
VM ELECTRONICS

HEPAX MODULE
Owner’s Manual

Volume 1: Normal and Advanced Operation

The XF multi-function subfunctions
Number FunctionName

ALENG
ANUM
AROT
ATOX
CLKEYS
CLRGX
GETKEY
GETKEYX
PASN
PCLPS
POSA
PSIZE
RCLFLAG
REGMOVE
REGSWAP
ZREG?
Size?
STOFLAG
X<>F
XTOA
X=NN?
X~NN?
X<NN?
X<=NN?
X>NN?
X>=NN?

010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025

Return length of string in ALPHA.
Convert string in ALPHA to numerical value in X.
Rotate contents of ALPHA.
Convert character in ALPHA to character code in X.
Clear all key assignments.
Clearregistersas specified by X.
Get keycode depending on key pressed.
Get keycode within time specified by X.
Programmable assignment.
Programmable clear programs.
Find position ofstring or character in ALPHA,
Programmable SIZE.
Recall the status of userflags 00-43.
Move a block of main memory data registers.
Swap two blocks of main memory data registers.
Return the location ofthe statistical registers.
Return the current SIZE.
Restore the status of userflags 00-43.
Exchange status of user flags 0-7 with X.
Convert character code in X to character in ALPHA.
Compare X with indirect Y.
Compare X with indirect Y.
Compare X with indirect Y.
Compare X with indirect Y.
Compare X with indirect Y.
Compare X with indirect Y.

The HEPAX multi-function subfunctions
Name
AND
BCAT
BCD-BIN
BIN-BCD
CTRAST
DELETE
INSERT
NOT

COR
ROTYX
SHIFTYX
XOR
X+Y
X-$
Y-X

Number Function

001
002
003
004
005
006
007
008
009
010
o11
012
013
014
015

Logical XAND Y.
Block catalog,
Converts numberin X from BCD to binary.
Converts numberin X from binary to BCD.
Setdisplay contrast ("Halfnut" calculators only).
Works like DELETE of the hexadecimal editor.
Works like INSERT ofthe hexadecimal editor.
Complement of X.
Logical XORY
Rotates Y register X nybbles.
Shift Y register X bits.
Logical X exclusive-or Y
Bitwise addition
ConvertsX registerto alphastring
Bitwise subtraction

IAA
electronics

The HEPAX Module

Volume 1
Normal and Advanced use

February 1988

Printed in Denmark © VM Electronics 1988

Printed in Denmark.

© VM Electronics ApS, 1988.

All rights reserved. No part of this manual may be reproduced, in any form

or by any means, without the prior written consent of VM Electronics ApS.

HEPAX Manual

Addendum Card

A few typographical errors have unfortunately crept into the

Owner’s Manual for the HEPAX modules. Please correct with a pen.

Page Please correct:

30 Lind kd of the "HRESZFL" program is illegible. It should

read "47 FC? 00".
99 The register name of the sixth register should read "kB" (the

"append" character).
123 Add a footnote to the FETCH S&X instruction as follows:

"Do no fetch from address 0002h, as this will cause a file

system reset.”

127 An “append” character (f+) is missing in lines 17, 22 and 42

of the "JUMP" program. These linies should read
17 "} (space)", 22 "land 42"F ,".

135 An “append” character (J) is missing in the parenthesis

after the READ 10 and WRIT 10 instructions.
141 An "append" character (}) is missing in the parenthesis

after the WRIT 10 instruction.
167 An “append” character (IF) is missing ir the parenthesis

under parameter 10.

If you have any suggestions for improving the HEPAX Module and/or

the Owner’s Manual, please let us know. Thank you.

VM Electronics, Nyelandsvej 7, 1., DK-2000 Frederiksberg, Denmark.

Contents

Introduction. . . . «+ ov vi tie eee ee 6

Inserting and removing HEPAX modules 8
Howtousethismanual. 13

Part I: Normal Use

Section 1: Aliyouncedtoknow LL. LL, 16
Using the HEPAX filesystem 16

Viewing the files of the HEPAX file system; Managing

HEPAX files; Transferring HEPAX files to and from Mass

Storage; Securing HEPAX files
Programs in HEPAX memory 21

Program names and file names; Saving programs in HEPAX;
Making programs PRIVATE; Calling programs in HEPAX

memory from main memory

Section 2: Other HEPAX filetypes 27

Creating dataand textfiles. 27
Creating data files; Creating text files; Resizing data and

text files; Clearing data and text files
Using pointers in data and text files. 31

Structure of data files; Structure of text files; Pointer

operations
Datafileoperations «vv vou ue 34

Operations on all data registers; Operations on a block of

data registers; Operations on the X register
Textfileoperations 38

Record operations; Character operations; Searching a file;

Copying text to the ALHPA register
Using key assignment and "Write-all' files. 42

Using key assignmentfils; Using "Write-all" files

a Contents

Section 3: The Extended Functions
The multi-function concept

Why multi-functions?; What is a multi-function?; Multi-
functions in programs

The XF multi-function.
Data register operations LL... LLL...
Flagoperations.
Usermode operations.
ALPHA string operations
Test functions

Part II: Advanced Use

Section 4: The HEPAX file system.
HEPAX memory oo...
The HEPAX filetypes. . . . «oo. o.oo... .. :

Programs in HEPAX memory; Data files; Text files; Key
assignment and "Writc-all" files

Programs in HEPAX and XROM numbers
Thestructure of the HEPAX file system.

The HEPAX file chain; Actual storage of HEPAX files;
Maximum file sizes; Resizing files; Allocating HEPAX
memory for other purposes

Section 5: The Advanced functions.
Handling ROM images

Transferring ROM images to and from mass storage; Write
protecting a ROM image; Copying and clearing ROM images

The Disassembler

Simple editing; Clearing HEPAX memory; Inserting and
deleting; Copying code; Special functions; Messages from
HEXEDIT

Copying and clearing parts of ROM images
Codingand decoding

Coding; Decoding; Hexadecimal prompting

Contents 5

Section 6: The HEPAX multi-function. 77
Advanced file system functions LL... LL... 77
Binary functions 77
Miscellancous functions 78

Subjectindex LL... LLL LLL LLL 79

List of figures

Fig. 1, Using Advanced and Double Memory HEPAX modules 9
Fig. 2, lllegal configurations 9
Fig. 3, A HEPAX text file in register format. 28
Fig. 4, AHEPAX datafile. 31
Fig. 5, AHEPAX text file in record format 32
Fig. 6, The "weight" of flags 0-7. 49
Fig. 7,Userkeycodes 51
Fig. 8, Example offiles in HEPAX memory 63
Fig. 9, The HEXEDIT keyboard 69

List of tables

Table 1, System addressed devices LL... LLL LLL. 8
Table2,"8K"modules. 10
Table 3, HEPAX filetypes. 17
Table 4, Charactercodes 53
Table 5, Indirect test XF numbers 55

6 introduction

Introduction

Congratulations on your new HEPAX module!

The HEPAX module — HEwlett-PAckard 41 eXpansion module — is a very
powerful expansion of your HP-41 system. In cffeet, it lets you create your

own application modules, you can use data and text files exactly like in the
Extended Functions module, you get all the functions of the XF module and

you can save key assignments and entire calculator memory exactly like
with the HP-IL module and a mass storage device.

The manual thoroughly describes all functions and gives many examples. For
those interested, it also gives much useful information about the inner
structure of the HP-41 and gives a complete overview of HP-41 assembly
programming.

Terminology

In this manual, the term main memory is used to describe the up to, 319

directly accessible registers of the HP-41CV and HP-41CX (the HP-41C may

be expanded to this amount by using Hewlett-Packard memory modules).
Extended memory is thc memory that may be added to the HP-41 system by

using the HP82180A Extended Functions/Memory module and two HP82181A

Extended Memory modules. The term HEPAX memory is used to describe the
up to 31408 words of expanded memory that may be added to the HP-41
system by using HEPAX modules.

The basic unit of HEPAX memory is a word. Of the 8192 words in the

Standard HEPAX and HEPAX Memory modules, 340 words arc used intern-
ally by the HP-41 itself and the HEPAX file system ~ Icaving 7852 words

available to the User. The Advanced HEPAX and HEPAX Double Memory
modules contain twice as much memory,

In order to achieve maximum storage capacity, the HEPAX file system
operates with two types of registers: HEPAX data registers consisting of 6
words and HEPAX program registers consisting of 7 words. Refer to

section 4: "The HEPAX file system" for a detailed explanation of this
subject.

With the HEPAX module, you can program the HP-41 in machine language.
This is the "native" language of the HP-41 microprocessor. HP-41 machine
language is known as microcode, machine code or simply M-code. We will

use the term M-code throughoutthis manual.

Introduction 7

In Part JI and IV of this manual, we will often use numbers written in
binary or hexadecimal form. Binary numbers are identified by the suffix "b’

and hexadecimal numbers by the suffix "h". Thus, 247 = F7h = 11110111b.

Refer to appendix D for more information about binary and hexadecimal
numbers,

CAUTION

The HP-41 must be OFF before you insert any
HEPAX module!
Before plugging in your HEPAX module, make
sure that you understand the following section

"Inserting and Removing HEPAX modules".

8 Inserting and removing HEPAX modules

Inserting and removing HEPAX modules
Before inserting the HEPAX module for the first time, take the time to
read through this entire section.

Up to four HEPAX modules may be plugged into the HP-41 ports. This
would give you a maximum of 31,408 words or 5,222 HEPAX data registers
of extra memory.

CAUTION

Turn the HP-41 OFF before inserting or
removing a HEPAX module! Failure to do so
could damage both the calculator and the
HEPAX module.

Configurations

Using HEPAX with HP-41C memory modules

In an HP-41C, the HEPAX module must be placed in a port with a higher
number than the last HP memory module (the HP-41CV and CX do not use
memory modules). The port numbers are indicated on the back of the
calculator.

Using Advanced and Double memory modules

If you are inserting an Advanced HEPAX module or a HEPAX Double
Memory module, the port next to the module must be empty or contain a
system addressed device. All system addressed devices are shown below.

HP-41C memory modules

Extended Memory modules
TIME module
HP-IL module

HP-82242 IR printer module
HP-82143A printer

Table 1, System addressed devices

Inserting and removing HEPAX modules 9

Example:

HP-41CV HP-41CV

Wrong!
(ADV HEPAX is not next to a

system addressed device)

Fig. 1, Using Advanced and Double Memory HEPAX modules

Using HEPAX together with HP-IL

Four configurations with HEPAX and the HP-IL module (switch sct to
"enable") are illegal. If you turn on the HP-41 with an illegal configuration,
you will get the message ILL CONFIG. Turn the HP-41 off and set the
switch on the HP-IL module to "disable", or remove any module or
peripheral.

The four illegal configurations are shown below. Note that the
configurations are illegal, regardless of which port each module or
peripheral is inserted in.

HP-41CX HP-41CX

Fig. 2, Illegal configurations

"(sys)" is any system addressed device as listed in table 1. "8K" is a module
that contains 8,000 words of memory or more. Most modules arc known as
"4K", but a few "8K" modules exist. Some of the most common 8K modules
arelisted in table 2 below.

10 Inserting and removing HEPAX modules

HEPAX Memory modules

HP-IL Development ROM
Plotter ROM
Advantage module
Petroleum fluids module

Table 2, "8K" modules

Ask the vendorif you are in doubt if a module is "4K" or "8K".

Identification and installation

Identification

Standard HEPAX modules are identified by the legend STD HEPAX marked
on the module. Advanced HEPAX modules are identified by the legend

ADV HEPAX. HEPAX memory modules are identified by HMEPAX MEM and
HEPAX double memory modules are marked HEPAX 2MEM.

Installing a HEPAX module

To insert a module:

Turn the calculator OFF!

Failure to do so could damage both
the calculator and the HEPAX
module.

Sclect a port to mount the HEPAX

module in. Remove the port cover

(save it for later use).

Insert the HEPAX module with the

right side up, as shown.

