HANDBOOK OF ELECTRONIC DESIGN AND ANALYSIS PROCEDURES USING PROGRAMMABLE CALCULATORS

BRUCE K. MURDOCK

Van Nostrand Reinhold Electrical/Computer Science and Engineering Series

INTRODUCTION

This book provides programming techniques and programs to make the fully programmable calculator a valuable design tool for the working engineer. This book is not specifically intended to be a textbook on calculator programming, although documented programs can serve this purpose. Three books can be recommended for programming methods and algorithms: Jon M. Smith, "Scientific Analysis on the Pocket Calculator," Wiley 1975, John Ball, "Algorithms for RPN Calculators," Wiley 1978, and Richard W. Hamming, "Numerical Methods for Scientists and Engineers," McGraw-Hill 1973.

Many programs in this book are meant to be used in sets, i.e., the output of one program becomes the input for another through common storage register allocations. The description of each program is meant to stand alone, and consists of the following parts:

- 1) Problem description with pertinent equations,
- 2) Program operating instructions,
- 3) One or more program examples,
- 4) Equation and method derivation, or references,

5) Annotated program listing, which is its own flowchart. Part 4 is not present in every program.

This program ordering was chosen so the variable definitions and operating instructions are immediately available to the experienced user. Should the user wish more information or background on the program and equations, or the details of the program operation, this material is also available, but is placed after the operating instructions.

Although the program language, and resulting program flow is tailored to the Hewlett-Packard (HP) fully programmable calculators, the HP-67/97, the annotated program listing/flowchart can be used as a basis for generating programs in other languages.

The language of the Texas Instruments (TI) fully programmable ^{calculator}, the TI-59, is not very different from the HP-67/97 language

when considered on a gross scale, therefore, the HP-67/97 programs may be easily <u>translated</u> into the language of the TI-59. While it is easy to write a program from equations and flowcharts, the new program must still be debugged. Translating a program that has already been tested and debugged can lead to a new program that has no bugs at all. The TI program translation will also closely follow the flow of the original HP program.

The differences between the HP and TI languages are mainly in format and not in form. Because the TI-59 has few merged keycodes, must use parentheses to set hierarchy, and must branch to a label or line number as the result of a true conditional test, the TI-59 program will be longer than the mating HP-67/97 program. This increased program length is generally not a detriment as it is accommodated by the larger program memory available in the TI-59. Because the TI-59 always starts label searches from the top of the program, the program execution time can also be longer unless direct addressing is used, or the labeled subroutines are placed at the beginning of the program.

Since the TI-59 does not have a stack to hold the results of an equals operation, a set of scratchpad registers must be set aside to hold those intermediate results normally retained in the HP-67/97 stack. Results residing in the TI-59 display register after the equals operation will permanently disappear unless stored before subsequent operations are performed.

The arithmetic hierarchy of the Algebraic Operating System (AOS) can sometimes be a problem which becomes particularly apparent when calling subroutines. If an equals operation does not precede the subroutine call, the subroutine hierarchy will be dependent on the hierarchy set up in the main program. To make the subroutine hierarchy independent of the main program, the subroutine should always start with an open parenthesis and terminate with a close parenthesis. This rule can be extended to the "go to" command also. The last statement prior to the unconditional jump should be an equals to terminate all pending operations. It will cause no harm to have an open parenthesis as the first statement after the label that is the jump destination. The TI-59 has enough program memory so that, whenever in doubt, parenthesis can be inserted to establish unconditional arithmetic hierarchy.

The TI-59 does not have the equivalent of the HP-67/97 flag 3 function where flag 3 is automatically set whenever numeric data

is entered from the keyboard. Because of this difference, the convenience feature existing in most of the HP-67/97 programs herein where the execution of a user definable key such as "A" without numeric entry results in the currently stored parameter value being displayed cannot be translated to the TI-59 program.

None of the TI-59 flags are test cleared, while flags 2 and 3 of the HP-67/97 are test cleared, thus, clear flag statements may be required in the TI-59 program and subroutines involving the use of flags 2 and 3.

The HP-67/97 and the TI-59 both have user definable labels A through E, and a through e (the latter are designated A' through E' on the TI-59). Executing these keys from the keyboard acts like a subroutine call on either machine: the program pointer jumps to the designated label, and program execution begins. The HP-67/97 and the TI-59 are different in the labels called "common labels" by TI, i.e., labels other than the user definable ones. HP uses the label designators 0 through 9, and a given label may be used more than once as label searches start from the present place in program memory, hence a "local label" such as label 6 in Program 2-4 is used many times within the program. The TI-59 cannot use numeric labels, but uses other function keys as labels, e.g., "sin," "fix," etc. There are 62 such keys available for labels. The TI-59 always starts label searches from the top of the program, hence, a given label can only be used once within the program.

The TI-59 is internally set up to be most efficient, time wise, when jumps and branches are made to line numbers rather than to labels. The HP-67/97 appears to be as fast in a label search as the TI-59 is in a line number search. The HP-67/97 cannot go to a specified line number under program control, hence, it is restricted to label searches only. There is a simple program trick shown on page IV-98 of the TI-59 owner's manual where a program is initially written with labels, and the label calls have "NOP" statements following so the program can easily be modified for line number addressing after the program is debugged and complete.

Care should be exercised when translating program coding containing rectangular-to-polar (\Rightarrow P) and polar-to-rectangular (\Rightarrow R) conversions as the TI-59 and HP-67/97 operate on the variables in opposite manner. The HP-67/97 takes the x and y coordinates from the x and y registers and places the magnitude and angle equivalents back into the x and y registers respectively for the \rightarrow P conversion, and vice-versa for the \rightarrow R conversion. The TI-59 uses the t and x registers for the two variables, and takes the x and y coordinates from the t and x registers and places the equivalent magnitude and angle back into the t and x registers respectively for the \rightarrow P conversion, and vice-versa for the \rightarrow R conversion. Both machines display the contents of the x register, so the TI-59 will display angle or y coordinate whereas the HP-67/97 will display magnitude or x coordinate after respective \rightarrow P or \rightarrow R conversions.

To guide the reader in this translation, several programs in this book have been translated into the TI-59 language. These programs have user instructions, examples, and program coding in both languages. Program 1-1 has been flowcharted in addition to provide a common point of reference between the two program listings.

The preceding paragraphs mention anomalies in the TI-59 language. The HP-67/97 language has its idiosyncracies also. Reading the program listings, one will notice some "non-standard" program coding. The prime consideration was to fit the algorithm into the program memory. Within this constraint, the program coding was selected to minimize program execution time whenever possible. Numeric entries within the body of the program are to be avoided, and should be recalled from register storage. Entry of each numeric digit requires 72 milliseconds to execute while a register recall only requires 35 milliseconds typically. Numeric entries such as "10," "100," or any other power of 10 should be entered as a power of ten through the "EEX" key. The number "1" should be entered as "EEX" alone and requires only 48 milliseconds to execute. Similarly, the "CLX" function will result in a zero in the display, and only requires 30 milliseconds to execute. Multiplication of a number by two (2, x) requires 179 milliseconds to execute, while addition of a number to itself (ENT \uparrow , +) requires 82 milliseconds execution time and yields the same result. Register arithmetic is executed faster than stack arithmetic when the register recalls are considered, and register arithmetic can save program steps. Whenever the algorithm allows, subroutine calls should be minimized as they typically require 240 milliseconds for the label search and return. Likewise unconditional jumps such as GTOA require 160 milliseconds for the label search typically. By paying attention to small details such as these, the program

execution time can be shortened considerably expecially when iteration or looping is required. For more information on execution times and programming hints with the HP-67/97, see "Better Programming on the HP-67/97" edited by William Kolb, John Kennedy, and Richard Nelson, and available from the PPC Club (new name for the HP-65 Users Club), 2541 W. Camden Place, Santa Ana, Calif. 92704.

Even though the program coding has been chosen for minimum execution time, the program LNAP may require more than a minute of computation time before output is provided when the number of branches is large. Likewise, the same time requirement may exist for the filter programs when the filter order is large.

An attempt has been made to choose self-explanatory label descriptions for the user definable keys; hence, once familiar with a particular program, the user need only refer to the magnetic card label markings to run the program.

To restate a point made in the preface of this book, it is not possible to include programs and descriptions covering all areas of engineering analysis and design. The programs herein are only representative of areas in networks and circuits (the terms "networks" and "circuits" may be used interchangeably). The 39 programs contained in this book have been selected from the author's library, and have proved to be quite useful to the author; hopefully, they will prove equally useful to the reader.

The program description not only shows the equations used by the program, but gives a reference, or has a derivation of the equations so these programs may serve as a base for the generation of other related programs as may be needed by the reader for his or her particular application.

Because the programs herein cover several different disciplines in electrical engineering, a problem with nomenclature arises. To the control systems oriented engineer, the term "transfer function" implies system output divided by system input. On the other hand, to the filter design engineer, "transfer function" implies system input divided by system output, or the reciprocal of the control system engineer's definition. To avoid confusion, the term "transmission function" is used to mean system output divided by input and "transfer function" is used to throughout the book.

The appendix has a list of a list of abbreviations used, along with the bibliography give the reader an easily found place to go should confusion or uncertainty to variable or abbreviation meaning arise.

HANDBOOK OF ELECTRONIC DESIGN AND ANALYSIS PROCEDURES USING PROGRAMMABLE CALCULATORS

Part 1 NETWORK ANALYSIS

PROGRAM 1-1 LOSSY TRANSMISSION LINE INPUT IMPEDANCE.

Program Description and Equations Used

This program uses Eq. (1-1.1) to determine the complex input impedance, Z_s , of a lossy transmission line of length ℓ , loaded with a complex impedance Z_r , and having a characteristic impedance Z_o , an attenuation constant α_{dB} in dB per unit length, and a phase constant β in radians per unit length (or velocity of propagation C_m). For solid dielectric cables, C_m is typically 1/2 to 2/3 the free-space speed of light, and is approximated by Eq. (1-1.9) for low loss coaxial cables, or calculated from Eqs. (1-1.5) and (1-1.6) if the cable impedance and admittance per unit length are known at the operating frequency. The unit of length has purposely not been given because it is to be selected by the user. As long as the same length unit is used throughout, length will cancel out of Eq. (1-1.1). Figure 1-1.1 shows the general circuit topology.

Figure 1-1.1 Transmission line setup.

The equation that describes the problem is:

$$Z_{s} = Z_{o} \frac{1 + \rho e^{-2\gamma \ell}}{1 - \rho e^{-2\gamma \ell}}$$
(1-1.1)

where ρ is the reflection coefficient and γ is the propagation function. These quantities are given by the following equations:

$$\rho = \frac{Z_r/Z_o - 1}{Z_r/Z_o + 1}$$
(1-1.2)

$$\gamma = \alpha + j\beta \qquad (1-1.3)$$

$$\alpha = (\alpha_{db})/(20 \log e)$$
 (1-1.4)

$$\beta = \frac{2\pi}{\lambda} = \frac{2\pi f}{C_m}$$
(1-1.5)

If the per unit length series impedance, \overline{R} + j $\omega \overline{L}$, and shunt admittance, \overline{G} + j $\omega \overline{C}$, are available at the frequency of operation, then the propagation function is given by:

$$\gamma = \sqrt{(\bar{\mathbf{x}} + j\omega\bar{\mathbf{L}})(\bar{\mathbf{G}} + j\omega\bar{\mathbf{C}})} \qquad (1-1.6)$$

If Z_r is desired in terms of Z_s , Z_r is replaced by Z_s in Eq. (1-1.1), Z_s is replaced by Z_r in Eq. (1-1.2), and l is replaced by -l in Eq. (1-1.1).

This quasi-symmetrical property allows the use of the same program to calculate the transmission line input impedance with a complex load by using a positive line length, or to calculate the complex load that will provide a specified input impedance by using a negative line length.

A duality also exists with Eq. (1-1.1) and Eq. (1-1.2). The same equation form holds for the transmission line input or output admittance providing each Z is replaced by the corresponding Y, i.e., $Y_s = 1/Z_s$, $Y_r = 1/Z_r$, and $Y_o = 1/Z_b$. The admittance forms of Eqs. (1-1.1) and (1-1.2) are as follows:

$$Y_{g} = Y_{o} \frac{1 + \rho' e^{-2\gamma k}}{1 - \rho' e^{-2\gamma k}}$$
(1-1.7)

where

$$\rho' = \frac{Y_r / Y_o - 1}{Y_r / Y_o + 1}$$
(1-1.8)
(\rho' = -\rho)

Because the equation form is the same, the program will work with admittances as well as impedances.

In this HP-67/97 program, keys "A" through "E" and "a" through "c" on the calculator have a dual function role. Execution of these keys following a data entry from the keyboard is interpreted as data input by the program, and the numeric entry is stored. Execution of these keys following a nonnumeric entry, or following the "e" (clear) key is interpreted as an output request, and the currently stored values are printed (HP-97 only) and displayed. This feature cannot be translated into the TI-59 program.

The data required by the program is entered in either cartesian (real and imaginary) or polar (magnitude and angle) form through keys "b" and "c," or "B" and "C" respectively. On large coax cables such as underwater telephone cable, both the cable attenuation and phase constants are provided as a function of frequency by the manufacturer, and are loaded into the program using the units of dB per unit length and radians per unit length respectively. If β is unknown, it can be calculated from the velocity of propagation in the transmission line. If the transmission line has less than 1 dB loss in the length being used, and is of coaxial construction, the velocity in the medium (phase velocity) may be approximated by

$$C_{m} \simeq \frac{\text{speed of light in free space}}{\sqrt{\epsilon_r \mu_r}}$$
 (1-1.9)

where ε_r and μ_r are the relative dielectric constant and relative permeability of the cable dielectric and conductors respectively. For cables constructed of nonmagnetic parts, or for cables with a steel strength member within the center conductor of the cable and operating at frequencies where the skin effect keeps currents from flowing within the strength member, the relative permeability, μ_r becomes unity.

User Instructions

1-1

	H	<u>P-0//9/ PROG</u>	RAM		
			INPUT IMPED	INCE	
[#] ∕n f ∳ C _m	Re Zo Im I	Re Zr Im	Zr Zs 4Zs	clear entry mode	5
∞ ≪ _{dB} tβtf	20 420	Zr 4.2r	^{**} e , 4e	s. l	12

1	Load both sides of program card			
	·			
2	Enter transmission line parameters			
	line loss in dB/unit length	∝ _{dB}		
	phase constant in radians/unit length	β		
	frequency in hertz	f		Om
	If velocity of propogation is known instead			
	of phase constant, enter dummy value of 1			
	for phase constant in step 3 above, then			
	Enter frequency in hertz	f		
	Enter propagation velocity*	C _m		β
		v m		· · ·
	* note:	····-		
	The units of length must be consistent			
	throughout the data, i.e., all in meters,			
	or feet, or miles, etc.			
3	Enter the transmission line characteristics			
	at the chosen analysis frequency			
	magnitude of Z in ohms	Zo	<u>+</u>	
	phase angle of Zo in degrees	ξZ _o	В	·
		<u>₩</u>		
	OR			
	real part of Zo in ohms	Re Zo		
	imaginary part of Z _o in ohms	Im Zo	f B	
- 1		_ ~0		
4	Enter load impedance			
	magnitude of load impedance in ohms	Zr		
	phase angle of load impedance in	ζZr	0	
	degrees			
	0R			
	real part of load impedance in ohms	Re Zr		
	imaginary part of load impedance in Ω	Im Zr	f	
		<u> </u>		

¹⁴ User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	Enter transmission line length	± L _	E	
	+ ℓ to calculate Z_s given Z_r			
	- ℓ to calculate Z_r given Z_s			
6	Optional, printout or enter refl coef			
	ρ entry	101 4 9°		
	o printout		D	191, 4.0°
	Of the three variables Zo, Zr, & ρ			
	either Zo & Zr or Zo & P			
	are required.			
7	Compute Zs, 4Zs (length positive)		f D	Z, 42°
	Zr , 4Zr (length negative)			
8	To clear input mode and initialize program		f E	
9	To review input data		f	
			f A	f, Om
			A	$\alpha_{dB_1\beta_1}f$
			f B	ReZo, ImZo
			B	Z01,4 20
			f 0	ReZ _r , ImZ _r
			0	Zr , Zr
		· · · · · · · · · · · · · · · · · · ·		101,40°
			E	l
			<u> </u>	
	NOTE:			
	The angular mode of the program is degrees.			
	All angular data input and output is in			<u> </u>
	degrees with the exception of β . The			
	angular mode should not be changed as program			
	malfunction will occur because of R+D and			
	DoR conversions that are used.			
				
				h
├ ── ┤				
├ ──- 				}
		<u> </u>		L

¹⁻¹ User Instructions

TI-59 TRANSLATION

LOSSY	TRANSHISSION	LINE INPUT	INPEDANCE	(TI-59)	
0 _m	ReZ_0 , ImZ_0	ReZ _r , ImZ _r	$ Z_r , X_r$		7
α_{dB}, β, f	$ z_0 , \chi z_0$	$ z_r , 4z_r$	output 191,49	l	

TI-59 TRANSLATION

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of magnetic card			
2	Load line loss in dB/unit length Load line phase constant in rad/unit length If Om, the velocity in the medium, is	≪dB ₿	A R/S	
	known instead, load dummy β of 1 Load analysis frequency in hertz	P	R/S	
3	If C_m is known instead of β , load C_m	Cm	2nd A	
4	Enter Z ₀ , the transmission line characteristic impedance in polar or rectangular co-ords polar co-ordinates: magnitude phase angle rectangular co-ordinates: real part	<u>اکما ، ۲</u> کل کو ، ۲ Re Z ₀ , ۲	B R/S 2nd B	
	imaginary part	Im Z _{o, N}	R/S	
5	Enter load impedance at the analysis freq as either polar or rectangular data polar co-ordinates: rectangular co-ordinates:	Z _r , Ω 4 Z _r , • Re Z _r , Ω	0 R/S 2nd 0	
		Im Z _{r, Q}	R/S	
6	Load transmission line length + ℓ to calculate Z_s given Z_r - ℓ to calculate Z_r given Z_s	± <i>L</i>		
	Optional: output reflection coefficient		D R/S*	<u>e</u>
8	To calculate Z_s (or Z_r given negative length)		2nd D R/S*	Ζ , Ω 4 Ζ°
	* If the TI-59 is attached to the PO-100A printer, the second value will be printed without the R/S command.			
			· · · · · · · · · · · · · · · · · · ·	

Example 1-1.1

Figure 1-1.2 SD coaxial cable circuit for Ex. 1-1.1.

Type SD underwater telephone coax is to be used at 0.72 MHz. The cable section is 2.8 nautical miles (n-mi.) long and is loaded by a series RC network of 100 ohms and 1000 pF as shown in Fig. 1-1.2. Find the cable input impedance, Z_s , at this frequency.

At 0.72 MHz the electrical parameters of SD coax are:

 $\alpha_{dB} = 2.070 \text{ dB/n-mi.}$ $\beta = 42.511 \text{ radians/n-mi.}$ $Z_{o} = 44.625 \text{ ohms at -0.315 degree}$ The RC load impedance is:

Re
$$Z_r = 100$$
 ohms
Im $Z_r = -j/(2\pi fC) = -j221$ ohms

The input impedance of the loaded coax is 66.902 + j11.167 ohms as obtained from using the program and shown in the printout below:

PROGRAM INPUT	PROGRAM OUTPUT		
2.670 ENT α_{dB} , dB/n-mi. 42.511 ENT β , rad/n-mi. .72+06 GSBA frequency, Hz	GSBd calculate Z 67.827 *** $ Z_s $, ohms 9.476 *** χZ_s , degrees		
44.265 ENT1 Z ₀ , ohms 315 GSBB 4 Z ₀ , degrees	$\begin{array}{c} X \neq Y \\ \rightarrow R \end{array} \text{convert to rect}$		
100.000 ENT1 Re Z _r , ohms -221.000 GSBc Im Z _r , "	66.902 *** Re Z _s , ohms 11.167 *** Im Z _s , "		
2.800 GSBE length, n-mi.	GSBa calculate C _m 720000.000 *** frequency, Hz 106417.008 *** C _m , n-mi./sec		

Example 1-1.2

Using the type SD underwater telephone coax of Example 1-1.1, find the load impedance at 0.72 MHz that will result in an input impedance of 60 + j0 ohms. The length of the coax is 2.8 n-mi. as in the previous example.

When using a lossy cable, a negative real part in Z_r will be required to obtain values of Z_g greatly different than Z_0 . Furthermore, if αl is greater than 30 dB, the input impedance will be nearly Z_0 , independent of the load impedance.

In this example, a negative line length is loaded to use the quasisymmetric properties of Eqs. (1-1.1) and (1-1.2) for calculating Z_r given Z_c .

The HP-97 printout reproduced next shows a load impedance of 67.396 - j73.338 ohms is required. The equivalent load network is also shown.

PROGRAM INPUT		PROGRAM OUTPUT	
2.070 ENT† 42.511 ENT† .72+06 GSBA	up ·	99.603 *	Bo calculate load Z ** Z _r , ohms ** X Z _r , degrees
44.265 ENT† 315 GSEB 60.000 ENT†	Z ₀ , ohms X ₀ , degrees Re Z _s , ohms		\vec{x} convert to rect \vec{x} Re Z, ohms \vec{x} Im Zr, "
0.000 GSBC -2.800 GSBE	Im Z _S , "	.72+05	Pi x calculate x equivalent & capacitor
		1. 3.014-09 *:	/X ** C, farad

Figure 1-1.3 Equivalent load network.

Example 1-1.3, TI-59 Program Example

This example is the same as Example 1-1.2 where the problem is to determine load impedance, Z_r , that results in an input impedance, Z_s , of 60 + j0 ohms. The line length is 2.8 n-mi. Because Z_r is to be calculated given Z_s , a negative line length is used. The PC-100A printer output is shown below.

PROGRAM INPUT

2.07	α _{dB} , dB/n-mi.
42.511	β, rad/n-mi.
7.2 05	frequency, Hz
106417.0079	C _m (output), n-mi./sec
44.265	Z _o , ohms
~0.315	4 Z _o , degrees
60.	Re Z _s , ohms
0.	Im Z _s , "
~2, 8	line length, n-mi.

PROGRAM OUTPUT

.1509385583 1.019762234	$ \rho $, dimensionless $\mathbf{A} \rho$, degrees
99,60303649	Z _r , ohms
-47.41754913	4Z _r , degrees

Note: the PC-100A printer will not print the mnemonic representing the input key. The HP-97 does this automatically when in the "norm" mode.

LABEL c , I/O of load impedance, Z_r, in rectangular format. 2 - X for I/O index, gosub O to store I/O index, convert data to polar format, and store polar data. Go to label 6 for data entry test and p calculation if new data has been entered.

<u>LABEL</u> d , Oa lculation of complex input impedance, Z_g , in polar format.
Calculate and store $pe^{-2\delta L}$.
Calculate and store $K = (1 + \rho e^{-2\delta l})/(1 - \rho e^{-2\delta l})$ in scratch registers R8 and S8. (magnitude and angle).
Use register arithmetic to form $Z_s = Z_0 \cdot K$.
Recall, store, and print $ Z_0 $ and Z_0 .
Space paper and return control to keyboard.

LABEL e ,	Clear input mode and setup flags.
······	
	3 to indicate non-numeric entry, and to indicate output is required.
Return cont	trol to keyboard.

Program Listing I

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Z _r , THE
063 R4 059 *LBLc I/O OF Re Z, Im 064 SF0 060 2 LOAD IMPEDANCE IN 065 CF2 061 GSB0 CARTESIAN CO-ORDI 066 0 062 GI06 067 GSB1 063 *LBLJ CALCULATION OF [2 068 CF0 064 RCL3 THE COMPLEX INPUT	-
004 SF0 060 2 LOAD IMPEDATION IN 005 CF2 061 GSB0 CARTESIAN CO-ORDI 006 0 062 GT06 007 GSB1 063 #LBLJ CALCULATION OF 2 008 CF0 064 RCL3 THE COMPLEX INPUT	-
005 CF2 061 GSB0 CARTESIAN CO-ORDI 006 0 062 GI06 063 84.00 064 063 84.00 064 063 84.00 064 064 064 064 064 864	
006 0 062 GI06 007 GSB1 063 *LBLJ CALCULATION OF 12 008 CF0 064 RCL3 THE COMPLEX INPUT	Intibo
007 GSB1 063 #LBLJ CALCULATION OF 2 008 CF0 064 RCL3 THE COMPLEX INPUT	
008 CF0 064 RCL3 THE COMPLEX INPUT	XZ.
	s, , s,
065 RCL0 IMPEDANCE	
010 Pi 066 RCL4	
011 P; 067 ×	
012 + 068 EEX	
013 RCL5 069 1	
014 × 078 ÷	
015 P#S 071 CHS 016 RCL0 072 10× e-2al	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
020 *LBLE I/O OF Z ₀ , ¥ Z ₀ , THE 076 RCL3 4ρ	
021 EEX CHARACTERISTIC IMPEDANCE 077 RCL0 β, radians/lengt	հ
022 GSE1 IN POLAR CO-ORDINATES 078 R+D g, degrees/lengt	 h
023 GT06 079 P ⁺ S	••
824 *LELC I/O OF Zr , 4 Zr, THE 880 RCL4 &	
025 2 LOAD IMPEDANCE IN 081 X	
025 GSB1 POLAR CO-ORDINATES 082 ENTT	
027 GT06 083 + 289	0
$028 \text{ *LBLD I/O OF } \varphi , \& \varphi, \text{ THE} \qquad 084 - 4\varphi - 2\beta g = \& (\varphi e^{-2\theta})$	[*])
029 3 COMPLEX REFLECTION COEF 085 RCLH	•
0.30 $CSB1$ TN POLAR OD OPDIMATES $0.886 \rightarrow P$	
$031 CF3 \\ 087 ST0A Re(pe^{-2\delta f})$	
I 032 CTOS I 088 FEY	
$\begin{array}{c} 0.02 \\ \hline 0.033 \\ \hline 0.057 \\ \hline 0.057 \\ \hline 1/0 \\ \hline 0.057 \\ \hline 1 + \text{Re}(e^{-2t\ell}) \\ \hline 0.057 \\ $	
−035 GT02 036 RCL4 091 ST0B Im(pe ⁻² **) 092 X≠Y	
077 CT00 007 VD	
$\begin{array}{c} \frac{837}{838} & \frac{6108}{1100} \\ \Rightarrow 838 & \frac{1102}{100} \\ \end{array} \qquad \qquad$	
$\begin{array}{c} 033 & 5104 \\ 040 & 6T09 \\ \end{array} \qquad \qquad$	
041 *LBLa I/O OF FREQUENCY AND 097 RCLB	
042 5 VELOCITY IN THE MEDIUM, C_m 098 CHS $Im(1 - \rho e^{-2\delta \ell})$	
099 EEX	
$\begin{array}{c} 044 & CF3 \\ 045 & RCL5 \\ 101 & - Re(1 - \rho e^{-28L}) \end{array}$	
046 ENT↑ 102 →P	
047 + 103 ST÷7	
048 Pi 104 X≠Y	
049 X 105 ST-9	
050 P≠S 106 RCL1 Z₀ 051 RCL5 107 ST×7	
051 RUL5 107 STA7 052 ÷ 108 P‡S	
052 ÷ 108 F25 053 ST08 109 RCL1 ¥Z _o	
053 5708 105 KCL1 420 054 6T07 110 P#S	
855 */ B/ L T/O OF Po 7- Tm 7 THE 111 ST+9	
056 EEX CHARACTERISTIC IMPEDANCE REGISTERS 112 RCL9 4 Z ₈	
	9 ~ ~
$[\alpha, dB/\ell]$ $[Z_{\alpha}]$ $[Z_{\alpha}]$ $[P]$ ℓ $[Ireq]$ $(\varphi, scratch \pi Z $	24Z
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S9
A scratchpad B scratchpad C scratchpad D E I	index

Program Listing II

113	RCL7		168 RCL5 recall frequency
114	÷R	} eliminates neg magnitude	169 F0? print required ?
115	÷₽		170 PRTX print frequency
116	ST08	Zg	171 RTN
117	PRTX	1-81	
118	X≠Y		
119	P≠S		174 PRIX print results
120	ST08	4Ζ _a	175 R4
121	P≓S	-	176 *LBL8 print and space subroutine
122	GSB8		177 PRTX
123	GT09		-178 GT09 goto space subroutine
124	*LBLe	CLEAR INPUT MODE	179 *LBL6 @ calculation
125	CF3	initialize and set flags	180 CF2
126	SF1	THE CLATTER ON POOL TAEP	181 F3? Q calculation needed ?
	RTN		182 F3?
127			
128	*LBL0	change rectangular input	183 GT09 goto space and return subr
129	STOI	to polar format	184 P#S
130	R∔		185 RCL2 $\overset{\text{X}}{=} \overset{\text{Z}}{=} \overset{\text{Z}}{=}$
131	X₽Y		186 RCL1 4 20
132	÷₽		$187 - \chi (Z_r - Z_o)$
133	X≠Y		188 P#S
134	SF2		189 RCL2 Zr
134	6T02		198 RCL1 Zol
136	*LBL1	data I/O in polar mode	
137	STOI		192 6109
<u>138</u>	R∔		193 ÷ Zr/Zo
139 ما ا	≉LBL 2		194 →R
140	F3?	test for input	195 STOA $\operatorname{Re}(\mathbf{Z_r}/\mathbf{Z_o})$
r -141	GSB2	goto_input_routine	196 EEX
142	F1?	test for output	
-143	GSB4		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{143}{144}$		_goto output routine	199 STOB $Im(Zr/Z_0 - 1)$
145	RTN		200 X#Y
-146	*LBL2	input data storage routine	201 →P
147	SF3	(data stored in polar form)	202 ST03 Zr/Zo - 1
148	P‡S		203 XZY
149	ST0;		204 ST06 $\Delta (Z_r/Z_0 - 1)$
150	P≢S		205 RCLB $Im(Zr/Z_0)$
151	R∔		206 RCLA $\operatorname{Re}(\mathbf{Z_r}/\mathbf{Z_0})$
152	STO:		207 EEX
153	RCLA		
154	F0?		
155	ST05		210 ST÷3 (P
156	CF1		211 X#Y
157	RTN		212 ST-6 4 P
		كالكمي معادات فرفي من المراجع في في من المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع	
158	*LBL4	data output routine	213 RCL6
		data output routine	
159	P≠S	data output routine	214 P\$S
159 160	P‡S RCLi	data output routine	214 PZS 215 ST03
159 160 161	P‡S RCLi P≠S	data output routin e	214 P\$\$ 215 ST03 216 #LBL7 P\$8 & space subroutine
159 160 161 <u>162</u>	P≢S RCLi P≢S 		214 P\$\$ 215 ST03 216 #LBL7 P≥S & space subroutine 217 P\$\$
159 160 161 <u>162</u> 163	P‡S RCLi P‡S <u>RCLi</u> F2?	data output routine	214 P\$\$ 215 ST03 216 *LBL7 P≥S & space subroutine 217 P\$\$ -218 *LBL9 space and return subr
159 160 161 <u>162</u> 163 <u>164</u>	P‡S RCLi P‡S <u>RCLi</u> F2? GTO2		214 P ^z S <u>215 ST03</u> <u>216 *LBL7 P^zS & space subroutine</u> <u>217 P^zS</u> <u>-218 *LBL9</u> space and return subr <u>219 SPC</u>
159 160 161 <u>162</u> 163	P#S RCL i P#S <u>RCL i</u> F2? GTO2 PRTX		214 P\$\$ 215 ST03 216 *LBL7 P≥S & space subroutine 217 P\$\$ -218 *LBL9 space and return subr
159 160 161 <u>162</u> 163 <u>164</u>	P‡S RCLi P‡S <u>RCLi</u> F2? GTO2		214 P ^z S <u>215 ST03</u> <u>216 *LBL7 P^zS & space subroutine</u> <u>217 P^zS</u> <u>-218 *LBL9</u> space and return subr <u>219 SPC</u>
159 160 161 <u>162</u> 163 163 164 165 166	P‡S RCLi P‡S <u>RCLi</u> F2? <u>GTO2</u> PRTX R↓		214 P ^z S <u>215 ST03</u> <u>216 *LBL7 P^zS & space subroutine</u> <u>217 P^zS</u> <u>-218 *LBL9</u> space and return subr <u>219 SPC</u>
159 160 161 <u>162</u> 163 - <u>164</u> 165	P#S RCL i P#S <u>RCL i</u> F2? GTO2 PRTX	P - R required ?	214 Pr\$ 215 ST03 216 *LBL7 Pr\$ & space subroutine 217 Pr\$ -218 *LBL9 space and return subr 219 SPC 220 RTN
159 160 161 <u>162</u> 163 164 165 166 167	<i>P</i> ‡S <i>RCL</i> ; <i>P</i> ‡S <i>RCL</i> ; <i>F2?</i> <i>GT02</i> <i>PRTX</i> <i>R4</i> <i>PRTX</i>	P - R required ?	214 P ^z S <u>215 ST03</u> <u>216 *LBL7 P^zS & space subroutine</u> <u>217 P^zS</u> <u>-218 *LBL9</u> space and return subr <u>219 SPC</u>
159 160 161 <u>162</u> 163 164 165 166 167	<i>P</i> ‡S <i>RCL</i> ; <i>P</i> ‡S <i>RCL</i> ; <i>F2?</i> <i>GT02</i> <i>PRTX</i> <i>R4</i> <i>PRTX</i>	P - R required ?	214 PIS 215 ST03 216 *LBL7 PIS & space subroutine 217 PIS -218 *LBL9 space and return subr 219 SPC 220 RTN FLAGS SET STATUS
159 160 161 <u>162</u> 163 165 166 167 1/0:¤(4B)\$,f	P#S RCL; P#S <u>RCL;</u> F2? <u>GT02</u> PRTX R4 PRTX B1/0:(1)	$P \leftarrow R \text{ required ?}$ $LABELS$ $\frac{1}{2} Z_0 \begin{bmatrix} C_{1/0: 1, \chi} Z_r \end{bmatrix} \begin{bmatrix} C_{1/0: 1, \chi} P \end{bmatrix} \begin{bmatrix} f/0 \end{bmatrix}$	214 PIS 215 ST03 216 *LBL7 PIS 216 *LBL7 PIS 217 PIS -218 *LBL9 space and return subr 219 SPC 220 RTN FLAGS SET STATUS 1:length 0 1abel A ? FLAGS TRIG
159 160 161 <u>162</u> 163 165 166 167 1/0:¤(4B)\$,f	P#S RCL; P#S <u>RCL;</u> F2? <u>GT02</u> PRTX R4 PRTX B1/0:(1)	$P \leftarrow R \text{ required ?}$ $LABELS$ $\frac{1}{2} Z_0 \qquad C_{1/0: 1,X} Z_r \qquad C_{1/0: 1,X} P \qquad F_{1/0: 1,X} P$ $e_{Im}Z_0 \qquad C_{1/0: \text{ ReIm}Z_r} \qquad C_{alc.} \qquad Z_s \qquad f_{np}$	214 PIS 215 ST03 216 *LBL7 217 PIS 218 *LBL9 space and return subr 219 SPC 228 RTN Start 1 input or ON OFF DEG FIX
$ 159 160 161 162 163 164 165 166 167 1/0:\alpha_{dB}, \beta, f 1/0: f, Om$	P#S RCL ; P#S RCL ; F2? GT02 PRTX R4 PRTX B 1/0:11 b 1/0: P	$P \leftarrow R \text{ required ?}$ $LABELS$ $\frac{1}{2} Z_0 \qquad C_{1/0: 1,X} Z_r \qquad C_{1/0: 1,X} P \qquad F_{1/0: 1,X} P$ $e_{Im}Z_0 \qquad C_{1/0: \text{ ReIm}Z_r} \qquad C_{alc.} \qquad Z_s \qquad f_{np}$	214 PIS 215 ST03 216 *LBL7 217 PIS 218 *LBL9 space and return subr 219 SPC 228 RTN Start 1 input or ON OFF DEG FIX
$ \begin{array}{r} 159 \\ 160 \\ 161 \\ 162 \\ 163 \\ 163 \\ 165 \\ 166 \\ 167 \\ 167 \\ 1/0: \alpha_{qB}, \beta, f \\ 1/0: f, 0_m \\ 0 \\ P - R \end{array} $	P#S RCL; P#S <u>RCL;</u> F2? <u>GT02</u> PRTX R4 PRTX BI/0:11 bI/0:F 1/0 1	$P \leftarrow R \text{ required } ?$ $LABELS$ $\frac{1}{2} Z_0 \stackrel{C}{[1/0:1], 1} Z_r \stackrel{D}{[1/0:1], 2} \stackrel{P}{[1/0:1], 3} \stackrel{P}{[1/0:1], 3} \stackrel{P}{[1/0:1], 3} \stackrel{P}{[1/0:1], 3} \stackrel{P}{[1/0:1], 3}$	214 PIS 215 ST03 216 *LBL7 PIS 216 *LBL7 PIS 217 PIS -218 *LBL9 space and return subr 219 SPC 220 RTN Stear 1 input or output 0 B
$ 159 160 161 162 163 164 165 166 167 1/0:\alpha_{dB}, \beta, f 1/0:f, Om$	P#S RCL ; P#S RCL ; F2? GT02 PRTX R4 PRTX B 1/0:11 b 1/0: P	$P \leftarrow R \text{ required } ?$ $LABELS$ $\frac{1}{4} Z_0 \stackrel{C}{1/0:1.4} Z_r \stackrel{D}{1/0:1.4} \stackrel{P}{1/0:1.4} \stackrel{P}{1/$	214 PIS 215 ST03 216 *LBL7 PIS 216 *LBL7 PIS 217 PIS -218 *LBL9 space and return subr 219 SPC 220 RTN Stear Input or output 0 B <

TI-59 PROGRAM LISTING

	000	74	LBL	LOAD α'_{dB}	050	10 1	0	
		11		INAD C dB	<u>151</u>	71 SE		
	00: 00:		<u> </u>		052	68 NC		
		42	STO	store and print				
	003	ŨŨ	ΰü	∝dB	053	98 AI		
	004	<u>99</u>	<u> </u>		054	<u>98 RT</u>		
	005	91	<u>R/S</u>	LOAD B	055	76 LB		
	006	42	STO	store and print	<u>056</u>	<u>12 B</u>		
	007	10	10	β	057	42 ST	store and p	rint
	008	99	PRT		058		1 Z ₀	
	009	91	_	LOAD FREQUENCY	059	<u>99 PR</u>	1	
	0:0	42	STD	store and print	060	91 R/	S LOAD & Zo	
	011	05	05	frequency	061	42 ST	I store and p	rint
	012	99	PRT	-	062		1 4 Z _o	
	013	65	X	calculate and	063	99 PR		
	0i4	02	2	store $2\pi f$	064	98 AD		
	015	65		Store 2/1	065	61 GT		
			×		066	<u>70 Re</u>	[] goto ρ calc	ulation
	016	89	ម		067	<u>_/U KN</u>		
	017	95	±			76 LB	L LOAD Re Zo	
	018	42	STO		068	<u>17 B*</u>		
	019	26	26		069	99 PR	-	store
	020	55	÷	calculate and	070	<u>32 X:</u>	<u> </u>	
	021	43	RCL	store C _m	071	- <u>91 R</u> Z	S LOAD Im Zo	
	022	<u>1</u> Ü	10	_	072	22 IN		polar
	023	95	=	$C_m = \frac{2\pi f}{a}$	073	37 P/	R	•
	024	42	STD	Ĕm	074	42 ST		
	025	15	15		075	11 1		
	026	02	2	set flag 7 if	076	32 XI		store
	027	ŨŌ	Ō	calculator	077	42 ST		
	028	69	ΟP	attached to	078	01 0		
	029	07			079	98 AD		
	027 030		07	printer	080	61 GT	Y go to P calo	ulation
		69	OP					
	031	19	19			70 RA		
	<u>032</u>	25	CLR		082	76 LB		
	033	43	RCL	recall C_m and go	<u>083</u>	<u>13 C</u>		
	034	15	15	to R/S or print	084	42 ST		orint
	035	71	SBR	routine	085	02 0		
	036	68	NOP		086	<u>99 PR</u>	<u> </u>	
1	037	98	ADV		087	91 R/	S LOAD 4 Zr	
	038	92	RTN		088	42 ST	store and p	rint
	039	76	RTN. LBL	LOAD Om	089	12 i		
	040	16	A	Loss om	090	99 PR		
	041	42		store and print	091	98 AD		
	042	15	15	_	092	61 GT		ulation
	043	99		C _m	093	70 RA		
	044		PRT		094	76 LB		
		35	1/X	calculate and	.095		L LOAD Re Z _r	
	Ú45	65	X	store B		<u>18 C'</u>		
	046	43	RCL	$\beta = \frac{2nf}{2nf}$	096	99 PR		orint
	047	26	26	' O _m	<u>097</u>	<u>32 X1</u>		
	048	95	=		098	<u>91 R/</u>		
ł	049	42	STO		099	99 PR	T print Im Zr	
the second s			_					

NOTE: The register assignments are the same as the HP-97 program. Read SO as R_{10} , and RA as R_{20} , etc. $R_{26} - R_{28}$ are scratchpads

TI-59 PROGRAM LISTING

100 98 ADV	150 _ 37 P/R
101 22 INV convert to polar	151 22 INV use register
<u>102 37 P/R</u>	152 44 SUM arithmetic to form:
103 42 STO store & Z,	153 13 13 46
104 12 12	154 32 XXT use register
105 32 X17 store Zr	
106 42 ST[]	
	156 49 PRD θ 157 μ3 μ3
1118 is L.BL. P calculation	158 92 RTN rtn to main pgm
<u>109 70 RAD</u>	_ 159 76 LBI. 9 OUTPUT ROUTINE
110 43 RCL calculate & stores	
111 12 12	161 43 RCL recall [9]
$112 75 - 4(z_r - z_o)$	<u>162</u> 03 03
113 43 RCL	1/0 71 005
114 11 11	164 68 NUP
116 32 X.T	165 43 RCL recall 4 ρ 166 13 13
	<u>168 68 NEP</u>
	169 98 ADV space and return
120 43 RCL	170 92 RIN
(2) 01 01	7. 76 LBL CALCULATE Z8
122 95 =	$\frac{172 \ 19 \ D}{173 \ 43 \ RCL} form \alpha \ell in dB$
123 32 X!T	173 43 RCL form al in dB
<u>123 32 X:T</u> <u>124 37 P.R</u> convert to rect	1 174 00 00 IOIM WE IN UB
1 125 12 676	1 175 65 ×
$126 27 27$ store $Im(Z_r/Z_0)$	176 43 RCL
127 32 XIT	
128 42 STO store $\operatorname{Re}(\mathbf{Z}_{1}/\mathbf{Z}_{0})$	
129 28 28	
	179 53 (
	180 01 1
131 01 1	161 22 INV
$132 95 = Z_r/Z_o - 1$	182 23 LNX
<u>100 32 XII</u>	_ 183 28 LDG
134 22 INV convert to polar	184 65 x
135 37 P/R	185 01 1
136 42 STN	1 for an \mathbf{A}
$\frac{137}{137} \frac{13}{13} \frac{310}{13} \text{ store} \measuredangle (Z_r/Z_0 - 1)$	187 54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>188</u> 95 =
$\frac{139}{27} \frac{27}{27} Im(Zr/Z_0 + 1)$	
140 32 XIT	
	190 22 INV e-2al
	<u>171 23 LNA</u>
142 03 03	192 65 × calculate & store:
143 43 RCL	193 43 RCL 2001
144 28 28 form $Z_r/Z_0 + 1$	193 +3 KOL 194 03 03 $\vec{p}e^{-2\delta l}$
145 85 +	195 95 =
146 01 1	<u>196 32 X;T</u>
147 95 =	197 43 RCL recall 40
148 32 XIT	198 13 13
149 22 INV convert to polar	1 199 75 -
1 172 CC FIGU 0000000 to balle	

1	1
- 1	

TI-59 PROGRAM LISTING

	_	·					
20	0 53	(250	(11	ŪĪ	
							use register arith
20	1 43	RCL	form βl in radians	251	49	PRD	to form Z _r
20		10		252	07		co ioim [2r]
			·	<u></u>	Uf	07	
20	3 65	X		253	43	RCL	use register arith
20				254			
					11	11	to form $\mathcal{X} \mathbf{Z}_{\mathbf{r}}$
20	5 04	04		255	44	SUM	-
20.							
		<u>- x</u> -		256	09	<u>09</u>	
20	7 03	3	form 281 in degrees	257	43	RCL.	recall Z _r
20							-r
		6		258	07	97	
20	9 00	Ü		259	32	XIT	
21				<u>259</u> 260			
				260	43	RCL.	recall 4Zr
21	1 89	1		261	<u>n9</u>	09	-
				<u>261</u> 262	<u>09</u> 37		
<u>21</u>	<u>2 54</u>	<u> </u>		డటడ	S٢.	P/R	eliminate negative
21	<u>3 95</u>	=	$form 4\rho = 2\beta l$	263	22	INV	magnitude
21	<u>4 37</u>	PXK	convert to rect	264	31	<u>P/R</u>	
21	5 42	STO	210	265	42	STD	store 4 Z
			store $Im(\rho e^{-2\lambda l})$				a lo re 4 4
21		21	`\``	266	18	18	
21	7 32	SIT		267	32		store Z
			store Re(pe ^{-2%l})				
21	8 42	STO	store Re(pe)	268	42	S10	
21		20	·\	269	08	08	
22	0 85	+	form:	270	71	SBR	goto print or R/S
		1	-281	271		NDP	80 10 PT 01 10
500 Bin 270 - 770							
<u>22</u> 22	2 95	=		272	43	RCL	recall 4 Z
270	3 32	XIT		273	18	18	
ا سبکا سرا رسی روی							
22	4 22	ΙNV	convert to polar	274	71	SBR	goto print or R/S
2.24	5 37		former of the form	275		NOP	G 1
22							
22	6 42	STU	$z = 2\delta l_{1}$	276	98	HDV	space & return
22		09	store $4(1 + \rho e^{-2\delta l})$	277	92	RTN	-
<u></u>							
22	8 32	XIT		278	76	LBL	print or R/S
221	9 42		store $\left 1 + \rho e^{-2\delta l}\right $	279	68		subroutine
			store 1 +pe				
231) O7	07		280	87	IFF	jump if flag 7 set
23		1		281	07		
		T	form and store:			_07	
23;	2 75	-	- 1 A	-282	38	SIN	
23:	2 45	DOL	$P_{-2\delta\ell}$	283			atom & accent atoms
	- +J	RUL	$Re(1 - \rho e^{-2\delta \ell})$		91	R/S	stop & await start
23	4 20	20	1	284	92	RTN	return to main pgm
23				L- <u>285</u>			f0
					ΥÞ	LBL	1
231	5 32	XIT		286	38	SIN	
23	the second s						nmint
		RCL	form:	287	99	PRT	print
23:	3 21	21	$Tm(1 - ce^{-2\delta \ell})$.288	92	RTN	rtn to main program
23:	9 94	+/-	$\operatorname{Im}(1 - \rho e^{-2\delta V})$	289			
						LBL	LOAD LINE LENGTH
240) 22	INV		290	15	E	
			convert to polar				
24	<u>l 37</u>	P/R		291	42	STO	store line length
24	2 22	INV		292	04	04	-
			divide to moment				
24(SUM	divide to memory	293	99	PRT	print line length
240	ŧ 09	09		294	98	ADV	-
245		XIT		295	92	RTN	rtn to keyboard
246	5 22	INV	subtract from				
							1
		1.11.171	memory				
247		PRD	momory				
			momory				
_248	07	07					
	07	07					
_248	07	07					

PROGRAM 1-2 VOLTAGE ALONG A LOSSY LOADED TRANSMISSION LINE.

Program Description and Equations Used

This program calculates the voltage V(x) in dBV, at any distance, x, along a doubly loaded transmission line (a line with terminating Y's or Z's at both ends). Both the source and load impedances are allowed to be complex quantities. This program is parasitic to Program 1-1, and that program must be run first to properly load the registers for this program. The same line length and units must be used with both programs.

Given a section of transmission line of length ℓ (Fig. 1-2.1) which may be a coax as shown, or open wire line, stripline, microstrip, or other, the input impedance, Z_s , can be expressed in terms of the load impedance, Z_r , and the cable parameters as given by Eqs. (1-1.1) and (1-1.2). With the input impedance, Z_s known, and given the transmitter source impedance, Z_t , the voltage at the input of the transmission line, V_s , is given by:

$$\nabla_{s} = \nabla_{t} \left[\frac{Z_{s}}{Z_{s} + Z_{t}} \right]$$
(1-2.1)

where Z_s is given by Eq. (1-1.1).

Figure 1-2.1 Transmission line circuit topology.

The voltage and current distribution of the transmission line can be written in terms of the voltage and current at any point along the transmission line as the reference. Most commonly, the voltage at the receiving end is taken as the reference, but for this problem, the voltage and current at the transmitting end are more convenient references. The voltage at any distance, x, from the transmitting end is given by Eq. (1-2.2), where the reflection coefficient at the transmitter is designated ρ_t and is defined by Eq. (1-2.3). The derivation of Eq. (1-2.2) is given later.

$$V(\mathbf{x}) = \frac{\mathbf{v_s}}{\mathbf{1 + \rho_t}} \cdot \left[e^{\gamma \mathbf{x}} + \rho_t e^{\gamma \mathbf{x}} \right]$$
(1-2.2)

$$\rho_{t} = \frac{\frac{Z_{s}/Z_{o} - 1}{Z_{s}/Z_{o} + 1}}{(1 - 2.3)}$$

In Eq. (1-2.2), γ is as defined in Eq. (1-1.3). With these equations in mind, the program operation is now described (Program 1-1 has already calculated and stored Z_s using Eq. (1-1.1)).

The routines under labels "A," "a," and "B" provide for data entry and storage. All impedances are stored in polar form; hence, impedances entered in cartesian form (real and imaginary) under label "a" are converted to polar form and stored using the routine under label "A," which is the polar impedance entry and storage routine. The routine under label "B" causes the source voltage strength in volts to be stored.

Label "E" is the start of the data output routine. On the first execution of label "E" after program loading and data entry, ρ_t is calculated and stored. Flag 2 is tested on each execution of label "E" to determine if the reflection coefficient calculation is needed (ρ_t) . Since flag 2 is test cleared, and is only set by card loading, the ρ_t calculation is skipped after the first execution of label "E."

Following the ρ_t calculation decision, is a routine to evaluate Eq. (1-2.2) without the V_S term (lines 050 and 096 in the program listing). V_S is calculated using Eq. (1-2.1) in lines 097 through 118 and combined with the results of Eq. (1-2.2) in lines 119 to 125. The output is provided as magnitude (in dBV) of V(x) and its angle.

Label 9 is a space and return subroutine used by labels "a," "A," "B," and "E."

User Instructions

VOLTA	E ALONG A	Lossy	LOADED TRANSP	ISSION LINE	
load ReZt†ImZt load Zt †4Zt	load source voltage			load dist from xmit & calc: V(x) dB, 4V(x)	2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	This program is to be used in conjunction			
	with Program 1-1. Run that program first			
	using the frequency, cable parameters,			
	and total line length which are germane			
	to this program			
1	Load and run Program 1-1			
2	Load both sides of Program 1-2 magnetic card			
3	Load transmitter output impedance			
	a) If data is in cartesian coordinates;			
	real part of impedance in ohms	Re Z _t	ENT	
	imaginary part of impedance in ohme	Im Zt	A	
	or			
	b) If data is in polar coordinates:			
	magnitude of impedance in ohms	Zt	ENT	
	angle of impedance in degrees	<u>4Zt</u>	f A	******
4	Load source voltage of transmitter in volts	Vt	В	
5	Load length between transmitter and analysis		<u></u>	
	point using the same units as used with	I		
	Program 1-1	x	E	20 log V(x)
6	Go back to step 5 for another case			
				
******		.		

		L		

1-2

Example 1-2.1

Given the coax cable with source and load impedances as shown in Fig. 1-2.2, find the voltages on the cable at the transmitting end, the receiving end, and 1 n-mi. from the transmitting end.

Figure 1-2.2 Doubly loaded coaxial cable for Ex. 1-2.1.

At 0.72 MHz, the characteristics of the SD coax cable are:

 $\alpha_{dB} = 2.070 \ dB/n-mi.$ $\beta = 42.511 \ radians/n-mi.$ $Z_{0} = 44.265 \ \Omega \ @ -0.315 \ degree$

At the same frequency, the complex source and load impedances are:

Re
$$Z_t = 20$$
 ohms
Im $Z_t = j2\pi fL = j99.53$ ohms
Re $Z_r = 100$ ohms
Im $Z_r = -j/(2\pi fC) = -j221$ ohms

Since this program is parasitic to Program 1-1, that program is run first with the line length required here (2.8 n-mi.). The printout from that program is included here for clarity.

HP-97 printout for Example 1-2.1

First, Program 1-1 is run to calculate and store Z_s and to load the registers.

2.070 ENT? load α_{dB} in dB/n-mi. 42.511 ENT? load β In radians/n-mi. .72+06 GSBA load frequency in hertz 44.265 ENT? load |Z| in ohms -.315 GSBB load $4Z_0^0$ in degrees 100.000 ENT? load Re Z in ohms -221.000 GSBC load Im Z_r^r in ohms 2.800 GSBE load line length in nautical miles GSBd calculate Z (will be automatically stored) 67.827 *** $|Z_s|$, ohms 9.476 *** $4Z_s^o$, degrees

Second, load and run this program.

20.00 ENT: load Re Z 99.53 GSB0 load Im Z_t^t 1.00 GSBE load source voltage in volts 0.00 GSBE load line length to transmitting end and start -t.34 *** 20 log $|V_{\rm s}|$, dBV -42.39 *** $4V_{\rm s}$, degrees 2.80 GSBE load line length to receiving end and start -8.54 *** 20 log $|V_{\rm r}|$, dBV -34.96 *** $4V_{\rm r}$, degrees 1.00 GSBE load line length to 1 n-mi. from xmit end and start -12.95 *** 20 log |V(x)|, dBV -22.16 *** 4V(x), degrees

Derivation of Equations Used

A transmission line provides a conduit for the propagation of electrical power. If the transmission line is not terminated in the characteristic impedance of the line, Z_0 , then not all of the power that propagates down the line is absorbed in the termination, and thus some is reflected into the line and propagates back to the source. The "reflection coefficient," ρ , is a measure of the amount of power that is reflected. A reflection coefficient of zero ($\rho = 0$) implies no power is reflected, and all of it is absorbed by the load. When $\rho = \pm 1$, all the power is reflected. The reflection coefficient in terms of the characteristic impedance (Z_0) and the load impedance (Z_r) is given by Eq. (1-1.2).

If the transmission line is doubly terminated, then there will be a reflection coefficient for both ends, and Eq. (1-1.2) is used with Z_r replaced by Z_s , the cable input impedance at the transmitter end. This is the transmitter reflection coefficient and is designated ρ_t . The receiver reflection coefficient is left unsubscripted.

The power propagates along the transmission line as a voltage wave and a current wave. Considering both the voltage wave from the transmitter directly, and the reflected wave from the receiver, there exist points along the cable where these waves are in phase, and constructively add together; while there are other points where the waves are 180° out of phase and produce a voltage null.

Reference [43] (chapters 8 and 9) contains the solution to the wave equation for voltage and current waves traveling along a transmission line. The voltage and current along the transmission line can conveniently be expressed in terms of hyperbolic functions and a reference voltage and current taken at any point on the line. If x represents the distance from the transmitter (or source) to the point under observation, then the voltage and current (V(x) and I(x)) at this point are:

$$\begin{bmatrix} \mathbf{V}(\mathbf{x}) \\ \mathbf{I}(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} \{ \operatorname{Cosh} (\gamma \mathbf{x}) \} & \{ -Z_0 \operatorname{Sinh} (\gamma \mathbf{x}) \} \\ \{ \frac{-1}{Z_0} \operatorname{Sinh} (\gamma \mathbf{x}) \} & \{ \operatorname{Cosh} (\gamma \mathbf{x}) \} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{v}_s \\ \mathbf{I}_s \end{bmatrix}$$
(1-2.4)

where the hyperbolic functions are defined by:

Sinh (
$$\gamma x$$
) = $\frac{e^{\gamma x} - e^{-\gamma x}}{2}$ (1-2.5)

$$\cosh(\gamma x) = \frac{e^{\gamma x} + e^{-\gamma x}}{2}$$
(1-2.6)

Remembering that $I_s = V_s/Z_s$, and using the transmitter reflection coefficient defined by:

$$\rho_{t} = \frac{\frac{Z_{s}}{Z_{o}} - 1}{\frac{Z_{s}}{Z_{o}} + 1}$$
(1-2.3)

Equation (1-2.4) may be solved for V(x) yielding:

$$V(\mathbf{x}) = \frac{V_{s}}{1 + \rho_{t}} \cdot \left[e^{-\gamma \mathbf{x}} + \rho_{t} e^{\gamma \mathbf{x}} \right]$$
(1-2.2)

Program Listing I

1-2

transmitter output Z rtesian coordinates transmitter output Z lar coordinates space and return subr source voltage in volts distance, x, from and calculate V(x) late ρ_t on the first tion of label E V(x) calculation lculation routine	056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 075 076 077 078 079 080 081	10× STOA RCL3 X RCL6 P#S RCL0 P#S R+D RCL4 X STOB + X#Y →R STO7 X#Y ST09 RCLB CHS RCLA 1/X →R ST+7 X#Y	$e^{\lambda l}$ $ \rho_{t}e^{\lambda l} $ $\Delta \rho_{t}$ β , radians/length β , degrees/length βl , degrees $\beta l + \Delta \rho_{t}$, degrees $Re(\rho_{t}e^{\lambda l})$ $Im(\rho_{t}e^{\lambda l})$ calculate e- λl in real and imaginary parts
transmitter output Z lar coordinates space and return subr source voltage in volts distance, x, from and calculate V(x) late ρ_t on the first tion of label E Vx)calculation lculation routine	058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 075 076 077 078 079 080	RCL3 x RCL6 P#S RCL0 P#S R+D RCL4 x STOB + X#Y STO7 X#Y ST07 ST07 ST77	\measuredangle β , radians/length β , radians/length β , degrees β l, degrees β l + \measuredangle ρ_t , degrees $Re(\rho_t e^{\Im l})$ $Im(\rho_t e^{\Im l})$ calculate $e^{-\Im l}$ in real and imaginary parts
transmitter output Z lar coordinates space and return subr source voltage in volts distance, x, from and calculate V(x) late ρ_t on the first tion of label E Vx)calculation lculation routine	059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 075 076 077 078 079 080	x RCL6 P#S RCL0 P#S R+D RCL4 x STOB + X#Y +R ST07 X#Y ST07 ST07 ST07 ST07 ST07 ST07 ST07 ST07 ST07 ST07 ST07 ST07 ST07 ST7	\measuredangle β , radians/length β , radians/length β , degrees βl , degrees $\beta l + \measuredangle \rho_t$, degrees $Re(\rho_t e^{\Im l})$ $Im(\rho_t e^{\Im l})$ calculate $e^{-\Im l}$ in real and imaginary parts
ar coordinates space and return subr source voltage in volts distance, x, from and calculate V(x) late ρ_t on the first tion of label E Vx)calculation lculation routine	060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 075 076 077 075 076 077 078 079 080	RCL6 P≠S RCL0 P≠S R+D RCL4 X STOB + X±Y →R STO7 X±Y ST07 ST07 ST07 ST07 ST07 ST07 ST07 ST07 <td>\measuredangle β, radians/length β, radians/length β, degrees βl, degrees $\beta l + \measuredangle \rho_t$, degrees $Re(\rho_t e^{\Im l})$ $Im(\rho_t e^{\Im l})$ calculate $e^{-\Im l}$ in real and imaginary parts</td>	\measuredangle β , radians/length β , radians/length β , degrees βl , degrees $\beta l + \measuredangle \rho_t$, degrees $Re(\rho_t e^{\Im l})$ $Im(\rho_t e^{\Im l})$ calculate $e^{-\Im l}$ in real and imaginary parts
ar coordinates space and return subr source voltage in volts distance, x, from and calculate V(x) late ρ_t on the first tion of label E Vx)calculation lculation routine	060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 075 076 077 075 076 077 078 079 080	P#S RCL0 P#S R+D RCL4 X STOB + X#Y +R ST07 X#Y ST07 X#Y ST07 X#Y CHS RCLB CHS RCLA 1/X +R ST+7	\measuredangle β , radians/length β , radians/length β , degrees/length βl , degrees $\beta l + \measuredangle \rho_t$, degrees $Re(\rho_e^{\forall l})$ $Im(\rho_e^{\forall l})$ calculate $e^{-\forall l}$ in real and imaginary parts
ar coordinates space and return subr source voltage in volts distance, x, from and calculate V(x) late ρ_t on the first tion of label E Vx)calculation lculation routine	061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 079 080	P#S RCL0 P#S R+D RCL4 X STOB + X#Y +R ST07 X#Y ST07 X#Y ST07 X#Y CHS RCLB CHS RCLA 1/X +R ST+7	β , radians/length β , degrees/length βl , degrees $\beta l + 4 \rho_t$, degrees $Re(\rho_e^{\chi l})$ $Im(\rho_e^{\chi l})$ calculate $e^{-\chi l}$ in real and imaginary parts
space and return subr source voltage in volts distance, x, from and calculate V(x) late ρ_t on the first tion of label E Vx)calculation lculation routine	062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 079 080	RCLØ P#S R+D RCL4 X STOB + X#Y + X#Y STO7 X#Y ST07 ST07 X#Y ST07 X#Y ST07 X#Y ST07 ST07 X#Y ST07 X#Y ST07 X#Y ST07 X#Y ST07 ST07 ST07 ST77 ST07 ST77 ST77 ST77	 β, degrees/ length βl, degrees βl + 4 ρ_t, degrees Re(ρ_te^{%l}) Im (βe^{%l}) calculate e^{-%l} in real and imaginary parts
space and return subr distance, x, from and calculate V(x) late ρ_t on the first tion of label E V(x) calculation loulation routine	063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 075 076 077 078 079 080	P#S R+D RCL4 x STOB + X#Y +R STO7 X#Y ST07 X#Y ST07 X#Y CHS RCLB CHS RCLA 1/X +R ST+7	β , degrees/ length βl , degrees $\beta l + 4 \rho_t$, degrees $Re(\rho_t e^{\gamma l})$ $Im(\rho_t e^{\gamma l})$ calculate $e^{-\gamma l}$ in real and imaginary parts
space and return subr distance, x, from and calculate V(x) late ρ_t on the first tion of label E V(x) calculation loulation routine	064 065 066 067 068 069 070 071 072 073 074 075 076 077 077 078 079 079 080	R+D RCL4 × STOB + X±Y →R STO7 X±Y STO9 RCLB CHS RCLA 1/X →R ST+7	βl, degrees βl + 4 ρ _t , degrees $Re(ρe^{32})$ $Im(βe^{32})$ calculate e^{-32} in real and imaginary parts
space and return subr distance, x, from and calculate V(x) late ρ_t on the first tion of label E V(x) calculation loulation routine	865 866 967 968 969 870 971 972 973 974 975 976 976 977 978 979 889	RCL4 × STOB + X±Y →R STO7 X±Y ST09 RCLB CHS RCLA 1×X +R ST+7	βl, degrees βl + 4 ρ _t , degrees $Re(ρe^{32})$ $Im(βe^{32})$ calculate e^{-32} in real and imaginary parts
space and return subr distance, x, from and calculate V(x) late ρ_t on the first tion of label E V(x) calculation loulation routine	066 067 068 069 070 071 072 073 074 075 076 077 077 078 079 079 080	x STOB + X±Y +R STO7 X±Y STO9 RCLB CHS RCLA 1/X +R ST+7	$\beta l + 4 \rho_t$, degrees $Re(\rho_t e^{\gamma l})$ $Im(\rho_t e^{\gamma l})$ calculate $e^{-\gamma l}$ in real and imaginary parts
space and return subr distance, x, from and calculate V(x) late ρ_t on the first tion of label E V(x) calculation loulation routine	067 068 069 071 072 073 074 075 076 077 077 078 079 079 080	STOB + X±Y →R STO7 X±Y <u>STO9</u> RCLB CHS RCLA 1/X →R ST+7	$\beta l + 4 \rho_t$, degrees $Re(\rho_t e^{\gamma l})$ $Im(\rho_t e^{\gamma l})$ calculate $e^{-\gamma l}$ in real and imaginary parts
space and return subr distance, x, from and calculate V(x) late ρ_t on the first tion of label E V _X ; calculation culation routine	068 069 070 071 072 073 074 075 076 077 077 078 079 079 080	+ X±Y +R ST07 X±Y ST09 RCLB CHS RCLA 1/X +R ST+7	$\beta l + 4 \rho_t$, degrees $Re(\rho_t e^{\gamma l})$ $Im(\rho_t e^{\gamma l})$ calculate $e^{-\gamma l}$ in real and imaginary parts
distance, x, from and calculate $V(x)$ late ρ_t on the first tion of label E $V_{(x)calculation}$ lculation routine	069 870 071 072 073 074 075 076 077 077 078 079 079 080	X#Y +R ST07 X#Y <u>ST09</u> RCLB CHS RCLA 1/X +R ST+7	$Re(\rho e^{\frac{1}{p} \rho})$ $Im(\rho e^{\frac{1}{p} \rho})$ oaloulate $e^{-\frac{1}{p} \rho}$ in real and imaginary parts
distance, x, from and calculate $V(x)$ late ρ_t on the first tion of label E $V_{(x)calculation}$ lculation routine	870 971 972 973 974 974 975 976 976 977 978 979 889	→R ST07 X±Y <u>ST09</u> RCLB CHS RCLA 1/X →R ST+7	Im (Be ^{YL}) calculate e ^{-YL} in real and imaginary parts
distance, x, from and calculate $V(x)$ late ρ_t on the first tion of label E $V_{(x)calculation}$ lculation routine	071 072 073 074 075 076 077 078 079 080	ST07 X±Y ST09 RCLB CHS RCLA 1/X →R ST+7	Im (Be ^{YL}) calculate e ^{-YL} in real and imaginary parts
distance, x, from and calculate $V(x)$ late ρ_t on the first tion of label E $V_{(x)calculation}$ lculation routine	072 073 074 075 076 077 077 078 079 080	XZY <u>ST09</u> RCLB CHS RCLA 1/X X ST+7	Im (Be ^{YL}) calculate e ^{-YL} in real and imaginary parts
and calculate V(x) late ρ_{t} on the first tion of label E V(x)calculation lculation routine	<u>973</u> 974 975 976 976 977 <u>978</u> 979 889	ST <u>09</u> RCLB CHS RCLA 1∕X →R ST+7	calculate e ^{- sx} in real and imaginary parts
late ρ_t on the first tion of label E V_{X} calculation lculation routine	074 075 076 077 <u>078</u> 079 080	RCLB CHS RCLA 1∕X →R ST+7	calculate e ^{- sx} in real and imaginary parts
tion of label E Valcalculation Iculation routine	075 076 077 <u>078</u> 079 080	CHS RCLA 1∕X 7R ST+7	imaginary parts
Valcalculation	076 077 <u>078</u> 079 080	RCLA 1∕X 	
lculation routine	077 <u>078</u> 079 080	1∕X <u>→R</u> ST+7	
	<u>078</u> 079 080	<u>→R</u> ST+7	
	079 080	ST+7	
	080		
		A	continue numerator calc of
	L N20		(1-2.4) using reg arith
		<u>ST+9</u> RCL9	sonvert numerator to polar
	082	RCL9 RCL7	
	083		coordinates
	084	÷₽ stoz	$1e^{-82} + e^{82}$
- /_ >	085		
Zs/Zo)	086	XIY STOO	$\underline{X}(\underline{e}^{Nl} + \underline{Re}^{Nl}) = $
- / />	087		
Zs/Zo - 1)	088		calculate 1 + ρ_t in polar
	089	RCL3	coordinates
$(Z_s/Z_o) = \operatorname{Im}(Z_s/Z_o - 1)$	890	→R EEX	
•	071		
	892	+	
'Z 1	<u>093</u>	<u>+P</u>	
	894	ST÷7	divide $1 + \rho_{\pm}$ into
$\frac{Z_{s}}{Z_{o}} = \frac{1}{1m} (Z_{s}/Z_{o} + 1)$	095	X≢Y st_9	numerator
$(z_s/z_o) = \text{Im}(z_s/z_o + 1)$	<u>896</u>	<u>ST-9</u>	
	097	P‡S	calculate Vs from Vt
			4Ζ _s
z_s/z_o+1			_
			_ 1
	101		2 ₈
			· · ·
			Re Z _s
			Im Z _B
			form Z _B + Z _t
			-
In 10, nepers	110	P75	
REG			
4	freq	4Pt	$\frac{7}{\text{scratch}} \frac{8}{ \mathbf{Z}_{\mathbf{S}} } \frac{9}{\text{scratch}}$
$\mathbf{Z}_{\mathbf{r}}$ $\left[\begin{array}{c} \mathbf{\rho}_{t} \\ \mathbf{\rho}_{t} \\ \mathbf{\ell} \end{array} \right]$	^{S5} Om	S6 Zt	⁵⁷ 4 Z_t ⁵⁸ 4 Z₃ ⁵⁹ V _t
$\mathbf{Z}_{\mathbf{r}}$ $\left[\begin{array}{c} \mathbf{\rho}_{t} \\ \mathbf{\rho}_{t} \\ \mathbf{\ell} \end{array} \right]$			
	$\frac{Z_{s}/Z_{o}}{Z_{s}/Z_{o} + 1}$ $\frac{Z_{n}/Z_{o} + 1}{Z_{r}}$ $\frac{Z_{r}}{ a } = \frac{1}{ a } + \frac{1}{ a }$	$ \begin{aligned} E_{s} / Z_{o} + 1 \\ Z_{s} / Z_{s} / Z_{o} + 1 \\ Z_{s} / Z_{s}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

111 +R						-	
112 RCLA							
113 +	$Re(Z_{s} + Z_{t})$						
114 X‡Y 115 RCLB							
115 KOLD 116 +	Im(2 _s + 2 _t)						
117 XZY							
118 →P							
119 ST÷7	$Z_{s} + Z_{t}$						
120 XZY							
121 ST-9 122 P≠S	4(Ζ₈ + Ζ_t)						
122 PZS 123 RCL9	17						
123 RCL3	Vt						
125 ST×7	complete V(x)	calculation					
126 RCL7	I.(w)						
127 LOG							
128 2							
129 0							
130 × 131 PRTX	20 log V(x)		1				
132 RCL9	TO TOR A(Y)						
133 PRTX	_∡_V <u>(x)</u>						
134 *LBL9	space and retu	irn subroutine	1				
135 SPC	-						
136 RTN			4				
1							
}							
}			1				
1							
[
ļ							
•							
1							
Į –			1				
ļ			ł				
ļ			1				
ł							
1							
t							
[1		NOTE F	LAG SET ST	ATUS
L			<u> </u>				
A B ROUTO		DELS		FLAGS		SET STATUS	
A Zt 14Zt B source voltag	.e	[a	alc V(x)	<u> </u>	FLAGS	TRIG	DISP
"ReZt [†] ImZt	С	d e		ľ	ON OFF	DEG 🔳	FIX 🔳
	0 2	3 4		2 Q calc ?	1	GRAD	SCI
5 6	7	8 9 ₉₁₀	c & rtn	3	2 🖬	RAD	ENG n_ 2_
1 1		I 1 ⁰		1	3		

PROGRAM 1-3 SECOND ORDER ACTIVE NETWORK TRANSMISSION FUNCTION.

Program Description and Equations Used

This program provides the coefficients of the numerator and denominator polynomials of the transmission function T(s) = N(s)/D(s), of the generalized second order active network shown in Fig. 1-3.1. A second part of the program provides the polynomial roots. If a real (nonideal) operational amplifier (op-amp) is used, the amplifier will have both finite gain and bandwidth. The compensation pole of the op-amp will introduce a parasitic pole causing D(s) to become third order even though the RC network is set up to provide second order response. This program accepts the gain and 3 dB bandwidth of the amplifier and calculates the resulting third order transmission function.

Figure 1-3.1 Generalized second order circuit.

If the natural frequencies of the response governed by the RC network alone are many decades removed from the amplifier unity gain crossover frequency, then the transmission function T(s), will be practically equal to the transmission function of the second order network with an ideal infinite bandwidth amplifier. The component values dictated by many active filter references assume ideal operational amplifier characteristics. When the natural frequencies are within a decade or two of the amplifier unity gain crossover frequency, then the parasitic pole will cause a noticeable shift in the natural frequencies governed by the RC network alone. The network can be predistorted so the natural frequencies shift to the desired positions (see Program 2-11).

The transmission function is determined by writing the nodal equations for the network, and solving for E in terms of E . This derivation is done later and provides:

$$E_{out} = \frac{A_0 Y_1 Y_4}{D(s)}$$
(1-3.1)

where

$$D(s) = (Y_1 + Y_2 + Y_3) \left[(Y_4 + Y_6) (1 + \tau s) + Y_5 (1 - A_0 + \tau s) \right] + Y_4 \left[Y_6 + (1 + \tau s) + Y_5 (1 - A_0 + \tau s) - A_0 Y_2 \right]$$

and where a one-pole model of the amplifier is assumed:

$$A = \frac{A}{1 + \tau s}$$
(1-3.2)

The sign of A may be either positive or negative depending upon the amplifier characteristics (see examples). The first program uses Eq. (1-3.1) to form the numerator and denominator polynomials, and the second program finds the zeros of these polynomials (polynomial roots).

When the element values are loaded, capacitors are signified by a negative mantissa. The subroutine under label 8 tests the sign of the entry; if it is negative, the absolute value is stored; if it is positive, it is a resistor, and the reciprocal is taken to convert to conductance, and then multiplied by 10⁵⁰ before storage.

The magnitude of the stored element value is used to signal whether the element is a resistor or a capacitor. Other programs use the sign of the stored value to differentiate between resistors and capacitors, but that indicator cannot be used in this program because algebraic operations are performed on the element values in the main program before the element type subroutine is entered and the resistor/ capacitor test is done, i.e., the term $Y_5 (1 - A_0)$ can have either sign depending upon the magnitude and sign of A_0 , and Y_5 can legitimately represent the admittance of either a resistor or a capacitor.

The magnitude test is done in the summing routine under label 0.

If the absolute value of the coefficient is greater than 10^{30} , it is assumed to be a conductance (s⁰ term), the value is divided by 10^{50} to undo the original storage operation, and the summation is done in the stack. If the absolute value of the coefficient is less than 10^{30} , it is assumed to be a capacitance (s¹ term), and the summation is done in the designated i register.

Some terms in the denominator of Eq. (1-3.1) contain the factor τs . These terms generate s^1 and s^2 coefficients. Subroutine 3 is used to perform multiplication by τs and to append the s^1 and s^2 terms to the presently stored s^0 and s^1 terms to form the complete admittance sum set for the denominator segment being evaluated.

After each set of admittance sums (s^0 , s^1 , & s^2) are calculated and stored, polynomial multiplication is done to generate the coefficients of the various powers of s in the denominator polynomial. This multiplication is accomplished by the routine under label 6. If flag 0 is set, the polynomial coefficient registers are cleared before multiplication. This condition exists for the first product-of-sums. Flag 0 is cleared for the second product-of-sums to indicate continued summation into the polynomial coefficient registers.

After the denominator has been calculated, the polynomial coefficients cients are normalized by dividing by the s⁰ polynomial coefficient. The numerator coefficient is likewise normalized, and the polynomial coefficients are provided as output. This normalization process can cause the program to halt displaying "ERROR" for certain classes of degenerate networks, e.g., a differentiator constructed with capacitors in locations 1 and 4, no elements in locations 2, 3, and 6, and feedback resistor in location 5. The series capacitors should be combined into a single capacitor in location 1 or 4 with the feedback resistor in location 2 or 5 and no elements in locations 3 and 6. The unspecified series elements can be 1 ohm relistors.

The second program finds the zeros of the denominator polynomial (poles of the transmission function). The numerator polynomial will be either a constant, a single zero at the origin, or a double zero at the origin depending on whether the filter is lowpass, bandpass, or highpass, respectively. The second program also indicates the degree of the zero, and the gain constant of the second order pair, K, after the third order root has been removed (if any), i.e.:

Lowpass:
$$T(s) = K \frac{1}{\frac{s^2}{\omega_n^2} + \frac{s}{\omega_n^Q} + 1}$$
 (1-3.3)
Bandpass: $T(s) = K \frac{\frac{\frac{s}{\omega_n^Q}}{\frac{s^2}{\omega_n^2} + \frac{s}{\omega_n^Q} + 1}}{\frac{s^2}{\omega_n^Q} + \frac{s}{\omega_n^Q} + 1}$ (1-3.4)
Highpass: $T(s) = K \frac{\frac{\frac{s^2}{\omega_n^2}}{\frac{s^2}{\omega_n^2} + \frac{s}{\omega_n^Q} + 1}}{\frac{s^2}{\omega_n^Q} + \frac{s}{\omega_n^Q} + 1}$ (1-3.5)

If the denominator polynomial is second order, the quadratic formula is used to find the zeros. If it is third order, a Newton-Raphson iterative technique is used to find the real third order zero (there will be at least one), then the third order polynomial is deflated to second order, and the quadratic formula is used to find the remaining zeros of the polynomial. If the zeros of the denominator polynomial are complex, the program will also calculate the natural frequency, $f_n = \omega_n/2\pi$, and the Q, or quality factor of the complex pair (see the equation derivation part of this description for equations and details).

User Instructions 1-3

SECOND	ORDER ACTIVI	e network tr	ANSMISSION	FUNCTION	
element	P.0-1-8-4-5	- A - e	Ao to	start analysis	5
element 1	element 2	element 3	element 4	element 5	/

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card			
2	Enter element 1 a) if resistor (value \ 0) b) if capacitor, enter negative value	R, ohms C, farad		
3	Enter element 2 a) if resistor b) if capacitor c) if no element present	R, ohms C, farad Zero	B [chs B] [B]	
4	Enter element 3 a) if resistor b) if capacitor c) if no element present	R, ohms C, farad Zero	C chs C C	
5	Enter element 4 a) if resistor (value + 0) b) if capacitor	R, ohms C, farad	D chs D	
6	Enter element 5 a) if resistor b) if capacitor c) if no element present	R, ohms C, farad Zero	E chs E E	
7	Enter element 6 a) if resistor b) if capacitor c) if no element present	R, ohms C, farad Zero		
8	Enter operational amplifier parameters	A _o f _o , Hz	f f	
9	Start analysis		f E	Den coefs Num coefs
10	Go back and change any element then rerun step 9, or load second card to find denominator pole locations, f_n , and Q			

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card when display			
	flashes, program execution begins unaided			
2	Program output			
2a	If three real roots, (s+a)(s+b)(s+c)			- 8
				-b
				-0
2Ъ	If one real root and a complex conjugate			-8
	pair, $(s+a)(s+\alpha+j\beta)(s+\alpha-j\beta)$			
				β
				-~
				B
				<u>-α</u>
			of second order pair	f_n (Hz)
			order pair (Q
				midband gain
				num zero locations
20	If two real roots: (s+a)(s+b)			-a
				-b
2 c	A complex conjugate pair, $(s+\alpha+j\beta)(s+\alpha-j\beta)$			
				β
				-α
				-β
				-α
			of second	f _n (Hz)
			order pair]	Q
				midband gain
				num zero locations

1-3

User Instructions 1-3 -----

_			<u>19 TRANSLA</u>	TION		
	SECOND	ORDER ACTIVE	E NETWORK	TRANSMI SSION	FUNCTION	
	init				start analysis	5
	k	R _k	° _k	A _o	f_3 dB	
			FO TO ANGL			

TI-59 TRANSLATION

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card one			
	Initialize and clear registers		[2nd] [A]	0
	Load elements			·····
	a) load element number (1 to 6)	k	A	k
		·······		
	b) load element values:			
	if resistor	R_k , ohms	B	Rk
	lf capcitor	C _k , F	0	C _k
	if no element present	0	<u> </u>	0
	Repeat step 3 until all elements have been			
	entered.			
4	Load amplifier de gain	A _o		A
	(load negative gain for inverting op-amp)	······································	,	······
5	Load -3 dB rolloff frequency of amplifier	f_3 dB, Hz	E	f_3 dB
6	Start analysis			den coefs
			2nd E	*******************
				bz
			R/S*	b3 b2
			R/S* R/S*	b <u>3</u> b2 b1
			R/S*	b3 b2
			R/S* R/S*	b <u>3</u> b2 b1
0			R/S* R/S*	b3 b2 ^b 1 1
			R/S* R/S* R/S* R/S*	b3 b2 b1 1 num coefs
			R/S* R/S* R/S*	bž b2 b1 1 num coefs a2
			R/S* R/S* R/S* R/S*	b3 b2 ^b 1 1 num coefs a2 a1
	 "R/S" not necessary if the TI-59 is 		R/S* R/S* R/S* R/S*	b3 b2 ^b 1 1 num coefs a2 a1
	 "R/S" not necessary if the TI-59 is attached to the FC-100A printer. 		R/S* R/S* R/S* R/S*	b3 b2 ^b 1 1 num coefs a2 a1
	 "R/S" not necessary if the TI-59 is attached to the PC-100A printer. All results will be printed automa- 		R/S* R/S* R/S* R/S*	b3 b2 ^b 1 1 num coefs a2 a1
	 "R/S" not necessary if the TI-59 is attached to the FC-100A printer. 		R/S* R/S* R/S* R/S*	b3 b2 ^b 1 1 num coefs a2 a1
	 "R/S" not necessary if the TI-59 is attached to the PC-100A printer. All results will be printed automa- 		R/S* R/S* R/S* R/S*	b3 b2 ^b 1 1 num coefs a2 a1

User Instructions

TI-59 TRANSLATION
SECOND AND THIRD ORDER ROOT FINDER PROGRAM use with 1-3
start
TI-59 TRANSLATION

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	Load both sides of program card 2			
8	Start second program		E	
	a) If three real roots:			#8
	(s+a)(s+b)(s+b)		R/S*	-b
		••	R/S*	-c
				· · · · · · · · · · · · · · · · · · ·
	b) If one real root and a complex conjugate	•		-8
	pair: $(s+a)(s+\alpha+j\beta)(s+\alpha-j\beta)$		R/S*	
				β
			R/S*	- ~
		******	R/S*	-β
			R/S*	- a
				0 11-
			R/S* R/S*	f _n , Hz
			R/S*	midband gain
			IV S+	gain
	c) If two real roots: (s+a)(s+b)			-8
			R/ S*	-b
	d) If a complex conjugate pair:			B
	$(\mathbf{B}+\alpha + \mathbf{j}\beta)(\mathbf{s}+\alpha - \mathbf{j}\beta)$		R/S*	-~
			R/S*	- β
	***************************************	*******	R/S*	- a
			R/S*	f _n , Hz
			R/S*	Q
			R/S*	midband gain
┝━╾┤	* "R/S" not necessary if the TI-59 is			
	attached to the PC-100A printer.			
	All results will be automatically			
	printed after the program is started.			*****************

1-3

Example 1-3.1

The schematic in Fig. 1-3.2 represents a second order active bandpass filter using the infinite gain, multiple feedback topology. The filter element values were designed assuming the op-amp to be ideal, i.e., having infinite gain and bandwidth. The type 741 op-amp is not ideal in that it has both finite gain and bandwidth. This example will use the program to show that the element values provide the desired specification when the op-amp has very large gain (-10^9) and infinite bandwidth $(\tau = 0)$. The program will then be run with the gain and bandwidth values for the 741 type op-amp to show that both the pole natural frequency and "Q" have shifted away from the desired values. The 741 has a typical gain of -100,000, and open loop break frequency of 5 Hz.

The design specifications for the filter are:

center frequency:	10 kHz
midband gain:	10
quality factor, Q:	10
capacitor value:	1000 pF

Figure 1-3.2 Second order bandpass active filter, infinite gain-multiple feedback topology.

HP-97 PRINTOUT FOR EXAMPLE 1-3.1

load first p enter elemen	program and nt values		
15915. GSBA -109 GSBB 837.7 GSBC -105 GSBD 318310. GSBE 0. GSBa	element 1, resistor element 2, cap element 3, resistor element 4, cap element 5, resistor element 6, missing	reload fin	rst card
-1.+09 STO0 0. STO7		-100000. ENT† 5. GSBd	741 do gain 741 break freq
GSBe	start analysis	GSBe	start analysis
0.000+00 *** 253.3-12 *** 1.592-06 *** 1.000+00 *** 0.000+00 *** -15.92-06 *** 0.000+00 ***	s^2 " H s^1 " H s^0 " H 2	80.63-18 *** 355.1-12 *** 1.913-06 *** 1.000+00 *** 0.000+00 *** -15.92-06 *** 0.000+00 ***	² 2 ³ 1 ³ 0 ³ 0
	load second card and	-4.400+06 ***	load second card & start analysis real pole location
62.75+03 ***	start analysis imag	53.04+03 ***	imag
-3.142+83 ***	Ξ	-2.376+03 ***	real complex
-62.75+03 *** -3.142+03 ***	imag poles	-53.04+03 *** -2.376+03 ***	imag poles
10.00+03 *** 10.00+00 ***	f_n of second order noise	8.450+03 *** 11.17+00 ***	
-10.00+00 ***	midband gain	-9.441+00 ***	midband gain
0.000+00 ***	numerator zero location	0.000+00 ***	numerator zero location

TI-59 PRINTOUT FOR EXAMPLE 1-3.1

load first pro enter element				
1. 15415.	R	element # resistor		
2. 109		element # capa citor		
3. 897.7	R	element # resistor		
4. 109	¢	element # capacitor		
5. 318:10.	R	element # resistor	reload first card	
-1. 09	Ĥ	amplifier gain (ideal)	-10 0. 0 3 A	741 dc gain
1. 25	F	amplifier BW (ideal)	5. 0 0 F	741 break freq
(.00 00 25:.3:-12 1.59-06 1.00 00		s^{3} den coef s^{2} """ s^{1} "" s^{0} ""	80.63-18 355.14-12 1.91-06 1.00 00	s ³ den coef s ² " " s ¹ " " s ⁰ " "
€.00 00 -15.92-06 €.00 00		s ² num coef s ¹ " " s ⁰ " "	0.00 00 ~15.92-06 C.00 00	s ² num coef sl "" s ⁰ ""
land second on	d		load second card	real pole
load Jecond ca	1.0		-4.3997 06	location
62.75 03 -3.14 03		imag real complex conj.	53.03 03 -2.3760 03	imag real complex conj.
-62.75 03 -5.14 03		imag real	-53.03 03 -2.3760 03	imag real
10.00 03 10.00 00		f Q	8.4499 03 11.17 00	f Q ⁿ
→10.00 00		midband gain	-9.4414 00	midband gain

Example 1-3.2

Figure 1-3.3 is the schematic of a second order highpass filter using the Sallen and Key controlled source topology. An operational amplifier is connected in the voltage follower configuration to provide the unity gain non-inverting buffer amplifier required. The design procedure assumes infinite bandwidth in this buffer, but physical op-amps, such as the 741 type have finite bandwidth (BW). This example will show how this finite bandwidth affects the filter performance. The design specifications are:

```
natural frequency, f<sub>0</sub>: 10000 Hz
quality factor, Q: 1/\sqrt{2} = 0.707
capacitor value, C<sub>1</sub>, C<sub>4</sub>: 1 nF
asymptotic high frequency gain: unity
```


Figure 1-3.3 Sallen and Key type second order highpass filter.

The HP-97 printout is shown on the next page. Again, two runs were made; first the amplifier was assumed to be ideal, and the program output verifies the design specifications; second, the finite gain and bandwidth characteristics of the 741 operational amplifier were used. The program output for the second case shows the non-ideal (finite) characteristics of the 741 have caused the second order pole positions to shift away from the desired positions, and a real pole has also been introduced. HP-97 PRINTOUT FOR EXAMPLE 1-3.2

load first program and enter element values -1.-09 6SBA element 1, capacitor 11253. GSBB element 2, resistor 0. GSEC element 3, missing -1.-09 GSBD element 4, capacitor 0. GSBE element 5, missing 22507. GSBa element 6, resistor Reload first card and enter op-amp parameters 1. STO0 set Ao = 1 i. ENT† gain 500000. GSBd bandwidth } type 741 **9.** ST07 set $\gamma = \circ$ (BW = ∞) GSBe start analysis Se start analysis 80.62-18 *** s³ denominator coef 267.6-12 *** s² " " sŹ 0.000+00 *** 8² 253.3-12 *** sl 22.82-06 *** sl H u 22.51-06 *** б⁰а 1.000+00 *** s^O n 11 1.000+00 *** 253.3-12 *** s² numerator coef 0.000+00 *** s¹ " " s2 s0 s⁰ 253.3-12 *** 0.000+00 *** 0.000+00 *** sO 11 1ŧ 0.000+00 *** load second card & load second card & start analysis start analysis -3.233+86 *** real pole location 44.40+03 *** imag 44.43+03 *** imag) complex -43.19+03 *** real -44.43+03 *** real complex conjugate conjugate -44.40+03 *** l poles imag -44.43+63 *** imag l poles -43.19+03 *** real -44.43+03 *** real f_n of second of second 9.858+03 *** $\mathbf{f}_{\mathbf{n}}$ 10.00+03 *** order pole order pole 717.0-03 *** Q 707.1-03 *** Q pair | pair 971.7-03 *** asymptotic gain 1.000+00 *** asymptotic gain numerator zero 0.000+00 *** 0.000+00 *** numerator zero 0.000+06 *** locations 0.000+00 *** locations

TI-59 PRINTOUT	ΓF	OR	EXAMPLE	1-3.2
----------------	----	----	---------	-------

load first program and enter element values	
1. element# 109 C capacitor	
2. element # 11253. R resistor	
4. element # 107 Capacitor	reload first card
6. element # 22507. R resistor	Torond Tribb Card
1. A amplifier gas (ideal)	n 1.00 A 741 gain
1.25 F amplifier BW (ideal)	500. 03 F 741 BW
0.00 00 s ³ den coef 253.27-12 s ² " 22.51-06 s ¹ " 1.00 00 s ⁰ "	80.62-18 s ³ den coef 267.60-12 s ² " " 22.82-06 s ¹ " " 1.00 00 s ⁰ " "
253.27-12 s ² num coef 0.00 00 s ¹ " 0.00 00 s ⁰ "	253.27-12 s^2 num coef 0.00 00 s^1 " " 0.00 00 s^0 " "
load second card	load second card -3.23 06 location
44.43 03 imag -44.43 03 real complex conj.	44.40 03 imag -43.19 03 real complex conj.
-44.43 03 imag pole pain -44.43 03 real	-44.40 03 imag pole pair -43.19 03 real
10.0003 707.12-03 f n of second order pole pair	9.86 03 717.04-03
1.00 00 asymptotic gain	971.75-03 asymptotic gain

Derivation of Equations and Algorithms Used

Active network transfer function: The schematic of the generalized second order active network is shown in Fig. 1-3.1. Let the junction of Y_1 , Y_2 , Y_3 , and Y_4 be designated node 1. Furthermore, let the junction of Y_4 , Y_5 , and Y_6 be designated as node 2. The nodal equations for this circuit may be written in matrix form in terms of the voltages at node 1 (E₁), and at node 2 (E₂):

$$\begin{bmatrix} \{Y_1 + Y_2 + Y_3 + Y_4\} & \{-Y_4\} \\ \\ \{-Y_4\} & \{Y_4 + Y_5 + Y_6\} \end{bmatrix} \cdot \begin{bmatrix} E_1 \\ \\ E_2 \end{bmatrix} = \begin{bmatrix} Y_1 & Y_2 \\ \\ \\ 0 & Y_5 \end{bmatrix} \cdot \begin{bmatrix} E_{in} \\ \\ \\ E_{out} \end{bmatrix}$$
(1-3.6)

Since $E_2 = E_{out}/A$, this expression is substituted into Eq. (1-3.6), and the dependent variables brought to the left hand side.

$$\begin{bmatrix} \{Y_1 + Y_2 + Y_3 + Y_4\} & \{\frac{Y_4}{A} - Y_2\} \\ \{-Y_4\} & \{\frac{Y_4 + Y_5 + Y_6}{A} - Y_5\} \end{bmatrix} \cdot \begin{bmatrix} E_1 \\ E_0 \\ E_{out} \end{bmatrix} = \begin{bmatrix} Y_1 \\ 0 \end{bmatrix} (E_{in}) \quad (1-3.7)$$

 $T(s) = E_{out}/E_{in}$ may be obtained from Eq. (1-3.7) using Cramer's rule. To this end, the determinant of the coefficient matrix (Δ) is needed:

$$\Delta = (Y_1 + Y_2 + Y_3 + Y_4) \cdot \left[\frac{Y_4 + Y_5 + Y_6}{A} - Y_5 \right] - Y_4 \left[\frac{Y_4}{A} - Y_2 \right] (1-3.8)$$

After clearing fractions and eliminating term subtraction,

$$A \cdot \Delta = (Y_1 + Y_2 + Y_3)[Y_4 + Y_6 + Y_5(1 - A)] + Y_4 [Y_5(1 - A) - AY_2 + Y_6]$$
(1-3.9)

Substituting $A = A_0/(1 + \tau s)$ as the amplifier gain, and clearing fractions, Eq. (1-3.9) becomes:

$$A_0 \cdot \Delta = (Y_1 + Y_2 + Y_3) [(Y_4 + Y_5)(1 + \tau s) + Y_5(1 - A_0 + \tau s)] + Y_4 [Y_6(1 + \tau s) + Y_5(1 - A_0 + \tau s) - A_0 \cdot Y_2]$$
(1.3.10)

Using Cramer's rule, the transmission function becomes:

$$T(s) = E_{out}/E_{in} = (Y_1 \cdot Y_4)/\Delta$$
 (1-3.11)

Newton-Raphson solution for finding real zeros of third order polynomials:

The Newton-Raphson solution is an iterative procedure for finding the values of x where f(x) becomes zero, hence, these values of x are called the zeros of f(x). If the mathematical operations are restricted to real numbers, then the procedure will only find the real zeros of the function, f(x). All odd ordered polynomials with real coefficients have at least one real zero. The third order polynomial generated by this program falls into this class, therefore real arithmetic is used to extract the real zero.

Given the function f(x) = 0, the Newton-Raphson solution provides a new estimate, x_{i+1} , based on the present estimate, x_i , and the tangent to $f(x_i)$. The value of x_{i+1} is determined by calculating the intercept of the tangent, $f'(x_i)$ on the x axis as shown in Fig. 1-3.2.

Figure 1-3.2 Newton-Raphson solution method.

$$f'(x_i) = \Delta f(x_i) / \Delta x_i = (f(x_i) - 0) / (x_i - x_i + 1)$$

Solving for x₁₊₁:

$$x_{i+1} = x_{i-1} f(x_i)/f'(x_i)$$

The iteration is stopped when the absolute value of the correction term, $f(x_i)/f'(x_i)$ becomes smaller than the desired error limit, $x_i \cdot 10^{-8}$.

Once the real zero of the third order polynomial has been found, a polynomial division is done to deflate the polynomial to second order. The quadratic equation is used to obtain the zeros of the second order polynomial, and these zeros may be complex. If s = a is a zero of f(s), then s-a must be a factor of f(s), and can be removed:

$$\frac{b_{3}s^{2} + (ab_{3} + b_{2})s + (a(ab_{3} + b_{2}) + b_{1})}{[b_{3}s^{3} + b_{2}s^{2} + b_{1}s + 1]} - (b_{3}s^{3} - ab_{3}s^{2})$$
(1-3.14)

$$\frac{-(b_{3}s^{3} - ab_{3}s^{2})}{(ab_{3} + b_{2})s^{2} + b_{1}s + 1} - [(ab_{3} + b_{2})s^{2} - a(ab_{3} + b_{2})s] - a(ab_{3} + b_{2})s + b_{1}s + 1] - [(ab_{3} + b_{2})s + b_{1}s - a[a(ab_{3} + b_{2}) + b_{1}]] - [a(ab_{3} + b_{2})s + b_{1}s - a[a(ab_{3} + b_{2}) + b_{1}]] - [a(ab_{3} + b_{2})s + b_{1}s - a[a(ab_{3} + b_{2}) + b_{1}]] - [a(ab_{3} + b_{2})s + b_{1}s - a[a(ab_{3} + b_{2}) + b_{1}]] - [b_{3}s^{2} - a(ab_{3} + b_{2})s + b_{1}s - a[a(ab_{3} + b_{2}) + b_{1}]] - [b_{3}s^{2} - a(ab_{3} + b_{2})s + b_{1}s - a[a(ab_{3} + b_{2}) + b_{1}]] - [b_{3}s^{2} - a(ab_{3} + b_{2})s + b_{1}s - a[a(ab_{3} + b_{2}) + b_{1}]] - b_{3}s^{2} - a(ab_{3} + b_{2})s + b_{1}s - a[a(ab_{3} + b_{2}) + b_{1}]] - b_{3}s^{2} - a(ab_{3} + b_{2})s + b_{1}s - a[a(ab_{3} + b_{2}) + b_{1}]] - b_{3}s^{2} - a(ab_{3} + b_{2})s + b_{1}s - a[a(ab_{3} + b_{2}) + b_{1}] - b_{3}s^{2} - a(ab_{3} + b_{2})s + b_{1}s - a[a(ab_{3} + b_{2}) + b_{1}]] - b_{3}s^{2} - b_{3}$$

The third order polynomial is evaluated in nested form, i.e.:

$$D(s) = (((b_3)s + b_2)s + b_1)s + 1$$
 (1-3.15)

When s = a, the intermediate products in D(s) are the same as the second order polynomial coefficients in Eq. (1-3.14). These intermediate products are stored at lines 027 and 031 of the program on the second card. The numbers stored only have value in the last iteration loop before loop exit, at which time s = a, and f(s) = 0, the desired result.

The second order polynomial is normalized so $c_0 = 1$ (lines 064 to 066). This normalization places the second order polynomial in the same form as the third order polynomial was originally. The quadratic formula is now used to find the zeros of the second order polynomial, $c_2 s^2 + c_1 s + 1$.

$$s_{1,2} = -c_1/(2c_2) \pm \sqrt{(c_1/(2c_2))^2 - 1/c_2}$$
 (1-3.16)

If the discriminant, $(c_1/(2c_2))^2 - 1/c_2$, is positive, then two real zeros exist, if it is zero, a double zero exists, and if it is negative, a complex conjugate pair of zeros exist. Steps 067 through 102 find the zeros of the second order polynomial.

* By definition since s = a is a zero of the polynomial.

If the zeros of the second order polynomial are complex conjugates, then the poles of the transmission function are also complex conjugates, and a natural frequency, f_n , and quality factor, Q, may be calculated:

$$f_n = 1/(2\pi \sqrt{c_2})$$
 (1-3.17)

$$Q = \sqrt{c_2}/c_1$$
 (1-3.18)

These calculations are performed by steps 103 through 113 of the program. Assuming the third order real pole of the transmission function (parasitic pole caused by the op-amp characteristics) to be large compared to the other poles, then the gain term, K, can be defined in terms of the numerator and denominator coefficients:

$$T(s) = \frac{a_2 s^2 + a_1 s + a_0}{(s/a + 1)(c_2 s^2 + c_1 s + 1)}$$
(1-3.19)

lowpass case:
$$K = a_0$$
 (1-3.20)

bandpass case:
$$K = a_1/c_1$$
 (1-3.21)

highpass case:
$$K = a_2/c_2$$
 (1-3.22)

The gain term is calculated by steps 114 through 137 of the program.

Program Listing I

			C		
	XLÖLF	LOAD ELEMENT 1	057	RCL6	
002	EE>		058	GSBØ	0
	9 7 08		059		calculate and store s ⁰ and
004	*LBLE	LOAD ELEMENT 2	060		
		LOAD ELEMENT 2	061		s ¹ terms of:
905	2				
<u>006</u>	3709		062		v. v v () A)
907	*LBLC	LOAD ELEMENT 3	063		$Y_4 + Y_6 + Y_5(1 - A_0)$
900	3		864	STO9	- •
- 089	S213		065	GSB2	
010	*:BLD	LOAD ELEMENT 4	066	RCL4	
011	4		067	GSBØ	calculate and store s ¹ and
- 012	GTOS		068		
$\frac{012}{013}$	*LBLE	LOAD DI DIENE 5	069	GSB0	s ² terms of:
		LOAD ELEMENT 5			B CEIES OI
014	5		070		
015	<u>GT08</u>		071	GSB0	$\tau_{s}(Y_{4} + Y_{5} + Y_{6})$
016	*LBL 2	LOAD ELEMENT 6	<u>872</u>	<u> </u>	
017	6		973	SFØ	calculate and store:
-018	*LBL8	element load subroutine	074	GSB6	$(Y_{1}+Y_{1}+Y_{1})\{(Y_{4}+Y_{6})(1+\gamma_{5})+Y_{5}(1-A_{0}+\gamma_{5})\}$
019	STOI	store register index	075		initialize index counter
628	R‡		076		
021	\$ T0 3	recover and store	077	GSB2	calculate and store Y_4
		element value			
022	X>0° 0700	test for resistor	078		$calculate s^0$ and s^1 terms
- 023	etce		079		ofi
024	SHS		080	RCL9	
025	GT0,	store capacitor value	081	GSB0	$Y_6 + Y_5(1 - A_0) - A_0Y_2$
026	*LBL8		082	RCL2	0 5 0 02
027	178	calculate conductance,	083	RCLØ	
028	EEX	multiply by 1050, and store	084	X	
929	5	multiply by 1023, and build	085	CHS	
030	0 0 T 0 0	store 10 ⁵⁰ for later use	086	GSB2	
031	ST08	store 10/2 for later use	087		
<u>032</u>	X		088	GSB0	cal culate and store s ¹ and
833 جا	*LBL7		089	RCL5	
034	ST0 ;	store modified element value	090	GSB0	s^2 terms of $\gamma_s(Y_5 + Y_6)$
035	RCL9	recall original element to	091	GSB3	
036	RTN	display and return to keybd	092	CFØ	clear flag 0 to indicate
037	*LBLJ	LOAD AO AND f OF AMPLIFIER	093	GSB6	
038	Pi		094	 ₽ ≠ \$∖	additional summing and
039			9		
	X		895	RCLØ	$Y_{4} \{Y_{6}(1+\tau_{3}) + Y_{5}(1-A_{0}+\tau_{5}) - A_{0}Y_{2}\}$
040	ENTŤ	calculate and store	096	STOA	normalize denominator terms:
041	+	~ = 1/(2πf ₀)	097	ST÷1	a. a. a. a. a.
<i>042</i>	17X	~	098	ST÷2	$\frac{a_{B}}{a_{T}}s^{3} + \frac{B_{2}}{a_{2}}s^{2} + \frac{B_{1}}{B_{2}}s + 1$
043	ST07		099	ST÷3	
044	RJ	recover and store $\overline{A_0}$	100	RCL3	monoll stars and maint
045	STOP		101	PRTX	recall, store, and print
046	RTN	return control to keyboard	102	STOD	normalized denominator terms
047		START ANALYSIS	102		
	<u>*LBLe</u>		7	RCL2	$a_{-}/a \rightarrow R_{-}$
048	GSB1	.	104	PRTX	$a_{z}/a_{o} + R_{D}$
049	RCL1	calculate s 0 and s 1 terms	105	STOC	
050	GSBØ		106	RCL1	$a_2/a_0 + R_C$
051	RCL2	of Y ₁ + Y ₂ + Y ₃	107	₽‡\$	
052	GSBØ	± 2 3	108	PRTX	$a_1/a_0 - R_B$
053	RCL3		109	STOB	-
054	GS <u>B2</u>		110	EEX	
055	RCL4		111		
				ENT†	
056	⊊SBØ		STERS 112	PRTX	
	<u> </u>				7 8 6 9
⁰ A ₀	Y <u>ı</u>	Y ₂ Y ₃ Y ₄	Y ₅	Y6	7 10 ⁵⁰ scratch
S0 Σs [®] tarms	Σs ¹ terr	ns Σs^2 terms Σs^3 terms S4	°1	s6 s , °	S_1 S_2 S_2^*
A bo	B	D ₁ C D ₂	D D ₃	E	scratchpad index
R					

Program Listing II

				<u> </u>			c				
113	SPC			· · · ·			168	*LBLZ	finish Y	element s	ummation.
114	SFØ	indic	ate summin	g register	clr		169	GSBØ		ck summat	
115	GSB1			sters and i			170	DSZI		e next su	
116	RCL1		late and s				171	STO i		register	
117	G <u>SB2</u>	04100					172	DSZI		10620002	
118	RCL4		1-4-		•		173	CLX			
		CAICU	ulate and s	tore 14			174	STOI			
119	GSB2										
120	CLX	set s	2 term of	Y ₄ to zero			175	RTN			
<u>121</u>	<u>sto;</u>						176	*LBL3	multiply	by 2s to	form s ²
122	GSB6	calcu	late and s	tore Y1.Y4			177	RCL7	and addit	ional s ¹	terms.
123	RCLØ						178	P≓S	and add	to present	ly stored
124	P≓S		lize numer	ator terms			172	ST×5		to present	iy stored
125	RCLA	потще	TITS9 NUMBI	awr ceimp			180	x	terms		
126	÷						181	ST+7			
							182	P≓S			
127	ST×2										
128	ST×1						183	RTN			
129	STר						184	*LBL6	polynomia	al multipl	ication.
130	RCL2						185	P≓S			
131	PRTX						186	CLX			
132	RCL1	recal	ll and prin	nt			187	GSB5			
132	PRTX		rator terms				188	RCL6	s ⁰ term o	alculatio	n
		numei	awr cemts	,			189	RCL8	e reim (argurat10	11
134	RCLØ										
135	P‡S						<u>190</u>	GSB4		<u> </u>	
136	PRTX						191	EEX			
137	SPC						192	GSB5			
-138	*LBLk						193	RCL7			
139	PSE	wait.	loon for 2	nd card rea	ad		194	RCL8	al torm	calculatic	-
L-140	GTOL.	N GL U	1000 101 0				195	GSB4	a cerm	sarcura.to	11
							196	RCL6			
141	*LBL0		outine to d								
142	ENTT			d Y element	t		197	RCL9			
143	ABS	is a	conductano	e or a			1 <u>98</u>	GSB4			
144	EEX	capac	itance				199	2			
145	3			ance, perfo	חדרכ		200	GSB5			
146	0		tion in th				201	RCL7			
147	X>Y?						202	RCL9			
	GT09		rwise, elem		.		203	GSB4	2 tom	calculatic	
				d summation	n is		204	RCL5	s term	calculatic	n
149	R4		in the des	ignated							
150	R4	i reg	gister.				205	RCL8			
151	RCL8		-				206	<u>GSB4</u>		<i></i>	
152	÷					2	207	3			
153	+					2	208	GSB5			
154	RTN						209	RCL5			
+155	*LBL9	511 90 4	ntance aum	mation in H	R + 1		210	RCL9	3	- 7 7 - 4 -	
	#2025 R4	24906	-hourse som				211	GSB4	s term	calculatic	n
156											
157	R↓ ati						212	P≠S			
158	ST+ i						213	RTN			
159	RI						214	*LBL4		al multipl	ication
160	RTN.				1		215	х	subrouti	ne	
161	*LBL1	regie	ter and in	dex		2	216	ST+i			
162	1	_					217	RTN			
	-	TUILI	alization				218	*LBL5	4	zation sub	
	0		в				219				
163	9 стој	10			1		220	STOI		h polynomi	
164	STOI	19 🗲	^R I				~ ~ 14	CLX	multipli	cation sub	
164 165	STOI CLX		•								routine
164 165 166	STOI CLX		•			2	221	F0?	-		routine
164 165	STOI CLX	$19 \neq 0 \neq F$	•			2		F0? Sto;			routine
164 165 166	STOI CLX STOi		•			2	221				routine
164 165 166	STOI CLX STOi		² 19	RFI S		2	221 222 223	STO; RTN	_		
164 165 166 167	STOI CLX STOi	0 + F	² 19	BELS	ĪF	2	221 222 223	STO; RTN FLAGS		SET STATUS	5
164 165 166	STOI CLX STOi	0 + F	² 19	BELS D load Y4		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21 22 23	STO; RTN	_	SET STATUS	DISP
164 165 166 167	STOI CLX STU; RTN B Load	$0 \rightarrow F$ 1 Y ₂ nd card	R 19 C Load Ya	D load Y4	_	pad Ys	21 22 23	STO; RTN FLAGS	FLAGS ON OFF	SET STATUS	DISP CHOICE
164 165 166 167 A Load Yi a Load Yi	STOI CLX STOI RTN B Load	$0 \rightarrow F$ 1 Y ₂ nd card	² 19 C Load Ya c	D load Y4 dlood Aotfo	e st ana	bad Ys tart	221 222 23 0 500	STO; RTN FLAGS	FLAGS ON OFF 0	SET STATUS TRIG USERS DEG	DISP CHOICE
164 165 166 167 A Load Yi a Load Yi 0 sum	STOI CLX STOI RTN B load b secon wait	0 + F	LAI C Load Ya C 2 toop	D load Y4 dlood Aotfo	e st ana 4 900	ad Ys tart lysis	21 22 23	STO; RTN FLAGS	FLAGS ON OFF 0	SET STATUS TRIG USERS DEG GRAD	DISP CHOICE FIX SCI
164 165 166 167 A Load Yi a Load Yi	STOI CLX STOI RTN B Load b secon Wait 1 initia	$0 \rightarrow F$ $1 Y_2$ $1 Y_2$ 1	² 19 C Load Ya c	D load Y4	e st ana 4 900 Sub	bad Ys tart	221 222 23 0 500	STO; RTN FLAGS	FLAGS ON OFF 0	SET STATUS TRIG USERS DEG	DISP CHOICE

Program Listing I

	110514111		
001 ¥LBL 002 SP 003 P≠	C	037 RCLD 038 3 039 × 040 ×	
004 RCL 005 X≠0 	if s ² coefficient is not ? zero go to 3rd order soln 8 otherwise store remaining	041 RCLC 042 ENT1 043 +	calculate f'(x ₁)
007 RCL 008 STO 009 RCL 010 STO 011 GTO	9 and go to second order 8 solution 8	044 + 045 × 046 RCLB 047 +	
012 *LBL 013 RCL	third order solution	049 ST÷5	calo $f(x_i)/f'(x_i)$
014 X# 015 ÷	^Y calculate initial guess for real 3rd order root	050 RCL5 051 ST-6 052 ABS	apply correction to x ₁
016 CH 017 STO 	б	053 RCL6 054 EEX 055 8	
019 RCL 020 ENT 021 ENT	6 † †	056 ÷ 057 ABS 058 X≦Y?	test for loop exit
022 ENT 023 RCL 024 ×	0	└ <u>059 GTO1</u> 060 RCL6 061 GSB9	print real root
025 RCL 026 + 027 STO 028 ×	8	062 RCLD 063 ST09 064 RCL7 065 ST÷8	
029 RCL 030 + 031 STO 032 x 033 EE 034 + 035 STO	7 X	<u>066 ST÷9</u>	
<u>036 CL</u>	x		
	2 3 4	STERS	7 ~ 8 . 9
$\begin{array}{c c} \mathbf{A}_0 & \mathbf{Y}_1 \\ \hline \mathbf{S}_0 & \mathbf{O} & \mathbf{S}_1 & \mathbf{I} \\ \hline \end{array}$	Y ₂ Y ₃ Y ₄	^{S5} Boratch ^{S6} σ	$\begin{array}{c c} & 7 & 7 & 8 \\ \hline & 8 & \text{scratch} & 9 & \text{scratch} \\ \hline & 57 & & & & \\ & 50, 1/c_2 & 58 & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array}$
$\begin{bmatrix} s_0 & 0 \\ \boldsymbol{\Sigma}^{\mathbf{s}}_{\mathbf{n}} \end{bmatrix} \begin{bmatrix} s_1 & 1 \\ \boldsymbol{\Sigma}^{\mathbf{s}}_{\mathbf{n}} \end{bmatrix}$	$\begin{bmatrix} S^2 & \tilde{z} \\ \tilde{z} & \tilde{s}_n \end{bmatrix} \begin{bmatrix} S^4 \\ \tilde{z} & \tilde{z}_n \end{bmatrix}$	D Dz E	
		the second s	

Program Listing II

067 #LBL2 second order solution	-114 *LBL0
068 RCL9 02	115 GSB9 print Q, or second real root
069 ENT? -	116 RCL9
070 + 2*o₂ 071 ST≑8 / //o	117 STX7 restore second order
$\begin{cases} 0.71 & 31+6 \\ 0.72 & RCL8 \end{cases} c_1/(2c_2) \end{cases}$	118 ENTT coofficients
073 X2	119 +
074 RCL9	<u>120 ST×8</u>
075 1/X	121 SPC 122 RCL2] is numerator second order?
076 ST07	122 RCL2} is numerator second order? 123 X≠0?}
$\theta_{77}^{77} = (o_1/(2o_2))^2 - 1/o_2$	r-124 GT00
078 X(0? if disoriminant is negative,	125 RCL0
679 6703 go to imaginary solution	126 X#0?] 18 numerator a constant?
081 ST05	<u>127 GT08</u>
082 RCL8 calculate and print	128 RCL1 numerator is first order
083 - one real root	129 RCL8 calculate and print the
084 GSB9	130 ÷ gain term, K 131 GSB9
085 RCL5	132 CLX print location of numerator
086 RCL8 calculate and print	132 6708 Zero and exit program
087 + other real root 088 CHS	-134 *LBL0 numerator is second order
088 CHS	175 Prig
	$136 \div$ calculate and print the
091 CHS	137 GSB9 gain term, K
. 892 VX	138 CLX print location of the
093 ST05	139 PRTX numerator zeros
094 PRIX calculate and print	
095 RLLB one imaginary roat	142 #1819
096 CHS 100 100 100 100 100 100 100 100 100 10	143 PRTX print and space subroutine
898 RCL5	144 SPC
2417 224	<u>145 RTN</u>
199 PETY calculate and print	
101 XIX other imaginary root	
102 GSB9	
$103 \text{ RCL7 } \omega_n^2$	
104 VX	
105 2	
106 ÷ 107 ST05 ω_/2	
107 ST05 ω _n /2 108 P;	
109 ÷	
110 PRIX f _n , the natural frequency	
111 RCL5 **	
112 RCL8	
113 \div Q, the quality factor	
LABELS	FLAGS SET STATUS
A B C D E B	tart 0 FLAGS TRIG DISP
a b c d e	1 ON OFF DEG ■ FIX
0 local 1 local 2 2nd order 3 imag 4 label 1 label solution roots	2 1 GRAD SCI
· · · · · · · · · · · · · · · · · · ·	
5 6 7 8 P≥S, prt 9 pr 3 8 p≥S, prt 9 pr	111t 6 3 2 RAD ENG 1 1

<u>Suggested program changes for the HP-67:</u> Program space does not allow the inclusion of a print, R/S toggle and associated output routine. To cause the program execution to stop at the data output points, replace the "print" statements with "R/S" statements at the following line numbers: 101, 104, 108, 112, 131, 133, and 136 in program one, and at lines 094, 100, 110, 139, and 143 in program two.

If these changes are made, the program will stop at each output point. To continue program execution, key a "R/S" command from the keyboard.

000	76	LBL	subroutine to sum	050	05	05	
100 J	44	SUM	conductance & susceptance	051-		0	
002	42	STO		001		-	
003	09	09	store entry in scratchpad	052	72	ST÷	clear next set of storage
004	50		test for conductance:	053	04	04	registers
-		IXI		054	72	ST÷	
005	32	XIT	If entry is smaller than	055	05	05	
006	01	1	10^{30} , then it is a	05é	92	RTN	return to main program
007	52	EE	susceptance and program	057	76	LEL	LOAD ELEMENT INDEX
008	03	3	execution jumps to	058	11		LOND ELEMENT INDER
009	00	õ	step 24.			<u> </u>	
010	77	GE	L -	059	98	ADA	space paper in printer
				060	22	ΙNV	
011	00	00		061	52	EE	set fix O format
012	<u>F24</u>	24		062	22	INV	
013	43	RĈL		063	57	ENG	
Ŭ14	09	09	recover entry	064	<u>99</u>	PRT	print element index
015	55	÷		065	85		Lette ofemolie Tudey
016	01	1	remove conductance			+	
017	52	EĒ	scaling	066	32	X;T	save index entry
				067	01	1	
018	05	5		068	ŪŨ	Ũ	calculate storage
019	00	Û		069	95	=	register location
020	95	=		070	42	STO	
021	74	SM*	sum conductance	071	Ŭ4	04	
022	05	05		072	32	<u>04</u> X:T	
023		RTN	return to main program				recover index to display_
020			TO MILL OF MALL PLOSICM	073	91	<u>R/S</u>	stop program execution
		RCL	recover entry	07÷	76	LBL	LOAD RESISTOR VALUE
025	09	-09	-	075	12	В	
026	74	SM¥	sum susceptance	076	35	1/X	form conductance
027	04	04		077	65	<u></u>	Arres Manager Manager Manager Manager Manager Manager
028	92	RTN	return to main program	078	32	XIT	save conductance
029	76	LBL	initialization	079	01		
030	59	INT	subroutine			_1	multiply conductors by
031	02	2		080	52	EE.	multiply conductance by
				081	05	5	10 ⁵⁰ and indirectly store
032	00	_0	initialize susceptance	082	ŪŪ	Ū	
033	42	STO	storage register index	083	95		
<u>0</u> 34	_04	04		084	72	ST*	
035	02	2		085	04	04	
036	01	1	initialize conductance	086			
037	42	STO			03	3	setup to p rint "R" as
038			storage register index	087	05	5	annotation on right
	<u>05</u>	<u>05</u>		880	69	OP	hand edge of printout
039	61	GTD	jump to step 51 and	089	04	04	
040	00	00	continue program	090	32	XIT	na an a
041	<u>-51</u>	51	execution	091	35	1/X	
042	76	LBL	subroutine to complete	092	22	INV	recover resistor entry
043	85	 +	summation				and print annotated
044	71	SBR	gosub subroutine "sum"	093	52	EE	value
			Roand and contine and	094	69	OP	
045	44	<u>sum .</u>		095	06	<u>06</u>	
046	02	2		096	91	R/S	stop program execution
047	44	SUM	increment storage	097	76	LBL	LOAD CAPACITOR VALUE
048	04	04	register indices	098	13	coc C	TOUR OUL KOLION ANDE
049		SŬM	-				
1 * * * J		004		099	12	ST*	

TI-59 PROGRAM LISTING 1-3 card 1

Note: This translation was provided by Mr. Roger Junk.

f	
100 04 04 indirectly store cap	<u>150 32 X:T</u> recover entry
101 32 XIT save entry	151 98 HDV space paper and
	102 67 UP print annotated entry
103 05 5 setup to print "C" on	153 06 06
104 69 DP right hand edge of paper	154 91 R/S stop program execution
105 04 04	155 76 LBL INITIALIZE
106 32 X1T	156 16 A.
107 57 ENG print capacitor value in	157 00 0
108 69 DP engineering format along	158 42 ST[zero elements 2, 3, 5, & 6
109 06 06 with annotation	159 12 12
110 91 R/S stop program execution	160 42 STD
111 76 LBL LOAD OP-AMP DC GAIN, A	161 13 13
112 14 D	162 42 STO
	163 15 15
114 10 10 store A ₀	164 42 STO
115 32 X:T save entry	165 16 16
	166 91 RAS stop program execution
117 03 3 setup to print "A" on	MA7 74 LBI
118 69 DP right hand edge of paper	168 10 E START ANALYSIS
119 04 04	169 71 900
120 32 XIT recover entry,	170 OA OA test for printer attached
121 98 ADV space paper, and	171 75 75 to calculator
122 69 DP print entry and notation	172 71 SBR initialize counters and
123 06 06 .	173 59 INT registers
123 06 06 124 91 R/S stop program execution	174 43 RCL
125 76 LEL LOAD OP-AMP BREAK	175 11 11
126 15 E FREQUENCY (-3 dB point)	176 71 SBR
127 65 X	177 44 SUM
128 32 X:T_save_entry	178 43 RCL calculate and store
129 02 2	179 12 12 s ⁰ and s ¹ terms of:
130 65 ×	180 71 SBR
131 89 n form and store:	$181 44 SUM Y_1 + Y_2 + Y_3$
	182 43 RCL
	183 13 13
134 42 STD	184 71 SBR
	185 85 +
136 01 1	186 43 RCL
137 52 EE if entry is larger than	187 14 14
138 02 2 10^{20} set γ to zero	188 71 SBR
139 00 0	400 AA 000M
140 77 GE	
142 + 46 + 46	171 IO ID 1883 74 855
143 00 0	192 71 SBR $Y_4 + Y_6 + Y_5(1 - A_0)$ 193 44 SUM
144 142 STO	100 44 000
145 17 17	194 O1 1 195 75 -
146 - 02 2	
147 01 1 setup to print "F" on	
148 69 [[P right hand edge of paper	
146 05 07 11 12 10 10 146 149 04 04	
	199 65 ×

200 43 RCL 250 71 SER 201 15 15 251 44 SUM calculate and store 204 19 19 252 43 RCL s ¹ and store 205 71 SER 255 44 SUM calculate and store 205 71 SER 255 44 SUM calculate and store 206 74 RCL 257 49 PRD calculate and store 206 71 SER 255 44 SUM calculate and store 256 71 SER 210 44 SUM calculate and store 266 78 R21 71 SER 76(1/4,+1),-4,-7,-7,-7,-7,-7,-7,-7,-7,-7,-7,-7,-7,-7,	-						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	43 RCL		250	71	CDD	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-	15 15					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
205 42 510 204 19 19 205 71 SBR 206 85 + 206 43 RCL 207 43 RCL 208 14 14 208 14 14 208 14 14 208 71 SBR 208 14 14 208 71 SBR 208 14 14 208 71 SBR 208 14 14 208 71 SBR 210 44 SUM 211 43 RCL 211 43 RCL 212 15 15 74 44 SUM 213 71 SBR 214 44 SUM 214 14 SUM 215 43 RCL 215 71 SBR 216 16 16 216 16 16 216 16 16 216 71 SBR 226 72 78 217 71 SBR 226 71 SBR 226 72 78 226 72 78 227 43 RCL 228 71 SBR 226 72 78 227 43 RCL 228 71 SBR 226 71 SBR 227 43 RCL 228 71 SBR 226 71 SBR 227 43 RCL 228 71 SBR 228 71 SBR 229 71 SBR 220 85 + Y4 231 43 RCL 231 43 RCL 231 43 RCL 231 43 RCL 232 16 16 233 71 SBR 234 44 SUM 234 44 SUM 235 43 RCL 236 17 SBR 236 17 N SBR 237 16 16 238 43 RCL 238 43 RCL 238 43 RCL 238 43 RCL 239 8 R				252	43	RCL	calculate and store
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	42 STO					s^{\perp} and s^{\leftarrow} terms of:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		19 19					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				204			$\gamma_{c}(\mathbf{v}_{-},\mathbf{v}_{-})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				255	44	SUM	¹ ¹ 5 + ¹ 6 ¹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20t _				71	SRP	
2081414201 $\frac{1}{22}$ $\frac{1}{2$	207	43 RCI					
20571SBR s1calculate and store s1 and s2 terms of:25986STF s1calculate and store:21044SUM s1 and s2 terms of:2600000 $D_1 + V_3 \{Y_6(1+C_3) + V_5(1+C_3) + V_6(1+C_3) + V_7(1+C_3) + V_8(1+C_3) + V_8(1+C_$				201			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- •		258	- 22	INV	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				259			calculate and store:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	210	44 SHM	calculate and store			-	D. + Y. (Y. (1+7-)+
2121515151515151515151515151516161621341444SUM26443RCL26329CPtest for non-zero21444SUM26443RCL26629CPtest for non-zero216161626620022161414SUM21644SUM26667EQ222221444SUM26667FQ222161587calculate and store:27101012212657calculate and store:27101010122571SBR275-787822659THTinitialize indices275-787822743RCLcalculate and store27643RCLnon-zero22659THTinitialize indices27712020222659THTinitialize indices27712020222659THTinitialize indices27712020222743RCLcalculate and store28149RDLnon-zero23143RCLcalculate and store28449PRDterms232161628349PRD28543 </td <td>511</td> <td></td> <td>s^1 and s^2 terms of:</td> <td></td> <td></td> <td></td> <td></td>	511		s^1 and s^2 terms of:				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					71	SBR	$Y_{5}(1-A_{0}+C_{5}) - A_{0}Y_{2} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	212		$T_{a}(\mathbf{Y}, \mathbf{Y}, \mathbf{Y})$	262	65	X	
214 44 SUM 264 43 RCL denominator coefs 215 43 RCL 265 00 00 216 16 16 266 22 INV 217 71 SBR 266 22 INV 219 71 SBR 267 67 EQ 221 49 PRD 268 02 02 221 97 71 SBR 267 78 78 221 49 PRD 268 02 02 265 78 78 221 86 STF calculate and store: 271 01 01 01 222 71 SBR initialize indices 277 02 02 02 225 71 SBR 276 43 RCL 01 01 01 226 59 INT initialize indices 277 02 02 02 227 43 RCL 280 35 18 18 01 </td <td>213</td> <td>71 SBR</td> <td>13(14 + 15 + 16)</td> <td>325</td> <td></td> <td><u></u></td> <td></td>	213	71 SBR	13(14 + 15 + 16)	325		<u></u>	
21543RCL2650000002161626622INV26767EQ21771SBR26802020221971SBR269787822126STFcalculate and store:271010122571SBR27222INV22571SBR274020222571SBR275-7822659INTinitialize indices274020222571SBR							tost for non some
216 16 16 16 266 22 INV 217 71 SBR 267 67 EQ 219 71 SBR 268 02 02 219 71 SBR 267 67 EQ 221 86 STF calculate and store: 270 43 RCL non-zero test continued 222 65 x =0 274 02 02 222 65 x =0 274 02 02 225 71 SBR 274 02 02 225 71 SBR 275 -78 78 226 59 INT initialize indices 277 02 02 224 71 SBR 280 ads 14 ads calculate and store 278 42 STD 232 16 16 280 35 1/X normalize denominator 232 16 16 281 49 PRD 281 49 <					43	RCL	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				265	nn	ΠŬ	aenominator coef's
217 71 SBR 267 67 EQ 218 44 SUM 268 02 02 219 71 SBR 269 -78 78 221 86 STF calculate and store: 271 01 01 222 00 00 $(r_1r_2+r_3) + r_3(r_1r_2) + $	216	J 6 16					
211 44 SUM 268 02 02 219 71 SBR 269 78 78 220 49 PRD 270 43 RCL non-zero test continued 221 86 STF calculate and store: 271 01 01 01 222 71 SBR $$ 274 02 02 02 224 65 x $$ 274 02 02 02 225 71 SBR initialize indices 275 $+78$ 78 non-zero test concluded 226 59 INT initialize indices 275 -78 78 non-zero test concluded 227 43 RCL calculate and store 276 43 RCL non-zero test concluded 228 14 14 calculate and store 280 35 1/X normalize denominator 231 43 RCL 281 49 PRD 283 49 PRD <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
219 71 SBR 269 728 78 78 221 86 STF calculate and store: 271 01 01 223 71 SBR 272 22 INV 224 65 $x = D_1$ 272 22 INV 225 71 SBR 274 02 02 225 71 SBR initialize indices 277 02 02 226 59 INT initialize indices 277 02 02 226 71 SBR 276 43 RCL non-zero test concluded 226 71 SBR 276 43 RCL 277 02 02 226 71 SBR sterms of 277 18 18 normalize denominator 230 85 + 4 280 35 1/X normalize denominator 233 71 SBR 284 44 SUM calculate and store 284 01 01							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				268	02		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	219	71 SBK					
221 86 STF calculate and store: 271 01 01 222 71 SBR $(1, Y_1 + Y_2) \{ (Y_1 + Y_2) + Y_3 (-A_{off} + Y_0) \} \}$ 273 67 E9 222 71 SBR initialize indices 274 02 02 225 71 SBR initialize indices 275 -78 78 226 59 INT initialize indices 277 02 02 226 71 SBR calculate and store 278 -42 STD 229 71 SBR s0 and s1 terms of 279 18 18 230 85 + Y_4 280 35 1/X normalize denominator 232 16 16 282 00 00 283 49 PRD 234 44 SUM calculate and store 284 49 PRD 286 02 02 237 71 SBR Y_6 + Y_5(1 - A_0) + A_0Y_2 287 49 PRD 286 03 03 <td></td> <td></td> <td></td> <td>1000</td> <td></td> <td></td> <td></td>				1000			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	501						non-zero test continued
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	661		calculate and store:	271	01	01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	222	00 00	W M MACE	272			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	223	71 SBR	$(1_1 + 1_2 + 1_3) \{ (Y_4 + Y_5) (1 + 2_5) + Y_5 (1 - A_{of} + 2_5) \}$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	552		= D ₁				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22° 355				02	02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	225		· · · · · · · · · · · · · · · · · · ·	275			
227 43 RCL calculate and store 277 02 02 228 14 14 calculate and store 278 42 STI 230 85 + Y4 280 35 1/X normalize denominator 231 43 RCL 280 35 1/X normalize denominator 232 16 16 282 00 00 233 71 SBR 282 00 00 234 44 SUM calculate and store 284 01 01 235 43 RCL s0 and sl terms of: 285 49 PRD 236 19 19 286 02 02 22 237 71 SBR Y ₆ + Y ₅ (1 - A ₀) + A ₀ Y ₂ 287 49 PRD 238 44 SUM 212 290 03 03 denominator coefficient 240 12 12 290 03 03 denominator coefficient 244 92 29 29 <td>226</td> <td>59 INT</td> <td>initialize indices</td> <td>372</td> <td></td> <td></td> <td></td>	226	59 INT	initialize indices	372			
228 14 14 calculate and store so and s ¹ terms of Y ₄ 278 42 STU 279 18 18 230 85 + Y ₄ Y ₄ 280 35 1/X normalize denominator 231 43 RCL 281 49 PRD terms 232 16 16 282 00 00 233 71 SBR 282 00 00 283 49 PRD 234 44 SUM calculate and store 284 01 01 235 43 RCL so and s ¹ terms of: 285 49 PRD 236 19 19 286 02 02 237 71 SBR Y ₆ + Y ₅ (1 - A ₀) + A ₀ Y ₂ 287 49 PRD 238 44 SUM 289 03 03 289 43 RCL 241 65 x 291 71 SBR (program will stop if 241 65 x 291 71 SBR (program will stop if 244 95 = 294 29 29 292 245 94 +/- 295 43 RCL recall and print s ² 246 71 SBR 296 02 02 297 71 SBR 246 71 SBR 296 02 02 297 71 SBR 246 43 RCL 298 04 04 298 04 04 <td>227</td> <td>42 001</td> <td></td> <td></td> <td></td> <td></td> <td>non-zero test concluded</td>	227	42 001					non-zero test concluded
224 71 SBR s^0 and s^1 terms of 278-42 SIU 230 85 + Y4 279 18 18 231 43 RCL 280 35 1/X normalize denominator 232 16 16 282 00 00 233 71 SBR 282 00 00 234 44 SUM calculate and store 284 01 01 235 43 RCL s0 and s ¹ terms of: 285 49 PRD 236 19 19 286 02 02 02 237 71 SBR Y ₆ + Y ₅ (1 - A _o) + A _o Y ₂ 287 49 PRD 238 44 SUM 290 03 03 denominator coefficient 240 12 12 290 03 03 33 denominator coefficient 244 43 RCL 292 98 RDV printer is not attached) 244 95 = 294 29 29 29 <td><u>661</u></td> <td></td> <td>calculate and store</td> <td></td> <td>02</td> <td>02</td> <td></td>	<u>661</u>		calculate and store		02	02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				278+	42	STO	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	229	71 SER		270			
231 43 RCL 280 35 1/% normalize denominator 232 16 16 281 49 PRD terms 233 71 SBR 282 00 00 283 49 PRD 234 44 SUM calculate and store 284 01 01 285 49 PRD 235 43 RCL s0 and s1 terms of: 285 49 PRD 236 19 19 286 02 02 287 49 PRD 238 44 SUM $calculate$ and store 286 02 02 286 02 02 237 71 SBR $Y_6 + Y_5(1 - A_o) + A_oY_2$ 288 03 03 33 denominator coefficient 240 12 12 290 03 03 denominator coefficient (program will stop if printer is not attached) 244 43 RCL 294 29 29 295 43 RCL 296 02 02 </td <td></td> <td></td> <td>Y₄</td> <td><u>417</u></td> <td></td> <td></td> <td></td>			Y ₄	<u>417</u>			
232 16 16 263 49 FRD terms 233 71 SBR 282 00 00 234 44 SUM calculate and store 283 49 PRD 235 43 RCL s^0 and s^1 terms of: 285 49 PRD 236 19 19 286 02 02 237 71 SBR $Y_6 + Y_5(1 - A_o) + A_o Y_2$ 287 49 PRD 238 44 SUM 289 43 RCL 289 43 RCL 240 12 12 290 03 03					35	1/X	normalize denominator
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				281	49	PRD	terms
233 71 SBR 234 44 SUM calculate and store 283 49 PRD 235 43 RCL s0 and s1 terms of: 284 01 01 236 19 19 285 49 PRD 237 71 SBR $x_6 + Y_5(1 - A_0) + A_0Y_2$ 287 49 PRD 238 44 SUM 289 43 RCL 289 43 RCL 239 43 RCL 290 03 03 denominator coefficient 240 12 12 290 03 03 denominator coefficient 244 43 RCL 292 98 ADV printer is not attached) 244 95 = 294 29 29 29 245 94 +/- 296 02 02 29 29 245 94 +/- 296 02 02 29 29 29 244 95 = 296 02 02 29	232	16 16		202			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	232						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						ЧКD	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			calculate and store	284	01	01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	235	43 RCL	so and al terms of				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	236		and b cerms of:				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	232		17				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$Y_{6} + Y_{5}(1 - A_{2}) + A_{2}Y_{2}$		49	PRD	
239 43 RCL 240 12 12 241 65 x 242 43 RCL 290 03 03 242 43 RCL 290 03 03 denominator coefficient 242 43 RCL 292 98 ABV (program will stop if 243 10 10 293 42 STO 244 95 $=$ 294 29 29 245 94 $+/ 295$ 43 RCL recall and print s ² 246 71 SBR 296 02 02 29 247 85 43 RCL 296 02 02 248 43 RCL 298 04 04	とうと			288			Í
240 12 290 03 03 recall and print s ³ 241 65 x 290 03 03 $anominator coefficient$ 242 43 RCL 291 71 SBR 292 98 ADV $printer is not attached$ 243 10 10 293 42 STD $printer is not attached$ 244 95 $=$ 294 29 29 245 94 $+/ 295$ 43 RCL recall and print s ² 246 71 SBR 296 02 02 16 16 248 43 RCL 298 04 04 94	239	43 RCI					
241 65 x 290 03							recall and print of
241 65 x 291 71 SBR 292 98 ADV program will stop if 243 10 10 293 42 STD printer is not attached) 244 95 = 294 299 29 29 244 95 = 294 29 29 29 245 94 +/- 295 43 RCL recall and print s ² 246 71 SBR 296 02 02 02 247 85 + 297 71 SBR 248 43 RCL 298 04 04					03	03	
242 43 RCL 292 98 ADV program will stop if 243 10 10 293 42 STO 244 95 = 294 29 29 245 94 +/- 295 43 RCL recall and print s ² 246 71 SBR 296 02 02 denominator coefficient 247 85 + 298 04 04				291	71		
243 10 10 293 42 510 printer is not attached) 244 95 293 42 510 293 42 510 244 95 293 42 510 293 42 510 245 94 $+/ 294$ 29 29 $ 295$ 43 RCL recall and print s ² $ 296$ 02 02 denominator coefficient 248 43 RCL $ 298$ 04 04	242	43 RCL		200			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				293	42	STO	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				294			
246 71 SBR 296 43 RUL recall and print s ² 247 85 43 RUL recall and print s ² 248 43 RCL 297 71 SBR 248 43 RCL 297 71 SBR 249 16 16 16 16 16	245	94 ÷/-		205			
$\frac{247 85 +}{248 43 \text{ RCL}} =$		• •					recall and print s^{2}
$\frac{247}{248} + \frac{85}{43} + \frac{1}{248} - \frac{1}{248} - \frac{1}{298} - \frac{297}{298} - \frac{1}{298} - $					02	02	
248 43 RCL 298 04 04	<u> </u>			297	71		TITLE OF COLITCIENC
249 12 12	248	43 RCL					1
1299 64 64	249					- •	ł
		40 IU		Z799	64	na i	

		11-59 PROGRAM LIST		······································
0.00	40 070		350	04 04
300	42 STD		351	64 64
30i_	<u>28 28</u>			
302	43 RCL		352	43 RCL 0
303	01 01	1	353	00 00, recall and print s ⁰
		recall and print sl	354	71 SBR numerator coefficient
304	71 SBR	denominator coefficient	355	04 04
305	99 PRT			
306	42 STO		356	<u>_64_64</u>
307	27 27		357	91 R/S stop program execution
305	43 RCL		358	00 0
		0	359	() () unused program memory
309	00 00	recall and print s ⁰	360	
310	71 SBR	denominator coefficient		
311	99 PRT		361	00 0
312	42 STO		362	00 0
012.			363	00 0
313	<u>26 26</u> .		364	00 0
314	86 STF	indicate first product		
315	00 00	of sums	365	
316	71 SBR	initialize indices	1366	00 0
317	59 INT	initialize indices	367	00 0
			368	76 LBL subroutine to multiply
318			369	49 PRD by τ s to form s ² and
319	11 11	calculate and store	370	43 RCL additional s ¹ terms, and
320	71 SBR	s^0 , s^1 , and s^2 terms		
321	85 +	of Y ₁ .Y ₄	371	17 17 add to presently stored
322	43 RCL	01 -1 -4	372	49 PR <u>n</u> terms
			373	24 24
323	14 14		374	65 X
324	71 SBR			43 RCL
325	85 +		375	
326	00 0		376	25 25
327	72 ST*		377	95 =
			378	44 SUM
328	04 04		379	22 22
329	71 SBR			92 RTN
330	65 ×_		380	
331	43 RCL		381	76 LBL polynomial multiplication
332	10 10		382	<u>65 × subroutine</u>
	10 10 55 ÷	normalize numerator	383	0 0 0
333		coefficients	384	71 SBR
334	43 RCL	00011101010		
335	18 18		385	04 04
336	95 =		386	48 48
337	49 PRD		387	43 RCL
	• ·		388	23 23 0,
338	02 02		389	55×50 term calculation
339	49 PRD			
340	01 01		390	
341	49 PRD		391	21 21
342	00 00		392	95 =
343	43 RCL		393	74 SM*
		2	394	
344	02 02	recall and print s ²	395	
345	71 SBR	numerator coefficient		
346	98 ADV		396	
347	43 RCL	-	397	
		recall and print s ¹	398	48 48
348	01 01	numerator coefficient	399	
349	71 SBR			

			STING	1-3 card 1	
400	22 22]	450	22 INV	
401	65 ×	s ¹ term calculation	451	87 IFF	
		continued	452		
402				00 00	
403	21 21		453	04 04	
404	95 =		454	58 58	
405	74 SM*		455	00 Ū	
406	05 05		456	72 ST*	
			457		
407					
408	23 23		458	<u>92 RTH</u>	
409	65 ×		459	76 LBL	subroutine to print
410	43 RCL		460	98 ADV	and continue if
411	20 20		461	98 ADV	calculator attached to
412	95 =		462	76 LBL	PC-100A printer, or else
					to-toon princer, or else
413	74 SM∗		463	99 PRT	to stop program execution
414	<u> 05 05 </u>		464	57 ENG	and display answer
415	02 2		465	99 PRT	
416	71 SBR		466	22 INV	
417	04 04		467	87 IFF	
418	48 48		468	01 01	
419	43 RCL		469	04 04	
420	22 22		470	74 74	
421	65 ×		471	91 R/S	
422			472		
423	20 20	s ² term calculation	473	57 ENG	
1404	05				
424	95 =		474	92 RTN	
					subroutine to sense
425	74 SM*		475	69 DP	subroutine to sense
425 426	74 SM* 05 05		475 476	69 OP 08 08	PC-100A printer is
425 426 427	74 SM* 05 05 43 RCL		475 476 477	69 OP 08 08 86 STF	
425 426 427 428	74 SM* 05 05 43 RCL 24 24		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
425 426 427 428 429	74 SM* 05 05 43 RCL		475 476 477	69 OP 08 08 86 STF	PC-100A printer is
425 426 427 428 429	74 SM* 05 05 43 RCL 24 24 65 X		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
425 426 427 428 429 430	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
425 426 427 428 429 430 431	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
425 426 427 428 430 431 432	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 =		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
425 426 427 428 430 431 432 433	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM*		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
425 426 428 428 430 431 433 433 433	74 SM* 05 05 43 RCL 24 24 65 X 43 RCL 21 21 95 = 74 SM* 05 05		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
425 426 427 428 430 431 432 433	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM*		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{r} 425 \\ 426 \\ 428 \\ 429 \\ 430 \\ 433 \\ 433 \\ 433 \\ 433 \\ 433 \\ 435 \\$	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
425 426 427 429 430 431 433 433 433 435 435	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{r} 425\\ 426\\ 427\\ 429\\ 430\\ 430\\ 433\\ 433\\ 433\\ 433\\ 435\\ 435\\ 437\\ 437\\ 437\\ 437\\ 437\\ 437\\ 437\\ 437$	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{r} 425\\ 426\\ 428\\ 429\\ 430\\ 433\\ 433\\ 435\\ 433\\ 435\\ 435\\ 435\\ 435$	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{r} 425\\ 426\\ 428\\ 429\\ 4312\\ 4334\\ 4334\\ 4336\\ 4336\\ 4336\\ 4338\\ 4336\\ 4338\\ 438\\ 4$	74 SM* 05 05 43 RCL 24 24 65 x 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48 43 RCL		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{r} 425\\ 426\\ 428\\ 429\\ 430\\ 433\\ 433\\ 435\\ 433\\ 435\\ 435\\ 435\\ 435$	74 SM* 05 05 43 RCL 24 24 65 x 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48 43 RCL		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{r} 425\\ 426\\ 4289\\ 4429\\ 43323\\ 43334\\ 4336\\ 4336\\ 4336\\ 4339\\ 4336\\ 4339\\ 4436\\ 4339\\ 4436\\ 4436\\ 4436\\ 4436\\ 4436\\ 4436\\ 4436\\ 444\\ 444$	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48 43 RCL 24 24	5 ³ term calculation	475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{r} 425\\ 427890\\ 423012334\\ 43333567\\ 433340\\ 444444\\ 44444\\ 4444\\ 4444\\ 4444\\ 4444\\ 4444\\ 44$	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48 43 RCL 24 24 65 ×	σ ³ term calculation	475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{r} 425\\ 4278\\ 9201\\ 42334\\ 43334\\ 43334\\ 433367\\ 83901\\ 4444$	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48 43 RCL 24 24 65 × 43 RCL	σ ³ term calculation	475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{r} 425\\ 4267\\ 422890\\ 442334\\ 43334\\ 433367\\ 33900\\ 44442\\ 44444\\ 4444$ 4444\\ 4444 4444\\ 4444 4444\\ 4444 4444\\ 4444 4444\\ 4444 4444 4444\\ 4444 4444\\ 4444 4444 4444\\ 4444 4444 4444\\ 4444 4444 4444 4444 4444 4444 4444 4444 4444 4444	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48 43 RCL 24 24 65 × 43 RCL 20 20	σ ³ term calculation	475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{r} 425\\ 4228\\ 4228\\ 4233\\ 4333\\ 4333\\ 4333\\ 4333\\ 44423\\ 44444\\ 44444\\ 44444\\ 44444\\ 44444\\ 44444\\ 44444\\ 44444\\ 44444\\ 44444\\ 444444$	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48 43 RCL 24 24 65 × 43 RCL	σ ³ term calculation	475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{r} 425\\ 4267\\ 422890\\ 442334\\ 43334\\ 433367\\ 33900\\ 44442\\ 44444\\ 4444$ 4444\\ 4444 4444\\ 4444 4444\\ 4444 4444\\ 4444 4444\\ 4444 4444 4444\\ 4444 4444\\ 4444 4444 4444\\ 4444 4444 4444\\ 4444 4444 4444 4444 4444 4444 4444 4444 4444 4444	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48 43 RCL 24 24 65 × 43 RCL 20 20 95 =	σ ³ term calculation	475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{c} 4256789012349567890142345\\ 42289012349567890142345\\ 44444444444444444444444444444444444$	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48 43 RCL 24 24 65 × 43 RCL 20 = 74 SM*	σ ³ term calculation	475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{c} 425\\ 42289\\ 01234567\\ 3334567\\ 33344444444\\ 44444444\\ 4444444\\ 4444444\\ 444444$	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48 43 RCL 24 43 RCL 24 43 RCL 24 5 × 43 RCL 24 5 × 43 RCL 24 5 × 43 RCL 25 05 05 05 05 05 05 05 05 05 05	σ ³ term calculation	475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{c} 42567890123345567890123345678901233456789012334567890123444444444444444444444444444444444444$	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48 43 RCL 24 43 RCL 24 43 RCL 24 43 RCL 25 95 = 74 SM* 05 05 95 = 74 SM* 05 05 95 RCL 20 95 = 74 SM* 05 05 95 RCL 20 20 95 ST 74 SM* 05 05 95 RCL 20 20 95 ST 74 SM* 05 05 95 RCL 20 20 95 ST 74 SM* 20 20 95 ST 20 20 20 20 20 20 20 20 20		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
$\begin{array}{c} 4256789012334556789012344567890123444444444444444444444444444444444444$	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48 43 RCL 24 24 65 × 43 RCL 20 20 95 = 74 SM* 05 05 92 RTN 42 STD	polynomial multiplication	475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is
567800-N84567800-N84567 22222000000000000444444444444444444444	74 SM* 05 05 43 RCL 24 24 65 × 43 RCL 21 21 95 = 74 SM* 05 05 03 3 71 SBR 04 04 48 48 43 RCL 24 43 RCL 24 43 RCL 24 43 RCL 25 95 = 74 SM* 05 05 95 = 74 SM* 05 05 95 RCL 20 95 = 74 SM* 05 05 95 RCL 20 20 95 ST 74 SM* 05 05 95 RCL 20 20 95 ST 74 SM* 05 05 95 RCL 20 20 95 ST 74 SM* 20 20 95 ST 20 20 20 20 20 20 20 20 20		475 476 477 478	69 DP 08 08 86 STF 01 01	PC-100A printer is

TI - 59 PROGRAM LISTING 1-3 card 1

REGISTER ALLOCATIONS FOR TI - 59 1-3 card 1

register number	contents
0	sum of s ⁰ terms
	sum of s ¹ terms
2	sum of s ² terms
3	sum of s ³ terms
1 2 3 4	indirect storage register index
5	indirect storage register index
6	<u> </u>
7	
5 6 7 8	
9	
10	A_0 , the op-amp dc gain
11	Y ₁
12	Y ₂
13	Y ₃
14	Yų
15	Y ₅
16	Y ₆
17	τ
18	b _0
19	$Y_5(1-A_0)$
20	s2 ¹
21	
22	s1 ¹
23	s1 ⁰
24	<u> </u>
25	
26	D ₀
27	D ₁
28	D ₂
29	D ₃
30	

000 76 LBL START 050 43 RCL	
001 15 E 0144051 29 29	
and test for PO-IOUA printer 1959 49 Det	
iter	
005 43 RCL055 85 +	
006 29 29 if s ³ coefficient is zero, 056 02 2 calc	ulate f'(x;)
007 29 CP go to second order U57 65 X	
008 67 EO solution routine 058 43 RCL	
009 01 01 059 28 28	
010 19 19060 95 =	
$011 55 \div $	
012 43 RCL calculate initial guess 062 43 RCL	
013 28 28 for real third order root 063 23 23	
015 35 1/X $x_0 = D_2/D_3$ 065 43 RCL	
016 94 +/- 066 27 27	
017 42 STO 067 95 =	
018 23 23 068 29 CP	
019 43 RCL Newton-Raphson start 069 67 E0 $f'(x_i) = 1$	0 escape
020 23 23 00 00 1	•
021 65 × 071 75 75	
022 43 RCL 072 35 1/X	
023 29 29 073 49 PRD cale f(x	$f'(x_i)$
024 85 + 074 25 25	1// 1/
026 28 28 076 25 25	mmonting to m
	rrection to x _i
028 42 STD 078 44 SUM	
029 21 21 079 23 23	
030 65 x 080 50 I×I	
031 43 RCL 081 32 X:T	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i
034 43 RCL 084 55 ÷	
	loop exit
	-
038 22 22 039 65 x 088 95 = 089 50 I×I	
039 65 × 089 50 I×I	
040 43 RCL 090 22 INV	
041 23 23 091 77 GE	
042 85 + 092 00 00	
043 43 RCL 093 19 19	
044 26 26 094 43 RCL	
045 95 = 095 23 23	
	al root
048 03 3 098 65 65 049 65 x 099 43 RCL	

		^				
100	29 29		150	77	GE	
101	42 STD		151	01	01	
102	20 20		152	75	<u>75</u>	
			153	34		
103	43 RCL				۲X A	
104	22 22		154	42	STO	
105	29 CP		155	25	25	
106	67 EQ	normalize second order	156	75		
107	01 01	coefficients	157	43	RCL	calculate and print
			158	21	21	one real root
108	31 31					Une real root
103	35 1 / X		159	95	12	
110	49 PRD		i 60	71	SBR	
11:	20 20		161	04	04	
112	49 PRD		1 62	65	65	
113	21 21		163	43	RCL	
	49 PRD		164	25	25	
			165			
115	22 22			85	+	
116	61 GTO		166	43	RCL	
117	01 01		167	08	08	calculate and print
118	31 31		168	94	÷ 💉	other real root
119	43 RCL		169	71	SBR	
120	28 28		170	04	04	
		store second order	171	65		
121	42 STD				65	
122	20 20	coefficients	172	61	GTO	
123	43 RCL		173	02	02	
124	27 27		174	25	25	
i25	42 STU		175	94	4/-	imaginary solution:
126	21 21		176	34	٢X	imaginary bolucion.
127	43 RCL		177	42	STO	
38 a. 41 41 (7) (7)			178			
128	26 26		170	25	25	
129	42 STO		179	71	SBR	
130	<u> 22 22 </u>		180	04	04	
131	43 RCL	second order solution:	181	65	65	calculate and print
132	20 20		182	43	RCL	one complex root
133	35 17X		183	21	21	-
134	49 PRD		184	94	÷/	
135			185	71	SBR	
	22 22		100			
136	55 ÷		186	04	04	
137	02 2	_ 7 7 _ 4 7 • • • •	187	66	<u> 66 </u>	
138	95 =	calculate discriminant,	188	43	RCI.	
139	49 PRD		189	25	25	
140	21 21	b ² – 4ac	190	94	+/	
141	43 RCL		191	71	SBR	
142			192	04	оок 04	
	21 21					
143	33 Xs		193	65	_65	calculate and print
144	75 -		194	43	RCL	the other complex root
145	43 RCL		195	21	21	one other complex root
146	22 22		196	94	+/-	
147	95 =		197	71	SBR	
148	29 CP		198	04	04 04	
		test for negative	199			
149	22 INV	disc r iminant	177	66	66	

		TI-59 PROGRAM LIST	ING	1-3	card (2
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214	68 NDP 68 NDP 43 RCL 22 22 34 ΓX 55 2 95 2 42 STD 25 ÷ 89 ≠ 895 ≈ 895 ≈ 71 SBR 04 04		012345678904234 2222222222222222222222222222222222	1512953051451 29605542970661	21 TD29 54 C20 R21 BB0450 GR 0	calculate and print the gain term, K
	65 65 43 RCL 25 25 43 RCL 25 ÷ 43 RCL 21 21 95 = 71 SBR 66 66 43 RCL 49 PRD	calculate and print Q	265 266 267 269 270 4 57		000000	
229 229 231 232 233 233 233 234	22 22 65 X 02 2 95 = 49 PRD 21 21 43 RCL	restore second order coefficients	60002004 6002004 6002004 4444444	91 R 61 G 04	0 BL 2/S 370 61	subroutine to lock up "R/S" command-prevents further program execution via the "R/S" command
235 236 237 238 239 239 240	02 02 22 INV 67 EQ 02 02 55 55 43 RCL	is numerator second order	465 4667 468 469 469 471	99 P 68 N 22 I 87 I 01	DV RP NV F01 04	print or display subroutine
241 242 243 244 245 245 246 247 248 249	00 00 22 INV 67 EQ 02 02 59 59 43 RCL 01 01 55 ÷ 43 RCL	is numerator a constant?	4734 47756 47789 4789	74 91 R <u>92 R</u> 69 D 08 86 S 01	74 /S TN	PC-100A sense routine

TI - 59 PROGRAM LISTING 1-3 card 2

REGISTER ALLOCATIONS FOR TI - 59 1-3 card 2

register	
number	contents
0 1 2 3 4 5 6 7	N ₀ N ₁ N ₂
8	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	A0 Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 τ b0 c ₂ c ₁ , c ₁ /2c ₂ c ₀ , 1/c ₂ x _i
24 25 26 27 28 29	f(x _i)/f'(x _i) D ₀ D ₁ D ₂ D ₃

PROGRAM 1-4 L N A P, LADDER NETWORK ANALYSIS PROGRAM.

