

Hand Calculator Programs for Staff Officers

Edwin W. Paxson

This research was supported by The Rand Corporation as part of its program of public service.

Library of Congress Cataloging in Publication Data

Paxson, Edwin W Hand calculator programs for staff officers.

([Report] - Rand Corporation ; R-2280-RC) 1. Military art and science—Data processing. 2. HP-67/97 (Calculating-machine) I. Title. II. Series: Rand Corporation. Rand report ; R-2280-RC. AS36.R3 R-2280 [UI04] 081s [355'.0028'54] 78-7310 ISBN 0-8330-0020-9 R-2280-RC April 1978

Hand Calculator Programs for Staff Officers

Edwin W. Paxson

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PREFACE

This report documents and discusses twenty-three programs-written for the Hewlett-Packard HP-67/97 programmable calculators-covering a wide range of problems of interest to staff officers in all the military services. Using this material, the user may quickly obtain answers to specific questions arising in meetings, at the desk, or in the field. Full documentation is given to clarify the background of a topic and to enable the programming of a subject of special interest for a machine other than the HP-67, but with comparable power.

In general, the report avoids the "slide-rule" type of topic where only a given formula is to be evaluated. Rather, topics are chosen that would consume too much of a staff officer's time to program because the underlying mathematics may be obscure, because approximating techniques must be sought, or because the programming itself presents problems.

Several programs reduce published volumes of tables to one magnetic card.

The major part of this research was supported by The Rand Corporation from its own funds.

SUMMARY

The report is summarized by an overview of the topics covered in it.

Part I. Geographic and Orbital Programs

1. Geographic Coordinates to UTM and Conversely

Army tactical maps use Universal Transverse Mercator (UTM) coordinates. For joint operations with the Air Force and the Navy, coordinate conversion to geographic coordinates and the converse is essential. Accuracy of this program is better than 10 meters in the *northing* (distance from the equator) and 1 meter in the *easting* (distance from the central meridian of a zone).

2. Sunrise, Sunset, and Twilight

The times of sunrise and of the various categories of twilight are important in planning many types of military operations and activities, although adverse weather conditions all too often vitiate such planning. This program gives twilight times for any day of the year, at any latitude and longitude, and at any altitude. Accuracy is three minutes or less, except under special conditions such as high latitudes.

3. Geodetic Distances and Bearings

The usual formulas of spherical trigonometry that are programmed to give great circle distances and bearings employ a spherical earth of some mean radius. Distances can be in error by as much as 20 kilometers. The program here uses formulas of the National Geodetic Survey based on Bessel's solution for the geodesic on an ellipsoid of revolution. Accuracy is good, about 0.1" or 3 meters.

4. Reentry Trajectories

The program uses Sec. 20 (Fourth-Order Differential Equations). For a body with zero lift and a given "beta" entering the upper atmosphere, find the subsequent range, altitude, and velocity to impact.

5. Satellite Orbital Elements

This program solves two of many possible orbital problems: Given a satellite's injection altitude, velocity, and flight path angle, find the remaining six orbital elements; or given the injection altitude and the altitudes of perigee and apogee, find the remaining elements. Equations are provided so that other problems may be programmed.

6. Satellite Tracking

Given the time and longitude of equatorial crossing of a satellite, select a ground station. Determine if the orbit can be viewed on that pass, and if so, determine its range, bearing, and elevation from local horizon to horizon as functions of time.

Part II. Military Models

7. The Deer Hunt (Defenseless Bombers)

The model assesses the expected outcome of a time-limited battle in which a group of armament-limited interceptors engages a group of defenseless penetrating bombers. A deer hunt is the paradigm.

8. A Bomber Penetration Model (Defended Bombers)

In this model, the bombers are not defenseless. As part of mission planning, bombers divide their payloads between defense missiles and ground attack munitions to maximize weapons delivered to ground targets.

9. Damage Probabilities, PVN and QVN Targets

The program gives damage probabilities for nuclear weapons of given yield and CEP applied against PVN and QVN targets at the optimal airburst altitude.

10. Four Deuces (Precision 4.2-inch Mortar Fire)

This section is an example of data-table replacement by functional fitting. It applies to the 4.2-inch mortar, reducing firing table corrections and meteorological conditions to formulas. The program yields corrected shell charge and corrected azimuth and elevation for precision fire, and permits a difference in altitude between mortar and target.

-vi-

11. A Laser Equation

The equation programmed applies to propagation in the atmosphere and allows for blockage, thermal blooming, and jitter factors. Given any two of the three primary variables power, range, and average intensity at the target, the program finds the third factor.

12. Shaking the Dice (A War Gaming Example)

This section provides an example of how random numbers are used in a firefight model to assess outcomes quickly in war gaming. The example employs a conceptual mortar round with an on-board heat-seeker sensor that causes the round to home on an armored target.

13. Optimum Allocation of Resources

The title promises too much. This is a topic in nonlinear, convex programming. Military applications arise in search planning, allocating weapons to target classes, and allocating budgets.

Part III. Cost Programs

14. Log-Linear Cumulative Average and Unit Costing

These programs implement the basic assumption of learning curve theory as it applies to production. That is, each time total production doubles, the cost per item reduces to a constant percentage of the previous cost.

15. Time-Phased Procurement Costing

Consider a system, weapon or otherwise, with several major components. Each component has its own lead time and its own, possibly segmented, learning curve. Specify a delivery schedule over future years, and find the New Obligational Authority by fiscal year to support the program.

16. Cost/Benefit Streams

This model deals with the decision to spend money now as opposed to later during the life cycle of a weapon system. For example, should engineering development money be spent now in the expectation that future operating and support costs will be lower? The yardstick is the present value of a discounted stream of cost and benefits (savings). An "internal rate of return" is calculated to provide go-no-go for the decision.

Part IV. Mathematical Functions and Algorithms

17. The Normal Function and Its Inverse

The normal function (probability integral) is pervasive in military calculations. The program is frequently used in conjunction with others, such as that for the Q function.

18. The Q Function (Offset Coverage Function)

The Q function is used in radar detection theory and offset bombing calculations, as well as in calculations of collateral damage to point targets.

19. Linear Programming and 3×3 Matrix Games

Many models may be stripped in a meaningful and transparent formulation to three activities as a programming problem, or to three own courses of action pitted against an enemy's three courses of action, in order to make a command decision by game theory. This program uses the pivot method and has some interesting indexing aspects.

20. Fourth-Order Differential Equations

This program supports applications to reentry trajectory determination, Lanchester models of combat, and optimal control theory.

21. Curve Families and Mach Numbers

Military data are frequently presented as sets of tables or as families of curves, with a parameter naming the family member. This section suggests methods of representing these data through curvefitting, using elementary functions. The methods are applied to the determination of best Mach number for the A-7D aircraft on long-range, constant-altitude cruise.

22. Ten-Point Gaussian Integration

This is a utility program for evaluating definite integrals as they arise. Accuracy is usually excellent. For example, incomplete elliptic integrals are computed to eight decimal places by this method.

23. Truth Tables

A calculus of propositions is tailored for ready implementation by the calculator. The program systematically solves problems in

-viii-

symbolic logic, consisting of a set of logical conditions that the atomistic propositions must satisfy. There are real-world applications, usually overlooked.

ACKNOWLEDGMENTS

H. G. Massey provided the models for the sections on time-phased procurement costing and cost/benefit streams. D. C. Kephart programmed the damage probabilities for PVN and QVN targets, based on his earlier work. Lieutenant Colonel R. S. DeLaney, USAF, brought the laser equation to my attention. I am grateful to these men and also to the technical reviewers, W. B. Graham and R. N. Snow, for their comments. Roger Snow went well beyond a meticulous technical review. He provided a more efficient program for the Q function and prepared several flowcharts to clarify program logic. I am grateful for his collaboration.

Of course, errors found are to be laid to my door.

TO THE USER OF THIS REPORT

If your temperament is like that of the author, this description of the psychology of programming will sound familiar: After the usual time-consuming process of getting the mathematics of a topic in shape, the urge is to program as quickly as possible and make independent checks of the validity of the outputs. It works! And we move on to something else.

Any program, however, certainly including those in this report, can be improved--can be shortened and made more elegant and transparent. The result of this product-improvement effort may be to reduce the running time and to find program and storage space to extend the program's capability. A reexamination of program logic is part of this effort. The program may be made more robust, minimizing operator errors that occur when complex input operations are otherwise required.

If you as a user are interested in a particular topic in this report, you may choose to make this extra effort, which will be repaid with an enriched understanding of hand calculator programming.

Finally, you are invited to communicate to the author any errors you detect, errors and unforeseen restrictions being inevitable in a report of this nature. You are also invited to send to the author, for possible future programming, descriptions of topics that you feel may be of interest to some significant subset of the staff officer community. And by all means, copies of your own programs would be welcomed.

-xiii-

CONTENTS

PREFACE	iii
SUMMARY	v
ACKNOWLEDGMENTS	xi
TO THE USER OF THIS REPORT	xiii
INTRODUCTION	1

Part I: Geographic and Orbital Programs

Section

1.	GEOGRAPHIC COORDINATES TO UTM AND CONVERSELY	9
2.	SUNRISE, SUNSET, AND TWILIGHT	22
3.	GEODETIC DISTANCES AND BEARINGS	30
4.	REENTRY TRAJECTORIES	42
5.	SATELLITE ORBITAL ELEMENTS	52
6.	SATELLITE TRACKING	60

Part II: Military Models

7.	THE DEER HUNT (DEFENSELESS BOMBERS)	75
8.	A BOMBER PENETRATION MODEL (DEFENDED BOMBERS)	84
9.	DAMAGE PROBABILITIES, PVN AND QVN TARGETS	89
10.	FOUR DEUCES (PRECISION 4.2-INCH MORTAR FIRE	96
11.	A LASER EQUATION	108
12.	SHAKING THE DICE (A WAR GAMING EXAMPLE)	116
13.	OPTIMUM ALLOCATION OF RESOURCES	122

Part III: Cost Programs

14.	LOG-LINEAR CUMULATIVE AVERAGE AND UNIT COSTING	133
15.	TIME-PHASED PROCUREMENT COSTING	140
16.	COST-BENEFIT STREAMS	152

Part IV: Mathematical Functions and Algorithms

17.	THE NORMAL FUNCTION AND ITS INVERSE	159
18.	THE Q FUNCTION (OFFSET COVERAGE FUNCTION)	163
19.	LINEAR PROGRAMMING AND 3 x 3 MATRIX GAMES	172
20.	FOURTH-ORDER DIFFERENTIAL EQUATIONS	186
21.	CURVE FAMILIES AND MACH NUMBERS	196
22.	TEN-POINT GAUSSIAN INTEGRATION	203
23.	TRUTH TABLES	207
APPENDI	X: 97/67 KEY CODE CONVERSIONS	221

INTRODUCTION

"The general who wins a battle makes many calculations in his temple ere the battle is fought. The general who loses a battle makes but few calculations beforehand."

- Sun Tzü Wu, The Art of War, ca. 500 B.C.

Programmable hand calculators are little more than five years old, but they are already in their third generation, the gestation period being one and a half to two years. Up to now, they are unique in our inflationary world, in that each new generation has much more power than its predecessor, but sells for much less. This cost trend may reverse should these calculators become more competitive in power with microprocessors.

We can assess the impact in the civilian sector by noting that the number of user programs submitted to the Hewlett-Packard HP-67 program library is approaching 3000. The PPC (Personal Programmers Club),^{*} with more than 2500 members, is a nonprofit worldwide group of people who own and use PPCs (personal programmable calculators). The monthly club newsletter contains a wealth of programs and imaginative programming techniques.

Remembering that modern digital computers were initiated by the military under the pressures of World War II, it is curious that these PPCs, these powerful little animals, are not as equally widespread in the service of the Department of Defense as in the civilian sector.

The PPCs *are* used, of course. The Joint Technical Coordinating Group for Munitions Effectiveness (JTCC/ME) under the JCS has had 25 HP-67 programs prepared for mission planning by squadron ordnance officers in the Air Force, Navy, and Marine Corps. The Strategic Air Command uses the HP-65 in bombing mission planning. Some System

^{*2541} W. Camden Place, Santa Ana, CA 92704; Attn: Richard Nelson.

Project Offices (SPOs), such as the F-16 SPO at Edwards Air Force Base, use the HP-67. Junior officers are using their own funds to purchase PPCs, which in some cases must represent a tradeoff against a new TV set. But there is no recognizable community of users in the military sector. There is no mechanism--no clearinghouses like those in the civilian world--to exchange programs, to share ideas, and to state requirements for new programs. The notion of a loosely organized "national security users group" to achieve these implied objectives naturally comes to mind. We hope that this report may have some catalytic effect in accelerating such a development.

The hand calculator is particularly suited for military use because so many applications can be made in the field or in a meeting where a senior officer wants a quick answer to support a decision, or where a briefer is to be confounded. But for field use the calculator as *currently* designed would probably not meet military specifications. The operating range for the HP-67 is 10° to 40°C (50° to 104°F) and the battery pack life under continuous use is about three hours before recharging or replacement is required. However, current machines are compatible with avionics, producing little or no interference with sensitive electronic circuits.

But powerful as they are in their domain, the PPCs are far from a final answer to personal computing, although this statement depends on their future evolution. In preparing this report, many instances occurred where much more storage than available was needed and where it was frustrating not to have available a programming capability of more lines of code with a higher-level interpretive language.

Again, the civilian sector is leading the way. More than 120 companies are now manufacturing microprocessors with peripherals for home use, and more than 900 home computer dealers in the United States are marketing these machines at relatively modest prices. Memory may be added, there is keyboard input and cathode ray tube display, with BASIC apparently the language of choice. The military is lagging, even though it is a reasonable bet that many staff officers would like to be freed from the computing-center bureaucracy in doing their daily jobs.

-2-

But once more, too strong a position should not be taken. Military computing in general requires large main frames to support extremely large data bases and programs with a million or more lines of code. One would certainly hesitate to try to use a microcomputer for logistic management or for solving three-dimensional partial differential equations.

Nevertheless, there is a real gap in the spectrum of required computing capability to meet military requirements, a gap whose filling this report can only adumbrate.

A word of apology is in order. Recorded program cards are not provided with this report. The reasons are:

- No recipient is likely to use all programs;
- The per-copy cost of the report would be high;
- It requires 10 to 20 minutes to key in a program and check it; and
- Hopefully, the keyer will understand the program and be able to modify or tailor it to his or her desires.

It is recommended that users step through the illustrative problems to get the mechanics straight. And it is always a good idea to do a problem twice. Errors in keying are easy to make, especially when under pressure.

Finally, what is to be said to the staff officer who wants to program his or her own problems on a PPC? The natural question for the officer to ask first is: What bounds a problem that can be "fitted" to the machine?

The general answer is: If the problem can be formulated as a *chain* of subproblems, each of which is within the machine's coding and storage capability, then there is in principle no bound. For example, in the prediction of tides by harmonic analysis, * 37 constituents (cosine terms) each with three constants are employed. Since these terms need only be added, one program card and five data cards,

-3-

^{*} Special Publication No. 98, U.S. Department of Commerce, 1940.

used successively, would suffice. As other examples, six linear algebraic equations in six unknowns can be solved using both sides of two cards, and a Star Trek battle can be programmed with eight cards.

For problems that can be chained, the practical limitation is execution time, which can be long and hardly acceptable if many problems are to be run, as in tidal prediction.

But not all problems can be chained. Operations with matrices of order higher than five, and solutions of partial differential equations, are usually nonchainable.

Even if a problem *should* fit, it is frequently hard to see how to make it actually conform to the calculator's Procrustean bed. This could be because the underlying mathematics, including approximating techniques, is beyond one's reach. The help of a specialist colleague is then essential. Once this mathematical hurdle is cleared, programming--which is really an art form with personal brush strokes--can be exasperating. Advice? Read and understand good programs, as many as possible--something that few of us have the self-discipline to do.

As a postscript to this Introduction, an as yet unexploited area of the military application of PPCs should be mentioned. Two or more people may operate their calculators in parallel, engaging in a cooperative, interactive exercise.

For example, two submarines may be allies in a simulated battle against one enemy boat. The purpose of the exercise is to examine, by repeated simulation runs, the tactical utility of communications between the two friendly boats during the battle--ranging from none, through restricted, to complete information and command exchanges. Each player has his own program which, by sampling from probability distributions, shows the output of his sensor systems in respect to target position and bearing, and the damage, if any, inflicted by ordnance launched. Each player keeps his own log and battle plot. At each battle increment (say, 15 minutes of real time), the calculators may be physically exchanged so that, as appropriate, information can be entered in assigned storage registers, and the calculators then returned to the right boats.

-4-

As another example, a War College seminar may be examining the cost implications over the next ten years or more of various possible strategic postures. Weapon systems may be phased in and out. New systems require research and development monies and time. In general, each weapon system has cost profiles of funds required for RDT&E, procurement, and annual maintenance and operating expenses. The cost envelope of each weapons system with respect to time is calculated by the seminar member assigned that system. All programs are the same, differing only in their cost and time parameters. The seminar leader totals the year-by-year costs of all systems in the posture and checks for feasibility against an assumed yearly ceiling. After discussion, the seminar members revise phasing or numbers procured and go through another iteration to see if the ceiling is reached or exceeded, and to determine if the posture is balanced in regard to the threat and required missions.

These examples have indeed been programmed for interactive computing on large computers; but this is time-consuming and facilities may not be readily available. The suggested use of PPCs in parallel is an option that can be implemented quickly and can provide a shakedown for more sophisticated approaches, which in some cases may prove not to be warranted.

PART I

GEOGRAPHIC AND ORBITAL PROGRAMS

1.1. REFERENCES

- a. Universal Transverse Mercator Grid, AMS Technical Manual No. 19, Army Map Service, Corps of Engineers, Washington, D.C., 1952.
- b. Map Projections, P. Richards and R. K. Adler, North-Holland, 1972.
- c. Map Reading, FM 21-26, Department of the Army, October 1960.

1.2. DISCUSSION

Tactical-scale (1:50000) Army maps use the Universal Transverse Mercator Grid (see Ref. c). The map borders show latitude and longitude ticks, but it is difficult to locate the geographic coordinates of a point with any precision. Conversely, Air Force maps use geographic coordinates only. Consequently, in joint operations such as targeting, coordinate conversion from one system to the other is essential. FORTRAN programs exist. The program used at The Rand Corporation has 132 lines of code. Although perfectly adapted to the preparation of coordinates for a list of agreed targets, it hardly meets the requirements of ad hoc field use.

The UTM system covers the world between 80°S and 84°N. Starting at the 180° meridian of longitude and moving eastward, the globe is divided in zones 6° of longitude in width, numbered 1 to 60. Each zone has a central meridian (CM). The following formulas relate zone number (ZN) to the CM:

> ZN = (CM + 183)/6 $CM = (6 \cdot ZN) - 183$

For example, Fort Knox, Kentucky is about $86^{\circ}W$. Hence the ZN is the rounded value of (180 - 86)/6, ZN = 16, and CM = -87 or $87^{\circ}W$. (See Ref. c for further details on lettering 8° zones south to north, and on double-lettering for 100,000 meter squares within each $6^{\circ} \times 8^{\circ}$ block.)

The value assigned to the CM in each zone is 500,000 meters, called the *false easting*. Hence locations in a zone west of the CM have an *easting* less than 500,000 and conversely. The *northing* is the distance from the equator in meters. For the Southern Hemisphere, the equator is assigned a *false northing* of 10,000,000 meters and numbers decrease southward.

The major complication in coordinate conversion is that allowance must be made for the earth's oblateness. Hence the equatorial radius a and the polar radius b must be selected. Actually, a and the reciprocal of the flattening f = (a - b)/a are given. For the International Spheroid,

a = 6 378 388 m, 1/f = 297.

Since $f = 1 - \sqrt{1 - \epsilon^2}$, where ϵ is the eccentricity,

 $\epsilon^2 = 0.006~722~67$.

Unfortunately, different spheroids (different a and f) are used for different areas of the world, for historical reasons. For example, the Clarke 1866 spheroid is used for North America. The other spheroids used are Clarke 1880, Everest, and Bessel. The International Spheroid is used for Europe. (Consult Ref. a.) Consequently, the data a, ε^2 , n = (a - b)/(a + b) used here have to be changed for certain parts of the world.

1.3. EQUATIONS

The full equations for the conversions (Refs. a and b) are quite lengthy because extreme accuracy is desired in surveying applications. For military purposes, it is possible to dock the tails of these formulas and still get accuracies better than 1 meter in the *eastings* (E') and better than 10 meters in the *northings* (N)--the distance from the equator in meters. 1.3.1. Geographic Coordinates to UTM Grid Coordinates

$$N = (I) + (II)p^{2} + (III)p^{4}$$
(1)

$$E' = (IV)p + (V)p^3 \ge 0, E = 500\ 000 \pm E'$$
. (2)

South of the equator,

$$\overline{N} = 10\ 000\ 000 - N$$
 (3)

The given coordinates are latitude ϕ and longitude λ . Then $p = 0.0001 \cdot \Delta \lambda$, where $\Delta \lambda$ is the difference of longitude from the CM, *measured in seconds*. E' is the (positive) distance from the CM.

(I) = S •
$$k_0$$
, where
S = A ϕ - B sin 2 ϕ + C sin 4 ϕ . (4)

S is the true meridional distance from the equator in meters and

$$A = a[1 - n + 0.75 n^{2}(1 - n)]$$

$$B = 1.5 an(1 - n)$$

$$C = 0.9375 an^{2}(1 - n), n = (a - b)/(a + b)$$

$$k_{0} = 0.9996, \text{ the central scale factor to reduce distortion.}$$

$$(II) = \frac{k_0 \sin^2 1'' \cdot 10^8}{4} \cdot \upsilon \sin 2 \phi, \text{ where}$$
(5)
$$\upsilon = a/\sqrt{1 - \varepsilon^2 \sin^2 \phi} \text{ is the radius of curvature in the prime vertical.}$$

(III) =
$$\frac{k_0 \sin^4 1'' \cdot 10^{16}}{24} \cdot \upsilon \sin \phi \cos^3 \phi (5 - \tan^2 \phi)$$
 (6)

$$(IV) = k_0 \sin 1'' \cdot 10^4 \cdot \upsilon \cos \phi \tag{7}$$

$$(V) = \frac{k_0 \sin^3 1'' \cdot 10^{12}}{6} \cdot \upsilon \cos \phi (2 \cos^2 \phi - 1)$$
(8)

1.3.2. UTM Grid Coordinates to Geographic Coordinates

$$\phi = \phi' - [(VII) q^2 - (VIII) q^4]/3600$$
(9)

$$\Delta \lambda = [(IX) q - (X) q^3]/3600$$
(10)

$$q = E' \cdot 10^{-6} \ge 0$$

 $\phi'' = N/Ak_0$ (11)

$$N/k + B \sin 2 \phi'' - C \sin 4 \phi''$$

$$\phi' = \frac{N/\kappa_0 + B \sin 2 \phi' - C \sin 4 \phi'}{A}$$
(12)

$$\upsilon = a/\sqrt{1 - \varepsilon^2 \sin^2 \phi''}$$
(13)

$$(\text{VII}) = \frac{10^{12}}{2k_0^2 \sin 1''} \cdot \frac{\tan \phi'}{\upsilon^2}$$
(14)

$$(\text{VIII}) = \frac{10^{24}}{24k_0^4 \sin 1''} \cdot \frac{\tan \phi'(5 + 3 \tan^2 \phi')}{\upsilon^4}$$
(15)

$$(IX) = \frac{10^{6}}{k_{0} \sin 1''} \cdot \frac{1}{\upsilon \cos \phi'}$$
(16)

$$(X) = \frac{10^{18}}{6k_0^3 \sin 1''} \cdot \frac{1 + 2 \tan^2 \phi'}{v^3 \cos \phi'}$$
(17)

1.3.3. Data Card (International Spheroid)

		а	=	6	378	338		STO	Ø
		ε ²	=	0	.006	722	67	ST0	1
		^k 0	=	0	.999	6		ST0	3
106	, sin	1"	=	4.	.848	136	8	ST0	4
		А	=	6	367	645	.45	ST0	A
		В	=		16	106	.99	ST0	В
		С	=			16	.976	ST0	С
	3	600						ST0	5
	500	000						STO	6

2.4. PROGRAM NOTES

a. It will be noted that the powers of 10 in the program differ from those in the formulas because 10^6 sin 1" is a stored datum.

b. West longitude is prefixed by a minus sign.

Example 1. N 49°48'00", E 08°24'0" to UTMC.

49.48 STO D, 8.24 STO E, 9 STO 7 (CM)
Press A: Northing = 5516670 (5516677.7)
Press R/S: Easting = 456820 (456819.7)
The numbers in parentheses are the AMS values.

Example 2. Northing = 5516677.7, Easting = 456819.7 to geographic coordinates.

N STO D, E STO E, 9 STO 7 Press A: Latitude = 49.4801 (49°48'01") Press R/S: Longitude = 8.2360 (8°24'00")

)

	1 1.1 GEOGRAPHIC COORDS TO	o utm grid	5	
STEP	INSTRUCTIONS		KEYS	
1	KEY LAT (D.MS) STO D	49.48	STO D	49.
2	KEY LONG (D.MS) STO E	0.24		0
2	(- FOR W. LONG.)	0.24		0.
3	KEY CM STO 7	9	STO 7	9.
4	PRESS A	+		5516670
	OUTPUT IS NORTHING (M) IN D			
5	PRESS R/S			456820
	OUTPUT IS EASTING (M) IN E			
	INT. GEOID DATA CARD			
	a 5378388 .000 0 € ² 0.00672267 1			
	−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−			
	3600.000000 5 500000 6000 5			
	A 536764 5.450 A			
	C 18.97600000 C			
		+		
		+		

1.6.1 GEOGRAPHIC TO UTM COORDINATES

STE	P KE	YENTRY	KEY CODE	COMMENTS	STEP	KEY ENTR	Y	KEY CODE	COMMENTS
001	001	*LBLA	21 11			657	÷	-24]	
	002	RCL7	36 07			_058 R	CL3	36 03	
	$+^{ee3}$	RCLE	36 15	DE0 DE00		_ 059	Х	-35_	
	-+ 004	HMS+	16 36	DEC. DEGS.	060	_060 R	CL4	36 04	
	-+ 005	-	-45			_051	χz	53	
	- 005		16 31			_052	X	-35	
	- 001	RULD	30 03	ALL IN SECS		- 663	EEX	-23	
	-+ 000	E EV	-27			- 654 - 675	.4	84	
010	$+_{310}$		23 R4			_000 055 D	T.	75 45	
	- 1 ai i	÷	-24			_000 K 027	V2	57	
	- 1 A12	, STOT	35 46	n		_ 067	л- х	-75	
	1 013	RCLD	36 14	۴		- 0000 - 065 - R	0.9	36 89	
	-1 014	HMS→	16 36		070	- 001 IN	+	-55	
	015	STOD	35 14	LAT. IN DEC DEGS		-071 S	TOD	35 14	$(I) + (\Pi) p^2$
		; 4	84			072 R	CL2	36 82	(1) (1) F
	017	x	-35			073	TAN	43	
	018	SIN SIN	41			074	χ2	53	
	019	RCLC	36 13			075	5	05	
020	020) X	-35			976	-	-45]	
	021	RCLD	36 14			_ 077	CHS	-22]	
	- 022	2 2	82			_078 R	CL2	36 82	
			-35			_079	cos	42	
L	- 024	SIN DOLD	41		080	_080	3	03	
	- 023) KULB	30 12			- 881	Υ ^	31	
	- 020	· ·	-35			- 882 - 887 - 8	X	-35	
	-+ 229		36 14			_ 863 к Гаол	CIN	30 02	
	-+ a29	D+R	16 45	RADIANS		885	X	-75	
030	-+ 030	RCLA	36 11			- 885 R		36 88	1/
	- 031	Х	-35			-000 N	x	-35	
		: +	-55			889	2	82	
	633	3 RCL3	36 03			089	4	0 4	
	334	X	-35]		090	090	÷	-24]	
	035	5 ST09	35 09	k _o S (I)		[091 R	CL3	36 03	
		RCLD	36 14			092	X .	-35	
L	- 030	′ 5102 ⊳ ≎⊺N	30 02	LAT		093 R	CL4	36 84	
 	-+ 030) 31M S X2	41 57 1			- 034 - 005	4 0 Y	04 71	
040	-+ a40		36 81	_e 2		_ 020 _ 005	7 V	-75	
	-+ 041	x	-35			- 000 - 007	FFX	-23	
	- 042	2 1	01 -			- 098	8	8 8	
	- 043	3 -	-45			099	÷	-24	
		t CHS	-22 -		100	-100 R	CLI	36 46	
	845	5 JX	54 -			131	4	0 4	
	048	s RCLØ	36 00			102	γx	31]	, I
		· ÷	-24			103	× -	-35	(III) p ⁴
L	-+ 048	S 1/Х стос	JZ 75 00 1	•.		104 R	CLD	36 14	
050		3 PCI2	35 80	V		165 Har c	Ton		
050	-+ 05) KULZ I 2	00 02 02			165 0	DVC	30 14	NORTHING
	- 052	х х	-35			100 102 R	CI 2	36 82	
<u> </u>	853	3 SIN	41			109	COS	42	
	05-	; RCL8	36 08		110	_110 R	CL8	36 08	
	055	5 X	-35			_ 111	Х	-35	
	056	5 4	04			_112 R	CL3	36 03	
_				REC	GISTERS	10		17	Te To
ľ	a	ϵ^2	LAT.¢	• ° k _o ′ ⁴10 ⁶ sin 1	" [°] 360	0 [°] 500	000	ľ CM	ὄν ϗ _ο ς
S0		S1	S2	S3 S4	S5	S6		S7	S8 S9
^	Α	E	В	c C		Γ. φ, D	E	LONG. A	, E ^I P

1.6.1 PROGRAM LISTING

STEP KEY ENTRY		ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMM	ENTS
	113	X	-35						
	11 14	RCL4	36 04]		170				
	115	Х	-35]						
	116	EEX	-23						
	117	2	82						
	5112	÷	-24						
	119	RCLI	36 46						
120	120	Х	-35						
	121	ST09	35 89	q (VI)					
	122	RCL2	36 02	(<u> </u>					
	T123	COS	42						
	T124	χ2	53		180				
	125	2	02						
	125	x	-35						
	127	1	01						
	128	-	-45						
	t129	RCL2	36 82						
130	+770	COS	42						
	1171	X	- 75						
	+170	Prig	76 88						
	+177	NGLO V	-75						
	+100	ĉ			190				
	+175	÷	_24						
	133	- PCI 7	76 97						
	$+^{100}_{777}$	RULO	30 03						
	+137	∧ DeLA	-30						
	$+\frac{138}{138}$	KUL4	36 84						
	+139	ۍ د ب	03						
140	$+^{148}$	Ϋ́	31						
	$+^{141}$	X 551	-35						
	142	EEX	-23						
	143	6	0 6						
	144	÷	-24		200				
	145	RCLI	36 46						
	146	3	03_						
	147	γx	31						
	148	Х	-35						
	149	RCL9	36 09						
150	150	+	-55						
	151	ST09	35 09	E' (2)					
	152	RCL7	36 07						
	153	RCLE	36 15						
	L15÷	X¥Y?	16-35	$LONG \leq CM$?	210				
	155	GTOB	22 12						
	L156	RCL6	36 06						
	157	RCL9	36 09						
	158	+	-55						
	159	STOE	35 15	easting					
160	160	RTN	24						
	161	*LBLB	21 12						
	162	RCL6	36 06						
	L163	RCL9	36 09						
	164	-	-45		220				
	165	STOE	35 15	EASTING					
	156	RTN	24						
	_								
L					I	EL EL LOC	L		
				Тс	FLAGS		SETSTATUS		
^ US	ED	" USEI			۲.	о 	FLAGS	TRIG	DISP
а		b	с	d	е	1	ON OFF	DE0 7	
		1			4	2	┩╹╎╎╎		
0		·	2	5	<u> </u>	-			
5		6	7	8	9	3	3 0 0		n
	1 1.2 UTM GRID TO GEOGRA	PHIC COORD	s z						
------	--------------------------------	---------------------	-------	----------					
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS						
1	KEY N (D.MS) STO D	5516677.7	STO D	SAME					
		15/010 7							
2	KEY E (D.MS) STO E	456819.7		SAME					
3	KEY CM STO 7	9	STO 7	9.0000					
4	PRESS A			49.4801					
	OUTPUT IS LATITUDE (D.MS) IN D								
5	PRESS R/S		R/S	8.2360					
				8024100"					
				0 24 00					
		-							
		ļ							
		<u> </u>							

1.5.2 UTM USER INSTRUCTIONS

1.6.2 UTM TO GEOGRAPHIC COORDINATES

STEP	KE۱	ENTRY	KEY CODE	COMME	NTS	STEP	KEY	ENTRY	KEY CODE	COM	MENTS	
001	001	*LBLA	21 11				857	RCL9	36 89			
	-+ 002	RCL6	36 86 -				_ 058	tan	43_			
	-+ 003	RCLE	36 15	E			_ 059	×	-35_			
	004	-	-45_			060	060	RCL8	36 88 _			
	005	ABS	16 31				061	4	84_			
	005	EEX	-23				062	YX.	31_			
	007	6	0 6 _				_063	÷	-24			
	008	÷	-24 _				_ 064	RCL4	36 84			
010	 60 3	STOI	35 46	q			_ 065	÷	-24			
010	-+ 010	RCLD	36 14				-866	RULS	JO 83_			
	+ 011	RCLA	36 11				- 007	4 VY	71			
	+012	÷	-24				- 068	•	-24			
	+ 013	RULS	36 83			070	- 007	÷	-24			
	+014	÷	-24			070	071	4	84			
	+ 015	K+U		DEGS.			- 072	_ `	-24			
	+ 015	5105	35 85	φ^{n} (11)			- 077	FFY	-23			
	+ 017	4	- 75				- 073	7	A3			
	+ 010		-30				- 075	Å	80 ⁻			
020	$+ \frac{019}{020}$	514	72 17				- 076	x	-35			
	+ 020	KULU	-75				- 077	RCLI	36 46			
	+ 622	้ ก่าว	-22				- 078	4	84			
	+ 927	PLIA	76 49				679	γ×	31			
	1 024	2				080	080	x	-35	1		
	1 025	x	-35				081	ST02	35 82	(∀ Ⅲ) a ⁴		
	1 026	SIN	41				082	RCL9	36 89	(/ 1		
	1 027	RCLB	36 12				083	TAN	43	1		
	1 028	x	-35				084	RCL8	36 88	1		
	1 029	+	-55				085	χ2	53	1		
030	1 030	RCLD	36 14				- 0 86	÷	-24	1		
	831	RCL3	36 83				- 087	RCL4	36 84	1		
	1 032	÷	-24				830	÷	-24	1		
	033	+	-55				0 89	RCL3	36 03	1		
	034	RCLA	36 11			090	090	χ2	53	1		
	035	÷	-24				091	÷	-24	1		
	036	R→D	16 46	DEGS			092	2	82]		
	037	ST09	35 89	φ' (12)			093	÷	-24	1		
	1 038	SIN	41]	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			094	EEX	-23_]		
	039	X2	53				095	1	01_			
040	040	RCL1	36 01				096	8	88			
	041	Х	-35 _				097	x	-35_			
	042	1	8 1 _				098	RCLI	36 46_	9		
	043	-	-45				099	Xz	53	1		
	044	CHS	-22			100	100		-35	1		
	045	TX I	54				101	RULZ	36 8 2	4		
	-+ 046	RCLO	36 88				102	- 010	-93	4		
 	-+ 047	÷	-24				103		- <u>-</u> 22 72 85	ł		
 	- 045	ο 1/Χ ο στοο	75 40	1/ (12)			104	×0LJ		ł		
050	-+ 043	9 DUIO	26 20	· (13)			105	RCI 9	36 89	1		
0.00	- 050		43				107	+	-55	4		
	1 852	× X2	53				108	→HMS	16 35	D.MS		
	1 857	3	6 3				109	STOD	35 14	1 φ		
	054	r x	-35			110	110	R/S	51	DISPLAY		
	055	5 5	85				111	RCL9	36 89]		
	056	<u> </u>	-55				112	COS	42			
					REGIS	STERS					1-	
0	a	$\epsilon^{1} \epsilon^{2}$	2 (VIII) a	$\frac{4}{3} k_{0}$	⁴ 10 ⁶ sin 1"	⁵ 360	0 6	500000	⁷ CM	8 ν	9 φ'	
50		S1	52	53	54	55		6	S7		59	
						00	ľ	~				
A	l	Ti	3 n		<u> </u>	D ,		E		I		
ľ	Α		В		ر ر	1	Ν,Φ	Ī	⊑,∧	1	Ч	

1.6.2 PROGRAM LISTING

STEP	KEY	ENTRY	KEY	CODE		COMMENTS		STEP	KEY	ENTRY	KEY	CODE	СОММ	ENTS
	113	RCLB	3	6 88					169	RCL2		36 82		
	114	X	-	-35				170	170	+		-55		
	115	RUL 4	3	-75					171	+HMS		16 35	D.MS	
	117	דוֹזק	Z	-3J 6 A3					172	SIUE		35 15	LONG	
	118	X		-35					174			21 12		
	119	1/8		52					175	RCI 7		36 87		
120	120	EEX		-23					176	RCL2		36 82		
	121	1		01					177	-		-45		
	122	2		82 _					178	→HMS		16 35	D.MS	
	123	X	-	-35					179	STOE		35 15_	LONG	
	124	RCLI	ای	5 46 75 -				180	180	RTN		24		
	125	cTO2	7	5 42	/ TV \	-								
	120	RCI9	3	6 89	(IZ)	q								
	128	TAN		43										
	129	X2		53										
130	130	2		82 -										
	131	х		-35 -										
	<u>1</u> 132	1		01										
	133	+	_	-55]										
	134	RCL9	3	6 09				190						
	135	COS		42										
	+136		7	-24 c eo -										
	137	KUL8 7	3	0 0 0										
	130	yx		31 -										
140	140	÷		-24										
	141	RCL4	3	6 94										
	142	÷	-	-24										
	143	RCL3	3	6 83										
	144	3		8 3 -				200						
	[145	γx		31										
	146	÷		-24										
		.6		8 6										
	148	÷		-24										
150	149	2		-23 82-										
150	151	4		84										
	152	x		-35										
	153	RCLI	3	6 46										
	154	3		83				210						
	155	γ×		31										
	156	X		-35	(X) c	3								
	157	CHS	-	-22										
	158	KUL2	3	0 02										
160	150	T Pris	7	6 85										
160	161	÷		-24										
	162	ST02	.3	5 82	Δλ	(10)								
	163	RCLE	3	6 15		()								
	164	RCL6	3	6 66 -				220						
	165	-		-45										
	166	X<0?	1	6-45	E - 50	00000 < 0?								
	167	GTOB	2	2 12										
	168	RCL7	3	• •/	1 45	RELS			1 6				SET STATUS	
A 1165	D	BINCEI	2	С	LAD	D	E		0		+_		TDIO	0100
a		b		c		d	e		+		┝	ON OFF	INIG	0154
-		-		<u> </u>			Ľ		Ľ		0		DEG 🗆	FIX 🗆
0		1		2		3	4		2		1			
5		6		7		8	9		3					
			1			1	1		1		1.5			

2.1. REFERENCES

- a. Russell, Dugan, and Stewart, *Astronomy*, Ginn & Co., New York, 1945.
- b. The American Ephemeris and Nautical Almanac for the Year 1977, U.S. Government Printing Office, Washington, D.C., 1976.
- c. Explanatory Supplement to the Astronomical Ephemeris, Her Majesty's Stationery Office, London, 1961.

2.2. DISCUSSION

Charts are prepared and issued for each major military operation or operational area giving sunlight, moonlight, and tidal data. Nautical twilight (sun's zenith angle from 102° to 96°) provides enough illumination for most types of ground activity, although bomb loading and repair work require artificial light. Civil twilight (sun's zenith angle from 96° to 90°) permits normal day activities such as observed artillery fire and visual bombing. Sunrise occurs when the sun's upper limb has a zenith angle of 90°. This makes the zenith distance of the sun's center 90°50' (90.83°), allowing 34' for horizontal refraction and 16' for the sun's semidiameter. For some aircraft applications, a correction of $1'.17\sqrt{h}$ is added, where h is the altitude in feet. If H is in kilofeet and decimal degrees are used, this correction is $0.617\sqrt{H}$ degrees.

2.3. EQUATIONS

The fundamental relation (Ref. c, p. 403) is

$$\cos h = -\tan \phi \tan \delta + \sec \phi \sec \delta \cos z , \qquad (1)$$

where h and δ are the hour angle and declination of the sun at the time of the phenomenon, ϕ is the latitude, and z is the zenith angle. (The correction of the declination from ephemeris noon to approximate rising or setting is at most 0.1°, a refinement we will neglect.)

The sun's declination is the number of degrees the earth's axis departs from a plane that is normal to the sun's direct rays. The declination is tabulated in the annual Ephemeris. An approximate formula is derived and checked against the tables.

In Fig. 2.1, θ is the true anomaly on day \overline{D} and α is the eccentric anomaly.

Fig. 2.1 — Anomalies

Kepler's equation is

$$\alpha - \varepsilon \sin \alpha = \frac{2\Pi \overline{D}}{365} , \qquad (2)$$

where $\varepsilon \doteq 1/60$ is the eccentricity of the earth's orbit. Also,

$$\sin \alpha = \frac{\sqrt{1 - \varepsilon^2} \sin \theta}{1 + \varepsilon \cos \theta} .$$
 (3)

Neglecting $\sqrt{1 - \epsilon^2}$ (= 0.99986), and solving for θ yields

$$\sin \theta = \frac{\sin \alpha}{1 \pm \varepsilon \cos \alpha} , \qquad (4)$$

where the + branch is used from the vernal equinox, 21 March (Day 89), to the autumnal equinox, 23 September (Day 275).

From (2) a first approximation to α is simply $\alpha_0 = 2\Pi \overline{D}/365$. This is refined by using $\alpha = \alpha_0 + \Delta$ in (2) to get the correction

$$\Delta = \frac{\sin \alpha_{o}}{60 - \cos \alpha_{o}} \text{ (radians)} . \tag{5}$$

Finally, using direction cosines, the declination becomes

$$\sin \delta = -\cos \theta \sin \upsilon , \qquad (6)$$

where $\upsilon = 23.44^{\circ}$ is the inclination of the earth's axis. The sign becomes + between the two equinoxes as the earth passes through the summer solstice, 21 June.

Next a formula for the Equation of Time (EOT) is required. The EOT is the difference in hour angle of the sun and the fictitious mean sun used for ordinary time. The difference owes to two causes: (1) the variable motion of the sun because of the eccentricity of the earth's orbit, and (2) the obliquity of the ecliptic.

The figure on p. 147 of Ref. a suggests that

$$EOT = -A \sin (\theta - a) - B \sin (2\theta + b) .$$
 (7)

We get from that figure the approximate values A = 8, $a = 5.92^{\circ}$, B = 10, $b = 4.73^{\circ}$. Here Day O (D = O) is 25 December, since the EOT is O on that date.

The extrema of the EOT are:

12 Fe	bruary	D =	49	EOT	=	-14.29	min	
14 Ma	у	D =	140	EOT	=	+3.72	min	
26 Ju	1y	D =	213	EOT	=	-6.46	min	
3 No	vember	D =	313	EOT	=	+16.41	min	

Replace A by A + ΔA , etc., substitute in (7), take only first-order terms, and get four linear equations in the unknowns ΔA , Δa , ΔB , Δb . These are solved quickly by Program 7 of the Hewlett-Packard Math Pac 1. The corrected values of the parameters are

A = 7.4447, a = 5.935, B = 9.894, b = 4.941.

The resulting mean absolute error throughout the year with respect to the tabulated values of the EOT is 24 sec.

Rising and setting times are now computed by

Rising =
$$12 - EOT - h$$
 (8)
Setting = Rising + $2h$.

These are local mean times with respect to the central meridian (CM) of a given time zone. To correct for other longitudes, subtract 4 min for each degree east of the CM, since the sun is earlier, and add 4 min for each degree west of the CM. The correction is programmed.

2.4. PROGRAM NOTES

(1) The day number D ($\overline{D} = D + 3$) for a given date is needed, counting from Christmas as Day O. Subtract 1 from the month number and multiply by 30.42, the average number of days in a month. Take the integral part. For month numbers 1, 8, 9, 10, 11, 12, add 6; for months 3, 4, 5, 6, 7, add 5; and for month 2, add 7. Finish by adding the days of the date.

(2) For the longitude correction (f LBL 0) add 360° if West longitude (entered negative). Then obtain the correct central meridian by checking whether the fractional part of the longitude divided by 15 is less than or greater than 0.5 (1/2 hr).

(3) At dates when the sun's declination is close to 0, formula(4) can yield a number very slightly greater in absolute value than 1.This would generate an Error signal. Such a number is replaced by 1 in f LBL 5.

(4) This program required 220 steps. There was not space to program rising and setting in the Southern Hemisphere. To do this, proceed as follows:

- Find the sun's declination on the desired date.
- Change the sign and use formula (6) to get a new θ and a new day number (365 $\theta/360$), differing by about 6 months.
- Find the rising time for the latter day in the Northern Hemisphere.
- Add $EOT_2 EOT_1$.

Example. Find sunrise on 5 May at 38°S (Central Meridian). Run program with +38°. RCL 2 to get $\delta = 15.48^{\circ}$ (the true declination is 16.15°). RCL 1 to get EOT₁ = .0600 hr. By (6) with $\delta = -15.48$, $\theta = 47.9$ or 312.1. Choose the latter. D = 317, or 7 November. Run program with date 11.07. Rising time is 6 h 32 m (6.53), EOT₂ = 0.26. Rising time is 6.53 + 0.26 - 0.06 = 6.73 or 6 h 43 m. The value for this example given on p. 566 of Ref. (b) is 6 h 45 m.

(5) Program running time is about 25 sec. Compared with the values tabulated in Ref. b (pp. 434ff), errors are 0 to 3 min with 0 and 1 the most likely values. The errors can be greater, however, at high latitudes at dates close to those with twilight lasting all night.

Example. Astronomical twilight, 50°N, 14 July: The computed value is 0 h 31 m versus the actual 0 32 for beginning, and 23 39 versus 23 32 for end of twilight.