Turn the HP-41 on. The HEPAX
module is now readyfor use.

Inserting and removing HEPAX modules

11

12 Inserting and removing HEPAX modules

Removing a HEPAX module

‘When removing HEPAX modules, some or all of the data in HEPAX memory
may belost. Modules should be removed according to the following rules:
- Hf modules were installed at the same time, first remove the module in

the highest numbered port.
- If modules were installed at different times, first remove the module

that was inserted last.
Refer to section 4: "The HEPAX file system” for an cxplanation of these
rules.

To remove a HEPAX module:

Turn the calculator OFF!

Failure to do so could damage both
the calculator and the HEPAX
module.

Put a nail under the edge at one of

the lower corners of the HEPAX

module and gently pull the module
out as shown.

Cover the empty port with a port
cover.

How to use this manual 13

How to use this manual

For ease of use, this manual is divided into two volumes. This volume
contains information about normal and advanced use of the HEPAX module,
volume 2 gives information about M-code programming.

Normal use

For normal use of the HEPAX module, read only Part I of volume 1:
"Normal use".

If you only wish to use your HEPAX module for storing your own programs,
just read section 1: "All you need to know”.

If you also want to use data and text files, or save key assignments or
entire calculator memory,also read section 2: "Other HEPAX file types”.

If you wish to use all the powerful HEPAX Extended Functions (also found
in the HP-82180A Extended Functions module and the HP-41CX), read
section 3: "The Extended Functions",

Advanced use

However, the HEPAX module has many other, very advanced functions.
These will be helpful for synthetic programming and are essential for HP-41
M-code programming - writing your own functions.

Part 1 (also in volume 1) explains about the file system and the many
advanced functions of the HEPAX module. These functions include some
very useful functions for handling whole blocks of HEPAX memory, a
powerful disassembler, a very advanced hexadectmal editor and many others.

Part III (in volume 2) covers the inmcr secrets of the HP-41, in detail
giving information about the way the HP-41 works. This is important
reference material in its own right, but is also a must for M-code
programming.

Part IV (also in volume 2) explains all HP-41 M-code instructions, gives
detailed information about the use of peripheral units and about creating
your own ROM.

14 How to use this manual

Reference information

For easy reference, this manual contains a subject index, a function index

(inside back cover) and a list of multifunction numbers (inside front
cover).

All messages from the HEPAX module are listed in appendix A, and a

summary of the parameters needed for cach function is given in appendix B.
The most necessary reference tables for M-code programming are repeated

in appendix C, and appendix D explains the use of binary and hexadecimal
numbers.

Part I:

Normal Use

Section 1:

All you need to know

This section will explain all you need to know to transfer your own
programs to HEPAX memory. First, we will explain a few gencral functions

of the HEPAX file system and then we will explain how to copy your
programs to HEPAX memory.

Programs in HEPAX mcmory may be executed directly. This means that they
may be deleted from main memory, hereby freeing an amount of main

memory for other use.

The HEPAX module also lets you save data, text, key assignments and

entire calculator main memory in the form of files. A file is a collection of
data that cannot be used directly; just like a file cabinet, you must first

find the information you need and take it to your desk before working on
it. This will be covered in section 2.

As the HEPAX file handling functions sces it, a program in HEPAX

memory is also a file. A program in HEPAX is directly executable, but it

still hasa file name, a header and otherfile information.

Using the HEPAX file system

When a file is created, it is given a file name of up to 7 characters.

Commas are not allowed. All file names must be unique, i.e. no two files
can have the same name. If you specify a file name that is already in use,
you will get the H:DUP FL error message. HEPAX file sizes are given in
registers.

All HEPAX files use 14 words at the beginning of the file for file name,

file type, file size, pointer values, etc. This is called the header. You need

not concern yourself with these headers — they are used by the file system
only.

At any time, one file will be the current file. The current file is the file

that you are presently working on. We will refer to a file either by its file

name or simply as “the currentfile".

Section 1: All you need to know 17

Viewing the files of the HEPAX file system

HEPDIR

The HEPDIR (HEPax DIRectory) function gives a catalog of all files in the
HEPAX file system. If a printer is connected, the list will be printed
instead of shown in the display.

For cach file is shown the name, the file type and whether the file is
SECURED. Whenthe catalog is stopped, the displayed information and the
size in HEPAX registers is returned to the ALPHA register. Refer to table
3 below for a list of thefile types.

On the printer both file name,type, secured status and file size is printed.

PR - program,
DA - data,

AS - text (also called ASCII data),
KE - key assignments,
WA - write-all.

S - secured

Table 3, HEPAX file types

Several otherfile types exist. Refer to section 4, "The HEPAX file system”
for a complete list of file types.

After the catire catalog has been shown, the number of HEPAX data
registers available in the HEPAX file system is returned to the X register.
This is the largest new data file you can create — i.c. HEPDIR has already
taken into account the 14 words needed for the new header.

The catalog may be temporarily halted by pressing any key except ON and
R/S. When the key is released, the catalog continues. You leave the catalog
by pressing the R/S key. The last file shown becomes the current file. If
the catalog runs to the end, the currentfile is not changed.

If the catalog is empty, the message H:DIR EMPTY is shown.

18 Section 1: All you need to know

HEPDIRX X file number

The HEPDIRX (HEPax DIRectory by X) function is very similar to HEPDIR,

but it concerns onc file only. To get information about the n’th file, place

n in the X register. E.g. to get information about the second file in the

HEPAX catalog, place 2 in the X register and exccutc HEPDIRX.

If the file exists, the name of it is returned to the ALPHA register and

the file type is returned to the X register as a two-character code. The file
types arelisted in table 3, above. The file is made the currentfile.

If the nth file docs not cxist, the ALPHA register is cleared, zero is

returned to the X register and the currentfile remains the same.

n is always saved in the LASTX register.

Managing HEPAX files

HEPROOM

At any time, you may execute the HEPROOM (HEPax ROOM)function to

find out how many HEPAX data registers are available in the HEPAX file
system. Just like HEPDIR,this function automatically takes into account the

14 words needed for the header of a new file.

HFLSIZE ALPHA filc name

HFLSIZE ALPHA (empty)

To find the size of any one file, use the HFLSIZE (Hcpax File SIZE)

function. Place the name of the file in the ALPHA register and execute
HFLSIZE. The size in HEPAX registers is returned to the X register. If the

ALPHA register is empty,the size of the currentiile is returned.

Section 1: All you need to know 19

HRCLPTA ALPHA

|

file name

 HRCLPTA |ALPHA| (cmpty)

To get the size in words of any HEPAX file that is not a data or text file,
you may usc the HRCLPTA (Hepax ReCalL PoinTer by Alpha) function. This
function is designed for use with HEPAX text and data files, but if you
center the name of a file of another type in the ALPHA register and
execute HRCLPTA, the file size in words is returned to the X register. If
the ALPHA register is empty,the size of the currentfile is returned.

HRENAME

|

ALPHA! old file namenew file. name
If you decide on changing the name of a file in the HEPAX file system,
you can use the HRENAME (Hepax RENAMEfile) function. Write the old
file name in the ALPHA register, write a comma and the new file name,
and cxecute the HRENAME function. If you attempt to rename a file to a
name that is already in use, you will get the H:DUP FL NAME crror
message.

Example:

You have a data file named "DTA"that you wish to rename to "NUMBERS":

Keystrokes: Display:
XEQ HEPDIR DTA DA The old filc name.
ALPHADTA
, NUMBERS DTA,NUMBERS_ Enter old name, a comma,
ALPHA 0.0000 and the new name.
XEQ HRENAME 0.0000 Thefile is renamed.
XEQ HEPDIR NUMBERS DA The file now has the new name.

HPURFL ALPHA

|

file name

If you no longer need a file in HEPAX memory, use the HPURFL (Hepax
PURge File) function to delete it. Place the name of the file to be deleted
in the ALPHA register and exccute HPURFL. The remaining files are
automatically packed for efficient memory usage.

20 Section 1: All you need to know

Although HPURFL is programmable, it should never be used in a program in

HEPAX memory.

If you have assigned a program in HEPAX memory to a key, you may

sometimes find that the next program in CATALOG 2 is now assigned to
that key. You should check any keys with programs in HEPAX assigned
after using PURFL on a program. Refer to section 4: "The HEPAX file

system" for more information about this.

Transferring HEPAX files to and from Mass Storage

All HEPAX file types are compatible with the Mass Storage file types. This

means that programs, data, text, key assignment and write-all files created

using the HP-IL module may be read directly into the HEPAX module and

that HEPAX files transferred to mass storage may be read using the HP-IL
module functions.

HWRTFL ALPHA file name

 HWRTFL ALPHA HEPAX nameMass storage name

To write a HEPAX file to a file in Mass Storage with the samc name, enter

the name of the file in the ALPHA register and execute the HWRTFL

(Hepax WRiTe File) function. You can also give the Mass Storage file
another name by entering the HEPAX file name, followed by a comma and

the Mass Storage file name, in the ALPHA register before you execute
HWRTFL.

If a file of the same type already cxists in Mass Storage with the given

file name,the previousfile is overwritten with the new file.

HREADFL ALPHA file name

HREADFL ALPHA HEPAX namc,Mass storage namc

To read a Mass Storage file to a HEPAX file with the samc name, eater the

name of the file in the ALPHA register and exccute the HREADFL (Hepax
READ File) function. The HEPAX file may be given anotherfile name by

entering the Mass storage name, followed by a comma and the HEPAX file

name in ALPHA before you exccute HREADFL.

Section 1: All you need to know 21

If a HEPAX file of the same type with the given name already exists, the
previousfile is overwritten with the new file.

The HP-IL disc drive is fully supported by HWRTFL and HREADFL.

Securing HEPAX files

HSEC ALPHA |file name

HSEC ALPHA| (empty)
A file in the HEPAX file system may be secured against accidental loss
using the HSEC (Hepax SECurefile) function. Place the name of the file to
be secured in the ALPHA register and execute HSEC. If the ALPHA
register is empty, the current file is sccured. A secured file cannot be
deleted, renamed or changed (you will get the H:FL SECURED message).

HUNSEC ALPHA |file name

 HUNSEC ALPHA! (empty)

The complementary function to the HSEC function is the HUNSEC (Hepax
UNSECure file) function. Place the name of the file in the ALPHA register
and exccutc HUNSEC to unsecure the file. If the ALPHA register is empty,
the current file is unsccured.

Programs in HEPAX memory
If you need more programs than main memory allows, you may place some
(or all) of them in HEPAX memory.

Programs residing in HEPAX memory arc not really files — they just have
some features in common with files. They are actually morc like programs
in application modules (like the MATH module). They appear in CATALOG2
and can be exccuted directly. Just like programs in application modules,
they cannot be edited (you will get the ROM message), but you can use the
COPY function to copy them to main memory for editing,

22 Section 1: All you need to know

Program names and file names

Usually, you will want to use the name of the program as the file name. To

do this, simply enter the name of the program in thc ALPHA register.

You may, however, specify a file name differcat from the program name.

This file name will be shown in HEPDIR, but you will still have to use the

program name to execute or assign the program. To save a program in

main memory under a different file name, enter the program name, a

comma, and then the file name in the ALPHA register. If you specify a file

name, but no program name, the current program in main memory is saved

in HEPAX underthis file name.

Saving programs in HEPAX

HSAVEP ALPHA filc name

HSAVEP ALPHA program name,filc name

HSAVEP ALPHA file name

To save a program in main memory to HEPAX memory do the following:

1. Enter the program name and/or filc name in the ALPHA register.

2. Execute the HSAVEP (Hepax SAVE Program) function.

The HP-41 will show PACKING, then H:SAVING, followed by

H:COMPILING.

The program now resides in HEPAX memory, the file name appears in

HEPDIR and the program name appears in CATALOG 2*. The program

can be executed directly.
In order to free an amount of main memory, simply:

3. Clear the program using the CLP function.

Note that the HP-41CX only displays ROM headings in CATALOG 2. To see
programs in HEPAX,stop the catalog before the HEPAX module and press ENTER

to list all functions and programs.

