THE HEWLETT-PACKARD CALCULATORS
 AS
 REAL ESTATE PROBLEM SOLVERS

by
Jim Hogan

Hogan Investment Company
4023 E. Grant Road
Tucson, Arizona 85712
(602) 327-6849

The information in this publication is for classroom illustrative purposes only. In any areas concerning tax, legal or technical situations, the author recommends opinions be obtained from those authorized to render such advice.

Permission to reproduce any portion or portions of the contents herein is strictly prohibited unless permission is obtained in writing from the author.

```
Copyright July 1980
```

Revised April 1986

INTRODUCTION

Until recently, much time had to be spent in order to perform financial calculations of any sophistication. With the advent of the financial calculator, these complex calculations can be performed with ease.

The object of this course is to help the real estate practitioner learn to use the Hewlett-Packard calculators to solve everday problems encountered in both residential and investment real estate.

The workbook is not designed to replace the HP Owner's Handbook and it will be necessary to refer to the Owner's Handbook for information which is not discussed here.

I would like to thank and acknowledge the talents of Esther Johnson, Office Manager Extraordinaire, and Rachelle Pellissier, who spent many hours putting these numbers through the typewriter. I would also like to thank Ellen Hogan and everyone else at Hogan School of Real Estate for their help and patience.

I hope this course and the calculator helps you to become a little more professional and enables you to put more dollars and free time in you pocket.

Sincerely,
Jim Hogan

TABLE OF CONTENTS

I. Understanding the Keys 4
II. The Stack 9
III. Basic Arithmetic 10
IV. Using the Stack to Compound 14
V. Storage Registers 16
VI. Financial Calculations 18
VII. Loan Payments 20
VIII. PITI Payments 22
IX. Back into Financing Using Debt Coverage Ratios 23
X. Remaining Balance (Balloon Payments) 24
XI. Finding Remaining Balance as a Present Value 32
XII. Amortization of Loans 33
XIII. Gratuated Payment Loans 38
XIV. Adjustable Rate Loans 39
XV. Additional Principal Payment Loans 40
XVI. Compounding 42
XVII. Appreciation \& Leverage 44
XVIII. Discounting 46
XIX. Yields on Investments and Present Value Analysis 52
XX. Present Value of Loans 53
A. Loans Purchased at Discount 56
B. Loans Placed at Discount 57
C. Loans with Balloon Payments 59
XXI. Cash Flow Diagrams - "T Bars" 65
XXII. Internal Rate of Return (IRR) 66
XXIII. Proof of IRR
XXIV. Financial Management Rate of Return (FMRR) 76
XXV. Net Present Value (NPV) 84
XXVI. Compounding Uneven Cash Flows 90
XXVII. ProgramingAppendix
XXVIII. Discounted Cash Flow Analysis 100
XXIX. Negative Amortizations 107
XXX. No Payment Notes 109
XXXI. Builder Buy Downs 110
XXXII. Offer - Counter Offer Analysis 112
XXXIII. Cash Equivalency of Terms Offer 115
XXXIV. Cash Sale vs. Carry Back 117
XXXV. Creating Two Notes 119
XXXVI. Wraparound Loans 122
XXXVII. Trend Analysis \& Linear Regression 132

UNDERSTANDING THE HP12C KEYS

For most real estate problems you need to know the following keys and information:

ON Turns the calculator on and off. We have found that the calculator works best when turned on.

CLEARING THE CALCULATOR
Throughout this manual it is assumed that you clear your calculator of all information before beginning a new problem.

With the HP 12C: This is done by pressing the f CLX (CLEAR REG - clear regiscers) key. The HP $12 C$ has a continuous memory and turning the calculator $O f f$ does not clear any information.

UNDERSTANDING THE HP38 KEYS

For this course and most real estate problems you need to know the following keys and information:

> | OFF - ON | $\begin{array}{l}\text { Turns calculator on or off. We have found } \\ \text { that the calculator works best when this } \\ \text { switch is in the ON position. }\end{array}$ |
| :--- | :--- |
| D.MY - M.DY | |
| BEGIN END | $\begin{array}{l}\text { Has two uses. D.MY (Day, Month, Year) and } \\ \\ \text { M.DY (Month, Day, Year) is used to index } \\ \text { data for the calendar functions. BEGIN-END: }\end{array}$ |
| $\begin{array}{ll}\text { Specifies if payments are made or received } \\ \text { at the beginning or end of a period. }\end{array}$ | |

CLEARING THE CALCULATOR
Throughout this course it is assumed that you clear your calculator of all information before begining a new problem.
With the HP 38E: This can be done by pressing f CLX (CLEAR ALL) key or by turning the calculator $O f f$ and then $O n$ again.
With the HP 38C: This can unly be done by pressing the f CLX (CLEAR ALL) key. Please do not clear the calculator between steps in a problem unless instructed to do so.

Functions on the face of the ksys

n Number of periods (days, months, years).
i Interest rate.
PV Present value.
PMT Payment per period.
FV Future Value.
STO Store - used to store an entry in storage registers.
RCL Recall - used to recall an entry.
\% Percent.
ENTER Used to enter a number into the next register.
CHS Change Sign - Change positive numbers to negative and visa versa.
$x \geqslant y$ Exchange - used to determine the number (if one exists) in the Y register.
CLX Clear entry - clears only the entry in the display (X Register).
$R \quad$ Roll Down; rolls the numbers in the stack down into the next lowest register.

Functions printed in GOLD above keys
To select a function printed in gold above a key, first press the gold prefix key, f, then press the function key.

AMORT Amortize; used to amortize a loan.
NPV Net Present Value; calculates the present value of a series of irregular cash flows.
IRR Internal Rate of Return; calculates IRR when cash flows are irregular.
CLEAR Clears all information in calculator except programs. REG
CLEAR Clears a prefix (f, g, RCL, STO) which was pressed PREFIX incorrectly.
CLEAR Clears information in Financial Registers only. FIN

CLEAR Clears data in Storage Registers l through 6. E

To select a function printed in blue on the slanted face of the key, first press the blue prefix key, g, then press the function key.
$g \mathrm{n}(12 X)$ Used to convert annual periods to monthly periods. Automatically enters the monthly periods in n.
$g i(12 \div)$ Used to convert annual interest to monthly interest. Automatically enters the monthly interest in i.
CTo Cash flow at time of investment (Year 0) - used when cash flows are irregular.
Crj Periodic cash flow - used when cash flows are irregular.
Nj Number of periods for same cash flow. (Up to 99 periods per cash flow).
$B E G \quad$ Compounds interest from beginning of each period. Note BEGIN in display.
END Compounds interest from end of each period. Not indicated in display.

CLEAR PRGM
P/R
GTO
BST
SST
MEM
PSE

Functions on the face of the keys

n	Number of periods (days, months, years).
i	Interest rate.
PV	Present Value.
PMT	Payment per period.
FV	Future Value.
STO	Store - used to store an entry in storage registers.
RCL	Recall - used to recall an entry.
\%	Percent.
ENTER	Used to enter a number into the next register.
CHS	Change Sign - Change positive numbers to negative and visa versa.
$x \geqslant y$	Exchange - used to determine the number (if one exists) in the Y register.
CLY	Clear entry - clears only the entry in the display (X Register).

Functions printed in GOLD above keys
To select a function printed in gold above a key, first press the gold prefix key, f, then press the function key.

AMORT Amortize; used to amortize a loan.
NPV Net Present Value; calculates the present value of a series of irregular cash flows.

IRR Internal Rate of Return; calculates IRR when cash flows are irregular.
CLEAR Clears all information in calculator except programs.
ALL
CLEAR Clears a prefix (f, g, RCL, STO) which was pressed PREFIX incorrectly.

CLEAR Clears information in Financial Registers only. FIN

CLEAR Clears data in Storage Registers 1 through 6. E
\triangle DAYS Computes the number of days between two dates you have entered.

Functions printed in BLUE on slanted face of keys
To select a function printed in blue on the slanted face of the key, first press the blue prefix key, g, then press the function key.

```
\(g \mathrm{n}\) (12X) Used to convert annual periods to monthly periods.
    Automatically enters the monthly periods in \(n\).
g i ( \(12 \div\) ) Used to convert annual periods to monthly periods.
                Automatically enters the monthly interest in i.
CFo Cash flow at time of investment (Year 0) - used
        when cash flows are irregular.
CFj Periodic cash flow - used when cash flows are irregular.
Nj Number of periods for same cash flow. (Up to 99
        periods per cash flow).
\(R \downarrow\) Roll Down; rolls the numbers in the stack down into
        the next lowest register.
CLP
P/R
GTO
BST \(>\) Programming keys: discussed in Programming Section
SST
MEM
PSE
```


BASIC CALCULATIONS

The Operational Stack:
The calculator has four memory registers that are "stacked". The registers are designated as follows:

T REGISTER
Z REGISTER
Y REGISTER

X REGISTER

The content of the X register is always in the display, while contents of the Y, Z and T registers (if any) are remembered by the calculator.

The ENTER key copies the number in the X register and pushes it $u p$ into the Y register and pushes the values in the Z and T registers up one register.

Arithmetic functions are performed with the X and Y registers only. The Z and T registers hold values until needed.

The $x \geqslant y$ key exchanges the contents of the X and Y registers.
The $R \downarrow$ (Roll Down) function rotates the stack one quarter turn. Pressing $R \downarrow$ four times will reveal all the values in the stack.

Basic Arithmetic:
To perform any arithmetic calculation the following basic keystrokes are used:

1. Number
2. ENTER
3. Number
4. Arithmetic Function (+, -, x, \div)

Examples:

1. $27 \times 14=$?

Keystrokes	Display	Remarks
27	27	27 in X register
ENTER	27.00	27 in X \& Y registers
14	14	27 in Y, 14 in X
x	378	Answer in X

The stack would appear as follows:

2. $478-264=$?
Keystrokes

478
ENTER
264
-
Display

478
478.00

264
$\underline{214}$

Remarks
478 in X
478 in $X \& Y$
478 in $Y, 264$ in X Answer in X

The stack would appear as follows:

KEYSTROKES
3. $46+119=$?

Keystrokes

46
ENTER
119
$+$

Display
46
46.00

119
165

Remarks
46 in X
46 in $X \& Y$
46 in $Y, 119$ in X
Answer in X

The stack would appear as follows:

T						
2						
Y		46	46			
X	46	46	119	165		

KEYSTROKES
46 ENTER 119 +
4. $62 \div 427=$?
Keystrokes

62

ENTER
427
\div
₹ 9

Display
62
52.00

427
.15
.145199063

Remarks
62 in X
62 in $X \& Y$
62 in $Y, 427$ in X
Answer in X (rounded)
Answer to 9 decimal places

You can set your calculator to display up to 9 decimal places (or less) by pressing f and the number of decimal places you wish to display.

This manual is written with the calculator set to display two decimal places.

The stack would appear as follows:

Reset to two decimal places by pressing f 2.
5. a) 27.2% of $643=$?
b) What is the difference between them?

Keystrokes
643
ENTER
27.2
\%
-

Display
643
643.00
27.2
174.90
468.10

Remarks
643 in X
643 in X \& Y
643 in $Y, 27.2$ in X
174.90 in $X, 643$ in
Y. Answer to part "a"

Difference in X

The stack would appear as follows:

Example

```
A property is leased for 7 years. The first year's rent is
$100,000 with the rent increasing by 5% per year. What are
the rents for each of the }7\mathrm{ years.
Procedure
```

Load the stack with the compounding factor (1.05). Key in the
base rent $\$ 100,000$ into the display and press x (multiply).

Keystrokes
Display
Remarks
1.05

ENTER
ENTER
1.05
1.05

ENTER
1.05

100,000

x	105,000
x	110,250
x	$115,762.50$
x	$121,550.63$
x	$127,628.16$
x	$134,009.56$

105,000
110,250
$115,762.50$
$121,550.63$
$127,628.16$
$134,009.56$
Rent Year 1
Rent Year 2
Rent Year 3
Rent Year 4
Rent Year 5
Rent Year 6
Rent Year 7

Problem

A property has a Net Operating Income of $\$ 40,000$. You predict that the N.O.I. will increase by 4% per year over the next 10 years. What are the rents through year ll?

Keystrokes		Display	Remarks
1.04	ENTER	1.04	
	ENTER	1.04	
	ENTER	1.04	
40,000		40,000	N.O.I. Year 1
	x	41,600	N.O.I. Year 2
	x	43,264	N.O.I. Year 3
	x	44,994.56	N.O.I. Year 4
	x	46,794.34	N.O.I. Year 5
	x	48,666.12	N.O.I. Year 6
	x	50,612.76	N.O.I. Year 7
	x	52,637.27	N.O.I. Year 8
	x	54,742.76	N.O.I. Year 9
	x	56,932.47	N.O.I. Year 10
	x	59,209.77	N.O.I. Year 11

STORAGE REGISTERS

Your calculator contains 20 storage registers (0 through $9 \&$. 0 through .9) which allow you to store a number and recall that number at a later time.

To store a number press the "store" key, STO, and the number key (0 through 9 or . 0 through .9) for the storage register in which you wish to store that number.

To recall a stored entry press the 'recall' key, RCL, and the number key (0 through 9 or .0 through .9) for the storage register in which that number was stored.

Example:

Keystrokes
27 STO 0 27
427 STO 2427
4854 STO 3485
RCL 0
27
RCL $1 \quad 64$
RCL 2427
RCL 34854

Storage Registers 0 through 4 can be used for storage register arithmetic. Any number can be added to, subtracted from, multiplied or divided by any number which has been stored in registers 0 through 4.

To perform storage register arithmetic the following keystrokes are used:

1. Number (in Display)
2. STO
3. Arithmetic Function (+,-, $x, ~ \doteqdot$)
4. Storage Register Number (0, 1, 2, etc.)

Examples:

Keystrokes			Display
567	STO 0	567	
42	STO +0		42
	RCL 0	$\underline{609}$	

Keystrokes			Display
89	STO 1	89	
3	STO $\times 1$	3	
	RCL 1	$\underline{267}$	

Remarks
Stores 567 in STO 0
Adds 42 to 567 and places result in STO 0

Special memories, called financial storage registers, are reserved for financial calculations. Many complex financial functions can be performed with these registers which appear along the top row of keys.

Once a value is stored in a particular register it remains in the register for future use until it is overwritten or cleared.

When performing any calculation with the financial registers the interest rate must be the rate per payment period. For example, if the payments are monthly, the interest rate must be a monthly rate. If the payments are quarterly, the interest rate must be a quarterly rate.

Because most real estate loans are paid monthly, your calculator is equipped to easily convert the annual interest to monthly interest and the number of years to months through the use of the g i (12:) and g n (12X) keys.

When the g i key is used, the interest rate is automatically converted to a monthly figure and is stored in the i register.

When the $g \mathrm{n}$ key is used, the number of years is automatically converted to the number of months and is stored in the n register.

When performing most real estate calculations, the payments are made at the END of the payment period.

For the 12C: Press g END and all payments are assumed to be made at the end of the period. If the payments are made at the beginning of the period press g BEG and the payments will be assumed to be made at the beginning of the period.

For the 38 C or 38 E : The switch in the upper right corner of the calculator should be set to END so the payments are assumed to be made at the end of the period.

The sequence in which you index data in the financial registers does not matter.

If you know any four of the values in the financial registers you can solve for the fifth.

When entering cash flows into the financial registers it is important to use the proper sign convention.

Use Positive numbers for cash received.
Use Negative numbers for cash paid out.
If you wish to display a number which has been placed into any of the financial registers you may do so by pressing the RCL key and the financial register desired. Example: RCL n, RCL PV, etc.

SOLVING FOR FRACTIONAL PERIODS WITH 12C ONLY:
When solving for the number of periods, n, the HP $12 C$ always rounds the result up to the next highest whole number. To calculate the exact value of n, a program is used and can be found on page 83.

When the number of periods indexed in n is not a whole number, the HP 12C will continuously compound or discount only for the whole number of periods and will calculate simple interest for the "odd period".