Program Description and Equations Used

This program evaluates the frequency response and input impedance of a RLC ladder network containing up to 4 nodes and 8 branches using a sweep of discrete evaluation frequencies. The frequency response is provided as magnitude (dB) and phase (degrees, radians, or grads), and the input impedance is provided as real and imaginary parts (ohms). The evaluation frequency may be incremented in a linear manner using an additive increment or in a logarithmic manner using a multiplicative increment.

Each branch of the ladder may contain a resistor (R), a capacitor (C), an inductor (L), a series RC, a parallel RC, a series RL, or a parallel RL network. All element values are stored, and may be reviewed at any time to check or correct the component values and interconnection.

Because of the number of available storage registers in the HP-67/97, the number of nodes cannot exceed four, while the TI-59 can accommodate the data for ten nodes. Elements that inhibit signal flow through the network are not allowed, and will cause the program execution to halt displaying "Error." Examples of these inhibiting elements are a shunt resistor or a shunt inductor having zero value, or series capacitors in series branches having zero values.

The algorithm used by this program assumes 1 volt at the output of the ladder network (see Fig. 1-4.1). From the knowledge of the last branch admittance, the complex branch current may be determined. Since no current flows out of the last node, the last shunt branch current must also flow through the preceding series branch. The complex voltage drop across this branch may be determined by multiplying the branch impedance and the branch current. By adding the series branch voltage to the last node voltage, the next lower node voltage may be obtained. This node voltage times the shunt node admittance will yield the shunt node current. Adding this shunt node current to the previous series

75

branch current will yield the next lower series branch current.

This loop is repeated until the input voltage source is reached (node 0). The frequency response is found from Eq. (1-4.1) and the input impedance from Eq. (1-4.2), i.e.:

$$T(j\omega) = E_{out}/E_{in} = 1/E_0$$
 (1-4.1)

$$Z_{in}(j\omega) = E_0/I_0$$
 (1-4.2)

Figure 1-4.1 General ladder network topology.

The preceding algorithm may be expressed in mathematical shorthand using indices:

$$I_{2k-2} = (E_k) (Y_{2k-1}) + I_{2k}$$
 (1-4.3)

$$E_{k-1} = (I_{2k-2})(Z_{2k-2}) + E_{k}$$
 (1-4.5)

where k = n, n-1, n-2, ..., 1, and n is the highest numbered node. The initial conditions for the n-th node are given by:

$$I_{2n} = 0$$
 (1-4.5)

$$E_{p} = 1 + j0$$
 (1-4.6)

Equation (1-4.3) is evaluated for I_{2k-2} and substituted into Eq. (1-4.4) to obtain the next lower numbered node voltage. The index, k, is decremented by one, and Eqs. (1-4.3) and (1-4.4) are again evaluated. This process is continued until the voltage at node 0 is obtained. Equation (1-4.1) is used to find the frequency response, $T(j\omega)$, from the node 0 voltage, and Eq. (1-4.2) is used to find the input impedance.

14 User Instructions

LN	A P, LADDE	R NETWORK	ANALYSIS PROG	RAM	
# of nodes	linear sweep	log sweep	data review	start analysia	5
load R	load L	load O	load start freq	load freq increment	/

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of the magnetic card			
2	Load the number of nodes in the network			
	The number of nodes cannot exceed four	# nodes	f A	# branches
3	Enter data starting with the highest numbered			
	node;			
	a) If parallel RC or RL:			
	key in resistance and change sign*	R, ohms	chs [*] A	branch #
	key in inductance	L, henry	B	br # - 1
	OR key in capacitance	C, farad	C	br # - 1
	b) If series RC or RL:			
	key in resistance	R, ohms	<u>A</u>	branch #
	ey in inductance	L, henry	B	br # - 1
	key in capacitance	C, farad	0	br # - 1
••-	For resistance, inductance, or capacitance alor	ne in		
·····-	one branch, use step 3b with zero resistance f L or 0 entry, or use zero inductance for resis	or		
	entry. A zero or positive resistance is inter	preted		
	as a series branch indication.			
	Alternately, step 3a may be used to enter sing	1		
	inductors or capacitors by entering a very lar	ze te		••••••
	negative resistance like -10^{20} ohms.	5		•••••
	Fastest program execution will result if the z	e m 0		
	resistance method with step 3b is used for ser	ies		
	branches, and the large negative resistance me	thod		
·	with step 3a is used for shunt branches. By observing this convention, the program will	not		
<u>├</u>	use the series to parallel conversion subrouting	ne		
	which requires about 2 seconds to execute each	time		
	it is called.			
·	Repeat step 3 until all branches including bran	n ch O		
	have been entered.			
	* The sign change must affect the mantissa	and		
	not the exponent on numbers entered using scientific notation.			
	BELEMELLIG NOTHELON.			

14 User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	To review stored element values		fD	branch #
				R _n ≠
	 A negative resistance value indicates 			$L_n \text{ or } C_n **$
	a parallel connection of elements			space
				R_{n-1} *
	** A negative value for the reactive			L C **
	element indicates the element is a			
	capacitor. The capacitance value is			:
	the absolute value of the number given.			Ro*
				Lo or Co**
5	To change the value of a stored element;			
	a) Key in branch number to be changed	branch #	STOI	
	b) Key in correct resistance	R	Â	
	c) Key in correct reactive element value	L <u>or</u>	Bar	
		с 🛄		
	Repeat step 4 or 5 if desired.	*********		
6	To run analysis:			
	a) Load start frequency in hertz	f _{start}	D	
	b) Load frequency increment	fincr	E	
	(for linear sweep, the new frequency			
	will be the old frequency plus the			
	increment, and for log sweep, the new			
	frequency will be the old frequency			
	times the increment)			
	c) Select linear or logarithmic sweep			
	For linear sweep		f B	иОи
	For logarithmic sweep		f	"l"
	Steps 6a, 6b, and 6c may be executed in			
	any order.			
	d) Start analysis run		f E	see Ex.
	***************************************			(1-4.1)

¹⁴ User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	To stop the analysis:			
	Wait until the pause that occurs after the			
	imaginary Z _{in} is printed, then key R/S		R/S	
	If the program execution is halted without			
	waiting for the pause, the primary and			
	secondary registers may be left interchanged.) • • • • • • • • • • • • • • • • • • •
	······································)
	If a register interchange is suspected,			
	recall register 0 and check to see that	• • • • • • • • • • • • • • • • • • •		***********
	branch 0 resistance is stored there.			
	If the branch O reactive element is found in			
	register 0, an interchange has occurred,		P≥S	
	and a P≷S operation is required.		<u> </u>	
		••••••		
			1	

	***************************************			*************

•••••				
••••••				····
				••••••
••••••				

Example 1-4.1

Figure 1-4.2 is the schematic of a predistorted 8th order Butterworth lowpass filter with a -3 dB cutoff frequency of 1000 Hz, and a design impedance level of 1000 ohms. Determine the frequency response and input impedance of this filter over a frequency range of 100 Hz to 10 kHz using a logarithmic sweep with 10 points per decade.

Figure 1-4.2 Predistorted 8th order Butterworth LP filter.

	PRINTOUT	EOD		
п г -9/	PRINTOUT	FOR	EXAMPLE	1-4,1

PROC	PROGRAM INPUT DATA R		REVIEW	
4.00 GSBa	load # of nodes			
-996. GSBA	R7*		65Bd	start data review
.0621-06 GSBC	0 ₇	7.000+00	strairair	branch number
	•7	-996.0+00		
11. GSBA	R ₆	-62.10-09		
.1768 GSBB	-6 L6			IOUCCIAS Pares
	-0	6.000+00	***	
-601 00. GSBA	Rs	11.00+00	***	
.2647-06 GSBC	R5 05	176.8-03	***	
19.6 GSBA	R4	5.000+60	***	
.3 122 GSEB	L ₄	-60.10+03		
	•	-264.7-09	***	
-51000. GSBA	R ₃ 03			
.3122-06 GSBC	03	4.000+00	***	
		19.60+00		
16.6 GSBA	R ₂	312.2-03	***	
.2647 GSBB	L2			
00000 00DA	2	3.000+00		
-90000. GSBA .1768-06 GSBC	R ₁	-51.00+03		
.1/00-00 5300	° ₁	-312.2-09	***	
1003.5 GSBA	R _O	2.000+00	末末末	
.0621 GSBB	0 <mark>0</mark>	16.60+00	***	
	•	264.7-03	***	
		1.000+00	***	
		-90.00+03		
		-176.8-09	米本木	
		0.800+00	冰冰冰	
		1.004+03	***	
		62.10-03	***	

A negative sign indicates a parallel connection of elements. *

A negative sign indicates a capacitor as the reactive element. **

HP-97 PRINTOUT FOR EXAMPLE 1-4.1

	GSBc	seleat log	sweep
100.	GSBD	load start	frequency

.1 10×	calculate freg increment for 10 points per decade
1.259+00 ***	multiplicative increment (manual print command)
GSBE	load multiplicative increment

GSBe start analysis

PROGRAM OUTPUT

100.0+00 f: -6.467+00 g -29.40+00 p 2.000+03 R 208.2-03 In	ain, dB -6.482+00 hase, -94.00+00 e Z _{in} ,Ω 2.000+03	1.000+03 -9.816+00 2.263+00 5.622+03 -415.8+00	3.162+03 -86.07+00 95.46+00 1.005+03 932.4+00
125.9+00	398.i+00	1.259+03	3.981+83
-6.458+00	-6.493+00	-22.54+00	-102.0+00
-37.04+00	-119.2+00	-98.07+00	75.48+00
2.000+03	2.000+03	1.049+03	1.005+03
250.4-03	-723.8-03	-813.0+00	1.319+03
158.5+00	501.2+00	1.585+03	5.012+03
-6.470+00	~6.513+00	-38.24+00	-118.0+00
-46.68+00	-152.0+00	-161.3+00	59.79+00
2.000+03	1.993+03	1.013+03	1.004+03
292.3-03	-2.388+00	-139.0+00	1.772+03
199.5+00	631.0+00	1.995+03	6.310+03
-6.472+00	-6.557+00	-54.14+00	-134.0+00
-58.87+00	164.2+00	154.3+00	47.41+00
2.000+03	1.957+03	1.008+03	1.00 4+03
322.3-03	17.75+00	248.9+00	2.317+03
251.2+00	794.3+00	2.512+03	7.943+03
-6.476+00	-6.770+00	-70.09+00	-150.0+00
-74.33+00	101.8+00	121.1+00	37.62+00
2.000+03	1.931+03	1.005+03	1.004+03
305.9-03	275.6+00	586.1+00	2.985+03

10.00+03 -166.0+00 29.86+00 1.004+03 3.811+03

Example 1-4.2

Over a frequency range of 8 Hz to 12 Hz using a linear sweep with 0.2 Hz steps, evaluate the transmission function and input impedance of the network shown in Fig. 1-4.3.

Figure 1-4.3 Network for Example 1-4.2.

The network must be redrawn with the insertion of dummy elements to place it in the ladder format meeting the program input requirements, i.e., only parallel RC or RL networks can be accommodated, not parallel LC networks. The redrawn network is shown in Fig. 1-4.4.

Figure 1-4.4 Network of Fig. 1-4.3 redrawn with dummy elements.

HP-97 PRINTOUT FOR EXAMPLE 1-4.2

	PROGRAM INPUT		DATA REVIEW		
		enter # of nodes		GSBd	start data review
-1.+20 .159155		R5 * L5	5.000+00 -100.0+10		
	GSBA GSBB	R ц Lц	159.2-63		
-1.+20 1.59155-03		R3 03	4.000+00	***	
-106.	GSBA	•	0.000+00 3.000+00		
1.59155-03		0 ₂	-100.0+18 -1.592-03		
	GSBC GSBC	R ₁ O ₁	2.000+00 -100.0+00		
100. 0.	GSBA GSBB	RO LO	-1.592-03	***	
			1.000+00 -100.0+18 0.000+00	***	
			0.000 +00		
			100.0+00 0.000+00		

* A negative sign indicates parallel connection of elements.

** A negative sign indicates a capacitor.

nalysis Particulars

PROGRAM OUTPUT

8.000+00 freq,	Hz 9.000+00	10.00+00	11.00+60
-13.24+00 gain	dB -7.123+00	-6.158-06	-7.057+00
84.42+00 phase	, ° 70.22+00	-414.3-06	-58.65+00
101.5+00 Re Z.	in, Ω 101.2+00	101.0+00	100.8+00
9.915+00 Im Z		-13.97+06	-61.40+00
-	11 4 3		
8.200+00	9.200+00	10.20+00	11.20+00
-12.23+00	-5.473+00	-928.2-03	-8.251+00
82.69+00	64.09+00	-21.06+00	-62.31+00
101.5+00	101.2+00	101.0+00	100.8+00
13.01+00	49.15+00	-262.2+00	-52.88+00
8.400+00	9.400+00	10.40+00	11.40+00
-11.13+00	-3.663+00	-2.509+00	-9.306+00
80.60+00	55.22+00	-36.38+00	-65.11+00
101.4+00	101.1+00	100.9+00	100.8+00
16.79+00	70.24+00	-137.0+00	-46.76+00
8.600+00	9.600+00	10.60+00	11.60+00
-9.930+00	-1.819+00	-4.173+08	-10.25+00
77.99+00	42.03+00	-46.69+00	-67.31+80
101.3+00	101.1+00	100.9+00	100.7+00
21.55+00	112.1+00	-95.11+00	-42.12+08
8.800+00	9.800+00	10.80+00	11.80+00
-8.602+00	-361.1-03	-5.702+00	-11.09+00
74.66+00	23.0 5+00	-53.70+00	-69.09+00
101.3+00	101.0+00	100.9+00	100.7+00
27.79+00	237.4+00	-74.08+00	-38,49+00

12.00+00 -11.86+00 -70.55+00 100.7+00 -35.55+00

TI-59 PRINTOUT FOR EXAMPLE 1-4.2

DAT	A REVIEW	PROGRAM	OUTPUT
-1.	branch # 20 resistive part * reactive part **	-267.18 -65.99	freq, Hz phase, ^o gain, dB Re Z _{in} , ^A Im Z _{in} , ^A
4. 0. 0. 3.	4.9	0.13 -266.46 -63.97 198.44	
-1. -0.00159155	20	-12,27	
2. -100. -0.00159155		0.16 -265.57 -61.94	
1. -1. Ū.	20	197.55 -15.30	
0. 100. 0.		0.20 -264.47 -59.89 196.17 -18.99	
		0.25 -263.13 -57.82 194.06 -23.38	
		0.32 -261.53 -55.70 190.91 -28.43	

References and Equation Derivation

The algorithm is completely described in the program description section. This particular analysis method is widely referenced. The earliest reference known to the author is T.R. Bashkow [4]. 1-4

Program Listing I

001 *LBLA LOAD RESISTOR VALUE	056 *LBLd INPUT DATA REVIEW
002 GSE5 odd or even branch?	057 GSB4 initialize
	058 #LBL8 review loop start
905 F0? form G = -1/R	050 RCLI recall and print branch #
<u>006 CHS</u>	
007 STO: store value	862 RCL: recall branch R or G
<u>808 RCLI</u> recall branch # to display	<u>863 F8?</u>
009 RTN return control to keyboard	064 1/X if odd branch (flag 0 set)
010 *LELC LOAD CAPACITOR VALUE	
	<u>866 CHS</u>
012 *LELE LOAD INDUCTOR VALUE	067 FRIX print branch resistance
013 GSB5 odd numbered branch?	068 F#S
014 F0? change sign of entry if	869 RCLi recall branch L or C
015 CHS branch number is odd	070 P#S
<u>A16 P79</u>	
017 STO; indirectly store reactive	<u>072</u> CHS change sign if branch odd
012 $F_{\pm S}$ element values	
<u>819</u> USZI decrement branch number	<u>874 SPC</u>
<u>020 CF3 _clr flag 3 (a NOP statement)</u>	075 F3? test for loop exit
021 RCLI recall branch number	OTO KIN
022 STO7 goto space and return	
023 #LBLD LOAD START FREQUENCY	aze pezz decrement index register
024 STO8	075 US21 and SF3 if index is zero
025 GT07	
	<u>080 GT03</u>
	081 *LBLe LNAP ANALYSIS START
027 ST09	082 GSB4 goto initialization
<u>028</u> GT07	083 *LBL9 analysis loop start
829 *LBLa LOAD NUMBER OF NODES	084 GSB3 recall shunt branch elements
030 STOE store number of nodes	
831 #LBL4 initialization routine	not not recall complex node voltages
032 EEX	
	6001
$\begin{array}{ccc} 033 & STOA & \mathbf{E_n} = 1 + \mathbf{j}0 \end{array}$	888 RCLU recall previous complex
034 CLX "	089 RCLC branch current and perform
<u>835</u>	090 <u>GSB2</u> complex addition
936 STOC - 0 + 40	091 STOC
$\frac{636}{937}$ $\frac{5100}{5100}$ $I_{2n} = 0 + j0$	092 X≓Y store complex branch
038 RCLE	093 STOD currents for present branch
	<u>094 X=Y</u>
040 + highest branch number	895 CF0 decrement index register
041 EEX	
842 - Br# = 2(# nodes) - 1	097 SF0 & SFO if index is zero
043 STOI	698 GSE3 recall series branch_elts_
044 CF3 clear data entry flag and	099 GSB1 execute complex multiply
045 GT07 goto space and return	
	int call complex node voltage
	101 RCLA and add to branch voltage
047 CF1	
848 CLX place "zero" in display	103 Xry store new complex node
049 GT07 goto space and return	104 STOB voltage
050 *LBLC SET LOGARITHMIC SWEEP	105 X≠Y
050 *LBLC SET LOGARITHMIC SWEEP 051 SF1	105 X#Y 106 STDA
850 *LBL¢ SET LOGARITHMIC SWEEP 851 SF1 852 EEX	105 XIY 106 STDA 107 DSZI decrement branch number and
050 *LBLc SET LOGARITHMIC SWEEP 051 SF1 052 EEX 053 *LBL7 space and return subroutine	105 XIY 106 STDA 107 DSZI decrement branch number and 108 F0? test for loop evit
050 *LBLc SET LOGARITHMIC SWEEP 051 SF1 052 EEX 053 *LBL7 space and return subroutine 054 SFC	105 XIY 106 STDA 107 DSZI decrement branch number and 108 F0? test for loop exit 109 GTD9
050 *LBLc SET LOGARITHMIC SWEEP 051 SF1 052 EEX 053 *LBL7 space and return subroutine	105 XIY 106 STDA 107 DSZI decrement branch number and 108 F0? test for loop exit 109 GTD9
850 *LBLc SET LOGARITHMIC SWEEP 851 SF1 852 EEX 853 *LBL7 space and return subroutine 854 SPC 855 RTN	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
850 *LBLc SET LOGARITHMIC SWEEP 851 SF1 852 EEX 853 *LBL7 854 SPC 855 RTN	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
850 *LBLc SET LOGARITHMIC SWEEP 851 SF1 852 EEX 853 *LBL7 space and return subroutine 854 SPC 855 RTN REGIS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
850 *LBLc SET LOGARITHMIC SWEEP 851 SF1 852 EEX 853 *LBL7 854 SPC 855 RTN	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

1-4

Program Listing II

111	STOA	temn	orarily_sto	re Faul		Ī	66	ST+9	ad + bc i	n register	9
$\frac{111}{112}$	LOG	- <u>oom</u> p	<u>610171) _ 9 @</u>				67	RCL9	rcl f =		/
										· · · •	
113	- 2	conv	vert to dB				68	RCL8	rcl e, ac	- bd - e	
114	Ø					1 1	69	P≓S		egister ord	lor
	-						70		resure r	sgister ort	101
<u>115</u>	<u> </u>							RTN		main progr	
116	RCL8					I I	71	*LBL2	complex a	dd subrout;	ine
117	RND		11 and			1 1	72	X≢Y	••= <u></u>		
		reca	all and prin	it present							
118	PRTX	anal	ysis freque	encv			73	R∔			
119	RŦ					1 1	74	+			
								R↓			
120	CHS	reco	over and pri	nt -dB			75				
121	RND		-			1 1	76 -	+			
122	PRTX						77	RŤ			
		<u> </u>									
123	R∔	reco	ver phase a	ingle			78	RTN	return to	main prog	ram
124	STOB	temr	orarily sto	re X.E.		1 7	79	*LBL3	complex r	ecall subr	outinë
125	CHS			<u></u> 1n			80	RCL8			
									calculate	$\omega = 2\pi f$	
126	RND	prin	nt -(phase a	ungle)		1 1	81	F i			
127	PRT <u>X</u>	-	11			1	82	x			
		<u> </u>					83	ENT†			
128	RCLD	Tens	il I _O								
129	RCLC	1004	0			1 1	84	+			
130	+P					। न	85	P‡S '			
1	•								recall re	active bra	nch
[131	RCLA						86	RCL i			
132	X≠Y					1 1	87	P≓S	element,	b _x , and fo	rm
133	÷						88	x	2πfb _x		
		nerf		- diviator.							
134	X∓Y	heu	orm complex	CULAISION:		1 1	89	X<0?			
135	RCLB						90	178	form reci	procal if	b _x <0
			Z F /	/ +							
136	X≓Y		$Z_{in} = E_{in}$	±0			91	RCLI	recall re	sistive el	ement
137	-			•		1 7	92	X<0?	if vor	erform par	
138	040										atter
	X‡Y						93	<u>6703</u>	<u>_series_</u> ço	nversion_	
<u>139</u>	<u>_→R</u> _					11	94	RTN	return to	main prog	ram
140	PRTX	nrir	it Re Zin		_		95		narallal	series co	ntenden
		Pr TU	ic ne lin					ADC	That at Tet		<u>uversion</u>
141	S≓Y						96	ABS			
142	PRTX	Drir	nt Im Z _{in}			1 1	97	178	conductan	nce=resist	ance
		Pran	io in lin				98	<u></u> .			
<u>143</u>	PSE										
144	RCL9	reca	11 frequenc	v increment		1 1	99	1/X	susceptar	nce ÷reast a	nce
145	F1?				·	1 2	00	X≓Y	-		
			.								
146	ST×8	use	multiplicat	ive increme	mt		201	•			
147	F1?		ogarithmic			2	02	1×X	calculate	e complex i	nverse
148	GT0e		OCAL T OUTITO	pacch point	,		03	÷R		· ··	
		<u> </u>									
149	ST+8	use	additive in	crement if		$\underline{}$	04	RTN.	<u>return to</u>	<u>main prog</u>	ram
150	GT0e		ar sweep se			2	65	<i>¥L₿L<u>5</u></i>	odd or ev	ven branch	subr
151	*LBL1		Lov miltin	LOULOU			06	RCLI			
		_combi	lex multipl		<u> </u>						
152	P≠S		(a+jb)(c+	jd) = e+jf		2	07	2		f branch ev	
153	ST08	а				2	08	÷	or 0.5 if	f branch od	d
									•/ 11		-
[154	\$109	a					89	<u> </u>			
155	R↓					2	10	SFØ			
156	ENT						11	X=0?	ast flo~	0 if branc	h is add
									Secillag	V II Draile	I TE OUG
157	R4					<u> 2</u>	12	<u> </u>			
158	R↓	с			1	1 2	13	R∔	restore	x register	in stack
		-		•							
159	ST×8	ac	in register	r 8			14	RTN	return_to	o main prog	1.em
160	R↓	d	Ļ			1					
161	ST×9	-		•		l I					
			in register	с У С	I	1					
162	X		n stack			1					
163	ST-8			ut at an O		1					
		ac	- bd in reg	jister Ö	1	1					
164	₽↓					1					
165	х	be in	ı stack			1					
]		00 II	DUAUK			l I					
F		·				<u> </u>		1 400	· · · ·	CET OTATIO	
	-			ELS				LAGS		SET STATUS	
A load R	B load	T.	^C load C	D load	E 10	ad freq			FLACE	TRIG	DISP
				start freq	inc	rement	<u>br</u>	anch	FLAGS		0135
		linear	c set log	dstart	e 15	tart	1 1-	·//14~	ON OFF	<u></u> -	
	SWOO	D .	sweep –	data revu		alysis		g/lin	0	DEG 🔳	FIX
a load # of nodes		IAT	la complex	3 complex			2		11 🔳	GRAD	SCI
of nodes		fye.	15 00mR40v								
0	1 comp mult		2 complex add	recall	ini	<u>tializ</u> e			·		ENG
0 5. 000/even				<u>recăll</u>	<u>i</u> ni 9	tialize		ata	2	RAD	
0		iply ies = ile1		<u>recăll</u>	<u>i</u> ni 9	tialize		ata itry	·		ENG

1-4

TI-59 PROGRAM LISTING

			-4 II-59 PROGP				
000	76	LBL	LOAD RESISTOR VALUE	056	4	SUM	
				05:	56	56	
001	1	Ĥ		052	4.3		
002	42	97 D	town and will be stamp				recall reactive
លល		57	temporarily store	050	58	58	-
				ies.	\sim	RTH	element to display
		SBR	set flag 0 if	055		- Index Sector	
005	U4	04	branch number is odd		76	LBL	LOAD SWEEP STARTING FREQ
006	18	18	ATAHAN NAMPAT TO AND	0.56	24		
00	43	PCL		057	42	STO	
			recall entry	058			
006	5177	50	Ideall ondry		55	55	
009	37	1FF		05.4	92	RIN.	
010	00	-00	if odd branch, form	060	76	LBL	LOAD FREQ INCREMENT
			$\mathbf{G} = -1/\mathbf{R}$	061	15		
01:	ÜÜ	00				E	
012 г	<u>: 3</u>	18		062	42	STO	
013		ST*		063	54	54	
	12		store R or G	000 U£4			
014	59	<u>59</u>				<u>RTH</u>	
015	43	RCL		955	76	LDL.	SELECT LINEAR SWEEP
016			recall resistor value	066	17	Β.	
	57	57	to display	ŨĠ			
017 I	92	F: 7 H			22	INV	
	$\mathbf{U}_{\mathbf{y},\mathbf{z}}$	+		068	86	SIF	
019		-	routine for $G = -1/R$	069	01	ÛÌ	
	35	<u>1</u> X					
020	161	GTU		070	00	ក្	display O
021	00	00		07.	92_	RTH_	
				072	76	LBL	SELECT LOG SWEEP
022	<u>L;3</u>	13		1073			
020	76	LBL.	LOAD CAPACITOR VALUE		<u>.</u> 8	C •	
024	13	С		074	86	STF	
loos		*		075	Ũ 1	Ŭ1	
025 026	54		· · ·	1			
026	94	+ -	change sign and	076	[1]	1	display 1
027	42	STO	temporarily store	077	92	RTN	- r - v -
	58	53	· •	078	76	LBL.	
028			LAIR TUDUARAD BITTE	079	19	<u>n</u>	INPUT DATA REVIEW
029	76	ـها نیا هما	LOAD INDUCTOR VALUE				
030	12	B		080	71	SBR	
031	42	STO		081	ÛЗ	03	init i aliz e
				082	8õ	ŝõ	TTT AT# TT 8.A
032	-58	- 58 <u>-</u>					
030	71	SBR	ant flow (if human		► 1	SBR	mot flom () to two woth
034	Ü4	<u>14</u>	set flag 0 if branch	Ú84	04	04	set flag O if branch
1			number is odd	085	18	18	number is odd
035	18	18					
036	43	RCL	recall entry	<u>086</u>	53	<	
037	58	58	TOATT GUALA	087	43	RCL	recall branch number
				080	59	59	
038	22	INV	if branch number is			.17	
039	87	IFF	odd, change the sign	089	75	•	
040		00		090	Üj	4 -	
		111	of the entry	091	00	Ò	
	00				ູບບ		
041	00 00	00					
041	ÜÜ	00		092	54	>	
041 042	00 44	00 44		092		-	
041 042 0 4 3	00 44 9 4	00 44 +.:-		092 0 9 3	98	ADV	
041 042 043 044	00 44	00 44		092 093 094	<u>98</u> 71	ADV SBR	
041 042 043 044	00 44 94 72	00 44 +.: ST*	store reactive element	092 0 9 3	98	ADV	print or display
041 042 043 044 045	00 44 94 72 56	00 44 +.:- ST* 56		092 093 094 095	98 71 04	ADV SBR 04	print or display branch number
041 042 043 044 045 046	00 44 94 72 56 01	00 44 + ST* 56 1	store reactive element decrement index of	092 093 094 095 095	98 71 04 66	607 SBR 04 66	branch number
041 042 043 044 045	00 44 94 72 56	00 44 +.:- ST* 56	decrement index of	092 093 094 095 095 096 097	98 71 04 66 73	ADV SBR 04 66 RC*	
041 042 043 044 045 046 046	00 44 94 72 56 01 94	00 44 + 51 56 1 +/-	decrement index of resistive and reactive	092 093 094 095 095	98 71 04 66	607 SBR 04 66	branch number recall resistive
041 042 043 044 045 046	00 44 94 72 56 01	00 44 + ST* 56 1	decrement index of	092 093 094 095 095 096 097	98 71 04 66 73	ADV SBR 04 66 RC*	branch number

This translation was provided by Mr. Walter Ware

1-4

TI-59 PROGRAM LISTING

			-4 11-59 PRUG				
100	87	IFF		1506	03	03	
101	00	ŪŪ	if odd branch, form	151	68	NOP	
	01		$\mathbf{R} = -1/\mathbf{G}$		68	NDP	
102		01		152			
103	- 06	06		153	68	ΝOΡ	
104	35	178		154	61	GTD	
					ŌŌ		
<u>105</u>	94	+/-		155		00	goto loop start
106	71	SBR	14 - 1	156 L	- 83	83	
107	04	04	display or p ri nt	157	-29	CP -	complex recall subr
	66		resistance	158	53		comptex recall publ
108		66					
109	73	RC*	recall reactive element	159	43	RCL	
110	56	56	ISCATT ISACCIVE CIEMONI	160	55	55	
111	22	INV		161	65		calculate $\omega = 2\pi f$
			if odd branch,				
112	87	IFF	change sign	162	89	11	
113	ŰŨ	00	······································	163	65	×	
114	01	01		164	02	Ž	
					65	<u> </u>	
115	17	17		165			recall reactive branch
116	94	+ 🖍		166	73	RC+	
117	71	SBR		167	56	56	element value and
			print or display				form branch immittance
1184	04	04	L or C	168	54	<u>.</u>	
119	66	66		169	77	GE	
120	87	IFF		170	01	Ō١	if immittance is nega-
					73		9
12:	03	03	toot for loss and	171		73	tive, form reciprocal
122	01	Οţ	test for loop exit	17:	35		
122	r 47	47		172	42	570	
<u> </u>					58	58	store immittance
124	86	STF		174			
125	03	03	A A A A.A.A.A.A.A.A.A.A.A.A.A.A.A.A	17°		RC*	
126	01	i	decrement indirect	176	59	59	recall branch
			storage register		42	STU	
127	94	+/-	indices	177			resistance and store
128	44	SUM		178	57	57	
129	56	56		179	22	THV	
					77		
130	44	SUM		180		ĠΕ	if resistance negative,
131	59	59		183	01	្ដ	perform series zparallel
132	43	RCL		182	84	84	conversion
		-			<u>- 12</u>	RTH	
133	109	09		181			
134	85	÷	set t = 10	184	43	RCI.	series = parallel
135	01	1		185	57	57	conversion subroutine
136	95	⊥ 52		<u>a an an an</u>	50		
				186			
137	32	X:T		187	35	1. X	conductance resistance
138	43	RCL		188	32	XIT.	
139	59	59	recall register index		43	ROL	
				189			
140	22	INV		190	53	58	
141	67	EQ	if index - 10, execute	19)	35	1.X	susceptance = reactance
142	10 i	1) j		132	94	÷ -	
			one more loop				
	H 48	48		15:	22	1617	
44	61	GTD	· · ·	194	37	ΡR	
145		00		195	94	4 -	
							calculate complex
146	83	83		196	32	X IT	inverse
14 i I	[L <u>q</u> ₂]	RTN		19.	35	$1 \cdot X$	
147							
				101	32	X * T	
147 149	-22 86	IN7	clear flag 3	195 19	32 37	X'T P R	

		-	-4 TI - 59 PROG				
200	42	STD	temporarily store	250	-59	59	
201	58	58	immittance	251	71	SBR	
202	32	XIT	temporarily store	252	01	01	recall series branch
201	42	STD	resistance or cond	253	57	<u>57</u>	elements
204	57	57	Teststance of Cour	254	43	RCL	
205	92	RTN	return to main program	255	57	57	
20:	76	LBL	LNAP ANALYSIS START	256	42	STO	
207	10	E #	WAT MALIOID UTANI	257	01	01	multiply series
208	<u> </u>	FIX		258	43	RCL	impedance by complex
			set display mode	259			branch current to
205	02	<u>50</u>	·		58	58	obtain series branch
210	98	ADV	advance paper	260	42	STU	voltage drop
211	<u>98</u>	<u> </u>		261	02	02	
212	71	SBE		262	43	RCL	
21_	03	03	initialize	263	51	51	
214	<u>83</u>	83		264	42	STO	
21		SBP		265	03	03	
21	ព្រ	ŋi	recall shunt branch	266	43	RCL	
	57	52		267	52	52	
<u>21:</u> 21:	43	RCL		268	42	STO	
219	57	ncor O i		269	j4	04	
shaan bi v≮ shaa sha shaa shii	42	STD	recall complex node	270	36	PGM	
slist. El Cla			voltage and execute	271	04		
and a Constant	01	01	complex multiply to			04	
engengen Sang san pi The short se	43	RCL	obtain complex branch	272	13	<u>C</u>	·
2214	58	50	current	273	43	RCL	
224	42	stu		274	Ö1	01	add complex series
225	02	02		275	44	SUM	voltage drop to previous
22	43	RCL		276	49	49	node voltage to obtain
n in an an an Ann ann	49	49		277	43	RCL	next node voltage and
	42	STO		278	02	02	store result
22	0.S	03		279	44	SUM	
23	43	ĒĊĪ.		280	50	50	
23.	50	50		281	01	4	
23	42	STU		232	94	⊥ 47-	
231				281	द्व द्व		decrement indirect
	14 14	(]4 0 0 0		20 284		SUM	recall indices
234		PGM			56	56	
235	04	04		285	44	SUM	
234		<u> </u>		286	<u> </u>	<u> </u>	
237	4	RCL		287	43	RCL	
22	0 j	01	recall previous complex	288	09	09	
235	44	SUM	branch current, perform	289	32	XIT	test for loop exit
240	51	51	complex add and store	290	43	RCL	F
241	43	RĈĹ	result	291	59	59	
242	ΰŽ	Û2		292	67	ĔQ	
242	ے دے۔ بلانہ ا	SŪM		293	02	02	
244	52	- 52 - 52		294	98 98	98	
2.499 % 2.445	<u></u> 01	<u></u>		295	<u></u> 61		
ಪ್ರೆ ಕಿಲ್ಲ್ ಗ್ರಾ.ಕಿ.ಲ್		ы. Э. Э.	deamonent indianat	270		GTO	
246	94	4∕ ⊶	decrement indirect	296	02	02	repeat loop
2	ా చేటి	SUM	recall indices	297	15	<u> 15 </u>	
248	56	56		298	43	RCL	recall present freq
240	4 다	SHM		299	.55	55	

1-4 TI - 59 PROGRAM LISTING

1-4

TI-59 PROGRAM LISTING

34 42 STU 392 00 0 34 04 04 393 54 0 344 36 PGM 394 42 STU 345 04 04 395 59 59				11-59 PRUG		121114	u i	
30 04 04 04 04 04 04 30 43 Eff. 35 02 02 02 304 43 44 49 recall complex input 354 42 02 304 44 49 recall complex input 354 43 RCL 355 04 04 1	C 🗊	71	SBR		351	ñ۵	$\overline{0}4$	
31 -66 66 Frequency 35 43 RCL 304 49 49 recall complex input 354 71 SBR print or display 302 324 71 SBR 355 0.6 0.6 66 305 324 71 SBR 10 251 54 31 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10 10 11 10 10 10 10 11 10		<u>0</u> 4	Π4					
20 43 802 35 43 802 204 43 802 35 02 02 02 304 32 43 802 35 04 04 15 304 32 43 801 35 04 04 15 15 305 36 37 43 801 recall frequency 35 04 04 15 16 307 42 111 60 convert to polar 35 37 43 801 11 10 map if log oweep 311 42 STD convert transmission 36 03 02 celected 36 03 02 eected 31 42 STD calculate 20 log of 36 04 101 11 106 04 04 04 04 04 04 06 105 05 04 11 106 04 04 101 1100 1100 1100 1100 1100 1100 1100 1100 1100				frequency				
304 49 49 recall complex input voltage 354 71 SIR JL print or display 301 32 X77 voltage 355 0.4 0.4 Im Jun 301 32 X17 voltage 355 0.4 0.4 Im Jun 301 .2 1H1 convert to polar 355 54 34 increment								
300: 32 2/77 Fedal complex input voltage 355 0.6 0.4 1.1 1.1 2736 3 RCL voltage 355 0.6 0.4 1.1					35	- 02	<u> </u>	
330: 32 2:77 voltage 355 0.6 0.4 In Zin 276 3 RCL voltage 355 0.6 0.4 In Zin 370 3.9 1.9 1.1 256 0.6 0.4 Frequency 371 1.11 42 STD convert to polar 35 43 RCL recell frequency 371 94 - change sign of angle 366 0.1 0.1 jump if log sweep 311 42 STD and store 36 64 64 64 1.1 42 STD on etwork transmission 364 16 GTD for linear sweep 312 28 HIG cellulate 20 log of 366 02 02 32: 28 HIG network transmission 364 45 55 stdd frequency increment 31 94 +2 nottoin asti of GTD 066 06 06 32: 93 entotin magnitude 366 55 55 multiply by freque	304	49	49	woopli complex imput	354	- 71	SBP	
296 3 RCL voltage 35: 4:3 RCL recall frequency 30: -2 10: 50: 35: 43: RCL recall frequency 30: -2 10: 25: 54: 54: 14: accrement 30: -4: PAR convert to polar 35: 37: IFF 31: 94: ohange sign of angle 36: 01: 91: jup if log sweep 31: 91: 94: of network transmission 36: 55: 55: add frequency inorement 31: 04: 04: 04: of network transmission 36: 10: 10: 10: 10: 31: 04:	36.	32	X:T					In Z _{in}
10 50 50 35 43 RCL recall frequency 30 4 p.rk convert to polar 35 37 IFF 31 94 - change sign of angle 36 01 01 jump if log sweep 31 42 STI and store 36 03 02 selected 31 42 STI and store 36 44 SUM selected 31 71 SER print or display angle 36 45 SUM add frequency increment 31 71 SER print or display angle 36 42 SUM add frequency increment 31 64 55 55 sadd frequency increment 36 43 SUM 32 28 10 calculate 20 log of 36 10 10 multiply by frequency 32 93 store for 10 set sin set				voltage				
31 1.21 INF. convert to polar 35. 37. 16. Feedulit Frequency 31. 94.* convert to polar 35. 37. 17. 11. 10. 11. 10. 11. 10. 11. 10. 11. 10. 11.		-						
30 4.9 P/R convert to polar 35: 54 74 imercant 31 94 + change sign of angle 36: 01 01 jump if log sweep 31 7: SBR print or display angle 36: 10: 01 jump if log sweep 31 7: SBR print or display angle 36: 14: 42: STI 31 7: SBR print or display angle 36: 14: 44: SUM 31 7: SBR print or display angle 36: 14: 44: SUM 31 7: SBR print or display angle 36: 16: 16: 17: 31 7: SBR print or display angle 36: 55: 55 add frequency increment 31: 92: 10: calculate 20 log of 36: 55: 55: increment for log sweep 32: 01: 0 37: 76: 16: 10: 10: 10: sweep 32: 01: 04: 04: 04:							RCL	recall frequency
30 4 P-R contert of point 35 37 IFF image ign of angle 31 94 ohange sign of angle 360 01 1 jump if log sweep 31 94 of sore 36 64 63 02 selected 31 71 SER print or display angle 36 44 SUM 31 64 64 function 36 64 68 68 31 71 SER print or display angle 36 64 64 60 31 71 SER print or display angle 36 64 62 02 31 94 +2 nottion magnitud 36 64 62 02 31 94 +2 nottion magnitud 36 55 55 multiply by frequency 32 95 = 37 76 LBL LOAD NUMBER OF NODES 32 91 att set for printer 37 75 75 53 32 94 9 37		3 m 1 m	-	annuart de veloe	35:	5_{4}	<u>-</u> ;4	
31. 74 + ohange sign of angle and store 360. 01.	30	. 1	P/R	convert to botat	35.			
114 42 STD ohange sign of angle 36. 03 01 selected 31 71 SER print or display angle 36. 648 63 31 71 SER print or display angle 36. 644 SUM 31 71 SER print or display angle 36. 644 SUM 31 64 64 function 36. 644 SUM 31 65 SE 55 sdd frequency increment 31 65 function 36. 64 SP PRD 31 65 x function magnitude 36. 65 55 31 65 x function magnitude 36. 65 55 multiply by frequency 32 95 = 37. 76 EBL LOAD NUMBER OF NODES 32 95 = 37. 75 75 75 32 43 Print or display dB 37. 75 75 75 32 43 RCL 37. 75		Гļ.	+-					4
31 US 03 <th04< th=""> 04 04 <th0< th=""><th></th><th></th><th>CTN.</th><th></th><th></th><th></th><th></th><th>Jump 11 10g Bweep</th></th0<></th04<>			CTN.					Jump 11 10g Bweep
31 71 SBR print or display angle 36.5 44 SUM 31 66 6.6 function 36.6 25 55 add frequency increment 31 94 32 2.17 36.6 02 02 31 94 +** network transmission 36.6 02 02 31 94 +** network transmission 36.6 49 PRD 31 65 * function magnitude 36.6 55 55 multiply by frequency 32 00 371 02 02 371 02 02 32 01 0 37.7 76 LBL IOAD NUMBER OF NODES 32 71 SNR print or display dB 37.7 75 TS 32 04 4 print or display dB 37.6 74 SNR 32 04 04 print or display dB 37.6 75 TS 32 49 49 37.6 0.4 0.4 0.4 0.4 <td< th=""><th></th><th></th><th></th><th>and store</th><th></th><th></th><th></th><th>selected</th></td<>				and store				selected
11 04 04 of network transmission 367 55 55 add frequency increment 11 40 02 01 function 367 55 55 add frequency increment 31 92 02 02 02 02 02 02 31 94 +// network transmission 366 02 02 02 32 02 2 371 61 65 105 06 105 106 106 107 102 037 76 LBL LAD NUMBER OF NODES 03 03 04 04 test for printer 037 75 75 53 53 store number of nodes 037 75 75 53 53 53 53 <th></th> <th></th> <th></th> <th></th> <th></th> <th><u>_68</u></th> <th>68</th> <th></th>						<u>_68</u>	68	
11. 04 of network transmission 367 55 55 add frequency increment 11. 06 60. function 366 61 GTI for linear sweep 31. 28 LDG calculate 20 log of 366 02 02 31. 94 +/- network transmission 366 43 PRD 31. 65 × function magnitude 360 55 55 multiply by frequency 32. 02 2 371 61 GTD 106 106 32. 95 = 372 06 06 202 202 32. 95 = 374 16 10AD NUMBER OF NODES 32. 94 9 374 16 10AD NUMBER OF NODES 32. 71 SBR 71 SBR 10AD NUMBER OF NODES 32. 71 66 66 107 106 104 104 32. 49 49 376 75 75 <						44	SUM	
311 56 6. function 36' 61 GTI for linear sweep 31 32 23 LDG calculate 20 log of 366' 02 02 31' 94 +2- network transmission 36' 43 PRD multiply by frequency 31' 65 x function magnitude 36' 61 GTI increment for log sweep 32' 01 0 371 02 02 371 02 02 32' 95 = 37' 76 LBL LOAD NUMBER OF NODES 32' 95 = 37' 76 LBL LOAD NUMBER OF NODES 32' 95 = 37' 76 LBL LOAD NUMBER OF NODES 32' 94 04 response 37' 75 75 store number of nodes 32' 43 RCL 37' 75 35' initiglization subr - 32' 43 RCL 37' 53' 53' initiglization subr - 33' </th <th>1.1</th> <th>04</th> <th>04</th> <th>of network transmission</th> <th></th> <th></th> <th></th> <th>Bdd fremienen the man</th>	1.1	04	04	of network transmission				Bdd fremienen the man
31. 32 X:T 366 02 02 31. 28 LDG calculate 20 log of 366 02 02 31. 94 + 2 - network transmission 366 49 PRD multiply by frequency 32. 92 2 371. 61 GTD increment for log sweep 32. 00 0 371. 02 02 32. 95 = 371. 02 02 32. 95 = 371. 02 02 32. 95 = 371. 02 02 32. 95 = 371. 04 04 32. 95 = 374. 06 06 32. 94 9 374. 71 SBR 32. 94 9 374. 75. 75 32. 43 RCL 376. 42 STD store number of nodes 331. 01 01. input voltage 374. 381. 42 STD store number of nodes 332. 43 RCL 386. 65 × calculate highest 387. 53. 53. 333. 42 STD recall complex network 387. 53. 53	1:11	66	Ū.	function	22			for linear more
31 28 LDG calculate 20 log of 367 06 06 31 94 +2- network transmission 366 49 9 RD multiply by frequency 31 65 x function magnitude 360 55 95 multiply by frequency 32 02 2 371 02 02 32 95 = 371 02 02 32 95 = 371 02 02 32 95 = 371 02 02 32 95 = 374 06 06 21 06 66 374 16 14 32 71 SHR print or display dB 376 04 04 test for printer 321 42 STU response 377 75 75 75 331 10 0 input voltage 381 42 STU set response 382 93 oounter value allowed 382 53 53 53 53 53 calculate hig								TOL TINGAL RAGED
31* 94 +/- network transmission 36* 49 PRD multiply by frequency 31 65 × function magnitude 36* 55 55 multiply by frequency 32* 02 2 371 61 670 increment for log sweep 32: 010 0 371 02 02 32: 95 = 37: 06 06 32: 42 STD 37* 76 LBL LOAD NUMBER OF NODES 32: 16 66 66 37* 75 15 100 32: 14 04 atom of isplay dB 37* 75 15 100 32: 43 RCL 37* 53 53 53 101 0. 33: 01 0. input voltage 38* 42 STD south of isplay dB 37* 53 53 101 10 32: 43 RCL 37* 38* 42 STD south of isplay 38* 38* 53 101 10				aalaulata 20 la= aa		1		
31 65 x function magnitude 360 55 55 multiply by frequency 32' 02 2 371 61 GTO increment for log sweep 32: 010 0 371 02 02 371 02 02 32: 95 = 371 02 02 371 06 06 32: 42 STD 371 64 64 10AD NUMBER OF NODES 32: 71 SRR print or display dB 374 16 14 test for printer 32: 49 49 49 375 53 53 store number of nodes 33: 01 01 input voltage 375 53 53 store number of nodes 33: 42 STD store number of nodes 381 42 STD 33: 01 01 input voltage 382 09 09 counter value allowed 33: 01 01 input voltage 384 43 RCL 30: <td< th=""><th></th><th>-</th><th></th><th></th><th></th><th><u>Dē</u></th><th><u>-06</u></th><th></th></td<>		-				<u>Dē</u>	<u>-06</u>	
31 65 × function magnitude 360 55 35 multiply by frequency 32 00 0 371 61 670 increment for log sweep 32 00 0 371 02 02 02 32 95 = 374 06 06 06 32 71 SBR 374 06 06 02 32 71 SBR 16 1 LOAD NUMBER OF NODES 32 71 SBR 374 16 1 LOAD NUMBER OF NODES 32 71 SBR 374 71 SBR 32 74 94 374 75 75 32 49 49 374 53 53 store number of nodes 331 01 01 input voltage 374 53 53 53 331 01 01 input voltage 387 53 53 53 32 42 STD sectal complex network 386 65 <td< th=""><th></th><th></th><th>+/-</th><th></th><th></th><th>L<u>a 9</u></th><th>PRI</th><th></th></td<>			+/-			L <u>a 9</u>	PRI	
39* 02 2 371 61 GT0 32: 95 = 371 02 02 32: 95 = 371 02 02 32: 95 = 371 02 02 32: 95 = 372 06 06 32: 43 801 374 6 64 10AD NUMBER OF NODES 32: 71 SBR 374 76 LBL LOAD NUMBER OF NODES 32: 74 94 9 374 71 SBR 32: 43 RCL 375 75 75 33: 42 STU recall complex network 381 42 STU 33: 43 RCL 384 43 RCL 33: 43 RCL 385 53 53 33: 42 STU 384 43 RCL 33: 42 STU 386 65 x calculate highest 33: 42 STU </th <th>31</th> <th>65</th> <th>×</th> <th>function magnitude</th> <th></th> <th></th> <th></th> <th>multiply by frequency</th>	31	65	×	function magnitude				multiply by frequency
32: 00: 0 371 02: 02 32: 95 = 372: 06: 06 32: 42: 871 372: 06: 06 32: 71: SR 374: 6: 6: 374: 76: LBL LOAD NUMBER OF NODES 32: 71: SR print or display dB 374: 71: SR 32: 04: 04: response 377: 75: 75 32: 43: RCL 376: 04: 04: test for printer 33: 01: 01: 01: input voltage 376: 42: STU 33: 01: 01: 01: 10: 381: 42: STU 33: 43: RCL 381: 42: STU 386: 65: set minimum loop 33: 01: 01: 384: 43: RCL 387: 02: branch number storage 33: 42: STU 386: 65: x calculate highest <tr< th=""><th>3.00</th><th>02</th><th>1</th><th></th><th></th><th></th><th></th><th>increment for log sweep</th></tr<>	3.00	02	1					increment for log sweep
32: 95 = 372 06 06 32: 42 STI 374 16 1 IOAD NUMBER OF NODES 32: 71 SHR 374 16 1 IOAD NUMBER OF NODES 32: 71 SHR 374 16 1 IOAD NUMBER OF NODES 32: 71 SHR 374 71 SBR 374 16 1 32: 71 SHR 376 0.4 04 test for printer 375 75 53 32: 43 RCL 375 75 53 53 initialization subr 375 33 31 01 0. input voltage 375 53 53 initialization subr 383 42 STI set minimum loop 382 53 <t< th=""><th>5</th><th></th><th></th><th></th><th></th><th></th><th></th><th>U F</th></t<>	5							U F
(2: 42 STI 37. 76 LBL LOAD NUMBER OF NODES 32: (15 06 37. 16 Ål LOAD NUMBER OF NODES 32: (14 04 print or display dB 37. 71 SBR 32: (14 04 print or display dB 37. 71 SBR 32: (14 04 response 37. 75 75 32: 49 49 37. 75 53 53 store number of nodes 33: 42 STU recall complex network 381 42 STU set minimum loop 33: 43 RCL input voltage 382 53 53 calculate highest 33: 43 RCL 386 65 x calculate highest 33: 51 51 set for real set for real 34: 42 STU set for real set for real 34: 42 STU set for real set for real 34: 43 RCL 390 85 4 set for real </th <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th>			-					
32. (16) 06 37.4 16 A1 IOAD NUMBER OF NODES 321 71 SBR 9 9 9 16 16 17 16 17 16 17 16 16 17 16 16 17 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 16 17							Ü6	
32: 0:3 0:6 37.4 16 1 DAD NUMBER OF NUMES 32: 71 SHR print or display dB 37.4 16 1 DAD NUMBER OF NUMES 32: 04 04 response 37.6 04 04 test for printer 32: 49 49 37.6 04 04 test for printer 32: 49 49 37.6 53 53 store number of nodes 33: 42 STU recall complex network 381 42 STU set minimum loop 33: 43 RCL 382 53 53 53 53 33: 43 RCL 382 53 53 53 53 34: 50 50 382 53 53 53 53 33: 43 RCL 384 43 RCL 386 65 x calculate highest 33: 43 RCL 386 65 x calculate highest 387 53 53 3	· 4	42			37.	76	LBL	
32: 71 SNR print or display dB 37* 71 SBR 32: 04 04 response 37* 71 SBR 32: 40 04 response 37* 75 75 32: 49 49 37* 53 53 store number of nodes 33: 42 STU recall complex network 380 42 STU store number of nodes 33: 43 RCL input voltage 38: 42 STU set minimum loop 33: 43 RCL 386 53 53 53 33: 42 STU set minimum loop 38: 99 09 counter value allowed 33: 42 STU 385 53 53 (allowed) 38: 53 33: 42 STU 386 65 x calculate highest 38: 53 51 33: 42 STU recall complex network 38: 75 - index for real 38: 75 - index for real 39: 03 03 input current 389 01 1 immittance storage 34: 42 STU 392 00 0		(1s .	ΰĿ,		374			LOAD NUMBER OF NODES
32: 04 04 print or display dB 37. 15.00 32: 66 66 788000 37. 75 75 32: 49 49 49 37. 75 75 32: 49 49 49 37. 75 75 32: 49 49 37. 53 53 store number of nodes 33: 42 STU recall complex network 380 09 9 initialization subr	325	71	SRR					
327 66 66 66 66 66 66 67 75 32 49 49 37 25 75 37 42 STU 32 49 49 37 42 STU store number of nodes 331 01 01 input voltage 381 42 STU set minimum loop 331 43 RCL 382 09 09 counter value allowed 381 332 43 RCL 382 53 6 set minimum loop 334 43 RCL 385 53 6 set minimum loop 333 42 STU 384 43 RCL 385 53 6 335 51 51 386 65 x calculate highest 387 02 2 335 51 51 387 02 2 branch number storage 387 02 2 branch number storage 334 42 STU 399 01 1 immittance storage <th></th> <th></th> <th></th> <th>print or display dB</th> <th></th> <th></th> <th></th> <th></th>				print or display dB				
32: 43 RCL 37: 75 75 32: 49 49 37: 53 53 store number of nodes 33: 42 STU recall complex network 38: 42 STU store number of nodes 33: 43 RCL input voltage 38: 42 STU set minimum loop 33: 43 RCL input voltage 38: 42 STU set minimum loop 33: 43 RCL 38: 42 STU set minimum loop 38: 29: 09 counter value allowed 38: 33: 42 STU 38: 42 STU set minimum loop 38: 38: 53: 53 53 33: 42 STU 38: 53: 53 53 53 53 33: 42 STU 38: 75 index for real 38: 53: 53 53 33: 42 STU recall complex network 38: 75 index for real 38: 38: 53: 53: 53: 53: 53: 53: 53: 53: 54: 39: 11				response				test for printer
32: 49 49 331: 42: STU 331: 01: 01 331: 01: 01 331: 01: 01 331: 01: 01 331: 01: 01 331: 01: 01 331: 01: 01 331: 01: 01 331: 01: 01: 332: 43: RCL 333: 43: RCL 33: 42: STU 33: 42: STU 34: 42: STU 35: 51: 51 36: 42: STU 37: 51: 51 38: 42: STU 38: 42: STU 38: 42: STU 38: 42: STU 39: 03: input current 39: 01: immittance storage 34: 42: STU 39:							<u> 75</u>	
32: 49 49 331: 42: STU 331: 01: 01: 01: input voltage 381: 42: STU set minimum loop 331: 43: RCL input voltage 381: 42: STU set minimum loop 33: 43: RCL 382: 09: 09: counter value allowed 382: 09: 09: counter value allowed 382: 53:					378	42	STO	
331 42 STU recall complex network 380 09 9 initialization subr 381 42 STU set minimum loop 332 43 RCL 382 09 09 counter value allowed 382 03 03 383 43 RCL 385 53 <td< th=""><th></th><th>49</th><th>49</th><th></th><th>374</th><th>53</th><th></th><th>store number of nodes</th></td<>		49	49		374	53		store number of nodes
331 01 0. input voltage 381 42 STD set minimum loop 332 43 RCL 382 09 09 09 counter value allowed 383 334 43 RCL 384 43 RCL 386 53 63 334 43 RCL 386 65 x calculate highest 335 51 51 386 65 x calculate highest 335 51 51 386 65 x calculate highest 336 43 RCL 386 65 x calculate highest 335 51 51 386 65 x calculate highest 337 51 51 388 75 index for real immittance storage 344 43 RCL 390 85 + 392 00 0 344 42 STD 393 54) 394 42 STD 344 18 C* 394 42	330	42	STO		280			And dd a ld and from solve
331 43 RCL input voltage 381 42 STU set minimum loop 331 42 STU 382 09 09 counter value allowed 382 333 42 STU 382 53 () 382 53 () 33 42 STU 384 43 RCL 385 53 () () 33 42 STU 385 53 53 () () () () 33 42 STU 385 53 53 ()	331						• •	
C3. 50 50 382 63 <				input voltage				
33 42 STE 387 53 (33 42 STE 384 43 RCL 385 53 33 43 RCL 386 65 x calculate highest 35 51 51 387 02 2 branch number storage 33 42 STE recall complex network 388 75 - index for real 33 42 STE recall complex network 388 75 - index for real 33 43 RCL 390 85 + 391 1 immittance storage 34 42 STE 391 01 1 392 00 0 0 34 42 STE 392 00 0 0 0 0 34 42 STE 392 00 0 0 0 0 344 36 PCM perform complex 395 59 59 59 34 43 RCL 396 85 + calculate highest 397 01 1 344 38 01 01 print or display 398 00 0 index for imaginary			1 '				<u> </u>	counter value allowed
33 42 STD 384 43 RCL 33 43 RCL 385 53 53 33 43 RCL 386 65 x calculate highest 33 42 STD recall complex network 386 65 x calculate highest 33 42 STD recall complex network 387 02 2 branch number storage 33 42 STD recall complex network 387 02 2 index for real 33 42 STD recall complex network 388 75 index for real 34 42 STD 390 85 + 391 01 1 34 42 STD 392 00 0 393 54 > 34 42 STD 394 42 STD 394 42 STD 344 36 PGM perform complex 395 59 59 59 344 43 RCL 397 01					38.1	53	<	
32 · 02 02 385 53 53 38 33 · 43 RCL 386 65 x calculate highest 33 · 43 RCL 387 02 2 branch number storage 33 · 42 STU recall complex network 387 02 2 index for real 33 · 42 STU recall complex network 387 02 2 index for real 33 · 42 STU recall complex network 388 75 - index for real 34 · 43 RCL 390 85 + 391 01 1 immittance storage 34 · 42 STU 392 00 0 393 54) 394 42 STU 344 · 42 STU 395 59 59 394 42 STU 344 · 43 RCL 396 85 + calculate highest 344 · 43 RCL 396 85 + calculate highest 344 · 43 RCL 397 01 1 branch number storage 344 · 43 RCL 397 01 1 branch number storage 348 01 01 01 print or display 398 00 0 index for imaginary					384		RCI	
83' 51 51 51 387 02 2 branch number storage 33' 42 STU recall complex network 387 02 2 branch number storage 33' 43 03 input current 389 01 1 immittance storage 34' 43 RCL 390 85 + 391 01 1 34' 42 STU 392 00 0 393 54) 34' 42 STU 394 42 STU 394 42 STU 34' 43 RCL 9 94 42 STU 394 42 STU 34' 18 C' 9 95 59 59 59 59 34' 18 C' 9 396 85 + calculate highest 34' 43 RCL 398 00 0 index for imaginary	30 -	02	02					
83' 51 51 51 387 02 2 branch number storage 33' 42 STU recall complex network 387 02 2 branch number storage 33' 43 03 input current 389 01 1 immittance storage 34' 43 RCL 390 85 + 391 01 1 34' 42 STU 392 00 0 393 54) 34' 42 STU 394 42 STU 394 42 STU 34' 43 RCL 9 94 42 STU 394 42 STU 34' 18 C' 9 95 59 59 59 59 34' 18 C' 9 396 85 + calculate highest 34' 43 RCL 398 00 0 index for imaginary	3.5		RCI					calculate highest
33: 42 STD recall complex network 388 75 index for real 33: 43 RCL 389 01 1 immittance storage 34: 43 RCL 390 85 + 391 01 1 34: 42 STD 392 00 0 392 00 0 34: 42 STD 392 00 0 393 54) 34: 36 PGM	25							
33° 03 input current 389 01 immittance storage 34- 43 RCL 390 85 + 34- 52 52 391 01 1 34- 42 STU 392 00 0 34- 42 STU 392 00 0 34- 42 STU 393 54) 34- 36 PGM perform complex 394 42 STU 34- 36 PGM perform complex 395 59 59 34- 18 C* 396 85 + calculate highest 34- 43 RCL 397 01 1 branch number storage 34- 43 RCL 397 01 1 branch number storage 34- 43 RCL 398 00 0 index for imaginary							2	
332° 93 03 input current 389 01 1 immittance storage 34- 43 RCL 390 85 + 34- 52 52 391 01 1 34- 42 STU 392 00 0 34- 42 STU 392 00 0 34- 42 STU 393 54) 34- 36 PGM perform complex 394 42 STU 34- 18 C* 396 85 + calculate highest 34+ 43 RCL 397 01 1 branch number storage 34+ 01 01 print or display 398 00 0 index for imaginary						75	-	
34- 43 RCL 390 85 + 34- 52 52 391 01 1 34- 42 STD 392 00 0 34- 42 STD 393 54) 34- 36 PCM 394 42 STD 34- 36 PCM 395 59 59 34- 18 C* 396 85 + 34- 18 C* 397 01 1 34- 97 01 1 branch number storage 348 01 01 01 print or display 398 00 0 index for imaginary	522		03	input current	389		4	1mmittance storage
34 52 52 391 01 1 34 42 STI 392 00 0 34 42 STI 392 00 0 34 42 STI 393 54) 344 36 PGM perform complex 394 42 STI 344 36 PGM division 395 59 59 344 18 C* 396 85 + calculate highest 344 43 RCL 397 01 1 branch number storage 348 01 01 print or display 398 00 0 index for imaginary		43	RCL	-				_
34. 42 STU 392 00 0 34. 04 04 393 54) 344 36 PGM perform complex 394 42 STU 344 36 PGM perform complex 394 42 STU 344 18 C* division 395 59 59 344 43 RCL 396 85 + calculate highest 348 01 01 print or display 397 01 1 348 01 01 Re Z 398 00 0 index for imaginary	34							
34 36 PGM 393 54 393 54 393 54 394 42 STU 344 36 PGM perform complex 394 42 STU 395 59 59 344 18 C* division 396 85 + calculate highest 344 43 RCL 397 01 1 branch number storage 348 01 01 print or display 398 00 0 index for imaginary								
344 36 PGM perform complex 394 42 STU 345 04 04 division 395 59 59 34. 18 C* division 396 85 + calculate highest 34. 43 RCL 397 01 1 branch number storage 348 01 01 print or display 398 00 0 index for imaginary							-	
34: 18 C* perform complex 395 59 59 34: 43 RCL 396 85 + calculate highest 348 01 01 print or display 398 00 0 index for imaginary						54	>	
34: 18 C* Givision 395 59 59 34: 43 RCL 396 85 + calculate highest 348 01 01 print or display 398 00 0 index for imaginary		36	PGM		394	42	STIL	
34. 18 01 division 396 35 4 calculate highest 34. 43 RCL 396 85 + calculate highest 348 01 01 print or display 397 01 1 branch number storage 348 01 01 print or display 398 00 0 index for imaginary	'4 ^{.5}	Ü4	04					
34. 43 RCL 397 01 1 branch number storage 348 01 01 print or display 398 00 0 index for imaginary	34.			division				
348 01 01 print or display 398 00 0 index for imaginary								
346 34 one Re Z. 398 00 0 index for imaginary				nuint on dialan			1	branch number storage
				print or dispitay	398	00	0	index for imaginary
Loss of a sent of the bound of	349	71	SBR	re "in				
							<u> </u>	VALUE ANTICA ANTICKA

1-4

TI-59 PROGRAM LISTING

		1-	4 <u>11-59 PROGE</u>			<u> </u>	
40.	42	STO		450	00	Ū	
401	56	56		451	00	Ö	
402						-	
	01	1		452	00	0	
403		STO	initialize node voltage	453	00	Ū	
40.)	49	49	of highest node:	454	00	0	
405	00	Ū	-	455	00	Ō	
406		STO	$\mathbf{E}_{\mathbf{n}} = 1 + \mathbf{j}0$	456	00	Õ	
407	50	<u>50</u>	-	457			
		<u></u>			00	Ũ	
408		STO	initialize I _{2n} = 0 + j0	458	00	Ū	
409	51	51	ZH •	459	00	Ü	
41		STO		460	00	0	
41!	52	52		461	00	0	
412	22	1111		462	00	Ō	
413		STF	clear flag 3	463	ŌŌ	õ	
41			cibar ilag)				
	(13	03		464	00	0	
415		RCL	recall number of nodes	465	00	<u> </u>	
41E	53	53		466	22	ΙΗV	print or R/S routine
417		RTN	return to main program	467	87	IFF	Prime or by b routine
	29	CP T	odd or even branch subr	468	05	05	
41	22	INV		469	$\overline{04}$	04	
420		STF		470	ž3	73	
421	00	00	clear flag O	471			
					91	R/S	
422		RCL		472	92	RTN	
423	59	59		473	99	PRT	
424	55			474	92	RTH	
425	02	2		475	-69	DP	
42.	54	* **		476	08	08	printer sense routine
12	22	INV		477	86	STF	
428		INT		478	05		
429	67			6		05	
		EQ		479	92	RTN	
430	04	Û4		<u> </u>			
431	34	34		ļ			
432	86	STF	set flag 0 if branch				
430	00	00	number is odd				
434		RTH]			
435	ίŲ	0		1			
435	ΰÜ	្	unused program memory	Ì			
437			and heads an momenty	l			
	ៀ()ី លេក	0		Í			
438	ÛÛ	Ü					
439	()()	Ü					
440	00	Û]			
441	00	0		1			
442	ŊŊ	<u>C</u> i		l.			
443	00	ij		l			
444	ΰŪ	ņ					
44,5	ΟÚ						
		Û		l			
44G	00	<u>n</u>		ł			
447	00	0					
440	ŪŨ	ij		l			
443	ŨŨ	G		-			

REGISTER ALLOCATIONS FOR TI-59

register number	contents		
0 1 2 3 4 5 6 7 8	Re Im Re Im Im Xmsn fcn magnitude	40 41 42 43 44 45 46	
9 10 11 12 13 14	loop counter real immittance	48 49 50	Re node V sum Im node V sum Re branch I Im branch I # of nodes freq increment
16 17 18 19 20 21	storage	55 56 57 58 59	start freq Im storage index temp store temp store Re storage index
23 24 25 26 27 28 29	imaginary immittance storage		
31 32 33			
9 10 11 12 13 14 15 16 17 18 19 20 21 22 34 526 27 28 29 31 32	real immittance storage imaginary immittance	49 50 51 52 53 55 56 57 58	Im node V sum Re branch I Im branch I # of nodes freq increment start freq Im storage inde temp store temp store

PROGRAM 1-5 LC - L N A P , LC LADDER NETWORK ANALYSIS PROGRAM.

Program Description and Equations Used

This program evaluates the frequency response and input impedance of a resistively terminated lossless (LC) ladder network having up to seven branches. The frequency response is provided as magnitude (dB) and phase (degrees, radians, or grads), and the input impedance is provided as real and imaginary parts.

The input impedance is the impedance seen by the voltage generator in the source. It is more common to calculate the input impedance at the input terminals of the lossless ladder network, but this way was not implemented because program steps are not available for the coding to recall the source resistor value and subtract it from the real part of the input impedance. If the program feature of allowing the number of branches to be entered via a user definable key (key "a") is sacrificed, and the number of branches is stored into register E, then the additional coding for calculating the network input impedance can be added to the program by deleting steps 028 and 029 and adding "RCLØ," "-" after step 097 (099 before deletions).

The frequency response and input impedance evaluation frequency can be incremented in either a linear manner using an additive increment, or a logarithmic manner using a multiplicative increment. Each branch of the network may contain an inductor (L), a capacitor (C), a series LC network, or a parallel LC network. All element values and interconnection topology are stored, and can be reviewed at any time to check or correct the component values or interconnection.

Because of the available number of HP-67/97 registers, the number of branches cannot exceed seven. The TI-59 can accommodate data for 20 branches. Elements that inhibit signal flow through the network are not allowed, and will cause the program execution to halt displaying "Error." Examples of elements that inhibit signal flow are single shunt resistors or inductors that have zero value, or series capacitors in series branches that have zero value.

The algorithm used by this program is the same as used in Program 1-4 where 1 volt is assumed at the network output, and the required input voltage is calculated. In this program, the branch immittances (impedances or admittances) are purely imaginary, and the branch numbers start with branch #1 instead of branch #0. This changes all indices by +1. The difference is necessary to let the DSZ instruction operation allow the source resistance to be added to branch #1 with minimum coding. The load resistance is combined with the last branch immittance. If the number of branches is odd, the last branch consists of the load resistor alone.

User Instructions

LC-LN	AP, LC LAD	DER NETWORK	ANALYSIS PRO	GRAM	
load # of branches	linear sweep?	log sweep?	review input data	start analysis	5
load Rut Rs	load br C	load br L	load start frequency	load freq increment	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of magnetic card			
	······································			
2	Load the number of branches in the network	# branches	f A	
				••••••••••••••••••••••••••••••••••••••
3	Enter the load and source resistances	RL	ENT 1	****************
	in ohms	RS	A	
4	Load branch capacitance;			
	If a parallel tank in a series branch,			
	or a series tank in a shunt branch,			
	change the sign of the mantissa in			
	the capacitor value	±C _{branch}	B	
		(farads)		
	Start loading network capacitors			
	(and inductors) from the highest			
	numbered branch (load resistor end)			
5	Load branch inductance:			
	If a parallel tank in a series branch,			
	or a series tank in a shunt branch,			
	change the sign of the mantissa in			
	the inductor value	±Lbranch	C	
		(henries)		
6	Input data review (optional)		fD	Rload
				space
	Negative element values indicate series			highest branch #
	tanks in shunt branches, or parallel			±c
	tanks in series branches			±L
				space
				R _{source}
<u>-</u>				
7	Select frequency sweep mode:	łł		
┟ ┟	a) linear sweep b) logarithmic sweep	•	f B f O	
	o, logari umit broop			
8	Load start frequency for sweep in hertz	f _{start}	D	
[

1-5

¹⁻⁵ User Instructions

STEP		INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Load frequency increment	finer	E	

	If linear sweep, the increment is added	**********************		
	to the present frequency to obtain the			
	next frequency.			

	If logarithmic sweep, the increment is	*******		
	multiplied by the present frequency to			
	obtain the next frequency.			
10	Start analysis		Î Î E	freq (Hz)
	······································			gain (dB)
	* The phase units will be in whatever	•••••		phase*()
	trig mode the calculator is set.			Re Zin, R
	The trig mode is at the discretion	*****************		Im Zin, A
	of the user,			space
		*****		•
11	Stop analysis:	******************		•
	Press R/S when the printer starts to			
	print.			

	Pressing R/S at other times may leave			
	the registers interchanged. To deter-			
	mine if an interchange has occurred,			
	goto step 6 and review input data.			
	If L and C values are reversed, execute			
	a P≥S instruction from the keyboard.			******************
	***************************************			********

	***************************************			*********************

Example 1-5.1

Bartlett's bisection theorem [53], [56], [57] has been applied to an equally terminated (1000 ohm) third order Butterworth bandpass filter with 10 kHz center frequency and 1 kHz bandwidth to produce the unequally terminated LC filter shown in Fig. 1-5.1. The source resistance is 1000 ohms and the load resistance is 10000 ohms. Determine the frequency response and input impedance of this LC network over a frequency range of 9000 Hz to 10900 Hz using a linear sweep with 100 Hz steps.

Figure 1-5.2 Network for Example 1-5.1.

PROGRAM INPUT			DATA REVIEW		
3.00	GSBa	number of branches			start review
10000.	ビリナホ	•	10.00+03 *	CNA K	load resistance
1000.		R _L	-		
1000.	690H	R _S			branch number
450 0 40	econ	-	159. 2-12 *		
159.2-12		03	1.592+00 *	k * *	L
1.592	55BL	Lz			
		-	2 .0 00+00 *	(水水	branch number
.1751-06		0 ₂	175.1-09 ×	XXX	0
1.447-03	GSBC	Lo	1.447-03 *	***	L
		-			
159212		0 ₁	1.000+00 *	k M AK	branch number
.1592	GSBC		1.592-09 *	k JAK JAK	С
		•	159.2-05 *	** *	L
		• -			
	GSBk	linear sweep	1.000+03 *	***	source resistance
9000.00	GSBD	start freq , Hz			
100.00	GSBE	freq incr, Hz			

HP-97 PRINTOUT FOR EXAMPLE 1-5.1

GSBe start analysis

PROGRAM OUTPUT

	• ••			
9000.00	freq, Hz	9500.00	10000.00	10500.00
-20.29	gain, dB	-4.14	- 0. 83	-3.58
-146.92	phase, o	138.09	-0.48	-132.20
1003.54	Re Z _{in} , Ω	1042.21	10994.89	
-1666.97	Im Zin, Ω	-93.28	-227.42	1048.18
				10.31
9100.00		9600.00	10100.00	10000 60
-17.44		-1.93	-8.83	10600.00
-154.43		106.39	-23.45	-6.35
1005.32		1083.75	2916.29	-157.06
-1391.66		364.31	-3831.85	1027.54
		004101	-3031.00	363.73
9200.00		97 00. 00	10200.00	
-14.32		-1.04	-0.84	10700.00
-164.23		74.86	-47.28	-9.45
1008.28		1186.21	.,.==	-175.59
-1105.20		979.39	1504.60	1016.80
1100120		212.33	-1965.91	668.18
9300.00		9800.00	10700 00	
-10.93			10300.00	10800.00
-177.51		-0.85	-1.01	-12.47
		47.27	-73.45	170.95
1013.48		1498.05	1195.73	1010.80
-801.44		1951.68	-1020.61	941.35
9400.00		9900.00	10400.00	10900.00
-7.40		-0.83	-1.76	-15.27
163.89		22.71	-102.68	160.95
1023.10		2964.18	1091.62	1007.25
-470.17		3870.77	-426.27	
				1193.23

Example 1-5.2

The filter shown in Fig. 1-5.3 is a 5th order, 30° modular angle, 50% reflection coefficient elliptic filter designed for 10 kHz cutoff frequency and 1000 ohm impedance level. This example shows how dummy elements are inserted to place the filter in proper ladder format for this program. The frequency response and input impedance are calculated with the analysis frequency being logarithmically swept from 1 kHz to 100 kHz using 10 points per decade.

Figure 1-5.3 Elliptic filter for Example 1-5.2.

Figure 1-5.4 Network of Fig. 1-5.3 redrawn with dummy elements to place in proper ladder format for program input.

HP-97 PRINTOUT FOR EXAMPLE 1-5.2

PROGRAM INPUT			DATA REVIEW		
6.00	GSBa	# of branches			start review
1000	гитж		1.000+03	***	load resistance
1000.		enter load R	C 000100	ale are air	h
	борн	enter source R	33.30-09	***	branch number C
.03330-06	CODD	0	1.000+05		L
1.+06			1.000+00	***	Ь
1.700	6300	L_6 (dummy)	5 000400	ale ale ale	branch number
-410112	CORE	0 (note minue)	-4.101-05		
-14.15-03		O ₅ (note minus) L5 " "	-14.15-03		U T.
-14.13-03	6300	<u>「</u> う " "	-14.13-03	ጥጥጥ	L
04651-06	CSRR	0.	4.000+00	si si si	branch number
	GSBC	С ₄ L ₄ (dummy)	-46.51-09		C C
· · ·	6000	L_4 (dummy)	0.000+00		L
-153512	GSBB	On (note ntrue)	01000.00	4.4.4.	L
-15.62-03		C ₃ (note minus) L ₃ ""	3.000+00	ak ak ak	branch number
10.02 00	0000		-1.535-09		
03559-06	GSBB	G.	-15.62-03		U L
	GSBC	C ₂ L ₂ (dummy)			
		-2 ()/	2.000+00	***	branch number
1.+96	GSBB	Ol (dummy)	-35.59-09		
	GSBC	L_1 (dummy)	0.000+00		L
		-1 (
			1.000+00	***	branch number
1			1.000+06		0
	GSBc	log sweep	0.000+00	***	L
1000.	GSBD	start freq	1.000+03	***	source resistance
$.10$ 10^{x} increment for)			
.10		10 points per			
	JUDE	decade			
		· · · · · · · · · · · · · · · · · · ·			

HP-97 PRINTOUT FOR EXAMPLE 1-5.2

DSP3 set display format GSBe start analysis

	PROGRAM OUTPUT				
1000.000 freq, Hz	3162.278	10000.000	31622.777		
-6.304 gain, dB	-7.265	-7.275	-95. 872		
-25.492 phase, •	-71.409	46.462	106.137		
1731.945 Re Zin, A	1341.972	2425.429	1000.000		
-354.815 Im 2in, A	-144.944	-1314.534	-141.760		
1258.925	3981.072	12589. 254	39810.717		
-6.445	-7.140	-29.301	-80.704		
-31.679	- 87. 812	-34.999	-77.360		
1641.443	1354.476	1001.496	1000. 000		
-367.449	-16.643	-520.507	-110.753		
1584.893	5011.872	15848.932	50118.724		
-6.636	-6. 543	-48.256	-77.037		
-39.149	-111.901	-53.026	-80.045		
1545.329	1510.069	1000.017	1000.000		
-354.383	144.638	-334.325	-87.088		
1995.262	6309.573	19952.623	63095. 735		
-6.872	-6.035	-75.897	-76.495		
-48.061	-151.933	-62.745	-82.135		
1455. 184	2050.032	1000.000	1000.000		
-312.318	-105.785	-242.424	-68.745		
2511.886	7943. 282	25118.864	7 9432.8 24		
-7.114	-7.176	-76.839	-77.128		
-58.642	154.808	110.795	-83.773		
1383.210	1466.092	1000.000	1000.000		
-242.073	-532.050	-183.485	~54.3 93		
			100000.000		
			-78.338		
			-85.064		
			1000.000		
			-43.101		

1-5

Program Listing I

OUI ALOLP LOAD RLARS	857 55B2 add complex branch currents
002 STOO store Rs	058 STOC
803 RJ	859 XIY store next lower branch
604 P≠S	060 STOD current (complex)
005 STOO store RL	1 061 DSZI decrement branch number
006 P≠S	862 GSB3 recall series branch Z
007 GTO7 goto space and return	063 CLX
988 *LELC LOAD BRANCH INDUCTANCE	064 RCL0
089 CHS indicate inductance by cha	065 CF0
A10 P25	866 DSZI If branch 1, add
611 GSBE interchange registers and	067 SF0 source resistance to
012 PIS goto capacitor load routine	668 F0? branch impedance
013 DSZI	069 CLX
013 B321 decrement and recall branch	
	871 RCLD recall present
616 *LBLE LOAD BRANCH CAPAOI TANCE	872 RCLC branch current
017 GSB5 odd/even branch?	073 65B1 calculate branch voltage
018 F0? change sign of entry if	074 RCLA recall next higher
<u>019 CHS</u> branch number is odd	<u>075 RCLB</u> branch voltage
020 STOI store entry	876 6SB2 add branch voltages
021 RTN return control to keyboard	077 STOA
022 *LBLD LOAD START FREQUENCY	078 XIY store next lower
023 ST08	<u>079_STOB</u> _node_voltage
824 GT07	
025 *LBLE LOAD FREQUENCY INOREMENT	<u>a61</u> GT09 test for loop exit
026 ST09	082 XZY
027 GTU7	$\frac{\partial 83}{\partial P} \rightarrow P$ convert to magnitude & angle
028 *LELA LOAD NUMBER OF BRANCHES	084 LOG
029 STOE	085 2
	086 0 calculate magnitude in dB
030 *LEL4 initialization routine	0
	<u>887 x</u>
$\begin{array}{ccc} 032 & \text{STDA} \\ 033 & \text{ELX} & \mathbf{E_n} = 1 + \mathbf{j0} \end{array}$	088 RCL8 recall present frequency
	889 SF0 indicate sign change in p/o
<u>034 STOB</u>	090 6SB0 gosub printout (p/o) routine
635 STOC T = 0 + 10	091 RCLD
$\frac{036}{036} \frac{5700}{5700} I_{2n+1} = 0 + j0$	092 CHS
837 RCLE set index to	093 RCLC recall branch 1 current (I ₀)
038 STOI highest branch number	194 P and form complex inverse
	095 1/X
040 CF3 initialize flags	096 →R
041 GT07 goto space and return	097 RCLB recall node O voltage (Ein)
042 *LBLb SELECT LINEAR SWEEP	098 RCLA
043 CF1	099 GSB1 perform complex multiply
044 GT07	100 PRIX print Re Zin
845 *LBLC SELECT LOGARITHMIO SWEEP	101 XZY
046 SF1	
047 GT07	
-048 *LELE_START ANALYSIS	104 F1?
049 GSB4 initialize	105 STX8 multiply present frequency
050 *LBL9 analysis loop start	106 F1? by increment if log sweep
<u>851 6583</u> recall shunt branch Y	-107 GTOe
052 RCLB recall complex node voltage	108 ST+8 add increment to present
1 <u>033 KULH</u>	-109 GIDe frequency if linear sween
054 6SB1 calculate shunt branch I	110 *LELG INPUT DATA REVIEW
855 RCLC recall next higher (series)	111 6SB4 initialize registers & flags
056 RCLD branch current	T12 P#S
REGIST	TERS
	0 6 0/ 17 Bpresent 9 freq
R_{s} C_{1} C_{2} O_{3} O_{4}	05 06 07 frequency incremen
\mathbf{R}_{1} \mathbf{S}_{1} \mathbf{L}_{1} \mathbf{S}_{2} \mathbf{L}_{2} \mathbf{S}_{3} \mathbf{L}_{3} \mathbf{S}_{4} \mathbf{L}_{4} \mathbf{S}_{5}	55 LG 57 S8 cmplx S9 cmplx
$^{\circ\circ}$ R _L $^{\circ\circ}$ L ₁ $^{\circ\circ}$ L ₂ $^{\circ\circ}$ L ₃ $^{\circ\circ}$ L ₄ $^{\circ}$	15 16 17 multiply multiply
	E number of 1
ReE _k ImE _k ReI _j	Im I j branches index

1-5

Program Listing II

113 RCL# 123 RCL# 124 RCL# 126 RCL# 127 RCL# 128 RCL# 128 RCL# 128 RCL# 128 RCL# 127 RCL# 128 RCL# 129 RCL# 120 RCH# 120 120 RCH# 120 <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th>	· · · · · · · · · · · · · · · · · · ·	
114 Fr3114 Fr3116 f16 f16 f16 f16 f16 f16 f16 f16 f16	113 RCL0	169 RTN
115 PPTX 117 CSR5 odd/green branch1 112 CSR5 odd/green branch1 177 CSR5 odd/green branch1 119 RCL4 recall branch inductance 177 ENT FCL8 PCL8 120 CRS5 codilorian 178 FCL8 Form 40-2mf present 121 CRS5 recall branch capacitance 178 FCL7 recall G 123 FCL7 recall branch capacitance 178 FCL7 recall G 123 FCL7 recall branch capacitance 179 FCL7 recall G negative 124 FCL7 recall branch capacitance 179 FCL7 recall G negative 124 FCL7 recall branch capacitance 180 KCP7 act in a presider 125 FCL7 recall capacitance 183 KCP7 act in a presider 183 KCP7 act in a presider 183 KCP7 act in a presider 184 FCP7 act in a presider 184 FCP7 act in a presider 184 FCP7 form a Cl_1 form a Cl_1		170 *LBL7 branch immittance recall
112112122PCL:113CESSodd/even branch124 PI 114PCL:126PI127PCL:127PI128PCL:126PI129PCS:recall branch inductance126122PCI:recall branch mumber126PI124SPCrecall branch number128PI124SPCrecall branch number128SPC126DS2I decrement branch number128X(07atf ag in num, take reciprocal128RU:Form all128X(07atf ag in num, take reciprocal129RU:recall and print126PI126PI128RU:recal take reciprocal128Y:PI133RU:recal take reciprocal129Y:FOrm all134ALEUpace and reciprocal129Y:FOrm all135RU:reciprocal contacts139FOrm all139134ALEUpace and contacts139FOP110135RU:reciprocal contacts139FOP110136RU:reciprocal contacts139FOP110136RU:reciprocal contacts139FOP110135RU:reciprocal contacts139FOP110136RU:reciprocal contacts139FOP110137RU:reciprocal contacts139<		
1121		
1:4 × form 4-2 Afgresent1:9FCL:1:20FCL:1:21FCL:1:22FCL:1:23FCL:1:24FCL:1:25FCL:1:26FCL:1:27FCL:1:28FCL:1:29FCL:1:20FCL:1:24FCL:1:25FCL:1:26FCL:1:26FCL:1:26FCL:1:26FCL:1:26FCL:1:27FCL:1:28FCL:1:29FCL:1:20FCL:1:20FCL:1:21FCL:1:22FCL:1:23FCL:1:24FCL:1:24FCL:1:25FCL:1:26FCL:1:27FCL:1:28FCL:1:29FCL:1:29FCL:1:20FCL:1:20FCL:1:21FCL:1:22FCL:1:23FCL:1:24FCL:1:24FCL:1:25FCL:1:26FCL:1:27FCL:1:28FCL:1:29FCL:1:29FCL:1:20FCL:1:21FCL:1:22FCL:1:24FCL:1:25FCL:1:26FCL:1:27FCL:1:28FCL:1:29FCL:		
110124275Cli112CHS176H122CHIrecall branch inductance176123CHIrecall branch inductance176124SPCrecall branch inductance176125CHIrecall branch number188126SPCrecall and print127SPCrecall and print128CHIrecall and print129SPCrecall and print120SPCrecall and print121SPCrecall and print122SPCrecall and print123SPCrecall and print124SPCrecall and print125SPCrecall and print126SPCrecall and print127SPCrecall and print128SPCrecall and print129SPCrecall and print124SPCrecall and print125SPCrecall and print126SPCrecall and print127SPCrecall and print128SPCrecall and print <td></td> <td>173 Pi</td>		173 Pi
119RCL1recall branch inductance175EMT121CHSCHI recall branch capacitance176H122CHI recall branch capacitance177EMT123FCLI recall branch capacitance178RLI recall G124CHSSFC180M(R? set flag 3 if O ₁ negative125GSE2go and exit at branch C181SFC126SFCrecall and print182X(R?127GIOB and exit at branch C183X(R?128SFCrecall and print185X(R?130ALELEcutput subroutine187RCLI recall Li133RIMrecitive contents1941/X134ALELEcutput subroutine193F67136F87print x_regiter contents1941/X137F87form branch immittance195138F84194F73149CHSif odd branch, change sign144PRTMsuprutine call145STOS a(a+jb)(c+jd) = c+jf146F75ad branch, increactive part154STOS ac+jb)(c+jd) = c+jf155ST+8 ac - bd = c216156F14c157X bd225158ST+9 ad + b159ST+9 ad + b = f154K b155ST+9 ad + b = f156F14157K b158ST+9 ad + b = f <td></td> <td>$1.74 \times \text{form } \omega = 2\pi f_{\text{present}}$</td>		$1.74 \times \text{form } \omega = 2\pi f_{\text{present}}$
120Product Product P		175 ENT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
122RCIT Feeall branch complexitance178RCIT Feeall branch maber123FCIT Feeall branch maber178RCIT Feeall branch maber124SPC FEEAForm Joint Feedement branch number181SF3 Feedement branch number125SPC Feedement branch number181SF3 Feedement branch number181126SPC Feedement branch number183 FFT Feedement branch number183 FFT Feedement branch number183 FFT Feedement branch number183 FFT Feedement branch number126SPC Feedement branch184 FFT Feedement branch184 FFT Feedement branch184 FFT Feedement branch136FFT Feedement branch184 FFT Feedement branch184 FFT Feedement branch184 FFT Feedement branch137FEE FFT Feedement branch, change sign194 FFT FFT Feedement branch, change sign194 FFT FFT FFT FFT Feedement branch, change sign195 FFT 	120 7+3	
122RCIT F	T 121 CHS	
123PECIreall179Rellreall01125SSFgosub printout routine183SSFset flag 3 if 0 measure183126OS21decrement branch mabor183SSFset flag 3 if 0 measure183126RCL6reall and print183SSFform G_{1} if set flag 3 if 0 measure126RCL6reall and print183SSFform G_{1} if set flag 3 if 0 measure126RCL6reall and print183SSFform G_{1} if flag128SSFreall flagrealistic contents184FSF129SSFprint x register contents199N(SSFform branch flag127FSFford branch, change sign199N(SSFform branch flag127FSFif odd branch, change sign194FSFform branch flag128FSFif odd branch, change sign194FSFform branch realif129FSFif odd branch, change sign194FSFford branch flag124FSFif odd branch, change sign194FSFford branch flag128FSFif odd branch, change sign194FSFford branch flag129FSFif odd branch, change sign194FSFford branch, flag129FSFif odd branch, change sign194FSFford dose124FSFif odd branch, change sign194FSFford dose125		178 ENT†
124SFC126SfG9 control transh126DS21decrement branch number181SF3form ω_{0_1} 127SFCGreen branch number182xform ω_{0_1} 128RCIGend exit at branch number182xform ω_{0_1} 129SFCrecall and print1841/Xif 0_1 minus, take reciprocal139FRNsource resistance1841/Xif 0_1 minus, take reciprocal131stENprintregister contents194KCP133FRNprintregister contents194KCP134LEBprintregister contents194KCP135FRNprintregister contents194FR136FRNprintregister contents194FR136FRPif odd branch, change sign195FR3-1/(inmittance)146ST09a195FR3-1/(inmittance)147Pris(a+jb)(a+jd) = a+jr196FR8call sistifier148ENTb286FRNredurent286149Ri FRcallcall sistifiercall sistifier141Pris FRcall sistifiercall sistifiercall sistifier144FRb286FRNredurent145ST08ac216FRcall sistifier146Ri FRac216FRcall sistifier <td< td=""><td></td><td></td></td<>		
1251261271271271271281291101129120112912011291201120212011202120112021201120212011202120112021201120112021201 <th< td=""><td></td><td>100 8/00</td></th<>		100 8/00
125632decrement branch number136373form $@Q_1$ 1276708and exit at branch 0183 $K(0^2)$ if Q_1 minus, take reciprocal128SPCrecall ad print185 $K(0^2)$ if Q_1 minus, take reciprocal129SPCrecall ad print185 $K(0^2)$ if Q_1 minus, take reciprocal121if Q_1 minus, take reciprocal185 $K(0^2)$ if Q_1 minus, take reciprocal123SPCsecond roturn subroutine187 $R(L)$ recall L124if M_1 $K(0^2)$ if Q_1 minus, take reciprocal125SPTprint x register contents191 IX 1266588print x register contents192form $@L_1$ 127R1duration contents192if od branch (exclusive or)128F87print x register contents192form intance126ST08a195F37if od branch (exclusive or)129F87if odd branch, change sign193form intance141PENif odd branch, change sign193form intance142PENreturn to subroutine call193form intance143ST08a193form intance116144PENif odd branch, resolite part126128145ST08a126recall form intance126153ST49ad226if odd branch, increment213154N be		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	125 GSB0 go sub printout routine	<u>161 3F3</u>
Lip:CfOBand exit at branch O183 $X(\theta^2)$ if G_4 minus, take reciprocal129SFCrecall and print185 $X:Y$ 186 $Y:X$ 129SFCrecall and print185 $X:Y$ 186 $Y:X$ 130PRTX source resistance185 $X:Y$ 186 $Y:X$ 131SFC187RCLIrecall Li187132SFC186 PIX Source resistance187133RIMregister contents190 $X(\theta^2)$ if Li minus, take reciprocal134FRTSprint x register contents192+form U_{Li} 135FRTprint x register contents192+form U_{Li} 136FRTprint x register contents192+form U_{Li} 135FRTprint x register contents192+form U_{Li} 136FRTprint x register contents192+form U_{Li} 137FRTprint x register contents192+form U_{Li} 138FRTprint x register contents193FRTform U_{Li} 149CHreturn to subroutine call-193fore time through loop144FRTprint x register-194fore time time time call145ST08a-194FRTreturn to subroutine call146FRTprint x register-194fore time contents145ST08a	126 OSZI decrement branch number	<u>182 × form <math>\omega 0_i</math></u>
125Rile194 <th< td=""><td></td><td>107 V/00</td></th<>		107 V/00
1:501:501:501:501:501:30PRTXspace and return subroutine1:86P:51:31#LBL7space and return subroutine1:86P:51:32SPC1:33RW1:89X1:34#LBL6output subroutine1:96P:51:35#LBL6output subroutine1:96Y1:36PRTXprint x register contents1:96Y1:37#LBL6print x register contents1:94FOT1:38FW7print x register contents1:94FOT1:39FW7print x register contents1:94FOT1:39FW7print x register contents1:94FOT1:39FW7print x register contents1:94FOT1:41PRTXprint x register contents1:95FOT1:42HIodd branch, change sign1:96FOT1:43#IMTprint x register contents1:97F271:44PRTXcomplex multiplication1:98F1001:45STOS aa2:26FW71:48EVTcomplex multiplication2:26FW1:58R+ ac2:26FW1:58R+ ac2:26FW1:58R+ ac2:26FW1:58ST*9 adc2:26FW1:58ST*9 adc2:27FOT1:58ST*9 adc2:26FW <tr< td=""><td></td><td></td></tr<>		
130PRTXsource resistance186P25131#LBLEoutput subroutine187RCLirecall L_1 132SPCminus, take reciprocal133RFWprint x register contents198XC135PRTXprint x register contents199XCW?136GSDEprint y register contents1911/X137FO?if odd branch, change sign192form branch immittance138FO?if odd branch, change sign194F2?149CHSif odd branch, change sign195F3?144CHSif odd branch, change sign196KCW?144FX(a+jb)(c+jd) = e+jf197F2?145STOS a(a+jb)(c+jd) = e+jf198F10146FXcase to active206FFN147R+b206FFNreciprocal routine148FW b206FFSadd load resistance addition158FYP adcase bd = e211if odd branch, reactive part156R+b212F0?if odd branch, reactive part157X bd213SILcodd resistance and158SI+9 ad + bo = f214FNHreturn to subroutine156R+b215FNHreturn to subroutine157X bd215FNHreturn to subroutine158SI+9 ad + bo = f214R/Hreturn to subroutine159Ril R <td< td=""><td></td><td></td></td<>		
133 $IEL7$ space and return subroutine187 $RCLi$ recall L_1 132SPC133 RTM 134 $REL0$ output subroutine135 $RERX$ print x register contents136 $CSB0$ print x register contents137 $RER0$ print x register contents138 $RER0$ print x register contents139 $F87$ if odd branch, change sign144 PRX return to subroutine call144 PRX call load resistance if145STO8a146STO8a147 $R4$ b148 $EMTh$ b149 $R4$ b150 $R4$ b151 $R4$ b152 $R4$ b155 $ST-8$ ac - bd - e156 $R4$ b157 X bccall contents158 $R19$ coall ccall contents159 $R12$ complex add; (bt a tc1d)159 $R12$ complex add	1_3 010	
131#LEL?space and return subroutine132SPC133RTM134#LEL6135#LE16136#LE16137FRTN138RL137FRTN138RL137FRTN138RL137FRTN138RL139FRTN139FRTN139FRTN139FRTN139FRTN139FRTN140CHS141PRTN141PRTN142RTN143FRTN144FRTN144FRTN144FRTN145STOR a146STOP a147R4 b158STAP ac159R4 b159R4 b155STAP ac155STAP ac b b = f155STAP ac b b = f155STAP ac b b = f155STAP ac b b = f155RCLP recall f155RCLP recall f156R4 b157A b c = c158STAP ac b b = f159RCLP recall f155RCLP recall f156R4 b157A b c = c158STAP ac b c = f159RCLP recall f155RL ac c = c156R4157A b c = c156R4157 <td< td=""><td></td><td></td></td<>		
132SPC133FN133FN134elle output subroutine134elle output subroutine135FNXprint x register contents136Elle print x register contents137fill print x register contents138F0139F0139F0139F0139F0139F0139F0140CMS144CMS144CMS144CMS144F15145ST00 a146ST00 a147FK b148ENTT b144F15145ST08 a146ST08 a155FX a156FX bd157STX8 ac158FX bd159ST78 ac - bd - e155ST8< ac - bd - e		187 RCL; recald L.
133RTW133 RTW 134 $ellelo$ $output subroutine135RTWprint x register contents1911/Xil_yil_yil_yil_y136RIWprint x register contents192+7form branch (mutitance)192+7137FPprint x register contents192+7form branch (exclusive or)137FPprint x register contents192+7form branch (exclusive or)138FPprint x register contents192+7rom branch (exclusive or)139FPprint x register contents192+7rom branch (exclusive or)139FPred load resistance if192+7resistance if144Printreturn to subroutine call197F22ad load resistance ald tion144Printreturn to subroutine call199F22ad load resistance ald tion144Printhighthighthighthighthight145ST0*ac206F10return to subroutine155Rr acRr b206F10return to subroutine155ST*9ad + bo = f215RU acreturn to subroutine156R bRr b215RU acRU ac158ST*9ad + bo = f215RU acreturn to subroutine169RU ac$		
132#181cutput subroutine135FRTX Print x register contents194Xfi Li minus, take reciprocal135FRT Print x register contents194Xform branch immittance137#1816print x register contents194F37if odd branch (exclusive or)135FR9if odd branch, change sign194F37if odd branch (exclusive or)146CHSif odd branch, change sign195F37if odd branch (exclusive or)147PRTXreturn to subroutine call196F182fad load resistance if148FRHcastopic198GT08first time through loop143FRHcastopic198GT08first time through loop144FRHcastopic198GT08first time through loop147R4castopiccastopic198GT08first time through loop153STR8castopic286F18castopic286155ST-8ac - bd = e216fod branch, increment155ST-8ac - bd = e215stallsodd/oren branch subroutine156R4b216RCL1form load conductance157x bc2172form 0 if branch eell158ST-9ad + bo = f215stallsodd/oren branch subroutine159RCL2complex add:(btattd free216RCL1160RCL2complex add:(btattd free		
100101101103101101136117137118118138119119138119119138119119138119119119119138139139130131143144131131131131131143144132131132132131132132132132132133135 <td></td> <td></td>		
135Printreciptorprintreciptorprintreciptorprintreciptorprintreciptorprintreciptorprint<	134 #LBL0 output subroutine	11 b minus
137 FIGE print y register contents138FU139FU139FU139FU139FU139FU139FU139FU139FU139FU139FU139FU139FU139FU139FU139FU140CHS141FRIX142FU143STUE as144FIS145STUE as146STUE as147FU148FU149FU144FU145STUE as146STUE as147FU148FU149FU144FU145STUE as146STUE as157K b158FU as154X bd155ST-8 as156FU as156FU as157X bc158ST-9 as159FU as call as152FU as call as153ST-8 as154X bd155FU as call as156FU b157X bc158FU as call as159FU as call as156FU b157X bc158FU as call as159FU as call as150FU as		191 1/X
1371931		
1401401441451951951961961961961961961971961961961961961961961961961961961961961961961961971961971961971961971981		107 500
133R4124F87is of 0 angetive, form140CHSif odd branch, change sign197F37-1/(inmittance)141PRNreturn to subroutine call197F27ad load resistance if142RNNreturn to subroutine call1986700first time through loop143F190calp a197F27ad load resistance if144F28(a+jb)(c+jd) = e+jf1986700first time through loop144F18ST09 a199e199144F18calp a1986700first time through loop144F18calp a1986700first time through loop144F18calp a1986700first time through loop144F18calp a202118return to subroutine call144F19first time through loop208F18calp a145ST09 a208F18load resistance and titon152F14da209F25data branch, increment155ST-8 ac - bd = e216F27if odd branch, increment155ST-9 ad a - bd = e215f160form load conductance156ST+9 ad + bo = f215f160form load calp a157X bc216FL1215calp a158ST-9 ad a - bo = f215f160f16164R1(a+jb) + (a+jd) = (a+jd) = (a+jf)216f16 <td></td> <td></td>		
133 $F87$ if odd branch, change sign 123 $-1/(immittance)$ 141 $PRTX$ return to subroutine call 197 $F22$ add load resistance if142 RTN return to subroutine call 197 $F22$ add load resistance if144 $P25$ (a+jb)(c+jd) = e+jf 197 $F22$ add load resistance if144 $P25$ (a+jb)(c+jd) = e+jf 197 $F22$ add load resistance if144 $P25$ (a+jb)(c+jd) = e+jf 208 RTN return to subroutine call145 $ST08$ 202 RTN return to subroutine 201 144 $P25$ $C160$ $C167$ $C167$ $C167$ 157 X $D6$ $C167$ $C167$ $C167$ 153 $S179$ $S179$ $S179$ $C170$ $C167$ $C167$ 155 $S17-8$ $ac - bd = e$ 213 $IS27$ $Index$ register -214 158 $S179$ $ad + bo = f$ 213 $IS27$ $Index$ register -214 159 $RCL9$ recull e 216 $RCL1$ $C167$ $C167$ $C167$ 161 $P25$ $C167$ $C167$ $C167$ $C167$ $C167$ $C167$ $C167$ 163 $RL122$ $C070$ $C1676$ $C1676$ $C1676$		174 F37 sign of 0, negative form
140CHS1411421431441431441441441441441441441441441441451461471481471481	139 F0?	$\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$
141197 $F2?$ add load resistance if142RINreturn to subroutine call143 $F1?F2?add load resistance if143F1?F2?F2?F2?F2?F2?F2?F2?F2?F2?F2?F2?F2?F2?F2?F1?F1?F1?F1?F1??$		r-196 GSB3 -1/(Inmit Coartee)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		197 F29 add load resistance if
143#1811complex multiplication17996144P2S(a+jb)(c+jd) = e+jf145STOB a145STOB a 200 RIMreturn to subroutine call146STO9 a 200 RIMreturn to subroutine call147R4 b 200 RIMreturn to subroutine148EMIT b 200 RIMreturn to subroutine149R4 b 200 RIMreturn to subroutine150R1 c 200 RIMreturn to subroutine151STX8 ac 200 Rifload resistance addition152R4 d 200 P2Sdoes not exist.153STX9 ad 200 Rifdoes not exist.155ST-8 ac - bd = e 211 $1/X$ form load conductance156R4 b 210 P2Sdoes not exist.157X bc 211 $1/X$ form load conductance158ST+9 ad + bo = f 212 $F0^{\circ}$ if odd branch, increment159RC19recall f 213 $S21$ 160RC21recall e 217 2 form 0 if branch even or161P2Sreturn to subroutine call 216 FC 163#LBL2complex add: (btatctd) 218 $= 0.5$ if branch odd164R1(a+jb) + (c+jd) = e+jf 220 SF0165+ a + c = e 224 R1Mreturn to subroutine call165H a + c = e 223 R4restore etack x regis	1	
110110110110144First(a+jb)(c+jd) = e+jf145STO8 a146STO9 a146STO9 a200FINreturn to subroutine call147R4 b203CHS148ENTt b203CHS149R4 b203CHS149R4 c206F0?150R1 c206F0?151STN9 ad209RCL0152R4 d209RCL0153STN9 ad209RCL0154xbd155ST-8 ac - bd = e211156R4 b210155ST-9 ad + bo = f156RCL9recall f157Xbc158ST+9 ad + bo = f159RCL9recall f159RCL9recall f161P25odd/sven branch subroutine162RINreturn to subroutine call163*L8L2complex add:164R1(a+jb) + (c+jd) = e+jf165t a t c = e166R1164167t b d = f168R1LABELS166R1167t b d = f168R1164R1165R1166R4167t b d = f168R1166R4167t b d = f168 <t< td=""><td></td><td></td></t<>		
145STOBa 201 start 201 start 1201 start	<u>143 #LBL1 complex multiplication</u>	
145STOBa146STOPa147R4b148ENT+b149R4b149R4b150R4c151STX8ac152R4d153STX9ad154xbd155ST-8ac - bd = e156R4b157xbc158ST+9ad + bo = f158ST+9ad + bo = f158ST+9ad + bo = f158ST+9ad + bo = f158ST+9ad + bo = f159RCL9recall f161P#Sreturn to subroutine call163xLBL2complex add: (bta tctd)164R1(a+jb) + (c+jd) = e+jf165+a + c = e166R4222166R1C166R4C166R4223166R1C166R4C166R4166R4166R4167b d d f168R1166R4166R4167b d d f168R1166R4167b d d f168R1166R4167b d d f168R1169b d d f166 <td>144 $P \neq S$ (a+jb)(c+jd) = e+jf</td> <td></td>	144 $P \neq S$ (a+jb)(c+jd) = e+jf	
146ST09a147R4b147R4b148ENT+b149R4c150R4c151STX8ac152R4d153STX9ad154xbd155ST-8ac - bd = e155ST-8ac - bd = e156R4b157xbc158ST+9ad + bo = f157xbc158ST+9ad + bo = f157xbc158ST+9ad + bo = f157xbc158ST+9ad + bo = f159RCL9recall e160RCL8recall e161P25form 0 if branch subroutine call162RTMreturn to subroutine call163#LBL2complex add;164R4(a+jb) + (c+jd) = e+jf165+a + c = e166R4222167+b + d = f168R1LABELSA loadCi load LiA loadB load CiC load LiA loadb linearc loadRight RaB load CiC load LiA loadb linearc loadRight RaB load CiC load LiB roop lex2 complex 4addreviewamalysisaddreviewamalysisaddreview <td>145 ST08 a</td> <td>+201 *LEL3 negative reciprocal routine</td>	145 ST08 a	+201 *LEL3 negative reciprocal routine
147R4b148ENTfb149R4b149R4b149R4b150R4c151STX8ac152R4d153STX9ad154Xbd155ST-8ac - bd = e156R4b157Xbd158ST+9ad + bo = f156R4b157Xbc158ST+9ad + bo = f156R2L9recall f158ST+9ad + bo = f156R2L9recall f157Xbc168RCL9recall f161P2Srecall f162RTMreturn to subroutine call163*LBL2complex add;164RN(a+jb) + (c+jd) = e+jf165+ a + c = e166R4167+ b + d = f168R1LABELSA loadB load CiC load LiA loadB load CiC load LiA loadB load CiC load LiA loadB load CiC load Liattrict freqfreqincr0MUELSComplex 32Start freqfreq165B load CiC load Li166R1LABELS167+ b + d = f168R1LABELS166R1St		
143ENTb143ENTb143R4b143R4b143R4b143R4b150STX8ac151STX8ac152R4d153STX9ad154Xbd155ST-8ac - bd = e156R4b157Xbd158ST+9ad + bc = f158ST+9ad + bc = f159RCL9recall f160RCL8recall e161P25odd/sven branch subroutine163*LBL2complex add: (btatctd)164R1(a+jb) + (c+jd) = e+jf165+a + c = e166R1LABELS167+b + d = f168R1LABELS166R1Start freq freq freq freq freq freq freq freq		
149R4b150R4c151STX8ac152R4d153STX9ad154Xbd155ST-8ac - bd = e156R4b157Xbd158ST-9ad - bd = e156R4b157Xbd158ST+9ad + bc = f158ST+9ad + bc = f158ST+9ad + bc = f158ST+9ad + bc = f168RCL8recall f161P25162FINreturn to subroutine call163*LBL2complex add: (btatctd)164R1(a+jb) + (c+jd) = e+jf165+ a + c = e166R4167+ b + d = f168R1168R1A loadB load OiCload LiOilad treat freqbreak resc snoppetat loadc snoppetat loadc snoppet168R1169LABELSA loadB load OiCload LiOilad cate168R1169Linear169P1169P1169R1169R1169R1169R1160R1166R1167+ b + d = f168R116910 ad Ci		
150R1c151STX8ac151STX8ac152R1d153STX9ad154xbd155ST-8ac - bd = e156R1b157xbc158ST+9ad + bc = f159RCL9recall f159RCL9recall f160RCL8recall e161PtS162RINreturn to subroutine call163*LBL2complex add;164R1(a+jb) + (c+jd) = e+jf165ta + c =e166R1E167+b + d = f168R1E166R1E167t b + d = f168R1E169LABELSFlAGS160R1B161PtS162R1163*LBL2166R1167t b + d = f168R1168R1168R1169LABELS160R4161R1162R1163*LBL2166R1166R1167R1168R1168R1169LABELS160R1160C161R1162R1163R1 <td></td> <td></td>		
151STX8ac152R4d153STX9ad154Xbd155ST-8ac - bd = e156R4b157Xbc158ST+9ad + bo = f157Xbc158ST+9ad + bo = f157Xbc158ST+9ad + bo = f157Xbc158ST+9ad + bo = f157Xbc158ST+9ad + bo = f159RCL8recall f161Pr2S162RNNreturn to subroutine call163*LBL2complex add;164R1(a+jb) + (c+jd) = e+jf165+a + c = e166R4222167+b + d = f168R1LABELSA loadB load CiC load LiA loadB load CiC load LiA loadB linearc stop of a dataa forchesb linearc stop of a datab renchesstop of a datab renchesstop of a datac multiple: complex2 complexc multiple: complex2 complexc multiple: complex2 complexc multiple: complex2 complexc multiplya complexa load ci7 space & fill withil 2 first timeb reache3 complexc multiplya complexc multiplya complex	149 R↓ b	
151STN8ac152R4d153STN9ad154Xbd155ST-8ac - bd = e156R4b157Xbc158ST+9ad + bo = f157Xbc158ST+9ad + bo = f159RCL9recall f161P2S162RNN163*LBL2164R1165recall e165F4166RCL8167+166R4167+168R1164R1165+166R4167+168R1169C160C160C163*LBL2164R1165-166R4167+168R1168R1169C160C168R1169C160C168R1169C169C160C161P2S162R1163RLPRC164R4165+166R1167+168R1169C160C168R1169C169		206 F0? subroutine
152R+ d153SIX9ad154Xbd155SIX9ad155SIX9ad155SIX9ad155SIX9ad155SIX9ad - bd = e155SIX9ad - bd = e155SIX9ad - bd = e156R4b157Xbc158SIY9ad + bd = f159RCL9recall f161P2SP2S162RINreturn to subroutine call163RL8complex add: (bt at ctd)164RI(a+jb) + (c+jd) = e+jf165t a + c =e166R4167t b + d = f168R1168R1A loadB load CiA loadB lineara loadCi load LibrinchesSewepbrinchesstatt freqfreqfreqif offb linearc multiple;complex 2c multiple;complex 3c multiple;2c multiple;2c multiple;2recall1168P1169P2169P2169P2169P2169P2169P2169P2169P2160Rt Ra160P1161P2162P2163		
102102102102102102102102102102153 $SI \times 9$ ad269 $RCL\theta$ recall load resistance and154 X bd216 PCS form load conductance155 $ST - 8$ ac - bd = e211 $1/X$ form load conductance155 $ST - 8$ ac - bd = e212 $F\theta^2$ if odd branch, increment156 Rt b212 $F\theta^2$ if odd branch, increment157 X bc213 $ISZI$ index register158 $ST + 9$ ad + bo = f214 RTH return to subroutine call159 $RCL9$ recall f215 $*LBL5$ odd/even branch subroutine168 $RCL8$ recall e216 $RCL1$ 161 PCS odd/even branch subroutine218 $=$ 162 RIN return to subroutine call218 $=$ 163 $*LBL2$ complex add:(bt a t c t d)218 $=$ 164 RI (a+jb) + (c+jd) = e+jf226 $SF\theta$ 165 $+$ $a + c = e$ 222 $CF\theta$ 166 RI R_1 R_1 R_2 R_1 167 $+$ $b + d = f$ 223 $R4$ restore stack x register168 $R1$ $LABELS$ P_1 R_2 R_1 R_1 168 $R1$ R_1 R_2 R_1 R_1 R_2 169 B_1 R_2 R_1 R_2		200 Dec 11 Out blanding read cive part
154xbd210 $P+s$ recall is a conductance155SI-8ac - bd = e 210 $P+s$ form load conductance155SI-8ac - bd = e 211 $1/X$ form load conductance155RLb 212 $F0?$ if odd branch, increment157xbc 213 $IS2I$, index register $$ 158SI-9ad + bo = f 213 $IS2I$, index register $$ 158SI-9ad + bo = f 214 RIN return to subroutine call159RCL9recall f 215 $*LBL5$ odd/even branch subroutine161P:Sreturn to subroutine call 216 $RCLI$ 162RINreturn to subroutine call 216 $RCLI$ 163 $*LBL2$ complex add: (btatctd) 218 \pm $0-5$ 164RI(a+jb) + (c+jd) = e+jf 226 $SF0$ 165 $+$ $a + c = e$ 222 $CF0$ 166RI 222 $CF0$ 224 167 $+$ $b + d = f$ 223 $R4$ 168R1 $A = f$ $A = f$ 168R1 $A = f$ $A = f$ 168R1 $A = f$ $A = f$ 168R1 $A = f$ $B = 10ad$ 167 $+$ $b + d = f$ 168R1 $A = f$ 167 $+$ $b + d = f$ 168R1 $B = 10ad$ $G = 10ad$ 167 $+$ $b + d = f$ <t< td=""><td></td><td></td></t<>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	154 × bd	210 P+5 form load conductors
156R4b157Xbc158ST+9ad + bo = f158ST+9ad + bo = f159RCL9recall f161Prs162RINreturn to subroutine call163*LBL2complex add: (bta t ctd)164Rl(a+jb) + (c+jd) = e+jf165+a + c = e166R4167+b + d = f168R1168R1169R1160Rt161Prs162Complex add: (bta t ctd)163LABELS164R1165+166R4167+168R1168R1168C169Innear c log169add ci169Start freq169Start freq169Start freq169Start freq169Start freq169Start freq169Start freq169Start freq169Start freq160Start freq161B162Start freq163Start freq164R1165Start freq166R1167Start freq168R1168C169Start freq169Start freq160Start freq160Start freq<		211 1/2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		212 FO? if odd branch, increment
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
159 RCL9 recall f 160 RCL8 recall e 161 F#S 162 RIN return to subroutine call 163 *LBL2 complex add: (btatctd) 164 RV (a+jb) + (c+jd) = e+jf 165 + a + c = e 166 RV 167 + b + d = f 168 R1 169 linear 160 Ci load LABELS FLAGS Start freq freq 224 RIN return to subroutine call 224 RIN R14 Rag Ioad Ci load R14 Rag Ioad Start freq Irreq incr O odd br FLAGS TRIG DISP odd Initialize		د به هذا المانية المانية بين المانية المربية ومن المربية ومن المانية ومن المانية المانية ومن المانية ومن المان
160 RCL8 recall e 161 P:S 162 RIN return to subroutine call 163 *LBL2 complex add; (btatctd) 164 RI (a+jb) + (c+jd) = e+jf 165 + a + c = e 166 R4 167 + b + d = f 168 R1 168 R1 168 R1 168 Ci load Li 169 linear 169 Sweep 169 Sweep 160 Sweep 110 Complex adci 110 Complex adci 110 Sweep 110 Complex adci 110 Sweep 1110 Sweep 11110 Start freq freq incr 1111 Sweep 1111 Sweep 11111<	159 RCL9 recall f	
161 F:S 162 FIN return to subroutine call 163 *LBL2 complex add: (btatctd) 164 RV (a+jb) + (c+jd) = e+jf 165 + a + c = e 166 RV 167 + b + d = f 168 Ri 167 + b + d = f 168 Ri 167 + b + d = f 168 Ri 167 Cload LABELS FLAGS SET STATUS A load Cload RI + Ra load Sweep G data review analysis O multiple: complex 2 complex 3 complex 4 uses review add review add review Sodd/even 6 7 space & 8input dateg enalysis 3		
162 FIN return to subroutine call 218 ÷ 0.5 if branch odd 163 #LBL2 complex add: (btatctd) 219 FRC 220 5F0 164 RV (a+jb) + (c+jd) = e+jf 220 5F0 221 X=0? set flag 0 if branch odd 165 + a + c = e 221 X=0? set flag 0 if branch odd 166 R4 167 + b + d = f 223 R4 restore stack x register 168 R1 E 10ad D load FLAGS SET STATUS A load B load Ci C load Li D load e start freq freq incr 0 odd br FLAGS TRIG DISP 2 # of b linear c log d data e start i log swp 0 ON OFF Users choice 0 multiple: complex 2 complex 3 complex 4 recall initialize 2first time: 2 BAD ENG 5 odd/even 6 7 space & 8input dates spanlysis 2 RAD ENG 0		217 2 form 0 if branch even or
163 #LBL2 complex add: (btatctd) 164 Rl (a+jb) + (c+jd) = e+jf 220 SF0 165 + a + c = e 220 SF0 166 R4 222 CF0 167 + b + d = f 223 R4 restore stack x register 168 R1 LABELS FLAGS SET STATUS A load B load Ci C load Li Start freq freq incr 0 odd br FLAGS TRIG 24 RTN return to subroutine call DISP 24 Franches SN0000 SN0000 SN0000 FIX 0 Multiple: complex 2 complex 4 Preview analysis 2first time: DEG FIX 0 SN0000 7 space & 6input dates enalysis 2first time: RAD ENG		
164 Rl (a+jb) + (c+jd) = e+jf 165 + a + c = e 166 Rl 167 + b + d = f 168 Ri 167 + b + d = f 168 Ri 167 + b + d = f 168 Ri 168 Ri 168 Ri 169 LABELS 168 Ri 169 Intear 160 Intitalize 160 </td <td></td> <td></td>		
167 + a + c = e 166 R4 167 + b + d = f 167 + b + d = f 168 Ri 168 Ri 168 Ri 168 C 168 Ioad Ci C load LABELS FLAGS SET STATUS A load C load RL + Rs B load Ci C load D load start freq review analysis 1 log SWP 0 Initialize 0 Initialize 1 Initialize 1 Initialize 1 Complex 4 1 Scol 1 RAD Scol FLAGS Initialize Initialize 1 Scol 1 Scol 1 Scol 1 Scol 1 Scol 1 Scon 1		
165 + a + c = e 221 X=0? set flag 0 if branch odd 166 R4 167 + b + d = f 223 R4 restore stack x register 167 + b + d = f 223 R4 restore stack x register 168 Ri 224 RIN return to subroutine call A load B load Ci C load Li D load freq freq incr 0 odd br FLAGS SET STATUS A load B linear C log d data e start 1 log swp ON OFF users choice branches Sweep complex 4 complex 4 2first time1 GRAD SCI uses multiply add recell initialize thru loon 2 RAD ENG 5 odd/even 6 7 space & 8input dates gaalysis 3 3 2 RAD ENG	164 RI (a+jb) + (c+jd) = e+jf	
166 R4 167 + b + d = f 167 + b + d = f 168 R1 168 R1 A load B load Ci C load Li Start freq freq incr 0 odd br FLAGS SET STATUS A load B load Ci C load Li Start freq freq incr 0 odd br FLAGS TRIG DISP a for fill b linear c log d data e start 1 log swp ON OFF users choice branches sweep sweep sweep review analysis 2 first time1 GRAD SCI uses multiply add recall initialize thru loon 2 RAD ENG 5 odd/even 6 7 space & 8input dates analysis 3 3 3 3		
167 + b + d = f 223 R4 restore stack x register		222CF0
168 Ri 224 RIN return to subroutine call 168 Ri 224 RIN return to subroutine call A load B load Ci C load Li D load E load O odd br FLAGS SET STATUS A load B load Ci C load Li D load E load O odd br FLAGS TRIG DISP a # of b linear c log d data e start 1 log swp ON OFF users choice branches sweep sweep review analysis 2 first time1 DEG FIX 0 multiple: 2 complex 3 complex 4 initialize 2 first time1 GRAD SCI uses multiply add recall initialize 1 log 2 RAD ENG 5 odd/even 6 7 space & 8input dates analysis 3 2 RAD ENG		
LABELS FLAGS SET STATUS A load B load Ci C load Li D load start freq freq incr 0 odd br FLAGS TRIG DISP A load B load Ci C load Li Start freq freq incr 0 odd br FLAGS TRIG DISP a # of b linear c log d data e start 1 log swp 0 ON OFF users choice branches sweep sweep review analysis 2 first time1 DEG FX 0 multiple complex 2 complex 3 complex 4 initialize thru loon 2 5 odd/even 6 7 space & Simput dates analysis 3 2 RAD ENG		
A load B load Ci C load Li D load E load freq incr 0 odd br FLAGS TRIG DISP a # of b linear c log d data e start 1 log swp 0 ON OFF users choice branches sweep sweep sweep d data e start 1 log swp 0 ON OFF Users choice 0 multiplei complex 2 complex 3 complex 4 2 first time1 GRAD SCI uses multiply add recall initialize thru loon 2 RAD ENG 5 odd/even 6 7 space & Simput dates analysis 3 3 3 3		
Rif Rs Ioad Ui Ioad Li start freq freq incr Odd br FLAGS IHIG DISP a # of b linear c log d data e start 1 log swp 0 ON OFF users choice branches sweep sweep review analysis 1 log swp 0 DEG FX 0 multiple1 complex 2 complex 3 complex 4 2 first time1 GRAD SCI uses multiply add recall initialize thru loon 2 RAD ENG 5 odd/even 6 7 space & Simput dates analysis 3 2 RAD ENG		
a # of b linear c log d data e start 1 log swp 0 N OFF users choice branches sweep c sweep review analysis DEG FIX 0 multiple1 complex 2 complex 3 complex 4 2 first time1 GRAD SCI uses multiply add recall initialize thru loon 2 RAD ENG 5 odd/even 6 7 space & Simput dates analysis 3	A load B load Ci C load L. D load	load 0 odd br FLAGS TRIG DISP
0 multiple: complex 2 complex 3 complex 4 2 first time: GRAD SCI uses multiply add recall initialize thru loop 2 RAD ENG 5 odd/even 6 7 space & 6input dates enalysis 3	A L of b linear to l date	tant 1 1 ON OFF USARS aboing
0 multiple: complex 2 complex 3 complex 4 2 first time 1 GRAD SCI uses multiply add recall initialize thru loan 2 RAD ENG 5 odd/even 6 7 space & 6 input dates enalysis 3	branches sween sween review and	alvis Log swp 0 I DEG . FIX
lo ordo, even lo l'abace « lo input da da anatysis lo	0 multiple complex 2 complex 3 complex 4	2first time1 GRAD SCI
lo ordo, even lo l'abace « lo input da da anatysis lo	uses multiply add recall in	tialize thru loon 2 BAD ENG
branch I I return I loop I 100p I I' I	la oud aven lo l' space o lorubur da da	nalysis 3 n
	Lbranch I. I return loop 10	

PROGRAM 1-6 EQUIVALENT INPUT NOISE OF AN AMPLIFIER WITH GENERALIZED INPUT COUPLING NETWORK

Program Description and Equations Used

When low noise amplifiers are designed, the amplifier equivalent current and voltage noise densities (noise in a 1 Hz band), and the coupling network noise sources, response, and impedance behavior must be considered. This program calculates the total noise voltage density that is reflected to the amplifier input which is coupled to a sensor by means of a transformer (Fig. 1-6.1).

Figure 1-6.1 Generalized input coupling network.

The transformer model includes the turns ratio (1:n), the primary and secondary resistances (R_{pri} and R_{sec}), the primary inductance (L_{pri}), and the secondary capacitance (C_{sec}). The coupling network noise sources include: the thermal noise densities (Johnson noise) of the transformer primary and secondary resistances and of the source resistance, the amplifier equivalent voltage noise density (\overline{e}_n), and the equivalent noise voltage density generated by the amplifier current noise density (\overline{i}_n) flowing through the coupling network impedance presented to the amplifier input. The noise voltage density of each noise source is reflected to the amplifier input through the network gain (at the analysis frequency) from the noise source location to the amplifier input. The total noise reflected to the amplifier input is calculated from the root-sum-squared (RSS) values of the individual contributions.

The sensor is represented by a voltage source (E_s) and a series LRC network (L_s , R_s , and C_s). The inductance may be set to zero if not needed, and the capacitor may be set to 10⁵⁰ farads to remove its contribution. The sensor resistance may be zero if the transformer primary resistance is not zero and vice-versa.

The equivalent circuit can be modified to reflect the transformer secondary capacitance to the primary if desired by deleting steps 059, 060, and 061 in the program. The primary capacitance is now loaded in step 2f of the users' instructions. This modification allows piezoelectric transducer elements to be modeled as the source. R_{pri} is set to zero, and the transformer primary capacitance is used to represent the clamped capacity of the piezoelectric element.

If the transformer is not wanted in the circuit, the turns ratio should be set to one.

The equations are derived using nodal analysis, and the user is referred to the section following Example 1-6.2 for details.

¹⁻⁶ User Instructions

	AMPLIFIER I	CUIVALENT I	NPUT NOISE		
print ? select dB output	select linear output	enter noise current density	enter noise voltage density	enter frequency & compute	2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of the program card			
		<u>-</u> -		
2	Load network element values			
	a) sensor resistance, ohms	R _B	STO O	
	b) sensor capacitance, farads	C ₈		
	c) sensor inductance, henries	Ls	isto 2	
	d) transformer primary resistance, Ω	Rpri	STO 5	
	e) transformer primary inductance, h	L _{pri}	STO 4	
	f) xfmr secondary capacitance, farads	Csec	STO 5	
	g) xfmr secondary resistance, ohms	R _{sec}	STO. 6 :	
	h) amplifier input resistance, ohms	R _{in}	STO 7	
	i) transformer turns ratio	n	STO 8	
3	Select output mode		<u> </u>	
	a) for voltages in dBV and network		A i	
	gain in dB		-,	
- 1	b) for voltages in volts, and		் பூ ப	
	network gain as a voltage ratio		5	
				·
4	Select print(1) / run-stop (0) option		f A	0,1
5	Enter amplifier input noise current density	$\overline{i_n}, A/\sqrt{Hz}$	C	
			· · · · · · · · · · · · · · · · · · ·	
6	Enter amplifier input noise voltage density	ēn, V∕√Hz′	D	
7	Enter analysis frequency and compute output	f, Hz	<u> </u>	gain
		· · · ·		space
	Note:		l l	e 1
	All noise voltages are reflected			e 2
	to the amplifier input, i.e., the			छ ट्ट
	gain of the network from the noise			ēn, amp
	voltage source to the amplifier			In*Z, amp
	input is taken into account.			space
	• • • • • • • • • • • • • • • • •			RSS noise
				space
				space
8	For another case, go back to steps 2 thru 6 a	as required		

Example 1-6.1

A type 2N4867A low-noise field effect transistor (FET) is to be used as a preamplifier for a piezoelectric hydrophone. A frequency range of 10 Hz to 1000 Hz is to be covered. The hydrophone is operating well below its self-resonant frequency, hence, its equivalent circuit is accurately represented by a 4000 pF capacitor in series with a 10 ohm resistor. To avoid preamplifier overload problems from cable flutter and other subsonic signals, the input resistance of the preamplifier is chosen to provide a 50 Hz low frequency break with the hydrophone capacity. The hydrophone will be coupled to the preamp without using a transformer, therefore a dummy turns ratio of 1:1 will be used in the program. The current and voltage noise densities for the 2N4867A are listed in Table 1-6.1.

Frequency, Hz	ī _n , noise A/√Hz	ē _n , noise V/VHz
10	6×10^{-16}	7.0×10^{-9}
20	6×10^{-16}	5.3 x 10^{-9}
50	6×10^{-16}	4.1×10^{-9}
100	6×10^{-16}	3.6×10^{-9}
200	6.1 x 10^{-16}	3.2×10^{-9}
500	6.2×10^{-16}	2.8×10^{-9}
1000	6.3×10^{-16}	2.7×10^{-9}

Table 1-6.1 Current and voltage noise densities of 2N4867A operating at drain current I dss.

The HP-97 printout is shown on the next page. Dummy values have been entered for unused components to remove their contribution.

HP-97 PRINTOUT_FOR_EXAMPLE 1-6.1

PROGRAM INPUT	
10.0 STOR sensor resistance	
409 STG1 sensor capacitance	7 (-88 0000 - 0 100 -
B.@ STO2 sensor inductance	3.6-09 GSBD 5 0 100 Hz.
8.0 ST03 primary resistance	100.0 GSBE frequency
1.+50 ST04 primary inductance	
	-1.0 ***
0.0 3705 secondary capacitance	
1.6 STU6 secondary resistance	-188.9 ***
RCLI	-198.9 ***
50.8 X	-145.9 ***
Pi calculate and store	-168.9 ***
amplifier input	-193.4 ***
2.2 × resistance for	
1/X 50 Hz breakpoint	-145.9 *** total noise at 100 Hz
795774.7 ***	
STU7	
1.0 STOS n, xfmr turns ratio	6.1-16 GSBC Tn @ 200 Hz
	3.2-05 GSED en @ 200 Hz
GSBA select dB/dBV output	200.0 GSBE frequency
	Ecolo cone a reduction
PROGRAM OUTPUT	-0.3 ***
516 GS6C 1, @ 10 Hz	ህቋፍ መጥጥ
705 GSBD en @ 10 Hz	_160 0 +mm
10.0 GSEE frequency	
TALS SEET TIGHTON	-198.2 ***
-14,1 *** Ay, network gain, dB	-151.2 ***
17,1 *** my, notwork gain, up	-169.9 ***
-309 (www B . B . thornal not so dPV	-198.6 ***
-202.1 *** R _s +R _{pri} thermal noise, dBV	
-212.1 *** R _{sec} thermal noise, dBV -139.1 *** R _{in} thermal noise, dBV	-151.1 *** total noise at 200 Hz
-135.1 *** Rin thermal noise, dBy	
-163.1 *** on, transistor	
-186.6 *** fn+Z equiv noise, dBV	6.2-16 GSBC 1 0 500 Hz 2.8-09 GSBD 6 0 500 Hz
	2.8-09 GSBD 57 @ 500 Hz
-139.1 *** total noise (RSS), dBV	500.0 GSBE frequency
	0.0 ***
5.3-09 GSBD 👼 @ 20 Hz 🔹	
20.0 GSBE frequency	-188.6 ***
	-198.0 ***
-8.6 ***	-158.9 ***
* in is unchanged	-171.1 ***
-196.5 *** from the previous	-206.2 ***
-205.5 *** entry.	LVVIL TAT
-139.5 ***	-158.7 *** total noise at 500 Hz.
-165.5 ***	100.7 +** W WAI NOISE ET JUU HZ.
-187.1 ***	├ - · ·
	6.3-16 GSBC In @ 1000 Hz
-139.5 *** total noise at 20 Hz	
TALLO AND ADAMT NOT DO GO CO UN	2.7-09 GSBD 5n @ 1000 Hz
	1008.0 GSBE frequency
4.1-89 SSBD 5n @ 50 Hz	
50.0 GSBE frequency	8.0 ***
Jara Gabe Tredneugy	
-7 3 +44	-187.9 ***
-3.0 ###	-197.9 ***
100 0 444	-164.9 ***
-198.9 ***	-171.4 ***
-200.9 ***	-212.0 ***
-141.9 ***	
-167.7 ***	-164.0 *** total noise at 1000 Hz
-189.4 ***	
-141.9 *** total noise at 50 Hz	

Example 1-6.1 continued

This example points up one of the problems associated with using the characteristics of the sensor impedance along with the amplifier input resistance to effect frequency shaping. It will be noticed that the dominant source of noise comes from the thermal noise of the input resistor. The low noise characteristics of the input transistor are buried by the input resistor noise contribution.

If the input resistor is made larger, the noise contribution of the input resistor will be less. Although this statement may seem backwards, the logic may be seen by looking at the input resistor and its noise generator as a Norton equivalent source instead of a Thevenin equivalent as is presently used. In this light, one can see that the injected noise current is proportional to $1/\sqrt{R}$. Since other circuit impedances are unchanged, lower injected noise current means lower input resistor noise contribution.

The input resistor noise contribution may also be reduced by lowering the sensor impedance to lower the noise voltage resulting from the input resistor noise current.

To illustrate the above point, the example is rerun using a larger input resistor; 100 megohms is used instead of 796 kilohms. The HP-97 printout for this case is shown on the next page. The noise contribution of the input resistor loses dominance above 500 Hz in this case.

Fortunately, the ocean self noise is greatest at low frequencies, and low noise performance is less critical here. EXAMPLE 1-6.1 CONTINUED

PROGRAM INPUT	
100.+06 ST07 store new Rin print registers to show PREG currently stored values	3.6-09 6580 en e 100 Hz 100.0 GSBE frequency
10.00+00 0 sensor resistance 4.000-09 1 sensor capacitance 0.000+00 2 sensor inductance 0.000+00 3 primary resistance	0.0 *** -187.9 ***
100.0+484primary inductance $0.000+00$ 5secondary capacitance $1.000+00$ 6secondary resistance $100.0+06$ 7input resistance	-197.9 *** -197.9 *** -165.9 *** -168.9 *** -192.4 ***
1.000+00 8 xfmr turns ratio	-164.1 *** total noise at 100 Hz.
PROGRAM OUTPUT	
616 GSEC In @ 10 Hz 769 GSBD en @ 10 Hz 10. GSBE frequency	6.1-16 GSEC I n @ 200 Hz 3.2-09 GSED en @ 200 Hz 200.0 GSEE frequency
0.0 *** A _v , network gain, dB	0.0 ***
-187.9 *** $R_{s}+R_{pri}$ thermal noise, dBV -197.9 *** R_{sec} thermal noise, dBV -145.9 *** R_{in} thermal noise, dBV -163.1 *** e_{n}^{i} , transistor, dBV -172.4 *** i_{n+2}^{i} equiv. noise, dBV	-187.9 *** -197.9 *** -171.9 *** -169.9 *** -198.3 ***
-145.6 *** total noise (RSS), dBV	-157.7 *** total noise at 200 Hz
5.3-09 GSBD e @ 20 Hz * 20.0 GSBE frequency	6.2-16 GSBC in @ 500 Hz 2.3-09 GSBD en @ 500 Hz 500.0 GSBE frequency
0.0 *** *in is unchanged	0.0 ***
-187.9 *** from the last	-187.9 ***
-197.9 *** entry.	-197.9 ***
-151.9 ***	-179.9 ***
-165.5 ***	-171.1 ***
-178.5 ***	-205.1 ***
-151.7 *** total noise at 20 Hz	-170.4 *** total noise at 500 Hz
4.1-69 SSBD en @ 50 Hz 50.0 SSBE frequency 8.0 ***	6.3-16 GSBC in @ 1000 Hz 2.7-09 GSBD en @ 1000 Hz 1000.0 GSBE frequency
	13 13 mmm
-187.9 *** -197.9 *** -159.5 ***	0.0 *** -187.9 ***
-167.7 ***	-197.9 ***
-186.4 ***	-185.9 ***
-159.2 *** total noise at 50 Hz	-171.4 *** -212.0 ***
	-171.1 *** total noise at 1000 Hz

Example 1-6.2

A small hydrophone is to be matched to a low-noise preamplifier for optimum noise performance at 30 kHz. The hydrophone equivalent circuit is shown in Fig. 1-6.2. The amplifier input transistor will be a 2N4867A FET operating at a drain current of I_{dss} .

Figure 1-6.2 Hydrophone equivalent circuit.

Table 1-6.2	Current and voltage n	oise densities of
	2N4867A operating at	Idss.

Frequency, kHz	i _n , A/√Hz	en, V/√Hz
10	8.0 x 10^{-16}	2.3×10^{-9}
15	1.0×10^{-15}	1
20	1.2×10^{-15}	
25	1.4×10^{-15}	
30	1.6×10^{-15}	2.3×10^{-9}
35	1.75×10^{-15}	2.2×10^{-9}
40	1.9×10^{-15}	
45	2.15x 10 ⁻¹⁵	
50	2.4×10^{-15}	
55	2.7×10^{-15}	
6 0	3.0×10^{-15}	2.2×10^{-9}

Before the analysis is started, the transformer turns ratio, primary inductance, and amplifier input resistance must be chosen. The transformer ratio should be kept low to minimize the current noise contribution of the input transistor.

The parallel equivalent circuit of the hydrophone at 30 kHz is required. The capacitive part will be resonated by the transformer

primary inductance, leaving only the resistive part. Figure 1-6.3 shows the parallel equivalent circuit before resonating, and Fig. 1-6.4 shows the HP-97 calculations used to obtain the parallel equivalent circuit.

Figure 1-6.3 Parallel equivalent circuit of hydrophone at 30 kHz.

	_	and the second
30000.	-PI	enter frequency and
	X	calculate and store
2.	X	
	ST0E	$\omega = 2\pi \mathbf{f} \Rightarrow \mathbf{R}_{\mathbf{E}}$
1.407-03	X	form wL
r	RCLE	
2000012	X	form 1/(ωC)
	178	
	-	form and print $\omega L = 1/(\omega C) = Im Z$
-44.99-03	***	$\omega L - 1/(\omega C) = Im Z$
130.	→P	load Re Z
	1/8	
	X₽Y	convert impedance
	CHS	to admittance
	X≠Y	
	÷R	
[1/X	
130.0+00	***	Re Y in ohms
	178	Re Y back in mhos
	<u>X</u> ≢Y	
4488812	RCLE	
	x	add clamp capacity
	+	susceptance
	RCLE	convert total
Į	÷	susceptance to
44.01-09	***	capacitance & print
	-	A PARTICULAR OF AN TITA

Figure 1-6.4 HP-97 printout showing calculations used to find the parallel equivalent circuit at 30 kHz.

The thermal noise of the equivalent parallel resistor in a one Hz band is:

 $\overline{e_n}$ (130 Ω) = $\sqrt{4KT(130)}$ = 1.45 x 10⁻⁹ V/ \sqrt{Hz}

If the transformer raises this noise to 6 dB above the transistor noise, the RSS sum of both resistor and transistor noises will be 1 dB higher than the resistor noise alone. The transformer turns-ratio necessary to meet this condition is:

$$n = \frac{2(2.2 \times 10^{-9})}{1.45 \times 10^{-9}} = 3.03$$

The noise current contribution to the total noise voltage also may be calculated (only Re Z_{in} is used as Im Z_{in} is resonated out):

$$\overline{e_n} = \overline{i_n} \cdot n^2 \cdot |Z_{in}| = (1.6 \times 10^{-15})(10^2)(130) = 20.8 \times 10^{-12} V / \sqrt{Hz}$$

This contribution is insignificant compared to the voltage noise term, and the transformer ratio may be raised to make the dominant noise source that of the hydrophone resistance only. This will be the best noise performance obtainable.

With a transformer ratio of 10:1, the equivalent hydrophone resistor noise is $1.45 \times 10^{-8} \text{ V//Hz}$ at the transistor input, and the RSS of both the transistor and resistor noises is 1.467×10^{-8} . This RSS voltage is only 0.1 dB above the resistor noise alone!

To represent the equivalent hydrophone shunt capacity (44.01 nF), the transformer secondary capacitance term, C_{sec} is used. This equivalent secondary capacity is the primary capacity (hydrophone capacity) divided by the square of the turns ratio:

 $C_{\text{sec}} = (44.01 \text{ nF})/(10^2) = 440 \text{ pF}$

The primary inductance is chosen to parallel resonate with the equivalent hydrophone capacity, 44.01 nF, at the design frequency of 30 kHz. This primary inductance is:

$$L_{pri} = 1/((2\pi f)^2 C) = 1/((2\pi 30000)^2 \cdot 44.01 \times 10^{-9})$$
$$L_{pri} = 639.5 \ \mu h$$

The "Q" of the network is $R/(2\pi fL) = 1.078$, which means the approximate bandwidth of the network is 30000/1.078 = 27829 Hz. Additional broadbanding using the shunting effect of an amplifier input resistor is not necessary. This input resistor may be removed altogether as the transformer secondary provides the dc return for the transistor gate connection. The input resistor will be omitted by making its value 10^{50} ohms. The HP-97 printout for this example is shown on the next page, and the equivalent circuit is shown in Fig. 1-6.5.

Figure 1-6.5 Equivalent circuit for hydrophone and amplifier.