Section 1: All you need to know 23

If the HSAVEP finds that your program contains a jump to a numerical
label not in the program, it will give the message NO LBL xx, where xx is
the label number. If you have used a short-form GTO instruction and the
jump distance is too long, you will get the GTO xx SHORT message. These
messages are for your information only.

If the program name (or file name if specified) already exist in the HEPAX
file system, the previous file is overwritten. If you have assigned a program
in HEPAX memory to a key, you may sometimes find that the next program
in CATALOG 2 is now assigned to that key. You should check any keys
with programs in HEPAX assigned after overwriting old programs in
HEPAX. Refer to scction 4: "The HEPAX file system” for more information
aboutthis.

If you get the H:FAT FULL message, create a small data file and try again.
If you still get H:FAT FULL, resize the file upwards until the HSAVEP
function is successful.

Example:

Keystrokes: Display:
LBL TST 01 LBL'TST Label of a test program
ALPHA PRG

(space) IN 02 "PRG IN_

(space) HEPA X RGINHEPAX A message
AVIEW 03 AVIEW
ALPHA

GTO.. PACKING
00 REG 216

PRGM 0.0000 Leave program mode.

You have now created a short test program in main memory.

ALPHATST
ALPHA TST Place the name of the program in

the ALPHA register
XEQ HSAVEP PACKING Save the program in HEPAX

H:SAVING

H:COMPILING
XEQ HEPDIR TST PR The TST program appearsin the

1298.0000 HEPAX directory. The number in

the X registeris the number of

HEPAX data registers available

24

Keystrokes:

XEQ CLP ALPHA

TSTALPHA

CLX
XEQ TST

Section 1: All you need to know

Display:

PACKING Clear the TST program from main

1298.0000 memory.
0.0000

PRG IN HEPADhe TST program is executed from the

HEPAX module!

If you now press PRGM to enter program mode, you can single-step
through the TST program in HEPAX. If you try to insert new lines or

delete lines, you will get the ROM message.

Now let’s try to edit the TST program:

Keystrokes:

GTO..

XEQ COPY
ALPHATST

ALPHA

PRGM

GTO .003
PSE

ALPHAEDIT

ED (space)
PRG

AVIEW

ALPHA

BEEP

PRGM

ALPHATST

ALPHA

XEQ HSAVEP

Display:

PACKING
0.0000

COPY _

0.0000 Copythe TST program back into main
memory.

01 LBL’TST Enter PRGM mode and see the TST
program, now in main memory.

03 AVIEW Gotoline 3.
04 PSE Insert new lines.

05 EDITED _
EDITED PRG

06 AVIEW

07 BEEP

Leave PRGM mode.

0.0000

PACKING Save the new version.
H:PURGING The old versionis automatically deleted

from HEPAX.
H:PACKING HEPAX memory is packed.

H:SAVING

H:COMPILING

0.0000

Section 1: All you need to know 25

Keystrokes: Display:
XEQ CLP
ALPHATST
ALPHA PACKING Delete the program from main

0.0000 memory.
XEQ TST PRG IN HEPADhe edited program runs in

EDITED PRGthe HEPAX module.
(beep)

Making programs PRIVATE

PRIVATE ALPHA] file name

To ensure that other users cannot view or modify your programs, you can
make them PRIVATE,just like with the card reader. A PRIVATE program
cannot be viewed, listed or single-stepped. It can only be executed or
deleted!

To make a program in HEPAX memory PRIVATE,simply enter the name of
the program in the ALPHA register and exccute the PRIVATE function. If
you attempt to make a secured program in HEPAX private, you will get the
H:FL SECURED message. The program is not made private.

We look at the TST program again:

Keystrokes: Display:
ALPHATST
ALPHA 0.0000
XEQ PRIVATE 0.0000 The program is now private.
XEQ COPY

ALPHATST
ALPHA PRIVATE You can’t copyit,
XEQ TST PRG IN HEPAX but you canstill executeit.

EDITED PRG

(beep)
ALPHA TST

ALPHA 0.0000
XEQ HPURFL H:PACKING The TST program is purged

0.0000 from HEPAX memory.

26 Section 1: All you need to know

Calling programs in HEPAX memory from main memory

If you have a program in main memory that calls any program in HEPAX

memory, you should convert all XROM to XEQ instructions. This is not

needed if both programs are in HEPAX memory.

The procedurefor converting XROM to XEQ is:

1. Copythe program to HEPAX memory with HSAVEP.

2. Delete it from main memory with CLP.

3. Copyit back into main memory with COPY.

4. Delete it from HEPAX with HPURFL.

Section 4: “The HEPAX file system” explains the need for this conversion.

Section 2:

Other HEPAX file types

Creating data and text files

A data file is a collection of HEPAX data registers. Each HEPAX data
register will hold one number, just like a data register in main memory.
You cannot use STO and RCL directly, but you get some other advanced
functions for accessing yourdata.

A text file (also called an ASCII file) is a collection of text lines called
records. The size of a HEPAX text file is given in HEPAX program
registers. One HEPAX program register will generally hold 7 characters of
text.

When you create a file, you must specify the name and size of the file.
Just like all other HEPAX files, data and text files begin with a header
thatis automatically added at the front of thefile.

The HEPAX module contains exact equivalents to all file handling functions
of the Extended Functions module and some of the CX Extended Functions.

Creating data files

HCRFLD X

|

file size ALPHA

|

file name

When creating HEPAX data files, all you nced to decide is how many
numbers you will initially nced to store. This is the number of HEPAX
registers you will need ~ the file size you specify when creating the file,
The maximum size of a HEPAX data file is 5222 registers in a configuration
with 32,000 words of HEPAX memory.

Enter the file name in the ALPHA register, the file size in registers in the
X register and execute the HCRFLD (Hepax CReate File Data) function.
The file is now created and made the current file, and the pointer is sct
to the first register.

28 Section 2: Other HEPAX file types

Creating text files

 HCRFLAS X

|

file size ALPHA

|

file name

When creating a HEPAX text file, you should first estimate the necessary

size of the file. A rough estimate is usually sufficient, since in most cases

you can resize the file later using the "HRESZFL" program. Remember that

text file size is specified in HEPAX program registers. The maximum file

size is 577 registers.

An example of a HEPAX text file containing three records is shown below

in register format. This file is shown on page 32 in record format. Note

that at the beginning of each record one character is used to indicate the

length of the record. Also note that the end-of-file mark takes up one

character.

Header

012| A Cc 0 L L

E Cc T I 0 N 007

005 L I N E Ss * * is End-Of-File mark

Fig. 3, A HEPAX text file in register format

Thus the exact space in words needed for « HEPAX text file may be

determined as follows:

1. Add up the number of characters in all records.

2. Add the numberof records.

3. Add one for the end-of-file mark.

4. Divide by seven and round upto the nearest whole number.

Enter the name of the file in the ALPHA register, the file size in registers

in the X register and execute the HCRFLAS (Hepax CReate File AScii)

function to create the file. The file is now created and made the current

file, and the pointer is setto the first character of thefirst record.

Section 2: Other HEPAX file types 29

Resizing data and text files

HASROOM

At any point, you can check how many characters are left in a text file
using the HASROOM (Hepax AScii file ROOM) function. The text file must
be the current file. The number returned to the X register is the number of
unused characters in the file. Remember that each record takes up one
extra character.

"HRESZFL" X

|

new size ALPHA

|

file name

If you wish to change the size of a data or text file, use the HRESZFL
(Hepax RESiZe File) program shown below. This FOCAL program must be
given the file name in the ALPHA register and the new size in the X
register.

When increasing file size, there must be enough HEPAX memory available to
hold both the old and the new file at the same time.

When decreasing file size, the program will give the H:FL SIZE ERR if the
downsizing would result in loss of data. A register in a data file is
considered in use if it contains anything but zero, and a register in a text
file is considered in use if it contains any part of a record or the
end-of-file marker. Use a negative value for new size to resize the file
regardless of previous contents.

30 Section 2: Other HEPAX file types

function

The ATOX

function

The AROT
function

The ATOX
function

Program listing of the HRESZFL program

Section 2: Other HEPAX file types 31

Clearing data and text files

HCLFL ALPHA file name

Place the name of a file in the ALPHA register and use HCLFL (Hcpax
Clear File) to clear a data or text file. In a data file, all register contents
are set to zero and the pointer is sct to the first register. In a text file
all records arc deleted and the pointer is set to the first character of the
first record. The file is made the current file. Note that this function does
not delete the file.

Using pointers in data and text files
Data and text files are accessed at one point at a time. This point is
determined by the value of the pointer. The pointer is saved in the header.

Structure of data files

As mentioned at the beginning of this section, a data file is simply a
collection of registers preccded by a header. Each register has a register
number, starting with 0 and continuing to the end of the file. A data file
of 5 registers is shown below.

Header (pointer=3)

o data

1 data

2 data

3 data <- pointer

4 data

Register
number

Fig. 4, A HEPAX datafile

2 Saction 2: Dither HEPAX fils types

The value of the pointer u stored in the header. In the above example, the
pointer valuc is 3, pointing to register number 3 (the fourth register in the
tile).

Structure of text files

A text fila js a collection of text lines (called records), preceeded by a
header. A record may contain from 1 to 254 characters. Bach record has a
record umber, and each character in a record has a character number. The
pownter 0 a text file is of the form rrv.cec, where the integer part (srr) is
the record pointer and the fractional part (ccc) is the character pointer.
The text file ror page 28 15 shown below ip record format

| Vwader (poihter=00],00%)

eyog my y
© a tejorrfrjelejrjzle jn]

recovs 4
rimber ox | { xT

2 LI aE | =

¢ 1 2 3 4 5 & 7 B 3
character number

Fig. 5, A HEPAX text file in record format

Like w data files, the pointer value is stored in the header. Above, the
pointer value is 1005, pointing to record number 1, character numbers S (the
"X" in the word "TEXT").

Seotion 2: Other HEPAX flle types 33

Pointer gperations

The HEPAX module contains 4 diffecent functions to set and recall the
potters.

ermtttiteing fp

HSEKPTA X11 mr ALPHA

|

data file

HSEKPTA X

|

mre ALPHA

|

text file

To set the pornter in any data ar test file, use the HSEKPTA (Mcpax SEcK
PoinTex by Alpha) function, The Ble is made the current file.

To set the pointer ip any data file:
1. Enter the register to point to in the X register
2. Eater the data file name in the ALPHA register
3 Execute HSEKPTA, The named file becomes the current lic.

To set the pointer in any text file:
L. Enter the record and character to point to in the X register {record

84 integer part, character as fractional part)
2. Enter the data {lo name in the ALPHA register
3. Executec HSEKPTA. The named file becomes the current file.

I the ALPHA register is clear, the pointer is set in the current fie.

HSEKPT X |nr

reer a, ——

HSEKPT X |rrcee

To set the pointer in the current data or text fc, you may also uss the
HSEKPT (Hepax SEcK PoinTer} function. This function is similar to
HSEKPT, but it always scts the pointer in the current Sle as directed by
the contents of the X register, regardless of the contents of the ALPHA
register.

34 Section 2: Other HEPAX file types

HRCLPTA ALPHA file name

To recall the pointer from any file, usc the HRCLPTA (Hepax ReCalL

PoinTer by Alpha) function. Enter the file name in the ALPHA register and
cxecute the function. The pointer of the named file is recalled to the X

register and the file is made the current file. If the ALPHA register is
clear, the pointer of the currentfile is recalled.

HRCLPT ALPHA file name

To recall the pointer from the current file regardiess of ALPHA register

contents, use the HRCLPT (Hepax ReCalL PoinTer) function. This function
always recalls the pointer of the current file.

Data file operations

The file specified in all the below data file operations must be a data file,
otherwise you will get the H:FL TYPE ERR message.