2.5 USER INSTRUCTIONS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	INPUT KEYS			
1	LOAD BOTH SIDES OF PRGM AND DATA CARDS					
2	ZENITH DESIRED STO A					
	SUNRISE (UPPER LIMB) 90.83	90.83	ENT	90.83		
	CIVIL TWILIGHT 96					
	NAUTICAL TWILIGHT 102					
	ASTRONOMICAL TWILIGHT 108					
	TO CORRECT FOR ALTITUDE IN KFT					
	ADD 0.617 VH TO THE ABOVE (40 KFT)	3.90		94.73		
			STO	94.73		
4	DATE AS MM.DD STO B					
	(N.B. OCT 9 IS 10.09)	10.09	STO B	10.09		
5	LATITUDE (NORTH ONLY)					
	DD.MM STO C 36° 22' N	36.22	STOC	36.22		
6	LONGITUDE <u>+</u> DDD.MM STO D	101.00				
	(- FOR W. LONG) 121° 8' W	- 121.08	STO D	- 121.08		
7	PRESS A TO GET RISING HH.MM (5h 45m)			5.45		
				1		
8	PRESS R/S TO GET SETTING HH.MM (17h 57m)			17.57		
9	DAY NUMBER OF DATE		RCI 0	291		
	RCL 0 AND SUBTRACT 9	9		282		
		,				
10	FQUATION OF TIME					
	DSP 4. RCL 1. a H.MS		RCL 1	0.2128		
	TO GET .MMSS (12m 46s)		g H.MS	. 1246		
11	DECLINATION OF SUN		RCL 2	- 5.9663		
	RCL 2, g H.MS to get + DD.MMSS $(-5^{\circ}58')$		9 H.MS	-5.5759		
12	RISING IS STORED IN 3		RCL 3	5.7632		
	setting is stored in 4		g H.MS	5.4548		
	(g H.MS)					
13	ERROR MEANS TWILIGHT LASTS ALL NIGHT					

0121		CINICITY	KET CODE	COMM	ENIS	SIEP	NETE		KET CODE		COM	WEINIS	
001	001	ti Bi A	21-11	PRGM NC	TF 1		857	X	-35				
	1 000	0010	76 10				050	2	#2	i i			
	1 002	RULS	- 24 00				000	i."					
	1 683	INT	16 34_	MONIH			L 622	x	- JJ	20			
	884	1	81			060	666	P₽S	16-51	SEC	2		
	005	-	-45				ACT	RCI 4	36 84		-		
	+	501 7					- 001	NUL T	55	1			
	1 896	RUL7	36 87 _				662	+	-33	1			
	087	Х	-35				063	SIN	41	1			
	600	INT	16 34F	D*			864	RCI 2	36 82	– P	ł		
	+	CTO9	75 03	D			0.00	~	- 75		,		
	663	5100	33,00				- 000	^	-33	1			
010	010	RCLB	36 12				666	+	-55				
	l att	8	88				867	6	86				
	1	V/V0	16-75				960	9	00				
	- 012	647 C	10-33				- 000			1			
	€13	6101	22 61				663	÷	- 24				
	014	RCLB	36 12			070	070	P#S	16-51	1			
	1 915	7	97				- e71	1012	35 A1	FO	TINE	HRS	
	+ "									150		<u> </u>	
	T 616	X£37	16-33				_0/2	RULU	36 66	1		(5)
	017	6T02	22 82				073	3	63				
	1 012	RCIR	36 12				874	+	-55	1			
	+						- 475	стоя	75 00	-			
L	1 613	2	<u>ت عن</u>				010	5100	33 66	D I			
020	028	X¥Y?	16-35	MONIH	2?		876	RCL 9	36 6 9				
	T a21	6103	22 83				677	х	-35				
H	+	CTO	50 AT		1		1 070	CTOF	75 15	1 &			
	022	6101	22 01	MONTH	1	ļ	- 010	SIVE		ļΨ			
	823	¥LBL1	21 61	MONTHS	8 to 12		679	SIN	41_				
	T 624	RCLØ	36 88]		AND 1	080	680	6	96				
	+ 405		02				1 001	2	99				
	+ "		** -				- 001	5015	7.5 .5	4			
	026	51+0	- చర− 55 లెల్	ADD 6			082	RULE	36 13				
	T 027	GT04	22 84 7				683	COS	42				
	020	+1 91 2	21 62	MONITUS	2 7 7 7		1084	-	-45				
	+ 200	+LDL2		MONIUS	3107		- 007	•	24-	1			
	029	KULU	35 66				682	÷	-24	1			
030	638	5	85				886	R÷D	16 46		RADIA	NS (5)	1
	T 031	ST+9	35-55 44				T 887	RCLE	36 15	1 -			
	+ 070	CTO4	20 00 04	ADD J			- 000		_55-	ł			
	652	6104	22 64				000			1,			
	033	#LBL3	21 83	MONTH 2	2		983	STUE	35 15	φ.			
	T 834	7	87 7			090	T 890 -	6587	23 87				
	+ 075	CT.A	75-55 00				1 001	DOLE	76 15	1			
	+ 655	51+0		ADD /			- 051	NULL		-			
	636	6104	22 64				892	SIN	41				
	037	¥LBL4	21 84				T 093	RCL6	36 86				
	+ 070	RCLB	36 12				t- 894	÷	-24	1 cin	$\rho(\Lambda)$		
	+ 000	CDC					+ 005	CODE	07 AE	1 2111	0 (+)		
	039	FRC	10 44				055	635J	23 83	1			
040	040	1	81				096	SIN-	16 41	θ			
	T 041	A	88 1				T 897	COS	42	1			
	+ 040		65 -				1 200	DCIO	76 90	1	··	- 22 1/	10
	+ 642	c	60 -				- 050	NULU	30 80	1 210	$\nu - si$	1 23.44	t
	643	×	-35				099	Х	-35				
	T 044	ST+8	35-55 00 7	DAY D		100	188	SIN-	16 41) (6)		
	1 745	- त्या के	- 36700-	FON OF		t	181	RCII	36 46	1 + 1			
	+ 640	0010	77 20 -	LGIN. OF			+		. 75	1 - 1			
	1 046	RULY	30 07				102	<u>^</u>		ι±8	<i>i</i>		
	047	X	-35]	θ			103	5102	35 82				
	1 048	P#S	16-51 1	ŝ			104	RCLA	36 11	Z		(1	í) —
	+ 040	0017	72 97	JEC			105	COS	42	t		(1	/
		NOLO	50 00	- a			+ 100	2010	77 00	1			
050	656	+	-55				160	KUL2	30 82				
	T 051	SIN	41				107	COS	42				
	± 852	RCL1	36 81	- A			108	÷	-24	1			
	+ 057	NOL 1	75 -	~			+	DOL C	70 17	1			
	633	~	-35 _				109	KULL	JC 13_	• .			
	654	P#S	16-51	PRI		110	116	KMS→	16 36_	ļφ	DEC .I	JEGS	
1	855	RCLA	36 88				111	COS	42	1			
	1 050	DOLO	72 00				T 110	<u> </u>	-24	1			
 	010	RUL J	30 07				1 112	<u>-</u>	- 27	L			
L					REGI	SIERS						10	
0	<u>ا ہ</u> م		$c_{1}^{2} + c_{2}^{2}$	³ DICINIC	CETTINIA	5 h/H	251 61	+ € 000	a ⁷ 30.42	8	3978	93K0/	365
Ι ^υ *,	ון ט, ט	EOT (HR	S∥ <u>-</u> °	KISING	SEITING		(3)		T 00.72		5770	300/	202
S0	9		S2	S3	S4	S5	IS6		S7	S8		S9	
1	ľ	-7.44	7 - 9.894	-5.935	4.941								
											- <u></u>	1	
A		- B	DATE			p rc	JNG.	± [E	ሐ. ሐ		1 -	+1 (15	7)
		~	DAIL MM	-DU LAI	• DD•WW	D D	DD.MI	N L	Ψο,Ψ		1 -	- , (15	• /
								the second s			-		

2.6 PROGRAM LISTING

STEP	KEYE	INTRY	KEY CODE	COMMENTS	STEP	KEY	ENTRY	KEY CODE	COMM	ENTS
	113	RCL 2	36 02			169	RTN	24	(gLBLb)	
	114	TAN	43	tan δ	170	170	#LBLb	21 16 12		
	115	RCLC	36 13	-		_171	RCL3	36 83 _		
	116	6857 744	16 36_	ł		172	RCL J	36 46		
	117	IRM	43 75			173	-	-45		
	110	^	-33	1 aaa h (1)		1/4	5105	30 83 04		
120	120	c054	16 42			175	*1 DI 7	21 87	PRANCH	
	121	1		1		177	PCIR	76 88	BANCH S	
	122	5	05			178	9	80 A9	D	
	123	÷	-24			179	ด	88		
	124	ST05	35 85	h in hrs	180	188	X>Y?	16-34	$90 > \overline{D}$?	
	125	i	ē1 —			181	GT09	22 08		
	126	2	82			182	2	82		
	127	RCL 1	36 81_			183	7	07		
	128	-	-45	RISING (8)		_184	5	Ø5		
	129	RCL 5	36 85_			_185	RCLØ	36 88 _	-	
130	130	-	-45			186	X> Y?	16-34	D > 275 ?	
	131	5103	33 83			187	6108	22 68		
	132	77WG 77WG	23 00			168	+1 01 0	22 89		
	174	-nna 0/0	10 33_	COPPECTED DISINI	190	107	ALDLO	21 00		
	135	RCLZ	36 83		J	191	PCIF	76 15		
	136	RCL 5	36 85			192	COS	42		
	137	2	82			193	6	86		
	138	x	-35			194	8	80 -		
	139	+	-55	1		195	÷	-24		
140	140	ST04	35 84			196	-	-45	USE - SIG	N
	141	→HMS	16 35	CORRECTED		197	ST06	35 86	$1 - \epsilon \cos \phi$	
	142	RTN	24	SETTING	;	198	i	81		
	143	≭LBL Ø	21 00	PRGM NOTE 2		19 9	CHG	-22		
	_144	RCLD	36 14		200	_268	STOI	35 46	-1 IN R _I	
	145	hme→	16 36			201	RTN	24	(TO SHOW B	RANCH)
	_146	X>8?	16-44	LONG POS ? (EAST	「)	282	#LBL9	21 89		
		GTUa	22 16 11_	LE LIOT ADD AVA		283		- ⁶¹ -		
	148	5	తు 	IF NOI, ADD 360		204	KULE	36 13		
150	143	d A	00 00			203	605	4 <u>6</u>		
150	151	ن ب	-55			200	ื่อ	80		
	152	6T0.	-33_			200	÷	-24		
	153	#1 Pla	21 16 11			289	+	-55	115F + 510	2NI
	154	1	81		210	210	ST06	35 86	$1 \pm \epsilon$ cos	
	155	5	85			211	1	81	1 + 6 005	φ
	156	÷	-24			212	STOI	35 46	+1 IN R,	
	157	FRC	16 44	FRAC OF LONG/1	5	213	RTN	24	(TO SHOW B	RANCH)
	158	STOI	35 46			214	#LBL5	21 85	PRGM NC	DTE 3.
	159	•	-62			215	abs	16 31		
160	160	5	85			_216	1	Ø1		
	_161	X>Y?	16-34			_217	XZY	-41		
	162	6106	22 16 12_	(GIO fb)		_218	X>Y?	16-34	$ \sin \theta > 1$?
	163	RULS	36 83_	E OF CENTRAL ME	R	219		81 24	REPLACE	BY 1
	104	Kuli	36 46	(BECAUSE OF DIVISIO	N	220	KIN	24		
	165	'	-45	BY 15, ABOVE APPLIES						
	167	~	-45	4 MIN/DEG CORREC-						
	168	ST03	35 A3	TION.)						
				LABELS		F	LAGS		SET STATUS	
NOT	E: D		ARD FNT			0		FLAGS	TRIG	DISP
				d le		1		ON OFF		
ARE	MAKK	ED							DEG	
REGI	STERS	•		3 4		2				
				8 9		3		3 0 0		n

3. GEODETIC DISTANCES AND BEARINGS

3.1. REFERENCES

- a. Erwin Schmid, Triangulation Position Computation Without Tabulations, unpublished Ms., National Geodetic Survey, July 1972.
- b. P. A. Smith and H. G. Massey, A JOSS Program for the Geodetic Inverse Computation, The Rand Corporation, P-4950, January 1973.

3.2. DISCUSSION

The programs usually written for great circle distances and bearings assume a spherical earth of some mean radius and employ the elementary formulas of spherical trigonometry. The results can be in error by as much as 20 kilometers. To the geodesist (which I am not), such programs are to be anathematized. But beyond the evident demands of surveying, there *are* applications in the military and international domains where much greater precision is required.

In 1828, F. W. Bessel gave the general solution for the geodesic on an ellipsoid of revolution. Two differential equations must be solved as part of Bessel's rigorous procedure.

Unfortunately for rigor, the geodesist's world is neither perfect nor static. Periodically, the semi-major and semi-minor axes of the geoid are changed somewhat in value. We recommend using WGS 72 (World Geodetic System 1972), now rather generally accepted, which assumes

a = 6 378 135.0 m b = 6 356 750.233 m,

and hence a squared eccentricity of

$$\epsilon^2 = 1 - (b/a)^2 = 0.006\ 694\ 407$$
 .

(The reciprocal of the flattening f is 298.256.)

The *forward* problem in geodesy takes the latitude and longitude of a station, an azimuthal bearing measured clockwise from north, and

a distance or geodetic segment, and asks for the geographical coordinates of the terminus of the segment. The *inverse* problem wants the geodetic distance between two stations, given their geographical coordinates, as well as the bearings of each station from the other.

3.3. EQUATIONS

The equations for the solution of these two problems are rather lengthy. To conserve space in this report, they are not reproduced here. They are found in Ref. b, available from The Rand Corporation, Publications Department, Santa Monica, CA 90406.^{*} For those readers who delve into this reference, note that in the *forward* solution programmed here there is a replacement in formula (8) of

$$\frac{1-k}{1+k^2/4}$$
 by $1-k$,

since $k^2/4$ is less than 1×10^{-6} , and there is a deletion in formula (10) of the term

$$\frac{29}{48} \text{ k}^3$$
 · cos 6 S' · sin 3 $\Delta\text{S}'$,

which is of the order 1×10^{-9} .

This is done to save scarce program space and to accelerate execution slightly. In comparing the results with the more exact values found by the National Geodetic Survey, the resulting latitude may be in error up to 0.2" (6 meters), and the longitude by considerably less than this.

3.4. PROGRAM NOTES (FORWARD SOLUTION)

(1) There are three places in the program where care must be taken to ensure that the arctangent gives an angle in the correct quadrant. The 'g tan⁻¹' function on the HP-67 produces angles only in quadrants I and IV, but the rectangular-to-polar-coordinate conversion provides the correct quadrant for +/+, +/-, -/-, and -/+. Key

^{*} Price to private individuals: \$3.00 postpaid.

in the y value, the numerator with its sign. Press ENTER. Key in the x value, the denominator with its sign. Press $g \rightarrow P$. Press $h \times \leftrightarrow y$ to get the angle.

(2) Stack manipulation is used in two places to hold values in stack storage until they can be placed in primary storage, avoiding the extra steps involving 'f $P \leftrightarrow S$ ' if secondary storage were used. It is good practice in such programming to use 'SST' in run mode and get successive traces of the stack contents by 'g STK'. (This is *pre*-bugging rather than *de*-bugging.)

(3) Because of program size (218 steps), the user is asked to make, if necessary, a simple final correction to the displayed longitude (8 and 9 under 3.5.1, User Instructions). It is important to use '360, CHS, h H.MS+' rather than straightforward subtraction in step 8.

Examples. The following comparisons with National Geodetic Survey values use their geoid constants of

 $a = 6\ 378\ 145.00\ m$ $b = 6\ 356\ 759.76\ m$ $\epsilon^2 = 0.006\ 694\ 545$.

Moreover, their *inverse* solutions (geoid distances as segment lengths) are used to check *forward* solutions. (<u>Note</u>: To convert kilometers to nautical miles, divide by 1.852 exactly.)

Let the station of origin be the municipal airport at Fairbanks, Alaska--64°49'08.95", -147°51'51.36". Then we find

Place	Los Angeles	Jakarta	Tel Aviv
Azimuth	135°12'18.42"	281°25'57.06"	357°45'26.32"
Kilometers	3961.6444	-11344.3480	-9259.2287
Latitude	34°02'59.93"	-6°10'00.16"	32°04'59.79"
∆ lat	0.07"	0.16"	0.21"
Longitude	-118°13'59.96"	106°49'59.93"	34°46'0000''
Δ long	0.04"	0.07"	0.00"

-32-

If the azimuth (bearing) is greater than 180° , the distance is entered as a minus quantity. The Δ 's show the difference with respect to the NGS's more accurate value (0.10" in latitude is about 10 feet).

3.5. PROGRAM NOTES (INVERSE SOLUTION)

(1) In this program also, the 2-parameter arctangent procedure must be followed to get angles in the correct quadrant.

(2) Again because of program space, we neglect terms involving k^3 and except for one case those involving $k^2.$

(3) On the first R/S if the number appearing (the difference in radians of the longitudes of the second and first stations) is greater than π , then key CHS, $h\pi$, 2, x, t, R/S. Otherwise we get the greater of the two geodesic distances between the stations. Of course, this is readily programmed but we do not have remaining available space.

We now repeat the above examples using the inverse solution.

Place	Los Angeles	Jakarta	Tel Aviv
Latitude	34°03'	-6°10'	32°05'
Longitude	-118°14'	106°50'	34°46'
Kilometers	3961.6406	11344.3418	9259.2221
Δ (meters)	3.8	6.2	6.6
Azimuth	135°12'18.62"	78°34'03.00"	02°14'33.65"
Δ AZ	0.20"	0.06"	0.03"
Back AZ	158°45'02.66"	155°07'39.00"	178°52'19.11"
∆ B/AZ	0.08"	0.01"	0.01"

In this program, azimuths are less than 180° and give the angle from N to the eastbound portion of the geodesic.

The accuracy should be acceptable to all but the most demanding user. We pay for this accuracy in the usual coin of increased computing time. The reader may wish to program using a mean earth radius and the formulas of spherical trigonometry, as mentioned in Sec. 3.2, to persuade himself. Because of lack of program space, the user must take account of three procedures:

- If both given latitudes are negative (Southern Hemisphere), change signs of *both* latitudes and *both* longitudes.
- If both stations have the same longitude (meridional arc), the program will show an error at step 044 (1/tan 0). In this case add 0.01' to one longitude (0.01) and run from the beginning, although the solution is unstable for such small differences in longitude.
- Registers A, B, C, D are used both for initial and intermediate storage. If a new problem is to be run with the same first station, its coordinates must be restored. You can, however, store the coordinates also in S6 and S7, being careful to precede and follow by f P \leftrightarrow S.

3.5.1 USER INSTRUCTIONS

	3.1 GEOGRAPHIC COORDINATES SEGMENT FROM GIVEN (FORWARD SOLUTION	OF A GEOD POINT 1)	DETIC Z	
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	LOAD DATA AND PROGRAM CARDS			
2	KEY LAT OF STATION (D.MS) STO A	64.4909	STO A	
	(-FOR S. LAT)]		
3	KEY LONG OF STATION (D.MS) STO B	- 147.5151		
	(-FOR W. LONG)			
	KEY AZIMUTH (D. MS) CLOCKWISE EDOM	125 1210		
4	NORTH STOC	135.1218		
5	KEY SEGMENT DISTANCE IN KMS CHS	<u> </u>		
	IF AZ > 180 , STO D (IF INPUT IS IN			
	NAUT. MILES KEY IN, MULTIPLY BY			
	1.852, STO D)	3961.64	STO D	
	······································			
6	PRESS A TO GET LAT (D.MS)		Α	34.0300
7	PRESS R/S TO GET LONG (D.MS)		R/S	-118.1359
8	IF LONG > 180 , KEY 360,			
	CHS, h H.MS +			
9	IF LONG < - 180 KEY 360, h H.MS +			
	6 STO 0 0.081 819 356			
	$\sqrt{1-\epsilon^2}$ STO 1 0.996 647 176			
	b STO 2 (IN KMS) 6 356 .75023		STO 2	
	· · · · · · · · · · · · · · · · · · ·			
	(WGS 72)			

STE	Р КЕҮ	ENTRY	KEY CODE	COMMENTS	STEP	KEY	ENTRY	KEY CODE	COMMENTS	
001	001	*LBLA	21 11			057	ST08	35 08]		
	002	DSP6	-63 06			053	RCL6	36 06 _		
	207	RAD	16-22	radian mode		053	4	04 _		
L	004	F i	16-24		060	L 665	Х	-35 _		
	035	RCLC	36 13			051	SIN	41		
	636	HMS→	16 36			052	8	0 8 _		
	007	C÷R	16 45			1063	÷	-24		
	0cs	XC Y?	16-34			1964	CHS	-22		
010	$+^{389}$	GSBU	23 88			1865	PCL8	36 88		
010	-1 010	STUE	35 15			666	X2	23		
	+	KULH	36 11			1050		-30		
	+	nnov Dap	10 30			000	RULD 2	30 00		
	$+e_{a_{1}}$	17K TAN	10 43		070	1002	<u>د</u>	-75		
			76 81			1 070	SIN	41		
	-1010	XULI	-75			872	PCI 8	36 88		
	+610	TON-	16 43			1077	XOLO	-35		
	+ 110	ST04	35 84			1974	+	-55		
	+3.0	COS	42			1875	RCI 6	36 06		
020	- 320	RCLE	36 15			1876	2	02		
	021	SIN	41			1077	X	-35		
	322	Х	-35			1079	+	-55		
	823	COS-'	16 42			T 879	ST09	35 0 9 -		
	024	ST0 5	35 05		080	T 080	1	01		
	625	RCLE	36 15]			e 81	RCL8	36 08		
	826	COS	42]			[Ø82	-	-45		
	027	CHS	-22]			[883	RCLD	36 14		
	828	ENTT	-21			084	χ.	-35		
		RCL4	36 04			1085	RCL2	36 02		
030		IAN	43	POLAR COORDS		1885	÷	-24		
	$+\frac{831}{972}$	7F V+V	34	σ ₁ IN CORR.QUAD		1687	5103	30 03 75-55 00		
	$+\frac{632}{977}$	0+1 STD6	75 86			+000	5175 RC17	35-35 63		
<u> </u>	-+ 000 1074	RCLE	36 15		090	1000	2	30 03 R2 T		
	-+ 035	COS	42			1001	x	-35		
		CHS	-22			1 992	SIN	41		
	-+ 037	ENTT	-21			1093	RCL9	36 09		
	-t 03S	RCL4	36 04			1094	2	0 2 ⁻		
	1039	SIN	41			1095	Х	-35		
040	640	RCLE	36 15			1096	COS	42		
	041	SIN	41			T 997	Х	-35		
	842	Х	-35]	TO GET λ_1, σ_1		Tøsε	RCL8	36 08]		
	043	÷P	34	IN SAME QUAD		099	χ2	53 _		
	044	X≢Y	-41		100	165	×_	-35		
	045	ST07	35 07			101	5	05		
		RULU	36 00			102	×	-35		
	+647	RULI	36 01		L	+103	. 8	8 8 24 -		
		PCLE	76 95			$+^{10+}_{105}$	-	76 00		
050		STN	30 03			$+\frac{100}{10c}$	RUL9 COS	30 03		
0.50	-+ 050	X	-35			+100	PCUS	76 97		
	-+ a52	TAN-	16 43			1103	SIN	41		
	1053	2	02			1_{102}	X	-35		
	054	÷	-24		110	T 110	RCL8	36 08		
	055	TAN	43			T111	X	-35		
	056	<u>X2</u>	53			L112	-	-45		
			- 10	REGI	STERS			- 15		
0	E	'√]- €	2 ² b	$^{3}\Delta s^{1}$, $\sigma \stackrel{4}{=} \psi_{1}, \psi_{2}$	⁵ Ψ.	n l ^e	່ σ ₁ , σ ₁	$\int \lambda_1, \lambda_2$	⁸ k ⁹ 25, ¹ .25	¹ .∆σ
S0		S1	S2	S3 S4	S5		6 1. Z	S7	S8 S9	·
Α	φ ₁	В	l ₁	c α ₁	D	±∆s	E	α ₁ *, Δλ	I	

3.6.1 FORWARD SOLUTION

3.6.1 PROGRAM LISTING

STEP	KEY	ENTRY	KEY	ODE		COMMENTS		STEP	KEY	ENTRY	KEY CODE	COMM	ENTS
	113	RCL3	3	6 03]					159	÷	-24		
	114	+	_	-55				170	170	CHS	-22]		
	115	3T0 9	3	5 09	$\Delta \sigma$				_171	RCL9	36 09]		
	115	RCL6	3	6 06					_172	SIN	41		
	117	+		-55					_173	RCL3	36 03]		
	118	ENT↑		-21	STAC	K			_174	2	8 2]		
	115	ENTT	_	-21	MAN	IPULATION			_175	Х	-35]		
120	122	RCL 6	3	6 06					_175	COS	42		
	121	+	-	-55					_177	X	-35		
	122	5103	ک ا	5 63	2σ				_178	÷	-55		
	123	XIY	-	-41					_179	RCL8	36 08		
	124	5106	5	5 86	σ_2			180	_180	2	02		
	125	2	75 0	. 07					_181	÷	-24		
	120	51+3	33-2	4 83	σ				_182	1	01		
	127	RULD	3	6 66					183	+	-55		
	120	51N		41	TO	NFT .			_194	RCL9	36 09		
	129	ENIT	-	-21		$j \in [\lambda_2, \sigma_2]$			_195	Х	-35		
130	138	RUL6	3	6 86	IN SA	ame quad			188	+	-55		
	131	005	-	42					_197	RCL5	36 05		
	132	KULD	3	6 83					_188	COS	42		
	133	005		42				100	189	X	-35		
	134	X . D		-35				190	190	RCL8	36 08		
	135	+F 11+11		34					_191	X.	-35		
	130	Ä÷ľ Futa		-41					192	4	64		
	13/	ENIT	-	-21					_193	÷	-24		
	138	RCL7	3	6 07					_194	RCLØ	36 00		
	139	-	-	-45					_195	X2	53		
140	148	STUE	5	5 15	$\Delta\lambda$				195	X	-35		
	141	XIY	_	-41					_197	1	01		
	142	5107	5	5 07	λ_2				198	RCL1	36 01		
	143	KGL6	3	6 66	-				192	-	-45		
	144	CUS	-	42				200	200	RCL5	36 05		
	142	KULƏ	3	6 83					201	COS	42		
	146	SIN		41					202	X	-35		
	147	A A LUTA		-35					283	RCL9	36 89		
	148	SINT	7	5 91	Ψ_2				204	Х	-35		
	143	5104	3	J 04 47					205	-	-45		
150	150		7	43 2 01					205	RULE	36 15		
	101	RULI	3	-24					207	+	-00		
	152	TAN-1	1	- 27 5 A7	4				288	KULB	36 12		
	100		1	6 43 6 46	Ψ2			210	209	H/15≠	10 30		
	155	A THE	1	6 7 6 6 75 1				210	-216	U≠K	10 40		
	155	7003 D/C	1	51					-211	+ D \ D	-55		
	100	Drig	7	2 99 T	DSP	LAI			212	K7U \UMC	10 40		•
	152	2		62 T					-213	פווחד עדם	10 33	DSP LON	G
	159	×		-75					214	5 I DI Q	21 66		
160	1.59	STN		41					-215	*LDL0 V+V			
100	12:	RCL3	3	6 93					-210	0+1 -	-45		
	162	4		A 4					210	DTN	24		
	157	X		-35					210	<u></u>	27		
	164	COS		42				220					
	155	X		-35									
	165	ECL8	3	6 08									
	167	X	-	-35									
	168	4		04									
					LAE	BELS			F	LAGS		SET STATUS	
A		В		С		D	E		0		FLAGS	TRIG	DISP
2		h		<u> </u>		d	e		1		ON OFF		DIGF
a				Č		С.	Ľ		Ľ			DEG 🗆	FIX 🗆
0		1		2		3	4		2		1 🗆 🗆	GRAD	SCI 🗆
5		6		7		8	9		3		2 🗆 🗆	RAD 🗆	ENG 🗆
1 [°]		1		ľ			1°		1		3 🗆 🗆		n

3.5.2 USER INSTRUCTIONS

	3.2 GEODETIC DISTANCE BETWEE AND THEIR BEARIN (INVERSE SOLUTIO	EN TWO STA' IGS DN)	TIONS, Z	
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	LAT. OF 1ST STATION, D.MS STO A	64.4909	STO A	
	- IF S. LAT			
2	LONG. OF 1ST STATION, D.M.S. STO B	-147.5151	STO B	
	- IF W. LONG.			
2	LAT OF 2ND STATION STO C	34.02		
	LAT OF ZIND STATION, STO C	34.03		
4	LONG, OF 2ND STATION, STO D	- 118, 1359	STO D	
<u> </u>		11011007		
5	PRESS A			
6	ON R/S, IF > π (3.1416),			
	KEY CHS, $h\pi$, 2, x, +, R/S			
7	ON NEXT R/S, SEE DISTANCE (KMS.)		R/S	3961.64
	ON NEVT D C CEE DEADING CTATION			105 1010
8	UN NEXT R/S, SEE BEAKING STATION			135,1218
	TO STATION 2 (< 100, FROM IN TO			
	EASTBOUND FORTION OF GEODESIC) D.MS			
9	ON LAST R/S. SEE BEARING FROM STATION			158,4502
	2 TO STATION 1 (AS ABOVE) D.MS			10011002
10	FOR S HEMISPHERE SEE NOTES			
	DATA CARD			
	€ STO φ 0.081 819 356			
	$\sqrt{1-\epsilon^2}$ STO 1 0.996 647 176			
	L STO 2 4 254 750 22			
	(WGS 72)			

STEP	KEY	ENTRY	KEY CODE	COMM	ENTS	STEP	KE	YENTRY	KEY COL	DE	c	MMENT	S
001	001	*LBLA	21 11				_ 351	7 RCL5	36	05_			
	+ 682	RAD	16-22	RADIAN N	NODE		_ 85:	5 +	-	-55_			
	+ 983	RULA	36 11			000	_ 05:	5 STO 8	35	0 8_			
	$+\frac{884}{805}$	HNS7	16 36			060	. 051	B RCLA	36	11			
	$+\frac{885}{885}$	U 7K TAN	16 45				_ 66.	I RCL7	36	07			
	$+\frac{96}{007}$	I HN PCL 1	76 01				_ 06i	2 CCS		42			
	$+\frac{e_{\partial c}}{a_{\partial c}}$	RULI	-75				- 65	÷	-	-24			
	$+\frac{600}{600}$	etno	75 11	tan			- 85-	i IAN-	16	43			
010	+ 610	RCIR	36 12				- 853 - 653	5 5109	35	40			
	†	HWSA	16 36				_ 601 0/1	5 LUD 7 DCL7	76	42 - 07			
	† 8:2	D→R	16 45				00	(КСШ7 С СТМ	30	41			
	1 013	STOB	35 12				- 22	0 X	-	-35			
	† 01÷	RCLC	36 13			070	- 20.	P FNTA	-	-21			
	1 015	HĦS→	16 36				- 37		36	R7			
	† 015	D→R	16 45				- 37	2 COS		42			
	1 317	TAN	43				Г <u>я</u> 7			34			
	T 018	RCL1	36 01				87	4 X # Y	-	-41			
	† 019	Х	-35				57	F P#S	16-	-51			
020	† 020	STOC	35 13	tan ψ_{a}			- 27	5 ST01	35	01			
	T 021	RCLD	36 14	ŕ 2			07	7 P ‡ S	16-	-51			
	1 322	HMS→	16 36				07	e RCL9	36	0 9			
	T 023	D÷R	16 45				[37.	9 C O S		42]			
	024	STOD	35 14			080	23	S RCL8	36	0 8			
	025	RCLA	36 11				23 _	: SIN		41			
	1 826	RCLC	36 13				E 8.	2 X	-	-35]			
	1 227	-	-45				_ 08	3 ENT†		-21			
	1 228	5103	30 83				_ 03	4 RCL8	36	0 8			
	$+\frac{623}{976}$	RULH	36 11				- 88	5 COS		42			
030	$+\frac{930}{97}$	RULL	30 13				- 68	5 →P ⊐ u+u		34			
	$+ \frac{60}{972}$	стл4	35 04				- 68	.' A∔T o D+e	16.	51			
	$+ a_{33}$	RCLD	36 14				- 00	o rea o otno	75	A2-			
	+ n74	RCLB	36 12			090	- 20. - ac	9 - 9102 9 - 9011	35	A1 -			
	+ 235	-	-45				- 23	5 KOLI 1 -		-45			
	+ e36	R∕S	51				- 69	? STO3	35	03			
	+ 837	STOE	35 15	0 - 0			- c9	3 RCL1	36	01			
	+ azε	2	0 21	×2 ×1			- 89	4 RCL2	36	02-			
	† 839	, ÷	-241				0 9	5 +	-	-55			
040	1 040	ST05	35 05	∆λ°∕2			- 99	S 2		02			
	841	*LBLB	21 12				T 09	7 ÷	-	-24			
	T 842	RCL5	36 05				23]	S ST0 4	35	04			
	643	tan Tan	43				<u> 3</u> 9.	? P ₽S	16-	-51			
	L 644		52			100	10	C RCL9	36	89			
		- KULJ	36 83	0. 040414	1		10	I SIN		41			
	645		-30	2 PARAM	tan " '		18.	2 RCL0	36	99			
	$+ \frac{e+i}{a}$	ENTI POLA	76 94				18.	3 X A DOLA		-35			
	+ 242	- ACL4	341				10	+ KULI F ∸	30	-24			
050	+ 050	. X2Y	-41				- 12	ο τ 5 τον-ι	16	47			
050	$+ a_{5}$	ENTT	-21				-10	7 2	10	A2-			
	+ 952	ENT†	-21				- ie	· -	-	-24			
	+ 053	RCL5	36 05				10	9 TAN		43			
	† 054	; -	-45			110	11	6 X2		53			
	T 055	5 ST07	35 07				11	1 PZS	16-	-51			
	<u> </u>	⊼ X ₽ Y	-41				11	2 <u>sto</u> 5	35	0 5			
					REGI	STERS							
0 e	:	$\sqrt[1]{1-\epsilon^2}$	² b	$ ^3$ tan ψ_1	4 tan ψ_1	δΔλί	2	⁶ Δλ ⁱ⁺¹ /3	² ⁷ λ.	i	⁸ λ ₂ ⁱ	9	Ψ_i
50		S1 :	52 :	$\frac{1-\tan \psi_2}{\log 2}$	$ran \psi_2$	S5		S6	57		S8		·m
	ľ	ς' σ'	$\int \sigma_2'$	[∞] ∆σ'	σί	Γ k			5,		100	39	
		Б			· · ·	D		E					
[φ ₁ /	′tan 4	′1 [¯]	<i>L</i> 1	$[\phi_2 /$	tan ψ_2		¹ 2	[¹	∆= l ⊃	ر - 2!	l ₁		

3.6.2 PROGRAM LISTING

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY	ENTRY	KEY CODE	сомм	ENTS
	117 CH	S -22			169	÷	-24		
	L 114	2 02_		170	178	CHS	-22		
		· -24_ A 76 0A				RUL5	36 85		
	117 ROL	- 30 0- 2 82			177	۸۳ ۲	-75		
	tiis x	-35			174	RCL3	36 03		
	119 CO	s 42 ⁻			175	SIN	41		
120	[12∂ ×	-35			176	RCL4	36 04		
	_121 RCL	3 3603			[177]	2	0 2]		
		N <u>41</u>			178	×	-35		
	$+\frac{123}{124}$ ×	-35_ 		180	175	COS	42		
		2 16-51 9 16-51		180	100	×	-30 76 85		
	125 RCI	1 36 A1			122	X	-35		
	127	1 01			183	+	-55		
	<u></u> 12ε +	-55			184	RCL3	36 03		
	[129 ÷	-24			185	÷	-55		
130	_130 P ≓	S 16-51			186	1	01		
	131 RCL	5 36 05			137	RCL5	36 05		
	132	Z UZ - 24			185	-	-45		
	-133 -7	-24 -45		190	182	÷ ⊳+c	16-51		
		3 36 0 3			191	RC1 2	36 02		
	136 ×	-35			192	X	-35		
	137 +	-55	-		193	R∕S	51	DISTANCE	
	[138 P ≠	s 16-51			194	1	01		
	[139 RCL	9 36 09]			195	ENTŤ	-21		
140	L140 CO	s <u>42</u>			195	RCL7	36 07		
	L 141 X	-35_			197	TAN	43		
	- 142	2 02 _24			132	RULH	36 11		
		a 36 0 0		200	122	6000 R/S	51		
	145 8	2 53			281	1	01	AZIMUTH	
	1:4ε ×	-35			202	ENT↑	-21		
	[147 RCL	E 3615			227	RCL8	36 08		
	∐148 +	-55			204	TAN	43		
	149	2 02			205	RCLC	36 13		
150	158 ÷	-24			285	GSBD	23 14		
	151 870	5 33 86 5 76 85			227	KIN wipip	21 14	BACK AZ	MUTH
	- 102 - NOL	-45			200	TON-	16 43		
	154 DSP	6 -63 06		210	1212	SIN	41		
	155 RN	D 1624			211	X	-35		
	155 X≠0	? 16-42	LOOP		212	CHS	-22		
	[157 GTO	C 22_13			[217	÷Р	34		
	_ 159 _ P ₽	s 16-51			214	X≠Y	-41		
	159 RUL	త చర⊎చ ా బా			215	R÷D	16 46		
160	- 100 - 121	2 0 2 -75			210	7875 • • • • • •	16 35 24		
	162 ST	-35 N 41			219	*LBLC	21 13		
	162 RCL	4 36 94			- 210	RCL6	36 06		
	1::+	4 04		220	228	ST05	35 05		
	E165 X	-35]			221	GTO <u>B</u>	22 12		
	1 <i>66</i> CO	s 42_							
	L157 ×	-35_							
	168	8 6 8-		I	F		T	SET STATUS	
A	В	с	D	E	0		EL ACC	TDIO	
а	b	c	d	e	1		ON OFF	Initi	DISP
				1					FIX 🗆
0	1	2	3	ļ*	<u> </u>				
5	6	7	8	a	3		3 0 0		n

4. REENTRY TRAJECTORIES

4.1. REFERENCES

- a. M. M. Moe, "An Approximation to the Re-Entry Trajectory," *ARS Journal*, January 1960, pp. 50-53.
- b. R. Blum, "Re-Entry Trajectories: Flat Earth Approximation," ARS Journal, April 1962, pp. 616-620.

4.2. DISCUSSION

For a body with zero lift and given weight-to-drag ratio (beta), entering the upper atmosphere at time 0 with assigned altitude, velocity, and path angle, find at desired time intervals the subsequent range, altitude, velocity, and path angle to impact.

An "exact" solution (an analytic solution is not possible) requires the numerical integration of two second-order differential equations, both highly nonlinear. The technique is to merge a program for the functions of the differential equations with a slightly retailored version of Program 20, which solves fourth-order differential equations, also providing on a separate card an initialization program to determine values for the variables at the first time interval, t = h. This merging, retailoring, and initialization is a useful model for similar applications in other work, when a particular set of equations is to be solved frequently.

The equations adopted are those for a nonrotating round earth. There are three assumptions:

- 1. In the weight-to-drag ratio $\beta = mg/C_D^A$, the drag coefficient is held constant, although it actually varies with Mach number;
- 2. Surface gravity g is used uncorrected for altitude by $(r_e/r)^2$, where r_e is the radius of the earth and r is the distance to the body from the earth's center;
- 3. The density of the atmosphere is approximated by $\rho(y) = 0.00237 \exp \{-y/24,000\} \operatorname{slug/ft}^3$, where $y = r - r_e$ is the altitude in feet (Ref. a).

-42-

We have at Rand an on-line, time-sharing program in JOSS, written by D. C. Kephart, which performs the numerical integration using the fourth-order Runge-Kutta formulas and a time interval of 1 sec. Hence a convenient base of comparison with the simpler and coarser predictorcorrector approach of Program 20 is available.

4.3. EQUATIONS

The basic variables are:

- r = distance from earth's center (ft)
- ϕ = polar angle from initial vector to current vector
- V = speed of the body (ft/sec)
- θ = angle measured positively downward from the local horizontal to the velocity vector.

In these variables, the equations of motion are

$$\frac{1}{r}\frac{d}{dt}\left(r^{2}\frac{d\phi}{dt}\right) = -\frac{F_{D}}{m}\cos\theta \qquad (1)$$

$$\frac{d^2 r}{dt^2} = r \left(\frac{d\phi}{dt}\right)^2 - g + \frac{F_D}{m} \sin \theta , \qquad (2)$$

where the drag force due to air is $F_D = \rho(y) V^2 C_D A/2$. We also have

$$r(d\phi/dt) = V \cos \theta , \quad dr/dt = -V \sin \theta$$

$$V^{2} = (dr/dt)^{2} + (r d\phi/dt)^{2} .$$
(3)

Using the variables

$$x = r_e \phi$$
 (range) $y = r - r_e$ (altitude)
 $u = x'$ $v = y'$,

the system of four first-order differential equations is

$$x' = u \qquad y' = v$$

$$u' = -\left[\frac{2v}{y + r_e} + \frac{g\rho(y)V}{2\beta}\right]u \qquad (4)$$

$$v' = \frac{y + r_e}{r_e^2}u^2 - g - \frac{g\rho(y)V}{2\beta}v ,$$

where

$$v^2 = (1 + y/r_e)^2 u^2 + v^2$$
.

As a matter of interest, it will be found by computing dV_0/dt and $d\theta_0/dt$ that for some reentry altitudes V can *increase* initially and θ can *decrease* (pitch-up). An example will illustrate these phenomena.

Turn now to the determination of x_1 , y_1 , u_1 , v_1 at t = h, the first time increment, which are values needed for the method of Program 20. This will be programmed to initialize the numerical integration. We have

$$x_{1} = u_{0}h + u'_{0}h^{2}/2 \qquad y_{1} = y_{0} + v_{0}h + v'_{0}h^{2}/2$$

$$u_{1} = u_{0} + u'_{0}h \qquad v_{1} = v_{0} + v'_{0}h ,$$
(5)

where h is the interval of integration (10 sec seems suitable).

The equations for the flat-earth approximation are found from (4) by putting $r_e = \infty$. The interested reader may wish to try programming this case along the lines of this section to compare the answers with those for a round earth.

4.4. PROGRAM NOTES

Program 20 is modified as follows:

- 1. At the beginning of LBL A, 4 is stored in registers D and E, replacing V_0 and θ_0 used during the initialization.
- Most of LBL 4 is deleted, since we are working with 4 equations and we want to compute velocity and path angle for display.
- 3. The subroutine programming of u' and v' is straightforward, but we have had to use program steps for g/2 and g because storage registers are not available.

Example. Reentry conditions at t = 0 are

$$y_0 = 250,000 \text{ ft}$$
 $V_0 = 30,000 \text{ ft/sec}$ $\beta = 1000$ $\theta_0 = 5^\circ$.

The tabulation below shows values at intervals of 30 sec, although the step size used was 10. The numbers in parentheses are the outputs of Kephart's more refined integration procedure. His density function was used,

$$0.0027 \exp \{-y/23, 500\}$$
,

instead of

$$0.00237 \exp \{-y/24,000\}$$
,

whose constants are stored on our data card (in S8 and S9).

After the "knee" of the trajectory the altitudes are in error by about 1000 ft low. The reason is that 10 sec is too great an interval in this region. If h = 2 sec is used, the maximum error in altitude reduces to about 80 ft and the other values are sensibly exact. And if h = 1 sec, the value used in Kephart's calculation, the maximum difference in altitude is 3.5 ft.

This is entirely of theoretical interest as a comparison of two methods of numerical integration: the fourth-order Runge-Kutta and the extended Hamming predictor-corrector method employed here. In the practical sense, the variation of the drag coefficient with Mach

TIME (sec)	x RANGE (n mi)	y ALTITUDE (ft)	ν VELOCITY (ft/sec)	θ ANGLE (deg)
20	97.33	199 751	29 993	4.60
	(97.37)	(199 753)	(29 987)	(4.58)
50	242.03	132 807	28 692	4.05
	(242.07)	(133 228)	(28 730)	(4.00)
80	363.79	80 636	19 009	4.27
	(364.40)	(81 490)	(19 176)	(4.19)
110	422.90	46 342	6 657	8.26
	(424.67)	(47 349)	(6 786)	(8.06)
140	441.84	19 889	2 109	23.19
	(444.03)	(20 860)	(2 218)	(22.36)
160	446.25	3 474	1 154	43.38
	(448.64)	(4 328)	(1 207)	(41.82)
170	447.37	-4 333	921	55.10
	()	()	()	()

number, the departure of the atmosphere from the ideal one used in the calculation and, above all, the probably asymmetric ablation of the nose cone can vitiate such accuracy. Taking h = 10 sec is a reasonable choice that minimizes computing time while yielding acceptable accuracy for the purposes to which this program should be put.