HP-97 PRINTOUT FOR EXAMPLE 1-6.2

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
1.447-83 ST02 1.457-83 ST02	130.0 STO0 R 8								
1.497-83 ST02 L 339.5-86 ST04 Ppri 44012 ST05 Gree 1.450 ST07 Ran 121.9 *** 6554 select dB mode for p/ 6554 select dB mode for p/ 1.450 ST07 Ran 127.9 *** 6554 select dB mode for p/ 1.450 ST07 Ran 127.9 *** 6554 select dB mode for p/ 1.6-15 CSEC Ind Ind Ind Comp 1.6-15 CSEC Ind Ind Ind Comp 1.7-15 CSEC Ind Ind Ind Comp 1.2-15 CSEC Ind	2000012 STO1 C.			_					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.4-15	GSBC	in @ 25 kHz					
639.5-62 STG1 1021 44012 STG5 Gree 1.8516 Raco 1.450 STO7 Ran 12.8 STG7 Ran 13.5 STG8 Ran 14.5 STG8 1.6-15 GSEC 13.5 STR Add 14.5 STR Ran 156.3 STR -156.8 STR 161.5 STR -157.9 STR 172.8 STR -156.8 STR 1.1.75.15 GSEC Ran 1.1.75.15 GSEC Ran 1.1.75.8 STR -156.7 STR 1.1.75.		25000.0	GSBE	frec & start	A 45.45	nene	Taks late		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2.15-15	83Di	1n 6 47 KHZ		
44012 SIGS Gee 1.458 SIGF Reso 1.458 SIGF Reso 1.54.9 *** 19.6 *** 6384 select dB mode for p/G -154.9 *** -1172.8 *** -157.9 *** -137.9 *** -137.9 *** -137.9 *** -157.1 *** -137.9 *** -137.9 *** -137.9 *** -157.8 *** -157.1 *** -137.9 *** -137.9 *** -157.8 *** 9ROGRAM OUTPUT -154.8 *** -156.8 *** -156.8 *** -157.8 *** -157.8 *** -157.8 *** -157.8 *** -157.8 *** -157.8 *** -157.8 *** -157.9 *** -157.9 *** -157.9 *** -157.9 *** -157.9 *** -157.9 *** -156.7 *** -156.7 *** -156.7 *** -157.9 *** -156.7 *** -157.9 *** -156.7 *** -157.9 *** -156.7 *** -157.9 *** -156.7 *** -157.9 *** -157.1 *** -157.1 *** -157.1 *** -157.1 *** -157.1 *** -157.1 *** -157.1 *** -157.9 *** -157.1 *** -157.1 *** -157.9 *	639.5-06 ST04 Lori				45000.0	GSBE	freq & start		
1.8 5 107 Fine -154.9 *** 1.8.0 5107 Firmsformer -157.9 *** 6586 select dB -172.8 *** 6587 Firmsformer -154.9 *** 6586 select dB -172.8 *** 6586 select dB -172.8 *** -172.8 *** -173.2 *** -1808.8 5860 load freq & 30000.8 65861 1.6-15 65861 freq & start -157.8 *** -3.5 *** -166.8 1.6-15 65862 freq & start -162.3 *** -162.3 *** -172.8 *** -165.8 *** -162.3 *** -162.3 *** -1803.8 65861 load freq & *** -172.8 *** -162.3 *** -172.8 *** -165.6 *** -162.3 *** -172.8 *** -165.7 *** -162.3 *** -172.8 *** -165.7 *** -162.3 ***		21.9	***				•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					10 5	di di di			
18.0 3703 Min ansformer 18.0 3703 Min ansformer 18.0 3703 Min ansformer 17.1 *** 17.1 *** 17.1 *** 17.1 *** 17.1 *** 17.2 *** 17.1 *** 17.1 *** 17.1 *** 17.1 *** 17.1 *** 17.1 *** 17.1 *** 17.1 *** 17.1 *** 18000.0 0.00000000000000000000000000000000000		-154 9	****		12.0	<u>ተ</u> ተተ			
18.8 \$108 ntransformer -157.1 *** 6584 select 4B -172.8 *** -161.8 *** -172.8 *** -172.8 *** -616.1 *** -172.8 *** -172.8 *** -161.1 *** -172.8 *** -172.8 *** -161.1 *** -172.8 *** -157.1 *** -161.1 *** -152.6 *** -157.6 *** -157.6 *** -152.6 1.6-15 5580 In ot @ 250kHz -157.6 *** -157.6 *** -3.5 *** -156.8 *** -157.9 *** -157.9 *** -197.9 *** -156.8 *** -162.8 *** -173.2 *** -172.8 *** -156.7 *** -173.2 *** -162.8 *** -162.8 *** -172.8 *** -156.7 *** -173.2 *** -162.8 *** -172.8 **** -155.4 *** <	1.700 SIU/ Rin								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.0 STUS ntransformer				-157.1	***			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	or and to the				-197.9	***			
-211.6 **** -731.6 **** -731.6 **** -731.6 **** -731.6 **** -731.6 **** -731.6 **** -731.6 **** -731.6 **** -731.6 **** -735.*** -154.8 *** -154.8 *** -154.8 *** -154.8 *** -154.8 *** -154.8 *** -154.8 *** -154.8 *** -155.6 *** -156.8 *** -156.8 *** -156.8 *** -156.7 *** -156.7 *** -156.7 *** -156.7 *** -156.7 *** -156.7 *** -156.7 *** -156.7 *** -156.7 *** -156.7 *** -156.7 *** -156.7 *** <td <="" colspan="2" th=""><th>298ú select dB</th><th>-172.8</th><th>軍軍水水</th><th></th><th></th><th></th><th></th></td>	<th>298ú select dB</th> <th>-172.8</th> <th>軍軍水水</th> <th></th> <th></th> <th></th> <th></th>		298ú select d B	-172.8	軍軍水水				
-154.8 ****-285.5 ***-154.8 ****-285.5 ***-154.8 ****-157.8 ***-157.8 ***-154.8 ****-154.8 ***-157.8 ***-156.8 Inder Inde									
PROGRAM OUTPUT -154.3 **** \mathbf{e}_{n} to t \mathbf{e} 25kHz -157.8 **** \mathbf{e}_{n} to t \mathbf{e} 45kHz 816 656C load \mathbf{I}_{n} e 100kHz 1.6-15 658C \mathbf{I}_{n} e 30 kHz 2.4-15 658C \mathbf{I}_{n} e 50 kHz 10000.0 658E load freq & start 20.0 *** 20.4-15 658C \mathbf{I}_{n} e 50 kHz 50000.0 658E freq & start -3.5 *** $\mathbf{A}_{\mathbf{T}}$ dB -156.8 *** -162.3 *** -162.3 *** -172.0 *** RSS of all -156.7 *** \mathbf{e}_{n} to e 30kHz -162.0 *** -172.0 *** RSS of all -156.7 *** \mathbf{e}_{n} to e 30kHz -162.0 *** -172.0 *** RSS of all -156.7 *** \mathbf{e}_{n} to e 30kHz -162.0 *** -172.0 *** RSS of all -156.7 *** \mathbf{e}_{n} to e 30kHz -162.0 *** -172.0 *** RSS of all -156.7 *** \mathbf{e}_{n} to e 30kHz -162.0 *** -172.0 *** RSS of all -156.7 *** \mathbf{e}_{n} to e 30kHz -162.0 *** 115 6SEC In e 15 kHz * -156.4 *** -162.0 *** \mathbf{e}_{n} to e 50k 115 6SEC In e 15 kHz * -155.4 *** -166.3 *** -173.2 *** <th>mode for p/d</th> <th></th> <th>ጥጥጥ</th> <th></th> <th></th> <th></th> <th></th>	mode for p/d		ጥጥጥ						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-	-205.5	末 本家			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PROGRAM OUTPUT	-154.8	***	on tot @ 25kH	5				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-	~157 B	at strate	- tot @ 45km		
2.3-35 GSB0 load \overline{o}_{r0} 30000.0 GSEE froq & start 2.4-15 GSEC In \overline{o} 50 kHz -3.5 *** Ay dB -156.8 *** 14.5 *** -186.3 *** -156.8 *** -162.3 *** -172.0 *** -615.6 *** -162.3 *** -172.0 *** -615.6 *** -172.8 *** -172.0 *** RES of all noise e's, dBV -175.4 *** -615.6 *** -172.0 *** RES of all noise e's, dBV 1.75-15 GSEC In e 55 kHz -162.0 *** -200.1 *** 1.001.0 GSEE freq & start 2.2-05 GSED In e 55 kHz -162.0 *** -200.1 *** 1.001.0 GSEE freq & start 2.2-05 GSED In e 55 kHz -162.0 *** -162.0 *** -162.0 *** -200.1 *** -200.1 *** -200.1 *** -162.0 *** -200.1 *** -162.0 *** -200.1 *** -200.1 *** <t< th=""><th></th><th></th><th></th><th></th><th>10110</th><th>ተጥጥ</th><th>T WUG HIMA</th></t<>					10110	ተጥጥ	T WUG HIMA		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				_					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.6-15	GSBC	in @ 30 kHz			_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.3-09 6SBD load on@ *	30000.0	esez	free & start	2.4-15	GS8C	I. 6 50 kHz		
$-3.5 \ *** \ A_{y} \ dB$ $28.6 \ ***$ $14.5 \ ***$ $-3.5 \ *** \ A_{y} \ dB$ $-156.8 \ ***$ $14.5 \ ***$ $-197.9 \ *** \ -615.6 \ *** \ -197.9 \ *** \ -615.6 \ *** \ -197.9 \ *** \ -615.6 \ *** \ -197.9 \ *** \ -197.9 \ *** \ -197.9 \ *** \ -173.2 \ *** \ -173.2 \ *** \ -173.2 \ *** \ -173.2 \ *** \ -173.2 \ *** \ -173.2 \ *** \ -173.2 \ *** \ -173.2 \ *** \ -173.2 \ *** \ -173.2 \ *** \ -173.2 \ *** \ -165.3 \ *** \ -165.4 \ ** \ -165.4 $		· · · ·			50000 0	CSRF	free L start		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	98.8	ال الله الله		50000.0	3000	Trad to starte		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20.0	***						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3.5 *** Ay dB				14.5	***			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	-156.8	***						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-186.3 ***	100 0			-162 7	yr dr dr			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	107 0 000		ጥጥጥ						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-13(.3 ***	~013.0	***						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-624.3 ***	-172.8	***						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-172.8 ***	-213.6	***		-173.2	***			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22000 444	150 7	باد باد باد	- +++ 0 701	-200.1	ጥጥጥ			
noise $\overline{\bullet}$'s, dBY115 GSEC $\overline{I_n} \oplus 15$ kHz *15000.0 GSEE $\overline{freq} \& start$ 7.4 $x*x$ -163.4 $x*x$ -173.9 $x*x$ -163.4 $x*x$ -173.9 $x*x$ -173.9 $x*x$ -173.2 $x*x$ -167.7 <th>1775 D DOD 0</th> <th>-130.7</th> <th>***</th> <th>on tot us jukes</th> <th></th> <th></th> <th></th>	1775 D DOD 0	-130.7	***	on tot us jukes					
115 GSEC $\mathbf{I_n} \in 15$ kHz * 115 GSEC $\mathbf{I_n} \in 15$ kHz * 15000.0 GSEE freq & start .7.4 *** -163.4 *** -163.4 *** -177.9 *** -177.9 *** -167.7 *** -167.7 *** -167.7 *** -167.7 *** -167.7 *** -167.7					-162.0	***	en tot @ 50kHz		
115 GSEC $\mathbf{I_n} \in 15$ kHz * 115 GSEC $\mathbf{I_n} \in 15$ kHz * 15000.0 GSEE freq & start .7.4 *** -163.4 *** -163.4 *** -177.9 *** -177.9 *** -167.7 *** -167.7 *** -167.7 *** -167.7 *** -167.7 *** -167.7	noise e's.dBV						-		
115 6 SBC in @ 15 kHz * 2.2-05 6SEC en @ * 2.7-15 GSEC in @ 55 kHz 15000.0 GSBE freq & start (*en umshged) 35000.0 GSBE freq & start 55000.0 GSBE freq & start 7.4 *** 21.3 *** 10.5 *** -169.4 *** -155.4 *** -166.3 *** -197.9 *** -197.9 *** -166.3 *** -172.8 *** -173.2 *** -166.3 *** -172.8 *** -173.2 *** -165.5 *** -167.7 **** en tot @ 15kHz -155.4 *** en tot @ 35kHz 1.2-15 GSBC In @ 20 kHz 1.9-15 GSEC In @ 40 kHz 315 GSEC In @ 60 kHz 1.2-15 GSBC In @ 20 kHz 1.9-15 GSEC In @ 40 kHz 315 GSEC In @ 60 kHz 20000.0 GSEE freq & start 23.4 *** -169.4 *** -157.1 *** -197.9 *** -197.9 *** -197.9 *** -197.9 *** -197.9 *** -197.9 *** -197.9 *** -197.9 *** -157.1 *** -168.4 *** -169.4 *** -172.8 *** -173.2 *** -173.2 *** -172.6 *** -204.9 *** -204.9 *** -210.6 ***	······	1.75-15	GSBC	1 a 35 kHz					
$(\sqrt[6]{e_n} usehged)$ $21.3 \ \# \#$ $10.5 \ \# \#$ $-169.4 \ \# \# \#$ $-155.4 \ \# \# \#$ $-166.3 \ \# \# \#$ $-197.9 \ \# \# \#$ $-197.9 \ \# \# \#$ $-166.3 \ \# \# \#$ $-172.8 \ \# \# \# \#$ $-167.2 \ \# \# \#$ $-166.2 \ \# \# \#$ $-172.8 \ \# \# \# \#$ $-173.2 \ \# \# \#$ $-173.2 \ \# \# \#$ $-177.2 \ \# \# \# \#$ $-173.2 \ \# \# \#$ $-173.2 \ \# \# \#$ $-167.7 \ \# \# \# \# \# \#$ $-175.4 \ \# \# \# \# \# \#$ $-165.5 \ \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# $	1 -15 CSEC T @ 15 1-10 #	2 2-05	CORD		9 7.15	cepe	T		
$(\sqrt[6]{e_n} usehged)$ $21.3 \ \# \#$ $10.5 \ \# \#$ $-169.4 \ \# \# \#$ $-155.4 \ \# \# \#$ $-166.3 \ \# \# \#$ $-197.9 \ \# \# \#$ $-197.9 \ \# \# \#$ $-166.3 \ \# \# \#$ $-172.8 \ \# \# \# \#$ $-167.2 \ \# \# \#$ $-166.2 \ \# \# \#$ $-172.8 \ \# \# \# \#$ $-173.2 \ \# \# \#$ $-173.2 \ \# \# \#$ $-177.2 \ \# \# \# \#$ $-173.2 \ \# \# \#$ $-173.2 \ \# \# \#$ $-167.7 \ \# \# \# \# \# \#$ $-175.4 \ \# \# \# \# \# \#$ $-165.5 \ \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# $	1.1000001n 1.1000	75000 0	0000	en e					
7.4 *** 21.3 *** 10.5 *** -163.4 *** -155.4 *** -166.3 *** -197.9 *** -197.9 *** -197.9 *** -618.1 *** -167.2 *** -173.2 *** -172.8 *** -173.2 *** -173.2 *** -167.7 *** $\overline{\mathbf{e}}_{\mathbf{n}}$ tot @ 15kHz -155.4 *** -166.3 *** -173.2 *** -197.9 *** -197.9 *** -166.2 *** -167.7 *** $\overline{\mathbf{e}}_{\mathbf{n}}$ tot @ 15kHz -155.4 *** -165.5 *** $\overline{\mathbf{e}}_{\mathbf{n}}$ tot @ 55kHz $1.2-15 \text{ GSBC}$ $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 20 kHz $1.9-15 \text{ GSEC}$ $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 40 kHz 315 GSEC $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 60 kHz $1.2-15 \text{ GSBC}$ $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 20 kHz $1.9-15 \text{ GSEC}$ $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 40 kHz 315 GSEC $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 60 kHz $1.2-15 \text{ GSBC}$ $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 40 kHz 315 GSBC $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 60 kHz $60600.6 \text{ GSBE} \text{ freq & start}$ $600600.6 \text{ GSBE} \text{ freq & start}$ $600600.6 \text{ GSBE} \text{ freq & start}$ -169.4 **** -197.9 *** -197.9 *** -197.9 *** -173.2 ***		32000.0	690E	freq & start	55000.0	65BE	freq & start		
7.4 *** 21.3 *** 10.5 *** -163.4 *** -155.4 *** -166.3 *** -197.9 *** -197.9 *** -197.9 *** -618.1 *** -612.8 *** -616.2 *** -173.2 *** -173.2 *** -173.2 *** -127.8 *** -173.2 *** -173.2 *** -220.2 *** -173.2 *** -173.2 *** -167.7 *** $\overline{\mathbf{e}}_{\mathbf{n}}$ tot @ 15kHz -155.4 *** $\overline{\mathbf{e}}_{\mathbf{n}}$ tot @ 35kHz -167.7 *** $\overline{\mathbf{e}}_{\mathbf{n}}$ tot @ 15kHz -155.4 *** $\overline{\mathbf{e}}_{\mathbf{n}}$ tot @ 35kHz $1.2-15 \text{ GSBC}$ $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 20 kHz $1.9-15 \text{ GSEC}$ $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 40 kHz 315 GSEC $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 60 kHz $1.2-15 \text{ GSBC}$ $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 20 kHz $1.9-15 \text{ GSEC}$ $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 40 kHz 315 GSEC $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 60 kHz $1.2-15 \text{ GSBC}$ $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 40 kHz 315 GSBC $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 60 kHz $1.2-15 \text{ GSBC}$ $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 40 kHz 315 GSBC $\overline{\mathbf{I}}_{\mathbf{n}}$ @ 60 kHz $19.6 \text{ $***$}$ $-197.9 \text{ $****	(*e, unshged)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.4 ***	21.3	***		10.5	***			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-169 4 444	-155 4	مان مان بۇر		100 3	- اند ما - ماد			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-618.1 ***	-612.8	***		-616.2	***			
-220.2 **** -210.1 **** -209.6 **** -167.7 **** \overline{e}_n tot @ 15kHz -155.4 **** \overline{e}_n tot @ 35kHz -165.5 **** \overline{e}_n tot @ 55kHz $1.2-15$ GSBC \overline{I}_n @ 20 kHz $1.9-15$ GSEC \overline{I}_n @ 40 kHz 315 GSEC \overline{I}_n @ 60 kHz 20000.0 GSBE freq & start $1.9-15$ GSEC \overline{I}_n @ 40 kHz 315 GSEC \overline{I}_n @ 60 kHz 19.6 *** 23.4 *** 7.4 *** 7.4 **** -157.1 *** -153.4 *** -169.4 *** -169.4 *** -197.9 *** -197.9 *** -197.9 *** -606.4 *** -172.6 *** -204.9 *** -204.9 *** -210.6 ***	-172.8 ***								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
1.2-15 GSBC $I_n @ 20$ kHz 1.9-15 GSEC $I_n @ 40$ kHz 315 GSEC $I_n @ 60 $ kHz 20000.0 GSBE freq & start 40000.0 GSEE freq & start 60000.0 GSEE freq & start 19.6 *** 23.4 *** 7.4 *** -157.1 *** -153.4 *** -169.4 *** -197.9 *** -608.4 *** -197.9 *** -610.1 *** -608.4 *** -173.2 *** -172.8 *** -204.9 *** -204.9 ***	66V16 PAP	-210.1	***		-203.0	异菜菜			
1.2-15 GSBC $I_n \otimes 20$ kHz 1.9-15 GSEC $I_n \otimes 40$ kHz 315 GSEC $I_n \otimes 60$ kHz 20000.0 GSBE freq & start 40000.0 GSEE freq & start 60000.0 GSEE freq & start 19.6 *** 23.4 *** 7.4 *** -157.1 *** -153.4 *** -169.4 *** -197.9 *** -608.4 *** -197.9 *** -610.1 *** -173.2 *** -173.2 *** -120.6 *** -204.9 *** -204.9 ***				-			-		
1.2-15 GSBC $I_n \otimes 20$ kHz 1.9-15 GSEC $I_n \otimes 40$ kHz 315 GSEC $I_n \otimes 60$ kHz 20000.0 GSBE freq & start 40000.0 GSEE freq & start 60000.0 GSEE freq & start 19.6 *** 23.4 *** 7.4 *** -157.1 *** -153.4 *** -169.4 *** -197.9 *** -608.4 *** -197.9 *** -610.1 *** -173.2 *** -173.2 *** -120.6 *** -204.9 *** -204.9 ***	-167.7 *** e tot @ 15kHz	-155.4	***	•n tot @ 35]kH2	-165.5	***	en tot @ 55kHz		
20000.0 658E freq & start 40000.0 658E freq & start 60000.6 658E freq & start 19.6 *** 23.4 *** 7.4 *** -157.1 *** -153.4 *** -169.4 *** -197.9 *** -197.9 *** -197.9 *** -610.1 *** -608.4 *** -618.1 *** -172.8 *** -204.9 *** -204.9 *** -157.1 *** -107.5 *** -173.2 ***					l .				
20000.0 658E freq & start 40000.0 658E freq & start 60000.6 658E freq & start 19.6 *** 23.4 *** 7.4 *** -157.1 *** -153.4 *** -169.4 *** -197.9 *** -197.9 *** -197.9 *** -610.1 *** -608.4 *** -618.1 *** -172.8 *** -204.9 *** -204.9 *** -157.1 *** -107.5 *** -173.2 ***							•		
20000.0 658E freq & start 40000.0 658E freq & start 60000.6 658E freq & start 19.6 *** 23.4 *** 7.4 *** -157.1 *** -153.4 *** -169.4 *** -197.9 *** -197.9 *** -197.9 *** -610.1 *** -608.4 *** -618.1 *** -172.8 *** -204.9 *** -204.9 *** -157.1 *** -107.5 *** -173.2 ***	1 3-15 CODE T @ 20 1-4-	10.45	cene	Taka	-	0000	T		
20000.0 658E freq & start 40000.0 658E freq & start 60000.6 658E freq & start 19.6 *** 23.4 *** 7.4 *** -157.1 *** -153.4 *** -169.4 *** -197.9 *** -197.9 *** -197.9 *** -610.1 *** -608.4 *** -618.1 *** -172.8 *** -204.9 *** -204.9 *** -157.1 *** -107.5 *** -173.2 ***		1.9-13	6355	TU O HO KHZ	315	63DL	⊥n ⊕ o∪ kHz		
19.6 *** 23.4 *** 7.4 *** -157.1 *** -153.4 *** -169.4 *** -197.9 *** -197.9 *** -197.9 *** -610.1 *** -608.4 *** -618.1 *** -172.8 *** -173.2 *** -173.2 *** -210.6 *** -204.9 *** -210.6 ***	20000.0 GSBE freq & start	40000.0	GSBE	rreq & start	60000.E	GSBE	freq & start		
-157.1 *** -153.4 *** -169.4 *** -197.9 *** -197.9 *** -197.9 *** -610.1 *** -608.4 *** -618.1 *** -172.8 *** -173.2 *** -173.2 *** -210.6 *** -204.9 *** -210.6 ***		1					-		
-157.1 *** -153.4 *** -169.4 *** -197.9 *** -197.9 *** -197.9 *** -610.1 *** -608.4 *** -618.1 *** -172.8 *** -173.2 *** -173.2 *** -210.6 *** -204.9 *** -210.6 ***	19.6 ***	23.4	***		74	原本系			
-197.9 *** -197.9 *** -618.1 *** -608.4 *** -172.8 *** -173.2 *** -210.6 *** -204.9 ***		1				ም ጥጥ			
-197.9 *** -197.9 *** -618.1 *** -608.4 *** -172.8 *** -173.2 *** -210.6 *** -204.9 ***		(
-610.1 *** -608.4 *** -618.1 *** -172.8 *** -173.2 *** -173.2 *** -210.6 *** -204.9 *** -210.6 ***									
-610.1 *** -608.4 *** -618.1 *** -172.8 *** -173.2 *** -173.2 *** -210.6 *** -204.9 *** -210.6 ***	-197.9 ***	-197.9	***		-197.9	***			
-172.8 *** -173.2 *** -173.2 *** -210.6 *** -204.9 *** -210.6 ***	-610.1 ***	~608.4	***						
-210.6 *** -204.9 *** -210.6 ***									
	-210.0 ***	-204.9	***		-210.6	***			
		1							
-157.0 *** en tot @ 20kHz -153.3 *** en tot @ 40kHz -167.8 *** en tot @ 60kHz	-157.0 *** T tot @ 201-10	-153.3	***	a, tot @ 40kHz	-167.8	***	L tot & ADLER		
		1			_				

Example 1-6.2 is meant to illustrate both the program functioning and to give some insight on hydrophone matching. The gain versus frequency response has two peaks, which is characteristic of doubly tuned networks.

The whole subject of optimum hydrophone matching is beyond the scope of this program and discussion. Equiripple passband response and optimum noise performance may be simultaneously obtained with higher order matching networks which represent bandpass filter like structures and include the hydrophone equivalent circuit in the filter structure. Typical broadbanding networks are fifth order and have Chebyshev responses. These networks are an extension of the work of Fano [23] and Matthaei [37].

Derivation of Equations Used

The network shown in Fig. 1-6.1 is redrawn with the components on the secondary side of the transformer reflected to the primary side, and the thermal noise sources of the resistors added. This new network is shown in Fig. 1-6.6.

Fig. 1-6.6 Network of Fig. 1-6.1 redrawn with the transformer moved to the right side.

The network of Fig. 1-6.6 is shown in Fig. 1-6.7 with the individual element groups replaced by generalized admittance blocks. The noise voltage densities of the noise generators are defined by Eqs. (1-6.1) through (1-6.3), and the admittance blocks are defined by Eqs. (1-6.4) through (1-6.7).

Figure 1-6.7 Network of Fig. 1-6.6 redrawn with generalized admittance blocks.

$$\bar{e}_1 = \sqrt{4KT(R_s + R_{pri})}$$
 (1-6.1)

$$e_2 = (1/n) \sqrt{4KTR}_{sec}$$
 (1-6.2)

$$\bar{e}_3 = (1/n) \sqrt{4KTR_{in}}$$
 (1-6.3)

$$Y_{1} = \frac{1}{R_{s} + R_{pri} + sL_{s} + 1/(sC_{s})} = \frac{1}{R_{s} + R_{pri} + j(\omega L_{s} - 1/(\omega C_{s}))}$$

$$Y_2 = s(n^2 \cdot C_{sec}) + 1/(sL_{pri}) = j(n^2 \omega C_{sec} - 1/(\omega L_{pri}))$$
 (1-6.5)

$$Y_3 = n^2/R_{sec}$$
 $s = j\omega$ (1-6.6)

$$Y_4 = n^2 / R_{in}$$

Where K is Boltzmann's constant (1.380 x 10^{-23} Joules/K), and T is the temperature in Kelvin (290 K at room temperature).

The nodal equations are written from Fig. 1-6.7:

$$\begin{bmatrix} (Y_1 + Y_2 + Y_3) & (-Y_3) \\ (-Y_3) & (Y_3 + Y_4) \end{bmatrix} \cdot \begin{bmatrix} \mathbf{e}_{\mathbf{x}} \\ \mathbf{e}_{\mathbf{y}} \end{bmatrix} = \begin{bmatrix} Y_1(\mathbf{\bar{e}}_1 + \mathbf{e}_s) - Y_3\mathbf{\bar{e}}_2 \\ Y_3\mathbf{\bar{e}}_2 + Y_4\mathbf{\bar{e}}_3 + \mathbf{n}\cdot\mathbf{\bar{1}}_{\mathbf{n}} \end{bmatrix}$$
(1-6.8)

The variable, e_y , is obtained using Cramer's rule. The determinant of the coefficient matrix is designated \triangle .

$$\Delta = (Y_1 + Y_2 + Y_3)(Y_3 + Y_4) - Y_3^2$$

which upon rearranging yields:

$$\Delta = (Y_1 + Y_2 + Y_3)(Y_4) + (Y_1 + Y_2) (Y_3)$$
 (1-6.9)

Substituting the constant matrix (right hand side) into the second column of the coefficient matrix, and evaluating the determinant yields the following:

$$\mathbf{n} \cdot \mathbf{e}_{\mathbf{y}} = (\mathbf{n}/\Delta) \left[(Y_1 + Y_2 + Y_3) (Y_3 \overline{\mathbf{e}}_2 + Y_4 \overline{\mathbf{e}}_3 + \mathbf{n} \cdot \overline{\mathbf{i}}_n) + (Y_1 Y_3) (\overline{\mathbf{e}}_1 + \mathbf{E}_s) - (Y_3^2) (\overline{\mathbf{e}}_2) \right]^{(1-0.10)}$$

Simplifying and removing term subtraction yields:

$$n \cdot e_{y} = (n/\Delta) \left[(Y_{1} + Y_{2} + Y_{3}) (Y_{4} \overline{e}_{3} + n \cdot \overline{i}_{n}) + (Y_{1} Y_{3}) (\overline{e}_{1} + E_{g}) + (Y_{1} - Y_{2}) (Y_{3} \overline{e}_{2}) \right]$$
(1-6.11)

The voltage gain of the network is:
$$n \frac{\partial E_y}{\partial E_s} = \frac{\partial E_A}{\partial E_s} = A_v$$
, or: (1-6.12)

$$A_{v} = (nY_{1}Y_{3})/(\Delta), \qquad (1-6.13)$$

In terms of magnitude only:

$$A_{\mathbf{v}} = \mathbf{n} \cdot |\mathbf{Y}_1| \cdot |\mathbf{Y}_3| / |\Delta|$$
(1-6.14)

Since the noise voltages e_2 , e_3 , and e_n , and the current i_n are random in nature, their addition must be done in RSS fashion to obtain the overall RMS noise voltage at the amplifier input, e_A , i.e.,

$$\bar{e}_{A}^{2} = \bar{e}_{n}^{2} + n^{2} \cdot \bar{e}_{y}^{2}$$
 (1-6.15)

Upon expanding:

$$\bar{e}_{A}^{2} = \bar{e}_{n}^{2} + \frac{n^{2}}{|\Delta|^{2}} \left(|Y_{1} + Y_{2} + Y_{3}|^{2} \cdot (\bar{e}_{3}^{2} |Y_{4}|^{2} + n^{2}\bar{i}_{n}^{2}) + |Y_{1}Y_{3}|^{2} \cdot \bar{e}_{1}^{2} + |Y_{1} + Y_{2}|^{2}Y_{3}^{2} \bar{e}_{2}^{2} \right)$$

This program uses Eqs. (1-6.14) and (1-6.16) to calculate the overall noise voltage density.

1-8

Program Listing I

		_ _				
661 *LBLA SELEOT OUTPUT IN dB &	dBV	856	STOA	store Re(T + Tol	Bo V
002 CF1		057		calculate		
003RTN		8 58	RCL5	calculate	and store	
884 #LBLB SELECT OUTPUT IN RATIO		8 59		$Im(Y_1 + Y_2)$	<u>2)</u> 1	
			RCL8		2	
005 SF1 AND VOLTS		060	X2	calculate	nwo	
		0 61	x		200	
	OURRENT	062	RCLE			
	Z	063	x			
009 F3? if numeric entry, jum	p to	064	+			
010 GTOO storage routine		065	RCLE	calculate	-17/	·
<u>v UII KULU</u> recall presently stor	od value	066	RCL4	CATCUIA CO	(^w ^L pri)
1 1 12 F+3 jump to print and spa		:067	X			
1 013 6102 routine		068	1/X			
-014 *LBL0 store entered value of	P 7	869	1/0			
015 STOO and return control to	ימי		oton	form and s	tore Tm/Y	
016 P#S keyboard		<u>.878</u>	<u>STOB</u>			1 + 12/
017 RTN		871	RCLA	take Y ₁ +	Yo to poly	
		<u>872</u>	<u>+P</u>			
	OLTAGE	073	RCL8	calculate	and store	
	[z	874	X5	$Y_3 = n^2/R$		•
620 GTO0 if numeric entry, jump		875	RCL6	-2 -7.	.8 9 C	
021 RCL9 recall presently store	d value	076	÷			
#1812 print and space routin	10	<u>077</u>	STOC			
023 PRIX		078		form and a		7
¥ 024 SPC		079	P≢S	form and s	tore Y3	$Y_1 + Y_2$
<u>025 RTN return control to keyl</u>	oard	080	ST02		1.51	,
-026 #LBL0 store entered value of		081	9702 P ≠S			
027 ST09	n	082				
028 RTN, return control to keyl	and l	083	RCLB	Im(Y1+Y2+Y	<u>, _I¤(Y</u>	1 +1 2)
029 *LBLE IOAD ANALYSIS FREQ & S			RULH	calculate	Re(Y ₁ +Y ₂ +)	۲ ₃)
	TART	8 84	RULL			
030 F3? if numeric entry, stor 031 STOI	e it	<u>085</u>				
	<u> </u>	086	→P	form and s	tore V.	/_ ⇒ V7
	<u>red</u>	<u>087</u>				2+12
033 CSB3 if flag 0, space		088	RCL8	form Y4.	Y +Y +Yz	
		8 89	X2	וןדן	1 -2 -9[
		<i>090</i>	x			
		891	RCL7			
037 ×		<u>092</u>	÷			
<u>038 STOE</u>		893	→R _	form Redin	(V) (V V.	·
$\begin{array}{c c} \hline 039 & RCL2 \\ \hline 040 & x \\ \hline \end{array} form \omega L_{sens}$		094	RCLA	form Re(Yz		азµ
			RCLC		-12//	
041 RCLE		0 96	x			
842 RCL1 80-1/(10)		097		form Re A		
$\begin{array}{c} \theta_{42} \text{RCLI} \\ \theta_{43} x \text{form } 1/(\omega \sigma_{\text{sens}}) \end{array}$		098	XZY			
<u>844 1/X</u>			RCLB	form Im(Y ₃ ((Y ₁ +Y2))	
$\frac{\theta 45}{24} = \lim \mathbf{Z}_4 = \omega \mathbf{L}_8 - \frac{1}{(\omega \mathbf{C}_8)}$					-	
046 RCL0			RCLC			i
	}	101	<u> </u>	<u> </u>		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ł	102	<u></u>	form Im A		
		<u>103</u>		form [6]		
	polar _	104	RCL8	form and st	ore n/lal	
		105	÷		· []	
		186	178			
052 XIY 053 CHS finish complex inverse			STOA			
and mature and the	· ·	108 1		form Y1Y3		
mentangulan as and ust			RCLC	1-1-31		
$055 \rightarrow R$ rectangular co-ordinate	38	110	x			1
		<u> </u>				
	REGISTERS					
	ri ⁵ 0 _{seo}	⁶ R		7 8. 8	9	'enamp
			9 80	Rin	n	amp
$ \sum_{n_{amp}} \sum_{s_1 \geq v^2} \sum_{s_2 \leq v_3 \leq v_4 \leq v_4 \leq v_5 \leq v_4 < v_4 \leq v_4 \leq v_4 \leq v_4 < v_4 \leq v_4 \leq v_4 < v_4 \leq v_4 < v_4 \leq v_4 < v_4 $	S5	S6		S7 S	8 5	59
	<u> </u>					
$ \stackrel{\text{A}}{\text{Re}} Y_1, \frac{n}{ \Delta } \stackrel{\text{B}}{\text{Im}} (Y_1 + Y_2), 4KT \stackrel{\text{C}}{\text{KT}} Y_3 , Y_1 $	$\mathbf{v}_{\tau} = \begin{bmatrix} \mathbf{P} & \mathbf{i} \mathbf{v}_{\tau} \end{bmatrix}$	1.	E		if, ti	ne freq
	Y ₃ Y ₁	, A _V		2nf , Y1 + Y2 +	Ys for a	nalysis

Program Listing II

111	STOC	calcu	late and s	tore		166	GSB1			
112	x			-		167	P≠s (calculate	and output	t the
	STOD	Aula	$= \mathbf{n} \cdot \mathbf{Y}_1 \mathbf{Y}_3 $			168			oise densi	
<u>113</u>					·					
114	GSB1	print	Ay or 20	log A _{rr}		169	P#S (caused by	the ampli:	fier
115						17 8			rent noise	
		initi	alize ∑V	2 registe	r			Liput vur	TOUL TIOT DO	denot cy
116	P‡S					171	X	acting on	the equiva	alent
117	ST01					172	RCLE	circuit in	aprebage	
						173	x		Podettoo	
[<u>118</u>	<u> </u>]					
119	GSB3	SDACA	if flag 0	is set		174	GSB1			
120						175	GSB3	ang on if f	lag O is	
	1	IOTM	and store	4KT						<u> </u>
121						176	- P⊋S			
122	6					177	RCL1	recall and	d output t	he RSS
						178				
123	1								e above no:	180
124	7					179	- XX -	voltage de	ensities	
					·	180	GSB1	1 15 72 1		
125	3						0007	$(\sqrt{\Sigma}\sqrt{2})$		
126	6				1	181	esb3			
127						182	<u>6t03</u>			
	EEX								hmoutine	
128	CHS				1	183	#LBL1	output su	proutine:	
129	2				I	184	X2	store ΣV^2		
					I	185	P≠S			
130	0				1					
131	STOB				1	186	ST+1			
						187	PZS_			
132	RCLØ	calcu	late and o	utput:	1					
133	RCL3	A	$4KT(R_s + R$		1	<u>188</u>		recall V		
		TY I	witing + m	priz		189	F1?	if flag 1	, output v	oltage
134	+		is the tr		ł					
135	x		ry resista		I	190			ering form	
	ru					191	FIX	flag lis	cleared;	outnut
136	18	senso	r resistan	ce thermal		192				
137	RCLD	volta	ge noise d	eneity				20 log V :	in fix l f	ormat
138	x	10104	Ec moles d	CUBT CA		193	LOG			
						194	2			
139	<u>6581</u>									
140	RCLB					195	0			
		Garon	late and o	utput:	1	196	x			
141	RCL6	Y2(Y	1+Y2)/2	V4KTR	I					
142	x	ריכיי	T _5			197	RND			
						1 427				
		which	is the tr	ansformer			GT02			
143	₹X		is the tr			<u>–198</u>	GT02		,,,,,,,	
143	₹X	secon	dary resis	tance then	mal	- <u>198</u> 199	*LBL1		<u></u> .	
143 144	TX RCL8	secon	dary resis	tance then	mal	- <u>198</u> 199	*LBL1		<u></u> ,	
143 144 145	{X RCL8 ÷	secon		tance then	mal	<u>198</u> 199 200	*LBL1 ENG		<u></u> ,	
143 144	TX RCL8	secon	dary resis	tance then	mal	<u>-198</u> 199 200 201	*LBL1 ENG DSP3			
143 144 145 146	IX RCL8 ÷ P≠S	secon	dary resis	tance then	mal	<u>198</u> 199 200	*LBL1 ENG DSP3	print-R/S	subroutin	
143 144 145 146 147	IX RCL8 ÷ P≠S RCL2	secon	dary resis	tance then	mal	<u>-198</u> 199 200 201 -202	*LBL1 ENG DSP3 *LBL2	print-R/S	subroutin	6
143 144 145 146	IX RCL8 ÷ P≠S	secon	dary resis	tance then	mal	- <u>198</u> 199 200 201 202 203	*LBL1 ENG DSP3 *LBL2 F0?	print-R/S	subroutin	e
143 144 145 146 147 148	<i>IX</i> <i>RCL8</i> <i>₽‡S</i> <i>RCL2</i> <i>P‡S</i>	secon	dary resis	tance then	mal	<u>-198</u> 199 200 201 -202	*LBL1 ENG DSP3 *LBL2	print-R/S	subroutin	6
143 144 145 146 147 148 149	IX RCL8 ≠ P≠S RCL2 P≠S ×	secon	dary resis	tance then	mal	- <u>198</u> 199 200 201 202 203 203 204	*LBL1 ENG DSP3 *LBL2 F0? PRTX	print-R/S	subroutin	e
143 144 145 146 147 148	<i>IX</i> <i>RCL8</i> <i>₽‡S</i> <i>RCL2</i> <i>P‡S</i>	secon	dary resis	tance then	mal	198 199 200 201 202 203 204 205	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0?	print-R/S	subroutin	e
143 144 145 146 147 148 149 150	<i>IX</i> <i>RCL8</i> <i>₽‡</i> S <i>RCL2</i> <i>P‡</i> S <i>x</i> <i>RCLA</i>	secon	dary resis	tance then	mal	198 199 200 201 202 203 204 205 206	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN	print-R/S	subroutin	e
143 144 145 146 147 148 149 150 151	<i>IX</i> <i>RCL8</i> <i>₽‡</i> <i>P‡</i> S <i>RCL2</i> <i>P‡</i> S <i>x</i> <i>RCLA</i> <i>x</i>	secon	dary resis	tance then	mal	198 199 200 201 202 203 204 205 206	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN	print-R/S	subroutin	e
143 144 145 146 147 148 149 150 151 152	<i>IX</i> <i>RCL8</i> <i>₹</i> <i>P‡</i> S <i>RCL2</i> <i>P‡</i> S <i>x</i> <i>RCLA</i> <i>x</i> <i>GSB1</i>	secon	dary resis	tance then	mal	198 199 200 201 202 203 204 205 206 207	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S	print-R/S	subroutin	e
143 144 145 146 147 148 149 150 151 152	<i>IX</i> <i>RCL8</i> <i>₹</i> <i>P‡</i> S <i>RCL2</i> <i>P‡</i> S <i>x</i> <i>RCLA</i> <i>x</i> <i>GSB1</i>	secon volta	dary resis ge noise d	tance then ensity	ma]	198 199 200 201 202 203 204 205 206 207 208	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN_			
143 144 145 146 147 148 149 150 151 152 153	<i>IX</i> <i>RCL8</i> <i>₽‡S</i> <i>RCL2</i> <i>P‡S</i> <i>X</i> <i>RCLA</i> <i>X</i> <i>GSB1</i> <i>RCLB</i>	secon volta	dary resis	tance then ensity	mal	198 199 200 201 202 203 204 205 206 207 208	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN_			
143 144 145 146 147 148 149 150 151 152 153 154	<i>IX</i> <i>RCL8</i> <i>₹</i> <i>P‡</i> S <i>RCL2</i> <i>P‡</i> S <i>x</i> <i>RCLA</i> <i>x</i> <i>GSB1</i>	secon volta calcu	dary resis ge noise d	tance then ensity utput:		198 199 200 201 202 203 204 205 206 207 208 209	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN_ *LBL3		subroutin flag 0 sub	
143 144 145 146 147 148 149 150 151 152 153 154	<i>IX</i> <i>RCL8</i> <i>₽‡S</i> <i>RCL2</i> <i>P‡S</i> <i>X</i> <i>RCLA</i> <i>X</i> <i>GSB1</i> <i>RCLB</i>	secon volta calcu	dary resis ge noise d	tance then ensity utput:		198 199 200 201 202 203 204 205 206 207 208 209 210	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN_ *LBL3 F0?			
143 144 145 146 147 148 149 150 151 152 153 154 155	<i>IX</i> <i>RCL8</i> <i>÷</i> <i>RCL2</i> <i>P‡</i> S <i>X</i> <i>RCLA</i> <i>X</i> <i>GSB1</i> <i>RCLB</i> <i>RCL7</i> <i>÷</i>	secon volta calcu	dary resis ge noise d	tance then ensity		198 199 200 201 202 203 204 205 206 207 208 209	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN_ *LBL3			
143 144 145 146 147 148 149 150 151 152 153 154 155 156	<i>IX</i> <i>RCL8</i> <i>÷</i> <i>P2S</i> <i>RCL2</i> <i>P2S</i> <i>X</i> <i>RCLA</i> <i>X</i> <i>GSB1</i> <i>RCLB</i> <i>RCL5</i> <i>F</i> <i>X</i>	secon volta calcu $\frac{n}{ \Delta }$, $ Y_{\lambda} $	dary resis ge noise d late and of 4(Y1+Y2+Y3	tance then ensity utput:) • \square		198 199 200 201 202 203 204 205 206 207 208 209 210 211	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC			
143 144 145 146 147 148 149 150 151 152 153 154 155	<i>IX</i> <i>RCL8</i> <i>÷</i> <i>RCL2</i> <i>P‡</i> S <i>X</i> <i>RCLA</i> <i>X</i> <i>GSB1</i> <i>RCLB</i> <i>RCL7</i> <i>÷</i>	secon volta calcui $\frac{n}{ \Delta }$, $ Y $ which	dary resis ge noise d late and or 4(Y1+Y2+Y3 is the the	tance then ensity utput:) $\cdot \sqrt{4 \times TR_{in}}$ ermal noise		198 199 200 201 202 203 204 205 206 207 208 209 210 211 212	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN	space if	flag O sub	
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	<i>IX</i> <i>RCL8</i> <i>÷</i> <i>P‡S</i> <i>RCL2</i> <i>P‡S</i> <i>RCLA</i> <i>X</i> <i>RCLB</i> <i>RCL7</i> <i>÷</i> <i>IX</i> <i>RCL8</i>	secon volta calcui $\frac{n}{ \Delta }$, $ Y $ which	dary resis ge noise d late and or 4(Y1+Y2+Y3 is the the	tance then ensity utput:) • \square		198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL3	space if		
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158	<i>IX</i> <i>RCL8</i> <i>PZ</i> S <i>RCL2</i> <i>PZ</i> S <i>X</i> <i>RCLA</i> <i>X</i> <i>GSB1</i> <i>RCLB</i> <i>RCL7</i> <i>∓</i> <i>IX</i> <i>RCL8</i> <i>X</i>	secon volta calcu: $\frac{n}{ \Delta } \cdot Y$ which volta	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density	tance them ensity utput:) $\cdot \sqrt{4 \times TR_{ij}}$ ermal noise due to the		198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL3	space if	flag O sub	
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159	<i>IX</i> <i>RCL8</i> <i>PZ</i> S <i>RCL2</i> <i>PZ</i> S <i>X</i> <i>RCLA</i> <i>SSB1</i> <i>RCLB</i> <i>RCL7</i> <i>∓</i> <i>IX</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCLA</i>	secon volta calcu: $\frac{n}{ \Delta } \cdot Y$ which volta	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density	tance then ensity utput:) $\cdot \sqrt{4 \times TR_{in}}$ ermal noise		198 199 208 201 202 203 204 205 206 207 208 209 210 211 212 213 214	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL3 CF0	space if print - R	flag 0 sub /S toggle	routine
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159	<i>IX</i> <i>RCL8</i> <i>P2S</i> <i>RCL2</i> <i>P2S</i> <i>X</i> <i>RCLA</i> <i>SSB1</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCLA</i>	secon volta calcu: $\frac{n}{ \Delta } \cdot Y$ which volta	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density	tance them ensity utput:) $\cdot \sqrt{4 \times TR_{ij}}$ ermal noise due to the		198 199 208 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL3 CF0 0	space if print - R a "O" dis	flag O sub /S toggle played ind	routine
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160	<i>IX</i> <i>RCL8</i> <i>P2S</i> <i>RCL2</i> <i>P2S</i> <i>RCLA</i> <i>X</i> <i>RCLB</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCLA</i> <i>RCLA</i> <i>RCLE</i>	secon volta calcu: $\frac{n}{ \Delta } \cdot Y$ which volta	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density	tance them ensity utput:) $\cdot \sqrt{4 \times TR_{ij}}$ ermal noise due to the		198 199 208 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL3 CF0 0	space if print - R a "O" dis	flag O sub /S toggle played ind	routine
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161	<i>IX</i> <i>RCL8</i> <i>PZ</i> S <i>RCL2</i> <i>PZ</i> S <i>X</i> <i>RCLA</i> <i>SSB1</i> <i>RCL8</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i>	secon volta calcu: $\frac{n}{ \Delta } \cdot Y$ which volta	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density	tance them ensity utput:) $\cdot \sqrt{4 \times TR_{ij}}$ ermal noise due to the		198 199 208 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN #LBL3 F0? SPC RTN *LBL4 CF0 0 RTN	space if print - R	flag O sub /S toggle played ind	routine
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160	<i>IX</i> <i>RCL8</i> <i>PZ</i> S <i>RCL2</i> <i>PZ</i> S <i>X</i> <i>RCLA</i> <i>SSB1</i> <i>RCL8</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i>	secon volta calcu: $\frac{n}{ \Delta } \cdot Y$ which volta	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density	tance them ensity utput:) $\cdot \sqrt{4 \times TR_{ij}}$ ermal noise due to the		-198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4	space if print - R a "O" dis	flag O sub /S toggle played ind	routine
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	<i>IX</i> <i>RCL8</i> <i>PZ</i> S <i>RCL2</i> <i>PZ</i> S <i>X</i> <i>RCLA</i> <i>X</i> <i>RCLB</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCLA</i> <i>RCL2</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL2</i> <i>X</i> <i>RCL2</i> <i>X</i> <i>RCL1</i> <i>X</i> <i>RCL2</i> <i>X</i> <i>X</i> <i>RCL2</i> <i>X</i> <i>X</i> <i>RCL2</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i>	secon volta calcu: $\frac{n}{ \Delta } \cdot Y$ which volta	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density	tance them ensity utput:) $\cdot \sqrt{4 \times TR_{ij}}$ ermal noise due to the		198 199 208 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN #LBL3 F0? SPC RTN *LBL4 CF0 0 RTN	space if print - R a "O" dis	flag O sub /S toggle played ind	routine
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163	<i>IX</i> <i>RCL8</i> <i>⇒</i> <i>RCL2</i> <i>P‡S</i> <i>RCLA</i> <i>X</i> <i>RCLB</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>X</i> <i>RCL5</i> <i>X</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i>	secon volta calcu: $\frac{n}{ \Delta } \cdot Y$ which volta	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density	tance them ensity utput:) $\cdot \sqrt{4 \times TR_{ij}}$ ermal noise due to the		-198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0	space if print - R a "O" dis R/S mode	flag O sub /S toggle played ind selected	routine
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163	<i>IX</i> <i>RCL8</i> <i>PZ</i> S <i>RCL2</i> <i>PZ</i> S <i>X</i> <i>RCLA</i> <i>X</i> <i>RCLB</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCLA</i> <i>RCL2</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL2</i> <i>X</i> <i>RCL2</i> <i>X</i> <i>RCL1</i> <i>X</i> <i>RCL2</i> <i>X</i> <i>X</i> <i>RCL2</i> <i>X</i> <i>X</i> <i>RCL2</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i>	secon volta calcu: $\frac{n}{ \Delta } \cdot Y$ which volta	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density	tance them ensity utput:) $\cdot \sqrt{4 \times TR_{ij}}$ ermal noise due to the		-198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1	space if print - R a "O" dis R/S mode a "l" dis	flag O sub /S toggle played ind selected played ind	routine icates icates
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	<i>IX</i> <i>RCL8</i> <i>⇒</i> <i>RCL2</i> <i>P‡S</i> <i>RCLA</i> <i>RCLB</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i>	secon volta calcu: $\frac{n}{ \Delta }$, Y, which volta ampli:	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density fier input	tance them ensity utput:) • $\sqrt{4 \times T R_{11}}$ ermal noise due to the resistance		-198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1	space if print - R a "O" dis R/S mode a "l" dis	flag O sub /S toggle played ind selected played ind	routine
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163	<i>IX</i> <i>RCL8</i> <i>⇒</i> <i>RCL2</i> <i>P‡S</i> <i>RCLA</i> <i>X</i> <i>RCLB</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>X</i> <i>RCL5</i> <i>X</i> <i>X</i> <i>RCL4</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i>	secon volta calcu: $\frac{n}{ \Delta } Y$ which volta ampli: recal:	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density fier input	tance them ensity utput:) • $\sqrt{4 \times T R_{13}}$ ermal noise due to the resistance		-198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1	space if print - R a "O" dis R/S mode a "l" dis	flag O sub /S toggle played ind selected	routine icates icates
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	<i>IX</i> <i>RCL8</i> <i>⇒</i> <i>RCL2</i> <i>P‡S</i> <i>RCLA</i> <i>RCLB</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i>	secon volta calcu: $\frac{n}{ \Delta } Y$ which volta ampli: recal:	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density fier input	tance them ensity utput:) • $\sqrt{4 \times T R_{13}}$ ermal noise due to the resistance		-198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1	space if print - R a "O" dis R/S mode a "l" dis	flag O sub /S toggle played ind selected played ind	routine icates icates
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	<i>IX</i> <i>RCL8</i> <i>PZ</i> S <i>RCL2</i> <i>PZ</i> S <i>x</i> <i>RCLA</i> <i>RCLB</i> <i>RCL7</i> <i>±</i> <i>IX</i> <i>RCL8</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>RCL8</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i>	secon volta calcu: $\frac{n}{ \Delta } Y$ which volta ampli: recal:	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density fier input	tance them ensity utput:) • $\sqrt{4 \times T R_{11}}$ ermal noise due to the resistance ut the voltage do		-198 -199 200 201 -202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1 RTN	space if print - R a "O" dis R/S mode a "l" dis print mod	flag O sub /S toggle played ind selected played ind e selected	routine icates icates
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165	<i>IX</i> <i>RCL8</i> <i>⇒</i> <i>RCL2</i> <i>P‡S</i> <i>RCLA</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>ST0E</i> <i>X</i> <i>RCL9</i>	secon volta volta $\frac{n}{ \Delta } Y$ which volta ampli: recal ampli	dary resis ge noise d late and o 4(Y1+Y2+Y3 is the the ge density fier input	tance them ensity utput:) • $\sqrt{4 \times T R_{11}}$ ermal noise due to the resistance ut the voltage de BELS	n e e e ens	-198 -199 200 201 -202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1 RTN	space if print - R a "O" dis R/S mode a "l" dis print mod	flag O sub /S toggle played ind selected played ind	routine icates icates
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165	<i>IX</i> <i>RCL8</i> <i>⇒</i> <i>RCL2</i> <i>P‡S</i> <i>RCLA</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>ST0E</i> <i>X</i> <i>RCL9</i>	secon volta calcui <u>n</u> . Y which volta ampli: recali ampli:	dary resis ge noise d late and o 4(Y1+Y2+Y3 is the the ge density fier input	tance them ensity utput:) • $\sqrt{4 \times T R_{11}}$ ermal noise due to the resistance ut the voltage de BELS	n e e e ens	-198 -199 200 201 -202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1 RTN	<pre>space if print - R a "O" dis R/S mode a "l" dis print mod</pre>	flag O sub /S toggle played ind selected played ind e selected SET STATUS	routine icates icates
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 <u>164</u> 165	IX RCL8 ÷ P≠S RCL2 P≠S X RCLA X RCLB RCL7 ÷ IX RCL8 X RCL8 X RCL8 X RCL4 RCL8 X RCL4 RCL8 X RCL4 ST0E X RCL9 ST0E X RCL9 ST0E X RCL9 ST0E X RCL9 ST0E X RCL9 ST0E X RCL9 ST0E X ST0E X ST0E ST0E X ST0E	secon volta volta i i i i i i i i i i i i i i i i i i i	dary resis ge noise d late and or 4(Y1+Y2+Y3 is the the ge density fier input l and output fier noise LAE load In	tance them ensity utput:) • $\sqrt{4 \times T R_{11}}$ ermal noise due to the resistance ut the voltage de BLS D load \overline{e}_n		-198 -199 200 201 -202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1 RTN	<pre>space if print - R a "O" dis R/S mode a "l" dis print mod FLAGS</pre>	flag O sub /S toggle played ind selected played ind e selected	routine
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165	<i>IX</i> <i>RCL8</i> <i>⇒</i> <i>RCL2</i> <i>P‡S</i> <i>RCLA</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>RCL8</i> <i>ST0E</i> <i>X</i> <i>RCL9</i>	secon volta calcui <u>n</u> . Y which volta ampli: recali ampli:	dary resis ge noise d late and or 4(Y1+Y2+Y3 is the the ge density fier input l and output fier noise LAE load In	tance them ensity utput:) • $\sqrt{4 \times T R_{11}}$ ermal noise due to the resistance ut the voltage de BELS	n e e e ens	198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 219 220	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1 RTN *LBL4 SF0 1 RTN	<pre>space if print - R a "O" dis R/S mode a "1" dis print mod FLAGS</pre>	flag O sub /S toggle played ind selected played ind e selected SET STATUS TRIG	routine icates icates DISP
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 <u>164</u> 165	IX RCL8 ÷ P≠S RCL2 P≠S X RCLA X RCLB RCL7 ÷ IX RCL8 X RCL8 X RCL8 X RCL4 RCL8 X RCL4 RCL8 X RCL4 ST0E X RCL9 ST0E X RCL9 ST0E X RCL9 ST0E X RCL9 ST0E X RCL9 ST0E X RCL9 ST0E X ST0E X ST0E ST0E X ST0E	secon volta volta i i i i i i i i i i i i i i i i i i i	dary resis ge noise d late and or 4(Y1+Y2+Y3 is the the ge density fier input l and output fier noise LAE load In	tance them ensity utput:) • $\sqrt{4 \times T R_{11}}$ ermal noise due to the resistance ut the voltage de BLS D load \overline{e}_n	n e e e ens	198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 219 220	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1 RTN	<pre>space if print - R a "O" dis R/S mode a "1" dis print mod FLAGS</pre>	flag O sub /S toggle played ind selected played ind e selected SET STATUS	routine icates icates
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 <u>164</u> 165 ^select dB	IX RCL8 ÷ PZS RCL2 PZS X RCLA CLB RCL7 ÷ IX RCL8 X RCL8 X RCL8 X RCL4 RCL2 STOE X STOE X STOE X STOE X STOE S	secon volta calcu: $\frac{n}{ \Delta } Y$, which volta ampli: recal: ampli: ect	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density fier input l and outpu fier noise LAE load In	tance them ensity utput:) • $\sqrt{4 \times T R_{11}}$ ermal noise due to the resistance ut the voltage de BELS D load \overline{e}_n d	ens E input	198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 219 220	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1 RTN *LBL4 SF0 1 RTN	space if print - R a "O" dis R/S mode a "1" dis print mod FLAGS ON OFF 0 ■	flag O sub /S toggle played ind selected played ind e selected <u>SET STATUS</u> TRIG DEG E	routine icates icates DISP FIX
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 <u>164</u> 165	IX RCL8 ÷ PZS RCL2 PZS X RCLA X RCL8 RCL7 ÷ IX RCL8 X RCL8 X RCL8 X RCL8 X RCL4 RCL9 B SEI1 RCL9 CL9 CL9 CL9 CL9 CL9 CL9 CL9	secon volta calcu: $\frac{n}{ \Delta } Y$, which volta ampli: recal: ampli: ect	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density fier input l and outpu fier noise LAE load In	tance them ensity utput:) • $\sqrt{4 \times T R_{11}}$ ermal noise due to the resistance ut the voltage de BLS D load \overline{e}_n	ens E input	- 198 - 199 200 201 - 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 t go @ R dB	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1 RTN *LBL4 SF0 1 RTN	space if print - R a "O" dis <u>R/S mode</u> a "1" dis print mod FLAGS ON OFF 0 II	flag O sub /S toggle played ind selected played ind e selected SET STATUS TRIG DEG CRAD	routine icates icates DISP FIX SCI
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 <u>164</u> 165 ^select dB	IX RCL8 ÷ PZS RCL2 PZS X RCLA CLB RCL7 ÷ IX RCL8 X RCL8 X RCL8 X RCL4 RCL2 STOE X STOE X STOE X STOE X STOE S	secon volta volta <u>n</u> Y which volta ampli recal ampli ect ear	dary resis ge noise d late and of 4(Y1+Y2+Y3 is the the ge density fier input l and outpu fier noise LAE load In	tance them ensity utput:) • $\sqrt{4 \times T R_{11}}$ ermal noise due to the resistance ut the voltage de BELS D load \overline{e}_n d	ens E input	198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 k go @ Ry dB/ 220	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTH R/S RTH *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1 RTN *LBL4 SF0 1 RTN *LBL4 SF0 1 RTN	<pre>space if print - R a "O" dis R/S mode a "l" dis print mod FLAGS ON OFF 0 ■ 1 2</pre>	flag O sub /S toggle played ind selected played ind e selected <u>SET STATUS</u> TRIG DEG E	routine icates DISP FIX SCI ENG
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 <u>164</u> 165 [^] select dB	IX RCL8 ÷ PZS RCL2 PZS X RCLA X RCL8 RCL7 ÷ IX RCL8 X RCL8 X RCL8 X RCL8 X RCL4 RCL9 B SEI1 RCL9 CL9 CL9 CL9 CL9 CL9 CL9 CL9	secon volta volta <u>n</u> Y which volta ampli recal ampli ect ear	dary resis ge noise d late and out 4(Y1+Y2+Y3 is the the ge density fier input l and outpu fier noise LAE load In	tance them ensity utput:) • $\sqrt{4 \times T R_{11}}$ ermal noise due to the resistance ut the voltage de SELS D load \overline{e}_n d 3 spc if F(n e e e E input freq 8 e	198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 k go @ Ry dB/ 220	*LBL1 ENG DSP3 *LBL2 F0? PRTX F0? RTN R/S RTN *LBL3 F0? SPC RTN *LBL3 F0? SPC RTN *LBL4 CF0 0 RTN *LBL4 SF0 1 RTN *LBL4 SF0 1 RTN	<pre>space if print - R a "O" dis R/S mode a "l" dis print mod FLAGS ON OFF 0 ■ 1 2</pre>	flag O sub /S toggle played ind selected played ind e selected SET STATUS TRIG DEG CRAD	routine icates icates DISP FIX SCI

Part 2 FILTER DESIGN

PROGRAM 2-1 BUTTERWORTH AND CHEBYSHEV FILTER ORDER CALCULATION.

Program Description and Equations Used

This program calculates the minimum filter order required to meet specifications for maximum passband attenuation (Ap_{dB}) and minimum stopband attenuation (As_{dB}) for the Butterworth or Chebyshev filter approximations. A second part of the program calculates the stopband-to-passband frequency ratio, λ , if the filter order and type are given. Furthermore, a third part of the program predicts the stopband attenuation if n, λ , Ap_{dB}, and the filter order are provided.

Figures 2-1.1 and 2-1.2 are nomographs adapted from Kawakami [34], and can prove useful to rough out the problem and provide tradeoffs. Once the desired parameters have been estimated, this program may be used to fine-tune the results.

Equation (2.1.1) is the analytic expression for the Butterworth amplitude response characteristic.

$$A_{g}^{2} - 1 = (A_{p}^{2} - 1) \lambda^{2n}$$
 (2-1.1)

where

$$A_s^2 = 10^{0.1As} dB$$
 (2-1.2)

and

$$A_{\rm p}^{2} = 10^{0.1 \rm Ap} dB \qquad (2-1.3)$$

The quantities A_{p} and A_{p} are ratios greater than one (it is the convention to express attenuation as positive decibels).

Equations (2-1.1), (2-1.2), and (2-1.3) can be used to find expressions for As_{dB} , λ , or n:

$$As_{dB} = 10 \cdot \log \left[(A_p^2 - 1) \lambda^{2n} + 1 \right]$$
 (2.1-4)

$$\lambda = \left[\frac{A_{p}^{2} - 1}{A_{p}^{2} - 1}\right]^{\frac{1}{2n}} = \left[\sqrt{\frac{A_{s}^{2} - 1}{A_{p}^{2} - 1}}\right]^{\frac{1}{n}}$$
(2-1.5)

$$n = \frac{\ln \sqrt{\frac{A_{s}^{2} - 1}{A_{p}^{2} - 1}}}{\ln \lambda}$$
(2-1.6)

Equation (2-1.7) is the analytic expression for the Chebyshev amplitude characteristic where A_s^2 and A_p^2 are defined by Eqs. (2-1.2) and (2-1.3). Equation (2-1.7) can also yield expressions for $As_{dB}^{}$, λ , or n:

$$A_{s}^{2} - 1 = (A_{p}^{2} - 1) [\cosh(n \cosh^{-1}\lambda)]^{2}$$
 (2-1.7)

As_{dB} = 10 · log
$$[(A_p^2 - 1)(\cosh (n \cdot \cosh^{-1}\lambda)^2 + 1]^2$$
 (2-1.8)

$$\lambda = \cosh\left(\frac{1}{n} \cosh^{-1} \sqrt{\frac{A_{g}^{2} - 1}{A_{p}^{2} - 1}}\right)$$
(2-1.9)
$$n = \frac{\cosh^{-1} \sqrt{\frac{A_{g}^{2} - 1}{A_{p}^{2} - 1}}}{\cosh^{-1} \lambda}$$
(2-1.10)

A certain degree of similarity can be noticed between the Butterworth and Chebyshev equations. Keeping in mind that ln and exp are complementary operations as are cosh and \cosh^{-1} , and noticing that y^{x} can be expressed as exp (x \cdot ln y), then replacing ln with cosh and exp with \cosh^{-1} will convert the Butterworth formulas to the Chebyshev formulas. This technique is used by this program where flag 1 indicates the function to be used (set for Butterworth).

A separate subprogram is also included to aid in the specification of bandpass or bandstop filters. The characteristics of these filters are symmetrical when plotted on logarithmic frequency scales (log paper). This characteristic implies geometric symmetry of the various defining frequencies (-3dB, etc.) about the filter center frequency, i.e., the center frequency is the square root of the product of similar response frequencies located above and below the center frequency.

To use the bandstop and bandpass programs in this section, the filter center frequency (f_0) and bandwidth (BW) are needed, however, when specifying the filter initially, the bandedge frequencies may be of greater interest. The separate subprogram provides the conversion between center frequency and bandwidth, and upper and lower bandedge frequencies (f_{upr} and f_{lwr}), and vice-versa. The definition of "bandedge frequencies" in the present context means a pair of frequencies (one on either side of the center frequency) where the filter attenuation is the same, i.e., -0.01 dB, -3 dB, -60 dB, etc.

To convert from center frequency and bandwidth to upper and lower bandedge frequencies, Eqs. (2-1.11) and (2-1.12) apply.

$$f_{upr} = (BW/2) + \sqrt{(BW/2)^2 + f_0^2}$$
 (2-1.11)

$$f_{1wr} = (f_o^2)/f_{upr}$$
 (2-1.12)

To do the reverse conversion, i.e., to go from upper and lower bandedge frequencies to center frequency and bandwidth, Eqs. (2-1.13) and (2-1.14) apply.

$$f_{o} = \sqrt{(f_{upr})(f_{1wr})}$$
 (2-1.13)

$$BW = f_{upr} - f_{1wr}$$
 (2-1.14)

In the case of a bandpass or bandstop filter, the stopband-topassband frequency ratio, λ , still holds. The user should remember to use <u>bandwidths</u>, and not bandedge frequencies. This is an easy trap to fall into since bandedge frequencies and bandwidths can be one and the same for lowpass filters.

2-1 User Instructions

BUTTERWO	RTH AND CHE	BYSHEV FILT	ER ORDER CAL	ULATION	
Butter- worth	Chebyshev	print, R/S	$BW f_0 \rightarrow f_{upr}, f_{lwr}$	fuprfflwr fo, BW	5
ApdB	As _{dB}	n→λ	λ÷n	$\lambda - A^{B} dB$	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load program card (either side)			
	······································			
2	Select print (HP-97), or R/S (HP-67) option		f	l (print)
			fC	0 (R/S)
			f	1
				:
			· · · · · · · · · · · · · · · · · · ·	
3	Select filter type:			
	Butterworth		f A	
	Chebyshev		f B	
4	Load the maximum passband attenuation in dB	ApdB	A	
L				<u> </u>
	Load the minimum stopband attenuation in dB	AsdB	B	
6	To find filter order, n, given the frequency		<u> </u>	
	ratio, λ , load λ	λ	D	n
	To find the frequency ratio, λ , given the		<u> </u>	
	filter order, n: load n (n must be integer)	n	C	λ
				┟────┥
8	After finding n, to find As (dB) given λ			
	a) perform step 7 to store n b) load A		E	
	B) TORG X	λλ		As _{dB}
	Step 8b may be repeated with other			
	***************************************	***		
·	values of λ without having to repeat			
	step 8a.			
9	A separate program section to aid with			
í	bandpass filter selection, enter bandwidth and			
•••••	center frequency and calculate the upper and	******		•••••
	lower bandedge frequencies, or vice-versa			***
	load bandwidth (for any dB down points)	BW, Hz	ENT	
	load center frequency	f _o , Hz	f D	fupr, Hz
	***************************************	·····		flut, Hz
	load upper bandedge frequency	fupr, Hz	ENT	
	load lower bandedge frequency	f _{lwr} , Hz	f E	f _o , Hz
				BW, Hz

Figure 2-1.1 Butterworth filter nomograph.

 $A_{s}^{2} - 1 = (A_{p}^{2} - 1)\lambda^{2^{n}}.$

Adapted from Kawakami [34]

NORMALIZED CUTOFF FREQUENCY MULTIPLIER, λ

Adapted from Kawakami [34]

How to Use the Nomographs

Figure 2-1.3 Nomograph use.

Pl and P2 are the required passband and stopband attenuation, P3 is a turning point, P4 represents the ratio between the frequencies where the stopband attenuation and the passband attenuation are specified, and P5 represents the required filter order, n.

Since n must be an integer, and P5 will generally lie between two integral numbers, always choose the larger of the two integers. Furthermore, if any of the narrowband approximations to bandpass filters are going to be generated, and Chebyshev response is specified, n must be an odd integer. This requirement occurs as even ordered Chebyshev filters have unequal termination resistances, and the narrowband bandpass approximations require equal termination resistances.

These nomographs are also contained in Zverev, however, the two vertical scales appear to be misregistered slightly, and in some applications will give inaccurate results.

These nomographs may also be used in other ways. If the filter order is known, then the filter response may be predicted. In this case, P5 would lie directly on one of the filter order lines, λ and P1, or P2 are the input variables, with P2, or P1 being the output quantity.

Example 2-1.1 Highpass filter

A Butterworth filter is to pass 20 kHz and higher with 3 dB or less attenuation, and reject 10 kHz and lower with at least 40 dB of attenuation. Find the minimum filter order to meet these specifications.

555: select Butterworth 5.00 555- load ApdB 40.00 5555 load AsdB 2.00 5555 load $\lambda = (20 \text{ kHz})/(10 \text{ kHz}) = 2, \& \text{ calculate n}$ 6.55 *** filter order, n (use n = 7)

Example 2-1.2 Bandpass filter

A Chebyshev bandpass filter is centered at 100 kHz (center frequency is not a parameter of the filter order calculation). Frequencies in a 20 kHz passband (geometrically centered about the center frequency) must be passed with 0.5 dB attenuation or less, and frequencies outside a 40 kHz bandwidth (again geometrically centered) must be rejected with at least 40 dB attenuation. Find the minimum filter order to meet these requirements.

Example 2-1.3 Bandstop example

A maximally flat (Butterworth) bandstop filter is centered at 20 kHz. Frequencies lying outside a 10 kHz band geometrically centered on the center frequency should be attenuated by 3 dB or less. Frequencies inside a band of 1 kHz geometrically centered on the center frequency should be attenuated by at least 60 dB. Find the minimum filter order meeting these specifications.

This bandstop example shows other features of this program. Given n, the ratio, λ , where A_s is met is calculated, and alternately, given λ , A_s for this ratio is calculated.

As an aside, Butterworth filters are not exactly three dB down at the bandedge, but are $10 \cdot \log_{10} 2 = 3.010299957$ dB. If this number had been entered for A_p, the calculated filter order would have been three (to seven significant figures).

Example 2-1.4 Lowpass filter

Find the frequency where a 2 dB ripple, 7th order Chebyshev lowpass filter will be 60 dB down when the cutoff (-2dB) frequency is 1000 Hz.

	GSBĸ	select Chebyshev				
2.0G	65BH	load Ap _{dB} , the passband ripple				
60.00	GSEE	load As _{dB} , the minimum stopband rejection				
7,60	GSBC	load the filter order, n, and calculate λ				
1.78	***	λ to meet above requirements				
100 <i>0.00</i>		cutoff frequency of filter times λ				
1701.27	ж. ў . Ж	frequency where the filter is 60 dB down				

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	• • • •
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• = = =
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
023 F1? jump if Butterworth 024 GT03 jump if Butterworth 060 GT03 jump if Butterworth	_
<u>-024 6703</u> jump if Butterworth	849
	- 492
926 RCL3 for Chebyshevi	
$\theta_{28} \theta_{581} \text{calc} \lambda = \cosh^{-1}(\frac{1}{2}\cosh k)$ $\theta_{64} \theta_{581} q = \cosh(n \cdot \cosh^{-1} \lambda)$	
029 \$104 ** (r+065 \$104	
030 GTOB go to the print/stop routine	
Laga #LBL3 calculate) for Butterworth A67 PCL7	
$\theta_{32} \text{RCL}_3 \qquad \qquad \theta_{668} \text{yx} \mathbf{q} = (\boldsymbol{\lambda})^n$	
$\frac{-969}{634} \times \frac{1}{2} \times$	Qheb
035 ST04 071 RCL1	
076 CT00	_
	$(1^{2}+1)$
	• - /
074 + 075 + 00	
075 LOG	
076 EEX	
077 1	
078 x	
079 GT08	
REGISTERS	
0 S1 S2 S3 S4 S5 S6 S7 S8 S9	
B C D E I	

1	≉LBL1	cosh X subroutine			13 ¥LBLd	BANDPASS: enter BW f f and
[081	e×				14 X2	calculate fupr and flwr
682	ENTT	- X	x		15 \$105	-r- 1wr
[083	178	$\cosh x = \frac{e^x + e^-}{2}$		1	16 X≠Y	
084	+	2		1.	17 2	
085	2			1.	(8 ÷	
086	÷			1	19 ENT†	
	RTN			1.	20 X2	$f_{upr} = \left(\frac{BW}{2}\right) + \sqrt{\left(\frac{BW}{2}\right)^2 + f_0^2}$
088	#LBL2	cosh-1 x subroutine		1	21 RCL5	$-upr (2) - \sqrt{27} - 0$
089	ENTT			1	22 +	
690	X۶			1	53 1X	
891	EEX			1	24 +	
092	-			1	25 ENT†	$e^{-(e^2/e^2)}$
893	٩X	$\cosh^{-1} x = \ln(x + \sqrt{2})$	$\frac{1}{2}$ 1'		26 GSB9	$f_{lwr} = (f_o)^2 / f_{upr}$
094	+	$\cos \sin x = \sin(x + y)$	~ <i>)</i>		27 RCL5	
095	LN				28 X ≭ Y	-
096	RTN				29 ÷	$f_{1wr} = (f_0)^2 / f_{upr}$
897	*LBLa	SELECT BUTTERWORTH			30 GTOS	
098	SF1				31 #LBLe	BANDPASS: enter fupr & flwr
099	RTN				32 ST05	calculate fo and BW
100	*LBLb	SELECT CHEBYSHEV			33 X≠Y	
101	CF1				34 ST06	
102	RTN				35 X	$f_{o} = ((f_{upr})(f_{lwr}))^{\frac{1}{2}}$
103	*LBLc	SELECT PRINT OR R/S			 36 - 1X	¹ 0 ⁻ ((¹ upr)(¹ lwr))
184	F0?	jump if flag 0 is set				
r-105	GTO3				38 RCL6	
186	SFØ				9 RCL5	
107	1	set flag 0 to indicate	print		10 -	abi 141
108	RTN					print or R/S subroutine
-189	*LBL3			_	2 6SB9	1
110	CFØ	clear flag 1 to indica	te R/S			if flag 0, space
111	0	-		1 1	IA SPC	11 Ilag U, space
112	RTN				5 RTN	
h						
				1		
ł				-1		if flag 0, go to print
					10 D.C	
					50 RTN	flag 0 not set, R/S
f						
ľ				1		
1					T RTN	
í I						
L _						
		LABELS			FLAGS	SET STATUS
A Ap dB	B As d	$ \begin{array}{c c} c & n \rightarrow \lambda \end{array} \xrightarrow{D} \lambda \rightarrow n \end{array} $	E 3	.→As dB	⁰ print?	FLAGS TRIG DISP
a set Buttr	lb 88	t ic print, id fair	₩ → e		Buttr	0 1 DEG 1 FIX
$ ^{0} dB - ^{2} - 1$	Oheby ¹ cosh		4		2	1 GRAD SCI
5	E	7 8 print space	& 9 T	rint	3	2 RAD ENG
L			e			

2-1

PROGRAM 2-2 BUTTERWORTH AND CHEBYSHEV FILTER FREQUENCY RESPONSE AND GROUP DELAY.

Program Description and Equations Used

This program calculates the frequency response (magnitude in dB and phase in degrees) and the un-normalized group delay in seconds for the Butterworth or Chebyshev all pole filter approximations. The response may be in lowpass, highpass, bandpass, or bandstop form (the lowpass and highpass responses are special cases of the bandpass and bandstop responses respectively in that the center frequency is zero). Both single frequency analysis and frequency sweeps may be done. The sweep can be linear using an additive increment, or logarithmic using a multiplicative increment.

The actual analysis routine that is buried within the program analyzes a normalized lowpass filter. The input data is normalized and transformed as required to place it in normalized lowpass form. The phase and gain response (frequency response) of the normalized lowpass filter is the same as the original filter type before transformation; hence, no reverse transformation is necessary for output. The group delay is the rate of change of phase with respect to frequency (derivative of the phase function) and is affected by the transformation to normalized lowpass form, therefore, an output transformation from the normalized lowpass group delay is required.

The logarithm of the normalized lowpass filter transmission function, $T(j\Omega)$ is composed of two components, the attenuation, a, and the phase, b. As a complex number, these two components represent the constant, g:

$$\Gamma(j\Omega) = \left|_{k}\right| \frac{K}{\sigma_{k} + j (\omega_{k} - \Omega)}$$
(2.2.1)

$$g = ln(T(j\Omega)) = a + jb$$
 (2-2.2)

$$\Omega = F(\omega) \tag{2-2.3}$$

$$\omega = 2\pi f \qquad (2-2.4)$$

where $F(\omega)$ represents the transformation to normalized lowpass, and σ_k and ω_k are the pole locations of the Butterworth or Chebyshev normalized lowpass transfer function (see the equation derivation section following the examples for pole location details).

The group delay of the normalized lowpass filter is the derivative of the phase function, b, taken with respect to radian frequency:

$$b = \sum_{k=1}^{n} \tan^{-1} \left\{ \frac{\omega_{k} - \Omega}{\sigma_{k}} \right\}$$
(2-2.5)

$$\tau_{g_{nor}} = \frac{db}{d\Omega} = \sum_{k=1}^{n} \frac{|\sigma_k|}{\sigma_k^{2+} (\omega_k - \Omega)^2}$$
(2-2.6)

The group delay is denormalized by multiplying the normalized group delay, Eq. (2-2.6), by the derivative of the transformation function, Eq. (2-2.3), taken with respect to the un-normalized radian frequency, ω .

$$\tau_{g} = \tau_{g_{nor}} \cdot \frac{d\Omega}{d\omega}$$
 (2-2.7)

The transform functions for the bandpass and lowpass cases are:

$$\Omega_{\rm BP} = \left| \frac{1}{\rm BW} \left\{ f - \frac{f_0^2}{f} \right\} \right|$$
(2-2.8)

$$\frac{d^{3}BP}{d\omega} = \frac{1}{2\pi BW} \left\{ 1 + \frac{f^{2}}{f^{2}} \right\}$$
(2-2.9)

where "BW" and " f_0 " are the bandwidth and center frequency of the bandpass filter in hertz, and "f" is the frequency to be transformed (in hertz). The center frequency is zero for the lowpass case.

The transform functions for the bandstop and highpass cases are:

$$\Omega_{BS} = \frac{1}{\Omega_{BP}} = \left| \frac{BW}{f - \frac{o}{f}^2} \right| \qquad (2.2.10)$$

$$\frac{d\Omega_{BS}}{d\omega} = \frac{BW}{2\pi} \left\{ \frac{f^2 + f_o^2}{(f^2 - f_o^2)^2} \right\} \qquad (2-2.11)$$

The definitions of the terms are the same as above, and the highpass case has zero center frequency also.

The program uses Eqs. (2-2.8) and (2-2.10) to transform the input data to normalized lowpass, and then evaluates Eqs. (2-2.1) and (2-2.6) to obtain the frequency response and normalized lowpass group delay. The group delay is denormalized using Eqs. (2-2.9) or (2-2.11), and the frequency response and group delay are printed (HP-97 only) and displayed.

2-2 User Instructions

Ē	UTTERWORTH AND	OHEBYSHEV F	LLTER GROUP	DELAY	\square
C: n†DB	R HP: fo	BP: BWfo	lin: 0 log: 1	fstart	z
B: n	LP1 fo	BS: BW fo	start sweep	single freq analysis	/

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of magnetic card			
2	a) if Butterworth, enter filter order	n	Ā	
	b) if Chebyshev:			
	enter passband ripple in dB	DBR	ENT	
	enter filter order	n	f A	
3	Select filter type and enter characteristics			
	a) if lowpass: enter cutoff frequency*	BW, Hz	B	
	b) if highpass: enter cutoff frequency*	BW, Hz	f B	
	c) if bandstop:			
	enter bandwidth**	BW, Hz	ENT	
	enter center frequency	f _o , Hz	C	
	d) if bandpass:			
	enter bandwidth**	BW, Hz	ENT	
	enter center frequency	f _o , Hz	f	
4	If sweep of frequencies is desired:			
	a) select linear or logarithmic sweep (toggle)		f D	0
			f D	1
			f D	0
				:
	b) enter sweep starting frequency in hertz	f _{start}	ENT	
	c) enter frequency increment:	f	f	
	if linear sweep, the increment is			
	additive; if logarithmic, the			
	increment is multiplicative.			
	d) start sweep		D	f, Hz
				loss, dB
				phase, deg
				group sec
			••••••	
5	for analysis at a single frequency	f, Hz	E	analysis
			*** ··· ···	above
L	NOTE (* & **)			
	The LP & HP cutoff frequency and the			
	BP & BS bandwidth are defined as the			
ļ	-3dB point for Butterworth, and the -DBR			
	point for Chebyshev			

Example 2-2.1

Calculate the amplitude, phase, and group delay characteristics of a third order, 1 dB ripple Chebyshev bandpass filter with 1000 Hz bandwidth and 10000 Hz center frequency. Calculate these characteristics from 8000 Hz to 12000 Hz in linear increments of 100 Hz.

PROGRA	M INPUT	PROGRAM OUTPUT						
		8.000+03	9.000+03	10.00+03	11.00+03	12.00+03		
			-24.06+00	0.000+60	-21.06+00	-39.53+00		
			-240.1+00		-235.9+00	-254.0+00		
	ente n		110.6-06		121.1-06	21.89-06		
1.	GSBa DBR					-		
		8.100+03	9.100+03	10.10+03	11.10+03	frequency		
<i>1006</i> .		-47 48+00	-20.73+00	-345.5-03	-23.78+00	20 Log Hijwi		
10000.	GSBC fo	-256.3+00	-235.4+00	-27.82+00	-239.7+00	4 H(jω), deg		
	Z bandpass	27 69-06	151.2-06	723.6-06	92.14-06	Tq, sec		
	GSBd 🤉 linear	20.05 00	10112 00			,,		
0.000+00	*** ∫ sweeρ	8 200+07	9.200+03	10.20+03	11.20+03			
		-41 95+88	-16.90+00	-894.2-03	-26.20+00			
8000.	ENTT fstart	-91.03700	-228.8+00	-51.87+00	-242.6+00			
100.	GSBe ∆f		223.1-06		72.90-06			
		20.02.00	220.1 00	02111 00				
	GSBD start	0 70010T	9.300+03	10.30+03	11.30+03			
	analysis	-AG 17+66	-12.35+00	-906 8-03	-28.38+00			
	0127013	-40.13700	-218.5+00	-74 49+00	-245.0+00			
		70 17 00	371.0-06	667 2-06	59.38-06			
		30.11-00	3/1.0-00	00112 00	00100 00			
		0 400+07	5.400+03	10 A0+03	11.40+03			
		0.400703	-6.901+00	-195 5-67	-30.36+00			
		-38,31+00	-199.6+00	-193.3-83	-247 Ø+ØØ			
		74 57 66	731.4-06	1 006-07	49.47-06			
		34.33-00	731.4-00	1.006-03	42141 00			
		0 500/07	9.500+03	10 50±07	11.50÷03			
		8.300+03	-1.466+00	-254 7-97	-32.17+00			
		-36.37+00	-1.466+00	-634.3-03	-248 6+00			
			1.430-03	1 771-07	41.94-06			
		39.96-06	1.430-03	1.3/1-03	41.04 00			
		0 200,07	0 (00)07	10 20167	11.60+03			
		8.500+03	9.600+03 -82.00-03	10.00703 _A 004100	-77 85+00			
		-34.30+00	-82.00-03	-4.304700 _100 /±06	-250 0+00			
			1.189-03		36.08-06			
		45.88-05	1.189-03	044.2-00	00.00 00			
			0 700.07	10 70107	11.70+03			
			9.700+03					
		-32.07+00	-865.9-03	-9.307700	-35.72,00			
			-76.75+00					
		55.92-06	726.3-06	432.4-06	31.41-00			
			0 000.07	10 00.07	11.80+03			
		8.800+03	9.800+03					
1			-909.1-03					
			-52.79+00					
		68.11-06	648.4-06	253.9-06	21.02-00	i		
				40.00.07	11 00107	•		
		8.900+03						
			-351.4-03					
1				978 0188				
		-243.6+00 85.24-06						

Equations Used and Pole Locations

<u>Butterworth pole locations</u>: The pole locations of a normalized lowpass Butterworth filter lie on a circle in the complex plane. Odd ordered filters have a real pole plus complex conjugate pairs. Even order filters have only complex conjugate pairs. No poles ever lie directly on the j ω axis. Figure 2-2.1 shows the pole locations for a 5th order normalized Butterworth lowpass filter, and Eqs. (2-2.12) and (2-2.13) show the generalized pole locations.

Figure 2-2.1 Butterworth pole locations.

Pole locations:

Real part,
$$\sigma_k = -\sin\left(\frac{2k-1}{2n}\pi\right)$$
 (2-2.12)

Imag part,
$$\omega_k = \cos\left(\frac{2k-1}{2n}\pi\right)$$
 (2-2.13)

k = 1, 2, ..., n

(trig argument is in radians)

The attenuation of the normalized Butterworth lowpass filter is 3 dB at $\omega = 1$. At other frequencies, the attenuation in dB is expressed by:

$$A_{dB} = 10 \log (1 + \omega^{2n})$$
 (2-2.14)

As shown by this equation, the attenuation monotonically increases as frequency increases. Figure 2-2.2 shows the general shape of the Butter-worth response.

Figure 2-2.2 Normalized Butterworth amplitude response.

<u>Chebyshev pole locations</u>: The normalized lowpass pole locations of a Chebyshev lowpass filter lie on an ellipse with major axis dimension cosh a, and minor axis dimension sinh a where a is defined by:

$$a = 1/n \sinh^{-1}(1/\epsilon)$$
 (2-2.15)

The parameter ε is related to the passband ripple in dB by:

$$\varepsilon = (10^{0.1\varepsilon_{dB}} - 1)^{\frac{1}{2}}$$
 (2-2.16)

Using these quantities, the real and imaginary parts of the pole locations are given by Eqs. (2-2.17) and (2-2.18). Figure 2-2.3 shows the pole locations for a fifth order Chebyshev filter.

Real part,
$$\sigma_k = -(\sinh a)(\sin \frac{2k-1}{2n}\pi)$$
 (2-2.17)

Imag part,
$$\omega_{k} = (\cosh a)(\cos \frac{2k-1}{2n}\pi)$$
 (2-2.18)
k = 1, 2, ..., n

(trig argument is in radians)

Figure 2-2.3 Chebyshev pole locations (5th order).

The passband edge of a Chebyshev filter is defined as the highest frequency where the response is ε_{dB} down: Remember, the Chebyshev passband response oscillates within a band of ε_{dB} . Fourth and fifth order Chebyshev responses are shown in Fig. 2-2.4.

Figure 2-2.4 Chebyshev normalized lowpass filter responses.

The normalized frequency where the Chebyshev filter response is 3 dB down is given by the expression:

$$f_{-3dB} = \cosh\left\{\frac{1}{n}\cosh^{-1}(\frac{1}{\epsilon})\right\}$$
(2-2.19)

Comparing the equations that define the pole locations for the Butterworth and Chebyshev filters, one will notice that the only difference is the Chebyshev poles are modified by hyperbolic functions. If the sinh a and cosh a functions are defined to be unity, then the Chebyshev equations become the Butterworth equations. This technique is used in the program. Chebyshev poles are always calculated; however, if Butterworth response is selected, the hyperbolic functions are not calculated, but are set equal to one in register storage.

Another difference between Butterworth and Chebyshev filters lies in the definition of the bandedge. Butterworth response is 3 dB down at the bandedge, and Chebyshev response is ε_{dB} down at the bandedge where ε_{dB} is the passband ripple in dB. Flag 1 is used to indicate the filter type, and is set for Butterworth. When the pole locations are calculated, flag 1 is tested to see what equation, if any, is to be used to convert the given passband edge frequency into the appropriate frequency for the filter type being used.

Program Listing I

2-2

					(
	001	*LBLA	LOAD BUTTERWO	ORTH FILTER ORDE	R 055	*LBI	CLOAD BW AND	D fo FOR BANDSTOP
	002		store n		056	SF	9 9	10 FOR BARDOIDF
	003	EEX	boole ii		057			
							1	
	004 005	5100	cosh=1 for B	Sutterworth	058	TRPE	C LOAD BW ANI	D for BANDPASS
	005		sinh≡l "	n	<u>. 059</u>			
	006	RCL1	recall n to d	lisplay	660	*LBL	1	
1	007	RTN		- 1 0	061	X	2	?
	008			DER AND DB RIPPL			oalo &	store fo
- F	009	STOC	store dB ripp		063			
	010		' BOOLD GO LTAB					
					064	510.	3 store bandw	vidth
	011	<u> </u>	store n		065			
	012		calculate eps	ilon, e	066	≠LBLI	START SWEE	
	013	EEX	· · ·		067	SPI	C	
	014	1	$\varepsilon = \sqrt{10^{0.1 \text{ Am}}}$	^{94X} −1	868 ~ 1	*LBL	7	
	015	÷	c 11.0	-	069			
	015 016		•					
					070			
	017	EEX			071	GSBE		
	018	-			072	RCLS	9	
	019	1 X			073			
	020		calculate sin	h=1/1/ N	074			
1	021	ENTT	calculate sin	μ (με)				
1					075) linear s	sweep increment
	022	χ2			<u>+ 076</u>			
	023	EEX			L 2077	*LBL1		
	024	+			078	ST×8	log swee	p increment
	025	₹X			L-079	GTO7		
	026	+			080		SELECT LIN	VIOG SWEED
	027							100 BILLEP
1			calculate sin	$h(\frac{1}{2} s(nh^{-1}(\frac{1}{2})))$	081	F1?		
	028	17X		'n (E/)	-082	GTO1		
	029	Υ×	,		083	SF1		
	030	ENTŤ	Sinh ⁻¹ × =	$= \ln(x + \sqrt{x^2 + 1})$	1 084	EΕΧ	4	
	031	ENT↑		-	085	RTN		
1	032	ENTT	Y [¦] ^h * ₌ e ¹ / _n	in x	L 086	*LBL1		
- E	033		-					
		178	sinh x = -	e [*] - e ^{-*}	087	CF1		
	034	-	S(nh x = -		088	CLX		
				Ľ		0.74		
	<u>03</u> 5	ST06				RTN		
				$\frac{1}{\left(\frac{4}{5}\right)}$				f AND of
	<u>035</u> 036	R∔	calculate co	$sh\left(\frac{4}{n}sinh^{-1}\left(\frac{1}{E}\right)\right)$	090	*LBLe	LOAD SWEEP	f _{start} AND Af
	<u>035</u> 036 037	R↓ 1∠X	calculate co		090 091	*LBLe STO9	LOAD SWEEP	f _{start} AND Af
	<u>035</u> 036 037 038	R↓ 1∕X +			090 091 092	*LBLe STO9 R↓	LOAD SWEEP	f _{start} AND Af
	<u>035</u> 036 037 038 039	R↓ 1∕X + ST05	calculate co		090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	<u>035</u> 036 037 038 039 040	R↓ 1/X + ST05_ 2	calculate co		090 091 092	*LBLe STO9 R↓	LOAD SWEEP	f _{start} AND Af
	<u>035</u> 036 037 038 039	R↓ 1∕X + ST05	calculate co		090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	<u>035</u> 036 037 038 039 040	R↓ 1/X + ST05_ 2	calculate co		090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	<u>035</u> 036 037 038 039 040 041 042	R↓ 1/X + ST05 2 ST÷5 ST÷6	calculate co		090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	<u>035</u> 036 037 038 039 040 041 042 043	R↓ 1/X + ST05 2 ST÷5 ST÷6 _ RTN	calculate co cosh x =	$\frac{e^{x}+e^{-x}}{2}$	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	<u>035</u> 036 037 038 039 040 041 042 043 043	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB	calculate co	$\frac{e^{x}+e^{-x}}{2}$	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	<u>035</u> 036 037 038 039 040 041 042 043 044 045	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0	calculate co cosh x =	$\frac{e^{x}+e^{-x}}{2}$	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	035 036 037 038 040 041 042 043 044 045 044	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 GT01	calculate co cosh x = LOAD f _o FOR LO	$\frac{e^{x}+e^{-x}}{2}$	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	035 036 037 038 040 041 042 043 044 045 044 045 044 045 047	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 GT01 *LBLb	calculate co cosh x = LOAD f _o FOR LO	$\frac{e^{x}+e^{-x}}{2}$	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	<u>835</u> 836 837 838 839 848 848 848 845 845 845 845 845 845 845	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 GT01	calculate co cosh x =	$\frac{e^{x}+e^{-x}}{2}$	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	035 036 037 038 040 041 042 043 044 045 044 045 044 045 047	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 GT01 *LBLb SF0	calculate co cosh x = LOAD f _o FOR LO	$\frac{e^{x}+e^{-x}}{2}$	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	035 036 037 038 040 041 042 043 044 045 044 045 044 045 047 048 049	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 GT01 *LBL6 SF0 *LBL1	calculate co cosh x = LOAD f _o FOR LO LOAD f _o FOR HI	$\frac{e^{x}+e^{-x}}{2}$	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	035 036 037 038 040 041 042 043 044 045 044 045 044 045 047 048 049 050	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 GT01 *LBL6 SF0 *LBL1	calculate co cosh x = LOAD f _o FOR LO LOAD f _o FOR HI	$\frac{e^{x}+e^{-x}}{2}$	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	035 036 037 038 040 041 042 043 044 045 044 045 044 045 047 048 049 050 051	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 GT01 *LBLb SF0 *LBL1 ST03 CLX	calculate co cosh x = LOAD f_0 FOR LO LOAD f_0 FOR HI store f_0 $f_0^2 = 0$ for 1	e ^x +e ^{-x} 2 OWPASS CASE CHPASS CASE	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	035 036 037 038 040 041 042 043 044 045 044 045 044 045 044 045 044 045 049 050 051 052	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 <u>ST01</u> *LBLb SF0 *LBL1 ST03 CLX ST02	calculate co cosh x = LOAD f _o FOR LO LOAD f _o FOR HI	e ^x +e ^{-x} 2 OWPASS CASE CHPASS CASE	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	035 036 037 038 040 041 042 043 044 045 044 045 044 045 044 045 049 050 051 052 053	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 GT01 *LBLb SF0 *LBL1 ST03 CLX ST02 RCL3	calculate co cosh x = LOAD f_0 FOR LO LOAD f_0 FOR HI store f_0 $f_0^2 = 0$ for 1	e ^x +e ^{-x} 2 OWPASS CASE CHPASS CASE	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	035 036 037 038 040 041 042 043 044 045 044 045 044 045 044 045 044 045 049 050 051 052	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 <u>ST01</u> *LBLb SF0 *LBL1 ST03 CLX ST02	calculate co cosh x = LOAD f_0 FOR LO LOAD f_0 FOR HI store f_0 $f_0^2 = 0$ for 1	e ^x +e ^{-x} 2 OWPASS CASE CHPASS CASE	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	035 036 037 038 040 041 042 043 044 045 044 045 044 045 044 045 049 050 051 052 053	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 GT01 *LBLb SF0 *LBL1 ST03 CLX ST02 RCL3	calculate co cosh x = LOAD f_0 FOR LO LOAD f_0 FOR HI store f_0 $f_0^2 = 0$ for 1	e ^x +e ^{-x} 2 OWPASS CASE CHPASS CASE	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	035 036 037 038 040 041 042 043 044 045 044 045 044 045 044 045 049 050 051 052 053	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 GT01 *LBLb SF0 *LBL1 ST03 CLX ST02 RCL3	calculate co cosh x = LOAD f_0 FOR LO LOAD f_0 FOR HI store f_0 $f_0^2 = 0$ for 1	$\frac{e^{x} + e^{-x}}{2}$	090 091 092 093 094	*LBLe STO9 R↓ STO8	LOAD SWEEP	f _{start} AND Af
	035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 GT01 *LBLb SF0 *LBL1 ST03 CLX ST02 RCL3	calculate co cosh x = LOAD f_0 FOR LO LOAD f_0 FOR HI store f_0 $f_0^2 = 0$ for 1	$\frac{e^{x} + e^{-x}}{2}$	090 091 092 093	*LBLe STO9 R↓ STO8	LOAD SWEEP	
o pre	035 036 037 038 040 041 042 043 044 045 044 045 044 045 044 045 044 045 051 052 053 054	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 <u>ST01</u> *LBLL SF0 *LBL1 ST03 CLX ST02 RCL3 RTN	calculate co cosh x = LOAD f _o FOR LO LOAD f _o FOR HI store f _o f _o ² = 0 for I highpass cs	e ^x +e ^{-x} 2 OWPASS CASE CHPASS CASE Lowpass and ases REG	090 091 092 093 094	¥LBLe STO9 R↓ STO8 RTN	LOAD SWEEP	
freq	<u>035</u> 036 037 038 040 041 042 043 044 045 044 045 044 045 047 048 049 050 051 052 053 054	R↓ 1/X + ST05 ST÷5 ST÷6 RTN *LBLB CF0 GT01 *LBLb SF0 *LBL1 SF0 *LBL1 SF0 RCL3 RTN RTN	calculate co cosh x = LOAD f_0 FOR LO LOAD f_0 FOR HI store f_0 for I highpass ca $2 f_0^2 f_0^3$ ba	$\frac{e^{x} + e^{-x}}{2}$	090 091 092 093 094	¥LBLe STO9 R↓ STO8 RTN	LOAD SWEEP	$\frac{\partial}{\partial T} \frac{\sigma^2 + \omega^2}{\sigma^2 + (\omega - \Omega)^2} \stackrel{Q}{\simeq} \rhohase$
0 pre freq S0	<u>035</u> 036 037 038 040 041 042 043 044 045 044 045 044 045 047 048 049 050 051 052 053 054	R↓ 1/X + ST05 2 ST÷5 ST÷6 RTN *LBLB CF0 <u>ST01</u> *LBLL SF0 *LBL1 ST03 CLX ST02 RCL3 RTN	calculate co cosh x = LOAD f _o FOR LO LOAD f _o FOR HI store f _o f _o ² = 0 for I highpass cs	e ^x +e ^{-x} 2 OWPASS CASE CHPASS CASE Lowpass and ases REG	090 091 092 093 094 094 5 со вћ	¥LBLe STO9 R↓ STO8 RTN	LOAD SWEEP	
freq	<u>035</u> 036 037 038 040 041 042 043 044 045 044 045 044 045 047 048 049 050 051 052 053 054	R↓ 1/X + ST05 ST÷5 ST÷6 RTN *LBLB CF0 GT01 *LBLb SF0 *LBL1 SF0 *LBL1 SF0 RCL3 RTN RTN	calculate co cosh x = LOAD f_0 FOR LO LOAD f_0 FOR HI store f_0 for I highpass ca $2 f_0^2 f_0^3$ ba	e ^x +e ^{-x} 2 WPASS CASE GHPASS CASE Cowpass and ases REGI ndwidth f	090 091 092 093 094 094 5 00 sh	*LBLe STO9 R↓ STO8 RTN	LOAD SWEEP	$\frac{\theta_{\text{T}}}{\sigma^{2}+(\omega-\Omega)^{2}} \sum_{\sigma^{2}} \rho hase$
freq 50	<u>035</u> 036 037 038 040 041 042 043 044 045 044 045 044 045 044 045 044 045 051 053 054 053 054	R↓ 1/X + ST05 ST÷5 ST÷6 RTN *LBLB CF0 GT01 *LBLb SF0 *LBL1 SF0 *LBL1 SF0 *LBL1 SF0 RCL3 RTN RTN n 31	calculate co cosh x = LOAD f_0 FOR LO LOAD f_0 FOR HI store f_0 for I highpass ca $2 f_0^2$ ba S2 S3	e ^x +e ^{-x} 2 WPASS CASE CHPASS CASE CHPASS CASE Lowpass and ases REGI ndwidth ⁴ f	090 091 092 093 094 094 55 5 cosh 55 5 cosh	*LBLe STO9 R↓ STO8 RTN	LOAD SWEEP 7 Σ delay 57	$\frac{{}^{\theta}}{\pi} \frac{\sigma^{2} + \omega^{2}}{\sigma^{2} + (\omega - \Omega)} \frac{{}^{\theta}}{\Sigma} \rhohase$
freq	<u>035</u> 036 037 038 040 041 042 043 044 045 044 045 044 045 047 048 049 050 051 052 053 054	R↓ 1/X + ST05 ST÷5 ST÷6 RTN *LBLB CF0 GT01 *LBLb SF0 *LBL1 SF0 *LBL1 SF0 RCL3 RTN RTN	calculate co cosh x = LOAD f_0 FOR LO LOAD f_0 FOR HI store f_0 for I highpass ca $2 f_0^2$ ba S2 S3	e ^x +e ^{-x} 2 WPASS CASE GHPASS CASE Cowpass and ases REGI ndwidth f	090 091 092 093 094 094 5 00 sh	*LBLe STO9 R↓ STO8 RTN	LOAD SWEEP	$\frac{\theta_{\text{T}}}{\sigma^{2}+(\omega-\Omega)^{2}} \sum_{\sigma^{2}} \rho hase$

2-2

Program Listing H

								
095	*LBLE	LOAD ANALYSIS FREQUENCY	1	147	RCLA			
096	ST04		1	148	χ2	form in	R8:	
		store frequency and form:				- 2-		
097	RCL2	- toro reoquonoy and rolm;		149	RCLB	-	•	
098	RCL4			150	χ2		$\frac{(\sigma_{k}^{2} + \omega_{k})}{\sigma_{k}^{2} + (\omega_{k})}$	())
099	÷	$((C^2)$		151	+	11.3-		<u> </u>
100	_	$\Omega = \frac{1}{BW} \left\{ f - \frac{f_0^2}{f} \right\}$				· · · · · · ·	σ^2 (w)	$-\Omega^2$
		$\frac{1}{2} = \frac{1}{BW} \left(\frac{1}{T} - \frac{1}{T} \right)$		152	<u>ST×8</u>			
[101	RCL3		1 1	153	DSZI	decreme	nt k and t	est
102	÷			154	GT00			020
103	F0?		1 ~	155	RCL7	<u>for loo</u>	p_ <u>exi</u> t	
		if bandstop, $\frac{1}{\Omega} \rightarrow \Omega$	1					
<u>-104</u> 105	178		1	156	Pi		2	
105	ABS	store $ \Omega $		157	ENT↑	calcula	te: $\frac{\sum_{7}}{2}$	
106	STOE	store (122)		158	+		2π	
			4		T			
107	RCL1		i .	159	<u>÷</u> .			
108	STOI	initialize loop:	ľ í	160	RCL3			
109	CLX	n - RI		161	F0?	··· · ·		
						jump ii	highpass	
110	ST07	$\Sigma_7 = 0$		162	<u> </u>	<u>or</u> band	stop	
111	ST09	$TT_{\Theta} = 1$	∦	163	÷		_	
112	EEX			164	RCL2			
		≥ , =0	I			_		م ہے
<u>113</u>	<u>ST08</u>			165	RCL4	lowpass	or bandpa	ss <u>urr</u>
→ 114	*LBL0		1	166	Xs	-	-	dω
115	RCLI		1	167			n2	
					ē EEX	~ ``	$+\frac{f_0^2}{f^2}\left\{\frac{\Sigma}{2\pi}\right\}$	7
116	ENT1			168	EEX	$\gamma_q = \sqrt{1}$	+	
117	+		1	169	+	· (t) ATT	DWC
118	EEX	aplaulate emale		170	х			
1 I		calculate angle:						
119	-			171	<u> </u>			-
120	RCL1	-12k-1] Կա-	172	*LBL8			
121	÷	$\Theta_{k} = 90\left(\frac{2k-1}{n}\right)$		173	x			
		$-\kappa$ n /						
122	9			174	RCL4			
123	0		1	175	Xs			40
124	-			176	RCL2	highnas	s or bands	ton
	<u> </u>							Tαω
125	EEX	$calculate sin \Theta_k$ & cos Θ_k		177	+			
126	→R_~	Carden of the fr		178 -	Х	(r^2 , r^2)	BW
127	RCL5			179	RCL4	$\tau_0 = \lambda$	$\frac{f^2 + f_0^2}{(f^2 - f_0^2)^2}$	- <u></u> ·Σ, Ι
		Parma and atoms is				9 ($(f^{2} - f_{0}^{2})^{c}$	2π ′
128	х	form and store $\omega_{\mathbf{k}}$	l í	180	Χ2		,	
129	STOB			181	RCL2			
130	RCLE		1 1	182	-			
1 100	NOLE	form: ω _k - Ω			100			
131		`		183	X۶			
132	X≠Y			<u>184 _</u>	<u>÷</u>			
133	RCL6	form and store $\sigma_{\mathbf{k}}$		185	*LBL9			
		k k						
134	х			186	RCL8			
135	STOA		J	187	LOG	calcula	te and pri	nt l
136				188	EEX			
	-	•					de respons	9
137	χ2	form and sum;		189	1	in dB		
138	RCLA		I	190	x			
139	X≠Y	ح _k		191	PRTX			
140	÷	$\sigma_k^2 + (\omega_k - \Omega)^2$		192	 ₽.↓			
141	ST+7	$_{K} + (m_{K} - 24)$	1	193	RCL9	calcula	te and pri	nt
142	RCLA			194	F0?		esponse in	
		1				P 1	capondo In	20E1000
143	÷	form:		195	CHS			
144	<u>ST×8</u>	$\sigma_{k}^{2} + (\omega_{k} - \Omega)^{2}$	_	<u>196</u>	<u>PRTX</u>			- ···
145	XIY	<u>K_}TR7_</u>	4	197	R∔			
		Sum phase element		198	PRTX	nmint -	roup delay	l
146	ST+9	sum phase element	,			print g	toub derah	
				199	SPC			
				200	RTN			
			ł					
			1					
			1.	F	LAGS		SET STATUS	[
A BUTTERWORM	B				LAGS		SET STATUS	
<u>n</u>	[₿] Lp:f₀		L. → ?g.etc		LP~ BP	FLAGS	SET STATUS	DISP
		CBS: BWA fo D START Ef-	► Tg,etc	0 CLL SET:	: LP~ BP HP or 85			DISP
a CHEBYSHEV n A dBRpple	р нь: t° Гь: t°	CBS: BWA fo D START Ef-	► 7 _{9,etc}	O CLR SET: 1 CLR	LP~ BP	ON OFF	TRIG	
A CHEBYSHEV		CBS: BWA fo D START E f-	► 7 _{9,etc} ετ∮Δf	O CLR SET: 1 CLR	: LP or BP HP or BS : LINEAR	ON OFF 0	TRIG DEG	FIX
a CHEBYSHEV n A dBRpple	р нь: t° Гь: t°	CBS: BWA fo D START E f-	► 7g,etc ετ ∮ Δf	O CLR SET: 1 CLR	: LP or BP HP or BS : LINEAR	ON OFF 0 1	TRIG DEG GRAD	FIX SCI
A CHEBYSHEV A CHEBYSHEV A ABRINGE O SUMMATION	LP: +0 b HP: fo 1 MULTITUSE	CBS: BWT fo D START SWEEP E f- CBP: BWT fo D START BP: BWT fo D START LOG/LIN SWP f STA 2 3 4	► Tg,etc ET \$ Af	O CLR SET: 1 CLR SET 2	: LP or BP HP or BS : LINEAR	ON OFF 0 1 2	TRIG DEG	FIX SCI ENG ■
A CHEBYSHEV A 4BRADE O SUMMATION	LP: +0 b HP: fo 1 MULTITUSE	CBS: BWA fo D START SWEEP E f- CBP: BWA fo d SELECT LOG/LIN SWP for 7 SWEEP START B B5, HP 9 PRI	RT ∮ ∆f	O CLR SET: 1 CLR SET 2	: LP or BP HP or BS : LINEAR	ON OFF 0 1	TRIG DEG GRAD	FIX SCI

<u>Suggested HP-67 program changes</u>. The "print" command is used to output data in the program listing. These print commands are located at the following line numbers: 070, 191, 196, and 198. HP-67 users may prefer either a "pause" or "R/S" command replacing the "print" command at the above line numbers. If the R/S change is made, the program execution will stop at each data output point. To resume program execution, execute a "R/S" command from the keyboard.

PROGRAM 2-3 BUTTERWORTH AND CHEBYSHEV LOWPASS NORMALIZED COEFFICIENTS.

Program Description and Equations Used

This program calculates the normalized (1 ohm, 1 radian/second cutoff) element values for either the Butterworth (maximally flat) or Chebyshev (equal ripple passband) all pole lowpass filter approximations. The filters can be either doubly terminated (resistors at both ends) or singly terminated (driven from a voltage or current source, i.e., R_T approaches infinity). Because of duality, two filter topologies exist for the ladder filter as shown in Fig. 2-3.1. These topologies are bilateral and passive; therefore, the voltage source can be placed in series with the left-hand termination resistor as shown, or in series with the righthand termination resistor. By proper selection of the filter topology and input port designation, the singly terminated filter can be driven from either a current or voltage source and resistively terminated, or driven from a Thevenin (or Norton) equivalent source and terminated in either a short or open circuit.

Figure 2-3.1 Lowpass ladder filter topologies.

The search for explicit formulas for ladder filter element values has extended over four decades. Bennett [7] provided the remarkedly simple formula for equally terminated Butterworth filters in 1932. Norton [39] provided the formulas for the open circuited Butterworth case in 1937. Belevitch [5] published formulas for the doubly terminated Chebyshev case in 1952. Orchard [40] gathered together this previous work and provided the missing fourth formula set for the open circuited Chebyshev case in 1953. Green [28] went on to generalize these formulas for any ratio of resistive terminations in 1954. These formulas had been numerically tested, but never formally proved. Doyle [22] provided a "hammer and tongs" brute force proof for the Butterworth case with arbitrary terminations. Meanwhile, in Japan, Takahasi [51], had made an ingenious proof of the formulas for the arbitrarily terminated Chebyshev case and extended it to the Butterworth case by a limiting process. Takahasi published his independent work in 1951 (in Japanese), but it was not discovered by the rest of the world until 1957. Weinberg and Slepian [54] discuss Takahasi's results. Takahasi's results can also be found in the back of Weinberg's book [53].

The recursion relations given by Eqs. (2-3.1) through (2-3.16) are adapted from Takahasi. If the filter order is odd, the filter can be terminated by 1 ohm at one port and by any resistance 1 ohm or larger at the other port. By using the dual topology, the termination resistance can be any resistance 1 ohm or smaller (including 0 ohms). If the filter is an even ordered Chebyshev design, then the first port termination resistance must be larger than 1 ohm. The minimum value of this termination resistance is given by Eq. (2-3.18).

r = 1, 2, ..., n - 1

Takahasi's recursion relationships:

g1

$$g_{r+1} = \frac{A \cdot s_{r-\frac{1}{2}} \cdot s_{r+\frac{1}{2}}}{g_{r} (\xi^{2} + \eta^{2} - \xi \eta c_{r} + s_{r}^{2})}$$
(2-3.1)

where

$$=\frac{\sqrt{A}\cdot s_{\frac{1}{2}}}{R_{T}(\xi-\eta)}$$
(2-3.2)

$$s_{q} = 2 \cdot \sin\left(\frac{\pi \cdot q}{n}\right)$$
 (2-3.3)

$$c_{q} = 2 \cdot \cos\left(\frac{\pi \cdot q}{n}\right) \qquad (2-3.4)$$

For normalized lowpass Butterworth coefficients:

$$A = 1$$
 (2-3.5)

$$\xi = 1$$
 (2-3.6)

$$\eta = \left(\frac{R_{\rm T} - 1}{R_{\rm T} + 1}\right)^{1/n}$$
(2-3.7)

$$s_r^2 \equiv 0$$
 (2-3.8)

For normalized lowpass Chebyshev coefficients:

$$A = 4$$
 (2-3.9)

$$\xi = F(1)$$
 (2-3.10)

$$\eta = F\left(1 - \frac{4 \cdot v R_{T}}{(1 + R_{T})^{2}}\right)$$
 (2-3.11)

$$\mathbf{v} = \begin{cases} 1 + \xi^2, & n \text{ even} \\ 1 & , & n \text{ odd} \end{cases}$$
(2-3.12)

$$F(x) = u - \frac{1}{u}$$
 (2-3.13)

$$u = \left(\sqrt{\frac{x}{\epsilon^2}} + \sqrt{\frac{x}{\epsilon^2} + 1}\right)^{1/n} \qquad (2-3.14)$$

$$y = 10^{e dB/20}$$
 (2-3.15)

$$\varepsilon^2 = y^2 - 1$$
 (2-3.16)

$$\omega_{-3dB} = \cosh\left(\frac{1}{n}\cosh^{-1}\frac{1}{\varepsilon}\right)$$
 (2-3.17)

$$\mathbf{R}_{\mathbf{L}} \Big|_{\substack{\mathbf{n} \ \mathbf{even}}} = \left(\frac{\sqrt{\frac{\mathbf{y}+1}{\mathbf{y}-1}}-1}{\sqrt{\frac{\mathbf{y}+1}{\mathbf{y}-1}}+1} \right)^2$$
(2-3.18)

When the termination ratio is neither 0, ∞ , or as close as possible to 1, there are more than one possible set of ladder element values for the same filtering function. These alternate sets are synthesized by realizing the reflection zeros in the RHP, or RHP-LHP alternating rather than in the LHP. The closed form formulas realize the LHP reflection zero case. This realization generally results in a ladder filter with minimum sensitivity to component value changes. For a more comprehensive discussion of reflection zeros and order of realization, see Weinberg [53], chapter 13.

The program is set up to calculate the minimum termination resistance, and if the value loaded by the user is less than the minimum, the minimum value replaces the user loaded value.

When the termination resistance is allowed to approach infinity (or 0 using the dual topology), the filter only has one termination resistor, and is called "singly terminated." These singly terminated filters are used where it is inconvenient, or wasteful of power, to use the doubly terminated filter. Because the loaded Q's of the resonant circuits become higher as the unloaded end of the filter is approached, the singly terminated design is more difficult to align.

Often, the LC filter is used as a basis for an active filter design such as Szentirmai's leapfrog topology [48], Bruton's frequency dependent negative resistor (FDNR) approach [10], or Orchard and Sheahans' type 11 active simulation [42]. Using the doubly terminated LC topologies for the active filter basis, will also mean that the active filters will be less critical toward alignment.

2-3 User Instructions

BUTTERWORT	H AND CHEB	ishev LP Nor	MALIZED COE	FICIENTS	
Load n	Load R _T (R _T ≥1)	calculate Butterworth values		calculate -3dB Cheb values	7

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of magnetic card			
2	Load filter order (n = 12 maximum)	n		n
	If the normalized lowpass prototype is			
	to be transformed to bandpass types			
	6, 7, 8, 9, 10, or 11, and Chebyshev			
	response is desired, the filter order	****		
	must be odd so the terminations will be			······
	equal resistance.			
3	load the tormination maintains desired	P_		
	Load the termination resistance desired	R		
	The termination resistance must be			
	1 or larger. For terminations less			
	than 1 ohm (normalized) load the			
	reciprocal value and use the dual			
	topology. See note after step 7.			
4	For Butterworth coefficients	·	KEYS	RT
				space
				g_1
				÷ ٤2
				:
				g _n
				space
				$R_{L} = 1$
_5	For Chebyshev coefficients that define a	€dB	D	ω_3 dB
	filter that is $-\epsilon$ dB down at $\omega = 1$			space
	If even ordered Chebyshev has been			R _T
ļ	selected, the minimum source resistance			space
	is calculated and is used if the			g_1
	resistance loaded in step 3 is smaller.			5 <u>2</u>
				g _n
				space
				$R_{L} = 1$
ļ				

2-3 User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	For Chebyshev coefficients that define a	€dB	E	$\omega_{-\epsilon dB}$
	filter that is 3 dB down at ω=1			space
	The minimum source resistance comment			RT
	for even ordered Chebyshev filters			space
	in step 5 also applies here.	******		gl
		****		^g 2
				•
				gn
			1	space
				R _L 1
7	Go back and repeat any step.			
	The last calculated coefficients will			
	be in storage for use by other programs			
	in this section.			
	Notes on termination resistance:			
	To enable the program to output coefficients	*****		
	for the singly terminated case, load 105	*****		
	ohms for RT if Chebyshev response is going			
	to be selected, or load 10 ⁹ ohms if			
	Butterworth response is going to be selected.			
	Either one of these values is a reasonable			
	approximation to infinity when compared to			
	one ohm. The maximum termination resistance			
	in the Chebyshev case is limited to 10 ⁵ ohms			
	because of a small difference between big			
	numbers problem. 10 ⁵ ohms is a compromise			
	between an approximation to infinity and			
	the number of significant digits in the			
	coefficients. With 10 ⁵ ohms, the answers			
	are significant to five places.			

Example 2-3.1

Find the normalized lowpass coefficients for a 4th order, $\frac{1}{2}$ dB ripple Chebyshev filter that is doubly terminated, and has the minimum termination resistance. The filter response should be 3 dB down at the passband edge ($\omega = 1$) relative to the response at dc.

HP-97 printout

4.	ES5P	load filter order
1.	€SBB	load termination resistance desired
.5	688E	enter passband ripple in dB and calculate
		Chebyshev coefficients
914.828-63	***	$\omega_{-\epsilon dB}$ (output)
1.98406+00	***	minimum termination resistance allowed at port 1
928.243-03	建原床	81
2.58646+60	***	82
1.30355+60	建来家	83
1.82581+00	***	84
1.00000-00	滚滚	port 2 termination resistance

Figure 2-3.2 One topology for normalized lowpass filter (port ordering reversed).

Example 2-3.2

Find the normalized lowpass coefficients for a 10th order Butterworth filter that is singly terminated.

HP-97 printout

	e:ef G3ee G3bi	load filter order load termination resistance (use 10 ⁵ for Chebyshev) calculate Butterworth coefficients
1.00000+03	***	termination resistance at port 1
1.56434-00	2.8.	81
1.85316+00		82
1.81211+00		83
		83 84
1.51002+00		85
1. 2203+00	***	85 86
1.24962+99	4**	86 87
761.517-03	***	
465.375-03		88 89
156.434-83	***	-•
	¥	810
1.00000+02	***	termination resistance at port 2

Figure 2-3.3 One form for normalized lowpass filter (dual topology used).

2-3

Program Listing I

061	+LBLH	LOAD FILTER ORDER		57	-	
002	ST06	store filter order		56	÷	
003	Pi			<u>59</u>	52	
<u>0</u> 04	X₽Y	calculate and store π/n	-	60	RCLD	if filter order is even,
0 <i>95</i>	÷			6i	XZY?	and Rm desired is less than
065	5T01			62	RJ	R _{Tmin} , replace R _T desired
007	RCLE			63	GSB6	by R _T min
068	<u>RTN</u>			64	F2?	min
005	*LBLE	LOAD DESIRED TERMINATION		65	F2°	
210	STOD	RESI STANCE		<u>66</u> 77	<u>STOD</u>	calculate and store:
<u> </u>	RTN.			67 20	EEX CODZ	
612	*LBLC	CALCULATE BUTTERWORTH COEFS		68 69	GSB7 STO2	$f = F(1) \rightarrow R_2$
<u> </u>	<u> </u>			<u>07</u> 70	<u>RCLZ</u>	
014	EEX	set $\omega_{-3dB} = 1$		71	1/8	calculate and store:
<u>e15</u>	<u> 5702</u>			. 1 72	J.,	
<u> 115</u>	<u>5702</u>	_set_f = 1		, L 73	LSTX	
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	POLD	calculate and store:		74	EEX	
018 019	EEX		-	75		.,
	- 			76	- 5,2	$\omega_{3dB} = \cosh\left(\frac{1}{n}\cosh^{-1}\frac{1}{\epsilon}\right) \rightarrow R_0$
020 02:	RÖLD EEX	, <u>1</u>		77	+	-3dB (n E/ 10
02. 823	EEA +	$\eta = \left\{ \frac{R_{T} - 1}{R_{T} + 1} \right\}^{\frac{1}{n}} \rightarrow R_{3}$		72	GSB4	
823	т ÷	$\eta = \overline{R_{++1}} \rightarrow \pi_3$		79	17X	
023		(1974)		80	 T	
625	ST <u>03</u>		0	81	2	
- <u>625</u>	<u> </u>	jump around Cheb setup	9	82	÷	
627	*LELE	CALCULATE -3dB CHEBYSHEV		83	<u>Stj0</u>	
628	SFØ	COEFFICIENTS		54	F8?	calculate W_ 6dB if W_3dB
-025	6702			85	<u>1/X</u>	coefficients_requested
233	*LELD	CALCULATE - dB CHEBYSHEV		86	<u>GSE3</u>	print W_3dB, or W-EdB
031	CF0	COEFFICIENTS		87	GSB6	calculate
+ 632	#LBL2			88	RCL3	`
633	SF1	indicate Chebyshev		82	EEX	$\mathbf{v} = \begin{cases} 1+\epsilon^2 , n even \\ 1 + \epsilon^2 & 1 \\ 1 $
034	EEX			90	÷	v = {
035	ĺ	calculate and store:		91	F29	(1, nodd)
636	÷			<u>92</u>	<u>1878</u>	
637	10×	$\epsilon^2 = 10 - 1 - R_3$		93 94	4	calculate and store:
038	EEX	$e^2 = 10$ -1 -7 R ₃		27 55	RCLD	
039	-	•		70 96	πυ <i>∟υ</i> Χ	
040	<u> </u>			97 97	RCLD	
041	EE×	calculate and store:		27 98	EEX	
342	+	$\mu = 10 \xrightarrow{\epsilon_{dB/20}} \rightarrow R_{E}$		70 99	EE^ +	
843	JX eter	y = 10 -> R _E		70	χε	$-(, 4vR_T)$
<u>644</u>	<u>ŞTƏE</u>			3i	÷	$\eta = F\left(1 - \frac{4 v R_T}{\left(1 + R_T\right)^2}\right) \rightarrow R_3$
<u>945</u> 845	EE×	calculate:		92	CHS	· · · · · · · /
046	+ RCLE			93	EEX	
048	EEX	2		ð-	+	
040	-	$R_{T_{min}} = \left[\frac{\sqrt{\frac{y+1}{y-1}} - 1}{\sqrt{\frac{y+1}{y-1}} + 1} \right]^{2}$	1 1	55	X<0?	X <o default<="" td=""></o>
056	÷	Vý-i - 1	1 10	36	σĽΧ	V/A ABIGNIA
051	۰. XX	$R_{T_{max}} = -$		97	GSB7	
052	STOE	$\sqrt{\frac{y+1}{y+1}} \downarrow 1$	1	58 <u> </u>	<u>ST03</u> .	
653	EEX	[¥ y-t · ·]		<u>99</u>	*LEL9	
954	+			1 E	FC∟D	
055	RCLE		1.		P≢S	1
055	EEX		L ::	12	CLRG	clear coefficient registers
			STERS	16		7 8 2 - 1 9
⁰ ω _{-3d8}	$\frac{\pi}{h}$	$\left {}^{2}\mathbf{f}, 1 \right \left {}^{3}\mathbf{e}^{\mathbf{f}}, \mathbf{\eta}, \boldsymbol{\lambda} \right ^{4} \mathbf{g}_{\mathbf{r}}$	15	6	h	$\begin{bmatrix} 7 & r & \frac{8 & 2r-1}{2} \end{bmatrix}^9 S_{2r-1}$
50 5	51	S2 53 54	S5	s	·	S7 S8 S9
9 ₁	92	93 94 95	<u></u> 9		<u>9</u> 7	9 ₈ 9 ₉ 9 ₁₀
A	В	C C	D	_	E	$y_{3}\sqrt{\frac{y+1}{y-1}}$, c_{2r} index
<u> </u>		9 ₁₂ 9 ₁₃	R 7	г		$y_{3}\overline{y_{-1}}, c_{2r}$ index

2-3

Program Listing II

		·		NO.	IE IRIGM	
113	P#S	4169	GT01			
	TOD	170	SPC			
11				R _L = 1		i
115 6	SB3 print actual termination R	<u>171</u>	EEX			
	1/8	172	*LBL3	print and	i space sub	routine
		173	PRTX	•	•	
[117 S	704 initialize registers					
118	EEX	174	SPC			
1		175	RTN			
119	1					
[120 S	TƏI	175	*LBL5	subrouti	ne to finis	iha I
	EEX	177	-	Subrouth	10 W 11111	‴⁵r+l
			07.4			
122 S	T07	178		calculati	ion, store	result.
123		179	RCLO	owrowie,		
	-	180	PCL4			
124	5			and setu	pg _r for ne	art
125 S	708 calculate and store:	181	ST÷4			
	SE8	182	ST÷4			
				iteration	a	
127 S	T09 📲 📲	183	FØ?		-	
	$\frac{109}{117} 9_1 = \frac{A^{\frac{1}{2}} \cdot 9_{\frac{1}{2}}}{R_T (\xi - \eta)}$	184	X			
	$9_1 = \frac{1}{2} (1 + 1)$					
[129]	F1? ¹¹ R _T (f - n)	185				
130	+	186	PRTX			
		187	RTN			1
	TX4 if Chebyshev use A = 4,			<u>````````````````````````````````</u>		
132 R(CL2 otherwise use A = 1	188	*LBL6			
		189	RCL6	subroutin	ne to set	flag 2
	CL3		AULU		r order is	
[134 GS	SB5	190	2	TT TTTOO	COLGOL TR	044
r+135 ¥LI		1 191	÷			
		-				
<u>136</u> IS	<u>SZI increment register index</u>	192	FRC			
	$CL9 S_{r+1/2}$ start g_{r+1} calculation	193	X70?			
	Start Br+1 Cardana for					
[138 _ Si	T×4	194	SF2			
139 l	EEX	195	Rł			
1 1		196	RTN			
	T+S					
[141 R(CL8	197	*LBL7	subrouti	ne to calcu	ulates
	588 \$r- 1/2	198	RCL3			
1 1						
143 ST	T×4	199	÷			
	TO3	200	1X		4	
			ENT †	F(x) =	u	
145	4	201		F(^) -	~ u	
146 F	1? if Chebyshev, use $A = 4$	202	X2			
		203	EEX			
	<u>1×4</u>					
148 R(CL7 finish g _{r+1} calculation	204	+			17
	588	205	٧X	(1-	$+\sqrt{\frac{x}{\epsilon^2}+1}$	ר איז א
			7		· + . 1	۲ I
150	X5	206	*	u = ĵ∦ ₂ 2	1 6 ²	
151 R(CL2	207	GSB4	u -	1 -	
[152	Xe	208	178			
153 F	F17 add s _r ² if Chebyshev	209	-			1
		210	RTN			
154	+					
155 R(CL3	211	*LBL4	subrouti	ne to calcu	liate:
156	χε	212	RCLE			1
157	+	213	178	(1 ^{1/n} -	$R_x \rightarrow R_y$	
158 R(CLE	214	γx	- () - プ		
		215	ENTT			
	PL2					
160	x	216	RTN			
	CL3	217	*LBL8	mihronti	ne to calcu	later
				auprouch	TC M CHICI	TTT AGY
162	X	218	RCL1			
163 69	SB5	219	×	-	(πα\	
		220	2	sq = 2	$s_{in}\left(\frac{\pi q}{n}\right) \rightarrow$	• K _X
	EX increment r			-	1 11 1	
[<u>165</u> SI		221	→R			
		222	STOE	0 0	$\cos\left(\frac{\pi q}{n}\right) \rightarrow$. R_
1				⊂q ≍ ∡	(n)	INE I
🚺 🛉 167 – RU	CL6 test for loop exit	223	R↓		• • •	
	Y?	224	RTN	NO	re trig n	AODE
┝── <u><u></u>▲<u>★₩₽</u>─<u></u>^∕</u>				<u> </u>		
	LABELS		FLAGS	L	SET STATUS	
^A filter order ^B		3dB Cheb 0_	3dB Cheb	EL ACE	TRIC	DIED
	coefficients coefficients coe	fficients		FLAGS	TRIG	DISP
a b	c d e		hebyshev	ON OFF		
			NE OY SILEY	0	DEG	FIX
0 recursion 1 re	cursion 2 Chebyshev 3 and 6 care 4	() ^{1/n} ² cd	M		GRAD	SCI
	op start -3dB jump 3 print & space 4	<u></u> @	ld number		RAD =	
6		3		2		
store graf SF	2 if nodd / F(x) SqECq 3	ľ		3		n_ 5

PROGRAM 2-4 NORMALIZED LOWPASS TO BANDSTOP, LOWPASS, OR HIGHPASS LC LADDER TRANSFORMATIONS.

Program Description and Equations Used

This program transforms the normalized lowpass coefficients (1 ohm, 1 radian/sec) into the frequency and impedance scaled lowpass, highpass, or bandstop topologies. The normalized lowpass coefficients are obtained from register storage and either must be loaded by the user (for other than Butterworth and Chebyshev filters), or are generated and stored by Program 2-3 for the Butterworth and Chebyshev approximations.

Every linear, passive, lumped, time-invariant, bilateral electrical network has a dual topology. LC filters are a member of this class of networks; hence, two electrically equivalent networks can be formed from the transformation or scaling of the normalized lowpass structure. These two forms are designated as form 1, and form 2 in the program. Having two forms available provides the designer some relief from awkward component values, or the opportunity to choose the minimum inductor topology.

The program is separated into three parts which share common subroutines. These sections are 1) de-normalization parameter input (bandwidth, termination resistance level, and center frequency), 2) bandstop denormalization and transformation, and 3) lowpass and highpass denormalization and transformation. In analytical form, these transformations are discussed next.

Lowpass filters: No transformation is necessary for converting the normalized lowpass to the un-normalized lowpass filters. The normalized lowpass values need only be scaled to the desired operating impedance level and cutoff frequency. The object of the scaling procedure is to end up with filter elements that have the same impedance ratios to the termination resistance at the cutoff frequency as the normalized filter has at 1 radian/second to 1 ohm. The mechanics of this scaling procedure are:

163

L, scaled = (L, normalized)
$$\cdot$$
 (R/(2 π \cdot BW)) (2-4.1)

C, scaled = (C, normalized) /
$$(2\pi \cdot BW \cdot R)$$
 (2-4.2)

The normalized L's and C's are equal to the g's from Program 2-3, and BW and R represent the cutoff frequency in Hz and the load resistance in ohms respectively. Figure 2-4.1 shows the two forms of the lowpass filter; either port can be designated as input, i.e., the input voltage source can go in series with either termination resistor.

FORM 1

FORM 2

Figure 2-4.1 Two forms of lowpass filter.

Highpass filters: The highpass transformation is accomplished by replacing s by 1/s. Since sinusoidal frequencies are of primary interest, s may be replaced by $j\omega$, or 1/s by $-j/\omega$. Conceptually, this operation is equivalent to replacing each normalized lowpass capacitor with an inductor and vice-versa. The normalized values of the highpass elements are the reciprocals of the lowpass values, i.e., the g's calculated in Program 2-3 become 1/g's when converted to normalized highpass coefficients. Fig. 2-4.2 shows the two forms of the highpass filter, and the element values are calculated using Eqs. (2-4.1) and (2-4.2) with the normalized highpass coefficients. Either port can be designated as the input as in the lowpass case (or in any other passive LC case).

Figure 2-4.2 Two forms of highpass filter.

The highpass transformation may also be applied analytically; for example, the transformation is applied to the Butterworth normalized lowpass magnitude response equation (Eq. (2-4.3)) to convert it to the normalized highpass form (Eq. (2-4.4)).

$$|A(\omega)| = \frac{1}{\sqrt{1 + \omega^{2n}}}$$
 (2-4.3)

$$|A(\omega)| = \frac{\omega^{n}}{\sqrt{1 + \omega^{2n}}}$$
(2-4.4)

For more information, see Weinberg [53]. Blinchikoff and Zverev [8] also has an excellent discussion of transformations both conventional as used herein, and unconventional to preserve LP transient characteristics.

<u>Bandpass filters</u>: The bandpass filter is a combination of a highpass and a lowpass filter. The loaded Q, Q_L , of the filter is a measure of the separation between the highpass and lowpass portions. To accomplish the transformation from normalized lowpass to un-normalized bandpass, s in the normalized lowpass expression is replaced by the function of s shown in Eq. (2-4.5).

$$s \Rightarrow Q_{L} \left\{ \frac{s}{\omega_{0}} + \frac{\omega_{0}}{s} \right\}$$

$$Q_{L} = \frac{f_{0}}{BW}$$
(2-4.5)

Where f_{o} and BW are the center frequency and bandwidth in hertz.

Conceptually, the lowpass elements are replaced with new elements that exhibit the same impedance behavior at the bandpass filter center frequency as did the original elements at dc. Ideal inductors have zero reactance at dc, and are replaced with series resonant tank circuits which resonate at the bandpass filter center frequency, f_0 . Ideal (lossless) series tank circuits have zero reactance at resonance. Likewise, each lowpass capacitor is replaced with a parallel resonant tank circuit which resonates at the bandpass filter center frequency. When the loaded Q is greater than 10 or so, the bandpass filter is called narrowband. In this case, other tank circuits can be synthesized to approximate the impedance behavior of the series and parallel resonant tank circuits for frequencies within the vicinity of the passband. Bandpass filters and narrowband transformations are discussed in Programs 2-5, 2-6, and 2-11.

<u>Bandstop filters</u>: The bandstop transformation is the reciprocal of the bandpass transformation, and is analogous to the lowpass-highpass transformation. Highpass filters are actually bandstop filters which have zero center frequency. To accomplish the bandstop transformation, s is replaced by:

$$s \Rightarrow \frac{1}{Q_{L}\left\{\frac{s}{\omega_{o}} + \frac{\omega_{o}}{s}\right\}}$$
 (2-4.7)

Conceptually the bandstop transformation is accomplished by designing a highpass filter whose cutoff frequency equals the bandwidth of the desired bandstop filter. Each shunt inductor in the highpass filter is series resonated with a capacitor at the desired center frequency of the filter. Likewise, each series capacitor is parallel resonated with an inductor at the desired filter center frequency.

Figure 2-4.1 Bandstop filter parameters.

If g_1 , g_2 , ..., g_n are the normalized lowpass coefficients and R_T is the normalized termination resistance, then one form of the bandstop filter is shown by Fig. 2-4.2.

Figure 2-4.2 Bandstop filter form 1 (program output heading "21"), odd order filter shown; even order filter lacks last series tank circuit.

...

_

The other form of this filter is the dual of the first:

Figure 2-4.3 Bandstop form 2 (program output heading "22"), odd order filter shown; even order filter lacks last parallel tank circuit.

The program calculates both forms of these bandstop filters.

<u>Filter physical realizability.</u> The preceding transformations are used by this program and result in LC network schematics that will produce the desired response. Not all LC networks that can be drawn on paper as schematics are physically realizable. For example, a network branch consisting of a 1 μ F capacitor in series with a 10 nh inductor would be nearly impossible to realize since the self inductance of the capacitor is much larger than the total required inductance. Table 2-4.1 is a reproduction of Table 7.1 from White [56], and shows the degree of physical realizability of lowpass and highpass filters. The physical realizability of a filter is assigned one of four possible scores. These scores are defined as follows:

Readily realizable (R):	1 µh <u><</u> L <u><</u> 1 h
	5 pF \leq C \leq 1 μ F
Practical (P):	200 nh \leq L \leq 10 h
	$2 \text{ pF} \leq C \leq 10 \mu F$
Marginally practical (M):	50 nh \leq L \leq 100 h
	0.5 pF \leq C \leq 500 μ F
Impractical (I): All element	

mpractical (I): All element values that lie outside the marginal range, i.e.,

```
\begin{array}{ll} L < 50 & nh \\ L > 100 & h \\ C < 0.5 & pF \\ C > 500 & \mu F \end{array}
```

The table headings are meant to indicate ranges of filter cutoff frequency and termination impedance level. These ranges are defined as follows:

Frequency,

$$f_{o} = 10 \text{ Hz implies: } 3 \text{ Hz} \leq f_{o} < 30 \text{ Hz}$$

$$f_{o} = 100 \text{ Hz implies: } 30 \text{ Hz} \leq f_{o} < 300 \text{ Hz}$$

$$f_{o} = 1 \text{ kHz implies: } 300 \text{ Hz} \leq f_{o} < 3 \text{ kHz}$$

$$f_{o} = 10 \text{ kHz implies: } 3 \text{ kHz} \leq f_{o} < 30 \text{ kHz}$$

$$f_{o} = 100 \text{ kHz implies: } 30 \text{ kHz} \leq f_{o} < 300 \text{ kHz}$$

$$f_{o} = 1 \text{ MHz implies: } 300 \text{ kHz} \leq f_{o} < 300 \text{ kHz}$$

$$f_{o} = 1 \text{ MHz implies: } 300 \text{ kHz} \leq f_{o} < 3 \text{ MHz}$$

$$f_{o} = 10 \text{ MHz implies: } 3 \text{ MHz} \leq f_{o} < 30 \text{ MHz}$$

$$f_{o} = 10 \text{ MHz implies: } 3 \text{ MHz} \leq f_{o} < 30 \text{ MHz}$$

At frequencies above 300 MHz, lumped element filters are generally replaced with transmission line type filters.

Impedance Level (source and load resistances equal)

R = 3 ohms implies: $1 \le R < 10$ (power filters) R = 50 ohms implies: $10 \le R < 150$ R = 500 ohms implies: $150 \le R < 2.5k$ R = 10k ohms implies: $2.5k \le R < 50k$

Table 2-4.1 Physical realizability of lowpass and highpass filters.

R	Cutoff Frequency, f _c									
in _ohms	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	10 MHz	100 MHz		
3	I	М	м	P	R	Р	M	I		
50	М	М	М	R	R	R	R	М		
500	М	Р	R	R	R	R	R	R		
10k	I	м	Р	R	R	R	P	I		

Courtesy, Don White Consultants, Inc.

Bandstop filter physical realizability must include one additional parameter, the loaded Q of the filter, Q_L . As Q_L becomes higher (filter

becomes more narrow) the separation in element value between the series tank elements and the parallel tank elements increases as Q_L . Table 2-4.2 is adapted from Table 7.2 in White and assigns realizability scores to bandstop (and bandpass) filters. The loaded Q ranges are defined as follows:

Loaded Q (Q_L), for bandpass and bandstop,

 $\begin{array}{l} \mathbf{Q_L} = 5 \text{ implies: } 3 \leq \mathbf{Q_L} < 10 \\ \mathbf{Q_L} = 15 \text{ implies: } 10 \leq \mathbf{Q_L} < 30 \\ \mathbf{Q_L} = 50 \text{ implies: } 30 \leq \mathbf{Q_L} \leq 100 \end{array}$

			L = 500	15 10K		¢۲=	50	()ı –	5	~					
IF	, b	50	500	10K			QL= 50		QL=5		QL=15		QL = 50			
					50	500	10K	50	500	10K	50	500	10K	50	500	10K
			1	1		1	 	M M	R R	P P		M M	P l	l L	M M	P P
	f _o = 100 kHz					f _o =1 MHz										
QL=5 QL=15			QL = 50 QL = 5		QL=15		QL = 50									
50 50	00 10K	50	500	10K	50	500	10K	50	500	10K	50	500	10K	50	500	10K
		P P	P P	1	M M	M M	1	P P	R R	P P	P	P P		M M	P M	1
nd PRRPPIIMM 1 PR f ₀ ≈10 MHz Filter				fo	f _o = 100 MHz											
QL = 5 QL = 15 QL = 50			50	QL=5 QL=15 QL=50				50								
50 50	00 10K	50	500	10K	50	500'	10K	50	500	10K	50	500	10K	50	500	1 0K
		Ŀ	P P	I	I	1	1	1	1	1	1	1	1	1	I.	I.
5 N		$Q_{L} = 5$ $Q_{L} = 5$ $Q_{L} = 5$	R R P R R P fo= R P QL = 5 Q 0 500 10K 50 A P M I	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R R P P I M M I P R P P R R P P I M M I P R P P P fo<=10 MHz fo<=1 QL=5 QL=5 QL=5 QL=5 Q G G S00 10K 50 S00 10K 50 0 500 10K 50 500' 10K 50 500' 10K 50 500' 10K 50' A P M I P I	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \mathbf{R} & \mathbf{R} & \mathbf{P} & \mathbf{P} & \mathbf{I} & \mathbf{M} & \mathbf{M} & \mathbf{I} & \mathbf{P} & \mathbf{R} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{I} & \mathbf{M} \\ \mathbf{R} & \mathbf{R} & \mathbf{P} & \mathbf{P} & \mathbf{I} & \mathbf{M} & \mathbf{M} & \mathbf{I} & \mathbf{P} & \mathbf{R} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{I} & \mathbf{M} \\ \hline \mathbf{f_0 = 10 \text{ MHz}} & \mathbf{f_0 = 100 \text{ MHz}} \\ \mathbf{Q_{L} = 5} & \mathbf{Q_{L} = 15} & \mathbf{Q_{L} = 50} & \mathbf{Q_{L} = 5} & \mathbf{Q_{L} = 15} & \mathbf{C} \\ 0 & 500 & 10K & 50 & 500 & 10K & 50 & 500' & 10K & 50 & 500 & 10K & 50 \\ \hline 0 & 500 & 10K & 50 & 500' & 10K & 50 & 500 & 10K & 50 & 500 & 10K & 50 \\ \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Table 2-4.2 Physical realizability of bandstop filters.

Courtesy Don White Consultants Inc.

As the loaded Q increases, the element value spread can become unmanageable. This problem can be reduced by using narrowband transformations which are used in Programs 2-5 and 2-6 for the bandpass case. Narrowband transformation schematics for the bandstop case may be found on p. 217 of the ITT handbook [44]. The concept of coupling and narrowband transformations was introduced by Milton Dishal [21], and expanded by Seymour Cohn [16] for the bandpass case.

User Instructions 2-4

1	BANDS	TOP, LOWPASS	, OR HIGHPAS	S TRANSFORM	ATIONS	
	Lowpass Type 1	Lowpass Type 2	Highpass Type 1	Highpass Type 2		2
	Center Frequency	Bandwidth, Outoff freq	Termination Resistance	Bandstop Type 1	Bandstop Type 2	/

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of magnetic card			
2	For lowpass filter component values:			
	a) load cutoff frequency in hertz	fcutoff	B	
	b) load termination resistance in ohms	R	C	
			f A	R _s
	c) for type 1 filter (capacitor first)*		f A	~~B
				°1
•••••		•••••		L ₂
				£
				C _n or L _n

				R
	d) for type 2 filter (inductor first)*		f B	R
				L_1
				02
		•••••		
		.		L _n or C _n
				R
3	For highpass filter component values:			
	a) load cutoff frequency in hertz		B	
	b) load termination resistance in ohms		C	
	c) for type 1 filter (inductor first)*		fC	R _s
		.		
				L ₁
				02
		+		C _n or L _n
		.		R
		.		

24 User Instructions

BANDSTOP, LOWPASS	, OR HIGHPASS TRA	INSFORMATIONS		
	Continued		2	
 				iŦ

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
3	Highpass component values continued			
	b) for type 2 filter (capacitor first)*		f D	Rg
,				C1
				L ₂
				•
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			L _n or C _n
				R
4	For bandstop filter component values:			
	a) load filter center frequency in hertz	f _o		
	b) load filter bandwidth in hertz	BW	B	
	c) load termination resistance in ohms	R		••••••
	d) for type 1 filter (series tank first)*			R,
				·····
				C1**
				L ₁
				·····
			1 	°2
				L ₂
				•
				•
				^C n
				L _n
				R
	e) for type 2 filter (parallel tank first)*		E	R
	VARTA			0,
	NOTES: * All capacitor values are in farads, all j	nductor		
·	values are in henries and all resistor values			•
	ohms.			•
	** In all section 2 programs where resonant	tank		C _n
	components are printed, the capacitor is alway			L _n
	printed first.			
				R

## Example 2-4.1 Singly terminated lowpass filter

A maximally flat (Butterworth) lowpass filter must pass a 1 kHz signal with 1 dB or less attenuation relative to the filter response at dc, and must reject a 12 kHz signal by at least 75 dB. Program 2-1 is used to predict the required filter order, and -3 dB cutoff frequency (Butterworth cutoff frequency) with  $Ap_{dB} = 1 dB$ ,  $As_{dB} = 75 dB$ , and  $\lambda = 12$ . A filter order of 3.75 is calculated, which is rounded to the next largest integer, 4. Re-entering the program with  $As_{dB} = 3$  and n = 4, yields  $\lambda = 1.183301$ , which means the 3 dB cutoff frequency is (1000)(1.183301) = 1183.301 Hz.

Next, Program 2-3 is loaded to obtain the normalized lowpass coefficients for a singly terminated 4th order Butterworth filter. The coefficients are automatically stored for use by this program.

Load this program, load the above cutoff frequency, and select an operating impedance level from Table 2-4.1 An impedance level of 500 ohms will result in a readily realizable filter. Both the type 1 and type 2 topologies can be calculated and the most attractive one selected. The HP-97 printout for the above operations is shown on the next page.

Programs 3-1 and 3-2 can be used to design the inductors needed for this design. If an active filter approach can be considered, see Program 2-9 for a lowpass active filter design. HP-97 printout for Example 2-4.1, lowpass filter design. Load Program 2-1 to calculate required filter order; 535. select Butterworth 1.00 GSBA load ApdB 75.00 GSBB load AsdB 12.03 GSEC load  $\lambda$ , and calculate n, the filter order 3.75 *** n (output) 3.00 GSBE load new  $As_{dB}$  4.00 GSBC load integral filter order, n, and calculate  $\lambda$ 1.183381 *** **\ (output)** Load Program 2-3 to generate and store the normalized lowpass coefs. 4. GSBn load filter order 1.+05 6588 load termination resistance desired ESBC calculate Butterworth coefficients 1.00000+69 *** R_T (normalized) 1.53073+00 *** ٤ı 1.57716+00 *** g2 lowpass normalized coefficients 1.08239+00 *** 83 382.683-03 *** ЯĹ 1.00000+00 *** R (normalized) Load this program (Program 2-4) to obtain un-normalized filter. 1181.301 GSBE load un-normalized cutoff frequency 500. GSBC load termination resistance,  $\hat{\mathbf{R}}$ GSBa calculate type 1 lowpass filter (capacitor first) 31. lowpass type 1 output code 500.0+03 *** R_e (open circuit) Cl 412.5-09 冰冰市 106.2-03 *** ^L2 03 291.7-05 冰冰冰 25.78-03 *** Ľ4 500.0+00 *** R GSEb calculate type 2 lowpass filter (inductor first) 32. lowpass type 2 output code 500.0-09 *** R_s (short circuit) L 103.1-03 東東東 02 425.0-09 *** 72.91-03  $L_{z}$ 东京市 c2 103.1-09 *** 500.0+00 *** R

#### Example 2-4.2 Doubly terminated highpass filter

A highpass filter is required to keep the signal from a local CB transmitter from causing cross modulation interference in the tuner of a TV set. The filter will be placed in series with the 300 ohm balanced line from the antenna to the TV set, hence, the filter will be designed for a 300 ohm terminating impedance level. The filter must pass the TV spectrum which starts at 54 MHz, but must reject the CB radio band at 27 MHz. One dB of ripple is allowed across the TV spectrum, and at least 60 dB rejection is needed at the CB band frequencies. Because of the allowed ripple, a Chebyshev filter will be used. Program 2-1 calculates a minimum filter order of 7 as shown below along with the rest of the HP-97 printout for this design:

Load Program 2-1 to obtain minimum filter order required:

	select Chebyshev
1.20 3.24	load Ap _{dB}
60.00 GSEE	load As _{dB}
2.00 6660	load $\lambda$ and calculate filter order, n
0.20 A.Y.	n (output)
7.00 9960	load integral filter order, n
1.78 ###	$\lambda$ where filter is 60 dB down (54/1.78 = 30.3)
: 44 6926	1 1 1 3 7 - 1
2.00 3002	load λ and calculate As _{dB} As _{dB} at 27 MHz

Load Program 2-3 to generate and store the normalized lowpass coefficients:

```
. GSEA load filter order
        i. SEE load Chebyshev passband ripple in dB and start
1.01721-00 *** normalized -3 dB frequency (output)
1.00000+00 *** R<sub>T</sub> (normalized)
2.100000000 ***
                81
1.11151+00 ......
                g2
3.09384+00 ****
                g3
1.17352-00 ***
                    normalized lowpass coefficients
               84
3.03364+86
           A.8.4
                85
1.11151+00
           ***
                8<sub>6</sub>
2.16656+00
          ***
                87
1.00000+00 *** R (normalized)
```

This highpass example is for a balanced structure filter, and the program output is for an unbalanced structure (one side common). To convert the unbalanced structure to the balanced structure, capacitors are placed in each side of the filter, and their equivalent impedance is onehalf the unbalanced value (twice the capacity).



54.+06 GSBB load cutoff frequency 300. GSBC load denormalization resistance calculate type 1 highpass filter values GSE0 *41.* highpass type 1 output code (inductor first) 306.0+62 莱塞津 Rs 408.1-09  $\mathbf{L}_1$ *↓*,★* 8.833-12 ***  $C_2$ 285.8-89 Lз 兼兼兼 8.372-12 塞索港 C4 285.*8-0*9  $L_5$ 軍軍軍 8.839-12 *** C6 408.i-05 憲憲第  $L_7$ 300.0+00 *** R R, **&**L₃ **8**4 2C2 2C₄ °BL5 2C₆ ≨ R 85 calculate type 2 highpass filter values  $GSB_{\alpha}$ 4ž. highpass type 2 output code (capacitor first) 390.0+00 *** Rs 4.535-12 C1 *** 795.5-05  $L_2$ *** 3.176-12 C3 *** 753.5-09 **米井**市  $L_4$ 3-176-12 C5 林林林 795.5-05 ***  $L_6$ 4. 75-12 C7 潜力市 302.0+00 *** R R, 2C5 2C₃ 2C1 'n۲ 2C., R

Programs 3-5 and 3-6 can aid in the aircore inductor designs needed here.

## Example 2-4.3 Bandstop filter

Consider implementing the filter cited in the previous example as a bandstop filter rather than as a highpass filter. The stopband required is from 26 MHz to 27 MHz. The center frequency of a bandstop (and bandpass) filter is the geometric mean of any two equal attenuation frequencies (this relationship does not hold for narrowband bandpass transformations for frequencies outside the passband). The center frequency of this bandstop filter is then 26.4953 MHz. If the upper -1 dB point is 54 MHz, then the lower -1 dB point is  $(26.4953 \text{ MHz})^2/(54 \text{ MHz}) = 13 \text{ MHz}$ . The normalized frequency multiplier,  $\lambda$  , is the ratio between the passband and the stopband, or  $\lambda = (54 - 13)/(27 - 26) = 41$ . From Program 2-1, the filter order that meets these requirements is 2. Even ordered Chebyshev filters do not have equal termination resistance levels, and this filter is to be placed in a 300 ohm system (equally terminated). To satisfy all requirements including equal termination, a third order bandstop filter will be designed. The HP-97 printout for this filter design follows.

Load Program 2-1 to calculate the minimum filter order required:

1.00 60.00 41.00	GSBH GSBF	select Chebyshev load $Ap_{dB}$ load $As_{dB}$ load $\lambda$ and calculate filter order, n minimum n to meet requirements (use n = 2 min)
3.00 7.92	GSBC ***	load n desired and calculate $\lambda$ for $\text{As}_{\text{dB}}$ = 60 dB $\lambda$
5.18 26.4953	*** GSBJ ***	form $1/\lambda$ stopband bandwidth (MHz) enter center frequency (MHz) and calculate: upper stopband edge (MHz) lower stopband edge (MHz)

1.	G3BA G3BB G3BD ***	load filter order load termination resistance ratio desired load Chebyshev passband ripple in dB and start $\lambda$ for 3 dB bandwidth (output)
1.00000+60	***	R _T (normalized)
2.02359+00 994.102-03 2.02359+00	***	<pre>normalized lowpass coefficients</pre>
1.000000+00	***	R (normalized)
26.4553+06 41.+06 300.		load de-normalization resistance level
Ê.		type 1 bandstop heading (series tank first)
300.0+00	***	R _s
62.70-12	***	C ₁
575.5-09	<b>冰洋冰</b>	
13.02-12 2.772-06 62.70-12 575.3-05	*** *** ***	$\begin{array}{c} C_2 \\ L_2 \\ C_3 \\ L_3 \end{array} \qquad $
300.0+00	***	unbalanced structure
		IV

GGE calculate type 2 bandstop



2-4

## **Program Listing I**

001	*LBLA	LOAD CENTER FREQUENCY	- 849	*LBL1	bandstop	alculatic	on loop
002	Pi		050		increment		
003	ENT†		051		test for 1		
004	+	$2\pi f_{a} \rightarrow \mathbb{R}0$	052	GT04			
005	x		053	SPC			
006	STOØ		054		recall gk		
007	RTN.		855	DOLA	recall R	(10 .0.)	
008		LOAD BANDWIDTH OR CUTOFF FREQ	856				
009	*E8E8 Pi	Tout Build a fair of colors 1104	1 400		set print		
			057		test for	cype 1 ri.	lter
010	ENTT		058	<u> </u>			
011	+	$2\pi BW \rightarrow R1$	059	CLX			
012	X		060	RCL5	substitute	$= 1/(R \cdot \omega_0)$	$\cdot Q_{L}$ ) in $R_{X}$
013	ST01		061	SF0	set print	order fo:	r type 2
014	RTN		62	*LBL6			
015	*LBLC	LOAD DENORMALIZATION RESIST	.063	CSB8	gosub elt	_calculat	<u>ion &amp; print</u>
016	ST02	R 🗕 R2	064	GSB9	increment	indices a	and
017	RTN		065	X>Y?	test for	loop exit	
018	*LBLD	BANDSTOP TYPE 1 ROUTINE	066	GT04			
619	SPC		067	SPC			·
020	2		068		recall gk		
021	1	print heading "21"	069	Pri 5	recall 1/	(R.W OT)	
022	PRTX	hime uperfug at	070				
		indianta toma 1 tanal	871	SFØ		order TO	г туре 1
<i>023</i>	CF1	indicate type 1 topology		F1?	test for	type⊥fi	lter
024	<u> </u>		072	<u>6106</u>			
025	*LBLE	BANDSTOP TYPE 2 ROUTINE	073	CLX	• • • • •	<b>D</b> //	<b>.</b> -
026	SPC		074	RCL4	substitut	e R∕(ω ₀ •Q)	L) in R _x
027	2		075	<u> </u>			
028	2	print heading "22"	<b>₩</b> 076	*LBL6			
029	PRTX	-	077	esb8			ion & print
030	SF1	indicate type 2 topology	078	<u>gt01</u>		start	
031			079	*LBL8			n & print
832	SF2	calculate and print R _s	080	x			-
033	GSB2		081	ST08	form and	smue gk.	
034			082	F0?			
035	RCL1	calculate and store:	083	PRTX	if flag O	print R8	
035	KULI X		084	RCLO	calculate	metina	
030	RCLO	R.BW R	085	XCLO	resonant		
	KULU X2	$\frac{\mathbf{R} \cdot \mathbf{BW}}{\omega_0^2} = \frac{\mathbf{R}}{\omega_0 \cdot \mathbf{Q}_1} \rightarrow \mathbf{R4}$	085				
038			087	1.20	С, Ц = -	1	<u> </u>
039	÷			148	ς, μ = _	$ω_0^{2}$ ·(L, (	2)
048	<u>ST04</u>		088	FRIA			
041	RCL2	<b>,</b>	089	FU?	if flag 0	, return	to
042	Xs	$\frac{1}{R \cdot \omega_{o} \cdot Q_{L}} \rightarrow R5$	<u>090</u>	<u>RTN</u>	main prog	ram	
043	÷	$\mathbf{K} \cdot \mathbf{\omega}_{\mathbf{o}} \cdot \mathbf{G}^{\mathbf{L}}$	091	RCL8	recall an	d print R	8
<u>844</u>	<u></u>		092	PRTX		-	
045	CLX	inidalina indon s to	093	<u>RTN</u>	return to	main pro	gram
046	ST07	initialize index registers	094	*LBLa	LOWPASS T	YPE I ROU	TINÉ
047	9		095	SPC			
048	STOI		096	3			
h		· · · · · · · · · · · · · · · · · · ·	097	1	print head	ding "3]"	
			098	PRTX	F-200 1100		
1			099	CFØ	indicate	lownass f	ilter
			100	<u></u> CF1	indicate	type 1 f4	- <u></u>
			101	GSB7	calculate	ANTA	<u>etonta</u>
			$\frac{181}{102}$				
			102	<u>GT02</u>	goto outp	ut foutin	<u> </u>
L							
		REGI	STERS				
0 0 1	<b>A</b> -	2 3 4	5 6		7	8	9
2 xfc	2π BW	R scratch	scratch	n	ĸ		
	51	S2 S3 S4	<b>55</b> S		S7	58	S9
91	92	9 ₃ 94 9s	- 96	97	9e	9,	910
A	в		D	E	- <b>1</b>	T	
911	ľ	912 Gis	⊂ R _T	-		ir ir	ndex
<u></u>			·	1			

### 2-4

## **Program Listing II**

103 *LBL& LOWPASS TYPE 2 ROUTINE	<u>148 *LBL3</u>	LP and HP output loop start
104 SPC	149 GSB9	increment indices and
$105$ $\frac{3}{2}$ print heading "32"	150 X>Y?	test for loop exit
100 2 -	<u>-151 GT04</u>	
107 PRTX	152 <u>RCL</u>	recall gk
108 CF0 indicate lowpass filter	153 F0?	if highpass, form l/g _k
109 SF1 indicate type 2 filter	<u>154 1/X</u>	II IIIgupass, IOIM I/ gk
110 GSB7 compute LP type 1 constants	155 RCL5	
111 RCL2	156 X	calculate and print
110 08	157 PRTY	first filter element
113 ST=4 change to LP type 2 constants	158 GSB9	increment indices and
114 ST×5	159 X>Y?	test for loop exit
115 GT02 goto output routine	-160 GT04	ceat for tooh exit
		recall_gk
	162 F0?	if highpass, form 1/gk
$\frac{118}{119}$ $\frac{4}{2}$ print heading "42"	163 1/8	
112 2 -	164 RCL4	calculate and print
120 PRTX	165 X	other type of filter element
121 SFØ indicate highpass	<u>166 PRTX</u>	
<u>122 SF1 indicate type 2</u>	167 6703	goto loop start
123 GSB7 compute LP type 1 constants		
124 GTO2 goto output routine	169 SPC	recall and print port 2
125 *LELC HIGHPASS TYPE 1 ROUTINE	170 RCL2	termination resistance
126 SPC	171 PRTX	
127 4	172 SPC	
127 4 print heading "41"	173 SPC	
129 PRTX		noture control to loutout
130 SF0 indicate highpass	<u>175</u> *LBL7	return control to keyboard
131 CF1 indicate type 1	176 RCL2	subroutine to calc LP - 1_
		calculate and store
	ITT RULI	inductor scaling:
133 RCL2	110 -	$R/(2\pi \cdot BW) \rightarrow R4$
$\frac{134}{125}$ $\frac{X^2}{CT}$ change to HP type 1 constants	<u>_1/2 3/04</u> _	
133 3774	180 RCL2	calculate and store
<u>136 ST×5</u>		
137 *LBL2 LP & HP output routine		capacitor scaling:
138 SPC recall $\mathbf{R}_{\mathrm{T}}$	183 ST05	$1/(2\pi \cdot BW \cdot R) \rightarrow R5$
139 RCLD	184 CLX	
140 F1?	185 ST07	
$141$ $1/2$ if type 2 filter, form $1/R_{\rm T}$		initialize indices
142 RCL2	187 STOI	
	188188	
143 × calculate and print R _s		iner indians and lean and
145 F20		incr indices and loop exit
I TAST TOP Potump to boundation		
	191 ST+7	
147 SPC	192 ISZI	
	193 RCL6	
	194 RCL7	
÷ I	<u>195 _ R</u> TN	
\$ F		
↓ I		(
ļ <b>i</b>		
1		
	FLAGS	SET STATUS
A load fo B load BW C load R BS1 E BS		FLAGS TRIG DISP
$a LP_1$ $b LP_2$ $c HP_1$ $d HP_2$ $e$		ON OFF USER'S CHOICE
	12	0 DEG FIX
	R Ibl 2 return	1 GRAD SCI 2 RAD ENG
	N L DCYC 10	
5 6 Local Loop 7 8 Bandstop 9 Inde destination LP/HP coefs output & Loop		3   n

<u>HP-67 suggested program changes.</u> A print or R/S routine has not been provided, although register 9 and label "e" could have been used for this purpose. The reason for this omission is to preserve the heading format. Any program statements placed between a numeric entry and a print statement cause the printed format to be in the set status of the program; however, by placing the print statement directly after the numeric entry (see lines 20 through 22), "21" is printed without trailing zeros.

