напрвоон оя EIEGBONCDEMC AOP usharocinimisie cicutions
 BRUCE K. MURDOCK

This book provides programming techniques and programs to make the fully programmable calculator a valuable design tool for the working engineer. This book is not specifically intended to be a textbook on calculator programming, although documented programs can serve this purpose. Three books can be recommended for programming methods and algorithms: Jon M. Smith, "Scientific Analysis on the Pocket Calculator," Wiley 1975, John Ball, "Algorithms for RPN Calculators," Wiley 1978, and Richard W. Hamming, "Numerical Methods for Scientists and Engineers," McGraw-Hill 1973.

Many programs in this book are meant to be used in sets, i.e., the output of one program becomes the input for another through common storage register allocations. The description of each program is meant to stand alone, and consists of the following parts:

1) Problem description with pertinent equations,
2) Program operating instructions,
3) One or more program examples,
4) Equation and method derivation, or references,
5) Annotated program listing, which is its own flowchart.

Part 4 is not present in every program.
This program ordering was chosen so the variable definitions and operating instructions are immediately available to the experienced user. Should the user wish more information or background on the program and equations, or the details of the program operation, this material is also available, but is placed after the operating instructions.

Although the program language, and resulting program flow is tailored to the Hewlett-Packard (HP) fully programmable calculators, the $H P-67 / 97$, the annotated program listing/flowchart can be used as a basis for generating programs in other languages.

The language of the Texas Instruments (TI) fully programmable cal culator, the TI-59, is not very different from the HP-67/97 language
when considered on a gross scale, therefore, the HP-67/97 programs may be easily translated into the language of the TI-59. While it is easy to write a program from equations and flowcharts, the new program must still be debugged. Translating a program that has already been tested and debugged can lead to a new program that has no bugs at all. The TI program translation will also closely follow the flow of the original HP program.

The differences between the HP and TI languages are mainly in format and not in form. Because the TI-59 has few merged keycodes, must use parentheses to set hierarchy, and must branch to a label or line number as the result of a true conditional test, the TI-59 program will be longer than the mating HP-67/97 program. This increased program length is generally not a detriment as it is accommodated by the larger program memory available in the TI-59. Because the TI-59 always starts label searches from the top of the program, the program execution time can also be longer unless direct addressing is used, or the labeled subroutines are placed at the beginning of the program.

Since the TI-59 does not have a stack to hold the results of an equals operation, a set of scratchpad registers must be set aside to hold those intermediate results normally retained in the HP-67/97 stack. Results residing in the TI-59 display register after the equals operation will permanently disappear unless stored before subsequent operations are performed.

The arithmetic hierarchy of the Algebraic Operating System (AOS) can sometimes be a problem which becomes particularly apparent when calling subroutines. If an equals operation does not precede the subroutine call, the subroutine hierarchy will be dependent on the hierarchy set up in the main program. To make the subroutine hierarchy independent of the main program, the subroutine should always start with an open parenthesis and terminate with a close parenthesis. This rule can be extended to the "go to" command also. The last statement prior to the unconditional jump should be an equals to terminate all pending operations. It will cause no harm to have an open parenthesis as the first statement after the label that is the jump destination. The TI-59 has enough program memory so that, whenever in doubt, parenthesis can be inserted to establish unconditional arithmetic hierarchy.

The TI-59 does not have the equivalent of the HP-67/97 flag 3 function where flag 3 is automatically set whenever numeric data
is entered from the keyboard. Because of this difference, the convenience feature existing in most of the HP-67/97 programs herein where the execution of a user definable key such as " A " without numeric entry results in the currently stored parameter value being displayed cannot be translated to the TI-59 program.

None of the TI-59 flags are test cleared, while flags 2 and 3 of the HP-67/97 are test cleared, thus, clear flag statements may be required in the TI-59 program and subroutines involving the use of flags 2 and 3.

The HP-67/97 and the TI-59 both have user definable labels A through E, and a through e (the latter are designated A^{\prime} through E^{\prime} on the TI-59). Executing these keys from the keyboard acts like a subroutine call on either machine: the program pointer jumps to the designated label, and program execution begins. The HP-67/97 and the TI-59 are different in the labels called "common labels" by TI, i.e., labels other than the user definable ones. HP uses the label designators 0 through 9, and a given label may be used more than once as label searches start from the present place in program memory, hence a "local label" such as labe1 6 in Program 2-4 is used many times within the program. The TI-59 cannot use numeric labels, but uses other function keys as labels, e.g., "sin," "fix," etc. There are 62 such keys available for labels. The TI-59 always starts label searches from the top of the program, hence, a given label can only be used once within the program.

The TI-59 is internally set up to be most efficient, time wise, when jumps and branches are made to line numbers rather than to labels. The HP-67/97 appears to be as fast in a label search as the TI-59 is in a line number search. The HP-67/97 cannot go to a specified line number under program control, hence, it is restricted to label searches only. There is a simple program trick shown on page IV-98 of the TI-59 owner's manual where a program is initially written with labels, and the label calls have "NOP" statements following so the program can easily be modified for line number addressing after the program is debugged and complete.

Care should be exercised when translating program coding containing rectangular-to-polar ($\rightarrow \mathrm{P}$) and polar-to-rectangular (\rightarrow R) conversions as the TI-59 and HP-67/97 operate on the variables in opposite manner. The HP-67/97 takes the x and y coordinates from the x and y registers
and places the magnitude and angle equivalents back into the x and y registers respectively for the $\rightarrow P$ conversion, and vice-versa for the $\rightarrow R$ conversion. The TI-59 uses the t and x registers for the two variables, and takes the x and y coordinates from the t and x registers and places the equivalent magnitude and angle back into the t and x registers respectively for the $\rightarrow P$ conversion, and vice-versa for the $\rightarrow R$ conversion. Both machines display the contents of the x register, so the TI-59 will display angle or y coordinate whereas the HP-67/97 will display magnitude or x coordinate after respective $\rightarrow P$ or $\rightarrow R$ conversions.

To guide the reader in this translation, several programs in this book have been translated into the TI-59 language. These programs have user instructions, examples, and program coding in both languages. Program 1-1 has been flowcharted in addition to provide a common point of reference between the two program listings.

The preceding paragraphs mention anomalies in the TI-59 language. The HP-67/97 language has its idiosyncracies also. Reading the program listings, one will notice some "non-standard" program coding. The prime consideration was to fit the algorithm into the program memory. Within this constraint, the program coding was selected to minimize program execution time whenever possible. Numeric entries within the body of the program are to be avoided, and should be recalled from register storage. Entry of each numeric digit requires 72 milliseconds to execute while a register recall only requires 35 milliseconds typically. Numeric entries such as "10," " 100, " or any other power of 10 should be entered as a power of ten through the "EEX" key. The number " 1 " should be entered as "EEX" alone and requires only 48 milliseconds to execute. Similarly, the "CLX" function will result in a zero in the display, and only requires 30 milliseconds to execute. Multiplication of a number by two $(2, x)$ requires 179 milliseconds to execute, while addition of a number to itself (ENT \uparrow, +) requires 82 milliseconds execution time and yields the same result. Register arithmetic is executed faster than stack arithmetic when the register recalls are considered, and register arithmetic can save program steps. Whenever the algorithm allows, subroutine calls should be minimized as they typically require 240 milliseconds for the label search and return. Likewise unconditional jumps such as GTOA require 160 milliseconds for the label search typically. By paying attention to small details such as these, the program
execution time can be shortened considerably expecially when iteration or looping is required. For more information on execution times and programming hints with the HP-67/97, see "Better Programming on the HP-67/97' edited by William Kolb, John Kennedy, and Richard Nelson, and available from the PPC Club (new name for the HP-65 Users Club), 2541 W . Camden Place, Santa Ana, Calif. 92704.

Even though the program coding has been chosen for minimum execution time, the program LNAP may require more than a minute of computation time before output is provided when the number of branches is large. Likewise, the same time requirement may exist for the filter programs when the filter order is large.

An attempt has been made to choose self-explanatory label descriptions for the user definable keys; hence, once familiar with a particular program, the user need only refer to the magnetic card label markings to run the program.

To restate a point made in the preface of this book, it is not possible to include programs and descriptions covering all areas of engineering analysis and design. The programs herein are only representative of areas in networks and circuits (the terms "networks" and "circuits" may be used interchangeably). The 39 programs contained in this book have been selected from the author's library, and have proved to be quite useful to the author; hopefully, they will prove equally useful to the reader.

The program description not only shows the equations used by the program, but gives a reference, or has a derivation of the equations so these programs may serve as a base for the generation of other related programs as may be needed by the reader for his or her particular application.

Because the programs herein cover several different disciplines in electrical engineering, a problem with nomenclature arises. To the control systems oriented engineer, the term "transfer function" implies system output divided by system input. On the other hand, to the filter design engineer, "transfer function" implies system input divided by system output, or the reciprocal of the control system engineer's definition. To avoid confusion, the term "transmission function" is used to mean system output divided by input and "transfer function" is used to mean system input divided by output. This convention will be followed
throughout the book.
The appendix has a list of a list of abbreviations used, along with the bibliography give the reader an eastly found place to go should confusion or uncertainty to variable or abbreviation meaning arise.

HANDBOOK OF ELECTRONIC DESIGN AND ANALYSIS PROCEDURES USING PROGRAMMABLE CALCULATORS

Part 1

 NETWORK ANALYSIS
PROGRAM 1-1 LOSSY TRANSMISSION LINE INPUT IMPEDANCE.

Program Description and Equations Used

This program uses Eq. (1-1.1) to determine the complex input impedance, Z_{s}, of a loss transmission line of length ℓ, loaded with a complex impedance Z_{r}, and having a characteristic impedance Z_{o}, an attenuation constant $\alpha_{d B}$ in $d B$ per unit length, and a phase constant β in radians per mit length (or velocity of propagation C_{m}). For solid dielectrice cables, C_{m} is typically $1 / 2$ to $2 / 3$ the free-space speed of light, and is approximated by Eq. (1-1.9) for low loss coaxial cables, or calculated from Eqs. (1-1.5) and (1-1.6) if the cable impedance and admittance per unit length are known at the operating frequency. The unit of length has purposely not been given because it is to be selected by the user. As long as the same length unit is used throughout, length will cancel out of Eq. (1-1.1). Figure 1-1.1 shows the general circuit topology.

Figure 1-1.1 Transmission line setup.

The equation that describes the problem is:

$$
\begin{equation*}
z_{s}=z_{0} \frac{1+\rho e^{-2 \gamma \ell}}{1-\rho e^{-2 \gamma \ell}} \tag{1-1.1}
\end{equation*}
$$

where ρ is the reflection coefficient and γ is the propagation function. These quantities are given by the following equations:

$$
\begin{align*}
& \rho=\frac{z_{r} / Z_{o}-1}{z_{r} / Z_{o}+1} \tag{1-1.2}\\
& \gamma=\alpha+j \beta \tag{1-1.3}\\
& \alpha=\left(\alpha_{d b}\right) /(20 \log e) \tag{1-1.4}\\
& \beta=\frac{2 \pi}{\lambda}=\frac{2 \pi f}{C_{m}} \tag{1-1.5}
\end{align*}
$$

If the per unit length series impedance, $\bar{R}+j \omega \bar{L}$, and shunt admittance, $\overline{\mathrm{G}}+j \omega \overline{\mathrm{C}}$, are available at the frequency of operation, then the propagation function is given by:

$$
\begin{equation*}
\gamma=\sqrt{(\overline{\mathrm{R}}+j \omega \overline{\mathrm{~L}})(\overline{\mathrm{G}}+j \omega \overline{\mathrm{C}})} \tag{1-1.6}
\end{equation*}
$$

If Z_{r} is desired in terms of Z_{s}, Z_{r} is replaced by Z_{s} in Eq. (1-1.1), Z_{s} is replaced by Z_{r} in Eq. (1-1.2), and ℓ is replaced by $-\ell$ in Eq. (1-1.1).

This quasi-symmetrical property allows the use of the same program to calculate the transmission line input impedance with a complex load by using a positive line length, or to calculate the complex load that will provide a specified input impedance by using a negative line length.

A duality also exists with Eq. (1-1.1) and Eq. (1-1.2). The same equation form holds for the transmission line input or output admittance providing each Z is replaced by the corresponding Y, i.e., $Y_{s}=1 / Z_{s}, Y_{r}=1 / Z_{r}$, and $Y_{0}=1 / Z_{0}$. The admittance forms of Eqs. (1-1.1) and (1-1.2) are as follows:

$$
\begin{equation*}
Y_{s}=Y_{0} \frac{1+\rho^{\prime} e^{-2 \gamma \ell}}{1-\rho^{\prime} e^{-2 \gamma \ell}} \tag{1-1.7}
\end{equation*}
$$

where

$$
\begin{align*}
& \rho^{\prime}=\frac{Y_{r} / Y_{0}-1}{Y_{r} / Y_{0}+1} \tag{1-1.8}\\
& \left(\rho^{\prime}=-p\right)
\end{align*}
$$

Because the equation form is the same, the program will work with admittances as well as impedances.

In this HP-67/97 program, keys "A" through "E" and "a" through "c" on the calculator have a dual function role. Execution of these keys following a data entry from the keyboard is interpreted as data input by the program, and the numeric entry is stored. Execution of these keys following a nonnumeric entry, or following the "e" (clear) key is interpreted as an output request, and the currently stored values are printed (HP-97 only) and displayed. This feature cannot be translated into the TI-59 program.

The data required by the program is entered in either cartesian (real and imaginary) or polar (magnitude and angle) form through keys " b " and " c " or " B " and " C " respectively. on large coax cables such as underwater telephone cable, both the cable attenuation and phase constants are provided as a function of frequency by the manufacturer, and are loaded into the program using the units of $d B$ per unit length and radians per unit length respectively. If β is unknown, it can be calculated from the velocity of propagation in the transmission line. If the transmission line has less than 1 dB loss in the length being used, and is of coaxial construction, the velocity in the medium (phase velocity) may be approximated by

$$
\begin{equation*}
C_{m} \simeq \frac{\text { speed of light in free space }}{\sqrt{\varepsilon_{r} \mu_{r}}} \tag{1-1.9}
\end{equation*}
$$

where ε_{r} and μ_{r} are the relative dielectric constant and relative permeability of the cable dielectric and conductors respectively. For cables constructed of nonmagnetic parts, or for cables with a steel strength member within the center conductor of the cable and operating at frequencies where the skin effect keeps currents from flowing within the strength member, the relative permeability, μ_{r} becomes unity.

1. User Insiructions

HP-67/97 PROGRAM

STEP	instructions	INPUT DATA/UNITS	KEYS	$\begin{gathered} \text { OUTPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$
1	Load both gides of program card			
2	Enter transmission line parameters			
	line loss in dB /unit length	$\alpha_{\text {dB }}$	[1] $]$	
	phase constant in radians/unit length	β	$4]$	
	frequenoy in hertz	f	1	Om
	If reloaity of propogation is known instoad			
	of phase constant, enter dummy value of 1			
	for phase constant in stop 3 above, then			
	Enter frequency in hertz	f	4	
	Enter propagation velocity*	Cm_{m}	$\underline{\mathbf{I}}][\mathrm{A}$	β
	- note:			
	The units of length must be consistent			
	throughout the data, 1.e., all in meters,			
	or feet, or miles, etc.			
3	Enter the transmiasion line characteristics			
	at the ohosen analysis frequency			
	magnitude of z_{0} in ohms	$\left\|z_{0}\right\|$	4	
	phase angle of z_{0} in degrees	$\Varangle \chi_{0}$	B	
	OR			
	real part of Z_{0} in ohms	$\mathrm{Re} \mathrm{Z}_{0}$	4	
	imaginary part of z_{0} in ohms	Im Z_{0}	f B	
4	Enter load impedance			
	magnitude of load impedance in ohms	$\left\|z_{r}\right\|$	1	
	phase angle of load impodance in	$\Varangle \mathrm{Z}_{r}$	0	
	degrees			
	OR			
	real part of load impedance in ohms	Re Zr_{5}	1	
	imaginary part of load impedancein Ω	Im Zr	$\underline{\square}$	

1. Lser Instructions

STEP	instructions	INPUT DATAIUNITS	KEYS	OUTPUTT DATA/UNITS	
5	Enter transmission line length	\pm l	[E]		
	$+l$ to calculate Z_{5} given Z_{r}				
	$-l$ to caloulate Z_{r} given Z_{s}				
6	Optional, printout or enter refl coef		$\left[\begin{array}{c} {[\mathbf{D}]} \\ D \end{array}\right.$		
	- ρ entry	$\|p\| \uparrow 4 p^{\circ}$			
	ρ printout			\|P	, 4 p°
	Of the three variables Z_{0}, Z_{r}, \& ρ				
	oither Z_{0} \& Z_{r} or Z_{0} \& ρ				
	are required.				
7	Compute $\left\|z_{s}\right\|, 4 z_{s}$ (length positive)		f D	$\|z\|, x z^{\circ}$	
	\| $z_{r} \mid$, $\chi_{2} z_{r}$ (length nogative)				
8	To olear input mode and initialize program		Lf [E]		
9	To review input data				
				f, c_{m}	
				$\alpha_{\text {d } B, ~},{ }_{1}, f$	
				ReZ Z_{0}, Im Z_{0}	
				$\underline{z_{0} 1,4^{2} z^{\circ}}$	
				$\mathrm{Re}^{\text {r }}, \mathrm{Im} \mathrm{Z}_{\mathbf{r}}$	
				\| $\mathrm{z}_{\mathrm{r}} \mid, \chi . \mathrm{z}^{\circ}{ }^{\circ}$	
				\|el.xp ${ }^{\circ}$	
	NOTE:				
	The angular mode of the program is dogrees.				
	All angular data input and output is in				
	degrees with the exception of β. The				
	angular mode should not be changed as program				
	malfunotion will ooour beoause of $R \rightarrow D$ and				
	D \sim R conversions that are used.				

1. User Instructions

ti-59 TRANSLATION

TI-59 TRANSLATION

STEP	instructions	$\begin{array}{\|c\|} \hline \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{array}$	KEYS	$\begin{aligned} & \text { OUTPUT } \\ & \text { DATA/UNITS } \end{aligned}$
1	Load both sides of magnetic oard			
2	Load line loss in dB/unit length	$\alpha_{d B}$	A	
	Load line phase constant in rad / unit length	β	[R/S	
	If 0 On, the velocity in the medium, is			
	known instead, load dummy β of 1			
	Load analysis frequency in hertz	P	[r/s	
3	If C_{m} is known instead of β, load C_{m}	C_{m}	[2nd A	
4	Enter Z_{0}, the transmission 1 ine characteristic			
	impedance in polar or rectangular co-ords			
	polar co-ordinates: magnitude	$\left\|Z_{0}\right\|, \Omega$	B	
	phase angle	$4 z_{0}{ }^{\circ}$	[F / S	
	rectangular co-ordinates real part	Re $2_{0}, \Omega$	2nd B	
	imaginary part	Im $2 \mathrm{O}, \mathrm{n}$	$[\mathrm{F} / \mathrm{S}$	
5	Enter load impedance at the analysis freq as			
	either polar or rectangular data			
	polar co-ordinates:	J $\mathrm{zr\mid}, \Omega$	0	
		$4 z_{r},{ }^{\circ}$	R / S	
	rectangular co-ordinates:	Re $\mathrm{Zr}_{\mathbf{r}}, \Omega$	2nd [0]	
		Im z_{r}, Ω	R / S	
6	Load transmission line length	\pm e	E	
	$+\ell$ to calculate $\mathrm{Z}_{\text {s }}$ given $\mathrm{Z}_{\text {r }}$			
	- ℓ to calculate $\mathrm{Zr}_{\text {r }}$ givon Z_{s}			
7	Optionsl: output reflection coefficient			P\|
			B/ s^{*}	
8	To caloulate Z_{s} (or $\mathrm{Z}_{\text {r }}$ given negative length)			$\|z\|, \Omega$
			R/S*	42°
	* If the TI-59 is attached to the PO-100A			
	printer, the second value will be			
	- printed without the R/S command.			

Example 1-1.1

Figure 1-1.2 SD coaxial cable circuit for Ex. 1-1.1.

Type SD underwater telephone coax is to be used at 0.72 MHz . The cable section is 2.8 nautical miles ($n-m i$.) long and is loaded by a series RC network of 100 ohms and 1000 pF as shown in Fig. 1-1.2. Find the cable input impedance, Z_{s}, at this frequency.

At 0.72 MHz the electrical parameters of SD coax are:

$$
\begin{aligned}
\alpha_{\mathrm{dB}} & =2.070 \mathrm{~dB} / \mathrm{n}-\mathrm{mi} . \\
\beta & =42.511 \text { radians } / \mathrm{n}-\mathrm{mi} . \\
\mathrm{Z}_{\mathrm{o}} & =44.625 \text { ohms at }-0.315 \text { degree }
\end{aligned}
$$

The RC load impedance is:

$$
\begin{aligned}
& \operatorname{Re} z_{r}=100 \text { ohms } \\
& \operatorname{Im} Z_{r}=-j /(2 \pi f C)=-j 221 \text { ohms }
\end{aligned}
$$

The input impedance of the loaded coax is $66.902+j 11.167$ ohms as obtained from using the program and shown in the printout below:

Example 1-1. 2

Using the type $S D$ underwater telephone coax of Example $1-1.1$, find the load impedance at 0.72 MHz that will result in an input impedance of $60+j 0$ ohms. The length of the coax is $2.8 \mathrm{n}-\mathrm{mi}$. as in the previous example.

When using a lossy cable, a negative real part in Z_{r} will be required to obtain values of Z_{s} greatly different than Z_{o}. Furthermore, if $\alpha \ell$ is greater than 30 dB , the input impedance will be nearly z_{o}, independent of the load impedance.

In this example, a negative line length is loaded to use the quasisymmetric properties of Eqs. (1-1.1) and (1-1.2) for calculating Z_{r} given Z_{s} 。

The HP-97 printout reproduced next shows a load impedance of 67.396 - j73.338 ohms is required. The equivalent load network is also shown.

Figure 1-1.3 Equivalent load network.

Example 1-1.3, TI-59 Program Example

This example is the same as Example $1-1.2$ where the problem is to determine load impedance, Z_{r}, that results in an input impedance, Z_{s}, of $60+j 0$ ohms. The line length is $2.8 \mathrm{n}-\mathrm{mi}$. Because Z_{r} is to be calculated given Z_{s}, a negative line length is used. The PC-100A printer output is shown below.

> PROGRAM INPUT
> 2. 4251

> 44.265
> -10.315
> 6
> - 2. \quad line length, $n-m i$.

PROGRAM OUTPUT

$$
\begin{aligned}
& \text { = 159ु65583 } \\
& 1=019 \operatorname{tag} \quad \forall \rho \text {, degrees } \\
& |\rho| \text {, dimensionless } \\
& \text { 99. } 5030549 \quad\left|z_{r}\right| \text {, ohms } \\
& -47=4175413 \quad 4 z_{r} \text {, degrees }
\end{aligned}
$$

Note: the PC-100A printer will not print the mnemonic representing the input key. The HP-97 does this automatically when in the "norm" mode.

PROGRAM FLOW DIAGRAM

PROGRAM FLOW DIAGRAM

$\frac{\text { LABEL } b}{\text { in rectancular }, ~ I / O}$ of characteristic impedance, Z_{0}, in rectangular format.

1 - X for I/O index, gosub 0 to store I/O index, convert data to polar format, and store polar data.

Go to label 6 for data entry test and p calculation if new data has been entered.

PROGRAM FLOW DIAGRAM

LABEL d, Oalculation of complex input impedance, \mathbf{Z}_{s}, in polar format.

Calculate and store pe $e^{-2 \gamma \ell .}$
Calculate and store $K=\left(1+\rho e^{-2 \gamma \ell}\right) /\left(1-p e^{-2 \gamma \ell}\right)$ in scratch
registers $R 8$ and $S 8$. (magnitude and angle).
Use register arithmetic to form $Z_{s}=Z_{0} \cdot K$.
Recall, store, and print $\left|z_{0}\right|$ and $\Varangle Z_{0}$.
Space paper and return control to keyboard.

PROGRAM FLOW DIAGRAM

${ }^{1.1} \quad$ Program Listing II

NOTE: The register assignments are the same as the HP-97 program. Read $S 0$ as R_{10}, and $R A$ as R_{20}, etc. $R_{26}-R_{28}$ are scratchpads

PROGRAM 1-2 VOLTAGE ALONG A LOSSY LOADED TRANSMISSION LINE.

Program Description and Equations Used

This program calculates the voltage $V(x)$ in $d B V$, at any distance, x, along a doubly loaded transmission line (a line with terminating Y 's or Z's at both ends). Both the source and load impedances are allowed to be complex quantities. This program is parasitic to Program 1-1, and that program must be run first to properly load the registers for this program. The same line length and units must be used with both programs.

Given a section of transmission line of length ℓ (Fig. 1-2.1) which may be a coax as shown, or open wire line, stripline, microstrip, or other, the input impedance, Z_{s}, can be expressed in terms of the load impedance, Z_{r}, and the cable parameters as given by Eqs. (1-1.1) and (1-1.2). With the input impedance, z_{s} known, and given the transmitter source impedance, Z_{t}, the voltage at the input of the transmission line, V_{s}, is given by:

$$
\begin{equation*}
v_{s}=v_{t}\left[\frac{z_{s}}{Z_{s}+Z_{t}}\right] \tag{1-2.1}
\end{equation*}
$$

where Z_{s} is given by Eq. (1-1.1).

Figure 1-2.1 Transmission line circuit topology.

The voltage and current distribution of the transmission line can be written in terms of the voltage and current at any point along the transmission line as the reference. Most commonly, the voltage at the receiving end is taken as the reference, but for this problem, the voltage and current at the transmitting end are more convenient references. The voltage at any distance, x, from the transmitting end is given by Eq. (1-2.2), where the reflection coefficient at the transmitter is designated ρ_{t} and is defined by Eq. (1-2.3). The derivation of Eq. (1-2.2) is given later.

$$
\begin{align*}
& V(x)=\frac{V_{s}}{1+\rho_{t}} \cdot\left[e^{-\gamma x}+\rho_{t} e^{\gamma x}\right] \tag{1-2.2}\\
& \rho_{t}=\frac{z_{s} / z_{o}-1}{z_{s} / z_{o}+1} \tag{1-2.3}
\end{align*}
$$

In Eq. (1-2.2), γ is as defined in Eq. (1-1.3). With these equations in mind, the program operation is now described (Program 1-1 has already calculated and stored Z_{s} using Eq. (1-1.1)).

The routines under labels "A," " a ," and " B " provide for data entry and storage. All impedances are stored in polar form; hence, impedances entered in cartesian form (real and imaginary) under label "a" are converted to polar form and stored using the routine under label "A," which is the polar impedance entry and storage routine. The routine under label " B " causes the source voltage strength in volts to be stored.

Label " E " is the start of the data output routine. On the first execution of label "E" after program loading and data entry, ρ_{t} is calculated and stored. Flag 2 is tested on each execution of label "E" to determine if the reflection coefficient calculation is needed $\left(\rho_{t}\right)$. Since flag 2 is test cleared, and is only set by card loading, the ρ_{t} calculation is skipped after the first execution of label "E."

Following the ρ_{t} calculation decision, is a routine to evaluate Eq. (1-2.2) without the V_{s} term (lines 050 and 096 in the program 1isting). V_{s} is calculated using Eq. (1-2.1) in 1ines 097 through 118 and combined with the results of Eq. (1-2.2) in lines 119 to 125. The output is provided as magnitude (in dBV) of $\mathrm{V}(\mathrm{x})$ and its angle.

Label 9 is a space and return subroutine used by labels "a," "A," "B," and "E."

1.2 User Instructions

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS	OUTPUT DATA/UNITS	
	This program is to be used in conjunction				
	with Program 1-1. Run that program first				
	using the frequency, cable parameters,				
	and total line length which ore germane				
	to this program				
1	Load and run Program 1-1				
2	Load both sides of Program 1-2 magnetic card				
3	Load transmitter output impedance				
	a) If data is in cartesian coordinates:				
	real part of impedance in ohms	$\mathrm{Re} \underline{Z}_{t}$	ENT		
	imaginary part of impedance in ohms	Im z_{t}	A		
	or				
	b) If data is in polar coordinateg:				
	magnitude of impedance in ohms	\|Zt		ENT	
	angle of impedance in degrees	$\underline{\chi} z_{t}$	\mathbf{f} A		
4	Load source voltage of transmitter in volts	V_{t}	B		
5	Load length between transmitter and analysia				
	point using the same units as used with				
	Program 1-1	x	E	$20 \log \|V(x)\|$	
				$\left\langle\vee V(x)^{\circ}\right.$	
6	Go back to step 5 for another case				
-					

Example 1-2.1

Given the coax cable with source and load impedances as shown in Fig. 1-2.2, find the voltages on the cable at the transmitting end, the receiving end, and $1 \mathrm{n}-\mathrm{mi}$. from the transmitting end.

Figure 1-2.2 Doubly loaded coaxial. cable for Ex. 1-2.1.

At 0.72 MHz , the characteristics of the SD coax cable are:

$$
\begin{aligned}
\alpha_{d B} & =2.070 \mathrm{~dB} / \mathrm{n}-\mathrm{mi} . \\
\beta & =42.511 \mathrm{radians} / \mathrm{n}-\mathrm{mi} . \\
\mathrm{Z}_{\mathrm{o}} & =44.265 \Omega @-0.315 \text { degree }
\end{aligned}
$$

At the same frequency, the complex source and load impedances are:
$\operatorname{Re} Z_{t}=20$ ohms
$\operatorname{Im} Z_{t}=j 2 \pi f L=j 99.53$ ohms
$\operatorname{Re} \mathrm{Z}_{\mathrm{r}}=100$ ohms
$\operatorname{Im} Z_{r}=-j /(2 \pi f C)=-j 221$ ohms
Since this program is parasitic to Program $1-1$, that program is run first with the line length required here ($2.8 \mathrm{n}-\mathrm{mi}$.). The printout from that program is included here for clarity.

HP－97 printout for Example 1－2．1
First，Program 1－1 is run to calculate and store Z_{s} and to load the registers．

```
    2. पT\overline{0}ENTT load \alpha}\mp@subsup{\alpha}{\textrm{dB}}{}\mathrm{ in dB/n-mi.
    42.5il ENTt load \beta In radians/n-mi.
    .7C+66 65bA load frequency in hertz
    44.26E ENTt load }|\textrm{z}|\mathrm{ in ohms
    -.315 ESEF load & }\mp@subsup{\textrm{z}}{\textrm{o}}{0}\mathrm{ in degrees
    10日i.006 ENTT load Re Z in ohms
-221.046 65E% load Im Zr
    2.E64 GSEE load line length in nautical miles
```


Second, load and run this program.

```
    za.gu ENT, load Re Z
    9.5: ESE load Im Z t
    i.䬺GSE load source voltage in volts
    E.0日 GEE load line length to transmitting end and start
    -E,S% 葸 20 log |V |, dBV
-4E.\XiG *&* &V , degres
    2.\sigma6 GSEE load line length to receiving end and start
    -0.54 *** 20 log | | | |, dBV
-34.5e *** 4V (regren
    i.a0 ESEE load line length to 1 n-mi. from xmit end and start
-1之.95 *** 20 log |V(x)|, dBV
    Ea,is w** &V(x), degrees
```


Derivation of Equations Used

A transmission line provides a conduit for the propagation of electrical power. If the transmission 1 ine is not terminated in the characteristic impedance of the line, Z_{o}, then not all of the power that propagates down the line is absorbed in the termination, and thus some is reflected into the line and propagates back to the source. The "reflection coefficient," ρ, is a measure of the amount of power that is reflected. A reflection coefficient of zero ($\rho=0$) implies no power is reflected, and all of it is absorbed by the load. When $\rho= \pm 1$, all the power is reflected. The reflection coefficient in terms of the characteristic impedance $\left(Z_{o}\right)$ and the load impedance (Z_{r}) is given by Eq. (1-1.2).

If the transmission line is doubly terminated, then there will be a reflection coefficient for both ends, and Eq. (1-1.2) is used with Z_{r} replaced by Z_{s}, the cable input impedance at the transmitter end. This is the transmitter reflection coefficient and is designated ρ_{t}. The receiver reflection coefficient is left unsubscripted.

The power propagates along the transmission line as a voltage wave and a current wave. Considering both the voltage wave from the transmitter directly, and the reflected wave from the receiver, there exist points along the cable where these waves are in phase, and constructively add together; while there are other points where the waves are 180° out of phase and produce a voltage nul.1.

Reference [43] (chapters 8 and 9) contains the solution to the wave equation for voltage and current waves traveling along a transmission line. The voltage and current along the transmission line can conveniently be expressed in terms of hyperbolic functions and a reference voltage and current taken at any point on the line. If x represents the distance from the transmitter (or source) to the point under observation, then the voltage and current $(V(x)$ and $I(x))$ at this point are:

$$
\left[\begin{array}{l}
v(x) \tag{1-2.4}\\
I(x)
\end{array}\right]=\left[\begin{array}{ll}
\{\cosh (\gamma x)\} & \left\{-Z_{0} \operatorname{Sinh}(\gamma x)\right\} \\
\left.\frac{\{-1}{Z_{0}} \operatorname{Sinh}(\gamma x)\right\} & \{\operatorname{Cosh}(\gamma x)\}
\end{array}\right] \cdot\left[\begin{array}{l}
v_{s} \\
I_{s}
\end{array}\right]
$$

where the hyperbolic functions are defined by:

$$
\begin{align*}
& \operatorname{Sinh}(\gamma x)=\frac{e^{\gamma x}-e^{-\gamma x}}{2} \tag{1-2.5}\\
& \operatorname{Cosh}(\gamma x)=\frac{e^{\gamma x}+e^{-\gamma x}}{2} \tag{1-2.6}
\end{align*}
$$

Remembering that $I_{S}=V_{S} / Z_{s}$, and using the transmitter reflection coefficient defined by:

$$
\begin{equation*}
\rho_{t}=\frac{Z_{s} / Z_{o}-1}{Z_{s} / Z_{o}+1} \tag{1-2.3}
\end{equation*}
$$

Equation (1-2.4) may be solved for $V(x)$ yielding:

$$
\begin{equation*}
\mathrm{V}(\mathrm{x})=\frac{\mathrm{V}_{\mathrm{s}}}{1+\rho_{\mathrm{t}}} \cdot\left[e^{-\gamma \mathrm{x}}+\rho_{\mathrm{t}} e^{\gamma \mathrm{x}}\right] \tag{1-2.2}
\end{equation*}
$$

PROGRAM 1-3 SECOND ORDER ACTIVE NETWORK TRANSMISSION FUNCTION.

Program Description and Equations Used

This program provides the coefficients of the numerator and denominator polynomials of the transmission function $T(s)=N(s) / D(s)$, of the generalized second order active network shown in Fig. 1-3.1. A second part of the program provides the polynomial roots. If a real (nonideal) operational amplifier (op-amp) is used, the amplifier will have both finite gain and bandwidth. The compensation pole of the op-amp will introduce a parasitic pole causing $D(s)$ to become third order even though the RC network is set up to provide second order response. This program accepts the gain and 3 dB bandwidth of the amplifier and calculates the resulting third order transmission function.

Figure 1-3.1 Generalized second order circuit.

If the natural frequencies of the response governed by the RC network alone are many decades removed from the amplifier unity gain crossover frequency, then the transmission function $T(s)$, will be practically equal to the transmission function of the second order network with an ideal infinite bandwidth amplifier. The component values dictated by many active filter references assume ideal operational amplifier characteristics.

When the natural frequencies are within a decade or two of the amplifier unity gain crossover frequency, then the parasitic pole will cause a noticeable shift in the natural frequencies governed by the RC network alone. The network can be predistorted so the natural frequencies shift to the desired positions (see Program 2-11).

The transmission function is determined by writing the nodal equations for the network, and solving for $E_{\text {out }}$ in terms of $E_{\text {in }}$. This derivation is done later and provides:

$$
\begin{equation*}
E_{\text {out }}=\frac{A_{0} Y_{1} Y_{4}}{D(s)} \tag{1-3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
D(s)= & \left(Y_{1}+Y_{2}+Y_{3}\right)\left[\left(Y_{4}+Y_{6}\right)(1+\tau s)+Y_{5}\left(1-A_{0}+\tau s\right)\right]+ \\
& Y_{4}\left[Y_{6}+(1+\tau s)+Y_{5}\left(1-A_{0}+\tau s\right)-A_{0} Y_{2}\right]
\end{aligned}
$$

and where a one-pole model of the amplifier is assumed:

$$
\begin{equation*}
A=\frac{A_{0}}{1+T S} \tag{1-3.2}
\end{equation*}
$$

The sign of A_{0} may be either positive or negative depending upon the amplifier characteristics (see examples). The first program uses Eq. (1-3.1) to form the numerator and denominator polynomials, and the second program finds the zeros of these polynomials (polynomial roots).

When the element values are loaded, capacitors are signified by a negative mantissa. The subroutine under label 8 tests the sign of the entry; if it is negative, the absolute value is stored; if it is positive, it is a resistor, and the reciprocal is taken to convert to conductance, and then multiplied by 10^{50} before storage.

The magnitude of the stored element value is used to signal whether the element is a resistor or a capacitor. Other programs use the sign of the stored value to differentiate between resistors and capacitors, but that indicator cannot be used in this program because algebraic operations are performed on the element values in the main program before the element type subroutine is entered and the resistor/ capacitor test is done, i.e., the term $Y_{5}\left(1-A_{0}\right)$ can have either sign depending upon the magnitude and sign of A_{0}, and Y_{5} can legitimately represent the admittance of either a resistor or a capacitor.

The magnitude test is done in the sunming routine under label 0.

If the absolute value of the coefficient is greater than 10^{30}, it is assumed to be a conductance (s^{0} term), the value is divided by 10^{50} to undo the original storage operation, and the summation is done in the stack. If the absolute value of the coefficient is less than 10^{30}, it is assumed to be a capacitance (s^{l} term), and the summation is done in the designated i register.

Some terms in the denominator of Eq. (1-3.1) contain the factor τ. These terms generate s^{1} and s^{2} coefficients. Subroutine 3 is used to perform multiplication by τs and to append the s^{1} and s^{2} terms to the presently stored s^{0} and s^{1} terms to form the complete admittance sum set for the denominator segment being evaluated.

After each set of admittance sums ($s^{0}, s^{1}, \& s^{2}$) are calculated and stored, polynomial multiplication is done to generate the coefficients of the various powers of s in the denominator polynomial. This multiplication is accomplished by the routine under label 6. If flag 0 is set, the polynomial coefficient registers are cleared before multiplication. This condition exists for the first product-of-sums. Flag 0 is cleared for the second product-of-sums to indicate continued summation into the polynomial coefficient registers.

After the denominator has been calculated, the polynomial coefficients are normalized by dividing by the s^{0} polynomial coefficient. The numerator coefficient is likewise normalized, and the polynomial coefficients are provided as output. This normalization process can cause the program to halt displaying "ERROR" for certain classes of degenerate networks, e.g., a differentiator constructed with capacitors in locations 1 and 4, no elements in locations 2, 3, and 6, and feedback resistor in location 5. The series capacitors should be combined into a single capacitor in location 1 or 4 with the feedback resistor in location 2 or 5 and no elements in locations 3 and 6. The unspecified series elements can be 1 ohm re, 1 stors.

The second program finds the zeros of the denominator polynomial (poles of the transmission function). The numerator polynomial will be either a constant, a single zero at the origin, or a double zero at the origin depending on whether the filter is lowpass, bandpass, or highpass, respectively. The second program also indicates the degree of the zero, and the gain constant of the second order pair, K, after the third order root has been removed (if any), i.e.:

$$
\begin{array}{ll}
\text { Lowpass: } & T(s)=K \frac{1}{\frac{s^{2}}{\omega_{n}^{2}}+\frac{s}{\omega_{n} Q}+1} \\
\text { Bandpass: } & T(s)=K \frac{\frac{s}{\omega_{n} Q}}{\frac{s^{2}}{\omega_{n}^{2}}+\frac{s}{\omega_{n} Q}+1} \\
\text { Highpass: } & T(s)=K \frac{s_{n}^{2}}{s_{n}^{2}} \tag{1-3.5}\\
&
\end{array}
$$

If the denominator polynomial is second order, the quadratic formula is used to find the zeros. If it is third order, a Newton-Raphson iterative technique is used to find the real third order zero (there will be at least one), then the third order polynomial is deflated to second order, and the quadratic formula is used to find the remaining zeros of the polynomial. If the zeros of the denominator polynomial are complex, the program will also calculate the natural frequency, $f_{n}=\omega_{n} / 2 \pi$, and the Q, or quality factor of the complex pair (see the equation derivation part of this description for equations and details).

1.3 User Instructions

STEP	instructions	INPUT DATA/UNITS	KEYS	$\begin{gathered} \text { OUTPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$
1	Load both sides of program card			
2	Enter element 1			
	a) if resiator (value $\ddagger 0$)	R_{2} o ohms		
	b) if capaoitor, enter negative value	C, farad		
3	Enter element 2		$\begin{aligned} & \|\mathrm{B}\| \\ & {[\mathrm{chs}\|\mid \mathrm{B}]} \\ & \square \mathrm{B}] \end{aligned}$	
	a) if resistor	$R_{\text {, ohms }}$		
	b) if capacitor	C, farad		
	c) if no element present	zero		
4	Enter element 3			
	a) if resistor	R, ohme		
	b) if capaoitor	C, farad		
	c) if no element present	zero		
5	Enter element 4			
	a) if resistor (value $\neq 0$)	$R_{\text {\% }}$ ohms		
	b) if capacitor	C, farad		
6	Enter element 5		E chs E E	
	a) if resistor	$R_{\text {, ohma }}$		
	b) if capacitor	C, farad		
	c) if no element present	zero		
7	Enter element 6		\mathbf{f} $\overline{\mathbf{A}}$ $\mathbf{c h s}$ \mathbf{A} \mathbf{A} \mathbf{f} \mathbf{A}	
	a) if resistor	R, ohms		
	b) if capacitor	C, farad		
	c) if no element present	zero		
8	Enter operational amplifier parameters	A_{0}	\uparrow \mathbf{f}	
		$\mathrm{f}_{0}, \mathrm{~Hz}$		
9	Start analysis		$\lceil\mathbf{f} \mid \Gamma \mathrm{E}]$	Den coefs
				Num coefs
10	Go back and change any element then rerun			
	step 9, or load second card to find			
	denominator pole locations, $f_{n,}$ and Q			

TI-59 TRANSLATION

STEP	Instructions	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card one			
2	Initialize and clear registers		2nd [\bar{A}	0
3	Load elements			
	a) load element number (1 to 6)	k	A	k
	b) load element values:			
	if resistor	R_{k}, ohms	B	R_{k}
	1f capcitor	$\mathrm{C}_{\mathrm{k}}, \mathrm{F}$	0	C_{k}
	if no element present	0	0	0
	Repeat step 3 until all elements have been			
	entered.			
4	Load amplifier do gain	A_{0}	D	A
	(load negative gain for inverting op-amp)			
5	Load -3 dB rolloff frequenoy of amplifier	$\mathrm{f}-3 \mathrm{~dB}, \mathrm{~Hz}$	E	$\mathrm{f}^{\mathbf{f}-3 . d B}$
6	Start analysis		2nd E	den coef 8
			R/S*	b_{2}
			R/S*	${ }_{1}$
			$\mathrm{B} / \mathrm{S}^{*}$	1
				num coefs
			R/S*	a_{2}
			$\mathrm{R} / \mathrm{S}^{*}$	${ }^{-1}$
				${ }_{0}$
	* "R/S" not necessary if the TI-59 is			
	attached to the PG-100A printer.			
	All results will be printed automa-			
	tically after the program is started.			

1-3

Tl-59 TRANSLATION

STEP	instructions	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	Load both sides of program card 2			
8	Start second program		E	
	a) If three real roots:			-a
	$(s+a)(s+b)(s+b)$		R/S*	-b
			R/S ${ }^{\text {\% }}$	-c
	b) If one real root and a complex conjugate			-a
	pair: $(s+\theta)(s+\alpha+j \beta)(s+\alpha-j \beta)$			
			R/S*	β
			R/S*	$-\alpha$
			R/S*	- -
			$\mathrm{R} / \mathrm{S}^{*}$	- α
			R/S*	$\mathrm{f}_{\mathrm{n}, \mathrm{Hz}}$
			R/S ${ }^{\text {+ }}$	Q
				midband
	c) If two real roots: (s+a) (s+b)			-a
			R/S**	-b
	d) If a complex conjugate pair:			β
	$(s+\alpha+j \beta)(s+\alpha-j \beta)$		H/S ${ }^{\text {a }}$	- α
			$\mathrm{R} / \mathrm{S}^{\text {+ }}$	$-\beta$
			$2 / S^{*}$	- α
			R/S*	$\mathrm{f}_{\mathrm{n}} \mathrm{Hz}$
			$\mathrm{R} / \mathrm{S}^{*}$	0
				midanand
	* "R/S" not necessary if the TI-59 is			
	attached to the PC-100A printer.			
	All results will be automatically			
	printed after the program is started.			

Example 1-3.1
The schematic in Fig. 1-3.2 represents a second order active bandpass filter using the infinite gain, multiple feedback topology. The filter element values were designed assuming the op-amp to be ideal, i.e., having infinite gain and bandwidth. The type 741 op-amp is not ideal in that it has both finite gain and bandwidth. This example will use the program to show that the element values provide the desired specification when the op-amp has very large gain $\left(-10^{9}\right)$ and infinite bandwidth ($\tau=0$). The program will then be run with the gain and bandwidth values for the 741 type op-amp to show that both the pole natural frequency and " Q " have shifted away from the desired values. The 741 has a typical gain of $-100,000$, and open loop break frequency of 5 Hz .

The design specifications for the filter are:

center frequency:	10 kHz
midband gain:	10
quality factor, Q:	10
capacitor value:	1000 pF

Figure 1-3.2 Second order bandpass active filter, infinite gain-multiple feedback topology.

HP-97 PRINTOUT FOR EXAMPLE 1-3.1

load first program and enter element values					
15915.	GE\%	element l, resistor	reload first card		
-1.-69	ESEE	element 2, cap			
857.7	SEC	element 3, resistor			
-1.-65	ESEI	element 4, cap			
318316. GSEE 6. $65 \mathrm{~s} \alpha$		element 5, resistor element 6, missing			
$\begin{array}{r} -1 .+69 \text { sापद } \\ \overline{0} .5 T u T \end{array}$		enter infinite gain app	$-106060 .$		741 do gain
		set τ to zero ($B W=\infty$)	5.		741 break freq
GSEe start analysis				656	start analysis
$0.606+60$	***	s^{3} denominator coef	90.63-18	**	s^{3}
253.3-12	***		355.1-12	**	${ }_{1}{ }^{2}$
$\begin{aligned} & 1.592-66 \\ & 1.064+60 \end{aligned}$			1.913-76 1. $964+60$	***	
$\begin{array}{r} 6.060+60 \\ -15.92-66 \\ 0.660+96 \end{array}$		$\begin{array}{ccc}s^{2} & \text { numerator coef } \\ s^{1} & \prime \prime \\ s^{0} & \prime \prime & \prime \prime\end{array}$	$\begin{array}{r} 0 . \overline{6} \overline{6}+\overline{a b} \\ -15.92-\bar{a} t \\ 0.96 \overline{6} t \end{array}$	$\begin{array}{ll} * * * & s^{2} \\ * * * & s_{1} \\ * * * & s_{0} \end{array}$	
			load seoond card \& start analysis		
		load second card and start analysis	$-4.466+66$	**	real pole location
$62.75+63$ $-3.142+65$	***	imag ${ }_{\text {real }}$ complox	$\begin{array}{r} 53.04+83 \\ -2.376+63 \end{array}$	**	$\begin{array}{l\|l} \text { imag } \\ \text { real } & \text { complex } \end{array}$
					\% conjugato
$-62.75+63$ $-3.14 \overline{3}+63$	***	imag poles	$\begin{aligned} & -53.04+65 \\ & -2.376+63 \end{aligned}$		$\begin{array}{l\|l} \text { inagg } \\ \text { real } \end{array}$
$10.616+63$		$f_{n} \quad \begin{aligned} & \text { of second } \\ & \text { order }\end{aligned}$	$8.456+63$		$f_{n} \quad \begin{aligned} & \text { of second } \\ & \text { order pole }\end{aligned}$
10.60146	***	$Q \quad\} \begin{aligned} & \text { order pole } \\ & \text { pair }\end{aligned}$	11.17+60	**	$Q \quad \begin{aligned} & \text { order pole } \\ & \text { pair }\end{aligned}$
$-10.60+68$	***	midband gain	$-9.441+66$	***	midband gain
	***	numerator zero location	4. $9606+616$	**	numerator zero location

TI-59 PRINTOUT FOR EXAMPLE 1-3.1

Example 1-3.2

Figure 1-3.3 is the schematic of a second order highpass filter using the Sallen and Key controlled source topology. An operational amplifier is connected in the voltage follower configuration to provide the unity gain non-inverting buffer amplifier required. The design procedure assumes infinite bandwidth in this buffer, but physical op-amps, such as the 741 type have finite bandwidth (BW). This example will show how this finite bandwidth affects the filter performance. The design specifications are:

$$
\begin{array}{ll}
\text { natural frequency, } f_{0}: & 10000 \mathrm{~Hz} \\
\text { quality factor, } Q: & 1 / \sqrt{2}=0.707 \\
\text { capacitor value, } \mathrm{C}_{1}, \mathrm{C}_{4}: & 1 \mathrm{nF} \\
\text { asymptotic high frequency gain: unity }
\end{array}
$$

Figure 1-3.3 Sallen and Key type second order highpass filter.

The HP-97 printout is shown on the next page. Again, two runs were made; first the amplifier was assumed to be ideal, and the program output verifies the design specifications; second, the finite gain and bandwidth characteristics of the 741 operational amplifier were used. The program output for the second case shows the non-ideal (finite) characteristics of the 741 have caused the second order pole positions to shift away from the desired positions, and a real pole has also been introduced.

HP-97 PRINTOUT FOR EXAMPLE 1-3.2

load first program and enter element values					
-1.-85 GSBA element 1 , capacitor 11253. ESEE element 2, resistor ©. GSEC element 3, misaing -1.-69 GSED element 4, capaoitor 0. GSEE element 5, missing 22507. G5EG element 6, resistor					
			Reload first card and enter op-amp parameters		
1. STot		sot $A_{0}=1$ $\operatorname{set} \tau=0 \quad(B W=\infty)$	$\left.\begin{array}{c}\text { 1. ENT } \uparrow \text { gain } \\ \text { 500060. GSEd bandwidth }\end{array}\right\}$ type 741		
	SBE	start analysis		GSBe	start analysis
$0.0000+60$	***	s3	80.62-18	***	B_{2} denominator coof
253.3-12	**		267.6-12	***	${ }^{2}{ }^{\prime \prime}$
22.51-66	***	s^{1}	22.82-96	***	${ }^{1}$
$1.006+86$	***		1.000400	***	s^{0}
253.3-12	***		253.3-12	***	s_{1}^{2} numerator coef
$0.000+60$	***		5.006+60	***	$\begin{array}{ll}\text { so } \\ \mathrm{s}_{0} & 11\end{array}$
	***		0.000^{1+00}		
	load second card \& start analysis				load second card \& start analysis
			-3.233+86	***	real pole location
$\begin{array}{r} 44.43+03 \\ -44.43+63 \end{array}$	***		$44.46+03$ $-43.15+63$	***	$\left.\begin{array}{l} \text { imag } \\ \text { real } \end{array}\right) \text {, complex }$
	***	$\left\{\begin{array}{l}\text { complex } \\ \text { conjugate }\end{array}\right.$	-44.46+63		$\left\{\begin{array}{l} \text { complex } \\ \text { conjugate } \\ \text { poles } \end{array}\right.$
$-44.43+63$	$\underset{* * *}{* * * *}$	$\begin{aligned} & \text { imag } \\ & \text { real } \end{aligned}$	$-43 \cdot 19+03$		real
$\begin{aligned} & 10.60+03 \\ & 707.1-03 \end{aligned}$	$\begin{aligned} & * * * \\ & * * * \end{aligned}$	$\left.\begin{array}{l}f_{n} \\ 0\end{array}\right\}\left\{\begin{array}{l}\text { of se } \\ \text { ordor } \\ \text { pair }\end{array}\right.$	$\begin{aligned} & 9.858+63 \\ & 717.0-03 \end{aligned}$	$\begin{aligned} & * * * \\ & * * * \end{aligned}$	$\left.\begin{array}{l} \mathbf{f}_{\mathrm{n}} \\ \mathrm{Q} \end{array}\right\}\left\{\begin{array}{l} \text { of second } \\ \text { order pole } \\ \text { pair } \end{array}\right.$
$1.000+06$	***	asymptotic gain	971.7-6		asymptotio gain
0.000409	**	numerator zero	$0.660+40$	***	numerator zero
$0.000+06$	***	locations	$0.000+66$	***	

TI-59 PRINTOUT FOR EXAMPLE 1-3.2

Derivation of Equations and Algorithms Used
Active network transfer function: The schematic of the generalized second order active network is shown in Fig. 1-3.1. Let the junction of Y_{1}, Y_{2}, Y_{3}, and Y_{4} be designated node 1. Furthermore, let the junction of Y_{4}, Y_{5}, and Y_{6} be designated as node 2. The nodal equations for this circuit may be written in matrix form in terms of the voltages at node 1 (E_{1}), and at node 2 (E_{2}):

$$
\left[\begin{array}{rrr}
\left\{Y_{1}+Y_{2}+Y_{3}+Y_{4}\right\} & \left\{-Y_{4}\right\} \tag{1-3.6}\\
\left\{-Y_{4}\right\} & \left\{Y_{4}+Y_{5}+Y_{6}\right\}
\end{array}\right] \cdot\left[\begin{array}{l}
E_{1} \\
E_{2}
\end{array}\right]=\left[\begin{array}{ll}
Y_{1} & Y_{2} \\
0 & Y_{5}
\end{array}\right]\left[\begin{array}{l}
\mathrm{E}_{\text {fin }} \\
\\
\text { E out }
\end{array}\right]
$$

Since $E_{2}=E_{\text {out }} / A$, this expression is substituted into Eq. (1-3.6), and the dependent variables brought to the left hand side.

$$
\left[\begin{array}{r}
\left\{Y_{1}+Y_{2}+Y_{3}+Y_{4}\right\} \tag{1-3.7}\\
\left\{-Y_{4}\right\}\left\{\frac{Y_{4}}{A}-Y_{2}\right\} \\
\left\{\begin{array}{l}
Y_{4}+Y_{5}+Y_{6} \\
A
\end{array}-Y_{5}\right\}
\end{array}\right] \cdot\left[\begin{array}{l}
E_{1} \\
E_{\text {out }}
\end{array}\right]=\left[\begin{array}{l}
Y_{1} \\
0
\end{array}\right]\left(E_{\text {in }}\right)
$$

$T(s)=E_{o u t} / E_{i n}$ may be obtained from Eq. (1-3.7) using Cramer's rule. To this end, the determinant of the coefficient matrix (Δ) is needed:

$$
\Delta=\left(Y_{1}+Y_{2}+Y_{3}+Y_{4}\right) \cdot\left[\frac{Y_{4}+Y_{5}+Y_{6}}{A}-Y_{5}\right]-Y_{4}\left[\frac{Y_{4}}{A}-Y_{2}\right](1-3.8)
$$

After clearing fractions and eliminating term subtraction,

$$
\begin{align*}
A \cdot \Delta= & \left(Y_{1}+Y_{2}+Y_{3}\right)\left[Y_{4}+Y_{6}+Y_{5}(1-A)\right]+ \\
& Y_{4}\left[Y_{5}(1-A)-A Y_{2}+Y_{6}\right] \tag{1-3.9}
\end{align*}
$$

Substituting $A=A_{0} /(1+\tau s)$ as the amplifier gain, and clearing fractions, Eq. (1-3.9) becomes:

$$
\begin{align*}
A_{0} \cdot \Delta= & \left(Y_{1}+Y_{2}+Y_{3}\right)\left[\left(Y_{4}+Y_{5}\right)(1+\tau s)+Y_{5}\left(1-A_{0}+\tau s\right)\right]+ \\
& Y_{4}\left[Y_{6}(1+\tau s)+Y_{5}\left(1-A_{0}+\tau s\right)-A_{0} \cdot Y_{2}\right] \tag{1.3.10}
\end{align*}
$$

Using Cramer's rule, the transmission function becomes:

$$
\begin{equation*}
T(s)=E_{\text {out }} / E_{\text {in }}=\left(Y_{1} \cdot Y_{4}\right) / \Delta \tag{1-3.11}
\end{equation*}
$$

Newton-Raphson solution for finding real zeros of third order polynomials:

The Newton-Raphson solution is an iterative procedure for finding the values of x where $f(x)$ becomes zero, hence, these values of x are called the zeros of $f(x)$. If the mathematical operations are restricted to real numbers, then the procedure will only find the real zeros of the function, $f(x)$. All odd ordered polynomials with real coefficients have at least one real zero. The third order polynomial generated by this program falls into this class, therefore real arithmetic is used to extract the real zero.

Given the function $f(x)=0$, the Newton-Raphson solution provides a new estimate, x_{i+1}, based on the present estimate, x_{i}, and the tangent to $f\left(x_{i}\right)$. The value of x_{i+1} is determined by calculating the intercept of the tangent, $f^{\prime}\left(x_{i}\right)$ on the x axis as shown in Fig. 1-3.2.

Figure 1-3.2 Newton-Raphson solution method.

$$
f^{\prime}\left(x_{i}\right)=\Delta f\left(x_{i}\right) / \Delta x_{i}=\left(f\left(x_{i}\right)-0\right) /\left(x_{i}-x_{i}+1\right)
$$

Solving for x_{i+1} :

$$
x_{i+1}=x_{i}-f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)
$$

The iteration is stopped when the absolute value of the correction term, $f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)$ becomes smaller than the desired error limit, $x_{i} \cdot 10^{-8}$.

Once the real zero of the third order polynomial has been found, a polynomial division is done to deflate the polynomial to second order. The quadratic equation is used to obtain the zeros of the second order
polynomial, and these zeros may be complex. If $s=a$ is a zero of $f(s)$, then $s-a$ must be a factor of $f(s)$, and can be removed:

$$
\begin{align*}
& b_{3} s^{2}+\left(a b_{3}+b_{2}\right) s+\left(a\left(a b_{3}+b_{2}\right)+b_{1}\right) \\
& s-a \sqrt{b_{3} s^{3}+b_{2} s^{2}+b b_{1} s+1} \tag{1-3.14}\\
& \frac{-\left(b_{3} s^{3}-a b_{3} s^{2}\right)}{\left(a b_{3}+b_{2}\right) s^{2}+b_{1} s+1} \\
& \frac{-\left[\left(a b_{3}+b_{2}\right) s^{2}-a\left(a b_{3}+b_{2}\right) s\right]}{a\left(a b_{3}+b_{2}\right) s+b_{1} s+1} \\
& -\left[a\left(a b_{3}+b_{2}\right) s+b_{1} s-a\left[a\left(a b_{3}+b_{2}\right)+b_{1}\right]\right\} \\
& 0 *
\end{align*}
$$

The third order polynomial is evaluated in nested form, i.e.:

$$
\begin{equation*}
D(s)=\left(\left(\left(b_{3}\right) s+b_{2}\right) s+b_{1}\right) s+1 \tag{1-3.15}
\end{equation*}
$$

When $s=a$, the intermediate products in $D(s)$ are the same as the second order polynomial coefficients in Eq. (1-3.14). These intermediate products are stored at lines 027 and 031 of the program on the second card. The numbers stored only have value in the last iteration loop before loop exit, at which time $s=a$, and $f(s)=0$, the desired result.

The second order polynomial is normalized so $\mathrm{c}_{0}=1$ (lines 064 to 066). This normalization places the second order polynomial in the same form as the third order polynomial was originally. The quadratic formula is now used to find the zeros of the second order polynomial, $c_{2} s^{2}+c_{1} s+1$.

$$
\begin{equation*}
s_{1,2}=-c_{1} /\left(2 c_{2}\right) \pm \sqrt{\left(c_{1} /\left(2 c_{2}\right)\right)^{2}-1 / c_{2}} \tag{1-3.16}
\end{equation*}
$$

If the discriminant, $\left(c_{1} /\left(2 c_{2}\right)\right)^{2}-1 / c_{2}$, is positive, then two real zeros exist, if it is zero, a double zero exists, and if it is negative, a complex conjugate pair of zeros exist. Steps 067 through 102 find the zeros of the second order polynomial.

[^0]If the zeros of the second order polynomial are complex conjugates, then the poles of the transmission function are also complex conjugates, and a natural frequency, f_{n}, and quality factor, Q, may be calculated:

$$
\begin{align*}
& \mathrm{f}_{\mathrm{n}}=1 /\left(2 \pi \sqrt{c_{2}}\right) \tag{1-3.17}\\
& \mathrm{Q}=\sqrt{c_{2}} / \mathrm{c}_{1} \tag{1-3.18}
\end{align*}
$$

These calculations are performed by steps 103 through 113 of the program. Assuming the third order real pole of the transmission function (parasitic pole caused by the op-amp characteristics) to be large compared to the other poles, then the gain term, K, can be defined in terms of the numerator and denominator coefficients:

$$
\begin{align*}
& T(s)=\frac{a_{2} s^{2}+a_{1} s+a_{0}}{(s / a+1)\left(c_{2} s^{2}+c_{1} s+1\right)} \tag{1-3.19}\\
& \text { lowpass case: } K=a_{0} \tag{1-3.20}\\
& \text { bandpass case: } K=a_{1} / c_{1} \tag{1-3.21}\\
& \text { highpass case: } K=a_{2} / c_{2} \tag{1-3.22}
\end{align*}
$$

The gain term is calculated by steps 114 through 137 of the program.

1.3 card 2 Program Listing I

Suggested program changes for the HP-67: Program space does not allow the inclusion of a print, R / S toggle and associated output routine. To cause the program execution to stop at the data output points, replace the "print" statements with "R/S" statements at the following line numbers: $101,104,108,112,131,133$, and 136 in program one, and at lines $094,100,110,139$, and 143 in program two.

If these changes are made, the program will stop at each output point. To continue program execution, key a "R/S" command from the keyboard.