To have your calculator perform continuous compounding for the "odd period" press STO EEX. A "C" should appear in the display indicating continuous compounding. Press STO EEX to remove the continuous compounding.

When compounding or discounting or when calculating payments on loans, the frequency of the payments will determine the number by which you will multiply the number of years and divide the annual interest rate.

Frequency of Payments	Multiply years by	i Divide annual rate by
Annual	1	1
Semi-annual	2	2
Quarterly	4	4
Monthly	12	12
Weekly	52	52
Daily	365 or 360	365 or 360

AMORTIZATION OF LOANS

A. Determining Loan Payments

Steps to calculating payments:

1. Key in financial data in n, $i, P V$
2. Solve for payment by pressing PMT

Examples:
l) What are the monthly payments on a $\$ 65,000$ loan at 11 3/4\% interest for 30 years:
n
i
PV
PMT
FV

Index		Display	Remarks Loan amount
65000	PV	65,000	
11.75	g i	. 98	Monthly interest
30	g n	360	No. of actual monthly pmts.
	PMT	-656.12	Monthly payment

2) What are the annual payments on a $\$ 42,000$ loan at 10.3% interest for 12 years:
n
i
PV
PMT
FV

Index		Display	Remarks
42000	PV	42,000	Loan amount
10.3	i	10.30	Annual interest
12	n	12	No. of actual annual pmts.
	PMT	-6,254.93	Annual payment

PROCEDURE FOR MONTHLY PAYMENTS

PAYMENT PROBLEMS

Find the monthly payments on the following loans:

1. $\$ 80,000$ @ 12% for 30 years
2. $\$ 165,000$ @ 14% for 20 years
3. $\$ 200,000$ @ $9 \frac{1}{2} \%$ for 25 years
4. \$ 50,000 @ 7\% for 50 years
5. \$120,000 @ 18% for 3 years
6. \$ 20,000 @ 11% for 10 years
7. $\$ 79,200$ @ $16 \frac{1}{2} \%$ for 13 years
8. \$ 58,500 @ $11 \frac{1}{2} \%$ for 27 months
9. \$827,000 @ 9\% for 200 months
10. \$140,000 @ 15% for 300 months

SOLUTIONS:

1. $\$ 822.89$
2. \$2,051.81
3. $\$ 1,747.39$
4. $\$ 300.84$
5. $\$ 4,338.29$
6. $\$ 275.50$
7. $\$ 1,235.80$
8. $\$ 2,469.36$
9. \$7,996.85
10. \$1,793.16

PITI PAYMENT

Example
An offer is made on a home for $\$ 275,000$ with 20% down and the buyers to obtain a new loan at 11.5% interest with monthly payments for 30 years. Taxes on the proprety are $\$ 3,700$ per year and insurance premiums will be $\$ 660$ annually.

1. What is the down payment and loan amount?
2. What is the monthly PI payment?
3. What is the monthly PITI payment?

Keystrokes		Display	Remarks
275,000	ENTER	275,000	
25	\%	68,750	Down Payment
	-	206,250	Loan Amount
	PV	206,250	
11.5	g i	. 96	
30	$g \mathrm{n}$	360	
	PMT	-2,042.48	Monthly PI payment
CHS	STO O	2,042.48	
3,700	ENTER	3,700	Annual Taxes
660	+	4,360.00	Annual T \& I
12	\div	363.33	Monthly T \& I
STO	$+0$	363.33	
RCL	0	2,405.81	PITI Payment

A property has a Net Operating Income of $\$ 820,000$ annually. Lenders will finance the property using a 1.1 to l debt coverage ratio at 11.5% per annum for 30 years with a 7 year call.

What is the maximum loan the property can handle.
Step 1: Find the amount available for annual debt service and monthly payment.

Keystrokes		Display	Remarks
820,000	ENTER	820,000	N.O.I.
1.1	\div	745,454.55	Annual Debt Service
12	\div	62,121.21	Monthly PMT
Step 2: Find loan amount			
Keystrokes		Display	Remarks
62,121.21	PMT	62,121.21	
11.5	g i	. 96	
30	g n	360	
	PV	-6,273,023.06	Loan Amount

B. Determining Remaining Principal Balance at Future Date (Balloon Payments)

A balloon payment is the remaining balance (Future Value) of a loan after a certain number of payments have been made plus the payment to be made at that time. Throughout this manual we have calculated the remaining principal balance of the loan. Please keep in mind that the total due at the balloon payment date is the payment then due plus the remaining principal balance.

THE STEPS TO CALCULATE REMAINING BALANCE ARE:

1. Key in Financial Data (n, i, PV)
2. Solve for Payment
3. Key in $\#$ of periods to due date in n 4. Solve for FV (Remaining Balance)

Examples:

1) On a loan of $\$ 65,000$ at $113 / 4 \%$ for 30 years with monthly payments, what is the remaining balance at the end of one year:
n
i
PV
PMT
FV

Keystrokes		Display	Remarks
55000	PV	65,000	
11.75	g i	. 98	
30	g n	360	
	PMT	-656.12	Monthly payment for 30 years
1	g n	12	No. of pmts. made in 1 yr.
	FV	$\underline{-64,750.98}$	```Balance EOY i (EOM 12)```

```
2) On a loan of $124,000 at 12 1/2% interest for 30
    years with monthly payments, what will be the
    remaining balance after 5 years; 8 years; l5 years:
```

 n
 i
 PV
 PMT
 FV
 | Keystrokes | | $\frac{\text { Display }}{124,000}$ | Remarks |
| :---: | :---: | :---: | :---: |
| 124000 | PV | | |
| 12.5 | g i | 1.04 | |
| 30 | g n | 360 | |
| | PMT | -1,323.40 | Monthly payment |
| 5 | g n | 60 | No. of payments made in 5 years |
| | FV | -121,373.38 | $\begin{aligned} & \text { Balance EOY } 5 \\ & (E O M 60) \end{aligned}$ |
| 8 | g n | 96 | |
| | FV | -118,808.21 | Balance EOY 8 |
| 15 | g n | 180 | |
| | FV | -107,373.30 | Balance EOY 15 |

Annual Rate

Annual Term

Years to
Call date

PV
g i
g n
PMT
g n
FV

REMAINING BALANCE PROBLEMS

Find the monthly payment and remaining balance on the following loans:

1. $\$ 68,500$ @ $9 \%, 20$ years after 5 years
2. $\$ 920,000$ @ $12 \%, 30$ years after 7 years
3. $\$ 6,000$ @ 14%, 10 years after 8 years
4. \$ 56,000 @ $8 \%, 15$ years after 12 years
5. $\$ 100,000$ @ $18 \%, 20$ years after 6 years
6. $\$ 76,000$ @ 10%, 5 years after 2 years
7. $\$ 120,000$ @ 15%, 10 years after 4 years
8. $\$ 22,000$ @ $11 \%, 15$ years after 7.5 years
9. $\$ 34,000$ @ $7 \%, 12$ years after 9 years
10. \$ 62,000 @ 9%, 18 years after 5 years

SOLUTIONS
PAYMENT

1. $\$ 616.31$
2. \$9,463.24
3. $\$ 93.16$
4. $\$ 535.17$
5. $\$ 1,543.31$
6. $\$ 1,614.78$
7. $\$ 1,936.02$
8. \$ 250.05
9. \$ 349.65
10. \$ 580.60

REMAINING BALANCE
\$ 60,764.33
$\$ 885,602.37$
$\$ 1,940.31$
$\$ 17,078.09$
$\$ 94,452.78$
$\$ 50,043.88$
\$ $91,559.15$
$\$ 15,279.00$
\$ 11,323.91
\$ 53,281.29

PAYMENT \& REMAINING BALANCE PROBLEMS

1. Find the monthly payments on the following loans:
a) $\$ 72,000$ @ 10% for 25 years
b) $\$ 145,000$ @ $12 \frac{1}{2} \%$ for 30 years
c) $\$ 22,600 @ 9 \%$ for 18 years
d) $\$ 100,000$ @ 18% for 30 years
e) $\$ 420,000$ @ 16% for 20 years
n
i
PV
PMT
FV
2. Find the remaining balance on the following monthly payment loans:
a) $\$ 65,000$ @ 14% for 30 years after 6 years
b) $\$ 127,000$ @ $16 \frac{1}{2} \%$ for 25 years after 8 years
c) $\$ 90,000$ @ 12% for 20 years after 5 years
d) $\$ 36,000 @ 22 \%$ for 8 years after 3 years
n
i
PV
PMT
FV
3. On a loan of $\$ 87,000$ at 16% interest for 30 years with monthly payments, what will be the remaining balance after $6,12, \& 18$ years:
n
i
PV
PMT
FV
4. The Skinflints purchased a $\$ 100,000$ home with an $\$ 80,000$ new lst loan. If the loan had monthly payments for 30 years at $16 \frac{1}{2} \%$ interest:
a) What is their monthly payment?
b) What will the loan balance be in 10 years?
n
i
PV
PMT
FV
5. On a loan of $\$ 180,000$ at 14% interest with interest only monthly payments:
a) Find the monthly payment
b) Find the remaining balance at end of year 6 .
n
i
PV
PMT
FV
6. Find the monthly payments on the following loans:
a) \$ 72,000 @ 10\% for 25 years.

Keystrokes			Display
72000	PV		72,000
10	g i	.83	
25	g n	300	
	PMT	$\underline{-654.26}$	

b) $\$ 145,000 @ 12 \frac{1}{2} \%$ for 30 years.

Keystrokes		Display	Remarks
145000	PV	145,000	
12.5	g i	1.04	
30	g n	360	
	PMT	-1,547.52	
c) $\$ 22,600 @ 9 \%$ for 18 years			
Keystrokes		Display	Remarks
22600	PV	22,600	
9	g i	. 75	
18	g n	216	
	PMT	-211.64	
d) $\$ 100,000$ @ 18% for 30 years.			

Keystrokes		Display	Remarks
100000	PV	100,000	
18		1.50	
30		360	
	PMT	-1,507.09	
e) $\$ 420,000$ @ 16% for 20 years.			
Keystrokes		Display	Remarks
420000	PV	420,000	
16		1.33	
20	g n	240	
	PMT	-5,843.27	

2. Find the remaining balance on the following monthly payment loans:
a) $\$ 65,000$ @ 14% for 30 years after 6 years

d) $\$ 36,000$ @ 22% for 8 years after 3 years

Keystrokes \qquad Display
Remarks
36,000
36000 PV
1.83

22 gi
96
g n
-799.81
3
36
FV $\frac{-28,958.96}{30} \quad$ Remaining balance
3. On a loan of $\$ 87,000$ at 16% interest for 30 years with monthly payments, what will be the remaining balance after 6,12 , \& 18 years:

Keystrokes		Display	Remarks
87000	PV	87,000	
16	g i	1.33	
30	g n	360	
	PMT	-1,169.94	Monthly payment
6	g n	72	
	FV	-85,810.96	Balance EOY 6
12	g n	144	
	FV	-82,725.19	Balance EOY 12
18	g n	216	
	FV	-74,717.06	Balance EOY 18

4. The Skinflints purchased a $\$ 100,000$ home with an $\$ 80,000$ new lst loan. If the loan had monthly payments for 30 years at $16 \frac{1}{2} \%$ interest:
a) What is their monthly payment?
b) What will the loan balance be in 10 years?

Keystrokes		Display	Remarks
80000	PV	80,000	
30	g n	360	
16.5	$g \mathrm{i}$	1.38	
	PMT	-1,108.12	Monthly Payment
10	$g \mathrm{n}$	120	Months to Balloon PMT
	FV	-77,550.42	Balance EOY 10

5. On a loan of $\$ 180,000$ at 14% interest with interest only monthly payments:
a) Find the monthly payment
b) Find the remaining balance at end of year 5

When solving for interest only payments, the financial registers need not be used as the problem is a simple arithmetic problem.

Keystrokes
180000 ENTER
14 \%
$12 \div \quad \underline{2,100.00}$

Remarks

Annual interest
Monthly Payment

The remaining balance at EOY 5 is $\$ 180,000$ as no principal has been paid.

SOLVING FOR REMAINING BALANCE USING PV REGISTER

An alternative approach to finding a remaining balance on a loan is to calculate the Present Value (PV) of the payment stream for the remaining periods after the due date.

Example
A loan was placed for $\$ 150,000$ at 13% interest with monthly payments for 30 years. What will be the balance in 5 years?

1. Calculate the monthly payment.
2. Change n to the number of periods remaining after the call date.
3. Solve for PV.

Keystrokes
150,000 PV
13 g i
30

25
g n

PV

Display
150,000
1.08

360
-1,659.30 Payment
300

147,122.48

Remarks

Periods after call date
Balance after 5 years

Compare this balance to the balance calculated using the Future Value register....

Keystrokes
150,000
13
30

5

Display
Remarks
150,000
1.08

360
$-1,659.30 \quad$ Payment
60
$-147,122.48$

Balance in 5 years

Your calculator is programmed to amortize loans to allow you to determine the interest and principal paid for any number of periods during the life of the loan. You can also determine the remaining balance of a loan at any point in time.

To amortize a loan the f AMORT key is used.
When amortizing loans:

1. The payment must be calculated before the loan can be amortized.
2. To keep track of the number of periods amortized, set n to zero before amortizing. (This step is optional \& is like setting a trip meter to zero).
3. The first number to appear in the display (X register) is the interest paid for the number of periods amortized.
4. The principal for those preiods is automatically stored in the Y register.
5. The remaining balance of the loan is automatically stored in the $P V$ register after the loan is amortized.

After entering the loan information into the financial registers, solving for the payment and setting n to zero, the keystrokes for a monthly amortization are:

```
Index
1 f AMORT
    x そ y
    RCL PV
    RCL n
```


Remarks

Displays interest
Displays principal
Displays remaining balance

Displays total number periods amortized

EXAMPLES:

1. Using the table below, prepare an amortization schedule for the first 6 months on a loan of $\$ 50,000$ at 10% interest with monthly payments for 30 years.

Procedure for lst month is as follows:
Keystrokes
50000 PV
\qquad
50,000
10 g i . 83
$30 \quad \mathrm{~g} \mathrm{n} \quad 360$
PMT -438.79 Constant monthly

0 n 0
$\begin{array}{lll}1 & f \\ & x \geqslant y & \underline{-416.67} \\ & \underline{-22.12}\end{array}$
RCL PV 49,977.88
payment
Remarks

Sets trip meter to 0
Int. for lst mo.
Princ. for lst mo.
Bal. after lst mo.

Repeat keystrokes for last 4 steps for next 5 months.

SOLUTION TO LOAN AMORTIZATION PROBLEM

Beginning Ending

Month	Loan Balance	Total Pmt.	Int. Pd.	Princ. Pd.	Loan Balance
1	\$50,000.00	\$438.79	\$416.67	\$22.12	\$49,977.88
2	49,977.88	438.79	416.48	22.31	49,955.57
3	49,955.57	438.79	416.30	22.49	49,933.08
4	49,933.08	438.79	416.11	22.68	49,910.40
5	49,910.40	438.79	415.92	22.87	49,887.53
6	49,887.53	438.79	415.73	23.06	49,864.47

A loan of $\$ 100,000$ at 9% interest with monthly payments is made for 30 years. At the end of one year, how much interest has been paid? How much principal? What is the remaining balance?

Keystrokes		Display	Remarks
100000	PV	100,000	
9	g i	. 75	
30	g n	360	
	PMT	-804.62	
0	n	0	Sets calculator at beginning of loan.
12	f AMORT	-8,972.28	Interest paid over 12 periods.
	$x \geqslant y$	-683.16	Principal paid over 12 periods.
	RCL PV	99,316.84	Remaining balance after 12 periods.
	RCL n	12	No. of periods amortized.
DO NOT CLEAR CALCULATOR			
What is the interest and principal paid for the next month? Remaining balance?			
Keystrokes		Display	Remarks
1	f AMORT	-744.88	Interest paid for next l period.
	$x \gtrless y$	-59.74	Principal paid for next 1 period
	RCL PV	99,257.10	Principal Balance after next 1 period
	RCL n	13	Total no. of periods amortized
DO NOT CLEAR CALCULATOR			

How much interest will have been paid over the next 11 months? Principal? Remaining Balance?