On the HP-67, the "print" statement causes the program halt for 5 seconds and a flashing decimal point. This situation slows program execution and may not be desirable. The HP-67 user may wish to have the program stop at the data output points. To cause the program to stop at these points, change the program as follows: Delete steps 019 - 022, 026 - 029, 095 - 098, 104 - 107, 117 - 120, and 126 - 129. Change the "print" statements to "R/S" statements at the following line numbers: 083, 088, 092, 144, 157, 166, and 171. To restart program execution after a program halt, execute a "R/S" from the keyboard.

Remember, when deleting steps from a program, always work from the back of the program forward. By observing this convention, the line numbers of steps not yet deleted will remain unaltered.

#### PROGRAM 2-5 NORMALIZED LOWPASS TO BANDPASS FILTER TRANSFORMATIONS, TYPES 1, 2, 6, AND 7.

#### Program Description and Equations Used

This program converts normalized lowpass filter element values to a set of four bandpass topologies [16], [21], [56]. The four topologies are shown in Fig. 2-5.1, and the parameter  $A_{1j}$  is defined by Eq. (2-5.1). Types 1 and 2 are exact transformations and will transform the lowpass response independent of the loaded filter Q (Eq. (2-4.7)). Types 6 and 7 of this program, and types 8, and 9 of Program 2-6 are narrowband approximations, and only provide accurate transformation results when the loaded Q is greater than 5, and preferably greater than 10.



Figure 2-5.1 Bandpass filter topologies for types 1, 2, 6, & 7.

$$A_{ij} = (g_i \cdot g_j)^{-k_2}$$
 (2-5.1)

Figure 2-5.2 is a reproduction of Table 7.2 in White [56] and is intended as a guide to the best suited filter topology for a particular application. The physical realizability of a filter topology is assigned one of four possible scores based upon element values. These scores are defined as follows:

Readily realizable (R):

 $\frac{1 \ \mu h}{5 \ pF} < C < 1 \ \mu F$ 

Practical (P):

0.2  $\mu h \leq L \leq 10 h$ 2.  $pF \leq C \leq 10 \mu F$ 

Marginally practical (M):

50 nh  $\leq$  L  $\leq$  100 h 0.5 pF  $\leq$  C  $\leq$  500  $\mu$ F

Impractical (I):

All element values that lie outside the range of marginal i.e.,

```
L < 50 nh
L > 100 h
C < .5 pF
C > 500 µF
```

The table headings are meant to indicate ranges of loaded Q, filter center frequency, and termination resistance level. These ranges are:

Frequency;

$$f_o = 10 \text{ Hz implies: } 3 \text{ Hz} \leq f_o < 30 \text{ Hz}$$

$$f_o = 100 \text{ Hz implies: } 30 \text{ Hz} \leq f_o < 300 \text{ Hz}$$

$$f_o = 1 \text{ kHz implies: } 300 \text{ Hz} \leq f_o < 3 \text{ kHz}$$

$$f_o = 10 \text{ kHz implies: } 3 \text{ kHz} \leq f_o < 30 \text{ kHz}$$

$$f_o = 100 \text{ kHz implies: } 30 \text{ kHz} \leq f_o < 300 \text{ kHz}$$

$$f_o = 1 \text{ MHz implies: } 300 \text{ kHz} \leq f_o < 3 \text{ MHz}$$

$$f_o = 10 \text{ MHz implies: } 300 \text{ kHz} \leq f_o < 3 \text{ MHz}$$

$$f_o = 10 \text{ MHz implies: } 3 \text{ MHz} \leq f_o < 30 \text{ MHz}$$

$$f_o = 10 \text{ MHz implies: } 3 \text{ MHz} \leq f_o < 30 \text{ MHz}$$

$$f_o = 100 \text{ MHz implies: } 30 \text{ MHz} \leq f_o < 300 \text{ MHz}$$

$$f_o = 100 \text{ MHz implies: } 30 \text{ MHz} \leq f_o < 300 \text{ MHz}$$

$$f_o = 100 \text{ MHz implies: } 30 \text{ MHz} \leq f_o < 300 \text{ MHz}$$

At frequencies above 300 MHz, lumped element filters are generally replaced with transmission line type filters.

Loaded Q ( $Q_L$ ), for bandpass and bandstop,

 $\begin{array}{l} \textbf{Q}_{L} = 5 \text{ implies: } 3 \leq \textbf{Q}_{L} < 10 \\ \textbf{Q}_{L} = 15 \text{ implies: } 10 \leq \textbf{Q}_{L} < 30 \\ \textbf{Q}_{L} = 50 \text{ implies: } 30 \leq \textbf{Q}_{L} \leq 100 \end{array}$ 

Impedance Level (source and load resistances equal)

R = 3 ohms implies:  $1 \le R \le 10$  (power filters) R = 50 ohms implies:  $10 \le R \le 150$ R = 500 ohms implies:  $150 \le R \le 2.5k$ 

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Band Fil	-Pass				fo	= 1	kHz				f _o = 10kHz									
1 st       1       P       P       1       1       1       1       1       1       M       R       P       1       M       P       1       M       P       1       M       P       1       M       P       1       M       P       1       M       P       1       M       P       1       M       P       1       M       P       1       M       P       1       M       P       1       M       P       1       M       P       1       M       P       1       M       P       P       1       M       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P <td></td> <td></td> <td></td> <td>QL =</td> <td>5</td> <td>0</td> <td>۹L =</td> <td>15</td> <td>(</td> <td>}L≃</td> <td>50</td> <td>(</td> <td>ງເ≈</td> <td>5</td> <td>G</td> <td><u>ار</u> =</td> <td>15</td> <td>(</td> <td>۲= ۲</td> <td>50</td>				QL =	5	0	۹L =	15	(	}L≃	50	(	ງເ≈	5	G	<u>ار</u> =	15	(	۲= ۲	50	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Туре		50	500	10K	50	500	10K	50	500	10K	50	500	10K	50	500	10K	50	50 <b>0</b>	10K	
3nd       1       M       1       1       1       1       1       1       M       P       N       1       P       P       1       N       P       N       1       P       P       1       N       P       N       1       P       P       1       N       P       P       1       N       P       P       1       P       P       1       P       P       1       P       P       1       N       P       P       P       P       P       N       P       P       P       P       P       N       P       P       P       P       P       P       P       N       P       P       P       P       N       P       P       N       P       P       N       P       P       N       P       P       N       P       P       N       P       P       N       P       P       N       P       P       N       N       P       P       N       N       P       P       N       N       P       N       N       P       N       N       P       N       N       N       N       N       N			1		4 '	Į.												1		Р	
off         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p						4	•							•							
340         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P																				Р	
7th       1       M       P       1       1       P       1       1       M       P       R       1       P       R       1       P       R       1       P       R       1       P       R       1       P       R       1       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P			P	P	P	P	1	Р.	P	P	1	R	R			P	P	R		₩.	
8th         M         P         I         M         P         I         M         P         I         M         P         I         M         P         I         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P			· .	· ·			· ·									1 .			4 .	М	
9th 10th         1         M         P         1         I         M         M         P         P         1         P         1         I         M         P         P         I         M         P         P         I         P         P         I         P         P         I         P         P         R         P         P         R         P         P         I         P         P         I         P         P         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R					· ·											· ·					
10h       M       P       M       P       R       P       R       R       P       R       R       P       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R									1						L .	1 .	· ·	1 ·	1 .		
Inth         M         P         P         M         P         P         M         M         P         P         R         R         P         R         M         P         R         M         P         R         M         P         R         M         P         R         M         P         R         R         P         R         M         P         R         R         P         R         M         P         R         R         P         R         M         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R <td></td> <td></td> <td>1.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>•</td> <td></td> <td>4 .</td> <td>•</td> <td></td> <td></td> <td></td> <td></td>			1.1							-			•		4 .	•					
Filter Prototype         QL = 5         QL = 15         QL = 50         QL = 5         QL = 15         QL = 50           Type         50         500         10K         5				•••		· ·														R	
Prototype $Q_{L} = 5$ $Q_{L} = 15$ $Q_{L} = 50$ $Q_{L} = 5$ $Q_{L} = 15$ $Q_{L} = 50$ Type         50         500         10K         50         500 <td< td=""><td></td><td></td><td></td><td>·</td><td>1</td><td>o =</td><td>100</td><td>)kHz</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td>fo</td><td>= 1 N</td><td>٨Hz</td><td></td><td><b>-</b></td><td><b></b></td></td<>				·	1	o =	100	)kHz	2						fo	= 1 N	٨Hz		<b>-</b>	<b></b>	
1 st       P       R       R       P       P       1       M       M       I       P       R       P       P       I       M       M       I       P       R       P       P       I       M       M       I       P       R       P       P       I       M       M       I       P       R       P       P       I       M       M       I       P       R       P       P       I       M       M       I       P       R       P       P       I       M       M       I       P       R       P       P       I       M       M       I       P       R       P       P       I       M       M       I       P       R       P       P       I       M       M       I       P       R       R       P       P       I       M       M       I       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       R <td></td> <td></td> <td>1</td> <td>QL =</td> <td>5</td> <td>0</td> <td>÷۲ =</td> <td>15</td> <td>(</td> <td>÷٦٤</td> <td>50</td> <td></td> <td>קר≃ בי</td> <td>5</td> <td>C</td> <td>λĽ =</td> <td>15</td> <td colspan="2">QL = 50</td>			1	QL =	5	0	÷۲ =	15	(	÷٦٤	50		קר≃ בי	5	C	λĽ =	15	QL = 50			
2nd       P       R       P       P       I       M       M       I       P       R       P       P       I       M       M       I       P       R       P       P       I       M       M       I       P       R       P       P       I       M       M       I       P       R       P       P       I       M       M       I       P       R       P       P       I       M       M       P       R       P       P       I       M       M       P       R       R       P       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       R       P       R       R       P       R       R       R       P       R       R       R       P       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R	Type		50	500	10K	50	500	10K	50	500	10K	50	500	10K	50	500	10K	50	500	10K	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	let		Р	R	R	Р	Ρ		м	м		P	R	P	P	P		м	Гр		
and bit         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         R         R         R         R<						P	P					Ρ		Р	P	P	i.	м	M	Ţ	
3th         R         R         P         R         P         R         P         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R																					
6th         R         R         P         R         P         R         P         R         P         R         P         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         P         R         R         R         R         P         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R																					
7th       P       R       R       P       R       R       P       R       R       R       P       R       R       P       R       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       M       P       R       M       P       R       M       P       R       M       P       R       M       P       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R																					
8th       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       R       P       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R					-		r · ·		1 1	• •									ι .		
9th       P       R       R       P       R       R       P       R       R       R       P       R       R       R       P       R       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       P       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R																			1 ·		
I Ith       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R <td></td> <td></td> <td></td> <td></td> <td>R</td> <td></td> <td></td> <td>R</td> <td>м</td> <td></td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td></td> <td></td> <td>R</td> <td>м</td> <td>P</td> <td>R</td>					R			R	м		R	R	R	R			R	м	P	R	
Type       fo = 10 MHz       fo = 10 MHz         Filter       Prototype       QL = 5       QL = 15       QL = 50       QL = 15       QL = 50         Type       S0       S00       10K       S0       S0       10K       S0       QL = 15       QL = 50         Type       S0       S00       10K       S0       S00       10K <th c<="" td=""><td>10th</td><td></td><td>R</td><td>R</td><td>R</td><td>R</td><td>R</td><td>Р</td><td>R</td><td>R</td><td>Р</td><td>R</td><td>R</td><td>Р</td><td>R</td><td>R</td><td>м</td><td>R</td><td>R</td><td>м</td></th>	<td>10th</td> <td></td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>Р</td> <td>R</td> <td>R</td> <td>Р</td> <td>R</td> <td>R</td> <td>Р</td> <td>R</td> <td>R</td> <td>м</td> <td>R</td> <td>R</td> <td>м</td>	10th		R	R	R	R	R	Р	R	R	Р	R	R	Р	R	R	м	R	R	м
Filter Prototype         QL=5         QL=15         QL=5         QL=15         QL=5         QL=15         QL=50           Type         S0	11th		R	R	R	R	R	R	P	R	R	R	R	R	R	R	R	R	R	R	
Prototype $Q_{L} = 5$ $Q_{L} = 15$ $Q_{L} = 50$ $Q_{L} = 5$ $Q_{L} = 15$ $Q_{L} = 50$ Type         50         500         10K         50         500 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>fo</td><td>= 10</td><td>мн</td><td>z</td><td></td><td></td><td colspan="5">f_o = 100 MHz</td><td></td></td<>						fo	= 10	мн	z			f _o = 100 MHz									
1st       M       P       M       1       P       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1			-	ԴL≃	5	G	¢נ=	15	6	۲ ¹ =	50	QL = 5		0	)「= 	15	0	¢ר =	50		
2nd         M         P         M         I         P         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I	Туре		50	500	10K	50	500	1 OK	50	500	10K	50	500	10К	50	500	10K	50	500	10K	
2nd       M       P       M       I       P       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	İst		м	Р	м		Р	1	1	T	1		1	1	1	1	1	1		+	
Jih     M     R     J     P     J     M     R     I     M     R     I     P       Stb     P     R     M     P     J     P     M     M     R     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I			м	Р	м	1	Р			1	1			<b> </b>			1				
Jih     M     R     J     P     J     M     R     I     M     R     I     P       Stb     P     R     M     P     J     P     M     M     R     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I		80.00																<b>(</b> 1)			
Sith         R         R         P         P         P         P         P         N         1         P         M         I         M         I         I         M         I         I         M         I         I         M         I         I         M         I         I         M         I         I         M         I         I         M         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I	· · · · · · · · · · · · · · · · · · ·																				
Oth         M         R         P         I         P         I         P         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I		1999 <b>- 1</b> 99		_				_	<u> </u>		<u> </u>	_	_		_	· · · ·					
8th         R         R         R         P         1         P         1         P         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         1         I         M         I         I         M         I         I         M         I         I         M         I         I         M         I         I         M         I         I         M         I         I         M         I         I         M         I         I         M         I         I         M         I         I									· ·			• · ·									
9th M R R I P R I M R I M R I I P I I M					•												-				
							•								1					м	
	10th		Ρ	R	1	P	м	1	P	м	1	Р	м	11	м	1	1	м	I	1	
11th M R M M P M I P M I M I I M I I I I I			м	R	м	м	Ρ	м	1	Р	м	$\left  1 \right $	м	11	11	м	I.		<u> </u>	1	

Fig. 2-5.2 Physical realizability of bandpass filters.

Courtesy Don White Consultants Inc.

To use the routines for types 6 through 9, the filter must have termination resistances as close to unity as possible. To achieve this result, a desired termination resistance level of 1.0 should be loaded into Program 2-3.

Of the filter types presented both in this program, and the accompanying program (types 1, 2, 6, 7, 8, 9, 10, and 11) only types 1, 2, 10, and 11 are exact transformations of the lowpass characteristic. All the remaining filter types are narrowband approximations, i.e., they will faithfully transform the lowpass characteristics within the passband and within a few octaves of the stopband. Types 6, 7, 8, and 9 do not have equal numbers of transmission zeros at both zero frequency and at infinite frequency. The result of this imbalance is to skew the filter response away from the frequency where the extra zeros exist. Figure 2-5.3 shows this occurrence.



Figure 2-5.3 Bandpass filter response skewing due to extra transmission zeros at infinity.

One should not choose types 1, 2, 10, or 11 automatically. Types 1 and 2 may be difficult to realize in a narrowband application, and types 10 and 11 (also types 6 and 9) contain redundant inductors. Depending upon the frequency range and element values, these redundant inductors can be burdensome. As a guide, filters operating below 1 kHz may best be realized with an active filter (this subject is covered by other programs in this section); between 1 kHz and 100 kHz, the minimum inductor LC design should be considered and compared with active approaches; above 1 MHz the simplest LC topology should be sought to ease the tuning problem.

# 2-5 User Instructions

NORMALI	ZED LOWPASS	TO BANDPASS	TYPES	1, 2,	6, & 7	
load center frequency		load termination resistance			load filter # & start	2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card			
2	Load center frequency in Hz	fo		ωο
3	Load bandwidth in Hz	BW	B	Q
4	Load termination resistance in ohms	R	0	R
			— <u> </u>	
5	Load filter type number and start	type	E	<u> </u>
				tank C
				tank L
				cplg elt*
				0726 010
				tank C
				tank L
				cplg elt*
				tank C
h				tank L
	*The coupling element (L for type 6 or C for			
	type 7) does not exist for types 1 or 2.			R _T
6	For another case goto steps 2 through 5 as	+		
	applicable			
h				
<b> </b>		+		
ļ				
<b> </b>		<b></b>		
<b> </b>				
		┹─────		

## Example 2-5.1 Type 6 filter

A maximally flat passband (Butterworth) bandpass filter is to pass a 500 Hz band of frequencies centered around 10 kHz. In a bandpass (or bandstop) filter, the center frequency is the geometric mean of the upper and lower bandedge frequencies, i.e.,  $f_0 = (9750 \cdot 10250)^{\frac{1}{2}}$ , or  $f_0 = 9996.87$  Hz. The filter should reject by at least 30 dB those frequencies removed from the center frequency by more than 500 Hz. The required filter order is obtained from Program 2-1. Using this program, a minimum filter order of 5 is calculated given  $As_{dB} = 3$ ,  $Ap_{dB} = 30$ , and  $\lambda = 1000/500 = 2$ . Program 2-3 is used to obtain the Butterworth normalized coefficients for use by this program.

The proper bandpass topology is selected from the table in Fig. 2-5.2 under the headings:  $f_0 = 10 \text{ kHz}$ ,  $Q_L = 10000/500 = 20$  (use  $Q_L = 15 \text{ column}$ ), and R = 50 to find that a type 6 is readily realizable, therefore a type 6 filter will be designed. The HP-97 printout for the above operations is shown below.

Load Program 2-1 to calculate minimum filter order:

6880	select Butterworth
3.00 698-	load $Ap_{dB}$
30.00 6385	load $As_{dB}$
2.00 6385	load $\lambda$ and calculate n
4.39 ***	filter.order, n (output)
5.00 (SP) 2.00 ***	load integral n and calculate $\lambda$ $\lambda$ for given $Ap_{\mbox{dB}}^{}$ and $As_{\mbox{dB}}^{}$
2.00 SSBE	load $\lambda$ and calculate As _{dB}
52.03 ***	As _{dB}

Load Program 2-3 to calculate normalized LP Butterworth coefs:

1.	ecz.	load filter order load desired termination resistance ratio calculate Butterworth coefficients R _T (normalized port 1 termination resistor)
1 <b>.000</b> 00+00	求兼理	T T
615.034-03 1.61803+00 2.00000+00 1.61803+00		81 82 83 84 84
618.034-03	<b>東東東</b>	85
1.00006+06	***	R (normalized port 2 termination resistor)

### Example 2-5.1, continued:

Load Program 2-5 (this program) and calculate type 6 elements.

50.	GSBB GSBC	
50.00 <i>0+</i> 00	军家来	termination resistance
25.768-09 9.3443-03		C ₁ L ₁
491.97-06	<b>東京市</b>	L ₁₂
25.768-09 9.0709-03		C ₂ L ₂
273.48-06	***	L ₂₃
25.762-09 9.2894-03		C ₃ L ₃
273.48-06	***	L ₃₄
25.763-09 9.0709-03	養衣養 軍家筆	Сц Lц
491.97-06	***	L4 5
25.768-03 9.3443-03		C5 L5
50.000+00	¥#+	termination resistance



Figure 2-5.4 Type 6 bandpass filter schematic.

Type 6 tuning technique.* After the filter is designed, the inductors fabricated and adjusted, the capacitors obtained, and the filter constructed, the filter must be tuned. For series resonant tanks, such as in this filter and types 8 and 10, tuning is accomplished by decoupling individual tank circuits using open circuits.

Assume the inductors are wound on ferrite pot cores, and are the adjustable elements. Referring to Fig. 2-5.5, to tune  $L_1$  temporarily open the circuit at "B" and tune L for series resonance of the  $L_1$ ,  $L_{12}$ , C circuit at the center frequency of the filter, 9996.87 Hz in this case.

To tune  $L_2$ ,  $L_{12}$ ,  $L_{23}$ , and C, re-establish the connection at "B," and temporarily open the circuit at points "A" and "C." Tune  $L_2$  for series resonance at the center frequency. Continue this procedure of opening adjacent tank circuits and tuning until all series resonant loops have been tuned to the filter center frequency.



Figure 2-5.5 Type 6 filter showing circuit opens for tuning.

For information on ferrite pot core inductor design, see the Ferroxcube catalog "Linear Ferrite Materials and Components," and use Programs 3-1 and 3-2 to aid in the design of these inductors.

When designing the inductors, the designer must not allow the magnetic core excitation to drive the core near saturation. The voltage across an inductor is "Q" times the voltage across the series LC tank at

*For parallel tank filter tuning procedure, see the example in the type 8, 9, 10, and 11 transformations program.

resonance. With inductor Q's of 100 or better, inductor voltages can be large with respect to the voltage across the filter. The voltage across a filter element at center frequency is approximately  $I_{in} \cdot X_{element}$  where  $I_{in}$  is the filter input current and  $X_{element}$  is the element reactance.

2.	5

**Program Listing I** 

<u> 8</u> 01	*LELA	LOAD OENTER FREQUENCY	<u>849 *LBL0</u>	type 1_calculation start
882	Pi		050 *LBL1	type 2 calculation start
003	ENT1	form and store:	<u>051 GSB9</u>	initialize flags & regs
664	÷		-852 *LBL2	types 1 4 2 loop start
665	×	$2\pi f_{o} \rightarrow R0$	053 RCL7	
005	S700		054 2	set flag 2 if branch
007	RTN		055 ÷	number is even where
008	*LBLB	LOAD BANDWIDTH	056 FRC	k is the branch number
609	Pi		057 X=0?	Y IS the pressure number
010	ENTT		<u>858 SF2</u>	
011	+	form and stores	859 RCL i	
012	X		060 RCL1	form 4.gi
013	RCLØ	$Q = \frac{2\pi f_0}{2\pi BW} \rightarrow R_1$	<u>961 ×</u>	
014	x∓Y	Q = 2r BW	862 F2?	if branch even, form 1/Q.g.
815	÷		063 1/%	
016	ST01		064 STOC	calculate and print
617	RTN		065 F0?	branch capacitor
018	*LBLC	LOAD TERMINATION	066 GSB8	
019	ST02	RESI STANCE	067 F1?	
826	RTN		<u>868 GSB7</u>	
<u> 821</u>	*LBLE	LOAD FILTER TYPE (1,2,6,7)	069 RCLC	
822	STOI	• • •	076 F0?	calculate and print
023	8	generate "ERROR" if other	071 GSB7	branch inductor
024	× <i>≦</i> Y?	than filter types 1, 2,	872 F1?	
825	GT0.	6, or 7 loaded.	073 GSB8	
026	RCLI		<u>074 SPC</u>	
027	3	"ERROR" is generated by	075 DSZ1	
028	X=γ?	calling unused label (a)	076 EEX	increment indices
029	GTDa		<u>877 51+7</u>	
030	RCLI		078 RCL6	
031	4		079 RCL7	test for loop exit
032	X=Y*		080 X£Y?	
033	GTOa		<u>6102</u>	
034	RCLI		082 RCLD	
635	5		083 F0?	calculate and print
036	X=79		084 i/X	termination resistance
037	GTOa		085 RCL2	
038	RCLI	calculate indirect label	036 ×	
039	2	corresponding to desired	<b>0</b> 87 G3B6	
646	÷	filter type	088 GTOW	
041	STOI			
042	INT			
<u></u>	<u>X7I</u>			
044	FRC	set flag 0 if types 1		
045	SFQ	or 7 are entered otherwise		
046	X=0?	clear flag O		
647	CFé	5		
046	sto <i>i</i>			
1				
ł				
1				
1				
J				
			5 P 1 6	7 8 9
⁰ 2πfo	Q	$\frac{2}{R} = \frac{3}{\omega_0 R} \frac{4}{\omega_0 R} \frac{1}{\omega_0 R} \frac{1}{\omega$	$\frac{5}{\omega_0} \frac{R}{\omega_0 R} = \frac{1}{\omega_0 R}$	$k$ $9_n$ $A_{i_1i+1}$
Iso Is	1	S2 S3 S4	S6   S6	S7 S8 S9
<b>9</b> 1	'g₂	9 ₃ 9 ₄ 9 ₅	³ g _δ ³ g ₇	9 ₈ 9 ₇ 9 ₁₀
A	B	C types 6\$7	D D E	1
<u> </u>	-	912 common element	Ŭ R _T	9im Index
L	1			

### 2-5

## Program Listing II

089 *LBL3	types 6 & 7 start	1	41 *LBL5	common element print subr
090 6589	initialize flags & regs	1.	42 RCLC	
091 RCL i				type 6 C or type 7 L subr
	needle and share a		44 1/X	
092 STOE	recall and store g _n			
<u>093 STOB</u>			45 RCL5	
094 RCL1		1	46 X	
095 ×	calculate and store Q.g.	l i	47 PRTX	
	fulfulture - in the top		48 RTN	
<u>096 STUC</u>				
- 097 *LBL4	types 6 & 7 loop start			type 6 L or type 7 0 subr
098 F1	if type 6 print common	1	50 RCL4	
099 GSB5	tank capacitor value	1	51 X	
180 DSZI			52 PRTX	
101 EEX	increment indicies			
102 ST+7			54 *LBL9	initialization subroutine
103 RCL i	_recall gi	1	55 SPC	
104 RCLE		1 1	56 SF1	if flag 0 is set, clear
	· · ·			II TIAK O IS SOU, GIGAF
105 X7Y	interchange gi and gi+1			flag 1 and vice-versa
106 STOE			<u>58 CF1</u>	
107 ×		$\overline{1}$	59 RCL0	if type 6:
188 JX	anleulete Á		60 1/X	
	calculate A i. i+1		61 ST04	$\frac{R}{\omega_1} \rightarrow R_4$ ; $\frac{1}{R\omega_1} \rightarrow R_5$
109 1/8				ω _p R _Ψ
110 RCL9	interchange		62 ST05	
111 XZY		1 1	63 RCL2	if type 7:
112 ST09	A _{i, i+1} and A _{i+1, i+2}		64 F1?	
			65 1/X	$\frac{1}{R} \frac{1}{\omega_0} \rightarrow R_4; \frac{R}{\omega_0} \rightarrow R_5$
1 1	calculate type 6 tank L			RWo Wo
<u>114 GSB0</u>	or type 7 tank 0	•	66 ST÷4	
115 RCL9		<u>1</u>	<u>67 · ST×5</u>	
116 RCL8			68 EEX	initialize k
117 ×	calculate coupling element	1	69 <u>ST07</u>	Initialize K
	Sardarage coshiruf cromone			
118 GSB8				initialize A, n+1
119 SPC			71 <u>STO9</u>	<u>n, n+1</u>
128 RCL7			72 RCL6	
121 RCL6			73 9	calculate register index
	test for loop exit		74 +	for g _n
122 X>Y?	••••• ••• ••• ••• ••• •••			-
123 <u>6T04</u>			<u>75 stol</u>	
124 F1?	if type 6 print last tank		76 RCL2_	recall termination R
125 GSB5	sapacitor		77 *LEL6	print and space subroutine
126 RCL9	calculate type 6 last tank		78 FRTX	Later and ak-AA awardstwo
		] +		Anna and makeum automotion
<u>127 6580</u>	L. or type 7 last tank Q _		79 *LBLb	space and return subroutine
128 RCL2			50 SPC	
129 GSB6	print termination resistance	18	BI RTN	
130 GTOL	L	<u> </u>		
		1		
131 *LBL0	types 6 & 7 common element	4		
132 RCL8		1		
133 ×	calculate and print type 6	1		
134 CHS	tank inductor or type 7	J		
		1		
135 RCLC	tank capacitor	1		
		1		
136 +		1		
136 +				
136 + 137 GSBS	if type 7 print common tank			
136 + <u>137 GSBS</u> 138 F0?	if type 7 print common tank			
136 + <u>137 GSB8</u> 138 F0? 139 GSB5	inductor value			
136 + <u>137 GSBS</u> 138 F0?				
136 + <u>137 GSB8</u> 138 F0? 139 GSB5	inductor value			
136 + <u>137 GSB8</u> 138 F0? 139 GSB5	inductor value			
136 + <u>137 GSB8</u> 138 F0? 139 GSB5	inductor value			
136 + <u>137 GSB8</u> 138 F0? 139 GSB5	inductor value goto space and return		ELACO	CET STATUS
136 + <u>137 GSBS</u> <u>138 F0?</u> <u>139 GSB5</u> <u>140 GT0k</u>	inductor value goto space and return LABELS		FLAGS	SET STATUS
136 + <u>137 GSB8</u> 138 F0? 139 GSB5	inductor value goto space and return LABELS		FLAGS	FLAGS TRIG DISP
136 + <u>137 GSB8</u> 138 FØ? <u>139 GSB5</u> <u>140 GTØk</u> A load fa ^B load	inductor value goto space and return LABELS BW ^C load R ^D ^E loa		type 1 or 7	FLAGS TRIG DISP
136 + <u>137 GSBS</u> <u>138 F0?</u> <u>139 GSB5</u> <u>140 GT0b</u>	inductor value goto space and return LABELS BW Cload R D Elos rtn C d e	ad type		FLAGS TRIG DISP
136       +         137       GSBS         138       F0?         139       GSB5         140       GT0b    A load fb B load           a       b space \$	inductor value goto space and return LABELS BW ^C load R ^D ^E los rtn ^c ^d ^e		⁰ type 1 or 7 ¹ type 2 or 6	FLAGS         TRIG         DISP           ON OFF         USERS         CHOICE           0         III         DEG         FIX
136       +         137       GSB8         138       F0?         139       GSB5         140       GT0k    A load fa B load          a       b space \$         0 tive 1 start       1 type 2 start	LABELS BW C Load R D E Los rtn C d 8 tart 2 types 162 3 types 667 4 types	ad type	type 1 or 7	FLAGS     TRIG     DISP       ON OFF     USER3     CHOICE       0     III     DEG     FIX       1     III     GRAD     SCI
136       +         137       GSBS         138       F0?         139       GSB5         140       GT0k    A load fb B load          a       b space \$	LABELS BW C Load R D E Los rtn C d 8 tart 2 types 162 3 types 667 4 types	ad type pes 667 p start	⁰ type 1 or 7 ¹ type 2 or 6	FLAGS         TRIG         DISP           ON OFF         USERS         CHOICE           0         III         DEG         FIX           1         III         GRAD         SCI

HP-67 suggested program changes. The "print" mode of output can be changed to the "R/S" mode by changing like statements at line numbers 147, 152, and 178. The program execution will halt at each data output point and await restart by the user via the "R/S" key.

#### PROGRAM 2-6 NORMALIZED LOWPASS TO BANDPASS FILTER TRANSFORMATIONS, TYPES 8, 9, 10, AND 11.

#### Program Description and Equations Used

This program converts normalized lowpass filter element values to a set of four bandpass filter topologies [16], [56]. These four topologies are shown in Fig. 2-6.1 in normalized form (1 ohm, 1 radian/sec center frequency). The parameter A₁₁ is defined by Eq. (2-5.1). Types 8 and 9 are narrowband transformations of types 2 and 1, while types 10 and 11 are exact transformations of types 2 and 1 obtained by applying Norton transformations to the shunt elements of type 2 to form type 10, or to the series elements of type 1 to form type 11. This transformation process is detailed in the equation derivation section following The types 8 and 9 narrowband transformations will only Example 2-6.2. provide accurate results when the loaded Q (ratio of center frequency to bandwidth) is greater than 5 or so. This restriction is not present with types 10 or 11. Because the type 8 or 9 coupling element causes extra zeros of transmission at either dc or infinite frequency, the frequency response will be skewed away from the extra transmission zero frequencies as implied by Fig. 2-5.3. Figure 2-5.2 should be consulted for picking the filter type best suited to the center frequency, loaded Q, and impedance level of the intended application.

199



Figure 2-6.1 Normalized bandpass filter topologies for types 8, 9, 10, and 11.

Type 10 element	Type 11 element	normalized element value
с _к	Lk	$\left(\mathbf{Q} \cdot \mathbf{g}_{\mathbf{i}} - \frac{\mathbf{N}_{\mathbf{i}+\mathbf{z}}^{-1}}{\mathbf{Q} \cdot \mathbf{g}_{\mathbf{i}+1}}\right)^{-1}$
L _k	с _к	$Q \cdot g_{i} - \frac{N_{i} - 1}{Q \cdot g_{i-1}}$
^L k, k+1	^C k, k+1	$\frac{N_{i}}{Q \cdot g_{i-1}}$
C _{k+1}	L _{k+1}	$\frac{1}{Q \cdot g_n}$
L _{k+1}	c _{k+1}	Q•gn
^C k+1, k+1	L _{k+1} , k+2	<u>q · s_{i-1}</u> N _i

Table 2-6.1 Types 10 and 11 normalized element values.

$$N_{i} = \frac{1}{2} \left( 1 + \sqrt{1 + 4Q^{2} \cdot g_{i-1} \cdot g_{n}} \right) ; g_{n+1} \equiv 0$$
  
k = 1, 3, 5, ..., n (n must be odd)

i = n - k + 1

The reverse ordering of the normalized lowpass coefficients from the element subscripts occurs because the dual form of the normalized lowpass filter is used. The dual is required to place the 1 ohm resistor next to the first shunt capacitor which is required for types 8 and 9 when transforming even ordered filters. Since the same register setup and recall routine is used for types 10 and 11, the dual form is carried over for convenience (it is not required). Types 10 and 11 can be redrawn to show the ladder structure as T's or pi's of inductors and capacitors as shown in Fig. 2-6.2.



FIGURE 2-6.2 Types 10 and 11 showing T's and pi's of L's and C's.

These pi's and T's of inductors can be replaced with an active realization that contains only op-amps, resistors, and capacitors by using 2 back-to-back generalized impedance converter (GIC) circuits as detailed in Orchard and Sheahan's paper [42], and shown in Figs. 2-6.3 & 4.



Figure 2-6.3 Antoniou GIC circuit [3].

If  $\mathbf{Z}_1$ ,  $\mathbf{Z}_2$ ,  $\mathbf{Z}_3$ , and  $\mathbf{Z}_5$  are resistors and  $\mathbf{Z}_4$  is a capacitor, then,

$$Z_{in} = \frac{R_1 R_3 R_5}{R_2} \cdot sC_4 = sL$$
 (2-6.1)

Furthermore, if  $R_2 = R_3$  (a Q enhancement condition), then,

$$L = R_1 C_4 R_5$$
 (2-6.2)

Two GIC circuits with the component selection outlined above can be combined to produce a circuit that simulates a T or pi of inductances. These circuits are shown in Fig. 2-6.4.

Aside from the elimination of inductors, this particular mechanization is very easy to tune. Changing resistor  $R_1$  in the GIC alters the apparent inductance seen at the terminals. The capacitor,  $C_4$ , needs to be stable (e.g., polystyrene or mica) but can have a large initial tolerance which is accommodated during the tuning procedure.



Figure 2-6.4 Pi or T inductance simulation circuits using GIC's.

The diagrams and discussion thus far have used the filters in normalized form, i.e., 1 ohm termination resistor, and 1 radian/ second center frequency. The prototype filter is denormalized by multiplying each normalized inductor by  $2\pi f_0/R$ , and dividing each normalized capacitor by  $2\pi f_0R$ , where  $f_0$  and R are the desired center frequency and termination resistance level respectively. The program accomplishes this denormalization by calling either subroutine 7 or 8. For types 8 and 10, subroutine 7 denormalizes capacitors and subroutine 8 denormalizes inductors, and the reverse is true for types 9 and 11.

Tuning procedure for types 7, 9, and 11*. After the component values have been calculated, the inductors designed,** fabricated and adjusted to value, and the capacitors selected and padded to the proper value, the filter may be assembled and tuned so it will exhibit the desired response.

Tuning is accomplished by adjusting each of the parallel tank elements. For low frequency filters, the inductor is usually chosen as the adjustable element. At higher frequencies the capacitor is usually chosen as the adjustable element. The resonance of the tank circuit must include the effects of the coupling elements. By temporarily shorting out adjacent tank circuits, the coupling element influence will be included. This tuning procedure is described next.

1) Temporarily place a short at location "B" and adjust  $C_1$  (or  $L_1$ ) to resonate the tank circuit at the center frequency of the filter,  $f_0$ . The connection (short) must be low inductance with respect to the other inductances in the circuit.

2) Remove the short at "B," and temporarily place shorts at locations "A" and "C." Adjust  $C_2$  ( $L_2$ ) for tank circuit resonance at the filter center frequency.

3) Continue shorting out adjacent tanks with low inductance shorts at locations "B" & "D," "C" & "E," and "D," and adjusting each resulting tank circuit for resonance at the filter center frequency,  $f_0$ . These steps will complete the tuning of the filter.

* See program 2-5 for the type 6, 8, and 10 tuning procedure.

^{**} For more information on inductor design, see the ferromagnetic core and air core inductor design programs contained in another section of this book. Also see the Ferroxcube Inc. publication "Linear Ferrite Materials and Components" for information on ferrite pot core inductor design.



Figure 2-6.5 Circuit shorts for Types 7, 9, and 11 tuning.

# 2-5 User Instructions

NORMALIZI	ED LOWPASS T	O BANDPASS T	YPES 8, 9,	10, & 11	
load center frequency		load termination resistance		load type # & start	2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card			
	(normalized lowpass coefficients and			
	related parameters must be loaded into			
	the registers either manually, or as			
	output from Program 2-3)			
2	Load center frequency in Hz	fo	A	Wo
3	Load bandwidth in Hz	BW	B	Q
4	Load termination resistance in ohms	R	0	
5	Load type number of filter desired	8,9,10,11	E	load R
	The tank capacitor is always printed	*****		Ctank
	first independent of filter type.	****		Ltank
	, , , , , , , , , , , , , , , , , , ,			
	*The coupling element will be as follows:			C,L cplg
	Type 8, capacitor			
	Type 9, inductor			Otank
	Type 10, alternating L's & C's			Ltank
	Type 11, alternating C's & L's			
	See Fig.2-6.1 for more details.			C,L cplg
	······································			
	***************************************			Ctank
	***************************************	******		:
	*********			•
				load R
<b>-</b>				
	***************************************			
<b>├</b> ┣	***************************************			
	***************************************			
<u>├</u> <b>∤</b>	***************************************			
		Lİ		

## Example 2-6.1 Type 10 Filter Design

A Chebyshev response bandpass filter is required to pass a 20 Hz band of information geometrically centered about 1000 Hz with 0.5 dB ripple or less, and to operate in a 1000 ohm system. The filter stopbandwidth is 60 Hz, and the filter should reject frequencies lying outside this band by at least 60 dB.

Referring to Fig. 2-5.2 under the headings f = 1 kHz,  $Q_L = 1000/20$ = 50, and R = 500, type 8 is practical, and type 10 is readily realizable. Since active inductor simulation is anticipated, type 10 will be selected.

Program 2-1 is used to calculate the filter order necessary to meet the requirements, and Program 2-3 is used to calculate and store the normalized lowpass coefficients for use by this program. The HP-97 printout for all these programs is shown below.

Load Program 2-1 and calculate required filter order

56 5854 select Chebyshev response 56 5854 load ApdB 50.00 SEE load As_{dB} 3.00 FEE load  $\lambda$  and calculate minimum filter order (output) 5.00 6550 load integral filter order and calculate  $\lambda$  $\lambda$  to meet Ap_{dB} and As_{dB} given n = 5 2.00 SEEE load  $\lambda$  required and calculate actual  $As_{dR}$ 61.40 *** As_{dB} for n = 5 and  $\lambda = 3$ 

Load Program 2-3 and calculate Chebyshev LP normalized coefficients

-		load required filter order load desired termination resistance ratio load Chebyshev passband ripple and start normalized -3dB frequency (output)
1.00000+00	***	$R_{T}^{}$ (normalized port 1 termination resistance)
1.70577+00	<b>米米米</b>	gl
1.22963+00	***	8 ₂
2.54083+00	宋宋末	83
1.22963+60	***	84
1.70577+00	***	<b>8</b> 5
1.00000+00	<b>東京市</b>	R (normalized port 2 termination resistance)

## Example 2-6.1 (continued)

Load program 2-6 and calculate type 10 filter elements

		ALA TATEL CICI CICIL
1006.	GSBA	load center frequency
1000.	GSBC	load termination resistor
		•••
1.00060+63	***	R
13.3879+00	***	L1
		_
188.752-03	***	L12
		-
13.5741+00	***	L ₂
		<b>A</b>
134.199-69	本本本	C23
1 0/440 00		C ₃
		L ₃
20.0331+00	***	-3
100 750_47	Sale de de	L ₃₄
100.732-03	***	-54
1.86688-89	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	C ₄
		L ₄
1010171100	<i>ጥጥ</i> ጥ	+
134.199-09	air air air	C ₄₅
	ብ, ተኮሳኮ	, ,
1.89203-09	***	C ₅
		Č
1.00000+03	***	R _T
		Т
	20. 1000. 10. 10. 1.00000+03 1.86608-09 13.3879+00 188.752-03 1.86608-09 13.5741+00 134.199-09 1.26442-09 20.0331+00 188.752-03 1.86608-09 13.5741+00 134.199-09 1.89203-05 13.5741+00	16. GSBE         1.00000+03       ***         1.86608-09       ***         13.3879+00       ***         188.752-03       ***         1.86608-09       ***         1.86608-09       ***         1.86608-09       ***         1.35741+00       ***         1.26442-09       ***         1.88.752-03       ***         1.88.752-03       ***         1.88.752-03       ***         1.88.752-03       ***         1.88.752-03       ***         1.86608-09       ***         1.89203-05       ***         1.89203-05       ***         1.89203-05       ***



Figure 2-6.6 Type 10 bandpass filter schematic.

### Example 2-6.2 Singly terminated type 10 filter design

Because the type 10 filter is an exact bandpass transformation of the lowpass prototype (as is the type 11), the terminating resistances need not be equal. This example will show the synthesis of a singly terminated type 10 filter, i.e.,  $R_T$  is allowed to approach infinite resistance. The equally terminated filter case is the least sensitive to component value changes. When the filter is singly terminated, the operating Q's of the tank circuits become higher as the open (or shorted) end of the filter is approached. This means that the changes in tank Q's will have a greater effect on the overall operating Q of the tank in the filter, and hence, the filter response. The HP-97 printout for the singly terminated type 10 filter follows. Refer to Fig. 2-6.6 for the filter schematic.

Load Program 2-3

1.+05	GSBA GSBB GSBD ***	load n load R _T ratio load Chebyshev ripple ^ω -3dB (output)
100.00 <del>0+</del> 03	<b>米米</b> 米	R _T
1.53866+00	***	g1
1.64272+00	冰冰冰	<b>8</b> 2
1.81407+00	冰冰冰	83
1.42917+00	***	<u>8</u> 4
852.839-03	***	<b>g</b> 5
1.00000+00	***	R

### Load Program 2-6

100ē.	GSBB	load f load bandwidth load termination R select type & start
1.00060+63	冰水冰	R
3.73236-09 6.66484+00		C1 L1
124.064-03	***	L ₁₂
3.73236-09 6.78668+00		C ₂ L ₂
204.171-09	***	C ₂₃
1.76961-09 14.3222+00		C ₃ L ₃
115.649-03	***	L ₃₄
3.73236-09 6.78668+00	***	C ₄ L ₄
219.028-09	水水泥	C_45
2.08814-09 12.244 <b>3</b> +00	*** ***	C ₅ L ₅
10.0000-03	***	R _T (short circuit)

Derivation of types 10 and 11 transformations



Figure 2-6.7 Norton's second transformation.

Figure 2-6.7 shows one form of Norton's second transformation [39]. This transformation changes a single shunt impedance into a T of impedances, one of which is negative, plus an ideal transformer with turns ratio N. Figure 2-6.8 shows how a parallel resonant tank circuit can be changed into a section of a type 10 bandpass filter structure.



Figure 2-6.8 Norton's second transformation applied to a parallel LC tank circuit.

In Fig. 2-6.8, Norton's transformation has been applied back-toback, i.e., the 2-2' terminals of the Norton transformation of the inductor have been connected to the 2-2' terminals of the Norton transformation of the capacitor. The same transformer ratio, N, is used for both transformations, therefore, the two ideal transformers are backto-back providing an overall transformer ratio of unity and can be eliminated.



Figure 2-6.9 Type 2 normalized bandpass filter obtained from lowpass prototype (note port ordering).

Figure 2-6.9 shows a type 2 normalized bandpass filter obtained from the transformation of a lowpass prototype. The dual lowpass form is used (see Fig. 2-3.1 lower) and is scaled to a cutoff frequency of 1/Q (Q is the ratio of the filter center frequency to bandwidth); each frequency scaled series lowpass inductor is series resonated with a capacitor at  $\omega = 1$ , and each shunt scaled lowpass capacitor is parallel resonated with an inductor at  $\omega = 1$ . Next, the circuit of Fig. 2-6.8 is substituted for the parallel resonant tank, and the negative elements in the series arms combined with the positive series elements of Fig. 2-6.9. The results of this process yield the topology shown in Fig. 2-6.10. Higher ordered (odd order) filters are obtained by repeated application of this procedure.



Figure 2-6.10 Type 10 normalized bandpass filter resulting from transformation.

The type 11 bandpass filter is shown in Fig. 2-6.1 and is the dual of the type 10 structure. Type 11 can be derived in a manner similar to the type 10 procedure by applying Norton's first transformation to a type 1 normalized bandpass filter. Norton's first transformation is shown in Fig. 2-8.1. Since type 11 is the dual of type 10 it can be more directly derived from the type 10 structure itself as shown by Fig. 2-6.1 and Table 2-6.1.

The value for  $N_i$  given in Table 2-6.1 is derived by making the transformed tank capacitor (inductor) value the same as the first ladder tank capacitor (inductor) for type 10 (11), i.e.,

$$\frac{1}{Q \cdot g_{n}} = \frac{Q \cdot g_{1}^{-1}}{N_{1} \cdot (N_{1}^{-1})}$$
(2-6.3)

Solving for N_i yields:

$$N_{1} = \frac{1}{2} \left( 1 + \sqrt{1 + 4Q^{2} \cdot g_{1-1} \cdot g_{n}} \right)$$
 (2-6.4)

#### 2-6

## **Program Listing I**

<u>201 *LBLA</u>	LOAD CENTER FREQUENCY	. 056 ×	
002 Fi	·	057 TX	calculate A _i , i+1
003 ENT1		<u>65</u> 8 1/X	1, 1+1
804 +	form and store $2\pi f_{o} \rightarrow RO$	059 RCL9	
005 x		060 X≓Y	interchange A & A
006 STO0		<u>061</u> ST09	interchange A _{i-1,i} & A _{i,i+i}
<u>007RTN</u>		062 +	form A + A and
<u>008 *LBLB</u>	LOAD FILTER BANDWIDTH	<u>663</u> 6580	form A _{i-l,i} + A _i i+l, and output related element
009 Pi		064 RCL9	
010 ENT†		065 RCL8	calculate and output
011 +		066 x	coupling element
012 ×	form and store:	067 GSB7	soupring crement
013 RCL0	2-0	068 SPC	
614 X≓Y	$Q_L = \frac{2\pi f_o}{2\pi BW} \rightarrow R_f$	069 RCL7	
<i>815</i> ÷		070 RCL6	test for loop exit
016 STO1.		♦ 071 X>Y?	
<u>017RTN</u>			
018 *LBLC	LOAD TERMINATION RESISTANCE	073 F1?	output type 9 tank
019 ST02		<u>074</u> GSB5	_capacitor
<u>020 RTN</u>		075 RCL9	output rest of last
<u>021 *LBLE</u>	LOAD FILTER TYPE AND START	-	_tank_circuit
022 2		077 RCL2	· · · · · · · · · · · ·
023 ÷	calculate starting label	078 GSB6	recall and print terminating
024 STOI	index	<u>.079</u> GTO6_	resistance value
025 INT		080 *LBL0	types & & 9 output routine
026 4		081 RCL8	
<u></u>		082 ×	output type 8 tank
028 X<0?	generate "ERROR" if filter	083 RCLC	capacitor, or type 9
<u>029 GT</u> Oa	type is less than 8	684 +	tank inductor
<u>030 X</u> ‡I	store label index	<u>_085</u> GSB8	cank inductor
031 SF0		086 F0?	output type 8 tank
032 FRC	set flag O if order is odd	087 GSB5	inductor
033 X=0?	bot itag o ii oidei is odd	088 GTOb	
<u>.034 CF0</u>		089 *LBL1	types 10 & 11 routine start
<u>035</u> GTOI	goto starting label	090 GSB9	initialize registers
<u>036 *LBL0</u>	type 8 and 9 routine	- 091 *LBL3	types 10 & 11 loop start
<u>037 65B9</u>	initialize registers	092 RCL9	Q 9 _{L+1}
038 RCL;	recall and store g1 for	093 RCL;	
039 STOE	dual filter topology	094 RCL1	$\mathbf{L} = \mathbf{n}, \mathbf{n} - 2, \cdots, 1$
<u>040 ST08</u>		<b>. 895</b> ×	Q · gi
041 RCL1	calculate and store common	<b>096</b> ST09	
042 X	element value reciprocal	<b>897</b> X≠Y	
<u>043 STOC</u>		098 RCLE	$N_{i+2}  (N_{n+2} \equiv 1)$
044 <u>CLX</u>	initialize $A_{01} = 0$	<b>899</b> EEX	····+2 ···n+2 = ·/
<u>045</u> ST09		_ 100 -	
► <u>846 ¥LBL2</u>	types 8 & 9 loop start	101 XZY	i i i i i i i i i i i i i i i i i i i
847 F1?	print type 9 tank	102 ÷	
<u>048 GSB5</u>	_capacitor	103 -	Ni.2-1
049 DSZI		<u>184</u> ST03	$Q \cdot g_L = \frac{N_{1+2} - 1}{Q \cdot g_{1+1}}$
050 EEX	increment indices	105 F3?	if first time through loop,
<u>051 ST+7</u>		<u>106</u> STOC	store value of first L or C
052 RCL :	recall gi+4	107 F1?	output type 11 tank
053 RCLE		108 6587	capacitor
054 X≓Y	recall $g_i$ and store $g_{i+i}$	189 2	
055 STOE		110 ST+7	increment index, k
	REGI	STERS	
0 2-0 1 0		5R 1 6	
$2\pi f_0$ QL	2 R 3 scratch $\frac{41}{\omega_{0R}}, \frac{R}{\omega_{0}}$	wo, wR n	′ k ∣ [°] scratch [°] scratch
S0 S1	S2 S3 S4	S5 S6	S7 S8 S9
91 92	93 94 95	96 97	98 99 910
AB	ic i		
	912 common element		1, gi-1 index
		· / /	

2-6

# Program Listing II

		-	1.2			,			
111	RCL6	-			166	RCL3		- 10	
			• •		167	FØ?	output t		
	X>Y? te	st for loop	exit		168	GSB7	tank ind	uctor	
113					169	SPC			
114	<u> </u>	· ·			170	RCL2		e and prin	
115	RCL9 ca	lculate and	store		171	RCLD	terminat	ion resist	ance
116	DSZI tr	ansformer r	atio for		171	F1?			
117	RCL No	rton transf	ormation:						
118	RCL1				173	1/X			
119	x			1	174	X			
120	ST09				175	GSB6			
121	4 N.	$=\frac{1}{2}(1+\sqrt{1+1})$	40 ² g. g.		176	GTON			
122	x	2	- 'n / <b>-1</b> /		<u>177</u>	<u>*LBL5</u>	<u>common</u>	<u>lement</u> out	put subr _
123	RCLC				<u>178</u>	RCLC		ommon_elem	
124	x				<u>179</u>	<u>*LBL7</u>	L/C (odd	<u>/even) o</u> ut	put subr
125	EEX				180	1/8			
126	+				181	RCL5			
127	íX.				182	х			
127	EEX				183	PRTX			
120	+				184	RTN			
129					185		C/L (add	<u>/even) out</u>	out subr
	.2				186	RCL4		y we only	- 10115 - 2401
131	÷				187	X			
132	<u>STOE</u>				188	PRTX			
133	EEX ca	lculate and	print tank	c	189	RTN			
134	- in	ductor for			190	*LBL9	10148014	zation sub	Pouting
135	KLL9 ta	nk capacito		11			THI CLAIL	Lation sur	TOULING
136	÷		03 PO		191	SPC			
137	-				192	SF1	01- 1		
<u>138</u>	<u> </u>				193	F0?	flag 1	flag 0	
139	DCI 7	4 m# +	toble today	. to all	<u>194</u>	<u>CF1</u>			
140	FØ? pr	int type 11	Lank Induc	, CO T	195	SF3			
141	GSB7				196	RCLØ	a_4 3		
142	SPC	,			197	17X		normalizat	
143	RCLE				198	ST04		s for L's	
144		lculate and	print		199	ST05		er order ch	
145		upling elem			200	RCL2		g upon fil	
145		pe 10 or C		i i	201	F1?	being od	d or even)	-
		Pa 10 01 0	tor cybe II		202	1/8	-		
<u>147</u>	<u>GSB8</u>			—	203	ST÷4			
148	SPC pri	int type 10			204	ST×5			
149	RULL ton	ak capacitor	r		205	EEX	<u> </u>		
150	F17				206	ST07			
151		int type 10			200 207	ST07	initiali	ze registe	rs
152	RCLC ind	luctor, or p	print type	11	207 208	STOE		<b>U</b>	
<u>153</u>	<u>GSB8</u> tar	nk capacitor	r	l					
154	RCLCN				289	RCL5			
155	F0? pri	int type 11			210	.9		ze normali	
156		uk inductor			211	+ • • • • • •	coef rec	all index	register
<u>157</u>	SPC				212	STOI			
158		loulate and	print		213	RCL2		ermination	
159		upling elem			214	*LBL6		d space su	
168	SPC ty	p <u>e 10 or L</u>	for type 11	L	215	PRTX			
161		crement ind			216	*LBL5	space an	d return s	ubroutine
-162		turn to loo			217	SPC			
163		st tank out			218	RTN			
163		for type 10							
165									
	еоро Ц (	for type 11			<u> </u>			<u>.</u>	
L		LAE	BELS		-	FLAGS		SET STATUS	·
A load fo	B Load BW	C load R	D	E load type	0typ	e 90r 11	FLAGS	TRIG	DISP
a	h	tc	d	e	1		ON OFF		
<u> </u>	space frtn	<u> </u>		<u> </u>		pe Bor 10	0	DEG	FIX
10 4	1 types 10 f H	2 types & \$9 Loop start	3 types 10¢ 11 Loop start	4	2		1 🔳	GRAD	SCI
0 types 849	start	licon etari	(cop ctavt				1		
5 print	start 6 print, spc,	⁷ print Cor L	⁸ print Lor C	⁹ initialize	3 fu	rst time	23	RAD	ENG ■ n <u>5</u>

<u>HP-67 suggested program changes.</u> To change from the "print" to "R/S" mode for program output, make the respective change at the following line numbers: 183, 188, and 217. The program will now stop at output points and await restart via the "R/S" command from the keyboard.

### PROGRAM 2-7 WYE-DELTA TRANSFORMATIONS FOR R, L, OR C.

#### Program Description and Equations Used

This program performs the Y- $\Delta$  transformation for groups of three resistors, capacitors, or inductors. These transformations find use whenever awkward or physically impractical element values result from electrical network design. The resistive transformation is often used with operational amplifier summing network design to keep the resistor values low. The inductive and capacitive transformations can be of assistance in filter design.

The Y-  $\Delta$  transformations for one-of-a-kind elements are summarized below:



"Y" topology

"A" topology

Figure 2-7.1 "Y" and " $\Delta$ " topology definitions.

For capacitors as network elements:

$$Y \rightarrow \Delta \qquad \qquad \Delta \rightarrow Y$$

$$C_{1} = C_{a} \cdot C_{m} / \Sigma C \qquad \qquad C_{a} = \Sigma C C / C_{2}$$

$$C_{2} = C_{b} \cdot C_{m} / \Sigma C \qquad \qquad C_{b} = \Sigma C C / C_{1}$$

$$C_{k} = C_{a} \cdot C_{b} / \Sigma C \qquad \qquad C_{m} = \Sigma C C / C_{k}$$

$$\Sigma C = C_{a} + C_{b} + C_{m} \qquad \qquad \Sigma C C = C_{1} C_{2} + C_{2} C_{k} + C_{1} C_{k}$$

For inductors or resistors as network elements (read L's as R's):

Y→∆

∆→Y

$$L_{1} = \Sigma LL/L_{b} \qquad L_{a} = L_{1} \cdot L_{k}/\Sigma L$$

$$L_{2} = \Sigma LL/L_{a} \qquad L_{b} = L_{2} \cdot L_{k}/\Sigma L$$

$$L_{k} = \Sigma LL/L_{m} \qquad L_{m} = L_{1} \cdot L_{2}/\Sigma L$$

$$\Sigma LL = L_{a}L_{b} + L_{a}L_{m} + L_{b}L_{m} \qquad \Sigma L = L_{1} + L_{2} + L_{k}$$

# 2-7 User Instructions

YA ,	A-Y TRANSP	ORMATION FOR	RL.R. OR C		
set O	set L or R			print elements	5
load elt l or a	load elt k or m	load elt 2 or b	Ү≁∆	∆≁¥	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load program card (one sided card)			
2	Select element type: if capacitors if inductors, or resistors		Î A Î B	
3	Load element values Load element 1 or a Load element k or m Load element 2 or b		A B C	
4	Select transformation type: Y→∆ transformation A+Y transformation			element a element m element b Σ a,m,b element 1 element 1 element 2 Σ 1,k,2 element 1 element k element 2 Σ 1,k,2 element a element a element b Σ a,m,b
5	To print presently stored elements		ÊĒ	elt l,a elt k,m elt 2,b Σ elts.

### Example 2-7.1

Convert the Y network of Fig. 2-7.2 into an equivalent  $\Delta$  network. Compute the total capacitance both before and after the transformation.



Figure 2-7.2 Capacitor networks for Example 2-7.1.

#### HP-97 printout

11-06 Here -**0**: 3655 load capacitor values IF GEBC select capacitors 65Be GSBD perform  $Y \rightarrow \Delta$  transformation 1.000-05 家本家 2.000-06 *** c^m before transformation 3.000-06 *** ΣĊ's 6.000-06 *** 333.3-03 C1 苯并并 500.0-09 *** after transformation 1.000-06 1.833-86

As a result of the transformation, the total capacity has been reduced by 69.4%.

### Example 2-7.2

A top coupled parallel resonant bandpass filter of the type 7 topology has been designed with the element values shown in Fig. 2-7.3. The 1 picofarad coupling capacitor is a problem since it is the same relative value as the parasitic (stray) capacities of the printed circuit board. By converting from a  $\triangle$  capacitor configuration to a Y configuration, the minimum filter capacity is 202 pF as seen in Fig. 2-7.4, and the parasitic capacities of the printed circuit board are easily managed.



Figure 2-7.3 Type 7 filter design.

HP-97 printout for  $\Delta \rightarrow Y$  transformation:

20012 12	GSBC	$ \left. \begin{array}{c} C_1 \\ C_2 \\ C_k \end{array} \right\} \text{ load capa} \\ \text{select capacitor} \\ \text{start } \Delta \rightarrow Y \text{ trans} \end{array} $	
200.0-12 1.000-12 200.0-12 401.0-12	黄章章 李章章 李章章	C1 C _k C2 total capacity	summary before transformation
202.0-12 40.40-09 202.0-12 40.80-09	<b>林九子</b> 法董惠 武法译 派法章	C C ^a C ^m b total capacity	<pre>summary after transformation</pre>

Figure 2-7.4 Network after  $\Delta \rightarrow Y$  transformation.



## 2.7

# Program Listing

							_						
001	*LBLA	1 ~ 4 1	) eleme	+ 7						tempora	rily	store	
002		TOM	) eteme	nt I	ora			<u>048</u> 049	STUE	element	mor	<u>k i</u> n	<u>soratchpad</u>
003								04: 058		caloula	te el	ement	b or 2
004		LOAI	) eleme	nt k	OFM		-1	051					
005	STOB						1	052					
006								053					
007		LON	) eleme	nt 2	orb			054					
008							1	055		store e	lemen	tmo	r k
089		-					_	056					
010		PRI	IT ELEM	ENTS	i		——	057		Drint o START A	lemon	t valu	108
012								058 059		print e	◆Y TR	ANSFO:	RMATION
013								060				•	
014								061		jump if	L or	R	
015							1	062		Y+A for	Lor	R. 5	Y for 0
016							1	863	RCLA	form an			
017							1	864		XisL,			X where
018 019								065		x 10 1,			
019								066					
020	SPC							067 068					
022								069					
023	*LBLD	STAI	RT Y+0	TRAN	SFORMAT	ION		070					
<u>024</u>	GSBe	prir	nt elem	ente				871					
025		jum	if L	or R			7	072	×				
<u>026</u>		· -				*		073					
<u>827</u> 028					<b>R</b> , <u>Y</u> +A			074					
020					ΣX whe	re		075		calcula	te ele	ement	2 or c
030		X 11	3 L, R,	or	0			076 077	÷ STOE	and sto:	re in	Sorat	tchpad
031	RCLC							078		calcula			
032								079	RCLB	Carcuia		ement	k or m
<u>833</u>								080	÷				
034					ent a o			081	<u>STOB</u>				
635		and	store	in s	cratchp	ad		082	RCLD	calcula	te ele	ment	lora
036 037	× RCLD							083	RCLA				
037 038	KULU ÷							084 405	÷				
039								<u>085</u> 086	<u>STOC</u> RCLE				
040	RCLA	calc	ulate	ല്ണ	ent m of			087	STOA	store el	ement	: 2 01	* C
041	RCLC		<b>*</b> V			- A		088	GTOR	print el	ement	valu	
042	x							089	*LBLa	SET CAP	CITOF	RS AS	ELEMENTS
043	RCLD						1	690	CFØ			2	
.044				<u> </u>			_	091	RTN				
045 046	RCLE STOA	stor	e elem	ent	a or 1			092 007	*LBLk	SET INDU	ICTORS	OR F	ESISTORS
040	STUH R4							093 894	SFØ RTN	AS ELEME	NTS		
	1\¥					REG	ISTERS	0.74	<u>K I N</u>				
0	1	2		3	4		5	1	6	7	8		9
		<u> </u>											
S0	SI	S2		S3	54	1	SS	l	S6	S7	S8		59
h	TA			L	<u>l</u>		D		<b>FXX</b> E			11	
element l	orale	eleme	nt k o	r m	element	t 2 or 1	D EX O X is L	R	or O	scratchp	ıd	ľ	
					BELS				FLAGS		SET S	TATUS	
A load l or a	B load kor	1	C loa	3	D Y+A	E	Δ-Υ	0	or R	FLAGS	TR		DISP
a	h -		c 2 01	<u> </u>	d		Fint	1		ON OFF	USI	SR'S (	HOIOE
Bet 0	set L,		-		3	e]	ements	2		0 🔳	DEC		FIX
⁰ Lor R dest	destor	K _	2		L					1	GRA RAC		SCI ENG
5	6		7		8	9		3		3		-	n
								·		<u> </u>		_	

### **PROGRAM 2-8 NORTON TRANSFORMATIONS.**

# Program Description and Equations Used

Two network equivalence transformations developed by Edward L. Norton are shown below. They can be extremely useful for modifying network element values or topology.



FORM 2

Figure 2-8.1 Two forms of Norton's first transformation.



Figure 2-8.2 Two forms of Norton's second transformation.

Figure 2-8.1 shows two forms of Norton's first transformation, and Fig. 2-8.2 shows two forms of Norton's second transformation. The transformed network always contains a negative element, which is combined with a positive element not involved in the transformation. N must be chosen so this combination results in a zero or positive element value if the element is to be realized passively (there are active circuits which can simulate negative elements). When N is chosen so the negative and positive elements annihilate one-another, the overall network topology changes. This technique can be used to reverse an "L" network as shown in Fig. 2-8.3



Figure 2-8.3 Norton transformation applied to an "L" network.

Chapter 10 of Zverev [58] has many example of the application of Norton's transformations. Some insight into the power of Norton's transformations is related in the article "Reminiscences" by W.R. Bennett in CAS-24 no. 12 (Dec. 1977). Dr. Bennett recollects that Ed Norton could efficiently furnish a network to give a prescribed loss characteristic with the minimum number of elements by using only a very ordinary sliderule, his intuition, and his transformations.

This HP-67/97 program will transform either capacitors or inductors and resistors. Because the impedance of a capacitor is inversely proportional to the capacitance, multiplying an impedance by N has the effect of dividing the capacitance by N. Figure 2-8.4 shows form 1 of Norton's first transformation when the element being transformed is a capacitor.



Figure 2-8.4 Norton's first transformation for capacitors.

The same reciprocal relations hold for Norton's second transformation as applied to capacitor networks.

# **User Instructions**

		NORTON	TRANSFORM	LATIONS		
load O	OR	lond L or R	lond N	calculate lst xfm forms	calculate 2nd xfm forms	2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load program card			
2	If a capacitor network is being transformed,	0		
	load capacitor value			
<b>-</b>	A D			
	OR			
	If an inductor or resistor network is being	L, R	B	
	transformed, load L or R value	·····		*************
		****		······
3	Load ideal transformer ratio desired	N	Q	
4	To calculate both forms of Norton's		D	/ shunt elt
	first transformation			series elt
			form one	{ shunt olt
				space
				Xfmr ratio
				space
				space
			form two	shunt elt
			IOPM CWO	Series elt
}}				( shunt elt
5	To calculate both forms of Norton's		E	/ series elt
	second transformation			shunt elt
			form one	{ series elt
				space
ļļ				xfmr ratio
				Space
				space
		······	form two	series elt
}}		<u> </u>	TOIM CWO	shunt elt
<u>├</u> <mark>}</mark>				( series elt
<u>}</u> ∤		<b></b>		
<u>├</u> }				
<b> </b>		<b></b>		
<u>├</u> }		<b>†</b>		
		1 1		

# Example 2-8.1

An impedance stepdown of 3:1 is required at the output of the bandpass filter shown in Fig. 2-8.5. A transformer could be used to provide this function. Instead, use Norton's first transformation to provide the impedance stepdown without a transformer.



Figure 2-8.5 Bandpass filter network for Ex. 2-8.1.

A hypothetical  $\sqrt{3}$ :1 turns ratio transformer is inserted at x-x, and all network elements to the right scaled down in impedance by a factor of 3 as shown in Fig. 2-8.6.



Figure 2-8.6 Network of Fig. 2-8.5 after insertion of hypothetical transformer.

Form 2 of Norton's first transformation is applied to  $L_2$  and the transformer as shown in Fig. 2-8.7. The resulting negative shunt inductor is combined with  $L_1$  as shown in Fig. 2-8.8. HP-97 printout for Norton's first transformation

.5 6355 L₂ 3. 7% 3566 } N

GEE calculate Norton's first transformation

1.183+20 La +++ 666.0-03 水井市 հ L_c -2.045+00 并准定 form 1 1.772+80 *** transformer ratio La Lb Lc -683.0-03 99.0 338.7-03 *** 354.3-03 *** form 2



Norton equivalent inductor and transformer

Figure 2-8.7 Network of Fig. 2-8.6 with form 2 of Norton's first transformation applied.



Figure 2-8.8 Final network with all negative elements absorbed.

## 2-8

# **Program Listing I**

661       *LSL4       LOAD C         062       SF0       indicate capacitor entry         062       i/7       form and store reciprocal         063       i/7       form and store reciprocal         064       STOP       of entry         065       1 %       restore entry         065       RIN         065       RIN         065       RIN         065       STOP         061       RCL1         071       *LELC         071       *LELC         071       *LEC         071       *LEC         071       *LEC         071       *CL1         073       SPC         074       Calculation         075       SPC         076       CL0         077       %CL0         078       C	853 855 855 855 857 857 857 857 860 857 860 864 865 864 865 866 866 865 866 871 872 873 874 <b>976</b>	SFC RCL0 RCL1 EEX ST02 CHS GSB0 RCL0 RCL1 X GSB0 RCL2 RCL1 X SPC RCL1 PRTX	form 1 series element
BE2       SFP       indicate capacitor entry         B03       1/2       form and store reciprocal         B04       SIDP       of entry         B05       1 % restore entry         B05       1 % restore entry         B05       1 % restore entry         B05       1 % restore entry         B05       1 % restore entry         B05       STOP         B14       *LELD         CALCULATE FIRST TRANSFORM         B15       SPC         B14       *LELD         CALCULATE FIRST TRANSFORM         B15       SPC         B16       RCL1         B17       CL1         B18       EA         B20       ±	<u>854</u> 855 856 857 857 869 860 861 862 863 864 865 865 867 869 878 879 873 874 <b>975</b>	SFC RCL0 RCL1 EEX ST02 CHS GSB0 RCL0 RCL1 X GSB0 RCL2 RCL1 X SPC RCL1 PRTX	form 1 series element calculation form 1 shunt element calculation form 1 series element
003       1/%       form and store reciprocal         004       SIDP       of entry         005       1 %       restore entry         005       RIN         005       RIN         005       RIN         005       RIN         005       RIN         005       RIN         005       Store entry         005       STOP         016       RCL1         017       RCL1         018       EEX         020       ±         021       FCL0         022       X         023       STO2         024       SSB9         025       RCL0         026       RCL1         027       X         028       GSB6         029       PCL2         030 <td< td=""><td>055 056 057 058 059 061 062 062 065 065 065 066 069 071 072 073 074 073</td><td>RCLØ RCL1 EEX ST02 CHS GSBØ RCLØ RCL1 X GSBØ RCL2 RCL1 X SPC RCL1 PRTX</td><td>form 1 series element calculation form 1 shunt element calculation form 1 series element</td></td<>	055 056 057 058 059 061 062 062 065 065 065 066 069 071 072 073 074 073	RCLØ RCL1 EEX ST02 CHS GSBØ RCLØ RCL1 X GSBØ RCL2 RCL1 X SPC RCL1 PRTX	form 1 series element calculation form 1 shunt element calculation form 1 series element
804         STOP         of entry           005         1 Y         restore entry           005         RIN           807         RLSLS         LOAD L OR R           032         CF2         indicate L or R entry           033         STOP         store entry           035         STOP         store entry           035         STOP         store entry           035         STOP         store entry           036         RTN         N           011         *LELC         LOAD N           012         STOP         store entry           013         *LSLC         LOAD N           014         *LELC         LOAD N           015         STOP            016         RCL1         form 1 shunt element           017         RCL1         form 1 shunt element           018         EEX         calculation           020         ±            021         FCL0            022         X            023         STO2            024         GSB3            025         RCL0	<b>956</b> 957 958 960 961 <u>962</u> 963 965 965 965 965 969 971 972 973 974 <b>975</b>	RCL1 EEX ST02 CHS GSB0 RCL0 RCL1 X GSB0 RCL2 RCL1 X SPC RCL1 PRTX	calculation form 1 shunt element calculation form 1 series element
005         1         restore entry           006         RTN           027         #L5L9         LOAD L OR R           032         CF9         indicate L or R entry           035         ST00         store entry           035         ST00         store entry           035         ST00         store entry           037         #L5LC         LOAD N           011         *L5LC         LOAD N           012         ST01         entry           013         #TN           014         *LELD         CALCULATE FIRST TRANSFORM           015         SPC           016         RCL1           017         #CL1           018         EEX           020         ±           021         #CL0           022         ×           023         ST02           024         @SB0           025         #CL0           026         #CL1           027         ×           028         @SB0           029         #CL2           030         #CL1           031         ×           032	057 058 059 060 061 062 063 064 065 065 065 069 070 071 072 073 074 073	EEX - x ST02 CHS GSB0 RCL0 RCL1 x GSB0 RCL2 RCL1 x SPC RCL1 PRTX	calculation form 1 shunt element calculation form 1 series element
005       1 Y       restore entry         005       RIN         005       RIN         005       RIN         005       SIN         017       SIN         018       SIN         019       -         020       -         021       FCL0         022       X         023       SIN2         024       SSB0         025       FCL0         026       RCL1         027       X         028       SSB0         029       PCL2         030       RCL1	058 059 060 061 062 063 064 065 065 065 069 070 071 072 073 074 073	EEX x ST02 CHS GSB0 RCL0 RCL1 x GSB0 RCL2 RCL1 x GSB0 SPC RCL1 PRTX	calculation form 1 shunt element calculation form 1 series element
005         RIN           027         *L5L5         LOAD L OR R           026         070         indicate L or R entry           025         STD0         store entry           025         STD0         store entry           026         RIN         01: *LELC           01:         *LELC         LOAD N           01:         *LELC         LOAD N           01:         *LELD         CALCULATE FIRST TRANSFORM           01:         STD1         01:           01:         *LELD         CALCULATE FIRST TRANSFORM           01:         SPC         01:           01:         SPC         02:           01:         RCL1         form 1 shunt element           01:         EEX calculation         01:           01:         FCL0         02:           02:         X	058 059 060 061 062 063 064 065 065 065 069 070 071 072 073 074 073	× ST02 CHS GSB0 RCL0 RCL1 X GSB0 RCL2 RCL1 X SPC RCL1 PRTX	form 1 shunt element calculation form 1 series element
EC7         #L5L5         LOAD L OR R           032         CF2         indicate L or R entry           035         STOE         store entry           037         RIN         011           011         *LELC         LOAD N           012         STOI         store entry           013         PTN         014           014         *LELD         CALCULATE FIRST TRANSFORM           015         SPC           016         RCL1           017         PCL1           018         EEX           020         =           021         FCL0           022         X           023         STO2           024         GSB3           025         FCL0           026         calculation           027         X           028         GSB6           029         PCL2           030         RCL1           031         X           031         X	859 860 861 862 863 865 865 865 865 865 869 878 878 878 873 874 <b>975</b>	ST02 CHS GSB0 RCL1 X GSB0 RCL2 RCL1 X GSB0 SPC RCL1 PRTX	calculation
032         CF2         indicate L or R entry           033         ST00         store entry           011         *LELC         LOAD N           012         ST01           013         PTN           014         *LELD         CALCULATE FIRST TRANSFORM           015         SPC           016         RCL1           017         FCL1           018         EEX           020         ±           021         FCL0           022         X           023         ST02           024         GSB3           025         FCL0           026         RCL1           027         X           028         GSB3           025         FCL0           026         RCL1           027         X           028         GSB6           029         PCL2           030         RCL1           031         X           031         X	860 861 862 863 865 865 865 865 865 869 878 878 878 873 874 <b>975</b>	ST02 CHS GSB0 RCL1 X GSB0 RCL2 RCL1 X GSB0 SPC RCL1 PRTX	calculation
239       STOP       store entry         212       RTN         011       *LELC       LOAD N         012       STO1         013       PTN         014       *LELD       CALCULATE FIRST TRANSFORM         015       SPC         016       RCL1         017       RCL1         018       EEX         020       ±         021       FCL0         022       X         023       STO2         024       GSB3         025       RCL0         026       RCL1         027       X         028       GSB6         029       PCL2         030       RCL1         031       X         031       X	061 062 063 064 065 066 069 070 071 072 073 074 073	CHS <u>GSB0</u> RCL0 RCL1 X <u>GSB0</u> RCL2 RCL1 X <u>GSB0</u> SPC RCL1 PRTX	calculation
339       STOR       store entry         01:       KTN         01:       KLELC       LOAD N         01:       KLELC       LOAD N         01:       KLELC       LOAD N         01:       STO1       STO1         01:       STO1       CALCULATE FIRST TRANSFORM         01:       SFC       Calculation         02:       X       Calculation         02:       X       Calculation         02:       STO2       Calculation         02:       SEB0       Calculation         02:       SEB0       Calculation         02:       SCI       form 1 shunt element         03:       X       calculation   <	<u>862</u> 863 865 865 867 869 878 878 878 873 874 <b>975</b>	<u>GSB0</u> RCL0 RCL1 X <u>GSB0</u> RCL2 RCL1 X <u>GSB0</u> SPC RCL1 PRTX	calculation
E1C         RTN           01:         *LELC         LOAD N           01:         *LELC         LOAD N           01:         \$701           01:         *LELD         CALCULATE FIRST TRANSFORM           01:         \$200         \$200           01:         \$200         \$200           01:         FCL0         Calculation           01:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:         \$200         \$200           02:	<u>862</u> 863 865 865 867 869 878 878 878 873 874 <b>975</b>	<u>GSB0</u> RCL0 RCL1 X <u>GSB0</u> RCL2 RCL1 X <u>GSB0</u> SPC RCL1 PRTX	calculation
$01: * \bot ELC$ LOAD N $012$ $3701$ $013$ $PTN$ $014$ $* \bot ELD$ <b>CALCULATE FIRST TRANSFORM</b> $015$ $SPC$ $016$ $RCL1$ $017$ $PCL1$ $018$ $EEX$ $calculation$ $019$ - $020$ $=$ $021$ $FCL0$ $022$ $\times$ $023$ $STO2$ $624$ $CSB3$ $025$ $RCL0$ $026$ $RCL1$ $027$ $\times$ $calculation$ $028$ $CSB6$ $029$ $PCL2$ $030$ $RCL1$ $021$ form 1 shunt element $031$ $\times$ $calculation$	063 064 065 066 069 069 071 072 073 074 <b>075</b>	RCLØ RCL1 X GSBØ RCL2 RCL1 X GSBØ SPC RCL1 PRTX	calculation
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	064 065 067 068 069 070 071 072 073 074 <b>075</b>	RCL1 x GSB0 RCL2 RCL1 x GSB0 SPC RCL1 PRTX	calculation
013       PTN         014       *LELD       CALCULATE FIRST TRANSFORM         015       SPC         016       RCL1         017       PCL1         018       EEX         020       ÷         021       FCL0         022       ×         023       ST02         624       GSB3         025       RCL0         026       calculation         027       ×         028       GSB6         029       PCL2         030       RCL1       form 1 shunt element         031       ×       calculation	865 <u>866</u> 867 869 878 871 872 873 874 <b>975</b>	X GSB0 RCL2 RCL1 X GSB0 SPC RCL1 PRTX	calculation
814       *LELD       CALCULATE FIRST TRANSFORM         915       SPC         916       RCL1         917       PCL1         918       EEX         919       -         920       +         921       FCL0         922       ×         923       ST02         924       GSB3         925       RCL0         926       RCL1         927       ×         928       GSB6         929       PCL2         930       RCL1         931       ×         931       ×         931       ×         931       ×         931       ×         931       ×         931       ×         931       ×         932       ×         933       ×         934       ×         935       ×         936       %         937       ×         938       %         939       %         930       %         931       ×         932	<u>066</u> 067 068 069 071 071 072 073 074 <b>075</b>	GSB0 RCL2 RCL1 X GSB0 SPC RCL1 PRTX	form 1 series element
814       *LELD       CALCULATE FIRST TRANSFORM         915       SPC         916       RCL1         917       FCL1         918       EEX         919       -         920       -         921       FCL0         922       ×         923       ST02         624       GSB3         925       FCL0         926       RCL1         927       ×         928       GSB6         929       PCL2         930       RCL1         931       ×         931       ×         931       ×         931       ×	067 068 069 070 071 072 073 074 <b>075</b>	RCL2 RCL1 x GSB0 SPC RCL1 PRTX	form 1 series element
$015$ $SPC$ $016$ $RCL1$ $017$ $RCL1$ $018$ $EEX$ $calculation$ $019$ - $020$ $=$ $021$ $FCL0$ $022$ $\times$ $023$ $ST02$ $624$ $GSB3$ $025$ $RCL0$ $026$ $RCL1$ $026$ $RCL1$ $027$ $\times$ $calculation$ $028$ $GSB6$ $029$ $PCL2$ $030$ $RCL1$ $031$ $\times$ $calculation$	067 068 069 070 071 072 073 074 <b>075</b>	RCL2 RCL1 x GSB0 SPC RCL1 PRTX	
$016$ $RCL1$ $017$ $RCL1$ form 1 shunt element $018$ $EEX$ $019$ - $020$ $=$ $021$ $FCL0$ $022$ $\times$ $023$ $ST02$ $024$ $GSB3$ $025$ $RCL0$ $026$ $RCL1$ $027$ $\times$ $028$ $GSB6$ $029$ $PCL2$ $030$ $RCL1$ $031$ $\times$ $calculation$	068 069 070 071 072 073 074 <b>075</b>	RCL1 × <u>GSBØ</u> SPC RCL1 PRTX	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	069 <u>070</u> 071 072 073 074 <b>075</b>	X <u>GSB0</u> SPC RCL1 PRTX	
018 EEX calculation 015 - 020 $\div$ 021 FCL0 022 $\times$ 023 ST02 024 GSB3 025 FCL0 026 RCL1 form 1 series element 027 $\times$ calculation 028 GSB6 029 PCL2 030 RCL1 form 1 shunt element 031 $\times$ calculation	<u>070</u> 071 072 073 074 <b>075</b>	<u>GSB0</u> SPC RCL1 PRTX	calculation
018       EEX       calculation         015       -         020       ÷         021       FCL0         022       ×         023       ST02         024       GSB0         025       FCL0         026       RCL1         027       ×         calculation         028       GSB0         029       FCL2         030       RCL1         631       ×         calculation	071 072 073 074 <b>075</b>	SPC RCL1 PRTX	
015 - 020 ÷ 021 FCL0 022 × 023 ST02 <u>624 S5B3</u> 025 FCL0 026 RCL1 form 1 series element 027 × calculation 028 S5B6 029 PCL2 030 RCL1 form 1 shunt element 031 × calculation	071 072 073 074 <b>075</b>	SPC RCL1 PRTX	
020       ÷         021       FCL0         022       ×         023       ST02         024       GSB0         025       FCL0         026       RCL1         027       ×         028       GSB0         029       FCL2         030       RCL1         631       ×         calculation	072 073 074 <b>075</b>	RCL1 PRTX	
021 FCL0 022 × 023 ST02 024 GSB0 025 FCL0 026 RCL1 form 1 sories element 027 × calculation 028 GSB0 029 FCL2 030 RCL1 form 1 shunt element 031 × calculation	073 074 <b>075</b>	PRTX	
022       ×         023       ST02         024       S5B3         025       RCL0         026       RCL1         027       ×         calculation         028       G5B6         029       RCL2         030       RCL1         631       ×         calculation	074 <b>075</b>		recall and print ideal
023       ST02         024       GSB0         025       FCL0         026       RCL1         027       ×         calculation         028       GSB0         029       FCL2         030       RCL1       form 1 shunt element         031       ×       calculation	075		transformer turns ratio
024       GSB0         025       RCL0         026       RCL1         027       ×         calculation         028       GSB0         029       RCL2         030       RCL1       form 1 shunt element         031       ×       calculation	<u>075</u>	SPC	a and other turns ratio
024       GSB0         025       FCL0         026       RCL1         027       ×         calculation         028       GSB0         029       FCL2         030       RCL1       form 1 shunt element         031       ×       calculation	Q74	SPC	
025       RCL0         026       RCL1       form 1 series element         027       ×       calculation         028       GSB0		RCLI	
026       RCL1       form 1 sories element         027       ×       calculation         028       GSB6			
027 × calculation 028 GSB0 029 PCL2 030 RCL1 form 1 shunt element 031 × calculation	077	EEX	form 2 series element
027 × calculation 028 <u>6580</u> 029 PCL2 030 RCL1 form 1 shunt element 031 × calculation	078	-	
028 GSB0 029 PCL2 030 RCL1 form 1 shunt element 031 × calculation	079	RCL1	calculation
029 PCL2 030 RCL1 form 1 shunt element 031 × calculation	080	÷	
030 RCL1 form 1 shunt element 031 × calculation			
931 × calculation	081	RCLØ	
031 × calculation	082	х	
	083	ST02	
14XZ (HV	084	GSBO	
	<u>085</u>		
<u>033 GSB0</u>		RCLØ	
034 SPC	086	RCL1	form 2 shunt element
035 RCL1 recall and print transformer	087	÷	calculation
036 PRTX turns note	088	GSB0	
035 PRIX turns ratio	089	RCL2	
<u>038 SPC</u>	<u>090</u>	<u>CHS</u>	
639 RCL0	091	*LBL1	
040 5014	092	RCL1	form 2 series element
IGTE 2 shunt elsment	093	÷	
			calculation
042 -	094	GSB0	
047 ÷	<i>0</i> 95	SPC	
044 ST02	<i>096</i>	SPC	
045 CHS	097	RTN_	
<u>846 S3B8</u>	098	*LBL0	cutput subroutine
047 RCLO	099	FØ?	
848 RCL1 form 2 series element	100	178	
849 ÷ calculation	101	PRTX	
<u>050 GSB0</u>	102	RTN	
051 RCL2 form 2 shunt element			
652 GTD1 calculation			
i i i i i i i i i i i i i i i i i i i			
REGISTE	RS		
			7 8 9
$\frac{1}{C}$ or $L$ N $\frac{2}{\text{scratch}}$ $\frac{3}{4}$ $\frac{4}{5}$	I^_		
0 S1 S2 S3 S4 S5		6	
	3		157 158 168
<u>────┴─────┴───┴────</u> ─┴─────			S7 S8 S9
B		IE	

	2-8	P	rogran	n Listiı	ng H			
	<b>-</b> -							
	B		BELS	E cale type 2	FLAGS Capacitor	ELAGS	SET STATUS	
load C	B Load L	LA C Load N c	BELS DCalc type 1	E calc type 2		FLAGS ON OFF	TRIG	DISP
		C Load N	D _{calc type1}		⁰ capacitor	FLAGS ON OFF 0 1 2		DISP

### PROGRAM 2-9 BUTTERWORTH AND CHEBYSHEV ACTIVE LOWPASS FILTER DESIGN AND POLE LOCATIONS.

#### Program Description and Equations Used

This program calculates the pole locations and Sallen and Key topology element values for un-normalized Butterworth or Chebyshev all pole lowpass filter approximations.

The program is designed to allow the use of capacitors with specified values as might result from the actual capacity measurement of a selected capacitor. The design process starts by assuming that all resistors are equal to the design resistance level, and the capacitor values are calculated to meet the filter requirements. The user may select new capacitor values near the original values, and the program will calculate new resistor values to meet the filter requirements. These resistor values can generally be selected from the nearest standard 0.1% resistor values.

The normalized pole locations of a Butterworth lowpass filter lie on a circle of unit radius as shown by Fig. 2-2.1 with the generalized pole locations given by Eqs. (2-2.12) and (2-2.13). The normalized pole locations for a Chebyshev lowpass filter lie on an ellipse as shown by Fig. 2-2.3 with the generalized pole locations given by Eqs. (2-2.15), (2-2.16), (2-2.17), and (2-2.18).

Each complex conjugate pole pair can be expressed in either the cartesian (real and imaginary parts) or the polar (magnitude and angle) co-ordinate systems. A variation on the polar system allows the pole pair to be defined in terms of the natural frequency (polar radius),  $\omega_n$ , and "Q," or quality factor. The relationship between these co-ordinate systems is shown in Fig. 2-9.1, and described by Eqs. (2-9.1) through (2-9.3).

233



Figure 2-9.1 Co-ordinate system relationships.

$$\omega_{\mathbf{a}_{\mathbf{k}}} = \frac{\sigma^2}{\mathbf{k}} + \omega_{\mathbf{k}}^2 \qquad (2-9.1)$$

$$\theta_{k} = \tan^{-1}\left(\frac{\omega_{k}}{\alpha_{k}}\right)$$
 (2-9.2)

$$Q_{k} = \frac{1}{2 \cos \theta_{k}} = \frac{\omega_{n}}{2\alpha_{k}}$$
(2-9.3)

The element values for the Sallen and Key type active resonator are easily expressed in terms of  $\omega_n$  and Q as follows:



Figure 2-9.2 Sallen and Key active lowpass filter topology.

$$C_{1} = \frac{Q(R_{1} + R_{2})}{\frac{\omega_{n} R_{1} R_{2}}{m}} = \frac{2Q}{\omega_{n} R}$$
(2-9.4)

$$C_{2} = \frac{1}{\omega_{n} Q (R_{1} + R_{2})} = \frac{C_{1}}{4Q^{2}}$$

$$R_{1} = R_{2} = R$$
(2-9.5)

The Sallen and Key resonator topology is chosen over other types because of the low parameter sensitivities to element changes. This type of filter synthesis is called the cascade method. Each pole pair is synthesized by an isolated op-amp resonator circuit. The entire filter is formed from a cascade of these resonator circuits. With each pole pair being independent, the overall filter sensitivities to component value changes are higher than an equivalent LC filter. See reference [49] (page 314) for more details.

If higher order filters are required (n greater than 9 or so), either the leapfrog (Szentirmai) topology using Deliyannis resonators [48], [20] or Cauer-Chebyshev filters using biquadratic sections [35] should be considered.

If the two capacitors in the Sallen and Key circuit are specified, then the following equations express the resistor values.

$$R_{1} = \frac{1 + \sqrt{1 - 4Q^{2}C_{2}/C_{1}}}{2Q\omega_{n}C_{2}}$$
(2-9.6)

$$R_2 = \frac{1}{\omega_n^{2} C_1 C_2 R_1}$$
(2-9.7)

To ensure the quantity under the radical is positive in the equation for  $R_1$ ,  $C_2$  should be selected to be a lower value, and  $C_1$  a higher value than given by Eqs. (2-9.4) and (2-9.5).

If the filter order is odd, then a real pole exists. A third order op-amp resonator circuit may be used to produce both the real pole and a complex conjugate pair. The lowest Q pole pair is selected for realization by this circuit to minimize sensitivities, and to keep the element value spread within bounds. The third order section topology is shown in Fig. 2-9.3.



Figure 2-9.3 Third order op-amp resonator circuit.

$$\frac{\frac{E_{out}}{E_{in}}}{E_{in}} = \frac{1}{D(s)}$$
(2-9.8)

where

$$D(s) = s^{3}C_{1}C_{2}C_{3}R_{1}R_{2}R_{3} + s^{2}C_{3}\{C_{1}R_{1}(R_{2} + R_{3}) + C_{2}R_{3}(R_{1} + R_{2})\} + s\{C_{1}R_{1} + C_{3}(R_{1} + R_{2} + R_{3})\} + 1$$

$$\frac{E_{out}}{E_{in}} = \frac{1}{Cs^3 + Bs^2 + As + 1} = \frac{1}{\frac{s^2}{\omega_n^2} + \frac{s}{\omega_n^Q} + 1} \cdot \frac{1}{\tau s + 1}$$
(2-9.9)

for 
$$R_1 = R_2 = R_3 = 1$$
 (2-9.10)

$$A = C_1 + 3C_3 = \tau + \frac{1}{\omega_n Q}$$
 (2-9.11)

$$B = 2C_3(C_1 + C_2) = \frac{\tau}{\omega_n Q} + \frac{1}{\omega_n^2}$$
(2-9.12)

$$C_1 = C_1 C_2 C_3 = \frac{\tau}{\omega_n^2}$$
 (2-9.13)

The equations for A, B, and C represent three equations in three unknowns,  $C_1$ ,  $C_2$ , and  $C_3$ . By algebraic manipulation, a cubic equation in  $C_1$  alone may be obtained.

$$C_1^3 - C_1^2$$
 (A) +  $C_1(\frac{3}{2}B) - 3C = 0$  (2-9.14)

A Newton-Raphson iterative solution is used to find the real root of this equation (there will be at least one). Once  $C_1$  is found, the remaining two capacitors are found as follows:

$$C_3 = \frac{A - C_1}{3}$$
 (2-9.15)

$$C_2 = \frac{C}{C_1 C_3}$$
 (2-9.16)

If the three capacitors are specified, then the transmission function (Eq. (2-9.9)) may be used to obtain three equations in terms of the three unknown resistors. Equating like powers of s, as before, these equations result:

$$A = C_{1}R_{1} + C_{3}(R_{1} + R_{2} + R_{3}) = \tau + \frac{1}{\omega_{n}Q}$$
(2-9.17)  

$$B = C_{3}\{C_{1}R_{1}(R_{2} + R_{3}) + C_{2}R_{3}(R_{1} + R_{2})\} = \frac{\tau}{\omega_{n}Q} + \frac{1}{\omega_{n}^{2}}$$
  

$$C = C_{1}C_{2}C_{3}R_{1}R_{2}R_{3} = \frac{\tau}{\omega_{n}^{2}}$$
(2-9.19)

By algebraic manipulation,  $R_2$  may be eliminated leaving two equations in two unknowns,  $R_3$  as a cubic function of  $R_1$  alone, and a quadratic equation in  $R_1$  with  $R_3$  as a parameter. The quadratic formula is used to reduce the second equation to R as a function of  $R_1$  alone. These two non-linear equations in two unknowns are solved using an iterative method given in an unpublished paper by Robert Esperti of Delco Electronics.

$$R_{3} = \frac{1}{R_{1}^{2}C_{2}C_{3}} \left\{ R_{1}^{2}(C_{1}(C_{1} + C_{3})) + R_{1}^{2}(AC_{1}) + R_{1}(B) + \frac{C}{C_{1}} \right\}$$

$$R_{1} = \frac{-b}{2a} + \sqrt{\left(\frac{b}{2a}\right)^{2} - \frac{c}{a}}$$
(2-9.20)
(2-9.20)
(2-9.20)
(2-9.20)
(2-9.21)

$$\frac{-b}{2a} = \frac{A - C_3 R_3}{2(C_1 + C_3)} ; \frac{c}{a} = \frac{C}{(C_1 + C_3) \cdot C_1 C_2 R_3}$$
(2-9-22)



Figure 2-9.4 Esperti's iterative method.

Referring to Fig. 2-9.4, an initial guess for  $R_1$  is made. The corresponding value for  $R_3$  is calculated using  $R_3 = f(R_1)$ . The corresponding value for  $R_1$  (say  $R'_1$ ) is calculated using the above value for  $R_3$  in  $R'_1 = g(R_3)$ . Using  $R_3 = f(R'_1)$ , a second value of  $R_3$  is calculated; this value of  $R_3$  is designated  $R'_3$ . Finally, a second value of  $R_1$  is calculated using  $R_1 = g(R'_3)$ ; this value of  $R_1$  is designated  $R'_1$ . The intersection of these two lines defines the next guess for  $R_1$ . The iteration is halted when the new and old values for  $R_1$  agree within  $10^{-6}$ %. The convergence of this method is quite fast with four iterations generally providing the above accuracy. Furthermore, the method will converge when direct substitution type iteration proves to be divergent.

The above procedure may be done algebraically to yield a recursion relationship as shown below:

$$R_{l_{n+1}} = R_{l_{n}} + \frac{g(f(R_{l_{n}})) - R_{l_{n}}}{\frac{g(f(g(f(R_{l_{n}}))) - g(f(R_{l_{n}})))}{g(f(R_{l_{n}})) - R_{l_{n}}}}$$
(2-9.23)

The recursion relationship may be further reduced to an algorithm that can be used to program the HP-97. This algorithm is shown below:

$$R'_{l_n} = g(f(R_{l_n}))$$
 (2-9.24)

$$R''_{1n} = g(f(R'_{1n}))$$
 (2-9.25)

$$\delta = R_{1n}^{*} - R_{1n}^{*} \qquad (2-9.26)$$

$$\delta^{\dagger} = R^{\dagger}_{1n} - R^{\dagger}_{1n} \qquad (2-9.27)$$

$$\varepsilon = \frac{\delta}{1 - \delta'/\delta}$$
(2-9.28)

$$\mathbf{R}_{\mathbf{l_{n+l}}} = \mathbf{R}_{\mathbf{l_n}} + \varepsilon \qquad (2-9.29)$$

Terminate if 
$$\left|\frac{\varepsilon}{R_{1}_{n+1}}\right| \leq 10^{-8}$$
 (2-9.30)

Each time through the  $R''_1 = g(f(R_1))$  calculation, the value of  $R_3$  is stored in a scratchpad register. After the iteration loop termination, values for  $R_1$  and  $R_3$  will be at hand. The following formula relates  $R_2$ to these resistors and the other known quantities:

$$R_2 = \frac{C}{C_1 C_2 C_3 R_1 R_3}$$
(2-8.31)

To simplify the initial guess for  $R_1$  and to keep the range of numbers within bounds, the selected values for the capacitors are normalized to 1 ohm, 1 radian/second values for use by the program. After the corresponding normalized resistors are calculated, the resistance values are de-normalized before output.

# 29 User Instructions

BUTTERWORTH	& CHEBYSHEV	AOTIVE	LP	FILTER DESIG	N & POLES	
0: n edB				enter f_cdB & start		7
B: n	B: − [€] dB	R		enter f_3dB & start	enter $O'_1 \dagger O'_2$	
				<u> </u>	ULTUS	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	
1	Load both sides of program card # 1			DATA/UNIT
			-	L
2	If Chebyshev:			
	enter filter order	n	ENT	
	enter passband ripple	€dB		
	go to step 4	· · · · · · · · · · · · · · · · · · ·		
3	If Butterworth;			
	enter filter order			
	if bandedge is defined by other than	<u>n</u>	╷└┻ <u></u> ┙	
	the -3dB point, enter the dB down			
	defining the bandedge			
		-£98		
	Enter the design resistance level	R, Ω	0	+
╤┼				*****
5	If bandedge is -3dB point, enter f-3dB & start	f-3dB, H2	[ <b>D</b> ]	if Cheb see belo for rest
6	If bandedge is -EdB point, enter f-EdB & start	f a 11-		
	point, chier 1=cdB & start	<u>-εαΒ, π</u> 2	f D	If Butta f-34B
				space
	The data is for the second order filter		ŝ	ωn
			#9	Q
	section, and alternate capacitor values		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	O _L , F
	entered in next step are also for the		ŢC ²	02,F
	Becond order section. The third order			stop
	Bection (for odd filter order) is		third order	ωη
	output last and is described on the		section	Q
	next page.		output	σ-
7	If alternate capacitor values are desired,			flashing display
·				
		Ci, F	ENT	
	enter O' ("E" without numeric entry)	C2', F	E	R ₁ , Ω
	After the second resistor value output, the			R _g , Ω
	program execution will automatically return			
	to step six until all second order sections			
1	have been outputted. If the filter is odd order,	••••••		
	the display will flash to indicate the			
	reading of the second card is required.			

### **User Instructions** 2-9



BUTTERWORTH & CHEBYSHEV AOTIVE LP FILTERS -THIS SECOND CARD IS USED WITH ODD ORDER BUTTERWORTH AND CHEBYSHEV ACTIVE LP



enter capacitor changes  $O'_1 \uparrow O'_2 \uparrow C'_3$ 

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Read both sides of second card when display			
	flashes with first program. Program			
	operation will automatically resume after			
	the second side of this card is read.			
10	The three capacitor values for the equal			
	resistor topology will be printed.			C,, F
				C2, F
		•••••	4. 4-	C3, F
11	If alternate capacitor values are desired,			
	key those values via key "E". If the third	******		
	order section requirements cannot be met			
	with those resistors, the program execution	<b></b>		
	will halt displaying "ERROR", Press any key			
	to clear the display, and enter another set			
	of capacitors using key "E". By staying			
	close to the capacitor values printed in	<b>+</b>		
	step 2, the error situation will generally	C, , F		
	be avoided.			
		C2 , F	ENT A	
••••		C ₃ , F	_ <u>E</u>	R1, D
				R2, Ω
••••••				R ₃ , Ω
12	To run another case, reload both sides of			
	card 1, and return to step 3	1		
				***************
		<b></b>		
••		<b>.</b>		
	***************************************			
******		<b></b>		
		<b></b>		
		<b>.</b>		
		<b></b>		
		I		L

#### Example 2-9.1

A 1 dB ripple Chebyshev lowpass active filter must pass all frequencies between dc and 1000 Hz within 3 dB, and must reject all frequencies higher than 2000 Hz by more than 60 dB. Program 2-1 may be used to determine the necessary filter order. This program calculates a minimum filter order of 6.19, which is rounded to the next highest integer, 7. A 7th order, 1 dB ripple Chebyshev lowpass filter that is 3 dB down at 1000 Hz, will be 1 dB down at 983.1 Hz and 69.4 dB down at 2000 Hz ( $\lambda = 2000/983.1 = 2.035$ ).

This program (Program 2-9) is used to calculate the element values for a 7th order, 1 dB ripple, 1000 Hz -3 dB cutoff frequency Chebyshev filter. A design resistance level of 10000 ohms is chosen which will make the capacitor values around  $1/(2\pi fR) = 0.016 \mu F$ .

## **PROGRAM INPUT**

7. ENT? 1. GSBa	
10000. GSBJ	design resistance level
1000. GSBD 983.1+00 ***	-3dB frequency -1dB frequence (output)

## PROGRAM OUTPUT

section	one		
6.154+03	***	ωna	
10.96+00		U	
354.2-05	***	$C_1$	
745.5-12	***		
.47-66	ENT†	$\begin{bmatrix} C_1^{-a} \\ C_0^{-a} \end{bmatrix}$	
75012	GSBE	Y2_1	alternate values
14.83+03	¥**	R ₁ a	
5.052+03	<b>冰水</b> 冰	$R_2^{a}$	
section	two		
4.993÷03	***	ωnb	
3.156+00		υ.	
126.4-09		V 14	
3.173-09		074	
.22-06			
309		C24	alternate values
17.72+03	-	TF 14	
3.429+03	<b>東京市</b>	R ² b	
section	three		
2.965+03	冰冰冰	$\omega_n$	of second order pair
1.297+00		QJ	-
1.269+03		σ, rea	1 pole location
85.66-03		C ₁ c	
163.9-09		しゅ	
6.385-65			
		C 3	
.i-ēf	ENT!		
.1-06 .22-06	ENT! Enti	$\begin{bmatrix} C & 3_{C} \\ C & 1_{C} \\ C & 2_{-} \end{bmatrix}$	alternate values
.1-06 .22-86 6.2-89	ENT1 Ent1 GSBE	$\begin{bmatrix} C & 3_{C} \\ C & 1_{C} \\ C & 2_{C} \\ C & 3_{C} \end{bmatrix}$	alternate values
.1-06 .22-06 6.2-09 8.800+03	EN71 En71 GSBE ***	$\begin{bmatrix} 0 & 3_{C} \\ C & 1_{C} \\ C & 2_{C} \\ C & 3_{C} \\ R \end{bmatrix}$	alternate values
.1-06 .22-86 6.2-85 8.800+83 6.113+83	ENT1 EnT1 GSBE *** ***	$\left(\begin{array}{c} 3c \\ C \\ 1c \\ 2c \\ C \\ 3c \\ R \\ Lc \\ R_{2} \end{array}\right)$	alternate values
.1-06 .22-06 6.2-09 8.800+03	ENT1 EnT1 GSBE *** ***	$\begin{bmatrix} C & 3_{C} \\ C & 1_{C} \\ C & 2_{C} \\ C & 3_{C} \end{bmatrix}$	alternate values





7th order Chebyshev lowpass I dB passband ripple -3 dB at 1000 Hz -69.4 dB at 2000 Hz

noise is not a concern, the ordering of the sections should be reversed with the lowest Q section resistance levels in the resonator sections are low enough so the op-amp voltage noise dominates Because the highest Q resonator is first, it will be prone to overload at frequencies near the resonant peak. For filters operating at higher signal levels where self This ordering of the filter sections will result in the lowest output noise assuming the (see Program 1-6). placed first. Note:

#### Example 2-9.2

An active Butterworth lowpass filter must pass all frequencies between dc and 1000 Hz within 1 dB, and must reject all frequencies higher than 3000 Hz by at least 60 dB. Program 2-1 may be used to determine the minimum filter order. This program calculates a minimum filter order of 6.90, which is rounded to 7, the next highest integer. This filter will be 60.9 dB down at 3000 Hz ( $\lambda = 3000/1000 = 3$ ).

This program (Program 2-9) is used to find the element values for a 7th order, 1000 Hz -1 dB cutoff, Butterworth lowpass active filter. A design resistance level of 10000 ohms will keep the capacitor values centered around  $1/(2\pi fR) = 0.016 \ \mu F$ .

### **PROGRAM INPUT**

7. GSB4	n
1. GSBB	εdB
10000. GSBC	R, design resist level
1000. GSBa 1.101+03 ***	f-edB f-3dB (output)

## **PROGRAM OUTPUT**

section one 6.920+03 *** 2.247+00 *** 64.94-09 *** 3.215-09 *** 5809 ENT1 300012 GSBE 14.26+03 *** 7.180+03 ***	C2 C'1
section two 6.920+03 ***	ധ_
801.3-03 *** 23.13-09 *** 9.010-09 *** 2409 EnT* 820012 GSEE 14.81+03 *** 7.164+03 ***	$\begin{bmatrix} \omega_n \\ C_1 \\ C_2 \\ C_1 \\ C_2 \\ C_1 \\ C_2 \\ R_1 \\ R_2 \end{bmatrix}$ alternate values
6.920+03 *** 555.0-03 ***	$\left\{ \begin{matrix} \omega \\ Q \\ \sigma \end{matrix} \right\}$ of second order pair $\sigma$
6.920+03 *** 19.32-09 *** 22.14-09 *** 7.058-09 *** 3209 ENTT 2209 ENTT 630012 639E 9.172+07 *** 7.673+03 *** 13.03+03 ***	C ₁



Figure 2-8.6 Overall active filter schematic:

7th order Butterworth lowpass filter -1 dB @ 1000 Hz -3 dB @ 1101 Hz -60.9 dB @ 2000 Hz 2-9, CARD 1

Program Listing I

					<b>B</b> ⁻ <b>U</b>			7 -			
ſ	<u>001</u>	*LBLA	BUTTERWOI	TH; LOAD	n		05	6 ENT	t		
	002	<u>SF1</u>	indicate	Butterwon	th	٦	05				
	003	EEX	setup reg	isters;		7	85	6 17	ĸ		
	004	STOB	f_3	dB/f-EdB	<b>=</b> 1		05:				
	005	STOD		$ha \approx 1$			06				
	006	STOE		h_α_=_1_			86				
	<u>007</u>		recover n			-	06				n
	008	6108	_goto filt	er order	entry subr		86.	3 ±1 R1 (	LOAD OPE	DAGTNO D	flag olear
	009	<u>ALDLA</u>	CUEDIOUEA	: LUAU ne	€dB	4	064	ST04	LEVEL	MATING R	ESISTANCE
1	010	STOB	store EdB	1		+	065	5 CT0			lag clear -
	011	RI	_recover_f	ilter ord	er. n	+	066		LOAD dat	a entry 1	lag clear
	012	CF1	indicate	Chebyshev	· · · · · · · · ·	-	867	- <u>+LBLL</u> - F1?	LOAD f_3		
	013	GSB8	gosub fil	ter order	entry sub	1	-068			'Butterwa	orth
	014	RCLB				4	069				
	015	EEX					078				
j –	016	1	calculate				071				
l l	017	÷					072				
	018	10×	$6 = \sqrt{10^{0}}$	ledB 1				••			
f f	019	EEX	- 410	40 a T		ſ	073				
	020	-	•				074				1
	021	- <b>- X</b>					075		for the		
1	022	1/8				-	076		TOT OURD	ysh <b>ev, ce</b>	
	023	sto5	$1/\epsilon + R5$				077	RCLA	• _	<b>f_</b> 3	i di B
	023	ENT				-	078	178	<b>f__{8dB} =</b>	oneh 1	an at-left
	024 025						079	γ×		n n	$\frac{dB}{\cos \sin^{-1}(\frac{1}{\varepsilon})}$
		X2 EEX	calculate	and stor	B:		080	ENT†		-	•
	<i>026</i>						081	1/X			
	<b>0</b> 27	+	$a = \frac{1}{n} \sin \frac{1}{n}$	$h^{-1}(-1)$	B2		082	+			
	Ø28		n	`ε'		1	883	÷			
	029 070	+					084	ENTT			
	<i>030</i>	RCLA					<u>085</u>	+			
	031	1×X					086	SF3	set data	entry fl	
	032	۲×					087	PRTX	print f_	E AD	⁷²
	033	<u>ST02</u>					988	*LBLd	LOAD f-E	AD AND S	T A TOM
	034	ENTŤ				1	089	F1?		ne ativ 3	
	035	178		3 4			090	RCLB			
1	036	-	calculate	and store	);		091	F1?	11 Butter	worth, c	alculate
	837	2	at the a	_			<b>0</b> 92	x	and print	t f_3dB	
	038	÷	sinh a 🛶	· ^R E			093	F1?		7-2	
	039	STOE				1	094	PRTX			
	040	RCL2				1 l	-095	*LBL7			
	041	ENT↑		<b>.</b> .			096	Pi			
1	<b>0</b> 42	178	calculate	and store	1	I	097	ENTT			
1	043	+	1	_			098	Enii +			
1	044	2	cosh a	R _D		ĺ	099	×	if flag 3	. 2nf - P	5 I
1	045	÷		-			100	F3?	· · ·	, <b>.</b>	
	<u>046</u>	STOD				ſ	<u>101</u>				
	847	GT05	go to data	entry fi	ag clear	1	102	ST03			
		*LBLB	$LOAD - \varepsilon_{dB}$		DWA DAT		102	EEX			í
	849		if bandedg	e is not	Antinad Antinad			STO0	setup for	next loo	P I
	050	1	by -3dB	- 10 HOC	agt TUGO		104	SPC			
	051	÷	calculate	-ho 100 -			-105	*LBL1	second or	<u>aer filte</u>	r_100p
	052	101				⋪	106	SPC		_	
	053	EEX .	$\frac{f-3dB}{f-3dB} = \int 10^{6}$	0.18 ₄₀	, <u> </u>		107	RCLØ			
1	854		f_edB	<b>u</b> D -	⊥」 ^{∠⊥} → ^K B		108	RCLI			
	055	RCLA	48 -		-		109	X			
1		NOLH				I	110	EEX			
<u> </u>						1 TERO	<u></u>				
0 7-	1		2	3		STERS				10	
⁰ 2k -	- I	2 <b>Q</b>	² a or w _n	³ ω-3dB	" 0 ₁	° 1∕ε	6	R	⁷ ω _k	⁸ σ _{<b>k</b>}	⁹ soratch
S0	S1			\$3	S4	\$5 \$5	se		S7		
l							30	,	)°'	S8	S9
A filte	r ord	er. B.	B, 1,or f	C IC	· · · · · · ·	D		Te	4	<u> </u>	
n	-	εd	B, t,or =	24BI~	0 ₂	ັ cosh	a o	r 1   ^E 1	inh a or	1 1 7	π/(2n)
										-   '	··· (···· /

2–9, CARD 1

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · · · · · · · · · · · · · · · ·	
112PCLDcalculate pole positions: 113169fx113STO? T(5) $\sigma_{k} = (sinh a)(sin \frac{2k-1}{2m})$ 116PCLE T(7)PCLE T(7)PCLE T(7)116PCLE PCLE $\omega_{k} = (soc e)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)$	111 +8	167 EEX R ₁ calculation (continued)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	113 X	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$114 \text{ ST07 } \sigma_1 = (\sinh a)(\sin \frac{2K-1}{2}\pi)$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$115 $ $X_{\pm}^{\pm}Y$ $k$ $2n$ $2n$	171 +
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	117 X X $2n$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 118 ST08	174 RCL2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$121 \times \text{calculate} \omega_n$ and $Q_1$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	122 DOTY "K K	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	122 (Kin 2 2 2 2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$123 \ 5102 \ \omega_{m_{r}} = \sigma_{r} + \omega_{r}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[ ] 124 Xty ** ** **	180 x 12 calculation.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$125  0.85  0 = 1/(2 \cos \theta + \tan^{-1} \frac{\omega_k}{10})$	181 RCL9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{120}{\sigma_k} = \frac{1}{2} \frac{200}{\sigma_k} \frac{1}{\sigma_k}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	120 178	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	127 ST01	$      183 RCL^2 B_1 = 1/(40.5 C_1 \cdot C_0 \cdot B_1)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$1 1 1 184$ $3^2 2^2 7 2^2 10 2^2 10^2$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
131LSTNinorement k by 2132STNinorement k by 2133F87134GT03135EEX136EEX137+138RCLA139X2Y?136EEX137+138RCLA139X2Y?130GT021414:EL3142RCL1143RCL2144=145RCL1146=147PFTX148ENT1148ENT1150RCL1151X2152C2152C2153PRTX154RCL1154RCL1156F32156F32156F32157F32156F32156F32157F32156F32157F32156F32157F32157F32156F33157RCL1154RCL1164X21165X21166CH3166CH3166CH3166CH3166CH3166CH3166CH3166CH3166CH3166CH3166CH3167CH4168		3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	130 PRTX	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		187 PRTX
133FR19139FR19139FR19136EEXodd order filter;137FR18198FR14191X>Y9136EEXodd order filter;137FR18192SPCspace paper upon loop exit138RCLAtest for last section194SPCspace paper upon loop exit138RCLAfr02195RTH139X2Y9(Jrd order section)196RCL3144±01 = $\frac{20}{\omega_n \cdot R}$ 196RCL3144±01 = $\frac{20}{\omega_n \cdot R}$ 198RCL3146±199x286PRX147PRTX220for 2nd order286146±228STOA286STOA147PRTX02 = $\frac{01}{4 \cdot Q^2}$ 286STOA150RCL1calculate $\sigma_2$ for 2nd order286STOA153PRTX02 = $\frac{01}{4 \cdot Q^2}$ 286STOA154RTMcalculate $\sigma_2$ for 2nd order216CFe155stobe $\sigma_1$ $\sigma_2$ $\sigma_2$ 156F37fr unmeric entry, store,213FI161STO4164 $x_2$ $\sigma_2$ $\sigma_1$ 163RCL1 $R_1 = \frac{1 + \sqrt{1 - 4q^2 \cdot 02/01}}{2 \cdot 0 \cdot n \cdot 02}$ 215ENT164 $x_2$ $\sigma_1$ $\sigma_2$ $\sigma_2$ $\sigma_1$ 165 $x_1$ $R_1 = \frac{1 + \sqrt{1 - 4q^2 \cdot 02/01}}{2 \cdot 0 \cdot n \cdot 0$		188 +1 BI 4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	133 F0? jump if n is even	1 189 KCLU test for loop exit
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		A 190 RCLA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	136 EEX add and an et lton.	<u>192 6101</u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		193 SPC space paper upon loop exit
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LI LEST TOP LAST SECTION	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	139 X≚Y? \/ • • • • • • • • • • • • • • • • • •	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	149 GT02	-196 *LBL2 calculate real 3rd order pole
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140 BIOL	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	142 RCL1	198 RCL3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	143 RCI 2 00	199 x
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$111 144 = 0 = \frac{20}{20}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$144 = 01 = \overline{\omega \cdot R}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	145 RCL6 n ~	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	146 ÷	282 PSE
148ENTfsave $O_1$ in stack204*LBLSfilter order entry subr149ENTfcalculate $C_2$ for 2nd order205STOA150RCL1calculate $C_2$ for 2nd order2062151x2 $C_2 = \frac{O_1}{4.Q^2}$ 208ENTf152 $\div$ $O_2 = \frac{O_1}{4.Q^2}$ 208ENTf153PRTX $O_2 = \frac{O_1}{4.Q^2}$ 209INT154RTM218CF6155*LBLELOAD ALTCAPACITOR VALUES156F3?if numeric entry, store,213Pi157F3?if numeric entry, store,214RCLAcalculate and store:159STO9214CAC216+ $T/(2n) \rightarrow R_T$ 160x:Ycalculate $R_1$ :216+ $T/(2n) \rightarrow R_T$ 161STO4163RCL1 $R_1 = \frac{1 + \sqrt{1 - 4q^2 \cdot 0'_2/G_1}}{2 \cdot q \cdot \omega_n \cdot O'_2}$ 218STOI163read $R_1 = \frac{1 + \sqrt{1 - 4q^2 \cdot 0'_2/G_1}}{2 \cdot q \cdot \omega_n \cdot O'_2}$ 218STOI218164 $X^2$ $2 \cdot q \cdot \omega_n \cdot O'_2$ 228CF3221RTM165x1ABELSFLAGSSET STATUS164 $X^2$ $Q \cdot \Phi_1 \oplus \varphi_2$ 165x $Q \cdot \Phi_2 \oplus \varphi_2$ $Q \cdot \Phi_1 \oplus \varphi_2$ $Q \cdot \Phi_1 \oplus \varphi_2$ $Q \cdot \Phi_1 \oplus \varphi_2$ 164 $X^2$ $Q \cdot \Phi_2 \oplus \varphi_2$ $RAG$ $SCI$ accepacitor bc $Q \cdot \Phi_2 \oplus \varphi_2$ $Q \cdot \Phi_2 \oplus \varphi_2$ <th></th> <th></th>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	148 ENT† save Q ₁ in stack	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		205 STOA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	150 PCL1 celevieto C for Ord order	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	150 KLI calculate 02 for 2nd order	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	151 X ²	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$   152 \div 0^{-0_1}$	208 ENT: set flag 0 if n is even
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 <u>157 PPTY</u> 2 <u>1 A2</u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\frac{156}{157}  F3?  \text{if numeric entry, store,} \\ 157  F3?  \text{if numeric entry, store,} \\ 159  ST09 \\ \hline 160  X:Y  \text{calculate } R_1: \\ 161  ST04 \\ 162  \div \\ 163  RCL1  R_1 = \frac{1 + \sqrt{1 - 4q^2 \cdot 0'_2/0'_1}}{2 \cdot q \cdot \omega_n \cdot 0'_2} \\ \hline 164  X^2 \\ 165  x \\ \hline 166  CHS \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	155 *LBLE LOAD ALT CAPACITOR VALUES	211 X=Y?
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-158 GT04 otherwise jump	214 RCLA calculate and store:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		215 ENT†
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	161 ST04	217 ÷
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 162 ÷	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1 + \sqrt{1 - 40^2 \cdot 0^2/0^2}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	103 KLLI R1 =	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	164 X ² ⁻ 2·Q·ω _n ·Ο΄	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		221 RTN
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
a capacitor b entry tog 0 2nd card 1 n & 0 20dd order 3 even ord 4 loop exit 2 1 B GRAD SCI read loop calculation output output 1 est 2 RAD CI 5 cir data 6 7 8 9 2 4 4 5 5 cir data 6 7 8 8 9 2 5 cir data 6 7 8 8 9 2 5 cir data 6 7 8 8 9 6 circle 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		FLAGS SET STATUS
a capacitor b entry tog 0 2nd card 1 n & 0 20dd order 3 even ord 4 loop exit 2 1 B GRAD SCI read loop calculation output output test 2 RAD CI 5 cir data 6 7 8 9 2 4 4 5 5 cir data 6 7 8 8 9 2 5 cir data 6 7 8 8 9 2 5 cir data 6 7 8 8 9 12 4 5 cir data 6 7 8 8 9 12 4 5 cir data 6 7 8 8 9 12 4 5 cir data 6 7 8 8 9 12 4 5 cir data 6 7 8 8 9 12 4 5 cir data 6 7 8 8 9 12 4 5 cir data 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	And Add B load B G & co Q & co Elos	
a capacitor b entry tog 0 2nd card 1 n & 0 20dd order 3 even ord 4 loop exit 2 1 B GRAD SCI read loop calculation output output test 2 RAD CI 5 cir data 6 7 8 9 2 4 4 5 5 cir data 6 7 8 8 9 2 5 cir data 6 7 8 8 9 2 5 cir data 6 7 8 8 9 12 4 5 cir data 6 7 8 8 9 12 4 5 cir data 6 7 8 8 9 12 4 5 cir data 6 7 8 8 9 12 4 5 cir data 6 7 8 8 9 12 4 5 cir data 6 7 8 8 9 12 4 5 cir data 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Toad u tabl toad " 1-3dBa Bo I -EdB a go Ioa	USP PLAUS INIG DISP
0 2nd card 1 n & 0 20dd order 3 even ord 4 loop exit 2 1 GRAD SCI read loop calculation output output test 2 RAD SCI Scir data 6 7 8 9 2 4 7 8 RAD SCI	lacadacitoria la le	
	lentry wg	
	0 2nd card 1 n & 0 20dd order 3 even ord 4 lo	
	reau 100p calculation output   output t	
	15 <b>CIF GATA 16 17 18 19</b>	$n_3$

2–9 , CARD 2

Program Listing I

001	RCL7		056 STO	3
	ROLI		057 CL	
002	RCL 8	σk 101 Ju bidei beetden		calculate $f'(C_1)$ as
003	RCL6		058	2 · · ·
		R		
004	P≠S		059 ×	
	SF2		060 RCLA	a - v=1, - = 1 − 2
005				
006	ST06	store denormalization R	061 2	2
			062 ×	
007				
008	STOU	calculate and store;	063 -	
		Galculate and bootes		
809	÷₽		964 ×	
	XS	(1) 2 (1) 2 - 2	065 RCL4	1
010	~~	$\omega_{n_{\mu}}^{2} = \omega_{\mu}^{2} \sigma_{\mu}^{2}$		
011	ST01	X X X	066 +	
		- (i)n	067 ST÷0	form and store:
012	2	$2\sigma_{\mathbf{k}} = \frac{\omega_{\mathbf{n}}}{\alpha}$		
013	ST×0	<u>~ Q</u>	068 RCLE	$\mathcal{O}_{l_{n+1}} = \mathcal{O}_{l_n} - \frac{f(\mathcal{C}_{l_n})}{f'(\mathcal{O}_{l_n})}$
				$0_{1} = 0_{1} = -\pi f f h_{1}^{\prime}$
814	RCLE	calculate and store;	استراب المستقلية	
015	RCL1			iterate again if
		<b>9</b> 4 ·		
016	x	$C = \frac{\gamma}{\omega^2}$	071 ÷	e(a.)
		υ - ₍₁₎ 2	072 ABS	$\frac{1}{101n}$
017	178	~n		
018	STOC		073 RCLS	$\left \frac{\mathbf{f}'(C_{l_n})}{\mathbf{f}'(C_{l_n})}\right  \ge 10^{-8}$
			074 X4Y	
<u>019</u>	<u>ST05</u>			
020	RCLE		075 GTO	) ( <del>-11</del> )
		calculate and store;		
021	RCLØ	• ·	076 RCLA	
		<u>ጉ                                   </u>	077 RCL3	7
022	+	$B = \frac{\tau}{\omega \cdot q} + \frac{1}{\omega_{z}^{2}} as$		;
023	x	$\omega_n u \omega_n$	078 -	<b>A A</b> -
		17 1 Wm 1	079 3	$C_3 = \frac{A - O_1}{3}$
824	STO <b>B</b>	$\left(\frac{\tau}{\omega_n^2}\right)\left(\frac{1}{\tau} + \frac{\omega_n}{q}\right)$		) Uz =
<b>8</b> 25	ST04	$\omega_n \sim c$	l 080 ÷	
026	RCLE	calculate and store:	<u>081 sto4</u>	
027	RCLØ	Varvarado and storer	082 RCL3	calculate:
	RULO	4		Galculate;
028	x	$A = \gamma + \frac{1}{\omega_n q} = as$	083 ×	_
		A = (+	084 RCLC	$C_2 = \frac{0}{C_1 \cdot 0_3}$
029	RCL1	- n		$u_2 = \frac{1}{2}$
030	+		I 085 X≠Y	·
				- /
031	RCLC	$\left(\frac{\tau}{\omega_n^2}\right)\left(\omega_n^2 + \frac{\omega_n}{Q}\right)$	086 ÷	
832	x	$\left(\frac{1}{2}\right)\left(\omega_{n} + \frac{1}{2}\right)$	087 RCL4	order $C_1$ , $O_2$ , and $C_3$ in
		w _n v		1, 5, 1
033	STOA		088 X≠Y	the stack
			089 RCL3	,
034	3	use register arithmetic		
035	STX4	to form and store:	090 GSB9	restore PS order
036	ST×5	3B/2, and 3C	091 GSB1	
037	2	·-· -· ··	<u>092</u> 6581	capacitors
	_			
<b>0</b> 38	ST÷4		093 *LBL1	<u>_</u>
			094 RCL3	
039	ST03	initialize registers for		capacitor denormalization
040	EEX	-	1 095 ÷	
		Newton-Raphson iteration	096 RCL6	
841	CHS			$C_{den} = C_{nor} / (\omega_{edB} \cdot R)$
842	8		097 ÷	dott - the st / "CUD - 1
	-			
043	ST09			
	0102		098 PRTX	
		<b>NU</b>		
044	*LBL0	Newton-Raphson routine to	099 RI	
	*LBL0		099 RI	
845	*LBL0 RCL3	find the real 3rd order	099 RI 100 RTN	1
	*LBL0 RCL3 RCL3	find the real 3rd order	099 RJ 100 RTN 181 *LBLE	LOAD ALTERNATE CAPACITOR
845 846	*LBL0 RCL3 RCL3		099 RJ 100 RTN 181 *LBLE	LOAD ALTERNATE CAPACITOR
845 846 847	*LBL0 RCL3 RCL3 RCL3 RCL3	find the real 3rd order	099 RJ <u>100 RTN</u> <u>101 *LBLE</u> 102 GSB9	LOAD ALTERNATE CAPACITOR VALUES FOR 01, 02, & 03
845 846 847	*LBL0 RCL3 RCL3 RCL3 RCL3	find the real 3rd order root of $f(C_1)=0$	099 RJ 100 RTN 181 *LBLE	LOAD ALTERNATE CAPACITOR VALUES FOR 01, 02, & 02
845 846 847 848	*LBL0 RCL3 RCL3 RCL3 RCL3 RCLA	find the real 3rd order root of $f(C_1)=0$	099 RJ 100 RTN <u>101 *LBLE</u> 102 GSB9 103 RCL3	LOAD ALTERNATE CAPACITOR VALUES FOR 01, 02, & 03
045 046 047 048 049	*LBL0 RCL3 RCL3 RCL3 RCL3 RCLA	find the real 3rd order	099 RJ 100 RTN 181 *LBLE 102 GSB9 103 RCL3 104 P#S	LOAD ALTERNATE CAPACITOR VALUES FOR 01, 02, & 03
045 046 047 048 049	*LBL0 RCL3 RCL3 RCL3 RCL3 RCLA	find the real 3rd order root of $f(C_1)=0$ calculate $f(C_1)$ as:	099 RJ 100 RTN <u>101 *LBLE</u> 102 GSB9 103 RCL3	LOAD ALTERNATE CAPACITOR VALUES FOR 01, 02, & 03
045 046 047 048 049 050	*LBL0 RCL3 RCL3 RCL3 RCL3 RCLA - X	find the real 3rd order root of $f(C_1)=0$ calculate $f(C_1)$ as:	099 RJ 100 RTN 181 *LBLE 102 GSB9 103 RCL3 104 P#S 105 SF2	LOAD ALTERNATE CAPACITOR VALUES FOR O ₁ , O ₂ , & O ₃
045 046 047 048 049 050 051	*LBL0 RCL3 RCL3 RCL3 RCL3 RCLA	find the real 3rd order root of $f(C_1)=0$	099 RJ 100 RTN 101 *LBLE 102 GSB9 103 RCL3 104 P#S 105 SF2 106 RJ	LOAD ALTERNATE CAPACITOR VALUES FOR 01, 02, & 03 initialize registers
045 046 047 048 049 050 051	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL3 RCL4	find the real 3rd order root of $f(C_1)=0$ calculate $f(C_1)$ as:	099 RJ 100 RTN 101 *LBLE 102 GSB9 103 RCL3 104 P#S 105 SF2 106 RJ	LOAD ALTERNATE CAPACITOR VALUES FOR 01, 02, & 03 initialize registers
045 046 047 048 049 050 051 051	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL3 RCL4 +	find the real 3rd order root of $f(C_1)=0$ calculate $f(C_1)$ as:	099 RJ 100 RTN 181 *LBLE 102 GSB9 103 RCL3 104 P\$5 105 SF2 106 RJ 107 ST02	LOAD ALTERNATE CAPACITOR VALUES FOR C1, C2, & C3 initialize registers store C1, C2, & C3
045 046 047 048 049 050 051	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL3 RCL4	find the real 3rd order root of $f(C_1)=0$ calculate $f(C_1)$ as:	099 RJ 100 RTN 101 *LBLE 102 GSB9 103 RCL3 104 P#S 105 SF2 106 RJ 107 ST02 108 RJ	LOAD ALTERNATE CAPACITOR VALUES FOR 01, 02, & 03 initialize registers store 01, 02, & 03
045 046 047 048 049 050 051 051 052 053	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL3 RCL4 *	find the real 3rd order root of $f(C_1)=0$ calculate $f(C_1)$ as:	099 RJ 100 RTN 101 *LBLE 102 GSB9 103 RCL3 104 P#S 105 SF2 106 RJ 107 ST02 108 RJ	LOAD ALTERNATE CAPACITOR VALUES FOR $O_1$ , $O_2$ , & $O_3$ initialize registers store $O_1$ , $O_2$ , & $O_3$
045 046 047 048 049 050 051 052 053 054	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL3 RCL4 +	find the real 3rd order root of $f(C_1)=0$ calculate $f(C_1)$ as:	099 RJ 100 RTN 101 *LBLE 102 GSB9 103 RCL3 104 P#S 105 SF2 106 RJ 107 ST02 108 RJ 109 ST01	LOAD ALTERNATE CAPACITOR VALUES FOR O ₁ , O ₂ , & O ₃ initialize registers store O ₁ , O ₂ , & O ₃
045 046 047 048 049 050 051 052 053 054	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL3 RCL4 *	find the real 3rd order root of $f(C_1)=0$ calculate $f(C_1)$ as:	099 RJ 100 RTN 101 *LBLE 102 GSB9 103 RCL3 104 P#S 105 SF2 106 RJ 107 ST02 108 RJ	LOAD ALTERNATE CAPACITOR VALUES FOR O ₁ , O ₂ , & O ₃ initialize registers store O ₁ , O ₂ , & O ₃
045 046 047 048 049 050 051 051 052 053	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL3 RCL4 *	find the real 3rd order root of $f(C_1)=0$ calculate $f(C_1)$ as:	099 RJ 100 RTN 101 *LBLE 102 GSB9 103 RCL3 104 P#S 105 SF2 106 RJ 107 ST02 108 RJ 109 ST01	LOAD ALTERNATE CAPACITOR VALUES FOR O ₁ , O ₂ , & O ₃ initialize registers store O ₁ , O ₂ , & O ₃
045 046 047 048 049 050 051 052 053 054	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL3 RCL4 *	find the real 3rd order root of $f(C_1) = 0$ calculate $f(C_1)$ as: $f(C_1) = C_1^3 - AC_1^2 + \frac{2B}{2}O_1 - 3C$	099 R4 100 RTM 101 *LBLE 102 GS89 103 RCL3 104 P‡S 105 SF2 106 R4 107 ST02 108 R4 109 ST01 110 R4	LOAD ALTERNATE CAPACITOR VALUES FOR O ₁ , O ₂ , & O ₃ initialize registers store O ₁ , O ₂ , & O ₃
045 046 047 048 049 050 051 052 053 054	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL3 RCL4 *	find the real 3rd order root of $f(C_1) = 0$ calculate $f(C_1)$ as: $f(C_1) = C_1^3 - AC_1^2 + \frac{2B}{2}O_1 - 3C$	099 RJ 100 RTN 101 *LBLE 102 GSB9 103 RCL3 104 P#S 105 SF2 106 RJ 107 ST02 108 RJ 109 ST01	LOAD ALTERNATE CAPACITOR VALUES FOR $O_1$ , $O_2$ , & $O_3$ initialize registers store $C_1$ , $C_2$ , & $C_3$
045 046 047 048 049 050 051 052 053 054 055	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL3 RCL4 *	find the real 3rd order root of $f(C_1) = 0$ calculate $f(C_1)$ as: $f(C_1) = C_1^3 - AC_1^2 + \frac{2B}{2}O_1 - 3C$ REGIN	099 R4 100 RTN 101 *LBLE 102 GS89 103 RCL3 104 P75 105 SF2 106 R4 107 ST02 108 R4 109 ST01 110 R4	LOAD ALTERNATE CAPACITOR VALUES FOR $O_1$ , $O_2$ , & $O_3$ initialize registers store $O_1$ , $O_2$ , & $C_3$
045 046 047 048 049 050 051 052 053 054 055	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL3 RCL4 *	find the real 3rd order root of $f(C_1) = 0$ calculate $f(C_1)$ as: $f(C_1) = C_1^3 - AC_1^2 + \frac{2B}{2}O_1 - 3C$ REGIN	099 R4 100 RTN 101 *LBLE 102 GS89 103 RCL3 104 P75 105 SF2 106 R4 107 ST02 108 R4 109 ST01 110 R4	LOAD ALTERNATE CAPACITOR VALUES FOR $O_1$ , $O_2$ , & $O_3$ initialize registers store $O_1$ , $O_2$ , & $C_3$
045 046 047 048 049 050 051 052 053 054 054 055	*LBL0 RCL3 RCL3 RCL3 RCL4 - X RCL4 + X RCL5 -	find the real 3rd order root of $f(C_1) = 0$ calculate $f(C_1)$ as: $f(C_1) = C_1^3 - AC_1^2 + \frac{2B}{2}O_1 - 3C$ REGIN	099 R4 100 RTM 101 *LBLE 102 GS89 103 RCL3 104 P#S 105 SF2 106 R4 107 ST02 108 R4 109 ST01 110 R4	LOAD ALTERNATE CAPACITOR VALUES FOR $O_1$ , $O_2$ , & $O_3$ initialize registers store $O_1$ , $O_2$ , & $O_3$
045 046 047 048 049 050 051 052 053 054 054 055	*LBL0 RCL3 RCL3 RCL3 RCL4 - X RCL4 + X RCL5 -	find the real 3rd order root of $f(C_1) = 0$ calculate $f(C_1)$ as: $f(C_1) = C_1^3 - AC_1^2 + \frac{2B}{2}O_1 - 3C$ REGIN	θ99         RI           100         RTM           101         #LBLE           102         GSB9           103         RCL3           104         P29           105         SF2           106         RI           107         ST02           108         RI           109         ST01           110         RI           STERS         6           1/ε         6	LOAD ALTERNATE CAPACITOR VALUES FOR $O_1$ , $O_2$ , & $O_3$ initialize registers store $O_1$ , $O_2$ , & $O_3$
045 046 047 048 049 050 051 052 053 054 054 055	*LBL0 RCL3 RCL3 RCL3 RCL4 - X RCL4 + X RCL5 -	find the real 3rd order root of $f(C_1) = 0$ calculate $f(C_1)$ as: $f(C_1) = C_1^3 - AC_1^2 + \frac{2B}{2}O_1 - 3C$ REGIN	θ99         RI           100         RTM           101         #LBLE           102         GSB9           103         RCL3           104         P\$5           105         SF2           106         RI           107         ST02           108         RI           109         ST01           110         RI           STERS         6           5         1/ε           5         S6	LOAD ALTERNATE CAPACITOR VALUES FOR $O_1$ , $O_2$ , & $O_3$ initialize registers store $O_1$ , $O_2$ , & $O_3$
045 046 047 048 049 050 051 052 053 054 054 055	*LBL0 RCL3 RCL3 RCL3 RCL4 - X RCL4 + X RCL5 -	find the real 3rd order root of $f(C_1) = 0$ calculate $f(C_1)$ as: $f(C_1) = C_1^3 - AC_1^2 + \frac{2B}{2}O_1 - 3C$ REGIN	θ99         RI           100         RTM           101         #LBLE           102         GSB9           103         RCL3           104         P29           105         SF2           106         RI           107         ST02           108         RI           109         ST01           110         RI           STERS         6           1/ε         6	LOAD ALTERNATE CAPACITOR VALUES FOR $C_1$ , $C_2$ , & $C_3$ initialize registers store $C_1$ , $C_2$ , & $C_3$
045 046 047 048 049 050 051 052 053 054 054 055	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL3 RCL4 *	find the real 3rd order root of $f(C_1) = 0$ calculate $f(C_1)$ as: $f(C_1) = C_1^3 - AC_1^2 + \frac{2B}{2}O_1 - 3C$ REGIN	099         RI           100         RTM           101         *LBLE           102         GSB9           103         RCL3           104         P#S           105         SF2           106         RI           107         ST02           108         RI           109         ST01           110         RI           5         1/ε           6         R           STERS         6           STERS         85           81/ε         6           R1, 30         R	LOAD ALTERNATE CAPACITOR VALUES FOR $O_1$ , $O_2$ , & $O_3$ initialize registers store $O_1$ , $O_2$ , & $O_3$ $\frac{7}{\omega_k}$ $\frac{8}{\sigma_k}$ $\frac{9}{10^{-8}}$
045 046 047 048 049 050 051 052 053 054 054 055 01, <u>2</u>	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL4 * RCL4 * RCL4 * * RCL5 -	find the real 3rd order root of $f(C_1) = 0$ calculate $f(C_1)$ as: $f(C_1) = C_1^3 - AC_1^2 + \frac{2B}{2}O_1 - 3C$ REGIN	099         RI           100         RTM           101         *LBLE           102         GSB9           103         RCL3           104         P#S           105         SF2           106         RI           107         ST02           108         RI           109         ST01           110         RI           5         1/ε           6         R           STERS         6           STERS         85           81/ε         6           R1, 30         R	LOAD ALTERNATE CAPACITOR VALUES FOR $O_1$ , $O_2$ , & $O_3$ initialize registers store $O_1$ , $O_2$ , & $O_3$ $\frac{7}{\omega_k}$ $\frac{8}{\sigma_k}$ $\frac{9}{10^{-8}}$
045 046 047 048 049 050 051 052 053 054 054 055 01, <u>2</u>	*LBL0 RCL3 RCL3 RCL3 RCL3 RCL4 * RCL4 * RCL4 * * RCL5 -	find the real 3rd order root of $f(C_1) = 0$ calculate $f(C_1)$ as: $f(C_1) = C_1^3 - AC_1^2 + \frac{2B}{2}O_1 - 3C$ REGIN	θ99         RI           100         RTM           101         #LBLE           102         GSB9           103         RCL3           104         P25           105         SF2           106         RI           107         ST02           108         RI           109         ST01           110         RI           5         1/ε           6         R           STERS         S6           ST, 30         R	LOAD ALTERNATE CAPACITOR VALUES FOR $O_1$ , $O_2$ , & $O_3$ initialize registers store $C_1$ , $C_2$ , & $C_3$ $\begin{bmatrix} 7 & \omega_k & \sigma_k & 9 \\ & \sigma_k & 57 \\ & scratch & scratch & 59 \\ & 10^{-8} \end{bmatrix}$
045 046 047 048 049 050 051 052 053 054 055 054 055	*LBL0 RCL3 RCL3 RCL3 RCL4 - X RCL4 + X RCL5 -	find the real 3rd order root of $f(C_1) = 0$ calculate $f(C_1)$ as: $f(C_1) = C_1^3 - AC_1^2 + \frac{2B}{2}O_1 - 3C$ REGIN	099         RI           100         RTM           101         *LBLE           102         GSB9           103         RCL3           104         P#S           105         SF2           106         RI           107         ST02           108         RI           109         ST01           110         RI           5         1/ε           6         R           STERS         6           STERS         85           81/ε         6           R1, 30         R	LOAD ALTERNATE CAPACITOR VALUES FOR $O_1$ , $O_2$ , & $O_3$ initialize registers store $O_1$ , $O_2$ , & $O_3$ $\frac{7}{\omega_k}$ $\frac{8}{\sigma_k}$ $\frac{9}{10^{-8}}$

2–9 , CARD 2

Program Listing II

112       FU       FU       167       PETX         113       RCL6       form $\Delta_{gdB} + R$ 166       RCL6         114       X       form $\Delta_{gdB} + R$ 166       RCL6         115       STNP       form localize 01, 02, 03       171       FEP       FEP Strest restrict order         117       STN2       form and store:       0       171       FEP Strest restrict order         120       RCL6       form and store:       0       177       RCL2       c.       as defined by:         122       + form and store:       0       0''''''''''''''''''''''''''''''''''''											
113       RCL6       FORM $2edB$ R         114       x       168       RCL8         115       STM       normalize 0', 0', 0'       171       F22       if flag 2, restore         116       STM       normalize 0', 0'       0'       171       F22       if flag 2, restore         118       STM       normalize 0', 0'       0'       172       F22       if flag 2, restore         120       FX       normalize 0', 0'       0'       172       F22       if flag 2, restore         121       RCL6       RCL6       RCL6       RCL6       RCL6       RCL6         122       FX       form and store:       0       173       RCL6       RL 6       RCL6       RCL 6       RC	111	STOO					166	X‡Y [™]			
113       RCL6       FORM $2_{edB} \rightarrow R$ 114       x       166       RCL6         115       STM       normalize of, of, of       177       F22       if flag 2, restore         116       STM       normalize of, of, of       177       F22       if flag 2, restore         118       EEX       store initial guess for R1       177       F22       if flag 2, restore         120       FORM       store initial guess for R1       177       F22       if flag 2, restore         121       RCL6       Form and store:       0       176       RCL6       R3       GR(R1)         122       STO7       calculate and store:       0       176       RCL6       R3       GR(R1)         123       RCL7       Epserti isorition loop start       182       RCL6       R1       R2       RCL6       R1       R2		R↓					167	PRTX			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		RCL6	form $\omega_{cdp} * R$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-cub								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		CTVI	normalize 0. (	1 01					4f flog 2	mastore	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		CTVD	normarine ol, c	² , ³					TT TTAR 5	, resure	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				· · · · · · · · · · · · · · · · · · ·					PES regis	ster order	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			store initial g	uess for R	5						
121       RCL0       form and store:       0         123       RCL1       6       R, R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2       R, RCL2 </td <td>119</td> <td>\$103</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td>subroutin</td> <td>e for Rl = 3</td> <td>r(g(R<u>1</u>)) _</td>	119	\$103			<u> </u>				subroutin	e for Rl = 3	r(g(R <u>1</u> )) _
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		RCLØ	form and store.	O						$R_3 = g(R_1)$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	122	÷	TOTH CHIC DUCTO;	01.05			177	RCL2 C	3	as defined	by:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	123	RCL1		1 6			178	+			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	124	÷					179	ST07	Rat NGCI	LI-CIT-KACI	K.D - Ci
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		STOI							5	R, CzCz	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Fonerti iterati	on loon st	e rt			x			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					<u>~ - ` -</u>				2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				store:							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0000	$R_{1} = f(g(R_{1}))$						-1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5104						X			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 4	6588	calculate and s	store				-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>stos</u>	$\underline{R_1} = \underline{f(g(\underline{R_1}))}$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			calculete. S - T	2' _ P					5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[ <u>133</u>										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		RCL3	calculate. S'= T	<b>f</b> R <u>í</u>			189	RCLC C	2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ST-4		` <b>т</b> 1							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		RCL 4									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5-0					-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0=0 escape					PCI 1 C	<b>`</b> _		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	170										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									- 5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				c							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		RUL4	form: $\Delta R_1 = -$	0							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		÷	1 1	- 878							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		÷									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	145	ST+3	form Rin+1 = H	$Rl_n + \Delta Rl$			200	<u>ST08</u>	store Rz		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	146	RCL3					201	RCL2 C	a: R.≠	f(Rz) as d	efined by
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 147	÷	iterate again i	f			202	x	-, -,1		2110 4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ABS						RCLA A	ι	1 101	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$ \Delta \mathbf{R}_1  > -\epsilon$	3					$R_{1} =$		<u></u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			R ₁ 10					CHS	T	2a <b>`V[2a</b>	ja
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 - <b>T</b>								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										8 <b>.</b>	n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										~ - v ₁ -	~3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									Ь	L	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C					28	$-\mathbf{p} = \mathbf{A} - \mathbf{C}$	3 ^K 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CHICULATE R2= 7	LO.C-R-P							-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		- (	1~2~3~1~3						c ≖ C/(C ₁	0 ₂ R3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		÷								-	- /
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	158	RCL8						RCL8			
160RCL6161ST×3162ST×8162ST×8163 $x$ 164RCL3165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX165PRTX <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>214</td> <td>÷</td> <td></td> <td></td> <td></td>							214	÷			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		RCL6						RCL7			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			denormalize rea	sistors				÷	-		
$\frac{163 \times 164 \text{ RCL3 print } R_1, R_2, \text{ and } R_3}{165 \text{ PRTx}} \qquad 218 \text{ IX} \\ 219 + R_1 \\ 220 \text{ RTN} \\ 220 \text{ RTN} \\ \frac{165 \text{ PRTx}}{220 \text{ RTN}} \\ \frac{165 \text{ PRTx}}{100 \text{ C} 160 \text{ C} 100 $								- '	-		
164RCL3print $R_1$ , $R_2$ , and $R_3$ 219+ $R_1$ 165PRTXLABELS220RTNABCDE C 103d0abcde10 Newton-'denormalize'342 P < S used								ГX			
InterpretationLABELSFLAGSSET STATUSABCD $E_{C_1}, O_2, C_3$ 0FLAGSTRIGDISPabcde1ON OFFON OFFDEGFIXabcde1ON OFFDEGFIXabcde1ON OFFDEGFIXabcde1ON OFFDEGFIXabcde1GRADSCIabcdde1GRADSCIabcdde1GRADSCIabcddefillefillefille			nrint P. n						2		
LABELS     FLAGS     SET STATUS       A     B     C     D     E Clip O2, Cg     0     FLAGS     TRIG     DISP       a     b     c     d     e     1     ON OFF     DEG     FIX       0 Newton-     1denormalize2     3     4     2 P ≥S used     1     GRAD     SCI	<b>,</b>	DDTV	^r ¹ , ^K ₂ , ⁸	uu rz					·•.		
ABCDElogd C0FLAGSTRIGDISPabcd $\theta$ 1ON OFFDEGFIXo Newton- routine1 denormalize2342 P < sused o dd # time1GRADSCI	100	FRIA			1		120	610			
ABCDElogd C0FLAGSTRIGDISPabcd $\theta$ 1ON OFFDEGFIXo Newton- routine1 denormalize2342 P < sused o dd # time1GRADSCI			<del> </del>			L			T		····
a b c d e 1 ON OFF 0 Newton- 1denormalize 2 3 4 2 P & used 1 GRAD SCI Raphson routine	A				12	684	_	LAGS	ļ	SET STATUS	
a b c d e 1 ON OFF 0 Newton- 1denormalize 2 3 4 2 P & used 1 GRAD SCI Raphson routine		Ľ		٢	[°0 ₁ ]	02,0z	ľ		FLAGS	TRIG	DISP
0 Newton- 1 denormalize 3 4 2 P≷S used 1 GRAD SCI Rephson routine GRAD SCI	a	b	c	d	_	,	1		ON OFF	T	
Raphson routine load # time	0 North and	1.3		<u> </u>	<u> </u>						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Raphson	routi	naliza ²	3			2 28	o_used	1 -		
escape routine go [ Al=1g(A])   routine ] 3	5	6	7Esperti	8 p1 - 0/- (p 1)	9 P2	S	3			HAD 🔳	
	L	escap	e routine go	<u>   wi=ik (kj)</u>	roi	utine	<u> </u>		13	<u> </u>	

<u>HP-67 suggested program changes.</u> Program space does not allow the addition of a print, R/S toggle and associated output routine. If the HP-67 user would like the program to stop instead of halting for 5 seconds (print command) change the "print" statements to "R/S" at the following line numbers: (program 1); 122, 130, 147, 153, 178, 187, and 200; (program 2); 098, 165, 167, and 169. To resume program execution with the above changes, execute a "R/S" command from the keyboard after each data output point.

### PROGRAM 2-10 BUTTERWORTH AND CHEBYSHEV ACTIVE HIGHPASS FILTER DESIGN AND POLE LOCATIONS.

#### Program Description and Equations Used

This program calculates the normalized pole locations and provides element values for the un-normalized, unity gain Sallen and Key type second and third order highpass active resonator circuit. Higher order filters are formed by cascading second order sections, and one third order section if the filter order is odd. The program uses either the Butterworth (maximally flat) or Chebyshev (equiripple passband) all pole filter descriptions.

The program is designed to allow the use of specified capacitor values such as would result from the actual measurement of a standard value capacitor. The corresponding resistor values are calculated for each section. The nearest 1% standard value precision resistor will generally suffice for the calculated value.

The design process starts by finding the normalized lowpass pole locations for the desired filter type. If the passband cutoff frequency is different from the conventional definition of the bandedge, a scaling of the normalized cutoff frequency is done. The Butterworth amplitude response is 3 dB down at the passband edge, while the Chebyshev amplitude response is  $\varepsilon$  dB down at the passband edge, where  $\varepsilon$  dB is the passband ripple in dB. The scaling factor is K, and the normalized filter cutoff frequency is denoted by  $\omega_{n}$ .

The normalized and scaled lowpass pole locations are sequentially found as complex conjugate pairs, and, if the filter order is odd, the real pole location. The lowpass, unity-gain, Sallen and Key, normalized active filter circuit element values may be found in terms of these pole locations. The element values of the highpass normalized active resonator may be found from the normalized lowpass structure. The normalized lowpass structure is transformed to the normalized highpass structure by replacing each lowpass resistor with a capacitor and vice versa.

253

The normalized highpass element values are the reciprocals of the corresponding converted lowpass element, i.e., a 2 farad capacitor becomes a  $\frac{1}{2}$  ohm resistor. This conversion is equivalent to replacing s by 1/s in the lowpass transfer function equation. The un-normalized highpass equation is found by replacing s by  $\omega_c/s$ , where  $\omega_c = 2\pi f_c$ , and  $f_c$  is the highpass cutoff frequency in hertz.

Each complex conjugate pole pair can be expressed in either the cartesian (real and imaginary parts) or the polar (magnitude and angle) co-ordinate system. A variation on the polar system allows the pole pair to be defined in terms of the natural frequency,  $\omega_n$ , and "Q" or quality factor. The relationships between these co-ordinate systems is shown in Fig. 2-9.1 The Butterworth and Chebyshev pole locations are given in Program 2-2. By putting all the foregoing concepts together, the denormalized highpass element values can be expressed in terms of  $\omega_n$  and Q with the second order circuit topology as shown in Fig. 2-10.1.



Figure 2-10.1 Highpass Sallen and Key circuit.

$$R_{1} = \frac{\omega_{n}/\omega_{c}}{Q(C_{1} + C_{2})}$$
(2-10.1)  

$$R_{2} = \frac{(\omega_{n}/\omega_{c})^{2}}{R_{1} \cdot C_{1} \cdot C_{2}}$$
(2-10.2)

The Sallen and Key unity-gain op-amp resonator is chosen over other types because of its low component count and low parameter sensitivities to element value changes (see [19]). High Q realizations are difficult with this resonator type since the resistor value spread is  $4Q^2$  when the capacitor values are equal, however, this constraint is not a problem here since the pole Q's are rarely greater than 10. High pole Q's occur with higher order filters (n greater than 9 or so). In these cases, the Szentirmai leapfrog topology [48], should be given consideration, or else an elliptic response lower order filter might meet the amplitude response requirements (the phase response will be less linear however).