4.5 USER INSTRUCTIONS

	4. RE-ENTRY TRAJECT		5	
STEP	INSTRUCTIONS		KEYS	OUTPUT DATA/UNITS
1	LOAD DATA CARD (BOTH SIDES)			0.00
2	TIME INTERVAL h, STO D, STO 1	10		
3	β STO B, V STO D, θ_0 STO E (θ IS POSITIVE DOWNWARDS)	1000 30000	STO B STO D	1000.00
4	y₀ STO 6, STO 7	5 250000	STO E STO 6	5.00 250000
5	LOAD INITIALIZATION CARD		STO 7	250000 250000
6	PRESS E Y ₁		[] [<u>E</u> _]	224358.95
7	LOAD PROGRAM CARD			
8	PRESS A			
9	SEE t (h PAUSE)			20.00
	SEE RANGE n.mi. (f-x-)			57.32
	SEE ALT ft (f-x-)			199752.44
	SEE VEL ft/SEC (f-x-)			29989.44
	SEE ANGLE (f-x-)			4.60
10	IF MORE TIME NEEDED TO RECORD, USE R/S			30.00
	(NOTE: VALUES DO NOT AGREE			146.00
	WITH EXAMPLE IN TEXT BECAUSE			176225.76
	A DIFFERENT DENSITY FUNCTION			29870.78
	IS USED HERE.)			4.41

٦

4.6 RE- ENTRY TRAJECTORIES (INITIALIZATION)

ST	EP K		ENTRY	KEY CODE		COMMENT	S	STEP	KEY	ENTRY	KEY CODE	COM	MENTS
001	0	01	<u>*LBLB</u>	2:12		PRI_)			057	RCLA	36 11	(LBL9 NOT	NEEDED
	0	02	GSB9	23 09	¦ ∨₀ (COULD B	ERCLD		058	÷	-24	FOR INITIA	LIZATION
	- 0	03	1	81					059	1	Øi	SEE STER	° 002.
	0	64	6	96	g/ 2	2		060	060	÷	-55	BUT WILL B	E NEEDED
	0	05		-62					061	P ₽S	16-51	FOR RE-EN	TRY PRGM.)
-	u	06 07	1	61					062	RCL1	36 01	4	
-		67 00	x DCID	-33					063	X	-35	4	
		00 00	RULB	00 12 _24					064	λ- 50/ 5	33 74 05	ł	
010	- 1 å	10	PCI 7	76 87					063	KULJ Vo	30 UJ 57	1	
	- a	11	PIS	16-51	1 (SEC	-)			000	~~ +	-55	1	
	- i a	12	RCL9	36 09	1,0-1	•/			A68	1X	54	1	
	0	13	÷	-24					A 69	PZS	16-51	1	
	0	14	e×	33	1			070	070	RTN	24	110	
	0	15	X	-35]				071	*LBLE	21 15		
	0	16	RCLS	36 08]				072	RCLE	36 15	1	
	0	17	Х	-35					073 [COS	42]	
	0	18	STOC	35 13]gρ($(y) V_0 / 2\beta$			074	RCLD	36 14]	
	0	19	RCL5	36,85					075	Х	-35	$V_0 \cos \theta_0$	
020		20	P75	16-51	(PRI)			076	RCL6	36 06		
		21	2	62					077	RCLA	36 11	1	
F		22	X 7 10 1	-35					078	÷	-24	1	
	- 0	23 21	RULI	35 B/ 75 11	-			080	079	, L	01 55		
		24 05	KOLH	30 II FF				080	080	÷.	-33	$1 + y_0 / r_e$	
		20 07	+	-00	+				081	÷	-24		
		20 27	÷	-24	4				082	F#3	16-31 75 00	(SEC)	
—		27 28	กษร	-22	1				003	5100 CTA1	33 88 75 81	V and //	1 + / .)
-		20	P#S	16-51	1				004	PCLE	35 81 36 15	$v_0 \cos \theta / ($	(+y _o /r _e)
030	- A	20 30	RCI 1	36 81	1				005 086	STN		{	
	- l õ	31	X	-35	1 ~				A87	RCID	36 14	1	
	- 0	32	P ₽\$S	16-51	1.				088	X	-35	1	
	0	33	RTN	24	1 v ¹				089	CHS	-22	1	
	0	34	*LBLa	21 16 11	IIN	PRI.)		090	090	ST04	35 04	$-V_0 \sin\theta$	
	0	35	RCL7	36 07]				091	ST05	35 05		
	0	36	RCLA	36 11]				0 92	P ₽S	16-51	(PRI)	
	0	37	+	-55] y₀+	r _e			0 93	GSBB	<u> </u>		
	0	38	P₽S	16-51	(SEC	2)			8 94	P ₽S	16-51	(SEC)	
	0	39	RCL1	36 01					095	ST02	35 02		
040	ø	40	RULA	36 11	1				<u>896</u>	<u>P</u>		(<u>PRI)</u>	
	- 0	41	- vo	-24	4				097	6SBa	23 16 11	1	
		42 17	~~ ~	-75					098	P45 0702	16-01 75 07	J1	
		43 A A	~ ~ 7	-32				100	100	5105	33 00 12-51	Vo	
-	— a	45	2	00 02				100	100	r+3 Drig	76 90	ł	
	— ă	46	-	-62	, and a second				101	KCL0 X	-75	4	
-	-	47	2	62 62	1				102	P#S	16-51	(SEC)	
	a	48	-	-45					104	RCL4	36 04		
	- 0	49	RCLC	36 13	1				105	+	-55	ł	
050	- 0	50	RCL5	36 05					106	ST05	35 05	V1	
	- 0	51	Х	-35	1				107	RCLØ	36 00	1 '	
	- 0	52	-	-45	1				108	RCL2	36 02	1	
	0	53	P ≓ S	16-51	11				109	₽ ‡ S	16-51	(PRI)	
	θ	54	RTN	24	Vo.			110	110	RCLØ	36 00		
	0	55	*LBL9	21 09					111	Х	-35	1	
	0	56	RCL7	36 07	<u></u>				112	+	-55	I	
-		- <u>1</u> -		12			REGI	STERS			17		10
0	h	ľ	h	2	3	4		2	Ь	Уo	Γ΄ Υ _ο	°	9
S0		SI	 I	S2 1	53	S4		S5	s	6	S7	S8	59 0 1000
Ĩ.	υ _ο		υ _ο ,ι	J1 U0'		^1	$\nu_{\rm o}$	ν_0, ν	1	$\nu_{\rm o}$	Y ₁	.00237	- 24000
A	20903	3040	0 🖻	β		c (018)	D	Vo	E	θο	I	

STEP	KEYE	NTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMME	INTS
	113	P#S	16-51	(SEC)					
	114	ST01	35-01	^U 1	170				
	115	RCLØ	36 00						
	116	RULZ D+C	36 02 12-51						
	110	r+a Pria	16-J1 76 AA	(PKI)					
	119	X	-35						
120	120	2	02						
	121	÷	-24						
	122	÷	-55						
	123	RCLØ	36 00		100				
	124	X CTOZ	-35 75 07	~	180				1
	120	5103	30 03 16-51	$\hat{1}$					1
	127	RCL 4	36 Ø4	(SEC)					
	128	RCL6	36 06						
	129	₽ ‡ S	16-51	(PRI)					
130	[130	RCLØ	36 00						
	131	x	-35						
	132	2	02 07						
	133	÷	-24		100				
	134	Pria	-00 76 00		190				
	135	X	-35						
	137	RCL6	36 06						
	138	+	-55						
	139	ST07	35 07	у.					
140	[140	RTN	24						
	141	R/S	51						
					200				
					1 1			8	
150					SE	CONDARY	SICKAGE		
						6.00	3		
					l l	8.88	ž ž		
						0.00	2		
					1	0.00	33		
						0.60 0 00	5 7 9 5		
						0.00 0.01	, . 7 6		
						8.82			
					2.3	370000000-83	5 ε DEN	SITY CONS	TANT
160						-24006.00	9 ALT.	CONSTAN	Т
						20903040.00	EART	H RADIUS	(FT)
						ē.80	d B		
						U. UU 6 21	s L A D		
					ł	0.00 2.01	5 D 7 F		
		+		1	ł	e.a			
				1	l				
						T FLACE			
A	Ta	3		LABELS	E	PLAGS		SEISTATUS	
<u> </u>	1	² USE	ע ד		INITIALIZ	Ε[FLAGS	TRIG	DISP
^a USE	D	D	c	d	е	l'		DEG 🗆	FIX 🗆
0		1	2	3	4	2	1 0 0	GRAD	SCI 🗆
5		6	7	8	9 11000	3		RAD 🗆	ENG 🗆
1	ſ	-	ľ	-	USED				···

4.6 PROGRAM LISTING

4.6 RE-ENTRY TRAJECTORY PROGRAM (ROUND EARTH)

STEP	KEY	ENTRY	KE	Y CODE	E		COMM	ENTS	STEP	KEY	ENTRY	KEY CO	DE		COM	MENTS
001	001	*LBLA		21 1	1 (PRG	MNC	DTE 1)	T	857	DS71	16.25	46			
	002	DSP2		-63 0	2					8 58	PCI:	36	45			
	003	4		Ø	4					050	ACL I		-55			
	004	STOD		35 1	41				060	052	, 1720	16 25	15			
	1 005	STOE		35 1.	51					000	DOLI DCL:	10 23	45			
	1 006	3		A.	3					001	RULI	30	4.1			
	1 AA7	STOT		35 4	ž					062	4		04			
	1 448	CTOC		22 1	ž					063	х	•	-35			
	000			~ ~ ~			DD C L		+	U 64	+		-55			
010	009	#LBLU			5 I ()	SEE	PKGN	1 20)		0 65	5		<i>U</i> 5			
	010	6561		23 43	2					0 66	÷		-24			
	011	1521	16	26 4	6					8 67	ISZI	16 26	46			
	012	STOI		35 4.	5					0 68	ISZI	16 26	46			
	013	RCLØ		36 0	0					069	ISZI	16 26	46			
	014	х		-3:	5				070	070	STO:	35	45			
	015	2		Ø.	2					071	RCLD	36	14			
	016	х		-3.	5					872	1		01			
	017	DSZI	16	25 4	61					873	_		-45			
	018	DSZI	16	25 4	61					874	STOD	35	14			
	A19	RCL		36 4	5					975	V=02	16	-47			
020	1 828	+		-5	5					075	CT04	22	64 64			
	021	1977	16	26 4	ž					070	5104	10 00	17			
	1 021		10	76 A	š I				 	0//	1521	10 20	40			
	022	ROLI DOT	47	. 05 M	ž I				 	078	1521	16 26	46			
	023	0321	10	20 4 75 4	2				000	079	<u>G101</u>	22	01	(A ATERAL
L	024	5101		30 4	2				080	080	≭ LBL4	21	04	(PRC	GM 2	O STEPS)
	025	K+		-3						881	RCLE	36	15	077		
	026	1521	16	26 4	6					0 82	STOD	35	14			
	027	ISZI	16	5 26 4	6					083	GSB2	23	02			
	8 28	ISZI	16	5 26 4	6					084	RCL1	36	01	080		
	0 29	STO:		35 4	5					085	PSE	16	51	+		
030	1 030	RCLD		36 1	4					086	RCL3	36	03	082		
	1 031	1		0	11					087	6		06	002		
	† 0 32	-		-4	5					8 88	A		øа	(TO	GFT	NMI)
	033	STOD		35 1	4					889	8		8 8		011	•••••••
<u> </u>	1 834	X=02		16-4	3				090	005	a a		00 00			
	1 875	стоя: Стоя	1	22 0	ia					0.00			-24			
	1 076	1971	14	5 26 A	6					0021	-		-24	002		
	1 077	1521	12	, 20 4 с ос л						092	PRIA		-14	003	x	
L	031	1321		00 1	7					093	RCL7	36	07	089		
	030	6100	•	22 1	. 3					<u>094</u>	<u>_ PRTX</u>		-14			
	039	*LBL0		21 0	10 (SEE	PRGN	A 20)		095	GSB9	23	09			
040	j 0 40	RCLE		36 1	5					096	STOD	35	14		V	
	041	STOD		35 i	4					097	PRTX		-14			
	042	RCLØ		36 0	10					0 98	P ₽S	16	-51			
-	043	ST+1	35	5-55 A	11					099	RCL5	36	05	v		
	1 844	ESB2		23 A	2				100	100	P2S	16	-51			
	1 045	1		a	3				-	101	RCID	36	14			
	1 045	נ זהדפ ו		35 4	16					102	÷		-24			
	1 047	CT01		22 0	1					197	rus.		-22			
	041	+1 D1 1		22 0			DDC	1 201	1	100	C10-	12	41			٥
	1 040	+LDL1		21 0	15 (SEE	rkGr	vi 20)		105	DDTV	10	_1A			0
050	1 043	6301 1071		23 4 5 96 4						102	CT04	20	44			
050	1 000	1521	. 16	264						100	61UH		11			
	1 051	RULI		36 4						107	≭LBL 3	21	03	10-	~ \	
	052	· +		-5	00					108	P ₽S	16	-51	(SEC	_)	
	853	RCLE	1	36 Ø	10·					109	RCL1	36	01			
	054	x		-3	35				110	110	P ≠S	16	-51	(PRI)	
	055	2	:	Ø	12					111	RTN		24	Ū		
	056	x		3	35					112	≭LBL 7	21	07			
								REG	STERS							
0		1	1	2		3		4	5	6		7		8		9
S0		S1	1	52		S3		S4	S5	s	6	S7		S8		S9
								L								
A			в				С		D		E				I	
1									1							

4.6 PROGRAM LISTING

STEP	KEY	ENTRY	KEY CODE	COMMENTS	STEP	KEY	ENTRY	KEY CODE	COMM	ENTS
	113	P ₽\$Š	16-51			169	P ‡ S	16-51		
	114	RCL5	36 05		170	170	RTN	24 1		
	115	P≠S	16-51			171	≭ LBL9	21 09	(PRGM FC	DRV)
	116	RTN	24	v		172	RCL7	36 07	· ·	.,
	117	≭LBL B	21 12	(PRGM FOR u		173	RCLA	36 11		
	118	GSB9	23 09	SEE PREVIOUS		174	÷	-24		
	119	1	01	LISTING.)		175	1	01		
120	120	6	66			176	+	-55		
	121	•	-62			177	P ₽S	16-51		
	122	1	Ø1			178	RCL1	36 01		
	123	X DOLD	-33			179	Х	-35		
	124	KLLB	35 12		180	180	X۶	53		
	123		-24 75 07			181	RCL5	36 05		
	120	RULI D+C	30 07			182	Xz	53		
	120	Dria	10-J1 76 00			183	+	-55		
	120	KCL5 ∸	36 03 -24			184	√X N T	54		
130	170	ax	77			185	F45	16-51		
	130	E X	-75			186	<u>KIN</u>	24		
	132	₽CÎ 8	76 0 3 1			187	¥LBLZ D≠C	21 02		
	133	x	-35			188	F43 DCL7	76 87		
	134	STOC	35 13		190	187	RUL/	36 07 75 05		
	135	RCL5	36 05			101	510J PCI 7	33 83 76 87		
	136	P#S	16-51			102	CTO1	30 03 75 01		
	137	2	82			192	5701 P#S	16-51		
	138	x	-35			193	Pri 9	76 89		
	139	RCL7	36 07			195	ST07	35 ØZ		
140	140	RCLA	36 11			196	RCL5	36 85		
	141	+	-55			197	ST03	35 83		
	142	÷	-24			198	RTN	24		
	143	+	-55			199	R/S	51		
	144	CHS	-22		200					
	145	P‡S	16-51							
	146	RCL1	36 01							
	147	X	-35							
	148	P≠S	16-51							
	149	RTN	24							
150	150	*LBLa	21 16 11	$(PRGM FOR v^{1})$						
	151	RCL7	36 07	(
	152	RCLA	36 11							
	153	+	-55						-	
	154	P₽S	16-51		210					
	155	RCL1	36 01							
 	156	RCLA	36 11							
 	157	÷	-24							
	158	X2 	53							
100	109	× –	-35							
100	100	ა ი	<i>03</i>							
	101	2	02 20							
	162		-62 80							
	164		-45		220					
 	165	RCLC	36 13				+			
	166	RCI 5	36 85							
	167	X	-35							
	168	-	-45							
				LABELS		F	LAGS		SET STATUS	
^A STAF	۲۶	В	с	D E		0		FLAGS	TRIG	DISP
a		b	c	d e		1		ON OFF		
0		1								
0		1	2	3		ľ.				
5		6	7	8 9		3				n

5. SATELLITE ORBITAL ELEMENTS

5.1. REFERENCES

- a. R. H. Frick, W. I. Rumer, and E. H. Sharkey, *Trajectory and* Orbit Plotter Instruction Manual, The Rand Corporation, R-418-PR, October 1963.
- b. Space Planners Guide, USAF Air Force Systems Command, 1 July 1965 (For Official Use Only).

5.2. DISCUSSION

The orbital elements are

1.	Injection altitude	(n mi)	$^{\rm H}$ I
2.	Injection velocity	(ft/sec)	V _I
3.	Injection flight path angle	(deg)	Υ _I
4.	Period	(min)	Т
5.	Eccentricity	(dimensionless)	З
6.	Semi-major axis	(n mi)	А
7.	Perigee altitude	(n mi)	H D
8.	Apogee altitude	(n mi)	На
9.	True anomaly (at injection measured from apogee)	(deg)	ν _I

The program below solves two of many possible problems:

- A. Given 1, 2, 3 find the remaining elements.
- B. Given 1, 7, 8 find the remaining elements.

Reference b uses a sequence of nomograms to solve these problems. Some of these nomograms are difficult to read with any precision because of close interval spacing for relatively large increments.

5.3. EQUATIONS

In Fig. 5.1 distances are measured in units of earth's radius (3437.9 n mi) and velocity in units of $\sqrt{R_Eg_0}$ (25,943 ft/sec), the

Fig. 5.1 — In-plane orbital elements

surface orbital velocity, and g_0 , the surface gravitational acceleration (32.174 ft/sec²).

$$r = R/R_E$$
, $v = V/\sqrt{R_E g_0}$ (1)

$$C = R_{I}V_{I} \cos \gamma_{I} = RV \cos \gamma , \qquad c = C/\sqrt{R_{E}^{3}g_{0}} \qquad (2)$$

$$E_0 = \frac{V^2}{2} - \frac{g_0 R_E^2}{R}$$
, $E = E_0 / R_E g_0$ (3)

$$\rho^{2} = \left(\frac{1}{r_{I}} - \frac{1}{c^{2}}\right)^{2} + \frac{\tan^{2} \gamma_{I}}{r_{I}^{2}} .$$
 (4)

The orbital period is

$$T_0 = 2\pi \sqrt{\frac{R_E}{g_0}} |-2E|^{-3/2} .$$
 (5)

Other pertinent relations are

$$\frac{1}{r} = \frac{1}{c^2} - \rho \cos(\theta - v_{I})$$
(6)

$$\tan \gamma = -r \rho \sin(\theta - v_{I})$$
 (7)

$$\frac{1}{r_{a}} = \frac{1}{c^{2}} - \rho , \qquad \frac{1}{r_{p}} = \frac{1}{c^{2}} + \rho \qquad (8a,8b)$$

where r_a , r_p are the apogee and perigee distances,

$$\varepsilon = \frac{r_{a} - r_{p}}{r_{a} + r_{p}} \text{ (eccentricity)}$$
(9)

$$a = \frac{r_a + r_p}{2} \text{ (semi-major axis)} . \tag{10}$$
5.4. PROGRAM NOTES

Flag F3 (set by digit entry, cleared by test) is used to direct the program to Problems A or B. The program flow for Problem A (equation numbers in parentheses) is:

This program can be appreciably shortened by a judicious use of subroutines. A suggested exercise is to rewrite it to see how many problems other than A and B can be packed on one card.

5. SATELLITE ORBITAL ELEMENTS											
	$\begin{array}{ccc} A: H_{I} & V_{I} & \gamma_{I} \\ B: H_{I} & \end{array}$	Н _р	H _a								
		·									
STEP	PROBLEM A INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS							
1	KEY $H_{T}(n. mi.)$, PRESS A, SEE r_{T}	100		1.029							
2	KEY V_{T} (f.p.s.), PRESS B, SEE v_{T}	26000		1.003							
3	KEY $\gamma_{\rm T}$ (degs), PRESS C, SEE $\gamma_{\rm T}$	2		2.000							
4	PRESS f e			.046							
5	PRESS D, SEE H _p (n.mi.)			46.534							
6	PRESS E, SEE H _a (n.mi.)			405.442							
7	PRESS f a, SEE T _O (mins)			92. 866							
8	PRESS f b, SEE ϵ			.049							
9	PRESS f c, SEE A (n.mi.)			3663.9							
10	PRESS f d, SEE $\nu_{\rm T}$ (degs)			47.442							
	PROBLEM B										
1	KEY H _T , PRESS A, SEE r _T	150		1.044							
2	KEY H _p , PRESS D, SEE r _p	100		1.029							
3	KEY H _a , PRESS E, SEE r _a	600		1.175							
4	PRESS C, SEE $\gamma_{\rm T}$			2.273							
5	PRESS B, SEE $V_{\rm T}$			26047							
6	PRESS R/S			.454							
7	PRESS f a, SEE To			97.62							
8	PRESS f b, SEE €			.066							
9	PRESS fc, SEE A			3787.9							
10	PRESS f d, SEE $\nu_{\rm T}$			39,203							
	DATA CARD 0.00	00 00000 0									
	0.00	0000000 1									
		00000000 2 00000000 3									
	6.00	0000000 4									
		0000000 5 0000000 5									
		.900000 7									
		3.32000 8									
	29.8 6.80	426 0000 9 00 00000 A									
		00 0000 B									
		00 00000 C Ga gaga n									
		00 00000 E									
	0.00	00 00000 I									

5.6 SATELLITE ORBITAL ELEMENTS

STEP	KEY	ENTRY	KEY CODE	COMMENTS	STEP	KEY	ENTRY	KE' CODE	COMMENTS
001	001	*LBLA	21 11			057	χ2	53	[
	002	F3?	16 23 0 3			1058	+	-55	
	003	GTOØ	22 00			059	1 X	54	
	004	RTN	24		060	050	RCLØ	36 00	
	005	*LBLB	21 12		1	661	X	-35	
	006	F3?	16 23 03			1652	TAN-	16 43	
	007	GTO1	22 01			1067	ST02	75 82	Y
	ดดร	RCLC	36 13			051	PTN	24	1, 1
	600	52	54			965	*1 D: D	21 14	
010	610	172	52	C		1 000	#EDE0 570	16 27 97	
	011	RCIA	36 88	C		000	F07 5070	10 23 03	
	011		-24			1007	6:03 Dete	22 03	
	012	pri o	76 00	c/r _I		1000	RULL	37 13	
	010	COC	30 02			1 665	RULH	30 11	
	015		42	,	070	1 070	+	-22 _	
	010		-24	$c/r_{f} \cos \gamma_{f}$		071	1/X	52	
	616	RULS	36 68			072	5103	35 03	
	01/	Х	-35			073	1	01 _	
	818	ST01	35 01	V _T		074	-	-45 _	
	019	R∕S	51	-		075	RCL7	36 07	Hn
020	[020	RCLØ	36 00			076	Х	-35 -	4
	621	1/X	52	I/r,		077	RTN	24 -	
	022	RCL1	36 01	· 1		073	*LBLE	21 15	
	023	RCL8	36 08			T 079 -	F3?	16 23 03	
	824	÷	-24		080	T 030	GT04	22 04	
	025	χ2	53			1 881	RCLC	36 13	
	- 026	2	0 2 1			1 882	RCLA	36 11	
	827	÷	-24			1 887	-	-45	
	- n28	_	-45			1024	178	52	
	- 029	STOR	35 15	1E1		1 205	CTOA	75 84	4
030	- 272	RTN	24	1-1		1 005		35 64	
	7971	W RIC	21 17			1 000	1	-45	1
	0.01	*2020	16 27 87			1007	0017	-4J 7/ 07 -	4
	032	га: стло	20 23 03			1023	RULY	30 07	
	0000	0102 0017	76 87	r	000	1 053	× DTU	-35_	Πa
	005	KULO 170	30 83	'p	090	090	RIN	24	
	030		76 94	r		1 39:	*LBL0	21 00	
	630	RUL4	30 04	'a		1 092	RCL7	36 07	
	037	178	J2			093	÷	-24	
	838	+	-55			994	1	01_	
	039	2	02			1095	+	-55 _	1
040	040	÷	-24	- / 2		096	STOØ	35 0 0 _	r,
	041	STOC	35 13	l/c²		697	<u> </u>	24	•
	042	RCL3	36 03			098	*LBL1	21 01	1
	043	17X	52			L099	RCL8	36 0 8	J
	L 044	RCL4	36 04		100	130	÷	-24	
	L 845	1/X	52			101	ST01	35 01	v,
	[846	-	-45			102	RTN	24	1
	[047	' 2	0 2]			103	*LBL2	21 02	
	[048	÷	-24			104	ST02	35 02	γ,
	[049	STOA	35 11	ρ		105	RTN	24	-
050	F 050	RCLØ	36 00			106	*LBL3	21 03	
	F 051	178	52			107	RCL7	36 07	
	F 052	RCLC	36 13			T 108	÷	-24	
	[053	-	-45			I 105	1	01	
	[Ø54	. X2	53		110	T110	+	-55	
	L 055	CHS	-22			111	ST03	35 83	rp
	T 056	RCLA	36 11			1112	RTN	24	
				REGIS	STERS				
0 r_	1	1 v _	2 Y	3 r 4 r	5	6		7 R_	$ 8_{\rm p}/{\rm R}_{\rm p} $ $ 9\pi_{\rm p}/{\rm R}_{\rm p} $
L '1		'1	/1	p a				^N E	$V K_E 9 O \overline{60} V \overline{2 9 O}$
S0		S1	S2	S3 S4	S5	S	5	S7	S8 S9
А	D	В		C 1/-2	D		E	l e l	ī
1	r			'/c					

5.6 PROGRAM LISTING

STEP	KEY	ENTRY	KEY	CODE		COMMENTS		STEP	KEYE	ENTRY	KEY CODE	COMM	ENTS
	113	*LBL4	2	21 04					169	RCLI	36 01		
	114	RCL7	3	i6 07 j				170	170	X۶	53		
	115	÷		-24					171	2	02		1
	115	1		01					172	÷	-24		
		+ 0.704	-	-33	-				173	-	-45		
	118	5104 DTM	3	5 0 4] 24	'a				174	STUE	35 15	E	
120	120	#1 PL -	21 1	<u>24</u> 5 11					170	RULU	36 88		
	120	ALDLA DOLE	21 1	0 11 16 15					170		JZ		
	122	KOLL 1	J	0 13 A1					170	ROLL	JO 13. _45		
	122	1		-62					179	¥2	- 4 J 57		
	124	. 5		85				180	190	PCI 2	76 82		
	125	γx		31					181	TAN	47		
	126	1/X		52					182	RCLA	36 88		
	127	RCL9	3	6 09	Ta				183	÷	-24	1	
	128	x	-	-35	.0				184	X2	53		
	129	RTN		24					185	+	-55		
130	130	*LBLb	21 1	6 12					186	JX	54	1	
	131	RCL4	З	i6 04 ¹					187	STOA	35 11	ρ	
	132	RCL3	З	i6 03 ¹					188	RTN	24		
	[133	-		-45								1	
	134	RCL4	3	6 04]				190]	
	135	RCL3	3	6 83]]	
	136	+		-55									
	137	÷		-24	€								
	138	RTN		24									
	139	*LBLc	21 1	6 13									
140	148	RCL3	3	6 03								1	
	141	RUL4	ئ	6 84								}	
	142	+		-55								4	
	143	. 2		02				200				4	
	144		7	-24 15 07								4	
	145	KULI	J	-75	Δ							{	
	147	PTN		24								1	
	148	*1 81 a	21 1	6 14						+		1	
	149	RCL2		6 82								1	
150	150	TAN	-	43								1	
	151	RCLØ	3	6 00								1	
	[152	÷		-24								1	
	[153	RCLA	3	6 11 7]	
	154	÷		-24]	$\nu_{\rm I}$			210]	
	155	SIN-	1	6 41									
	156	RTN		24		A						1	
	157	*LBLe	21 1	6 15 _								1	
	158	RCLO	3	6 00 _								4	
160	159	RCL1	3	6_91				┝───┤				4	
100	160	PC1 2	7	6 82 -				┝				4	
	162	LOUZ LUS	3	42	{			┝───┤				4	
	153	x		-35	1			├ ───┤				1	
	164	χ2		53				220				{	
	165	17X		52								1	
	155	STOC	3	5 13	$1/c^{2}$							1	
	167	RCL0	3	6 00]]	
	168	1/8		52								1	
				<u> </u>	LAB	ELS	10		F	LAGS		SET STATUS	
<u>~ н</u>		□ V _I		с .	γ_{I}	⊔ H _p	E	Ha	0		FLAGS	TRIG	DISP
^a Tr		b 6		c /	4	^d ν _τ	eⅠ/	c ² E	1		ON OFF		
0 -		1 v		2 .	Y-	3 .	4	<u> </u>	2				SCI 🗆
<u>'I</u>		1*			<u>'I</u>	'p		'a	12			RAD 🗆	ENG 🗆
5		0		ľ		0	9		3		3 🗆 🗆		n

6. SATELLITE TRACKING

6.1. REFERENCE

a. R. Henson, "Computerized Satellite Tracking," 73 Magazine, February 1977.

6.2. DISCUSSION

Amateur radio operators make extensive use of OSCARS^{*} (Orbiting Satellites Carrying Amateur Radio) for long-range communications. The OSCARS are in near-circular, sun-synchronous polar orbits at an altitude of about 1500 km. OSCAR comes within range of any given spot on earth twice each day, local morning heading south and local evening heading north, and may be within range for as much as 25 min.

An ephemeris provides time and longitude of orbital equatorial crossings (EQX). The problem is: Given the latitude and longitude of a ground station, determine whether or not a given orbit can be viewed and, if so, find the time the bird rises over the horizon and from then on determine its range, bearing, and elevation at desired times until it disappears below the horizon. Figures 6.1 and 6.2, prepared by W. B. Graham (K6QB) of The Rand Corporation, show an elegant solution for his station in Pacific Palisades, California. (See examples below.)

The problem is clearly of military as well as amateur interest.

6.3. EQUATIONS

Notation:

- A = station latitude (north only)
- B = station longitude (- if west)
- β = orbital inclination measured counterclockwise from the equation (<90° posigrade, >90° retrograde)

^{*} For details on present and future OSCARS, see a series of articles in *QST* magazine (ARRL) starting with the January 1977 issue (Vol. 61, No. 1).

Fig. 6.1 — OSCAR 7 ascending

Fig. 6.2-OSCAR 7 descending

H = orbital altitude (n mi) T = orbital period (min) α = latitude of subsatellite point (SSP) at time t γ = longitude of SSP at t t = time from EQX (min) γ_0 = longitude of EQX northbound (- if west, t = 0 at this node) R_{F} = earth's radius (3437.9 n mi) D_0 = arc from station to ascending node (EQX) \boldsymbol{D}_1 = arc to point of tangency of suborbit with latitude $\boldsymbol{\beta}$ D_{\star} = arc to SSP of closest approach D = arc to SSP t_* = time of closest approach ${\tt t}_{\star} \stackrel{-}{+} \Delta {\tt t}_{\star}$ = time to rise above (go below) the horizon θ = bearing from station north ϕ = elevation above horizon

R = range from station to satellite (n mi).

By the law of sines,

$$\alpha(t) = \sin^{-1} \left[\sin \beta \cdot \sin (360 t/T) \right].$$
 (1)

By the law of cosines,

$$\gamma(t) = \cos^{-1} \left[\cos \left(\frac{360 t}{T} \right) \cos \alpha(t) \right] - \frac{t}{4} + \gamma_0 , \qquad (2)$$

where t/4 is the correction for the earth's rotation. Also by the law of cosines,

$$D(t) = \cos^{-1} \left[\sin A \cdot \sin \alpha + \cos A \cdot \cos \alpha \cdot \cos (B - \gamma) \right].$$
(3)

The equations for θ , ϕ , and R are:

$$\theta(t) = \cos^{-1} \left[\frac{\sin \alpha - \sin A \cdot \cos D}{\cos A \cdot \sin D} \right].$$
 (4)

$$\phi(t) = \tan^{-1} \left[\frac{\cos D - 1/(1 + H/R_E)}{\sin D} \right].$$
 (5)

$$R(t) = (H + R_E) \sin D/\cos \phi .$$
 (6)

The above equations are essentially those of Ref. a, except for (6).

Critical times are dealt with by the following equations (which are somewhat in error because their derivation assumes the suborbital trace of the satellite is a great circle, which is not true on a rotating earth). For the time t_* of closest approach,

$$t_{*} = \frac{T}{360} \tan^{-1} (\cos D_{1} / \cos D_{0}) , \qquad (7)$$

and the incremental times to zero elevation are

$$\Delta t_* = -\frac{T}{360} \cos \overline{D} / \cos D_* , \qquad (8)$$

where \overline{D} is the arc length to the SSP at zero elevation and

$$\cos \overline{D} = 1/(1 + H/R_{E})$$
 (9)

Finally, the period in minutes is

$$T = \frac{2\pi}{60} \sqrt{\frac{R_E}{g}} \left(1 + \frac{H}{R_E} \right)^{3/2} .$$
 (10)

6.4. PROGRAM NOTES

1. 045, 046: Change β to first quadrant to get latitude of orbit tangency.

2. 115, 116: For retrograde orbit, subtract in (2).

3. 117, 118, 119: These steps produce the sgn of t (\pm 1), since the HP-67 does not have this signum function.

4. 120, 121: For t < 0, south of the equator, move time backward so that posigrade and retrograde orbits reverse in getting SSP longitude by (2).

5. LBL ϕ corrects longitude if outside (-180, +180), γ > 180 becomes -360 + $\gamma,$ and γ < -180 becomes 360 + $\gamma.$

6. LBL 1 gets bearing clockwise from station north.

Example 1. In Fig. 6.1, the ground station is at 34°03'N and 118°33'W. The satellite is retrograde at an altitude of 790 n mi and has an inclination of 102°. Track the satellite when in view if the EQX is 110°W at time 0.

Solution.

34.03 f H (34.05) STO A; 118.33 f H (118.55) CHS STO B; 790 STO C; 102 STO D; 100 CHS STO E; -1 h STI.

A: T = 115.11, $t_* = 11.68$, -29.74 (will come in view). R/S: RCL 5, $\gamma = -100.39$; RCL 4, $\alpha = 1.31$ (SSP) R/S: RCL 3, t = 0.043; RCL 7, $\theta = 148.72$, RCL 8, $\phi = -1.27$ Time t for first appearance is slightly small. Try t = 1STO 3, PRESS B, RCL 8 and get $\phi = 0.51$. Try t = 0.8 and get -0.12, which is good enough. The following table is prepared by successively storing t in 3 and recalling 7, 8, 9:

t(3)	$\theta(7)$	<u>φ(8)</u>	<u>R(9)</u> (n mi = 1.1515 stat mi)
0.8	148.40	-0.12	2842
4	144.56	11.47	2154
8	132.20	34.11	1380
12	62.63	60.68	1014
16	1.62	31.70	1435
22	348.65	2.69	2654.

These values are plotted as solid bullets in Fig. 6.1.

Example 2. All values are those of Example 1, except the EQX is 70°E. Hence the satellite will approach Pacific Palisades from the north.

<u>Solution</u>. Proceed as before. Note $T/2 \doteq 57.5$ min and STO 3, Press B, RCL 7, $\theta = -124.39$ is the descending node (EQX, moving south). Time will now be measured positive to the south of the equator. STO -124.39 in register E. Change the sign of the inclination β to minus and STO D. Now go back to square one and redo the problem from LBL A on. The results are tabulated below and again plotted as solid bullets in Fig. 6.2 for comparison.

<u>t</u>	t(corr.)	$\underline{\theta}$	<u>\$</u>	<u> </u>	(stat mi)
-22	35.5	19.14	19	2847	
-18	39.5	23.88	14.95	1991	
-14	43.5	36.65	41.33	1241	
-12	45.5	61.85	61.46	1008	
-10	47.5	136.24	65.43	981	
-6	51.5	181.04	28.90	1506	
-2	55.5	188.51	8.23	2323	
+.5	58.0	190.72	47	2866	

Ephemeris EQXs are given in ZULU time (GMT or UTC - Universal Coordinated Time for the radio amateur). Correct for local station time.

1	6. SATELLITE TRACKING	5
	······································	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	STO DATA IN R_0 , R_1 , R_2			
2	STATION LATITUDE, STO A (CONVERT TO			
	DEC DEGS BY H IF NECESSARY)			
3	STATION LONGITUDE STO B (- FOR W. LONG,			
	CONVERT TO DEC DEGS BY H IF NEC)			
	······································			
4	ALTITUDE (n. mi.), STO C			
5	ORBITAL INCLINATION, STO D (CC FROM			
	EQUATOR)			
6	EQX LONGITUDE, STO E			
7	FOR POSIGRADE, 1 h ST I			
	FOR RETROGRADE, -1 h ST I			
8	PRESS A. FIRST f-x-SHOWS T			
9	SECOND F-x-SHOWS TIME OF CLOSEST			
<u> </u>	APPROACH			
10	ON R/S. IF NUMBER IS POSITIVE SATELLITE			
	WILL NOT COME IN VIEW.			
11	PRESS R/S ON HALT RCL 5 TO GET			
	APPROX LONG OF SSP ON FIRST			
	APPEARANCE, RECORD, RCL 4 TO GET			
	LATITUDE OF SSP.			
12	PRESS R/S. ON HALT, RANGE IS			
	DISPLAYED, RCL 3 TO GET TIME, RCL 7			
	TO GET BEARING, RCL 8 TO GET ELEVATION			

STEP	INSTRUCTIONS		KEYS	
13	ELEVATION WILL NOT BE EXACTLY 0.	DATAONIO		
	CHOOSE † TO ADJUST, STO 3, PRESS B			
	TO GET ADJUSTED ELEVATION.			
	REPEAT THIS REFINEMENT AS DESIRED.			
14	THEN $+$ STO 3 ($+ + 0$).			
	PRESS B. RCL 7 TO GET θ .			
	RCL 8 TO GET ϕ . RCL 9 TO GET R.			
	TRACK SATELLITE TO DISAPPEARANCE.			
15	SEE EXAMPLE 2, SECTION 6.4, FOR			
	DESCENDING ORBITS			
16	THE SSP LAT AND LONG ARE FOUND			
	BY RCL 4, RCL 5			

STEP	KE	ENTRY	KEY CODE		COMMENTS		STEP	KEY I	ENTRY	KEY CODE		С	OMMENTS	;
001	001	*LBLA	21 11					057	ST06	35 06	t_* -		(7)	
	003	RCLC	36 13					058	P≠S	16-51	(PRI)		(-)	
	003	RCL0	36 00 _	К _Е				059	ST03	35 0 3				
	004	÷	-24				06 C	050	<u>PRTX</u> _	<u> </u>	DSP	_t		
	L 005	1	01 _	/-				061	GSB4	23 04				
	L 006	+	-55 _	1+H/F	^K E			062	GSB5	23 8 5				
	007	' P≠S	16-51	(SEC)				863	GSB6	23 06	10-0			
	605	ST03	35 03					664	P≢S	16-51	L(SEC)		
010	009	- 1/X	52					065	ST05	35 05				
010	- 010	CO3-	16 42	=				666	RCL0	36 00	I	_	- · - · · ·	
	011	ST00	35 00	D (9)				867		-45	_IF>(),	SALW	ILL
	012	RCL3	36 03					068	<u> </u>	51			NOT (COME
	013	1	81					669	RCLU	36 00			IN VIE	EW
	014	•	-62				070	£70	COS	42				
	015	5	0 5					071	RCL5	36 05			()	
	016	γx	31					072	COS	42			(8)	
	017	P∓S	16-51	(PRI)				873	÷	-24				
	018	RCL1	36 01					074	CUS-	16 42				
	019	X	-35	()				075	RCL2	36 02				
020	020	P≠S	16-51	(SEC)				076	÷	-24],.			
	021	ST01	35 01	T (10))			077	ST07	35 87				
	822	2 3	03					078	F∓S	16-51] (PRI)			
	023	6	06					079	ST-3	35-45 03				
	Q24	0	00				080	080	GTOB	22 12				
	025	i ÷	-24					081	RTN	24				
	026	1/8	52					082	*LBLB	21 12				
	027	' ST02	35 02	36 0/T				083	GSB4	23 04				
	623	RCL1	36 01					084	GSB5	23 05				
	029	PRTX	-14	DSP	r (period)			085	GSB6	23 06				
030	030	P≠S	16-51	(PRI)				086	GSB7	23 07				
	031	. 0	00					087	GSB8	23 08]			
	072	ST04	35 04	α_0				988	GSB9	23 09]	_		-
	833	RCLE	36 15	~				089	RCL8	36 08	ו נוט [•	RANGE	
	034	<u>ST05</u>	35 05	γ ₀			090	098	RTN	24				
	035	GSB6	23 06					091	*LBL4	21 04			(1)	
	036	COS	42	(050)				692	RCL3	36 03		•		
	037	PZS	16-51	(SEC)	D			693	P75	16-51)		
	838	5104	35 04	COS	D_0			094	RCL2	36 02				
	833	RCL1	36 01					895	X	-35				
040	040	1 4	64					636	SIN	41				
	041	÷	-24					397	RCLD	36 14				
	842	P75	16-51	(PRI)				098	SIN	41				
	043	5103	35 03	T/4				099		-35				
	[044	RCLD	36 14				100	168	51N-	16 41] /			
	L 845	51N	41	PRGA	A NOTE I)			101	P75	16-51](PRI)			
	I 348	SIN-	16 41					102	5104	35 84				
	$\frac{04}{04}$	5104						103	RIN	24]			
	I 848	GSB5	23 05					104	*LBL5	21 05]		(2)	
	L 843	6586	23 06					105	RUL3	36 83	1/550	<u>۱</u>		
050	1 958		42					135	P75	16-51)		
	1 851	P75	16-51	(SEC)				137	RULZ	36 02				
	652	KUL4	36 04					163	× 000	-35	1			
) ÷ (• • • • • •	-24					103	0.05	42	1/001			
	1 054	i IAN-	16 43				110	110	P75	16-51				
	1 853	KULZ	36 82					- 111	RUL4	36 84	4			
L	056) ÷	-24					112	CUS	42	1			
		4		12	F	REGIS	TERS			17	Ie.			
⁰ 3437	.9	84.4	² 360	3	t l ⁴ α		ς ς	6	D	΄ θ	B	φ	9	R
S0 5		^{S1} т	S2 360/T	S31+I		D	55 Γ	S6	+	S7 At	S8		S9	
A			3 D			0	D D	 	'* E	'* ∼₋		I	 + 1	
	~		D		п			μ		<i>'</i> 0			÷ 1	

6.6 PROGRAM LISTING

STEP	KEY ENTR	Y KEY CODE	COMMENTS	STEP	KEY	ENTRY	KEY CODE	COMM	ENTS
		÷ -24]		169	*LBL7	21 07	(4)
		15" 16 42		170	170	RCL4	36 04		
	110 RU	LI JO 40 ∀ _75	$f \pm (POSI, REIRO)$		171	SIN	41		
		× -3J	4		172	rcla	36 11		
		17 76 9 7	(PRGM NOTE 3)		173	SIN	41		
	110 KO	AC 16 71	(174	RCL6	36 06		
120	120	÷ -24	SGN		175	CUS	42		
	121	× -35			170	X	-35		
	122 RC	13 36 03	4		177	PCL S	-4J 76 06		
	123	4 04	1		170	CIN	30 00		
	124	÷ -24	1	180	190	51M -	-24		
	125	45	1		121	RCIA	36 11		
	†125 RC	LE 36 15	1		182	COS	42		
	127	+ -55	1		183	÷	-24		
	†128 ST	'05 35 05	17		184	COS-	16 42		
	†129 A	IBS 16 31	1		185	ST07	35 07	θ	
130	130	1 01	1		186	RCL5	36 05	-	
	[131	8 08	1		137	RCL B	36 12		
	[132	0 00]		188	X>Y?	16-34		
	133 X	(ZY -41			189	GT01	22 01		
	134 X2	16-34	171>180	190	190	RTN	24		
	130 GI 1770 B		4		191	*LBL8	21 08	(5)
	136 R	10 21 89	(DDCAL NIGTE 5)		192	RCL6	36 06		
	137 #LD 170 DC	15 76 85	(PRGM NOTE 5)		197	COS	42		
	130 RC	15 36.05	4		194	P7S	16-51	(SEC)	
140	140 A	ES 16 31	4		195	KUL3	35 63		
	141	÷ -24	SGN		120	140	JZ .		
	142 RC	L2 36 82			121	 ₽+0	16-51	(DDI)	
	143	x -35	1		190	PCL6	36 86	(FKI)	
	144 C	HS -22	1	200	200	SIN	41		
	145 RC	L5 36 05	1		201	÷	-24		
	[146	+ -55]		202	TAN-'	16 43		
	[147 ST	05 35 05	CORRECTED LONG.		203	ST08	35 0 8		
	148 R	<u>IN 24</u>			204	RTN	24		
	149 ¥L6		(3)		205	*LEL9	21 09	(6)
150	130 RC	LD 3012	4		206	RCL6	36 06		
	101 KO 152	45	4		207	SIN	41		
	153 C	INS 42	4		203	KUL8	35 88		
	154 RC	14 36 04	4	210	203	<i>LUS</i>	42		
	155 C	05 42	4		210	ECLC	76 17		
	156	× -35	4		211	PCLO	76 88		
	157 RC	LA 36 11	1		217	+	-55		
	-158 C	'OS 42	1		214	x	-35		
	159	× -35	1		215	ST09	35 89		
160	160 RC	L4 36 04	1		216	RTN	24		
	[16] S	IN 41			217	*LBL1	21 01	(PRGM N	OTE 6)
	162 RC	LA 36 11]		218	RCL2	36 02	•	,
	153 5	1N 41			219	RCL7	36 07		
	165	∧ -30 + -55		220	220	-	-45		
	166 CO	S-! 16.42	4		. 221	5107	35 07		
	157 ST	06 35 06			_222	R IN	24		
	168 R	TN 24							
			LABELS			FLAGS		SET STATUS	
A	В	С	D E		0		FLAGS	TRIG	DISP
a	b	с	d e		1		ON OFF		
0	1	2	3 4		2			GRAD	sci 🗆
5	6	7	8 9		3		2 0 0	RAD 🗆	ENG 🗆
			1 1		1		13 11 11		· · · · · · · · · · · · · · · · · · ·

PART II

MILITARY MODELS

7. THE DEER HUNT (DEFENSELESS BOMBERS)

7.1. REFERENCES

- a. C. H. Builder, *The Penetration Integral and Tables*, The Rand Corporation, R-1257-PR, June 1973.
- b. N.J.J. Bailey, *The Elements of Stochastic Processes*, John Wiley and Sons, New York, 1964.
- c. A. T. Bharucha-Reid, Elements of the Theory of Markov Processes and Their Applications, McGraw-Hill, New York, 1960.

7.2. DISCUSSION

Reference a deduces an integral and constructs tables to assess the *expected* outcome of a one-sided, time-limited battle in which a set of armament-limited interceptors engages a set of defenseless penetrating bombers. The formulation also applies to a set of vessels transiting a minefield where each mine has a fixed number of warheads of some description. There are undoubtedly other military applications.

Builder's original paradigm is preferred. At the beginning of a hunt, there are A deer and B hunters, each of the hunters armed with m rounds of ammunition. Encounters are at random with parameter λ . A hunter can expend only one round on each engagement, with kill probability p. The hunt lasts T units of time.

In Ref. a, the parameters adopted are

$$j = \lambda pBT$$
 $k = pmB/A$, (1)

which provide a bridge to this discussion. The parameter j is the potential number of lethal encounters per deer during the hunt, based upon the expected encounter rate, while k is the potential number of lethal encounters per deer based upon the total hunter armament. The parameters λ and p are perhaps the more natural ones to employ.