TI-59 PROGRAM LISTING
1-3 card 1

DT0	76	LEL	subroutine to sum	1515	05	05	
0 OL	44	GU1!	conductance \& susceptance	0514	010	0	
OIC	42	GTD	store entry in scratchpad	052	72	$9 T \%$	clear next set of storage
003	$\underline{d g}$	09	store entry in scratchpad	万5\%	04	04	registers
016	50	IXI	test for conductance:	D54	72	QT	
00ci	32	Xt	If entry is smaller than	056	05	05	
Ops	01	1	1030, then it is a	056	92	ETH	return to main propram
007	52	EE	susceptance and program	D¢	7	EEL	LOAD ELEMENT INDEX
009	03	3	execution jumps to	OE	1	F	
009	00	0	step 24.	059		FIU	space paper in printer
010	77	GE		$06!$	22	IHV	
011	00	00		061		EE	set fix 0 format
012	-24	24		П6e		IHy	
013	4	PCL		D6:	57	EHE	
014	09	09	recover entry	064	97	FRT	print element index
015	5	\div	remove	D6E	55		
016	01	$\underline{1}$	scaling	66\%	32	$\therefore \mathrm{Xt}$	save index entry
0	52	$E E$		067		1	
018	0.5	5		OGE	01	0	calculate storage
019	010	\square		069	95	$=$	register location
Gg	95			070	42	STO	
$\square \square^{\frac{1}{2}}$	74	Sty	sum conductance	071	104	04	
022	05	05		072		Xit	
023	92	PTH	return to main program	073	41	F\%	stop program execution -
\square	4	CL	recover entry	TT:	7	LEL	LOAD RESISTOR VALUE
Wes	09	09		9 Cb	12	E	
02	74	9m\%	sum susceptance	T7E	35	1/8	form conductance
पद	04	14		D7	65	र	
US	92	FTH	return to main program	076	32	\cdots	save conductance
98	7%	LEL	initialization	076	01	1	
0 O	5	INT	subroutine	Og\%	52	EE	multiply conductance by
01	$\square 2$	2		0 E	05	5	10^{50} and indirectly store
082	$0 \square$	-	initialize susceptance	082	00	1	
093	42	$5 T \square$	storage register index	0¢\%	95	-	
084	04	04		084	72	ST	
035	02	2		0¢5	04	174	
0 O	01	1	initialize conductance	USE	0.3	3	
037	43	STI	storage register index	087	05	5	annotation on right
$\frac{068}{096}$	05	T5		088	69	- ${ }^{\text {P }}$	hand edge of printout
089	61	GT	jump to step 51 and	OSg	04	Es	
-	0	00	continue program	0	32	\% 1	
042	7 C	IEL	subroutine to complete	091	25	1, 8	recover resiator entry
043	85	$\stackrel{+}{+}$	summation	092	2	EE	and print annotated
044	71	SEP	gosub subroutine "sum"	094	5	$\square \mathrm{F}$	value
04	4.4	SUM		09	06	¢\%	
046	02	2		096	91	Q/	stop program execution
047	4	514	increment storage	Te7	7 C	DEL	LOAD CAPACITOR VALUE
046	04	0.14	register indices	096	13	$\underline{1}$	
1049		5 m		999	72	ST\%	

Note: This translation was provided by Mr. Roger Junk.

TI-59 PROGRAM LISTING
1-3 card 1

TI-59 PROGRAM LISTING
1-3 card 1

TI-59 PROGRAM LISTING
1-3 card 1

TI-59 PROGRAM LISTING $1-3$ card 1

409	2 c	22	s^{1} term calculation	4 ET	22	IHU	
401	65	8	s term calculation	45	87	TFF	
402	48	RCL		4	010	00	
405	21	21		4 4	04	94	
404	95	$=$		45	56	59	
405	74	94\%		455	010		
406	05	05		456	72	ST*	
407	49	FCL		$4{ }^{4}$	05	05	
408	23	23		456	92	ETH	
409	65	x		$4{ }^{4}$	76	T-	subroutine to print
410	43	FCL		460	98	ADY	and continue if
411	20	20		$4{ }^{4}$	98	CIV	calculator attached to
412	95	$=$		462	76	LBL	PC-100A printer, or else
413	74	פी\%		463	99	PRT	to stop program execution
414	05	O5		464	57	EHC	and display answer
415	Q2	2		465	95	FRT	
415	71	EER		468	22	IHy	
417	0.14	04		46	87	IFF	
418	46	46		468	01	01	
415	43	PrL		469	$0 \cdot 9$	04	
420	22	2 Z		470	74	74	
421	65	8		471	91	F / S	
42%	43	PCL		472	22	TH4	
423	20	20		473	57	EMG	
424	95	$=$	s^{2} term calculation	474	9	ETH	
425	74	5t:		475	6	ПP	subroutine to sense
42 C	05	05		476	08	08	PC-100A printer is
427	43	ECL		477	96	STF	attached to calculator
428	24	24		478	01	01	
429	6.5	x		473	92	ETH	
430	43	PCL					
431	21	21					
432	95	$=$					
493	74	与it					
494	0.5	05					
765	प9	3					
436	71	ger					
497	04	04					
436	48	48					
439	43	RCL					
440	24	24					
441	65	¢	6^{3} term calculation				
442	49	ECL					
443	20	20					
444	95	$=$					
445	74	S1\%					
446	0.5	05					
44	92	PTH					
$\begin{aligned} & 448 \\ & 449 \end{aligned}$	$\begin{aligned} & \frac{4}{4} \\ & 05 \end{aligned}$	5	polynomial multiplication storage subroutine				

REGISTER ALLOCATIONS FOR TI－59 1－3 card 1

number	contents
0	sum of s^{0} terms
1	sum of s^{1} terms
2	sum of s^{2} terms
3	sum of s^{3} terms
4	indirect storage register index
5	indirect storage register index
6	
7	
8	
9	
10	A_{0} ，the op－amp dc gain
11	Y_{1}
12	Y_{2}
13	Y_{3}
14	Y_{4}
15	Y_{5}
16	Y_{6}
17	τ
18	bo
19	$\mathrm{Y}_{5}\left(1-\mathrm{A}_{0}\right)$
20	－－－－－m－－ $\mathrm{S}_{2}{ }^{1}$
21	-
22	－ーーーーーーーーーー－ $\operatorname{s}_{1}{ }^{1}$
23	
24	
25	
26	D_{0}
27	D_{1}
28	D_{2}
29	D_{3}
30	

TI-59 PROGRAM LISTING
1-3 card 2

$\begin{aligned} & 006 \\ & 001 \end{aligned}$	76 15	LEL	START	050	43	$\begin{array}{r} \mathrm{RCL} \\ 29 \end{array}$	
D1]	7	SEF	test for PC-100A printer	052	65	x	
00:	$0 \cdot 10$	04	attached to calculator	05	43	RCL	
gig	75	75		054	23	23	
D175	43	FCL		OEE	85	+	
006	29	29	if s^{3} coefficient is zero,	056	02	2	lculate $\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{L}}\right)$
007	29	CP	go to second order	057	65	\times	culate $f^{\prime}\left(x_{i}\right)$
006	$6 ?$	EO	solution routine	059	43	RCL	
009	01	01		059	28	28	
010	19	19		060	95	$=$	
011	5	\div		061	65	\times	
012	43	RCL	calculate initial guess	De9	43	RCL	
018	28	28	for real third order root	06	23	23	
014	95	$=$		064	8.	+	
015	35	1\%	$\mathrm{x}_{0}=\mathrm{D}_{2} / \mathrm{D}_{3}$	065	43	RCL	
016	94	+ -		066	27	27	
017	42	STD		067	95	=	- - -
018	23	29		068	29	EF	
015	4	FCL	Newton-Raphson start	069	67	E!	$f^{\prime}\left(x_{i}\right)=0$ escape
020	23	23		070	00	00	
021	65	x		071	75	75	
022	43	FL		07E	35	$1 / 8$	
023	23	29		073	49	FET	calc $f^{\prime}\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)$
024	85	+		074	25	25	
025	43	ECL		075	4	RCL	
02t.	28	28		076	25	25	
027	95	=		077	94	+ -	apply correction to x_{i}
029	42	STD		078	44	SUH	
029	21	21		079	23	23	
030	65	x		080	50	IXI	
031	43	RCL		081	32	XtT	
032	23	23		082	43	FCL	
033	85	\pm	calculate $f\left(x_{i}\right)$	083	23	23	
034	43	RCL		084	55	\div	
035	27	27		085	01	1	
036	95	$=$		086	52	EE	test for loop exit
037	42	STD		087	08	8	test for loop exit
036	22	22		088	95	$=$	
039	6.5	\times		089	50	IXI	
040	43	RCL		090	22	IW	
041	23	23		091	77	GE	
042	85	+		092	010	00	
043	43	RCL		099	19	19	
044	26	26		094	4	FCL	
045	95	$=$		095	23	23	
046	42	STD		096	71	SER	print real root
$\underline{017}$	25	$\underline{25}$		097	04	04	
046	03	3		098	65	65	- - - - -
049	65	x		099	43	RCL	

TI-59 PROGRAM LISTING
$1-3$ card 2

100	29	es		160	77	GE	
101	42	हाT		15	04	01	
102	20	20		1 B	75	75	
108	4	ए4		15\%	34	F\%	
104	$z 2$	2e		154	42	ETI	
105	29	Q		15	25	25	
ine	67	El	normalize second order	15	75	-	
107	1 H	11		157	43	PCL	calculate and print
	31	31		15	21	21	one real root
109	85	$1 \times$		159	95	:	
1 O	4	FPT		1 B	71	GहR	
11:	20	20		16	04	04	
1\%	4	Pe]		1 E	65	Es	
$1 \pm$	21	$\underline{2}$		i63	4	RC.	
14.	49	PRI		164	$\Sigma 5$	$\underline{5}$	
1 E	22	22		15	85	$\stackrel{+}{+}$	
115	61	CTI		166	43	PC	
117	01	01		167	08	-	calculate and print
IIB	31	31		168	94	+マ゙-	other real root
119	43	PCL		169	71	EDP	
Led	20	29		170	04	O4	
12	42	STH	store second order	171	65	65	
12\%	20	20	coefficients	17 c	61	TT]	
12	43	Et.		17	02	¢2	
+2	27	27		174	25	$\underline{2}$	
425	42	STIL		176	94	+	imaginary solution:
$\underline{120}$	31	21		19	34	F X	imaginary solution.
127	43	PCL		17	42	ST	
123	26	26		178	25	25	
129	42	5 ET		179	71	SER	
1 SO	22	22		IEC	04	04	
131	43	एT	second order solution:	191	65	65	calculate and print
12	20	20		1 BE	43	BCL	one complex root
13%	35	1,4		196	21	21	
134	49	FRD		IG4	94	\div	
t9\%	22	22		18E	71	SPr	
196	55	\div		bs	04	04	
13	02	2		$\underline{19}$	66	66	
193	95	$=$	calculate discriminant,	16 E	4	हप.	
19	49	Pa		189	25	E5	
14.4	21	Z1	$b^{2}-4 a c$	190	94	$+\cdots$	
141	43	PCL		191	$T 1$	5 EP	
142	21	21		192	[4	04	
149	33	Y2		190	Es	65	
144	75	-		194	4	RCL	calculate and print
146	43	Rt.		195	21	21	the other complex root
146	22	22		196	94	$+\cdots-$	
147	95	$=$		197	71	GER	
14	29	CP	$\overline{\text { test for negative }}$	198	94	04	
149	2 E	जM	discriminant	199	66	6	

TI-59 PROGRAM LISTING 1-3 card 2

200	68	HIP		2 E	2	2	
204	68	HDP		2 E	95	$=$	
202	43	RCL		2 E	61	CTG	
208	22	22		25	O2	E	
204	34	FX		2 E	5	5	
205	55			E5	5	\div	
206	02	2		26	4	CL	calculate and print
207	95	$=$		25\%	$\underline{0}$	2	
208	42	STL	calculate and print	EG	8 F	$=$	
209	25	25	f_{n}, the natural	E5	7	Ste	
210	55	\div	frequency	E¢	Ti	4	
211	89	\#		2 E	65	Es	
212	95	$=$		Eez	61	GT	
21	71	Sbr		Es	91	Es	
214	[4	04		Qe	T0	O	
215	5	65		2 E	ण1	G	
2	4	RT		E6	O	0	
27	25	25		26	T0	I	
218	5	\div		2G	T0	-	
219	4	FTL		2 E	T0	I	
2¢	21	2	calculate and print Q	27	T0	0	
221	95	$=$					
2玉	71	SEE					
23	04	194					
$\underline{24}$	66	E					
ES	4	R¢					
EQ	20	-0					
227	49	FRT		45			
2马?	22	22	restore second order	46	\square		
229	65	\%	coefficients	4	0	0	
230	12	2		¢¢		E-	subroutine to lock up
231	\%	$=$		E1	91	R8	"R/S" command-prevents
2 z	4	FRI		462	E 1	GTG	further program execution.
z\%	21	$\underline{1}$		46	04	04	via the "R/S" command
24	4	FTL	- - - - - -	4	$G 1$	E	
2 Et	OE	-2		465		คTy	
296	2 z	IMv		4 G		PGT	
27	E	EG	is numerator second order	4			print or display
296	Te	T2		4 bg			
2 g	55	55		48			
24	43	PCL		47		-1	
241	0	0		471	94	14	
248	22	IHY		476		74	
243	67	Eid	is numerator a constant?	47	91	E,	
244	-2	22		$\frac{4}{4} 4$		FTH	
245	59	5		476			
246	4	सC		476			PC-100A sense routine
247	01	01		4%			
248	5	\div		476		01	
249	43	BCL		47	92	FTH	

REGISTER ALLOCATIONS FOR TI-59 1-3 card 2

register number.	contents
0	N_{0}
1	N_{1}
2	N_{2}
3	
4	
5	
6	
7	
8	
9	
10	A_{0}
11	$\mathrm{Y}_{\text {I }}$
12	Y_{2}
13	Y_{3}
14	Y_{4}
15	Y_{5}
16	Y_{6}
17	τ
18	b_{0}
19	
20	c_{2}
21	$\mathrm{c}_{1}, \mathrm{c}_{1} / 2 \mathrm{c}_{2}$
22	$\mathrm{c}_{0}, 1 / \mathrm{c}_{2}$
23	x_{i}
24	
25	$f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)$
26	$D_{0} \quad 1$
27	D_{1}
28	D_{2}
29	D_{3}

PROGRAM 1.4 L N A P, LADDER NETWORK ANALYSIS PROGRAM.

Program Description and Equations Used

This program evaluates the frequency response and input impedance of a RLC ladder network containing up to 4 nodes and 8 branches using a sweep of discrete evaluation frequencies. The frequency response is provided as magnitude (dB) and phase (degrees, radians, or grads), and the input impedance is provided as real and imaginary parts (ohms). The evaluation frequency may be incremented in a linear manner using an additive increment or in a logarithmic manner using a multiplicative increment.

Each branch of the ladder may contain a resistor (R), a capacitor (C), an inductor (L), a series RC , a parallel RC , a series RL , or a parallel RL network. All element values are stored, and may be reviewed at any time to check or correct the component values and interconnection.

Because of the number of available storage registers in the HP-67/97, the number of nodes cannot exceed four, while the TI-59 can accommodate the data for ten nodes. Elements that inhibit signal flow through the network are not allowed, and will cause the program execution to halt displaying "Error." Examples of these inhibiting elements are a shunt resistor or a shunt inductor having zero value, or series capacitors in series branches having zero values.

The algorithm used by this program assumes 1 volt at the output of the ladder network (see Fig. 1-4.1). From the knowledge of the last branch admittance, the complex branch current may be determined. Since no current flows out of the last node, the last shunt branch current must also flow through the preceding series branch. The complex voltage drop across this branch may be determined by multiplying the branch impedance and the branch current. By adding the series branch voltage to the last node voltage, the next lower node voltage may be obtained. This node voltage times the shunt node admittance will yield the shunt node current. Adding this shunt node current to the previous series
branch current will yield the next lower series branch current.
This loop is repeated until the input voltage source is reached (node 0). The frequency response is found from Eq. (1-4.1) and the input impedance from Eq. (1-4.2), i.e.:

$$
\begin{align*}
& T(j \omega)=E_{\text {out }} / E_{\text {in }}=1 / E_{0} \tag{1-4.1}\\
& Z_{\text {in }}(j \omega)=E_{0} / I_{0} \tag{1-4.2}
\end{align*}
$$

Figure 1-4.1 General ladder network topology.

The preceding algorithm may be expressed in mathematical shorthand using indices:

$$
\begin{align*}
& I_{2 k-2}=\left(E_{k}\right)\left(Y_{2 k-1}\right)+I_{2 k} \tag{1-4.3}\\
& E_{k-1}=\left(I_{2 k-2}\right)\left(Z_{2 k-2}\right)+E_{k} \tag{1-4.5}
\end{align*}
$$

where $k=n, n-1, n-2, \ldots, 1$, and n is the highest numbered node. The initial conditions for the n-th node are given by:

$$
\begin{align*}
& I_{2 n}=0 \tag{1-4.5}\\
& E_{n}=1+j 0 \tag{1-4.6}
\end{align*}
$$

Equation (1-4.3) is evaluated for $\mathrm{I}_{2 \mathrm{k}-2}$ and substituted into Eq. (1-4.4) to obtain the next lower numbered node voltage. The index, k, is decremented by one, and Eqs. (1-4.3) and (1-4.4) are again evaluated. This process is continued until the voltage at node 0 is obtained. Equation (1-4.1) is used to find the frequency response, $T(j \omega)$, from the node 0 voltage, and Eq. (1-4.2) is used to find the input impedance.

User Instructions

${ }^{14} \quad$ User Instructions

STEP	INSTRUCTIONS	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS	OUTPUT DATA/UNITS
4	To review stored element values		f] [D]	branch \#
				Rn^{*}
	* A negative resistance value indicates			L_{n} or $\mathrm{O}_{\mathrm{n}}{ }^{*}$
	a parallel oonnection of elements			space
				$\mathrm{R}_{n}=$ 1 *
	** A negative value for the reactive			$1 \quad 0 \quad 0 *$
	element indicates the element is a			-
	capacitor. The capacitance value is			
	the absolute value of the number given.			Ro*
				Lo or $\mathrm{CO}_{0}{ }^{*}$
5	To change the value of a stored element:			
	a) Key in branch number to be changed	branch \#	ST0 I	
	b) Key in correct resistance	R	A	
	c) Key in correct reactive element value	L_or.	B OR	
	Repeat step 4 or 5 if desired.			
6	To run analysis:			
	a) Load start frequency in hertz	fstart	D	
	b) Load frequency increment	fincr	E	
	(for linsar sweep, the new frequency			
	Will be the old frequency plus the			
	increment, and for log sweep, the new			
	frequency will be the old frequency			
	times the increment)			
	a) Seleat linear or logarithmic sweep			
	For linear sweep		\mathbf{f} B	non
	For logarithmic sweep		f 0	"11
	Steps 6a, 6 b , and 6 c may be executed in			
	any order.			
	d) Start analysis run		f E	see Ex.
				(1-4.1)

14 User Instructions

STEP	INSTRUCTIONS	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS	$\begin{array}{\|c\|} \hline \text { OUTPUT } \\ \text { DATA/UNITS } \\ \hline \end{array}$
7	To stop the analysis:		$[R / S$	
	Wait until the pause that occurs ofter the			
	imaginary Zin is printed, then key R / S			
	If the program execution is halted without			
	waiting for the pause, the primary and			
	secondary registers may be left interchanged.			
	If a register interchange is suspeated,			
	recall register 0 and check to see that			
	branch 0 resistance is stored there.			
	If the branch 0 reactive element is found in			
	register 0, an interchange has occurred,			
	and a PきS operation is required.		P\S	
\square				

Example 1-4.1
Figure 1-4.2 is the schematic of a predistorted 8th order
Butterworth lowpass filter with a -3 dB cutoff frequency of 1000 Hz , and a design impedance level of 1000 ohms. Determine the frequency response and input impedance of this filter over a frequency range of 100 Hz to 10 kHz using a logarithmic sweep with 10 points per decade.

Figure 1-4.2 Predistorted 8th order Butterworth LP filter.

HP-97 PRINTOUT FOR EXAMPLE 1-4.1

* A negative sign indioates a parallel connection of elements.
** A negative sign indicates a capacitor as the reactive element.

HP-97 PRINTOUT FOR EXAMPLE 1-4.1

ESEO seleat log sweep
 100. GSBD load start frequency

PROGRAM OUTPUT

Example 1-4.2
Over a frequency range of 8 Hz to 12 Hz using a linear sweep with 0.2 Hz steps, evaluate the transmission function and input impedance of the network shown in Fig. 1-4.3.

Figure 1-4.3 Network for Example 1-4.2.

The network must be redrawn with the insertion of dummy elements to place it in the ladder format meeting the program input requirements, i.e., only parallel RC or RL networks can be accommodated, not parallel LC networks. The redrawn network is shown in Fig. 1-4.4.

Figure 1-4.4 Network of Fig. $1-4.3$ redrawn with dummy elements.

HP-97 PRINTOUT FOR EXAMPLE 1-4.2

* A negative aign indicatos parallel connection of elements.
** A negative sign indicates a capacitor.

PROGRAM OUTPUT

$8.006+60 \mathrm{freq}, \mathrm{Hz}$	$9.806+60$	10.80+619	11.00+60
$-13.24+06$ gain, dB	$-7.123+66$	$-6.158-86$	$-7.057+60$
$84.42+06$ phase, ${ }^{\circ}$	$70.22+60$	-414.3-96	$-58.65+60$
$101.5+60 \mathrm{Re} \mathrm{Z}_{\text {in }}, \Omega$	101.2+60	$101.0+66$	$109.8+69$
$9.915+\overline{0} 0$ Im $\mathrm{Z}_{\text {in }}, \Omega$	$36.39+60$	$-13.97+06$	-61.49+6e
$8.206+166$	9. $200+60$	10.20+66	11.20+00
-12.23+60	$-5.473+66$	-928.2-0.3	$-8.251+00$
$82.69+60$	$64.89+60$	$-21.06+90$	$-62.31+00$
$101.5+69$	$101.2+80$	$101.0+60$	$106.8+80$
$13.61+6{ }^{6}$	$49.15+6 \overline{4}$	$-262.2+90$	$-52.88+60$
9.406+60	$9.400+60$	10.40+60	$11.40+86$
$-11.13+06$	$-3.663+60$	$-2.509+66$	-9.306+00
$80.66+66$	$55.32+64$	$-36.38+64$	-65.11+00
$101.4+66$	101.1+10	$100.9+06$	104.8) 010
16.79+60	$70.24+96$	$-137.00+09$	$-46.76+60$
	$9.600+60$	$10.60+60$	11.60+60
$-9.936+60$	$-1.819+60$	$-4.173+60$	$-16.25+06$
77.99+66	$42.803+46$	$-46.69+66$	$-67.31+90$
$181.3+86$	101. $1+60$	$100.9+60$	$100.7+00$
$21.55+60$	$112.1+60$	$-95.11+06$	$-42.12+06$
$8.806+86$	$9.800+64$	$10.80+60$	$11.80+6 \overline{0}$
$-8.602+60$	-361.1-63	$-5.702+00$	$-11.89+86$
$74.66+6 E$	$23.05+60$	$-53.78+06$	-69.09+86
$101.3+60$	101. $0+68$	$100.9+60$	100.7+60
27.79+60	237.4+06	$-74.06+66$	$-38.49+00$
			$\begin{array}{r} 12.06+06 \\ -11.86+60 \end{array}$
			-76.55+00
			146. $7+00$
			$-35.55+80$

TI-59 PRINTOUT FOR EXAMPLE 1-4.2

DATA REVIEW

4.
I.
0.

3
-1. 20
-6.405955

1.
-1. 20
E:
\square
100.
0.

PROGRAM OUTPUT
0.10 freq, Hz

- $\mathrm{EG}=\mathrm{B}$ ig phaso, ${ }^{\circ}$
$-6 \mathrm{~S}_{\mathrm{E}} \mathrm{gG} \mathrm{gain}, \mathrm{dB}$
$19 \% .01 \mathrm{Re} \mathrm{Z}_{1 n}, \Omega$ -5.80

Im $Z_{1 n}, \Omega$
0.13
-26玉. 46 -63. 97 $19 E .44$ -12.27
Ii. 16
-25.5 -61.94 197.5 -15. 80

1. 20
-264.47
-5.85 196.17
$-18,99$
2. 25
-263.13
-57.82
194.06
-23. 3 B

$$
\begin{array}{r}
0.32 \\
-261.5 \\
-56.9 \\
190.91 \\
-20.43
\end{array}
$$

References and Equation Derlvation
The algorithm is completely described in the program description section. This particular analysis method is widely referenced. The earliest reference known to the author is T.R. Bashkow [4].

1-4
TI-59 PROGRAM LISTING

This translation was provided by Mr. Walter Ware

1-4
TI-59 PROGRAM LISTING

1.4

TI-59 PROGRAM LISTING

ET	42 ¢T	temporarily store	25	59	59	
2 L	5 E E¢	immittance	2	7	SBE	
ए2	3 F	temporarily store	25	01	01	
Q:	4 C ¢ C	resistance or cond	$\underline{25}$	5	57	
24	57		25	4	ELL	
¢\%	¢ PTM	return to main program	25	57	57	
$\underline{0}$	TE LBL	LNAP ANALYSIS START	25	4	ST]	multiply series
207	$1 \mathrm{E}^{-1}$		E-	\square	01	impedance by complex
6	$\begin{aligned} & 5 \beta \text { F } 5 \\ & \text { By } \end{aligned}$	set display mode	E5	9	RCL	branch current to
2i.	45 H24		2	4	STL	obtain series branch
211	ct ATy	advance paper	E	2	02	voltage drop
\%	T1 \%		¢	4	RCL	
21.	0302	initialize	2s	51	51	
21m	¢ \%		23	42	570	
21:	\because ¢		2s	-	03	
21	010	recall shunt branch	Es	95	ECL	
1	ET 5?		26	52	52	
21:	9 Ca		2s	42	ST0	
21%	$97 \quad 3$		Qc	14	14	
\%	¢ ¢ -	recall complex node	27	¢	FGit	
2\%	T	voltage and execute	27	04	04	
-	4 CTL	complex multiply to	27	19	E:	
Z2,	5% 5]	obtain oomplex branch	F	$\stackrel{3}{3}$	FD:	
2.	4 ytu		27	01	01	add complex series
Es	Q2 पе		27	44	SUM	voltage drop to previous
22	4 mCL		7	49	49	node voltage to obtain
\%	\% \%		27	43	REL	next node voltage and
2	+2 !Tm		-7	02	02	store result
$\underline{2}$	ए. H		2	44	SUM	
Q	48 nt		2 O	5	50	
23:	E\% $\mathrm{\square}$?	01	$\stackrel{\text { : }}{ }$	
8	4 \%tu		2 z	94	+\%-	
2'	1404		$\underline{\square}$	44	Stm	recall indices
\%4	\% mm		28	56	56	
29*	ण¢ ¢¢		Es	4	GIm	
3 m	\square		2 B	5	59	
ET	5 mTL		2	4	FCL	
\%	T)	recall previous complex	2 l	0	09	
29	¢4 \%u	branch current, perform	\%	F	\%it	test for loop exit
24	51	complex add and store	29	49	REL	
24	4 PCL	result	E	5	59	
$2+2$	प. リ		29	θ	Eg	
20:	4.45		29	Te	02	
	5 E		29	T	9 g	
ए	11		E	5	GT0	
Ete	44 + 4	decrement indirect	29	0	12	repeat loop
2	\therefore - \%14	recall indices	9	is	1 15	
-48	$\begin{array}{rr} 56 & 56 \\ 44 & 911 \% \\ \hline \end{array}$		29		RCL	recall present freq

1-4
TI-59 PROGRAM LISTING

$1-4$
TI-59 PROGRAM LISTING

$\begin{aligned} & 4 \mathrm{4} 9 \\ & 40! \end{aligned}$	$\begin{aligned} & 4250 \\ & 5656 \end{aligned}$		450	0010	
4 C	11		452	00	
498	42 ETO	Initialize node voltage	45	00	
4 H	47 49	of highert nodes	454	0010	
4 ta	010		45	00	
4 46	42 ET	$\mathrm{E}_{\mathrm{n}}=1+j 0$	45	00	
$4 \square$	50		457		
का\%	$429 T$		4	00 -1	
$4 \mathrm{\square}$	5151	initialize $\mathrm{I}_{2 \mathrm{n}}=0+\mathrm{jo}$	459	00	
41.	4 ST		460	000	
415	52		461	00	
$4 \square$	2 U		4 ta	00	
413	St STF	clear flag 3	463	$\square 0$	
41	1% 0\%		464	00	
415	4 PपL.	recall number of nodes	46	OM C	
4%	5 E ¢	recall number of nodes	¢6	22 In	
419	T2 ETi	return to main program	46	87 IFF	print or R / S routine
\cdots	29 ¢	odd or even branch subr	468	0505	
41	2 LHM		459	0404	
420	Q6 STF	clear flag 0	479	$73 \quad 7$	
429	00 DO		471	91 F	
423	4 SEL		472	92 RTH	
422	5359		473	99 FRT	
424	55		44	9 geTH	
4 E	पe 3				printer sense routine
42	54		476	0¢ 0¢	printer sense routine
\cdots	2 H		476	B6 STF	
42 s	59 InT		478	0505	
423	57 Ea		475	92 ETH	
430	114				
431	3434				
482	8165	set flag 0 if branch			
43	60 00	number is odd			
4.34	9 ETH				
49	(1)				
St	(1) 0	unused program memory			
43	10				
43%	10 4				
49	O1)				
440	008				
44	0 O				
420	M1]				
442	0010				
4	ण¢				
44^{4}	0. 0				
46	00				
44^{2}	प\% 0				
446	0017				
443	0 O				

REGISTER ALLOCATIONS FOR TI-59

PROGRAM 1-5 LC-L N AP, LC LADDER NETWORK ANALYSIS PROGRAM.

Program Description and Equations Used

This program evaluates the frequency response and input impedance of a resistively terminated lossless (LC) ladder network having up to seven branches. The frequency response is provided as magnitude (dB) and phase (degrees, radians, or grads), and the input impedance is provided as real and imaginary parts.

The input impedance is the impedance seen by the voltage generator in the source. It is more common to calculate the input impedance at the input terminals of the lossless ladder network, but this way was not implemented because program steps are not available for the coding to recall the source resistor value and subtract it from the real part of the input impedance. If the program feature of allowing the number of branches to be entered via a user definable key (key " a ") is sacrificed, and the number of branches is stored into register E, then the additional coding for calculating the network input impedance can be added to the program by deleting steps 028 and 029 and adding "RCLD," "-" after step 097 (099 before deletions).

The frequency response and input impedance evaluation frequency can be incremented in either a linear manner using an additive increment, or a logarithmic manner using a multiplicative increment. Each branch of the network may contain an inductor (L), a capacitor (C), a series LC network, or a parallel LC network. All element values and interconnection topology are stored, and can be reviewed at any time to check or correct the component values or interconnection.

Because of the available number of HP-67/97 registers, the number of branches cannot exceed seven. The TI-59 can accommodate data for 20 branches. Elements that inhibit signal flow through the network are not allowed, and will cause the program execution to halt displaying "Error." Examples of elements that inhibit signal flow are single shunt resistors or inductors that have zero value, or series capacitors in series
branches that have zero value.
The algorithm used by this program is the same as used in Program 1-4 where 1 volt is assumed at the network output, and the required input voltage is calculated. In this program, the branch immittances (impedances or admittances) are purely imaginary, and the branch numbers start with branch 非 instead of branch 非. This changes all indices by +1 . The difference is necessary to let the DSZ instruction operation allow the source resistance to be added to branch \#1 with minimum coding. The load resistance is combined with the last branch immittance. If the number of branches is odd, the last branch consists of the load resistor alone.

1.5 User Insiructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of magnetic card			
2	Load the number of branches in the network	\# branches	\mathbf{f} [
3	Enter the load and source resistances	R_{L}	ENT 4	
	in ohms	${ }_{\text {R }}$	A	
4	Load branch capacitance:			
	If a parallel tank in a series branch.			
	or a series tank in a shunt branch,			
	change the sign of the mantissa in			
	the capacitor value	tCbranch	B	
		(farads)		
	Start loading network capacitors			
	(and inductors) from the highest			
	numbered branch (load reaistor end)			
5	Load branoh induotanee:			
	If a parallel tank in a series branoh,			
	or a series tank in a shunt branch,			
	change the sign of the mantissa in			
	the inductor value	\pm Lbranch	0	
		(henries)		
6	Input data review (optional)		f D	Rload
				space
	Negative element values indicate series			highest branch
	tanks in shunt branches, or parallel			\pm
	tanks in series branches			± 1
				space
				:
				$\mathrm{R}_{\text {source }}$
7	Select frequency sweep mode:			
	a) linear sweep		[f B	
	b) logarithmic sweop		$f 0$	
8	Load otart frequency for sweep in hertz	Pstart	D	

Example 1-5.1
Bartlett's bisection theorem [53], [56], [57] has been applied to an equally terminated (1000 ohm) third order Butterworth bandpass filter with 10 kHz center frequency and 1 kHz bandwidth to produce the unequally terminated LC filter shown in Fig. 1-5.1. The source resistance is 1000 ohms and the load resistance is 10000 ohms. Determine the frequency response and input impedance of this LC network over a frequency range of 9000 Hz to 10900 Hz using a linear sweep with 100 Hz steps.

Figure 1-5.2 Network for Example 1-5.1.

PROGRAM INPUT	DATA REVIEW		
3.04 6SEa number of branches		GSEd	start reviow
	$10.66+63$	***	load resistance
1060. GSEH R_{S}	$\begin{aligned} & 3.060+16 \\ & 159.2-12 \end{aligned}$	$\begin{aligned} & * \& * \\ & * * * \end{aligned}$	branch number C
159.2-12 65E ${ }_{\text {c }}$	$1.592+\overline{60}$	***	1
$1.592 \mathrm{SEEC} \mathrm{L}_{3}$			
.1751-66 6SE C_{2}	$2.068+66$ $175.1-69$	****	0
1.447-63 655C L	1.447-63	***	L
1592.-12 ESE O_{1}	1.0066+60	***	branch number
$.15925565 \mathrm{~L}_{1}$	1.592-69	***	
GSEk linear sweep	$1.096+63$	***	source resistance
9000.066 GSE start freq, Hz			
$106.0665 E E$ freq incr, Hz			

HP-97 PRINTOUT FOR EXAMPLE 1-5.1

GSBe start analysis

PROGRAM OUTPUT

9000.09	freq, Hz	9500.86	10000.00	10508.69
-20.29	gain, dB	-4.14	-0.83	10566.89 -3.58
-146.92	phase, 0	138.89	-6.48	-132.20
1003.54	Re $Z_{\text {in },} \Omega$	1042. 21	10954.89	1048.18
-1666.97	Im $Z_{\text {in }}, \Omega$	-93.28	-227.42	1048.18 10.31
9100.06		9600.00	10100.00	
-17.44		-1.93	-0.83	10609.00
-154.43		106.39	-23.45	-0.35
1005.32		1083.75	2916.29	-1027.54
-1391.66		364.31	-3831.85	1027.54 363.73
9206.80		9706.60	10200.00	10700.69
-14.32		-1.84	-0.84	1070.69
-164.23		74.86	-47.28	-175.55
1008.28		1186.21	1504.60	-1016.88
-1105.20		979.39	-1965.91	1016.86 668.18
9300.00		9800.00	18380.00	10800.80
-10.93		-0.85	-1.01	-12.47
-177.51		47.27	-73.45	170.95
1013.48		1498.05	1195.73	1010.86
-801.44		1951.68	-1820.61	1016.86 941.35
9400.00		9980.80	10400.08	10900. 80
- $\overline{6} .46$		-0.83	-1.76	-15.27
163.89		22.71	-102.68	-160.95
1023.19		2964.18	1051.62	1007.25
-479.17		$3870.7 \overline{7}$	-426. 27	1193.23

Example 1-5.2

The filter shown in Fig. 1-5.3 is a 5 th order, 30° modular angle, 50% reflection coefficient elliptic filter designed for 10 kHz cutoff frequency and 1000 ohm impedance level. This example shows how dumny elements are inserted to place the filter in proper ladder format for this program. The frequency response and input impedance are calculated with the analysis frequency being logarithmically swept from 1 kHz to 100 kHz using 10 points per decade.

Figure 1-5.3 Elliptic filter for Example 1-5.2.

Figure 1-5.4 Network of Fig. 1-5.3 redrawn with dummy elements to place in proper ladder format for program input.

HP-97 PRINTOUT FOR EXAMPLE 1-5.2

PROGRAM INPUT	DATA REVIEW		
6. 66656 H \# of branches		GSEx	start review
	$1.006+63$	***	load resistance
1060. ENTT enter load R G56A enter source R	$6.008+06$	***	
	33.30-89	***	$\mathrm{c}^{\text {a }}$
. $03330-66$ ESEE 0_{6}	1.066106	***	L
1. $+8656 S E C \quad 16$ (dummy)	$5.006+06$	***	branch number
-4101.-12 csee O_{5} (note minus)	-4.101-85	***	c
-14.15-63 65EC L5 " "	-14.15-63	***	L
$\begin{array}{lll} -.04651-66 & 686 E & 0_{4} \end{array}$	$4.000+60$	**	branch number
©. ESEC L_{4} (dummy)	$-46.51-69$	***	0
	$0.060+00$	***	L
$\begin{array}{llll}-1535 .-12 & E E E & 0_{3} \\ -15.65-63 & \text { (note minus) } & L_{3}\end{array}$			
$-15.6 c^{-633} 658 \mathrm{C} \mathrm{L}_{3}$ " "	$\begin{array}{r} 3.006+06 \\ -1.535-69 \end{array}$	$\begin{aligned} & * * * \\ & w * * \end{aligned}$	branch number 0
$\left\lvert\, \begin{aligned} -.0355-6 E ~ G S B E & C_{2} \\ 0 . E S E C & L_{0} \end{aligned}\right. \text { (durmy) }$	-15.62-03	***	L
	$2.000+00$	nax	branch number
i. +66 ESEE O1 (dummy)	-35.59-69	***	
6. $\operatorname{CSECL} \mathrm{L}_{1}$ (dummy)	$0.006+00$	***	L
	$1.060+00$	***	branch number
	$1.000+86$	***	c
GSEe log sweep	$0.060+60$		L
1600. GSED start freq	$1.000+63$	***	source resistance
. $1 \overline{6}$ i6 6^{x} increment for GSBE 10 points per decade			

HP-97 PRINTOUT FOR EXAMPLE 1-5.2

DSF3 set display format GSEe start analysis

PROGRAM OUTPUT			
1000. 100 freq , Hz	3162.278	10600.000	31622.777
-6.304 gain, dB	-7.265	-7.275	-95.872
-25.492 phase, ${ }^{\text {a }}$	-71.469	46.462	106.137
${ }_{1731.945} \mathrm{Re} \mathrm{Z}_{\text {in }}, \Omega$	1341.972	2425.429	1006.604
$-354.815 \mathrm{Im} \mathrm{Z}_{\text {in }}$, Ω	-144.944	-1314.534	-141.760]
1258.925	3981.872	12569.254	39810.717
-6.445	-7.140	-29.301	-80.704
-31.679	-87.812	-34.999	-77. 366
1641.445	1354.476	1001.496	1006. 0168
-367. 445	-16.643	-520. $5 \overline{\bar{u}} \bar{\square}$	-116.753
1584.893	5011.872	15845.932	50115.724
-6.636	-6.543	-48.256	-77.637
-39.149	-111.9e1	-53.026	-80. 045
1545.329	1516.069	1006.617	1000.006
-354. 383	144.638	-334.325	-87. 689
1995.262	6369.573	19952.63	63995.735
-6.872	-6.635	-75.897	-76.495
-48.661	-15i.933	-62. 745	-82.135
1455.184	2050.652	1064.060	1006.006
-312.318	-165.785	-242.424	-68.745
2511.886	7943.282	25118.864	79432.834
-7.1i4	-7.176	-76.8.39	-77.128
-58.642	154.808	110.795	-83.773
1383.216	1466.692	1044.060	1616. 1 ¢06
-242.073	-532.650	-183.485	-54.393
			100006.006
			-78.338
			-85.064
			1000.000
			-43.101

PROGRAM 1-6 EQUIVALENT INPUT NOISE OF AN AMPLIFIER WITH GENERALIZED INPUT COUPLING NETWORK

Program Description and Equations Used

When low noise amplifiers are designed, the amplifier equivalent current and voltage noise densities (noise in a 1 Hz band), and the coupling network noise sources, response, and impedance behavior must be considered. This program calculates the total noise voltage density that is reflected to the amplifier input which is coupled to a sensor by means of a transformer (Fig. 1-6.1).

Figure 1-6.1 Generalized input coupling network.

The transformer model includes the turns ratio ($1: n$), the primary and secondary resistances ($R_{p r i}$ and $R_{s e c}$), the primary inductance ($L_{p r i}$), and the secondary capacitance ($\mathrm{C}_{\text {sec }}$). The coupling network noise sources include: the thermal noise densities (Johnson noise) of the transformer primary and secondary resistances and of the source resistance, the amplifier equivalent voltage noise density ($\bar{e}_{\mathbf{n}}$), and the equivalent noise voltage density generated by the amplifier current noise density (\bar{i}_{n}) flowing through the coupling network impedance presented to the amplifier input.

The noise voltage density of each noise source is reflected to the amplifier input through the network gain (at the analysis frequency) from the noise source location to the amplifier input. The total noise reflected to the amplifier input is calculated from the root-sum-squared (RSS) values of the individual contributions.

The sensor is represented by a voltage source (E_{s}) and a series LRC network (L_{s}, R_{s}, and C_{s}). The inductance may be set to zero if not needed, and the capacitor may be set to 10^{50} farads to remove its contribution. The sensor resistance may be zero if the transformer primary resistance is not zero and vice-versa.

The equivalent circuit can be modified to reflect the transformer secondary capacitance to the primary if desired by deleting steps 059 , 060 , and 061 in the program. The primary capacitance is now loaded in step 2 f of the users' instructions. This modification allows piezoelectric transducer elements to be modeled as the source. $R_{p r i}$ is set to zero, and the transformer primary capacitance is used to represent the clamped capacity of the piezoelectric element.

If the transformer is not wanted in the circuit, the turns ratio should be set to one.

The equations are derived using nodal analysis, and the user is referred to the section following Example 1-6.2 for details.

1.8 User Instructions

STEP	INSTRUCTIONS	INPUT DATAIUNITS	KEYS	$\begin{aligned} & \text { OUTPUT } \\ & \text { DATA/UNITS } \end{aligned}$
1	Load both sides of the program card			
2	Load network element values		STO 0	
	a) sensor resistance, ohms	R_{s}		
	b) sensor capacitance, farads	O_{8}	STO	
	c) sensor inductance, henries	L_{s}	390.2	
	d) transformer primary resistance, Ω	Rpri	$\begin{array}{ll} \operatorname{STO} & 3 \\ \sin : & 4 \end{array}$	
	e) transformer primary inductance, h	$L_{\text {pri }}$		
	f) xfmr secondary capacitance, farads	$\mathrm{C}_{\text {sec }}$	570	
	g) x frmr secondary resistance, ohms	$\mathrm{R}_{\text {sec }}$	810.16	
	h) amplifier input resistance, ohms	$\mathrm{R}_{\text {in }}$	STO : 7	
	i) transformer turns ratio	n	STO : 8	
3	Select output mode		4 i	
	a) for voltages in dBV and network			
	gain in dB			
			i E I	
	b) for voltages in volts, and			
	network gain as a voltage ratio			
4	Select print (1) / run-stop (0) option		f	0,1
5	Enter amplifier input noise current density	$\overline{i n}_{n}, \mathbb{A} / \sqrt{\mathrm{Hz}}$	C	
6	Enter amplifier input noise voltage density	$\overline{\mathrm{e}}_{\mathrm{n}}, \mathrm{V} / \sqrt{\mathrm{Hz}^{\mathrm{z}}}$	D	
7	Enter analysis frequency and compute output	f, Hz	$\underline{\mathbf{E}}$	gain
				space
	Note:			$\overline{e_{1}}$
	All noise voltages are reflected			$\overline{E_{2}}$
	to the amplifier input, i.e., the			${ }^{3}$
	gain of the network from the noise			$\overline{e_{n}}$, amp
	voltage source to the amplifier			$\overline{i_{n} * Z}$, amp
	input is taken into account.			space
				RSS noise
				space
				space
8	For another case, go back to steps 2 thru 6 as reguired			

Example 1-6.1

A type 2N4867A low-noise field effect transistor (FET) is to be used as a preamplifier for a piezoelectric hydrophone. A frequency range of 10 Hz to 1000 Hz is to be covered. The hydrophone is operating well below its self-resonant frequency, hence, its equivalent circuit is accurately represented by a 4000 pF capacitor in series with a 10 ohm resistor. To avoid preamplifier overload problems from cable flutter and other subsonic signals, the input resistance of the preamplifier is chosen to provide a 50 Hz low frequency break with the hydrophone capacity. The hydrophone will be coupled to the preamp without using a transformer, therefore a dummy turns ratio of $1: 1$ will be used in the program. The current and voltage noise densities for the 2N4867A are 1isted in Table 1-6.1.

Table 1-6.1 Current and voltage noise densities of 2 N 4867 A operating at drain current $\mathrm{I}_{\mathrm{dss}}$.

Frequency, $H z$	\bar{i}_{n}, noise $\mathrm{A} / \sqrt{\mathrm{Hz}}$	$\bar{e}_{\text {n, }}$, noise $\nabla / \sqrt{\mathrm{Hz}}$
10	6×10^{-16}	7.0×10^{-9}
20	6×10^{-16}	5.3×10^{-9}
50	6×10^{-16}	4.1×10^{-9}
100	6×10^{-16}	3.6×10^{-9}
200	6.1×10^{-16}	3.2×10^{-9}
500	6.2×10^{-16}	2.8×10^{-9}
1000	6.3×10^{-16}	2.7×10^{-9}

The HP-97 printout is shown on the next page. Dummy values have been entered for unused components to remove their contribution.

Proghtr infur			
$16 . \bar{e} 3700$ sensor resistance			
4．－65 STGI sensor oapacitance	$3.6-69 \mathrm{GSBD} \mathrm{\sigma}_{\mathrm{n}}$ a 100 Hz ．		
b． 6 STOE sensor inductance	106． 6 GSEE frequency		
A． 0 ET03 primary resistance			
1．+505704 primary inductance	－1． 0		
0.65705 secondary capacitance			
1．6 STuE secondary resistance	－188．9＊＊＊		
50．RLil	－198．9＊＊＊		
50.0 λ $P i$ ealeulate and store	$\begin{aligned} & -145.5 \\ & -168.9 \end{aligned}$		
i ${ }_{\text {i }}$ calculate and store	－195．4＊＊＊		
$2.8 \times$ resistance for			
$795 \% 74.7$$1 / X$ W＊$\quad 50 \mathrm{~Hz}$ breakpoint	－145．9＊＊＊total noise at 100 Hz		
t．e siog n，xfmr turns ratio	$6.1-16 \operatorname{GSEC} \bar{I}_{n}$ © 200 Hz $3.2-155650 \frac{1}{0_{n}}$（6） 200 Hz		
G38 ${ }^{\text {a }}$ select dB			
PROGRAM OUTPUT			
	－6．3		
6．$-166566 I_{n}$＠ 10 Hz			
$\therefore .65 \mathrm{GSED}$－ 10 Hz	－168．2 木木及		
10．6［SEE frequency	$\begin{aligned} & -198 . \\ & -151 . \end{aligned}$	＊${ }^{\text {\％}}$	
		＊＊＊	
－14．i＊＊＊A_{V} ，network gain，dB	$\begin{aligned} & -169 . \\ & -198 \end{aligned}$	＊＊＊	
－Eiz．i＊＊＊ $\mathbf{R}_{\text {sec }}$ prithermal noise，dBV	－151．1＊＊＊total noise at 200 Hz		
-135.2 ＊＊＊ $\mathrm{R}_{\text {gn }}$ thermal noise，dBV			
-165.1 ＊＊＊ \bar{O}_{n} ，transistor $-186 . E$＊＊＊$i_{n} \mathbf{Z}$ equiv noise，dBV	$\text { 6.2-16 GSBC } \bar{I}_{n} \text { e } 500 \mathrm{~Hz}$		
-186.6 ＊＊＊ $1_{n} * Z$ equiv noise，$d B V$			
－139．1＊＊＊total noise（RSS），dBV	2．8－69 GSES On © 500 Hz 505．0 GSEE frequency		
$\begin{array}{ccc} 5.5-65 \mathrm{GSBD} & \bar{o}_{\boldsymbol{n}} \in 20 \mathrm{~Hz} & * \\ 20.6 \mathrm{GSBE} \text { frequency } \end{array}$	0.6		
	－186．6	＊＊	
－6．6＊＊＊	－198．	＊＊＊	
	－158．	＊＊＊	
$-196.5 \quad * * *$ from the previous	$\begin{aligned} & -171.1 \\ & -206.2 \end{aligned}$		
-196.5 ＊＊＊from the previous		＊＊＊	
－139．5＊＊＊	－155．7	＊＊＊total notse et 500 Hz ．	
－165．5＊＊＊			
－187．1＊＊＊			
	$6.3-16$ GSEC In $_{\mathrm{n}} 1000 \mathrm{~Hz}$ 2．7－69 GSBD σ_{n}（3） 1000 Hz 1006． 0 GSEE frequenoy		
－139．6＊＊＊total noise at 20 Hz			
4．1－89 5SED σ_{n} 상 50 Hz 50．06SBE frequency	0.0		
	$\begin{aligned} & -187 \\ & -197 . \end{aligned}$		
－3． －$^{\text {a }}$＊＊			
－196．9＊＊＊	$\begin{aligned} & -197 \\ & -164 \end{aligned}$		
－190．9 $\begin{aligned} & \text {＊＊＊} \\ & -200.9\end{aligned}$	$\begin{aligned} & -171.4 \\ & -212.6 \end{aligned}$		
－141．5＊＊＊	－212．0		
－167．7＊＊＊	－164．	＊＊＊＇total noise at 1000 Hz	
－189．4＊＊＊			
－141．9＊＊＊total noise at 50 Hz			

Example 1-6.1 continued
This example points up one of the problems associated with using the characteristics of the sensor impedance along with the amplifier input resistance to effect frequency shaping. It will be noticed that the dominant source of noise comes from the thermal noise of the input resistor. The low noise characteristics of the input transistor are buried by the input resistor noise contribution.

If the input resistor is made larger, the noise contribution of the input resistor will be less. Although this statement may seem backwards, the logic may be seen by looking at the input resistor and its noise generator as a Norton equivalent source instead of a Thevenin equivalent as is presently used. In this light, one can see that the injected noise current is proportional to $1 / \sqrt{R}$. Since other circuit impedances are unchanged, lower injected noise current means lower input resistor noise contribution.

The input resistor noise contribution may also be reduced by lowering the sensor impedance to lower the noise voltage resulting from the input resistor noise current.

To illustrate the above point, the example is rerun using a larger input resistor; 100 megohms is used instead of 796 kilohms. The HP-97 printout for this case is shown on the next page. The noise contribution of the input resistor loses dominance above 500 Hz in this case.

Fortunately, the ocean self noise is greatest at low frequencies, and low noise performance is less critical here.

PROGRAM INPUT	3．6－69 65BD $\overline{\sigma n}_{\mathrm{n}}$ © 100 Hz 100．6 GSBE frequenoy	
100．+66 ST07 atore new $R_{i n}$ print regiaters to show currently stored values 10． $601+06 \quad$ gensor resistance		
4．006－ 09.1 sencor capaoltance	0.	車＊
$0.600+80^{\circ} \quad 2$ sensor inductance		
$0.006+80$ 3 primary resistance	－187．	＊＊＊
$100.6+48 \quad 4$ primary inductance	－197．	＊＊＊
$8.060+60$ 5 secondary oapacitance	－165．	＊＊＊
	－168．	＊＊＊
100．0946 7 7 input resiatance	－192．	
1．00日t 000 8 xfmr turns ratio		
PROGRA以 OUTPUT		
$6 .-16 \operatorname{sECC}$ $\overline{i_{n}}$ a 10 Hz 7．$-656 S B D$ $\bar{\theta}_{n}$ © 10 Hz $10 . \overline{6 S B E}$ frequenoy	$\begin{array}{cc} 6.1-16 & 65 E C \\ \overline{i_{n}} \text { @ } 200 \mathrm{~Hz} \\ 3.2-65 & 65 E D \\ 200 & 200 \mathrm{~Hz} \\ 200.8 & 65 B E \\ \text { frequency } \end{array}$	
E． $\mathrm{C}_{\text {＊＊＊}} \mathrm{A}_{\mathrm{V}}$ ，network gain， dB	0.	W\％
	-187.	\％＊＊
－197．9＊＊${ }_{\text {gec }}$ Ptiermal noiso，dBV	－197．	**
－145．9 \＃＊＊E En thermal noise，dBY	－169．	$\begin{aligned} & * * * \\ & * * * \\ & * \end{aligned}$
	－198．	＊＊＊
－145．6＊＊＊total noise（RSS），dBV	-167.	＊＊＊total noise at 200 Hz
5． 3 －63 GSED $\sigma_{n} 20 \mathrm{~Hz}$ 20.665 BE frequency		
6． 6 ＊＊＊ ¢ $_{\text {n }}$ is unohanged	0.	＊＊＊
－187．9＊＊＊ from the last	－187．	＊＊＊
	－197．	＊＊＊
－155．5 $\begin{array}{ll}\text {－16＊}\end{array}$	－179．	＊＊＊
－178．5＊＊＊	-171. -206.	***
－151． 7 ＊＊＊total noise at 20 Hz	－170．	＊＊＊total noise at 500 Hz
4．1－69 6560 σ_{n}（a） 50 Hz S6． 6 GSBE frequency 	$\begin{array}{ll}6.3-16 & \text { ESSC } \\ 2.7-09 & I_{n} \\ 105 E D & 1000 \mathrm{~Hz} \\ 1060.0 & 65 B E \\ \theta_{n} & \text { frequency }\end{array}$	
－187．9＊＊＊	B．	
-137.9 ＊＊＊	－187．	＊＊＊
－159．5＊＊＊	－197．	＊＊＊
$\begin{array}{ll} -167.7 \\ -166.4 & * * * \end{array}$	－185，	＊＊＊
	－171．	＊＊＊
	－212．	
	－171．	＊＊＊total noise at 1000 Hz

Example 1-6.2

A small hydrophone is to be matched to a low-noise preamplifier for optimum noise performance at 30 kHz . The hydrophone equivalent circuit is shown in Fig. 1-6.2. The amplifier input transistor will be a 2N4867A FET operating at a drain current of $I_{d s s}{ }^{\circ}$

Figure 1-6.2 Hydrophone equivalent circuit.

Table 1-6.2 Current and voltage noise densities of 2 N 4867 A operating at $\mathrm{I}_{\mathrm{dss}}{ }^{\text {. }}$
Frequency
kHz

10

$$
8.0 \times 10^{-16} \quad 2.3 \times 10^{-9}
$$

$$
15 \quad 1.0 \times 10^{-15}
$$

$20 \quad 1.2 \times 10^{-15}$
25
30
35
1.4×10^{-15}
$1.6 \times 10^{-15} 2.3 \times 10^{-9}$
35
$1.75 \times 10^{-15} 2.2 \times 10^{-9}$
40
1.9×10^{-15}
$45 \quad 2.15 \times 10^{-15}$
50
2.4×10^{-15}
55
2.7×10^{-15}
$3.0 \times 10^{-15} 2.2 \times 10^{-9}$

Before the analysis is started, the transformer turns ratio, primary inductance, and amplifier input resistance must be chosen. The transformer ratio should be kept low to minimize the current noise contribution of the input transistor.

The parallel equivalent circuit of the hydrophone at 30 kHz is required. The capacitive part will be resonated by the transformer
primary inductance, leaving only the resistive part. Figure 1-6.3 shows the parallel equivalent circuit before resonating, and Fig. 1-6.4 shows the HP-97 calculations used to obtain the parallel equivalent circuit.

Figure 1-6.3 Parallel equivalent circuit of hydrophone at 30 kHz .

Figure 1-6.4 HP-97 printout showing calculations used to find the parallel equivalent circuit at 30 kHz .

The thermal noise of the equivalent parallel resistor in a one Hz band is:

$$
\bar{e}_{\mathrm{n}}(130 \Omega)=\sqrt{4 \mathrm{KT}(130)}=1.45 \times 10^{-9} \mathrm{v} / \sqrt{\mathrm{Hz}}
$$

If the transformer raises this noise to 6 dB above the transistor noise, the RSS sum of both resistor and transistor noises will be 1 dB higher
than the resistor noise alone. The transformer turns-ratio necessary to meet this condition is:

$$
\mathrm{n}=\frac{2\left(2.2 \times 10^{-9}\right)}{1.45 \times 10^{-9}}=3.03
$$

The noise current contribution to the total noise voltage also may be calculated (only Re $Z_{i n}$ is used as $\operatorname{Im} Z_{i n}$ is resonated out):

$$
\overline{e_{n}}=\overline{i_{n}} \cdot n^{2} \cdot\left|z_{i n}\right|=\left(1.6 \times 10^{-15}\right)\left(10^{2}\right)(130)=20.8 \times 10^{-12} \mathrm{~V} / \sqrt{\mathrm{Hz}}
$$

This contribution is insignificant compared to the voltage noise term, and the transformer ratio may be raised to make the dominant noise source that of the hydrophone resistance only. This will be the best noise performance obtainable.

With a transformer ratio of $10: 1$, the equivalent hydrophone resistor noise is $1.45 \times 10^{-8} \mathrm{~V} / \sqrt{\mathrm{Hz}}^{\prime}$ at the transistor input, and the RSS of both the transistor and resistor noises is 1.467×10^{-8}. This RSS voltage is only 0.1 dB above the resistor noise alone!

To represent the equivalent hydrophone shunt capacity (44.01 nF), the transformer secondary capacitance term, $\mathrm{C}_{\text {sec }}$ is used. This equivalent secondary capacity is the primary capacity (hydrophone capacity) divided by the square of the turns ratio:

$$
\mathrm{C}_{\text {sec }}=(44.01 \mathrm{nF}) /\left(10^{2}\right)=440 \mathrm{pF}
$$

The primary inductance is chosen to parallel resonate with the equivalent hydrophone capacity, 44.01 nF , at the design frequency of 30 kHz . This primary inductance is:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{pri}}=1 /\left((2 \pi \mathrm{f})^{2} \mathrm{C}\right)=1 /\left((2 \pi 30000)^{2} \cdot 44.01 \times 10^{-9}\right) \\
& \mathrm{L}_{\mathrm{pri}}=639.5 \mu \mathrm{~h}
\end{aligned}
$$

The " Q " of the network is $R /(2 \pi f L)=1.078$, which means the approximate bandwidth of the network is $30000 / 1.078=27829 \mathrm{~Hz}$. Additional broadbanding using the shunting effect of an amplifier input resistor is not necessary. This input resistor may be removed altogether as the transformer secondary provides the dc return for the transistor gate connection. The input resistor will be omitted by making its value 10^{50} ohms.

The HP-97 printout for this example is shown on the next page, and the equivalent circuit is shown in Fig. 1-6.5.

Figure 1-6.5 Equivalent circuit for hydrophone and amplifier.

Example 1-6.2 is meant to illustrate both the program functioning and to give some insight on hydrophone matching. The gain versus frequency response has two peaks, which is characteristic of doubly tuned networks.

The whole subject of optimum hydrophone matching is beyond the scope of this program and discussion. Equiripple passband response and optimum noise performance may be simultaneously obtained with higher order matching networks which represent bandpass filter like structures and include the hydrophone equivalent circuit in the filter structure. Typical broadbanding networks are fifth order and have Chebyshev responses. These networks are an extension of the work of Fano [23] and Matthaei [37].

Derivation of Equations Used

The network shown in Fig. 1-6.1 is redrawn with the components on the secondary side of the transformer reflected to the primary side, and the thermal noise sources of the resistors added. This new network is shown in Fig. 1-6.6.

Fig. 1-6.6 Network of Fig. 1-6.1 redrawn with the transformer moved to the right side.

The network of Fig. 1-6.6 is shown in Fig. 1-6.7 with the individual element groups replaced by generalized admittance blocks. The noise voltage densities of the noise generators are defined by Eqs. (1-6.1) through ($1-6.3$), and the admittance blocks are defined by Eqs. (1-6.4) through (1-6.7).

Figure 1-6.7 Network of Fig. 1-6.6 redrawn with generalized admittance blocks.

$$
\begin{align*}
& \bar{e}_{1}=\sqrt{4 \mathrm{KT}\left(\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\mathrm{pri}}\right)} \tag{1-6.1}\\
& \bar{e}_{2}=(1 / n) \sqrt{4 \mathrm{KTR}_{\mathrm{sec}}} \tag{1-6.2}\\
& \bar{e}_{3}=(1 / n) \sqrt{4 K_{\text {TR }}} . \tag{1-6.3}\\
& Y_{1}=\frac{1}{R_{s}+R_{p r i}+s L_{s}+1 /\left(s C_{s}\right)} \left\lvert\,=\frac{1}{R_{s}+R_{p r i}+j\left(\omega L_{s}-1 /\left(\omega C_{s}\right)\right)}\right. \text { (1-6.4) } \\
& Y_{2}=s\left(n^{2} \cdot C_{s e c}\right)+1 /\left(s L_{p r i}\right)=j\left(n^{2} \omega C_{s e c}-1 /\left(\omega L_{\text {prim }}\right)\right) \tag{1-6.5}\\
& Y_{3}=n^{2} / R_{s e c} \tag{1-6.6}\\
& s=j \omega \\
& Y_{4}=n^{2} / R_{i n}
\end{align*}
$$

Where K is Boltzmann's constant (1.380×10^{-23} Joules /K), and T is the temperature in Kelvin (290 K at room temperature).

The nodal equations are written from Fig. 1-6.7:

$$
\left[\begin{array}{ll}
\left(Y_{1}+Y_{2}+Y_{3}\right) & \left(-Y_{3}\right) \tag{1-6.8}\\
\left(-Y_{3}\right) & \left(Y_{3}+Y_{4}\right)
\end{array}\right] \cdot\left[\begin{array}{l}
e_{x} \\
e_{y}
\end{array}\right]=\left[\begin{array}{l}
Y_{1}\left(\bar{e}_{1}+e_{s}\right)-Y_{3} \bar{e}_{2} \\
Y_{3} \bar{e}_{2}+Y_{4} \bar{e}_{3}+n \cdot \bar{i}_{n}
\end{array}\right]
$$

The variable, e_{y}, is obtained using Cramer's rule. The determinant of the coefficient matrix is designated \triangle.

$$
\Delta=\left(Y_{1}+Y_{2}+Y_{3}\right)\left(Y_{3}+Y_{4}\right)-Y_{3}{ }^{2}
$$

which upon rearranging yields:

$$
\begin{equation*}
\Delta=\left(Y_{1}+Y_{2}+Y_{3}\right)\left(Y_{4}\right)+\left(Y_{1}+Y_{2}\right)\left(Y_{3}\right) \tag{1-6.9}
\end{equation*}
$$

Substituting the constant matrix (right hand side) into the second column of the coefficient matrix, and evaluating the determinant yields

$$
\begin{aligned}
& \text { the following: } \\
& \qquad n \cdot e_{y}=(n / \Delta)\left[\left(Y_{1}+Y_{2}+Y_{3}\right)\left(Y_{3} \bar{e}_{2}+Y_{4} \bar{e}_{3}+n \cdot \bar{i}_{n}\right)+\left(Y_{1} Y_{3}\right)\left(\bar{e}_{1}+E_{s}\right)-\left(Y_{3}^{2}\right)\left(\bar{e}_{2}\right)\right]^{(1-6.10)}
\end{aligned}
$$

Simplifying and removing term subtraction yields:

$$
\begin{equation*}
n \cdot e_{y}=(n / \Delta)\left[\left(Y_{1}+Y_{2}+Y_{3}\right)\left(Y_{4} \bar{e}_{3}+n \cdot \bar{i}_{n}\right)+\left(Y_{1} Y_{3}\right)\left(\bar{e}_{1}+E_{s}\right)+\left(Y_{1}-Y_{2}\right)\left(Y_{3} \bar{e}_{2}\right)\right] \tag{1-6.11}
\end{equation*}
$$

The voltage gain of the network is: $n \frac{\partial e_{y}}{\partial E_{S}}=\frac{\partial e_{A}}{\partial E_{S}}=A_{v}$, or:

$$
A_{v}=\left(n Y_{1} Y_{3}\right) /(\Delta)
$$

In terms of magnitude only:

$$
\begin{equation*}
A_{v}=n \cdot\left|Y_{1}\right| \cdot\left|Y_{3}\right| /|\Delta| \tag{1-6.14}
\end{equation*}
$$

Since the noise voltages \bar{e}_{2}, \bar{e}_{3}, and \bar{e}_{n}, and the current \bar{i}_{n} are random in nature, their addition must be done in RSS fashion to obtain the overall RMS noise voltage at the amplifier input, e_{A}, i.e.,

$$
\begin{equation*}
\bar{e}_{A}^{2}=\bar{e}_{n}^{2}+n^{2} \cdot \bar{e}_{y}^{2} \tag{1-6.15}
\end{equation*}
$$

Upon expanding:

$$
\begin{equation*}
\bar{e}_{A}^{2}=\bar{e}_{n}^{2}+\frac{n^{2}}{|\Delta|^{2}}\left(\left|Y_{1}+Y_{2}+Y_{3}\right|^{2} \cdot\left(\bar{e}_{3}^{2}\left|Y_{4}\right|^{2}+n_{n}^{2} \bar{i}_{n}^{2}\right)+\left|Y_{1} Y_{3}\right|^{2} \cdot \bar{e}_{1}^{2}+\left|Y_{1}+Y_{2}\right|^{2} Y_{3}^{2} \bar{e}_{2}^{2}\right) \tag{1-6.16}
\end{equation*}
$$

This program uses Eqs. (1-6.14) and (1-6.16) to calculate the overall noise voltage density.

