VM ELECTRONICS

HEPAX MODULE

Owner’s Manual

Volume 1: Normal and Advanced Operation

The XF multi-function subfunctions

Number Function

Name
ALENG
ANUM
AROT
ATOX
CLKEYS
CLRGX
GETKEY
GETKEYX
PASN
PCLPS
PCSA
PSIZE
RCLFLAG
REGMOVE
REGSWAP
ZREG?
SIZE?
STOFLAG
X<»F
XTOA
X=NN?
X#ENN?
X<NN?
X<=NN?
X>NN?
X>=NN?

010
o1
012
013
014
015
016
017
018
019
020
021
022
023
024
025

Beturn length of string in ALPHA,

Convenrt string in ALPHA to numerical value in X,
Rotate contents of ALPHA.

Convert character in ALPHA to character code in X,
Ciear all key assignments,

Clear registers as specified by X.

Get keycode depending on key pressed.

Get keycode within time specified by X,
Pregrammable assignment.

Programmable ciear programs.

Find position of string or ¢haracter in ALPHA,
Programmable SIZE.

Recall the status of user flags 00-43.

Move a block of main memory data registers.
Swap two blocks of main memory data registers.
Return the location of the statistical registers.
Return the current SIZE.

Restore the status of user flags 00-43.

Exchange status of user flags 0-7 with X.
Convert character code in X to character in ALPHA.
Compare X with indirect Y.

Compare X with indirect Y.

Compare X with indirect Y.

Compare X with indirect Y.

Compare X with indirect Y.

Compare X with indirect Y.

The HEPAX multi-function subfunctions

Number Functign

Name
AND
BCAT
BCD-BIN
BIN-BCD
CTRAST
DELETE
INSERT
NOT '
CR
ROTYX
SHIFTYX
XOR
X+Y

X-$

Y-X

001
002
D03
004
005
006
07
008
009
010
011
012
013
014
015

Logical XAND Y.

Block catalog.

Converts number in X from BCD to binary,
Converts number in X from binary to BCD.
Set display contrast ("Halfnut* calculators only),
Works like DELETE of the hexadecimal editor.
Works like INSERT of the hexadecima! editor.
Complement of X,

Leogical XORY

Rotates Y register X nybbles.

Shift Y register X bits,

Logical X exclusive-or Y

Bitwise addition

Converts X regisier to alpha string

Bitwise subtraction

bt
]
Ul

L
WIW

2|
3
Q
=

D

1]

The HEPAX Module
Volume 1
Normal and Advanced use

February 1988

© VM Electronics 1988

Printed in Denmark

Printed in Denmark.
© VM Electronics ApS, 1958,

All rights reserved. No part of this manual may be reproduced, in any form
or by any means, without the prior written consent of VM Electronics ApS.

HEPAX Manual
Addendum Card

A few typographical errors have unfortunately crept into the
Owner’s Manual for the HEPAX modules. Please correct with a pen.

Page Pleasge correct:

30 Lind)(of the "HRESZFL" program is illegible. It should
read "47 FC? 00",

99 The register name of the sixth register should read "k {the
"append” character).

123 Add a footnote to the FETCH S&X instruction as follows:
"Do no fetch from address 0002h, as this will cause a file
system reset.”

127 An "append” character () is missing in lines 17, 22 and 42
of the "JUMP" program. These linics should read
17 "} (space)', 22 "k ;" and 42"} "

135 An "append” character (}) is missing in the parenthesis
after the READ 10 and WRIT 10 instructions.

141 An "append" character (}) is missing in the parcnthesis
after the WRIT 10 instruction. -

167 An "append” character (F) is missing i the parenthesis
under parameter 10.

If you have any suggestions for improving the HEPAX Module and/or
the Owner’s Manual, please let us know. Thank you.

VM Electronics, Nyelandsvej 7, 1., DK-2000 Frederiksberg, Denmark.

Contents

Introduction. oo 6
Inserting and removing HEPAX modules 8
Howtousethismanunal,, 13

Part I: Normal Use

Section 1: Allyouncedtoknowo 16

Using the HEPAX filesystem 16
Viewing the files of the HEPAX file system; Managing
HEPAX files; Transferring HEPAX files to and from Mass
Storage; Securing HEPAX files

Programsin HEPAXmemory 21
Program names and file names; Saving programs in HEPAX;
Making programs PRIVATE; Calling programs in HEPAX
memory from main memory

Section 2: Other HEPAX filetypes 27
Creatingdataandtextfiles. 27
Creating data files; Creating text files; Resizing data and
text files; Clcaring data and text files

Using pointersin dataand text files, 31
Structure of data files; Structure of text files; Pointer
operations

Datafileoperations o0 0o 34

Operations on all data registers; Operations on a block of
data registers; Operations on the X register

Textfileoperations 38
Record operations; Character operations; Searching a file;
Copying text to the ALHPA register

Using key assignment and "Write-all"files. 42
Using key assignment files; Using "Write-all" files

4

Contents

Section 3: The Extended Functions
The multi-functionconcept
Why multi-functions?; What is a multi-function?; Multi-
functions in programs
The XF multi-function.
Dataregisteroperations
Flagoperations
Usermodeoperations.
ALPHA stringoperations
Testfunctions L.

Part II: Advanced Use

Section 4: The HEPAX file system.
HEPAXmemory

The HEPAX filetypes.

Programs in HEPAX memory; Data files; Text files; Key
assignment and "Writc-all" {iles
Programs in HEPAX and XROM numbers
The structure of the HEPAX file system
The HEPAX file chain; Actual storage of HEPAX files;
Maximum file sizes; Resizing files; Allocating HEPAX
memory for other purposes

Section 5: The Advanced functions.,
Handling ROMimages
Transferring ROM images to and from mass storage; Write
protecting a ROM image; Copying and clearing ROM images
The Disassembler.,
Simple editing; Clearing HEPAX memory; Inserting and
deleting; Copying code; Special functions; Messages from
HEXEDIT
Copying and clearing parts of ROM images
Codinganddecoding
Coding; Decoding; Hexadecimal prompting

Contents 5

Section 6: The HEPAX multi-function 77
Advanced file system functions, ... L. L. 77
Binary functions 71
Miscellaneous functions 78

Subjectindex 79

List of figures

Fig. 1, Using Advanced and Double Memory HEPAX modules 9
Fig. 2, lllegal configurations 9
Fig. 3, AHEPAX text file in register format 28
Fig 4, AHEPAX datafile. 31
Fig. 5, AHEPAX text file in record format 32
Fig. 6, The "weight" of flags 0-7. 49
Fig.7,Userkeycodes, 51
Fig. 8, Example of files in HEPAX memory 63
Fig. 9, The HEXEDIT keyboard 69
List of tables
Table 1, System addressed deviees L. 8
Table2,"8K"modules 10
Table 3, HEPAX filetypes. 17
Table 4, Charactercodes 53
Table 5, Indirect test XFnumbers 55

(5] introduction

introduction
Congratulations on your new HEPAX module!

The HEPAX module — AEwlett-PAckard 41 eXpansion module — is a very
powerful expansion of your HP-41 system. In cffect, it lets you create your
own application modules, you can use data and text files exactly like in the
Extended Functions module, you get all the functions of the XF module and
you can save key assignments and entire calculator memory exactly like
with the HP-IL module and a mass storage device.

The manual thoroughly describes all functions and gives many examples. For
those inferested, it also gives much useful information about the inner
structure of the HP-41 and gives a complete overview of HP-41 asscmbly
programrming.

Terminology

In this manual, the term main memory is used to describe the wp 1o, 319
directly accessible registers of the HP-41CV and HP-41CX (the HP-41C may
be cxpanded to this amount by using Hewlett-Packard memory modules).
Extended memory is the memory that may be added to the HP-41 system by
using the HP82180A Extended Functions/Memory module and two HP82181A
Extended Memory modnles. The term HEPAX memory is used to describe the
up to 31408 words of expanded memory that may be added to the HP-41
system by using HEPAX modules.

The basic unit of HEPAX memory is a word. Of the 8192 words in the
Standard HEPAX and HEPAX Memory modules, 340 words are uscd intern-
ally by the HP-41 itsclf and the HEPAX file system - Ieaving 7852 words
available to the User. The Advanced HEPAX and HEPAX Double Memory
modules contain twice as much memory,

In order to achieve maximum storage capacity, the HEPAX file system
operates with two types of registers: HEPAX data registers consisting of 6
words and HEPAX program registers consisting of 7 words. Refer to
section 4: "The HEPAX file system" for a dctailed explanation of this
subject.

With the HEPAX madule, you can program the HP-41 in machinc language,
This is the "native" language of the HP-41 microprocessor. HP-41 machine
language 15 known as microcode, machine code or simply M-code. We will
use the term M-code throughout this manual.

Introduction 7

in Part I and IV of this manual, we will often use numbers written in
binary or hexadecinal form. Binary numbers are identified by the suffix b
and hexadecimal numbers by the suffix *h". Thus, 247 = F7h = 11110111b.
Refer to appendix D for more information about binary and hexadecimal
numbers.,

CAUTION

The HP-41 must be OFF before you insert any
HEPAX module!

Before plugging in your HEPAX module, make
sure that you uaderstand the following section
“Inserting and Removing HEPAX modules".

8 Inserting and removing BEPAX modules

Inserting and removing HEPAX modules

Before inserting the HEPAX module for the first time, take the time to
read through this entire section.

Up to four HEPAX modules may be plugged into the HP-41 ports. This
would give you a maximum of 31,408 words or 5,222 HEPAX data registers
of extra memory.

CAUTION

Turn the HP-41 OFF before inserting or
removing a HEPAX module! Failure to do so
could damage both the calculator and the
HEPAX module.

Configurations

Using HEPAX with HP-41C memory modules

In an HP-41C, the HEPAX module must be placed in a port with a higher
number than the last HP memory module (the HP-41CV and CX do not use
memory modules). The port numbers are indicated on the back of the
calculator.

Using Advanced and Double memory modules

If you arc inserting an Advanced HEPAX module or a HEPAX Double
Memory module, the port next to the module must be emply or contain a
system addressed device. All system addressed devices are shown below.

HP-41C memory modules
Extended Memory modules
TIME module

HP-1L module

HP-82242 IR printer module
HP-82143A printer

Table 1, System addressed devices

Inserting and removing HEPAX modules g

Exampie:

HP-41CV HP-41CV

Wrong!
(ADV HEPAX is not next to a
system addressed device)

Fig. 1, Using Advanced and Double Memory HEPAX modules

Using HEPAX together with HP-IL

Four configurations with HEPAX and the HP-IL. module (switch set to
"enable") are illegal. If you turn on the HP-41 with an illegal configuration,
you will get the message ILL CONFIG. Turn the HP-41 off and set the
switch on the HP-IL module to "disable’, or remove any module or
peripheral.

The four illegal configurations are shown below. Note that the
configurations arc illegal, regardless of which port each module or
peripheral is inserted in.

HP-41CX HP-41CX

Fig. 2, llegal configurations

"(sys)" is any system addressed device as listed in table 1. "8K" is a modulc
that contains 8,000 words of memory or more. Most modules are known as
"4K", but a few "8K” modules cxist, Some of the most common 8K modulcs
are listed in table 2 below.

10 Inserting and removing HEFAX medules

HEPAX Memory modules
HP-1L Development ROM
Plotler ROM

Advantape module
Petroleum fluids module

Table 2, "8K" modulcs

Ask the vendor if you are in doubt if a module is "4K" or "8K".

Identification and installation

Identification

Standard HEPAX modules are identified by the iegend STD HEPAX marked
on the module. Advanced HEPAX modules are identified by the legend
ADV HEPAX. HEPAX memory modules are identified by MEPAX MEM and
HEPAX double memory modules are marked HEPAX 2MEM.

installing a HEPAX module

To insert 2 module:

Turn the calculator OFF!

Failure to do so could damage both
the calculator and the HEPAX
module,

Inserting and removing HEPAX modules 11

Seleet a port to mount the HEPAX
module in, Remove the port cover
(save it for later use),

Inscrt the HEPAX module with the
right side up, as shown.

Turn the HP-41 on. The HEPAX
module is now ready for use.

