 RN .85 RUK
¢ 13.7 ¢ 17.7

A RUM 85 RUM
SNSTVY, 2l T0 & 14.7 SNSTYY, al TO ¥ 18.7

B.BRE  RUN L8858 RUN
6338 RUN L8228 RUN
8338 RUN L8338 RUN
8278 RIN 6238 RUM

y 14,7 v 18,7
A RUN 81 RUK

o 14,7 g 15.7

A RUH A1 RUN
SHETVY, al 70 ¥ 15.7

0.3668  RUN
- 1858 P
- 2848 RUN
- 2148 RN

‘v 15,7

A RUN
g 15,7

.1 RUM

Figure B10.4. Continued.

the circuit or system in question. The means for extending the type of analysis

used in the case study amplifier in Chapters 3 and 5 is given in Chapters 8 and

9; here, we are interested in the formal requirements of an analysis program so

that it will operate in conjunction with the synthesis program.

The key requirement is that the storage of the polynomial be under the

control of the address in register R18, thus allowing the synthesis program to
locate the nominal polynomial in one address and the modified polynomial in

another. Therefore, the analysis program, in calculating the polynomial coeffi-

cients of the system in question, must use indirect storage of these coefficients.
Each analysis program discussed so far provides examples of this procedure.

Often, calculation of the polynomial coefficients will require multiplication of

the polynomial in storage by a binomial and, occasionally, by a quadratic

function. A subroutine for multiplying by a linear factor is given in “AN2” or
“AN3” in label 40. A subroutine for multiplying by a quadratic (as well as a



Program “DEV”: Device-Level Analysis of the Stages of Design B Amplifier

@ieLBL “ANZ*
82 26.813
83 570 12
84 AEQ “AN"
a3 28.824
856 PRREGX
87 RTH

3¢LBL 7AN-
73 TONE 8
18 RCL 45
i1 RCL 43
1z +
13 RCL 4
14 +
15 570 65
16 RCL 49
17 RCL 43
13
19 RCL 52
28 +
Z21
22 BCL 43
23+

24 STD IND 13
23 RCL 35
26 RCL &5
27 *

RCL 43
T
*

I5G 18
33 DEG

34 STO INE 12
25 RCL 5t
36 CHS
37 5T0 &3
38 RCL 54
39 CHS
43 STD 64

o
0

C
d

C
e
d
P
2
P

D
W
D

.
o

[
N
™
o

41 XEQ 48
42 RCL 47
43 RCL 58
44 RCL 45
Sk

46 +
47 ST0 62
43 RCL 33
43 RCL 45
a8 *
31 570 o4
32 3
33 57+ 18
4 RIH
5 REQ 48
& GT0 41

w
n
o
e
n

w
n

J7+LBL 48
38 RCL IND 18

39 #
68 I5G 18
61 DEG

62 5T+ IMD 18
63 DSE 13
&4 RCL 63

63 5T+ IND 18
66 RCL 64
67 DSE 12
65 GT0 44
69 RN

7a+LBL 41
71 186 13
72 DEG
73 RCL 45
74 RCL 41
75 ¥

76 5T- IND 13
77 RCL 42
73 RCL 58
79 RCL 57
g8 +

Figure B10.5. Programs “AN2” and “AN3”: listing.

R
N -

N

I'
s
r i

o
e

=
)
T

I56 18
98 DEG

91 5T- IND 13
92 RCL €3
93 2
94 s
95 RCL 41
9 *
97 RCL 42
8 -
93 RCL 63
188 *
181 RCL 45
iz
183 IS0 18
184 DEG

185 57- IND 12
186 RCL &3
187 ¥tz
1a8 2
189 7
118 RCL 42
11 =+
11z RCL 43
113 *
114 156 18
115 DEG

116 5T- IND 15
117 ERD

A
0
0
O

2
0

D
0

Q
D

Q
O
D
O
O
0

o
D

571

linear term) is given in program “PF” in Appendix A. Listings for programs

“AN2” and “AN3” are given in Fig. B10.5.

B-11 PROGRAM “DEV”: DEVICE-LEVEL ANALYSIS OF THE STAGES OF

THE DESIGN B AMPLIFIER

The purpose of this program is to derive the values of the dc loss, the unity loss

time constant, and the delay of each of the three transistors of design B from

the physical device parameters of the transistors and the dc collector currents.
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CAT 1
LBL'CH
ENE 221 BYTES
LBLTS]
END 445 BYTES
LBLTHAT
LEBLTINY
LBLTHIL
END 2o3 BYTES
LBLTANZ
LBLTAN
END
ENL.

USER
11

-11
14
iS

PEKEYS

KEYS:
ZREL
SIZE
A=

ngg

“fiHz"
i PREEYS
2 RN
I PRFLAGS

nlpe

2 DSE

Fgor
PRREGY
PRBLF
TEL
YROM 30,80
XROM 36,63

3 E-T

FRFLAGS

oSTRTUS:

SIZE
=

DEG

= B8
24

Figure B10.5.
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@leLEL "AHI"
8z EE.Bi?
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0
C
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el
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a
P
l
P

P
l

g
o

I8 “Tj IND 1€
2t wr am
31 RCL 43

32 57- IND i%
7]? F’r' E!:
e il

24 RCL A49

35 RCL & )
,|
:|

i6

ir+

38 5T

39 RiL
40 *

P
y

T
y

o
y

Continued.

41 RCL 69

42 RCL 59

43 RCL 42

44 4+

45 RCL o6

45 +

47 570 66

45 %

49 +

Se RCL AE
o 7

52 156 18

53 DEG

24 570 IME 13

55 RCL 68

36 RCL 49

64 STO 65

63 BOL 43

bb ¥

b7 -
68 57- IHE 13

63 156 18

78 LEG

71 RCL &7

72 ROL 66

73 ¥
74 RCL &8

7a s

76 RCL &6

77 PLL 63
P
79+

a8 RCL 65

It is intended to complement programs “AN2” or “AN3” and “SJ” for the

design of the amplifier by using sets of the equations corresponding to the

system (““SJ”’), the circuit (“AN2” or “AN3”), and the devices (“DEV”). More

generally, this program is intended to illustrate the breakup of the design

process into three hierarchical levels to clarify and simplify the rationale

underlying the design. For clarity, simplifications have been introduced, partic-

ularly in ignoring the effect of dc collector voltages on collector junction

capacitance and device transit time. Early effect (the effect of collector voltage
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81 %12 121 ST+ IND 18 161 +
82 2 122 ISE 18 162 RCL 63
83 / 23 REL 63 163 #
84 RCL 43 124 ST+ IND 18 164 RCL 45
3% + 125 RCL 64 165 *
86 - 126 DSE 18 166 $T- IND 18

87 STG IND 13 127 GT0 48 167 156 18
88 RCL 51 128 RTN 168 DEG
29 $T0 63 169 RLL 42
98 RCL 54 129¢LBL 41 178 2
91 §T0 #4 138 RLL 56 171 7
92 XEG 4% 131 RCL 57 72 REL 63
93 RCL 5@ 132 + 173 X12
34 RLL 41 133 RCL 65 174 *
95 RCL 47 134 + 175 RCL 45
% * 135 CHS 176 *
97 + 136 §70 €3 177 $T- IND 18
93 REL 45 137 RCL 43 178 END
99 * 133 RIL 41 CAT 1
188 RCL 47 133 # LBL™AN3 o
et + 148 156 18 LBLTAN
182 570 63 141 DEG EI 306 BYTES
183 RCL 53 142 5T- IND 18 TR R
184 RLL 42 143 I5G 18
185 RCL 47 144 DEG
186 * 145 RCL 42
187 + 146 RCL 41
188 RCL 45 147 RCL 63
189 * 148 *
118 570 64 149 +
111 4 158 RCL 45
112 §T+ 18 151 #
113 RIM 152 §T- IND 18
114 XEG 48 153 156 18
115 6T41 154 DEG

155 RCL 41
116+LBL 48 156 RCL 63

117 RCL IND 18 157 *
13+ 158 2
119 156 18 159 7
26 DEG 168 RCL 42

Figure B10.5. Continued.

on the junction spacing) is also ignored. These effects are included in the

device programs in Appendix C.

Transistor data required by the program are given in the following list,

which gives values for the parameters used in the design described in Section

5.6. These values were obtained from transistor measurements taken on actual

microwave integrated circuit transistors over a frequency range from low

frequencies to 2 GHz:

r Emitter contact resistancee 0.002 k€2
6 Dc current defectratio (1/h,) 0.01
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ry Base resistance 0.050 k2
T Base transit time 0.032 ns
G Emitter junction capacitance 1.0 pF
G, Collector junction capacitance 0.30 pF
o Collector-to-substrate capacitance 0.30 pf

In addition, certain parasitic elements are included as well as conductances
used in supplying biases:

G, _; Base-to-ground shunt conductances
I, DC collector currents, taken as 1, 4, and 8 mA, respectively

G- Parasitic base-to-ground capacitances including that of
the biasing diodes offig. 5.19.

The equations programmed begin with the total emitter resistance of the ith
stage:

kT
i =——tr, B11-1

qlc; ( )

The dc current loss of the ith stage is

A; =8+ Gy (B11-2)

The unity loss time constantis

T':TFi+rEi(C'i jei +CpTi)+rB(i+l)C (B11-3)

in which rg; is the total series base resistance, including that of the series
biasing diodes, and C,r, is the total parasitic shunt capacitance from base to
ground. For the three stages diagrammed in Fig. 5.19, these capacitances are
given by

Cpr1=CatC,y

Crr=Csi T G+ G, T Gy

Cpr3=Ces2 T Gt Cis T G5 (B11-4)

These capacitances are used internally by “DEV” but are not used in the

analysis program. Their effects are included in the time constants and delays.
The stage delays are given by the sum of the transit time delay and the

equivalent delays introduced by direct feedthrough (through the collector
capacitance) and the combination of base resistance and parasitic capacitance:

T 7.Cpri+rE,.C-,.+rB,-T ! (B11-5)Tii —
2

This completes the set of equations for the three stages of Design B.
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The results of these equations are stored in the memory locations required
by the analysis programs; by using this program in conjunction with “AN3”,
for example, the ampilifier can be analyzed starting with the basic transistor
parameters. Program “AN3”, in conjunction with “SJ”, can then be used to

design the amplifier for a wide variety of bias conditions, polynomial specifica-
tions, and cutoff frequencies. The device-level equations do not interact

directly with the synthesis program; only adjacent levels of the three-tiered
hierarchy interact.

XEG =DEY"

DEY. LEVEL PUH

AHALYSIS ri-1

PAE. R47= @.6208

§, Gi-3. Re: R48= 8.6885

R49= 8.8833
Rag= 8.8led

Réi= B.6882 a1-3
Raz= 1.3362

RG3= P.8088 R58= @.6186

RA4= @.0828 RS1= 8,818

R52= B.68108
rbi-3

CPTOT 1-2
RO5= 8.8588

Rés= @.6888 P19= 9.6808

R@7= B.8868 R28= 1.4608

R2i= 1.4868
TF, CJE, CJC

T1-3
Rag= 8.8328

Ra9= 1,0808 R53= 9. 188

Ri8= @.3888 RS4= B8.8704

R55= @.8445
CP1-2

Tdi-3
Ri2= 8.3688

Ri3= @.50868 RS6= 8,8581

Ri4= 8.5088 RS7= 8.1155

RS8= 8.1137
IC1-3

Ri3= |.0808

Ri6= 4.08808

Ri7= B5.0808

K178

R18= 8.8268

0K?

Figure B11.1. Program “DEV”: example. Left column: Input data. Right column: Amplifier

stage data.
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Once the design is realized, its sensitivities and variations may be investi-
gated directly by use of programs “SCX” and “STAT”. The data are stored in

memory locations appropriate for these programs.

Example

The physical device parameters are stored in registers RO0O—R18 in locations

indicated in the example. The results from the program are stored in registers

R47-R58, and the total interstage parasitic capacitances are stored in R19-R21.

Program “DEV”is listed in Fig. B11.2.

Figure B11.2. Program “DEV”: listing.

@14LBL “DEV" 41 13.817 81 RCL @1
@2 "5/29/88" 42 PRREGY 82 RCL 47
A3 SF 12 43 ADY 83 *

@4 "DEY. LEYEL" 44 K14 84 RCL 98
@5 AVIEM 45 AVIEH 85 +

86 "ANRLYSIS" 46 18 86 ST0 5@
87 AVIEH 47 PRREGCY 87 RCL B2
@8 CF 12 48 ADYy 83 RCL 48
89 ADY 49 =0K7" 89 RCL 0@
18 “PAR." 58 PROMPT 9 +
11 AVIEH 51 §F 13 91 §T0 51
12 13 52 *R1-2" 92 RCL 43
13 ACCHR 53 AYIEM 93 RCL 49

14 ", G1-3. Re" 34 CF 13 94 *
15 ACR 55 RCL 18 95 RCL 99
16 19 56 RCL 15 9% 5T0 52
17 ACCHR 57/ 97 58,85
18 PRBUF 98 RCL 84 98 PRREGY
19 .96 59 + 99 ADY
28 PRREGY 68 510 47 108 RCL 18
21 ADY 61 RCL 18 181 RCL 12
22 SF 13 62 RCL 16 182 +
23 "RB1-3" 63 ¢ 183 STO 19
24 QVIEW 64 RCL 04 184 RCL 99
25 CF 13 b3 + 185 +
26 5.987 66 ST 48 106 RCL 47
27 PRREGY 67 RCL 12 187 *
28 ADY 63 RCL 17 188 RCL 86

29 *TF. CJE, CJC* 69 / 189 RCL 18
38 AYIEW 78 RCL 04 118 *
31 3.8t 71+ 11 +
32 PRREGY 72 STO 49 112 RCL 88
33 ADY 73 47.949 113 +
34 "CP1-3 74 PRREGY 114 &0 53
35 AYIEM 73 ADY 115 RCL 1@
36 12.0814 7 8 116 2
37 PRREGY 77 ACCHR 117 *
38 ADY 78 *1-3" 118 RCL 11
39 *I101-3" 79 ACA 119 +
40 AVIEW 88 PRBUF 128 RCL 13
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121 + 161 RCL 53 281 RCL 55
122 570 28 162 RCL 19 282 BCL 21

123 RCL 99 163 * 203 *
124 + 164 RCL 85 284 RCL 87
125 RCL 48 165 285 *

126 * 166 RCL 47 286 RCL 49
127 RCL @7 167 RCL 19 287 RCL 21
128 RCL 18 168 * 288 *
129 * 169 RCL 53 289 RCL 55
138 + 178 + 218 +
131 RCL 08 171 7 211 7
132 + 172 RCL 18 212 RCL 49
133 $T0 54 172 RCL 47 213 RCL 18
134 RCL 18 174 * 214 *
135 2 175 + 315 +
136 * 176 RCL 88 216 RCL 83
137 RCL 11 177 2 217 2
138 + 178 7 218 -
139 RCL 14 179 + 219 +
148 + 188 ST0 36 228 570 58
141 870 21 181 RCL 54 221 56.858
142 RCL 29 182 RCL 28 222 PRREGY
143 + 183 # 223 ADY
144 RCL 49 184 RCL 86 224 RTN
145 * 185 # 225 .END.
146 RCL 93 186 RCL 48
147 + 187 RCL 28
148 ST0 55 188 *

149 =CPTOT 1-3° 189 RCL 54 CAT
158 AVIEW 198 + LBLTEV
151 19.821 191 7 END 441 BYTES
152 PRREGX 192 RCL 48 END E,*Ey;éfi*
153 ADY 193 RCL 18 sEhE £oRhiEs
154 =T1-3* 194 * e
155 AVIEM 195 + PRKEYS
156 53.855 196 RCL 98 ero voue.
57 PRREG 197 2 S
158 ADV 198 7 L1} Si7E
159 *Td1-3:* 199 + P
168 AYIEW 288 ST0 57 ’

Figure B11.2. Continued.

B-12  PROGRAM “PCM”: QUANTIZED FEEDBACK DESIGN FOR A PCM

SYSTEM

This program finds the quantized feedback and forward-path filter functions

and circuit element values for a PCM regenerator or repeater, as discussed in

Section 5.7. The circuits that eliminate dc wander are shown in Fig. B12.1 and

include four sections. Three of these sections make up the quantized feedback
system, including the quantized feedback filter and a forward-path filter

including a doublet section and a low-frequency cutoff. The fourth section

provides phase correction for all remaining low-frequency cutoffs in the system

between the transmitter and the decision circuit input. While applied here to a

PCM regenerator for digital transmission, the system is equally applicable to
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any PCM system as that found in digital audio or video recording, for
example. Its function is to reduce the octave bandwidth of the system to about
four to six octaves.
The following system parameters are known or assumed at the outset:

fs The signaling rate, or system clock rate
fi The low-frequency cutoff of the forward path introduced by the

quantized feedback system; typical values: f; /50— f; /20
7, The delay of the decision circuit, including sampling delay and

any analog delay that may be present.

In addition, certain circuit parameters and elements are also assumed or

chosen at the outset; these control the impedance levels of the circuits and also
the relative signal levels at the decision circuit input and output. These are the
following;:

R, The value of two resistors of the quantized feedback filter. (A
third resistor, R,, to be found in this program, is approxi-
mately equal to R,.)

R, The resistor controlling the low-frequency cutoff at f,.
Ry The resistors of the phase correction network, chosen to give a

convenient impedance level.

K, Ratio of signal voltages at the output of the decision circuit to

the output of the linear channel.

With these elements given, the program finds the remaining circuit elements of

the networks to give zero error at the sampling instants. The design allows for

decision circuit delays of up to 1.5 time slots. (The error may also be negligible
for delays somewhat larger than this.)

The quantized feedback design is based on the equation

H(s)+0(s)e™ =1 (B12-1)

We assume the pulses to be 100 percent duty factor, so that a long string of
“ones” will be a step waveform.

The quantized feedback system works as follows. A step waveform, repre-

senting a long string of ones is applied to H(s), with the result shown in Fig.

B12.2. The response of H(s) in the time domain is arranged such that the

amplitude at the first sampling instant is correct. Later, when the response

begins to sag, the quantized feedback waveform becomes available (after delay

7,) to correct the sagging waveform. The characteristic equations of both H(s)

and Q(s) are quadratics.

Forward Path

The step response of H(s) is given in the time domain by

u(t)xh(t)=ke /" +k,e /™ (B12-2)
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Total
 

fl
z)

  

 

Sampling instants

0 0.02 0.04 0.06 0.08 0.10

t, us——>

Figure B12.2. Step responses of the feedback and feedforward paths and their total: fg =50

MHz; 7, =0.03 ps (1.5 time slots); f, =2 MHz.

where k, and k, are the residues in the roots of the characteristic equation and
7, and 7, are the time constants of the (real) roots of the characteristic
equation. Qur purpose is to make the response correct at the first sampling

instant, t = 7, /2, and also at time 7,, just before the quantized feedback signal
becomes available (see Fig. B12.2). Thus we can write

ke ™8/2M 4 keT8/=] (B12-3)

and

ke/T + ke/=] (B12-4)

solving these equations simultaneously, we obtain

1—exp(7,— 15 /2)
k, = - (B12-5)

exp(— 73/272)—exp(z‘1—% — E)
T

 

and, from (B12-3) directly,

ky=(1—ke ™/2m)em™/2m (B12-6)

The program uses these equations to calculate the residues. These residues and

the time constants, 7, and 7,, completely define H(s): the Laplace transform of

(B12-2) is

1 _ kT k)T

sH(S)_ l+'r,s+ 1+ 7,5
 (B12-7)
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so that

_ (k,'r, + k21'2)s +(k1 + kz)Tszs2

H(s)= (14 7s)(1+ 15) (B12:8)

1+_ .8 TS (B12-9)
  

—OH l+fr,s' 1+ 7,8

where we have broken H(s) into a forward-path gain factor K, an ac cutoffat
a frequency of 1/2#7, and a doublet with numerator time constant 7, and
denominator time constant 7,. The forward-path gain factor is

ko, K, =k + (B12-10)
T

In the example, K, is 1.46. The numerator time constantis given by

. (kl + kZ)TlTZWo (B12-11)

Quantized Feedback Path

A step waveform from the decision circuit output is applied to the quantized

feedback filter at time 7,, after which the forward-path and feedback-path
waveforms are to be made complementary. Thus

(= 7,)*qli=7,) =1 = ksekeU/ (BI2-12)
so that we can write

k3:kle_'rd/‘rl (B12'13)

k,=k,e "/ B12-144 Ky

Note that since the quantized feedback signalis zero at t =7, k; + k, =1 from
eq. (B12-12). The program calculates these quantized feedback filter residues.
The quantized feedback filter is defined by these residues and the time

constants. Thus, taking the Laplace transform of (B12-12), we obtain

1 1 k371 k472

 

500 =TTTT (B12-15)

and thus

_ 1-+-[(l—k3)'rI +(l—k4)72]s + *r]'rz(l — ky —/(4)52

0(s)= (1+7s)(1+ 7,s5) (B12-16)
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Since k, + k, =1, the quadratic term in the numerator drops out. The linear
term in the numerator provides small slope on the quantized feedback wave-
form at ¢t = 7,. This is sufficiently small that the numerator can usually be left
out without affecting accuracy greatly; it only adds a single resistor to the
circuit, however, so we retain it. The numerator time constant is (1 —k;)7, +(1

—ky)7y.
The program calculates the numerator time constants of both Q(s) and H(s)

as well as the forward-path gain factor K. To do this, we assume a value of 7,
of one-third 7,. From the standpoint of quantized feedback, this ratio is
relatively unimportant; the optimum is quite broad. For a given total series
resistance, as the roots are moved closer together in frequency, the center

resistor rises in value, making the circuit loading due to the outer resistors

more serious. Conversely, as the roots move farther apart, the quantized

feedback cutoff frequency must move downward for a given slope on the
waveform in the first time slot. Making the resistors equal weighs these

considerations roughly equally and facilitates the realization of the filter.
In Fig. B12.3a the ladder circuit is analyzed by assuming the current in the

left resistor to be unity. Then the voltage v, is simply R, and the current

through the left capacitor is R,C,s, giving I, as 1+ R,C;s. The voltage v, is
then

v,=R,(2+ R,C,s) (B12-17)

From this voltage we obtain the current through the right capacitor and I,
from which, in turn, we obtain v;:

v, =3R, +4RiC;s + RIC}s?