Part 2

FILTER DESIGN

PROGRAM 2-1 BUTTERWORTH AND CHEBYSHEV FILTER ORDER CALCULATION.

Program Description and Equations Used
This program calculates the minimum filter order required to meet specifications for maximum passband attenuation ($A P_{d B}$) and minimum stopband attenmation ($\mathrm{As}_{\mathrm{dB}}$) for the Butterworth or Chebyshev filter approximations. A second part of the program calculates che stopband-to-passband frequency ratio, λ, if the filter order and type are given. Furthermore, a third part of the program predicts the stopband attenuation if n, λ, $A P_{d B}$, and the filter order are provided.

Figures 2-1.1 and 2-1.2 are nomographs adapted from Kawakami [34], and can prove useful to rough out the problem and provide tradeoffs. Once the desired parameters have been estimated, this program may be used to fine-ture the results.

Equation (2.1.1) is the analytic expression for the Butterworth amplitude response characteristic.

$$
\begin{equation*}
A_{s}^{2}-1=\left(A_{p}^{2}-1\right) \lambda^{2 n} \tag{2-1.1}
\end{equation*}
$$

where

$$
A_{s}{ }^{2}=10^{0.1 A s} d B
$$

and

$$
\begin{equation*}
{A_{P}}^{2}=10^{0.1 A_{P}} d B \tag{2-1.3}
\end{equation*}
$$

The quantities A_{s} and A_{p} are ratios greater than one (it is the convention to express attenuation as positive decibels).

Equations (2-1.1), (2-1.2), and (2-1.3) can be used to find expressions for $A s_{d B}, \lambda$, or n :

$$
\begin{align*}
& A_{d B}=10 \cdot \log \left[\left(A_{p}^{2}-1\right) \lambda^{2 n}+1\right] \tag{2.1-4}\\
& \lambda=\left[\frac{A_{s}^{2}-1}{A_{p}^{2}-1}\right]^{\frac{1}{2 n}}=\left[\sqrt{\frac{A_{s}^{2}-1}{A_{p}^{2}-1}}\right]^{\frac{1}{n}} \tag{2-1.5}\\
& n=\frac{\ln \sqrt{\frac{A_{s}^{2}-1}{A_{p}^{2}-1}}}{\ln \lambda} \tag{2-1.6}
\end{align*}
$$

Equation (2-1.7) is the analytic expression for the Chebyshev amplitude characteristic where A_{s}^{2} and $A_{p}{ }^{2}$ are defined by Eqs. (2-1.2) and (2-1.3). Equation (2-1.7) can also yield expressions for $A s_{d B}, \lambda$, or n :

$$
\begin{align*}
& A_{s}^{2}-1=\left(A_{p}^{2}-1\right)\left[\cosh \left(n \cosh ^{-1} \lambda\right)\right]^{2} \tag{2-1.7}\\
& A_{d B}=10 \cdot \log \left[\left(A_{p}^{2}-1\right)\left(\cosh \left(n \cdot \cosh ^{-1} \lambda\right)^{2}+1\right]^{2}\right. \tag{2-1.8}\\
& \lambda=\cosh \left(\frac{1}{n} \cosh ^{-1} \sqrt{\frac{A_{s}^{2}-1}{A_{p}^{2}-1}}\right) \tag{2-1.9}\\
& n=\frac{\cosh ^{-1} \sqrt{\frac{A_{s}^{2}-1}{A_{p}^{2}-1}}}{\cosh ^{-1} \lambda} \tag{2-1.10}
\end{align*}
$$

A certain degree of similarity can be noticed between the Butterworth and Chebyshev equations. Keeping in mind that $1 n$ and exp are complementary operations as are cosh and $\cosh ^{-1}$, and noticing that y^{x} can be expressed as \exp ($x \cdot \ln y$), then replacing $1 n$ with cosh and \exp with $\cosh ^{-1}$ will convert the Butterworth formulas to the Chebyshev
formulas. This technique is used by this program where flag 1 indicates the function to be used (set for Butterworth).

A separate subprogram is also included to aid in the specification of bandpass or bandstop filters. The characteristics of these filters are symmetrical when plotted on logarithmic frequency scales (log paper). This characteristic implies geometric symmetry of the various defining frequencies ($-3 \mathrm{~dB}, \mathrm{etc}$.) about the filter center frequency, i.e., the center frequency is the square root of the product of similar response frequencies located above and below the center frequency.

To use the bandstop and bandpass programs in this section, the filter center frequency (f_{o}) and bandwidth ($B W$) are needed, however, when specifying the filter initially, the bandedge frequencies may be of greater interest. The separate subprogram provides the conversion between center frequency and bandwidth, and upper and lower bandedge frequencies ($f_{u p r}$ and $f_{1 w r}$), and vice-versa. The definition of "bandedge frequencies" in the present context means a pair of frequencies (one on either side of the center frequency) where the filter attenuation is the same, i.e., $-0.01 \mathrm{~dB},-3 \mathrm{~dB},-60 \mathrm{~dB}$, etc.

To convert from center frequency and bandwidth to upper and lower bandedge frequencies, Eqs. (2-1.11) and (2-1.12) apply.

$$
\begin{align*}
& \mathrm{f}_{\mathrm{upr}}=(\mathrm{BW} / 2)+\sqrt{(\mathrm{BW} / 2)^{2}+\mathrm{f}_{\mathrm{o}}^{2}} \tag{2-1.11}\\
& \mathrm{f}_{\mathrm{lWr}_{\mathrm{Wr}}}=\left(\mathrm{f}_{\mathrm{o}}^{2}\right) / \mathrm{f}_{\mathrm{upr}} \tag{2-1.12}
\end{align*}
$$

To do the reverse conversion, i.e., to go from upper and lower bandedge frequencies to center frequency and bandwidth, Eqs. (2-1.13) and (2-1.14) apply.

$$
\begin{align*}
& f_{o}=\sqrt{\left(f_{u p r}\right)\left(f_{1 w r}\right)} \tag{2-1.13}\\
& B W=f_{u p r}-f_{1 w r} \tag{2-1.14}
\end{align*}
$$

In the case of a bandpass or bandstop filter, the stopband-topassband frequency ratio, λ, still holds. The user should remember to use bandwidths, and not bandedge frequencies. This is an easy trap to fall into since bandedge frequencies and bandwidths can be one and the same for lowpass filters.

2-1
 User Instructions

Figure 2-1.1 Butterworth filter nomograph.

$$
A_{s}^{2}-1=\left(A_{p}^{2}-1\right) \lambda^{2^{n}}
$$

$A s_{d B}$.
minimum
stopband
attenuation
in ${ }^{\text {attenuation }}$

Figure 2-1. 2 Chebyshev filter nomograph.
$A_{s}{ }^{2}-1=\left(A_{p}^{2}-1\right)\left\{\cosh \left(n \cdot \cosh ^{-1} \lambda\right)\right\}$
Adapted from Kawakami [34]

Figure 2-1.3 Nomograph use.

P1 and P2 are the required passband and stopband attenuation, P3 is a turning point, P4 represents the ratio between the frequencies where the stopband attenuation and the passband attenuation are specified, and P5 represents the required filter order, n.

Since n must be an integer, and P5 will generally lie between two integral numbers, always choose the larger of the two integers. Furthermore, if any of the narrowband approximations to bandpass filters are going to be generated, and Chebyshev response is specified, n must be an odd integer. This requirement occurs as even ordered Chebyshev filters have unequal termination resistances, and the narrowband bandpass approximations require equal termination resistances.

These nomographs are also contained in Zverev, however, the two vertical scales appear to be misregistered slightly, and in some applications will give inaccurate results.

These nomographs may also be used in other ways. If the filter order is known, then the filter response may be predicted. In this case, P5 would lie directly on one of the filter order lines, λ and $P 1$, or P2 are the input variables, with P 2 , or P 1 being the output quantity.

Example 2-1.1 Highpass filter
A Butterworth filter is to pass 20 kHz and higher with 3 dB or less at tenuation, and reject 10 kHz and lower with at least 40 dB of attenuation. Find the minimum filter order to meet these specifications.

```
        E: select Butterworth
    5.6n E-
    load \(A_{P_{d B}}\)
    二. हैE FEF load As dB
    G. 6 s. filter order, \((20 \mathrm{kHz}) /(10 \mathrm{kHz})=2\), \& calculate n
```

Example 2-1.2 Bandpass filter

A Chebyshev bandpass filter is centered at 100 kHz (center frequency is not a parameter of the filter order calculation). Frequencies in a 20 kHz passband (geometrically centered about the center frequency) must be passed with 0.5 dB attenuation or less, and frequencies outside a 40 kHz bandwidth (again geometrically centered) must be rejected with at least 40 dB attenuation. Find the minimum filter order to meet these requirements.

EEs select Chebyshev

Example 2-1.3 Bandstop example
A maximally flat (Butterworth) bandstop filter is centered at 20 kHz . Frequencies lying outside a 10 kHz band geometrically centered on the center frequency should be attenuated by 3 dB or less. Frequencies inside a band of 1 kHz geometrically centered on the center frequency should be attenuated by at least 60 dB . Find the minimum filter order meeting these specifications.

```
    GE: select Butterworth
    3. W0 5SEf load APdB
    6E. 6% bsEE load As dB
    is.65 GGEL load \lambda = (10 kHz)/(1 kHz) = 10 & calculate n
        F.6E 4,% filter order required
    ESF4 display 4 figures past the decimal point
7.bild ww the filter order required is greater than 3
3.6EDG ESEC enter filter order of exactly three & calc. \lambda
10.607s 篑* }\lambda\mathrm{ where filter is }60\textrm{dB}\mathrm{ down
16.6E06 EsEE enter }\lambda\mathrm{ and calculate As dB
5.97%4 we As }\mp@subsup{\textrm{dB}}{\mathrm{ at }\lambda=10}{
```

This bandstop example shows other features of this program．Given n ，the ratio，λ ，where A_{s} is met is calculated，and alternately，given λ, A_{s} for this ratio is calculated．

As an aside，Butterworth filters are not exactly three dB down at the bandedge，but are $10 \cdot \log 102=3.010299957$ dB．If this number had been entered for A_{p} ，the calculated filter order would have been three（to seven significant figures）．

Example 2－1．4 Lowpass filter

Find the frequency where a 2 dB ripple， 7 th order Chebyshev lowpass filter will be 60 dB down when the cutoff（ -2 dB ）frequency is 1000 Hz ．

```
                    GEv select Chebyshev
    Z.teger load ApdB, the passband ripple
    6E.TE ESEE load As dB, the minimum stopband rejection
    F.bugEG load the filter order, n, and calculate }
    is% 音并 }\lambda\mathrm{ to meet above requirements
1WEG&e
```


PROGRAM 2-2 BUTTERWORTH AND CHEBYSHEV FILTER FREQUENCY RESPONSE AND GROUP DELAY.

Program Description and Equations Used

This program calculates the frequency response (magnitude in dB and phase in degrees) and the un-normalized group delay in seconds for the Butterworth or Chebyshev all pole filter approximations. The response may be in lowpass, highpass, bandpass, or bandstop form (the lowpass and highpass responses are special cases of the bandpass and bandstop responses respectively in that the center frequency is zero). Both single frequency analysis and frequency sweeps may be done. The sweep can be linear using an additive increment, or logarithmic using a multiplicative increment.

The actual analysis routine that is buried within the program analyzes a normalized lowpass filter. The input data is normalized and transformed as required to place it in normalized lowpass form. The phase and gain response (frequency response) of the normalized lowpass filter is the same as the original filter type before transformation; hence, no reverse transformation is necessary for output. The group delay is the rate of change of phase with respect to frequency (derivative of the phase function) and is affected by the transformation to normalized lowpass form, therefore, an output transformation from the normalized lowpass group delay is required.

The logarithm of the normalized lowpass filter transmission function, $T\left(j^{\Omega}\right)$ is composed of two components, the attenuation, a, and the phase, b. As a complex number, these two components represent the constant, g :

$$
\begin{align*}
& T(j \Omega)=\prod_{k} \frac{k}{\left.\sigma_{k}+j(\omega)_{k}-\Omega\right)} \tag{2.2.1}\\
& g=\ln (T(j \Omega))=a+j b \tag{2-2.2}\\
& \Omega=F(\omega) \tag{2-2.3}\\
& \omega=2 \pi f \tag{2-2.4}
\end{align*}
$$

where $F(\omega)$ represents the transformation to normalized lowpass, and σ_{k} and ω_{k} are the pole locations of the Butterworth or Chebyshev normalized lowpass transfer function (see the equation derivation section following the examples for pole location details).

The group delay of the normalized lowpass filter is the derivative of the phase function, b, taken with respect to radian frequency:

$$
\begin{align*}
& b=\sum_{k=1}^{n} \tan ^{-1}\left\{\frac{\omega_{k}-\Omega}{\sigma_{k}}\right\} \tag{2-2.5}\\
& \tau_{g_{\text {nor }}}=\frac{d b}{d \Omega}=\sum_{k=1}^{n} \frac{\left|\sigma_{k}\right|}{\sigma_{k}^{2}+\left(\omega_{k}-\Omega\right)^{2}} \tag{2-2.6}
\end{align*}
$$

The group delay is denormalized by multiplying the normalized group delay, Eq. (2-2.6), by the derivative of the transformation function, Eq. (2-2.3), taken with respect to the un-normalized radian frequency, w.

$$
\begin{equation*}
{ }^{\tau} \mathrm{g}={ }^{\tau} \mathrm{g}_{\mathrm{nor}} \cdot \frac{\mathrm{~d} \Omega}{\mathrm{~d} \omega} \tag{2-2.7}
\end{equation*}
$$

The transform functions for the bandpass and lowpass cases are:

$$
\begin{align*}
& \Omega_{B P}=\left|\frac{1}{B W}\left\{f-\frac{f_{o}{ }^{2}}{f}\right\}\right| \tag{2-2.8}\\
& \frac{d \Omega_{B P}}{d \omega}=\frac{1}{2 \pi B W}\left\{1+\frac{f_{o}{ }^{2}}{f^{2}}\right\} \tag{2-2.9}
\end{align*}
$$

where "BW" and "fo" are the bandwidth and center frequency of the bandpass filter in hertz, and " f " is the frequency to be transformed (in hertz). The center frequency is zero for the lowpass case.

The transform functions for the bandstop and highpass cases are:

$$
\begin{align*}
& \Omega_{B S}=\frac{1}{\Omega_{B P}}=\left|\frac{B W}{f-\frac{f_{0}^{2}}{f}}\right| \tag{2.2.10}\\
& \frac{d \Omega_{B S}}{d \omega}=\frac{B W}{2 \pi}\left\{\frac{f^{2}+f_{0}^{2}}{\left(f^{2}-f_{0}^{2}\right)^{2}}\right\} \tag{2-2.11}
\end{align*}
$$

The definitions of the terms are the same as above, and the highpass case has zero center frequency also.

The program uses Eqs. (2-2.8) and (2-2.10) to transform the input data to normalized lowpass, and then evaluates Eqs. (2-2.1) and (2-2.6) to obtain the frequency response and normalized lowpass group delay. The group delay is denormalized using Eqs. (2-2.9) or (2-2.11), and the frequency response and group delay are printed (HP-97 only) and displayed.

2: User Instructions

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS	OUTPUT DATA/UNITS
1	Load both oides of magnetic card			
2	a) if Butterworth, enter filter order	n	$\overline{\text { A }}$	
	b) if Ohebyshev:			
	enter passband ripple in $d B$	DBR	ENT ${ }^{\text {a }}$	
	enter filter order	n	f A	
3	Select filter type and enter characteristios			
	a) if lowpass; enter cutoff frequency*	BW, Hz		
	b) if highpass: enter cutoff frequency*	BW, Hz	f B	
	c) if bandstop:			
	enter bandwidth**	BW, Hz	ENTA	
	enter center frequency	$\mathrm{f}_{\mathrm{O}}, \mathrm{Hz}$	0	
	d) if bandpass:			
	enter bandwidth**	BW, Hz	ENT 4	
	enter center frequency	$\mathrm{f}_{\mathrm{o}}, \mathrm{Hz}$	$f \quad 0$	
4	If sweep of frequencies is desired:			
	a) select linear or logarithmic sweep (toggle)		f D	0
			f D	1
			f D	0
				!
	b) enter sweep starting frequency in hertz	fstart	ENT 4	
	c) enter frequency increment:	f	f \square	
	if linear sweep, the increment is			
	additive; if logarithmic, the			
	increment is multiplicative.			
	d) start swoep		D	$\mathrm{f}_{2} \mathrm{~Hz}$
				loss dB
				phase, deg
				group sec
5	for analysis at a single frequency	f, Hz	E	analysis
				above
	NOTE (* \& **)			
	The LP \& HP cutoff frequency and the			
	BP \& BS bandwidth are defined as the			
	-3dB point for Butterworth, and the -DBR			
	point for Chebyshev			

Example 2-2. 1

Calculate the amplitude, phase, and group delay characteristics of a third order, 1 dB ripple Ohebyshev bandpass filter with 1000 Hz bandwidth and 10000 Hz center frequency. Calculate these characteristics from 8000 Hz to 12000 Hz in linear increments of 100 Hz .

Equations Used and Pole Locations
Butterworth pole locations: The pole locations of a normalized lowpass Butterworth filter lie on a circle in the complex plane. Odd ordered filters have a real pole plus complex conjugate pairs. Even order filters have only complex conjugate pairs. No poles ever lie directly on the $j \omega$ axis. Figure $2-2.1$ shows the pole locations for a 5 th order normalized Butterworth lowpass filter, and Eqs. (2-2.12) and (2-2.13) show the generalized pole locations.

Figure 2-2.1 Butterworth pole locations.

Pole locations:

$$
\begin{align*}
& \text { Real part, } \sigma_{k}=-\sin \left(\frac{2 k-1}{2 n} \pi\right) \tag{2-2.12}\\
& \text { Imag part, } \quad \omega_{k}=\cos \left(\frac{2 k-1}{2 n} \pi\right) \tag{2-2.13}\\
& k=1,2, \ldots, n
\end{align*}
$$

(trig argument is in radians)

The attenuation of the normalized Butterworth lowpass filter is 3 dB at $\omega=1$. At other frequencies, the attenuation in $d B$ is expressed by:

$$
\begin{equation*}
A_{d B}=10 \log \left(1+\omega^{2 n}\right) \tag{2-2.14}
\end{equation*}
$$

As shown by this equation, the attenuation monotonically increases as frequency increases. Figure 2-2.2 shows the general shape of the Butterworth response.

Figure 2-2.2 Normalized Butterworth amplitude response.

Chebyshev pole locations: The normalized lowpass pole locations of a Chebyshev lowpass filter lie on an ellipse with major axis dimension cosh a, and minor axis dimension sinh a where a is defined by:

$$
\begin{equation*}
a=1 / n \sinh ^{-1}(1 / \varepsilon) \tag{2-2.15}
\end{equation*}
$$

The parameter ε is related to the passband ripple in $d B$ by:

$$
\begin{equation*}
\varepsilon=\left(10^{\left.0.1 \varepsilon_{d B}-1\right)^{\frac{1}{2}}}\right. \tag{2-2.16}
\end{equation*}
$$

Using these quantities, the real and imaginary parts of the pole locations are given by Eqs. (2-2.17) and (2-2.18). Figure 2-2.3 shows the pole locations for a fifth order Chebyshev filter.

$$
\begin{aligned}
\text { Real part, } \sigma_{k} & =-(\sinh a)\left(\sin \frac{2 k-1}{2 n} \pi\right) \\
\text { Imag part, } \omega_{k} & =(\cosh a)\left(\cos \frac{2 k-1}{2 n} \pi\right) \\
k & =1,2, \ldots, n
\end{aligned}
$$

(trig argument is in radians)

Figure 2-2.3 Chebyshev pole locations (5th order).

The passband edge of a Chebyshev filter is defined as the highest frequency where the response is $\varepsilon_{d B}$ down: Remember, the Chebyshev passband response oscillates within a band of $\varepsilon_{d B}$. Fourth and fifth order Chebyshev responses are shown in Fig. 2-2,4.

Figure 2-2.4 Chebyshev normalized lowpass filter responses.

The normalized frequency where the Chebyshev filter response is 3 dB down is given by the expression:

$$
\begin{equation*}
f_{-3 d B}=\cosh \left\{\frac{1}{n} \cosh ^{-1}\left(\frac{1}{\varepsilon}\right)\right\} \tag{2-2.19}
\end{equation*}
$$

Comparing the equations that define the pole locations for the Butterworth and Chebyshev filters, one will notice that the only difference is the Chebyshev poles are modified by hyperiolic functions. If the sinh a and cosh a functions are defined to be unity, then the

Chebyshev equations become the Butterworth equations. This technique is used in the program. Chebyshev poles are always calculated; however, if Butterworth response is selected, the hyperbolic functions are not calculated, but are set equal to one in register storage.

Another difference between Butterworth and Chebyshev filters lies in the definition of the bandedge. Butterworth response is 3 dB down at the bandedge, and Chebyshev response is $\varepsilon_{d B}$ down at the bandedge where $\varepsilon_{d B}$ is the passband ripple $1 n \mathrm{~dB}$. Flag 1 is used to indicate the filter type, and is set for Butterworth. When the pole locations are calculated, flag 1 is tested to see what equation, if any, is to be used to convert the given passband edge frequency into the appropriate frequency for the filter type being used.
${ }_{22} \quad$ Program Listing

Suggested HP-67 program changes. The "print" command is used to output data in the program listing. These print commands are located at the following line numbers: $070,191,196$, and 198. HP-67 users may prefer either a "pause" or "R/S" command replacing the "print" command at the above line numbers. If the R / S change is made, the program execution will stop at each data output point. To resume program execution, execute a "R/S" command from the keyboard.

PROGRAM 2-3 BUTTERWORTH AND CHEBYSHEV LOWPASS NORMALIZED COEFFICIENTS.

Program Description and Equations Used

This program calculates the normalized (1 ohm, 1 radian/second cutoff) element values for either the Butterworth (maximally flat) or Chebyshev (equal ripple passband) all pole lowpass filter approximations. The filters can be either doubly terminated (resistors at both ends) or singly terminated (driven from a voltage or current source, i.e., R_{T} approaches infinity). Because of duality, two filter topologies exist for the ladder filter as shown in Fig. 2-3.1. These topologies are bilateral and passive; therefore, the voltage source can be placed in series with the left-hand termination resistor as shown, or in series with the righthand termination resistor. By proper selection of the filter topology and input port designation, the singly terminated filter can be driven from either a current or voltage source and resistively terminated, or driven from a Thevenin (or Norton) equivalent source and terminated in either a short or open circuit.

Figure 2-3.1 Lowpass ladder filter topologies.

The search for explicit formulas for ladder filter element values has extended over four decades. Bennett [7] provided the remarkedly simple formula for equally terminated Butterworth filters in 1932. Norton [39] provided the formulas for the open circuited Butterworth case in 1937. Belevitch [5] published formulas for the doubly terminated Chebyshev case in 1952. Orchard [40] gathered together this previous work and provided the missing fourth formula set for the open circuited Chebyshev case in 1953. Green [28] went on to generalize these formulas for any ratio of resistive terminations in 1954. These formulas had been numerically tested, but never formally proved. Doyle [22] provided a "hammer and tongs" brute force proof for the Butterworth case with arbitrary terminations. Meanwhile, in Japan, Takahasi[51], had made an ingenious proof of the formulas for the arbitrarily terminated Chebyshev case and extended it to the Butterworth case by a limiting process. Takahasi published his independent work in 1951 (in Japanese), but it was not discovered by the rest of the world until 1957. Weinberg and Slepian [54] discuss Takahasi's results. Takahasi's results can also be found in the back of Weinberg's book [53].

The recursion relations given by Eqs. (2-3.1) through (2-3.16) are adapted from Takahasi. If the filter order is odd, the filter can be terminated by 1 ohm at one port and by any resistance 1 ohm or larger at the other port. By using the dual topology, the termination resistance can be any resistance 1 ohm or smaller (including 0 ohms). If the filter is an even ordered Chebyshev design, then the first port termination resistance must be larger than 1 ohm. The minimum value of this termination resistance is given by Eq. (2-3.18).

Takahasi's recursion relationships:

$$
\begin{align*}
& g_{r+1}= \frac{A \cdot s_{r}-\frac{1}{2} \cdot s_{r}+\frac{1}{2}}{} \tag{2-3.1}\\
& g_{r}\left(\xi^{2}+\eta^{2}-\xi \eta c_{r}+s_{r}^{2}\right) \\
& r=1,2, \ldots, n-1
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{g}_{1}=\frac{\sqrt{\mathrm{A}} \cdot \mathrm{~s}_{\frac{1}{2}}}{\mathrm{R}_{\mathrm{T}}(\xi-\eta)} \tag{2-3.2}\\
& \mathrm{s}_{\mathrm{q}}=2 \cdot \sin \left(\frac{\pi \cdot \mathrm{q}}{\mathrm{n}}\right) \tag{2-3.3}\\
& \mathrm{c}_{\mathrm{q}}=2 \cdot \cos \left(\frac{\pi \cdot \mathrm{q}}{\mathfrak{n}}\right) \tag{2-3.4}
\end{align*}
$$

For normalized lowpass Butterworth coefficients:

$$
\begin{align*}
& A=1 \tag{2-3.5}\\
& \xi=1 \tag{2-3.6}\\
& \eta=\left(\frac{R_{T}-1}{R_{T}+1}\right)^{1 / n} \tag{2-3.7}\\
& \mathbf{s}_{\mathbf{r}}{ }^{2} \equiv 0 \tag{2-3.8}
\end{align*}
$$

For normalized lowpass Chebyshev coefficients:

$$
\begin{align*}
& A=4 \tag{2-3.9}\\
& \xi=F(1) \tag{2-3.10}\\
& n=F\left(1-\frac{4 \cdot v R_{T}}{\left(1+R_{T}\right)^{2}}\right) \tag{2-3.11}\\
& \mathrm{v}=\left\{\begin{array}{cc}
1+\xi^{2}, & \mathrm{n} \text { even } \\
1 & , \mathrm{n} \text { odd }
\end{array}\right\} \tag{2-3.12}\\
& F(x)=u-\frac{1}{u} \tag{2-3.13}\\
& u=\left(\sqrt{\frac{x}{\varepsilon^{2}}}+\sqrt{\frac{x}{\varepsilon^{2}}+1}\right)^{1 / n} \tag{2-3.14}\\
& y=10^{\varepsilon} \mathrm{dB} / 20 \tag{2-3.15}\\
& \varepsilon^{2}=y^{2}-1 \tag{2-3.16}\\
& \omega_{-3 d B}=\cosh \left(\frac{1}{n} \cosh ^{-1} \frac{1}{\varepsilon}\right) \tag{2-3.17}\\
& \left.\mathrm{R}_{\mathrm{L}}\right|_{\mathrm{min}} ^{\min }=\left(\frac{\sqrt{\frac{y+1}{y-1}}-1}{\sqrt{\frac{y+1}{y-1}}+1}\right)^{2} \tag{2-3.18}
\end{align*}
$$

When the termination ratio is neither $0, \infty$, or as close as possible to 1 , there are more than one possible set of ladder element values for the same filtering function. These alternate sets are synthesized by realizing the reflection zeros in the RHP, or RHP-LHP alternating rather than in the LHP. The closed form formulas realize the LHP reflection zero case. This realization generally results in a ladder filter with minimum sensitivity to component value changes. For a more comprehensive discussion of reflection zeros and order of realization, see Weinberg [53], chapter 13.

The program is set up to calculate the minimum termination resistance, and if the value loaded by the user is less than the minimum, the minimum value replaces the user loaded value.

When the termination resistance is allowed to approach infinity (or 0 using the dual topology), the filter only has one termination resistor, and is called "singly terminated." These singly terminated filters are used where it is inconvenient, or wasteful of power, to use the doubly terminated filter. Because the loaded $Q^{\prime} s$ of the resonant circuits become higher as the unloaded end of the filter is approached, the singly terminated design is more difficult to align.

Often, the LC filter is used as a basis for an active filter design such as Szentirmai's leapfrog topology [48], Bruton's frequency dependent negative resistor (FDNR) approach [10], or Orchard and Sheahans' type 11 active simulation [42]. Using the doubly terminated LC topologies for the active filter basis, will also mean that the active filters will be less critical toward alignment.

${ }_{23} \quad$ User Instructions

STEP	INSTRUCTIONS	INPUT DATAUNITS	KEYS	OUTTPUT DATAUNITS
6	For Ohebyshev coefficients that define a	$\epsilon{ }^{\text {d }}$ B	E	$\omega_{-\epsilon} \mathrm{dB}$
	filter that is 3 dB down at $\omega=1$			space
	The minimum source resistance comment			R_{T}
	for even ordered Chebyshev filters			space
	in step 5 also applies here.			g_{1}
				g_{2}
				:
				g_{n}
				space
				$\mathrm{R}_{\mathrm{L}} \quad 1$
7	Go back and repeat any step.			
	The last calculated coefficients will			
	be in storage for use by other programs			
	in this section.			
	Notes on termination resistance:			
	To enable the program to output coefficients			
	for the singly terminated case, load 105			
	ohms for $\mathrm{R}_{\text {T }}$ if Chebyshev response is going			
	to be selected, or load 10^{9} ohms if			
	Butterworth response is going to be selected.			
	Either one of these values is a reasonable			
	approximation to infinity when compared to			
	one ohm. The maximum termination resistance			
	In the Chebyshev case is limited to 105 ohms			
	because of a small difference between big			
	numbers problem. 10^{5} ohms is a compromise			
	between an approximation to infinity and			
	the number of significant digits in the			
	coefficients. With 105 ohms, the answers			
	are significant to five places.			

Example 2-3.1

Find the normalized lowpass coefficients for a 4 th order, $\frac{1}{2}$ dB ripple Chebyshev filter that is doubly terminated, and has the minimum termination resistance. The filter response should be 3 dB down at the passband edge ($\omega=1$) relative to the response at dc.

HP-97 printout
4. ESE load filter order
i. ESEE load termination resistance desired

$$
\text { Tob enter passband ripple in } d B \text { and calculate }
$$ Chebyshev coefficients

$914.825-63$ wh $\omega_{-\varepsilon d B}^{\omega}$ (output)
1.964eting kgt minimum termination resistance allowed at port 1

2. 5eb
$1.3635+60 \quad * * g_{3}$
$1.82501+6 \mathrm{~b}$ wa g_{4}

1. Ghache port 2 termination resistance

Figure 2-3.2 One topology for normalized lowpass filter (port ordering reversed).

Example 2－3．2

Find the normalized lowpass coefficients for a 10th order Butter－ worth filter that is singly terminated．

HP－97 printout

$\text { i. } 16$	EEE e良立 $65 E C$	load filter order load termination resistance（use 10^{5} for Chebyshev） calculate Butterworth coefficients
	－	termination resistance at port 1
1．56434 0^{6}	＊＊＊	g_{1}
2． 5.53 six	\cdots	g_{2}
1．Fi＜ited	1．4．	g_{3}
－5Etes＋em	＋8＊	g_{4}
	＊	g5
1．	＊ 4	${ }^{8} 6$
1．	－＊＊	g_{7}
「ご気気	＊＊＊	g8
$485.575-15$	46＊	g_{9}
1こと，＋54－63	＊＊＊	910
	4＊＊	termination resistance at port 2

Figure 2－3．3 One form for normalized lowpass filter （dual topology used）．

Program Listing

PROGRAM 2.4 NORMALIZED LOWPASS TO BANDSTOP, LOWPASS, OR HIGHPASS LC LADDER TRANSFORMATIONS.

Program Description and Equations Used

This program transforms the normalized lowpass coefficients (1 ohm , 1 radian/sec) into the frequency and impedance scaled lowpass, highpass, or bandstop topologies. The normalized lowpass coefficients are obtained from register storage and either must be loaded by the user (for other than Butterworth and Chebyshev filters), or are generated and stored by Program 2-3 for the Butterworth and Chebyshev approximations.

Every linear, passive, lumped, time-invariant, bilateral electrical network has a dual topology. LC filters are a member of this class of networks; hence, two electrically equivalent networks can be formed from the transformation or scaling of the normalized lowpass structure. These two forms are designated as form 1 , and form 2 in the program. Having two forms available provides the designer some relief from awkward component values, or the opportunity to choose the minimum inductor topology.

The program is separated into three parts which share common subroutines. These sections are 1) de-normalization parameter input (bandwidth, termination resistance level, and center frequency), 2) bandstop denormalization and transformation, and 3) lowpass and highpass denormalization and transformation. In analytical form, these transformations are discussed next.

Lowpass filters: No transformation is necessary for converting the normalized lowpass to the un-normalized lowpass filters. The normalized lowpass values need only be scaled to the desired operating impedance level and cutoff frequency. The object of the scaling procedure is to end up with filter elements that have the same impedance ratios to the termination resistance at the cutoff frequency as the normalized filter has at 1 radian/second to 1 ohm. The mechanics of this scaling procedure are:

$$
\begin{align*}
& \mathrm{L}, \text { scaled }=(\mathrm{L}, \text { normalized }) \cdot(\mathrm{R} /(2 \pi \cdot \mathrm{BW})) \tag{2-4.1}\\
& \mathrm{C}, \text { scaled }=(\mathrm{C}, \text { normalized }) /(2 \pi \cdot \mathrm{BW} \cdot \mathrm{R}) \tag{2-4.2}
\end{align*}
$$

The normalized L's and C's are equal to the g's from Program 2-3, and $B W$ and R represent the cutoff frequency in Hz and the load resistance in ohms respectively. Figure 2-4.1 shows the two forms of the lowpass filter; either port can be designated as input, i.e., the input voltage source can go in series with either termination resistor.

FORM 1

FORM 2
Figure 2-4.1 Two forms of lowpass filter.

Highpass filters: The highpass transformation is accomplished by replacing s by $1 / s$. Since sinusoidal frequencies are of primary interest, s may be replaced by $j \omega$, or $1 / s$ by $-j / \omega_{0}$. Conceptually, this operation is equivalent to replacing each normalized lowpass capacitor with an inductor and vice-versa. The normalized values of the highpass elements are the reciprocals of the lowpass values, i.e., the g's calculated in Program 2-3 become $1 / \mathrm{g}$'s when converted to normalized highpass coefficients. Fig. 2-4.2 shows the two forms of the highpass filter, and the element values are calculated using Eqs. (2-4.1) and (2-4.2) with the normalized highpass coefficients. Either port can be designated as the input as in the lowpass case (or in any other passive LC case).

Figure 2-4.2 Two forms of highpass filter.

The highpass transformation may also be applied analytically; for example, the transformation is applied to the Butterworth normalized lowpass magnitude response equation (Eq. (2-4.3)) to convert it to the normalized highpass form (Eq. (2-4.4)).

$$
\begin{align*}
& |A(\omega)|_{\text {LP }}=\frac{1}{\sqrt{1+\omega^{2 n}}} \\
& |A(\omega)|_{H P}=\frac{\omega^{n}}{\sqrt{1+\omega^{2} n}} \tag{2-4.4}
\end{align*}
$$

For more information, see Weinberg [53]. Blinchikoff and Zverev [8] also has an excellent discussion of transformations both conventional as used herein, and unconventional to preserve LP transient characteristics.

Bandpass filters: The bandpass filter is a combination of a highpass and a lowpass filter. The loaded Q, Q_{L}, of the filter is a measure of the separation between the highpass and lowpass portions. To accomplish the transformation from normalized lowpass to un-normalized bandpass, s in the normalized lowpass expression is replaced by the function of s shown in Eq. (2-4.5).

$$
\begin{align*}
& s \Rightarrow Q_{L}\left\{\frac{s}{\omega_{o}}+\frac{\omega_{0}}{s}\right\} \tag{2-4.5}\\
& Q_{L}=\frac{f_{O}}{B W} \tag{2-4.6}
\end{align*}
$$

Where f_{0} and $B W$ are the center frequency and bandwidth in hertz.

Conceptually, the lowpass elements are replaced with new elements that exhibit the same impedance behavior at the bandpass filter center frequency as did the original elements at dc. Ideal inductors have zero reactance at dc , and are replaced with series resonant tank circuits which resonate at the bandpass filter center frequency, f_{0}. Ideal (lossless) series tank circuits have zero reactance at resonance. Likewise, each lowpass capacitor is replaced with a parallel resonant tank circuit which resonates at the bandpass filter center frequency. When the loaded Q is greater than 10 or so, the bandpass filter is called narrowband. In this case, other tank circuits can be synthesized to approximate the impedance behavior of the series and parallel resonant tank circuits for frequencies within the vicinity of the passband. Bandpass filters and narrowband transformations are discussed in Programs 2-5, 2-6, and 2-11.

Bandstop filters: The bandstop trarisformation is the reciprocal of the bandpass transformation, and is analogous to the low-pass-highpass transformation. Highpass filters are actually bandstop filters which have zero center frequency. To accomplish the bandstop transformation, s is replaced by:

$$
\begin{equation*}
s \Rightarrow \frac{1}{Q_{L}\left\{\frac{s}{\omega_{0}}+\frac{\omega_{0}}{s}\right\}} \tag{2-4.7}
\end{equation*}
$$

Conceptually the bandstop transformation is accomplished by designing a highpass filter whose cutoff frequency equals the bandwidth of the desired bandstop filter. Each shunt inductor in the highpass filter is series resonated with a capacitor at the desired center frequency of the filter. Likewise, each series capacitor is parallel resonated with an inductor at the desired filter center frequency.

Figure 2-4.1 Bandstop filter parameters.

If $g_{1}, g_{2}, \ldots, g_{n}$ are the normalized lowpass coefficients and R_{T} is the normalized termination resistance, then one form of the bandstop filter is shown by Fig. 2-4.2 .

Figure 2-4.2 Bandstop filter form 1 (program output heading " 21 "), odd order filter shown; even order filter lacks last series tank circuit.

The other form of this filter is the dual of the first:

Figure 2-4.3 Bandstop form 2 (program output heading " 22 "), odd order filter shown; even order filter lacks last parallel tank circuit.

The program calculates both forms of these bandstop filters. Filter physical realizability. The preceding transformations are used by this program and result in LC network schematics that will produce the desired response. Not all LC networks that can be drawn on paper as schematics are physically realizable. For example, a network branch consisting of a $1 \mu F$ capacitor in series with a 10 nh inductor would be nearly impossible to realize since the self inductance of the capacitor is much larger than the total required inductance. Table 2-4.1 is a reproduction of Table 7.1 from White [56], and shows the degree of physical realizability of lowpass and highpass filters. The physical realizability of a filter is assigned one of four possible scores. These scores are defined as follows:

Readily realizable (R):

Practical (P):

$$
\begin{aligned}
1 \mu \mathrm{~h} & \leq \mathrm{L} \leq 1 \mathrm{~h} \\
5 \mathrm{pF} & \leq \mathrm{C} \leq 1 \mu \mathrm{~F} \\
200 \mathrm{nh} & \leq \mathrm{L} \leq 10 \mathrm{~h} \\
2 \mathrm{pF} & \leq \mathrm{C} \leq 10 \mu \mathrm{~F}
\end{aligned}
$$

Marginally practical (M):

$$
\begin{aligned}
& 50 \mathrm{nh} \leq \mathrm{L} \leq 100 \mathrm{~h} \\
& 0.5 \mathrm{pF} \leq \mathrm{C} \leq 500 \mu \mathrm{~F}
\end{aligned}
$$

Impractical (I): All element values that lie outside the marginal range, i.e.,

$$
\begin{array}{ll}
L<50 & n h \\
L>100 & h \\
C<0.5 & p F \\
C>500 & \mu F
\end{array}
$$

The table headings are meant to indicate ranges of filter cutoff frequency and termination impedance level. These ranges are defined as follows:

Frequency,

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{o}}=10 \mathrm{~Hz} \text { implies: } 3 \mathrm{~Hz} \leq \mathrm{f}_{\mathrm{o}}<30 \mathrm{~Hz} \\
& \mathrm{f}_{\mathrm{o}}=100 \mathrm{~Hz} \text { implies: } 30 \mathrm{~Hz} \leq \mathrm{f}_{\mathrm{o}}<300 \mathrm{~Hz} \\
& \mathrm{f}_{\mathrm{o}}=1 \mathrm{kHz} \text { implies: } 300 \mathrm{~Hz} \leq \mathrm{f}_{\mathrm{o}}<3 \mathrm{kHz} \\
& \mathrm{f}_{\mathrm{o}}=10 \mathrm{kHz} \text { implies: } 3 \mathrm{kHz} \leq \mathrm{f}_{\mathrm{o}}<30 \mathrm{kHz} \\
& \mathrm{f}_{\mathrm{o}}=100 \mathrm{kHz} \text { implies: } 30 \mathrm{kHz} \leq \mathrm{f}_{\mathrm{o}}<300 \mathrm{kHz} \\
& \mathrm{f}_{\mathrm{o}}=1 \mathrm{MHz} \text { implies: } 300 \mathrm{kHz} \leq \mathrm{f}_{\mathrm{o}}<3 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{o}}=10 \mathrm{MHz} \text { implies: } 3 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{o}}<30 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{o}}=100 \mathrm{MHz} \text { implies: } 30 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{o}}<300 \mathrm{MHz}
\end{aligned}
$$

At frequencies above 300 MHz , lumped element filters are generally replaced with transmission line type filters.

Impedance Level (source and load resistances equal)
$R=3$ ohms implies: $1 \leq R<10$ (power filters)
$R=50$ ohms implies: $10 \leq R<150$
$R=500$ ohms implies: $150 \leq R<2.5 k$
$\mathrm{R}=10 \mathrm{k}$ ohms implies: $2.5 \mathrm{k} \leq \mathrm{R}<50 \mathrm{k}$

Table 2-4.1 Physical realizability of lowpass and highpass filters.

R in inms	Cutoff Frequency, f_{c}								
	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	10 MHz	100 MHz	
3	I	M	M	P	R	P	M	I	
50	M	M	M	R	R	R	R	M	
500	M	P	R	R	R	R	R	R	
10 k	I	M	P	R	R	R	P	I	

Courtesy, Don White Consultants, Inc.

Bandstop filter physical realizability must include one additional parameter, the loaded Q of the filter, Q_{L}. As Q_{L} becomes higher (filter
becomes more narrow) the separation in element value between the series tank elements and the parallel tank elements increases as Q_{L}. Table $2-4.2$ is adapted from Table 7.2 in White and assigns realizability scores to bandstop (and bandpass) filters. The loaded Q ranges are defined as follows:

Loaded $Q\left(Q_{L}\right)$, for bandpass and bandstop,

$$
\begin{aligned}
& Q_{L}=5 \text { imp1ies: } 3 \leq Q_{L}<10 \\
& Q_{L}=15 \text { imp1ies: } 10 \leq Q_{L}<30 \\
& Q_{L}=50 \text { imp11es: } 30 \leq Q_{L} \leq 100
\end{aligned}
$$

Table 2-4.2 Physical realizability of bandstop filters.

Filfor Protatype	$\mathbf{f o}_{0}=1 \mathrm{kHz}$									$\mathrm{f}_{0}=10 \mathrm{kHz}$								
	QL: 3			$Q_{L}=15$			$Q_{L}=50$			QL $=5$			$Q_{L}=15$			$Q_{L}=50$		
Type	50	500	10K															
$\begin{aligned} & 1 s t \\ & 2 n d \end{aligned}$	1	P	P	1	1	1	1	1	1	M M	R \mathbf{R}	P	1	M M	P	1	M M	P
Filler Protolype	$\mathrm{f}_{0}=100 \mathrm{kHz}$									$f_{0}=1 \mathrm{MHz}$								
	$Q_{L}=5$			$Q_{L}=15$			$Q_{L}=50$			$Q_{L}=5$			$Q_{L}=15$			$Q_{L}=50$		
Type	50	500	10K															
$\begin{aligned} & \text { 1st } \\ & \text { 2nd } \end{aligned}$	\mathbf{P} \mathbf{P}	$\begin{aligned} & \mathbf{R} \\ & \mathbf{R} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{R} \\ & \mathbf{R} \\ & \hline \end{aligned}$	P	$\begin{aligned} & \mathbf{P} \\ & \mathbf{P} \end{aligned}$	I	$\begin{aligned} & M \\ & M \end{aligned}$	$\begin{aligned} & M \\ & M \end{aligned}$	I	\mathbf{P} \mathbf{P}	$\begin{aligned} & \mathbf{R} \\ & \mathbf{R} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{P} \\ & \hline \end{aligned}$	\mathbf{P} \mathbf{P}	$\begin{aligned} & \mathbf{P} \\ & \mathbf{P} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	M M	$\begin{aligned} & \mathbf{P} \\ & \mathbf{M} \end{aligned}$	1
Filter Prototype	$\mathrm{f}_{0}=10 \mathrm{MHz}$									$f_{0}=100 \mathrm{MHz}$								
	$Q_{L}=5$			$Q_{L}=15$			$Q_{L}=50$			$Q_{L}=5$			$a_{L}=15$			$Q_{L}=50$		
Type	50	500	10K	50	500	10K	50	500°	10K	50	500	10K	50	500	10K	50	500	10K
$15 t$ 2nd	M M	P	M M	1	P	1	1	1	1	1	1	1	1	1	1	1	1	1

Courtasy Don White Consultants Inc.

As the loaded Q increases, the element value spread can become unmanageable. This problem can be reduced by using narrowband transformations which are used in Programs 2-5 and 2-6 for the bandpass case. Narrowband transformation schematics for the bandstop case may be found on p. 217 of the ITT handbook [44]. The concept of coupling and narrowband transformations was introduced by Milton Dishal [21], and expanded by Seymour Cohn [16] for the bandpass case.

${ }_{24} \quad$ User Instructions

Example 2-4.1 Singly terminated lowpass filter

A maximally flat (Butterworth) lowpass filter must pass a 1 kHz signal with 1 dB or less attenuation relative to the filter response at dc, and must reject a 12 kHz signal by at least 75 dB . Program 2-1 is used to predict the required filter order, and -3 dB cutoff frequency (Butterworth cutoff frequency) with $A p_{d B}=1 \mathrm{~dB}, A s_{d B}=75 \mathrm{~dB}$, and $\lambda=12$. A filter order of 3.75 is calculated, which is rounded to the next largest integer, 4. Re-entering the program with $A s_{d B}=3$ and $n=4$, yields $\lambda=1.183301$, which means the 3 dB cutoff frequency is (1000)(1.183301) $=1183.301 \mathrm{~Hz}$.

Next, Program 2-3 is loaded to obtain the normalized lowpass coefficients for a singly terminated 4 th order Butterworth filter. The coefficients are automatically stored for use by this program.

Load this program, load the above cutoff frequency, and select an operating impedance level from Table 2-4.1 An impedance level of 500 ohms will result in a readily realizable filter. Both the type 1 and type 2 topologies can be calculated and the most attractive one selected. The HP-97 printout for the above operations is shown on the next page.

Programs 3-1 and 3-2 can be used to design the inductors needed for this design. If an active filter approach can be considered, see Program 2-9 for a lowpass active filter design.

HP-97 printout for Example 2-4.1, lowpass filter design.
Load Program 2-1 to calculate required filter order:

```
                                    5sm, select Butterworth
    1.00 ESEA load APdB
    TE.EE GSEE load AsdB
    12.00 GSEL load \lambda, and calculate n, the filter order
    3.75 *** n (output)
    3.gu GSEE load new Asab
    4.g0 ESEC load integral filter order, n, and calculate \lambda
i.te3%e1 *w: \lambda (output)
```

Load Program 2-3 to generate and store the normalized lowpass coefe.

$\begin{array}{r} 4 \\ 1 .+65 \end{array}$	550_{n} 6506	load filter order
	$\begin{aligned} & 650 \mathrm{E} \\ & 6 \mathrm{SEE} \end{aligned}$	load termination resistance deair
1.00068+65	***	R_{T} (normalized)
1.53073+60	***	g_{1}
$1.57716+60$	***	g_{2} lowpess normalized coefficients
$1.06535+66$	***	$\left.\mathrm{g}_{3}\right\}$ lowpass normalized coofficients
385.683-63	W***	84
	***	R (normalized)

Load this program (Program 2-4) to obtain un-normalized filter.

$560.6+60$ ** R

GEE calculate type 2 lowpass filter (inductor first)
5. lowpass type 2 output code
501. bi-69 *** R_{g} (short circuit)

$500.6+60 \quad$ *** $\quad R$

Example 2－4．2 Doubly terrinated highpass filter
A highpass filter is required to keep the signal from a local CB transmitter from causing cross modulation interference in the tuner of a TV set．The filter will be placed in series with the 300 ohm bal－ anced line from the antema to the TV set，hence，the filter will be designed for a 300 ohm terminating impedance level．The filter must pass the TV spectrum which starts at 54 MHz ，but must reject the CB radio band at 27 MHz ．One dB of ripple is allowed across the TV spec－ trum，and at least 60 dB rejection is needed at the CB band frequen－ cies．Because of the allowed ripple，a Chebyshev filter will be used． Program 2－1 calculates a minimum filter order of 7 as shown below along with the rest of the HP－97 printout for this design：

Load Program 2－1 to obtain minimum filter order required：

Ees	select Chebyshev
． 0 家	load APdB
Ex．ce bes	load As ${ }_{\text {dB }}$
Cat＝ee	load λ and calculate filter order，n
c． 5 ¢ 4 ＊	n（output）
C．0e	load integral filter order，n
1．88＊＊＊	λ where filter is 60 dB down（ $54 / 1.78=30.3$ ）
\therefore at sex	load λ and calculate $\mathrm{As}_{\mathrm{dB}}$
－0．15＊＊＊	$\mathrm{As}_{\mathrm{dB}}$ at 27 MHz

Load Program 2－3 to generate and store the normalized lowass coefficients：

	ERE GEtE	load filter order load termination resistance ratio
		load Chebyshev passband ripple in dB and start
2．01－cteby	\％	normalized－3 dB frequency（output）
－coveciab	s．．＊	R_{Γ}（normalized）
⑩650－6e	＊．${ }^{*}$	g_{1}
I，M15：－¢	＊．．．	g_{2}
	＊＊	g_{3}
1．205c－60	＊．${ }^{\text {H }}$	g_{4}（normalized lowpass coefficients
3．6504－20	＊＊＊	g_{5}
1．11気的	＊+1	g_{6}
2.1665000	＊＊＊ 8	g_{7}
1．00006＋60	＊ 1 R	R（normallzed）

This highpass example is for a balanced structure filter, and the program output is for an urbalanced structure (one side common). To convert the unbalanced structure to the balanced structure, capacitors are placed in each side of the filter, and their equivalent impedance is onehalf the unbalanced value (twice the capacity).

Load this program, Program 2-4, to obtain the un-normalized filter:

Programs 3-5 and 3-6 can aid in the aircore inductor designs needed here.

Example 2-4.3 Bandstop filter
Consider implementing the filter cited in the previous example as a bandstop filter rather than as a highpass filter. The stopband required is from 26 MHz to 27 MHz . The center frequency of a bandstop (and bandpass) filter is the geometric mean of any two equal attenuation frequencies (this relationship does not hold for narrowband bandpass transformations for frequencies outside the passband). The center frequency of this bandstop filter is then 26.4953 MHz . If the upper -1 dB point is 54 MHz , then the lower -1 dB point is $(26.4953 \mathrm{MHz})^{2} /(54 \mathrm{MHz})=13 \mathrm{MHz}$. The normalized frequency multiplier, λ, is the ratio between the passband and the stopband, or $\lambda=(54-13) /(27-26)=41$. From Program $2-1$, the filter order that meets these requirements is 2 . Even ordered Chebyshev filters do not have equal termination resistance levels, and this filter is to be placed in a 300 ohm system (equally terminated). To satisfy all requirements including equal termination, a third order bandstop filter will be designed. The HP-97 printout for this filter design follows.

Load Program 2-1 to calculate the minimum filter order required:

	ESk	select Chebyshev
i. 6 E	GSEH	load ApdB
Eti. 6 E	SEEE	load AsdB
41.60	BEL	load λ and calculate filter order, n
1. 86	***	minimum n to meet requirements (use
$\overline{3} \cdot 6$	6 EE	load n desired and calculate λ for $A s_{d B}=60 \mathrm{~dB}$
$\overline{7} 92$	**	λ
41.69	$\left.\begin{array}{c}i n \\ \lambda\end{array}\right\}$	form $1 / \lambda$
5.18	* ${ }^{\text {W }}$ *	stopband bandwidth (MHz)
26.495	ESS	entèr center frequency (MHz) and calculate:
29.21	米*	upper stopband edge (MHz)
24.65	***	lower stopband edge (MHz)

HP-67 suggested program changes. A print or R / S routine has not been provided, although register 9 and label " e " could have been used for this purpose. The reason for this omission is to preserve the heading format. Any program statements placed between a numeric entry and a print statement cause the printed format to be in the set status of the program; however, by placing the print statement directly after the numeric entry (see lines 20 through 22), " 21 " is printed without trailing zeros.

On the HP-67, the "print" statement causes the program halt for 5 seconds and a flashing decimal point. This situation slows program execution and may not be desirable. The HP-67 user may wish to have the program stop at the data output points. To cause the program to stop at these points, change the program as follows: Delete steps 019 - 022, 026 - 029, 095-098, 104-107, 117-120, and 126-129. Change the "print" statements to "R/S" statements at the following line numbers: 083, $088,092,144,157,166$, and 171 . To restart program execution after a program halt, execute a "R/S" from the keyboard.

Remember, when deleting steps from a program, always work from the back of the program forward. By observing this convention, the line numbers of steps not yet deleted will remain unaltered.

PROGRAM 2-5 NORMALIZED LOWPASS TO BANDPASS FILTER TRANSFORMATIONS, TYPES 1, 2, 6, AND 7.

Program Description and Equations Used

This program converts normalized lompass filter element values to a set of four bandpass topologies [16], [21], [56]. The four topologies are shown in $\mathrm{Flg} .2-5.1$, and the parameter A_{ij} is defined by Eq . (2-5.1). Types 1 and 2 are exact transformations and will transform the lowpass response independent of the loaded filter Q (Eq. (2-4.7)). Types 6 and 7 of this program, and types 8, and 9 of Program 2-6 are narrowband approximations, and only provide accurate transformation results when the loaded Q is greater than 5, and preferably greater than 10 .

Figure 2-5.1 Bandpass filter topologies for types 1, 2, 6, \& 7.

$$
\begin{equation*}
A_{i j}=\left(g_{i} \cdot g_{j}\right)^{-\frac{1}{2}} \tag{2-5.1}
\end{equation*}
$$

Figure 2-5.2 is a reproduction of Table 7.2 in White [56] and is intended as a guide to the best suited filter topology for a particular application. The physical realizability of a filter topology is assigned one of four possible scores based upon element values. These scores are defined as follows:

Readily realizable (R):
1 珻 $<\mathrm{L}<1 \mathrm{~h}$
$5 \mathrm{pF} \leq \mathrm{C} \leq 1 \mu \mathrm{~F}$
Practical (P):
$0.2 \mu \mathrm{~h} \leq \mathrm{L} \leq 10 \mathrm{~h}$
2. $\mathrm{pF} \leq \mathrm{C} \leq 10 \mu \mathrm{~F}$

Marginally practical (M):
$50 \mathrm{nh} \leq \mathrm{L} \leq 100 \mathrm{~h}$
$0.5 \mathrm{pF} \leq \mathrm{C} \leq 500 \mu \mathrm{~F}$
Impractical (I):
All element values that lie outside the range of marginal i.e.,
$\mathrm{L}<50 \mathrm{nh}$
L > 100 h
$\mathrm{C}<.5 \mathrm{pF}$
C > $500 \mu \mathrm{~F}$
The cable headings are meant to indicate ranges of loaded Q, filter center frequency, and termination resistance level. These ranges are:

Frequency;

At frequencies above 300 MHz , lumped element filters are generaliy replaced with transulssion line type filters.

Loaded $Q\left(Q_{\mathrm{L}}\right)$, for bandpass and bandstop,

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{L}}=5 \text { implies: } 3 \leq \mathrm{Q}_{\mathrm{L}}<10 \\
& \mathrm{Q}_{\mathrm{L}}=15 \text { implies: } 10 \leq \mathrm{Q}_{\mathrm{L}}<30 \\
& \mathrm{Q}_{\mathrm{L}}=50 \text { implies: } 30 \leq \mathrm{Q}_{\mathrm{L}} \leq 100
\end{aligned}
$$

Impedance Level (source and load resistances equal)
$\mathrm{R}=3$ ohms implies: $1 \leq \mathrm{R}<10$ (power filters)
$R=50$ ohms impltes: $10 \leq R<150$
$\mathrm{R}=500$ ohms implies: $150 \leq \mathrm{R}<2.5 \mathrm{k}$
$R=10 k$ ohms implies: $2.5 k \leq R<50 k$

Fig. 2-5.2 Physical realizability of bandpass filters.
Courtesy Don White Consultants Inc.

To use the routines for types 6 through 9, the filter must have termination resistances as close to unity as possible. To achieve this result, a desired termination resistance level of 1.0 should be loaded into Program 2-3.

Of the filter types presented both in this program, and the accompanying program (types $1,2,6,7,8,9,10$, and 11) only types 1,2 , 10 , and 11 are exact transformations of the lowpass characteristic. A11 the remaining filter types are narrowband approximations, i.e., they will faithfully transform the lowpass characteristics within the passband and within a few octaves of the stopband. Types 6, 7, 8, and 9 do not have equal numbers of transmission zeros at both zero frequency and at infinite frequency. The result of this imbalance is to skew the filter response away from the frequency where the extra zeros exist. Figure 2-5.3 shows this occurrence.

Figure 2-5.3 Bandpass filter response skewing due to extra transmission zeros at infinity.

One should not choose types $1,2,10$, or 11 automatically. Types 1 and 2 may be difficult to realize in a narrowband application, and types 10 and 11 (also types 6 and 9) contain redundant inductors. Depending upon the frequency range and element values, these redundant inductors can be burdensome. As a guide, filters operating below 1 kHz may best be realized with an active filter (this subject is covered by other programs in this section); between 1 kHz and 100 kHz , the minimum inductor LC design should be considered and compared with active approaches; above 1 MHz the simplest LC topology should be sought to ease the tuning problem.

${ }_{25} \quad$ User Instructions

STEP	instructions	INPUT DATA/UNITS	KEYS	OUTPUT DATAIUNITS
1	Load both sides of program oard			
2	Load center frequonoy in Hz	P_{0}	A	ω_{0}
3	Load bandwidth in Hz	BW	B	θ
4	Load termination resistance in ohms	R	[0]	R
5	Load filtor type number and start	typo	E	R
				tank 0
				tank L
				cplg elt*
				tank 0
				tank L
				cplg olt*
				tank 0
				tank 4
	*The ooupling elomont (L for trpe 6 or 0 for			:
	type 7) does not oxist for types 2 or 2 .			R_{T}
6	Por anothor ease goto stopa 2 through 5 as			
	applioablo			
\square				

Example 2-5.1 Type 6 filter

A maximally flat passband (Butterworth) bandpass filter is to pass a 500 Hz band of frequencies centered around 10 kHz . In a bandpass (or bandstop) filter, the center frequency is the geometric mean of the upper and lower bandedge frequencies, i.e., $f_{o}=(9750 \cdot 10250)^{\frac{1}{2}}$, or $f_{o}=9996.87 \mathrm{~Hz}$. The filter should reject by at least 30 dB those frequencies removed from the center frequency by more than 500 Hz . The required filter order is obtained from Program 2-1. Using this program, a minimum filter order of 5 is calculated given $A s_{d B}=3, A p_{d B}=30$, and $\lambda=1000 / 500=2$. Program $2-3$ is used to obtain the Butterworth normalized coefficients for use by this program.

The proper bandpass topology is selected from the table in Fig. 2-5.2 under the headings: $f_{o}=10 \mathrm{kHz}, \mathrm{Q}_{\mathrm{L}}=10000 / 500=20$ (use $\mathrm{Q}_{\mathrm{L}}=$ 15 column), and $R=50$ to find that a type 6 is readily realizable, therefore a type 6 filter will be designed. The HP-97 printout for the above operations is shown below.

Load Program 2-1 to calculate minimum filter order:

- 8 E	select Butterworth
5 Eb ExE	load ApdB
36. 26 ExE	load As ${ }_{\text {dB }}$
二.Ex ESEL	load λ and calculate n
4.35 **	filter. order, n (output)
5.90 -5e	load integral n and calculate λ
	λ for given $A P_{d B}$ and $A s_{d B}$
E. पe : 5 EE	load λ and calculate $\mathrm{As}_{\mathrm{dB}}$
	${ }^{\text {s }}{ }_{\mathrm{dB}}$

Load Program 2-3 to calculate normalized LP Butterworth coefs:
E. EEF load filter order
\therefore. $=5 E E$ load desired termination resistance ratio EEE. calculate Butterworth coefficients

E15.63+-65	W.4.4	g1	normalized lowpass	coefficients
1.61865+60		92		
$2.66040+60$	W\% ${ }^{\text {\% }}$	83		
2.61605+69	***	g_{4}		
E5.65-62	W**	g5		
1. $06066+60$	* ${ }^{*}$	R (ormalized port 2 ter	mination resi

Example 2-5.1, continued:
Load Program 2-5 (this program) and calculate type 6 elements.

Figure 2-5.4 Type 6 bandpass filter schematic.

Type 6 tuning technique.* After the filter is designed, the inductors fabricated and adjusted, the capacitors obtained, and the filter constructed, the filter must be tuned. For series resonant tanks, such as in this filter and types 8 and 10 , tuning is accomplished by decoupling individual tank circuits using open circuits.

Assume the inductors are wound on ferrite pot cores, and are the adjustable elements. Referring to Fig. 2-5.5, to tune L_{1} temporarily open the circuit at " B " and tune L for series resonance of the L_{1}, L_{12}, C circuit at the center frequency of the filter, 9996.87 Hz in this case.

To tme L_{2}, L_{12}, L_{23}, and C, re-establish the connection at " $B, "$ and temporarily open the circuit at points " A " and "C." Tune L_{2} for series resonance at the center frequency. Continue this procedure of opening adjacent tank circuits and tuning until all series resonant loops have been tuned to the filter center frequency.

Figure 2-5.5 Type 6 filter showing circuit opens for tuning.

For information on ferrite pot core inductor design, see the Ferroxcube catalog "Linear Ferrite Materials and Components," and use Programs 3-1 and 3-2 to aid in the design of these inductors.

When designing the inductors, the designer must not allow the magnetic core excitation to drive the core near saturation. The voltage across an inductor is " Q " times the voltage across the series LC tank at

[^1]resonance. With inductor Q^{\prime} s of 100 or better, inductor voltages can be large with respect to the voltage across the filter. The voltage across a filter element at center frequency is approximately
$I_{\text {in }} \cdot X_{\text {element }}$ where $I_{\text {in }}$ is the filter input current and $X_{e l e m e n t}$ is the element reactance.

HP-67 suggested program changes. The "print" mode of output can be changed to the "R/S" mode by changing like statements at line numbers 147, 152, and 178. The program execution will halt at each data output point and await restart by the user via the "R/S" key.