A much simpler approach to finding the expected values than that of Ref. a is adopted here. This approach is adequately illustrated by the cases m = 1, m = 2. For m = 1,

$$\frac{\mathrm{d}a}{\mathrm{d}t} = -\lambda \mathrm{pab} \qquad \frac{\mathrm{d}b}{\mathrm{d}t} = -\lambda \mathrm{ab} \quad , \tag{2}$$

where a and b are, respectively, the number of deer and the number of armed hunters remaining at time t. Division gives a first integral $a = pb + \alpha$, where $\alpha = A - pB$. Whence

$$a(t) = \frac{A(A - pB)}{A - pB \exp \{-(A - pB) \lambda t\}}, \qquad (3)$$

and a(t)/A is precisely the P of Ref. a if (1) is used.

The a and b found by (2) were called the *expected* values. Actually they are the *deterministic* values. Using the methods of Ref. b (p. 118), which set up a partial differential equation for the moment-generating function,

$$\frac{d\mu_{10}}{dt} = -\lambda p \mu_{11} \qquad \frac{d\mu_{01}}{dt} = -\lambda \mu_{11} , \qquad (4)$$

where μ_{10} , μ_{01} are, respectively, the means or expected values of a and b, and μ_{11} is the correlation between a and b. Hence for (4) to agree with (2) we must have

$$\mu_{11} = \mu_{10} \cdot \mu_{01}$$

or Exp (ab) = Exp (a) • Exp (b). This is not true because the population sizes are mutually dependent. (See Ref. c, p. 184.) Consequently, we proceed with the understanding that we are dealing with deterministic values rather than expected values.

Turn to the case m = 2. At time t the values are a, b_1 , b_2 , where b_1 hunters have one round left and b_2 still have one round pouched. The deterministic equations are:

$$\frac{da}{dt} = -\lambda pa(b_1 + b_2) , \quad \frac{db_1}{dt} = -\lambda ab_1 + \lambda ab_2 , \quad \frac{db_2}{dt} = -\lambda ab_2 . \quad (5)$$

Two integrals are found immediately:

$$a - pb_1 - 2pb_2 = A - 2pb$$

(6)
 $b_1 = -b_2 \ln b_2/B$.

Whence,

$$\frac{db_2}{dt} = -\lambda p b_2^2 [2 - \ell_n b_2/B] - \lambda b_2 (A - 2pB) .$$
 (7)

For particular values of the parameters, (7) is readily integrated by Program 11 of the HP-67 Math Pac 1. The results agree exactly with those of the table for m = 2 in Ref. a.

In principle, for m > 2 numerical integration is possible. In practice this would be very time-consuming, if not infeasible, for the HP-67. The next section provides a completely different, al-though *heuristic*, approach.

7.3. EQUATIONS

Again take m = 2. (The symmetric equations to be derived are readily extended to a general m.) On each encounter, A decreases on the average by p. Hence a(n) = A - np is the expected number of deer just after the nth encounter. The average time to the next encounter is $\Delta t = 1/(\lambda a(n) \cdot b(n))$, where $b(n) = b_1(n) + b_2(n)$ is the remaining number of armed hunters after the nth encounter. Then

$$b_1(n + 1) = b_1(n) - 1$$
, $b_2(n + 1) = b_n$

with probability $b_1(n)/b(n)$, and

$$b_1(n + 1) = b_1(n) + 1$$
, $b_2(n) = b_2(n) - 1$

with probability $b_2(n)/b(n)$.

^{*} But see Sec. 20 for m = 3, 4 application.

Hence the *expected* next state is

$$b_{1}(n + 1) = [b_{1}(n) - 1] \cdot b_{1}(n)/b(n)$$
$$+ [b_{1}(n) + 1] \cdot b_{2}(n)/b(n)$$
$$b_{2}(n + 1) = b_{2}(n) b_{1}(n)/b(n)$$
$$+ [b_{2}(n) - 1] b_{2}(n)/b(n) .$$

These relations reduce to

$$b(n) \ b_2(n + 1) = [b(n) - 1] \cdot b_2(n) ,$$

$$b(n) \ b_1(n + 1) = [b(n) - 1] \cdot b_1(n) + b_2(n) ,$$

$$b(n + 1) = b(n) - b_1(n)/b(n) .$$
(8)

,

The program is arranged to show the history of the hunt by successive increments of Δt (the time between encounters), which increase in duration as the hunt continues. The program deals only with $m \leq 4$, although the HP-67 capacity is such that perhaps m = 8 could be handled.

Figure 7.1 compares the program output (circled dots) with a curve drawn from the tabular data on p. 14 of Ref. a. The agreement is very good, diverging slightly on the low side along the tail. Note that after 40 encounters:

T = 4.703, a = 0, b = 16.956,

$$b_4 = 2.371$$
, $b_3 = 5.193$, $b_2 = 5.545$, $b_1 = 3.846$.

As it should, 40 encounters did produce 10 as the expected number of kills. Also observe that

$$b_1 + b_2 + b_3 + b_4 = b$$
,

and

$$b_1 + 2b_2 + 3b_3 + 4b_4 = 40.00$$
,

which is the expected number of remaining rounds.

7.4. PROGRAM NOTES

1. The program is designed to show the running history of the hunt by successive engagements. A PAUSE of 1 sec displays the engagement time and the remaining expected number of targets. If more time is needed to record, key h SF 1, which will give a 5-sec f -x- flashing followed by a 1-sec PAUSE. At any time, stopping the program by R/S permits an examination of the current status of the hunt by

$$t(RCL 9)$$
, $a(RCL A)$, $b(RCL B)$, $b_4(RCL 8)$,

$$b_3(RCL 6)$$
, $b_2(RCL 4)$, $b_1(RCL 2)$

2. f LBL A directs action to the correct label for m by dissecting the input B.m and using GTO (i).

3. Extensive use of subroutines leads to program economy.

4. It will also be remarked that a systematic use of label and register addresses eases the programming.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	f CL REG (IMPORTANT)			
2	INITIALIZE BY STORING AS SHOWN ON			
	THE CARD. (20 HUNTERS, EACH WITH 4			
	ROUNDS IS STORED AS 20.4)			
3	PRESS A			
4	ON EACH PAUSE, + AND THE REMAINING			
	TARGETS a ARE DISPLAYED, TO MONITOR			
	THE HUNT			
5	IF MORE TIME FOR RECORDING IS DESIRED.			
	KEY h SF 1 TO GET A 5 SECOND PAUSE			
6	THE HUNT STATUS MAY BE REVIEWED AT ANY			
	TIME BY R/S THEN FOR			
	t (RC1 9)			
	g (RCL A)			
	h (RCL B)			
	^b 4(RC1 8)			
		l		
		<u> </u>		
		ll		
				1

7.6 THE DEER HUNT

STEP	KEY	ENTRY	KEY CODE	COMN	ENTS	STEP	KEY E	ENTRY	KEY CODE		COMM	ENTS
001	001	#LBLA	21 11				_ 057	STOP	35 6			
	002	RCLB	36 12	B.m			058	<u>6709</u>	22 (0 V	<u>IEXT ENG</u>	COUNTER
	003	STOI	35 46				059	*LBL3	21	1 3 m	1 = 3	
	_ 0 04	INT	16 34_	В		060	060	RCLB	36 1	2		
	005	STOB	35 12				061	5100	35 0			
	66	RCLI	36 46				062	5105	35 6			
	1 002	FRC	16 44				063	6108		8		
	1 888	1	U 1				064	*LBL8	21 0	R X		
010	1005		88 75				000	CTOI	JO 1 75 4			
	1 010	стот	-33	-			000	5/01	JJ 4			
	012	CT0:	22 45				1 968	Prin	36 8			
	012	+1 RI A	21 84				1 069	1/2	50 6	5		
	1 914	RCIR	36 12	m – 4		070	1 979	_	-	5		
	1 815	STOR	35 88				1 071	STOE	35 1	5		
	1 816	STOZ	35 07				1 072	RCL5	36 6	5		
	1 017	GT09	22 89				1 073	x	-3	15		
	015	#LBL9	21 09				074	ST06	35 6	6	SA	ME
	019	RCLA	36 11				075	GSBD	23 1	4	DAT	
020	T 020	STOI	35 46	a(n)			1076	RCL5	36 8	15	PAL	IEKIN
	021	1	01				077	RCL0	36 8	0		
	022	RCLO	36 88				078	÷	-2	24		
	623	1/X	52				079	+	-5	55]		
	024	-	-45_			080	080	ST04	35 e	14		
	625	STOE	35 15	1 - 1/b(n)			081	GSBC	23 1	3		
	026	RCL7	36 07		i		082	RCL3	36 8	13		
	027	X					083	RCLO	36 8			
	028	ST08	35 08	b ₄ (n+1)			084	÷	-2	24		
	1 829	6SBE	23 15				085	+	-5	20		
030	1 030	RULT	36 87				080	5102	30 0	2		
	1 031	KLLO	30 00				087	- 6386 - DrTZ	- 23 1	2 -		
L	+ 032	-	-24				+ 200	CTO5	JO 0 75 0	5		
	+ 033	STOR	75 86	h(n+1)		090	+ 290	RC14	35 6			
	1 935	GSRD	23 14	53(11 1)			1 991	STO3	35 0	3	PE	SFT
	1 036	RCL5	36 05				1 092	RCL2	36 0	2		
	1 037	RCLØ	36 88				1 093	ST01	35 6		VAL	DES
	1 238	÷	-24				094	RCLB	36 1	2		
	1 039	+	-55				1 095	ST0 0	35 8	10		
040	1 040	ST04	35 84	$b_n(n+1)$			†09€	GT08	22 8	6		
	1 041	GSBC	23 13	-2(097	*LBL2	21 6	2 m	n = 2	
	† 84 2	RCL3	36 0 3				1 098	RCLB	36 1	2		
	643	RCLØ	36 00				099	ST0 0	35 6	0		
	044	÷	-24			100	T 100	ST03	35 6	13		
	045	+	-55				101	GT07	22 0	17		
	1 046	5102	35 82	b ₁ (n+1)			102	*LBL7	21 6	"		
	+ 04/	- 6288	- 23 12				103	RULH	36 l			
	+ 040	CTO7	30 00 75 87				104	5101	33 4			
	+ 045	DCIE	35 07				+ 105	Pria	76 8		544	A E
050	+ 851	STOS	35 85				+ 107	1/X	50 6	2	5.00	
	+ 052	RCL4	36 84	RES	ET		+ 188	_	-4	5	PATT	ERN
	1 053	STO3	35 03	VAL	JES		+ 109	STOE	35 1	5		
	1 054	RCL2	36 82			110	110	RCL3	36 8	3		
	055	ST01	35 01				T 111	х	-3	5		
	056	<u>RCLB</u>	36 12				<u> </u>	<u>ST04</u>	35 8	4		
					REGIS	STERS						-
⁰ Ь(г	n)	b₁(n)	² b₁(n+1	$ ^{3} b_{2}(n)$	$\frac{4}{b_2}(n+1)$	⁵ b ₂ ((n) ⁶	$b_{2}(n+1)$) ⁷ b ₄ (r	n) ⁸	$b_{A}(n+1)$	⁹ t
50	<u> </u>	1	S2	S3	S4	S5	SE	<u> </u>	S7	s	8	S9
^ 4	Α, a(r	ר) ^ש	B.m, b(n) ^C	λ	D	p	E	1-1/	′b (n)	I m	, a(n)

STEP	KEY	ENTRY	KEY (CODE		COMMENTS		STEP	KEYI	ENTRY	KEY CO	DE	COMM	ENTS
	113	GSBC	2	3 13					169	RCLO	36	88		
	114	RCL3	3	683]	1			170	170	÷	-	24]		
	L115	RCL0	3	5 00 _					_171	-	-	45		
	116	÷		-24					_172	STOB	35	12	b(n+1)	
	117	+	_	-55 _					_173	RCLI	36	46		
	113	ST02	3	582					_174	RCL O	36	00		
	119	<u> </u>	2	3 12					175	x		35		
120	120	RCL4	3	6 84 -					_176	RCLC	36	13		
	121	5103	3	5 83 -					177	×	-	35	- /. /	
	122	RULZ	3	5 82 -		RESET			178	1/X	76 66	52	1/λα(n) b	(n)
	123	5101	3	- 12 -	1	VALUES		180	179	51+9	32-22	99	CURRENT	t l
	124	KULB	3	5 1 <u>2</u> 5 40 -	ł			180	180	RCLI	36	46		
	120	5100	3	. .	4				181	KULD	36	14	a (n) – p	
	120	#1 D1 1	2	1 41		1			182	CTOA	- 75	43	$\pi(\pi+1)$	
	+120	ALDLI PCIA	2	5 11 ⁻	m -				183	DCIA	33	11 60 -	a(n+1)	
	120	YZDO	1	5- 4 5 ⁻	a (n) ·	< 0 ?			104	E10	16 27	03 01		
130	1120	R/S		51					105	PPTY	10 25	14	CHECK FO	JK PSE
	+131	RUB	3	5 12 -		1)			100	PCE	16	51	t-x- t	
	132	STOR	3	5 88 -		1)			188	PCIA	36	11-		
	133	1	•	01 -	1				189	F12	16 23	A1 -		OR PSF
	134	-		-45	1			190	190	PRTX		14		(n+1)
	135	STOB	3	5 12 -	1				191	PSE	16	51	1-x- u	(11+1)
	136	RCLA	3	5 11 -	1 a (n +	1)			192	RTN		24		
	137	STOI	3	546	1 - \	• /			193	*LBLC	21	13		
	138	RCLD	3	5 14 -	1				194	RCLE	36	15		
	139	-		-45 -	1				195	RCL1	36	01		
140	T140	STOA	3	5 11 -	1				196	х	-	·35 T		
	T141	RCLI	3	6 4 6 ⁻	1				197	RTN		24		
	T142	RCL0	3	5 00 -]				198	*LBLD	21	14		
	[143	Х		-35	1				195	RCLE	36	15		
	[144	RCLC	3	5 13 -				200	200	RCL3	36	03		
	<u>[</u> 145	Х		-35					201	х	-	·35]		
	146	1/X		52					282	RTN		24		
	147	ST+9	35-5	509	CURR	ENT t			203	*LBLE	21	15		
	143	RCL9	اک	5 89					204	RCLE	36	15		
	149	F1?	16 2.	5 01					205	RCL5	36	05		
150	136	PRIA	4.	-14	† - × -	· t			205		-	.35		
	1,52	PRIA	7	5 JI 5 11 ⁻	1				201	<u></u>		24		
	+157	F12	16 2	7 A1 -										
	1154	PRTX	10 2	-14 -	L	$\pi(n+1)$		210						
	1:55	PSE	11	5 51 -	⁻	a(n+1)								
	1156	RCLB	3	5 12 -	h(n)	< 0.2								
	1157	X>0?	1	5-44 -		< 0 f								
	† 158	GT01	2	2 01 -	1									
	159	RTN		24 -	1									
160	160	*LBLB	2.	12	COMM	ON SUBROUT	INE							
	T151	RCLB	- 34	5 12										
	[162	X<0?	- 10	5-45 _] b (n)	< 0 ?								
	163	R∕S	_	51										
	164	RCLA	3	5 11										
	165	X(0?	10	5-45	a (n) ·	< 0 ?								
	166	K/5	-	51_										
		RCLU	31	5 00 _	1									
	L100	RULI	3	01		BELS			F		T		SET STATUS	
A R		BLA	•	С	<u> </u>	D h-	E	ba	0		E 40		TRIC	
0	144	b		c	-1		e	-3	1			OFF		DISP
							Ľ		SET	FOR PSE			DEG 🗆	FIX 🗆
0		¹ m =	1	2 m	= 2	³ m = 3	4 n	n = 4	2					
5		6		⁷ m	= 2	⁸ m = 3	⁹ n	1 = 4	3		3			n

8. A BOMBER PENETRATION MODEL (DEFENDED BOMBERS)

8.1. REFERENCES

None.

8.2. DISCUSSION

This penetration model is offered solely as an example of how the HP-67 can assist the analyst in his preliminary study of the factors bearing on a problem and how these factors interact. Modelmaking is, or rather should be, an art form drawing the essential elements from reality and illuminating their articulation. The author holds to the view that an initial model should be economical and transparent. The ornaments come later.

A group of bombers with integrated fire control for mutually supporting self-defense against interceptors makes a corridor penetration to a set of targets. The payload of a bomber can be divided at pleasure between defense missiles (AAM) and ground attack munitions (ASM). This loading is decided prior to the mission by choosing the number of AAM to be fired against each interceptor based on the expected number to be encountered. At equal intervals of time during the penetration, a clump of interceptors comes within range of the bombers' AAMs. *The bombers fire first*. Each of the surviving interceptors of the clump makes a single pass, allocating fire uniformly over the bombers, and then withdraws from the battle. As the battle progresses, more and more AAMs are fired per surviving bomber at the new interceptor clumps.

What bomber loading maximizes ASMs delivered on target?

8.3. EQUATIONS

B₁ = initial bomber force
B_n = bombers alive after nth engagement
A = AAMs per bomber
S = ASMs per bomber

K = A + r • S, the payload constant r = ratio of ASM to AAM weights k = AAMs expended per interceptor encountered Q = probability an AAM will miss an interceptor I = interceptors per clump q = probability an interceptor will miss its target N = duration of the penetration with unit of time the interval between interceptor mass attacks T = ASMs on target y**x = y^X.

Then

$$B_{n+1} = B_n \cdot q^{**}(I \cdot Q^{**}k/B_n)$$
(1)

because I \cdot Q**k interceptors survive and this divided by B is the expected number of passes per bomber.

The number of missiles fired per bomber on the nth engagement equals kI/B_n. Hence the number of AAMs per surviving bomber to target is

$$A = kI(1/B_1 + 1/B_2 + \dots + 1/B_N) , \qquad (2)$$

if the planning assumptions were realized in combat. The number of bombers surviving to target equals B_{N+1} , since after the last engagement by B_N they in turn receive return fire. Finally,

$$T = B_{N+1}(K - A)/r$$
 (3)

As k increases, B_{N+1} increases but K - A decreases. This tradeoff implies the existence of a k to maximize T.

For two reasons, no attempt is made to determine analytically the maximizing k: (1) For each k, the HP-67 program gives the outcome

quickly, and (2) this exploration is informative since it shows the sensitivity of the outcomes to k (as well as to the other parameters).

Example.

B = 10, K = 30, r = 3, Q = 1/2, I = 10, q = 1/2, N = 3

<u>k</u>	A	^B 4	<u>T</u>
2	7.30	5.31	40.19
1	4.72	1.95	16.40
3	9.87	7.52	50.47
4	12.55	8.73	50.78
3.5	11.19	8.22	51.54

Note how flat the bombs-on-target curve is for k = 3 to 4. Going from k = 3.5 to 4 decreases bombs on target by 1.5 percent, but *increases* bombers saved by 5 percent of the original force. This saving is not trivial if bombers are to be recycled for follow-on attacks. It illustrates the insight that quickly prepared "toy" models can provide.

8.4. PROGRAM NOTES

None.

	N MODEL	5	
STEP INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1 B STO B	10		
2 KEY K PRESS A	30		30.00
3 KEY r PRESS R/S	3		3.00
4 KEY Q PRESS R/S	.5		0.50
5 KEY I PRESS R/S	10		10.00
6 KEY q PRESS R/S	.5		0.50
7 KEY N PRESS R/S	3		3.00
8 KEY k PRESS B	3.5		51.54 T
9 THE REGISTER CONTENTS OF THE PROGRAM			
LISTING SHOW HOW TO RECALL OR REPLACE			
10 RCL 0			8.22 B
11 RCL A			11.19 A

8.6	BOMBER	PENETRATION

STEP	KEY	ENTRY	KEY CODE	COMMENTS		STE	P	KEY ENTRY KE		KEY CODE			COMMENTS					
001	001	*LBLA	21 11	INP	JTS		T		057	CHS		-	22					
	L002	ST01	35 01	Ιĸ					053	RCL1		36	01					
	L003	R∕S	51	1					059	+		-	55 _					
	L004	ST02	35 82	_ r			060		060	RCL2		36	Ø2 _			(3	3)	
	L005	R∕S	51						061	÷		-	24 _					
	L006	ST0 3	35 03	ļQ					062	RCLØ		36	00 _					
	L007	R∕S	51						063	Х		-	35 _		_			
	L003	STO4	35 04	I					064	STOC		35	13	ΙT	IS	DISP	LAY	ΈD
	L009	R∕S	51	1					065	RTN			24					
010	L916	ST05	35 8 5	9														
	611	R∕S	51	1														
	L012	ST06	35 0 6	_N														
	013	RTN	24															
	_014	*LBLB	21 12				070											
	L015	ST09	35 09	_ k														
	L016	RCLB	36 12															
	_017	ST00	35 00	_ B ₁														
	1018	1/X	52	_ _'.										1				
	L019	ST07	35 07	1/B₁														
020	L020	1	01	4	_													
	L021	STOI	35 46	1 h :	st I													
	022	GTOC	22 13															
	623	*LBLC	21 13	1										1				
	024	ISZI	16 26 46	1			080											
	L025	RCL3	36 03															
	026	RCL9	36 09]														
	L027	Υx	31															
	028	RCL4	36 04]														
	[023	Х	-35]														
030	636	RCLØ	36 00	Bn														
	[031	÷	-24]										1				
	[032	RCL5	36 05] g										1				
	033	XŦY	-41		GET 🗸	,x												
	034	γx	31]	/		090											
	035	RCL0	36 00															
	035	Х	-35															
	037	STOO	35 00] B										1				
	<u>Γ</u> 03ε	17X	52] "														
	T039	ST+7	35-55 07	Σ														
040	L043	RCL6	36 06															
	L041	1	01	1														
	042	+	-55	_ TO	GET 1	V + I												
	L043	RCLI	36 46															
	044	X=Y?	16-33	_ PEN	. COI	MPLETE ?	100											
	1045	GTOD	22 14	1														
	846	GTOC	22 13	Troc)P													
	1847	*LBLD	21 14	_														
	1048	RCLØ	36 00	_ B _{N⊥}	1									1				
	1049	1/X	52	_ "	•													
050	1620	51-7	35-45 07	_														
	1051	RCL7	36 07	1														
	1052	RUL4	36 84	-														
	1053	X	-35	4			-											
	+054	RCL9	36 89	-			110											
	1055	X	-35		(2)	`												
	056	STUA	35 11		(2	/	1				L			L	_			
		1	12			REG	STER	5	16					Q			0	
$ ^{\circ} B_{n+1}$	1	κ	r '	3	Q	I I	5	q	P	Ν	- I'	Σ1/	Bn	ľ			Э	k
50	·	S1		53		S4	S5		S6			7		58			S9	
ľ			52						100		ľ			ľ				
A		T	I B		lc	±	D			T	E				Tr			
ľ	Α		B		[Т	Ē			ľ	-				1			

9. DAMAGE PROBABILITIES, PVN AND QVN TARGETS

9.1. REFERENCES

- a. D. C. Kephart, Some Aids for Estimating Damage Probabilities in Attacks Against Targets with P and Q Vulnerability Numbers, The Rand Corporation, R-1168-PR, March 1973 (For Official Use Only).
- b. Physical Vulnerability Handbook--Nuclear Weapons, Defense Intelligence Agency, 1975 update.

9.2. DISCUSSION

The program in this section was prepared by D. C. Kephart of The Rand Corporation. He has also written the program for Texas Instruments' SR-52 hand calculator.

The program gives damage probabilities for nuclear weapons applied against PVN and QVN point targets at the optimal airburst height. For these two classes of targets 'psi' is given by:

Overpressure, psi = 1.1216×1.2^{V} (v = adjusted PVN) Dynamic pressure, psi = 0.02893×1.44^{V} (v = adjusted QVN)

9.3. EQUATIONS

Notation

VN.K = Vulnerability number

- V = Integer part of VN.K
- K = Fractional part of VN.K = [K-factor]/10
- w = Warhead yield in kilotons
- C = Weapon CEP in feet
- A = VN adjustment
- v = V + A adjusted vulnerability number
- R = Weapon radius in feet
- P = Single-shot probability of damage (SSPD)

Formulas for PVN

$$S = \frac{K}{2} \left(\frac{20}{w}\right)^{1/3} + \left\{ \left[\frac{K}{2} \left(\frac{20}{w}\right)^{1/3}\right]^2 + 1 - K \right\}^{1/2}$$

$$A = \ln(S^2)/\ln(1.2)$$

$$v = V + A$$

$$R = w^{1/3} [6383.35 \times 0.8836^{V}] \quad \text{if } v \le 20.5$$

$$R = w^{1/3} [1900.05 \times 0.9368^{V}] \quad \text{if } v > 20.5$$

$$P = 1 - \exp\left\{ -\frac{R^2}{2} / \left[\frac{C^2}{\ln(4)} + 0.04R^2\right] \right\}$$

Formulas for QVN

S satisfies the cubic equation

$$S = [SK (\frac{20}{w})^{1/3} + 1 - K]^{1/3}$$

$$A = \ln(S^{3})\ln(1.2^{2})$$

$$v = V + A$$

$$R = w^{1/3}[6561 \times 0.87918^{V}] \quad \text{if } v \le 15.4$$

$$R = w^{1/3}[23.42 + 2736.9 \times 0.92883^{V}] \quad \text{if } v > 15.4$$

$$t = 1 - \exp\left\{-R^{2}/2/[C^{2}/\ln(4) + 0.09R^{2}]\right\}$$

$$P = t \quad \text{if } t \le 0.82$$

$$Q = 2.826t - 0.94t^{2} - 0.866 \quad \text{if } t > 0.82$$

$$P = Q \quad \text{if } Q \le 1$$

$$P = 1.0 \quad \text{if } Q > 1$$
None.

9.5. USER INSTRUCTIONS

VN.K	Sto A	(K = K factor, 21Q7 = 21.7, 42P6 = 42.6)
Yield, KT	Sto B	
CEP, ft	Sto C	
PVN	Кеу А	Adjusted Vulnerability Number -pause-
QVN	Key E	Single-shot probability of damage (SSPD)
		Compute time 10-12 sec for PVN, 12-22 sec for QVN
Display SSPD	Key B	Calculate PD for one more shot
Key CEP, ft	Key C	Calculate SSPD [After Key A or Key E; quick SSPDs using new CEP values. Compute time 3 sec.]

EXAMPLE

	21.9	Sto A			
100	00 KT	Sto B			
500	00 ft	Sto C			
			Adj VN	Weapon Radius	SSPD
VN =	21P9	Key A	12.509	13575.496	0.973
VN =	21Q9	Key E	17.253	7891.371	0.732
Display	SSPD	Key B	PD = 0.928	8 (21Q9, 2 shots)	
Key	6000	Key C	SSPD = 0.6	527 (21Q9, 1000 KT	r, 6000 ft CEP)

Fig. 9.1 Damage probability program logic skeleton

9.5 USER INSTRUCTIONS

1 9. DAMAGE PROBABILITIES, PVN AND QVN TARGETS										
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS						
1	LOAD DATA AND PROGRAM									
2	VN.K SIO A 21P9	21.9		21.900						
3	YIELD (KT) STO B	1000		1000 000						
J		1000		1000.000						
4	CEP (FT) STO C	5000	STO C	5000.000						
5	PRESS A ADJ VN		Α	12.509						
	WPN RAD.			13575.5						
	SSPD			0.973						
6	WITH AROVE ENTRIES BUIT									
	A 21 Q 9 TARGET ADJ VN			17.253						
	WPN. RAD.			7891.371						
	SSPD			0.732						
7	IF CEP IS 6000 FT AGAINST 21Q9	6000		0.627						
8	FOR TWO SHOTS AGAINST 2109			0.941						
	(CEP = 6000)			0.001						
	(0)									

STEP	KEY	ENTRY	KEY CODE		COMM	ENTS	STEP	KEY	ENTRY	KEY CODE		COM	MENTS
001	001	*LELH	21 11	VN.	K (P)	√N)		057	PSE	16 51	DSF	, R2,	R ₁
	002	RUL5	35 05	IF N	IOT IN	I PRI,		058	χ2	53	3]	2.	1
	003) ∩26. D≠c	.10-44	CHA	NGE	TO PRI.		059	STO9	33 03	Rź,	R_1^2	
	004	<u> </u>	10-51		-		06(;	060	•	-6.		•	
	662	*LBL7	21 07.	PRI				061	0	00			
	000	· 4	02. ac					862	4	<u> </u>	<u> </u>		
	00,	0 0.00						063	¥LBL4	21 04			
	000		30 12 . _24					004	а сто7	-33 75 0		_D 2	00 p ²
010	A1A		25 14 75 14					866	PCIC	35 61	. 1.04	κ,	.07 K
	011	yx YX	31					867	XI BL 9	21 8	\		
	012	RCLA	36 11					068	χ2	5	ŝ		
	013	FRC	16 44					069	4	0-	1		
	014	X	-35		. 1/		070	070	LN	32	21		
	015	i stos	35 09	K (2	0∕w) [%]			071	÷	-24	+1		
	_Ø16	<u> </u>	_1 <u>6_23_02_</u>	<u>IN :</u>	<u>EC ?</u>			[072	RCL7	35 01	7]		
	017	GTC1	22 01					073	+	-53			
	018	2	02					074	1/8	52			
000	015	1 ÷	-24					075	2	62			
020	020	ň÷	00 51					076	÷ not o	-24			
	021		01 55					077	RULS	05 Ø2	<u>/</u>		
	022 027		-33 76 11					070	rue rue	-00	3		
	020 024	FRC	15 44				080	013 020	LN3	2.			
	R25	i –	-45					AS1	CHS	- 20	5		
	026		54					A82	1	<u>й</u>	7		
	827	RCL9	36 09					083	+	-5	5		
	023	2.	<i>62</i>					084	ST08	35 0	P (5)	
	029	÷	-24					085	RCL5	36 0	5 ' ``	- /	
03 0	030) + <u>.</u>	-55		(1)			086	X≠0?	16-42	IN IN	SEC ?	? (QVN)
	031	LK	32		(-)			087	- GTDa	- 22 TE T.			
	032	2	62		•			0 88	RCLS	36 00	🗄 🕇 DSF	'P (P`	VN)
	033	Х	-35	ln	S ²			089	RTŅ	24	4		-
	034	1	01,				090	090	*LBLa	21 16 11			
	035	•	-62					091	RCL8	36 08			
	036	2	92					092	•	-62			
	031	LN	32		(a)			093	8	08			
	1000 1070		-24	A	(2)			094	2	02		NCU	
040	035	KULH	30 11 12 74					<u>195</u>	<u>X</u>		BKA	NCH	
	B41		10 34	v (2)			096	6106 Dele	- 22 15 12 72 19			
	R42	PSE	16 51					027 000	Brio	36 I. 76 AS	(
	043	RCLØ	36 00	DSI		f = x = 1		A99	X	-74	,		
	844	X>Y?	16-34	BRA	NCH)	100	100		-62	1		
	045	GT02	22 02					101	9	09			
	046	R∔	-31	v				102	4	84	: 1		
	047	RCL4	36 04					103	RCLS	36 08	1		
	048	X≠Y	-41					104	X٢	53	7]		
	049	Υ×	31					105	Х	-35			
050	050	RCL3	36 03	D.4.D.				106	-	-45			
	051	X	-35	PAK		⁽ 2 (4)		107	RCLI	36 46			
	052	*LBL3	21 83 76 10					108	-	-45 75 de		(10)	
	B54	Prin	36 12 36 14				110	1109	5108	30 08	Q	(12)	
	055	YX YX	31				<u> </u>	111	X≨Y?	16-35	11≤	Q ?	(13)
	056	x	-35					112	RTN		-1	⇒ - ′	<u> </u>
						REG	STERS			-			
0 20 /	5 T	16383 3	5 2 0 8834	310	00 05	4 0 9368	5	6		7 04 P ²	8	Р	⁹ K(20/) ^{1/3}
20	_	0000.0	0.0000			0.7500				1.04K2		<u> </u>	K(20/W)
⁵⁰ 15.4	1	^{s1} 6561	⁵² 0.8792	2 332	3.42	⁵⁴ 2736.9	\$50.92	88 ^{S6}	0.001	^{\$7} 1, S	n 1-1	<,t,Q	$K(20/w)^{\frac{59}{3}}$
* V	'N.	K ^B	КТ		^c c	EP (FT)	D C	.3333	3 E	2.82	6	I	0.866

9.6 DAMAGE PROBABILITIES

9.6 PROGRAM LISTING

STEP	KEYE	ENTRY	KEY CODE	COMMENTS	STEP	KEY	ENTRY	KEY CODE	COMM	ENTS
	113	*LBLb	21 16 12	DSP P (QVN) (11)		169	INT	16 34	()	
	114	RUL8 PTN	36 US 24		170	170	+	-55	v (7)	
	116	#1 R1 2	21 82		+	171	PSE	16-51 74 00	DSP v (CA	AN USE f=x=)
	117	FLDEL	-31	v		173	X>Y?	16-34	v < 15.4	? ' ' '
	118	RCL2	36 02			174	<u><u> </u></u>	22 05	- '	
	119	X≠Y	-41			175	R↓	-31		
120	120	YX BOLI	31 76 91			176	RCL5	36 05		
	121	KULI X	36 01 -35			177	XZ) VX	-41 71		
	123	ST03	22 03	PART OF R ₁ (3)		179	PCI 4	31 76 04		
	124	*LBLE	21 15	VN. K (QVN)	180	180	X	-35		
	125	RCL5	36 05	IF NEC, CHANGE		181	RCL3	36 03		
	126	X=0?	16-43	to sec and		182	+	-55	PART OF	R ₂ (9)
	127	PZS CEO	16-51	SHOW BY F2		183	*LBL6	21 06		
	128	5F2 CT07	16 21 02 22 07			184	RULB	36° 12 76' 14		
130	130	*/ BL 1	21 01	(FROM 016)		185	KULU YX	30 14	w ¹ / ₃	
	131	1	01			187	x	-35	**	
	132	RCLA	36 11			188	PSE	16 51	DSP R. C	SP Ra
	133	FRC	16 44			189	χz	53	(CAN	LISE 1
	134	-	-45	I- K	190	190	ST09	35 09	((-)
	135	ST08	35 08			191	:	-62	• -	`′
	136	1 9707	01 75 07			192	6	00 00		
	137	#1818	21 08 21 08			193	ל הדח	20 22 04		
	139	RCL7	36 07			195	#1 BL5	21 05		
140	140	RCL9	36 09			196	R↓	-31	v	
	141	Х	-35			197	RCL2	36 02	÷	
	142	RCL8	36 08			198	X∓Y	-41		
	143	+ PCLD	-55 74 - 25			199	γ× 2011	31		
	144	KULD YX	30 14		200	200	RCLI	36 01 -75		D. (8)
	146	RCL7	36 87	S		201	- TOF	$-\frac{1}{22}\frac{35}{86}$	PARI OI	1757-1
	147	X≠Y	-41	on		203	R/S	51		
	148	ST07	35 07	S _{n+1}		204	*LBLC	21 13	(NEW CEP	2)
	149	XZY	-41			205	GTOS	22 09	`	,
150	150	÷	-24			206	*LBLB	21 12	ONE MO	RE SHÔT)
	151	_1	01 -45			207	CHŞ	-22	-Р	
	153	ABS	16 31	$ 1 - S_{-1} / S_{-} $		200	نـ ب	-55		
	154	RCL6	36 06		210	210	, X2	53		
	155	X≦Y?	16-35	TEST FOR ACC		211	CHS	-22		
	156	CT08		LOOP		212	1	Ø1	2	
	157	RCL7	36 U7 72			213	+	-55	1-(1- P) ²	
	138	1	32 Ø1			214	<u></u>	51		
160	160	-	-62							
	161	5	05							
	162	Х	-35							
	163	1	Ø1							
	164		-62		220					
	165	2 1 K	02 72							
	167	÷	-24	A (7)						
	168	RCLA	36 11							
				LABELS		F	LAGS		SET STATUS	
	٦A		RD ENTRIE			0		FLAGS	TRIG	DISP
						1			DEG 🗆	FIX 🗆
	SH	OWN B	SY			2		1 0 0	GRAD	SCI 🗆
						3				ENG ∐ n

10.1. REFERENCES

- a. FT 4.2-F-1, Firing Tables, Mortar, 4.2-Inch, M30, Department of the Army, December 1954.
- b. FM 23-92, 4.2-Inch Mortar, M30, Department of the Army, February 1961.

10.2. DISCUSSION

The 4.2-inch mortar, M30, is a rifled, muzzle-loaded weapon, known affectionately to the Army as the "four deuce." The tube, elevated at angles of 45° to 60° (800 mils to 1065 mils) delivers indirect fire to almost 5.5 kilometers, depending on the propellant charge, elevation, and round selected.

Indirect fire units use a meteorological message (a coded weather report) from division artillery in conjunction with unabridged firing tables to prepare firing data. As of 1961 (Ref. b) a rather timeconsuming and largely manual procedure was used, which even sacrificed almost all tabular interpolation to save time and avoid errors. This section shows how the procedure of that era would have been simplified had a programmable hand-calculator been available then.

The primary task is to reduce the tables, which were based on range firings conducted at the Aberdeen Proving Grounds, to a set of formulas. This is accomplished by data fitting, a task for which the HP-67 is admirably suited if one has at hand Program 3 of the Standard Pac and Program 14 (Polynomial Approximation) of Stat Pac 1. Mark that this data fitting is purely empirical. It is based in no way on the physics and mathematics of exterior ballistics.

The only problem posed by the tailoring of formulas to number streams is the choice of the formula type to be used. Initial guidance is provided by plotting families of curves and staring at them. (See Sec. 21.)

The resulting formulas are simple and so is the required programming. You pay for this double simplicity but can exploit it. The large number of constants generated by fitting exceeds available storage space. But because the program is short, there is space to put constants, sometimes rounded, in the program itself. This is program/storage tradeoff.

The next subsection gives formulas that correct the fire for nonstandard conditions, in the order in which they will be programmed. This is also the approximate order of the manual calculations in the examples of Ref. a. The program significantly modifies the methods of that reference in respect to automatic interpolations, allowance of difference in altitude of mortar and target, ballistic winds, and elevation corrections.

10.3. EQUATIONS

General

- This program is restricted to the M30 firing the HE shell M329 with extension (long-range fire).
- (2) The range of charges is 25.5 to 41 and increments of 1/8 are permitted.
- (3) Elevations are restricted to 800 to 900 mils (☆), since the tables are so restricted for charges above 32.
- (4) Hence charge is selected so that 850 \neq (47.81°) elevation gives the *approximate* desired range (1 \neq = 360/6400° = 0.05625 = 1/17.778).
- (5) Meters rather than yards are used (1 yd = 0.9144 m).

Notation

- H Altitude of mortar position in meters
- $R_{\underline{\ }}$ Chart range in meters
- R₁ Range corrected for difference in altitude of mortar and target
- R_2 R_1 corrected for metro and ballistic factors
- R(800) Range for E = 800 #, a function of charge m
 - ${\rm A}_{\rm c}$ Azimuth of fire (mortar to target) in mils, CW from N

-97-

- E_{a} 850 μ , the initial elevation
- E_2 Corrected elevation (\not{m})
- C The initial charge selected
- C₂ Corrected charge
- ω The angle of fall in mils (impact angle)
- T Powder temperature in F°
- VE Muzzle velocity error in ft/sec for lot used (0 if not known. This can be obtained only from trial firings.)
 - r Deviation in shell weight from . (−1, 0, +1). (Weight is measured in squares and stamped on the shell.)
- ${\rm H}_{\rm T}$ Altitude of target in meters
- H_M Altitude of meteorological data plane (MDP) in feet
- A_W Azimuth of ballistic wind in ☆ CW from N. (This is the direction *from* which the wind blows. It is an average of winds up to the maximum ordinate of the trajectory.)
 - α Angle between $A^{}_{0}$ and $A^{}_{W}$ 3200 in degrees
- $\delta_{0}^{}$ Density of the air as percent of standard for the MDP altitude
- $\boldsymbol{\delta}_{_{\!\boldsymbol{1}}}$. Corrected density for mortar altitude relative to MDP
- W Ballistic wind in miles per hour
- d Drift deflection because of shell rotation (always to the right)
- D Deflection correction, final $(\not n)$
- P_1 Correction for range wind (tail or head), meters
- ρ_{2} Correction for round weight, meters
- ρ_3 Correction for powder temperature, meters
- $\boldsymbol{\rho}_{\underline{\boldsymbol{\lambda}}}$ Correction for actual air density, meters
- $\rho_{\scriptscriptstyle 5}$ Correction for VE, meters

- $\rho = (\rho_1 + \rho_2 + \rho_3 + \rho_4 + \rho_5)$, meters
- P Change in muzzle velocity due to change in powder temperature (ft/sec)

Metro Msg

 H_M , A_W , W, δ are known when the Metro Message is "solved." The message also gives air temperature, which is not relevant for mortar calculations. The message has 12 lines in addition to the heading. The initial digit is the standard altitude number. The correspondence is

Alt. No.	0	1	2	3	4	5
Height (ft)	0	600	1500	3000	4500	6000
Alt. No.	6	7	8	9	0	1
Height (ft)	9000	12000	15000	18000	24000	30000

The lines of the message give A_W , W, δ (and air temperature) appropriate for the maximum ordinate of the trajectory resulting from any particular combination of range, charge, and elevation.

For this program (800 $\not\!\!n \le E \le 900$ $\not\!\!n, \ R \ge 3250$ m), always use line 4 except

$$C = 25.5$$
 Line 3

 $C = 41$
 Line 5

 $C \ge 36$
 and $E \ge 850$
 Line 5

Formulas

$$E_{o} = 850 \, \text{m} \tag{1}$$

$$C_{o} = 11.932 \exp(0.000231 R_{o})$$
 (2)

$$\omega = (867 + 4C_{o})(360/6400)$$
(3)

$$R_{1} = R_{o} + (H_{T} - H_{o})/\tan \omega$$
(4)
(R₁ > R_o if target is above mortar)

$$\begin{split} \delta_{1} &= \delta_{0} - 0.003 \ (H_{0}/0.3048 - H_{M}) \ &(5) \\ &(H_{0} \text{ is changed from meters to feet}) \ &\alpha &= 0.05625 \ (A_{W} - 3200 - A_{0}) \ &(6) \\ d &= 0.064 \ E_{0} - (C_{0} + 1)/2 \ &(7) \\ D &= -[d + 0.8 \ W \sin \alpha] \ &(8) \\ &(The tube is pointed for firing at A_{0} + D \ m) \\ \hline &------ \\ \rho_{1} &= (0.325 \ C_{0} - 4.682) \ W \cos \alpha \ &(9) \\ &(The term in parentheses is the unit effect for a tail wind of 1 mph, Col. 15 of tables) \\ \rho_{2} &= (17.879 \ \ln C_{0} - 72.914) \ r \ &(10) \\ &(Unit effect in parentheses Col. 17) \\ P &= -23 + 0.68 \ T - 0.005 \ T^{2} \ , \ T \leq 70^{\circ} \\ &= 15.29 - 0.48 \ T + 0.0038 \ T^{2} \ , \ T > 70^{\circ} \\ &(Table of App. A of Ref. a, fitted) \\ \rho_{3} &= (16.3 - 2.5 \ \ln C_{0}) \ P \ &(12) \\ &(Unit 1 \ percent effect in parentheses Col. 18) \\ \rho_{4} &= (11.037 - 0.7293 \ C_{0})(\delta_{1} - 100) \\ &(Unit 1 \ percent effect in parentheses Col. 16) \\ \rho_{5} &= (16.3 - 2.5 \ \ln C_{0}) \cdot VE \ &(14) \\ \rho &= -(\rho_{1} + \rho_{2} + \rho_{3} + \rho_{4} + \rho_{5}) \\ &(Note the - sign) \\ \end{split}$$

$$R_2 = R_1 + \rho \tag{16}$$

This is the corrected final range.

$$C_{2} = 11.932 \exp (0.000231 R_{2})$$
(17)
(This is the corrected charge for E = 350 $\#$.
It is to be rounded to the nearest 1/2
charge.)

$$R(800) = 52.51 + 81.73 C_2$$

$$+ 2.96C_2^2 - 0.043 C_2^3$$
(18)

(Fitted from bottom line data of tables)

$$E_2 = 800 + [6.416 - 0.093 C_2][R(800) - R_2]^{0.712}$$
 (19)

This is the final elevation at which to lay the tube. Note the correction of C₀ using E = 850 # and the final R₂. But then E = 850 # is forgotten and the procedure is to go to *new* formulas to get E₂ with respect to the baseline elevation E = 800 #. This procedure yields a small correction to the initial 850 #.

<u>Note</u>: Because of lack of program/storage space, formula (11) is rewritten as

$$P = -(0.02 \ \Delta T + 0.005 \ \overline{\Delta T}^2) \qquad \Delta T \le 0$$
(20)
= 0.05 \Delta T + 0.0038 \overline{\Delta T}^2 \qquad T > 0 ,

and the user enters $\Delta T = T - 70^{\circ}$, the deviation from the standard powder temperature with the proper sign.

Checks

To provide program verification, a step-by-step example is calculated manually. These results are then compared with the Army's field procedure, which does not require interpolation and rounds off various values. *Yards* instead of meters are employed in these checks.

 $R_o = 5320$ (nearest 10 yd), $H_o = 1505$ ft, $H_T = 1210$ ft, $A_o = 4825 \text{ ft}$, wgt = \bullet (r = -1), T = 55°F, VE = -12 ft/sec.

Solving the Metro Message (heading and line 5),

M 1 F 1 2 0 8 3 0 3 5 2 6 2 5 9 5 7 8 5,

we get: message from Station 1F, MDP = 1200 ft, as of 0830 hr; this is msg type 3 (for mortars); standard altitude for line 5 is 6000 ft; ballistic wind blows from 2600 \neq , strength 25 mph; air density is 95.7 percent, and air temperature is 85°F.

The above conditions were taken from Ref. a. They could be realized, for example, at Hunter Liggett Military Reservation in California on a day in November with Santa Ana winds blowing. Use Map Series V895S, Sheet 1755 1 NW, 1:25000. Put the mortar position on Hill 1516 (66960 73900) and the target close to the junction of two dirt roads and almost in the bed of Fria Creek (62095 74000).

Quantity	Field Method	Formulas
R	5300	5320
о Н	1500	1505
E	847	850
C	36.5	36.71
ω	1009	1014
R ₁	5255 [*]	5256
δ	94.8	94.8
d	38	35.6
D	-57	-52
ρ ₁	113	114
ρ ₂	9	9
ρ ₃	-15	-11
ρ ₄	88	90
ρ ₅	-91	-96
ρ	104	106
R ₂	5151	5150

Note: Yards rather than meters are used below.