 RlCl=3R,(1+ RlCls)(l+ 3 s)

so that we take R,C, = 7,; 7, 1s then one-third of 7,.
Addition of R, to the circuit in Fig. B12.3 to obtain the numerator of Q(s)

is a small perturbation on the procedure just described. By continuing to take

the current in the left resistor as unity for a starting point, v, remains

unchanged, and we find the input current immediately as the sum of v, /R,
and unity

. Rl

RO

This function gives the required numerator time constant of Q(s) in (B12-16).
For this circuit, we obtain

T R,T 1k 121
"0~ R, +2R, (B12-18)



Program “PCM”: Quantized Feedback Design for a PCM System 583

 

 

 

 

    

 

 

  
from which

ROZRI(—~ ) (B12-19)

We can retain the denominator (the characteristic equation) by increasing

the value of the right-hand resistor from R, to R,, where the parallel combina-
tion of R, and R, 1s equal to R,. Thus

R\R,
Rzzm (B12-20)
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The Thevenin equivalent of R, and the loading of R, at the v, node is then R,
and the characteristic equation is retained; v, is increased by the constant term
1+ R, /R,. The transmission of the quantized feedback filter at dc is conveni-
ently expressed as a transresistance R, and is obtained as

v,(0) 1 2R\(Ry+ R,)+ R,R,

iin(o) :RT: Q(O) - R0'+'2R1

 (B12-21)

This completes the design of the quantized feedback filter. We used the
values of fg, f,, and 7, to obtain the residues and the transfer function of
the filter; R, is selected on the basis of circuit loading of the decision circuit.

The program calculates the values of R,, R,, and C, by use of preceding
equations. A reasonable choice for f; might be 0.02 f,. Since the program runs
quickly, several such choices may be tried quite conveniently.

The forward-path filter is realized in two parts; the ac coupling is placed at
the regenerator input and introduces a low-frequency cutoff at f,, using C; in
combination with R; (the combination of the source and load resistances of the
input network).
The forward-path gain factor K, and the doublet defined in egs. (B12-9) to

(B12-11) are realized in the circuit to the left of the summing node in Fig.
B12.1. At high frequencies the only transmission is through R,. From eq.
(B12-8), this high-frequency transmission is just k, + k,, so that

k,+k
RSZ(;K—QRT (B12-22)

v

where Kis the voltage gain to be achieved from the output of the linear
channel (at the left of the circuit under consideration) and the decision circuit

output. Resistance R 1s the quantized feedback transresistance factor given in

(B12-21). At low frequencies transmission is through both Ry and the two
resistors R,. By analogy with operational amplifier gain, in which R, is the

feedback resistor, and the parallel combination of 2R, and Ris the source
resistance, we can write

 1 1 17 T 3R, = &KiK.

where K;Kis the desired gain and K, is given by (B12-10). Solving for R,
we obtain

_ 0.5R4R

 RsK(k1 +kym)— Ry

 R, (B12-23)

Finally, the capacitor C, is of the value required to give the denominator time
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constant 7,. This time constant is easily shown to be C,(R, /2), so that

(B12-24)

thereby completing the design of the forward-path filter.

It is usually advisable to include a phase correction network to remove the

phase put in by low-frequency cutoffs in the linear channel other than the

cutoff of the quantized feedback forward path. Low-frequency cutoffs degrade
the time domain performance almost entirely as a result of phase shift, and this
is easily removed by adding a low-frequency one-octave doublet. The pole of

loss of the doublet is placed at a frequency equal to the sum of all cutoff

frequencies of the channel (excluding the R,C; cutoff), and the zero of loss of

the doublet is placed at twice this frequency. At frequencies considerably

higher than this latter frequency, the phase of the loss is given by

o~—L_ Lo S _ (B12-25)

where £ is the sum of the low-frequency cutoffs and f is the frequency at which
the phase is evaluated. The first term is due to the low-frequency cutoffs, the
second is due to the pole of loss, and the third is due to the zero of loss. This
correction should be applied to any system regardless of whether quantized

feedback is used. The circuit is shown in Fig. B-12.1; Ris selected on the basis

of impedance level. Capacitor Cis then given by

Cs= TR (B12-26)

As shown in Fig. B12.4, the program starts with the input data f, f,, and 7,.
It then calculates the residues and uses them to calculate all circuit values, first

for the quantized feedback filter and then the forward-path and (finally)

low-frequency cutoff phase correction, using the equations developed in the
preceding paragraphs. It then uses the residues in eqgs. (B12-3) and (B12-13) to

calculate the time response of the combination of the forward-path signal and

the delay quantized feedback signal. It prints out the response at the sampling

instants as well as at the transition between pulses.

As an example of a low-frequency channel design for a regenerator, we let

f, =50 MHz, let the quantized feedback cutoff be 1 MHz, and assume a

decision circuit delay of 1.5 time slots, or 0.03 us. The calculations are shown

in the calculator printout, and the resulting design is given in Fig. B12.5. The

performance is perfect at the sampling instants, as expected, and the maximum

deviation in the time slot occurs initially, where the response is down 2%.

Program “PCM?”islisted in Fig. B12.6.
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JEG “PCH"
PCM REGEH
DESIGH WITH
QUANTIZED
FEEDBACK

UNITS: MHZ, UZ,
KOHK. HF,

INPUT DATR:
FB, F1

E17= 39,6688
Ri8= 1,640

Td

Rag= & 0208

DELAY = 1.5 TIME 5L07%
0K?

Td, Ti, T2=Tis3

ROB=  6.0360
Rai= g.1592
RE2= 9.8531

RESIBUES:

Ki-Ké:

Rial= 1.76854
RG4= -B,7:75
RES= 1.4133
Rag= -8.4132

Ri. 23 Ro, BV

R36=
R3i=
Raz= 1.0a8
R33= 1@.u0ed

] D ]
SX O
e [+

~

5 D

%

SUM OF ALt LF
€.0. FRES,
EXCEPT R3-02

R34= 68,1888

Figure B12.4. Program “PCM”

0K?
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GF FILTER
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B1eLEL “PLE"
82 SF 12

83 “PCH REGEN®
24 AVIEW

83 “DESIGH WITH®
85 AVIEW

87 "QURKNTIZED"
#3 AYIERW

89 “FEEDBACK"
18 AvIEH
11 IF 12
12 ADY
13 FIZ 4
14 RI¥

19 "UHITS: mHZ. US.-
16 RYIER

17 "KCHE. NF.*"
18 AYIEW
19 Al

28 "INPUT DATA:"

Z1eLBL B8
22 AYIEM
23 “FB. FI-
2¢ AYIEW
25 17.918
26 PRREGY
27 AnY
2g "Td"
&9 AY¥led
28
31 PRREGX
32 RIY

33 -DELRY = -~

48 -

45 ~0K?*
46 PROWPT
47 F§7 22
45 GT0 ae
4% RCL 17
S8 13
51 §T0 @8
S2 RCL 18
gd £

37 17X
92 STD 81
2% 3
68 7
&1 5T0 @2

€2 "Td, Ti, 72=T1/3"
63 AVIEH
b4 .B82
65 PRREGY
66 ALY

&7 "RESIDUES:®
68 RYIEW
&3 RCL 17
i
71 %
72 1%
73 570 24
74 RCL 81
75/
76 CHS
77 EfX
78 RCL 68
79 RCL 24

CL 82

CL Be
CL 8t

Q
O

Q
0

Q
o

Q
0
O
D

~
d
O
A
B

G
l

P
O
e

3
D

o
C
o

3¢ -
89 870 22

Figure B12.6. Program “PCM”: listing.

34 RCL 82

95 7

9¢ E4X

37 -

93 RCL 22

ig@ 570 43

18] RCL 2

182 RCL 8l

183 s

124 CHS

185 Et¥

i8g *

187 CHS

188 |

183 +

ii@ RCL 24

111 RCL 82

{iz 7

113 E*¥

114 %

115 S7C 84

{16 RCL 8@

117 RCL @2

iig ~

119 CHS

128 E4X

{21 =

iz2 5T Be

123 RCL ag

4 RCL 81

A
=
l

@3

M
a
0
P

D
o
A

D
a

B
t

ps
te

oo
t
o

oo
t
o

D
0
0

138 STG 85
131 "K1-K4:
132 AVIEM
133 3.886
134 PRREGZ



135 AV 179 570 48 224 +
188 {7¥ 225 %

1364L8L =Br- 181 RCL 34 225 RCL 27
137 *Rki. RI. RE. KY 182 172 227 ROL 8t

138 AVIEH 163 i3y 228 *
139 34,833 184 - 229 -
148 PRRELH 185 1% 272 RCL 44

141 RIV 136 570 41 23% RCL 27

142 =SUM OF ALL LF-" 187 RCL @i 237 %
142 AVIEH 188 RCL 3@ 233 PCL 81

144 =C.0, FRER." 18% 7 234 *
145 AVIEH 138 570 42 235 RN

146 “EXCEFT R3I-03¢ 191 REL 4@ 236 7
147 AVIEY 192 RCL 44 237 2

148 34 197 + 233 7
145 FRREGY 194 RCL 38 23% 87D 43

158 0K 95 # 248 RCL 82
151 LF 22 19 2 241 ¢

152 PRONFT 157 * 242 %
153 F8? 22 192 REL H 247 RCL 43
154 GTC “gF- @ 244 7
155 5F 12 282 * 245 S§T0 43

oo
t

A
0
L o

I
< = £

156 "@F FILTEE" 1+ 24 RCL 1

157 AYIEM 282 RCL 38 247 RCL 31
158 OF 12 283 2 248 /
159 ALY 2B4 * 24% 5§73 46
o8 ! 283 RCL 48 2568 RCL 34
161 RLL 83 205+ 231 RCL 32
iod - 287 ¢ 252 *

163 RCL 8] 288 570 27 253 Pi
{64 * 28% RCL 33 234 *
165 ¢ 28/ 255 1%
16e ROL 85 211 REL @3 236 574 47
k7 - 212 RCL @4 257 RCL 38
162 REL 82 213 ¢+ 258 STC 39

169 # 214 7 259 "Ri, R@. RZ2, Cl:~
ive + e13 ST 44 268 AYIER
171 570 25 2ie RCL 33 261 39.842
72 FCL 81 ei7 x 262 PRREGX
37 213 RCL 263 ADYa

B )
e

{7y 219 RCL 264 SF 12
Z 228 * 265 “FORWARL"

221 RCL &2 266 AVIEW
FLL 3@ 222 RCL a4 267 "PATH FiL."
* 223 + 208 AYIEM

Figure B12.6. Continued.
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269 CF {2
278 Apy

271 "R4, RS, [4:-

272 AYIEW

273 43,645
274 PRREGY

275 AIY

276 "3, C5:-
277 AVIEK
278 4£.047

279 PRREGY
288 Apv
281 SF 12

282 “PERFORKANCE"
283 AVIEM
284 ADY
285 CF 12

286 > = SAMPLE PT."
287 AVIEM
288 ALY
209 ¥E@ -@-
298 ApY

291 = THE END"
292 BVYIEW
293 ADY

294 AlY
295 RTH

296¢LBL "B"
297 “TIME -

298 ACA
299 - RESPONSE"

Jee Acq
381 PRRUF

382 -sLot ¢
383 ACH
384 SF 13

385 “H(TY  SUM-
365 ACA
387 PRBUF
368 CF 13

312 AWV

590

J13eL8L 18
314 RCL &7
315 RLL 88
e 7
i7

3ie
319
328
321 FC
ez -

c
-4

2
T
-

346 RCL @2
347 RCL @7
348 XY7
349 XEQ 1
358 RCL 11
351 ALY
352 PRBUF
353 RCL 88
334 2
353 7
356 ST+ &7

Figure B12.6. Continued.

LELTFLE
LBLOF
LBL'E
END

357 RCL @8
358 2
359 *
36 ROL &7
Jel BT
362 674 12
363 F570 a2
364 GT0 i@
363 5F &2
Job GTO i@

Je7eLBL 12
368 RTH

Je9elBL 1!
37e |
371 RCL @7
72 RCL 6@

373 -
374 RCL 8l
33/
76 CHS

377 B
372 RCL €3
379 *
388 -
331 RCL &7
382 RLL a8
383 -
384 RCL 82
383 7
386 CHS
387 EfX
323 RCL 86
389 *
336 -
391 &7+ 1
392 ERD

ges EYTES



Appendix C
 

Two-Ports, Transistors,
and ABCD Matrices

The programs in this appendix enable the user to calculate the characteristics
of active or passive networks including transistors, passive immittances, diodes,

and delays and parasitics. The first program converts between any two sets of

two-port parameters. The second and third provide modeling of the bipolar
transistor and the derivation of the ABCD parameters from the equivalent
circuit for any bias condition or emitter area. The next two programs derive

the network characteristics of a network whose ABCD parameters are known

at two frequencies and are limited to networks whose loss is represented by a
cubic polynomial.

Program “ABCD” provides a programmable calculator for two-port net-

works. It enables the user to calculate the ABCD parameters of any two-port.

Examples of both manual and programmable operation are given. Finally, a

program that evaluates the effect of spanning networks in an equivalent ladder

(as described in Section 8.4) is intended for use as a subroutine of program

“ABCD”.

Two-Port Conversions

C-1 Program “CNV”: two-port parameter conversions.

591
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Transistor Analysis and Modeling

C-2 Program “E>A": transistor ABCD parameters from equivalent circuit with

modification for collector bias conditions and emitter area.

C-3 Program “A>E”: transistor modeling program. Equivalent circuit from ABCD

parameters.

Network Calculations from ABCD Matrices

C-4 Programs “T>P3” and “TPOLY”: Cubic polynomial coefficients of 4ABCD

parameters from 4 BCD magnitude and phase at two frequencies.

C-5 Programs “P3>LA”, ‘FR”, and “NMR” and “NWCALC”: network characteri-
zation including loss and immittances and sensitivities from cubic ABCD coeffi-

cients.

ABCD Matrices of Circuits

C-6 Program “ABCD”: a two-port programmable network calculator.

C-7 Programs for the “ABCD” Calculator: six sample programs.

C-8 Program “SP”: effect of feedback and feedforward spanning networks on two-port
networks. Used with “CNV” and “ABCD?”, this program completes the two-port

programmable network calculator.

C-1 PROGRAMS “CNV” AND “CNV-S”: TWO-PORT PARAMETER

CONVERSIONS

Program “CNV” implements the two-port parameter conversions of Table 6.1

(in Chapter 6), allowing conversion from ABCD parameters to h, z, y, or g

parameters or the reverse in one step. Thus conversion is possible from any set
to any other in at most two steps as can be seen in the examples of Fig. C1.1.
Program “CNV-S” converts back and forth between ABCD and S parameters,
completing the implementation of Table 6.1. Examples are shown in Fig. C1.2.
The original matrix is stored in registers RO1-RO0S8, with the frequency at

which the parameters are evaluated in R00. The matrix elements are stored as

magnitude and phase. After conversion, the new matrix elements replace the

old in RO1-R08, and the original matrix is preserved (in R21-R28 for “CNV”

and in R11-R18 for “CNV-S”).
The conversions involving the 4, z, y, and g parameters are based on Table

Cl1.1, which is, in turn, based on Table 6.1. Table C1.1 contains the operations

that are common to all the conversions; all require calculation of the determi-

nant of the original matrix, and all use one of the original matrix elements as a

denominator of the final matrix. Furthermore, the numerator of one of the

elements of the final matrix is = 1. The determinant is calculated and placed in

the appropriate register of the final matrix. The denominator element from the

original matrix is placed in the denominator registers R21 and R22, and *1 is

placed in the appropriate register of the final matrix. Subroutine “R” divides

each element of the final matrix by the denominator. The result is then printed.

Subroutine “X-" exchanges the locations of the original and final matrices.
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1.0

T1-o

o

HEQ “CHY"
ORIG:

@8= 1,880
Pfi?- 1. Boee ReA= 1.9008RAl= 1.4147 é

5e ; REI= 1.4142RA2= 45,0008
2= 7. 6ESE R@Z= -45.0006ROI=  2,6656
Gd= 716 RE3= 1.0009Ra4= 73.6961
6= i RA4= 99,0000RAS= 1.8080 Raé= -o0.000

RO6= 90,0000 5= 1.608

= 2% RA6= -90.0908RA7= 2.2361
RB8= £3.4243 Ra7= 2.2361

o R@S= -26.5651

CONY: 2-7

XEQ “A-H*

= {,0098
el e REe= 1.0007RBI= 1.6125

- _ 2445
RBi= 1.4142

RB2= -29.7443 4
- RA2=  45.0000RAI= 8.4472
= —£7 4749 RO3=  7.6056RA4= -63.4349
- g 4473 RA4=  17.6901ROS= -8.4472 9
- -£1.43 R@S= 1.0008RB6= -61.4349 _
- 2 RO6= 99,8000RE7= 8.4472 6

RBS= 26.5651 Ra7= 2.2361
RO8= 63.4249

YEQ "H-A*
YEQ W

Efi?i i'i?i? ROB= 1.0008
c aan RAI= B.6202

R82= 45,6088
Ré3= 3.6836
RB4= 37,6981

Re2=  23.7449
Ré3= -8.2774
Ré4= -32.6981= 1.000%

el boe ROS= -8.2774RO6= 99,000 3
_ . RB6= -23.6901RE7= 2.2361 A

RA= 63,4349 Ra7= 8,392

o RA8= 11.3899

1.0

KER *A-Z*
XEQ “H*

XEQ "Z-R"
AEQ “R*

XEQ "A-Y"
XEQ "W

w=1.0

k@e=
Réi=
RB2=
Ré3=
RB4=
R83=
RB6=
R@7=
Reg=

Ré8=
RB1=
Ré2=
R@i=
Ré4=
R83=
R@6=
R87=
R88=

Réd=

R@2=
R83=
RB4=

RB6=
R@7=
R@g=

Figure C1.1. Program “CNV”: examples.

1. 6808
1.4142
45,8004
2. 6836
33.6901
1.6688
90. 6000
2.23s1
63,4349

1. 0608
8.7671
45,0000
-8.7871
-45.000¢
a.7871

-45.0088
2.9495
-11.3899

1.60808
1.4142
45. 8888
3.6836
33.6981
1.0088
93. 6aea
2.2361
63.434%

To shorten the program, advantage is taken of the relations

[y]1=[]"

and

[g]=[n]"
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XEQ "Y-R"
XEQ "H"

XER "A-G"
XEG "H"

AEQ "G-R"
XEQ "W"
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XEQ “CH¥-S-

R@, KOHM:

R25= 8.8508

QRIG:

Ref= 1.p@00
R8i= 1.4142
Ré2= 45,0008
RB3= 3.6836
RB4=  33.6981
R@3= 1.0008
Rés= 90,0000
Ra7= 2.2361
RB8= 63.4349

CONY: ?7-?
XE@ "R-S"

Rée= 1.0688
R81= 8.9477
Raz= -1.7841
R83= 8.8265
RB4= -34.7744
RA3= 8.8265
RB6= -34.7744
RB7= 8.9624
Reg= -8.4668

XEQ "5-R"
XEG “R*

Ree= 1.8086
Ré#1= 1.4142
RG2= 45.06080
Ré3= 3.6836
Re4= 332.6961
Re5= 1.0008
Ra6= 98.0080
Re7= 2.2361
R@8= 63.4349

Two-Ports, Transistors, and ABCD Matrices

XEQ "CN¥-S-
R@, KOHM:

R23= 8.8508

ORIG:

Reg= 2.5133
RB1= 8.8154
R@2= -76.1781
R3= 8.8861
Re4= -145.3328
R@3= 08.5846
R@6= -79.7483
R@7= 9.0811
RB8= -94.9995

CONY: ?2-?
XEQ "A-S"

ReB= 2.5133
Rél= 8.4508
Re2= 281.5873
Re3= 8.8275
RB4= 51.9363
R@5= 9.2277
RB6= 116.8239
Re7= 8.7234
RB8= -28.6728

XEQ =5-R"
XEQ "W"

Reg= 2.5133
Rel= 8.8154
RB2= -76.1781
R83= 8.086!
RB4= -145,3328
RB3= 8.5846
RB6= -79.7483
Re7= 8.8811
RB8= -94.9995

Figure C1.2. Program “CNV-S”: examples.

The inversions are performed in subroutine “INV”. The program listing for

“CNV” is shown in Fig. C1.3.

The conversion between ABCD and S parameters and the reverse is accom-

plished in “CNV-S”, which implements the equations of the bottom entries in

Table 6.1 directly. The program listing is given in Fig. C1.4.

Examples

There are two ways to use these programs. In the first, execute “CNV” (or

“CNV-S”) which serves as a supervisory program that calls on the appropriate



Table C1.1 Two-Port Matrix Conversions®
 

kiz Denominator
 

A
ki
k2

1
 

a . —Note: k;;/Den.=h,;, z;;, y;;, or g, ,.

