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If you own or use a programmable cal-

culator, the manufacturer's manual

simply shows you how to operate it—
HOW TO PROGRAM YOUR PROGRAM-
MABLE CALCULATOR shows you how
to use it as a practical problem solver.

Specifically designed for use with Texas
Instruments TI 57, Radio Shack EC-4000,

and Hewlett-Packard HP 33E machines,

the techniques presented can be easily

adapted to these other calculators:

Texas Instruments SR 56 and SR 52,

Texas Instruments TI 58 and TI 59,

Hewlett-Packard HP 25 and HP 25C,

Hewlett-Packard HP 29C and HP 19C,

Hewlett-Packard HP 67 and HP 97, and

Sharp PC 1201.

Over 160 examples and exercises with
solutions show you how to program your

calculator to solve problems in finance,

business, science, mathematics, and

taxes, even how to compute gambling

probabilities! So whether you're a
student converting kilometers into
miles, an investor computing interest,

or a businessman calculating shipping

space or profit margins, this complete,

step-by-step guide can help you tap the

potential of your programmable calcu-

lator as a decision-making tool.

(continued on back flap)
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Preface

Over 100 million hand-held calculators are estimated to be in the United States

alone. Generally, these calculators fall into three broad categories—arithmetic,

advanced function, and programmable calculators. The most powerful of these

are the programmable ones.

Recent technological breakthroughs have made these hand-held, computer-

like calculators available at very inexpensive prices. Programmable calculators

have a wide range of exciting uses, from performing everyday arithmetic to

evaluating functions and solving advanced problems requiring decision-making.

If you are considering purchasing a more advanced calculator (or even your

first one), perhaps one of the inexpensive programmable calculators is just for

you. Programmable calculators have all the features of nonprogrammable cal-

culators and much more, as summarized in the following table:

\'
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Ability

Preface - x

Perform Evaluate Solves Problems

Arithmetic Advanced Requiring
Calculators Computations Functions Decision-making

Arithmetic X

Advanced function X X
Programmable X X X  

Who is this Book For?

Any person who wants to learn about programmable calculators and how to

program them to solve problems will benefit from this book, especially:

« college students in engineering, business, science and mathematics,

« high school students interested in the mathematical sciences,

« teachers and professors who want a reference of problems that can be done on

programmable calculators or minicomputers,

« calculator enthusiasts who want to extend their problem solving ability, and

« persons interested in pre-experience for learning eventually to program computers.

What is the Purpose of this Book?

When you buy a programmable calculator, you receive an owner’s manualor text

designed to show how to use the calculator, what its various special features are,

and other relevant technical information. But you receive hardly any instruction

on how to program the calculator or how to design programs to solve problems.

Furthermore, you receive very few exercises and problems on which you can

practice and develop programming skills. This book is carefully designed to

complement the owner’s manual by providing you with:

« information on how to design programs to solve problems on any programmable
calculator,

« over 160 carefully sequenced examples, exercises, and problems solvable on any
programmable calculator or minicomputer, and

insight on what programmable calculators can do and how they are used as
problem-solving tools.

How Can You Use this Book?

If you own an appropriate programmable calculator, you might use this book:

o as a self-study manual,

e as a text in a mini-course or continuing education course, or

o as a resource in a math club setting.



vii Even if you do not own a programmable calculator, you might use this book:

Preface as a self-study manual,

« as an aid in deciding whether to buy a programmable calculator and, if so, which
one,

« as a reference of exercises and problems solvable on any programmable calculator

or minicomputer, or

« as a library reference.

Which Programmable Calculator Should | Have to Get the Most Out of this Book?

Since the authors believe you can learn most rapidly by doing rather than by just

reading, this book is written with a ‘‘hands on’’ approach. Thatis, if you have a

programmable calculator at hand, you can follow the text and work through the

examples on your calculator while you read. Because it is impossible to design a

“hands on’’ book to be used with every one of the many programmable cal-

culators presently available, this book is designed specifically to be used with the

least expensive of the major manufacturer types of programmable calculators,

namely:

e Texas Instruments TI 57 (Parts 1 and 2 of this book).

o Radio Shack EC-4000 (Parts 1 and 2 of this book).

« Hewlett-Packard HP 33E (Parts 3 and 4 of this book).

An important feature of this book is its adaptability. Both the programming

techniques discussed in the text and the solutions to the problems are easily

adapted to these other programmable calculators:

o Texas Instruments SR 56 and SR 52

o Texas Instruments TI 58 and TI 59

o Hewlett-Packard HP 29C and HP 19C

o Hewlett-Packard HP 67 and HP 97

o Sharp PC 1201

o Hewlett-Packard HP 25 and HP 25C

We authors wish to thank Ralph Oliva and William Kernahan of Texas Instru-

ments, and Hugh Field and Scott Eaton of Hewlett-Packard for providing cal-

culators at crucial times in the preparation of this manuscript; Karl West of the

Needham Public School System and Stephen Krulik of Temple University for

reading selected early chapters; and Janet Manterfor herfine typing. We would

also like to thank Laurie and Ans for their patience—they must have thought we

would never finish!

STEPHEN L. SNOVER

Newton, Massachusetts

MARK A. SPIKELL

Wayland, Massachusetts
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Introduction

SECTION 1:
WHAT IS
A PROGRAMMABLE
CALCULATOR?

Today’s hand-held calculators come in all sizes and types, but basically
they can be grouped into three categories:

1. four-function calculators,

2. advanced-function calculators, like scientific and business calculators, and

3. programmable calculators.

In order to distinguish among these calculators, imagine that each is a
“black box” with buttons and a display on the outside. Inside is a little
man with a scratch pad and pencil who knows how to add, subtract,
multiply, and divide.

The Four-Function Calculator

The cheapest of all the calculators, the four-function calculator is simply
the black box already described. With this calculator you can perform the
four arithmetic operations—addition, subtraction, multiplication, and divi-

sion.

1
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The Advanced-Function Calculator

Since more functions, such as and appear on the
advanced-function calculator, you might guess that it contains specially
designed, or “hard-wired,” circuitry inside the calculator for computing
each such function. The little man inside the black box, you might guess,
has been trained to compute each of these functions. Actually this is not
the case. Building special circuitry for each additional function is far too
expensive.

Instead, what really happens can be best described by extending the
analogy of the little man in the black box. Because you pay more for your
advanced-function calculator, the little man inside is provided with a
helpful instruction booklet that tells him how to perform each advanced
function, not directly, but as a sequence of the four arithmetic functions he
already knows.

For example, suppose the square root function, [Vx], is pressed. The
little man inside sees the button pressed, but on the inside the button reads
“Page 2.” He then opens the instruction booklet to page 2 and reads:

* Step 1: Copy the number from the display onto line 1 of the scratch pad.
Then write a 1 on line 2.

* Step 2: Divide the number on line 2 into the number on line 1 and put the
quotient on line 3.

* Step 3: Add the number on line 2 to the number on line 3 and then divide
the sum by 2. Place the result on line 2 (erasing any number that was there
before).

* Step 4: If the numbers on lines 2 and 3 are equal, put that value in the
display and stop. Otherwise, go back to step 2 and repeat.

In the analogy, the little man in the box has no idea that he is calculating a
square root, but that hardly matters. It is only necessary that page 2 is
written properly and that he follows the steps letter perfect.

Each other function on the advanced function calculator is computed in
a similar fashion, although its instructions are different and they appear on
a separate page of the booklet.

The Programmable Calculator

When you purchase a programmable calculator, you buy most of the
features of an advanced-function calculator plus the flexibility of being
able to create (or program) your own functions.

The little man in the black box receives an instruction booklet with one
page for each advanced function and with one additional blank page. The
little man does either of two things with this blank page. If the calculatoris
in the so-called “learn” or “program” mode, he records on the blank page
any sequence of buttons that are pressed. Or if the calculator is in the
“run” mode, he considers this page just like any other page and follows its
instructions when the or run/stop button is pushed.

While the little man analogy may seem simplistic, it does indicate in
nontechnical terms what a programmable calculator is. With a program-
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mable calculator, you can perform most functions available on any
advanced-function calculator with a single button. Furthermore, you can
create or program your own functions and access them by just pressing the

key.

SECTION 2:
WHAT PROBLEMS
CAN PROGRAMMABLE CALCULATORS
SOLVE?

To illustrate the wide range and variety of problems that can be solved on
a programmable calculator, the following representative problems have
been selected. You can find each of these problems together with their
solutions in the text.

Programmable calculators can solve:

* from simple arithmetic:

24(1 + .05)°® = 7

to complex calculations:

nd 1.4.9. 16,25 49 _,25 tits tet tat =

|

* from relatively straightforward computations:
Convert a temperature in degrees Fahrenheit to degrees Celsius

to very indirect computations:
Find the smallest positive whole number that has a remainder of 5 when
divided by 6 and a remainder of 8 when divided by 11.

* from simple decisions:
The United Parcel Service will not ship any package if the length plus
the girth exceeds 108 inches. Can a particular package with given
dimensions be sent by the United Parcel Service?

to complex decisions:
At a special fund raising banquet, 100 senators, and representatives, and
lobbyests showed up. Senators paid $75 each; congresspersons paid $99;
and lobbyests, $40 each. If $7,869 was collected, how many of each

came to the banquet?

e from applications in business:
If a new car dealer advertises an automobile at a delivery price of
$5,272.50, how much does this car cost the dealer and how much profit
1s the dealer making?

to applications in science:
Suppose you have a large collection of n bricks, all the same size. Say
each has unit length. If you stack them so that the top brick extends as
far to the right of the bottom one as possible, can the top one overhang
more than one unit length to the right of the bottom brick?

to applications in recreational mathematics:
Imagine a square-based pyramid of cannonballs with one cannonball on
top and a square number of cannonballs on each layer. How many
cannonballs are there in the top 10 layers? How many layers can be
made from 10,000 cannonballs?
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OF CALCULATING MACHINES

Incredible as it may seem, man has been on earth for more than a million
years while the programmable hand-held calculator has been here only
since 1973! Man invented the first calculating machines some 5,000 years
ago, but almost all advances leading to calculators as we know them today
have occurred in the last 30 years.

To place the evolution of calculating machines in perspective, some of
the major historical developments have been placed on the following time
line, interspersed with other notable historical events:

pre-3,000 B.C. Abacus (performs +, —)

1456 A.D. Movable type printing press
1617 Napier’s bones (performs X, +)
1642 Pascal calculating machine (+, —)

late1600 s Leibnitz calculator (+, —, X, +, V )
about1760 Industrial Revolution

1820 First reliable commercial calculating machine
1835 Mechanical programmable computing machine
1890 Electrical input reading computers
1939 Fully automatic calculator
1946 First digital computer, ENIAC
1957 Sputnik satellite
1958 Integrated circuit chip
1963 Desk-top computer, PDP-5
1969 First person to walk on the moon
1971 First hand-held calculator, Bowmar Brain

1973 First hand-held programmable calculator, HP 65
1975 HP 25
1976 HP 25C
1977 TI 57, 58, and 59
1977 Radio Shack EC 4000
1978 HP 33E

SECTION 4:

AOS AND RPN

CALCULATORS

One way of distinguishing the types of programmable hand calculators is
to scan the keyboard for an “equal” key. If there is one, your calculator is
an Algebraic Operating System (AOS) calculator. Otherwise, it is most
likely a Reverse Polish Notation (RPN) calculator.

What does it mean to say that a calculator is an AOS or RPN
calculator? An AOS calculator allows you to enter calculations as they are
generally written. For example, the computation of 3 + 4 is done by

'For a detailed historical presentation, you may consult the TI 57 owner’s manual,
Making Tracks into Programming (TI Learning Center, 1977), Chapter 12.
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calculator, the + operation is not performed until the equal key is pressed.

An RPN calculator, in contrast, uses the key stroke sequence
[4] to perform the same calculation. In other words, RPN calculators
perform the operations at the same time as the appropriate operation keyis
pressed.

Most persons prefer one type of calculator or the other; each has
certain unique characteristics. AOS calculators allow you to enter
arithmetic calculations from left to right as they are written algebraically.
With RPN calculators, all data is entered before pressing any operation
key. All programmable AOS calculators have parentheses while program-
mable RPN calculators do not. Some people feel that parentheses make
programs more readable. Others feel that programs without parentheses
are more efficient, that is, the programs often take fewer steps.

Two major American manufacturers, Texas Instruments and Hewlett-
Packard, produce hand programmable calculators. Texas Instruments pro-
duces AOS calculators while Hewlett-Packard produces RPN calculators.

SECTION 5:
THE TEXAS INSTRUMENTS
FAMILY OF CALCULATORS

The Texas Instruments family of calculators includes five programmables:
SR 56, SR 52, TI 57, TI 58, and TI 59. The SR 56 and SR 52, no longer
manufactured, were the first programmables produced by Texas Instru-
ments.

The SR 56 initially sold for about $100 and eventually fell in price to
about $65. Features of this machine included 100 program memory steps,
10 memory registers, decision-making tests, and even subroutine capabil-
ity. The SR 52 initially sold for about $295 and eventually fell in price to
about $150. In addition to all of the features of the SR 56, this machine

has 224 program memory steps, 20 memory registers, insert and delete
editing capability, and magnetic cards for program storage.

The TI 57, 58, and 59 programmables have been designed for a wide
range of users. The TI 57, selling for less than $65, is the best beginner’s
calculator because of its low cost and its capability of meeting most
programming needs. Features of this calculator include 8 memory reg-

isters, 50 merged program steps (nearly the same as 100 nonmerged steps),
the equivalent of 8 decision tests, insert and delete editing, labels, and
subroutines.

The TI 58 and 59 programmables are more advanced and come
equipped with programmable read only memory chips, called PROM:s,
which contain numerous programs already written. Both machines can be
attached to the TI PC 100A printer, which sells for about $175. The TI 59,

selling for about $250, has effectively twice the number of memory
registers and program steps as the TI 58, selling for about $125. Further-
more, the TI 59 can be used with magnetic cards.
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SECTION 6:
THE HEWLETT-PACKARD
FAMILY OF CALCULATORS

Hewlett-Packard was the first to come out with a programmable hand-held
calculator, the HP 65, costing initially $800. With 100 program memory
steps, the HP 65 was fully programmable and used magnetic cards. Shortly
thereafter Hewlett-Packard introduced the HP 55 for $400 and then the
HP 25 for only $200. Not only did the price drop, but the technology
advanced, making the HP 25 almost as powerful as the other machines for
much less cost. Some of the features of the HP 25 include 8 memory
registers, 50 merged program memory steps (nearly equivalent to 100
nonmerged steps), and 8 decision tests.

Next, Hewlett-Packard improved upon their most expensive model,
replacing the HP 65 with a pair of machines, the HP 67 for about $400 and
the HP 97, the same calculator with a built-in printer and selling for about
$700. Some of the features of these machines included 224 merged pro-
gram memory steps, 30 memory registers, and such advanced program-
ming tools as insert and delete editing, labels, indirect addressing, and
subroutines.

Hewlett-Packard revised the HP 25 by introducing the HP 25C, selling
for about $150. It has a continuous memory permitting the storage of a
program for recall even when the calculator is turned off.

Next Hewlett-Packard came out with a pair of middle price range
calculators, the HP 19C and HP 29C. These machines not only have a
continuous memory, but also 30 memory registers (16 of which are
continuous memories), 98 merged program steps, labels, insert and delete
editing capability, subroutines, and indirect addressing. The HP 29C sells
for less than $160. Its companion, the HP 19C has the same features plus a
built-in printer and retails for under $300.

Most recently Hewlett-Packard has introduced two programmables, the
HP 33E and the HP 38E. The HP 33E replaces the HP 25 and HP 25C
calculators and is the best beginner’s calculator because of its low cost
(about $80) and capability of meeting most programming needs. The HP
38E is an advanced financial calculator with programmability features.

SECTION 7:
THE CALCULATORS
CHOSEN FOR THIS BOOK

Even the least expensive calculators are powerful enough to satisfy most
programming needs. Consequently, any of them could serve as ideal
beginning machines on which to learn programming. This book is designed
around the least expensive models of the Texas Instruments and Hewlett-
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summary chart in Table 1-1, these least expensive models are the TI 57

 

 

 

 

 

and its twin, the Radio Shack EC 4000, and the HP 33E. While this book is

written specifically for these three calculators, the text and the programs
presented as the solutions to the problems are easily adapted for all the
other programmable calculators listed in the summary chart.

TABLE I-1. Old and New Programmables

Texas Instruments Early Models Current Models

Least expensive SR 56 TI 572

TI 58°

Most expensive SR 52 TI 59°

Hewlett-Packard Early Models Current Models

Least expensive HP 25 HP 33E HP 38E

HP 55 HP 29C HP 19C°
Most expensive HP 65 HP 67 HP97°

2]dentical to the Radio Shack EC 4000
bWith attachable printer
‘With built-in printer

SECTION 8:
POSSIBLE EFFECTS

OF PROGRAMMABLE CALCULATORS

ON THE TEACHING

OF MATHEMATICS

In June of 1976, the National Science Foundation and the National

Institute of Education jointly sponsored a conference on badly needed
research and development on hand-held calculators in school mathematics.
The following observation from the conference report is signifi-
cant: “Microelectronic technology is changing at an astonishing pace.
Today’s four-function calculator will soon be replaced, at the same price,
by one with many more functions. Today’s scientific calculator will be
replaced soon by comparably priced programmable calculators . . > 2
The observation has already been prophetic. Presently, programmable

calculators are indeed available at remarkably low prices—prices so low,
in fact, that teachers can give serious attention to considering the use of
these machines in the school mathematics curriculum at every level.

Because the availability of inexpensive programmable calculators is
such a recent phenomenon, educators have not yet been able to arrive at a
consensus on what to do with these machines in the school curriculum.

2National Science Foundation and National Institute of Education, Report of the Con-

ference on Needed Research and Development on Hand-Held Calculators in School Mathematics,

(Washington, D. C., 20208: U.S. Department of Health, Education and Welfare, June, 1976).
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Topics from numerical methods, previously considered too advanced, can
now be brought down to the level of high school mathematics. For example,
programmable calculators greatly facilitate the study of limits of sequences
and sums of series.

Reading logarithm, trigonometric, power, and root tables is no longer neces-
sary. Programmable calculators, in addition to having built-in function keys
for obtaining this information, can be programmed to generate tables of
related data for use as needed.

The slide rule, long a significant tool for performing calculations, is now
obsolete, because programmable calculators do everything a slide rule does
—and much more. Programmable calculators also provide a degree of
accuracy and a speed of computation not possible with slide rules.

“Exhaustive searches” to generate data are now practical. The calculator can
be programmed to search (or test) hundreds or thousands of special cases—a
chore essentially impossible to do by hand. For example, consider the
problem of finding all integer Pythagorean triples, a? + b% = ¢?, with the
hypotenuses, c, less than 100. Finding such triples by hand would be quite
tedious and time-consuming. However, the calculator can find all such
triples accurately and quickly.

In addition, the educational community can and should address other
broader issues. The entire mathematics curriculum must be examined and,

where appropriate, redesigned to utilize the power of programmable calcu-
lators and minicomputers. Among the pertinent issues are:

How does the availability of programmable calculators affect the teaching of
algebra? Geometry? Trigonometry? And other mathematics courses, espe-
cially calculus?

Would teaching programming on programmable calculators be a useful topic
for a senior level mathematics course?

Could a unit on logic be designed around the decision-making capability of
programmable calculators?

At what age and in what course experiences should iterative techniques for
solving equations (for example, the Newton—Raphson method) be introduced
on programmable calculators?

Is it possible for an exhaustive search to become an integral part of a
mathematical proof? For example, is it permissible to combine an exhaustive
search for n < 10,000 together with an analytical proof (valid only) for
n > 10,000 to establish a proof for all positive integers, n?

SECTION 9:
PROGRAMMABLE CALCULATORS
AND PERSONAL COMPUTERS

Scarcely a decade ago a four-function desk-top adding machine cost many
hundreds of dollars. Now the cost of an equivalent four-function calcula-
tor is close to $5. In the near future, however, the prices need not continue

to drop. Instead, the capabilities and flexibilities will increase in calculators
that remain at certain price levels.
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With the advent of the ROM or Read Only Memory, calculators
became cheap. With the RAM or Random Access Memory, calculators
could memorize many locations worth of information—so programmable
calculators became likewise inexpensive. Next the PROM, or Programma-
ble Read Only Memory, was introduced allowing much greater program-
mable flexibility.

In the next few years, man will witness a vast broadening of the
flexibility and power of the hand-held calculator. With the bubble mem-
ory, a hand-held calculator will be able to memorize and process vast

amounts of information. With the new varieties of 1/0, or input/output,
interfaces, the programmable calculator will be able to display its results
on one’s home television screen. In essence, the programmable calculator,
available for a moderately low cost, will become a personal computer with
almost all the power and flexibility of today’s expensive computers.

The 1950s constituted the decade of the beginning computer. The 60s
were the decade of time-sharing. The 70s comprise the decade of the
hand-held calculator. The 80s will likely be the decade of the hand-held
personal computer.





EVALUATING FUNCTIONS-
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Section 1: Calculating 2(» + 1) in the Run Mode

Turn on your calculator and press the sequence of key strokes indicated in
the middle column:

STEP KEY STROKE DISPLAY SHOWS

00 2 2
01 x 2.
02 ( 2.
03 4 4
04 + 4.
05 1 1
06 ) 5.
07 x2 25.
08 = 50.

13
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You have just computed the value of 2(4 + 1)* on your calculator.
Using a similar sequence of key strokes, compute the value of 2(9 + 1)* to
obtain 200.

You have been using your calculator in what is called the run mode. In
this mode the calculator’s primary purpose is to perform basic arithmetic
operations.

Suppose you want to compute 2(7 + 1)% 2(11 + 1)%, 2(16 + 1)’, and
(25 + 1)%. You could do so in the run mode by using a sequence of key
strokes almost identical to that described in steps 00 through 08. The only
difference for each computation would be the number entered in step 03
after the left parenthesis in step 02.

Section 2: Programming 2(n + 1)? in the Learn or Program Mode

When you find it necessary to use a particular sequence of key strokes
repeatedly, you can avoid a great deal of work by using an important
feature of your calculator called the learn mode. In this mode, the calcula-
tor is able to “memorize” sequences of key strokes, called a program. This
program can then be executed (run) in the run mode of the calculator.

In Section 1 you considered the computation of 2(n + 1)?, where n
could be any number. Using this computation, you will now program your
calculator to memorize the appropriate sequence of key strokes to perform
the calculation.

First, turn your calculator off, then on. Now press the (learn)
key; this key switches your calculator from the run mode to the learn
mode. You should see “00 00” in the display.' Now press the sequence of
key strokes that follows:

STEP KEYSTROKES DISPLAY SHOWS

00 2 01 00
01 X 02 00
02 ( 03 00
03 R/S 04 00
04 + 05 00
05 1 06 00
06 ) 07 00
07 x2 08 00
08 = 09 00
09 R/S 10 00

Press the key. This returns your calculator to the run mode where
the program can be executed. To initialize (start) the program, press

"When the calculator is “memorizing” a key stroke, you see a different display from when
the calculator is performing the instruction represented by the key stroke. See your owner’s
manual for details.



15 (clear registers), (reset), [R/S]. You will see “2.” in the display.
Then enter any value for n, say 3, and press [R/S]. The quantity “32.”

FyjdYour should appear in the display. To run the program to compute 2(n + 1)? for
to Compute Other values of n, merely press [R/S], enter the desired value

Answers of n, and press each time. Doing so for n equaling 7, 11, 16, and 25,
the display should show “128., 288., 578., 1352.,” respectively.
You have just entered and executed your first program. It was entered

and memorized in the learn mode when you pressed the sequence of keys
in steps 00-09. It was executed in the run mode after being initialized.

Your calculator has exactly two modes of operation, the learn mode and
the run mode. In the learn mode the calculator can only memorize a
sequence of key strokes. In the run mode the calculator can either perform
any key stroke sequence that is pressed or execute a memorized key stroke
sequence.
When your calculator is first turned on, it is automatically in the run

mode. Thereafter, whenever the key is pressed, the calculator
switches from one mode to the other.

Section 3: Using 2(n + 1)? to Solve a Problem

You may wonder why you would ever want to program your calculator to
compute 2(n + 1)2.. There might be any number of reasons, but this
particular computation was selected because it happens to provide the
answer to an interesting question suggested by the American flag.

Have you ever noticed how the 50 stars are arranged on the present-

day American flag? There are 4 short rows of 5 stars in each row and 5
longer rows of 6 stars in each. (See Figure 1-1.)

Similar patterns of stars can be formed with 8, 18, and 32 stars. See

Figures 1-2, 1-3, and 1-4, respectively. Notice that the 8-star pattern uses
1 short row of 2 stars and 2 longer rows of 3 stars; the 18-star pattern uses
2 short rows of 3 stars and 3 longer rows of 4 stars; the 32-star pattern has

Figure 1-1

 



Figure 1-2 Figure 1-3

 

Figure 1-4

 

3 short rows of 4 stars and 4 longer rows of 5 stars. What other numbers of
states would have to be in the United States for this specific type of star
pattern to be used on the flag?

There would have to be n short rows of (n + 1) stars and (n + 1) longer
rows of (n + 2) stars. So in total there would be n(n + 1) + (n + 1)
(n + 2) = 2(n + 1)? stars. Since each star represents one state, there would
have to be 2(n + 1)? states in the United States for the same type of star
pattern to be used.

Using the program in Section 2 for computing 2(n + 1)* you can find

all the numbers of states for which the stars could be arranged in the same
type of pattern as the 50-star pattern.

Section 4: Exercises in Analyzing the Program for 2(n + 1)’

1. In the example in Section 2 the program was 2, X, (, R/S, +, 1,), x2, =,
R/S.

a. What was the purpose of the first R/S in the program?

b. What was the purpose of the left and right parentheses?

c. Why was R/S the last key pressed in the program?

a. What happens if you try to execute the program in Section 2 in the run
mode without pressing the RST key?

b. What is the purpose of the RST key?

3. Your calculator memorized the R/S key so that when the program is being
executed and R/S is encountered, the program stops. Can your calculator
memorize the LRN key stroke? Why or why not?

4. Program your calculator to compute 2n? + 1 for any value of n.

16



Section 5: Making Flow Charts

The program to compute 2(n + 1)? is summarized by the two diagrams in
Figure 1-5, called flow charts. One, the general flow chart, presents an
overview of what the program is designed to do. The other, the detailed
flow chart presents step-by-step instructions (based on the general flow
chart) for writing the actual program.

By comparing the flow charts to the program, you can see that each
rectangle in either flow chart corresponds to one or more key strokes in the
program. The brackets between the flow charts and the program indicate
this correspondence. The vertical arrows in the general flow chart indicate
the order in which instructions are to be carried out.

 

   
  

   
  

   

 

   
 

Figure 1-5

General Flow Chart Detailed Flow Chart Program

Prepare to multiply Enter 2 {2
by 2 Prepare to multiply {x

! Prepare to compute n + 1 {(

Enter n {R/S
Enter n and compute Prepare to add (+

nt Enter 1 {1
Compute n + 1 (0)

Y

Square n + 1 {Square n + 1 (x?

Complete the multiplica-
tion by 2 { Compute 2(n + 1)* {=

Display result {Stop and display {R/S
   

Making flow charts can help you organize your thoughts when writing
programs. The general flow chart should consist of a few instructions to

make it clear at a glance what a program is designed to accomplish. The
detailed flow chart should show how to do each instruction in the general
flow chart. From the detailed flow chart it should be easy to write the
actual program. You may find it helpful to make one or both of the flow
charts before writing a program. As you become better at writing pro-
grams, you may find less of a need for the detailed flow chart.

As another example of the use of flow charts, consider writing a
program to compute the area of a triangle according to the formula:

b-h

A4="3
17
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General Flow Chart

 

   
  

   

Figure 1-6

Detailed Flow Chart

Prepare to compute

where b is the base length and #4 is the height of the triangle. Starting from
the general flow chart, the detailed flow chart and program can be
prepared as shown in Figure 1-6.

Program

 

bh { (
Enter b and h and Enter b {R/S

multiply them Prepare to multiply {X
together Enter h {R/S

Compute b - h {)

Divide by 2 { Divide by 2 2

Display result {Stop and display {R/S
   

Section 6: Exercises Using Flow Charts When Writing Programs

Here are a few helpful hints that you may need to know in order to
proceed with the problems in this section.

Before entering any program, you should clear (or erase) any program
previously in the calculator. Clearing can be done by turning the calculator
off, then back on.

If you find that you have entered a step of your program incorrectly,
you can correct the error in a variety of ways. For now, you should simply
clear your calculator and re-enter the program. Ways to edit a program

without erasing it will be described in Chapter 3, Section 4.

1. In some states there is a special tax on food served in restaurants. If

the tax is 8 percent and the cost of the dinner is $5.00, then $5.40 is the
cost of the dinner plus tax. The general flow chart in Figure 1-7 describes
a program that computes the total cost of a dinner (including tax) with the
formula, Total cost of the dinner = 1.08 - Dinner cost.

Figure 1-7

General Flow Chart
 

  
enter the dinner cost

v
multiply by 1.08

!
stop and display result
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a. Make a detailed flow chart for this program.
b. Write the corresponding program from the detailed flow chart.

2. Make a detailed flow chart for a program that converts measurements
in feet to meters according to the formula,

Number of meters = Number
3.28

3. In order to convert temperatures from Fahrenheit to Celsius

, where F is the (centigrade), you may use the formula, C =

Fahrenheit temperature and C is the Celsius. A detailed flow chart for a
program to make the conversionsis given in Figure 1-8.

Figure 1-8

General Flow Chart Detailed Flow Chart
 

Enter F

Prepare to subtract

Enter 32

Compute F — 32

Prepare to compute F — 32
 

 

  
 

 Prepare to divide
Enter 1.8

F — 32

1.8

 

 

 Compute 
 

  { Stop and display
 

a. Complete the corresponding general flow chart in that figure.
b. Write the corresponding program.

4. The average of two numbers is found by adding the two numbers
together and then dividing by two. The general flow chart in Figure 1-9
describes a program for averaging two numbers.

Figure 1-9

General Flow Chart
 

Enter the first number

Add the second number

Divide by 2

Stop and display result

  
 

 

  
 

 

  
 

 

  
 



20 a. Make the corresponding detailed flow chart.
b. Write the corresponding program.

FiretFreyYour 5. You can find the volume of a box in Figure 1-10 by multiplying the
length, times the width times the height of the box. Make flow charts for a

to Compute .
Answers program that calculates the volume of a box. Now write the program.

Figure 1-10

 

 

   2 y

LLLength_

6. Consider the flow chart in Figure 1-11.

Figure 1-11

Flow Chart
 

Enter n

Y

Double n

Y

Add 8

1

Subtract 2

Y

Take 1/2 of result

¥

Re-enter and subtract »

Y

Stop and display result

   
 

   
 

   
 

   
 

  
 

 

  
 

 

  
 

a. Write a program to correspond to the flow chart.

b. When you run this program, what is always displayed, regardless
of the value of n?

Section 7: Problems

For the following exercises you may find it helpful to use flow charts.

1. Write a program to convert miles to kilometers using the formula,

Number of kilometers =

ro
me
?

2

iv
)
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How many kilometers is 5 miles, 8 miles, 31 miles, 500 miles, and 3,000

miles?

. Write a program to compute the weekly salaries of someone who
works part-time for $2.85 per hour and works 12 hours, 18 hours, 14

hours, and 22 hours. Use the formula, Salary = Number of hours -
Hourly wage.

. The following two formulas work for converting Celsius to Fahrenheit
temperatures and vice versa:

a. C= (F + 40) - 2 — 40

b. F=(C + 40) - 2-40

Write a program for each conversion.
. A company is selling cardboard in rectangular sheets at 3g a square

unit. Write a program to compute the cost of any rectangular sheet
using the formula, Cost in dollars = .03(/- w), where / and w are the
length and width of any rectangle. For / = 10 and w = 8, the cost is
$2.40.

. A dog owner wants to build a fence around a rectangular piece of land
that measures / by w meters. Her choice of fencing costs $5.89 per
meter. Write a program to determine the cost of the fencing with the
formula, Cost = 5.89(2/ + 2w). For /=5 and w = 4, the cost is

$106.02.
. a. Write a program to average three numbers, a, b, and c.

b. How would you adapt this program to average four numbers?
. The area, A, of a trapezoid is given by,

_, (by +b)=h ~~,

where Ah is the height and b, and b, are the two base lengths. (See
Figure 1-12.)

A

Figure 1-12

/ ’ \ !
_ {

Write a program for computing the area of a trapezoid: For b, = 8,
b,=10,and h = 3, 4 = 27.

 

. When $n is invested in a bank at 6 percent interest, the value after 1
year will be $n(1 + .06).
a. Write a program to compute this value for any invested number of

dollars, n.

b. Run your program once starting with $100 and see what will be in
the bank at the end of one year.

c. What will be in the bank at the end of the second year if you start
with $100?



22 d. What will be in the bank at the end of 5 years if you start with
$100?

Writing Your 7

First Programs 9. A rectangle has area, 4 = [- w. |

to Compute a. Write a program to compute the width of a rectangle, w, with length

Answers / and area 360.
b. What are the widths of the rectangles when / is 5, 8, 10, and 15?

c. Use your program to find the values of / and w when the area of the
rectangle is 360 and the length is two more than the width.
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Section 1: An Investment Problem Introducing the Function y~*

Pieter Minuit, a Dutch colonist, bought Manhatten Island from the Indi-
ans in 1626 for a few trinkets, thought to be worth about $24. If instead,

Pieter Minuit had invested $24 in a bank at 5 percent interest per year,

what would he have earned after 1 year? After 2 years? By the end of 1638
when he moved to Delaware? Or by 1641 when he died? For that matter,
how much would be in his account now, assuming nothing had ever been
removed?

Clearly, after one year Minuit would have earned $24 X .05 = $1.20

interest. Thus his account would have had a total of $25.20. At the end of

the second year he would have earned $25.20 X .05 in interest. Using your

calculator, compute this value and determine the total amount in the bank
account. Do the calculations in the run mode.

To answer the rest of the questions, a well known financial formula for

computing compound interest is helpful. The formula is ¢ = p- (1 + i)",

23
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where p is the original amount invested, i is the yearly interest rate
expressed as a decimal, and ¢ is the total at the end of n years. Specifically,
in the Minuit problem, the total becomes $24(1 + .05)" or, simply,
$24(1.05)".
When Minuit moved to Delaware in 1638, twelve years had passed. So

the total in the bank would have been the value of $24(1.05)!? or, $43.10 to
the nearest penny.

The goal here is to develop a program to compute $24(1.05)” for any n.
Before doing so, you need to know how to compute 24(1.05)" for specific
values of n. This requires the use of the preprogrammed (built-in) function
key on your calculator, identified by the symbol, y*.

Turn your calculator on and press the following sequence of keys:
[4] [1] [] [0] [1] [=]. Your display should show
43.100552, or 43.10 rounded to the nearest hundredth. Therefore,

$24(1.05)'? represents $43.10. Using the key sequence you can
get your calculator to show the display rounded off to the nearest
hundredth. You can return the display to the original quantity by pressing

[so].
Essentially the same sequence of key strokes can be used to compute

$24(1.05)" for any value of n. Enter the program shown in Figure 2-1 in
your calculator and try it out.

 

   

 

   

 

   

  
   
 

   
 

   
 

Figure 2-1

Flow Chart Step Program

Enter 24 00 2

} 01 4

Prepare to multiply 02 X

03 (
04 1

Enter 1.05 05

06 0
07 5

! 08 )

Prepare to raise 09 x

1.05 to a power Y

Y

Enter n 10 R/S

¥

Compute 24(1.05)" 11 =

¥

Display result 12 R/S
   

Initialize: enter n [R/S].



25 To test the program, use 20 for n and you should obtain 63.679145 in
the display.

PreprograUsing Notice that step 10 is the key stroke [R/S ], which stops the program so
Functions In YOU can enter the value of n. Step 12 is also the key stroke [R/S].

writing However, in this case, it stops the program to display the result of the
Programs computation 24(1.05)".

Using this program you can answer each of the questions raised at the
beginning of the section concerning the $24 investment, since each of the
questions is answered by essentially the same key stroke sequence. Run-
ning the program is easier than entering the key stroke sequence over and
over again. Furthermore, the program is easily adaptable for solving
similar investment problems requiring the use of the formula p- (1 + i)".

Section 2: Exercises Relating to the Investment Problem

1. Enter the program shown in Figure 2-1 in the previous section and check to
see if the totals in the bank after one year and after twelve years agree with
the information in the section. Such checking is a good technique to insure
that you have entered a program correctly.

2. How much money would have been in the bank when Minuit died at the end
of 1641, fifteen years after he bought the island?

3. How much money would have been there at the end of 1664 (n = 38) when
Peter Stuyvesant surrendered Manhattan to the British?

4. How much would be in the bank after 300 years?

5. Write a program to compute the value of $100 invested at 6 percent for any
number of years, n.

Section 3: Single and Double Variable Preprogrammed Functions

Your calculator comes equipped with many preprogrammed functions,
most of which are accessed with one or two key punches. You have already
used some of these functions, such as etc. These functions
can be classified according to two types—single variable functions and
double variable functions. There are important differences in how your
calculator uses each type.

All single variable functions are computed immediately as the key
stroke(s) is (are) pressed; they are computed immediately using the x-reg-
ister, or quantity in the display. For example, consider the single variable
function [x2]. If you enter [4]and press you discover that the squaring
is done immediately as the key is punched.
On the other hand, no double variable function is computed im-

mediately when its key stroke(s) is (are) pressed, because the second of the
two values necessary for the computation is not yet entered. The computa-
tion for a double variable function is completed when an equal sign, a
right parenthesis, or a subsequent double variable function is pressed.
Consider for example. If you enter your calculator is
prepared to compute 2°. However, you will not see the computed value of

8 until you press, say, the equals key.
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Remember the following general rule: All single variable functions are
computed immediately, where as all double variable functions merely
prepare the calculator for a subsequent computation.

For your interest, most of the preprogrammed functions available with
your calculator are listed in Tables 2-1 and 2-2. (See your owner’s manual
for a complete list.)

TABLE 2-1 Single Variable Functions
 

 

Key Strokes Description of the Function

squares the number in the display

changes the sign of the number in the display

ND 3 a 2 = computes the sin of the angle in the display

computes the cos of the angle in the display

N
N

El
l

e
l
l
e

=
|[o

»

E
l
]

computes the tan of the angle in the display

raises e = 2.7182818 to the power of the number in theIn x :
display

In x takes the natural logarithm of the number in the display

Z < E]2 a raises 10 to the power of the number in the display

takes the base 10 logarithm of the number in the display

computes the reciprocal of the number in the display

computes the absolute value of the number in the display

inserts 7 = 3.1415927 in the display
takes the square root of the number in the display

ond Mit deletes fractional part of number in display, keeping integer
part

computes the angle whose sin is in the display

computes the angle whose cos is in the display

computes the angle whose tan is in the display

[NV] [nd] [Tat deletes integer part of number in display, keeping the
fractional part

—
—

Z|
|Z

<
|
[
<

©
|

£]
E]

o
l
e

o
*

oO
w

8
2.

EJ
E]

E]

Z < ~ = o
o

 

% is the valuein the display prior to pressing the and x is the next value entered in the
display.

TABLE 2-2 Double Variable Functions
 

 

Key Strokes Description of the Function

prepares to add
[=] prepares to subtract

prepares to multiply
[=] prepares to divide

prepares to raise to a power?
prepares to take a root?

 

% 1s the value in the display prior to pressing the

and x is the next value entered in the display.



Section 4: Exercises in Analyzing Programs

1. Which of the following programs correctly computes cos(#) with the
initialization: enter § [R/S]. For 8 = 60°, cos(§) = 0.5;
for 8 = 45° cos(f) = 0.7071068.

PROGRAM 1 PROGRAM 2

2nd cos (

( R/S

R/S )

) 2nd cos

R/S R/S

2. Which of these programs correctly computes V1 + n ?

PROGRAM 1 PROGRAM 2 PROGRAM 3

Vx 1 1
I + +
+ R/S R/S

R/S = Vx
_ Vx _

R/S R/S R/S

Each initializes with enter n [R/S]. When n = 24,
V1 +n =5.

3. What is the algebraic expression that each of the following key
sequences evaluates? Hint: each sequence evaluates a different expres-
sion (computation).

SEQUENCE 1 SEQUENCE 2 SEQUENCE 3

1 1 1

+ + +
enter n enter n INV 2nd log

= INV 2nd log enter n

INV 2nd log = =

4. The following program is designed to compute y* when values for x

and y are entered.

STEP PROGRAM

00 y*

01 R/S

02 =

03 R/S

27



In order to compute 3° = 243, which of the following initialization

sequences works?

a. enter 3 enter 5 [R/S].
b. enter 5 enter 3 [R/S].

Section 5: Sample Programs with Flow Charts

In this section examples of programs illustrate how various prepro-
grammed functions may be used. With each program there are general and
detailed flow charts. As you will see, they are useful for reading and
understanding programs that are already written.

Example 1. Finding the Hypotenuse of a Right Triangle

The hypotenuse, c, of a right triangle is related to the two legs, a and b, by

the formula, c = Va? + b? . (See Figure 2-2.)
If you are programming your calculator to compute ¢, you could

proceed as shown in Figure 2-3.

 

   
 

   
 

  
 

   
 

Figure 2-2

Te

A

B

Figure 2-3

General Flow Chart Detailed Flow Chart Program

R/S
Enter and square a nur (R/

: Square a { x?

Prepare to add { Prepare to add {+

¥
Enter b {R/S

Enter ane square b Square b (x2

Complete addition { Complete addition {=

i

Take square root Take square root {Vx

and display Stop and display {R/S   

Initialize this program with enter a enter b
[R/s]. For a = 5, b = 12, you should obtain 13 for c.

28
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Notice in this program that the square root is taken at the end of the
program. Since is a single variable function and operates on the
numberin the display, the sum, a? + b?, must be computed before the
key is encountered.

Example 2. A Ladder Problem Using Trigonometry

Suppose you have a 4-meter long ladder and rest it against a wall so that
the bottom of the ladder is d meters out from the wall, as shown in Figure
2-4. What angle does the ladder make with the ground?

In order to solve this problem, label the unknown angle as § and use the
fact that cosine of 4 is d/4, that is, cos § = d/4. Since 8 is to be found,

you can solve for # algebraically and program your calculator with the
resulting formula:

6 = INV cos§

The flow charts are shown in Figure 2-5.

Figure 2-4
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Figure 2-5

General Flow Chart Detailed Flow Chart Program

Enter d {R/S

Enter 4 and Prepare to divide {+
d

compute 1 Enter 4 {4
Complete division {=  

 

Find inverse cosine Take inverse cosine {INV 2nd cos
and display result Stop and display (R/S

 

  
 



30

Using

Preprogrammed

Functions in

Writing

Programs

The flow charts are given in Figure2-7.

Initialize this program by pressing enter the value
of d [R/S].

If you wish to verify that this program works, you may use the data

below:

d IN METERS 8 IN DEGREES

0 90.

1 75.522488

1.5 67.975687

2 60.

Example 3. The Volume of a Barrel

The volume of a barrel (with a congruent top and bottom as shown in
Figure 2-6) is given by the formula:

  
 

   

Figure 2-7

General Flow Chart Detailed Flow Chart Program

Prepare to compute r* + 2s? {(

Enter r {R/S

Square r (x?

Enter r and s and Prepare to add {+
compute 1 Enter 2 {2

r? + 2s’ Prepare to multiply {x

Enter s {R/S

Square s (x?

| Compute rt + 2s? {)
Y

   
Prepare to multiply

|

 { Prepare to multiply by mh } {x
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Prepare to compute Th {(
Using 3

Pre rammed
Functions In Enter = {2nd =

Writing .Programs Enterhand Prepare to multiply {x

7h 1 Enter A {R/S

3 Prepare to divide {+

Enter 3 {3

Compute i {)

Complete multiplication { Complete computation } {=

Display result { Stop and display result } {R/S}
   

Initialize: enter r enter s enter 4 [R/S |.
Verify that a rain barrel with r = 40 cm., s = 25 cm., and # = 90 cm.

has a volume of 268606.17 cubic centimeters; that is, the rain barrel can

hold about 268 liters.

Section 6: Problems

When doing these exercises, remember that each single variable function
operates immediately on the value that is already in the display. For
example, if you want to compute

1 + tan(45°)

the sequence

1, +, 45, 2nd tan,

gives the correct answer of 2. The sequence

1, +, 2nd tan, 45, =

gives an incorrect answer of 46.

1. Program your calculator to find the arithmetic mean of three numbers,
a, b, and c. Use the formula,

a+ b+ c
arithmetic mean = 3

The mean for 10, 20, and 30 1s 20.

2. Suppose the point P lies on the diameter of a semicircle and divides
that diameter into two segments of lengths a and b, respectively. (See
Figure 2-8.) Then the height from p to the circumference of the circle
is the geometric mean of a and b. The geometric mean = Va X b .
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Program your calculator to compute the geometric mean. When a =
63 and b = 7, the geometric mean is 21.

3. The geometric mean of three numbers is Va X b X ¢ . Write a pro-
gram to compute this. For a = 11, b = 22 and ¢ = 44, the geometric
mean is 22.