12 Inserting and removing HEPAX modutes

Removing a HEPAX module

When removing HEPAX modules, some or all of the data in HEPAX memory

may be lost. Modules should be removed according to the following rules:

- If modules were installed at the same time, first remove the module in
the highest numbered port.

- If modules were installed at different times, first remove the module
that was inserted last.

Refer to section 4: "The HEPAX filc system” for an cxplanation of these

rules.

To remove a HEPAX module:

Turn the calculator QFF!

Failure to do so could damage both
the calculator and the HEPAX
module.

Put a nail under the edge at one of
the lower corners of the HEPAX
module and gently pull the module
out as shown,

Cover the empty port with a port
cover.

How to use this manual 13

How to use this manual

For easc of use, this manual is divided into two volumes. This volume
contains information about normal and advanced use of the HEPAX module,
volume 2 gives information about M-code programming,

Normal use

For normal use of the HEPAX module, rcad only Part 1 of volume 1:
"Normal use".

If you only wish to use your HEPAX module for storing your own programs,
just read section 1: "All you need to know”.

If you also want to vse data and text files, or save key assignments or
entirc calculator memory, also read section 2: "Other HEPAX file types".

If you wish to use all the powerful HEPAX Extended Functions {also found
in the HP-82180A Extended Functions module and the HP-41CX), read
section 3: "The Extended Functions”.

Advanced use

However, the HEPAX module has many other, very advanced functions.
These will be helpful for synthetic programming and are essential for HP-41
M-code programming ~ writing your own functions.

Part 1I (also in volume 1) explains about the file system and the many
advanced functions of the HEPAX module. These functions include some
very useful functions for handling whole blocks of HEPAX memory, a
powerful disassembler, a very advanced hexadectmal editor and many others.

Part III (in volume 2) covers the inncr secrets of the HP-41, in detail
giving information about the way the HP-41 works. This is important
reference material in its own right, but is also a must for M-code
programming,.

Part 1V (also in volume 2) explains all HP-41 M-code instructions, gives
detailed information about the use of peripheral units and about creating
your own ROM,

14 How to use this manual

Reference information

For casy reference, this manual contains a subject index, a function index
(instde back cover) and a IDist of multifunction numbers (inside front
cover).

All messages from the HEPAX module are listed in appendix A, and a
summary of the parameters needed for cach function is given in appendix B,
The most necessary rcference tables for M-code programming are repeated
in appendix C, and appendix D explains the use of binary and hexadecimal
numbers,

Part I:

Normal Use

Section 1:

All you need to know

This section will explain all you need to know to transfer your own
programs to HEPAX memory. First, we will explain a few gencral functions
of the HEPAX file system and then we will explain how to copy your
programs to HEPAX memory.

Programs in HEPAX memory may be exceuted dircetly. This means that they
may be deleted from main memory, hercby freeing an amount of main
memory for other use.

The HEPAX module also lets you save data, text, key assignments and
entire calculator main memory in the form of files. A file is a collection of
data that cannot be used directly; just like a file cabinet, you must first
find the information you need and take it to your desk before working on
it. This will be covered in section 2.

As the HEPAX file handling functions sees it, a program in HEPAX
memory is also a file. A program in HEPAX is directly executable, but it
still has a file name, a header and other file information.

Using the HEPAX file system

When a file is created, it is given a file name of up to 7 characters.
Commas are not allowed. All file names must be unique, ie. no two files
can have the same name. If you specify a file name that is already in use,
you will get the H:DUP FL error message. HEPAX file sizes are given in
registers.

All HEPAX files use 14 words at the beginning of the file for file name,
file type, file size, pointer values, etc. This is called the header. You need
not concern yourself with these headers — they are used by the file system
only.

At any time, one file will be the current file. The current file is the file
that you are presently working on. We will refer to a file either by its file
name or simply as "the current file".

Section 1: All you need to know 17

Viewing the files of the HEPAX file system

HEPDIR

The HEPDIR (HEPax DIRectory) function gives a catalog of all files in the
HEPAX file system. If a printer is connected, the list will be printed
instcad of shown in the display.

For cach file is shown the name, the file type and whether the file is
SECURED. When the catalog is stopped, the displayed information and the
size in HEPAX registers is returned to the ALPHA register. Refer to table
3 below for a list of the file types.

On the printer both file name, type, secured status and file size is printed.

PR - program,
DA - data,
AS - text (also called ASCII data),
KE - key assignments,
WA - write-all,
23 - secured

Table 3, HEPAX file types

Several other file types exist. Refer to scction 4, "The HEPAX file system”
for a complete list of file types.

After the cntirc catalog has becen shown, the number of HEPAX data
registers available in the HEPAX file system is returned to the X register.
This is the largest new data file you can create — i.c. HEPDIR has already
taken into account the 14 words nceded for the new header.

The catalog may be temporarily halted by pressing any key except ON and
R/S. When the key is rcleased, the catalog continues. You leave the catalog
by pressing the R/S key. The last file shown becomes the current file. If
the catalog runs to the end, the current file is not changed.

If the catalog is empty, the message H:DIR EMPTY is shown.

18 Section 1: All you need to know

HEPDIRX X | file number

The HEPDIRX (HEPax DiRectory by X) function is very similar to HEPDIR,
but it concerns onc file only. To get information about the n'th file, place
n in the X register. E.g. to get information about the second file in the
HEPAX catalog, place 2 in the X register and exccute HEPDIRX.

If the file exists, the name of it is returned to the ALPHA rcgister and
the file type is returned to the X register as a two-character code. The file
types are listed in table 3, above. The filc is made the current file.

If the n’'th file does not cxist, the ALPHA register is cleared, zero ts
returned to the X register and the current file remains the same.,

n is always saved in the LASTX register.

Managing HEPAX files

HEPROOM

At any time, you may execute the HEPROOM (HEPax ROOM) function to
find out how many HEPAX data registers are available in the HEPAX file
system. Just like HEPDIR, this function automatically takes into account the
14 words needed for the header of a new file.

HFLSIZE AIPHA ! fGle name

HFLSIZE ALPHA | (empty)

To find the size of any one file, use the HFLSIZE (Hepax File SIZE)
function. Place the name of the file in the ALPHA register and execute
HFLSIZE, The size in HEPAX registers is returned to the X register. If the
ALPHA register is empty, the size of the current iile is returned.

Section 1: All you need to know 19

HRCLPTA ALPHA| file name

HRCLPTA ALPHA | (empty)

To get the size in words of any HEPAX file that is not a data or text file,
you may use the HRCLPTA (Hepax ReCalL PoinTer by Alpha) function. This
function is designed for use with HEPAX text and data files, but if you
enter the name of a file of another type in the ALPHA register and
exceute HRCLPTA, the file size in words is returned to the X register. If
the ALPHA register is empty, the size of the current file is returned.

HRENAME | ALPHA/{ old file namenew file. name

If you decide on changing the name of a file in the HEPAX file system,
you can use the HRENAME (Hepax RENAME file) function, Write the old
file name in the ALPHA register, write a comma and the new file name,
and execute the HRENAME function. If you atiempt to rename a file to a
name that is already in use, you will get the H:DUP FL NAME crror
message.

Example:

You have a data file named "DTA" that you wish to rename to "NUMBERS"

Keystrokes: Display:

XEQ HEPDIR DTA DA The 6ld filc name.
ALPHADTA

, NUMBERS DTANUMBERS Enter old name, a comma,
ALPHA 0.0000 and the new name,

XEQ HRENAME 0.0000 The file is renamed.

XEQ HEPDIR NUMBERS DA The file now has the new name.

HPURFL ALPHA | file name

If you mo longer nced a file in HEPAX memory, use the HPURFL {Hepax
PURge File) function to delete it. Place the name of the file to be delcied
in the ALPHA register and e¢xccute HPURFL. The remaining files arc
automatically packed for efficient memory usage.

20 Section 1: Ali you need to know

Although HPURFL is programmable, it should never be used in a program in
HEPAX memory.

If you have assigned a program in HEPAX memory to a key, you may
somelimes find that the next program in CATALOG 2 is now assigned to
that key. You should check any keys with programs in HEPAX assigned
after using PURFL on a program. Refer to section 4: "The HEPAX file
system" for more information about this.

Transferring HEPAX files to and from Mass Storage

All HEPAX file types are compatible with the Mass Storage file types. This
- means that programs, data, text, key assignment and write-all files created
using the HP-IL module may be read directly into the HEPAX module and
that HEPAX files transferred to mass storage may be read using the HP-IL
module functions.

HWRTFL ALPHA | file name

HWRTFL ALPHA | HEPAX name,Mass storage namc

To write a HEPAX file to a file in Mass Storage with the same name, enter
the name of the file in the ALPHA register and exccute the HWRTFL
(Hepax WRiTe File) function. You can also give the Mass Storage file
another name by entering the HEPAX file name, followed by a comma and
thc Mass Storage file name, in the ALPHA register before you cxecute
HWRTFL.

If a file of the same type already exists in Mass Storage with the given
file name, the previous {ilc is overwritten with the new file.

HREADFL ALPHA | file name

HREADFL ALPHA | HEPAX namc,Mass storage namc

To read a Mass Storage file to a HEPAX file with the same name, cnter the
name of the file in the ALPHA register and exceute the HREADFL (Hepax
READ FiLe) function. The HEPAX filc may be given another file name by
entering the Mass storage name, followed by a comma and the HEPAX file
name in ALPHA before you exccute HREADFL.

Secticn 1: All you need to know 21

If a HEPAX file of the same type with the given name already cxists, the
previous file is overwritten with the new file.

The HP-IL disc drive is fully supported by HWRTFL and HREADFL.

Securing HEPAX files
HSEC ALPHA | file name
HSEC ALPHA [(empty)

A file in the HEPAX file system may be secured against accidental loss
using the HSEC (Hepax SECure file) function. Place the name of the file to
be secured in the ALPHA register and execute HSEC. If the ALPHA
register is empty, the current file is sccured. A sccured file cannot be
deleted, renamed or changed (you will get the H:FL SECURED message).

HUNSEC ALPHA] file name

HUNSEC ALPHA | (empty)

The complementary function to the HSEC function is the HUNSEC (Hepax
UNSECure file) function. Place the name of the file in the ALPHA register
and exccute HUNSEC to unsccurc the file. If the ALPHA register is empty,
the current file is unsccured.

Programs in HEPAX memory

If you need more programs than main memory allows, you may place some
(or all) of them in HEPAX memory.

Programs residing in HEPAX memory are not really files — they just have
some fcaturcs in common with files. They are actually more like programs
in application modules (like the MATH modulc). They appear in CATALOG 2
and can be exccuted directly. Just like programs in application modules,
they cannot be edited (you will get the ROM message), but you can use the
COPY function to copy them to main memory for cditing.

22 Section 1: All you need to know

Program names and file names

Usually, you will want to use the name of the program as the file name. To
do this, simply enter the name of the program in the ALPHA register.

You may, however, specify a file name differcat from the program name.
‘This file name will be shown in HEPDIR, but you will still have to usc the
program name to execute or assign the program. To save a program in
main memory under a diffcrent file name, enter thc program name, a
comma, and then the file name in the ALPHA register. If you specily a file
name, but no program name, the current program in main memory is saved
in HEPAX under this file name.

Saving programs in HEPAX

HSAVEP ALPHA| filc name
HSAVEP ALPHA | program namec,[ilc name
HSAVEP ALPHA | file name

To save a program in main memory to HEPAX memory do the following:

1. Enter the program name and/or filc name in the ALPHA register.

2. Execute the HSAVEP (Hepax SAVE Program) function.
The HP-41 will show PACKING, then H:SAVING, followed by
H:COMPILING.
The program now resides in HEPAX memory, the file name appears in
HEPDIR and the program name appears in CATALOG 2*. The program
can be executed directly.
In order to free an amount of main memory, simply:

3. Clear the program using the CLP function.

Note that the HP-41CX only displays ROM headings in CATALOG 2. To see
programs in HEPAY, stop the catalog before the HEPAX module and press ENTER
to list all functions and programs.

Section 1: Al you need to know 23

If the HSAVEP finds that your program contains a jump to a numecrical
label not in the program, it will give the message NO LBL xx, where xx is
the label number. If you have used a short-form GTO instruction and the
jump distance is too long, you will get the GTO xx SHORT message. These
messages are for your information only.