PROGRAM 2-6 NORMALIZED LOWPASS TO BANDPASS FILTER TRANSFORMATIONS, TYPES 8, 9, 10, AND 11.

Program Description and Equations Used

This program converts normalized lowpass filter element values to a set of four bandpass filter topologies [16], [56]. These four topologies are shown in Fig. 2-6.1 in normalized form (1 ohm, 1 radian/sec center frequency). The parameter $A_{i j}$ is defined by Eq. (2-5.1). Types 8 and 9 are narrowband transformations of types 2 and 1 , while types 10 and 11 are exact transformations of types 2 and 1 obtained by applying Norton transformations to the shunt elements of type 2 to form type 10, or to the series elements of type 1 to form type 11. This transformation process is detailed in the equation derivation section following Example 2-6.2. The types 8 and 9 narrowband transformations will only provide accurate results when the loaded Q (ratio of center frequency to bandwidth) is greater than 5 or so. This restriction is not present with types 10 or 11 . Because the type 8 or 9 coupling element causes extra zeros of transmission at either dc or infinite frequency, the frequency response will be skewed away from the extra transmission zero frequencies as implied by Fig. 2-5.3. Figure $2 \sim 5.2$ should be consulted for picking the filter type best suited to the center frequency, loaded Q, and impedance level of the intended application.

Fighure 2-6.1 Normalized bandpass filter topologies for
types $8,9,10$, and 11 .

Table 2-6.1 Types 10 and 11 normalized element values.

Type 10 element	Type 11 element	normalized element value
C_{k}	L_{k}	$\left(Q \cdot g_{i}-\frac{N_{i+2}-1}{Q \cdot g_{i+1}}\right)^{-1}$
L_{k}	C_{k}	$Q \cdot g_{i}-\frac{N_{i}-1}{Q \cdot g_{i-1}}$
$\mathrm{L}_{\mathrm{k}, \mathrm{k}} \mathrm{k}+1$	$C_{k, k+1}$	$\frac{N_{1}}{Q \cdot g_{1-1}}$
c_{x+1}	$L_{\mathbf{k}+1}$	$\frac{1}{Q \cdot g_{n}}$
$\mathrm{L}_{\mathbf{k}+1}$	C_{k+1}	$Q \cdot g_{n}$
$C_{k+1}, k+1$	$\mathrm{L}_{\mathrm{k}+1}, \mathrm{k}+2$	$\frac{Q \cdot g_{1-1}}{N_{1}}$

$$
\begin{aligned}
& \mathrm{N}_{\mathbf{i}}=\frac{1}{2}\left(1+\sqrt{1+4 Q^{2} \cdot \mathrm{~g}_{\mathrm{i}-1} \cdot g_{\mathrm{n}}}\right) ; \mathrm{g}_{\mathrm{n}+1} \equiv 0 \\
& \mathrm{k}=1,3,5, \ldots, \mathrm{n} \quad \text { (n must be odd) } \\
& \mathbf{i}=\mathrm{n}-\mathrm{k}+1
\end{aligned}
$$

The reverse ordering of the normalized lowpass coefficients from the element subscripts occurs because the dual form of the normalized lowpass filter is used. The dual is required to place the 1 ohm resistor next to the first shunt capacitor which is required for types 8 and 9 when transforming even ordered filters. Since the same register setup and recall routine is used for types 10 and 11 , the dual form is carried over for convenience (it is not required).

Types 10 and 11 can be redrawn to show the ladder structure as T 's or pi's of inductors and capacitors as shown in Fig. 2-6.2.

FIGURE 2-6.2 Types 10 and 11 showing T's and pi's of L's and C's.

These pi's and T's of inductors can be replaced with an active realization that contains only op-amps, resistors, and capacitors by using 2 back-to-back generalized impedance converter (GIC) circuits as detailed in Orchard and Sheahan's paper [42], and shown in Figs. 2-6.3 \& 4.

Figure 2-6.3 Antoniou GIC circuit [3].

If Z_{1}, Z_{2}, Z_{3}, and Z_{5} are resistors and Z_{4} is a capacitor, then,

$$
\begin{equation*}
Z_{i n}=\frac{R_{1} R_{3} R_{5}}{R_{2}} \cdot{s C_{4}}=s L \tag{2-6,1}
\end{equation*}
$$

Furthermore, if $R_{2}=R_{3}$ (a Q enhancement condition), then,

$$
\begin{equation*}
L=R_{1} C_{4} R_{5} \tag{2-6.2}
\end{equation*}
$$

Two GIC circuits with the component selection outlined above can be combined to produce a circuit that simulates a T or pi of inductances. These circuits are shown in Fig. 2-6.4.

Aside from the elimination of inductors, this particular mechanization is very easy to tune. Changing resistor R_{1} in the GIC alters the apparent inductance seen at the terminals. The capacitor, C_{4}, needs to be stable (e.g., polystyrene or mica) but can have a large initial tolerance which is accommodated during the tuning procedure.

Figure 2-6.4 Pi or T inductance simulation circuits using GIC's.

The diagrams and discussion thus far have used the filters in normalized form, i.e., 1 ohm termination resistor, and 1 radian/ second center frequency. The prototype filter is denormalized by
multiplying each normalized inductor by $2 \pi f_{0} / R$, and dividing each normalized capacitor by $2 \pi f_{o} R$, where f_{o} and R are the desired center frequency and termination resistance level respectively. The program accomplishes this denormalization by calling either subroutine 7 or 8 . For types 8 and 10 , subroutine 7 denormalizes capacitors and subroutine 8 denormalizes inductors, and the reverse is true for types 9 and 11.

Tuning procedure for types 7, 9, and 11*. After the component values have been calculated, the inductors designed,** fabricated and adjusted to value, and the capacitors selected and padded to the proper value, the filter may be assembled and tumed so it will exhibit the desired response.

Tuning is accomplished by adjusting each of the parallel tank elements. For low frequency filters, the inductor is usually chosen as the adjustable element. At higher frequencies the capacitor is usually chosen as the adjustable element. The resonance of the tank circuit must include the effects of the coupling elements. By temporarily shorting out adjacent tank circuits, the coupling element influence will be included. This tuning procedure is described next.

1) Temporarily place a short at location "B" and adjust C_{1} (or L_{1}) to resonate the tank circuit at the center frequency of the filter, f_{0}. The connection (short) must be low inductance with respect to the other inductances in the circuit.
2) Remove the short at " B," and temporarily place shorts at locations " A " and "C." Adjust $\mathrm{C}_{2}\left(\mathrm{~L}_{2}\right)$ for tank circuit resonance at the filter center frequency.
3) Continue shorting out adjacent tanks with low inductance shorts at locations "B" \& "D," "C" \& "E," and "D," and adjusting each resulting tank circuit for resonance at the filter center frequency, f_{0}. These steps will complete the tuning of the filter.

[^2]

Figure 2-6.5 Circuit shorts for Types 7, 9, and 11 tuning.

2.6
 User Instructions

STEP	INSTRUCTIONS	INPUT DATAYUNITS	KEYS	$\begin{aligned} & \text { OUTPUT } \\ & \text { DATAUUNITS } \end{aligned}$
1	Load both stdes of program oard			
	(normalized lowpasg oooffloients and			
	related paramotors must be loadod into			
	the registers oithor mamally, or as			
	output from Program 2-3)			
2	Load oonter froqueney in Hz	f_{0}	4	ω_{0}
3	Load banduidth in Hz	BW	B	Q
4	Load tormination reaistance in ohms	R	0	
5	Load type numbor of filter desired	8,9,10,11	E	load R
	The tapk oapaoitor is alvays printed			$0_{\text {tank }}$
	firet independent of filter typo.			$\mathrm{I}_{\text {tank }}$
	*The coupling element will be as folloves			O,L cplg
	Type 8, oapacitor			
	Type 9, induetor			$0_{\text {tank }}$
	Type 10, altornating L' L^{\prime} \& 0^{\prime} 日			Itank
	Type 11, altornating 0^{\prime} 's \& $\mathrm{l}^{\prime} \mathrm{s}$			
				0,L oplg
				Otank
				:
				\cdots
				Load A

Example 2－6．1 Type 10 Filter Design

A Chebyshev response bandpass filter is required to pass a 20 Hz band of information geometrically centered about 1000 Hz with 0.5 dB ripple or less，and to operate in a 1000 ohm system．The filter stop－ bandwidth is 60 Hz ，and the filter should reject frequencies 1 ying out－ side this band by at least 60 dB ．

Referring to Fig．2－5．2 under the headings $f=1 \mathrm{kHz}, \mathrm{Q}_{\mathrm{L}}=1000 / 20$ $=50$ ，and $R=500$ ，type 8 is practical，and type 10 is readily realiza－ ble．Since active inductor simulation is anticipated，type 10 will be selected．

Program 2－1 is used to calculate the filter order necessary to meet the requirements，and Program 2－3 is used to calculate and store the normalized lowpass coefficients for use by this program．The HP－97 printout for all these programs is shown below．

Load Program 2－1 and calculate required filter order

Load Program 2－3 and calculate Chebyshev LP normalized coefficients
5． 6 EB H load required filter order
i．ESE load desired termination resistance ratio
． 5 SRE load Chebyshev passband ripple and start $1.05926+69$＊＊normalized -3 dB frequency（output）
1．0060 0 ＋60＊＊＊ R_{T}（normalized port 1 termination resistance）
1．70575＋60＊＊ Fl
1． $22963+46$ 米米 g_{2}

$1.2296+66$ 米 g_{4}
$1.76577+66$ w＊$\quad \mathrm{g}_{5}$

Example 2-6.1 (continued)

Load program 2-6 and calculate type 10 filter elements
1066. GSEG load center frequency
e0. BSEE load bandwidth
1006. GSEC load termination resistor
16. GSBE select filter type and start

1.26608-69 $\quad * * \mathrm{C}_{1}$
$1 \overline{3} .3879+60$ *** L_{1}
188.752-03 *** L12

1. $96608-69 \quad * * * \quad C_{2}$
13.5741+69 \quad *** L2
134.195-й *** C23
$\begin{array}{lll}1.2644 \mathcal{E}-69 & * * * & \mathrm{C}_{3} \\ 26.6351+60 & * * * & \mathrm{~L}_{3}\end{array}$
188.75玉-6.
$\begin{array}{lll}1.86685-69 & * * * & \mathrm{C}_{4} \\ 13.5741+60 & * * * & \mathrm{~L}_{4}\end{array}$
134.195-99 *** C_{45}
1.89263-65 *** C_{5}
2. 5741+60 *** L_{5}
$1.60606+63 \quad * * * \quad R_{T}$

Figure 2-6.6 Type 10 bandpass filter schematic.

Examp1e 2-6.2 Singly terminated type 10 filter design

Because the type 10 filter is an exact bandpass transformation of the lowpass prototype (as is the type 11), the terminating resistances need not be equal. This example will show the synthesis of a singly terminated type 10 filter, i.e., R_{T} is allowed to approach infinite resistance. The equally terminated filter case is the least sensitive to component value changes. When the filter is singly terminated, the operating Q 's of the tank circuits become higher as the open (or shorted) end of the filter is approached. This means that the changes in tank Q's will have a greater effect on the overall operating Q of the tank in the filter, and hence, the filter response. The HP-97 printout for the singly terminated type 10 filter follows. Refer to Fig. 2-6.6 for the filter schematic.

Load Program 2-3

	G6EA	load n
1. +65	G8EE	load R_{T} ratio
. 5	6SED	load Chebyshev ripple
1.05926+06	***	$\omega_{-3 \mathrm{~dB}}$ (output)
160. 20063	***	R_{T}
1.53866+60	***	g_{1}
1. $64272+00$	***	g_{2}
$1.8146{ }_{6}+60$	***	g_{3}
1.4291i+60	***	g_{4}
852.639-43	***	g_{5}
$1.09000+00$	***	R

Load Program 2-6

$\begin{array}{r} 1000 . \\ 20 . \\ 1000 . \\ 10 . \end{array}$	$\begin{aligned} & G 5 E A \\ & \text { GSBE } \\ & \text { GSEC } \\ & \text { GSEE } \end{aligned}$	load f load bandwidth load termination R select type \& start
1. 00006463	***	R
3.73236-69	***	C_{1}
$6.66484+66$	***	L_{1}
124.664-63	***	L_{12}
3.73256-85	***	C_{2}
$6.78658+00$	***	L2
204.171-69	***	C_{23}
1.7696i-99	***	C_{3}
14.3222+64	***	L_{3}
115.645-63	***	L_{34}
3.73230-69	***	C_{4}
$6.76668+60$	***	L_{4}
219.028-69	***	C_{45}
2.68814-69	***	C_{5}
$12.2443+80$	***	L_{5}
10.064 46	***	R_{T} (short circuit)

Derivation of types 10 and 11 transformations

Figure 2-6.7 Norton's second transformation.

Figure 2-6.7 shows one form of Norton's second transformation [39]. This transformation changes a single shunt impedance into a T of impedances, one of which is negative, plus an ideal transformer with turns ratio N. Figure $2-6.8$ shows how a parallel resonant tank circuit can be changed into a section of a type 10 bandpass filter structure.

Figure 2-6.8 Norton's second transformation applied to a parallel LC tank circuit.

In Fig. 2-6.8, Norton's transformation has been applied back-toback, i.e., the 2-2' terminals of the Norton transformation of the inductor have been connected to the 2-2' terminals of the Norton transformation of the capacitor. The same transformer ratio, N, is used for both transformations, therefore, the two ideal transformers are back-to-back providing an overall transformer ratio of unity and can be eliminated.

Figure 2-6.9 Type 2 normalized bandpass filter obtained from lowpass prototype (note port ordering).

Figure 2-6.9 shows a type 2 normalized bandpass filter obtained from the transformation of a lowpass prototype. The dual lowpass form is used (see Fig. 2-3.1 lower) and is scaled to a cutoff frequency of $1 / Q$ (Q is the ratio of the filter center frequency to bandwidth); each frequency scaled series lowpass inductor is series resonated with a capacitor at $\omega=1$, and each shunt scaled lowpass capacitor is parallel resonated with an inductor at $\omega=1$. Next, the circuit of Fig. 2-6.8 is substituted for the parallel resonant tank, and the negative elements in the series arms combined with the positive series elements of Fig. 2-6.9. The results of this process yield the topology shown in Fig. 2-6.10. Higher ordered (odd order) filters are obtained by repeated application of this procedure.

Figure 2-6.10 Type 10 normalized bandpass filter resulting from transformation.

The type 11 bandpass filter is shown in Fig. 2-6.1 and is the dual of the type 10 structure. Type 11 can be derived in a manner similar to the type 10 procedure by applying Norton's first transformation to a type 1 normalized bandpass filter. Norton's first transformation is shown in Fig. 2-8.1. Since type 11 is the dual of type 10 it can be more directly derived from the type 10 structure itself as shown by Fig. 2-6.1 and Table 2-6.1.

The value for N_{i} given in Table 2-6.1 is derived by making the transformed tank capacitor (inductor) value the same as the first ladder tank capacitor (inductor) for type 10 (11), i.e.,

$$
\begin{equation*}
\frac{1}{Q \cdot g_{n}}=\frac{Q \cdot g_{1}-1}{N_{1} \cdot\left(N_{1}-1\right)} \tag{2-6.3}
\end{equation*}
$$

Solving for N_{i} yields:

$$
\begin{equation*}
N_{i}=\frac{3 / 2}{2}\left(1+\sqrt{1+4 Q^{2} \cdot g_{i-1} \cdot g_{n}}\right) \tag{2-6.4}
\end{equation*}
$$

HP-67 suggested program changes. To change from the "print" to "R/S" mode for program output, make the respective change at the following line numbers: 183, 188, and 217. The program will now stop at output points and await restart via the " R / S " command from the keyboard.

PROGRAM 2-7 WYE-DELTA TRANSFORMATIONS FOR R, L, OR C.

Program Description and Equations Used
This program performs the $Y \rightarrow \Delta$ transformation for groups of three resistors, capacitors, or inductors. These transformations find use whenever awkward or physically impractical element values result from electrim cal network design. The resistive transformation is often used with operational amplifier summing network design to keep the resistor values low. The inductive and capacitive transformations can be of assistance in filter design.

The $Y-\Delta$ transformations for one-of-a-kind elements are summarized below:

"Y" topology

" Δ " topology

Figure 2-7.1 " Y " and " Δ " topology definitions.

For capacitors as network elements:
$Y \rightarrow \Delta$

$$
\begin{aligned}
& C_{1}=C_{a} \cdot c_{m} / \Sigma C \\
& C_{2}=C_{b} \cdot C_{m} / \Sigma C \\
& c_{k}=C_{a} \cdot C_{b} / \Sigma C \\
& \Sigma C=C_{a}+C_{b}+C_{m}
\end{aligned}
$$

$\Delta+\mathbf{Y}$

$$
\begin{aligned}
& C_{a}=\Sigma C C / C_{2} \\
& C_{b}=\Sigma C C / C_{1} \\
& C_{m}=\Sigma C C / C_{k} \\
& \Sigma C C=C_{1} C_{2}+C_{2} C_{k}+C_{1} C_{k}
\end{aligned}
$$

For inductors or resistors as network elements (read L's as $R^{\prime} s$): $Y \rightarrow \Delta$ $\Delta \rightarrow Y$

$$
\begin{array}{ll}
\mathrm{L}_{1}=\Sigma \mathrm{LL} / \mathrm{L}_{\mathrm{b}} & \mathrm{~L}_{\mathrm{a}}=\mathrm{L}_{1} \cdot \mathrm{~L}_{\mathrm{k}} / \Sigma \mathrm{L} \\
\mathrm{~L}_{2}=\Sigma \mathrm{LL} / \mathrm{L}_{a} & \mathrm{~L}_{\mathrm{b}}=\mathrm{L}_{2} \cdot \mathrm{~L}_{\mathrm{k}} / \Sigma \mathrm{L} \\
\mathrm{~L}_{\mathrm{k}}=\Sigma \mathrm{LL} / \mathrm{L}_{\mathrm{m}} & \mathrm{~L}_{\mathrm{m}}=\mathrm{L}_{1} \cdot \mathrm{~L}_{2} / \Sigma \mathrm{L} \\
\Sigma \mathrm{LL}=\mathrm{L}_{\mathrm{a}} \mathrm{~L}_{\mathrm{b}}+\mathrm{L}_{\mathrm{a}} \mathrm{~L}_{\mathrm{m}}+\mathrm{L}_{\mathrm{b}} \mathrm{~L}_{\mathrm{m}} & \Sigma \mathrm{~L}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{\mathrm{k}}
\end{array}
$$

2.7 User Instructions

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS	OUTPUT DATA/UNITS
1	Load program card (one sided card)			
2	Seloot element type:			
	if capacitors		T] A	
	if inductors, or resistors		f B	
3	Load olement values			
	Load element 1 or a		A	
	Load element k or m		B	
	Load element 2 or b		0	
4	Select transformation type:			
	$Y \rightarrow \Delta$ transformation		D	element a
				eloment m
				element b
				$\Sigma \mathrm{a}, \mathrm{m}, \mathrm{b}$
				element 1
				element k
				el ement?
				E1, k, 2
	$\Delta \rightarrow$ I tranaformation		$\mathbf{E}^{\mathbf{+}}$	element 1
				element k
				element 2
				E1, k, 2
				element a
				bloment m
				element b
				Ia,m, b
5	To print presently stored elements		f E	elt 1, a
				olt k, m
				elt 2, b
				Σ elts.

Example 2-7.1

Convert the Y network of Fig. 2-7.2 into an equivalent Δ network. Compute the total capacitance both before and after the transformation.

Figure 2-7.2 Capacitor networks for Example 2-7.1.

HP-97 printout

As a result of the transformation, the total capacity has been reduced by 69.4%.

Examp1e 2-7.2

A top coupled parallel resonant bandpass filter of the type 7 topology has been designed with the element values shown in Fig. 2-7.3. The 1 picofarad coupling capacitor is a problem since it is the same relative value as the parasitic (stray) capacities of the printed circuit board. By converting from a Δ capacitor configuration to $a y$ configuration, the minimum filter capacity is 202 pF as seen in Fig. 2-7.4, and the parasitic capacities of the printed circuit board are easily managed.

Figure 2-7.3 Type 7 filter design.

HP-97 printout for $\Delta \rightarrow Y$ transformation:

Figure 2-7.4 Network after $\Delta \rightarrow Y$ transformation.

PROGRAM 2-8 NORTON TRANSFORMATIONS.

Program Description and Equations Used
Two network equivalence transformations developed by Edward L. Norton are shown below. They can be extremely useful for modifying network element values or topology.

FORM 2
Figure 2-8.1 Two forms of Norton's first transformation.

FORM 1

FORM 2
Figure 2-8.2 Two forms of Norton's second transformation.

Figure 2-8.1 shows two forms of Norton's first transformation, and Fig. 2-8.2 shows two forms of Norton's second transformation. The transformed network always contains a negative element, which is combined with a positive element not involved in the transformation. N must be chosen so this combination results in a zero or positive element value if the element is to be realized passively (there are active circuits which can simulate negative elements). When N is chosen so the negative and positive elements annihilate one-another, the overall network topology changes. This technique can be used to reverse an "L" network as shown in Fig. 2-8.3

Figure 2-8.3 Norton transformation applied to an "L" network.

Chapter 10 of Zverev [58] has many example of the application of Norton's transformations. Some insight into the power of Norton's transformations is related in the article "Reminiscences" by W.R. Bennett in CAS-24 no. 12 (Dec. 1977). Dr. Bennett recollects that Ed Norton could efficiently furnish a network to give a prescribed loss characteristic with the minimum number of elements by using only a very ordinary sliderule, his intuition, and his transformations.

This HP-67/97 program will transform either capacitors or inductors and resistors. Because the impedance of a capacitor is inversely proportional to the capacitance, multiplying an impedance by N has the effect of dividing the capacitance by N. Figure $2-8.4$ shows form 1 of Norton's first transformation when the element being transformed is a capacitor.

Figure 2-8.4 Norton's first transformation for capacitors.

The same reciprocal relations hold for Norton's second transforma-tion as applied to capacitor networks.

User Instructions

STEP	Instructions	$\begin{gathered} \text { INPUT } \\ \text { DATAUNITS } \\ \hline \end{gathered}$	KEYS	OUTPUT DATAIUNITS
1	Load program oard			
2	If a oapacitor network is being transformed,	0	4	
	load copaestor value			
	OR			
	If an inductor or resistor notrork is boing	\underline{L}	B	
	transformed, load L or R value			
3	Load ideal transformer ratio dosired	H	0	
4	To orlculate both forms of Norton's		D	Bhunt olt
	first transformation			series olt
			form one	shunt olt
				space
				xfler ratio
				space
				日pace
				shunt elt
			form two	Beries olt
				shunt olt
5	To calculate both forms of Norton's		E	aer1en elt
	socond transformation			shunt olt
			form one	Berles elt
				space
				xfar ratio
				spaee
				space
				serles olt
			form two	Bhunt elt
				Bories olt

Example 2-8.1

An impedance stepdown of $3: 1$ is required at the output of the bandpass filter shown in Fig. 2-8.5. A transformer could be used to provide this function. Instead, use Norton's first transformation to provide the impedance stepdown without a transformer.

Figure 2-8.5 Bandpass filter network for Ex. 2-8.1.

A hypothetical $\sqrt{3}: 1$ turns ratio transformer is inserted at $x-x$, and all network elements to the right scaled down in impedance by a factor of 3 as shown in Fig. 2-8.6.

Figure 2-8.6 Network of Fig. 2-8.5 after insertion of hypothetical transformer.

Form 2 of Norton's first transformation is applied to L_{2} and the transformer as shown in Fig. 2-8.7. The resulting negative shunt inductor is combined with L_{1} as shown in Fig. 2-8.8.

HP-97 printout for Norton's first transformation

Norton equivalent
inductor and transformer

Figure 2-8.7 Network of Fig. 2-8.6 with form 2 of Norton's first transformation applied.

Figure 2-8.8 Final network with all negative elements absorbed.

PROGRAM 2-9 BUTTERWORTH AND CHEBYSHEV ACTIVE LOWPASS FILTER DESIGN AND POLE LOCATIONS.

Program Description and Equations Used

This program calculates the pole locations and Sallen and Key topology element values for un-normalized Butterworth or Chebyshev all pole lowpass filter approximations.

The program is designed to allow the use of capacitors with specified values as might result from the actual capacity measurement of a selected capacitor. The design process starts by assuming that all resistors are equal to the design resistance level, and the capacitor values are calculated to meet the filter requirements. The user may select new capacitor values near the original values, and the program will calculate new resistor values to meet the filter requirements. These resistor values can generally be selected from the nearest standard 0.1% resistor values.

The normalized pole locations of a Butterworth lowpass filter lie on a circle of unit radius as shown by Fig. 2-2.1 with the generalized pole locations given by Eqs. (2-2.12) and (2-2.13). The normalized pole locations for a Chebyshev lowpass filter lie on an ellipse as shown by Fig. 2-2.3 with the generalized pole locations given by Eqs. (2-2.15), (2-2.16), (2-2.17), and (2-2.18).

Each complex conjugate pole pair can be expressed in either the cartesian (real and imaginary parts) or the polar (magnitude and angle) co-ordinate systems. A variation on the polar system allows the pole pair to be defined in terms of the natural frequency (polar radius), ω_{n}, and " Q ," or quality factor. The relationship between these coordinate systems is shown in Fig. 2-9.1, and described by Eqs. (2-9.1) through (2-9.3).

Figure 2-9.1 Co-ordinate system relationships.

$$
\begin{align*}
& \omega_{n_{k}}=\sigma_{k}^{2}+\omega_{k}^{2} \tag{2-9.1}\\
& \theta_{k}=\tan ^{-1}\left(\frac{\omega_{k}}{\alpha_{k}}\right) \tag{2-9.2}\\
& Q_{k}=\frac{1}{2 \cos \theta_{k}}=\frac{\omega_{n k}}{2 \alpha_{k}} \tag{2-9.3}
\end{align*}
$$

The element values for the Sallen and Key type active resonator are easily expressed in terms of ω_{n} and Q as follows:

Figure 2-9.2 Sallen and Key active lowpass filter topology.

$$
\begin{align*}
& C_{1}=\frac{Q\left(R_{1}+R_{2}\right)}{\omega_{n} R_{1} R_{2}} \tag{2-9.4}\\
& C_{2}=\left.\frac{1}{\omega_{n} Q\left(R_{1}+R_{2}\right)}\right|_{R_{1}=R_{2}}=R \tag{2-9.5}
\end{align*}
$$

The Sallen and Key resonator topology is chosen over other types because of the low parameter sensitivities to element changes. This type of filter synthesis is called the cascade method. Each pole pair is synthesized by an isolated op-amp resonator circuit. The entire filter is formed from a cascade of these resonator circuits. With each pole pair being independent, the overall filter sensitivities to component value changes are higher than an equivalent LC filter. See reference [49] (page 314) for more details.

If higher order filters are required (n greater than 9 or so), either the leapfrog (Szentirmai) topology using Deliyannis resonators [48], [20] or Cauer-Chebyshev filters using biquadratic sections [35] should be considered.

If the two capacitors in the Sallen and Key circuit are specified, then the following equations express the resistor values.

$$
\begin{align*}
& \mathrm{R}_{1}=\frac{1+\sqrt{1-4 Q^{2} C_{2} / C_{1}}}{2 Q_{\omega_{n}} C_{2}} \tag{2-9.6}\\
& \mathrm{R}_{2}=\frac{1}{\omega_{\mathrm{n}}^{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{R}_{1}} \tag{2-9.7}
\end{align*}
$$

To ensure the quantity under the radical is positive in the equation for R_{1}, C_{2} should be selected to be a lower value, and C_{1} a higher value than given by Eqs. (2-9.4) and (2-9.5).

If the filter order is odd, then a real pole exists. A third order op-amp resonator circuit may be used to produce both the real pole and a complex conjugate pair. The lowest Q pole pair is selected for realization by this circuit to minimize sensitivities, and to keep the element value spread within bounds. The third order section topology is
shown in Fig. 2-9.3.

Figure 2-9.3 Third order op-amp resonator circuit.

$$
\begin{equation*}
\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{1}{D(s)} \tag{2-9.8}
\end{equation*}
$$

where

$$
\begin{align*}
& D(s)=s^{3} C_{1} C_{2} C_{3} R_{1} R_{2} R_{3}+s^{2} C_{3}\left\{C_{1} R_{1}\left(R_{2}+R_{3}\right)+C_{2} R_{3}\left(R_{1}+R_{2}\right)\right\}+ \\
& \quad s\left\{C_{1} R_{1}+C_{3}\left(R_{1}+R_{2}+R_{3}\right)\right\}+1 \\
& \frac{E_{\text {out }}}{E_{\text {in }}}=\frac{1}{C^{3}+B s^{2}+A s+1}=\frac{1}{\frac{s^{2}}{\omega_{n}^{2}}+\frac{s}{\omega_{n} Q}+1} \cdot \frac{1}{\tau s+1} \tag{2-9.9}\\
& \text { for } R_{1}=R_{2}=R_{3}=1 \tag{2-9.10}\\
& A=C_{1}+3 C_{3}=\tau+\frac{1}{\omega_{\sim}^{L} Q} \tag{2-9.11}\\
& B=2 C_{3}\left(C_{1}+C_{2}\right)=\frac{\tau}{\omega_{n} Q}+\frac{1}{\omega_{n}^{2}} \tag{2-9.12}\\
& C_{1}=C_{1} C_{2} C_{3}=\frac{\tau}{\omega_{n}^{2}} \tag{2-9.13}
\end{align*}
$$

The equations for A, B, and C represent three equations in three unknowns, C_{1}, C_{2}, and C_{3}. By algebraic manipulation, a cubic equation in C_{1} alone may be obtained.

$$
\begin{equation*}
C_{1}^{3}-C_{1}^{2}(A)+C_{1}\left(\frac{3}{2} B\right)-3 C=0 \tag{2-9.14}
\end{equation*}
$$

A Newton-Raphson iterative solution is used to find the real root of this equation (there will be at least one). Once C_{1} is found, the remaining two capacitors are found as follows:

$$
\begin{align*}
& c_{3}=\frac{A-C_{1}}{3} \\
& c_{2}=\frac{C}{C_{1} C_{3}} \tag{2-9.16}
\end{align*}
$$

If the three capacitors are specified, then the transmission function (Eq. (2-9.9)) may be used to obtain three equations in terms of the three unknown resistors. Equating like powers of s , as before, these equations result:

$$
\begin{align*}
& A=C_{1} R_{1}+C_{3}\left(R_{1}+R_{2}+R_{3}\right)=\tau+\frac{1}{\omega_{n} Q} \tag{2-9.17}\\
& B=C_{3}\left\{C_{1} R_{1}\left(R_{2}+R_{3}\right)+C_{2} R_{3}\left(R_{1}+R_{2}\right)\right\}=\frac{\tau}{\omega_{n} Q}+\frac{1}{\omega_{n}{ }^{2}} \tag{2-9.18}\\
& C=C_{1} C_{2} C_{3} R_{1} R_{2} R_{3}=\frac{\tau}{\omega_{0}{ }^{2}} \tag{2-9.19}
\end{align*}
$$

By algebraic manipulation, R_{2} may be eliminated leaving two equations in two unknowns, R_{3} as a cubic function of R_{1} alone, and a quadratic equation in R_{1} with R_{3} as a parameter. The quadratic formula is. used to reduce the second equation to R as a function of R_{1} alone. These two non-linear equations in two unknowns are solved using an iterative method given in an umpublished paper by Robert Esperti of Delco Electronics.

$$
\begin{align*}
& R_{3}=\frac{1}{R_{1}{ }^{2} C_{2} C_{3}}\left\{R_{1}{ }^{2}\left(C_{1}\left(C_{1}+C_{3}\right)\right)+R_{1}{ }^{2}\left(A C_{1}\right)+R_{1}\right. \tag{2-9.20}\\
& R_{1}=\frac{-b}{2 a}+\sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}} \tag{2-9.21}\\
& \frac{-b}{2 a}=\frac{A-C_{3} R_{3}}{2\left(C_{1}+C_{3}\right)} ; \quad \frac{c}{a}=\frac{C}{\left(C_{1}+C_{3}\right) \cdot C_{1} C_{2} R_{3}} \tag{2-9-22}
\end{align*}
$$

(B) $\left.+\frac{C}{C_{1}}\right\}$

Figure 2-9.4 Esperti's iterative method.

Referring to Fig. 2-9.4, an initial guess for R_{1} is made. The corresponding value for R_{3} is calculated using $R_{3}=f\left(R_{1}\right)$. The corresponding value for R_{1} (say R_{1}^{\prime}) is calculated using the above value for R_{3} in $R^{\prime}{ }_{1}=g\left(R_{3}\right)$. Using $R_{3}=f\left(R_{1}^{\prime}\right)$, a second value of R_{3} is calculated; this value of R_{3} is designated $R^{\prime}{ }_{3}$. Finally, a second value of R_{1} is calculated using $R_{1}=g\left(R_{3}^{\prime}\right)$; this value of R_{1} is designated $R^{\prime \prime}{ }_{l}$. Straight lines designated λ_{f} and λ_{g} are drawn as shown. The intersection of these two lines defines the next guess for R_{1}. The iteration is halted when the new and old values for R_{1} agree within $10^{-6} \%$. The convergence of this method is quite fast with four iterations generally providing the above accuracy. Furthermore, the method will converge when direct substitution type iteration proves to be divergent.

The above procedure may be done algebraically to yield a recursion relationship as shown below:

$$
\begin{equation*}
R_{l_{n+1}}=R_{l_{n}}+\frac{g\left(f\left(R_{l_{n}}\right)\right)-R_{l_{n}}}{1-\frac{g\left(f\left(g\left(f\left(R_{l_{n}}\right)\right)\right)\right)-g\left(f\left(R_{l_{n}}\right)\right)}{g\left(f\left(R_{l_{n}}\right)\right)-R_{l_{n}}}} \tag{2-9.23}
\end{equation*}
$$

The recursion relationship may be further reduced to an algorithm that can be used to program the HP-97. This algorithm is shown below:

$$
\begin{align*}
& R_{1_{n}}=g\left(f\left(R_{l_{n}}\right)\right) \tag{2-9.24}\\
& R_{l_{n}}^{\prime \prime}=g\left(f\left(R_{1_{n}}^{\prime}\right)\right) \tag{2-9.25}\\
& \delta=R_{1_{n}}-R_{1_{n}} \tag{2-9.26}\\
& \delta^{\prime}=R^{\prime \prime} \mathbf{1}_{\mathbf{n}}-R^{\prime} 1_{1_{n}} \tag{2-9.27}\\
& \varepsilon=\frac{\delta}{1-\delta^{1} / \delta} \tag{2-9.28}\\
& R_{1_{\mathbf{n}+1}}=R_{1_{\mathbf{n}}}+\varepsilon \tag{2-9.29}\\
& \text { Terminate if }\left|\frac{\varepsilon}{R_{1_{n+1}}}\right| \leq 10^{-8} \tag{2-9.30}
\end{align*}
$$

Each time through the $R^{\prime \prime}{ }_{1}=g\left(f\left(R_{1}\right)\right)$ calculation, the value of R_{3} is stored in a scratchpad register. After the iteration loop termination, values for R_{1} and R_{3} will be at hand. The following formula relates R_{2} to these resistors and the other known quantities:

$$
\begin{equation*}
R_{2}=\frac{C}{C_{1} C_{2} C_{3} R_{1} R_{3}} \tag{2-8.31}
\end{equation*}
$$

To simplify the initial guess for R_{1} and to keep the range of numbers within bounds, the selected values for the capacitors are normalized to 1 ohm, 1 radian/second values for use by the program. After the corresponding normalized resistors are calculated, the resistance values are de-normalized before output.

2: User Instructions

STEP	INSTRUCTIONS	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS	$\begin{aligned} & \text { OUTPUT } \\ & \text { DATA/UNITS } \end{aligned}$
9	Read both sides of second card when display			
	flashes with first program. Program			
	operation will automatically reaume after			
	the second side of this card is read.			
10	The three capacitor values for the equal			
	resistor topology will be printed.		c_{2}	$C_{1,}, F$
			L_{1}	C_{2}, F
				$\mathrm{C}_{3}, \mathrm{~F}$
11	If alternate capacitor values are desired,			
	key those values via key "E". If the third.			
	order section requirements cannot be met			
	with those resistors, the program execution			
	Will helt displaying "ERROR"-. Press any key			
	to clear the display, and enter another set			
	of capacitors using key "E". By staying.			
	close to the capacitor values printed in			
	step 2, the error situstion will generally			
	be avoided.	C_{5}^{\prime}, F	ENT 4	
		C_{2}^{\prime}, F	ENT 4	
		C_{3}^{\prime}, F	E	R_{1}, Ω
				R_{2}, Ω
				R_{3}, Ω
12	To run another case, reload both sides of			
	card 1, and return to step 3			

Example 2-9.1

A 1 dB ripple Chebyshev lowpass active filter must pass all frequencies between dc and 1000 Hz within 3 dB , and must reject all frequencies higher than 2000 Hz by more than 60 dB . Program 2-1 may be used to determine the necessary filter order. This program calculates a minimum filter order of 6.19 , which is rounded to the next highest integer, 7. A 7th order, 1 dB ripple Chebyshev lowpass filter that is 3 dB down at 1000 Hz , will be 1 dB down at 983.1 Hz and 69.4 dB down at $2000 \mathrm{~Hz}(\lambda=2000 / 983.1=2.035)$.

This program (Program 2-9) is used to calculate the element values for a 7 th order, 1 dB ripple, $1000 \mathrm{~Hz}-3 \mathrm{~dB}$ cutoff frequency Chebyshev filter. A design resistance level of 10000 ohms is chosen which will make the capacitor values around $1 /(2 \pi f R)=0.016 \mu \mathrm{~F}$.

PROGRAM INPUT

```
            7. ENT: n
            i. 65E: }\mp@subsup{\varepsilon}{\textrm{dB}}{
    10044. GSE: design resistance level
    1060. ESED -3dB frequency
F83.j+60 w** -1dB frequence (output)
```


PROGRAM OUTPUT

Example 2-9.2
An active Butterworth lowpass filter must pass all frequencies between dc and 1000 Hz within 1 dB , and must reject all frequencies higher than 3000 Hz by at least 60 dB . Program $2-1$ may be used to determine the minimum filter order. This program calculates a minimum filter order of 6.90 , which is rounded to 7 , the next highest integer. This filter will be 60.9 dB down at $3000 \mathrm{~Hz}(\lambda=3000 / 1000=3)$.

This program (Program 2-9) is used to find the element values for a 7 th order, $1000 \mathrm{~Hz}-1 \mathrm{~dB}$ cutoff, Butterworth lowpass active filter. A design resistance level of 10000 ohms will keep the capactor values centered around $1 /(2 \pi f R)=0.016 \mu \mathrm{~F}$.

PROGRAM INPUT

$$
\text { ㄷ. } 65 E 4 \mathrm{n}
$$

i. 65E5 $\varepsilon_{d B}$

10000̄. GSEC R, design resist level
1009. 65E f $\mathrm{f}-\mathrm{\varepsilon dB}$

1. $101+03$ w* $\mathrm{f}-3 \mathrm{~dB}$ (output)

PROGRAM OUTPUT

section one

6. $92 \overline{0}+\bar{x}^{3}$ w** ω
$\overline{\mathrm{C}} .24 \overline{7}+\overline{0} \bar{E} \quad w_{*}: \quad \mathrm{Q}^{\mathrm{n}}$
64.34-69 \quad *** C_{1}
3.210- 25 *** C_{2}
7. - EF ENTf C'1
8. $\left.-\bar{E} E S E E \quad \mathrm{C}^{\prime}{ }_{2}\right\}$ alternate values
$14.26+\overline{0} 3$ *** R_{1}
$7.180+63$ *** R_{2}

section three

$\begin{aligned} & 6.926+05 \\ & 555.6-63 \end{aligned}$	****		of second order pair
6.920 a 63	**	O	
19.32-4	**	Cl_{1}	
22.14-65	**	C_{2}	
T.0.58-6.	***	C_{3}	
2i. -35	ENIT	$\mathrm{C}^{1} 1$	
	ENT!	$\mathrm{C}^{\prime} 2$	alternate values
-36t-12	GSEE	$\mathrm{C}^{\prime} 3$	
9.1示 + Ez	***	R_{1}	
	***	$\mathbf{R 2}_{2}$	
$15.63 \overline{3}+\overline{6}$	***	R3	

Figure 2-8.6 Overall active filter schematic:
7th order Butterworth lowpass filter
$-1 \mathrm{~dB} @ 1000 \mathrm{~Hz}$
$-3 \mathrm{~dB} @ 1101 \mathrm{~Hz}$
$-60.9 \mathrm{~dB} @ 2000 \mathrm{~Hz}$

2-9, cano $1 \quad$ Program Listing I

2-9, cano $1 \quad$ Program Listing II

2-9, cand 2 Program Eisting II

HP-67 suggested program changes. Program space does not allow the addition of a print, R / S toggle and associated output routine. If the HP-67 user would like the program to stop instead of halting for 5 seconds (print command) change the "print" statements to "R/S" at the following line numbers: (program 1); 122, 130, 147, 153, 178, 187, and 200; (program 2); 098, 165, 167, and 169. To resume program execution with the above changes, execute a "R/S" command from the keyboard after each data output point.

PROGRAM 2-10 BUTTERWORTH AND CHEBYSHEV ACTIVE HIGHPASS FILTER DESIGN AND POLE LOCATIONS.

Program Description and Equations Used

This program calculates the normalized pole locations and provides element values for the un-normalized, unity gain Sallen and Key type second and third order highpass active resonator circuit. Higher order filters are formed by cascading second order sections, and one third order section if the filter order is odd. The program uses either the Butterworth (maximally flat) or Chebyshev (equiripple passband) all pole filter descriptions.

The program is designed to allow the use of specified capacitor values such as would result from the actual measurement of a standard value capacitor. The corresponding resistor values are calculated for each section. The nearest 1% standard value precision resistor will generally suffice for the calculated value.

The design process starts by finding the normalized lowpass pole locations for the desired filter type. If the passband cutoff frequency is different from the conventional definition of the bandedge, a scaling of the normalized cutoff frequency is done. The Butterworth amplitude response is 3 dB down at the passband edge, while the Chebyshev amplitude response is $\varepsilon d B$ down at the passband edge, where $\varepsilon \mathrm{dB}$ is the passband ripple in dB . The scaling factor is K , and the normalized filter cutoff frequency is denoted by ω_{n}.

The normalized and scaled lowpass pole locations are sequentially foumd as complex conjugate pairs, and, if the filter order is odd, the real pole location. The lowpass, unity-gain, Sallen and Key, normalized active filter circuit element values may be found in terms of these pole locations. The element values of the highpass normalized active resonator may be found from the normalized lowpass structure. The normalized lowpass structure is transformed to the normalized highpass structure by replacing each lowpass resistor with a capacitor and vice versa.

The normalized highpass element values are the reciprocals of the corresponding converted lowpass element, i.e., a 2 farad capacitor becomes a $\frac{1}{2}$ ohm resistor. This conversion is equivalent to replacing s by $1 / s$ in the lowpass transfer function equation. The un-normalized highpass equation is found by replacing s by ω_{c} / s, where $\omega_{c}=2 \pi f_{c}$, and f_{c} is the highpass cutoff frequency in hertz.

Each complex conjugate pole pair can be expressed in either the cartesian (real and imaginary parts) or the polar (magnitude and angle) co-ordinate system. A variation on the polar system allows the pole pair to be defined in terms of the natural frequency, ω_{n}, and " Q " or quality factor. The relationships between these co-ordinate systems is shown in Fig. 2-9.1 The Butterworth and Chebyshev pole locations are given in Program 2-2. By putting all the foregoing concepts together, the denormalized highpass element values can be expressed in terms of ω_{n} and Q with the second order circuit topology as shown in Fig. 2-10.1.

Figure 2-10.1 Highpass Sallen and Key circuit.

$$
\begin{align*}
& R_{1}=\frac{\omega_{n} / \omega_{c}}{Q\left(C_{1}+C_{2}\right)} \tag{2-10.1}\\
& R_{2}=\frac{\left(\omega_{n} / \omega_{c}\right)^{2}}{R_{1} \cdot C_{1} \cdot C_{2}} \tag{2-10.2}
\end{align*}
$$

The Sallen and Key unity-gain op-amp resonator is chosen over other types because of its low component count and low parameter sensitivities to element value changes (see [19]). High Q realizations are difficult with this resonator type since the resistor value spread is $4 Q^{2}$ when the capacitor values are equal, however, this constraint is not a problem here since the pole Q 's are rarely greater than 10.

High pole Q's occur with higher order filters (n greater than 9 or so). In these cases, the Szentirmai leapfrog topology [48], should be given consideration, or else an elliptic response lower order filter might meet the amplitude response requirements (the phase response will be less linear however).

All operational amplifiers have bandwidth limitations, i.e., the $\mu \mathrm{A}-741$ has unity open loop gain at 500 kHz typically. When the operating frequency range of the active filter contains frequencies that approach 1% of the op-amp unity gain crossover frequency (500 kHz for the $\mu \mathrm{A}-741$), then the contribution of the operational amplifier compensation pole and lower open loop gain must be considered. Program 1-3 can be used to calculate the pole location shifts. Positive and negative feedback resonators of the Deliyannis type can accommodate the op-amp compensation pole and open loop gain characteristic (see [19]).

If the filter order is odd, then a real pole exists. A third order op-amp active resonator circuit may be used to produce both the real pole and a complex conjugate pair. The lowest Q pole pair is chosen for realization by this circuit to keep the element value spread within bounds, and also to minimize sensitivities. The third order active highpass topology is shown in Fig. 2-10.2.

Figure 2-10.2 Third order highpass active filter section.

The transfer function in terms of the $\mathrm{R}^{\prime} \mathrm{s}$ and $\mathrm{C}^{\prime} \mathrm{s}$ assuming an ideal operational amplifier is:

$$
\begin{equation*}
\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{s^{3} R_{1} R_{2} R_{3} C_{1} C_{2} C_{3}}{D(s)} \tag{2-10.3}
\end{equation*}
$$

where

$$
\begin{aligned}
D(s)= & s^{3} R_{1} R_{2} R_{3} C_{1} C_{2} C_{3}+s^{2} R_{2}\left\{R_{3} C_{2} C_{3}+R_{1} \Sigma C C\right\} \\
+ & s\left\{R_{1}\left(C_{1}+C_{2}\right)+R_{2}\left(C_{2}+C_{3}\right)\right\}+1
\end{aligned}
$$

and

$$
\begin{equation*}
\Sigma C C=C_{1} C_{2}+C_{2} C_{3}+C_{1} C_{3} \tag{2-10.4}
\end{equation*}
$$

The resistor values may be obtained from the capacitor values and the pole locations by the simultaneous solution of three equations in three unknowns. These three equations are generated by equating like powers of s between the desired transfer function as expressed with the pole locations and the above transfer function. The desired transfer function in terms of the complex conjugate pole pair as expressed through ω_{n} and Q, and the real pole location, $1 / \tau$, is:

$$
\begin{equation*}
\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{s^{3}\left(\frac{1}{\omega_{c} \tau}\right) \cdot\left(\frac{\omega_{n}}{\omega_{c}}\right)^{2}}{\left\{\frac{s}{\omega_{c} \tau}+1\right\}\left\{s^{2}\left(\frac{\omega_{n}}{\omega_{c}}\right)^{2}+s\left(\frac{1}{Q}\right)\left(\frac{\omega_{n}}{\omega_{c}}\right)+1\right\}} \tag{2-10.5}
\end{equation*}
$$

or, in descending powers of s :

$$
\frac{E_{\text {out }}}{E_{\text {In }}}=\frac{s^{3}\left(\frac{\omega_{n}}{\omega_{c}}\right)^{2} \cdot\left(\frac{1}{\omega_{c} \tau}\right)}{s^{3}\left(\frac{\omega_{n}}{\omega_{c}}\right)^{2}\left(\frac{1}{\omega_{c} \tau}\right)+s^{2}\left(\frac{\omega_{n}}{\omega_{c}}\right)^{2}\left(1+\frac{1}{\omega_{n} Q^{2}}\right)+s\left(\frac{n}{\omega_{c}}\right)\left(\frac{1}{Q}+\frac{1}{\omega_{n} \tau}\right)}(1-10.6)
$$

The resulting three equations in three unknowns are:

$$
\begin{align*}
& R_{1} R_{2} R_{3} C_{1} C_{2} C_{3}=\left(\frac{\omega_{n}}{\omega_{c}}\right)^{2}\left(\frac{1}{\omega_{c} \tau}\right) \tag{2-10.7}\\
& R_{2}\left(R_{3} C_{2} C_{3}+R_{1} \Sigma C C\right)=\left(\frac{\omega_{n}}{\omega_{c}}\right)^{2}\left(1+\frac{1}{\omega_{n} Q \tau}\right) \tag{2-10.8}\\
& R_{1}\left(C_{1}+C_{2}\right)+R_{2}\left(C_{2}+C_{3}\right)=\left(\frac{\omega_{n}}{\omega_{c}}\right)\left(\frac{1}{Q}+\frac{1}{\omega_{n} \tau}\right) \tag{2-10.9}
\end{align*}
$$

After algebraic manipulation, a cubic equation in R_{1} alone is obtained:

$$
\begin{equation*}
\mathrm{R}_{1}^{3} \mathrm{~K}_{3}+\mathrm{R}_{1}^{2} \mathrm{~K}_{2}-\mathrm{R}_{1} \mathrm{~K}_{1}+\mathrm{K}_{0}=0 \tag{2-10.10}
\end{equation*}
$$

where the constants $\mathrm{K}_{3}, \mathrm{~K}_{2}, \mathrm{~K}_{1}$, and K_{0} are defined by:

$$
\begin{align*}
& K_{3}=-\left(C_{1}+C_{2}\right)\left(C_{1} \Sigma C C\right) \tag{2-10.11}\\
& K_{2}=\left(\frac{1}{Q}+\frac{1}{\omega_{n} \tau}\right)\left(C_{1} \Sigma C C\right)\left(\frac{\omega_{n}}{\omega_{c}}\right) \tag{2-10.12}\\
& K_{1}=\left(1+\frac{1}{\omega_{n} Q^{2}}\right)\left(C_{1}\left(C_{2}+C_{3}\right)\right)\left(\frac{\omega_{n}}{\omega_{c}}\right)^{2} \tag{2-10.13}\\
& K_{0}=\left(C_{2}+C_{3}\right)\left(\frac{1}{\omega_{c} \tau}\right)\left(\frac{\omega_{n}}{\omega_{c}}\right)^{2} \tag{2-10.14}
\end{align*}
$$

The program uses a Newton-Raphson iterative solution to find the real root of $\mathrm{Eq} .(2-10.10)$ for R_{1} (there will be at least one real root). The details of the Newton-Raphson technique are shown in Program 1-5.

Once R_{1} has been obtained, the values for R_{2} and R_{3} are obtained using the following equations:

$$
\begin{align*}
& R_{2}=\left(\frac{1}{C_{2}+C_{3}}\right)\left\{\frac{\omega_{n}}{\omega_{c}}\left(\frac{1}{Q}+\frac{1}{\omega_{n} \tau}\right)-R_{1}\left(C_{1}+C_{2}\right)\right\} \tag{2-10.15}\\
& R_{3}=\left(\frac{\omega_{n}}{\omega_{c}}\right)^{2}\left(\frac{1}{\omega_{c} \tau}\right)\left(\frac{1}{R_{1} R_{2} C_{1} C_{2} C_{3}}\right) \tag{2-10.16}
\end{align*}
$$

Example 2-10.1

A fifth order, $\frac{1}{2} d B$ passband ripple Chebyshev active highpass filter is to have 3 dB or less attenuation at 10 Hz . A National Semiconductor type LF-156 bi-fet operational amplifier is chosen as the active element in the filter.

Design an active filter to meet these specifications and choose the operating resistance level to achieve the lowest capacitance values in the filter without affecting the dc drift characteristics of the operational amplifier by more than 10%. The operating temperature range is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

From the LF-156 data sheet, the maximum input bias current occurs at the highest operating temperature, $+85^{\circ} \mathrm{C}$, and is approximately 1 nA . The typical input offset voltage is 3 millivolts. The resistance level that will generate 0.3 millivolts with 1 nA flowing is:

$$
\mathrm{R}=\left(3 \times 10^{-4} \mathrm{~V}\right) /\left(1 \times 10^{-9} \mathrm{~A}\right)=300 \mathrm{k} \Omega
$$

The filter is then designed with this value in mind as the largest resistance value which has an effect on the dc output of the last filter stage. Being a highpass filter, each stage of the filter blocks the dc voltage present from the preceding stage.

The filter design will be done twice, once with $300 \mathrm{k} \Omega$ as the design resistance level to determine the value of R_{2} in the last (third order) section. The operating resistance level is then scaled to cause the highest resistance value $\left(R_{2}\right)$ to be $300 \mathrm{k} \Omega$. The HP-97 printout for these operations is shown on the next page.

In the second run of the program, the design capacitance level is $0.1749 \mu \mathrm{~F}$. The nearest larger standard capacitor value is $0.22 \mu \mathrm{~F}$. The filter will require five capacitors, therefore, five $0.22 \mu \mathrm{~F}$ mylar capacitors were drawn from stock, and their capacities measured. The measured values were: . $2236 \mu \mathrm{~F}, .2014 \mu \mathrm{~F}, .1965 \mu \mathrm{~F}, .2173 \mu \mathrm{~F}$, and $0.2542 \mu \mathrm{~F}$. The filter resistances are designed around these capacitor values.

Example 2-10.1 printout

2-10, caro 1 Program Listing II

2-10, cafo 2 Program Listing I

PROGRAM 2-11 DELIYANNIS POSITIVE AND NEGATIVE FEEDBACK ACTIVE RESONATOR DESIGN (USED FOR ACTIVE BANDPASS FILTERS).

Program Description and Equations Used

Active filter resonators are constrained by component value ranges (10 ohms to 10 megohms, 100 pF to $10 \mu \mathrm{~F}$), operational amplifier gainbandwidth limitations, and overall circuit sensitivities. The Deliyannis resonator circuit allows high Q realizations and also compensates for the finite gain and bandwidth of the operational amplifier [20].

This resonator synthesizes a second order pole pair of given ω_{n} and Q. The natural frequency, ω_{n}, and the quality factor, Q, are provided as outputs from the active Butterworth and Chebyshev filter programs contained in this section.

This resonator type has the ability to synthesize a resonator with infinite Q. The infinite Q resonator is used in the interior stages of the Szentirmai leapfrog filter topology [48]. The leapfrog active filter is a direct simulation of a passive LC filter, and generally has the same low sensitivity characteristics of the LC topology. When narrowband active filters are required, the leapfrog topology will be one of the viable candidates for filter realization (also see the GIC realization in Program 2-6).

The circuit for the Deliyannis second order bandpass circuit is shown in Fig. 2-11.1.

Figure 2-11.1 Deliyannis bandpass resonator circuit.

The transmission function is obtained using nodal analysis. In matrix form, the nodal equations are:

$$
\begin{align*}
& E_{\text {out }}=A(s)\left[E_{3}-E_{2}\right], \text { (op-amp transmission fcn) } \tag{2-11.1}\\
& {\left[\begin{array}{lc}
\left\{\frac{1}{R_{I}}+s\left(C_{1}+C_{2}\right)\right\} & \left\{-s C_{2}\right\} \\
\left\{-s C_{2}\right\} & \left\{\frac{1}{R_{2}}+s C_{2}\right.
\end{array}\right\} \cdot\left[\begin{array}{l}
E_{1} \\
E_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{R_{1}} & s C_{1} \\
0 & \frac{1}{R_{2}}
\end{array}\right] \cdot\left[\begin{array}{c}
E_{\text {in }} \\
E_{\text {out }}
\end{array}\right]} \tag{2-11.2}
\end{align*}
$$

where

$$
\begin{equation*}
E_{3}=E_{\text {out }} / k \tag{2-11.3}
\end{equation*}
$$

Solving for E_{2} from Eqs. (2-11.1) and (2-11.3):

$$
\begin{equation*}
E_{2}=E_{\text {out }}\left[\frac{1}{k}-\frac{1}{A(s)}\right] \tag{2-11.4}
\end{equation*}
$$

The transmission function is first obtained for the general case using $A(s)$, then more specifically using $A(s)=A_{0} /(\tau s)$. The passive sensitivities may be obtained from the general solution, and the active sensitivities obtained from the specific solution, $A(s)=A_{0} /(\tau s)$.

The matrix equation is rewritten to bring $1 / \mathrm{k}-1 / \mathrm{A}(\mathrm{s})$ inside the coefficient matrix, and to bring all dependent variables to the right
hand side of the equation:

$$
\left[\begin{array}{l}
\left\{\frac{1}{R_{1}}+s\left(C_{1}+C_{2}\right)\right\} \quad\left\{-s\left[C_{1}-C_{2}\left(\frac{1}{k}-\frac{1}{A(s)}\right)\right]\right\} \\
\{-s C\} \quad\left\{\left(\frac{1}{R_{2}}\right)\left(\frac{1}{k}-\frac{1}{A(s)}-1\right)+\mathrm{sC}_{2}\left(\frac{1}{k}-\frac{1}{A(s)}\right)\right\}
\end{array}\right] \cdot\left[\begin{array}{l}
E_{1} \\
E_{\text {out }}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{R_{1}} \\
0
\end{array}\right]^{(2-11.5)}
$$

Cramer's rule is used to find the expression for $E_{o u t} / E_{\text {in }}$, the filter transmission function.

$$
\frac{-\frac{s}{E_{\text {out }}}}{E_{\text {in }}}=\frac{(2-11,6)}{\mathrm{R}_{1} \mathrm{C}_{1}\left(1+{ }^{1} / \mathrm{A}(\mathrm{~s})-{ }^{1} / \mathrm{k}\right)} \mathrm{s}^{2}+\mathrm{s}\left\{\frac{1}{\mathrm{R}_{2} \mathrm{C}_{1}}+\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}+\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}} \cdot \frac{1 / \mathrm{A}(\mathrm{~s})-{ }^{1} / \mathrm{k}}{1+{ }^{1} / \mathrm{A}(\mathrm{~s})-^{1} / \mathrm{k}}\right\}+\frac{1}{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}
$$

The passive sensitivities may be evaluated assuming the op-amp to be ideal, i.e., the open loop gain is allowed to approach infinity. In this situation, the transmission function becomes:

$$
\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{-\frac{k s}{R_{1} C_{1}(k-1)}}{s^{2}+s\left\{\frac{1}{R_{2} C_{1}}+\frac{1}{R_{2} C_{2}}-\frac{1}{(k-1) R_{1} C_{1}}\right\}+\frac{1}{R_{1} \mathrm{R}_{2} C_{1} \mathrm{C}_{2}}}
$$

The coefficients of the denominator of this equation may be compared with the like coefficients in the standard second order form to derive expressions for ω_{n} and Q. The standard second order form of the transmission function is:

$$
\begin{equation*}
\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{k s}{s^{2}+\frac{\omega_{n}}{Q} s+\omega_{n}^{2}} \tag{2-11.8}
\end{equation*}
$$

The following expressions for $\omega_{\mathrm{n}}, \mathrm{Q}$, and K are obtained:

$$
\begin{align*}
K & =-\frac{K}{R_{1} C_{1}(k-1)} \tag{2-11.9}\\
\omega_{\mathrm{n}} & =\left(R_{1} R_{2} C_{1} C_{2}\right)^{-\frac{K_{2}}{2}} \tag{2-11.10}\\
Q & =\frac{\sqrt{\frac{R_{2}}{R_{1}}}}{\sqrt{\frac{C_{2}}{C_{1}}}+\sqrt{\frac{C_{1}}{C_{2}}}-\frac{1}{k-1} \cdot \frac{R_{2}}{R_{1}} \cdot \sqrt{\frac{C_{2}}{C_{1}}}} \tag{2-11.11}
\end{align*}
$$

Let $\mu=R_{2} / R_{1}$, and $\delta=C_{2} / C_{1}$, then:

$$
\begin{equation*}
Q=\frac{\sqrt{\mu \delta}}{\delta+1-\mu \delta /(k-1)} \tag{2-11.12}
\end{equation*}
$$

The denominator of Eq. (2-11.12) can be made arbitrarily small by proper choice of μ. The denominator can be made to vanish completely causing Q to become infinite, thus generating the infinite Q resonator required for the interior stages of the leapfrog filter topology.

Sensitivities are a way of expressing how much a given parameter, say Q, is affected by a change in one of the circuit elements. The general convention is to express sensitivities as a demensionless number formed from the ratio of individual percentage changes:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{R}}^{\mathrm{Q}}=\lim _{\Delta \mathrm{R} \rightarrow 0} \frac{\Delta \mathrm{Q} / \mathrm{Q}}{\Delta \mathrm{R} / \mathrm{R}}=\frac{\mathrm{R}}{\mathrm{Q}} \cdot \frac{\partial \mathrm{Q}}{\partial \mathrm{R}} \tag{2-11.13}
\end{equation*}
$$

Applying this definition to the expressions for μ_{n}, Q, and K, the following passive sensitivities result:

$$
\begin{align*}
& S_{R_{1}}^{\omega}, R_{2}, C_{1}, C_{2}=-\frac{1}{2} \tag{2-11.14}\\
& S_{R_{1}}^{Q}=-S_{R_{2}}^{Q}=-\frac{1}{2}-Q \frac{\sqrt{\mu \delta}}{k-1} \tag{2-11.15}\\
& S_{C_{1}}^{Q}=-S_{C_{2}}^{Q}=-\frac{1}{2}+Q \sqrt{\mu \delta}\left(\frac{1}{\mu}-\frac{1}{k-1}\right) \tag{2-11.16}\\
& S_{R_{B}}^{Q}=-S_{R_{A}}^{Q}=Q \frac{\sqrt{\mu / \delta}}{k-1} \tag{2-11.17}
\end{align*}
$$

$$
\begin{align*}
& S_{R_{2}, C_{2}}^{K}=-1 \tag{2-11,18}\\
& S_{R_{A}}^{K}=-S_{R_{B}}^{K}=1 / k \tag{2-11.19}
\end{align*}
$$

The break frequency of the open loop transmission function of most operational amplifiers is around 10 Hz , and the gain-bandwidth product (GBP) is about $10^{6} \mathrm{~Hz}$ thus, the finite gain characteristics of the opamp begin to affect the active filter response when kilohertz frequencies are involved. In this frequency range, the operational amplifier transmission function, $A(s)=A_{0} /(1+\tau s)$, may be approximated by $A(s)=A_{0} / \tau s$. With this approximation, the active filter transmission function becomes:

$$
\begin{equation*}
\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{-\frac{s}{\left(R_{1} C_{1}\right)\left(1+\tau s / A_{0}-1 / k\right)}}{s^{2}+s\left\{\frac{1}{R_{2} C_{1}}+\frac{1}{R_{2} C_{2}}+\frac{1}{R_{1} C_{1}} \cdot \frac{\tau s / A_{0}-1 / k}{1+\tau s / A_{0}-1 / k}\right\}+\frac{1}{R_{1} R_{2} C_{1} C_{2}}} \tag{2-11.20}
\end{equation*}
$$

This expression is expanded, and like powers of s collected to form the final expression for the active filter transmission function:

$$
\begin{equation*}
\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{s \frac{-k}{R_{1} C_{1}}}{D(s)} \tag{2-11.21}
\end{equation*}
$$

where

$$
\begin{array}{r}
D(s)=s^{3} \frac{k \tau}{A_{0}}+s^{2}\left\{k-1+\frac{k \tau}{A_{0}}\left(\frac{1}{R_{2} C_{1}}+\frac{1}{R_{2} C_{2}}+\frac{1}{R_{1} C_{1}}\right)\right\} \\
+s\left\{(k-1)\left(\frac{1}{R_{2} C_{1}}+\frac{1}{R_{2} C_{2}}\right)-\frac{1}{R_{1} C_{1}}+\frac{\tau k}{A_{0} R_{1} R_{2} C_{1} C_{2}}\right\}+\frac{k-1}{R_{1} R_{2} C_{1} C_{2}}
\end{array}
$$

The denominator is factored into a single pole and a complex conjugate pair:

$$
\begin{equation*}
\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{H \cdot \frac{s}{\omega_{n} Q}}{\left(\frac{s}{\sigma}+1\right)\left(\frac{s^{2}}{\omega_{n}^{2}}+\frac{s}{\omega_{n} Q}+1\right)} \tag{2-11.22}
\end{equation*}
$$

The natural frequency, ω_{n}, and the quality factor, Q, are derived by equating like powers of s between Eqs. (2-11.21) and (2-11.22):

$$
\begin{align*}
& \omega_{n}=\frac{1}{R_{1} R_{2} C_{1} C_{2}} \cdot \sqrt{1-\frac{\tau k^{2}}{A_{0}(k-1) R_{1} C_{1}}} \tag{2-11.23}\\
& B W=\frac{\omega_{n}}{Q}=\left\{\frac{1}{R_{2} C_{1}}+\frac{1^{*}}{R_{2} C_{2}}+\frac{1}{R_{1} C_{1}(k-1)}\right\}\left\{1-\frac{\tau k^{2}}{A_{0}(k-1) R_{1} R_{2}}\right\}(2-11.24)
\end{align*}
$$

From these equations, the active sensitivities are derived:

$$
\begin{equation*}
\stackrel{S}{A / \tau}_{\omega}^{n}=S_{A / \tau}^{Q}=\frac{1}{2} \cdot \frac{\omega_{n}{ }^{\tau}}{A_{0}} \cdot\left(\frac{k}{k-1}\right)^{2} \cdot \sqrt{\mu \delta} \tag{2-11.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu=R_{2} / R_{1} \tag{2-11.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta=C_{2} / C_{1} \tag{2-11.27}
\end{equation*}
$$

as defined previously. The objective is to choose μ or δ to strike a happy medium between the active and the passive sensitivities (see [19], p . 319).