All operational amplifiers have bandwidth limitations, i.e., the  $\mu$ A-741 has unity open loop gain at 500 kHz typically. When the operating frequency range of the active filter contains frequencies that approach 1% of the op-amp unity gain crossover frequency (500 kHz for the  $\mu$ A-741), then the contribution of the operational amplifier compensation pole and lower open loop gain must be considered. Program 1-3 can be used to calculate the pole location shifts. Positive and negative feedback resonators of the Deliyannis type can accommodate the op-amp compensation pole and open loop gain characteristic (see [19]).

If the filter order is odd, then a real pole exists. A third order op-amp active resonator circuit may be used to produce both the real pole and a complex conjugate pair. The lowest Q pole pair is chosen for realization by this circuit to keep the element value spread within bounds, and also to minimize sensitivities. The third order active highpass topology is shown in Fig. 2-10.2.



Figure 2-10.2 Third order highpass active filter section.

The transfer function in terms of the R's and C's assuming an ideal operational amplifier is:

$$\frac{E_{out}}{E_{in}} = \frac{s^{3}R_{1}R_{2}R_{3}C_{1}C_{2}C_{3}}{D(s)}$$
(2-10.3)

where

$$D(s) = s^{3}R_{1}R_{2}R_{3}C_{1}C_{2}C_{3} + s^{2}R_{2}\{R_{3}C_{2}C_{3} + R_{1} \text{ } \Sigma CC\}$$
$$+ s\{R_{1}(C_{1}+C_{2}) + R_{2}(C_{2} + C_{3})\} + 1$$

and

$$\Sigma CC = C_1 C_2 + C_2 C_3 + C_1 C_3$$
 (2-10.4)

The resistor values may be obtained from the capacitor values and the pole locations by the simultaneous solution of three equations in three unknowns. These three equations are generated by equating like powers of s between the desired transfer function as expressed with the pole locations and the above transfer function. The desired transfer function in terms of the complex conjugate pole pair as expressed through  $\omega_n$  and Q, and the real pole location,  $1/\tau$ , is:

$$\frac{E_{out}}{E_{in}} = \frac{s^3 \left(\frac{1}{\omega_c \tau}\right) \cdot \left(\frac{\omega_n}{\omega_c}\right)^2}{\left\{\frac{s}{\omega_c \tau} + 1\right\} \left\{s^2 \left(\frac{\omega_n}{\omega_c}\right)^2 + s \left(\frac{1}{Q}\right) \left(\frac{\omega_n}{\omega_c}\right) + 1\right\}}$$
(2-10.5)

or, in descending powers of s:

$$\frac{\mathbf{E}_{out}}{\mathbf{E}_{in}} = \frac{\mathbf{s}^{3} \left(\frac{\omega_{n}}{\omega_{c}}\right)^{2} \cdot \left(\frac{1}{\omega_{c}\tau}\right)}{\mathbf{s}^{3} \left(\frac{\omega_{n}}{\omega_{c}}\right)^{2} \left(\frac{1}{\omega_{c}\tau}\right) + \mathbf{s}^{2} \left(\frac{\omega_{n}}{\omega_{c}}\right)^{2} \left(1 + \frac{1}{\omega_{n}Q\tau}\right) + \mathbf{s} \left(\frac{\omega_{n}}{\omega_{c}}\right) \left(\frac{1}{Q} + \frac{1}{\omega_{n}\tau}\right) + 1}$$
(2-10.6)

The resulting three equations in three unknowns are:

$$R_1 R_2 R_3 C_1 C_2 C_3 = \left(\frac{\omega_n}{\omega_c}\right)^2 \left(\frac{1}{\omega_c^{\tau}}\right)$$
(2-10.7)

$$R_2 (R_3 C_2 C_3 + R_1 \Sigma CC) = \left(\frac{\omega_n}{\omega_c}\right)^2 \left(1 + \frac{1}{\omega_n Q_\tau}\right) \qquad (2-10.8)$$

$$R_1 (C_1 + C_2) + R_2(C_2 + C_3) = \left(\frac{\omega_n}{\omega_c}\right) \left(\frac{1}{Q} + \frac{1}{\omega_n^{\tau}}\right) (2-10.9)$$

After algebraic manipulation, a cubic equation in  $R_1$  alone is obtained:

$$R_1^3 K_3 + R_1^2 K_2 - R_1 K_1 + K_0 = 0$$
 (2-10.10)

where the constants  $K_3$ ,  $K_2$ ,  $K_1$ , and  $K_0$  are defined by:

$$K_3 = - (C_1 + C_2)(C_1 \Sigma CC)$$
 (2-10.11)

$$K_{2} = \left(\frac{1}{Q} + \frac{1}{\omega_{n}\tau}\right) \left(c_{1\Sigma}cc\right) \left(\frac{\omega_{n}}{\omega_{c}}\right)$$
(2-10.12)

$$K_{1} = \left(1 + \frac{1}{\omega_{n}^{Q_{T}}}\right) \left(C_{1}(C_{2} + C_{3})\right) \left(\frac{\omega_{n}}{\omega_{c}}\right)^{2} \qquad (2-10.13)$$

$$K_0 = (C_2 + C_3) \left(\frac{1}{\omega_c^{\tau}}\right) \left(\frac{\omega_n}{\omega_c}\right)^2 \qquad (2-10.14)$$

The program uses a Newton-Raphson iterative solution to find the real root of Eq. (2-10.10) for  $R_1$  (there will be at least one real root). The details of the Newton-Raphson technique are shown in Program 1-5.

Once  $R_1$  has been obtained, the values for  $R_2$  and  $R_3$  are obtained using the following equations:

$$R_{2} = \left(\frac{1}{C_{2} + C_{3}}\right) \left\{ \frac{\omega_{n}}{\omega_{c}} \left(\frac{1}{Q} + \frac{1}{\omega_{n}\tau}\right) - R_{1}(C_{1} + C_{2}) \right\} (2-10.15)$$

$$R_{3} = \left(\frac{\omega_{n}}{\omega_{c}}\right)^{2} \left(\frac{1}{\omega_{c}\tau}\right) \left(\frac{1}{R_{1}R_{2}C_{1}C_{2}C_{3}}\right) \qquad (2-10.16)$$

# 2-10 User Instructions

BUTTERWORTH AND	CHEBYSHEV ACTIVE HIGHPASS FILTERS	
C: nt∈dB	load f-édB & start	
B: n B: $\in$ dB	R load f-3dB load & start 0, fC2	7

STE	P INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT
1	Read both sides of program card one	PATAONIS		DATA/UNITS
2	If Ohebyshev response is desired:		╉╼╾╌╌╸	·
	a) Load filter order	n	ENT 1	
	b) Load passband ripple in dB	€å₿		
	c) go to step 4			
			-1	
	If Butterworth response is desired:	<u> </u>	<del> </del>	
	Load filter order			
		<u>n</u>		
	If the passband edge is defined at other		ł	
	than the -3dB point, enter the bandedge		-	
	attenuation in dB (attenuation is expres-			
	sed as a positive number)		l	
		€dB	B	
4	Load operating resistance level ***			
	The calculated resistor values will	R		
	usually be within a decade of this value.			
5	If the passband edge is defined by the -3dB			
	amolitude normance maint			
	amplitude response point, enter f-JdB	f-3dB	D	f-EdB*
	*The Chabrel tend 1			
	*The Chebyshev bandedge is usually de-			See step6
	fined by the $-\epsilon dB$ point since the pass-			continua_
	band response oscillates within a band			tion on
	EdB wide. If a Chebyshev response has			next page
	been selected, the frequency where the			for rest
	amplitude response exits the <db ripple<="" td=""><td></td><td></td><td>of output.</td></db>			of output.
	band will be printed.			
••				
	go to step 7 (read step 6 commentary)			
5				
	If the passband edge is defined by the $-\epsilon dB$		<u>-</u>	<u>├──</u>
	point, enter f-édB ***	f-edB	f p	f-3dB**
			╺─────┘ <b>└──[™]──</b> ┤	
	**If Butterworth response has been selected,			
	the frequency where the response is 3d8			
<b> </b>	down will be printed.			
				I I

## 2-10 User Instructions



STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6				Cdesign
	The design capacitance value is outputted.** $\star$			
	If this value is unacceptable from a circuit			
	or practicality point of view, alter the design resistance level accordingly using			
	key "C", then recalculate the design capa-	new R	C	
	citance level using key "D". The design		μ	new Cdes
+	cutoff frequency need not be re-entered			
	even though the original frequency entry was via keys "f", "D".			
	was via keys "i", "D".			
	When an acceptable design capacitance level	•••••		
	has been found, continue program output by			
	using "R/S".		R/S	$\omega_{n_1}$
				Q1
				stop
7	Enter capacitor values to be used in this			
	second order filter section ***	01	ENT	
		02		R ₁
		······································		R ₂
				space
		••••		<u>n2</u>
				<u>Q2</u>
	*			stop
	Keep entering capacitor values for suc- ceeding sections until all second order	C ₁₂		R12
	sections have been defined.	0 ₂₂		
		•		
	If an odd order filter is being designed,	:		
	the last printout will be a set of three numbers, and the display will flash to	Cln		•
	indicate that the loading of the second	°2 _n		R2n
	card is required. It is not necessary to			
	stop the program, just insert the second			odd order filter:
	card into the card reader and read both sides.			last sect
	After the second card reading is complete,		$\land$	$\omega_{\rm n}$
	load the three capacitor values to be used			Q
	with this third order filter section using	•		1/~
<b>├</b> •	key "E".	01	ENT	flashing display
}	*** The unit of resistance is ohms,	01 02		uispiay
	capacitance is farads, and frequency	03		R1
	is hertz.		:	R ₂
				<u>-</u> Rz
			<u> </u>	-7

#### Example 2-10.1

A fifth order, ½ dB passband ripple Chebyshev active highpass filter is to have 3 dB or less attenuation at 10 Hz. A National Semiconductor type LF-156 bi-fet operational amplifier is chosen as the active element in the filter.

Design an active filter to meet these specifications and choose the operating resistance level to achieve the lowest capacitance values in the filter without affecting the dc drift characteristics of the operational amplifier by more than 10%. The operating temperature range is -25°C to +85°C.

From the LF-156 data sheet, the maximum input bias current occurs at the highest operating temperature, +85°C, and is approximately 1 nA. The typical input offset voltage is 3 millivolts. The resistance level that will generate 0.3 millivolts with 1 nA flowing is:

$$R = (3 \times 10^{-4} V) / (1 \times 10^{-9} A) = 300 k\Omega$$

The filter is then designed with this value in mind as the largest resistance value which has an effect on the dc output of the last filter stage. Being a highpass filter, each stage of the filter blocks the dc voltage present from the preceding stage.

The filter design will be done twice, once with 300 k $\Omega$  as the design resistance level to determine the value of R₂ in the last (third order) section. The operating resistance level is then scaled to cause the highest resistance value (R₂) to be 300 k $\Omega$ . The HP-97 printout for these operations is shown on the next page.

In the second run of the program, the design capacitance level is 0.1749  $\mu$ F. The nearest larger standard capacitor value is 0.22  $\mu$ F. The filter will require five capacitors, therefore, five 0.22  $\mu$ F mylar capacitors were drawn from stock, and their capacities measured. The measured values were: .2236  $\mu$ F, .2014  $\mu$ F, .1965  $\mu$ F, .2173  $\mu$ F, and 0.2542  $\mu$ F. The filter resistances are designed around these capacitor values.

### Example 2-10.1 printout

FIRST PROG	RAM RUN	SECOND PROGRAM RUN
LOAD FIRST 5. ENT† .5 SSBa	PROGRAM CARD load filter order load passband ripple	LOAD FIRST PROGRAM CARD 5. ENT: .5 GSBa
300000. G3BC 10. S5BD 10.59+00 ***	load -3dB frequency	90.99+03 6552 load new design resistance level 10. 6582 10.59+00 ***
53.05-05 *** R/S	design capacitance level (output) continue execution	174.9-83 *** new design capacitor value (output) R/5
960.8-33 *** 4.545+00 *** 53.05-09 ENT† GSBE 31.71+03 *** 2.620+06 ***	enter first section design capacitance	966.8-03 *** wn 4.545+00 *** Q .2236-06 ENT† C1 first section .2014-06 SSBE C2 selected caps 7.916+03 *** R1 first section 655.9+03 *** R2 resistor values
651.9-03 *** 1.178+00 *** 342.1-03 ***	Q second section 1/r LOAD SECOND CARD	651.9-03 *** ω _n 1.178+00 *** Q second section 342.1-03 *** ^{1/} ~ LOAD SECOND CARD
53.05-89 ENT† ENT† ESBE 98.47÷03 *** 43.86÷03 *** 985.1+03 ***	enter design cap R1 ) second section R2 ( resistor values	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
985.1+03 ENT1 300.+03 ÷ 1 % 303.3-03 *** 300030. 90.99+03 ***	to make $R_3$ become 300 k $\Omega$	247.5+03 *** ~3)
E _{in} o	FINAL SC 79/6 A 79/6 A 4/F 4/F 4/F 4/F 5 656 K.A	DHEMATIC $P_{0}$ $P_{0}$ $P_$

2—10, CARD 1

**Program Listing I** 

00: *LBLA_BUTTERWORTH: LOAD n	056 Y×
002 SF1 indicate Butterworth	057 ENT†
BO3 EEX setup registers:	958 1/X
$\frac{804}{500} \text{ stop } f - \frac{3}{3} dB / f - \epsilon dB = 1$	859 +
005 STOD cosh a = 1	060 ÷
$\frac{006}{5TOE} = \sinh a = 1$	061 STOB
067 GSB5	062 GT06
<u> </u>	<u>063</u> *LBLB LOAD ∈ dB for Butterworth
009 *LBLa OHEBYSHEV: LOAD n + EdB	864 EEX calculate and store:
010 CF1 _indicate Chebyshev	
011 STOB store EdB	065 ÷
812 6\$85 gosub input routine	067 10×
013 RCLB calculate:	
AIA FFX	$069 - f - 3dB \left[ 0.1 \le dB \right] \frac{1}{2n}$
$\theta_{15}$ $1  \epsilon = (10^{0.1 \epsilon dB} - 1)^{\frac{1}{2}}$	$\frac{\partial GO}{\partial GO} = \frac{f - 3dB}{f - 4dB} = \left[10^{0.1 \le dB} - 1\right]^{\frac{1}{2n}}$
016 ÷	071 1/X
017 10×	072 Y×
018 EEX	· · ·
019 -	
020 JX	
891 120	
$622$ $3705$ store $1/\epsilon \rightarrow R5$	<u>076 GT06</u>
023 ENT calculate and store;	077 *LBLC LOAD OPERATING RESISTANCE
024 X2	alo Sibs LEVEL
025 EEX	<u>079 GT06</u>
026 +	080 *LBLD LOAD f-3dB and START
$\theta_{27}^{20}$ JX $a = \frac{1}{1} \sinh^{-1}(\frac{1}{1}) = B_2$	031 STOC temporarily store f-3dB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
029 RCLA	000 0100
025 RCLH 030 1/X	884 RCLB recall Cheb denorm ratio
030 17X 031 7×	085 5103
	086 ÷ form - ¢dB frequency
	eor roy print f-edB if data entered
	088 6584
034 1/X	089 RCLC recall f-3dB
$\theta_{35}$ - sinh a - RE	898 *LELS LOAD f-EdB and STAPT
<i>036 2</i>	- 571 STUL _temporarily store frequency
637 ÷	Fecall Buttr denorm ratio
<u>838 STOE</u>	693 F19 10 Public
039 RCL2 calculate and store:	894 STO3 if Buttr, store ratio
046 ENT†	895 ÷ if Buttemunth
041 1/X	696 F1? if Butterworth, calculate
$842 + \cosh a \rightarrow RD$	097 PRTX and print f-3dB
043 2	₩ 098 ¥LBL0
044 ÷	099 SPC
<u>045 STOD</u>	100 CF2
046 LSTX calculate and store:	101 RCLC 10 01- 7 0.0
047 RCL5	102 ENT: if flag 3, 2nfe + R5
048 ENT	103 +
$849 \times 2$	104 Pi
$\frac{858}{851} = \frac{\mathbf{f} - \mathbf{c}  \mathbf{d} \mathbf{B}}{\mathbf{f} - 3  \mathbf{d} \mathbf{B}} = \cosh\left(\frac{1}{n} \cosh^{-1}\left(\frac{1}{\mathbf{c}}\right)\right)$	105 x
	106 F3?
052 1%	107 ST05
055 +	108 RCL5
054 RCLA	109 RCL6 calculate and print
055 1/X	110 x nominal capacitor value
$^{\circ}$ 21c-1 $^{\circ}$ Q $^{\circ}$ a or $\omega$ $^{\circ}$	
	$\omega_{c}, \frac{1}{\epsilon}$ R $\frac{7}{\omega_{r}} \omega_{c}$ $\frac{8}{\omega_{c}}$ $\frac{9}{C_{2}}$
S0 S1 S2 S3 S4 S5	S6 S7 S8 S9
A filter order, $\stackrel{B}{\leftarrow}_{dB}$ , 1, $\frac{f-3dB}{f-\epsilon dB}$ C cutoff D frequency	
n $e^{dB'}$ , $f^{-\epsilon dB}$ frequency	$\frac{\cosh a \text{ or } 1}{2n} = \frac{1}{2n}$
	2n

2-10, CARD 1

**Program Listing II** 

	100 000 4
111 1/X print design capacitance	166 RCL4 167 x calculate and print R ₂
112 PRTX Print doing dopoint and	107 A 22
114 R/S await operator decision	
115 FEX	$ \begin{vmatrix} 169 & \mathbf{x} \\ 170 & RCL7 \\ 171 & \mathbf{x} \end{vmatrix}  \mathbf{R}_2 = \frac{(\omega_n/\omega_c)^2}{\mathbf{R}_1 \cdot \mathbf{C}_1 \cdot \mathbf{C}_2} $
116 STO0 setup for next loop	$   171 \qquad X^2 \qquad \qquad R_1 \cdot C_1 \cdot C_2$
117 *LBL1 second order filter loop	<b>  172</b> X≠Y
118 SPC	
119 RCL0 calculate normalized	$\left  \left  \frac{174 \ PRTX}{175 \ PCLR}$
120 RCLI pole locations: 121 x	175 RCL0 176 RCLA test for loop exit
121 Â 122 EEX	176 RCLH 100 100 000 000
$122 \xrightarrow{i} \mathcal{R} \sigma_{\overline{k}} = (\sinh a)(\sin((2k-1)\frac{\pi}{2n}))$	4-178 ST01
$124 \ RCLD$ $(SIM(2K-1))$	
125 × $\omega_{\rm h} = (\cosh a)(\cos((2k-1)\pi))$	180 SPC
126 X#Y K 2n'	151 RTN
127 RCLE	► 182 *LEL2 3rd order filter section
	183 RCLE calculate and print
$\begin{array}{cccc} 129 & \Rightarrow F & \text{calculate } \omega_{n_{1}} & \text{and } Q_{k}, & \text{scale} \\ 130 & RCL3 & \omega_{n_{1}} & \text{for proper normalized} \end{array}$	184 KULS real 3rd order pole location
$130  RCL3  \omega_{n_k}$ for proper normalized $131  \times  \text{bandedre}$	185 x 185 y 185 1864 8100 1864 8100
	187 SPC
$132  FKIA \\ 133  ST02  \omega_{n_k} = \left[\omega_k^2 + \sigma_k^2\right]^{\frac{1}{2}} (K)$	-188 #LEL3 wait loop for second
134 A+7	189 SF2 card read
135 COS	190 PSE
$\begin{array}{cccc} 135 & cus \\ 136 & ENT \uparrow & \mathbf{Q}_{\mathbf{k}} = \frac{1}{2\cos(\tan^{-1}\frac{\omega_{\mathbf{k}}}{\sigma_{\mathbf{k}}})} \end{array}$	191 GT03
$137 + 2\cos(\tan^{-1}\frac{\omega_k}{\sigma_k})$	192 *LEL4 print and set flag 3
138 178	193 PRTX
139 STO1 140 PRTX	194 SF3 105 DTN
1 141 2	<u>195 RTN</u> <u>196 #LBL5 entry subroutine</u>
142 ST+0 increment 2k by 2	
143 F0? if even order filter, rtn	198 STUR recover and store n
144 RTN and await capacitor values	199 2
145 RCL0 odd order filter:	200 ÷ 201 FPC set flag O if n is even
146 RCLA jump if last section	201 1 / / / / / / / / / / / / / / / / / /
147 X≟Y? → 149 CT22	202 CF0
149 RTN_await capacitor values	203 X=0? 204 SEA
149 RIN_await capacitor values 150 *LBLE LOAD CAPACITOR VALUES	204SF0 205
151 F2? reject input if 3rd order	
<u>152 GT03 section has been outputted</u>	207 ENT [†] calculate and store:
153 ST09_store 02	000
$1 154 X^{\ddagger Y}$ store $0_1$	$209 \div 2n + RL$
	210 STOI
156 + calculate and print R ₁	211 EEX 212 STOT W initialization
	212 STO3 ⁰ n initialization 213 RTN
$ \begin{array}{ c c c c c } 158 & x \\ 159 & RCL2 \\ 159 & RCL2 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 159 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150 & RCL5 \\ 150$	214 + BIE
160 RCL5 Q(O1 + O2)	alf coc exit routine,
161 ÷	215 CF3 clear flag 3 and space
162 ST07	217 RTN
163 X±Y	
165 PRTX	NOTE TRIG MODE
LABELS	FLAGS SET STATUS
A Butter B Butter C D LOADF-JdBE LOA load n load edB LOAD R & START CAPA a Cheb d b c d LOADF-EdBe	D 0 CITORS n even FLAGS TRIG DISP
a Cheb b c d $IOADI - \epsilon dB e$ load $n \dagger dB$ c d $IOADI - \epsilon dB e$	¹ Buttr ON OFF DEG EIX
$0 2\pi f calc 1 2nd order 2 2rd order 3 4 prize$	
5 entry 6 exit 7 8 9	flag Wait loop 2 RAD ENG
5 entry 6 exit $7$ 8 9	³ data in 3 🔳 n <u>3</u>

### 2—10 , CARD 2

### **Program Listing I**

001 R/1 002 *LBL			x
			CL4
<u>003 SP(</u> 004 GSB		046	+ form $C_1(\frac{1}{\tau_0} + \omega_n)$
			CL1 CL1
005 P#1 006 SF2	execute and signal P≥S	<u>048</u>	
887 STO			
808 R		050 R	CL3 form and store $02 + 03$
009 STO		051	+
010 R.		<u>. <u>052</u> S</u>	<u>TOA</u>
011 ST01		853	x form and store:
012 RCL2			624
013 ×	$c_{\beta}$ $c_{11}$ $c_{37}$ $c_{37}$ $c_{37}$ $c_{70}$ $c_{10}$	055 056 R	$\sum_{CLI}^{X} K_{1} = \frac{\omega_{n}}{\omega_{2}^{2}} (\frac{1}{\tau_{Q}} + \omega_{n}) O_{1} (O_{2} + O_{3})$
014 RCL2	•	057	
015 RCL3		858	¥2 C V ÷
016 ×			TOB
017 +			<u>CL4</u>
018 RCL3			CLI
019 RCL1		062	÷
020 X		063	X2 form and store:
021 +			
022 RCL1			
023 X		066 R(	$\hat{L}_{5}^{\ddagger}  \mathbf{K}_{0} = \left(\frac{\omega_{n}^{2}}{\tau}\right) (02 + 03) \left(\frac{1}{\omega^{3}}\right)$
<u>824 ST07</u>		067	$x$ $\omega_c$
025 GSB9			CLA
026 RCL5		069	x
<u>027 ST01</u>	• · · ·	<u>070 SI</u>	TOA
028 RCLE			
029 RCL3	calculate $1/\gamma$	072 RC	GL4
<u>030 x</u>			CL6
031 RCL1	-	074	form and store:
032 RCL2		075	+ IOIm and Store:
<u>033</u> RCL6 034 P≠S			CL7
034 P+5	execute and signal P≥S		$K_{2} = \left(\frac{1}{\tau} + \frac{\omega_{n}}{Q}\right) (c_{1} \Sigma c_{0}) \frac{1}{\omega_{n}}$
035 SF2 036 ST00			
037 R4		079	÷
038 ST04	store $\omega_n$		
039 R4	••••••••••		
040 1/X	form and store $1/Q$	082 RC 063 ·	L2 + form and store:
041 ST06			CL7
042 XZY			×
043 ST05	store $1/\tau$		$\tilde{K}_{3} = -(O_{1} + O_{2})(O_{1} \Sigma OO)$
1			EX form and store 10 ⁻⁸ •R
		690	8 for iteration loop
		<b>0</b> 91	÷ exit test
		092 ST	09
		1	
1			
	REGI	STERS	······································
0 1	2 3 4	5 6	7 8 9
S0 p] S1 c]	S ² 20 S ³ 27 S ⁴ ()	S5 7 (- ) S6 - ,	
SO RI SI CI	52 02 53 03 54 $\omega_{n}$	$ ^{55} 1/\tau  ^{56} 1/\tau$	$\sqrt{2}$ $\sqrt{57}$ C1. $\Sigma$ CC $\sqrt{58}$ f/f! $\sqrt{59}$ $10^{-8}$ .R
		D 7/-	12 17
<u>к</u> о	-K ₁ K ₂	K3	^E sinh a or $1^{1}$ $\omega_{c}$

2–10, CARD 2

**Program Listing II** 

						()				
<b>1 093</b>		Newton-Raphson	<u>loop for Ri</u>		12		CLØ	recall av	nd print R _l	
094	RCLO	·			12		<u>RTX</u>			
095	RCLØ				13		CL5			
096	RCLO	• • ·			13		CL4	<b>.</b>	• • •	_
897	RCLD	form and store	9:	1	13		CL6	calculate	e and print	R ₂
098		7	0		13		x			
	X RCLC	$f(R_1) = K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1^3 + K_3 R_1$	K = R + ² +K + R + + K ~		13		+			
899		····						A	. 1	
100	+				13		CLI		$\frac{\frac{i}{\tau} + \frac{\omega_{0}}{Q} - R}{\sigma_{2} + \sigma_{3}}$	(01 <b>+0</b> 2)
101	х			1	13		÷	$R_2 = -\frac{\omega_0}{\omega_0}$	େ ସେ	
102	RCLB				13		CL1	۲	$0_2 + 0_3$	
103	-				13		CL2		- /	
104	Х				13		+			
105	RCLA				14	0 RI	CLØ			
106	+				14		Х			
					14		-			
107	ST08			1	14		CL2			
108	CLX						CL3			
109	+	form:			14					
110	+				14		+			
111	+	$f'(R_1) = 3K_3R_1^2$	2.01 0.11		14		÷			
112	RCLD	$-1.(x_1) = 2x^3x^3$	+ <n2<sup>n1+n1</n2<sup>		_14	7 <u>P</u> I	RTX			
113	х			1	14	8 RI	CLØ			
114	RCLC			1	14		х			
115	ENTT				15		CLI			
					15		X	_ 7 _ 8 .		
116	+			1			CL2	calculate	e <b>and</b> print	R ₃
117	+				15					-
118	×				15		X			
119	RCLB			ł	15		CL3			
120					15		Х			
1 1 787	CT-0		(p.)/e1/p.)	_	15	i6	izX –	P / 1	$\omega_n/\gamma$	
121	0770	$101.0 - 9K^4 \Rightarrow 1.0$				-	- · ·			
$\frac{121}{122}$	RCL8	$form - \Delta R_1 = f$			15	ir R	CL4	~3 <b>~~</b>	R.R.C.C.	C. I
122	RCL8				15 15		UL4 CLI	<u>~</u> 3 – ( <u></u>	$\frac{\omega_n^2}{R_1 R_2 O_1 O_2}$	C ₅
122 123	RCL8 ST-0	form $R_{i_{n+1}} = 1$	$R_{1n} + \triangle R_1$		15	18 R-	CLI	<u> </u>	RIR2C1C2	C ₅
122 123 124	RCL8 ST-0 ABS	form $R_{i_{n+1}} = 1$	$R_{1n} + \triangle R_1$		15 15	18 R. 19	CLI ÷	<u>13</u> – ( <u></u>	R _f R ₂ C ₁ C ₂	Ca
122 123 124 125	RCL8 ST-0 ABS RCL9	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16	18 R. 19 10	CLI ÷ X2	<u> </u>	RIR2CIC2	C ₃
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i_{n+1}} = 1$	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16	18 R. 19 10 11	CLI ÷ X2 X	N3 - (70	RIR2CIC2	C ₃
122 123 124 125	RCL8 ST-0 ABS RCL9	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16	18 R 19 10 11 12 R	CLI ÷ X2 X X CLI	<u>13</u> (2	RIR2CIC2	C ₅
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16	18 R 19 10 11 12 R 17	CLI ÷ X ² × CLI ÷	N3 - ( <del>u</del>	RIR2CIC2	C 5
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16	18 R 19 10 11 12 R 17	CLI ÷ X2 X X CLI	κ ₃ - ( _ω	R _I R ₂ C ₁ C ₂	C ₃
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16	i8 R i9 i0 i1 i2 R i2 R i4 R	CLI ÷ X ² × CLI ÷	κ ₃ - ( _ω	R _I R ₂ C ₁ C ₂	C ₃
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16	is R i9 i0 i2 R i2 R i2 R i3 R	CLI ÷ X ² CLI ÷ CL5 X	κ ₃ - ( _ω	R _I R ₂ C ₁ C ₂	C ₃
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16	is R i9 i0 i2 R i2 R i2 R i2 R i4 R i5 P	CLI ÷ X ² × CLI ÷ CL5 × RTX	κ ₃ - ( _ω	R _I R ₂ C ₁ C ₂	C ₃
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 16 16 16 16 16 16 16 16	8 R 59 51 52 R 53 R 54 R 55 P 56 P	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u>		2 R _I R ₂ C ₁ C ₂	C3
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 16 16 16 16 16 16 16 16 16 16	is R i9 i1 i2 R i2 R i3 R i5 R i5 P i5 P i7 <u>-</u> i8 *L	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> BL9			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 16 16 16 16 16 16 16 16 16 16 16 16	is R ig i i i i i i i i i i i i i i i i i i	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> BL9 F2?			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> F2? F2? F≠S		$\mathbf{r}_{i} \mathbf{R}_{i} \mathbf{R}_{2} \mathbf{C}_{1} \mathbf{C}_{2}$	
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> BL9 F2?			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> F2? F2? F≠S			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> F2? F2? F≠S			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> F2? F2? F≠S			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> F2? F2? F≠S			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> F2? F2? F≠S			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> F2? F2? F≠S			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> F2? F2? F≠S			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> F2? F2? F≠S			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> F2? F2? F≠S			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> F2? F2? F≠S			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> F2? F2? F≠S			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i,n+1} = 1$ iterate again	$\frac{R_{1n} + \diamond R_1}{ir} = -$		15 15 16 16 16 16 16 16 16 16 16 16 16 16	18 R 19 10 11 11 12 12 13 14 R 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	CLI ÷ X ² CLI ÷ CL5 × RTX <u>SPC</u> F2? F2? F≠S			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i} + 1 = 1$ iterate again $ \Delta R_1  \ge 10^{-6} \cdot R_1$	R ₁ n + △R ₁ 1f 1		15 15 16 16 16 16 16 16 16 16 16 16 16 16	8 R 9 50 51 52 R 55 56 P 57 58 *L 59 70 71	CLI ÷ X ² × CLI ÷ CL5 × RTX SPC F2? RTN		2, execute	
122 123 124 125 126 127	RCL8 ST-0 ABS RCLS X4Y? GT00	form $R_{i} + 1 = 1$ iterate again $ \Delta R_1  \ge 10^{-6} \cdot R_1$	ABELS		15 15 16 16 16 16 16 16 16 16 17 17	8 R 9 50 51 52 R 55 56 P 57 58 *L 59 70 71	CLI ÷ X ² × CLI ÷ CL5 × RTX SPC F2? RTN			
122 123 124 125 126	RCL8 ST-0 <b>ABS</b> RCL9 X∠Y?	form $R_{i} + 1 = 1$ iterate again $ \Delta R_1  \ge 10^{-6} \cdot R_1$	ABELS	E 1080	15 15 16 16 16 16 16 16 16 16 16 17 17	8 R 9 50 51 52 R 55 56 P 57 58 *L 59 70 71	CLI ÷ X ² × CLI ÷ CL5 × RTX SPC F2? RTN	if flag 2	2, execute	
122 123 124 125 126 127	RCL8 ST-0 ABS RCLS X4Y? GT00	form $R_{i} + 1 = 1$ iterate again $ \Delta R_1  \ge 10^{-6} \cdot R_1$	$\frac{ABELS}{D}$		15 15 16 16 16 16 16 16 16 16 16 17 17	8 R 9 50 51 52 R 55 56 P 57 58 *L 59 70 71	CLI ÷ X ² × CLI ÷ CL5 × RTX SPC F2? RTN	if flag 2	2, execute SET STATUS	P≈S
A 122 123 124 125 126 127	RCL8 ST-0 ABS RCL9 X≦Y? GT00 B b	form $R_{i} + 1 = 1$ iterate again $ \Delta R_1  \ge 10^{-6} \cdot R_1$	ABELS	E 1080	15 15 16 16 16 16 16 16 16 16 16 17 17	8 R 9 50 51 52 R 55 56 P 57 58 *L 59 70 71	CLI ÷ X ² × CLI ÷ CL5 × RTX SPC F2? RTN	if flag 2 FLAGS ON OFF	2, execute SET STATUS	P≈S
A a Newton-	RCL8 ST-0 ABS RCL9 X≦Y? GT00 B b	form $R_{i} + 1 = 1$ iterate again $ \Delta R_{i}  \ge 10^{-6} \cdot R_{i}$	$\frac{ABELS}{D}$		15 15 16 16 16 16 16 16 16 16 16 17 17	8 R 9 50 51 52 R 55 P 56 P 75 70 71	CLI ÷ X ² × CLI ÷ CL5 × × SPC F2? F2? F2? F7S RTN GS	if flag 2	2, execute SET STATUS TRIG	P2S DISP
A a	RCL8 ST-0 ABS RCLS X4Y? GT00 B B b	form $R_{i} + 1 = 1$ iterate again $ \Delta R_{1}  \ge 10^{-6} \cdot R$	R ₁ + △ R ₁ 1f       -         1       -         0       -         d       -         3       -		15 15 16 16 16 16 16 16 16 16 17 17 17 17 17	8 R. 9 1 2 R 5 R 5 P 7 7 7 7 7 7 7 7 7 7 7 7 7	CLI ÷ X ² × CLI ÷ CL5 × × SPC F2? F2? F2? F7S RTN GS	if flag 2 FLAGS ON OFF 0 1	2, execute SET STATUS TRIG DEG	P≷S DISP FIX SCI ENG ■
A a Newton-	RCL8 ST-0 ABS RCL9 X≦Y? GT00 B b	form $R_{i} + 1 = 1$ iterate again $ \Delta R_{i}  \ge 10^{-6} \cdot R_{i}$	ABELS D d	E loac capacit	15 15 16 16 16 16 16 16 16 16 17 17	8 R. 9 1 2 R 5 R 5 P 7 7 7 7 7 7 7 7 7 7 7 7 7	CLI ÷ X ² × CLI ÷ CL5 × × SPC F2? F2? F2? F7S RTN GS	if flag 2 FLAGS ON OFF 0 1	2, execute SET STATUS TRIG DEG GRAD	P≷S DISP FIX SCI

### PROGRAM 2-11 DELIYANNIS POSITIVE AND NEGATIVE FEEDBACK ACTIVE RESONATOR DESIGN (USED FOR ACTIVE BANDPASS FILTERS).

### Program Description and Equations Used

Active filter resonators are constrained by component value ranges (10 ohms to 10 megohms, 100 pF to 10  $\mu$ F), operational amplifier gainbandwidth limitations, and overall circuit sensitivities. The Deliyannis resonator circuit allows high Q realizations and also compensates for the finite gain and bandwidth of the operational amplifier [20].

This resonator synthesizes a second order pole pair of given  $\omega_n$  and Q. The natural frequency,  $\omega_n$ , and the quality factor, Q, are provided as outputs from the active Butterworth and Chebyshev filter programs contained in this section.

This resonator type has the ability to synthesize a resonator with infinite Q. The infinite Q resonator is used in the interior stages of the Szentirmai leapfrog filter topology [48]. The leapfrog active filter is a direct simulation of a passive LC filter, and generally has the same low sensitivity characteristics of the LC topology. When narrowband active filters are required, the leapfrog topology will be one of the viable candidates for filter realization (also see the GIC realization in Program 2-6).

The circuit for the Deliyannis second order bandpass circuit is shown in Fig. 2-11.1.

267



Figure 2-11.1 Deliyannis bandpass resonator circuit.

The transmission function is obtained using nodal analysis. In matrix form, the nodal equations are:

$$E_{out} = A(s)[E_3 - E_2], (op-amp transmission fcn)$$
(2-11.1)

$$\begin{bmatrix} \left\{\frac{1}{R_1} + s(C_1 + C_2)\right\} & \left\{-sC_2\right\} \\ \left\{-sC_2\right\} & \left\{\frac{1}{R_2} + sC_2\right\} \end{bmatrix} \cdot \begin{bmatrix} E_1 \\ E_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{R_1} & sC_1 \\ 0 & \frac{1}{R_2} \end{bmatrix} \cdot \begin{bmatrix} E_{\text{in}} \\ E_{\text{out}} \end{bmatrix}$$

where

$$E_3 = E_{out}/k$$
 (2-11.3)

Solving for  $E_2$  from Eqs. (2-11.1) and (2-11.3):

$$E_2 = E_{out} \left[ \frac{1}{k} - \frac{1}{A(s)} \right]$$
 (2-11.4)

The transmission function is first obtained for the general case using A(s), then more specifically using A(s) =  $A_Q/(\tau s)$ . The passive sensitivities may be obtained from the general solution, and the active sensitivities obtained from the specific solution, A(s)= $A_Q/(\tau s)$ .

The matrix equation is rewritten to bring 1/k - 1/A(s) inside the coefficient matrix, and to bring all dependent variables to the right

hand side of the equation:

$$\begin{bmatrix} \left\{ \frac{1}{R_1} + s(C_1 + C_2) \right\} & \left\{ -s\left[C_1 - C_2\left(\frac{1}{k} - \frac{1}{A(s)}\right)\right] \right\} \\ \left\{ - sC \right\} & \left\{ \left(\frac{1}{R_2}\right) \left(\frac{1}{k} - \frac{1}{A(s)} - 1\right) + sC_2\left(\frac{1}{k} - \frac{1}{A(s)}\right) \right\} \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} (2-11.5) \\ z_1 \\ z_2 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_2 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_2 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} = \begin{bmatrix} (2-11.5) \\ z_1 \\ z_1 \\ z_2 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\$$

Cramer's rule is used to find the expression for  $E_{out}/E_{in}$ , the filter transmission function.

$$\frac{E_{out}}{E_{in}} = \frac{s}{s^2 + s \left\{ \frac{1}{R_2 C_1} + \frac{1}{R_2 C_2} + \frac{1}{R_1 C_1} \cdot \frac{1/A(s) - 1/k}{1 + 1/A(s) - 1/k} \right\} + \frac{1}{R_1 R_2 C_1 C_2}}$$
(2-11.6)

The passive sensitivities may be evaluated assuming the op-amp to be ideal, i.e., the open loop gain is allowed to approach infinity. In this situation, the transmission function becomes:

$$\frac{E_{out}}{E_{in}} = \frac{-\frac{ks}{R_1C_1(k-1)}}{s^2 + s\left\{\frac{1}{R_2C_1} + \frac{1}{R_2C_2} - \frac{1}{(k-1)R_1C_1}\right\} + \frac{1}{R_1R_2C_1C_2}}$$
(2-11.7)

The coefficients of the denominator of this equation may be compared with the like coefficients in the standard second order form to derive expressions for  $\omega_n$  and Q. The standard second order form of the transmission function is:

$$\frac{E_{out}}{E_{in}} = \frac{ks}{s^2 + \frac{\omega_n}{Q}s + \omega_n^2}$$
(2-11.8)

The following expressions for  $\omega_n$ , Q, and K are obtained:

$$K = -\frac{k}{R_1 C_1 (k-1)}$$
(2-11.9)

$$\omega_{n} = (R_{1} R_{2} C_{1} C_{2})^{-\frac{1}{2}}$$
(2-11.10)

$$Q = \frac{\sqrt{\frac{R_2}{R_1}}}{\sqrt{\frac{C_2}{C_1}} + \sqrt{\frac{C_1}{C_2}} - \frac{1}{k-1} \cdot \frac{R_2}{R_1} \cdot \sqrt{\frac{C_2}{C_1}}}$$
(2-11.11)

Let  $\mu = R_2/R_1$ , and  $\delta = C_2/C_1$ , then:

$$Q = \frac{\sqrt{\mu \delta}}{\delta + 1 - \mu \delta / (k-1)}$$
(2-11.12)

The denominator of Eq. (2-11.12) can be made arbitrarily small by proper choice of  $\mu$ . The denominator can be made to vanish completely causing Q to become infinite, thus generating the infinite Q resonator required for the interior stages of the leapfrog filter topology.

Sensitivities are a way of expressing how much a given parameter, say Q, is affected by a change in one of the circuit elements. The general convention is to express sensitivities as a demensionless number formed from the ratio of individual percentage changes:

$$S_{R}^{Q} = \lim_{\Delta R \to 0} \frac{\Delta Q/Q}{\Delta R/R} = \frac{R}{Q} \cdot \frac{\partial Q}{\partial R}$$
(2-11.13)

Applying this definition to the expressions for  $\mu_n$ , Q, and K, the following passive sensitivities result:

$$S_{R_1}^{\omega_n}$$
,  $R_2$ ,  $C_1$ ,  $C_2^{=-1_2}$  (2-11.14)

$$S_{R_1}^Q = -S_{R_2}^Q = -\frac{1}{2} - Q \frac{\sqrt{\mu \delta}}{k-1}$$
 (2-11.15)

$$S_{C_1}^Q = -S_{C_2}^Q = -\frac{1}{2} + Q \sqrt{\mu \delta} \left( \frac{1}{\mu} - \frac{1}{k-1} \right)$$
 (2-11.16)

$$s_{R_B}^Q = -s_{R_A}^Q = Q \frac{\sqrt{\mu \delta}}{k-1}$$
 (2-11.17)

$$S_{R_1}^K$$
,  $C_2 = -1$  (2-11.18)

$$S_{R_A}^{K} = -S_{R_B}^{K} = \frac{1}{k}$$
 (2-11.19)

The break frequency of the open loop transmission function of most operational amplifiers is around 10 Hz, and the gain-bandwidth product (GBP) is about  $10^6$  Hz thus, the finite gain characteristics of the opamp begin to affect the active filter response when kilohertz frequencies are involved. In this frequency range, the operational amplifier transmission function,  $A(s) = A_0/(1 + \tau s)$ , may be approximated by  $A(s) = A_0/\tau s$ . With this approximation, the active filter transmission function becomes:

$$\frac{E_{out}}{E_{in}} = \frac{-\frac{s}{(R_1C_1)(1 + \tau s/A_0 - 1/k)}}{s^2 + s\left\{\frac{1}{R_2C_1} + \frac{1}{R_2C_2} + \frac{1}{R_1C_1} \cdot \frac{\tau s/A_0 - 1/k}{1 + \tau s/A_0 - 1/k}\right\} + \frac{1}{R_1R_2C_1C_2}}$$
(2-11.20)

This expression is expanded, and like powers of s collected to form the final expression for the active filter transmission function:

$$\frac{\frac{E_{out}}{E_{in}}}{E_{in}} = \frac{s \frac{-k}{R_1 C_1}}{D(s)}$$
(2-11.21)

where

$$D(s) = s^{3} \frac{k\tau}{A_{o}} + s^{2} \left\{ k - 1 + \frac{k\tau}{A_{o}} \left( \frac{1}{R_{2}C_{1}} + \frac{1}{R_{2}C_{2}} + \frac{1}{R_{1}C_{1}} \right) \right\}$$
$$+ s \left\{ (k-1) \left( \frac{1}{R_{2}C_{1}} + \frac{1}{R_{2}C_{2}} \right) - \frac{1}{R_{1}C_{1}} + \frac{\tau k}{A_{o}R_{1}R_{2}C_{1}C_{2}} \right\} + \frac{k-1}{R_{1}R_{2}C_{1}C_{2}}$$

The denominator is factored into a single pole and a complex conjugate pair:

$$\frac{E_{out}}{E_{in}} = \frac{H \cdot \frac{s}{\omega_n Q}}{\left(\frac{s}{\sigma} + 1\right) \left(\frac{s^2}{\omega_n^2} + \frac{s}{\omega_n Q} + 1\right)}$$
(2-11.22)

The natural frequency,  $\omega_n$ , and the quality factor, Q, are derived by equating like powers of s between Eqs. (2-11.21) and (2-11.22):

$$\omega_{n} = \frac{1}{\frac{R R C C}{1 2 1 2}} \cdot \sqrt{1 - \frac{\tau k^{2}}{A_{o}(k-1) R C}}$$
(2-11.23)

$$BW = \frac{\omega_{n}}{Q} = \left\{ \frac{1}{R_{2}C_{1}} + \frac{1}{R_{2}C_{2}} + \frac{1}{R_{1}C_{1}(k-1)} \right\} \left\{ 1 - \frac{\tau k^{2}}{A_{0}(k-1)R_{1}R_{2}} \right\} (2-11.24)$$

From these equations, the active sensitivities are derived:

$$S_{A_{\tau}}^{\omega n} = S_{A_{\tau}}^{Q} = \frac{1}{2} \cdot \frac{\omega_{n}^{\tau}}{A_{o}} \cdot \left(\frac{k}{k-1}\right)^{2} \cdot \sqrt{\mu\delta} \qquad (2-11.25)$$

where  $\mu = R_2/R_1$  (2-11.26)

and 
$$\delta = C_2/C_1$$
 (2-11.27)

as defined previously. The objective is to choose  $\mu$  or  $\delta$  to strike a happy medium between the active and the passive sensitivities (see [19], p. 319).

The Designers Guide to Active Filters [26], has the set of equations that generate the element values for this positive and negative feedback biquad. The point is made that by choosing  $\delta < 1$  some of the active sensitivities may be reduced at the expense of resistor value spread (µ increases).

Equations (2-11.28) through (2-11.42) are used by the HP-67/97 program. The equation solution starts with a choice for the capacitor ratio,  $\delta$ , and positive feedback ratio, k, and the operational amplifier dc gain,  $A_0$ , and gain bandwidth product, GBP. The resonant frequency is  $f_0$  and p = 1/k ( $f_a = 1/(2\pi\tau)$ ).

$$\Omega = f_a / f_o = GBP / (f_o A_o)$$
 (2-11.28)

$$\gamma = A_0 \Omega = GBP/f_0 \qquad (2-11.29)$$

$$d = 1/Q$$
 (2-11.30)

$$\beta = \Omega - p\gamma = (1 - \frac{A_o}{k}) \qquad (2-11.31)$$

$$m = \gamma + \beta = \Omega \left\{ 1 + A_0 \left( 1 - \frac{1}{k} \right) \right\}$$
 (2-11.32)

$$a_{2} = (\delta + 1) \{ m(m-d) + 1 \}$$
 (2-11.33)

$$a_1 = \delta m - (\delta + 1) \beta - (m-d) (md-1)$$
 (2-11.34)

$$a_0 = m (\beta - d) + 1$$
 (2-11.35)

$$\begin{array}{c} C_1 = 1 \\ C_2 = \delta \end{array} \right\} \quad \text{normalized values} \qquad (2-11.36)$$

The quadratic equation is used to find the positive real root  $(R_1)$  of:

$$a_2 R_1^2 + a_1 R_1 + a_0 = 0$$
 (2-11.38)

i.e.,

$$R_{1} = \frac{-a_{1}}{2a_{2}} + \sqrt{\left(\frac{a_{1}}{2a_{2}}\right)^{2} - \frac{a_{0}}{a_{2}}}$$
(2-11.39)

then

$$\mathbf{R}_{2} = \frac{m(\delta+1) R_{1} - (dm-1)}{(R_{1} - \beta) \delta}$$
(2-11.40)

H is the gain of the filter at resonance:

$$H = \frac{-R_2 \cdot \delta \cdot Q}{1 - \frac{1}{k} + \frac{1}{A_0}}$$
(2-11.41)

A parasitic pole also exists. The location of this pole is at  $-\sigma$ , where:

$$\sigma = \frac{m}{\delta R_1 R_2}$$
(2-11.42)

The normalized transmission function with the above element values becomes:

$$G(s) = \frac{E_{out}}{E_{in}} = \frac{\frac{H}{Q}s}{\left(s^2 + \frac{s}{Q} + 1\right)\left(\frac{s}{\sigma} + 1\right)}$$
(2-11.43)

The design of this filter type is somewhat cut and try if low sensitivities are to be achieved. The program is written to take the desired resonant frequency, the operational amplifier parameters, the capacitor ratio, one capacitor value, and the positive feedback ratio, and provides the remaining element values.

Because the resonator design exhibits a gain, H, at resonance, the input resistor,  $R_1$ , may be split into two resistors to provide a Thevenin equivalent circuit with gain H desired/H = 1/H' and impedance  $R_1$ . This equivalent circuit is shown in Fig. 2-11.2.



Figure 2-11.2 Equivalent input resistor network.

Eout/Ein = 1/H' = 
$$R_{1b}/(R_{1a} + R_{1b})$$
 (2-11.44)

$$R_{equiv} = (R_{1a} \cdot R_{1b}) / (R_{1a} + R_{1b}) = R_{1}$$
 (2-11.45)

Equation (2-11.44) is solved for  $R_{1a} + R_{1b}$ , and substituted into Eq. (2-11.45) to yield an expression for  $R_{1a}$ :

$$R_{1a} = H' \cdot R_1$$
 (2-11.46)

Substituting Eq. (2-11.46) into Eq. (2-11.44) yields an expression for  $R_{1b}$ :

$$R_{1b} = R_{1a}/(H'-1)$$
 (2-11.47)

Equations (2-11.46) and (2-11.47) are used by the program to split the input resistor and provide the desired resonator gain at the resonant frequency.

## 2-11 User Instructions

Λ	DELIYANN	IS POSITIVE	AND NEGATIV	E FEEDBACK	RESONATOR	
	resistance level	8	H _{desired}			5
	Q	р	op-amp gain-BW	op-amp de gain	load f & start ^o	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card			
	Load Q, the quality factor	<u>Q</u>	A	
3	Load p, the positive feedback ratio $(p = 1/k)$	p	E T	
	Load p, die posicive reedback racio (p - 4 x)	P	۱ <u>۴</u> ۱	
4	Load R, the operating resistance level	<b>R</b> , Ω	f A	
	Load S, the ratio of C2 to C1 (Eq. (2-10.27))	3		
6	Load desired gain at resonance	Hdesired	flo	
		-destred		
7	Load op-amp gain-bandwidth product	GBP, Hz	C	*****
8	Load op-amp dc gain	A _o		
9	Load resonant frequency desired and start	f _o , Hz		$\overline{R_1}$
́				$\frac{R_2}{R_2}$
	note:			H > a
	Flag 3 is tested on all input routines			5 3
	to determine whether input or output			R _B
	of the respective parameter is desired.			
	If an input key ("A" - "D" and "a" - "c"			R ₁ d
	is keyed without numeric entry, or			$\begin{array}{c} R_1 \\ R_2 \end{array}$ d R 2 n
	following the clear key (e), the			lon / P
	presently stored parameter will be	*******		02 3
*******	displayed.			
				R _{la} 3
	***************************************			R _{1b}
		******		····**·
				Spi, R2, C, 1 Cz
				$S_{R_B}^{o}$ , $-S_{R_A}^{o}$
				$S_{R_1}^{Q}$ , $-S_{R_2}^{Q}$
				$S^{a}_{\alpha}$ $C^{a}_{\alpha}$
				<u>C</u> ⁴ C ²
10	Go back and change any parameters in any			SAVE 3 - SAVE
	order, and rerun program. The center frequency need not be reloaded unless it is			
	***************************************			
	being changed.			

#### Example 2-11.1

A second order Deliyannis resonator is to be designed using a type 741 operational amplifier. The operational amplifier characteristics and resonator specifications are:

Center frequency:	1000 Hz
Q:	100
gain at resonance:	1.0
capacitor ratio:	1.0
p, positive fdbk ratio:	0.04
resistance level:	<b>10000</b> Ω
op-amp gain-bandwidth:	500000 Hz
op-amp dc gain:	100000

Find the element values and calculate the sensitivities for this design. Investigate the effect of different values of positive feed-back on the component value spread and sensitivities. The HP-97 print-out for this problem is shown on the next page, and the schematic is shown in Fig. 2-11.3.



Figure 2-11.3 Deliyannis resonator schematic.

```
\begin{array}{l} \text{HP-97 printout for Example 2-11.1} \\ 100. GSB4 load Q \\ 10000. GSBa load denormalization resistance level, R \\ .84 GSEe load positive feedback ratio, p \\ 1. GSBa load capacitor ratio, S \\ 1. GSBa load capacitor ratio, S \\ 1. GSBa load op-amp GBP \\ 100000. GSBc load op-amp dc gain, A_{o} \\ 1000. GSBc load f_{o} and start \\ 145.776-03 **** R_{1} \\ 6.75947+00 **** R_{2} \\ -704.104+00 **** R_{2} \\ 24.0000+00 **** R_{3} (R_{A}=1) \\ 10.0000+03 **** R_{1} \\ 463.707+03 **** R_{2} \\ 2.32001-09 **** C_{2} \\ \end{array} \right\} denormalized values \\ 2.32001-09 **** C_{2} \\ 7.04104+06 **** R_{1B} \\ Thevenin equivalent input resistor pair \\ 10.0142+03 **** R_{1B} \\ -500.000-03 **** \frac{S_{R_{1}}}{S_{R_{1}}}, -S_{R_{R_{2}}} \\ -28.8733+06 **** \frac{S_{R_{1}}}{S_{R_{1}}}, -S_{R_{R_{2}}} \\ -28.8733+06 **** \frac{S_{R_{1}}}{S_{R_{1}}}, -S_{R_{R_{2}}} \\ -3.8889-03 **** S_{A/T}^{Q}, -S_{A/T}^{\omega_{h}} \\ \end{array}
```

The following printouts have all parameters the same except the positive feedback ratio, p. Notice passive sensitivities increase and active decrease.

109	GSBE GSBE	р	.004	gsbe gsbe	р	.4	GSBE GSBE	р
3.79141-03	水水水	4	6.3615-03	***		577.077-03	***	
172.670+00	***	2	0.6707+00	***		1.71635+00	***	
-17.2668+33	***	-2	2.07535+03	***		-286.053+00	***	
763.761+00	***	<u>.</u>	19.661+00	***		302.893+00	***	
1.00000+09	***	2	49 <b>.000</b> +00	***		1.50000+00	***	
10.0000+03	***	1	0.0000+03	演演演		10.0000+03	***	
455.423+06	***	4	.45860+06	冰冰冰		29.7421+03	***	
60.3422-12	***	7	37.866-12	***		9.18446-69	***	
60.3422-12	***	7	37.866-12	***		9.18446-09	***	
172.668+06	***	2	0.7535+06	冰冰冰		2.86053+06	***	
10.0006+03	***	1	0.0048+03	***		10.0351+03	***	
-500.000-03	***	-5	00.000-03	***		-500.000-03	***	
21.3406-06	***	8	.48005+00	***		114.973+00	***	
-500.021-03	***	-8	.98008+00	***		-115.473+00	***	
-31.4320-03	***	-4	.24420+00	***		-57.4880+00	***	
213.406-03	***	2	1.2853-03	***		<b>4.</b> 79 <b>05</b> 3-03	***	

2-11

## **Program Listing I**

		,			
	A LOAD Q		056	+	
	/X		<u>057 ST</u>	00	
603 ST	00 store d = 1/Q			12	
<u> </u>	20			ν.L.C	
005 *LB		ON		x	
006 ST			061 RC		
007 GT			062 RC.	$L_{2} = \alpha_{1} = \alpha_{1}$	-(S+1)β-(m-d)(dm-1)
008 *LB					
009 ST				x	
			064	<u> </u>	
<u>010 GT</u>			065 RCI		
011 *LB			066 RCI	LØ	
012 ST				X Jun	1 - 0
<u>013</u> GTI				EX am-	1 → RI
014 *LB1	C LOAD OP-AMP GBP		069 -	-	
015 ST	3		070 ST(	וכ	
016 _GT(	0		<u>070 sto</u> 071 rcl	.E	
017 *LBI					
018 P;			073 -	<b>.</b> _	
019 STC				2 - 2 -	← R6
020 P;		1	075 ÷	- 2	
				)C	
			076 STO 077 RCL	<u> </u>	
022 *LBL					
<u>023 STC</u>			078 RCL	Б	
024 *LBL		atine	079 -	_	
025 CF			080 RCL	-0 •	n(β-d)+1
026 R1	<u>N</u>		081 x		- (
027 *LBL	E LOAD fo AND START A 7 store fo if entered 5 from keyboard	ANALYSIS	082 EE.	X	
028 F3	? store fo if entered	<u>_</u>	<u>083 -</u>		
<u>029 STC</u>	5 from keyboard		084 RCLI	<u> </u>	
030 SF	C		085 ST÷i	6	
031 RCL	7		086 ÷		
032 RCL	$\delta = \frac{A_0}{f_1} \rightarrow R_A$		087 RCL6	5	
033 ÷	to the		088 X	2	
<u>Ø34 STO</u>	۵		089 +	/ &.	$\frac{a_0}{a_2} - \frac{a_1}{2a_2}$
035 RCL			090 <b>(</b> )	K1= W2a	<b>- a</b> ₂ - <u>2</u> <b>a</b> ₂
	7		091 RCL6		
	A.	ļ	092 -	)	
037 RCL	<u> </u>	- D		•	
038 RCL		T KB	093 STOD		
039 ×			<u>094 PRTX</u>		<u></u>
040 -	_		095 RCLC		
<u>041 STO</u>	<b></b>		096 RCL9		
042 RCL			097 X		
043 +			098 x		
044 STO	· · · · · · · · · · · · · · · · · · ·		099 RCLI		
045 RCL			109 -		
046 EE	ر	ł	101 RCLD	m/c.	$A P_{i} = (d - A)$
047 +	δ+1 <del>-</del> R9		102 RCLB	$R_2 = -\frac{m(s+1)}{2}$	1) ( <u>4</u> - ( <u>a</u> m - 1)
048 STD.	9		103 -	-	$\frac{(1) R_1 - (dm - 1)}{(R_1 - \beta) \delta}$
040 575 049 X			184 ÷		•
050 RCL			105 RCL2		
051 RCL	2		105 RCL2		
052 -	m-d-+R _E	ļ	107 STOE		
	-	ł			
<u>853 STO</u>					
854 X					
055 RCL:	$a_2 = (\delta + 1) \{m(m-d) + 1\}$	5 <b>-</b> Kp	110 X		
		REGISTERS			
0, <u>1</u> 1 1	2 C C 3 op-amp	4 op-amp 5 0	6 H, or	70 -	8 resistance 9 8+1, or
$d = \frac{1}{Q}$ $P = \frac{1}{K}$	$\frac{2}{\delta} = \frac{C_2}{C_1} \qquad \begin{array}{c} 3 \text{ op-amp} \\ \text{GBP} \end{array}$	degain, Ao fo	81/82	7R28,000 M	level QV45
S0 S1		S4 S5	56	\$7	S8 59
		l ^{°°}	Ĩ		
Hdestred	1 1 1				
Hdesired	B IC		—— <u> </u>		
H _{desired}	β ^C mo	$r \in = \frac{1}{k-1} \qquad a_2,$	or R1	E m-d, or R ₂	dm-1, or -0.5

		2-11 Program	Listing 11	
111	ST07		166 RCL6	D.
112	EEX		167 EEX	$R_{1b} = \frac{R_{1a}}{H_{actual}} - 1$
113	RCL1		168 - 169 ÷	Hactual -1
114	- RCL4		170 GSB9	Hdesired
115	1/8		171 .	
117	+	$H_{actual} = \frac{-R_2 \cdot S \cdot Q}{1 - \frac{1}{L} + \frac{1}{A}}$	172 5	$-0.5 - R_{T}$
118	÷	$1 - \frac{1}{L} + \frac{1}{A}$	173 CHS	1
119	RCLØ		<u>174 STOI</u> 175 PRTX	print: $S_{C_1, C_2, R_1, R_2}^{\omega_n}$
120	÷ st06		175 PRTX 176 RCLE	princi <u>3C4, Cz, R1, R2</u>
122	CHS		177 RCLD	$R_2 = P_{\rm m}$
123	PRTX		178 ÷	$\mathcal{H} = \frac{R_2}{R_1} \rightarrow R_7$
124	RCLC		<u>179 ST07</u>	
125	RCLD		180 RCL2	
126	÷	$\sigma = \frac{m}{\delta \cdot R_1 \cdot R_2}$	181 × 182 JX	
127 128	RCL7 ÷	$\delta R_1 R_2$	183 RCL0	
129	PRTX		184 ÷	$S_{RB}^{Q} = -S_{RA}^{Q} = Q \frac{\sqrt{\mu S}}{k-1}$
130	RCLI		185 ST09	NO NA K-1
131	17X		186 RCLC	
132	EEX	$R_B = k - 1$	187 ×	
133	- cepo		<u>188 PRTX</u> 189 CHS	
$\frac{134}{135}$	<u>GSB9</u> 1/X		190 RCLI	$S_{R_1}^{Q} = -S_{R_2}^{Q} = -\frac{1}{2} - Q \frac{\sqrt{uS}}{k-1}$
136	STOC	$\epsilon = \frac{1}{k-1}$	191 +	$S_{R_1} = -S_{R_2} = -\frac{1}{2} - Q_{k-1}$
137	RCL8	recall and print	<u>192 PRTX</u>	
138	PRTX	denormalized R ₁	193 RCL7	
139	RCLE	calculate and print	194 1/X 195 RCLC	
140 141	× RCLD	denormalized R ₂	193 RULU 196 -	
142	ROLD ÷	Z	197 RCL9	$S_{c_1}^{Q} = -S_{c_2}^{Q} = -\frac{1}{2} + Q \sqrt{\mu \delta} \left( \frac{1}{\mu} - \frac{1}{k-1} \right)$
143	PRTX		198 ×	
144	RCL5	celculate and print	199 RCLI	
145	Fi.	denormalized O ₁ :	200 +	
146	× ENT†	-	201 PRTX 202 RCL9	
148	+		203 RCL0	
149	RCL8	C. Ri	204 ×	
150	x	$C_1 = \frac{R_1}{2\pi f_0 \cdot R}$	205 RCLA	
151	RCLD		206 ENT†	
152 153	÷ 1/X		207 + 208 ÷	$S_{A_{2}}^{\omega} = S_{A_{1}}^{\omega} = \frac{\sqrt{\mu \delta}}{2} \cdot \frac{\omega_{n} \gamma}{A_{n}} \cdot \left(\frac{k}{k-1}\right)^{2}$
153	PRTX		200	$-4\pi$ $2$ Ao $(K-1)$
155	RCL2		210 RCL1	
156	x	calculate and print	211 ÷	
<u>157</u>	<u>GSB9</u>	denormalized 02	212 X ²	
158	P‡S PCL0	calculate Thevenin	<u>213 ×</u> 214 *LBL9	
159 160	RCL0 P≢S	equivalent for R ₁ to provide	214 *LBL9 215 PRTX	print and space subroutine
161	r≠s ST÷6	desired gain at resonance:	216 SPC	
162	RCL6		217 RTN	
163	RCL8	- Hantural		
164	X	R1a = Hactual Hdesired - R1		
165	PRTX			
A	10	LABELS	FLAGS	SET STATUS
Load Q	^B Load		d fot Start	FLAGS TRIG DISP
^a Load R	^b Load	S CLoad Hassired d e	1	
0	1	2 3 4	2	1 GRAD SCI
5	6	7 8 9 8	nt ESpace 3 Data entry	2 RAD ENG
L	L		The a place Usis entry	3 <b>I</b>

### PROGRAM 2-12 ELLIPTIC FILTER ORDER AND LOSS POLE LOCATIONS.

### Program Description and Equations Used

This program finds the lowest elliptic (also called Cauer-Chebyshev) lowpass filter order that will meet the requirements for Amax, Amin, fmax, and fmin. These parameters are defined with the aid of Fig. 2-12.1.





Amax : maximum passband ripple in dB Amin : minimum stopband attenuation in dB fmax : maximum passband frequency (passband edge) fmin : minimum frequency where Amin is achieved.

The program also calculates the attenuation pole frequencies. From these frequencies the filter response at any frequency outside the passband may be determined by using the Z transformation. This transformation technique is described in the next program, and also in chapter 8 of Daniels' book [17]. The analog Z transformation should not be confused with the digital z transformation.

The elliptic filter response is not monotonic in the stopband as can be seen in Fig. 2-12.1. This stopband response is the characteristic difference between the Chebyshev and elliptic filter responses. Both filter types have equiripple behavior in the passband, but Chebyshev (and Butterworth) filters have all attenuation poles located at infinite frequency, while elliptic filters have finite attenuation poles. Because of these finite attenuation poles, the elliptic filter has a sharper transition from passband to stopband for a given filter order.

The elliptic response also has its drawbacks. As the transition band becomes sharper (the filter more selective) the transfer function phase angle changes more rapidly with frequency, and so the group delay becomes peaked near the passband edge frequency. Uniform group delay is required for filters that must process pulses without exhibiting ringing amplitude responses; thus, the transmission function of the elliptic filter tends toward the optimum only from the point of view of the attenuation requirement.

If the LC filter is being designed as a basis for an active filter design such as the leapfrog topology, or an elliptic response is being contemplated for active simulation by cascaded active resonators, the elliptic filter transmission zero (attenuation pole) simulation will require a biquadratic resonator circuit. The designer should always compare the sensitivities of the elliptic active filter circuit versus the sensitivities of a higher order all-pole active design which meets the overall same specifications. In general, as the active resonator circuit becomes more complicated, or the operating gain-bandwidth requirements approach the op-amp gain-bandwidth, the circuit sensitivities become worse, and the final filter design may not meet the specification requirements when component drift due to temperature and aging is considered.

The following formulas are discussed in detail in the equation derivation section and the results brought forward. The loss function, L, is defined by Eq.(2-12.1) (refer to Fig. 2-12.1).

$$L^{2} = \frac{10^{0.1} \text{ Amin} - 1}{10^{0.1} \text{ Amax} - 1}$$
(2-12.1)

Furthermore,  $x_L$  is the ratio of the lowpass stopband edge frequency to the lowpass passband edge frequency (refer to Fig. 2-12.1):

$$\mathbf{x}_{\mathrm{L}}^{-1} = \frac{\mathbf{f}_{\max}}{\mathbf{f}_{\min}}$$
(2-12.2)

The minimum elliptic filter order that will meet the requirements for Amax, Amin, fmax, and fmin is calculated from Eq. (2-12.28).

$$n = \frac{K(x_{L}^{-1}) \cdot K'(L^{-1})}{K'(x_{L}^{-1}) \cdot K(L^{-1})}$$
(2-12.30)

where K( ) is the complete elliptic integral of the first kind, and K'( ) is the complementary complete elliptic integral of the first kind. These functions are defined by Eqs. (2-12.11) through (2-12.14) and are calculated by a truncated infinite series as given by Eqs. (2-12.18) through (2-12.21).

The loss poles of the elliptic filter transfer function are given by Eqs. (2-12.31) and (2-12.32).

$$x_{v} = \frac{x_{L}}{x_{zv}}$$
(2-12.31)

where

$$\mathbf{x}_{zv} = \begin{cases} \operatorname{sn} \left\{ \frac{2v}{n} \operatorname{K} \left( \mathbf{x}_{L}^{-1} \right), \ \mathbf{x}_{L}^{-1} \right\} & \operatorname{n} \operatorname{odd} \\ \\ \operatorname{sn} \left\{ \frac{2v-1}{n} \operatorname{K} \left( \mathbf{x}_{L}^{-1} \right), \ \mathbf{x}_{L}^{-1} \right\} & \operatorname{n} \operatorname{even} \end{cases}$$
(2-12.32)

The elliptic sine is evaluated by means of a Fourier series given by Eqs. (2-12.24) and (2-12.25).

The even ordered elliptic filters have a stopband loss that approaches a constant, finite value as the frequency approaches infinity, i.e., the even ordered elliptic filter does not have a loss pole at infinite frequency. The lossless LC synthesis of such a filter cannot be done without the use of mutual inductive coupling between the filter sections. On the other hand, active filter realizations can be done without the loss pole locations being a constraint.

A special form of the Möbius transformation (a bilinear change of variables) may be applied to the even ordered elliptic loss pole frequencies to move the highest frequency loss pole to infinity and thereby allow LC synthesis without mutual inductance. The even ordered elliptic filter element value tables in Zverev [58], already have this transformation applied, hence  $x_L^{-1} = \sin \theta$  only for odd order filters ( $\theta$  is the tabulated modular angle).

The general form of the Möbius transformation is:

$$s^{2} = \left\{ \frac{\Omega c^{2} - \Omega B^{2}}{\Omega B^{2} - \Omega O^{2}} \Omega B^{2} \right\} \cdot \left\{ \frac{s^{2} + \Omega O^{2}}{s^{2} + \Omega C^{2}} \right\}$$
(2-12.3)

This transformation converts frequencies as follows:

- 1)  $S = j \Omega$  to s = 0
- 2)  $S = j \Omega_B$  to  $s = j \Omega_B$  (no change in passband edge)
- 3)  $S = j \Omega_{C}$  to  $s = \infty$

It is not desired to transform the dc, or zero frequency, location in the lowpass filter, hence,  $\Omega_0 = 0$ ; furthermore, the loss poles lie directly on the jw axis so the transformation need only apply to s = jw, thus Eq. (2-12.3) becomes:

$$\omega^2 = \left(\Omega_{\rm C}^2 - \Omega_{\rm B}^2\right) \frac{\Omega^2}{\Omega_{\rm C}^2 - \Omega^2}$$
(2-12.4)

The program calculates and prints (displays) the original evenordered pole locations as calculated from Eq. (2-12.32) applies Eq. (2-12.4), and prints and stores the transformed pole locations. For odd-ordered filters, the program calculates, prints, and stores the finite loss pole locations from Eq. (2-12.32) without transformation. In both the even and odd cases, the loss pole frequencies are stored in normalized form ( $\Omega = 1$ ), but are denormalized for printout or display.

The normalized loss pole frequencies are used by the next program in this section to calculate the filter attenuation at any frequency within the passband or the stopband by using the Z transform.

## 2-12 User Instructions

ELLIP	TIC FILTER C	RDER AND LA	SE POLE LOCATIONS	
Amin	fnin	change n		5
Amax	fmax	compute n	compute loss poles	- /

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
<u> </u>	Load both sides of magnetic card	*****			
2	Load maximum passband ripple in dB	Amax	Ā		
3	Load minimum stopband loss in dB	Amin	f	A	
4	Load passband cutoff frequency	fmax	<u> </u>		
5	Load minimum stopband loss frequency	fmin	<b>f</b>	B	
6	Calculate filter order to meet requirements		0		n n*
	*The first n will be the result of the calc and will generally not be an integer. The n is the next highest integer, and is the value. Both values are given so the desig can get a feeling for the design margin. two values are close, the next higher filt order might be considered. If the program stops displaying "Error", t data for Amax and Amin are too far apart ( and 100dB for example) and calculations for exceed the precision capability of the HP- The filter order may be obtained from the CC nomograph [34], [38], and the program rest with step 7. Step 8 will still run correct				
7	To change filter order (integers only)	n	f	0	
8	To calculate loss poles (frequencies of       D         maximum attenuation)       **The number of loss poles will be the integral part of n/2, i.e., a fifth order filter will have two loss poles.				f1 f2 i fn/2** space f1' *** f2' i f(n-1)/2

### Example 2-12.1

Compute the filter order and loss pole locations for an elliptic filter to meet the following specifications.

Amax = .28 dB ( $\rho$ = 25%, Amax = -10 log(1- $\rho^2$ )) Amin = 63 dB fmax = 1000 Hz fmin = 2000 Hz

HP-97 input/output

63.80	63Ba SSBP	load Amax load Amin load fmax load fmin calculate minimum filter order
4.97 5.00	*** ***	actual calculated filter order, n nearest integral value for n to meet specs
3250.804880 2089.246505	GSBD *** ***	calculate loss pole locations

These results may be checked by comparing them to the 30° modular angle filter design shown in the "Catalog of Normalized Lowpass Models" on page 220 of Zverev [58].

#### Example 2-12.2

Compute the minimum filter order and loss pole locations for an elliptic filter which meets the following specifications:

> Amax = .1773 dB ( $\rho$ = 20%, Amax = -10 log(1- $\rho$ )) Amin = 78 dB fmax = 1000 Hz fmin = 2000 Hz

.1773	GSBA	load Amax
78.00	685a	load Amin
1000.00	gsbe	load fmax
2000.00	GSBb	load fmin
	GSBC	calculate minimum filter order
5.90	***	actual calculated filter order, n
6.00	***	nearest integral n to meet specs
	GSBD	calculate loss pole locations:
7235.882719	***	
2732.053311	<b>宋末</b> 末	untransformed loss poles
2061.105330.	***	
		also represents transformed fmin
2922.132266	<b>家水</b> 港	
2129.548771	***	transformed loss pole locations

### Derivation of Equations Used

The elliptic response is governed by the Chebyshev rational function, which is a ratio of polynomials. The development of the Chebyshev rational function in terms of elliptic functions is beyond the scope of this discussion. This development is discussed in Chapter 5 of Daniels' book [17]. A few highlights of the Chebyshev rational function and elliptic functions will be used to show the development of the equations used by this program.

The Chebyshev response becomes the elliptic response when the Chebyshev polynomial,  $T_n(x)$ , is replaced by the Chebyshev rational function,  $R_n(x,L)$ , in the filter transfer function (Feldtkeller equation).

$$|H(j\omega)|^2 = 1 + |K(j\omega)|^2$$
 (2-12.5)

- for Chebyshev response,  $|K(j\omega)|^2 = \varepsilon^2 \cdot T_n$  (x) (2-12.6)
- for elliptic response,  $|K(j\omega)|^2 = \epsilon^2 \cdot R_n$  (x,L) (2-12.7)

Hence, the elliptic attenuation function is:

$$A(\omega)_{dB} = 20 \cdot \log |H(j\omega)| \qquad (2-12.8)$$
  
= 10 \cdot log \left\{ 1 + \varepsilon^2 \cdot R_n^2(x,L)\right\};  
where x = \u03c6/\u03c6max = f/fmax (2-12.9)

The Chebyshev rational function,  $R_n(x,L)$ , has the following properties (also see Fig. 2-11.2).

- 1)  $R_n$  is odd when n is odd and vice versa.
- 2) All the zeros of  $R_n$  lie within the interval -1 < x < 1, while all the poles lie outside this interval.
- R_n(x,L), like T_n(x), oscillates between ±1 for -1 < x < 1. This interval defines the passband.
- 4)  $R_n(1,L) = +1$  (passband edge).
- 5)  $|R_n| > L$  (oscillates outside of L) for  $|x| > x_L$ , where  $x_L$  is defined as the first value of x where  $R_n(x,L) = L$ , and hence, Amin is achieved (defines stopband).



Figure 2-11.2 Chebyshev rational functions for n = 2 to 5.

By using Eq. (2-12.8) and condition 5, an expression for L can be found in terms of the filter parameters Amin and  $\varepsilon$ .

$$L^{2} = \frac{10^{0.1 \text{Amin}} - 1}{\varepsilon^{2}}$$
 (2-12.10)

Since  $A(\omega) = Amax$  at the passband edge, fmax, condition 4 and Eq. (2-12.8) can be used to find an expression for  $\varepsilon$ .

$$\varepsilon^2 = 10^{0.1 \text{Amax}} - 1$$
 (2-12.11)

Not surprisingly, this is the same expression as is used in the Chebyshev case, and for the same reasons (condition 3).

By putting Eqs. (2-12.10) and (2-12.11) together, the expression for L is obtained:

$$L^{2} = \frac{10^{0.1 \text{Amin}} - 1}{10^{0.1 \text{Amax}} - 1}$$
(2-12.12)

### ELLIPTIC FUNCTIONS

There are three kinds of elliptic integrals (see Abramowitz and Stegun, [1]). Only the elliptic integral of the first kind is needed for elliptic filters. The elliptic integral of the first kind is defined by the following equation:

$$u(\phi,k) = \int_{0}^{\phi} \frac{dx}{(1-k^{2}\cdot\sin^{2}x)^{\frac{1}{2}}}$$
(2-12.13)

The two variables,  $\emptyset$  and k, are called the amplitude and modulus respectively. Some elliptic function tables [1], and some elliptic filter tables [58], are parametric in terms of the modular angle,  $\Theta$ , instead of the modulus, k. The modular angle is defined by:

$$k = \sin \theta \qquad (2-12.14)$$

The <u>complete elliptic integral</u> of the first kind results when  $\emptyset$ , the limit of integration, is taken as  $\pi/2$  radians. This value,  $u(\pi/2,k)$  is defined as K(k).

Figure 2-12.3 shows  $u(\phi, k)$  parametric with the modular angle,  $\theta$ .  $u(\phi, k)$  has been normalized with respect to K(k). Figure 2-12.4 shows the complete elliptic integral, K(k) by itself.



Figure 2-12.3 Elliptic integral.

Figure 2-12.4 Complete elliptic integral.

The complementary modulus is defined in terms of the modulus, k, or the modular angle,  $\theta$ , as:

$$k' = (1 - k^2)^{\frac{1}{2}} = \cos \theta$$
 (2-12.13)

The complementary complete elliptic integral is defined in terms of the complementary modulus:

$$K'(k) = K(k') = u(\pi/2, k')$$
 (2-12.16)

The <u>elliptic sine</u> is an elliptic function, and is defined in a somewhat reverse manner from the elliptic integral:

$$u(\emptyset,k) = \int_{0}^{\emptyset} (1 - k^{2} \cdot \sin^{2}(x))^{-\frac{1}{2}} dx \qquad (2-12.17)$$

$$sn(u,k) = sin \emptyset$$
 (elliptic sine) (2-12.18)

$$cn(u,k) = \emptyset$$
 (elliptic cosine) (2-12.19)

The definition is "reverse" since the limit of integration,  $\emptyset$ , must be found to yield the "input,"  $u(\emptyset,k)$  and k. Figure 2-12.5 shows the elliptic sine and elliptic cosine functions.



Figure 2-12.5 Elliptic sine and cosine functions.

CREDITS: 1, 2, 3, & 4: Reproduced from "Approximation Methods for Electronic Filter Design," by R.W. Daniels, copyright, © 1974, by Bell Telephone Labs, Inc., used with permission of McGraw-Hill Book Company, Inc., New York, N.Y. Luckily, there are rapidly converging series expansions for both K(k) and sn(u,k), [12], and the programmable calculator can be used to perform the iterative calculations. These series expansions are:

Complete elliptic integral

$$K(k) = \frac{\pi}{2} \prod_{m=0}^{\infty} (1 + k_{m+1});$$
 (2-12.20)

where

$$k_{m+1} = (1 = k_m')/(1 + k_m')$$
 (2-12.21)

$$k_{m}' = (1 = k_{m}^{2})^{2}$$
, (complementary modulus) (2-12.22)

$$k_0 = k$$
 (2-12.23)

The terms of the infinite product expansion rapidly converge toward unity. The series is terminated when  $k_m < 10^{-9}$ . This accuracy is generally achieved in four iterations or less.

### Elliptic sine

The elliptic sine is calculated from the following Fourier series:

$$s_{n}(u,k) = \frac{2\pi}{K(k)\cdot k} \sum_{m=0}^{\infty} \left\{ \frac{q^{m+2}}{1-q^{2m+1}} \right\} \cdot sin\left((2m+1) \frac{\pi u}{2K(k)}\right) \quad (2-12.24)$$

where q is Jacobi's nome (also called modular elliptic function):

$$q = e^{-\frac{\pi K'(k)}{K(k)}}$$
 (2-12.25)

The series is terminated when  $(q^{m+2})/(1 - q^{2m+1}) < 10^{-9}q$ 

This particular algorithm for the elliptic sine is only one of many which can be used to calculate the function. For sharp cutoff filters, the convergence is slow; however, of all the algorithms researched by the author, the Fourier series method could be coded to fit into the HP-97 program memory and still leave enough room for the coding needed for the rest of the program.

If more registers were available, the descending Landen transformation method could have been combined with the calculation of K(k) to simultaneously yield K(k) and sn (u,k) as outlined in Skwirzynski and Zdunek's article [46]. If more program space were available, the elliptic sine could be calculated from the ratios of sums of hyperbolic sines and cosines as recommended by Orchard [41]. Also, if more program space were available, the calculation of the transmission zeros could be done directly from adaptations of the elliptic sine as represented by infinite products of hyperbolic tangents given by Amstutz [2] or as interpreted by Geffe [27]. Darlington's algorithm [18] is used in Program 2-15, and is a concise method for calculating the transmission zeros and poles when the filter order is odd.

<u>Filter order calculation</u>: Just as the trigonometric sine is periodic, so is the elliptic sine, although the elliptic sine is doubly periodic with a real period of  $4 \cdot K(k)$ , and an imaginary period of  $2 \cdot K'(k)$ . The Chebyshev rational function, R(x,L) may be expressed in terms of the complete elliptic integral and the elliptic sine. By relating the real and imaginary periods of the elliptic sine function to the real and imaginary periods of the Chebyshev rational function, two equations in two unknowns, C and n, may be formulated. These equations are:

### Chebyshev rational function and elliptic functions

$$R_{n}(x,L) = \begin{cases} sn(uL/C, L^{-1}) & n \text{ odd} \\ sn(uL/C + (-1)\frac{n}{2} \cdot K(L^{-1}), L^{-1}) & n \text{ even} \end{cases}$$
(2-12.26)

where C is a constant, and u is the solution to:

$$x = sn(x_L, x_L^{-1})$$
 (2-12.27)

Simultaneous equations in C and n:

$$\mathbf{x}_{L}^{-1} \cdot \mathbf{K}(\mathbf{x}_{L}^{-1}) = \mathbf{n} \cdot \mathbf{C} \cdot \mathbf{L}^{-1} \cdot \mathbf{K}(\mathbf{L}^{-1}) \quad (\text{real periods}) \quad (2-12.28)$$

$$\mathbf{x}_{L}^{-1} \cdot \mathbf{K}'(\mathbf{x}_{L}^{-1}) = \mathbf{C} \cdot \mathbf{L}^{-1} \cdot \mathbf{K}'(\mathbf{L}^{-1}) \quad (\text{imaginary periods})$$

$$(2-12.29)$$

Eliminating C by simultaneous solution of Eqs. (2-12.28) and (2-12.29) results in the following expression for the filter order, n:

$$\mathbf{n} = \frac{K(\mathbf{x}_{L}^{-1}) \cdot K'(L^{-1})}{K'(\mathbf{x}_{L}^{-1}) \cdot K(L^{-1})}$$
(2-12.30)

where  $x_L^{-1}$  is defined by Eq.(2-12.2) and  $L^{-1}$  by Eq. (2-12.18):

$$x_{L}^{-1} = (fmax)/(fmin)$$
$$L^{-1} = \left\{ \frac{10^{0.1 \text{Amax}} - 1}{10^{0.1 \text{Amin}} - 1} \right\}^{\frac{1}{2}}$$

The loss poles of the elliptic filter transfer function, Eq. (2-12.5), are given by:

$$x_{v} = \frac{x_{L}}{x_{zv}}$$
(2-12.31)

where:

$$x_{zv} = \begin{cases} sn\left(\frac{2v}{n}K(x_{L}^{-1}), x_{L}^{-1}\right) & n \text{ odd} \\ sn\left(\frac{(2v-1)}{n}K(x_{L}^{-1}), x_{L}^{-1}\right) & n \text{ even} \end{cases} v = 1, 2, ..., n$$

In Eq. (2-12.22) k becomes  $x_1^{-1}$  for the above elliptic sine computation, hence:

$$x_{v} = \frac{K(x_{L}^{-1})}{2\pi\Sigma}$$
(2-12.33)

where  $\Sigma$  is the term summation in Eq. (2-12.24).

**Program Listing I** 

301 *LELA LOAD Amax (passband ripple)	<u>057 _ STOI</u>
002 STO0	058 . calculate starting y :
003 RTN	059 5 1
004 *LBLe LOAD Amin (min stopband loss)	808 3106 modd - 1
005 STD1	061 RCL4 $n Odd, y = 1$
006 RTN	062 X
007 *LELE LOAD fmax	063 FRC
007 *LDLD IVAD IWAX	
008 STO2	<u>064 ST+6</u>
009 RTN	065 SF0 set flag 0 if n is odd
010 *LELb LOAD fmin	066 X=0?
	<u>067 CF0</u>
012 RTN	068 Pi compute and store q:
013 *LBLC calculate filter order, n	069 RCL8
014 RCL2 compute and store:	$\begin{array}{ccc} 069 & \text{RCL8} \\ 070 & \times & \mathbf{q} = \mathbf{e}^{-\pi \mathbf{K}'} \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$016 \div X_{L} \rightarrow H9$	072 ÷
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	073 CHS
018 GSE5 compute and store:	074 e [×]
$019 \text{ ST04 } K(x_1^{-1}) + R4 + R7$	<u>075 STOE</u>
$\begin{array}{ccc} 019 & ST04 & K(x_{L}^{-1}) + R4 + R7 \\ 020 & ST07 & K(x_{L}^{-1}) + R4 + R7 \\ \end{array}$	076 RCLC calculate error limit for
821 RCL9 compute and store;	
$\theta 22 \qquad \text{GSB4}  \text{w1(w-1)} \qquad \text{B8}$	
	<u>078 STOC</u>
	079 *LBL0 loop to calculate elliptic
024 ST=4 continue n calculation	080 Pi sine $(sn(x, x_{L}^{-1}))$
	081 RCL6
026 GSB7	$082$ × compute and store: $(\pi y)/n = x$
027 RCL1	083 RCL4
$\begin{array}{cccc} 027 & \text{RCL1} \\ 028 & \text{GSB7 L}^{-1} = \sqrt{10^{0.1} \text{ Amex} - 1} \\ 029 & \div \\ 029 & \vdots \\ 10^{0.1} \text{ Amin} - 1 \\ \end{array}  R_E$	Î 084 ÷
029 ÷ 10 ^{0.1 Amin} - 1	085 P≠S
030 IX	086 ST00
031 STOE	087 EEX initialize 2m + 1
032 X ² generate error message if	088 ST01
	090 ST <u>03</u>
035 GT09 call to unused label; "ERROR"	- 091 *LBL1 elliptic sine loop
	892 RCLE compute and store:
	093 RCL1
038 STX4 continue n calculation	094 Y ^x 1
$\begin{array}{ccc} 039 & \text{RCLE} \\ 040 & \text{GSB5} \end{array}$	095 √X a ^{m+2}
040 GSB5	096 LSTX - 2m+1 + 82
041 ST+4 finish n computation	
842 RCL4 recall n	098 EEX
043 SPC	099 +
045 EEX convert n to next highest	<u>101 SI02</u>
046 STOD integer, print and store	102 RCL1 compute and add to sum $(\Sigma)$ :
047 +	103 RCL0
048 INT	104 ×
049 PRTX	105 SIN (S2)sin((2m+1) πν /n)
050 *LBLC LOAD ALTERNATE n VALUE	106 X
051 ST04	107 ST+3
052 GT03	108 2 increment 2m
	7 4
053 *LBLD CALOULATE LOSS POLES	109 SI+1
054 DSP9 set display format	110 RCLC test for loop exit:
055 1 initialize index register	111 RCL2
057 7	
056 3 REGI	STERS 112 X>Y?
	6 index 7 8 9
Amax Amin fmax fmin n	scratch $\bigvee$ $K(x_{L}^{\dagger})$ $K'(x_{L}^{\dagger})$ $x_{L}^{-1}$
	S5 S6 S7 S8 S9
S0(+r,1)/m S12m 1 S2 gm+1/2 S3 5 S4	
$\frac{S_0(\pi v)}{n} = \frac{S_1^2 m + 1}{2m + 1} = \frac{S_2^2 m + v_z}{1 - g^{2m + 1}} = \frac{S_3}{2} = \frac{S_4}{4}$	loss pole storage registers
$\frac{S_0(\pi v)}{n} = \frac{S_1^2 m + 1}{2m + 1} = \frac{S_2^2 q^{m+1/2}}{\frac{1}{1 - q^{2m+1}}} = \frac{S_3}{2} = \frac{S_4}{q}$	D NINF (used by E generatebred I storage reg.
$\frac{S_{0}(\pi v)}{n} = \frac{S_{1}^{2} 2m + 1}{2m + 1} = \frac{S_{2}^{2} q^{m+1/2}}{1 - q^{2m+1}} = \frac{S_{4}}{2}$	loss pole storage registers

## Program Listing II

2-12

r	
• <u>113 GT01</u>	169 %≠Y? test for loop exit
114 RCL3 recall summation & compute sn:	
115 PZS	171 DSZI restore highest reg. index
	172 2 NINF = 2 for transformed
	173 STOD even ordered filters
$117 + \frac{sn(x, x_L^{-})}{2\pi \Sigma} = \frac{2\pi \Sigma}{2\pi \Sigma}$	
118 Pi $x_L = \frac{K(x_1^{-1})}{K(x_1^{-1})}$	
119 X	175 DSP2 set original display format
120 RCL7	176 SPC
121 ÷	177 RIN_ return control to keyboard
	178 #LBL4 compute K (k)
122 1/8 compute and store normalized	
123 ISZI loss pole locations	179 X ²
124 STO	180 CHS form complementary modulus:
125 RCL2 denormalize and print loss	181 EEX
126 × pole locations	$182 + k' = \sqrt{1 - k^2}$
127 PRTX	183 JX
	184 *LBL5_ compute K'(k)
128 EEX increment register index	
1 129 51+6	185 STO5 store argument, k
130 RCL6 test for loop exit:	185 Pi initialize product register
131 ENTA	1 <b>87</b> 2
132 + 100p  if  n > 2v	188 ÷
132 4 100p 11 11 / 20	189 ST06
	<u>497</u>
134 X>Y?	198 #1816 complete elliptic integral
4-135 GT08	191 EEX
136 SPC	192 RCL5
137 FO? jump if n is odd	193 X ² – ^m T
137 F07 jump if n is odd	194 - $K(x) = \frac{\pi}{2} (1 + k)$
	$\frac{1}{10}$
139 1 initialize index register	195 JX
140 4 and store highest register	196 EEX
141 XII number for later exit test	$197 X = 1 - K_{m}$
142 STOE	198 - 1+km
143 RCL; recall $\Omega_c$	
	$\frac{199}{200}  \frac{151x}{EEx}  \mathbf{k_1'} = \sqrt{1 - \mathbf{k_1'}^2}$
	$k_{1} = \sqrt{1 - k_{1}^{2}}$
<u>145 \$705</u>	102 -
146 #LBL2 Möbius transformation loop	202 ÷
147 ISZI calculate Möbius transform	203 ST05
148 RCLi for even ordered lowpass:	204 EEX
149 X2	205 +
150 RCL5	206 ST×6
151 LSTX	
	207 RCL5
152 X2	208 EEX
$153 - \omega^2 \cdot (\Omega_c^2 - 1) \frac{\Omega^2}{\Omega_c^2 - \Omega^2}$	209 CHS test for loop exit:
$1 154 = \omega^{-1} (M_c^{-1}) \frac{1}{\Omega^2 - \Omega^2}$	
155 RCL5	$\begin{array}{cccc} 210 & 1 \\ 211 & 0 \end{array}  \text{loop if } k_{\rm m} > 10^{-10} \end{array}$
156 EEX	212 STOC
157 -	
158 ×	213 X4Y?
	<u>214 GT06</u>
159 ABS	215 RCL6 recall K(k)
<u>160 4X</u>	216 RTN return to main program
161 0SZI	217 *LBL7 subroutine to compute:
162 STO: store normalized & mfmed	218 EEX
activiting 1100 and print 1088	220 ÷
l 100 ^ pole location	221 10 ^x
166 PRTX	222 EEX
167 RCLI	223 -
168 RCLE	224 RTN
LABELS	FLAGS SET STATUS
load Amax Bload fmax calc n loss poles	⁰ n odd FLAGS TRIG DISP
	1 ON OFF
load Amin load fmin enter n	
o sn(u,k) i sn loop 2 Mobius 3 jump 4 K(	
⁵ K ¹ (k) K ¹ (k) loop subroutine 9	

### PROGRAM 2-13 RESPONSE OF A FILTER WITH CHEBYSHEV PASSBAND AND ARBITRARY STOPBAND LOSS POLES.

### Program Description and Equations Used

This program will calculate the passband and stopband attenuation of lowpass, highpass, bandpass, and bandstop filters having Chebyshev (equiripple) passbands and arbitrary stopband losspole locations. The elliptic filter is a special case of this filter class in that the loss pole locations are chosen to provide equi-ripple stopband behavior.

Bandpass and bandstop filters are assumed to be the classic transformations of the lowpass structure, i.e., equal numbers of attenuation poles on either side of the passband, and geometrical symmetry of those poles about the center frequency. The program is designed to take either stored normalized lowpass loss pole frequencies provided by Program 2-12, or to accept normalized lowpass loss pole frequencies, number of poles at infinite frequency, and passband ripple as provided by the user.

This program is adapted from an unpublished HP-67/97 elliptic stopband attenuation program written by Philip R. Geffe. The basis of the program is the Z transformation, and the associated loss function, L(Z). This function allows the calculation of the stopband attenuation of equiripple passband elliptic filters from a knowledge of the loss pole frequencies only [17]. The transformed variable, Z, is defined by:

$$Z^{2} = (s^{2} + \omega_{R}^{2})/(s^{2} + \omega_{A}^{2})$$
 (2-13.1)

This function spreads the passband (s =  $j\omega_A$  to  $j\omega_B$ ) over the entire imaginary Z axis, and spreads the stopbands along the real Z axis. Although use of the Z transform allows greater numerical accuracy due to the spreading out of the passband poles, the prime reason for its use in this program is the mathematical expressions for elliptic filters are simpler in the Z domain than in the s domain.

Given a filter with equiripple passband extending from  $\omega_A$  to  $\omega_B$ , having NZ attenuation poles at the origin, N finite loss poles, and NINF

where

attenuation poles at infinite frequency, the loss function in terms of Z is:

$$L(Z) = \left\{ \frac{Z + \omega_{B}/\omega_{A}}{Z - \omega_{B}/\omega_{A}} \right\} \stackrel{NZ}{=} \left\{ \frac{Z + 1}{Z - 1} \right\} \stackrel{NINF}{=} \frac{1}{\mathbf{1} + \mathbf{1}} \frac{Z + Z_{\mathbf{1}}}{\mathbf{1} + \mathbf{1}} \qquad (2-13.2)$$

If L(Z) represents a normalized lowpass filter, then  $\omega_A = 0$ ,  $\omega_B = 1$ , and NZ = 0. Letting s = j $\Omega$ , Z and L(Z) become:

$$Z = (1 - 1/\Omega^2)^{\frac{1}{2}}$$
 (2-13.3)

$$L(Z) = \left\{\frac{Z+1}{Z-1}\right\} \frac{\text{NINF}}{2} \quad \prod_{i=1}^{N} \frac{Z+Z_i}{Z-Z_i} \quad (2-13.4)$$

The attenuation function,  $A(\Omega)$ , is defined in terms of the loss function, L(Z), as follows:

$$A(\Omega) = 10 \cdot \log \left\{ 1 + \frac{\varepsilon^2}{4} \left( L(Z) + \frac{(-1)^{\text{NINF}}}{L(Z)} \right)^2 \right\}$$
 (2-13, 5)

$$\varepsilon^2 = 10^{0.1 \text{Amax}} - 1$$
 (2-13.6)

In the stopband, the attenuation function may be simplified:

A(
$$\Omega$$
) = 10 log  $\left[1 + \frac{\varepsilon^2}{4} \left\{ |L(Z)| + 1/ |L(Z)| \right\}^2 \right]$  (2-13.7)

The filter passband ripple (Amax) may sometimes be expressed in terms of a reflection coefficient,  $\rho$ . The relationship between these quantities is:

Amax = 
$$-10 \log (1 - \rho^2)$$
 (2-13.8)

Within the normalized lowpass passband ( $\Omega$ <1), Z becomes purely imaginary. Equation (2-13.4) may be rewritten in exponential form to eliminate the need for complex arithmetic:

$$L(Z) = e^{jB}$$
 (2-13.9)

$$B = \frac{\text{NINF}}{2} \tan^{-1} \left\{ \frac{-2|\mathbf{z}|}{|\mathbf{z}|^2 - 1} \right\} + \sum_{i=1}^{-1} \tan^{-1} \left\{ \frac{-2|\mathbf{z}|\mathbf{z}_i|}{|\mathbf{z}|^2 - |\mathbf{z}_i|^2} \right\} \quad (2-13.10)$$

substituting Eq. (2-13.9) into (2-13.5) yields:

A( $\Omega$ ) = 10 log (1 +  $\varepsilon^2 \cos^2 B$ ) for NINF even, (2-13.11)

and

A(
$$\Omega$$
) = 10 log (1 +  $\varepsilon^2 \sin^2 B$ ) for NINF odd. (2-13.12)

The program uses Eqs. (2-13.3) through (2-13.12) to find the filter loss at any frequency. Two ancillary relations are used to convert unnormalized bandpass or bandstop frequencies to the normalized lowpass frequency,  $\Omega$ . Lowpass and highpass filters are only special cases of bandpass and bandstop filters respectively, in that the center frequency is zero. These two ancillary equations are:

Bandpass to normalized lowpass

$$\Omega_{BP} = \frac{1}{BW} \left\{ \mathbf{f} - \frac{\mathbf{f}_0^2}{\mathbf{f}} \right\}$$
(2-13.13)

where

Bandstop to normalized lowpass

$$\Omega_{\rm BS} = 1/\Omega_{\rm BP} \tag{2-13.14}$$

Equation (2-13.4) will predict the stopband attenuation for even ordered elliptic filters of Cauer types A and B (the Möbius transformation - see previous program for description). The type A, even-ordered filter has no attenuation poles at infinite frequency, and can only be realized with mutual inductive coupling between filter sections, while the Möbius transformed pole locations (type B) can be realized with a ladder structure containing only L's and C's. The even ordered type B ladder structure possesses a double pole of attenuation at infinite frequency.

Equation (2-13.4) will not work with the pole locations resulting from a transformation to Cauer type C filters (equal resistive termination for even-ordered elliptic filters), i.e., one must use types A and B only. See Saal and Ulbrich [45] for details.

## 2-13 User Instructions

CHEBYS	HEV PASSBAND	- ARBITRARY	STOPBAND	RESPONSE		
load p _i	load NINF	load +Por -Amax			5	1
bandpass: fo   BW	fo # BW	load f _{st} ff _{sp} af	start Bweep	$\frac{\text{calculato}}{f \rightarrow A(f)}$		

STEP		INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of magnetic card			
2	If this program is being used concurrently			
	with Program 2-11, the loss poles, Amax,	****		
	and NINF are already stored by that program.			
	Go to step 6 and continue.			
3	Load normalized loss pole frequencies	setup	f A	
		P <u>1</u>	R/S	
		₽2	R/S	
		•		
		^p n	R/S	
4	Load number of loss poles at infinite frequency	NINF	f B	
5	Load either the reflection coefficient or			
	the passband ripple in dB (related quantities).	****		
	The program differentiates the quantities			
	by sign. Both quantities are normally positive			
	Reflection coefficient	9	fO	Amax
ļ	or			
	Passband ripple in dB (note sign)	-Amax	f o	Amax
			<u> </u>	
6	Select filter type:			
	Bandpass or Lowpass:	fo	ENT	
	The lowpass filter is a special case of	BW		
	the bandpass filter in that the center			
ļ	frequency is zero. The bandwidth is the	****		
	lowpass cutoff frequency.			
			Thim A	
	Bandstop or Highpass: The highpass filter is a special case of	fo		
	***************************************	BW	B	
	the bandstop filter in that the center			
	frequency is zero. The bandwidth is the			
}	highpass cutoff frequency.	*******		

## 2-13 User Instructions



STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	Load denormalized stopband frequency and			
	calculate stopband attenuation	f	E	A(f)
8	If a sweep of frequencies is desired:			
	a) Load sweep parameters	f _{start}	ENT	
	The frequency increment is either an	fstop	ENT	
	additive delta, or a multiplicative	fincr	σ	
	delta depending upon lin/log sweep.			
	If linear sweep is desired, then			
	the increment should be entered as a			
	negative quantity, i.e., for 100 Hz			
	linear steps, the increment should			
	be entered as -100. Whether the			
	increment is linear or logrithmic,			
	the sweep will be always in the			
	direction of increasing frequency.			
	b) Start sweep		D	f
				A(f)
				space
				f
				A(f)
	***************************************			:
9	Go back to any step desired, modify, and			
	rerun program			<u></u>
<b>}</b>				·····
		••···		
		·		
<b> </b>			1	
<b> </b>			t	
<b>h</b>			1	
<b> </b>			1	·····
			1	*******
<b> </b>			f	
<b> </b>			1	
L		ł	L	

### Example 2-13.1

An elliptic bandpass filter is required to pass frequencies between 5 kHz and 15 kHz with 0.0436 dB ripple or less (10% reflection coefficient), and reject frequencies lying outside a 4.1 kHz to 19 kHz band by at least 60 dB. Find the minimum filter order that will satisfy these requirements, and predict the stopband response.

The center frequency is the geometric mean of the upper and lower passband edge frequencies. Likewise, the stopband edge frequencies must be geometrically symmetrical about the center frequency. In this example, the above frequencies do not satisfy this requirement, hence, the narrowest stopband with geometric symmetry must be defined. The filter center frequency is calculated from the passband edge frequencies:

$$f_0 = (5000 \cdot 15000)^{\frac{1}{2}} = 8660.25 \text{ Hz}$$

The narrowest stopband may be found by calculating the geometrical mating frequencies to the given stopband frequencies, and taking the narrowest set:

$$f_u = f_o^2/4100 = 18292.68 \text{ Hz}$$
  
 $f_L = f_o^2/19000 = 3947.37 \text{ Hz}$ 

The narrowest stopband is 4100 Hz to 18292.68 Hz for a stopband width of 14192.68 Hz.

The stopband and passband data are loaded into Program 2-12 to find the minimum filter order and loss pole locations. Because bandpass data was loaded, the loss pole frequencies that are output represent loss pole bandwidths, or the separation of loss pole frequencies in the upper and lower stopbands that are geometrically related to the filter center frequency. To convert these bandwidths into loss pole frequencies, the subprogram contained in Program 2-1 can be used. These equivalent bandpass loss pole frequencies are not necessary for proper operation of this program, but are calculated for information only. They can also be useful when tuning the final filter. All normalized loss pole information is automatically stored by Program 2-12 for use by this program.

```
Example 2-13.1 continued
```

Load Program 2-12 and calculate filter order and loss poles. .0435 GSBA load Amax 66.00 GSBa load Amin 10000.00 GSBE load fmax (passband bandwidth) 14192.68 GSBb load fmin (stopband minimum bandwidth) 6350 calculate minimum filter order 6.72 *** 7.68 *** minimum integral filter order, n SSBD calculate loss pole bandwidths loss pole bandwidth #1 28.69564+03 *** 17.08915+03 *** loss pole bandwidth #2 14.44925+03 *** loss pole bandwidth #3 Load Program 2-1 to calculate loss pole locations from loss pole bandwidths. 28695.64 ENT: load loss pole bandwidth #1 8669.25 GSBd load fo 31106.69 *** upper BP loss pole frequency #1 2411.05 *** lower BP loss pole frequency #1 17089.19 ENT+ load loss pole bandwidth #2 8660.25 GSBd load fo 20710.53 *** upper BP loss pole frequency #2 3621.34 *** lower BP loss pole frequency #2 14449.25 ENTY load loss pole bandwidth #3 8660.25 GSBd load fo 18502.71 *** upper BP loss pole frequency #3 4053.45 *** lower BP loss pole frequency #3 Load this program (Program 2-13) and calculate filter response. 8660.25 ENT: load fo 10000.00 GSBA load passband width and select bandpass 2000.00 ENT+ load f-start 5000.00 ENT: load f-stop -200.00 GSBC load f-increment (a negative value means linear sweep increments) GSBD start sweep: the output is on the next page. (sweep step size changes were made between output segments)

PROGRAM OUTPUT FOR EXAMPLE 2-13.1							
LOWER S	TOPBAND	P	ASSBAND		UPP	ER STOPBANI	נ
	f A(f) dB		10000.0000 0.0434		15000.00 0.84	<b>30000.0</b> 0 79.85	f A(f)
2200.00 73.03			10506.0000 0.0342		16000.00 12.98	<b>31000.0</b> 0 100.57	
2406.00 98.12			11000.0000 0.0115		17000.00 31.72	<b>32000.0</b> 0 82.55	
2600.00 73.25			11500.0000 0.0000		18000.00 52.97	<b>33000.0</b> 0 76.47	
2800.00 67.19			12000.0000 0.0144		19000.60 64.35	34000.00 73.25	
3000.00 54.45			12500.0000 0.0389		20000.00 58.65	<b>35000.0</b> 0 71.15	
3200.00 63.90			130 <b>00.00</b> 00 0.0385		21000.00 77.55	36000.00 69.63	
3400.00 66.45			13500.0000 0.0082		22 <b>000.00</b> 66.70	370 <b>00.0</b> 0 68.49	
3600.00 84.71			1 <b>4000.</b> 0000 0.0090		2 <b>3000.00</b> 64.24	38000.00 67.60	
3800.00 66.03			1 <b>4500.0000</b> 0.0430		24000.00 63.83	39000.00 66.89	
4 <b>000.0</b> 0 67.53			150 <b>00.0</b> 000 0.0436		25000.00 64.45	40000.00 66.31	
4200.00 49.19					26000.00 65.75	41000.00 65.84	
4400.00 32.55			isplay was to DSP4 for		2 <b>7000.</b> 00 67.65	42000.00 65.45	
46 <b>00.00</b> 18.89		passband changed b	printout, th ack to DSP2 stopband or	hen for	28000.00 70.25	<b>43000.00</b> 65.13	
4800.00 5.63		appor			29000.00 73.91	44000.00 64.66	
5000.00 0.04						45000.00 64.64	

### Example 2-13.2

Compute the minimum stopband attenuation of an eleventh order, 20% reflection coefficient, 75 degree modular angle elliptic filter (see p. 326 of Saal and Ulbrich [45]).

Load Program 2-12 and calculate filter order and loss pole locations.

1.00 ENT+ .20 %2 - LOG 10.00 7 CHS 0.1772877 ***	calculate Amax = 10 log $(1 - \rho^2)$
GSBH 100.00 GSBo 1.00 GSBB 75.00 DAR SIN 1-X 1.035276 *** GSBb	<pre>load Amax load dummy Amin large enough to cause "error" halt load normalized passband edge calculate stopband edge from modular angle load normalized stopband edge</pre>
GSBC ERRDR	start filter order calculation (computes K(k)) program halt since L ⁻¹ is too small
11. 3 <del>55</del> e	load desired filter order
GSBD 2.222241138 *** 1.744326902 *** 1.126526299 *** 1.0511 7341 *** 1.03751931- ***	output loss þole locations and store for next program
Load this program	(Program 2-13) and calculate filter response.
0.000 ENT† 1.000 SSBH	
1.000 GSB6	load number of poles at infinity
75.000 SIN 1/X GSBE 60.806 ***	<pre>calculate normalized stopband edge frequency calculate stopband loss at this frequency minimum stopband loss in dB (Amin defined at fmin)</pre>

### 2-13

## **Program Listing I**

· · · · · · · · · · · · · · · · · · ·			
001 *LBLo	SETUP LOSS POLE ENTRY	1-057 #LBL1	
002 I		058 RCL2	
803 3	initialize index register	059 RCL0	test for loop exit
004 STOI		860 P2S	
005 SF2	indicate initialization reqd		
-006 *LBL0			
007 R/S	enter normalized loss pole	063 RTN	
008 ISZI		864 *LBLE	LOAD f, calculate A(f)
009 STO;		065 ST06	temporarily store f
010 GT00		866 F2?	
011 *LBLb			if first time through here,
	LOAD NINF, the number of		goto initialization routine
012 STOD	lowpass loss poles at	068 RCL6	
813 GT06	infinite frequency	069 RCL8	calculate:
014 *LBLc	LOAD Por -Amax	070 RCL6	
015 X<07		071 ÷	$\Omega = \frac{1}{BW} \left[ f - \frac{f_0^2}{f} \right]$
-016 GT01	if negative entry, jump	072 -	
		*	
317 X2	calculate:	073 ABS	
018 CHS	Amor - 110100 (1 02)	874 RCL9	
019 GSB7	Amax = $ 10\log(1-\rho^2) $	075 ÷	
-020 *LBL1		076 X=0?	
021 ABS	store Amax		$\overline{\Omega} = 0$ escape
<u>022 ST00</u>		078 F0?	if bandstop, form inverse
023 GTO6,	goto space and return	<u>879</u> 1/X	
024 *LBLA	LOAD fo & BW for bandpase	880 EEX	test for prochand (0 of)
825 CF0	indicate bandpass	081 CF3	test for passband $(\Omega < 1)$
		082 X>Y?	eat flow 3 if - acchand
			set flag 3 if passband
027 *LBLB	LOAD fo & BW for bandstop	<u>883 SF3</u>	
<u>028 SF0</u>	indicate bandstop	084 XIY	
	stone BW (handwidth)	085 X2	
030 ST09	store BW (bandwidth)	<b>886 17X</b>	form and store;
031 R4		<b>0</b> 87 -	•
	2		$ \mathbf{Z}  = ( 1 - \frac{1}{2} )^{\frac{1}{2}}$
032 X2	form and store $f_0^2$	088 ABS	141 = (12 - 立 1)~
<u>033 ST08</u>		089 IX	· ·
.034 GT06	goto space and return	<u>090 sto6</u>	
035 *LBLC	LOAD f-start, f-stop, Af	<b>091 F3</b> ?	jump if in passband
036 P#S			ame as he heredatid
	store f-increment $(\Delta f)$		
<u>037 ST01</u>		093 EEX	stopband attenuation,
038 R4	stone f-ston	094 +	form and store:
039 STO2	store f-stop	095 RCL6	
040 R4		<b>8</b> 96 EEX	NINF/2
	store f-start	897 -	$\begin{bmatrix} -\frac{Z}{2} + \frac{1}{2} \\ z - 1 \end{bmatrix}$ NINF/2
<u>041 STO0</u>			
<u>042 P#S</u>	<u>restore register order</u>	<b>0</b> 98 ÷	4 - 1
943 GT06	goto space and return	099 ABS	
	START SWEEP	100 RCLD	
045 PZS		101 Y×	boging $a = a = t/T = t$
			beginning of L(Z) calc
046 RCL0	recall and print	102 TX	
047 PIS	present frequency	<u>103 ST05</u>	
048 PRTX,		104 RCL7	desident and the second second second second second second second second second second second second second se
049 GSBE	calculate and print A(f)	105 STOI	initialize index register
050 P2S		-106 *LBL2	
	recall frequency increment		L(Z) calculation loop
<u>851 RCL1</u>		<u>107 ISZI</u>	<i>d</i> <b>n</b>
052 X<0?	Ì	108 RCL6	calculate <u>Z+Zi</u>
053 ST-0	if increment negative,	109 RCL:	$Z - Z_1$
054 X<0?	use additive delta	110 +	
-055 GT01		111 RCL6	
056 STX0	if plus, use product delta	112 RCLi	
	REGIS	TERS	
⁰ Amax $1 \frac{\epsilon^2}{4}$	2 3 4	5 . 6	7 8 2 9
		L Scratch	7 "13" 8 fo ² 9 BW
	S2 stop S3 S4	S5 S6	S7 S8 S9
Supresent Si free			1
Sopresent Si freq			
freq incr	freq	-loss pole storag	
freq incr A B	e0	0 6	I storage
freq incr	e0		

2.13

# Program Listing II NOTE FLAG SET STATUS

2·13 <b>Frugian</b>	
	169 EEX 170 $\Rightarrow R$ form sin $\beta$ , and cos $\beta$
113 114 $\pm$ - of the product of $L(Z)$	171 F1? recall $\sin\beta - R_x$ if NINF odd
114 ± 115 STx5 form running product of L(Z)	
116 RCLI	173 FNT prepare to double KX
116 RCLE test for loop exit	174 #LEL5 Output routine; form
118 X≢Y?	175 + $\epsilon^2/4$ (L+1/L) ⁴ if stopband $\sim 176$ X ²
119 GT02 120 RCL5	$176$ $X^2$ $177$ RCL1 $\epsilon^2 \sin^2 \theta$ if passband $178$ X $\cos^2 \theta$ $         -$
$\frac{120}{121} = \frac{RCL5}{121} \frac{1/X}{1/X} \text{ form } (L + 1/L)$	$177 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 \times 178 $
	-179 SSB7 calculate and print
are ante output routine	$180 \text{ RND} 10 \log(1 + R_x)$
124 *LBL3 passband attenuation care -	181 PRTX
125 ENTT	
126 + 127 CHS	183 SPC 184 RTN
127 CHS 128 RCL6 form and store:	184 RTN 
100 ¥2	186 FFX
130 EEX <u>NINF</u> BINK ;	$187 + 10 \log(1 + (\cdot))$
	188 LOG
132 →P	189 EEX
133 XZY $\beta_{\rm INF} = \tan^{-1}  z ^2 - 1$	190 1
1 134 - •	191 X
135 ÷ 136 RCLD	192 RTN 193 *LBL8 initialization routine
1 100	The store highest loss pole
137 × 138 ST05	194 RCL1 store nights los para
138 SIGS 139 RCL7 initialize index register	130 0100
140 STOL	196 RULO 197 EEX calculate and store:
141 SF1	198 1
142 RCLD 143 2 set flag 1 if NINF is odd	$\frac{199}{280}  \frac{2}{10^{\times}}  \frac{\epsilon^2}{4} = \frac{10^{\circ \cdot 1 \text{Amax}} - 1}{4}$ 281 EEX 4
	$200  10^{\times}  \underline{\epsilon}^{-} = \frac{10^{-}}{4}$
144 ÷	
145 FRC	202 -
146 X=0? 147 CF1	203 <b>4</b>
$\frac{1}{100} + \frac{1}{100} + \frac{1}{100}$ celeviation 100p	
149 ISZI increment index register	store index register
150 RCL6	i initialization, and
	208 STO7 initialize index register
152 × form B _i :	209 <u>STOI</u> The second loop
153 ENTT 0 10-1 -2 2 2 2	=210 *LBL9 loss pole 2 transform ster
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	211 ISZI increment index . offer see
	212 EEX calculate and store:
156 RCL6	$\begin{bmatrix} 213 & \text{RCL} \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\ 214 & X^2 \\$
157 X ² 158 RCLi	
150 KCL 159 X ²	where p. are the hormanized
160 -	216 - There are a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
161 →P	218 STOI
	- 219 RCLI test for loop exit
163 ST+5 add 6: to running sum	220 RCLE
164 RCLI	221 X≠Y?
165 RCLE test for loop exit 166 $X \neq Y$ ?	222 GT09 223 RIN return to main program
100 PCI5 recall B	FLAGS SET STATUS
LABELS	TRIG DISP
AHANDRASS P BATTYO" Pattrant I' SWENT	f+A(f) bandsop PLAGE
	NINF Odd O DEG CON
entry NINT stop lapasahand 4	ENG
o losspole 1 local 1bl 2L(Z) band atten	L(Z)'band III' 2 HAD n_2 losspole 3 passband 3 n_2
	2 xfm8

### PROGRAM 2-14 POLE AND ZERO LOCATIONS OF A FILTER WITH CHEBYSHEV PASSBAND AND ARBITRARY STOPBAND LOSS POLE LOCATIONS.

### Program Description and Equations Used

This program calculates the complex zero locations of the filter transfer function,  $H(s) = E_{in}/E_{out}$ , from the loss pole frequencies (frequencies of infinite attenuation). The zero locations are also called the natural modes of H(s). The pole locations of H(s), are the loss pole frequencies and lie on the jw axis. The transmission function, T(s), is the reciprocal of the filter transfer function, and may be more familiar to some readers. When active elliptic filters are being designed [35], one approach is to divide the transmission function into bi-quadratic factors with each factor (second order pole pair, and sccond order zero pair) being synthesized with a separate active network [38].

The loss pole frequencies can be supplied by the user in the case of arbitrary stopband, equiripple passband filters, or can be generated by Program 2-12 for elliptic filters (equiripple stopband and passband).

This program works in the Z-domain to spread out the pole and zero frequencies, and enhance the numerical accuracy of the final output. The s-domain frequencies are Z transformed using Eq. (2-14.1), which is the normalized lowpass form of the more generalized Z transform.

$$Z^{2} = 1 + \frac{1}{s^{2}} \bigg|_{\substack{m=1 \ m=1 \ m}{}} = 1 - \frac{1}{\omega^{2}}$$
(2-14.1)

The filter transfer function is a rational function, i.e., it is a ratio of polynomials:

$$H(s) = \frac{e(s)}{q(s)}$$
 (2-14.2)

This transfer function is related to the filter characteristic function, K(s), by the Feldtkeller equation:

$$H(s)H(-s) = 1 + K(s)K(-s)$$
 (2-14.3)

where the characteristic function has been defined in terms of the Chebyshev rational function, R(x,L), by Eq. (2-12.3), and also is a ratio of polynomials:

$$K(s) \approx \frac{f(s)}{q(s)}$$
(2-14.4)

Expanding the Feldtkeller equation to remove the denominator polynomial, q(s), yields:

$$e(s)e(-s) = q(s)q(-s) + f(s)f(-s)$$
 (2-14.5)

If the normalized lowpass Z transformation of these s-domain polynomials are defined by:

$$F(Z) \Leftrightarrow f(s)/s^{m}$$

$$Q(Z) \Leftrightarrow q(s)/s^{m}$$

$$(2-14.6)$$

$$(2-14.7)$$

(2-14.7)

where

$$Z_{i}^{2} = 1 + \left(\frac{\omega_{i}}{s}\right)^{2}$$
m = NINF + N
(2-14.8)

~

NINF = number of attenuation poles at 
$$\infty$$
 (2-14.9)

then the Z transform equivalent of Eq. (2-14.5) becomes:

$$E(Z)E^{*}(Z) = Q^{2}(Z) + F^{2}(Z)$$
 (2-14.11)

where

$$E(Z) \Leftrightarrow e(s)/s^{m}$$
 (2-14.11a)

$$E^{*}(Z) \Leftrightarrow e(-s)/s^{m}$$
 (2-14.11b)

The derivation of  $Q^2(Z)$  and  $F^2(Z)$  in terms of the Z transformed loss pole frequencies, Z₁, is done later and the results brought forward:

$$Q^{2}(Z) = (1-Z^{2})^{\text{NINF}} \prod_{i=1}^{N} (Z^{2} - Z_{i}^{2})^{2}$$
 (2-14.12)

$$F^{2}(Z) = \varepsilon^{2} (Ev A(Z))^{2}$$
 (2-14.13)

$$A(Z) = (Z + 1)^{\text{NINF}} \prod_{i=1}^{N} (Z + Z_i)^2$$
 (2-14.14)

The program Z transforms the loss pole frequencies using Eq. (2-14.1) then forms E(Z)E*(Z) using Eqs. (2-14.11), (2-14.12), (2-14.13), and (2-14.14). The roots of E(Z)E*(Z) are found using the secant iteration method (described later), and exist as quads, i.e.:

$$(Z+\sigma+j\omega)(Z+\sigma-j\omega)(Z-\sigma+j\omega)(Z-\sigma-j\omega) = Z^{4} + pZ^{2} + q$$
 (2-14.15)

Equation (2-14.1) may be used in reverse to convert Eq. (2-14.15) to the s-domain equivalent. The right half s plane (RHP) poles are assigned to e(-s), and the LHP poles assigned to e(s). These LHP poles represent the natural modes of the filter, and may be defined by a natural frequency,  $\omega_{\rm p}$ , and a quality factor, Q:

$$\omega_n = (1+p+q)^{\frac{1}{2}}$$
 (2-14.16)

$$Q = \left[2\left\{1 - (1 + \frac{p}{2})(1 + p + q)\right\}\right]^{\frac{1}{2}}$$
 (2-14.17)

The natural frequency and Q represent the program output.

## 2-14 User Instructions

6-14						
				_	OARD # 1	. CARD # 2
TRANSFE	R FUNCTION	ZEROS 1	FROM LOSS	POLE	LOCATIONS	
						7
		<u> </u>				
					START	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	NOTE: This program takes loss pole			
	frequencies stored in registers S4 through			
	\$8. Program 2-11 automatically stores the			
	loss pole frequencies in these registers.		2	
	If the loss pole frequencies are provided			
	by the user, they should be loaded before			
	proceeding.			
1	Load both sides of program card one			
2	Start program execution		E	flashing
				display
3	Insert second card into card reader, this			
	card will be read by the program at the			
	appropriate time. If the card is not			
	inserted, the display will flash when the			
	second card is to be read.			
				**********************
4	Read both sides of second program card			
	The program execution will automatically			
	resume,			ωnN
	If the first program is halted (R/S key)			Q _N
	when the display flashes, the second program			space
	execution may be resumed by depressing key"E"			ω _{n_{N-1}}
	after the second card loading.			Q _{N-1}
				:
		***************		:
	******			$\omega_{n_i}$
<b></b>		*****		Q1
				space
·		**********		Jo (if odd)
		**** ******		<u>0.(000</u> )
•••••		*********		·
		•••••	İ	
		•••••		
·				
				p
				┹

### Example 2-14.1

Find the natural modes for the elliptic filter given in Example 2-12.2.

Load Program 2-11 and calculate loss pole frequencies.

	ENT1	1
.20	Xε	
	-	convert 20% reflection coefficient into
	LOG	passband ripple in dB using:
16.00	х	$Ap_{dB} = -10\log(1-\rho^2)$
	CHS	$Mp_{dB} \simeq -1010g(1-0)$
	DSP6	/
0.177288	***	Ap _{dB} , passband ripple in dB
	DSP2	TUB, Further and the state
	GSBA	
78 GQ	GSBa	load stonband attonuction read ha
	GSBB	
		load normalized cutoff frequency
2.00	GSBb	
	GSBC	calculate minimum filter order
	***	calculated filter order
6.00	***	nearest integral filter order
		_
	GSBD	calculate loss pole frequencies
7.235803+00	黄菜菜	
2.732051+00	<b>東米市</b>	untransformed even order loss pole frequencies
2.061105+00		) loss pole irequencies
2.922132+00	***	) "
2.129549+00	***	Mobius transformed loss pole frequencies
2.123343700	ጥጥጥ	,

Load this program (Program 2-14) and calculate the natural modes.

GSBE start E(Z)E*(Z) calculation

 $\begin{array}{c} 0.83278695 & *** & \boldsymbol{\omega_{n_1}} \\ 1.57099957 & *** & \boldsymbol{Q_1} \\ 1.03809259 & *** & \boldsymbol{\omega_{n_2}} \\ 5.89989189 & *** & \boldsymbol{Q_2} \\ 0.50079327 & *** & \boldsymbol{\omega_{n_3}} \\ 0.62665941 & *** & \boldsymbol{Q_3} \end{array}\right\} \quad \text{complex zero locations describing natural modes}$ 

The complex zero locations may be converted from the  $\omega_n$  and Q description to real and imaginary parts to enable checking results against elliptic filter tables (see p. 248 of Zverev [58]). Equations (2-9.1), (2-9.2), and (2-9.3) are used for the conversion.

1.57099957 ENT  $\uparrow$  load  $Q_1$  and calculate  $\Theta_1$ +  $i \in X$ CÛS-I 71.44174418 *** 01 (degrees)  $\rightarrow R$  load  $\omega_{n_1}$  and calculate real and imag parts .83278696 0.26505003 ***  $\sigma_1$ XZY 0.78948249 *** W 5.89989189 ENT† load  $Q_2$  and calculate  $\Theta_2$ + 11% C0S-4 85.13850531 ***  $\theta_2$  (degrees) 1.03809259 load  $\omega_{n_2}$  and calculate real and imag parts ÷R 0.08797556 ***  $\sigma_{z}$ X≠Y  $\omega_2$ 1.03435803 *** .62665941 ENT1 load Qz and calculate Qz ÷ 17X COS-1 03 (degrees) 37.07171837 冰冰水 load  $\omega_{n_3}$  and calculate real and imag parts .50079327 ÷R 0.39957373 *** σ3 X#1 ω 0.30188530 ***

### Derivation of Equations Used

The characteristic function, K(s), is a ratio of polynomials as indicated by Eqs. (2-14.4) and (2-12.3). The denominator of this function is already known in terms of the loss pole frequencies. In lowpass form, this polynomial is:

$$q(s) = \prod_{i=1}^{N} (s^{2} + \omega_{i}^{2})$$
 (2-14.18)

H(s), the filter transfer function, is described in terms of the polynomials of the characteristic function by Eqs. (2-14.2) and (2-14.5). Since H(s) describes a realizable transfer function, the zeros of H(s) must lie in the LHP. With this condition in mind, the LHP zeros of e(s) e(-s) are assigned to e(s) and the RHP zeros assigned to e(-s). This root splitting brings us to the concept of a quad. Assume that e(s) is represented by complex conjugate root pairs and a real root if e(s) is odd, i.e.,

$$e(s) = (s + \sigma_{0}) \prod_{i=1}^{N} \{s^{2} + s(2\sigma_{i}) + \sigma_{i}^{2} + \omega_{i}^{2}\} \qquad (2-14.19)$$

Then the right half s-plane roots are represented by e(-s):

$$e(-s) = (-s + \sigma_{0}) \frac{N}{i=1} \left\{ s^{2} - s(2\sigma_{i}) + \sigma_{i}^{2} + \omega_{i}^{2} \right\} \quad (2-14.20)$$

hence:

$$e(s) \ e(-s) = (-s^{2} + \sigma_{0}^{2}) \prod_{i=1}^{N} \left\{ s^{4} + s^{2} \ 2(\omega_{i}^{2} - \sigma_{i}^{2}) + (\omega_{i}^{2} + \sigma_{i}^{2})^{2} \right\}$$

This concept is illustrated in Fig. 2-14.1.



Figure 2-14.1 Concept of a quad.

The importance of this concept is once one root of e(s) e(-s) is found, three other roots of the quad are also defined, and may be removed to reduce the order of e(s) e(-s) by four.

### The Characteristic Function in Terms of the Transformed Variable

The actual finding of the polynomials of H(s) is done in the Zplane rather than the s-plane for two reasons: 1) The solution is numerically more accurate because the roots are spread out and the small difference between big numbers problem is much reduced. 2) The expressions for  $F^2(Z)$  and  $Q^2(Z)$  are much simpler in terms of the transformed loss pole frequencies than are  $f^2(s)$  and  $q^2(s)$  in terms of the actual loss pole frequencies,  $\omega_i$ . These transformations are defined as follows:

$$\mathbf{F}(\mathbf{Z}) \Leftrightarrow \frac{\mathbf{f}(\mathbf{s})}{(\mathbf{s}^2 + \omega_a^2)^{\mathbf{m}/2}}$$
(2-14.22)

$$Q(Z) \Leftrightarrow \frac{q(s)}{(s^2 + \omega_a^2)^{m/2}}$$
(2-14.23)

where

$$Z^{2} = \frac{s^{2} + \omega_{b}^{2}}{s^{2} + \omega_{a}^{2}}$$
(2-14.24)

and

$$m = NZERO + NINF + N \qquad (2-14.25)$$

In the normalized lowpass case, the lower bandedge transformation frequency,  $\omega_a$  is dc ( $\omega_a = 0$ ), and the upper bandedge transformation frequency,  $\omega_b$ , is unity. Under these conditions the Z transformation becomes:

$$F(Z) \Leftrightarrow \frac{f(s)}{s^{m}}$$
(2-14.6)  
$$Q(Z) \Leftrightarrow \frac{q(s)}{s^{m}}$$
(2-14.7)

with

 $Z^2 = 1 + 1/s^2$ , or for  $s = j\omega$ ,  $Z^2 = 1 - 1/\omega^2$ 

The lowpass form of q(s) is given by Eq. (2-14.18):

$$q(s) = \frac{N}{1=1} (s^2 + \omega_1^2)$$

The Z transformed equivalent is:

$$Q(Z) \Leftrightarrow \frac{1}{s^{m}} \stackrel{N}{\underset{i=1}{\longrightarrow}} (s^{2} + \omega_{i}^{2}) \qquad (2-14.27)$$

$$= \frac{1}{s^{\text{NINF}}} \stackrel{\text{N}}{\underset{i=1}{\overset{i=1}{\longrightarrow}}} \left( \frac{s^2 + \omega_i^2}{s^2} \right)$$
(2-14.28)

The filter poles can be found from the zeros of the attenuation function, Eq. (2-13.5), i.e.,

$$1 + \frac{\varepsilon^2}{4} \left\{ L(Z) + \frac{(-1)^{\text{NINF}}}{L(Z)} \right\}^2 = 0 \qquad (2-14.29)$$

where L(Z) is defined by Eq. (2-13.4):

$$L(Z) = \left\{\frac{Z+1}{Z-1}\right\} \xrightarrow{\text{NINF}} \cdot \frac{N}{1-1} \frac{Z+Z_{i}}{Z-Z_{i}}$$
(2-13.4)

then Q(Z), as defined by Eq. (2-14.28), is the common denominator for Eq. (2-14.29). The quantity inside the brackets of Eq. (2-14.29) can be written in terms of Q(Z) and A(Z) (Eq. (2-14.14)) as follows:

$$L(Z) + \frac{(-1)^{\text{NINF}}}{L(Z)} = \frac{A(Z) + (-1)^{\text{NINF}} \cdot A(-Z)}{Q(Z)}$$
(2-14.30)

Fortunately, the sign of (-1)^{NINF} causes the numerator to be an even polynomial in Z as is required for the resulting polynomials of the Chebyshev rational function to be Hurwitz.

Thus, the equation whose zeros are to be found is:

$$1 + \frac{\varepsilon^2}{4} \left\{ \frac{A(Z) + (-1)^{\text{NINF}} \cdot A(-Z)}{Q(Z)} \right\}^2 = 0$$
 (2-14.31)

Because of the even numerator polynomial, Eq. (2-14.31) becomes:

$$1 + \frac{\varepsilon^2}{4} \left\{ \frac{2 \cdot \operatorname{Ev} (A(Z))}{Q(Z)} \right\}^2 = 0$$
 (2-14.32)

Cancelling out constants and placing the entire expression over a common denominator yields:

$$Q^{2}(Z) + \varepsilon^{2} \{Ev A(Z)\}^{2} = 0$$
 (2-14.33)

Substituting F(Z) from Eq. (2-14.13) results the desired expression for the transfer function zeros:

$$Q^{2}(Z) + F^{2}(Z) = 0$$
 (2-14.34)

### Secant iteration method

The secant iterative method finds the values for the variable, x, where the function f(x) = 0 (zeros of x). It is similar to the

Newton-Raphson method except the derivative of the function is numerically approximated from the present and past values of f(x):

$$x_{i+1} = x_{i} - f(x_{i}) \left\{ \frac{x_{i} - x_{i-1}}{f(x_{i}) - f(x_{i-1})} \right\}$$
(2-14.35)

where x, is the present estimate for the variable.

The iteration is continued until the correction term magnitude becomes smaller than a given error radius. For this program, that error radius is chosen to be  $10^{-9}$ .

Two values for x are needed to start the secant iteration, a past value and a present value. In this program, the past value is chosen as 0 and the present value as 1460°. As the iteration starts, the method may not converge, but may get sent far away from the desired solution. This can happen if the present and past estimates lie on opposite sides of a saddle (see Fig. 2-14.3). To help force convergence, the magnitude of the correction radius is limited to 0.1. When the iteration starts, the estimates have a random nature, but can't get far away from the origin. As a zero is approached, the method rapidly converges.



Figure 2-14.3 Secant method, two cases a) normal convergence, and b) divergence caused by the presence of a "saddle" in the function.

Figure 2-14.3 shows a two dimensional representation of the method, but in the present instance, the application is three dimensional because of the complex nature of the variable. As each complex zero is found, three others are defined automatically because of the quadrangle symmetry (quads) in the zeros of the filter transfer function (see Fig. 2-14.1), thus the order of the equation may be reduced by four through polynomial division. If the filter order is odd, a real zero exists in the transfer function. After all quads have been removed from the transfer function, the remainder will be the real zero. This technique is used herein, zeros are removed from  $E(Z)E^*(Z)$  until a second order polynomial or less remains. If the filter order is even, no remainder exists, but if the filter order is odd, the second order remainder represents the LHP and RHP parts of the real zero. The RHP zero is discarded since it belongs to H(-s), and the LHP zero location is transformed back to the s-domain for output. 2–14, CARD 1

**Program Listing I** ALGORITHM TO FORM E(Z) = (Z)FROM  $F^2(Z) + q^2(Z)$ 

					7	$rrom r^{-}(2)$	4 \-/
001				05	7 RCLI	P	
002	RCLI	store index nu	mber of	1 4 85			
003					о ото О ото	? test for 1	oop exit
004			er w/ coer -				
				06			calculation
005				06		A A(4)	owiedire offit
006	5 1	calculate $\epsilon^2$ ;		86	2		~
007	7 ÷			86		, initialize	index register
005		$\epsilon^2 = 10^{0.16}$	dB -		<u>. 510</u> , 4 044		
005			- 1	<u>06</u>	<u>+ P+</u>	piace della	) in secondary regs
				86		<pre>initialize</pre>	polynomial
<u>010</u>				06	5 STO(	product re	gisters
011	RCLD			<b>0</b> 6	7 RCLE		
012	· +	store NINF + $\epsilon$	2	86	-	•	
<u>8</u> 13		······································					h <b>est</b> loss pole
814				06:		register n	umber by 10 to
				071	÷ –	refleat P≷	S of registers
015		initialize ind	lex register	07.	i stoe	3	
016	STOI		-	<b>-07</b>			lation loop start
<b>r►</b> 017		Z transform lo	se nole front	07			N
018		T OLUMBIOLW TO	ee hore treds				
1 I				074		A(Z)=12	+1) ^{NINF} $(Z+Z_i)^2$
019				07:		·	
020		, 2 ,	2	676	STOC	$Z_{i} \rightarrow R_{c}$	·
021	X2	$Z_i^2 = 1 - 1/$	ω; ¯	877			xisting polynomial
022		-	-			marerbia 6	ALOUING POLYNOMIAL
023				<u>078</u>			<u></u>
				079			
<u>024</u>				🔺 086	RCLB	+	
825				081			oop exit
1 926	RCLB	toot for los	•+	-082			
827		test for loop	exit				
628				083		setur to P	orm $(Z + 1)^{NINF}$
				<u>084</u>			······································
029		set flag 2 if	NTNE = 2	085	6SB9		
630			NTHE - 5	<b>0</b> 86		murcipiy e	xisting polynomial
031				087			NINF, (NINF = 1 or 2)
832							
				088			high och un tot
033				089			highest register
034				690	RCLB	number con	taining polynomial
835		start Q2(Z) ca	leulation	091		coefficien	ts:
936							
837				092		28 + 10 -	<b>R</b> O - DD
		_	) MT NT	093		2 <b>B</b> + 10 + 3	ro 🔶 KB
038		form and store	$(1 - Z^{<})^{\mathbb{N} \perp \mathbb{N} F}$	<b>Ø</b> 94	F0?		
839	F0?			095			
848	CHS	for NINF = 1 o	r 2	096			
841	ST01						
				097		initialize	index register
042	CHS			- 198	¥LBL3	-	6
043	ST00			<b>89</b> 9	ISZI	alean	stong not see t
844	F0?			100	CLX		sters not contain-
645	6589					ing polynor	mial coefficients
046				181	STO i		
	<u> </u>			102	P‡S		
047	3	initialize ind	ex register	103	STOI		
<b>04</b> 8	STOI			104	P‡S		
<b>849</b>	*LBL Ī	$Q^2(Z)$ calculat	ion loon	105	RCLI		~~~~~~
050	ISZI	a (=) carculat	Tou Toob				
				106	1		
051	RCLI		N	<b>† 10</b> 7	9	test for lo	pop exit
052	CHS	$Q^{2}(Z) = (1 - Z^{2})^{NINF}$	$T_{(7^2,7^2)^2}$	108	X≠Y?		-
053	STOC	$Q_1(L) = (1 - L)$	\~-~_i)	L-109	GT03		
054	GSB9	-	/=1	110	RCLO		
055	GSB9	$-Z_{2}^{2} \rightarrow R_{c}$	4-1			form (Ev A)	( <b>2</b> )) ² :
		- <u> </u>		111	RCL2	, =,	
056	RCLI			112	X		
			REGIS	STERS			
90 4 4	10.	2 3			6_	7	8 9
$\mathbf{Q}_0, \mathbf{A}_0, \mathbf{A}_0$	<b>4</b> 1, <b>4</b> 1, ¹	$A_2[{}^{2}Q_2, A_2, A_4]^{3}Q_3, A_4$	Az, A6 Q4, A4. A8	Q5, A5. A10	Q6,A6	Ap Q7, A7 A1h	Q8, A8, A16 Q9, A9, A18
	C1	S2 62	2 ⁻ 0 4- 47-0	5	<u> </u>	<b>-</b> ₩ <u>-</u> 1 / (•4 <u>14</u>  97	102 02 IO 100 - 07 - 10
⁵⁰ <b>Q</b> ₀ , <b>F</b> ₀	ັຊ ₁ ,F ₁	Q ₂ , <b>F</b> ₂ Q ₃ , 1	Z Qh.F.Z.	QE FE ZA	0¢. F/	Zz 0- F- 7.	
	In		2 ~4, 4, 4, 41	ついつい 2		Z3 Q7, F7, Z4	Q8,F8 Q9,F9
^ Q&F in	Idex B	nignest reg.  C	<b>z</b> i ²	$c^{D} \in 2 + \mathbb{N}$		E Z index	I index
	[n	umber used	<b>4</b> 1	€- <b>+</b> N.	.ME	7 TUGAX	Index

2–14, CARD 1

## Program Listing II

					-			_	-	<u>.</u>
113	ST01	$A_2' = 2A_0A_2$				69 70	9	initializ	e index re	gister
114	<u>ST+1</u>					70	STOI			
115 116	RCLØ	(NOTE: the	primed coef	s		71 72	#LBL4			
116	RCL6 X		the coefs of			r 4 73	DSZI SF2	form E(Z)	E*(Z)	
117	RCL2		fter this pa			73 74	SFZ RCLi			2
110	RCL2 RCL4	• •	ogram is don		•	75 75	RCL↓ P≢S	E(Z)E*(Z)	$= q^2(z) +$	· F ² (Z)
120	RUL4 X		cicients of		_	r.5 76 -	ST+1			• •
126	+		ve replaced t	he		77 77	P#S			
121	ST03		cs of A(Z).)			78	F2?			
122	5703 57+3	$A_{6}^{\prime} = 2(A_{0}A_{6} +$				79 79	GT04	test for	loop exit	
$\frac{123}{124}$	RCL2						*LBL5			
125	RCL8					81	PSE	wait loor	for 2nd c	ard read
126	X					82	6705			
127	RCL4	.1		1		83	*LBL7	12/22		•
128	RCL6	$A_{10} = 2(A_2A_8)$	+ A ₄ A ₆ )			84	RCL I	$A^{-}(Z)$ cal	culation s	ubr
129	x			l		85	STXI	forms;		
130	+					86	R↓	D/1) ²		
131	ST05					87	ST+ <b>i</b>	R(1) + 2	2(Rx), and	returns
132	ST+5				1	<b>8</b> 8	ST+ <b>i</b>	<b>D(1)</b> -		
133	RCL6				1	89	Rt	$R(i) \rightarrow Rx$	c i i i i i i i i i i i i i i i i i i i	
134	RCL8				1	90	DSZI			
135	x	$A_{14} = 2A_6A_8$				91	DSZI			
136	ST07	14 00				92	RTN			
<u>137</u>	ST+7					93	RTN			
138	6	initialize in	der register	•		94	*LBL9	polynomia	l multipli	cation
<u>139</u>	<u>STOI</u>					95	SF2		dicates 1s	
140	RCL8	$A_{16}^{'} = A_8^2$				96	RCLA		e index re	gister
<u>141</u>	<u>ST×8</u>					<u>97</u>	<u>X‡I</u>		<u>Findex</u>	
142	RCL4	1 0				98	STOE		ting index	
143	X	$A_{12} = A_6^2 + 2$	28488			99 00	*LBL8	polynomia	al mult lo	op
$\frac{144}{145}$	<u> 6587</u> -					00	RCLI			
145	RCL2					01 62	ISZI			
146	X					02 07	RCLC	$a_{k+1} = C_{k+1}$	$a_{k+1} + a_k$	
147	RCL8	1 12 0				03 04	F2? CLX			
148 149	FX RCL0	$A_8 = A_4^2 + 2($	$^{n}2^{n}6 + ^{n}0^{n}8)$			04 05	STX <b>i</b>	C	= 0 for $k =$	n
149	KULU X					06 06	51×1 R4			
150	× +					00 07	к+ ST+i			
152	GSB7					08	CF1 -			
153	RCLO					<b>6</b> 9	DSZI	aecrement	t I registe	er, and
154	X	$A_4^{\prime} = A_2^2 + 2A_2^{\prime}$				10	SF1	set flag	l if I ≠ 0	
155	GSB7	··4 ··· ··2 ···2	·\~4	i		11	DSZI	decrement	t I registe	
156	RCLO					12				
<u>157</u>	STXØ	$A_0^1 = A_0^2$		ļ		13	GTOS	test for	loop exit	
158	RCLD					14	RCLC	finish no	Jy multipl	ication
159	FRC	recall $\epsilon^2$			2	15	STXØ	$a_0 = 0 \cdot a_0$	)	
160	ST×0				2	16	RCLE			·
161	ST×1	form $\mathbf{F}^2(\mathbf{Z}) =$	2	2		17	ST01	restore p	pre-existin	R INGEX
162	ST×2	10  m  f (2) =	$\in (EV(A(Z)))$			18	RCLA	increment	t F or Q in	
163	ST×3					19	EEX			
164	ST×4					20	+			
165	ST×5					21	STOA			
166	ST×6				2	22	RTN	return to	o main prog	ram
167	ST×7									
168	ST×8				L					
			ABELS	Im		_	FLAGS		SET STATUS	
A	6	с	D	ES	PART	נא 0	NF = 2	FLAGS	TRIG	DISP
а	b	c	d	e	· .	1		ON OFF	DEC	
0	1 2/2	$\frac{2}{2}$	3 clear	4-1		2_		0	DEG GRAD	FIX 🔳
⁰ Z _i calc	¹ Q ² (Z		3 clear unused reg	E()	$Z) E^{*}(Z)$		= ø	_ 2 ■	RAD	
wait loop	P	⁷ F ² (Z) su	br multiply	9 po	l¥ _{iplý}	3		3		n_2_
									<u> </u>	

Program Listing I SECANT ITERATION TO FIND ROOTS OF E(2)E*(2)

							<u> </u>		ROOTS OF E		
001	*LBLE	START SECAN	T ITERATIC	DN	11	1†'	056			complex mu	
002 003	EEX CHS	set correct	ton redin	e for			<b>8</b> 57 858	_	(a + jb)(	Re(Z ² ) + ;	$jIm(Z^2)) =$
003 034	спз <u>9</u>	loop exit	JUI TAULU	5 101		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<b>0</b> 59	PCLE	8. Re( 72)	- b.Tm(72)	· · · · ·
004 005	STOE	TOOD SYLF			<b>   </b> 3	200	860	RCLD	a•Re(Z ² ) j(a•Im(Z ²	$\rightarrow b Re(2)$	$2^{2}$
	*LBLe	secant oute	r loon st	a rt	11		061	X	)(a.tm(n	) + 0.100(1	- //
807	CLX	Secant Oute	1 100p 80	110			062	RCL7			
005	STOØ	set Zo= 0	÷ 10		H		063	RCLC			
009	ST01		÷ ]0		11		664	x			
015	ST05						865	+			
011	P≓S				1t'	11	066	ST07			
012	RCLØ	set F(Z _o ) =	$E_0 \pm 10$				867	R4			
013	P≢S		-0				<b>0</b> 68	ST06			
<u>014</u>	<u>ST04</u>					L	- <b>0</b> 69	<u>GT01</u>			
015	6	set $\mathbf{Z}_1 = 1$	4 60°			1	-078	*LBL2	form Zes	timate co:	rrection:
016	0	-					071	RCL7			
017	ENT†				11		072	RCL6		г <u>-</u> ,	- 7
018	EEX				11	Ĩ	073 074	+P ST08	$\Delta Z_k \simeq F(Z_k)$	$ -\frac{z_k - z_k}{z_k - z_k} $	<u> _k_1</u>
019	→R						074 075			$I = F(Z_k) - F(Z_k)$	$(z_{k-1})$
820	ST02						075 076	X≠Y St09			
021	X‡Y ctoz					1	075	8709 RCL3			
<u>922</u> 023		-					078	RCLI			
023	*LBLØ RCL2	prepare for evaluation		RT.			879	-			
025	RCL3	evaluation	i		111	1	080	RCL2			
026	X	form $\mathbf{Z}^2 = ($	(2)				881	RCLØ			
027	ENTT		$(0 - \mathbf{j}\omega);$				082	-			
028	+	-			1		083	+₽			
029	STOD	$Im(Z^2) = 20$	$f\omega + Rn +$	R-7			084	57×8			
830	ST07		- 0	-1		Í	085	X≠Y			
031	RCL2						<b>0</b> 86	ST+9			
032	χ2	<u> </u>					<i>6</i> 87	RCL7			
033	RCLI	$\operatorname{Re}(\mathbf{Z}^2) = \sigma^2$	໌ - ພ໌ <del>-</del>	$R_{a} \rightarrow R_{6}$			088	RCL5			
034	χ2			0 0			089 090	neu z			
<b>[</b> ] 035	-						070 091	RCL6 RCL4			
036	STOC						092	- KGE 7			
<u>037</u>	<u>ST06</u>						893	÷₽			
038	RCLB STOI	set index i	to nignest	register	11	t	094	X=0?	escape if	F(Zk)-F(Z	$\frac{1}{2}$
039	RCLI	_number_that start polyn	c nas coer	<u>licients</u>	$\mathbf{I}$	Γ	095	GTO3		- (- <u>k</u> ) - (-	
040	ST×6	by forming		IUA CION		1	096	ST÷8	finish $\Delta Z$	, calcula	tion
042	<u>STX7</u>	of louming	*2n'2-				097	X≢Y		x	
643		polynomial	eval loop	stert.	11		<u>898</u>	<u></u>			
044	DSZI	_decrement_	register i	ndex			099	RCL7	shift reg	ister con	tents,
045	RCL I	recall E _{2k}			1		100	ST05 DCL C	Z _k become	s Z ₁₋₁ , an	nd
846	<u>ST+6</u>	add to calc	<u>ulation r</u>	eal part	114		101 102	RCL6 ST04	F(Z _k ) beo	omes F(Z _k .	_1) for
047	RCLI			_			102	RCL3	the next	iteration	
048	EEX	test for lo	oop exit				104	ST01			
	1						105	RCL2			
050	X=Y?						106	STOP			
052	GT02 RCL6						107	RCL8	recall 4	2,1	
052	RCLC	perform con by Z ² on th	apiex mult	191 <b>y</b>	• •		108		limit   27	to 0.1 to	b help
054	X	calculation	ne ongoing		8 8	m	109	1		nvergence	-
055	RCL7	2~104140101	•		ous	6103	110	X>Y?			
<u> </u>		<u></u>			Щ						
I		2	3	REGI			F	ò	7	8	9
Re Z _{k-1}	Im Z _{k-}	l ReZk	Im Z _k	4 ReF(Z _{k-1} )	Ĭm	u <b>F(</b> 2	² k−1)	ReF(Zk)			
	S1 E2	^{S2} <b>E</b> 4	^{S3} E6	^{S4} Eg	<b>S</b> 5	E		³⁶ <b>E₁₂</b>	^{S7} E ₁₄	⁵⁸ <b>E</b> 16	^{S9} E ₁₈
			L	-0	<u> </u>				error rad	The let	
A	e		C Re(Z	² )	D	Im	(z _k ²)		or loop ex		dex
		register #		<u>ĸ ′</u>	L		<u>-к</u> /		01 100p 62		

2–14, CARD 2

## **Program Listing II**

	111	<b>F</b> 7				,		166	ISZI			·····
111	111	<u></u>					11 1		1521 RCL i		the primed	
	112	RCL9	apply	2 correct	lon:			167			esent the d	
333	113	X≠Y						168	RCLD	ient	s of the de	eflated
٦٩٦	114	÷₽	Zı	$c_{+1} = z_k - d$	Z			169	×	polyn	nomial:	
1111	115	ST-2	-					170	+	- •		
	116	X≠Y						171	DSZI	Ed. —	$E_k - pE'_{k+2}$	ο 9Ε4
[	117	ST-3						172	DSZI	- <u>r</u> -	-x - K+2	≤ <u>-</u> K+4
1114	118	RCL8						173	<u>ST-i</u>			
111	119	RCLE	<u> </u>		• 4			174	RCL I			
1	120	X≟Y?	test	for loop e	XIT			175	1			
┠║┕┥	-121	<u>ёто</u>						176	3	test for	loon evit	
{	-122	#LBL3	Z f80	tor output	and			177	X≦Y?		TOOD OVIC	
<b>[</b> ]	123	RCL3		nomial defla				178	GT05			
	124	X2		e 4, i.e.,				179	*LEL6	MOTE ADAP	ficients de	own two
	125	RCL2	uegro	50 <del>4</del> , 1.0.,	une quad 1			180	RCLI			
	125	X0L2		$z^4 + pz^2 +$	_			181	DSZI		numbers in	
		<u>^-</u>		2 + p2 ⁻ +	q			182	DSZI	во що гев	ides in reg	gister 50
	127	-		- <i>l</i>	,2	2						
[]	128	ENTT		p = 2((Im Z))	_i ) -(Re Z _i )	ו לי		183	STOL			
II	129	+			-			184	ISZI			
11	<u>130</u>	STOC	<b>_</b> P			<b>→ −</b>		185	ISZI			
	131	RCL3						<u>186</u>	ISZI			
11	132	X5						187	RCLB			
11	133	RCL2		- 11	2 (	2\2		188	RCLI	test for	loop exit	
11	134	X2		$q = ((Im Z_i)$	$)^{2} + (\text{Re } Z_{i})^{2}$	)		189	X≚Y?		· · · · · · · · · · ·	
E1 -	135	+		_			ի Ն	<u>19</u> 0	GT06			
	136	χ2				1		191	DŞZÏ			
	137	STOD	q 🔶 )	RD			1	192	CLX			
}	138	+		ulate and o	utput the			193	STOI	<b>.</b> .		
11	139	EEX		ane LHP com		rate		194	DSZI	clear top	two regis	ters.
11	140	+		pair natur				195	STOI			
	141	ΪX.	Pore	part na cur	ar rroduom	· y 1		196	DSZI			
	142	1/X		"= (1 + p ·	· - · - <del>1</del>			<u>120</u> 197	RCLI			
	143	۲×	$\omega_1$	n = (1 + p)	+ q) ●							of highest
11	143	PRTX						<u>198</u>	STOB	register_	<u>containing</u>	coef's
	145	EEX						199	1			
				ulate and o	utput pole			200	Z	test for	outer loop	evit
	146	LSTX	pair	"Q":				201	X≦Y?		outor roop	OVIC
11	147	RCLC						202	<u>GTQe</u>			
11	148	2				i		203	EEX			
	149	÷						204	1	if filter	order is	even
ł (	150	EEX		• .		-1		205	RCL I	exit loop		o , o.,
11	151	+	Q	² = (2(1-(1-	+p/2)(1+p+a	n)) [		206	X≦Y?	ente teeb		
$\mathbf{H}$	152	x	-	<u>\</u> -\- \-	1/ =/ <b>/</b> = · E · ·	~//		207	RTN			
H	153	-						208	RCLI			
11	154	ENTT						209	DSZI		real pole	
11	155	+						210	RCLI	in s-plan	e for odd d	ordered
	156	17X						211	X≢Y	filter		
9	157	18						212	+ i ÷		_ 1	
5	158	PRTX	prin	tQ				212	ABS	$ \sigma_{\rm o}  = (E_{\rm o}/2)$	$E_0 - 1)^{-\frac{1}{2}}$	
	159	SPC		-						· · · · · · · · · · · · · · · · · · ·		
11	160	RCLB	set 7	index to hi	thest remis			214	EEX			
11	161	STOI		er that has	PUCON LOGIC	+		215	-			
[]	r=162	*LBL5	no11	nomial defla	ducilicien	168		216	1X			
	163	RCL	POTA	WHTGT GGLTS	votou toob			217	1/X			
[]								218	PRTX			
	164	RCLC						219	SPC			
[ ]	165	х						220	RTN			
11 -	ł											
<u> </u>				LAE	BELS				FLAGS		SET STATUS	
A g		B		c	D	ε _s	TART	0	· · · · ·	FLAGS	TRIG	DISP
		<del> </del>			a							
а		D		c	d		in loo tart	"] '		ON OFF	DEG	FIX 🔳
0pol	y eval	1 201-		² ΔZ calc	3 factor output	4		2		- ĭ	GRAD	SCI
		1 1013		DA CAIC		+		<u> </u>	<u>-</u>	2	RAD	ENG
def 1a	ite	6 COE reord	er	ľ	8	9		3		3		n_8
				<u> </u>	4			_			·	A

#### PROGRAM 2-15 DARLINGTON'S ELLIPTIC FILTER ALGORITHMS.

#### Program Description and Equations Used

This program calculates the normalized transmission function pole and zero locations, and minimum stopband rejection for odd order elliptic filters. The program is based on Professor Sidney Darlington's paper which describes simple elliptic filter algorithms using transformations on elliptic sines and their moduli [18], and his unpublished HP-65 program on the same subject.