If the program name (or file name if specified) already exist in the HEPAX
file system, the previous file is overwritten. If you have assigned a program
in HEPAX memory to a key, you may sometimes find that the next program
in CATALOG 2 is now assigned to that key. You should check any keys
with programs in HEPAX assigned after overwriting old programs in
HEPAX. Refer to scction 4: "The HEPAX file system” for more information
about this.

If you get the H:FAT FULL mcssage, create a small data file and try again.
If you still get H:FAT FULL, resize the file upwards until the HSAVEP
function is successful.

Example:

Keystrokes: Display:

LBL TST 01 LBLTST Label of a test program

ALPHAPRG

(space) IN 02 'PRG IN_

(spacc) HEPAX RGINHEPAX A message

AVIEW 03 AVIEW

ALPHA

GTO.. PACKING
00 REG 216

PRGM 0.0000 Leave program mode.

You have now created a short test program in main memory.

ALPHATST

ALPHA TST Place the name of the program in

the ALPHA register

XEQ HSAVEP PACKING Save the program in HEPAX
H:SAVING
H:COMPILING

XEQ HEPDIR TST PR The TST program appears in the
1298.0000 HEPAX directory. The number in

the X register is the number of
HEPAX data registers available

24 Section 1: All you need to know

Keystrokes:

XEQ CLP ALPHA

TSTALPHA

CLX
XEQ TST

Display:

PACKING Clear the TST program {rom main

1288.0000 memory.

0.0000

PRG IN HEPAThe TST program is exccuted from the
HEPAX module!

If you now press PRGM to enter program mode, you can single-siep
through the TST program in HEPAX. If you try to insert new lines or
delete lines, you will get the ROM message.

Now let’s try to edit the TST program:

Keystrokes:
GTO..

XEQ COPY
ALPHATST
ALPHA

PRGM

GTO .003

PSE
ALPHAEDIT
E D (space)
PRG

AVIEW
ALPHA

BEEP

PRGM
ALPHATST
ALPHA

XEQ HSAVEP

Display:
PACKING
0.0000
COPY _
0.0000 Copy the TST program back into main
memory.
01 LBL’TST Eanter PRGM mode and see the TST
program, now in main memory.

03 AVIEW Gotoline 3.

04 PSE Insert new lines.

05 'EDITED _

EDITED PRG

06 AVIEW

07 BEEP
Leave PRGM mode.

0.0000

PACKING Save the new version.

H:PURGING The old version is automatically deleted
from HEPAX.

H:PACKING HEPAX memory is packed.

H:SAVING

H:COMPILING

0.0000

Section 1: All you need 10 know 25

Keystrokes: Display:

XEQ CLP

ALPHATST

ALPHA PACKING Delete the program from main
0.0000 memory,

XEQ TST PRG IN HEPADhe edited program runs in
EDITED PRGthe HEPAX module.
(beep)

Making programs PRIVATE

PRIVATE ALPHA | file name

To ensure that other users cannot view or modily your programs, you can
make them PRIVATE, just like with the card reader. A PRIVATE program
cannot be viewed, listed or single-stepped. It can only be executed or
deleted!

To make a program in HEPAX memory PRIVATE, simply enter the name of
the program in the ALPHA register and cxecute the PRIVATE function. If
you altempt to make a secured program in HEPAX private, you will get the
H.FL SECURED message. The program is not made private.

We look at the TST program again:

Keystrokes: Display:

ALPHATST

ALPHA 0.0GC0

XEQ PRIVATE 0.0000 The program is now private.

XEQ COPY

ALPHATST

ALPHA PRIVATE You can’t copy it,

XEQTST PRG INHEPAX but you can still execute it.
EDITED PRG
(beep)

ALPHATST

ALPHA 0.0000

XEQ HPURFL H:PACKING The TST program is purged

0.0000 from HEPAX memory.

26 Section 1: All you need to know

Calling programs in HEPAX memory from main memory

If you have a program in main memory that calls any program in HEPAX
memory, you should convert all XROM to XEQ instructions. This is not
needed if both programs are in HEPAX memory.

The procedure for converting XROM to XEQ is:

1. Copy the program to HEPAX memory with HSAVEP.
2. Delete it from main memory with CLP.

3. Copy it back into main memory with COPY.

4. Delete it from HEPAX with HFURFL.

Section 4: "The HEPAX file system” explains the nced for this conversion.

Section 2:

Other HEPAX file types

Creating data and text files

A data file is a collection of HEPAX data registers. Each HEPAX data
register will hold one number, just like a data register in main memory.
You cannot use STO and RCL directly, but you get some other advanced
functions for accessing your data,

A text file (also called an ASCIH file) is a collection of text lines called
records. The size of a HEPAX text file is given in HEPAX program
registers. One HEPAX program register will generally hold 7 characters of
text.

When you create a file, you must specify the name and size of the file.
Just like all other HEPAX files, data and text files begin with a header
that is automatically added at the front of the file.

The HEPAX module contains exact equivalents to all file handling functions
of the Extended Functions module and some of the CX Extended Functions.

Creating data files

HCRFLD X | file size ALPHA ! file name

When creating HEPAX data files, all you nced to decide is how many
numbers you will initially nced to store. This is the number of HEPAX
registers you will neced ~ the file size you specify when creating the file,
The maximum size of a HEPAX data file is 5222 registers in a configuration
with 32,000 words of HEPAX memory.

Enter the file name in the ALPHA register, the file size in registers in the
X register and execute the HCRFLD (Hepax CReate File Data) function.
The file is now created and made the current file, and the pointer is set
to the first register,

28 Section 2: Other HEPAX file types

Creating text files

HCRFLAS X | file size ALPHA | file namec

When creating a HEPAX text file, you should first estimate the necessary
size of the file. A rough estimate is usually sufficient, since in most cases
you can resize the file later using the "HRESZFL" program. Remember that
text file size is specificd in HEPAX program registers. The maximum file
size is 577 registers.

An example of a HEPAX text file containing three records is shown below
in register format. This file is shown on page 32 in record format. Note
that at the beginning of cach record one character is used to indicate the
length of the record. Also note that the end-of-file mark takes up one
character.

Header

0x2(A c 0 L L

E C T I 0 N | 007

005 L I N E s * * is End-0f-File mark

Fig. 3, A HEPAX text file in register format

Thus the exact space in words needed for « HEPAX text file may be
determined as follows:

1. Add up the number of characters in all records.

2. Add the number of records.

3. Add one for the end-of-file mark.

4. Divide by seven and round up to the nearest whole number.

Enter the name of the file in the ALPHA register, the file size in registers
in the X register and exccute the HCRFLAS (Hepax CReate File ASci)
function to create the file. The file is now crcated and made the current
file, and the pointer is sct to the first character of the first record.

Section 2: Other HEPAX file types 29

Resizing data and text files

HASROOM

At any point, you can check how many characters are left in a text file
using the HASROOM (Hepax AScii file ROOM) function. The text file must
be the current file. The number returned to the X register is the number of
unused characters in the file. Remember that each record takes up one
extra character.

"HRESZFL" X | new size ALPHA | file name

If you wish to change the size of a data or text file, use the HRESZFL
(Hepax RESiZe Fil.e) program shown below. This FOCAL program must be
given the file name in the ALPHA register and the new size in the X
register.

When increasing file size, there must be enough HEPAX memory available to
hold both the old and the new file at the same time.

When decreasing file size, the program will give the H:FL SIZE ERR if the
downsizing would result in loss of data. A register in a data file is
considered in use if it contains anything but zero, and a register in a text
file is considered in wse if it contains any part of a record or the
end-of-file marker. Use a negative value for new size to resize the file
regardless of previous contents.

30 Section 2: Other HEPAX file types

aid

e ad Gl orad el ated ¥
-1 &
e)
)
al

i
Pt

ond
"y

ot
T

Py

I T e

Q’I’ i.1! g’:'
[ERERE &
£3 GT0 B3 ta] HECLPTS

DO I S

E-r'
43 FC7

]

Rt B B B B e Y
. O

o
I
A0
Do R
—
oo
R

ru
-a
o
x

NI R 4%

=

(]
z

78T s 182 EIH
F1+LEL Bl 187 HEAYES
72 RCL &g 14 F57 .35
73R 1A% 070 83

74 G787 185 570 1%

e

R O Dy
=
1wty

=]

o SR I
I . o
(A k
~ o
L I) e
—
&
o]
pal
L)
]

g o e v s
AT R
xI
™
Y TR N
— i
(]
4
]

iF 2 41 ¥F The ATOX 1R7+LEL i3

functien 163 “H'Fi SITF FRE-
E £Y

The ATOX
function

S T =
Pk pe e (e b et 8
[t IS =R L B o TR e e |

nall

e
WD A

iy

e

NP P Vet peke ek ek

The AROT
function

The ATOX
function

b B i e R Rt (e et feirte ook bk ok fanh it oy

L

[T I VI

R I - SN []
A

i
H
3
fa
A
i

e

]
[I
3

T

Al

-

=

]
TE

]
Dl 0}

Program listing of the HRESZFL program

Section 2: Other HEPAX file types 31

Clearing data and text files

HCLIFL ALPHA| file name

Place the name of a file in the ALPHA register and use HCLFL (Hcpax
ClLear File) to clear a data or text file. In a data file, all rcgister contents
arc sct to zero and the pointer is sct to the first register. In a text file
all records arc deleted and the pointer is sct to the first character of the
first record. The file is made the current file. Note that this function docs
not delete the file.

Using pointers in data and text files

Data and text files are accessed at one point at a time. This point is
determined by the value of the pointer. The pointer is saved in the header.

Structure of data files

As mentioned at the beginning of this scction, a data file is simply a
collection of registers preccded by a header. Each register has a register
number, starting with 0 and continuing to the end of the file. A data file
of 5 registers is shown below.

Header (pointer=3})
4} data
1 data
2 data
3 data <= pointer
4 data
Register
number

Fig. 4, A HEPAX data file

] Saction 2: Other MEPAX fila types

The value of the pointer 4 stored in the header. In the above example, the
pointer valuc s 3, pointing to register number 3 (the fourth register in the
tile).

Structure of text files

A toxt file js a collection of text lines (called rceocds), preceeded by a
header. A record may contain from 1 to 254 characters. Bach record has a
record number, and each character m a record has a character number. The
powter 11 2 teat file is of the form rrrcec, where the integer part (rrr) @
the record pointer and the fractional part (cec) is the chargcrer pointer.
The text file bom page 28 is shown below in record format

Hesder (pointer=601,00%) !

i gy i —
6 fa !CiO-LLEC‘!TI":jH_I
recovd | i
rikmbar 3 o ¥ | E X T
2 A S Tmz 5

Q 1 P 3 4 £ L 7 8 b
Ghoaracter number

Fig. 5, A HEPAX text file in record forwat

Like w data files, the pointer value is stored o the header. Above, the
pointer valuc is 1005, pointing to recotd numbcr 1, character nurabes 5 (the
"X in the word "TEXT").

Seotion 2. Diher HEPAX flie types 33

Pointer gperations

The HEPAX module cootains 4 diffecent functions to set and recall the
pototers.

HSEKRFTA X[rre ALPHA | data file

HSEKPTA X | frrece ALPHA | text file

To sct the pownter in any data or text file, use the HSEKPTA (Mcpax SEeK
PonTer by Alpba) function, The file i3 made the current file.

To set the poinier 1o any 4ata filc:
1. Enter the register (o point to in the X register
2. Eater the data file name i the ALPHA regster
3 Execute HSEKPTA, The named file becomes the current e,

To set the pointor in any text file:
L. Enter the record and character (o point to in the X register {record
& iteger part, charactes as fractiona! part)
2. Fnter the data {iJo name in the ALPHA register
3. Executc HSEKPTA. The pamed file becomes the current fle.

I the ALPHA register is clear, the pointer is set in the current file.

s

HSERFPT x| o

e PRI

HSEKFT -| X | rrrcee

rarara

To set the pointer 1o the current data or text fik, you may alsn use the
HSEKPT (Hepax SEcK PoinTer} function. This function is similar to
HSEKPT, but it elways scts the pointer in the current Sle 35 directcd by

the contents of thoe X register, regardiess of the contents of the ALFHA
register.