Operations on all data registers

The HSAVER and HGETR functions are uscd to copy between all main

memory data registers and a HEPAX data file. The contents of a main

memory data register is copied to/from the data file register with the same
number,

HSAVER ALPHA data file name

HSAVER ALPHA (empty)

To copy all main memory data registers to a HEPAX data file, use the

HSAVER (Hepax SAVE Registers) function. Enter the name of the data file

in the ALPHA register or leave the ALPHA register empty to save the data

in the current file. The pointer will be placed just after the last register

copied. If the number of main memory data registers (the SIZE) is larger

than the size of the data file, an H:END OF FL message occurs, no

registers are copied and the pointer is not moved.

Section 2: Other HEPAX file types 35

HGETR ALPHA data file name

HGETR ALPHA (empty)

To copy all registers in a HEPAX data file to main memory data registers,
usc the HGETR (Hepax GET Registers) function. The name of the data file

must be in the ALPHA register, or the ALPHA register must be cmpty to
copy from the current file. This function copics data uatil the end of the
data file or until there arc no more storage registers. After HGETR, the
pointeris placed just past the last HEPAX data register copied.

Operations on a block of data registers

Use the HSAVERX and HGETRX functions to copy between a block of main
memory data registers and a block of the same size in the current HEPAX

data file. The block of main memory data registers is specified using a

control number of the form bbb.cce in the X register, where bbb is the
first register in the block and ece is the last register. The block of HEPAX

data registers starts at the pointer value and has exactly the same length
as the block of main memory data registers.

HSAVERX X bbb.eee

 HGETRX X bbb.cee

To copy a block of main memory data registers to a HEPAX data file, use
the HSAVERX (Hepax SAVE Registers by X) function, and to copy a block
of HEPAXdata registers to main memory, use the HGETRX (Hcpax GET
Registers by X) function.

For both functions enter the control number in the X register and cxccute

the function. The pointer will be placed just after the last register copied.

If the specified block is larger than the number of HEPAX data registers

from the pointer to the end of the file, you will get an H:END OF FL

message, no copying will occur and the pointer will not be moved.

36 Section 2: Other HEPAX file types

Operations on the X register

HSAVEX X data value

HGETX
To save the contents of the X register at the pointer, simply execute the
HSAVEX (Hepax SAVE X register) function. To retrieve a number from a
HEPAX data file at the pointer to the X register, use the HGETX (Hepax
GET X register) function.

The pointer is advanced to the next register in the file.

Example:

Keystrokes: Display:
ALPHADTA

ALPHA Enterfile name in the ALPHA
register.

5 5 Enter the size in the X register.
XEQ HCRFLD 5.0000 A datafile is created.

Now we enter some numbers into main memory data registers:

28TO 03 2.0000

3STO 04 3.0000
83 STO 05 8.3000

9 STO 06 9.0000

3.006 3.006_ Control number

XEQ HSAVERX 3.0060 Save registers 3 through 6 in the

current HEPAX datafile at the
pointer.

XEQ XFA CLRGX Clear main memory registers 3
through 6.

The file now looks like this:

Section 2: Other HEPAX file types 37

(pointer=4)

Header "DTA"

0 2

1 3

2 8.3

3 9

4 0

Register
number

<- pointer

Now let’s retrieve some data from the file:

Keystrokes: Display:
2 HSEKPT 2.0000

HGETX 8.3000

HRCLPT 3.0000

HGETX 9.0000

Movethe pointerto register

number 2.

Recall the contents ofthe file

register at the pointer.
Recall the pointer. Note that it

has been incremented.
Recall the contents of the next
file register.

38 Section 2: Other HEPAX file types

Text file operations

All the text file operations below operate on the current file. The current

file must be a text file, otherwisc you will get the H:FL TYPE ERR
message.

Record operations

The HEPAX module contains three functions for manipulating whole records.

HAPPREC ALPHA alpha data

The HAPPREC (Hepax APPend RECord) function appends the contents of

the ALPHA register as a ncw record at the end of the file. The pointer is

sct just past the last character in the appended record.

HINSREC ALPHA alpha data

To insert a record in the middle of a text file (at the pointer), use the

HINSREC (Hepax INSert RECord) function. Position the record pointer
where you wish the new record to be inserted and execute HINSREC. The
contents of the ALPHA register is inserted at the pointer as a new record

and all the following records are pushed further down in the file. The
pointer is set just past the last character in the inserted record.

HDELREC

To delete the record at the pointer, use the HDELREC (Hepax DELcte
RECord) function. Position the pointer at the record to be deleted and

execute HDELREC (the character pointer doesn’t matter). The record is
deleted and the following records arc pulled up. The pointer is set to the
first character of the record following the deleted record.

Section 2: Other HEPAX file types 39

Character operations

HAPPCHR ALPHA alpha characters

There are also three character functions equivalent to the above record
functions. The HAPPCHR (Hepax APPend CHaRacters) function appends a
number of characters at the end of the current record. Place the characters

to be inserted in the ALPHA register, set the pointer to the desired record

(the character pointer doesn’t matter) and execute HAPPCHR. The pointer is
advancedto just past the inscricd text.

HINSCHR ALPHA alpha characters

To insert a number of characters in the middle of a record at the pointer,

usc the HINSCHR (Hepax INSert CHaRacters) function. Position the pointer
where you wish the characters to be inserted and execute HINSCHR. The

contents of the ALPHA register is inserted at the pointer. The pointer is
advancedto just past the inserted text.

HDELCHR X no. of characters

To delete a number of characters from the middle of a record, usc the

HDELCHR (Hepax DELete CHaRacters) function. Position the pointer at the

first character to be deleted, enter the number of characters to be deleted
in the X register and execute HDELREC. Note that this functions does not
delete past the end of the current record. The characters are deleted and
the following characters are pulled up. The pointer is sct to the same
position,i.e. the first character following the deleted characters.

Searching a file

HPOSFL ALPHA scarch string

You may scarch a text file for the occurrence of a string of characters

using the HPOSFL (Hepax POSition in File) function. Make the text file

the current file and sct the pointer to the place where the search is to

begin. Place the search string in the ALPHA register and execute HPOSFL.

40 Section 2: Other HEPAX file types

If the string is found, the pointer is set to the first character of the

string, and the pointer value is returned to the X register. If the string is

not found, the pointer is not moved, and -1 is returned to the X register.

In both cases, the ALPHA registeris unchanged.

Copying text to the ALHPA register

HARCLREC

HGETREC

There are two ways to copy text into the ALPHA register, using the

HARCLRC (Hepax Alpha ReCalL. ReCord) and HGETREC (Hepax GET

RECord) functions, respectively. Their only difference is that HGETREC

clears the ALPHA register before copying the text.

To use these functions, make the text file the current file and place the

pointer at the first character to be copied. Execute HARCLREC or

HGETREC. The functions copy text until the end of the record, or until the

ALPHA register is full. If the last character in the record is copied, flag 17

is cleared, otherwise it is set (flag 17 is used by the HP-IL module). The

pointeris placed just past the last character copied.

Example:

Keystrokes: Display:

ALPHATEXT TEXT_ Thefilc name

ALPHA 0.0000

10 10_ The file size

XEQ HCRFLAS 10.0000 Thefile is created

ALPHASOME

(space) TEXT SOME TEXT Thefirst line of text

ALPHA 10.0000

XEQ HAPPREC Append as a new record.

ALPHALINES LINES Next line oftext

ALPHA 10.0000

XEQ HAPPREC 10.0000 Append as a new record at the

end ofthefile.

Thefile now consists of two lines:

SOME TEXT

LINES

Now let’s edit the file:

0 HSEKPT 0.0000

ALPHA A (space)

COLLECTI
ON A COLLECTION_

ALPHA 0.0000

XEQ HINSREC 0.0000

ALPHASOME SOME_

ALPHA 0.0000

XEQ HPOSFL 1.0000

4 HDELCHR 4.0000

ALPHA OF OF
ALPHA

XEQ HINSCHR

The file now contains the three lines:

A COLLECTION

OF TEXT

LINES

Section 2: Other HEPAX file types 41

Set pointer to start offile.

A line to be inserted.

Insert as a new record.
A search string.

The pointer value of the first

character of the first (and only)
occurrence of "SOME".
Delete 4 characters (the word

"SOME"

A new string to be inserted. Note

that the pointer is still at the

first character of record no. 1.
The new word is inserted.

42 Section 2: Other HEPAX file types

Using key assignment and "Write-all" files

With the HEPAX module, it is possible to store key assignments and/or

entire calculator memory in HEPAX files for later retrieval.

Using key assignment files

HSAVEK ALPHA! file name

HGETK ALPHA file name

Use the HSAVEK (Hcpax SAVE Keys) function to save system key

assignments and the HGETK (Hepax GET Keys) function to retrieve them.
Any assignment of FOCAL programs in main memory are not affected by

the HSAVEK and HGETK functions.

To save the current system key assignments, place the name ef the key

assignment file in the ALPHA register and execute HSAVEK. Ifa key as-
signment file with the given name already exists it will be overwritten,
otherwise a new file will be created.

To retrieve a sect of system key assignments {rom a HEPAX key assignment

file, enter the name of the file in the ALPHA register and execute HGETK.
Any previous system key assignmentsare cancelled.

Using "Write-all" files

HSAVEA ALPHA file name

HGETA ALPHA! file name

Use the HSAVEA (Hepax SAVE All) function to save the contents of entire
calculator main memory and the HGETA (Hepax GET All) function to

restore entire calculator main memory to the saved status.

To save the contents of main memory, place the name of the "write-all" file
in the ALPHA register and exccute HSAVEA. If a "write-all” file with this
name already exists it will be overwritten, otherwise a new file will be

created.

Section 2: Other HEPAX file types 43

To retrieve the entire contents of main memory from a HEPAX “write-all”

file, enter the name ofthe file in the ALPHA register and exccute HGETA.

The previous contents of main memory (programs, data, key assignments
etc.) are overwritten. The system should be configured cxactly like when
the file was created (including all peripherals).

Section 3:

The Extended Functions

The multi-function concept

Why multi-functions?

It is the philosophy of the HEPAX modules to make the maximum amount of
memory available to you. To achicve this, the HEPAX support functions are
tightly packed to fit into a bit of otherwise unused memory space.

This means, however, that there can be only 64 directly accessible functions
in the HEPAX module. As the module contains many more than 64

functions, we must have used some trick! And yes, we have.

What is a multi-function?

The name of the trick is multi-functions. A multi-function is ong function

that gives a choice of other functions. For example, the XF multi-function

described in this section gives a choice of 26 other functions. The
functions that are accessed via the multi-function are called sub-functions

of that multi-function, or just subfunctions.

Each subfunction is identified by either its subfunction name or its

subfunction number. These numbers and names are given in this section and

on the inside of the front cover. To give you the choice of entering either
the name or the number, each multi-function must exist in two versions.

The need for two different functions arise from an unfortunate "bug" in
the HP-41 system software. The name-prompting multi-function ends on an

"A".

When calling a subfunction using the normal multi-function, you are
prompted for the three-digit subfunction number. When calling a subfunction

using the ALPHA-version multifunction, you must gnter the subfunction

name. All subfunction names and numbers are listed on the inside of the

front cover.

Naturally, a multifunction will give the NONEXISTENT error message if you

specify a nonexistent subfunction name or number.

Section 3: The Extended Functions 45

Example:

We wish to execute the RCLFLAG subfunction of the XF multi-function. We
can do this in two ways:

By subfunction number: By subfunction name:
1. Execute XF and see the prompt 1. Execute XFA and sce the prompt
XF___ XFA _

2. Enter 012 2. Press ALPHARCLFLAG
3. The subfunction is executed. ALPHA

3. The subfunction is executed.

Multi-functions in programs

Subfunctions in programs are always specified by number. If you specify a
subfunction by name, it is automatically converted. The subfunction takes
up two lines: Onc line for the multi-function and one line ‘for the
subfunction number. This number docs not enter the stack when running the
program or when single-steppingit.

You can make the sublunction number enter the stack by using GTO line
number to jump to the exact line containing the subfunction number, and
then use SSTto exccute this one line.