The Designers Guide to Active Filters [26], has the set of equations that generate the element values for this positive and negative feedback biquad. The point is made that by choosing $\delta<1$ some of the active sensitivities may be reduced at the expense of resistor value spread (μ increases).

Equations (2-11.28) through (2-11.42) are used by the HP-67/97 program. The equation solution starts with a choice for the capacitor ratio, δ, and positive feedback ratio, k, and the operational amplifier dc gain, A_{0}, and gain bandwidth product, GBP. The resonant frequency is f_{o} and $p=1 / k\left(f_{a}=1 /(2 \pi \tau)\right.$).

$$
\begin{align*}
& \Omega=f_{a} / f_{o}=G B P /\left(f_{o} A_{o}\right) \tag{2-11.28}\\
& \gamma=A_{o} \Omega=G B P / f_{0} \tag{2-11.29}\\
& d=1 / Q \tag{2-11.30}\\
& \beta=\Omega-p r=\left(1-\frac{A_{o}}{k}\right) \tag{2-11.31}
\end{align*}
$$

$$
\left.\begin{array}{l}
m=\gamma+\beta=\Omega\left\{1+A_{0}\left(1-\frac{1}{k}\right)\right\} \\
a_{2}=(\delta+1)\{m(m-d)+1\} \\
a_{1}=\delta m-(\delta+1) \beta-(m-d)(m d-1) \\
a_{0}=m(\beta-d)+1 \\
C_{1}=1 \tag{2-11.36}\\
C_{2}=\delta
\end{array}\right\} \text { normalized values } \quad .
$$

The quadratic equation is used to find the positive real root (R_{1}) of:

$$
a_{2} R_{1}^{2}+a_{1} R_{1}+a_{0}=0
$$

i.e.,

$$
\begin{equation*}
R_{1}=\frac{-a_{1}}{2 a_{2}}+\sqrt{\left(\frac{a_{1}}{2 a_{2}}\right)^{2}-\frac{a_{0}}{a_{2}}} \tag{2-11.39}
\end{equation*}
$$

then

$$
\begin{equation*}
R_{2}=\frac{m(\delta+1) R_{1}-(d m-1)}{\left(R_{1}-\beta\right) \delta} \tag{2-11.40}
\end{equation*}
$$

H is the gain of the filter at resonance:

$$
\begin{equation*}
H=\frac{-R_{2} \cdot \delta \cdot Q}{1-\frac{1}{k}+\frac{1}{A_{o}}} \tag{2-11.41}
\end{equation*}
$$

A parasitic pole also exists. The location of this pole is at $-\sigma$, where:

$$
\begin{equation*}
\sigma=\frac{m}{\delta R_{1} R_{2}} \tag{2-11.42}
\end{equation*}
$$

The normalized transmission function with the above element values becomes:

$$
\begin{equation*}
G(s)=\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{\frac{H}{Q} s}{\left(s^{2}+\frac{s}{Q}+1\right)\left(\frac{s}{\sigma}+1\right)} \tag{2-11.43}
\end{equation*}
$$

The design of this filter type is somewhat cut and try if low sensitivities are to be achieved. The program is written to take the desired resonant frequency, the operational amplifier parameters, the capacitor ratio, one capacitor value, and the positive feedback ratio, and provides the remaining element values.

Because the resonator design exhibits a gain, H, at resonance, the input resistor, R_{1}, may be split into two resistors to provide a Thevenin equivalent circuit with gain H desired $/ H=1 / H^{\prime}$ and impedance R_{1}. This equivalent circuit is shown in Fig. 2-11.2.

Figure 2-11.2 Equivalent input resistor network.

$$
\begin{align*}
\text { Eout/Ein } & =1 / H^{\prime}=R_{1 b} /\left(R_{1 a}+R_{1 b}\right) \tag{2-11.44}\\
R_{\text {equiv }} & =\left(R_{1 a} \cdot R_{1 b}\right) /\left(R_{1 a}+R_{1 b}\right)=R_{1} \tag{2-11.45}
\end{align*}
$$

Equation (2-11.44) is solved for $R_{1 a}+R_{1 b}$, and substituted into Eq. (2-11.45) to yield an expression for $R_{1 a}$:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{la}_{\mathrm{a}}}=\mathrm{H}^{\prime} \cdot \mathrm{R}_{1} \tag{2-11.46}
\end{equation*}
$$

Substituting Eq. (2-11.46) into Eq. (2-11.44) yields an expression for $\mathrm{R}_{1 \mathrm{~b}}$:

$$
\begin{equation*}
R_{1 b}=R_{1 a} /\left(H^{\prime}-1\right) \tag{2-11.47}
\end{equation*}
$$

Equations (2-11.46) and (2-11.47) are used by the program to split the input resistor and provide the desired resonator gain at the resonant frequency.

2:1 User Instructions

Example 2-11.1
A second order Deliyannis resonator is to be designed using a type 741 operational amplifier. The operational amplifier characteristics and resonator specifications are:

Center frequency:	1000 Hz
Q:	100
gain at resonance:	1.0
capacitor ratio:	1.0
p, positive fdbk ratio:	0.04
resistance level:	10000Ω
op-amp gain-bandwidth:	500000 Hz
op-amp dc gain:	100000

Find the element values and calculate the sensitivities for this design. Investigate the effect of different values of positive feedback on the component value spread and sensitivities. The HP-97 printout for this problem is shown on the next page, and the schematic is shown in Fig. 2-11.3.

Figure 2-11. 3 Deliyannis resonator schematic.

HP-97 printout for Example 2-11.1
106. GSEA load Q
16Gū. ESBa load denormalization resistance level, R
. 64 GSEE load positive feedback ratio, p
1. ESEE load capacitor ratio, δ
i. $65 B_{0}$ load gain desired at resonance, $H_{\text {desired }}$
500006. $55 E C$ load op-amp GBP
1006ac. 6560 load op-amp dc gain, A_{0}
1060. GSEE load f_{0} and start

The following printouts have all parameters the same except the positive feedback ratio, p. Notice passive sensitivities increase and active decrease.

$$
\begin{gathered}
1 .-6 \mathrm{GEEE} \\
\operatorname{GSEE}
\end{gathered}
$$

3.79141-63	***	46.3615-62	***	577.077-63	***
$172.676+64$	***	$20.6767+619$	***	$1.71635+66$	***
-17.2668+53	* ${ }^{*}$ *	-2. $67535+62$	***	-286.053+60	***
$763.761+66$	***	$519.661+66$	***	302.8935404	***
1. $60606+65$	****	$249.008+60$	***	1. $560961+64$	***
$10.9000+63$	***	10. $6606+65$	W**	$10.0600+63$	****
$455.423+66$	***	$4.458606+66$	***	$29.7421+63$	***
60.3422-12	***	737.866-12	***	$9.18446-65$	* ${ }^{\text {an }}$
60. $3422-12$	***	737.966-12	***	9.18446-69	***
$172.668+66$	***	$20.7535+66$	***	$2.86053+66$	***
10.6096+65	***	10.0648+63	***	$10.0351+6.5$	***
-500.000-63	***	-590.000-63	**	-500.006-03	**
21.3405-6E	***	$8.48065+64$	***	114.973+64	***
-500.021-63	***	-8.98005+60	Wer	-115.473+64	***
-31.4320-63	***	-4.24420 060	***	-57.4884+60	***
213.406-63	***	21.2853-65	***	4.79853-63	***

PROGRAM 2-12 ELLIPTIC FILTER ORDER AND LOSS POLE LOCATIONS.

Program Description and Equations Used

This program finds the lowest elliptic (also called Cauer-Chebyshev) lowpass filter order that will meet the requirements for Amax, Amin, fmax, and fmin. These parameters are defined with the aid of Fig. 2-12.1.

Figure 2-12.1 Elliptic filter loss function, where:

Amax : maximum passband ripple in $d B$
Amin : minimum stopband attenuation in $d B$
fmax : maximum passband frequency (passband edge)
fmin : minimum frequency where Amin is achieved.

The program also calculates the attenuation pole frequencies. From these frequencies the filter response at any frequency outside the passband may be determined by using the Z transformation. This transformation technique is described in the next program, and also in chapter 8 of Daniels' book [17]. The analog Z transformation should not be confused with the digital z transformation.

The elliptic filter response is not monotonic in the stopband as can be seen in Fig. 2-12.1. This stopband response is the characteristic difference between the Chebyshev and elliptic filter responses. Both filter types have equiripple behavior in the passband, but Chebyshev
(and Butterworth) filters have all attenuation poles located at infinite frequency, while elliptic filters have finite attenuation poles. Because of these finite attenuation poles, the elliptic filter has a sharper transition from passband to stopband for a given filter order.

The elliptic response also has its drawbacks. As the transition band becomes sharper (the filter more selective) the transfer function phase angle changes more rapidly with frequency, and so the group delay becomes peaked near the passband edge frequency. Uniform group delay is required for filters that must process pulses without exhibiting ringing amplitude responses; thus, the transmission function of the elliptic filter tends toward the optimum only from the point of view of the attenuation requirement.

If the LC filter is being designed as a basis for an active filter design such as the leapfrog topology, or an elliptic response is being contemplated for active simulation by cascaded active resonators, the elliptic filter transmission zero (attenuation pole) simulation will require a biquadratic resonator circuit. The designer should always compare the sensitivities of the elliptic active filter circuit versus the sensitivities of a higher order all-pole active design which meets the overall same specifications. In general, as the active resonator circuit becomes more complicated, or the operating gain-bandwidth requirements approach the op-amp gain-bandwidth, the circuit sensitivities become worse, and the final filter design may not meet the specification requirements when component drift due to temperature and aging is considered.

The following formulas are discussed in detail in the equation derivation section and the results brought forward. The loss function, L, is defined by Eq. (2-12.1) (refer to Fig. 2-12.1).

$$
\begin{equation*}
L^{2}=\frac{10^{0.1} \text { Amin }-1}{10^{0.1} A \max -1} \tag{2-12.1}
\end{equation*}
$$

Furthermore, x_{L} is the ratio of the lowpass stopband edge frequency to the lowpass passband edge frequency (refer to Fig. 2-12.1):

$$
\begin{equation*}
\mathrm{x}_{\mathrm{L}}^{-1}=\frac{\mathbf{f}_{\max }}{\mathrm{f}_{\min }} \tag{2-12.2}
\end{equation*}
$$

The minimum elliptic filter order that will meet the requirements for Amax, Amin, fmax, and fmin is calculated from Eq. (2-12.28).

$$
\begin{equation*}
n=\frac{K\left(x_{L}^{-1}\right) \cdot K^{\prime}\left(L^{-1}\right)}{K^{\prime}\left(x_{L}^{-1}\right) \cdot K\left(L^{-1}\right)} \tag{2-12.30}
\end{equation*}
$$

where $\mathrm{K}(\mathrm{)}$ is the complete elliptic integral of the first kind, and $K^{\prime}()$ is the complementary complete elliptic integral of the first kind. These functions are defined by Eqs. (2-12.11) through (2-12.14) and are calculated by a truncated infinite series as given by Eqs. (2-12.18) through (2-12.21).

The loss poles of the elliptic filter transfer function are given by Eqs. (2-12.31) and (2-12.32).

$$
\begin{equation*}
x_{v}=\frac{x_{L}}{x_{z v}} \tag{2-12.31}
\end{equation*}
$$

where

$$
x_{z \nu}=\left\{\begin{array}{l}
\operatorname{sn}\left\{\frac{2 v}{n} K\left(x_{L}^{-1}\right), x_{L}^{-1}\right\} n \text { odd } \\
\operatorname{sn}\left\{\frac{2 v-1}{n} K\left(x_{L}^{-1}\right), x_{L}^{-1}\right\} n \text { even }
\end{array}\right.
$$

The elliptic sine is evaluated by means of a Fourier series given by Eqs. (2-12.24) and (2-12.25).

The even ordered elliptic filters have a stopband loss that approaches a constant, finite value as the frequency approaches infinity, i.e., the even ordered elliptic filter does not have a loss pole at infinite frequency. The lossless LC synthesis of such a filter cannot be done without the use of mutual inductive coupling between the filter sections. On the other hand, active filter realizations can be done without the loss pole locations being a constraint.

A special form of the Möbius transformation (a bilinear change of variables) may be applied to the even ordered elliptic loss pole frequencies to move the highest frequency loss pole to infinity and thereby allow LC synthesis without mutual inductance. The even ordered elliptic filter element value tables in Zverev [58], already have this transformation applied, hence $x_{L}^{-l}=\sin \theta$ only for odd order filters (θ is the tabulated modular angle).

The general form of the Möbius transformation is:

$$
\begin{equation*}
s^{2}=\left\{\frac{\Omega_{C^{2}-\Omega_{B}}^{2}}{\Omega_{B}^{2}-\Omega_{0}^{2}} \Omega_{B}^{2}\right\} \cdot\left\{\frac{s^{2}+\Omega_{0}^{2}}{s^{2}+\Omega_{C}{ }^{2}}\right\} \tag{2-12.3}
\end{equation*}
$$

This transformation converts frequencies as follows:

1) $\quad S=j \Omega$ to $s=0$
2) $\quad S=j \Omega_{B}$ to $s=j \Omega_{B}$ (no change in passband edge)
3) $\quad s=j \Omega_{C}$ to $s=\infty$

It is not desired to transform the dc, or zero frequency, location in the lowpass filter, hence, $\Omega_{0}=0$; furthermore, the loss poles lie directly on the $j \omega$ axis so the transformation need only apply to $s=j \omega$, thus Eq. (2-12.3) becomes:

$$
\begin{equation*}
\omega^{2}=\left(\Omega_{C}^{2}-\Omega_{B}^{2}\right) \frac{\Omega^{2}}{\Omega_{C}^{2}-\Omega^{2}} \tag{2-12.4}
\end{equation*}
$$

The program calculates and prints (displays) the original evenordered pole locations as calculated from Eq. (2-12.32) applies Eq. (2-12.4), and prints and stores the transformed pole locations. For odd-ordered filters, the program calculates, prints, and stores the finite loss pole locations from Eq. (2-12.32) without transformation. In both the even and odd cases, the loss pole frequencies are stored in normalized form ($\Omega=1$), but are denormalized for printout or display.

The normalized loss pole frequencies are used by the next program in this section to calculate the filter attenuation at any frequency within the passband or the stopband by using the Z transform.

Example 2-12.1
Compute the filter order and loss pole locations for an elliptic filter to meet the following specifications.

$$
\begin{aligned}
& \text { Amax }=.28 \mathrm{~dB}\left(\rho=25 \%, \text { Amax }=-10 \log \left(1-\rho^{2}\right)\right) \\
& \text { Amin }=63 \mathrm{~dB} \\
& \operatorname{fmax}=1000 \mathrm{~Hz} \\
& \operatorname{fmin}=2000 \mathrm{~Hz}
\end{aligned}
$$

HP-97 input/output

. 28	6S5r	load Amax
63.86	GEEA	load Amin
$106{ }^{\text {a }}$. 9	5 ESE	load fmax
2006. 64	G5Et	load fmin
	ESbL	calculate minimum filter order
4.97	***	actual calculated filter order, n
5.60	***	nearest integral value for \mathfrak{n} to meet specs
	ESEO	calculate loss pole locations
5255.604850	***	
2885.246505	***	

These results may be checked by comparing them to the 30° modular angle filter design shown in the "Catalog of Normalized Lowpass Models" on page 220 of Zverev [58].

Example 2-12.2
Compute the minimum filter order and loss pole locations for an el1iptic filter which meets the following specifications:

$$
\begin{aligned}
& \operatorname{Amax}=.1773 \mathrm{~dB}\left(\rho=20 \%, \operatorname{Amax}=-10 \log \left(1-\rho^{2}\right)\right) \\
& \operatorname{Amin}=78 \mathrm{~dB} \\
& \mathrm{fmax}=1000 \mathrm{~Hz} \\
& \mathrm{fmin}=2000 \mathrm{~Hz}
\end{aligned}
$$

. 1773	GSEA	load Amax
78.80	6SEs	load Amin
	$65 E E$	load fmax
2000.60	-EEE	load fmin
	GSPC	calculate minimum filter order
5.96	***	actual calculated filter order, n
6.80	**	nearest integral n to meet specs

65E: calculate loss pole locations:
 C661. it:

298. 32066	***	
	***	transformed loss pole locations

Derivation of Equations Used

The elliptic response is governed by the Chebyshev rational function, which is a ratio of polynomials. The development of the Chebyshev rational function in terms of elliptic functions is beyond the scope of this discussion. This development is discussed in Chapter 5 of Daniels' book [17]. A few highlights of the Chebyshev rational function and elliptic functions will be used to show the development of the equations used by this program.

The Chebyshev response becomes the elliptic response when the Chebyshev polynomial, $T_{n}(x)$, is replaced by the Chebyshev rational function, $R_{\mathbf{n}}(x, L)$, in the filter transfer function (Feldtkeller equation).

$$
\begin{equation*}
|H(j \omega)|^{2}=1+|K(j \omega)|^{2} \tag{2-12.5}
\end{equation*}
$$

for Chebyshev response, $|K(j \omega)|^{2}=\varepsilon^{2} \cdot T_{n}(x)$
for elliptic response, $|K(j \omega)|^{2}=\varepsilon^{2} \cdot R_{n}(x, L)$
Hence, the elliptic attenuation function is:

$$
\begin{align*}
A(\omega)_{d B} & =20 \cdot \log |H(j \omega)| \tag{2-12.8}\\
& =10 \cdot \log \left\{1+\varepsilon^{2} \cdot{R_{n}^{2}}^{2}(x, L)\right\} ;
\end{align*}
$$

$$
\begin{equation*}
\text { where } x=\omega / \omega \max =f / f \max \tag{2-12,9}
\end{equation*}
$$

The Chebyshev rational function, $R_{n}(x, L)$, has the following properties (also see Fig. 2-11.2).

1) R_{n} is odd when n is odd and vice versa.
2) All the zeros of R_{n} lie within the interval $-1<x<1$, while all the poles lie outside this interval.
3) $R_{n}(x, L)$, like $T_{n}(x)$, oscillates between ± 1 for $-1<x<1$. This interval defines the passband.
4) $R_{n}(1, L)=+1$ (passband edge).
5) $\left|R_{n}\right|>L$ (oscillates outside of L) for $|x|>x_{L}$, where x_{L} is defined as the first value of x where $R_{n}(x, L)=L$, and hence, Amin is achieved (defines stopband).

Figure 2-11.2 Chebyshev rational functions for $\mathrm{n}=2$ to 5 .

By using Eq. (2-12.8) and condition 5, an expression for L can be found in terms of the filter parameters Amin and ε.

$$
\begin{equation*}
L^{2}=\frac{10^{0.1 \operatorname{Amin}}-1}{\varepsilon^{2}} \tag{2-12,10}
\end{equation*}
$$

Since $A(\omega)=$ Amax at the passband edge, fmax, condition 4 and Eq. (2-12.8) can be used to find an expression for ε.

$$
\begin{equation*}
\varepsilon^{2}=10^{0.1 \operatorname{Amax}}-1 \tag{2-12.11}
\end{equation*}
$$

Not surprisingly, this is the same expression as is used in the Chebyshev case, and for the same reasons (condition 3).

By putting Eqs. (2-12.10) and (2-12.11) together, the expression for L is obtained:

$$
\begin{equation*}
L^{2}=\frac{10^{0.1 \operatorname{Amin}}-1}{10^{0.1 \operatorname{Amax}}-1} \tag{2-12.12}
\end{equation*}
$$

ELLIPTIC FUNCTIONS

There are three kinds of elliptic integrals (see Abramowitz and Stegun, [1]). Only the elliptic integral of the first kind is needed for elliptic filters. The elliptic integral of the first kind is defined by the following equation:

$$
\begin{equation*}
u(\emptyset, k)=\int_{0}^{\phi} \frac{d x}{\left(1-k^{2} \cdot \sin ^{2} x\right)^{\frac{1}{2}}} \tag{2-12.13}
\end{equation*}
$$

The two variables, \emptyset and k, are called the amplitude and modulus respectively. Some elliptic function tables [1], and some elliptic filter tables [58], are parametric in terms of the modular angle, θ, instead of the modulus, k. The modular angle is defined by:

$$
\begin{equation*}
k=\sin \theta \tag{2-12.14}
\end{equation*}
$$

The complete elliptic integral of the first kind results when \varnothing, the limit of integration, is taken as $\pi / 2$ radians. This value, $u(\pi / 2, k)$ is defined as $K(k)$.

Figure $2-12.3$ shows $u(\phi, k)$ parametric with the modular angle, θ. $u(\phi, k)$ has been normalized with respect to $K(k)$. Figure 2-12.4 shows the complete elliptic integral, $K(k)$ by itself.

(2)

Figure 2-12.3 Elliptic integral.

(3)

Figure 2-12.4 Complete elliptic integral.

The complementary modulus is defined in terms of the modulus, k, or the modular angle, θ, as:

$$
\begin{equation*}
k^{\prime}=\left(1-k^{2}\right)^{\frac{1}{2}}=\cos \theta \tag{2-12.13}
\end{equation*}
$$

The complementary complete elliptic integral is defined in terms of the complementary modulus:

$$
\begin{equation*}
K^{\prime}(k)=K\left(k^{\prime}\right)=u\left(\pi / 2, k^{\prime}\right) \tag{2-12,16}
\end{equation*}
$$

The elliptic sine is an elliptic function, and is defined in a somewhat reverse manner from the elliptic integral:

$$
\begin{array}{ll}
u(\emptyset, k)=\int_{0}^{\phi}\left(1-k^{2} \cdot\right. & \left.\sin ^{2}(x)\right)^{-\frac{1}{2}} d x \\
\operatorname{sn}(u, k)=\sin \emptyset & (\text { elliptic sine }) \\
c n(u, k)=\emptyset & (\text { elliptic cosine }) \tag{2-12.19}
\end{array}
$$

The definition is "reverse" since the limit of integration, \varnothing, must be found to yield the "input," $u(\phi, k)$ and k. Figure $2-12.5$ shows the elliptic sine and elliptic cosine functions.

Figure 2-12.5 Elliptic sine and cosine functions.

CREDITS: 1, 2, 3, \& 4: Reproduced from "Approximation Methods for Electronic Filter Design," by K.W. Daniels, copyright, © 1974, by Bell Telephone Labs, Inc., used with permission of McGraw-Hill Book Company, Inc., New York, N.Y.

Luckily, there are rapidly converging series expansions for both $K(k)$ and $\operatorname{sn}(u, k)$, [12], and the programmable calculator can be used to perform the iterative calculations. These series expansions are:

Complete elliptic integral

$$
\begin{equation*}
K(k)=\frac{\pi}{2} \prod_{m=0}^{\infty}\left(1+k_{m+1}\right) ; \tag{2-12.20}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{k}_{\mathrm{m}+1}=\left(1=\mathrm{k}_{\mathrm{m}}^{\prime}\right) /\left(1+\mathrm{k}_{\mathrm{m}}^{\prime}\right) \tag{2-12.21}\\
& \mathrm{k}_{\mathrm{m}}^{\prime}=\left(1=\mathrm{k}_{\mathrm{m}}^{2}\right)^{\frac{1}{2}}, \text { (complementary modulus) } \tag{2-12.22}\\
& \mathrm{k}_{\mathrm{o}} \equiv \mathrm{k} \tag{2-12.23}
\end{align*}
$$

The terms of the infinite product expansion rapidly converge toward unity. The series is terminated when $\mathrm{k}_{\mathrm{m}}<10^{-9}$. This accuracy is generally achieved in four iterations or less.

Elliptic sine
The elliptic sine is calculated from the following Fourier series:

$$
\begin{equation*}
s_{n}(u, k)=\frac{2 \pi}{K(k) \cdot k} \sum_{m=0}^{\infty}\left\{\frac{q^{i m+\frac{1}{2}}}{1-q^{2 m+1}}\right\} \cdot \sin \left((2 m+1) \frac{\pi u}{2 K(k)}\right) \tag{2-12.24}
\end{equation*}
$$

where q is Jacobi's nome (also called modular elliptic function):

$$
\begin{equation*}
q=e^{-\frac{\pi K^{\prime}(k)}{K(k)}} \tag{2-12.25}
\end{equation*}
$$

The series is terminated when $\left(q^{m+\frac{1}{2}}\right) /\left(1-q^{2 m+1}\right)<10^{-9} q$

This particular algorithm for the elliptic sine is only one of many which can be used to calculate the function. For sharp cutoff filters, the convergence is slow; however, of all the algorithms researched by the author, the Fourier series method could be coded to fit into the HP-97 program memory and still leave enough room for the coding needed for the rest of the program.

If more registers were available, the descending Landen transformation method could have been combined with the calculation of $K(k)$ to simultaneously yield $K(k)$ and $s n(u, k)$ as outlined in Skwirzynski and Zdunek's article [46]. If more program space were available, the
elliptic sine could be calculated from the ratios of sums of hyperbolic sines and cosines as recommended by Orchard [41]. Also, if more program space were available, the calculation of the transmission zeros could be done directly from adaptations of the elliptic sine as represented by infinite products of hyperbolic tangents given by Amstutz [2] or as interpreted by Geffe [27]. Darlington's algorithm [18] is used in Program 2-15, and is a concise method for calculating the transmission zeros and poles when the filter order is odd.

Filter order calculation: Just as the trigonometric sine is periodic, so is the elliptic sine, although the elliptic sine is doubly periodic with a real period of $4 \cdot \mathrm{~K}(\mathrm{k})$, and an imaginary period of $2 \cdot \mathrm{~K}^{\prime}(\mathrm{k})$. The Chebyshev rational function, $R(x, L)$ may be expressed in terms of the complete elliptic integral and the elliptic sine. By relating the real and imaginary periods of the elliptic sine function to the real and imaginary periods of the Chebyshev rational function, two equations in two unknowns, C and n, may be formulated. These equations are:

Chebyshev rational function and elliptic functions

$$
R_{n}(x, L)= \begin{cases}s n\left(u L / C, L^{-1}\right) & n \text { odd } \tag{2-12.26}\\ \operatorname{sn}\left(u L / C+(-1) \frac{n}{2} \cdot K\left(L^{-1}\right), L^{-1}\right) & n \text { even }\end{cases}
$$

where C is a constant, and u is the solution to:

$$
\begin{equation*}
x=\operatorname{sn}\left(x_{L} \cdot u, x_{L}^{-1}\right) \tag{2-12,27}
\end{equation*}
$$

Simultaneous equations in C and n :

$$
\begin{align*}
& x_{L}^{-1} \cdot K\left(x_{L}^{-1}\right)=n \cdot C \cdot L^{-1} \cdot K\left(L^{-1}\right) \quad \text { (real periods) } \tag{2-12.28}\\
& x_{L}^{-1} \cdot K^{\prime}\left(x_{L}^{-1}\right)=C \cdot L^{-1} \cdot K^{\prime}\left(L^{-1}\right) \quad \text { (imaginary periods) } \tag{2-12.29}
\end{align*}
$$

Eliminating C by simultaneous solution of Eqs. (2-12.28) and (2-12.29) results in the following expression for the filter order, n :

$$
\begin{equation*}
n=\frac{K\left(x_{L}^{-1}\right) \cdot K^{\prime}\left(L^{-1}\right)}{K^{\prime}\left(x_{L}^{-1}\right) \cdot K\left(L^{-1}\right)} \tag{2-12.30}
\end{equation*}
$$

where x_{L}^{-1} is defined by Eq. (2-12.2) and L^{-1} by Eq. (2-12.18):

$$
\begin{aligned}
& x_{L}^{-1}=(f \max) /(f \min) \\
& L^{-1}=\left\{\frac{10^{0.1 A \max }-1}{\left.10^{0.1 A \min -1}\right\}^{\frac{1}{2}}}\right.
\end{aligned}
$$

The loss poles of the elliptic filter transfer function, Eq. (2-12.5), are given by:

$$
\begin{equation*}
x_{v}=\frac{x_{L}}{x_{z v}} \tag{2-12.31}
\end{equation*}
$$

where:

$$
x_{z v}=\left\{\begin{array}{ll}
\operatorname{sn}\left(\frac{2 v}{n} K\left(x_{L}^{-1}\right), x_{L}^{-1}\right) & n \text { odd } \\
\operatorname{sn}\left(\frac{(2 v-1)}{n} K\left(x_{1}^{-1}\right), x_{L}^{-1}\right) & n \text { even }
\end{array}\right\} v=1,2, \ldots,{ }^{(2-12.32)}
$$

In Eq. (2-12.22) k becomes x_{1}^{-1} for the above elliptic sine computation, hence:

$$
\begin{equation*}
x_{V}=\frac{K\left(x_{L}{ }^{-1}\right)}{2 \pi \Sigma} \tag{2-12.33}
\end{equation*}
$$

where Σ is the term summation in Eq. (2-12.24).

2-12
Progiram Listing II

PROGRAM 2-13 RESPONSE OF A FILTER WITH CHEBYSHEV PASSBAND AND ARBITRARY STOPBAND LOSS POLES.

Program Description and Equations Used

This program will calculate the passband and stopband attenuation of lowpass, highpass, bandpass, and bandstop filters having Chebyshev (equiripple) passbands and arbitrary stopband losspole locations. The elliptic filter is a special case of this filter class in that the loss pole locations are chosen to provide equi-ripple stopband behavior.

Bandpass and bandstop filters are assumed to be the classic transformations of the lowpass structure, i.e., equal numbers of attenuation poles on either side of the passband, and geometrical symmetry of those poles about the center frequency. The program is designed to take either stored normalized lowpass loss pole frequencies provided by Program 2-12, or to accept normalized lowpass loss pole frequencies, number of poles at infinite frequency, and passband ripple as provided by the user.

This program is adapted from an unpublished HP-67/97 elliptic stopband attenuation program written by Philip R. Geffe. The basis of the program is the Z transformation, and the associated loss function, $L(Z)$. This function allows the calculation of the stopband attenuation of equiripple passband elliptic filters from a knowledge of the loss pole frequencies only [17]. The transformed variable, Z, is defined by:

$$
\begin{equation*}
Z^{2}=\left(s^{2}+w_{B}^{2}\right) /\left(s^{2}+w_{A}^{2}\right) \tag{2-13.1}
\end{equation*}
$$

This function spreads the passband $\left(s=j \omega_{A}\right.$ to $\left.j \omega_{B}\right)$ over the entire imaginary Z axis, and spreads the stopbands along the real Z axis. A1though use of the Z transform allows greater numerical accuracy due to the spreading out of the passband poles, the prime reason for its use in this program is the mathematical expressions for elliptic filters are simpler in the Z domain than in the s domain.

Given a filter with equiripple passband extending from ω_{A} to ω_{B}, having NZ attenuation poles at the origin, N finite loss poles, and NINF
attenuation poles at infinite frequency, the loss function in terms of Z is:

$$
\begin{equation*}
L(z)=\left\{\frac{z+\omega_{B} / \omega_{A}}{z-\omega_{B} / \omega_{A}}\right\}^{\frac{N Z}{2}}\left\{\frac{z+1}{z-1}\right\}^{\frac{N I N F}{2}} \int_{i=1}^{N} \frac{z+z_{i}}{z-Z_{i}} \tag{2-13.2}
\end{equation*}
$$

If $L(Z)$ represents a normalized lowpass filter, then $\omega_{A}=0$, $\omega_{B}=1$, and $N Z=0$. Letting $s=j \Omega, Z$ and $L(Z)$ become:

$$
\begin{align*}
& Z=\left(1-1 / \Omega^{2}\right)^{\frac{1}{2}} \tag{2-13.3}\\
& L(Z)=\left\{\frac{z+1}{z-1}\right\} \frac{N I N F}{2} \prod_{i=1}^{N-Z_{i}} \frac{z+z_{i}}{z-Z_{i}} \tag{2-13.4}
\end{align*}
$$

The attenuation function, $A(\Omega)$, is defined in terms of the loss function, $\mathrm{L}(\mathrm{Z})$, as follows:

$$
\begin{align*}
& A(\Omega)=10 \cdot \log \left\{1+\frac{\varepsilon^{2}}{4}\left(L(Z)+\frac{(-1)^{N I N F}}{L(Z)}\right)^{2}\right\} \tag{2-13.5}\\
& \varepsilon^{2}=10^{0.1 A \max }-1 \tag{2-13.6}
\end{align*}
$$

In the stopband, the attenuation function may be simplified:

$$
\begin{equation*}
A(\Omega)=10 \log \left[1+\frac{\varepsilon^{2}}{4}\{|L(Z)|+1 /|L(Z)|\}^{2}\right] \tag{2-13.7}
\end{equation*}
$$

The filter passband ripple (Amax) may sometimes be expressed in terms of a reflection coefficient, ρ. The relationship between these quantities is:

$$
\begin{equation*}
\operatorname{Amax}=-10 \log \left(1-\rho^{2}\right) \tag{2-13.8}
\end{equation*}
$$

Within the nornalized lowpass passband ($\Omega<1$), Z becomes purely imaginary. Equation (2-13.4) may be rewritten in exponential form to eliminate the need for complex arithmetic:

$$
\begin{equation*}
L(Z)=e^{j B} \tag{2-13.9}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\frac{\text { NINF }}{2} \tan ^{-1}\left\{\frac{-2|z|}{|z|^{2}-1}\right\}+\sum_{i=1}^{N} \tan ^{-1}\left\{\frac{-2|z| z_{i}}{|z|^{2}-z_{i}^{2}}\right\} \tag{2-13.10}
\end{equation*}
$$

substituting Eq. (2-13.9) into (2-13.5) yields:

$$
\begin{equation*}
A(\Omega)=10 \log \left(1+\varepsilon^{2} \cos ^{2} B\right) \text { for NINF even, } \tag{2-13.11}
\end{equation*}
$$

and

$$
\begin{equation*}
A(\Omega)=10 \log \left(1+\varepsilon^{2} \sin ^{2} B\right) \text { for NINF odd. } \tag{2-13.12}
\end{equation*}
$$

The program uses Eqs. (2-13.3) through (2-13.12) to find the filter loss at any frequency. Two ancillary relations are used to convert unnormalized bandpass or bandstop frequencies to the normalized lowpass frequency, Ω. Lowpass and highpass filters are only special cases of bandpass and bandstop filters respectively, in that the center frequency is zero. These two ancillary equations are:

Bandpass to normalized lowpass

$$
\begin{equation*}
\Omega_{B P}=\frac{1}{B W}\left\{f-\frac{f_{O}^{2}}{f}\right\} \tag{2-13.13}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{BW}=\text { bandwidth } \\
& \mathrm{f}_{\mathrm{o}}=\text { center frequency }
\end{aligned}
$$

Bandstop to normalized lowpass

$$
\begin{equation*}
\Omega_{\mathrm{BS}}=1 / \Omega_{\mathrm{BP}} \tag{2-13.14}
\end{equation*}
$$

Equation (2-13.4) will predict the stopband attenuation for even ordered elliptic filters of Cauer types A and B (the Möbius transformation - see previous program for description). The type A, even-ordered filter has no attenuation poles at infinite frequency, and can only be realized with mutual inductive coupling between filter sections, while the Möbius transformed pole locations (type B) can be realized with a ladder structure containing only L^{\prime} s and C^{\prime} s. The even ordered type B ladder structure possesses a double pole of attenuation at infinite frequency.

Equation (2-13.4) will not work with the pole locations resulting from a transformation to Cauer type C filters (equal resistive termination for even-ordered elliptic filters), i.e., one must use types A and B only, See Saal and Ulbrich [45] for details.

2.13
 User Instructions

STEP	INSTRUCTIONS	INPUT DATAUNITS	KEYS	OUTPUT DATA/UNITS
7	Load denormalized stopband frequency and			
	calculate stopband attenuation	f	E	A(f)
8	If a sweep of frequencies is desired:			
	a) Load sweep parameters	$\mathrm{f}_{\text {start }}$	ENTH	
	The frequency increment is either an	fstop	ENT!	
	additive delta, or a multiplicative	fincr	0	
	delta depending upon lin/log sweep.			
	If linear sweep is desired, then			
	the increment should be entered as a			
	negative quantity, i. $e_{\text {., }}$ for 100 Hz			
	linear steps, the increment should			
	be entered as -100. Whether the			
	increment is linear or logrithmic,			
	the sweep will be always in the			
	direction of increasing frequency.			
	b) Start sweep		D	f
				A(f)
				space
				f
				$A(f)$
				:
9	Go back to any step desired, modify, and			
	rerun program			
-				

Example 2-13.1
An elliptic bandpass filter is required to pass frequencies between 5 kHz and 15 kHz with 0.0436 dB ripple or less (10% reflection coefficient), and reject frequencies lying outside a 4.1 kHz to 19 kHz band by at least 60 dB . Find the minimum filter order that will satisfy these requirements, and predict the stopband response.

The center frequency is the geometric mean of the upper and lower passband edge frequencies. Likewise, the stopband edge frequencies must be geometrically symmetrical about the center frequency. In this example, the above frequencies do not satisfy this requirement, hence, the narrowest stopband with geometric symmetry must be defined. The filter center frequency is calculated from the passband edge frequencies:

$$
f_{0}=(5000 \cdot 15000)^{\frac{1}{2}}=8660.25 \mathrm{~Hz}
$$

The narrowest stopband may be found by calculating the geometrical mating frequencies to the given stopband frequencies, and taking the narrowest set:

$$
\begin{aligned}
& f_{u}=f_{o}^{2} / 4100=18292.68 \mathrm{~Hz} \\
& f_{L}=f_{o}^{2 / 19000}=3947.37 \mathrm{~Hz}
\end{aligned}
$$

The narrowest stopband is 4100 Hz to 18292.68 Hz for a stopband width of 14192.68 Hz .

The stopband and passband data are loaded into Program 2-12 to find the minimum filter order and loss pole locations. Because bandpass data was loaded, the loss pole frequencies that are output represent loss pole bandwidths, or the separation of loss pole frequencies in the upper and lower stopbands that are geometrically related to the filter center frequency. To convert these bandwidths into loss pole frequencies, the subprogram contained in Program 2-1 can be used. These equivalent bandpass loss pole frequencies are not necessary for proper operation of this program, but are calculated for information only. They can also be useful when tuning the final filter. All normalized loss pole information is automatically stored by Program 2-12 for use by this program.

Arample 2－13．1 continued

Load Program 2－12 and calculate filter order and loss poles． ． $6430^{\circ} 6 \mathrm{EEA}$ load Amax
60．60 6SE load Amin
10046． 66 E5EE load frax（passband bandwidth） 14192．68 EGBk load fmin（stopband minimum bandwidth）

GEE calculate minimum filter order
6．「2＊＊
7． 60 ． 4 事 minimum integral filter order，n
ESEF calculate loss pole bandwidths
28． $69564+6 \overline{3}$ w 10 ss pole bandwidth \＃l
$17.09915+8 \mathrm{E}$ स 4 loss pole bandwidth \＃2
14． $44525+8.5$ 本車 loss pole bandwidth \＃3

Load Program 2－1 to calculate loss pole locations from loss pole Bandwidths．

Load this program（Program 2－13）and calculate filter response．

$$
\begin{aligned}
& \text { S660. } 25 \text { ENT: load } f_{0} \\
& 16060.06 \text { GSEA load passband width and select bandpass } \\
& 2006.64 \mathrm{EHT}+\mathrm{load} \mathrm{f}-\mathrm{start} \\
& 5006.06 \text { ENT: load f-stop } \\
& -200.65 \text { ESEC load f-increment (a negative value } \\
& \text { means linear sweep increments) } \\
& \text { GSED start sweep: } \\
& \text { the output is on the next page. } \\
& \text { (sweep step size changes were made between output segments) }
\end{aligned}
$$

PROGRAM OUTPUT FOR EXAMPLE 2-13.1				
LOWER STOPBAND	PASSBAND	UPPER STOPBAND		
$\begin{array}{rl} 2000.0 \mathrm{ge} & \mathrm{f} \\ 68.0 \mathrm{f} & \mathrm{~A}(\mathrm{f}) \mathrm{dB} \end{array}$		$\begin{array}{r} 15060.06 \\ 0.04 \end{array}$	$\begin{array}{r} 30606.461 \\ 79.85 \end{array}$	$\begin{aligned} & \mathbf{f} \\ & \mathbf{A}(f) \end{aligned}$
$\begin{array}{r} 2200.66 \\ 73.63 \end{array}$		$\begin{array}{r} 16060.00 \\ 12.98 \end{array}$	$\begin{array}{r} 31006.000 \\ 100.57 \end{array}$	
$\begin{array}{r} 2406.00 \\ 90.12 \end{array}$	$\begin{array}{rrr}6044.0660 ~ & 11006.0060 \\ 0.0389 & 0.0115\end{array}$	$\begin{array}{r} 17008.004 \\ 31.72 \end{array}$	$\begin{array}{r} 32006.06 \\ 82.55 \end{array}$	
$\begin{array}{r} 2606.06 \\ 13.25 \end{array}$	$\begin{array}{rrr}6504.0900 ~ & 11500.0600] \\ 0.6002 & 0.0000\end{array}$	$\begin{array}{r} 180060.00 \\ 52.97 \end{array}$	$\begin{array}{r} 33000.60 \\ 76.47 \end{array}$	
$\begin{array}{r} 2800.064 \\ 67.19 \end{array}$	$\begin{array}{rr}7066.6060 ~ & 12006.0006 \\ 0.6248 & 0.0144\end{array}$	$\begin{array}{r} 19000.60 \\ 64.55 \end{array}$	$\begin{array}{r} 34000.00 \\ 73.25 \end{array}$	
$\begin{array}{r} 3006.06 \\ 64.45 \end{array}$	7506.6060 12500.0000 0.6434 0.0359	$\begin{array}{r} 20000 . \overline{60} \\ 88.65 \end{array}$	$\begin{array}{r} 35060.06 \\ 71.15 \end{array}$	
$\begin{array}{r} 3206.06 \\ 63.96 \end{array}$	$\begin{array}{rr}3006.0006 ~ & 13006.0006 \\ 0.6234 & 0.6565\end{array}$	$\begin{array}{r} 21400.606 \\ 77.55 \end{array}$	$\begin{array}{r} 36009.04 \\ 65.63 \end{array}$	
$\begin{array}{r} 3468.90 \\ 66.45 \end{array}$	$\begin{array}{rr}8500.06009 & 13504.0096 \\ 0.0016 & 0.0082\end{array}$	$\begin{array}{r} 22000.60 \\ 66.70 \end{array}$	$\begin{array}{r} 37006.80 \\ 68.49 \end{array}$	
$\begin{array}{r} 3000.00 \\ 84.71 \end{array}$	9060.6000 14061.0060 0.605 0.0690	$\begin{array}{r} 23606.60 \\ 64.24 \end{array}$	$\begin{array}{r} 38009.00 \\ 67.60 \end{array}$	
$\begin{array}{r} 3800.00 \\ 60.05 \end{array}$	5506.0900 14500.0609 0.0293 0.0400	$\begin{array}{r} 24600.09 \\ 63.83 \end{array}$	$\begin{array}{r} 39000.60 \\ 60.89 \end{array}$	
$\begin{array}{r} 4006.06 \\ 67.53 \end{array}$	$\begin{array}{r} 15606.0009 \\ 9.6436 \end{array}$	$\begin{array}{r} 25006.60 \\ 64.45 \end{array}$	$\begin{array}{r} 49609.06 \\ 66.31 \end{array}$	
4266. 66		$\begin{array}{r} 26000.60 \\ 65.75 \end{array}$	$\begin{array}{r} 41090.00 \\ 65.84 \end{array}$	
$\begin{array}{r} 4466.06 \\ 32.55 \end{array}$	NOTE: The display was changed manually to DSP4 for the	$\begin{array}{r} 27004.06 \\ 67.65 \end{array}$	$\begin{array}{r} 42004.64 \\ 65.45 \end{array}$	
$\begin{array}{r} 4609.06 \\ 18.89 \end{array}$	passband printout, then changed back to DSP2 for the upper stopband output.	$\begin{array}{r} 28040.66 \\ 70.25 \end{array}$	$\begin{array}{r} 43000.90 \\ 65.13 \end{array}$	
$\begin{array}{r} 4660.60 \\ 5.63 \end{array}$		$\begin{array}{r} 290000.64 \\ 73.91 \end{array}$	$\begin{array}{r} 446 \overline{60} \cdot 65 \\ 54.66 \end{array}$	
$\begin{array}{r} 5606.06 \\ 6.04 \\ \hline \end{array}$			$\begin{array}{r} 45069.00 \\ 64.64 \\ \hline \end{array}$	

Example 2-13.2

Compute the minimum stopband attenuation of an eleventh order, 20% reflection coefficient, 75 degree modular angle elliptic filter (see p. 326 of Saal and Ulbrich [45]).

Load Program 2-12 and calculate filter order and loss pole locations.

PROGRAM 2-14 POLE AND ZERO LOCATIONS OF A FILTER WITH CHEBYSHEV PASSBAND AND ARBITRARY STOPBAND LOSS POLE LOCATIONS.

Program Description and Equations Used

This program calculates the complex zero locations of the filter transfer fumction, $H(s)=E_{i n} / E_{\text {out }}$, from the loss pole frequencies (frequencies of infinite attenuation). The zero locations are also called the natural modes of $H(s)$. The pole locations of $H(s)$, are the loss pole frequencies and 1te on the fw axis. The transmission function, $T(s)$, is the reciprocal of the filter transfer function, and may be more Familiar to some readers. When active elliptic filters are being designed [35], one approach is to divide the transmission function into bl-quadratic factors with each factor (second order pole pair, and sccond order zero pair) being synthesized with a separate active network [38].

The loss pole frequencies can be supplied by the user in the case of arbitrary stopband, equiripple passband filters, or can be generated by Program 2-12 for elliptic filters (equiripple stopband and passband).

This program works in the z-domain to spread out the pole and zero Frequencies, and enhance the numerical accuracy of the final output. The s-domain frequencies are Z transformed using Eq. (2-14.1), which is the normalized lowpass form of the more generalized Z transform.

$$
\begin{equation*}
z^{2}=1+\left.\frac{1}{s^{2}}\right|_{s=j \omega}=1-\frac{1}{\omega^{2}} \tag{2-14.1}
\end{equation*}
$$

The filter transfer function is a rational function, i.e., it is a ratio of polynomials:

$$
\begin{equation*}
H(s)=\frac{e(s)}{q(s)} \tag{2-14.2}
\end{equation*}
$$

This transfer function is related to the filter characteristic function, $\mathrm{K}(\mathrm{s})$, by the Feldtkeller equation:

$$
\begin{equation*}
H(s) H(-s)=1+K(s) K(-s) \tag{2-14.3}
\end{equation*}
$$

where the characteristic function has been defined in terms of the Chebyshev rational function, $R(x, L)$, by Eq. (2-12.3), and also is a ratio of polynomials:

$$
\begin{equation*}
K(s)=\frac{f(s)}{q(s)} \tag{2-14.4}
\end{equation*}
$$

Expanding the Feldtkeller equation to remove the denominator polynomial, $\mathrm{q}(\mathrm{s})$, yields:

$$
\begin{equation*}
e(s) e(-s)=q(s) q(-s)+f(s) f(-s) \tag{2-14.5}
\end{equation*}
$$

If the normalized lowpass Z transformation of these s-domain polynomials are defined by:

$$
\left.\begin{align*}
& F(Z) \Leftrightarrow \mathrm{f}(\mathrm{~s}) / \mathrm{s}^{\mathrm{m}} \tag{2-14.6}\\
& \mathrm{Q}(\mathrm{Z}) \Leftrightarrow \mathrm{q}(\mathrm{~s}) / \mathrm{s}^{\mathrm{m}}
\end{align*} \right\rvert\,
$$

where

$$
\begin{equation*}
Z_{i}^{2}=1+\left(\frac{\omega_{i}}{s}\right)^{2} \tag{2-14.7}
\end{equation*}
$$

$$
\begin{equation*}
\text { NINF }=\text { number of attenuation poles at } \infty \tag{2-14.8}
\end{equation*}
$$

$$
\begin{equation*}
N=\text { number of finite loss pole freqs } \tag{2-14.9}
\end{equation*}
$$

then the Z transform equivalent of Eq. (2-14.5) becomes:

$$
\begin{equation*}
E(Z) E^{*}(Z)=Q^{2}(Z)+F^{2}(Z) \tag{2-14.11}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{E}(Z) \Leftrightarrow \mathrm{e}(\mathrm{~s}) / \mathrm{s}^{\mathrm{m}} \tag{2-14.11a}\\
& \mathrm{E}^{*}(Z) \Leftrightarrow \mathrm{e}(-\mathrm{s}) / \mathrm{s}^{\mathrm{m}} \tag{2-14.11b}
\end{align*}
$$

The derivation of $Q^{2}(Z)$ and $F^{2}(Z)$ in terms of the Z transformed loss pole frequencies, Z_{i}, is done later and the results brought forward:

$$
\begin{align*}
& Q^{2}(z)=\left(1-z^{2}\right)^{\text {NINF }} \prod_{i=1}^{N}\left(z^{2}-z_{i}^{2}\right)^{2} \tag{2-14.12}\\
& F^{2}(z)=\varepsilon^{2}(\operatorname{Ev} A(z))^{2} \\
& A(Z)=(z+1)^{N I N F} \prod_{i=1}^{N}\left(z+z_{i}\right)^{2} \tag{2-14.13}
\end{align*}
$$

The program Z transforms the loss pole frequencies using Eq. (2-14.1) then forms $E(Z) E^{*}(Z)$ using Eqs. (2-14.11), (2-14.12), (2-14.13), and (2-14.14). The roots of $E(Z) E^{*}(Z)$ are found using the secant iteration method (described later), and exist as quads, i.e.:

$$
\begin{equation*}
(z+\sigma+j \omega)\left(z+\sigma_{-j} \omega\right)\left(z-\sigma_{+j} \omega\right)\left(z-\sigma_{-j} \omega\right)=z^{4}+p z^{2}+q \tag{2-14.15}
\end{equation*}
$$

Equation (2-14.1) may be used in reverse to convert Eq. (2-14.15) to the s-domain equivalent. The right half s plane (RHP) poles are assigned to $e(-s)$, and the LHP poles assigned to $e(s)$. These LHP poles represent the natural modes of the filter, and may be defined by a natural frequency, ω_{n}, and a quality factor, Q :

$$
\begin{align*}
& \omega_{n}=(1+p+q)^{\frac{1}{2}} \tag{2-14.16}\\
& Q=\left[2\left\{1-\left(1+\frac{p}{2}\right)(1+p+q)\right\}\right]^{\frac{1}{2}} \tag{2-14.17}
\end{align*}
$$

The natural frequency and Q represent the program output.

STEP	Instructions	INPUT DATA/UNITS		OUTPUT DATA/UNITS
	NOTE: This program takes loss pole			
	frequencies stored in registers 54 through			
	S8. Program 2-11 automatically stores the			
	loss pole frequencies in these registers.			
	If the loss pole frequencies are provided			
	by the user, they should be loaded before			
	proceeding.			
1	Load both sides of program card one			
2	Start program oxecution		E	flashing
				display
3	Insert second card into card reader, this			
	card will be read by the program at the			
	appropriate time. If the card is not			
	inserted, the display will flash when the			
	second card is to be read.			
4	Read both sides of second program card			
	The program execution will automatically			
	resume.			ω_{n}
	If the first program is thalted ($\mathrm{F} / \mathrm{s}^{\circ} \mathrm{key}$)			Q_{N}
	when the display flashes, the second program			space
	execution may be resumed by depressing key"E"			$\omega_{n}{ }_{N-2}$
	after the second card loading.			Q_{N-1}
				!
				$\omega_{n_{1}}$
				Q_{1}
				space
				$\sigma_{0}\binom{$ ifd }{ odd }

Examp1e 2-14.1
Find the natural modes for the elliptic filter given in Example 2-12.2.

Load Program 2-11 and caloulate loss pole frequencies.

$\begin{array}{r} 1.60 \\ .20 \end{array}$	ENV̇	convert 20\% reflection ooeffieient into passband ripple in dB using:
16.60	x	(${ }^{\text {a }}=-10 \log \left(1-p^{2}\right)$
	Crs	$A p_{d B}=-10 \log (1-\rho$
	DSFG	
a. 177288	$\begin{gathered} * * * \\ 05 P \end{gathered}$	ApdB, passband ripple in dB
	GSEA	
78.60	ESE8	load stopband attenuation reqd, $\mathrm{As}_{\mathrm{dB}}$
$1.6 \overline{0}$	ESEE	load normalized cutoff frequency
2.60	ESBE	load normalized minimum stopband frequency
	GSEC	calculate minimum filter order
5.96	**	calculated filter order
6.60	***	nearest integral filter order
	GSED	calculate loss pole frequencies
$7.235683+60$	***) untransformed even order
$2.73205 i+64$	***	$\} \begin{aligned} & \text { untransformed even order } \\ & \text { loss pole frequencies }\end{aligned}$
$2.661105+66$	* ${ }^{\text {a }}$	
2.922132+66	***	Möbius transformed loss pole frequencies
$2.129549+46$	**	Mobius transformed loss pole frequencies

Load this program (Program 2-14) and calculate the natural modes.
GeE start $E(Z) E^{*}(Z)$ calculation

$\begin{aligned} & 0.8327808 \\ & 1.5769957 \end{aligned}$		
1.0360925	**	
5.8998916	whe	Q_{2}
6. 50075367	W*	
0.6266594	***	Q_{3}

complex zero locations describing natural modes

The complex zero locations may be converted from the ω_{n} and Q description to real and imaginary parts to enable checking results against elliptic filter tables (see p. 248 of Zverev [58]). Equations (2-9.1), (2-9.2), and (2-9.3) are used for the conversion.

71.44174416	***	θ_{1} (degrees)
. 8327865	$\rightarrow{ }_{\text {c }}$	load $\omega_{n 1}$ and calculate real and imag parts
0.26505063	***	
	X \ddagger	
0.78948249	***	ω_{1}
5.8998 ESSENTA+$1 / X$$\cos$		
85.13850931	***	θ_{2} (degrees)
1.0360525		load $\omega_{n_{2}}$ and calculate real and imag parts
0.08797556	$\underset{X+Y}{x+Y}$	$\sigma_{2} \quad n_{2}$
$1.634356 \overline{4}$	***	ω_{2}
.62665941 ENTt$\frac{\square}{1 / X}$$\cos ^{-}$		
37.07171237	***	θ_{3} (degrees)
. 560935	$\rightarrow F$	load $\omega_{n 3}$ and calculate real and imag parts
0.3995737	$* * *$	σ_{3}
0.30188530		ω_{3}

Derivation of Equations Used

The characteristic function, $K(s)$, is a ratio of polynomials as indicated by Eqs. (2-14.4) and (2-12.3). The denominator of this function is already known in terms of the loss pole frequencies. In lowpass form, this polynomial is:

$$
\begin{equation*}
q(s)=\prod_{i=1}^{N}\left(s^{2}+\omega_{i}{ }^{2}\right) \tag{2-14.18}
\end{equation*}
$$

$H(s)$, the filter transfer function, is described in terms of the polynomials of the characteristic function by Eqs. (2-14.2) and (2-14.5). Since H (s) describes a realizable transfer function, the zeros of $H(s)$ must lie in the LHP. With this condition in mind, the LHP zeros of $e(s) e(-s)$ are assigned to $e(s)$ and the RHP zeros assigned to $e(-s)$. This root splitting brings us to the concept of a quad. Assume that $e(s)$ is represented by complex conjugate root pairs and a real root if $e(s)$ is odd, i.e.,

$$
\begin{equation*}
e(s)=\left(s+\sigma_{0}\right) \prod_{i=1}^{N}\left\{s^{2}+s\left(2 \sigma_{i}\right)+\sigma_{i}^{2}+\omega_{i}^{2}\right\} \tag{2-14.19}
\end{equation*}
$$

Then the right half $s-p 1 a n e$ roots are represented by $e(-s)$:

$$
\begin{equation*}
e(-s)=\left(-s+\sigma_{o}\right) \prod_{i=1}^{N}\left\{s^{2}-s\left(2 \sigma_{i}\right)+\sigma_{i}^{2}+\omega_{i}^{2}\right\} \tag{2-14.20}
\end{equation*}
$$

hence:

$$
e(s) e(-s)=\left(-s^{2}+\sigma_{0}^{2}\right) \prod_{i=1}^{N}\left\{s^{4}+s^{2} 2\left(\omega_{i}^{2}-\sigma_{i}{ }^{2}\right)+\left(\omega_{i}{ }^{2}+\sigma_{i}{ }^{2}\right)^{2}\right\}
$$

This concept is illustrated in Fig. 2-14.1.

Figure 2-14.1 Concept of a quad.

The importance of this concept is once one root of $e(s) e(-s)$ is found, three other roots of the quad are also defined, and may be removed to reduce the order of $e(s) e(-s)$ by four.

The Characteristic Function in Terms of the Transformed Variable
The actual finding of the polynomials of $H(s)$ is done in the 2 plane rather than the s-plane for two reasons: 1) The solution is numerically more accurate because the roots are spread out and the small difference between big numbers problem is much reduced. 2) The expressions for $F^{2}(Z)$ and $Q^{2}(Z)$ are much simpler in terms of the transformed loss pole frequencies than are $f^{2}(s)$ and $q^{2}(s)$ in terms of the actual loss pole frequencies, ω_{i}. These transformations are defined as follows:

$$
\begin{align*}
& F(Z) \Leftrightarrow \frac{f(s)}{\left(s^{2}+w_{a}^{2}\right)^{m / 2}} \tag{2-14.22}\\
& Q(Z) \Leftrightarrow \frac{q(s)}{\left(s^{2}+\omega_{a}^{2}\right)^{m / 2}} \tag{2-14.23}
\end{align*}
$$

where

$$
\begin{equation*}
z^{2}=\frac{s^{2}+\omega_{b}^{2}}{s^{2}+\omega_{a}^{2}} \tag{2-14.24}
\end{equation*}
$$

and

$$
\left.\begin{array}{l}
m=N Z E R O+N I N F+N \\
\text { NZERO = number of attenuation poles at dc } \\
\quad \text { (equals zero for lowpass filters) }
\end{array}\right\} \begin{aligned}
& \text { NINF = number of attenuation poles at infinity } \\
& N=\text { number of finite loss pole frequencies }
\end{aligned}
$$

In the normalized lowpass case, the lower bandedge transformation frequency, ω_{a} is dc ($\omega_{a}=0$), and the upper bandedge transformation frequency, ω_{b}, is unity. Under these conditions the Z transformation becomes:

$$
\begin{align*}
& F(Z) \Leftrightarrow \frac{f(s)}{s^{m}} \tag{2-14.6}\\
& Q(Z) \Leftrightarrow \frac{q(s)}{s^{m}} \tag{2-14.7}
\end{align*}
$$

with

$$
z^{2}=1+1 / s^{2}, \text { or for } s=j \omega, z^{2}=1-1 / \omega^{2}
$$

The lowpass form of $q(s)$ is given by Eq. (2-14.18):

$$
q(s)=\prod_{i=1}^{N}\left(s^{2}+\omega_{i}{ }^{2}\right)
$$

The Z transformed equivalent is:

$$
\begin{align*}
& Q(Z) \Leftrightarrow \frac{1}{s^{m}} \prod_{i=1}^{N}\left(s^{2}+\omega_{i}^{2}\right) \tag{2-14.27}\\
& =\frac{1}{s^{N I N F}} \prod_{i=1}^{N}\left(\frac{s^{2}+\omega_{i}^{2}}{s^{2}}\right) \tag{2-14.28}
\end{align*}
$$

The filter poles can be found from the zeros of the attenuation function, Eq. (2-13.5), i.e.,

$$
\begin{equation*}
1+\frac{\varepsilon^{2}}{4}\left\{L(Z)+{\frac{(-1)^{\text {NINF }}}{L(Z)}}^{2}\right\}^{2}=0 \tag{2-14.29}
\end{equation*}
$$

where $L(Z)$ is defined by Eq. (2-13.4):

$$
\begin{equation*}
L(z)=\left\{\frac{z+1}{z-1}\right\}^{\frac{\text { NINF }}{2}} \cdot \prod_{i=1}^{N} \frac{z+z_{i}}{z-z_{i}} \tag{2-13.4}
\end{equation*}
$$

then $Q(Z)$, as defined by Eq. (2-14.28), is the common denominator for Eq. (2-14.29). The quantity inside the brackets of Eq. (2-14.29) can be written in terms of $Q(Z)$ and $A(Z)$ (Eq. (2-14.14)) as follows:

$$
\begin{equation*}
L(Z)+{\frac{(-1)^{\text {NINF }}}{L(Z)}}^{\text {LI }}=\frac{A(Z)+(-1)^{\text {NINF }} \cdot A(-Z)}{Q(Z)} \tag{2-14.30}
\end{equation*}
$$

Fortumately, the sign of $(-1)^{\text {NINF }}$ causes the numerator to be an even polynomial in Z as is required for the resulting polynomials of the Chebyshev rational function to be Hurwitz.