@leLBL "CHY~
g2 SF 83
83 =0RIG:"
84 AVIEH
85 PSE
fo CLD
A7 XEQ =RD-

g2 "CONY: 7-7+
@9 PROMPT

18+LEL B2
11 TORE 4

12 FS20 €3
13 XE@ “H"
14 RTN

 

184LBL "R-2"
19 ¥EQ B
28 GT0 88

ZI#LBL =A-Y"
22 XEG B

23+LBL 8%
24 5F {8

25 XE@ "THy~
26 GTO @&

274LBL "R
28 XEQ
29 GT0 89

JBeLBL "H-A"
31 HER a
3z GT0 e#

Figure C1.3.

334LBL ~Z-A"
34 KEQ B
35 GT0 @9

JoslBL "Y-A"
37 5F 18

38 XEGQ "Ihy-
39 AER B
48 GT0 o8

41+LBL “G-A"
42 SF 18

43 ¥E@ "IHy"
44 ¥EG 3
43 GT0 e@

454BL B

47 HEG Bl

48 [CHS

49 570 25

58 RCL B4

St 570 22

52 RC

532

4 RCL 8%
5 oTh 25
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e
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o

O
I
O

I
O
,

I

|
Co
d
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b

Q
B

0
D

D
D
)

E

65 XEE B2
66 STO 25

Program “CNV” : listing,.

67 RCL
&8 STO
69 RCL
78 570
71 RCL
72 570

71 RCL
74 570
73 28

RCL
RCL

w
me

d
[
T
T
O
T
Y
C
X
D

S
T

w
E

L
]
P

D
O
D
M
C

e
,

—r
t

L
o
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r

w
3
e o

9% RCL

e G
O

g
l

g
D

g
D
g

R
N
2
]
T
N
B

s
G
D
L
e

O
O

T
T
S
e

o
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S
0
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}
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t}
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1@2 RC

182 CHS

164 X¥EG -

D
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21

R
P
O
P

S
R

P
D
D
g

P
O

P
l

e
r :

& XEQ "¥--
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165 BTH

iBeeLEL B2
187 RCL @8
188 570 28
183 ¥E@ 17"
{18 RCL 24
tif RCL 23
112 =-F

Two-Ports, Transistors, and ABCD Matrices

141 570 23
142 ¥
143 5T0 24
144 RCL 84
145 RCL 8&
146 +
147 RCL @3
148 RCL 85

77¢LBL 87
178 RCL INTD 89
179 Z{> IND 19
188 ST0 IND @9

18t 156 19
182 DEG
183 IS6 @3
134 GT0 @7

149 -e enn 185 RTH
i}j é;;” B 158 P-R

115 50 23 ot &1& B64LBL "RD"
P 152 %037 187 SF 86

i:g RO . 153 §7- 24 o
7 870 24 ™

154 R!h ISS*LBi .H.

118 &
119 570 26
128 |

 

195¢LBL = IH¥"
156 XE& “DT"

185 @88
198 FS7 86
191 RITAX

121 RN 157 RCL B! 192 PRREGY
153 X0 @7 v oA 33 Rio B 193 ADY

LoceLEL R 159 ST0 81 194 FCIC 86
A 168 RCL 82 195 KOTAY
124 ST, 8 161 ¥4y 88 196 ENE
125 51/ 8 162 570 82 CAT 1
S 163 1 LBL™CHY |
:“ £ 164 FS?t 1@ LBi'é‘H

: 165 CHS e rn25 o7 v LBLTH-Z

ey 166 ST+ LELTR-Y
38 51~ 8 167 ST# €3 LBL™A-G
131 ST- 88 168 RCL 24 LEL TH-8
132 RTH 169 RLL 23 LBL™7-8

178 R-F v
T4 " u L‘L : p

LB T 171 XEQ “R® LBL"5
134 RLL 82 172 RTH CBL"R
135 RCL &8 téf,é,
tie - 1736LBL "3 LBLT TNV
Br kL el 174 570 19 (Bl Ty-
iuf RCL 87 175 8RS LBLFI

iié . 176 STO @3 LBLTH
S END 447 BYTES

Figure C1.3. Continued.

subroutines. The program will prompt for the original matrix, asking for a

CARD in the display, assuming that the ABCD matrix is stored on a magnetic

card. It then reads the supplied card and prints the (angular) frequency and the

matrix elements. If the matrix and its associated frequency are already in

registers RO0-RO08, press R/S twice, and the program will proceed, ignoring

the read instruction: the matrix is printed as before. The program then
prompts for the conversion desired: convert from what matrix to what matrix?

At this point, the user executes the appropriate conversion, “A-H”, “H-A”,

“A-Y”, or any of the others. When the conversion is complete, the final matrix

is printed, and the display prompts for recording a magnetic card with “RDY

01 OF 01”. If no card is needed, press R/S, thus completing the process. This
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BleLEL “CHY-5- 42 RCL @1 25 B-P
8z SF a3 43 P-R 86 570 17

B3 "RE. KOHH. - 44 3T+ 11 87 RO
B4 AVIEK 43 5T+ 12 88 570 18
83 2% 46 5T- 15 83 RCL 25
86 PRREGY 47 £1- 17 98 57x 13
a7 AmY 48 XY 91 57/ 15
8z =ORIG:™ 49 ST+ {2 92 18
82 AYIEW o8 5T+ 14 93 XEQ "¥-"
18 PSE 31 57- 16 94 RCL 16
i1 CLE 32 ST- 1% 95 RCL 15
12 XE@ “ED- 33 RCL 82 % 2

13 ~COHY: 2-2- 34 RCL &7 97 *
14 PROMPT 33 P-R 98 RE@ "R"

36 ST- 1t 99 GTO A8
[5¢LEL RE a7 5T+ 13
16 BEEP 8 £7- 13 l@deLBL “A-5-
17 FS?C 82 3% 5T+ I 1ef RCL o8
18 XEG "W~ 68 X0 182 STC 18
19 RTH el 5T- 12 183 XEQ@ “DT"

62 ST+ 14 184 RCL 24
2B+BL "5-p" 63 5T- 16 185 RCL 23
21 RCL oe &4 5T+ 18 186 R-P
22 ST0 16 65 RCL 12 187 ST0 22
22 XE@ -I7" 66 RCL 11 188 2
24 RCL 23 67 R-F 189 *
23 570 132 68 ST 11 118 570 13
26 STD 15 69 XY 11 20V
27 CHS 78 5T0 12 112 570 14
28 570 i1 71 RCL 14 113 2
2% ST0 17 72 RCL 13 114 ST0 i3
38 RCL 24 73 R-F 115 8
31 570 14 74 570 13 116 STO 16
32 5T0 16 73 RO 117 RCL @2
33 CHS 76 STD 14 118 RCL 81
24 570 12 77 RBCL 16 119 P-R
353 570 18 78 REL 13 128 STO 21
Jb ! 7% R-F 121 570 {1
37 ET+ 1 8@ STG 15 122 CHS
38 &7+ 12 gl 200 123 10 17
39 5T+ (5 82 570 16 124 XY
48 5T+ {7 83 RCL 18 125 §T0 22
41 RCL @82 84 RCL 17 126 STO 12

Figure C1.4. Program “CNV-S”: listing.

mode of operation was used in the initial calculation shown in the examples of

Fig. C1.1.
The second way to use these programs is to call on each of the preceding

operations manually, as needed (or as an instruction in another program; more

later). If a card is to be read, execute “RD”, which will prompt for a card and

print the matrix. If it is desired to print the matrix in RO0-RO08, execute “RD”

and press R/S twice to ignore the read instruction. Next, execute the desired

conversion. A tone will indicate completion. If the result is to be written on a
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127 CHE
128 570 18
129 RCL @4
138 RCL 63
131 RCL 25
32 7
133 P-R
134 5T+ 21
135 ST+ 11
136 5T+ 17
137 207
138 5T+ 22
139 ST+ 12
148 ST+ 18
141 RCL 85
142 RCL 83
143 RCL 25
144 *
145 P-R
146 ST+ 21
147 57- 11
148 ST- 17
149 ¥OY
158 5T+ 22
151 ST- 12
132 5T- 18
133 RCL 08
154 RCL @7
135 P-R
156 ST+ 21
157 §7- 11
158 5T+ 17
139 XOY
168 ST+ 22
161 5T- 12
162 5T+ 18
163 RCL 12
164 RCL 11
165 R-P
166 STO 11
167 243Y
168 ST0 12
169 RCL 18
178 RCL 17

Two-Ports, Transistors, and ABCD Matrices

171 R-P
172 570 17
173 ¥V
174 57018
175 RCL 22
176 RCL 21
77 R-P
178 18
179 ¥EG "X-"
196 RCL 22
181 RCL 21
182 k-P
183 ¥EQ "R*
124 GTO @e

185¢LBL "
186 ST/ @i
187 ST/ &3
188 57/ 65
189 51/ @7
198 O3
191 ST- @2
192 ST- 84
193 §T- 86
194 5T- @8
195 RTH

196¢LEBL “DT"
197 RCL 82
198 RCL 88
199 +
288 RCL a1
281 RCL @7
282 *
283 P-R
2084 ST0 23
283 XY
286 5T0 24
247 RCL 04
288 RCL 86
283 +
218 RCL @3
211 RCL @5
212 *

Figure C14. Continued.

LBLTCHY-S
LBL™S-A
LBL"A-S
LEL'R
LBLTIT
LBLT4-
LBLTRD
LBLH
ERD

213 P-E
214 5T- 22
215 R
2lo ST- 24
217 RTH

2130LBL “¥-"
219 §70 19
226 808
221 §T0 89

222¢LBL &7
23 RCL IND @9

224 ¥{> IND 19
223 STO IND 29

226 156 19
227 DEG
228 156 a9
229 GT0 &7
238 RN

231+LBL "RD"
232 SF 86

233¢LBL "W"
234 .883
235 F57 86
236 RDTAZ
237 PRREGY
238 AY
239 FC?C 86
248 WDTAX
241 END

CAT ¢

448 BYTES

card, execute “W”, and after the matrix is printed, it will prompt for writing a

card. This may be bypassed by pressing R/S. The remaining examples of Fig.

C1.1 were done in this way.

Thus in the examples we begin by executing “CNV”. In response to the

prompt for the original matrix, we read in a card containing the ABCD matrix

of the network at the top of the page: the frequency and the matrix are shown

in the first group of numbers at the top of the first column. In response to the

prompt, we then execute “A-H”, whereupon the h parameters of the network
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are printed. Since these parameters are in position for further conversion, we

illustrate the “H-A” conversion manually, by the second method. When
complete, we execute “W” to print the results, the original ABCD matrix. On
the rest of the page of examples, we illustrate all possible conversions with
“CNV” for the network, going back and forth from ABCD parameters to k

parameters.
The examples for “CNV-S” shown in Fig. C1.2 were carried out in the same

way. In the first column the S parameters for the simple network were

calculated with R;=0.05 Q. In the second column the S parameters of a
transistor at 400 MHz (2.513 Grad/s) were found from the ABCD parameters,

and the reverse conversion was also done.

Program “CNV”: Registers

ROO Frequency at which matrix is evaluated

RO1, RO2 Magnitude and phase of 4 or k|,
R0O3, R04 Magnitude and phase of B or k|,
RO5, R06 Magnitude add phase of C or k,,
RO7, R0O8 Magnitude and phase of D or k,,
R0O9 Register index for subroutine “X-”

R10-R18 Not used

R19 Second register index for subroutine “X-".

R20 Frequency at which second matrix is evaluated

(copied from R0OO)

R21-R28 Magnitude and phase of second matrix

Program “CNV-S”: Registers

ROO Angular frequency at which matrix is evaluated

RO1-RO8 Original and final matrix

R09 Index for “X-”

R10-R18 Final and original matrix

R19 Index for “X-”

R20 —
R21, R22 Denominator for S parameters

R23, R24 Determinant of ABCD parameters

R25 R,

C-2 PROGRAM “E>A”: TRANSISTOR EQUIVALENT CIRCUIT ANALYSIS

PROGRAM

This program analyzes the equivalent circuit shown in Fig. 7.19b, finding the

two-port ABCD parameters. It incorporates a subroutine that modifies
the equivalent circuit for different collector bias conditions and also modifies
the equivalent circuit for changes in the size of the transistor. With this
program, the equivalent circuit can be used to generate the ABCD parameters
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of transistors used in analog integrated circuits, for example, as discussed in
Chapters 8 and 9. In the event that other two-port parameters are required,
program “CNV” can be used for the conversion.

The starting point, the equivalent circuit, can be obtained from two-port
measurements on the transistor. The translation from two-port parameters to

equivalent circuit is done by using program “A>E”, to be described in Section
C-3. Alternatively, where similar transistors have been previously manufac-
tured, two-port measurements may already exist; these can be used to find an

equivalent circuit whose elements can then be scaled. The scaling for changing

the emitter area (actually emitter stripe length, assuming constant stripe width)

1s contained in subroutine “O”, discussed later.

The equations for the ABCD parameters are developed in Chapter 7; with
slight modifications discussed in the following paragraphs, egs. (7.5-9) (in

Chapter 7) become

A=—{r.ge. +[ry(kyCo +8CL) + rpCl]s + ryrrClok5%}76

B=—[ry+06r,+ rypslexp(pry +r,C.)s

C=—[88.c+ 8+ Cies + 17Cls? €7 (C2-1)

D=—[8+rs]lexp(pry +r,Cy.)s

The main simplifying assumption is to ignore the distributed nature of the
collector capacitance at the base in all equations except the first, where it is

accounted for by the constant k. In the two-capacitor approximation, k, is the

proportion of C;. connected to the external terminal. Furthermore, constant k
has been introduced in the quadratic term of 4 to account for small effects that
have been ignored.

Excess phase factors multiply B and D, and the denominator phase r,C,
multiplies all four parameters. At high frequencies where excess phase is
important, delay of the r,7, term of B dominates; thus the delay of ur; is
appropriate.

As in Appendix B, memory register usage is coordinated among the pro-

grams for dealing with two-port parameters. The angular frequencyis stored in

ROO and the ABCD parameters are stored, magnitude and phase, in ROI-R08

in alphabetical order. For the bipolar transistor programs, the equivalent

circuit elements and modeling parameters are stored as shown in Table C2.1.

Subroutine “0O”

When flag 00 is set, the equivalent circuit parameters are modified before
calculating the ABCD parameters. Changes in transistor size—emitter stripe

length or area—as well as changes in collector voltage and current can be

accommodated.
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Table C2.1 Register Locations of Parameters for Transistor Programs
 

00 w, 23 ry
01-08 ABCD magnitude and phase 24 C.
09 V., 25 Tr
10 I, 26 r,
11 A, 27 k,
12 Vi 28 Zee

13 Vy 29 Cle

14 Tiirk 30 8ch
15 T, 31 k,
16 I 32 Used
17 BVypo 33 Used
18 ® 34 Loop termination

19 Tr 35 Vs
20 C. 36 I,
21 o 37 A,
22 r,
 

The subroutine begins by scaling r, and r, inversely with emitter area, and

C. G, and C,, directly with emitter area. (For very small transistors, this
underestimates C,. somewhat.) The Kirk current is likewise scaled in propor-
tion to emitter area.

Capacitance C/, is assumed to be primarily junction capacitance of the

isolating junction. It and C,. are assumed to vary with collector voltage as
discussed in Chapter 7 and are as indicated in Table 7.1, where all bias

dependencies are listed. Both 6 and g, vary inversely with V,+ V.. The prime
reason for the variation of the ABCD parameters with collector current is the

inverse relation of r, to /.. Other equivalent circuit parameter variations with
current are much less pronounced, as shown in Table 7.1.

The reason for separating 7 into its components— 7, r,C,, and ryC,—is
that each component varies with collector bias in a different way. Capacitance
C,. does not vary significantly with collector current over most of its operating

range, but Cies Trs and r, do, as shown in Table 7.1. Similarly, G, does not vary

with collector voltage, but 7 and Cj(. do. Their separate variations are taken

into account, and 7, is recalculated for the new set of bias conditions. This
completes the transformation; the subroutine terminates and ABCD parame-

ters are then calculated for the new equivalent circuit.

To monitor the calculation, the revised equivalent circuit values are printed

after the subroutine calculations are made. This printing may be suppressed by
setting flag 04, which also suppresses the printing of the initial values of the

equivalent circuit parameters.

This program has the additional function of providing ABCD parameters on

magnetic cards for use in later programs in this appendix. To this end, the
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program 1s arranged to fit into the HP 41C with both the card reader and
the printer connected, as well as two memory modules. At the conclusion of

the computation, the program calls for “WDTAX”—write data card. The first

15 register contents are recorded on a magnetic card for later use. This step
may be skipped by pressing R/S twice.

Example

This example begins with equivalent circuit data for an integrated circuit

transistor previously obtained and recorded on two sides of a magnetic card

(see Figs. C2.1 and C2.2). (The equivalent circuit was obtained from transistor

measurements by using program “A>E”, to be described in Section C-3.) The

ZEE "ERRT

EQ>ABCT BIRS FAR. rb, kb, ace, fce

CHANGE BIRS. Re? 5F @@ ¥CE, IC. Re: reé= 8. 1863
RUH r~;_:‘?= F‘.ir‘

EG. CCT. REI=  3.0R008 r28= B.89%4

' - B=  3.906E r29=  8.3621

CORE Ril= 250, AaE:

4 re pr, pEs CJ0 TT: sch, ka:
IKIRK. TC,T, BVERD:

Rtz B.oBiEZ R36= @, @684

RZZz  B.B@1 Rid4= 20,0608 RIl= 1.1108
F23= B.8847 Ri3= 8.4388

R24= @,7298 Rif= @, 2288 ¥

R2S= #.9328 Ri7= 7.0088
Rig= 8.4324

rb, kb, ace, cce’ E G

r26=  B.R4G4 t35=  #,75H8 .

FE7= B, 3738 RIk= 2.8888 Rig= B.flat:.-f

ro0= 3480 RI7= 95.9008 8= 08,3214

29= B,5256 ]
' 0K? FREQ.. GHZ?
ach, ks RUN 8316 RUN
P HMEMW E@. CCT. NEW ABCD

R3e= 8,800 ke
'«‘1_ .1 i L i

Rat 111 6, re br. rEs LI, TT: ReB=  9.1995
. RAl= §.0827
o R2i= 8,813 RE2= -115.4434

Rig= 8. 4508 2= @.8939 RE3= 8.8132
o RZI= B, 8169 RAd= -176.2928

TF, CJE R24= 8.1579 RAS= @.8714
o R25= 8.9470 RA6= -99.8392

. RE7= £.81479= E&.B280 ‘ eR e REg= -142.6502
o WDTRY

(a) (b) (c)

Figure C2.1. Program “E>A”: example.
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CF g5

HEQ “Exge

EQ-RECD

CHANGE BIAS, Re? SF @68

RUK

EG. CCT.

CORE:

& repr. rEs CJC. T

R21= B.8113

22= B,8R3s

223= B.BIES

RZ24= 8,157%

R25= B.6438

rb, kb 9ce, cce’

r26= B.1863

réf= B.3788

r28= 8,894

r29= #,3621

ach. ka:

R38= 8.08060
R3i= 1.1104

R18= #.4324

FRES, . GHZ?
.1888  RUH

(d)

NEW ABCD

Reg= B.6283
REl= B,8679
RBz= -91.75325
RE3= @.8134
Ra4= -178,2341
RES= 8.89%4
RAe= -86.9842
Ra7= B.8293
Rag= -111.9268
RITA:

SF 84
AEQ “EXR"

EG>RABCD

CHANGE BIAS, Re? 5F 68
RUH

FREQ., GHZ?
3168 RUN

HEW ABCD

WITRE

FRREGR

Rel= @.82335
RE2= -76.8386
Raj= @.8262
Re4= -158, 9928
Rés= 8.3193
Rée= -72.86831
R@7= B.8862
RE8= -93.1172

RAA=  1,9855

3255
o

(e)

Figure C2.1. Continued.

603

XEQ "EXA"
EQ>ABCD

CHANGE BIAS, Re? SF od
RUN

FREG.. GHZ?
1.6882  RUN

HEW AEBCD

HITRY

PRREGX

Réd= 6,2832
Rél= @, 1668
Ré2= -46.758¢6
Ré3= @.6348
Re4= -114.6867
R@3= 1.1678@
RBo= -57.2892
Ra7= B.2786
Rag= -84.7331

(f)

collector voltage is then changed from 3 to 0.75 V, and the collector current
from 3.0 to 2.0 mA for use in a circuit computation. The emitter area is

changed from 250 to 95 um?. The program calculates a new equivalent circuit

for the revised bias conditions and emitter area. The ABCD parameters of the

revised equivalent circuit are then calculated in the example for four frequen-
cies at half-decade intervals from 0.0316 to 1.0 GHz.