The field method now selects a new charge for which the adjusted range R_2 is bracketed by a 50-yd tabular interval in the tables. Interpolation is now used in general. Here we can read off

 $C_2 = 35.5$ $E_2 = 854 \text{ fm}$.

Formula (17) yields $C_2 = 35.41$. Round this to $C_2 = 35.5$ and obtain, via (18) and (19), $E_2 = 853 \not a$.

10.4. PROGRAM NOTES

"When I know more of gunnery Than a novice in a nunnery, I'll be the very model Of a modern Major-General."

- W. S. Gilbert, The Pirates of Penzance, 1879

* The field method corrects 5320 by 1/2 the altitude difference in yards or by -50 yd. We have used the more accurate value -65 yd.

.3048 STO 7, 9/160 h ST I f P <-> S 11.932 STO 0, .000231 STO 1, 4.682 STO 2, 17.879 STO 3, 72.914 STO 4, .0038 STO 5, 11.037 STO 6, .7293 STO 7, 52.51 STO 8, 81.73 STO 9. f P <-> S RUN. f W/DATA. RECORD BOTH SIDES.

10.5 USER INSTRUCTIONS

	1 10. FOUR DEUCE	S	2	
STEP	INSTRUCTIONS		KEYS	
1	LOAD DATA AND PROGRAM CARDS	EXAMPLE		
2	H _a (m) STO A	459		
3	R _o (m) STO B	4864.6		
4	A _o (m/) STO C	4825		
5	H _T (m) STO D	369		
6	r STO 0	-1		
7	T (°F) STO 1	- 15		
8	VE (fps) STO 2	- 12		
9	H _M (ft) STO 3	1200		
10	Aw(m/) STO 4	2600		
11	W (mph) STO 5	25		
	δ _o STO 6	95.7		
13	PRESS A/7 SECS, SEE CORRECTED AZ			4773
14	PRESS B/7 SECS, SEE CORRECTED CHARGE			35.41
15	KEY IN, ROUNDED TO NEAREST 1/2	35.5		
16	PRESS R/S (5 SECS) SEE CORRECTED EL			853
		+		
	WARNING, IF NEW RUN IS TO BE MADE			
	WITHOUT RELOADING THEN 0 STO 8.			
	ALSO REGISTERS B AND 6 MUST BE CHECKED.			
	···			
		11		
	· · · · · · · · · · · · · · · · · · ·			

10.6 FOUR DEUCES

STEP	KEY	ENTRY	KEY CODE		сомм	ENTS		STEP	KEY	ENTRY	KEY CODE		COMMENT	s
001	601	*LBLA	21 11 '						657	1	01			
	1902	P≢S	16-51			(SEC)			653	+	-55			
	+ 262	RCLB	36 12					060	- 859 Foco	.4	02 - 24			
	1000	RULI	30 01				ł	000	050	-	-24			
	$+\frac{650}{695}$		-35				ł		522	PCI 9	76 89			
	1 000	ระโด	36 88				ł		- 062 - 063	SIN	41			
	taas	X	-35				ł		854	RCL5	36 05 -			
	1009	STOE	35 15	C.		(PRI)	ł		055	X	-35			
010	1010	P≠S	16-51	-0		(,			066		-62 -			
	T 311	RCLD	36 14						057	8	0 8 -			
	[012	RCLA	36 11						668	X	-35]			
	013	-	-45						869	+	-55			
	1014	RCLE	36 15					070	373	CHS	-22			
	1 015	4	04						071	RCLC	36 13	A ₀ +	D REC	ORD
		X	-35						872	+	-55			
	+ 01/	8	88						073	KIN	24			
	+818	57	85 87						674	#LDLD DCIO	76 99 -			
020	$+\frac{012}{629}$	ر ب	-55						- 070	COS	42 -			
020	1 020	Pri I	36 46							ECL5	36 85			
	t_{e22}^{021}	X	-35						673	X	-35 -			
	1023	TAN	43						079	RCLE	36 15 -			
	1024	÷	-24					080	1988		-62 -			
	1025	RCL B	36 12						1881	3	03 -			
	† 925	+	-55						682	2	8 2 T			
	<u>1</u> 027	STO B	35 12	R ₁					[833	5	05			
	T828	RCL6	36 06	•					684	X	-35			
	1828	RCLA	36 11						285	P≢S	16-51		((SEC)
030	1036	RCL7	36 07						886	PCL2	36 UZ			
L	1 831	÷	-24						007	-	-40 -75 ⁻	4		
	+ 832	FUL3	36 83						600	₽ † 9	16-51			(PRI)
	$+\frac{635}{372}$	- 7	-+J A7					090	1000	STOR	35 88 -	ρ.		(111)
	+ 375	X	-35						1991	RCLE	36 15	1 ~1		
	+α3ε	EEX	-23						692	LN	32 -	1		(SEC)
	+037	3	83						697	P≢S	16-51	1		
	±033	÷	-24						1094	RCL3	36 03 -	1		
	† 039	-	-45						1895	Х	-35 -	1		
040	T240	ST06	35 06	δ1					[89E	RCL4	36 04]	1		
	T341	RCL4	36 04						097	-	-45			··
	1042	3	03						09S	PZS	16-51	1		(PRI)
	$+^{8+3}$	2	U 2						899	RULU	35 88			
	+04-	0	00					100	100	0110	75-55 00 -	^P 2		
	+640 +645	-	-45						120	от ю В	00 00	ł		
	+347	ECL C	36 13						102	RCLI	36 81 -	{		
	1848	-	-45						104	8492	16-35	1		
	±043	RCLI	36 46						195	GT01	22 01 -	1		
050	1050	X	-35 -						1:25	GT02	22 0 2 [–]	1		
	1851	ST09	35 0 9 T	α					187	*LBLC	21 13]		
	1 052	5	8 5 _						[189	1	01			
	053	4	<u> 04 _</u>						103	6	<u> </u>	1		
	+854	:	-62 _					110	F118		-62 _	4		
	$+\frac{855}{252}$	4 DCI E	04 _								03 _ 76 15	{		
	1605	KULE	36 15			PF	GIS	STERS	Liii	RULE	20 13	1		
0 -		1 T T	2 1/2	3	н	4 A		5 \		⁶ 0 / 0	7 2010	8 5	9	~
		1 - 70			''M	Aw		¥¥		<u>°o/°1</u>	.3040	20	i loo	<u>u</u>
⁵⁰ 11.	932	⁵¹ .00023	31 ⁵² 4.682	2	7.879	54 72.91	4	55.003	8	^{°°} 11.037	7 7293	⁵⁸ 52	.51	81.73
A	н。	В	$R_o/R_1/$	′R ₂	С	Ao		D	Η _T	E	C_o/C_2	I	9/16	0 1/1
								_						

DATA CARD ENTRIES ARE SHOWN AS

10.6 PROGRAM LISTING

STEP	KEY	ENTRY	KEY	CODE		COMMENT	s	STEP	KEY	ENTRY	KEY CODE	COMM	ENTS
	113	LN		32]				_169	x	-35		
		•		-62	4			170	_170	+	-55		
	115	. 4		64	4				_171	RCL8	36 08		
	115	-		-24	4				-172	+	-55		
	+110	стор. Стор	-	-4J 75 14			FFECT		-173	RULB	36 12		
	110	57 00 X	•	-75	1	UNITE	FFECI		174	-	-43		
120	120	ST+8	35-5	5 A 8	^P 3				-176	;	87		
	12:	RCL6		36 06	1				-177	1	8 1		
	122	EEX	-	-23	1				178	2	02		
	123	2		82	1				179	γ×	31		
	[124	-		-45]			180	180	6	0 6		
	[125]	P≠S	1	6-51]		(SEC)		181		-62]		
	125	RCL6		36 06]		. ,		182	4	04		
	127	RCL7		36 07	1				133	2	6 2		
	128	RCLE		56 15	4				184	RCLE	36 15		
100	129	Х		-35	4				135		-62		
130	100	-		-45					130	<i>U</i> 0	00 00		
	172	P.≠S	1	-55	P4				-107 -180	2 	- 35		
	177	ST+8	35-5	5 08	4		(\mathbf{PKI})		122	-	-45		
	134	RCL2		36 02	1			190	190	X	-35		
	135	RCLD		36 14	1				191	8	08		
	1:35	Х		-35	1 ρ ₆				192	0	00		
	137	ST + 8	35-5	55 08	1°°				193	0	80 1		
	138	RCL8	3	36 08	1				194	÷	-55	E RECO	RD .
	[139	CHS		-22]				195	F≠S	16-51		(PRI)
140	140	RCLB		36 12					195	RTN	24		(
	141	+		-55					197	*LBL1	21 01		
	142	STOB		35 12 J	R_2		()		198	ECLI	36 01		
	143	P75		16-31	4		(SEC)	000	135	. X2	53		
	144	RULI		-75	4			200	200	2	02 00 -		
	145	~ _×		-35	4				201	0 G	00 88 ⁻		
	1127	RCLA	-	36 0 0 '	1				227	÷	-24		
	1148	X		-35	1				204	CHS	-22		
	149	R∕S		51		ND R/S	5		205	RCL1	36 01 -		
150	t 15e	STOE	3	35 15					205	5	05 -		
	[151	3		03] 2				237	0	88 -		
	152	γx		31					298	÷	-24		
	153	•		-62	1				285	+	-55		
	154	0		00	1			210	210	GTOC	22 13		
		4		64	4				211	*LBL2	21 02		
	100	ა ∨		-75	4				212	RULI	36 01		
	150	сн <u>с</u>		-22	-				-110 -042	2 0	02 88 ⁻		
	159	PCLE		16 15	-				215		-24		
160	152	X2		53	1				215	ECL1	36 01		
	151	2		82	1				217	χ2	53		
	162			-62	1				218	P≠S	16-51		(SEC)
	[163]	9		0 9 (]				219	RCL5	36 05		
	164	6		06	1			220	220	Х	-35		
	155	Х		-35	4				_221	+	-55 _		
	165	+	-	-55.	1				.222	P ≢S	16-51		(PRI)
		POLE	3	10 10. 12 00	1				220	GTUC	22 13 _		
	L 108	RULY	3	00 07.	LAE	BELS				FLAGS	T	SET STATUS	
A A	Z	^B USE	D	C I	EL.	D	E		0		FLAGS	TRIG	DISP
a		b		с		d	e	····	1		ON OFF		
0		1		2		3	4		2				SCI 🗆
5		6		7		8					2 0 8	RAD 🗆	
1		ľ		ľ		۲ ⁰	l'		ľ		3 🗆 🕱		n

11. A LASER EQUATION

11.1. REFERENCE

a. L. N. Peckham and R. W. Davis, A Simplified Propagation Model for Laser System Studies, Air Force Weapons Laboratory, Technical Report AFWL-TR-72-95, August 1972, ASTIA No. AD902736L.

11.2. DISCUSSION

The laser equation programmed in this section was brought to my attention by Lieutenant Colonel R. S. DeLaney, USAF. The equation applies to propagation in the atmosphere. A listing of the variables and parameters used in the equation shows the factors considered in it.

Symbol	Meaning	Units
Р	power	watts
R	range	km
I	average intensity	watts/cm 2
b	blockage factor	
К	thermal blooming factor	
α	atmospheric extinction	1/km
^k 1	power reduction factor	
k ₂	beamspread factor	
λ	wavelength	microns
D	diameter of primary output mirror	meters
$\sigma_{_{\mathrm{TR}}}$	one sigma jitter/tracker	microradians
$\sigma_{\rm PL}$	one sigma jitter/platform	microradians
σ_{BL}	one sigma jitter/boundary layer	microradians
σ_{AT}	one sigma jitter/atmosphere	microradians
θ	angle between beam and target normal	deg

$$I = \frac{100 \text{ b} \cdot \text{K} \cdot \text{p} \cdot \exp(-\alpha R) \cdot \cos\theta}{k_1 \cdot \pi R^2 [(0.9 \ k_2 \ \lambda/D)^2 + 4(\sigma_{TR}^2 + \sigma_{PL}^2 + \sigma_{BL}^2 + \sigma_{AT}^2)]} .$$
(1)

The number 100 is needed to get the intensity at the target in watts/cm 2 when R is in kilometers.

We will program three problems:

- Given P and R, find I
- Given I and R, find P
- Given I and P, find R.

In effect, the program is a digitized nomogram. We will use Newton's method to get R given I and P. We have

$$I = LPe^{-\alpha R}/R^2 , \qquad (2)$$

where

$$L = \frac{100 \cdot b \cdot K \cos \theta}{k_1 \cdot \pi[(0.9 k_2 \lambda/D)^2 + 4\sigma^2]},$$

$$\sigma^2 = \sigma_{TR}^2 + \sigma_{PL}^2 + \sigma_{BL}^2 + \sigma_{AT}^2.$$
(3)

We want the root of

$$f(R) = LPe^{-\alpha R}/R^2 - I = 0$$
 (4)

then

$$f'(R) = -(\alpha + 2/R) LPe^{-\alpha R}/R^2$$
, (5)

$$R_{i+1} = R_{i} + \frac{LPe^{-\alpha R_{i}} - IR_{i}^{2}}{LPe^{-\alpha R_{i}}(\alpha + 2/R_{i})}.$$
 (6)

The only point of interest is the determination of a good starting value R_o . The function $e^{-\alpha R}/R^2$ is concave upward and extremely flat for even moderately large R. If an initial R_o is picked that is greater than R, it may well happen that the flat tangent projected backward will generate negative values for the successive R_i .

For the root of (4),

$$R^2 = Ae^{-\alpha R}$$
, $A = LP/I$.

A first approximation is \sqrt{A} , but this is clearly too large. But taking

$$R_{o} = \sqrt{A} e^{-\frac{\alpha\sqrt{A}}{2}}, \qquad (7)$$

a value smaller than the actual root is found.

The program also computes the illuminated area by

0.01
$$\pi R^2 [(0.9 K_2 \lambda/D)^2 + 4\sigma^2] \sec \theta$$
. (8)

11.4. PROGRAM NOTES

(1) The program is an example of the use of the flag F3 to find the solution of any one of three problems. The program structure is:

<u>P</u>	<u>R</u>	<u> </u>
*fLBLA	*fLBLB	*fLBLC
hF?3	hF?3	hF?3
GT01	GT02	GT03
Calculate P	Calculate R	Calculate I
*fLBL1	*fLBL2	*fLBL3
STO A	STO B	STO C
hRTN	hRTN	hRTN

Flag F3 is set by data entry, and cleared by test. If you key P and press A, F3 is set, P is stored in A, and F3 is cleared. If you then key I and press C, I is stored in C. Now press B. Since F3 is not set, the step "GTO 2" is skipped and R is calculated.

(2) For the preceding problem, an "h PAUSE" shows the successive steps in the convergence to two decimal places. When P is large and/or I is small, the convergence is slow because the value of R_0 from (7) is small. You can speed up convergence by choosing an R_0 that is large but still smaller than the expected final root. Then execute the sequence: Key R_0 , STO B, GTO 0, R/S.

Example. Let the parameters be:

b = 0.9, K = 1, α = 0.1, k_1 = 1.5, k_2 = 20/9,

 λ = 3.6, D = 1, each of the four sigmas = 4 (so that

 σ^2 is 64), $\theta = 60^\circ$. Then PRESS E to initialize.

(1) $P = 10^6$ (EEX 6), PRESS A, R = 4, PRESS B.

Now PRESS C to get I = $1299.60 \text{ watts/cm}^2$.

PRESS D to get 309.47 cm^2 for the illuminated area at this range.

(2) 4, PRESS B, 1299.60, PRESS C. PRESS A to get

P = 1 000 002.64 watts (because of roundoff in I).

(3) 10^6 , PRESS A, 1299.60, PRESS C. PRESS B to get

R = 4 after two iterations (3.99, 4.00).

11.5 USER INSTRUCTIONS

1 11. A LASER EQUATION Z									
STEP	INSTRUCTIONS		KEYS	OUTPUT DATA/UNITS					
1	STO THE 9 PARAMETERS IN REGISTERS 0-8.								
	(SEE REGISTER STORAGE AT 11.6.)								
2	PRESS E								
3	KEY P, PRESS A, KEY R, PRESS B.								
	PRESS C TO GET I.								
4	KEY P, PRESS A, KEY I, PRESS C.								
	PRESS A TO GET P.								
5	KEY P, PRESS A, KEY I, PRESS C.								
	PRESS B TO GET R								
6	PRESS D TO GET ILLUMINATED AREA								

11.6 A LASER EQUATION

STEP	KEY	ENTRY	KEY CODE	COMMENTS	STEP	KEY I	ENTRY	KEY CODE	COMMENTS
001	601	*LBLE	21 15			657	RCLA	36 11	
	+002	RCL5	36 05			1058	X	-35	1
	+ ²⁰³	RCL4	<u> </u>		060	+855	RCL9	36 09	L
	100-	Pris	36 86			+	PCIR	-30	
	$\pm eze$	×020	-24			1 862	X020 X2	53	R ²
	1007		-62			1853	÷	-24	T (1)
	1002	9	8 9 -			-864	RTN	24	1 (1)
	089	×	-35]			665	*LBLB	21 12	
010	910	X2	53			Leee	F3?	16 23 03 _	
	1011	RCL7	36 07			1357	GTO2	22 82	
	$+\frac{212}{217}$	4	- 75 -			1868	RUL9	36 89	L
	$+\frac{\partial 1}{\partial 1}$	Â	-35		070	+005	RULH	36 11	
	+015	P:	16-24	π	0/0	1070	Pric	-35	
	1015	×	-35	"		1872		-24	
	1917	EEX	-23			1073	1X	54	
	1818	2	02 -			074	STOI	35 46	hSTI √A
	012	CHS	-22	10^{-2}		075	RCL2	36 82	
020	1 636	х	-35			E675	х	-35]	
	021	STOE	35 15	SPOT AREA, $R = 1$		977	2	82	
	+822	RCLU	36 88			078	÷	-24	
	$+\frac{823}{227}$	KULI	36 01	LV	080	1873	CHS -X	-22	
	+225	Pris	-55 76 88 T	DN	080	1000	Pri T	76 46	
	+ 825	COS	42	COS A		1082	X	-35	
	+027	x	-35			1083	STOB	35 12	R_{o} (7)
	1028	RCL3	36 03 -	k.		084	*LBL0	21 00	
	1023	÷	-24 -			1085	RCL9	36 09 -	
030	03C	RCLE	36 15			Tees	RCLA	36 11	
	031	÷	-24			097	X	-35	
	$+^{e_{22}}$	STO9	35 09	L (3)		1088	RCLB	36 12	
	033	STDIA	21 11		000	1989	× -	-24	
	+037	F32	16 23 93		090	1301	RCIR	76 12	
	$+_{075}$	GTO1	22 01			1852	RCL2	36 92	
	+e37	RCLB	36 12 -	R		1093	X	-35	
	<u>+</u> 03ε	RCL2	36 02 -	a		1094	e×	33 -	
	— 029	x	-35 -			1095	÷	-24	
040		e×	33	exp (aR)		T095	STOI	35 46	LP exp $(-\alpha R_i)/R_i^2$
	041	RCLB	36 12			397	RCLC	36 13	
L	$+\frac{042}{047}$	Xž	53			1058	-	-45	
	- 043	× 0000	-35	т	100	1095	RULI	36 46	
		KULU X	-75 -		100	+100	PCI 2	76 82	
	+845	RCL9	36 09 -	1		+102	2	00 02 02	
	+947	÷	-24 -			1123	RCLB	36 12	
	- 648	RTN	24 -	r (1)		104	÷	-24	
	649	*LBLC	21 13			105	+	-55	1
050	058	F3?	16 23 03			Τ 185	÷	-24	
	851	GTO3	22 03			107	RCLB	36 12	
L	- 652	KULB DCLD	36 12			+100	+	-55	
		RULZ	-75		110	+105	BCID	35 14	K_{i+1} (0)
		CHS	-22			111	-	-45	
	105 5	e ^x	33 -	$exp(-\alpha R)$			DSP2	-63 82	$R_{i+1}-R_i$
				REC	ISTERS				
0	Ь	¹ K	² α	3 k ₁ 4 k ₂	5λ	6	D	$^{7} \sigma^{2}$	⁸ θ ⁹ L
50	-	S1		<u><u> </u></u>	- 55			S7	58 59
30			52		35			Ľ,	66
A		T	B _ /-		D		E		
l'	Р	ľ	R/R _i	I I	F	۲ _{i+1}	-	SPOT AR	EA √A

11.6 PROGRAM LISTING

STEP	KEY	ENTRY	KEY C	ODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	COMMI	ENTS
	117	RND	1	5 24								
		X=0?	10	5-43	CHEC		Ë	170				
		6104 PCI D	2	204 514		ACCORACT						
		STOR	3	5 12	MOV	ΈR _{i+1}						
	Tii8	PSE	1	6 51	SHOW	CURRENT V	ALUE					
	119	GTOØ	2.	2 00]	LOO	Р						
120	12?	*LBL1	2	1 01								
	121	STOA	3	5 11	P							
	122	H PL 2		1 92								
	124	STOR	3	5 12	R			180				
	125	RTN	-	24								
	125	*LBL3	2	1 03								
	127	STOC	3	5 13	I							
	128		~	24 1 14								
130	123	RCLE	. 2	6 15								
	121	RCL8	3	6 08								
	1:32	COS		42	cos θ	1						
	[:33]	÷		-24								
	134	RCLB	3	6 12	R			190				
	135	X2		-75	1	A AREA (8)					
	$\frac{135}{137}$	RTN		-33			0)					
	138	*LBL4	2	1 04								
	139	RCLB	3	6 12	FINA	LR						
140	140	RTN		24								
					1			200				
					1							
	ļ				1							
					1							
150					1							
	+				1			210				
					1							
					1							
160					1							
]							
					1							
								220				
					1							
]							
	L				LAE	BELS		L	FLAGS		SET STATUS	
^ P		^B R		С	I	D AREA	E	L (3)	0	FLAGS	TRIG	DISP
a		b		с		d	е		1	ON OFF		
0		1 670		2 ст		3 STO I	4		2			
5		6	, r	7			9		3	2 0 0	RAD 🗆	ENG 🗆
ľ		-		•		ľ	ľ		ľ	3 🗆 🗆		n

12. SHAKING THE DICE (A WAR GAMING EXAMPLE)

12.1. REFERENCE

a. E. W. Paxson, *Partially Discriminatory Mortar Fire*, The Rand Corporation, P-5807, February 1977.

12.2. DISCUSSION

In manual war gaming, people instead of computers make the tactical decisions depending on the situation. Yet there are recurring events, such as firefights or air intercepts, whose outcomes must be assessed systematically on the basis of agreed-upon rules and planning factors. The assessment consists of taking a sample from a probability distribution function for outcomes, since the game cannot move on without a definite result. War gamers call this "shaking the dice." It will not do to say, "The probability is 0.4 that at least three tanks of a company of 10 will be destroyed." The game demands a statement such as, "In this firefight 3 tanks were immobilized and one was set afire."

In any game, there are usually large numbers of recurring events of the same type. One expects that the results for this set of events will average out--giving the mean behavior of the model underlying the event type. To clarify this statement, the simple fundamental principle of the Monte Carlo method (sampling from a probability distribution) is invoked. For example, suppose an event can have four outcomes 0_1 , 0_2 , 0_3 , 0_4 with respective probabilities p_1 , p_2 , p_3 , p_4 , where $p_1 + p_2 + p_3 + p_4 = 1$. Put $P_1 = p_1$, $P_2 = p_1 + p_2$, $P_3 = p_1 + p_2 + p_3$, $P_4 = p_1 + p_2 + p_3 + p_4 = 1$. Take a large number M of random numbers uniformly distributed over the interval (0, 1). By the Law of Large Numbers, one expects, then, that of the M random numbers,

> P_1M will be in the interval 0 to P_1 , P_2M will be in the interval P_1 to P_2 , P_3M will be in the interval P_2 to P_3 , P_4M will be in the interval P_3 to 1.

This section shows by an example how hand calculator programs can provide assessments of this nature to speed up the play of manual war games.

A game (or series of games) is set up to test the behavior in a full tactical environment of an innovative weapon system, which is to destroy enemy armor as part of a combined arms force.

The proposed system envisages a new type of mortar round that has a heat-seeking sensor head controlling the maneuver of the round to a target during the steep terminal phase of the trajectory. These rounds are ripple-fired at a set of armored targets, picking targets at random. The sensor head will reject targets previously set afire or exploded (K-kills) to avoid the moth-and-flame effect. But previously immobilized vehicles (M-kills) may wastefully absorb rounds that home on the still-warm engines. Such overkill is a common battlefield event.

If at any time t during the engagement there are j vehicles still moving and k vehicles either still moving or immobilized by previous fire, then the probability P(j, k, t) of the state (j, k) at time t can be determined analytically (see Ref. a). But the analysis is complex, as are the resulting formulas for P(j, k, t). For use in war gaming, it would still be necessary to sample with respect to P(j, k, t). It is much more economical to adopt the procedure of the following subsection.

12.3. EQUATIONS

Let r be the probability that a round gets an M-kill, immobilizing the target. Let s be the probability of a K-kill, with the target exploded or set afire. Initially, there are A moving targets, against which N rounds can be fired during the target exposure interval.

Then the state changes per round, with their associated probabilities, are shown in the following table, remembering that of k targets one is picked at random:

-117-

State Change	Probability	Reason
(j, k) → (j, k)	$p_1 = 1 - s - rj/k$	No K-kill <i>and</i> no M-kill of a moving target
$(j, k) \rightarrow (j - 1, k)$	p ₂ = rj/k	M-kill of a moving tar- get, k does not change
$(j, k) \rightarrow (j - 1, k - 1)$	$p_3 = sj/k$	K-kill of a moving tar- get, k reduces by l
$(j, k) \rightarrow (j, k - 1)$	$p_4 = s(1 - j/k)$	K-kill of an immobilized target

The corresponding bounds in the interval (0, 1) are $P_1 = 1 - s - rj/k$, $P_2 = 1 - s$, $P_3 = 1 - s + sj/k$, $P_4 = 1$.

Pseudorandom numbers over the interval (0, 1) will be generated by the multiplicative linear congruential method. Let R_0 be the initial "seed," a seven-digit decimal fraction. Let m be the multiplier, and let R_i be the *ith* pseudorandom number generated. Then

 $R_{i+1} = fractional part of (mR_i)$.

In the Hewlett-Packard Stat Pac 1 (section 04), the values $R_o = 0.5284163$ and m = 997 are used. With these choices, the number of *different* random numbers before returning to R_o (the period of the sequence) is 500,000. The sequence passes the standard tests for randomness.^{*}

12.4. PROGRAM NOTES

Figure 12.1 provides the logical flow of the programming.

It is essential to save the last random number, to be used as the "seed" for the next evaluation.

^{*}Other "good" pairs are: $R_0 = 0.1111111$, m = 291; $R_0 = 0.7742713$, m = 997.

Fig. 12.1. — Program flowchart

12.6 USER INSTRUCTIONS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	LOAD PROGRAM	EXAMPLES		
2	STO .5284163 OR OTHER SEED IN RO			
3	STO 997 OR OTHER MULTIPLIER IN R1			
4	STO r IN R ₂	.2	STO 2	0.20
5	STO s IN R ₃	.3	STO 3	0.30
6	INITIAL TARGETS A, ENTER	5	ENT	5.00
7	ROUNDS FIRED N, KEY, PRESS A	6		0.
	(NO ROUNDS LEFT .)			
	2 MOVING TARGETS,			2.
	1 M-KILL, 2 K-KILLS			3.
	RECORD OR SAVE NEW SEED.			.7500827
	(HERE NEW SEED IS IN R ₀ .)			
	NEXT RUN WITH SAME VALUES	5	ENT	0
	0 MOVING TARGETS	6		0
	2 M-KILLS, 3 K-KILLS			2
	RECORD OR SAVE.			.7336883
	NEXT RUN, WITH NEW SEED IN R ₀	5		0
	3 MOVING TARGETS	6		3
	NO M-KILLS, 2 K-KILLS.			J3
	PECOPD			0170707
				.81/3/0/
			1 11 1	

STEP	KE	YENTRY	KEY CODE	-	COMMENTS	STEP	KEY	ENTRY	KEY CODE		COM	MENTS
001	00	i *LBLA	21 11		ALIZE		057	DSZI	16 25 46	NO	СНА	NGE
	00	Z 5101 ⊃ v⊸∘	(35.46 / //	1			058	STOB	22 12	<u>+</u>		
	00	о Хе́) и ст∩и	-41	-		060	059	6705	22 05	-		
	00	4 310F 5 STOP	1 35-11 2 75-40	1		000	060	*LBL3	21 03	-		
	00.	<u> </u>					861	RCLA	36 11	4		
	00	5 ¥LBL5 7 Deir) <u>21.12</u> 5 77.45	1			062	1	61 45	{		
	00	I RULE O V-RO) 30-12) 15_47	1			000	- стол	-43	1:_1		
	00 00	0 A-0: 9 ETAS	10-43 5 72 85	t			064	510H DS71	16 25 35	{J − '		
010	At	9 8100 9 1	. LL 00	1			866	STOR	22 12	1		
	Й1	I RCLA		1			R67	GT05	22 85	1		
	01.	2 RCLE	36 12	1			068	*LBL4	21 84	+		
	01	3 ÷	-24	1			069	RCLA	36 11	1		
	01	4 STOC	35 13]		070	070	1	01	1		
	01	5 RCL2	36 02]			071	-	-45	1		
	. Ø1	6 X	-35				072	STOA	35 <i>11</i>	1 j - 1		
	01	7 -	-45				073	RCLB	36-12	1		
	01	S RCL3	36 83				074	1	01	1		
	01	9 -	-45]			075	-	-45	1		
020	021	0 STO4	35 04	P ₁			076	STOB	35 12]k-1		
	02.	1 1	81	1.			077	DSZI	16 25 46]		
	02:	2 RCL3	36 83	1			0 78	GTOB	22 12			
	02;	3 -	-45				079	∗LBL5	21 05			
	02	4 ST05	35.05	P ₂		080	0 80	DSPØ	-63 00	1		
	02	S RCLC	36 13	1 -			081	RCLI	36 46			
	020	5 RCL3	36 83				082	PRTX	-14	ROL	JNDS	LEFT
	021	/ X	-35				083	RCLA	36 11			
	020	j + 	-30				084	PRTX	-14	FIN	AL i	
	029	9 STO6	35 06	P ₃			085	RCLB	36 12			
030	030	3 RCL4	36 84				086	PRIX	-14	Į FIN	AL k	
	031	GSE1	23 81	NEXI	RANDOM NR.		087	DSP7	-63 07	I		
	032	2 X£Y? 2 ofoo	16-35	TTOTO			088	RULU	35 00	I NEV	V SEE	D
	030	5 6102 • Dole	ZZ 02 ZZ 05	15212	FOR		089	KIN	24			
	034	F KULD	36 83	CTATE		090						
	030) KULU 5 V/VA	30 88 16-75	SIAI	CHANGES					1		
	030	ο Λ±ι: 7 στο7	· · · · · · · · · · · · · · · · · · ·							1		
	031	- 6103 - 6103	ZE 05							4		
	A70	A PCIA	36 00 36 00							1		
040	G4(7 KOLO 7 XZYO	16-35							1		
	R4	, GTN4	22 R4							1		
	04	RCLB	36 12							1		ł
├ ───┤	04	3 í								1		
┣────┤	04	,	-45			100				1		}
	04	5 STOB	35 12							1		
<u>├</u> ───┤	046	5 DSZI	16 25 46							1		ł
	047	r GTOB	22 12	SKIP	on zero					1		1
	048	8 GTO5	22 05							1		1
	049	*LBL1	21 01							I		
050	058) RCLØ	36 00									
	051	RCL1	36 01									[
	052	2 x	-35									
	053	s FRC	16 44 .									ļ
	054	sto0	35 00.	NEXT	K IN K _o	110				1		
	055		24							{		
l	056	> *LBL2	21 02		DEOV	TEDO						
0		1	2	13		5	16		7	8		9
.52841	63	997	r r	l i	s P ₁	⁻ P ₂	ľ	P3	ľ	ľ		
S0		S1	S2	S3	S4	S5	Se	<u> </u>	S7	S8		S9
Α	•	Te	3 L	С	;/k	D		E			I	
	J		r		J/ K							

12.6 SHAKING THE DICE

13. OPTIMUM ALLOCATION OF RESOURCES

13.1. REFERENCES

- Hanan Luss and Shiv K. Gupta, "Allocation of Effort Resources Among Competing Activities," Operations Research, Vol. 23, No. 2, March-April 1975.
- b. A. Charnes and W. W. Cooper, "The Theory of Search: Optimum Distributions of Search Effort," *Management Science*, Vol. 5, 1958.

13.2. DISCUSSION

This is a topic in nonlinear (convex) programming. The bibliography of Ref. b indicates optimum search as one military motivation for the study of programming of this nature. Another military application asks for the optimum allocation of weapons to a target system organized into classes of targets of given number and value for which the weapons' kill probabilities differ. Civilian applications arise in allocating advertising budgets, portfolio selection, and budgeting (Ref. a).

The problem is formulated as follows. Let B be the available resources to be allocated to N activities in the amounts x_1, x_2, \ldots, x_N , where

$$x_1 + x_2 + \dots + x_N = B$$
, $x_i \ge a_i \ge 0$.^{*} (1)

If x_i is applied to activity i, the return on the investment is $Q_i(x_i)$, which is a differentiable and strictly concave increasing function. For example, in the weapon allocation application, if there are T_i targets in class i all of value V_i , and if the SSPK is P_i , then

$$Q_{i}(x_{i}) = T_{i}V_{i}\left[1 - (1 - P_{i})^{x_{i}/T_{i}}\right],$$
 (2)

Higher authority or other considerations may dictate that some activities be assigned minimum (nonzero) resources.

since on the average x_i/T_i weapons are applied to each target and the square brackets contain the kill probability per target. Figure 13.1 shows $[1 - (1 - 0.5)^{x/20}]$. Note the rapid decrease in marginal returns for the larger values of x. One "standard" form for $Q_i(x_i)$ is

$$Q_{i}(x_{i}) = S_{i}[1 - \exp(-m_{i}x_{i})],$$
 (3)

which yields (2) if $S_i = T_i V_i$ and $m_i = -(1/T_i) \ell_n (1 - P_i)$. We now want to maximize

$$R = Q_1(x_1) + Q_2(x_2) + \dots + Q_N(x_N)$$
(4)

subject to (1).

13.3. EQUATIONS

From (3),

$$\partial Q_{i}(x_{i}) / \partial x_{i} = S_{i} m_{i} \exp(-m_{i} x_{i}) .$$
 (5)

Reindex the activities so that $S_{im} \geq S_{i+1}m_{i+1}$, which are the marginal returns at the origin. Introduce the Lagrangian multipliers M_{l} and maximize

$$\sum_{i=1}^{\ell} \left\{ Q_{i}(x_{i}) - M_{\ell} \cdot \left(\sum_{i=1}^{\ell} x_{i} - B \right) \right\}.$$

To this end

$$\frac{\partial Q_{i}(x_{j})}{\partial x_{i}} = M_{\ell} = \frac{\partial Q_{j}(x_{j})}{\partial x_{j}}, \quad i, j = 1, \dots, \ell$$

express the marginal equilibrium. We find that the successive M_{L} are connected by

$$M_{\ell+1} ** \sum_{1}^{\ell+1} 1/m_{i} = (S_{\ell+1} m_{\ell+1}) ** (1/m_{\ell+1}) \cdot M_{\ell} ** \sum_{1}^{\ell} 1/m_{i}, \quad (6)$$

where "**" means "to the power" and $M_1 = S_1 m_1 \exp(-Bm_1)$.

The solution algorithm is to stop at that ${\ensuremath{\mathfrak{l}}}$ for which

$$S_{\ell+1} m_{\ell+1} \le M_{\ell+1} .$$
⁽⁷⁾

Then

$$x_{i}^{*} = \frac{1}{m_{i}} ln \frac{S_{i}^{m}i}{M_{l}}, \quad i = 1, ..., l$$
 (8)

and the maximum return is

$$R_{l}^{*} = \sum_{i=1}^{l} \frac{S_{i}m_{i} - M_{l}}{m_{i}} .$$
 (9)

Figure 13.2 shows the physical realization of this algorithm. The Q that gives the maximum return is used first, then the Q that yields the next-highest return, and so on. Find the x_i^* where the slopes of the Q-curves are all equal, since taking a unit of resources from one pocket and putting it into another (moving away from the marginal equilibrium) decreases overall returns. Clearly, stop when even the marginal return at the origin of an activity cannot contribute as much as its more lucrative fellows.

It is characteristic of such solutions that some activities receive no effort. For example, in some air defense problems, targets of very low value get no defense allocation.

A considered or experienced guess can frequently come within 5 percent of the calculated optimum. This is again typical of these problems. But (1) you never know how close you are to the optimum, (2) the improvement being interest on an investment, making many investments adds up, and (3) if, for reasons external to the model, certain allocations to certain categories are specified, you will know what penalty is paid.

Fig. 13.2— Solution algorithm

<u>Example</u>. Based on estimated initial position and drift, a damaged ship may be in one of four search sectors with estimated probabilities 0.5, 0.3, 0.15, 0.05. Because of weather and sea conditions, the conditional probabilities that one search sortie will detect the target in these sectors are 0.1, 0.3, 0.4, 0.2, respectively. Find the best allocation of 20 sorties to maximize the detection probability.

We have

Sector	S	P	m	sm	Reindex
1	0.5	0.1	0.105	0.053	3
2	0.3	0.3	0.357	0.107	1
3	0.15	0.4	0.511	0.077	2
4	0.05	0.2	0.223	0.011	4

The program yields $x_1^* = 5.4$, $x_2^* = 3.1$, $x_3^* = 11.5$, $x_4^* = 0$. The sum is 20 as it must be. The detection probability is 0.73. Figure 13.3 shows the Q functions and the solution points and illustrates the algorithm. But it indicates also that the schematic of Fig. 13.2 is not the general case. That is, it is not necessarily true that $x_1^* \ge x_2^* \ge x_3^* \dots$.

13.4. PROGRAM NOTES

Although short and simple in structure, the program has several elements of interest.

(1) LBL A loads $1/m_i$ using indirect storing. LBL B loads S_{ini} into protected secondary storage, also using indirect storing. But care must be taken to indicate whether f P \leftrightarrow S puts the memory in the primary or secondary storage mode. This is particularly important when exiting from a loop in the middle of a label.

(2) LBL 1 determines the successive x_{i}^{\star} (Eq. (8)) by f ISZ up to l.

(3) LBL 2 then determines R^* by forming the sum (Eq. (9)) in reverse order from ℓ down to 1. f DSZ provides the exit by skipping on zero.

13.5 USER INSTRUCTIONS

	1 13. OPTIMUM ALLOCATION O	F RESOURC	ES Z	
STEP	INSTRUCTIONS		KEYS	
1	$f CL REG, f P \rightarrow S, f CL REG$	DATAONIS		
2	RE-INDEX SO THAT			
	$S_1 m_1 \ge S_2 m_2 \ge \ldots \ge S_N m_N$			
2				
	$\frac{\text{KET}}{\text{KEY}} = \frac{\text{PRESS}}{\text{PRESS}} \Delta$			
	KEY m _N , PRESS A			
4	KEY 10, h ST I			
5	KEY S ₁ m ₁ , PRESS B			
	KEY S ₂ m ₂ , PRESS B			
6	KEY B. STO B			
7	PRESS C, STOP GIVES NR OR			
	X; USED IN OPTIMUM			
8	PRESS R/S SUCCESSIVELY TO GET			
	$x_1, x_2,, x_N$			
0	A FINIAL R/S SHOWS THE MAXIMUM			
	RETURN ACHIEVED			
	(A SECOND EXAMPLE IS ON NEXT PAGE)			

13.6 OPTIMUM ALLOCATION OF RESOURCES

STEP	KE	YENTRY	KEY CODE	COMMENTS	GTEP	KEY	ENTRY	KEY CODE	COMMENTS
001	00.	1 *LBLA	21 11	INDIRECT STORAGE		057	STOC	35 13	
	00:	2 1/X	52	OF 1/m;		658	R∠S	51	
	00:	ISZI	16 26 46		0.10	L.059	0	00 <u> </u>	
	+ 664		35 45		050	1 629	STOI	35 46 _	
		<u>D KIN</u> S AIDID	24			061	<u>GT01</u>	22 01	
		9 #LDLD 7 1971	16 26 46	SINCE IO IN KI,		-062	*LBL1	21 01_	LEFT 030 IN SEC
	+	2 STO:	10 20 40	INDIRECT STORAGE	.	1050	1521	16 26 46	C
	- 1000	P PTN	24	OF S; m; IN 11, 12,		-604 025	RULI	36 40 _	s; m;
010	010	3 XIBLC	21 13			- 000 022	KULH	-24	
	T 0:1	1	01	1		1 867	I N	72	
	012	STOI	35 46	h ST I (RE-INDEX)		663	₽₽S	16-51	PRI
	013	RCL1	36 01			069	RCL I	36 45	$RCL(i) \cdot 1/m$:
	01-	STOD	35 14] 1/m ₁	070	070	x	-35	X_{i}^{*} (8)
	015	5 17X	52			071	R ∕S	51	SEC
	016	RCLB	36 12			[072	P ₽S	16-51	
L	817	X	-35			673	RCLI	36 46	
	+ 015	CH5	-22	Bm լ		074	RCLC	36 13	l
000		/ e^ > n≠c	33	656		075	X=Y?	16-33	FINISHED ?
020	+ 020	P#S	16-51			107ε	GTO2	22 82	
	$+^{021}_{022}$	KULI	30 01	211/1		877	GTUI	22 01	
	+022		75 11	M. (6)		676	*LBLZ	21 02	LEFT 0/6 IN SEC
	$+^{020}_{024}$	510 H	22 14	m (0)	080	-073 - 000	RULI	36 43	KCL(1), $Simi$
	825	*LBLD	21 14			900	KULH	-45	
	1026	ISZI	16 26 46			1001	P#S	16-51	PRI
	1027	RCLA	36 11			682	RCL	36 45	
	<u></u>	RCL	36 45			1984	X	-35	^{1/ m} i
	629	XZY?	16-35	$S_{n+1} m_{n+1} \le M_{n+1}$	7)	085	ST+0	35-55 00	(9)
030	630	GTOE	22 15		1	Tese	P≓S	16-51	SEC
	031	P≓S	16-51	PRI		687	DSZI	16 25 46	
	332	RCL i	36 45	i		688	GT02	22 02	LOOP FOR SUM
	033	RCLD	36 14	Σ		089	P ₽S	16-51	PRI
	$+^{034}$	+	-55	1	090	658	RCLØ	36 00	
	$+\frac{035}{077}$	STUE	35 15	NEW PARTIAL SUM		891	RTN	24	
	+ 830	RULH	36 11						
	+ 037	RULU	36 14						
	+030	KULE	-24						
040	$+^{00}_{319}$	- YX	-24 -	M•**2\2					
	1041	RCL :	36 45	1 1					
	+042	RCLE	36 15						
	1843	÷	-24	$(1/m_{1+1})/\Sigma^{1+1}$					
	T 844	P ≓ S	16-51	ŠEĆ 1	100				
	045	RCL i	36 45						
	046	X₽Y	-41]						
	647	γx	31						
	1848	Х.	-35						
	+ 049	STOA	35 11	Mi+1(6)	1-		10	LABELS	
050	+050	RULE	36 15	SWITCH ^{^1} / ^m i	B Sir	n i	M_1	P(6)	, TEST [⊨] 🖉 🔰
	+ 001	STUD	35 14		b		с	d	e
	052	UPIE	21 15		1 1 *		2 8*		
	254	RCLI	36 46	<i>θ</i> + 1	X		~ KJ	ů.	-
	1055	1	01	5	6		7	8	9
	1056	-	-45	l	1		· · · · · ·	1	
			•••••	REG	ISTERS				
⁰ R'	*	1/m.	2.	3 _ 4 _	5	6		7	8 - 9 1/m
<u> </u>	2	<u>, , , , , , , , , , , , , , , , , , , </u>	00		05			07	9
50	ľ	°'S ₁ m ₁	52 -	⁵³ - ⁵⁴ -	- 55	56	-	S/ -	⁵⁰ – ⁵⁹ S _n m
Δ	<u> </u>		1		D l			£++	
~	ΜĮ	ľ	В	l l	[Σ 1/	ím i	l c	<u>Σ</u> 1/m;	*

EXAMPLE. $B = 200$	weapons are to be allocated to	150 targets
in 5 value classes	to get maximum return.	

Class	Ti Number	Vi Value	Pi SSPK	<u>s</u>		Sm	Re-index
1	10	5	.05	50	.00513	.25647	5
2	20	4	.2	80	.01116	.89257	3
3	30	3	.3	90	.01189	1.07002	1
4	40	2	.4	80	.01277	1.02165	2
5	50	1	.5	50	.01386	.69315	4

The formulas are:
$$Q_i = S_i [1 - (1 - P_i)^{\times i / \tau_i}]$$
,

$$S_{i} = T_{i} v_{i}, m_{i} = -ln(1-P_{i})/T_{i}.$$

3	KEY IN m, PRESS A	.01189		84.10
		.01277		78.31
		.01116		89.61
		.01386		72.15
		.00513		194.93
4	10 h STI	10	h ST I	10.00
5	KEY IN S, PRESS B	1.07002	В	1.07
		1.02165	В	1.02
		.89257	В	0.89
		.69315	В	0.69
		.25647	B	0.26
6	200 STO B	200	STO B	200.00
	DSP 0			200.
7	PRESS C		C	4.
	(NO WEAPONS APPLIED TO CLASS I)			
8	R/S		R/S	65.
	R/S		R/S	57.
	R/S		R/S	53.
	R/S		R/S	25
	(SUM IS 200)			
9	R/S		R/S	140.
	(THE VALUE ACHIEVED IS 140)			

PART III

COST PROGRAMS

14. LOG-LINEAR CUMULATIVE AVERAGE AND UNIT COSTING

14.1. REFERENCES

- a. H. E. Boren, Jr. and H. G. Campbell, *Learning Curve Tables*, The Rand Corporation, RM-6191-PR, April 1970 (3 vols.).
- b. R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill, New York, 1962.

14.2. DISCUSSION

Learning curve theory assumes that each time the total quantity of items produced doubles, the cost per item is reduced to a constant percentage of the previous cost. The relationship is given by the power or log-linear relation

$$y = ax^b$$
,

where x is the cumulative production quantity. If y is the average cost of the first x units, we have the cumulative average learning curve. If y is the cost of the xth unit, we have the unit learning curve.

