
Ap Easy Course In
Pro¢ramming The

Q
0
N

oy leRN d Chris Coffin
L Ilflstraeie g;) I%gbertb31067yJ

AN EASY COURSE
IN PROGRAMMING

THE HP-11C AND HP-15C

by Ted Wadman and Chris Coffin

Illustrated by Robert Bloch

Additional editing by Gregg Kleiner and Soraya Simons

Grapevine Publications, Inc.

P.0. Box 118

Corvallis, Oregon 97339-0118

We extend our thanks to Hewlett—Packard Company

for producing such top—quality products and

documentation.

© COPYRIGHT 1984, by Grapevine Publications, Inc.
All rights reserved. No portion of this book or its

contents may be reproduced in any form without

written permission from the publisher.

Printed in the United States of America

ISBN 0-931011-02-7

4th Printing — 1986

Disclaimer: The material in this book is supplied

without representation of any kind. Grapevine

Publications, Inc. assumes no responsibility and

shall have no liability, consequential or otherwise,

arising from the use of any material in this book.

Hou Are Here...
‘,. /& E%—’q,”h“ f A

= Ly {1I N X ey \e

NNN
// -

'—%\\\Iy!/

7

\J- R
. \

s > W\5=\
> .«\(\Q‘\

]

‘1' v

. > o

,7 /8 "

..because you want to learn about your HP-11C or

HP-15C.

And you're in luck! You have found the best and

quickest way to learn about your calculator. This

course will take you on what may be the most

incredible learning experience of your life(!)

This course is self—explanatory. Just follow

the directions as you work through it. If you

already know the material in some places, you'll be

told to skip ahead. And it doesn't matter how long

you take to learn each concept, so just sit back,

relax, and learn at your own pace.

Well now... The best place to start is probably at

the very beginning of the story... —————>

How to Picture It

 ~— S T a0)VVUWY

 o eon e o> o> o o oy

 /!DISPLAY

 O

—
—
-
N
L
O
.
I
U
‘
I
G
\
-
Q
(
I
)
.
D
'
C
)
”
-

I- resister L.STX- reqister DATA-registers

A PICTURE OF YOUR CALCULATOR'S MEMORY

As you may have guessed, your calculator has some

memory of its own, where it can store numbers or

program instructions. But how does that memory work?

And what does it look like?

Actually, it's just a tangle of wires and circuits,

but that's not a very useful way to visualize it.

The above picture is a better way.

Each of those boxes represents a ''register'’ in your

calculator. A register is simply a place where a

number can be stored for later use. Every register

has a name, and you will be learning these register

names and how to use them.

5

(If you already know all about this picture,

and you don't need an introduction to each of

these registers, then turn to page 12.)

DATA REGISTERS

Take a look at this block of registers. These

registers are called data registers (or data storage

registers). '"Data'’ is simply another word for

"numbers,’’ so a data register is a place in your

calculator where you can store a number (only one

number at a time).

Data registers are ''named’ with numbers, starting at

0 and going up. You will use these "'number names"

to refer to the registers in the calculator. But

notice that instead of using the names 10 through 19

where you would expect them, HP chose to use .0

through .9. That's OK; it's simply another way to

number them. Just keep in mind that the register

named .0 can sometimes be called register 10;

register .1 can sometimes be called register 11; etc.

As you know, a data register can hold one number at

a time. And when you store a number in a data register,

you replace the number that was there before.

The HP—11C has a maximum of 20 data registers

(0 to .9).

The HP—15C can have a maximum of 66 data registers

(0 to .9 and 20 to 65).

But that says nothing about the number of data

registers you have in your calculator right now.

That number will vary. You can (sometimes

unknowingly) change the amount of data registers. In

fact, right now (even as you read this!), you may

not have all of the 20 data registers 0 through .9

availlable for storing data.

Keep this in mind, but don't worry about the details

right now. By the end of this course you'll know all

about adjusting the amount of data registers.

So, read on....

.0

q
8
7

b

5
4

3
DISPLAY 2

|

O
I- register LSTX-register DATA-registers

THE STACK

Next, take a look at the stack registers. The stack

1s simply a set of data registers that work together

automatically when you are doing arithmetic and

calculations.

Since these registers are just data registers, each

of them can hold only one number each. But because

they are linked together to form a ''stack,” their

names are different from normal data registers:

X,Y,7ZT, and LASTX.