Columns a to e in the example (Figs. C2.1 and C2.2) give the complete

printouts with flag 04 clear, to show the computation in detail. Columns e and

f show the printout with flag 04 set.
In columns a, b, and part of ¢ the equivalent circuit for the original bias

condition is shown followed by the revised equivalent circuit for the new bias.
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BLeLEL "EMR" 41 ARy §1 K12
82 SF 12 42 RTH a2 *

83 "E0RECD 83 RCL I
B84 AYIEM 43eLEL 21 84 *
g5 cF 1z CONTROL 44 ¥EQ -OL- 85 ROL 23
86 AIY 45 QK7 86 RCL 27

87 ~CHRNGE e1p;, - PROGRAM 4 peEp NEW gs .
82 "HRe?" 47 PROMPT } ROL 28
89 ACR 48 vgg -g- BIAS, 89 *
18 = SF eg- 43 RCL 35 % -
11 Ac sa gl 35 DREA. 91 p-p
12 PREUF 51 RCL 37 92 570 A1
13 5T0P 52 ST0 11 93 XY
14 FL7 a4 53 RIN 94 570 A2
15 ¥E§ “FL- 54 STO 18 5 RCL 25
16 FS7 @ 55 RIN 35 RCL 26
17 %EQ 71 56 ST0 89 97 *

18 “FREQ. . GHZ?" 57 SF 12 % RCL 0o
19 TOHE & 58 "HEW " 95 #
20 PROMPT 59 ACA 188 CHS
21 Pl B8 YER “FL- 181 RCL 26
22 2 61 RTH 182 RCL 21 B
23 * 163 *
24 * 624LBL “EA" 184 RCL 23

25 370 98 (IRCL 24 —— 105 +
26 XEQ "ER" 64 RCL 27 }gg CHS
27 S5F 12 65 * R-p

28 “NEW fBCD 66 RCL 26 182 570 93
29 AYVIEW 67 # 189 8¢y
28 CF 12 6% FLL 23 CALC. 118 370 84
31 AmY 69 RCL 29 H1RCL 24—
37 603 78 * A 112 PCL o8
33 FC7 04 71 + 117 *
34 PRREGY 72 RCL BB {14 CHS
35 "WITAY" 77 4 115 RCL 25
36 AVIEH 74 CHS 116 RCL 29
37 TOME 9 75 RCL 26 117 # C
38 SF 14 76 RCL 25 118 RCL w@
19 .85 77 % 119 ¥tz
48 WITAY 78 RCL 29 128

79 *
88 RCL A9

Figure C2.2. Program “E>A”: listing.

After this computation is complete, the program prompts for the frequency (in

gigahertz) at which the ABCD parameters are to be evaluated. It then lists the
angular frequency and the magnitude and phase of the ABCD parameters and

prompts for a data card on which to record this information. (The biases are

also recorded for reference.)

To calculate the ABCD parameters at the next frequency (0.1 GHz), flag 00

is cleared since we do not wish to change the bias. Columns d and e show this
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b
t

e
t
e

F
e
d
I

M
o

C
a
d
P
e

124
125 RIL 2
126 -
127 B-P
128
129 RO
138 573
131 RCL
132 REL
133 #
134 CHS
133 RCL
136 CHE:
137 R-P
138 574

i
o
o

-
t

2
0

 

139 505
148 STG
141 REL
142 RCL 2
143 *
144 RLL
145 *
146 £-1
147 ST+

159¢L8L EIRs* SCALING
1oBeLEL

ADD

EXCESS

PHASE

 

"fi“

   

16l RCL A7
162 RLL
163 Ao
164 STO
163 7
1ho 577 14
167 577 28
168 ST+ 22
169 577 24
178 57+ 26
71 517 29
172 PCL @9

35172 RIL
174 #
75 RCL IS

176 4%
177 8T% 2
178 5T+ 2
179 RCL &
188 RCL 2
181 s
182 RCL 1&
183 v4Y
184 RCL 19
185 #
186 ST 38
187 ROL 13
188 ROL B9
135 +
198 RCL {3
191 BCL 35
192 +
137 -
194 57+ 21
195 ST+ 2
196 RCL 1
197 RCL 2
198 7
199 RCL 22
208 +

Figure C2.2.
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calculation. The equivalent circuit parameters are printed—these are identical

to those shown for the “new equivalent circuit” as calculated previously.

Finally, in column e flag 04 is set to suppress this printing, and the ABCD

parameters are calculated for the last two frequencies and recorded on mag-

netic cards.

In this way a “library” of ABCD parameters may be built up for later circuit

calculations at different frequencies and bias conditions for various transistors.

Program “E>A”islisted in Fig. C2.2.



241 +
242 RCL 33
243 +
244 RCL 25
243 XY
246 STC 25
247 ¢
248 ST+ 18
49 RCL 19

258 RCL 38
251 ST0 19
232 /
253 ST/ 18
234 RTH

2954LBL OL"

236 "BIAS PAR."

257 AYIEM

258 ADY

259 “VYCE, IL. fe:-

268 AVIEY

261 9,411

262 PREEGY

263 ALY

264 “IKIRK, =

265 ACA

266 6

267 ACCHF

268 =C.T. BYEBD:-

269 ACA

278 PRBUF

271 14,817

272 PRREGY

273 ROY

274 “MEW YCE, IC, -

275 “HRe:"

276 XEG "ACR"

277 PRBUF

278 35.837

279 PRREGX

288 ADY

PARAMETERS

Two-Ports, Transistors, and ABCD Matrices

281 RTHN

282¢LBL “EL"

321 ACCHR
32z ":"

322 AcA
281 5F 12 gQ, CKT. 324 PRBUF

284 "EQ. CCT.-
283 RCA
286 PRBUF
287 CF 12

325 12
326 PRREGY
327 ADY
328 FC7 @

288 ALV PAFAMETERS 329 RTH
289 "CORE: "
298 AYIEHW
291 12
292 ACCHR
293 SF 13

294 =, RE PR, E*
295 ACH
296 CF 13

297 "E, CJC, TT:-
294 AcA
299 PRBUF
jea 2i.825
381 PRREGX
382 ALY
383 SF 13

384 “RB. KB. GCE. "
ja3 “HCCE"
386 ACA
387 39
368 ACCHR
389 PREUF
3n 26.829
311 PRREGK
312 ADY

313 GCE. KA:
314 ACR
315 PRBUF
e CF 13
317 38,831
318 PRREGX
319 ADY
328 12

Figure C2.2. Continued.

338 =TF. CJE"
331 AYIEM
332 19.82
333 PRREGX
334 ALY
335 ENE

LBLTE:A
LBLTER
LELTBIRS
LEL™D
LBLTOL
LBLTEL
END 744 BYTES
.END, a5 BYTES

o o
DPRFLAL

STARTUS:
SIZE= w48
i= 8t
DEG
FIX 4

C-3 PROGRAM “A>E”: TRANSISTOR MODELING PROGRAM

This program finds the element values of the transistor equivalent circuit in
Fig. 7.19b from its two-port ABCD parameters at a specified frequency and

collector voltage and current. The primary purpose of establishing the equiva-

lent circuit parameters is to enable one to translate or extend the transistor

characteristics from this single set of measurements plus three dc measure-

ments to any frequency and collector bias condition; it also allows one to scale

the transistor in size—in its horizontal geometry—to optimize transistor sizes
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in an integrated circuit. This latter function is accomplished through use of
program “E>A” described in Section C-2.
The ABCD parameters of the transistor may be found by a two-port

measurement on the transistor, preferably in the cutoff region, between f./20

and f;/5. Better accuracy can be obtained by repeating the procedure at more
than one frequency and averaging the results.
The equivalent circuit element values are obtained in an iterative procedure

on the basis of the following equations for the ABCD parameters. The
equations are derived from the ABCD equations in program “E>A”. The

excess phase is subtracted from the phase of the ABCD parameters, and
the equivalent circuit elements are derived from the real and imaginary parts of
the resulting parameters. Letting C’ represent the phase-reduced value of C,

and similarly for the other three parameters, we have

_ Im[C]
J¢ w

r,=—Re[B’]—ér,

 

 

 

—, kTre—rE qI(

Im[D']
Tr=— 5

Im[ B’]

. Re[D]+6G

* TFw? Tr

C, — 8gce+gcb+Re[C/]

“ Trw?

_ Im[A']+rC,

b ryCw

Re|A'|+r,g,
k — [ ] eg(e

a r 2
ry1rCl.w

No formal matrix inversion procedure is needed to find the equivalent

circuit elements from the ABCD parameters. This is because of the almost 1: 1

relationships of r. to B, C,.s to C, and 7,5 to D. Base resistance at the input
and C/, at the output tend to blur these relationships; thus iteration is
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required. Calculation of the parameters begins with the dominant elements,
thus establishing the main parameters at the beginning of the calculation. In
the equation for r, for example, we no not initially know r,, but in the real

part of B’, r, is multiplied by 8, and hence its effect is small. It is calculated
later in the program, so its effect on r, is accounted for in a succeeding

iteration. The excess phase factor p is calculated late in the program. It is
sensitive to the exact value of D and is one of the more variable parameters
from iteration to iteration. When it stabilizes to a constant value from one

iteration to the next (to four decimal places), the iteration stops and the

equivalent circuit parameters are printed. This normally takes only three or

four iterations.
Note that 7 and C,, do not appear explicitly in the preceding equations;

their combined effect is incorporated in 7,.. At a given bias level they cannot be
separated and need not be. To allow program “E>A” to find the ABCD

parameters over a broad range of bias conditions,it is necessary to determine

the components of 7, explicitly since their variations with bias are not the

same.
The program finds C,, in a subroutine that is called on when flag 00 is set.

The subroutine calculates C,, from eq. (7.4-22) and requires that the emitter

area and the breakdown voltage be known or estimated. The value of 7, 1s then
calculated from the known values of 71, rg, and C,, by using eq. (7.5-3).

Some of the equivalent circuit values are best obtained from separate

measurements on the transistor. The Early conductance, for example, cannot
be obtained very accurately from high-frequency measurements since r,g,, 1s
only a small part of A. The program assumes that V, is known for the

transistors of the integrated circuit process in question, so that

I
=Yy,A CE

Note that the excess phase factor is sensitive to the exact value of the real

part of D, whose main component at low frequencies is 8. At low frequencies

the effect of excess phase is extremely small, so that the real part is insensitive

to u; put the other way, p is extremely sensitive to the exact value of the real

part. Consequently, u should not be evaluated from low-frequency measure-

ments since small errors in the real part cause wild fluctuations in the value of

w. If operation is not to extend to high frequencies, p is unimportant and may

be neglected. In this case (= f;/20) delay is ignored, and the circuit used

becomes equivalent to the hybrid pi model.

If the measurement frequency is not too high, § may be obtained from the

real part of D; better accuracy may be obtained by a separate, low-frequency

measurement of D, and this is assumed in the equations.

To summarize, the complete equivalent circuit is obtained from (1) the

ABCD parameters at a high frequency, (2) a separate low-frequency measure-

ment or calculation to obtain g, (and g) and 8, and (3) a separate calculation
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of C,, or 7. The latter evaluation is needed only if the size or bias conditions
are to be changed.

Example

The ABCD parameters of a transistor at 0.4 GHz are given in this example (see

Fig. C3.1), as well as the bias voltage V/, and the current and emitter area. The

Early voltage is also known (or estimated), as are BV, and 8. The program
lists (see Fig. C3.2) these values and prompts for corrections, as shown, (i.e.,
BVypo =70 V and 6=0.0102). After R/S is pressed, the value of p on

rb, kb, ace,

- AEG "R
ABCID EQ.

Iter

FIMND CJE, TF?

SF e
oF BR EQ.

RUN .

RABCTI : & re

F= 8.4006
RE}=

R22=

R23=
CABCH

ke

RAi= 8.815
R25=

R@2= -76.1751

Re3= @.866]

Red= -145,3328 .

RB5= B.584p
ri;:

RB6= -79.7483
rzp:

Ra7= @8.8811
r 8=

Rag= -94.9995 r2d=

VCE: ICJ ge: ?T; VHZ QCbJ

R89= 3.0688
Eg?i

Ria= §.6008 3=

Ril= 250.8888 |

Ri12= 8.8268
v

R13= 26.8882 o150

0:BYEBO
e

7=R17= 9.0608 <4 "

é
R2a=

R21= @.0888 4

oK?

7.0088 570 17
8182 510 21 o

Figure C3.1.

FUN

8,anad
ate on g, 4454

B.4512

M #.4511

CCT.

pr. rE, CIC. TT:

g.e18z

g.a815

R,0847

B.2298

g.0328

8.84684
8.3780
8.3478
8.5238

ka:

a,an0e
1.1141

a,4511

JE

a.827%
8.9362

Program“A>E”: example.

BIAS PAR.

IK,fc, T:

Ri4= B, @008
R15= 9.8806

Ris= B.BE8a

nK?

34

HDTH

.88ag 570 14
4388 370 13
.2388 570 16

RUH
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AleLBL “AME"
2 5F 12

@3 "ABCTER,~
84 AYTEM
@3 CF 12
86 Anv

@7 “FIND CJE. TF?"

2 o
t

88 ACA
@9 PRBUF
18 = 5F fa-
11 PROMPT
12 FC? 24
13 ¥EQ B@
14 =QK7-
15 FC? a4
16 PROMPT
17 7EQ "AE"
18 F57 oa

19 ¥EQ “CJE"
28 ¥EQ 81
"BIAS PAR."
22 AVIEM
23 ALY
24 "1K."
25 ACA
26 6
&7 RCCHR
28 °C, T:»
29 ACA
38 PRBUF
31 14,816
32 PRREGX
33 ADY
34 =0K?"
35 PROMPT
36 “WOTR"
37 AVIEW
38 .62}
39 WOTAX
48 ADvY
41 RTN

CONTROL

PROGRAM

Figure C3.2. Program “A>E”: listing.
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424EL "RE——
47 JE0 {1
44 RCL 34
45 RCL 18 1ter.
46 ¥y
47 570 12 loop
48 -
49 RHI
58 2207
51 GT3 *pE*
52 RTH

S53eLEL 11 EQUIV.
54 YIEW 18
55 RCL @6 CKT.
56 @
57 XEG 18 PARAM,
58 RCL @5
59 P-k
68 STO 39
61 203y jc
62 RCL @8
63 /
64 CHS
65 ST 24
66 RCL @4
67 XED 93
68 RCL @3
69 P-R
78 RCL 26 r
71 RCL 21
72 %
73 +
74 CHS
75 870 22—
76 RCL 12
77 RL 18
7 T,
79 -
88 5T0 22

81 KM
2 570 38
23 RCL @8
24 ¥EQ A9
85 RCL 97
8 P-R T
87 %y T
88 RCL 9@
89
98 CHS
91 575 2
92 RCL
92 RCL #
94 P-R
95 RCL 21
9% +
97 RCL 25
98 H
99 RCL 69
188 ¥12
101 /
182 RCL 23
103 PCL 24
164 *
165 -
186 RCL 25
187 ~
188 STO 34
189 RCL 10
118 RCL 132
111 RCL @9
112 + Iee
13 -
114 570 28
115 RCL 21
116 *
117 RCL 38
118 +
119 RCL 39
128 +

w
n

=
0

=
4

Q
3

successive iterations is viewed as shown. When no further change in p occurs,

the equivalent circuit values are printed. Finally, bias parameters I,, I'-, and
I', as stored are printed. These values are not needed in the equivalent circuit
calculation but will be needed by program “E>A” in calculating the ABCD

parameters at various bias values. Measured values (or default values) should

be stored in the appropriate registers at this point, as shown. The data are now

in proper form for recording (on both sides of a magnetic card).
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121 RCL 25
122 7 C
123 RCL g C©
124 A2
125 7
126 ST 29 ______
127 RCL 38
128 CHS
129 RCL 68 T}
138 /
131 RCL 25
132 7
133 570 26
134 RCL B2
135 8
136 XEG 18
137 RCL 01
138 P-R
139 RCL 28
148 RCL 12
141 *
142 RCL 18 K
143 /
144 +
145 RCL 25
146 /
147 RCL 29
148 7
149 RCL 09
150 Xt2
151 /
152 RCL 26
153 /
154 STO 31
155 RDN
156 RCL 8@
157 /
158 REL 23
159 RCL 29
160 *

161 +
162 CHS
162 RCL 24
164 /
163 RCL 2¢
166 7
167 STO 27
168 RTN

169¢LBL A9
178 RCL 18
171 RCL 25
172

173¢LBL 18
174 RCL 23
175 RCL 24
176 *
177 +
178 RCL @
179 *
188 R-D
181 -
182 RTN

183¢LBL “CJE"
184 RCL 11
183 .81
186 *
187 RCL 11
188 48
189 +
198 RCL 18
191
192 LN
193 SORT
194 /
195 7
196 RCL 17
197 7
198 1.25
199 Y4¥
208 *

SR

Subtract

Excess

Phase

Cje(Ae’

BVego,

IZC)

Figure C3.2. Continued.
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281 STO 24
282 RCL 25 ——
283 RCL 24
284 RCL 23
285 *
286 -
207 RCL 23 F
208 RCL 22
289 -
218 RCL 2@
211 *
212 -
213 570 19
214 RTH
 

215¢LBL 61

216 SF 12

217 =EQ. CCT.-"

218 RCA

219 PRBUF 1,IS1

228 CF 12

221 ADY

222 18

223 ACCHR

224 SF 13

225 =, RE PR, P

226 ACA

227 CF 13

228 *E. CJC, TT:"

229 ACA

238 PRBUF

231 21.825

232 PRREGX

233 ADY

234 SF 13

235 "RB, KB, GCE, "

236 “HCCE"

237 ACA

238 39

239 RCCHR

248 PRBUF

C-4 PROGRAMS “TPOLY”, “T>P3”, AND “T>N3/D3”: POLYNOMIAL AND

RATIONAL FUNCTION COEFFICIENTS FROM MAGNITUDE AND

PHASE AT TWO FREQUENCIES (USE “T>N3/D3” WITH “TPOLY”)

The basic program ofthis section, “TPOLY”, takes the ABCD parameters of a

network evaluated in magnitude and phase at two frequencies and converts

this information into four sets of cubic polynomial coefficients—one set for

each of the four ABCD parameters. By so doing, the ABCD parameters are
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241 26,829 281 ACH
242 PRREGY 282 PRBUF
243 ADY 283 A0V

244 "GCE, KA:- 284 -ABCD"
243 ACA 283 AVIEW
246 PREUF 286 1,083
247 CF 12 287 PRREGY
248 38.831 283 ADY
249 PRREGZ 289 "YCE, IC, Re, ¥T-
258 ADY 298 ACA
231 12 291 . YA:-
252 ACCHR 292 ACA
253 " 293 PRBUF
254 ACA 294 9.813
233 PRBUF 293 PRREGE
256 12 296 ADY
257 PRREGY 297 “BVEBO:-
258 ADY 298 AVIEN
239 FC? an 299 17
268 RTH 388 PRRECK

261 *TF, CJE" 381 ALY
262 AVIEW 382 18
263 19,82 383 ACCHR
264 PRREGX 384 PREUF
263 ADY 383 21
266 RTH 386 PRRECH

Je7 ADv
267¢LBL @@ 368 END
268 SF 12 LIST
269 "RBCD:*

278 ACR ABCD
271 PRBUF

272 CF 12 CAT !
273 ADY LBLTRE
274 "F=" LBLTAE
273 ACA LBLTCJE

276 RCL @8 END 637 BYTES
277 PI .ENL. a8 BYTES
278 2 XEG "RME"
279 * PR =
288 /

Figure C3.2. Continued.
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F B2 CLEOR
F BI CLERR
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described over the entire frequency range over which the cubic polynomial

description is accurate. (For a cubic system, this is the entire frequency range.)

This enables us to evaluate the loss and input and output immittances as a

function of frequency by the methods discussed in Section 8.2. In addition,

once the polynomial coefficients are known, the sensitivity analyses in Appen-

dixes A and B become available to us; the sensitivities of loss to the system

components and device parameters can be calculated and statistical analysis

carried out.



Programs “TPOLY”, “T>P3", and “T>N3/D3" 613

We have already seen—in program “RCU” in Appendix A—how the
magnitude and phase of loss at two frequencies can be converted into cubic
polynomial coefficients. This program uses exactly the same method, but it

applies it to all four of the ABCD parameters to obtain four cubic polynomials.
The use of the polynomial coefficients in the design of feedback structures was

discussed in Section 8.3 in connection with Fig. 8.13, where these coefficients

were used to design an amplifier with desired loss and input and output
immittances. Programs that make use of these polynomial coefficients are
discussed in Section C-5.

Example

An example of the use of “T>P3” is given in the first column of the example

in Fig. C5.1, Section C-5. We find the cubic polynomial coefficients of the

ABCD parameters of the bipolar transistor whose magnitude and phase were
found in the example in program “E>A”. There, we recorded the magnitude
and phase of the ABCD parameters at four frequencies for a 95 um? transistor
at V- =0.75V and I-=2.0 mA. We now take (any) two of the four resulting
matrices and calculate the cubic polynomial coefficients from them. The two

frequencies used in the example are 0.0316 GHz (0.1985 Grad/s) and 0.10
GHz (0.623 Grad/s). (Use of any other pair of frequencies gives negligibly

different results.)

In the example in the first and second columns of Fig. C5.1, four of the 16

polynomial coefficients are recognizable as the “core” coefficients of the
transistor (with the sign changed because of the phase reversal). Equivalent
circuit parameters 7, G, 0, and 7, are found in registers R04, R09, R12, and

R13, respectively, as indicated in egs. (C3-1). Programs “TPOLY” and “T>P3”
are listed in Fig. C4-1.

Program “T>N3/D3” (Use with “T>P3”)

This extension of Program “T>P3”, also listed in Fig. C4.1, likewise uses
the magnitude and phase of a function at two frequencies, but it models the
function as a rational function—a ratio of two cubic functions—in which the

denominator coefficients are known. A complete development of the equations
is given in Section 9.3. Memory register usage is compatable with “TPOLY”

and “T>P3” as well as the programs described in the next section, Section

C-5. The denominator coefficients d,,, d,, d,, and d, are stored in R52—-R55.
They can be stored manually in response to a prompt, or can be read in from a

card by executing “RDTAX” at the same prompt.

The program calls on “T>P3” as a subroutine but substitutes its own

subroutine “M2” for subroutine “02” of “T>P3”. Subroutine “M2” performs

the calculations described in Section 9.3 to obtain L( jw) D( jw).