34 Section 2: Other HEPAX file types

HRCLPTA ALPHA | filc name

To recall the pointer from any file, usc the HRCLPTA (Hepax ReCall
PoinTer by Alpha) function. Enter the file name in the ALPHA register and
cxccute the function. The pointer of the named file is recalled to the X
register and the file is made the current file. If thc ALPHA register is
clear, the pointer of the current file is recalled,

HRCLFPT ALPHA{ filc name

To recall the pointer from the current file regardicss of ALPHA register
contents, use the HRCLPT (Hepax ReCall FoinTer) function. This function
always recalls the pointer of the current file.

Data file operations

The file specified in all the below data file operations must be a data file,
otherwise you will get the H:FL TYPE ERR message.

Operations on all data registers

The HSAVER and HGETR functions are used to copy between all main
memory data registers and a HEPAX data file. The contents of a main
memory data register is copied to/from the data file register with the same
number,

HSAVER ALPHA. | data file name

HSAVER ALPHA | (empty)

To copy all main memory data registers to a HEPAX data file, use the
HSAVER (Hepax SAVE Registers) function. Enter the name of the data file
in the ALPHA register or lcave the ALPHA register empty to save the data
in the current file. The pointer will be placed just after the last register
copied. If the number of main memory data registers (the SIZE) is larger
than the size of the data file, an H:END OF FL message occurs, no
registers are copied and the pointer is not moved.

Section 2: Other HEPAX file types 35

HGETR ALPHA | data file name

HGETR ALPHA | (empty)

To copy all registers in a HEPAX data file to main memory data registers,
use the HGETR (Hepax GET Registers) function. The name of the data file
must be in the ALPHA register, or the ALPHA register must be cmpty to
copy from the current file. This function copics data until the end of the
data filc or until there arc no more storage registers. After HGETR, the
pointer is placed just past the last HEPAX data register copied.

Operations on a block of data registers

Use the HSAVERX and HGETRX functions to copy between a block of main
memory data registers and a block of the same size in the current HEPAX
data file. The block of main memory data registers is specified using a
control number of the form bbb.cece in the X register, where bbb is the
first register in the block and eee is the last register. The block of HEPAX
data registers starts at the pointer value and has exactly the same length
as the block of main memory data registers.

HSAVERX X | bbb.cee

HGETRX X | bbb.eee

To copy a block of main memory data registers to a HEPAX data file, use
the HSAVERX (Hepax SAVE Registers by X) function, and to copy a block
of HEPAX data registers to main memory, usc the HGETRX (Hepax GET
Registers by X) function.

For both functions enter the control number in the X register and cxccute
the function. The pointer will be placed just after the last register copied.
If the specified block is larger than the number of HEPAX data registers
from the pointer to the end of the file, you will get an H:END OF FL
message, no copying will occur and the pointer will not be moved.

36 Section 2: Other HEPAX file fypes

Operations on the X register

HSAVEX

HGETX

X

data value

To save the contents of the X register at the pointer, simply execute the
HSAVEX (Hepax SAVE X register) function. To retrieve a number from a
HEPAX data file at the pointer to the X register, use the HGETX (Hepax
GET X register) function.

The pointer is advanced to the next register in the file.

Enter file name in the ALPHA
register.

Enter the size in the X register.
A data file is created.

Now we enter some numbers into main memory data registers:

Example:

Keystrokes: Display:
ALPHADTA

ALPHA

5 5.
XEQ HCRFLD 5.0000
28TO 03 2.0000
35TO 04 3.0000
83STO 05 8.3000
98TO 06 9.0000
3.006 3.006_
XEQ HSAVERX 3.0060
XEQ XFA CLRGX

Control number

Save registers 3 through 6 in the
current HEPAX data file at the
pointer,

Clear main memory registers 3
through 6.

The file now looks like this:

Section 2: Othier HEPAX file types

(pointer=4)

Header "DTA"
0 2
1 3
2 8.3
3 9
4 o
Register
number

<~ pointer

Now let’s retricve some data from the file:

Keystrokes: Display:
2 HSEKPT 2.0000
HGETX 8.3000
HRCLFPT 3.0000
HGETX 9.0000

Move the pointer to register
number 2.

Recall the contents of the file
register at the pointer.

Recall the pointer. Note that it
has been incremented.

Recall the contents of the next
file register.

37

38 Section 2: Cther HEPAX file types

Text file operations

All the text file operations below operate on the current file. The current
file must be a text file, otherwisc you will get the H:FL TYPE ERR
message.

Record operations

The HEPAX module contains three functions for manipulating whole records.

HAPPREC ALPHA| alpha data

The HAPPREC (Hepax APPend RECord) function appends the contents of
the ALPHA register as @ new record at the end of the file. The pointer is
sct just pasi the last character in the appended record.

HINSREC ALPHA | alpha data

To insert a record in the middle of a text file (at the pointer), use the
HINSREC (Hepax INSert RECord) function. Position the record pointer
where you wish the new record to be inserted and execute HINSREC. The
contents of the ALPHA register is inserted at the pointer as a new rccord
and all the following records are pushed further down in the file. The
pointer is set just past the last character in the inserted record.

HDELREC

To delete the record at the pointer, use the HDELREC (Hepax DELcte
RECord) function. Position the pointer at the record to be deleted and
execute HDELREC (the character pointer doesn’t matter). The record is
deleted and the following records arc pulled up. The pointer is set to the
first character of the record following the deleted record.

Section 2: Other HEPAX file types 30

Character operations

HAPPCHR ALPHA | alpha characters

There are also three character functions equivalent to the above record
functions. The HAPPCHR (Hepax APPend CHaRacters) function appends a
number of characters at the end of the current record. Place the characters
to be inserted in the ALPHA register, set the pointer to the desired record
(the character pointer doesn’t matter) and executc HAPPCHR. The pointer is
advanced to just past the inscricd text.

HINSCHR ALPHA | alpha characters

To insert a number of characters in the middle of a record @ the pointer,
usc the HINSCHR (Hepax INScrt CHaRacters) function. Position the pointer
where you wish the characters to be inserted and exceute HINSCHR. The
contents of the ALPHA register is inserted at the pointer. The pointer is
advanced o just past the inserted text.

HDELCHR X | no. of characters

To delete a number of characters from the middle of a record, usc the
HDELCHR (Hepax DELete CHaRacters) function. Position the pointer at the
first character to be deleted, enter the number of characters to be deleted
in the X register and exccute HDELREC. Note that this functions does not
delete past the end of the current record. The characters are deleted and
the following characters are pulled up. The pointer is sct to the same
position, i.c. the first character following the deleted characters.

Searching a file

HPOSFL ALPHA | scarch string

You may scarch a text file for the occurrence of a string of characters
using the HPOSFL (Hepax POSition in FiLe) function. Make the text file
the current file and sct the pointer to the place where the search is (o
begin. Place the search string in the ALPHA register and execute HPOSFL,

40 Section 2: Cther HEPAX file types

If the string is found, the pomtc:r is set to the first character of the
string, and the pointer value is returned to the X register. If the string is
not found, the pointer is not moved, and -1 is returncd to the X register.
In both cases, the ALPHA register is unchanged

Copying text to the ALHPA register

HARCLREC

HGETREC

There are two ways to copy text into the ALPHA register, using the
HARCLRC (Hepax Alpha ReCall. ReCord) and HGETREC (Hepax GET
RECord) functions, respectively. Their only difference is that HGETREC
clears the ALPHA register before copying the text.

To usc these functions, make the text file the current file and place the
pointer at the first character to be copied. Execute HARCLREC ot
HGETREC. The functions copy text until the end of the record, or until the
ALPHA register is full. If the last character in the record is copied, flag 17
is cleared, otherwise it is set (flag 17 is used by the HP-IL module). The
pointer is placed just past the last character copied.

Example:

Keystrokes: Display:

ALPHATEXT TEXT _ The filc name

ALPHA 0.0000

10 10 The file size

XEQ HCRFLAS 10.0000 The file is created
ALPHASOME

(space) TEXT SOME TEXT _ The first line of text
ALPHA 10.0000

XEQ HAPPREC Append as a new record,
ALPHALINES LINES_ Next line of text
ALPHA 10.0000

XEQ HAPPREC 10.0000 Append as a new record at the

end of the file.

The file now consists of two lines:

SOME TEXT

LINES

Now let’s edit the file:

0 HSEKPT 0.0000
ALPHA A (space)

COLLECTI

ON A COLLECTION_
ALPHA 0.0000

XEQ HINSREC 0.0000
ALPHASOME SOME _
ALPHA 0.0000

XEQ HPOSFL 1.0000

4 HDELCHR 40000
ALPHA OF OF_

ALPHA

XEQ HINSCHR

The file now contains the three lines:
A COLLECTION

OF TEXT

LINES

Section 2: Other HEPAX file types 41

Set pointer to start of file.

A line to be inserted.

Insert as a new record.
A scarch string.

The pointer value of the first
character of the first (and only)
occurrence of "SOME".

Delete 4 characters (the word
"SOME")

A new string to be inserted. Note
that the pointer is still at the
first character of record no. 1.

The new word is inserted.

42 Section 2: Cther HEPAX file types

Using key assignment and "Write-all" files

With the HEPAX module, it is possible to store key assignments and/or
entire calculator memory in HEPAX files for later retrieval.

Using key assignment files

HSAVEK ALPHA | hle name

HGETK ALPHA/| file name

Use the HSAVEK (Hcpax SAVE Keys) function to save system key
assignments and the HGETK (Hepax GET Keys) function to retrieve them.
Any assignment of FOCAL programs in main memory are not affected by
the HSAVEK and HGETK functions.

To save the current system key assignments, place the name eof the key
assignment file in the ALPHA register and exccute HSAVEK. 1f'a key as-
signment file with the given name alrcady cxists it will be overwritten,
otherwise a new file will be created.

To retrieve a set of system key assignments from a HEPAX key assignment
file, enter the name of the file in the ALPHA register and execute HGETK.
Any previous system key assipnments arc cancelled.

Using "Write-all" files

HSAVEA ALPHA | file name

HGETA ALPHA| file name

Use the HSAVEA (Hepax SAVE All) function to save the contents of entire
calculator main memory and the HGETA (Hepax GET All} function to
restore entire calculator main memory to the saved status.

To save the contents of main memory, place the name of the "writc-all" file
in the ALPHA register and exccute HSAVEA, If a "write-all” file with this
name alrcady exists it will be overwritten, otherwise a new file will be
created.

Section 2: Other HEPAX file types 43

To retricve the entire contents of main memory from a HEPAX “write-all"
file, cnter the name of the file in the ALPHA register and exccute HGETA.
The previous contents of main memory (programs, data, key assignments
etc.) are overwritien. The system should be configured cxactly like when
the file was created (including all peripherals).

Section 3:

The Extended Functions

The multi-function concept

Why multi-functions?

It is the philosophy of the HEPAX modules to make the maximum amount of
memory available to you. To achicve this, the HEPAX support functions are
tightly packed to fit into a bit of othcrwise unused memory space.

This means, however, that there can be only 64 directly accessible functions
in the HEPAX module. As the module contains many more than 64
functions, we must have used some trick! And yes, we have,

What is a multi-function?

The name of the trick is multi-functions. A multi-function s ong¢ {unction
that gives a choice of other functions. For cxample, the XF multi-function
described in this section gives a choice of 26 other functions. The
functions that are accessed via the multi-function are called sub-functions
of that multi-function, or just subfunctions.

Each subfunction is identified by ecither its subfunction name or its
subfunction number. These numbers and names are given in this section and
on the inside of the front cover. To give you the choice of entering either
the name or the number, each multi-function must exist in two versions.
The need for two different functions arise from an unfortunate "bug” in
the HP-41 system softwarc. The name-prompting multi-function ends on an
A"

When calling a subflunction using the pormal multi-function, you are
prompted for the three-digit subfunction number. When calling a subfunction
using the ALPHA-version multifunction, you must ¢nter the subfunction

name. All subfunction names and numbers are listed on the inside of the
front cover.

Naturally, a multifunction will give the NONEXISTENT error message if you
specify a nonexistent subfunction name or number.