For plotting purposes, the midpoint x_m , corresponding to the lot average cost, is to be determined.

14.3. EQUATIONS

If S is the fraction to which cost decreases (the learning curve percentage) when the quantity is doubled, the slope of the learning curve is

$$b = \ell n S / \ell n 2 .$$
 (1)

Then, with a the cost of the first unit,

$$y_c = ax^b$$
 (2)

is the average cost of the first x units, and the total cost for the first x units is

$$T = xy_c = ax^{b+1} . (3)$$

The unit cost at the xth unit is

$$y_{u} = a \left[x^{b+1} - (x - 1)^{b+1} \right].$$
 (4)

Let (x_m, y_m) be the midpoint for the first lot of n units. Then $y_m = y_c = an^b$, and using (4), x_m is the solution of the equation

$$x_{m}^{b+1} - (x_{m} - 1)^{b+1} - n^{b} = 0$$
. (5)

The above equations apply to the log-linear cumulative case.

For the log-linear unit curve, the unit cost at the xth unit is

$$y_u = ax^b$$
 (6)

and the cumulative average cost for the first n units is

$$y_{c} = \frac{a}{n} \sum_{x=1}^{n} x^{b}$$
, (7)

since the total cost is

$$T = a \sum_{x=1}^{n} x^{b}$$
 (8)

The midpoint $(\mathbf{x}_{\mathbf{m}}, \mathbf{y}_{\mathbf{m}})$ is determined by

$$y_{m} = y_{c}, \qquad x_{m} = (y_{m}/a)^{1/b}.$$
 (9)

The only programming problems are posed by Eqs. (5) and (8).

In applying Newton's method to (5), a good first estimate is needed for x_m . We have

$$f(x) = x^{b+1} - (x - 1)^{b+1} - n^{b}$$
$$= x^{b+1} - x^{b+1} (1 - 1/x)^{b+1} - n^{b}$$

and using the first two terms in the expansion of $(1 - 1/x)^{b+1}$, the first estimate for x is

$$x_0 = n/(b + 1)^{1/b}$$
, (10)

,

which is very close for large n.

To get an excellent approximation for the sum in Eqs. (7) and (8), use the Gregory formula (Ref. a, p. 158):

$$\int_{0}^{n} f(x) dx = \frac{1}{2} (f_{0} + f_{n}) + \sum_{i=1}^{n-1} f_{i} + \frac{1}{12} (\Delta f_{0} - \Delta f_{n-1})$$
$$- \frac{1}{24} (\Delta^{2} f_{0} + \Delta^{2} f_{n-2}) + \dots$$

Because x^{b} is integrable, the formula can be applied in the backward direction to get the sum. Since x^{b} is steep for small x, we start the sum at x = 4. (Hamming calls this "low cunning.") We have

$$\sum_{x=1}^{n} x^{b} \doteq 1 + 2^{b} + 3^{b} + \int_{3}^{n+1} x^{b} dx - \frac{1}{2} \left[3^{b} + (n+1)^{b} \right]$$
$$- \frac{1}{12} \left[4^{b} - 3^{b} - (n+1)^{b} + n^{b} \right]$$
$$+ \frac{1}{24} \left[5^{b} - 2 \cdot 4^{b} + 3^{b} + (n+1)^{b} - 2 \cdot n^{b} + (n-1)^{b} \right],$$

yielding the rather inelegant result

$$\sum_{x=1}^{n} x^{b} \doteq 1 + 2^{b} + \left[\frac{5}{8} - \frac{3}{b+1}\right] 3^{b} - \frac{1}{6} 4^{b} + \frac{1}{24} 5^{b}$$

$$+ \frac{1}{24} (n-1)^{b} - \frac{1}{6} n^{b} + \left[\frac{n+1}{b+1} - \frac{3}{8}\right] (n+1)^{b} .$$
(11)

14.4. PROGRAM NOTES

1. In finding a first approximation to the root of Eq. (5) by expression (10), a value less than 1 arises for small n (<5). This would lead to an Error signal because of $(x - 1)^{b+1}$. LBL 2 provides a starting value of 1.01 to avoid this.

2. For small values of n (<5), get $\sum x^{b}$ by manual calculation (not programmed).

3. The programming done here involved experimenting with the relatively uncommon second-order Newton method for the root of f(x) = 0. The formula is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \left[1 + \frac{f(x_n) f''(x_n)}{2(f'(x_n))^2} \right],$$

compared with the first-order method's

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
.

Convergence to a given accuracy is somewhat faster (20 percent in running time) but at additional programming cost to get f''(x). The first-order method is used, employing DSP 2, f RND, to get two-decimal-place accuracy.

4. Obviously, a = 1 in programming, since a is simply a multiplier.

^{*} There is a typographical error in this formula as given on p. 82 of Ref. a.

| | | |

-137-

	14.6	LOG -	LINEAR	COSTING
--	------	-------	--------	---------

STER	P KEY	ENTRY	KEY CODE	COMM	IENTS	STEP	KEY E	NTRY	KEY CODE		cc	MMENT	S
001	001	*LBLA	21 11				057	STOA	35 1				
	002	STOA	35 11_	S			058	gs bø	23 00	2			
	693	R∕S	51_				_ 059	GSB1	23 0 1	· _			
	004	STO2	35 02_	n		060	_ 050	÷	-24	L I			
	385	RCLA	36 11_				061	CHS	-22	2			
	005	LN	32_				062	RCLA	36 11				
	007	2	02_				063	+	-55	5			
	008	LN	32_				064	STOB	35 12	?] × _{i -}	+1,	see n	OTE 3
	009	÷	-24_				865	RCLA	36 11		,		
010	010	ST0 0	35 00_	b (1)			_066	~	-45	5_			
	911	1	01_				067	RND	16 24	2	PLAC	E AC	с.
	012	+	-55_				068	X≠0?	16-42	?]Ок	?		
	613	ST01	35 01	b + 1			069	GT03	22 0 3	LO	OP		
	314	RTN	24			070	. 078	RCLB	36 12	?			
	015	*LBLB	21 12		3		<u>871</u>	RTN	24	×m			
	316	RCL2	36 82				072	*LBL0	21 86				
	917	RCLØ	36 00	(0)			073	RCLA	36 11] ×i			
	- 018	γx	31	y _c (2)			_ 874	RCL1	36 01	_			
L	- 019	R/S	51				075	γx	31				
020	-+ 022	RCL2	36 82				076	RCLA	36 11	1			
		RCL1	36 01	T (0)			077	1	01	_			
 	$+\frac{922}{202}$	γ×	31	1 (3)			078		-45	4			
		K/S	51				879	RCL1	36 01	_			
L		RULZ	36 82			080	_080	γ×	31	4			
	- 025	1	01				081	-	-45				
		-	-45				082	RCL2	36 02				
L		RCLI	36 01				683	RCLØ	36 00				
J	- 028	Ŷ۸	31				084	γx	31				
	- 029	-	-45	y _u (4)			_085		-45		٧S	f(x.)	(5)
030	030	RIN	24	<u></u>			086	RTN	24	-		· I	
	+031	*LBLU	21 13	CUM AVO	5 MID-PT.		087	*LBL1	21 01	4			
	$+\frac{032}{077}$	DSP2	-63 02				_088	RCLA	36 11	_ ×i			
	- 033	RULI	36 81				- 888	RCLU	36 88	_			
	- 034	- RULU 17V	30 00 50			090	- 090	γ× 201 A	31	-			
	+ 930	1/ A VX	JZ 71				- 091	RCLA	36 11	4			
		PCI 2	76 927				092	1	61	_			
I	+ 037	RCLZ	-24				093 Taox		-43	_			
	+a70	1.79	527	x (10)			- 694 - 005	KCL0	30 00	-			
040	$+ \frac{035}{040}$	1/ 0	JZ B1	$_{0}(10)$			- 895 - 807	^٢	31	-			
040	+ 04.		-41				707	Del 1	-43	_			
	+ 040	X2Y9	16-35			├ ───┤	- 760 - 800	RULI	30 UI _75	-			
	+ 017	6112 GTD2	22 82	SEE PRGN	NOTE 1	├ ───┤	- 070 - 000	л рти	-33		21	f'(~.)	
 	-+ a44	STOP	35 11	~		100	100		24		1	· (^j/	
	-+ R45	STOR	35 12	×0			100	PCI 2	Z1 19 72 00	ᅴᆘ	111. C	JUKVE	
 	$+a_{2F}$	GT03	22 A.T			├ ───┤	-102	PCIA	30 02 72 00	-			
 		*LBL2	21 112			╉───┤	107	VX	30 00 71				
—	+ 643	1					-103	P/C	51	-			
	+ 049		-62			├ ───┤	105	RCL 2	36 A2	- Yu	(6)		
050	-+ e50	А	88			├ ───┤	185	1	JU 82 Dei	-1			
<u> </u>	+ 051	1	01			├ ───┤	187		-55	-1			
	+ 052	STOA	35 11	Xa		├ ──┤	108	RCI 1	36 81	-1			
 	- 053	STOB	35 12	-0		├ ──┤	109		-24	-1			
	054	GT03	22 03			110	110	3	A3				
—	055	*LBL3	21 03			1	111	ENTT	-21	1			
	056	RCLB	36 12	x _i + 1			112	8	08	-1			
					REGI	STERS							
0	h 1	 h ⊥ 1	2 n	3	4	5	6		7	8		9	
	D L												
S0	S	1	S2	S3	S4	S5	S6		S7	S 8		59	
L					1								
A	S, x:	В	X: 1 1	с		D		E			I		
1	· · · · ·	1	1+1			I					1		

STEP	KEY	ENTRY I	KEY C	ODE		COMMENT	rs		STEP	KEY	ENTRY	KE	YCODE	COMM	IENTS
	113	÷		-24	3/8					169	RCLO		36 00		
			76	-45					170	-176	1/X 		52 71		
	116	1	50	01						172	RTN		24	X	(0)
	117	+		-55										m	(//
	[113	RCLØ	36	5 00											
120	119	γ×		31	ТАСТ	TERAL		• • •							
	120	RCL2	36	5 A2	LASI		17 (11)							
	122	RCLØ	36	5 00											
	[123	γx		31											
	124	.6		06	b.u				180						
	120	÷		-45	-n ⁵ /6										
	127	RCL2	36	5 02											
	128	1		01											
	129		-	-45					·						
130	136	KULU VX	36	31											
	172	, 5		05											
	133	RCLØ	36	5 00											
	134	γ×		31					190						
	135	+ ~		-55 A2											
	137	4		04											
	:38	÷		-24											
	139	+		-55											
140	140	4 PCLO	74	6 04 6 00											
	$141 \\ 142$	YX	50	31											
	143	6		Ø6										1	
	144	÷		-24					200						
	145	~		-45										4	
	140	ENTT		-21										4	
	148	8		08										1	
	149	÷		-24										1	
150	150	3	74	5 ØJ										ł	
	152	RULI ÷	30	-24										4	
	153			-45										1	
	154	3	_	03					210]	
	155	RCLØ	30	5 00										4	
	157	х Х		-35										-	
	158	+		-55											
	159	2	_	02										1	
160	158	RCLØ	30	5 00										4	
	$161 \\ 162$	+		-55										{	
	163	1		01										1	
	154	+		-55	<u>n</u> .				220					1	
	165	R/S PCL2	74	51	$\sum_{x=1}^{n} x^{t}$	y (11)							4	
	165	RULZ ÷	30	-24	~-1									1	
	158	R/S		51	<u>Ус</u>	(7)								1	
A .	1	B		c	LAB	ELS		E		- F	LAGS			SET STATUS	
<u> </u>		CUM AV	/G	MID	POINT		IRVE	-					FLAGS	TRIG	DISP
a		0		C		u		e		Ľ		0		DEG 🗆	FIX 🗆
° f (×	;)	1 f'(x;)	² NC	DTE 1	³ x _m (5	5)	4		2		1			
5		6		7		8		9		3					n

14.6 PROGRAM LISTING

15. TIME-PHASED PROCUREMENT COSTING

15.1. REFERENCES

None.

15.2. DISCUSSION

The costing approach of this section is a hitherto undocumented model owing to H. G. Massey of The Rand Corporation. For definiteness, the model will be explained in terms of aircraft procurement, although it applies equally to the procurement of any system with any number of components. The initial batch of test articles is not priced, it being assumed that they are funded from another account. But the average prices of the batch's components provide the costs of initial articles for learning curve calculations. Overruns and inflation are not included. The model determines, by fiscal year, New Obligational Authority (NOA) required to meet the production/ delivery schedule.

15.3. EQUATIONS

Specify that two required sequences of possessed aircraft (S_n, T_n) , n = 1, ..., N, are to be in the fleet at the end of year n, where S_n are squadron or UE aircraft and T_n are training aircraft.

If A and B are flying hours per year per aircraft (FH/Y), for squadron and training aircraft, the *cumulative* fleet flying hours through year n are approximately

$$H_{n} = \sum_{i=1}^{n} [AS_{i} + BT_{i}] .$$
 (1)

The *cumulative* fleet attrition is given by

$$a_n = C \cdot H_n^d .$$
 (2)

A fraction λ of the fleet is assigned to command support (pipeline). With allowance for these two factors, the *cumulative* number of aircraft to be procured through year n is

$$Q_n = (1 + \lambda) P_n + a_n .$$
(3)

If the fleet is to be kept in a steady-state condition (S_N, T_N) for M more years, aircraft will be delivered in year N + 1 to meet the attrition requirements of these M years. Hence H_{N+1} and a_{N+1} will be calculated to determine this final buy.

An aircraft has three major components: engines, airframe, and avionics. There is a cumulative buy program for each component, allowing for lead times and learning curve effects. Cumulative average costing is most convenient (see Sec. 14).

Take engines first. The procurement parameters can be written as the string of numbers

$$(a_1, p_{11}, x_{11}, p_{12}, x_{12}, p_{13}, t_1, \mu_1)$$
,

where the first subscript refers to component 1 (engines) and a_1 is the cost of the first article, p_{11} is the learning curve percentage (or rather fraction) up to article number x_{11} , p_{12} is the learning curve percentage for articles $x_{11} + 1$ up to x_{12} , and p_{13} is the subsequent percentage. Of course, a learning curve may have only one or two segments. The lead time in months is t_1 , so that an engine takes t_1 months from start of fabrication to delivery to the fleet as part of a complete aircraft. (Mating of engines and avionics with the airframe is taken to be part of the airframe lead time and cost.) The number of engines required per aircraft is μ_1 , allowing for multiengine models and spares. With these production parameters:

Up to x_{11} the cumulative average total cost for x articles is

$$a_1 x^{b_{11}+1},$$
 (4)

where $b_{11} = \ell_n p_{11}/\ell_n 2$. From $x_{11} + 1$ to x_{12} , the cumulative total cost is

$$a_1 \cdot x_{11}^{b_{11} - b_{12}} \cdot x_{12}^{b_{12} + 1}$$
, (5)

and above $x_{12} + 1$,

$$a_1 \cdot x_{11}^{b_{11}-b_{12}} \cdot x_{12}^{b_{12}-b_{13}} \cdot x^{b_{13}+1}$$
. (6)

These expressions are verified by putting $x = x_{11}$ in (5) and $x = x_{12}$ in (6). These expressions define a *cumulative* cost function $c_1(x)$ for all articles numbered 1 through x.

Next express t_1 in years and write

$$t_1 = INT(t_1) + FRAC(t_1)$$
.

Thus a 26-month lead time is 2.167 = 2 + 0.167. Then fabrication starts at $-t_1$, but during the fiscal year $-INT(t_1)$, only μQ_1 FRAC(t_1) articles will be started, requiring NOA of

$$C_1(\mu Q_1 FRAC(t_1))$$
 .

To the end of the next FY, $-INT(t_1) + 1$, the *cumulative* number of engines started is

$$\mu Q_1 + \mu (Q_2 - Q_1) FRAC(t_1)) , \qquad (7)$$

and NOA for that FY is

$$C_1(\mu Q_1 + \mu (Q_2 - Q_1) FRAC(t_1))$$
 (8)

By example, if $t_1 = 26$ months, $Q_1 = 16.91$, $Q_2 = 35.17$,

Note that deliveries to the fleet are made at a uniform rate during a year. So that formula (7) will apply for the first year and the last year, store $Q_0 = 0$ and store Q_{N+1} as Q_{N+2} . Then, for the last FY, we will have the correct cumulative total Q_{N+1} .

The above procedure applies equally to the remaining two components. The program then generates the *cumulative* NOA component by component. The user then adds vertically by FY, and takes differences horizontally to get the final NOA by FY that the procurement program would demand.

The model well illustrates the simplicity resulting when cumulative average costing is used rather than unit costing.

15.4. PROGRAM NOTES

l. LBL A uses indirect addressing and simple looping to produce the cumulative flying hours ${\rm H}_{\rm i}$.

2. LBL B computes required cumulative aircraft Q_i and puts these in the primary storage originally occupied by the squadron and training aircraft of the original schedule.

3. The GTO E of line 074 will lead to the storage of $\rm Q_{N+1}$ in $\rm Q_{N+2}$ also (see above for reason).

4. LBL C calculates the coefficients required for a segmented learning curve.

5. LBL 6 calculates the successive cumulative number of articles produced and NOA required as the fiscal years are incremented.

6. "Packed" storage is used extensively. Thus, $S_2 = 24$ and $T_2 = 6$ are stored in Register 2 as 24.06. Then S_2 is retrieved by 'f INT' and T_2 by 'g FRAC, EEX 2, X'. This storage device is useful

-143-

when storage space is at a premium, but care must be taken in fixing the number of places after the decimal point. Thus storing 24.6 instead of 24.06 would cause the program to produce 60 for T_2 instead of 6. You also pay for "packing" in the coin of program steps.

7. To hold the program to 224 steps, the user is asked to do considerable but simple inputting, such as: Given a lead time t of 26 months, key in 26 and then 'ENTER, 12, \div , STO 6'.

8. For lack of storage space, the user records output as produced and does some final additions and subtractions to get the NOA by fiscal year.

Example. The required buildup schedule is:

End of FY	1	2	3	4	5	6
Squadron acft	12	24	48	84	108	108
Training acft	3	6	12	21	27	27

The steady-state fleet is to be reached at the end of year 5. This will be kept constant through year 10. FH/Y = 240 for squadron acft and 720 for training acft. The cumulative attrition coefficient is 0.00015 and the exponent is 1.05. The command support factor is 5 percent. The engine learning curve has three segments, and the parameters for this component are

$$a_1 = 10, p_{11} = 0.9, x_{11} = 60, p_{12} = 0.8, x_{12} = 110,$$

 $p_{13} = 0.6, t_1 = 26, \mu_1 = 2.5$.

For the airframe (two segments):

$$a_2 = 25$$
, $p_{21} = 0.85$, $x_{21} = 30$, $p_{22} = 0.75$, $t_2 = 20$, $\mu_2 = 1$.

For avionics (one segment):

$$a_3 = 30, p_{31} = 0.75, t_3 = 14, \mu_3 = 1$$
.

Calculation

FY	1	2	3	4	5	6
Accum. FH	5040	15120	35280	70560	115920	342720
Req. acft	16.91	35.17	71.93	128.75	172.90	238.97

The sixth year allows for five years of flying and attrition.

FY	-2	-1	0	1	2	3	4	5
Cum. engines	7	50	103	204	340	460	597	597
Cum. NOA	52.08	275.88	464.52	571.37	653.54	707.63	757.85	757.85
Cum. airframes	0	11	29	60	110	158	217	239
Cum. NOA	0	156.73	329.20	506.78	722.45	892.89	1075.00	1137.47
Cum. avionics	0	3	20	41	81	136	184	239
Cum. NOA	0	57.05	173.05	263.35	392.21	531.08	633.80	738.58
Total cum. NOA	52.08	489.66	966.77	1341.50	1768.20	2131.60	2466.65	2633.90
FY NOA	52.08	437.58	477.11	374.73	426.70	363.40	335.05	167.25

(Note multiple use of registers in this program.)

Fig. 15.1—Time phased procurement flowchart

15.5 USER INSTRUCTIONS

	1 15. TIME PHASED PROCUREME	NT COSTIN	1G Z	
STEP	INSTRUCTIONS EXAMPLE OF 14.4	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	STO N.M IN A. N YEARS TO FINAL			
	BUILDUP, M ADDITIONAL YEARS OF			
	STEADY STATE FLEET OPERATION			
	(N ≤ 7, NOTE 5.05 AND <u>NOT</u> 5.5):	5.05	STO A	5.05
2	STO 1 + λ IN B, WHERE λ IS THE			
	COMMAND SUPPORT FACTOR	1.05	STO B	1.05
	STO C IN C AND d IND.	.00015	STO C	1.5 -04
	ATTRITION FACTORS, EQ (2).	1.05	STO D	1.05
4	STO A. B IN O. A IS FH/Y PER	240.720	STO 0	240.72
	SQ. A/C, B IS FH/Y PER TRG A/C.			
	(B HAS 3 DIGITS, INITIAL ZERO IF NEEDED)			
5	STO $S_n \cdot T_n$ IN R_n , $n = 1,, n$,	12.03	STO 1	12.03
	AND STO SN. TN IN RN+, ALSO.	24.06	STO 2	24.06
	S _n IS REQD SQ A/C AT END OF YR n.	48.12	STO 3	48.12
	T _n IS REQD TRG A/C AT END OF YR n.	84.21	STO 4	84.21
		108.27	STO 5	108.27
			STO 6	108.27
6	PRESS A.		Α	45360
	TO SEE CUM FH		f P++S	45360
			RCL 1	5040
			RCL 2	15120
			RCL 3	35280
			RCL 4	70560
			RCL 5	115920
			RCL 6	342720
7	f P↔S(IMPORTANT)		f P++S	342720
8	PRESS B		B	238.97
	TO SEE CUM. A/C REQ (UNROUNDED)		RCL 1	16.91
			RCL 2	35.17
			RCL 3	71.93
			RCL 4	128.75
			RCL 5	172.90
			RCL 6	238.97
9	$f P \leftrightarrow S$ (IMPORTANT). FOR ENGINES:			238.97
	aı STO 0	10	STO 0	10.00
	P ₁₁ STO 1	.9	STO 1	0.90
	x ₁₁ STO 2	60	STO 2	60.00
	P ₁₂ STO 3	.8	STO 3	0.80

15.5 USER INSTRUCTIONS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	×12 STO 4	110	STO 4	110.00
	p ₁₃ STO 5	.6	STO 5	0.60
	t1 (IN MOS) DIVIDE BY 12, STO 6	2.17	STO 6	2.17
	n1 (NR OF ENGINES/A/C) STO 9	2.5	STO 9	2.50
10	PRESS C. SEE FY.		С	-2.00
	TO GET CUM NR OF ENGINES PRODUCED		RCLD	7.00
	TO GET CUM NOA		RCLE	52.08
	R/S FOR NEXT FY		R/S	-1.00
			RCLD	50.00
			RCLE	275.88
	CONTINUE UNTIL CUM NR DECREASES			
11	RETURN TO 9 FOR NEXT COMPONENT			
	BUT DO NOT USE f P++S.			
	IF COMPONENT LEARNING CURVE			
	HAS 2 SEGMENTS:			
	EEX 9, STO 4; t/12, STO 6;			
	µ STO 9. NO OTHER STORAGE NEEDED			
	IF ONLY ONE SEGMENT:			
	EEX 9, STO 2; t/12, STO 6;			
	μ STO 9. NO OTHER STORAGE NEEDED.			
12	RECORD NOA FOR EACH COMPONENT			
	BY FY. ADD VERTICALLY. TAKE			
	DIFFERENCES TO GET INCREMENTAL			
	NOA BY FY.			
	· · · · · · · · · · · · · · · · · · ·			

15.6 TIME PHASED PROCUREMENT

STEP	KEY	ENTRY	KEY CODE	COMMENTS	STEP	KEY	ENTRY	KEY CODE	COMMENTS
001	001	*LBLA	21 11			057	P₽S	16-51	BECAUSE GTO 2 IN
	$+\frac{202}{207}$	1 6701	01_ 75_46			058		24	042, <u>NO</u> RIN 10 009
	+000	CSRA	27 80		060	1050	*LDLD	21 12	PRI
	1305	PZS	16-51			105	STOI	35 46	
	†00ε	STO :	35 45	TEMP		662	GSB3	23 03	
	1007	P ≠S	16-51			663	STO	35 45	Q 1
	1003	GSB1	23 01	(OR GTO 1)		064	*LBL4	21 04	
	005	*LBLØ	21 00	FH/Y		065	ISZI	16 26 46	
010	1818	RCLI	36 45	INDIRECT		065	GSB3	23 03	0
	+	INT	16 34	Si		867	STOI	35 45	Qn
	+012	RCLU	36 88			668	RULA	36 11	
	$+^{013}_{011}$	1111	10 34	А	070	003	1 1 1	10 34	
	$+^{017}_{015}$	Rrî :	36 45		070	27'	+	-55	NI + 1
	± 215	FRC	16 44			1072	ECLI	36 46	IN † I
	tei7	EEX	-23			1073	X=Y?	16-33	FINISHED ?
	±01ε	2	0 2 7	100		074	GTOE	22 15	
	1013	х	-35	T;		075	GT04	22 84	LOOP
020	†ø20	RCL0	36 00 -	- 1		676	*LBL3	21 03	
	T 821	FRC	16 44			877	RCL i	36 45	
	T022	EEX	-23]			[078	INT	16 34	SN
	<u> </u>	3	03	1000		[079	RCL:	36 45	
	LC24	х	-35	В	080	680	FRC	16 44	
	1025	X	-35			081	EEX	-23	
	1826	+	-55	$AS_i + BI_i$		082	Ž	02 75 -	-
	021		24			080	X 1	-35	l _n
	+000	ALBLI ISTI	21 01 16 26 46 ⁻			007	Prip	76 12	
030	+020	CSE0	10 20 40 27 AA			- 000 085	X	-35	$(1+\lambda)$ (S _n +T _n)
	+031	DS71	16 25 46			1027	P2S	16-51	
	1032	P ≓ S	16-51	SEC		1888	RCL	36 45	
	±033	RCL :	36 45			689	RCLD	36 14	110
	†e3+	+	-55 -		090	1090	γx	31 -	
	†035	ISZI	16 26 46			T091	RCLC	36 13	
	1036	STO	35 45	PARTIAL SUM		T Ø 92	Х	-35 -	a _n (2)
	T037	P ₽S	16-51	PRI		E093	+	-55 -	Qn (3)
	1038	RCLA	36 11			094	P75	16-51	PRI
	+035		16 34	N		050	KIN JUDIC	24	RIN 10 063/06/
040	+011	KULI V=VO	30 40 16-77 -			020	ALDLC Q	21 13	SEC (USER INST 9)
	+242	GT02	22 82	FINISHED FOR IN 3		1092	STOT	35 46	
· · · · ·	+043	GT01	22 01	LOOP		1099	GSB5	23 05	
	1044	*LBL2	21 02		100	120	EEX	-23	
	1045	GS BØ	23 00 -			101	9	0 9 -	
	+ 045	RCLA	36 11 -			1:02	RCL2	36 02 -	
	1347	FRC	16 44 -	1		103	X=Y?	16-33 -	1 SEGMENT?
	1648	EEX	-23			[104	GTOD	22 14	
	045	.2	02			105	RCL1	36 81	
050	1000	x	-35	$M.(AS_N + BT_N)$		105	RUL3	36 03	
	+252	P.+C	-35	SEC		107		-45	
	+653	RCL	36 45	$H_{\rm M}$ (1)		100	RCIA	36 00	
	1054	+	-55		110	tile	x	-35	
	1055	ISZI	16 26 46			111	ST07	35 07	
	†05£	STO	35 45	TOTAL FH		112	EEX	-23	
REGISTERS									
0 A	B	¹ S ₁ . T	2 S ₂ . T ₂	3 - 4 -	⁵ –	6	-	⁷ SN. TN	⁸ S _N . T _N ⁹
SO		S1	S2	- 	S5	S	6 . /	S7	S8 S9
a	۱	P11	וו× י	P ₁₂ × ₁₂	<u>р</u> 1	3	^r 1 / 12		μ μη
A	N.M	B]+λ	с С	D	d	E		I

15.6 PROGRAM LISTING

STEP	EP KEY ENTRY		KEY COD	E	COMMENTS		STEP KEY ENTRY		KEY CODE COM		IENTS	
	113	9	0	9				169	P#S	16-51		
	114	RCL4	36 0	4			170	170	RCL9	36 09	μ	
	+115	X=Y?	16-3	3 2 SE	GMENTS ?			171	X	-35		
	+	6100	22 1	4				172	DSPU	-63 00		
	+110	RULS PCL5	30 0 76 A					173	CTOD	16 24	(0)	
	+110	KULJ	-4	5				175	3100 NCD2	35 14	(8)	
120	+120	γx	3	1				175	PCI 2	-65 62 36 82		
	121	RCL7	36 0	71				177	XIY	-41	^ ' '	
	122	x	-3	5				178	X <u>4</u> Y?	16-35	1	
	127	ST08	35 0	8 1				179	GT07	22 07	1 st SEGA	
	124	GTOD	22 1	4 1			180	180	RCL4	36 04		
	125	*LBL5	21 0	5				181	X ≠ Y	-41	1	
	126	ISZI	16 26 4	6]				[182	X≦Y?	16-35	}	
	127	RCLI	36 4	6				193	GT08	22 08]2nd SEG	MENT
	128		6	4				184	RCL5	36 05		
120	+123	X=Y?	16-3		CONSTAN	TS ?		185	.1	U1 55 -	b ₁₃ +1	
130	+171	PCI:	76 4	-				100		-33		
	+132	IN	30 4	5-1''i				107	PCI 8	36 88 -	4	
	133	2	0	21				189	X	-35	3rd SEGA	
	134	LN	3	21			190	190	STOE	35 15		
	135	÷	-2	4				191	GT09	22 09	1	
	[136]	STO:	35 4	5]b ₁ ;=	lnp1:/ln			192	*LBL9	21 09		
	[137	ISZI	16 26 4	6] ^[]				[193	RCLB	36 12 -	1	
	133	RCL i	36 4	5]×1;				[194	R∕S	51	DISPLAY	FY (152)
	139	EEX	-2.		USER INST.	. 11		195	RCLB	36 12		
140		9	U .	2		•••		196	1	01]	
	141	X=1? DTN	10-3.	24				157	+ CTOD	-55		
	1142	CT05	22 8		EOR SEGMEN	JTC		120	310B D+C	35 12	4	
	122	*! BLD	21 1		TON SEGMEN	115	200	200	GT06	22 86	4	
	145	0		i -				20:	*LBL7	21 87		
	145	STOD	35 1	1				202	RCL1	36 01 -	IST SEGN	
	147	STOE	35 1	5 TCLEA	R			203	1	0 1 ⁻	1	
	[148	STOI	35 46	5				204	+	-55 -	1	
	[143	RCL6	36 00	5] t/12				205	Υ×	31 -	1	
150	158	INT	16 34					206	RCLØ	36 00]	
	151	CHS	-22	<u>;</u>				287	X	-35		
	152	DELE	33 14 76 Bi					200	STUE	33 13	4	
	154	FRC	16 40	24			210	205	41 121 0	21 89		
	155	STOC	35 13				210	211	RCL3	36 03	2 nd SEG	MENT
	156	P ≠ S	16-5					212	1	01 -	1	
	157	0	0(213	+	-55 -	1	
	158	S T00	35 06	7				214	γ×	31 -	1	
	159	*LBL6	21 06					215	RCL7	36 07]		
160	150	RCL	36 45	Qn				216	Х	-35		
		RULI	36 45	2(DEL	ETE 161)			217	STOE	35 15		
	162	1521 PCL :	10 20 40					218	6109	22 89		
	163	KUL	-4 -4	$\left\{-\right]^{Q_{n}}$	+1		220	215	ALDLE Di	_71 -		
	165	CHS	-22	- H				221	₽1.	-31	TO GET	o I
	166	RCLC	36 13	FRAC				222	ISZI	16 26 46		≪N+1
	157	x	-35]				223	STO:	35 45		
	168	+ .	-5;	·				224	RTN	24	Q _{N+1}	
٨				LA	BELS	Te		-	FLAGS		SET STATUS	
~		D	C		Ľ	_		<u> </u>		FLAGS	TRIG	DISP
а		b	с		d	е		1				
0		1	2		3	4		2			GRAD	SCI 🗆
5		6			8	9		3		2 🗆 🗆	RAD 🗆	ENG 🗆
-		-	ľ		ľ	ľ		ľ		3 🗆 🗆		n

16. COST/BENEFIT STREAMS

16.1. REFERENCES

None.

16.2. DISCUSSION

The model of this section is also due to H. G. Massey of The Rand Corporation. It deals with decisions to spend money now as opposed to later during the life cycle of a weapon system. That is, should engineering development monies be spent now with the expectation that future operating and support costs will be lower? The planner must decide, for example, whether to install engine diagnostic equipment now, assuming that future maintenance will otherwise be less efficient and therefore more costly. The model quantifies such decision problems, using as a yardstick the present value of a discounted stream of expenditures and benefits, both of which are expressed in constant dollars (no allowance for inflation).

A simple example will illustrate. Suppose we assume that \$10M spent now will lead to operating and support (O&S) costs of \$20M 8 years from now; if no money is spent now, these future costs will be \$40M. Let the discount rate be 10 percent, as currently mandated by the Department of Defense. If the \$10M were invested at 10 percent compounded interest for 8 years, it would yield \$21.4M. Consequently, we would save \$1.4M by *not* improving the system now. But if the rate were 5 percent, we would *lose* \$5.2M by not improving the system now. It follows that the rate mandated or assumed has a controlling impact on the decision.

With respect to estimating the future costs (\$20M and \$40M above), one other crucial point must be made. Suppose the system in question is a fleet of aircraft of a given type. Then we must keep the operational capability constant in the two cases. That is, the O&S costs must be assessed in both cases to produce the same in-commission rate or other measure of operational capability for the fleet.

16.3. EQUATIONS

Set a time horizon of N future fiscal years, the expected life of the weapon system. Let C_i be the costs of the proposed near-term improvements for years 1, ..., N. Let B_i be the assessed *incremented* O&S *savings* given the stream C_i . Then the discounted present value of the benefit/cost stream at a rate r is

$$P(r) = \sum_{i=1}^{N} (B_{i} - C_{i})(1 + r)^{-i+1} , \qquad (1)$$

since by convention present values are stated for fiscal year 1. The "breakeven" year j is defined as the first j for which

$$\sum_{i=1}^{j} (B_{i} - C_{i})(1 + r)^{-i+1} > 0 , \qquad (2)$$

if P(r) > 0.

The "internal rate of return" is that r* for which

$$P(r^*) = 0$$
 . (3)

If the actual rate r is greater than r*, then P(r) < 0, because $(1 + r)^{-i+1} < (1 + r^*)^{-i+1}$. In this case, the near-term improvement investment would not be made.

The value r* is found by Newton's method. We have, using $D_i = B_i - C_i$,

$$P'(r) = \sum_{i=1}^{N} (1 - i) \cdot D_{i} \cdot (1 + r)^{-i}$$

$$= \frac{1}{1 + r} \left[P(r) - \sum_{i=1}^{N} i \cdot D_{i} \cdot (1 + r)^{-i+1} \right],$$
(4)

which is written in this form to simplify the programming. Finally

$$1 + r_{n} = 1 + r_{n-1} - \frac{(1 + r_{n-1}) \cdot P(r_{n-1})}{P(r_{n-1}) - \sum_{i=1}^{N} i \cdot D_{i} \cdot (1 + r)^{-i+1}}.$$
 (5)

16.4. PROGRAM NOTES

(1) This program uses indirect addressing in a natural and straightforward fashion. The successive D_i's are stored in registers 1, ..., 19 (19 years is the maximum for this program). Looping by f ISZ is then simple.

(2) To get the breakeven year, we want to test for a change of sign in

$$P(j, r) = \sum_{i=1}^{j} D_i(1 + r)^{-i+1}$$

as this partial sum crosses the time axis. A simple procedure is to test the ratios P(j + 1, r)/P(j, r) to see when, if at all, the ratio is *negative*.

(3) In using Newton's method, a simple first-guess at the root is r = 0. But 1 + r or 1 is then stored in B. If any iteration produces 1 + r < 1, stop. In this case there is no internal rate of return.

16.5 USER INSTRUCTIONS

	1 16. COST/BENEFIT STREAMS								
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS						
1	sto n in a	5	STO A	5.00					
2	STO $D_1 = B_1 - C_1 N ^2$	- 5	STO 1	- 5.00					
	D ₂	-3	STO 2	- 3.00					
	D _{3.}	1	STO 3	1.00					
	D ₄	4	STO 4	4.00					
	D ₅	7	STO 5	7.00					
3	IF N > 9, f P++S		f∣P↔S						
	STO D ₁₀ IN 0								
	STO D ₁₁ IN 1, UP TO D								
	f P↔S (IMPORTANT)		f P↔S						
4	STO 1 + r IN B (r = 10%)	1.1	STO B	1.10					
5	PRESS A. SEE BREAKEVEN YEAR			5.000					
6	PRESS R/S. SEE P(r)		R/S	0.886					
7	TO FIND r *, THE INTERNAL RATE OF RETURN,								
	STORE A FIRST GUESS 1 + r IN B	1.1	STO B	1.100					
8	PRESS B. SEE f -x		В	1.136					
9	PRESS R/S WHEN DISPLAY REPEATS.			1.139					
	(SHOWS CONVERGENCE.)			1.139					
	(THE INTERNAL RATE OF RETURN IS 13.9%,								
	WHICH IS GREATER THAN THE MANDATED 10%.								
	MAKE THE IMPROVEMENT.)								

STEP	KEY	ENTRY	KEY CODE	COMMENTS	STEP	KEY E	ENTRY	KEY CODE		COMM	ENTS	
001	001	*LBLA	21 11			057	STOE	35 15	ΣiΓ). (1+r	$n)^{1-i}$	
	1002	DSP3	-63 03			058	RCLI	36 46		1	n [,]	
	+203	1	01		000	059	RCLA	36 11			0000	
	$+\frac{204}{207}$	5101	35 46		060	1060	X=Y?	16-33	ENL		-0013	· .
	+905	RULI	36 01			1 861	G101	22 01	I			
	$+\frac{eee}{aaz}$	STUE	35 15			862	6100	22 14				
	200	*1 BLC	21 13	D1		- 000 064	RCIA	76 88	1			
	1009	ISZI	16 26 46			665	RCLE	36 15	1			
010	1318	RCLB	36 12			1066		-45				
	T01:	1	.01			067	RCL0	36 80			、	
		RCLI	36 46	1 – i		[053	÷	-24]		(5)	
	217	~	-45			069	178	52 _				
	+ <u>∷</u>	Y×.	31		070	970	RCL B	36 12				
	$+\frac{1}{2}$	RCLI	36 45	D(1) = 1 = i		1071	X	-35				
	$+\frac{015}{017}$	Х СТ10	-33			1072	DCLD	76 10				
	+ 610	3170 B	3J-JJ 00	PARTIAL SUM		1074	KULD	30 12				
	+ 910	RCLA	36 88	TEST FOR SIGN		1075	STOR	35 12	(1 +	r., 1)		
020	$\pm e_{20}$	RCLE	36 15	CHANGE		1076	PRTX	-14		'n + 1/		
	1021	÷	-24	CHARGE		1077	GTOB	22 12	100	٦P		
	1022	X<0?	16-45									
	023	GS B0	23 00									
	024	RCLI	36 46		080							
	_ 025	RCLA	36 11			L						
	$+^{025}$	X=Y?	16-33	END OF LOOP?		ļ						
	$+\frac{627}{620}$	BCLA	22 0 2 76 00 -									
	+ 020	STOP	30 00			ł						
030	+ 030	STOC	22 13									
	03:	*LBL0	21 00	2001	<u> </u>	<u> </u>						
	+032	RCLI	36 46	DSP BREAKEVEN YR					İ -			
	033	R∕S	51									
	034	*LBL2	21 02		090							
	+835	RULU	36 00			 						
	877	*I BLB	21 12			 						
	+038		01			 						
	1039	STOI	35 46	1								
040	1040	RCL1	36 01			1						
	<u> </u>	ST00	35 00	D ₁								
	642	STOE	35 15	D ₁								
	$+\frac{643}{244}$	*LBLD	21 14	1								
	+015	1521 PCLP	10 20 40 76 12 -	11+-	100							
	+646	1	00 12 01 ⁻	4' ^{- '} n		+						
	+047	RCLI	36 46 -									
	1048	-	-45	11-1		1						
	<u> 1</u> 949	γ×	31 -	1					1			
050	1050	RCL i	36 45	D (1) 1-i								
	051	X	-35	$D_{i}(1+r_{n})$								
	+052	51+ 0	33-33 UU 74 AC	Σ D _i (I+r)'='	ļ	 						
	$+^{000}_{054}$	RULI X	JO 40_ _75	$iD_{1}(1+r_{1})^{1-i}$	110	+						
	+655	RCLE	36 15	1' ⁵ i\'''n'	<u> </u>	t						
	1055	+	-55	1		1						
				REGI	STERS							
⁰ P	(r)	D ₁	² D ₂	³ - ⁴ -	5 -	6	-	7	8		9 -	
S0	-	S1 _	S2	S3 _ S4 _	S5 _	Se	3	S7	S8	-	^{S9} D	
A		[E	3 (1)		D					I	19	
l	N		(I+r)		l			O2ED				

16.6 COST BENEFIT STREAMS

PART IV

MATHEMATICAL FUNCTIONS AND ALGORITHMS

17. THE NORMAL FUNCTION AND ITS INVERSE

17.1. REFERENCES

None.

17.2. DISCUSSION

This program is frequently used in conjunction with others, such as the Q function (Program 18). Extensive application of the error function is made in *Hewlett Packard HP-65 Programs for Evaluating Effectiveness of Field Artillery Weapons*, prepared for the Joint Technical Coordinating Group for Munitions Effectiveness (Surfaceto-Surface) by Booz-Allen Applied Research, Shalimar, Florida, September 1975.

17.3. EQUATIONS

The normal distribution, or function, is

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(-t^{2}/2) dt , \qquad (1)$$

where \boldsymbol{x} is in units of $\boldsymbol{\sigma}.$ An early approximation, due to J. D. Williams, is

$$F_0(x) = \frac{1 + [1 - \exp\{-2x^2/\pi\}]^{1/2}}{2}, \quad x \ge 0, \quad (2)$$

which has a maximum error of about 0.002. R. N. Snow replaces the curly brackets in (2) by

$$-2x^2\left(\frac{1}{\pi}-\frac{x^2}{x^4+230}\right)$$

and obtains an accuracy better than 0.0001.

A first approximation to the inverse is obtained by solving (2) for x,

$$x_{0} = \left[-\frac{\pi \ell_{\pi} \{1 - (2F_{0} - 1)^{2}\}}{2} \right]^{1/2}$$
(3)

For greater accuracy, x_0 is used in solving the equation F(x) - y = 0 by Newton's method, which is appropriate since the derivative is simple,

$$F'(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$
.

The error function is

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt$$
, and (4)

$$erf(x) = 2 \cdot F(\sqrt{2} \cdot x) - 1$$
. (5)

Given a value E to find the corresponding x, use this program with F = 1/2 [1 + E] and divide the resulting value by $\sqrt{2}$.

```
Example 1. Find erf(0.5).
Key in 1/\sqrt{2}, PRESS A, then 2, x, 1 - .
```

Example 2. Find x for erf(x) = 0.5206.

Answer is 0.5206.

Key in F = (1 + 0.5206)/2, PRESS B, PRESS C, $\sqrt{2}$, \div . Answer is 0.50.

17.4. PROGRAM NOTES

None.

	1 17. THE NORMAL FUNCTION AND ITS INVERSE Z							
STEP	INSTRUCTIONS	KI	EYS					
1	KEY x	.233						
2	PRESS A				.5921			
	OUTPUT IS F(x)							
3	KEY F	.5921						
	DDESC D							
	OUTPUT IS x				.2329			
	· · · · · · · · · · · · · · · · · · ·							
5	NOW PRESS C FOR A REFINED VALUE OF x,			C	.2330			
	AND CONTINUE IF DESIRED							
6	(PRESS A AGAIN TO RETRIEVE F)							
	·							
			[]					
				[]				
			[]]					

17.6 THE NORMAL FUNCTION

STEP	KE	ENTRY	KEY CODE	СОММ	ENTS	STEP	KEY	ENTRY	KEY CODE	COM	MENTS
001	001	*LBLA	2i 11				057	+	-55		
	002	STOA	35-11.	x			058	LN	32 (
	003	GSB0	23 00				059	P i	16-24		
	004	RCLA	36 11]			06 C	060	х	-35		
	005	X X 8?	16-45	x<0			061	2	82		
	00£	GT01	22 81	-			862	÷	-24		
	007	' RCLØ	36 00 1				R63	CHS	-22		
	008	DSP4	-63 04				864	18	54		
	009	RTN	24				965	ST02	75 B2		
010	010	*LBL1	21 81	CORRECTS	FOR x < 0		AFE	DSP4	-67 04	^ o	
	Q11	1	— Д 1	CORRECTS			957	DOI 4 DOI 9	75 10		
	G10	Pria	36 00				001	RULD			
			-45				000 020	2	-02		
	014 014		-63 64			070	005	U V0	16-74	E > E	
	019	с рты	24			0/0	070	0712	10-24	-2 ~ F	
	- 01 - G1 4	ALDIG	51 30				071	6102	22 82		
	010		72 14				072	KULZ	00 0Z		
	017	KULH V V 0	30 11				073	KIN	24		
	010	ί Λ- · · · · ·	00 77 54				074	*LBLZ	21 62		
	013	5101	00 E1 27 -				075	RULZ	36 02		
020	ØZE) Xe	ىت				076	CHS	-22	CHANGE	TO - x _o
	021	2	02				077	ST02	35 02		Ŭ
	022	3	03				078	RTN	24		
	023	7 Ø	60				079	*LBLC	21 13		
	024	+	-55			080	080	RCL2	36 02		
	025	i 17X	52				081	X2	53		
	026	RCL1	36 Ø1				082	2	<i>82</i> '	1	
	027	' X	-35				083	÷	-24		
	028	CHS	-22				084	CHS	-22		
	000	D !	15-04				085	e×	33 1		
038	023	· · · ·	10724.				086	Pi	16-24		
	030	178	02 . EE				087	2	<i>02</i> 1		
	031	+	-00 . Ta aa				088	Х	-35		
	032	KULI	30 61.				089	7X	54		
	033	(X	-30.			000	090	÷	-24		
	034	2	<i>62</i> .			0.50	A 91	ST05	35 05		
	035	. Х	-35.				A 92	RCL2	36 02	· (^ o)	
	036	CHS	-22				A93	GSBA	23 11		
	037	e^	<i>33</i> ,				R 94	CHS	-22 -		
	038) CHS	-22 ,				095	RCIR	36 12		
	039) 1	01.				896	+	-55		
040	040) +	-55				Q97	Pris	76 05		
	041	₹X	54				000	K020	-24		
	042	1	ē1 .				000	DCI 2	75 99		
	043	3 +	-55				100	RUL2	00 02 _55	^ 1	
	044	1 2	<i>82</i>			100	100	стлэ 1	-55 75 00		
	043	; ÷	-24				101	5102 neb7	-23 02 -27 87		
	046	S STOØ	35 00	F (x)			102	נשפט	-00 03 94		
	047	' RTN	24				103	KIN	24		
	048	*LBLB	21 12								
	043	9 STOB	35 12	F							
050	056) 2	ə2								
	05	X	-35								
	052	2 1	ē1								
	053	3 -	-45								
	05-	4 X2	53			110					
	05	5 CHS	-22								
	05	5 1	ē1								
		-			REGI	STERS					
0 E (~)	¹ 2	² × -	3	4	5 F!/~) 6		7	8	9
	/	^		62	C.4		0/		67		50
50		51	52	53	54	55	Se)	57	38	29
		To			1	D				- <u>I</u>	L
r	x	ľ	F	Č		Ĭ		ľ		ľ	
						L					
18. THE Q FUNCTION (OFFSET COVERAGE FUNCTION)

18.1. REFERENCES

- a. J. I. Marcum and P. Swerling, "Studies of Target Detection by Pulsed Radar," *IRE Transactions on Information Theory*, *Vol. IT-6*, *No. 2*, April 1960. (Reprints of Rand RM-754, December 1947, and RM-1217, March 1954.)
- b. J. I. Marcum, *Tables of Q Functions*, The Rand Corporation, RM-339 (ASTIA No. AD 116551), January 1950.
- c. D. P. Meyer and H. A. Mayer, *Radar Detection*, Academic Press, New York and London, 1973.
- d. L. A. Wainstein and V. D. Zubakov, *Extraction of Signals* from Noise, Prentice-Hall, Englewood Cliffs, N.J., 1962.
- e. L. E. Brennan and I. S. Reed, "An Iterative Method of Computing the Q Function," *IRE Transactions on Information Theory, Vol. IT-11, No. 2,* April 1965.