The output data is normalized to the passband cutoff frequency  $(f_p)$ , however, the algorithm is normalized to the geometric mean of the passband and stopband edge frequencies as shown by Fig. 2-15.1.



Figure 2-15.1 Definition of elliptic filter terms.

Thus, the transition ratio,  $\lambda$ , becomes:

$$\lambda = \frac{f_s}{f_p} = \frac{a_0}{1/a_0} = a_0^2$$
 (2-15.1)

or

$$a_0 = \sqrt{\lambda}$$
 (2-15.2)

The filter transmission function, T(s), is the reciprocal of the filter transfer function, H(s), which is related to the filter characteristic function, K(s), through the Feldtkeller equation:

$$|T(j\omega)|^{2} = \frac{\text{power out}}{\text{power in}} = \left|\frac{1}{H(j\omega)}\right|^{2} = \frac{1}{1+\epsilon^{2}|K(j\omega)|^{2}} \qquad (2-15.3)$$

where the characteristic function is the Chebyshev rational function described in Program 2-12. Darlington's algorithms are a very elegant way of approximating the Chebyshev rational function using simple recursive relationships. These relationships can also be used to find the LHP poles and zeros of:

$$T(s)T(-s) = \frac{1}{1 + \varepsilon^2} K(s)K(-s)$$
(2-15.4)

<u>Normalized transmission zero frequencies</u>. If Yo represents geometrically normalized frequency (Fig. 2-15.1) and  $Y_{0k}$  (k = 1, 2, ...,  $\frac{n-1}{2}$ ) represents the normalized transmission zero frequencies where n is the filter order, then the characteristic function for odd order, equiripple passband, lowpass filters is given by:

$$|\mathbf{K}(\mathbf{Y}_0)|^2 = |\mathbf{J}_0 \cdot \mathbf{F}_0(\mathbf{Y}_0)|^2$$
 (2-15.5)

where Jo is a constant and

$$\mathbf{F}_{0}(\mathbf{Y}_{0}) = \mathbf{Y}_{0} \qquad \frac{\frac{(n-1)/2}{|}}{|} \qquad \frac{1 - \mathbf{Y}_{0k}^{2} \mathbf{Y}_{0}^{2}}{\mathbf{Y}_{0}^{2} - \mathbf{Y}_{0k}^{2}} \qquad (2-15.6)$$

For the elliptic filter case (equal ripple passband and stopband):

$$\varepsilon^2 = 10^{0.1 \text{Ap}_{dB}} - 1$$
 (2-15.7)

$$J_0 = F_0 (a_0)$$
 (2-15.8)

$$F_{o}\left(\frac{1}{Y_{0}}\right) = \frac{1}{F_{o}(Y_{0})}$$
 (2-15.9)

These quantities and  $Y_{0k}$  may be found through recursive use of a variable transformation which spreads out the transition interval.

Let 
$$a_{k+1} = a_k^2 + \sqrt{a_k^4 - 1}$$
 (2-15.10)

then, given  $a_0$  as defined by Eq. (2-15.2), find and store  $a_1$ ,  $a_2$ ,  $a_3$ , and  $a_4$ . Four applications of the recursion formula will provide precision which will be calculator limited rather than algorithm limited (see p. 37 of [18]).

Let h represent the index for the transmission zero frequencies; h = 1, 2, ..., (n-1)/2, then let

$$Y_{4h} = \frac{a_{i_{4}}}{\cos\{(2h-1)(90/n)\}}$$
 (2-15.11)

and recursively calculate:

$$Y_{(k-1)h} = \frac{1}{2a_k} (Y_{kh} - 1/Y_{kh})$$
 (2-15.12)  
k = 4, 3, 2, 1

The transmission zero frequencies normalized with respect to the passband edge are:

$$a_{0} \cdot Y_{0h}$$
 (2-15.13)

<u>Minimum stopband rejection.</u> The minimum stopband rejection for elliptic filters first occurs at the stopband frequency edge (geometrically nor-malized frequency a₀) and may be found from Jo and Eqs. (2-15.4), (2-15.5), and (2-15.8), i.e.:

$$As_{dB} = 10 \log (1 + \varepsilon^2 J_0^2 J_0^2)$$
 (2-15.14)

Jo is found from another recursion relationship; let

$$J_4 \cong 2^{n-1} \cdot a_4^n = \frac{(2 \cdot a_4)^n}{2}$$
 (2-15.15)

then recursively calculate and store Jk's using:

$$J_{k-1} = \frac{1}{2} \sqrt{(J_{k} - 1/J_{k})}$$
(2-15.16)  
k = 4, 3, 2, 1

Transmission function pole locations. Let s represent the complex pole location, and let

$$J_{0} \cdot s_{0} = 1/\epsilon$$
 (2-15.17)

Then recursively calculate:

$$s_{(k+1)o} = J_k \cdot s_{ko} + \sqrt{(J_k \cdot s_{ko})^2 + 1}$$
 (2-15.18)  
k = 0, 1, 2

As the index increases, the terms  $J_k \cdot s_{k0}$  become numerically very large since the  $J_k$ 's increase nearly geometrically for  $J_k$  large. To avoid numeric overflow (10⁹⁹) use:

$$\mathbf{s}_{40} \stackrel{\cong}{=} 2 \cdot \mathbf{J}_{3} \cdot \mathbf{s}_{30} \tag{2-15.19}$$

Calculate and store:

$$s_{50} = \left\{ \frac{J_{4}}{s_{40}} + \sqrt{\left(\frac{J_{4}}{s_{40}}\right)^{2} + 1} \right\}^{\frac{1}{n}}$$
(2-15.20)

To calculate the pole locations, let:

$$s_{5h} = s_{50} \cdot e^{jh(\pi/n)}$$
 (2-15.21)  
h = 0, 1, 2, ..., (n-1)/2

Using complex arithmetic, recursively calculate:

$$s_{(k-1)h} = \frac{1}{2 \cdot a_{k-1}} (s_{kh} - 1/s_{kh})$$
(2-15.22)  
k = 5, 4, 3, 2, 1

The pole locations normalized to the passband edge are given by:

$$s_{oh} \cdot a_{o}$$
 (2-15.23)

The subroutine that calculates Eq. (2-15.22) may seem obscure to some readers. The particular coding that is used minimizes the amount of data that must undergo polar-to-rectangular and rectangular-topolar conversions, and hence, maximizes the numerical accuracy of the routine. The normal format for the pole locations is polar as given by Eq. (2-15.21). In general, let:

$$s_{kh} = \rho_{kh} \cdot e^{j\beta_{kh}}$$
 (2-15.24)

In rectangular format, Eq. (2-15.24) becomes:

$$\mathbf{s}_{kh} = \rho_{kh} \cos \beta_{kh} + j \rho_{kh} \sin \beta_{kh} \qquad (2-15.25)$$

For the reciprocal case, let:

$$\frac{1}{s_{kh}} = \frac{1}{\rho_{kh}} e^{-j\beta_{kh}}$$
 (2-15.26)

which using rectangular format becomes:

$$\frac{1}{s_{kh}} = \frac{1}{\rho_{kh}} \cos \beta_{kh} - j \frac{1}{\rho_{kh}} \sin \beta_{kh}$$
(2-15.27)

hence,

$$s_{kh} - \frac{1}{s_{kh}} = \left( \rho_{kh} + \frac{1}{\rho_{kh}} \right) \cos \beta_{kh} + \frac{1}{\rho_{kh}} \sin \beta_{kh}$$

$$j \left( \rho_{kh} - \frac{1}{\rho_{kh}} \right) \sin \beta_{kh}$$
(2-15.28)

or,

$$s_{kh} - \frac{1}{s_{kh}} = \left(1 + \frac{1}{\rho_{kh}^2}\right) \rho_{kh} \cos \beta_{kh} + j \left(1 - \frac{1}{\rho_{kh}^2}\right) \rho_{kh} \cdot \sin \beta_{kh}$$
(2-15.29)

In Eq. (2-15.29), the terms  $\rho_{\rm kh} \cos \beta_{\rm kh}$  and  $\rho_{\rm kh} \sin \beta_{\rm kh}$  are the output components of a polar-to-rectangular conversion, and  $\rho_{\rm kh}$  is saved in the last x register, and has not undergone any conversion. The stack is used to hold the intermediate parts of Eq. (2-15.29). A rectangular-to-polar conversion then completes the subroutine.

# 2-15 User Instructions

Då	RLINGTON'S	ELLIPTIC FIL	TER ALGORITH	NS	
load +ApdB, or - e	load λ=f _β /fp	load filter order (odd only)	calculate xmsn Zero freqs & min loss	print ? calculate pole locations	2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card			
ļ				
2	Select print or R/S option (toggle)		f B	0 (R/S)
			f E	1 (print)
			f E	0 (R/S)
		•		
	Lood no school ningle in dD on	_	A	ε²
3	Load passband ripple in dB or reflection coefficient	ApdB R	chs A	ε ε ²
	reileotion coefficient	<u>F</u>		
4	Load stopband to passband frequency ratio	λ	B	
	Load Scoppand to passband frequency facto	<b>^</b>		
5	Load filter order (must be odd)	n		
				**********************
6	Calculate normalized transmission zero			
	frequencies and minimum stopband loss		D	$\Omega_{i}$
				Ω₂
				<u>Ωr-1</u>
	•			
				AsdB
<u> </u>				
7	Calculate real and imaginary parts of			
	normalized transmission function poles		E	Re Sol
				Im S ₀₁
				Re Soz
		•••		Im So2
		•		
		I		Re Son
				Im Son
				I

#### Example 2-15.1

Find the transmission function poles and zeros for a 9th order, elliptic filter having a 85° modular angle, and 50% reflection coefficient. Also calculate the minimum stopband attenuation in dB. Compare the results to the output of Program 2-11.

PROGRAM 2-15 INPUT	PROGRAM 2-15 OUTPUT		
5 GSBA load - ρ 55. SIN calculate 1*. and load λ 1.003819835+00 *** 555E 9. GSEC load n, the filter order	33.62429965+00       ***       z1         1.0000000000+00       ***       z2         1.014264420+00       ***       z2         1.014264420+00       ***       z3         1.449931830+00       ***       z4         33.62429965+00       ***       As min         Generation of the poles         372.8205714-03         ***         Re point         0.000000000+00         ***         182.7207935-01         ***         7.507935-01         ***         182.7207935-01         ***         182.7207935-01         ***         182.7207935-01         ***         182.7207935-01         ***         182.7207935-01         ***         182.7207935-01         ***         182.7207935-01         ***         182.7207935-01         ***         182.7207935-01		

Load Program 2-12 and calculate transmission zeros (loss poles) for the same conditions.

PROGRAM 2-12 INPUT		PROGRAM 2-12 OUTPUT			
	ENT1 X2		GSBC	calculate filter order	
10. 1.249387366+00	- calculate LOG and load X Ap _{dB} for CHS 50% refl *** coef	8.352734615+00 9.000000000+00	<b>米</b> 東京	calc order integral order to meet specs	
	GSBA		GSBD	calculate xmsm zero freg's	
	GSBa load As _{dB}	1. <b>44993</b> 1862+00 1.071140568+00	***	24 27	
	GSBE load f _p	1.014284418+00	***	z	
1.003815838+00	3IN calculate and 1/X load f _s for *** 85° modular	1		-1	
<i>L</i>	SEk angle	}			

Comparing these results to those obtained from Program 2-15, differences exist in the 9th and 10th places sometimes. It is the author's opinion that the output from Program 2-12 is accurate to 2 parts in  $10^{10}$ , since the elliptic sine algorithm and complete elliptic integral algorithm have been checked against the elliptic function tables in Abramowitz and Stegun [1] and disagree by at most one in the least significant digit of the HP-97 output (see Program 5-1 for details). 2-15

**Program Listing I** 

201					
<u>001 *LBLA 1</u>	LOAD ApdB or - e	853	*LBL1	1	14 4 1
002 X<0?	test for -P	054	ESB8	Y(k-1)h = 2 a.	$\left(Y_{krh} - \frac{4}{Y_{krh}}\right)$
	•	055	RCL I	K= 4, 3, 2	
	calculate and store:	<u> </u>	÷	_ <u>Kª </u> , 2, /	<b>`</b> — — — — — –
005 1	$\epsilon^2 = 10^{APdB} - 1$	857	DSZI	test for lo	op exit
	$\epsilon^{2} = 10 - 1$	<u>658</u>	<u>Gt01</u>		-
007 10×		059	GSB8	_ <u>``</u>	man zero freq
008 EEX		860	GSBd	print men	zero freq
809 -		061	2	increment 2	 n4
010 STDA		<u>062</u>	<u>ST+9</u>	THOI GHONG Z	
011 GT09		063	RCL9		
-012 *LBLa_		064	RCLC		
	calculate and store:	065	X>Y?	test for lo	oop exit
014 CHS		066	6T00		
015 EEX		067	<u>GSB9</u>	space if fl	lag 1 is set
012 1		868	EEX	initialize	
817 1/8	$\epsilon^2 = \frac{1}{1-\rho^2} - 1$	869	STOI		
018 EEX	- 1-Q ^a -	878	RCL4	calculate a	and store:
019 -	•	071	ENTT		
019 020 STOA		072	+	- a (2a)	1)
021 GT09		073	RCLC	$J_4 \cong \frac{(2a_4)}{2}$	-
		874	YX	6	
	LOAD $\lambda$ , the stopband to	075	2		
	passband frequency ratio	076	÷		
024 GT09		877	P≢s		
	LOAD n, the filter order	878	<u>\$то</u>		
026 STOC	(must be odd)	<del>079</del>	CFO		
<u>827 GT09</u>		880	GSB8	_indicate_fu	
<u>028 *LBLD</u>	OALC. xmsn zeros & AsdB	881	GSB8	$J_{k-1} = \sqrt{\frac{1}{2}} ($	(J _L - ≟)
029 9	calculate and store;	082	GSB8	- ¥-1 ¥2`	J _k
636 6		<b>0</b> 83	GSB8	k = 4, 3, 2	2.1
031 RCLC	$\frac{90}{2} \rightarrow R_E$	084	P#S		
032 ÷	<b>n</b> –	085	745 X2	calculate a	ind print:
<u>033 STOE</u>		886	••		
034 EEX		087	X2		
035 STOI 5	Initialize k+1, 2h-1		RCLA		
036 ST09		088	×		
037 RCLB	$R_{o} = \sqrt{f_{s}/f_{p}}$	889	EEX	Asos= 10 log	$(\mathbf{i} + \mathbf{\epsilon}^* J_0^+)$
<u>038 1X</u> 039 GSB7		<i>090</i>	+		
039 GSB7		891	LOG		
040 GSB7	$a_{k+1} = a_k^2 + \sqrt{a_k^4 - 1}$	892	1		
841 GSB7		093			
042 GSB7	<b>k</b> =0,1,2, <b>3</b>	094 005	X		
		<u>895</u>	<u>PRTX</u>		
		096	<u>GT09</u>	goto space	and return subr
045 STOI	initialize k-l	097	*LBL7	suproutine	to calculate:
046 RCL4	alculate:	098	X2		
BAZ PCIO	-	099	ENTT		
048 RCLE	$4h = \frac{a_4}{\cos \{(2h-1)\frac{90}{p}\}}$	100	X2		
049 X	4h cos {(2h-1) 90 }	101	EEX		
050 cos		102	-	2	64.1
050 cus 051 ÷	$h = 1, 2, \dots, \frac{n-1}{2}$	103	٩X	$a_{k+1} = a_k^2 +$	Yak.→T
	indicate early subr exit	104	+		
	LINGLOAD BATTY SUDT EXIC	105	STO;		
<b>]</b> [		106	ISZI		
1 1		107	RTN		
1 †					
J				·	
	REGIS			7 8	]q
	້ ຍ _{ີ2}  ້ ຍ⊰  ້ ຍ,4	5 6		/ 8	index
		<b>S</b> 5 S6		\$7 \$8	S9
$J_4$ $J_3$	$J_2 = J_1 = J_2$	33 36	,		
		l	[E		
$e^{2}$ $e^{3}$	λ ^C n	5 8	E	90/n	register index
	1			· · · · ·	1

#### 2-15

### **Program Listing II**

r							_			
108	*LBL8	subroutine to a	alculate:			165	2	inoremen	nt 2h	
109	ENT†					166	<u>87+7</u>			
110	1/X	1	1.1.			467	FSLS			
111	+	$u_{k-1} \cdot c_{k-1} = \frac{1}{2}$	$\left( u_{k} + \overline{u_{k}} \right)$			158	₹CLC	test for	loop exit	
112	2		n			165	X> r°		Toob out	
<u>113</u>	<u>. ÷</u>	·				178	57(4			
114	F0?	test for early	y exit			171	*L5L7	space ar	nd <u>return</u> s	ubr
115	<u></u>					172	F12	anace if	flag 1 is	set
115	<u>- 1x</u> –					173 -	SFC	00-00 11		
117	STO <b>i</b>	т 1/т	1 1			174	ETN			
118	ISZI	$J_{k-1} = \sqrt{\frac{1}{2}(J_{k-1})}$	< 元 /		4	175	2739	R/S look	cup	
119	RTN	<u> </u>				176	*LBLT			
120	*LBLE	CALCULATE POL	E LOCATIONS	1		177 -	÷F		ine to calo	
121	3	initialize 3-	- K			178	LST:	naruf co	omplex arit	WWerld:
122	<u></u>					179	i			
123	RCLA	4				:80	, 2			
124	1X	$J_0 S_{00} = \frac{1}{\epsilon}$				181	EEX			
125	<u> </u>					182	-			
126	Pts					283				
r-127	*LBL2	calculate:	T2-2	~		184	LSTA	<b>-</b>	11-	1)
128	GSB6	S(k+1)o = JK SK	+ 1JK SK0 + 1	r		185		s _{k-1} .a _{k-1}	$l = \frac{1}{2}(s_{k} -$	まり
129	RCL i	k=0,1,2				186	+		-	ĸ
<u>130</u>	<u> </u>	` .				100	FŤ			
131	DSZI	test for loop	exit			188	r: >			
<u>– 132</u>	<u> </u>	-				189 189	\$ <b>7</b> %			
133	ENTT	to avoid over				105 190	~+-` →F			
<u>134</u>	+	$\underline{S_{4b}} \cong 2 \underline{J_3} \underline{S_{30}}$	<b></b>			150 191	75			
135	RCL i	calculate and	store:			192 192	÷			
136	P≢S					192 193 -	÷ RT∾			i
137	X≢Y	$S_{5_0} = \begin{cases} J_4 \\ S_{4_0} \end{cases} + \sqrt{3} \end{cases}$	- <u>12</u> - 1	<b>h</b>		<u>170</u> 194	*LBL5			
138	÷	ST = 1-4 + 11	<u>+ 1</u> {				*LBL5 ENT1	suprouti	ine to calc	ulates
139	GSB6	(S40	\$4 ₀ /			195 192				
148	RCLC	•				196	Ха		~	
141	1/8					197	EE×	S(++1)==	Jk Sko + JJ	(S _{ko} ) ² + 1
142	yx otop					158 100	+ r.	v/0	· · · · · · · ·	
<u>143</u>	<u></u>					199 200	<b>4</b> *			
144	CLX	initialize 2h				200	+			
145	<u>ST09</u>	pole location				<u>201</u>	<u>F*N</u>			
146	<u>*LBL4</u>	HOTE TOCKTION				202	*LBL0	print or	r R/S subro	utine
147	4 STOI	initialize k-	1			203	F1			
148		calo				204 205	PRTA	print an	nd return i	f flag 1
149	RCL9	Jato	π			205	F12	is set,	otherwise	-
150	RCLE	$S_{5h} = S_{5o} e^{1h}$	n			266	RTN.			
	X	<u>h = 0, 1, 2,</u>	n-1			207	R.45	stop pro	ogram execu	ltion
152	RCLD *LBL3					208	RTN		7	
153		9(k-1)h= 1 (1	$5(1 - \frac{1}{1})$			205	*LBLe		S TOGGLE	
	GSB5 RCL i	(k-1)h 2 ak-1	-kn Skh			210	<u>[]</u>		lag 1 and 1	
155 156	K6L↓ ÷	k=5,4,3,2				211	CLX	a zero :	in the disp	olay
157				-		212	<u>RTN</u>	· _		
	DSZI GTO3	test for loop	exit			213	*LBLe			
<u>158</u> 159						214	SF1	set flag	g l and pla	lce
* *		finish pole lo				215	EE≍		n the displ	
160	÷R GSBai	calculation ar				316	FTN		-	-
161	65ba X‡∿	pole locations	3							
163										
163	GSBØ GSB <u>Ø</u>									
164	600 <u>7</u>	LAF	ELS			F	LAGS		SET STATUS	
A APdB	8			Ë		0			_	
INAU or - 0		CLOAD n		CAL	C poles	sub:	r exit	FLAGS	TRIG	DISP
acalc $\epsilon^2$	Ъ	c	prt-R/S	^e pr	int?	יזס	int	ON OFF	DEG 🔳	FIX
	1, ,					2		1		SCI
⁰ h loop	k loop	² k loop	³ k loop	n	100p			2	RAD	ENG
,subr	subr	⁷ sub <b>r</b>	sub <b>r</b>	ัธน	br	3		3		n

# Part 3 ELECTROMAGNETIC COMPONENT DESIGN

#### PROGRAM 3-1 FERROMAGNETIC CORE INDUCTOR DESIGN - MAGNETICS.

#### Program Description and Equations Used

This program calculates the various parameters relating to inductor or transformer design on closed magnetic cores. Given the core relative permeability ( $\mu$ ), the core length ( $\ell_c$ ), the core area (A), the air gap ( $\ell_{air}$ ), the required inductance (L), the dc current ( $I_{dc}$ ), the applied ac voltage (E), and the excitation frequency (f), the program will calculate the number of turns required (N), the core H (oersteds) and B (gauss) resulting from the dc excitation, the ac excitation, and the total from both excitations. The dimensions of the core and air-gap can be entered in either centimeter or inch units. Program 3-2 will calculate the wire size and winding resistance given the window area and mean turn length. The program will also calculate the coil inductance if the number of turns, the core permeability and dimensions, and the air gap dimensions are given.

If the inductance in millihenries per 1000 turns is given (the  $A_L$  value) along with the core dimensions and permeability, the effective air gap will be calculated and stored in place of the given air gap. The inductance or turns, and core excitation will then be calculated on the basis of the calculated air gap.

The magnetic equations used are:

$$H = \frac{0.4 \text{ } \text{} \text{} \text{} \text{NI}}{\boldsymbol{\ell}_{c} + \boldsymbol{\mu}_{c} \cdot \boldsymbol{\ell}_{air}}$$
(3.1.1)

$$E = 10^{-8} \cdot N \frac{d\phi}{dt} = 10^{-8} N A \frac{dB}{dt}$$
 (3-1.2)

where I is the current in the coil. Equation (3-1.2) can be rearranged to yield B, the core flux density:

$$B = \frac{10^8}{NA} \int E \cdot dt$$
 (3-1.3)

If  $E = \sqrt{2} \cdot E_{rms} \cdot sin(2\pi ft)$  is the sinewave excitation, then:

$$B_{\text{peak}} = \frac{10^8 \cdot E_{\text{rms}}}{\sqrt{2\pi} \text{ ANf}}$$
(3-1.4)

If E is a symmetrical squarewave with voltage E as shown by Fig. 3-1.1, then:

$$B_{peak} = \frac{10^8 \text{ Epk}}{4 \text{ AN f}}$$
 (3-1.5)



Figure 3-1.1 Square wave coil excitation and magnetic flux density trajectory.

Remembering the differential relationship between current and voltage in an inductor, E = L(dI/dt), an expression can be derived relating the inductance, L, to the magnetic circuit quantities:

$$B = \mu H$$
 (3-1.6)

From Eqs. (3-1.2) and (3-1.6):

$$E = 10^{-8} N A \mu \frac{dH}{dt}$$
 (3-1.7)

From Eq. (3-1.1):

$$\frac{dH}{dt} = \frac{0.4\mu}{\ell_c + \mu \ell_a} \cdot \frac{dI}{dt}$$
(3-1.8)

Combining Eqs. (3-1.7) and (3-1.8) yields the inductance expression:

$$E = \frac{0.4\pi N^2 A \cdot 10^{-8}}{l_c + \mu l_{air}} \cdot \frac{dI}{dt}$$
(3-1.9)

hence

$$L = \frac{0.4 \pi N^2 \mu A \cdot 10^{-8}}{l_c + \mu l_{air}}$$
(3-1.10)

This equation may be rearranged to yield the equivalent air gap if the inductance per turn squared and core dimensions are known:

$$\ell_{air} = \frac{0.4\pi \ N^2 A \cdot 10^{-8}}{L} - \frac{\ell_c}{\mu}, \ cm \qquad (3-1.11)$$

Generally the inductance index in millihenries per 1000 turns is provided by the core manufacturer:

$$L^* = millihenries per 1000 turns$$
 (3-1.12)

hence,

$$\ell_{air} = \frac{4\pi A}{L^*} - \frac{\ell_c}{\mu}$$
 cm (3-1.13)

Equation (3-1.10) can be rearranged to yield an expression for N, the number of turns, required to achieve a given inductance, L:

$$N = \left\{ L \frac{(\ell_c + \mu \,\ell_{air}) \cdot 10^8}{0.4 \,\pi \,\mu \,A} \right\}^{\frac{1}{2}}$$
(3-1.14)

The program uses these equations as follows: Labels "A," "a," "B," and "b" are used to load and store the core parameters. The actual stored parameters are in centimeters, and entries with inch units (Labels "A" and "B") are converted before storage. Label "C" uses Eq. (3-1.14) to calculate N given L. Label "c" uses Eq. (3-1.10) to calculate L given N. Label "d" uses Eq. (3-1.13) to calculate the equivalent air gap given the inductance index, L*. The new air gap dimension replaces the presently stored air gap dimension. Label "D" uses Eq. (3-1.1) to calculate the dc magnetizing force, H, given the dc current through the core. Since the number of turns are required for this calculation, the use of "C" or "c" must precede the use of "D." The dc flux density, B_{dc}, is calculated using Eq. (3-1.6). Label "E" uses Eq. (3-1.4) to calculate the peak core flux density given the ac coil excitation. The flux in the core will vary sinusoidally with sinusoidal excitation. The peak ac magnetizing force is calculated using Eq. (3-1.6). The peak ac and dc core magnetic parameters are added together and printed to provide the peak excitation in the core. The peak excitation should be kept below the magnetic saturation level of the core material for linear operation. Label "e" uses Eq. (3-1.5) to calculate peak core flux density from squarewave coil excitation, and provides a summary as above.

# **3-1** User Instructions

	INDUCT	OR DESIGN -	MAGNETICS		$\square$
$\mu + l_c + A_c$ om	L _{air} cm	N - L	$L^*, \frac{mh}{1000T}$	S _{pk} f _{Hz} H. Bag, pk	5
utletAc inches	lar inches	L + N	I _{dc} →H,B _{dc}	Erms   fHz H. Bac, pk	

		DATA/UNITS	KEYS	DATA/UNITS
1	Load both sides of magnetic card			
2	Load magnetic core parameters			
	a) for dimensions in inches			
	i) relative permeability of core	д	ENT	
	ii) effective core length	$\ell_c$	ENT 4	
	iii) effective core cross-sectional area	A _c	A	ц
	b) for dimensions in centimeters			
	i) relative permeability of core	ц	ENT 4	
	ii) effective core length	Lc	ENT	
	iii) effective core cross-sectional area	A _c	f A	μ
3	Load air gap length (if L* is to be used,			
	skip this step)			
	a) for dimensions in inches	Lair	В	lair, cm
	b) for dimensions in centimeters	Lair	f B	laur, cm
4	Load L* (mh/1000T) if air gap is unknown	L*	fD	lair, cm
5	To calculate the number of turns to achieve			
	a given inductance	L, h		N
6	To calculate the inductance given the			
	number of turns	N	f	L, h
7	Load de coil current	Idc	[ D ]	H _{dc} , Oe
				B _{do} , G
8	If sinewave ac coil excitation is present			
	a) load the rms voltage	E _{rms} , V	ENT 4	
	b) load the frequency	f, Hz	E	Hac pk,0e
	······································	******		H _{dc} , Oe
				H _{total} ,0e
·	***************************************	******************		Bac pk, G
				Baa G
				Bdc, G Btotal, G

### ³⁻¹ User Instructions



STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	If square-wave coil excitation is present			
,	a) load the peak voltage (see Fig. 3-1.1)	Epk	ENT	
	b) load the frequency	f, Hz	f	H _{ac pk} , Oe
				H _{dc} , Oe
				H _{total} , Oe
				B _{ac pk} , G B _{dc} , G
				B _{dc} , G
				^B total, G
10	To obtain the wire size and winding			
	resistance for the above winding, load			
	Program 3-2.			
				·····
				·······
				×
ļ				
ļ				
			4	
ļ			4	
ļ			4	
			4	
			ł	
<b>_</b>			4	
			4	
ļ	· · · · · · · · · · · · · · · · · · ·		ł	
			ł	
ļ	······································		4	
			4	· · · · · · · · · · · · · · · · · · ·
			ł	
			I	

Example 3-1.1



Design an inductor to have an inductance of 20 millihenries using the above core (a Ferroxcube 266CT1253B7). The operating frequency is 10 kHz, and the applied ac voltage is 1 Vrms sinewave. There will be 1 mA of dc flowing in the winding.

The core physical constants are needed first:

A =  $(.125)(.375 - .187)/2 = 11.8 \times 10^{-3} \text{inches}^2$   $\ell = \pi(.375 + .187)/2 = .883 \text{ inches (mfgr says .852 in)}$  $\ell_{\text{air}}^{c} = 0 \text{ (no air gap)}$ 

These dimensions along with  $\mu_e = 2500$  are loaded using the A & B keys.

2506. ENT+ μ_e .852 ENT* L_c, inches 11.8-03 63E4 A, inches² 0. SEE lair L* (mh/1000T) 1100. GES  $\ell_{air}$ 4.062-06 *** calculated, cm .020 6950 L required, h N calculated (use 135T) Since the core saturates at 134.8+86 *** around 2500 gauss, and this design only excites the Idc, amps 1.-03 GSED 77.93-03 +** core to 414 gauss peak, the Hdc, oersteds 194.8+00 *** Bdc, gauss design appears adequate from a magnetics standpoint. 1. ENTY Vrms 10000. G36E freq, Hz, sinewave Hac peak, oersteds 87.71-02 *** 11 77.95-03 *** Hdc 11 165.6-03 *** H total Bac peak, gauss 219.3+00 *** 11 Bdc 154.8+00 *** 11 B total 414.1+00 ***

Example 3-1.2

25 2 Ferrite pot core:	Ferroxcube 2213C A400 3B7
	$\begin{array}{llllllllllllllllllllllllllllllllllll$

This pot core is to be used in a tank circuit of a class A tuned amplifier operating at 50 kHz. The dc current is 30 mA, and the applied ac voltage is 10 Vrms. The required inductance is 40 mh (the resonating capacitor is 253 pF). Calculate the effective air gap, the number of turns required, the dc and ac core excitation, and the peak flux density. The following HP-97 printout shows the data entry and calculated parameter output.

1845. ENT† 3.15 ENT† .635 33B:	$\ell_c^{\mu}$ , centimeters A ^c , cm ²	A printout of f reveals this st	the registers tored information:
460. ö38d 18.24-03 ***	L* (mh/1000T) $\ell_{air}$ calculated	PREG	
.040 G3BC	L required, h	1.845+03 0	
316.2+00 ***	N calculated (use 316)	3.150+00 1	l_ cm
	······································		$A^{C}$ , $cm^{2}$
.038 \$5EC	Idc, amps	635.0-63 2 18.24-63 3	lair, cm
323.9-83 ***	Hdc, oersteds	316.2+00 4	N, turns
597.6+00 ×**	Bdc, gauss	50.00+03 5	freq, Hz
		323.9-83 6	Hdc, Oe
10. ELT -	Vrms	597.6+00 7	Bdc, gauss
<b>500</b> 00. CEEE	Freq, Hz, sinewave	0,000+00 8	
12.15-03	Hac peak, oersteds	22,42+00 9	Bac pk, gauss
323 <b>.</b> 3-03 ***	Hdc, "	10.00+00 A	Vac, volts
336.1-03 ***	H total, "	30.00-03 B	Idc, amps
		4.000+06 C	$L \times 10^{8^{\circ}}$
22.43+0ē ***	Bac peak, gauss	400.0+00 D	L*, mh/1000T
597.6+8ê ***	Bdc, "	0.000+00 E	· ·
620.0+00 ***	B total, "	0.000+00 I	

#### Example 3-1.3



Figure 3-1.2 Inductor on cut C-core.

An inductor to carry dc is needed for the power separation assembly at the end of a coax cable. One ampere dc must flow through the inductor without forcing the B-H loop into a nonlinear region. The inductance needed is 1 henry. Ac signals of 10 Vrms across a frequency band covering 10 Hz to 1000 Hz will be applied in addition to the dc current. A tentative selection is a cut "C" core (see Fig. 3-1.2) with dimensions  $A_c = 1.0 \text{ in}^2$ ,  $\ell_c = 6$  inches, and  $\mu = 1000$  (silectron transformer steel). To ensure linear inductance, the peak flux level in the core should not exceed 10000 gauss.

1000. Enti 6. Enti 1. GSBA	$\ell_c$ , inches $A_c$ , inches ²		— t	
1.460+03 ***			GSBB GSBC ***	(0.625" each side)
6580 10.62+00 #** 10.62+03 *** 10. ENT†	Bdc, gauss	7.651+00 7.651+03		
	freq, Hz, sinewave Hac peak, oersteds Hdc, " H total, "	1.712+00 7.651+00 9.373+00	***	recalc H, Bac,etc. Hac peak, oersteds Hdc, " H total, "
10.62+03 *** 13.01+03 *** B total exce	B total, " eds 10000 gauss, use	1.722+03 7.651+03 9.373+03 B total	*** ***	Bdc, "
a thicker spa	acer (larger air gap).			gn is complete.

3-1

## Program Listing I

5 001 JUL			LOAD NUMBER OF TURNS
<u>601 *LBLa</u>	LOAD CORE PARAMS, CM UNITS	<u>052 *LBLc</u> 053 F3?	
002 STOŽ 003 R4	store_core_area	<b>.</b>	if numeric input,
	at a second law at h	<u>054 ST04</u> 055 RCL4	_store value
<u>004 STO1</u> 005 R4	store core length	056 X2	calculate and store L.10 ⁸ ;
006 STO <u>C</u>	store core normachility	057 GSB6	
007 F2?	store core permeability	057 6366 058 ÷	
	test for initialization		B 0.47 N ² 4 A
<u>008GSB5</u> 009GT04		059 RCL2 060 X	$L 10^8 = \frac{0.4 \times N^2 \mathcal{U} A}{\mathcal{L}_c + \mathcal{U} \mathcal{L}_{air}}$
	goto spc, OF3 and rtn	061 RCL0	~~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~
<u>010 *LBLA</u> 011 F2?	LOAD CORE PARAMS, IN. UNITS	861 KCL8 862 X	
611 F27 612 GSB5	test for initialization	063 STOC	
012 0385 013 RCLI	convert area in in2 to om2	064 RCLE	
013 KCE1 014 X2	and store	065 ÷	divide by 10 ⁸
014 ×-	and store	066 GT03	goto print subroutine
016 <u>ST02</u>		067 ¥LBLD	LOAD Idc
016		068 F3?	if numeric input,
4			
018 RCLI 019 ×	convert core length in in.	<u>069 STOB</u> 070 RCLB	store value
	to cm and store	871 GSB6	calculate and print H _{dc} :
020 ST01			1 · · · · · · · · · · · · · · · · · · ·
021 R4	,		
022 ST00 027 ST00	store core permeability		
023 GT04	goto spc. CF3 and rtn		$H_{dc} = \frac{0.4\pi \text{ NI}}{l_c + \mu \text{ lar}}$
	LOAD AIR GAP LENGTH, INCHES	075 PRTX	ACT M Adlf
025 F2?	test for initialization	076 STO6 077 RCL0	
<u>026 GSB5</u>			calculate and store B _{dc}
027 RCL1	convert air gap length	078 X	B _{dc} ^{µ·H} do
<u>028 × </u>	to cm	<u>079 ST07</u>	
029 *LBL6	LOAD AIR GAP LENGTH, CM	<u>080 GT03,</u>	goto print subroutine
030 F2?	test for initialization	<u>081 *LBLd</u>	LOAD L*, MH PER 1000 TURNS
<u>031 GSB5</u>		082 STOD	
<u>032 ST03</u>	store air gap length in cm	083 1/X	calculate and store
<u>033 GT04</u>	goto spc, OF3, and rtn	084 4	equivalent air gap:
034 *LBLC	LOAD INDUCTANCE REQUIRED	085 ×	eduterone -Te Pabe
035 F3?	if no numeric input, jump	086 Pi	
036 F.?		087 ×	a 4ma a
<u>037 GT00</u>		088 RCL2	$l_{ar} = \frac{4\pi A}{L^{a}} - \frac{l_{c}}{\mu}$
038 RCLE		089 X	ι <i>μ</i>
639 ×	<b>calcul</b> ate and store $L \cdot 10^8$	090 RCL1	
<u>040 STOC</u>		091 RCL0	
-041 *LBL0		<i>092</i> ÷	
042 RCLC	calculate and store the	093 - 004 0707	
	number of turns required	<u>094 stoj</u> - 095 <u>stoj</u> -	<u> </u>
644 ×	by using Eq. (3-1.14)	<u>095 GT03</u>	goto print subroutine
045 RCL2	Va.		
046 ÷ 047 RCL0	$N = \left\{ \frac{L(l_c + \mu l_{air}) \cdot 10^8}{0.4\pi \mu A_c} \right\}^{V_2}$		
047 RCL0	N= { U(20 / Maar) · 10 }		
_	( 0.4π μ A _c )		
049 JX			
<u>050 ST04</u>			
051 GT03	print number of turns		
1			
		STERS	
° µ 1 lc	2 Ac 3 $l_{air}$ 4 N	⁵ f ⁶ H _{de}	⁷ B _{dc} ⁸ ⁹ B _{ac} , pk
SÓ SI	S2 S3 S4	\$5 \$6	<b>S</b> 7 S8 S9
ļ		L	<u></u>
A Vac B			10 ⁸ ^I 2.54
*dC			

### 3-1

### Program Listing II NOTE FLAG SET STATUS

096				· · · · · · · · · · · · · · · · · · ·	<del></del>			
097	*LBLE F3?	LOAD Erms, fH	z; CALC H, B	<u>156</u> 151		i <u>nitiali</u>	za <u>tion sub</u> i	routine
898 	F3? GT0 <u>1</u>	jump if no num	meric entry	152	2 8	generate	and store	10 ⁸
100	ST05	store frequence	cy	154	I R∔	recover	x register	
101	XZY Stoa	store rms volt	tara	155				
102	*LBL1		ak calculation	156		generate	and store	2.54
104	RCLA	- pe	~ <b>K</b>	158	3 4	Ponoreno	-110 00010	
105	2 {X	k = -√2 π		<u>159</u> 166			v nogi oton	
107	P i	•		161			x register o main pros	
108	X 	goto B calcula		- 162			agnetics su	
110	*LBLe	LOAD Epk, fHz						
$\frac{1}{11}$	F3?	Transfer 1 HS		165		calculat	e:	
112	F3?	jump if no num	meric entry	166				
$-\frac{113}{114}$	<u>GT01</u> ST05	store frequence		167		<u>Le +</u>	H Lair	
115	X#Y	sore reducit	- 3	165			F /6	
116	STOA	store peak vol		176	θ.			
	*lbl1 RCLA	setup for B ca	alculation	171				
119	4	k = 4		172		return to	o main prog	ram
	*LBL2	common B calcu	ulation routing					
121	÷ RCL5							
123	K020 ŧ			NOTE:				
124	RCL2	108	E	Te	ohange	from the	"print" mo	de to
125	÷	D 10.			/			
	DCL 4	$B_{peak} = \frac{10^8}{k \Delta N}$	1	the R/	S mode	for outpu	t, change	the
126	RCL4 ÷	Bpeak = KAN	lf	the "R/ "print"	S" mode stateme	for outpu	t, change /S" statem	the ents
126 127 128		Bpeak = kAN	ĪĒ	at the	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129	÷ RCLE X			at the 135, 13	rollowir	for outpuents to "R ng line nu 142, and	mbers: 07	the ents 5, 133,
126 127 128 129 130	÷ RCLE X STO9			at the 135, 13	rollowir	g line nu	mbers: 07	the ent <b>s</b> 5, 133,
126 127 128 129	÷ RCLE X	<u>store</u> Bac, pk- calculate and		at the 135, 13	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129 130 131 132 133	RCLE X STO9 RCL0 ÷ PRTX	$\frac{store}{calculate} = \frac{B_{ac}}{pk}$	print H _{ac, pk}	at the 135, 13	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129 130 131 132 133 134	÷ RCLE × STO9 RCL0 ÷ PRTX RCL6	<u>store</u> Bac, pk- calculate and	print H _{ac, pk}	at the 135, 13	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129 130 131 132 133	RCLE X STO9 RCL0 ÷ PRTX	$\frac{\text{store}}{\text{calculate}} = \frac{B_{ac}}{pk}$ $\frac{B_{ac}}{pk}$ $H = B/\mu$ $\frac{B}{\mu}$ $\frac{B}{\mu}$	print H _{ac, pk}	at the 135, 13	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129 130 131 132 133 134 135 136 137	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX	$\frac{store}{calculate} = \frac{B_{ac}}{pk}$	print H _{ac, pk}	at the 135, 13	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129 130 131 132 133 134 135 136 137 138	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX SPC	store $B_{ac}$ , pk calculate and $H = B/\mu$ recall and pri-	print H _{ac, pk} int H _{dc}	at the 135, 13	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129 130 131 132 133 134 135 136 137	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX	$\frac{\text{store}}{\text{calculate}} = \frac{B_{ac}}{pk}$ $\frac{B_{ac}}{pk}$ $H = B/\mu$ $\frac{B}{\mu}$ $\frac{B}{\mu}$	print H _{ac, pk} int H _{dc}	at the 135, 13	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX SPC RCL9 PRTX RCL7	stor <u>e</u> Bac, pk calculate and H = B/µ recall and print calc and print recall and print	print H _{ac, pk} int H _{dc} t H _{total} int B _{ac, pk}	at the 135, 13	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	÷ RCLE × STD9 RCL0 ÷ PRTX RCL6 PRTX + PRTX SPC RCL9 PRTX RCL7 PRTX	stor <u>e</u> B _{ac, pk} calculate and H = B/µ recall and pri calc and print recall and pri	print H _{ac} , pk int H _{dc} t H _{total} Int B _{ac} , pk int B _{do}	at the 135, 13	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX SPC RCL9 PRTX RCL7	stor <u>e</u> Bac, pk calculate and H = B/µ recall and print calc and print recall and print	print H _{ac} , pk int H _{dc} t H _{total} int B _{ac} , pk int B _{do}	at the 135, 13	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX SPC RCL9 PRTX RCL7 PRTX RCL7 PRTX + * * * * * * * * * * * * *	stor <u>e</u> B _{ac} , pk calculate and H = B/µ recall and print calc and print recall and print recall and pri <u>calculate Btot</u> print and space	print H _{ac} , pk int H _{dc} t H _{total} int B _{ac} , pk int B _{do} tal	at the 135, 13	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX SPC RCL9 PRTX RCL7 PRTX RCL7 PRTX + * * * * * * * * * * * * *	stor <u>e</u> B _{ac} , pk calculate and H = B/µ recall and print calc and print recall and pri recall and pri	print H _{ac} , pk int H _{dc} t H _{total} int B _{ac} , pk int B _{do} tal	at the 135, 13	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX SPC RCL9 PRTX RCL7 PRTX RCL7 PRTX + * * * * * * * * * * * * *	stor <u>e</u> B _{ac} , pk calculate and H = B/µ recall and print calc and print recall and print recall and pri <u>calculate Btot</u> print and space	print H _{ac} , pk int H _{dc} t H _{total} int B _{ac} , pk int B _{do} tal	at the 135, 13	rollowir	g line nu	mbers: 07	the ents 5, 133,
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX SPC RCL9 PRTX RCL7 PRTX RCL7 PRTX + * * * * * * * * * * * * *	stor <u>e</u> B _{ac} , pk calculate and H = B/µ recall and print calc and print recall and print recall and pri <u>calculate Btot</u> print and space	print H _{ac} , pk int H _{dc} t H _{total} int B _{ac} , pk int B _{do} tal	at the 135, 13	rollowir	g line nu 142, and	mbers: 07 145.	5, 133,
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX SPC RCL9 PRTX RCL7 PRTX RCL7 PRTX + * * * * * * * * * * * * *	store Bac, pk calculate and H = B/µ recall and print calc and print recall and print recall and pri recall and pri calculate Btot print and space	print H _{ac} , pk int H _{dc} t H _{total} int B _{ac} , pk int B _{dc} tal se subroutine subroutine	at the 135, 13	rollowix 57, 140,	g line nu 142, and	AG SET STA	5, 135,
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX SPC RCL9 PRTX RCL9 PRTX RCL7 PRTX + *LBL3 PRTX * *LBL3 PRTX *	store Bac, pk calculate and H = B/µ recall and print calc and print recall and print recall and print calculate Btot print and space space and OF3	print H _{ac} , pk int H _{dc} t H _{total} int B _{ac} , pk int B _{dc} subroutine subroutine	at the 135, 13	rollowir	NOTE FLA	AG SET STATUS	5, 13 <b>5,</b> TUS
126 127 128 129 130 131 132 133 134 135 136 137 136 137 138 139 140 141 142 143 144 145 146 147 148 149	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX SPC RCL9 PRTX RCL7 PRTX RCL7 PRTX + *LBL3 FRTX *LBL4 SPC CF3 RTN	store Bac, pk calculate and H = B/µ recall and print calc and print recall and print recall and pri calculate Btot print and space space and OF3	print H _{ac} , pk int H _{dc} t Htotal int B _{ac} , pk int B _{dc} tal se subroutine subroutine BELS	fit the 135, 13	rollowix 57, 140,	NOTE FLA	AG SET STA	5, 135,
$\begin{array}{c} 126\\ 127\\ 128\\ 129\\ 130\\ 131\\ 132\\ 133\\ 134\\ 135\\ 136\\ 137\\ 136\\ 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 149\\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX SPC RCL9 PRTX RCL7 PRTX RCL7 PRTX + * RCL3 PRTX * RCL3 PRTX * * * * * * * * * * * * *	store Bac, pk calculate and H = B/µ recall and print calc and print recall and print recall and print calculate Btot print and space space and OF3	print H _{ac} , pk int H _{dc} t H _{total} int B _{ac} , pk int B _{dc} int B _{dc} int B _{dc} subroutine subroutine BELS	et the 135, 12 	FLAGS	NOTE FLA FLAGS ON OFF	AG SET STAT	TUS DISP FIX
126 127 128 129 130 131 132 133 134 135 136 137 136 137 138 139 140 141 142 143 144 145 146 147 148 149	÷ RCLE × ST09 RCL0 ÷ PRTX RCL6 PRTX + PRTX SPC RCL9 PRTX RCL7 PRTX RCL7 PRTX + *LBL3 FRTX *LBL4 SPC CF3 RTN	store Bac, pk calculate and H = B/µ recall and print calc and print recall and print recall and print recall and print calculate Btot print and space space and OF3	print H _{ac} , pk int H _{dc} t H _{total} int B _{ac} , pk int B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} t B _{dc} B _{dc} t B _{dc} B _{dc} t B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B _{dc} B	Et the 135, 12 	rollowix 57, 140,	NOTE FLA FLAGS	AG SET STATUS	5, 135, TUS DISP

### PROGRAM 3-2 FERROMAGNETIC CORE INDUCTOR DESIGN - WIRE SIZE.

### Program Description and Equations Used

This program is a companion program to Program 3-1. Given the window area and the number of turns (stored by companion program), this program will calculate the wire size with heavy insulation (class 2) that will fill the window area. If the length of the mean turn is known, the program will also calculate the winding resistance.

The program is also designed to provide information on the wire diamter over class 2 insulation and wire resistance in ohms/inch given the wire size in AWG. The program will also calculate the AWG given the wire diameter over class 2 insulation.

The operation of the program centers around the logarithmic relationship between AWG and the wire cross-sectional area. This logarithmic relationship is:

$$AWG = \frac{1}{b} \ln \frac{\text{diameter in inches}}{a}$$
(3-2.1)  
where a' = 0.3245574964  
b' = -.1159489227   
a = 0.3137250775  
b = -.1097881513   
wire with class 2  
insulation

If the total area for a winding of N turns is known, then the area for one turn may be calculated. If the wire is assumed to just fit inside a square with the wire diameter tangent to the sides of the square, then the waste space due to wire stacking can be accommodated (see Fig. 3-6.2). The wire diameter becomes the square root of the square's area. The program uses this algorithm. Once the wire diameter is found, the AWG can be calculated using the logarithmic relationships. The constants for heavy insulation are used. The AWG that is used and is output is the upward rounded value of (1.5 + calculated AWG).

The wire resistance per unit length is inversely proportional to

the copper cross-section, hence, the wire size in AWG also bears a logarithmic relationship to the wire resistance. When the wire resistance is desired as a function of the wire AWG, the relationship becomes exponential:

$$R/\ell \text{ (ohms/inch)} = c \cdot e^{(d \cdot AWG)}$$
 (3-2.2)  
where  $c = 8.371747114 \times 10^{-6}$  annealed  
 $d = -.2317635483$  copper wire

This exponential relationship is used in conjunction with the mean turn length and the number of turns to calculate the total resistance of the winding. The window area and mean turn length may be entered in either units of inches or centimeters. Centimeter dimensions are converted to inch dimensions before storage within the program.

If the AWG is known and the overall wire diameter including the heavy insulation is desired, Eq. (3-2.1) can be rearranged to yield:

diameter in inches = 
$$a \cdot e^{(b \cdot AWG)}$$
 (3-2.3)

This equation is evaluated under label e.

## **User Instructions**

3-2

IND	UCTOR DESIGN	- WIRE SIZ	E AND RESIST	ANCE	
window area, cm ²	mean turn length, cm	change # of turns	AWG - ohms inch	wire diam. - AWG	2
window area, in ²	mean turn length, in	calculate AWG	calculate winding R	AWGwire diameter	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of magnetic card			
2	Enter window area available for winding			
	a) for dimensions in square inches	$A_w$ , in ²		
	b) for dimensions in square centimeters	$A_w, cm^2$	f A	
				ļ
	Enter the length of a mean turn (a turn			
	through the middle of the winding)		,	
	a) for dimensions in inches	lt, in		
	b) for dimensions in centimeters	l _t , cm	f B	
				<u> </u>
4	To change the number of turns, or to enter	N	f	
	the number of turns if the previous program			
	was not run			
5				
2	Calculate the wire AWG that will fill the			
	window area. Heavy insulation (class 2) is assumed.			AWG
				70 G
6	Calculate the winding resistance in ohms	<u> </u>		R, ohms
7	To find the AWG given the wire diameter over	D _w	f E	AWG
	heavy insulation in inches			
8	To find the wire diameter over heavy	AWG	E	$D_w$ , in
	insulation given AWG			
9	To find the wire resistance per inch of	AWG	f D	ohms/in
	annealed copper wire given AWG	<b>.</b>		
<u> </u>		ļ	·	
				<b></b>
				•••••••
				······
·		<b>.</b>		
		••••••		
				<u> </u>

Example 3-2.1



Figure 3-2.1 Inductor on cut C-core.

The inductor in Fig. 3-2.1 was designed to carry dc in Example 3-1.3. If the winding window area is 2 square inches, and the mean turn length is 6 inches, what wire size will fill the winding window, and what will be the total winding resistance?

	GSEH	window area in square inches
ţ,		mean turn length in inches
<b>.</b> _	936.	start wire size calculation
٤٢.	<b>家集集</b>	wire size in AWG
	GSED	start winding resistance calculation
16.67+66	冬茶茶	winding resistance in ohms

### **Program Listing I**

001	*LBLa	LOAD WINDO	W AREA IN	cm ²	- 057	*LBL4	print, sp	pc, & eng3 sub	r]
002	F0?	test for i	nitie14 20	tion	058	PRTX			
003	GSB2				059	SPC			
004	RCLI				868	ENG			
005	χ2	convert an	rea to inc	hes ²	061	DSP3			
006	÷				062	RTH			
007	*LBLA	LOAD WINDO	W ABEA IN	in2	063	<b>≭LBL</b> 5	AWG to ol	hms/inch_subro	utine_
008	STOR	store wind		······································	064	6SB0		nge registers	
009	F0?				065	RCL3			
010	GSB2	test for i	INI TIALIZA	tion	066	x	use Eq.	(3-2.2) for	
011	RTN	return cor	trol to k	evhoard	867	ex	conversio		
012	*LBL6	LOAD MEAN	TURN LANG	TH IN om	068	RCL2			
012	F0?				869	x			
<u>814</u>	GSB2	test for i	initializa	tion	070	GT01	test for	register inte	rche
015	RCLI		• •		871	*LBL6		meter to AWG s	
<u>016</u>	÷	convert le	ength to i	nches	072	<b>GSE</b> 0		nge registers	
017	*LBLB	LOAD MEAN	TURN LENG	TH IN In	073	RCLO	••• • ••• ••• •••••••••••••••••		
818	STOC	store mean			074	÷		(3-2.1) for	
019	F0?				075	LN	conversi		
019	GSB2	test for i	initializa	tion	076	RCLI	COUVELBI	011	
020	<u> </u>	return cor	trol +- 1-	eubcand	077	÷			
	*LBLo	LOAD NUMBE	FD OF MUDN	eybbard	078	-			
<u>022</u> 023	<u>*LBLC</u> ST04		•		079	5			
		store new	number of	turns	080	+			
	RTH_	041 0111 4000	WITTE AND	-	081	FIX			
<u>025</u>	*LBLC	CALCULATE				DSPO			
026	RCLA	calcula <u>te</u>	wire diam	eter:	<b>08</b> 2 083	RND			
927	RCL4	$d = -\sqrt{\frac{A_{w}}{r}}$	vinda w				interche	nge registers	
028	÷	u ≈ ¶	<b>`</b>		084			interchange s	whr
<u>029</u>	<u></u>		Awi		<u>985</u>	*LBL0			
030	GSB6	oalculate	AWG Trom	wire diam	086	F0?	test for	initialization	1
031	EEX	using Eq.	(フー2、1)			GSB2			
		81.	· · · · · /		<u>. 087</u>				
032	+	01.	<b>v</b>		088	P≓S			
032 033	+ <u>STOB</u>				088 089	P≓S SF2			
032 <u>033</u> 034	+ <u>Stob</u> Gto4	goto print	t. space &	dsp subr	088	P≓S			
032 <u>033</u> <u>034</u> 035	+ <u>STOB</u> GTO4 *LELD	goto print CALCULATE	t. space & WINDING F	ESI STANCE	088 089	P≓S SF2			
032 <u>033</u> <u>034</u> 035 036	+ <u>STOB</u> <u>GT04</u> <u>*LELD</u> RCL5	<u>goto print</u> CALCULATE use Eq. (	t. space & WINDING R 3-2.2) to	ESI STANCE	088 089 090	P≓S SF2			
032 033 034 035 036 036 037	+ <u>STOB</u> <u>GT04</u> <u>*LELD</u> RCLB GSB5	goto print CALCULATE	t. space & WINDING R 3-2.2) to	ESI STANCE	088 089 090 Not <b>e</b> :	P≠S SF2 RTN	from the	"print" to "P/	
032 033 034 035 036 036 037 038	+ <u>STOE</u> GT04 *LELD RCLE GSB5 RCLC	<u>goto print</u> CALCULATE use Eq. ( ohms/inch	t. space & WINDING F 3-2.2) to	CAIC	088 089 090 NOT <b>E</b> : To	P∓S SF2 RTN chang●	from the	"print" to "R/	/s#
032 033 034 035 036 037 038 039	+ <u>STOB</u> GT04 *LELD RCL6 GSB5 RCLC X	<u>goto print</u> <u>CALCULATE</u> use Eq. () ohms/inch multiply 1	t. space & WINDING F 3-2.2) to	ESI <u>STANCE</u> calc	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 034 035 036 036 037 038 039 040	+ <u>STOB</u> <u>GT04</u> <u>*LELD</u> RCLE <u>GSB5</u> RCLC X RCL4	goto print CALCULATE use Eq. ( ohms/inch multiply i length to	t. space & WINDING F 3-2.2) to by total w get total	ESI <u>STANCE</u> calc	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	"print" to "R/ the "print" a "R/S" state	
032 033 034 035 036 037 038 039 040 041	+ STOB GT04 *LELD RCLB GSB5 RCLC X RCL4	<u>goto print</u> CALCULATE use Eq. ( ohms/inch multiply length to resistence	t. space & WINDING F 3-2.2) to by total w get total	ESI <u>STANCE</u> calc	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 035 036 036 037 038 039 040 041 041 041	+ <u>STOB</u> <u>GT04</u> <u>RCLB</u> <u>GSB5</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u>	<u>goto print</u> CALCULATE use Eq. ( ohms/inch multiply length to <u>resistano</u> print res	t. space & WINDING F 3-2.2) to by total w get total e istance	ESI STANCE calc  /inding	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 035 036 037 038 039 040 041 041 041 043	+ <u>STOE</u> <u>GT04</u> <u>RCLE</u> <u>GSB5</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u> *LBLd	goto print CALCULATE use Eq. () ohms/inch multiply length to resistance print res CONVERT AN	t. space & WINDING F 3-2.2) to by total w get total e istance	ESI STANCE calc  /inding	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 035 036 036 037 038 039 040 041 041 041	+ <u>STOE</u> <u>GT04</u> <u>RCLE</u> <u>GSB5</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u> *LBLd	<u>goto print</u> CALCULATE use Eq. () ohms/inch multiply length to <u>resistano</u> print resi CONVERT AN perform co	t. space & WINDING F 3-2.2) to by total get total e istance WG TO OHMS onversion	ESI STANCE calc  /inding	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 035 036 037 038 039 040 041 041 041 043 044 044 044	+ <u>STOB</u> <u>GT04</u> <u>RCLB</u> <u>GSB5</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u> <u>4LBLd</u> <u>GSB5</u> <u>GT04</u>	<u>goto print</u> CALCULATE use Eq. () ohms/inch multiply length to <u>resistance</u> print resi <u>CONVERT AU</u> perform co print resi	t. space & WINDING F 3-2.2) to by total get total e	ESI STANCE calc /inding /INCH	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 035 036 037 038 039 040 041 041 041 043 044 044 045 046	+ <u>STOB</u> <u>GT04</u> <u>#LELD</u> RCL6 <u>GS85</u> RCLC X RCL4 <u>X</u> <u>GT04</u> <u>#LBLd</u> <u>GS85</u> <u>GT04</u> <u>#LBLe</u>	<u>goto print</u> CALCULATE use Eq. () ohms/inch multiply length to <u>resistance</u> print resi <u>CONVERT AU</u> perform co print resi	t. space & WINDING F 3-2.2) to by total get total e	ESI STANCE calc /inding /INCH	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 035 036 037 038 039 040 041 041 043 044 044 045 046 047	+ <u>STOB</u> <u>GT04</u> <u>#LELD</u> RCL6 <u>GSB5</u> RCLC X RCL4 <u>X</u> <u>GT04</u> <u>#LBLd</u> <u>GSB5</u> <u>GT04</u> <u>#LBLe</u> <u>GSB6</u>	<u>goto print</u> <u>CALCULATE</u> use Eq. () <u>ohms/inch</u> multiply 1 length to <u>resistano</u> <u>print res</u> <u>CONVERT AU</u> <u>perform of</u> print resu <u>CONVERT WI</u>	t. space & WINDING F 3-2.2) to by total w get total e istance WG TO OHMS onversion ult RE DIAMET	ESI STANCE calc /inding /INCH	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 035 036 037 038 039 040 041 041 041 043 044 044 045 046	+ <u>STOB</u> <u>GT04</u> <u>#LELD</u> RCL6 <u>GS85</u> RCLC X RCL4 <u>X</u> <u>GT04</u> <u>#LBLd</u> <u>GS85</u> <u>GT04</u> <u>#LBLe</u>	<u>goto print</u> <u>CALCULATE</u> use Eq. () <u>ohms/inch</u> multiply length to <u>resistano</u> <u>print res</u> <u>CONVERT AU</u> <u>perform co</u> print resu <u>CONVERT WI</u> perform co	t. space & WINDING F 3-2.2) to by total get total e istance WG TO OHMS onversion ult RE DIAMET nversion	ESI STANCE calc /inding /INCH	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 035 036 037 038 039 040 041 041 043 044 044 045 046 047	+ <u>STOB</u> <u>GT04</u> <u>#LELD</u> RCL6 <u>GSB5</u> RCLC X RCL4 <u>X</u> <u>GT04</u> <u>#LBLd</u> <u>GSB5</u> <u>GT04</u> <u>#LBLe</u> <u>GSB6</u> <u>GT04</u>	<u>goto print</u> <u>CALCULATE</u> use Eq. () <u>ohms/inch</u> multiply length to <u>resistano</u> <u>print resi</u> <u>CONVERT AU</u> <u>perform co</u> print resu <u>CONVERT WI</u> <u>perform co</u> print resu	t. space & WINDING F 3-2.2) to by total get total e istance WG TO OHMS onversion ult RE DIAMET nversion lt	ESI STANCE calc /inding //INCH ER TO_AWG	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 035 036 037 038 039 040 041 041 043 044 044 045 046 047 048	+ <u>STOB</u> <u>GT04</u> <u>RCLB</u> <u>RCLB</u> <u>RCLC</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u> <u>*LBLd</u> <u>GSB5</u> <u>GT04</u> <u>*LBLe</u> <u>GSB6</u> <u>GT04</u>	<u>goto print</u> <u>CALCULATE</u> use Eq. () <u>ohms/inch</u> multiply length to <u>resistano</u> <u>print resi</u> <u>CONVERT AU</u> <u>perform co</u> <u>print resu</u> <u>CONVERT WI</u> <u>perform co</u> <u>print resu</u> <u>CONVERT AU</u>	t. space & WINDING F 3-2.2) to by total get total e istance WG TO OHMS onversion ult RE DIAMET nversion lt G TO WIRE	ESI STANCE calc /inding //INCH ER TO AWG DI AMETER	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 034 035 036 037 038 039 040 041 042 043 044 045 044 045 047 045 047 048 047 048 047 050 050 051	+ <u>STOB</u> <u>GT04</u> <u>RCLB</u> <u>RCLB</u> <u>RCLC</u> <u>RCL4</u> <u>X</u> <u>GT04</u> <u>*LBLd</u> <u>GSB5</u> <u>GT04</u> <u>*LBLe</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u>	<u>goto print</u> <u>CALCULATE</u> use Eq. () <u>ohms/inch</u> multiply length to <u>resistano</u> <u>print resi</u> <u>CONVERT AU</u> <u>perform co</u> print resu <u>CONVERT WI</u> <u>perform co</u> print resu	t. space & WINDING F 3-2.2) to by total get total e istance WG TO OHMS onversion ult RE DIAMET nversion lt G TO WIRE	ESI STANCE calc /inding //INCH ER TO AWG DI AMETER	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 034 035 036 037 038 039 040 041 041 043 044 045 044 045 046 047 045 047 048 047 050 052	+ <u>STOB</u> <u>GT04</u> <u>RCLB</u> <u>RCLB</u> <u>RCLC</u> <u>RCL4</u> <u>X</u> <u>GT04</u> <u>*LBLd</u> <u>GSB5</u> <u>GT04</u> <u>*LBLe</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u>	<u>goto print</u> <u>CALCULATE</u> use Eq. () ohms/inch multiply length to <u>resistano</u> print resi <u>CONVERT AN</u> <u>perform con</u> print resu <u>CONVERT WI</u> perform con print resu <u>CONVERT AN</u> <u>convERT AN</u>	t. space & WINDING F 3-2.2) to by total get total e istance WG TO OHMS onversion ult RE DIAMET nversion lt G TO WIRE e register	ESI STANCE calc /inding //INCH ER TO AWG DI AMETER	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 034 035 036 037 038 039 040 041 042 043 044 045 044 045 047 045 047 048 047 048 047 050 050 051	+ <u>STOB</u> <u>GT04</u> <u>RCLB</u> <u>RCLB</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u> <u>*LBLd</u> <u>GSB5</u> <u>GT04</u> <u>*LBLe</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u>	<u>goto print</u> <u>CALCULATE</u> use Eq. () <u>ohms/inch</u> multiply length to <u>resistano</u> print resi <u>CONVERT AU</u> perform <u>con</u> print resu <u>CONVERT WI</u> perform <u>con</u> print resu <u>CONVERT AW</u> <u>interchang</u> use Eq. (3	t. space & WINDING F 3-2.2) to by total w get total e istance WG TO OHMS onversion ult RE DIAMET nversion 1t G TO WIRE e register -2.3) for	ESI STANCE calc /inding //INCH ER TO AWG DI AMETER	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 034 035 036 037 038 039 040 041 041 043 044 045 044 045 046 047 045 047 048 047 050 052	+ <u>STOB</u> <u>GT04</u> <u>RCLB</u> <u>GSB5</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u> <u>*LBLd</u> <u>GSB5</u> <u>GT04</u> <u>*LBLe</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>X</u> <u>SSB6</u> <u>GT04</u> <u>X</u> <u>SSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GSB6</u> <u>GS</u>	<u>goto print</u> <u>CALCULATE</u> use Eq. () ohms/inch multiply length to <u>resistano</u> print resi <u>CONVERT AN</u> <u>perform con</u> print resu <u>CONVERT WI</u> perform con print resu <u>CONVERT AN</u> <u>interchang</u>	t. space & WINDING F 3-2.2) to by total w get total e istance WG TO OHMS onversion ult RE DIAMET nversion 1t G TO WIRE e register -2.3) for	ESI STANCE calc /inding //INCH ER TO AWG DI AMETER	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 034 035 036 037 038 039 040 041 041 044 043 044 045 044 045 046 047 048 047 048 047 048 047 050 052 052 053	+ <u>STOB</u> <u>GT04</u> <u>RCLB</u> <u>SSB5</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u> <u>*LBLd</u> <u>GSB5</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB7</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB7</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB7</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB7</u> <u>GT04</u> <u>*LBLE</u> <u>GSB7</u> <u>GT04</u> <u>*LBLE</u> <u>GSB7</u> <u>GT04</u> <u>*LBLE</u> <u>GSB7</u> <u>GSB7</u> <u>CCL1</u> <u>X</u> <u>X</u>	<u>goto print</u> <u>CALCULATE</u> use Eq. () <u>ohms/inch</u> multiply length to <u>resistano</u> print resi <u>CONVERT AW</u> perform <u>con</u> print resu <u>CONVERT WI</u> perform <u>con</u> print resu <u>CONVERT AW</u> <u>interchang</u> use Eq. (3	t. space & WINDING F 3-2.2) to by total w get total e istance WG TO OHMS onversion ult RE DIAMET nversion 1t G TO WIRE e register -2.3) for	ESI STANCE calc /inding //INCH ER TO AWG DI AMETER	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 034 035 036 037 038 039 040 041 044 043 044 044 045 044 045 044 045 046 047 048 049 050 052 052 052 054	+ <u>STOB</u> <u>GT04</u> <u>RCLB</u> <u>RCLB</u> <u>SB55</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u> <u>*LBLd</u> <u>GSB5</u> <u>GT04</u> <u>*LBLe</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB7</u> <u>GT04</u> <u>*LBL6</u> <u>GSB5</u> <u>GT04</u> <u>*LBL6</u> <u>GSB5</u> <u>GT04</u> <u>*LBL6</u> <u>GSB5</u> <u>GT04</u> <u>*LBL6</u> <u>GSB5</u> <u>GT04</u> <u>*LBL6</u> <u>GSB5</u> <u>GT04</u> <u>*LBL6</u> <u>GSB5</u> <u>GT04</u> <u>*LBL6</u> <u>GSB6</u> <u>GT04</u> <u>*LBL6</u> <u>GSB6</u> <u>GT04</u> <u>*LBL6</u> <u>GSB6</u> <u>GT04</u> <u>*LBL6</u> <u>GSB6</u> <u>GT04</u> <u>*LBL6</u> <u>GSB6</u> <u>GT04</u> <u>*LBL6</u> <u>GSB6</u> <u>GT04</u> <u>*LBL6</u> <u>GSB6</u> <u>GT04</u> <u>*LBL6</u> <u>GSB6</u> <u>GT04</u> <u>*LBL6</u> <u>GSB6</u> <u>GT04</u> <u>*LBL6</u> <u>GSB6</u> <u>GT04</u> <u>*LBL6</u> <u>GSB6</u> <u>GT04</u> <u>X</u> <u>CC11</u> <u>X</u> <u>X</u> <u>CC10</u> <u>X</u> <u>CC10</u> <u>CC11</u> <u>X</u> <u>CC10</u> <u>CC10</u> <u>CC11</u> <u>CC10</u> <u>CC10</u> <u>CC11</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10 <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC10</u> <u>CC100 <u>CC100</u> <u>CC10</u> <u>CC100</u> <u>CC100</u> <u>CC100</u> <u>CC100</u> <u>CC100</u> </u></u>	goto print CALCULATE use Eq. () ohms/inch multiply length to resistance print resi CONVERT AN perform con print resu CONVERT WI perform con print resu CONVERT AW interchange use Eq. (3- conversion	t. space & WINDING F 3-2.2) to by total w get total e istance WG TO OHMS onversion ult RE DIAMET nversion it G TO WIRE e register -2.3) for	ESI STANCE calc 	088 089 090 NOTE: To node for	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 034 035 036 037 038 039 040 041 041 042 043 044 045 044 045 047 048 047 048 047 048 047 050 052 052 052 053 054 055	+ <u>STOE</u> <u>GT04</u> <u>#LELD</u> <u>RCL6</u> <u>GSB5</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u> <u>#LBLd</u> <u>GSB5</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u></u>	<u>goto print</u> <u>CALCULATE</u> use Eq. () <u>ohms/inch</u> multiply length to <u>resistano</u> print resi <u>CONVERT AW</u> perform <u>con</u> print resu <u>CONVERT WI</u> perform <u>con</u> print resu <u>CONVERT AW</u> <u>interchang</u> use Eq. (3	t. space & WINDING F 3-2.2) to by total w get total e istance WG TO OHMS onversion ult RE DIAMET nversion it G TO WIRE e register -2.3) for	ESI STANCE calc winding S/INCH ER TO AWG DI AMETER B B	088 089 090 NOTE: To Bode for statemer	P#S SF2 RTH change coutpu	t, change	the "print"	
032 033 034 035 036 037 038 039 040 041 042 043 044 045 044 045 044 045 047 048 047 048 049 050 052 053 054 055 056	+ <u>STOE</u> <u>GT04</u> <u>#LELD</u> <u>RCL6</u> <u>GSB5</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u> <u>#LBLd</u> <u>GSB5</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u></u>	goto print CALCULATE use Eq. () ohms/inch multiply length to resistance print resistance print resistance print resistance print resistance print resistance convert and perform con print resustance convert AWC interchange	t. space & WINDING F 3-2.2) to by total w get total e istance WG TO OHMS onversion ult RE DIAMET nversion 1t G TO WIRE e register -2.3) for	ESI STANCE calc winding S/INCH ER TO AWG DI AMETER B B	088 089 090 NOTE: To mode for statemer	Pris SF2 RTN change coutpu it at 1	t, change	the "print" a "R/S" state	
032 033 034 035 036 037 038 039 040 041 042 043 044 045 044 045 047 045 047 048 047 048 047 050 052 052 053 054 055	+ <u>STOE</u> <u>GT04</u> <u>#LELD</u> <u>RCL6</u> <u>GSB5</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u> <u>#LBLd</u> <u>GSB5</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u>#LBLE</u> <u>GSB6</u> <u>GT04</u> <u></u>	goto print CALCULATE use Eq. () ohms/inch multiply length to resistance print resi CONVERT AN perform con print resu CONVERT WI perform con print resu CONVERT AW interchange use Eq. (3- conversion	t. space & WINDING F 3-2.2) to by total w get total e istance WG TO OHMS onversion ult RE DIAMET nversion it G TO WIRE e register -2.3) for	ESI STANCE calc winding S/INCH ER TO AWG DI AMETER B B	088 089 090 NOTE: To Bode for statemer	Pris SF2 RTN change coutpu it at 1	t, change	the "print"	
032 033 034 035 036 037 038 039 040 041 041 042 043 044 045 044 045 047 050 051 052 053 054 055 056	+ <u>STOB</u> <u>GT04</u> <u>RCLB</u> <u>SB55</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u> <u>*LBLd</u> <u>GSB5</u> <u>GT04</u> <u>*LBLe</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB5</u> <u>GT04</u> <u>*LBLE</u> <u>GSB5</u> <u>GT04</u> <u>*LBLE</u> <u>GSB5</u> <u>GT04</u> <u>*LBLE</u> <u>GSB5</u> <u>GT04</u> <u>*LBLE</u> <u>GSB5</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB7</u> <u>GSB7</u> <u>GSB7</u> <u>GSB7</u> <u>GSB7</u> <u>CU1</u> <u>X</u> <u>CS55</u> <u>GT04</u> <u>CU1</u> <u>X</u> <u>CC1</u> <u>CS551</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u>	goto print CALCULATE use Eq. () ohms/inch multiply length to resistance print resi CONVERT AN perform co print resu CONVERT WI perform con print resu CONVERT AN interchange	t. space & WINDING F 3-2.2) to by total w get total e istance WG TO OHMS onversion ult RE DIAMET nversion 1t G TO WIRE e register -2.3) for	ESI STANCE calc vinding S/INCH ER TO AWG DI AMETER 'B B REGIS 4 N	088 089 090 NOTE: To mode for statemer Statemer	Pris SF2 RTN change coutpunt at 1	t, change ine 058 to	the "print" a "R/S" state	
032 033 034 035 036 037 038 039 040 041 041 042 043 044 045 044 045 047 050 051 052 053 054 055 056	+ <u>STOB</u> <u>GT04</u> <u>RCLB</u> <u>SB55</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>X</u> <u>GT04</u> <u>*LBLd</u> <u>GSB5</u> <u>GT04</u> <u>*LBLe</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB5</u> <u>GT04</u> <u>*LBLE</u> <u>GSB5</u> <u>GT04</u> <u>*LBLE</u> <u>GSB5</u> <u>GT04</u> <u>*LBLE</u> <u>GSB5</u> <u>GT04</u> <u>*LBLE</u> <u>GSB5</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB7</u> <u>GSB7</u> <u>GSB7</u> <u>GSB7</u> <u>GSB7</u> <u>CU1</u> <u>X</u> <u>CS55</u> <u>GT04</u> <u>CU1</u> <u>X</u> <u>CC1</u> <u>CS551</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u>	goto print CALCULATE use Eq. () ohms/inch multiply length to resistance print resi CONVERT AN perform co print resu CONVERT WI perform con print resu CONVERT AN interchange	t. space & WINDING F 3-2.2) to by total w get total e istance WG TO OHMS onversion ult RE DIAMET nversion 1t G TO WIRE e register -2.3) for	ESI STANCE calc vinding S/INCH ER TO AWG DI AMETER 'B B REGIS 4 N	088 089 090 NOTE: To mode for statemer Statemer	Pris SF2 RTN change coutpu it at 1	t, change	the "print" a "R/S" state	
032 033 034 035 036 037 038 039 040 041 041 042 043 044 045 044 045 046 047 044 045 046 047 044 045 046 050 051 052 055 056	+ <u>STOE</u> <u>GT04</u> <u>RCLE</u> <u>RCLE</u> <u>RCLE</u> <u>RCLC</u> <u>X</u> <u>RCL4</u> <u>x</u> <u>GT04</u> <u>*LBLd</u> <u>GSB5</u> <u>GT04</u> <u>*LBLe</u> <u>GSB5</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GT04</u> <u>*LBLE</u> <u>GSB6</u> <u>GSB1</u> <u>-109778815</u>	goto print CALCULATE use Eq. () ohms/inch multiply length to resistance print resi CONVERT AN perform co print resu CONVERT AN interchange use Eq. (3 conversion	t. space & WINDING F 3-2.2) to by total w get total e istance WG TO OHMS onversion ult RE DIAMET nversion lt G TO WIRE e register -2.3) for	ESI STANCE calc vinding S/INCH ER TO AWG DI AMETER 'B B REGIS 4 N	088 089 090 NOTE: To mode for statemer Statemer 5 6 5 6	Pris SF2 RTN change coutpu it at 1	t, change ine 058 to 7 S7	the "print" a "R/S" state 8 9 58 59	
032 033 034 035 036 037 038 039 040 041 042 043 044 045 044 045 046 047 048 047 050 051 052 053 054 055 056	+ <u>STOB</u> <u>GTO4</u> <u>*LELD</u> RCLE <u>GSB5</u> RCLC <u>X</u> RCL4 <u>X</u> <u>GTO4</u> <u>*LBLd</u> <u>GSB5</u> <u>GTO4</u> <u>*LBLe</u> <u>GSB6</u> <u>GTO4</u> <u>*LBLE</u> <u>GSB6</u> <u>GTO4</u> <u>*LBLE</u> <u>GSB6</u> <u>GTO4</u> <u>*LBLE</u> <u>GSB6</u> <u>GTO4</u> <u>*LBLE</u> <u>GSB6</u> <u>GTO4</u> <u>*LBLE</u> <u>GSB6</u> <u>GTO4</u> <u>*LBLE</u> <u>GSB6</u> <u>GTO4</u> <u>*LBLE</u> <u>GSB6</u> <u>GTO4</u> <u>*LBLE</u> <u>GSB6</u> <u>GTO4</u> <u>*LBLE</u> <u>GSB6</u> <u>GTO4</u> <u>*LBLE</u> <u>GSB6</u> <u>GTO4</u> <u>*LBLE</u> <u>GSB6</u> <u>GTO4</u> <u>*LBLE</u> <u>GSB6</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB6</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB6</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB6</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB55</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB55</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB55</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB55</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB55</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB55</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB55</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB55</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB55</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB55</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB65</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB65</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB65</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB65</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB65</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB65</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB65</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB65</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB65</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB65</u> <u>GTO4</u> <u>*LBL6</u> <u>GSB65</u> <u>GTO4</u> <u>*</u> <u>*</u> <u>B</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GSB61</u> <u>GS6551</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS661</u> <u>GS761</u> <u>GS761</u> <u>GS761</u> <u>GS761</u> <u>GS761</u> <u>GS761</u> <u>GS761</u> <u>GS761</u>	goto print CALCULATE use Eq. () ohms/inch multiply length to resistance print resi CONVERT AN perform co print resu CONVERT AN interchange use Eq. (3 conversion	t. space & WINDING F 3-2.2) to by total * get total e stance WG TO OHMS onversion ult RE DIAMET nversion lt G TO WIRE e register -2.3) for s register 3 .231765483	ESI STANCE calc vinding S/INCH ER TO AWG DI AMETER 'B B REGIS 4 N	088 089 090 NOTE: To mode for statemer Statemer	Pris SF2 RTN change coutpunt at 1	t, change ine 058 to 7 S7	the "print" a "R/S" state	

	:	3-2	P	rogra	m	Listi	ng	II	NOTE	FLAG SET S	TATUS
091	*LBL2	ini	tialization	subroutin	е		41	CLX			
092	ENG		engr 3 for				142				
<u>093</u>	DSP3						143	2			
<b>Ø</b> 94	F2? ₽ <b>≠</b> \$	tes	t if P≥S ne	eded			144	3			
<u>895</u> 896	<u></u> ₽ <b></b> ₽\$	<u> </u>	<u> </u>				145 146	1 7			
<u>897</u>	SF2		cute and no				147	6	.23176548	33 <b>+ 83</b>	
098	CF8	<u>ind</u>	icate initi	alization	done		148	3			
099	<u>:</u>						149	5			
100 101	3 1						150	4			
102	3						151 152	8 3			
103	7							<u>ST03</u>			
104	2	•31	.37250775 -	SO		-	<u>153</u> 154	CLX			
105	5						155	2			
106	e						156	:	2.54 🔶 RJ	[	
107 108	7 7						157	5			
108	5						158 159	STOI			
110	<u>ST00</u>	_				1 -	1-60		restore i	register	
111	CLX						161 -	*LBL1	subroutin	ne to inte	rchange
112	•						162	F2?	register	s if flag	2 is set
113 114	1 8						163	PZS BTN			
114	0 9						164	RTN			
116	7					[					_
117	8	l	097881513 +	-\$1		1					
118	8	-••		••							
119	1										
120 121	5 1										
122	3										
122 123	CHS										
124	<u></u> <u>ST01</u> .					!					[
125	CLX										
126 127	8					ſ					
127	3										
129	7					l					
130	1										
131	7	0 7	717/711/	10 ⁻⁶ - s2							
132 133	4 7	•••	71747114 x	10 - 52							
133	1										
135	i										
136	4										
137	EEX										
138	CHS 6					ĺ					
135	STO2										
· ····		<b></b>				ł					Į
1						]					i
1						1					
l I											
									NOTE F	LAG SET S	TATUS
				BELS		l		AGS		SET STATUS	
A load window   area in in ²	B load m turn in		C calculate Awg	D calculate Winding R	E	wire diam	0 stor const	re tants	FLAGS	TRIG	DISP
a load window	b Load r	nean		d	e		1		ON OFF	-	T1
area in cm ² 0 PZB	<u>turn in</u>		2 Constant	3	4	ham - Awg	2		0	DEG GRAD	FIX ■ SCI
SF2	<u>P≹S if F</u> 6	2	storage	8	Phn	E# spæe	P≥S	used	2	RAD	ENG
AWG > 1/in	wire diam	⇒AWG		Ľ	<b></b>		<b>ب</b>		3		n_o

#### PROGRAM 3-3 TRANSFORMER LEAKAGE INDUCTANCE AND WINDING CAPACITANCES.

#### Program Description and Equations Used

This program will calculate the leakage inductance and winding capacitances of a two winding transformer. Both the interwinding capacitance and winding self-capacitances are calculated. The output for both the leakage inductance and winding capacitances are reflected to the primary winding.

Leakage inductance. The total magnetic flux in a transformer is composed of the mutual flux and the leakage flux. The mutual flux follows the core path and links both primary and secondary windings, and results in the mutual, or open-circuit inductance of the transformer. The leakage flux is the relatively small flux which originates in the primary winding and does not link the secondary winding, or vice-versa, and results in the leakage inductance. The leakage flux will be less as the primary and secondary windings are interleaved up to the limit imposed by the space occupied by the insulation between windings. To a degree, the interleaving process is self-defeating, as too much interleaving generates much nonconductive space, and most of the leakage flux flows therein.

Of the many formulas that have been derived for the calculation of leakage inductance, the one by Fortescue [25] is generally accurate and errs, if at all, on the conservative side:

$$L_{leak} = 10.6 \times 10^{-9} \frac{N^2 \cdot MT(2nc + a)}{n^2 b}$$
(3-3.1)

where

- L = leakage inductance in henries, referred to the winding having N turns (the primary in this program)
- MT = mean-turn length in inches for the whole coil (both windings)
- **n** = number of dielectrics between windings

- a = winding buildup in inches
- b = winding traverse in inches
- c = dielectric thickness between windings in inches

Interleaving provides the greatest reduction in leakage inductance when the dielectric height, c, is small compared to the window height. When *nc* is comparable to the window height, the leakage inductance does not decrease substantially as the number of interleaves, n, is increased. The lowest leakage inductance will be obtained with a transformer having a small number of turns, a short mean turn length, and a low, wide winding window.

The term "a" in Eq. (3-3.1) refers to the total winding buildup composed of the primary buildup, the secondary buildup, and the insulation layers buildup. If  $a_p$  represents the buildup of all the primary interleaves, and  $a_s$  represents the buildup of all the secondary interleaves, then:

$$2nc + a = 3nc + a_{p} + a_{q}$$
 (3-3.2)

The basis for Eq. (3-3.2) may be seen from Fig. 3-3.1.



Figure 3-3.1 Cross-section of transformer winding on a core leg.

<u>Interwinding capacitance</u>. The interwinding capacitance is the primarysecondary capacitance. This capacitance is calculated by considering the primary and secondary windings as single conducting sheets separated by the dielectric formed by the insulating layer and wire insulation. The capacitance of two flat plates separated by a dielectric is:

$$C = .225 \times 10^{-12} \varepsilon \frac{A}{t}$$
 (3-3.4)

where

 $\varepsilon$  is the relative dielectric constant of the dielectric A is the area of one plate in inches² t is the dielectric thickness in inches

For the transformer

$$A = n \cdot MT \cdot b \tag{3-3.5}$$

and

The wire insulation thickness for heavy insulation (heavy formvar, etc.) can be obtained from the wire AWG. The AWG is obtained from the wire diameter over class 2 insulation by using Eq. (3-2.1), where the wire diameter is calculated by assuming the wire plus insulation just fits in a box as shown by Fig. 3-6.2. The wire diameter over the insulation then becomes:

$$t_{\text{wire, primary}} = \sqrt{\frac{a \cdot b}{N_{p}}}$$
(3-3.7)

and

t_{wire, secondary} = 
$$\sqrt{\frac{a \cdot b}{s}}$$
 (3-3.8)

The diameter of the bare wire is obtained from AWG by using Eq. (3-2.3). Hence, the thickness of the wire insulation is:

$$t_{\text{wire insulation}} = \frac{1}{2} \left( t_{\text{wire + insulation}} - t_{\text{wire}} \right)^{(3-3.9)}$$

The wire insulation thickness calculations are performed in the subroutine under label 6 in the HP-67/97 program.

<u>Winding self-capacitance</u>. In a multilayer winding, the voltage between layers is zero at one end of the layer, and  $2E/N_r$  at the other where

E is the total winding voltage, and  $N_L$  is the number of layers. This voltage gradient model serves as the basis for the total winding capacity as given by Reuben Lee [36].

$$C_{i} = 1.333 \frac{C_{L_{i}}}{N_{L_{i}}} \left\{ 1 - \frac{1}{N_{L_{i}}} \right\}$$
(3-3.10)  
i = pri or sec

 $C_{L_i}$  is the layer-to-layer capacitance, and is found from Eq. (3-3.4) where

$$A = MT \cdot b$$
 (3-3.11)

and

$$t = t_d + 2t_{\text{wire insulation}}$$
 (3-3.12)

The basis of Eqs. (3-3.11) and (3-3.12) are shown by Fig. 3-3.2.



Figure 3-3.2 Cross-section of a winding showing dimensioning.

The number of layers is needed for Eq. (3-3.10) and is found from the number of turns, the interwinding dielectric thickness, and the winding dimensions. The wire cross-sectional area (per Fig. 3-6.2) and the dielectric cross-sectional area must equal the total area available for that winding, i.e.,

$$N_{L}(d + t_{d}) = a$$
 (3-3.13)

volume =  $a \cdot b = N_{L} \cdot \frac{t}{d} \cdot b + N \cdot \frac{d^2}{d}$  (3-3.14)

Substituting Eq. (3-3.13) into (3-3.14) and solving for  $\rm N_L$  yields:

$$N_{L_{\underline{i}}} = \frac{N_{\underline{i}} d_{\underline{i}}}{b_{\underline{i}}}$$
(3-3.15)

where d is the quadratic solution to:

$$N_{i}d_{i}^{2} + (N_{i}t_{d_{i}})d_{i} - a_{i}b_{i} = 0 \qquad (3-3.16)$$
  
i = pri or sec

The program calculates the secondary winding capacity and reflects it to the primary winding:

$$C_{sec}^{0} \text{ primary} = C_{sec}^{0} \left(\frac{N_{s}}{N_{p}}\right)^{2}$$
 (3-3.17)

_

The total winding capacity seen at the primary is the sum of the reflected secondary winding capacitance, and the primary winding capacitance.

# 3-3 User Instructions

1		TRANSFORMER	LEAKAGE L A	ND WINDING C		
	winding traverse	N _p †N _a	# of dielectrics	print?	Calculate Lleakage	5
	pri sec buildup buildup	average mean turn length	tdp Atds Atd	EpritEsect Esp	Owinding Cinterwinding	

STEP		INPUT	KEYS	OUTPUT
		DATA/UNITS		DATA/UNITS
1	Load both sides of program card			
	(note flag status)			
2	Load both sides of data card			
		ļ		
3	Select print or R/S option using toggle		f D	0, R/S
			ſſ  <u>D</u>	1, print
			İ f 🛛 🗋	0, R/S
4	Load winding traverse in inches	b, in	Î Î Â	
5	Load winding buildup in inches:			
	a) primary buildup	a _p , in	ENT ł	
	b) secondary buildup	a _s , in		
	***************************************	<b>R</b> /		
6	Load number of turns:			
	a) primary turns	Np	ENT 🕴	
	***************************************	······	ſſ B	
	***************************************			
7	load average mean-turn length for the whole			
	transformer winding in inches	MT, in	B	*************
			k	
8	load the number of dielectrics	<u>n</u>	f	+
9	load dielectric thickness in inches:	<b></b>	···	1
	a) primary interwinding dielectric	t _{dn} , in	ENT	
	b) secondary interwinding dielectric	t _{da} , in	ENT	
*******	c) primary-secondary dielectric	t _d , in		*****
10	Load relative dielectric constants;	╉┅───╉		<b> </b>
	a) average for primary interwinding	[€] pri	ENTI	
	dielectric and wire insulation	Pr1		
		Ε	ent †	
	b) average for secondary interwinding dielectric and wire insulation	^E sec	1207 L T	
		•••••••••••••••••••••••••••••••••••••••		<b> </b>
	c) primary-secondary spacer	[€] ар	D	
		-+		
		.+		
				L

## **3-3 User Instructions**



STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
11	Calculate L's and C's		B	
	Primary leakage inductance			L _{leak} , h
				space
	Secondary wire AWG		1	AWG, sec
	Number of secondary winding layers			# layers
	Secondary winding O reflected to primary, F			O _{sec} Opri
				space
	Primary wire AWG			AWG, pri
	Number of primary layers			# layers
	Primary winding capacity in farads			Oprimary
	Total winding capacity reflected to primary			Ototal
				space
	primary-secondary interwinding capacitance, F			C _{pri-sec}
12	Data review:			
	Go back and key any entry key without			
	keying in any numeric entry to view the			
	presently stored variable. See Example			
	<b>3-3.1.</b>			
		*******		
				•
·				
		*************		••
••••••				
· · · · · · · · · · · · · · · · · · ·				
				•••••
				••
L		<b>.</b> .	<u> </u>	I

#### Example 3-3.1

Find the primary leakage inductance and winding capacitances of a transformer having the following specifications:

traverse: 2"
number of pri-sec dielectrics: 4 (3 interleaves)
dielectric thickness: 0.050"
pri-sec insulator dielectric constant: 10
mean turn length for whole transformer: 5"

#### Primary

number of turns: 100 buildup: 0.25" interwinding dielectric thickness: 0.002" average interwinding dielectric and wire insulation dielectric constant: 10

#### Secondary

number of turns: 1000 buildup: 0.3" interwinding dielectric thickness: 0 average interwinding dielectric and wire insulation dielectric constant: 5 HP printout for Example 3-3.1

2. GSB0	winding traverse
.25 ENT†	primary winding buildup
.3 GSBA	secondary winding buildup
100. ENT:	primary winding turns
1000. GSB6	secondary winding turns
5. GSBB	mean turn length for whole transformer
4. GSBc	number of pri-sec dielectrics
.062 ENT†	primary interwinding dielectric thickness
0. ENT†	secondary interwinding dielectric thickness
.05 GSBC	pri-sec dielectric thickness
10. ENT↑	average primary dielectric constant
5. ENT↑	average secondary dielectric constant
10. GSBD	pri-sec dielectric, dielectric constant

19.05-06		calculate L's and C's primary leakage inductance, henrys
24.00+00	***	secondary wire AWG
24.49+00	***	number of secondary layers
23.19-09	***	secondary interwinding C seen @ primary, F
14.00+00	<b>米米</b> 米	primary wire AWG
6.972+00	林冰林	number of primary layers
678.8-12	<b>東京水</b>	primary interwinding capacity, F
23.87-09	***	total interwinding capacity @ primary, F
1.699-09	***	pri-sec winding capacity, F

Data Review printout for Example 3-3.1 GSBa. 2.000+00 *** traverse GSBA 300.0-03 *** secondary winding buildup 250.0-03 *** primary winding buildup GSB6 1.000+03 *** secondary turns 100.0+00 *** primary turns GSBB 5.000+06 *** mean turn length GSEc 4.000+00 *** number of dielectrics GSBC 50.00-03 *** primary-sec dielectric thickness 0.000+00 *** secondary interwinding dielectric thickness 2.000-03 *** primary interwinding dielectric thickness GSBD 10.00-00 *** pri-sec dielectric, dielectric constant 5.000+00 *** secondary average dielectric constant 10.00+00 *** primary average dielectric constant

3-3

### **Program Listing I**

				-	
00	I ALBLA	I/O PRIMARY & SEC BUILDUP	057	GT08	
00			058	*LBL2	······································
00			059	CFO	
00			060	CLX	
60			061	GT08	
		I/O WINDING TRAVERSE (b)	061	*LBLE	CALOULATE L's & C's
<u>00</u> 00		TA THATHA TRAILENDE (D)			
			063	P≠S	calculate leakage inductance
		T/O AVERAGE MEAN MUCH	864	RCL4	
<u>00</u>		1/0 AVERAGE MEAN TURN (MT)	865	P≢S	
<u>91</u>			066	RCL4	
01			067	RCL9	
01		1/0 PRIMARY AND SEC TURNS	068	÷	
01			069	X۶	
01			070	Х	
01	54		071	RCL3	
			072	х	
<u>9</u> 1		I/O DIELECTRIC THICKNESSES	073		10/ 112 11-12
01			074		$L_{lesk} = \frac{10.6 \text{ Np}^2 \text{ MT} (3nc+ap+a_2)}{10^{+7} \text{ n}^2 \text{ b}}$
01		I/O pri-sec spacer thickness	075	X	10"7 n4 b
02		I/O secondary intrawinding	076	3	
02			877	э Х	
02		T/O water and the contraction of the			
02		I/O primary intrawinding	878	RCLØ	
		dielectric thickness	979 900	+	
02		I/O NUMBER OF DIELECTRICS	980	RCL1	
02			081	+	
02			082	χ	
<u>82</u>		I/O DIELECTRIC CONSTANTS	083	RCL2	
02		I/O dielectric constant	684	÷	
82.		of pri-sec spacer	<u>085</u>	GSB3	
	<u>0 GSB0</u>		086	RCLI	calculate and store
03			087	RCL2	
03.		I/O secondary insulation	088	X	2. twire, secondary
03		dielectric constant	089	RCL5	
03		I/O primary insulation	090	÷	
03		dielectric constant	091	RCL7	
03		subroutine to I/O last item	092	ESB6	
03			092 093	STOB	
03.			<u>- <del>0</del>93</u> 094		
03		main I/O subroutine			recover d/b
<u> </u>		store index	<u>095</u>	RCL5	recall Ng
			<i>896</i>	GSE5 D≠c	calc secondary capacitance:
<u>04</u>		<u>recover_entry</u>	097	P≢S	
04.		if flag 3, set flag 1	-098	RCL1	
			099	P≢S	
04		if flag 1, store entry	100	RCLB	
<u></u>			101	RCL7	
04		<b>U</b> /	102	÷	
84		previous entry	103	GSB4	
94.			104	<u>X</u>	
04:	9 RTN	if flag 1, return	105	RCL5	reflect secondary capaci-
85			105	RCL4	tance to primary:
05		recall and print item	107	÷	
05.		PRINT-R/S TOGGLE	108	χz	
85			109	X	
-05			110	STOC	
05			$\frac{11e}{111}$	<u>- 5760</u> - 6583 -	
				RCL0	
05			STERS 112		
0 <b>a</b> _P ,	1 secondary		5 6	+	7 to 8 9 n, the #
pri buildup		traverse turnlength Np	Ns	topri	tosec C, tospecer of dielectrics
SO Card	S1	S2 S3 10 15 54 10.6 × 10-9		6 k ₁ '=	$S^7 k_2 = S^8 k_2 = S^9$
Epri	Esec		3137250775	245574964	- 109 7881513 -0.1159489227
A 2x primar	y wire B	2x secondary wire C Csec, or	D	E	I index or
		sulation thickness dsec			1.33333'" scratchpad
				·	

		3-3	P	rogran	n Listi	ng	ξΠ	NOTE	FLAG SET \$	STATUS
113	RCL2	0910	ulate and s	itore		168	EE ^{s.}			
114	×		dire, primer			169	X≓			
115	RCL4		tre, primar	3		170 171	-			
116	÷ RCL6					172	RCLE			
118	GSB6					173	×			
119	STOA					174	<u>RTN</u>			
120	R1	oale	primary ca	pacitance		175	*LBL6	wire AWG	and insul	tion thk.
121	RCL4					176 177	2 ÷	calculate	o wiro dian	neter:
122 123	GSB5 P≢S					178	STOI			
124	RCLO					179	χ2			
125	PIS					180	+			
126	RCLA					181	JX			
127	RCLE					182 183 -	RCL I			
128 129	+ GSB4					183 184_	STOL			
130	6364 X					185	RCLZ		- <u>-</u>	
131	GSB7					186	÷	calculate		
132	RCLC	cal	sulate and p	rint:		187		calculate	<u>insulati</u>	on_thick
133	+	0.,	ri - N ² .C _{sec}			188	RCLI D≠C	calculate	wire AWG	
$\frac{134}{135}$	<u>GSB3</u> RCL9	· * •	ulate inter			189 190	P≢S RCL5	k.		
136	P‡S	OUTC	MIATE INCOL	wineing cal		191	÷	-1		
137	RCL2					192	LN			
138	P≢S					193	RCL7	¥2		
139	X					194	÷ 547+	-		
140	RCLA RCLB					195 196	ENT† ENT†			
142	+					197	EEX	anlaulet.	e and prin	•
143	2					198	+	integral	wire size	u and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
144	÷					199	INT	0		
145	RCL8					200	<u></u>			
146	+ GSB4					201 202	R⊸ RCLS	calculate	bare wir	•
$\frac{147}{148}$	*LBL3	prir	at or R/S su	broutine		202	KULO y	diameter	from AWG	
149	GSB7	h+ **	10 01 19 0 00			204	ex			
150	<u>GT08</u>					205	RCLE			
151	*LBL4	capa	oity subrou	it <u>ine</u>		206	P≢s			
152 153	÷ RCL3	Mm				<u>207</u> 208	<u> </u>			
153	KUL3 X	MT.				208 209	- RTN	calculate	e 2.t _{insul}	ation
155	RCL2	Ъ				210	*LBL7	_	R/S subrot	
156	x	-				211	F0?	•	/	
157	P≢S		_19			212	PRTX			
158 159	RCL3 P≠S	.225	5 x 10 ⁻¹²			213 214	Fذ RTN			
159	r∓≎ X				1	215	R/S			
161	RTN					216	RTN			
162	*LBL5	intr	awinding ca	pacity subs		217	*LBL8	space and	i clear fl	ag 3 subr
163	X 0007	cale	and print	# of laver	. 1	218	F0?			-
<u>164</u> 165	<u>GSB7</u> 1/X					219 220	SPC CF1			
165	ENT†		ulate windi:	ng capacity	, ,	220	CF3			
167	ENTT	tern	1\$			222	RTN	NOTE	FLAG SET S	TATUS
L						223	6708			
A I/O of pri	B I/O of 1	nean	LAB	ELS D I/O of relative	F calculate	* lo-	FLAGS	┫	SET STATUS	
& sec buildup	turn len	gth	dielectric thick	dielectric const	L&C's	<u>↓</u>	print	FLAGS	TRIG	DISP
a I/o winding traverse	ο T/o tu Np, N		c I/o of # of dielectrics	toggle			nput	ON OFF	DEG	FIX
⁰ I/o subnoutine	1 I/o subrou		2 printor Ris toggie	3 print or RIS and space	4 capacitance Subroutine	2		1	GRAD	SCI
5 winding C	6 wire di	ameter	7 printoe Ris	8 space &	9	10	nput	2 3 ■	RAD	ENG In
sybroutine	Subroot	.ine	subroutine	CF1,3 subr					<u> </u>	

### PROGRAM 3-4 STRAIGHT WIRE AND LOOP WIRE INDUCTANCE.

#### Program Description and Equations Used

This program calculates the inductance of straight wire lengths and single square wire loops. The permeability of the wire is taken into account only for the inductance calculation, but not for skin depth; therefore, the inductance calculated is the low frequency inductance.

The calculation of wire inductance can be an important design parameter in some instances. For example, the bonding wire inductance of high speed, wideband hybrid integrated circuits affects circuit performance. Wire self-inductance is also important in the design of high frequency (1000 Hz), high power (megawatt) power conversion equipment such as SCR inverters, choppers, cycloconverters, and phase delay rectifiers.

The inductance of a straight wire increases with permeability and length, and decreases with increasing diameter. The combined effect of permeability, length, and diameter is not described simply, but can be easily solved with a scientific calculator. For example, the inductance of copper wire is strongly influenced by diameter while the inductance of a high permeability wire such as permalloy is relatively unaffected by diameter.

The formulas used herein come from Grover [30], and can also be found in Terman [52]. Two basic formulas are used, one for straight wire, and another for wire loops. These formulas are algebraically manipulated to obtain expressions for each of the four variables; wire diameter (d), wire length ( $\ell$ ), relative permeability ( $\mu$ ), and inductance in  $\mu$ h (L). The program works in the units of centimeters, but the user may input data in either inch or centimeter units.

365

#### Figure 3-4.1 shows the definitions of the wire terms.



Figure 3-4.1 Straight wire terms.

The formulas for the straight wire case are:

L = 
$$(2 \times 10^{-3}) \ell \left\{ \ell n \left( \frac{4\ell}{d} \right) + \frac{\mu}{4} - 1 \right\}, \mu h$$
 (3-4.1)

$$d = \frac{4\ell}{e^{(L/(2\ell \times 10^{-3}) - \mu/4 + 1)}}$$
(3-4.2)

$$\mu = 4 \left\{ \frac{L}{2\ell \times 10^{-3}} + 1 - \ell_n \left( \frac{4\ell}{d} \right) \right\}$$
(3-4.3)

To obtain the wire length, a Newton-Raphson iterative solution is employed (see Program 1-3 for details), because the equation for  $\ell$  has a logarithm containing  $\ell$ .

$$\ell = \frac{L}{(2 \times 10^{-3}) \left\{ \ell n \left( \frac{4\ell}{d} \right) + \frac{\mu}{4} - 1 \right\}}$$
(3-4.4)

The Newton-Raphson solution finds where a function is zero, therefore, let:

$$f(\ell) = \ell - \frac{L}{(2 \times 10^{-3}) \left\{ \ell n \left( \frac{4\ell}{d} \right) + \frac{\mu}{4} - 1 \right\}} = 0 \qquad (3-4.5)$$

and

$$f'(\ell) = \frac{df(\ell)}{d\ell} = 1 + \frac{L}{(2 \times 10^{-3} \ell) \left\{ \ln \left( \frac{4\ell}{d} \right) + \frac{\mu}{4} - 1 \right\}}$$
(3-4.6)

The initial guess for  $\ell$  is 1, and the  $\ell$  value for each succeeding iteration is given by:

$$\ell_{i+1} = \ell_{i} - \frac{f(\ell_{i})}{f'(\ell_{i})}$$
(3-4.7)

The iteration is terminated when:

$$\left|\ell_{i+1} - \ell_{i}\right| < 10^{-6} \tag{3-4.8}$$

Figure 3-4.2 shows the definitions of the loop wire terms.



Figure 3-4.2 Loop wire terms.

The formulas for the loop wire case are:

L = 
$$(4 \times 10^{-3} \ell) \left\{ \ell n \left( \frac{2D}{d} \right) + \frac{\mu}{4} - \frac{D}{\ell} \right\}, \mu h$$
 (3-4.9)

$$d = \frac{2D}{e^{(L/(4 \times 10^{-3} \ell) - \mu/4 + D/\ell)}}$$
(3-4.10)

$$\ell = \frac{\frac{L}{4 \times 10^{-3}} + D}{\ell n \left(\frac{2D}{d}\right) + \frac{\mu}{4}}$$
(3-4.11)

$$\mu = 4 \left\{ \frac{L}{4 \times 10^{-3} \ell} + \frac{D}{\ell} - \ell n \left( \frac{2D}{d} \right) \right\}$$
(3-4.12)

Keys "a" through "d" set up the dimension units to be used for input or output (inches or centimeters), and the configuration (straight wire or loop wire). When the loop wire configuration is selected (key "c"), the loop separation, D, must also be entered via key "c."

Keys "A" through "D" provide the program input/output functions. Use of these keys following numeric input signals an input to the program. Use of these keys without numeric entry, or following the clear key (E) signals an output is required from the program. Flag 3 is used to indicate input or output within the program.

## User Instructions

	RAIGHT WIRE	AND LOOP WI	RE INDUCTAN	DE	$\square$
centimeter units	inch units	wire loop, enter D	straight wire		7
Wire diam d	wire length L	permeablty µ	inductance L	clear input mode	$\mathcal{V}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of data card			
2	<ul><li>Select dimension units</li><li>a) centimeter units</li></ul>	•••••	T T	1.000
	<ul><li>a) continetor units</li><li>b) inch units</li></ul>	••••••	f B	2.540
				2. 740
3	Select configuration			
	a) wire loop, load loop separation	Q	f C	
	b) straight wire		f D	·
4	To calculate wire diameter, d			
	a) load wire length	l	B	
****	b) load wire permeability	<u>д</u>		
	c) load required inductance	L, uh		
******	d) start solution		A	d
			L1	
5	To calculate wire length, $\mathcal{L}$			
	a) load wire diameter	d		
	b) load wire permeability		C	
	c) load required inductance	L, uh	İDΙ	
	d) start solution execution		B	L
6	To calculate permeability, $\mu$			<u> </u>
	a) load wire diameter	d	A	
	b) load wire length	l	B	
	c) load required inductance	L, uh		
	d) start solution execution		0	μ
7	To calculate inductance, L			
	a) load wire diameter	d		
	b) load wire length	L	B	
	c) load permeability	μ	C	
	d) start solution execution		D	L, uh
8	To clear input mode (reset flag 3)		E	<u> </u>
			!	
	***************************************			
h				
				••••••

### Example 3-4.1

Find the inductance of a straight gold wire 0.001 inch in diameter and 0.3 inch long (a hybrid integrated circuit interconnect wire).

	êŝêr	set inches
	eSBa	set straight wire mode
.00i	<u>Gêêr</u>	load wire diameter in inches
	GSB6	load wire length in inches
1.260	GSBE	load wire relative permeability
	GSBE	calculate inductance
0.010	×××	inductance in microhenries

#### Example 3-4.2

Find the length of a 4/0 copper cable (.528 in diam) having an inductance of 6 microhenries

	GSBk	set inches
	GSPd	set straight wire mode
.528	GSBA	load wire diameter
1.600	GSBC	load relative permeability of wire
6.000	GSBD	load required inductance
	GSBB	calculate wire length*
182.258	<b>冰冰</b> 冰	length, inches
12.000	÷	
15.188	軍軍軍	length, feet

### Example, 3-4.3

A pair of 4/0 wires run 20 feet between a capacitor module and an inverter module in an ac traction motor controller. The wire separation is twice the wire diameter. What parasitic inductance does the wire add in series with the capacitors? 4/0 wire is .528 inches in diameter.

	GSBx	set inch mode
. 528	Et It	
	Ŧ	calculate and enter the wire separation,
1.056	法基本	and select wire loop configuration
	635e	/
.528	GSEA	load wire diameter in inches
20.060	ENTI	
12.000	•	calculate and load wire length in inches
240.002	<b>宋末宗</b>	
	GSBE	)
1.000	<i>isec</i>	load permeability of wire
	GSED	calculate inductance of wire loop
3.973	***	inductance, microhenries

If the maximum parasitic inductance that can be tolerated is 2 microhenries, how long can the feeder wires be if the other parameters don't change?

	esee	load required inductance in µh calculate loop length loop length, inches
12.000 10.079	•	loop length, feet

3-4

## **Program Listing I**

			· · · · · · · · · · · · · · · · · · ·		-		7.					
00		SET OM UNIT	MODE			0:		T07		con	v and	print
00		store or -	cm conversio			85	7 ¥L	BLB	1/0 OF W1	<u>IRE l</u>	ENGTH	, <u> </u>
02			CW COUNALSIC	m		05		EEX	if numeri	lo in	out.	
00		SET INCH UN	TT MODE		1	85 86		F3? T00	goto inpu			ine
00						- 06		F0?				
00	-					06	-	TOL	jump if ]	loop	wire a	no de
60		store in 🔶	cm conversio	n	Ιſ	06		T01	store "1"	for	int	al guoss
00						Oc		BL4	Newton-Re			
01	0 ST09				1 F	86		CLI		- <u>ynuo</u>		·
01	1 RTN					06		4				
01	2 *LBLc	LOAD WIRE LA	JOP SEPARATI	ION	1	06		x	calculate	and	stor	· +(0).
01		indicate wi	re loop mode		J	06		CLØ	•			• • • • • • •
01						06	9	÷				
01		goto data e	ntry subrout	tine		07	0	LN				
01			<u>.</u>			<b>i</b> 07		EEX	a(A, 0)	и		
<u> </u>		SET STRAIGH				07		-	$ln\left\{\frac{4l}{d}\right\}$	+ 🚣	- 1	
<u>81</u>		indicate st	raight wire	mode_		07		CL2	(0)	т		
01		7 /0 0 0 0				<u>07</u>		+				
<u>82</u>		I/O OF WIRE	DIAMETER,	1		07		F2?	test for	subr	outin	e exit
Ø2 82						07		RTN	<u> </u>			
02 02		-				07		TOE	finish f(	(l) c	alcul	ation
02		store 0.002				07 07		CL8				
82						07 08		X 4 70				
02		recover inp				08		17X CL5			L.	
02						08		X	f(l) = l -	2-10	350 140	1 H 17
02		if numeric :				08		CHS		ZXIU	2 m ( 1/ d	$\frac{1}{4} - \frac{1}{5}$
02		goto data i:	np <b>ut s</b> ub <b>rou</b> t	tine		08		CL1				
03						08		+				
r 03		jump if wir	e toob mode			08		T07				
03.				. – 1		08		CL5				
03		calculate a		or		08	8. <i>R</i> (	CL8	calculate	ana	appi	y r'(k):
<b>•</b> 03		straight wi:	re case:			08:	9 RC	CL1				
83					- f -	09		X				
03		d =	$\frac{42}{5^3} - \frac{4}{4} + 1$			09.		CLE	$f'(l) = 1 + \frac{1}{7}$	2×10-30		11.4.472
03			$\frac{1}{13} - \frac{\mu}{4} + 1$	Í	1	09;		Χz	```	~~!v ,t	/ <b>{</b> 州(音	)+ <u><u><u></u></u>-15</u>
03		e zxri	, 4 ,			09		X			-	
03				1	<u> </u>	09-		÷				
04						<i>09</i> 3	_	ΕX				
84		goto unit co	nversion L			<u>096</u>		+				
- 84		unt - 01	WAATATATAT C	<u> 11111</u>		<u>097</u> 098		<u>+7</u> 217	<u>calcula</u> te			
04		calculate a		or		090 091			apply cor	rect	ion	
04		loop wire co	1 <b>60</b>			100		<u>-1</u> - 185 -				
046					- † 1	101		ΕX				
04;					11	102		HS				
048						103		6	test for	100p	exit	
049		. 2	20			104		εγ?				
050		d = 7 L	$\frac{\frac{\mu}{4}}{4} + \frac{\mathbf{D}}{\mathbf{I}}$			- 185		04				
051		4Px10-3 -	$\frac{1}{4} + \frac{1}{7}$			186		11			 4t	
052		e	· ,			_107	<u> </u>	07	recall an	a pr	192	
053					L	- 108			calculate	lf	or loc	p wire
054						109		L5	CASe			-
055	5 STOØ					118	RC	18				
	1 Janeth			REGIS	TERS	tanon	<u> </u>		17	10		0
0 diameter cm	1 length cm	$^{2} \mu_{4}^{3}$	4 win separa	e ation, an	5 induci Li		0		scratch	°2×	410-3	⁹ 1 or 2.54
50	S1	S2 S3	S4		S5		S6		<b>S</b> 7	S8		<u>\$9</u>
				ſ						1		
A	В	!,	с		D		. ,	E	as wet at		I	<u> </u>
									scratch			ndex

# Program Listing H

111	ENTT				166	x	calculate	M	
112	+				167	GT02		t and space	e subr
113	÷				168	*LBLD	1/0 OF IN	DUCTANCE,	L
114					169	RCL9			
115					170	÷	undo unit	conversio	n
116		1			171	5			
117		$l = \frac{\frac{L}{4 \times 10^{-5}}}{l_n \left(\frac{2D}{4}\right) + 1}$	D		172	F3?		c input, g	
118		$1 = \frac{4 \times 10^{-5}}{10^{-5}}$			173	6TO0	data inpu	t subrouti	ne
		~~ (2D).	μ		174			<u> </u>	
119		$ln\left(\frac{d}{d}\right)$ +	4			F0?	jump if 1	oop wire m	ode
120		( = /	•	1 1	175	<u>eto</u> 3	<u> </u>		
121					176	SF2	cales Lr	· (4)+ 4	- 1
122					177	<u>gsb4</u>		<u></u>	
123					178	<u>GT01</u>	jump		
124	÷			-   <b>  -</b>	179	<b>≭LBL</b> 3	caloulate	1	
125	ST01	store <i>l</i>			180	RCL4			
126		unit conversion	& prt subr	7	181	ENT†			
127		recall unit con		-1	182	+			
128		TOATT WILL CAN			183	RCLØ	r in	$\mathbf{D}$	
129		nutual and anone	and manufilms		184	K020 ÷	2 2 Int=	$\left(\frac{D}{4}\right) + \frac{\mu}{4} - \frac{1}{2}$	4
		print and space can be R/S sta	suoroutine		185	ĹN	(~``\a	j/ 4	l s
130		can be ry 5 sta	¢eπell r						
131					186	GSB8			
132					187	+			
[ 133		I/O OF PERMEABI	LITY, $\mu$		188	ENTŤ			
[ 134					189	+			
135	÷	_			190	*LBL1	common in	ductance c	alculation
136	RCL9		-	7	191	RCL 8			
137		undo unit conve	rsion		192	X	x(2L *	10 ⁻⁹ )	
138	2				193	RCL1	~(~~~		
139		if numeric inpu	t, goto		194	X			
		data input subr							
140					<u>195</u>	<u>ST05</u>		uctance	
141	F8?	jump if wire lo	op mode		196	6102	goto prin	t and spac	<u>e subr</u>
<u>~ 142</u>					197	*LBL0	<u>data inpu</u>	t subrouti	<u> </u>
143					198	STOI	store reg	ister inde	¥
144		start calculati	on ror		199	<u></u> R↓	<u>recover i</u>	nput	
145	RCL1	straight wire			200	RCL9		-	•
146	4			ł	201	х		t conversi	on and
147	GT01				202	ST0;	store ent	ry	
148		loop wire cal	culation		203	RTN	return to	main prog	
149					204	*LBL6	du hannit da	e to calcu	1 a d a a
150		<b>L</b>			205	EEX	BUDIOUCIN	e co caron	LATOS
	-	42 = 10-3			205	RCL5			
$\frac{151}{150}$	÷								
152		P			207	RCL8			
153		<del>-</del> <u></u>			208	÷	22 ×	10""	
154	<u></u>				289	RCL1	~		
155					210	÷			
156	RCL4	D			211	<u></u>			
157	2				212	*LBL8	subroutin	e to calcul	lates
158	*LBL1	common calculat:	ion routine		213	RCL2			
159	x				214	RCL4			
160					215	RCL1	μ	>	
161	÷				216	÷	$\frac{\mu}{4} - \frac{1}{3}$	<del>1</del>	
162	ĹN				217	-	-7 \		
162					218	RTN			
		store $\mu/4$						In MARE	
164		B W TB / 4			219		CLEAR INPU	IT HUDE	
165	4				220	CF3			
					221	RTN		-	
		LABE	LS		1	LAGS		SET STATUS	
A d	B L	o _س D	TC TC	ar input		e loop	EL 400		
	6				1		ON OFF		DISP
° cm units	inch u		straight wire ^e		Ľ			DEG	FIX 🔳
⁰ data entry	1 Used	2 output routine 3 Wo Unit CONV D	partial calc 4 N	ewton - phson Loop	2 <b>3</b> 0br	4 exit	]ı _	GRAD	SCI
5	6 care	7 output routine 8	cale of 9 c	44/d)+44-1	1.	a entry	2	RAD	ENG n_ <u>3_</u>
L	L[(.00	22) w/ unit conv /	$\frac{1}{4} - D[l] ln($	4~(d)+4/4 -1		a enury	3		<u> </u>

### PROGRAM 3-5 AIR-CORE SINGLE-LAYER INDUCTOR DESIGN.

#### Program Description and Equations Used

This program uses Wheeler's equation [55] to solve for the various parameters relating to single-layer, air-core inductor design. The basic form of Wheeler's equation is:

$$L(\mu h) = \frac{a^2 n^2}{9a + 10\ell} \quad (\text{use inch dimensions}) \quad (3-5.1)$$

This equation provides answers within 1% accuracy for all values of  $2a/\ell$  less than 3, and the results will be about 4% low when  $2a/\ell = 5$  (short coils).

There are five parameters that can be used to describe an air-core inductor: the coil radius in inches (a), the coil length in inches (l), the number of turns (n), the winding pitch (p = l/n), and the inductance in microhenries (L). Of this set of five parameters, only four are independent since l, n, and p are interrelated; hence, given any three independent parameters, the fourth independent parameter, and the remaining dependent parameter can be found. For example, L can be calculated given a, l, and n, or a, n, and p.

Wheeler's equation may be algebraically manipulated to yield the other independent variables.

Solving for l given a, n, and L:

$$\ell = \frac{a^2 n^2 - 9a L}{10 L}$$
(3-5.2)

Solving for  $\ell$  given n and p:

$$\ell = n \cdot p \tag{3-5.3}$$

Solving for n given a, l, and L:

$$n = \frac{1}{a} \sqrt{L(9a + 10\ell)}$$
 (3-5.4)

Solving for n given a, p, and L: find quadratic solution of

$$a^2n^2 - 10Lpn - 9aL = 0$$
 (3-5.5)

Solving for p given  $\ell$  and n:

$$p = \ell/n$$
 (3-5.6)

Solving for p given a, n, and L:

$$p = \frac{1}{10n} \left\{ \frac{a^2 n^2}{L} - 9a \right\}$$
(3-5.7)

Solving for L given a, n, and p:

$$L = \frac{a^2 n^2}{9a + 10np}$$
(3-5.8)

Solving for a given  $\ell$ , n, and L: find quadratic solution of

$$n^2 a^2 - 9La = 10\ell L = 0$$
 (3-5.9)

The program uses these equations as follows. The appropriate input keys are assumed to have been executed prior to an output request. Label "A" inputs or outputs the coil radius in inches, a. The input is stored in RO, and Eq. (3-5.9) is used for output.

Label "B" inputs or outputs the number of turns, n. The input is stored in R1, and if p was previously entered,  $\ell$  is calculated using Eq. (3-5.3). For output, Eq. (3-5.5) is used if p,  $\ell$ , and a are specified, otherwise, Eq. (3-5.4) is used.

Label "C" inputs or outputs the coil length,  $\ell$ . For input, the coil length is stored in R2, flag 0 is cleared, and a new p is calculated and stored using Eq. (3-5.6). For output, if p has been previously entered, use Eq. (3-5.3), otherwise use Eq. (3-5.2).

Label "D" inputs or outputs the winding pitch, p. For input, the new pitch is stored in R3, flag 0 is set, and new  $\ell$  is calculated with Eq. (3-5.3). For output, Eq. (3-5.6) is used.

Label "E" inputs or outputs the coil inductance, L, in microhenries. For input, the value is stored in R4. For output, Eq. (3-5.1) is used, and the new inductance value stored.

Label "c" calculates the wire diameter given the wire AWG with heavy insulation. The wire diameter over heavy insulation bears an

exponential relationship to the wire gauge:

Diameter (inches) = 
$$k_1 \cdot e^{k_2 \cdot AWG}$$
 (3-5.10)  
where  $k_1 = 0.31373$   
and  $k_2 = -.109788$ 

On the first execution of this routine, the constants  $k_1$  and  $k_2$  are stored into R8 and R9 respectively. Flag 2 is initially set after magnetic card reading to indicate constant storage required, and is reset upon test.

Label "d" calculates the AWG of the wire given the diameter over the insulation in inches:

$$AWG = \frac{1}{k_2} \cdot \ln \left\{ \frac{\text{Diameter}}{k_1} \right\}$$
(3-5.11)

Label "e" is used to clear flag 3 to indicate data output desired. Keys "A" through "E" leave flag 3 cleared after the associated routine finishes, i.e., data output mode is set unless further numeric entry is made.

The routines under keys "d" and "e" do not alter the state of flag 3. For example, one may load the wire AWG, use key "c" to convert to wire diameter, and then use key "D" to load this value as the winding pitch (close wound coils).

Highest coil Q's are generally obtained when the space between the wires equals the wire diameter (pitch equals twice the wire diameter). Callendar's equation [13] can be used to estimate the Q of a coil with this pitch:

$$Q = \frac{\sqrt{\text{freq in Hz}}}{\frac{2.71}{a} + \frac{2.13}{\ell}} \quad (\text{use inch dimensions}) \quad (3-5.12)$$

For RF coils where the skin depth is less than the wire diameter, Callendar's equation is accurate to within a few percent. For close wound coils, the calculated Q will be high by a factor of 1.9.

HP-67 users may want to make the following program changes to make the final number in the display unambiguous. For example, label "C" causes both the number of turns and the coil length to be printed with the coil length being displayed last. To change the program so only the number of turns is displayed and printed, change lines 122 through 126 of the program as follows:

122	RCL3
123	x
124	STOE
125	RCL1
126	GT08

### 3-5 User Instructions

AIR-CORE	, SINGLE-LA	YER, SOLENOI	DAL INDUCTOR	R DESIGN	
		AWG - diam	diam 🔶 AWG	clear input mode	2
coil radius a, in	# of turns n	coil length L. in	$\frac{pitch}{p - l/n}$	inductance L. uh	1

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card			
	Select problem type:			
,	a) to find L & p given a, n, & l			
	i) load the coil radius	a, in		
	ii) load the number of turns	n	B	
····	iii) load the coil length	l, in	0	
	iv) calculate the coil inductance		E	L, µh p, in/T
	v) calculate the winding pitch		D	p, in/T
	b) to find L & L given a, n, & p			
	i) load the coil radius	a, in	A	
	ii) load the number of turns	n	B	
	iii) load the winding pitch	p, in/T		
	iv) calculate the coil inductance		Ē	L, uh
	v) calculate the coil length	+		l, in
			LJ	
	c) to find n & p given a, l, & L			
	i) load the coil radius	a, in	A	
	ii) load a dummy value for n *	1	В	
	iii) load the winding length	l, in	C	
	iv) load desired inductance	L, uh	E	
	v) calculate the # of turns and		B	n, turns
	the winding pitch			p, in/T
	d) to find n & l given a, n, & L	<u> </u>		
	i) load the coil radius	a, in		
h	ii) load the winding pitch	p, in/T		
<b> </b>	iii) load desired inductance	L, uh		*******************************
h	iv) calculate the number of turns	, <i>/</i>	B	n, turns
	and the winding length			<i>l</i> , in
	e) to find <i>l</i> & p given a, n, & L		r <del></del> 1	
	i) load the coil radius	a, in		
	ii) load the desired number of turns	n	B	
	iii) load the desired inductance	L, µh	E	
	iv) calculate the inductor length **		C	$\ell$ , in
	$\mathbf{v}$ ) calculate the winding pitch		ם	p, in/T

### 3-5 User Instructions



STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
2	f) to find a & l given n, p, & L			
	i) load the desired number of turns	n	В	
	ii) load the desired winding pitch	p, in/T	D	
	iii) load the desired inductance	L, µh	E	
	iv) calculate the coil radius			a, in
	v) calculate the coil length		σ	l, in
	g) to find a & p given n, l, & L		<b></b>	
	1) load the desired number of turns	n	B	
	ii) load the desired coil length	<i>l</i> , in	_ <b>O</b>	~
	iii) load the desired inductance	L, uh	E	
	iv) calculate the coil radius			a, in
	v) calculate the winding pitch	i 	ם	p, in/T
3	Go back to any part of step 2, or stop	<u> </u>		
4	To convert wire AWG to diameter over			
	heavy (class 2) insulation	AWG	f O	diam, in
5	To convert wire diameter over heavy		· · · · · · · · · · · · · · · · · · ·	
	insulation to AWG	diam, in	fD	AWG
6	To clear input mode, i.e., to request output			
	after numeric operations have been performed			
	from the keyboard		f	
	· 			
	Notes:			
	* $p = \ell/n$ , a non-zero n is required for			
	proper program operation. The dummy n is			
	replaced with the calculated n under label B.			<b></b>
	** A negative value for the inductor length			
	means the required inductance cannot be			
	realized with the chosen radius and number			
	of turns. Either increase n or a.			

### Example 3-5.1

An air-core coil is to be wound in a  $\frac{1}{2}$  inch form using #18 AWG HF wire at a pitch of twice the wire diameter. What number of turns are required for an inductance of 500 nanohenry (0.5 µh), and what will the winding length be?

.250		load coil radius in inches
18.000		load wire AWG
0.043	***	wire diameter over HF insulation
2.000		calculate winding pitch (2 x diam)
	GSBD	load winding pitch
.500	GSBE	load required inductance in microhenry
	GSBB	calculate turns and coil length
8.958	***	number of turns (use 9 turns)
0.775	电速速	coil length in inches

### Example 3-5.2

A 6 turn coil on a 6 inch form is closewound with #4/0 wire. The wire is 0.750 inches over the insulation. What is the coil inductance and length?

3.000 GSBA	load the coil radius in inches
6.000 GSBE	load the number of turns
.750 GSBD	load winding pitch
GSBE	calculate inductance
4.568 ***	inductance in microhenries
GSE:	calculate coil length
4.500 ***	coil length in inches

3-5

Program Listing I

	<b>(7</b>		
<u>001 *L6LA</u>	1/0 OF COIL RADIUS, a	● ● 053 ¥LBL1	calculate and store
002 F3?	turn to more and a suct mer	054 RCL1	
<u> 603 GT08</u>	Jump II Humeric energ	055 RCL3	$\ell = n(\ell/n)$
004 RCL1		056 X	ζ ~ H\4/H/
005 X2	use quadratic equation	Ø57 ST02	
006 ST05	· · · · · · · · · · · · · · · · · · ·		···
007 9		058 GT08	goto print and space subr
	$a^2n^2 - 9aL - 10\ell L = 0$	<u>059 *LBLD</u>	I/O OF COIL PITCH, P
008 RCL4		060 F3?	jump if numeric entry
009 X		-061 GT00	lamb TI HEMALIC SHOLA
010 CHS		062 RCL2	
011 STO6		063 RCL1	calculate and store
012 RCL2		064 ÷	p = l/n
013 RCL4			P = ~/₩
014 ×		<u>065</u> ST03	
015 EEX		<u>066 GT08</u>	goto print and space subr
4 1		₩ 067 *LBL0	
016 1		<u>068 stoj</u>	store p
017 X		069 RCL1	
018 CHS		070 ×	calculate and store
019 ST07		071 ST02	L=p·n
020 GSB9	gosub quadratic solution		
021 STO0		-	indicate p entered last
021 ST08 022 GT08	_store a	<u>073 RTN</u>	
	goto print & space subr	074 *LBLB	1/0 OF COIL TURNS, n
-023 *LBL0	<u>coil radius data input</u>	075 F3?	jump if numeric entry
024 STO0	store coil radius	<u>-076 gtog</u>	Jour TT HUMBLIC GUTLA
025 RTN	return control to keyboard	077 F0?	
026 *LBLC	I/O OF COIL LENGTH,	-078 GT01	jump if p entered last
027 F32		079 6SB3	
-028 GT08	jump if numeric entry	<b>Y Y</b>	calculate and store n:
029 F07		080 RCL4	
	jump if p entered last	081 X	
<u>-030 GT01</u>		082 TX	
031 RCL0	calculate and store:	083 RCL0	1
032 RCL1	calculate and store:	084 ÷	$n = \frac{1}{n} \sqrt{L(9n - 10\ell)}$
033 ×		085 ST01	<b>K</b> T · · ·
034 X2		086 PRTX	
035 RCL4	1	1 1	
		087 1/X	
036 ÷	$\mathcal{L} = \frac{4}{10} \left( \frac{a^2 n^2}{L} - 9a \right)$	088 RCL2	
037 RCL0	$\mathcal{L} = \frac{1}{40} \left( \frac{1}{10} - \frac{1}{90} \right)$	[ ] 089 X	
038 9	10 ( 4 /	090 ST03	
039 X		091 GT08	
040 -	1	-092 *LBL1	
041 FEX		093 RCL0	calculate and store n from
041 525			quadratic solution to:
043 ÷		095 ST05	
<u>044 ST02</u>		896 RCL3	
<u>045 GT08</u>	goto print and space subr	097 RCL4	
1-046 *LBL0		098 x	22
<u>047 CF0</u>	indicate <u>l</u> entered last	099 EEX	$a^2n^2 - 10Lpn - 9aL = 0$
048 ST02	store l	100 1	
049 RCL1		101 x	
	calculate and store		
050 ÷	$p = \ell/n$	102 CHS	
051 STC3		103 ST06	1
052 RTN		104 RCL0	
		105 RCL4	
		106 x	
			1
t I	1		
<b>}</b>			
h	REGIST		
^o a ¹ n	$^{2}\mathcal{L}$ 3 p 4 L	quadratic equation	terms wire AWG constants
	- 5	a 6 b	7 C 8 K1 9 Ka
S0 \$1	S2 S3 S4 S4	5 S6	S7 S8 S9
A B	CD	IE IE	I
A B	C	E	I

## Program Listing II NOTE FLAG SET STATUS

						7	<b>,</b>			
187	9				-	60	*LBL3	9a + 10l	calculatic	on subr
108	×				-	61	RCL0			
109	CHS					62	9			
110	STO7					63	X			
[   111	GSB9				-	64	RCL2			
112	ST01				1	65	EEX			
113	PRTX				1	66	1			
114	RCL3				1	67 -	х			
115	x				1	68	+			
116	ST02					69	RTN			
117	GT08_		_		1	70	#LBLc	AWG - WI	RE DIAMETER	<u> </u>
118	*LBL0				1	71	F2?		initializa	
119		re number of	f turns		1	72	<u>GSB2</u>	needed?		
120		p if p enter				73	RCL9			
<u>~121</u>	GTO0	ib TI b euce	1.94 1994			74	X		kon	WG
122	RTN			1		[75]	e ^x	diameter	= k ₁ ·e ^{k2·/}	4
-123	#1 D1 Q				1	176	RCL8		1	
124	DALA CAL	culate and	store new			[77]	х			
125	x 001	l length				78	GT08_	=		
126	ST02			1		79	*LELJ		METER - AWO	
127	RTN					180	F2?	constant	initializa	tion
128		OF INDUCTA	NCE L (Uh	3	1	81	GSB2	needed?		
$\frac{120}{129}$			•	·		82	RCL8			
-130	GT00 <b>ju</b>	p if numeri	c entry	1		83	÷			
131	0010	- <u>-</u>	·			84	1.41		r	
132		Wheeler's				85	RCL9	AWG = $\frac{1}{2}$	ln { diame Ki	<u>ter</u> }
133	<b>0</b> 70	calculate in	nductence			186	÷	K2	- ( k <u>i</u>	ر
134	χ ₂ (Βα	L. (3-5.1)):				187	INT			
134						188	GTOS			
135	- 63D3 ÷ L≠	$\frac{a^2n^2}{9a+10\ell}$				189	*LBL2	constant	initialize	ation
	<del>.</del> ST04	JA T IVL				190	PEPES	<u></u>		
<u>137</u>		nt and	a mihuandd			191	3			
138		nt and space	e <u>suprou</u> ti <u>n</u>			192	3 1			
139	PRTX					193	3			
140	SPC					193	3 0			
141	RTN +LDLO					195	4			
<u>↓</u> 142	*LBL0					195	ST08	ators in		
143	ST04 sto	re inductan	ce input			196	5108 R1	store k ₁	x register	
144	RTN						K-			
145		dratic equa	tion soluti	on		198 199	•			
146	RCL5 sub	routine.					1			
147	ST÷6	•				200	0			
148	ST÷7 If	$ax^2 + bx +$	c = 0			201	9			
149	2					202	7			
150	ST=6 the	m the posit:	ive root is	1		203	3			
151	KULD					204	3			
152	CHS X =	$-\frac{b}{2a}+\frac{b}{2a}$	) [~] + º			205	CHS			
153		2 <b>a  \2a</b> /	<b>8</b> .			206	ST09	store k2		
154	X2					207	R∔	recover :	x register	
155	RCL7				the second second second second second second second second second second second second second second second s	208	RTN			
156	-				_	209	<u>*LBLe</u>	CLEAR IN	PUT MODE	
157	1X					210	CF3			
158	+					211	<u>RTN</u>			
159	RTN				NOTE:					
ŀ						Pri	nt state	mente e-	e located a	t stens
					086 -	+. nd		monto are	nanged to H	ve ve ve
ŀ								MULE	FLAG SET S	ο Γατις
					if de					
	IR .		ELS	F			FLAGS		SET STATUS	
I/O coil radius	I coil length	L/o # of turns	D I/o pitch	/0 '	inductance	٩٩	intered last		TRIG	DISP
a	b	c	d	e		1		ON OFF	050	
						-	Slore	0	DEG	FIX
⁰ local label	local label	2 constant storage	³ 9a + 10 L	4			score Ncients			SCI ENG
5	6	7	⁸ print¢ space	9 פע	adratic	3	data	2	RAD	n_3_
	•		I MILILLY SPOLE	I Ĉe	olution		entry	3		

### PROGRAM 3-6 AIR-CORE MULTILAYER INDUCTOR DESIGN.

### Program Description and Equations Used

This program uses a modification of Bunet's formula [11], Eq. (3-6.1), to design air-core, multilayer solenoidal inductors (inch dimensions).

L (µh) = 
$$\frac{a^2n^2}{9a + 10l + 8.4c + 3.2 c l/a}$$
 (3-6.1)

The coil dimensions are shown in Fig. 3-6.1, and the range of usefulness of the program can be ascertained from Table 3-6.1.



Figure 3-6.1 Multilayer coil dimensions.

Table 3-6.1 Acc	uracy estimates	for Bunet	:'s e	equation.
-----------------	-----------------	-----------	-------	-----------

c/a ratio	2a/l ratio for 1% accuracy	other acc 2a/L	uracies %
1/20	<u></u> ≤ 3	5	4
1/5	≤ 5	10	2
1/2	≤ 2	5	3
1/1	≤ 1.5	5	5

The modification to Eq. (3-6.1) consists of replacing the midcoil radius, a, by the inner radius, r:

$$a = r + \frac{c}{2}$$
 (3-6.2)

The coil is generally wound on a coil form, hence, r and  $\ell$  are known from the coil form dimensions. The coil mid-radius, a, is dependent upon the coil buildup, and is generally not known at the inception of the design.

If the wire and insulation occupy a box as shown in Fig. 3-6.2,



Figure 3-6.2 Wire cross-section.

then the total area occupied by n turns of this wire would be:

$$A_{\text{total}} = n \cdot d^2 \qquad (3-6.3)$$

This area is also expressible in terms of the coil dimensions:

$$A_{total} = c \cdot \ell \tag{3-6.4}$$

Hence,

$$\mathbf{n} \cdot \mathbf{d}^2 = \mathbf{c} \cdot \boldsymbol{\ell} \tag{3-6.5}$$

or

$$c = \frac{n \cdot d^2}{\ell}$$
 (3-6.6)

A fifth order polynomial in n may be derived to yield the number of turns of wire with diameter d, given the required inductance, L, the coil inner radius, r, and the coil width,  $\ell$ . Taking Eq. (3-6.1), multiplying both sides by the denominator term, and clearing fractions yields:

$$a^{3}n^{2} - L \{9a^{2} + (10\ell + 8.4c) a + 3.2c\ell\} = 0$$
 (3-6.7)

Substituting Eq. (3-6.2) for a, and Eq. (3-6.6) for c, and collecting terms in like powers of n results in the following 5th order polynomial equation:

$$f(n) = An^{5} + Bn^{4} + Cn^{3} + Dn^{2} - En - F = 0$$
 (3-6.8)

$$A = \left(\frac{d^2}{2\ell}\right)^3 \tag{3-6.9}$$

$$B = 3r \left(\frac{d^2}{2\ell}\right)^2 \qquad (3-6.10)$$

$$C = 3r^2 \left(\frac{d^2}{2\ell}\right)$$
(3-6.11)

$$D = r^{3} - \left(\frac{d^{2}}{2\ell}\right)^{2} (25.8 L) \qquad (3-6.12)$$

$$E = L \left\{ \frac{d^2}{2\ell} (34.8r + 10\ell) + 3.2d^2 \right\}$$
 (3-6.13)

$$F = rL(10\ell + 9r)$$
 (3-6.14)

The Newton-Raphson iterative procedure described in Program 1-3 is used to find the largest positive real root for n in Eq. (3-6.8). If the initial guess for n is larger than the largest root, the method will converge to the largest root when the function is a polynomial as in the present case. An initial guess of 10000 turns is used. If a larger number of turns is expected, the user may want to increase the initial guess which is located at step 084 of the program.

If r, c,  $\ell$ , and L are specified, then the solution for n becomes somewhat simpler. Since r and c are both known, a can be calculated from Eq. (3-6.2). With this calculation, all parameters except n are known in Eq. (3-6.1), and n becomes:

$$n = \frac{1}{a} \left\{ L(9a + 10 + c(8.4) + 3.2\ell/a) \right\}^{\frac{1}{2}} \qquad (3-6.15)$$

Once n has been calculated, the wire diameter, d, can be calculated from Eq. (3-6.6) as given below:

$$d = \sqrt{\frac{c\ell}{n}}$$
(3-6.16)

So far, the two cases for the number of turns have been derived. Likewise, there are two cases for the calculation of L. Given r,  $\ell$ , c, and n, Eqs. (3-6.2) and (3-6.1) may be used to calculate L. If the wire diameter, d, had been specified instead of the coil thickness, c, then Eqs. (3-6.6) and (3-6.1) are used to calculate L.

#### Program constants

Since all program steps were used to code the program equations, no room remains for the program constants. These constants are recorded on another magnetic card, and are loaded after the program magnetic card loading. Load the following registers, and record the data on both sides of the data card (2 WDATA commands):

 $8.4 \rightarrow R7$  $3.2 \rightarrow R8$  $10 \cdot \rightarrow R9$ 

## **User Instructions**

3-6

Λ			AIR-CORE MU	ILTILAYER IN	DUCTOR DESIGN	<u>.</u>		+
	coil inner radius,	E)	diam, d	length,	1) number (I/Q) of turns, n	(I/O) inductance in µh, L	2	-

Ŧ

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Load both sides of program card and either			
	side of data card			
2	Load inner coil radius	r, in	A	
3	Load wire diameter	d, in	f B	
	or	<u>10</u>	- <b>-</b>	
	Load winding thickness	c, in	<b>B</b>	
4	Load winding width	l, in	0	
5	To calculate inductance in microhenries			
	a) load the number of coil turns	n	רכ	•••••
	b) calculate inductance		E	L, µh
6	To calculate the number of turns		··	
	a) load the desired inductance	L, uh	E	
	b) calculate the number of turns			n
				•
<b> </b>				
<u></u>				
<b> </b>				<b> </b>
ł				
<b> </b>				*
<b>├</b> ┣				·····
<b> </b>				
} <b>†</b>		•		
L				

#### Example 3-6.1

Find the number of turns of #24 HF wire (0.0224 inches over insulation) to be wound on a bobbin that has a 0.3 inch inner radius and is 0.5 inch wide to obtain an inductance of 200 microhenries. Also find the coil thickness.

.30 6354 load bobbin inner radius (in) .0214 6354 load wire diameter over insulation (in) .30 6351 load bobbin width (in) 200.00 6355 load inductance required (µh) 6355 calculate # of turns & coil thickness* 122.65 *** number of turns (use 123) 0.1231 *** coil thickness, inches

#### Example 3-6.2

Calculate the inductance of an 18 turn coil of 4/0 wire with 6 turns per layer wound on a 6 inch diameter form. 4/0 wire is 0.75 inch over the insulation.

3.00 <b>63</b> 5m	load coil inner radius (in)
.75 G86k	load wire diameter over insulation (in)
6.00 4.50 ×★★ 835€	calculate coil width: coil turns per layer x thickness per turn load coil width
18,00 GSBD	load number of turns
GSBE 50.6345 ***	calculate inductance inductance in microhenries

* Requires about a minute to compute.

3-6

**Program Listing I** 

001 *LBLA	LOAD COIL INNER RADIUS	057
002 ST01		058 8
003 GT09		
004 *LBLB	LOAD COIL THICKNESS	$ 0.000 \times 0.000$ (0.000 $\times 0.000$ $\times 0.000$ $\times 0.000$ $\times 0.000$ $\times 0.000$
005 SF0		061 RCL9
	indicate thickness loaded	062 RCL3
006 STO2	store thickness	
<u>007 GT09</u>	goto CF3. space & return	$- \frac{963}{864}  \text{GSB4}_{\text{BCLI}} = L \left\{ \frac{d^2}{2\ell} (34.8r + 10\ell) + 3.2d \right\}$
008 *LBLb	LOAD WIRE DIAMETER	
009 CF0	indicate wire diam. loaded	065 X
010 STO6	store wire diameter	1 866 RCL8
011 GT09		067 RCL6
012 *LBLC	goto CF3. spece & return	068 X2
	LOAD WINDING LENGTH	
013 ST03	store	069 GSB4
<u>014 GT09</u>	goto OF3, space, & return	070 RCL4
015 *LBLD	I/O OF COIL TURNS	071 ×
016 F3?	if input, jump	072 STOE
		073 RCL9
018 F0?	if coil thickness loaded,	074 RCL3
		075 v
<u>019 GT01</u>	_use_other_routine	
020 RCL6	calculate n given r, $\mathcal{L}$ ,	0r0 3
021 X ²	d, and L	077 RCL1
022 RCL3		078 GSB4
023 ENT+		079 RCL4
024 +	calculate and temporarily	$\begin{bmatrix} 0.75 & RCL4 \\ 0.80 & RCL1 \end{bmatrix} \mathbf{F} = \mathbf{rL}(9\mathbf{r} + 10l)$
025 ÷	store $d^2/(2l)$	081 GSB5
	• • - ·-e	082 STOI
027 3	calculate and store n5 coef	
028 Y×	$A = \{d^2/(2\ell)\}^3$	1 904 4 in Newton-Benham soln
029 STOA		085 ST05 III New Con-Naphson Som
030 RCL1		-086 #LBL8 Newton-Raphson start
031 X2	h	
032 RCL1	calculate and store n ⁴ coef	<b>ℓ</b>   088 ENT†
033 3		089 ENT*
	$B = \Im r \left( \frac{d^2}{2\ell} \right)^2$	1 1 1
034 GSB5	- ~ (2 <i>l</i> )	090 ENTA
<b>935 STOB</b>		891 RCLA calculate and store
036 RCL1		
037 RCL1	calculate and store n ³ coef	$M^{2}$ 093 RCLB $f(n_{i}) = An_{i}^{5} + Bn_{i}^{4} + Cn_{i}^{3} + Dn_{i}^{2} - En_{i}^{2} - F$
038 X2		094 +
039 3	-1,21	095 ×
	$0 = 3r^2 \left( \frac{d^2}{2g} \right)$	
040 GSB5	(21)	096 RCLC
<u>041 STOC</u>		-     097 +
042 RCL1		098 X
043 3		099 RCLD
844 YX		
045 2	calculate and store n ² coef	<b>f</b>    101 ×
846 5		
	× /d2)2	102 RCLE
047	$D = r^{3} - \left(\frac{d^{2}}{2R}\right)^{2} (25 \cdot 8 \cdot L)$	103 -
048 8	\< <u>*</u> /	104 ×
049 RCLI		105 RCLI
050 X2		105 -
051 RCL4		107 ST02
052 GSB5		
053 -		109 RCL5 calculate
		IUD ROLU
<u>054 STOD</u>		$\frac{110}{111} = \frac{110}{5} = \frac{RCLA}{f(n_i)} = 5An_i^4 + 4Bn_i^3 + 3Cn_i^2 + 2Dn_i - E$
055 3		
056 4		112 GSB5
<u> </u>		
° a ' r	² c ³ <i>e</i> ⁴ L	$\begin{bmatrix} 5 \\ n \end{bmatrix} \begin{bmatrix} 6 \\ d \end{bmatrix} \begin{bmatrix} 7 \\ 8.4 \end{bmatrix} \begin{bmatrix} 8 \\ 3.2 \end{bmatrix} \begin{bmatrix} 9 \\ 10 \end{bmatrix}$
S0 S1	S2 S3 S4	S5 S6 S7 S8 S9
A A B		
Γ A Γ	в с	

	3-6	rogran	n Listi	ng l	F II			
113 RCLB 114 4		·		70	F0? 1		ng thickne:	es loaded,
115 × 116 + 117 ×					CLS	-	kness cal	
118 RCLC 119 3				74 R 75		alculate	and store	9
120 × 121 + 122 ×				77	CL5 × 4 102	o - nd ² /)	2	
123 RCLD 124 ENT†				79 *L 80 G	.8L1 SB3			
125 + 126 + 127 ×				82 R	110	induotan	e and stor se: a ² n ²	0
128 RCLE 129 -		· ······		84 85	х Х	L = <u>9a+1</u>	01+8.4c+	5.2 cl/a
<u>130 ST÷2</u> 131 RCL2 132 ST-5	calc & store f apply correction $n_{1+1} = n_1 - f(x)$	on;			X T04 BL2	nrint an	d space su	broutine
133 ABS	test for loop			89 D 90 P	ISP4 PRTX 🛶	•	N/S statem	
135 1 136 X∠Y? −137 GT08				92 ¥L	ISP2 .BL 9 .CF3	CF3 and	space subr	outine
138 RCL6 139 X ² 140 RCL5				95	SPC RTN BL3	4 m du a f n m	ce factor	
<u>141 PRTX</u> 142 x	_print_n		-	97 R 98 R	CL1 CL2		ion subrou	tine
143 RCL3 144 ÷ 145 ST02	calculate, prim coil thickness	nt and store , 0:	2	99 1 <b>80</b> 101	-	calculat a = r +	e and stor c/2	et
146 GT02 147 *LBL0	$c = nd^2/\ell$ input storage			202 S 203	тов 9			
148 ST05 149 GT09 150 *LBL1	number of turn goto CF3, space calculate the	e and return			X CL3 CL9	calculat		c l
151 GSB3 152 RCL4	given r, <i>l</i> , c,		2	107 G 108 R	SB4 CL7	9a+10l -	+ 8.4c + 3.2	a
153 × 154 JX 155 RCL0	$n = \frac{1}{a} \left\{ L(9a + 10) \right\}$	+ 8.4c + 3.2 <u>c 1</u>	){* 2		CL8 CL0 ÷			
156 ÷ 157 ST05 158 PRTX-	- can be R/S st	ot ement	2	13 6	CL3 SB4 CL2			
150 PKIA 159 1/X 160 RCL2	- Can be iv b bu	a comon c	2	15 *L. 16		r, + subi	routine	
161 RCL3 162 GSB5 163 JX					+ <u>RTH</u> .BL5 3	. x subi		
164 ST06 165 GT02	······································		2	20 21	x x	~, ~ 5401	. A K AT 11Q	
<u>166 *LBLE</u> 167 ST04 168 F3?	store inductan	ce entry		_	RTN			
A B Load		BELS	E I/O	<b>FLA</b>			SET STATUS	
load inner radius thick a b		<u>of turns</u> d	Inductance	winding U	hickness	FLAGS ON OFF	TRIG DEG	
0 local Loop 1 Loca destination Labe 5 X, X 6 subroutine	L 2 printé space subroutine	3 inductance subroutine 8 turns subroutine	subroutine subroutine subroutine			1 2 3	GRAD RAD	SCI ENG n_2
Sourcoune		1 SOULDULINE	SUBTOULINE	entry	<u>×                                     </u>			L

### PROGRAM 3-7 CYLINDRICAL SOLENOID DESIGN.

### Program Description and Equations Used

This program provides the coil winding particulars and the coil electrical characteristics given the specifications for a cylindrical solenoid. These specifications are:

- 1) Minimum plunger attractive force in pounds (F),
- 2) Initial air gap length in inches  $(\ell_{air})$ ,
- 3) Maximum flux density in the air gap  $(B_{max})$  in gauss,
- 4) Maximum coil current density in amperes/ $in^2$  ( $\Delta$ ),
- 5) Maximum coil buildup, or thickness, (w) in inches,
- 6) Coil excitation voltage (E) in volts, or current (I) in amperes,
- 7) Optionally, the magnetic path area  $(A_{iron})$  in inches², the magnetic path length  $(\ell_{iron})$  in inches, and the magnetic permeability ( $\mu$ ).