Thus, the equation whose zeros are to be found is:

$$
\begin{equation*}
1+\frac{\varepsilon^{2}}{4}\left\{\frac{A(Z)+(-1)^{\text {NINF }} \cdot A(-Z)}{Q(Z)}\right\}^{2}=0 \tag{2-14.31}
\end{equation*}
$$

Because of the even numerator polynomial, Eq. (2-14.31) becomes:

$$
\begin{equation*}
1+\frac{\varepsilon^{2}}{4}\left\{\frac{2 \cdot \operatorname{Ev}(A(Z))}{Q(Z)}\right\}^{2}=0 \tag{2-14.32}
\end{equation*}
$$

Cancelling out constants and placing the entire expression over a common denominator yields:

$$
\begin{equation*}
Q^{2}(Z)+\varepsilon^{2}\{\operatorname{Ev} A(Z)\}^{2}=0 \tag{2-14.33}
\end{equation*}
$$

Substituting $F(Z)$ from Eq. (2-14.13) results the desired expression for the transfer function zeros:

$$
\begin{equation*}
Q^{2}(Z)+F^{2}(Z)=0 \tag{2-14.34}
\end{equation*}
$$

Secant iteration method
The secant iterative method finds the values for the variable, x, where the function $f(x)=0$ (zeros of x). It is similar to the

Newton-Raphson method except the derivative of the function is numerically approximated from the present and past values of $f(x)$:

$$
\begin{equation*}
x_{i+1}=x_{i}-f\left(x_{i}\right)\left\{\frac{x_{i}-x_{i-1}}{f\left(x_{i}\right)-f\left(x_{i-1}\right)}\right\} \tag{2-14.35}
\end{equation*}
$$

where x_{i} is the present estimate for the variable.
The iteration is continued until the correction term magnitude becomes smaller than a given error radius. For this program, that error radius is chosen to be 10^{-9}.

Two values for x are needed to start the secant iteration, a past value and a present value. In this program, the past value is chosen as 0 and the present value as 1460°. As the iteration starts, the method may not converge, but may get sent far away from the desired solution. This can happen if the present and past estimates lie on opposite sides of a saddle (see Fig. 2-14.3). To help force convergence, the magnitude of the correction radius is limited to 0.1 . When the iteration starts, the estimates have a random nature, but can't get far away from the origin. As a zero is approached, the method rapidly converges.

Figure 2-14.3 Secant method, two cases a) normal convergence, and b) divergence caused by the presence of a "saddle" in the function.

Figure 2-14.3 shows a two dimensional representation of the method, but in the present instance, the application is three dimensional because of the complex nature of the variable. As each complex zero is found, three others are defined automatically because of the quadrangle symmetry (quads) in the zeros of the filter transfer function (see Fig. 2-14.1), thus the order of the equation may be reduced by four through polynomial division. If the filter order is odd, a real zero exists in the transfer function. After all quads have been removed from the transfer function, the remainder will be the real zero. This technique is used herein, zeros are removed from $E(Z) E^{*}(Z)$ until a second order polynomial or less remains. If the filter order is even, no remainder exists, but if the filter order is odd, the second order remainder represents the LHP and RHP parts of the real zero. The RHP zero is discarded since it belongs to $H(-s)$, and the LHP zero location is transformed back to the s-domain for output.

2-14, caro 1 Program Listing

ALGORITHM TO FOPM E(Z)E* (Z)
 FROM $F^{2}(Z)+Q^{2}(Z)$

${ }^{2-14, ~ c a f o 1 ~ P r o g r a m ~ L i s t i n g ~ I I ~}$

2-14, caroz Program Listing I

PROGRAM 2-15 DARLINGTON'S ELLIPTIC FILTER ALGORITHMS.

Program Description and Equations Used

This program calculates the normalized transmission function pole and zero locations, and minimum stopband rejection for odd order elliptic filters. The program is based on Professor Sidney Darlington's paper which describes simple elliptic filter algorithms using transformations on elliptic sines and their moduli [18], and his unpublished HP-65 program on the same subject.

The output data is normalized to the passband cutoff frequency (f_{p}), however, the algorithm is normalized to the geometric mean of the passband and stopband edge frequencies as shown by Fig. 2-15.1.

Figure 2-15.1 Definition of elliptic filter terms.

Thus, the transition ratio, λ, becomes:

$$
\begin{equation*}
\lambda=\frac{f_{s}}{f_{p}}=\frac{a_{0}}{1 / a_{0}}=a_{0}^{2} \tag{2-15.1}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{0}=\sqrt{\lambda} \tag{2-15.2}
\end{equation*}
$$

The filter transmission function, $T(s)$, is the reciprocal of the filter transfer function, $H(s)$, which is related to the filter characteristic function, $K(s)$, through the Feldtkeller equation:

$$
\begin{equation*}
|T(j \omega)|^{2}=\frac{\text { power out }}{\text { power in }}=\left|\frac{1}{H(j \omega)}\right|^{2}=\frac{1}{1+\varepsilon^{2} \left\lvert\, K\left(\left.\frac{3}{j}(1)\right|^{2}\right.\right.} \tag{2-15,3}
\end{equation*}
$$

where the characteristic function is the Chebyshev rational function described in Program 2-12. Darlington's algorithms are a very elegant way of approximating the Chebyshev rational function using simple recursive relationships. These relationships can also be used to find the LHP poles and zeros of:

$$
\begin{equation*}
\mathrm{T}(\mathrm{~s}) \mathrm{T}(-\mathrm{s})=\frac{1}{1+\varepsilon^{2} \mathrm{~K}(\mathrm{~s}) \mathrm{K}(-s)} \tag{2-15.4}
\end{equation*}
$$

Normalized transmission zero frequencies. If Yo represents geometrical$1 y$ normalized frequency (Fig. 2-15.1) and $Y_{0 k}\left(k=1,2, \ldots, \frac{n-1}{2}\right)$ represents the normalized transmission zero frequencies where n is the filter order, then the characteristic function for odd order, equiripple passband, lowpass filters is given by:

$$
\begin{equation*}
\left|K\left(Y_{0}\right)\right|^{2}=\left|J_{0} \cdot F_{0}\left(Y_{0}\right)\right|^{2} \tag{2-15.5}
\end{equation*}
$$

where Jo is a constant and

$$
\begin{equation*}
F_{0}\left(Y_{0}\right)=Y_{0} \prod_{k=1}^{(n-1) / 2} \frac{1-Y_{0 k}^{2} Y_{0}{ }^{2}}{Y_{0}^{2}-Y_{0 k}^{2}} \tag{2-15.6}
\end{equation*}
$$

For the elliptic filter case (equal ripple passband and stopband):

$$
\begin{align*}
& \varepsilon^{2}=10^{0.1 A p_{d B}}-1 \tag{2-15.7}\\
& J_{0}=F_{o}\left(a_{0}\right) \tag{2-15.8}\\
& F_{o}\left(\frac{1}{Y_{0}}\right)=\frac{1}{F_{o}\left(Y_{0}\right)} \tag{2-15.9}
\end{align*}
$$

These quantities and $Y_{0 k}$ may be found through recursive use of a variable transformation which spreads out the transition interval.

Let

$$
\begin{equation*}
a_{k+1}=a_{k}^{2}+\sqrt{a_{k}^{4}-1} \tag{2-15.10}
\end{equation*}
$$

then, given a_{0} as defined by Eq. (2-15.2), find and store a_{1}, a_{2}, a_{3}, and a_{4}. Four applications of the recursion formula will provide precision which will be calculator limited rather than algorithm limited (see p. 37 of [18]).

Let h represent the index for the transmission zero frequencies; $h=1,2, \ldots,(n-1) / 2$, then let

$$
\begin{equation*}
Y_{4 h}=\frac{a_{4}}{\cos \{(2 h-1)(90 / n)\}} \tag{2-15.11}
\end{equation*}
$$

and recursively calculate:

$$
\begin{align*}
Y_{(k-1) h} & =\frac{1}{2 a}\left(Y_{k h}-1 / Y_{k h}\right) \tag{2-15.12}\\
k & =4,3,2,1
\end{align*}
$$

The transmission zero frequencies normalized with respect to the passband edge are:

$$
\begin{equation*}
a_{o} \cdot Y_{0 h} \tag{2-15.13}
\end{equation*}
$$

Minimum stopband rejection. The minimum stopband rejection for elliptic filters first occurs at the stopband frequency edge (geometrically normalized frequency a_{0}) and may be found from Jo and Eqs. (2-15.4), (2-15.5), and (2-15.8), i.e.:

$$
\begin{equation*}
\mathrm{As}_{\mathrm{dB}}=10 \log \left(1+\varepsilon^{2} \mathrm{~J}_{0}{ }^{2} \mathrm{~J}_{0}{ }^{2}\right) \tag{2-15.14}
\end{equation*}
$$

Jo is found from another recursion relationship; let

$$
\begin{equation*}
J_{4} \cong 2^{n-1} \cdot a_{4}^{n}=\frac{\left(2 \cdot a_{4}\right)^{n}}{2} \tag{2-15.15}
\end{equation*}
$$

then recursively calculate and store J_{k} 's using:

$$
\begin{align*}
J_{k-1} & =\frac{1}{2} \sqrt{\left(\mathrm{~J}_{k}-1 / \mathrm{J}_{k}\right)} \tag{2-15,16}\\
k & =4,3,2,1
\end{align*}
$$

Transmission function pole locations. Let $s_{\text {oh }}$ represent the complex pole location, and let

$$
\begin{equation*}
J_{0} \cdot s_{00}=1 / \varepsilon \tag{2-15.17}
\end{equation*}
$$

Then recursively calculate:

$$
\begin{align*}
s_{(k+1) o} & =J_{k} \cdot s_{k o}+\sqrt{\left(J_{k} \cdot g_{k o}\right)^{2}+1} \tag{2-15.18}\\
k & =0,1,2
\end{align*}
$$

As the index increases, the terms $J_{k} \cdot s_{k o}$ become numerically very large since the J_{k} 's increase nearly geometrically for J_{k} large. To avoid numeric overflow (10^{99}) use:

$$
\begin{equation*}
s_{40} \cong 2 \cdot J_{3} \cdot s_{30} \tag{2-15.19}
\end{equation*}
$$

Calculate and store:

$$
\begin{equation*}
s_{50}=\left\{\frac{J_{4}}{s_{40}}+\sqrt{\left(\frac{J_{4}}{s_{40}}\right)^{2}+1}\right\}^{\frac{1}{n}} \tag{2-15.20}
\end{equation*}
$$

To calculate the pole locations, let:

$$
\begin{align*}
s_{5 h} & =s_{50} \cdot e^{j h(\pi / n)} \tag{2-15.21}\\
h & =0,1,2, \ldots,(n-1) / 2
\end{align*}
$$

Using complex arithmetic, recursively calculate:

$$
\begin{align*}
& s_{(k-1) h}=\frac{1}{2 \cdot a_{k-1}}\left(s_{k h}-1 / s_{k h}\right) \tag{2-15.22}\\
& k=5,4,3,2,1
\end{align*}
$$

The pale locations normalized to the passband edge are given by:

$$
\begin{equation*}
s_{o h} \cdot a_{o} \tag{2-15.23}
\end{equation*}
$$

The subroutine that calculates Eq. (2-15.22) may seem obscure to some readers. The particular coding that is used minimizes the amount of data that must undergo polar-to-rectangular and rectangular-topolar conversions, and hence, maximizes the numerical accuracy of the routine. The normal format for the pole locations is polar as given by Eq. (2-15.21). In general, let:

$$
\begin{equation*}
s_{k h}=p_{k h} \cdot e^{j \beta_{k h}^{\prime}} \tag{2-15.24}
\end{equation*}
$$

In rectangular format, Eq. (2-15.24) becomes:

$$
\begin{equation*}
s_{\mathrm{kh}}=\rho_{\mathrm{kh}} \cos \beta_{\mathrm{kh}}+j \rho_{\mathrm{kh}} \sin \beta_{\mathrm{kh}} \tag{2-15.25}
\end{equation*}
$$

For the reciprocal case, let:

$$
\begin{equation*}
\frac{I}{s_{\mathrm{kh}}}=\frac{1}{P_{\mathrm{kh}}} e^{-j \beta_{\mathrm{kh}}} \tag{2-15.26}
\end{equation*}
$$

which using rectangular format becomes:

$$
\begin{equation*}
\frac{1}{s_{k h}}=\frac{1}{\rho_{k h}} \cos \beta_{k h}-j \frac{1}{\rho_{k h}} \sin \beta_{k h} \tag{2-15.27}
\end{equation*}
$$

hence,

$$
\begin{array}{r}
s_{k h}-\frac{1}{s_{k h}}=\left(\rho_{k h}+\frac{1}{\rho_{k h}}\right) \cos \beta_{k h}+ \\
 \tag{2-15.28}\\
j\left(\rho_{k h}-\frac{1}{\rho_{k h}}\right) \sin \beta_{k h}
\end{array}
$$

or,

$$
\begin{array}{r}
s_{k h}-\frac{1}{s_{k h}}=\left(1+\frac{1}{\rho_{k h}{ }^{2}}\right) \rho_{k h} \cos \beta_{k h}+ \\
 \tag{2-15.29}\\
j\left(1-\frac{1}{\rho_{k h^{2}}^{2}}\right) \rho_{k h} \cdot \sin \beta_{k h}
\end{array}
$$

In Eq. (2-15.29), the terms $\rho_{k h} \cos \beta_{k h}$ and $\rho_{k h} \sin \beta_{k h}$ are the output components of a polar-to-rectangular conversion, and $\rho \mathrm{kh}$ is saved in the last x register, and has not undergone any conversion. The stack is used to hold the intermediate parts of Eq. (2-15.29). A rectangular-topolar conversion then completes the subroutine.

2:15 User Instructions

Example 2-15.1

Find the transmission function poles and zeros for a 9th order, elliptic filter having a 85° modular angle, and 50% reflection coefficient. Also calculate the minimum stopband attenuation in $d B$. Compare the results to the output of Program 2-11.

PROGRAM 2-15 INPUT	PROGRAM 2-15 OUTPUT

Load Program 2-12 and calculate transmission zeros (loss poles) for the same conditions.

PROGRAM 2-12 INPUT	PROGRAM 2-12 OUTPUT

Comparing these results to those obtained from Program 2-15, differences exist in the 9 th and 10 th places sometimes. It is the author's opinion that the output from Program 2-12 is in 10^{10}, since the elliptic sine algorithm 2-12 is accurate to 2 parts gral algorit in in Abramowitz and Stegun [1] and disagree by at most one in the least significant digit of the HP-97 output (see Program 5-1 for details).
${ }_{215} \quad$ Program Listing I

Part 3

ELECTROMAGNETIC

 COMPONENT DESIGN
PROGRAM 3-1 FERROMAGNETIC CORE INDUCTOR DESIGN - MAGNETICS.

Program Description and Equations Used

This program calculates the various parameters relating to inductor or transformer design on closed magnetic cores. Given the core relative permeability (μ), the core length (ℓ_{c}), the core area (A), the air gap ($\ell_{\text {air }}$), the required inductance (L), the dc current ($I_{d c}$), the applied ac voltage (E), and the excitation frequency (f), the program will calculate the number of turns required (N), the core H (oersteds) and B (gauss) resulting from the dc excitation, the ac excitation, and the total from both excitations. The dimensions of the core and air-gap can be entered in either centimeter or inch units. Program 3-2 will calculate the wire size and winding resistance given the window area and mean turn length. The program will also calculate the coil inductance if the number of turns, the core permeability and dimensions, and the air gap dimensions are given.

If the inductance in millihenries per 1000 turns is given (the A_{L} value) along with the core dimensions and permeability, the effective air gap will be calculated and stored in place of the given air gap. The inductance or turns, and core excitation will then be calculated on the basis of the calculated air gap.

The magnetic equations used are:

$$
\begin{align*}
& \mathrm{H}=\frac{0.4 \mu \mathrm{NI}}{\ell_{\mathrm{c}}+\mu_{\mathrm{c}} \cdot \ell_{\mathrm{air}}} \tag{3.1.1}\\
& \mathrm{E}=10^{-8} \cdot \mathrm{~N} \frac{\mathrm{~d} \phi}{\mathrm{dt}}=10^{-8} \mathrm{NA} \frac{\mathrm{~dB}}{\mathrm{dt}} \tag{3-1.2}
\end{align*}
$$

where I is the current in the coil. Equation (3-1.2) can be rearranged to yleld B, the core flux density:

$$
\begin{equation*}
B=\frac{10^{8}}{N A} \int E \cdot d t \tag{3-1.3}
\end{equation*}
$$

If $\mathrm{E}=\sqrt{2} \cdot \mathrm{E}_{\mathrm{rms}} \cdot \sin (2 \pi \mathrm{ft})$ is the sinewave excitation, then:

$$
\begin{equation*}
B_{\text {peak }}=\frac{10^{8} \cdot E_{\mathrm{rms}}}{\sqrt{2} \pi \mathrm{ANf}} \tag{3-1.4}
\end{equation*}
$$

If E is a symmetrical squarewave with voltage $E_{p k}$ as shown by Fig. 3-1.1, then:

$$
\begin{equation*}
B_{\text {peak }}=\frac{10^{8} \mathrm{Epk}}{4 \mathrm{ANf}} \tag{3-1.5}
\end{equation*}
$$

Figure 3-1.1 Square wave coil excitation and magnetic flux density trajectory.

Remembering the differential relationship between current and voltage in an inductor, $E=L(d I / d t)$, an expression can be derived relating the inductance, L, to the magnetic circuit quantities:

$$
\begin{equation*}
\mathrm{B}=\mu \mathrm{H} \tag{3-1.6}
\end{equation*}
$$

From Eqs. (3-1.2) and (3-1.6):

$$
\begin{equation*}
\mathrm{E}=10^{-8} \mathrm{~N} \cdot \mathrm{~A} \mu \frac{\mathrm{dH}}{\mathrm{dt}} \tag{3-1.7}
\end{equation*}
$$

From Eq. (3-1.1):

$$
\begin{equation*}
\frac{\mathrm{dH}}{\mathrm{dt}}=\frac{0.4 \mu \mathrm{~N}}{\ell_{\mathrm{c}}+\mu \ell_{\mathrm{air}}} \cdot \frac{\mathrm{dI}}{\mathrm{dt}} \tag{3-1.8}
\end{equation*}
$$

Combining Eqs. (3-1.7) and (3-1.8) yields the inductance expression:

$$
\begin{equation*}
E=\frac{0.4 \pi \mathrm{~N}^{2} \mathrm{~A} \cdot 10^{-8}}{\ell_{\mathrm{c}}+\mu \ell_{\text {air }}} \cdot \frac{\mathrm{dI}}{\mathrm{dt}} \tag{3-1.9}
\end{equation*}
$$

hence

$$
\begin{equation*}
L=\frac{0.4 \pi N^{2} \mu A \cdot 10^{-8}}{\ell_{c}+\mu \ell_{\text {air }}} \tag{3-1.10}
\end{equation*}
$$

This equation may be rearranged to yield the equivalent air gap if the inductance per turn squared and core dimensions are known:

$$
\begin{equation*}
l_{\mathrm{air}}=\frac{0.4 \pi \mathrm{~N}^{2} \mathrm{~A} \cdot 10^{-8}}{\mathrm{~L}}-\frac{\ell_{\mathrm{c}}}{\mu}, \mathrm{~cm} \tag{3-1.11}
\end{equation*}
$$

Generally the inductance index in millihenries per 1000 turns is provided by the core manufacturer:

$$
\begin{equation*}
L^{*}=\text { millihenries per } 1000 \text { turns } \tag{3-1.12}
\end{equation*}
$$

hence,

$$
\begin{equation*}
l_{\mathrm{air}}=\frac{4 \pi \mathrm{~A}}{L^{*}}-\frac{\ell_{\mathrm{c}}}{\mu} \quad \mathrm{~cm} \tag{3-1.13}
\end{equation*}
$$

Equation (3-1.10) can be rearranged to yield an expression for N, the number of turns, required to achieve a given inductance, L :

$$
\begin{equation*}
\mathrm{N}=\left\{\mathrm{L} \frac{\left(\ell_{\mathrm{c}}+\mu \ell_{\mathrm{air}}\right) \cdot 10^{8}}{0.4 \pi \mu \mathrm{~A}}\right\}^{\frac{1}{2}} \tag{3-1.14}
\end{equation*}
$$

The program uses these equations as follows: Labels "A," "a," "B," and "b" are used to load and store the core parameters. The actual stored parameters are in centimeters, and entries with inch units (Labels " A " and " B ") are converted before storage. Label " C " uses Eq. (3-1.14) to calculate N given L. Label " c " uses Eq. (3-1.10) to calculate L given N. Label "d" uses Eq. (3-1.13) to calculate the equivalent air gap given the inductance index, L^{*}. The new air gap dimension replaces the presently stored air gap dimension. Label "D" uses Eq. (3-1.1) to calculate the dc magnetizing force, H, given the dc current through the core. Since the number of turns are required for this calculation, the use of "C" or "c" must precede the use of "D." The dc flux density, ${ }_{\mathrm{dc}}$, is calculated using Eq. (3-1.6). Label "E" uses Eq. (3-1.4) to calculate the peak core flux density given the ac coil excitation. The flux in the core will vary sinusoidally with sinusoidal excitation. The peak ac magnetizing force is calculated using Eq. (3-1.6). The peak ac and dc core magnetic parameters are added together and printed to provide the peak excitation in the core. The peak excitation should be kept below the magnetic saturation level of the core material for linear operation. Label "e" uses Eq. (3-1.5) to calculate peak core flux density from squarewave coil excitation, and provides a summary as above.

STEP	INSTRUCTIONS	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS	OUTPUT DATA/UNITS
1	Load both sides of magnetic card			
2	Load magnetic core parameters			
	a) for dimensions in inches			
	i) relative permeability of core	$\underline{\mu}$	[ENT 4	
	ii) effective core length	ℓ_{c}	ENT 4	
	iii) effective core cross-sectional area		[A]	μ
	b) for dimensions in centimeters			
	1) relative permeability of core	μ	ENT 4	
	ii) effective core length	ℓ_{C}	$\text { ENT } 4$	
	iii) effective core cross-sectional area	A_{C}	f A	μ
3	Load air gap length (if L* is to be used,			
	skip this step)			
	a) for dimensions in inches	ℓ air		Qair, cm
	b) for dimensions in centimeters	星迆	f B	larr, cm
4	Load L^{*} (mh/1000T) if air gap is unknown	L*	f D	$\ell_{\mathrm{agr}}, \mathrm{cm}$
5.	To calculate the number of turns to achieve			
	a given inductance	L, h	0	N
6	To calculate the inductance given the			
	number of turns	N	f 0	L, h
7	Load do coil current	$I_{\text {dc }}$	$\overline{\mathrm{D}}$	$\mathrm{H}_{\mathrm{dc}}, \mathrm{O} \mathrm{O}$
				$B_{\text {do }}$, G
8	If sinewave ac coil excitation is present			
	a) load the rms voltage	Exms. V	ENT ${ }^{-1}$	
	b) load the frequency	f, Hz	E	$\mathrm{H}_{\mathrm{am}} \mathrm{pk}, \mathrm{Oe}$
				$\mathrm{H}_{\text {dc }}, \mathrm{Oe}$
				$\mathrm{H}_{\text {total }} \mathrm{Oe}$
				$\mathrm{B}_{\mathrm{pc}} \mathrm{pk}, \mathrm{G}$
				Bdc. 0.
				Btatal, G

${ }^{31} \quad$ User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	If square-wave coil excitation is present			.
		E_{pk}		
	b) load the frequency	f, Hz	f E	$\mathrm{Hac}_{\mathrm{ac}} \mathrm{pk}, \mathrm{Oe}$
				H_{dc}, Oe
				$\mathrm{H}_{\text {tatrle }} \mathrm{Oe}$
				Bac. pk, G
				$B_{\text {dc }}$, G
				$\mathrm{B}_{\text {total }}, \mathrm{G}$
10	To obtain the wire size and winding			---
	resistance for the above winding, load			-....
	Program 3-2.			

Example 3-1.1

Design an inductor to have an inductance of 20 millihenries using the above core (a Ferroxcube 266CT1253B7). The operating frequency is 10 kHz , and the applied ac voltage is 1 Vrms sinewave. There will be 1 mA of dc flowing in the winding.
The core physical constants are needed first:

$$
\begin{aligned}
& A=(.125)(.375-.187) / 2=11.8 \times 10^{-3} \text { inches }^{2} \\
& \ell=\pi(.375+.187) / 2=.883 \text { inches }(\mathrm{mfgr} \text { says } .852 \text { in) } \\
& \ell_{\text {air }}^{c}=0(\text { no air gap })
\end{aligned}
$$

These dimensions along with $\mu_{e}=2500$ are loaded using the A \& B keys.

Since the core saturates at around 2500 gauss, and this design only excites the core to 414 gauss peak, the design appears adequate from a magnetics standpoint.

Ferroxcube 2213C A400 3B7

ℓ	$=3.15 \mathrm{~cm}$
$\mathrm{~A}^{\mathrm{c}}$	$=0.635 \mathrm{~cm}^{2}$
μ	$=1845$
$\mathrm{~L} *$	$=400 \mathrm{mh} / 1000 \mathrm{~T}$
$\mathrm{~B}_{\max }$	<2000 gauss for stable
	inductance

This pot core is to be used in a tank circuit of a class A tuned amplifier operating at 50 kHz . The dc current is 30 mA , and the applied ac voltage is 10 Vrms. The required inductance is 40 mh (the resonating capacitor is 253 pF). Calculate the effective air gap, the number of turns required, the dc and ac core excitation, and the peak flux density. The following HP-97 printout shows the data entry and calculated parameter output.

$\begin{array}{r} 1645 \\ 5 \\ .6 \end{array}$	$\begin{aligned} & \text { EHT } \\ & \text { EHT } \\ & \text { SEE: } \end{aligned}$	$\begin{aligned} & \mu_{e}^{e}, \text { centimeters } \\ & \mathrm{A}^{\mathrm{c}}, \mathrm{~cm}^{2} \end{aligned}$
465	EEs	L* (mh/1000T)
18.24-6	4**	$\ell_{\text {air }}$ calculated
. 64	EEC	L required, h
$316.2+2$	***	N calculated (use
. 0	EcE	Idc, amps
$32 \overline{3} .9$ -	3**	Hdc, oersteds
	家4	Bdc, gauss
16	E] ${ }^{-}$	Vrms
$5664{ }^{\text {a }}$	$\because E E$	Freq, Hz, sinewave
12.15-0	+a	Hac peak, oersteds
323.3-6	+ +8	Hdc,
336.1-65	***	H total,
$22.42+6$	14	Bac peak, gauss
$557 . E+$ 为	*i*	Bdc, "
$620.6+5$	***	B total,

A printout of the registers
reveals this stored information:

PREE

1.845+45	1	
$3.1506+6$	1	$\ell \mathrm{cm}$
635.6-6.	a	$\mathrm{A}^{\mathrm{c}}, \mathrm{cm}^{2}$
18.24-5.3	3	$\ell_{\text {air }}, \mathrm{cm}$
$316.2+46$	4	N , turns
$56.66+63$	5	freq, Hz
323, $5-13$	E	Hdc, Oe
$557.6+64$	-	Bdc, gauss
6, $606+6{ }^{\text {a }}$	8	
$22.42+69$	5	Bac pk, gauss
$10.64+6{ }^{6}$	H	Vac, volts
$36.06-6{ }^{2}$	E	Idc, amps
$4.066+66$	6	$\mathrm{L} \times 10^{8}$
$469.6+60$	0	L*, mh/1000T
$6.0464+6$	E	
	I	

Example 3-1.3

Figure 3-1. 2 Inductor on cut C -core.

An inductor to carry dc is needed for the power separation assembly at the end of a coax cable. One ampere de must flow through the inductor without forcing the $\mathrm{B}-\mathrm{H}$ loop into a nonlinear region. The inductance needed is 1 henry. Ac signals of 10 Vrms across a frequency band covering 10 Hz to 1000 Hz will be applied in addition to the dc current. A tentative selection is a cut "C" core (see Fig. 3-1.2) with dimensions $\mathrm{A}_{\mathrm{c}}=1.0$ in $^{2}, \ell_{c}=6$ inches, and $\mu=1000$ (silectron transformer steel). To ensure linear inductance, the peak flux level in the core should not exceed 10000 gauss.

$\begin{aligned} & \text { WEE EEE } \ell \text { air, inches } \\ & \text { (.031 each side) } \end{aligned}$.125 nem new air gap, inches
1. ESE L, h, required 1.460tas *** N , \# turns calc	EsEf $\begin{aligned} & \text { (0.625" each side) } \\ & \text { recalculate } \mathrm{N}\end{aligned}$
	$2 . \operatorname{beb}+\mathrm{g}^{\text {a }}$ ** N , \# turns
Etel Idc, amps	
10. $\bar{C}+66$ i** Hdc, oersteds	GEE recalc, H, Bdc
$16.62+63$ ww Bdc, gauss	
	T.ESitas ta* Bdc, gauss
in. Ehit Vrms 16. GEE freq, Hz , sinewave	
$2.350+60$ W. ${ }^{\text {a }}$ Hac peak, oersteds	i. $-2+6 \mathrm{Ba}$ ** Hac peak, oersteds
	$7.65 i+60^{\text {a }}$ * Hdc , "
	9.37t60 *** H total,
$2.350+63$ *** Bac peak, gauss	
	7.65itas *** Bdc, "
	$5.573+6.54 x$ B total,
B total exceeds 10000 gauss, use a thicker spacer (larger air gap).	B total is less than 10000 gauss, magnetic design is complete.

PROGRAM 3-2 FERROMAGNETIC CORE INDUCTOR DESIGN - WIRE SIZE.

Program Description and Equations Used

This program is a companion program to Program 3-1. Given the window area and the number of turns (stored by companion program), this program will calculate the wire size with heavy insulation (class 2) that will fill the window area. If the length of the mean turn is known, the program will also calculate the winding resistance.

The program is also designed to provide information on the wire diamter over class 2 insulation and wire resistance in ohms/inch given the wire size in AWG. The program will also calculate the AWG given the wire diameter over class 2 insulation.

The operation of the program centers around the logarithmic relationship between AWG and the wire cross-sectional area. This logarithmic relationship is:

$$
\left.\begin{array}{rl}
\text { AWG }=\frac{1}{b} \ln \frac{\text { diameter in inches }}{\mathrm{a}} \\
\text { where } \mathrm{a}^{\prime}=0.3245574964 \\
\mathrm{~b}^{\prime}=-.1159489227
\end{array}\right\} \text { bare wire } \quad \begin{aligned}
& (3-2.1 \\
& \left.\begin{array}{rl}
\mathrm{a} & =0.3137250775 \\
\mathrm{~b} & =-.1097881513
\end{array}\right\} \begin{array}{l}
\text { wire with class } 2 \\
\text { insulation }
\end{array}
\end{aligned}
$$

If the total area for a winding of N turns is known, then the area for one turn may be calculated. If the wire is assumed to just fit inside a square with the wire diameter tangent to the sides of the square, then the waste space due to wire stacking can be accommodated (see Fig. 3-6.2). The wire diameter becomes the square root of the square's area. The program uses this algorithm. Once the wire diameter is found, the AWG can be calculated using the logarithmic relationships. The constants for heavy insulation are used. The AWG that is used and is output is the upward rounded value of ($1.5+$ calculated AWG).

The wire resistance per unit length is inversely proportional to
the copper cross-section, hence, the wire size in AWG also bears a logarithmic relationship to the wire resistance. When the wire resistance is desired as a function of the wire AWG, the relationship becomes exponential:

$$
\left.\begin{array}{l}
\mathrm{R} / \ell(\text { ohms } / \text { inch })=\mathrm{c} \cdot e^{(\mathrm{d} \cdot \mathrm{AWG})} \\
\text { where } \quad \mathrm{c}=8.371747114 \times 10^{-6} \\
\mathrm{~d}=-.2317635483
\end{array}\right\} \begin{aligned}
& \text { annealed } \\
& \text { copper wire }
\end{aligned}
$$

This exponential relationship is used in conjunction with the mean turn length and the number of turns to calculate the total resistance of the winding. The window area and mean turn length may be entered in either units of inches or centimeters. Centimeter dimensions are converted to inch dimensions before storage within the program.

If the AWG is known and the overall wire diameter including the heavy insulation is desired, Eq. (3-2.1) can be rearranged to yield:

$$
\begin{equation*}
\text { dlameter in inches }=\mathrm{a} \cdot e^{(\mathrm{b} \cdot \mathrm{AWG})} \tag{3-2,3}
\end{equation*}
$$

This equation is evaluated under label e.

$32 \quad$ User Instructions

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \hline \text { DATAUNITS } \\ \hline \end{gathered}$	KEYS	$\begin{array}{\|c\|} \hline \text { OUTPUT } \\ \text { DATA/UNITS } \\ \hline \end{array}$
1	Load both sides of magnetic card			
2	Enter Window area available for winding			
	a) for dimensions in square inches	A_{w}, in 2	A	
	b) for dimensions in square centimeters	$A_{w}, \mathrm{~cm}^{2}$	f A	
3	Enter the length of a meen turn (a turm			
	through the middle of the winding)			
	a) for dimensions in inches	ℓ_{t}, in	B	
	b) for dimensions in centimeters	$\ell_{t, ~} \mathrm{~cm}$	f B	
4	To change the number of turns, or to enter	N	$\mathrm{f}][\mathrm{e}$	
	the number of turns if the previous program			
	was not run			
5	Oalculate the wire AWG that will fill the			
	window area. Heavy insulation (class 2)			
	is assumed.		0	AWG
6	Qalculate the winding resistance in ohms		D	R_{2} ohms
7	To find the AWG given the wire diameter over	D_{w}	f [E]	AWG
	heavy insulation in inches			
8	To find the wire diameter over heavy	AWG	E	$\mathrm{D}_{\mathrm{w},}$ in
	insulation given AWG			
9	To find the wire resistance per inch of	AWG	$\overline{\mathrm{f}}][\overline{\mathrm{D}}$	Ohms/in
	annealed copper wire given AWG			

Example 3-2.1

Figure 3-2.1 Inductor on cut C-core.

The inductor in Fig. 3-2.1 was designed to carry dc in Example 3-1.3. If the winding window area is 2 square inches, and the mean turn length is 6 inches, what wire size will fill the winding window, and what will be the total winding resistance?

```
        2. GEFH window area in square inches
        E.ves mean turn length in inches
        5E: start wire size calculation
        iz. *** wire size in AWG
    6E% start winding resistance calculation
```


PROGRAM 3-3 TRANSFORMER LEAKAGE INDUCTANCE AND WINDING CAPACITANCES.

Program Description and Equations Used

This program will calculate the leakage inductance and winding capacitances of a two winding transformer. Both the interwinding capacitance and winding self-capacitances are calculated. The output for both the leakage inductance and winding capacitances are reflected to the primary winding.

Leakage inductance. The total magnetic flux in a transformer is composed of the mutual flux and the leakage flux. The mutual flux follows the core path and links both primary and secondary windings, and results in the mutual, or open-circuit inductance of the transformer. The leakage flux is the relatively small flux which originates in the primary winding and does not link the secondary winding, or vice-versa, and results in the leakage inductance. The leakage flux will be less as the primary and secondary windings are interleaved up to the limit imposed by the space occupied by the insulation between windings. To a degree, the interleaving process is self-defeating, as too much interleaving generates much nonconductive space, and most of the leakage flux flows therein.

Of the many formulas that have been derived for the calculation of leakage inductance, the one by Fortescue [25] is generally accurate and errs, if at all, on the conservative side:

$$
\begin{equation*}
\mathrm{L}_{1 \mathrm{eak}}=10.6 \times 10^{-9} \frac{\mathrm{~N}^{2} \cdot \mathrm{MT}(2 \mathrm{nc}+\mathrm{a})}{\mathrm{n}^{2} \mathrm{~b}} \tag{3-3.1}
\end{equation*}
$$

where

```
\(L_{\text {leak }}=\) leakage inductance in henries, referred to the
                                    winding having N turns (the primary in this
        program)
MT = mean-turn length in inches for the whole coil
        (both windings)
    n \(\quad=\) number of dielectrics between windings
```

a = winding buildup in inches
b = winding traverse in inches
c = dielectric thickness between windings in inches
Interleaving provides the greatest reduction in leakage inductance when the dielectric height, c, is small compared to the window height. When $n c$ is comparable to the window height, the leakage inductance does not decrease substantially as the number of interleaves, n, is increased. The lowest leakage inductance will be obtained with a transformer having a small number of turns, a short mean turn length, and a low, wide winding window.

The term "a" in Eq. (3-3.1) refers to the total winding buildup composed of the primary buildup, the secondary buildup, and the insulation layers buildup. If a_{p} represents the buildup of all the primary interleaves, and a_{s} represents the buildup of all the secondary interleaves, then:

$$
\begin{equation*}
2 n c+a=3 n c+a_{p}+a_{s} \tag{3-3.2}
\end{equation*}
$$

The basis for Eq. (3-3.2) may be seen from Fig. 3-3.1.

Figure 3-3.1 Cross-section of transformer winding on a core leg.

Interwinding capacitance. The interwinding capacitance is the primarysecondary capacitance. This capacitance is calculated by considering
the primary and secondary windings as single conducting sheets separated by the dielectric formed by the insulating layer and wire insulation. The capacitance of two flat plates separated by a dielectric is:

$$
\begin{equation*}
C=.225 \times 10^{-12} \varepsilon \frac{A}{t} \tag{3-3.4}
\end{equation*}
$$

where
ε is the relative dielectric constant of the dielectric
A is the area of one plate in inches ${ }^{2}$
t is the dielectric thickness in inches

For the transformer

$$
\begin{equation*}
\mathrm{A}=\mathrm{n} \cdot \mathrm{MT} \cdot \mathrm{~b} \tag{3-3.5}
\end{equation*}
$$

and

$$
t=c+t_{\text {primary wire insulation }}+t_{\substack{\text { secondary wire } \\ \text { insulation }}}^{(3-3.6)}
$$

The wire insulation thickness for heavy insulation (heavy formvar, etc.) can be obtained from the wire AWG. The AWG is obtained from the wire diameter over class 2 insulation by using Eq. (3-2.1), where the wire diameter is calculated by assuming the wire plus insulation just fits in a box as shown by Fig. 3-6.2. The wire diameter over the insulation then becomes:

$$
\begin{equation*}
t_{\text {wire, primary }}=\sqrt{\frac{a_{p} \cdot b}{N_{p}}} \tag{3-3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{\text {wire, secondary }}=\sqrt{\frac{a_{s} \cdot b}{N_{s}}} \tag{3-3.8}
\end{equation*}
$$

The diameter of the bare wire is obtained from AWG by using Eq. (3-2.3). Hence, the thickness of the wire insulation is:

$$
t_{\text {wire insulation }}=\frac{1}{2}\left(t_{\text {wire }}+\text { insulation }-t_{\text {wire }}\right)^{(3-3.9)}
$$

The wire insulation thickness calculations are performed in the subroutine under label 6 in the HP-67/97 program.

Winding self-capacitance. In a multilayer winding, the voltage between layers is zero at one end of the layer, and $2 E / N_{L}$ at the other where
E is the total winding voltage, and N_{L} is the number of layers. This voltage gradient model serves as the basis for the total winding capacity as given by Reuben Lee [36].

$$
\begin{align*}
C_{i} & =1.333 \frac{C_{L_{i}}}{N_{L_{i}}}\left\{1-\frac{1}{N_{L_{i}}}\right\} \tag{3-3.10}\\
i & =\text { pri or } \mathrm{sec}
\end{align*}
$$

$C_{L_{~}}$ is the layer-to-1ayer capacitance, and is found from Eq. (3-3.4) where

$$
\begin{equation*}
A=M T \cdot b \tag{3-3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
t=t_{d}+2 t_{\text {wire insulation }} \tag{3-3.12}
\end{equation*}
$$

The basis of Eqs. (3-3.11) and (3-3.12) are shown by Fig. 3-3.2.

Figure 3-3.2 Cross-section of a winding showing dimensioning.

The number of layers is needed for Eq. (3-3.10) and is found from the number of turns, the interwinding dielectric thickness, and the winding dimensions. The wire cross-sectional area (per Fig. 3-6.2) and the dielectric cross-sectional area must equal the total area available for that winding, i.e.,

$$
\begin{align*}
& N_{L}\left(d+t_{d}\right)=a \tag{3-3.13}\\
& \text { volume }=a \cdot b=\underbrace{N_{L^{*}} \cdot t_{d} \cdot b}_{\begin{array}{c}
\text { spacer } \\
\text { volume }
\end{array}}+\underbrace{N \cdot d^{2}}_{\begin{array}{c}
\text { wire } \\
\text { volume }
\end{array}} \tag{3-3.14}
\end{align*}
$$

Substituting Eq. (3-3.13) into (3-3.14) and solving for N_{L} yields:

$$
\begin{equation*}
\mathbb{N}_{L_{i}}=\frac{N_{i} d_{i}}{b_{i}} \tag{3-3.15}
\end{equation*}
$$

where d is the quadratic solution to:

$$
\begin{gather*}
N_{i} d_{i}^{2}+\left(N_{i} t_{d_{i}}\right) d_{i}-a_{i} b_{i}=0 \tag{3-3.16}\\
i=\text { pri or sec }
\end{gather*}
$$

The program calculates the secondary winding capacity and reflects it to the primary winding:

$$
\begin{equation*}
\mathrm{c}_{\mathrm{sec}} \text { @ primary }=\mathrm{C}_{\sec } \cdot\left(\frac{\mathbb{N}_{s}}{N_{p}}\right)^{2} \tag{3-3.17}
\end{equation*}
$$

The total winding capacity seen at the primary is the sum of the reflected secondary winding capacitance, and the primary winding capacitance.

${ }_{3} 3 \quad$ User Instructions

STEP	instructions	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
11	Qalculate L's and C's		E	
	Prinary loakage inductance			$L_{\text {loak, }}$
				space
	Secondary wire AWG			AHG, Sec
	Number of secondary winding layers			\# layers
	Secondary 甘inding 0 roflocted to priaary, F			OsecQpri
				Apaoe
	Primary wiro AwG			AWG, pri
	Number of primary layers			\# layers
	Primary winding capacity in farads			$O_{\text {primary }}$
	Total winding capaoity refleoted to primary			Ototal
				space
	primary-becondary intorwinding oapacitanoe, F			Cpri-sec
12	Data revien:			
	Go baok and key any ontry key without			
	keying in any numeric ontry to view the			
	prosontly stored variable. See Example			
	3-3.1.			

Example 3-3.1

Find the primary leakage inductance and winding capacitances of a transformer having the following specifications:
traverse: 2"
number of pri-sec dielectrics: 4 (3 interleaves)
dielectric thickness: $0.050^{\prime \prime}$
pri-sec insulator dielectric constant: 10
mean turn length for whole transformer: $5^{\prime \prime}$
Primary
number of turns: 100
buildup: 0.25"
interwinding dielectric thickness: 0.002"
average interwinding dielectric and wire insulation dielectric constant: 10

Secondary
number of turns: 1000
buildup: 0.3"
interwinding dielectric thickness: 0
average interwinding dielectric and wire insulation dielectric constant: 5

HP printout for Examp1e 3-3.1

2. ESEO	winding traverse
. 25 ENTt	primary winding buildup
- GEEA	secondary winding buildup
1ev. EMT:	primary winding turns
1606. 6586	secondary winding turns
5. 6 SEE	mean turn length for whole transformer
4. 5580	number of pri-sec dielectrics
. 962 ENTT	primary interwinding dielectric thickness
b. Etit	secondary interwinding dielectric thickness
. 056565	pri-sec dielectric thickness
16. ENT \dagger	average primary dielectric constant
5. ENT \dagger	average secondary dielectric constant
16. GSED	pri-sec dielectric, dielectric constant

	GSEE	calculate L's and C's
15.35-66	***	primary leakage inductance, henrys
$24.609+60$	***	secondary wire AWG
$24.49+60$	***	number of secondary layers
23.19-69	**	secondary interwinding C seen @ primary, F
14.64+66	象*	primary wire AWG
$6.972+06$	* ${ }^{*}$ *	number of primary layers
670.8-12	* ${ }^{*} *$	primary interwinding capacity, F
23.87-69	\#**	total interwinding capacity @ primary, F
1.699-69	* * ${ }^{\text {c }}$	pri-sec winding capacity, F

```
Data Review printout for Example 3-3.1
```

```
    GEO
```

 GEO
 2.646+49 +4
2.646+49 +4
GEEA
GEEA
364.6-65 ***
364.6-65 ***
55.0.65
55.0.65
primary winding buildup
primary winding buildup
SEb
SEb
1.046+65
1.046+65
secondary turns
secondary turns
primary turns
primary turns
GEE
GEE
5.000+60 *** mean turn length
5.000+60 *** mean turn length
geo
geo
. bek
. bek
** number of dielectrics
** number of dielectrics
ESC
ESC
50. 60-65 *** primary-sec dielectric thickness
50. 60-65 *** primary-sec dielectric thickness
0. प\mp@code{gatien *** secondary interwinding dielectric thickness}
0. प\mp@code{gatien *** secondary interwinding dielectric thickness}
2.000-6. w% primary interwinding dielectric thickness
2.000-6. w% primary interwinding dielectric thickness
EED
EED
10.00-60 *** pri-sec dielectric, dielectric constant
10.00-60 *** pri-sec dielectric, dielectric constant
F,0ertee *** secondary average dielectric constant
F,0ertee *** secondary average dielectric constant
i0, ©ब+\overline{0}}\mathrm{ *** primary average dielectric constant

```
i0, ©ब+\overline{0}}\mathrm{ *** primary average dielectric constant
```


PROGRAM 3-4 STRAIGHT WIRE AND LOOP WIRE INDUCTANCE.

Program Description and Equations Used

This program calculates the inductance of straight wire lengths and single square wire loops. The permeability of the wire is taken into account only for the inductance calculation, but not for skin depth; therefore, the inductance calculated is the low frequency inductance.

The calculation of wire inductance can be an important design parameter in some instances. For example, the bonding wire inductance of high speed, wideband hybrid integrated circuits affects circuit performance. Wire self-inductance is also important in the design of high frequency (1000 Hz), high power (megawatt) power conversion equipment such as SCR inverters, choppers, cycloconverters, and phase delay rectifiers.

The inductance of a straight wire increases with permeability and length, and decreases with increasing diameter. The combined effect of permeability, length, and diameter is not described simply, but can be easily solved with a scientific calculator. For example, the inductance of copper wire is strongly influenced by diameter while the inductance of a high permeability wire such as permalloy is relatively unaffected by diameter.

The formulas used herein come from Grover [30], and can also be found in Terman [52]. Two basic formulas are used, one for straight wire, and another for wire loops. These formulas are algebraically manipulated to obtain expressions for each of the four variables; wire diameter (d), wire length (ℓ), relative permeability (μ), and inductance in $\mu \mathrm{h}$ (L). The program works in the units of centimeters, but the user may input data in either inch or centimeter units.

Figure 3-4.1 shows the definitions of the wire terms.

Figure 3-4.1 Straight wire terms.

The formulas for the straight wire case are:

$$
\begin{align*}
& \mathrm{L}=\left(2 \times 10^{-3}\right) \ell\left\{\ln \left(\frac{4 \ell}{\mathrm{~d}}\right)+\frac{\mu}{4}-1\right\}, \mu \mathrm{h} \tag{3-4.1}\\
& \mathrm{~d}=\frac{4 \ell}{e^{\left(\mathrm{L} /\left(2 \ell \times 10^{-3}\right)-\mu / 4+1\right)}} \tag{3-4.2}\\
& \mu=4\left\{\frac{\mathrm{~L}}{2 \ell \times 10^{-3}}+1-\ln \left(\frac{4 \ell}{\mathrm{~d}}\right)\right\} \tag{3-4.3}
\end{align*}
$$

To obtain the wire length, a Newton-Raphson iterative solution is employed (see Program 1-3 for details), because the equation for ℓ has a logarithm containing ℓ.

$$
\begin{equation*}
\ell=\frac{L}{\left(2 \times 10^{-3}\right)\left\{\ln \left(\frac{4 \ell}{d}\right)+\frac{\mu}{4}-1\right\}} \tag{3-4.4}
\end{equation*}
$$

The Newton-Raphson solution finds where a function is zero, therefore, let:

$$
\begin{equation*}
f(\ell)=\ell-\frac{L}{\left(2 \times 10^{-3}\right)\left\{\ln \left(\frac{4 \ell}{d}\right)+\frac{\mu}{4}-1\right\}}=0 \tag{3-4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(\ell)=\frac{d f(\ell)}{d \ell}=1+\frac{L}{\left(2 \times 10^{-3} \ell\right)\left\{\ln \left(\frac{4 \ell}{d}\right)+\frac{\mu}{4}-1\right\}} \tag{3-4.6}
\end{equation*}
$$

The initial guess for ℓ is 1 , and the ℓ value for each succeeding iteration is given by:

$$
\begin{equation*}
\ell_{i+1}=\ell_{i}-\frac{f\left(\ell_{i}\right)}{f^{\prime}\left(l_{i}\right)} \tag{3-4.7}
\end{equation*}
$$

The iteration is terminated when:

$$
\begin{equation*}
\left|\ell_{i+1}-\ell_{i}\right|<10^{-6} \tag{3-4.8}
\end{equation*}
$$

Figure 3-4.2 shows the definitions of the loop wire terms.

Figure 3-4.2 Loop wire terms.

The formulas for the loop wire case are:

$$
\begin{align*}
& L=\left(4 \times 10^{-3} \ell\right)\left\{\ln \left(\frac{2 D}{d}\right)+\frac{\mu}{4}-\frac{D}{\ell}\right\}, \mu h \tag{3-4.9}\\
& d=\frac{2 D}{e^{\left(L /\left(4 \times 10^{-3} \ell\right)-\mu / 4+D / \ell\right)}} \tag{3-4.10}\\
& \ell=\frac{\frac{L}{4 \times 10^{-3}}+D}{\ln \left(\frac{2 D}{d}\right)+\frac{\mu}{4}} \tag{3-4.11}\\
& \mu=4\left\{\frac{L}{4 \times 10^{-3} \ell}+\frac{D}{\ell}-\ln \left(\frac{2 D}{d}\right)\right\} \tag{3-4.12}
\end{align*}
$$

Keys "a" through "d" set up the dimension units to be used for input or output (inches or centimeters), and the configuration (straight wire or loop wire). When the loop wire configuration is selected (key "c"), the loop separation, D, must also be entered via key "c."

Keys "A" through "D" provide the program input/output functions. Use of these keys following numeric input signals an input to the program. Use of these keys without numeric entry, or following the clear key (E) signals an output is required from the program. Flag 3 is used to indicate input or output within the program.

${ }_{34} \quad$ User Instructions

Example 3－4．1
Find the inductance of a straight gold wire 0.001 inch in diameter and 0.3 inch long（a hybrid integrated circuit interconnect wire）．

EEER set inches
ESE set straight wire mode
． 00 EE load wire diameter in inches
． 306 ： 565 load wire length in inches
i． 6 E GEE load wire relative permeability
ESE calculate inductance
Q． 14 C 相 inductance in microhenries

Example 3－4．2
Find the length of a $4 / 0$ copper cable（． 528 in diam）having an inductance of 6 microhenries

```
                    BSEk set inches
                    GFS set straight wire mode
        .558 6584 load wire diameter
    1. ตढ⿺尢 हSEC load relative permeability of wire
    6.600 ESED load required inductance
            ESE calculate wire length*
182.256 ww length, inches
12.ge0 =
i5.16e wa
```

*Computation time takes about 1 minute.

Example. 3-4. 3

A pair of $4 / 0$ wires rum 20 feet between a capacitor module and an inverter module in an ac traction motor controller. The wire separation is twice the wire diameter. What parasitic inductance does the wire add in series with the capacitors? $4 / 0$ wire is .528 inches in diameter.

If the maximum parasitic inductance that can be tolerated is 2 microhenries, how long can the feeder wires be if the other parameters don't change?

```
    E.06G ESD load required inductance in \muh
    ESE calculate loop length
S0.54E *** loop length, inches
12.6% %
iE.GT *** loop length, feet
```


PROGRAM 3-5 AIR-CORE SINGLE-LAYER INDUCTOR DESIGN.

Program Description and Equations Used
This program uses Wheeler's equation [55] to solve for the various parameters relating to single-layer, air-core inductor design. The basic form of Wheeler's equation is:

$$
\begin{equation*}
L(\mu h)=\frac{a^{2} n^{2}}{9 a+10 \ell} \quad \text { (use inch dimensions) } \tag{3-5.1}
\end{equation*}
$$

This equation provides answers within 1% accuracy for all values of $2 a / \ell$ less than 3 , and the results will be about $4 \% 10 w$ when $2 a / \ell=5$ (short coils).

There are five parameters that can be used to describe an air-core inductor: the coil radius in inches (a), the coil length in inches (ℓ), the number of turns (n), the winding pitch ($p=\ell / n$), and the inductance in microhenries (L). Of this set of five parameters, only four are independent since ℓ, n, and p are interrelated; hence, given any three independent parameters, the fourth independent parameter, and the remaining dependent parameter can be found. For example, L can be calculated given a, ℓ, and n, or a, n, and p.

Wheeler's equation may be algebraically manipulated to yield the other independent variables.

Solving for ℓ given a, n, and L :

$$
\begin{equation*}
\ell=\frac{a^{2} n^{2}-9 a L}{10 L} \tag{3-5.2}
\end{equation*}
$$

Solving for ℓ given n and p :

$$
\begin{equation*}
\ell=n \cdot p \tag{3-5.3}
\end{equation*}
$$

Solving for n given a, ℓ, and L :

$$
\begin{equation*}
\mathrm{n}=\frac{1}{\mathrm{a}} \sqrt{\mathrm{~L}(9 a+10 \ell)} \tag{3-5.4}
\end{equation*}
$$

Solving for n given a, p, and L : find quadratic solution of

$$
\begin{equation*}
a^{2} n^{2}-10 L p n-9 a L=0 \tag{3-5.5}
\end{equation*}
$$

Solving for p given ℓ and n :

$$
\begin{equation*}
p=l / n \tag{3-5.6}
\end{equation*}
$$

Solving for p given a, n, and L :

$$
\begin{equation*}
p=\frac{1}{10 n}\left\{\frac{a^{2} n^{2}}{L}-9 a\right\} \tag{3-5.7}
\end{equation*}
$$

Solving for L given a, n, and p :

$$
\begin{equation*}
L=\frac{a^{2} n^{2}}{9 a+10 n p} \tag{3-5.8}
\end{equation*}
$$

Solving for a given ℓ, n, and L : find quadratic solution of

$$
\begin{equation*}
n^{2} a^{2}-9 L a=10 \ell L=0 \tag{3-5.9}
\end{equation*}
$$

The program uses these equations as follows. The appropriate input keys are assumed to have been executed prior to an output request. Label " A " inputs or outputs the coil radius in inches, a. The input is stored in RO, and Eq. (3-5.9) is used for output.

Label " B " inputs or outputs the number of turns, n. The input is stored in RI, and if p was previously entered, l is calculated using Eq. (3-5.3). For output, Eq. (3-5.5) is used if p, l, and a are specified, otherwise, Eq. (3-5.4) is used.

Label "C" inputs or outputs the coil length, l. For input, the coil length is stored in R2, flag 0 is cleared, and a new p is calculated and stored using Eq. (3-5.6). For output, if p has been previously entered, use Eq. (3-5.3), otherwise use Eq. (3-5.2).

Label "D" inputs or outputs the winding pitch, p. For input, the new pitch is stored in R3, f1ag 0 is set, and new ℓ is calculated with Eq. (3-5.3). For output, Eq. (3-5.6) is used.

Label "E" inputs or outputs the coil inductance, L, in microhenries. For input, the value is stored in R4. For output, Eq. (3-5.1) is used, and the new inductance value stored.

Label "c" calculates the wire diameter given the wire AWG with heavy insulation. The wire diameter over heavy insulation bears an
exponential relationship to the wire gauge:

$$
\text { Diameter (inches) }=k_{1} \cdot e^{k_{2} \cdot A W G}
$$

$$
\begin{aligned}
\text { where } k_{1} & =0.31373 \\
\text { and } \quad k_{2} & =-.109788
\end{aligned}
$$

On the first execution of this routine, the constants k_{1} and k_{2} are stored into R8 and R9 respectively. Flag 2 is initially set after magnetic card reading to indicate constant storage required, and is reset upon test.

Label "d" calculates the AWG of the wire given the diameter over the insulation in inches:

$$
\begin{equation*}
\text { AWG }=\frac{1}{\mathrm{k}_{2}} \cdot \ln \left\{\frac{\text { Diameter }}{\mathrm{k}_{1}}\right\} \tag{3-5.11}
\end{equation*}
$$

Label "e" is used to clear flag 3 to indicate data output desired.
Keys "A" through "E" leave flag 3 cleared after the associated routine finishes, i.e., data output mode is set unless further numeric entry is made.

The routines under keys " d " and " e " do not alter the state of flag 3. For example, one may load the wire AWG, use key " c " to convert to wire diameter, and then use key " D " to load this value as the winding pitch (close wound coils).

Highest coil Q's are generally obtained when the space between the wires equals the wire diameter (pitch equals twice the wire diameter). Callendar's equation [13] can be used to estimate the Q of a coil with this pitch:

$$
\begin{equation*}
Q=\frac{\sqrt{\text { freq in } \mathrm{Hz}}}{\frac{2.71}{a}+\frac{2.13}{\ell}} \quad \text { (use inch dimensions) } \tag{3-5.12}
\end{equation*}
$$

For RF coils where the skin depth is less than the wire diameter, Callendar's equation is accurate to within a few percent. For close wound coils, the calculated Q will be high by a factor of 1.9.

HP-67 users may want to make the following program changes to make the final number in the display unambiguous. For example, label " C " causes both the number of turns and the coil length to be printed
with the coil length being displayed last. To change the program so only the number of turns is displayed and printed, change lines 122 through 126 of the program as follows:

122	FCL 3
123	x
124	Stos
125	FCL:
120	GT0e

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS	OUTPUT DATA/UNITS
1	Loed both eldes of program card			
2	Solect problem typas			
	a) to find L \& p givon $a_{1} n_{n}$ \& l			
	1) load the ootl radius	a. in	A	
	11) load the numbor of turns		B	
	iii) load the coil length	ℓ, in	0	
	1v) caloulate the ootl inductanoe		E	L, $\mathrm{L}^{\text {h }}$
	∇) oalculate the *inding pitch		D	P, in/T
	b) to find L \& ℓ given a, n, d p			
	1) load the coil radius	a, in	4	
	11) load the number of turns	n	B	
	1ii) load the vinding pitoh	P, in/T	D	
	iv) calculate the coil inductance		E	$\mathrm{L}, \mu \mathrm{h}$
	v) calculate the coil length		0	ℓ, in
	c) to find n \& p givon $a, d, \& L$			
	1) load the coil radius	a, in	A	
	1i) load a dumm value for n^{*}	1	B	
	iii) load the winding length	l, in	0	
	1v) load desired inductance	$\mathrm{L}, \mu \mathrm{h}$	E	
	V) calculate the \# of turns and		B	n, turns
	the winding pitoh			$\mathrm{p}, \mathrm{in} / \mathrm{T}$
	d) to find n \& ℓ given $a_{\ell} n_{2}$ \& L			
	1) load the coil radius	a, in	A	
	1i) load the winding pitch	$\mathrm{p}, \mathrm{in} / \mathrm{T}$	D	
	1ii) load desired inductance	L, $\mu \mathrm{h}$	E	
	iv) caloulate the number of turna		B	n, turns
	and the winding length			ℓ, in
	o) to find l \& p given $a_{0}, n, \& L$			
	1) load the coil radius	a, in	A	
	1i) load the desired number of turns	n	B	
	111) load the desired inductance	$\mathrm{L}, \mathrm{\mu h}$	E	
	iv) calculate the inductor length **		0	ℓ, in
	v) calculate the winding pitch		D	$\mathrm{p}, \mathrm{in} / \mathrm{T}$

STEP	INSTRUCTIONS	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$	KEYS	OUTPUT DATAIUNITS
2	f) to find a \& \& given $n, p, \& L$			
	1) load the desired number of turns	n	B	
	11) lood the desired winding pitch	$\mathrm{p}, \mathrm{in} / \mathrm{T}$	D	
	iii) load the desired inductance	$\mathrm{L}, \mathrm{\mu h}$	E	
	iv) calculate the coil redius		A	a, in
	v) caloulate the ooil length		0	e, in
	g) to find a \& p given $n, \ell, \& L$			
	1) load the desired number of turns	n	B	
	i1) losd the desired coil length	ℓ, \ln	0	
	ii1) load the desired inductance	$\mathrm{L}, \mu \mathrm{h}$	E	
	iv) calculate the coil radius		A	a, in
	∇) calculate the winding pitch		D	P, in/T
3	Go baok to any part of step 2, or stop			
4	To convert wire AWG to diameter over			
	heary (class 2) insulation	AWG	\mathbf{f}	diam, in
5	To convert wire diameter over heavy			
	insulation to AWG	diam, in	\mathbf{f} D	AWG
6	To clear input mode, ioe., to request output			
	after numeric operations have been performed			
	from the keyboard		\mathbf{f} E	
	Notes:			
	* $\quad \mathrm{p}=\ell / n$, a non-zero n is required for			
	proper program operation. The dummy is			
	replaced with the calculated n under label $\mathrm{B}^{\text {. }}$			
	** A negative value for the inductor length			
	means the required inductance cannot be			
	realized with the chosen radius and number			
	of turns. Either increase n or a.			

Example 3-5.1

An air-core coil is to be wound in a $\frac{1}{2}$ inch form using \#18 AWG HF wire at a pitch of twice the wire diameter. What number of turns are required for an inductance of 500 nanohenry ($0.5 \mu \mathrm{~h}$), and what will the winding length be?

. 230	68,	load coil radius in inches
18.66	ESb	load wire AWG
0.645	***	wire diameter over HF insulation
2.606		calculate winding pitch (2 x diam)
	GSEL	load winding pitch
. 566	GSEE	load required inductance in microhenry
	GSEE	calculate turns and coil length
8.956	**	number of turns (use 9 turns)
6.778	***	coil length in inches

Examp1e 3-5.2
A 6 turn coil on a 6 inch form is closewound with \#4/0 wire. The wire is 0.750 inches over the insulation. What is the coil inductance and length?

```
3. का- CEEA load the coil radius in inches
E.0UQ GSEE load the number of turns
    .F50 Geg load winding pitch
    EEE calculate inductance
4. #W6 **: inductance in microhenries
    CEE: calculate coil length
4.5e. ** coil length in inches
```


PROGRAM 3-6 AIR-CORE MULTILAYER INDUCTOR DESIGN.

Program Description and Equations Used

This program uses a modification of Bunet's formula [11], Eq. (3-6.1), to design air-core, multilayer solenoidal inductors (inch dimensions).

$$
\begin{equation*}
\mathrm{L}(\mu \mathrm{~h})=\frac{\mathrm{a}^{2} \mathrm{n}^{2}}{9 \mathrm{a}+10 \ell+8.4 \mathrm{c}+3.2 \mathrm{c} \ell / \mathrm{a}} \tag{3-6.1}
\end{equation*}
$$

The coil dimensions are shown in Fig. 3-6.1, and the range of usefulness of the program can be ascertained from Table 3-6.1.

Figure 3-6.1 Multilayer coil dimensions.