An example of the use of this program is given in Fig. 9.13 for the Wilson

current source; the denominator is the (normalized) loss polynomial of the

simple current source.
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@& AVIER
89 28.828
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67 AYIEHW
68 4,067
69 PRREGX
7@ ADy
71 =C*
72 AYIEH
73 &.811
74 PRREGZ
75 AV
7o "D"
77 AVIEK
78 12.813
79 PRREGX
3@ ALY
51 TOHE 4
32 "uR?"
23 AVIENR
84 PSE
83 CLD
36 . 815
37 WDTAX
33 RN

B9¢LEL 61
%8 ST0 18
91 RCL 38
92 %42
92 RCL 28
94 xt2
3 -

Programs “TPOLY” and “T>P3": listing.

St 173

97 570 29
92 CHS
95 570 29
1ee RCL 2@
1@ X2
18z *
183 876 17
184 RCL 3¢
{85 Xt
166 RCL 29
187 #
ies 570 16
189 FC? a2
119 XE@ 82
fi1 F5? 83
112 REG -“H2*
113 RCL 16
114 RCL 4#
{15 *
116 ECL 17
117 RCL 42
113 =
118 +

128 STO IND 18
121 156 18
122 RCL 16
123 RLL 41
124 *
i25 RCL 17
126 RCL 43
127 *
128 +

129 STO IND 138
138 I5C 18
131 RCL 29
132 RCL 4@
133 #
134 RCL 39
135 RCL 42

136
137 +

138 570 IND 18
{39 ISC 18
148 ECL 29
141 RCL 41
142 *
143 RCL 38
144 RCL 43



145 * 18 RTh £5 RIN
146 + I g6 ST+ 41

147 STO IND 18 [3¢LEL "Hz® €7 POL 15
143 RTH e FOL 12 63 RCL 14

21 RCL 12 o

149¢LBL 92 22 PR 78 5T 42
158 RCL 13 23 570 48 71 ST 56
15{ RCL 12 24 570 36 72 %O3¥
152 P-k AT 73§70 43
153 570 48 26 510 41 74 RCL 26
154 KO &7 RiL 28 75 81/ 43
155 RCL 28 i 76 X2
156 # £ Alc 77 CHS
157 570 41 38 LS 78 870 57
152 RCL 15 31 ST0 57 79 BCL 43

. 32 RLL 41 .159 RLL 14 2R 28
168 P-& 3 x 81 RCL 55
161 570 42 34 RCL 33 82 *
162 %Y e 83 RCL 43
163 RCL 38 36 RCL 41 84 FCL 33
l64 7 3.7 RL'L S‘fx 85 %

165 570 43 ¥ g +
166 .END. "+ 37 RCL 54

LAt | 48 RLL 34 8% RCL 56
LBLTTPOLY L RCL 36 39 *
LBLTT! 42 ¥ 9 +
LBLTT3P3 5 $1 RCL 57
(ENE. 345 BYTES 44 Ril 5 32 ¥

3 # 97 57+ 42
46 RCL 52 94 RCL55
47 5T+ 46 Al

BieLBL “ToRIARI- 48 RIN jfi iu' %
g2 “E-THP3" 45 5T+ 48 a7 oL 43s 43 8T+ 4 97 RCL 43
g; giéEH ifi ELL 33 98 RIL 54
a4 PSE i RCL 36 a3 ¥
83 LI 52 % 198 +

86 TONE 7 53 ROL 41 101 BRI 57,. 23 KLt Bi RCL 5
23 g;gs . 54 RCL 54 w2
g 2 “Tl= I 7 BRl S

B9 “CHN DEN: dé-d2:- 56 + s
urr! - - 184 RCL 53

i? E:’Efis 57 RCL 57 185 *
52.85 S5 6+

12 PRREGY 59 RCL 56 %?; ST+ 433 any ReL o8 37 5T+ 4
s & AR RCL 53 188 ENI

14 =0K? OR ROTRY?" 61 % -
15 PROHPT f;.E + PETTINIAND v

6 SF 83 63 RCL 52 LM
17 XeQ "1o83 64 5T+ 41 END 224 BYTES

Figure C4.1. Continued.
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Program “T>P3”: Registers

ROO-R15 ABCD cubic polynomial coefficients

R16, R17 Used
R18 Coefficient index

R19 —

R20-R28 ABCD parameters at F|
R29 Used

R30-R38 ABCD parameters at F,
R39-R43 Used

Program “T>N3/D3”

In addition to the preceding registers for “T'>P3”, we use

R52-R55 Denominator coefficients d, to d,
R56, R57 Used

C-5 PROGRAMS FOR NETWORK CHARACTERIZATION FROM ABCD

PARAMETERS: “P3>LA”, “FR”, “NMR”, AND “NWCALC”

These programs develop the voltage loss, input admittance, and output imped-
ance of a network with given source and load resistances as discussed in
Section 8.2. They begin with the (cubic) polynomial coefficients of the ABCD

parameters (e.g., as found, by program “T>P3” or “TPOLY”). Program
“P3>LA” implements eqgs. (8.2-3), (8.2-4), and (8.2-9) fcr an ABCD matrix

expressed by its cubic polynomial coefficients; “FR” calculates the loss in dB
and phase as well as the real and imaginary parts of the input admittance and
the output impedance as functions of frequency. Using program “NMR”, the
user may normalize the constituent parts of the loss polynomial and immit-
tances (i.e., 4, B/R,, CR;, and DR/R,) in three ways to aid the design
process, as illustrated in Section 8.3. (the single stage hybrid feedback ampli-
fier).

Program “NWCALC”is a control program that calls on “T>P3” as well as

the programs of this section. “NWCALC” organizes the programs of this and

the previous section to find a desired set of network properties from the ABCD

parameters at two frequencies. It starts with the ABCD parameters of a

network expressed in loss and phase at two frequencies (recorded on cards). It

finds the polynomial coefficients and from these, using “P3>LA”, finds the

polynomial coefficients of the loss and the rational function coefficients of Y,
and Z,. It then lists the loss response and the input and output immittances as
a function of frequency using “FR”. Finally, it normalizes the loss coefficients
using “NMR”.

Program “P3>LA” requires that the polynomial coefficients of the ABCD

parameters be stored initially in registers ROO—R15. Source and load resis-

tances are stored in registers R44 and R45; the program lists these and
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prompts for corrections by asking “OK?”. The program then generates the sum
represented by eq. (8.2-3) in registers R20-R23; the numerator of the input
admittance, given by (8.2-4), is stored in registers R24-R27 and the denomina-

tor in R28—R31. The numerator of the output impedance is stored in R32-R35,

and the denominator is stored in R36-R39. These locations are the ones

addressed by program “FR” in calculating the response and immittances as a
function of frequency. Program “P3>LA” also calculates the normalized or

scaled polynomial of loss as well as the dc loss in dB and the cutoff frequency
in gigahertz. The loss polynomial is scaled such that the dc and the Mth

coefficient are unity, as discussed in Section 2.2 and in program “N” in
Appendix A. Coefficient M must be stored in register R46. If the polynomial is
to be normalized to its quadratic coefficient, for example, 2 should be stored in

R46.
Program “FR”is similar to program “BODE” in Appendix A, except that it

calculates Bode plot information for the cubic polynomial in R20-R23 and

Nyquist diagram information for the ratios of polynomials representing the
input admittance and output impedance. The minimum and maximum (angu-
lar) frequencies for the calculations and the frequency increment are listed in
the beginning of the calculation, and a prompt is provided to change any of

them. Figure 8.3 (in Chapter 8) gives an example of the calculations of
programs “P3>LA” and “FR”; another example for the hybrid feedback
amplifier in Fig. 8.12 1s given in Fig. 8.13.

Program “NMR” is intended as an aid in the design process. It allows the
user to compare the relative contributions to the loss of the four ABCD

parameters on a coefficient-by-coefficient basis, enabling the user to correct a
deficient loss polynomial or an undesirable port immittance. With flag 04 set,
the original loss polynomial coefficients are printed, but with B divided by R,
and C multiplied by R; thus the actual values of the four contributors of eq.
(8.2-3) are printed, allowing an assessment of the importance of the various

contributors to each coefficient. With flag 02 set, each contributor is divided

by the coefficient of the loss polynomial of like degree, giving the sensitivity of

each loss coefficient to 4, B, C, or D. Examples of results using program
“NMR” are given in Figs. 8.4 and 8.13c.

Example

In this example (see Fig. C5.1) we model the bipolar transistor as a set of cubic

polynomials for A, B, C, and D. The program can be used for any two-port

that can be modeled as a set of cubic polynomials; we develop the programs
for calculating the ABCD parameters of arbitrary two-ports in the remaining

programs in this appendix. For purposes of showing how this series of

programs works however, the modeling of the bipolar transistor—familiar

ground by now—lendsclarity to the process.

To use the program, we start with cleared program memory and set SIZE at 58

registers. Program “NWCALC”is read in from cards and executed, as shown

in the example. The user i1s immediately prompted to read in program
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XER "NWCRLC" C 11:
R-TPOLY N
T AT FL: k- Rag= -8.0@11

R&9= -8.1579 R24= -8.1518
R28= 8.1985 Rig= -8.8168 R23= -8.7349
R2i= 8.8827 Ril= -4,2274-85 R26= -8.0282
R22= -115.4434 R27= -8.08062
RZ3= @2.8ig2 D
R24= -176.8928 D
R25= 8.8314 Ri2= -8.8113
R26= -98.83%2 R13= -8.8433 R28= -8.2432
R27= 8.8142 R14= -8.80869 R29= -8.8786
R28= -142.6802 Ri3= -9.7628-86 R38= -8.8832

R31= -1.9169-8C
Fe: B- HR?

RUN 20:

R38= 8.6283 R-PIXLA N
R3i= 8.6879 RG, RL:
R32= -93.732% R3z2= -B.8198
RI3= 8.8184 R4d4= 8.6068 R33= -8.8682
R34= -178.2341 R45= 9.9000 R34= -8, 8882
R35= 8.899%4 0K? R33= -1.7974-20
R36= -86.9842 8738 STO 44
R37= 8.8293 570 45 3
R38= -111.9268 RUK

RG, RL: R35= -8.8812
A-POLY: R37= -8.8243

Rdd4= 8,8758 R33= -8.8831
ROg= -8.0812 R45= 8.8758 R39= -8.1372-66
Rei= -8.8123 OK?
Ré2= -8.0019 RUN NRN LA
R83= -4.9667-84 LA, Hy® b=1. H:

B R26= -8.2546 Rd6= 8.8060
R21= -8.1338 0K?

Ro4= -8.6181 R22= -8.9653 1.8888 STD 46
R85= -8.08858 R23= -3.2182-83 RUN
RO6= -8.0661 bhi={. ¥:
R@7= -1,8632-86

Figure C5.1. Program “NWCALC”: example.

“TPOLY”. When this is done, “TPOLY” prompts for cards containing the

ABCD parameters at two frequencies— F, and F,. It then prints the poly-

nomial coefficients of the ABCD parameters and asks if a card is to be written.

If so, pass a card through the machine to save the polynomial coefficients; if

not, press R/S. Operation returns to the control program, “NWCALC”, which

prompts for “P3>LA” to be read in. When this is done, “TPOLY” is

automatically cleared from the machine, making room for succeeding pro-

grams. Program “P3>LA” prompts for source and load resistances R; and R,
by printing the contents of R44 and R45. These are initially zero (assuming
that memory was cleared), and the desired values are stored in these two

registers (0.075 k€ in the example). The corrected values are then printed; if
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Rd6= 1.P808 LA
W FooLod  PH R-HAR
. BN NORM. RABCD
R W U7 ' g.818 -11,8% -7t

FUse. 3838 GH2 8.822 -11.86 -175.93 ABCT COEF:
a6 8.846 -11.38 -171.28

.18 -11.58 -1£1.59 P.U. OF LA COEFS?
R28= -8,254¢ 8.215 -18.33 -143.32 ?fi a2

-{1.88174E 8.464 -7.83 -118.25 bbfi_m LA POLY?
1.888 -1,58 -932.88 SF 44

NP 2.154  5.47 -67.29 SUM TO NRM POLY?
' CLFLGS

R4B= 1.8606 YN RUN

R41= 1,800 F RE ¥ A

R42= B.8761 _
R43= @,peag 8.818 8,627  8.177 F2d4= 8.8849

R B.622  B.639  8.351 25=  2.8934
R-FR B.846  €.632  B.817 RZ6= 8,3504
FHIN, MOY, é.188  8.932  1.718 R27= B.1547

PTS/BEL: g.215 1915 3.33
= B.464 4,754  4.876 B/RL

R47= @.pA@R 1.688  g.411  3.%! ) ]

R4G= B, B@EA 2,134 9,89 L.557 RZd= 8.9384

R49= ggnggg R25= 8.4%45

0w 20 R26= 8.2532
' B1EG 5T47 £ RE IH R27= B.4424

1.8088 570 43 o o o
1.0888 STO 49 B.Bif  6.341 -B.937 {rk

BN 2.822 2,239 -4.8%7
FEIN. MPY, ' B.046  B,726 -2.5&5 R24= B.EE?E

PTS/DEL: G180 8.347 -1.23% RZ5= 8.8536
’ B.215 8.259 -0.58! R26= 8.2246

R47= B.Ria@ 8,404  6.223 -B.3%% RE7= #.0988

R48= 1.A@AR 1.688 @.168 -6.2i5

R49=  1.08A@ 2,154 B.897 -8.137 BRGARL

" - R24=  8.6444
e R25= 9.3735

R26= 46,1718
Re7= 82,3841

Figure C5.1. Continued.

correct, press R/S. The loss polynomial and the numerator and denominator
of the input admittance and output impedance are then printed.

The loss polynomial is then normalized as in program “N” in Appendix A.

The program prompts for the coefficient whose value is to be equated to unity,
either 1, 2, or 3. (Noninteger values may also be used.) The cutoff frequency

and the dc loss (magnitude and dB) are then printed, followed by the

coefficients of the normalized polynomial. (For a discussion of the value of this

normalized polynomial description, see Section 2.2.)

The control program then prompts for cards containing program “FR”,

which prints the loss and input and output immittances as a function of
frequency. The program prompts for the minimum and maximum frequencies
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TaTAL N CF 82
CF 84

R2g= 1,800 R24= -8, 8081 _ RUN
o RZS= -2.8113 A
R3g= 1.B0ed R6= -8.6812
Ril= 1.00ed R27= -3.1765-96 24= 8,004

_ R2S= B.8924

HORM.  ABCD R24= -8.9113
i R25= -8.9433 B/RL
HBCD COEF: R26= -B.AR&3 wie 5358

27= -9,7623-86 2d= A9P.U. OF LA COEFS? R rees R25= 8.4946
5F 02 . ToTAL R26= 8.8193
§unaéa LR POLY" R27= &.600¢
5F = -f 7

SUM TO HRM POLY? §§§_ _é'zgig CRG
CLFLES sle RIB= -6.0653

5F @4 R3t= -3.2102-85 R24=  6.6803RUN R25= 0.8286
A YEQ “HMR® R26= B.8171
Ro4e -2 0813 NORM. ABCD R7=  §.808]

ee ABCD COEF: IRG/RL

Rz7= -4.9567-6¢6 P.U. OF LA COEF3? R24=  B.9444
o 5F 82 R2S= ©.7235

B/R SUM TO LA POLY? R2b= 8.8131
o SF @4 R27= B.8083

eo SUN TO NRK POLY? )
iy CLFLGS TOTAL
“eh- <o, i%

R27= -1.4202-45 R28= 1.8660
RZS= 1.8669
R38= 8.6751
R31= 9.0869

Figure C5.1. Continued.

and the number of points per decade for this listing, followed by the listing

itself.

The control program, “NWCALC”, then prompts for program “NMR” to

be read in. The latter program lists the flag options with a prompt. (The
program sets flag 02 since this has been found to be most useful in design.)

With flag 02 set, the coefficients of loss, the ABCD parameters, are normalized

to the coefficients of the loss polynomial of each degree individually. Thus we

find the per unit (P.U.) contribution of the ith coefficient of 4, for example, to

the ith coefficient of L,. Since A, B, C, and D are related directly to the circuit

components, we can modify the circuit to give a desired performance. The sum

of the four contributions is (of course) unity for this normalization, and the

numbers printed are, by the sum rule, the sensitivities of the ith coefficient of

loss to the ith coefficient of A, B, C, and D.
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25 BEEP
26 "DONE*
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34 TONE 2
15 AVIER
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38 EHD
I

LBLTHKIALE
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Figure C5.2. Programs
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With flag 04 set (the status of flag 02 is immaterial in this case), the actual
contributions of 4, B, C, and D to the loss polynomial are printed, and the

total is the loss polynomialitself. This option is convenient for determining the
actual values of components to be added to the circuit to obtain desired

performance.
With both flags 02 and 04 clear, the contributions of A, B, C, and D to the

normalized loss polynomial are printed, and the total is the normalized
polynomial. This option keeps the relative importance of the coefficients of
loss in perspective; in the example, which models a bipolar transistor as a set
of cubic polynomials, the higher-degree coefficients (the quadratic and cubic)
are of lesser importance, and this option reflects this state of affairs.

93 ST+ IND 18 134 PRREGX 174 570 4194 3 135 AV 75 RCL 2295 ST+ 18 136 “B* 1;2 225 pr% RIN 137 AYIEW 177 ROL 2197 ST+ IND 18 138 36.639 176 <13 4793 28 139 PRREGK 179 ROL 1999 57- 12 146 ALV 198 ST+ 41168 DSE 18 141 “HRN LA" 181 &T# 43181 GT0 84 142 AYIEK 187 w4y162 “LR, HUK" 183 §Tx 42163 AVIEN. 1434160 85 184 ST¥ 43194 28,823 144 “bM=1, H:" 185 RCL 26185 PRREGX 145 AYIEH 196 517 41186 AI¢ 146 46 197 o1/ 42187 Y1 147 PRREGY 198 o7/ 47183 AYIEN 143 QK7 189 1189 RCL 44 149 CF 22 199 570 48112 ST/ 24 158 TONE 6 191 ATV111 87/ 25 151 PRONPT 192 312 5T/ 2% 152 F37 22 127 AYIEK113 5T/ 27 153 GTO 85 194 28{14 *H* 154 REL 46 195 PRRECY
115 AYIEH 155 29 196 RCL 28116 24,627 5 + 197 GB5117 PRREGY 157 §T0 13 198 102
112 ADY 158 RCL 28 199 28
119 1" 159 RCL IND 18 208+
128 AYIEW 168 ¢ 281 A0171 29.831 161 ROL 46 2g2 ~aB"122 PRREGY 162 1% 283 AR123 AV 163 ¥1% 284 FRRUF124 =20:" 164 570 19 285 ADY125 AVIEM 165 ~Fi=" 286 "HF:*126 RCL 45 166 PI 267 AYIEHi27 5T32 167 2 565 48,843128 5T+ 33 163 * 289 PRRECY129 ST+ 34 163 / 218 A1V138 5T+ 35 178 ARCL ¥ 211 EKD131 W 171 “F GHZ T132 AVIEN 172 RYIEH LB o133 32,835 173 RCL 21 AT 4¢3 BVTES

Figure C5.2. Continued.
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The entire process represented in the example, including the three “NMR”
flag options, takes about 10 min. During those 10 min., you may think of a
better way to do (1) the circuit you are working on or (2) the program.

PROGRAM “NW-D:

This program is identical to “NWCALC”, except thatit allows the inclusion of
a known denominator polynomial in the loss function. Instead of calling

on program “TPOLY”, it calls on “T>N3/D3” (which, in turn, calls on

aieLBL “FR" 45 33 g6 ST+ 18
B2 "FNIN, HAX." 46 XEG @8 87 XEQ Q%

83 AYIEH 47 ADY g8 ST~ o8
84 “PTS/DEC:" 48 PI 89 ¥OY

85 RYItH 43 2 98 ST- 31
86 47.849 I8 * 91 4
@7 PRREGY 3t 517 47 92 57- 138
82 CF 22 o2 577 48 93 R™H
89 =GK2* 33 RCL 49
18 PROMPT 34 LOG S4eLBL B2
11 FS? 22 35 148 93 FC? 83
12 670 "FR" 36 ST 49 96 RN
13 Pl 3¢ RN 97 32
i4 2 98 ST+ 18
15 * J3¢LBL B8 %3 XEQ 8%
ie 5T+ 47 39 ST0 18 ig8 51/ 58
17 5T+ 48 68 RCL 47 gt 20Y
18 RCL 49 &1 STO 16 lag £7- 3!
19 17% 183 22
28 18tx G2¢LBL B2 184 §7- 1%
21 §T0 49 63 ZEQ 18 185 RTH
22 RCL 47 64 F57 81
23 ST0 i 63 KER 66 16o4LBL 65
24 L@ 66 XE@ 11 187 RCL IND 18
23 F57 43 A7 RCL 16 188 RCL 17
26 “F, NUK" &9 RCL 45 189 *
27 RYIEM o9 H(=Y? 116 BSE 13
28 SF 81 76 RN 111 DSE 18
29 CF 85 71 RCL 43 112 RCL IND 18
38 XEQ 83 72 ST% 16 113 +
3 23 73 GT0 &2 114 RIL 16
32 XEG 8@ 115 =
33 ADY 744LBL 18 116 156 18
34 "YIN" 75 RCL 16 117 DEG
33 AVIEK 76 K12 118 RCL IND 18
36 S5F 85 77 CHS 11% REL 17
37 CF 81 78 510 17 128 *
35 XE@ @8 79 XEQ 85 121 DSE 1%
39 27 26 STC 58 122 DSE 18
48 ZEQ BE 81 RO 123 RCL IHD 18
41 ALV 82 5§16 51 124 +
42 =20- 83 FC? 83 123 3
43 AYIEH 24 G0 82 126 5T+ {3
44 ZEQ @23 85 4 127 RIH

Figure C53. Programs “FR” and “NMR”: listing.
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“TPOLY”). In the course of the analysis, the user is prompted for a set of
cubic denominator coefficients. The remainder of the program proceeds as in
“NWCALC”: “P3>LA” finds the numerator of the loss polynomial. Since the
denominator is common to all four ABCD parameters, the input and output

immittances are unaffected by it. The response calculation of “FR” includes

the denominator. Program “NMR” finds the normalized numerator coeffi-
cients.