18.2. DISCUSSION

The Q function

$$Q(\mathbf{r},\mathbf{R}) = \int_{\mathbf{R}}^{\infty} u \exp\left\{-\frac{\mathbf{r}^2 + u^2}{2}\right\} \cdot \mathbf{I}_0(\mathbf{r}\mathbf{u}) \, \mathrm{d}\mathbf{u} \tag{1}$$

is basic in radar detection theory. It is expressible in Lommel functions of the first kind (Ref. a), but is not integrable in closed form.

The Q function's more common application is perhaps in offset bombing calculations. For a circular normal distribution $(0,\sigma)$, a weapon radius R (in units of σ), and a point target at a distance r (in units of σ) from the origin (the aiming point), the probability of coverage is simply P(R,r) = 1 - Q(r,R). If CEP in feet is used and r', R' are in feet,

 $r = r' \frac{\sqrt{2 \, \ell_{R} \, 2}}{CEP}$, $R = R' \frac{\sqrt{2 \, \ell_{R} \, 2}}{CEP}$,

The damage probability program (Sec. 9) can be used to get weapon radius, and this program is then employed to find collateral damage to other point targets.

18.3. EQUATIONS

The Bessel function $I_0(x)$ is given by

$$I_0(x) = \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^{2n} / (n!)^2 .$$
 (2)

Put (2) in (1) and interchange the order of summation and integration to get

$$P(R,r) = 1 - Q(r,R) = \sum_{n=0}^{\infty} k_n(r^2/2) K_n(R^2/2) , \qquad (3)$$

where

$$k_{n}(y) = x^{n} e^{-y} / n!$$

$$K_{n}(x) = \int_{0}^{x} \frac{u^{n} e^{-u}}{n!} du = \frac{\Gamma_{n+1}(x)}{n!} ,$$
(4)

and Γ_{n+1} is the incomplete gamma function. The recursion relations for k_n and K_n are

$$k_{0}(y) = e^{-y}$$

$$k_{n}(y) = \frac{y}{n} k_{n-1}(y) , \qquad n > 0$$

$$K_{0}(x) = 1 - e^{-x}$$

$$K_{n}(x) = K_{n-1}(x) - k_{n}(x) , \qquad n > 0 .$$
(5)

$$P(R,r) = \sum_{n=1}^{N-1} k_n K_n + R(N)$$
,

where the remainder

$$R(N) = \sum_{n=N}^{\infty} k_n K_n .$$
 (6)

Reference e shows, for N > $rR/\sqrt{2}$, that

$$R(N + 1) \le k_N(r^2/2) K_N(R^2/2)$$
 (7)

Let $N_0 = rR/\sqrt{2}$ and let Δ be the desired accuracy. Then the iteration can be terminated at n = N, if

$$N > N_0$$
, $k_N(r^2/2) K_N(R^2/2) \le \Delta$. (8)

If r and R are small, the convergence is rapid. But as r and R increase, the number of terms required--and thus computation time--become excessive.

However, for r, $R \ge 5$, Ref. d provides an excellent approximation in terms of the cumulative Gaussian function

$$P(R,r) = \frac{1}{\sqrt{2\pi}} \int_{Z_0}^{\infty} e^{-u^2/2} du + E(Z_0) , \qquad (9)$$

where

$$Z_0 = (R - r)(1 - 1/4r^2) - 1/2r$$
 (10)

The approximation is improved by adding two more terms to (10), taking

$$Z_{1} = (R - r)(1 - 1/4r^{2}) - 1/2r - 1/48r^{3} - (R - r)^{2}/10r^{3}.$$
 (11)

Then the error $E(Z_1) \leq 0.0005$ for $r \geq 4.25$. It can also be shown that for

$$R \ge 2.45 + \frac{1}{r - 1.7} ,$$

$$E(Z_1) \le 0.005 .$$
(12)

The regions of interest for the P(R,r) calculation are then shown in Fig. 18.1. For region A, use the iteration method, Eqs. (3) and (8). The maximum number of iterations required to obtain an error $\Delta < 0.0005$ is 10. For region B, use the approximation (11) in (9), with an execution time of 7 sec. In general, the regions above R - r = -2.8 and below R - r = 2.8 are without interest. However, even in these regions, the approximation method may be used.

18.4. PROGRAM NOTES

1. For an accuracy $\Delta \leq 0.0005$, enter R, r, and Δ and press B. The program will choose the better method to compute P(R,r). "Better" is defined as entailing the least computer time to obtain at least accuracy Δ .

2. For an accuracy Δ better than 0.005, again enter R, r, and Δ but press A.

Fig. 18.1. — Iteration and approximation regions

Fig. 18.2— P(Q) function program flowchart

18.5 USER INSTRUCTIONS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	STO \triangle (ACCURACY) IN E	.0005	STO E	0.0005
2	KEY R, ENTER	2.6	ENT	2.6000
3	KEY r, PRESS B	2.5	B	0.4217
	(BEST METHOD IS CHOSEN FOR			
	4 PLACE ACCURACY BY THE PRGM)			
	TO SELECT APPROX. METHOD			
		00005		00005
4		.00005		.00005
5		2.6		2 6000
5		2.0		2.0000
6	KEY r. PRESS A (DSP 5)	2.5		0.42172
	TO SELECT APPROX. METHOD FOR			
	THIS CASE DO STEPS 4, 5, 6			
	PRESS C			
			C	0.4604
	(WRONG REGION FOR APPROX. METHOD)			
	·····			
			LJ LJ	

18.6 THE Q FUNCTION

STEP	KEY E	NTRY	KEY CODE		COMMENTS	STEP	KEYE	INTRY	KEY CODE		COMMENTS
001	601	#LBLA	21 11	ITER	ATIVE SOLUTION		057	STXI	35-35 01	kn	
	002	STOD	35-14	l r			858	RCL 1	36 81		
	663	X2	53				659	ST-2	35-45 82	K_ =	= K n 1 - k n
	004	2	82			060	060	RCLE	36 12	1	·····
	005	÷	-24	1			RET	RCLA	36 20	1	
	1 006	STOB	35 12 -	v =	$r^{2}/2$		862	*	-24	lv/n	
	007	CHS	22	11	• / -		927	Dri 7	76 87	· · ·	
	T AAS	sx.	33 -	1			000 674	KULS	- 75	1.	
	000	5703	35 63 -	1 1 =	а ^{-у}		0/15	0707	-33 75 07	Ju	
010	010	ST04	75 24		C		863	5103	33 63 77 33		
	1 ATT	0101 D1	-71	1			000	RULE	30 62		
	011	etoe	75 17	_			667	X	-33		
	012	5/00		ĸ			668	51+4	35-55 64	$ P_n =$	$P_{n-1} + J_n K_n$
	013	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1			069	RIN	24		
	014	. '		1		070	070	#LBLB	21 12		ECTS BEST METHOD
	013	-			2/0		071	stod	35-14	l r	
	016	5108	33 11 	x = 1	κ [−] /2		072	4	64		
	61/	CHS	-22	1			C73	=	-62]	
	615	e^	55				674	2	62]	
	619	STGI	35 31	k_ =	e ^{-x}		075	5	05	1	
020	02 0	CHS	-22 -	ľ			075	X≦Y?	16-35	4.25	5 ≤ r ?
	021	1	6í ⁻	1			677	6703	22 03	1	$r \ge y.25$
	022	+	-55 '	1			078	Rŧ	-31	1 r	- /
	023	ST02	35 02 1	Ι Κ_=	:]- k.		Q79	2	a2	1	
	024	ST×4	35-35 04	l î k	• ••0	080	0.20	¥299	16-35	2<	r ?
	025	RCLC	36 13 1	1 0 K	0		801	CT01	22 81	12-	2 < r < 4.25
	826	RCLD	36 14 1	1			001	0101 D [-71	۰.	23137.23
	0.27	x	-35	1			002	010A	20 11	1-	A IE
	020	2	82 ·	4			660	6104		10	
	029		54	1			084	#LBL1	21 81		
	070	÷	-24	NI L	- Pr /2 2		885	R4	-31	4	
U 30	0.00	•,	21 ·	110			886	1	01		
	070	1	_55 -	1	-1 $D_{-1}/\sqrt{2}$		087	×	-62	1	
	032	- -		N ₀	$= 1 + \kappa r / \sqrt{2}$		888	7	87		
	233	5101	00 40				089	-	-45		
	034	0 0703	55			090	89 8	178	52]	
	633	5100	33 88	n = ()		691	2	62]	
	036	¥LBL4	21 84	LOC	P UNTIL N≥N₀		<i>892</i>		-62	1	
	1 037	eses	23 05	1	0		693	4	04	1	
	1 038	DSZI	16 25 46	N_=	0		894	5	65	1	
	639	6704	22 84		•		895	+	-55	R_=	2.45 + 1/(r - 1.7)
040	040	ti BL D	21.14				896	8249	16-35		D 2
	1 0.41	6585	27 05				697	CT02	22 42	^ °_	. K 🗜
	042	Drif	36 15	1			000	DI	-71	P	
	047	0700	12_75	ł			000	איז	- 31 72 - 54	1.	
	040	0100 0100	10-00	1		100	100	CTOA	30 14 33 ((14~	
	1 044	DCL G	, <u>22 1</u> 7 , 72 66	{			101	+1 DI 2	22 11	10	$A \parallel K > K_0$
	1 040	DCD4		ł			101	TLDL2	21 02	Ь	
	1 040	0560) −53 66 ;2 €{	E1 A4	с н "		102	K∳ 0010	-31	1.	Clanner
	1 047		. 10.31	LLCA:	n n		100	RULD	36 14		
	1 040	RULY	00 04				104	6106	22 13		
	1 049	0564	D-3 - 1044 	יכוט ן			103	ALDL3	21 03	1	
050	000	KIN	1 <u>24</u> A/ 3E				160	<u></u>	-31	<u>r</u>	
	851	#L6L3	21.63	1			187	\$LBLC	21 13		APPROX P_2
	+ 052		01 75 FF 00		1		188	STOD	35 14	I.	
	1 053	51+6	33-33 60	n = r	1 - 1		109	XTY	-41	R	
	854	RCL	36 11			110	118	STOC	35 13	1	
	855	RCLE	36 88				111	XZY	-41		
	056	÷	-24	_ x∕ n			112	-	-45	<u> K – r</u>	
					REGI	STERS			- 1	10	
° n	1	k n	² K _n	3	J _n ^₄ P _n	5	6		/	8	9
S0	S1		S2	S3	S4	S5	S6		S7	S8	S9
A X	$= R^{2}/2$	2	$y = r^2/$	2	C R	D	r	E	Δ	- I	I N _o

18.6 PROGRAM LISTING

STEP	KEY	ENTRY	KEY CO	DE		COMMENTS		STEP	KEYI	ENTRY	KEY CODE	COMM	ENTS
	113	ST08	35	98					169	÷	-24		
	114	RCLC	36	13				170	170	ST05	35 85	1	
	115	3		83					171	RCL6	36 86]	
	116	RCLD	36	14					172	DSP4	-63 04]	
	117	x	-	35					173	X<0?	16-45	IF z < 0	
	118	-	-	45					174	6106	22-86		
100	119	RCLD	36	14					175	X₽Y	-41		_
120	128	X2		33					176	RTN	24	DISPLAY	P ₂
	121	5109	35	89 24					177	#LBL6	21 85		
	122	4		84 72					178	1	01 7.5 AF	$ P_2 F z <$	0
	120	^ -	-	33 34				180	179	RCLD	36 83 17		
	124	•	-	55	- '- D	+ (P - 3 -)/	4-2		100	ето <u>5</u>	-4J 75 05		
	126	. 4		64 -	Z - K	-1 + (K - 5) //	41		101	5105 DTN	00 0 0 24		
	127	, 8		aa l					102				2
	128	RCL 9	36	69								-	
	129	x	-	35								-	
130	130	17X		52								-	
	131	-	-	45	z" =	$z' - 1/48r^2$						-	
	132	RCLS	36	88 (-	
	133	χz		53								1	
	134	1		8í]				190					
	135	6		68									
	136	RCL9	36	89									
	137	X		35									
	138	RCLD	36	14								4	
	139	× .		33								4	
140	140	÷	-	24 75			. 3					4	
	3.40	+/ D/ E		40	z = z	$\frac{r}{R} = \frac{(R - r)^2}{12}$							
	143	STOR	35	ac I		PROGRAM 17							
	144	χ2		53	(022		'	200				-	
	145	ST07	35	87								-1	
	146	X2		53								-	
	147	2	•	62								1	
	148	3		83									
	149	8		8 8									
150	150	+	-	55									
	151	1/8		32								_	
	132	RULT	36 -	07 75								_	
	133	× D:		33 2∦				210				-1	
	104	128	10-	52				210				-1	
	156	-		45									
	157	RCL7	36	07								-1	
	158	X	-	35								-1	
	159	2		02								-1	
160	168	x	-,	35				+				-1	
	161	e ^x		33								1	
	162	Chs	-,	22									
	163	1		ði									
	164	+	-	55				220				4	
	165	•*	•	34 A1									
	100	ن	_	55								-1	
	168	2		82								-	
		<u> </u>			LAE	BELS		II.	F	LAGS	T	SET STATUS	
		B (A or		APP	ROX.		E	CUM	0		FL AGS	TRIG	DISP
a		b b				d	e	USSIAN	1		ON OF	:	
												DEG 🗆	
0		ICEST R		(1	01)	³ (105)	1100	$P, n \leq N_c$					
	TEdn	⁶ P ₂ IF	z ≤0 ⁷			8	9		3		3 0 0		n

19. LINEAR PROGRAMMING AND 3 \times 3 MATRIX GAMES

19.1. REFERENCES

- a. G. B. Dantzig, *Linear Programming and Extensions*, The Rand Corporation, R-366-PR, August 1963 (published by Princeton University Press).
- b. A. M. Glickman, An Introduction to Linear Programming and the Theory of Games, John Wiley and Sons, New York, 1963.
- c. R. W. Metzger, *Elementary Mathematical Programming*, John Wiley and Sons, New York, 1958.
- d. J. D. Williams, *The Compleat Strategyst*, McGraw-Hill, New York, revised edition, 1966.
- e. M. Dresher, *Games of Strategy: Theory and Applications*, The Rand Corporation, R-360, May 1961 (published by Prentice-Hall).

19.2. DISCUSSION

The 3-activity linear programming problem may be formulated:

find $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$ satisfying $a_{11} x_1 + a_{12} x_2 + a_{13} x_3 \le b_1$ $a_{21} x_1 + a_{22} x_2 + a_{23} x_3 \le b_2$ $a_{31} x_1 + a_{32} x_2 + a_{33} x_3 \le b_3$

to maximize

$$M = c_1 x_1 + c_2 x_2 + c_3 x_3 .$$

The recipe for solving this problem by the pivot method is very simple, although the result of deep and extensive analysis. Set up Tableau 1:

1	*2	×3		
^a 11	^a 12	^a 13	^b 1	^u 1
a ₂₁	^a 22	^a 23	^b 2	^u 2
^a 31	(a ₃₂)	^a 33	^b 3	^u 3
-c ₁	-c ₂	-c ₃	0	М

TABLEAU	1
---------	---

1. The pivot *column* corresponds to the most *negative* of $-c_1$, $-c_2$, $-c_3$. Say this is $-c_2$.

2. The pivot *row* is found by finding

$$b_1/a_{12}$$
, b_2/a_{22} , b_3/a_{32}

for only those b's that are *positive*, and then selecting the minimum. Say this is b_3/a_{32} . Then the pivot is a_{32} .

3. Replace the pivot by its reciprocal, and divide all other entries in the pivot's column by the negative of the pivot.

4. For an entry *other* than those in the pivot's row and column, add to that entry the product of the entry in the same column to the left or right of the pivot in *its* row and the entry in the (new) pivot's column to the left or right of the entry in *its* row.

5. Now modify the pivot's row by dividing all entries other than the pivot by the pivot.

6. Interchange x_2 and u_3 .

These operations produce the new Tableau 2:

×1	^u 3	×3		_
$a_{11} + a_{31} (-a_{12}/a_{32})$	-a ₁₂ /a ₃₂	$a_{13} + a_{33} (-a_{12}/a_{32})$	$b_1 + b_3 (-a_{12}/a_{32})$	^u 1
$a_{21} + a_{31} (-a_{22}/a_{32})$	-a ₂₂ /a ₃₂	$a_{23} + a_{33} (-a_{22}/a_{32})$	$b_2 + b_3 (-a_{22}/a_{32})$	^u 2
^a 21 ^{/a} 32	1/a ₃₂	a ₃₃ /a ₃₂	^b 3/a32	×2
$-c_1 + a_{31} (c_2/a_{32})$	c ₂ /a ₃₂	$-c_3 + a_{33} (c_2/a_{32})$	$0 + b_3 (c_2/a_{32})$	м

TABLEAU	2
---------	---

In the numerical example below, the initial pivot is \mathbf{a}_{23} (not \mathbf{a}_{32} as above).

Example (Ref. b, Sec. 5)

7. Repeat the above process until all entries in the bottom row are *nonnegative*. In the rightmost column read the optimal x's and maximum M. Any u left in that column indicates that the corresponding x is 0.

Continuing the example,

⁵ 1	^u 3	^u 2		
/2	-1/4	-1/4	10	^u 1
) .	-1/4	1/4	15	×3
2	1/2	0	75	^x 2
	1/2	3/2	390	М
	² 1 /2 2	$ \frac{u_3}{1} - \frac{u_3}{-1/4} $ -1/4 $ \frac{1}{2} - \frac{1}{4} $ $ \frac{1}{2} - \frac{1}{2} $ $ \frac{1}{2} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $x_1 = 0, x_2 = 75, x_3 = 15, M = 390$ (Answer)

(Tableau 3)

The previous example in equation form is:

find $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$ subject to $x_1 + x_2 + x_3 \le 100$ $3x_1 + 2x_2 + 4x_3 \le 210$ $3x_1 + 2x_2 \le 150$

to maximize $M = 5x_1 + 4x_2 + 6x_3$.

Suppose the problem were:

find $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$ subject to $x_1 + x_2 + x_3 \ge 100$ $3x_1 + 2x_2 + 4x_3 \ge 210$ $3x_1 + 2x_2 \ge 150$

to minimize $m = 5x_1 + 4x_2 + 6x_3$.

We set up the *dual* problem (the pattern should be clear):

find
$$y_1 \ge 0$$
, $y_2 \ge 0$, $y_3 \ge 0$ subject to
 $y_1 + 3y_2 + 3y_3 \le 5$
 $y_1 + 2y_2 + 2y_3 \le 4$
 $y_1 + 4y_2 \le 6$

to maximize $M = 100y_1 + 210y_2 + 150y_3$, and solve this problem by the previous method. The values for x variables are now read off on the bottom row under the interchanged u's with the same subscript.

The relation of the duals is clarified by using the program to solve 3×3 matrix games. The procedure is readily understood by following through a specific example.

BLUE is the maximizing player, RED his minimizing opponent. It is desirable to add a constant to all entries in the payoff matrix to make all entries positive if necessary.

This increases the value of the original game by that constant but does not change the proportions in which the strategies are played. The new example is

where b_i (r_j) is the probability BLUE (RED) will choose course of action or strategy i (j). Then

$$1 \ge b_i \ge 0, 1 \ge r_j \ge 0, b_1 + b_2 + b_3 = 1, r_1 + r_2 + r_3 = 1$$

Look at matters from RED's point of view. Against each of BLUE's *pure* strategies, RED must expect to pay BLUE

$$2r_1 + 6r_2$$
, $5r_1 + 3r_2 + 6r_3$, $5r_1 + 4r_2 + 3r_3$.

Let μ (unknown) be the greatest of these three. Then putting $y_i = r_i/\mu$,

$$2y_1 + 6y_2 \le 1$$
, $5y_1 + 3y_2 + 6y_3 \le 1$, $5y_1 + 4y_2 + 3y_3 \le 1$,

and RED wants to minimize μ by maximizing M = $1/\mu$,

$$M = y_1 + y_2 + y_3$$
.

This is the standard linear programming problem with the right-upper border all +1's and the left lower border all -1's. The first tableau is:

у ₁	У2	^у з		_
2	6	0	1	v ₁
5	3	6	1	• v2
5	4	3	1	v ₃
-1	-1	-1	0	м

Any column could be the first pivot column. We choose the circled number as the pivot because 1/6 < 1/5 (a variation on step (2) above).

The second tableau (by the program) is:

y ₁	v1	^y 3		
2	.17	0	.17	У ₂
4	50	6	.50	v ₂
3.67	67	3	.33	v ₃
67	.17	-1	.17	м

The third tableau is:

^y 1	v ₁	v ₂		
2	.17	0	.17(1/6)	^у 2
.67	08	.17	.08(1/12)	^у з
1.67	42	50	.08(1/12)	v ₃
0	.08	.17	.25(1/4)	М

The value of the game is $1/M = \mu = 4$. Since $r_i = \mu y_i$, $r_1 = 0$, $r_2 = 2/3$, $r_3 = 1/3$. By the duality theorem of linear programming, we immediately read off BLUE's mix of courses of action strategies from the lower left row. The second column is headed by v_1 with subscript 1, so that $x_1 = 1/12$, $b_1 = 1/3$. Similarly, $b_2 = 2/3$ and $b_3 = 0$. (This is actually the example on p. 87 of Ref. e, but 3 has been added to all entries in the payoff matrix. The value here is 4 rather than the 1 there.)

18.3. EQUATIONS

None.

18.4. PROGRAM NOTES

1. The procedure given above consists of algebraic manipulation of entries in a matrix. You and I can follow the recipe easily, since

it is given in the high-level language appropriate to our minds, but only with care and time do we avoid errors.

The HP-67 understands only a relatively low-level language even though it is quite advanced over early coding in machine language. So what we see without effort (the *Gestalt*) requires many steps of programming.

2. The programming problem is compounded in difficulty because the HP-67 cannot work with the double indices of matrix elements. We must "linearize" the matrix and devise an "address arithmetic" for this problem, and then exploit the indirect addressing capability of the I-register.

Consider item (4) of the recipe. Overlay the linear programming matrix with the matrix of register addresses of entries:

0	1	2(y)	3(e)
4	5	6	7
8	9	10(p)	11(x)
12	13	14	15

where 11, for example, is secondary storage register S1, which in indirect addressing is 11. The content of this register is b_3 (see Tableau 1). Denote the contents of a register by [r], where r is the register's name. Suppose the pivot p = [10], the entry to be modified by (4) is e = [3]. Let x = [11] and y = [2]. (Note that x is the *old* value and y is the *new* value after item (3) has been carried out.) Then the *new* entry e' = e + xy or $[3] = [3] + [11] \cdot [2]$.

Now generalize this, letting $p = [\overline{p}]$, $e = [\overline{e}]$ and so on. Let $\overline{z} = 4$ (INT $(\overline{p}/4) - INT (\overline{e}/4)$). Then $\overline{x} = \overline{e} + \overline{z}$, $\overline{y} = \overline{p} - \overline{z}$.

LBL C implements this procedure, testing all \overline{e} in order, while deleting any \overline{e} in the same row or column as \overline{p} .

3. The program is worth close study by the interested reader. One suspects it may be improved, particularly in its treatment of the pivot's rows and columns (LBLs B and A). 4. Items (1) and (2) of the recipe are not carried out by this program. They can be programmed, but only at the cost of an additional program card and thus of time. And in this case a man can find the pivot faster than the machine can if he has the matrix in front of him.

The philosophical argument is that the HP-67 and the user are engaged in a cooperative one-shot (or few-shot) enterprise, rather than bulk or production computing. Each partner should contribute what he can do better and quicker.

5. Running time for each iteration is 47 sec, exclusive of the final display (f -x-) of the new tableau for manual recording.

Fig. 19.1 — Linear programming logic skeleton

19.5 USER INSTRUCTIONS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS		
1	f CL REG, f P↔S, f CL REG					
2	LOAD BOTH SIDES OF CARD					
3	a11, a12, a13, b1 STO 0, 1, 2, 3					
4	a21, a22, a23, b2 STO 4, 5, 6, 7					
5	a31, a32 STO 8, 9					
6	f P↔S					
7	933, b3 STO 0, 1					
L'						
8	-C1 -C2 -C2 STO 2 3 4					
<u> </u>						
0	$f P \rightarrow S (IAAP \cap PT \land NIT)$					
⊢́−						
	(PRESS E TO REVIEW ENTRIES)					
10	DETERMINE PIVOI					
	KEY IN PIVOT ADDRESS					
	(0, 1, 2, 4, 5, 6, 8, 9, 10)					
12	PRESS A					
13	ON FLASHING STOP, RECORD NEW TABLEAU					
	IN LEFT TO RIGHT ORDER					
14	PRESS E TO REVIEW TABLEAU AGAIN IF					
	NEEDED, AS ON INITIAL INPUT					
15	GTO STEP 10 ABOVE					
16	PROBLEM FINISHED WHEN CONTENTS OF REGS					
	12, 13, 14 > 0					

19.5 USER INSTRUCTIONS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	THE EXAMPLE IS IN THE TEXT,			
	TABLEAU 2 INTO TABLEAU 3	.25	STO 0	
		.5		
		25	2	
		47.5	3	
		.75	4	
		.5	5	
		.25	6	
		52.5	7	
		3	8	
	PIVOT	2	9	
	f P++S	0	STO 0	
		150		
		5	2	
		-1	3	
		1.5	4	
		315	5	
			f P++S	
	PIVOT ADDRESS	9	Α	50
				25
				25
				10.00
				0.00
				25
				.25
	×3			15.00
				1.50
		1		.50
		ļ		0.00
	×2	ļ		75.00
		ļ		1.00
		ļ		.50
				1.50
	M			390.00
	LAST NR. IN RI	ļ		16.00
				1

ſ

19.6 LINEAR PROGRAMMING	19.6	LINEAR	PROGRAMMING
-------------------------	------	--------	-------------

STEP	P KE	ENTRY	KEY CODE	COMMENTS	STEP	KEY	ENTRY	KEY CODE	COMMENTS
001	001	*LBLA	21 11			057	*LBL4	21 84	
	002	STOI	35 46 _	PIVOT ADD(RESS)		058	RCLB	36 12	
	003	STOE	35 12	4	000	1 059	4	64	
	004	RCL	36 45	4	060	1 060		-40	FIVOI ADD -4
	+	1/X	52	4		+ 061	5101	37 40	
	+ 600	UH5 0 0100	-22			002	- 6360		
	+ 000	Prie	35 11			+ 063	4		
	1 000		30 12 84	1		1 865	+	-55	PIVOT ADD +4
010	1 818	÷	-24	1		1056	STOI	35 46	
	011	INT	16 34	1		067	GSB0	23 80	
	012	X=0?	16-43	PIVOT ADD = 0, 1, 2		068	RCLB	36 12	
	013	<u> </u>	22 03			T 069	8	8 8	
	014	1	01		070	070	+	-55	PIVOT ADD + 8
	015	X=Y?	16-33	PIVOT ADD = 4, 5, 6		071	STOI	35 46	
	016	<u></u> 6T04	22 84		_	072	GSB0		
	$+^{017}$	RCLE	36 12	4		013	6100	22 13	
	+ 012	έ	8 8 1 5	PIVOT ADD -8		+ 074	*LBLC	21 13	
020	$+ \frac{013}{020}$	стлі	-4J 75 46	4		+ 075	9 2012	75 17	FIRST ENITRY ADD
020	-+ 020	CSRA	27 89	4		+ 077	CTUD	22 14	LINIKI ADD.
	+ 622		36 12			073	*LBLD	21 14	
	+a23	4	64	4		1 079	RCLB	36 12	PIVOT ADD.
	1 024	-	-45	PIVOT ADD -4	080	1 080	4	04	
	025	STO	35 46	1		1 081	÷	-24	1
	- 0 26	GSB€	23 00	1		† 082	INT	16 34	1
	027	RCLE	36 12			† Ø83	RCLC	36 13 -	ENTRY ADD.
	028	4	84			T 384	4	04]
	029	+	-55	PIVOT ADD + 4		T 085	÷	-24	
03 0	030	STO	35 46	1		1 086	INT	16 34	
	- 83	<u> </u>	23 00		_	1 887		-45	
	032	- 6100 - 2001	22 13			1 088	4	- 75 -	= (BRCAA NICTE 2)
	+ 033	F ALBLE	2100	(RECIPE STEPS 3, 5))	+ 089		-35	z (PRGM NOTE 2)
	- 03-	RULI	30 43	4	090	+ 050	RULU	-55 -	
	-+ 030		-35			+ 092	STOD	35 14	$\nabla = \bar{a} + \bar{z}$
	+ 037	STO	35 45		r	+ 093	RCLB	36 12	^~~~ <u>~</u>
	+ 038	RTH	24		' 	+ 094	X=Y?	16-33	TEST FOR ENTRY
	039	*LEL3	21 03	*	1	1 095	GT05	22 85	IN SAME COL. AS PIVOT
040		RCLE	36 12	1		1096	RĈ 🖸 T		
	- 041 041	4	64 ⁻	1		† 0 97	-	-45 ~	1
	042	+	-55	1		1 098	RCLC	36 13 -	
	043	STO	35 46	PIVOT ADD + 4		T 099	+	-55] p - z̄ + ē̄ = p̄ - z̄
	644	GSBE	23 00	L (PIVOT COL)	100	100	STOE	35 15	= y
	- 645	RULE	56 12			+101	KULB	36 12	
) 6 8 _55 "			+102	X=1?	10-33	IEST FOR ENTRY
	-+ 047	- 5701	-JJ 75 44'			+100			IN SAME HOW AS PIVOT
	-+ 049	GSB	23 99			+105	STOI	35 46	
050	050	RCLE	36 12	+		+ 105	RCL	36 45	x=[x]
	-+ 051	1	01	1		+ 107	RCLE	36 15	
	-+ 052	2 2	2 82 -	1		<u>† 108</u>	STOI	35 46 ~	
	053	r +	-55] PIVOT ADD + 12		± 109	X₽Y	-41	INTERCHANGE
	054	STO	35 46	(PIVOT COL)	110	110	RCL i	36 45	y =[y]
	055	GSB6	23 00			+111	X		xy
	056	GTO(; 22 13	L	1	112	RCLC	36 13	e
<u> </u>		1	12		ISTERS	- Ie		7	18 19
ľ	a 11	' a ₁ :	2 [[] ^a 13	μ μ ^τ α ₂₁	° 2	2 [°]	°23	ĺ b2	a ₃₁ a ₃₂
S0		S1 L	S2	S3 S4	S5 1	s	6	S7	S8 S9
<u> </u>	u 33	۵3			1				
^ -	1 / PI\	/OT	PIVOT AD	DRESS ENTRY ADDRESS		D) ADI		v (NEW)ADD	RESS

19.6 PROGRAM LISTING

STEP	KEY	ENTRY	KEY (CODE		COMMENTS		STEP	KEY	ENTRY	KE	CODE	co	OMMENTS	
	113	STOI	3	5 46					169	ISZİ	16	26 46			
	114	XZY	-	-41				170	170	G <u>SBØ</u>		23 88	<u>LAST</u> <u>R</u>	<u>OW ENT</u> F	<u>γγ</u>
	115	RULI	ى	6 4J	{				171	GTOE		22 15			
	117	RCLC	3	-JJ 6 13	ł				172	*LBL2		21 02			
	118	STOI	3	5 46	1				174	STOI		JD 12			
	119	X#Y	-	-41					175	DS71	16	25 46	ROW A		FFT
120	120	STO:	3	5 4 5 [°]	(RECII	PE STEP ∠	4)		176	GSBØ		23 80			
	121	1		01					177	ISZI	16	26 46			
	122	5	-	05					178	ISZI	16	26 46	ROW AE	DD TO RIC	GHT
	123	RCLC	5	613				100	<u>179</u>	<u>GSB</u> Ø		<u>23 00 </u>	L		
	124	A£1? CT05	2	5-33 2 85 '		EINTRIES :	•	180	180	ISZI	16	26 46	LACT D		
	$\frac{120}{126}$		2	2 12					101	65 60		23 00			<u>(1</u>
	127	*LBL5	2	1 05					$\frac{102}{183}$	#1 BIF		21 15	REVIEW		
	128	RCLC	3	6 13					184	42022		80		INDELA	~
	129	1		01					185	STOI		35 46			
130	[130	+		-55					186	GTO6		22 06			
	131	STOC	3	5 13	INCR	EMENT			187	*LBL6		21 06			
	132	GTOD	2	2 14	ENTR	<u>Y ADD.</u>			188	RCL:		36 45			
	133	*LBLB	2.	1 12				100	189	PRTX		-14	f - x -		
	134	CUS	3	-22 ·				190	198	1521	16	26 46 _			
	136	STA	3	5 11	1/2				102	1 5		01_			
	137	RCLB	3	6 12	Ч ' / P				197	PCLI		76 45			
	138	STOI	3	5 46	ā				194	XZY?		16-35 -	ALL FN	NTRIES ?	
	139	RCLA	3	6 11 ⁻	1'				195	GTOG		22 06 -			
140	140	STO:	3	5 45	RECIP	. OF PIV	OT		196	RTN		24	1		
	[141	RCLB	30	5 12									1		
	142	4		04											
	143	÷		-24											
	144	FRC V-00	10	5 44 C_47 ⁻				200							
	140	A-0: CT01	2	0-43 2 61 -		ADD = 0	,4,8						1		
	$\frac{140}{147}$	4		- 01 - 04									{		
	148	1/8		52									1		
	149	X=Y?	1	6-33 -	PIVOT	ADD = 1	, 5, 9						1		
150	150	<u>GT02</u> _	2	2 02 -									1		
	151	RCLB	30	5 12	INNOT	' ADD = 2	, 6,10]		
	152	STCI	3	5 46											
	153	0521	16 23	5 46									1		
	154	0521	10 20	3 40 7 88 ⁻	1 ст п		.bA	210					4		
	$\frac{155}{156}$		16 2	5 46	<u> </u>		<u> </u>						4		
	157	GSBØ	2	3 00 -	2ND	ROW EN	TRY						1		
	158	<u>TS2</u> [16 2	5 46			·						1		
	159	ISZI	16 20	6 46 "									1		
160	160	GSB0	2.	3 00 1	ROW E	NTRY TO R	IGHT						1		
	161	GTOE	2	2 15											
	162	*LBL1	2.	1 01											
	163	KULB	31										1		
	164	3101	16 2	5 46 ⁻	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>			220					4		
	166	GSB0	2	3 88 -	ROW	ENTRY /	n						1		
	167	ISZI	16 2	5 46	<u> </u>		<u> </u>						1		
	168	GSB0	2	3 00	NEXT	ROW EN	ITRY						1		
				0	LAB	ELS	1-			FLAGS			SET STAT	US	
A		в		C .		U	E		0		F	LAGS	TRIG	DISF	>
а		b		с		d	e		1			ON OFF	DEG		
0		1		2		3	4		2				GRAD		
5		6		7		8			3		2		RAD	ENG	
5		ľ		l'		~	ľ		ľ		3		l	n	

20. FOURTH-ORDER DIFFERENTIAL EQUATIONS

20.1. REFERENCE

a. R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill, New York, 1962.

20.2. DISCUSSION

Systems of four first-order (frequently nonlinear) differential equations, sometimes in the guise of two second-order equations, occur more commonly than one would think: The basic beam deflection equation is of the fourth order; chemical kinetic systems with four (or more) equations are common; reentry trajectories are specified by two second-order equations (see Program 4); Lanchester equations with two force components for each side and with variable coefficients occur; problems in optimal control theory and in differential game theory lead to such systems.

Since the HP-67 has a limited number of storage registers (26) and of program steps (224), and since program space is needed to define the functions of the system, we seek an alternative to the rather complex Runge-Kutta "standard" formulas, an alternative that is miserly of program space and yet has good accuracy for relatively large time intervals--that is, *good relative stability*, defined as the rate of growth of the error relative to the growth of the solution.

Moreover, programming must fully exploit the indirect control afforded by the powerful I-register. That is, the number in the I-register can be the *address* of a storage register or the *name* of a label (subroutine). Then the instruction STO (i) or RCL (i) or GTO (i) moves X-register data to the right register or recalls data from the desired register or sends the program to the right place. Hence, in conjunction with incrementing and decrementing the Iregister, serial treatment of all four equations can be accomplished with the same economical set of processing instructions.

The final programming problem is to move data around, like freight cars in a marshalling yard, so that storage spaces are freed just in time to make space for a new claimant.

-186-

20.3. EQUATIONS

Section 14.3 of Ref. a describes a simple predictor-corrector approach for first-order equations that seems to have promise and is readily extended to a system of equations.

Consider the equation

$$dx/dt = X(x,t), x(0) = x_0$$
.

Let the time interval be h. Suppose that at time (n - 1)h we are at x_{n-1} . Then a good *predicted* value for x_{n+1} appears to be

$$p_{n+1} = x_{n-1} + 2h x'_n$$

= $x_{n-1} + 2h X(x_n,t)$,

since x' is the slope at the midpoint of the double interval. According to Hamming, the error term is $h^3 x''(\theta)/3$.

The value p_{n+1} is now *corrected* by taking

$$c_{n+1} = x_n + h [x_{n+1} + x_n']/2$$
,

where p_{n+1} is used to determine $p'_{n+1} = X(p_{n+1},t)$. The error term for C_{n+1} is $-h^3 x''(0)/12$. If x''' is approximately constant in the interval, then

$$p_{n+1} - c_{n+1} = 5h^3 x''/12$$

= $(x_{n+1} - c_{n+1}) \cdot 5$

or

$$\begin{aligned} \mathbf{x}_{n+1} &= (4c_{n+1} + p_{n+1})/5 \\ &= [4x_n + p_{n+1} + 2h(x_n' + p_{n+1}')]/5 , \end{aligned}$$

and

$$p'_{n+1} = X(p_{n+1}, n+1 h)$$
.

To get started, we need x_1 in addition to x_0 . This is done by expanding in a Taylor's series

$$x_1 = x_0 + hx_0' + h^2 x_0''/2 + \dots$$

Hamming recommends carrying the series to the h^3 or h^4 terms. In our applications we have stopped frequently at h^2 because of the labor in computing $x_0^{'''}$ and $x_0^{''''}$. But note that if h/2 is used, the error is multiplied by 1/8.

The preceding analysis is readily generalized to a system of four equations:

$$x' = X(x,y,u,v,t)$$
 $y' = Y(x,y,u,v,t)$
 $u' = U(x,y,u,v,t)$ $v' = V(x,y,u,v,t)$.

We have

$$p_{n+1} = x_{n-1} + 2hx'_{n} \qquad q_{n+1} = y_{n-1} + 2hy'_{n}$$

$$r_{n+1} = u_{n-1} + 2hu'_{n} \qquad s_{n+1} = v_{n-1} + 2hy'_{n}$$

$$p'_{n+1} = X(p_{n+1}, q_{n+1}, r_{n+1}, s_{n+1}, \overline{n+1} h)$$

$$etc.$$

$$x_{n+1} = [4x_{n} + p_{n+1} + 2h(x'_{n} + p'_{n+1})]/5$$

$$etc.$$

20.4. PROGRAM NOTES

1. For each equation we need temporary storage for x_{n-1}^{n} , x_n^{n} , x_{n+1}^{n} . Reference to the register contents on the first page of

the program listing shows how the storage is laid out. Secondary (protected) storage must of course be used. Fortunately, in indirect control the registers SO to S9 become 10 to 19, so that f $P \leftrightarrow S$ switching of primary and secondary registers need not be programmed.

2. Label numbers are assigned to the subroutines that compute X, Y, U, V to agree with the register numbers where x_n , y_n , u_n , v_n are stored. That is, LBL 3 ~ 3, LBL 7 ~ 7, LBL B ~ 11, LBL A ~ 15 in the indirect control mode. Hence if we are working with the equation for V, say with 15 in the I-register, then f GSB(i) sends us to the correct routine for the fourth equation of the set.

3. In evaluating the functions X, Y, U, V, the locations of x, y, u, v are assumed by the programming to be 3, 7, S1, S5. Hence in evaluating p'_{n+1} , etc., we must be careful to move x_n from 3 to 2, etc., and then p_{n+1} from 5 into 3, etc.

4. Extensive use of ISZ and DSZ is made to drive indirect control to the right addresses at the right time.

5. Time is incremented by RCL ϕ , STO + 1.

6. To keep track of the number of equations in the set, store m, the number of equations, in both D and E initially. On each cycle, as an equation is processed, the value in D is decreased by 1. A test tells if all equations have been processed, that the iteration is complete, that time may be incremented, and D reset to m. That is, the program may be used for any number m of equations up to 4.

<u>Example</u>. The equations for the motion of a particular hydrostatic pendulum are $d^2x/dt^2 + 3 dy/dt + 4x = 0$, $d^2y/dt^2 - 3dx/dt + 4y = 0$, with $x_0 = 1$, $y_0 = 0$, $x'_0 = 0$, $y'_0 = 4$. You can almost smell--but not quite--that the exact solution is

$$x = \cos 4t$$
 $y = \sin 4t$,

which is indeed the case.

The equivalent system of four equations is

x' = u y' = v u' = -4x - 3v v' = -4y + 3u.

-189-

The values for t = h are readily found by expanding, using

$x_0 = 1$	$y_0 = 0$	$u_0 = 0$	$v_0 = 4$
$x_0' = 0$	$y_0' = 4$	$u_0' = -16$	$v'_0 = 0$
$x_0'' = -16$	$y_0'' = 0$	$u_0'' = 0$	$v_0'' = -64$
$x_0''' = 0$	$y_0''' = -64$	$u_0''' = 256$	$v_0''' = 0$

to get

$$x_1 = 1 - 16h^2/2$$
 $y_1 = 4h - 64h^3/6$
 $u_1 = -16h + 256h^3/6$ $v_1 = 4 - 64h^2/2$,

which are recognized as the leading terms in the series for $\cos 4t$, sin 4t, - 4 sin 4t, 4 cos 4t, respectively. For h = 0.025 we have, to 4 places,

$$x_1 = 0.9950$$
 $y_1 = 0.0998$ $u_1 = -0.3993$ $v_1 = 3.9800$,

but these values are stored in registers 3, 7, S1, S5 as they are computed to maintain full accuracy. (Remember f P \leftrightarrow S.) Also store the initial values in 2, 6, S0, S4, store m = 4 in D and E, and store h = 0.025 in 0 and 1. Now load the program.

Next program the functions by GTO.121, switch to W/PRGM, and then

f LBL 3, f P \leftrightarrow S, RCL 1, f P \leftrightarrow S, h RTN; f LBL 7, f P \leftrightarrow S, RCL 5, f P \leftrightarrow S, h RTN; f LBL B, RCL 3, 4, x, CHS, f P \leftrightarrow S, RCL 5, 3, x, -, f P \leftrightarrow S, h RTN; g LBL a: RCL 7, 4, x, CHS, f P \leftrightarrow S, RCL 1, 3, x, +, f P \leftrightarrow S, h RTN. Switch to RUN and press A. In the following tabulation we will record only x and y at intervals of 2h = 0.05. The numbers beneath are the exact values, where we first shift to the radian mode by h RAD to get cos 4t and sin 4t.

	h = 0.025	h = 0.05	h = 0.025	h = 0.05
<u>t</u>	X	X	у	y
0.05	.9801 (.9801)		.1986 (.1987)	
0.10	.9210 (.9211)	.9482	.3894 (.3894)	.3158
0.15	.8253 (.8253)	.8687	.5646 (.5646)	.4938
0.20	.6967 (.6967)	.7525	.7173 (.7174)	.6573
0.25	.5403 (.5403)	.6070	.8414 (.8415)	.7935
0.30	.3623 (.3624)	.4371	.9319 (.9320)	.8981
0.35	.1699 (.1700)	.2499	.9853 (.9854)	.9670
0.40	0292 (0292)	.0528	.9994 (.9996)	.9972

For this example and with a spacing of h = 0.025, accuracy and absolute stability are excellent, although the running time is about 24 sec per iteration and 21 sec per display of the four variables. On the other hand, a spacing of h = 0.05 caricaturizes the solution. This points up the wisdom of doing a second run with half the original interval to determine whether major changes are occurring.