4. As indicated in Figure 2-9, two resistors hooked up in parallel produce
a combined resistance in ohms given by the formula:

1

1 + 1°

RR,

R =

Program your calculator to find this combined resistance. When R, =
36 ohms and R, = 45 ohms, you should obtain R = 20.

Figure 2-9

  

Ohm meter

5. Your calculator has the trigonometric functions sine, cosine, and

tangent but not their reciprocal functions, cosecant, secant and cotan-
gent, respectively.
a. Program your calculator to compute one or more of the follow-

ing

cosec(f) =0 For § = 30°, cosec (8) =2

sec (0) =@ For § = 30°, sec (8) =1.1547005

cotan (0) = : For 8 = 30°, cotan (8) =1.7320508
tan(f)
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b. An alternate method of calculating cotan (#) is by cotan (8) =
tan (90° — 9).
Program your calculator for this formula. If 8 = 20°, then the
cotan (0) = 2.7474774.

. An ancient puzzle, depicted in Figure 2-10, called the Towers of
Hanoi puzzle, has n discs of increasing size and three pillars. The
object is to move the entire tower of discs from one pillar to another in
the fewest possible moves given these two conditions:
a. move only one disc at a time,
b. never place a larger disc on top of a smaller one.

Figure 2-10

 

 

 

 

It is known that the fewest possible number of moves is 2” — 1.
Program your calculator to compute this number for any number, n, of
discs. For n = 10, 2" — 1 = 1,023.

At the time of the printing of this book, the first class postal rate was
152 for the first ounce. At the rate of 15¢ per ounce, the cost of
sending a letter that weighs n ounces (where n is less than 32) can be
computed by the formula:

Charge = .15[32 + Int(n — 32)] dollars

Program your calculator to determine the postal charges for various
letters. For a letter weighing 12 ounces, for example, $1.80 in postage
would be sufficient.

. If you want to find the number of years between two dates, you can
take their difference. However, if the first date is smaller than the

second, the difference will be negative. Using the absolute value
function, you can make this difference positive regardless of what it
was. In other words, the number of years between two dates equals the
absolute value of their difference. Write a program to compute the

number of years between two dates. For example, between 1930 and
1810 there were 120 years.

. How many digits does a whole number have? You can count this
number easily by eye when you look at any particular integer, n. For
example, 3,269 has four digits. You can also have your calculator
determine the number of digits by the formula: Number of digits = 1
+ Integer part of the base 10 log of n. Program this formula and try it
out for various values of n.
Suppose you blow a volume of 1,000 cubic centimeters (1 liter) of air
into a spherically shaped balloon. (See Figure 2-11.) What will the
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radius of the balloon be? From the formula for the volume of a sphere,

4 3V =—=ar,
3

you can algebraically solve for the radius, r. It 1s

PY
r dz

Program this formula and compute r. When V = 1000, r = 6.2035049.

Figure 2-11

The formula for finding the volume of a barrel used in this section is a
special case of a more general formula known as the prismoidal
formula. It 1s

V=(T+4M +B)

where T, M, and B are the areas of the top, middle, and bottom cross

sections of the object while 4 is its height. This formula works for any
sphere, cylinder, cone, pyramid, or prism, as well as for many other
solids including a barrel, a donut, and a bead. Write a program to find
the volume for each of the following solids using the prismoidal
formula. (See Figure 2-12.)

Figure 2-12a

 

Figure 2-12b
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Figure 2-12¢

 

a. Rectangular prism—for a = 2, b = 3, and ¢ = 4, the volume is 24.

b. Circular cone—for r = 2 and h = 6, the volume is 25.132741.

c. Frustum of a square pyramid—for a = 3, b = 5 and c¢ = 6, the
volume is 98.

When a baseball is thrown from the ground (assuming no air resis-

tance and a constant gravitational attraction throughout flight) with an
initial velocity of V,, ft./sec. and angle 6, it will land back on the
ground at a distance d from its starting position where

_ Vg sin (20)

a 32

a. Write a program to compute d.
b. Verify that for V, = 90 ft./sec. and § = 60°, d = 219.2 feet to the

nearest tenth of a foot.
c. For what angle, #, will a baseball thrown at 90 ft./sec. go the

farthest? How many feet will it travel? (See Figure 2-13.)

Figure 2-13
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If you entered the program as written, you should see a flashing “99” in
the display. A flashing display always indicates that an error has been
made. In this case the error is that the number 1 is missing between the
addition step 02 and the right parenthesis in step 03. Programs
can be in error in lots of ways. To name a few, your program could be
entered, written, or initialized incorrectly.

After you enter any program, you should always check it to see whether
it is correct. A good way to do so is to enter input data for which you
know (or can easily determine) the correct output. For example, in the

previous program to compute (n + 1)/2, the input value n = 99 should
have given an output of (99 + 1)/2 = 50.

When you check a program, the calculator may discover an error for
you and give a flashing display. Or, the calculator may compute some
result other than what you intended. For example, consider a program to
solve the problem shown in Figure 3-1: 9 glass panels, each of side length
s, fit together to form a square window of area A. Find the side length, s,

of each glass panel.

Figure 3-1
 

 

 

     
«S—

Since A = 9s2, solving for s algebraically gives the formula

A
s =\/= -

9

The following program was designed to evaluate this formula; enter it into

your calculator.

STEP PROGRAM

00 jr

01 9

02 Vx

03 R/S

Upon checking this program with the initialization enter 9
you will discover an incorrect result. The side length should be 1

rather than 3. Why is there an error?
To answer the question, recall that is a single variable prepro-

grammed function. Consequently, as soon as it is pressed, the value in the
display is square-rooted. In the program, immediately follows [9].

Hence, V9 is calculated rather than V9/9 .



38 Whenever you check your program and find that there is an error, you
will need to discover what the error is and then correct it. Sections 2, 3,

Checkibgand and 4 of this chapter discuss features of your calculator that you can use to
Procrams locate and correct program errors. Section 5 provides some exercises on

editing programs.

Section 2: Reading a Program

A good first step toward locating and changing program errors is to read
the program that your calculator has memorized. Some features on your
calculator facilitate the reading of a program in the learn mode, including
program memory location codes, program instruction codes, and forward-
backward single stepping. These features are explained in this section.

Here is a program to find the volume, V, of a cube given the side
length, s, using the formula ¥ = s°. Enter this program into your calcula-
tor.

STEP PROGRAM

00 yx

01 3

02 =

03 R/S

Check the program with the initialization enter 3 [R/S].
You should obtain a volume of 27 for this side length of 3.

Press the and keys to switch your calculator to the learn
mode. The display should show “00 35.” Each of these two-digit numbers,
00 and 35, 1s a special code.

The two-digit number 00 on the left names the program memory
location where the first program step is memorized. There are 50 such
locations, each identified by one of the code numbers 00 through 49.

The two-digit number 35 on the right indicates that the instruction y~*
has been memorized. In Section 3 you will learn which instructions
correspond to specific program instruction codes that appear in the dis-

play.

Remain in the learn mode and press SST |. This key stroke advances
the calculator to the next step of the program. You should see “01 03” in
the display. The Ol on the left represents the next program memory
location; the 03 is the instruction code for the “enter the digit 3” key
stroke.

Pressing twice more will show first “02 85” and then “03 81” in
the display.

As you have seen, the program consists of codes:

00 35

01 03

02 85

03 81



39 Now remain in the learn mode and press [BST |. This key stroke
instruction causes the calculator to backstep the program so that the

Checking and previous program memory location is displayed. Now press two
Editi : ) : :

Program more times so that “00 35” again appears in the display.
By using and in the learn mode you can move the

program to any program memory location you wish.
Switch your calculator back to the run mode. It is possible to relocate

your program to any memory location when in the run mode, but not with
the and instructions. does nothing in the run mode.

By using the key sequence n, n, you can relocate the
program to any program memory location. Here “n, n> represents any pair
of digits between 00 and 49, that is, any one of the 50 program memory
locations.

Key in the instruction sequence 02. Switch to the learn
mode. You should see “02 85” showing that the program is now located at
program memory location 02.

In summary, with and in the learn mode, you can go to
and display any program memory location. In the run mode, however, the
sequence n, n, where n, n is any program memory location
between 00 and 49, will relocate the program to any particular memory
location. Using these features you can read all or any of the memorized
program steps.

Section 3: Interpreting Program Instruction Codes

When you are in the learn mode and see program codes, you need to
interpet the codes to know the instructions they represent. In the three

examples that follow, the program instruction codes are presented and
explained in terms of five broad categories.

Example 1. Row-Column Codes and Digit Codes

Re-enter the program from Section 2 for computing the volume of a cube
from its side length. The steps are:

STEP CODE PROGRAM

00 35 y*

01 03 3

02 85 =

03 81 R/S

In step 00 the code 35 refers to the instruction which can be located
on the face of your calculator in the third row from the top and the fifth
column from the left. Thus, the code 35 is a row-column code. In steps 02

and 03 the codes 85 and 81 are also row-column codes codes referring to

[=] (row 8, column 5) and (row 8, column 1), respectively.



40 Notice the program code 03 in step 01. The code 03 is a digit code and
does not refer to the row and column location of a key. Instead, the code

Checking and (3 refers to the digit 3 itself. Each of the digits (0, 1, 2, 3,...,9) is

Programe similarly identified; that is, the code for each digit is the same digit
preceded by 0. Hence 00, 01, 02, 03, 04, . . ., 09 are the codes for 0, 1, 2, 3,

4,...,09, repsectively.

Example 2: 2nd Codes

Now enter this program into your calculator.

00 2nd log

01 2nd Int

02 +

03 1
04 =

05 R/S

The program determines how many digits are in a number placed in the
display. Verify that the program gives 4 when 5,678 is placed in the
display. Do so by pressing [RST], 5, 6, 7, 8, [R/S].

If you press you will see “00 18”in the display. The code
18 and others like it that end with 6, 7, 8, 9, or 0, (except for the digit key

codes 06, 07, 08, 09, and 00) identify instructions that begin with 2nd. This
means they refer to instructions printed above a particular key rather than
on it. The left digit of the code 18, 1 in this case, still identifies the row in

which the key is located. The right digit, 8 in this case, still identifies the
column but according to this correspondence:

DIGIT 67890

COLUMN FROM THE LEFT 12345

Thus, the program instruction code 18 identifies the key stroke sequence

[fog].
If you press the key five more times, you will see in the display

the codes shown in the first two columns that follow. For your con-
venience the last column names the corresponding program instruction.
Note that step 01 gives another illustration of an instruction code with a
second digit of 6, 7, 8, 9, or 0.

STEP CODE PROGRAM

01 49 2nd Int

02 75 +

03 01 1

04 85 =

05 81 R/S



41 Each of two more types of program instruction codes uses the row-column
identification already described but introduces an additional symbol. Both

Checking and are jllustrated in the following program.
Editing

Programs

Example 3: INV codes and Multiple Codes

Enter the following program and verify that it gives .857 when initialized
with enter 888 [R/S].

STEP CODE PROGRAM

00 45 +

01 07 7

02 85 =

03 —-49 INV 2nd Int

04 48 3 2nd Fix 3

05 81 R/S

This program divides any number by 7 and shows the decimal re-
mainder in the display rounded to 3 digits.

Notice in step 03 that the instruction code is —49 which indicates that
the is part of the memorized instruction. Further, the — symbol
indicates that the key is also part of it. Any time the key is
part of the memorized key stroke sequence the — symbol will precede the
two-digit program instruction code.

Notice in step 04 that the display shows “04 48 3.” This is a multiple
code. The 48 indicates that is in the memorized instruction. The
single digit 3 is also part of the memorized key stroke sequence. In this
case it 1s an instruction thattells the calculator to round the number in the
display to 3 digits after the decimal.

There are other times when a single digit appears as part of a program
instruction code. Generally, the single digit refers to one of your calcula-
tors eight memory registers or ten program labels. How these memory
registers and program labels can be used is explained in later chapters.

Section 4: Editing a Program

Enter into your calculator the program (with the error) given in Section 1,
namely:

STEP CODE PROGRAM

00 45 +

01 09 9

02 24 Vx

03 81 R/S
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This program fails to compute s correctly from s = VA /9 because the
division by 9 is not completed before the square root is taken. There
should be an equals sign between the [9] (in step 01) and the (in step
02).

Your calculator has a special feature that permits you to insert the
equals instruction between the [9] and [Vx]. First use either and

in the learn mode or in the run mode in orderto get
“02 24” in the display. Then in the learn mode press [Ins]. This pushes
the instruction, at step 02 (and all subsequent instructions) down one
location, leaving step 02 empty. Now press the equals instruction and it
will be memorized at step 02. Now the program is corrected and looks like:

STEP CODE PROGRAM

00 45 +

01 09 9
02 85 =

03 24 Vx

04 81 R/S

In general [Ins] works in the learn mode by taking the program
instruction shown in the display and all subsequent instructions and
pushing them down one location. This leaves the location shown in the
display empty and ready to receive a new instruction.

In addition to being able to insert program steps, you can also delete
program steps using the instruction. As with the [Ins]
instruction, relocate the program (using and in the learn
mode or n, n in the run mode) so that the step you want to
eliminate is in the display. Press and the instruction at that
location is deleted. All subsequent instructions move up one location. The
display shows the same step number, but that location now contains the
new code of the instruction.

To illustrate how to delete an unwanted program step, enter the fol-
lowing (incorrect) program to compute the area of a circle from 4 = = - r.

STEP CODE PROGRAM

00 30 2nd 7
01 55 X
02 55 X
03 81 R/S
04 23 x?
05 85 =
06 81 R/S



43 In the run mode, try this program with the initialization
enter 2 [R/S]. Clearly, you do not obtain the correct answer,

Checking and Loe .
Editing 12.566371, because the multiplication operation was erroneously entered

Programs twice in the program (steps 01 and 02).

To delete one of the extra multiplication operations, switch to the learn
mode and use the or keys until “02 55” appears in the
display. You go to step 02 since that is the step to be deleted. (Of course,
you could choose to delete step 01 instead in this case.) Now press
[Del]. Using the and keys verify that the program in your
calculator is now as follows:

STEP CODE PROGRAM

00 30 2nd 7

01 55 X

02 81 R/S

03 23 x?

04 85 =

05 81 R/S

There are other ways to edit a program in the learn mode. You can, for
instance, simply re-enter an entire program or write over incorrect steps.
You do the latter by going to the location of the incorrect step(s) and
pressing the desired key stroke sequence(s). Also, you can render any step
in a program inoperative with the (No Operation) instruction.
The effect of pressing at a program location is to have the
calculator pass through that location without doing anything.

Section 5: Exercises

1. The following program should compute the hypotenuse of a right

triangle according to the formula ¢c = Va? + b2.

STEP CODE PROGRAM

00 81 R/S

01 23 x?

02 75 +

03 81 R/S

04 23 x?

05 24 Vx

06 81 R/S

It is initialized with enter a enter b [R/S].



44 a. Run this program for a = 3, b = 4. Do you get 5?
b. In the program the addition operation is not computed before the

Checking and square root is taken. Correct this error by inserting [=] between the
Programe instruction (currently in step 04) and the instruction

(currently in step 05).

c. Now use and in the learn mode to verify that the
program has become:

STEP CODE PROGRAM

00 81 R/S

01 23 x2

02 75 +

03 81 R/S

04 23 x2

05 85 =

06 24 Vx

07 81 R/S

d. Now initialize and run the program for a = 3 and b = 4 and obtain
the correct answer ¢ = 5.

2. The following program was written incorrectly to compute

(n+ 1)
—

Enter it into your calculator and then edit it as indicated.

STEP CODE PROGRAM

00 43 (
01 81 R/S

02 24 Vx
03 75 +
04 75 +
05 01 1
06 44 )
07 02 2
08 85 =
09 81 R/S

a. Change step 02 to become [x2].
b. Delete step 04.
c. Insert [=] between the right parenthesis and the digit [2].



45 d. Now switch to the run mode and verify that the program works
correctly with the initialization enter 3 [R/S].

 

 

CheckEating The program should output
2Programs

3 : 1) _.

3. Listed here is a program that should compute

a—>5

b+5"

STEP CODE PROGRAM

00 81 R/S

01 65 _

02 05 5

03 45 +

04 81 R/S

05 75 +

06 05 5

07 85 =

08 81 R/S

Initialize with enter a enter b [R/S].
a. Check this program in the run mode to see thatit fails to give

5-5
535-0 fora=5and b = 5.

b. Edit the program.
c. Check to see that your program does now correctly compute

a—>5

b+5°
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By putting two identical triangular patterns with 8 pennies on a side
together, you could form an 8 X 9 array as shown in Figure 4-1.

      

     

  

    
 

Figure 4-1

00000000]
© ©]lo 0000 0 Oo]
© 00000000

|O © © 00000 Oo
© 000O0|lo0o Oo
© ©0000 0|loo oOo]
©0000 O0O0|0oO0|
© 00000000

8+1-9 -

Therefore,

f= BFUXE_ 5

In general, to make such a triangle with n pennies on a side,

, = (nt Dn

" 2

Now suppose you want to compute the value of ¢, for n = 222. An
obvious approach is to enter n in your calculator twice, once when
computing (n + 1) and a second time when multiplying by n. A very useful
feature of your calculator, however, enables you to perform the calculation
entering n only once. This feature is called memory.

Your calculator has 8 memory registers, referred to as R, R,,

R,, ..., R,, for storing up to 8 numbers. A number in the display is stored
in a register, say R,, when you press the key sequence 2]. This
stored value may be recalled for use when you press [2]. In general,
you store a number in register R by pressing [STO |m and you recall a
number in R, by pressing m (where m is any digit from 0 to 7).

Using this memory feature, here is how you could calculate ¢,,, in your
calculator’s run mode:

= 24753222

222 [sto] [1] [+] [1] [=] [x] [rel] [1] [=] [2] [5]
Whenever a number or the result of a computation is used more than

once, it is often helpful to store the quantity with the m instruction
and recall it when needed with the m instruction.

_ (222+ 1) x (222)
2



Section 2: Sample Programs Using Memory

Consider the penny-arranging problem from Section 1. Suppose you want
to program your calculator to compute the value of ¢, for any n. Rather
than enter n twice (once to compute n + 1 and a second time to multiply
by n), you can enter n once, store it in a memory register, and recall it
whenever needed. Figure 4-2 demonstrates a program to illustrate this use

 

   

 

   

  
   

 

   

 

of memory.

Figure 4-2

Flow Chart Program

Store n { 00 STOI

01 (

02 RCL1
Compute (n + 1) 03 +

4 1

05 )
¥

xX
Multiply by n or RCL 1

| 08 +
Divide by 2 09 2

10 =

Display {zt

li

{ Il R/S   

Initialize this program with enter 6 [R/S]. You should obtain
to = 21. Notice how the input value of 6 is stored at step 00 and recalled
(step 02 and step 07) when needed. As a general programming technique,if
an input value is to be used more than once in a program, store that value

at the beginning of the program and recall it whenever needed.
There are actually a number of reasons for using memory when writing

programs. One reason is to store input data that needs to be used several
times during the program. Another is to store intermediate results that may
be needed more than once. Yet another is to store output information for

reference purposes. Examples illustrating each of these uses of memory
follow.

Example 1: Storing Input Data

The program in Figure 4-3 is designed to compute the sales tax and the
final price of an item sold in a state with a 5 percent sales tax. Notice how
both the input price is stored at the beginning of the program and
thereafter recalled when necessary. If you start with a sale of $8.40, the
sales tax is $0.42 and the total cost $8.82.

48
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Flow Chart Program

Store sales price {00 STO1

Y

ompute >percent 0 22 0 05 RCLI
sales price 03 5 06 =

Y

Display {07 R/S

! 08 +
Compute total cost 09 RCL

{ 10 =

Display {11 R/S
   

Memory usage: R, = sales price
Initialize: enter sales price (see sales

tax now) (see total cost now)

Example 2: Storing Input and Intermediate Results

Heron’s formula for the area of a triangle given the triangle’s three side

lengths is A =V\/s(s — a)(s — b)(s — ¢) where the three side lengths are
a, b, and c, and the number s is the semiperimeter,

a+ b+ c

2

Notice in Figure 4-4 that a, b, and ¢ should be stored at the beginning
of the program so that they can be recalled for later use when the area is
computed by Heron’s formula. Furthermore, since the semiperimeter, s, is
used four times when computing the area, A, it is wise to compute s early
in the program and store it for recall when needed.

 

 

   
  

   
  

   

Figure 4-4

Flow Chart Program

- - 00 STO1 03 R/S
nter an 01 R/S 04 STO3

store a, b, ¢
02 STO2

\ 05 RCL1 10 =

06 + 11 =
Compute 5 = BENE 07 RCL2 12 2

08 + 13 =

09 RCL3
y

Store s {14 STO 4

'
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Compute
 

Vs(s — a)(s — b)(s — ¢)   

 
Display area, A

 

   

Memory usage:

Initialize:

he

15

16

17

118
19

20

21

(36
 

RCL4 22 X 29 (
X 23 ( 30 RCL4
( 24 RCL4 31 -—
RCL4 25 -— 32 RCL3
— 26 RCL2 33 )
RCL1 27 ) 34 =
) 28 x 35 Vx

R/S

Ri=a,R,=b,R;=0¢,R, =
enter a enter b enter ¢ [R/S].

Try this program for a = 13, b = 14, ¢ = 15. When the program halts
you will see the area, A = 84. The semiperimeter, s = 21, can then be seen

by pressing [4].

Example 3: Storing Input Data, Intermediate Results, and Output
Information

The fraction 8/5 can also be written as 1 + 3/5. In general any fraction,
n/d can be written in the form q + r/d, where q is the quotient and r is
the remainder upon dividing n by d. The program in Figure 4-5 computes
q and r, given any n and d. Furthermore, the results of the computation are
stored and can be recalled for reference purposes.

Flow Chart
 

Input and store n

Input and store d

Compute and store

n divided by d

 

 

   
 

   
 

Compute g as integer
n

part of J and store gq
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{00

01

02

03
04
05

08
09

Figure 4-5

Program

STO 1

R/S
STO 2

RCL1 06 =
+ 07 STO3
RCL 2

2nd Int

STO 4



|
 

   
 

Compute r as the

fractional part of 10 RCL3 13 RCL2

n divided by d multi- 11 INV2ndInt 14 =

plied by d and store 12 X 15 STOS
,

Stop and display r {16 R/S
   

Memory usage: R, =n, R,=4d,R; = % R,=¢q,Rs=r

Initialize: enter n enter d [R/S].

Try this program for 8/5 = 1+ 3/5. In this case n = 8 and d = 5.
When the program halts, you should see r = 3 in the display. You can now
find the value of g¢ = 1 by pressing [4].

Section 3: Problems

1. Figure 4-6 shows square lattices with 1, 2, and 3 squares on a side. If

51

you count the number of squares of any size that appear in these
lattices you will find 1, 5, and 14, respectively. In general, for a square

lattice with n squares on a side, the total number of squares equals

n(n + 1)2n +1)

6

Write a program you can use to determine the number of squares for
any n. Use the data given in this problem to check your program.

Figure 4-6
 

  

   

            

. Program your calculator to compute

Ln I

This quantity yields the number of rectangles of any size that can be
counted in a square lattice with n squares (see problem 1). Use your
program to verify that for n = 50, there are 1,625,625 rectangles!

. See Figure 4-7 for any ellipse with semi-major axis of a and semi-
minor axis of b, the area, 4, and (approximate) circumference, C, are



Figure 4-7

1

B
 A

given by these formulas:

A = mab

2 2
Cc = 2m /2 +b (approximately) 

2

Write a single program to compute both the area and circumference of
an ellipse from input values of a and b. In your program store the area
in R; and the circumference in R,. When all computations are com-
pleted, halt the program to display first the area, then the circum-
ference, both rounded to two decimal places. Verify that for a = 2 and
b = 1, 6.28 is the area and 9.93 is the circumference.

4. a. Use the formula

nl?

180° )
A=

4 tan 

to write a program to compute the area of a regular polygon with n-
sides each of length /. Verify that forn =4and/=3,4 = 9.

b. Show that the area of an equilateral triangle with each side of length
51s 10.825318.

Figure 4-8

      

li]

5. On what day of the week were you born? You can find the day of the
week corresponding to any date from the formula:

R = TX[INV] [Int] (N/7)

where N=D+v + bad [mi] (5)

mm)mm
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53 where D =number of days since the beginning of the year

Y =year (Y must be after 1582 when the present Gregorian

 

platingMemeny calendar system was started)
Programming R =the resulting day of the week after rounding to the nearest

Capability integer and applying the code:

Number Code Day

1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
0 Saturday

a. Write a program for this formula. Check it with January 1, 1900
which was a Monday (D = 1, Y = 1900, and R = 2) and with July
4, 1776 (D = 186, Y = 1776, and R = 5).

b. On what day of the week were you born?
c. When will New Year’s Day be for the year 2000?

6. Write a program to compute the quantity sin? § + cos’ § for any 6.
When you input § = 90, you should get a value of 1 for sin’ 90 +
cos? 90. What happens when you input any other value of 6?

7. If n people are in a group and three of them are to be chosen to form a
committee, the formula for determining the number of ways to choose
those three people is as follows:

n(n — 1)(n — 2)
6

Write a program to determine the number of ways to choose the
committee members when n = 3, 4, 5, 10, and 100. For n = 3, there is

obviously only one way to choose the committee.
8. A sphere has a volume and a surface area of:

V = Sr SA = 4mr* where r = radius

Write a program to find the volume and surface area of a sphere. For
r = 3, both the volume and the surface area = 113.09734.

9. Suppose you plan to cover the outside of a jewelry box with two kinds
of velvet. The box itself measures x inches by y inches by z inches. The

material for the top and the four sides of the box costs 3g per square
inch while the material for the bottom costs only 2¢ per square inch.
Write a program to compute the cost of material for the covering of

the box when its length, width, and height are x, y, and z respectively.

Use the formula:

Cost = .03(2xz + 2yz + xy) + .02(xy)

= .06xz + .06yz + .03xy + .02xy

= .06z(x + y) + .05xy

For x = 2,y = 3, and z = 4, the cost is $1.50.
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10.

11.

12.

13.

If a new car dealer advertises an automobile at a delivery price of
$5,272.50, how much does this car cost the dealer and how much profit

is the dealer making? Usually the dealer pays certain transportation
costs (that should be listed on the sales sticker) and about 82 percent
of the base price, which is the advertised price less the transportation
costs. For example, if there is $118.50 in transportation costs on a car
listed at $5,272.50, the dealer pays: (5272.50 — 118.50) X (.82) + 118.50
= 4344.78.
a. Program your calculator to accept the input values of the delivery

price and the transportation cost. Then calculate the dealer’s cost.
b. Extend your program to output not only the dealer’s cost but also

the dealer’s profit. For a sales sticker price of $5,272.50 and trans-
portation costs of $118.50, the dealer’s profit is $927.72.

c. Adapt your program to round all calculations to the nearest cent.
Do so by using the key stroke sequence [Fiq in your
program.

Bayes’ Law for probability states that

P(A|B)-P(B)P(B|4) = P(A|B)-P(B) + P(A|B’)-P(B)
 

where P(A) = probability that event 4 happens
P(B) = probability that event B happens
P(B’) = probability that the complement of event B happens

P(B|A) = probability that B happens given that A happens
P(A|B) = probability that 4 happens given that B happens
P(A|B’) = probability that A happens given that the complement

of B happens

Note that in Bayes’ formula, the product P(4|B) - P(B) appears twice
in the formula. Furthermore, use the formula P(B’) = 1 — P(B) for
finding P(B’).
Write a program to compute P(B|A) from the input values of P(A4|B),
P(A|B’), and P(B). Verify that for P(4|B) =.7, P(B) = .6, and
P(A|B’) = .2 P(B|A) = .84.
Let y be a random variable representing the number of successes on
n repeated and independent binomial experiments, where the probabil-
ity of success on a single experiment is p. Then the expected value
E(y) of y is E(y) = np and the standard deviation of yp is

SD(y) = Vnp(1 — p) . Write a program to input » and p and output
E(y) and SD(y). If n = 100 and p = .5, then E(y) = 50 and SD(y) =
5.
If you shoot a projectile (assuming no air resistance and constant

gravitational attraction) with an initial velocity of V,, feet per second
and at angle # at time #, = 0, then at any later time, the x and y
distances of the projectile are given by the formulas shown in Figure
4-9.



Figure 4-9

(x,y)

 

 

x = (V,cos 8)t (feet)

y = (V,sin 8)t — 161 (feet)

Write a program to input the initial velocity V, the initial angle 6, and
the time #; and then compute the x and y coordinates of the projectile.
At that time verify that your program works with this test data. When
Vo=90, 8 = 45° t = 2, then x = 127.27922 and y = 63.279221, or
x = 127 and y = 63 when rounded to the nearest foot.
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Getting Programs to Loop
and Generate Sequences

 

Section 1: Having a Program to Loop and Pause

Enter the following program into your calculator:

Figure 5-1

Flow Chart Program

00 +Add 2 to the 01 2
display 0 =

 

  
 

 

Stop and display 03 R/S
  
 

 

| Loop back 04 RST

Initialize: [CLR][RST],
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Now press [R/S |. Continue pressing the key. You should see the
sequence 2, 4, 6, 8, 10, . . . . The purpose of the key in step 04 is to
reset the program so that step 00 will be the next step executed. Pressing

in the run mode or executing in the learn mode always sends
the program back to step 00.

Here is another feature of your calculator that does the same looping
job. It is illustrated in the program in Figure 5-2 which also generates the
sequence 2, 4, 6, 8, 10,... . Read through the steps in the program. The
instruction [1] in step 05 operates quite like [RST |. Here the
[1] instruction sends the program to step 00, which has the label 1
instruction. In other words, when [1] is encountered, the program
skips (loops) to the step containing the [1] instruction.

 

   

  

   
 

Figure 5-2

Flow Chart Program

00 2nd Lbl 1
01 +Add 2 to display 0 2

03 =

Stop and display {04 R/S

!
Loop back {05 GTO 1

   

Initialize: [R/S].

In general, n must be used in conjunction with [2nd] n for any
digit n =0,1,2,...,9. Furthermore, either of the instructions may be

located anywhere in the program. As such, the n and Lbl] n
combination can be used in a much more general way than the
instruction, to skip a program ahead or loop it back to any step. Figure
5-3 contains an example: Enter and run the program shown there.

 

 

   
 

Figure 5-3

Flow Chart Program

Stop and display {00 R/S

!

to the ” 5
displisplay 04 =   



}
 

   
 

Stop and display {05 R/S

1
Loop back {06 GTO2

   

Initialize: [CIR] [R75].

When you continue pressing you see the sequence 0, 2, 4, 6,
8, ... . Read through the steps of the program to see where this program
differs slightly from the preceding programs. This program loops back to
step 01, where is located, instead of looping back to step 00.
Since an extra is executed at the beginning of the program, the
sequence 0, 2, 4, 6, 8,..., rather than the sequence 2, 4, 6, 8,..., is

generated.
With all the programs previously mentioned in this section, it has been

necessary to continue pressing the key to see each of the terms of
the sequence. You can, however, have your calculator display each of the
terms automatically for you with the pause feature. The instruc-
tion causes the program to stop running for about one second enabling
you to view a quantity in the display. After one second, the program
automatically continues running.

To illustrate how can be used, enter the revised version of
the last program, as shown in Figure 5-4.

 

   
 

   
 

   
 

Figure 5-4

Flow Chart Program

Pause {00 2nd Pause 2

1

to the 03 )
ispldisplay 04 =

}
Pause {05 2nd Pause

{
Loop back {06 GTO2

   

Initialize: R75).

You need to press only once in order to generate the sequence 0,
2,4,6,8,... .To stop the program, press the key and hold it until
the program stops.
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Section 2: Getting Your Calculator to Count

The programs written in Section 1 actually count by twos. How would you
program the calculator to display the sequence of consecutive positive
integers? In other words, how would you program the calculator to count
by ones?

In such a program the central idea is to calculate successive integers by
adding 1 to the previous integer during each program loop. To see how this
can be done, enter and run the program in Figure 5-5. In this program
your calculator counts by ones displaying the consecutive integers. You
can also get your calculator to count by any other number by merely
programming it to add that number during each loop.

 

   
 

   
 

Figure 5-5

Flow Chart Program

to the on ’
ispldisplay 03 =

¥

Pause {04 2nd Pause

¥

Loop back {05 GTO1
   

Initialize: [R/S].

Moreover, you can get your calculator to count down, as for a space
launching, by programming it to subtract 1 during each loop. If you do so,
it is necessary to initialize the program differently. For example, to
produce the sequence 60, 59, 58, . . ., you should begin the program with
60 in the display as illustrated with the program in Figure 5-6.

 

   
 

   
 

Figure 5-6

Flow Chart Program

Subtract 1 00 2nd Lbl1
from 01 -

the 02 1
display 03 =

¥

Pause {04 2nd Pause

{

Loop back {05 GTO1
   
 

Initialize: [CLR] [RST | 60 [R/S]. 
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Section 3: Exercises

1. What does the following program do when you enter and run it in
your calculator?

00 2nd Lbl 5

01 +

02 1

03 0

04 =

05 2nd Pause

06 GTO 5

Initialize: [R/S].

2. What sequence is produced when you change steps 02 and 03 of the
program in exercise 1 to become

02 1

03 + /—

3. Write a program to get your calculator to count by fives.

4. Adapt the program from exercise 1 so that it will display the sequence

0, 10, 20, 30, 40, . .. .

5. Adapt the program from exercise 4 to display the sequence 7, 17, 27,

37,47, ... .

6. Write a program to get your calculator to display the sequence 1,000,

900, 800, 700, .. .

Section 4: Sample Programs for Generating Sequences Recursively

Suppose you want your calculator to display the sequence: 3, 8, 13, 18, 23,

28, 33, ... . This sequence can be generated by starting with the number
3, adding 5 to get 8, adding 5 to get 13, and so on. Each term is formed by
adding 5 to the previous term.
When each term of a sequence is formed by performing arithmetic

operations on the previous term (or terms) of the sequence, the sequence is
said to be generated recursively, or by recursion. Recursively generated
sequences are particularly easy to program because the repetitious opera-
tion of forming each term from the previous term can be done in a loop.

Run the program in Figure 5-7 and see that it generates the sequence 3,
8, 13, 18, 23, 28, 33, ... . Notice that the sequence starts at 3 because 3 is

placed in the display during the initialization. Notice also that each
successive term of the sequence is formed by adding 5 to the previous term
during each successive loop.
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Figure 5-7

 

   

 

   
 

   

 

Flow Chart Program

Pause {00 2nd Pause

Add 5 o 2nd Lbl 4

to the 03 J
_ 4 =

Pause {05 2nd Pause

Loop back {06 GTO4
   
 

Initialize: [CLR] [RST| 3 [R/S].

Additional examples of programs that generate sequences recursively
follow.

Example 1: The Sequence: 1, 2, 5, 14, 41, 122, 365, . .

Notice that this sequence starts at 1 and that each term is then formed by
multiplying the previous term by three and subtractingone: 1-3 — 1 = 2,
2:-3—-1=5,5-3—1= 14, and so on. Can you write a program of your
own to generate this sequence before examining the following program?
(See Figure 5-8.)

 

   
 

  
 

 

   
 

Figure 5-8

Flow Chart Program

Pause {00 2nd Pause

{
Multiply the display 01 2ndLbll 04 -—
by 3 and then E X 05 1

subtract 1 03 3 06 =

t
Pause {07 2nd Pause

Loop back {08 GTO1
   

 

Initialize: [CLR| [RST] 1 [R/S].
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Sometimes you need to store the previous term in memory when that
term 1s needed more than once in forming the next term of the sequence.

Example 2. The Sequence 1, 2, 6, 42, 1,806, 32,634,442, . . . .

Notice that this sequence starts at 1. From there the terms are formed as:
1+12=2,2+22=6, 6+ 6% =42, and so forth. In other words, each

term is formed by adding the previous term to its square. In Figure 5-9 is
a program for the sequence just discussed. Enter the program into your
calculator and run it. As noted, the program illustrates an important
feature. Since each previous term must be used twice when forming the
new term, storing the previous term at the beginning of the loop becomes
convenient. The term can then be recalled as needed.

 

   

 

 

   
 

   
 

   

 

Figure 5-9

Flow Chart Program

Pause {00 2nd Pause

.| Temporarily store 01 2nd Lbl2
the term 02 STO

Form the new 03 RCL1 05 RCLI1
term as the M4 + 06 x2

(old term) + (old term)’ 07 =

Pause {08 2nd Pause

Loop back {09 GTO2  
   

Initialize: 1 [R/S].

You may note that step 03 is unnecessary, but it is included to make the
program more readable. Delete the step and verify that the program still
works. Can you explain why?

Example 3: The Sequence 1% 2% 3% ..., n? ...

This sequence can be generated recursively with the flow chart and
program in Figure 5-10.



Section 5:

 

Figure 5-10

 

   
 

   
 

   
 

 

Flow Chart Program

Store initial square number {00 STO 1

F . ! I 01 2ndLbl3 06 RCL
orm next square from 0 RCL 1 07 Vx

(previous square) + 03 + 08 +

2 - V previous square + 1 04 2 09 1
05 X 10 =

11 STOStore and oo result 12 7nd Pause

Loop back {13 GTO3
   

Memory usage: R, = n?
Initialize: [R/S].

Problems

1. In the sequence 2, 11, 20, 29, 38, . . ., each term is formed by adding 9

to the previous term. Write a program to generate this sequence.
2. Each term of the sequence 2187, 729, 243, 81, 27, ...1s formed by

dividing the previous term by 3. Write a program to generate this
sequence.

3. A sequence starts with 3, and each subsequent term is formed by
multiplying the previous term by 2 and then adding 1.
a. Program your calculator to generate the sequence. Verify that the

sixth term is 127.
b. Modify your program for this sequence to see which terms are

generated when the first term is each of the following:
1. The positive integer 123

11. The negative integer — 16

iii. The fraction 2
iv. The decimal .222

4. What combination of arithmetic operations produces each successive

term in these sequences?
a. 2,4, 8, 16, 32, 64, 128, . . .
b. 1/1,2/3,4/9, 8/27, 16/81, 32/243, . . .
c. 1,3,7,15, 31, 63, 127, . ..
d. —1, =3, =7, —15, =31, —63, —127, ...
e. 3, 8, 23, 68, 203, 608, . . .
f. 2,4, 16, 256, 65536, . ..

5. Write a program to generate the sequence 15, —27, 57,

— 111, . .. where each term is formed by first multiplying the previous

term by —2 and then adding 3.
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6. Consider the sequence of odd positive integers.
a. How do you obtain each term of the sequence from the previous

term?

b. Write a program to display this sequence.
7. Write a program to generate each of the following sequences. When

you run each program to display many terms, what happens?
a. The sequence, 2/2,9/2,25/4, 57/8, 121/16, . . . , has each succes-

sive term formed by first dividing the previous term by 2 and then
adding 4.

b. Start with any first term of your choice. Form each term of this
sequence by first adding 2 to the previous term and then taking the

square root of the result.

8. Write a program to generate either or both of the following sequences.
Display many terms and see what happens. Experiment by using
different first terms. Do you obtain the same results?
a. Start with a first term of 6. Generate each subsequent term by first

dividing 6 by the previous term and then adding 1.
b. Start with a first term of 5. Generate each term by subtracting half

of the previous term from 1.
9. Write a program to display the sequence formed by squaring the

previous term and then subtracting the previous term. Explore what

happens when you run your program for each of the following first
terms.
a. 2.1

b. 1.9
c. 2.0

10. Enter and run the following program to generate the sequence 3, 6, 30,
870, ..., recursively.

00 STO 1

01 2nd Pause

02 2nd Lbl 3

03 RCL 1

04 x?

05 —

06 RCL 1

07 =

08 2nd Pause

09 STO 1

10 GTO 2

Initialize: CLR, RST, 3, R/S

a. The program should display 3, 6, 30, 870, . . ., but does not. What

does the program do?



68 b. What single step of the program is incorrect and needs to be

changed so that the program displays the desired result? (Hint: The
Getting } ]

Programs to algebraic computations are correct.)
Loop and . . 9Generate c. What is register R, used for? |

Sequences d. How is each term of the sequence obtained from the previous term?

e. After the program is corrected (see part b), what sequence is

generated by the initialization CLR, RST, 2, R/S?

Section 6: Sample Programs For Generating Sequences Nonrecursively

In Section 4 you saw how sequences could be generated in a program
using recursion. Some sequences are more easily programmed using nonre-
cursive processes. Consider, for example, the sequence 12, 2%, 32
4,...,n% ...,, presented as example 3 in Section 4. Enter and run the
program in Figure 5-11, which also displays the sequence of consecutive
squares.

Figure 5-11

Flow Chart Program
 

Store counting number {00 STO 1

}
Generate and store next

counting number, n

i
Compute and display rn? 07 x*

I 08 2nd Pause

Loop back {09 GTO1

   
 

02 RCL 05 =
03 + 06 STOI1 

E 2nd Lbl1 04 1

 

 

   
 

   

Memory usage: R,; = counting number = n

Initialize:

Notice in the program that each term is not formed by an arithmetic
operation on the preceeding term. Instead, each term is formed in a
two-step process. First, each counting number from the sequence 1, 2, 3,
4, ..., is formed by adding 1 to the previous counting number. Secondly,
that counting number is squared to produce the appropriate term in the
sequence 12, 22, 32, 4%... . For any sequence, each term has a corre-
sponding counting number that indicates the position of the term in the
sequence. For example, 4° is the fourth term in the sequence 12, 22, 3%

4, ... . The counting number, representing the position of a term in a
sequence, is called the index number, or simply the index of that term.
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When each term of a sequence is formed by performing arithmetic
operations on its corresponding index number, the sequence is said to be
generated nonrecursively. Specifically, the program just presented generates
the squares nonrecursively because, in general, the nth square is formed by
squaring the corresponding index number 7.

Figure 5-12 is another example of a program that uses a nonrecursive
approach to generate a sequence. Enter and run this program to verify that
it generates the sequence 1, 3, 6, 10, 15,... . Notice in the program the

use of INV 2nd C.t in step 00. In general, this instruction clears everything
in your machine except program instructions and decimal settings. Conse-
quently, using the instruction at the beginning of a program effectively
enters the number 0 in each memory register. This insures that the index
register starts at 0.

 

   
 

 

 

   
 

   
 

Figure 5-12

Flow Chart Program

Set index = 0 {00 INV 2nd C.t

!
01 2ndLbll 04 1IN Compute next 02 RCL 1 05 =

index n 03 + 06 STO1

i 07 ( 11)
Compute nth 08 x2 12 =
sequence term 09 + 13 2

I 10 RCL1 14 =

Display term {15 2nd Pause

Y
Loop back {16 GTO 1  

   

Memory usage:
Initialize:

R, = index =n

Also notice the arithmetic operations performed on the counting index
in order to generate the sequence 1, 3, 6, 10, ... . If n is the index, then

the arithmetic operations compute

(n* + n)
2

There are times in programming when you may need to be creative in
setting and using the index for a nonrecursively generated sequence. The
next program in Figure 5-13 is designed to generate the sequence 90, 72,
56, 42, 30, . .. . Enterit and verify that it does. Notice in the program that
the index is set at 10, that the index decreases by 1 each time through the
loop, and that each term is computed as n(n + 1).



Figure 5-13

 

 

 

   
 

   
 

   
   
   

Flow Chart Program

00 1
Set index = 10 01 0

I 02 STO1

03 2ndLbl2 06 1
IN Compute next fo RCL 1 0] =

Index » 05 - 08 STO I
; 09 x 13 1

Compute 10 ( 14)
term 11 RCL1 15 =

I 12 +

Display term {16 2nd Pause

{
Loop back {17 GTO2

Memory usage: R,; = index = n
Initialize: [CLR] [RST] [R/S]

Now suppose you want a program to display the sequence 90, 56, 30,
12, ..., (that is, every other term of the sequence generated by the last
program presented). Two simple changes in the program accomplishes the
task. First, set the index at 11 instead of 10 (steps 00-01). Second, place
the number 2 instead of 1 in step 06.

Make the suggested changes and run the program to verify that the
sequence 90, 56, 30, 12, ..., is displayed. Notice that each term is still

computed by n(n + 1), but the index decreases by 2 each time through the
loop thus producing every other term of the original sequence.

Section 7: Problems

1. a. Write a program to display the sequence 2, 5, 10, 17, 26, 37, ..

Set the index at 0 and form each term by n? + 1.

b. Modify the program in part a by setting the index at 2. What
sequence do you obtain?

2. Consider the sequence 1/2,2,9/2,8,25/2, 18, ... .

a. Write a program to display the sequence. Set the index at 0 and
form each term by

(n+ 1)

2

b. Modify the program in part a to display only the integer sequence
terms (that 1s, 2, 8, 18, ...).
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Getting
Programs to

Loop and

Generate

Sequences

. In order to generate each of the following sequences nonrecursively,
where would you set the index and how would you compute the terms?
a. 0,5, 10, 15, 20, 25, ... .
b.0,3,815,24, ... .
c. 8, 15,24, 35,... .
d. 21,22 23,24... .

. Write a program for each of the following sequences
a. 3,9, 27, 81,... . Form each term as 3".

b. 8, 27, 64, 125, . .. . Form each term as n°.
. Write a program to display the sequence 1, 4, 27, 256,... . With
index = 1 and terms formed by rn". How fast does this sequence grow?