128 R-P
3 RN

136¢LBL 86
131 RCL 58
132 L06
133 2@
134 *
135 570 5@
36 RTH

1374180 2]
138« F -

133 ACR
148 F5? 81

141 =L, dB&  PH"

143 -
142 FL7 &1
RE In-
144 ACA
143 PRBUF
146 ADY
147 RN

148¢L8L |
145 F57? 61
158 ¥EG 12
151 RCL 16
152 PI
133 7
154 2
155 7
156 FIX 3
157 ACX
158 -
152 ACA
168 FI7 81
161 Xcd i6
162 RCL 58
163 F5? @l
164 FI¥ 2
165 FC7 8l
166 FIZ 3
167 RKD
168 ACX

LeL'FR
EHD

Figure C53. Continued.

183 -
178 aCR
171 RCL 51
i72 F§7 81
173 FI¥ 2
174 FL? 81
175 FIX 2
i76 BHD
177 ACX
178 PRBUF
179 FI¥ 4
186 RN

1814LBL i6
182 RCL 31
183 KLL 58
184 P-R
185 ST0 58
186 XY
187 §70 5t
188 RN

g3eLBL 12
196 RCL 51
191 126
192 ¥{=Y?
192 670 i3
194 CHS
193 2{=Y?
136 RTH
197 368
198 57+ 51
193 BTN

28BeLBL 12
28! 3ok
282 5T- 5t
283 END

CRT 1

428 BYTES

BieLBL “NHE"
82 SF 82
83 SF i2

@4 -NORM. RBCD-
83 AVIEMW
86 ALY
a7 CF 12

#8 "ABCD COEF:"
89 AYIEK
ig Al

t1 =P.U, OF L§ COEF-
12 +52*
13 AVIEN
14 3F 2"
15 AYVIEW

16 =5UM TO LR FOLY?"
17 AYIEM
18 "SF 84"
19 AYIEK

28 =SUM TO NRM POLY"
21 "k2"
22 PYIEN
23 ~CLFLGS®
24 TONE 9
25 PROMPT
26 A"
27 AYIEA
28 RCL @8
29 570 24
38 RCL 81
31 510 25
32 RCL 82
33 570 26
34 RCL 83
35 5§10 27
36 FC? 04
37 ¥EQ @82
jea
39 5Th 28
48 870 29
41 STO 3@
42 570 31
43 XEQ @7
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Program listings for “NWCALC”, “NW-D”, and “P3>LA” are given in
Fig. C5.2. Listings for “FR” and “NMR”are given in Fig. C5.3.

Program “NWCALC” and Associated Programs: Registers

ROO-R15

R16, R17

R18
R19 Fy

44 XEQ 81
45 “B/RL"
46 AYIEH
47 RCL 84
48 ST 24
49 RCL 85
5@ STO 25
o1 RCL 86
32 ST0 26
53 RCL &7
a4 STC 27
33 FC? 04
36 AEG @2
37 XEG 83
58 XEG @7
39 ¥EQ 8!
&8 “CRG"
ol AYIER
62 RCL 82
63 STC 24
64 RCL 89
65 ST0 25
6t RCL 18
&7 ST0 26
&8 RCL 11
69 ST0 27
78 FC? 84
71 XE@ @2
72 XEQ B4
73 XEG 87
74 XEG 81
73 "DRG/RL®
76 AYIEM
77 RCL 12
78 STD 24
79 RCL 13
88 STQ 25
81 RCL 14
82 570 26
83 RCL 15
84 STO 27

85 FC? 84
86 XED 62
87 XE@ 83
43 ¥EQ 84
89 Xed &7
98 XEQ 81
91 XEQ es
92 CF 82
93 CF a4
34 TONE 7
95 RN

9peiBL
97 FS7
98 GT0
99 RCL
iag ST~/
1et 51/
18z S1/
1683 51/
184 RCL
185 ST+
ide ST+
187 ¥t2
188 57*

147 st/
118 RCL
119 57/
128 R7N

121eLBL
122 RCL

Figure C53. Continued.
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a2

85

28
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26
27

a6
28
24
2t
23
22
26
23
&

83
43

ABCD parameter cubic polynomial coefficients

Used by T>P3

Index for placing network functions

LBLTNNR
ERL

123 577 24
124 577 23
125 577 26
126 517 27
127 RN

128¢LBL 84
129 RCL 44
138 5T# 24
131 ST* 25
132 ST+ 26
133 ST+ 27
134 RTH

135¢L8L 81
136 24.827
137 PRREGX
138 ADY
13% R

148¢LBL &7
141 RCL 24
142 ST+ 28
143 RCL 25
144 57+ 28
143 RCL 26
146 ST+ 38
147 RCL 27
143 ST+ 31
149 RTH

158¢LBL B3
151 ~T0TAL"
132 AYIEK
153 28.831
154 PRREGY
135 AbY
136 ERD

384 BYTES
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R20-R23

R24-R27 These five groups of four registers each are used for various
ggg:%g; storage requirements, as can be seen from the examples

R36-R39
R40-R43 Normalized polynomial
R44, R45 RsR,
R46 M, the degree to which the L, polynomial is normalized
R47-R49 F,.., Fax, points per decade (converted to angular freq. and

multiplier during execution)

R50, R51 Used (for loss and phase and immittances)
R52-R55 dy, d,, d,, d, (denominator coefficients)
R56, R57 Used

C-6 PROGRAM “ABCD”: PROGRAMMABLE TWO-PORT NETWORK

CALCULATOR

This program does for ABCD matrices what a programmable pocket calculator
does for numbers. By reading this program into program memory, the HP 41C
calculator is converted into a network calculator that not only gives answers
manually by keyboard operations, but can also be programmed to analyze

networks. In response to a single command, it multiplies matrices (in either
order), adds them, inverts matrices, and changes their sign, completing the
basic four functions. In addition, it finds the resulting matrix when either the

input or the output leads are permuted; it also forms ABCD matrices of either
shunt or series immittances.
Program “ABCD” also provides for storing and recalling matrices, as well as

exchanging the register locations of pairs of matrices. As a matter of mnemonic
convenience, we designate registers ROO—RO08 as register set RS00 and call this
the working register set, or register set X. The register set beginning with R10
is designated RS10. That beginning with R20 is RS20, and similarly for RS30

and RS40. Intermediate results of calculations can be stored in any of these

register sets with certain limitations to be described. Other register sets can be
similarly defined up to the memory capacity of the calculator. Beyond this

capacity, magnetic cards are used to store matrices. The store function copies

the matrix in the working register into a register set designated by the user: to

store the matrix in RS30, for example, the command is “30, XEQ ST”.

Similarly, to recall the matrix in RS30 into the working register, the command
is “30, XEQ RC”. Stack rules are not implemented in “ABCD”, however, so

the recall function should be used with care; the matrix in the working register
is lost when the recall function is executed.
An exchange command, “X-" (as used in previous programs of this appen-

dix) exchanges the register locations of the matrix in the working register with

one in a location designated by the user. To exchange the matrix in the X

register with that in RS30, for example, the command is “30, XEQ X-". This
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operation is reversible. Unlike the ST and RC commands, no information is
lost.

By analogy with the terminology used by the host calculator (the HP 41C),

the working register set will be designated X, and RS10 will be designated Y.
Two-matrix functions such as multiply and add use register sets X and Y for

the input data. For the multiply function the matrix in X premultiplies that in
Y. To postmultiply the matrix in X by that in Y, exchange the matrices in X
and Y first. The command “10, XEQ X-" will do this, but this command is

used frequently enough to warrant its own command name, “X-Y”.
Several of the operations (multiply, the permuting operations, and the

matrix inverse operation) use RS20 registers as scratch-pad memory. This
register set should not be used to store matrices or should be used with care.
This leaves RS10 (YY), RS30, and RS40 for internal matrix storage. Where more

memory is required, the user can designate other register sets up to the
capacity of the machine. The command “70 XEQ ST”, for example, will place
the matrix in X in registers R70-R78 (if they exist).

Beyond this, magnetic cards may be used for matrix storage. Command
“RD” reads a matrix from a card into register set X, while “W” writes the

matrix in X onto a card.
Program “ABCD”is compatible with program “CNV” previously described

and with program “SP”, a spanning network program to be described later.

Program “ABCD” alone suffices for many network computations, as we shall

see in the examples. Combined with “CNV” and “SP”, essentially the complete

range of two-port calculations can be done. The HP 41C becomes a powerful
network calculator using these programs, one that itself is programmable.
To summarize the foregoing, the functions performed by “ABCD” sub-

routines are the following;:

“ML” Premultiplies matrix in register set Y by that in X and leaves
result in X.

“PI” Permutes input leads of network whose ABCD matrix is in
register set X. Resultis left in X.

“PO” Permutes output leads of network whose ABCD matrix is in X
and leaves result in X.

“DT” Finds determinant of matrix in X. Real and imaginary parts are
stored in R23 and R24. This is used as a subroutine for several

of the other subroutines.

“Y” After moving the matrix in X to Y (to preserve it for future
calculations), this subroutine forms the matrix of a shunt

admittance in X. The admittance consists of the series combina-

tion of a resistance and a capacitance, to be keyed in from the

keyboard in response to prompts. Where the shunt admittance is
simply a conductance,a large value (e.g., 10'?) must be keyed in
for the capacitance.

“Z This subroutine is the same as “Y” except that it is for a series
impedance, consisting of the parallel combination of a resistance
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and a capacitance. Where the series impedance consists of a pure
capacitance, a large value must be keyed in for the resistance.

“AD” Adds matrices in X and Y and leaves result in X. The matrix

originally in Y 1s preserved in Y.

“INV” Finds the inverse of the ABCD matrix in X and leaves result in
X.

“CHS” Changes the sign of the matrix in X.

“ST” Stores (or copies) the matrix in X into the register set previously
designated by the number preceding the command.

“RC” Copies the matrix in the previously designated register set into

X.
“X-Y” Exchanges the matrices in X and Y.
“X-” Exchanges the matrices in X and the previously designated

register set.

“RD” Reads matrix from a magnetic card into X and prints the matrix.
“W” Prompts user to write a data card of the ABCD matrix in X and

prints the values.

Most of the subroutines of “ABCD” can be assigned to user keys, as shown at

the end of the program listing. This is convenient for manual use of the
calculator and also for programming.

Unlike the other subroutines, “Y” and “Z” interrupt execution and prompt
the user for values of the immittances. An alternate mode of operation is
obtained by setting flag 02, which directs the calculator to find the values of C
and R in registers as directed by the register value stored in register 50. This is
illustrated in the next section.

Examples of the use of “ABCD” are given in Chapters 8 and 9; all these use

the programmable feature to be discussed later. One simple example here
serves to illustrate use of “ABCD”in its keyboard entry mode.

The bridged-T RC network of the examples in Fig. C6.1 is analyzed by using
the program. We take the T network as a ladder and the bridging capacitor as

a spanning network. The frequency at which the analysis is to be made is

stored in R00. Next, execute “Z” to form the ABCD matrix of the series arm

nearest the output. The program prompts for C (key in 0) and R (key in 0.5).

Then execute “Y”; the program prompts for C and R (key in 20 and 0). Then

execute “ML” to multiply the two ABCD matrices. Note that the shunt

admittance is in register set X and the series impedance is in Y, so that the

matrices are in correct order for “ML”. Continue by executing “Z”

(C=0, R=0.2), and “ML”. To add the effect of the spanning capacitor,

execute “PO” to permute the output leads, as discussed in Section 9.1.

Then execute “Y” for the spanning network (C =0.5, R=0) and “ML”.

Finally, execute “PO” to return the network to the original configuration. The

ABCD matrix of the network is in register set X, where it can be printed or

recorded on a card. The individual steps and the result are shown in Fig. C6.1.

Alternatively, it can be stored in an available register set by executing “40,



1.8888 ST0 @4

XEQ "2

iF=1.0088
{7

8.8808 RUH

R?

. 68A RUN

REG -Y-
Y:

iF=1,08808
£?

28,8888  RUN
R?

6.80886  RUM
XEG “HL"

#ER =Z2¢

dF1.08868

£z

8.8868  RUN
R?

.caa RUN

REG “HL"

ZE@ =PO-

ZEQ -y-
¥

iF=1.8888
£?

. o888 RUN

R?

g.8@888  RUN
KEG "ML

AEQ =PO-
HE@ “W*

Raa= 1.poe8
Réi= 12.4286
RBz2= -1.8322-85
Rai= £.8342

Ré4= -19,2%88

RBS= 68,3418

Rée= 19,2988

R87= 29.5714

R88= 6,606

Figure C6.1.
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AEQ “BR-T-
INM:

2. daag
f.5008

R53= 20,0008
R34= @.0088
RO3= &.00de
RO6= B8, 2006
R37= 8.50868
R38= @, 0668
0K?

R31=
R32=

RUH
PR? SFad

RUHN
iF?

1.6888  RUH

Ref= 1.8688
Réi= 12.4286
Ré2= -1.8322-83
Ré3= 6£.8342
RB4= -19,2908
Ré3= 6B.5415
RBe= 19.2%38
Ra7= 29.5714
R88= 0.0608

iF?
2.0088  RUN

RE6=
Re1=
R2= -

. Baae
9873
7.8484

R@3= 1.3182
RB4= -85, 7922
RB3= 15,8497
RBt= -41.8748
R@7= 6. 8??
RB8= -68.6197

h.
.‘

l
l"

-.
l

l‘.
..fl

END

Program “ABCD”:

LELTBR-T

gi+LBL “BE-T"
a2 SF a2

B3+LBL 86
84 "INN:"
@5 AYIEMW
85 PSE
@7 CLD
83 51.838
#3 RITAX
18 PRREGX
11 COF 22
12 =oK?-
13 PROKPT
14 F57 22
13 G670 a8

16 "PR? SFa4-
17 PROMPT

1GeLBL 82
19 51
28 ST0 58
21 ~dF?"
22 PROMPT
23 570 o8
24 ¥EQ 81
25 GTO 82

26¢LBL 81
27 FL7 84
28 CF 21
29 ¥E@ -2~
38 XEG "Y"
31 XE@ “ML"
32 XE@ =Z*
33 XE@ "ML"
34 XEG “PO"
35 ¥E@ -y*
3o XEG "ML"
37 XE@ -PO"
38 &F 21
39 XEG "W°
48 RTH
41 END

CAT 1

112 BYTES

examples, manual and programmed.

629



630 Two-Ports, Transistors, and ABCD Matrices

XEQ ST” to permit building up a more complex RC network or one contain-
ing transistors.
The following example shows how the previous operations can be pro-

grammed to run automatically. The manual operations done previously are
contained in steps 29-37 of the program listing in column 3 (Fig. C6.1). The
rest of the steps provide convenience features: listing of the immittances,

@1+LBL "ABCD" 47 RCL 88 +LBL "PO"ses T
83 ZREG 21 49 RCL 17 91 RCL @8
84 CLZ 98 XEQ 00 92 RCL &7
85 ZREG 23 a1 28 93 P-R
86 CLE 32 XEQ “X-* 9 1
87 RCL @8 33 RTN 9% -
88 ST0 24 96 ST0 21
89 21.1 J4¢LBL 81 97 XOY
18 570 19 33 RIN 98 ST0 22
11 RCL 81 36 + 99 RCL 62
12 RCL @82 a7 XROY 18@ RCL 81
13 RCL 12 38 Rt 181 P-R
14 RCL 11 39 * 162 ST0 81
15 XEQ 81 68 P-R 183 XY
16 RCL @3 61 ST+ IND 19 184 ST0 @2
17 RCL 84 62 XOY 185 RCL 21
18 RCL 16 63 1SG 19 186 RCL 23
19 RCL 15 64 ST+ IND 19 187 -
28 XEQ 68 63 1 188 ST+ 81
g; ggt gé 66 5T- 19 189 RCL 22

67 RTN
23 RCL 14 ii? SCL “
24 RCL 13 68+LBL 08 112 ST+ @2
25 XEQ@ 81 69 XEQ 81 113 RCL 82
26 RCL @3 78 RCL IND 19 114 RCL 81
27 RCL 04 71 156 19 115 R-P
28 RCL 18 72 RCL IND 19 116 STO 81
29 RCL 17 73 XOY 117 XOY
36 XEQ 00 74 R-P 118 STO 82
31 RCL 85 IR 119 RCL 22
32 RCL 86 76 5T- 19 128 RCL 21
33 RCL 12 77 RDN 121 R-P
gg ;gg éi 78 STO IND 19

79 XOY +LBL “R"
36 RCL 87 8@ 156 19 igg ggt 85
37 RCL @8 81 STO IND 19 124 ST/ 83
38 RCL 16 82 ISG 19 125 ST/ 85
39 RCL 15 83 RTN 126 ST/ @7
48 XEQ 0@ 127 XOY
41 RCL 65 84¢LBL “PI" 128 ST- 82
42 RCL 86 85 XEQ “INY" 129 ST- 84
43 RCL 14 86 XE@ “PO" 138 ST- 86
:g §gt éf 87 XEQ "INV- 131 ST- @8

88 RTN
46 RCL 87 132 K

Figure C6.2. Program “ABCD”: listing.



133+LBL ~DT"
134 RCL 82
135 RCL @8
136 +
137 RCL 81
138 RCL @7
139 *
148 P-R
141 570 23
142 XOY
143 ST0 24
144 RCL 04
145 RCL 86
146 +
147 RCL 83
148 RCL 85
149 *
138 P-R
151 §T- 23
132 XOY
133 5T- 24
154 RTH

153¢LBL "Y"
136 =¥:*
157 AYIEK
138 SF 85
139 XE@ B4
168 ST0 83
161 STO 84
162 RTH

163eLBL "2°
164 =2:"
165 AYIEMW
166 CF 83
167 XEQ 84
168 ST0 85
169 ST0 66
178 RTN

{71¢LBL 82
172 YIEW 58

173 RCL IND 58
174 *
175 570 @85

176 156 58
177 DEG

178 RCL IND 58
179 1SG 58
188 DEG
181 RTN

132¢LBL 83
183 =C7-
184 PRONPT
185 *
186 STD 85
187 =R?"
188 PROMPT
189 RTH

198+LBL 84
191 XE@ =X-Y*
192 RCL 14
193 =4F="
194 ARCL X
195 AYIEM
196 STO 64
197 F57 @2
198 XEQ 62
199 FC? 82
288 XEQ 63
281 STC @3
282 *
283 1
284 570 81
285 ST0 o7
286 FS? 85
287 CHS
288 FS? 85
289 XY
218 R-P
211 173
212 ST+ 83
213 5T 85
214 XOY
213 CHS
216 570 84
217 570 86
218 @
219 570 @2

Figure C6.2. Continued.

228 STO @8
221 RTN

222¢LBL "AD"
223 8
224 510 19
225 XEQ 83
226 RTN

227+LBL 85
228 RCL IND 19

229 DSE 19
238 RCL IND 19

231 P-R
232 11
233 ST+ 19
234 RIN

235 RCL IND 19
236 DSE 19

237 RCL IND 19
238 P-R
239 XOY
248 RDN
241 +
242 20OY
243 Rt
244 +
245 R-P
246 XY
247 9
248 5T- 19
249 RIN

258 STO IND 19
231 XOY
252 DSE 19

233 ST0 IND 19
254 DSE 19
235 GT0 83
236 RTN

257+LBL "INV"
258 Xe@ "IT"
259 RCL 81
268 X@7
261 ST0 81
262 RCL 82

631



263 K{> 88
264 570 82
263 1
266 F57C 1@
267 CHS
268 ST+ 63
269 ST+ @5
278 RCL 24
271 RCL 23
272 R-F
273 ¥EO CRT
274 RTH

275¢LBL "CHS"
276 -1
277 ST+ @l
278 ST+ B3
279 ST+ @5
288 ST+ @7
281 ETH

282¢LBL “ST"
283 570 19
234 .98z
235 570 @9
256 G2 3

287¢LBL "RC"

258 1,881

239 ¥

297 ,@ag

251+

92 570 89

2

g !

2<

25
a5
< l_

l"
l
o

g

3 i i%

29548 2

296 RECL IND 83

297 STO INE 19
292 155 15

299 DES

386 156 A%

381 GTO a

382 RTH

632

Je3+LBL “X-Y"
3g4 18
Jas Xeg -
Jac RTH

Ja7eLBL "K--
Jas 510 19
Jas .eas
318 570 &3

31 3619
316 DEG
37 156 89
318 GTD ¢
319 RTH

J2a+LBL "U"
321 XE@ “¥-y-
322 ZREG @2
323 CLE
324 @
325 §T0 a8
326 1
327 570 &l
328 570 &7
329 RCL 18
33@ 570 8e
331 RTK

32eLEL "R
733 609
334 RITAY
335 PRREGY
736 BTN

JITLEL “H"
338 . 9ud
339 PRREGK
348 CLI
341 WOTAX
342 END

Figure C6.2. Continued.