Keystrokes		Display	Remarks
11	f AMORT	-8,163.32	Interest for next 11 mos.
	$x \gtrless y$	- 687.50	Principal for next 11 mos.
	RCL PV	98,569.60	Balance after 2 years
	RCL n	24	Total no. of mos. amortized

To find the total inteest and principal paid for the first 2 years proceed as follows:

Keystrokes
100000

0

24
F AMORT -17,880.48
x そ y - 1,430.40

RCL PV $\quad 98,569.60$

Remarks
Places original loan balance in PV

Sets calculator at beginning of loan

Total interest paid over lst 2 years

Total principal paid over lst 2 years

Remaining Balance after 2 years

LOAN AMORTIZATION PROBLEM

1. On a loan of $\$ 65,000$ at 12% interest with monthly payments for 25 years, find:
a) Monthly payments
b) Total interest and principal paid for years 1,2 , and 3 c) Principal balances at end of years 1,2 , and 3

Keystrokes		$\frac{\text { Display }}{65,000}$	Remarks
65000	PV		
12	g i	1.00	
25	g n	300	
	PMT	-684.60	Monthly payment
0	n	0	
12	f AMORT	-7,776.38	Int. in year 1
	$\mathrm{x} \gtrless \mathrm{y}$	- 438.82	Princ. in year 1
	RCL PV	64,561.18	Bal. at EOY 1
	RCL n	12	No. of periods amortized
12	F AMORT	-7,720.72	Int. in year 2
	$x \geqslant y$	- 494.48	Princ. in year 2
	RCL PV	64,066.70	Bal. at EOY 2
	RCL n	25	Total no. of periods amortized
12	f AMORT	-7,658.03	Int. inyear 3
	$x \geqslant y$	- 557.17	Princ. in year 3
	RCL PV	63,509.53	Bal. at EOY 3
	RCL n	36	Total no. of periods amortized

Graduated Payment Loans:
In today's market, the payment on loans often increase over the life of the loan. This will cause the amortization schedule to change and affect the principal and interest paid as well as the remaining balance.

Example:
A loan of $\$ 50,000$ at 14% interest is placed with monthly payments as follows:

Yr.	$\$ 600$
Yr.	2
Yr.	$\$ 650$
	$\$ 700$ till paid

How much interest and principal are paid each of the first 3 years? What are the remaining balances?

Keystro		Display	Remarks
14	g i	1.17	
50,000	CHS PV	-50,000	
600	PMT	600	
12	f AMORT	6,986.63	1st years Interest
xizy		213.37	lst years Principal
RCL	PV	-49,786.63	Balance EOY 1
650	PMT	650	Changes Payment
12	f AMORT	6,914.74	2nd years Interest
x 2 y		885.26	2nd years Principal
RCL	PV	-48,901.37	Balance EOY 2
700	PMT	700	Changes Payment
12	f AMORT	6,742.51	3rd years Interest
x 2 y		1,657.49	3rd years Principal
RCL	PV	-47,243.88	Balance EOY 3

ADJUSTABLE RATE LOANS (ARM'S) OR

VARIABLE INTEREST RATE LOANS (VRM'S)

A lender places a new loan of $\$ 130,000$ with monthly payments for 30 years. The interest rate for the first year is 11%. For each of the next 2 years the interest rate will increase . 5% and the payment will be recalculated over the remianing term. Find the monthly payment for the first 3 years.

Step 1: Find payment for Year 1
Keystrokes

Display Remarks
130,000 PV
130,000
30
11
g n
360.00
g i
. 92
PMT -1,238.02 Payment Year 1

Step 2: Amortize the loan for 12 months, increase the interest rate, change the amortization term and calculate the new payment

Keystrokes		Display	Remarks Interest for Year 1
12	f AMORT	14,271.08	
11.5	g i	. 96	Rate for Year 2
29	g n	348	Amortization Term
	PMT	-1,286.79	Payment for Year 2
12	f AMORT	14,852.28	Interest for Year 2
12	g i	1.00	Rate for Year 3
28	g n	336	Amortization Term
	PMT	-1,335.42	Payment for Year 3

ADDITIONAL PRINCIPAL PAYMENTS

Loans are often structured to have additional principal payments at certain times during the life of the loan. This changes the amortization schedule of the loan and will change the balance due at any given time.

Example:

A $\$ 31,000$ loan is created @ 11% with monthly payments for 40 years, all due in 4 years. In addition to the payments the borrower agrees to make additional principal payments as follows:

EOY	1	$\$ 2,000$
EOY	2	$\$ 3,000$
EOY	3	$\$ 5,000$

What is the balance due at the stop date?
Step 1: Find monthly payment

Keystrokes		$\frac{\text { Display }}{31,000}$	Remarks
31000	PV		
40	g n	480	
11	g i	. 92	
	PMT	-287.77	Monthly PMT
Step 2	Find balance due EOY 1 (Use AMORT Function)		

Step 5: Repeat Steps 3 \& 4 for next 2 years

Keystrokes

		28672.32
3000		3000
-	PV	25672.32
12	f AMORT	-2791.23
RCL	PV	25010.31
		5000
5000		20010.31
-	PV	-2136.06
12	f AMORT	$\underline{18693.13}$
RCL	PV	

Remarks
In display
Additional principal paid
New Loan Balance
Interest for Year 3
Balance EOY 3

Additional principal paid
New Loan Balance
Interest for Year 4
Balance EOY 4

Definition: Finding the Future Value (FV) of amounts invested today when interest is calculated on the principal and accumulated interest.
Examples:
A. If you invested $\$ 100$ @ 5% compounded annually, what would the balance be at the end of years 1,2 , and 3:

1) Without the calculator:

EOY $1 \$ 100.00 \times 1.05=\$ 105.00$
EOY $2 \$ 105.00 \times 1.05=\$ 110.25$
EOY $3 \$ 110.25 \times 1.05=\$ 115.76$
2) Using the calculator:
n
i
PV
PMT
FV

Keystrokes			Display	Remarks
100	CHS	PV	-100	Negative for cash out of pocket
5	i		5	5\% interest
1	n		1	1 year
	FV		105.00	Balance EOY 1
2	n		2	Overwrites value in n
	FV		110.25	Balance EOY 2
3	n		3	Overwrites value in n
	FV		115.76	Balance EOY 3

B. If you purchased a home today for $\$ 125,000$ what would be the value of yourhome 10 years from now if appreciation occurred at 5% per annum:
n
i
PV
PMT
FV

Keystrokes
125000 PV
5
10
i
n
FV

Display
125,000
5
10
$-203,611.83$

Remarks

Value in 10 years

COMPOUNDING A UNIFORM PAYMENT
Example:
If you invest $\$ 50$ at the end of each month in an account which earns 6% interest per annum, how much will your investment be worth at the end of 3 years:
n
i
PV
PMT
FV

Keystrokes	Display	
6	gi	
3	gn	36
50	CHS PMT	-50
	FV	$\underline{1966.81}$

Remarks
Monthly interest stored in i

Number of months stored in n

Monthly payment

APPRECIATION \& LEVERAGE

A home is purchased today for $\$ 250,000$ with $\$ 50,000$ down and the balance financed over 30 years with monthly payments at 10.5% interest. If the property appreciates at 5% per annum compounded annually:

1. What will the value be in 10 years?
2. What will be the seller's equity in 10 years?
3. If the property was sold for cash in 10 years and costs of sale are 8% of the sale price, what is the owner's rate of return on equity over the 10 year period?

Step 1: Find value in 10 years (Appreciation)
Keystrokes
Display
Remarks

250,000	PV
10	n
5	i
	FV

$$
250,000
$$

10
5
-407,223.66 Value EOY 10

Step 2: Find payment, Balloon \& Equity in 10 years

Keystrokes		Display	Remarks
f	CLX	0.00	Clears Calculator
200,000	PV	200,000	
10.5	g i	. 88	
30	g n	360	
	PMT	-1,829.48	Monthly payment
10	g n	120	
	FV	-183,244.74	Balance EOY 10
407,223.66	ENTER	407,223.66	Value EOY 10
8	\%	32,577.89	Costs of Sale
	-	374,645.77	Value - Costs
RCL	FV	-183,244.74	Balance on Loan
	+	191,401.03	Net Equity EOY 10

Step 3: Find Rate of Return on Equity

Keystrokes		Display	Remarks
f	CLX	0.00	
50,000	CHS PV	-50,000	Down payment
191,401.03	FV	191,401.03	Net Equity EOY 10
10	n	10	Term
	i	14.37	Rate of Return on Equity

DISCOUNTING

Definition:

Determining the present value ($P V$) of amounts to be received in the future.

Examples:
A. What is today's value of $\$ 4,650$ to be received $3 \frac{1}{2}$ years from now discounted at 8\%:
n
i
PV
PMT
FV

12C

Keystrokes	Display	Remarks	
8	i	8	
3.5	n	3.5	
4650 FV	4650		
	PV	$\underline{-3549.35}$	Value Today

38C/E

Keystrokes		Display	Remarks
8	i	8	
3.5	n	3.5	
4650	FV	4650	
	PV	$\underline{-3551.97}$	Value Today

Note: FOR 12C CALCULATOR Because the number of periods is 3.5 years 12C uses continuous compounding only for 3 periods and calculates simple interest for the $1 / 2$ period. To have the 12 C use continuous compounding press STO EEX; Note the c in display for continuous compounding.

COMPOUNDING \& DISCOUNTING PROBLEMS

1. The Skinflints purchase a home today for $\$ 100,000$ with $\$ 20,000$ down. If appreciation occurs at 8% per year and there is no principal reduction on the loans;
a) What will their property be worth in 7 years?
b) What will be their equity in 7 years?
c) Their equity will represent what rate of return based upon their down payment?
n
i
PV
PMT
FV
2. How much interest will you earn if you invest $\$ 2,000$ today for 10 years at 7 1/2\% compounded annually?
n
i
PV
PMT
FV
3. If you had $\$ 6,300$ to invest today how long would it take you to double your money at
a) 5% per year
b) $\quad 7 \%$ per year
c) 12% per year
n
i
PV
PMT
FV
4. If in 6 years you will need $\$ 14,200$ to replace an air conditioning system, how much must you invest at the end of each year at 8% per annum?
n
i
PV
PMT
FV
5. Congratulations! You've just "Picked the Pick" and won $\$ 3,000,000$ in the Arizona Lottery. If you are paid $\$ 150,000$ per year over the next 20 years, what is the present day purchasing power of your winnings if inflation averages 8% per annum.
n
i
PV
PMT
FV
6. You sell your home and carry back a loan with monthly payments of $\$ 200$ for 12 years. If inflation remains constant at 10%, what is the present value of those payments?
n
i
PV
PMT
FV
7. The Skinflints purchase a home today for $\$ 100,000$ with $\$ 20,000$ down. If appreciation occurs at 8% per year and there is no principal reduction on the loans;
a) What will their property be worth in 7 years?
b) What will be their equity in 7 years?
c) Their equity will represent what rate of return based upon their down payment?
a) Step 1: Find Value of house in 7 years.

Keystrokes		Display	Remarks
100,000	CHS PV	-100,000	
7	n	7	
8	i	8	
	FV	171,382.43	Value in 7 years

Do not Clear Calculator
b) Step 2: Find equity in 7 years.

Keystrokes	$\frac{\text { Display }}{171,382.43}$	
80,000	80,000	Remarks
	$\underline{91,382.43}$	Loan balance
		Equity in 7 years

Do Not Clear Calculator
c) Step 3: Find rate of return based on down payment.
\qquad
Display
$91,332.43$
$91,382.43$
$-20,000$
$\underline{24.24}$

Remarks

Already in display
Indexes equity in FV
Indexes original equity in PV

Annual rate of return over 7 years.
2. How much interest will you earn if you invest $\$ 2,000$ today for 10 years at $71 / 2 \%$ compounded annually:

Keystrokes		
2000	CHS PV	
7.5	i	
10	n	
	FV	
2000	-	

Display
-2,000
7.5

10
4,122.06
2,122.06

Remarks

Value in 10 years
Interest earned
3. If you had $\$ 6,300$ to invest today how long would it take you to double your money at
a) 5% per year
b) 7% per year
c) 12% per year

12C			38C/E			
Keystrokes	Display	Remarks	Keystrokes		Display	Remarks
6300 CHS PV	-6300		630	CHS PV	-6300	
5 i	5			i		
12600 FV	12,600	Dbl. Money	126	FV	12,600	Dbl. Money
n	$\underline{15.00}$	$\begin{aligned} & \text { Yrs. to dbl } \\ & \text { @ 5\% } \end{aligned}$		n	14.21	Yrs. to dbl @ 5%
7 i	7		7	i	7	
n	$\underline{11.00}$	Yrs. to dbl @ 7\%		n	10.24	Yrs. to dbl @ 7%
12 i	12		12	i	12	
n	7.00	$\begin{aligned} & \text { Yrs. to dbl } \\ & \text { @ 12\% } \end{aligned}$		n	6.12	$\begin{aligned} & \text { Yrs. to dbl } \\ & \text { @ 12\% } \end{aligned}$

Note: FOR 12C CALCULATOR When solving for n, your 12C always rounds up to the next highest whole period. To calculate the exact number of periods see page 83.
4. In 6 years you will need $\$ 14,200$ to replace an air conditioning system. How much must you invest at the end of each year at 8% per annum?

Keystrokes	Display	Remarks
8 i	8	
6 n	6	
14,200 FV	14,200	
PMT	-1,935.68	Yearly investment

5. Congratulations! Your've just "Picked the Pick" and won $\$ 3,000,000$ in the Arizona Lottery. If you are paid $\$ 150,000$ per year over the next 20 years what is the present day purchasing power of year winnings if inflation averages 8% per annum.

Keystrokes
Display
150,000 PMT
150,000
20 n 20

8 i
8
PV \quad 1,472,722.11 Today's Value
6. You sell your home and carry back a loan with monthly payments of $\$ 200$ for 12 years. If inflation remains constant at 10%, what is the present value of those payments?

Keystrokes			Display
10	g i	.83	
12	g n		144
200	PMT		200
	PV	$\underline{-16,735.31}$	

Remarks

Today's value of all payments

EXAMPLE

You are considering investing $\$ 200,000$ in a property which will pay you an annual income of $\$ 35,000$ for the next 10 years. What will be the yield on your investment?

Keystrokes		Display	Remarks
200,000	CHS PV	-200,000	
35,000	PMT	35,000	
10	n	10	
	i	11.73	Annual Yield
Do not clear calculator.			
How much should you invest to achieve yields of $14 \%, 15 \%$, \& 16% ?			
Keystrokes		Display	Remarks
14		11.73	in Display
	i	14	Desired Yield
	PV	-182,564.05	PV to yield 14\%
15	i	15	
	PV	$\underline{-175,656.90}$	PV to yield 15\%
16	i	16	
	PV	-169,162.96	PV to yield 16\%

PRESENT VALUE OF LOANS

Example

A seller carries back a note for $\$ 100,000$ at 11.5% with monthly payments for 10 years. The seller wishes to sell this note at closing to cash out of the transaction.

To sell the note mortgage brokers tell you the seller will have to discount the note to allow an investor to yield 18%.

Based on this information, how much cash will the seller receive?
Step 1: Find payment on note

Keystrokes		Display	Remarks
100000	PV	100,000	
11.5	g i	. 96	
10	g n	120	
	PMT	-1,405.95	Monthly Payment

Step 2: Key in desired yield in i and find PV
Keystrokes

$18 \quad$| g i |
| :--- |
| |
| |

Display

Remarks

PV 78,028.30 Cash to Seller

Do not clear calculator.
If you find an investor who will buy the note to yield 16%, how much cash will the seller net?