The length of the magnetic path is assumed to be zero unless step 7 is exercised.

The characteristics that the program calculates are:

- 1) Plunger diameter in inches  $(D_p)$ ,
- 2) Number of turns in the coil (N),
- 3) Coil wire AWG using class 2 or heavy insulation,
- 4) Coil length in inches  $(\ell_{coil})$ ,
- 5) Coil inductance in henries (L),
- 6) Coil resistance in ohms (R),
- 7) Coil power dissipation in watts (P),
- 8) Actual B in the core and in the air-gap, and
- 9) Actual F.

With the maximum flux density in the air gap and plunger attractive force specified, the area of the air gap can be calculated from:

$$A_{air} = F \cdot k_1 / (B_{air}^2)$$
 (3-7.1)

where  $k_{I}$  is the constant of proportionality relating flux density in the air gap to pressure in pounds/in²

$$k_1 = 1.73 \times 10^6$$
 (3-7.2)

If the plunger area is assumed equal to the air gap area, the plunger diameter can be calculated using:

$$D_{p} = 2 \cdot \left( \frac{A_{air}}{\pi} \right)^{\frac{1}{2}}$$
(3-7.3)

Once the plunger diameter is known, then a value for the winding thickness may be loaded into the program. The smallest dimension of the winding should not exceed 3 inches to allow adequate thermal conduction for the heat generated with the coil, thus avoiding high internal coil temperatures. If the program calculates a short coil length, then the thickness is not restrained. A long coil restrains the coil thickness to 3 inches or less. Several iterations of the program solution may be required until satisfactory values for coil length and width (thickness) are found.

Given the excitation voltage, inverse current density in the coil (M) in circular mils per ampere, and the coil dimensions as defined by Fig. 3-7.1, the number of turns required is given by Eq. (3-7.4). The derivation of this equation is given later.

$$N = E \cdot M / (\pi (D_{p} + w))$$
 (3-7.4)



Figure 3-7.1 Solenoid coil dimensions.

If the coil is excited with a current, then the number of turns is:

$$N = (NI)/I$$
 (3-7.5)

where NI is the coil ampere-turns which is calculated from B later.

The cross-sectional area of the coil  $(w \cdot \ell_{coil})$  consists of current carrying wire and noncurrent carrying insulation and space. The shape factor (sf) is the ratio of the current carrying area to the total area of the coil. If the wire plus insulation is assumed to occupy a square with side d as shown in Fig. 3-6.2, and the winding cross-section is occupied by N of these squares, then the shape factor is:

sf = 
$$\frac{\pi}{4} \left\{ \frac{\text{diameter of bare wire}}{d} \right\}^2$$
 (3-7.6)

The diameters of both the bare wire and the wire with insulation bear exponential relationships to the wire AWG as given by Eq. (3-2.1). Substituting these relationships into Eq. (3-7.6) yields:

sf = 
$$\frac{\pi}{4} \left\{ \frac{a'}{a} e^{AWG(b' - b)} \right\}^2$$
 (3-7.7)

where

$$\frac{\pi}{4} \left\{ \frac{a'}{a} \right\}^2 = .8418900745 \qquad (3-7.8a)$$

$$2(b' - b) = -1.21690938 \times 10^{-2}$$
 (3-7.8b)

The coil has N wires each carrying in current, I; thus the current density in the coil is:

$$\Delta = (NI)/(sf \cdot 1_{coil} \cdot w)$$
(3-7.9)

where  $\Delta$  is specified by the user through M:

$$k_2 = M \cdot \Delta = (cir-mils/A)(A/in^2) = (4 \times 10^6)/\pi (3-7.10)$$

Solving for the coil length between Eqs. (3-7.9) and (3-7.10) yields:

$$l_{coil} = (NI \cdot M)/(sf \cdot k_2 \cdot w) \qquad (3-7.11)$$

The coil ampere-turns, NI, is calculated from B using the "Ohm's law" of magnetics:

$$MMF = \phi \cdot R \qquad (3-7.12)$$

where  $\emptyset$  is the flux and is continuous throughout the magnetic and air paths and is analogous to electric current. The reluctance,  $\Re$ , is the magnetic resistance, and the magnetomotive force, MMF, is the magnetic "voltage" source. The total reluctance is the sum of the individual reluctances making up the magnetic circuit and the MMF is proportional to the current in the coil:

$$MMF = 0.4 \mu NI$$
 (3-7.13a)

$$\mathcal{R} = \sum_{i} \frac{\ell_{i}}{\mu_{i} \cdot A_{i}}$$
(3-7.13b)

The electromagnet model used by this program has two sections, the magnetic path, and the air gap. Usually the air gap reluctance is the dominant term. Noting that the relative permeability for air is unity, and

$$\phi = B_{\text{iron iron}} A = B_{\text{max air}} (3-7.14)$$

then solving Eq. (3-7.12) for NI yields:

$$NI = \frac{B_{\max} A_{air}}{A_{iron}} \left\{ \frac{\ell_{iron}}{\mu_{iron}} + \ell_{air} \frac{A_{iron}}{A_{air}} \right\} \frac{k_3}{0.4 \pi}$$
(3-7.15)

where  $k_3 = 2.54$ , the inch to centimeter conversion ratio. The iron area,  $A_{iron}$ , refers to the smallest iron area, which may not be next to the air gap.

An iterative method is required to find the wire AWG and coil length. An initial shape factor of 0.5 is assumed, the coil length is obtained using Eq. (3-7.11). The wire diameter over insulation is obtained using

$$d = (w \cdot l_{coi1}/N)^{\frac{1}{2}}$$
(3-7.16)

The wire AWG is obtained from the wire diameter over insulation from Eq. (3-2.1), and a new shape factor calculated from the AWG using Eq. (3-7.7). The new shape factor replaces the old shape factor and the calculations run again. The iteration is terminated when the new and old shape factors agree within .001.

The coil physical dimensions and number of turns have now been

determined, and other electrical characteristics can be calculated.

$$L = \frac{0.4\pi \cdot N^2 \cdot A_{iron} \cdot k_3 \times 10^{-8}}{\frac{\ell_{iron}}{\mu_{iron}} + \ell_{air} \frac{A_{iron}}{A_{air}}}$$
(3-7.17)  

$$R = (R/\ell) (mean turn) (N) (3-7.18)$$

where  $R/\ell$  is obtained from:

$$k_5 \cdot AWG$$
  
R/ $\ell$ , (ohms/inch) =  $k_4 \cdot e$  (3-7.19)

hence,

$$\mathbf{R} = \mathbf{N} \cdot \pi \cdot (\mathbf{D}_{\mathbf{p}} + \mathbf{w}) \cdot \mathbf{k}_{4} \cdot e^{5}$$
(3-7.20)

For the coil temperature at 60°C, the constants are:

$$\pi \cdot k_4 = 2.9185212367 \times 10^{-5}$$
  
k_5 = 0.2317635483

If the coil excitation is a constant voltage, then the coil current will have to be recalculated due to the downward rounding of the wire size to the nearest integral value:

$$I = \frac{E}{R}$$
(3-7.21)

The power dissipated in the coil is:

$$P = I^2 R$$
 (3-7.22)

If constant voltage excitation is used, the peak flux density  $(B_{max})$  and initial plunger attractive force will be slightly larger than the initial values again due to the downward rounding of the wire AWG. The larger wire will have lower resistance causing higher coil current and a higher NI product. Equations (3-7.15) and (3-7.1) are rearranged and used to find  $B_{iron}$  and F.

$$B_{iron} = \frac{0.4\pi \text{ NI}}{\left\{\frac{\ell_{iron}}{\mu_{iron}} + \ell_{air} \frac{A_{iron}}{A_{air}}\right\} k_{3}}$$
(3-7.23)

$$F = \frac{B_{\text{max}}^2 \cdot A_{\text{air}}}{k_1} = \frac{(B_{\text{iron}} \cdot A_{\text{iron}})^2}{k_1 \cdot A_{\text{air}}}$$
(3-7.24)

In addition to the program card, a data card is necessary to load the registers with these constants:

μ _o default:	500 — R ₅
B default:	15000 R _e
Initial shape factor:	0.5 R _E
$(\pi/4)(a'/a):$	0.8418900745
2(b' - b):	$-1.216909380 \times 10^{-2} \longrightarrow s_1^{0}$
a:	$3.130387015 \times 10^{-1} \longrightarrow S_2$
b:	$-1.097333787 \times 10^{-1} s_3$
π•k ₄ :	2.985212367 x $10^{-5}$ S ₄
k ₅ :	2.317635483 x $10^{-1}$ S ₅
k3:	2.54
$k_2 = \frac{4}{\pi} \times 10^6$ :	1.273239545 x $10^6 \longrightarrow S_7$
k1:	$1.73 \times 10^6 \longrightarrow S_8$
M default:	1000

If the user wants to work in centimeter units instead of inch units, then a different set of constants can be loaded. All constants are the same except for the following:

a:	7.951183018 x 10 ^{−1} > S ₂
^π •k _μ :	$1.175280459 \times 10^{-5} \longrightarrow S_4$
k3:	1.0> S ₆
k ₂ :	5.012754114 x $10^5 \longrightarrow s_7$
k1:	1.11613 x $10^7 - S_8$

The inverse current density, M, is now in hybrid units. The circularmils/A must be multiplied by 2.54 before entry, and the current density,  $\Delta$ , is in A/cm². The plunger attractive force is still in pounds. If this force is desired in kilograms, change k₁ as follows:

k₁: 2.46064 x 
$$10^7 \longrightarrow S_8$$

The HP-67 user may wish the program to stop at data output points rather than executing a 5 second "print" halt. To cause the program to

stop at the data output points, change the "print" statements to "R/S" statements at the following line numbers: 047, 084, 131, 144, 160, 176, 180, 185, and 194.

# 3-7 User Instructions

	Λ		OYLINDRI	CAL SOLENOII	DESIGN		
1		Binax & ar I In the gup gap	liron Airon H	+ Volts or I - Amps	load 1/0 M. <u>Cirmils</u>	Calculate o coll design and	5
		Force, lbs ^I	calculate o pole diameter	winding I width	A.	electrical parameters	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card and both			
	sides of data card			
2	Load force required (in pounds) at maximum			
	air gap (plunger all the way out)	F	A	
ĺ				
3	Load maximum flux in the iron (gauss) and	Bmax	ENT	
	the air gap in inches	lair	f A	
4	Optional, load magnetic circuit parameters:			
	a) load magnetic path length	liron, in	ENT	
	b) load magnetic path minimum area	A _{iron} , in ²	ENT	
	c) load relative permeability	μ	f B	
		**************		
	If this step is not executed, the program			
	will use Airon = Agir and Liron = 0			
5	Calculate pole diameter		B	pole
	To, change the pole diameter, change			diameter
	B _{max} , a larger B _{max} will result in a			in inches
	smaller pole. B _{max} is material			
	dependent, and generally should not			
	exceed 15000 gauss.			
6	Load winding thickness	w, in	C	
7	Load excitation voltage or current			
	a) excitation voltage	E, V	f	
	b) excitation current (note neg value)	-I, A	f	
8	Load a value for M, the inverse coil current	M	f D	М
	density in circular-mils per ampere. If no			Δ
	value is loaded, a default value of 1000			
	will be used. Execution of this step without			
	numeric entry causes currently stored value			
	to be printed and displayed.			

### 3-7 User Instructions



STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Calculate coil design and electrical		E	N
	parameters			AWG
				ℓcoil
				L.h
				R, Ω
	***************************************	<b>.</b>		$R, \Omega$ P, watts
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Biron, G
		1	1	B _{iron} , G B _{max} , G
	•••••••••••••••••••••••••••••••••••••••			F, pounds
	******			² <del>1</del>
	***************************************			······
				•••••
		•		
<b></b>	······································			
<b> </b>		<b>_</b>		
		<b></b>		
			]	
		I	]	
		I		
	***************************************			
		1		
		<b></b>	1	
<b> </b>		+	1	
<b> </b>		<b></b>	4	
<b> </b>		<b>.</b>	4	
<b> </b>		<b>.</b>	4	
<b> </b>		<b>.</b>		
<b> </b>	••••••••••••••••••••••••••••••••••••••	<b>.</b>	4	
		<b>.</b>	]	
			]	

#### Example 3-7.1

Figure 3-7.2 shows a plunger-type, iron-clad cylindrical solenoid. Design the solenoid to have a 1 inch travel and exert an initial pull of 500 pounds when connected to a 55 volt dc source. The initial flux density in the iron shall be 7000 gauss, and the coil inverse current density shall be 700 circular-mils/A. Assume all the reluctance to be in the air gap.



Figure 3-7.2 Plunger-type, iron-clad cylindrical solenoid.

	ENT* GSEa GS55	load maximum B field in gauss (B)
	3880	
55.00		
760.82	335 <u>9</u>	load inverse current density. M in cir-mils/A
100,00	ጥጥ፣	M
1215.51	***	$\Delta$ , A/in ²
	€5EE	calculate coil design and electrical parameters
	東海 凍	N, the number of turns
12.00	草木草	AWG of wire with heavy or class 2 insulation
3.57	***	coil length in inches $(\ell_{coil})$
1.41	÷¥.¥	coil inductance in henries (L)
5.90	£43	coil resistance in ohms (R)
512.43	ж¥н	coil power dissipation in watts (P)
7296.69	<u>.</u>	actual maximum flux density in the iron
7296.69	·***	B _{max} , the flux density in the air gap
543.28	***	F, the plunger attractive force actually achieved

Example 3-7.2

A small solenoid is needed which has 0.050 inch travel, exerts an initial pull of 5 pounds, and is used intermittently with a 0.10 duty cycle. The coil excitation current is 3 A, and an initial flux density of 6000 gauss is to be used. Because of the intermittent duty cycle, an M of 100 cir-mils/A is used. The magnetic path is 1.5 inches long, has a cross-sectional area of 0.4 inch², and has a relative permeability of 500. Investigate the solenoid design with and without consideration for the magnetic path reluctance. A much more thorough analysis can be done with Program 3-8.

	Enīi GS5∢ GSEE	load initial force required in pounds (F) load maximum flux density in gauss (B _{max} ) load initial air gap in inches (L _i ) calculate plunger diameter in inches (D _p ) p
.250	GSEC	load winding width in inches (w)
-3.000	GSEC	
100.000	GSBD	load inverse current density in cir-mils/A (M)
100.000	***	M
12732.395	***	∆, A/inch ²
	GSBE	calculate coil design etc. without considering iron path
202.000	<b>*</b> **	the number of turns (N)
25.000	<b>美家</b> 声	AWG of coil wire with heavy insulation
ê.308	¥.¥.¥	coil length in inches (L _{coil} )
6.006	兼定等	coil inductance in henries (L)
1.590		coil resistance in ohms (R)
14.311		coil power dissipation in watts (P)
5996.237		maximum flux density in the iron, gauss
5996.237		B _{max} , maximum flux density in the air gap, gauss
4.994	<b>米冰</b> 片	actual initial force, F, in pounds
	Rerun	program with magnetic (iron) path considered
1.500	ENTT	load magnetic path length in inches
.400	ENTI	load magnetic path area in inches
500.000	GSBĸ	load relative magnetic permeability
	GSBE	calculate coil design and electrical parameters
209.000	来来来	N
25.000	家家身	AWG
0.319		l _{coil}
0.006		L
1.645		R
14.807		P
3597.080		B in iron area defined
5988.202		B in air gap and in iron pole pieces
4.980	***	F

Derivation of Equations Used. The number of coil turns can be calculated from the applied voltage, the desired inverse current density, and the coil inner diameter and thickness. Conveniently, copper has a resistance of 1 ohm per circular mil per inch of length at 60°C; therefore, with a uniform coil temperature of 60°C, the wire resistance is:

$$R = \frac{\ell}{M}$$
(3-7.24)

where  $\ell_w$  is the winding wire length in the coil in inches, and m is the wire cross-sectional area in circular mils. If M is defined as the inverse current density in circular-mils/A, then the cross-section of a wire carrying a current I is:

$$m = M \cdot I$$
 (3-7.25)

Since

$$R = \frac{E}{1}$$
, (Ohm's law) (3-7.26)

then

$$\frac{E}{I} = \frac{\ell}{M \cdot I}$$
(3-7.27)

Rearranging Eq. (3-7.27) and cancelling I yields:

$$E = \frac{\ell_w}{M}$$
(3-7.28)

The winding wire length can be found by multiplying the mean turn length by the number of turns:

$$\ell_{\mathbf{w}} = N \cdot \pi \cdot (D_{\mathbf{p}} + w) \tag{3-7.29}$$

where Fig. 3-7.1 defines the coil dimensions D and w. Substituting Eq. (3-7.29) into Eq. (3-7.28) and solving for N yields:

$$N = \frac{E \cdot M}{\pi (D_p + w)}$$
(3-7.30)

The best reference on the subject known to the author is rather old [47] since it was first published in 1924.

3-7

**Program Listing I** 

001 ¥lbla		056 X	
<b>00</b> 2 ST07		057 RCL3	
<u> </u>		058 ÷	calculate and store NI
004 #LBLo	LOAD Bmax & Lair	059 GSB9	using Eq. (3-7.15)
<b>005</b> 3T05		060 ÷	
006 RJ			
007 STOS		061 STDA	
		062 RCL9	
<u>008</u> GT05		063 X<0?	test for current excitation
009 *LBLB		-064 GT00	
010 RCL7		065 P≠S	
011 RCL8		066 RCL9	voltage excitation:
012 X2		067 P≠S	calculate the number of
013 ÷			turns using Eq. (3-7.4):
013 014 P≓S	$A_{air} = \frac{F \cdot k_1}{B_{air}^2}$		
	- Bair	069 RCLD	
015 RCL8		070 RCL0	<b>-</b> M
016 P≠S		071 +	$N = \frac{E \cdot M}{\pi (D_0 + w)}$
017 ×		072 Pi	`` <b>π(Dp+w)</b>
<b>01</b> 8 STÜ6	store air gap area	073 X	
019 F1?			
	_airgap area if flag 1 is set		
021 4			
		-076 *LBL0	current excitation, calcula
022 ×		077 RCLA	the number of turns using
023 Pi	$Dp = \sqrt{\frac{4 \cdot A_{air}}{\pi}}$	078 X≠Y	Eq. (3-7.5);
824 ÷		079 ÷	N = (NI)/I
025 VX		080 CHS	N = (NE)/L
026 STOD		-081 *LBL1	
027 GT04		082 INT	calculate, store and print
028 *LBLb			the integral number of turn
		083 STOI	-
<u>029 CF1</u>	indicate magnetic path used	<u>084 PRTX</u>	
030 STO4		<u>-085 *LBL7</u>	iteration loop start
031 R4		086 RCLA	calculate and store coil
<b>032</b> ST03	store data	087 RCLE	
033 R4		088 ÷	length using Eq. (3-7.11):
034 ST02		089 RCL0	
035 RTN			
	LOAD WINDING WIDTH, w	091 P#S	
<b>03</b> 7 STOG		092 RCL9	$l_{coll} = \frac{NI \cdot M}{sf \cdot k_{s} \cdot W}$
038RTN		<b>893</b> ×	st · kz · w
039 *LBLc	LOAD COIL EXCITATION,	094 RCL7	
040 STO9	+E, or -I	095 P#S	
041 GT05	goto CF3 and return subr	896 ÷	
042 *LBLD			
		<u>097 ST01</u>	
	interchange registers	098 RCLI	calculate wire diameter over
044 F3?	store input if present	099 178	ingulation weine Pr. (2 7 1
<u>045 ST09</u>		100 RCL0	insulation using Eq. (3-7.10
046 RCL9	recall and print N	101 X	
<b>0</b> 47 PRTX		102 RCL1	We local
048 RCL7		103 ×	$d = \sqrt{\frac{W \cdot l_{coul}}{N}}$
049 XZY	calculate and print $\triangle$ :	103 ×	ų N
050 ÷	$\Lambda = \frac{M}{M}$		
051 PZS	$\Delta = \frac{M}{k_z}$	105 P≠S	····· ····· ······ ······ ······ ······
	-	106 RCL2	calculate and store wire AW(
052 GT04	goto prt, spc, & CF3 subr	107 ÷	using Eq. (3-2.1)
<u>053_*LBLE</u>	CALCULATE MAIN OUTPUT	108 LN	
054 RCL8		109 RCL3	AWG = $\frac{1}{h} ln \left\{ \frac{\text{wire diameter}}{a} \right\}$
055 RCL6		1 110 ÷	AWG = b in 2 a
	REGI	STERS	
w   Lcoil	2 $\rho$ . 3 $\Lambda$ 4 4	5 0 6 1	7 F Bmax 9 + rolts
···· · · · · · · · · · · · · · · · · ·	Liron Airon M	Lair Aair	- amps
	) $S^{2}$ <b>2</b> $S^{3}$ <b>b</b> $S^{4}$ $\pi \cdot k_{4}$	^{S5} Kg S6 Kg 2.5	$\frac{57}{K_2} = \frac{4x10^6}{\pi} \frac{58}{K_1} = 1.7310^6 \frac{59}{M}$
O T ( a' 12 SI		Kg Kg = 2.5	$4 k_2 = \frac{410}{10} k_1 = 1.7310^{\circ}$ M
$\frac{2}{4}\left(\frac{a'}{a}\right)^2$ $\frac{s_1}{2}(b'-b)$	$\begin{array}{c} a \\ b \\ \pi \cdot k_4 \end{array}$		
7(4)	$\frac{1}{B} AWG \qquad C \qquad R$	D Dp	

3-7

## Program Listing II NOTE FLAG SET STATUS

					_		<u> </u>				
111	STOE	<u> </u>				ر <del>حا</del>		*LBL0	calculat	e and print	coil
112	RCL1	on le	ulate shape	factor			167	ABS		esapation u	
113	x					1	168	STOA	Eq. (3-7		DT. B
1 114	e×		ng Eq. (3-7.			1	69	χ2	54. ()-1	•21);	
115	RCLO		$r = \frac{\pi}{4} \left(\frac{a'}{a}\right)^2 \epsilon$	ANC ALL L	s I		170	RCLC	~		
116	P≠S	sf	<u>、_ エ (ヹ</u> ) e	AWG-2(D-D	1		171	X	$P = I^{2}$	R	
1 1		51	~ 4 (a/ `	-							
117	<u> </u>		`			-	172	<u>PRTX</u>			
118	RCLE	Teos	all old sf a	and store			173	GSB9		e and print	
119	X#Y	new	_				174	RCLA	Biron us	ing Eq. (3-	.7.22):
120	STOE	1104	91			1	175	x			
121						1	176	RCLI	Α = -	$\frac{0.4\pi \text{ NI/k}}{1000} + \frac{l_{air}}{1000}$	3
122	ABS						177	x	Uiron L	iron lair	· Arron
123	EEX						178	PRTX	7		Aar
		test	t for loop e	exit			179	RCL3			
124	сне		•						calculat	e and print	.1
125	3						180	×			
126	X≨Y?					1	181	RCL6	6 -	Biron · Aire	n
L-127	<b>GT</b> 07					t	182	÷	O _{max} -	Biron · Airo	_
128	RCLE					1	183	PRTX		* • 8.•	
129	INT						84	X۶			
	STOP	prir	nt & store j	ntegral AW	G		185	RCL6		e and print	
130		•		U					using Eq	• (3–7•23):	
131	PRTX					-	186	X			
132	RCL1	rece	all and prin	nt			187	P <b>‡</b> S	-	2.	
133	PRTX	the	number of t	urns		1	188	RCL8	<u> </u>	nax Aar	
134	SF2	indi	cate kz on	top	- –	t i	189	P≠S	r	k.	
135	6589					1	90	÷			
136	RCLI		culate and p			1	91	*LBL4	nrint e	pc, CF3 sul	routine
137	XS	indı	uctance usir	ıg Eq. (3-7	.17)		192	PRTX	princ, s	pe, or au	foutine
138	X			-8			93	<u>SPC</u>			
139	RCL3		$\frac{0.4\pi \cdot N^2 \cdot A}{liron}$	11001 kg . 10			194	*LBLS	CF3 and :	return subi	outine
140	x	L =	Luman	Law . Auron	-	1	195	CF3			
141	EEX			Δ	•	L1	196	RTN	_		
142	8		14 mon	L'au			197	*LBL9	magnetic	s subroutin	10
143	÷						198	RCL2	to calou		
	-						199	RCL4	to carou	Taves	
144	PRTX					-					
145	RCLB	cald	culate and p	orint			200	÷			
146	P\$S		istance usin		1.201		201	RCL5			
147	RCL5	100.		-6 -4. (/-)	•=•		202	RCL3	C	λ4π	k3(F2-1)
148	x						203	x	0	0 1	
149	e×					2	204	RCL6	Eiron +	Lair · Airor Aair	K3(12.0)
150	RCL4				. 1		205	÷	Miron	Aair	
		<b>D</b> _	$M = (D \dots)$	K5 AWE	i i		206	+			
151	P≇S	К =	• Nπ (Dp+w)	1 K4 C		-					
152	x						207	1/X			
153	RCLD						208	72	ronama + -	• 0 h - +	Z
154	RCL0					2	209	2 (	Renala ce	$\mathbf{s} \mathbf{0.4\pi}$ in	э втерв
155	+					2	210	D+R)			
156	x						211	x			
157	RCLI						212	P≠S			
							213	RCL6			
158	X						-				
. 159	STOC						214	P≠S			
160	PRTX		. <u>.</u>				215	F2?			
161	RCL9	-				2	216	178			
162	X<0?	test	t for curren	t excitet4	070 I	2	217	÷			
-163 GT08					218	RTN					
								LAG SET ST			
165	÷	usir	ng Ohma's lav	1					NOTER	LAGSEISI	7103
LABELS						FLAGS		SET STATUS			
Acre	B				E ea/	C. COIL #	<u>6                                    </u>				
^A load F	Beale i	Up	^C load w	^D load M	elec	E parama	ľ		FLAGS	TRIG	DISP
aR 1 air	b		cload +E, -I	d	8			gnetic parts	ON OFF		
Brank 1 gap	Liron 1 Ac	ron T.M.	1020 +5, -1		<u> </u>		dato.	not loaded		DEG 🔳	FIX 🗰
0 Local Label	1 Local L	abel	2	3	4 00	t put tine	-	nversion	1 🔳	GRAD	SCI
£	16		7 SF Herecien	8				order	2 🔳	RAD	ENG
CFS, LTN	1		routine	-	° 50 br	outine	ĭd∂;	ta entry	3 🔳		n_ <b>Z</b>
( <b>u</b> = ) = /·											

### PROGRAM 3-8 CYLINDRICAL SOLENOID ANALYSIS.

### Program Description and Equations Used

This program analyzes a cylindrical coil solenoid, or other magnetic circuits having many parts of varying reluctance. The information required to run the program is as follows:

- 1) The air gap in inches  $(\ell_{air})$ ,
- 2) The number of turns in the coil (N),
- 3) The AWG of the coil wire,
- 4) The length of the coil in inches  $(\ell_{coil})$ ,
- 5) The coil inner diameter in inches (ID coil),
- 6) The plunger outer diameter in inches  $(OD_p)$ ,
- The plunger inner diameter in inches if the plunger is hollow (ID_p),
- 8) The length, area, and permeability of each different magnetic section (l_{iron}, A_{iron}, μ),
- 8a) If the magnetic section is a cylindrical shell with axial flux flow, the height (h), the ID which may be zero, the OD, and the permeability (μ), can be entered, and the reluctance and cross-sectional area will be returned and automatically loaded into the program,
- 8b) If the magnetic section consists of a disc (or washer) with radial flux flow, the thickness (t), the ID, the OD, and the permeability can be entered, and the reluctance and minimum cross-sectional area will be returned and automatically loaded into the program, and
  - 9) The coil excitation in either volts or amperes (E or -I).

The program will then calculate the following parameters:

- 1) Reluctance and area of each different magnetic section  $\Re \& A_{iron}$ ,
- 2) Coil inductance and resistance (R and L),
- 3) Coil circular-mils/A, A/in², and power dissipation M,  $\Delta$ , & P),
- 4) The flux density in the air gap, and in the magnetic section with the smallest cross-sectional area (B air, B iron), and
- 5) The plunger attractive force in pounds (F).

This program uses the Ohm's law of magnetics as given by Eqs. (3-7.12) and (3-7.13), which combined yield:

$$0.4\pi \text{NI} = \emptyset \cdot \sum_{i} \frac{\ell_{i}}{\mu_{i} A_{i}}$$
(3-8.1)

As magnetic path data is entered, the program keeps a running sum of the reluctances,  $\frac{\ell_1}{\mu_1 A_1}$ , and also stores the smallest magnetic area. The iron part will saturate first where the area is the smallest, and the flux density (B) the highest. The total flux can be found from Eq. (3-8.1):

where

$$A_{air} = \frac{\pi}{4} \left( OD_{p}^{2} - ID_{p}^{2} \right)$$

$$k_{3} = 2.54$$
(3-8.3)

The plunger attractive force is found in terms of the flux:

$$\mathbf{F} = \frac{\mathbf{p}^2}{\mathbf{k}_1 \cdot \mathbf{k}_3 \cdot \mathbf{A}_{air}} \tag{3-8.4}$$

where the air gap area is in inches² and the constant  $k_1$  is:

$$k_1 = 1.73 \times 10^6$$

The inductance of the N turn coil wound on the magnetic circuit is:

$$L = \frac{N^2 k_3}{10^8} \left\{ \frac{0.4\pi}{\sum_{\substack{\mu \neq A \\ \text{iron} \\ \text{parts}}} \frac{\ell_{\text{air}}}{A_{\text{air}}} \right\}$$
(3-8.5)

This expression is basically derived in Eqs. (3-1.1) through (3-1.10).

The coil width (w) can be expressed in terms of the coil length  $\binom{\ell}{\text{coil}}$ , the number of turns (N), and the wire AWG. The wire is assumed to occupy a box as shown in Fig. 3-6.2.

coil area = 
$$w \cdot \ell_{coil} = N \cdot (wire diameter)^2$$
 (3-8.6)

Substituting the exponential relationship between AWG and wire diameter given by Eq. (3-5.10) yields:

$$w = \frac{N}{\ell_{\text{coil}}} \left( a \cdot e^{b \cdot AWG} \right)^2$$
(3-8.7)

The coil resistance can now be calculated using Eq. (3-7.20):

$$R = N \cdot \pi \left( ID_{coil} + w \right) \left( k_{4} e^{k_{5} \cdot AWG} \right)$$

The coil power dissipation is:

$$P = I^2 R$$
 (3-8.8)

If voltage excitation is used, the coil current is calculated using Ohm's law, then the power dissipation is calculated.

The coil circular mils per A is given by:

$$M = 10^{6} \cdot \left(a' \cdot e^{b' \cdot AWG}\right)^{2} / I \qquad (3-8.9)$$
wire area in  
circular mils

The coil current density in  $A/in^2$  is given by Eq. (3-8.10), i.e.:

$$\Delta = \frac{\mathbf{k}_2}{\mathbf{M}} \tag{3-8.10}$$

Two commonly encountered part shapes in the magnetic path are the cylindrical shell as shown in Fig. 3-8.1 and the disc or washer as shown in Fig. 3-8.2. Two subroutines are provided to calculate the reluctance and minimum cross-sectional area of these two shapes. Subroutine 1, thin cylindrical shell with permeability  $\mu$ .



Figure 3-8.1 Thin cylindrical shell.

The cross-sectional area is given by Eq. (3-8.3) and the reluctance is:

$$\mathcal{R} = \frac{\mathbf{h}}{\boldsymbol{\mu} \mathbf{A}}$$

This subroutine output becomes the input for the program coding under label B, and the reluctance is calculated under label B. The subroutine output is stored in the stack in the same format as data entered from the keyboard for arbitrary magnetic section, i.e.: stack
register contents
t ..... not used
2 ..... h
y ..... cross-sectional area
x .... permeability

Subroutine 2, disc or washer with radial flux flow.



Figure 3-8.2 Disc or washer with radial flux flow.

The disc is composed of an infinite number of annular shells each with infinitesimal thickness dr. The cross-sectional area of each annulus is  $2\pi rt$ . In this instance, the summation of Eq. (3-8.1) is expressed as an integral:

$$\Re = \sum \frac{\ell}{\mu A} = \frac{1}{\mu t} \int \frac{dr}{2\pi r} = \frac{\ell n (OD/ID)}{2\pi t \mu}$$
(3-8.11)  
$$r_{1} = \frac{ID}{2}$$

The disc has the smallest cross-sectional area at the inner diamater, hence:

$$A = A^{\dagger} = \pi \cdot ID \cdot t$$
 (3-8.12)

This subroutine output becomes the input for the program coding under label B. The data format used with label B is the equivalent length of a constant cross-section magnetic path, the path area, and the path permeability. The equivalent length having the above reluctance and cross-sectional area A' is:

$$\ell = \mu A' \cdot R = \left(\frac{\pi \cdot ID \cdot t \cdot \mu}{2\pi \cdot t \cdot \mu}\right) \cdot \ell n \frac{OD}{ID} = \frac{ID}{2} \ell n \frac{OD}{ID}$$
(3-8.13)

Subroutine 2 output is transferred to the program coding under label B using the stack in the same way that subroutine 1 operates.

In addition to the program card, a data card is required to load the registers with the program constants. All registers contain zero except for the following:

a' for AWG	3.241013109 x $10^{-1} - $ S
b' for AWG	$-1.158179256 \times 10^{-1} \longrightarrow S_1$
a for AWG	3.130387015 x $10^{-1} - $ S ₂
b for AWG	$-1.097333787 \times 10^{-1} \longrightarrow S_3$
$\pi \cdot k_4$ for resistance	2.985212367 x $10^{-5} \longrightarrow S_4$
<b>k</b> ₅ for resistance	2.317635483 x $10^{-1} - 5_5$
k ₃ , cm → inch	2.54 S ₆
$k_2, 4/\pi \times 10^6$	1.273239545 x 10 ⁶
k ₁	1.73 x 10 ⁶

If metric units are preferred, i.e., linear dimensions in cm, force in kg, current density in  $A/cm^2$  and inverse current density in hybrid units (circular mil-milli-centimeter/A), change the following constants.

a' for AWG	8.232173297 x $10^{-1} \rightarrow S_{o}$
a for AWG	7.951183108 x $10^{-1} \rightarrow s_2$
$\pi \cdot k_4$ for resistance	1.175280459 x 10 ⁻⁵ ≻ S4
$k_3 \text{ cm} \rightarrow \text{cm}$	1.0 ————————————————————————————————————
$k_{2}, 4/(2.54\pi) \times 10^{6}$	5.012754114 x 10 ⁵ S7
k _l	2.4606 x $10^7 - S_8$

HP-67 users may want the program to stop instead of executing a "print" statement. This can be accomplished by changing the "print" statements to "R/S" statements at the following line numbers: 102, 105, 124, and 130. To continue program execution after a stop, key a "R/S" command from the keyboard.

## **3-8** User Instructions

	CYLINDRIC	AL SOLENOID	ANALYSIS			
N I ID Corl Corl	IDptODp	+E or -I *	calculate o inductance & resistance	Calculate M, A, & P	0	5
Lair	liron Hiron + 4 *	Bair, Biren, max		Calculate Complete Summery	٥	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card and both			
	sides of data card			
2	Load air gap length in inches	Lair	A	
3	Load plunger ID and OD in inches. The ID	IDp	ENT 1	
	can be zero if the plunger is solid	OD _P	f B	
4	Load coil parameters:			
	number of wire turns in coil	N	ENT	
	wire AWG	AWG	ENT †	
	coil ID in inches	ID _{coil}	ENT 1	
	coil length in inches	lcoil	f A	
5	Load coil excitation			
	voltage excitation in volts	E	f_Q_	
	current excitation in A (note minus)	-I	fO	
6	Optional step, the main source of reluctance			
	in the magnetic path is the air gap.			
	For added accuracy, the length, area, and			
	permeability of each magnetic section may			
	be entered:			
	effective magnetic path length in inches	liron	ENT 1	
	effective magnetic path area in inches ²	Airon	ENT	
	magnetic permeability of path	μ	В	<u>R</u>
				A
·	If the magnetic section is either a			
	cylindrical shell or a disc, then a			
	subroutine can be used to calculate and enter			
	the above parameters from the section			
	dimensions.			
	For cylindrical shells with axial flux flow:		<u>د</u>	
	load shell height in inches	h	ENT 1	
	load shell ID in inches (may be zero)	ID	ENT 1	
ļ	load shell OD in inches	OD	ENT 1	
	load shell permeability	μ	GSB 1	R
				Α

### **3-8** User Instructions



STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	continued			
	For discs with radial flux flow:	*****		
	load disc thickness in inches	t	ENT	
	load disc ID in inches	ID	ENT	
	load disc OD in inches	OD	ENT 1	
	load permeability of material	м	GSB 2	R
<u> </u>				A
	Repeat step 6 for each separate magnetic			
	section in the magnetic circuit.			
				L
7	To calculate the flux density in the air gap		0	Bair, G
	and in the smallest iron cross-sectional area			Biron, G
	(the smallest area has the highest flux dens)			
	If step 6 is omitted, Ruron= O, Auron= Aaur			
	is assumed, hence, Biron = Bair			
8	To calculate the initial plunger attractive		α	F
	force in pounds			
9	To calculate the electrical inductance and		f D	L, h
	resistance at 60°C of the coil			R, ohms
10	To calculate the coil M, $\triangle$ , and power		f E	$M, \frac{c_{ir} - m_{ils}}{A}$
	<b>di</b> ssipation	***********************		$\Delta$ , $A/in^2$
				P, watts
11	To calculate all the information contained		E	L, h
	in steps 8, 9, 10, and 11			R, ohms
				M, Cir-mils
				$\Delta$ , $A/in^2$
				P, watts
				B _{air} , G
				Biron, G
ļ				F, lbs
			<u> </u>	
12	To run a new case, goto step 1 and start over			

#### Example 3-8.1

The cylindrical solenoid shown in cross-section by Fig. 3-8.3 has the following characteristics:

- 1) The coil is 150 turns of #24 AWG HF wire,
- 2) 0.5 A excitation current flows through the coil, and
- 3) The magnetic materials are 1010 mild carbon steel.

For the analysis, neglect the force required to compress the return spring.



Figure 3-8.3 Cylindrical solenoid construction.

Analyze the solenoid and determine its electrical and magnetic characteristics. Also analyze the solenoid for the same characteristics if the coil is excited by 0.6 Vdc.

The analysis is begun by breaking down the solenoid into its component geometric shapes as shown by Fig. 3-8.4.



Figure 3-8.4 Component geometric shapes of solenoid.

The component geometric shapes of the solenoid are as follows:

- 1) Cylindrical shell, 1.0" long, 0.95" ID, 1.1" OD, and  $\mu = 1000$ ,
- 2) Disc, 0.2" thick, 0.3" ID, 0.95" OD, and  $\mu = 1000$ ,
- 3) Solid cylinder, 0.2" long (active magnetic part), 0.0" ID, 0.284" OD, and  $\mu$  = 1000,
- 4) Cylindrical shell, 0.2" long, 0.25" ID, 0.284" OD, and  $\mu = 1000$ ,
- 5) Cylindrical shell, 0.2" long, 0.25" ID, 0.3" OD, and  $\mu$  = 1000,
- 6) Solid cylinder, 0.4" long, 0.0" ID, 0.3" OD, and  $\mu = 1000$ ,
- 7) Disc, 0.2" thick, 0.3" ID, 0.95" OD, and  $\mu = 1000$ ,
- 8) Disc (air gap), 0.2" thick, 0.284" ID, 0.3" OD, and  $\mu = 1$ ,
- 9) Operating air gap, 0.005" thick, 0.25" ID, 0.284" OD, &  $\mu$  = 1.

The air gap data is loaded, and the complete summary calculated, then the magnetic path component parts are loaded and the summary run again to show the difference that the magnetic circuit reluctance makes on the electrical and magnetic characteristics. This sequence is repeated with the coil excitation at 0.6 Vdc. HP-97 PRINTOUT FOR EXAMPLE 3-8.1

11-3/ FAIN	1001									
.005	GSBA	load	$\ell_{air}$	Solid Cylinder 2	<b>ENT</b> †	length		GSBE	calc	all param
					ENT†		1.661-03			
150.	ENTT	load	N	.284	ENT†	OD	759.9-03			
24.	ENT↑	load	AWG	1000.	GSB1	u	10010 00		•••	V. 44 -
		load					809.2+00	sir sir sir	M	cır-mis/A
				3.157-03	***	R	1.574+03			
				63.35-03						$A/in^2$
25	ENT†	load	τħ				190.0-03	***	Р,	watts
201	CSRL	load	ap ^p	ovlind	Inioa	l shell				-
.204	6000	load	υn _b			length	6.019+03			x Biron
	CCD.	1.0.4	-	.25			6.019+03	***	Ba	ir ^{, G}
	6300	load	-1							
		_ 7			ENTT		298.6-03	***	F,	pounds
			all *		6281	μ				
			meters			2				
2.048-03				14.03-03						
759.9-03	***	R, ol	hms	14.26-03	***	area	Look at	volt	age	excita
		•					tion.	Set f	lag	0 so
809.2+00	***	M. CIT	-mils/A	cylind	rica	l shell	magnetic			
1.574+03	***	Δ. Α.	/in2			length	ignored			
190.0-03	***	P. w	atte		ENT [†]		electric			
		× 9 W	~ • • • •		ENTT		paramete			oto
7.421+03	gir gir de	may	B _{iron}	1000.			Par amo te	SF8		
7.421+03	***	mar j	-iron	1000.	0001	μ	1 4	GSBc	10	ad F
1.421703	***	Bair	<b>,</b> Ur	9.260-03	- ان جلو ملك	R	.0	0000	10	
		-		21.60-03				CODE		
453.9-03	***	F, po	ounds	21.66-03	***	area	0 040 07	GODE	CA.	lc para
					-		2.048-03	***	وبل	n
				solid			759.9-03	***	R,	ohms
* Magne	tic 1	reluc [.]	tance			length				l . / /
is as	sume	i zero	0		ENT†		512.4+00	東東東	м,	cir-mils/A
since	flag	z 0 i	s set.		ENT†		2.485+03			$A/in^2$
Flag				1000.	GSB1	μ	473.7-03	***	Ρ,	watts
under	labe	el B.				,				
				5.659-03	***	R	11.72+03	***	ma;	^x Biron
load mag	netic	e nati	h da <b>ta</b>	70.69-03	***	area	11.72+03	***	Ba	ir, ^G
		- F - 4							<u>م</u>	~ • •
cylindr	ical	shel	1		disc		1.132+00	***	F,	pounds
•		leng		.2	ENT†	thickness			-	
	ENTT		~**		ENT†		Clear f			
	ENTT				ENT†		magnetic	; relu	acte	ance.
				1000.				CFØ		
1000.	6281	μ		10001	0006	<i>r</i>			CA.	lo para
		0	i	917.3-06	***	R	1.661-03			
		K.					759.9-03			
				1100 5-02	말 다 다 다					ATTIC D
				188.5-03	***	min area	133.3-03	· ጥ ጥ ጥ	1(9	
4.141-03 241.5-03	***					min area			•	
241.5-03	*** disc	a <u>r</u> ea			disc		512.4+00	***	м,	cir-mils/A
241.5-03	*** disc ENT†	a _{rea} thic	mess	.2	d <b>isc</b> ENT†	thickness	512.4+00 2.485+03	*** ***	Μ, Δ,	cir-mils/A <b>A/in</b> ²
241.5-03	*** disc	a _{rea} thic		.2 .284	d <b>isc</b> ENT† ENT†	thickness ID	512.4+00	*** ***	Μ, Δ,	cir-mils/A <b>A/in</b> ²
241.5-03 .2 .3	*** disc ENT†	area thic ID		.2 .284 .3	d <b>isc</b> ENT† ENT† ENT†	thickness ID OD	512.4+00 2.485+03 473.7-03	*** ***	M, ∆, P,	cı-mıls/A A/in ² watts
241.5-03 .2 .3 .95	*** disc ENT† ENT† ENT†	area thich ID OD		.2 .284 .3	d <b>isc</b> ENT† ENT†	thickness ID OD	512.4+00 2.485+03 473.7-03 9.505+03	*** *** ***	M, ∆, P, max	cimmils/A A/in ² watts ^K Biron
241.5-03 .2 .3	*** disc ENT† ENT† ENT†	area thich ID OD		.2 .284 .3 1.	d <b>isc</b> ENT† ENT† ENT† GSB2	thickness ID OD μ	512.4+00 2.485+03 473.7-03	*** *** ***	M, ∆, P, max	cimmils/A A/in ² watts ^K Biron
241.5-03 .2 .3 .95 1000.	*** disc ENT† ENT† ENT† GSB2	area thich ID OD µ		.2 .284 .3	d <b>isc</b> ENT† ENT† ENT† GSB2	thickness ID OD μ	512.4+00 2.485+03 473.7-03 9.505+03	*** *** ***	M, ∆, P, max	cı-mıls/A A/in ² watts
241.5-03 .2 .3 .95	*** disc ENT† ENT† ENT† GSB2 ***	area thich ID OD µ &	kness	.2 .284 .3 1. 43.62-03	d <b>isc</b> ENT† ENT† ENT† GSB2 ***	thickness ID OD μ	512.4+00 2.485+03 473.7-03 9.505+03	*** *** ***	M, ∆, P, Ba	cimmils/A A/in ² watts ^K Biron

### Program Listing I

3-8

[ 001 <b>∗</b> LBLA	LOAD AIR GAP IN INCHES	050 <b>*</b> LBLC	CALCULATE Bair and Biron
802 ST02		051 GSB6	calculate R. I. and NI
		052 GSB9	
<u> </u>	goto space and return		$calc (0.4\pi/k_s)/(\Sigma R_i + Lar/Aar)$
004 *LBLa	LOAD N + AWG + ID coll + Lool -	053 RCL4	use A _{air} if magnetic parama
005 ST01	store coil length	1 054 F0?	not entered, otherwise use
006 R4		055 RCL3	<u>min Airon</u>
	recover and store ID _{coil}		
<u>007 Stod</u>		<u>856 1/X</u>	take reciprocal area
008 RJ	manage and shame AWO	057 RCLI	calculate and print Ø
009 STOB	recover and store AWG	<b>0</b> 58 RCLA	cardurate and brine b
			using Eq. (3-7.2)
010 R4	recover and store N	059 ×	
<u>011 STOE</u>		<u> </u>	
012 GT00	goto space and return	061 ×	
	SUBROUTINE FOR DISC	062 P#S	calculate and prints
	SUBRUUTINE FOR DISU	-	
014 RJ		063 RCL6	
015 X≠Y		064 P <b></b> ≠S	_ <b>^</b>
016 STOI		865 X2	B
			Biron, max =
017 ÷			
018 LN	$l_{\text{effective}} = \frac{\text{ID}}{2} l_{\text{ID}} \frac{\text{OD}}{\text{ID}}$	067 ÷	
019 RCLI	ALLECTIVE N TO	068 PRTX	
020 ×		869 RCL6	
			calculate and prints
021 2		070 RCL3	-
022 ÷		071 ÷	- <i>b</i>
823 X#Y		072 RCLI	$B_{max} = \frac{\phi}{A_{aux} \cdot k_a^2}$
		073 ÷	Aar · Ka
024 RCLI	۰ <u>س</u> ۱		
825 ×	$A_{\min} = \pi \cdot ID \cdot t$	074 GT08	
026 Pi		075 *LBLE	PRINT COMPLETE SUMMARY
827 ×		076 65Bd	
028 Rt	recover μ		
029 *LBLB	LOAD Liron + Airon + A	<u>078 GSBC</u>	
030 X2Y		079 *LBLD	CALCULATE AND PRINT F
	store µ	080 65B6	
<u>031 STOI</u>			
( 032 F8?	store A _{iron} on first	081 SF2	
033 ST04	execution of this routine	082 GSB9	
034 X	Towney at and a set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of	083 RCLA	
	1		
035 ÷	$\mathcal{R}_{i} = \frac{\mathcal{L}_{\text{mon}}}{\mathcal{M}_{i} \cdot \mathcal{A}_{\text{max}}}$		
036 SPC	· ····································	085 X2	
037 PRTX	<b>*</b> • • •	086 RCL3	_ 0*
038 ST+5	add R; to S	087 ÷	$F = \frac{\phi^2}{k_1 \cdot k_1^4 \cdot A_{111}}$
			Kr Kg A Ar
039 RCL4	test to see if present area	088 P\$S	-
040 RCLI	is smaller than minimum	089 RCL8	
041 X≦Y?	stored area, if so, store	090 P\$S	
<u>042 ST04</u>	present area		
<u>043 CF0</u>	indicate magnetio parama	<u>892 GT08</u>	
844 GSB8	print area and space	093 *LBLd	OALOULATE AND PRINT L & R
845 GT00		094 GSB6	
	goto space and return		
046 *LBLb	Calculate and store	095 GSB9	
047 GSB4	calculate and store	096 RCLE	
048 ST03	annular area	097 X2	
			<b>?</b> .
049 GTO0	goto space and return		<u>N[*]k₃ 0.4π</u>
NOTE:		<b>0</b> 99 EEX	$L = \frac{N^2 k_a}{10^8} \cdot \frac{0.4 \pi}{\sum R + \frac{l_{air}}{A_{air}}}$
		100 8	$\sim 2.6(+\frac{3.61}{2.61})$
ine prin	t" statements at line numbers	101 ÷	iron Aair
037, 102, 105.	124. and 130 may be changed		
to "R/S" atatam	ents if desired.		
	TV AAATTAR®	103 RCLC	recall and print resistance
1			·
		STERS	
	12  3  4		7 8 10
w Lcoil	Lair Aair I'min Airon	Σ LA O	Scratch I I E
		32 32	S7 . S8 . S9
50 <b>a'</b> 51 <b>b'</b>	S ² a S ³ b S ⁴ π k ₄	⁵⁵ Ks Ks	5 K2 K2
A IB		D IE	
A NI B	AWG [°] R	D coil OD	N scratchpad

2	A.	
	v	

## Program Listing II NOTE FLAG SET STATUS

	•								
104	*LBL8	print and space	subroutine	15	-		subr to c	alo R. I,	and NI
105	PRTX			16		PIS			
106	GT00					RCL2			
107	*LBLc	LOAD COIL EXCIT	ATION			RCL3			
108	ST09			16		esb3			
	*LBL0	space and return	n subroutine	16	4	Xs	N	- (a·e b·	wg vs
110	SPC			1 16		RCLE	$W = \frac{1}{p}$	– (a·e	)
111	RTN_			16		x	200	i( `	
	*LBLe	GALCULATE AND P	RTNA M P		7	RCL1			
		ONDODATE AND I	······································		58	÷			
113	GSB6				59	STOO			
114	P≓S				70	RCLD			
115	RCL0					t t			
116	RCL1				71				
117	esb3				72	RCLE			
118	X2	<b>b</b> / .	6 ⁴ ΑWG \2	1	73	x			
119	RCL8	M = 10 ⁶ (a' e	)		74	P≓S	-	(ID _{coil} + W)	K5 · AW
120	÷	•	•		75	RCL4	R = Nπ	: (ID _{coni} + W)	к _q e
121	EEX				76	RCL5			-
122	6				77	GSB3			
122	x				78	X			
					79_	STOC			
124	PRTX				80	RCL9			
125	1/X						test for	current e	xcitatio
126	P≢S	۱.			81		2020 101		
127	RCL7	$\Delta = \frac{k_2}{M}$			<u>82</u>	<u></u>			
128	P≓S	– M			83	÷	I = E,	R	
129	x				84	1/X		11. a 1 1	
130	PRTX				85	*LBL0	jump_des	tination	
131	RCL8			1	86	ABS	store I	1	
132	χz			1	87	<u></u>		<u></u>	
133	RCLC	$P = I^2 R$			88	RCLE		e and stor	n NT
134	X	_			89	x	Galoula		• •• ••
					90	STOA			
	GT08	CYLINDRICAL SHE	T.I. SURR		91	RTN			
136	*LBL1	OTHER DELIVER DELI			92	*LBL9	magnetic	s subrout	ne
137	STOI				93	7			
138	R∔				94	2	0.4 π		
139	GSB4						0.170		
140	RCLI				95	D+R			
141	GTOB				96	RCL2			
142	*LBL3	subroutine to a	calculates		197	RCL3			
143	P≓S				98	÷			
144	RCLB	Ry · e ^{R_{x · Av}}	VG		199	RCL5			
145	x		* *1		90	F0?			1
145	e×	Ry · C			201	CLX			(F2×9).
	×				202	+	~	4.7	ks
147	RTN				203	÷.		4π	
148					204	₽≠S	Σĸ	+ Lair	Ksz
		mubroutine to (	calculates				1000	Aar	(F2=4)
149	*LBL4	BEDIQUETHO CO			705	DCIE		- 4-4 -	· ··
150	X2				205	RCL6			
150 151	X² X≓Y				206	P‡S			
150 151 152	X2				2 <b>06</b> 207	₽ <b>‡</b> \$ F2?			
150 151	X2 X≠Y X2 -				206 207 208	P≢S F2? 1∕X			
150 151 152	X² X≓Y X2	<b>Δ Τ</b> ( <b>α</b>			206 207 208 208 209	₽ <b>‡</b> \$ F2? 1∕X ×			
150 151 152 153	X2 X≠Y X2 -				206 207 208 209 209 210	P <b>‡S</b> F2? 1∕X × 			
150 151 152 153 154	X2 X2Y X2 Pi	Area = $\frac{\pi}{4}$ ( C			206 207 208 208 209	₽ <b>‡</b> \$ F2? 1∕X ×	return	to main pr	ogram
150 151 152 153 154 155	X2 X2Y X2 Pi X 4 ÷	Area = $\frac{\pi}{4}$ ( C			206 207 208 209 209 210	P <b>‡S</b> F2? 1∕X × 			
150 151 152 153 154 155 156	X2 X7Y X2 Pi X 4	Area = $\frac{\pi}{4}$ ( C			206 207 208 209 209 210	P <b>‡S</b> F2? 1∕X × 		FLAG SET	STATUS
150 151 152 153 154 155 156 157 158	X2 X2Y X2 Pi X 4 ÷	Area = $\frac{\pi}{4}$ (C	DD ² - ID ² ) BELS		206 207 208 209 210 211	P2S F2? 1/X x STOI_ RTN FLAGS			STATUS
150 151 152 153 154 155 156 157 158	X2 X2Y X2 Pi X 4 ÷	Area = $\frac{\pi}{4}$ ( C	DD ² - ID ² ) BELS		206 207 208 209 210 211	P≠S F2? 1/X × STOI RTN	NOTE	FLAG SET	STATUS B DISP
150 151 152 153 154 155 156 157 158 A Laur	X2 XZY X2 Pi X 4 ÷ RTN	Area = $\frac{\pi}{4}$ (C) Area = $\frac{\pi}{4}$	DD ² - ID ² ) BELS	complete	206 207 208 209 210 211	P≠S F2? 1 / X × STOI	NOTE	FLAG SET	STATUS DISP
150 151 152 153 154 155 156 157 158 A Laur	X2 X2Y X2 Pi X 4 ÷ RTN B <i>l</i> _{cron} 1, b IDp	Area = $\frac{\pi}{4}$ (C) Area = $\frac{\pi}{4}$ (C) Area = $\frac{\pi}{4}$ (C) Area = $\frac{\pi}{4}$ (C) Bay, max Bron ODp = $\frac{1}{4}$ (C) Area = $\frac{\pi}{4}$ (C)	$\frac{3ELS}{Calc} = \frac{1}{2}$	complete summary Cale M, A, \$P	206 207 208 209 210 211	P#S F2? 1/X X STOI RTN FLAGS	NOTE FLAGS	FLAG SET SET STATUS TRIG USOFTS Choice DEG GRAD	STATUS DISP FIX SC1
150 151 152 153 154 155 156 157 158 A Laur	X2 X2Y X2 Pi X 4 ÷ RTN B <i>l</i> _{cron} 1, b IDp	Area = $\frac{\pi}{4}$ (C) Area = $\frac{\pi}{4}$ (C)	DD ² - ID ² ) <b>BELS</b> D _{cals} F ^d _{cals} L ₁ R ^d _{cals} L ₁ R ^g wire \$138 Subrouting	complete summary calc M, A, ¢ P	206 207 208 209 210 211	P2S F2? 1/X × STOI RTN FLAGS	NOTE	FLAG SET SET STATUS TRIG	STATUS DISP

### PROGRAM 3-9 MAGNETIC RELUCTANCE OF TAPERED CYLINDRICAL SECTIONS.

#### Program Description and Equations Used

This program calculates the magnetic reluctance of tapered cylindrical sections with axial flux flow as shown by Fig. 3-9.1. The magnetic reluctance is analogous to electrical resistance, and is used in the Ohm's law of magnetics as given by Eq. (3-8.1).



Figure 3-9.1 Tapered cylindrical section and dimensions.

Consider the section to be composed of an infinite number of washers each of infinitesimal thickness dx, then the reluctance of a washer is:

$$d\mathcal{R} = dx/(\mu \cdot A_{x}) \qquad (3-9.1)$$

where

$$A_{x} = (\pi/4) (0D_{x}^{2} - ID_{x}^{2})$$
 (3-9.2)

The inner and outer diameters at location x can be found by linearly interpolating between the known end diameters:

$$ID_{x} = ID_{1} + (1/t)(ID_{2} - ID_{1}) \cdot x$$
 (3-9.3)

$$OD_x = OD_1 + (1/t)(OD_2 - OD_1) \cdot x$$
 (3-9.4)

Substituting Eqs. (3-9.3) and (3-9.4) into Eq. (3-9.2) and collecting like powers of x results in a quadratic:

$$A_{x} = (\pi/4)(a + bx + cx^{2})$$
 (3-9.5)

where

$$a = OD_1^2 - ID_1^2$$
  

$$b = (2/t) \{OD_1(OD_2 - OD_1) - ID_1(ID_2 - ID_1)\}$$
  

$$c = (1/t^2) \{(OD_2 - OD_1)^2 - (ID_2 - ID_1)^2\}$$

hence,

$$\mathcal{R} = \frac{4}{\mu \pi} \int_{0}^{t} \frac{dx}{a + bx + cx^{2}}$$
(3-9.6)

The result of this integration can have any one of three forms; let

$$q = b^2 - 4ac$$
 (3-9.7)

and

$$r = (2cx + b) / \sqrt{|q|}$$
 (3-9.8)

then if q>0 and |r|<1, the solution is:

$$\Re = -\frac{8}{\mu \pi \sqrt{|q_1|}} \tanh^{-1} r \qquad (3-9.9)$$

if q>0 and  $|r| \ge 1$ , the solution is:

$$\Re = \frac{4}{\mu \pi \sqrt{|q|}} \ell_n \left(\frac{r-1}{r+1}\right)$$
(3-9.10)

if q < 0, the solution for all **r** is:

$$\mathcal{R} = \frac{\mathbf{8}}{\mu \pi \sqrt{|\mathbf{q}|}} \tan^{-1} \mathbf{r}$$
(3-9.11)

### 3-9 User Instructions

MAGNETIO	RELUCTANCE	OF TAPERED	CYLINDRICAL	SECTIONS	
load ID ₁ † ID ₂	load OD ₁ + OD ₂	load section length, t	load permea- bility, $\mathcal{M}$	print ? calculate R	2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of the magnetic card			
2	select print/ no-print option		f	0 (no prt)
			fE	1 (print)
			<b>f</b>   E	0 (no prt)
				:
┝──┤			<del>.</del>	
3	Load inner diameters	ID ₁ *	ENT 4	
		$ID_2^*$		
4		0D. #		<u> </u>
	Load outer diameters	0D ₁ *	ENT	
		0D ₂ *	B	
5	Load section length	t*	C	
6	Load magnetic permeability of material		D	
7	Calculate reluctance		E	R **
	Notes			
	* Any units of the users choosing may be			
	used as long as the same unit is used			
	throughout. If the reluctance is going			
ļļ	to be loaded into Program 3-7, then			
ļļ	inch units should be used.			
<b> </b>				
	** The units of reluctance are in inverse			
	dimension units, i.e., inches ⁻¹ , cm ⁻¹ ,			
	ft ⁻¹ , etc.			
<u></u> ⊧ <b>∤</b>				ļ
┟╂				<b></b>
<b> </b>				<u> </u>
<u>├</u> <b> </b>				
┝┣	······································			
				L

### Example 3-9.1

Given the conical section shown in Fig. 3-9.2, calculate the reluctance in inch units.



Figure 3-9.2 Tapered conical section.

	Enti 238h	ID ₁ ID ₂
.4 .2	Entt S368	$ \begin{array}{c} \operatorname{OD}_1\\ \operatorname{OD}_2 \end{array} $
	6680	t
1668.	63E0	μ
3.872-03	3885 Nr#	calculate reluctance R, in ⁻¹

3-9

### **Program Listing I**

001 *LBLA	LOAD ID1 + ID2	019 *LBL	
002 ST01		020 RCL	
003 R↓	store entries	021 RCL.	2
<u>004</u> STO0		022 -	$(OD_2 - OD_1)^2$
005 GTO0	goto space and return subr	023 X	
006 *LBLB	LOAD OD1 4. OD2	024 STO	B
007 STO3		025 LST	calculate and retain in stk:
008 R↓	store entries	026 RCL:	
<u>009 ST02</u>		<u>027 x</u>	
<b>810 6T00</b>	goto space and return subr	028 RCL.	calculate W/ register ariths
011 *LBLC	LOAD SECTION LENGTH	829 RCLI	
<b>812</b> ST04		030 -	
013 GTO0		031 ENT	$(OD_2 - OD_1)^2 - (ID_2 - ID_1)^2$
014 *LBLD	LOAD PERMEABLISITY	032 X	
015 ST05		<u>033</u> ST-4	
016 *LBL0	space and return subroutine	034 R.	calculate and store b:
017 SPC		035 RCLI	
013 RTN		036 ×	
		037 -	
		038 ENT	$\frac{2}{1} \left\{ OD_{1}(OD_{2} - OD_{1}) - ID_{1}(ID_{2} - ID_{1}) \right\}$
		039 +	t (
		040 RCL4	
		041 ÷	
Ĩ		042 ST07	,
		043 RCL4	
		844 X2	
		045 ST÷8	
		046 RCL	
		047 X2	
		048 RCL2	
		049 X2	
		050 RCLE	
		051 X2	
		052 -	g = b [#] -4ec
- [		053 RCL8	-
		054 x	
		055 4	
		056 ×	
		057 -	
		058 STOB	
		059 ABS	calculate and store:
		060 JX	
		<u>061</u> STOA	181
		062 RCL4	calculate and store:
J		063 GSB0	
		064 ST09	t
1		065 CLX	
		066 GSB0	
		867 ST-9	U
}			
		1	
1			
1		STERS	. 7 . 8 9 ct
$^{\circ}$ ID ₁ $^{\prime}$ ID ₂	2 OD ₁ 3 OD ₂ 4 t	⁵ µ ⁶ scrate	h / b  ° c  ° 5
50 S1	S2 S3 S4	S5 S6	\$7 \$8 \$9
30 31	JS2 JS3 JS4	55 50	
A /III B		D	
	a C 2cx+b	L .	ľ R ľ
1 7, 20, 1	V		

3-9

## **Program Listing II**

		8010				-		17		·····	
4	868	RCL9	cald	oulate and	store	]		13 *LBL		mmic solutio	on
1	069 070	4		uctance				14 RCL			
1	670	X						15 RCL	.8		
1	071 070	RCL5		, /t		ļ		16 -	-		
	072	Pi	γ <u>2</u> =	_4 (	dx			17 RCL			
ļ	673	х	μ(-	$=\frac{4}{\mu\pi}\int_{a}^{t}$	+ bx + Cx2			18 RCL			
	074 075	÷		Ó					F		
	875	STOE							÷		
	076	F1?	pri	nt reluctan	oe and spac				_N		
ł	077 070	PRTX		flag 1 is s				22 RCL			
	078 070	F1?			-			<u>23 ÷</u> 24 R1		to main pro	
	079 800	SPC				ŀ		25 ¥LBL		aetric solu	tion .
<b></b>	<u> </u>	<u>RTN</u> *LBL0	- · · · ·					25 #LBL 26 RCL	-	-	OF OF
	001 082	ENT†		ogral ovalu	ation			20 KCL 27 TAN		te tan ⁻¹ r	
	083	EMI+ +	sub:	routine				28 *LBL		ortion of	
	083 084	RCL8						29 EN1		lic and tri	gonomet wie
+	085 085	X	cal	culate and	store r:				solution		Pornume (1.10
1	086	RCL7						31 RCL	-A	4 M	
•	087 087	KULY +		<u> </u>				32 ÷			
+	688	STOC	r	<u> </u>	-					to main pro	gram
+	089	RCLA	•	$=\frac{2cx+b}{\sqrt{ q }}$				34 *LEL		R R/S TOGGL	
+	090	÷		i tar				35 F1			
1	091	ST06						36 GTC		flag l is	80 L
ł	092	ABS	<u> </u>					37 SF		z 1 –	· · · · · · · · ·
ł	093	EEX		flag 0 if		IG O		38 EE		in display	·
	094	SFØ	of :	r is greate	r than 1			39 RT		control to	
4	Ø95	X>Y?						40 *LBI	7		
1	<i>096</i>	CFØ						41 CF	J GIGAF I.	lag 1 and p	
1	097	RCLB						42 CL	X 2010 IN	the display	y
ł	098	X<0?	1111111	p if q is l	ess than O					control to	keyboard
<u>ا</u> ا		CT00	السبب ل	L 4 40 1	and Arrest A	ŀ					
	100	F0?	····· ·								
-	-101	GTO2	ງນໜ	p if flag O	15 <b>56</b> 7						
	102	EEX		culate tanh	-1						
	103	RCL6	0ġ1(	culate tann	- <b>r</b>						
	104	+									
110	105	EEX									
	106	RCLE		<b>.</b> .	<b>.</b>						
	107	-	ta	$nh^{-1}r = \frac{1}{2}$	$ln \frac{1+r}{r}$						
	108	÷		2	1-r						
	109	4X									
	110	<u>LN</u>	<b></b>			_ 、 _					
	111	CHS	cha	nge sign pe	r Eq. (3-8.	9]]					
	-112	GT01	ว้านหม								
					·						
1 11	•										
	1										
							Flag	l shou	ld be set (	cleared) be	fore
	1								rd recordin		
							the	user's	desire for	the program	to
									in the pri:		
									ard read.	.,,	-
						1					
									<u> </u>	<u> </u>	
					IELS			FLAGS	<u> </u>	SET STATUS	
A Loa		B load		C load t	D Load permeability	ECA	ctance	0 r>1	FLAGS	TRIG	DISP
J IDA 1	Da	<u>004 † 0</u>	V2	с <u>с</u>	d	e oru	t/ R/S		ON OFF		
ļ					-	<u>to</u>	gle	' print	0 🖉	DEG	FIX
	cal bel	1 subroot		2 subrartine	3 print 12/5	4		2	1	GRAD	SCI
15 B		<u>destina</u> 6	ri 60	destination . 7	destination 8	9		3		RAD 🗰	ENG 🔳
L				L	L	I			3		" <u> </u>

Part 4 HIGH FREQUENCY CIRCUIT DESIGN

#### PROGRAM 4-1 BILATERAL TRANSISTOR AMPLIFIER DESIGN USING S PARAMETERS.

#### Program Description and Equations Used

When  $s_{12}$ , the reverse transmission coefficient, cannot be reduced to near zero using unilateral design methods,* or the unilateral figure of merit is not sufficiently near zero, the bilateral design method must be used. Since  $s_{12}$  is related to the capacitive reactance of the transistor base-collector capacity, and this reactance becomes smaller as frequency increases, the bilateral design requirement generally occurs when the amplifier is to be used at UHF frequencies and above.

The bilateral stability factor, K, is computed using Eq. (4-1.1). For the amplifier to be unconditionally stable, K must be greater than one, and the magnitudes of  $s_{11}$  and  $s_{22}$  must be smaller than one. Since  $s_{11}$  and  $s_{22}$  are reflection coefficients, this last requirement implies that the input and output impedances are positive. Unconditional stability means the amplifier will not oscillate for any choice of input and output terminations.

$$K = \frac{1 + |\Delta|^2 - |\mathbf{s}_{11}| - |\mathbf{s}_{22}|}{2|\mathbf{s}_{21} \cdot \mathbf{s}_{12}|}$$
(4-1.1)

$$\Delta = \mathbf{s}_{11} \cdot \mathbf{s}_{22} - \mathbf{s}_{21} \cdot \mathbf{s}_{12}$$
 (4-1.2)

When K is less than one, the amplifier will oscillate with certain source and load impedances, hence, these impedances must be carefully selected. The HP EE pac Program 18 will calculate the stability circles to aid in the termination impedance selection.

The scattering parameters are:

 $s_{11}$  is the input reflection coefficient,  $s_{12}$  is the reverse transmission coefficient,  $s_{21}$  is the forward transmission coefficient, and  $s_{22}$  is the output reflection coefficient.

* See the HP EE pac Program 16 for unilateral design methods.

Scattering parameters are obtained from reflection coefficient measurements applied to a two port network with both ports loaded with a reference impedance,  $Z_0$ , which is typically 50 ohms resistive. The reflection coefficient is defined by Eq. (1-1.2). For a more comprehensive discussion of s parameters, see Froehner [24], HP application note 95 [32], or Carson [15].

If the proposed amplifier is unconditionally stable, then the maximum gain can be calculated using Eq. (4-1.3)

$$G_{\max} = \left| \frac{s_{21}}{s_{12}} \right| \cdot (K \pm \sqrt{K^2 - 1})$$
 (4-1.3)

The negative sign is used when B₁ is positive and vice-versa:

$$B_{1} = 1 + |s_{11}|^{2} - |s_{22}|^{2} - |\Delta|^{2}$$
 (4-1.4)

The source and load reflection coefficients necessary to provide G are given by Eqs. (4-1.5) and (4-1.6). These loads present a conjugate match to the transistor.

$$\rho_{MS} = c_1^* \cdot \frac{B_1 \pm \sqrt{B_1^2 - 4|c_1|^2}}{2|c_1|^2}$$
(4-1.5)

$$\rho_{ML} = C_2^* \cdot \frac{B_2^* \sqrt{B_2^2 - 4|C_2|^2}}{2|C_1|^2}$$
(4-1.6)

$$B_{2} = 1 + |s_{22}|^{2} - |s_{11}|^{2} - |\Delta|^{2}$$
 (4-1.7)

$$C_1 = s_{11} - \Delta \cdot s_{22}^{*}$$
 (4-1.8)

$$C_2 = s_{22} - \Delta s_{11}^*$$
 (4-1.9)

The minus sign in Eqs. (4-1.5) and (4-1.6) is used when B₁ is positive and vice-versa. The asterisk (*) means the complex conjugate, i.e., the sign of the imaginary part is reversed, or the sign of the angle is reversed for rectangular or polar formats respectively.

Equations (4-1.5) and (4-1.6) are used to calculate reflection coefficients. The corresponding impedances can be obtained if Eq. (1-1.2) is rearranged to provide  $Z_{I_{i}}$  in terms of  $Z_{s}$ :

$$Z_{L} = Z_{0} \frac{1+\rho}{1-\rho}$$
(4-1.10)

This routine is contained under label E of the program.

## 4-1 User Instructions

BILATERAL	TRANSISTOR	AMPLIFIER DESIG	N USING S	PARAMETERS	
		PSource > max		print, R/S	5
load	calculate	calculate		toggle $Aptipit Z_{o}$ $+ I_{m}, Re Z$	
<u> Oij†Sij†ij</u>	K, Gmax	Pload, max		$+ I_m, Re Z$	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of magnetic card			
2	Select print or R/S option		fEfEfE	0 (R/S) 1 (print) 0 (R/S)
3	Load elements of s parameter matrix for ij = 11, 12, 21, 22 (any order)			
	<ul> <li>a) load angle of sij in degrees</li> <li>b) load magnitude of sij</li> </ul>	O _{ij}  s _{ij}	ENT 1	
	c) load subscript	1j		
4	Calculate stability factor and maximum gain		B	K G _{max} , dB
.5	Calculate angle and magnitude of load reflection coefficient to obtain G _{max}		0	X PmL I PmLI
	Calculate real and imaginary parts of load impedance	Z	<b>.B</b>	Re Z _L Im Z _L
6	Calculate angle and magnitude of source			+
	reflection coefficient to obtain G _{max}		<b>f</b> 0	4 Pms 1 Pmsl
	Calculate real and imaginary parts of			
	source impedance	2 ₀	E	Re Z _s Im Z _s
7	Calculate real and imaginary parts of	<b>∱</b>		
<i>1</i>	impedances corresponding to a reflection	4 P	ENT 1	••
	coefficient and Z _o	161	ENT +	
		Z _o		Re Z

#### Example 4-1.1

Given a 2N3570 transistor operating at  $I_c = 4$  mA and  $V_{ce} = 10$  V and having the following s parameters at 750 MHz,

$$\begin{bmatrix} \mathbf{s}_{11} & \mathbf{s}_{12} \\ \mathbf{s}_{21} & \mathbf{s}_{22} \end{bmatrix} = \begin{bmatrix} 0.277 \ 4 - 59^{\circ} & 0.078 \ 4 \ 93^{\circ} \end{bmatrix}$$
  
**1.920 4 60^{\circ}** 0.848 4 - 31^{\circ}

calculate the stability factor, the maximum power gain in dB, the source reflection coefficient and impedance to obtain  $G_{\max}$ , and the load reflection coefficient and impedance to obtain  $G_{\max}$ .

PR	OGRAM INPUT	PROGRAM OUTPUT			
-59.000 ENT† .277 ENT† 11. GSBA	$\theta_{11}$ , angle in degrees $s_{11}$ , magnitude ij	GSBE 1.833-00 *** 12.81+08 ***	calculate K & G _{max} K > 1, uncond stable G _{max} , dB		
93.000 ENT* .078 ENT* 12. GSBH	s ₁₂ ij	658c 135.4+00 *** 729.8-03 ***	calculate $\rho_{MS}$ $\downarrow \rho_{MS}$ , degrees $  \rho_{MS}  $		
64.000 ENT† 1.920 ENT1 21. GSBA -31.000 ENT†	$\mathbf{s}_{21}$ ij $\mathbf{\Theta}_{22}$	9.083+00 ***	calculate Z _s Re Z _s , ohms Im Z _s , ohms		
.848 ENT: 22. GSBR	s ₂₂ ij	6365 <b>33.</b> 85+00 *** <b>351.</b> 1-03 ***	calculate p _{ML} Xp _{ML} , degrees   ^p ML		
		14.59+00 ****	calculate Z _L Re Z _L , ohms Im Z _L , ohms		

4-1

### **Program Listing I**

001 *LBLA	LOAD 0114 sij4 1j	056 GSB5	
002 ENT†		057 X2	
<i>003 +</i>	calculate storage register	858 LSTX	
004 2		059 X≠Y	
685 1	index	060 EEX	
006 -		061 -	
007 STOI		062 IX	
		063 RCL5	Isul ( ) ( 2 ( )
008 R4	recover and store sij	064 X	$G_{max} = \frac{ -x }{9} (K \pm \sqrt{K^2 - 1})$
<u>009 STO;</u>		065 -	$G_{max} = \left  \frac{S_{21}}{3_{12}} \right  \cdot \left( K \pm \sqrt{K^2 - 1} \right)$
<u>610 ISZI</u>	increment register index		
011 R↓	recover and store Q ₁₁	066 RCLB	- used when $B_1$ is +
<u>012 STO;</u>		067 ×	
013 GT03	goto space and return	068 RCL3	
014 *LBLB	CALCULATE K, Gmax	<u>069</u> ÷	
015 RCL2		070 ABS	
016 RCL1	calculate and store sll.s ₂₂	071 LOG	
017 RCLD		072 EEX	9~***
018 RCLE		073 1	
019 GSB9		<u>074 ×</u>	
020 ST06	S ₁₁ · S ₂₂	075 GT00	goto print and space subr
021 R4	-11 -221	076 *LBLc	CALCULATE Province max
<u>022 ST07</u>	<u>Å</u> . S ₁₁ _S ₂₂	077 RCL7	calculate $-\Delta \cdot S_{22}$
		078 RCL6	Galdulate - A · S22
	calculate and store:	079 RCLD	
		080 RCLE	
		081 CHS	
026 RCLC		082 GSB9	
027 GSB9	$\Delta = S_{11} \cdot S_{22} - S_{12} \cdot S_{21}$	083 <u>CHS</u>	
028 CHS			
029 RCL7			recall s _H
030 RCL6		<u>085 RCL1</u>	and and the Party of Party
031 GSB8		086 <u>6SB2</u>	
032 ST06		087 RCLD	
033 R∔		088 RCL1	
<u>034 ST07</u>	<u>4</u> <u>A</u>	089 GSB7	calc $ s_{41} ^2 -  s_{22} ^2 -  \Delta ^2 + 1 = B_1$
035 RCLD	finish K calculation	<u> </u>	jump
036 RCL1		<u>091 *LBLC</u>	CALCULATE Plead, max
037 GSB7	$B_{1} =  S_{11} ^{2} -  S_{22} ^{2} -  \Delta ^{2} + 1$	🕴 092 RCL7	calculate $-\Delta \cdot S_{44}$
038 RCL6	-q (-1)) (-ee) (-)	093 RCL6	
039 X2		094 RCL1	
040 EEX		095 RCL2	
041 +		096 CHS	
042 RCL1		097 GSB9	
043 X2		098 CHS	
<b>.</b>		099 RCLE	
		100 RCLD	recall \$22
045 RCLD		101 GSB2	cale and print & Pload, max
046 X2	$ 1 +  \Delta ^2 -  5_{11} ^2 -  5_{22} ^2$	102 RCL1	Isul
047 -	$1 +  \Delta  -  S_{11}  -  S_{22} $	102 RCL1 103 RCLD	
048 RCL3		<u>104 GSB7</u>	$\frac{1}{2221} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac$
049 RCLB		105 *LBL1	calculate refl coef mag
050 ×			-XB
051 ABS		106 RCLA	
052 ENT†		107 RCL8	
053 +	_	108 RCL0	101
054 ÷	$(1 +  \Delta ^2 -  S_{14} ^2 -  S_{24} ^2)^2$	109 ENT†	
055 ST09	$K = \frac{1 +  \Delta ^2 -  S_{11} ^2 -  S_{22} ^2}{2  S_{21} \cdot S_{12} }$	110 +	
J	~   224 · 242		· · · · · · · ·
h		STERS	, 7 scratch, 8 scratch, 9
0  C    SH	² X S ₁₁ ³  S ₁₂ ⁴ X S ₁₂	$5 \operatorname{sign}(B_1)  \Delta $	, <u>Δ</u> <u>B2 or B1</u> <u>K</u>
		· · · · · · · · · · · · · · · · · · ·	<u>57</u> 58 59
SO Rep SI Imp	$\begin{bmatrix} s_2 \\ Z_0 \\ Z_0 \end{bmatrix}$ , $Z_s \begin{bmatrix} s_3 \\ 4 \\ z_s \end{bmatrix}$	<b>S</b> 5 <b>S</b> 6	
^А д С [*] , д В ^В	$ S_{21} $ $C$ $4$ $S_{21}$	D S ₂₂ E	A S22 index
		1 1 2 2 2 1	

### **Program Listing II**

4-1

				C		
111	÷			166	_ `	
112	ENTŤ	D (/D)2		167	ST08	
		$ \varphi  = \frac{B}{2C} - (\operatorname{sign} B) \sqrt{\left(\frac{B}{2C}\right)^2 - 1}$				
113		$17 = \frac{1}{20} = \frac{1}{39} \frac{1}{10} \frac{1}{120}$		168	X=0?	
114	EEX	V.		169	EEX	
115				170	ABS	
116				171	LSTX	
117	RCL5			172 -	÷	
118				173	ST05	
119				174	RTN	
120	*LBL0	print and space subroutine		175	*LBL8"	complex add subroutine
121	6\$85			176	→R	
122	*LBL3	space subroutine		177	R↓	
123	F0?	space if flag 0 is set		178	R↓	
124	SPC	shade II IIak o Is see		179	÷₽	
125						
	GT06	goto R/S lock		180	X≇Y	
126	*LBLE	CONVERT & PAIPIAZo - Im. Re	ZI :	181	R4	
127	P#S			182	+	
128	ST02			183	R∔	
129	₽∔			i 84	+	
130				185	RŤ	
		0				
131	STOO	Re Q		186	÷₽	
132	EEX	,		187	RTN	
133	+			188	*LEL9	complex multiple
						complex multiply subroutine
134		_		189	R↓	
135	ST01	Imp		190	x	
136		<b>\</b>		191	R↓	
137		1+9		192	+	
138	STX2	Z _o -`(1+p)		193	RŤ	
139				194	RTN	
148		<b>4 (1+ p)</b>		195	#LBL2	subroutine to finish C
141	RCL1	•		196	6588	
142	CHS	- T- A		197	STOØ	calculation, store results
		-Im p				and print angle of
143				198	X≠Y	reflection coefficient
144	RCLØ	Rep		199	CHS	YOU TOO DION COOLLICTONC
145						
		<b>A a</b>		200	STOA	
146	÷٩	1-0	i i	201	*LBL5	print subroutine
147	ST÷2	$ Z_0  \cdot  (1+p)/(1-p)  =  Z $	3	202	F0?	
148		(-0) (cz. fr) (z. fr)		203		
					PRTX	print and return if flag 0
149		X(1+p) - X(1-p) = XZ	i	264	F0?	is set, otherwise stop
150		4Z		205	RTN	· · · · · · · · · · · · · · · · · · ·
	RCL2					
151		121		206	R/S	
152	<u>₽</u> ‡S		ź	207	RTN	
153	→R	convert to rectangular fmt	с <del>т</del> с	208	*LBL6	R/S look
		print Re Z		100		
<u>154</u>	GSB5				D / ^ `	
				209	R/S	prevents inadvertent use
155	XZY	recover Im 2		210	R∕S` <u>GT06</u>	of program fons w/ R/S
	XZY	recover Im 2		210	<u>GT06</u>	of program fons w/ R/S
156	XZY 6700.	recover Im 2 print Im 2 and space		210	GTO6 *LBLe	of program fons w/ R/S PRINT, R/S TOGGLE
<u>156</u> 157	XIY GT00 *LBL7	recover Im 2		210 211 212	<u>GTO6</u> *LBLe CF0	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate
156	XZY 6700.	recover Im 2 print Im 2 and space		210 211 212 213	GTOG *LBLe CFO CLX	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate
156 157 158	<u>X≓Y</u> <u>GTO0</u> *LBL7 X2	recover Im 2 print Im 2 and space subroutine to calculate:		210 211 212 213	GTOG *LBLe CFO CLX	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero
156 157 158 159	<u>X≠Y</u> <u>GT00</u> *LBL7 X≠ X≠Y	recover Im 2 print Im 2 and space		10 11 12 13 14	GTOG *LBLe CFO CLX RTN	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate
156 157 158 159 160	X2Y GT00 *LBL7 X2 X2Y X2Y X2	recover Im 2 print Im 2 and space subroutine to calculate:		210 211 212 213 214 215	GT06 *LBLe CF0 CLX RTN *LBLe	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display
156 157 158 159	<u>X≠Y</u> <u>GT00</u> *LBL7 X≠ X≠Y	recover Im 2 print Im Z and space subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$		210 211 212 213 214 215 216	GTOG *LBLe CFO CLX RTN	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero
156 157 158 159 160 161	X2Y GT00 *LBL7 X2 X2Y X2Y X2	recover Im 2 print Im 2 and space subroutine to calculate:		210 211 212 213 214 215 216	GTO6 *LBLe CF0 CLX RTN *LBLe SF0	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate
156 157 158 159 160 161 162	<u>X 2 Y</u> GT00 *LBL7 X2 X2Y X2 EEX	recover Im 2 print Im Z and space subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$		210 212 213 214 215 216 217	GT06 *LBLe CF0 CLX RTN *LBLe SF0 EEX	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate print and continue mode
156 157 158 159 160 161 162 163	X2Y GT00 *LBL7 X2 X2Y X2 EEX +	recover Im 2 print Im Z and space subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$		210 211 212 213 214 215 216	GTO6 *LBLe CF0 CLX RTN *LBLe SF0	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate
156 157 158 159 160 161 162	<u>X 2 Y</u> GT00 *LBL7 X2 X2Y X2 EEX	recover Im 2 print Im Z and space subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$		210 212 213 214 215 216 217	GT06 *LBLe CF0 CLX RTN *LBLe SF0 EEX	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate print and continue mode
156 157 158 159 160 161 162 163 164	X2Y GT00 *LBL7 X2Y X2Y X2 EEX + RCL6	recover Im 2 print Im Z and space subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$		210 212 213 214 215 216 217	GT06 *LBLe CF0 CLX RTN *LBLe SF0 EEX	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate print and continue mode and place a one in display
156 157 158 159 160 161 162 163	X2Y GT00 *LBL7 X2 X2Y X2 EEX +	recover Im 2 print Im Z and space subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$		210 212 213 214 215 216 217	GT06 *LBLe CF0 CLX RTN *LBLe SF0 EEX	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate print and continue mode
156 157 158 159 160 161 162 163 164	X2Y GT00 *LBL7 X2Y X2Y X2 EEX + RCL6	recover Im 2 print Im 2 and space subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$ sign (B) - R5		210 211 212 213 214 215 216 217 218	GTOG *LBLe CFØ CLX RTN *LBLe SFØ EEX RTN	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate print and continue mode and place a one in display NOTE FLAG SET STATUS
156 157 158 159 160 161 162 163 164 165	X2Y GT00 *LBL7 X2 X2Y X2Y EEX + RCL6 X2	recover Im 2 print Im 2 and space subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$ sign (B) - R5 LABELS		210 211 212 213 214 215 216 217 218	GT06 *LBLe CF0 CLX RTN *LBLe SF0 EEX	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate print and continue mode and place a one in display
156 157 158 159 160 161 162 163 164 165	X2Y GT00 *LBL7 X2 X2Y X2Y EEX + RCL6 X2	recover Im 2 print Im 2 and space subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$ sign (B) - R5 LABELS		210 211 212 213 214 215 216 217 218	GTOG *LBLe CFØ CLX RTN *LBLe SFØ EEX RTN FLAGS	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate print and continue mode and place a one in display NOTE FLAG SET STATUS SET STATUS
156 157 158 159 160 161 162 163 164	X2Y GT00 *LBL7 X2Y X2Y X2 EEX + RCL6	$\frac{recover Im 2}{print Im 2 and space}$ subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$ sign (B) $\rightarrow R5$ $\frac{LABELS}{C - R_{mL}} = D$	2 2 2 2 2 2 2 2 2 2 2 2 2	210 211 212 213 214 215 216 217 218	GTOG *LBLe CFØ CLX RTN *LBLe SFØ EEX RTN	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate print and continue mode and place a one in display NOTE FLAG SET STATUS FLAGS TRIG DISP
156 157 158 159 160 161 162 163 164 165	X2Y GT00 *LBL7 X2 X2Y X2Y EEX + RCL6 X2	$\frac{recover Im 2}{print Im 2 and space}$ subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$ sign (B) $\rightarrow R5$ $\frac{LABELS}{C - R_{mL}} = D$	2 2 2 2 2 2 2 2 2 2 2 2 2	210 211 212 213 214 215 216 217 218	GTOG *LBLe CFØ CLX RTN *LBLe SFØ EEX RTN FLAGS	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate print and continue mode and place a one in display NOTE FLAG SET STATUS FLAGS TRIG DISP ON OFF
156 157 158 159 160 161 162 163 164 165	x2 <u>GT00</u> *LBL7 x2 x2 x2 EEX + RCL6 x2 B→K,G	$\frac{recover \text{ Im } 2}{print \text{ Im } 2 \text{ and space}}$ subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$ sign (B) - R5 $\frac{LABELS}{max} \stackrel{C}{\to} R_{mL} \stackrel{D}{\to} E$	2 2 2 2 2 2 2 2 2 2 2 2 2	210 211 212 213 214 215 216 217 218	GTOG *LBLe CFØ CLX RTN *LBLe SFØ EEX RTN FLAGS	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate print and continue mode and place a one in display NOTE FLAG SET STATUS FLAGS TRIG DISP ON OFF 0 DEG FIX
156 157 158 159 160 161 162 163 164 165 ^ Ogi t sij tij a	x2Y GT00 *LBL7 X2 X2Y X2Y EEX + RCL6 X2 B → K,G	recover Im 2 print Im 2 and space subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$ sign (B) - R5 LABELS LABELS $C - P_{mL}$ $C - P_{ms}$ d d e acception b acception b ac	2 2 2 2 2 2 2 2 2 2 2 2 2	210 211 212 213 214 215 216 217 218	GTOG *LBLe CFØ CLX RTN *LBLe SFØ EEX RTN FLAGS	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate print and continue mode and place a one in display NOTE FLAG SET STATUS <u>SET STATUS</u> FLAGS TRIG DISP ON OFF 0 DEG FIX 1 GRAD SCI
156 157 158 159 160 161 162 163 164 165 ^ Ogi t sij tij a	x2Y GT00 *LBL7 X2 X2Y X2Y EEX + RCL6 X2 B → K,G	recover Im 2 print Im 2 and space subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$ sign (B) - R5 LABELS LABELS $C - P_{mL}$ $C - P_{ms}$ d d e acception b acception b ac		210 211 212 213 214 215 216 217 218	GTOG *LBLe CFØ CLX RTN *LBLe SFØ EEX RTN FLAGS	of program fons w/ R/S PRINT, R/S TOGGLE elear flag 0 to indicate R/S mode and place a zero in the display set flag 0 to indicate print and continue mode and place a one in display NOTE FLAG SET STATUS <u>SET STATUS</u> FLAGS TRIG DISP ON OFF 0 DEG FIX 1 GRAD SCI
156 157 158 159 160 161 162 163 164 165 ^ O;jts;jtij a	x2Y GT00 *LBL7 X2 X2Y X2Y EEX + RCL6 X2 B → K,G	recover Im 2 print Im 2 and space subroutine to calculate: $\chi^2 - \gamma^2 -  \Delta ^2 + 1 = B$ sign (B) - R5 LABELS LABELS $C - P_{mL}$ $C - P_{ms}$ d d e acception b acception b ac	2 2 2 2 2 2 2 2 2 2 2 2 2	210 211 212 213 214 215 216 217 218	GTOG *LBLe CFØ CLX RTN *LBLe SFØ EEX RTN FLAGS	of program fons w/ R/S         PRINT, R/S TOGGLE         elear flag 0 to indicate         R/S mode and place a zero         in the display         set flag 0 to indicate         print and continue mode         and place a one in display         NOTE FLAG SET STATUS         FLAGS TRIG       DISP         ON OFF       DEG       FIX         1       GRAD       SCI

### PROGRAM 4-2 UHF OSCILLATOR DESIGN USING S PARAMETERS.

#### Program Description and Equations Used

At UHF frequencies, the interelement capacities of a UHF transistor can function as the feedback elements to allow the device to oscillate when connected to an external tuned circuit (usually a  $\frac{1}{4}$ -wave transmission line section). The emitter circuit is generally left unbypassed while the base circuit is bypassed with a capacitor to provide an ac ground. The collector-emitter capacity provides the necessary feedback to allow the collector to exhibit negative output impedance and oscillate with the external tuned circuit.

The program starts with the common base s parameters, reverses the port ordering so the collector is the input, and calculates the reflection coefficient of the "input." If the magnitude of the reflection coefficient is greater than one, the real part of the input impedance will be negative. The routine under label E provides the conversion from reflection coefficient to impedance, while the routine under label e provides the reverse conversion.

Equation (4-2.1) calculates the input reflection coefficient when the output port is loaded with  $R_L$  as shown by Fig. 4-2.1. Equation (4-2.1) holds for any transistor configuration.

$$s_{11}' = s_{11} + \frac{s_{12} \cdot s_{21} \cdot \rho_{L}}{1 - s_{22} \cdot \rho_{L}}$$
(4-2.1)

where  $\rho_{L}$  is defined by Eq. (1-1.2) with  $Z_r = R_L$ .



Figure 4-2.1 Common base transistor with collector as input port.

If the tuned source is connected to the collector, and the reflection coefficient of the source is denoted  $\rho_s$ , the circuit will oscillate if:

$$\rho_{s} \cdot s_{11} \geq 1$$
 (4-2.2)

This equation is used in reverse to calculate the source reflection coefficient necessary for oscillation, i.e.:

$$\rho_{s} = \frac{1}{s_{11}}$$
(4-2.3)

This reflection coefficient can be converted to its equivalent impedance using Eq. (4-1.10). The "Q," or quality factor, of this impedance is the ratio of the imaginary part to the real part, i.e.:

$$Q = \frac{\text{Im } Z}{\text{Re } Z_{s}}$$
(4-2.4)

The transistor negative input impedance can also be used to make a reflection amplifier if a circulator is used to separate the input from the output. The noise figure will be poor because of the large unby-passed emitter resistance.

For more information see the HP Journal [33], or HP application note number 95 [32].

Notes for User Instructions. Most UHF transistors are four lead devices (emitter, base, collector, and case). The case is electrically isolated from the transistor, in fact, the transistor chip is so small that it is mounted on the end of the collector lead inside the case. Because of the fourth element, the case, the parasitic capacities from it to the other leads will introduce errors into the common-emitter to common-base s parameter conversion. See G. Bodway's article [9] on characterization of transistors by means of three port scattering parameters as one way of dealing with this problem.

If the common base s parameters are available, or can be measured, they are the highly preferred form of data input for the program. Common-base parameters notwithstanding, the common-emitter conversion can be used with the knowledge that  $s_{11}$  will not be very accurate.

# 42 User Instructions

		OSCILLATOR	DESIGN USI	IG S PARAMET	FDC	
ſ¶.	T 11 POT. OTHER LIG N	fA,C,fD,E	print s matrix	calculate	Init Reztzo	-
	load data Bijt(sijl≮ij	1080 4- Put / Pul	calculate	load A pst ife	-40,101 40110112	
		<u> </u>	311	calc su ps	+ ImZ, ReZ	

STEP				
-		DATA/UNITS	KEYS	OUTPUT
1	Load both sides of program card or load		†	
*****	Program 4-3 if parameter conversion read		-1	
_			-	+
2	Load s parameters. If already in common		<del> </del>	— <del> </del> —
	base form, goto step 10 after executing		-	
	this stop.		-	
	a) load angle of scattering parameter	0	ENT	
	b) load magnitude of scattering parameter	<u>•ii</u>		
	c) load subscript of scattering parameter		ENT	
	Repeat this step for ij = 11, 12, 21, 22			
	in any order			
3	To convert common emitter s parameters to	·		
	common base, load EE1-06A, parameter			
	conversions: s ± Y, G, Z, H. (see notes			
	in step 16)			
4	Convert a name to the			
	Convert s parameters to Y parameters	Z	B	
5	Lord Program & Z. L.	<u>   </u>		
~	Load Program 4-3 to convert common emitter	<u> </u>		
	Y parameters to common base Y parameters			
6	Perform OF to an			
	Perform CE to CB conversion	T	B	+
7	Reland FEI OCH			
·	Reload EE1-06A to convert Y parameters back			
	to s parameters			
3				
	Convert Y parameters to s parameters	Zo	f B	+
+				h
2	Reload both sides of this program card (4-2)			·/
<u>}</u>	Calculate load reflection coefficient	╺╼╼╼╌┟╸		<del>{</del>
	a) load imaginary part of Z	Im Z _L	ENT	
	of load real part of Zemitter	Re ZL	ENT	
	c) load reference impedance			
		<u>Z</u> o	E E	<u> X PL</u>
				1921

### 4-2 User Instructions



STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
11	Enter load reflection coefficient	4 <i>C</i> L	ENT	
	(if step 10 is used, the reflection	1941	В	
	coefficient magnitude and angle are already			
	in the stack use key "B" alone)			
┝═╇		ļ		<u> </u>
12	Interchange port ordering 1=2			
13	Calculate s11'		C	4 S ₁₁
			1	\$41'
14	<b>Calculate</b> $P_s = 1/s_{11}'$	1	<b>f</b> D	¥ 1/511'
				1/5 ₄₁ ´
15	Convert $\rho_g$ to $\mathbf{Z}_g$ : enter reference impedance	Z _Q	E	Im Z _s
[]				Re Z _s
	To find the minimum resonator Q		÷	·
			1 7	Qain
16	The lead reflection coefficient is not			
	erased when Program 4-3 or EE1-064" is used,			
<b> </b>	hence, for another case, the keystrokes			
	in steps 12, 13, 14, and 15 are contained			· • • • •
	in user definable key fB, therefore, for			
	another case, do steps 1 through 9, then			
	execute fB			<u> </u>
	• In HP EE pac (supplied by HP)			<u>μ</u> 1/s ₄₁
				1/
		1		Im Z _B
				Re Z _B
				Quin
ł				
<b>├</b> ╂				
} <b>†</b>				
[]		•		h

#### Example 4-2.1

A UHF oscillator using a RCA 2N5179 transistor is to operate between 300 MHz and 400 MHz. The transistor is to be operated at 1.5 mA collect-tor current and 4 volts  $V_{ce}$  per the manufacturer's recommendations. At 300 MHz the common-emitter y parameters are:

{(6.5 + j9.0) x 
$$10^{-3}$$
}{ -j1.35 x  $10^{-3}$  }  
{(32 - j32) x  $10^{-3}$  }{(0.25 + j2.6) x  $10^{-3}$ }

and at 400 MHz the common-emitter y parameters are:

{(9.2 + j10.7) x 
$$10^{-3}$$
}{ -j1.8 x  $10^{-3}$  }  
{(25 - j34) x  $10^{-3}$  }{(0.3 + j4.0) x  $10^{-3}$ }

The proposed oscillator schematic is shown in Fig. 4-2.2, and biasing networks have been added to achieve the manufacturer's recommended bias. The 100 ohm resistor in series with the RFC lowers the Q of the resonant circuit formed by the RFC and the coax capacity so the circuit will not preferentially oscillate at that lower frequency.



Figure 4-2.2 Oscillator schematic for Example 4-2.1.

HP-97 PRINTOUT FOR EXAMPLE 4-2.1, 300MHz CASE

		UKEXAMPLE 4-2.1, 300M -3 & load y params	Load Program EE1-06A (EE pac)
_	-	select y parameters	
	·		JU. SODA IVAL IEIGIGIGE Z &
	ENT1	Im load yie and	convert y params to s parameters
	÷Ē	Re convert to	5 parameters
103	x GSBA	polar format	
<i>i</i> 1.	GODH	ij	
90	ENTT	0 load yre in	
1.35-03		mag polar format	load this program (Program 4-2)
12.	GSBA	ij	
	ENTT		GSBc print s parameters
- <u>-</u>	CHS	Im load y _{fe} and Re convert to	147.6+00 *** <b>4 s</b> ll 464.4-03 ***   <b>8</b> 11
	÷₽	polar format	464.4-03 *** ¦∎11
103		-	93.63+00 *** <b>48</b> 12
21.	GSBA	ij	41.01-03 ***   <b>B</b> 12
	FUT.		
2.6 .25	ENT? →P	Im load y and Re convert to	-27.41+00 *** 4821 1.404+00 *** 1821
103		polar format	1.404+00 ***   <b>¤</b> 21
	GSBA		-10.62+00 *** <b>4</b> #22
		-	1.024+00 *** \$22
54.16+60		print stored params	Towa til and catourate
11.10-03	***	⁴ y ₁₁ or ⁴ y _{ie}  y ₁₁   or  y _{ie}	$\rho_{\rm L}$ using 50 ohm $Z_{\rm o}$
	•••		0 ENTA TH D-
<b>-90.</b> 00+00	***	<b>4 Υ</b> 12 <b>4 Уге</b>	0. ENT† Im RL 220. ENT† Re R _L
1.350-03	***	^{¥ y} 12  y12  or ^{¥ y} re  y ₁₂	50. GSBe Zo
-45.00+00			0.000+00 *** × PL
45.25-03	水冰水 水水水	^{¥ y} 21  y ₂₁ or ^{¥ y} fe  y _{fe}	629.6-03 ***   Pi
10120 00	ተተተ	y ₂₁   ••  y _{fe}	
84.51+00	***	^{4 y} 22 ~ ^{4 y} oe	GSBB load $\rho_L$ into program
2.612-03	***	^{¥y} 22 or ^{¥y} 0e  y22  or  y0e	ESBb execute design
			-9.018+00 *** 4.811'
			1.027+00 *** (s11')
	GSBB -	CE - CB conversion	
	GSBE	print stored params	9.018+00 *** 4 1/s11'
-29.31+00	***	4 Yib	973.4-03 *** [1/s11']
44.44-03	***	yib	616.0+00 *** Im ZL for Z = 50.0
78.69+00	***	X V ,	$105.9+00 *** Re Z_{L}$ for $Z_{0} - 50 \Omega$
-1.275-03	***	4 yrb  yrb	~
		IA T.D I	5.817+00 *** $\mathbf{Q}_{\min} = \operatorname{Im} \mathbf{Z}_{L} / \operatorname{Re} \mathbf{Z}_{L}$
-42.35+00	***	¥Уfb	
-43.64-03	***	y _{fb}	
84.51+00	***	X 77 _	
2.612-03	*** ***	⁴ ^y ob	
	·····	Уор	

A transmission line segment is designed to provide the load reactance of j616 ohms to resonate at 300 MHz. The real part of the load reactance is ignored since the Q of the resonant line will be much larger than the minimum Q required. The amplitude of the oscillation will increase until the amplifier becomes non-linear and its power gain is reduced to the point that Eq. (4-2.2) is satisfied with the equals sign.

Because of the high load reactance required, a high  $Z_0$  in the resonant line is desired. For the transmission line, use a #12 AWG wire spaced 0.25" off a ground plane as shown by Fig. 4-2.3.



Figure 4-2.3 Air dielectric transmission line.

The characteristic impedance, Z_o, of this line is:

$$Z_{o} = \frac{138}{\sqrt{\varepsilon_{r}}} \log \frac{4h}{d}$$
(4-2.5)

where  $\varepsilon_r$  is the relative dielectric constant of the dielectric, and is unity for air. Using this  $\varepsilon_r$ , and the d and h shown in Fig. 4-2.3, the characteristic impedance of the line is 150.6 ohms.

If the trimmer capacitor at the far end of the line is a 1 - 10 pF piston trimmer, its reactance with 10 pF at 300 MHz is:

$$X_c = -j/(2\pi f C) = -j53.05 \text{ ohms}$$
 (4-2.6)

The length of transmission line that transforms -j53.05 ohms to j616 ohms is needed. Equation (1-1.1) can be manipulated to provide the solution for line length i.e.:

$$e^{2\gamma\ell} = \frac{\rho}{\rho_{t}} \tag{4-2.7}$$

where  $\rho_t$  is defined by Eq. (1-2.7). Since the transmission line load impedance is purely imaginary, as is the required input impedance, and the line is essentially lossless, the expressions for the reflection co-efficients are the ratios of complex conjugates, and Eq. (4-2.7) can be reduced to the following forms:

$$\ell = \frac{\lambda}{2\pi} \left\{ \tan^{-1} \left( \frac{\mathbf{j} \cdot \mathbf{Z}_{\mathbf{r}}}{\mathbf{Z}_{\mathbf{o}}} \right) - \tan^{-1} \left( \frac{\mathbf{j} \cdot \mathbf{Z}_{\mathbf{s}}}{\mathbf{Z}_{\mathbf{o}}} \right) \right\}$$
(4-2.8)

where

$$\gamma = \mathbf{j}\beta = \mathbf{j}\frac{2\pi}{\lambda}$$

Using Eq. (4-2.8) with  $Z_r = -j53.05$  ohms,  $Z_s = 616$  ohms,  $Z_o = 150.6$  ohms, and  $\lambda = 3 \times 10^8/\text{freq} = 1$  meter = 39.27 inches yields  $\ell = 10.46$  inches. This length is too long to be practical. If capacity is added to the transistor collector circuit, less inductance will be required from the transmission line stub, and a shorter stub can be used. If 10 pF is added from the collector to ground, the susceptance of this capacitor will be:

$$B = 2\pi f C = (2\pi)(300 \times 10^6)(10^{-11}) = 18.85 \text{ mmho}$$

This susceptance is subtracted from the susceptance required from the transmission line stub to obtain the new transmission line susceptance and hence, input reactance:

$$B_{\text{line}} = \frac{-1}{616} - 0.01885 = -0.02047 \text{ mho}$$

or

$$X_{\text{line}} = \frac{-1}{B_{\text{line}}} = 48.84 \text{ ohms}$$

Using Eq. (4-2.8) with  $Z_s = j48.84$  and the other parameters unchanged yields  $\ell = 4.09$  inches, which is much more practical. With this line length, the trimmer capacitor value for oscillation at 400 MHz is calculated as shown by the HP-97 printout in Fig. (4-2.5). Again, neglecting the real part of  $Z_L$ , and accommodating the susceptance of the additional 10 pF at the transistor collector, the line must present a reactance of 36.22 ohms to the collector. Using Eq. (4-2.8) and solving for  $Z_r$  given  $\ell = 4.09$  inches,  $\lambda = 29.53$  inches,  $Z_s = j36.22$  ohms and  $Z_o =$ 150.6 ohms yields  $Z_r = -j110.8$  ohms. At 400 MHz, -j110.8 ohms is the reactance of a 3.6 pF capacitor, which is within the tuning range of the piston trimmer capacitor. The complete schematic of the oscillator is shown in Fig. 4-2.4, which was breadboarded and does oscillate over the 300 to 400 MHz range. This type of oscillator is often used as the local oscillator in UHF tv tuners.



Figure 4-2.4 UHF oscillator schematic.

	······································		······································
	am 4-3 and load y param		EE1-O6A (EE pac)
1. 63	Be select y parameters	50. GSBb	load reference Z &
- TO.7 EN	IT Im yie		convert y parameters
	*F Re yie		to s parameters
1	x		
11. GSI	BA <b>ij</b>	Load this pr	ogram (Program 4-2)
	t yre	GSBc	print s parameters
1.8-03 EN	Tt Vrel	139.2+00 ***	4 ^s ll
12. GSI	BA ij	450.8-03 ***	¹ 1
-34. EN	In y _{fe}	95.19+00 ***	4 <b>s</b> 12
25		77.48-03 ***	^s 12
	X		r 121
21. GSI	^{3A} ij	-36.90+00 ***	^{4 s} 21
		_ 1.369+00 ***	^s 21
4. EN .3	- •0e	-15.96+00 ***	X <b>a</b>
103		1.059+00 ***	<u> 4822</u>
22. GSI		1.002.00 ###	^s 22
	- J		
			load $R_L$ and calc $\rho_L$
	E print stored values	1	using 50 ohm $Z_0$
49.31+00 **			-
14.11-03 **		0. ENT†	
	1* 1ei	220. ENT†	Re RL
-90.00+00 *×		50. GSBe 0.000+00 ***	Z _o
1.800-03 **		629.6-83 ***	ች የ _L  የ _L
			1741
-53.67+00 ** 42.20-03 **	· • T C		
42.20-03 XX	^{ok}   ^y fe	GSBB	load $e_L$ into program
85.71+00 **			execute design
4.011-03 **		-13.06+00 ***	4 s ₁₁
		1.067+00 ***	⁴ ⁵ 11
			i 11 i
GSE	B convert CE $\leftarrow$ CB	13.06+00 ***	41/s11'
 GSE	E print CB values	] 937.0-03 ***	l/s ₁₁ '
-31.45+00 **	· · · · · · · · · · · · · · · · · · ·	407 0.00	
40.44-03 **	7 10	403.8+00 ***	$\lim_{D_0} Z_L  \text{for } Z_0 = 50$
	1 101	116.3+00 ***	Re $Z_{L}^{-101}$ 20 - $0$
82.23+00 **	7 • rh	3.471+00 ***	$Q_{\min} = \text{Im } Z_{L} / \text{Re } Z_{L}$
-2.220-63 **	⊯  γ _{rb}		······································
-49.86+60 **			
-49.86+00 ** -39.24-03 **			
	*  y _{fb}		
85.71+00 **	*		
4.011-03 **	ж <mark>у</mark> орі		
Fig 4.25	HP-07 printerst floor //	L	

Fig. 4-2.5 HP-97 printout for 400 MHz case.

# **Program Listing I**

4-2

901	<b>ALELH</b>	LOAD S PARAMETERS:	056 X≠Y
002	ENTT		057 ST+9
	+		058 RCL9 C Siz S24 Pu
003		1 1-1to-man during	$ \begin{array}{c} 058 & RCL9 \\ 059 & RCL8 \end{array} \right\} \mathbf{s}_{H} = \frac{\mathbf{s}_{12} \cdot \mathbf{s}_{21} \cdot \mathbf{p}_{L}}{1 - \mathbf{s}_{22} \cdot \mathbf{p}_{L}}  \mathbf{rect} $
064	2	calculate storage index	$0.03 \text{ KULO} $ $1^{-322} \cdot \gamma_{\rm L}$
005	1		060 →P
996	-		061 ST08 )
007	STOI		$\frac{312}{662} + \frac{312}{541} + \frac{312}{1} + \frac{312}{522} + \frac{9}{9}$
008			063 STO9 ) 1- 322 . YL
		recover and store Gij	064 GTOS goto print subroutine
809	<u> </u>		
010	ISZI	increment index	
011	R↓	recover and store sij	066 P#S
012	<u>stoi</u>		067 STOO   <b>?</b>
013	6709	goto space and return	068 X≠Y
014	*LBLB	ENTER LOAD REFLECTION COEF	069 STO1 4P
015	ST06	store magnitude	070 P‡S
016	X≠Y		071 RCL9 4 54
	ŝto7	store angle	072 RCL8 (\$41')
017			
018	GT09	goto space and return	073 P≠S
019		CALCULATE 811	074 ST×0 (P1.1911')
020	RCL3	S ₁₂	075 X≠Y
021	ST08	· · ··	076 ST+1 40+4541
022		¥ \$12	077 RCL0
023			078 RCL1
		$ S_{21}  = S_{41} + \frac{S_{42} S_{21} P_{4}}{1 - S_{42} P_{4}}$	079 P#S
024		S21  1 - S22 Pu	080 GIOS goto print subroutine
925			
026		<b>Δ</b> 9 ₂₁	
027	ST+9		082 1/X reciprocate magnitude
028	$RCL\epsilon$	1961	083 X≠Y
029		1461	084 CHS change sign of angle
030		X a	085 GT08 goto print subroutine
		<b>ϟ</b>	086 *LBLE CALO Re, Im Z GIVEN XP 1 10 + Z.
031		<b>4</b> -	
032		Å 522	087 P#S
033	RCL7	4 e	088 STO4 <b>Z.</b>
034	+		089 RJ
035	RCLD	Szz	090 →R 1+P
036		161	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
037			092 EEX
038			
			093 + 1+Req 094 X#Y
039			
040			095 ST03 Im ρ
041			096 X≠Y
Ø42	÷₽	1 - SZ2. PL	097 →P ¼+pl
043		(0	198 SIX4 1
044			099 X=Y { Zo. (1+P)
045			100 ST05 )
		$2 g_{12} \cdot g_{21} \cdot P_L$ in polar	101 RCL3
046			
647		1-S22. PL coordinates	102 CHS
048		2	103 EEX
<u>0</u> 49	ST08	) in rect	104 RCL2
050	X≠Y	S12. 921. PL coordinates	105 -
051		$\int 1 - s_{22} \cdot \rho_L = 0001 \text{ and } 0001$	106 →P <b>1</b> -P
052		3 ₁₁	107 ST÷4
053		~11	108 $X \neq Y$ > calc Z
			109 ST-5
054			
055	ST+8		110 RCL5
		REGI	STERS
<u> </u>	1		
0	S11	² × 5 ₄₄ ³   S ₁₂   ⁴ × S ₁₂	(PL) A VL Scratch scratch
		<u>63</u> <u>64</u>	
so scratch	^{S1} scratch	^{S2} Im $\rho_{L}$ ^{S3} Re $\rho_{L}$ ^{S4} Z ₀ , $ Z_{L} $	S5 scratch, ^{S6} scratch ^{S7} ^{S8} ^{S9} 4 Zu
A	В	S21 C 4 S21	D  s ₂₂   E X s ₂₂ I index
		S21  4 S21	

4-2

# **Program Listing II**

				0			0				
111	RCL4		•				166	GSBC			
112	P≢S						t67	GSBd			
					i		168				
113	÷R							J	} use 50	) ohm Z	
114	X≠Y						169		٠ ١	v	
115	<u>GT08</u>	goto DI	rint sub	routine			170	GSBE			
115	*LBLe				717		171	÷			
$\frac{110}{117}$	<u>F</u> ‡S	4	LJI HIGTA	EN In ZARez			172	GSB5			
		-									
[ 118	ST04	z.					t7 <u>3</u>	<u>GT09</u>		ice and re-	turn subr
119	R4						174	*LBLc	PRINT S	PARAMETER	MATRIX
120	ST03	Re Z				-	175	RCL1			
121	R↓		•	$\frac{\overline{Z-Z_{o}}}{Z+Z_{o}}$			176	RCL2	S11		
		<b>+ -</b>	<u>ب</u>	7+7.					~11		
122	ST02	Im Z		£- • ••0		2	177	<u>GSB8</u>	· ·		
123	RŤ						178	RCL3			
124	R†.						179	RCL4	S12		
125	-	Zo - Re	7				180	GSB8			
		-0 102	· <u>~</u>				181	RCLB			
126	÷₽								•		
127	ST05	Z 1	∠ I				182	RCLC	S21		
128	X₽Y						183	GSB8			
129	ST06	4 (Zo	- <b>z</b> )				184	RCLD			
		4 1 40	- 61				185	RCLE	S22		
130	RCL2				1						
131	RCL3						186		print a	proutine_	
132	RCL4						187	GSB5			
133	+						188	X₽Y			
		1-7	71				189	GSB5			
134	÷₽	Zo +	I.		1						
135	ST÷5				í		190	*LBL9	space ar	id return	subrouting
136	X≠Y				[		191	F0?	8880- 44	flag 0 1	a ae+
137	ST-6						192	SPC	phace II	TTAR 0 1	
138	RCL5	191					193	RTN			
					- F				2/0 1_ct	nin autoa	
139	RCL6	<u> </u>				· ~~ ,	94		NO 1061	up subrou	100
1 440	D-4-0					1 -		D .O			
140	P≢S						195	R∕S			
			rint sub	routine							
.141	GT08	goto pi	rint sub	routine			196	<u>_GT07</u>	arint or	- R/S mihr	outine
<u>141</u> 142	GTO8 *LBLa	goto pi	rint sub HANGE PO	routine RTS 1 AND		L_	196 (97_	_GT07 *LBL5		<u>R/S</u> subr	
<u>141</u> <u>142</u> 143	GTO8 *LBLa RCLE	goto pi	rint sub HANGE PO	routine RTS <u>1 AND</u>	 2		196 197 198	<u>GT07</u> <u>*LBL5</u> F0?			
<u>141</u> <u>142</u> 143 144	GT08 *LBLa RCLE RCL2	goto pr INTERCI	HANGE PO	routine RTS 1 AND			196 197_ 198 199	<u>GT07</u> <u>*LBL5</u> FØ? PRTX	if flag	0 is set,	
<u>141</u> <u>142</u> 143 144	GT08 *LBLa RCLE RCL2	goto pr INTERCI	HANGE PO	routine RTS 1 AND	 .2		196 197 198	<u>GT07</u> <u>*LBL5</u> F0?		0 is set,	
141 142 143 144 145	GT08 *LBLa RCLE RCL2 ST0E	goto pi	HANGE PO	routine RTS 1 AND	 2		196 197 198 199 200	<u>GT07</u> <u>*LBL5</u> FØ? PRTX FØ?	if flag	0 is set,	
, <u>141</u> 142 143 144 145 145 146	GTD8 *LBL₀ RCLE RCL2 STDE X≠Y	goto pr INTERCI	HANGE PO	routine RTS 1 AND	2		196 197 198 199 200 201	<u>GT07</u> <u>*LBL5</u> FØ? PRTX FØ? <u>R</u> TN	if flag and retu	0 is set, arn	
<u>,141</u> <u>142</u> 143 144 145 146 <u>147</u>	GTD8 *LBLa RCLE RCL2 STOE X≢Y STO2	goto pr INTERCI	HANGE PO	routine RTS 1 AND			196 197 198 199 200 201 202	<u>GT07</u> <u>*LBL5</u> F0? PRTX F0? RTN R/S	if flag and retu otherwis	0 is set, arn	
<u>141</u> <u>142</u> 143 144 145 146 <u>147</u> 148	GTD8 *LBL₀ RCLE RCL2 STDE X≠Y	goto pr INTERCI	HANGE PO	routine RTS 1 AND	 2		196 197 198 199 200 201	<u>GT07</u> <u>*LBL5</u> FØ? PRTX FØ? <u>R</u> TN	if flag and retu otherwis	0 is set, arn	
<u>141</u> <u>142</u> 143 144 145 146 <u>147</u> 148	GT08 *LBL₀ RCLE RCL2 ST0E X≠Y ST02 RCLD	goto pr INTERCI	HANGE PO	routine RTS 1 AND	 2		196 197 198 199 200 201 202	<u>GT07</u> <u>*LBL5</u> F0? PRTX F0? RTN R/S	if flag and retu otherwis	0 is set, arn	
<u>141</u> <u>142</u> 143 144 145 146 <u>147</u> 148 149	GTDS *LBLa RCLE RCL2 STOE XZY STO2 RCLD RCL1	goto pr INTEROI X s ₁₁ ≠	Hange po	routine RTS 1 AND	2		196 197 198 199 200 201 202	<u>GT07</u> <u>*LBL5</u> F0? PRTX F0? RTN R/S	if flag and retu otherwis	0 is set, arn	
<u>141</u> <u>142</u> 143 144 145 146 <u>147</u> 148 149 150	GTDS *LBLa RCLE RCL2 STOE XZY STO2 RCLD RCL1 STOD	goto pr INTERCI	Hange po	routine RTS 1 AND			196 197 198 199 200 201 202 203	<u>GT07</u> <u>*LBL5</u> F0? PRTX F0? RTN R/S	if flag and retu otherwis	0 is set, arn	
<u>141</u> <u>142</u> 143 144 145 146 <u>147</u> 148 149 150 151	<u>GT08</u> *LBL₀ RCL2 ST0E X≠Y <u>ST02</u> RCLD RCL1 ST0D X≠Y	goto pr INTEROI X s ₁₁ ≠	Hange po	routine RTS 1 AND	 2		196 197 198 199 200 201 202 203	<u>GT07</u> <u>*LBL5</u> F0? PRTX F0? RTN R/S	if flag and retu otherwis	0 is set, arn	
<u>141</u> <u>142</u> 143 144 145 146 <u>147</u> 148 149 150 151 152	<u>GT08</u> <u>#LBLa</u> <u>RCLE</u> <u>RCL2</u> <u>ST0E</u> <u>X</u> ‡Y <u>ST0D</u> <u>X</u> ‡Y <u>ST01</u>	goto pr INTEROI X s ₁₁ ≠	Hange po	routine RTS 1 AND	2		196 197 198 199 200 201 202 203	<u>GT07</u> <u>*LBL5</u> F0? PRTX F0? RTN R/S	if flag and retu otherwis	0 is set, arn	
<u>141</u> <u>142</u> 143 144 145 146 <u>147</u> 148 149 150 151 152	<u>GT08</u> <u>#LBLa</u> <u>RCLE</u> <u>RCL2</u> <u>ST0E</u> <u>X</u> ‡Y <u>ST02</u> <u>RCL0</u> <u>RCL1</u> <u>ST0D</u> <u>X</u> ‡Y <u>ST01</u>	goto pr INTEROI X s ₁₁ ≠	Hange po	routine RTS <u>1 AND</u>		Note	196 197 198 199 200 201 202 203	<u>GT07</u> <u>*LBL5</u> FØ? PRTX FØ? <u>RTN</u> R7S _RTN	if flag and retu otherwis	0 is set, arn se stop	print
<u>141</u> <u>142</u> 143 144 145 146 <u>147</u> 148 149 150 151 <u>152</u> 153	GT08 *LBLa RCLE RCL2 ST0E X≠Y ST02 RCLD RCL1 ST0D X≠Y ST01 RCLC	goto pr INTEROI X s ₁₁ ≠	Hange po	routine RTS 1 AND	2	Note	196 197 198 199 200 201 202 203 3	<u>GT07</u> *LBL5 F0? PRTX F0? RTN R/S _RTN ontrol	if flag and retu otherwis	0 is set, arn se stop nt or R/S	print
<u>141</u> <u>142</u> 143 144 145 146 <u>147</u> 148 149 150 151 152 153 154	<u>GT08</u> *LBLa RCLE RCL2 ST0E X≠Y <u>ST02</u> RCLD RCL1 ST0D X≠Y <u>ST01</u> RCLC RCL4	goto p: INTEROI	Hange po = 4 s ₂₂ 	routine RTS 1 AND	 2	Note Flag It s	196 197 198 199 200 201 202 203 \$ 0 c houl	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be s	if flag and retu otherwis s the pri let or res	0 is set, arn se stop nt or R/S et to refl	print
<u>141</u> <u>142</u> 143 144 145 146 <u>147</u> 148 149 150 151 <u>152</u> 153 154 155	<u>GT08</u> <u>#LBLa</u> <u>RCLE</u> <u>RCL2</u> <u>ST0E</u> <u>X</u> #Y <u>ST02</u> <u>RCL0</u> <u>RCL1</u> <u>ST0D</u> <u>X</u> #Y <u>ST01</u> <u>RCLC</u> <u>RCL4</u> <u>ST0C</u>	goto pr INTEROI X s ₁₁ ≠	Hange po = 4 s ₂₂ 	routine RTS 1 AND	 2	Note Flag It s	196 197 198 199 200 201 202 203 \$ 0 c houl	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be s	if flag and retu otherwis s the pri let or res	0 is set, arn se stop nt or R/S et to refl	decision.
<u>141</u> <u>142</u> 143 144 145 146 <u>147</u> 148 149 150 151 152 153 154	<u>GT08</u> *LBLa RCLE RCL2 ST0E X≠Y <u>ST02</u> RCLD RCL1 ST0D X≠Y <u>ST01</u> RCLC RCL4	goto p: INTEROI	Hange po = 4 s ₂₂ 	routine RTS 1 AND		Note Flag It s user	196 197 198 199 200 201 202 203 3 0 c houl s ch	GT07 *LBL5 F0? PRTX F0? RTN R7S RTN d be s oice o	if flag and retu otherwis s the pri let or res of printed	0 is set, arn se stop nt or R/S et to refl output, o	decision. ect the r program
<u>141</u> <u>142</u> 143 144 145 146 <u>147</u> 148 149 150 151 152 153 154 155 156	<u>GT08</u> <u>#LBLa</u> <u>RCLE</u> <u>RCL2</u> <u>ST0E</u> <u>X</u> #Y <u>ST02</u> <u>RCL0</u> <u>RCL1</u> <u>ST0D</u> <u>RCL1</u> <u>ST0D</u> <u>X</u> #Y <u>ST01</u> <u>RCLC</u> <u>RCL4</u> <u>ST0C</u> <u>X</u> #Y	goto p: INTEROI	Hange po = 4 s ₂₂ 	routine RTS 1 AND		Note Flag It s user halt	196 197 198 199 200 201 202 203 \$ 0 c houl s ch s fo	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be soice o r outp	if flag and retu otherwis s the pri let or res of printed but respec	0 is set, arn se stop nt or R/S et to refl output, o tively at	decision. ect the r program
<u>141</u> <u>142</u> 143 144 145 146 <u>147</u> 148 149 150 151 152 153 154 155 156 157	<u>GT08</u> <u>#LBLa</u> <u>RCLE</u> <u>RCL2</u> <u>ST0E</u> <u>X</u> #Y <u>ST02</u> <u>RCL0</u> <u>RCL1</u> <u>ST0D</u> <u>RCL1</u> <u>ST0D</u> <u>X</u> #Y <u>ST01</u> <u>RCLC</u> <u>RCL4</u> <u>ST0C</u> <u>X</u> #Y <u>ST04</u>	goto p: INTEROI	Hange po = 4 s ₂₂ 	routine RTS 1 AND	2	Note Flag It s user halt	196 197 198 199 200 201 202 203 \$ 0 c houl s ch s fo	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be soice o r outp	if flag and retu otherwis s the pri let or res of printed	0 is set, arn se stop nt or R/S et to refl output, o tively at	decision. ect the r program
141           142           143           144           145           146           147           148           149           150           151           152           153           154           155           156           157	<u>GT08</u> <u>#LBLa</u> <u>RCLE</u> <u>RCL2</u> <u>ST0E</u> <u>X</u> #Y <u>ST02</u> <u>RCL0</u> <u>RCL1</u> <u>ST0D</u> <u>RCL1</u> <u>ST0D</u> <u>X</u> #Y <u>ST01</u> <u>RCLC</u> <u>RCL4</u> <u>ST0C</u> <u>X</u> #Y <u>ST04</u> <u>RCLB</u>	goto p: INTEROI	Hange po = 4 s ₂₂ 	routine RTS 1 AND	2	Note Flag It s user halt	196 197 198 199 200 201 202 203 \$ 0 c houl s ch s fo	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be soice o r outp	if flag and retu otherwis s the pri let or res of printed but respec	0 is set, arn se stop nt or R/S et to refl output, o tively at	decision. ect the r program
141           142           143           144           145           146           147           148           149           150           151           152           153           154           155           156           157           158           159	<u>GT08</u> <u>#LBLa</u> <u>RCLE</u> <u>RCL2</u> <u>ST0E</u> <u>X</u> #Y <u>ST02</u> <u>RCL0</u> <u>RCL1</u> <u>ST0D</u> <u>RCL1</u> <u>ST0D</u> <u>X</u> #Y <u>ST01</u> <u>RCLC</u> <u>RCL4</u> <u>ST0C</u> <u>X</u> #Y <u>ST04</u> <u>RCLB</u> <u>RCL3</u>	goto pr INTEROI	HANGE PO = ↓ S ₂₂ =  S ₂₂   = ↓ S ₂₁ = ↓ S ₂₁	routine RTS 1 AND	2	Note Flag It s user halt	196 197 198 199 200 201 202 203 \$ 0 c houl s ch s fo	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be soice o r outp	if flag and retu otherwis s the pri let or res of printed but respec	0 is set, arn se stop nt or R/S et to refl output, o tively at	decision. ect the r program
141           142           143           144           145           146           147           148           149           150           151           152           153           154           155           156           157           158           159           160	<u>GT08</u> <u>#LBLa</u> <u>RCLE</u> <u>RCL2</u> <u>ST0E</u> <u>X</u> ‡Y <u>ST02</u> <u>RCL0</u> <u>RCL1</u> <u>ST0D</u> <u>X</u> ‡Y <u>ST01</u> <u>RCLC</u> <u>RCL4</u> <u>ST0C</u> <u>X</u> ‡Y <u>ST04</u> <u>RCL8</u> <u>RCL3</u> <u>ST0B</u>	goto p: INTEROI	HANGE PO = ↓ S ₂₂ =  S ₂₂   = ↓ S ₂₁ = ↓ S ₂₁	routine RTS 1 AND	2	Note Flag It s user halt	196 197 198 199 200 201 202 203 \$ 0 c houl s ch s fo	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be soice o r outp	if flag and retu otherwis s the pri let or res of printed but respec	0 is set, arn se stop nt or R/S et to refl output, o tively at	decision. ect the r program
141           142           143           144           145           146           147           148           149           150           151           152           153           154           155           156           157           158           159           160	<u>GT08</u> <u>#LBLa</u> <u>RCLE</u> <u>RCL2</u> <u>ST0E</u> <u>X</u> ‡Y <u>ST02</u> <u>RCL0</u> <u>RCL1</u> <u>ST0D</u> <u>X</u> ‡Y <u>ST01</u> <u>RCLC</u> <u>RCL4</u> <u>ST0C</u> <u>X</u> ‡Y <u>ST04</u> <u>RCL8</u> <u>RCL3</u> <u>ST0B</u>	goto pr INTEROI	HANGE PO = ↓ S ₂₂ =  S ₂₂   = ↓ S ₂₁ = ↓ S ₂₁	routine RTS 1 AND	2	Note Flag It s user halt	196 197 198 199 200 201 202 203 \$ 0 c houl s ch s fo	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be soice o r outp	if flag and retu otherwis s the pri let or res of printed but respec	0 is set, arn se stop nt or R/S et to refl output, o tively at	decision. ect the r program
141           142           143           144           145           146           147           148           149           150           151           152           153           154           155           156           157           158           159           160           161	<u>GT08</u> <u>#LBLa</u> <u>RCLE</u> <u>RCL2</u> <u>ST0E</u> <u>X</u> #Y <u>ST02</u> <u>RCL0</u> <u>RCL1</u> <u>ST0D</u> <u>X</u> #Y <u>ST01</u> <u>RCLC</u> <u>RCL4</u> <u>ST0C</u> <u>X</u> #Y <u>ST04</u> <u>RCL8</u> <u>RCL3</u> <u>ST08</u> <u>X</u> #Y	goto pr INTEROI	HANGE PO = ↓ S ₂₂ =  S ₂₂   = ↓ S ₂₁ = ↓ S ₂₁	routine RTS 1 AND	2	Note Flag It s user halt	196 197 198 199 200 201 202 203 \$ 0 c houl s ch s fo	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be soice o r outp	if flag and retu otherwis s the pri let or res of printed but respec	0 is set, arn se stop nt or R/S et to refl output, o tively at	decision. ect the r program
141           142           143           144           145           146           147           148           149           150           151           152           153           154           155           156           157           158           159           160           161	<u>GT08</u> <u>#LBLa</u> <u>RCLE</u> <u>RCL2</u> <u>ST0E</u> <u>X</u> #Y <u>ST02</u> <u>RCL0</u> <u>RCL1</u> <u>ST02</u> <u>RCL1</u> <u>ST01</u> <u>RCL1</u> <u>ST01</u> <u>RCL2</u> <u>RCL4</u> <u>ST04</u> <u>RCL8</u> <u>RCL8</u> <u>RCL3</u> <u>ST08</u> <u>X</u> #Y <u>ST03</u>	goto pr INTEROI $x s_{11} \neq$ $ s_{11}  \neq$ $4 s_{12} \neq$ $ s_{12}  \neq$	HANGE PO = \$\Imes_S_{22} = \$\Imes_{22}\$ = \$\Imes_{22}\$ = \$\Imes_{24}\$ = \$\Imes_{24}\$ = \$\Imes_{24}\$	RTS <u>1</u> AND	2	Note Flag It s user halt	196 197 198 199 200 201 202 203 \$ 0 c houl s ch s fo	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be soice o r outp	if flag and retu otherwis s the pri let or res of printed but respec	0 is set, arn se stop nt or R/S et to refl output, o tively at	decision. ect the r program
$\begin{array}{r} 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ 163\\ \end{array}$	<u>GT08</u> <b>*LBL</b> a <b>RCLE</b> <b>RCL2</b> <b>ST0E</b> <b>X</b> ‡Y <u>ST02</u> <b>RCL0</b> <b>RCL1</b> <b>ST0D</b> <b>RCL1</b> <b>ST0D</b> <b>X</b> ‡Y <u>ST01</u> <b>RCLC</b> <b>RCL4</b> <b>ST0C</b> <b>X</b> ‡Y <u>ST04</u> <b>RCL3</b> <b>ST04</b> <b>RCL3</b> <b>ST04</b> <b>RCL3</b> <b>ST04</b> <b>RCL3</b> <b>ST04</b> <b>RCL3</b> <b>ST04</b> <b>RCL3</b> <b>ST05</b> <b>X</b> ‡Y <b>ST04</b> <b>RCL3</b> <b>ST05</b> <b>X</b> ‡Y <b>ST04</b> <b>RCL3</b> <b>ST05</b> <b>X</b> ‡Y <b>ST04</b> <b>RCL3</b> <b>ST05</b> <b>X</b> ‡Y <b>ST05</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST</b>	goto pr INTEROI $x s_{11} \neq$ $(s_{11}) \neq$ $4 s_{12} \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ goto R	HANGE PO = \$\Imesslow S_{22} = \$\Imesslow S_{22} = \$\Imesslow S_{22} = \$\Imesslow S_{22} = \$\Imesslow S_{21} = \$\Imesslow S_{22} = \$\Imesslow S_{21} = \$\Imesslow S_{21}	RTS <u>1 AND</u>	· · · · ·	Note Flag It s user halt	196 197 198 199 200 201 202 203 \$ 0 c houl s ch s fo	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be soice o r outp	if flag and retu otherwis s the pri let or res of printed but respec	0 is set, arn se stop nt or R/S et to refl output, o tively at	decision. ect the r program
141           142           143           144           145           146           147           148           149           150           151           152           153           154           155           156           157           158           159           160           161	<u>GT08</u> <u>#LBLa</u> <u>RCLE</u> <u>RCL2</u> <u>ST0E</u> <u>X</u> #Y <u>ST02</u> <u>RCL0</u> <u>RCL1</u> <u>ST02</u> <u>RCL1</u> <u>ST01</u> <u>RCL1</u> <u>ST01</u> <u>RCL2</u> <u>RCL4</u> <u>ST04</u> <u>RCL8</u> <u>RCL8</u> <u>RCL3</u> <u>ST08</u> <u>X</u> #Y <u>ST03</u>	goto pr INTEROI $x s_{11} \neq$ $(s_{11}) \neq$ $4 s_{12} \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ goto R	HANGE PO = \$\Imesslow S_{22} = \$\Imesslow S_{22} = \$\Imesslow S_{22} = \$\Imesslow S_{22} = \$\Imesslow S_{21} = \$\Imesslow S_{22} = \$\Imesslow S_{21} = \$\Imesslow S_{21}	RTS <u>1 AND</u>	· · · · ·	Note Flag It s user halt	196 197 198 199 200 201 202 203 \$ 0 c houl s ch s fo	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be soice o r outp	if flag and retu otherwis s the pri let or res of printed but respec	0 is set, arn se stop nt or R/S et to refl output, o tively at	decision. ect the r program
141           142           143           144           145           146           147           148           149           150           151           152           153           154           155           156           157           158           159           160           161           162           163           164	GT08 *LBLa RCLE RCL2 ST0E X≠Y ST02 RCL0 RCL1 ST0D RCL1 ST0D X≠Y ST01 RCL2 RCL4 ST0C X≠Y ST04 RCL8 RCL3 ST08 X≠Y ST04 RCL3 ST08 X≠Y ST03 GT07 *LBL6	goto pr INTEROI $x s_{11} \neq$ $(s_{11}) \neq$ $4 s_{12} \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ goto R	HANGE PO = \$\Imesslow S_{22} = \$\Imesslow S_{22} = \$\Imesslow S_{22} = \$\Imesslow S_{22} = \$\Imesslow S_{21} = \$\Imesslow S_{22} = \$\Imesslow S_{21} = \$\Imesslow S_{21}	RTS <u>1</u> AND	· · · · ·	Note Flag It s user halt	196 197 198 199 200 201 202 203 \$ 0 c houl s ch s fo	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be solve o r outp	if flag and retu otherwis s the pri let or res of printed but respec	0 is set, arn se stop nt or R/S et to refl output, o tively at	decision. ect the r program
$\begin{array}{r} 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ 163\\ \end{array}$	<u>GT08</u> <b>*LBL</b> a <b>RCLE</b> <b>RCL2</b> <b>ST0E</b> <b>X</b> ‡Y <u>ST02</u> <b>RCL0</b> <b>RCL1</b> <b>ST0D</b> <b>RCL1</b> <b>ST0D</b> <b>X</b> ‡Y <u>ST01</u> <b>RCLC</b> <b>RCL4</b> <b>ST0C</b> <b>X</b> ‡Y <u>ST04</u> <b>RCL3</b> <b>ST04</b> <b>RCL3</b> <b>ST04</b> <b>RCL3</b> <b>ST04</b> <b>RCL3</b> <b>ST04</b> <b>RCL3</b> <b>ST04</b> <b>RCL3</b> <b>ST05</b> <b>X</b> ‡Y <b>ST04</b> <b>RCL3</b> <b>ST05</b> <b>X</b> ‡Y <b>ST04</b> <b>RCL3</b> <b>ST05</b> <b>X</b> ‡Y <b>ST04</b> <b>RCL3</b> <b>ST05</b> <b>X</b> ‡Y <b>ST05</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST07</b> <b>ST</b>	goto pr INTEROI $x s_{11} \neq$ $(s_{11}) \neq$ $4 s_{12} \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ goto R	HANGE PO = \$\Imesslow S_{22} = \$\Imesslow S_{22} = \$\Imesslow S_{22} = \$\Imesslow S_{22} = \$\Imesslow S_{21} = \$\Imesslow S_{22} = \$\Imesslow S_{21} = \$\Imesslow S_{21}	RTS <u>1 AND</u>	· · · · ·	Note Flag It s user halt	196 197 198 199 200 201 202 203 \$ 0 c houl s ch s fo	GT07 *LBL5 F0? PRTX F0? RTN R/S RTN d be solve o r outp	if flag and retu otherwis s the pri let or res of printed but respec	0 is set, arn se stop nt or R/S et to refl output, o tively at	decision. ect the r program
141           142           143           144           145           146           147           148           149           150           151           152           153           154           155           156           157           158           159           160           161           162           163           164	GT08 *LBLa RCLE RCL2 ST0E X≠Y ST02 RCL0 RCL1 ST0D RCL1 ST0D X≠Y ST01 RCL2 RCL4 ST0C X≠Y ST04 RCL8 RCL3 ST08 X≠Y ST04 RCL3 ST08 X≠Y ST03 GT07 *LBL6	goto pr INTEROI $x s_{11} \neq$ $(s_{11}) \neq$ $4 s_{12} \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ goto R	HANGE PO	RTS 1 AND	· · · · ·	Note Flag It s user halt	196 197 198 199 200 201 202 203 1 0 cl s ch s ch s fo magn	GT07 *LBL5 FØ? PRTX FØ? RTN R/S RTN d be s oice o r outp etic c	if flag and retu otherwis s the pri let or res of printed but respec	0 is set, arm se stop nt or R/S et to refl output, o tively at corded.	decision. ect the r program the time
$\begin{array}{r} 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 155\\ 156\\ 155\\ 156\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ 163\\ 164\\ 165\\ \end{array}$	GT08 *LBLa RCL2 ST0E X≠Y ST02 RCL0 RCL1 ST00 X≠Y ST01 RCL4 ST04 RCL4 ST04 RCL4 ST04 RCL4 ST04 RCL3 ST04 RCL3 ST04 RCL3 ST04 RCL3 ST04 RCL3 ST04 RCL3 ST04 RCL3 ST05 X≠Y ST04 RCL3 ST05 X≠Y ST04 RCL3 ST05 X≠Y ST04 RCL3 ST05 ST05 ST05 ST05 ST05 ST04 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05 ST05	goto pr INTEROI $\downarrow$ $S_{11} =$ $ S_{12}  =$ $ S_{12}  =$ goto R/ EXECUTE	HANGE PO $\downarrow S_{22}$ $\downarrow S_{22}$ $\downarrow S_{22}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{22}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{2$	RTS 1 AND		Note Flag It s user halt the	196 197 198 199 200 201 202 203 5 0 cl s ch s ch s fo magn	GT07 *LEL5 F0? PRTX F0? RTN R/S RTN d be s oice o r outp oice o r outp	if flag and retu- otherwis sthe pri- bet or res of printed but respec ard is re	0 is set, arn se stop nt or R/S et to refl output, o tively at corded. <u>SET STATUS</u>	decision. ect the r program the time
141           142           143           144           145           146           147           148           149           150           151           152           153           154           155           156           157           158           159           160           161           162           163	GTDS           #LBLa           RCLE           RCL2           STOE           XZY           STO2           RCLD           RCLD           RCLD           RCLD           RCL1           STOD           RCL1           STOD           RCL1           STOD           RCL1           STOD           RCL1           STO1           RCL2           RCL4           STOC           XZY           STO4           RCL3           STO3           GTO7           #LBL6           GSBa	goto pi INTEROI $x s_{11} \neq$ $ s_{11}  \neq$ $4 s_{12} \neq$ $ s_{12}  \neq$ goto R/ EXEDUTE Load IC ca	HANGE PO	RTS 1 AND		Note Flag It s user halt the	196 197 198 199 200 201 202 203 5 0 cl s ch s ch s fo magn	GT07 *LBL5 FØ? PRTX FØ? RTN R/S RTN d be s oice o r outp etic c	if flag and retu otherwis s the pri let or res of printed but respec	0 is set, arm se stop nt or R/S et to refl output, o tively at corded.	decision. ect the r program the time
141           142           143           144           145           146           147           148           149           150           151           152           153           154           155           156           157           158           159           160           161           162           163           164           165	GT08           #LBLa           RCLE           RCL2           ST0E           XZY           ST02           RCLD           RCLD           RCLD           RCLD           RCL1           ST02           RCL1           ST01           RCL2           RCL1           ST01           RCL2           RCL4           ST04           RCL8           RCL8           ST03           ST03           GT07           *LBLb           GSBa	goto pr INTEROI $\downarrow$ S ₁₁ $\rightleftharpoons$ $ $ S ₁₁ $  \rightleftharpoons$ $\downarrow$ S ₁₂ $ $ $ $ S ₁₂ $  \Rightarrow$ $ S ₁₂	HANGE PO $\downarrow S_{22}$ $\downarrow S_{22}$ $\downarrow S_{22}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{22}$ $\downarrow S_{22}$ $\downarrow S_{21}$ $\downarrow S_{22}$ $\downarrow S_{2$	RTS     1     AND       P     -     -       fD     50     E       D     calculate     941. 9	Ε _{ρ, Ζ}	Note Flag It s user halt the	196 197 198 199 200 201 202 203 5 0 cl s ch s ch s fo magn	GT07 *LEL5 F0? PRTX F0? RTN R/S RTN d be s oice o r outp oice o r outp	if flag and retu- otherwis sthe pri- bet or res of printed but respec ard is re	0 is set, arn se stop nt or R/S et to refl output, o tively at corded. <u>SET STATUS</u>	decision. ect the r program the time
141         142         143         144         145         146         147         148         149         150         151         152         153         154         155         156         157         158         159         160         161         162         163         164         165	GT08 #LBLa RCLE RCL2 ST0E X≠Y ST02 RCL0 RCL1 ST00 RCL1 ST00 RCL1 ST00 RCL1 ST00 RCL1 ST00 RCL1 ST00 X≠Y ST01 RCL2 RCL4 ST0C X≠Y ST04 RCL8 RCL3 ST08 X≠Y ST04 RCL8 RCL3 ST08 X≠Y ST04 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 RCL3 ST08 ST08 ST08 ST08 ST08 ST08 ST08 ST08 ST0	goto pr INTEROI $\downarrow$ S ₁₁ $\rightleftharpoons$ $ $ S ₁₁ $  \rightleftharpoons$ $\downarrow$ S ₁₂ $ $ $ $ S ₁₂ $  \Rightarrow$ $ S ₁₂	HANGE PO	RTS 1 AND P. P. P. P. P. P. P. P. P. P.	Ε _{ρ, Ζ}	Note Flag It s user halt the	196 197 198 199 200 201 202 203 5 0 cl s ch s ch s fo magn	GT07 *LEL5 F0? PRTX F0? RTN R/S RTN d be s oice o r outp oice o r outp	if flag and retu- otherwis otherwis of printed but respec ard is re	0 is set, arn se stop nt or R/S et to refl output, o tively at corded. <u>SET STATUS</u>	decision. ect the r program the time
141           142           143           144           145           146           147           148           149           150           151           152           153           154           155           156           157           158           159           160           161           162           163           164           165	GT08           #LBLa           RCLE           RCL2           ST0E           XZY           ST02           RCLD           RCLD           RCLD           RCLD           RCL1           ST02           RCL1           ST01           RCL2           RCL1           ST01           RCL2           RCL4           ST04           RCL8           RCL8           ST03           ST03           GT07           *LBLb           GSBa	goto pr INTEROI $\downarrow$ S ₁₁ $\rightleftharpoons$ $ $ S ₁₁ $  \rightleftharpoons$ $\downarrow$ S ₁₂ $ $ $ $ S ₁₂ $  \Rightarrow$ $ S ₁₂	HANGE PO	RTS       1       AND         P       -       -         f       D       50       E         D       calculate       941.9       941.9         d       calculate       941.9       0	Ε _{ρ, Ζ}	Note Flag It s user halt the	196 197 198 199 200 201 202 203 5 0 cl s ch s ch s fo magn	GT07 *LEL5 F0? PRTX F0? RTN R/S RTN d be s oice o r outp oice o r outp	if flag and retu- otherwis otherwis for res of printed out respec ard is re FLAGS ON OFF 0 0 0	0 is set, arm se stop nt or R/S et to refl output, o tively at corded. <u>SET STATUS</u> TRIG DEG <b>D</b>	decision. ect the r program the time
141         142         143         144         145         146         147         148         149         150         151         152         153         154         155         156         157         158         159         160         161         162         163         164         165	GT08         #LBLa         RCLE         RCL2         ST0E         XZY         ST02         RCL1         ST0D         RCL1         ST0D         RCL1         ST0D         RCL1         ST0D         RCL1         ST0D         RCL1         ST0D         XZY         ST04         RCL3         ST08         XZY         ST03         GT07         #LBLb         GSBa         B         Panter         reflectic         b         FA,C,ff	goto pr INTEROI $x s_{11} \neq$ $(s_{11}  \neq$ $4 s_{12} \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  \neq$ $ s_{12}  =$ $ s_{12}  =$	HANGE PO	RTS 1 AND P. P. P. P. P. P. P. P. P. P.	Ε _{ρ,Ζ} ^e Ξ, <u>7</u> 4	Note Flag It s user halt the $z_{a} \rightarrow Z$ $Z_{a} \rightarrow Q$	196 197 198 199 200 201 202 203 5 0 c houl 8 ch 8 ch 8 ch 8 ch 8 ch 8 ch 1 2 2 2 1 2 0 c 1 2 2 0 2 1 2 0 2 0 1 2 0 2 0 1 2 0 2 0	GT07 *LEL5 F0? PRTX F0? RTN R/S RTN d be s oice o r outp oice o r outp	if flag and retu otherwis s the pri set or res of printed out respec ard is re FLAGS ON OFF 0 0 1	0 is set, arm se stop nt or R/S et to refl output, o tively at corded. SET STATUS TRIG DEG M GRAD	print decision. ect the r program the time DISP FIX SCI
141           142           143           144           145           146           147           148           149           150           151           152           153           154           155           156           157           158           159           160           161           162           163           164           165	GT08         #LBLa         RCLE         RCL2         ST0E         XZY         ST02         RCL1         ST0D         RCL1         ST0D         RCL1         ST0D         RCL1         ST0D         RCL1         ST0D         RCL1         ST0D         XZY         ST04         RCL3         ST08         XZY         ST03         GT07         #LBLb         GSBa         B         Panter         reflectic         b         FA,C,ff	goto pr INTEROI $\downarrow$ S ₁₁ $\Rightarrow$ $ $ S ₁₁ $  \Rightarrow$ $ $ S ₁₂ $  \Rightarrow$ $ $ S ₁₃ $  \Rightarrow$ $ $ S ₁₄ $  \Rightarrow$ $ $ S ₁₅ $  \Rightarrow$   S	HANGE PO	P P P P P P P P P P P P P P	$E \rho_{3} Z$ $e Z_{1} Z$ 4 g g s p p	Note Flag It s user halt the $z_{a} \rightarrow Z$ $Z_{a} \rightarrow Q$	196 197 198 199 200 201 202 203 s ch s ch s s ch s s fo magn	GT07 *LEL5 F0? PRTX F0? RTN R/S RTN d be s oice o r outp oice o r outp	if flag and retu- otherwis otherwis for res of printed out respec ard is re FLAGS ON OFF 0 0 0	0 is set, arm se stop nt or R/S et to refl output, o tively at corded. <u>SET STATUS</u> TRIG DEG <b>D</b>	decision. ect the r program the time DISP FIX

#### PROGRAM 4-3 TRANSISTOR CONFIGURATION CONVERSION.

#### Program Description and Equations Used

This program allows conversion between common emitter, common base, and common collector configurations of transistor h parameters or y parameters, as well as conversions between the h and the y parameters.

The configuration conversions is done by operating on the y parameters and converting to and from the h parameters for data input and output. To make the program operate in either h or y parameters, the conversion process is skipped for the y parameter case. Label 7 of the program contains the coding that accomplishes the h to y, or y to h conversion. Label 7 is called at the beginning and end of the configuration conversion, and flag 0 is used to indicate whether or not the subroutine under label 7 should be skipped or not.



Figure 4-3.1 Two-port network conventions.

Given a two-port network with port voltages and currents as defined by Fig. 4-3.1, the y and h parameters are defined as follows:

 $\frac{\mathbf{h} \text{ parameters}}{\begin{bmatrix} \mathbf{E} \\ 1 \\ \mathbf{I}_2 \end{bmatrix}} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{1}_1 & \mathbf{1}_2 \\ \mathbf{h}_{21} & \mathbf{h}_{11} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{I} \\ 1 \\ \mathbf{E}_2 \end{bmatrix}$ (4-3.1)

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \cdot \begin{bmatrix} E_1 \\ E_2 \end{bmatrix}$$
(4-3.2)

The network ports correspondence to the transitor elements is **shown** in Table 4-3.1.

Configuration	1	1' or 2'	2
CE	В	Е	С
CB	E	В	С
СС	В	C	E

Table 4-3.1 Transistor 2-port correspondences

The h parameters are converted to y parameters with the following transformation [15]:

(4-3.3)

$$\begin{bmatrix} y_{11} & y_{12} \\ \\ y_{21} & y_{22} \end{bmatrix} = \frac{1}{h_{11}} \begin{bmatrix} 1 & -h_{12} \\ \\ \\ h_{21} & h_{11}h_{22} - h_{12}h_{21} \end{bmatrix}$$

Likewise, the y parameters are converted to h parameters in similar fashion:

$$\begin{bmatrix} h_{11} & h_{12} \\ & & \\ h_{21} & & h_{22} \end{bmatrix} = \frac{1}{y_{11}} \cdot \begin{bmatrix} I & , & -y_{12} \\ & & \\ y_{21} & , & y_{11}y_{22} - y_{21}y_{12} \end{bmatrix}$$
(4-3.4)

Since the form of both conversions is identical, the same subroutine is used for both conversions (subroutine 7).