Table 3-6.1 Accuracy estimates for Bunet's equation.

c / a ratio	$2 a / \ell$ ratio for 1% accuracy	other accuracies $2 a / \ell$	
$1 / 20$	≤ 3	5	4
$1 / 5$	≤ 5	10	2
$1 / 2$	≤ 2	5	3
$1 / 1$	≤ 1.5	5	5

The modification to Eq. (3-6.1) consists of replacing the midcoil radius, a, by the inner radius, r :

$$
\begin{equation*}
a=r+\frac{c}{2} \tag{3-6.2}
\end{equation*}
$$

The coil is generally wound on a coil form, hence, r and ℓ are known from the coil form dimensions. The coil mid-radius, a, is dependent upon the coil buildup, and is generally not known at the inception of the design. If the wire and insulation occupy a box as shown in Fig. 3-6.2,

Figure 3-6.2 Wire cross-section.
then the total area occupied by n turns of this wire would be:

$$
\begin{equation*}
A_{\text {total }}=n \cdot d^{2} \tag{3-6.3}
\end{equation*}
$$

This area is also expressible in terms of the coil dimensions:

$$
\begin{equation*}
A_{\text {total }}=c \cdot \ell \tag{3-6.4}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
n \cdot d^{2}=c \cdot l \tag{3-6.5}
\end{equation*}
$$

or

$$
\begin{equation*}
c=\frac{n \cdot d^{2}}{\ell} \tag{3-6.6}
\end{equation*}
$$

A fifth order polynomial in n may be derived to yield the number of turns of wire with diameter d, given the required inductance, L, the coil inner radius, r, and the coil width, l. Taking Eq. (3-6.1), multiplying both sides by the denominator term, and clearing fractions yields:

$$
\begin{equation*}
a^{3} n^{2}-L\left\{9 a^{2}+(10 \ell+8.4 c) a+3.2 c \ell\right\}=0 \tag{3-6.7}
\end{equation*}
$$

Substituting Eq. (3-6.2) for a, and Eq. (3-6.6) for c, and collecting terms in like powers of n results in the following 5th order polynomial equation:

$$
\begin{align*}
f(n) & =A n^{5}+B n^{4}+C n^{3}+D n^{2}-E n-F=0 \tag{3-6.8}\\
A & =\left(\frac{d^{2}}{2 \ell}\right)^{3} \tag{3-6.9}\\
B & =3 r\left(\frac{d^{2}}{2 \ell}\right)^{2} \tag{3-6.10}\\
C & =3 r^{2}\left(\frac{d^{2}}{2 \ell}\right) \tag{3-6.11}\\
D & =r^{3}-\left(\frac{d^{2}}{2 \ell}\right)^{2}(25.8 L) \tag{3-6.12}\\
E & =L\left\{\frac{d^{2}}{2 \ell}(34.8 r+10 \ell)+3.2 d^{2}\right\} \tag{3-6.13}\\
F & =r L(10 \ell+9 r) \tag{3-6.14}
\end{align*}
$$

The Newton-Raphson iterative procedure described in Program 1-3 is used to find the largest positive real root for n in Eq. (3-6.8). If the initial guess for n is larger than the largest root, the method will converge to the largest root when the function is a polynomial as in the present case. An initial guess of 10000 turns is used. If a larger number of turns is expected, the user may want to increase the initial guess which is located at step 084 of the program.

If r, c, ℓ, and L are specified, then the solution for n becomes somewhat simpler. Since r and c are both known, a can be calculated from Eq. (3-6.2). With this calculation, all parameters except n are known in Eq. (3-6.1), and n becomes:

$$
\begin{equation*}
\mathrm{n}=\frac{1}{a}\{L(9 a+10+c(8.4)+3.2 \ell / a)\}^{\frac{1}{2}} \tag{3-6.15}
\end{equation*}
$$

Once n has been calculated, the wire diameter, d, can be calculated from Eq. (3-6.6) as given below:

$$
\begin{equation*}
\mathrm{d}=\sqrt{\frac{c \ell}{\mathrm{n}}} \tag{3-6.16}
\end{equation*}
$$

So far, the two cases for the number of turns have been derived. Likewise, there are two cases for the calculation of L. Given r, ℓ, c, and n, Eqs. (3-6.2) and (3-6.1) may be used to calculate L. If the wire diameter, d, had been specified instead of the coil thickness, c, then

Eqs. (3-6.6) and (3-6.1) are used to calculate L.

Program constants

Since all program steps were used to code the program equations, no room remains for the program constants. These constants are recorded on another magnetic card, and are loaded after the program magnetic card loading. Load the following registers, and record the data on both sides of the data card (2 WDATA commands):

$$
\begin{aligned}
8.4 & \rightarrow \mathrm{R} 7 \\
3.2 & \rightarrow \mathrm{R} 8 \\
10 . & \rightarrow \mathrm{R} 9
\end{aligned}
$$

Examp1e 3－6．1

Find the number of turns of $⿰ ⿰ 三 丨 ⿰ 丨 三 一 24 ~ H F ~ w i r e ~(~ 0.0224 ~ i n c h e s ~ o v e r ~ i n s u l a-~$ tion）to be wound on a bobbin that has a 0.3 inch inner radius and is 0.5 inch wide to obtain an inductance of 200 microhenries．Also find the coil thickness．

```
            Fe%m load bobbin inner radius (in)
.Giz% =at load wire diameter over insulation (in)
    SESE load bobbin width (in)
EQ6.GE EEE load inductance required ( }\mu\textrm{h}
    EE: calculate 非 of turns & coil thickness*
ミこ.ど %: number of turns (use 123)
Bizaj *首 coil thickness, inches
```


Example 3－6．2

Calculate the inductance of an 18 turn coil of $4 / 0$ wire with 6 turns per layer wound on a 6 inch diameter form． $4 / 0$ wire is 0.75 inch over the insulation．

```
    \(\therefore .60\) 635 load coil inner radius (in)
    IE ESEk load wire diameter over insulation (in)
    E. 0 b calculate coil width:
    4.50 ** coil turns per layer x thickness per turn
            EEE load coil width
1s. 6 ESEL load number of turns
    ESE calculate inductance
50.0345 inductance in microhenries
```

[^3]

PROGRAM 3-7 CYLINDRICAL SOLENOID DESIGN.

Program Description and Equations Used

This program provides the coil winding particulars and the coil electrical characteristics given the specifications for a cylindrical solenoid. These specifications are:

1) Minimum plunger attractive force in pounds (F),
2) Initial air gap length in inches ($\ell_{\text {air }}$),
3) Maximum flux density in the air gap ($\mathrm{B}_{\text {max }}$) in gauss,
4) Maximum coil current density in amperes $/ \mathrm{in}^{2}(\Delta)$,
5) Maximum coil buildup, or thickness, (w) in inches,
6) Coil excitation voltage (E) in volts, or current (I) in amperes,
7) Optionally, the magnetic path area ($\mathrm{A}_{\text {iron }}$) in inches ${ }^{2}$, the magnetic path length ($\ell_{\text {iron }}$) in inches, and the magnetic permeability (μ).

The length of the magnetic path is assumed to be zero unless step 7 is exercised.

The characteristics that the program calculates are:

1) Plunger diameter in inches (D_{p}),
2) Number of turns in the coil (N),
3) Coil wire AWG using class 2 or heavy insulation,
4) Coil length in inches ($\ell_{\text {coil }}$),
5) Coil inductance in henries (L),
6) Coil resistance in ohms (R),
7) Coil power dissipation in watts (P),
8) Actual B in the core and in the air-gap, and
9) Actual F.

With the maximum flux density in the air gap and plunger attractive force specified, the area of the air gap can be calculated from:

$$
\begin{equation*}
A_{\text {air }}=F \cdot k_{1} /\left(B_{\text {air }}{ }^{2}\right) \tag{3-7.1}
\end{equation*}
$$

where k_{l} is the constant of proportionality relating flux density in the air gap to pressure in pounds/in ${ }^{2}$

$$
\begin{equation*}
\mathrm{k}_{1}=1.73 \times 10^{6} \tag{3-7.2}
\end{equation*}
$$

If the plunger area is assumed equal to the air gap area, the plunger diameter can be calculated using:

$$
\begin{equation*}
D_{p}=2 \cdot\left(A_{a .1 r} / \pi\right)^{3 / 2} \tag{3-7.3}
\end{equation*}
$$

Once the plunger diameter is known, then a value for the winding thickness may be loaded into the program. The smallest dimension of the winding should not exceed 3 inches to allow adequate thermal conduction for the heat generated with the coil, thus avoiding high internal coil temperatures. If the program calculates a short coil length, then the thickness is not restrained. A long coil restrains the coil thickness to 3 inches or less. Several iterations of the program solution may be required until satisfactory values for coil length and width (thickness) are found.

Given the excitation voltage, inverse current density in the coil (M) in circular mils per ampere, and the coll dimensions as defined by Fig. 3-7.1, the number of turns required is given by Eq. (3-7.4). The derivation of this equation is given later.

$$
\begin{equation*}
N=E \cdot M /\left(\pi\left(D_{p}+w\right)\right) \tag{3-7.4}
\end{equation*}
$$

Figure 3-7.1 Solenoid coil dimensions.

If the coil is excited with a current, then the number of turns is:

$$
\begin{equation*}
\mathrm{N}=(\mathrm{NI}) / \mathrm{I} \tag{3-7.5}
\end{equation*}
$$

where $N I$ is the coil ampere-turns which is calculated from $B_{\text {max }}$ later.
The cross-sectional area of the coil ($w \cdot \ell_{\text {coil }}$) consists of current carrying wire and noncurrent carrying insulation and space. The shape factor (sf) is the ratio of the current carrying area to the total area of the coil. If the wire plus insulation is assumed to occupy a square with side d as shown in Fig. 3-6.2, and the winding crossmsection is occupied by N of these squares, then the shape factor is:

$$
\begin{equation*}
s f=\frac{\pi}{4}\left\{\frac{\text { diameter of bare wire }}{d}\right\}^{2} \tag{3-7.6}
\end{equation*}
$$

The diameters of both the bare wire and the wire with insulation bear exponential relationships to the wire AWG as given by Eq. (3-2.1). Substituting these relationships into Eq. (3-7.6) yields:

$$
\begin{equation*}
s f=\frac{\pi}{4}\left\{\frac{a^{\prime}}{a} e^{\operatorname{AWG}\left(b^{\prime}-b\right)}\right\}^{2} \tag{3-7.7}
\end{equation*}
$$

where

$$
\begin{align*}
& \frac{\pi}{4}\left\{\frac{a^{\prime}}{a}\right\}^{2}=.8418900745 \tag{3-7.8a}\\
& 2\left(b^{\prime}-b\right)=-1.21690938 \times 10^{-2} \tag{3-7.8b}
\end{align*}
$$

The coil has N wires each carrying in current, I; thus the current density in the coil is:

$$
\begin{equation*}
\Delta=(\mathrm{NI}) /\left(\mathrm{sf} \cdot 1_{\mathrm{coil}} \cdot \mathrm{w}\right) \tag{3-7.9}
\end{equation*}
$$

where Δ is specified by the user through M :

$$
\mathrm{k}_{2}=\mathrm{M} \cdot \Delta=(\operatorname{cir}-\mathrm{mils} / \mathrm{A})\left(\mathrm{A} / \mathrm{in}^{2}\right)=\left(4 \times 10^{6}\right) / \pi(3-7.10)
$$

Solving for the coil length between Eqs. (3-7.9) and (3-7.10) yields:

$$
\begin{equation*}
1_{\text {coil }}=(\mathrm{NI} \cdot \mathrm{M}) /\left(\mathrm{sf} \cdot \mathrm{k}_{2} \cdot \mathrm{~W}\right) \tag{3-7.11}
\end{equation*}
$$

The coil ampere-turns, NI, is calculated from $B_{\text {max }}$ using the "Ohm's law" of magnetics:

$$
\begin{equation*}
\mathrm{MMF}=\emptyset \cdot R \tag{3-7.12}
\end{equation*}
$$

where \emptyset is the flux and $i s$ continuous throughout the magnetic and air paths and is analogous to electric current. The reluctance, R, is the magnetic resistance, and the magnetomotive force, MMF, is the magnetic "voltage" source. The total reluctance is the sum of the individual reluctances making up the magnetic circuit and the MMF is proportional to the current in the coil:

$$
\begin{align*}
& \mathrm{MMF}=0.4 \mu \mathrm{NI} \tag{3-7.13a}\\
& R=\sum_{i} \frac{l_{i}}{\mu_{i} \cdot \mathrm{~A}_{i}} \tag{3-7.13b}
\end{align*}
$$

The electromagnet model used by this program has two sections, the magnetic path, and the air gap. Usually the air gap reluctance is the dominant term. Noting that the relative permeability for air is unity, and

$$
\begin{equation*}
\emptyset=B_{\text {iron }}{ }^{A_{\text {iron }}}=B_{\max } \cdot A_{\text {air }} \tag{3-7.14}
\end{equation*}
$$

then solving Eq. (3-7.12) for NI yields:

$$
\begin{equation*}
N I=\frac{B_{\max } A_{\text {air }}}{A_{\text {iron }}}\left\{\frac{\ell_{\text {iron }}}{\mu_{\text {iron }}}+\ell_{\text {air }} \frac{A_{\text {iron }}}{A_{\text {air }}}\right\} \frac{k_{3}}{0.4 \pi} \tag{3-7.15}
\end{equation*}
$$

where $k_{3}=2.54$, the inch to centimeter conversion ratio. The iron area, $A_{i r o n}$, refers to the smallest iron area, which may not be next to the air gap.

An iterative method is required to find the wire AWG and coil length. An initial shape factor of 0.5 is assumed, the coil length is obtained using Eq. (3-7.11). The wire diameter over insulation is obtained using

$$
\begin{equation*}
d=\left(w \cdot l_{\operatorname{coil}} / N\right)^{\frac{1}{2}} \tag{3-7.16}
\end{equation*}
$$

The wire AWG is obtained from the wire diameter over insulation from Eq. (3-2.1), and a new shape factor calculated from the AWG using Eq. (3-7.7). The new shape factor replaces the old shape factor and the calculations run again. The iteration is terminated when the new and old shape factors agree within . 001.

The coil physical dimensions and number of turns have now been
determined, and other electrical characteristics can be calculated.

$$
\begin{align*}
& L=\frac{0.4 \pi \cdot \mathrm{~N}^{2} \cdot \mathrm{~A}_{\text {iron }} \cdot \mathrm{k}_{3} \times 10^{-8}}{\frac{\ell_{\text {iron }}}{\mu_{\text {iron }}}+\ell_{\text {air }} \frac{A_{\text {iron }}}{\text { air }}} \tag{3-7.17}\\
& R=(\mathrm{R} / \ell) \text { (mean turn) (N) } \tag{3-7.18}
\end{align*}
$$

where R / l is obtained from:

$$
\begin{equation*}
\mathrm{R} / \ell,(\text { ohms } / \text { inch })=\mathrm{k}_{4} \cdot e^{\mathrm{k}_{5} \cdot \text { AWG }} \tag{3-7.19}
\end{equation*}
$$

hence,

$$
\begin{equation*}
R=N \cdot \pi \cdot\left(D_{p}+w\right) \cdot k_{4} \cdot e^{k_{5} \cdot A W G} \tag{3-7.20}
\end{equation*}
$$

For the coil temperature at $60^{\circ} \mathrm{C}$, the constants are:

$$
\begin{aligned}
& \pi \cdot k_{4}=2.9185212367 \times 10^{-5} \\
& k_{5}=0.2317635483
\end{aligned}
$$

If the coil excitation is a constant voltage, then the coil current will have to be recalculated due to the downward rounding of the wire size to the nearest integral value:

$$
\begin{equation*}
I=\frac{E}{R} \tag{3-7.21}
\end{equation*}
$$

The power dissipated in the coil is:

$$
\begin{equation*}
P=I^{2} R \tag{3-7.22}
\end{equation*}
$$

If constant voltage excitation is used, the peak flux density ($\mathrm{B}_{\text {max }}$) and initial plunger attractive force will be slightly larger than the initial values again due to the downward rounding of the wire AWG. The larger wire will have lower resistance causing higher coil current and a higher NI product. Equations (3-7.15) and (3-7.1) are rearranged and used to find $B_{i r o n}$ and F.

$$
\begin{equation*}
\mathrm{B}_{\text {iron }}=\frac{0.4 \pi \mathrm{NI}}{\left\{\frac{\ell_{\text {iron }}}{\mu_{\text {iron }}}+\ell_{\text {air }} \frac{A_{\text {iron }}}{A_{\text {air }}}\right\} k_{3}} \tag{3-7.23}
\end{equation*}
$$

$$
\begin{equation*}
F=\frac{B_{\max }{ }^{2} \cdot A_{\text {air }}}{k_{1}}=\frac{\left(B_{\text {iron }} \cdot A_{\text {iron }}\right)^{2}}{k_{2} \cdot A_{\text {air }}} \tag{3-7.24}
\end{equation*}
$$

In addition to the program card, a data card is necessary to load the registers with these constants:

If the user wants to work in centimeter units instead of inch units, then a different set of constants can be loaded. All constants are the same except for the following:

$\mathrm{a}:$	$7.951183018 \times 10^{-1} \longrightarrow \mathrm{~S}_{2}$
$\pi \cdot \mathrm{k}_{4}:$	$1.175280459 \times 10^{-5} \longrightarrow \mathrm{~S}_{4}$
$\mathrm{k}_{4}:$	$1.0 \longrightarrow \mathrm{~S}_{6}$
$\mathrm{k}_{2}:$	$5.012754114 \times 10^{5} \longrightarrow \mathrm{~S}_{7}$
$\mathrm{k}_{1}:$	$1.11613 \times 10^{7} \longrightarrow \mathrm{~S}_{8}$

The inverse current density, M, is now in hybrid units. The circularmils/A must be multiplied by 2.54 before entry, and the current density, Δ, is in Δ / cm^{2}. The plunger attractive force is still in pounds. If this force is desired in kilograms, change k_{1} as follows:

$$
k_{1}: \quad 2.46064 \times 10^{7} \longrightarrow \mathrm{~s}_{8}
$$

The HP-67 user may wish the program to stop at data output points rather than executing a 5 second "print" halt. To cause the program to
stop at the data output points, change the "print" statements to "R/S" statements at the following line numbers: $047,084,131,144,160,176$, 180, 185, and 194.

${ }_{37} \quad$ User Instructions

STEP	Instructions	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card and both			
	sides of data card			
2	Load force required (in pounds) at maximum			
	air gap (plunger all the way out)	F	A	
3	Load maximum flux in the fron (gauss) and	$\mathrm{B}_{\text {max }}$		
	the air gap in inches	$\ell_{\text {air }}$	f A	
4	Optional, load magnetic circuit parameters:			
	a) load magnetic path length	liron, in		
	b) load magnetic path minimum area	$\mathrm{A}_{\text {iron }} \mathrm{in}^{2}$	ENT	
	c) load relative permeability	μ	f B	
	If this step is not executed, the program			
	Will use Airon = Aric and $\mathrm{l}_{\text {iron }}=0$			
5	Calculate pole diameter		B	pole
	To, change the pole diameter, change			diameter
	$B_{\text {max }}$, a larger $\mathrm{B}_{\text {max }}$ W111 result in a			in inches
	smaller pole. Bmax is material			
	dependent, and generally should not			
	exceed 15000 gauss.			
6	Load winding thickness	w, in	0	
7	Load excitation voltage or current			
	a) excitation voltage	E, V	0	
	b) excitation current (note neg value)	-I, A	$f 0$	
8	Load a value for M, the inverse coil current	M	f D	M
	density in circular-mils per ampere. If no			Δ
	value is loaded, a der'ault value of 1000			
	W111 be used. Execution of this step without			
	numeric entry causes currently stored value			
	to be printed and di splayed.			

37 User Instructions

STEP	Instructions	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Calculate coil design and electrical		E	N
	parameters			AWG
				< coil
				L, h
				R, Ω
				P, watts
				$\mathrm{B}_{\text {iron }} \mathrm{G}$
				$B_{\text {max }}, G$
				F, pounds

Example 3-7.1

Figure 3-7.2 shows a plunger-type, iron-clad cylindrical solenoid. Design the solenoid to have a 1 inch travel and exert an initial pull of 500 pounds when connected to a 55 volt dc source. The initial flux density in the iron shall be 7000 gauss, and the coil inverse current density shall be 700 circular-mils/A. Assume all the reluctance to be in the air gap.

Figure 3-7.2 P1unger-type, iron-clad cylindrical solenoid.

Example 3-7.2

A small solenoid is needed which has 0.050 inch travel, exerts an inftial pull of 5 pounds, and is used intermittently with a 0.10 duty cycle. The coil excitation current is 3 A , and an initial flux density of 6000 gauss is to be used. Because of the intermittent duty cycle, an M of 100 cir-mils/A is used. The magnetic path is 1.5 inches long, has a cross-sectional area of 0.4 inch 2, and has a relative permeability of 500. Investigate the solenoid design with and without consideration for the magnetic path reluctance. A much more thorough analysis can be done with Program 3-8.

5.066	6SE	load initial force required in pounds (F)
6060.600	Ent	load maximum flux density in gauss ($\mathrm{B}_{\max }$)
. 050	$\begin{aligned} & \operatorname{ESE} \\ & B S E E \end{aligned}$	load initial air gap in inches (ℓ,) calcula (
6. 55.3	7\%**	D_{p}
. 250	CSE:	load winding width in inches (w)
-5.060	Eser	load excitation current in A (-I)
166.606	60^{2}	load inverse current density in cir-mils/A (M)
106.606	d4*	
1238.35	**	Δ, A/inch ${ }^{2}$
	ESEE	calculate coil design etc. without considering iron path
205.600	**	the number of turns (N)
25.006	4**	AWG of coil wire with heavy insulation
6. 368	***	coil length in inches ($\ell_{\text {coil }}$)
6.606	**:	coil inductance in henries (L)
1.550	6.	coil resistance in ohms (R)
14.311	**	coil power dissipation in watts (P)
5956.237	*F*	maximum f1ux density in the iron, gauss
5996.237	***	$\mathrm{B}_{\text {max }}$, maximum flux density in the air gap, gauss
4.394	***	actual initial force, F, in pounds
	Rerun	program with magnetic (iron) path considered
1.560 y	Ent	load magnetic path length in inchęs
. 460	EHTT	load magnetic path area in inches
56.964	Eser	load relative magnetic permeability
	GSEE	calculate coil design and electrical parameters
209.600	***	N
25.406	**	AWG
0.319	d	$\ell_{\text {coil }}$
0.606	n**	L
1.645	***	R
14.867	***	P
3597.066	* 4 \%	B in iron area defined
5988.202	W ${ }^{\text {a }}$	B in air gap and in iron pole pieces
4.586	**	F

Derivation of Equations Used. The number of coil turns can be calculated from the applied voltage, the desired inverse current density, and the coil inner diameter and thickness. Conveniently, copper has a resistance of 1 ohm per circular mil per inch of length at. $60^{\circ} \mathrm{C}$; therefore, with a uniform coil temperature of $60^{\circ} \mathrm{C}$, the wire resistance is:

$$
\begin{equation*}
\mathrm{R}=\frac{\ell}{\mathrm{W}} \frac{\mathrm{M}}{} \tag{3-7.24}
\end{equation*}
$$

where ℓ_{w} is the winding wire length in the coil in inches, and m is the wire cross-sectional area in circular mils. If M is defined as the inverse current density in circular-mils/A, then the cross-section of a wire carrying a current I is:

$$
\begin{equation*}
m=M \cdot I \tag{3-7.25}
\end{equation*}
$$

Since

$$
\begin{equation*}
\mathrm{R}=\frac{\mathrm{E}}{\mathrm{I}},\left(\mathrm{Ohm}^{\prime} \mathrm{s} \text { law }\right) \tag{3-7.26}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{E}{I}=\frac{\ell}{M \cdot I} \tag{3-7.27}
\end{equation*}
$$

Rearranging Eq. (3-7.27) and cancelling I yields:

$$
\begin{equation*}
E=\frac{\ell_{W}}{M} \tag{3-7.28}
\end{equation*}
$$

The winding wire length can be found by multiplying the mean turn length by the number of turns:

$$
\begin{equation*}
\ell_{w}=N \cdot \pi \cdot\left(D_{p}+w\right) \tag{3-7.29}
\end{equation*}
$$

where Fig. 3-7.1 defines the coil dimensions D_{p} and w. Substituting Eq. (3-7.29) into Eq. (3-7.28) and solving for N yields:

$$
\begin{equation*}
N=\frac{E \cdot M}{\pi\left(D_{p}+w\right)} \tag{3-7.30}
\end{equation*}
$$

The best reference on the subject known to the author is rather old [47] since it was first published in 1924.

${ }^{37} \quad$ Program Listing II

NOTE FLAG SET STATUS

PROGRAM 3-8 CYLINDRICAL SOLENOID ANALYSIS.

Program Description and Equations Used

This program analyzes a cylindrical coil solenoid, or other magnetic circuits having many parts of varying reluctance. The information required to run the program is as follows:

1) The air gap in inches ($\ell_{\text {air }}$),
2) The number of turns in the coil (N),
3) The AWG of the coil wire,
4) The length of the coil in inches ($\ell_{\text {coil }}$),
5) The coil inner diameter in inches ($\mathrm{ID}_{\text {coil }}$),
6) The plunger outer diameter in inches ($O D_{P}$),
7) The plunger inner diameter in inches if the plunger is hollow (ID_{p}),
8) The length, area, and permeability of each different magnetic section ($l_{\text {iron }}, A_{i r o n}, \mu$),
8a) If the magnetic section is a cylindrical shell with axial f1ux flow, the height (h), the ID which may be zero, the $O D$, and the permeability (μ), can be entered, and the reluctance and cross-sectional area will be returned and automatically loaded into the program,
8b) If the magnetic section consists of a disc (or washer) with radial flux flow, the thickness (t), the ID, the $O D$, and the permeability can be entered, and the reluctance and minimum cross-sectional area will be returned and automatically loaded into the program, and
9) The coil excitation in either volts or amperes (E or $-I$).

The program will then calculate the following parameters:

1) Reluctance and area of each different magnetic section $\left.R \& A_{\text {iron }}\right)$,
2) Coil inductance and resistance (R and L),
3) Coil circular-mils/A, A/in ${ }^{2}$, and power dissipation M, Δ, \& P),
4) The flux density in the air gap, and in the magnetic section with the smallest cross-sectional area ($\mathrm{Bair}_{\text {air }} \mathrm{B}_{\text {iron }}$), and
5) The plunger attractive force in pounds (F).

This program uses the Ohm's law of magnetics as given by Eqs. (3-7.12) and (3-7.13), which combined yield:

$$
\begin{equation*}
0.4 \pi \mathrm{~N} I=\varnothing \cdot \sum_{i} \frac{\ell_{i}}{\mu_{i} A_{i}} \tag{3-8.1}
\end{equation*}
$$

As magnetic path data is entered, the program keeps a running sum of the reluctances, $\frac{\ell_{i}}{\mu_{i} A_{i}}$, and also stores the smallest magnetic area. The iron part willsaturate first where the area is the smallest, and the flux density (B) the highest. The total flux can be found from Eq. (3-8.1):

$$
\begin{equation*}
\emptyset=\frac{0.4 \mu \mathrm{NIk}_{3}}{\sum_{\substack{\text { iron } \\ \text { parts }}}^{\ell_{1}} \frac{\ell_{\mathrm{air}}}{\mathrm{~A}_{\mathbf{1}}}+\frac{\mathrm{A}_{\text {air }}}{}} \tag{3-8.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{\text {air }}=\frac{\pi}{4}\left(O D_{p}^{2}-I D_{p}^{2}\right) \\
& k_{3}=2.54
\end{aligned}
$$

The plunger attractive force is found in terms of the flux:

$$
\begin{equation*}
F=\frac{\phi^{2}}{k_{1} \cdot k_{3}^{4} \cdot A_{a i r}} \tag{3-8.4}
\end{equation*}
$$

where the air gap area is in inches ${ }^{2}$ and the constant k_{1} is:

$$
k_{1}=1.73 \times 10^{6}
$$

The inductance of the N turn coil wound on the magnetic circuit is:

$$
\begin{equation*}
L=\frac{N^{2} k_{3}}{10^{8}}\left\{\frac{0.4 \pi}{\left.\sum_{\substack{\text { iron } \\ \text { parts }}}^{\frac{l}{\mu A}+\frac{\ell_{a i r}}{A_{\text {air }}}}\right\}}\right. \tag{3-8.5}
\end{equation*}
$$

This expression is basically derived in Eqs. (3-1.1) through (3-1.10).
The coil width (w) can be expressed in terms of the coil length (ℓ coil), the number of turns (N), and the wire AWG. The wire is assumed to occupy a box as shown in Fig. 3-6.2.

$$
\begin{equation*}
\text { coil area }=w \cdot l_{\text {coil }}=N \cdot(\text { wire diameter })^{2} \tag{3-8.6}
\end{equation*}
$$

Substituting the exponential relationship between AWG and wire diameter given by Eq. (3-5.10) yields:

$$
\begin{equation*}
\mathrm{w}=\frac{\mathrm{N}}{\ell_{\text {coil }}}\left(\mathrm{a} \cdot e^{\mathrm{b} \cdot \operatorname{AWG}}\right)^{2} \tag{3-8.7}
\end{equation*}
$$

The coil resistance can now be calculated using Eq. (3-7.20):

$$
\mathrm{R}=\mathrm{N} \cdot \pi\left(\mathrm{ID}_{\text {coil }}+\mathrm{w}\right)\left(\mathrm{k}_{4} e^{\mathrm{k}_{5} \cdot \mathrm{AWG}}\right)
$$

The coil power dissipation is:

$$
\begin{equation*}
P=I^{2} R \tag{3-8.8}
\end{equation*}
$$

If voltage excitation is used, the coil current is calculated using Ohm's law, then the power dissipation is calculated.

The coil circular mils per A is given by:

$$
\mathrm{M}=\underbrace{10^{6} \cdot\left(\mathrm{a}^{\prime} \cdot e^{\mathrm{b}^{\prime} \cdot \mathrm{AWG}}\right)^{2} / \mathrm{I}}_{\begin{array}{l}
\text { wire area in } \tag{3-8.9}\\
\text { circular mils }
\end{array}}
$$

The coil current density in $\mathrm{A} / \mathrm{in}^{2}$ is given by Eq. (3-8.10), i.e.:

$$
\begin{equation*}
\Delta=\frac{\mathbf{k}_{2}}{M} \tag{3-8.10}
\end{equation*}
$$

Two commonly encountered part shapes in the magnetic path are the cylindrical shell as shown in Fig. 3-8.1 and the disc or washer as shown in Fig. 3-8.2. Two subroutines are provided to calculate the reluctance and minimum cross-sectional area of these two shapes. Subroutine 1, thin cylindrical shell with permeability $\mu_{\text {. }}$

Figure 3-8.1 Thin cylindrical she11.

The cross-sectional area is given by Eq. $(3-8,3)$ and the reluctance is:

$$
R=\frac{h}{\mu A}
$$

This subroutine output becomes the input for the program coding under label B, and the reluctance is calculated under label B. The subroutine output is stored in the stack in the same format as data entered from the keyboard for arbitrary magnetic section, i.e.:

stack register	contents
t	not used
2	- h
y.	ectional
x .	rmeabili

Subroutine 2, disc or washer with radial flux flow.

Figure 3-8. 2 Disc or washer with radial flux flow.

The disc is composed of an infinite number of annular shells each with infinitesimal thickness dr. The cross-sectional area of each annulus is $2 \pi r$. In this instance, the summation of Eq. (3-8.1) is expressed as an integral:

$$
\begin{equation*}
R=\sum \frac{l}{\mu A}=\frac{1}{\mu t} \int_{r_{l}=\frac{I D}{2}}^{\frac{r_{2}=\frac{O D}{2}}{2 \pi r}}=\frac{\ln (O D / I D)}{2 \pi t \mu} \tag{3-8.11}
\end{equation*}
$$

The disc has the smallest cross-sectional area at the inner diamater, hence:

$$
\begin{equation*}
A=A^{t}=\pi \cdot I D \cdot t \tag{3-8.12}
\end{equation*}
$$

This subroutine output becomes the input for the program coding under label B. The data format used with label B is the equivalent length of a constant cross-section magnetic path, the path area, and the path permeability. The equivalent length having the above reluctance and
cross-sectional area A^{\prime} is:

$$
\begin{equation*}
\ell=\mu \mathrm{A}^{\prime} \cdot R=\left(\frac{\pi \cdot I D \cdot t \cdot \mu}{2 \pi \cdot t \mu}\right) \cdot \ell \mathrm{n} \frac{\mathrm{OD}}{\mathrm{ID}}=\frac{I D}{2} \ln \frac{O D}{\mathrm{ID}} \tag{3-8.13}
\end{equation*}
$$

Subroutine 2 output is transferred to the program coding under label B using the stack in the same way that subroutine 1 operates.

In addition to the program card, a data card is required to load the registers with the program constants. All registers contain zero except for the following:
a' for AWG
b^{\prime} for AWG
a for AWG
b for AWG
$\pi \cdot k_{4}$ for resistance
k_{5} for resistance
$\mathrm{k}_{3}, \mathrm{~cm} \rightarrow$ inch
$\mathrm{k}_{2}, 4 / \pi \times 10^{6}$
k_{1}

$$
\begin{array}{r}
3.241013109 \times 10^{-1} \longrightarrow \mathrm{~S}_{\mathrm{o}} \\
-1.158179256 \times 10^{-1} \longrightarrow \mathrm{~S}_{1} \\
3.130387015 \times 10^{-1} \longrightarrow \mathrm{~S}_{2} \\
-1.097333787 \times 10^{-1} \longrightarrow \mathrm{~S}_{3} \\
2.985212367 \times 10^{-5} \longrightarrow \mathrm{~S}_{4} \\
2.317635483 \times 10^{-1} \longrightarrow \mathrm{~S}_{5} \\
2.54 \longrightarrow \mathrm{~S}_{6} \\
1.273239545 \times 10^{6} \longrightarrow \mathrm{~S}_{7} \\
1.73 \times 10^{6} \longrightarrow \mathrm{~S}_{8}
\end{array}
$$

If metric units are preferred, i.e., linear dimensions in cm, force in kg , current density in $\mathrm{A} / \mathrm{cm}^{2}$ and inverse current density in hybrid units (circular mil-milli-centimeter/A), change the following constants.

$$
\begin{array}{ll}
a^{\prime} \text { for AWG } & 8.232173297 \times 10^{-1} \longrightarrow \mathrm{~S}_{\mathrm{o}} \\
\text { a for AWG } & 7.951183108 \times 10^{-1} \longrightarrow \mathrm{~S} \\
\pi \cdot \mathrm{k}_{4} \text { for resistance } & 1.175280459 \times 10^{-5} \longrightarrow \mathrm{~S}_{4} \\
\mathrm{k}_{3} \mathrm{~cm} \rightarrow \mathrm{~cm} & 1.0 \longrightarrow \mathrm{~S}_{6} \\
\mathrm{k}_{2}, 4 /(2.54 \pi) \times 10^{6} & 5.012754114 \times 10^{5} \longrightarrow \mathrm{~S}_{7} \\
\mathrm{k}_{\mathrm{l}} & 2.4606 \times 10^{7} \longrightarrow \mathrm{~S}_{8}
\end{array}
$$

HP-67 users may want the program to stop instead of executing a "print" statement. This can be accomplished by changing the "print" statements to "R/S" statements at the following line numbers: 102, 105, 124, and 130. To continue program execution after a stop, key a " R / S " command from the keyboard.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT
1	Load both sides of program card and both			
	sides of data card			
2	Load air gap length in inches	Qaix	A	
3	Load plunger $I D$ and $O D$ in inches. The ID	$I D_{p}$		
	can be zero if the plunger is solid	ODP.		
4	Load coil parameters:			
	number of wire turns in coil	N	ENT A	
	Wire AWG	AWG	$\text { ENT } 4$	
	coil ID in inches	ID ${ }_{\text {coil }}$	[ENT 4	
	ooil length in inches	$\ell \operatorname{cosil}$	f -	
5	Load coil excitation			
	voltage excitation in volts	E	f	
	cursent excitation in A (note minus)	-I	f 0	
6	Optional step, the main souroe of reluctance			
	in the magnetic path is the air gap.			
	For added aocuraoy, the length, area, and			
	permeability of each magnetic section may			
	be entereds			
	effective magnetic path longth in inches	liron	ENT 1	
	effective magnetic path area in inches ${ }^{2}$	$\mathrm{A}_{\text {ixon }}$	$\text { ENT } 1$	
	magnetic permeability of path	μ	B	Q
				A
	If the magnetic section is either a			
	cylindrical shell or a diso, then a			
	subroutine can be used to calculate and enter			
	the above parameters from the section			
	dimensions.			
	For oylindrical shells with axial flux flow:			
	load shell height in inches	h	[ENT 1	
	load shell ID in inches (may be zero)	ID	$\text { ENT } \uparrow$	
	load shell OD in inches	OD	ENT 4	
	load shell permeability	H	GSB 1	Q
				A

$3-8$
 User Instructions

Examp1e 3-8.1
The cylindrical solenoid shown in cross-section by Fig. 3-8.3 has the following characteristics:

1) The coil is 150 turns of 非24 AWG HF wire,
2) 0.5 A excitation current flows through the coil, and
3) The magnetic materials are 1010 mild carbon steel.

For the analysis, neglect the force required to compress the return spring.

Figure 3-8.3 Cylindrical solenoid construction.

Analyze the solenoid and determine its electrical and magnetic characteristics. Also analyze the solenoid for the same characteristics if the coil is excited by 0.6 Vdc .

The analysis is begun by breaking down the solenoid into its component geometric shapes as shown by Fig. 3-8.4.

Figure 3-8.4 Component geometric shapes of solenoid.

The component geometric shapes of the solenoid are as follows:

1) Cylindrical she11, $1.0^{\prime \prime}$ long, $0.95^{\prime \prime} \mathrm{ID}, 1.1^{\prime \prime} \mathrm{OD}$, and $\mu=1000$,
2) Disc, 0.2" thick, 0.3" ID, $0.95^{\prime \prime} \mathrm{OD}$, and $\mu=1000$,
3) Solid cylinder, $0.2^{\prime \prime}$ long (active magnetic part), $0.0^{\prime \prime} \mathrm{ID}$, $0.284^{\prime \prime} \mathrm{OD}$, and $\mu=1000$,
4) Cylindrical she11, $0.2^{\prime \prime}$ long, $0.25^{\prime \prime} \mathrm{ID}, 0.284^{\prime \prime} \mathrm{OD}$, and $\mu=1000$,
5) Cylindrical shell, $0.2^{\prime \prime}$ long, $0.25^{\prime \prime}$ ID, $0.3^{\prime \prime} O D$, and $\mu=1000$,
6) Solid cylinder, $0.4^{\prime \prime}$ long, $0.0^{\prime \prime}$ ID, $0.3^{\prime \prime} \mathrm{OD}$, and $\mu=1000$,
7) Disc, 0.2" thick, 0.3" ID, $0.95^{\prime \prime} \mathrm{OD}$, and $\mu=1000$,
8) Disc (air gap), $0.2^{\prime \prime}$ thick, $0.284^{\prime \prime} \mathrm{ID}, 0.3^{\prime \prime} \mathrm{OD}$, and $\mu=1$,
9) Operating air gap, $0.005^{\prime \prime}$ thick, $0.25^{\prime \prime} \mathrm{ID}, 0.284^{\prime \prime} \mathrm{OD}, \& \mu=1$.

The air gap data is loaded, and the complete summary calculated, then the magnetic path component parts are loaded and the summary run again to show the difference that the magnetic circuit reluctance makes on the electrical and magnetic characteristics. This sequence is repeated with the coil excitation at 0.6 Vdc .

HP-97 PRINTOUT FOR EXAMPLE 3-8.1

PROGRAM 3-9 MAGNETIC RELUCTANCE OF TAPERED CYLINDRICAL SECTIONS.

Program Description and Equations Used

This program calculates the magnetic reluctance of tapered cylindrical sections with axial flux flow as shown by Fig. 3-9.1. The magnetic reluctance is analogous to electrical resistance, and is used in the Ohm's law of magnetics as given by Eq. (3-8.1).

Figure 3-9.1 Tapered cylindrical section and dimensions.

Consider the section to be composed of an infinite number of washers each of infinitesimal thickness $d x$, then the reluctance of a washer is:

$$
\begin{equation*}
d R=d x /\left(\mu \cdot A_{x}\right) \tag{3-9.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{x}=(\pi / 4)\left(O D_{x}^{2}-I D_{x}^{2}\right) \tag{3-9.2}
\end{equation*}
$$

The inner and outer diameters at location x can be found by linearly interpolating between the known end diameters:

$$
\begin{align*}
& I D_{x}=I D_{1}+(1 / t)\left(I D_{2}-I D_{1}\right) \cdot x \tag{3-9.3}\\
& O D_{x}=O D_{1}+(1 / t)\left(O D_{2}-O D_{1}\right) \cdot x \tag{3-9.4}
\end{align*}
$$

Substituting Eqs. (3-9.3) and (3-9.4) into Eq. (3-9.2) and collecting like powers of x results in a quadratic:

$$
\begin{equation*}
A_{x}=(\pi / 4)\left(a+b x+c x^{2}\right) \tag{3-9.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{a}=O \mathrm{D}_{1}^{2}-\mathrm{ID}_{1}^{2} \\
& \mathrm{~b}=(2 / \mathrm{t})\left\{O \mathrm{D}_{1}\left(O D_{2}-O D_{1}\right)-\mathrm{ID}_{1}\left(\mathrm{ID}_{2}-I D_{1}\right)\right\} \\
& \mathrm{c}=\left(1 / \mathrm{t}^{2}\right)\left\{\left(O D_{2}-O D_{1}\right)^{2}-\left(\mathrm{ID}_{2}-\mathrm{ID}_{1}\right)^{2}\right\}
\end{aligned}
$$

hence,

$$
\begin{equation*}
R=\frac{4}{\mu \pi} \int_{0}^{t} \frac{d x}{a+b x+c x^{2}} \tag{3-9.6}
\end{equation*}
$$

The result of this integration can have any one of three forms; let

$$
\begin{equation*}
q=b^{2}-4 a c \tag{3-9.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{r}=(2 \mathrm{cx}+\mathrm{b}) / \sqrt{|\mathrm{q}|} \tag{3-9.8}
\end{equation*}
$$

then if $q>0$ and $|r|<1$, the solution is:

$$
\begin{equation*}
R=-\frac{8}{\mu \pi \sqrt{|q|}} \tanh ^{-1} r \tag{3-9.9}
\end{equation*}
$$

if $q>0$ and $|r| \geq 1$, the solution is:

$$
\begin{equation*}
R=\frac{4}{\mu \pi \sqrt{|q|}} \ln \left(\frac{r-1}{r+1}\right) \tag{3-9.10}
\end{equation*}
$$

if $\mathrm{q}<0$, the solution for all \mathbf{r} is:

$$
\begin{equation*}
R=\frac{8}{\mu \pi \sqrt{|q|}} \tan ^{-1} r \tag{3-9.11}
\end{equation*}
$$

3-9
 User Instructions

STEP	instructions	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of the magnetic card			
2	seleat print/ no-print option		If E	0 (noprt)
			$\underline{\mathbf{f}} \mathrm{E}$	1 (print)
			$\mathrm{f}_{\mathbf{f}} \mathrm{l}$	0 (no prt)
				:
3	Load inner diameters	ID ${ }^{*}$	[ENT 4]	
		ID2*	$1 \boldsymbol{A} \mid$	
4	Load outer diameters	OD ${ }_{1}$ *	ENT 4	
		$\mathrm{OD}_{2}{ }^{*}$	B	
5	Load rection length	t^{*}	0	
6	Load magnetic permeability of material		D	
7	Galoulate reluctance		E	$\mathrm{R}^{* *}$
	Notes			
	* Any units of the users ohoosing may be			
	used as long as the same unit is used			
	throughout. If the reluctance is going			
	to be loaded into Program 3-7, then			
	inch units should be used.			
	** The units of reluctance are in inverse			
	dimension units, i.e., inches-1, om-1,			
	ft^{-1}, etc.			
-				

Example 3-9.1

Given the conical section shown in Fig. 3-9.2, calculate the reluctance in inch units.

Figure 3-9.2 Tapered conical section.

$$
\begin{aligned}
& .4 \mathrm{EE} \quad \mathrm{ID}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text {.a } \mathrm{BE} \mathrm{E} \text { t } \\
& \text { IGEG. EAE: } \mu
\end{aligned}
$$

Part 4

HIGH FREQUENCY CIRCUIT DESIGN

PROGRAM 4-1 BILATERAL TRANSISTOR AMPLIFIER DESIGN USING S PARAMETERS.

Program Description and Equations Used

When s_{12}, the reverse transmission coefficient, cannot be reduced to near zero using unilateral design methods,* or the unilateral figure of merit is not sufficiently near zero, the bilateral design method must be used. Since sl2 is related to the capacitive reactance of the transistor base-collector capacity, and this reactance becomes smaller as frequency increases, the bilateral design requirement generally occurs when the amplifier is to be used at UHF frequencies and above.

The bilateral stability factor, K, is computed using Eq. (4-1.1). For the amplifier to be unconditionally stable, K must be greater than one, and the magnitudes of s_{11} and s_{22} must be smaller than one. Since s_{11} and s_{22} are reflection coefficients, this last requirement implies that the input and output impedances are positive. Unconditional stability means the amplifier will not oscillate for any choice of input and output terminations.

$$
\begin{align*}
& \mathrm{K}=\frac{1+|\Delta|^{2}-\left|\mathrm{s}_{11}\right|-\left|\mathrm{s}_{22}\right|}{2\left|\mathrm{~s}_{21} \cdot \mathrm{~s}_{12}\right|} \tag{4-1.1}\\
& \Delta=\mathrm{s}_{11} \cdot \mathrm{~s}_{22}-\mathrm{s}_{21} \cdot \mathrm{~s}_{12} \tag{4-1.2}
\end{align*}
$$

When K is less than one, the amplifier will oscillate with certain source and load impedances, hence, these impedances must be carefully selected. The HP EE pac Program 18 will calculate the stability circles to aid in the termination impedance selection.

The scattering parameters are:
s_{11} is the input reflection coefficient, s_{12} is the reverse transmission coefficient, s_{21} is the forward transmission coefficient, and s_{22} is the output reflection coefficient.

[^4]Scattering parameters are obtained from reflection coefficient measurements applied to a two port network with both ports loaded with a reference impedance, Z_{o}, which is typically 50 ohms resistive. The reflection coefficient is defined by Eq. (1-1.2). For a more comprehensive discussion of s parameters, see Froehner [24], HP application note 95 [32], or Carson [15].

If the proposed amplifier is unconditionally stable, then the maximum gain can be calculated using Eq. (4-1.3)

$$
\begin{equation*}
G_{\max }=\left|\frac{s_{21}}{s_{12}}\right| \cdot\left(K \pm \sqrt{\mathbf{K}^{2}-1}\right) \tag{4-1.3}
\end{equation*}
$$

The negative sign is used when B_{1} is positive and vice-versa:

$$
\begin{equation*}
B_{1}=1+\left|s_{11}\right|^{2}-\left|s_{22}\right|^{2}-|\Delta|^{2} \tag{4-1.4}
\end{equation*}
$$

The source and load reflection coefficients necessary to provide $G_{\max }$ are given by Eqs. (4-1.5) and (4-1.6). These loads present a conjugate match to the transistor.

$$
\begin{align*}
& \rho_{M S}=C_{1} * \cdot \frac{B_{1} \pm \sqrt{B_{1}^{2}-4\left|C_{1}\right|^{2}}}{2\left|C_{1}\right|^{2}} \tag{4-1.5}\\
& \rho_{M L}=C_{2}^{*} \cdot \frac{B_{2} \pm \sqrt{B_{2}^{2}-4\left|C_{2}\right|^{2}}}{2\left|C_{1}\right|^{2}} \tag{4-1.6}\\
& B_{2}=1+\left|s_{22}\right|^{2}-\left|s_{11}\right|^{2}-|\Delta|^{2} \tag{4-1.7}\\
& C_{1}=s_{11}-\Delta \cdot s_{22}^{*} \tag{4-1.8}\\
& C_{2}=s_{22}-\Delta \cdot s_{11}^{*} \tag{4-1.9}
\end{align*}
$$

The minus sign in Eqs. (4-1.5) and (4-1.6) is used when B_{1} is positive and vice-versa. The asterisk (*) means the complex conjugate, i.e., the sign of the imaginary part is reversed, or the sign of the angle is reversed for rectangular or polar formats respectively.

Equations (4-1.5) and (4-1.6) are used to calculate reflection coefficients. The corresponding impedances can be obtained if Eq. (1-1.2) is rearranged to provide Z_{L} in terms of Z_{s} :

$$
\begin{equation*}
z_{L}=z_{0} \frac{1+\rho}{1-\rho} \tag{4-1.10}
\end{equation*}
$$

This routine is contained under label E of the program.

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { OATA/UNITS } \\ \hline \end{gathered}$	KEYS	OUTPUT DATA/UNITS
1	Load both at dos of magnotic card			
2	Solect print or R/S option		P	$0(R / S)$
			$\underline{E} \mathrm{E}$	1 (print)
				0 (F / S)
				:
3	Loed elements of s paramoter matrix for			
	$11=11,12,21,22$ (any ordor)			
	a) load angle of $s_{i j}$ in dogroes	$\theta_{i j} 0$	[ENT4	
	b) load magnitude of $s_{1 j}$	$\left\|s_{i j}\right\|$	ENT]	
	c) load subscript	1 j	1	
4	Calculate stabillty factor and maximum gain		B	K
				$\mathrm{G}_{\text {max }} \mathrm{dB}$
5	calculato angle and magnitude of load			
	reflection coofficiont to obtain $Q_{\text {max }}$		0	$\chi \rho_{m L}$
				$\left\|\rho_{m L}\right\|$
	Calculate roal and 1maginary parto of			
	load Impedance		E	$\mathrm{Re} \mathrm{Z}_{\mathrm{L}}$
				Im 2 L
6	Calculate angle and ragnitude of sourco			
	reflection coeffiolont to obtain $G_{\text {max }}$		10	$\Varangle P_{m s}$
				$\left\|P_{m s}\right\|$
	Oaloulate roal and imaginary parts of			
	source impedance		E	Re Z_{s}
				Im $\mathrm{Z}_{\text {g }}$
7	Calculate real and Imaginary parts of			
	Impedances corrosponding to a refleotion	49	ENTT]	
	coofficient and Z_{0}	$\|\mathrm{P}\|$	ENT 4	
		20	5	Re 2
				Im 2

Example 4-1.1

Given a 2 N 3570 transistor operating at $\mathrm{I}_{\mathrm{c}}=4 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{ce}}=10 \mathrm{~V}$ and having the following s parameters at 750 MHz ,

calculate the stability factor, the maximum power gain in $d B$, the source reflection coefficient and impedance to obtain $G_{\max }$, and the load reflection coefficient and impedance to obtain $G_{\max }$.