Keystrokes

16

Display
78,028.30
1.33

83,931.00

Remarks

In display
Yield
Cash to Seller

Example

You sell a free \& clear property for $\$ 325,000$ with $\$ 100,000$ down and the balance paid to the seller at 10% interest amortized over 20 years with the entire balance due in 10 years. If notes can be sold to yield 15% how much cash can the seller net if she sells the note?

Step 1: Find payment and remaining balance

Keystrokes
Display
Remarks
225,000
.83
10
20

10

225,000	PV
10	g i
20	g n
	PMT
10	g n
	FV

Step 2: Input 15\% yield into i and solve for PV

Keystrokes
 15
 g i
 PV

Keystrokes		Display	Remarks
15	g i	1.25	Desired yield
	PV	171,587.06	Cash to Seller

Monthly Payment

Balance EOY 10

YIELDS ON LOANS
\& PRESENT VALUE OF LOANS

LOAN YIELD DEFINITIONS:

In order to understand loan yields the following definitions must be understood:

Interest Rate: Rate paid by borrower, based on Loan amount.

Yield:
Rate of Return to Lender (investor) based on lender's investment.

Discounted Value:
(Present Value)
Discount:
\% Discount:
(Points)

Lender's (investor's) actual investment to achieve a desired yield.

Difference between Loan Amount and Discounted Value.

Discount divided by Loan Amount.
A. Existing Loans Purchased at a Discount

Steps for finding yield on existing loans purchased
at a discount:

1. Find payment \& remaining balance, if any.
2. Key in discounted value in PV.
3. Solve for i (yield).

To find the discounted value:

1. FInd payment \& remaining balance, if any.
2. Key in desired yield in i.
3. Solve for PV (discounted value).

Example:

A loan has a remaining balance of $\$ 62,857$ with monthly payments of $\$ 589.75$ including 10% interest. The loan has 22 years remaining If you purchase this loan for $\$ 50,000$, what would be your yield?

Step 1: Compare terms of note to buyer's investment.
NOTE BUYER'S INVESTMENT

	NOTE	BUYER'S INVESTMENT
n	22 g n	22 g n
i	10 g i	$\mathrm{i}=?$
PV	62,857	50,000
PMT	-589.75	-589.75
FV	0	0

Step 2: Find Yield

Keystrokes		Display		Remarks
50000	PV	50,000		Your Investment
589.75	CHS PMT	-589.75		Payment
22		264		Months remaining
	i	1.12		Monthly Yield
12	X	13.40		Annual Yield
DO NOT CLEAR CALCULATOR				
What can you pay to yield 20\%? 24\%?				
Keystrokes		Display		Remarks
20	g i	1.67		Desired yield in i PV to yield 20\%
	PV	34,934.72		
24	g i	2.00		Desired yield in i PV to yield 24\%
	PV	29,329.47		

B. Loans Placed at a Discount

```
Steps for finding yields on loans placed at a discount:
1. Find Payment (& remaining balance if there is a
    balloon payment).
2. Find Discount and discounted value.
3. Key in discounted value in PV
4. Solve for i (yield).
To solve for discounted value & % discount (points):
1. Find payment (& remaining balance if there is a
    balloon Payment).
2. Key in desired yield in i.
3. Solve for PV (Discounted Value)
```


Example:

What is the lender's annual yield on a $\$ 75,000$ loan at $11 \mathrm{l} / 2 \%$ interest with monthly payments for 30 years if 10 points discount are paid?

Step 1: Find monthly payment

		Display	Remarks
75000	PV	75,000	
11.5	g i	. 96	
30	g n	360	
	PMT	$\underline{-742.72}$	Monthly payment

Step 2: Find lender's discounted value.

75000	ENTER
10	$\%$
	-

Display
75,000
7,500
67,500

Remarks

Amt. of discount Discounted value

Step 3: Compare terms of note to Lender's Investment.

NOTE		LENDER
n	360	360
i	11.5 g i	$\mathrm{i}=?$
PV	75,000	67,500
PMT	-742.72	-742.72
FV	0	0

Index		Display	Remarks
67500	PV	67,500	$\begin{aligned} & \text { Replaces } 75,000 \\ & \text { in PV } \end{aligned}$
	i	1.08	Monthly yield
12	X	12.92	Annual yield

DO NOT CLEAR CALCULATOR
In order to achieve a yield of 18% per annum, how much can the lender invest? How much discount? How many points will be charged?

Index	
18	$g^{2} \quad \mathrm{i}$
75000	
$x \geqslant y$	
-	
75000	

Display
1.5
49.281 .79

75,000
49,281.79
25,718.21
.34

Remarks
Desired yield in i
Discounted Value to yield 18\%

Loan Amount
Discounted Value in x Loan Amount in y
Discount
34 Points Discount

C. Loans with Balloon Payments

Example:
A loan of $\$ 50,000$ is made at 10% interest with monthly payments for 30 years, the entire balance due in 8 years. If the loan is sold 2 years from now for $\$ 40,000$, what will be the buyer's annual yield?

Step 1: Determine monthly payment and balance at due date.

Keystrokes		Display		Remarks
50000	PV	50,000		
10		. 83		
30	g n	360		
	PMT	-438.79		Monthly payment
8	g n	96		
	FV	-46,766.60		Balance EOY 8
$\frac{\text { Step }}{\text { buyer }}$	Compare terms of note with 6 years remaining to investment.			
	NOTE		BUY	TMENT
	n	72	72	
	i	10 g i	$\mathrm{i}=$	
	PV	50,000	40,	
	PMT	-438.79	-43	
	FV	-46,766.60	-46	

Step 3: Determine yield to buyer for remaining term at time of purchase.

Kevstrokes			Display
40000	PV		40,000
6	g 12 X	72	
	i	1.24	
12	X	$\underline{14.92}$	

Remarks
Buyer's discounted value
Remaining term
Monthly yield
Annual yield

PRESENT VALUE \& LOAN YIELD PROBLEMS

1. When the Skinflints purchased their home, they placed an $\$ 80,000$ loan @ $16 \frac{1}{2} \%$ monthly payments for 30 years. If the lender charged 5 points discount, what was the lender's annual yield on the loan?

NOTE	LENDER (INVESTOR)
n	
i	
PV	
PMT	
FV	

2. A lender places a loan of $\$ 125,000$ at 11% interest with annual payments for 30 years and 4 points discount.
a) What is borrower's annual payment?
b) What is lender's yield?

NOTE	LENDER (INVESTOR)
n	
i	
PV	
PMT	
FV	

3. An existing loan of $\$ 62,575$ is purchased today for $\$ 46,250$. The loan has monthly payments of $\$ 602.03$ P.I. @ 10.75% and has a balloon payments in $6 \frac{1}{4}$ years. What will be the purchaser's yield?

NOTE	LENDER
n	
i INVESTOR)	
PV	
PMT	
FV	

4. A $\$ 13,500$ note payable at $\$ 135$ per month interest only at 12% has 48 more monthly payments to be made. What is the discounted value of this note to yield $25 \%, 30 \%, 35 \%$?

NOTE	LENDER
n	
i INVESTOR)	
PV	
PMT	
FV	

SOLUTIONS TO PRESENT VALUE \& LOAN YIELD PROBLEMS

1. When the Skinflints purchased their home, they placed an $\$ 80,000$ loan @ $161 / 2 \%$ monthly payments for 30 years. If the lender charged 5 points discount, what was the lender's annual yield on the loan?

Step 1: Find monthly payment.

Keystro	kes	Display		Remarks
80000	CHS PV	-80,000		
30	g n	360		
16.5		1.38		
	PMT	1,108.12		Monthly Payment
Step 2: Calculate discount \& discounted valu				
Keystrokes		Display		Remarks
80000	ENTER	80,000		Loan
5	\%	4,000		Discount
-	76,000			Discounted Value
Step 3	Compare the Note with the Lender's Investment.			
	NOTE		LENDER (IN	STOR)
	n	360	360	
		16.5 g i	i $=$?	
		-80,000	-76,000	
	PMT	1,108.12	1,108.12	

Step 4: Find lender's yield.

Keystrokes			Display
CHS	PV		76,000
		$-76,000$	
i		1.45	
12	X	$\underline{17.40}$	

Remarks
Already in display
Discounted value in PV

Monthly yield
Annual yield
2. A lender places a loan of $\$ 125,000$ at 11% interest with annual payments for 30 years and 4 points discount.
a) What is borrower's annual payment?
b) What is lender's yield?

Step 1: Find Annual Payment.

Keystro	kes	Display		Remarks
125000	CHS PV	-125		
11	i	11		
30	n	30		
	P MT	14,378.07		Annual payment
Step 2: Find lender's actual investment.				
Keystrokes		Display		Remarks
125000	ENTER	125,000		
4	\%	5,000		
	-	120,000		Lender's investment
Step 3:	Compare the Note with the Lender's Investment.			
	NOTE		LENDER (INVESTOR)	
			30	
			$\mathrm{i}=$?	
	PV	,000	-120,000	
	PMT	78.07	14,378.07	
	FV		0	

Step 4: Find lender's yield.

Keystrokes	Display	
120000 CHS PV	$-120,000$	$\underline{l 1.53}$
i		Replaces 125,000 in PV
Annual yield		

3. An existing loan of $\$ 62,575$ is purchased today for $\$ 46,250$. The loan has monthly payments of $\$ 602.03$ P.I. @ 10.75% and has a balloon payment in $61 / 4$ years. What will be the buyer's yield:

Step 1: Find balloon payment.

Keystrokes	Display		Remarks
62575	CHS PV	$-62,575$	Present balance
10.75	g i	.90	
6.25	g n	75	Remaining term
602.03	PMT	602.03	Monthly payment
	FV	$\underline{58,168.55}$	Balloon payment

Step 2: Compare the Note to the Buyer's Investment.

NOTE	BUYER'S INVESTMENT
$\mathrm{n} \quad 6.25 \mathrm{~g} \mathrm{n}$	6.25 g n
i 10.75 g i	$\mathrm{i}=?$
YV $-62,575$	PV $-46,250$
PMT 602.03	PMT 602.03
FV 58, 668.55	FV 58, 168.55

Step 3: Determine yield to investor (buyer).

Keystrokes
46250 CHS PV
i
X

Display
$-46,250$
1.49
17.89

Remarks

Buyer's investment Monthly yield

Annual yield
4. A $\$ 13,500$ note payable at $\$ 135$ per month interest only at 12% has 48 more monthly payments to be made. What is the discounted value of this note to yield 25%, 30%, 35% ?

Step 1: Compare the Note to the Buyer's Investment.

Step 2: Find Discounted Value to yield 25\%, 30\% and 35\%

Keystrokes		Display	Remarks
135	P MT	135	Monthly payment
13500	FV	13,500	Balloon payment
48	n	48	No. of payments
25		2.08	Desired yield
	PV	-9,089.18	Discounted value to yield 25\%
30	g i	2.50	Overwrites desired yield
	PV	-7,875.94	Discounted value to yield 30\%
35		2.92	Overwrites desired yield
	PV	$\underline{-6,860.50}$	Discounted value to yield 35\%

CASH FLOW DIAGRAMS

Knowing how to utilize the basic financial functions of the calculator we can now utilize this knowledge in a number of more interesting ways.

In order to make any problem easier to solve, cash flow diagrams can be used to analyze the problem.

For example: If a lender makes a $\$ 75,000$ loan for 30 years at 12% interest with monthly payments of $\$ 771.46$, the cash flow diagram would appear as follows:

n	$\$$
0	$(75,000)$
1	771.46
360	$i=12 \mathrm{~g}$
\boldsymbol{i}	

In month 0 , the lender invests $\$ 75,000$ (negative for cash out) and months 1 through 360 will receive $\$ 771.46$.

INTERNAL RATE OF RETURN (IRR)

Definition: IRR is the rate at which all cash flows received in the future would be discounted to equal the initial investment.

IRR USING EQUAL CASH FLOWS

When all cash flows to be received are equal, the $I R R$ is the same as the yield to a lender or the Rate of Return on a level payment annuity.

Examples:

1. You purchase a property for $\$ 475,000$ with $\$ 150,000$ down and you anticipate receiving annual cash flows of $\$ 6,750$. At time of sale 10 years from now, you also expect to net $\$ 225,000$ from the sale. What is your IRR?

Step 1: Prepare a cash flow diagram.

n	$\$$
0	$(150,000)$
1	6,750
\downarrow	\downarrow 10
	$6,750+225,000$

Step 2: Find the IRR.

l	Keystrokes	
150000	CHS PV	
6750	PMT	
225000	FV	
10	n	
	i	

Display

$-150,000$
6,750
225,000
10
7.96

Remarks
Initial investment
Annual cash flow
Cash flow at sale
Number of annual cash flows

Annual IRR

Many times the cash flows from an investment are not even. Some common examples would be:

1. Cash flow analysis projection of after tax cash flows
2. Wraparound loan when the underlying loan is paid off before the wraparound
3. Graduated payment loans
4. Graduated lease payments
5. Periodic payments of additional principal on a loan

To calculate the yield or $I R R$ on investments like these, the financial registers as we have used them are insufficient. We can, however, use the $C F o, C F j$ and $N j$ keys to enter the irregular cash flows and the IRR key to calculate the IRR.

CFo Inderes initial cash flow (stores initial cash flow in STO O). Must be preceeded by g key.

CFj Indexes periodic cash flows (up to 20) and stores them in STO 1 through STO . 9 with the $20 t h$ cash flow stored in FV. Must be preceeded by g key.

Nj Indexes the number of times the same periodic cash flow is repeated. (up to 99 times). Must be preceeded by g key.
IRR Calculates the internal rate of return for the cash flows entered. Must be preceeded by f key.

Note: There must be at least one change of sign in order for this calculation to be completed.

Examples:

1. You invest $\$ 86,000$ cash today and expect to receive the following annual cash flows:

| Year 1: | $\$ 2,400$ |
| :--- | :--- | :--- |
| Year 2: | $\$ 3,000$ |
| Year 3: | $\$ 3,925$ |
| Year 4: | $\$ 6,250$ |

At the end of the fourth year you sell the property and net $\$ 176,000$ cash. What is your IRR:

Step 1: Prepare cash flow diagram

Year	$N j$	$\$$
0		$(86,000)$
1	1	2,400
2	1	$3,000 \quad$ IRR $=?$
3	1	$3,925 \quad$
4	1	$6,250+176,000$

Step 2: Calculate IRR

Keystrokes			$\frac{\text { Disolay }}{-86,000}$
86000	CHS g	CFo	
2400	g	CFj	2,400
3000	g	CFj	3,000
3925	g	CFj	3,925
6250	ENTER		6,250
176000	+		182,250
		g CFj	182,250
		f IRR	$\underline{22.88}$

Remarks
Initial investment
Cash flow Yr. 1
Cash flow Yr. 2
Cash flow Yr. 3
Annual cash flow Yr. 4
Total cash flow Yr. 4

Annual IRR
2. With a $\$ 50,000$ initial cash investment you expect to receive the following cash flows: Year 1 ($\$ 2,100$); Year 2 ($\$ 850$); Years 3, $4, \& 5$ \$120; Years $6 \& 7$ $\$ 2,000$ and Years $8,9, \& 10, \$ 5,000$. At the end of year 10 you sell the property and will net $\$ 60,000$ from the sale. What is your IRR:

Step 1: Prepare cash flow diagram

Year	$N j$	s
0		$(50,000)$
1	1	$(2,100)$
2	1	(850)
$3-5$	3	120
$6-7$	2	2,000
$8-9$	2	5,000
10	1	$5,000+60,000$

Step 2: Calculate IRR

Keystrokes		Display	Remarks
50000	CHS g CFO	-50,000	Initial investment
2100	CHS g CFj	-2,100	Cash flow Yr. 1
850	CHS g CFj	-850	Cash flow Yr. 2
120	$g \mathrm{CFj}$	120	Next Cash flow
3	g Nj	3.00	Same cash flow for 3 years
2000	$g \mathrm{CFj}$	2,000	Next cash flow
2	g Nj	2.00	Same cash flow for 2 years
5000	g CFj	5,000	Next cash flow
2	$g \mathrm{Nj}$	2.00	Same cash flow for 2 years
5000	ENTER	5,000	
60000	+ g CFj	65,000	Cash flow Yr. 10
	f IRR	4.34	I RR

1. If you buy a loan of $\$ 42,500$ for $\$ 30,000$ and will receive $\$ 394$ per month for the next 15 years plus a final payment of $\$ 25,614.00$, what is your annual yield (IRR)?
2. The Skinflints buy a property today for $\$ 600,000$ with $\$ 225,000$ down payment and sell it seven years from now and net \$560,000 cash. What will their IRR be if they also receive the following cash flows:
```
Year 1: ($4,050)
Year 2: $50
Year 3: $4,800
Year 4: $4,800
Year 5: ($100)
Year 6: $9,000
Year 7: $9,500
```

3. You invest $\$ 125,000$ cash today and expect to receive the following cash flows:

$$
\begin{array}{lll}
\text { Year } & 1: & (\$ 650) \\
\text { Year } & 2: & 0 \\
\text { Year } & 3: & \$ 1,250 \\
\text { Year } & 4: & (\$ 200) \\
\text { Year } & 5: & \$ 2,050
\end{array}
$$

At the end of the 5 th year you expect to sell the property and net $\$ 317,000$. Calculate the IRR.