The y matrix representing the present transistor configuration is

transformed into another y matrix representing the new transistor configuration. This new matrix is designated y' for clarity. These transformations are:

For 
$$CE \rightarrow CB$$
 or  $CB \rightarrow CE$ , (4-3.5)

$$\begin{bmatrix} y_{11}' & y_{12}' \\ y_{21}' & y_{22}' \end{bmatrix} = \begin{bmatrix} \{y_{11} + y_{22} + y_{12} + y_{21}\} & \{-(y_{12} + y_{22})\} \\ \{-(y_{21} + y_{22})\} & \{y_{11}\} \end{bmatrix}$$

For CC  $\rightarrow$  CE or CE  $\rightarrow$  CC,

$$\begin{bmatrix} y_{11}' & y_{12}' \\ & & \\ y_{21}' & y_{22}' \end{bmatrix} = \begin{bmatrix} \{ & y_{11} \} \{ & -(y_{11} + y_{12}) \} \\ \{ -(y_{11} + y_{21}) \} \{ & y_{11} + y_{22} + y_{21} + y_{12} \} \end{bmatrix}$$

For CC  $\rightarrow$  CB,

$$\begin{bmatrix} y_{11}' & y_{12}' \\ & & \\ y_{21}' & y_{22}' \end{bmatrix} = \begin{bmatrix} \{ y_{22} \} \{ -(y_{21} + y_{22}) \} \\ \{ -(y_{12} + y_{22}) \} \{ y_{11} + y_{12} + y_{21} + y_{22} \} \end{bmatrix}$$

For CB  $\rightarrow$  CC,

$$\begin{bmatrix} y_{11}' & y_{12}' \\ y_{21}' & y_{22}' \end{bmatrix} = \begin{bmatrix} \{y_{11} + y_{22} + y_{21} + y_{12}\} \{-(y_{11} + y_{21})\} \} \\ \{-(y_{11} + y_{12})\} \{ y_{11} \} \end{bmatrix}$$

After the respective conversion is complete, the y' matrix has replaced the y matrix in storage.

In looking over the various conversions, one will notice similarities in the operations used. There are four basic operations used to perform all the conversions:

- 1) no change;
- 2)  $(y_{11} \text{ or } y_{22}) + y_{12};$
- 3)  $(y_{11} \text{ or } y_{22}) + y_{21};$  and
- 4)  $y_{11} + y_{22} + y_{12} + y_{21}$ .

The choice between  $y_{11}$  and  $y_{22}$  or  $y_{12}$  and  $y_{22}$  can be taken care of by interchanging the appropriate y matrix elements prior to these calculations. This matrix reordering is accomplished under label 3. The matrix conversion calculation is done under label 6 (two places); thus, these subroutines are selectively used to achieve all conversions.

# **3 User Instructions**

	TRANSISTOR	CONFIGURATIO	N CONVERSION	N .	
	OB + CE	OB + 00	0E + CO	h or y f 0 or 1	5
load ⊖ijt[  ij†ij	OE + OB	00 + 0B	00 + CE	print matrix	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card			
2	Select h or y matrix mode			· · · · · · · · · · · · · · · · · · ·
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a) h parameters b) y parameters	0		<b>0</b> 1
3	Load matrix to be converted			
	a) angle of h _{ij} or y _{ij} b) magnitude of h _{ij} or y _{ij}	0 _{1j}	ENT †	
	c) subscript	<b>ij</b>		
	repeat this step for ij = 11, 12, 21, 22 in any order			
	Select conversion desired			
	a) common emitter to common base		B	·····
	b) common base to common emitter c) common collector to common base		f B C	
	d) common base to common collector e) common collector to common emitter			
	f) common emitter to common collector		1 D	
5	Print converted matrix		E	θ ₁₁
				θ ₁₂
				12
				θ22
				₂₂

4-3

#### Example 4-3.1

Convert the following common collector h parameter matrix to a common base h parameter matrix:

$$\begin{bmatrix} h_{ic} & h_{rc} \\ h_{fc} & h_{oc} \end{bmatrix} = \begin{bmatrix} 1000 & 440^{\circ} & 10^{-4} & 4-50^{\circ} \\ 100 & 440^{\circ} & 50 & x & 10^{-6} & 4 & 0 \end{bmatrix}$$

PROGRAM INPUT	PROGRAM OUTPUT
40. $E_{P}$ $A_{hic}$ 1000. $E_{KT1}$ $ h_{ic} $ 11. $GSEA$ ij	0. 635∈ select h parameters SSBC execute CC → CB conv
-50. ENI* 4hrc 104 ENI*  hrc  12. 8550 ij	GSBE print stored matrix -9.97.700 ***
40. 257 * * hfc 100. En't  hfc  21. 386+ ij	-5.967+00 *** <b>4hrb</b> 2.201+03 ***  hrb rb
0. ENT* ^x h 5006 EN ^T ;  h _{oc}   22. 635H 1j	-179.3+00 *** 4hfb 1.000+00 ***  hfb  -49.37+00 *** 4h _{oc}
	1.130+03 ***  h _{oc}

Common base h parameter matrix from HP-97 output:

$$\begin{bmatrix} \mathbf{h}_{\mathbf{f}\mathbf{b}} & \mathbf{h}_{\mathbf{r}\mathbf{b}} \\ \mathbf{h}_{\mathbf{f}\mathbf{b}} & \mathbf{h}_{\mathbf{o}\mathbf{b}} \end{bmatrix} = \begin{bmatrix} \mathbf{2}2600 \ \mathbf{4} - 9.971^{\circ} & 2261 \ \mathbf{4} - 9.967^{\circ} \\ \mathbf{1.000 \ \mathbf{4} - 179.9^{\circ} \ 1.130 \ \mathbf{x}10^{-3} \ \mathbf{4} - 49.97^{\circ} \end{bmatrix}$$

		43 Program l	jist	ing	I		
	*LBLA	LOAD MATRIX ELEMENTS.		056	RCLD		
002			<b>-1</b> [	057	GSB8	calculat	e and stores
003				058	CHS		
004		calculate storage index from subscript		059	ST03	N10 =	$-(y_{12} + y_{22})$
005		ITOM BUBBGF1pc		060	X≠Y	212	
006				061	ST04		
007	' STOI			062	XZY		
008	RJ	recover and store     ii	11	063	RCLC		
<u>009</u>				064	RCLB		
010		increment storage index	11	065	GSB8	calculat	e and store:
011		recover and store Qij	1	866	RCLE		
<u>012</u>				067	RCLD		
013		return control to keyboard	┛╵	068	GSB8		
014		CONVERT CO - OB PARAMETERS	41	069	CHS	,	
<u>815</u>		take $[h] + [y] + [y^1]$	4	070	RCL2	y ₁₁ = - 3	1/22 + (Y21 + Y12) + Y11
		reorder matrix elements	-	071	RCL1		
017				072	GSB8	= y4	M + Y12 + Y21 + Y22
1 018		i) II	11	073	STOI	-	
019		1 141 = 1 122		074 075	R↓		
020				075 074	STO2		
021			╊┿━	076	RTN	CONTENDA	
022				<u>077</u> 078	<u>*LBLd</u> *LBLD	CONVERCIÓ	OE - CO PARAMETERS
023		$ _{12} \neq  _{21}$					
027		1 12 1 21		<u>-079</u> 080	<u>ESB6</u> GT07		<u>+[y]+[y']</u>
026					*LBLc		$\frac{(y) - (h)}{CB - OC PARAMETERS}$
027			- 4	<u>−081</u> ++082	GSB6		
029					<u>6366</u> GT03		→[y] →[y'] matrix elements
029		$\Theta_{11} \Rightarrow \Theta_{22}$		4-084	*LBL6	Teorder	MACTIX GIGNERUS
030		$0_{11} - 0_{22}$		085	<u>#E823</u> <u>GSB7</u>	transfor	n [h] + [y]
031			1	<u>086</u>	RCL2		
032			1	087	RCL1		e and store:
033	RCLC			088	RCL4	CATONIAL	e ana store:
034	ST04	$\Theta_{12} \Rightarrow \Theta_{21}$	1	089	RCL3		
035	i RJ	14 - 21		090	GSB8		
<u>036</u>	<u>stoc</u>		{	091	CHS	V40' -	- (y ₁₁ + y ₁₂ )
037		convert y'h	]	<i>092</i>	ST03	712	V V11 V12V
038		CONVERT OB - CE PARAMETERS		093	R↓		
039		CONVERT CE - CB PARAMETERS	]	<u>894</u>	<u>ST04</u>		
- 040		_take [h] - [y] - [y']	4	095	RCL2		
041		convert [y'] > [h]	4	096	RCL1	calculet.	e and store:
<u>642</u>			4	097	RCLC		
043		convert h params to y params	4	098	RCLB		
044			1	099	GSB8	,	
045		calculate and store:		100	CHS		$-(y_{41} + y_{21})$
046			1	101	STOB		
047			1	102	X‡Y stor		
840		$y_{21}' = -(y_{21} + y_{22})$		<u>103</u> 104	<u></u>		
043		$J_{21} = (J_{21} + J_{22})$		104 105	⊼∓⊺ RCL4		
051				105	RCL3	calculat	e and store:
052				107	GSB8		
053			1	108	RCL2		
054				109	RCL1	$y_{22}' = y_{14}$	1 + YAZ + YZA + YZZ
055			1	110	GSB8		
1		<u></u>	<u> </u>				<u></u>
			STERS			T-	
0	1   I ₄₁	$ ^{2} \Theta_{11}  ^{3}  _{12}  ^{4} \Theta_{12}$	5	6		⁷ <b>ξ</b> Δ	8 9
S0	S1	S2 S3 S4	<b>S</b> 5	S		<b>S</b> 7	S8 \$9
			D		E	<u> </u>	
A	B				2	θ <b>2</b> 2	index
		<u> </u>	<u> </u>				

4-3 <b>Program</b>	Listing II
111 CHS	166 RCL7
112 ROLE	167 GSB9 calculate and store:
113 RCLD	168 STOD
114 GSB8	
115 STOD	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	171 RTN return to subroutine call
	172 GTO2 goto R/S lockup
	173 *LBL8 complex addition subroutine
115 RTN return to main program	175  *EBLS COMPLEX addition bubleatine $174 \rightarrow R$
119 *LBL7 subroutine to convert [y]=[h]	$\frac{174}{175}$ $R_{\pm}$ input and output are in
120 F0? if flag O is set	110 Not malon on andtantag
<u>121 RTN</u>	$\frac{176}{177}  R = \frac{176}{77}$
122 RCL2	
123 RCL1 given:	178 X≠Y
124 RULD -	179 R4
125 RCLE 126 GSB9 <b>[11 12]</b>	180 +
	181 R4
127 ST06	182 +
128 R4 [ª21 ª22]	183 R†
129 ST07	184 →P
130 RCL4 coloulate and store the	<u>18</u> 5 RTN
131 RCL3 calculate and store the	186 *LEL9 complex multiply subroutine
132 RCLB determinant of A:	187 R4
177 PCLC	188 $\times$ input and output are in
$134 \text{ GSB9}  \Delta \mathbf{A} = \mathbf{a}_{11} \cdot \mathbf{a}_{22} - \mathbf{a}_{21} \cdot \mathbf{a}_{12}$	189 R4 polar co-ordinates
135 CHS	190 +
136 RCL7	191 R†
137 RCL6	192 →R
138 GSB8	193 <del>+</del> P
139 ST06	194 RTN
140 R4	195 *LBLE PRINT STORED MATRIX
	196 RCL1
$\frac{141}{142}$ $\frac{5707}{5812}$	197 RCL2
142 RCL2 calculate and stores	198 GSB5
143 CHS	190 CL3
144 ST02	
$145 RCL1 a_{11} a_{11} a_{11}$	200 RCL4
	201 GSB5
<u>147 ST01</u>	202 RCLB
148 RCL3	203 RCLC
149 CHS calculate and store:	204 GSB5
150 RUL4	205 RCLD
$151  \text{GSB9} \\ 152  \text{ST03}  \text{a}_{12} = -\frac{\text{a}_{12}}{2}$	<u>206 RCLE</u>
152 ST03 <b>a</b> 12 = - <b>a</b> 22	207 *LBL5 print subroutine
153 R4 11	208 PRTX or <b>R/S</b>
154 ST04	209 X≓Y
155 RCL2	210 PRTX or R/S
156 RCI 1	211 *LBL4 space and return subroutine
157 RCLB calculate and store:	212 SPC
158 RCLC	213 RTN
159 GSB9 <b>a</b> 21	<u>~214 *LBL2</u> R/S lockup subroutine
160 STUB <b>21 a</b> 11 161 R4	<u>16 GT02</u>
162 STOC	217 *LELE SELECT y OR h PARAMETERS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	218 CF0
163 RCL2 164 RCL1	
	219 X>0? set flag 0 if "1" entered 220
165 RCL6	221 RTN return to keyboard control
LABELS	FLAGS SET STATUS
	int matrix ⁰ set for y FLAGS TRIG DISP
a b CB $\rightarrow$ CE c CB $\rightarrow$ CC d CE $\rightarrow$ CC e se	ectyorh ¹ ON OFF 0 ■ DEG ■ FIX
0 1 2 3 rearrange 4 sp	ace Ertn 2 1 GRAD SCI
5 print 6 [.] 5 1 70.7 - [.] 8 complex 9 c	orputine 2 RAD ENG n 3 n 3

#### PROGRAM 4-4 COMPLEX 2x2 MATRIX OPERATIONS – PART 1.

#### Program Description and Equations Used

This program is one of two programs to manipulate complex 2x2 matrices. When dealing with high frequency amplifiers employing feedback, and input and output networks, one way of obtaining the overall amplifier response is to operate on the matrices that describe these 2-port networks. Shunt feedback may be included within the transistor transfer matrix through Y matrix addition. Y matrices can be converted to Z matrices using the complex matrix inverse routine. Series feedback is included by adding Z matrices. The input and output networks are included by multiplying ABCD (transmission) matrices.

This program will perform matrix addition  $(A + B \rightarrow A)$ , subtraction  $(A - B \rightarrow A)$ , multiplication  $(AB \rightarrow A)$ , and interchange  $(A \neq B)$  with 2x2 matrices having complex coefficients. Data entry and output may be in either rectangular or polar format. All data stored and used by the program is in rectangular format. If flag 1 is set, polar format is indicated and the data is converted to and from rectangular format upon data input or output respectively.

The program operation is very straightforward, and matrix operations are done in the conventional manner. Two subroutines are used, one for complex addition and the other for complex multiplication. See [6], [14] for matrix algebra details.

Both this program and the companion program (Program 4-5) share common register storage allocations; thus, matrix manipulations requiring functions contained in different programs are easily accommodated.

455

Matrix addition and subtraction:

$$\begin{bmatrix} a_{11} & a_{12} \\ & & \\ a_{21} & a_{22} \end{bmatrix} \stackrel{*}{=} \begin{bmatrix} b_{11} & b_{12} \\ & & \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ & & \\ r_{21} & r_{22} \end{bmatrix}$$

$$r_{11} = a_{11} \stackrel{*}{=} b_{11}$$

$$r_{22} = a_{22} \stackrel{*}{=} b_{22}$$

$$r_{21} = a_{21} \stackrel{*}{=} b_{21}$$

$$r_{22} = a_{22} \stackrel{*}{=} b_{22}$$

The R matrix replaces the A matrix at the completion of the routine.

Matrix multiplication:

$$\begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22} \end{bmatrix} \mathbf{x} \begin{bmatrix} \mathbf{b}_{11} & \mathbf{b}_{12} \\ \mathbf{b}_{21} & \mathbf{b}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{11} & \mathbf{r}_{12} \\ \mathbf{r}_{21} & \mathbf{r}_{22} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{r}_{11} & \mathbf{a}_{12} \\ \mathbf{r}_{21} & \mathbf{r}_{22} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{r}_{11} & \mathbf{r}_{12} \\ \mathbf{r}_{21} & \mathbf{r}_{22} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{r}_{11} & \mathbf{r}_{12} \\ \mathbf{r}_{21} & \mathbf{r}_{22} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{r}_{11} & \mathbf{r}_{12} \\ \mathbf{r}_{21} & \mathbf{r}_{22} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{r}_{11} & \mathbf{r}_{12} \\ \mathbf{r}_{21} & \mathbf{r}_{22} \end{bmatrix}$$

Again, the R matrix replaces the A matrix at the completion of the routine.

Matrix interchange:

# 44 User Instructions

COMPLEX 2x2 MATRIX OPERATIONS - PART 1							
print A	print B	rect/polar 0/1	<b>▲</b> ≠B		2		
load A	load B	$A + B \rightarrow A$	$A = B \rightarrow A$	A x B + A	/		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of the program card			
2	select polar or rectangular format		<b>f</b>	O (rest)
			Î C	1 (polar)
			T O	0 (rect)
	***************************************			
3	Load A matrix in selected format (step 2)			
	rectangular format shown here			
	a) imaginary part of matrix element	Im a _{ij}	ENT 4	
	b) real part of matrix element	Re aij	ENT +	
	c) load element subscript	ij		
	Do this step for subscripts 11, 12, 21, 22			
	in any order.			
4	Load B matrix in selected format (step 2)			
	polar format shown here			
	a) load angle of matrix element	≰ bij	ENT 4	
	b) load magnitude of matrix element	bij	ENT +	
Γ	c) load element subscript	ij	B	
	Do this step for subscripts 11, 12, 21, 22			
	in any order			
5	To print matrices in chosen format (say polar			
	a) A matrix use f A		£ *	¥-11
	b) B matrix use f B			44
				<u>4-12</u>
				42
				X-21
				21
				422
				22
		*****		
[ <b>[</b> -				

## 4-4 User Instructions

COMPLEX 2x2	MATRIX OPERA	TIONS - PART	1	
	CONTINUED	[		2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	To add matrices A and B with result			
	replacing A (use step 5 to print result)		0	
	· · · · · · · · · · · · · · · · · · ·			
7	To subtract matrices A and B with result			
	replacing A (use step 5 to print results)		D	
8	To multiply matrices A and B with result			
	replacing A (use step 5 to print results)		i E i	
9	To interchange matrices A and B (A=B)		f D	
	(use step 5 to print results)			
			_	
	General notes		1	
	1) Matrix data and operations are stored			
	and manipulated in rectangular format and			
	converted to and from polar for data input			
	and output if flag 1 is set.			4
	2) After any operation or input, the			
	presently stored matrices can be recorded			
	on a magnetic card using the WDATA command,			
	and later re-entered into storage.			
				·····
			. <b>-</b>	_

Example 4-4.1

Given

$$A = \begin{bmatrix} (3 + j4) & (4 + j5) \\ (5 + j6) & (2 + j4) \end{bmatrix}, \qquad B = \begin{bmatrix} (4 + j5) & (5 + j6) \\ (6 + j7) & (7 + j8) \end{bmatrix}$$

Load the above matrices, store them on a data card, then perform A + B, A - B, and  $A \times B$ . The HP-97 printout for the matrix loading is shown below, and the program output is shown on the next page. The B matrix is loaded in scrambled order to demonstrate the free form loading feature of the program.

A MATRIX LOADING	B MATRIX LOADING
4.00 ENT† <b>Im</b> a _{ll}	6.00 ENT† Im b12
3.00 ENT† <b>Re</b> a _{ll}	5.00 ENT† Re b12
11.00 GSBA <b>ij</b>	12.00 GSBB <b>ij</b>
5.00 ENT† <b>Im a_{l2}</b>	7.00 ENT† <b>Im b</b> 21
4.00 ENT† Re a _{l2}	6.00 ENT† <b>Re b</b> 21
12.00 GSBA <b>ij</b>	21.00 GSBE <b>ij</b>
6.00 ENT† <b>Im a₂₁</b>	8.00 ENT† <b>Im b</b> 22
5.00 ENT† Re a ₂₁	7.00 ENT† <b>Re b</b> 22
21.00 GSBA <b>ij</b>	22.00 G3BB <b>ij</b>
4.00 ENT† <b>Im a</b> 22	5.00 ENT1 <b>Im b_{ll}</b>
2.00 ENT† <b>Re a</b> 22	4.00 ENT1 <b>Re b_{ll}</b>
22.00 GSBA <b>ij</b>	11.00 GSBB <b>ij</b>
	WETA record data card

HP-97 PRINTOUT FOR EXAMPLE 4-4.1 INPUT

HP-97 PRINTOUT FOR EXAMPLE 4-4.1 OUTPUT

GSBa print A matrix 4.00 *** Im a _{ll} 3.00 *** Re a _{ll}	GSBC execute matrix addition
5.00 *** Im a ₁₂	688a print resultant matrix 9.00 *** Im r ₁₁ 7.00 *** Re r ₁₁
4.60 *** Re a12	ii.00 *** Im <b>r</b> 12 Note that
6.00 *** Im a ₂₁ 5.00 *** Re a ₂₁	9.00 *** Re r ₁₂ the R matrix has replaced
4.00 *** Im a ₂₂ 2.00 *** Re a ₂₂	13.00 *** Im $r_{21}$ the A matrix 11.00 *** Re $r_{21}$ in storage.
	12.00 *** Im r ₂₂ 9.00 *** Re r ₂₂
GSBb print B matrix 5.00 *** Im b _{ll} 4.00 *** Re b _{ll}	Reload A and B matrices by reading data card.
6.00 *** Im b ₁₂ 5.00 *** Re b ₁₂	GSBD execute mat subtraction
7.00 *** Im bol	GSBa print resultant matrix -1.00 *** Im r ₁₁
6.00 *** Re b ₂₁	-1.00 *** Re r ₁₁
8.00 *** Im b ₂₂ 7.00 *** Re b ₂₂	-1.60 *** Im r ₁₂ -1.60 *** Re r ₁₂
	-1.00 *** Im r ₂₁ -1.00 *** Re r ₂₁
	-4.08 *** Im r ₂₂ -5.88 *** Re r ₂₂
	Reload A and B matrices by reading data card.
	SSBE exec mat multiplication
	658a print resultant matrix 89.00 *** Im r ₁₁
	$-19.00 *** \text{ Re } r_{11}^{-1}$
	105.00 *** Im r ₁₂ -21.00 *** Re r ₁₂
	87.00 *** Im r ₂₁ -26.00 *** Re r ₂₁
	104.00 *** Im r22 -29.00 *** Re r ₂₂

#### Example 4-4.2

Because the resultant matrix replaces the A matrix in storage, operations may be chained. This example demonstrates that chaining ability starting with the A and B matrices given in Example 4-4.1.

```
GSBE
                      execute matrix multiplication: A \times B \rightarrow A
                     execute matrix addition: AB + B \rightarrow A
            GSBC
            GSBd execute matrix interchange: AB + B \neq B
            GSBE execute matrix multiplication: B(AB + B) \rightarrow A
             GSBa
                     print resultant A matrix
  651.00 ***
                     Im a<sub>11</sub>
-1194.00 ***
                     Re a<sub>11</sub>
  792.00
             ***
                     \begin{array}{c} \text{Im } \mathbf{a} \\ \text{Re } \mathbf{a}^{1\,2} \\ 1\,2 \end{array}
-1401.00 ***
                     Im a<sub>21</sub>
  957.00 ***
-1648.88 ***
                     Re a_{21}
                     Im a<sub>22</sub>
 1162.00 ***
                     Re a_{22}^{22}
-1923.00 ***
```

The same data can be outputted (printed) in polar format using the polarrectangular toggle under label "c" to bring a 1 to the display.

```
GSBc } use polar-rectangular selection toggle
         GSBa-
                print A matrix in polar format
 151.40 ***
                |a_{11}||a_{11}||
1359.94 ***
 150.52 ***
                 a1 2
1609.37 ***
                a12
 149.73 ***
                 a21
1898.80 ***
                a<sub>21</sub>
 148.86
          ***
                 a22
2246.81 ***
                a<sub>22</sub>
```

4-4

### **Program Listing I**

						2_				
<u>00</u>		LOAD MATRIX					<u>*LBLØ</u>		add/subtre	
802		indicate mat					GSB4		atrix Be	lement
00.		LOAD MATRIX	_B		- 1	58	FØ?			
004	•				05	59	CHS	change	sign of el	lement
005					00	50	X≓Y		f subtract	
006		calculate st		register	06	51	F0?	is indi		
007	7 X>07				1 06	52	CHS	1 - 1841		
008	98	location fro		oript	06		X≢Y			
009	9 X>0?				00		DSZI	decreme	nt index	
010					06		GSB4		matrix A	lement
011					1 00		GSB2		complex	
012					06		GSB5			
013					06		DSZI		esult as m	
014					- 06		6700		nt index a	
015					07	_			r loop ext	
016							<u>GT01</u>		ace and re	
817					<u>07</u>		<u>KLBLĘ</u>	MATRIX I	NULTIPLIC	<u>TION</u>
					07		1	calcula	te and	
018		····· ···· ····		<u> </u>	07		2		rily store	
019		if polar dat	ta, con	vert	07		SF2	comport,	any sur	
020		to rectangul			07		GSB7			
<u>- 021</u>					. 07		3	~ L	h	- r
022		recover stor			07		6	B11 . D4	1 + a12·b21	= '1!
<u>023</u>		store matrix			07		GSB7			
024		goto space a		urn	] 07	9	9			
025		PRINT MATRIX			] <u>08</u>	0	GSB8			
026		initialize i	lndex r	egister	08		1			
027	' STOI	for matrix		0	08		4	calcula		
+ 028	GTOe	jump			1 08		SF2	tempora	rily store	91
029		PRINT MATRIX	( B		1 08		GSE7			
1 030	2	initialize 1		ant star	as as		3			
031		for matrix 1		0810401	08		8			
+ 032		matrix print		utine	08		GSB7	an b	12 + 812 . b22	$= t_{12}$
033		recall matri			08					
834						-	STOA			
035		convert to p		o rela t	08.		X≢Y			
035		<u>if flag l i</u>	1 <u>86</u> t		<u>. 09</u>		<u>Stob</u>	·····	·	
		print matrix	c eleme	nt	09		2	calculat	te and	
037		as complex			09:		5			
038	i <b>→</b> i	\ -	-	•	09:		SF2	cambo Lat	rily store	11
039		⊷(may be R/S		ments	09-		GSB7			
640		i <u>fdesir</u> ed	U		09	5	7			
041		increment in	ndex bw	2	896		6			
042					09;	7 (	GSB7	a ₂₁ · b	$11 + a_{22} \cdot b_{23}$	21 ^m ^r 21
043	8				098		STOC			
044	RCLI	test for loc			099		X≢Y			
045		-ast 101 100	h ertr		100		STOD			
<b>L-</b> 046					101		4			
		goto space a	nd ret	urn —	102		5	calculat	e and sto	rei
048		ADD A AND B	MATRIO	ES .	103		SF2			
049		indicate mat			184		SSB7			
- 050		THATATA			105		, 367 7			
051	*LBLD	SUBTRACT A	ND R M	TRIOES	100					
052		indicate mat					8	anth	12 + a22 · b22	ar.
- 053		Turtarno mar	ALA DU	1 21 20 CTOU	107 108		SB7	- 21 01	-22 -27	22
054		initialize i	nder -		-					1
055		1010101120 ]	TRAY L	eXI a rel	<u>109</u>	l.	S <u>88</u>			
600	5101									
}		· · · · · · · · · · · · · · · · · · ·								
L		10 10	<u> </u>	REGIS	STERS			1		T
^o scratch	Re 344	2 Re b ₄₁ 3 I	Re a ₁₂	⁴ Re b ₁₂	⁵ Re 824	⁶ R4	2 b ₂₁	7 Re 822	8 Re 622	9 temp
							21	112 022		Re ru
S0 scratch	1 Im 844	S2 Im by S3	Im a ₁₂	^{S4} Im <b>b12</b>	^{S5} Im 821	56 T#	b21	S7 Im a22	^{S8} Im b22	S9 temp
			-12							Im 141
A temporar		temporary	C ten	porary	D tempora	iry	E	scratchpa	1	ndex
Re riz		Im r ₁₂		2 V21	Im R21				· · ·	

4-4

### **Program Listing II**

110	9		-			1	<u>62 *LBL2</u>	<u>complex</u>	add subrou	tine
111	GSB9					1	63 X≓Y			
112	EEX		r11 -> 211			1	64 R4			
113	SSB8		-				65 +			
		•		· · · · · · · · · · · · · · · · · · ·		-	66 R↓			
114	RCLB					-	67 +			
115	RCLA		K							
116	3		112 - a12				68 R1			
117	GSB8						<u>69 RTN</u>			
118	RCLD		<u> </u>		-	<b>-</b>		setur so	ratchpad in	ndex
119	RCLC						71 0			
120	5		121 - a21			1	72 *LBL8	store st	orage inde	K sybr
	GSB8_		- •				73 STOI			
121							74 R4			
122	<u>*LBL1</u>	aba c	e and retui	n suprouti	ᄺ		75 <b>*LBL</b> 5	complex	storage sul	
123	SPC						76 STOI	COMPICA	amin's am	orverine
124	RTN_									
125	*LBL7	mati	rix multiply	r subroutin			77 X <b>≓</b> Y			
126	EEX						78 P≢S			
127	1		• • · · ·			1	79 STO:			
128	÷	rect	all first ma	trix eleme	nt	1	<i>80 P</i> ≠S			
120	esb9						81 RTN			
							82 *LBL9	store re	call index	subr
130	RCLI						83 STOI		- <u></u>	- 24.
131	FRC									
132	EEX	<b>th a</b> = -	11			<b>1</b>	84 R4		Base 11	
133	1	Leci	all second m	UNTLIX 6162	THOM		85 *LBL4		recall sub	routine
134	Х						86 P≠S			
135	GS <u>B9</u>					1	87 RCL i			
136	STOE		plex multip	destion .		1	88 P <b></b> ≠S			
	070L R↓	COW	pier multip.	1 Ca CION			89 RCL <b>i</b>			
137							90 RTN			
138	STOI						91 *LBLc	POLAP/RI	OTANGULAR	TOGGLE
139	R↓									
140	ENTŤ						.92 CF1		ag 1 to in	
141	RŤ						.93 CLX		lar format	
142	х						94 RTN	place a	Zero in th	<u>e display</u>
143	RŤ					1	95 *LBLe			
144	RCLI					1	96 SF1	set flag	; l to indi	cate
							97 EEX		rmat and p	
145	X≢Y						98 RTN		he display	
146	X						.99 *LBLd		NTERCHANGE	
147	LSTX									L
148	R4						200 8	initiali	ze index	
149	-						01 <u>STOI</u>			
150	RŤ						02 *LBL6	<del></del>		
151	RCLE					2	03 GSB4			
152	X					2	04 DSZI	recall d	orrespondi	ng
							05 GSB4	matrix o		5
153	R†						06 ISZI			
154	RCLI						07 GSB5	<u> </u>		·
155	Х								-	
156	+						08 DSZI		inge and st	
157	X≠Y.						09 R4	correspo	onding elem	ents
158	F27						210 R4	•	<b>~</b>	
r=159	GT07	jum	p if first	product			<u>11 GSB5</u>			<u></u>
160	0	Ter	all first p	modulat			212 DSZI	decremen	at index an	d
161	GSB9						13 GTO6		loop exit	
	6003		Boratchpa	u storage			14 GTO1		ice and ret	
						└─── <u>`</u>		Pe		
<b>Ⅰ ↓</b>									•	—
}				ELS			FLAGS		SET STATUS	
A	B Load	a		n	E.		<u> </u>			
Load A	h	_	A+B+A	[™] A~B- <del>*</del> A		×B→A	^U subtract	FLAGS		DISP
la mount A	prin	tВ	c polar/rect	^d A <b>≆</b> B		int loop art	¹ polar		DEG	FIX
° print A	• · · ·			a	14 60	mplex	2 don't contin		GRAD	sci
0 matrix	1 anna E	***	2 complex	3	14 00					
0 matrix add/subtract	1 space \$		addition	0 <b>44000</b>	re	ecall	commation		RAD	ENG 🔳
0 matrix	¹ space 6 A≠ B subrout		2 dompier addition 7 matrix multiplication	8 store index 6 complex sto	9 st	ecall ore index uplex rcl	commation			ENG ■ n_3

#### PROGRAM 4-5 COMPLEX 2x2 MATRIX OPERATIONS - PART 2.

#### Program Description and Equations Used

This program is the second of two programs to manipulate complex 2x2 matrices. This program will perform matrix inverse  $(A^{-1} \rightarrow A)$ , matrix transpose  $(A^{T} \rightarrow A)$ , matrix complex conjugate $(A^{*} \rightarrow A)$ , and matrix interchange  $(A \ddagger B)$ . Because the resultant matrix from the matrix operation replaces the A matrix, chaining of matrix operations without data reentry is easily done.

This program shares common register storage with Program 4-4, hence, matrix operations that require concatenation of routines contained in two different programs can be done without reloading any previous data.

The user may elect to work in either the polar or the rectangular co-ordinate systems, however, all data is stored in rectangular format. If flag 1 is set, the input data is converted from polar to rectangular, and vice-versa for output.

The algorithms used are:

Matrix inverse:

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} \mathbf{a}_{22} & -\mathbf{a}_{12} \\ & & \\ -\mathbf{a}_{21} & \mathbf{a}_{11} \end{bmatrix}$$
(4-5.1)

where |A| is the determinant of A,

$$|\mathbf{A}| = \mathbf{a}_{11} \cdot \mathbf{a}_{22} - \mathbf{a}_{21} \cdot \mathbf{a}_{12}$$
 (4-5.2)

Matrix transpose:

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} \\ & & \\ a_{12} & a_{22} \end{bmatrix}$$
(4-5.3)



Matrix interchange, see Eq. (4-4.3).

# 4-5 User Instructions

COMPLEX 2x2 MATRIX OPERATIONS - PART 2							
print A	print B	polar/rect 1/0	A≠B	Calculate	5		
load A	load B		$\mathbf{A}^{T} \not\rightarrow \mathbf{A}$	A* A			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Lead both sides of the program card			
2	Select polar or rectangluar format		Î O	0 (rect)
				1 (polar)
				0 (rect)
		*******		
	Load matrix A in selected format (rect shown)			
	a) load imaginary part of matrix element	Im aij	ENTI	
	b) lead real part of matrix element	Re a _{ij}	BRT 1	<b> </b>
	c) load subscript of matrix element	1j		
	Repeat this step for ij 11, 12, 21, 22			
	in any order.			
4	Load matrix B in selected format (polar used)	·····	1704700 Å	
	a) load angle of matrix element	<u>X bij</u>		
	b) load magnitude of matrix element	b _{ij}		
	c) load subscript of matrix element	ij	<u> </u>	
	Repeat this step for ij 11, 12, 21, 22			
	in any order.			
5	To print matrices in chosen format (say polar	<u> </u>	~ <u></u>	
	a) A matrix use f A			<u>لا</u>
<b> </b>	b) B matrix use f B			4
<b> </b>		*****		
<b> </b>				<u>Å-12</u>
				42
				¥-21
		******		24
				*****************
				<b>4-22</b>
				22
				•
h			· · · · · · · · · · · · · · · · · · ·	<u> </u>

### **User Instructions**



STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	To calculate matrix A inverse		C	
	(use step 5 to print out resultant A matrix)			
7	To calculate matrix A transpose		D	
	(use step 5 to print out resultant A matrix)			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
8	To calculate matrix A complex conjugate		E	
	(use step 5 to print out resultant A matrix)			
9	To calculate the determinant of the A matrix		E E	Im  A
				Re  A
******				
10	To interchange matrices A and B in storage		f D	
	(use step 5 to print matrices)			
	······			
		*****		
	***			
		•••••		•••••
}				
<b></b>				
h				
h				
				*******************
	·····			

4-5

### Example 4-5.1

Given the A and B matrices of Example 4-4.1, calculate  $B^{-1}AB$ . The loading of the A and B matrices is shown in Example 4-4.1, and is omitted here for brevity (they were actually loaded from the magnetic data card from Program 4-4).

Load Program 4-4, and load A and B matrices

GSBE form  $AB \rightarrow A$ 

Load this program (Program 4-5)

 $GSB\alpha$  interchange AB and B GSBC form  $B^{-1} \rightarrow A$ 

Reload Program 4-4

form  $B^{-1}AB \rightarrow A$ GSBE print result GSBa -48.25 *** Im  $a_{11}$ -45.00 *** Re  $a_{11}$ -54.50 *** Im a₁₂ -55.25 *** Re  $a_{12}$ *** 49.50 Im a₂₁ Re  $a_{21}$ 45.75 *** Im a₂₂ 56.25 *** Re  $a_{22}^{22}$ 53.00 ***

4-5

**Program Listing I** 

001	*LBLA	LOAD MAT				-0-	<b>.</b>				
001			patrix /			956	و				
003				·		957	GSB9				
004		LOAD HAT	KIX B			358	<u>65</u> 82				
005	-					759	F2?	if dete	rminant		lation -
006	_					60	GTOO	goto pr	int rout	tine	TH OTOM
007						61	→P				
008						62	1/X	calcula	to and a	tore	1
009		Calculat	e storage	register		63	X≓Y				
010		10041101	from sub	BCLIDT	-	64	Chs				
011	ENT†					65	X≠Y				
012	+				L L	66	→R				
013	3					67	9				
014							<u>6588</u>				
015						<b>69</b> 70	3	calcula	te and s	tores	
016						70 71	GSB9				
017	CLX						9 ccn.				
018	+			_		r 2 73	GSBe	- 642	-> a ₁₂		
019	R4	if polar	data, co	nvert		-	з GSB8	IA)	14		
020	F1?	to rente	ngular fo	what		75	5000				
<u>- 021</u>	<u>→</u> <i>R</i>		-				o GSB9	calcula	te and s	tore:	
<u>022</u>	<u></u>	recover	storage 1	ndex		77	0005 Q			,	
<u>.023</u>	GSB8		trix elem				GSBe	3			
<u>024</u> 025	<u> </u>	go to space	e and re	turn subr	07		550¢		-> a ₁₂		
025		PRINT NA	CRIX A		] 08		GSB8	IAI			
026	EEX	initializ	Le index :	rogister	08		EEX				·
<u>027</u> 028	<u>STOI</u> GT07	for matri				2 (	SSB9	calculat	te and s	tore:	
029	*LBLk	PRINT MAT	107 V 6		. 08		STOA				
030	2	INCAL MAL			ØS		X≠Y				
031	_ \$T01	initializ	- D	register	08	5 §	TOB				
832	*LBL?	for matri			. 08	6	7				1
033	GSB4	matrix pr	Int Bubro	<u>utine</u>	- 08	76	SB9				
834	GSBØ	<u>recall</u> ma print mat	riy eleve	iont	- 08		9	a22	•		
035	ISZI				- 08		SB9	IAI	- <del></del> a ₄₁		
<u>_</u> <u>Ø</u> 36	ISZI	increment	index by	/ 2	69		SB3	••			
037	8				- 09	_	EEX				
038	RCLI	tost for	1		<u>. 09</u>		<u>SB8</u>				
039	X¥Y?	test for	TOOD OXIS		<i>09</i>		CLB	calculat	e and si	o ret	
- 040	<u>st</u> 07				<i>09</i>		CLA				
041	<u>GT01</u>	goto spao	e and ret	urn subr	- 69:		9				
<u></u>	*LBLe	OALOULATE	DETERMIN	ANT OF A	- 090 001	-	SB9 SDD	-			
<u>643</u>	SF2	Indicate	determina	nt calo	- 091 - 091	-	SB3 7	<u>an</u> -	← a ₂₂		ļ
044	*LBLC	CALCULATE			090 099		7 600	<b>I</b> AI			
045	EEX	calculate			100		588 T <b>01</b>				
046 047	GSB9	store all	-mu bura	conpad	101		BLe	m11]+4-1	and at-		
047 049	cepe	11	~22		102		389	multiply subrouti	eng QD9	nge si	.gn
048 049	GSB9 GSB3				103		383 383	-weitut1	110		1
045	6563 <b>9</b>				184		CHS				I
_051	<u></u> 				105		₹₽Ŷ				
852	- 2000			<u> </u>	106		HS				
053	GSB9	calculate	8.01 ·8.10	and	107		ζ <b>‡</b> Υ				
054	5				108		TN				ľ
055	GSBe	subtract f		22 *nien							
		is stored	_								
				REGI	STERS					-	
schatchpad	Re a _{ff}	2 Re 511	³ Pa au		E	6	. – –	7 _	8_	19	
S0 St			Re 8 ₁₂	Reb ₁₂	rce a ₂₄	Re	D ₂₄	Re 222	Re b2	₂ ∫ Re	
acratchpad	Im <b>a_{ff}</b>	^{S2} Im by	S3 Im 842	54 Im <b>b₁₂</b>	55. Im a ₂₄	S6 Im	b ₂₁	S7 Im azz	Se In b ₂	59	
^A scratchpad	B	cratchpad	Ĉ		D			cratchpac	I I ind	dex/so	
		-									

4-5

# Program Listing II

109 *LBLO common output subroutine 164 ISZI	
110 F1? convert to poler if remined 165 GSB5	
	interchange and store
112 XIY print both parts of a 167 R4	corresponding matrix
	elements
114 XIY (may be R/S statements 169 GSB5	
	decrement index and
	test for loop exit
	goto space and return subr
	OALOULATE MATRIX A TRANSPOSE
124 7	
	recall and scratchpad store
•=•	a ₁₂
121 RV 110 STOR	
122 + 177 X#Y	
123 R† <u>178 STOB</u>	
124 RTN 179 5	recall a ₂₁ and store in
125 *LBL3 complex multiply subroutine 180 GSB9	Pro loopfor
126 STOE 181 3	a ₁₂ location
127 RJ 182 GSB8	
128 STOI 183 RCLB	
126 DI 184 PCLO	recall a ₁₂ from scratchpad
	and store in a 21 location
	21
131 R† <u>186 GSB8</u>	
132 x187187187	goto space and return subr
133 R† <u>188 *LBL9</u>	store recall index subr
134 RCLI 189 STOI	
135 XZY <u>190 R4</u>	
	complex recall subroutine
137 LSTX 192 P#S	COMPTON TOOMIN DUDION OTHE
138 R4 193 RCLi	
+ · · · · · · · · · · · · · · · · · ·	
140 R† 195 RCL;	
141 RCLE <u>196 RTN</u>	
142 × <u>197 *LBL8</u>	store storage index subr
143 R† 198 STOI	
144 RCLI 199 R↓	
145 X 200 *LBL5	complex storage subroutine
146 + 201 STO;	
147 X#Y 202 X#Y	
148 RTN 203 P#S	
149 *LBLC POLAR/RECTANGULAR TOGGLE 204 STO;	
150 CF1 indicate rectangular format 205 P#S	
151 CLX and place a zero in display 206 RIN.	ALLANY IN THE I ALLASS
<u>152 RTN return to keyboard centrol</u> <u>207 *LBLE</u>	CALCULATE HAT A COMPLEX CONJ
<u>153 *LBLc</u> 208 P#S	reverse the sign of the
154 SF1 indicate polar format and 209 1	
155 EEX place a one in the display 210 CHS	imaginary parts of the
156 RIN return to keyboard control 211 SIX7	matrix elements
157 *LBLJ MATRIX INTERCHANGE 212 ST×5	
159 STOL initialize index 214 ST×1	
	Space and wattime Automatic
A CONTRACT COTTANDONGING ALL OF CALL OF CALL	space and return subroutine
162 US21 matrix elements	
163 GSB4 218 RTN	
	SET STATUS
$\begin{array}{c c} & LABELS & FLAGS \\ \hline A & Load A & B & Load B & C & A^{-1} \rightarrow A & D & A^{T} \rightarrow A & E & A^{*} \rightarrow A & 0 \\ \hline \end{array}$	FLAGS TRIG DISP
$\begin{array}{c c}A \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	FLAGS TRIG DISP
$ \begin{array}{c c} A & B & load B & C & A^{-1} \rightarrow A & D & A^{T} \rightarrow A & E & A^{*} \rightarrow A & 0 \\ \hline a & print A & b & print B & C & polar/rect & A \Rightarrow B & C & calc &  A  & 1 & polar \\ \hline \end{array} $	FLAGS         TRIG         DISP           ON OFF         Users choice           0         DEG         FIX
$\begin{array}{c c} A & B & \text{load } B & C & A^{-1} \rightarrow A & D & A^{T} \rightarrow A & E & A^{*} \rightarrow A & 0 \\ \hline a & \text{print } A & b & \text{print } B & C & \text{polar/rect} & d & A^{\mp} B & e & \text{calc }  A  & 1 & \text{polar} \\ \hline 0 & \text{complex} & 1 & & 2 & \text{complex} & 3 & \text{complex} & 4 & \text{complex} & 2 & \text{used with} \\ \hline print & \text{space & return} & & \text{add} & & \text{multiply} & \text{recall} & & \text{lab} \\ \end{array}$	FLAGS     TRIG     DISP       ON OFF     Users     Choice       0     DEG     FIX       1     GRAD     SCI
$\begin{array}{c c} A & B & load B & C & A^{-1} \rightarrow A & D & A^{T} \rightarrow A & E & A^{*} \rightarrow A & 0 \\ \hline a & print A & b & print B & C & polar/rect & d & A \Rightarrow B & e & calc &  A  & 1 & polar \\ \hline 0 & complex & 1 & & 2 & complex & 3 & gomplex & 4 & complex & 2 & used with \\ \hline \end{array}$	FLAGS         TRIG         DISP           ON OFF         Users choice           0         DEG         FIX

# Part 5 ENGINEERING MATHEMATICS

#### PROGRAM 5-1 ELLIPTIC INTEGRALS AND FUNCTIONS.

### Program Description and Equations Used

This program calculates complete elliptic integrals of the first kind and the following elliptic functions: elliptic sine (sn(u,k)), ellipic cosine (cn(u,k)), elliptic delta (dn(u,k)), and elliptic amplitude (am(u,k)).

The elliptic integral of the first kind is defined by Eq. (5-1.1), and the complete elliptic integral of the first kind is defined by Eq. (5-1.2), which can be evaluated using the infinite product shown in Eqs. (5-1.3) through (5-1.6). The product is terminated when  $k_m$  becomes smaller than  $10^{-1.0}$ . Generally this condition is achieved after the 3rd term of the series, hence, the series converges rapidly. As the modulus, k, approaches 1, more iterations are required, e.g., K(.9) = 2.280549137 requires 4 iterations and K(.999) = 4.495596396 requires 5 iterations.

$$u(\phi, k) = \int_{0}^{\phi} (1 - k^{2} \sin^{2} x)^{-\frac{1}{2}} dx \qquad (5-1.1)$$

$$K(k) = u(\frac{\pi}{2}, k)$$
 (5-1.2)

$$K(k) = \frac{\pi}{2} \prod_{m=0}^{\infty} (1 + k_{m+1})$$
 (5-1.3)

$$k_{m+1} = (1 - k_m')/(1 + k_m')$$
 (5-1.4)

$$k_{\rm m}' = \sqrt{1 - k_{\rm m}^2}$$
 (5~1.5)

$$\mathbf{k}_0 \equiv \mathbf{k} \tag{5-1.6}$$

The elliptic modulus, k, is commonly expressed three different ways, which leads to some degree of confusion. In the Abramowitz and Stegun tables of elliptic functions [1], the parameters m and  $\theta$  are used where m = k², and  $\theta$  = sin⁻¹k. The parameter  $\theta$  is called the modular angle.

The <u>elliptic sine</u> is an elliptic function, and is defined in a somewhat reverse manner from the elliptic integral. Referring to Eq. 5-1.1, given the input  $u(\emptyset,k)$ , the limit of integration,  $\emptyset$  must be found to satisfy the equality, then  $sn(u,k) = sin \emptyset$ . Likewise, the <u>elliptic cosine</u> is defined;  $cn(u,k) = cos \emptyset$ . Notice that when k = 0, the elliptic sine equals the trigonometric sine and likewise for the respective cosines.

The descending Landen transformation [12], [46] is used to calculate the elliptic sine. Starting with an initial value for  $sn(u_r, k_r)$  as given by Eq. (5-1.7), Eq. (5-1.8) is recursively used to find  $sn(u_0, k_0)$  which is the answer.

$$sn(u_{m+1}, k_{m+1}) = sin\left(\frac{\pi u_0}{2K(k)}\right)$$
 (5-1.7)

$$sn(u_{r-1}, k_{r-1}) = \frac{(1 + k_r)sn(u_r, k_r)}{1 + k_r sn^2(u_r, k_r)}$$
(5-1.8)

where

and  $k_r$  is obtained from storage, and was calculated from Eq. (5-1.4) during the complete elliptic integral calculation.

The descending Landen transformation is also the basis for Darlington's elliptic filter algorithms (Program 2-15).

The other elliptic functions are calculated from the elliptic sine as follows:

$$cn(u,k) = (1 - sn^{2}(u,k))^{\frac{1}{2}}$$
 (5-1.9)

$$dn(u,k) = (1 - k^2 \cdot sn^2(u,k))^{\frac{1}{2}}$$
 (5-1.10)

$$am(u,k) = sin^{-1} sn(u,k) = \emptyset$$
 (5-1.11)

# 51 User Instructions

		NTEGRALS ANI	FUNCTIONS		$\square$
eomplete elliptic integral, K(k)	elliptic sine sn(u,k), u † k	elliptic cosine cn(u,k), u t k	elliptic delta dn(u,k), u † k	print ? 911prig amplitude amiu.k), u/k	2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card			
2	Select print/no-print option			0 (R/S)
				1 (print)
			f	0 (R/S)
3	For complete elliptic integral, K(k)	k	Ā	K(k)
4	For elliptic sine, sn(u,k)	u	ENT 1	
• • • • • • •		k	B	sn(u,k)
5	For elliptic cosine, en(u,k)	u	ENT A	
		k	0	cn(u,k)
6	For elliptic delta, dn(u,k)	u	ENT	
		k	D	dn(u,k)
7	For elliptic amplitude, am(u,k)	u	ENT	·
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _,, _	k		am(u,k)
			<b></b> *	
				1
<b>├┟</b>				
<b> </b>				
┝┣				
<b> </b>				
<b>.</b>		l	• • • • • • • • • • • • • • • • • • • •	I

#### Example 5-1.1

Evaluate the following elliptic functions and compare with Abramowitz and Stegun [1] Tables 17.1 and 17.5.

```
K(k); k = \sqrt{0.9}
sn(3.09448898, sin 88°)
```

```
HP-97 printout
.9 JX
9.486832981-01 *** calculate k
GSBA
2.578092113+00 *** K(k)
```

```
3.09448898 ENT+ load u

š8. DE6

S1N calculate k = sin 88°

9.993908270-01 *** sin 88°

5585

9.96154693:-01 *** sn(3.09448898, sin 88°)

DE6

S1N calculate and print Ø = sin<sup>-1</sup>sn(u,k)

8.50000000:+01 ***
```

From Table 17.1 (p. 608 of [1]), K(m) for m = 0.9 is:

K(m) = 2.57809211334173

Rounded to ten significant figures, this figure agrees identically with the program output.

From Table 17.5 (p. 615 of [1]), the elliptic integral of the first kind for  $\alpha = 88^{\circ}$ ,  $\emptyset = 85^{\circ}$  is 3.09448898. The program output differs by 1 part in 8.5 x  $10^{9}$ , which exceeds the precision of the input.

# **Program Listing I**

<u>001_*LBLA</u>	COMPUTE COMPLETE ELLIPTIC INT	045 *LBLB	CALCULATE ELLIPTIC SINE
002 GSB2	calculate K(k)	046 GSB3	calculate m(u,k)
003 GTO9	goto output routine	847 GT09	goto output routine
004 *LBL2	K(k) calculation subroutine	048 *LBL3	sn(u,k) calculation subr
005 STO0	store k	049 ST02	store k
886 Pi		050 R4	
007 2	calculate and store:	051 ST03	recever and store u
008 ÷	T of		
	$\frac{\pi}{2} \rightarrow R1$	052 RCL2	calculate K(k)
009 ST01		<u>053 GSB2</u>	
010 EEX		054 DSZI	setup for sn(u,k) cale.
011 1	10> R8	<u>055 Rad</u>	
<u>012 Stj8</u>		056 RCL3	form and store initial
013 STOI		057 Pi	an value for descending
014 EEX		058 ×	
015 CHS	10 ⁻¹⁰ R9	059 RCL1	Landon transformations
016 1	10 - 57	060 ENT†	$\operatorname{sn}(u_{m+1}, k_{m+1}) = \operatorname{sin}\left\{\frac{\pi u_{0}}{2k(k)}\right\}$
617 -0		861 +	
018 ST09		062 ÷	
► 019 *LBL0	K(k) loop start	063 SIN	
020 EEX		064 ST04	
021 RCL0	calculate and store:		twomathem las them.
021 KOLO 022 X2	· · 2. Hz		transformation loop start
	$k'_{m} = (1 - k_{m}^{2})^{\frac{4}{2}}$	066 RCLI	recursively use descending
020		057 EEX	Landen transformation to
024 JX		668 +	find en(u ₀ , k ₀ ):
<u>025</u> ST07		069 RCL4	
026 CHS	calculate and store:	070 ×	_
027 EEX	ANTANTGAA NUM DAATA!	071 RCL;	$sn(u_{r-1}, k_{r-1}) = \frac{(1+k_r)sn(u_r, k_r)}{1+sn^2(u_r, k_r)}$
028 +	/	072 RCL4	1+ Sn2 (U-1 K-)
029 RCL7	$k_{m+1} = \frac{1 - k_m}{1 + k'}$	073 X2	1 (
030 EEX	$m + 1 = 1 + k_m$	874 ×	
031 +		075 EEX	
032 ÷		076 +	
033 STO0		077 ÷	
034 STOI	store kr for descending	078 ST04	
035 ISZI	Landen transformation	879 DSZI	
035 1521 036 EEX	winger of atter of the right -		
637 +	form $TT(1+k_{m+1})$	081 RCL8	test for loop exit
838 ST×1		082 X≦Y?	
039 RCL9		₩ <u>683 GT01</u>	
046 RCL0	test for loop exit	<u>084 RCL4</u>	recall sn(u, k)
041 X>Y?	the for roop owned	085 RTH	return to main program
-042 GT00			
043 RCL1	recall K(k)		
044 RTN	return to main program		
}			
ļ			
	ł		
			· · · · · · · · · · · · · · · · · · ·
	REGIS	STERS	
0 1 1 1/12	2 3 4	5 6	⁷ scratch ⁸ 10 ⁹ 10 ⁻¹⁰
⁶ ki K(k)	ko uo sn(u, k)		
S0 S1	S2 S3 S4	S5 S6	S7 S8 S9
k ₁ k ₂	k3 k4 k5	K ₄	
· · · · · · · · · · · · · · · · · · ·			
АВ		D E	I I
АВ		D E	ľ

# **Program Listing II**

5-1

086 *LBLC OALOULATE ELLIPTIC COSINE			
$\frac{\ell 637}{630}  \frac{65B3}{610}  \frac{calculate}{calculate} sn(u,k)$	4		
088 GT06 convert to cn(u,k) & output 089 *LBLD GALOULATE ELLIPTIC DELTA	4		
V 090 CSB3 calculate en(u,k)	1		
891 RCL2 form k-sn(u,k) and convert	1		
<u>092 X to dn(u,k) then output</u>			
$L = 0.93 \times LBL6$ $0.94 \times 22$ routine to calculate:			
$\begin{bmatrix} 0.95 & CHS \\ 0.96 & EEX \\ \end{bmatrix} (1 - (\cdot)^2)^{\frac{1}{2}}$			
. 097 +			
100 *LBLE CALCULATE ELLIPTIC AMPLITUDE	4		
101 GSE3 calculate en(u,k)	1		
102 SIN" convert to am(u.k)	1		
→ 103 *LBL9 output subroutine			
104 F0?			
105 PRIX print and space if 106 F0? flag O is set			
107 SPC			
108 RTN return to main program			
109 *LBL7 R/S lockup routine	4		
110 R/S 111 GT07			
112 *LELE PRINT - R/S TOGGLE	1		
113 FO? fumm if flag Q is set			
	-		
115 SFØ set flag 0 and place a 1 116 EEX in the display			
117_GT07_goto R/S lockup routine	1		
►118 *LBL8	]		
119 CFO clear flag O and place a			
<u>120 CLX</u> <u>0 in the display</u> <u>121 RTN</u> return control to keyboard	4		
121 KIN TEGUIN CONCION CO REPORTS	1		
	Flag 0 should be set (cleared) prior		
	to magnetic card recording depending		
	whether the user normally wants the		
	program in the print (R/S) mode.		
	1		
	FLAGS SET STATUS		
$ \begin{array}{c c} A \\ K(k) \\ \end{array} \begin{array}{c} B \\ sn(u,k) \\ \end{array} \begin{array}{c} C \\ cn(u,k) \\ \end{array} \begin{array}{c} D \\ dn(u,k) \\ \end{array} \begin{array}{c} E \\ and and and and and and and and and and$	m (u, K) ⁰ print FLAGS TRIG DISP		
a b c d e	nt toggle 1 ON OFF 0 🗆 DEG FIX 🔳		
0 K(k) (cop 1 sn loop 2 K(k) 3 sn(u,k) 4	2 1 GRAD SCI		
	$\frac{1}{1} = \frac{1}{1}	L I de toek [ princ toggie ] prin	

#### PROGRAM 5-2 BESSEL FUNCTIONS AND FM OR PHASE MODULATION SPECTRA.

#### Program Description and Equations Used

This program will calculate the magnitude of the spectral lines arising from a frequency of phase sine-wave modulation process. In addition, the power in the higher sidebands is calculated which can be used to help define the bandwidths necessary for a communication channel carrying frequency division multiplexed data with either frequency modulation (FM), or phase modulation (PM) on the individual subcarriers. Phase modulation is often used to transmit digital data with preconditioning such as Manchester biphase coding, or doublet modulation.

The spectra of both frequency modulated and phase modulated signals are the same when expressed as a function of the modulation index, m. The modulation index for the FM case is:

> m_f = <u>peak carrier deviation from nominal frequency</u> modulation frequency

Notice that the FM modulation index is modulation <u>frequency dependent</u>. The modulation index for the PM case is:

 $m_p = \begin{cases} carrier \text{ phase shift in radians produced by the} \\ modulating frequency. \end{cases}$ 

Also notice that the PM modulation index is modulation <u>frequency</u> <u>inde-</u><u>pendent</u>.

The carrier and carrier sideband levels are described in terms of Bessel functions with the modulation index as the argument. The spacing of the sidebands is equal to the modulating frequency. For example, with a modulation index of 5 and a modulation frequency of 15 kHz, the FM or PM spectra is:

carrier amplitude	J ₀ (5),
first sideband pair	$J_{1}(5),$
second sideband pair	J ₂ (5),
n-th sideband pair	J ₁ (5).



Figure 5-2.1 shows the above concept graphically.

Figure 5-2.1 FM or PM modulation spectra.

A Bessel function identity allows the power remaining in the higher sidebands to be calculated. With FM or PM, all the sidebands carry modulation information in somewhat redundant form. If the higher order sidebands are removed by filtering, the modulation information can still be recovered, but the effective power will be reduced hence, the signal-to-noise ratio decreased; some distortion will also be introduced.

The Bessel function identity is:

$$J_0^2(m) + 2 \sum_{i=1}^{\infty} J_i^2(m) = 1$$
 (5-2.1)

The summation is broken into 2 parts and the equation rearranged:

$$\sum_{i=n+1}^{\infty} J_i^2(m) = J_2(1 - J_0^2(m)) - \sum_{i=1}^{n} J_i^2(m)$$
 (5-2.2)

Therefore, if the magnitudes of the first n sidebands are known, then the power in the higher sidebands may be calculated since power is proportional to magnitude squared.

When the modulating signal contains 2 sinewaves of different frequencies and amplitudes superposition does not hold, since the resulting spectra is represented by the products of the Bessel functions of the individual spectra. Let  $m_1$  be the modulation index for modulation frequency  $f_1$ , and likewise,  $m_2$  for  $f_2$ , then the combined modulation spectral components will be as shown in Table 5-2.1.

Spectral Component	frequency of component	amplitude of component
Carrier	f _c	$J_0(m_1) \cdot J_0(m_2)$
Simple sidebands of	$f_{c} \pm f_{1}$	$J_1(m_1) \cdot J_0(m_2)$
	f _c ± f ₂	$J_0(m_1) \cdot J_1(m_2)$
	$f_{c} \pm 2f_{1}$	$J_{2}(m_{1}) \cdot J_{0}(m_{2})$
	$f_{c} \pm 2f_{2}$	$J_0(m_1) \cdot J_2(m_2)$
	:	:
Intermodulation	$f_{c} \pm f_{1} \pm f_{2}$	$J_1(m_1) \cdot J_1(m_2)$
	$f_{c} \pm f_{1} \pm 2f_{2}$	$J_{1}(m_{1}) \cdot J_{2}(m_{2})$
	$f_{c} \pm 2f_{1} \pm f_{2}$	$J_2(m_1) \cdot J_1(m_2)$
	:	:

Table 5-2.1 Spectra for combined modulation

The Bessel function of the first kind is easily evaluated using the summation of an infinite series; however, for values of m larger than 10, computational difficulties arise because of small differences between big numbers, i.e., using Eq. (5-2.3), Table 5-2.2 shows the individual terms for n = 0 and m = 20.

$$\mathbf{J}_{\mathbf{n}}(\mathbf{m}) = \left(\frac{\mathbf{m}}{2}\right)^{\infty}_{\mathbf{i}=\mathbf{0}} \frac{\left(-\frac{\mathbf{m}^{2}}{4}\right)^{\mathbf{i}}}{\mathbf{i}!\cdot(\mathbf{i}+\mathbf{n})!} = \left(\frac{\mathbf{m}}{2}\right)^{\mathbf{n}} \sum_{\mathbf{i}=\mathbf{0}}^{\infty} \mathbf{T}_{\mathbf{j}}$$
(5-2.3)

Table 5-2.2	
Infinite series terms.	The computed $J_0(20)$ by this method is
1.000000000 T.	0.166021646. Because the range of the
-100.0000000 Ti	numbers exceed 10 ¹⁰ , the least significant
2500.000000	numbers exceed to , the least significant
-27777.7778	figures have been lost. Even though the
173611.1111	-9
-694444.4444 Ts	summation was carried out until $T_i < 10^{-9}$ ,
1929012.346	the answer is only accurate to 2 significant
-3936759.889	figures The servest error to I (20) is
6151187.327	figures. The correct answer to $J_0(20)$ is
-7594058.428	0.1670246646, which is computed by a slower,
7594058.428 Tio	less direct method shown next.
-6276081.347	less direct method shown next.
4358389.823	
-2578928.890	
1315780.046	
-584791.1313 T _{is}	
228434.0357	
-79042.91893	
24395.96263	
-6757.884387	
1689.471097 Ta.	
-383.1000219	
79.15289702	
-14.96274047	
2.597697998	
-0.415631680 Tzs	
0.061483976	
-0.008434016	
0.001075767	
-0.000127915 0.000014213 Tao	
-0.000001479	
<b>0.00</b> 0000144	
-0.000000013	
0.00000001	

Equation (5-2.4) is the recursion relationship for Bessel functions of the first kind.

$$J_n(m) = \frac{2}{m} (n-1) \cdot J_{n-1}(m) - J_{n-2}(m)$$
 (5-2.4)

All Bessel functions approach zero as the order becomes large. This characteristic can be used to compute Bessel functions. If  $T_{n+2}(m) = 0$  and  $T_{n+1}(m) = 10^{-9}$ , the recursion relationship can be run backwards to arrive at a result that is proportional to  $J_0(m)$ . Abramowitz and Stegun [1] has the relations for the minimum starting index

and the constant of proportionality for  $J_0(m)$ , i.e., given

$$T_{i}(m) = \frac{2}{m}(i+1) \cdot T_{i+1}(m) - T_{i+2}(m)$$
 (5-2.5)

then, the minimum starting index is

$$i_{min} = 2.INT(\frac{6 + max(n,z) + (9z/(z+2))}{2})$$
 (5-2.6)

which for n = 0 may be reduced to

$$i_{\min} = 2 \cdot INT(\frac{z^2 + 17 \cdot z + 12}{2(z + 2)})$$
 (5-2.7)

where

$$z = 3m/2$$
 (5-2.8)

and "INT" means the integral part of the expression. The constant of proportionality is given by Eq. (5-2.9)

$$k = T_{0}(m) + 2 \sum_{j=1}^{\frac{1}{2}} T_{2j}(m)$$
 (5-2.9)

The first two Bessel functions are then:

$$J_0(m) = \frac{T_0(m)}{k}$$
 (5-2.10)

$$J_1(m) = \frac{T_1(m)}{k}$$
 (5-2.11)

With  $J_0(m)$  and  $J_1(m)$  and the recursion relationship given by Eq. (5-2.4), all the higher order Bessel functions may be evaluated.

# **User Instructions**

5**-2** 

Λ	BESSEL FU	NCTIONS AND	FM OR PM	Out	ut Form	at:	
	MODULATIO	N SPECTRA		0	1	2	z
	load m & start	print 1		$J_{0}(m)$ $(1-J_{c}^{z})/2$	J₄(m) 10 log క్డ్ని	$J_2(m)$	2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of program card			
2	Select print/no-print (R/S) option		B B B	0 (R/S) 1 (print) 0 (R/S)
3	Load modulation index and start	ba.		$\frac{0}{J_0(m)} (1-J_0^2)/2$
	remaining power in higher sidebands			$\frac{1}{J_1(m)}$
	in dB			2 J ₂ (m) 10log \$ J ₁ ² (m)
	To stop analysis (print mode selected)		<u>R/S</u>	
			4 4 1	

#### Example 5-2.1

The 400 MHz carrier from a navigation satellite is phase modulated with a 400 Hz sinewave causing 60 degrees peak modulation. What is the modulation index, and what are the amplitudes of the PM sidebands?

The modulation index is the peak modulation expressed in radians:

$$m_p = 2\pi (60/360) = 1.0472$$
 radians (5-2.12)

#### HP-97 PRINTOUT FOR EXAMPLE 5-2.1

ōŪ.		load modulation index and start
ë. 0.744072 0.223178	派法法 朱字洙 宋法中	carrier $J_0(m)$ $(1 - J_0^2(m))/2$
1. 0.455031 -11.4	就张泽 并长冲 浙庆谏	first sideband, f _c ± f J ₁ (m) relative power in higher sidebands in dB
2. 0.124972 -26.4	軍基軍	second sideband, f _c ± 2f _m J ₂ (m)
3. 0.022323 -44.0		J ₃ (m)
4. 0.002964 -63.5	智慧书 乐学并 乐学流	J ₄ (m)
5. 0.000313 -84.5	水水冲 滚 电水 水 中半	J ₅ (m)

Notice that 99% of the power is contained in the carrier and the first two sidebands (-26.4 dB = 0.23% remaining power in higher sidebands).

### Example 5-2.2

r

Calculate the sideband structure of a commercial FM station transmitting a 15 kHz signal with 75 kHz peak carrier deviation. The modulation index is:

$$m_f = 75000/15000 = 5$$
 (5-2.13)

HP-97 PRINTOUT FOR EXAMPLE 5-2.2

5.	GSE⊢	load m _f & start			
6. -0.177537 0.484236	* * * * * * * *	carrier J ₀ (m) (1 - J ₀ ² (m))/2	6. 0.131049 -21.8	東東東 東京 東 東 東 東	Ј ₆ (m)
-0.327579	***	first sidebands J _l (m) power (dB) outside	г. 0.053376 -31.2	第 4 4 第 4 第 4 第	J ₇ (m)
2. 0.046565 -1.1	冰冰冲	2nd sideband pair J ₂ (m)	5. 8.6184ê5 -41.7	▲★ ★ ★ ★ ★ ★ ★	J ₈ (m)
3. 0.364831 -3.0	*** *** ***	J ₃ (m)	9. 8.065520 -53.3	<u>秋</u> 秋安 宋文本 次安安	J ₉ (m)
4. 0.391232 -7.4		J ₄ (m)	ið. 8.001468 -65.7	<b>水水</b> 油 水水油	J ₁₀ (m)
5. 0.261141 -13.8		J ₅ (m)			

Notice that one-half the power is contained in the first 3 sidebands and 99% of the power is contained in the first 6 sidebands.

The sideband structure for this example is shown in Fig. 5-2.1.

5-2

**Program Listing I** 

001 *LBLA	LOAD m AND START		anlaulate The and Th
002 ST00	store n	<u>- 043 *LBL0</u> 044 GSB1	
003 F0?		045 ST+9	
004 SPC		846 CF2	
005 F0?	double space if flag 0 set	847 GSB1	
<u>006 SPC</u>		ē48 F2?	
007 1		<u>- 049 GTO0</u>	
008 .	calculate minimum starting	050 CLX	
009 5	index plus two	<u>051 STOI</u>	initialize i
010 ×		<u>052 GSB7</u>	print 1
011 ENTT		053 RCLE	calculate and print $J_o(m)$ :
012 ENT† 013 ENT†		054 RCL9	
013 ENT		055 ENT†	
815 7		056 +	- · · · · · · · · · · · · · · · · · · ·
615 + 616 +		857 RCLE 858 -	$J_o(m) = \frac{T_o(m)}{k}$
017 ×		059 ST02	ĸ
018 2	(	059 5102 060 ÷	
019 ÷	$i_{min} = 2 \cdot int \left\{ \frac{Z^2 + 17Z + 12}{Z(Z+2)} \right\}$	061 ST01	
020 6	( 4(2*2) )	062 GSB6	
821 +		063 X2	
022 XIY		064 CHS	calculate, store and print:
823 2		065 EEX	, 72
824 +		866 +	$\frac{1-J_0^2}{2}$
025 ÷		067 <b>2</b>	2
026 INT		068 ÷	
827 ENT+		069 ST05	
028 +		070 GSB9	
029 2 030 +		071 ISZI	increment and print i
030 + 031 ST01		<u>072 GSB7</u>	
831 5101		073 RCLD	calculate, store, and print
033 RCL0		074 CHS 075 RCL2	$J_1(m)$
034 ÷	calculate and store 2/m	076 ÷	-
035 STOB		077 ST02	$J_1(m) = \frac{T_1(m)}{k}$
036 CLX		<u>078 GSB6</u>	ĸ
037 STOE	initialize $T_{i+2}$ and $\Sigma T_{2j}$ (m)	079 X2	
038 ST09		080 CHS	calculate and print power
039 EEX		081 ST06	in higher sidebands
040 CHS	initialize T _{i+l}	082 RCL5	using Eq. (5-2.2)
841 9		083 +	
042 STOD		084 GSB8	
		]	
		1	
<u> </u>			
<u> </u>	REG!	STERS	7 19 10
$\int_{J_{n-1}}^{1} m \int_{J_{n-1}}^{1} m J_{n-1}$	$\frac{2k_{2}}{J_{1}(m)}, J_{n}(m)^{3}$	$\frac{5}{(1-J_0^2)/2} = \frac{5}{\sum_{i=1}^{n} J_i^2(m)}$	7 8 $^{9}\Sigma T_{2j}(m)$
S0 S1	S2 S3 S4	S5 S6	S7 S8 S9
A B		D - E	
n	^/m C	Ti, Ting	Ti+4, Ti+2 i, n

# Program Listing II

5-2

-085 *LBL2 loop to calc Bessel function	134 *LBLS calculate & prt 10.log subr
086 RCL1 J _{n-2}	135 RCL5
087 CHS	136 ÷
088 RCL2 Jn-4	
	137 LOG
089 ST01	138 EE×
090 RCLB 2/m	139 1
$091 \times T(x) \geq (x, y)T(x) = T(x)$	<u>140 × </u>
$\begin{array}{c c} 851 & A \\ 892 & RCLI & n-1 \end{array}  J_n(m) = \frac{2}{m}(n-1)J_{n-1}(m) - J_{n-2}(m) \end{array}$	
093 ×	
094 +	142 RND
	143 *LEL9 print and space if flag O
095 ST02 Jh	144 F07 is set, otherwise stop
096 ISZI increment n	145 PRTI
097 GSB7	146 FØ?
098 RCL2	147 SPC
$099 GSB6$ recall and print $J_n(m)$	
100 X2	148 FØ?
	<u>149 RTN</u>
	150 R/5 stop and await R/S
102 //010 -	151 RTN BOD and await ry 5
103 RCL5	r≠ 152 GT04 program block
104 +	153 *LELE PRINT-R/S TOGGLE
105 GSB8	
-106 GTQ2	154 F0° jump if flag 0 is set
	105 6102
	156 SFP set flag 0 and place
108 DSZI	157 EE a one in the display
109 SF2	-158 GTC4 goto R/S lockup routine
110 RCLE Ti+2	159 ALBLE
111 CHS	
112 RCLI ++4	
113 RCLB 2/m	161 CL' zero in the display
1	
	-162 *LBL4 R/S lockup routine
114 X	163 R/S
115 RCLD Ti+4 $T_{i}(m) = \frac{2}{2}(i-4)T_{i+1}(m) = T_{i+1}(m)$	
115 RCLD $T_{i+4}$ $T_{i}(m) = \frac{2}{m}(i-4) T_{i+4}(m) - T_{i+2}(m)$ 116 STOE	163 R/S
115 RCLD $T_{i+4}$ $T_{i}(m) = \frac{2}{m}(i-4) T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 ×	163 R/S
$\begin{array}{rcl} 115 & RCLD & T_{i+4} & T_{i}(m) = \frac{2}{m}(i-4) & T_{i+4}(m) - T_{i+2}(m) \\ 116 & STDE \\ 117 & x \\ 118 & + \end{array}$	163 R/S
115 RCLD $T_{i+4}$ $T_{i}(m) = \frac{2}{m}(i-4) T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 × 118 + 119 STOD $T_i$	163 R/S
$\begin{array}{rcl} 115 & RCLD & T_{i+4} & T_{i}(m) = \frac{2}{m}(i-4) & T_{i+4}(m) - T_{i+2}(m) \\ 116 & STOE \\ 117 & \times \\ 118 & + \end{array}$	163 R/S
115 RCLD $T_{i+4}$ $T_{i}(m) = \frac{2}{m}(i-4) T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 × 118 + 119 STOD $T_i$ 120 RTH	163 R/S
115 RCLD $T_{i+4}$ $T_{i}(m) = \frac{2}{m}(i-4) T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 × 118 + 119 STOD $T_i$ <u>120 RTH</u> <u>-21 *LEL6 print in dsp 6 subroutine</u>	163 R/S
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	163 R/S
115 RCLD Tite $T_{i(m)} = \frac{2}{m}(i-4)T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 $\times$ 118 + 119 STOD Ti 120 RTH <u>21 *LEL6</u> print in dsp 6 subroutine 122 DSP6 <u>123 STO6</u> <u>124 *LEL7</u> print_index in dsp 0 subr_ 125 DSP6 <u>126 PCLI</u> <u>127 *LEL6</u> 128 F07 print and return if flag 0 129 FPTV is set, otherwise stop	163 R/S
115       RCLD Tit4 $T_i(m) = \frac{2}{m}(i-4) T_{i+4}(m) - T_{i+2}(m)$ 116       STOE         117       x         118       +         119       STOD Ti         120       RTN         -21       *LEL6         123       STO6         124       *LEL7         125       DSP6         126       PCL1         127       *LEL6         128       F0?         128       F0?         129       PTV         130       F0?	163 R/S
115 RCLD Tite $T_{i}(m) = \frac{2}{m}(i-4)T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 × 118 + 119 STOD T: 120 RTN <u>21 *LEL6</u> print in dsp 6 subroutine 122 DSP6 <u>123 STO6</u> <u>124 *LEL7</u> print_index in dsp 0 subr_ 125 DSP6 <u>126 PCLI</u> <u>127 *LEL6</u> 128 F0? print and return if flag 0 129 FPTV is set, otherwise stop 130 F0? <u>131 RTN</u>	163 R/S
115 RCLD Tite $T_{i}(m) = \frac{2}{m}(i-4)T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 × 118 + 119 STOD T _i 120 RTN <u>121 *LEL6</u> print in dsp 6 subroutine 122 DSP6 <u>123 STO6</u> <u>124 *LEL7</u> print_index in dsp 0 subr 125 DSP6 <u>126 PCLI</u> 127 *LEL6 128 F0? print and return if flag 0 129 FPTV is set, otherwise stop 130 F0? <u>131 RTN</u> 132 R/S stop and avait B/S command	163 R/S
115 RCLD Ti+4 $T_{i}(m) = \frac{2}{m}(i-4) T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 $\times$ 118 + 119 STOD T _i 120 RTN <u>121 *LEL6</u> print in dsp 6 subroutine 122 DSP6 <u>123 STO6</u> <u>124 *LEL7</u> print_index in dsp 0 subr_ 125 DSP6 <u>126 PCLI</u> 127 *LEL6 128 F0° print and return if flag 0 129 FPTV is set, otherwise stop 130 F0° <u>131 RTN</u>	163 R/S
115 RCLD Tite $T_{i}(m) = \frac{2}{m}(i-4)T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 × 118 + 119 STOD T _i 120 RTN <u>121 *LEL6</u> print in dsp 6 subroutine 122 DSP6 <u>123 STO6</u> <u>124 *LEL7</u> print_index in dsp 0 subr 125 DSP6 <u>126 PCLI</u> 127 *LEL6 128 F0? print and return if flag 0 129 FPTV is set, otherwise stop 130 F0? <u>131 RTN</u> 132 R/S stop and avait B/S command	163 R/S -164 STOA
115 RCLD Tite $T_{i}(m) = \frac{2}{m}(i-4)T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 × 118 + 119 STOD T: 120 RTN <u>121 *LEL6</u> print in dsp 6 subroutine 122 DSP6 <u>123 STO6</u> <u>124 *LEL7</u> print_index in dsp 0 subr 125 DSP6 <u>126 PCLI</u> 127 *LEL6 128 F0° print and return if flag 0 129 FPTV is set, otherwise stop 130 F0° <u>131 RTN</u> 132 R/S stop and avait B/S command	Note:
115 RCLD Tite $T_{i}(m) = \frac{2}{m}(i-4)T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 × 118 + 119 STOD T: 120 RTN <u>121 *LEL6</u> print in dsp 6 subroutine 122 DSP6 <u>123 STO6</u> <u>124 *LEL7</u> print_index in dsp 0 subr 125 DSP6 <u>126 PCLI</u> 127 *LEL6 128 F0° print and return if flag 0 129 FPTV is set, otherwise stop 130 F0° <u>131 RTN</u> 132 R/S stop and avait B/S command	Notes Flag O should be set or reset prior
115 RCLD Tite $T_{i}(m) = \frac{2}{m}(i-4)T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 × 118 + 119 STOD T: 120 RTN <u>121 *LEL6</u> print in dsp 6 subroutine 122 DSP6 <u>123 STO6</u> <u>124 *LEL7</u> print_index in dsp 0 subr 125 DSP6 <u>126 PCLI</u> 127 *LEL6 128 F0° print and return if flag 0 129 FPTV is set, otherwise stop 130 F0° <u>131 RTN</u> 132 R/S stop and avait B/S command	Notes Flag O should be set or reset prior to magnetic card recording to cause the
115 RCLD Tite $T_{i}(m) = \frac{2}{m}(i-4)T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 × 118 + 119 STOD T: 120 RTN <u>121 *LEL6</u> print in dsp 6 subroutine 122 DSP6 <u>123 STO6</u> <u>124 *LEL7</u> print_index in dsp 0 subr 125 DSP6 <u>126 PCLI</u> 127 *LEL6 128 F0° print and return if flag 0 129 FPTV is set, otherwise stop 130 F0° <u>131 RTN</u> 132 R/S stop and avait B/S command	Notes Flag O should be set or reset prior to magnetic card recording to cause the
115 RCLD Tite $T_{i}(m) = \frac{2}{m}(i-4)T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 × 118 + 119 STOD T _i 120 RTN <u>121 *LEL6</u> print in dsp 6 subroutine 122 DSP6 <u>123 STO6</u> <u>124 *LEL7</u> print_index in dsp 0 subr 125 DSP6 <u>126 PCLI</u> 127 *LEL6 128 F0? print and return if flag 0 129 FPTV is set, otherwise stop 130 F0? <u>131 RTN</u> 132 R/S stop and avait B/S command	Note: Flag O should be set or reset prior to magnetic card recording to cause the program to initially be in the print or
115 RCLD Tite $T_{i}(m) = \frac{2}{m}(i-4)T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 × 118 + 119 STOD T _i 120 RTN <u>121 *LEL6</u> print in dsp 6 subroutine 122 DSP6 <u>123 STO6</u> <u>124 *LEL7</u> print_index in dsp 0 subr 125 DSP6 <u>126 PCLI</u> 127 *LEL6 128 F0? print and return if flag 0 129 FPTV is set, otherwise stop 130 F0? <u>131 RTN</u> 132 R/S stop and avait B/S command	Notes Flag O should be set or reset prior to magnetic card recording to cause the
115 RCLD Tite $T_i(m) = \frac{2}{m}(i-4)T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 × 118 + 119 STOD T; 120 RTN <u>21 *LEL6 print in dsp 6 subroutine</u> 122 DSP6 <u>123 STO6</u> <u>124 *LEL7 print index in dsp 0 subr</u> 125 DSP6 <u>126 PCLI</u> <u>127 *LEL6</u> 128 F0? print and return if flag 0 129 PPTV is set, otherwise stop 130 F0? <u>131 RTN</u> <u>132 R/S</u> <u>133 FTM</u> <u>132 R/S</u> <u>133 FTM</u> <u>133 FTM</u>	Notes Flag O should be set or reset prior to magnetic card recording to cause the program to initially be in the print or R/S mode respectively as users desire.
115       RCLD       Tita $T_i(m) = \frac{2}{m}(i-4) T_{i+4}(m) - T_{i+2}(m)$ 116       STOE         117       ×         118       +         119       STOD         120       RTN         121       #LEL6       print in dsp 6 subroutine         122       DSP6         123       STOE         124       #LEL7       print_index in dsp 0 subr         125       DSP6         126       PCL1         127       #LEL6         128       F0?         129       PTV is set, otherwise stop         130       F0?         131       RTN         132       R/S         133       F7m         132       R/S         133       F7m         133       F7m         133       F7m         134       RTN         135       F7m         136       F0         137       F7m         138       F7m         139       F7m         130       F7m         131       F7m         132       F7m <t< th=""><th>Note: Flag O should be set or reset prior to magnetic card recording to cause the program to initially be in the print or R/S mode respectively as users desire. FLAGS SET STATUS</th></t<>	Note: Flag O should be set or reset prior to magnetic card recording to cause the program to initially be in the print or R/S mode respectively as users desire. FLAGS SET STATUS
115RCLDTite $T_i(m) = \frac{2}{m}(i-4) T_{i+4}(m) - T_{i+2}(m)$ 116STOE117 $\times$ 118+119STOD120RTH121*LEL6122DSP6123STO6124*LEL7125DSP6126PCL1127*LEL6128F07130F07131RTN132R/S133STm133STm134F18135Stop and await R/S command	Note: Flag O should be set or reset prior to magnetic card recording to cause the program to initially be in the print or R/S mode respectively as users desire. FLAGS SET STATUS O print FLAGS TRIG DISP
115       RCLD       Tita $T_i(m) = \frac{2}{m}(i-4) T_{i+4}(m) - T_{i+2}(m)$ 116       STOE         117       ×         118       +         119       STOD         120       RTN         121       #LEL6       print in dsp 6 subroutine         122       DSP6         123       STOE         124       #LEL7       print_index in dsp 0 subr         125       DSP6         126       PCL1         127       #LEL6         128       F0?         129       PTV is set, otherwise stop         130       F0?         131       RTN         132       R/S         133       F7m         132       R/S         133       F7m         133       F7m         133       F7m         134       RTN         135       F7m         136       F0         137       F7m         138       F7m         139       F7m         130       F7m         131       F7m         132       F7m <t< th=""><th>163       R/S         -164       STOA         Note:       Flag O should be set or reset prior to magnetic card recording to cause the program to initially be in the print or R/S mode respectively as users desire.         FLAGS       SET STATUS         0       print         1       ON OFF</th></t<>	163       R/S         -164       STOA         Note:       Flag O should be set or reset prior to magnetic card recording to cause the program to initially be in the print or R/S mode respectively as users desire.         FLAGS       SET STATUS         0       print         1       ON OFF
115RCLDTimeTimeTimeTime116STOETimeTimeTimeTime117 $\times$ 118 $+$ 119STODTimeTimeTime120RTNTimeRTNTime121#LEL6printin dsp 6 subroutine122DSP6123STOE124#LE17printindex in dsp 0 subr125DSP6126PCL1127#LEL6128F80printand return if flag 0130F80131RTN132R/Sstop and await R/S command133FTN133FTN134R/S135FTN136C137D138E139C130FTN131RTN132R/S133FTN134C135FTN136C137C138C139C130C131C132FTN133FTN134C135TTN136C137TTN138C139TTN139TTN130TTN130TTN131TTN132TTN133TTN134TTN <t< th=""><th>Note: Flag O should be set or reset prior to magnetic card recording to cause the program to initially be in the print or R/S mode respectively as users desire. FLAGS SET STATUS Print FLAGS TRIG DISP 1 ON OFF DEG FIX 2 ON OFF DEG FIX</th></t<>	Note: Flag O should be set or reset prior to magnetic card recording to cause the program to initially be in the print or R/S mode respectively as users desire. FLAGS SET STATUS Print FLAGS TRIG DISP 1 ON OFF DEG FIX 2 ON OFF DEG FIX
115RCLDTimeTimeTimeTime116STOE117 $\times$ 118 $+$ 119STOD120RTN.21 $\times LEL6$ print122DSP6123STOE124 $\times LEL7$ print125DSP6126PCL1.27 $\times LEL6$ 128F07130F07131RTN132R/S133ETN134F18135ETN136F07137RTN138F18139F07131RTN132R/S133ETN134B135ETN136F07137RTN138F18139F18130F07131RTN132ETN133ETN134C135ETN136F18137ETN138ETN139E140C140E150C151F17152F18153F19154F18155F18156F18156F18156F18157F18156F18156F18156F18156F18	Notes Flag O should be set or reset prior to magnetic card recording to cause the program to initially be in the print or R/S mode respectively as users desire. FLAGS SET STATUS 0 print FLAGS TRIG DISP 1 0 0 OFF DEG FIX Lockup 2 loop cut 1 GRAD SCI
115 RCLD Tim $T_i(m) = \frac{2}{m}(i-4) T_{i+4}(m) - T_{i+2}(m)$ 116 STOE 117 x 118 + 119 STOD Ti 120 RTN <u>21 *LEL6 print in dep 6 subroutine</u> 122 DSP6 <u>123 STO6</u> <u>124 *LEL7 print index in dep 0 subr</u> 125 DSP6 <u>126 PCLI</u> <u>127 *LEL6</u> 128 FØ7 print and return if flag 0 129 PPTV is set, otherwise stop 130 FØ7 <u>131 RTN</u> <u>132 R/S</u> stop and await R/S command <u>133 FTM</u> <u>132 R/S</u> stop and await R/S command <u>133 FTM</u> <u>134 Codd m</u> <u>135 FTM</u> <u>136 TO7</u> <u>136 Codd m</u> <u>136 RJS - print C</u> <u>136 STM</u> <u>136 STM</u> <u>137 Codd m</u> <u>136 STM</u> <u>138 RJS - print C</u> <u>138 STM</u> <u>139 C d e</u> <u>136 STM</u> <u>136 STM</u> <u>136 STM</u> <u>136 STM</u> <u>136 STM</u> <u>137 C d e</u> <u>136 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>139 C d e</u> <u>136 STM</u> <u>136 STM</u> <u>137 STM</u> <u>137 STM</u> <u>138 STM</u> <u>138 STM</u> <u>137 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u> <u>138 STM</u>	163       R/S         -164       STO4         Note:       Flag O should be set or reset prior to magnetic card recording to cause the program to initially be in the print or R/S mode respectively as users desire.         Image: FLAGS       SET STATUS         Image: Print FLAGS       TRIG         Image: Print FLAGS       TRIG

### PROGRAM 5-3 CURVE FITTING BY THE CUBIC SPLINE METHOD.

#### Program Description and Equations Used

This program will fit a cubic spline interpolating curve through 2 to 9 equally spaced points [31]. The cubic spline represents the shape of the curve that would be generated if a clock spring were threaded through the data points. This technique is often used by draftsmen to draw a smooth curve through given points. The shape of such a curve looks natural, and is generally the shape one would attempt to draw by hand.

Let the ordinates,  $y_i$ , be given at  $x_i = x_i + (i-1) \cdot h$ , where  $i=1,2, \ldots, n$ , and h is the point spacing. Furthermore, let y(x) be the interpolating curve that is fitted to these points, and let  $y_i$ ' and  $y_i$ " represent the first and second derivatives of y(x) evaluated at  $x = x_i$ . y(x) may be represented piecewise where the function and its first and second derivatives are matched at the boundaries. The first and last segments of the interpolating curve may have their first and second derivatives specified by the user. The individual cubic interpolating polynomial  $f_i(x)$  can be expressed in terms of the ordinates  $y_i$  and  $y_{i+1}$ , and either their first or second derivatives. Both forms will provide the same y(x), but the second derivative form requires simpler calculations.

Assume the third derivative, y''(x), is constant in each interval, h. This assumption implies that y''(x) is linear in x, i.e.,

$$f_{i}''(x) = y_{i}''\left\{1 - \frac{x - x_{i}}{h}\right\} + y_{i+1}'''\frac{x - x_{i}}{h}$$
 (5-3.1)

Equation (5-3.1) is integrated twice with respect to x, and the constants of integration chosen so the boundary conditions are met to the extent that  $f_i(x_i) = y_i$  (i = 1,2,...,n-1), and  $f_{i-1}(x_i) - y_i$  (i = 2,3, ...,n). The results of this integration yield:

$$f_{i}(\mathbf{x}) \approx y_{i}(1 - (\mathbf{x} - \mathbf{x}_{i})/h) + y_{i+1}(\mathbf{x} - \mathbf{x}_{i})/h$$

$$- (h^{2}/6)(y_{i}^{"}) \left[ 1 - (\mathbf{x} - \mathbf{x}_{i})/h - (1 - (\mathbf{x} - \mathbf{x}_{i})/h)^{3} \right]$$

$$- (h^{2}/6)(y_{i+1}^{"}) \left[ (\mathbf{x} - \mathbf{x}_{i})/h - ((\mathbf{x} - \mathbf{x}_{i})/h)^{3} \right] \quad (5-3.2)$$

Since the first and second derivatives of the function must also match at the boundaries, Eq. (5-3.2) is differentiated with respect to x and evaluated at  $x_i$ :

$$f_{i}'(x_{i}) = (y_{i+1} - y_{i})/h - (h/6)(2y_{i}'' + y_{i-1}'')$$
 (5-3.3)

and

$$f_{i-1}'(x_i) = (y_i - y_{i-1})/h + (h/6)(y_{i-1}'' + 2y_i'')$$
 (5-3.4)

Equating Eqs. (5-3.3) and (5-3.4) implying boundary match yields:

$$h \cdot y_{i-1}'' = 4h \cdot y_i'' + h \cdot y_{i-1}'' = (6/h)(y_{i-1} - 2y_i + y_{i+1})$$
 (5-3.5)

where

This equation set represents n-2 equations in n unknowns. If the starting and ending second derivatives are specified  $(y_1" \text{ and } y_n")$ , then the number of unknowns is reduced by 2, and a solution exists to the equation set. This equation set may be expressed in matrix notation:

$$\begin{bmatrix} 4 & 1 & 0 & 0 & \dots & 0 \\ 1 & 4 & 1 & 0 & \dots & 0 \\ 0 & 1 & 4 & 1 & 0 & \dots & 0 \\ \vdots & & & & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 4 & 1 \\ 0 & 0 & \dots & 0 & 0 & 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} y_2'' \\ y_3'' \\ \vdots \\ \vdots \\ y_{n-2}'' \\ y_{n-1}'' \end{bmatrix} = \begin{bmatrix} (6/h^2) (y_1 - 2y_2 + y_3) - y_1'' \\ (6/h^2) (y_2 - 2y_3 + y_4) \\ (6/h^2) (y_3 - 2y_4 + y_5) \\ \vdots \\ \vdots \\ (6/h^2) (y_{n-2} - 2y_{n-1} + y_n) - y_n'' \end{bmatrix}$$

$$(5-3.6)$$

Because of the tridiagonal characteristic of Eq. (5-3.6), a Gauss reduction is an effective method for finding the values of the various second derivatives. Let,

$$d_{i} = (6/h^{2})(y_{i-1} - 2y_{i} + y_{i+1})$$
 (5-3.7)

and select  $y_1'' = y_n'' = 0$  (another common selection is  $y_1'' = y_2''/2$  and  $y_n'' = y_{n-1}''/2$ ). If a recursion relationship is defined thus:  $i^4 = 1/(4 - i - 1^4)$  for  $i = 1, 1, \dots, n-1$  (5-3.8) i.e.,  $_0^4 = 1/4 = 0.25$ 

$$_{1}^{0}$$
 (1/3.75 = 0.2666  
 $_{2}^{4}$  = 1/(4 -  $_{1}^{4}$ ) = .267857143

then the Gauss reduced matrix becomes:

Equation (5-3.9) is evaluated by the program as shown by the flowchart in Fig. 5-3.1.



Figure 5-3.1 Flowchart of Gauss reduction algorithm.

### User Instructions

OU	RVE FITTING	BY THE CUBIC	SPLINE MET	HOD	
Δx	start sweep			x _i	<b>z</b>
number of points	load h	load data, Yi	calculate spline	x + ŷ	1/

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of magnetic card			
			[	
2	Load the number of data points	<u>n</u>		
3	Load h, the x interval	h	B	
	······································		1	*******
4	Load y data	y ₁	0	2
		y ₂	0	3
		·		•••••
		V. 4		
		y _{n-1} y _n		<u>n</u>
5	Calculate spline		D	
6	Load first x point	<b>x</b> 1	f E	
7			Ē	ŷ
<b>'</b> '	Execute single point interpolation	X	<u> </u>	·····¥
	Step 7 may be used any number of times			
8	For linear sweep in x and corresponding			
	interpolation of y:			
	a) Load sweep point spacing	Δχ		
• • • • • • • • •	b) Start sweep		f B	<b>x</b> 1
				ŷ ₁
				$\mathbf{x}_1 + \Delta \mathbf{x}$
		<b>_</b>		ŷ
				<b>X</b> + 20-
				$x_1 + 2\Delta x$
		<b>+</b>		·ÿ
				•
				× ₁ +(n-1)∆×
				ŷ
ļ		<b>_</b>		

#### Example 5-3.1

Fit a cubic spline interpolating curve to the data given in Table 5-3.1. Provide the output sweep with x increments of 0.1.

Table 5-3.1 Data for cubic spline interpolation.

x	1	2	3	4	5	6	7	8	9
у	0	5	9	7	4	3	5	8	9

The HP-97 printer output is shown on the next page, and the interpolated output is plated in Fig. 5-3.2. The bold points represent the given data.





HP-97 PRINTOUT FOR EXAMPLE 5-3.1

	<u> </u>		PROG		PUT			- 4.4
9.000	GSBA	load numb	er of d	ata poir	nts			
1.000	GSBB	load h, t load y da	he x in ta poin	terval ts				
0.000 5.000 9.000 7.000 4.000 3.000 5.000 8.000 9.000	GSBC GSBC GSBC GSBC GSBC GSBC GSBC	У1 У2 У3 У4 У5 У6 У7 У8 У9	ta poin	68				
	GSBD	execute s	pline ca	alculati	lon			
1.000 .100	GSBe GSBa GSBb	load x _l , load x i start swe	nterval	st x po: for out	int tput swe	ep		
				AM OUT		·		
1.000 0.000	2.000 5.000	3 3.000 9.000	4.000 7.000	5.000 4.000	6.000 3.000	7.000 5.000	8.000 8.000	
1.100 0.486	2.100 5.530	) 3.100 ) 9.059	4.100 6.658	5.100 3.783	6.100 3.073	7.100 5.315	8.100 <b>x</b> 8.196 <b>y</b>	
1.200 0.974	2.200 6.058	) 3.200 9.035	4.200 6.320	5.200 3.587	6.200 3.180	7.200 5.639	8.200 8.361	
1.300 1.463		3.300 8.938				7.300 5.968		
1.400 1.954	2.400 7.067	3.400 8.776				7.400 6.297		
1.500 2.449	2.500 7.529		4.500 5.354			7.500 6.621	8.500 8.710	
1.600 2.947	2.600 7.948		4.600 5.053	5.600 3.054	6.600 3.905	7.600 6.935	8.600 8.788	
1.700 3.451	2.700 8.315			5.700 2.992	6.700 4.149	7.700 7.235	8.700 8.853	
1.800 3.961	2.800 8.619		4.800 4.493	5.800 2.961	6.800 4.415	7.800 7.515	8.800 8.907	
1.900 4.477	2.900 8.851		4.900 4.237	5.900 2.963	6.900 4.699	7.900 7.772	8.900 8.955	

# **Program Listing I**

			r.	-					
001	<u>*LBLA</u>	LOAD # OF DATA POINTS	11	1	056	-	tump if	1-2 is zer	ro
<u>002</u>	<u>STOA</u>	store number of data points		1	<b>0</b> 57	X=0?	<b>~</b> •		
003	EEX		11	Ir	- <u>058</u>	<u></u>			
004	1	set yn [*] to zero	<b>!</b>	11	059	STOI	initiali	Te T	
005	+		11		060	4	INICIALI	20 1	
006	STOI				r-861	*LBL3			1
			11		062	1/X	<b>calcu</b> lat	te ( ₁₋₂ 4)-	L
807	CLX		L.	11				1-2	
<u>008</u>	<u></u>		11	11	063	CHS			
009	EEX	initialize index register	11	11	864	4			
010	STOI	Internation Index 1.0012001			065	+			
011	RTN -		11	11	066	DSZJ			
012	*LBLB	LOAD h, THE x POINT	11	14	L+067	GT03			
013	STOB	SEPARATION			+068	GT04			
	RTN	De avaiion			669	*LBL2		· · · · · · · · · · · · · · · · · · ·	1
014			ŧŧ,	4		4	initial	ize (1-24)	-1
<u>015</u>	*LBLC	LOAD y DATA	11		070	·		1-2 -	··· ·
016	STO:	store y data			L-071	*LBL4	-	۶.	
017	ISZI	increment storage index		1	072	178	store i.	-2	
018	RCLI	recall index to display			073	STOE			
019	RTN	return control to keyboard	11	1	074	RCLØ			
020	*LBLD	CALCULATE SPLINE	1	1	075	RCLD			
<u>021</u>	RCLA		11	1	076	X=Y?	test for	r loop exi	t
-		calculate and store n-1	Ĩ	Ι	-977	GT02		-	
022	EEX			1					
023	-				078	RCLC			
024	STOD				679	RCLE	R. •	4_ R	
- 025	*LBL0	spline outer loop	1		080	×	R0 1-2	- <b>-</b> 0	
826	CLX				081	STOC			
827	STOC	initialize running sum		L_	-082	GT01	goto in	ner loop B	tart
028	EEX		11		083	*LBL2		derivative	
		initialize index register	11		084	RCLO			
029	STOP					RULO	calcula ⁴	te and sto	re n+10
	*LBL1		4		<i>085</i>	1		age index	-
031	EEX	increment and store index			886	I	derivat		
032	ST+0	Inclement and stole Index	[1		087	+	HOIIVat.	1.6	
033	RCLØ				888	STOI			
834	EEX				889	RCLC			
035	+				090	RCL i	-	te and sto	
	STOI		Ił.		091	-	second (	derivat <u>i</u> ve	, y, "
836					892	RCLE			T
837	RCLI	calculate d ₄				KOLL			
838	DSZI	1			<i>093</i>				
039	RCL I				094	RCLD			
040	ENT?				<b>89</b> 5	EEX	( p	"X AX	. 0
641	+				<i>096</i>	1	( KC -	(i-24)	R R + 10
042	-				897	+		-	-
043	DSZ!		<b> </b>		098	STOI			
					899	₽J.			
044	PCL i	<i>.</i>			100				
045	+	di = <del>6</del> (yi-1 - 2yi + yi+1)				<u>- Stoi</u> .			
046	6	h h			101	EEX.	4		
047	x				102	RCLD	decreme	nt 1 max	
648	RCLE				103	EEX			
049	X2				104	-			
050	÷		14		105	Stod			
					106	- 2222-			<b></b>
051	RCLC			_	- 107	GTOO	test for	r loop exi	t
052	-	d; – Rc 🕶 Rc	_ ا		198	SPC -			
853	STOC								
854	RCLØ				109	GTO8			
055	2								
Jul I	_		<u> </u>	-00					
	<u>.</u>	REGI	_				17	8 7	9 1/
O Ax for sweep 1	' Y4	2 Y ₂ 3 Y ₃ 4 Y ₄	5	Υ,	5	Υ ₆	1′ Y ₇	°Y _s	°Y,
f scratchpad			6.						
v. I	S1 current x	$S^{2} Y_{2}' = S^{3} Y_{3}'' = S^{4} Y_{4}''$	<b>S</b> 5	Y	5 5	⁶⁶ Y <b>6</b> ″	⁵⁷ Y,	58 Y	^{\$9} Y, - 0
	for sweep		1_	_	-		'		<u> </u>
A	8	h ^C scratchpad	D		Index	E	scratchpa	d T i	ndex
n	ł	h scratchpad	1	_	HUGK			·	
			1	-					

### Program Listing II

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>110</u>	<u>*LBLe</u> , <u>1</u>	OAD FIRST x POINT (x1 value)	165 1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			tore data		otherwise generate 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ST00			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	113	P≇S			_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	114	<u>ET08</u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>115</u>	<u>*LBLE</u>	CALCULATE Y ESTIMATE, $x - 9$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	116	P≢S		••••	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	117	RCLO	$\mathbf{X} - \mathbf{X}_{4}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	118	P#S	•		compute running sum
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	119				
$121  \div  h  + R_{0} \qquad 176  \div  h^{2} \\ 122  INT \qquad - h \qquad - 178  K_{0} \qquad 178  K_{0} \qquad - 178  K_{0} \qquad - 178  K_{0} \qquad - 178  K_{0} \qquad - 178  K_{0} \qquad - 178  K_{0} \qquad - 178  K_{0} \qquad - 178  K_{0} \qquad - 178  K_{0} \qquad - 188  CHF \qquad - 184  SFC  finish running sum cale = 182  + 183  FFC \qquad - 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statement) = 184  SFC  (may be B/S \ statemen$		RCLB	J. V.		calculate
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	121	÷	$\xrightarrow{\Lambda} \xrightarrow{\Lambda} \xrightarrow{\Lambda} R_c$		h²
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	122	STOC			6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	123	INT			•
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	124	EEX	$1 + INT\left(\frac{x - x_i}{x}\right) \rightarrow R_{\pm}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(n/ -	****	finish running sum cale
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		STOI_		-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			<b>v</b> ² <b>v</b>		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	$\frac{\Lambda_{1+4} - \chi}{h} \rightarrow R_{0}$	183 PRTY	print y estimate
136       RCL i       Kint - X       Y:       185       FIDE       JOAD       X Bockup         131       X       P       Y:       185       FIDE       JOAD       X Bockup         132       RCL i       X       Y:       185       FIDE       JOAD       X ROR SWEEP       -         133       RCL i       X       Y:       185       FIDE       START LINEAR SWEEP       -         134       FCL6       START LINEAR SWEEP       -       -       199       FCL6         136       FCL6       191       FCL6       192       CHS       192       CHS         136       FCL6       191       FCL6       192       CHS       192       CHS         137       STOE       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -		STOD	n	184 SPC "	(may be R/S statement)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		RCLI	Xi+4 - X		goto R/S lockup
132RCLI137STOLE133RCLI $X - Xi$ $R_E$ 134EEX $X - Xi$ $R_E$ 135 $ h$ $R_E$ 136ISZI $ 191$ 137STOE $ 191$ 138ISZI $191$ $RCLi$ 139RCLi $(y_{in})$ $\frac{X - Xi}{h}$ 139RCLi $(y_{in})$ $\frac{X - Xi}{h}$ 148 $X$ $(y_{in})$ $\frac{X - Xi}{h}$ 149 $X CLE$ $X - Xi$ $h$ 141 $+$ $195$ $+$ 142STOE $ -$ 143RCLE $X - Xi$ $h$ 144RCLE $X - Xi$ $h$ 144RCLE $X - Xi$ $h$ 145 $3$ $X - Xi$ $h$ 146Y $h$ $(X - Xi)^3$ 1561 $(y_{in})$ $(X - Xi)^3$ 157RCLD $Xi - Xi$ $h$ 158 $3$ $Y_{in} - X$ 157RCLD $Xi - Xi$ 158 $3$ $Y_{in} - Xi$ 159 $Y^X$ $h$ 159 $Y^X$ $h$ 160 $ -$ 161DS21 $(y_{in})$ 162RCLI $(y_{in})$ 163 $X$ $x$ 164FCLI $-$ 165 $X$ $h$ 166 $ -$ 167 $X$ $h$ 168 $X$ $RCLIS$ 169 $X$ $RCLIS$ 164			<u> </u>		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				•••	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					goto R/S lockup
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			X-Xi D		START LINEAR SWEEP
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	r i i i i i i i i i i i i i i i i i i i	_	h KE		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		STOE			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					imitializa mortatora
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					THIMIGITAS LERISCALE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$(y_{i,1}) \xrightarrow{x-x_i} + (y_i) \xrightarrow{x_{i+1}} \rightarrow \mathbb{R}_c$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		+			
143RCLE144RCLE144RCLE1453146 $y^{x}$ 146 $y^{x}$ 147-147-147-147-148RCLI149EEX1501151+152STOI153R4154RCLi155×155×156RCLD157RCLD15831583160-161DSZI162RCLi163x164FCLILABELS-A load norB load h, theC load y dataD calculatea load norB load h, theC load y dataD calculatea load norB load h, theC load y dataD calculateStimate-219GTOB210Set status211Set status212RVS163-164FCLI164C load y data0calculate164b stat219GTOB219GTOB219GTOB219GTOB210Cod A b211Kart212R/S213Calculate214R/S215GSE216Cod A b217Stats				197 P#S	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				▶ 198 ¥LBL9.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V V CJ J- 73		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\frac{\mathbf{x} - \mathbf{x}}{\mathbf{x} - \mathbf{x}} - \frac{\mathbf{x} - \mathbf{x}}{\mathbf{x} - \mathbf{x}}$		increment x value
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		γx	h Ch-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		RCLI			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			<b>A</b> -		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		+	$(u, ") \{ x - xi - (x - xi)^{3} \}$		alaulata largaat w walue
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\frac{1}{1+1}$ $\frac{1}{2}$ $\frac{1}{h}$ $\frac{1}{h}$ $\frac{1}{h}$ $\frac{1}{2}$		ANTANC TURBRE Y ANTAG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				· · · · ·	
$\frac{155}{156} \times \frac{1}{RCLD}$ $\frac{156}{157} \times \frac{1}{RCLD}$ $\frac{157}{157} \times \frac{1}{RCLD}$ $\frac{158}{158} \times \frac{1}{h} - \frac{1}{h} - \frac{1}{h}$ $\frac{160}{159} \times \frac{1}{h} - \frac{1}{h} - \frac{1}{h}$ $\frac{160}{161} - \frac{1}{161} \times \frac{1}{162} \times \frac{1}{h}$ $\frac{160}{162} \times \frac{1}{162} \times \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h}$ $\frac{163}{164} \times \frac{1}{164} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h}$ $\frac{163}{164} \times \frac{1}{164} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} - \frac{1}{h} -$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				211 X+V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					test for loop evit
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u>Xing - X</u> ( <u>Xing - X</u> )		- ·
$\frac{166}{161} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} \frac{161}{162} 16$		-	h \h/		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•			
$\frac{162}{163} \times \frac{164}{164} + \frac{1}{164} + $					vary and hime A spendice.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$(y'') \{ \frac{x_{i+1} - x}{x_{i+1} - x} = \frac{(x_{i+1} - x)^3}{x_{i+1}^3} \}$		R/S lockup subroutine
Ide FCL]219 GTD8LABELSFLAGSSET STATUSA load nbr of data pointsB load h, the x intervalC load y dataD calculate splineE x $\rightarrow$ ŷ0FLAGSTRIGDISPa load $\Delta x$ for sweepb start sweepcde load first1ON OFFUSERSCHOICEfor sweepsweepcde load first1ON OFFUSERSCHOICEfor sweepsweepcde load first1ON OFFUSERSCHOICEfor sweep1loop destination2intialize if 43 calculate4 gaues reduction2FIX GRADSCIfor loop1loop if to p2intialize if 49 loop32IBAD ENG			(h - h)		
LABELSFLAGSSET STATUSA load nbr of data pointsB load h, the x intervalC load y dataD calculate splineE x $\rightarrow$ ŷ0FLAGSTRIGDISPa load $\Delta x$ for sweepb start sweepcdde load first1ON OFFUSERSCHOICEfor sweepsweepcde load first1ON OFFUSERSCHOICEfor sweepsweepcde load first1ON OFFUSERSCHOICEfor sweepsweepcde calculate4 gaues21GRADSCIfor sweepci4reduction2RADSCIENGfor sweepfor sweepi4g loop32RADENG					
A load nbr of data points x interval $C$ load y data $D$ calculate $E \times \rightarrow \hat{y}$ $0$ FLAGS TRIG DISP a load $\Delta \times$ b start c d e load first 1 ON OFF USERS CHOICE for sweep sweep 1 loop 2 initialize ; 4 3 calculate 4 gaves 2 1 GRAD SCI destination destination $\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{8}$ $\frac{1}{9}$ loop 3 $\frac{1}{2}$ $\frac{1}{7}$ $\frac{1}{8}$ $\frac{1}{7}$ $\frac{1}{8}$ $\frac{1}{7}$ $\frac{1}{8}$ $\frac{1}{9}$ loop 3 $\frac{1}{7}$ $\frac{1}{8}$ $\frac{1}{7}$ $\frac{1}{8}$ $\frac{1}{7}$ $\frac{1}{8}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$		·			
of data points x intervalload y dataSplineX yFLAGSTRIGDISPa load $\Delta x$ b startcde load first1ON OFFUSERSCHOICEfor sweepsweepcde load first1ON OFFUSERSCHOICE0loop1loop2initialize if 43 calculate4 gauss21GRADSCI0destinatione scratchif 4gauss21GRADSCI56789loop32RADENG					SET STATUS
a load Ax b start c d e load first 1 ON OFF USERS CHOICE for sweep sweep 2 Initialize ; 4 3 calculate 4 gaves 2 1 GRAD SCI destination destination & scratch ; 4 9 loop 3 2 RAD ENG				→ŷ  º	FLAGS TRIG DISP
for sweep     sweep     x point     0     DEG     FIX       0     1     loop     2     initialize (4 3 calculate     4 gaues     2     1     GRAD     SCI       destination     destination     escratch     i4     reduction     2     RAD     ENG       5     6     7     8     9     loop     3     2     RAD     ENG					
destination destination & scratch (4 reduction 2 RAD ENG	for sweep	sweep	X	point	0 DEG FIX
		destinatio	2, initialize ;4 3 calculate 4 ga	Judes 2 Juction	
destination 3	5		17 18 9 (	00 2 3	
		1	des	tination	3

### PROGRAM 5-4 LEAST SQUARES CURVE-FIT TO AN EXPONENTIAL FUNCTION.

#### Program Description and Equations Used

Many processes both in electrical engineering and in physics have behavior that can be described by an exponential law, e.g., the voltage across a capacitor being charged through a series resistor asymptotically approaches the charging voltage in an exponential manner. When time constants are to be determined from oscilloscope photographs of these phenomena, only part of the entire waveform is available, and some error is introduced transferring the photograph data into numbers. If these errors are random, then a least squares fit can help remove them.

The equation form for the exponential function is given by:

$$x = a(1 - e^{-bt})$$
 (5-4.1)

Let  $d_i$  represent the difference between the measured point,  $x_i$ , and the exponential curve as shown by Fig. 5-4.1 and Eq. (5-4.2).



Figure 5-4.1 Exponential function.

$$d_{i} = x_{i} - a(1 - e^{-bt_{i}})$$
 (5-4.2)

The object of a least squares fit is to minimize the sum of the

squares of the deviations as implied by Eq. (5-4.3).

$$S = \sum_{i} d_{i}^{2} = \sum_{i} (x_{i} - a(1 - e^{-bt_{i}}))^{2}$$
 (5-4.3)

The minimum can be found by setting the derivatives of Eq. (5-4.3) to zero, i.e.:

$$\frac{\partial S}{\partial a} = 0 , \frac{\partial S}{\partial b} = 0$$

$$\frac{\partial S}{\partial a} = -2\sum_{i} \{x_{i} - a(1 - e^{-bt_{i}})\} \cdot (1 - e^{-bt_{i}}) = 0$$
(5-4.4)

$$\frac{\partial S}{\partial b} = -2a \sum_{i} \left\{ x_{i} - a(1 - e^{-bt_{i}}) \right\} \cdot (t_{i} \cdot e^{-bt_{i}}) = 0 \quad (5-4.5)$$

Equations (5-4.4) and (5-4.5) represent 2 equations in 2 unknowns, a and b. Equation (5-4.4) is solved for a as shown in Eq. (5-4.6)and substituted into Eq. (5-4.5) to yield Eq. (5-4.7)

$$a = \frac{\sum_{i} x_{i}(1 - e^{-bt_{i}})}{\sum_{i} (1 - e^{-bt_{i}})^{2}}$$
(5-4.6)  
g(b)  $\stackrel{A}{=} \sum_{i} x_{i} \cdot t_{i} e^{-bt_{i}} \sum_{i} (1 - e^{-bt_{i}})^{2} -$ 

$$\sum_{i} x_{i}(1 - e^{-bt_{i}}) \sum_{i} t_{i} \cdot e^{-bt_{i}}(1 - e^{-bt_{i}}) = 0 \quad (5-4.7)$$

To simplify things, the various sums in Eq. (5-4.7) are assigned numbers in the same respective order as they appear.

$$g(b) = \Sigma_1 \Sigma_2 - \Sigma_3 \Sigma_4 = 0$$
 (5-4.8)

The object is to find b so g(b) = 0. Since Eq. (5-4.7) is nonlinear, an iterative solution is employed to find b. Wegstein's method [29] is used and is flowcharted in Fig. 5-4.2. This method is chosen because no derivatives are required and the convergence is very rapid.

or

Basically Wegstein's method is Esperti's method where one curve is a straight line (see Program 2-9 for Esperti's method). Equation (5-4.8) will have to be modified as Wegstein's method finds the solution to f(b) = b, therefore, let f(b) be as shown in Eq. (5-4.9)

$$f(b) = \frac{\Sigma_3 \ \Sigma_4}{\Sigma_2} - \Sigma_1 + b$$
 (5.4-9)

The reason for this form is to try and avoid the small difference between big numbers problem. It is advisable to keep b between 0.1 and 10 for best accuracy. If the data is on a microsecond time scale, enter the time as though it were in seconds and denormalize b after it has been calculated. Likewise for millisecond data.

After b has been found by iteration, a is obtained by using Eq. (5-4.6), which can be expressed in terms of the numbered sums:

$$a = \frac{\Sigma_3}{\Sigma_2}$$
(5.4-10)



Figure 5-4.2 Flowchart for Wegstein's method.

### 54 User Instructions

LEAST SQUARES FIT TO AN EXPONENTIAL FUNCTION					
compare input É least squares			print ?	clear input mode	5
t _{start} t _{stop} tat	data entry	est <u>imate</u> b	start least squares fit		

<u> </u>				Ουτρυτ
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	DATA/UNITS
1	Load both sides of magnetic card			
2	Select print or R/S option (toggle)		Î D	0 (R/S)
			f D	1 (print)
			f D	0 (R/S)
				:
}				
3	Load tstart, tstop, and t			
	a) time of first data point	^t start	ENT	
	b) time of last data point	tstop	ENT	
	c) data point spacing	Δt		
	······································			
4	Load data (10 points maximum)		B	t _{start}
	load x at t _{start}	<b>x</b> 1	B	t _{start + 4t}
	load x at $t_{start} + \Delta t$	x2	B	tstari+2at
		••••••		
				tstop
	load last data point	× _n	В	tstop + At
				]
5	Load estimate for b $(0.1 \le b \le 10)$	<b>b</b> estimate	C	
	****			
••••••	To examine the currently stored value for b,			
	key "C" without numeric entry. The input			
	mode can be cleared with keys "f", "E".			****
6	To clear input mode (used with step 5)		fE	
	······································			
7	Start least squared fit			a
	, , , , , , , , , , , , , , , , , , ,			Ъ
				space
		1		
8	Optional; compare input data with least			
	squares fit data		Î	t _{start}
				x ₁
<b></b>				Ŷı
				L
		1		8. 5
				6. 9 7
9	Calculate linear estimate for x given t	t	E	÷ X

#### Example 5-4.1

A constant voltage was suddenly connected to the field of a large de traction motor, and an oscilloscope photograph taken of the current. The field time constant is needed to determine loop stability in the overall motor control loop. Table 5-4.1 shows the field current as read from the oscilloscope photo as a function of time.

Table	5-4.1	Motor	field	current	vs.	time.
	0 T . T	TOLOL	TTCTG	Current	vs.	cime.

time, seconds	0.1	0.2	0.3	0.4	0.5	0.6	0.7
current, amps	10	18	26	33	39	45	50

Assuming the field to be a simple series LR circuit, find the time constant and the asymptotic field current.

HP-97 PRINTOUT FOR EXAMPLE 5-4.1

	GSBa	compare input È least squares
	***	time
10.000	草案集	I(t) input
9.587	宋末末	I(t) from least sqs
0.200	***	
18.000	<b>東京市</b>	
18.211	<b>米</b> 米泽	
1		
0.300	兼兼兼	
26.000	冰冰水	
1		
0.400	冰冰冰	
33.000	***	
32.953	***	
0.500	***	
	***	
39.234	家家家	
0.606	***	
45.000	***	í
44.885	水水水	
	-	
ō.700	***	
50.000	***	i
49.969	草草草	
	10.006 9.587 0.200 18.000 18.211 0.300 25.971 0.400 33.000 39.000 39.234 0.600 45.000 44.885 0.700 50.000	0.100       ***         10.000       ***         9.587       ***         0.200       ***         18.000       ***         18.211       ***         0.300       ***         25.971       ***         0.400       ***         3.000       ***         3.000       ***         3.000       ***         3.000       ***         3.000       ***         3.000       ***         3.000       ***         3.000       ***         3.000       ***         3.000       ***         4.400       ***         50.000       ***         50.000       ***

**Program Listing I** 

001 *L6LA	IOAD tstart, tstop, At	056 RCL5	
002 STO0	store entries	057 RCL6	
003 R4		058 ×	$\Sigma_{A} + t_{i} e^{-bt_{i}} (1 - e^{-bt_{i}}) \rightarrow \Sigma_{A}$
004 STOD		059 RCL7	$2_4 + \tau_1 e^{-(1-e)} = 2_4$
005 R↓		060 ×	
006 STOC		061 ST+4	
007 GTOe	goto OF3 and R/S lockup subr	-062 GT00	goto summation loop start
008 *LBLC	LOAD & ESTIMATE	-063 *LBL3	start Wegstein solution
009 F3?	if numeric input, store data	064 RCL3	
010 STOB	It Remeile Tubre, poole dece	065 RCL4	
011 RCLB	recall b estimate to display	066 X	_
012 GT06	goto R/S lockup subroutine	067 RCL2	$\Sigma_3 \cdot \Sigma_4 = 5$
	START LEAST SQUARES CALC	067 RULZ	$\frac{\Sigma_3 \cdot \Sigma_4}{\Sigma_2} - \Sigma_1$
			£2
014 CF0	indicate first time thru loop	069 RCL1	
015 *LBL9	outer loop start	<u>070 -</u>	
016 CLX	initialize sums:	071 F0?	jump if not first time
017 ST01	TWT OT WITTE DOWN.	<u>072 GT01</u>	through loop
018 ST02		073 RCLB	$\bar{b} \rightarrow f(\bar{b})$
019 ST03	0 → ∑ ₁ → ∑ ₂ → ∑ ₃ → ≿ ₄	<u>874 STOE</u>	
828 ST04		075 +	
821 9	initialize index	076 ST08	$b \rightarrow \bar{b} \rightarrow f(b)$
822 STOI	Tulftallad ludar	077 STOB	
823 R.LC		<u>078 ST09</u>	
024 RCL0		079 SF0	not first time thru loop
025 -	initialize time register	080 GT09_	goto outer loop start
026 ST05		-081_*LBL1	jump destination
		082 RCLB	
	summation loop start		f(b)→b
<u>028 ISZI</u>	increment index	883 +	7(b)- <del>-</del> 0
029 RCL0	increment time	<u>084 STOS</u>	
<u>838 ST+5</u>		085 RCLB	
031 RCLD		086 -	( <b>b</b> -b)
032 RCL5	test for loop exit	087 RCLB	ABS $\left\{ \frac{\overline{b} - b}{\overline{b}} \right\}$
<b>† † 033 X&gt;Y</b> ?	0000 101 100p 0x10	088 ÷	
- 034 GT03		.089 ABS	
035 RCLB		090 EEX	
036 ×	e ^{-bti}	<b>0</b> 91 CHS	
037 CHS	e	092 6	test for loop exit
038 e*		093 X>Y?	dest tot toob evit
039 ST06		-094 GT02	
		095 RCL9	
	-bti	096 RCL8	
	1 - e ^{-bti}		
042 +		<b>897</b> -	sin h
<u>843 ST07</u>		098 RCLE	$q = \frac{f(b) - b}{b}$
844 X2	$\overline{\Sigma_2} + (1 - e^{bt_i})^2 \rightarrow \Sigma_2$	099 RCLB	$q = \frac{f(b) - b}{f(b) - b}$
<u>845 ST+2</u>		100 -	
046 RCLi		101 ÷	
047 RCL5	L.Z. 4	<u>102 STOA</u>	
048 ×	$\Sigma_1 + x_i \cdot t_i \cdot e^{bt_i} \rightarrow \Sigma_1$	103 RCLB	ā -= f(ā)
849 RCL6		104 STOE	······································
050 ×		105 RCL8	
051 ST+1		106 -	<b>-</b> .
052 RCL;		107 RCLA	$\Delta \overline{b} = \frac{\overline{b} - b}{a - 1}$
053 RCL7		108 EEX	<u>q -1</u>
054 ×	$\Sigma_3 + \chi_i(1 - e^{-bt_i}) + \Sigma_3$	100 -	U -
055 ST+3		110 ÷	
033 3173		. F	
		STERS	
ο Δt 1 Σ1	2 $\Sigma_{2}$ 3 $\Sigma_{3}$ 4 $\Sigma_{4}$	⁵ t; ⁶ -bt;	$7 1 - e^{-bt_i} = b^{9} f(b)$
S0 S1	S2 S3 S4	SS S6	
X. X.	X ₂ X ₃ X ₄	X5 X6	
AB	b C t _{start}	D E	f(b) I index
^ a, q	b t _{start}	tstop	

### 5-4

### **Program Listing II**

	RCLB		163 *LBL5	print or N/S subroutine
112		<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	164 F1?	
1 113			165 PRTX	print and return if
114	RCL8	b - f(b)	166 F1?	flag 1 is set, otherwise
		D -> + (D)	167 RTN	8, • ••••••
115				
116	GTOP	goto outer loop start	168 R/S	at a state D/O
117		Wegstein_output	169 RTN	stop and await R/S command
118	F1?	and a different we do not	170 *LBLB	LOAD DATA
119		space if print mode set	171 9	
				initialize register index
120	RCL3		<u>172 STOI</u>	
121	RCL2	$a = \frac{\sum_{a}}{\sum_{a}}$	173 <b>*LBL8</b>	data storage loop start
		$a = \frac{-3}{2}$		
122		$\Sigma_2$	<u>174 1SZI</u>	<u>increment register index</u>
123	STOA		175 RCLI	_
			176 EEX	
124		go sub print or R/S subr		aplaulate time for w/+)
125	RCLP	recall b	1 177 1	calculate time for $x(t)$
-126			178 -	
		goto print and space subr		
127	*LELc	COMPARE INPUT & LEAST SQRS	179 RCL0	
1 128			180 ×	
		setup time register		
129	RCL0		181 RCLC	
130		and index register	<u>182 +</u>	
131	STO		<u>183 R/S</u>	display time & avait entry
132	9		184 *LBLB	data_storage
<u>133</u>			<u>185 STO:</u>	<u>_store data</u>
134	*LEL7	loop start	186 GT08	goto leon start
135		increment register index		CF3 and R/S lockup subr
136	RCLØ	Amonous Adma Andra	188 CF7	clear flag 3
137		increment time index	►129 ¥LBLE	
				R/S lookup subroutine
138	RCL		190 RTN	
139			191 6706	
		test for loop exit		• 1 • 1 • 1 • 1 • 1 • 1 • • • • • • • •
140			<u> 192 *LELd</u>	PRINT OR R/S TOGGLE
141	GTOE		193 CF1	clear flag 1 for R/S mode
		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		
142	GSB5	output time	<u>194 CLX</u>	and place a zero in display
143	RCLI		195 RTN	return control to keyboard
		recall and output input		
144			<u>196 *LBLd</u>	toggle continued
145	R4	calculate and output	197 SF1	set flag l for print mode
		least squares estimate	-	
146				and place a one in display
147	GT07	goto loop start	199 PTN	return control to keyboard
148		LEAST SQUARES ESTIMATE		
			4	
149	RCLP		1	
150		calculates	1	
			1	
151	CHS		1	
1 152	e×		1	
153	A			
	Chs	LI		
1 154		\$ -(bt)		
154	1	$\hat{\mathbf{x}} = \mathbf{a}(1 - e^{-\mathbf{bt}})$		
155	2 +	$\hat{\mathbf{x}} = \mathbf{a}(1 - \mathbf{e}^{-\mathbf{bt}})$		
	1	$\hat{\mathbf{x}} = \mathbf{a}(1 - e^{-\mathbf{bt}})$		
155 156	1 + RCLA	$\hat{\mathbf{x}} = \mathbf{a}(1 - \mathbf{e}^{-\mathbf{bt}})$		
155 156 157	1 + RCLA X			
155 156	1 + RCLA	$\hat{\mathbf{x}} = \mathbf{a}(1 - e^{-\mathbf{bt}})$ print and space subroutine	-	
155 156 157 158	1 + RCLA 	print and space subroutine	Nadar	
155 156 <u>157</u> <u>158</u> <u>159</u>	2 + RCLA <u>x</u> <u>*LBL4</u> <u>GSB5</u>		Note:	
155 156 157 158	1 + RCLA <u>x</u> +LFL4 GSE5 F1?	print and space subroutine gosub print or R/S subr		should be set or reset
155 156 <u>157</u> <u>158</u> <u>159</u> 160	1 + RCLA <u>x</u> +LFL4 GSE5 F1?	print and space subroutine	Flag one	should be set or reset
155 156 <u>157</u> <u>158</u> <u>159</u> 160 <u>161</u>	2 + RCLA x *LBL4 GSB5 F1? SPC	print and space subroutine gosub print or B/S subr space if print mode set	Flag one prior to magne	etic card recording
155 156 <u>157</u> <u>158</u> <u>159</u> 160	1 + RCLA <u>x</u> +LFL4 GSE5 F1?	print and space subroutine gosub print or R/S subr	Flag one prior to magne	etic card recording
155 156 <u>157</u> <u>158</u> <u>159</u> 160 <u>161</u>	2 + RCLA x *LBL4 GSB5 F1? SPC	print and space subroutine gosub print or B/S subr space if print mode set	Flag one prior to magne depending when	stic card recording ther the user wishes the
155 156 <u>157</u> <u>158</u> <u>159</u> 160 <u>161</u>	2 + RCLA x *LBL4 GSB5 F1? SPC	print and space subroutine gosub print or B/S subr space if print mode set	Flag one prior to magne depending when program to not	etic card recording ther the user wishes the rmally come up in print
155 156 <u>157</u> <u>158</u> <u>159</u> 160 <u>161</u>	2 + RCLA x *LBL4 GSB5 F1? SPC	print and space subroutine gosub print or B/S subr space if print mode set	Flag one prior to magne depending when program to not	stic card recording ther the user wishes the
155 156 <u>157</u> <u>158</u> <u>159</u> 160 <u>161</u>	2 + RCLA x *LBL4 GSB5 F1? SPC	print and space subroutine gosub print or B/S subr space if print mode set	Flag one prior to magne depending when program to nor or R/S mode at	etic card recording ther the user wishes the rmally come up in print fter the card read.
155 156 <u>157</u> <u>158</u> <u>159</u> 160 <u>161</u>	2 + RCLA x *LBL4 GSB5 F1? SPC	print and space subroutine gosub print or B/S subr space if print mode set	Flag one prior to magne depending when program to nor or R/S mode at	etic card recording ther the user wishes the rmally come up in print
155 156 <u>157</u> <u>158</u> <u>159</u> 160 <u>161</u>	2 + RCLA x *LBL4 GSB5 F1? SPC	print and space subroutine gosub print or R/S subr space if print mode set goto OF3 and R/S lockup subr	Flag one prior to magne depending when program to not or R/S mode at Step 2 can be	etic card recording ther the user wishes the rmally come up in print fter the card read. skipped in this instance.
155 156 157 158 159 160 <u>161</u> 52	1 + RCLA x *LEL4 GSE5 F17 SPC GT2e	print and space subroutine gosub print or B/S subr space if print mode set goto OF3 and R/S lockup subr	Flag one prior to magne depending whet program to not or R/S mode at Step 2 can be FLAGS	etic card recording ther the user wishes the rmally come up in print fter the card read.
155 156 <u>157</u> <u>158</u> <u>159</u> 160 <u>161</u>	2 + RCLA x *LBL4 GSB5 F1? SPC	print and space subroutine gosub print or R/S subr space if print mode set goto OF3 and R/S lockup subr LABELS	Flag one prior to magne depending whet program to not or R/S mode at Step 2 can be FLAGS	etic card recording ther the user wishes the rmally come up in print fter the card read. skipped in this instance. SET STATUS
155 156 <u>157</u> <u>158</u> <u>159</u> 160 <u>161</u> 	1 + RCLA x *LEL4 GSE5 F17 SPC GT2e	print and space subroutine gosub print or R/S subr space if print mode set goto OF3 and R/S lockup subr LABELS ata C load D start E b estimate least squares	Flag one prior to magned depending whet program to not or R/S mode at Step 2 can be FLAGS $t \rightarrow \hat{x}$ 0 first time thru Weostein	etic card recording ther the user wishes the rmally come up in print fter the card read. skipped in this instance. SET STATUS FLAGS TRIG DISP
155 156 157 158 159 160 <u>161</u> 32 A load times a output	1 + RCLA x *LEL4 GSE5 F17 SPC GT2e	print and space subroutine gosub print or R/S subr space if print mode set goto OF3 and R/S lockup subr LABELS ata C load D start E b estimate least squares	Flag one prior to magned depending whet program to not or R/S mode at Step 2 can be FLAGS $t \rightarrow \hat{x}$ 0 first time thru Weostein	etic card recording ther the user wishes the rmally come up in print fter the card read. skipped in this instance. SET STATUS FLAGS TRIG DISP ON OFF USERS CHOICE
155         156         157         158         159         160         161         52	2 + RCLA x *LBL4 GSB5 F1? SPC GTJe B Load d	print and space subroutine gosub print or R/S subr space if print mode set goto OF3 and R/S lockup subr LABELS ata C load D start b estimate least squares C dprint toggle edu	Flag one prior to magnet depending whet program to not or R/S mode at Step 2 can be FLAGS $t \rightarrow \hat{x}$ 0 first time thru Weostein ear flag5 1 print	etic card recording         ther the user wishes the         rmally come up in print         Fter the card read.         skipped in this instance.         SET STATUS         FLAGS       TRIG       DISP         ON OFF       USERS CHOICE         0       DEG       FIX
A load times a output Summary 0 form	2 * RCLA x *LEL4 GSE5 F1? SPC GTCe B Load d b 1 Wegste	print and space subroutine         gosub print or R/S subr         space if print mode set         goto OF3 and R/S lockup subr         LABELS         ata       C load         C       D start         C       dprint toggle         C       dprint toggle         C       J wegstein         3       Wegstein	Flag one prior to magnet depending whet program to not or R/S mode at Step 2 can be FLAGS $t \rightarrow \hat{x}$ 0 first time thru Wegslein ear flag3 1 print	etic card recording ther the user wishes the rmally come up in print fter the card read. skipped in this instance. SET STATUS FLAGS TRIG DISP ON OFF USERS CHOICE
A load times a output Summary 0 form sums	2 + RCLA x *LBL4 GSB5 F1? SPC GTJe B Load d	print and space subroutine gosub print or R/S subr space if print mode set goto OF3 and R/S lockup subr LABELS tata C load D start b estimate least squares C dprint toggle Color op output Start 4	Flag one prior to magned depending whet program to not or R/S mode at Step 2 can be FLAGS $t \rightarrow \hat{x}$ 0 first time thru Wegstein ear flag3 1 print print 2	etic card recording         ther the user wishes the         rmally come up in print         Fter the card read.         skipped in this instance.         SET STATUS         FLAGS       THIG         ON OFF       USERS         O B       DEG         FIX       FIX         1       GRAD       SCI
A load times a output Summary 0 form sums	2 * RCLA x *LEL4 GSE5 F1? SPC GTCe B Load d b 1 Wegste major Lo	print and space subroutine gosub print or R/S subr space if print mode set goto OF3 and R/S lockup subr LABELS tata C load D start E b estimate least squares C dprint toggle ech in 2 Wegstein 3 Wegstein 4 op output Start 7 Summary 8 data input 9 oc	Flag one prior to magne depending whet program to nor or R/S mode at Step 2 can be FLAGS t→\$ 0 first time thru Weastein program to nor the program to nor the program to nor the program to nor or R/S mode at Step 2 can be FLAGS t → \$ 0 first time thru Weastein pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pront pro	etic card recording         ther the user wishes the         rmally come up in print         Pter the card read.         skipped in this instance.         SET STATUS         FLAGS       TRIG         ON OFF       USERS         DEG       FIX         1       GRAD       SCI         2       RAD       ENG
A load times a output Summary 0 form	2 * RCLA x *LEL4 GSE5 F1? SPC GTCe B Load d b 1 Wegste	print and space subroutine gosub print or R/S subr space if print mode set goto OF3 and R/S lockup subr LABELS tata C load D start E b estimate least squares C dprint toggle ech in 2 Wegstein 3 Wegstein 4 op output Start 7 Summary 8 data input 9 oc	Flag one prior to magned depending whet program to not or R/S mode at Step 2 can be FLAGS $t \rightarrow \hat{x}$ 0 first time thru Wegstein ear flag3 1 print print 2	etic card recording         ther the user wishes the         rmally come up in print         Fter the card read.         skipped in this instance.         SET STATUS         FLAGS       THIG         ON OFF       USERS         O B       DEG         FIX       FIX         1       GRAD       SCI

# LIST OF ABBREVIATIONS

#### LIST OF ABBREVIATIONS

alternative or	alt	destination	dest
alternate		diameter	diam
amplifier	amp	display	dsp
approximately	approx	distance	dist
arithmetic	arith		
attenuation	atten	electrical	elect
		elements	elts
bandpass	BP	enter	ent
bandstop	BS	Equation(s)	Eq(s).
bandwidth	BW	equivalent	equiv
branch	br	evaluation	eval
Butterworth	Buttr	even part of $(\cdot)$	Ev(•)
		execute	exec
calculation or calculate	calc		
capacitor	сар	feedback	fdbk
Chebyshev	Cheb	Figure	Fig.
circuit	ckt	format	fmt
clear	clr	frequency	freq
coaxial	coax	function	fcn
coefficient	coef		
complex	cmplx	go substitute	go sub
conductance	cond	go to	gto
conjugate	conj		
conversion	conv	henry	h
co-ordinates	co-ords	highpass	HP
decibel	dB	imaginary	imag
decibel ripple	dBR	increment	incr
denominator	den	initialize	init
denormalization	denorm	input/output	1/0
density	dens	integral	int
		511	

label	1b1	resistance	resist
level	1v1	return	rtn
linear	lin	review	revu
100p	lp	root sum square	RSS
lowpass	LP	root mean square	RMS
		-	
matrix	mat	secondary	sec
minimum	min	section	sect
multiplication	mult	solution	soln
		space	spc
negative	neg	<pre>specification(s)</pre>	spec(s)
numerator	num	square	sq
		starting frequency	fst
odd part of(•)	0dd(•)	stopping frequency	fsp
order	ord	store	sto
		subroutine	subr
page	Pg, P	sweep	swp
parameters	params		
peak	pk	temporary	temp
polynomial	poly	terminating,	term
preamplifier	preamp	terminal, or termination	
primary	pri	through	thru
print	prt	toggle	tog
program	pgm	total	tot
recall	_	transform	xfm
	rcl	transformer	xfmr
rectangular reflection	rect	transistor	xstr
register(s)	refl	transmitter	xmit
	reg(s)	transmission	xmsn
required	reqd	trigonometric	trig

## BIBLIOGRAPHY

- Abramowitz, M., and Stegum, I., <u>Handbook of Mathematical Functions</u> with Formulas, Graphs, and Mathematical Tables, AMS #55, Nat'l Bur. of Stds., Washington, D.C., 1972.
- 2 Amstutz, P., "Elliptic Approximation and Elliptic Filter Design on Small Computers," <u>IEEE Trans. on Ckts. and Systems</u>, vol CAS-25, Dec. 1978, pp. 1001-1011.
- 3 Antoniou, A., "Realization of Gyrators Using Operational Amplifiers and Their Use in RC Active Network Synthesis," <u>Proc IRE</u> (London), vol 116, Nov. 1969, pp. 1838-1850.
- 4 Bashkow, T.R., ch 26 in <u>Mathematical Methods for Digital Computers</u>, Eds. Ralston, A., and Wilf, H., Wiley, N.Y., 1960.
- 5 Belevitch, V., "Tchebycheff Filter and Amplifier Networks," <u>Wireless</u> <u>Engineer</u>, vol 29, April 1952, pp. 106-110.
- 6 Bell, W., <u>Matrices for Scientists and Engineers</u>, Van Nostrand Reinhold, N.Y., 1975.
- 7 Bennett, W.R., "Transmission Network," U.S. Pat 1,849,656, 15 March 1932.
- 8 Blinchikoff, H., and Zverev, A., <u>Filtering in the Time and Fre-</u> <u>quency Domains</u>, Wiley-Interscience, N.Y., 1976.
- 9 Bodway, G.E., "Circuit Design and Characterization of Transistors by Means of Three Port Scattering Parameters," <u>Microwave Journal</u>, vol 11, no. 15, May 1968.
- 10 Bruton, L., "Network Transfer Functions Using the Concept of Frequency Dependent Negative Resistance," <u>IEEE Trans. on Ckt</u>. <u>Theory</u>, vol CT-16, Aug. 1969, pp. 406-408.
- 11 Bunet, P., "On the Self Inductance of Circular Cylindrical Coils," <u>Revúe General de l'Electricite</u>, Tome xliii, no. 4, Jan. 1938, p. 99.
- 12 Byrd, P., and Friedman, M., <u>Handbook of Elliptic Integrals for</u> Engineers and Physicists, Springer-Verlag, N.Y., 1954.
- 13 Callendar, M., "Q of Solenoid Coils," <u>Wireless Engineer</u>, vol 24, June 1947, p. 185.

- 14 Carnahan, B., Luther, H., Wilkes, J., <u>Applied Numerical Methods</u>, Wiley, N.Y., 1969.
- 15 Carson, R.S., <u>High Frequency Amplifiers</u>, Wiley-Interscience, N.Y., 1975.
- 16 Cohn, S., "Direct Coupled Resonator Filters," Proc. IRE, vol 40, Feb. 1957, pp. 186-196.
- 17 Daniels, R., <u>Approximation Methods for Electronic Filter Design</u>, McGraw-Hill, N.Y., 1974.
- 18 Darlington, S., "Simple Algorithms for Elliptic Filters and a Generalization Thereof," session 3 of <u>IEEE Int. Symp. on</u> <u>Ckts. and Systems Proc.</u>, May 1978, pp. 35-39.
- 19 Daryanani, G., <u>Principles of Active Network Synthesis and</u> Design, Wiley, N.Y., 1976.
- 20 Deliyannis, T., "High-Q Factor Circuit with Reduced Sensitivity," Electronic Letters, vol 4, Dec. 1968, p. 577.
- 21 Dishal, M., "Design of Dissapative Band-Pass Filters Producing Exact Amplitude-Frequency Characteristics," <u>Proc IRE</u>, vol 37, Sept. 1949, pp. 1050-1069.
- 22 Doyle, W., "Lossless Butterworth Ladder Networks Operating Between Arbitrary Resistances," J. Math. Phys., vol 37, no. 1, April 1958, pp. 29-37.
- 23 Fano, R.M., "Theoretical Limitations on the Broadband Matching of Arbitrary Impedances," J. Franklin Inst., vol 249, Jan. 1950, pp. 57-83, and vol 249, Feb. 1950, pp. 139-154.
- 24 Froehner, W.H., "Quick Amplifier Design with Scattering Parameters," <u>Electronics Magazine</u>, 16 Oct. 1967.
- 25 Fortescue, <u>Standard Handbook for Electrical Engineers</u>, McGraw-Hill, N.Y., 1922 5th ed., p. 413.
- 26 Geffe, P.R., <u>Designers Guide to Active Filters</u>, Cahners Pub. Co., Boston, MA., 1974.
- 27 Geffe, P.R., "Microcomputer-Aided Filter Design," <u>IEEE Ckts</u>. and Systems Magazine, vol 1, no. 1, Jan. 1979, pp. 5-8.
- 28 Green, E., <u>Amplitude-Frequency Characteristics of Ladder Net-works</u>, Marconi's Wireless Telegraph Co. Ltd., Essex, England, 1954.
- 29 Grove, W.E., <u>Brief Numerical Methods</u>, Prentice-Hall, Englewood Cliffs, N.J., 1966.
- 30 Grover, F.W., <u>Inductance Calculations</u>, Working Formulas and <u>Tables</u>, D. Van Nostrand, N.Y., 1946.

- 31 Hamming, R., <u>Numerical Methods for Scientists and Engineers</u>, second edition, McGraw-Hill, N.Y., 1973.
- 32 Hewlett-Packard Application note #95, "S parameters . . . Circuit Analysis and Design," Hewlett-Packard Co., Sept. 1968.
- 33 <u>Hewlett-Packard Journal</u>, "S Parameters for Faster, More Accurate Network Design," vol 18, no. 6, Feb. 1967, p. 3-7.
- 34 Kawakami, M., "Nomographs for Butterworth and Chebyshev Filters," IEEE Trans. on Ckt. Theory, vol CT-10, June 1963, pp. 288-289.
- 35 Kerwin, W., and Heulsman, L., "Design of High Performance Active RC Band Pass Filters," <u>1966 IEEE Int. Conv. Rec.</u>, vol 14, part 10, pp. 74-80.
- 36 Lee, R., <u>Electronic Transformers and Circuits</u>, second ed., Wiley, N.Y., 1961.
- 37 Matthaei, G., "Synthesis of Tchebycheff Impedance-Matching Networks, Filters, and Interstages," <u>IRE Trans. on Ckt. Theory</u>, vol CT-3, Sept. 1956, pp. 163-172.
- 38 Moschytz, G., "Second-Order Pole-Zero Selection for n-th Order Minimum Sensitivity Networks," <u>IEEE Trans. on Ckt. Theory</u>, vol CT-17, Nov. 1970, pp. 527-534.
- 39 Norton, E.L., "Constant Resistance Networks with Applications to Filter Groups," <u>BSTJ</u>, vol 16, April 1937, pp. 178-193.
- 40 Orchard, H.J., "Formulae for Ladder Filters," <u>Wireless Engineer</u>, vol 30, Jan. 1953, pp. 3-5.
- 41 Orchard, H.J., "Computation of Elliptic Functions of Rational Fractions of a Quarter period," IRE Trans. on Ckt. Theory, vol CT-5, Dec. 1958, pp. 352-355.
- 42 Orchard, H.J., and Sheahan, D.F., "Inductorless Bandpass Filters," IEEE Jour. of Solid State Ckts., vol SC-5, June 1970, pp. 108-118.
- 43 Potter, J., and Fich, S., <u>Theory of Networks and Lines</u>, Prentice-Hall, Englewood Cliffs, N.J., 1963.
- 44 <u>Reference Data for Electrical Engineers</u>, Fourth Ed., ITT Corp., New York, N.Y., 1959.
- 45 Saal, R., and Ulbrich, E., "On the Design of Filters by Synthesis," IRE Trans. on Ckt. Theory, vol CT-5, Dec. 1958, pp. 284-327.
- 46 Skwirzynski, J., and Zdunek, J., "Note on Calculation of Ladder Coefficients for Symmetrical and Inverse Impedance Filters on a Digital Computer," <u>IRE Trans. on Ckt. Theory</u>, vol CT-5, Dec. 1958, pp. 328-332.

- 47 Still, A.F., <u>Elements of Electrical Design</u>, McGraw-Hill, N.Y., 1932.
- 48 Szentirmai, G., "Synthesis of Multiple Feedback Active Filters," BSTJ, vol 52, April 1973, pp. 527-555.
- 49 Temes, G., and La Patra, J., <u>Circuit Synthesis and Design</u>, McGraw-Hill, N.Y., 1977.
- 50 Temes, G., and Mitra, S., Eds., <u>Modern Filter Theory and Design</u>, Wiley-Interscience, N.Y., 1973.
- 51 Takahasi, H., "On the Ladder-Type Filter Network with Tchebycheff Response," J. Inst. Elec. Commun. Engrs., Japan, vol 34, Feb 1951, (In Japanese).
- 52 Terman, F.E., Radio Engineers Handbook, McGraw-Hill, N.Y., 1943.
- 53 Weinberg, L., Network Analysis and Synthesis, McGraw-Hill, N.Y., 1962.
- 54 Weinberg, L., and Slepian, P., "Takahasi's Results on Techbycheff and Butterworth Ladder Networks," <u>IRE Trans. on Ckt. Theory</u>, vol CT-7, June 1960, pp. 88-101.
- 55 Wheeler, H.A., "Simple Inductance Formulas for Radio Coils," <u>Proc IRE</u>, vol 16, no. 10, Oct 1928, p. 1398 and subsequent discussion in vol 17, no. 3, March 1929, p. 580.
- 56 White, D.R.J., <u>A Handbook on Electrical Filters</u>, Don White Consultants, Gainesville, VA., 1963.
- 57 Yengst, W.C., <u>Procedures of Modern Network Synthesis</u>, Macmillan, N.Y., 1964.
- 58 Zverev, A.I., <u>Handbook of Filter Synthesis</u>, Wiley, N.Y., 1967.

# INDEX

#### INDEX

Abramowitz, M., 290, 332, 276, 478, 484 Active filters, 41-84, 233-280 Air gap, 337, 391, 400 Amstutz, P., 293 Analysis: active networks, 41-84, 268-269 LC filters, 97-108 LRC filters, 75-96 Antoniou, A., 202 Approximation: Butterworth, 129-140 Chebyshev, 129-140 elliptic, 281-296 narrowband, 185-216 maximally flat see Butterworth AWG of wire, 347, 375 Balanced structure, 178, 180 Ball, J., 3 Bandpass transformations, 165-166, 185-216, 299 Bandstop transformations, 166-168, 299 Bartlett's bisection theorem, 101 Bashkow, T.R., 87 Belevitch, V., 154 Bell, W.W., 455 Bennett, W.R., 154

Bessel functions, 476, 481 Bilateral: amplifier design, 427 network, 163, 185, 199, 217, 233 Biquad circuits, 235 Bodway, G., 435 Bruton, L., 156 Bunet, P., 383 Butterworth approximation, 129-130, 134, 136-137, 146, 155, 233, 245-246 Byrd, P., 292, 476 Callendar, M., 375 Capacitance of transformers, 353 Carnahan, B., 455 Carson, R.S., 428 Cascade synthesis, 235 Characteristic function, 287, 309 Chebyshev rational function: definition, 287-289 relation to elliptic functions, 293-294 Closed loop gain, 255 Coaxial cable see Transmission Line Coefficient matching technique, 256-256 Coefficient sensitivity, see Sensitivity Cohn, S., 171, 185, 199 Cubic spline, 491-493

521

Daniels, R., 281, 287, 291, 297 Darlington, S., 293, 325 Daryanani, G., 254, 255, 272 Delay (of Butterworth and Chebyshev filters), 141-152 Decomposition into second order function, 235, 267 Deliyannis, T., 235, 267 Dishal, M., 171, 185 Doyle, W., 22 Elliptic filter: attenuation, 297-299 characteristic function, 326 degree, calculation of, 283, 293 examples, 303, 304, 313, 314 loss function, 298 natural modes, 309-311, 326 transformation to produce loss pole at infinity, 283-284 Elliptic functions: sine (sn), 292, 476 cosine (cn), 476 delta (an), 476 amplitude (am), 476 Elliptic integrals, 292, 475 Equiripple filters, 309-324 Esperti's method, 237-238 Even part (Ev), 318 Fano, R.M., 121 Feedback factor, 267 Feldtkeller equation, 287, 309 Ferromagnetic cores, 337 Fich, S., 36

Fortescue, 253 Fourier series for elliptic sine, 292 Frequency normalization, 163-164 Frequency-dependent-negativeresistance (FDNR), 156 Friedman, M., 292, 476 Froehner, W.H., 428 Gain-bandwidth of op-amps, 267 Gain, open loop, 49-54, 268, 271, 272 Gain-bandwidth product, 272 Gain sensitivity, 271 Geffe, P.R., 272, 293 Green, E., 154 Grove, W.E., see Wegstein's method Grover, F.W., 365 Gyrator, Antoniou, 202

```
Hamming, R.W., 3, 491
Heulsman, L., 235
Highpass transformation 142-143,
164-165
h parameters, 447
```

```
Inductance:
leakage, 353
```

of aircore coils, 373, 383 of solenoids, 395 of straight wires, 366 of wire loops, 367 open circuit, 338 quality factor (Q), 375 Inductors: active, 202-203

```
passive, 337-352
```

Input bias current, 260 Network, two port, 447 Input noise, 109 iteration), 57 Input offset voltage, 260 Jacobian elliptic functions, 475 Johnson noise, 109 Offset voltage, 260 .Kawakami, M., 129, 133, 134 Kerwin, W., 235 Ladder networks, 41, 76, 80, 83, 101, 103, 109 Landen, descending transforma-433 tion, 292, 476, 479, LaPatra, J., 235 Passband: Least squares fit, 501-503 Low-pass approximation, see Approximation Loss function, 297-299 Luther, H.A., 455 Passive networks: Magnetic path, 337 analysis, 75-108 Magnetic saturation, 344 Matrix algebra, 447-471 Matthaei, G., 121 Möbius transformation, 283-Permeability, 337 284, 299 Phase delay, 142 Modular elliptic function, 292 Moschytz, G., 309 Natural modes: of Butterworth filters, 146 and Key of Chebyshev filters, 148 Potter, J.I., 36 of elliptic filters, 328 of equiripple filters, 309-312 Q enhancement, 270 of maximally flat filters, Q factor of inductors, 375 146 Quadrangle symmetry, 316 Negative feedback biquad, 267

Newton's method (Newton-Raphson Nodal analysis, 56, 258 Normalized lowpass filter, 153-162 Norton, E., 154, 211 Open loop gain, 41, 45, 50, 51, 52, 54, 55, 268, 276 Orchard, H.J., 154, 202, 293 Ordering of biquads, 244 Oscillator (design with s parameters), bandpass filter, 131 bandstop filter, 167 highpass filter, 142-143, 253 lowpass filter, 147-148 LC filter, 153-216 transformation, 217-232 transmission lines, 13-40 Pole frequency,  $\omega_{\rm p}$ , definition, 234 Pole Q, definition, 234 Poles, complex conjugate, 234 Positive feedback biquads see Sallen Power dissipated in coil, 395