Section 3: The Extended Functions 45

Example:

We wish to execute the RCLFLAG subfunction of the XF multi-function. We
can do this in two ways:

By subfunction number: By subfunction name:

1. Execute XF and see the prompt 1. Execute XFA and sce the prompt
XF_ XFA

2. Enter 012 2. Press ALPHARCLFLAG

3. The subfunction is executed. ALFHA

3. The subfunction is exccuted.

Multi-functions in programs

Subfunctions in programs are always specified by number. If you specify a
subfunction by mame, it is automatically converted. The subfunction takes
up two lines: One line for the multi-function and onc line ‘for the
subfunction number. This number docs not cnter the stack when running the
program or when single-stepping it.

You can make the subfunction number enter the stack by using GTO linc
number to jump to the exact line containing the subfunction number, and
then use SST to execute this one line.

If you place a multifunction immediately after a test line, the multifunction
number will enter the stack if the result of the test is "false”. Sec the
example on page 46 for a way to avoid this.

The XF multi-function

The HEPAX module contains exact equivalents to all file handling functions
of the Extended Function/Memory module (described in sections 1 and 2). In
addition to.these, the HEPAX module also contains exact equivalents to the
remaining Extended Functions, and some of the CX Extended functions. All
of these functions have been collected under the XF/XFA multi-function.

When specifying a subfunction by number, exccute the XF multi-function
and enter the 3-digit subfunction number at the prompt. When specifying a
subfunction by name, execute XFA, press ALPHA, enter the function name
and press ALPHA again.

46 Section 3: The Extended Functions

Data register operations

"XFA CLRGX X | bbb.ceecii

To clear 2 number of main memory data registers, place a control number
of the form bbb.eceii in the X register and execute the XFA CLRGX (Clear
ReGisters by X) function (XF 005). bbb is the first register to be clearcd,
cee is the last register to be cleared and ii is the increment. Le. to clear
the odd registers from 10 to 20, use the control word 11.02002. If cee is 0,
one register is cleared. If ii is 0, every register is cleared.

XFA SIZE?

The XFA SIZE? function (XF 016) returns the current SIZE, ie. the number
of main memory registers allocated as data registers.

XFA PSIZE X | new size

The XFA PSIZE (Programmable SIZE) function (XF 011) works just like the
“normal" SIZE function, but it is programmable and takes the SIZE {rom the
X register.

The XFA SIZE? and XFA PSIZE functions work conveniently together to
form a short routine vou can place at the beginning of all your FOCAL
programs:

LBL "MYPRGM" The label of your program

(needed SIZE) Calculate or just enter the needed SIZE
XF

15 The XFA SIZE? function

X>=Y? If the SIZE is sufficient,

GTO 00 continue

XF Otherwise,

11 use XFA PSIZE to change.

LBL 00 Program continues.

XFA ZREG?

To find the main memory data register number of the first statistical
register, use the XFA ZREG? function (XF 015).

Section 3: The Extended Functions 47

XFA REGMQOVE X | sss.dddnnn

XFA REGSWAP X | sss.dddnnn

Use the XFA REGMOVE (REGister MOVE) function (XF 013) to move a
block of registers, or use the XFA REGSWAP (REGister SWAP) function (XF
014) to swap a block of registers, sss is the beginning of the source block,
ddd is the beginning of the destination block and nnn is the number of
registers in the block.

In the casc of REGMOVE, the contents of the destination block is lost. In
the case of REGSWAP, the contents of the destination block is swapped
with the contents of the source block.

If nnn is 0, a block length of one register is assumed.

Example:

Register Data
00 1.4500
01 3.6000
02 7.8000
a3 9.0000
04 11.2000
05 (.5560

To swap registers 01 and 02 with 04 and 05, placc a control number of
1.004002 in the X register. sss is 001, ddd is 004 and nnn is 002, Then
cxceute XFA REGSWAP. The registers now contain:

Register Data
00 1.4500
01 11.2000
02 0.5560
03 9.0040
04 3.6000

05 7.8000

48 Section 3: The Extended Functions

Flag operations

XEA RCLFLAG

XFA STOFLAG| X | flag status data

XFA STOFLAG| X | bbee Y | flag status data

The XFA RCLFLAG function (XF 012) recalls status of flags 00-43 to the X
register as ALPHA data to be stored for later use. The display will be
unintelligible. The status of flags 00-43 may later be restored using the
XFA STOFLAG function (XF 017). If the X register contains flag status
data, all flags are restored. If the Y register contains flag status data, only
flags bb through ee are restored.

Since the status of these flags determine display format etc., you may store
the flag status at the beginsing of a program, let the program change the
display format and restore the previous display format using STOFLAG at
the end of the program.

Example:
LBL "MYPRGM" The label of your program
XF
12 The XFA RCLFLAG function
STO nn Store in any main memory data register.
Your program is now frce to change
. display format, trig. mode, etc.
RCL mn The flag status is recalled.
XF
17 The XFA STOFLAG function restores display format,

trig. mode, ete.

XFA X<>F

The XEA X<>F (X exchange with Flags) function (XF 018) exchanges the
status of user flags 0-7 with a decimal number from 0 through 255 in the X
register. In effect this lets you have many sets of 8 flags stored in
different main memory data registers. You can take one sct out, work on it
and then store it again,

Section 3: The Extended Functions 49

You may also use the relationship between the flag status and the number
in the X register directly for binary-decimal conversions, etc. This is done
by interpreting user flags 0-7 as an 8-bit binary number*. A flag that is
clear is a binary 0, a flag that is set is a binary 1. Recall that 8 bits arc
the same as a byte, and that a byte may take the decimal values 0 through
255.

Therefore, each possible sct/clear combination of flags 0-7 corresponds to a
decimal value 0-255. Each flag has a "weight”, and corresponding number is
calculated by simply adding up the "weight” of all the flags that are set.
the "weight” of cach flag is shown below:

Flag 7 6 5 4 3 2 1 ¢

"Weight" 128 64 32 16 8 4 2 1
Fig. 6, The "weight” of flags 0-7

Example:

Flags set binary number decimal value

3 00001000 8

0,4,6 01010001 64+16+1 = 81

14,567 11110010 128+64+32+16+2 = 242

See appendix 1) for an explanation of binary and hexadecimal numbers.

50 Section 3: The Extended Functions

User mode operations

XFA PASN | X | keycode ALPHA | function name

XFA PASN | X | keycode ALPHA | program name

XFA PASN | X | keycode ALPHA | (empty)

To make key assignments from a program, usc the XFA PASN
(Programmable ASsigNment) function (XF 008). Place the name of the
function or program in the ALPHA register and the keycode in the X
register. The keycodes are the same as used with the built-in ASN function
and in figure 7 below. Note that a shifted key is represented by a negative
keycode.

If the ALPHA register is clear, any assignment to the key specified is
cleared.

Section 3: The Extended Funclicns 51

esfaxYusyinfus
C Y Y Y
) (4 (4
Y 3 Y 708 T
_Juzfeayerfen
C3 Y Y
l\@,,! (_“_3__1'
-

52} (23] [55)
'S 3

—

61 ! 63 1
I 7]

73]
9

‘e S s B sa—

811 EEIR 8L]

! -

Fig. 7, User keycodes

XFA CLKEYS

Use the XFA CLKEYS (CLear KEY assignmentS) function (XF 004) to delete
all key assignments,

52 Section 3: The Extended Functions

ALPHA string operations

XFA ALENG

To find the length of the string in the ALPHA register, simply execute the
XFA ALENG (Alpha LENGth) function (XF 000). The length is returned to
the X register.

XFA AROT X | no. of characters

To rotate the contents of the ALPHA register, use the XFA AROT (Alpha
ROTate) function (XF 002). Place a positive number in the X register to
rotate left, a negative to rotate right.

XFA ATOX ALPHA | character(s)

The XFA ATOX (Alpha TO X register) function (XF 003) converts the
leftmost character in the ALPHA register to a character code. The
characters and the corresponding code is shown below in table 4. The
character is deleted from the ALPHA register and the character code is
entered into the X register.

XFA. XTOA X | character code

The XFA XTOA (X register TO Alpha) function (XF 019) is the invcrse of
the ATOX function. It takes a character code from the X register and
appends the corresponding character to the right end of the ALPHA
register.

e

-+~

Code Char.

00
a1
04
05
06
12
13
29
32
33
34
35
36
37
38
39
40
41
42
43

O o N v Y o I B ol PO S v N

~

XFA

ANUM

Code

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Table 4, Character codes

ALPHA

Char.

m

C7 ™M okg M oeg XY

= I vin i e . B i S B of

LA

Section 3: The Extended Functions

Code

64
65
66
o7
68
69
70
g}
72
73
74
75
76
77
78
79
80
81
82
33

Char.

T
'

L

PR S
< ~

[
Al

RPN S e VI

4

TrEe o nR o

string

Code
84
85
86
87
88
89
%0
91
92
93
94
95
96
g7
98
99
100
101
126
127

53

The XFA ANUM (Alpha data to NUMerical valuc) function (XF 001)
converts a string in the ALPHA register to 4 numerical value in the X
register. Note that the display format (user flags 28 and 29) should be the

same as when the value was copied into the ALPHA register.

XFA

POSA

XFA

POSA

X

X

alpha string

character code

Use the XFA POSA (POSition in Alpha register) function (XF 010) to find
the first (leftmost) occurrence of a character or string in the ALPHA
register. The character or string to be found may be specified in the X
register as either a string or a character code. Character codes arc shown
above in table 4.

54 Section 3: The Extended Functions

The position of the string or character is returned to the X register.
Positions in the ALPHA register are counted from left to right, starting
with 0 at the left end. If the string is not found, -1 is returned.

Example:

You have a text string "FX=3.5643" in the ALPHA register. You dccide that
it would look much better if you put a parenthesis before -and after the

"X":

Keystrokes: Display:

ALPHAFX =3

5643 FX=3.5643_

ALPHA 0.0000

88 88 _ The character code of the "X".
XEQ XFA POSA 1.0000 The X stands at position no. 1.
XEQ XFA AROT 1.0000 Rotate the X to the left end.
ALPHA X =3.5643F The contents of the ALPHA
ALPHA register,

40 40 The character code of "("
XEQ XFAXTOA 40.0000 The “(" is appended.

1 AROT 1.0000 Rotate the X fo the right end.
ALPHA =3.5643F(X The contents of the ALPHA
ALPHA register.

41 41 The character code of ")"
XEQ XFAXTOA 41.0000 The ")" 1s appended.

-4 AROT -4.0000 Rotate back.

XEQ AVIEW F(X)=3.5643 Looks much better, doesn’t it?
XEQ XFA ALENG 11.0000 The string is 11 characters long,.
XEQ XFA ANUM 3.5643 The number in the ALPHA

register.

Section 3: The Extended Functions 115

Test functions

XFA X=NN? XFA X=NN?
XFA X<NN? XFA X< =NN?
XFA X>NN? XFA X>=NN?

The HEPAX module contains six tests that compare the value in the X
register with a data register specified by the Y register. The contents of
the Y register must be the address of an existent main memory data
register (0 to 319, depending on SIZE), or a stack register (letters XY, Z
TorL).

Function name Function no.
X=NN? 020
X#=NN? 021
X<NN? 022
X< =NN? 023
X>NN? 024
X>=NN? 025

Table 5, Indirect test XF numbers

Miscellaneous operations

XFA GETKEY

When an XFA GETKEY function (XF 006) appears in a FOCAL program, the
HP-41 haits cxccution and waits for a key to be pressed. The keycode of
the key pressed is placed in the X register. The keycodes are shown in
table 4 above.

I

4
If no key is pressed within approx. 10 seconds, -)\/ is returned to the X
register and the program continues.

Note that the toggle keys at the top of the displays have keycodes 1,23
and 4, starting from the left. If you press the shift key, keycode 31 is
returned to the X register.

56 Section 3: The Extended Functions

XFA || GETKEYX X | sss

When an XFA GETKEYX function (XF 007) appears in a FOCAL program,
the HP-41 halts program execution and waits for a key to be pressed.

The number in the X register indicates the wait period (0 - 99.9 seconds).

If a numecrical key is pressed, a character code is returned to the X
register. The keycode (same as with GETKEY) is rcturned to the Y register.

XFA PCLPS ALPHA | program name

XFA PCLFPS ALPHA | (empty)

Use the XFA PCLPS (Programmable Clear Program$) function (XF 009) to
delete a program and all the following from main memory. Place the name
of the first program to be deleted in the ALPHA register and execute
PCLPS. If the ALPHA register is empty, the current program and all
following programs are deleted.