20.5 USER INSTRUCTIONS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	PUT EQUATIONS IN STANDARD FORM,			1
	DETERMINE x_1, y_1, v_1, v_1			
2	STO x_0 IN 2, x_1 IN 3			
	y ₀ IN 6, y ₁ IN 7			
3	f P ← S, STO u _o IN 0, u ₁ IN 1			
	v _o IN 4, v ₁ IN 5			
4	f P+→S STO h IN 0 AND 1			
5	STO m IN D AND F			
<u> </u>				
4				
7				
	LBL / Y			
	LBL a V			
8	SWITCH TO RUN. PRESS A			
9	SEE t AS h PAUSE			
	SEE x_n , y_n , u_n , v_n FOR			
	5 SECONDS EACH			
10	USE R/S IF MORE TIME NEEDED TO RECORD			

20.6	FOURTH	ORDER	DIFFERENTIAL	EQUATIONS

STEP	KEY	ENTRY	KEY CODE	COMMENTS	STEP	KEY	ENTRY	KEY CODE	COMMENTS
001	001	*LBLÂ	21 11			057	RCL	36 45	x _n
	002	3	03			_ 058	4	04	
	L 002	STOI	35 46		000	- 059	X	-35	
	<u>-004</u>	<u></u> <u>GTOC</u>	22 13		060	- 068	+	-22	
	1002	*LBLU	21 13 27 45	×		- 001	- J	-24	Y
	005	6301 1071	23 4J 16 26 A6	$\hat{\mathbf{A}}$		002	1971	16 26 46	^n+1
	001	ST0:	10 20 40	4		665	1521	16 26 46	
	600	RCLA	36 88	↑ 'n		865	ISZI	16 26 46	5
010	018	X	-35			665	STOI	35 45	XaLIN R-
	911	2	8 2				RCLD	36 14	1+1.1.5
	012	Х	-35	$2h \times h^1$		- 06ε	1	8 1	
	013	DSZI	16 25 46	3		[869	-	-45	
	[014	DSZI	16 25 46	2	070	676	STOD	35 14	
	015	RCL i	36 45	× _{n-1}		071	X=0?	16-43	m EQNS ?
		+	-55	2		072	GTO4	22 04	OUTPUT
	1017	1521	16 26 46	3		073	1521	16 26 46	-
	1010	RULI	36 40 16 25 46	Xn		074	1521	10 20 40 22 81	
020	1 020	0521 STD:	10 23 40 75 45			010	WIRIA	21 84	/ <u>n+1/~n+1/ *n+1</u>
	+ 020	9701 P1	-71			- 61 6 677	RCLE	36 15	
 	1 022	ISZI	16 26 46	13 Pn+1		1078	STOD	35 14	1
	1 023	ISZI	16 26 46	Ă		1 079	GSB2	23 02	
	024	ISZI	16 26 46	5	080	680	RCL1	36 01	n+1
	1 025	STO :	35 45	P_ 1		138	PSE	16 51	TIME SHOWN
	1026	RCLD	36 14	'n+1		T 082	RCL3	36 03	
	[027	1	01	_		[083	PRTX	-14	f-x- SEE x _n
	028	-	-45	m – 1		084	RCLD	36 14	
	029	STOD	35 14	EONIS O		085	1	01	
030	1 030	X=0?	16-43			1386	-	-45	
	1 031	5100	16 26 46	6		63.	A-07 CTOA	22 11	m EQINS ?
	+ 032	1521	16 26 46	0		600	RCIZ	36 87	4
	1 034	GTOC	22 13		090	1 990	PETX	-14	err err
	035	*LBL0	21 00			091	RCLD	36 14	
	† ø36	RCLE	36 15			892	2	0 2 ⁻	1
	† 837	STOD	35 14			1692	-	-45	
	<u>†</u> 038	RCLØ	36 00	1		E 094	X=0?	16-43	m EQ NS ?
	T 039	ST+1	35-55 01	t + h		095	GTOA	22 11	
040	1040	GSB2	23 02			056	P ₽S	16-51	
		ن ٥٣٥١	83			097	RCLI	36 01	
	1 042	5101	30 46	3		1 098	PRIX	-14	4
	943	- 6101 	21 01		100	+ 120	RULD	30 14 07 ⁻	4
	+ 015	GSB:	23 45	1		+ 101	-	-45	4
	1645	ISZJ	16 26 46	Pn+1		1 182	X=00	16-43	m FQNS ?
	1047	RCL	36 45	1	 	1 103	GT05	22 05	
	†048	+	-55	n		104	RCL5	36 85	1
	T 049	RCLØ	36 00 ']		[185	PRTX	-14	SEE v _n
050	T 050	Х	-35			105	GTO5	22 05	
	1051	2	6 2			107	*LBL5	21 05	
	+052	X	-35			108	F ∓S	16-51	NEXT ITEDATION
	+000	USZI PCI 1	10 23 46 . 72 45	3	110	109	GIUA ALDUO	22 11	INEAL HERAHUN
	+ 054	KUL I	JO 4J. _55	P _{n+1}		+ 110	ALDEZ D#C	21 02 _ 15-51	1
	1055	DSZI	16 25 46	2		112	RC1 7	36 A7	S _{n+1}
	1 - 2 -			REGI	STERS		Net.	50 01	
0 h	ŀ	1 +	² x .	³ X 4 1	⁵ p	6	y v	7 v	⁸ v ¹ ⁹ a
h n		•	<u>^n-1</u>		<u> "n+</u>	<u>1</u>	<u>'n-1</u>	/n	/ n [¬] n+1
⁵⁰ U _n -	1	^{s'} u _n	⁵² υ ¹	$r_{n+1} = v_{n-1}$	ν _n		°°v¹n	^{5′} S _{n+1}	50 59
٨		l.	3	c	D	m	E	m.	I

20.6 PROGRAM LISTING

STEP	KEY	ENTRY	KEY	CODE		COM	AENTS		STEP	KEY ENTRY		KEY CODE	СОММ	ENTS
	113	ST05	3	35 05										
	114	RCL3	3	<u> 86 03 </u>	r _{r+1}				170		1			
	+115	5101	3	5 01	1						+			
	+115	P#5	1	6-51										
	+ 110	CTO7	3	00 03 . 15 07	^Y n+1						+			
	110	PCI5	3	16 85 .	l n						+			
120	120	STO3		15 03 .			<u> 1</u>				+			
	121	RTN	-	24	READ	TFC	лр _{n+}	1			+			
					1						\mathbf{T}			
]									
									180					
					1						-			
					-						–			
					{						╋			
130					1						+			
	1				1						+			
	1				1						+			
]									
					1				190					
					ł						<u> </u>			
											┢			
					4						+			
	<u> </u>										+			
140					ł						+			
					1						+			
					1									
									200					
					ł						-			
											+			
											+			
											+-			
150											+			
											F			
	ļ				1				210		_			
									210		+			
l					1						+			
											+			
	 				1						\mathbf{t}			
					1									
160														
	ļ													
	 				1						+			
									220		+			
	<u> </u>				1						+			
					L	FI A			l	E 400	1			
A		B		C II		D		TE		0 FLAGS	-+		SEISTATUS	
US	ED	- U		<u> </u>	x D			[ļ	_	FLAGS	TRIG	DISP
a V	/	D		c		d		e					DEG 🗆	FIX 🗆
° USF	D	¹ USE	D	2 U	SED	3	X	4 l	JSED	2		1 🗆 🗆	GRAD	SCI 🗆
5 110	ED.	6	-	7	Y	8		9		3		2 0 0	RAD 🗆	ENG 🗆
່ວາ				1	•					1		• ⊔ ⊔		•••

21. CURVE FAMILIES AND MACH NUMBERS

21.1. REFERENCES

- a. United States Air Force, *Flight Manual A-7D Aircraft*, T.O. 1A-7D-1S-32, 29 March 1971.
- b. United States Air Force, AFSC, *Space Planners Guide*, 1 July 1965 (For Official Use Only).
- c. G. H. Kaplan, L. E. Doggett, and P. K. Seidelmann, *Almanac* for Computers, 1977, United States Naval Observatory, Circular No. 155, 1 October 1976.

21.2. DISCUSSION

Military data for analytic or operational use are frequently presented as a family of curves z = f(x,y), where y is the parameter naming the family's members. For example, Fig. 21.1 (taken from Ref. a) is a nomogram to determine, for the A-7D aircraft, the Mach number to maximize range for constant altitude cruise, given average gross weight and drag index.^{*} To use the nomogram, start with the average gross weight on the upper left scale. Move horizontally to the pressure altitude. Drop vertically to the appropriate drag index curve. Move horizontally to the left to read the true Mach number for long-range cruise. Page after page of such nomograms appear in the mission-planning appendix of Ref. a. Similarly, page after page of similar nomograms appear in Ref. b, to be used in planning space missions.

Neither Ref. a nor Ref. b gives the equations of the curve families. When these equations can be found, and if they are relatively simple, they can be readily programmed. Frequently, however, as in the case of an ephemeris or almanac that tabulates the coordinates of celestial bodies for astronomical and navigational use, the underlying equations are extremely complex. To quote from Ref. c, these

^{*} The drag index is not a drag coefficient. Its determination, as explained in detail in Ref. a, is a tabulation of the drag contributions of external stores by type and station. The clean aircraft has a drag index of 0.

Fig. 21.1— Optimum Mach number

tabulations "should ideally be replaced by concise mathematical expressions for direct calculations. Such expressions must take the form of mathematical approximations, however, since the precise data . . . are calculated from extensive theories. . . ." Hence, the Observatory's Circular No. 155 provides the coefficients for the efficient expansion of tabulations in a series of Chebyshev polynomials. (These are *not* curve families, but functions of a single variable.)

In other cases, a curve family may arise from empirical observations such as flight tests, or may be the presentation of the results of extensive computer simulations.

In all cases, the question is: Can approximations be found for the family that are of $equivalent^*$ accuracy to the data, and that are well within the capabilities of the HP-67 to implement?

Such approximations do not provide insight in respect to the physical nature of the underlying phenomenon or model if polynomial approximations are used. Polynomials are usually employed because of their simplicity and convenience. If, however, physical arguments or the methods of dimensional analysis suggest a functional relationship among the variables, this relationship should certainly be used in the approximation. More modestly, as we shall see shortly, it is always desirable to consider taking the logarithms of the dependent variable observables and then subjecting these values to a polynomial fit.

The obvious approach to finding a polynomial approximation for the set of observables (x_i, y_i, z_i) is, in principle, by the method of least squares. For example, let

$$f(x,y) = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 xy + a_5 y^2$$
(1)

Equivalent means a calculated result within 1 percent or 2 percent of the result of reading directly from the curves. And one must keep in mind that (a) the width of plotted curves and the way in which they are drawn can introduce discrepancies of this order in the basic readings of values on which to base an approximation, and (b) the accuracy of the presented data is usually unknown.

^{**} In more modern guise, by orthonormalizing codes. See John Todd (ed.), *Survey of Numerical Analysis*, Chap. 10, McGraw-Hill, New York, 1962.
be the predictor. Then choose the coefficients a, to minimize

$$G = \sum_{i,j} \left[z_{ij} - f(x_i, y_i) \right]^2 .$$
 (2)

Take the six partial derivatives of G with respect to the coefficients and equate each to zero. Form the indicated sums and get six linear algebraic equations for the coefficients a_0, \ldots, a_5 .

This is principle. In practice we have two problems:

- Even this "best" approximation by a second-order polynomial may be of unacceptable accuracy.
- 2. No method in two dimensions is known that is equivalent to the use of Chebyshev polynomials in one-dimensional fitting which gives the "best" (most economical) fit for a polynomial of given order.

Frankly experimental methods are used to get an acceptable fit for the curve families encountered. As a working tool, the efficient Chebyshev approximation program available as Program 14 in the HP-67/ HP-67 Stat Pac 1 is exploited. It is also advisable to stare hard and long at the graphs of the particular family to get ideas from the geometry (one version of the "low cunning" approach to ad hoc computing). Generalization to your problems of the methods employed in the examples below cannot be guaranteed.

21.3. TRUE MACH NUMBER

Staring at the upper set of straight-line segments in Fig. 21.1 gives the image that they might all originate as a sheaf from a common origin. Use of a straightedge shows that this surmise is at least approximately true. Hence, try as the functional form for the fit, the relation

A program for the solution of 6 equations in 6 unknowns is given in the HP-67/HP-97 Users Library Solutions book "High-Level Math," programmed by R. E. DeBolt.

where m(H) is the slope for altitude H in kft, G is the average gross weight in klb, and x is the dummy variable for the nomogram. We now build the following table:

(1)	(2)	(3)	(4)	(5)	(6)	(7)
H	<u>m(H)</u>	$\underline{\Delta}$	<u>ln m(H)</u>	$\underline{\Delta}$	exp (quad)	$a_0 = 0$
0	1.000		0		1.000	1.000
		0.198		0.1807		
5	1.198		0.1807		1.196	1.196
		0.251		0.1902		
10	1.449		0.3709		1.442	1.442
		0.317		0.1978		
15	1.766		0.5687		1.752	1.753
		0.348		0.1799		
20	2.114		0.7486		2.146	2.147
0.5	0 5 (0	0.455	0 0/05	0.1949	0 (10	0 (10
25	2.569	0 770	0.9435	0 0(00	2.649	2.649
20	2 2/1	0.772	1 20(2	0.2628	0 0 0 -	2 200
30	3.341	0 902	1.2063	0 2266	3.295	3.296
25	1. 222	0.892	1 4420	0.2300	4 120	/ 101
J	4.233	1 086	1.4429	0 2220	4.130	4.131
40	5 309	1.000	1 6649	0.2220	5 219	5 220
40	5.505	1 206	1.0049	0 2092	5.219	5.220
45	6 515	1.200	1 8741	0.2072	6 645	6 646
75	0.010		1.0141		0.045	0.040

Column (2) is obtained by reading differences from the figure and dividing. Considerable noise can be introduced by this process. (I used an 8X loupe. It is probably better to plot the values to a large scale and fair a curve through the points, and then read off values.) The increasing first differences of column (3) suggest that an exponential form be used since the exponent will be much flatter. This is shown by the differences of column (5).

A quadratic fit to l_{n} m(H) should be good. We find from the HP-67 Stat Pac 1 program (six minutes to run) that

$$\ell_{\mathcal{R}} \overline{m}(H) = -2.04 \times 10^{-4} + 0.0351H + 1.56 \times 10^{-4} H^2$$
 (3)

-200-

A comparison of columns (1) and (6) which is $\overline{m}(H)$ shows the adequacy of the fit. Column (7) shows that the constant term may safely be put equal to 0.

The lower family of curves in Fig. 21.1 requires a true twodimensional fit. This family is well behaved in that a second-order polynomial fit looks promising (Eq. (1)). Moreover, try the fit with the coefficient a_4 of the cross term xy put equal to 0, because the curves are so nearly parallel. That is, $\partial f/\partial x = a_1 + 2a_3x + a_4y$ and the dependence on y is weak.

Proceed as follows.

1. Read from the curves the values of M at 35 points, using increments of 20 for x and 50 for y (the drag index). Do not use y = 300, reserving it for an extrapolation check.

2. Use the HP Stat Pac 1 Program 14 to get the following direct and cross-fits. (The second-order Chebyshev fit is used and the time per case is well under 10 min.)

$$f(x,0) = 0.530 + 0.00500x - 1.8155 \times 10^{-5} x^{2}$$

$$f(x,50) = 0.477 + 0.00527x - 2.054 \times 10^{-5} x^{2}$$

$$f(x,100) = 0.430 + 0.00539x - 1.987 \times 10^{-5} x^{2}$$

$$f(x,150) = 0.398 + 0.00571x - 2.232 \times 10^{-5} x^{2}$$

$$f(x,200) = 0.378 + 0.00543x - 1.875 \times 10^{-5} x^{2}$$

$$f(0,y) = 0.531 - 0.00122y + 2.286 \times 10^{-6} y^{2}$$

$$f(20,y) = 0.611 - 0.00091y + 1.143 \times 10^{-6} y^{2}$$

$$f(40,y) = 0.690 - 0.00085y + 1.143 \times 10^{-6} y^{2}$$

$$f(60,y) = 0.771 - 0.00102y + 1.857 \times 10^{-6} y^{2}$$

$$f(80,y) = 0.809 - 0.00090y + 1.571 \times 10^{-6} y^{2}$$

3. The near constancy of the coefficients is promising. Using simply their means,

$$f(x,y) = f(0,y) + 0.00536x - 1.993 \times 10^{-5} x^{2}$$

$$f(x,y) = f(x,0) - 0.00098y + 1.600 \times 10^{-6} y^{2}$$

From these

$$f(x,y) = f(0,0) + 0.00536x - 1.993 \times 10^{-5} x^{2}$$

- 0.00098y + 1.600 × 10⁻⁶ y²,

where f(0,0) = 0.53.

4. Programming the last expression for f(x,y) and checking its output against the 35 observed values yields a good fit. But using the HP improves one's "nose for numbers." There are some systematic biases in the fit. The dependence on x is somewhat strong, and the dependence on y can be weakened slightly. Adjusting to

$$f(x,y) = 0.53 + 0.0052x - 2 \times 10^{-5} x^{2} - 0.001y + 1.5 \times 10^{-6} y^{2}$$
, (4)

the mean absolute error with respect to the 35 observations is 0.0076 and the maximum error is 0.016.

5. It is now trivial to program Eqs. (3) and (4). The eight constants can be stored in primary registers 0 through 7 and recorded via f W/DATA on side two of the program card. Running time is three seconds. The output over the entire nomogram agrees to ± 0.01 .

22. TEN-POINT GAUSSIAN INTEGRATION

22.1. REFERENCE

a. M. Abramowitz and I. A. Stegun (eds.), *Handbook of Mathematical Functions*, National Bureau of Standards Applied Mathematics Series 55, U.S. Department of Commerce, 3d Printing, March 1965.

22.2. DISCUSSION

This section gives a utility program to evaluate definite integrals with high accuracy. If the integrand becomes infinite at some point within the limits of integration, divide the integral into two parts, using as limits values slightly less and greater than that point. Accuracy is checked by varying these values and reevaluating. In fact, even if the integrand does not exhibit this behavior, accuracy can be checked by dividing the interval into two or more parts.

22.3. EQUATIONS

Gauss's formula for an arbitrary interval is (Ref. a, p. 887, 25.4.30):

$$\int_{a}^{b} f(y) dy \doteq \frac{b - a}{2} \sum_{i=0}^{4} w_{i} \left\{ f\left(\frac{b - a}{2} x_{i} + \frac{b + a}{2}\right) + f\left(-\frac{b - a}{2} x_{i} + \frac{b + a}{2}\right) \right\}.$$
(1)

The abscissae x_i are the zeros of the Legendre orthogonal polynomial $P_5(x)$. The weights w_i are given by a formula involving $P'_5(x)$. The values are

These are keyed into a data card with x_i stored in primary registers 0 to 4, and w_i in the secondary registers.

22.4. PROGRAM NOTES

The program is straightforward and has no features of interest.

PROBLEM

Write a program to evaluate elliptic integrals of the first kind:

•

$$F(\phi,\alpha) = \int_0^{\phi} (1 - \sin^2 \alpha \cdot \sin^2 \theta)^{-1/2} d\theta$$

(1) Load data and program cards. The integral will be evaluated in the radian (h RAD) mode, but ϕ and α are usually given in degrees.

- (2) STO 0 in A and φ in degrees in B.STO α in degrees in E.
- (3) GTO A and switch to W/PRGM. Key in the steps:
 - h RAD, RCL B, $g \rightarrow R$, STO B, RCL E, $g \rightarrow R$, f sin, $g x^2$ STO E.
- (4) Switch to RUN, GTO E, switch to W/PRGM, and key in the steps:

f sin, g x^2 , RCL E, x, CHS, 1, +, $f\sqrt{x}$, h 1/x.

(5) Switch to RUN and press A, DSP 8.

$$\phi = 30^{\circ}, \alpha = 40^{\circ}, F(30,40) = 0.533 427 45$$

 $\phi = 65^{\circ}, \alpha = 60^{\circ}, F(65,60) = 1.348 926 43.$

These agree exactly with the tabular entries (Table 17.5) of Ref. a. Running time is about 30 sec.

22.5 USER INSTRUCTIONS

	22. TEN POINT GAUSSIAN I $\int_{a}^{b} f(y) dy$	NTEGRATION	۲ ۲	
STEP	INSTRUCTIONS	INPUT	KEYS	OUTPUT
1		DATA/UNITS	[]	DATA/UNITS
-'	LOAD BOTH SIDES OF DATA CARD			
2	LOAD PRGM CARD. GTO F.			
3	SWITCH TO W/PRGM			
	DEFINE f(y), y IS STORED IN 9 BY THE			
	PROGRAM, h RTN NOT NEEDED			
4	SWITCH TO RUN			
		1		
5	a STORE IN A, b STORE IN B			
6	PRESS A			
7	TO CHECK ACCURACT, DIVIDE INTERVAL INTO			
· ·	TWO OR MORE PARTS. DO FOR EACH PART			
	AND ADD.			
	EXAMPLE: $f(y) = 1/y$			
	STEP .058, h 1/y			
	a = 1 STO A	1		
	a = 5 STO B	5		
	PRESS A. SEE 1.609437902			
	$\int_{a}^{b} dy/y = lm 5$			
	$\int_{1} \frac{1}{\sqrt{1-1}} \frac{1}{1-1$			
	$\ln 5 = 1.609437912$			
		11		
		11		
		11		
		11		

STEP	KEY E	NTRY	KEY CODE		COM	MENTS	STEP	KEY ENTRY	KEY CO	DDE		сомм	ENTS	
001	001	*LBLA	21 11	INIT	IALIZE	FOR		057 STO	D 35	14	INT	EGRAL		
	_002 _007	0 STA:	35 46	INDI	RECT	ADDRESSING		_058 KH 059 XIBL	N F 21	24 15	DFF	INF for	<i>(</i>)	
	004	STOD	35 14				060	850 RT	N	24	VI	S STOR	ED	
	605	RCLB	36 12									Ro		
	_ 885	RCLA	36 11									Ng		
	_ cor _ AA8	- 2	-45 A2											
	009	÷	-24						1					
010	010	STOC	35 13	(b –	a)/2						1			
	- 811 - 812	RCLB	36 12						+					
	013	+	-55											
	014	2	02]				070							
	015	÷ STOP	-24	/ ⊢ ⊥	~\/ ?			PRI						
	- 817	RCLC	36 13	τ d)	u)/ Z									
	918	STOA	35 11	(b -	a)/2		x .	0.1488743	39 0					
	019	*LBLB	21 12					0.43339 53	94 1					
020	- 020 - 021	RULI	36 45	Хi				0.6794095	682 677					
	022	X	-35					0.000000 0.9739065	or 3 29 4					
	023	RCLB	36 12					0.0000000	00 5					
	024	+ CTOO	-55					0.0000 000	00 6					
	- 025 - 025	GSBE	23 15	f(v)			0.0000000 0.0000000	90 (99 8					
	827	P ≓ S	16-51	•••	/			3.0300000	00 9					
	028	RCLI	36 45	w _i				0.0000 00	00 A					
030	029 070	PZS ×	16-51					0.0000000	00 B					
	-031 -031	STOC	35 13	w.f	(y.)			0.000000 0.0000000	66 C 66 D					
	032	RCL i	36 45		V 1			3.0000000	00 E		Í			
	033	CHS	-22	- × i				0.000 000	00 I					
	034 035	KULH X	-35											
	236	RCLB	36 12					SEC						
	037	+												
	838 1079	STU9 CSBE	27 15	NIEV	т с		w.							
040	640	₽₽₽	16-51	INEA W.	I T			0.2955242	25 0					
	841	RCL i	36 45					0.2190863	13 1 63 2					
	- 942 - 947	P ‡ S	16-51					0.1494513	49 3					
	-044 -044	RCLC	36 13					8.0666713	44 4		1			
	045	+	-55					0.0000000 0.0000000	00 J 88 K		1			
	046	RCLD	36 14					3.000000	00 7		1			
	047 1042	ston	-55	PAR	TIAL	SUM		3.000000	00 8		1			
	049	4	84					0.000 000 0.000 000	00 9 AA 4		1			
050	050	ISZI	16 26 46					0.0000000	00 B					
	851 852	KCLI XZV9	36 46	: <	12			0.000 000	00 C		1			
	053	GTOB	22 12		-+ ;)P			0.0000000	00 D 88 F					
	054	RCLD	36 14	200	~1			0.0000000	00 E 00 I		i			
	_055 _054	RCLA	36 11											
	000	×	-35			REGIS	TERS							
0	1		2	3		14	5	6	7		8	T	9	,
S0	51			53		IS4	S 5	S6			S8		7 59	
A	a	В	b		с v	$v_i f(y_i)$	D INT	EGRAL	5			'		
					í							1		

22.6 TEN POINT GAUSSIAN INTEGRATION

23. TRUTH TABLES

23.1. REFERENCES

- a. John E. Pfeiffer, "Symbolic Logic," *Scientific American*, December 1950, pp. 22-24.
- b. E. C. Berkeley, *Giant Brains*, John Wiley & Sons, New York, 1949.
- c. Walter E. Cushen, "Symbolic Logic in Operations Research," in Operations Research for Management, J. F. McCloskey and F. N. Trefethen (eds.), The Johns Hopkins Press, Baltimore, 1954.
- d. R. M. Smidt and I. L. Reis, "Symbolic Logic and Plant Location," *Journal of Industrial Engineering*, Vol. 14, No. 1, January-February 1963, pp. 18-21.
- e. P. F. Strawson, *Introduction to Logical Theory*, Methuen & Co. Ltd., London, John Wiley & Sons, New York, 1952.
- f. H. M. Semarne, "Symbolic Logic in Language Engineering," Proceedings of the Western Joint Computer Conference, May 3-5, 1960, pp. 61-71.

23.2. DISCUSSION

This section describes a calculus of propositions based on a binary algebra for logical connections and operations particularly suited for calculator implementation as well as easy algebraic manipulation.

Letters of the alphabet will stand for propositions. To illustrate, choosing propositions to be used in an example to follow, let

a stand for "A man is a mathematician."
b stand for "A man likes whisky at night."
c stand for "A man likes Mozart in the morning."
d stand for "A man waits 20 minutes for a bus."

In the two-valued calculus, a proposition has a truth value of 0 (false) or 1 (true), a = 0 or a = 1. For example, writing a = 1 means "A man is a mathematician."

Propositions may be operated on or connected by logical operations. A truth table corresponds to each such operation. Ordinary language will be used instead of special symbols. For each basic logical operation, a truth table shows the truth value of the operation for all combinations of truth values of its component propositions. Such basic truth tables can be summarized in binary algebraic form. This is verified in the right-hand column of the tabulation below.

Operation	Truth Table				Binary Algebraic Form	
NOT a	а	0	1			1 - a
	NOT a	1	0			
a AND b	2	0	1	0	1	ab
	a h	0	0	1	1	
	a AND b	0	0	0	1	
						. 1 1
a AND/OR b	a	0	T	1	1	a + b - ab
		0	1	1	1	
	a AND/OR b					
a OR ELSE b	а	0	1	0	1	a + b - 2ab
	b	0	0	1	1	
	a OR ELSE b	0	1	1	0	
TE o THEN L	0	0	1	0	1	1 - a + ab
IF a IIIEN D	a b	0	0	1	1	
	IF a THEN b	1	0	1	1	
Also observe t	hat 'NOT (IF a Th	IEN 1	o)' :	is 'a	a AND	NOT b'.)
NOT BOTH a AND	b a	0	1	0	1	1 - ab
	Ь	0	0	1	1	
N	OT BOTH a AND b	1	1	1	0	
(This is the n	egation of AND.)					
NEITHER A NOR	b a	0	1	0	1	1 - a - b + ab
	b L	Ő	$\overline{0}$	1	1	
	NEITHER a NOR b	1	0	0	0	
(This is the n	negation of AND/OF	R.)				
a LIKE b	а	0	1	0	1	1 - a - b + 2ab
	b	0	0	1	1	
	a LIKE b	1	0	0	1	
(This is equiv	valence and is the	e neg	gatio	on of	e or	ELSE.)

Binary algebra has some interesting features not found in ordinary algebra. Since the variables can take on only the values 0 and 1, $a^2 = a$ and ab(1 - a + ab) = ab - ab + ab = ab, which is readily checked by the truth table:

а	0	1	0	1
b	0	0	1	1
ab	0	0	0	1
1 - a + ab	1	0	1	1
ab(1 - a + ab)	0	0	0	1.

On the other hand, a proposition appearing on both sides of an = sign cannot be cancelled, because this could be division by 0.

The use and manipulation of these binary algebraic functions can be illustrated by a problem that Walter Pitts of the Massachusetts Institute of Technology set long ago on an examination (Ref. a). Suppose 1 through 4 below are known to be true:

1. If a mathematician does not have to wait 20 minutes for a bus, then he either likes Mozart in the morning or whisky at night, but not both.

2. If a man likes whisky at night, then he either likes Mozart in the morning and does not have to wait 20 minutes for a bus or he does not like Mozart in the morning and has to wait 20 minutes for a bus or else he is no mathematician.

3. If a man likes Mozart in the morning and does not have to wait 20 minutes for a bus, then he likes whisky at night.

4. If a mathematician likes Mozart in the morning, he either likes whisky at night or has to wait 20 minutes for a bus; conversely, if he likes whisky at night and has to wait 20 minutes for a bus, he is a mathematician--if he likes Mozart in the morning.

Then:

When does a mathematician wait 20 minutes for a bus?

To solve this problem, first translate each condition from English to the language of propositions and logical connectives, and then express the result in binary algebra. Because each of the four above conditions is true, each algebraic expression is put equal to 1 and then simplified.

1. IF(a AND NOT d) THEN(b OR ELSE c). 1 - a(1 - d) + a(1 - d)(b + c - 2bc) = 1, a(1 - d)(b + c - 2bc - 1) = 0. (1)

To simplify, set A = (c AND NOT d) OR ELSE(NOT c AND d). Then A = c(1 - d) + d(1 - c) - 2cd(1 - c)(1 - d)= c + d - 2cd.

That is, the proposition A is equivalent to the proposition "c OR ELSE d". Making this substitution, we obtain

$$1 - b + b(c + d - 2cd + 1 - a) -2(1 - a)(c + d - 2cd) = 1,$$

b(-a + (c + d - 2cd)(2a - 1)) = 0. (2)

3. IF(c AND NOT d) THEN b.

$$1 - c(1 - d) + cb(1 - d) = 1 ,$$

$$c(1 - d)(1 - b) = 0 .$$
(3)

4a. IF(a AND c) THEN(b OR ELSE d).

$$1 - ac + ac(b + d - 2bd) = 1 ,$$

ac(b + d - 2bd - 1) = 0 . (4)

* Ref. e is helpful in this respect.

4b. IF c THEN(IF (b AND d) THEN a). 1 - c + c(1 - bd + abd) = 1, bcd(1 - a) = 0. (5)

To answer the question, put a = 1 and d = 1 in (1) through (5), since these two propositions must be true. The interpretation of the question is delicate. The question is rephrased here as: What values of b and c are associated with a = 1 and d = 1 to make all conditions of the problem true? The set of conditions reduces to

$$bc = 0$$
,

This means NOT BOTH b AND c (that is, 1 - bc = 1), which may be expressed

- A. When he likes neither Mozart in the morning nor whisky at night.
- B. When he likes whisky at night and not Mozart in the morning.
- C. When he likes Mozart in the morning and not whisky at night.

Of course, many questions other than the one above could be asked. To be exhaustive, this means: Find all values for the set of propositions (a,b,c,d) that satisfy all given conditions. The program of this section is designed to examine systematically all cases, here 16 in number. Programming the conditions and running the program yields only eight satisfactory combinations of (a,b,c,d).

	<u>a</u>	<u>b</u>	<u>c</u>	<u>d</u>
	0 0 0	0 1 0	0 0 1	0 0 0
	0	0	0	1
	1	0	0	1
	1	1	0	1
>	0 1	0 0	1 1	1 1

^{*} Something of a furor erupted in the Letters section of the *Sci*entific American of February 1951 because Pfeiffer had not given an answer in his article. Pfeiffer and Morris gave the first part of C as the answer. Krause gave the first part of B, and Bomgren gave answer A.

This is the truth table method. The lines indicated by arrows are the answers to the given problem.

The logical structure of the problem may also be captured by using the truth table to construct a Venn diagram.

Suppose a point placed on this page represents a man. Group together all men who are mathematicians so that this subset is enclosed:

then all inside men have the value a = 1, those outside the value a = 0.

From the truth table, whenever a = 1, d = 1. But there are cases where a = 0 and d = 1. Hence the *set* a is properly contained in the *set* d. Logically this means "if a then d", and algebraically "a = ad". Similarly, c is contained in d. But for a and c, by the last four lines of the truth table, there are the combinations 10, 01, 11. Hence a and c have points in common--they intersect.

Turning to the set b, since bc = 0 in all cases, the sets b and c are disjoint--they do not intersect. But b intersects a and also intersects d. However, because of the line 1101, and because there is no line 0101, these latter two intersections are the same subset.

Putting all of this together yields the following diagram:

Returning to the original algebraic formulation, it is readily seen that all conditions are satisfied by appeal to this diagram. For example, since bc = 0 and abd = ab, in (2) above ab = bd.

The original question asked by this problem is not clear. It would be better to ask, What can be said about a mathematician?

The answer to this question is:

- He always waits 20 minutes for a bus;
- He does not like both whisky at night and Mozart in the morning, although he may like one or the other.

The calculus of propositions, a branch of symbolic logic, has found applications in optimizing switching circuit design, in determining insurance eligibility (an example from Ref. b will be given in the next section), in deciding on plant location (Ref. d), and in the interpretation of contracts and law. Walter Cushen, in a fascinating chapter in Ref. c, discusses applications to production engineering and to conflicts formulated as multi-move games.

23.3. EQUATIONS

None.

23.4. PROGRAM NOTES

Since the program flow is somewhat complex, a flowchart is provided.

Suppose there are n propositions. Then there are 2^n cases to examine, which are actually numbered 0, 1, ..., $2^n - 1$. Each case number in its turn is reduced to its binary form, but stored backwards in R_1 to R_n . Indirect addressing is used.

Each condition is examined in turn, the examination halting at the first condition that is not satisfied. If all conditions are satisfied, the binary case number is displayed. R/S continues to the next valid case. The end is signalled by the decimal display of $2^n - 1$.

As programmed, there is space for 7 propositions. If a problem requires more than 7, make some slight programming changes. Primary

registers 8 and 9 are shifted to secondary 8 and 9. Then up to 18 propositions can in principle be handled. For large problems, however, there is apt to be a large number of conditions and there may not be adequate space available to program them. Moreover, execution time will be long. It is wise to do as much algebraic manipulation on the set of conditions as is feasible to simplify the set.

In problems where some propositions are held constant, the constant value(s) (0 or 1) are stored manually in some register(s) above R_{n} , but only if these are needed in programming the conditions.

EXAMPLE

This is a group insurance problem taken from Ref. b (pp. 161-165). The rules (conditions) applying to employees are:

- Any employee, to be insured, must be eligible for insurance, must make application for insurance, and must have such application for insurance approved.
- 2. Only eligible employees may apply for insurance.
- 3. The application of any person eligible for insurance without medical examination is automatically approved.
- 4. (Naturally) an application can be approved only if the application is made.
- (Naturally) a medical examination will not be required from any person not eligible for insurance.

The propositions are 5 questions about an employee to be answered "yes" (1) or "no" (0). These are:

- a: Is the employee eligible for insurance?
- b: Has the employee applied for insurance?
- c: Has the employee's application for insurance been approved?
- d: Does the employee require a medical examination for insurance?
- e: Is the employee insured?

The conditions are translated:

1. IF e THEN(a AND b AND c)

$$e(1 - abc) = 0$$
.

2. IF b THEN a

$$b(1 - a) = 0$$
.

3. IF a AND b AND NOT d THEN c

$$ab(1 - d)(1 - c) - 0$$
.

4. IF c THEN b

$$c(1 - b) = 0$$
.

5. IF NOT a THEN NOT d

$$d(1 - a) = 0$$
.

The question is "What are the possible statuses of employees who are not insured?" This means that e must be put equal to 0. But then the first condition is irrelevant since a false proposition implies any proposition.

SOLUTION

Load program. Key GTO B. Switch to W/PRGM. Now key in the condition in the order 2, 4, 5, 3. That is, the simplest conditions are entered first to save execution time. The program steps are:

072	1	079	1	086	1	093	1	RCL 1
	RCL 1		RCL 2		RCL 1		RCL 4	x
	-		-		-		-	RCL 2
	RCL 2		RCL 3		RCL 4		1	x
	x		x		x		RCL 3	h RTN
	f x ≠ 0		f x ≠ 0		$f x \neq 0$		-	
	h RTN		h RTN		h RTN		х.	

(Note that if conditions 2 to 5 were multiplied,

$$abcd(1 - a)(1 - b)(1 - c)(1 - d) = 0$$
,

which is true for all cases. The multiplication has destroyed the meaning of the individual conditions by absorption.)

Now switch to RUN. Key 4 (the number of propositions) and Press A. See O. This is actually the status 0000 for a,b,c,d. On successive presses of R/S you will see 1000, 1110, 1001, 1101, 1111, 15 (the number of cases minus 1).

Using the definitions of a,b,c,d, these 5 statuses rapidly translate into an answer to the question.

Fig. 23.1—Truth table program flowchart

23.5 USER INSTRUCTIONS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS		
1	LOAD PRGM					
2	KEY GTO B					
3	SWITCH TO W/ PRGM					
4	KEY IN CONDITIONS (SEE EXAMPLE)					
5	SWITCH TO RUN					
<u> </u>						
6	KEY N, THE NK. OF PROPOSITIONS					
	DDESC A					
	PRESS A					
•	ON STOP PECORD DISPLAY FULLING					
	IN WITH IFADING ZEROS IF NEEDED					
	TO GET & STRING OF LENGTH n					
9	PRESS R/S. RECORD					
10	CONTINUE WITH R/S UNTIL 2 ⁿ -1 APPEARS					

23.6 TRUTH TABLES

STEP	KEY	ENTRY	KEY CODE	COMMENTS	STEP	KEY EN	TRY	KEY CODE		COMM	ENTS
001	301	*LBLA	21 11			657	GTO3	22 83	LOC)P	
	882	STOA	35 11	n		058	RCL9	36 89	VAI	ID PR	OP
	_003	2	Ø2 -			053	R/S	51	STRI	NG II	N R.
	004	X₽Y	-41		060	650 *	1 EL 2	21 82	5110		• • • 9 •
	805	γ×	31			061	RCLB	36 12			
	006	1	01			AE2	FCLR	76 89			
	1007	-	-45			857	X=Y2	16-77	CAS	EC _ '	o ⁿ 10
	1008	STOB	35 12	2 ⁿ⁻¹		655	PTN	20-33	CAS	L2 - 4	2 - 1 5
	1003	DSP0	-63 00	-		865	1	27 _ A1			
010	T Ø13	1	01			are -	57+8	75-55 00	INCR	EMENT	CASENR
	611	STOI	35 46	1 in R-		867	STOL	75 42			
	T 012	0	00			968	Prig	76 40			
	013	STOO	35 00	FIRST CASE NR		000	STUD	75 44			
	T 014	ST08	35 08		070	878	CTOC	22 17			
	015	*LBLC	21 13			071 ×		21 12	DEEL		
	t 01ε	RCLØ	36 88			011 4			DEFI	NE	
	1 017	STOC	35 13						CO		DNS.
	1018	2	02								
	12:3	÷	-24								
020	1 020	INT	16 34				+				
	1 021	STOR	35 00				+				
	1022	RCLC	36 13								
	1 023	2	- 0 2								
	1824	÷	-24		080						
	$\pm e^{2\varepsilon}$	FRC	16 44	DEMAINIDED							
	1 925	X=0?	16-43	REMAINDER							
	1 927	GTO0	22 89								
	1028	1	A1								
	+ 223	STO:	35 45	STO 1							
030	033	*LBI1	21 01	310 1							
	+ 031	ECL I	36 46								
	+ 1932	RCLA	36 11								
	+ 033	X=Y?	16-33								
	1034	STOD	22 14		090		+				
	1 035	ISZI	16 26 46								
	1035	GTOC	22 13				+				
	1 1137	*! BL Ø	21 89	LUUP							
	+ 038	STO	35 45	STO 0							
	+ 839	GT01	22 01	310 0							
040	+ 1141	*I BLD	21 14								
	+641	GSBB	23 12				+				
	+642	X≠0?	16-42								
	+043	GT02	22 82	ALL PROPS $\neq 0$?			+				
	+044	0			100						
	+045	ST09	35 09				+				
	+046	*LEL3	21 03				+				
	+047	RCL	36 45	NR of PROPS			+				
	1048	1	01								
	+ 849	ē	80								
050	+252	RCLA	36 11				+				
	+051	RCLI	36 46								
	+052	-	-45				+				
	1053	γ×	31	10 ⁿ⁻ⁱ							
	1854	X	-35		110						
	1055	ST+9	35-55 09	ACCUM BIN. NR.			†				
	1056	DSZI	16 25 46	EXIT LOOP ON O							
				REGIS	STERS						
0	1		12	la l4	5	lê		17	18		9
ουοτι	ENTS	BINAR	Y REPRE	SENTATION OF	CAS	ENR	IN	REVERSE		SES	STRING
S0	5	1	S2	53 54	\$5	55	•	S7	SS		S9
								L			
А		B	0 ⁿ 1	C	D		E			1	
	n		2 - 1				1			PROP	OSTIONS

Appendix

97/67 KEY CODE CONVERSIONS*

97 CODE 00 01 02 03 04 05 067 08 94 31 32 33 4 1 2 3 3 34 1 2 35 5 5 5 5 6 1 1 2 3 - 14 1 2 2 3 4 1 5 5 5 6 1 1 2 3 - 14 1 2 2 3 4 1 5 5 5 6 1 1 2 3 - 2 3 4 1 5 5 5 6 1 1 2 3 - 2 3 4 1 2 3 4 5 5 6 1 1 2 3 - 2 3 4 1 2 3 4 5 6 1 2 3 4 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 1 1 2 4 5 5 5 6 5 5 5 6 1 1 2 4 5 5 5 6 5 5 5 6 1 1 2 4 5 5 5 6 5 5 5 6 1 1 2 4 5 5 5 6 5 5 5 6 1 1 2 4 5 5 5 6 5 5 5 6 1 1 2 4 5 5 5 6 5 5 5 6 5 5 5 6 1 1 2 4 5 5 5 6 5	67 CODE 00 012 033 045 057 000 012 033 058 058 059 058 051 058 057 000 050 050 051 058 057 050 058 058 058 058 059 058 058 058 058 058 059 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058 058	mnemonic 0 1 2 3 4 5 6 7 8 9 RTN V+X LN +X SIN CDS TAN ->P SIN CDS TAN ->R 1/X XGRX X SGRX X SGRX X SGRX X SGRX X SGRX X SGRX X SGRX X SGRX X SGRX X SGRX X SGRX X SGRX X SGRX X SGRX X SGRX X SGRX X SGRX X SGRX CLS CLS ->R R SIN SGRX X SGRX X SGRX X SGRX CLS ->R R SGRX X SGRX	97 CODE 12 3 14 15 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14	67 CODE 21 25 12 31 25 13 31 25 14 31 25 15 22 00 22 20 22 20 22 20 22 20 22 20 22 20 22 20 22 20 22 20 22 20 22 20 22 20 20 20 20 2	mnemonic *LBLB *LBLC *LBLC GTO0 GTO1 GTO2 GTO3 GTO4 GTO5 GTO5 GTO6 GTO7 GTO8 GTO9 GTO6 GTO7 GTO8 GTO9 GTO6 GTO9 GTO6 GTO9 GTO6 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GT09 GT06 GS80 GS81 GS82 GS84 GS85 GS84 GS85 GS85 GS84 GS85 GS85 GS85 GS85 GS86 GS87 GS86 GS87 GS86 GS87 GS88 GS88 GS88 ST00 ST00 ST01 ST02 ST03 ST04 ST05 ST06 ST07 ST08 ST07 ST08 ST00 ST06 ST07 ST08 ST00 ST06 ST07 ST08 ST00 ST06 ST07 ST08 ST00 ST06 ST07 ST08 ST00 ST06 ST07 ST08 ST06 ST06 ST07 ST08 ST06 ST06 ST06 ST07 ST08 ST06 ST06 ST07 ST08 ST06 ST06 ST06 ST06 ST07 ST08 ST06	97 CODE67 CODEmnemonic1623031:57103 $F37$ 1625453233D6711626453133D6711626453234187116264532341871161613322513 $HELLa$ 211616322515 $HELLa$ 211615322515 $HELCa$ 221611223113GTOC221613223113GTOC221613223113GTOC231613322213GSBc231613322213GSBc231613322213GSBc231613322213GSBc231613322213GSBc231613322214GSBc231613322214GSBc231613322213GSBc231613322216GSBc231613322214GSBc231613322214GSBc231613322214GS
16-21 16-22 16-22 16-23 16-31 16-32 16-33 16-35 16-41 16-43 16-44 16-44 16-44 16-45 16-55 16-51 16-55 16-61 21 02 21 03 21 05 21 07 21 08 21 11	$\begin{array}{c} -35 \\ -41 \\ -35 \\ -41 \\ -35 \\ -41 \\ -35 \\ -41 \\ -35 \\ -41 \\ -31 \\ -35 \\ -41 \\ -35 \\ -41 \\ -35 \\ -35 \\ -41 \\ -35 \\ -35 \\ -41 \\ -31 \\ -35 \\ -31 \\ -25 \\ -25 \\ -31 \\ -25 \\$	DEG RAD GRAD PI X <> Y? X >>? X <= Y? X <> Y? X <> 0? X <0? X <0? X <0? X <0? X <0? X <0? X <0? X <0? X <0? X =0? X <0? X =0? X <0? X =0? X <0? X =0? X <0? X =0? X <0? X =0? X =0?	36 09 36 11 36 12 36 13 36 14 36 15 36 45 -63 00 -63 02 -63 00 -63 00 16 21 00 16 22 02 16 22 02 16 22 02 16 22 02 16 22 02 16 23 00 16 23 02 16 23 00 16 20 16 34 09 34 11 34 11 34 13 34 13 34 14 34 13 34 24 34 23 34 23 34 24 23 00 23 04 23 05 23 04 23 05 23 04 23 05 23 04 23 05 23 07 23 08 23 07 23 07 23 08 23 07 23 07 25 07	RCL9 RCLA RCLA RCLA RCLA RCLA RCLA RCLA RCLA	35-55 09 33 61 09 51+9 35-55 45 33 61 24 ST+1 *Supplied by courtesy of R. W. Edelen.	

-221-