PROGRAM INPUT	PROGRAM OUTPUT
```-5. bev Euth \(\theta_{11}\), angle in degrees . तों Eftt \(\mathrm{s}_{1}\), magnitude if. GEE \(i j\) S3. ตूQ EhT* \(\theta_{12}\) - \(\bar{G} \mathrm{E}\) ENT: \(\mathrm{s}_{12}\) iE. ESE ij E4. beg Ent \(\theta_{21}\) 1.92日 ENT: \(\mathrm{s}_{21}\) - 31. 日et Ent \(\theta_{22}\) \(.34 \mathrm{ENT} \mathrm{s}_{22}\) EE. EEE ij```	




## PROGRAM 4-2 UHF OSCILLATOR DESIGN USING S PARAMETERS.

## Program Description and Equations Used

At UHF frequencies, the interelement capacities of a UHF transistor can function as the feedback elements to allow the device to oscillate when connected to an external tuned circuit (usually a $\frac{1}{4}$-wave transmission line section). The emitter circuit is generally left unbypassed while the base circuit is bypassed with a capacitor to provide an ac ground. The collector-emitter capacity provides the necessary feedback to allow the collector to exhibit negative output impedance and oscillate with the external tuned circuit.

The program starts with the conmon base s parameters, reverses the port ordering so the collector is the input, and calculates the reflection coefficient of the "input." If the magnitude of the reflection coefficient is greater than one, the real part of the input impedance will be negative. The routine under label E provides the conversion from reflection coefficient to impedance, while the routine under label e provides the reverse conversion.

Equation (4-2.1) calculates the input reflection coefficient when the output port is loaded with $R_{L}$ as shown by Fig. 4-2.1. Equation (4-2.1) holds for any transistor configuration.

$$
\begin{equation*}
s_{11}^{\prime}=s_{11}+\frac{s_{12} \cdot s_{21} \cdot \rho_{\mathbf{L}}}{1-s_{22} \cdot \rho_{\mathrm{L}}} \tag{4-2.1}
\end{equation*}
$$

where $\rho_{L}$ is defined by Eq. (1-1.2) with $Z_{r}=R_{L}$.


Figure 4-2.1 Common base transistor with collector as input port.

If the tuned source is connected to the collector, and the reflection coefficient of the source is denoted $\rho_{s}$, the circuit will oscillate if:

$$
\begin{equation*}
\rho_{s} \cdot s_{11}^{\prime} \geq 1 \tag{4-2.2}
\end{equation*}
$$

This equation is used in reverse to calculate the source reflection coefficient necessary for oscillation, i.e.:

$$
\begin{equation*}
\rho_{s}=\frac{1}{s_{11}} \tag{4-2.3}
\end{equation*}
$$

This reflection coefficient can be converted to its equivalent impedance using Eq. (4-1.10). The " $Q$," or quality factor, of this impedance is the ratio of the imaginary part to the real part, i.e.:

$$
\begin{equation*}
\mathrm{Q}=\frac{\operatorname{Im} \mathrm{Z}_{\mathrm{S}}}{\operatorname{Re} \mathrm{Z}_{\mathrm{s}}} \tag{4-2.4}
\end{equation*}
$$

The transistor negative input impedance can also be used to make a reflection amplifier if a circulator is used to separate the input from the output. The noise figure will be poor because of the large unbypassed emitter resistance.

For more information see the HP Journal [33], or HP application note number 95 [32].

Notes for User Instructions. Most UHF transistors are four lead devices (emitter, base, collector, and case). The case is electrically isolated from the transistor, in fact, the transistor chip is so small that it is mounted on the end of the collector lead inside the case. Because
of the fourth element, the case, the parasitic capacities from it to the other leads will introduce errors into the common-emitter to common-base s parameter conversion. See G. Bodway's article [ 9] on characterization of transistors by means of three port scattering parameters as one way of dealing with this problem.

If the common base s parameters are available, or can be measured, they are the highly preferred form of data input for the program. Com-mon-base parameters notwithstanding, the common-emitter conversion can be used with the knowledge that $s_{11}$ ' will not be very accurate.



## 4.2 <br> User Instructions




Example 4-2.1
A UHF oscillator using a RCA $2 N 5179$ transistor is to operate between 300 MHz and 400 MHz . The transistor 1 s to be operated at $1.5 \mathrm{~mA} \mathrm{collect-}$ tor current and 4 volts $V_{c e}$ per the manufacturer's recommendations. At 300 MHz the common-emitter $y$ parameters are:

$$
\left.\left[\begin{array}{l}
\left\{(6.5+j 9.0) \times 10^{-3}\right\}\left\{-j 1.35 \times 10^{-3}\right. \\
\left\{(32-j 32) \times 10^{-3}\right.
\end{array}\right\}\left\{(0.25+j 2.6) \times 10^{-3}\right\}\right]
$$

and at 400 MHz the common-emitter $y$ parameters are:

$$
\left[\begin{array}{l}
\left\{(9.2+j 10.7) \times 10^{-3}\right\}\left\{-j 1.8 \times 10^{-3}\right. \\
\left\{(25-j 34) \times 10^{-3}\right\}\left\{(0.3+j 4.0) \times 10^{-3}\right\}
\end{array}\right]
$$

The proposed oscillator schematic is shown in Fig. 4-2.2, and biasing networks have been added to achieve the manufacturer's recommended bias. The 100 ohm resistor in series with the RFC lowers the $Q$ of the resonant circuit formed by the $R F C$ and the coax capacity so the circuit will not preferentially oscillate at that lower frequency.


Figure 4-2.2 Oscillator schematic for Example 4-2.1.

HP. 97 PRINTOUT FOR EXAMPLE 4-2.1, 300MHz CASE

Load Program 4-3 \& load y params   i. GSEe select y parameters $\begin{array}{ccc} \text { E. } & \text { ENT } & \text { Im } \\ \text { load yie and } \\ \text { 1. }-6.3 & \text { Re } & \text { convert to } \\ \text { ii. } 6 S E A & \text { ij } & \end{array}$	Load Program EEl-06A (EE pac)   50. ESEb load reference $Z$ \& convert y params to s parameters
	load this program (Program 4-2)
	$\begin{array}{cc} 147.6+60 & \text { w* } \\ 464.4-63 & 411 \\ 4 * * & \|811\| \end{array}$
	41.01-63 \| ${ }^{8} 12 \mid$
	$\left\{\begin{array}{rrr} -27.41+00 & w * & x 8_{21} \\ 1.404+00 & * * * & \|821\| \end{array}\right.$
22. GSEA 1j	$\begin{array}{rrr} -16.62+06 & * * & 48_{22} \\ 1.624+60 & * * & \beta_{22} \end{array}$
54, $\overline{65 E E}$ print stored params	load $R_{L}$ and caloulate $\mathrm{P}_{\mathrm{L}}$ using 50 ohm $\mathrm{Z}_{\mathrm{o}}$
	日. EnTt Im $\mathrm{R}_{\mathrm{L}}$
	220. EHTT Re R $\mathrm{R}_{\mathrm{L}}$
1.350-63 *** $\left\|\mathrm{y}_{12}\right\|^{\text {or }}\left\|\mathrm{y}_{\mathrm{re}}\right\|$	56. ESEE Zo
	$\begin{array}{ll}0.000+06 & \text { *** } \\ \text { a }\end{array}$
45.25-63 *** $\mathrm{y}_{\text {21 }}$ or ${ }^{\text {a }} \mathrm{y}_{\mathrm{fe} \mid}$	EEEE load $\rho_{L}$ into program
	- - - -- - - - - - - - - - - -
	$\begin{array}{cc} -9.018+00 & k+4 s_{11}^{\prime} \\ 1.027+00 & k \end{array}$
- - - - $6 S B E$ print stored params	$\begin{array}{lll} 9.018+06 & * * * & 1 / \mathrm{s} 11^{\prime} \\ 973.4-03 & * * * & \mid 1 / \mathrm{s} 11^{\prime} \end{array}$
44.44-63 *** $\left\|y_{i b}\right\|$	
-1.275-63 *** $\mathrm{y}_{\mathbf{r b}} \mid$	$5.817+60$ *** $\mathrm{Cm}_{\text {min }}=\operatorname{Im~} \mathrm{Z}_{\mathrm{L}} / \operatorname{Re} \mathrm{Z}_{\mathrm{L}}$
-42.35+64 $\quad$ *** $\quad$ ¢ $\mathrm{y}_{\mathrm{fb}}$	
-43.64-03 ${ }^{* * *} \mid$	
84.51+e0 $\quad$ *** $x y_{\text {Ob }}$	
2.612-65 $\quad$ *** \| $\mathrm{y}_{\mathrm{ob} \mid}$	

A transmission line segment is designed to provide the load reactance of $j 616$ ohms to resonate at 300 MHz . The real part of the load reactance is ignored since the $Q$ of the resonant line will be much larger than the minimum $Q$ required. The amplitude of the oscillation will increase until the amplifier becomes non-1inear and its power gain is reduced to the point that Eq. (4-2.2) is satisfied with the equals sign.

Because of the high load reactance required, a high $Z_{0}$ in the resonant line is desired. For the transmission line, use a $\# 12$ AWG wire spaced $0.25^{\prime \prime}$ off a ground plane as shown by Fig. 4-2.3.


Figure 4-2.3 Air dielectric transmission line.

The characteristic impedance, $Z_{o}$, of this line is:

$$
\begin{equation*}
\mathrm{z}_{\mathrm{o}}=\frac{138}{\sqrt{\varepsilon_{\mathrm{r}}}} \log \frac{4 \mathrm{~h}}{\mathrm{~d}} \tag{4-2.5}
\end{equation*}
$$

where $\varepsilon_{r}$ is the relative dielectric constant of the dielectric, and is unity for air. Using this $\varepsilon_{r}$, and the $d$ and $h$ shown in Fig. 4-2.3, the characteristic impedance of the line is 150.6 ohms.

If the trimer capacitor at the far end of the line is a 1 - 10 pF piston trimmer, its reactance with 10 pF at 300 MHz is:

$$
\begin{equation*}
x_{c}=-j /(2 \pi f c)=-j 53.05 \text { ohms } \tag{4-2.6}
\end{equation*}
$$

The length of transmission line that transforms -j53.05 ohms to $j 616$ ohms is needed. Equation (1-1.1) can be manipulated to provide the solution for line length i.e.:

$$
\begin{equation*}
e^{2 \gamma \ell}=\frac{\rho}{\rho_{t}} \tag{4-2.7}
\end{equation*}
$$

where $\rho_{t}$ is defined by Eq. (1-2.7). Since the transmission line load impedance is purely imaginary, as is the required input impedance, and the line is essentially lossless, the expressions for the reflection coefficients are the ratios of complex conjugates, and Eq. (4-2.7) can be reduced to the following forms:

$$
\begin{equation*}
\ell=\frac{\lambda}{2 \pi}\left\{\tan ^{-1}\left(\frac{j \cdot \mathrm{Z}_{\mathrm{r}}}{\mathrm{Z}_{\mathrm{o}}}\right)-\tan ^{-1}\left(\frac{j \cdot \mathrm{Z}_{\mathrm{s}}}{\mathrm{Z}_{\mathrm{o}}}\right)\right\} \tag{4-2.8}
\end{equation*}
$$

where

$$
\gamma=j \beta=j \frac{2 \pi}{\lambda}
$$

Using Eq. (4-2.8) with $\mathrm{Z}_{\mathrm{r}}=-\mathrm{j} 53.05$ ohms, $\mathrm{Z}_{\mathrm{s}}=616$ ohms, $\mathrm{Z}_{\mathrm{o}}=150.6$ ohms, and $\lambda=3 \times 10^{8} /$ freq $=1$ meter $=39.27$ inches yields $\ell=10.46$ inches. This length is too long to be practical. If capacity is added to the transistor collector circuit, less inductance will be required from the transmission line stub, and a shorter stub can be used. If 10 pF is added from the collector to ground, the susceptance of this capacitor will be:

$$
B=2 \pi f C=(2 \pi)\left(300 \times 10^{6}\right)\left(10^{-11}\right)=18.85 \mathrm{mmho}
$$

This susceptance is subtracted from the susceptance required from the transmission line stub to obtain the new transmission line susceptance and hence, input reactance:

$$
B_{\text {line }}=\frac{-1}{616}-0.01885=-0.02047 \text { mho }
$$

or

$$
\mathrm{X}_{\text {line }}=\frac{-1}{\mathrm{~B}_{\text {1ine }}}=48.84 \mathrm{ohms}
$$

Using Eq. (4-2.8) with $Z_{s}=j 48.84$ and the other parameters unchanged yields $\ell=4.09$ inches, which is much more practical. With this line length, the trimmer capacitor value for oscillation at 400 MHz is calculated as shown by the HP-97 printout in Fig. (4-2.5). Again, neglecting the real part of $Z_{L}$, and accommodating the susceptance of the additional 10 pF at the transistor collector, the line must present a reactance of 36.22 ohms to the collector. Using Eq. (4-2.8) and solving for $Z_{r}$ given $\ell=4.09$ inches, $\lambda=29.53$ inches, $Z_{s}=j 36.22$ ohms and $Z_{o}=$ 150.6 ohms yields $Z_{r}=-j 110.8$ ohms. At $400 \mathrm{MHz},-j 110.8$ ohms is the
reactance of a 3.6 pF capacitor, which is within the tuning range of the piston trimmer capacitor. The complete schematic of the oscillator is shown in Fig. 4-2.4, which was breadboarded and does oscillate over the 300 to 400 MHz range. This type of oscillator is often used as the local oscillator in UHF tv tuners.


Figure 4-2.4 UHF oscillator schematic.




## PROGRAM 4.3 TRANSISTOR CONFIGURATION CONVERSION.

## Program Description and Equations Used

This program allows conversion between common emitter, common base, and common collector configurations of transistor $h$ parameters or $y$ parameters, as well as conversions between the $h$ and the $y$ parameters.

The configuration conversions is done by operating on the $y$ parameters and converting to and from the $h$ parameters for data input and output. To make the program operate in either $h$ or $y$ parameters, the conversion process is skipped for the y parameter case. Label 7 of the program contains the coding that accomplishes the $h$ to $y$, or $y$ to $h$ conversion. Label 7 is called at the beginning and end of the configuration conversion, and flag 0 is used to indicate whether or not the subroutine under label 7 should be skipped or not.


Figure 4-3.1 Two-port network conventions.

Given a two-port network with port voltages and currents as defined by FIg. 4-3.1, the $y$ and $h$ parameters are defined as follows:
h parameters

$$
\left[\begin{array}{l}
E_{1}  \tag{4-3.1}\\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
& \\
h_{21} & \\
h_{11}
\end{array}\right] \cdot\left[\begin{array}{c}
I_{1} \\
E_{2}
\end{array}\right]
$$

y parameters

$$
\left[\begin{array}{l}
\mathrm{I}_{1}  \tag{4-3.2}\\
\\
\mathrm{I}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{y}_{11} & \mathrm{y}_{12} \\
& \\
\mathrm{y}_{21} & \mathrm{y}_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
\mathrm{E}_{1} \\
\\
\mathrm{E}_{2}
\end{array}\right]
$$

The network ports correspondence to the transitor elements is shown in Table 4-3.1.

Table 4-3.1 Transistor 2-port correspondences

Configuration	1	$1^{\prime}$ or 2'	2
CE	B	E	C
CB	E	B	C
CC	B	C	E

The $h$ parameters are converted to y parameters with the following transformation [15]:
(4-3.3)

$$
\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]=\frac{1}{h_{11}}\left[\begin{array}{cc}
1, & -h_{12} \\
h_{21}, & h_{11} h_{22}-h_{12} h_{21}
\end{array}\right]
$$

Likewise, the $y$ parameters are converted to $h$ parameters in similar fashion:

$$
\left[\begin{array}{ll}
\mathbf{h}_{11} & \mathbf{h}_{12}  \tag{4-3.4}\\
& \mathbf{h}_{21}
\end{array}\right]=\frac{1}{y_{11}},\left[\begin{array}{lc}
1 & -y_{12} \\
y_{21}, & y_{11} y_{22}-y_{21} y_{12}
\end{array}\right]
$$

Since the form of both conversions is identical, the same subroutine is used for both conversions (subroutine 7).

The $y$ matrix representing the present transistor configuration is
transformed into another y matrix representing the new transistor configuration. This new matrix is designated $y^{\prime}$ for clarity. These transformations are:

For $C E \rightarrow C B$ or $C B \rightarrow C E$,

For $\mathrm{CC} \rightarrow \mathrm{CE}$ or $\mathrm{CE} \rightarrow \mathrm{CC}$,
$(4-3.6)$

For $C C \rightarrow C B$,

$$
\left[\begin{array}{ll}
\mathrm{y}_{11}, & \mathrm{y}_{12} \prime^{\prime} \\
\mathrm{y}_{21}^{\prime \prime} & \mathrm{y}_{22^{\prime}}^{\prime}
\end{array}\right]=\left[\begin{array}{llllll}
\{ & \mathrm{y}_{22} & \} & \{ & -\left(\mathrm{y}_{21}+\mathrm{y}_{22}\right) & \} \\
\left\{-\left(\mathrm{y}_{12}\right.\right. & \left.\left.+\mathrm{y}_{22}\right)\right\} & \left\{\mathrm{y}_{11}\right. & +\mathrm{y}_{12}+\mathrm{y}_{21} & \left.+\mathrm{y}_{22}\right\}
\end{array}\right]
$$

For CB $\rightarrow$ CC,

$$
\left[\begin{array}{ll}
y_{11}^{\prime} & y_{12}^{\prime} \\
y_{21}^{\prime} & y_{22}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\left\{y_{11}+y_{22}+y_{21}+y_{12}\right\}\left\{-\left(y_{11}+y_{21}\right)\right. \\
& \}-3.8) \\
\left\{-\left(y_{11}+y_{12}\right)\right\}\{ & y_{11} & \}
\end{array}\right]
$$

After the respective conversion is complete, the $y^{\prime}$ matrix has replaced the $y$ matrix in storage.

In looking over the various conversions, one will notice similarities in the operations used. There are four basic operations used to perform all the conversions:

1) no change;
2) $\left(y_{11}\right.$ or $\left.y_{22}\right)+y_{12}$;
3) $\left(y_{11}\right.$ or $\left.y_{22}\right)+y_{21}$; and
4) $y_{11}+y_{22}+y_{12}+y_{21}$.

The choice between $y_{11}$ and $y_{22}$ or $y_{12}$ and $y_{22}$ can be taken care of by interchanging the appropriate $y$ matrix elements prior to these calculations. This matrix reordering is accomplished under label 3. The matrix conversion calculation is done under label 6 (two places); thus, these subroutines are selectively used to achieve all conversions.


STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$	KEYS	OUTPUT DATAUNITS
1	Lond both aidos of program oard			
2	Soloot $h$ or $y$ matrix mode			
	a) ${ }^{\text {b }}$ paramotera	0	$\pm 5$	0
	b) y paramotors	1	$f$ E	1
3	Load matrix to be oonverted			
	a) anglo of $h_{1 j}$ or $y_{4 j}$	$0_{11}$	ENT ${ }^{\text {P }}$	
	b) ragnitude of $h_{i j}$ or $y_{i j}$	1 l 1 j	ENT ${ }^{\text {a }}$	
	c) subsoript	11	-	
	repart this step for $1 \mathrm{j}=11,12,21,22$			
	In apy ordor			
4	Soleot conversion dosired			
	a) oommon emittor to conmon baso		B	
	b) common base to oozmon eanitter		If B	
	a) common collector to common base		0	
	d) common base to common collootor			
	a) conmon collootor to common enittor		D	
	f) common emittor to common oollootor		P D	
5	Print eonverted matrix		E	$\theta_{11}$
				[14
				$\theta_{12}$
				$\mathrm{I}_{12}$
				$\theta_{21}$
				121
				$\theta_{22}$
				$1{ }^{1} 2$

## Example 4-3.1

Convert the following common collector $h$ parameter matrix to a common base $h$ parameter matrix:

$$
\left[\begin{array}{lll}
\mathrm{h}_{\mathrm{ic}} & \mathrm{~h}_{\mathrm{rc}} \\
& \\
\mathrm{~h}_{\mathrm{fc}} & \mathrm{~h}_{\mathrm{oc}}
\end{array}\right]=\left[\begin{array}{cccc}
1000 \Varangle 40^{\circ} & 10^{-4} \Varangle-50^{\circ} \\
100 \Varangle 40^{\circ} & 50 \times 10^{-6} \Varangle & 0
\end{array}\right]
$$



Common base $h$ parameter matrix from HP-97 output:
$\left[\begin{array}{ll}h_{i b} & h_{r b} \\ & \\ h_{f b} & h_{o b}\end{array}\right]=\left[\begin{array}{ll}22600 \nleftarrow-9.971^{\circ} & 2261 \nless-9.967^{\circ} \\ 1.000 \nless-179.9^{\circ} & 1.130 \times 10^{-3} \nless-49.97^{\circ}\end{array}\right]$



## PROGRAM 4-4 COMPLEX $2 \times 2$ MATRIX OPERATIONS - PART 1.

## Program Description and Equations Used

This program is one of two programs to manipulate complex $2 \times 2$ matrices. When dealing with high frequency amplifiers employing feedback, and input and output networks, one way of obtaining the overall amplifier response is to operate on the matrices that describe these 2-port networks. Shunt feedback may be included within the transistor transfer matrix through $Y$ matrix addition. $Y$ matrices can be converted to $Z$ matrices using the complex matrix inverse routine. Series feedback is included by adding $Z$ matrices. The input and output networks are included by multiplying ABCD (transmission) matrices.

This program will perform matrix addition ( $A+B \rightarrow A$ ), subtraction $(A-B \rightarrow A)$, multiplication $(A B \rightarrow A)$, and interchange $(A \neq B)$ with $2 \times 2$ matrices having complex coefficients. Data entry and output may be in either rectangular or polar format. All data stored and used by the program is in rectangular format. If flag 1 is set, polar format is indicated and the data is converted to and from rectangular format upon data input or output respectively.

The program operation is very straightforward, and matrix operations are done in the conventional manner. Two subroutines are used, one for complex addition and the other for complex multiplication. See [6], [14] for matrix algebra details.

Both this program and the companion program (Program 4-5) share conmon register storage allocations; thus, matrix manipulations requiring functions contained in different programs are easily accommodated.

Matrix addition and subtraction:
$\left[\begin{array}{l}a_{12} \\ a_{21}\end{array}\right.$

$\pm\left[\begin{array}{l}b_{11} \\ b_{21}\end{array}\right.$

$\left.\begin{array}{l}\mathrm{r}_{12} \\ \mathrm{r}_{22}\end{array}\right]$
$r_{11}=a_{11} \pm b_{11}$
$r_{22}=a_{22}{ }^{ \pm} b_{22}$
$r_{21}=a_{21}{ }^{ \pm} b_{21}$
$r_{22}=a_{22}{ }^{ \pm} b_{22}$

The $R$ matrix replaces the $A$ matrix at the completion of the routine. Matrix multiplication:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \times\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{array}\right]} \\
& r_{11}=a_{11} b_{11}+a_{12} b_{21} \\
& r_{12}=a_{11} b_{12}+a_{12} b_{22} \\
& r_{21}=a_{21} b_{11}+a_{22} b_{21} \\
& r_{22}=a_{21} b_{12}+a_{22} b_{22}
\end{aligned}
$$

Again, the $R$ matrix replaces the A matrix at the completion of the routine.

## Matrix interchange:

$\left[\begin{array}{l}a_{11} \\ a_{21}\end{array}\right.$

$$
\left.\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right] \rightarrow\left[\begin{array}{l}
b_{11} \\
b_{21}
\end{array}\right.
$$

$\left.\begin{array}{l}b_{12} \\ b_{22}\end{array}\right]$

$$
\begin{aligned}
& a_{11} \neq b_{11} \\
& a_{12} \neq b_{12} \\
& a_{21} \neq b_{21} \\
& a_{22} \neq b_{22}
\end{aligned}
$$

## 44 User Instructions



STEP	INSTRUCTIONS	$\begin{gathered} \text { INPUT } \\ \text { DATAUNITS } \\ \hline \end{gathered}$	KEYS	OUTPUT DATAIUNITS
1	Load both gides of the program card			
2	selogt polar or reotangular format		$1][0$	O (reot)
			P 0	1 (polar)
			$F 0$	0 (roct)
				-
3	Load A matrix in seleoted format (stop 2)			
	rootangular format shown here			
	a) imaginary part of matrix element	Im alj	- 5	
	b) real part of matrix ol emost	Re adj	$\text { ENT } \dagger$	
	c) lond olomont subsoript	11	4	
	Do this stop for subscripts 11, 12, 21, 22			
	in any order.			
4	Load B matrix in seloctod format (stop 2)			
	polar format shown here			
	a) load angle of matrix element	$4 \mathrm{~b}_{\mathrm{ij}}$	ENT4	
	b) load magnitude of matrix olement	$\left\|b_{i j}\right\|$	4 mit	
	c) load elemont subsoript	ij	B	
	Do this etep for subscripts 11, 12, 21,22			
	in any order			
5	To print matrices in chosen format (bay polar			
	a) A matrix - use f A		$f$	$\underline{11}$
	b) B matrix - usof B			1 la
				$\chi_{12}$
				12
				$\underline{4}$
				1--12
				43 ?
				$1{ }^{12}$

## 44 User Instructions




Example 4-4.1

Given

$$
A=\left[\begin{array}{ll}
(3+j 4) & (4+j 5) \\
(5+j 6) & (2+j 4)
\end{array}\right], \quad B=\left[\begin{array}{ll}
(4+j 5) & (5+j 6) \\
(6+j 7) & (7+j 8)
\end{array}\right]
$$

Load the above matrices, store them on a data card, then perform $A+B$, A - B, and A x B. The HP-97 printout for the matrix loading is shown below, and the program output is shown on the next page. The B matrix is loaded in scrambled order to demonstrate the free form loading feature of the program.

HP-97 PRINTOUT FOR EXAMPLE 4-4.1 INPUT

A MATRIX LOADING	B MATRIX LOADINg
4.60 ENTH Im $\mathrm{a}_{11}$	
3. dQ ENTT Re a 11	5.06 EHT $\mathrm{Re} \mathrm{b} \mathrm{b}_{12}$
il. 6 ESEA ij	12.00 ESEE ij ${ }^{12}$
	T. Cu EMTt Im b21
	G. 60 EhTt Re $\mathrm{b}_{21}$
12.06 Esch ij	21.60 6SEE ij
6. 60 EHTT Im $a_{21}$	8. Wa E ENTT Im $\mathrm{b}_{22}$
5. 0 E EHTA ${ }^{\text {Re } \mathrm{a}_{21}}$	7. $\overline{\text { be }}$ ENT $\uparrow$ Re b 22
zi.ge gsea ij	22.06 E6B6 ij
	5. QE ENTt Im $\mathrm{b}_{11}$
	WETA record data card

HP-97 PRINTOUT FOR EXAMPLE 4-4.1 DUTPUT


Example 4-4.2
Because the resultant matrix replaces the A matrix in storage, operations may be chained. This example demonstrates that chaining ability starting with the $A$ and $B$ matrices given in Example 4-4.1.

	GSBE $65 B C$	execute matrix multiplication: $A \times B \rightarrow A$ execute matrix addition: $A B+B \rightarrow A$
	CSEd	execute matrix interchange: $A B+B \not \subset \mathrm{~B}$
	CSEE	execute matrix multiplication: $\mathrm{B}(\mathrm{AB}+\mathrm{B}) \rightarrow \mathrm{A}$
	GSBa	print resultant A matrix
651.80 -1194.809	***	Im $a_{11}$
-1194.00	***	Re $a_{11}$
792.609	***	Im a
-1401. 60	***	$\operatorname{Re} a_{12}^{12}$
957.64	***	Im $a_{21}$
-1640.60	***	$\mathrm{Re} \mathrm{a}_{21}$
$1162.06$	***	
$-1523.60$	***	$\operatorname{Re} a_{22}^{22}$

The same data can be outputted (printed) in polar format using the polarrectangular toggle under label " $c$ " to bring a 1 to the display.

	$\begin{aligned} & G 5 E 0 \\ & G S E C \\ & G S E 0 \end{aligned}$	\} use polar-rectangular selection toggle print A matrix in polar format
151.40	***	
1355.94	***	$\left\|a_{11}\right\|$
150.5 5	***	$\mathrm{a}_{12}$
1609.37	***	$\left\|a_{12}\right\|$
149.73	***	$\mathrm{a}_{21}$
1898. 60	***	$\left\|a_{21}\right\|$
148.86	***	$\mathrm{a}_{22}$
2246.81	***	$\left\|a_{22}\right\|$




## PROGRAM 4-5 COMPLEX $2 \times 2$ MATRIX OPERATIONS - PART 2.

## Program Description and Equations Used

This program is the second of two programs to manipulate complex 2 x 2 matrices. This program will perform matrix inverse $\left(A^{-1} \rightarrow A\right)$, matrix transpose $\left(A^{T} \rightarrow A\right)$, matrix complex conjugate $\left(A^{*} \rightarrow A\right)$, and matrix interchange $(A \nmid B)$. Because the resultant matrix from the matrix operation replaces the A matrix, chaining of matrix operations without data reentry is easily done.

This program shares common register storage with Program 4-4, hence, matrix operations that require concatenation of routines contained in two different programs can be done without reloading any previous data.

The user may elect to work in either the polar or the rectangular co-ordinate systems, however, all data is stored in rectangular format. If flag 1 is set, the input data is converted from polar to rectangular, and vice-versa for output.

The algorithms used are:

Matrix inverse:

$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
a_{22} & -a_{12}  \tag{4-5.1}\\
-a_{21} & a_{11}
\end{array}\right]
$$

where $|A|$ is the determinant of $A$,

$$
\begin{equation*}
|\mathrm{A}|=a_{11} \cdot a_{22}-a_{21} \cdot a_{12} \tag{4-5.2}
\end{equation*}
$$

Matrix transpose:

$$
A^{T}=\left[\begin{array}{ll}
a_{11} & a_{21}  \tag{4-5.3}\\
a_{12} & a_{22}
\end{array}\right]
$$

Matrix complex conjugate:


Matrix interchange, see Eq. (4-4.3).


STEP	instructions	$\begin{aligned} & \text { INPUT } \\ & \text { DATAUNITS } \end{aligned}$	KEYS	OUTPUT DATAUNITS
1	Lead both sides of the prograil oard			
2	Soleot polar or roatangluar format		$\bar{f} 10$	0 (root)
			50	1 (polar)
			$f 0$	0 (roct)
				:
3	Load natrix A in aolectod formate (roct mhome)			
	a) load imaginary part of matrix olomont	Im $\mathrm{a}_{1 j}$	ExTI	
	b) load roal part of matrix oloment	Ro $\mathrm{a}_{1 j}$	[ET ${ }^{1}$	
	c) load subsoript of mitrix olement	1 j	4	
	Ropeat this stop for 1 f 11, 12, 21, 22			
	in any ordor.			
4	Lond matrix B in soloeted format (polar usod)			
	a) load anglo of matrix olement	X $\mathrm{b}_{\mathrm{i}}$	[ $\mathrm{SNT}^{\text {a }}$	
	b) load magnitude of matrix olement	$\left\|b_{i j}\right\|$	[EITA]	
	o) lond subsoript of matrix olenont	1 j	8	
	Ropont this etop for if 11, 12, 21, 22			
	in any order.			
5	To print matrioes in ohoson format (ay polan)			
	a) 1 matrix - uso $f$ \&		$1{ }^{+}$	$\underline{11}$
	b) Bmatrix - uee f B			114
				1142
				$\underline{X}_{-21}$
				$11_{24}$
				48
				$\left.1\right\|_{22}$

## 4.5 <br> User Instructions




## Example 4－5．1

Given the $A$ and $B$ matrices of Example 4－4．1，calculate $B^{-1} A B$ ．The loading of the $A$ and $B$ matrices is shown in Example 4－4．1，and is omitted here for brevity（they were actually loaded from the magnetic data card from Program 4－4）．

Load Program 4－4，and load A and B matrices
GSEE form $A B \rightarrow A$
Load this program（Program 4－5）
GEE interchange $A B$ and $B$
65BC．form $B^{-1} \rightarrow A$
Reload Program 4－4

	GSEE	form $\mathrm{B}^{-1} \mathrm{AB} \rightarrow \mathrm{A}$
	G960	print result
$-48.25$	米＊	Im $a_{11}$
$-45.50$	＊＊＊	$\operatorname{Re} \mathrm{a}_{11}$
－54．50	＊${ }^{*}$＊	Im $a_{12}$
$-55.25$	乐＊	$\operatorname{Re} \mathrm{a}_{12}$
49.56	＊＊＊	Im $\mathrm{a}_{21}$
45.75	＊＊	Re $\mathrm{a}_{21}$
56.25	＊＊＊	Im $a_{22}$
53.646	禹事	$\operatorname{Re} \mathrm{a}_{22}$




## Part 5

## ENGINEERING

MATHEMATICS

## PROGRAM 5-1 ELLIPTIC INTEGRALS AND FUNCTIONS.

## Program Description and Equations Used

This program calculates complete elliptic integrals of the first kind and the following elliptic functions: elliptic sine (sn(u,k)), elIfpic cosine ( $n(u, k)$ ), elliptic delta ( $d r(u, k)$ ), and elliptic amplitude (am(u,k)).

The elliptic integral of the first kind is defined by Eq. (5-1.l), and the complete elliptic integral of the first kind is defined by Eq. (5-1.2), which can be evaluated using the infinite product shown in Eqs. (5-1.3) through (5-1.6). The product is terminated when $k$ becomes smaller than $10^{-10}$. Generally this condition is achieved after the 3rd tertil of the series, hence, the series converges rapidly. As the modulus, $k$, approaches 1 , more iterations are required, e.g., $K(.9)=2.280549137$ requires 4 iterations and $k(.999)=4.495596396$ requires 5 iterations.

$$
\begin{align*}
& u(\phi, k)=\int_{0}^{\phi}\left(1-k^{2} \sin ^{2} x\right)^{-\frac{1}{2}} d x  \tag{5-1.1}\\
& K(k)=u\left(\frac{\pi}{2}, k\right)  \tag{5-1.2}\\
& K(k)=\frac{\pi}{2} \prod_{m=0}^{\infty}\left(1+k_{m+1}\right)  \tag{5-1,3}\\
& k_{m+1}=\left(1-k_{m}^{\prime}\right) /\left(1+k_{m}^{\prime}\right)  \tag{5-1.4}\\
& k_{m}^{\prime}=\sqrt{1-k_{m}^{2}}  \tag{5-1.5}\\
& k_{0} \equiv k \tag{5-1.6}
\end{align*}
$$

The elliptic modulus, $k$, is commonly expressed three different ways, which leads to some degree of confusion. In the Abramowitz and Stegun tables of elliptic functions [1], the parameters $m$ and $\theta$ are used where $m=k^{2}$, and $\theta=\sin ^{-1} k$. The parameter $\theta$ is called the modular angle.

The elliptic sine is an elliptic function, and is defined in a somewhat reverse manner from the elliptic integral. Referring to Eq. 5-1.1, given the input $u(\phi, k)$, the limit of integration, $\varnothing$ must be found to satisfy the equallty, then $\operatorname{sn}(u, k)=\sin \emptyset$. Likewise, the elliptic cosine is defined; $c n(u, k)=\cos \phi$. Notice that when $k=0$, the elliptic sine equals the trigonometric sine and likewise for the respective cosines.

The descending Landen transformation [12], [46] is used to calculate the elliptic sine. Starting with an initial value for sn ( $u_{r}, k_{r}$ ) as given by Eq. (5-1.7), Eq. (5-1.8) is recursively used to find $\operatorname{sn}\left(u_{0}, k_{0}\right)$ which is the answer.

$$
\begin{align*}
& \operatorname{sn}\left(u_{m+1}, k_{m+1}\right)=\sin \left(\frac{\pi u_{0}}{2 K(k)}\right)  \tag{5-1.7}\\
& \operatorname{sn}\left(u_{r-1}, k_{r-1}\right)=\frac{\left(1+k_{r}\right) \operatorname{sn}\left(u_{r}, k_{r}\right)}{1+k_{r} \operatorname{sn}^{2}\left(u_{r}, k_{r}\right)} \tag{5-1.8}
\end{align*}
$$

where

$$
r=m+1, m, \ldots ., 1
$$

and $\mathrm{k}_{\mathrm{r}}$ is obtained from storage, and was calculated from Eq. (5-1.4) during the complete elliptic integral calculation.

The descending Landen transformation is also the basis for Darlington's elliptic filter algorithms (Program 2-15).

The other elliptic functions are calculated from the elliptic sine as follows:

$$
\begin{align*}
& \operatorname{cn}(u, k)=\left(1-\operatorname{sn}^{2}(u, k)\right)^{\frac{1}{2}}  \tag{5-1.9}\\
& \operatorname{dn}(u, k)=\left(1-k^{2} \cdot \operatorname{sn}^{2}(u, k)\right)^{\frac{1}{2}}  \tag{5-1.10}\\
& \operatorname{am}(u, k)=\sin ^{-1} \operatorname{sn}(u, k)=\emptyset \tag{5-1.11}
\end{align*}
$$



STEP	Instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$	KEYS	OUTPUT
1	Lond both sides of program oard			
2	Soleot print/no-print option		$\hat{\mathbf{f}}$. E	0 (R/S)
			$\mathbf{f}$ E	1 (print)
			$\underline{\mathbf{f}}$	0 ( $\mathrm{R} / \mathrm{S}$ )
				:
3	For complete olliptic intogral, $\mathrm{X}(\mathrm{k})$	$k$	[ $\boldsymbol{A}$ ]	K(k)
4	For elliptio sine, en( $u, k$ )	$u$	[mit	
		$k$	B	sin(
5	For olliptio oodine, en(u,k)	u	ENT 1	
		$\underline{1}$	0	$\mathrm{on}(\mathrm{u}, \underline{\mathrm{k}}$ )
6	For olliptio dolta, $\operatorname{dn}(u, k)$	4	[ENT]	
		$\underline{1}$	D	$\underline{\operatorname{dn}(\underline{u}, \underline{k})}$
7	For elliptio amplitude, am(u,k)	u	[ENT]	
		$\underline{k}$	E	am(u,k)

Examp1e 5-1.1
Evaluate the following elliptic functions and compare with Abramowitz and Stegun [1] Tables 17.1 and 17.5.

$$
\begin{aligned}
& K(k) ; k=\sqrt{0.9} \\
& \operatorname{sn}\left(3.09448898, \sin 88^{\circ}\right)
\end{aligned}
$$



From Table 17.1 (p. 608 of $[1]$ ), $K(m)$ for $m=0.9$ is:

$$
K(m)=2.57809211334173
$$

Rounded to ten significant figures, this figure agrees identically with the program output.

From Table 17.5 (p. 615 of [ 1]), the elliptic integral of the first kind for $\alpha=88^{\circ}, \emptyset=85^{\circ}$ is 3.09448898. The program output differs by 1 part in $8.5 \times 10^{9}$, which exceeds the precision of the input.

Program Listing I



## PROGRAM 5-2 BESSEL FUNCTIONS AND FM OR PHASE MODULATION SPECTRA.

## Program Description and Equations Used

This program will calculate the magnitude of the spectral lines arising from a frequency of phase sine-wave modulation process. In addition, the power in the higher sidebands is calculated which can be used to help define the bandwidths necessary for a communication channel carrying frequency division multiplexed data with either frequency modulation (FM), or phase modulation (PM) on the individual subcarriers. Phase modulation is often used to transmit digital data with preconditioning such as Manchester biphase coding, or doublet modulation.

The spectra of both frequency modulated and phase modulated signals are the same when expressed as a function of the modulation index, m. The modulation index for the FM case is:


Notice that the FM modulation index is modulation frequency dependent. The modulation index for the PM case is:
$m_{p}=\left\{\begin{array}{l}\text { carrier phase shift in radians produced by the } \\ \text { modulating frequency. }\end{array}\right.$
Also notice that the PM modulation index is modulation frequency independent.

The carrier and carrier sideband levels are described in terms of Bessel functions with the modulation index as the argument. The spacing of the sidebands is equal to the modulating frequency. For example, with a modulation index of 5 and a modulation frequency of 15 kHz , the FM or PM spectra is:


Figure 5-2.1 shows the above concept graphically.


Figure 5-2.1 FM or PM modulation spectra.

A Bessel function identity allows the power remaining in the higher sidebands to be calculated. With FM or PM, all the sidebands carry modulation information in somewhat redundant form. If the higher order sidebands are removed by filtering, the modulation information can still be recovered, but the effective power will be reduced hence, the signal-to-noise ratio decreased; some distortion will also be introduced.

The Bessel fumction identity is:

$$
\begin{equation*}
J_{0}{ }^{2}(\mathrm{~m})+2 \sum_{i=1}^{\infty} \mathrm{J}_{\mathrm{i}}^{2}(\mathrm{~m})=1 \tag{5-2.1}
\end{equation*}
$$

The summation is broken into 2 parts and the equation rearranged:

$$
\begin{equation*}
\sum_{i=n+1}^{\infty} J_{i}{ }^{2}(m)=\frac{1}{2}\left(1-J_{0}{ }^{2}(m)\right)-\sum_{i=1}^{n} J_{i}{ }^{2}(m) \tag{5-2.2}
\end{equation*}
$$

Therefore, if the magnitudes of the first $n$ sidebands are known, then the power in the higher sidebands may be calculated since power is proportional to magnitude squared.

When the modulating signal contains 2 sinewaves of different frequencies and amplitudes superposition does not hold, since the resulting
spectra is represented by the products of the Bessel functions of the individual spectra. Let $m_{1}$ be the modulation index for modulation frequency $f_{1}$, and likewise, $m_{2}$ for $f_{2}$, then the combined modulation spectral components will be as shown in Table 5-2.1.

Table 5-2.1 Spectra for combined modulation

Spectral Component	frequency of   component	amplitude of   component
Carrier	$f_{c}$	$J_{0}\left(m_{1}\right) \cdot J_{0}\left(m_{2}\right)$
Simple sidebands of	$f_{c} \pm f_{1}$	$J_{1}\left(m_{1}\right) \cdot J_{0}\left(m_{2}\right)$
	$f_{c} \pm f_{2}$	$J_{0}\left(m_{1}\right) \cdot J_{1}\left(m_{2}\right)$
	$f_{c} \pm 2 f_{1}$	$J_{2}\left(m_{1}\right) \cdot J_{0}\left(m_{2}\right)$
	$f_{c} \pm 2 f_{2}$	$J_{0}\left(m_{1}\right) \cdot J_{2}\left(m_{2}\right)$
	$\vdots$	$\vdots$
Intermodulation	$f_{c} \pm f_{1} \pm f_{2}$	$J_{1}\left(m_{1}\right) \cdot J_{1}\left(m_{2}\right)$
	$f_{c} \pm f_{1} \pm 2 f_{2}$	$J_{1}\left(m_{1}\right) \cdot J_{2}\left(m_{2}\right)$
	$f_{c} \pm 2 f_{1} \pm f_{2}$	$J_{2}\left(m_{1}\right) \cdot J_{1}\left(m_{2}\right)$
	$\vdots$	$\vdots$

The Bessel function of the first kind is easily evaluated using the summation of an infinite series; however, for values of $m$ larger than 10 , computational difficulties arise because of small differences between big numbers, i.e., using Eq. (5-2.3), Table 5-2.2 shows the individual terms for $\mathrm{n}=0$ and $\mathrm{m}=20$.

$$
J_{n}(m)=\left(\frac{m}{2}\right)^{n} \sum_{i=0}^{\infty} \frac{\left(-\frac{m}{4}^{2}\right)^{i}}{i!\cdot(i+n)!}=\left(\frac{m}{2}\right)^{n} \sum_{i=0}^{\infty} T_{j}
$$

Table 5-2.2
Infinite series terms. The computed $J_{0}(20)$ by this method is

1.000606ceg	T.
-100.0000060	T
2500.000606	
-27777.77776	
173611.111i	
-694444.4444	$\mathrm{T}_{5}$
1929012. 346	
-3936759.889	
6151187.327	
-7594058.428	
7594056.420	$\mathrm{T}_{10}$
-6276081.347	
4358389.823	
-2578925.690	
1315780.046	
-584791.1313	$\mathrm{T}_{\text {IS }}$
228434.0357	
-79642.91893	
24395.96263	
-6757.884367	
1689.471097	T2.
-383.1000215	
79.15289702	
-14.96274047	
2.597697996	
-0.415631680	$T_{\text {ts }}$
0.061483976	
-0.008434016	
0.001075767	
-0.000127915	
0.000014213	$\mathrm{T}_{2}$
-0.00001479	
0.000009144	
-0.000000013	
0.000000061	

0.166021646 . Because the range of the numbers exceed $10^{10}$, the least significant figures have been lost. Even though the summation was carried out until $\mathrm{T}_{\mathrm{i}}<10^{-9}$, the answer is only accurate to 2 significant figures. The correct answer to $J_{0}(20)$ is 0.1670246646 , which is computed by a slower, less direct method shown next.

Equation (5-2.4) is the recursion relationship for Bessel fumctions of the first kind.

$$
\begin{equation*}
J_{n}(m)=\frac{2}{m}(n-1) \cdot J_{n-1}(m)-J_{n-2}(m) \tag{5-2.4}
\end{equation*}
$$

All Bessel functions approach zero as the order becomes large. This characteristic can be used to compute Bessel functions. If $T_{n+2}(m)=0$ and $T_{n+1}(m)=10^{-9}$, the recursion relationship can be run backwards to arrive at a result that is proportional to $J_{0}(m)$. Abramowitz and Stegun [ 1 ] has the relations for the minimum starting index
and the constant of proportionality for $J_{0}(m)$, i.e., given

$$
\begin{equation*}
T_{i}(m)=\frac{2}{m}(i+1) \cdot T_{i+1}(m)-T_{i+2}(m) \tag{5-2.5}
\end{equation*}
$$

then, the minimum starting index is

$$
\begin{equation*}
i_{\min }=2 \cdot \operatorname{INT}\left(\frac{6+\max (n, z)+(9 z /(z+2))}{2}\right) \tag{5-2.6}
\end{equation*}
$$

which for $\mathrm{n}=0$ may be reduced to

$$
\begin{equation*}
i_{\min }=2 \cdot \operatorname{INT}\left(\frac{z^{2}+17 \cdot z+12}{2(z+2)}\right) \tag{5-2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
z=3 m / 2 \tag{5-2.8}
\end{equation*}
$$

and "INT" means the integral part of the expression. The constant of proportionality is given by Eq. (5-2.9)

$$
\begin{equation*}
k=T_{0}(m)+2 \sum_{j=1}^{\frac{i_{\min }}{2}} T_{2 j}(m) \tag{5-2.9}
\end{equation*}
$$

The first two Bessel functions are then:

$$
\begin{align*}
& J_{0}(m)=\frac{T_{\theta(m)}}{k}  \tag{5-2.10}\\
& J_{1}(m)=\frac{T_{1}(m)}{k} \tag{5-2.11}
\end{align*}
$$

With $J_{0}(\mathbb{m})$ and $J_{1}(m)$ and the recursion relationship given by Eq. (5-2.4), all the higher order Bessel functions may be evaluated.

User Instructions


STEP	Instructions	$\begin{aligned} & \text { INPUT } \\ & \text { DATAUUMITS } \\ & \hline \end{aligned}$	KEYS	OUTPUT DATAUUNITS
1	Load both sides of program eard			
2	Soleot print/no-print (R/S) option		B	0 (R/S)
			$8$	1 (print)
			$B$	$0(R / S)$
				-
3	Load modulation indox and start	m	A]	0
				$\mathrm{J}_{0}(\underline{m})$
				$\left(1-J_{0}^{2}\right) / 2$
				1
				$J_{1}(\mathrm{~m})$
	remaining powor in highor sidobands			1010g $\sum^{j_{l}{ }^{2}(n)}$
	in dB			
				2
				$\mathrm{J}_{2}(\mathrm{~m})$
				40 $\log \sum_{3}^{4} J_{i}{ }^{2}(\mathrm{~m})$
4	To stop analyein (print mode soleoted)		$\underline{8}$	
-				

## Example 5-2.1

The 400 MHz carrier from a navigation satellite is phase modulated with a 400 Hz sinewave causing 60 degrees peak modulation. What is the modulation index, and what are the amplitudes of the PM sidebands?

The modulation index is the peak modulation expressed in radians:

$$
\begin{equation*}
m_{p}=2 \pi(60 / 360)=1.0472 \text { radians } \tag{5-2.12}
\end{equation*}
$$

```
HP-97 PRINTOUT FOR EXAMPLE 5-2.1
 © 0.5
 650. load modulation index and start
```



```
 1. W.W first sideband, \(f_{c}{ }^{ \pm} f_{m}\)
\(0.4=56 \overline{3} 1 \times 0 \quad \mathrm{~J}_{1}(\mathrm{~m})\)
 -il.4 \%** relative power in higher sidebands in dB
 c. *** second sideband, \(f_{c} \pm 2 f_{m}\)
```



```
 -ED. 4 w*
 亏. ": *
```





Notice that $99 \%$ of the power is contained in the carrier and the first two sidebands ( $-26.4 \mathrm{~dB}=0.23 \%$ remaining power in higher sidebands).

## Example 5-2.2

Calculate the sideband structure of a commercial FM station transmitting a 15 kHz signal with 75 kHz peak carrier deviation. The modulation index is:

$$
\begin{equation*}
m_{f}=75000 / 15000=5 \tag{5-2.13}
\end{equation*}
$$

HP-97 PRINTOUT FOR EXAMPLE 5-2.2


Notice that one-half the power is contained in the first 3 sidebands and $99 \%$ of the power is contained in the first 6 sidebands.

The sideband structure for this example is shown in Fig. 5-2.1.



## PROGRAM 5-3 CURVE FITTING BY THE CUBIC SPLINE METHOD.

## Program Description and Equations Used

This program will fit a cubic spline interpolating curve through 2 to 9 equally spaced points [31]. The cubic spline represents the shape of the curve that would be generated if a clock spring were threaded through the data points. This technique is often used by draftsmen to draw a smooth curve through given points. The shape of such a curve looks natural, and is generally the shape one would attempt to draw by hand.

Let the ordinates, $y_{i}$, be given at $x_{i}=x_{1}+(i-1) \cdot h$, where $i=1,2, \ldots, n$, and $h$ is the point spacing. Furthermore, let $y(x)$ be the interpolating curve that is fitted to these points, and let $y_{i}^{\prime}$ and $y_{i}^{\prime \prime}$ represent the first and second derivatives of $y(x)$ evaluated at $x=x_{i}$. $y(x)$ may be represented piecewise where the function and its first and second derivatives are matched at the boundaries. The first and last segments of the interpolating curve may have their first and second derivatives specified by the user. The individual cubic interpolating polynomial $f_{i}(x)$ can be expressed in terms of the ordinates $y_{i}$ and $y_{i+1}$, and either their first or second derivatives. Both forms will provide the same $y(x)$, but the second derivative form requires simpler calculations.

Assume the third derivative, $y^{\prime \prime}(x)$, is constant in each interval, h. This assumption implies that $y^{\prime \prime}(x)$ is linear in $x$, i.e.,

$$
\begin{equation*}
f_{i}^{\prime \prime}(x)=y_{i}^{\prime \prime}\left\{1-\frac{x-x_{i}}{h}\right\}+y_{i+1}{ }^{\prime \prime}\left\{\frac{x-x_{i}}{h}\right\} \tag{5-3.1}
\end{equation*}
$$

Equation (5-3.1) is integrated twice with respect to $x$, and the constants of integration chosen so the boundary conditions are met to the extent that $f_{i}\left(x_{i}\right)=y_{i}(i=1,2, \ldots, n-1)$, and $f_{i-1}\left(x_{i}\right)-y_{i}(i=2,3$, ...,n). The results of this integration yield:

$$
\begin{align*}
f_{i}(x) & =y_{i}\left(1-\left(x-x_{i}\right) / h\right)+y_{i+1}\left(x-x_{i}\right) / h \\
& -\left(h^{2} / 6\right)\left(y_{i}^{\prime \prime}\right)\left[1-\left(x-x_{i}\right) / h-\left(1-\left(x-x_{i}\right) / h\right)^{3}\right] \\
& -\left(h^{2} / 6\right)\left(y_{i+1}^{\prime \prime}\right)\left[\left(x-x_{i}\right) / h-\left(\left(x-x_{i}\right) / h\right)^{3}\right] \tag{5-3.2}
\end{align*}
$$

Since the first and second derivatives of the function must also match at the boundaries, Eq. (5-3.2) is differentiated with respect to $x$ and evaluated at $x_{i}$ :

$$
\begin{equation*}
f_{i}^{\prime}\left(x_{i}\right)=\left(y_{i+1}-y_{i}\right) / h-(h / 6)\left(2 y_{i} "+y_{i-1} "\right) \tag{5-3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i-1}^{\prime}\left(x_{i}\right)=\left(y_{i}-y_{i-1}\right) / h+(h / 6)\left(y_{i-1} "+2 y_{i}^{\prime \prime}\right) \tag{5-3.4}
\end{equation*}
$$

Equating Eqs. (5-3.3) and (5-3.4) implying boundary match yields:

$$
\begin{equation*}
h \cdot y_{i-1} "=4 h \cdot y_{i} "+h \cdot y_{i-1} "=(6 / h)\left(y_{i-1}-2 y_{i}+y_{i+1}\right) \tag{5-3,5}
\end{equation*}
$$

where

$$
1=2,3, \ldots, n-1
$$

This-equation set represents $n-2$ equations in $n$ unknowns. If the starting and ending second derivatives are specified ( $y_{I}$ " and $y_{n}$ "), then the number of unknowns is reduced by 2 , and a solution exists to the equation set. This equation set may be expressed in matrix notation:

Because of the tridiagonal characteristic of Eq. (5-3.6), a Gauss reduction is an effective method for finding the values of the various second derivatives. Let,

$$
\begin{equation*}
d_{i}=\left(6 / h^{2}\right)\left(y_{i-1}-2 y_{i}+y_{i+1}\right) \tag{5-3.7}
\end{equation*}
$$

and select $y_{1}{ }^{\prime \prime}=y_{n}{ }^{\prime \prime}=0$ (another common selection is $y_{1} "=y_{2} " / 2$ and $\left.y_{n} "=y_{n-1} " / 2\right)$. If a recursion relationship is defined thus:

$$
\begin{equation*}
i^{4}=1 /\left(4-_{i-1} 4\right) \text { for } i=, 1, \ldots, n-1 \tag{5-3,8}
\end{equation*}
$$

i.e.,

$$
\begin{aligned}
& 0^{4}=1 / 4=0.25 \\
& 1^{4}\left(1 / 3.75=0.2666^{-}\right. \\
& 2^{4}=1 /\left(4-1_{1}\right)=.267857143 \\
&
\end{aligned}
$$

then the Gauss reduced matrix becomes:

Equation (5-3.9) is evaluated by the program as shown by the flowchart in Fig. 5-3.1.


Figure 5-3.1 Flowchart of Gauss reduction algorithm.

## 5. $\quad$ User Instructions


$\left.\begin{array}{|c|c|c|c|c|}\hline \text { STEP } & \text { INSTRUCTIONS } & \begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array} & \text { KEYS } & \text { OUTPUT } \\ \text { DATA/UNITS }\end{array}\right]$

Example 5-3.1
Fit a cubic spline interpolating curve to the data given in Table 5-3.1. Provide the output sweep with $x$ increments of 0.1.

Table 5-3.1 Data for cubic spline interpolation.

x	1	2	3	4	5	6	7	8	9
y	0	5	9	7	4	3	5	8	9

The HP-97 printer output is shown on the next page, and the interpolated output is plated in Fig. 5-3.2. The bold points represent the given data.


Figure 5-3.2 Cubic spline interpolation of given data.

HP-97 PRINTOUT FOR EXAMPLE 5-3.1


5-3
Program Listing I



## PROGRAM 5-4 LEAST SQUARES CURVE-FIT TO AN EXPONENTIAL FUNCTION.

## Program Description and Equations Used

Many processes both in electrical engineering and in physics have behavior that can be described by an exponential law, e.g., the voltage across a capacitor being charged through a series resistor asymptotically approaches the charging voltage in an exponential manner. When time constants are to be determined from oscilloscope photographs of these phenomena, only part of the entire waveform is available, and some error is introduced transferring the photograph data into numbers. If these errors are random, then a least squares fit can help remove them.

The equation form for the exponential function is given by:

$$
\begin{equation*}
x=a\left(1-e^{-b t}\right) \tag{5-4.1}
\end{equation*}
$$

Let $d_{i}$ represent the difference between the measured point, $x_{i}$, and the exponential curve as shown by Fig. 5-4.1 and Eq. (5-4.2).


Figure 5-4.1 Exponential function.

$$
\begin{equation*}
d_{i}=x_{i}-a\left(1-e^{-b t_{i}}\right) \tag{5-4.2}
\end{equation*}
$$

The object of a least squares fit is to minimize the sum of the
squares of the deviations as implied by Eq. (5-4.3).

$$
\begin{equation*}
s=\sum_{i} d_{i}^{2}=\sum_{i}\left(x_{i}-a\left(1-e^{-b t_{i}}\right)\right)^{2} \tag{5-4.3}
\end{equation*}
$$

The minimum can be found by setting the derivatives of Eq. (5-4.3) to zero, i.e.:

$$
\frac{\partial S}{\partial a}=0 \quad, \frac{\partial S}{\partial b}=0
$$

or

$$
\begin{align*}
& \frac{\partial S}{\partial a}=-2 \sum_{i}\left\{x_{i}-a\left(1-e^{-b t_{i}}\right)\right\} \cdot\left(1-e^{-b t_{i}}\right)=0  \tag{5-4.4}\\
& \frac{\partial S}{\partial b}=-2 a \sum_{i}\left\{x_{i}-a\left(1-e^{-b t_{i}}\right)\right\} \cdot\left(t_{i} \cdot e^{-b t_{i}}\right)=0 \tag{5-4.5}
\end{align*}
$$

Equations (5-4.4) and (5-4.5) represent 2 equations in 2 unknowns, a and b. Equation (5-4.4) is solved for a as shown in Eq. (5-4.6) and substituted into Eq. (5-4.5) to yield Eq. (5-4.7)

$$
\begin{align*}
& a= \sum_{i} x_{i}\left(1-e^{-b t_{i}}\right)  \tag{5-4.6}\\
&\left.g(b) \triangleq e^{-b t_{i}}\right)^{2} \\
& \sum_{i} x_{i} \cdot t_{i} e^{-b t_{i}} \sum_{i}\left(1-e^{-b t_{i}}\right)^{2}-  \tag{5-4.7}\\
& \sum_{i} x_{i}\left(1-e^{-b t_{i}}\right) \sum_{i} t_{i} \cdot e^{-b t_{i}\left(1-e^{-b t_{i}}\right)=0}
\end{align*}
$$

To simplify things, the various sums in Eq. (5-4.7) are assigned numbers in the same respective order as they appear.

$$
\begin{equation*}
g(b)=\Sigma_{1} \Sigma_{2}-\Sigma_{3} \Sigma_{4}=0 \tag{5-4.8}
\end{equation*}
$$

The object is to find $b$ so $g(b)=0$. Since Eq. (5-4.7) is nonlinear, an iterative solution is employed to find $b$. Wegstein's method [29] is used and is flowcharted in Fig. 5-4.2. This method is chosen because no derivatives are reçuired and the convergence is very rapid.

Basically Wegstein's method is Esperti's method where one curve is a straight line (see Program 2-9 for Esperti's method). Equation (5-4.8) will have to be modified as Wegstein's method finds the solution to $f(b)=b$, therefore, let $f(b)$ be as shown in Eq. (5-4.9)

$$
\begin{equation*}
f(b)=\frac{\Sigma_{3} \Sigma_{4}}{\Sigma_{2}}-\Sigma_{1}+b \tag{5.4-9}
\end{equation*}
$$

The reason for this form is to try and avoid the small difference between big numbers problem. It is advisable to keep b between 0.1 and 10 for best accuracy. If the data is on a microsecond time scale, enter the time as though it were in seconds and denormalize $b$ after it has been calculated. Likewise for millisecond data.

After b has been found by iteration, a is obtained by using Eq. (5-4.6), which can be expressed in terms of the numbered sums:

$$
\begin{equation*}
a=\frac{\Sigma_{3}}{\Sigma_{2}} \tag{5.4-10}
\end{equation*}
$$



Figure 5-4.2 Flowchart for Wegstein's method.

* For this program, $\varepsilon$ is chosen at $10^{-6} \cdot \bar{b}$


## ${ }_{54}$ User Instructions




Example 5-4.1
A constant voltage was suddenly connected to the field of a large dc traction motor, and an oscilloscope photograph taken of the current. The field time constant is needed to determine loop stability in the overall motor control loop. Table 5-4.1 shows the field current as read from the oscilloscope photo as a function of time.

Table 5-4.1 Motor field current vs. time.

time,   seconds	0.1	0.2	0.3	0.4	0.5	0.6	0.7
current,   amps	10	18	26	33	39	45	50

Assuming the field to be a simple series LR circuit, find the time constant and the asymptotic field current.

## HP-97 PRINTOUT FOR EXAMPLE 5-4.1



Program Listing I

$54 \quad$ Program Listing II


## LIST OF ABBREVIATIONS

alternative or	alt	destination	dest
alternate		diameter	diam
amplifier	amp	display	dsp
approximately	approx	distance	dist
arithmetic	arith		
attenuation	atten	electrical	elect
		elements	e1ts
bandpass	BP	enter	ent
bandstop	BS	Equation(s)	Eq (s).
bandwidth	BW	equivalent	equiv
branch	br	evaluation	eval
Butterworth	Buttr	even part of (*)	Ev( $\cdot$ )
		execute	exec
calculation or calculate	calc		
capacitor	cap	feedback	fdbk
Chebyshev	Cheb	Figure	Fig.
circuit	ckt	format	fmt
clear	clr	frequency	freq
coaxial	coax	function	fcn
coefficient	coef		
complex	cmplx	go substitute	go sub
conductance	cond	go to	gto
conjugate	conj		
conversion	conv	henry	h
co-ordinates	co-ords	highpass	HP
decibel	dB	imaginary	imag
decibel ripple	dBR	increment	incr
denominator	den	initialize	init
denormalization	denorm	input/output	I/O
density	dens	integral	int


label	1b1	resistance	resist
level	1v1	return	rtn
1inear	1 in	review	rev
1oop	$1 p$	root sum square	RSS
lowpass	LP	root mean square	RMS
matrix	mat	secondary	sec
minimum	min	section	sect
multiplication	mult	solution	so1n
		space	spc
negative	neg	specification(s)	spec (s)
numer ator	num	square	sq
odd part of(•) order	$\begin{aligned} & \text { Odd }(\cdot) \\ & \text { ord } \end{aligned}$	starting frequency stopping frequency store	$\begin{aligned} & f_{s t} \\ & f_{s p} \\ & \text { sto } \end{aligned}$
		subroutine	subr
page	pg, p	sweep	swp
parameters	params		
peak	pk	temporary	temp
polynomial	poly	terminating,	term
preamplifier	preamp	terminal, or termination	
primary	pri	through	
print	prt	through	thru
program	pgm		tog
		total	tot
recall	rcl	transform	xfm
rectangular	rect	transformer	xfmr
reflection	refl	transistor	xstr
register(s)	reg(s)	transmitter	xmit
required	reqd	transmission   trigonometric	$\begin{aligned} & \text { xmsn } \\ & \text { trig } \end{aligned}$

## BIBLIOGRAPHY

1 Abramowitz, M., and Stegun, I., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, AMS $\# 55$, Nat ${ }^{\prime} 1$ Bur. of Stds., Washington, D.C., 1972.

2 Amstutz, P., "Elliptic Approximation and Elliptic Filter Design on Small Computers," IEEE Trans. on Ckts. and Systems, vol CAS-25, Dec. 1978, pp. 1001-1011.

3 Antoniou, A., "Realization of Gyrators Using Operational Amplifiers and Their Use in RC Active Network Synthesis," Proc IRE (London), vol 116, Nov. 1969, pp. 1838-1850.

4 Bashkow, T.R., ch 26 in Mathematical Methods for Digital Computers, Eds. Ralston, A., and Wilf, H., Wiley, N.Y., 1960.

5 Belevitch, V., "Tchebycheff Filter and Amplifier Networks," Wireless Engineer, vol 29, April 1952, pp. 106-110.

6 Bell, W., Matrices for Scientists and Engineers, Van Nostrand Reinhold, N.Y., 1975.

7 Bennett, W.R., "Transmission Network," U.S. Pat 1,849,656, 15 March 1932.

8 Blinchikoff, H., and Zverev, A., Filtering in the Time and Frequency Domains, Wiley-Interscience, N.Y., 1976.

9 Bodway, G.E., "Circuit Design and Characterization of Transistors by Means of Three Port Scattering Parameters," Microwave Journal, vol 11, no. 15, May 1968.

10 Bruton, L., "Network Transfer Functions Using the Concept of Frequency Dependent Negative Resistance," IEEE Trans, on Ckt. Theory, vol CT-16, Aug. 1969, pp. 406-408.

11 Bumet, P., "On the Self Inductance of Circular Cylindrical Coils," Revúe General de 1'Electricite, Tome xlii1, no. 4, Jan. 1938, p. 99.

12 Byrd, P., and Friedman, M., Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, N.Y., 1954.

13 Callendar, M., " $Q$ of Solenoid Coils," Wireless Engineer, vol 24, June 1947, p. 185.

14 Carnahan, B., Luther, H., Wilkes, J., Applied Numerical Methods, Wiley, N.Y., 1969.

15 Carson, R.S., High Frequency Amplifiers, Wiley-Interscience, N.Y., 1975.

16 Cohn, S., "Direct Coupled Resonator Filters," Proc. IRE, vo1 40, Feb. 1957, pp. 186-196.

17 Daniels, R., Approximation Methods for Electronic Filter Design, McGraw-Hill, N.Y., 1974.

18 Darlington, S., "Simple Algorithms for Elliptic Filters and a Generalization Thereof," session 3 of IEEE Int. Symp. on Ckts. and Systems Proc., May 1978, pp. 35-39.

19 Daryanani, G., Principles of Active Network Synthesis and Design, Wiley, N.Y., 1976.

20 Deliyannis, T., "High-Q Factor Circuit with Reduced Sensitivity," Electronic Letters, vol 4, Dec. 1968, p. 577.

21 Dishal, M., "Design of Dissapative Band-Pass Filters Producing Exact Amplitude-Frequency Characteristics," Proc IRE, vol 37, Sept. 1949, pp. 1050-1069.

22 Doyle, W., "Lossless Butterworth Ladder Networks Operating Between Arbitrary Resistances," J. Math. Phys., vol 37, no. 1, April 1958, pp. 29-37.

23 Fano, R.M., "Theoretical Limitations on the Broadband Matching of Arbitrary Impedances," J. Franklin Inst., vol 249 , Jan. 1950, pp. 57-83, and vol 249, Feb. 1950, pp. 139-154.

24 Froehner, W.H., "Quick Amplifier Design with Scattering Parameters," Electronics Magazine, 16 Oct. 1967.

25 Fortescue, Standard Handbook for Electrical Engineers, McGrawHill, N.Y., 1922 5th ed., p. 413.

26 Geffe, P.R., Designers Guide to Active Filters, Cahners Pub. Co., Boston, MA., 1974.

27 Geffe, P.R., "Microcomputer-Aided Filter Design," IEEE Ckts. and Systems Magazine, vol 1, no. 1, Jan. 1979, pp. 5-8.

28 Green, E., Amplitude-Frequency Characteristics of Ladder Networks, Marconi's Wireless Telegraph Co. Ltd., Essex, England, 1954.

29 Grove, W.E., Brief Numerical Methods, Prentice-Hall, Englewood Cliffs, N.J., 1966.

30 Grover, F.W., Inductance Calculations, Working Formulas and Tables, D. Van Nostrand, N.Y., 1946.

31 Hamming, R., Numerical Methods for Scientists and Engineers, second edition, McGraw-Hill, N.Y., 1973.

32 Hewlett-Packard Application note \#95, "S parameters . . . . Circuit Analysis and Design," Hewlett-Packard Co., Sept. 1968.

Hewlett-Packard Journal, "S Parameters for Faster, More Accurate Network Design," vol 18, no. 6, Feb. 1967, p. 3-7.

34 Kawakami, M., "Nomographs for Butterworth and Chebyshev Filters," IEEE Trans. on Ckt. Theory, vol CT-10, June 1963, pp. 288-289.

Kerwin, W., and Heulsman, L., "Design of High Performance Active RC Band Pass Filters," 1966 IEEE Int. Conv. Rec., vo1 14, part 10, pp. 74-80.

Lee, R., Electronic Transformers and Circuits, second ed., Wiley, N.Y., 1961.

37 Matthaei, G., "Synthesis of Tchebycheff Impedance-Matching Networks, Filters, and Interstages," IRE Trans, on Ckt. Theory, vol CT-3, Sept. 1956, pp. 163-172.

Moschytz, G., "Second-Order Pole-Zero Selection for n-th Order Minimum Sensitivity Networks," IEEE Trans. on Ckt. Theory, vol CT-17, Nov. 1970, pp. 527-534.

Norton, E.L., "Constant Resistance Networks with Applications to Filter Groups," BSTJ, vol 16, April 1937, pp. 178-193.

40 Orchard, H.J., "Formulae for Ladder Filters," Wireless Engineer, vol 30, Jan. 1953, pp. 3-5.

41 Orchard, H.J., "Computation of E1liptic Functions of Rational Fractions of a Quarter period," IRE Trans. on Ckt. Theory, vol CT-5, Dec. 1958, pp. 352-355.

42 Orchard, H.J., and Sheahan, D.F., "Inductorless Bandpass Filters," IEEE Jour. of Solid State Ckts., vol SC-5, June 1970, pp. 108-118.

Potter, J., and Fich, S., Theory of Networks and Lines, PrenticeHall, Englewood Cliffs, N.J., 1963.

Reference Data for Electrical Engineers, Fourth Ed., ITT Corp., New York, N.Y., 1959.

Saal, R., and Ulbrich, E., "On the Design of Filters by Synthesis," IRE Trans. on Ckt. Theory, vol CT-5, Dec. 1958, pp. 284-327.

Skwirzynski, J., and Zdunek, J., "Note on Calculation of Ladder Coefficients for Symmetrical and Inverse Impedance Filters on a Digital Computer," IRE Trans. on Ckt. Theory, vol CT-5, Dec. 1958, pp. 328-332.

47 Still, A.F., Elements of Electrical Design, McGraw-Hill, N.Y., 1932.

48 Szentirmai, G., "Synthesis of Multiple Feedback Active Filters," BSTJ, vol 52, April 1973, pp. 527-555.

49 Temes, G., and La Patra, J., Circuit Synthesis and Design, McGraw-Hill, N.Y., 1977.

50 Temes, G., and Mitra, S., Eds., Modern Filter Theory and Design, Wiley-Interscience, N.Y., 1973.

51 Takahasi, H., "On the Ladder-Type Filter Network with Tchebycheff Response," J. Inst. Elec. Commun. Engrs., Japan, vo1 34, Feb 1951, (In Japanese).

52 Terman, F.E., Radio Engineers Handbook, McGraw-Hill, N.Y., 1943.
53 Weinberg, L., Network Analysis and Synthesis, McGraw-Hill, N.Y., 1962.

54 Weinberg, L., and Slepian, P., 'Takahasi's Results on Techbycheff and Butterworth Ladder Networks," IRE Trans. on Ckt. Theory, vol CT-7, June 1960, pp. 88-101.

55 Wheeler, H.A., "Simple Inductance Formulas for Radio Coils," Proc IRE, vol 16, no. 10, Oct 1928, p. 1398 and subsequent discussion in vol 17, no. 3, March 1929, p. 580.

56 White, D.R.J., A Handbook on Electrical Filters, Don White Consultants, Gainesville, VA., 1963.

57 Yengst, W.C., Procedures of Modern Network Synthesis, Macmillan, N.Y., 1964.

58 Zverev, A.I., Handbook of Filter Synthesis, Wiley, N.Y., 1967.

INDEX

INDEX

Abramowitz, M., 290, 332, 276, 478, 484

Active filters, 41-84, 233-280
Air gap, 337, 391, 400
Amstutz, P., 293
Analysis:
active networks, 41-84, 268269

LC filters, 97-108
LRC filters, 75-96
Antoniou, A., 202
Approximation:
Butterworth, 129-140
Chebyshev, 129-140
elliptic, 281-296
narrowband, 185-216
maximally flat see Butterworth
AWG of wire, 347, 375

Balanced structure, 178, 180
Ball, J., 3
Bandpass transformations, 165166, 185-216, 299

Bandstop transformations, 166168, 299

Bartlett's bisection theorem, 101

Bashkow, T.R., 87
Belevitch, V., 154
Be11, W.W., 455
Bennett, W. R., 154

Bessel functions, 476, 481
Bilateral:
amplifier design, 427
network, 163, 185, 199, 217, 233
Biquad circuits, 235
Bodway, G., 435
Bruton, L., 156
Bunet, P., 383
Butterworth approximation, 129-130, 134, 136-137, 146, 155, 233, 245-246

Byrd, P., 292, 476

Callendar, M., 375
Capacitance of transformers, 353
Carnahan, B., 455
Carson, R.S., 428
Cascade synthesis, 235
Characteristic function, 287, 309
Chebyshev rational function:
definition, 287-289
relation to elliptic functions, 293-294

Closed loop gain, 255
Coaxial cable see Transmission Line
Coefficient matching technique, 256256

Coefficient sensitivity, see Sensitivity

Cohn, S., 171, 185, 199
Cubic spline, 491-493

Danie1s, R., 281, 287, 291, 297
Darlington, S., 293, 325
Daryanani, G., 254, 255, 272
Delay (of Butterworth and Chebyshev filters), 141-152

Decomposition into second order function, 235, 267
Deliyannis, T., 235, 267
Dishal, M., 171, 185
Doyle, W., 22

## Elliptic filter:

attenuation, 297-299
characteristic function, 326
degree, calculation of, 283, 293
examples, 303, 304, 313, 314
loss function, 298
natural modes, 309-311, 326
transformation to produce loss pole at infinity, 283-284

Elliptic functions:
sine (sn), 292, 476
cosine (cn), 476
delta (an), 476
amplitude (am), 476
E11iptic integrals, 292, 475
Equiripple filters, 309-324
Esperti's method, 237-238
Even part (Ev), 318

Fano, R.M., 121
Feedback factor, 267
Feldtkeller equation, 287, 309
Ferromagnetic cores, 337
Fich, S., 36

Fortescue, 253
Fourier series for elliptic sine, 292

Frequency normalization, 163-164
Frequency-dependent-negativeresistance (FDNR), 156

Friedman, M., 292, 476
Froehner, W.H., 428

Gain-bandwidth of op-amps, 267
Gain, open loop, 49-54, 268, 271, 272

Gain-bandwidth product, 272
Gain sensitivity, 271
Geffe, P.R., 272, 293
Green, E., 154
Grove, W.E., see Wegstein's method
Grover, F.W., 365
Gyrator, Antoniou, 202

Hamming, R.W., 3, 491
Heulsman, L., 235
Highpass transformation 142-143, 164-165
h parameters, 447

Inductance:
leakage, 353
of aircore coils, 373, 383
of solenoids, 395
of straight wires, 366
of wire loops, 367
open circuit, 338
quality factor (Q), 375
Inductors:
active, 202-203
passive, 337-352

Input bias current, 260
Input noise, 109
Input offset voltage, 260

Jacobian elliptic functions, 475
Johnson noise, 109
.Kawakami, M., 129, 133, 134
Kerwin, W., 235

Ladder networks, 41, 76, 80, 83, 101, 103, 109

Landen, descending transformation, 292, 476, 479,

LaPatra, J., 235
Least squares fit, 501-503
Low-pass approximation, see Approximation

Loss function, 297-299
Luther, H.A., 455

Magnetic path, 337
Magnetic saturation, 344
Matrix algebra, 447-471
Matthaei, G., 121
Möbius transformation, 283284, 299

Modular elliptic function, 292
Moschytz, G., 309

Natural modes:
of Butterworth filters, 146
of Chebyshev filters, 148
of elliptic filters, 328
of equiripple filters, 309312
of maximally flat filters, 146

Negative feedback biquad, 267

Network, two port, 447
Newton's method (Newton-Raphson iteration), 57

Nodal analysis, 56, 258
Normalized lowpass filter, 153-162
Norton, E., 154, 211

Offset voltage, 260
Open loop gain, 41, 45, 50, 51, 52, 54, 55, 268, 276

Orchard, H.J., 154, 202, 293
Ordering of biquads, 244
Oscillator (design with s parameters), 433

Passband:
bandpass filter, 131
bandstop filter, 167
highpass filter, 142-143, 253
lowpass filter, 147-148
Passive networks:
analysis, 75-108
LC filter, 153-216
transformation, 217-232
transmission lines, 13-40
Permeability, 337
Phase delay, 142
Pole frequency, $\omega_{n}$, definition, 234
Pole Q, definition, 234
Poles, complex conjugate, 234
Positive feedback biquads see Sallen and Key

Potter, J.I., 36
Power dissipated in coil, 395

Q enhancement, 270
Q factor of inductors, 375
Quadrangle symmetry, 316


[^0]:    * By definition since $s=a$ is a zero of the polynomial.

[^1]:    *For parallel tank filter tuning procedure, see the example in the type 8, 9, 10 , and 11 transformations program.

[^2]:    ** For more information on inductor design, see the ferromagnetic core and air core inductor design programs contained in another section of this book. Also see the Ferroxcube Inc. publication "Linear Ferrite Materials and Components" for information on ferrite pot core inductor design.

    * See program 2-5 for the type 6, 8, and 10 tuning procedure.

[^3]:    ＊Requires about a minute to compute．

[^4]:    * See the HP EE pac Program 16 for unilateral design methods.