Note that this function is programmable, as opposed to the built-in CLP
function.

Part I1:

Advanced Use

Section 4:

The HEPAX file system

The HEPAX file system allocates memory for the files you create. You do
not need to understand the inner workings of the HEPAX file system to use
the HEPAX modules — the file system is fully automatic and is normally
hidden from the user.

This scction is therefore not compulsory reading - but some knowledge of
how the file system works might be helpful for advanced use of the HEPAX
modules.

HEPAX memory

The HEPAX modules fit into the HP-41 ROM address space. Therefore,
HEPAX memory is organized in words and blocks just like HP-41 ROM
memory. Refer to section 7: HP-41 internal structure for a detailed
description of HP-41 ROM structure.

The memory of all computers consists of a number of bits. One bit is a
binary digit, and can take only the values 0 and i. A bit is thus very much
like a flag — it may be set or clear. The basic unit of HEPAX memory is a
HEPAX word, consisting of 10 bits. Remember that this is different from
HP-41 main memory and extended memory — the basic unit of main and
extended memory is a byte, consisting of 8 bits.

4096 words together comprise a HEPAX block. In each block, 144 words are
used by the HP-41 and 36 words arc used by the HEPAX file system for
housekeeping. This leaves 3916 words available to the uscr.

The HEPAX file types

The HEPAX file system uses program, data, text, key assignments and
rwritc-all' files. All files comtain a header that takes up 14 words of
HEPAX memory.

Section 4: The HEPAX file system 50

Programs in HEPAX memory

Programs in HEPAX memory are dircetly executable copics of programs from
main memory. Bach program byte is copied to one HEPAX word.

The size of programs in HEPAX memory is given in HEPAX program
registers — each consisting of seven HEPAX words. Thus, one register of
program in main memory will take up onc HEPAX program register.

Data files

A data file is a collection of HEPAX data registers. Each register will hold
onc number or 6 characters of text - just Iike a main memory data
regisier.

Recall that onc register in main mcmory s seven bytes = 7 x 8 bits = 56
bits. Six HEPAX words is 6 x 10 bits = 60 bits. You sec that six HEPAX
words is enough to store 7 bytes. To get the most from HEPAX memory, we
therefore store data in HEPAX data regislers that consist of only six
words.

Note the difference between the size of a HEPAX program register (7
words) and a HEPAX data register (6 words).

Text files

A text file (also known as an ASCII file) is a collection of text lines. Each
character in a text file takes up one word of HEPAX memory. In addition
to this, one extra word is used for each text line (record) and one word is
used to mark the end of the file.

Since text conmsists of individual characters, we must store each character
in one HEPAX word. This means that we cannot pack one register (7 bytes
= 7 characters) into just 6 words as with data files ~ we need 7 words.
That’s why the size of HEPAX text files is given in seven-word HEPAX
program registers.

Key assignment and "Write-all" files

Recall that HP-41 system key assignments are stored in a special part of
HP-41 main memory. They always take up one register for every second
assignment. Since a key assignment file is simply a copy of these registers
it can be packed just like a data file.

60 Section 4: The HEPAX file system

When saving the contents of entire calculator main memory, you save the
contents of all 320 registers of main memory and the 16 status registers
(the stack, the ALPHA rcgister, ctc.). These registers can also be packed
like main memory data registers.

Since both key assignment and "write-all" files can be packed like data
files, the size of these files is given in HEPAX data registers.

Programs in HEPAX and XROM numbers

The HP-41 uses XROM numbecrs to find functions and programs in peripheral
units. An XROM number consists of two parts, an XROM ID no. and a
function no. The HEPAX file system automatically allocates XROM 1D
numbers to each block of HEPAX memory, and the HP-41 numbers the
functions consecutively from 00 onwards.

Because the design of the HP-41 did not foresee the development of
advanced peripherals like the HEPAX module, the HP-41 may get confused
when you delete a program from HEPAX memory.

Look at the below example. The HP-41 remembers that last time it looked
for the SORT program it was "Program no. 4 in external ROM no. 11", We
now delete the "INPUT" program from HEPAX memory:

hefore: after:
XROM no. Nane XROM no. Name
11,03 INPUT —> lost r“"w?44~> 11,G3 SORT

11,04 SORT > 11,04 PRINT
11,05 PRINT

The HP-41 is confused! Next time you press a key with "SORT" assigned, or
execute an XROM "SORT" line in a program in main memory, the HP-41
looks up the fourth program in external ROM no. 11 - now the PRINT
program.

Therefore, key assignments might change to the next program. Programs in
main memory have the same problem — but if you convert all XROM lincs
to XEQ lines, the HP-41 will look for programs by name and not by number
- thus overcoming the problem. The procedure for this conversion is given
in the subsection "Calling programs in HEPAX memory from main memory”
in section 1.

Section 4: The HEPAX file system 61

The structure of the HEPAX file system

The HEPAX file chain

The HEPAX file system links all files together in the HEPAX file chain.
The HEPDIR function displays files in the sequence of the file chain.

The files in the file chain are sorted in three groups:
1. The first group consists of all the file typcs that may span over
several blocks (i.e. data, key assignment and "write-all” files).
2. The second group is programs in HEPAX memory.,
3. The third group is HEPAX text files.

When you insert HEPAX memory, it is added to the file system the next
time you turn the calculator ON. If several modules are mstalled at the
same time, they enter the file chain with the module in the Jowest
numbered port first, the module in the second lowest port number second,
ete.

If no file system exist in any HEPAX module, you'll get the H:NO FILESYS
error message the first time you cxccute a HEPAX file system function.
This may have four causes:

1. You have inserted another module or peripheral, resulting in an
illegal configuration (see “Installing and removing HEPAX modules”).
Remove a module or peripheral.

2. You have inserted a HEPAX module while the HP-41 was on, Press
the ON key twice to turn the calculator off and back on,

3. You attempted to exccutc a file system function immediately afier
clearing cntire main memory with ON/backarrow (MEMQORY LOST).
Press the ON key twice to turn the caleulator off and back on,

4. You have allocated all HEPAX memory for other purposes (sce below).
If you want to use the file system, you must free some of the
HEPAX memory allocated for other usc.

If you remove a HEPAX module in the middle of the file chain, the chain
will be broken at this module. This means that all files in the rcmoved
module and in any modules further down the file chain will be lost. Refer
to the section “Installing and removing HEPAX modules” for explicit rules
for removing HEPAX modules.

Never use READROM, COPYROM or CLRAM to read, copy or clear a block
in the file system. Don’t write protect a block in the filc system either.
This would break the file chain with the above COnscquences.

62 Section 4: The HEPAX file system

Actual storage of HEPAX files

The actual (physical) storage of HEPAX files is somewhat different from the
order of the file chain.

Within each block, files are stored in the following order:
1. Programs in HEPAX memory,
2. HEPAX text files,
3. Other file types.

There are only 64 entry points in the Function Address Table (FAT). If the
current block already contains 64 programs, you will get the H:FAT FULL
message when attempting to save the 65th program. If you create a
"dummy” data file that fills up that block, the file system will automatically
move on to the next block — with room for another 64 entries.

Maximum file sizes

As mentioned at the beginning of this section, HEPAX memory is divided
into blocks of approx. 4000 words.

The continuous structure of program and text files means that the entire
file must be stored in the same block. This gives 2 maximum text files size
of 3916 words, or 557 HEPAX program rcgisters. Programs in HEPAX
memory will not normally be affected — main memory already limits them to
319 registers.

Data, key assignment and ‘“write-all" files are inherently divided into
registers. This enables them to be split between several blocks of HEPAX
memory. The maximum size of these files is only limited by available
memory — with 32000 bytes of HEPAX memory, you can create a data file
of up to 5,222 registers.

Note that HEPROOM gives you the total available space in the HEPAX file
system (given in HEPAX data registers). Naturally, this space may be
divided between several HEPAX blocks, together adding up to the number
returned by HEPROOM and HEPDIR. In the below example, there is a bit of
space available in both blocks.

Section 4: The HEPAX file systery 63

available available
data file
text file
text file program
program in
main memory
HEPAX block 1 HEPAX block 2

Fig. 8, Example of files in HEPAX memory

The shown program in main memory is not larger than the total available
space in the HEPAX file system. It is, however, larger than any continuous
space available. Therefore, it will not fit into the HEPAX file system.

Resizing files

When you use the "HRESZFL" program to resize a data or text file, what
happens is that a new file of the desired length is crcated, the data in the
old file is transferred, and the old file is deleted. Therefore, there must be
enough HEPAX memory left to hold both the old and the new file at the
same time,

Allocating HEPAX memory for other purposes

Normally, you would use all available HEPAX memory for the HEPAX file
system. However, it is possible to allocate whole 4K blocks of memory for
other purposes.

Three words in each block determine if the block is part of the file
system. To take a block out of the file system, use the HEXEDIT function
to change the word at address xFF3 to 300h, and write 000h at addresses
XFE7 and xFE8. To put a block back in the file system, usc CLRAM to
clear the block and press the ON key twice to turn the calculator off and
back on.

Each time you have altered the amount of memory allocated for other
purposes, you should use the HEPDIR function to restore the HEPAX file
chain.

64 Section 4: The HEPAX file system

Note that any block(s) used for other purposes should always be the last
block(s) of HEPAX memory (with the highest address).

If you insert more HEPAX memory at higher addresses, move the contents
of the block(s) used for other purposes to the new, last address.

Example:

You have a Standard HEPAX module in port 2 (HEPAX memory in blocks 8
and 9) and want to use one block for other purposes. Use block 9.

You now inscrt a HEPAX memory module in port 4. You now have HEPAX
memory in blocks 8, 9, E and F. You must now:
1. Copy the contents of block 9 to block F:
9 ENTER 15 COPYROM.
2. Clear block 9:
9 ALPHA O K ALPHA CLRAM
3. Turn the calculator off and back on.

Section 5:

The Advanced functions

The HEPAX module contains a large number of advanced functions for
handling ROM images, coding and decoding and for M-code programming.

Handling ROM images

Recall that HEPAX memory is divided into blocks of 4096 words. Each block
equals one normal application module (like the MATH or STAT modules).
The application modules arc ROM (Read-Only Memory), and because a block
of HEPAX memory is very similar to these ROMs we will refer to a block
of HEPAX memory as a ROM image.

Transterring ROM images to and from mass storage

Place the file name of the ROM image(s) in the ALPHA register and a
control number of the form bb.ee in the X register. bb is the first block
address to be read/written and ce is the last block. If ee is zero, one block
is transferred.

Execute WRTROM to write a number of ROM images to mass storage or
READROM to read a number of ROM images from mass storage. If you get
a CHKSUM ERR message, this means that the data on the mass storage
medium has been disrupted. You should check the contents of the retrieved
blocks carefully.

If the ALPHA register is empty, the current position on the mass storage
media is used. In this way it is possible to write many ROM images into
one file and to find one ROM image in a larger file.

Don’t use the READROM or WRTROM functions to read or write blocks
that are used by the HEPAX file system. Files under the file system should
be transferred using HREADFIL. and HWRTFL.

The HP-IL disc drive is fully supported by WRTROM and READROM.,

66 Section 5: The Advanced functions

Write protecting a ROM image

To toggle the write protection status of a ROM image, use the RAMTOG
function. Place the block address in the X register and execute RAMTOG. If
write prolection was on, it is turned off and vice versa. You are informed
of the new status of the block.

Never write protect a block that is part of the HEPAX file system.

The following messages may occur when using RAMTOG:
x:WRT PRTCTED block x is write protected.
x:NOT PRTCTED block x is not write protected.

x:NOT RAM block x is not RAM.
x:RAM ERROR block x is RAM but cannot be write protected.
NONEXISTENT a block address above 15 has been specified.

Copying and clearing ROM images

Use the COPYROM function to copy a whole 4K block of system memory to
a ROM image in HEPAX memory. Place the address of block to be copied
from in the Y register and the address of the ROM image to be copied to
in the X register. Then exccute COPYROM.

The following messages may occur when block copying:
DATA ERROR You attempted to copy to block 0.
NONEXISTENT You tricd to copy to or from block 16 or above.