1. If you buy a loan of $\$ 42,500$ for $\$ 30,000$ and will receive $\$ 394.00$ per month for the next 15 years plus a final payment of $\$ 25,614.00$, what is your annual yield (IRR)?

Step 1: Prepare cash flow díqgram

n	$\$$
0	$(30,000)$
1	394
\downarrow	\downarrow
180	$394+25,614$

Step 2: Calculate IRR

Keystrokes		Display	Remarks
30000	CHS PV	-30,000	
394	PMT	394	
25614	FV	25,614	
15	g 12X	180	
	i	1.29	Monthly IRR
12	X	15.51	Annual IRR

2. The Skinflints buy a property today for $\$ 600,000$ with $\$ 225,000$ down payment and sell it seven years from now and net $\$ 560,000$ cash. What will be their IRR if they also receive the following cash flows:

Yr. 1	(\$4,050) :	Yr. 2	\$ 50	Yr. 3 \& 4 ,	\$4,800;
Yr. 5	(\$100) ;	Yr. 6	\$9,000;	Yr. 7	\$9,500.

Step 1: Prepare cash flow diagram

Year	Nj	$\$$
0		$(225,000)$
1	1	$(4,050)$
2	1	50
$3-4$	2	4,800
5	1	(100)
6	1	9,000
7	1	$9,500+560,000$

Step 2: Calculate IRR

Keystrokes			$\frac{\text { Display }}{-225,000}$
225000	CHS	g CFo	
4050	CHS	g Crij	-4,050
50		g CFj	50
4800		g CFj	4,800
2		$\mathrm{g} \mathrm{Nj}^{\text {d }}$	2
100	CHS	g CFj	-100
9000		g CFj	9,000
9500	ENTE		9,500
560000	+	g CFj	569,500
		f IRR	14.66

\qquad
Initial investment
Cash flow Yr. 1
Cash flow Yr. 2
Next cash flow
For next 2 years
Cash flow Yr. 5
Cash flow Yr. 6

Cash flow Yr. 7
Annual IRR
3. You invest $\$ 125,000$ cash today and expect to receive the following cash flows:

Yr. 1 (\$650); Yr. 2 0; \quad Yr. 3 \$1,250;
Yr. 4 (\$200); Yr. 5 \$2,050
At the end of the 5 th year you expect to sell the property and net $\$ 317,000$. Calculate the IRR;

Year	$N j$	S
0		$(125,000)$
1	1	(650)
2	1	0
3	1	1,250
4	1	(200)
5	1	$2,050+317,000$

Keystrokes		Display
125000	Chis g CFo	-125,000
650	CHS g CFj	-650
0	g CFj	0
1250	g CFj	1,250
200	CHS g CFj	-200
2050	ENTER	2,050
317000	$+\quad \mathrm{gCFj}$	319,050
	f IRR	20.63

Remarks
Initial investment
Cash flow Yr. 1
Cash flow Yr. 2
Cash flow Yr. 3
Cash flow Yr. 4
Cash flow Yr. 5
Total cash flow
Yr. 5
Annual IRR

PROOF OF IRR

In calculating IRR does the calculator assume that the Cash Flows must be reinvested at the IRR?

> Does It?
> or
Doesn't It?

Let's look at the following example.

n	$\$$
0	$(100,000)$
1	5,000
2	10,000
3	15,000
4	20,000
5	165,000

Calculate IRR.

Keystrokes				$\frac{\text { Display }}{-100,000}$	Remarks
100000	CHS	g	CFo		
5000		g	CFj	5,000	
10000		g	CFj	10,000	
15000		g	CFj	15,000	
20000		g	CFj	20,000	
165000				165,000	
			IRR	18.80	IRR

DO NOT CLEAR CALCULATOR

The IRR of 18.80% (rounded) is the rate of return on the amount of dollars remaining, within (Internal to) the investment. The annual Cash Flows can be spent and are not reinvested.

The following calculations should help.
\$ Remaining Total \$

Year	Within Investment	x	IRR	=	Interest	-	Cash Flow	=	Reinvested
1	$\begin{array}{r} 100,000 \\ +\quad 13,800 \\ \hline \end{array}$	x	18.80\%	$=$	18,800	-	5,000	=	13,800
2	$\begin{array}{r} 113,800 \\ +\quad 11,394 \\ \hline \end{array}$	x	18.80\%	$=$	21,394	-	10,000	=	11,394
3	$\begin{array}{r} 125,194 \\ +\quad 8,536 \\ \hline \end{array}$	x	18.80\%	=	23,536	-	15,000	=	8,536
4	$\begin{array}{r} 133,730 \\ +\quad 5,141 \\ \hline \end{array}$	x	18.80\%		25,141	-	20,000	=	5,141
5	138,872	x	18.80\%	$=$	26,108	+	138,872	=	164,980

$\$ 165,000$ ($\$ 164,980$ using rounded 18.80%) is the amount remaining after 5 years.

The annual cash flows are not reinvested but taken out of the investment and the 18.80% is applied only to the amount remaining internal to the investment.

Therefore:
IRR does not assume that cash flows must be reinvested at the same rate as the IRR.

One of the shortcomings of the IRR is that it does not take into account how negative cash flows which occur in the future will be raised.

When future cash flows are negative, the investor may have to lay some money aside at the beginning of the investment period. This money is invested at a "Safe Rate" so that it will be available when needed. After all negative cash flows are taken care of remaining cash flows are reinvested at a higher "Reinvestment Rate".

The Financial Management Rate of Return (FMRR) is an alternative approach to estimating returns on investments.

Example: A client invests $\$ 240,000$ cash today and expects to receive the following cash flows:

$$
\begin{array}{rr}
\text { Year } 1: & \$ 24,000 \\
\text { Year 2: } & -\$ 20,000 \\
\text { Year 3: } & -\$ 27,000 \\
\text { Year 4: } & \$ 30,000 \\
\text { Year 5: } & \$ 420,000
\end{array} \quad \text { IRR }=12.34 \%
$$

Using a "Safe Rate" of 6% and a reinvestment rate of 10%, calculate the FMRR:

Step 1: Prepare a cash flow diagram.

n	$\$$
0	$(240,000)$
1	24,000
2	$(20,000)$
3	$(27,000)$
4	30,000
5	420,000

Step 2: Reduce all negative cash flows, where possible, by compounding positive cash flows forward at the safe rate of 6%.

Keystrokes		Display	Remarks
24000	CHS PV	-24,000	$\begin{aligned} & 24,000 \text { received in } \\ & \text { Yr. } 1 \end{aligned}$
6	i	6	Safe Rate
1	n	1	1 Year
	FV	25,440	Value of 24,000 after 1 Yr.
20000		20,000	Negative cash flow Yr. 2
	-	5,440	$\begin{aligned} & \text { Total cash flow } \\ & \text { Yr. } 2 \end{aligned}$
	CHS PV	- 5,440	5,440 invested at safe rate
	FV	5,766.40	Value of 15,440 after 1 Yr.
¿ 7000			Negative cash flow Yr. 3
	-	-21,233.60	Total cash flow Yr. 3
DO NOT	Clear Ca	ATOR	

The cash flows now appear as follows:

	$\$$
n	$\$$
0	$(240,000)$
1	0
2	0
3	$(21,233.60)$
4	30,000
5	420,000

Step 3: Discount any remaining negative cash flows back to Year 0 using the safe rate.

n	$\$$
0	$(240,000)+(17,828.14)=(257,828.14)$
1	0
2	0
3	$(21,233.60) 6 \%$
4	30,000
5	320,000

Keystrokes		Display	Remarks
		-21,233.60	Already in display
	CHS FV	21,233.60	Need 21,233.60 in Yr. 3
3	n	3	
6	i	6	Safe rate
	PV	-17,828.14	Amt. needed to invest in Yr. 0 to have 21,233.60 in Yr. 3
240000	CHS		Original cash flow Yr. O
	+	-257,828.14	New investment, Yr.o

The cash flows now appear as follows:

	$\$$
n	$\$$
0	$(257,828.14)$
1	0
2	0
3	0
4	30,000
5	420,000

Step 4: Compound the remaining cash flows forward at the reinvestment rate of 10%.

	$\$$
n	
0	$(257,828.14)$
1	0
2	0
3	0
4	$30,000-10 \%$
5	$420,000+33,000=453,000$

Keystrokes		
f	CLEAR FIN	
30000	CHS PV	$-257,828.14$
10	i	$-30,000$
1	n	10
	FV	1
420000		33,000
	+	420,000
		453,000

Remarks
Clears financial registers Received in Yr. 4

Reinvestment rate
1 year
Value of 30,000 after 1 Yr.

Cash flow Yr. 5
Total cash flow Yr. 5

DO NOT CLEAR CALCULATOR

The cash flows now appear as follows:

	$\$$
n	
0	$(257,828.14)$
1	0
2	0
3	0
4	0
5	453,000

Step 5: Calculate the FMRR. The FMRR is an IRR calculation without intermediate cash flows.

Keystrokes			Display
453000		453,000	
	FV		453,000
257.828 .14	CHS PV	-257.828 .14	
0	PMT	0.00	
5	n	5.00	
	i	11.93	

Remarks
Already in display
Cash flow Yr. 5
Cash flow Yr. 0
Intermediate cash flows

FMRR

FMRR PROBLEM

A property is purchased with $\$ 80,000$ down and you expect to receeve the following cash flows.

$$
\begin{array}{cc}
\text { Yr. } & 1 \\
\text { Yr. } 2 & (2,000) \\
Y r . & 6,000 \\
Y r . & 4 \\
Y r . ~ & (3,950) \\
Y r . & 16,800 \\
Y r . & 9,850 \\
\text { Yr } & 3,200 \\
\hline
\end{array}
$$

Problem:

1. Find the IRR
2. Using 10% as both the "safe rate" and "reinvestment rate" calculate the FMRR.

Solution:

1. Find the IRR.

Step 1: Prepare Cash Flow Diagram

n	$\$$
0	$(80,000)$
1	$(2,000)$
2	6,000
3	$(3,950)$
4	16,800
5	9,850
6	3,200
7	155,000

Step 2 : Solve for IRR

80,000	CHS	g CFo
2,000	CHS	g CFj
6,000		g CFj
3,950	CHS	g CFj
16,800		g CFj
9,850		g CFj
3,200		g CFj
155,000		g CFj
		f IRR

Display
-80,000
-2,000
6,000
-3, 950
16,800
9, 850
3,200
155,000
13.70

Remarks \qquad

IRR
2. Using 10% as both the 'safe rate' and 'reinvestment rate' calculate the FMRR.

Step 3: Reduce the negative cash flow in year 3 by compounding year 2 cash flow forward.

n	$\$$
0	$(80,000)$
1	$(2,000)$
2	$6,000 \cdots \quad 10 \%$
3	$(3,950)+6,600=2,650$
4	16,800
5	9,850
6	3,200
7	155,000

Step 4: Discount the negative cash flow in year lack to year 0.

n	$\$$
0	$(80,000)+(1,818.18)=81,818.18$
1	$(2,000) \longrightarrow 10 \%$
2	0
3	2,650
4	16,800
5	9,850
6	3,200
7	155,000

Step 5: Compound the cash flow in year $3,4,5, \& 6$ forward to year 7 .

Step 6: Calculate FMRR

n	$\$$
0	$(81,818.18)$
1	0
2	0
3	0
4	0
5	0
6	0
7	$196,679.17$

Keystrokes			Details	Remarks
81,818.18	CHS	PV	-81,818.18	
196,679.17		FV	196,679.17	
7		n	7.00	
		i	13.35	FMRR

NET PRESENT VALUE

Many times you may anticipate certain uneven cash flows in future years and wish to achieve a specific rate of return. In order to determine the amount that your initial investment should be to achieve that return the Net Present Value calculation can be used.

Steps to Solve for Net Present Value:

1. Index cash flows using 3 CFj registers \& $N j$ registers (Do not use g CFo).
2. Index desired yield in i.
3. Solve for Net Present Value using f NPV.

Example:

Over the next 4 years you expect to receive the following cash flows:

$$
\begin{array}{ll}
\text { Year 1: } & (\$ 28,000) \\
\text { Year 2: } & \$ 31,500 \\
\text { Year 3: } & \$ 42,000 \\
\text { Year 4: } & \$ 51,000
\end{array}
$$

How much can you invest in order to receive a return of 14.5% ?

Srep 1: Prepare cash flow diagram		
Year	Nj	S
0		$?$
1	1	$(28,000)$
2	1	$31,500 \quad$ i $=14.5 \%$
3	1	42,000
4	1	51,000

Keystrokes				Display
28000	CHS	g	CFj	-28,000
31500		g	CFj	31,500
42000		g	CFj	42,000
51000		g	CFj	51,000
14.5	i			14.50
		NPV		57,223.99

Remarks
Cash flow Yr. 1
Cash flow Vr. 2
Cash flow Yr. 3
Cash flow Yr. 4
Desired rate of return

Net Present Value

You can afford to invest $\$ 57,223.99$ cash to earn a 14.5% return with those cash flows.

Note: The positive value of the Net Present Value indicates that the investment does meet the desired rate of return.

NET PRESENT VALUE PROBLEMS

1. An existing loan has the following remaining payment schedule:

Next 8 months $\$ 75$
Next 24 months $\$ 125$
Next 24 months $\$ 175$
Next 36 months $\$ 250$ plus a $\$ 16,000$ balloon payment at the time the last payment is due.

At what price can you purchase this loan to achieve a desired yield of 23% per annum.
2. A property is triple net leased according to the following schedule:

Years $1-4$	$\$ 20,000$ net to lessor
Years $5-8$	$\$ 25,000$ net to lessor
Years $9-12$	$\$ 30,000$ net to lessor
Years $13-20$	$\$ 40,000$ net to lessor

What is the present value of the lessor's income stream if we assume inflation to average 10% over the life of the lease?
3. In Problem \#2, if the lessor wishes to generate additional cash at the beginning of the lease, how much could a partner pay today for the right to receive the cash flows from years 4 thru 6 and yield that partner a 18% return on his investment?
4. The Skinflints sell their home for $\$ 140,000$ and carry back a $\$ 40,000$ 2nd with no interest and monthly payments as follows:

Year 1:
Year $2 \&$ After:
$\$ 1,000$ per month
$\$ 2,000$ per month till paid
If they sell the 2nd at a discount to yield 18%, how much cash will they receive?

1. An existing loan has the following remaining payment schedule:

Next 8 months $\$ 75$
Next 24 months $\$ 125$
Next 24 months $\$ 175$
Next 36 months $\$ 250$ plus a $\$ 16,000$ balloon payment at the time the last payment is due.