LEL*ABCD
LEL™ML
LBLTPI
LEL"PO
LBL'R
LELTIT
LEL'Y
LBL"Z
LBL"AD
LELTINY
LBLTCHS
LBLTST
LBL'RC
LBLTY-Y
LEL"3-
LBL™Y
LBLTRD
LBL™H
END 448 BYTES

PRKEYS

USER KEYS:
11 EZRES

-11 SIZE
14 =po-

-14 =pI"
15 =y-

-15 ="
21 ¥-y-

-21 PREEYS
-22 FMB
-23 “[B"
24 “RLC

-24 "[HY-

25 A
-2% “CHS"

-42 F5E

-51 F§2C
-62 PRREGE

-63 PRBUF
-72 DEL
-73 WDTAY
-74 RDTRY
-83 R-T
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choice of printing during the run, prompting for the frequency at which the
run is to be made, and calling for a card to write the results. The computation
steps are just those shown in the keyboard entry example. The program is
executed in the middle column of the example. Program “ABCD” is listed in
Fig. C6.2.

C-7 USE OF “ABCD” AS A PROGRAMMABLE NETWORK CALCULATOR

This section describes how program “ABCD”is be used to analyze circuits by

programs written by the user. We begin by describing each step of the program

“CSC” for analyzing the cascode stage shown in the example (see Fig. C7.1) at

the top of the first column. After the program label, steps 2—-4 prompt the user
to read in the ABCD matrix of the second-stage transistor from a magnetic
card (we used the transistor example from program “E>A”). At step 05 the

input leads are permuted, changing transistor Q, to a common base stage. In

step 06 the ABCD parameters of this stage are transferred to register set Y

(RS10). The user is then prompted to read the data card for Q,, the first

transistor. This places the ABCD matrix of the first stage in the working
register. At step 10, the matrix of Q, premultiplies the matrix of Q,, complet-

ing the computation. The remaining steps label the output, print it, and
prompt for writing a data card; if the result is not to be saved, press R/S. The

results of the calculation are shown in the second column.
Programming is simplified by use of the user-assigned keys for the sub-

routines of “ABCD”. Step 05, “PI”, for example, is programmed by pressing
(shift) 15 (the button labeled €*) in user mode.

The second example, the Darlington pair, illustrates the use of the “Y”

subroutine. A 0.75 k{2 resistor is connected from base to emitter of the output
transistor to provide bias for the first transistor. At step 05, subroutine “Y” is
called for. As seen in the calculation (in the third column), execution stops for
the user to supply the value of the resistor (the parallel capacitance is zero).
This done, execution proceeds with the first transistor called for. Finally, the

resulting 4BCD matrix is printed.

Where the calculation is to be performed at several frequencies,it is tedious

to key in the values for “Y” each time. As noted in Appendix C-6, the “Y”

values can be stored previously in registers (e.g., R51 and R52) and 51 stored
in R50. With flag 02 set, the calculation will call for the stored values rather

than prompting the user to key them in.

In the third example, a program for calculating the ABCD parameters of the

simple current mirror and the Wilson current source is given (see Fig. C7.2).

The program follows the development given in Section 9.1. In this program the

diode consists of a transistor with collector and base short-circuited. The short

circuit is treated as a y spanning network (we used 1 F of capacitance and zero

resistance) and is included in program memory at steps 12—-17. The transistor

with V- =0.75 V and I-=2.0 mA is read in from a card; flag 02, set by the
program, causes the “Y” subroutine to apply the short circuit to the diode
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GieLRL =050
82 "X5TR 2«
83 AVIEH
84 ¥EQ "RD"
85 #EG “PI"

86 ZEQ =¥-Y-
@7 "XSTR 1=
82 AYIEH
83 XEQ "RD"
16 KEQ -ML"
{1 =C5C:~

12 AVIENW
12 XEQ ~Y-
14 RTN
15 END

gieLBL “DRL"
62 =g2:-
62 AYIEN
B4 ¥EQ -RD"
85 XEG =y~
86 XEQ -HL-
87 XEG PO

03 XEG =¥-Y-
89 =a1:-

18 AYIEH
{1 XEG -RP"
{2 XE@ -po-
13 XEQ =ML"
14 RE@ “pO-

15 "DRL. PR:*
16 AYIEH
17 XEQ “W-
18 END

Figure C7.1.

XSTR

kaa=
Ré1=
Ré2=
R@3=
RB4=
Ré5=
Ré5=
R@7=
R8=

X5TR

rég=
Ré1=
R@z=
R63=
RB4=
R83=
R66=
Re7=
R@g8=

CSC:

Rég=
Ré1=
R@2=
R@3=
Ria4=
ka3=
Réb=
R@7=
RB8=

Two-Ports, Transistors, and ABCD Matrices

XEG “CSC¢
2

2.5132
8.08154
-76.1781
f.60¢6:

-145,3328
8.584¢

-79.7483
8.8811

-94.9995

1

2.3133
8.8154
-76.1781
8.8861
-145.3326
8.584¢

-79.7483
8.8811

-94.9995

wa
d

»

M

]
.8 C

a
l
o
l

o
r

1
@

-42,3333
8.08861

-146.833%
8.8362
7.3769
8.8847

-88.8795

g2:

kae=
Ré1=
Raz=
Rai=
RB4=
R@s=
R@6=
R@7=
R@g=

Y:

{F=8

£?

R?

8i:

Raa=
Rai=
Ro2=
R@=
RB4=
R83=
R@6=
Ré7=
R@g=

DEL.

ree=
Rai=
RG2=
Ré3=
RB4=
Ré5=
R@6=
R@7=
RBS=

ZEG “DRL"

8.6283
8.0823
-184.9161
8.8l

=171, 7682
8.8459%
-89.1388
6.8199
-118.2857

6282

8.9888  RUN

7086 RUN

f.6283
. 8858
-98.9842
8.8389
-175.271¢
8.8468

-87.6679
7.8234
-113.0431

PE:

8.62581
8, 8683
-181.3538
#.8138

-178.34539
8.084c8

-87.4464
A.ee1d
-69.8336

Programs “CSC” and “DRL”for use with “ABCD”.

transistor automatically; the current mirror transistor ABCD matrix postmulti-
plies that of the diode, giving the ABCD matrix of the current mirror.

As noted in the text, the simple current mirror forms a part of the Wilson
current source. The program for the Wilson source incorporates the simple

current mirror program as a subroutine, and finds the characteristics by
successive application of the permute operations as described in the text. The

calculations for both current sources are shown at 31.6 MHz.

As a final example, we find the ABCD parameters of the Design B 300 MHz

amplifier previously analyzed by Program “DEV” and “AN3” of Appendix B,
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YO <{E"

MIERROR

BIGDE

£?=B.E?35

o1, ARAR

CH:“

kag= £,198%

RBi= B.88Z7

Ra2= -115,5228

RE3= @,6184

R@d= -17£.8837

Fas= #1871

Re6= -113,.5283

Re7= 1.8239

R@8= -178.9336

XEQ “HLSN"

WLSH C5

DIGDE
Y:

£F=8, 1995

51.000808

RSTR

Ch:

QUT #5TR

WLSH:

kag= 8.1985

Réi= @.8R32

REz2= -11i.861%

R@3= 8.8359

Re4= -177.8573
Re3= B.8624
Rée= -93,9395
Ré7= 1.86813
Red= -179.6815

Figure C7.2. Programs “CM” and “WLSN”: example and listing.

BIeLEL -CH
B2 5F 1
A3 “NIRROR"
B4 AYIEN
@5 CF 12
g6 ADY
87 KEQ “CK*
85 KEG “W-
83 RTH

faeLBL “Ck"

18 570 39
19 “DIODE"
28 AVIEH
2l .82
22 RDTAX
23 XE@ -p0-
24 XEQ Y-
25 XE@ “ML"
26 XE@ “PO"

&7 XER =X-y*
28 “XSTR" LBL™CH
29 RVIEM LBL'CK
38 @88 LBLTHLSK
31 RITAX END

32 XE@ "X-y-

635

AEG “ML®
"::H .

AVIEK
BTN

t
e
d

o
l

G
l

e
l

G
l

0
o
L
e

J7+LBL "WLSH"
38 SF 12

39 “HLSH C§-
48 RYIEH
41 CF 12
42 AMY
43 ¥E@ =CK"
44 ¥E@ "PI"
45 ZE@ "PO"

46 XEG =X-Y*
47 =0UT XSTR"

45 AYIEK
43 .088
a8 RDTAZ
3l XE@ "PI*

32 XE@ "X-y-
33 ¥EG "ML"
94 RE@ “PI"
93 “HLSN:®
36 AYIEW
a7 XEG “W"
a8 END

CaT ¢

195 BYTES

and shown in Fig. 5.19. In that program, the transistors were represented by an

approximate equivalent circuit; parasitic elements were combined with the

transistor equivalent circuit immittances, and delays were approximated. Here

(see Figs. C7.3 and C7.4), we use the actual transistor two-port parameters,

which include the delays, and we represent interstage parasitics including the

biasing diodes and shunt capacitance explicitly; thus reducing the possibility of
errors of estimation and of omitting potentially important circuit immittances.

Also, the program is simpler for the user.

This program uses the approach suggested in Section 9.1, using output

permutative feedback to incorporate the third stage and overall feedback
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¥EQ -

DES-E

THH:
RD

RSi=
R52=
p:_

R34=
R5S=
R56=
R37=

R58=
R39=
R&B=
R&i=
RG2=
R63=
Réd=
R65=
Réé=

Ti:

Rog=
RB1=
R@2=
Ré3=
Ra4=
RB3=
k@e=
RG7=
Reg=

Ré@=
Ré1=
Raz=
R@i=
R@4=
RE5=
Ré5=
Ré7=
RBE=

2,500
g, eane
JAaga+i2
. 7288
. Beae
.Blee

B. 20808
8. saad
1,888,866, a8,
8. 4568
1,084,008, aaa.
3. 4508
g.8188
f. 0068
1,088,808, a8,
25. Jaea

e
R

O
O

-

8.1985
A.0843
-183.1899
R.8279

-178.6871
8.8613
-88.754¢
8.8163

-131.1444

#1983
8.8824

-119.4131
R, 8054

-177.59321
8.8613

-98.8889
8.8136
-143.2454

Two-Ports, Transistors, and ABCD Matrices

T3:

Re@= 2.1983
Rei= @.88is
Raz= -132.8915
Re3= 8.8e3!
Réd= -176.949%
RES= 8.8436
RBe= -92.6191
Re7= 8.0128
Rag= -147.9851

DESIGR B
fIBCD PARAK:

iF:

Ree= 98,1983

ABCT:

RE1= 8.881%
Réz= -158.2751
Re3= 2.8699-85
Re4= -121.9517
RB3= @.8483
Res= -171.6121
Re7=  3.8618-85
Reg= -77.8329

AEQ "REU"
GUINTIC COEF
FROM LOSS

dB? CF 81
GHZ?. SF 82

DATA ON CARDS?
SF 83

READ DATA

dF1 = 8,1985
HAG = B.0677
PH = -165.9275

&F3 = 1,985
MAG = A.8168
PH = -44,8383

aé = -8.887¢
al = -2,8095
a2 = -8.86849
ad = -2.88lc
a4 = -8.8083
as = -2.4997E-5

SCALE POLY

POLY A
5.0808 RUN

RB= -7.646E-3
Ri= -9,473E-3
RZ= -4,965E-3
R3= -1.514E-3
R4= -2,899E-4
R3= -2.988E-5

0K?
RUN

POLY E
ba?

1 RUK
FBB-/FBR?

RUN
bH:

H?
3 RUN

hi?
.94 RUN

FaB/F@A=1.645E8

Rif= 1.006E8
Ri1= 2.838E8
Ri2= 1.736ER
ki3= 9.486E-1
R14= 2.778E-1
R15= 3.948E-2

Figure C7.3. Program “D-B”: Design B analysis using “ABCD”.

paths. In addition,it uses subroutines “Y” and “Z” to incorporate biasing and
parasitic immittances and load capacitance. The immittances are stored (as

Foster-form C and R pairs) in registers R51-R66, and flag 02 is set to put “Y”

and “Z” in automatic mode. With one exception, the immittances are stored in

order of use since “Y” and “Z” automatically advance the address of the

immittance to be added. Thus, after the 0.75 k€2 bias resistor in registers R51
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@1eLBL "D-B" 37 .068
8z SF @2 38 RDTAX
83 ?F 12 ] 39 XEQ "ML-
84 “DES-B 46 XEQ 81
85 AYIEW 41 XEQ =X-Y-
86 ADY 42 =T1:"
87 CF 12 43 AYIEW
83 51.866 44 808
89 “RD" 45 RDTAX
18 AVIEN 46 XEQ "ML-
11 RDTAX 47 61
12 PRREGX 48 STO 5@
13 XE@ @2 49 XEQ Y-
14 XEQ@ 82 38 XEQ "ML"
15 XE@ @82 31 XE@ “PO"
16 RTH 32 XE@ "Y"

33 XE@ “ML"
17¢LBL 82 34 XEQ Y-
18 =13:* 35 XE@ “ML"
19 AVIEW 36 ¥E@ “PO"
28 .088 37 XEQ@ “W"
21 RDTAX 38 RTN
22 XE@ 81
23 X¥EQ -PO" 39¢LBL 81
24 XEQ "Y" 68 53
25 XEQ “ML" 61 570 5@
26 XEQ "PO" 62 XE@ "Y"
27 31 63 XEQ "ML"
28 STO 58 64 XEQ "2Z°
29 =CL- 65 KEQ “ML"
38 AVIEM 66 XEQ "Y"
31 XEQ@ -Y" 67 XEQ “ML"

32 ¥EQ "X-Y~ 68 END
33 XEQ “ML" CAT 1

34 XEQ =X-Y* LBL'D-B
35 =T2:" END 284 BYTES
36 AYIEW

Figure C74. Program “D-B”: listing.

/2and RS52 at the third stage input is accounted for by executing “Y”, the series
resistance of the biasing diode in registers R53 and R54 is accounted for by

executing “Z”. The exception is that the biasing network, identical for the

second and third stages,is used twice, at label Ol in the program.

The transistor ABCD parameters at the proper biases are contained on cards

and are read into memory as called for by prompts. The immittances are also

placed on a card and read in at the beginning of program execution. (The

immittance card is read only once, whereas the transistor cards are read for as

many frequencies as needed.)

At the conclusion of execution at each frequency, the ABCD parameters of

the amplifier are written onto a card for later evaluation of the network
characteristics. The program output for three frequencies is shown in the

example.
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To compare the results obtained here with those developed in Section 5.6,
the voltage loss was calculated by using eq. (8.2-3) with source and load
resistances of 0.15 k2. (The program, not shown,is straightforward.) This was
done at the three frequencies, and the results were analyzed by using program
“RQU” in Appendix A, with the results shown in Fig. C7.3. The polynomial
coefficients were then scaled to the same cubic coefficient as in eq. (5.6-2), the
equation for which the synthesis of the earlier section was made. Although the
results are close, the quartic coefficient of the more accurate analysis is
somewhat larger (although still stable).

C-8 PROGRAM “SP”: SPANNING NETWORK ANALYSIS (USE WITH “CNV”

AND “ABCD”)

This program calculates the effect of a spanning network on the ABCD

parameters of a network. The network parameters are in X; the k parameters
(h, z, y, or g) are in register set RS30 (registers R30-R38). The program
accounts for feedback, feedforward, and input and output loading imposed by
the spanning network. It is intended for evaluating matrix equations developed
from equivalent ladder networks, as described in Section 8.4. In particular,it

performs the operations of the equation using the information presented in
Table 8.2 to place the k parameters in the right position in the 8, F, H, and J
matrices and to give them the sign indicated in Table 8.2.
To use the program, the k parameters of the spanning network must be

determined and stored in RS30. (This is done most conveniently by analyzing
the ABCD parameters of the spanning network using “ABCD” and converting
them to k parameters using “CNV”.) Then we are ready to implement the
matrix equation of the equivalent ladder network.

Four operations are defined in the subroutines of “SP”: “BS” adds a 8

matrix (see Table 8.2) to the matrix in the working register set X; “FS” adds an
F matrix to X; “HS” premultiplies the matrix in X by the input loading matrix
H; and finally, “JS” postmultiplies the matrix in X by the output loading

matrix J. As in the case of many commands (e.g., “ST” and “RC” of

“ABCD”), the call for subroutines of “SP” must be preceded by an identifying
number. The number 1 indicates that the spanning network is described by A4
feedback or by its 4 parameters; the number 2 indicates B feedback, or z
parameters; the number 3 indicates C feedback or y parameters; and the

number 4 indicates D feedback, or g parameters. The command “1, XEQ BS”
says (1) that an 4 matrix is stored in register set RS30 and (2) that we wish to

form a B matrix from it and add it to the matrix in X. Similarly, for the
command “1, XEQ FS”, an F matrix is formed from the 4 matrix and added to

X. If we wish to subtract the B or F matrix from the matrix in X, we precede

the numeral by a minus sign, thus: “—1, XEQ BS” or “—1, XEQ FS”.

(Commands “HS” and “JS” are never preceded by minus signs.)



Program “SP”: Spanning Network Analysis

@ieLBL "BF"
a2 #E@ -y-

83 XE@ "A-Z-
84 3¢
85 ¥E@ =57"
86 *T1:-
87 AYIEM
83 .68g
@9 RDTAX
18 2
11 XE@ =JS*
12 2
13 ¥EG “HS"

14 ZEQ "IHY*
152
16 KEG “FS"

17 ¥EG ~INY"
18 2
19 XEG "BS"
28 RTH

gi+LBL “APR"
a2 SF @z
83t E12
a4 STO 51

A5¢LBL AR
B "IMM:"
87 AYIEW
B8 51.854
89 PRREGX
18 =0K?"
11 CF 22
12 PROMPT
13 F5? 22
14 GTO @8

Figure C8.1.

15¢LBL 81
16 =4F?"
17 PROMPT
13 §T0 @8
19 1 €12
28 ST0 51
21 XE@ “BF*"
22 48
23 XEQ "5T"
24 XEQ@ “FB"
25 38
26 XER "5T"
27 T2
28 AYIEW
29 TOKE 4
ja .88
31 RDTRE
32 1
33 XEG "JS*

34 ¥E@ "INy~
35 -1
36 XE@ "FS”

37 XEQ “INY-
38 -1
39 XE@ -BS"

46 ¥EQ "X-Y*
41 48
42 XEO "RC"
43 XEG "ML"

44 XEQ “INY"
45 1
46 XEQ@ “F5"

47 ¥EQ "INY-
48 1
43 ¥E@ "BS"
38 BEEP
a1 "APR:*
92 AYIEW
33 XE@ “W"
34 RTN

J9¢LBL "FB"
36 51
37 §T0 58
a8 8
39 STO 51
68 XEQ "Z*
61 XEQ =Y"
62 XEQ "ML-

63 XER “A-H"
64 RTN

63¢LEL "BF"
66 51
67 STO 58
68 XEQ -Y-
69 XEG =Y-
78 XEQ -HL-

71 XEG =A-2"
72 38
73 ¥EG =ST-
74 °T1:"-

75 AYIEH
76 TONE 4
77 .888
78 RITAX
79 2
8n XE@ -J5-
312
82 ¥EQ -HS-

83 XEQ "INY-
84 2
85 XE@ "FS-

86 XEQ "INV-
87 2
88 XEQ -BS"
89 EHD

CAT 1
LBLTAPR
LBLTFB
LBLTBF
END 266 BYTES

Program “APR”: example of program for “SP”.

639

This procedure allows us to program equations directly as we read them. If,

for example, we wish to program eq. (8.4-17):

—171-1

TIBZIBB+[FB+(HBT1JB) ]

we would have the program fragment shown in the example in the first column

of Fig. C8.1. The first three steps label the program, form an ABCD matrix of

an impedance in X, and convert this matrix to z parameters. Steps 04 and 05
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store the z matrix in RS30. Steps 06—09 put the matrix of a transistor (e.g.) in
X. Steps 10 and 11 postmultiply the transistor ABCD matrix by

1

"B:[o i]

Steps 12 and 13 premultiply the combination by Hy (equal to Jz in this
example). The combination is then inverted in step 14. Steps 15 and 16 add the

matrix

to the matrix in X. (See Table 8.2 for the origin of the minus sign.) The
combination is then inverted, and steps 18 and 19 add the 8, matrix (the same
matrix, in this case, as F) completing the evaluation of T,.

The transmission matrix equation for the 4-feedback pair in Fig. 8.19 [eq.

(8.4-14)] illustrates the subtraction process for 8 and F matrices:

sslporv1]]
in which T,z is the matrix of the first stage with local B feedback given in the
preceding equation. Note that H, does not appear in the equation; it is

incorporated into T5. This equation is expressed in program “APR” (see Figs.

C8.1 and C8.2), starting below the “BF” program fragmentin the first column

of the example. Note that “APR” includes “BF” in somewhat extended form.
The program uses “BF” to find T, and stores it in RS40. In this section note
that “Y” 1s executed twice, once for each of the admittances of the resistive

feedback divider. Since these are Foster-form admittances, the series capaci-

tance must be made very large (to have no effect). After finding 7, the
program calls on subroutine “FB” to calculate the ABCD matrix of the

resistive feedback divider. For this calculation, the series feedback resistor

appears as a Foster-form impedance; its associated capacitance is set to zero at
steps 58 and 59. The lowerresistor of the divider is obtained by executing “Y”,

and the two matrices are multiplied at step 62. The resulting ABCD matrix is

converted to an H matrix, and the main program stores the 4 matrix in RS30,

the register set that “SP” uses for the 4 parameters of the spanning network.
With these preliminaries taken care of, the program then evaluates the equa-

tion for T,,.
Note that as step 35 (in Fig. C8.1) a — 1 appears before executing “FS”. This

signals “SP” to subtract the matrix rather than adding it, as called for by the

equation; similarly, at step 38 the —1 signals “SP” to subtract the feedback

matrix. As before, the program simply follows the equation step by step. The



¥EQ =RPR"

THH:

RS1= 1.8@88+12

R52= 8.9886

RS3= 1.8@88+12

R34= 8.1888

0K?