Use the CLRAM (CLear RAM) function to clear a whole ROM image. Place
"OK" in the ALPHA register, enter the block address of the ROM image in
decimal in the X register, and execute CLRAM.

The following messages may occur when block clearing:

DATA ERROR The text "OK" is not in the ALPHA register, or you
attempted to clear block 0.

NONEXISTENT You tricd to clear block 16 or above.

Section 5: The Advanced functions 67

The Disassembler

The DISASM (DISASseMble m-code) function disassembles HP-41 M-code. It
may be invoked either from the keyboard or from a program. It must be
supplied with a begin and an cnd address.

If the disassembler is invoked from the keyboard, it will prompt for start
and stop addresses. You may press ENTER® to take the addresses from the
L register as a control word of the form 000000bbbbeeee (bbbb is beginning,
ccee is end). The control word is a hexadecimal number, and may be coded
with the CODE function. If the disassembler is invoked from a program,
both addresses are also taken from the L register.

If a printer is connected, the disassembling is printed instead of displayed.
Press R/S to stop disassembling at any point.

i you don’t have a printer, you will probably want to usc thc DISSST
program shown below to disassemble HP-41 M-code one line at a time.
Enter the start and stop addresses at the prompts and see the furst
instruction. Press R/S to see the next line.

Program listing;

01 LBL "DISSST"

02 "BEGIN: " Enter start address
03 4

04 HPROMPT

05 "END: " Entcr stop address
0o 4

07 HPROMPT

08 CLA

09 4

10 DECODYX

11 RDN

12 LASTX

13 DECODYX

14 CODE

15 SIGN

16 SF 01

17 LBLO1

18 DISASEM Disassemble one line
19 STOP Stop to view the line
20 SF 4

21 GTC (01

22 END

68 Section : The Advanced functions

The HEPAX ROM cannot be disassembled (you will get the HEPAX ROM
message).

The disassembling depends on the status of flags 0-4. If flag 1 is set, only
one address is disassembled at a time, If flag O is set, the data is displayed
in special formats, depending on flag 2 and 3.

Flag 2 Flag 3 Display format
clear clear Hex only
clear set Display ROM data
set clear ASCII data
set set Hex only

Table 6, Qutput formats of the disassembler
The second word of a LDI S&X instruction is also disassembled according to
flags 2 and 3 (if both are clear, the data is shown in decimal).

If flag 4 is set, the disassembler does not look back before it starts dis-
assembling.

Section 5: The Advanced functions 69

The Hexadecimal editor

This function enables you to edit HEPAX memory word by word. The
hexadecimal editor redefines the keyboard as shown in figure 9 below.

A) ¥}

MR - Y

=xJ=xpuaxfes
o O
= =

O =5 =
F)
e e
= s o e
ISRl =R=)

@ B E W LETT-PACKARD 41

Fig. 9, The HEXEDIT keyboard

When invoked from the keyboard, HEXEDIT prompts for a start address.
Press ENTER to take the address from the rightmost 4 nybbles of the X
register. When invoked from a program, the start address is always taken
from the X register in this form,

70 Section 5: The Advanced functions

The display looks as follows:
xabc def where x is the block, abc is the address, and def is the

current contents. If the block contains several banks, the flag annunciators
show which bank you are in.

Simple editing

At the displayed address, you may enter a new code using the numeric keys
and/or A-F. If you wish to enter the code 000h, simply press ENTERT®.

To move one address forward, press SST. To move one address backwards,
press BST (the TAN key). Pressing SHIFT causes the function of these two
keys to be reversed. Note that SHIFT is in effect until you press the shilt
key again.

To go to another address, press the backarrow once. This returns you to
the address prompt. If you press the backarrow again, you lecave the
hexadecimal editor. If the editor was invoked from a FOCAL program, the
program will continue. If shilt was on when you left the editor, a running
FOCAL program will be stopped.

Clearing HEPAX memory

As described above, you may use the ENTER® key to clear the contents of
the current address.

You can also use the CLR key. This key clears the contents of HEPAX
memory from the current address and forwards or backwards. You are
prompted for an address in the current block to clear to.

You may also clear a number of addresses from the current address and
forward. Press CLR and then press the decimal point. This changes the
display to #_ _ . Enter the number of addresses to be cleared in
hexadecimal.

Inserting and deleting

To delete a number of words and pull the remaining code up, use the DEL
(DELete) key. When you press DEL you are prompted for an address in the
current block to be the last to be deleted and then for the LIMIT - the
last address to be pulled into the deleted area.

Section 5: The Advanced functions 71

Just like with CLR, yon may specify a number of addresses from the
current address and forward. Press the decimal point when prompted for the
last address to be deleted. The prompt changes to # . Enter the
number of addresses to be deleted.

The complementary of DEL is the INS (INSert) key. Use INS to insert NOPs
at the current address and forward or backward, and push the contents of
the next addresses further down or up. You are prompted for an address in
the current block to be the last to be inserted and then for the LIMIT -
the first address that is not changed (pushed down or up).

Like with DEL, you can specify a number of NOPs to be inserted. When
prompted for the last address to be deleted, press the decimal point and
enter the number of NOPs to be inserted.

Copying code

Use the CPY key to copy from the current address and forwards or
backwards to anothcr arca. You arc prompted for an address in the current
block to be the last to be copicd and then for the address to copy to.

The current block is suggested ~ press backarrow once if you nced to enter
an address in another block. Note that you cannot copy code to an arca
that crosses a block boundary.

You may specify a number of addresses to be copicd like with INS and DEL
above,

Special functions

HEXEDIT normally works in low-power mode to preserve power. This means
that the CPU stops when waiting for input {rom the keyboard.

This could cause problems when working with the intcrrupt locations. In
this case, you cannot allow the CPU to sample the intcrrupt locations until
you arc donme. For this reason, the editor contains a special high-power
mode that keeps the CPU running within the HEXEDIT function while
waiting for input. Press H/L to toggle between power modes. Annunciator
0 will be on when you are in high-power mode.

If you are working with a bankswitched RAM device, you may press -BK or
+BK to change to the next bank. If there arc several banks, the display
annunciators will shown which bank you arc in.

72 Section 5: The Advanced functions

Messages from HEXEDIT

If you hold a key for too long, it will be NULted. The message HEPAX
ROM mecans that you are attempting o edit the HEPAX ROM. I you
attempt to copy, insert, delete cte. across block boundaries, you will get
DATA ERROR.

Example:

This example assumes that you have HEPAX memory in blocks E and F. We
start by taking block F out of the file system.

Keystrokes: Display:

XEQ HEXEDIT ~ ADR:

FFF3 FFF3100 HEXEDIT prompts you to change
the contents

300 FFF4000 Address FFF3 is changed

<- ADR: Go to another address

FFE7 FFETO0E _ Clear the words at addresses

000 FFE8 (000 FFE7 and FFES

000 FFES 091

<- Go to another address

F100 F1003B9

CLEAR CLEAR->F___ CLEAR is the RDN key.

200 F100 000 F100 through F200 is cleared

012 F101 000 _ Enter some code.

123 F102000

234 F103000

345 F104 000 _

The HEPAX memory now contains:

Address Code

F100 012

F101 123

F102 234

F103 345

F104 000

Now we’ll copy, insert and delete some code:

Keystrokes: Display:

BST BST

BST BST Fl00012 __ _
COFPY COPY->F__
. COPY->#__
004 TO:F___
104 F100012___
The HEPAX memory now contains;
Address Code

F100 012

F101 123

F102 234

F103 345

F104 012

F105 123

F106 234

F107 345

F108 (00
Keystrokes: ‘Display:

SST SST

SST SST F104 012
INS INSERT->F_
: INSERT->#__ _
1 LIMIT:F__
107 F104000
The HEPAX memory now contains:
Address Code

F100 012

Fi01 123

F102 234

F103 345

F104 000

F105 012

F106 123

F107 234

F1068 000

Section 5: The Advanced functions

BST is the TAN key.
COPY is the RCL key.
Copy a number of words.
Copy 4 words

to address F104,

S8T is the SST key.

INS is the COS key.

Insert a number of words.
Insert one word and move code
down until address F107.

Since F107 was the limit, word at
F108 could not be moved.
Therefore, the previous word at
address F107 was lost.

73

74 Section 5: The Advanced functions

Keystrokes: Display:

BST F103345 BST is the TAN key.

DEL DELETE->F___ DELis the SIN key.

104 LIMIT:F_ Delete down to address F104 and
106 F103012 move code up until address F106.
The HEPAX memory now contains:

Address Code

F100 012

Fi01 123

F102 234

F103 012

F104 123

F105 0

F106 000

F107 234 Since F106 was the limit, the
F108 000 words at ¥107 and down were not

moved.

Copying and clearing parts of ROM images

You may also use the COPYROM function to copy a part of any system
memory block to HEPAX memory.

Place a hexadecimal control word of the form 00xbbbxcecyddd in the X
register (use the CODE function). x is the block to copy from, bbb is the
first address to be copied, eee is the last address to be copied, y is the
block to copy to and ddd is the address to copy to. Then exccute the
COPYROM function.

The following message may occur:
DATA ERROR You tried to copy from more than one block in one
operation, bbb > ece or you tried to copy to block 0.

The CLRAM (CLear RAM) function may also be used on part of a ROM
image, i.e. to clear any part of HEPAX memory.

Place a control word of the form 000000xbbbxeee in the X register (use the
CODE function). x is the block to delete in, bbb is the first address to be
cleared and eee is the last address to be cleared. Then execute the
CLRAM function.

The following message may occur:
DATA ERROR You tried to clear past a block boundary, bbb > eee or
you tried to clear in block 0.

Section 5: The Advanced functions 75

Coding and decoding

Cading

The CODE functions allows you to enter data in hexadecimal into all 7
bytes of the X register. This function takes the last 14 characters of the
ALPHA register as hexadecimal digits and places the code in the X register.
If the ALPHA register contains less than 14 characters, the number in the
X register is right aligned.

Use this function 1o create the control words needed for COPYROM,
CLRAM, etc.

For example, if you necd the to copy the contents of system memory
addresses 8200 through 84FF to addresses 9400 through 96FF, you need the
control word 00820084FF9400h in the X register for the COPYROM function.
Simply press ALPHA 820084 F F 94 0 0 ALPHA XEQ CODE XEQ
COPYROM.

Decoding

DECODE is the complementary of CODE. Use DECODE to decode the
contents of the X register and place the corresponding 14-character string
i the ALPHA register. If DECODE is executed from the keyboard, the
ALPHA string is also AVIEWed. If a printer is connected, the ALPHA string
is printed.

Use DECODYX to decode Y by X nybbles (one nybble = 4 bits = 1 hex
digit). Takes the rightmost X nybbles of the Y register and appends them
to the ALPHA register as characters. If the number in the X register is
greater thao 14, DATA ERROR is displayed.

In the above example, the X register contains 00820084FF9400h (The display
will be unintelligible). Now, if you want to know the address you are
copying to, usc DECODYX to decode the four rightmost nybbles: 4 XEQ
DECODYX and sce "9400" appended to the previous contents of the ALPHA
register.

76 - Section 5: The Advanced functions

Hexadecimal prompting

The HPROMPT (Hexadecimal PROMPT) function can be very useful in your
own programs. It prompts for a specific number of hexadecimal digits and
allows the contents of the ALPHA register to be shown at the same time.
Only as much of the ALPHA register as the number of digits allow is shown
(the rightmost part). Only hexadecimal digits can be entercd. The
hexadecimal number is coded and returned to the X register.

Place the number of hexadecimal digits to be entered in the X register and
a prompt string in the ALPHA register, then exccute HPROMPT. Enter the
hexadecimal number and press R/S. If you press shift before R/S, any
running FOCAL program will be stopped.

Example:

The ALPHA register contains the text "ENDADR: " and the X rcgister
contains the number 4. When you execute HPROMPT, the prompt would look
like this:

ENDADR _ __

Section 6:

The HEPAX multi-function

The sccond muli-function of the HEPAX module is the HEPAX
multifunction. The subfunctions of HEPAX are various support functions
that are not needed for normal use of the HEPAX module.