. Write a program to display the sequence with index = 1, first term =

1, and succeeding terms formed by Vn.
a. Which term of the sequence is the largest?
b. What happens as the counting number n grows very large?

. Write a program to display the sequence with index 0, first term =
— 1, and succeeding terms formed by n® — 2".
a. What does this sequence tell you about the answer to the question,

“Which is larger, n? or 2?”
b. What method could you use to answer the question, “Which is

larger, n> or 37?”
. Write programs to display each sequence according to the information
given. What happens in each case as n becomes very large?
a. First index = 0, first term = 1, and terms formed by (0.99)".
b. First index = 0, first term = 1, and terms formed by (1.01)".
c. First index = 0, first term = 1, and terms formed by (1.00)".



 
Using Memory Arithmetic
to Compute Series

Section 1: A Series Representing the Gambler's Problem

A gambler is offered the following deal. He is to toss a coin repeatedly
until the first head comes up. At that time he will receive 1, 4, 9, . . ., n?

dollars,if the first head appears on the first, second,third, . . ., or nth toss.

For example, if the first head appears on the fifth toss (that is, the
preceeding four tosses are all tails), the gambler receives $25.
How much can the gambler expect to receive, on the average, each time

he plays? By considering the probability decision tree shcwn in Figure 6-1,
you can see that the probability associated with the first head coming up

on the first, second, third,..., nth toss is 1/2, 1/4, 1/8,...,1/2",

respectively. Therefore, the amount received if the gambler plays very

many games is one dollar half of the time, 4 dollars a quarter of the time, 9
dollars an eighth of the time, . . . , n* dollars1 /2" of the time, and so forth.
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Figure 6-1

1st TOSS 2nd TOSS 3rd TOSS... ASSOCIATED PROBABILITY

—_—_—————_—_—_———Probability of head on 1st toss = 1/2

—_—_——Probability of head on 2nd toss = 1/2 - 1/2 =1/4

—Probability of head on 3rd=1/2 + 1/2 + 1/2=1/8

 

Probability of head on n-th toss = 1/2"

Putting this information together gives us the formula:

aAmount received = (1-2) + (4-3) + (9-3) +... + (7 5) +...

which can be written as:

ad 1
2,

2 (nm 2" )

The value of this series gives the average amount received assuming the
gambler plays an infinite number of times. Evaluating this infinite series is
rather difficult with standard mathematical techniques, but is not hard to
do on your calculator. Your calculator can compute this series by first
producing each term of the sequence

and then adding each term to a running total,

(1-3) +(4-3) +093) +... +(n- 5)

which will eventually become very close to the value of the infinite series

$ (md).
n=1

Using a feature of your calculator called memory arithmetic, your
calculator can efficiently handle the simultaneous calculations of each
successive term and the corresponding running total. In Section 7 of this
chapter, after memory arithmetic has been introduced and after the neces-
sary details for computing series as running totals of terms have been
explained, the value of the infinite series

Sr
n=1 2" ’

representing the amount the gambler receives, will finally be calculated.
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Section 2: Performing Arithmetic in Memory

Memory arithmetic is a built-in feature of your calculator that has many
applications in addition to computing series. Anytime you have a need to
maintain ongoing sequences and/or running totals, memory arithmetic
helps you create efficient programs.

Turn your calculator on and key in the program in Figure 6-2. What
sequence is displayed?

 

   
 

   
 

Figure 6-2

Flow Chart Program

Add 1 00 1
to R, 01 SUM

Y

Recall and f02 RCL 1
display R, \ 03 2nd Pause

Y

Loop back {04 RST
   

Memory usage: R, = sum

Initialize:

Step O01 of this program introduces a new feature of your calculator,
called summing (or adding) into memory. When the key sequence
[1] is executed, the value in the display is added into memory register 1. In
general the key sequence m, where m is any one of the digits 0, 1,
2,...,7, takes the value in the display and adds it into memory register
R,.

Effectively this program causes the calculator to count in memory
register 1, since the number 1 is added to R, each time through the loop.

Your calculator can perform other memory arithmetic as well as addi-
tion. It can also subtract from memory, multiply into memory, and divide
into memory. The necessary key sequences for accomplishing each of these
memory arithmetic operations are described in Table 6-1. Examples of
how to use these key sequences are included in the questions at the end of
this section.

 

 

TABLE 6-1

Key Sequences Description

SUM m Adds display into memory R,,
INV SUM m Subtracts display from memory R,,

(and puts the result in R,,))
2nd Prd m Multiplies display into memory R,,

INV 2nd Prd m Divides display into memory R,,
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Section 3: Exercises

1. In the run mode, store the value 100 in R,. Next enter the number 4 in
the display. Now key in the sequence [1].
a. What is the value that is now in R,? Press [1] to verify your

answer.
b. Now enter 6 in the display. Key in the sequence [1].

What is the value that is now in R,?
2. Enter the program in Figure 6-3 into your calculator.

 

Figure 6-3

Flow Chart Program

Set: 00 2
R,=2 01 STO   

} 

   
 

   
 

02 2nd Lbl 1
03 2

I 04 2nd Prd 1

Recall and 05 RCL
display R, 06 2nd Pause

'
Loop back {07 GTO 1

   

Initialize: [R/s].

What sequence is displayed when this program is run?
. What sequence of numbers is generated in memory register R,?
How is the value in R, changed each time through the loop?

. Whatis the effect of the key sequence [1] in steps 03
and 04? That is, what words make sense in the blank box in the

flow chart?
3. Examine the flow chart and program in Figure 6-4.

a. What sequence is generated in memory register 1?
b. What is the effect of the key sequence [1] in

steps 04-06; that is, what goes in the corresponding flow chart?
c. Whatis the effect of the key sequence [9]

[1] in steps 00-02?
d. Notice the use of successively in steps 08 and 09.

This enables the calculator to pause longer than a second.

4. What program generates the sequence 100, 96, 92, 88, 84, 80, 76, . . . in

memory register R,?

a
o
o
w
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Figure 6-4

Flow Chart Program
 

   

00 9
01 INV 2nd log

  
 

   

  
   
 

02 STO1

03 2nd Lbl3
> 4 1

05 0

| 06 INV2ndPrdl1

07 RCL

StayRe 08 2nd Pause

! 09 2nd Pause

Loop back {10 GTO3 
   

Memory usage: R, = sequence term

Initialize:

Section 4: Generating Sequence Terms in Memory

When programming your calculator to generate the terms of a sequence,
you will find memory arithmetic to be a very efficient tool. Memory
arithmetic is especially convenient for any sequence term that is computed
recursively using [=] or [=]. Such a term can be computed directly
in memory, leaving the x-register (display) free for other calculations. Also,
when each term is computed nonrecursively as a function of a counting
index, n, memory arithmetic enables you to generate n directly in memory
leaving the x-register (display) available for the computation of the corre-
sponding term.

To demonstrate how memory arithmetic can be used to generate
sequence terms, consider the sequence 1,1/2,1/4,1/8,...1/2",...,
which in decimal form looks like 1, .5, .25, .125, .0625, ... . The terms

of this sequence can be generated either recursively or nonrecursively;

program showing both styles are found in the following examples.

Example 1: A Program to Generate 1, 1/2, 1/4, 1/8, ...,1/2" ...,
Recursively

Since each term, other than the first, is half of the previous term, re-

peatedly dividing 2 into each previous term produces each next term as the
program in Figure 6-5 shows.

Note that the key strokes |] [1] accomplish the same
purpose as steps 05 and 06 in the following program.
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Figure 6-5

 

Flow Chart Program

Set: 00 1

Current term = first term 01 STO   
{

Recall and display
current term

 

03 RCL1
 

 

fo 2nd Lbl 1

   
   
   

, 04 2nd Pause

05 2enehey term 06 INV 2nd Prd 1

Loop back {07 GTO!

Memory usage: = term
Initialize: [em] [RST] [R/S]

Example 2: A Program to Generate 1, 1/2, 1/4, 1/8,
. 1/2", ..., Nonrecursively

The program in Figure 6-6 generates the counting index in Rg and
calculates each corresponding term nonrecursively in the x-register.

 

   

 
 

  
 

  

   
 

   
 

Figure 6-6

Flow Chart Program

Set:Index = 0 {00 INV 2ndC.t

01 2ndLbll
Y 02 2

_.| Compute next term 03 y~

in x-register 04 RCL6
05 =

| 06 1/x

Display term {07 2nd Pause

i
Generate next 08 1
counting index 09 SUM6G6

Loop back {10 GTO1  
   

Memory and x-register usage: R, = index, x-register = current term
Initialize:
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Example 3: A Program to Generate the Sequence 1/2, 4/4, 9/8,
16/16, . ..n%/2"

The terms of the sequence written as .5, 1, 1.125, 1, .78125, .5625, . .. can

be formed nonrecursively by generating the counting index n in Rg and
computing the corresponding term n?/2" in the x-register. A more efficient
way, however,is first to generate n in Rg, then to generate the denominator
2" recursively in Rs, and finally to piece together the information and
compute n?/2" in the display. Notice how the program in Figure 6-7 uses
the more efficient way.

 

Figure 6-7

Flow Chart Program

00 INV 2nd Cit
Set: 01 1
Re = index = 0 02 STOS   

  
04 1
05 SUM¢6

 

 
Generate next index n

Generate next denominator, 2"

i

 

Y

 

 

06 2
07 2nd Prd 3  

 

 

|
5 2nd Lbl1

|   

  

   
  

08 RCL 11 RCLS
Calculate term as n?-+2" 09 x2 12 =

10 =

Display term {13 2nd Pause

1
Loop back {14 GTO 1 

   

Memory and x-register usage: Rg = index, Rs = 2", x—reg = n*/2"
Initialize:

In summary, memory arithmetic is a powerful tool when generating the
terms of a sequence, because it enables various calculations to be carried
on in memory leaving the x-register (display) free for other calculations.

Section 5: Exercises

1. In the second and third exercises in this section, what is the purpose of
as step 00 in the programs?

2. Consider the problem of recursively generating the terms of the
sequence 1/3,1/9,1/27...,1/3" ... in memory R,.
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79 a. With what value would you initialize R,?
b. What key strokes would you repeatedly use to obtain each succes-

 

Using Memory sive term?
Arithmetic .

to Compute  3- Suppose you wish to produce the terms of the sequence

Serles 3 5 1 142m
-2’ =5> —-8’"""1-=3n

by generating the sequence of numerators 3, 5, 7,9, ..., 1 + 2n recur-

sively in R,, generating the sequence of denominators recursively in
R;, and forming each fraction in the display.
a. What repeated key strokes will generate each successive numerator

in R,?
b. What key strokes will generate each successive denominator in R,?
c. What key strokes will then form each fraction in the x-register

(display)?
4. The function sn(n + 1) + 1 represents the maximum number of

pieces that you can obtain when slicing a pancake with » slices. What
are the steps of a program that generates the index in R; and the
sequence 2,4,7,11,16,...,[3n(n +1) + 1],... in the x-register

(display)?

Section 6: Computing Series as Running Totals

Since series are sums of terms, series can be efficiently computed with
memory arithmetic. After each term is calculated, it can be summed into a
memory register containing the running total of all the previous terms. In
this way, a series can be computed as a running total of its terms. Memory
arithmetic is useful both for generating the terms for the series and for
computing the running total.

For example, consider the series 1/2 + 1/4 + 1/8 +... + 1/2". It
may appear obvious that the series should total 1, but can you actually get
your calculator to calculate that value? Figure 6—8 shows a sample program.
Run this program and see how many times it pauses before the running
total reaches the limiting value of 1.

 

   
 

   

Figure 6-8

Flow Chart Program

Set: 00 INV 2nd Cit

Running total in Rg = 0 o Y

i x
Current term in Rg = 1/2 03 STO

Y

Add current term to 04 2nd Lbl2

Running total 05 RCL6
7 06 SUMS



 

   
 

  
  

{
: 07 RCLSDisplay re total 08 2nd Pause

Compute 09 2

Next term 10 INV 2nd Prd 6

!
Loop back {11 GTO2  

 

 

Memory usage: Rg = term = 1/2", Ry = running total

Initialize:

As more and more terms are added, the running total comes closer and
closer to the limiting value of the infinite series. Because your calculator
only computes with 11 digit numbers, the running total for a convergent
infinite series will actually reach a limiting value after a finite number of
terms have been totaled.

Section 7: Solving the Gambler's Problem

Now you are prepared to solve the gambler’s problem posed in section 1 of
this chapter. Recall that the question was, “How much can the gambler
expect to receive, on the average, each time he plays?” In other words,
whatis the value of 1/2 +4/4+9/8 + 16/16 + ... +n*/2" + ... or
more simply

o0

> a
n=1 2

You might try writing a program to evaluate this series before reading

 

further.

Figure 6-9

Flow Chart Program

Set:
Running totalin R, = 0 00 INV2ndCit 03 2

Indexin R, = 1 io 1 04 STO3

Current denominator in R, = 2 02 STO2 05 1/x
Current term in x-reg = 1/2   

1
Add current term (in x-reg) 06 2nd Lbl3

- to running total 07 SUM

1
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{
Display (% RCL 1
running total 09 2nd Pause

!

 

   
 

 

 

  
 

   
  

Generate next 10 1
index n 11 SUM?2

y
Generate next 12 2
denominator 13 2nd Prd 3

'
) 14 RCL2 17 RCLS3

Form next — 15 x? 18 =
2

16 =

i
Loop back {19 GTO3 

   

Memory and x-register usage: R; = running total, R, = index n, R; =
denominator 2", x-register = term n?/2"

Initialize:

Run the program shown in Figure 6-9 to verify that the average
amount received is $6. Consequently, if the gambler has to pay $10 each
time he plays, he should expect to lose $4 per time on the average.

Section 8: Problems

In solving these problems you may find the general flow chart in Figure
6-10 useful for organizing a program to evaluate a series.

Figure 6-10
 

Set:
Running total = 0

Current term = first term
Other memory registers,

for example, an index

(if necessary)

Add current term

to running total
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|
Recall and display

running total

y

Calculate next term

¥

Loop back

Consider the series

11 1 1 > 1lg dgtm to tgt =25

which has the first four partial sums of 1.0000000, 1.3333333,

1.4444444and 1.4814815.
a. Write a program to evaluate the series.
b. What is the limiting value?
In sections 1 and 7 the gambler’s problem was introduced and solved.
The amount received was calculated from the series

XN 2Se
n=1 2"

Suppose instead of receiving n? dollars when the first head turns up
(on the nth toss), the gambler receives n> dollars. The average amount
received changes to S%_,n°/2".
a. Write a program to determine this new amount. The first four

partial sums being .5, 2.5, 5.875, 9.875.

b. How much is the average amount received?
c. Suppose the gambler has to pay $10 each time to play. What would

the gambler’s expected profit (or loss) be now?
d. If the gambler receives only n dollars when the first head turned up

(on the nth toss), what would his expected profit be?
. Consider the series

243 22432 2" + 3 a 27 + 37
+ p= tot +o2 &   

=1

which has the first four partial sums of .8333333, 1.1944444, 1.3564815,

and 1.4313272.
a. Write a program to evaluate the series.
b. What is the limiting value of the series?
Of the sequence of triangular numbers 1, 3, 6, 10, 15, ..., each term

can be formed by adding the preceding term and the index (or
sequence position) of the new term. Thus, the 5th term can be formed
as 10 + 5 = 15, the 6th term as 15 + 6 = 21, and so on. Let 7, be the

nth term of the sequence, let #,_, be the term preceding the nth term,



83 and let n be the index of the nth term. Then ¢, = ¢,_, + n, where

 

t 1 = 1 .

Using Memory a. Wri
}

Arithmetic ite a program to generate the series

to Compute 0

Serles
> 61, + 1

n=1

The first three terms of the series are7 7.7037037, and 7.875.

b. What is the limiting value of the series in part a?
5. Given the information in problem 4,

a. Write a program to generate the series

SBhel2012 + 10r, + 1

The first term is 31.
b. What is the limiting value of the series in 5a?

6. Look at Figure 6-11. A ball is dropped from a point 5 meters above a
flat surface. Each time the ball hits the ground after falling a certain
distance it rebounds to a height 80 percent of that distance. Find the
total distance the ball travels from the series 5 + 2(.80)!5 + 2(.80)?5 +
2(.80%5 + ....

Figure 6-11

HeiGHT}

5 -

(.80)5 —

(.80)%5 = (.80) (.80)5 — +

(.80)25 = (.80) (.80) (.80)5 —

 

 
 

TIME —>

7. The Riemann zeta function is defined by

¢(s) -> S foreachs > 1.

a. Write a program that allows you to input a value of s (where s > 4)

and then compute {(s). Check your program by evaluating {(10); the
answer should be 1.0009946, which is 7'°/93,555.

b. Find {(8) and { (6). These values should correspond to 7*/9450 and
7/945 respectively.

c. Why has the restriction that s > 4 been included in this problem?
8. The series

1 1 net 1l— +s5oH(=1) te



84 should equal (31/32) (7°/945). However,the series causes some program-
ming problems since it has alternating signs. Your calculator’s y* function

Using Memory (oes not allow you to compute any power of a negative number. In
Arithmetic . x . n+1

to Compute Particular, you cannot use the y* function to compute (—1)""".
Serles How then can you evaluate a series with alternating signs? An answer is

to use a memory location, say R,, for the appropriate sign, (+1 or —1),
which can then be multiplied onto the appropriate term. Initialize R, with
an appropriate sign (+1 or —1), and then repeat the key strokes [1],

in orderto alternately change the sign.
Evaluate the series by this method. After computing the term 1/r°, in

the display, multiply it by the +1 or —1 from R; and then sum the result
into the running total.

Verify that the first three terms are 1, .984375, and .9857467.

9. What is the value of the series

1 1 1 1 1
2V3 — + - + —-... )

1-3 3.38 5.3 7.33 9.34

The first three terms are 3.4641016, 3.0792014, and 3.1561815.

10. Write a program to show that

 

 3 = Smx + 3 5 “en 2n — 1)

for any value of 0° < x < 180° or 0 < x < « radians. For x =45°, the

first three terms are 0.7071068, 0.942809, and 0.8013877.

 7 sin 3x sin 5x sin(2n — 1)x—



 
Programming Your

Calculator to Make
Decisions

Section 1: Learning About the Test Registers

Turn your calculator off, then on. Press the sequence of keys: [9][ =¢]*.
You should see 0 in the display. The number 9 has been placed in memory
register R,, referred to as the test or f-register of your calculator. Now
press [1]. It appearsin the display (referred to as the x-register). Now press

[=r] again. What happens? The value 1 in the x-register is exchanged
with the value 9 in the t-register. Continue pressing the key. Each
time the values in the x- and z-registers are exchanged.

The ¢- and x-registers can be used in a special way. Numbers in the ¢-
and x-registers can be compared in a program. Together with other
features, such as decision tests and branching, your calculator can make a

variety of decisions within programs.

 

*The symbol x = ¢ represents the “x exchange #” key on the calculator.
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Programming

Your Calculator

to Make

Decisions

The t-register contains 0 unless another numberis placed there with the
key or sequence. In order to clear the z-register either

place 0 in the t-register or use the key sequence [C.t], which will do
just that without changing the x-register.

Section 2: A First Program that Makes a Decision

Enter the program from Figure 7-1 into your calculator.

 

  
 

 

  
 

 

  
 

 

  

     

Figure 7-1

Flow Chart Program

1. Enter and store first number in R, {00 STO 1

{
5 Enter and store second number in 01 R/S

t-register (R,) 02 x=1t

1
3. Return first number to x-register {03 RCL

4. Is x > 1? {04 2nd x >1¢

6. If no 5.]| If yes

Y

Exchange (05 x21

x and ¢

Y !

7. Stop and display smaller number {06 R/S
  
 

R, = first number entered, R, = ¢-register = 0
enter first number enter second number

R/S

Memory usage:

Initialize:

Notice that a new shape has been introduced to surround the decision-
making step in the flow chart. This shape always indicates that the flow of
the program goes (branches) in either of two directions depending on the
decision the calculator makes in that step.

Now run the program. Let 100 be the first number and 500 the second.
You should see “100” in the display.



87 What do you see in the display if you press enter 85 enter
2 [R/S]? What result do you obtain for each of the following pairs of

YourSaeuiatey  MUMmbers?

Who a. 36, 360 d. 65,1
b. 900, 20 e. 0, 1065

c. 83

What decision is your program making?
In each case the two numbers you entered are being compared and the

smallest is placed in the x-register and displayed when the program stops.
To understand what is happening in this program, walk through it step by
step.

Notice that the number before each of the following paragraphs corre-
sponds to the same number on the flow chart. This correspondence
indicates which of the parts of the program is discussed in each paragraph.

1.

2.

The first number entered is stored in R; (step 00) and the calculator stops
(step 01), so that the second number can be entered.

When you restart the calculator by pressing the program encounters
the instruction (step 02) which places the second number in the
t-register, R.

. Next, the first number stored in R, is recalled (step 03) and placed in the
x-register.

. Next, the (step 04) instruction causes the calculator to decide
whether the value in the x-register (display) is greater than or equal to the
value in the s-register. Effectively, the calculator answers the question, “Is the
x-register value greater than or equal to the ¢-register value?” with yes or no.
Depending upon the answer, the calculator goes (branches) either to the next
program memory location or to the one after that and continues execution
from there.

. If the answer is yes (the x-register value is greater than or equal to the
t-register value), then the calculator goes to the next program step im-
mediately following the instruction. In this program, a yes
decision causes the calculator to exchange the values in the x- and ¢-registers
(step 05).

. If the answer is no (the x-register value is not greater than or equal to the
t-register value), then the calculator skips the step immediately after

and goes to the next instruction. In this program, an answer of no
causes the calculator to go to step 06.

. Whatever decision is made in step 04, in this program the calculator eventu-
ally comes to the instruction in step 06. When the calculator stops, the
number displayed in the x-register is the smaller of the two numbers
originally entered.

Section 3: Using Comparison Tests to Make Decisions

In the last section your calculator made a decision by comparing two

numbers, one in the z-register and the other in the x-register. In fact the
only way your calculator can make a decision is by comparing the value in



Programming

Your Calculator

to Make

Decisions

the x-register to the value in the z-register. There are in total four specific
comparison tests that your calculator can make:

KEY SEQUENCE COMPARISON TEST

2nd Isx = 1?

2nd| x > ¢ Isx > 1?

x =1t Is x #1?

INV 2nd] x > ¢ Is x <1?

To illustrate the use of these comparison tests in getting your calculator
to make decisions, consider the following examples. Importantly, remem-
ber that if the answer to a comparison question is yes, the calculator
executes the next step. If the answer is no, the calculator skips the next step
and executes the next step after that.

Example 1: For a specific value x, is x* — 2x — 3 = 0?

First put 0 into the z-register, as in Figure 7-2. Next have your program
compute the value of x> — 2x — 3 for a specific x. Then with the compari-
son test, 2nd x = ¢, your program will be able to decide whether x? — 2x
— 3 = 0 or not.

You can see how this is accomplished in the following program, which
is designed to display x if x> — 2x — 3 = 0, or will display 7 = 3.1415927
otherwise.

 

   
 

   

 

   

Figure 7-2

Flow Chart Program

00 2nd CitPl -ace 0 in z-register 01 CLR

Y
Enter x {02 R/S

03 STO1 06 2 09 -
Compute x2 — 2x — 3 04 xX 07 X 10 3

05 — 08 RCL1 11 =

Is (12 2ndx=1
x2 =2x-3=0?

 

 

Ifjyes Iflno
Y

Skip ahead {13 GTO1

'

  

   



 

   
 

     

Enter 7 14 2nd 7skip ahead I5 GTO2

t 16 2nd Lbl 1nx 17 RCL 1

\

) 18 2nd Lbl 2Stop and display 19 R/S   

Memory usage: R, = x
Initialize: enter x [R/S].

Example 2

Suppose you are working for a bank that offers home mortgages at 8;
percent if a customer places 30 percent or more of the cost of the house as
a down payment. Otherwise the mortgage rate is 8; percent.
How can you program your calculator to answer the question, “For a

given house cost and customer’s down payment, is the down payment
greater than or equal to 30 percent of the house cost?” First compute 30
percent of the house cost and place it in the r-register. Next place the
customer’s down payment in the x-register. Finally, with the comparison
test your program will be able to decide whether the down
payment is greater than or equal to 30 percent of the house cost.

You can see how this comparison test is used in the program in Figure
7-3. If the down payment is 30 percent or more of the house cost, the
program stops and displays “8.25” representing the fact that the 8; percent
mortgage rate applies. Otherwise the program stops and displays “8.5.”
Verify that for a house costing $50,000 with a customer putting $10,000
down, the program shows “8.5” in the display.

 

   
 

 

 

Figure 7-3

Flow Chart Program

Enter and find 00 . 03 X

30 percent of house cost 01 3 04 R/S
02 0 05 =

!
Place in ¢-register {06 STO 7

'
Enter customer’s

down payment {07 R/S   



Is

down payment > 30 percent of {08 2ndx >t

house cost?

 

 

 
 

  
  
 

  
 

 

  
  
 

Iflno Ifyes

Skip ahead {09 GTO1

i
Place 8.50 in display 10 8 12 5

and skip ahead 11 13 GTO2

Place 8.25 in 14 2ndLbll 17 2

display 15 8 18 5
16

Stop and display hy os 2
   

Memory usage: R, = t-register = 30 percent of house cost
 

 Initialize: [RST| [CLR] [R/S] enter house cost enter
customer’s down payment [R/S].

Section 4: Problems

1. A certain bank has “now” accounts in which the balance at the end of
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a month earnsinterest at the monthly rate of J percent as long as the

balance is $200 or more. Otherwise the balance earns no interest. Write
a program to accept a monthly balance as input, and decide whether
that amount is greater than or equal to $200. If it is, add 1 percent of
that amount and display the new balance. If it is not, merely display
the balance. Test your program by entering a balance of $500. You
should obtain $502.50 in the display.
Postal rates (effective May 29, 1978) for first and second class are:

Class Rate
 

1 15¢ for first ounce plus 13g { for each additional ounce or
2 10g for first 2 ounces plus 6g fraction thereof.

In other words, if z is the weight in ounces rounded up to the nearest
integer equal or greater than the actual weight, the rates are:

 

Class Rate

1 A5 + .13(z = 1) for z being 1 or larger

2 10 + .06(z — 2) for z being 2 or larger
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Write a program to compute the correct postal rate from two input
numbers: the rounded-up weight, z, and the number 1 or 2 indicating
the class. Use this data to verify that your program works: For z = 5,
the class 1 postal rate is 67¢, and the class 2 postal rate is 28g.
Faced with a set of numbers how do you choose the smallest? One
process 1s to systematically examine each number in the set. First
examine the first number and choose it as the smallest number
examined so far. Next examine the second number; if it is smaller than

the first, choose the second number instead of the first as the smallest

so far. Continue examining each successive number, choosing it if it is
smaller than the previously chosen smallest number. After examining
all the numbers, the smallest of all of them will have been chosen.

Write a program to find the smallest of a set of numbers by the
above process. Initially store the first number in R,. After that, accept
each next number as input, decide whether the new number is smaller
than the previous smallest number saved in R,, and replace the
contents of R, with the new number if appropriate. At the end, recall
the contents from R, to display the smallest number.
A point (x, yo) is on a line if the coordinates x, and y, satisfy the
equation of the line. For example, the point (7, 32) ison y = 5x — 3
since 32 = (5-7) — 3. Write a program to decide whether a point is
on the line y = 5x — 3 or not. In case the point is on the line, display
the number 1, otherwise display 0. These points are on the line: (3, 12),
(5, 22), (—3, — 18). These points are not on the line: (—2, 5), (6, 20),
(=2, 3).
Write a program to decide whether a number is between 14.5 and 25.5
or not. If it is, display the number. If not, display O.
The United Parcel Service has a maximum package size requirement
that the length plus girth may not exceed 108 inches. If the length,
width, and height of a rectangular box are /, w, and A, the girth, which

is the distance around the box, is 2w + 2k). (See Figure 7-4.) Write a
program to accept input values for /, w, and 4 (in inches), calculate the
length plus girth, and compare it with 108. If the size of a package is
too large, display 0; if its size is acceptable, display 1. To check your
program, for / = 20, w = 14, and h = 20, a one should appear in the

display; and for / = 30, w = 14, and h = 30, a zero should appear in

the display. (Hint: Deciding whether / + 2w + 2h > 108 is equivalent
to deciding whether 108 is not > / + 2w + 2h.)

Figure 7-4

 



92 7. Not only does United Parcel Service have a maximum size for
packages, they also have a maximum weight of 50 pounds. Write a

Programming program to accept input values for length, width, and weight, and
Your Calculator decide whether the package can or cannot be sent by U.P.S.to Mak

Corton 8. A quadratic equation ax? + bx + ¢ = 0 has the roots

—b+Vd
Xo ¥a ==

where d = b%? — 4ac. When d > 0, the roots are real and are

_ —b+ Vd —b—-Vd

1 = 2a ’ 2a ’

When d < 0, the roots are complex and are

x, =u+vi, x,=u—vi wherei=V —1

and u =—b/2a, v=V-—d/2a.

Write a program to allow for the input numbers a, b, and c; then

compute d and test for real or complex roots. If the roots are real,
display x, and x,; and if the roots are complex, display « and v.

Test your program with

i. for x*?-2x-8=0, d=36; x,x,=4,—-2
ii. for 9x>—3x—-2=0, d=81; x,x,=+2/3,-1/3

iii. for x2+2x+3=0, d= 8 x,x,=—-1xV2i

Section 5: Making Decisions Involving Whole Numbers

As you have seen, the four comparison tests =1], >1],
[x=1], and can be used to make decisions

in a program. Often it is obvious which comparison test will make a
particular decision. Sometimes, however, it is not obvious. This usually
happens when the corresponding comparison test for a decision requires
some special knowledge about your calculator, mathematics, or both.
Consider, for instance, how you would test to see whether a number is a

whole number.
Every number has an integer part and a fractional part. For example,

3.157 has an integer part of 3 and a fractional part of .157, while 7 has an
integer part of 7 and a fractional part of 0. Notice that a number is a whole
number when its fractional part is 0 or when it is the same as its integer
part. Using the [Int] and instructions on your
calculator, you can find the integer and fractional parts of a number,
respectively. Therefore, you can test to see whether a number is a whole
number by either comparing its integer part to itself orits fractional part to
zero.

Determining whether a number is or is not whole can be useful in
making a variety of other decisions. For example, deciding whether a
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number, n, is divisible by four (or d) can be accomplished by testing
whether the quotient n/4 (or n/d) is a whole number or not. Similarly,
deciding whether a numberis a perfect square (or a perfect kth power) can
be accomplished by testing whether the square root (or kth root) is a whole
number or not.

For your interest, here are two programs illustrating the ideas just
presented. The first decides whether a number, n, is divisible by four, by
comparing the fractional part of the quotient n/4 to zero. The second
program decides whether a numberis a perfect square by taking the square
root of the number and then comparing the square root to its integer part.

Program 1

This program generates the sequence of counting numbers 1, 2, 3,4, .. .,
pauses to show those terms that are not divisible by 4, and stops to display
those terms that are. (See Figure 7-5.)

 

   
 

 

   
  

Figure 7-5

Flow Chart Program

Place 0 in z-register 0 cr

!
Compute the next 0 ndLbll 05 =

integer, n, and store E + 06 STO 1

in R,
04 1

y
07 .

Divide n by 4 fs 4

9 =   

Keep fractional part

 

of = dropping the integer part {10 INV 2nd Int

  
 

Is n evenly divisible by r

 

 

  

n 11 2ndx =t¢

le.1S 1 a whole number? 12 GTO2

If] yes If{no

Recall n 13 RCL
and pause 14 2nd Pause    '



 

Skip ahead

 

   
 

Recall n
and stop

{
   
 

 

Memory usage:

Initialize:
Comment:

Program 2

 Loop back »

   

{15

16
17
18

19
20

R, = n, R; = t-register = 0

GTO 3

2nd Lbl 2

RCL 1

R/S

2nd Lbl 3
GTO 1

When the calculator stops to display an integer evenly
divisible by 4, press to restart the program.

The program in Figure 7-6 generates the sequence of counting numbers 1,
., pauses to show those terms that are not perfect squares, and

stops to display those terms that are.
2,3,4,..
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Figure 7-6

Flow Chart
 

Compute the next
 ~ integer n, and

store in R,

1
Compute Vn and
store in R,

|

  
 

 

  
 

 

Keep integer part of Vn

dropping fractional part  
 

i
 

 
Place integer part in z-register

 
  !
 

Bring Vn into x-register
  
 

|

Program

00 +
01 1
02 =
03 STO 1

04 Vx
05 STO2

{06 2nd Int

{07 x=t

{08 RCL2



Is

 

 

  

 

 

   
  
   
   

n a perfect square 09 2nd x = ¢

ie. is Vn a 10 GTO

whole number?

If yes {If no

Recall n 11 RCL 1

and pause 12 2nd Pause

Skip ahead {13 GTO2

14 2nd Lbl 1
Recall n ls Rell

and stop 16 R/S

Loop back y and.Lbl 2
   

Memory usage: R, = n, R, =Vn, R, = t-register = integer part of Vn

Initialize:
Comment: When the calculator stops to display an integer that is a

perfect square, press to restart the program.

When testing to see whether a number is a whole number, you may
sometimes obtain unexpected results, due to the way in which your
calculator is engineered to make various computations. For example, if
you compute the cube root of 125, in spite of the fact that the display
shows 5., the actual value computed internally by the calculator differs
from 5. in the tenth or eleventh decimal places. (See the owner’s manual of
your calculator for details.) So, in a program that tests whether the cube
root of 125 is a whole number, the calculator will conclude that it is not

whole! If your calculator computes a value involving only [-] [=]
or you need not worry about obtaining unexpected results of this type.
However, you should expect them with other functions, especially with

and pl.
For your interest, a sequence of three key strokes avoids this difficulty.

The sequence changes the (internally stored) value of the
number in the x-register to the value that the display shows. Include this
sequence in a program after computing a value and before performing any
test.
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Section 6: Problems

1.
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Write a program to accept any year between 1901 and 2099 as input
and decide whether or not that year is a leap year. If it is a leap year,
display the year as a positive number; if not, display it as a negative
number.

. a. Write a program to decide whether a positive number is both less
than 100 and a perfect cube. If it is, have your calculator display the
number, otherwise, display 0. Test your program for 4, 100, and 125
which should give 0 in the display, and then for 27 which should give
27 in the display.

b. What happens when you test your program for a negative number?
Why?

. Write a program to decide whether a number is between — 100 and 100
and is a perfect cube.

. Write a program to generate the sequence of multiples of three. Have
your program pause to display each multiple and stop for each multiple
of three that is a perfect square.

. A Pythagorean triple is a triple of integers (a, b, c¢) that represent the
lengths of the three sides of a right triangle. Necessarily, ¢> = a*> + b2.
Find all Pythagorean triples of the form a, a + 1, and

c =a’ + (a+ 1) =V2a®+2a +1, where a, a + 1, and c are all
integers. Have your program begin with a = 1, increment a by 1 each
time through the loop, and stop to display ¢ when c is integral. Hint:
(3, 4, 5) is thefirst triple of this type. There are four solutions with c less
than 1,000. Can you find them all? (See Figure 7-7.)

. The triangular numbers 7, can be defined recursively 7, = T,_, + n
with 7, = 1. For which n is 7, a perfect square? For n < 2,000, there
are exactly 5 solutions. Can you find them all?

. Many problems of a puzzle nature involve dividing numbers by other
numbers and can be solved directly with the use of your calculator.
Find the smallest positive whole number having a remainder of 5 when
divided by 6 and a remainder of 8 when divided by 11. (Hint: You are
looking for a number n so that n = 6k + 5 and n = 11/ + 8. Write a
program tolet/ = 1,2,3,..., compute n, solve for k, and test whether

k 1s an integer. Have the program stop at the first instance when k is
integral and then display n).

Figure 7-7

 



 

  
  

Programming Finite Loops

Section 1: Having Your Calculator End Loops

A square-based pyramid is formed using cannonballs with a single
cannonball on top and a square number on each layer as shown in Figure
8-1. How many cannonballs are there in 10 layers? How many layers can
be made from 10,000 cannonballs? Rephrased in mathematical language
these questions become:

1. How large is

10
SN kP=12+22+3 +... +107
k=1

2. What is the largest value of n so that

SM K2=12+22+ ... +n? < 10,000?
k=1
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You could answer each of these questions by setting up an infinite loop to
calculate 12 + 22 + 32 + ... as a running total. During each loop the
calculator computes the next integer k, adds k? to the running total, and
displays the current running total. Then you can answer question 1 by
counting the loops and stopping the calculator after the 10th loop. Simi-
larly, you can answer the second question by counting the loops and
stopping the calculator just as the total goes over 10,000. (In this case you
will have counted one loop too many, that is, n + 1 loops, so you must
subtract one from the number of loops counted to get n, the answer.)

Nonetheless, your calculator can do the watching, counting, and the
decision-making for you. By including within the loop a comparison test to
check whetherit is time to end the loop, you can convert an infinite loop
into a finite one.

For the first cannonball question, have the program loop to compute
the running total 12 + 22 + 32 + ... . Include in the loop a comparison
test to decide when the number of times through the loop has reached 10.
At that time, have the program stop to display the current running total,
the answer to the first question. You will find a flow chart and program to
do the Cannonball Problem in the next section.

For the second question, use the same type of loop as in the previous
program. Include in this loop a comparison test to determine when the
running total becomes at least 10,000. At this time the number of com-
pleted loops minus 1 answers the question.

All loops you program are infinite loops unless you include in the loop a
comparison test to decide when to terminate it. Sections 2 and 3 of this
chapter present examples and problems for which the terminating condi-
tion is simply, “Has the number of completed loops reached a prede-
termined number yet?” Sections 4 and 5 go on to present examples and
problems of other conditions for terminating a loop.

Section 2: Calculating Finite Sums or Products

How can you set up a finite loop to calculate a finite sum, such as
12+ 22+ 32+... +n? or a finite product like n!= (n)(n — 1)(n —
2)... Q)1)?
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Example 1: The Cannonball Problem

As mentioned in the previous section, the calculation of the sum 12 + 2% +
32+... +10’ in the Cannonball Problem can be set up as a loop
designed to compute a running total. To make the loop finite, include
within the loop a comparison test to see whether the loop has been
processed 10 times yet or not. How would you set up a finite loop to
compute 12 + 22 + 32 + ... +n? where n may be different each time you
run the program, but will be known at the start of the program each time
you run it? You may want to try to program this on your own before
reading further.

Figure 8-2 contains a flow chart and corresponding program to enter

the value of n and then compute 12+ 22+ 32+ ... +n? for the
Cannonball Problem. Run this program for n = 10 to verify that the
number of cannonballs in 10 layers is 385. Then modify your program to
show that for n = 30, the number of cannonballsis just less than 10,000.

 

   
 

   
 

 

   

  

   

 

 

  
     

Figure 8-2

Flow Chart Program

Place n in R, {00 STO7

{
Place starting value of 01 1

k in display and in R, 02 STO1

03 2nd Lbl1
= Display k (optional) 04 ~d Pause

05 x?

Add k? to oe es

running total 08 2nd Pause
09 RCL1

{10 2nd x =1¢

If no If yes

i

Skip ahead {11 GTO2

12 1
oon 13 SUM I
o, « 14 RCL
ac 15 GTO1
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Display 16 2nd Lbl2

running 17 RCL2

total 18 R/S   
Memory usage: R, = k R, = sum R, = n = t-register

Initialization: enter n

Comments:

1. Notice the pauses in steps 04 and 08 which show k
and the running total as the program proceeds. If
either of these pauses are not desired, delete step 04
or delete steps 07 and 08.

2. For n = 10, there are 385 cannonballs.

3. For n = 30 the number of cannonballs is < 10,000

and for n = 31 the number is > 10,000.

Example 2: Computing n!

This next flow chart and program compute n! from an entered value of n.
The computation is performed from left to right according to n!= (n)(n —
(rn —2)...3)2)(1). Initially the value of n is used as the current factor,
and the current factor is reduced by 1 each time through the loop. The
current factor is compared to the number 1 after multiplying the factor
onto the running product. When the current factor becomes 1 the product
is complete.

 

   
 

   
 

   
 

Figure 8-3

Flow Chart Program

Place nin R, {00 STO1

{
Place last factor 01 1
in R, 02 STO7

4
Set running product 03 1

inR, to 1 04 STO?2

{
Multiply current 05 2nd Lbll

factor into fo RCL 1
running product 07 2nd Prd 2   

'
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a

Is

current factor = {08 2ndx=1¢
last factor?

If # If =

Skip ahead {09 GTO2

Y

Subtract 1 10 1

from current
11 INVSUM 1

factor, loop fu GTO 1

back

y

Display product o 2ndLb12

n! 15 R/S   
Memory usage: R, = end factor = 1, R; = n, R, = running product

Initialize: enter n
Comments: Here are 11 steps of another program using the same

initialization which calculate n!

[sT0] [0] [STO] [1] Pond] [Lb] [1] [2nd] [Ds7
[GTO] [2] [RCL] [1] [R/S] [2nd] [Lb] [2]

[RCL] [0] fond] [Prd] [1] [GTO] [1]

 

Notice the use of your calculator’s features which automatically
decrements R,, by one each time through the loop.

Section 3: Problems

1. How many cannonballs are there in a triangular-based pyramid with 1
cannonball on the top, 3 on the second layer, 6 on the third layer,
k(k + 1)/2 balls on the kth layer, and n layers all together? When
n=1,2, 3,4, the correct numbers are 1, 1 +3 =4, 1+ 3 + 6 = 10,

and 1 +3 + 6 + 10 = 20. How many cannonballs are there in 10
layers? In 20 layers? In 50 layers?

2. Find
n

> [3k(k — 1) +1]
k=1

for values of n equal to 2, 3, 4, and 5. Do you recognize the sequence
that is generated?
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102 3. The Fibonacci numbers are the numbers in the sequence f(0) = 0,

fH =1f2)=f)+f0)=1+0=1, and f(k) = flk = 1) + flk —
2) for all kK > 1. Write a program to compute a running total of
Fibonacci numbers, display each number as it is calculated, and then
display the sum of the first ten Fibonacci numbers.

4. Permutations are finite products. Specifically, P} = n(n — 1)(n —
2) ...(n — y + 1). The permutation P is similar to n! but differs in the
fact that the last factor is (» — y + 1) instead of 1.
a. Write a program to allow inputs of y and n and then compute the

permutation PJ.
b. How many ways could you choose a committee of a president,

vice-president, secretary, and treasurer from a group of 10 people?
This numberis symbolized by P}°. Whatis its value?

c. How many ways could 5 out of a group of 12 people seat themselves
in five chairs placed in a row? In other words, what is P;*?

5. When y objects are chosen from a collection of n objects, but the order
of choosing the objects is irrelevant, the number of choices is called the
number of combinations of y chosen from n, symbolized by C/—
specifically, C; = P/y! But the computation can be more efficiently
performed as a product of fractions:

Programming

Finite Loops

cnn.n=-1l n=-2 _ n—y+2 n-—y+1

Yooy y—=1 y-—=2 2 1
  
 

a. Program your calculator to compute C} with given input values of y
and n.

b. How many ways can you choose 4 people out of 10 when order is
unimportant?

c. If you have a collection of 10 different coins, how many different
subcollections of 6 coins could you choose?

6. The efficient formula for calculating a value of e, the base of the natural
logarithmsis:

1 1 1 1

Find the sum of the first 20 terms of this series.

Section 4: Ending a Loop When a Condition is Met

With the use of the comparison tests, you can set up a program loop that
ends when any of a number of different types of conditions is met. An
exhaustive list of such conditions is impractical since they depend upon the
context of an individual problem and on the particular approach you use

to solve the problem. Instead, two characteristic examples are given in this
section.



Example 1: Finding the Maximum of a Finite Number of
Possibilities—the Volume of the Box Problem

If a piece of paper 22 cm. by 28 cm. is marked off into centimeter squares,
has an x-cm. square cut off each corner, and is then folded into an open
box (see Figure 8-4), what value of x yields the box with the maximum
volume?

Figure 8-4

 

1 x Y
o
y
o
_

The volume is given by V(x) = (22 — 2x)(28 — 2x)(x), and x may take
on the (whole) values 1, 2, ..., 10. Notice that if x = 11, the box has no

width since 11 is half of 22. Consequently, x cannot exceed 10.
A program to find the x value corresponding to the maximum volume

can test each possible value of x, saving x if V(x) is larger than the volume
for any previous x value. The looping in the program ends when all values
of x have been tested. Therefore, this program is similar to those described
in sections 2 and 3 in the sense that the program stops after the loop has
been processed a predetermined number of times (ten in this case). Figure
8-5 (page 104) contains a flow chart and program to solve this problem.