If you place a multifunction immediately after a test line, the multifunction
number will enter the stack if the result of the test is "false”. Sec the
example on page 46 for a wayto avoid this.

The XF multi-function

The HEPAX module contains exact equivalents to all file handling functions
of the Extended Function/Memory module (described in sections 1 and 2). In
addition to these, the HEPAX module also contains exact equivalents to the
remaining Extended Functions, and some of the CX Extended functions. All
ofthese functions have been collected under the XF/XFA multi-function.

When specifying a subfunction by number, exccute the XF multi-function
and enter the 3-digit subfunction number at the prompt. When specifying a
subfunction by name, execute XFA, press ALPHA, enter the function name
and press ALPHA again.

46 Section 3: The Extended Functions

Data register operations

XFA CLRGX X bbb.ceeii

To clear a number of main memory data registers, place a control number

of the form bbb.ceeii in the X register and execute the XFA CLRGX (Clear
ReGisters by X) function (XF 005). bbb is the first register to be cleared,
cee is the last register to be cleared and ii is the increment. Le. to clear
the odd registers from 10 to 20, use the control word 11.02002. If cee is 0,

one register is cleared. If ii is 0, every registeris cleared.

XFA SIZE?

The XFA SIZE? function (XF 016) returns the current SIZE, ie. the number

of main memory registers allocated as data registers.

XFA PSIZE X new size

The XFA PSIZE (Programmable SIZE) function (XF 011) works just like the

‘normal’ SIZE function, but it is programmable and takes the SIZE from the

X register.

The XFA SIZE? and XFA PSIZE functions work conveniently together to

form a short routine you can place at the beginning of all your FOCAL

programs:

LBL "MYPRGM" The label of your program
(needed SIZE) Calculate or just enter the needed SIZE

XF
16 The XFA SIZE? function
X>=Y? If the SIZE is sufficient,

GTO 00 continue
XF Otherwise,

11 use XFA PSIZE to change.
LBL 00 Program continues.

XFA REG?

To find the main memory data register number of the first statistical

register, use the XFA SREG? function (XF 015).

Section 3: The Extended Functions 47

XFA REGMOVE X

|

sss.dddnnn

XFA REGSWAP X

|

sss.dddnnn
Use the XFA REGMOVE (REGister MOVE) function (XF 013) to move a
block of registers, or usc the XFA REGSWAP (REGister SWAP) function (XF
014) to swap a block of registers. sss is the beginning of the source block,
ddd is the beginning of the destination block and nnn is the number of
registersin the block.

In the case of REGMOVE, the contents of the destination block is lost. In
the case of REGSWAP, the contents of the destination block is swapped
with the contents of the source block.

If nnn is 0, a block length of one register is assumed.

Example:

Register Data

00 1.4500

01 3.6000
02 7.8000

03 9.0000
04 11.2000

05 0.5560

To swap registers 01 and 02 with 04 and 05, place a control number of
1.004002 in the X register. sss is 001, ddd is 004 and nnn is 002. Then
exccute XFA REGSWAP. The registers now contain:

Register Data
00 1.4500

01 11.2000

02 0.5560

03 9.0000

04 3.6000

05 7.8000

48 Section 3: The Extended Functions

Flag operations

XFA RCLFLAG

XFA STOFLAG| X

|

flag status data

 XFA STOFLAG| X

|

bbee Y

|

flag status data

The XFA RCLFLAG function (XF 012) recalls status of flags 00-43 to the X

register as ALPHA data to be stored for later use. The display will be

unintelligible. The status of flags 00-43 may later be restored using the

XFA STOFLAG function (XF 017). If the X register contains flag status

data, all flags are restored. If the Y register contains flag status data, only

flags bb through ee are restored.

Since the status of these flags determine display format etc., you may store

the flag status at the beginning of a program, let the program change the

display format and restore the previous display format using STOFLAG at

the end of the program.

Example:

LBL "MYPRGM" Thelabel of your program

XF

12 The XFA RCLFLAG function

STO nn Store in any main memory data register.

Your program is now free to change

. display format,trig. mode,etc.

RCL nn The flag statusis recalled.

XF

17 The XFA STOFLAG function restores display format,

trig. mode,etc.

XFA X<>F

The XFA X<>F (X exchange with Flags) function (XF 018) exchanges the

status of user flags 0-7 with a decimal number from 0 through 255 in the X

register. In effect this lets you have many sets of 8 flags stored in

different main memory data registers. You can take one sct out, work on it

and then store it again.

Section 3: The Extended Functions 49

You may also use the relationship between the flag status and the number
in the X register directly for binary-decimal conversions, etc. This is done
by interpreting user flags 0-7 as an 8-bit binary number*. A flag that is
clear is a binary 0, a flag that is set is a binary 1. Recall that 8 bits arc
the same as a byte, and that a byte may take the decimal values 0 through
255.

Therefore, each possible sct/clear combination of flags 0-7 corresponds to a
decimal value 0-255. Each flag has a "weight", and corresponding number is
calculated by simply adding up the “weight” of all the flags that are set.
the "weight" of each flag is shown below:

Flag 7 6 5 4 3 2 1 ¢

"Weight" 128 64 32 16 8 4 2 1

Fig. 6, The "weight" of flags 0-7

Example:

Flags sct binary number decimal value
3 00001000 8
0,4,6 01010001 64+16+1 = 81
1,4,5,6,7 11110010 128+64+32+16+2 = 242

See appendix ID for an explanation ofbinary and hexadecimal numbers.

50 Section 3: The Extended Functions

User mode operations

XFA PASN

|

X

|

keycode ALPHA

|

function name

XFA PASN

|

X

|

keycode ALPHA/| program name

XFA PASN

|

X

|

keycode ALPHA

|

(empty)

To make key assignments from a program, use the XFA PASN

(Programmable ASsigNment) function (XF 008). Place the name of the

function or program in the ALPHA register and the keycode in the X

register. The keycodes arc the same as used with the built-in ASN function

and in figure 7 below. Note that a shifted key is represented by a negative

keycode.

If the ALPHA register is clear, any assignment to the key specified is

cleared.

Section 3: The Extended Functions

XFA

CLKEYS

Fig. 7, User keycodes

51

Use the XFA CLKEYS (Clear KEY assignmentS) function (XF 004)to delete
all key assignments.

52 Section 3: The Extended Functions

ALPHA string operations

XFA ALENG

To find the length of the string in the ALPHA register, simply execute the

XFA ALENG (Alpha LENGth) function (XF 000). The length is returned to

the X register.

XFA AROT X

|

no. of characters

To rotate the contents of the ALPHA register, use thc XFA AROT (Alpha

ROTate) function (XF 002). Place a positive number in the X register to

rotate left, a negative to rotate right.

XFA ATOX ALPHA

|

character(s)

The XFA ATOX (Alpha TO X register) function (XF 003) converts the

leftmost character in the ALPHA register to a character code. The

characters and the corresponding code is shown below in table 4. The

character is deleted from the ALPHA register and the character code is

entered into the X register.

XFA XTOA X

|

character code

The XFA XTOA (X register TO Alpha) function (XF 019) is the inverse of

the ATOX function. It takes a character code from the X register and

appends the corresponding character to the right end of the ALPHA

register.

Char. Code Char.
- 00

x 01

x 04

FS 05

I 06

~ 12

4 13

& 29

space 32
! 33
" 34

35

% 36
% 37

5 38

‘ 39

¢ 40
3 41

x 42

+43

S
0
0
d
C

Lb
CS
W
Y

en
3

o
r
.

a
v

XFA ANUM

Code

44

45

46
47

48
49

50
51

52

53
54

55
56

57
58
59

60
61
62

63

Section 3: The Extended Functions

Char. Code

o 64

65

66
67

68
09

70

71

72

73

74

5

76

77

78

79

80
81

82

83

C
O
M
M
e
s
M
e
g
I

V
O
W
I
r
X
L
T

1

Table 4, Character codes

ALPHA

Char.

T
Z

<
3

IZ
Sy

L
d

oe
m
M
R

4
T
r
e

Q
o
n
o
w

string

Code

84

85

86
87

88
89
9
91
92

93
94

95

96
97
98
9
100

101

126

127

53

The XFA ANUM (Alpha data to NUMecrical value) function (XF 001)
converts a string in the ALPHA register to a numerical value in the X
register. Note that the display format (uscr flags 28 and 29) should be the
same as when the value was copied into the ALPHA register.

XFA POSA

XFA POSA

X

X

alpha string

character code
Use the XFA POSA (POSition in Alpha register) function (XF 010) to find
the first (leftmost) occurrence of a character or string in the ALPHA
register. The character or string to be found may be specified in the X
register as either a string or a character code. Character codes arc shown
abovein table 4.

54 Section 3: The Extended Functions

The position of the string or character is returned to the X register.

Positions in the ALPHA register are counted from left to right, starting

with 0 at the left end. If the string is not found,-1 is returned.

Example:

You have a text string "FX=3.5643" in the ALPHA register. You decide that

it would look much better if you put a parenthesis before -and after the
yrs

Keystrokes:
ALPHAFX =3

.5643

ALPHA

88
XEQ XFA POSA

XEQ XFA AROT

ALPHA

ALPHA

40

XEQ XFA XTOA

1 AROT

ALPHA

ALPHA

41

XEQ XFA XTOA

-4 AROT

XEQ AVIEW

XEQ XFA ALENG

XEQ XFA ANUM

Display:

FX =3.5643_
0.0000
88
1.0000
1.0000
X =3.5643F

40_

40.0000
1.0000
=3.5643F(X

41
41.0000
-4.0000
F(X)=3.5643

11.0000

3.5643

The character code of the "X".

The X stands at position no. 1.

Rotate the X to the left end.
The contents of the ALPHA

register.
The character code of "("
The "(" is appended.
Rotate the X to the right end.

The contents of the ALPHA

register.
The character code of ")"
The ")" is appended.

Rotate back.
Looks much better, doesn’t it?

The string is 11 characters long.

The number in the ALPHA

register.

Section 3: The Extended Functions 55

Test functions

XFA X=NN? XFA X=NN?

XFA X<NN? XFA X<=NN?

XFA X>NN? XFA X>=NN?
The HEPAX module contains six tests that compare the value in the X
register with a data register specified by the Y register. The contents of
the Y register must be the address of an existent main memory data
register (0 to 319, depending on SIZE), or a stack register (letters X, Y, Z,
TorL).

Function name Function no.
X=NN? 020
X=NN? 021
X<NN? 022
X<=NN? 023
X>NN? 024
X>=NN? 025

Table 5, Indirect test XF numbers

Miscellaneous operations

XFA GETKEY

When an XFA GETKEY function (XF 006) appears in a FOCAL program, the
HP-41 halts cxecution and waits for a key to be pressed. The keycode ofthe key pressed is placed in the X register. The keycodes are shown intable 4 above. Srp
If no key is pressed within approx. 10 seconds, -}/’is returned to the X
register and the program continues.

Note that the toggle keys at the top of the displays have keycodes 1, 2,3
and 4, starting from the left. If you press the shift key, keycode 31 isreturned to the X register.

56 Section 3: The Extended Functions

XFA GETKEYX X sss

When an XFA GETKEYX function (XF 007) appears in a FOCAL program,

the HP-41 halts program execution and waits for a keyto be pressed.

The number in the X register indicates the wait period (0 — 99.9 seconds).

If a numerical key is pressed, a character code is returned to the X
register. The keycode (same as with GETKEY) is returned to the Y register.

XFA PCLPS ALPHA program name

XFA PCLPS ALPHA (empty)

Use the XFA PCLPS (Programmable CLear Program$) function (XF 009) to
delete a program and all the following from main memory. Place the name

of the first program to be deleted in the ALPHA register and execute
PCLPS. If the ALPHA register is empty, the current program and all

following programs are deleted.

Note that this function is programmable, as opposed to the built-in CLP

function.

Part II:

Advanced Use

Section 4:

The HEPAX file system

The HEPAX file system allocates memory for the files you create. You do

not need to understand the inner workings of the HEPAX file system to use

the HEPAX modules — the file system is fully automatic and is normally

hidden from the user.