When exccuting the HEPAX function you are prompted for a 3-digit number,
when executing HEPAXA, press ALPHA "function name” ALPHA. All
subfunction names and numbers are listed on the inside of the front cover,

Advanced file system functions

The BCAT (Block CATalog, HEPAX 002) function lists the contents of cach
ROM block from block 3 to block F (HP-41CX) or block 5 to F (HP-
41C/CV). '

Binary functions
The NOT (HEPAX 008) function replaces X with its complement.

The AND (HEPAX (01) function performs a logical X and Y and places the
result in the X register.

The OR (HEPAX (09) function performs a logical X or Y and places the
result in the X register.

The XOR (HEPAX 012) function performs a logical X exclusive-or Y and
places the resull in the X register.

The BCD-BIN (HEPAX 003) function converts a decimal valuc in the X
register to binary (right aligned). The BIN-BCD (HEPAX 004) function
converts the hexadecimal code of the 4 rightmost digits in the X register
1o the corresponding decimal number,

The ROTYX (HEPAX 010) function rotates the Y register by X nybbles,
Positive X means right, negative feft. The SHIFTYX (HEPAX 011) function
shifts the Y register by X bit(s). Positive X means right, negative left.

The X+Y (HEPAX 013) function performs a bitwise addition of the X and Y
register and places the result in the X register. The Y-X (HEPAX (15)
function subtracts the contents of the X register from the contents of the
Y register and places the result in the X register.

78 Section 6: The HEPAX multi-function

Miscellaneous functions

The CTRAST (display ConTRAST, HEPAX 005} function scts display contrast
on the newer HP-41s (the Hallnuts, known by a black rim on the display).
Place a number from 0 to 15 in the X register to sct the contrast. 5 is
default. This function has no effect on older calculators.

The DELETE (HEPAX 006} and INSERT (HEPAX 007) functions work just
like the DEL and INS keys of the hexadecimal editor. They both nced a
control word of the form 00lllibbbbecee in the X register. DELETE dcletes
from address bbbb to eece and pulls the remaining code (until 1) up.

INSERT 1mnserts NOPs from address bbbb to eece and pushes the remaining
code down until 111

The X-$ (X register to text, HEPAX 014) function converts the contents of
the X register to an alpha string, loosing the first nybble. This allows you
to store all kinds of data in main memory data registers, without the
"normalization" that normally occurs when the HP-41 tries to makc a
number ont of your data.

Subject index

"SK"modules 10
+BK keyin HEXEDIT 71
-BK key in HEXEDIT 71
Actual storage of HEPAX files. 62
Advanced functions. L. 65
ALENGfunction. 52
Allocating HEPAX memory for other
PUIPOSES . .+ v v v v v v e e s 63
ALPHA string operations 52
AND function 77
ANUM function 53
Appending characters 39
Appendingrecords L. L. 38
Applicationmodules . T 65
AROT function 52
ASCIifile 27
Assigned program 20,23
ATOX function 52
Banks. 70
BCAT function. 77
BCD-BIN function 77
BIN-BCD function L
Binarydigit 58
Binary functions 7
Binary-decimal conversion. 49
Bit 58
Bitwise addition T
Bitwise subtraction T
BlockCatalog i
Block
ofdataregisters. 35
of registers 47
of HEPAX memory 58
Byte 38
Calling programs in HEPAX
memory {rom main memory. 26
Changing filesize. 29
Character
codes 33
number. L. L 32
operations” L. 39
pointer. 32
Clearing
dataandtextfiles 31
partsof ROMimages 4
HEPAX memory 70
ROMimages 66
CLKEYSfunction 51
CLRAM function. 61, 66, 70
CLRGXfunction. 46
CODEfunction 5
Coding, 7
Complement. T
Configurations 8
Controlword. 5

Copying
code L
parts of ROMimages ke
ROMimages. 6
text toALPHA. 40
COPYROM function 61, 66
CPY keyin HEXEDIT. n
Creatingdatafiles 27
Creatingtextfiles 28
CIRAST function. 8
Currentfile. 16
Datafile 27,59
operations 34
DECODE function 75
Decoding. 75
Decreasing filesize 29
DEL keyin HEXEDIT. 70
DELETE function. 78
Deleting characters 39
Deletingrecords. 38
DiSASMfunction 67
Disassembling. 67
ASClldata 68
Display ROM data 68
Hexonly, 68
Linebyline 67
Output formats. 68
Special formats. 68
DISSST program 67
Dummydatafile. 62
End-offile mark. . . , 28
Entrypoints 62
File 16
chain L L L. 63
name 16
system oL ... L. L 58
types . .. oL L L Lo oL L 17,58
Finding characters 53
Flag "weight™ 49
Function Address Table 62
GETKEY function. 55
GETKEYX function. 56
H/Lkeyin HEXEDIT 71
Halfnuts 8
Handling ROM images. _ . . 65
HAPPCHR function ki
HAPPREC function k4
HARCLREC function 40
HASROOM function 29
HCLFL function. 31
HCRFLAS function 28
HCRFLD function. 27
HDELCHR function., 39
HDELREC function. 8

Meader. 16, 27, 31

80 Subject index

HEPAX
and HP-IL 9
plock., 58
dataregister 27,59
filtechain 61
filesystem 58
filetypes 58
multi-fonction. o L. 77
program registers 27
word.o 58
HEPDIR function 17
HEPDIRX function. 18
HEPROOM function 18, 62
Hexadecimateditor. 69
Hexadecimal prompting 76
HEXEDIT function. 69
HFLSIZE function - 18
HGETA function. 42
HGETK function. 42
HGETR function. 34,35
HGETREC function 40
HGETRX function 35
HGETX functien. 36
HINSCHR function. 39
HINSREC function. a8
HP-ILand HEPAX. 9
HPOSIL function 39
HPROMPT functton 76
HPURFLfunction 19
HRCLPT function 34
HRCLPTA function 19, 34
HREADFLfunction 20
HRENAME function 19
HRUSZFL program 29
HSAVEA function 42
HSAVEK function 42
HSAVER functionn M
HSAVERX function 35
HSAVEX function 36
HSECfunction. 21
HSEKPT function 33
HSEKPTA function. 33
HUNSEC{unction 21
HWRTFL function 20
Identifying HEPAX modules. 10
lltegal configurations 9, 61
Increasing filesize 29
Indirecttests. 55
INSkeyin HEXEDIT. T
INSERT function. 78
Inserting characters. 39
Insertingrecords 38
Inserting and deleting 70
Installing HEPAX modules 10
Key assignment files 42,59
Keyassignments 42

Keycodes 50

Logical Xand Y. T
Logical X exclustve-or Y 77
Logical XorY 77
MassStorage 20,65
Maximumfilestze 62
datafile 27
textfile 28
MEMORYLOST. 61
Multifunctions 44
andtests. 45
inprograms 45
NOT function., .. 77
Operations on all data registers 34
Operations on the X register 36
ORfunction 77
PASN functicn 50
PCLPSfunction. 56
Pointers 32
Pointer operations. 33
POSA function 53
Positionin ALPHA 53
PRIVATE function 25
Programin HEPAX 21,59
assigned. 20,23
XROMnumbers 60
Program listing
HRESZFL. 30
DISSST 67
PSIZE function 46
Putting a block back in
the file system 63
RAMTOG function 66
RCLFLAG function 48
READROM function 61, 65
Record, . o o o . v 0 0 0 27
rumber L L 32
operations 38
pointer 32
REGMOVE function 47
REGSWAP function., 47
Resizing data and text files 29
Resizingfiles e 63
Restoring main memory 42
Restoring the file chain. 63
Retrieving key assignments 42
ROM 65
addressspace 58
mage.« .« 44 65
ROTYX fupction 77
Saving
key assignments 42
the contents of main memory . . . 42
programs in HEPAX 22
Scarchingafile 39
Secunng HEPAX files 21
SHIFTYX function Ll
ZREG? function 46

Simpleediting 70
SEZE?function. 46
Statistical registers 46
Statusregisters. 60
STOFLAG function. 48
Structurc of datafiles 3t
Structereof textfiles . . . , ., 32
Subfunction . ,, 44
NamMeE. . o o v . e e e e e . 44
number., 44
Swapping registers 47
System addressed device. 8
Taking a block out of the file system . . 63
Textfile. 27,59
operations 38
Textlines 27
Transferring HEPAX files 20
Waitperiod 56
Words., 58
Write-allfiles 42,59
Write protection 61, 66
WRTROM function 65
XFmulti-function, 45
XOR function e e e e e e 77
XROM
Dno. 60
numbers, 60
to XEQconversion, 26
XTOAfunction 52
X<»>Ffunction 48
X=NNfunction 55
X#NNfunction, 55
X«<NNfunction 55
X<=NNfunction, ... 55
X>NNfunction, 55
X>=NNfunction 55
X+Yfunction T
X$function. 78

Y-Xfunction., ., .., .. 77

Subject index

81

Function index

ALENG function 52
ANDfunction . . ., 77
ANUM function 53
AROT function. 52
ATOXfurction. 52
BCAY function. 77
BCE-BiNfunction 77
BIN-BCD function 77
CLKEYSfunction 51
CLRAM function . , 66, 70
CLRGXfunction 48
CODEfunction . ., 75
COPYROM function 61,66
CTRASTfunction 78
DECODE function 75
DELETEfunction. 78
BISASMfunction. 67
DISSSTprogram., . 67
HAPPCHR function. 39
HAPPREC function. 38
HARCLREC function 40
HASROOM function 28
HCLFL function K|
HCRFLASfunction, 28
HCRFLD function , 27
HDELCHR function. 39
HDELREC function. 38
HEPAX multi-function 77
HEPDIR function. 17
HEPDIRX function, 18
HEPROOMfunction 18
HEXEDIT function , 69
HFLSIZE function 18
HGETAfunction, 42
HGETK function 42
HGETRfunction 35
HGETREC function. 40
HGETRX function 35
HGETX function 36
HINSCHR function , ., 39
HINSREC function 38
HPOSFL function, 39
HPROMPT function 76
HPURFLfunction, .. 13
HRCLPT function 34

HRCLPTA function, 19, 34

HsAvEP 2¢
HREADFL function ., 20
HRENAME function , ., 18
HRESZFL program 29
HSAVEAfunction, . . . 42
HSAVEK function 42
HSAVER function, 34
HSAVERX function 35
HSAVEX function 35
HSEC function 21
HSEKPT function a3
HSEKPTA function 33
HUNSEC funetion., . 21
HWRTFL function., 20
INSERT function 78
NOT function. 77
ORfunction . . ., 77
PASN function 50
PCLPS function. 56
POSAfunction .,, 53
PRIVATE function, 25
PSZEfunction 46
RAMTOG function. 66
RCLFLAG function 48
READROM function 65
REGMOVE function 47
REGSWAP function 47
ROTYXfunction., .. 77
SHIFTYX function. . . ., 77
ZREG? function., 46
SiZE?functions 46
STOFLAG function . , 48
WRTROM function, €5
XF multi-function 45
XCRfunction. 77
XTOAfunction 52
X<>Ffunction 48
X=NNfunction, 55
X#NNfunction . . ., 55
X<NNftunction 55
X<=NNfunction 55
X>NNfunction ,, .. 55
X>=NNfunction, 85
X+Yfunction. 77
XS$tunction 78
Y-Xfunction 77

	Cover
	Contents
	Introduction
	Inserting and removing HEPAX modules
	How to use this manual
	Part 1: Normal Use
	Section 1: All you need to know
	Using the HEPAX file system
	Programs in HEPAX memory

	Section 2: Other HEPAX file types
	Creating data and text files
	Using pointers in data and text files
	Data file operations
	Text file operations
	Using key assignment and “Write-all” files

	Section 3: The Extended Functions
	The multi-function concept
	The XF-multi-function
	Data register operations
	Flag operations
	User mode operations
	ALPHA string operations
	Test functions
	Miscellaneous operations

	Part II: Advanced Use
	Section 4: The HEPAX file system
	HEPAX memory
	The HEPAX file types
	Programs in HEPAX and XROM numbers
	The Structure of the HEPAX file system

	Section 5: The Advanced functions
	Handling ROM images
	The Disassembler
	The Hexadecimal editor
	Copying and clearing parts of ROM images
	Coding and decoding

	Section 6: The HEPAX multi-function
	Advanced file system functions
	Binary functions
	Miscellaneous functions

	Subject index