Example 2: Finding a First Value When a Condition is Met—the
Stacking Problem

Suppose you have a large collection of n congruent unit length objects,
such as bricks, books, or cards. If you stack them so that the one on top
extends as far to the right of the bottom one as possible (see Figure 8-6,
page 105), can the top one overhang more than one unit length to the right?
If so, how many objects are necessary to achieve this condition?
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Flow Chart
 

 

Set R, = 10

Set R, = x-value = 1   
{
 

 

 

 
| Recall last V(x) value

"| and putin R,
  

 

 
Compute V(x)

  

 y
Is
current 3tre
 

 If{ yes
\

If [no
 

Skip ahead    i 
 
Store V(x) and x
 

  Y

 

Is

x =10? *   
  

If no

 /
 If yes
 

 
Skip ahead

  
 

 

 
Add 1 to x
loop back   

/ 

 

 
Stop, display

best x   

Figure 8-5

Program

[30 1 02 STO4 04 STO1
01 0 03 1

{05 2ndLbll 06 RCL2 07 STO7

08 ( 15 ) 22 X

09 2 16 Xx 23 RCLI
10 2 17 ( 24)

11 - 18 2 25 X
12 2 19 8 26 RCL1
13 X 20 —- 27 =
14 RCL1 21 2

{28 INV2ndx >1¢

{29 GTO2

{30 STO2 31 RCL1 32 STO3

332ndLbl2 35 STO7 37 2ndx=1¢
34 RCL 4 36 RCL 1

{38 GTO3

{39 1 40 SUMI1 41 GTOI1

{42 2nd Lbl3 43 RCL3 44 R/S

Memory usage: R, = r-reg., R, = 10, R, = x, R, = best V(x), R; =

Initialize:
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best x

[INV] Pad) [C4] [RST] [R/S].



Comments:

1. The best x is x = 4. To see the best V(x) press

[2].
2. If you use Ry to store 10 instead of R,, this

program fails because during the calculation of
V(x), Rg 1s used for temporary storage of inter-
mediate calculation values. When there are more
than 3 pending operations, your calculator may
change the values in Rg and Rg.

Considering physics, the maximum overhang length occurs if the center
of mass of the top object is balanced over the right edge of the next object
down. If the center of mass is to the right of that point, the object will fall;
if the center of mass is to the left, the overhang is not maximal. Similarly,
the center of mass of the top two objects needs to balance on top of the
right edge of the third. In general, the center of mass of the top n — 1
objects needs to balance on top of the right edge of the nth object. This
describes a way to actually build such a stack from the top down and
mathematically leads to the overhang length of

<|

2%
for n objects stacked for the maximal overhang length.
Now the mathematical question becomes: For what first value of n (if

any) does

a 1
= > 1?

2 2k

A flow chart and program for the stacking problem are found in Figure
8-7 (page 106). The program loops for each consecutive value of k,
starting at k = 1, computes 5; and adds 5; to a running total. The looping
ends when the running total first exceeds the value 1. Then, the current
value of k, representing the desired number of objects, is displayed.

Figure 8-6

 

 

 
Overhang

length
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Figure 8-7

Flow Chart Program
 

Store end value to be

   
 

   

 

   

  
   

    
  

exceeded in R, {00 STO7

01 1

Seth = 1 02 STO I

} 03 2ndLbll 06 RCL1
—{ Form term = 1/2k 04 2 07 =

05 X 08 1/x

t 09 SUM2
Add term to sum 10 RCL2

11 2nd Pause

Is 2 x=t

3 INV2ndx >¢  end value < sum?
 

 

       
     

If no {If yes

Skip ahead {14 GTO2

Add] ( x=t 17 SUM

loop back 16 1 18 GTO 1

19 2nd Lbl2

Stop to 20 RCL 1
   

Memory usage: R, = end value to be exceeded, R, = k, R, = sum
Initialization: enter 1

Comment: This program gives an n of 4. To find »n for a sum
greater than 2, use the initialization

enter 2 to obtain 31.

According to this program only 4 objects are necessary so that

501
2 55>

It is possible to find an n so that

501
= > 2.

2 2k
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107 Change the initialization in the program to
enter 2 and see if you obtain 31.
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Finite Loops

Section 5: More Problems

1. Write a program to generate the values v1 , V2 , V3 , V4 eee

V30 , that is, the values Vn for n going from 1 to 30. Have your
program find and display the maximum of these values.

2. a. Write a program to compute the fourth root of n =1,2,3,4,... ,

and to stop and display the first one exceeding 7.

b. How would you change the program to allow for any number rather
than just 7 to be used for the test value?

3. Suppose you paint k faces of a cube red and the other 6 — k faces blue.
Then, when the paint has dried, you toss the cube three times hoping to
obtain red on the top face twice and blue once in any order. How many
faces should you paint red and how many blue so that what you wish to
obtain has the maximum possible probability? (Hint: k = 0, 1, 2, 3, 4, 5,

or 6.)

4. What is the largest number of levels you can build in a square-based
pyramid made from 10,000 cannonballs? (See Section 1 if you need to.)

5. At a local school benefit dance, students paid $4 a couple and others
paid $5 a couple to attend. In total, $77 was collected. Phrased mathe-
matically, this last sentence becomes: for positive integers x and y,
4x + Sy =T7.

a. Find all four integer pairs (x, y) that solve the equation 4x + 5y =
71.

b. If the number of students and the number of other people who came
to the dance were as close together as possible, how many of each
came?

6. Jack’s beanstalk was most unusual. Someone said that on the first day it
grew to a short height and then grew according to the following pattern.

On the second day it increased its height by 1, on the third day by 3,

and on the fourth day by 3, and so on. How long did it take for Jack’s
beanstalk to reach 100 times its height on the first day? (Caution: The
answer is not given by the first n for which 3% _,1/n > 100.)

7. At a special fund-raising banquet, 100 senators, congresspersons, and

lobbyests showed up. Senators paid $75 each; congresspersons paid
$99; and lobbyests, $40 each. If $7,869 was collected, how many of each

came to the banquet? Hint: If S, C, and L represent the respective
numbers of senators, congresspersons, and lobbyests, then

S + C + L = 100 people

$758 + $99C + $40L = $7,869

Since there are at most 100 senators from 50 states, set up a loop with S

as an index, letting S go from 1 to 100. By solving the two equations
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algebraically for C and L, you obtain

C= (3,869 — 355)

59

gS = (2,031 — 245)

59

In the program, compute C and L from these formulas and test to see
whether each is an integer. Stop to display any integer triple solution for
S, C, and L.
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Writing Your First

Programs to Compute
Answers

Section 1: Calculating 2(n + 1)? in the Run Mode

Turn your calculator on and make sure that the PRGM-RUN switch
(located to the right of the ON-OFF switch) is set to RUN. Press this
sequence of key strokes:

 

Step Key Stroke(s) Display Shows

00 4 4.
01 1 4.0000
02 1 1.
03 + 5.0000
04 g x2 25.0000
05 2 2.
06 X 50.0000
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You have just computed the value of 2(4 + 1)> on your calculator.
Using a similar sequence of key strokes, compute the value of 2(9 + 1)? to
obtain 200.

You have been using your calculator in what is called the run mode. In
this mode the calculator’s primary purpose is to perform basic arithmetic
operations.

Suppose you want to compute 2(7 + 1)%, 2(11 + 1)4, 2(16 + 1)?, and
2(25 + 1). You can do so in the run mode by using a sequence of key
strokes almost identical to that described in steps 00 to 06. The only
difference for each computation is the first number entered.

Section 2: Programming 2(n + 1)2 in the Learn or Program Mode

In situations when you find it necessary to use a particular sequence of key
strokes repeatedly, you can avoid a great deal of work by using an
important feature of your calculator called the program mode. In this
mode, the calculator is able to “memorize” sequences of key strokes, called
a program. This program can then be executed (or run) in the run mode of
the calculator. You switch your calculator from one mode to the other with
the switch.

In Section 1 you considered the computation of 2(n + 1)? where n could
be any number. Using this computation, you will now program your
calculator to memorize the appropriate sequence of key strokes to perform
the calculation.

First, turn your calculator off, then on. Now switch the calculator to the

program mode. You should see “00” in the display.! Now press this
sequence of key strokes:

STEPS KEY STROKE(S) DISPLAY SHOWS

01 1 01- 31
02 1 02- 1
03 + 03- 51
04 g x? M4- 15 0
05 2 05- 2
06 X 06- 61

Now switch the calculator back to the run mode where the program can
be executed. To initialize (start) the program, press [PRGM]. Then enter
any value for n, say 3, and press [R/S]. The quantity “32.0000” should
appear in the display. To run the program to compute 2(n + 1)? for other
values of n, merely enter the desired value of n and press R/S each time.
Doing so for n = 7, 11, 16, and 25, the display should show “128.0000,

288.0000, 578.0000, and 1352.0000,” respectively.

'When the calculator is memorizing a key stroke, you see a different display from when
the calculator is performing the instruction represented by the key stroke. See your owner’s
manual for details.



113 Actually, your calculator is executing more for the program than just
the six steps you entered. There is a step preceeding step 01, called step 00,

FilPreyyour that always contains the key stroke. Every one of the program steps
to Compute after those you entered contain the key sequence instruction [00], an

Answers instruction that sends the calculator back to step 00 of the program. That
means that your program is really as follows:

STEP PROGRAM

00 (R/S)
01 1
02 1
03 +
04 g x2

05 2
06 X
07 GTO 00
08 GTO 00
09 GTO 00

The instruction at the beginning of your program allows you to
enter a data number, n. Steps 01 through 06 then compute 2(n + 1)
Finally, the instruction in step 07 sends your calculator back
to step 00 at which time the program halts, displays the result of the
calculation 2(n + 1)%, and awaits the entry of a new data number.

Remember that your calculator has exactly two modes of operation, the
program mode and the run mode. In the program mode the calculator can
only memorize a sequence of key strokes. In the run mode the calculator
can either perform any key stroke sequence that is pressed or execute a
memorized key stroke sequence.

Furthermore, any program always begins with in step 00 and,
unless otherwise designed, ends with [00].

Section 3: Using 2(n + 1)? to Solve a Problem

You may wonder why you would ever want to program your calculator to
compute 2(n + 1)%. There might be any number of reasons. This particular
computation was selected because it happened to provide the “answer” to
an interesting question suggested by the American flag.

Have you ever noticed how the 50 stars are arranged on the present-day
American flag? There are 4 short rows of 5 stars in each row and 5 longer
rows of 6 stars each. (See Figure 9-1.)

Similar patterns of stars can be formed with 8, 16, and 32 stars.

See Figures 9-2, 9-3, and 9-4, respectively. Notice that the 8-star pattern
uses 1 short row of 2 stars and 2 longer rows of 3 stars; the 18-star pattern

uses 2 short rows of 3 stars and 3 longer rows of 4 stars; the 32-star pattern



Figure 9-1

 

 

Figure 9-2 Figure 9-3

 

Figure 9-4

 

has 3 short rows of 4 stars and 4 longer rows of 5 stars. What other
numbers of states would have to be in the United States for this specific
type of star pattern to be used on the flag?

There would have to be n short rows of (n + 1) stars and (n + 1) longer
rows of (n + 2) stars. So in total there would be n(n + 1) + (n + 1)(n +

2) = 2(n + 1)? stars. Since each star represents one state, there would have
to be 2(n + 1)? states in the United States for the same type of star pattern
to be used.

Using the program in Section 2 for computing 2(n + 1)* you can find

all the numbers of states for which the stars could be arranged in the same
type of pattern as the 50 star-pattern.
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Section 4: Exercises in Analyzing the Program for 2(n + 1)?

1. In the example in Section 2, the program was enter1
enter 2 [00].

a. What was the purpose of the first encountered in the pro-
gram?

b. What was the purpose of the up arrow [1]?
c. When the instruction is encountered, the program is sent

back to the first [R/S]. What does the instruction do now?
2. Program yourcalculator to compute 21? + 1 for any value of n.

Section 5: Making Flow Charts

The program to compute 2(n + 1)? is summarized by the two diagrams in
Figure 9-5 called flow charts. One, the general flow chart, presents an
overview of what the program is designed to do. The other, the detailed
flow chart, presents step-by-step instructions (based on the general flow
chart) for writing the actual program.

 

   

 

   

  
   

 

   

 

Figure 9-5

General Flow Chart Detailed Flow Chart Program

Enter n { put n in x-register {(R/S)

lift n to y-register 1
Add 1 put 1 in x-register {1

add 1 ton {+
y

Square {square (n + 1) {g x?

- put 2 in x-register {2
Multiply by 2 5

multiply (n + 1)" by 2 {x

go to step 00 in order
GTO 00

Stop and display to stop and display {   

By comparing the flow charts to the program, you can see that each
rectangle in either flow chart corresponds to one or more key strokes in the
program. The vertical arrows in the general flow chart indicate the order in
which instructions are to be carried out.

Making flow charts can help you organize your thoughts when writing
programs. The general flow chart should consist of a few instructions to
make it clear at a glance what a program is designed to accomplish. The
detailed flow chart should show how to do each instruction in the general
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flow chart. The detailed flow chart should make writing the actual pro-
gram easy. You may find it helpful to make one or both of the flow charts
before writing a program. As you become better at writing programs, you
may find less of a need for the detailed flow chart.

As another example of the use of flow charts, consider writing a
program to compute the area of a triangle according to the formula:

_bh
I)

where b is the base length and #4 is the height of the triangle. (See Figure
9-6.)

A

 

   

 

   

 

   

Figure 9-6

General Flow Chart Detailed Flow Chart Program

Enter b { put b in x-reg (R/S)

Y lift b to y-reg {1

Enter 4 and multiply put 4 in x-reg {R/S

multiply b by A {x

! put 2 in x-reg_ x- 2

Divide by 2 divide (b- h) by 2 +=

y  
Stop and display {GTO 00

 

go to step 00 in order

to stop and display  

Section 6: Exercises Using Flow Charts When Writing Programs

Here are a few helpful hints that you may need to know in order to
proceed with the problems in this section.

Before entering any program, you should clear (or erase) any program
previously in the calculator. Clearing can be done in a number of ways.
The most obvious way is to turn the calculator off, then back on. However,

if your calculator is in the program mode, you can press the key sequence
and accomplish the same purpose.

If you find that you have entered a step of your program incorrectly,
you can correct the error in a variety of ways. For now, you should simply
clear your calculator and re-enter the program. Ways to edit a program
without erasing it are described in Chapter 11, Section 4.

1. In some states there is a special tax on food served in restaurants. If the
tax is 8 percent and the cost of a dinner is $5.00, then $5.40 is the cost

of the dinner plus tax. The general flow chart in Figure 9-7 describes a



Figure 9-7

General Flow Chart
 

Enter the dinner cost

{
Multiply by 1.08

i
Stop and display result

   
 

   
 

   

program that computes the total cost of a dinner (including tax) with
the formula: Total cost of the dinner = 1.08 - Dinner cost.
a. Make a detailed flow chart for this program.
b. Write the corresponding program from the detailed flow chart.

. Make a detailed flow chart for a program that will convert measure-
ments in feet to meters according to the formula,

Number of feet

3.28

. In order to convert temperatures from Fahrenheit, F, to Celsius

(centigrade), C, you may use the formula,

F — 32

1.8 °°

A detailed flow chart for a program to make the conversions is given in
Figure 9-8.
a. Complete the corresponding general flow chart in that figure.
b. Write the corresponding program.

Number of meters =

C = 

Figure 9-8

General Flow Chart Detailed Flow Chart
 

{put F in x-reg
 

 

lift F to y-reg

put 32 in x-reg

subtract 32 from F
 

  

 

put 1.8 in x-reg

divide (F — 32) by 1.8
    go to step 00 in order

to stop and display
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118 4. The average of two numbers is found by adding the two numbers
together and then dividing by two. The general flow chart in Figure 9-9

Writing Your describes a program for averaging two numbers.
First P ;
Mo Cate a. Make the corresponding detailed flow chart.

Answers b. Write the corresponding program.

Figure 9-9

General Flow Chart
 

Enter the first number

i
Enter and add the second number

'
Divide by 2

|
Stop and display result

   
 

   
 

   
 

   

5. You can find the volume of a box (Figure 9-10) by multiplying together
the length, width and height of the box. Make flow charts for a program
that will calculate the volume of a box. Now write the program.

Figure 9-10

 

 

  
1

Height
_y

 

LLLength_

6. Consider the flow chart in Figure 9-11.
a. Write a program to correspond to the flow chart.
b. When you run this program, what is always displayed, regardless of
the value of n?

Figure 9-11

Flow Chart
 

Enter n

{
Double n

'

   
 

   



Add 8

1
Subtract 2

!
Take 1/2 ofresult

!
Re-enter and subtract »

i
Stop and display result

 

   
 

   
 

   
 

   
 

   

Section 7: Problems

For the following exercises you may find it helpful to use flow charts.

1. Write a program to convert miles to kilometers using the formula,

Number of miles

.62 ’

How many kilometers is 5 miles, 8 miles, 31 miles, 500 miles, and 3,000

miles?
2. Write a program to compute the weekly salaries of someone who works

part-time for $2.85 per hour and works 12 hours, 18 hours, 14 hours,

and 22 hours. Use the formula, Salary = Number of hours - Hourly
wage.

3. Following two formulas work for converting Celsius to Farenheit tem-
peratures and vice versa:

a C= (F +40) 2 — 40

Number of kilometers =

b. F=(C + 40) - 2-40

Write a program for each conversion.

4. A company is selling cardboard in rectangular sheets at 3g a square

unit. Write a program to compute the cost of any rectangular sheet
using the formula, Cost in dollars = .03 - (/- w), where / and w are the

length and width of any rectangle. For / = 10 and w = §, the cost is
$2.40.

5. A dog owner wants to build a fence around a rectangular piece of land
that measures / by w meters. Her choice of fencing costs $5.89 per
meter. Write a program to determine the cost of the fencing with the
formula, Cost = 5.89 - (2/ + 2w). For / =5 and w = 4, the cost is

$106.02.
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120 6. a. Write a program to average 3 numbers, a, b, and c.
b. How would you adapt this program to average 4 numbers?

Writing Your ‘4 ie otFirst Programs 7. The area, A, of a trapezoid is given by,

to Compute b, +b
Answers A=h- ——,

where A is the height and b, and b, are the two base lengths. (See
Figure 9-12.)

Figure 9-12

/ ’ \ !
: RE}

Write a program for computing the area of a trapezoid. For b, = 8,
b,=10,and h = 3, 4 = 27.

8. When $n is invested in a bank at 6 percent interest, the value after 1
year will be, $n(1 + .06).
a. Write a program to compute this value for any invested number of

dollars, n.

b. What will be in the bank at the end of one year if you start with

$100?
c. Run your program again and find out what will be in the bank at the

end of the second year.
d. What will be in the bank at the end of 5 years if you start with $100?

9. A rectangle has area, 4 = /- w.
a. Write a program to compute the width of a rectangle, w, with length,

/, and an area, A, 360.

b. What are the widths of the rectangles when / is 5, 8, 10, and 15?

c. Use your program to find the values of / and w when the area of the
rectangle is 360 and the length is two more than the width.

 



 

 
Using Preprogrammed
Functions in Writing

Programs

Section 1: An Investment Problem Introducing the Function y*

Pieter Minuit, a Dutch colonist, bought Manhatten Island from the Indi-
ans in 1626 for a few trinkets, thought to be worth about $24. If instead,

Pieter Minuit had invested $24 in a bank at 5 percent interest per year,
what would he have earned after 1 year? After 2 years? By the end of 1638
when he moved to Delaware? Or by 1641 when he died? For that matter,
how much would be in his account now assuming nothing had ever been
removed?

Clearly, after one year Minuit would have earned $24 Xx .05 = §1.20
interest. Thus, his account would have had a total of $25.20. At the end of

the second year he would have earned $25.20 X .05 in interest. Using your
calculator, compute this value and determine the total amount in the bank
account. Do the calculations in the run mode.

To answer the rest of the questions, a well known finance formula for
computing compound interest is helpful. The formula is t = p X (1 + i)”,
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where p is the original amount invested, i is the yearly interest rate
expressed as a decimal, and ¢ is the total at the end of n years. Specifically,
in the Minuit problem, the total becomes $24(1 + .05)" or, simply,

$24(1.05)".
When Minuit moved to Delaware in 1638, twelve years had passed. So

the total in the bank would have been the value of $24(1.05)!? or, $43.10 to
the nearest penny.

The goal here is to develop a program to compute $24(1.05)” for any n.
Before doing so, you need to know how to compute $24(1.05)” for specific
values of n. This requires the use of the preprogrammed (built-in) function
key on your calculator, identified by the symbol, [y*].

Turn your calculator on and press the following sequence of keys in the
run mode: [1] [-] [0] [1] [X]. Your display
should show “43.1006” representing 43.10055182. Rounded to the nearest
hundredth, $24(1.05)'? represents $43.10.

Essentially the same sequence of key strokes can be used to compute
$24(1.05)" for any value of n. Switch your calculator to the program mode.
Press to clear out any old program in your calculator. Then
enter steps 01 through 10 of the following program and try it out. You do
not need to enter in step 00 nor in step 11 because those
instructions are already in your calculator. The program is shown in Figure
10-1. To test the program, use 20 for n, and “63.6791” should appear in
the display.

 

 

   

 

   

  
   

 

     

Figure 10-1

Flow Chart Step Program

= Start {00 (R/S)

01 1

Enter 1.05 0 0

04 5

Y 05 7

Calculate (1.05)" 06 R/S
07 fy

08 2

Multiply 24(1.05)" 09 4

10 X
y

Loop back to stop hr] 11 GTO 00
and display result {   

Initialize: (switch back to run mode), enter n
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Notice that step 06 is the key stroke [R/S], which stops the program so
you can enter the value of n. Steps 00 and 11 are already in the calculator
for the purpose of stopping the program to display the result of the
computation 24(1.05)".

Using this program you can answer each of the questions raised at the
beginning of the section concerning the $24 investment since each of the
questions is answered by essentially the same keystroke sequence. Running
the program is easier than entering the key stroke sequence over and over
again. Furthermore, the program is easily adaptable for solving similar
investment problems requiring the formula p X (1 + i)".

Section 2: Exercises Relating to the Investment Problem

1. Enter the program shown in Figure 10-1 of the previous section and
check to see if the totals in the bank after one year and after twelve
years agree with information in the section. Such checking is a good
technique to insure that you have entered a program correctly.

2. How much money would have been in the bank when Minuit died at
the end of 1641, fifteen years after he bought the island?

3. How much money would have been there at the end of 1664 (n = 38)
when Peter Stuyvesant surrendered Manhattan to the British?

4. How much would be in the bank after 300 years?
5. Write a program to compute the value of $100 invested at 6 percent for
any number of years, n.

Section 3: Single and Double Variable Preprogrammed Functions

Your calculator comes equipped with many preprogrammed functions,
most of which are accessed with one or two key punches. You have already
used some of these functions, such as |g] and the like.
These functions can be classified into two types—single variable functions
and double variable functions. There is an important difference in how
your calculator uses each type of function.

All single variable functions are computed immediately with the quan-
tity in the x-register, that is, the quantity in the display. While all double
variable functions are also computed immediately, they operate on two
quantities, one in the x-register and the other in the y-register.

TABLE 10-1 Single Variable Functions
 

 

Key Stroke(s) Description of the Function

changes the sign of value in display

computes the absolute value of quantity in display

computes the reciprocal of x (in display)

[=] [4] inserts 7 = 3.141592654 in display



TABLE 10-1 (Continued)

 

 

Key Stroke(s) Description of the Function

takes square root of x (in display)
squares value in display

SIN

computes trigonometric functions of angle in display

SIN-!
[£] computes the inverse trigonometric functions

Le]
takes the base 10 logarithm of the display
raises 10 to the x power

[in] takes the natural logarithm of x

raises e = 2.718281828 to the x power
deletes fractional part of numberin display

keeping integer part

FRAC deletes integer part of number in display
keeping the fractional part

 

TABLE 10-2 Double Variable Functions
 

 

Key Stroke(s) Description of the Function

adds

[—] subtracts

multiplies
[=] divides

raises the y-register value to the
x-register power?

finds the display value percent of
the quantity in the y-register
 

avy or xth root of y can be calculated with the key sequence
followed by [7] 7.

Section 4: Exercises in Analyzing Programs

1. One of the following programs correctly computes the product of 3
and 4 when initialization sequence[f] [STK], [PRGM|, enter 3,

is punched.
PROGRAM 1 PROGRAM 2

0 (R/S) 00 (R/S)

01 4 01 T
02 02 4

03 GTO 00 O03 X
04 GTO 00
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125 a. Which program correctly computes 3 - 4 = 12?

b. What does the other program compute? Why?
Usin,

preprogrammed 2. Which of the following programs correctly computes V1 + n ?
Functions in

Writing Programs

PROGRAM 1 PROGRAM 2 PROGRAM 3

00 (R/S) 00 (R/S) 00 (R/S)

01 1 01 1 01 1
02 1 02 1 02 1

03 R/S 03 R/S 03 R/S

04 f Vx 04 + M4 ff Vx
05 + 05 f Vx 05 GTO 00
06 GTO 00 06 GTO 00

Each initializes with [PRGMI, enter n, [R/S]. When n = 24,
V+ n =5.

3. What is the algebraic expression that each of the following key
sequences evaluates? Hint: Each sequence evaluates a different expres-
sion (computation).

SEQUENCE 1 SEQUENCE 2 SEQUENCE3

1 1 1

7 7 7
enter n enter n g 10”

+ g 10" enter n

g 107 + +

4. The following program is designed to compute y* when values for x

and y are entered.

STEP PROGRAM

00 (R/S)
01 1
02 R/S

03 fy:
04 GTO 00

In order to compute 3° = 243, which of the following initialization
sequences works?
a. [PRGM], enter 3, enter 5, [R/S].
b. enter 5, enter 3, [R/S].



Section 5: Sample Programs with Flow Charts

In this section examples of programs illustrate how various prepro-
grammed functions may be used. With each program there are general and
detailed flow charts. As you will see, they are useful for reading and
understanding programs that are already written.

Example 1: Finding the Hypotenuse of a Right Triangle

The hypotenuse, c, of a right triangle is related to the two legs, a and b, by

the formula, ¢ = Va? + b? . (See Figure 10-2.) If you are programming
your calculator to compute ¢, you could proceed as shown in Figure 10-3.
Now, make sure your calculator is switched to the RUN mode before you
press [PRGM]. In the RUN mode, resets your calculator to
step 00, whereas in the program mode, it erases your program! Thus,
initialize the program with enter 3 enter 4 and press
[R/S]. You should obtain 5.0000. For a =5, b = 12, do you get ¢ =
13.0000?

Figure 10-2

B
  

Figure 10-3

General Flow Chart Detailed Flow Chart Step Program

put a in x-reg {00 (R/S)
square a {01 g x2

 

Enter and square a

Enter and square b

}

 

 

put b in x-reg {02 R/S
square b {03 g x  2

 

 

 

+

of (a + b?) take square root of (a? + 52) {05 f Vx   :
 

go to step 00 in order (06 GTO 00 

Compute square root add b? to 42 {04

Stop and display
  to stop and display
 

Example 2: A Ladder Problem Using Trigonometry

Suppose you have a 4-meter long ladder and rest it against a wall so that
the bottom of the ladder is d meters out from the wall, as shown in Figure
10-4. What angle does the ladder make with the ground?
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Figure 10-4

 

In order to solve this problem, label the unknown angle as # and use the
fact that the cosine of 8 is d/4, that is, cos 8 = d/4. Since 8 is to be found,

you can solve for # algebraically and program your calculator with the
resulting formula:

6 = cos” (4)7)

The flow chart and program are shown in Figure 10-5. Initialize this
program by pressing in the RUN mode. Then enter the value of
d and press [R/S].

 

 

   
 

   
 

 

  

Figure 10-5

Flow Chart Step Program

~ Enter d {00 (R/S)

¢ 01 ?
Divide d by 4 02 4

} 03 +

(4 -1Take cos (4) {04 g COS

!
— Stop and display {05 GTO 00   

If you wish to verify that this program works, use the data below:

d IN METERS 9 IN DEGREES

0 90.0000

1 75.5225

1.5 67.9757

2 60.0000
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Example 3: The Volume of a Barrel

The volume of a barrel (with congruent top and bottom) is given by the
formula:

Figure 10-6

 

Initialize the program shown in Figure 10-7 with [PRGM]. Then enter
r press enter s press enter 4 [R/S]. Verify that a rain barrel
with r = 21 cm., s = 30 cm., and A = 90 cm. has a volume of 211209.2741

cubic centimeters (about 211 liters).

 

 

   

 
 

    
 

   
  

Figure 10-7

General Flow Chart Detailed Flow Chart Step Program

(put r in x-reg {00 (R/S)
square r {01 g x2

Enter r and s put 2 in x-reg 2 2

~| and compute { put s in x-reg o 1
r? + 2s? square s (05 R/>

multiply 2 by s? (06 g x

| add 2s? to r? (07 x

(put 7 in x-reg {08 g

Enter h and put A in x-reg {09 R/S
compute Th | multiply 7by A {10 ;

divider-hby3 {113| divide 7 y = :

Multiply 7? + 2s?
ah {multiply {13 X

by —
3

1 go to step 00 in

— Stop and display orderto stop {14 GTO 00
   and display
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Section 6: Problems

1. Program your calculator to find the arithmetic mean of three numbers,
a, b, and c. Use the formula,

Arithmetic mean = Tries .

The mean for 10, 20, and 30 1s 20.

2. Suppose the point P lies on the diameter of a semicircle and divides
that diameter into two segments of length a and b, respectively. (See
Figure 10-8.) Then the height from P to the circumference of the circle
is the geometric mean of a and b. The geometric mean =Va-b .
Program your calculator to compute the geometric mean. When a =
63 and b = 7, the geometric mean is 21.

Figure 10-8

 

 

3. The geometric mean of three numbers is Va-b-c. Write a program
to compute this. For a = 11, b = 22 and ¢ = 44, the geometric mean is
22.

4. The two resistors hooked up in parallel in Figure 10-9 produce a
combined resistance in ohms given by the formula:

1
1,1
R, RR,

Program your calculator to find this combined resistance. When R, =

36 ohms and R, = 45 ohms, you should obtain R = 20.

Figure 10-9

 

  

 

Ohm meter

5. Your calculator has the trigonometric functions sine, cosine, and

tangent but not their reciprocal functions, cosecant, secant and cotan-

gent, respectively.
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a. Program your calculator to compute one or more of the following:

 
1 o _

cosec (0) = Sin(0) for #=30°, cosec (8) =2.0000

1
-— = © = BD 47sec (0) cos(0) for #=30°, sec (8) 1.15

1
-— = ° = yi 1cotan (0) an(0) for #=30°, cotan (0)=1.732

b. An alternate method of calculating cotan (#) is by: cotan (0) =
tan(90° — #). Program your calculator for this formula. If § = 20,
then the cotan(#) = 2.7475.

. An ancient puzzle, shown in Figure 10-10, called the Towers of Hanoi
puzzle, has n discs of increasing size and three pillars. The objectis to
move the entire tower of discs from one pillar to another in the fewest
possible moves given these two conditions:
a. move only one disc at a time,

b. never place a larger disc on top of a smaller one.
It is known that the fewest possible number of moves is 2" — 1.
Program your calculator to compute this number for any number, n, of

discs. For n = 10, 2" — 1 = 1023.0000.

Figure 10-10

 

 

7. At the time of the printing of this book, the first class postal rate was
15¢ for the first ounce. At the rate of 15¢ per ounce, the cost of
sending a letter that weighs n ounces (where n is less than 32) can be
computed from the formula:

Charge = .15[32 + INT(n — 32)] dollars

Program your calculator to determine the postal charges for various
letters. A letter weighing 12 ounces would cost $1.80 in postage.

. If you want to find the number of years between two dates, you can
take their difference. However, if the first date is smaller than the

second, the difference will be negative. Using the absolute value
function, you can make this difference positive regardless of what it

was. In other words, the number of years between two dates equals the
absolute value of their difference. Write a program to compute the
number of years between two dates. For example, between 1930 and
1810 there were 120 years.
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9.

10.

11.

 

How many digits does a whole number have? You can count this
number easily by eye when you look at any particular integer, n. For
example, 3,269 has four digits. You can also have your calculator
determine the number of digits by the formula: Number of digits = 1
+ Integer part of the log of n. Program this formula and try it out for
various values of n.
Suppose you blow a volume of 1,000 cubic centimeters (1 liter) of air
into a spherically shaped balloon. (See Figure 10-11.) What will the
radius of the balloon be? From the formula for the volume of a sphere,

V = 3 ar,

3
you can algebraically solve for the radius, r. Itis V3V/47 .
Program this formula and compute r. When V = 100, r = 2.8794.

Figure 10-11

The formula for finding the volume of a barrel used in this section is a
special case of a more general formula known as the prismoidal
formula. It is

V=(T+4M +B) 4

where T, M, and B are the areas of the top, middle and bottom cross

sections of the object while 4 is its height. This formula works for any
sphere, cylinder, cone, pyramid, or prism, as well as for many other
solids including a barrel, a donut, and a bead. Write a program to find
the volume for each of the following solids using the prismoidal
formula. (See Figure 10-12.)
a. Rectangular prism—for a = 2, b = 3, and ¢ = 4, the volume is

24.0000.
b. Circular cone—for r = 2 and A = 6, the volume 1s 25.13

c. Frustum of a square pyramid—for a = 3, b = 5, and ¢ = 6, the
volume is 98.0000.

Figure 10-12c

Figure 10-12b

Figure 10-12a

  



132 12. When a baseball is thrown from the ground (assuming no air resis-
tance and a constant gravitational attraction throughout flight) with an

Using initial velocity of V, ft./sec. and an angle 0, it will land back on the
Preprogrammed . . . .

Functions In ground at a distance d from its starting position where

Writing Programs d = V§ sin (20) feet.

a. Write a program to compute d.
b. Verify that for V, = 90 ft./sec. and 8 = 60, d = 219.2 feet to the

nearest tenth of a foot.
c. For what angle, 4, will a baseball thrown at 90 ft./sec. go the

farthest? How many feet will it travel?

Figure 10-13

 



ah
Checking and Editing
Programs

  
Section 1: Detecting Incorrect Programs

Here is a program to compute (n + 1)/2. Enter the program and press

enter 99 [R/S].
STEP PROGRAM

00 (R/S)

01 1

02 1

03 1

04 2

05 4

06 +

07 GTO 00
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If you entered the program as written, you should see “99.5000” in the
display. An error has been made. In this case the error is in the set-up of
the arithmetic operations. Asit stands, the program first divides 1 by 2 and
then adds ; to n giving n + 3. Instead, the program should first add 1 to n
and then divide (n + 1) by 2 giving (n + 1)/2.

After you enter any program, you should always check it to see whether
it is correct. A good way to do so is to enter input data for which you
know (or can easily determine) the correct output. For example, in the
previous program to compute (n + 1)/2, the input value n = 99 should
have given an output of (99 + 1)/2 = 50.

Programs can be in error in lots of ways. To name a few, a program
could be written, entered, or initialized incorrectly. Usually when a pro-
gram is in error, the calculator computes some result other than what you
intended. For another example, consider a program to solve the following
problem shown in Figure 11-1: 9 glass panels, each of side length s, fit
together to form a square window of area A. Find the side length, s, of
each glass panel.

Figure 11-1
 

 

 

     
-—S—

Since A = 9s?, solving for s algebraically gives the formula

A
s=\/+5

9

The following program was designed to evaluate this formula. Enter the
program and keep it in your calculator for use in this and the next section
of this chapter.

STEP PROGRAM

00 (R/S)

01 +

02 9

03 f Vx

04 GTO 00

Upon checking this program with the initialization enter 9
you will discover an incorrect result. The side length should be

1.0000 rather than 3.0000. Why?
In order to answer this question recall that the double variable function

[=] is performed when the key stroke [+] is encountered. That means that
the program first divides whatever was in the y-register by the number



135

Checking
and Editing

Programs

placed in the display during the initialization. Next the program enters 9 in
the display in step 02 (while pushing the result of the division up to the
y-register). Finally the square root of the 9 in the display is taken, giving

“3.0000”. Therefore, the program computes V9 rather than the desired

value of V9/9 .

Whenever you check your program and find that there is an error, you
need to discover what the error is and then to correct it. Sections 2, 3, and

4 of this chapter discuss features of your calculator that you can use to
locate and correct program errors. Section 5 provides some exercises on
editing programs.

Section 2: Reading a Program

You should have the incorrect program, designed to solve the square
window problem (at the end of Section 1), in your calculator. Before being
able to correct the program, you have to locate the error and decide how to
changeit.

A good first step toward this goal is to read the program that your

calculator has memorized. Switch your calculator to the program mode.
The display should show “00.” Now press the “single-step” instruc-
tion. This key stroke advances the calculator to the next step of the
program. You should see “01- 71” in the display. Each of the
two-digit numbers is a special code. The two-digit number 01 on the left of
the hyphen names the program memory location where the program step is
memorized. There are 50 such program memory locations, each identified
by one of the code numbers 00 through 49. The two-digit number on the
right, 71, is called the program instruction code and refers to the mem-
orized program instruction [+]. In Section 3 you will learn which program
instruction codes correspond to specific key stroke instructions.

Press again. The program will advance showing step 02.
You should see “02- 9.” Pressing twice more, you should see
“03- 14- 0” and “04- 13- 00.” Altogether the program
reads as follows:

STEP CODE

00 blank

01 71

02 09

03 14 0

04 13 00

Now press [BST]. You see “13- 14 01.” The purpose of the
key is to skip backwards through the program memory and display

the previous program memory location. Press three times more.
You should see “00.”

Using the and in the program mode, you can go to
and display any particular program memory location you wish. In the run



136 mode, and also advance or step back the program.
Furthermore, when is pressed in the run mode, the calculator

andEditing executes the particular program instruction located at the program mem-
Programs Ory location.

In the run mode, however, there is another way to go to any particular
program memory location, without having the calculator actually perform
any of the memorized program instructions. The key sequence n,n

(where the digit pair n,n is one of the program memory locations
00, 01, . . ., 49) will send the program to that particular location.

Switch your calculator back into the run mode. Enter 25 and then press
so that you see “25.0000” in the display. Next press [03]. Notice

that the display does not change. This is because the calculator advances
the program to step 03 but does not perform any memorized program
instructions. Now switch into the program mode. You should see “03-
14- 0” verifying that the program did advance to step 03.

Again switch back to the run mode. You will again see “25.0000” in the
display. Switching in and out of the program mode does not affect the
display and stack registers.
Now stay in the run mode and press down and hold it down.

You now see the program memory location “03- 14- 02”
where the program is at the moment. Release the and you will
notice that the number in the display changes to “5.0000.” This is the result
of the calculator actually performing the memorized instruction “14 0”
which refers to the instruction, taking the square root of 25 and
then single-stepping on to step 04 of the program.

Verify that the program advanced to step 04 by switching into the
program mode. You should see “04- 13- 00.”

In summary, you can go to and read program memory locations in
either the program or the run modes. In the program mode, you see the
memory locations in the display and can move to see another memory
location with the use of and [BST]. In the run mode you see the
x-register in the display. With the sequence n, n (where n, n is one
of the pairs 00, 01, 02, . . , 49), you can move the program to any of the

program memory locations and see that location by switching into the

program mode. The n, n instruction in the run mode does not cause
the calculator to perform any memorized program instructions. Further-
more, in the run mode you can use and to advance or
step back the program one memory location. When is pressed down
(in the run mode) the present program memory location is displayed;
and when it is released, the corresponding instruction is performed, and
then the program advances to the next program memory location.

Section 3: Interpreting Program Instruction Codes

After entering the program from the end of Section 1 into your calculator

and reading the memorized instruction codes, you discovered the following
correspondence.



137 STEP CODE PROGRAM

00 blank (R/S)
Checking

and Editing 01 71 -

Programs 02 9 9

03 14 0 fVx

04 13 00 GTO 00

Look at step 01 and its program instruction code, 71. This instruction
code indicates that the corresponding key stroke is located in the seventh
row (from the top) and the first column (from the left) on the face of your
calculator. Since [+] is the key on your calculator in the 7th row and Ist
column, the code 71 refers to the [=] instruction. All program instruction
codes with a left-most digit other than zero are row-column codes and
indicate the key located on the face of your calculator in the corresponding
row and column.

Now look at step 02. The one-digit program instruction code on the
right is 9 and refers to the instruction “enter the digit 9.” Each of the keys
with the digits [0] [1] ..., [9] on them correspond to the program
instruction codes 0, 1, 2, 3, .. ., 9, respectively.

In step 03, the program instruction code, “14 0,” is a multiple code.
Its first pair of digits, 14, refers to the key in the first row and fourth
column, thatis, the key. Its digit, 0, refers to the digit 0 key. Together
they indicate the instruction since the Vx is written in yellow
above the digit 0 key.

Finally in step 04 the multiple program instruction, “13 00”, has yet
another interpretation. The 13 refers to the key in the first row, third
column i.e., [GTO]. Since requires a two-digit program memory
location to follow it, the next pair of digits is such a program memory
location. Thus, “13 00”, indicates the instruction [00], which
when executed sends the program back to step 00.

Whether program instructions are merged or not, each is composed of
one or more of three basic code components:

a. each digit key hasitself as its code

b. each other key on the face of the calculator is represented by a row-column
code

c. each program memory location is coded by one of the pairs of digits from 00
to 49.

Section 4: Editing a Program

In your calculator you should still have the (incorrect) program, designed

to compute s = VA /9 and described in Section 1, namely:

STEP CODE PROGRAM

00 blank? (R/S)
01 71 +
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02 9 9
Checking

andEditing 03 14 0 f Vx
Programs 04 13 00 GTO 00

This program fails to compute s correctly because the instructions|+]
and[9] are in the wrong order. The correct program should be:

STEP CODE PROGRAM

00 blank? (R/S)
01 9 9
02 71 +

03 14 0 f Vx

04 13 00 GTO 00

2The 74 code corresponding to is not displayed in step 00 but is displayed when
is memorized in any other location.

Comparing the listing of the incorrect program with that of the correct
program, you see that steps 01 and 02 need to be exchanged. Since no
special feature of your calculator allows you to insert, delete, or exchange a
program step, you have to write over the steps as follows:

1. write over step 01 with a [9] and

2. write over step 02 with a [=].

With your calculator in the program mode use and/or [g]
until the display shows program memory location 01, the first location to
be changed. Press [9]. You will see “02- 9” indicating that a [9] has
been inserted in step 02 rather than step 01! This display demonstrates an
important fact. When you see a certain program memory location and then

press a new key instruction, that new instruction is memorized in the next
location.
Now use [g] to back-step the calculator to step 00. Press [9].

Notice that you see “01- 9” showing that [9] has now been mem-
orized in step 01 where it should be. Next by pressing [=], you rewrite step
02 with the divide instruction and see “02- 71”. Because of your

editing, your calculator now has a correct program for computing

s=VA/9.
Here is one other example of editing a program in the program mode,

illustrating how to delete an unwanted program step. Suppose you have
entered a program to compute the area of a circle according to the formula
A = zr? and then have discovered that the program failed to work. Upon
listing the program, you find that you had keyed in the multiplication
operation twice accidentally (see steps 03 and 04 in the following
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Checking STEP CODE PROGRAM

orograme 00 blank (R/S)
01 15 0 g x?

02 15 73 g
03 61 x
04 61 x
05 13 00 GTO 00

Enter the program in your calculator. Using and check
to see that you have entered the program as listed, including the doubly
punched multiplication operation. Switch back to the run mode and see
what the program does when it tries to compute 4 = «7-2? with the
initialization enter 2 [R/S].
Now switch into the program mode. Use the single-stepping feature to

display program memory location 03 so that you can delete step 04 where
the second of the multiplication operations is located. Press [NOP].
Do you see “04- 15 13” in the display showing that you have
written over the second multiplication operation with [NOP]? When a
program with is executed in the run mode and the instruction

is encountered, the calculator performs no operation and
moves on to the next program step.

Now switch your calculator back into the run mode and check the
program with the initialization enter 2 to see that the
program now computes the correct value 4 = 12.5664.

In summary, the only way to edit a program step is to write overit. If
you want to insert a program step between, say, steps 08 and 09, you need
to see step 08 in the display, write over step 09 with the new instruction,
and then proceed to key in all the remaining steps of the program. If you
wish to delete a program step, you can write over it with [g] [NOP].

Section 5: Exercises

1. The following program was incorrectly written to compute (n* + 1)/2.
Enter it into your calculator and then edit it as indicated.

STEP CODE PROGRAM

00 blank (R/S)

01 14 0 f Vx
02 1 1
03 0 0
04 51 +
05 71 *
06 13 00 GTO 00
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Change step 01 to become [x3].
. Delete step 03.

c. Insert 2 between steps 04 and 05 by changing step 05 to and then
re-entering the rest of the program, namely the [+] instruction.

d. Now switch to the run mode and verify that the program works
correctly with the initialization [PRGM|, enter 3 [R/S]. The
program should output (3% + 1)/2 = 5.0000.

2. The following program should compute the hypotenuse of a right

triangle according to the formula ¢c = Va? + b? :
o
e

STEP CODE PROGRAM

00 blank (R/S)

01 15 0 g x2

02 51 +

03 74 R/S

04 15 0 g x?

05 14 0 f Vx

06 13 00 GTO 00

It is initialized with enter a enter b [R/S].
a. Run this program for a = 3 and b = 4. You do not get ¢ = 5.0000.

b. Read this program in the program mode to make sure that you have
not mis-keyed any steps.

c. The addition operation in the program is in the wrong location. It
should come after b is entered and squared and before the square
root is taken. Correct this error by rewriting steps 02, 03, and 04 with

and respectively.
d. Now run your program again for a = 3 and b = 4. You should

obtain ¢ = 5.0000.