This section is therefore not compulsory reading — but some knowledge of

howthe file system works might be helpful for advanced use of the HEPAX

modules.

HEPAX memory

The HEPAX modules fit into the HP-41 ROM address space. Therefore,

HEPAX memory is organized in words and blocks just like HP-41 ROM

memory. Refer to section 7: HP-41 internal structure for a detailed

description of HP-41 ROM structure.

The memory of all computers consists of a number of bits. One bit is a

binary digit, and can take only the values 0 and i. A bit is thus very much

like a flag — it may be set or clear. The basic unit of HEPAX memory is a

HEPAX word, consisting of 10 bits. Remember that this is different from

HP-41 main memory and extended memory — the basic unit of main and

extended memory is a byte, consisting of 8 bits.

4096 words together comprise a HEPAX block. In each block, 144 words are

used by the HP-41 and 36 words are used by the HEPAX file system for

housekeeping. This leaves 3916 words available to the user.

The HEPAX file types

The HEPAX file system uses program, data, text, key assignments and

vwrite-all' files. All files contain a header that takes up 14 words of

HEPAX memory.

Section 4: The HEPAX file system 59

Programs in HEPAX memory
Programs in HEPAX memory are directly executable copies of programs frommain memory. Each program byteis copied to one HEPAX word.
The size of programs in HEPAX memory is given in HEPAX programregisters — each consisting of seven HEPAX words. Thus, one register ofprogram in main memory will take up onc HEPAX program register.

Data files

A data file is a collection of HEPAX data registers. Each register will holdone number or 6 characters of text — just like a main memory dataregister.

Recall that one register in main memory is seven bytes = 7 x 8 bits = 56bits. Six HEPAX words is 6 x 10 bits = 60 bits. You sec that six HEPAXwords is enough to store 7 bytes. To get the most from HEPAX memory, wetherefore store data in HEPAX data registers that consist of only sixwords.

Note the difference between the size of a HEPAX program register (7words) and a HEPAX data register (6 words).

Text files

A text file (also known as an ASCII file) is a collection of text lines. Eachcharacter in a text file takes up one word of HEPAX memory. In additionto this, one extra word is used for each text line (record) and one word isused to mark the end ofthefile.

Since text consists of individual characters, we must store each characterin one HEPAX word. This means that we cannot pack one register (7 bytes= 7 characters) into just 6 words as with data files ~ we need 7 words.That's why the size of HEPAX text files is given in seven-word HEPAX
program registers.

Key assignment and "Write-all” files
Recall that HP-41 system key assignments are stored in a special part ofHP-41 main memory. They always take up one register for every secondassignment. Since a key assignment file is simply a copy of these registersit can be packed just like a datafile.

60 Section 4: The HEPAX file system

When saving the contents of entire calculator main memory, you save the

contents of all 320 registers of main memory and the 16 status registers

(the stack, the ALPHA register, ctc.). These registers can also be packed

like main memory data registers.

Since both key assignment and "write-all’ files can be packed like data

files, the size of thesefilesis given in HEPAX data registers.

Programs in HEPAX and XROM numbers

The HP-41 uses XROM numbersto find functions and programs in peripheral

units. An XROM number consists of two parts, an XROM ID no. and a

function no. The HEPAX file system automatically allocates XROM ID
numbers to each block of HEPAX memory, and the HP-41 numbers the

functions consecutively from 00 onwards.

Because the design of the HP-41 did not foresee thc development of

advanced peripherals like the HEPAX module, the HP-41 may get confused

when you delete a program from HEPAX memory.

Look at the below example. The HP-41 remembers that last time it looked

for the SORT program it was "Program no. 4 in external ROM no. 11". We

now delete the "INPUT" program from HEPAX memory:

before: after:
XROM no. Name XROM no. Name
11,03 INPUT —> lost > 11,03 SORT

11,04 SORT — 11,04 PRINT

11,05 PRINT

The HP-41 is confused! Next time you press a key with "SORT" assigned, or
execute an XROM "SORT" line in a program in main memory, the HP-41
looks up the fourth program in external ROM no. 11 ~ now the PRINT

program.

Therefore, key assignments might change to the next program. Programs in

main memory have the same problem — but if you convert all XROM lines

to XEQ lines, the HP-41 will look for programs by name and not by number

~ thus overcoming the problem. The procedure for this conversion is given

in the subsection "Calling programs in HEPAX memory from main memory”

in section 1.

Section 4: The HEPAX file system 61

The structure of the HEPAX file system

The HEPAX file chain

The HEPAX file system links all files together in the HEPAX file chain.
The HEPDIRfunction displaysfiles in the sequence ofthe file chain.

Thefiles in thefile chain are sorted in three groups;
1. The first group consists of all the file types that may span over

several blocks (i.e. data, key assignment and "write-all” files).
2. The second group is programs in HEPAX memory.
3. The third group is HEPAX text files.

When you insert HEPAX memory, it is added to the file system the next
time you turn the calculator ON. If several modules are installed at the
same time, they enter the file chain with the module in the lowest
numbered port first, the module in the second lowest port number second,
etc.

If no file system exist in any HEPAX module, you'll get the H:NO FILESYS
error message the first time you cxecute a HEPAX file system function.
This may have four causes:

1. You have inserted another module or peripheral, resulting in an
illegal configuration (see “Installing and removing HEPAX modules”).
Remove a module or peripheral.

2. You have inserted a HEPAX module while the HP-41 was on. Press
the ON key twice to turn the calculator off and back on.

3. You attempted to execute a file system function immediately after
clearing entire main memory with ON/backarrow (MEMORY LOST).
Press the ON key twice to turn the calculator off and back on,

4. You have allocated all HEPAX memory for other purposes(sce below).
If you want to use the file system, you must free some of the
HEPAX memory allocated for other use.

If you remove a HEPAX module in the middie of the file chain, the chain
will be broken at this module. This means that all files in the removed
module and in any modules further down the file chain will be lost. Refer
to the section "Installing and removing HEPAX modules" for explicit rules
for removing HEPAX modules.

Never use READROM, COPYROM or CLRAM to read, copy or clear a block
in the file system. Don’t write protect a block in the file system either.
This would break thefile chain with the above consequences,

62 Section 4: The HEPAX file system

Actual storage of HEPAX files

The actual (physical) storage of HEPAX files is somewhat different from the

orderof the file chain.

Within each block,files are stored in the following order:

1. Programs in HEPAX memory,
2. HEPAX text files,

3. Otherfile types.

There are only 64 entry points in the Function Address Table (FAT). If the
current block already contains 64 programs, you will get the H:FAT FULL

message when attempting to save the 65th program. If you create a
"dummy" data file that fills up that block, the file system will automatically

move on to the next block — with room for another 64 entries.

Maximum file sizes

As mentioned at the beginning of this section, HEPAX memory is divided

into blocks of approx. 4000 words.

The continuous structure of program and text files means that the entire

file must be stored in the same block. This gives a maximum text files size
of 3916 words, or 557 HEPAX program registers. Programs in HEPAX

memory will not normally be affected — main memory already limits them to

319 registers.

Data, key assignment and ‘“write-all" files are inherently divided into
registers. This enables them to be split between several blocks of HEPAX
memory. The maximum size of these files is only limited by available

memory — with 32000 bytes of HEPAX memory, you can create a data file

of up to 5,222 registers.

Note that HEPROOM gives you the total available space in the HEPAX file

system (given in HEPAX data registers). Naturally, this space may be
divided between several HEPAX blocks, together adding up to the number

returned by HEPROOM and HEPDIR. In the below example, there is a bit of

space available in both blocks.

Section 4: The HEPAX file system 63

available available

data file

text file

text file program
program n

n memory
HEPAX block 1 HEPAX block 2

Fig. 8, Example of files in HEPAX memory

The shown program in main memory is not larger than the total available
space in the HEPAX file system. It is, however, larger than any continuous
space available. Therefore,it will notfit into the HEPAX file system.

Resizing files

When you use the "HRESZFL" program to resize a data or text file, what
happens is that a new file of the desired length is created, the data in the
old file is transferred, and the old file is deleted. Therefore, there must be
enough HEPAX memory left to hold both the old and the new file at the
same time.

Allocating HEPAX memoryfor other purposes
Normally, you would use all available HEPAX memory for the HEPAX file
system. However, it is possible to allocate whole 4K blocks of memory for
other purposes.

Three words in each block determine if the block is part of the file
system. To take a block out of the file system, use the HEXEDIT function
to change the word at address xFF3 to 300h, and write 000h at addresses
XFE7 and xFE8. To put a block back in the file system, usc CLRAM to
clear the block and press the ON keytwice to turn the calculator off and
back on.

Each time you have altered the amount of memory allocated for other
purposes, you should use the HEPDIR function to restore the HEPAX file
chain.

64 Section 4: The HEPAX file system

Note that any block(s) used for other purposes should always be the last

block(s) of HEPAX memory (with the highest address).

If you insert more HEPAX memory at bigher addresses, move the contents

of the block(s) used for other purposes to the new,last address.

Example:

You have a Standard HEPAX module in port 2 (HEPAX memory in blocks 8

and 9) and want to use one block for other purposes. Use block 9.

You now insert a HEPAX memory module in port 4. You now have HEPAX

memory in blocks 8, 9, E and F. You must now:

1. Copy the contents of block 9 to block F:
9 ENTER 15 COPYROM.

2. Clear block 9:
9 ALPHA O KALPHA CLRAM

3. Turn the calculator off and back on.

Section 5:

The Advanced functions

The HEPAX module contains a large number of advanced functions for

handling ROM images, coding and decoding and for M-code programming,

Handling ROM images

Recall that HEPAX memory is divided into blocks of 4096 words. Each block
equals one normal application module (like the MATH or STAT modules).

The application modules arc ROM (Read-Only Memory), and because a block
of HEPAX memory is very similar to these ROMs we will refer to a block
of HEPAX memory as a ROM image.

Transferring ROM images to and from mass storage

Place the file name of the ROM image(s) in the ALPHA register and a
control number of the form bb.ee in the X register. bb is the first block

address to be read/written and ce is the last block. If ee is zero, one block
is transferred.

Execute WRTROM to write a number of ROM images to mass storage or
READROM to read a number of ROM images from mass storage. If you get
a CHKSUM ERR message, this means that the data on the mass storage

medium has been disrupted. You should check the contents of the retrieved
blockscarefully.

If the ALPHA register is empty, the current position on the mass storage
media is used. In this way it is possible to write many ROM images into
one file and to find one ROM image in a largerfile.

Don’t use the READROM or WRTROM functions to read or write blocks
that are used by the HEPAX file system. Files under the file system should

be transferred using HREADFL and HWRTFL.

The HP-IL disc drive is fully supported by WRTROM and READROM.

66 Section 5: The Advanced functions

Write protecting a ROM image

To toggle the write protection status of a ROM image, use the RAMTOG
function. Place the block address in the X register and execute RAMTOG.If
write protection was on, it is turned off and vice versa. You are informed

of the new status of the block.

Never write protect a block that is part of the HEPAX file system.

The following messages may occur when using RAMTOG:
x:WRT PRTCTED block x is write protected.

x:NOT PRTCTED block x is not write protected.
x:NOT RAM block x is not RAM.
x:RAM ERROR block x is RAM but cannot be write protected.

NONEXISTENT a block address above 15 has been specified.

Copying and clearing ROM images

Use the COPYROM function to copy a whole 4K block of system memory to

a ROM image in HEPAX memory. Place the address of block to be copied
from in the Y register and the address of the ROM image to be copied to

in the X register. Then exccute COPYROM.

The following messages may occur when block copying:
DATA ERROR You attempted to copy to block 0.

NONEXISTENT You tried to copy to or from block 16 or above.

Use the CLRAM (CLear RAM) function to clear a whole ROM image. Place

"OK" in the ALPHA register, enter the block address of the ROM image in

decimal in the X register, and exccutc CLRAM.