RUN

&F?

1985 RUN
.

4F=8. 1985

51.6888

Y:

{F=R. 1985

53.0888

Ti:
Z:

£F=8,1985

51,0488

¥

iF=@,1985%

53. 6RRG

T2:

fPE:

RAG= 8.1985

RE1= B.1B15

RB2= 2.54&8

RB3- 8.08818

RA4= 41,7335

RAS= 8.68835

RB6= 94.779%

Ra7- 8.80889

R@8= 89,6857

XE

IHN:

RSi= 1.0088+12

RS2= @.9884

RS3= 1.0888+12

Ro4= 8.1888

0K?

{F?

1.9858

Y

£F=1.9858

Y:

£F=1,9858

Ti:

{F=1.9858

Y

£F=1,9858

T2:

fAPR:

Raa= 1.9838

RB1= 8.8952

pa2= 26.4722

Re3= 8.8117

Ra4= 97,6870

RaS= 8.8335

RBG= 152.98232

Ra7= 8.8143

R8g= 148.925!

Figure C8.2. Program “APR”

@ “APR"

RUN

RUN

51,0008

33. 0088

91,0084

33.00ea8

. results.

XEQ “RCU"

EVAL CU COEF

dB? CF @1
GHZ? SF 82

dF1: 8,1983
NG: @.1815
PH: 2.5460

4F2: 1,9858
NG: 8.8962
PH: 26.4722

COEF:
aé = 8.1016

8.8227
8.a839
8.0083"

n
o
u
n
o
nal

a2

ald
XEQ

SCALE POLY

-H-

POLY A
DEG?

3 RUN

1.816E-1
Ri= 2.,273E-2
R2= 3,925E-3
R3= 2.862E-4

R@=

0K?
RUN

POLY B

ba?
{ RUH

FAB/FBA?

RUN

bM:

H?
3 RUN

bH?

FaB/FeR=7.080E8

1.800E8
1.584t8
1,937t
1.808E9

R18=
Ri1=
Ri2=
Ri3=

641



@1¢LBL "SP"
82¢LBL "BS"
83 CF @7
84 X{0?
85 SF @7
86 ABS
@7 ENTERt
88 XOY
89 2
18 7
11 FRC
12 ¥=8?
13 XEQ 13
14 RDH
15 2
16 *
17 570 @9
18 34
19 STO 39

204LBL 12
21 RCL IND 89

22 DSE 89
23 RCL IND 89

24 P-R
25 XOY

26 RCL IND 39
27 DSE 39

28 RCL IHD 39
29 P-R
38 RDN
31 FS? 87
32 CHS
33+
34 XOY
35 Rt
36 FS? 87
37 CHS
38 +
39 R-P

48 5T0 IND @9
41 XOY
42 156 89
43 DEG

44 STO IND 89
45 RTN

46¢LBL 13

47 FC2C @7
48 SF 87
49 RTH

9@eLBL “FS"
91 CF &7
32 ¥(8?
93 SF @7
94 ABS
35 2
36 ROY
37 K(=Y?
98 XEQ 13
39 *
68 STO 89
6l 5
62 -
63 ABS
64 1
65 -
66 RCL 89
67 3
68 -
69 SIGN
70 *
713
72 *
73 ST- 89
74 36
75 810 39
76 XE@ 12
77 RTN

78¢LBL "HS"
79 CF 86
86 ST0 39

81 XEQ =X-Y-
82 RCL 39
83 ENTERt
84 XOY
85 2
86 /
87 FRC
88 2
89
9%+
91 2
92+

LBLTSP
LBLTBS
LBL'FS
LBLHS
LBLJS
END
LBL*BR-T
END

Figure C8.3. Program “SP”: listing.

93 ST0 @9
94 32
95 ST0 39

96¢LBL 14
97 ZREG 82
98 CLZ
99 CLX
188 ST0 @8
101 1
182 ST0 @7
183 570 81

184 RCL IND 39
185 X(> IND 89

186 DSE @9
167 DSE 39

188 RCL IND 39
189 X(> IND @9

118 FS? 86
111 XE@ “¥X-Y-
112 XEQ “ML"
113 RTN

114¢LBL =J5*
115 SF @86
116 ST0 39

117 XEQ “X-Y*
118 RCL 39
119 2
126 7
121 FRC
122 4
123 *
124 4
125 +
126 ST0 @9
127 38
128 ST0 39
129 XEQ 14
138 END

CAT 1

228 BYTES

148 BYTES



Program “SP”: Spanning Network Analysis 643

results, at 0.0316 and 0.316 GHz are shown for this example in Fig. C8.2, using
a 95 um? transistor operated at 1.5 V, 1.0 mA for both stages. See Fig. C8.3 for
a listing of program “SP”.
To clarify these results, the polynomial coefficients of 4 were found by using

program “RCU” in Appendix A. These coefficients were scaled to a dc loss of

unity and a cubic coefficient also of unity. The first-degree coefficient, 1.584,is
small relative to Butterworth, MFD, or Chebyshev polynomials, indicating that
a capacitor should be placed in parallel with the feedback resistor. (Why? Or
why not?)
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ABCD matrix, 211ff, 233ff, 273ff, 310ff,

384

cascade connection, 228, 297

matrix manipulation, 626

parameter manipulation, 295, 591ff

parameters, definition, 214

parameters of bipolar transistor, 233ff,

270ff

sign convention, 307

Acceptor doping density, N5, 239, 24 1ff
Active load, 336ff, 436

Active low passfilter, 129
Active path, 4

Active resonator, 135, 550

Adjacency matrix, 128

A-feedback, 215, 274

A-feedback amplifier, 274

A-feedback pair, 305, 640

All pass network, 151

Amplifier 741, 275
Amplitude distribution of noise, 387

Analysis by separation, 136

Analysis by topological manipulation, 331,

335

Angelo, E. J., 30

Anticausal direction of analysis, 9

Anticausal harmonic analysis, 349

Anticausal nature of F parameters, 221

Anticausal two-port analysis, 224

Antisymmetric hybrid feedback, 288

Appropriateness of two-port descriptions,

223

Appropriate representation, 157

Approximation problem, 73

Asymptotes, 17

Asymptotic bandwidth, 94, 548

Asymptotic cutoff frequency, 48

Augmentation of input signal, 101

Avalanche multiplication, 248, 255

effect on drive requirement, 352

Miller’s equation, 257

nonlinearity, 345

B and C feedback combination, 319

Band gap voltage reference, 374

Barrier, 237

Base current shot noise, 401

Base push-out, 260

Base resistance thermal noise, 402

Belevitch, V., 222

Bessel polynomials, 78,189, 519

B-feedback, 215, 274, 307, 340

Bias dependencies, bipolar transistor,

264

645
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Binomial loss ratio, 49

Bipolar code, 198

Black, H. S., 1ff, 37, 38, 128, 161

Blakesley transformation, 297, 392

Bode, H. W., 2ff, 158

Bode diagram, 16, 67

Broadband equivalent circuit, 265

Broad-band output stage, 357

Brush, R. K., 488

Built-in voltage, 237

Bulk resistances, 269

Buried layer, 236

Burn-out protection, 369
Burn-out region, bipolar transistor, 253

Butterworth polynomials, 76, 189, 519

Calculator, 17

Calculator analysis of Design B, 187

Calculator programs, 58

Canonical equation, 4, 5

Carlin, H. J., 228, 245

Cascade graph, 128, 226

Cascode stage, 315, 633

Causal analysis: of distortion, 350

of two-ports, 223

Causality, 8,9

C-feedback, 215, 274, 292

Chain matrix, 213

Characteristic equation, 342

Characteristic polynomial, 342

Chebyshev polynomials, 80, 519

Chunking, 183

Circuit vector node, 216

Class A operation, 345

Class B: efficiency, 359

emitter resistors, 363

operation, 345

optimum biasing, 365

temperature dependence, 359

Classic feedback equation, 164, 559

Classification of two-port networks,

221

Collector junction capacitance, 233,

261

as feedback element, 269

Collector shot noise, 390ff, 401, 415

Combfilter response, 163
Common base parameters, 311ff

lateral pnp, 166

Common collector parameters, 311ff

Common emitter output stage, 345

Common mode input admittance, 435

Common mode input current, 434

Common mode input signal, 432

Index

Common mode rejection, 340, 433ff

admittance, 433

as function ofsignal intensity, 453,

459

at high frequencies, 454ff

measurements, 434

parameters, 433
ratio, 433

submatrix, 452

Composite matrix for grounded two-port,

311

Conductivity modulation, 242

Conformal mapping, 68

Convergence,iterative synthesis, 121

Copernicus, 156

Core coefficients, 276

Core parameters of bipolar transistor, 233

Corner frequency, 17

Cosine rolloff characteristic, 409

Crossover distortion in class B circuits,

360ff

Cubic polynomial roots, 484

Current generator splitting transformation,

392

Current mirror, 165, 323, 633

h. f. transmission, 325

transmission characteristics, 323

Current source, 345

active load, 426

simple, 323

Wilson, 327

Damping factor, 49

Darlington pair, 318, 341, 633

DC bias, Design B, 197

DC level shift, 165

DC restoration, 198

Decision circuit, 198ff, 577

Defect current, 188, 241

variation with collector current, 241

Defect current ratio, 233, 243

Deflation, polynomials, 487

Deflection systems, tv, 25

Delay, 179

in ABCD parameters of devices, 270

in common base stage, 315

in current mirror, 327

due to base resistance, 179

in transistors, 259ff

Density gradient, 237

Dependent node, 125

Depletion region, 238, 248. See also Barrier

Design A, 98ff

Design B, 99ff, 183
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with delay, 183ff, 564

program, 532

sensitivities, 107ff

synthesis, 103

two-port analysis, 321

D-feedback, 215, 274, 340

Differential ABCD matrix, 433

Differential amplifier, 430
Differential gain (or loss), 364

Differential input signal, 432

Differential pair, 337

basic constraint, 448

general analysis, 447

inverting, 337

noninverting, 337

Differential two-port submatrix, 452

Diffusion constant, 239

Diffusion equation, 239

Digital regenerator, 577, 585

Diode connected transistor, 392

Diode shot noise, 386

Direct feedthrough, 101

Disconnected graph, 226

Dispersion, 157, 179

in media with transit time, 179

Distortion, 4ff, 99, 354

analysis, 5, 11-13

cancellation, 354

as function of source impedance, 353

reduction, Class B, 366

transient, 354

Distributed parameters, 221

Distribution, 125

Dominant element, 118

Driver stage design, 345

Dynamic crossover distortion, 369

Dynamic nonlinearity, 24

Early conductance, 278, 325

Early effect, 247

effect on common mode rejection, 445

effect on input offset voltage, 442
Early voltage, 248

Ebers-Moll model: in forward-active

operation, 244

in saturated operation, 253

Efficiency: Class A, 347

Class B, 359

Emitter contact resistance, 194, 251

Emitter coupled pair, 315

Emitter follower, 356

output stage, 193

Emitter junction capacitance, 262

Emitterresistance, r,,, 233

647

Epitaxial layer, 236

Epochs: mixed, 221

separate, 221

signal, 221

Equivalent circuits, 217, 242

bipolar transistor, 242, 265ff

null reference, 247

Equivalent input noise network, 398

correlations, 400

Equivalent ladder networks, 100, 297
Evaluation: of polynomials, 67ff, S00

of rational functions, 500

Excitation and response, 214

Factoring, 125

Feedback, defined, 156

Feedback matrix, 301

local, 301

overall, 301

Feedback path, 4

Feedback synthesis, 93, 546

Feedforward, 150ff, 162, 290, 310, 336, 385

active load, 336

effect on noise, 417

incidental, 302

matrix, 302

in power amplifier, 155
Fiber optic preamplifier, 408

at 274 mb/s, 422

Field emission breakdown, 256

Fleischer, P. E., 141

Flicker noise, 388

Fluctuation noise, 388

Foster form RC immittances, 297

Frequency compensation, 144, 552

Frequency normalization, noise integration,

406

Gardner, M., 128

General circuit parameters, 213

Generation of null reference matrix, 447

Gray, P. R, 236

Gummel number, 240, 249

Harmonic analysis of common emitter

stage: anticausal, 349

causal, 350

Hewlett-Packard HP 41C calculator, 453

bar code, 544

card reader, 474

peripherals, 473

printer, 530

Hierarchal levels, 211

in design process, 183, 572
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High level injection effects, 260

Horizontal geometry, 234, 265

HP 41-C, HP 41-CV, 473

Hybrid feedback, 275, 276, 292

Ideal amplifier, 22ff, 214, 228, 245,

285

defined, 228

nullor, 228

2-port equivalent circuit, 214

Ideal operational amplifier, 129

Ideal transformer, 285,419,432

Immittance control, 285

in simple current source, 394

Incidence matrix, 128

Independent node, 125

Infinite gain amplifier, 22

Input admittance, 277

Input bias current, 435
Input common mode range, 457

Input current drive requirement, 351

Input differential pair, 165
Input drive requirement, 345

Input loading, 101

Input loading matrix, h, 305

Input noise network, 398

Input offset current, 435
Input offset voltage, 376,435, 438, 442

Insertion loss, 287

Integrated circuit delays, 181

Intersymbol interference, 408

Intrinsic silicon, 236

Inverse, of ABCD matrix, 277

Isolation diffusion, 236

Isoplanar transistor, 248

Iterative synthesis, 118

Jacobian, 119

Junction, metallurgical, 236

Key concepts of bipolar transistor, 242

Kirk effect, 260, 261

Kuhn, Thomas, 156

Lateral pnp transistor, 165

construction, 166

Lead-interchange (permutative) feedback,

311

Level shifter circuits, 461

Linear approximation to delay, 173
Linearity of Class A and Class B, 369

Linearity with local B-feedback, 354

Load capacitance, 58, 189

Load line, 347

Index

Local feedback, 99, 109

Loop gain, 3ff, 156, 223, 227

Lossless feedback, 132, 286

hybrid, 286

symmetric, 287

Loss and phase, mean and std. dev., 540

Loss ratio, 8

Loss variation, 566

Loudspeaker equalizer, 153, 557

Lumped parameters, 221

Majority carriers, 237

Mason, S.J., 156

Master-slave flip-flop, 198

Maxwell-Boltzmann statistics, 239

Metasystem, 172

Meyer, R. G., 236

MFA polynomials, 76, 519

MFED polynomials, 78, 519

Microwave integrated circuit transistors, 27 1

Microwave transistor, 236

Minority carriers, 237

Mitra, S. J., 245

Modeling by polynomial coefficients,

73

Moschytz, G. S., 155, 245

Network loss, 277

Newton’s method, 58, 484

Noise: in bipolar transistor, 401

with C feedback, 421

in common base stage, 419

in common collector stage, 418

in differential pair, 419

effect of feedback, 417

effect of feedforward, 417

equivalent conductance, 388

equivalent resistance, 387

in FETs, 397,403

figure, 404

with lossless feedback, 419

with lossy feedback, 421

temperature, 405

weighting, 405

Non-energic feedback, 132,421

Norator, 245

Normalization, frequency, 48,

475

Nullator, 245

Null matrix, 214

Nullor, 245

Null reference, 37

Null reference equivalent circuit, 247

Null reference matrix, 431, 432
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parameters, 439
Nyquist, H., 2ff

Nyquist diagram, 44, 68

for CFE, 167ff

feedback around pure delay, 163

Nyquist frequency, 409

Nyquist theory of stability, 70

Observable, 152

Observable signal, 98

One-over-f noise, 388

excess noise, 388

Operational amplifier, 129ff, 430ff,

456ff

Operational amplifier 741, 129, 165ff,

178ff, 274, 457
Operational transconductance amplifier,

464
Optimum receiver design, 417

Out-of-band stability margins,

189

Output impedance, 277

Output loading, 101

Output loading matrix, 305
Output reflection coefficient, 219

Output stage, 344

single transistor, 345

Output stage biasing, 366

Parasitic capacitance, 181, 196, 358,414,

464

Passive network, 228

Permutative feedback, 311

restriction on application, 322

Pert analogy, 37

Phase margin, 179

Phase response, for stable and unstable

systems, 68

Pipo (C feedback), 274

Piso (D feedback), 274

Polynomial: coefficients from loss and

phase, 510,514,616

deflation, 487

evaluation, 67, 500

performance specifications, 75
programs for manipulating, 473

scaling in frequency, 475

Power supply isolation, 468
Power supply rejection, 469

null reference matrix, 470

Power supply signal current, 468
useful application, 468

Predistortion, corrective, at input, 4, 11,

345, 349, 357

649

unbounded, 350

Programmable network calculator, 633

Ptolemy, 156

Punch through, 248

Pure delay, feedback around, 163

Push-pull operation, 356

Q (quality factor), 50

Quadratic approximation to delay, 173

in CFE, 176

Quadratic equation, 483

Quadratic loss ratio, 49

Quantized feedback, 198ff, 577

quadratic cutoff, 202
Quartic performance polynomial,

189

Rational functions, 124, 146, 279

evaluation, 332, 500

Ratios of polynomials, 149

Receiver sensitivity, 413

Receiving node, 125

Reciprocal formulation, 8

Recombination, 240

Rectification, precision, for a/d conversion,

460

Reference condition, 37, 247, 301, 358

Reflection coefficient, 219

input, 219
output, 219

Regenerative feedback, 13

Residues, 63ff, 200ff, 488, 580

Response adjustment in fiber optic preamp,

426

Responsivity (photodiode), 412

Return difference, 5ff, 158

relation to sensitivity, 35, 36

Reverse active operation, 251

Riemann surface, 71

Root locus (diagram), CFE, 168ff, 177, 529

Roots: cubic, 483

by Newton’s method, 488

quadratic, 484

starting point, 488, 489

Sallen-Kay filter design, 557

Saturation, 248, 252, 345

Saturation current, 239

Scattering limited velocity, 159, 237

Sensitivities: coefficient to component,

106, 535

frequency dependent loss ratios, 29-35

loss to components, 109ff, 537

loss to polynomial coefficients, 87
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polynomial coefficients to device, 107,

108

rational function to coefficients, 524

resonator, 140

Sensitivity, Sff, 36

Sequential matrix, 128

anticausal, 128

causal, 128

Series port impedances, 281

Settling time, 66

Shot noise, 246, 385ff

Shunt port admittance, 281

Signal delay, 162

Signal flow graphs, 125
of 2 port ABCD parameters, 214

Signal intensity, 437

Signal vector, 212

dependent, 213

independent, 213

Single amplifier biquad, 135

Sink node, 125

Sipo (A feedback), 274

Siso (B feedback), 274

Slew limiting, 178, 353

Slew rate requirement, 360

Slope overload, 353

Source impedance, effect on distortion, 353

Source node, 125

Spanning network, 295ff, 303, 327ff,

336ff, 638

S parameters, 219

Spot noise figure, 405

Stability, 5

Standby power, 345

Start-up circuit, band gap reference, 377

Statistical analysis, 188

Step response, 63,497
Summation of all noise sources in network,

401

Sum rule for sensitivities, 10, 29, 106,

104ff, 189, 207

Sustain voltage, 258

Symmetric feedback, 287

Synthesis of Design B, 103

Synthesis of transmission characteristics,

423

“T” compensation, 144, 556

T4M digital transmission system, 207

Tandem connections, 274

b-c combination, 274

Temperature effects, 370

Terminating immittances, 211

Thermal noise, 386

Index

Time domain analysis, 63, 81, 86, 497

quantized feedback, 198

Time domain performance, 63

Topology, 125

Transfer coefficient, 219

forward, 219

reverse, 219

Transfer parameters, 219

F parameters, 220

Transformer feedback, 285

Transient distortion, 354

Transistor, 323

ABCD parameters, 325

action, 237

analysis, 233

characteristics from ABCD parameters,

314

diode connected, 325

equivalent circuit analysis, 599

gain mechanism, 240

modeling, 606

noise, 390

Transitional polynomials, 79, 189,

519

Transit time, 240, 258

delay, 266

in devices, 179

Transmission matrix, 213, 285ff,

323
Transmission matrix signal flow graph,

216

Transmitting node, 125

Transport model of bipolar transistor,

244

Tunneling, 256

Two-port analysis, general method, 295

Two-port constraint, 212

Two-port network calculator, 626

Two-port parameters, 100

ABCD parameters, 213

conversions, 218, 592

equivalent circuits, 217

signal flow graphs, 217

y parameters, 100, 213

Unilateral feedback amplifier, 289

Unilateral nctwork, 228

Unitary feedback, 275

Units, consistent set, 26

Unity currentloss frequency, f;, 233

Unity gain follower, 132, 299, 306

Unity gain frequency, 17

Unity loss time constant, 44

Unity voltage loss time constant, 129
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Upper triangular matrix, 133

Vpe vs. temperature, 370
Variability: resonator, 141

variation of loss, 112, 141

Vertical geometry, 236

Wave formulation, 219

Webster effect, 242, 260
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White noise, 386

Wickes, W. C., 544

Wierstrass theorem, 73

Wilson current source, 327, 633

hf transmission, 331

stabilization, 331

Zero loss amplifier, 22-24

Zimmermann, H. J., 156
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