3. A program that should compute (a — 5)/(b + 5) follows:

STEP CODE PROGRAM

00 blank (R/S)
01 5 5
02 41 —
03 74 R/S
04 71 +
05 5 5
06 51 +
07 13 00 GTO 00
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Initialize with enter a, [R/S], enter b, [R/S].
a. Check this program in the run mode to see that it fails to give
5-=5)/(5+5)=00000fora=5andb=>5

b. Edit the program.
c. Check to see that your program does now correctly compute (a —

5)/(b + 5).
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Section 1: Storing and Recalling Quantities

Suppose you arrange a number of pennies in a triangular pattern like one
of the following:

O00 O00 O00 O0

In order to make the same triangular pattern with eight pennies on a
side, how many pennies are needed? For reference purposes, let z, be the

total number of pennies needed.
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By putting two identical triangular patterns with 8 pennies on a side
together, you could form an 8 X 9 array as shown in Figure 12-1.

       
       

Figure 12-1

loloooo000ol
© ©]0 0 00 0 0 0
© 00000 O0O0O0

|© © 000000 ol
© 000000 O0 Oo,
© 00 0O00|loO0 Oo]
© 0O0O0O0O0O0|0O0|
© 00000000

8+1=9 -

Therefore,

8+1)-8
=8X85

In general, to make such a triangle with n pennies on a side,

, _(n+1)-n
n 2 °

Now suppose you want to compute the value of 7, for n = 222. An
obvious approach is to enter n in your calculator twice, once when

computing (n + 1) and a second time when multiplying by n. A very useful
feature of your calculator, however, enables you to perform the calculation
entering n only once. This feature is called memory.

Your calculator has 8 memory registers, referred to as Rg Rj,
R,, ..., R,, for storing up to 8 numbers. A number in the display is stored
in a register, say R,, when you press the key sequence [2]. This
stored value may be recalled for use when you press [2]. In general,
you store a number in register R, by pressing m and you recall a
number in R,, by pressing m (where m is any digit from 0 to 7).

Using this memory feature, here is how you could calculate ¢,,, in your
calculator’s run mode:

(222 + 1)(222)
222 2

enter 222 [sT0] [1] [1] [+] [Rer] [1] [x] [2] [5]
Whenever a number or result of a computation is used more than once,

it is often helpful to store the quentity with the m instruction and
recall it when needed with the m instruction.

= 24,753



Section 2: Sample Programs Using Memory

Consider the penny-arranging problem from Section 1. Suppose you want
to program your calculator to compute the value of #, for any n. Rather
than enter n twice (once to compute n + 1 and a second time to multiply
by n), you can enter n once, store it in a memory register, and recall it
whenever needed. Figure 12-2 contains a program to illustrate this use of
memory.

 

Figure 12-2

Flow Chart Program

Enter and store n 00 (R/S)
01 STO7   

 Y 02 RCL7 06 X 

   
 

(n+ Dn 03 1 07 2Computea 4 + 08 +

05 RCL7

Stop and display {09 GTO 00
   

Initialize this program with enter 6 [R/S]. You should obtain
te = 21.0000. Notice how the input value of 6 is stored at step 01 and
recalled (step 02 and step 05) when needed. As a general programming
technique, if an input value is to be used more than once in a program,
store that value at the beginning of the program and recall it whenever
needed.

There are actually a number of reasons for using memory when writing
programs. One reason is to store input data that needs to be used several
times during the program. Anotheris to store intermediate results that may
be needed more than once. Yet another is to store output information for
reference purposes. Examples illustrating each of these uses of memory
follow.

Example 1: Storing Input Data

Figure 12-3 demonstrates a program designed to compute the sales tax

and the final price of an item sold in a state with a 5 percent sales tax.
Notice how the input price is stored at the beginning of the program and
thereafter recalled when necessary.

If you start with a sale of $8.40, the sales tax is 42 cents and the total

cost, $8.82.
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Figure 12-3

 

 

Flow Chart Program

Enter and store 00 (R/S)
sales price 01 STO 7  
 

!
Compute 5 percent of |

 

02 RCL7
03 5
4 2g % sales price

!
 

 
 

  
 

 

Stop and display {05 R/S

. 06 RCL7Compute total cost 07 +
  
 

{
Stop and display {08 GTO 00

   
  
 

Memory usage: R, = sales price

Initialize: [f] [PRGM] enter sales price, (see sales tax now),
R/S (see total cost now)
 

   

Example 2: Storing Input and Intermediate Results

Heron’s formula for the area of a triangle, given the triangle’s three side

lengths, is A = V/s(s — a)(s — b)(s — ¢) where the three side lengthsare
a, b, and ¢, and the number is the semiperimeter,

a+b+c
—

Notice in Figure 12-4 that a, b, and ¢ should be stored at the beginning
of the program so that they can be recalled for later use when the area, A,

1s computed by Heron’s formula. Furthermore, since the semiperimeter,s,
1s used four times when computing the area, 4, it is wise to compute s early
in the program and store it for recall when it is needed.

 

 

Figure 12-4

Flow Chart Program

Enter and store 00 (R/S) 02 R/S 04 R/S

a,b, and c 01 STO7 03 STO6 05 STOS  
 

{
_a+b+c 06 + 08 2

Compute s =— 07 + 09 +

1
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Store s {10 STO 4

 

   

 
 

11 RCL4 16 RCL6

 

  
 

 
 

 

   

Compute 12 RCL7 17
13 — 18 X

Vs(s —a)(s = b)(s —¢) |14 x 19 RCL4
15 RCL4

yY

Stop and display {24 GTO 00

Memory usage: R; =a, R¢=bRs=¢c,R;=s

20
21
22

23

RCL 5

f

Initialize: [f][PRGM] enter a [Rs] enter b [R/S] enter ¢

Vx

Try this program for a = 13, b = 14, ¢ = 15. When the program halts,
you will see the area, 4 = 84.0000. You can see the semiperimeter, s =

21.0000, by pressing [4].

Example 3: Storing Input Data, Intermediate Results, and Output Infor-
mation

The fraction 8/5 can be written as 1 + 3/5. In general, any fraction n/d,
can be written in the form g + r/d, where q is the quotient and r is the
remainder upon dividing n by d. The program in Figure 12-5 computes ¢
and r, given any n and 4. Furthermore, the results of the computation are
stored and can be recalled for reference purposes.

 

 

   
  

   
 

  
 

Figure 12-5

Flow Chart Program

00 (R/S)
.| Input and store 01 STO7

n and d 02 R/S

03 STO6

Compute and store 04 =

n divided by d 05 STOS

1
Compute q as integer 06 gINT

part of 7 and store ¢ 07 STO 4 
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r :
Compute — as fractional 08 RCLS

part of n 09 g FRAC
d

Y 10 RCL 6
Compute and store r 11 X

12 STO3

Stop and display r {13 GTO 00
  
 

Memory usage: R;, =n, R¢=d, Rs=n/d,R,=q,R; =r
Initialize: enter n enter d

Try this program for $= 1+ 2. In this case, n = 8 and d = 5. When
the program halts, you should see r = 3.0000 in the diaplay. You can now
find the value of ¢ = 1.0000 by pressing [4].

Section 3: Problems

1. Figure 12-6 shows square lattices with 1, 2, and 3 squares on a side. If
you count the number of squares of any size that appear in these
lattices you will find 1, 5, and 14 respectively. In general for a square
lattice with n squares on a side, the total number of squares equals:

n(n + 1)2n +1)

6

Write a program to determine the number of squares when n = 4, 5,

10, and 50. Use the data given in this problem to check your program.

Figure 12-6
 

  

   

         
   

2. Program your calculator to compute

[nr 2

2

This quantity yields the number of rectangles of any size that can be

counted in a square lattice with n squares (see problem 1). Use your

program to verify that for n = 50, there are 1,625,625 rectangles!
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3. See Figure 12-7. For any ellipse with semi-major axis of a and
semi-minor axis of b, the area, A, and (approximate) circumference, C,
are given by these formulas:

A = mab

a’ + b?
2

Write a single program to compute both the area and circumference of
an ellipse from input values of a and b. In your program, store the area
in R; when computed and the circumference in R,. When all computa-
tions are completed, have the program halt to display first the area and
then the circumference. Verify that for a = 2 and b = 1, 6.2832 is the
area and 9.9346 is the circumference.

C=27  (approximately)

Figure 12-7

\

B
 

4. a. The formula to compute the area of a rectangular polygon with n
sides each of length / is:

_ nl?

4 tan 180
n
 

Write a program for this formula. Verify that for n = 4 and / = 3,
A = 9.0000.

b. Show that the area of an equilateral triangle with each side of length
51s 10.8253.

Figure 12-8

 

5. On what day of the week were you born? You can find the day of the
week corresponding to any date from the formula:

R = 7 x[&] [FRAC] (N/7)

where N=D+ Y + [NT])

Yy—-1 Y —1- 0 (Lost) + 0 (Lg)

 

 



149 where D=number of days since the beginning of the year
Y=year (Y must be after 1582 when the present Gregorian

 

Using Memory calendar system was started)
Programming R=the resulting day of the week, rounded to the nearest integer,

Capabllity according to this code:

Number Code Day

1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
0 Saturday
 

a. Try this formula out as a program. Check it with January 1, 1900
which was a Monday (D = 1, Y = 1900, and R = 2) and with July
4, 1776 (D = 186, Y = 1776, and R = 5).

b. On what day of the week were you born?
c. When will New Year’s day be for the year 2000?

6. Write a program to compute the quantity sin? + cos’ for any
6. When you input § = 90°, you should get value of 1 for sin? 90° +
cos? 90°. What happens when you input any other value of 4?

7. If n people are in a group and three of them are to be chosen to form a
committee, the formula for determining the number of ways to choose
those three people is as follows:

n(n —1)(n —2)

6

Write a program to determine the number of ways to choose the
committee members when n = 3, 4, 5, 10, and 100. For n = 3, there is
obviously only one way to choose the committee.

8. A sphere has a volume and a surface area of:

V = Sm SA = 471? where r = radius

Write a program to find the volume and surface area of a sphere. For

r = 3, both the volume and the surface area = 113.0973.

9. Suppose you plan to cover the outside of a jewelry box with two kinds
of velvet. The box itself measures x inches by y inches by z inches. The

material for the top and four sides of the box costs 3g per square inch
while the material for the bottom costs only 2g per square inch. Write

a program to compute the cost of material for the covering of the box
when its length, width, and height are a, y, and z, respectively. Use the

formula:

Cost =.032xz+2yz +xy) + .02(xy)

06xz + .06yz+ .03xy+ .02xy

06z(x +y) + .05xy

For x =2,y = 3, and z = 4, the cost is $1.50.
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10.

11.

12.

13.

If a new car dealer advertises an automobile at a delivery price of
$5,272.50, how much does this car cost the dealer and how much profit

is the dealer making? Usually the dealer pays certain transportation
costs (that should be listed on the sales sticker) and about 82 percent

of the base price, which is the advertised price less the transportation
costs. For example,if there is $118.50 in transportation costs on a car
listed at $5,272.50, the dealer pays: (5272.50 — 118.50) - (.82) + 118.50
= 4344.78.
a. Program your calculator to accept the input values of the delivery

price and the transportation cost. Then calculate the dealer’s cost.
b. Extend your program to output not only the dealer’s cost but also

the dealer’s profit. For a sales sticker of $5,272.50 and transporta-
tion costs of $118.50, the dealer’s profit is $927.72.

c. Adapt your program to round all calculations to the nearest cent.
Do so by using the key stroke sequence in your
program.

Bayes’ Law for probability states that

P(A[B) - P(B)
P(B|A) = P(A|B)- P(B) + P(A|B’)- P(B’)
 

where P(A) = probability that event A happens
P(B)=probability that event B happens

P(B’)=probability that the complement of event B happens
P(B|A)= probability that B happens given that A happens
P(A|B)= probability that A happens given that B happens
P(A|B’) =probability that A happens given that the complement

of B happens

Note that in Bayes’ formula, the product P(A|B) - P(B) appears
twice in the formula. Furthermore, use the formula P(B’) = 1 — P(B)
for finding P(B’).

Write a program to compute P(B|A) from the input values of P(A|B),
P(A|B’), and P(B). Verify that for P(A|B) = .7, P(B) = .6, and P(A|B’)
= .2, P(B|A) = 0.8400.
Let y be a random variable representing the number of successes on n
repeated and independent binomial experiments, where the probability
of success on a single experiment is p. Then the expected value E(y) of

y is E(y) = np, and the standard deviation of yp is

SD(y) =Vnp(l =p) .
Write a program to input #» and p and output E(y) and SD(y). If

n = 100 and p = .5, then E(y) = 50 and SD(y) = 5.0000.
If you shoot a projectile (assuming no air resistance and constant
gravitational attraction) with an initial velocity of V, feet per second

and at an angle # at a time ¢, = 0, then at any later time, the x and y

distances of the projectile are given by the formulas in Figure 12-9.
Write a program to input the initial velocity V,, the initial angle 6

and the time ¢, and then to compute the x and y coordinates of the



151 projectile at that time. For VV = 90, # = 45°, and ¢ = 2, verify that
x = 127.2792 and y = 63.2792, or x = 127 and y = 63 when rounded
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x = (V,cosf)t (feet)

y = (Vysin 8)t — 16¢* (feet)
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Getting Programs to Loop
and Generate Sequences

  

Section 1: Having a Program Loop and Pause

Enter the following program into your calculator:

 

   
 

   
 

Figure 13-1

Flow Chart Program

Stop and display {00 (R/S)

{
Add 2 to the 0 !
displopRy 03 +

{
Loop back {04 GTO 00

   

Initialize:
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Now press [R/S]. Continue pressing the key. You should see the
sequence 2, 4, 6, 8, 10, . .. . The purpose of the [GTO] instruction in
step 04 is to reset the program so that step 00 will be the next step
executed. Pressing in the run mode or executing in
the program mode always sends the program back to step 00.

Figure 13-2 illustrates another version of the [GTO] feature of your
calculator that does the same kind of looping job but also generates the
sequence 2, 4, 6, 8, 10, ... . Read through the steps in the program. The
instruction in step 05 operates quite like [00], sending
the program to step 02 instead of step 00.

 

 

 

   
 

   
 

   
 

Figure 13-2

Flow Chart Program

Lift the stack 00 (R/S)
or 1

! 02 2Add 2 idd to oe display 03 +

Stop to display {04 R/S

Y

Loop back {05 GTOO02
   

Initialize: [f]

In general, the n, n instruction sends the program to step n, n
where n,n can be any of the 50 program locations from 00 to 49;
n=20,1,2,...,9. Furthermore, n, n operates the same way
whether pressed in the run mode or executed in the program mode. As
such, the n, n instruction can be used in a much more general way
than the instruction,to skip a program ahead or loop it back to
any step. Figure 13-3 is an example. Enter and run the program.

 

   
 

   
 

   
 

Figure 13-3

Flow Chart Program

Lift the stack 00 (R/S)
or 1

1

Stop to display {02 R/S

Y

Add 2 to the 03 2
display 04 +

1

Loop back {05 GTOO02
   

Initialize:
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When you continue pressing you see the sequence
0,2,4,6,8,... . Read through the steps of the program to see where this
program differs slightly from the preceding programs. This program loops
back to step 02 instead of back to step 00. Since an extra is executed
at the beginning of the program, the sequence 0, 2, 4, 6, 8, . . . rather than
the sequence 2, 4, 6, 8, . . ., is generated.

With all the programs previously mentioned in this section, it has been
necessary to continue pressing the key to see each of the terms of
the sequence. You can, however, have your calculator display each of the
terms automatically for you with the pause feature. The
instruction causes the program to stop running for about one second
enabling you to view a quantity in the display. After one second, the
program automatically continues running. Figure 13-4 illustrates how
[PAUSE can be used; enter this revised version of the last program. You
need to press only once in order to generate the sequence
 

 

   
 

   
 

   
 

0,2,4,6,8,... .To stop the program, press the key.

Figure 13-4

Flow Chart Program

00 (R/S)
Lift = stack or 1

Pause to display {02 fPAUSE

{
Add 2 to the 03 2
display 04 +

{
| Loop back {05 GTO 02

   

Initialize:

Section 2: Getting Your Calculator to Count

In Section 1 the programs written actually count by twos. How would you
program the calculator to display the sequence of consecutive positive
integers? In other words, how would you program the calculator to count

by ones?
In such a program the central idea is to calculate successive integers by

adding 1 to the previous integer during each program loop. To see how this
can be done enter and run the program in Figure 13-5. In this program
your calculator counts by ones displaying the consecutive integers. You
can also get your calculator to count by any other number by merely
programming it to add that number during each loop.



Figure 13-5

 

   

  

   
 

   

  

Flow Chart Program

00 (R/S)
Lift stack 0 1

Add 1 to the 02 1
display 03 +

\

Pause {04 fPAUSE

Loop back {05 GTO 02
   

 

Initialize: [f] [STK] PRGM] [R/S]

Moreover, you can get your calculator to “count down,” as for a space
launching, by programming it to subtract 1 during each loop. If you do so,
it 1s necessary to initialize the program differently. For example, to
produce the sequence 59, 58, 57... , you should begin the program
with 60 in the display as illustrated in Figure 13-6.

 

   

  

   
 

   

  

Figure 13-6

Flow Chart Program

Lift stack o odS)

Subtract 1 from ( 1
display 03 -

Pause {04 fPAUSE

Loop back {05 GTO 02
   

Initialize: [f] [STK], [] enter 60
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Section 3: Exercises

1. What does the following program do when you enter and run it in your
calculator?

00 (R/S)
01 ?
02 1
03 0
04 +
05 f PAUSE
06 GTO 02
 

Initialize: [f] [STK] [] [PRGM] [R/S]

2. What sequence is produced when you change steps 02 and 03 of the
program in exercise 1 to become

02 1
03 CHS

3. Write a program to get your calculator to count by fives.
4. Adapt the program from exercise 1 so that it will display the sequence

0, 10, 20, 30, 40, . .. .
5. Adapt the program from exercise 4 to display the sequence

7,17,27,37, 47, ... .
6. Write a program to get your calculator to display the sequence

1,000, 900, 800, 700, . .. .

Section 4: Sample Programs for Generating Sequences Recursively

Suppose you want your calculator to display the sequence:

3, 8, 13, 18, 23, 28, 33, ... . This sequence can be generated by starting
with the number 3, adding 5 to get 8, adding 5 to get 13, and so on. Each
term is formed by adding 5 to the previous term.
When each term of a sequence is formed by performing arithmetic

operations on the previous term (or terms) of the sequence, the sequence is
said to be generated recursively, or by recursion. Recursively generated

sequences are particularly easy to program because the repetitious opera-
tion of forming each term from the previous term can be done in a loop.

Run the program in Figure 13-7 and see that it generates the sequence
3, 8, 13, 18, 23, 28, 33, ... . Notice that the sequence starts at 3 because 3

is placed in the display during the initialization. Notice also that each
successive term of the sequence is formed by adding 5 to the previous term
during each successive loop.
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Figure 13-7

 

   
 

   
 

   
 

Flow Chart Program

Lift stack 00 (R/S)
or 1

:
| Pause {02 fPAUSE

¥
Add 5 to the 03 5

display 04 +

{
Loop back {05 GTOO02

   

Initialize: [f] enter 3

Additional examples of programs that generate sequences recursively
follow.

Example 1: The Sequence: 1, 2, 5, 14, 41, 122, 365, . . .

Notice that this sequence starts at 1 and that each term is then formed by
multiplying the previous term by three and subtracting one, that is,
1-3—-1=2,2-3—-—1=5,5-3—-1=14, and so on. Can you write a

program of your own to generate this sequence before examining the
program in Figure 13-8? Sometimes you need to store in memory a
previous term that is needed more than once in forming the next term of
the sequence.

 

   
 

 

   
 

   
   

Figure 13-8

Flow Chart Program

Lift stack 00 (R/S)
or 1

i
~ Pause {02 fPAUSE

{
Multiply the displa

byandthen | [83 051
subtract 1

{
Loop back {07 GTO 02

   

Initialize: enter 1
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Example 2: The Sequence 1, 2, 6, 42, 1806, 3263442, . .

Notice that this sequence starts at 1. From there the terms are formed as:
1+12=2,2+22=6, 6 + 6 =42, and so forth. In other words, each
term 1s formed by adding the previous term to its square. Figure 13-9
shows a program for the sequence just discussed. Enter the program in
your calculator and runit.

 

   
 

 

   
 

   

Figure 13-9

Flow Chart Program

Lift stack 00 (R/S)
or 1

_| Pause and 02 fPAUSE

store the term 03 STO

{
Form theDext term 04 RCL1 06 g x2

(old term) + (old term)? 05 RCL1 07 +

i   Loop back {08 GTO 02

Initialize: [f] [7] enter 1

As noted, the program illustrates an important feature. Since each
previous term must be used twice when forming the new term, storing the
previous term at the beginning of the loop becomes convenient. The term
can then be recalled as needed.

You may note that step 04 is unnecessary, but it is included to make the
program more readable. Delete the step and verify that the program still
works. Can you explain why?

   

Example 3: The Sequence 1° 2° 3% ..., n°...

This sequence can be generated recursively with the flow chart and

program in Figure 13-10.

Figure 13-10

Flow Chart Program
 

 
Start {00 (R/S)

i
Store square number {01 STOI1
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| {
Form next square as 02 RCL1 06 X

(previous square) + 03 RCL1 07 +
| 04 fVx 08 1

2 - previous

square

+ 1 05 2 09 +
'

 

   
 

   
  Pause {10 fPAUSE

t
Loop back {11 GTOOI 

   

Memory usage: R, = n?
Initialization: [J] [f]

Section 5: Problems

1. Consider the sequence 2, 11, 20, 29, 38, ... where each term is formed

by adding 9 to the previous term. Write a program to generate this
sequence.

2. Each term of the sequence 2187, 729, 243, 81, 27, ... is formed by

dividing the previous term by 3. Write a program to generate this
sequence.

3. A sequence starts with 3, and each subsequent term is formed by
multiplying the previous term by 2 and then adding 1.
a. Program your calculator to generate this sequence. Verify that the

sixth term is 127.
b. Modify your program for this sequence to see which terms are

generated when the first term is each of the following:
1. The positive integer 123

11. The negative integer — 16
ii. The fraction 2/3
iv. The decimal .222

4. What combination of arithmetic operations produces each successive
term in these sequences?
a. 2,4,8, 16, 32,64, 128, . ..
b. 1/1,2/3,4/9,8/27, 16/81, 32/243, . ..
c. 1,3,7,15,31,63, 127, ...
d. —1, =-3, =7, —15, =31, —63, —127,...
e. 3, 8, 23, 68, 203, 608, . ..
f. 2,4, 16,256, 65536, ..
Write a program to generate the sequence 15, —27,57, —111,...

where each term is formed by first multiplying the previous term by
— 2 and then adding 3.

6. Consider the sequence of odd positive integers.
a. How do you obtain each term of the sequence from the previous

term?
b. Write a program to display this sequence.
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10.

Write a program to generate each of the following sequences. When
you run each program to display many terms, what happens?
a. The sequence, 2/2,9/2,25/4,57/8,121/16,... , forms each

successive term by first dividing the previous term by 2 and then
adding 4.

b. Start with any first term of your choice. Form each term of this
sequence by first adding 2 to the previous term and then taking the
square root of the result.

Write a program to generate either or both of the following sequences.
Display many terms and see what happens. Experiment by using
different first terms. Do you obtain the same results?
a. Start with the first term of 6. Generate each term by first dividing 6

by the previous term and then adding 1.
b. Start with a first term of 5. Generate each subsequent term by

subtracting half of the previous term from 1.
. Write a program to display the sequence formed by squaring the
previous term and then subtracting the previous term. Explore what
happens when you run your program for each of the following first
terms.

a. 2.1
b. 1.9
c. 2.0
Enter and run the following program to generate the sequence

3,6, 30, 870, ... , recursively.

00 (R/S)
01 f PAUSE
02 STO 1

03 g x?
04 RCL 1

05 —
06 GTO 02

Initialize: [f] [f] enter 3

a. The program should display 3, 6, 30, 870, ... but does not. What

does the program do?
b. What single step of the program is incorrect and needs to be

changed so that the program displays the desired result? (Hint: The
algebraic computations are correct.)

c. Whatis register R, used for?
d. How is each term of the sequence obtained from the previous term?
e. After the program is corrected (see part b), what sequence is

generated by the initialization [f] [f] enter 2 [R/S]?

Section 6: Sample Programs for Generating Sequences Nonrecursively

In section 4 you saw how sequences could be generated in a program using
recursion. Some sequences are more easily programmed using nonrecursive

2processes. Consider, for example, the sequence 1%, 22,32 42, ...,n% ...
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presented as example 3 in Section 4. Enter and run the program in Figure
13-11, which also displays the sequence of consecutive squares.

 

   
 

   
 

   
 

   
   

Figure 13-11

Flow Chart Program

Store counting number 0 (R/S)
01 STO1Tr

| Generate and store next 02 RCL1 04 +
counting number, n 03 1 05 STO1

Y

Compute and display n> {06 g x?

'
Pause {07 fPAUSE

Y

Loop back {08 GTO O02
   

Memory usage:

Initialize:
R, = counting number, n

[STK | [PRGM| [R/S]
 

Notice in the program that each term is not formed by arithmetic
operations on the preceeding terms. Instead, each term is formed in a
two-step process. First, each counting number from the sequence
1,2,3,4,... , is formed by adding 1 to the previous counting number.

Secondly, that counting number is squared to produce the appropriate
term in the sequence 12, 2%, 32, 4%, . .. . For any sequence, each term has a
corresponding counting number that indicates the position of the term in
the sequence. For example, 4% is the fourth term in the sequence
12,22 32, 4%, ... . The counting number, representing the position of a
term in a sequence, is called the index number, or simply the index of that

term.

When each term of a sequence is formed by performing arithmetic
operations on its corresponding index number, the sequence is said to be
generated nonrecursively. Specifically, the program just presented generates
the squares nonrecursively because, in general, the nth square is formed by
squaring the corresponding index number n.

Figure 13-12 presents another example of a program that uses a
nonrecursive approach to generate a sequence. Enter and run this program
to verify that it generates the sequence 1, 3, 6, 10, 15, ... . Notice in the

program the use of [f] in step 01. This instruction clears each of the
memory registers, Ry, R,, . . ., R;. Consequently, using the instruction at

the beginning of a program effectively enters the number 0 in each
memory register. This insures the index register starts with 0. Also notice
that arithmetic operations are performed on the counting index in order to
generate the sequence 1,3,6,10,... . If n is the index, then the

arithmetic operations compute (n> + n)/2.



Figure 13-12

 

   
 

Flow Chart Program

00 (R/S)S =et index =0 01 fREG

{
Compute next 02 RCL1 04 +
index n 03 1 05 STO
 

'
Compute n-th
sequence term

 

07 g x* 10 2   

|

o RCL1 09 +

 

   
  

08 RCL1 11 +

Display term {12 fPAUSE

!
Loop back {13 GTOO02 

   

Memory usage: R; = index = n
Initialization: [f] [/]

At times in programming you may need to be creative in setting and
using the index for a nonrecursively generated sequence.

The next program, in Figure 13-13, is designed to generate the sequence
90, 72, 56, 42, 30, ... . Enter it and verify that it does. In this program,

the index is set at 10 and decreases by 1 each time through the loop; each
term is thereafter computed as n(n + 1).

 

 

 

  
    
 

   
   

Figure 13-13

Flow Chart Program

Set index = 10 [ (R/S) 020
01 1 03 STO 1

Compute next 04 RCL1 06 -—
index n 05 1 07 STO 1

{
08 RCL1 10 +Compute term 09 1 11 x

{
Display term {12 fPAUSE

{
Loop back {13 GTO M4

   

Memory usage: R, = index = n
Initialize: [f] [f] R/S
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166 Now suppose that you want a program to display the sequence
90, 56, 30, 12, . .. , (that is, every other term of the sequence generated by

Getting the last program presented). Two simple changes in the program accom-
filial plish the task. First, set the index at 11 instead of 10 (steps 01-02). Second,

Generate place the number 2 instead of 1 in step 05. Make the suggested changes
Sequences and run the program to verify that the sequence 90, 56, 30, 12, ... , 1s

displayed. Notice that each term is still computed by n(n + 1), but that the
index decreases by 2 each time through the loop thus producing every
other term of the original sequence.

Section 7: Problems

1. a. Write a program to display the sequence 2, 5, 10, 17, 26, 37, . .. .

Set the index at 0 and form each term by n? + 1.

b. Modify the program in part a by setting the index at 2. What
sequence do you obtain?

2. Consider the sequence 1/2,2,9/2,8,25/2, 18, ... .

a. Write a program to display the sequence. Set the index at 0 and form
each term by (n + 1)*/2.

b. Modify the program in part a to display only the integer sequence
terms (that is, 2, 8, 18, ...).

3. In order to generate each of the following sequences, nonrecursively,
where would you set the index and how would you compute the terms?
a. 0,5, 10, 15, 20, 25, . .. .
b.0,3,8,1524, ... .

c. 8,15,24,35,... .

d. 2',22,23 24...

4. Write a program for each of the following sequences:
a. 3,9,27,81,... . Set the index at 0 and form each term by 3”.

b. 8, 27, 64, 125, ... . Set the counting index at 2 and form each term

by n°.
5. Write a program to display the sequence 1, 4, 27, 256, . . . , with index

= 1 and terms formed by n". How fast does this sequence grow?
6. Write a program to display the sequence with index = 1, first term = 1,

and succeeding terms formed by Fy
a. Which term of the sequence is the largest?
b. What happens as the counting number n grows very large?

7. Write a program to display the sequence with index 0, first term = — 1
and succeeding terms formed by n? — 2".
a. What does this sequence tell you about the answer to the question,

“Which is larger, n* or 27?

b. What method could you use to answer the question, “Which is larger
n3 or 3"?

8. Write programs to display each sequence according to the information
given. What happens in each case as n becomes very large?

a. First index = 0, first term = 1, and terms formed by (0.99)".

b. First index = 0, first term = 1, and terms formed by (1.01)".

c. First index = 0, first term = 1, and terms formed by (1.00)".



  
Using Memory Arithmetic

to Compute Series

Section 1: A Series Representing the Gambler's Problem

A gambler is offered the following deal. He is to toss a coin repeatedly
until the first head comes up. At that time he will receive 1,4, 9, .., n®

dollars, if the first head appeared on the first, second, third, . . . nth toss.

For example, if the first head appears on the fifth toss (that is, the

preceding four tosses were all tails), the gambler receives $25 ($52).
How much can the gambler expect to receive, on the average, each time

he plays? By considering the probability decision tree shown in Figure
14-1, you can see that the probability associated with the first head
coming up on the first, second, third, ..., nth toss is 1/2,

1/4, 1/8, ...,1/2" respectively. Therefore, the amount received if the

gambler plays very many games is one dollar half the time, 4 dollars a

quarter of the time, 9 dollars an eighth of the time, . ., n? dollars 1/2" of
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the time, and so forth. Putting this information together gives:

1
1 — 1 1 1 2 CLAmount received = (1 1) + (4 3) + (9 1) +--+ (7 or) +

which can be written as:

(5)

The value of this series gives the average amount received, assuming the
gambler plays infinitely many times.

Figure 14-1

1st TOSS 2nd TOSS 3rd TOSS... ASSOCIATED PROBABILITY

———— — — —— ———Probability of head on 1st toss = 1/2

—_————Probability of head on 2nd toss= 1/2 - 1/2 = 1/4

)— —Probability of head on 3rd =1/2 + 1/2 + 1/2=1/8

o

®e Probability of head on n-th toss = 1/2"

Evaluating this infinite series is rather difficult with standard mathe-
matical techniques, but is not hard to do on your calculator. Your
calculator can compute this series by first producing each term of the
sequence

(1-1), (4-1), ©-2) (m5)

and then adding each term to a running total,

D6)60s +(e)
which eventually comes very close to the value of the infinite series

N 1
> G : 2)

n=1

Using a feature of your calculator called memory arithmetic, your calcula-
tor can efficiently handle the simultaneous calculations of each successive

term and the corresponding running total.

In Section 7 of this chapter, after memory arithmetic has been in-
troduced and after the necessary details for computing series as running

totals of terms have been explained, the value of the infinite series

0 2

2 5
n=1

the amount the gambler receives, will finally be calculated.



Section 2: Performing Arithmetic in Memory

Memory arithmetic is a built-in feature of your calculator that has many
applications in addition to computing series. Anytime you have a need to
maintain ongoing sequences and/or running totals, memory arithmetic
helps you create efficient programs.

Turn your calculator on and key in the program in Figure 14-2. What
sequence is displayed?

 

   
 

   
 

Figure 14-2

Flow Chart Program

Add 1 01 1

toR, 02 STO +7

{
Recall R, 03 RCL7
and display 04 fPAUSE

{
Loop back {05 GTOO01

   

Memory usage: R, = counting index

Initialize:

Step 02 of this program introduces a new feature of your calculator,
called summing (adding into memory). When the key sequence

1s executed, the value in the display is added into memory register 7. In
general the key sequence m causes the value in the display to be
added into memory register R. Effectively this program causes the
calculator to count in memory register 7, since the number 1 is added to R,
each time through the loop.

Your calculator can perform other memory arithmetic as well as addi-
tion: it can also subtract from memory, multiply into memory, and divide
into memory. The necessary key sequences for accomplishing each of these
memory arithmetic operations are described in Table 14-1. Examples of
how to use these key sequences are included in the questions at the end of

this section.

TABLE 14-1
 

Key Sequence Description
 

+] m Adds display into memory R,,
ST [] m Subtracts display from memory R,,

(and puts the result in R,,)
m Multiplies display into memory R,,

m Divides display into memory R,,

w
n

17
]

=
-

[H
x]
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Section 3: Exercises

1. In the run mode, store the value 100 in R,. Next, enter the number 4 in
the display. Now key in the sequence [=] [6].
a. Whatis the value that is now in Rg?

Press [6] to verify your answer.
b. Now enter 6 in the display. Key in the sequence [=] [6]

What is the value that is now in Rg?
2. Enter the program from Figure 14-3 into your calculator:

 

   
 

   
 

   
 

Figure 14-3

Flow Chart Program

Store 2 01 2

in R, 02 STO7

I}
03 2

T 04 STO Xx 7

Recall R, 05 RCL7
and pause 06 fPAUSE

{
Loop back {07 GTO 03

   

Memory usage: R, = sequence term

p
o
o
p

C.

d.

 
Initialize: [REG] [sTK] [R/S]

What sequence is displayed when this program is run?
What sequence of numbers is generated in memory register R,?
How 1s the value in R, changed each time through the loop?

What is the effect of the key sequence in
steps 03 and 04? That is, what words best fit in the blank flow
chart box?
Examine the flow chart and program in Figure 14-4.

What sequence is generated in memory register 5?

Whatis the effect of the key sequence [1] [0] [+] in
steps 04-06? What words best describe those instructions in the
corresponding flow chart box.
What words in the flow chart describe the effect of the key
sequence [6] in steps 01-03?
Notice the use of successively in steps 08 and 09.
This enables the calculator to pause longer than a second.

4. What is a program that generates the sequence
100, 96, 92, 88, 84, 80, 76, . . ., in memory register R;?
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Figure 14-4

 

 

  
    

  

   
  

Flow Chart Program

01 6
02 g 10¢

03 STOS
y

. 04 1
05 0

| 06 STO = 5

Recall and or PAUSE
display R;

09 fPAUSE

{
— Loop back {10 GTO 04
   

Memory usage: Rs = sequence term

Initialize: [R/s].

Section 4: Generating Sequence Terms in Memory

When programming your calculator to generate the terms of a sequence,
you will find memory arithmetic to be a very efficient tool. Memory
arithmetic is especially convenient for any sequence term computed recur-
sively using [=] or [=]. Such a term can be computed directly in
memory, leaving the x-register (display) free for other calculations. Also,
when each term is computed nonrecursively as a function of a counting
index, n, memory arithmetic enables you to generate n directly in memory
leaving the x-register (display) available for the computation of the corre-
sponding term.

To demonstrate how memory arithmetic can be used to generate
sequence terms, consider the sequence 1,1/2,1/4,1/8,...1/2", ...,

which in decimal form looks like 1.0000, 0.5000, 0.2500, 0.1250, 0.0625,.. ..
The terms of this sequence can be generated either recursively or non-
recursively; programs showing both styles are found in the following
examples.

Example 1: A Program to Generate 1,1/2,1/4,1/8,...,1/2" ...,

recursively

Since each term other than the first is half of the previous term, repeatedly
dividing 2 into each previous term produces each next term as Figure 14-5
shows. In the program, steps 05 and 06 could be replaced with key strokes
[-] and accomplish the same purpose.
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Figure 14-5

 

  
 

 

 

 

   
 

Flow Chart Program

Set 01 1
current term = first term 02 STO7

1
| Recall and display 03 RCL7

current term 04 fPAUSE

05 2Generate new term 06 STO + 7

{
Loop back {07 GTOO03  

   

Memory usage: R, = term

Initialize: [J] [PRGM] [J] [REG] [J] [STK] [J] [FIX] [9] [R/S]

Example 2: A Program to Generate 1,1/2,1/4,1/8,...,1/2" ...,

Nonrecursively

The next program in Figure 14-6 generates the counting index in R, and
calculates each corresponding term nonrecursively in the x-register.

 

   
 

  
 

 

  
 

 

  
 

   

Figure 14-6

Flow Chart Program

Set
index = 0 {01 fREG

{
| Compute next term 02 2 04 f y*

in x-register 03 RCL 6 05 g 1/x

{
Display term {06 fPAUSE

{
Generate next 07 1
counting index 08 STO + 6

!
Loop back {09 GTOO02

   

Memory and x-register usage: R, = index, x-reg = current term

Initialize: [9]
R/S
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Example 3: A Program to Generate the Sequence
1/2,4/4,9/8, 16/16, ...,n°/2"% . ..

The terms in the sequence, written as 0.5000, 1.0000, 1.1250, 1.0000,
1813, ..., can be formed nonrecursively by generating the counting index
n in Rg and computing the corresponding term n?/2" in the x-register. A
more efficient way, however,is first to generate n in R,, then to generate
the denominator 2" recursively in Rs, and finally to piece together the
information and compute n?/2" in the display. Notice how the program in
Figure 14-7 uses the more efficient way.

Figure 14-7

Flow Chart Program
 

Set 01 fREG
R¢ = index 0

R; = current denominator = 1

{
Generate next index n

  03 STOS
 

 

 Y

  
04 1
05 STO + 6

 

!
Generate next denominator 2"

{
Calculate term as n? + 2"

i

 

06 2
07 STO X 5  

 

 

08 RCL6 10 RCLS

09 gx? 11 +  
 

 

  
 

  Display term {12 fPAUSE

{
Loop back {13 GTO 04 

  
 2: : n

Memory and x-register usage: R¢ = index, Rs = 2", x-reg =

Initialize: B
R/S

In summary, memory arithmetic is a powerful tool when generating the

terms of a sequence, because it enables various calculations to be carried
on in memory leaving the x-register (display) free for other calculations.

Section 5: Exercises

1. In the second and third programs in this section, what is the purpose of
as step 01 in the programs?

2. Consider the problem of recursively generating the terms of the
sequence 1/3,1/9,1/27,...,1/3",... in memory R,.
a. With what value would you initialize R,?
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174 b. What key strokes would you repeatedly use to obtain each successive
term?

Using Memory 3 Suppose you wish to produce the terms of the sequence
Arithmetic to

Compute Series 3 5 7 14 2n

2’ =5" =8’ 1 —3n’

by generating the sequence of numerators 3, 5,7,9,...1 + 2n recur-
sively in R,, generating the sequence of denominators recursively in Rj,
and forming each fraction in the display.
a. What repeated key strokes will generate each successive numerator

in R,?
b. What key strokes will generate each successive denominator in R;?
c. What key strokes will then form each fraction in the x-register

(display)?
4. The function [3n(n +1) + 1] represents the maximum number of

pieces that you can obtain when slicing a pancake with n slices. What
are the steps of a program that generates the index n in R; and the
sequence 2,4,7,11,16,..., [3n(n +1) + 1], ... in the x-register

(display)?

Section 6: Computing Series as Running Totals

Since series are sums of terms, series can be efficiently computed with
memory arithmetic. After each term is calculated, it can be summed into a
memory register containing the running total of all the previous terms. In
this way, a series can be computed as a running total of its terms. Memory
arithmetic is useful both for generating the terms for the series and for
computing the running total. For example, consider the series 1/2 + 1/4
+ 1/8 + ... +1/2". That the series should total 1 may appear obvious,
but can you actually get your calculator to calculate that value?

Figure 14-8 shows a sample program. Run this program and see how
many times it pauses before the running total reaches the limiting value of
1.

Figure 14-8

Flow Chart Program
 

Set
running total in R, = 0 Lo fREG 03 gl/x

02 2 04 STO6current term in Rg = 1/2

v
| Add current term to 05 RCL6

B running total 06 STO + 7

   
 

   



 

   
 

   
   

} |

Display running total 03 iPAUSE
:

Compute 09 2
next term 10 STO + 6

1
Loop back {11 GTOO0s5   

Memory usage: Rg = term = 3

R; = running total

Initialize: B

As more and more terms are added, the running total becomes closer
and closer to the limiting value of the infinite series. Because your
calculator only computes with 10 digits, the running total for a convergent
infinite series will actually reach a limiting value after a finite number of
terms have been totaled.

Section 7: Solving the Gambler's Problem

Now you are prepared to solve the gambler’s problem posed in Section 1
of this chapter. Recall that the question was, “How much can the gambler
expect to receive, on the average, each time he plays?” In mathematical
terms, what is the value of 1/2 +4/4+9/8 + 16/16 + ... +n*/2"
+ ... or more simply,

n=

You might try writing a program, like the one in Figure 14-9, to evaluate
this series before reading further. Run this program to verify that the
average amount received is $6. That means if the gambler has to pay $10
each time he plays, he should expect to lose $4 each time on the average.

 

Figure 14-9

Flow Chart Program

Set
running total in R, = 0 01 fREG 04 2

index in Rg = 1 02 1 05 STOS
current denominator in Ry = 2 03 STO6 06 gl/x

current term in x-reg = 1/2    
}
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}
 

  
 

 

   
 

 

 

  
 

 

  
 

 

Add current term (in x-reg.) (07 STO +7

to running total

!
Display 08 RCL7

running total 09 fPAUSE

{
Generate next 10 1
index n 11 STO + 6

1
Generate next 12 2
denominator 13 STO X 5

!
Form next term n? 14 RCL6 16 RCLS

2" 15 gx? 17 +

{
Loop back {18 GTOO07  

   

Memory and x-register usage: R, = running total, Rg = index n,
Rs = denominator 2", x-register = term
n

Initialize: [f [9]
[R/S]

[
1

[
=
]

 

Section 8: Problems

In solving these problems, you may find the general flow chart in Figure
14-10 useful for organizing a program to evaluate a series.

Figure 14-10

 

Set
running total = 0

current term = first term

other memory registers

for example, an index (if necessary)

1
Add current term

to running total
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}
Recall and display

running total

!
Calculate next term

!
Loop back

 

 

 

   
   

   

1. The series

177

oo

1 1 1 1 DE

has the first four partial sums of 1.0000, 1.3333, 1.4444, and 1.4815.

a. Write a program to evaluate the series.
b. What is the limiting value?

. In Sections 1 and 7, the gambler’s problem was introduced and solved.
The amount received was calculated from the series

o0

>—.

n=1 2

Suppose instead of receiving n? dollars when the first head turns up
(on the nth toss), the gambler receives n> dollars. The average amount
received changes to

0

>—
n=1 2

a. Write a program to determine this new expected payoff. The first
four partial sums being 0.5000, 2.5000, 5.8750, 9.8750.

b. How much is the average amount received?
c. Suppose the gambler has to pay $10 each time to play? What would

the gambler’s expected profit (or loss) be now?
d. If the gambler receives only n dollars when the first head turns up

(on the nth toss), what is his expected profit?

    

. The series

243 243 2" 4 3 27 4 3”
+ = toot tom z

has the first four partial sums of 0.8333, 1.1944, 1.3565, and 1.4313.

a. Write a program to evaluate the series.
b. Whatis the limiting value of the series?

. In the sequence of triangular numbers 1, 3, 6, 10, 15, ..., each term

can be formed by adding the preceding term and the index (sequence
position) of the new term. Thus, the Sth term can be formed as



178 10 + 5 = 15, the 6th term as 15 + 6 = 21, and so on. Let ¢, be the nth

term of the sequence, let ¢,_, be the terms preceding the nth term,
Using Memory and let n be the index of the nth term. Then, ¢, = t,_, + n, where
Arithmetic to t= 1

Compute Series 1 :
a. Write a program to generate the series

 

The first three terms of the series are 7.0000, 7.7037, and 7.8750.

b. What is the limiting value of the series in part a?
5. Given the information in problem 4,

a. Write a program to generate the series

eed2012 + 10, + 1

The first term is 31.0000.

b. What is the limiting value of the series in part b?
6. a. As graphed in Figure 14-11, a ball is dropped from a point 5 meters

above flat surface. Each time the ball hits the ground after falling a
certain distance, it rebounds to a height of 80 percent of that
distance. Write a program to find the total distance the ball travels
from the series.

5 + 2(.80)'5 + 2(.80)*5 + 2(.80)°5 + ... .

The first few terms are 5.0000, 13.0000, and 19.4000.

b. How far does the ball travel?