At what price can you purchase this loan to achieve a desired yield of 23% per annum.

Step 1: Prepare cash flow diagram

Remarks

list cash flow...
... for 8 periods
and cash flow ...
... for 24 periods
3rd cash flow ...
... for 24 periods
th cash flow ...
... for 35 periods
Last cash flow (monthly mt. plus balloon)

Desired monthly yield Discounted value to yield 23\%
2. A property is triple net leased according to the following schedule:

$$
\begin{array}{ll}
\text { Years } 1-4 & \$ 20,000 \text { net to lessor } \\
\text { Years } 5-8 & \$ 25,000 \text { net to lessor } \\
\text { Years } 9-12 & \$ 30,000 \text { net to lessor } \\
\text { Years } 13-20 & \$ 40,000 \text { net to lessor }
\end{array}
$$

What is the present value of the lessor's income stream if we assume inflation to average 10% over the life of the lease?

Step 1: Prepare cash flow diagram

Year	$N j$	$\$$
0		$?$
$1-4$	4	20,000
$5-8$	4	25,000
$9-12$	4	30,000
$13-20$	8	40,000

Keystrokes		Display	Remarks
20000	g CFj	20,000	lst cash flow
4	$g \mathrm{Nj}$	4	... for lst 4 years
25000	g CFj	25,000	2nd cash flow
4	$\mathrm{g} \mathrm{Nj}^{\text {j }}$	4	... for next 4 years
30000	g CFj	30,000	3rd cash flow ..
4	g Nj	4	... for next 4 years
40000	g CFj	40,000	4th cash flow
8	$g \mathrm{Nj}$	8	... for last 8 years
10	i	10	Annuai inflation
	f NPV	229,881.67	Net present value

3. In Problem 非2, if the lessor wishes to generate additional cash at the beginning of the lease, how much could a partner pay today for the right to receive the cash flows from years 4 thru 6 and yield that partner a 18% return on his investment?

Step 1: Prepare a cash flow diagram

Year	$N j$	S
0		$?$
$1-3$	3	$0 \quad i=18$
4	1	20,000
$5-6$	2	25,000

Keystrokes		Display	Remarks
0	g CFj	0	Cash flow for
3	$g \mathrm{Nj}$	3	... lst 3 years
20000	g CFj	20,000	Cash flow for 4th Yr.
25000	g CFj	25,000	Cash flow for
2	g $\mathrm{Nj}^{\text {j}}$	2	... years 5 \& 6
18	i	18	Desired yield
	f NPV	30,504.30	Partner's Investment

4. The Skinflints sell their home for $\$ 140,000$ and carry back a $\$ 40,000$ 2nd with no interest and monthly payments as follows:

> Year $1: \quad \$ 1,000$ per month
> Year 2 \& After: $\quad \$ 2,000$ per month till paid.

If they sell the 2nd at a discount to yield 18%, how much cash will they receive?

Step 1: Prepare cash flow diagram

Month	Nj	S
0		$\mathrm{NPV}=?$
$1-12$	12	1,000
$13-26$	14	2,000

Keystrokes		Display	Remarks
1000	g CFj	1,000	Payment for
12	g Nj	12	... list 12 mos.
2000	g CFj	2,000	Payment for
14	g Nj	14	... next 14 mos.
18	g i	1.5	Desired Yield
	f NPV	31,889.76	Cash to yield 18\%

COMPOUNDING UNEVEN CASH FLOWS

In compounding level payment cash flows, the PMT and FV registers can be used. However, when you want to compound a series of uneven cash flows the PMT register can not be used.

In order to compound uneven cash flows, we must first find the Present Value of those cash flows using $N P V$ and then find the Future Value of the Present Value.

Example:

You receive the following cash flows:

$$
\begin{array}{lr}
\text { Yr. } 1 & 10,000 \\
\text { Yr. 2 } & 15,000 \\
\text { Yr. 3 } & 20,000 \\
\text { Yr. 4 } & 25,000 \\
\text { Yr. 5 } & 30,000 \\
\text { Yr. 6 } & 35,000 \\
\text { Yr. 7 } & 100,000
\end{array}
$$

If you invest all these cash flows at 10% per annum, what will be the total value of your investment at the end of year 7?
Step 1: Find the PV of the cash flows discounted at 10%.

Keystrokes		Display	Remarks
10000	g CFj	10,000	
15000	g CFj	15,000	
20000	g CFj	20,000	
25000	g CFj	25,000	
30000	g CFj	30,000	
35000	g CFj	35,000	
100000	g CFj	100,000	
10	i	10	
	f NPV	143,289.27	PV of Cash Flows Stored in PV

DO NOT CLEAR CALCULATOR

Step 2: Find Future Value (Remember $n=7, i=10$, $P V=143,289,27$) Just solve for FV.

Keystrokes
Display
143,289.27
FV $\quad-279,230.26$

Remarks
Inputs value into $F V$
Solves for FV compounded at 10%

COMPOUNDING UNEVEN CASH FLOWS TO FIND SALES PRICE TO ACHIEVE DESIRED YIELD

Example:

Over the last 8 years, a property has produces the following before tax cash flows:

Initial Investment	$(3,250,000)$
Year 1	300,000
Year 2	325,000
Year 3	400,000
Year 4	200,000
Year 5	100,000
Year 6	250,000
Year 7	300,000
Year 8	275,000

How much must you sell the property for at EOY 8 in order to achieve an annual yield of 15% on your investment?

Step 1: Prepare a Cash Flow Diagram.

n	$\$$
0	$(3,250,000)$
1	300,000
2	325,000
3	400,000
4	200,000
5	100,000
6	250,000
7	300,000
8	$275,000+\ldots$ Sale Price

Step 2: Find the Net Present Value of the Cash Flows discounted at 15\%.

Keystrokes			Display	Remarks
3250000	CHS	g CFo	-3,250,000	
300000		g CFj	300,000	
325000		g CFj	325,000	
400000		g CFj	400,000	
200000		g CFj	200,000	
100000		g CFj	100,000	
250000		g CFj	250,000	
300000		g CFj	300,000	
275000		g CFj	275,000	
15		i	15	
		f NPV	-2,005,547.93	NPV of all Cash Flows discounted at 15%

DO NOT CLEAR CALCULATOR
Step 3: The FV of the NPV compounded at 15% is the desired sale price.

DO NOT CLEAR CALCULATOR
Step 4: Check your answer by adding sale price to year 8 cash flow, input the sum into STO 8 and solve for IRR (should be 15\%).

Keystrokes		Display	Remarks
RCL	8	275,000	Year 8 Cash Flow
	+	6,410,016.97	Total EOY 8
STO	8	6,410,016.97	Inputs total in STO
	f IRR	15	IRR

PROGRAMMING

A program is a swquence of manual keystrokes that is remembered by the calculator. This enables you to perform repetitive calculations of up to 99 steps with just one keystroke.

The most important keys used in programming are:
P/R (Program/run) has two uses:

1. Places the calculator in Program Mode allowing you to index the program.
2. Takes the calculator out of Program Mode and into Automatic Run Mode Allowing you to run the program you have indexed.

R/S (Run/Stop) has two uses:

1. When in Automatic Run Mode, R / S is pressed to actually run the program.
2. When in Program Mode, R / S can be used as a step in the Program which will stop the program execution and allow you to write down an intermediate result.

CLEAR PRGM (12C)

CLP (38)
Clear Program has two uses:

1. When in Program Mode, used to clear an existing program.
2. When in Automatic Run Mode, resets calculator so operations begin at beginning of program.

WRITING A PROGRAM

To illustrate how a program is written and entered into the calculator, let's use the problem on page 34 .

The problem asked us to generate an amortization schedule for the first 6 months on a loan of $\$ 50,000$ loaned at 10% with montly payments for 30 years.

Here are the keystrokes we used in solving that problem.

INDEXING THE PROGRAM

To index the program, press P / R to place the calculator in Program Mode. The display will read 00- (with the 12 C letters PRGM will appear in the display). This tells you that you are at the beginning of program memory and that you are ready to key in your program. Press CLEAR PRGM (12C), CLP (38) to clear any programs.

Press the first key of the program, 1 , and the display with change to:

$$
01-\quad 1
$$

The two digits displayed on the left designate the line number of the program memory (01 through 99), while the digits displayed on the right designate the key stored in that line.

Each key (except digit keys 0 through 9) on the keyboard has a two-digit keycode based on its position on the keyboard. The first digit denotes the row of the keys and the second digit denotes the number of the keys in that row.

For convenience, the digit keys (0 through 9) are coded with a single digit key coade 0 through 9.

Let's index the remaining keystrokes in our program and verify the keycode in the display.

12C

Keystrokes	Display	Remarks
1	01- 1	One Period
f AMORT	02-42 11	Amortize Loan
R/S	03-31	Display interest calculated
$x \geqslant y$	04- 34	Calculate Principal
R/S	05-31	Display Principal
RCL PV	06-45 13	Calculate Balance
R/S	07- 31	Display Balance
RCL n	08-45 11	Display periods amortized
f $\quad \mathrm{P} / \mathrm{R}$	0.00	Run Mode

$38 C \& E$

Keystrokes	Display
1	01-
f AMORT	02-24 11
R/S	03-74
x ${ }^{\text {\% }}$	04- 33
R/S	05-74
RCL PV	06-22 13
R/S	07-74
RCL n	08-22 11
$\mathrm{g} \quad \mathrm{P} / \mathrm{R}$	0.00

RUNNING A PROGRAM

At this point you are ready to run the program. To take the calculator out of Program Mode and put it into Automatic Run Mode. press P / R.

Now index the financial data and set calculator at beginning of loan.

Keystrokes
50000 PV
$10 \quad g$ i
$30 \quad \mathrm{~g} \mathrm{n}$
PMT
0

Remarks

Original loan Balance

Sets calculator at beginning of loan
beginning of loan

Now the program is ready to be run.

Keystrokes	Display
R/S	-416.67
R/S	-22.12
R/S	49,988.88
R/S	1
R / S	-416.48
R/S	-22.31
R/S	49,955.57
R / S	2
R / S	-416.30
R/S	-22.49
R/S	49,933.08
R/S	3

Display
50,000
.83
360
-438.79
0.00

These four steps can be repeated for 360 months until the loan is repaid.

The 6 month table follows:

SOLUTION TO LOAN AMORTIZATION PROBLEM

Month	Beginning Loan Balance	Total Pmt.	Int. Pd.	Princ. Pd.	$\begin{gathered} \text { Ending } \\ \text { Loan Balance } \\ \hline \end{gathered}$
1	\$50,000.00	\$438.79	\$416.67	\$22.12	\$49,977.88
2	49,977.88	438.79	416.48	22.31	49,955.57
3	$49,955.57$	438.79	416.30	22.49	49,933.08
4	49,933.08	438.79	416.11	22.68	49,910.40
5	49,910.40	438.79	415.92	22.87	49,887.53
6	$49,887.53$	438.79	415.73	23.06	49,864.47

PROGRAM FOR ANNUAL AMORTIZATION SCHEDULES

Problem:

You sell your client some apartments upon which a loan is made for $\$ 125,000$ at 14% with monthly payments for 25 years. To prepare a cash flow analysis for your client you need to know the interest, principal, and loan balances for each of the next 5 years.

1. Write a program to perform these calculations and display each of them.
2. Program the calculator, enter the financial data, and run the program to determine these values.

Program:

12 C

Keystrokes	Display	Remarks
f P/R	$00-$	Program Mode
f CLEAR	$00-$	Clears Programs
PRGM		
1	$01-\quad 1$	
2	$02-$	2
f AMORT	$03-42$	11
R/S	$04-$	31
x y	$05-$	34
R/S	$06-$	31
RCL PV	$07-45$	13
R/S	$08-$	31
RCL n	$09-4: 511$	
f P/R	0.00	Run Mode

$38 C \& E$

Keystrokes	Display	Remarks
g P/R	$00-$	Program Mode
g CLP	$00-$	Clears Programs
1	$01-$	1
2	$02-$	2
f AMORT	$03-24$	11
R/S	$04-$	74
xき y	$05-$	33
R/S	$06-\quad 74$	
RCL PV	$07-22$	13
R/S	$08-$	74
RCL in	$09-22$	11
g P/R	0.00	Run Mode

Enter Financial Data:
Keystrokes

125000	PV	125,
14	g i	1.17
25	g n	300

PMT
$-1,504.70$
0
n
0.00

Remarks
Original Loan balance
Monthly interest
Number of monthly payments
Monthly payment
Sets calculator at beginning of loan

Run Program:

Keystrokes
R/S
R/S
R/S
R/S

Display
-17,462.85
-593.55
124,406.45
12

Remarks

lst year's interest
lst year's princ.
Balance EOY 1
Number of periods amortized.

These steps can be repeated for each year.

OTHER KEYS USED IN PROGRAMMING

SST	(Single Step) used in Program Mode to display the contents of the next line of program memory.
BST	(Back Step) used in Program Mode to display the contents of the previous line of program memory.
GTO	(Go To) has three uses:
	1. When in Program Mode GTO is used to display any line of program memory. To do this the GTO instruction must be followed by a decimal point and the desired two digot code.
	2. When in Program Mode GTO can be used as an instruction in the program. To do this the GTO instruction should not be followed by a decimal point but only by the desired two digit code.
	3. In Run Mode, a GTO instruction sets the program memory to the line number specified by the two digit code. This instruction can be made with or without a decimal point.
PSE	(Pause) used in Program Mode as an instruction will momentarily interrupt program execution to display intermediate results.

1. The cash flow analysis on Page 102 has been prepared on a rental house that an investor has purchased.
```
$66,000 Price
20,000 Down Payment
$46,000 Assume existing lst loan @ 11.75%, $470 PI monthly
```

The property is depreciated on a straight line basis assuming a 15 year economic life. The investor is assumed to be in a 40% marginal tax bracket. The property appreciates at an 8% annual rate and is sold at the end of the fifth year.

Problem: Find the Internal Rate of Return over the five year period:

1. On a Before Tax Basis
2. On an After Tax Basis

Assume all cash flows occur at the end of each year.

Cash Flow Analysis

Purpose

Date \qquad

Purchase Price	$\$ 66,000$
Encumbrances	$\$ 46,000$
	$\$ 20,000$

Mortgage Data

Step 1: Prepare Cash Flow Diagram for Before Tax Cash Flows.

n	$\$$
0	$(20,000)$
1	$(2,760)$
2	$(2,580)$
3	$(2,400)$
4	$(2,220)$
5	$(2,040)+42,924$

Step 2: Solve for tax IRR.

Keystrokes			$\frac{\text { Display }}{-20,000}$	Remarks
20000	CHS	g CFo		
2760	CHS	g CFj	-2,760	
2580	CHS	g CFj	-2,580	
2400	CHS	g CFj	-2,400	
2220	CHS	g CFj	-2,220	
2040	CHS	ENTER	-2,040	
42924	+	g CFj	40,884	
		f IRR	7.57	Before Tax IRR
Step 3:	Prep	re Cas	Flow Dia	fiter Tax Cash F

n	$\$$
0	$(20,000)$
1	(262)
2	(167)
3	(74)
4	199
5	$109+36,530$

Step 4: Solve for after tax IRR

Keystrokes			$\frac{\text { Display }}{-20,000}$	Remarks
20000	CHS	$g \mathrm{CFo}$		
262	CHS	g CFj	-262	
167	CHS	g CFj	-167	
74	CHS	g CFj	-74	
19		g CFj	19	
109		ENTER	109	
36530	+	g CFj	36,639	
		f IRR	$\underline{12.42}$	After Tax IRR

The cash flow on page 107 has been prepared on a 10 unit apartment building.
A. Calculate the Before Tax IRR.
B. Calculate the After Tax IRR.
C. What is the Present Value of the after tax cash flows to achieve a 15% yield.