The following messages may occur when block clearing:

DATA ERROR The text "OK" is not in the ALPHA register, or you
attempted to clear block 0.

NONEXISTENT You tricd to clear block 16 or above.

Section 5: The Advanced functions 67

The Disassembler

The DISASM (DISASseMble m-code) function disassembles HP-41 M-code. It
may be invoked either from the keyboard or from a program. It must be
supplied with a begin and an cnd address.

If the disassembler is invoked from the keyboard, it will prompt for start

and stop addresses. You may press ENTERto take the addresses from the
L register as a control word of the form 000000bbbbeeee (bbbb is beginning,
ccee is end). The control word is a hexadecimal number, and may be coded
with the CODE function. If the disassembler is invoked from a program,
both addresses are also taken from the L register.

If a printer is connected, the disassembling is printed instead of displayed.
Press R/S to stop disassembling at any point.

If you don’t have a printer, you will probably want to use the DISSST

program shown below to disassemble HP-41 M-code one line at a time.

Enter the start and stop addresses at the prompts and see the first
instruction. Press R/S to see the next line.

Program listing:
01 LBL "DISSST"

02 "BEGIN: Enterstart address

03 4
04 HPROMPT

05 "END: Enter stop address

06 4

07 HPROMPT

08 CLA
09 4

10 DECODYX

11 RDN

12 LASTX

13 DECODYX

14 CODE

15 SIGN
16 SF 01

17 LBL 01

18 DISAS§mM Disassemble onc line

19 STOP Stopto view the line

20 SF 04
21 GTO 01

22 END

68 Section 5: The Advanced functions

The HEPAX ROM cannot be disassembled (you will get the HEPAX ROM

message).

The disassembling depends on the status of flags 0-4. If flag 1 is set, only

one address is disassembled at a time. If flag 0 is set, the data is displayed

in special formats, depending on flag 2 and 3.

Flag 2 Flag 3 Display format
clear clear Hex only
clear set Display ROM data

set clear ASCII data
set set Hex only

Table 6, Output formatsof the disassembler

The second word of a LDI S&X instruction is also disassembled according to

flags 2 and 3 (if both are clear, the data is shown in decimal).

If flag 4 is set, the disassembler does not look back before it starts dis-

assembling.

Section 5: The Advanced functions

The Hexadecimal editor

69

This function enables you to edit HEPAX memory word by word. The

hexadecimal editor redefines the keyboard as shown in figure 9 below.

 (S51)
3

 C3 S33 C3 =

= E 7 =(1 2

y EIT ERE XY IR,)

\

Fig. 9, The HEXEDIT keyboard

When invoked from the keyboard, HEXEDIT prompts for a start address.

Press ENTER to take the address from the rightmost 4 nybbles of the X
register. When invoked from a program, the start address is always taken
from the X registerin this form.

70 Section 5: The Advanced functions

The display looks as follows:
xabc def _ where x is the block, abc is the address, and def is the

current contents. If the block contains several banks, the flag annunciators
show which bank you are in.

Simple editing

At the displayed address, you may enter a new code using the numeric keys
and/or A-F. If you wish to cater the code 000h, simply press ENTER Tt.

To move one address forward, press SST. To move one address backwards,
press BST (the TAN key). Pressing SHIFT causcs the function of these two
keys to be reversed. Note that SHIFT is in cffect until you press the shift

key again.

To go to another address, press the backarrow once. This returns you to
the address prompt. If you press the backarrow again, you lcave the

hexadecimal editor. If the editor was invoked from a FOCAL program, the

program will continue. If shift was on when you left the editor, a running

FOCAL program will be stopped.

Clearing HEPAX memory

As described above, you may use the ENTER1® key to clear the contents of
the current address.

You can also use the CLR key. This key clears the contents of HEPAX
memory from the current address and forwards or backwards. You are
prompted for an address in the current block to clear to.

You may also clear a number of addresses from the current address and

forward. Press CLR and then press the decimal point. This changes the
display to #_ _ _. Enter the number of addresses to be cleared in
hexadecimal.

Inserting and deleting

To delete a number of words and pull the remaining code up, use the DEL

(DELete) key. When you press DEL you are prompted for an address in the

current block to be the last to be deleted and then for the LIMIT - the
last address to be pulled into the deleted area.

Section 5: The Advanced functions 71

Just like with CLR, you may specify a number of addresses from the

current address and forward. Press the decimal point when prompted for the

last address to be deleted. The prompt changes to # _ . Enter the
numberof addresses to be deleted.

The complementary of DELis the INS (INSert) key. Use INS to insert NOPs
at the current address and forward or backward, and push the contents of

the next addresses further down or up. You are prompted for an address in
the current block to be the last to be inserted and then for the LIMIT -
the first address thatis not changed (pushed down or up).

Like with DEL, you can specify a number of NOPs to be inserted. When

prompted for the last address to be deleted, press the decimal point and
enter the number of NOPsto be inserted.

Copying code

Use the CPY key to copy from the current address and forwards or
backwards to another arca. You arc prompted for an address in the current
block to be the last to be copied and then for the address to copyto.

The current block is suggested ~ press backarrow once if you need to cater

an address in another block. Note that you cannot copy code to an arca
that crosses a block boundary.

You may specify a number of addresses to be copied like with INS and DEL
above.

Special functions

HEXEDIT normally works in low-power mode to preserve power. This means

that the CPU stops when waiting for input from the keyboard.

This could cause problems when working with the interrupt locations. In
this case, you cannot allow the CPU to sample the interrupt locations until

you are done. For this reason, the editor contains a special high-power

mode that keeps the CPU running within the HEXEDIT function while

waiting for input. Press H/L to toggle between power modes. Annunciator
0 will be on when you are in high-power mode.

If you are working with a bankswitched RAM device, you may press -BK or

+BK to change to the next bank. If there are several banks, the display
annunciators will shown which bank you are in.

72 Section 5: The Advanced functions

Messages from HEXEDIT

If you hold a key for too long, it will bc NULLed. The message HEPAX

ROM means that you are attempting to edit the HEPAX ROM. If you
attempt to copy, insert, delete cte. across block boundaries, you will get

DATA ERROR.

Example:

This example assumes that you have HEPAX memoryin blocks E and F. We

start by taking block F out of the file system.

Keystrokes: Display:
XEQ HEXEDIT ADR: ____
FFF3 FFF3100 __ _ HEXEDIT prompts you to change

the contents

300 FFF4000 __ _ Address FFF3 is changed

<- ADR: Go to another address

FFE7 FFETO00E __ _ Clear the words at addresses

000 FFE8000 __ _ FFE7 and FFES8
000 FFE9 091 __
<- Go to another address

F100 F1003B9
CLEAR CLEAR->F __ CLEAR is the RDN key.
200 F100 000 __ _ F100 through F200 is cleared

012 F101 000 __ _ Enter some code.
123 F102000 __
234 F103000 __
345 F104000 __ _

The HEPAX memory now contains:

Address Code
F100 012
F101 123

F102 234

F103 345

F104 000

Now we’ll copy, insert and delete some code:

Keystrokes: Display:

BST BST
BST BST F100012___
COPY COPY->F_
. COPY->#__

004 TO: F___
104 F100012___

The HEPAX memory now contains:

Address Code
F100 012

F101 123

F102 234

F103 345
F104 012

F105 123

F106 234

F107 345

F108 000

Keystrokes: “Display:

SST SST
SST SST F104012
INS INSERT->F___
} INSERT->#__
001 LIMIT: F__~
107 F104000

The HEPAX memory now contains:
Address Code

F100 012

F101 123
F102 234

F103 345
F104 000

F105 012
F106 123

F107 234

F108 000

Section 5: The Advanced functions 73

BST is the TAN key.
COPY is the RCL key.
Copy a number of words.
Copy 4 words

to address F104.

SST is the SST key.
INS is the COS key.
Insert a number of words.

Insert one word and move code

down until address F107.

Since F107 was the limit, word at

F108 could not be moved.

Therefore, the previous word at

address F107 waslost.

74 Section 5: The Advanced functions

Keystrokes: Display:
BST F103345 __ BST is the TAN key.

DEL DELETE->F___ DELis the SIN key.
104 LIMIT: F__ Delete down to address F104 and
106 F103012 _ _ _ move code up until address F106.

The HEPAX memory now contains:
Address Code
F100 012

F101 123

F102 234

F103 012

F104 123

F105 000

F106 000
F107 234 Since F106 was the limit, the
F108 000 words at F107 and down were not

moved.

Copying and clearing parts of ROM images

You may also use the COPYROM function to copy a part of any system

memory block to HEPAX memory.

Place a hexadecimal control word of the form 00xbbbxeccyddd in the X

register (use the CODE function). x is the block to copy from, bbb is the

first address to be copied, eee is the last address to be copied, y is the
block to copy to and ddd is the address to copy to. Then execute the

COPYROM function.

The following message may occur:
DATA ERROR You tried to copy from more than one block in one

operation, bbb > cee or you tried to copy to block 0.

The CLRAM (CLear RAM) function may also be used on part of a ROM
image, i.e. to clear any part of HEPAX memory.

Place a control word of the form 000000xbbbxeee in the X register (use the

CODE function). x is the block to delete in, bbb is the first address to be

cleared and eee is the last address to be cleared. Then execute the
CLRAM function.

The following message may occur:
DATA ERROR You tried to clear past a block boundary, bbb > eee or

you tried to clear in block 0.

Section 5: The Advanced functions 75

Coding and decoding

Coding

The CODE functions allows you to enter data in hexadecimal into all 7
bytes of the X register. This function takes the last 14 characters of the

ALPHA register as hexadecimal digits and places the code in the X register.
If the ALPHA register contains less than 14 characters, the number in the
X registeris right aligned.

Use this function to create the control words needed for COPYROM,

CLRAM,etc.

For example, if you need the to copy the contents of system memory

addresses 8200 through 84FF to addresses 9400 through 96FF, you need the
control word 00820084FF9400h in the X register for the COPYROM function.

Simply press ALPHA 82008 4 FF 9 4 0 0 ALPHA XEQ CODE XEQ
COPYROM.

Decoding

DECODE is the complementary of CODE. Use DECODE to decode the

contents of the X register and place the corresponding 14-character string

in the ALPHA register. If DECODE is exccuted from the keyboard, the
ALPHA string is also AVIEWed. If a printer is connected, the ALPHA string

is printed.

Use DECODYX to decode Y by X nybbles (one nybble = 4 bits = 1 hex
digit). Takes the rightmost X nybbles of the Y register and appends them
to the ALPHA register as characters. If the number in the X register is

greater than 14, DATA ERRORis displayed.

In the above example, the X register contains 00820084FF9400h (The display

will be unintelligible). Now, if you want to know the address you are
copying to, use DECODYX to decode the four rightmost nybbles: 4 XEQ
DECODYX and sce "9400" appended to the previous contents of the ALPHA

register.

76 - Section 5: The Advanced functions

Hexadecimal prompting

The HPROMPT (Hexadecimal PROMPT) function can be very useful in your
own programs. It prompts for a specific number of hexadecimal digits and
allows the contents of the ALPHA register to be shown at the same time.
Only as much of the ALPHA register as the number of digits allow is shown
(the rightmost part). Only hexadecimal digits can be entered. The
hexadecimal numberis coded and returned to the X register.

Place the number of hexadecimal digits to be entered in the X register and

a prompt string in the ALPHA register, then execute HPROMPT. Enter the
hexadecimal number and press R/S. If you press shift before R/S, any
running FOCAL program will be stopped.

Example:

The ALPHA register contains the text "ENDADR: " and the X register
contains the number 4. When you execute HPROMPT,the prompt would look
like this:

ENDADR: _

Section 6:

The HEPAX multi-function

The sccond muli-funciion of the HEPAX module 1s the HEPAX
multifunction. The subfunctions of HEPAX are various support functions

that are not needed for normal use of the HEPAX module.

When executing the HEPAX function you are prompted for a 3-digit number,
when executing HEPAXA, press ALPHA "function name” ALPHA. Al
subfunction names and numbersare listed on theinside of the front cover.