Figure 14-11

HEIGHT |

5 —

 

 

TIME—

7. The Riemann zeta function is defined by

$(s) = > n for each s > 1.

a. Write a program that allows you to input a value of s (where
s > 4) and then compute {(s). Check your program by evaluating

£(10). The answer should be 1.000994576, which is 7'°/93,555. To
see this value, include the key strokes [9] in the
initialization.
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Using Memory

Arithmetic to

Compute Series

10.

b. Find {(8) and {(6). These values should correspond to 7°/9450
and 7°/945 respectively.

c. Why has the restriction that s > 4 been included in this problem?
The series

1 1 1 ntl 1
l=+37 +00 St

should equal

3a, 7°
32 945

However, the series causes some programming problems since it has
alternating signs. One approach is to compute (—1)"*! using the
key when forming each term. On the HP33E, functions properly
for y <0 as long as x is an integer.

Another approach is to avoid using to produce the alternating
signs. Instead use a memory location, say R;, for the appropriate sign
(+1 or —1), which can then be multiplied onto the appropriate term.

Initialize R, with an appropriate sign (+1 or — 1) and then repeat the
key strokes [1] in order to alternately
change the sign.

Evaluate the series by this latter method. After computing the term
1/n®, in the display, multiply it by the +1 or —1 from R,, and then
sum the result into the running total.

Verify that the first three terms are 1, .984375000, and .985746742.

Include [9] in the initialization.
What is the value of the series

1 1 1 1
2V3 1 - + — + — J

3-3 5.3 7.3 9.3
The first three terms are 3.4641016, 3.0792014, and 3.1561815. In the

initialization include the sequence [7].
Write a program to show that for any value of 0° < x < 180° or
0 < x < 7 radians,

 

Tin x 4 SB3X  sinSx 4 sin@n = Dx

3 3 5 20n — 1)
Include in the initialization.



  
Programming Your

Calculator to Make
Decisions

Section 1: Learning About the Test Registers

Your Hewlett-Packard calculator has a stack of four registers, the x-, y-, z-,

and t-registers. All four of these registers can be used for temporary

storage of algebraic calculations. The x- and y-registers, however, can also
be used as test registers in two ways. First, the x-register can be used alone,
when you wish to compare the value in the x-register with the number

zero. Or, both the x- and y-registers can be used, when you wish to
compare the value in the x-register with that in the y-register.
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Section 2: A First Program that Makes a Decision

 

  
 

 

  
 

Figure 15-1

Flow Chart Program

1. Enter a first number and place it 00 (R/S)

in the y-register or 1

{
2. Enter second number in the ( 02 R/S

x-register

3. Compare x to y by asking, ( Bf x<

Is x-value  y-value? Ed  
 

 
If yes | If no
 

4. Since y-register

  
  

    
contains the larger (04 x=y *

number, switch x-
and y-registers

5. (x-register already

contains the larger

number) |
¥

6. Loop back to stop

and display {05 GTO 00   
Initialization: enter first number,

enter second number,

Notice in Figure 15-1 that a new shape has been introduced to
surround the decision-making step in the flow chart. This shape always

indicates that the flow of the program branches in either of two directions
depending on the decision the calculator makes in that step. Now run the
program. Let 100 be the first number and 25 the second. You should see
“100.0000” in the display.
Now enter 500, press enter 100 and press [R/S]. You should see

“500.0000” in the display. What do you see in the display if you enter 2

*The symbol x = y represents the “x exchange y” key on the calculator.
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182 press[R/SJenter 85 and press[R/S |? What result do you obtain for each of
the following pairs of numbers?

Programming

Your Calculator

to Make a. 36, 360
Decisions b. 900, 20

c. 8 3

d. 65, 1

e. 0, 1065

What decision is your program making? In each case, after the two
numbers you entered are compared, the larger is placed in the x-register
and displayed when the program stops.

To understand what is happening in this program, follow the step-by-
step explanation below. Notice that the number before each of the items
corresponds to the same number on the flow chart, indicating which parts
of the program are discussed in each paragraph.

1. The first number entered is placed in the y-register (step Ol) and the
calculator stops (step 02).

2. Next the second number is entered into the x-register.

3. When you restart the program by pressing [R/S |], the program encounters
the instruction (step 03). This instruction causes the calculator to
decide whether the value in the x-register (display) is less than or equalto the
value in the y-register. Effectively, the calculator decides whether yes or no is
the answer to the question, “Is the x-register value less than or equal to the
y-register value?” Depending on the answer, the calculator goes (branches) to
either the next memory location or to the one after that and continues
execution from there.

4. If the answer is yes (that is the x-register value is less than or equal to the
y-register value), then the calculator proceeds to the next memory location
(step 04). There it executes the instruction =|, which exchanges the x-
and y-registers. Thus, the program places the larger value from the y-register
into the x-register.

5. If the answeris no (thatis, the x-register value is not less than or equal to the
y-register value), then the calculator goes to the program step immediately
after the next instruction; it skips step 04 and goes to step 05. Thus the
larger value already in the x-registeris left in the x-register.

6. Whatever decision is made in step 03, the calculator eventually comes to step
05 whereit is instructed to loop back to the permanent in step 00 in
order to stop and display the larger of the two numbers originally entered.

Section 3: Using Comparison Tests to Make Decisions

In the last section your calculator made a decision by comparing two

numbers, one in the y-register and the other in the x-register. In fact the
only way your calculator can make a decision is by comparing the value in

the x-register to the value in the y-register. Your calculator can make a

total of eight specific comparison tests, as shown in Table 15-1.



TABLE 15-1

KEY SEQUENCE COMPARISON TEST

Is x < y?
Is x > y?

Is x #y?

x=Y Is x = y?

Is x <0?

Is x > 0?

Is x #0?

Is x = 0?

For each of these tests the procedure is identical. If the answer to the
test question is “yes,” the calculator proceeds to the next instruction, as
usual. If, however, the answer to the question is “no,” the calculator skips
the next instruction and goes (branches) to the instruction following that
one.

To illustrate the use of these comparison tests in getting your calculator
to make decisions, consider the following examples.

Example 1

For a specific value of x, is x> — 2x — 3 = 0? First have your program
compute the value of x2 — 2x — 3 for a specific x. Then with the compari-
son test [x=0], your program will be able to decide whether
x? — 2x — 3 =0 or not.

You can see how this is accomplished in the program in Figure 15-2,
which is designed to display either x if x? —2x —-3=0 or 7 =
3.141592654 otherwise. Verify that for x = 6, the program displays =, and
for x = 3, it displays*3.0000.”

 

 

   

  

   

    
  

   

Figure 15-2

Flow Chart Program

~ Enter x {00 (R/S)

01 STO7 05 X

Compute x? — 2x — 3 02 g x* 06 -
03 2 07 3
04 RCL7 08 -—

Isx? —2x —3=20? {09 g x=0

| If no hi yes

Skip ahead ] {10 GTO 13 
183



 

Put 7 in display 11 g =

   
 

Loop back to stop 12 GTO 00

Recall x 13 RCL7
Loop back to stop 14 GTO 00     =

Memory usage: R,;, =x
Initialization: enter x [R/S].

Example 2

Suppose you are working for a bank that offers home mortgages at 8 1/4
percent depending on whether a customer places 30 percent or more of the
cost of the house as a down payment. For less than a 30 percent down
payment, the mortgage rate is 8 1/2 percent.
How can you program your calculator to answer the question, “For a

given house cost and customer’s down payment, is the down payment
greater than or equal to 30 percent of the house cost?”

First compute 30 percent of the house cost and place it in the y-register.
Next place the customer’s down payment in the x-register. Finally, with
the comparison test <»], your program will be able to decide
whether the down payment is greater than or equal to 30 percent of the
house cost.
You can see how this comparison test is used in the program in Figure

15-3. If the down payment is 30 percent or more of the house cost, the
program stops and displays “8.2500” representing the fact that the 8 1/4
percent mortgage rate applies. Otherwise the program stops and displays
“8.5000”.

 
 

   
 

 

 

   
     
 

Figure 15-3

Flow Chart Program

~ Enter house cost {00 (R/S)

{
Compute 30 percent or

02 3
of the house cost 03 x

1
Enter down payment {04 R/S

Is down payment > 30 percent of 05 xZy
house cost? 06 fx<y

If no ! i If yes 
184



 

|
 

  
 

 

  
 

 

   

Skip ahead {07 GTO 12

Place 8.50 in display, 08 8 10 5

loop back to stop 09 . 11 GTOO00

Place 8.25 in dis- 12 8 15 5
play, 13 . 16 GTOO00
loop back to stop 14 2

KR]  
|

 
Initialization: [PRGM]| STK enter house cost customer’s
 

  down payment, R/S 

Verify that for a house costing $50,000 with a customer putting $10,000
down, the program shows “8.5000” in the display.

Section 4: Problems

1.
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A certain bank has “now” accounts where the balance at the end of a
month earns interest at the monthly rate of 1/2 percent as long as the
balance is more than $200. Otherwise the balance earns no interest.
Write a program to accept a monthly balance as input, and decide
whether that amount is more than $200. If it is, add 1/2 percent of
that amount and display the new balance. If it is not, merely display
the balance. Test your program by entering a balance of $500. You
should obtain $502.50 in the display.

. Postal rates (effective May, 1978) for first and second class are:

CLASS RATE

1 15¢ forfirst ounce plus 13g for each additional ounce
2 10g for first 2 ounces plus 6g or fraction thereof.

In other words,if z is the weight in ounces rounded up to the nearest
integer equal or greater than the actual weight, the rates are:

CLASS RATE

1 A5 + .13(z —- 1) forz=1,2,3,---

2 10 + .06(z — 2) forz=2,3,4,---

Write a program to compute the correct postal rate from two input

numbers: the rounded-up weight, z, and the number 1 or 2 indicating
the class. Use this data to verify that your program works: For z = 5,
the class 1 postal rate is 67¢ and the class 2 postal rate is 28g.
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Your Calculator
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3. Faced with a set of numbers, how do you choose the smallest? One
process is to systematically examine each number in the set. First
examine the first number and choose it as the smallest number
examined so far. Next examine the second number; if it 1s smaller than

the first, choose the second number instead of the first as the smallest

so far. Continue examining each successive number, choosing it if it is
smaller than the previously chosen smallest number. After examining
all the numbers, the smallest of all of them will have been chosen.

Write a program to find the smallest of a set of numbers by the
above process. Initially store the first number in R,. After that, accept
each next number as input, decide whether the new number is smaller
than the previous smallest number saved in R,, and replace the
contents of R, with the new number if appropriate. At the end, recall
the contents from R, to display the smallest number.

. A point (xy, yo) is on a line if the coordinates x, and y, satisfy the
equation of the line. For example, the point (7,32) sony = 5x — 3
since 32 = (5-7) — 3. Write a program to decide whether or not a
point is on the line y = 5x — 3. In case the point is on the line, display
the number 1; otherwise, display 0. These points are on the line:
3, 12), (5, 22), (—3, — 18). These points are not on the line:
(=2,59), (6, 20), (—2, 3).

. Write a program to decide whether a number is between 14.5 and 25.5.
If 1t 1s, display the number. If not, display =.

. United Parcel Service has a maximum package size requirement that
the length plus girth may not exceed 108 inches. If the length, width,
and height of a rectangular box are /, w, and A, the girth (or the
distance around the box) is (2w + 2h). Write a program to accept
input values for /, w, and A (in inches), calculate the length plus girth
and compare it with 108. If the size of a package is too large, display 0;
if its size is acceptable, display 1. To check your program: for / = 20,
w= 14, and h = 30, a 1 should appear in the display; and / = 30,
w = 14, and A = 30, a 0 should appear in the display.

Figure 15-4

 

. Not only does United Parcel Service have a maximum size for
packages, they also have a maximum weight of 50 pounds. Write a
program to accept input values for length, width, height, and weight,
and decide whether the package can or cannot be sent by U.P.S.
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8. A quadratic equation ax? + bx + ¢ = 0 has the roots

oo Tb +Vd
bX = 2a ’

When d > 0, the roots are real and are

_—b+Vd = -b—-Vd
Le 2a ’ 2 2a ’

When d < 0, the roots are complex and are

xX; =u + vi, X, =u — vi wherei =V — 1 and

—b/2a, v=V —d [2a

Write a program to allow for the input numbers a, b, and ¢. Compute d
and test for real or complex roots. If the roots are real, display x, and
x,; and if the roots are complex, display # and v. Test your program
with

a. for x*—2x-8=0; d=36 and x, x,= +4o0r —2

b. for 9x>—3x—-2=0; d=281; and x,x,=+%,—3

c. for x*+2x+3=0;, d= -8, and x, x,= —1*+V2i

u

Section 5: Making Decisions Involving Whole Numbers

As you have seen, the eight comparison tests shown in Table 15-1 can be
used to make decisions in a program. Often which comparison test will
make a particular decision is obvious. Sometimes, it is not obvious—
namely when the corresponding comparison test for a decision requires
some special knowledge about your calculator, mathematics, or both.

Consider, for instance, how you would test to see whether a number is a

whole number. Every number has an integer part and a fractional part.
For example, 3.157 has an integer part of 3 and a fractional part of .157,
while 7 has an integer part of 7 and a fractional part of 0. Notice that a
number is a whole number when its fractional part is 0 or when it is the
same as its integer part.

Using the and instructions on your calculator,
you can find the integer and fractional parts of a number, respectively.
You can therefore test to see whether a number is a whole number by
either comparing its integer part to itself or its fractional part to zero.

Determining whether a number is or is not a whole number can be
useful in making a variety of other decisions. For example, deciding
whether a number, n, is divisible by four (or d) can be accomplished by
testing whether the quotient n/4 (or n/d) is a whole number or not.
Similarly, deciding whether a number is a perfect square (or perfect kth
power) can be accomplished by testing whether the square root (or kth

root) 1s a whole number or not.

For your interest, the two programs following illustrate the ideas just
presented. The first decides whether a number, n, is divisible by four by
comparing the fractional part of the quotient n/4 to zero. The second
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program decides whether a number is a perfect square by taking the square
root of the number and then comparing the square root to its integer part.

Program 1

Figure 15-5 contains a program that generates the sequence of counting

numbers 1, 2, 3, 4, ..., pauses to show those terms that are not divisible

by 4, and stops to display those terms that are.

 

 

 

 

   
 

   
 

   

    

 

  
  

       
   
   

Figure 15-5

Flow Chart Program

—!| Enter starting value of n {00 (R/S)

{
Compute next integer n or 1 03 +

and store in R, 02 1 04 STO7

05 4C ten/4ompute n/ 06 +

{
Keep fractional part of n/4 {07 gFRAC

Is n evenly divisible by 4?

1.e., 18 7 a whole number? {08 g x=0

If no If yes

Skip ahead {09 GTO 13

Recall n, 10 RCL7
pause, 11 fPAUSE
loop back to repeat 12 GTOOl

Recall n, loop back 13 RCL7
to stop 14 GTO O00   

Memory usage: R, =n
Initialize: enterfirst value of n (i.e., 0)
Comment: When the calculator stops to display on integer evenly

divisible by four, press to restart the program.



Program 2

The program in Figure 15-6 generates the sequence of counting numbers
1,2,3,4,..., pauses to shown those terms that are not perfect squares,

and stops to display those terms that are.

 

 

   
 

 

   
 

   
 

   

     
  
 

  

      
   
   

Figure 15-6

Flow Chart Program

~ Enterfirst value of n {00 (R/S)

{
Compute next integer n 01 1 03 +

"| and storeit in R 02 1 04 STO6G6

{
Compute Vn and place 05 [ Vx
it in both the x- and 06 1
y-registers

{
Take integer part of Vn (07 ¢ INT

in the x-register

9

Is n a perfect square? (08 f x=y

i.e., is Vn a whole number?

If no {If yes

Skip ahead {09 GTO 13

Y

Recall n 10 RCL6
pause 11 f PAUSE
loop back to repeat 12 GTO 01

Recall n 13 RCL 6
loop back to stop 14 GTO 00   

Memory usage: Rg =n

Initialize: [f] enter first value of n (i.e, 0),
[R/S]

Comment: When the calculator stops to display an integer that is a
perfect square, press to restart the program.
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190 If you are testing to see whether a number is a whole number, you may
at times obtain unexpected results, due to the way your calculator is

Programming engineered to make various computations. For example, if you compute

Your Calculator the cube root of 125, in spite of the fact that the display shows 5.0000, the
Decisions actual value computed internally by the calculator differs from 5. in the

last one or two decimal places. (See the owner’s manual of your calculator
for details.) So, in a program that tests whether the cube root of 125 is a
whole number, the calculator will conclude that it is not whole! If your
calculator computes a value involving only [=] [£] or you need
not worry about obtaining unexpected results of this type. However, you
should expect them with other functions, especially with [y*.

For your interest, a sequence of key strokes avoids this difficulty. This
sequence of nine program instructions rounds off the number in the
display to 8 significant digits: enter

[LAST |[-]. Include this sequence in a program after
computing a value and before performing any of the tests #5],

[x=0], [g] [x=0], or [g] [x=0].

Section 6: Problems

1. Write a program to accept any year between 1901 and 2099 as input
and decide whether that year is a leap year.If it is, display the year as a
positive number. If it is not a leap year, display the year as a negative
number.

2. a. Write a program to decide whether a number is both less than 100
and a perfect cube. If it is, have your calculator display the number,
otherwise, display 0. Test your program for 4, 100, and 125, which
should give 0 in the display, and then for 27 which should give 27 in
the display.

b. What happens when you test your program for a negative number?
Why?

3. Write a program to decide whether a number is between — 100 and 100
and is a perfect cube.

4. Write a program to generate the sequence of multiples of three. Have
your program pause to display each multiple and stop for each multiple
of three that is a perfect square.

5. A Pythagorean triple is a triple of integers (a, b, ¢) that represent the
lengths of the three sides of a right triangle. Necessarily,

c2=Va*+ b?.

Figure 15-7
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Find all pythagorean triples of the form shown in Figure 15-7: aq,

a+ 1, and c=\a* + (a+ 12 =V2a*+ 2a +1, where a, a +1,
and c are all integers. Have your program begin with a = 1, increment a
by 1 each time through the loop, and stop to display ¢ when c is
integral. (Hint: (3, 4, 5) is the first triple of this type. There are four
solutions with c¢ less than 1,000. Can you find them all?)

. The triangular numbers 7, can be defined recursively 7, = T,_, + n
with 7, = 1. For which n is T, a perfect square? For n < 2,000, there

are exactly 5 solutions. Can you find them all?
. Many problems of a puzzle nature involve dividing numbers by other
numbers and can be solved directly with the use of your calculator.

Find the smallest positive whole number with a remainder of 5 when
divided by 6 and a remainder of 8 when divided by 11. (Hint: You are
looking for a number n so that n = 6k + 5 and n = 11/ + 8. Write a
program tolet/ = 1, 2, 3,..., compute n, solve for k, and test whether

k is an integer. Have the program stop at the first instance when k is
integral and then display n.
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Section 1: Having Your Calculator End Loops

A square-based pyramid is formed using cannonballs with a single
cannonball on top and a square number on each layer as shown in Figure
16-1. How many cannonballs are there in 10 layers? How many layers can
be made from 10,000 cannonballs?

Rephrased in mathematical language these questions become:

1. How large is
10
E2=12+22+32+... +107
k=1

and

2. Whatis the largest value of n so that

M k2=12+22+ ... +n? < 10,000?
k=1
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Figure 16-1

 

You could answer each of these questions by setting up an infinite loop
to calculate 12 + 22 + 3 + ... as a running total. During each loop the
calculator computes the next integer k, adds k? to the running total, and
displays the current running total. Then you can answer question 1 by
counting the loops and stopping the calculator after the 10th loop. Simi-
larly, you can answer the second question by counting the loops and
stopping the calculator just as the total goes over 10,000. (In this case you
have counted one loop too many (that is, n + 1 loops), so you must
subtract one from the number of loops counted to get n, the answer.)

Nonetheless, your calculator can do the watching, counting, and the
decision-making for you. By including within the loop a comparison test to
check whether it is time to end the loop, you can convert an infinite loop
into a finite one.

For the first cannonball question, have the program loop to compute
the running total 1 + 22 + 32 + ... . Include in the loop a comparison
test to decide when the number of times through the loop has reached 10.
At that time have the program stop to display the current running total,
the answer to the first question. You will find a flow chart and program to
do the Cannonball Problem in the next section.

For the second question, use the same type of loop as in the previous
program. Include in this loop a comparison test to determine when the
running total becomes at least 10,000. At this time the number of com-
pleted loops minus 1 answers the question.

All loops you program are infinite loops unless you include in the loop a
comparison test to decide when to terminate it. Sections 2 and 3 of this

chapter present examples and problems for which the terminating condi-

tion is simply, “Has the number of completed loops reached a prede-
termined number yet?” Sections 4 and 5 go on to present examples and

problems of other conditions for terminating a loop.

Section 2: Calculating Finite Sums or Products

How can you set up a finite loop to calculate a finite sum, such as
12+ 22+ 32+... +n? or a finite product like n!= (n)(n — 1)(n —
2)...(2)1)?
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Figure 16-2

 

 Place nin R,

{
  
 

 

Place starting value

of k in display and

in R,
 

i
  Display k (optional)  
 

 
If no

 \

Add k? to
running total

 

  
 

 

 

 
If yes

y\

Skip ahead

 

  
 

Y  
Add 1
to R,

  loop

back     
 

Display
 

Memory usage:

Initialization:

Comment:
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  running total
 

02
03

05

07
08

09
10
11

{12

13
14

16

17
18

R, =k R,=sum, R, =n

[7] [PRGM] [f] [REG] [f] [STK] enter n [R/S]
Notice the pauses in steps 04 and 08 which show k and
the running total as the program proceeds. If either of
these pauses is not desired, delete step 04 or delete steps
07 and 08.

(R/S)
STO 7

STO 1

f PAUSE

g x?
STO + 2
RCL 2
PAUSE

RCL 7
RCL 1

f x=y

GTO 17

STO + 1
RCL 1
GTO 04

RCL 2
GTO 00



Example 1: The Cannonball Problem

As mentioned in the previous section, the calculation of the sum 1? + 2% +
32+... 410° in the Cannonball Problem can be set up as a loop
designed to compute a running total. To make the loop finite, include
within the loop a comparison test to see whether the loop has been
processed 10 times yet. How would you set up a finite loop to compute
12 + 22 + 32 + ... +n? where n may be different each time you run the
program, but will be known at the start of the program each time you run
it? You may want to try to program this on your own before reading
further.

Figure 16-2 contains a flow chart and corresponding program to enter
the value of n and then compute 12+ 22+ 32+ ... +n? for the
Cannonball Problem. Run this program for n = 10 to verify that the
number of cannonballs in 10 layers is 385. Then modify your program to
show that for n = 30, the number of cannonballs is just less than 10,000.

Example 2: Computing n!

The next flow chart and program in Figure 16-3 compute n! from an
entered value of n. The computation is performed from left to right
according to n!= (n)(n — 1)(n — 2)... (3)@2)(1). Initially the value of n is
used as the current factor and the current factor is reduced by one each
time through the loop. The current factor is compared to the number one
after multiplying the factor onto the running product. When the current
factor becomes 1 the product is complete.

 

 

   
 

Figure 16-3

= Place nin R, 0 (R/S)
01 STO1

Y
Place last factor 02 1
in R, 03 STO7   

{
Set running product

in R, to 1, recall n

!
Multiply current

factor onto {07 STO Xx 2

running product

 

05 STO2
06 RCL   
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|

Is 08 RCL7

current factor = 0 x=2y
last factor? 10 f x=y

If # If =
Skip ahead {11 GTOIs5

Y

Subtract 1
from current 12 b
factor, loop 14 GTO 07
back

\

Display 15 RCL2
product n 16 GTO 00   

Memory usage: R, = end factor =1,R, =n
R, = running product

Initialize: enter n

Section 3: Problems

1. How many cannonballs are there in a triangular-based pyramid with 1
cannonball on the top, 3 on the second layer, 6 on the third layer,
k(k + 1)/2 balls on the kth layer, and n layers all together? When
n=1, 2, 3, 4 the correct numbers are 1, 1 +3 =4,1+3 + 6 = 10,

and 1+ 3 + 6 + 10 = 20. How many cannonballs are there in 10
layers? 20 layers? 50 layers?

. Find
n

> [3k(k—1) +1]
k=1

for values of n equal to 2, 3, 4, and 5. Do you recognize the sequence
that is generated?

. The Fibonacci numbers are the numbers in the sequence f(0) = 0,

fA) =1, f2)=f(1) + f0)=1+0=1, and f(k) = fk — 1) + fk —
2) for all k > 1. Write a program to compute a running total of
Fibonacci numbers, display each number as it is calculated, and then
display the sum of the first ten Fibonacci numbers.

. Permutations are finite products. Specifically, PJ = n(n — 1)(n —
2)...(n —y + 1). The permutation P} is similar to n! but differs in the

fact that the last factor is (n — y + 1) instead of 1.
a. Write a program to allow inputs of y and n and then compute the

permutation PJ.
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197 b. How many ways could you choose a committee of a president,
vice-president, secretary, and treasurer from a group of 10 people?

Programming This number is symbolized by P;°. Whatis its value?
Finite Loops c. How many ways could 5 out of a group of 12 people seat themselves

in five chairs placed in a row? In other words, what is P}??
5. When y objects are chosen from a collection of n objects, but the order

of choosing the objects is irrelevant, the number of choices is called the
number of combinations of y chosen from n, symbolized by Cj—
specifically, C; = P/y! But the computation can be more efficiently
performed as a product of fractions:

nn n—1 n—-2 n—-y+2 n—y+1

Yooy y—=1 y-=2""7" 2 1

a. Program your calculator to compute C; with given input values of y
and n.

b. How many ways can you choose 4 people out of 10 when order is
unimportant?

c. If you have a collection of 10 different coins, how many different
subcollections of 6 coins could you choose?

6. The efficient formula for calculating a value of e, the base of the natural
logarithmsis:

  

yal 1 1
e = tata tatato

Find the sum of the first 20 terms of this series.

Section 4: Ending a Loop When a Condition is Met

With the use of the comparison tests, you can set up a program loop that
ends when any of a number of different types of conditions is met.
Presenting an exhaustive list of such conditions is impractical since they
depend upon the context of an individual problem and on the particular
approach you use to solve the problem. Instead, two characteristic exam-
ples are given in this section.

Example 1: Finding the Maximum of a Finite Number of
Possibilities—the Volume of the Box Problem

If a piece of paper 22 cm. by 28 cm. is marked off into centimeter squares,
has an x-cm. square cut off each corner, and is then folded into an open
box (see Figure 16-4), what value of x yields the box with the maximum
volume?

The volume is given by V(x) = (22 — 2x)(28 — 2x)(x), and x may take
on the (whole) values 1, 2, . . ., 10. Notice that if x = 11, the box has no

width since 11 is half of 22. Consequently, x cannot exceed 10.
A program to find the x value corresponding to the maximum volume

can test each possible value of x, saving x if V(x) is larger than the volume



Figure 16-4

  
x

for any previous x value. The looping in the program ends when all values
of x have been tested. Therefore, this program is similar to those described
in Sections 2 and 3 in the sense that the program stops after the loop has
been processed a predetermined number of times (ten in this case).

Here is a flow chart and program to solve this problem.

 

 

   

  

   
 

   

  
 

   

Figure 16-5

00 (R/S)
+ SetR, = 10 01 1

02 0
03 STO4

_ 04 1
SetR, =x =1 os STO 1

{
Recall best value of 06 RCL2
V(x) and put in R, 07 STO7

1 08 2 12 2 16 8 20 -—
09 2 13 xXx 17 RCL1 21 XCompute V(x) 10 1 4 —- 18 2 22 RCL
11 RCL1 15 2 19 X 23 X 
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Is

 

   
 

  

     

   

current V(x) not > ne

larger? / Y

If yes If no

Skip ahead {26 GTO 31

Y 7 -

xXZy
Store V(x) 28 STO?

and
store x > iy;

31 RCL4
32 RCL
33 f x=y

 

 

 If no If yes
A

Skip ahead {34 GTO 38
 

    Y 
    

Add 1 35 1
to x, 36 STO + 1
loop back 37 GTO 06
 

;  
 

Stop and (38 RCL 3
display 39 GTOO00   

Memory usage: R, = x, R, = R, = best V(x), R; = best x, R, = 10
Initialize: [PRGM] [REG] [STK] [R/S]
Comment: The best x is 4. To see the best V(x) press or

Example 2: Finding a First Value When a Condition is Met—
the Stacking Problem

Suppose you have a large collection of n congruent unit length objects,
such as bricks, books, or cards. If you stack them so that the one on top

extends as far to the right of the bottom one as possible (see Figure 16-6),
can the top one overhang more than one unit length to the right? If so,
how many objects are necessary to achieve this condition?
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Figure 16-6

 

 

 
Overhang

length

Considering physics, the maximum overhang length occurs if the center
of mass of the top object is balanced over the right edge of the next object
down. If the center of mass is to the right of that point, the object will fall;
if the center of mass is to the left, the overhang is not maximal. Similarly
the center of mass of the top two objects needs to balance on top of the
right edge of the third. In general, the center of mass of the top n — 1
objects needs to balance on top of the right edge of the nth object. This
describes a way to actually build such a stack from the top down and
mathematically leads to the overhang length of

n

2 x
k=1

for n objects stacked for the maximal overhang length.
Now the mathematical question becomes: For what first value of n (if

any) does

- 1> a> 1?
k=1

A flow chart and program for the stacking problem are found in Figure
16-7. The program loops for each consecutive value of k, starting at k = 1,

computes 5- and adds 5 to a running total. The looping ends when the

running total first exceeds the value 1. Then, the current value of k,
representing the desired number of objects, is displayed.

According to this program only 4 objects are necessary so that

a1
> =>
K=1 2k

Is it possible to find an »n so that

“|— 292 55 > 2

Change the initialization in the program to
enter 2 and see if you obtain 31.
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Figure 16-7
 

 

   
 

   
 

 

   
 

   

    
  

  
 

  

      
       

| Store end value 00 (R/S)
to be exceeded in R, 01 STO7

02 1Set = 1© . 03 STO1

Form term 04 RCL
i 1 05 2

= 57 06 X
07 g 1/x

{
Add term to sum {08 STO +2

09 RCL7
Is 10 RCL2

end value < sum? 11 f PAUSE
12 f x>y

If no {If yes

Skip ahead {13 GTO 17

y

Add 1 14 1
— to k 15 STO + 1

loop back 16 GTO 04

y

Stop to 17 RCL1
show k 18 GTO 00   

Memory usage: R, = end value to be exceeded, R, = k, R, = SUM

Initialize: enter 1

Section 5: More Problems

1. Write a program to generate the values v1, V7,

V3,Va,..., 30, that is, the values Vn for n going from 1 to 30.
Have your program find and display the maximum of these values.

2. a. Write a program to compute the fourth root of n =1,2,3,4,...,

and to stop and display the first one exceeding =.

b. How would you change the program to allow for any number rather
than just 7 to be used for the test value?
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Suppose you paint k faces of a cube red and the other 6 — k faces blue.
Then, when the paint has dried, you toss the cube three times hoping to
obtain red on the top face twice and blue once in any order. How many
faces should you paint red and how many blue so that what you wish to
obtain has the maximum possible probability? (Hint: k = 0, 1, 2, 3, 4, 5,
or 6.)

. What is the largest number of levels you can build in a square-based
pyramid made from 10,000 cannonballs? (See Section 1 if you need to.)

At a local school benefit dance, students paid $4 a couple and others
paid $5 a couple to attend. In total, $77 was collected. Phrased mathe-
matically, this last sentence becomes: for positive integers x and y,

4x + 5y =T17.

a. Find all four integer pairs (x, y) that solve the equation 4x + Sy =
77.

b. If the number of students and the number of other people who came
to the dance were as close together as possible, how many of each
came?

. Jack’s beanstalk was most unusual. Someone said that on the first day it
grew to a short height and then grew according to the following pattern.
On the second day it increased its height by 1, on the third day by 3,
and on the fourth day by ;, and so on. How long did it take for Jack’s
beanstalk to reach 100 times its height on the first day?
Caution: The answer is not given by the first n for which

> 1/n > 100.
k=1

. At a special fund-raising banquet, 100 senators, congresspersons, and
lobbyests showed up. Senators paid $75 each; congresspersons paid
$99; and lobbyests, $40 each. If $7,869 was collected, how many of each

came to the banquet? (Hint: If S, C, and L represent the respective
numbers of senators, congresspersons, and lobbyests, then

S + C + L = 100 people

$758 + $99C + $40L = $7,869

Since there are at most 100 senators from 50 states, set up a loop with S
as an index, letting S go from 1 to 100. By solving the two equations
algebraically for C and L, you obtain

C= (3,869 — 355)

59

g = (2,031 — 24S)

59

In the program, compute C and L from these formulas and test to see

whether each is an integer. Stop to display any integer triple solution for

S, C, and L.
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ANSWER KEYS-
TI 57 AND EC 4000

14.1a

Stops the program so you can input the value of
n.

1.4.1b

Permits the calculation of n + 1 before squaring.

1.4.1c

Stops the program so you can see the output
value of 2(n + 1)%.

1.4.2a

Display flashes, indicating an error condition,
with the value of n entered.

1.4.2b

Returns the “memorized” program back to the
first step.

205

1.4.3

No... the LRN key stroke cannot be mem-
orized because it is a “switch” that changes the
calculator from one mode (learn or run) to the
other.

1.4.4

STEP PROGRAM

00 2

01 X

02 R/S

03 x2
04 +

05 1
06 =

07 R/S

Initialize: CLR, RST, R/S, enter n, R/S



1.6.1a

Detailed Flow Chart

 

Enter dinner cost

!
Prepare to multiply

i
Enter 1.08

{
Complete multiplication

:

  
 

 

  
 

 

  
 

 

  
 

 

  
 

Stop and display result

1.6.1b

STEP PROGRAM

00 R/S

01 X
02 1
03 .
04 0
05 8
06 =

07 R/S

Initialize: CLR, RST, R/S, enter dinner cost,

R/S

1.6.2

Detailed Flow Chart

 

Enter number of feet

!
Prepare to divide

i
Enter 3.28

'
Complete division

i
Stop and display result
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1.6.3a

General Flow Chart

 

  
 

 

  
 

 

  
 

Enter F and
subtract 32

1
Divide F-32 by 1.8

1
Display result

1.6.3b

STEP PROGRAM

00 (
01 R/S
02 —-

03 3
04 2
05 )

06 +

07 1
08
09 8
10 =

11 R/S

Initialize: CLR, RST, R/S,enter F, R/S

1.6.4a

Detailed Flow Chart

 

Prepare to compute a + b

{
Enter a

{
Prepare to add

!
Enter b

{
Complete addition

i.e. compute a + b

{
Prepare to divide by 2

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 



1.6.4b

Initialize:

1.6.5

{ 
   
 

   
 

   

Enter 2

1
Complete division

Stop and display result

STEP PROGRAM

00 (
01 R/S
02 +
03 R/S
04
05 +
06 2
07 =
08 R/S

CLR, RST, R/S, enter a, R/S, enter
b, R/S

General Flow Chart
 

Enter length

{
Multiply by width

Y
Multiply by height

'
Stop and display

   
 

   
 

   
 

   

Detailed Flow Chart
 

Enter /

{
Prepare to multiply

{
Enter w

{
Multiply /- w
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Initialize:

1.6.6a

Initialize:

1.6.6b

 

   
 

   
 

   
 

   

Prepare to multiply

'
Enter A

{
Multiply (/-w)- h

{
Stop and display

STEP PROGRAM

00 R/S

01 x
02 R/S

03 =
04 X

05 R/S
06 =

07 R/S

CLR, RST, R/S, enter /, R/S, enter
w, R/S, enter A, R/S

STEP PROGRAM

00 (
01 R/S
02 X

03 2

04 +
05 8

06 —
07 2

08 )

09 +
10 2

11 —
12 R/S
13 =

14 R/S

CLR, RST, R/S, enter n, R/S, re-en-
ter n, R/S



1.7.1

STEP PROGRAM

00 R/S

01 +

02 .

03 6
04 2
05 =

06 R/S

Initialize: CLR, RST, R/S, enter number of

miles, R/S
Comments: 5S mi.=8.0645161 km.

8 mi. =12.903226 km.
31 mi. =50 km.

500 mi. =806.45161 km.
3000 mi. =4838.7097 km.

1.7.2

STEP PROGRAM

00 R/S
01 X
02 2
03
04 8
05 5
06 =

07 R/S

Initialize: CLR, RST, R/S, enter number

of hours, R/S
Comments: 12 hrs. gives $34.20

14 hrs. gives $39.90
18 hrs. gives $51.30
22 hrs. gives $62.70

1.7.3a

Two programs for C = (F + 40) X 3 — 40 are
presented. Both are correct. However, program A
illustrates an important point. For F = 32, you
will not obtain the expected result, 0; rather,
“—3.—09” will be in the display. This value is
very close to 0 and differs from it only in the 9th
decimal place. There are times when your calcu-
lator computes unexpected results because of
round-off errors. Such errors are rarely a prob-
lem, as you can usually recognize what the cor-
rect result should be. Still, you should be aware
of this phenomenon. Consult your owner’s man-
ual for further details on the accuracy of your

calculator’s computations.
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Initialize:

Initialize:

1.7.3b

PROGRAM A

= ~
~
w
n

I
=
C
+
2
x
H
+

A
g
e

/S

CLR, RST, R/S, enter F, R/S

STEP PROGRAM B

(
(
R/S

O
L
T
U
T
O
h

N
e
d

R/S

CLR, RST, R/S, enter F, R/S

STEP

00

01
02
03
04
05
06

PROGRAM

(
(
R/S

~
O
o
h
s

gy



STEP PROGRAM 1.7.62

07 X

08 9 STEP PROGRAM
09 )
10 + 00 (11 5 01 R/S

02 +
12 = 03 R/S
13 4 04 +

14 0 05 R/S
15 = 06 )

08 3

Initialize: CLR, RST, R/S,enter C, R/S 09 =
10 R/S

1.7.4

Initialize: CLR, RST, R/S, enter a, R/S, enter
STEP PROGRAM b, R/S, enter c, R/S

00 R/S
01 X 1.7.6b

o R/S Within the parentheses, include an additional
04 R/S, + sequence to add the fourth number.
05 0 Then be sure to divide by 4 rather than 3.

06 3
07 _ 1.7.7

08 R/S

STEP PROGRAM

Initialize: CLR, RST, R/S, enter /, R/S enter 00 R/S
w, R/S 01 +

02 R/S
03 =

1.7.5 04 +

05 2
STEP PROGRAM 06 =

00 5 07 X

01 . 08 R/S
02 8 09 =
03 9 10 R/S
04 X

0° ( Initialize: CLR, RST, R/S, enter b,, R/S, enter
07 " b,, R/S, enter h, R/S

08 R/S
09 + 1.7.8a
10 2

0 R/S STEP PROGRAM

13 ) 00 R/S

4 - 0 :
15 R/S 03 1

04 +
Initialize: CLR, RST, R/S, enter /, R/S, enter 05 .

w, R/S 06 0
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STEP PROGRAM

07 6
08 =

09 R/S

Initialize: CLR, RST, R/S, enter n, R/S

1.7.8b

$106.00

1.7.8¢c

With $106.00 in display, press RST, R/S to
obtain $112.36

1.7.8d

Repeat the sequence RST, R/S enough times to

obtain $133.82

1.7.9a

STEP PROGRAM

00 3
01 6
02 0
03 +
04 R/S
05 =
06 R/S

Initialize: CLR, RST, R/S, enter /, R/S

1.7.9b

72, 45, 36, 24

1.7.9¢

18, 20

2.2.1

No answer required.

22.2

$49.89

223

$153.25

224

$54,575,904.00
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225

STEP PROGRAM

00 1
01 .
02 0
03 6
04 y*

05 R/S

06 =

07 X
08 1
09 0
10 0
11 =

12 R/S

Initialize: CLR, RST, R/S, enter n, R/S

24.1

Program 2

24.2

Program 2

243

Sequence 1 evaluates 100! +",
Sequence 2 evaluates 1 + 10”.

Sequence 3 evaluates 1 + n.

244

Initialization sequence a gives 3° = 243 while

sequence b gives 5° = 125.

2.6.1

STEP PROGRAM

00 (
01 R/S
02 +
03 R/S
04 +
05 R/S

06 )

07 +
08 3
09 =

10 R/S

Initialize: CLR, RST, R/S, enter a, R/S, enter
b, R/S, enter ¢, R/S



2.6.2

Initialize: CLR, RST, R/S, enter a, R/S, enter
b, R/S

2.6.3

Initialize: CLR, RST, R/S, enter a, R/S, enter

PROGRAM

R/S
X

R/S

Vx
R/S

PROGRAM

R/S
X

R/S
xX

R/S

INVy~*

3

R/S

b, R/S, enter ¢, R/S

2.64

Initialize: CLR, RST, enter R;, R/S, enter R,,

R/S
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PROGRAM

1/x
+

R/S
1/x

1/x
R/S

2.6.5a

Initialize:

2.6.5b

Initialize:

2.6.6

Initialize:

2.6.7

STEP

00

01

02
03

PROGRAM

R/S

2nd sin
(or 2nd cos
or 2nd tan)
1/x
R/S

CLR, RST, R/S, enter 6, R/S

PROGRAM

2nd tan
R/S

CLR, RST, R/S, enter §, R/S

STEP

00
01
02
03
04
05
06

PROGRAM

2

CLR, RST, R/S, enter n, R/S

PROGRAM

[
i

N
D
L
W



Initialize:

2.6.8

Initialize:

2.6.9

Initialize:

2.6.10

STEP PROGRAM

07 +
08 (
09 R/S
10 —
11 3
12 2
13 )
14 2nd Int
15 =
16 R/S

CLR, RST, R/S, enter n, R/S

STEP PROGRAM

00 —

01 R/S
02 =
03 2nd |x|
04 R/S

CLR, RST, enter year, R/S, enter

second year, R/S

STEP PROGRAM

00 1
01 +

02 (
03 R/S
04 2nd log
05 )

06 2nd Int
07 =
08 R/S

CLR, RST, R/S, enter n, R/S

STEP PROGRAM

00 (
01 3

02 X
03 R/S

4 +
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Initialize:

2.6.11a

Initialize:

Here is a

STEP PROGRAM

05 (
06 4
07 X
08 2nd 7
09 )

10 )
11 INVy*
12 3
13 =
14 R/S

CLR, RST, R/S, enter V, R/S

STEP PROGRAM

00 (
01 R/S
02 X

03 R/S

04 +
05 4
06 X

07 R/S
08 X

09 R/S
10 +

11 R/S
12 X

13 R/S
14

15 X

16 R/S
17 +

18 6

19 =
20 R/S

CLR, RST, R/S, enter a, R/S, enter
b, R/S, enter a, R/S, enter b, R/S,
enter a, R/S, enter b, R/S, enter A,
R/S

second, shorter program giving the
same result. It is based on the following algebra,
which leads to the familiar formula for the
volume of a rectangular prism:

V = (ab + 4ab + ab)- 2

(6ab)- +

= abh



Initialize:

2.6.11b

Initialize:

2.6.11c

PROGRAM

X

R/S
xX

R/S

R/S

CLR, RST, enter a, R/S, enter b,
R/S, enter h, R/S

PROGRAM

X 2.6.12a

A
U
S

/S

CLR, RST, R/S, enter r, R/S, enter
r, R/S, enter h, R/S

STEP

01

02
03

213

PROGRAM

( Initialize:
R/S

x2

+ 2.6.12b
4
x

Initialize:

PROGRAM

R/S

CLR, RST, R/S, enter a, R/S, enter
a, R/S, enter b, R/S, enter b, R/S,

enter ¢, R/S

STEP

00
01
02

03
04
05

06
07

08
09
10

11
12

PROGRAM

X

2

2nd sin
xX

R/S

x2

W
y

R/S

CLR, RST, enter 8, R/S, enter V,

R/S

No answer required.



2.6.12c

45°, 253.1 feet when rounded to the nearest tenth

of a foot.

3.5.1

No answer necessary.

35.2
Memory:

No answer necessary. Initialize:

3.5.3 43.2
A corrected program for computing (4 — 5)/(B
+ 5) is as follows:

STEP PROGRAM

00 (
01 R/S
02 —-
03 5

04 )
05 +

06 (
07 R/S
08 +
09 5
10 )

11 =
12 R/S

Memory:
Initialize: CLR, RST, R/S, enter a, R/S, enter Initialize:

b, R/S

43.1 433

STEP PROGRAM

00 STO 1

01 RCL 1
02 X

03 (
04 RCL 1
05 +
06 1
07 )
08 X

09 (
10 2
11 X
12 RCL 1
13 +
14 1
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STEP PROGRAM

15 )
16 +

17 6

18 =

19 R/S

R, =n

CLR, RST, enter n, R/S

STEP PROGRAM

00 STO 1

01 RCL 1
02 X

03 (
04 RCL 1
05 +

06 1
07 )

08 +

09 2
10 =

11 x?