Before Tax IRR

Step 1: Prepare a Cash Flow Diagram.

n	$\$$
0	$(77,200)$
1	2,168
2	3,168
3	4,168
4	5,168
5	$6,168+92,332$

Step 2: Calculate IRR

Keystrokes			$\frac{\text { Display }}{-77,200}$
77200	CHS	g CFo	
2168		g CFj	2,168
3168		g CFj	3,168
4168		g CFj	4,168
5168		g CFj	5,168
6168		ENTER	6,168
92332	+	g CFj	98,500
		f IRR	8.50

\qquad

Before Tax IRR

Keystrokes			Display	Remarks
77200	CHS	g CFo	-77,200	
9846		g CFj	9,846	
10313		g CFj	10,313	
9776		g CFj	9,776	
9233		g CFj	9,233	
9685		ENTER	9,685	
66598	+	g CFj	76,283	
		f IRR	10.46	
DO NOT	AR	CALCUL		

Step 5: Find the PV to Achieve 15% yield.

Keystrokes		Display	Remarks
15	i	15	Changes yield to 15
0	STO 0	0	Changes Initial Investment to 0
	f NPV	65,992.86	PV to Yield to 15\%

Cash Flow Analysis

for Big Swinger \#2

Purchase Price $\quad \$ 240,000$
EncumbrancesS 262,800 investment$\quad \$ 77,200$

Negative Amortizations: (Less than interest only payments)
Many times it is necessary to structure a loan with payments that do not even cover the interest due each period. There are three common ways of handing the interest which accrues but is not paid.

1. Unpaid interest to accrue but not compound
2. Unpaid interest to compound at the rate in the note
3. Unpaid interest to accrue and compound at a rate different from the rate in the note

Whenever a loan has payments that are less than interest only, the actual payment must be compared to the interest only payment. The difference is the unpaid interest.

Example:
A loan of $\$ 20,000$ is created with monthly payments of $\$ 150$ with interest at 12%, the entire balance due in 5 years. What is the remaining balance at EOY 5 if the unpaid interest.

1. Accrues but does not compound
2. Compounds at 12%
3. Compounds at 16%

At 12% interest only, the monthly payment on a $\$ 20,000$ loan would be $\$ 200$. Therefore $\$ 50$ interest is not being paid.

1. Interest to accrue but not compound.

$\quad \$ 50$ mo unpaid
$\mathbf{x} \quad 60$ months
$\$ 3,000$
Interest Accrued
$+\$ 20,000$
Principal Balance

2. Interest to compound at 12%.

When the npaid interest is to compound at the rate in the note the original loan balance and the actual payment can be used in the calculation. This calculation can also be performed as if the unpaid interest was compounding separately (see \#3).

n	60	$(5$ years $)$
i	1	$(12 \%$ per annum)
PV	20,000	
PMT	-150	
FV	$?$	

Keystrokes

60	n	60
1	i	1
20000	PV	20000
150	CHS PMT	-150
	FV	$\underline{-24.083 .48 ~}$

Remarks

Balance at EOY 5
3. Interest to compound @ 16%.

When the unpaid interest compounds at a rate different from the rate in the note you must compound the unpaid interest separately and then add the computed value to the original loan amount.

n	60	
i	26	g
PV	i	
PMT	0	
FV	-50	
	$?$	

\qquad
Keystrokes
Display
60
16 g i 1.33
50 CHS PMT
FV
4551.78

20000
(Only unpaid interest is compounding at 16%)
(Unpaid interest)

Remarks

FV of unpaid interest
Original loan AMT.
Balance at EOY 5

NO PAYMENT NOTES

```
A seller carries back a $55,000 note with no payments and all
principal and l0% interest due in 7 years. What will be the
balloon payment if the interest....
1. Does not compound (simple interest)
2. Compounds annually
3. Compounds monthly
Simple Interest
```

Keystrokes		Display	Remarks
550,000	ENTER	55,000	
10	\%	5,500	Annual Interest
7	x	38,500	Total Interest
	+	93,500	Total Balloon

Interest Compounding Annually

Keystrokes		Display	Remarks
55,000	PV	55,000	
10	i	10	
7	n	7	
	FV	107,179.44	Total balloon

Interest Compounding Monthly

Keystrokes		Display	Remarks
55,000	PV	55,000	
10	g i	. 83	
7	g n	84	
	FV	-110,435.61	Total Balloon

When interest rates are high it is common for builders or sellers to "Buy Down" the interest rate on the new loan the purchaser will qualify for. In effect, the builder subsidizes the monthly payments of the buyer for a certainamount of time. The builder usually does this by paying an extra amount of cash into the transaction which allows the lender to place the loan at a very large discount. The buyer benefits from a lower interest rate and payment for a few years, the builder benefits by selling his product and the lender benefitsby achieving his desired yield.

Example:

A purchaser places a $\$ 100,000$ loan with a lender for 10 years. To sell the property the seller agrees to "buy down" the interest rate from 16% to 12% for the first 4 years ofthe loan. After the fourth year the buyer's monthly payment will increase and be based on 16%. Howmuch will it cost the builder to "buy down" this loan to yield the lender 16% ?

Step 1: Prepare Cash Flow for Lender

n	$\$$
0	(Lenders Investment)
$1-48$	PMTS @ 12%
$49-120$	PMTS @ 16%

Step 2: Find monthly payment at 12% and balance at EOY 4

Keystrokes		Display	Remarks
100000	CHS PV	-100,000	
10		120	
12		1	
	PMT	1434.71	Monthly payment @ 12\%
4		48	
	FV	73385.95	Balance EOY 4

Step 3: Find discounted value of lst 48 months payments \& balloon to yield 16%

n			
0	$\mathrm{PV}=?$		
1	1434.71	\quad	
:---			
48			

Keystrokes		Display	Remarks
16	g i	1.33	Desired Yield
	PV	-89484.24	Discounted value

Step 4: Find Buy Down
Keystrokes

100000

NOTE: In this example, another approach to "Buy Downs" is for the seller to place the difference between the total of the monthly payments for 4 years at 12% and 16% in escrow at loan origination. The 12% monthly payment would then be subsidized for the 4 year period.

Keystrokes		Display	Remarks
100000	CHS PV	-1000000	
10	g n	120	
16	g i	1.33	
	PMT	1675.13	Monthly Pmt @ 16\%
1434.71		1434.71	Monthly Pmt @ 12\% (Previously calculated)
-		240.42	
48	X	11540.22	48 month buy down to be placed in escrow

You have listed a home for $\$ 425,000$. The house has an assumable lst loan of $\$ 210,000$ payable at $\$ 2,689$ PITI including interest at 12.5%. An offer is presented with a price of $\$ 375,000$ with $\$ 85,000$ down with the buyer's assuming the existing lst loan and giving the sellers a 2nd note and trust deed for the balance with monthly payments at 9% interest for 30 years with a call date in 15 years. Costs of sale include the following:
7% Brokerage Fee
1\% Assumption Fee
\$1,000 Closing Costs

1. What will be the net cash to the seller?
2. What will the monthly payment and balloon payment be on the 2nd note?
3. What will be the buyer's total monthly payment?

After discussing the offer and its terms the seller decides to make a counter offer as follows:

```
\$410,000 Price
\$110,000 Down
\$210,000 Assume lst
```

The balance is to be paid on a 2nd note in monthly payments at 11% interest for 30 years all due in 10 years. Based on the counter offer:
4. What will be the net cash to seller?
5. What will be the monthly payment and balloon on the 2 nd note?
6. What will be the buyer's total monthly payment?

OFFER

Step 1: Find Net to Seller

Keystrokes		Display	Remarks
375,000	ENTER	375,000	Sale Price
7	\%	26,250	Brokerage Fee
STO	\bigcirc	26,250	
210,000	ENTER	210,000	1st Loan
1	\%	2,100	Assumption Fee
STO	+ 0	2,100	
1,000		1,000	Closing Costs
ST0	+ 0	1,000	
85,000	ENTER	85,000	Down Payment
RCL	0	29,350	Total Costs
	-	55,650	Net to Seller

Step 2: Find 2nd loan payment and balloon

Keystrokes		$\frac{\text { Display }}{375,000}$	Remarks Price
375,000	ENTER		
210,000	-	165,000	
85,000	-	80,000	2nd Loan Amount
	PV	80,000	
9	g i	. 75	
30	g n	360	
	PMT	-643.70	Monthly Payment
15	g n	180	
	FV	-63,464.39	Balance EOY 15
Do not clear calculator.			
Step 3: Find total monthly payment for buyers			
Keystrokes		Display	Remarks
RCL	PMT CHS	643.70	
2,689		2,689.00	PITI on lst
+		3,332.70	Total Payment

Step 4: Find Net to Seller

CASH EQUIVALENCY OF TERMS OFFER

A home was listed for $\$ 600,000$ and has been on the market for 9 months. An all cash offer is made for $\$ 450,000$ which the seller feels is well below what the home is worth. Comparable sales in the area indicate a price of $\$ 600,000$ is reasonable with terms of 20% down and the seller taking back a note and trust deed for the balance at 10% interest only monthly payments and a balloon in 10 years. What would be the terms equivelant of the $\$ 450,000 \mathrm{cash}$ offer?

The best approach to take to answer this question is to find the present value of the note the seller would carry discounted to achieve a market yield if sold. You can then add the $P V$ of the note plus the down payment to determine the cash equivelancy of the terms offer. If the offers have a similar cash equivelancy the seller could accept the cash offer and then go out and purchase a note or notes which would yield the same cash flow as the carryback. Assume the note can be sold to yield between 16% and 18%.

Step l: Find the payment and balloon of the interest only note.

Keystrokes		Display	Remarks
600,000	ENTER	600,000	Sale Price
20	\%	120,000	Down payment
	-	480,000	Carry back
10	\%	48,000	Annual Interest
12	\div	4,000	Monthly Payment

Balloon in 10 years is $\$ 480,000$ because payments are interest only.

Step 2: Find the PV of the note to yield $16 \% \& 18 \%$ and add down payment

Keystrokes		Display	Remarks
4,000	PMT	4,000	Payment
480,000	FV	480,000	Balloon
10	g n	120	Term
16	g i	1.33	16\% Yield
	PV	-336,727.64	PV to yield 16\%
CHS		336,727.64	
120		120,000	Down Payment
	+	456,727.64	Cash equivalency if sold for 16%

Do not clear calculator.

Keystrokes	Display	Remarks
18 g i	1.5	18\% yield
PV	-302,404.95	PV to yield 18\%
CHS	302,404.95	
120,000	120,000	Down payment
+	422,404.95	Cash equivelency if sold for 18\%
If the seller a she would net b cash offer is e	ms offer an 404 and $\$ 456$ other terms	note to cash out iously the $\$ 450,000$ the area.

CASH SALE VS. CARRY BACK

Example

Two offers are made to you on a property you own.
Offer \#1 $\$ 1,500,000$ Cash
Offer \#2 $\$ 1,800,000$ Price
600,000 Down
1,200,000 Note payable at 11% with
monthly payments for 30 years all due in 7 years

Which offer is better?
The answer may be different depending on the seller's needs.

1. If the seller needs to cash out he would have to sell the note at a discount. The cash to the seller would depend upon the yield investor's would demand. The higher the desired yield the less cash to seller.

What would be the total cash to seller if the note in Offer \#2 was purchased to yield $15 \%, 17 \%$, 18% ?

Step 1: Find the pyament and balloon in 7 years.

Keystrokes

$1,200,000$	PV	$1,200,000$
11	g i	.92

$11 \quad g$ i
30
g n
PMT
$7 \quad \mathrm{~g} \mathrm{n}$
FV
.92
Display

360
-11,427.88
84
$-1,146,217.56$

Remarks

Payment

Balloon EOY 7

Step 2: Key in desired yield in i and solve for $P V$

Keystrokes		Display
15	g i	1.25
	PV	995,941.58
600,000		600,000
	+	1,595,941.58
17	g i	1.42
	PV	910,836.50
600,000		600,000
	+	1,510,836.50

Remarks

15\% Yield
PV of note to yield 15\%
Down payment
Total cash to seller if sold for 15%
17\% Yield
PV of note to yield 17%
Down payment
Total cash to seller if sold for 17%

Keystrokes		Display	Remarks
18		1.50	18\% Yield
	PV	871,908.53	
600,000		600,000.00	
	+	1,471,908.53	Total cash to seller if sold for 18%
2. If the seller only needs $\$ 600,000$ cash from the sale and will invest all remaining cash or income in an account at 12% per annum compounded monthly, which offer will give the seller the greatest wealth in 7 years?			
Cash offer: $\$ 1,500,000$ minus $\$ 600,000$ cash leaves $\$ 900,000$ for investing. Find $F V$ of $\$ 900,000$ after 7 years at 12%.			
Keystrokes		Display	Remarks
900,000	PV	900,000	
12	g i	1	
7	g n	84	
	FV	2,076,050.47	Total wealth EOY7
Terms offer: None of the $\$ 600,000$ down payment is available for			
investment. The monthly payment of \$11,427.88 recieved on the			
note is available for investment and at EOY 7 the note balloons			
12% and add the balloon to determine total wealth.			
Keystrokes		Display	Remarks
11,427.88	PMT	11,427.88	
12	g i	1	
7	g n	84	
	FV	-1,493,307.07	FV of Pmts
	CHS	1.493,307.07	
1,146,217.56		1,146,217.56	Balloon EOY 7
	+	2,639,524.63	Total wealth EOY 7

An offer of $\$ 300,000$ is made to your client. The terms are as follows.

$$
\begin{aligned}
\$ 300,000 & \text { Sale Price } \\
50,000 & \text { Down payment } \\
100,000 & \text { Buyers to assume existing lst } \\
150,000 & \text { 2nd Note to seller at } 11 \% \text { with month1y } \\
& \text { payments of } \$ 2,000 \text { per month all due } \\
& \text { in } 8 \text { years }
\end{aligned}
$$

Problem:
The terms are acceptable to the seller except the seller needs another $\$ 50,000$ cash from the sale.

Solution:
Create two notes and have the seller sell the 2 nd for cash and keep the 3rd. Structure the terms of the 2nd to net the seller $\$ 50,000$ cash when sold. When creating two notes from one, the buyer will usually insist that the monthly payment, interest rate and balloon which was offered remain the same. Therefore.......

Step 1: Analyze terms of note offered

Keystrokes		Display	Remarks
150,000	PV	150,000	Balance
2,000	CHS PMT	-2,000	Payment
11	g i	. 92	Interest rate
8	g n	96	Term to call date
	FV	-54,459.95	Balance EOY 8
We know the buyer is willing to pay $\$ 2,000$ per month with a balloon of $\$ 54,459.95$ in 8 years. With this in mind lets structure the terms of the two notes. The 2nd will probably have "harder" terms to make it saleable and the 3rd will have "softer" terms.			
Step 2: Let's assume that 2 nd position notes can be sold to yield 18\% and try the following terms:			
\$ 65,000 2nd at 11% fully amortized for 8 years.			

Let's recap:
The offer gave the seller:

$\$ 50,000$	Cash from down payment
$\$ 150,000$	2nd note at $11 \%, \$ 2,000$ monthly with
	$\$ 54,459.95$ balloon in 8 years.

The restructuring gives buyer the exact same terms and the seller
$\$ 50,000$
$+\quad 51,768$
$\$ 85,000$

Cash from down payment
Cash from sale of $\$ 65,000$ 2nd

3rd note at $11 \%, \$ 978.95$ monthly with $\$ 54,459.95$ balloon in 8 years.

Wraparound (All inclusive) loans are a method of secondary financing Which will normally allow the seller to obtain a higher yield as compared to carrying a simple second loan. The following comparison may help to illustrate the difference between a simple second loan and wraparound financing.

Situation: $\$ 100,000$ Sales Price

$$
\frac{60,000}{\$ 40,000} \quad \begin{aligned}
& \text { Existing lst, } 9 \% \text { interest, } \$ 500 \text { P.I. per mo. }
\end{aligned}
$$

Buyer has $\$ 25,000$ cash down payment.