Advanced file system functions

The BCAT (Block CATalog, HEPAX 002) function lists the contents of cach
ROM block from block 3 to block F (HP-41CX) or block 5 to F (HP-
41C/CV).

Binary functions

The NOT (HEPAX 008) function replaces X with its complement.

The AND (HEPAX 001) function performs a logical X and Y and places the

result in the X register.

The OR (HEPAX (09) function performs a logical X or Y and places the

result in the X register.

The XOR (HEPAX 012) function performs a logical X exclusive-or Y and

places the result in the X register.

The BCD-BIN (HEPAX 003) function converts a decimal value in the X
register {0 binary (right aligned). The BIN-BCD (HEPAX 004) function
converts the hexadecimal code of the 4 rightmost digits in the X register
10 the corresponding decimal number.

The ROTYX (HEPAX 010) function rotates the Y register by X nybbles.

Positive X means right, negative left. The SHIFTYX (HEPAX 011) function

shifts the Y register by X bit(s). Positive X means right, negative left.

The X+Y (HEPAX 013) function performs a bitwise addition of the X and Y
register and places the result in the X register. The Y-X (HEPAX 015)

function subtracts the contents of the X register from the contents of the
Y register and places the result in the X register.

78 Section 6: The HEPAX multi-function

Miscellaneous functions

The CTRAST (display ConTRAST, HEPAX 005) function sets display contrast

on the newer HP-41s (the Hallnuts, known by a black rim on the display).

Place a number from 0 to 15 in the X register to sct the contrast. 5 is
default. This function has no effect on older calculators.

The DELETE (HEPAX 006) and INSERT (HEPAX 007) functions work just
like the DEL and INS keys of the hexadecimal editor. They both need a

control word of the form 00lllibbbbeece in the X register. DELETE deletes.
from address bbbb to eeee and pulls the remaining code (until 111) up.
INSERT inserts NOPs from address bbbb to eece and pushes the remaining
code down until IL

The X-$ (X register to text, HEPAX 014) function converts the contents of
the X register to an alpha string, loosing the first nybble. This allows you

to store all kinds of data in main memory data registers, without the
“normalization” that normally occurs when the HP-41 tries to make a
number out of your data.

Subject index

"8K"modules LLL Copying
+BKkeyin HEXEDIT code . .. LL... ut
-BK key in HEXEDIT parts of ROM images 74
Actual storage of HEPAX files. ROMimages. 6
Advanced functions. textto ALPHA. 40
ALENG fonction. COPYROM function 61, 66

Allocating HEPAX memory for CPY key in HEXEDIY. n
Purposes . . . Lo... o.oo... Creating datafiles. 27

ALPHA string operations Creating textfiles 28
AND function CIRASTfunction. Ke
ANUM function Current file. 16
Appending characters... . LL. . Datafile 27,59
Appending records operations. LL... 34
Application modules . ©... . . DECODE function 5
AROTfunction Decoding. . oo LL LLL. 75
ASClifile Decreasing file size. . . LL. 29
Assigned program. DEL key in HEXEDIT. 70
ATOX function DELETE function. 78
Banks. Deleting characters... 39
BCAT function. Deleting records. 38
BCD-BIN function DISASM function 67
BIN-BCD function Disassembling. 67
Binary digit ASClldata 68
Binary functions Display ROM data 68
Binary-decimal conversion. . . . Hexonly 8
Bit 0... Linebyline 67
Bitwise addition Output formats. 68
Bitwise subtraction Special formats. 68
Block Catalog DISSST program 67
Block Dummydatafile. 62

of dataregisters. 35 End-offilemark. 28
of registers LL... 47 Entrypoints 62
of HEPAX memory 58 File 16

Byte 58 chain . LL... LLL 63
Calling programs in HEPAX name . Lo... LL... 16

memory from main memory. 26 system. LoL... 58
Changing filesize. 29 Wwpes Lo... 17,58
Character Finding characters 53

codes... Lo... 53 Flag weight” 49
number. LL. CLR Function Address Table 62
operations * L.39 GETKEY function. 55
pointer. Lo... 32 GETKEYX function. 56

Clearing H/LkeyinHEXEDIT. 7
dataandtextfiles 31 Halfnuts 8
parts of ROM images . 74 Handling ROM images. 65
HEPAX memory 70 HAPPCHR function. 39
ROM images Lo. 66 HAPPREC function 38

CLKEYSfunction L058 HARCLREC function 40
CLRAM function, 61, 66, 70 HASROOM function 29
CLRGX function Lo. 46 HCLFL function. 31
CODEfunction Lo B HCRFLASfunction 28
Coding Lo 1B HCRFLD function. 27
Complement. a HDELCHR function. 39
Configurations Lo. 8 HDELREC function. 38

Controlword. 7s Header. 16,27, 31

80 Subject index

HEPAX
and HP-IL LL. 9
block. . . oo... 58
dataregister 27,59

filechain 61
filesystem 58
filetypes . . . o.oo. 58
multi-function. ooo. 7
program registers 27
word. . Lo... oe 58

HEPDIR function 17
HEPDIRX function. 18
HEPROOM function. 18,62

Hexadecimal editor. 69
Hexadecimal prompting 76
HEXEDIT function. 69
HFLSIZE function 18
HGETA function. 42
HGETK function. 42
HGETR function. 3,35
HGETREC function 40
HGETRX function. 35
HGETX function. 36
HINSCHR function. 39
HINSREC function. 38
HP-ILand HEPAX. 9
HPOSIL function 39
HPROMPT function 76
HPURFL function 19
HRCLPT function 34
HRCLPTA function 19,34

HREADFL function 20
HRENAMEfunction 19
HRUESZFL program... . . 29
HSAVEA function 42
HSAVEK function 42
HSAVER function 34
HSAVERX function 35
HSAVEX function 36
HSEC function. 21
HSEKPT function 33
HSEKPTA function. 33
HUNSECfunction 21
HWRTFL function 20
Identifying HEPAX modules. 10
Illegal configurations 9, 61
Increasing filesize 29
Indirecttests. 55
INS keyin HEXEDIT. KE
INSERT function. 8
Inserting characters. 39
Insertingrecords LL... 38
Inserting and deleting. 70
Installing HEPAX modules 10
Key assignment files 42,59
Key assignments 42
Keycodes 50

Logical XandY. 7
Logical X exclusive-orY 77
Logical XorY 77
MassStorage LL... 20, 65

Maximum filesize 62
datafile. 27
textfile 28

MEMORYLOST. 61
Multifunctions 44

andtests. LL... LL. 45
in programs 45

NOT function. 77
Operations on afl data registers 34
Operations on the X register 36
ORfunction 77
PASN function 50
PCLPSfunction. 56
Pointers 32
Pointer operations. 33
POSA function 53
Positionin ALPHA 53
PRIVATE function 25
Program in HEPAX 21,59

assigned. . . . Lo... LL. 20,23

XROM numbers 60
Program listing

HRESZFL. 30
DISSST. 67

PSIZE function 46
Putting a block back in

the file system LL 63
RAMTOGfunction 66
RCLFLAG function 48
READROM function 61, 65

Record. oo... 0 00 LLL 27
number . LL. LL. LLL LLL 32
operations. LL... 38
pointer . . . LL... LLL. 32

REGMOVE function 47
REGSWAPfunction. 47
Resizing data and textfiles 29
Resizing files 63
Restoring main memory... . . . 42
Restoringthe file chain. 63
Retrieving key assignments 42
ROM 65

addressspace 58
image. 65

ROTYX furetion 77
Saving

key assignments 42
the contents of main memory . . . 42
programs in HEPAX 22

Scarchingafile 39
Securing HEPAX files 21
SHIFTYX function 7
ZREG? function 46

Simpleediting 70
SIZE? function. 46
Statistical registers 46
Status registers. 60
STOFLAGfunction. 48
Structure of datafiles 31
Structure of text files 32
Subfunction 4

name. . .o. o.oo... 0... 44
number. . . LL... LLL... 44

Swapping registers 47
System addressed device., 8
Taking a block out ofthe file system . . 63
Textfile. 27,59

operations . . . LL... LL... 38
Textlines 27
Transferring HEPAX files. 20
Waitperiod 56
Words. 58
Write-all files 42,59
Write protection 61, 66

WRTROM function 65
XF multi-function 45
XORfunction 77
XROM
Doo... ... LL... 60
numbers . LL. LLL LLL. 60
to XEQ conversion 26

XTOA function S52
X<>Ffunetion 48
X=NNfunction 55
X=NNfunction 55
X<NNfunction 55
X<=NNfunction 55
X>NNfunction 55
X>=NNfunction 55
X+Y function 7
X$function. 78
Y-Xfunction. 77

Subject index 81

Function index

HSAvER ?2¢
ALENG function HREADFL function 20
ANDfunction

.

. HRENAMEfunction . 19
ANUM function HRESZFL program 29
AROT function. . . HSAVEA function . . . 42
ATOX function. . . HSAVEK function 42
BCAT function. | HSAVER function 34
BCD-BiN function HSAVERX function 35
BIN-BCD function . HSAVEX function . . . 35
CLKEYS function HSEC function . . . 21
CLRAM function . . HSEKPT function , . . 33
CLRGX function . . . HSEKPTA function 33
CODE function . . . HUNSEC function. . . . 21
COPYROM function . HWRTFL function 20
CTRASTfunction . INSERT function 78
DECODE function NOTfunction 77
DELETE function. OR function 77
DISASM function. . . | PASN function 50
DISSST program. . . . PCLPSfunction 56
HAPPCHR function. . . POSA function 53
HAPPREC function. . . PRIVATE function 25
HARCLREC function . . PSIZE function 46
HASROOM function . . RAMTYOG function. 66
HCLFL function RCLFLAG function 48
HCRFLASfunction. READROM function 85
HCRFLD function REGMOVEfunction 47
HDELCHR function. . . . REGSWAPfunction 47
HDELREC function. . . . ROTYX function 77
HEPAX multi-function SHIFTYX function 77
HEPDIRfunction. 17 REG? function, 46
HEPDIRX function 18 SIZE? function 46
HEPROOMfunction 18 STOFLAG function 48
HEXEDIT function £9 WRTROM function 65
HFLSIZE function 18 XF multifunction 45
HGETA function 42 XORfunction. 77
HGETK function 42 XTOA function 52
HGETR function ... 35 X<>Ftunction 48
HGETREC function ... 40 X=NNfunction 55
HGETRX function , 35 X#NNfunction 55
HGETX function 36 X<NNfunction. 55
HINSCHR function , . | Lo. 39 X<=NNfunetion 55
HINSREC function 38 X>NNfunction. 55
HPOSFL function 39 X>=NNfunction 55
HPROMPTfunction . 76 X+Yfunction. 77
HPURFL function 19 X$tunction . . . LL... 78
HRCLPT function 34 Y-Xfunction 77
HRCLPTA function. 19, 34

	Cover
	Contents
	Introduction
	Inserting and removing HEPAX modules
	How to use this manual
	Part 1: Normal Use
	Section 1: All you need to know
	Using the HEPAX file system
	Programs in HEPAX memory

	Section 2: Other HEPAX file types
	Creating data and text files
	Using pointers in data and text files
	Data file operations
	Text file operations
	Using key assignment and “Write-all” files

	Section 3: The Extended Functions
	The multi-function concept
	The XF-multi-function
	Data register operations
	Flag operations
	User mode operations
	ALPHA string operations
	Test functions
	Miscellaneous operations

	Part II: Advanced Use
	Section 4: The HEPAX file system
	HEPAX memory
	The HEPAX file types
	Programs in HEPAX and XROM numbers
	The Structure of the HEPAX file system

	Section 5: The Advanced functions
	Handling ROM images
	The Disassembler
	The Hexadecimal editor
	Copying and clearing parts of ROM images
	Coding and decoding

	Section 6: The HEPAX multi-function
	Advanced file system functions
	Binary functions
	Miscellaneous functions

	Subject index