12 R/S

R, =

CLR, RST, enter n, R/S

STEP PROGRAM

00 STO 1

01 R/S

02 STO 2
03 RCL 1
04 X

05 RCL 2
06 X

07 2nd 7
08 =

09 STO 3

10 2
11 X
12 2nd 7

13 X

14 (



Memory:

Initialize:

43.4

STEP PROGRAM

15 (

16 (

17 RCL 1

18 x2
19 +

20 RCL 2

21 x2

22 )

23 +
24 2

25 )

26 Vx
27 )

28 =

29 STO 4

30 2nd Fix 2

31 RCL 3

32 R/S

33 RCL 4
34 R/S

Ri=aq,R,=bR;=4,R,=C

CLR, RST, enter a, R/S, enter b,

R/S (see area), R/S, (see cir-
cumference)

STEP PROGRAM

00 STO 1

01 R/S

02 STO 2
03 RCL 1
04 X

05 RCL 2

06 x2

07 ne

08 (
09 4
10 X
11 (
12 1
13 8
14 0
15 +

16 RCL 1

17 )

18 2nd tan
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STEP PROGRAM

19 )

20 =

21 R/S

R, =n, R, =]

CLR, RST, enter n, R/S, enter /,
R/S

STEP PROGRAM

00 STO 1

01 R/S

02 STO 2

03 -
04 1

05 =
06 STO 3

07 +
08 4

09 0

10 0
11 =

12 2nd Int

13 —

14 (
15 RCL 3

16 +
17 1

18 0
19 0

20 )
21 2nd Int

22 +

23
24 RCL 3

25 he
26 4
27 )
28 2nd Int

29 +

30 RCL 2
31 +
32 RCL 1
33 =

34 +

35 7
36 =

37 INV 2nd Int



Memory:
Initialize:

4.3.5b

STEP

38
39
40

4]

42
43
44

45
46

Ri,=D,R,=Y,R;=Y —1
CLR, RST, enter D, R/S, enter Y,

R/S

Variable answers.

4.3.5¢c

Saturday.

4.3.6

Memory:

Initialize:
Comments:

4.3.7

STEP

R, =0
CLR, RST, enter 8, R/S
For any value of 0, sin’f + cos*8
= 1.

STEP

00
01

02
03

05
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PROGRAM

N
x

+

i

2nd Int
R/S

PROGRAM

STO 1

RCL 1

2nd sin

x2

+

RCL 1
2nd cos

x2

R/S

PROGRAM

STO 1

Memory:
Initialize:

Comments:

4.3.8

Memory:
Initialize:

PROGRAM

07 X

(
09 RCL 1

P
o

P
r

~
N
N

|

P
o =)

1/S

R, =n

CLR, RST, enter n, R/S
Forn= 3, 4, 5 10, and 100,
the corresponding values are 1,
4, 10, 120, and 161,700.

STEP PROGRAM

00 STO 1

01 4
02 +
03 3
04 X
05 2nd 7
06 X
07 RCL 1

08 yx
09 3
10 =
11 R/S

12 4
13 X
14 2nd 7
15 X
16 RCL 1

17 x?
18 =
19 R/S

R, = radius

CLR, RST, enter r, R/S, (see
volume), R/S (see surface area)



4.3.9

Memory:

Initialize:

4.3.10a

STEP PROGRAM

STO 1
R/S
STO 2
R/S
STO 3

RCL 2

R/S

Ri=x,R,=y,R;=2

CLR, RST, 2nd Fix 2, enter x,
R/S, enter y, R/S, enter z, R/S

STEP

01

02

05

07

08

10

12
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PROGRAM

STO 1
R/S
STO 2
(
RCL 1

RCL 2
)
X

8
2
+

STEP PROGRAM

13 RCL 2

14 =
15 R/S

Memory: R, = delivery price, R, =
transportation cost

Initialize: CLR, RST, enter delivery price,
R/S, enter transportation costs,
R/S

4.3.10b

Augment the program with:

STEP PROGRAM

16 STO 3
17 RCL 1
18 —~
19 RCL 3
20 =
21 R/S

4.3.10c

Include in the initialization, or insert between
steps 02 and 03, the instruction 2nd Fix 2.

43.11

STEP PROGRAM

00 STO 1

01 R/S

02 STO 2

03 R/S

4 STO 3

05 RCL 1
06 x

07 RCL 2

08 =
09 STO 4

10 1

11 —
12 RCL 2
13 =
14 STO 5

15 (
16 RCL 4

17 +

18 (
19 RCL 4
20 +

21 (



Memory:

Initialize:

43.12

R; = P(A|B), R;, =P(B), R; =
P(AB), R, = P(AB) - P(B), Rs
= 1 — P(B) = P(B),
P(B|A)
CLR, RST, enter P(A|B), R/S,
enter P(B), R/S, enter P(A|B’),
R/S

STEP

Memory:

Initialize:

R, =n, R, =p, R;=np, Ry =

SD(y)
CLR, RST, enter n, R/S, enter

PROGRAM

RCL 3
X

RCL 5
)
)

STO 6
R/S

PROGRAM

STO 1
R/S
STO 2
RCL 1
X

RCL 2

STO 3

(
RCL 3

RCL 3
R/S
RCL 4
R/S

6

p, R/S, (wait to see E[y]), R/S
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4.3.13

STEP PROGRAM

00 STO 1

01 R/S

02 STO 2

03 R/S

04 STO 3

05 RCL 1
06 X

07 RCL 2
08 2nd cos

09 X

10 RCL 3
11 =

12 STO 4

13 RCL 1
14 X

15 RCL 2
16 2nd sin

17 X

18 RCL 3

19 —
20 1

21 6
22 X

23 RCL 3

24 x2
25 =

26 STO 5

27 RCL 4

28 R/S

29 RCL 5

30 R/S

Memory: R, = Vy, Ry, =60, R;=1t¢Ry, =

x, Rs =y
Initialize: CLR, RST, enter V,, R/S, enter

0, R/S, enter t, R/S, (wait to see

x), R/S

5.3.1

Displays the multiples of 10.

53.2

Displays the negative integers.



5.33 5.5.1

STEP PROGRAM STEP PROGRAM

00 2nd Lbl 2 00 2
01 + 01 2nd Pause

02 5 02 2nd Lbl1
03 = 03 +
04 2nd Pause 4 9

05 GTO 2 05 =
06 2nd Pause

Initialize: CLR, RST, R/S 07 GTO 1

534 Initialize: CLR, RST, R/S

STEP PROGRAM

00 2nd Pause 5.5.2

01 2nd Lbl 5
02 + STEP PROGRAM

03 1 00 2nd Pause
04 0
05 = 01 2nd Lbl 1

06 2nd Pause 0 3

07 GTO 5 04 —

05 2nd Pause

Initialize: CLR, RST, R/S 06 GTO 1

53.5
cq } } Initialize: CLR, RST, 2187, R/S

Initialize the program in problem 5.3.4 with
CLR, RST, 7, R/S or, using the 2nd Ins instruc-
tion at step 00, insert 7 in the program. 5.5.3a

5.3.6
STEP PROGRAM

STEP PROGRAM 00 2nd Pause

00 1 01 2nd Lbl 4
01 0 02 X

02 0 03 2

03 0 04 +
04 2nd Pause 05 1

06 =

0 2nd Lbl4 07 2nd Pause

07 1 08 GTO 4
08 0

» 0 Initialize: CLR, RST, 3, R/S

11 2nd Pause

12 GTO 4 5.5.3b

Initialize: CLR, RST, R/S
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To modify the program for each part, change the
initialization to include the appropriate first



sequence term. The sequences obtained are: 5.5.7a
i. 123, 247, 495, 991, 1,983, . ..

ii. —16, —31, —61, —121, —241, ...

iii. .6666667, 2.3333333, 5.6666667,
12.333333, 25.666667, ..

iv. .222, 1.444, 3.888, 8.776, 18.552, ...

5.54

If ¢ is the previous term, then the successive term
of each sequence is formed as follows:

a.2t b.2t/3 cc. 2t+1 d. 2-1
e. 3t—1 f. ¢?

5.5.5

Initialize:

STEP PROGRAM Comments:

00 1
01 5

02 2nd Pause 5.5.7b

03 2nd Lbl 1

04 X
05 2
06 + /—
07 =

08 +

09 3
10 =

11 2nd Pause

12 GTO 1

Initialize: CLR, RST, R/S
Initialize:

5.5.6a

Add 2 Comments:

5.5.6b
5.5.8a

STEP PROGRAM

00 1
01 2nd Pause

02 2nd Lbl 2
03 +
04 2
05 =

06 2nd Pause

07 GTO 2

Initialize: CLR, RST, R/S
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STEP PROGRAM

00 1

01 2nd Pause

02 2nd Lbl 1

03 +
04 2

05 =
06 +

07 4
08 =

09 2nd Pause

10 GTO 1

CLR, RST, R/S

The sequence approaches a limiting
value of 8.

STEP PROGRAM

00 2nd Pause

01 2nd Lbl 1

02 +

03 2
04 =

05 Vx
06 2nd Pause

07 GTO 1

CLR, RST, enter any number larger
than —2, R/S
The sequence approaches a limiting
value of 2.

STEP PROGRAM

00 6
01 2nd Pause

02 2nd Lbl 2

03 STO 1
04 6

05 +
06 RCL 1
07 =
08 +
09 1



STEP PROGRAM

10 =

11 2nd Pause

12 GTO 2

Memory: R; = previous term
Initialize: CLR, RST, R/S

Comments: The sequence approaches a limit-
ing value of 3.

5.5.8b

STEP PROGRAM

00 5
01 2nd Pause

02 2nd Lbl 3
03 STO 1
04 1
05 -

06 (
07 RCL 1
08 +
09 2
10 )
11 =
12 2nd Pause

13 GTO 3

Memory: R,; = previous term
Initialize: CLR, RST, R/S

Comments: The sequence approaches a
limiting value of 0.6666667 or
2/3.

5.5.9

STEP PROGRAM

00 2nd Pause

01 2nd Lbl 1
02 STO 1
03 x?
04 —

05 RCL 1
06 =

07 2nd Pause

08 GTO 1

Memory: R,; = previous term
Initialize: CLR, RST,enterfirst term, R/S
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Comments:
a. For 2.1, the sequence terms get larger and

larger and eventually overflow, producing a
flashing display.

b. For 1.9, the sequence produces alternating
positive and negative terms that slowly ap-
proach a limiting value of 0.

c. For 2.0, the sequence stays at a limiting value
of 2.0.

5.5.10a

It shows the first two sequence terms 3 and 6 and
then flashes with a 6 in the display.

5.5.10b

Either step 02 or step 10 is incorrect. The GTO n
used with 2nd Lbl » must have the same value
for n.

5.5.10c

R, = previous term.

5.5.10d

Each new term is formed by squaring the previ-
ous term and subtracting the previous term from
that result.

5.5.10e

All twos.

5.7.1a

STEP PROGRAM

00 INV 2nd C.t

01 2nd Lbl 2

02 +

03 1
04 =

05 STO 1

06 x2
07 +

08 1
09 =

10 2nd Pause

11 RCL 1

12 GTO 2

Memory: R; = index
Initialize: CLR, RST, R/S



5.7.1b STEP PROGRAM

By inserting 2, STO 1 after step 00, you obtain 02 +
the sequence 10, 17, 26, 37, .. . 03 1

04 =

5.7.2a 05 STO 1
06 3
07 yx

STEP PROGRAM 08 RCL 1

00 INV 2nd C.t ® > ip

01 2nd Lbl 2 ne rause
02 RCL 1 11 RCL 1
03 + 12 GTO 3
04 1

0 STO 1 Memory: R,; = index
Initialize: CLR, RST, R/S

07 x?

08 * 5.7.4b
09 2
10 .

TEP
11 2nd Pause S PROGRAM
12 GTO 2 00 2

01 STO 1

Memory: R; = index 02 2nd Lbl 3
Initialize: CLR, RST, R/S 03 y*

04 3
5.7.2b 0 > 4p

Change step 04 to 2 instead of 1. ne rause
07 RCL 1

5.7.3a 0 +
1

If during each loop you first compute the nth 10 —
term and then add 1 to the index, n, the follow-
ing answers apply: 3 osL

Index = 0, form term as 5n.

5.7.3b Memory: R,; = index

Index = 1, form term as n?> — 1; or, index = 0, Initialize: CLR, RST, R/S
form term as n(n + 2).

5.7.5

5.7.3¢c

Index = 3, form term as n? — 1; or, index = 2, STEP PROGRAM
form term as n(n + 2). 00 1
5734 01 STO 1

, 02 2nd Lbl 3
Index = 1, form term as 2". 03 RCL 1

04 yx
5.7.4a 05 RCL 1

06 =

STEP PROGRAM 07 2nd Pause

00 INV 2nd C.t 08 RCL 1

01 2nd Lbl 3 09 +
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STEP PROGRAM STEP PROGRAM

10 1 10 EE
11 = 11 INV EE

12 STO 1 12 =
13 GTO 3 13 2nd Pause

14 RCL 1
Memory: R,; = index 15 +
Initialize: CLR, RST, R/S 16 1

Comments: The sequence grows quickly. For 17 =
n = 57, n” results in an overflow>, . 18 GTO 1
condition indicated by flashing
nines.

Memory: R, = index
5.7.6 Initialize: CLR, RST, R/S

Comments: The sequence EE, INV EE in
STEP PROGRAM steps 10-11 rounds the calcula-
00 1 tion to the number of digits
01 STO 1 shown in the display. ,

a. Since the result of n° — 2" is
o ongLbl 2 negative, except for n = 2, 3,
04 INV p* and 4, you may conclude that
05 RCL 2" is greater than n? except
06 n for n = 2 and n = 4 when n?

= = 2" and for n = 3 when 3?
07 2nd Pause > 23

08 RCL 1 b. Generate the sequence n® —
09 + 3". If the terms of the
10 1 sequence are negative, then 3”
11 = > n3, otherwise n> > 3".

12 STO 1
13 GTO 2 5.7.8a

Memory: R, = index STEP PROGRAM
Initialize: CLR, RST, R/S 00 STO

Comments: a. The third term, 1.4422496, I

when n = 3 is the largest. 01 RCL 2

b. As n grows very large Vn 02 r*
gets smaller and smaller ap- 03 RCL 1
proaching a value of 1. 04 =

05 2nd Pause

5.1.1 06 RCL 1
07 +

STEP PROGRAM 08 1

00 INV 2nd C.t 09 =

ol 2nd Lbl | 10 RST
02 STO 1
03 x? A
04 ~ Memory: R, = index, R, = number to be

raised to a power
05 ( Initialize: RST, .99, STO 2, CLR, R/S
06 2 Comments: The generated sequence is
07 rx 1,.99, .9801, .970299, ... and as
08 RCL 1 n becomes very large, (.99)" be-
09 ) comes very close to zero.
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5.7.8b STEP PROGRAM

Change the initialization to RST, 1.01, STO 2, 06 4
CLR, R/S. This gives the sequence 07 INVSUM 1
1, 1.01, 1.0201, 1.030301, . .. which becomes 08 RCL 1
very large when n grows very large.The sequence 09 2nd Pause
increases towards 9.99999999 x 10°. 10 GTO 1

5.7.8¢c

Change the initialization to RST, 1, STO 2, CLR, Memory: R, = difference
R/S. This sequence is constant: Initialize: CLR, INV 2nd Ct, RST, R/S
1,1,1,1,1.,....

6.5.1

6.3.1a INV 2nd C.t clears all memory registers filling
96 them with 0.

6.3.1b 6.5.2a

90 1/30=1.

6.3.22 6.5.2b

4. 8. 16. 32. 64 3, 1/x, 2nd Prd 4. You can check to see that this

oT ee works by following the given keystrokes in a
6.3.2b program with RCL 4, 1/x, 2nd Pause, which will

show the denominator of the term.
4,8, 16, 32, 64, ...

6.5.3a
6.3.2c

} 2, SUM 2 if 1 is placed in R, at the start.
It is multiplied by 2.

6.5.3b
6.3.2d oo

Co } 3, +/—, SUM 3 if 1 is placed in R; at the start.
Multiplies 2 into R; and, in effect, doubles the
value of R;. 6.5.3¢c

6.3.3a RCL 2, +, RCL 3, =

108, 107, 108, 10°, ... 6.5.4

6.3.3b

Divides 10 into R,. STEP PROGRAM
00 INV 2nd C.t

6.3.3¢c 01 2nd Lbl 1

Stores 10° in R,. 02 1
03 SUM 3

6.3.4 04 RCL 3
05 X

06 (
STEP PROGRAM 07 RCL 3
00 1 08 +

09 101 0 10

02 4 1 )
03 STO 1 12 ,

04 2nd Lbl 1 13 +
05 — 14 1
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STEP PROGRAM

15 =

16 2nd Pause

17 GTO 1

Memory: R; = index
Initialize: CLR, RST, R/S

6.8.1a

STEP PROGRAM

00 INV 2nd C.t

01 1

02 2nd Lbl 1

03 SUM 2

04 RCL 2
05 2nd Pause

06 1

07 SUM 1

08 3

09 yx
10 RCL 1
11 =

12 1/x

13 GTO 1

Memory: R,; = index, R, = total
x-register: term
Initialize:

6.8.1b

RST, CLR, R/S

The limiting value is 1.5.

6.8.2a

STEP PROGRAM

00 INV 2nd C.t
01 1
02 STO 2
03 2

04 STO 3
05 1/x

06 2nd Lbl 1
07 SUM 1

08 RCL 1

09 2nd Pause

10 1
11 SUM 2
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STEP PROGRAM

12 2
13 2nd Prd 3
14 RCL 2
15 y*

16 3
17 =
18 +
19 RCL 3
20 =

21 GTO 1

Memory: R,; = running total, R, = index,
R; = denominator 2"

x-register: term n3/2"
Initialize: CLR, RST, R/S

6.8.2b

The average
value of $26.

6.8.2¢c

amount received is the limiting

Since 26 — 10 = 16, the gambler’s expected gain
is $16.

6.8.2d

By pressing 2nd Nop at steps 15, 16, and 17 of
the program in 6.8.2a, you can compute the

limiting value of the sum of n/2" which is 2.
Hence, 12 — 10 = 8 and the gambler’s Joss is $8.

6.8.3a

STEP PROGRAM

00 INV 2nd C.t

01 1
02 STO 3

03 2nd Lbl 1
04 1

05 SUM 2

06 6
07 2nd Prd 3
08 2
09 y*
10 RCL 2
11 +

12 3
13 yx

14 RCL 2
15 =

16 +



STEP

17
18

19
20
21
22

PROGRAM

RCL 3

SUM 1
RCL 1

2nd Pause

GTO 1

Memory: R, = running total, R, = index,

R; =6"

Initialize:

6.8.3b

CLR, RST, R/S

The limiting value is 1.5.

6.8.4a

PROGRAM

INV 2nd C.t

2nd Lbl 1
1
SUM 2

RCL 3
+

RCL 2

STO 3

RCL 1
2nd Pause

GTO 1

Memory: R; = running total, R, = index,

R; = ty

Initialize: CLR, RST, R/S

6.8.4b

The limiting value of the series is 8. If you wish
to see this value in the x-register, include the
sequence 2nd Fix 3 in the initialization of the
program in 6.8.4a.

6.8.5a

STEP PROGRAM

00 INV 2nd C.t

01 2nd Lbl 1

02 1
03 SUM 2

04 RCL 3

05 +
06 RCL 2
07 =

08 STO 3

09 x?
10 X

11 2
12 0

13 +
14 RCL 3
15 X

16 1

17 0
18 +

19 1
20 =

21 +

22 RCL 3
23 y*
24 5
25 =

26 SUM 1
27 RCL 1

28 2nd Pause

29 GTO 1

Memory: R,; = running total, R, = index

R; = ly

Initialize: CLR RST, R/S

6.8.5b

The limiting value of the series is 32.



6.8.6a

STEP

19

PROGRAM

INV 2nd C.t
5

2nd Lbl 1
SUM 1

RCL 1

2nd Pause

1
SUM 2

Memory: R, = running total, R, = index
x-register: term

CLR, RST, R/SInitialize:

6.8.6b

The ball will travel about 45 meters.

6.8.7a

Memory: R, = running total, R, = index,
R; ==

PROGRAM

STO 3

2nd Lbl 1
1
SUM 2

RCL 2
Xx

y
RCL 3

1/x

SUM 1
RCL 1
2nd Pause

GTO 1

Initialize: CLR INV 2nd C.t, RST, enters,
R/S
INV 2nd C.t is part of the ini-
tialization rather than in the pro-
gram. If the sequence is included
in program, it would clear the
t-registers, not the rest of the
memory registers when encoun-
tered.

Comments:

6.8.7b

For 5s = 8 you obtain 1.0040774 and for s = 6
you obtain 1.0173431.

6.8.7¢c

For values of s < 4, the number of times through
the loop to evaluate the function is excessive. For
s = 4, it takes more than 200 iterations. For
s = 2, your calculator would require more than 9
hours to obtain 72/6.

6.8.8

STEP PROGRAM

00 INV 2nd C.t

01 1
02 STO 2

03 STO 3

04 2nd Lbl 1

05 SUM 1
06 RCL 1

07 2nd Pause

08 1
09 SUM 2

10 +/-
11 2nd Prd 3

12 RCL 2

13 y*

14 6
15 =
16 1/x
17 x
18 RCL 3

19 =

20 GTO 1

Memory: R, = running total, R, = index,
R, = 5

x-register: term
Initialize: CLR, RST, R/S

Comments: The value of the series is .9855511
which is (31/32)(7®/945).



6.8.9

STEP PROGRAM

00 INV 2nd C.t
01 1
02 +/-
03 STO 2
04 STO 3
05 3

06 Vx
07 X
08 2
09 —

10 STO 4

11 2nd Lbl 1
12 1
13 SUM 2

14 +/-
15 2nd Prd 3

16 2
17 X
18 RCL 2
19 +
20 1
21 =
22 X
23 (
24 3
25 yx
26 RCL 2
27 )
28 =
29 1/x
30 X
31 RCL 4
32 X
33 RCL 3
34 =

35 SUM 1
36 RCL 1
37 2nd Pause

38 GTO 1

Memory: R, = running total, R, = index,

Initialize:

Comments:

R; = sign, R, = 2V3
CLR, RST, R/S
The limiting value of the seriesis
7 = 3.1415927.

6.8.10

STEP PROGRAM

00 STO 6
01 1
02 STO 5

03 2nd Lbl 1
04 RCL 6
05 X
06 RCL 5
07 =
08 2nd sin
09 +

10 RCL 5
11 =
12 SUM 4

13 RCL 4
14 2nd Pause
15 2nd Pause

16 2
17 SUM 5
18 GTO 1

Memory: Rg =x, Rs =2n-1, Ry =

running total
Initialize: CLR INV 2nd C.t, RST, enter x,

R/S
Comments: «7/4 = .7853982 and it will take

your calculator a considerable
length of time to approach this
limit.

74.1

STEP PROGRAM

00 2
01 0
02 0
03 x Zt

04 R/S
05 STO 1

06 INV2nd x > ¢

07 R/S

08 X
09 .
10 0
11 0

*The symbol x = y represents the “x exchange #” key on the calculator.
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7.4.2

STEP

12
13

14
15
16

17

PROGRAM

L1pe
]

wn
r
a
+

I

R/S

Memory: R,; = balance
Initialize:

R/S

STEP
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CLR, RST, R/S, enter balance,

PROGRAM

STO 1

GTO 2

2nd Lbl 1

STEP

34
35

36
37

Memory: R, =:

Initialize:

PROGRAM

)

2nd Lbl 2
R/S

CLR, RST, enter z, R/S, enter

class, R/S

7.4.3

STEP PROGRAM

00 STO 1

01 2nd Lbl 1
02 R/S
03 STO 7

04 RCL 1

05 INV2nd x > ¢

06 GTO 1

07 xX=t
08 STO 1

09 GTO 1

Memory: R; = number, R, = t-register
Initialize: CLR, RST, enter number, R/S

Comments: To display smallest number in a
set, continue the enter number
and R/S key sequence until all

numbers have been considered.

7.4.4

STEP PROGRAM

00 STO 1

01 R/S
02 STO 2

03 x2t

04 5
05 X

06 RCL 1
07 —
08 3
09 =

10 2nd x =t
11 GTO 2



Initialize:

74.5

STEP

12

13

14
15

16
17

PROGRAM

0

GTO 1

2nd Lbl 2
1

2nd Lbl 1
R/S

Memory: R, =x, R,=y

STEP

16
17

18
19

20
21

CLR, RST, enter x, R/S, enter

y, R/S

PROGRAM

2
5

5
STO 7
R/S
STO 1
2nd x > ¢

GTO 1

STO 7

1
4

5
2nd x > ¢

GTO 1

RCL 1
GTO 2

2nd Lbl 1
0

2nd Lbl 2
R/S

Memory: R,; = number, R; = t-register
Initialize:

R
7.4.6

STEP

00
01
02

/S
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CLR, RST, R/S, enter number,

PROGRAM

STO 1
R/S
STO 2

74.7

STEP

21
22

23
24

25
26

Memory:

PROGRAM

R/S
STO 3
RCL 1

2nd x > ¢

GTO 1

0
GTO 2

2nd Lbl 1
1

2nd Lbl 2
R/S

R, =, R, = w, R; = h, R,; =

t-register
Initialize: CLR, R/S, enter /, R/S, enter

w, R/S, enter h, R/S

PROGRAM

STO 1
R/S
STO 2
R/S
STO 3
R/S
STO 4
X=t

5
0

INV2nd x > ¢
GTO 1

2nd Nop
RCL 1



STEP PROGRAM

29
30
31

32
33

34
35

Memory:

Initialize:

Comments:

7.4.8

STE

Ng
O
y

t
a
x

= N
o

® on w

X
O
=

=
A
X

N

2nd x > ¢

GTO 2

2nd Lbl 1
0
GTO 3

2nd Lbl 2
1

2nd Lbl 3
R/S

R,=1 R, = w, R; = h, Ry =

weight, R; = t-register
CLR, R/S enter /, RS, enter w,
R/S, enter h, R/S, enter weight,
R/S
If a package can be sent by
U.P.S., a 1 appears in the dis-

play, otherwise a 0 appears.
Notice the 2nd Nop instruction
in step 12; it was used to delete
an unwanted instruction dis-
covered in the program during
the preparation of this answer
key.

P PROGRAM

RCL 6
SUM 3
SUM 3

RCL 5
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STEP PROGRAM

10 RCL 4

11 =

12 STO 2

13 2nd x > ¢

14 GTO 1

15 RCL 5

16 +/1
17 +

18 RCL 3
19 =

20 R/S

21 RCL 2
22 +/-

23 Vx
24 +
25 RCL 3

26 GTO 2

27 2nd Lbl 1

28 RCL 2

29 Vx

30 STO 1

31 RCL S
32 +/-
33 +

34 RCL 1
35 =

36 +

37 RCL 3
38 =

39 R/S

40 RCL 5
41 +/-
42 —

43 RCL 1
44 =

45 +
46 RCL 3

47 2nd Lbl 2
48 =
49 R/S

Re = a, Rs = b, R,=c, R; =

2a, R, = d, R, =Vd, R;=0

CLR, INV 2nd C.t, RST, enter a,
STO 6, enter b, STO 5, enter c,
STO 4, R/S, (wait to see x; or
u), R/S (wait to see x, or v)
For complex roots, your calcula-
tor stops first to display » and
then v. Thus, to form the roots
merely form x, x, = u * vi.



7.6.1

STEP

00

01
02
03
04
05

06

07

08
09
10

11
12

13
14

PROGRAM

STO 1

4

STO 7
2nd Int

2nd x = t¢

GTO 1

RCL 1
+ —_—

GTO 2

2nd Lbl 1
RCL 1

2nd Lbl 2
R/S

Memory: R, = year n, R; = t-register =

Initialize:

7.6.2a

n/4
RST, CLR, input year n, R/S
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PROGRAM

STO 1

STO 7

1

0

0

INV2nd x > ¢

GTO 1

xX=t
INVy*
3

EE
INV EE

INV 2nd Int

x=

0
2nd x = ¢

GTO 2

2nd Lbl 1
0
GTO 3

2nd Lbl 2
RCL 1

2nd Lbl 3
R/S

Memory:

Initialize:

Comments:

7.6.2b

R, = n, R; = t-register
CLR, RST, enter n, R/S

Notice the EE, INV EE
sequence in steps 11 and 12. It
rounds calculations to the num-
ber of digits in the display.

You obtain a flashing display since INV y* may
only be used for positive numbers.

7.6.3

In the program for problem 7.6.2a in this section,
insert 2nd |x| between steps 00 and Ol.

7.6.4

STEP PROGRAM

00 3
01 SUM 1
02 RCL 1

03 2nd Pause

04 Vx
05 INV 2nd Int

06 INV 2nd x = ¢

07 RST

08 RCL 1
09 R/S

10 RST

Memory: R; = multiple of 3, R; = ¢-
register

Initialize: CLR, INV 2nd C.t, RST, R/S
Comments: 1. When the calculator stops to

display multiples of 3 that are
perfect squares, press R/S to
continue.

2. The use of RST in step 10
returns the program to step 00

automatically.

7.6.5

STEP PROGRAM

00 1
01 SUM 1

02 2
03 X
04 RCL 1
05 x2

06 +
07 2



STEP PROGRAM

08 X
09 RCL 1
10 +
11 1
12 =

13 Vx
14 EE
15 INV EE

16 STO 7

17 2nd Int

18 INV 2nd x = ¢

19 RST

20 x2t
21 R/S
22 RST

Memory: R; = index a, R; = t-register
Initialize: CLR, INV 2nd C.t, RST, R/S

Comments: 1. When ¢ is displayed, you
can see a by pressing RCL 1 and
compute b as a-1.
2. The other triples are
(20, 21, 29); (119, 120, 169); and
(696, 697, 985).
3. Notice the use of the special
rounding sequence in steps 14
and 15.

7.6.6

STEP PROGRAM

00 1
01 SUM 1

02 RCL 1
03 SUM 2

04 RCL 2

05 Vx
06 EE
07 INV EE
08 STO 7

09 2nd Int

10 INV2nd x = ¢

11 RST

12 RCL 2
13 R/S
14 RST

Memory: R, =n, R, =T,, R; = ¢-
register

Initialize: INV 2nd C.t, RST, R/S
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7.6.7

8.3.1

Comments: 1. Notice the use of the round-
ing sequence in steps 06 and 07.
2. The first three triangular
numbers that are perfect squares
are 1, 36 and 1225.

STEP PROGRAM

00 1
01 SUM 1

02 1
03 1
04 X
05 RCL 1
06 +
07 3
08 =
09 +

10 6
11 =

12 STO 7
13 2nd Int

14 INV2nd x = ¢

15 RST

16 1
17 1
18 X
19 RCL 1
20 +
21 8
22 =

23 R/S
24 RST

Memory: R, = k, R; = t-register
Initialize: CLR, INV 2nd C.t, RST, R/S

Comments: The smallest is 41 and the nextis
107.

STEP PROGRAM

00 STO 7

01 1
02 STO 1

03 2nd Lbl 1
04 RCL 1
05 SUM 2

06 RCL 2
07 SUM 3

08 RCL 1



STEP PROGRAM

09 2nd x = ¢

10 GTO 2

11 1
12 SUM 14
13 GTO 1

14 2nd Lbl 2
15 RCL 3
16 R/S

Memory: R; =n, R, =k, R,=¢, R; =

Initialize:
sum

CLR, INV 2nd C.t, RST, enter n,
R/S

Comments: 10 layers use 220 cannonballs;
20 layers use 1540, and 50 layers
use 22,100.

8.3.2

STEP PROGRAM

00 STO 7

01 1
02 STO 1

03 2nd Lbl 1
04 3
05 X
06 RCL 1
07 X
08 (
09 RCL 1
10 —
11 1
12 )
13 +
14 1
15 =

16 SUM 2

17 RCL 1
18 2nd x = ¢

19 GTO 2

20 1
21 SUM 1
22 GTO 1

23 2nd Lbl 2
24 RCL 2
25 R/S

Memory: R; =n, R; = k, R;, = sum
Initialize: CLR, INV 2nd C.t, RST, enter

n, R/S
Comments: By inserting RCL 2, 2nd Pause

between steps 16 and 17, you
can display each term of the
sequence for any n. The
sequence displayed happens to

be n3.

8.3.3

STEP PROGRAM

00 STO 7

01 1

02 STO 1

03 2nd Lbl 1

04 RCL 3
05 2nd Exc 2

06 SUM 3

07 RCL 2
08 2nd Pause

09 SUM 4

10 RCL 1

11 2nd x = ¢

12 GTO 2

13 1
14 SUM 1

15 GTO 1

16 2nd Lbl 2

17 RCL 4

18 R/S

Memory: R; =n, R, =k, R, = f(k), R,4
= f(k + 1), R; = sum

Initialize: CLR,INV 2nd C.t, 1, STO 3,
RST, enter n = 10, R/S

Comments: The sum of the first 10

Fibonacci numbers is 143.

8.3.4a

STEP PROGRAM

00 STO 1

01 —-

02 R/S
03 +
04 1

05 =
06 STO 7

07 1
08 STO 2

09 2nd Lbl 1
10 RCL 1
11 2nd Prd 2

12 2nd x = ¢

13 GTO 2

14 1
15 INV SUM 1
16 GTO 1

17 2nd Lbl 2
18 RCL 2
19 R/S



Memory: R;=n—-y +1, Ry, =n, R,= 836
running product

Initialize: CLR, INV 2nd C.t, RST, enter

n, R/S, enter y, R/S “h PROGRAM

01 1

8.3.4b 02 =
5040 03 STO 7

04 1

05 STO 1
8.3.4c 06 STO 2

95040 07 STO 3

08 2nd Lbl 1
09 RCL 1

8.3.5a 10 INV 2nd Prd 2

11 RCL 2

STEP PROGRAM ” or’

or R/S 1 14 2nd x = ¢

02 STO 2 2 TO 2

03 1
17 SUM 1

04 STO 3 18 GTO 1
05 STO 7 19 2nd Lbl 206 2nd Lbl 1 20 RCL 3
07 RCL 1
08 . 21 R/S

" RCL 2 Memory: R; =n, R= a R, = 1/k!, R;
= running tota

11 2nd Prd 3 Initialize: CLR, INV 2nd C.t, RST, enter
12 RCL 2 n =20, R/S

13 2nd x = t Comments: For n = 20, the sum is
14 GTO 2 2.7182818. What is the smallest
15 1 value of n for which the sum is

16 INV SUM 2 2.7182818?

17 INV SUM 1 8.5.1
18 GTO 1

19 2nd Lbl 2 STEP PROGRAM
20 RCL 3
21 R/S 00 STO 4

01 1
02 STO 1

Memory: R; = 1, R, = numerator, R, = 03 2nd Lbl 1
denominator, Rj; = running 04 RCL 2

product 05 STO 7
Initialize: CLR, INV 2nd C.t, RST, enter 06 RCL 1

n, R/S, enter y, R/S 07 INVp=

Comments: For y > n, you will obtain 0 in 08 RCL 1
the display. 09 =

10 INV2nd x > ¢
8.3.5b 1 GTO 2

210 12 STO 2

13 RCL 1
8.3.5¢ 14 STO 3

210 15 2nd Lbl 2
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STEP PROGRAM 8.5.2b

16 RCL 4 Delete step 00, change the initialization to INV
17 STO 7 2nd C.t, RST,enter end test value, R/S
18 RCL 1
19 2nd x > ¢ 8.5.3

20 GTO 3

21 1
22 SUM 1 STEP PROGRAM

23 GTO 1 00 or04
24 2nd Lbl3 01
25 RCL 2 02 0
26 R/S 03 STO 1

27 RCL 3 04 2nd Lbl 1
28 R/S 05 RCL 2

06 STO 7

Memory: R; = t-register, R; = k, R, = 07 RCL 1

largest Vk R; = best k 08 x?
Initialize: INV 2nd C.t, RST, enter 30, 09 X

vs yo
Comments: V3 1S maximum, i.e., 1.4422496. 12 —

13 RCL 1
8.5.2a 14 )

15 +

STEP PROGRAM 19 ;

00 2nd 7 18 =

0l 8107 19 INV 2nd x > ¢
0 $TO | 20 GTO 2

21 STO 2
04 2nd Lbl 1 22 RCL 1

05 RCL 1 23 STO 3
x INVy 24 2nd Lbl 2
08 _ 25 RCL 4

26 STO 7
09 x21 27 RCL 1
10 INV 2nd x > ¢ 28 2nd x > ¢
11 GTO 2 29 GTO 3

12 xt 30 1
13 1 31 SUM 1
14 SUM 1 32 GTO 1
15 GTO 1 33 2nd Lbl 3
16 2nd Lbl 2 34 RCL 3
17 RCL 1 35 R/S
18 R/S 36 RCL 2

37 R/S

Memory: R;, =a, R, =k

Initialize: CLR, INV 2nd Ct, RST, R/S Memory: R, = 6, R, = k, R, = best prob-

Comments: k = 98 is the first integer such ability, R; = best k
that Vk > = Initialize: CLR, INV 2nd C.t, RST, R/S

*The symbol x Z y represents the “x exchange #” key on the calculator.
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Comments: To see the probability, press
R/S or RCL 2. The maximal
probability occurs for k = 4 and
P(k) = 4/9 = 0.44444444.

8.5.4

STEP PROGRAM

00 STO7
01 1
02 STO 1
03 2nd Lbl 1
04 RCL 1
05 x?
06 SUM 2
07 RCL 2
08 2nd Pause
09 x2t

10 INV 2nd x >t

11 GTO 2
12 x2t
13 1

14 SUM 1
15 GTO 1

16 2nd Lbl 2
17 RCL 1
18 —-
19 1
20 =
21 R/S

Memory: R; = 10,000 = end test value, R,
= k = number of layers, R, =
sum

Initialize: INV 2nd C.t, RST, enter 10,000,

R/S.
Comments: The number of layers is 30. Press

x = t to see the number in 31
layers, (i.e.,10416). Subtract 312
to see 9455 cannonballs used.
Subtract from 10,000 to see 545
unused cannonballs.

8.5.5a

STEP PROGRAM

00 4
01 X
02 2nd 7
03 X

04 (
05 R/S
06 +
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8.5.52

Memory:

Initialize:

Comments:

8.5.5b

PROGRAM

STO 7
RCL 1

4

EE
INV EE

STO 2

2nd C.t
INV 2nd Int
INV 2nd x = ¢

GTO 2

RCL 2
R/S
RCL 1
R/S
2nd Lbl 2
1
SUM 1
GTO 1
2nd Lbl 3
R/S

R, = t-register, Ry, = 77 + 1, R,

=), R, =‘x

CLR, INV 2nd C.t, RST, R/S
x=18, y=1;, x=13, y =5;
x=8,y=9,0orx=3,y=13
Notice the use of the roundoff
sequence EE, INV EE. The use
of 2nd C.t in step 27 clears only
the r-register. To see all solu-
tions, continue pressing R/S.

x = 8, y = 9 by inspection



8.5.6

STEP PROGRAM

00 1
01 0
02 0
03 STO 7

04 1
05 STO 1
06 STO 2

07 2nd Lbl 1
08 1
09 SUM 1

10 RCL 2
11 +
12 RCL 2
13 +
14 RCL 1
15 =
16 2nd Pause
17 STO 2

18 INV 2nd > ¢

19 GTO 1

20 RCL 1
21 R/S

Memory: R; = 100, R, = k, R, = height
Initialize: CLR, INV 2nd C.t, RST, R/S

Comments: The sequence of heights proceeds
1.5, 2,25, 3, 3.5... so the height
is 100 times the original on the
199th day.

8.5.7

STEP PROGRAM

00 RCL 2
01 -
02 RCL 4

03 X Memory:
04 RCL 1
05 = Initialize:
06 +

07 RCL O
08 =
09 EE Comments:
10 INV EE
11 STO 6

12 STO 7

STEP PROGRAM

13 2nd Int

14 INV2nd x =¢

15 GTO 1

16 RCL 3

17 _

18 RCL 5
19 X

20 RCL 1
21 =

22 +

23 RCL O
24 =

25 EE

26 INV EE

27 STO 7
28 2nd Int

29 INV2nd x = ¢

30 GTO 1

31 R/S
32 RCL 6

33 R/S

34 RCL 1
35 R/S

36 2nd Lbl 1
37 1

38 0

39 0

40 STO 7
41 RCL 1

42 2nd x > ¢
43 GTO 2

44 1
45 SUM 1
46 RST

47 2nd Lbl 2

48 0
49 R/S

Ry =59, R, =S5, R, =3869, R,
= 2031, R, =35,Rs =24, R;, =C
RST, enter 59, STO 0, enter 1, STO

1, enter 3869, STO 2, enter 2031,
STO 3, enter 35, STO 4, enter 24,
STO 5, R/S
The solution is unique L = 21, C
= 46, and S = 33. Notice the use
of the special roundoff sequence
EE, INV EE.



APPENDIX B





ANSWER KEY-
HP 33E

 

   
 

   

94.1a STEP PROGRAM

Allows for input value of n. 03 X
04 1

9.4.1b 0° +
GTO

Separates n from the entered digit 1. 00

94.1c Initialize: f PRGM, enter n, R/S

Stops program in order to display the result. 96.1a

94.2

Put dinner cost in x register

STEP PROGRAM 1

00 (R/S) Lift to y register
01 g x?
02 2
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Enter 1.08

  
 

 
Multiply dinner cost by 1.08

  
'
 

 
Go to step 00 in order

 
 

to stop and display

9.6.1b

STEP PROGRAM

00 (R/S)
01 1
02 1
03 .
04 0
05 8
06 X
07 GTO 00

Initialize: f PRGM, enter dinner cost, R/S

9.6.2
 

 
Enter number of feet

  
1
 

 
Lift to y register

  
{
 

 
Enter 3.28

  
{
 

 
Divide feet by 3.28

  
}
 

 
Go to step 00 in order to

stop and display
  

9.6.3a
 

 
Enter F

  
{ 

 
Subtract 32
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9.6.3b

{
 

 
Divide by 1.8

 
 

 

  
 

Y
Go to step 00 in order

to stop and display

STEP PROGRAM

00 (R/S)

01 1

02 3
03 2
4 —_

05 1

06 .

07 8

08 +

09 GTO 00

Initialize: f PRGM,enter F, R/S

9.6.4a

9.6.4b

 

 
Enter first number

 
 

1
 

 
Lift to y register

  
{
 

 
Enter second number

  
{ 

 
Add

  
{
 

Enter 2
   

{ 
Divide

   
;
 

 
Go to step 00 in order

to stop and display   

STEP

00
01

PROGRAM

(R/S)
7



Initialize: f PRGM, enter first number, R/S,
enter second number, R/S.

9.6.5

Initialize: f PRGM, enter length, R/S, enter
width, R/S, enter height, R/S

9.6.6a

STEP PROGRAM

02 R/S

03 +

04 2

05 +

06 GTO 00

 

Enter length

Y
Enter width

¥
Multiply

I!
Enter height

r

Multiply

Y
Stop and display

  
 

   
 

   
 

   
 

   
 

   

STEP PROGRAM
00 (R/S)

1
02 R/S

X

04 R/S
xX

06 GTO 00

STEP PROGRAM

00 (R/S)
01 1
02 +
03 8
04 +
05 2
06 —
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Initialize:

9.6.6b

3

9.7.1

Initialize:

Comments:

9.7.2

Initialize:
Comments:

9.7.3a

STEP

07
08
09
10
11

PROGRAM

2

R/S

GTO 00

f PRGM, enter n, R/S, enter n,
R/S

PROGRAM

(R/S)
1

6
2

GTO 00

f PRGM,enter miles, R/S

5 mi.= 8.0645 km., 8 mi.= 12.9032
km., 31 mi.= 50.0000 km., 500 mi.=
806.4516 km., 3000 mi.= 4838.7097
km.

STEP

00
01
02
03
04
05
06
07

PROGRAM
(R/S)2
2

8
5
X
G

f PRGM,enter hours, R/S
salaries are, respectively: $34.20,
$51.30, $39.90, $62.70.

STEP

00

03

PROGRAM
(R/S)
7
4

0



STEP

04
05
06
07
08
09
10
11
12

PROGRAM

|
@
H

4p
O
x

5 o 8

Initialize: f PRGM,enter F, R/S

9.7.3b

PROGRAM

(R/S)

9.7.6a

C
h

|
L
y
x
O

LL
O
h
o

Q 3 8

Initialize: f PRGM,enter C, R/S

9.7.4

R/S

PROGRAM

Initialize: f PRGM, enter /, R/S, enter w,

PROGRAM

(R/S)
7
R/S
+

R/S
+

3

GTO 00

Initialize: f PRGM, enter a, R/S, enter b,
R/S, enter ¢, R/S

PROGRAM
(R/S)
7
R/S
xX

9.7.6b

0
3
X

GTO 00

Initialize: f PRGM, enter /, R/S, enter w,

9.7.5

R/S

STEP

01
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PROGRAM
(R/S)

PROGRAM

(R/S)
7
R/S
+

R/S
+

R/S
+

4

GTO 00

Initialize: f PRGM, enter a, R/S, enter b,
R/S, enter ¢, R/S, enter d, R/S



9.7.7

STEP PROGRAM

00 (R/S)
01 1

02 R/S

03 1

04 R/S
05 +
06 X

07 2

08 +

09 GTO 00

Initialize: f PRGM, enter A, R/S, enter b,,

R/S, enter b,, R/S

9.7.8a

STEP PROGRAM

00 (R/S)
01
02 1

03 .
04 0

05 6
06 X

07 GTO 00

Initialize: f PRGM,enter n, R/S

9.7.8b

$100 yields $106.00

9.7.8¢c

Then press R/S to obtain the bank balance of
$112.36 at the end of two years.