Possible Solutins:

A. Seller carries 2nd mortgage
$\$ 25,000$ down, buyer assumes existing lst loan and given seller note and 2nd mortgage for $\$ 15,000$. Terms of 2 nd are interest only at 10% for 10 years.

Buyer is liable to the lender on the lst and to the seller on the 2 nd.

B. Wraparound Financing
$\$ 25,000$ down and buyer executes a $\$ 75,000$ note and mortgage to the seller, interest only at 10% for 10 years. The seller agrees to remain solely liable to the lender on the existing lst.
Buyer $\$ 625$ Seller $\$ 500$ Lender (lst mortgage)

In wraparound financing, if the wraparound loan is written at a higher interest rate than the lst loan, the seller not only earns interest on the equity loaned to the buyer but also on the existing lst owed to the lender.

To illustrate this the "Wraparound Worksheet" on the following page is very useful.

Example A

You sell a property today for $\$ 100,000$ with $\$ 25,000$ down and the buyer gives you a note and trust deed for $\$ 75,000$ payable at $\$ 625$ per month, interest only at 10% with a 10 year stop. The seller agrees to remain liable for an existing $\$ 60,000$ lst loan payable at $\$ 500$ per month P.I. @ 9%. What will be the seller's annual yield over the term of the wraparound loan.

Step 1: Analyze loan using Wraparound Worksheet
a) The wraparound loan amount (\$75,000) and payment (\$625) are given. Since the loan is paid interest only, the balance at payoff (EOY 10) will be $\$ 75,000$.
b) The lst loan amount ($\$ 60,000$) and Payment ($\$ 500$) are also given. The balance on the lst loan at payoff (EOY 10) must be calculated.

Keystrokes
60000 CHS PV
500 PMT
$9 \quad \mathrm{~g}$ i
10
g n
120
FV $\quad 50,324.29$

Remarks

Balance at lst EOY 10

Remarks

Wrap loan
lst loan
Wrap equity now

WRAPAROUND WORKSHEET

PROPERTY LOCATION: \qquad DATE: \qquad

SALE PRICE: $\$ 100,000$
DOWN PAYMENT: 25,000
WRAD IOAN: $\quad 75,000$ 10\% $\$ 625.00$ PI 10 Yr . StopTerm
1st LOAN: 60,000 9% \$500.00 PI \qquad Orig. \qquad Orig. \qquad Old Bal. Term Now

2nd LOAN: \qquad \% \qquad PI

Orig. Bal. Orig. \qquad Old

	Balance Now	Pmt. from mo/yr \qquad 1 to 120 \qquad	Pmt. from mo/yr \qquad to \qquad	Balance at time of wrap payoff EOY
Wrap Loan	\$75,000.00	\$ 625.00		\$75,000.00
-1st Loan	\$60,000.00	\$ 500.00		\$ $50,324.29$
-2nd Loan				
Sellers Position	$\begin{aligned} & \$ 15,000.00 \\ & \text { Wrap Equity } \end{aligned}$	$\$ 125.00$ Net Payment	Net Payment	$\$ 24,675.71$ Wrap Equity at Payoff

d) Find monthly net to seller

Keystrokes			Display
	ENTER		625
500		500	
	-	$\underline{125}$	
	STO 1	125	

Remarks

Pmt. on wrap
Pmt. on lst
Mo. net to seller
e) Find wrap equity at payoff (EOY 10)

Keystrokes	Display	Remarks
75000 ENTER	75,000	Wrap bal. EOY 10
50324.29	50,324.29	lst bal. EOY 10
-	24,675.71	Wrap equity at payoff
STO 2	24,675.71	

Step 2: Prepare cash flow diagram

n	$\$$
0	$(15,000)$
$\underbrace{120}_{120}$	$\prod_{125}^{125}+24,675.71$

Step 3: Find yield to seller

Keystrokes		Display	Remarks
RCL 0	CHS PV	-15,000	Wrap equity now
RCL 1	PMT	125	Mo. net
RCL 2	FV	24,675.71	Wrap Equity
10	g n	120	No. of payments
	i	1.10	Monthly yield
12	X	13.14	Annual yield

Example B

An existing loan for $\$ 22,000$ @ 8% with monthly payments of $\$ 446.08$ will pay out in 5 years. The owner of the property sells the property on an all inclusive trust deed of $\$ 42,000$ @ $15 \%, 30$ year amortization all due in 7 years. What is the seller's annual yield over the 7 year period? If the seller sold the loan discounted to yield 20%, how much cash would she receive?

Step 1: Analyze each loan separately using the wraparound worksheet.
a) Find PMT \& balloon on all inclusive loan

Keystrokes		Display	Remarks
30	g n	360	
15	g i	1.25	
42000	PV	42,000	
	PMT	$\underline{-531.07}$	PMT on wrap
7	g n	84	
	FV	-41,107.44	Balloon on Wrap EOY

b) The existing lst loan has monthly payments of $\$ 446.08$ for 5 years and no balloon payment.

Step 2: Find the seller's position in the wraparound

WRAPAROUND WORKSHEET

PROPERTY LOCATION: EXAMPLE B

DATE: \qquad

SALE PRICE: \qquad
DOWN PAYMENT: \qquad

	Balance Now	Prit. from mo/yr 1 to 60	Prit. from mo/yr $61 \text { to } 84$	Balance at time of wrap payoff
Wrap Loan	\$42,000	\$531.07	\$531.07	\$41,107.44
$\begin{aligned} & \text {-1st } \\ & \text { Loan } \end{aligned}$	22,000	446.08	-0-	-0-
$\begin{aligned} & \text {-2nd } \\ & \text { Loan } \end{aligned}$	-0-	-0-	-0-	-0-
Sellers Position in	$20,000$ Wrap Equity	84.99 Net Payment	$\begin{gathered} 531.07 \\ \text { Net Payment } \end{gathered}$	$41,107.44$ Net at Payoff

Step 3: Prepare cash flow diagram and calculate yield (IRR)

Months	Nj	$\$$
$1-60$	0	$(20,000)$
$61-83$	23	84.99
84	1	531.07
		$531.07+41,107.44$

Keystrokes			Display	
20000	CHS	g CFo	Remarks	
84.99	g CFj	84.99		
60	g Nj	60		
531.07	g CFj	531.07		
23	g Nj	23		
41638.51	g CFj	$41,638.51$		
	f IRR	1.46		

12 X 17.54 Annual yield to seller

DO NOT CLEAR CALCULATOR

Step 4: Find Net Present Value to yield 20\%

Keystrokes	Display	
0	0	Remarks
20 gi	1.67	Clears $\$ 20,000$ in STO 0
f NPV	$\underline{17,332.91}$	Present Value to yield 20%

Example C

A property has an existing $\$ 80,000$ loan against it with monthly payments of $\$ 994.82$ including 14% interest. You are asked to wrap the $\$ 80,000$ loan with a loan which will net the borrower $\$ 50,000$. At what rate of interest must the wraparound loan be written in order to yield you 19% on your investment?

Yields on wraparound loans are based on the lender's net position (wrap loan minus all underlying loans). To structure the wraparound loan for the lender to receive a 19\% yield we must work from the net position and "back into" the terms of the wraparound loan.

Step 1: Use wraparound worksheet to analyze known information.

	Balance Now	Prot. from mo/yr \qquad to \qquad	Pmt. from mo/yr \qquad to \qquad	Balance at time of wrap payoff
Wrap Loan	\$130,000			
$\begin{aligned} & \text {-1st } \\ & \text { Loan } \end{aligned}$	80,000	\$994.82 @ 14\%		
$\begin{aligned} & \text {-2nd } \\ & \text { Loan } \end{aligned}$				
Sellers position in	$\begin{gathered} \$ 50,000 \\ \text { Wrap Equity } \end{gathered}$	Net Payment	Net Payment	Net at Payoff

Step 2: With this information find the term of the lst loan

Keystrokes
14 g i
80000 PV
994.82

CHS PMT
n

Display
1.17

80,000
-994.82
240

Remarks
lst loan has 20 years remaining

Step 3: Assuming there is no balloon payment on the wraparound loan we can now calculate the net payment to yield 19% to lender on $\$ 50,000$ over 240 months.

Keystrokes		Display	Remarks
240	n	240	
19	g i	1.58	
50000	PV	50,000	
	PMT	$\underline{-810.34}$	Net PMT to yield 19\%

The wraparound worksheet now appears as follows:

	Balance Now	Pmt. from mo/yr to 240	Pmt. from mo/yr to	Balance at time of wrap payoff
Wrap Loan	$\$ 130,000$			
-1 st Loan	80,000	$\$ 994.82$	$-0-$	$-0-$
-2nd Loan	$-0-$	$-0-$	Net Payment	Net at Payoff
Sellers Position in	\$50,000 Wrap Equity	Net Payment		

Step 4: Add the payment on the lst loan to the net payment to find the required payment on the wraparound loan.

```
$ 994.82 Payment on lst
+ 810.34 Net Payment
$1,805.16 Required wraparound payment
```

Step 5: Prepare cash flow diagram for wraparound loan and solve for interest rate.

n	$\$$
0	$(139,000)$
\downarrow_{240}^{1}	$1,805.16$
	$1,805.16$

i $=$?

Keystrokes		Display	Remarks
240	n	240	
130000	CHS PV	-130000	
1805.16	PMT	1805.16	
	i	1.33	Monthly interest rate
12	X	$\underline{15.96}$	Annual rate

TREND ANALYSIS \& LINEAR REGRESSION

When performing market analyses, it is often necessary to be able to make projections or estimates based on known information. If the data can be plotted on a graph and a straight line can be fitted, either exactly or closely to the data points, that graph can be used to make the necessary estimates.

Data may show a linear (straight) trend and yet may be difficult to analyze. For example, in the diagram below, lines A, B \& C each represent an attempt to visually fit a straight line to a set of data. Obviously, they are somewhat subjective in nature and prone to error.

Linear Regression is a statistical technique for defining the trend or projection line which provides the best mathematical fit to a set of data points.

The Hpl2C calculator is programmed to perform regression analyses. In essence, the calculator plots the data on a graph and then fits the best straight line to the data. The calculator then retains the line allowing you to make estimates or projections.

Once the known data has been entered and the calculator has plotted its straight line to the data, it is important to determine how well the line "fits" the data. The correlation coefficient (abbreviated "r" in statistics) will tell you how close to a straight line the data points lie. The correlation coefficient, r, is always a value between -1 and +1 . If $r=+1$, then the line has a positive (upward) slope and the data fits perfectly. If $r=-1$, the data is still a perfect fit but the line has a negative (downward) slope.

Positive Slope

Negative Slope

To enter the data and determine the correlation coefficient, the following keys are important.

ENTER	Enters the Y variable into Y register
E+	Summation Key: matches an entered Y variable with the X variable and plots it on the calculators graph.
\hat{x}, r	Predicts X along the plotted line
$\hat{\mathrm{y}}, \mathrm{r}$	Predicts Y along the plotted line
xきy	Displays correlation coefficient, r, when pressed after either \hat{x}, r or \hat{y}, r
Note:	When entering data, the Y variable must be entered first.

Example:

You wish to estimate the sale price for a l,350 sq. foot home. You have found three properties comparable to the subject in every aspect except size.

Step 1: Enter data and have calculator pair the entries and plot the line. (Remember: Y variable first.)

Keystrokes	
47000	ENTER
1200	E+

Display
47,000
1

52,000
2
1300
55000 ENTER
1400 E+
g $\hat{x}, r \quad x \geqslant y$

55,000
3 . 99

Remarks
lst Y variable
X variable entered \& paired (plotted) 非1
in display indicated
that this is lst
paired entry
2nd Y variable
2nd paired entry
3rd Y variable
3rd paired entry
Correlation coefficient

DO NOT CLEAR CALCULATOR

The calculator has plotted the best possible straight line and the . 99 correlation coefficient, r, indicates a positive slope and an almost perfect fit. Knowing this, our estimate of the sale price for the $1,350 \mathrm{sq}$. foot home will be very accurate.

Step 2: Estimate the sale price of $1,350 \mathrm{sq}$. ft. home

Keystrokes
1350
g

Display
53,333.33

Remarks
X variable
Estimated sale price

LINEAR REGRESSION PROBLEMS

1. The following data on warehouse construction was obtained for your area:

Warehouse	Size (sq.ft.)	Cost (\$)
A	8,000	120,000
B	12,000	193,000
C	16,000	231,000
D	20,000	267,000
E	17,000	242,000

Using linear regression analysis:
a) determine the correlation coefficient
b) determine the cost of an $18,000 \mathrm{sq}$. ft. and a $10,000 \mathrm{sq}$.
ft. warehouse
Step 1: Enter data (entering Y variable first)

Keystrokes		Display
120000	ENTER	120,000
8000	E+	1
193000	ENTER	192,000
12000	E+	2
231000	ENTER	231,000
16000	E+	3
267000	Enter	267,000
20000	E+	4
242000	ENTER	242,000
17000	E+	5

Step 2: Find correlation coefficient
Keystrokes
g $\hat{x}, r \quad x \geqslant y$

Display
. 98

Remarks

Good fit

Remarks

x variable
Cost of $18,000 \mathrm{sq}$. ft. warehouse

X variable
Cost of 10,000 sq. ft. warehouse
2. You are given the following data on land prices.

Parcel	Size (acres)	Price (\$)
A	5	50,000
B	8.4	78,000
C	9.6	70,000
D	22.4	120,000
E	50	300,000
F	32	240,000

Using linear regression, estimate the price of a 20,30 and 40 acre parcel. How reliable are your estimates?

Step 1: Enter data\&determine r.

Keystrokes		Display	Remarks
50000	Enter	50,000	1st Y variable
5	E +	1.00	lst paired entry
78000	Enter	78,000	
8.4	E+	2.00	
70000	ENTER	70,000	
9.6	E+	3.00	
120000	ENTER	120,000	
22.4	E+	4.00	
300000	Enter	300,000	
50	E +	5.00	
240000	ENTER	240,000	
32	E +	6.00	
$g \hat{x}, r$	$x \geq y$. 98	r (Good fit)
$\begin{aligned} & \text { Step 2: Fi } \\ & \text { Keystrokes } \end{aligned}$		for 20, 30,	acres.
		Display	Remarks
20			X variable
\widehat{y}, r		135,864.21	Price of 20 acres
30			X variable
\hat{y}, r		193,722.00	Price of 30 acres
40			X variable
$g \quad \hat{y}, r$		251,579.80	Price of 40 acres

3. Through a market analysis youdetermine the following information on apartment units comparable to units you plan to purchase. Using regression analysis, estimate the rent for a 600,750 , and 850 sq. foot apartment.

Size (sq.ft.)	Rent (\$)
650	200
725	215
800	225
900	245
875	240
775	222

Sept 1: Enter data and determine r.

The $12 C$ returns only integer values.
The 38C returns integer or non-integer values.
To make your $12 C$ return the same answers when computing "n" as a 38C, use the following programs.

1. With any payment amount, including PMT $=0$.
A. 38C Payment mode $=$ BEG

$f \quad \mathrm{P} / \mathrm{R}$	$\rightarrow \mathrm{g}$ LN
RCL FV	RCL i
CHS	100
RCL PMT	\div
+	1
RCL i	+
100	g LN
\div	\div
X	f P/R

B. 38C Payment mode $=$ END
f $\quad \mathrm{P} / \mathrm{R}$
RCL FV
RCL i
100
\div
X
CHS
RCL PMT
$+$
RCL i
100
\div
RCL PV
X
RCL PMT
$+$
\div
g LN
RCL i
100
\div
$\left[\begin{array}{lll} & 1 \\ & + \\ & g & L N \\ & \div \\ & f & P / R\end{array}\right.$
f P / R

RCL PMT

RCL i
100
\div
RCL PV
RCL PMT
+
X
RCL PMT
$+$
\div
2. Enter Financial Data and Solve for n
3. Press R / S and calculator will solve for non-interger value of n.