9.7.8d

Press R/S three more times to obtain the five
year result of $133.82

9.7.9a

STEP PROGRAM

00 (R/S)
01 1
02 3

03 6
04 0

STEP PROGRAM

05 x2y *
06 +

07 GTO 00

Initialize: f PRGM,enter /, R/S

Or...

STEP PROGRAM

00 (R/S)
01 1
02 3
03 6
04 0
05 R/S
06 +

07 GTO 00

Initialize: f PRGM, R/S, enter /, R/S

9.7.9b

[=35,8, 10, 15 give, respectively:
w = 72, 45, 36, 24.

9.7.9¢

/ = 20, w = 18. Find this result by the guess and
check method.

10.2.1

No answer required.

10.2.2

$49.89

10.2.3

$153.25

10.2.4

$54,575,907.58

10.2.5

STEP PROGRAM

00 (R/S)
01 EEX
02 2
03 1
04 1

*The symbol x 2 y represents the “x exchange y” key on the calculator.
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STEP PROGRAM 10.6.1

05 .

06 0
07 6

08 R/S

09 f y*
10 Xx

11 GTO 00

Initialize: f PRGM, R/S, enter n, R/S

Comments: 1. For n = 20, p = 320.71.
2. Steps 01 and 02 have the effect

of entering 100 in the display.
Or...

Initialize:

STEP PROGRAM

00 (R/S)
01 1

02 1 10.6.2
03 . or
04 0
05 6
06 x=y *
07 f y*
08 EEX
09 2
10 X
11 GTO 00

Initialize: f PRGM, enter n, R/S Initialize:

104.1a

Program 2

10.4.1b 10.6.3

Computes 0, since 34 is in the x-register (the
display) and O is in the y-register at the time the
multiplication is performed.

10.4.2

Program 2

10.4.3

Sequence 1 evaluates 10! +"
Sequence 2 evaluates 1 + 10”
Sequence 3 evaluates 10 + n

10.4.4

Initialization sequence (a) gives 3° = 243, while Initialize:
sequence (b) gives 5° = 125.

STEP

00
01
02
03
04
05
06
07
08

PROGRAM

(R/S)
7
R/S
+

R/S
+

3

GTO 00

f PRGM, enter a, R/S, enter b,
R/S, enter ¢, R/S

PROGRAM
(R/S)
7
R/S
X

f Vx
GTO 00

f PRGM, enter a, R/S, enter b,

R/S

07

08
09

PROGRAM

(R/S)
1
R/S
X

R/S
X
3
g 1/x

fy
GTO 00

f PRGM, enter a, R/S, enter b,
R/S, enter ¢, R/S

*The symbol x Z y represents the “x exchange y” key on the calculator.
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10.6.4 10.6.7

STEP PROGRAM

00 (R/S)
01 g 1/x
02 R/S
03 g 1/x
04 +
05 g 1/x
06 GTO 00

Initialize: f PRGM, enter R,, R/S, enter R,,

R/S

10.6.5a

STEP PROGRAM

00 (R/S) Initialize:
01 f SIN (orf COSorf TAN)

02 g 1/x
03 GTO 00

10.6.8

Initialize: f PRGM,enter 4, R/S

10.6.5b

STEP PROGRAM

00 (R/S)
01 1
02 9
03 0

04 x=Zy Initialize:
05 —
06 f TAN

07 GTO 00 10.6.9

Initialize: f PRGM,enter 8, R/S

10.6.6

STEP PROGRAM

00 (R/S)
01 1
02 2

03 xZy Initialize:

04 fy:
05 1 10.6.10
06 —
07 GTO 00

Initialize: f PRGM, enter n, R/S
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PROGRAM
(R/S)

f PRGM, enter weight in ounces
(even fractional parts of ounces will
work), R/S

STEP

00
01
02
03
04
05

PROGRAM

(R/S)
1
R/S

g ABS

GTO 00

f PRGM, enter one of the years,
R/S, enter other year, R/S

STEP

00
01
02
03
04
05

PROGRAM

(R/S)
f LOG
g INT
1
+

GTO 00

f PRGM,enter n, R/S

STEP

00
01
02

PROGRAM

(R/S)?
3



STEP PROGRAM

03 X

04 g

05 +
06 4
07 +
08 3
09 g 1/x

10 fy ets
11 GTO 00 Initialize:

Initialize: f PRGM, enter V, R/S 10.6.11b

10.6.11a

STEP PROGRAM

00 (R/S)
01 1
I) R/S
03 X
04 4
05 1
06 R/S
07 X
08 R/S
09 X
10 +
11 R/S
12 1
13 R/S
14 x

15 +
16 R/S
17 x

. ® Initialize:
20 GTO 00

Comments:

Initialize: f PRGM, enter a, R/S, enter b,
R/S, enter a, R/S, enter b, R/S,
enter a, R/S, enter b, R/S, enter c,

R/S
10.6.11c

Here is another program based on algebraic
manipulations of the prismoidal volume formula,
resulting in the familiar formula for the volume
of a rectangular prism.

V = (ab + dab) ¢

= (6ab)¢

= abc
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STEP

00
01
02
03
04
05
06

PROGRAM
(R/S)
7
R/S
X

R/S
x

GTO 00

f PRGM, enter a, R/S, enter b,

R/S, enter ¢, R/S

PROGRAM
(R/S)
T
2

+

3
x
N

Hy
0

0g
L
X

x
w2

J
D
D

o
q

0
0

X
Z
+
X

=

wn
3

x
N
o

5 o g

f PRGM, enter r, R/S, enter r,
R/S, enter h, R/S

This program can be simplified if the
prismoidal formula is first manipu-
lated algebraically to obtain:

STEP

01

03

05

V=ar’h/3

PROGRAM
(R/S)
g x?
R/S
1

R/S
+



STEP PROGRAM

=
n
N

=
N

ro

.
O
N

o
q

H
0
Q

|S
)

3
X
Z

+
g
x

+

o 5 o 8

Initialize: f PRGM, enter a, R/S, enter a,

R/S, enter b, R/S, enter b, R/S,
enter ¢, R/S

10.6.12a

STEP PROGRAM

00 (R/S)

01 g x?
02 R/S

03 1

04 2
05 X

06 f SIN
07 X

08 3
09 2
10 +

11 GTO 00

Initialize: f PRGM, enter V,, R/S, enter 6,
R/S

10.6.12b

No answer required.

10.6.12¢

45°, 253.1 feet

11.5.1

No answer required.

11.5.2

No answer required.
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11.5.3

A corrected program for evaluating (a — 5)/(b
+ 5) is

PROGRAM

(R/S)
7
5

R/S
7
5
+

GTO 00

Initialize: f PRGM, enter a, R/S, enter b,

R/S
Comment: Neither up arrow (1) in steps 01 nor

05 are needed on the HP 33E. But
both are needed on the HP 25 and

12.3.1

Memory: R, =n

HP 25C.

PROGRAM

(R/S)
STO 1

R
+
—
x
W

0 =
P
O
X
A
X

+
RX

+
=

Q = o 3

Initialize: f PRGM,enter n, R/S

12.3.2

STEP

01
02

PROGRAM

(R/S)
STO 1
1



Memory: R, =n

PROGRAM

+

RCL 1

Initialize: f PRGM,enter n, R/S

12.3.3

STEP

00

Memory: R, =a, R, = b, Ry; = area, R,

PROGRAM

(R/S)
STO 1

R/S
STO 2

X

g 7
X

STO 3
CLX
RCL 1

GTO 00

= circumference
Initialize: f PRGM,enter a, R/S, enter b,

R/S, wait to see area, R/S

12.3.4a

STEP

01
02
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PROGRAM

(R/S)
STO 1

R/S

PROGRAM

STO 2

g x?

X
b
X
B
p
O
o

—
5

2
>

—
Z

Q = Oo S

Memory: R, =n, R, =1/
Initialize: f PRGM,enter n, R/S, enter /,

R/S

12.3.4b

No answer required.

12.3.5a

STEP PROGRAM

(R/S)
STO 1
R/S
STO 2
1

w
n — o w

O
O

=
z
o
C
O
s

w
z
p
=

INTo
Q

RCL 3

g INT

RCL 2
+

RCLI1



Memory: Ry =D, R,=Y, R;=Y —
1

Initialize: f PRGM, enter D, R/S,

enter Y, R/S

12.3.5b

Variable answers

12.3.5¢

Saturday

12.3.6

STEP PROGRAM

00 (R/S)
01 STO 1
02 f SIN

03 g x?
04 RCL 1
05 f COS

06 g x?
07 +
08 GTO 00

Memory: R, = 4
Initialize: f PRGM,enter §, R/S

Comments: For any 6, sin’ + cos?d = 1

12.3.7

STEP PROGRAM

00 (R/S)
01 STO 1
02 2
03 se

04 RCL 1
05 1
06 —

07 X
08 RCL 1
09 X
10 6

11 +
12 GTO 00

Memory: R; =

Initialize: f PRGM,enter n, R/S

For n=3, 4, 5, 10, and 100, the

corresponding values are 1, 4, 10,

120, and 161,700.

Comments:

12.3.8

PROGRAM

(R/S)
STO 1

Xx

y
mT

F
P
x
P
s

W
w

R/S
RCL 1

2
g Xx

g 7

X
4
X
GTO 00

Memory: R, = radius
Initialize: f PRGM,enter r, R/S, wait to

12.3.9

see V, R/S

STEP PROGRAM

00 (R/S)
01 STO 1
02 R/S
03 STO 2
04 +
05 R/S
06 STO 3
07 X
08 :
09 0
10 6
11 X

12 RCL 1
13 RCL 2
14 X
15
16 0
17 5
18 X



STEP PROGRAM

19 +
20 GTO 00

Memory: R,=x,R,=y,R; =:

Initialize: f PRGM, enter x, R/S, enter

v, R/S, enter z, R/S

12.3.10a

STEP PROGRAM

00 (R/S)
01 STO 1
02 R/S
03 STO 2
04 —

05 :
06 8
07 2
08 x
09 RCL 2
10 +
11 GTO 00

Memory: R, = delivery price, R, =

transportation costs

Initialize: f PRGM, enter delivery price,
R/S, enter transportation costs,

R/S

12.3.10b

Write over step 11 with R/S and augment the
program with

STEP PROGRAM

12 STO 3
13 RCL 1
14 —
15 CHS
16 GTO 00

12.3.10c

Of course, your calculator automatically rounds
to the nearest hundredth.

12.3.11

STEP PROGRAM

00 (R/S)
01 STO 1
02 R/S
03 STO 2
04 X
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Memory:

PROGRAM

STO 4
R/S
STO 3
1
RCL 2

STO 5
RCL 4
RCL 4
RCL 3
RCL 5
X

+

STO 6
GTO 00

R, = P(A[B), R;, =P(B), R; =
P(A[B), R, = P(A|B) x P(B),
R; = 1 — PB) = P(B’), Ry =
P(B|A)

Initialize: f PRGM, enter P(A|B), R/S,
enter P(B), R/S, enter P(A|B’),

12.3.12

R/S

PROGRAM

(R/S)
STO 1
R/S
STO 2
X

R/S
1

RCL 2

X

f Vx
GTO 00

Memory: R,=nR, =p
Initialize: f PRGM, enter n, R/S, enter p,

R/S, wait to see E(y), R/S

12.3.13

PROGRAM

(R/S)
STO 1
R/S
STO 2
R/S



STEP PROGRAM STEP PROGRAM
05 STO 3 03 0

06 RCL 2 04 +
07 f COS 05 GTO 01

08 X

» RCL 1 Initialize: f PRGM, CL X, R/S

11 R/S 13.3.5

12 FR Use the initialization f PRGM, enter 7, R/S.

14 RCL 115 » 133.6
16 RCL 3

17 x STEP PROGRAM
18 RCL 3 00 R/S)
19 g x2 01 fPAUSE
20 1 02 EEX
21 6 03 2
22 X 04 —
23 — 05 GTO 01

24 GTO 00

Initialize: f PRGM, enter 1000, R/S

Memory: R, =V,, Ry, =6,R;=1¢
Initialize: f PRGM, enter V,, R/S, enter 13.5.1

6, R/S, enter ¢t, R/S, wait to see

x, R/S

13.3.1

Displays the sequence 10, 20, 30, 40, ... i.e.
counts by tens

13.3.2

Displays the sequence —1, —2, —3, —4,... Initialize:

13.3.3 13.5.2

STEP PROGRAM

00 (R/S)
01 1
02 5
03 +
04 f PAUSE
05 GTO 02

CL Initialize:
Initialize: f PRGM, CL x, R/S

13.5.3a
13.3.4

STEP PROGRAM

00 (R/S)
01 f PAUSE
02 1
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PROGRAM

R/S)
fPAUSE
9
+

GTO 01

f PRGM,enter 2, R/S

STEP

00
01
02
03
04

PROGRAM

(R/S)
fPAUSE
3

GTO 01

f PRGM, enter 2187, R/S

STEP

01
02
03

PROGRAM

(R/S)
f PAUSE
2
xX



STEP PROGRAM 13.5.6b

04 1

05 t STEP PROGRAM
06 GTO 01 00 (R/S)

01 fPAUSE
Initialize: f PRGM, enter 3, R/S 02 2

03 +

13.5.3b 04 GTO 01

Initialize with f PRGM, then enter the ap- CL
propriate number, 123, —16, 2/3, or .222, then Initialize: f PRGM,enter 1, R/S
press R/S.

13.5.7a

13.5.4a

Double each term to get the next term. RS

13.5.4b 0 / PAUSE

Multiply each term by 2/3. 03 +
04 4

13.5.4 0 +‘ 06 GTO 01
Double each term, then add 1.

13.5.4d Initialize: Lade enter 1 or any number,

Double each term, then subtract 1. Comments: After many iterations the sequence
will approach 8.0000.

13.5.4e 3
13.5.7b

Triple each term, then subtract I.

13.5.4f STEP PROGRAM

00
Square each term. 01 alse

2
13.5.5 0 2

04 f Vx
STEP PROGRAM 05 GTO 01

00 (R/S)
o J PAUSE Initialize: f PRGM, enter any number bigger

0 a. than —2, R/S
od S Comments: After many iterations the sequence

X will approach 2.0000.
05 3
06 +
07 GTO 01 13.5.8

Initialize: f PRGM,enter 15, R/S STEP PROGRAM
00 (R/S)

13.5.6a o J PAUSE
Add two to the previous term. 03 x=y *

*The symbol x = y represents the “x exchange y” key on the calculator.

254



STEP PROGRAM

04 +

05 1

06 +

07 GTO 01

Initialize: f PRGM, enter 6 or any number,

R/S
Comments: This sequence begins 6.0000,

2.0000, 4.0000, 2.5000, . . . and tends

to 3.0000. The result will be the same
regardless of the first term as long as
the first term is not 0, —6, or a
selection of other special values near
- 2.

13.5.8b

STEP PROGRAM

00 (R/S)
01 fPAUSE
02 2
03 +
04 1
05 x2y
06 —

07 GTO 01

Initialize: f PRGM, enter 5 or any number,
R/S

Comments: This sequence begins 5.0000,
—1.5000, 1.7500, 0.1250, ..., when

the entered number is . Thereafter
the sequence tends to 2/3. The re-
sults will be the same limiting value
regardless of first term.

13.5.9a

STEP PROGRAM

00 (R/S)
01 f PAUSE
02 1
03 g x?

04 xXZ2y
05 —-
06 GTO 01

Initialize: f PRGM, enter 2.1, R/S
Comments: The sequence generated is

2.1000, 2.3100, 3.0261, 6.1312, ..
and eventually grows to

9.9999999 x 10%.
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13.5.9b

The initial entry 1.9 gives
1.9000, 1.7100, 1.2141, 0.2599, —0.1924, 0.2294,
—0.1768, . . . and oscillates in sign while tending
to zero.

13.5.9¢

The initial value 2.0 gives the sequence
2.0000, 2.0000, 2.0000, 2.0000, . . .

13.5.10a

Program blinks and computes but never pauses
nor stops until 9.9999999 x 10% appears in the
display.

13.5.10b

Change step 06 to GTO 01.

13.5.10c

Register R, is used for temporary storage of the
previous term.

13.5.10d

Each term is the square of the previous term
minus the previous term.

13.5.10e

The initial value of 2 yields the sequence of all
twos. How does problem 5.5.10 compare to prob-
lem 5.5.9?

13.7.1a

STEP PROGRAM

00 (R/S)
01 STO 1
02 RCL 1
03 1
04 +
05 STO 1

06 g x?
07 1

08 +
09 f PAUSE
10 GTO 02

Memory: R, = term
Initialize: f PRGM,enter 0, R/S



13.7.1b

Initialize with f PRGM,enter 2, R/S. You ob-
tain the same sequence but starting with the third
term: 10, 17,26, ... .

13.7.2a

STEP PROGRAM

00 (R/S)

01 STO 1
02 RCL 1

03 1
04 +

05 STO 1

06 g x?
07 2

08 +
09 f PAUSE
10 GTO 02

Memory: R, = term
Initialize: f PRGM, enter 0, R/S

13.7.2b

Change step 03 to read “2” and count by twos.

13.7.3

These answers assume that your programs are
designed so that in each loop first 1 is added to
the index, n, and then the nth term is computed.

13.7.3a

Set index at —1, compute term as 5 times the
index.

13.7.3b

Set index at 0, compute term as the square of the
index minus 1.

13.7.3¢c

Set index at 2, compute term as the square of the
index minus 1

13.7.3d

Set index at 0, compute term as 2".
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13.7.4a

STEP PROGRAM

00 (R/S)
01 STO 1
02 3
03 RCL 1
04 1
05 +
06 STO 1

07 f y=
08 f PAUSE
09 GTO 02

Memory: R; = term
Initialize: f PRGM, enter 0, R/S

13.7.4b

STEP PROGRAM

00 (R/S)
01 STO 1
02 RCL 1
03 1
04 +
05 STO 1
06 3
07 fy:
08 fPAUSE
09 GTO 02

Memory: R, = term
Initialize: f PRGM, enter 1, R/S

13.7.5

STEP PROGRAM

00 (R/S)
01 STO 1
02 RCL 1
03 1
04 +
05 STO 1
06 RCL 1

07 fy:
08 f PAUSE
09 GTO 02

Memory: R; = term
Initialize: f PRGM,enter 0, R/S

Comments: This sequence overflows the capac-
ity of the calculator after 57 itera-
tions.



13.7.6

STEP PROGRAM

00 (R/S)
01 STO 1
02 RCL 1
03 1
04 +
05 STO 1
06 RCL 1
07 g 1/x
08 f »*
09 f PAUSE
10 GTO 02

Memory: R; = term
Initialize: f PRGM,enter 0, R/S

13.7.6a

V3 = 1.442249570 is largest

13.7.6b

Vn gets smaller tending to 1

13.7.7

STEP PROGRAM

00 (R/S)
01 STO 1
02 RCL 1
03 1

04 +

05 STO 1

06 g x?
07 2
08 RCL 1

09 f y=
10 —

11 f PAUSE

12 GTO 02

Memory: R; = term

Initialize: f PRGM,enter 0, R/S

13.7.7a

When n = 2 or 4, n* = 2"; when n = 3, n? > 2";
for all other n, n? < 2".

13.7.7b

Generate the sequence n> — 3". When the
sequence values are negative, n> < 3", otherwise
3 nn° > 3".
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13.7.8a

STEP PROGRAM

00 (R/S)

01 STO 1
02 RCL 2
03 RCL 1

04 fy:
05 f PAUSE

06 RCL 1

07 1

08 +

09 GTO 01

Memory: R, = term, R, = initial value
Initialize: f PRGM, 0.99, STO 2, 0, R/S

Comments: As n grows large, (0.99) tends
slowly to zero.

13.7.8b

Change the initialization to f PRGM,1.01, STO
2, 0, R/S. As n grows large, (1.01)" grows to
9.9999999 x 10%.

13.7.8¢

Change the initialization to f PRGM, enter 1,
STO 2, 0, R/S. The resulting sequence is 1.0000,
1.0000, 1.0000, 1.0000, . .. .

14.3.1a

96

14.3.1b

90

14.3.2a

4, 8, 16, 32, 64, . . .

14.3.2b

4, 8, 16, 32, 64, . . .

14.3.2¢

Multiplied by 2

14.3.2d

Multiply the quantity in R; by 2.

14.3.3a

10%, 10%, 10°, 10%, ..



14.3.3b

Divide the quantity in Rg by 10.

14.3.3¢

Store 10° in Rs.

14.3.4

STEP PROGRAM

00 (R/S)
01 STO 3
02 J PAUSE Memory:
03 4 Initialize:
04 STO — 3
05 RCL 3 14.8.1a
06 GTO 02

Memory: Rj; = term
Initialize: f PRGM,enter 100, R/S

14.5.1

f REG clears all memory registers by filling
them with 0.

14.5.2a

1/3% =1

14.5.2b

3, STO + 4. You can check to see that this works
by following the given key stroke sequence with

RCL 4, g 1/x, f PAUSE which, in a pro-
gram, will show the denominator of the term.

M :14.532 emory
2, STO + 2,if 1 is placed in R, at the start. Initialize:

14.5.3b 14.8.1b

3, STO — 3, if 1 is placed in R; at the start.

14.5.3¢c 14.8.2a

RCL 2, RCL 3, +

14.5.4

STEP PROGRAM

00 (R/S)
01 f REG
02 f STK
03 1

4 STO + 3
05 RCL 3
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STEP PROGRAM

06 RCL 3
07 1
08 +
09 X
10 2
11 +
12 1
13 +
14 Sf PAUSE
15 GTO 03

R; = index
f PRGM, R/S

STEP PROGRAM

00 (R/S)
01 fREG
02 fSTK
03 1

04 STO + 2
05 RCL 2
06 f PAUSE

07 1
08 STO + 1

09 3
10 RCL 1

11 fy:
12 g 1/x

13 GTO 04

R, = index, R, = total, x — reg =
term

fPRGM, CL X, R/S

STEP

The limiting value is 1.5000.

PROGRAM

(R/S)
f REG
f STK
1
STO + 2
2
STO + 3
g 1/x
STO + 1



STEP PROGRAM

09 RCL 1

10 f PAUSE

11 1

12 STO + 2

13 2

14 STO x 3
15 RCL 2

16 3
17 f y*

18 RCL 3
19 +

20 GTO 08

Memory: R; = running total, R, = index,
3; = denominator = 2", x-reg =

term = n/2".
Initialize: f PRGM, CL x, R/S

14.8.2b

The average amount received is the limiting
value of $26.00.

14.8.2¢

Since 26 — 10 = + 16, the gambler’s expected
profit would be $16.00.

14.8.2d

By pressing g NOP at steps 16 and 17 in

14.8.2a, you can compute the limiting value of
2%_1(n/2"), which is 2.0000. Hence, 2 — 10 =
— 8 and the gambler’s expected loss is $8.00.

14.8.3a

STEP PROGRAM

00 (R/S)
01 f REG
02 f STK
03 1
04 STO + 3
05 1
06 STO + 2
07 6
08 STO X 3
09 2
10 RCL 2
11 fy
12 3
13 RCL 2
14 foy*
15 +
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STEP PROGRAM

16 RCL 3
17 +

18 STO + 1
19 RCL 1
20 Jf PAUSE

21 GTO 05

Memory: R; = running total, R, = index,
R, = 6"

Initialize: f PRGM, CL X, R/S

14.8.3b

The limiting value is 1.5000.

14.8.4a

STEP PROGRAM

00 (R/S)
01 fREG
02 fSTK

03 1
04 STO + 2

05 RCL 3
06 RCL 2
07 +
08 STO 3
09 6
10 X

11 1
12 ot

13 RCL 3
14 3

15 fy
16 +

17 STO + 1
18 RCL 1
19 f PAUSE
20 GTO 03

Memory: R; = running total, R, = index,
R;=T,

Initialize: f PRGM, R/S

14.8.4b

The limiting value of the series is 8.0000.

14.8.5a

STEP PROGRAM

00 (R/S)
01 fREG



STEP PROGRAM

02 fSTK

03 1
04 STO + 2

05 RCL 3
06 RCL 2
07 +
08 STO 3

09 g x?

10 2
11 0
12 X
13 RCL 3
14 1
15 0
16 X
17 +
18 1
19 +
20 RCL 3
21 5

22 fy
23 +

24 STO + 1
25 RCL 1
26 f PAUSE

27 GTO 03

Memory: R; = running total, R,

3 = 1,

Initialize: f PRGM, R/S

14.8.5b

The limiting value is 32.0000.

14.8.6a

STEP PROGRAM

00 (R/S)
01 f REG
02 f STK
03 5

04 STO + 1

05 RCL 1

06 f PAUSE

07 1

08 STO + 2

09 2

10 1
11 5
12 X
13

260

Memory:

Initialize:

14.8.6b

STEP PROGRAM

14 8
15 RCL 2

16 f yx
17 X

18 GTO 04

R, = running total, R, = index,
XxX-reg = term

f PRGM, R/S

The ball will travel 45.0000 meters.

14.8.7a

= index,

Memory:

Initialize:

Comments:

14.8.7b

STEP PROGRAM

00 (R/S)
01 STO 3

02 1
03 STO + 2

04 RCL 2
05 RCL 3

06 fr
07 g 1/x

08 STO + 1
09 RCL 1
10 f PAUSE

11 GTO 02

R, = running total, R, = index,

R; =

f PRGM, f REG, f STK, f FIX
9, enter 5s, R/S
Here f REG, f STK is part of
the initialization rather than the
program. If the sequence were at
the beginning of the program, it
would clear the x-register so that s
would be lost.

$(8) = 1.004077355 and {(6) = 1.017343060.

14.8.7¢c

For values of s < 4, the number of times through
the loop to evaluate the function is excessive. For
s = 4, it takes more than 200 iterations. For
s = 2 your calculator would require more than 9
hours to calculate the correct value, {(2) = 72/6.



14.8.8

Memory:

Initialize:

Comments:

14.8.9

STEP PROGRAM

00 (R/S)
01 f REG
02 f STK
03 1
04 STO 2
05 STO 3

06 STO + 1
07 RCL 1
08 f PAUSE

09 1
10 STO + 2
11 CHS
12 STO Xx 3
13 RCL 2
14 6
15 f y=
16 g 1/x
17 RCL 3
18 X

19 GTO 06

R, = running total, R, = index,
R; = sign, x-reg = term
f PRGM, f FIX 9, R/S

The value of the series is

0.985551092 which 1s the decimal

form of (31/32) - (7/945).

STEP PROGRAM

00 (R/S)
01 fREG
02 f STK
03 1
04 CHS
05 STO 2
06 STO 3
07 3
08 f Vx
09 2
10 X
11 STO 4
12 1
13 STO + 2
14 CHS
15 STO X 3
16 RCL 2
17 2
18 X
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Memory:

Initialize:

Comments:

14.8.10

Memory:

Initialize:

Comments:

STEP PROGRAM

19 1
20 +
21 3
22 RCL 2

23 fy
24 X
25 g 1/x
26 RCL 4
27 X
28 RCL 3
29 X

30 STO + 1
31 RCL 1
32 f PAUSE
33 GTO 12

R, = running total, R, = index,

R; = sign, R, = 2V3
f PRGM, f FIX 7,R/S
The limiting value of the series is
7 = 3.1415927.

STEP PROGRAM

00 (R/S)

01 STO 6
02 1

03 STO 5

04 RCL 6
05 RCL 5

06 X
07 f SIN

08 RCL 5
09 +

10 STO + 4

11 RCL 4
12 f PAUSE
13 f PAUSE

14 2

15 STO + 5
16 GTO 04

Rg =x, Ry =2n—-1, Ry =
running total
f PRGM, f REG, f STK, f
FIX 7, enter x, R/S
7/4 = 0.7853982 and it will take
your calculator a considerable time
to approach this limit.



15.4.1

Memory:

Initialize:

15.4.2

STEP PROGRAM

28 +

STEP PROGRAM 29 GTO 00

00 (R/S)
0 STO ! Memory: R, =:

Initialize: f PRGM, enter z, R/S enter

> 0 class, R/S

06 f x<y
07 GTO 00 STEP PROGRAM

08 . 00 (R/S)
09 0 01 STO 1
10 0 02 R/S

11 5 03 1
12 X 04 RCL 1

13 RCL 1 05 f x<y
14 + 06 GTO 02
15 GTO 00 07 R|

08 STO 1

R, = balance 09 GTO 02
f PRGM,enter balance, R/S

Memory: R; = number
Initialize: f PRGM,enter number, R/S

Comments: To display the smallest number in
a set, continue the enter number

STEP PROGRAM and R/S key sequence until all the
00 (R/S) numbers have been processed.
01 STO 1 While step 03 is unnecessary, it is
02 1 included to help explain what is
03 ? happening in the stack.

04 R/S 15.4.4
05 x =

06 GTO 18 STEP PROGRAM

07 RCL 1 00 (R/S)
08 2 01 STO 1
09 —- 02 R/S
10 . 03 STO 2
11 0 04 1

2 6 05 RCL 1
13 X 06 5

so 509 —

17 GTO 00 10 Fox=y

Is Red 11 GTO 14
20 _ 12 0
71 } 13 GTO 00

22 1 14 1
23 3 15 GTO 00
24 X
25 . Memory: R;, =x, R, =y

26 1 Initialize: f PRGM, enter x, R/S, enter y,
27 5 R/S
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15.4.5

PROGRAM

(R/S)
STO 1
RCL 1

2

5

A
=
A

u
e

— o

RCL 1

f x<y
GTO 18
RCL 1
GTO 00
g 7
GTO 00

Memory: R; = number
Initialize: f PRGM, enter number, R/S

15.4.6

PROGRAM

(R/S)
STO 1
R/S
STO 2

R/S
STO 3

2
xX

RCL 2

Comments:

STEP

22
23

PROGRAM

0
GTO 00

Memory: R, =, R,=w,R;=h
Initialize: f PRGM, enter /, R/S, enter w,

R/S, enter A, R/S

15.4.7

STEP

00
01
02
03
04
05

26

27
28

29
30

PROGRAM

(R/S)
STO 1
R/S
STO 2
R/S
STO 3
5
0

R/S
STO 4

f x>y
GTO 29
RCL 3
2
X

RCL 2
2
xX

+

RCL 1

*

~
x

0
0

O
O
=

+

Zy
xX >y

GTO 29
1
GTO 00
0
GTO 00

Memory: R,=1/, R,=w, Ry=h, R=
weight

Initialize: f PRGM, enter /, R/S, enter w,
R/S, enter A, R/S, enter weight,

R/S
If a package can be sent by U.P.S,,
a “1” appears in the display, other-
wise a “0” appears.

*The symbol x = y represents the “x exchange ” key on the calculator.
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15.4.8 Comments: For complex roots, your calculator
STEP PROGRAM stops first to show u and then v. To
00 (R/S) form the roots, use x, x, = u +
01 RCL 6 vl.
02 STO + 3
03 STO + 3 15.6.1

04 RCL 5

05 g x? STEP PROGRAM
06 4 00 (R/S)
07 RCL 6 01 STO 1

08 RCL 4 02 4
09 X 03 +

10 x 04 2

11 —- 05 g INT
12 STO 2 06 _

f x=y
13 g x<0 07 GTO 11
14 GTO 16 08 RCL 1

15 GTO 27 09 CHS

16 RCL 5 10 GTO 00

17 CHS 11 RCL 1
I8 RCL 3 12 GTO 00
19 +
20 R/S
21 RCL 2 Memory: R, = year =n
22 CHS Initialize: f PRGM, enter year = n, R/S

23 f Vx
24 RCL 3
25 =~ 15.6.2a

26 GTO 00
27 RCL 2 STEP PROGRAM

28 f Vx 00 (R/S)
29 STO 1 01 STO 1

30 RCL 5 02 7
31 CHS 03 1
32 RCL 1 04 0
33 + 05 0

34 RCL 3 06 fx<y
35 + 07 f x>y
36 R/S 08 GTO 24

37 RCL 5 09 3
38 CHS 10 g 1/x
39 RCL 1 11 f y=

40 —- 12 1
41 RCL 3 13 f LOG

42 + 14 ¢ INT
43 GTO 00 15 2

16 +

Memory: Rg =a, Rs =b, Ry = ¢, R; = 2a, 17 g 107
R, = d, R, = Vd 18 +

Initialize: f PRGM,f REG,f STK, enter 19 f LAST x
a, STO 6, enter b, STO 5, enter c, 20 -

STO 4, R/S, wait until you see 21 g FRAC
“x,” or “u,” then R/S in order to 22 g x=
see “x,” or “v.” 23 GTO 26
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Memory:
Initialize:

Comments:

15.6.2b

You obtain

STEP PROGRAM

24 0
25 GTO 00

26 RCL 1

27 GTO 00

R, =n

f PRGM,f REG, f STK,enter
n, R/S
Notice the special key sequence in
steps 12 — 20 that rounds numbers
to 8 significant digits. Try the pro-
gram with g NOP instructions in
place of those steps to see that the
sequence is necessary.

the word “error” in the display since
f y* may only be used for positive numbers.

15.6.3

In problem 7.6.2 replace step 02 (which was
unnecessary) with g ABS.

15.6.4

Memory:
Initialize:

STEP PROGRAM

00 (R/S)
01 3
02 STO + 1
03 RCL 1

04 f Vx
05
06 f LOG
07 g INT
08 2
09 +
10 g 10¢
11 +
12 f LAST x
13 —-
14 g FRAC

15 g x#0

16 GTO 19

17 RCL 1
18 GTO 00

19 RCL 1
20 f PAUSE
21 GTO 01

R, = multiple of 3
f PRGM, f REG, f STK, R/S
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Comments:

15.6.5

Memory:
Initialize:

Comments:

When the calculator stops to dis-
play multiples of 3 that are perfect
squares, press R/S to continue.
Notice the special key sequence in
steps 06-14 that rounds numbers
to 8 significant digits.

STEP PROGRAM

00 (R/S)
01 1
02 STO + 1

03 RCL 1

04 g x?
05 2
06 X
07 RCL 1
08 2
09 X
10 +
11 1
12 +

13 f Vx
14 1
15 f LOG
16 g INT
17 2
18 +

19 g 107
20 +
21 f LAST x
22 —

23 1
24 g INT

25 f x#y
26 GTO 01

27 xXZy
28 GTO 00

R, = index a
f PRGM, f REG, f STK, R/S
1. When “¢” is displayed, you can

see “a” by pressing RCL 1 and
compute “b” as b = a + 1.

2. The other triples are:
(20, 21, 29), (119, 120, 169), and
(696, 697, 985).

3. Note the use of the round-off
key sequence in steps 14-22.



15.6.6

Memory:

Initialize:
Comments:

STEP PROGRAM

00 (R/S)
01 1
02 STO + 1

03 RCL 1
04 STO + 2

05 RCL 2

06 f Vx
07
08 f LOG
09 g INT
10 2
11 +

12 g 107
13 +
14 f LAST x
15 —
16 1

17 g INT

18 f x#y
19 GTO 01

20 RCL 2
21 R/S
22 GTO 01

R, =n, R, = T,

f PRGM, f REG, f STK, R/S

The first three triangular numbers

that are perfect squares are 1, 36,

and 1225.

Steps 07-15 use a round-off sequence.

15.6.7

STEP PROGRAM

00 (R/S)
01 1
02 STO + 1

03 RCL 1
04 1
05 1
06 X

07 3
08 +

09 6
10 +

11 1
12 g INT
13 J xy
14 GTO 01

266

Memory:
Initialize:

Comments:

16.3.1

Memory:

Initialize:

Comments:

16.3.2

STEP PROGRAM

15 RCL 1
16 1
17 1
18 X
19 8
20 +
21 R/S
22 GTO 01

R, =
f PRGM, f REG, f STK, R/S
The smallest is 41 and the next is
107.

STEP PROGRAM

00 (R/S)
01 STO 7

02 1
03 STO 1

04 RCL 1
05 STO + 2

06 RCL 2
07 STO + 3

08 RCL 7
09 RCL 1
10 f x=y
11 GTO 15

12 1
13 STO + 1
14 GTO 04

15 RCL 3
16 GTO 00

R; = n, R; = k, R, = number of
cannonballs in kth layer, R; =
sum
f PRGM, f REG, f STK, enter

n, R/S
10 layers use 220 cannonballs; 20
layers use 1,540 and 50 layers use
22,100.

STEP PROGRAM

00 (R/S)
01 f REG
02 STO 7
03 1
04 STO 1



Memory: R; =n, R; = k, R, = sum
Initialize: f PRGM,enter n, R/S

By inserting RCL 2, f PAUSE be-
tween steps 14 and 15, you can
display each term of the sequence
for any n. The sequence is n°.

Comments:

16.3.3

STEP PROGRAM

05 RCL 1
06 1
07 -
08 RCL 1
09 X
10 3
11 X
12 1
13 +

14 STO + 2

15 RCL 1
16 RCL 7
17 f x=y

18 GTO 22

19 1
20 STO + 1
21 GTO 05

22 RCL 2

23 GTO 00

STEP PROGRAM

00 (R/S)
01 STO 7

02 1

03 STO 1

04 RCL 2

05 RCL 3
06 STO 2

07 +
08 STO 3
09 RCL 2
10 f PAUSE

11 STO + 4

12 RCL 7
13 RCL 1
14 f x=y

15 GTO 19

16 1
17 STO + 1

18 GTO (4

19 RCL 4
20 GTO 00
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Memory:

Initialize:

Comments:

16.3.4a

Memory:

Initialize:

16.3.4b

5040

16.3.4c

95040

16.3.5a

R, =n, R, = k, R, = f(k), R; =

f(k +1), R4 = sum

f PRGM, f REG, f STK, enter

1, STO 3, enter n = 10, R/S
The first ten Fibonacci numbers

sum to 143.

STEP PROGRAM

00 (R/S)
01 STO 1

02 R/S
03 —
04 1
05 +
06 STO 7

07 1
08 STO 2

09 RCL 1
10 STO Xx 2

11 RCL 7
12 RCL 1
13 f x=y

14 GTO 18
15 1
16 STO — 1
17 GTO 09

18 RCL 2
19 GTO 00

R,=n—-y+1, R, = n, R, =

running product
f PRGM, f REG, f STK, enter

n, R/S, enter y, R/S

STEP PROGRAM

00 (R/S)
01 STO 1
02 R/S
03 STO 2
04 1
05 STO 3
06 RCL 1



Memory:

Initialize:

Comments:

16.3.5b

210

16.3.5¢

210

16.3.6

STEP PROGRAM

07 RCL 2
08 +

09 STO xX 3

10 1
11 RCL 2
12 f x=y

13 GTO 18
14 1
15 STO — 2
16 STO — 1
17 GTO 06

18 RCL 3
19 GTO 00

R, = numerator, R, = denom-
nator, R; = running product
f PRGM, f REG, f STK, enter
n, R/S, enter y, R/S
For y > n, you will obtain 0 in the
display.

STEP PROGRAM

00 (R/S)
01 1
02 1
03 ~
04 STO 7
05 1
06 STO 1
07 STO 2
08 STO 3
09 RCL 1
10 STO + 2
11 RCL 2
12 STO + 3
13 RCL 7
14 RCL 1
15 f x=y
16 GTO 20
17 1
18 STO + 1
19 GTO 09
20 RCL 3
21 GTO 00
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Memory:

Initialize:

Comments:

16.5.1

Memory:

Initialize:

Comments:

16.5.2a

R,=nR =k R,=1/k!,R; =

running total
f PRGM, f REG, f STK, enter
n=20,R/S

For n = 20 the sum is 2.7183 or
2.7182818 when f FIX 7 is used.
What is the smallest value of n for
which the sum is 2.7182818?

STEP PROGRAM

00 (R/S)
01 STO 4

02 1
03 STO 1

04 RCL 1
05 RCL 1
06 gl/x
07 f y*

08 RCL 2
09 f x>y

10 GTO 15
11 xXZy

12 STO 2
13 RCL 1
14 STO 3

15 RCL 1
16 RCL 4
17 f x<y
18 GTO 22
19 1
20 STO + 1
21 GTO 04

22 RCL 2
23 R/S
24 RCL 3
25 GTO 00

R, = n, R, = largest Vn , Ry =
best n, R, = 30
f PRGM, f REG, enter 30,

R/S, see maximum, R/S

V3 = 1.442249570 is maximum.

STEP PROGRAM

00 (R/S)
01 1

02 STO 1

03 gm

04 RCL 1



STEP PROGRAM STEP PROGRAM

05 4 25 STO + 1

06 ¢ 1/x 26 GTO 03
07 f y* 27 RCL 3

08 FF x>y 28 R/S
09 GTO 13 29 RCL 2
10 | 30 GTO 00
11 STO + 1

12 GTO 03 Memory: R, = k, R, = best probability, R,
13 RCL 1 — best k, R, = 6
14 GTO 00 Initialize: f PRGM, f REG, Cl X, R/S,

see best k, R/S.
Comments: To see the probability, press R/S

Memory: R, =n . a
Initialize: f PRGM,f REG, R/S tyRaismaximal probabil

Comments: n = 98 is the first integer for which ’ ’

Vn >.

16.5.4

16.5.2b

Store the new ending test value in R, during the STEP PROGRAM
initialization. Replace step 07 with RCL 2. 00 (R/S)

01 STO 7

16.5.3 02 l
03 STO 1

04 RCL 1
STEP PROGRAM 0 g x2

0 ®R/S) 06 STO + 2
07 RCL 7

o er 09 f PAUSE (optional)
10 f x>y

05 x 11 GTO 15
06 6 12 1
07 RCL 1 13 STO + 1
08 — 14 GTO 04

09 x 15 RCL 1
10 7 16 1
11 2 17 —

12 + 18 GTO 00
13 RCL 2

14 f x>y 5
15 GTO 20 Memory: R, =k, R, =sum of k° R;=
16 x= p* 10,000 = end test value

Initialize: f PRGM, f REG, enter 10000,
17 STO 2 R/S

is 1 Comments: k = 30. Press RCL 2 to see the
STO 3 number of cannonballs in 31

20 RCL 1 layers, i.e., 10416; subtract 31% to
21 RCL 4 see that there are 9455 cannonballs
22 f x<y in 30 layers; subtract from 10,000

23 GTO 27 to see that there are 545 unused
24 1 cannonballs.

*The symbol x 2 y represents the “x exchange y” key on the calculator.
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16.5.5a

STEP PROGRAM

00 (R/S)

01 7
02 8
03 STO 4

04 0

05 STO 1

06 RCL 1

07 RCL 5
08 X

09 RCL 4

10 f x<vy
11 GTO 32

12 7

13 7

14 1
15 5
16 RCL 1

17 X

18 —
19 4

20 +
21 STO 2

22 g FRAC

23 gx +0

24 GTO 29

25 RCL 2

26 R/S

27 RCL 1
28 R/S

29 1

30 STO + 1

31 GTO 06

32 0
33 GTO 00

Memory: R,=y, R, =x, Ry=77T+1=

78
Initialize: f PRGM, f REG, Cl X, R/S,

wait to see x, R/S.
Comments: x = 18,y = 1;

x=13,y = 5;

x=28,y=09; and
x=3,y=13.
To see all solutions, continue
pressing R/S.

16.5.5b

x = 8, y = 9 by inspection.
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16.5.6

Memory:

Initialize:

Comments:

16.5.7

PROGRAM

(R/S)
EEX
2

STO 7

1
STO 1
STO 2

1
STO + 1
RCL 2
RCL 2
RCL 1

+

f PAUSE (optional)
STO 2

RCL 7

JS x>y
GTO 07
RCL 1
GTO 00

R, = k, R, = height, R, = 100

f PRGM, f REG, Cl X, R/S
The sequence of heights proceeds:
1.5000, 2.000, 2.5000, 3.0000, and
so on. On the 199th day the height
is 100 times the original height.

PROGRAM

(R/S)
RCL 2
RCL 4
RCL 1
X

RCL 0

STO 6

1
g INT

f x#y
GTO 29

RCL 3

RCL 5

RCL 1

X



Memory:

Initialize:

Comments:

STEP PROGRAM

17 -
18 RCL 0
19 +

20
21 g INT

22 J x+y
23 GTO 29

24 R/S
25 RCL 6
26 R/S
27 RCL 1
28 R/S

29 RCL 1
30 RCL 7
31 f x<y
32 GTO 36
33 1
34 STO + 1
35 GTO 01

36 0
37 GTO 00

Ro =59, R, =S, R, =3869, R; =
2031, R, = 35, Rs =24, Rc = C,

R, = 100.

f PRGM, enter 59, STO 0, enter
1, STO 1, enter 3869, STO 2, enter

2031, STO 3, enter 35, STO 4, enter

24, STO 5, enter 100, STO 7, R/S,
wait to see /, R/S see ¢, R/S.
The solution is unique: L = 21, C
= 46, S = 33.
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Not science fiction but tomorrow's reality: Within five years
computers will be mass-marketed and will be doing your

taxes, balancing your checkbook, preparing weekly shopping

lists with an uncanny eye for bargains, and much more . .

if you know how to program them.

How to Program Your Programmable Calculator is a begin-
ner’s guide to the skills and language you'll need to operate

a personal computer. You'll learn through computer games
that are more than just fun to play—they illustrate computer

skills applicable to any problem situation. Besides clear-cut
operational instructions, the book explains how computers

work, computer language, what you can—and cannot—ex-

pect from a personal computer, and more.

Be ready for tomorrow's technology . . learn about it in How

to Program Your Programmable Calculator today.
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