Because they are used for arithmetic, these stack

registers are the "workhorses''——the most frequently

used registers—in your HP-11C or HP-15C.

e ea» eo» eo» eo» e o oy

 X
<
N
—

5® ADISPLAY

O
—

NP
W
E
U
N
E
N
®
O
G

1
j
o
w
"

I- register LSTX- register DATA-registers

THE DISPLAY

Now notice the display. The display is the window

of your calculator. It's what you look through to

"'see into'' the machine. It's shown here positioned

over the X—register. The display is ALWAYS

positioned over the X-register (the bottom register

of the stack).

REMEMBER! WHEN YOU LOOK AT THE NUMBER IN

THE DISPLAY, YOU ARE LOOKING AT THE NUMBER

IN THE X—-REGISTER, ALWAYS!

So why think of two separate things (the display and

the X—register) if the display is always positioned

over the X—register? The display is always showing

the number in the X—register, so they're really the

same thing, right?

Wrong!

The display is really a separate "window." Sometimes

it's partly shut; that is, it doesn't always show

you the entirety of the number in the X—register.

Instead, it may show you a rounded version of that

number. In fact, the display will show you only as

many decimal places as you tell it to (and you'll

soon learn how to adjust this). But remember, it's

only the display that is doing any rounding. The

number in the X—register is never rounded; it's

always a complete, 10—digit number.

10

- o eo» eo» e o o oy

e e e o e e o oy

I- reSis%er

THE [-REGISTER

DISPLAY

LSTX~ reqister

O
“
N
b
)
.
.
l
?
(
n
s
\
s
l
d
)
-
D
b
'
_
.
;
\
)
.
.
.

DATA- registers

Finally, look at the picture of your calculator's

I-register. It's really just another data register,

but it's named with the letter "I, because, like the

stack registers, the I-register has a special

purpose. The number in the I-register can mean more

to your calculator than "'just another pretty number.”

This special meaning of the I-register will be

discussed in gory detail in a later section, so

again, just keep it in mind for right now.

11

POP QUIZ

(Pop Quizzes appear periodically on pertinent pages

to keep you primed!)

1. What's a data register?

2. How many data registers are named with numbers?

3. What kind of register is the T—-register?

The I-register?

4. What is the display?

12

POP ANSWERS

A data register is a place to hold data

(numbers). One data register can hold one

number at a time (page 6).

. The amount of numbered data registers can vary,

depending on how you have adjusted your calculator.

The HP—-11C has a maximum of 20; the HP—-15C can have

up to 66 (page 7).

. The T-register is one of the stack—registers (the

"Top'' one). The I-register is a special register set

aside for certain kinds of operations. Both of these

are data registers (page 8).

. The display is the window you look through to see

the X—register. Sometimes this window may be partly

"shut,”” thus rounding the number that you see, but

the rounding happens ONLY in the display——mnot in the

X—-register (pages 9-10).

Did you make it through your first quiz without

problems? It's important to have a good mental

picture of the "insides' of your calculator, so if

you need to go back to page 5 and give it another

pass, do so now——before you go on.

13

00707725/(77/)

7, ',fi‘, 5

>

A2 L
SR D SEIEATN v »";' s O ;6“‘“'
-

2
LN

i
Qs uu*, ::f‘\‘.‘A ‘3%"‘?

2’,l »

X/
7

/'y

22Ny,L""1 :
Vi)

PR8

/////

o>
AN
AL
R ""'i/_o‘

N
D

.2 \)
.

R (‘\Q.
.\ fo‘éRY| 2N

;$ ‘
2RESN

SN
R

a5

2 \.%“Q '$“

D

N

2

.
R
e

ARN RS
}__.?.‘

g\§

= ¥“:.’
o

-’

A;'%>SRt X
NS

NNG
“‘\\\\ ’

RS RNNy Tod SN
]

PO Ko ilXRY

|

31
>

:

ANy '§

N

LA/
K

“,.("I/‘/
:—‘.\ll

Numbers

 and Functions

KEYING IN NUMBERS

Now that you know how to visualize the "'insides' of

your calculator, the next step is to put numbers

into it.

First, turn it on: the key is nestled in the

lower left hand corner of the keyboard (it's also

the ""off" key).

If you have an HP-15C and a little 'C' appears in

your display, press the keys [g (the [CF

key is also the key).

Now, to get a number into your calculator, you just

"key it in." The number you key in will be stored in

the X—register (and it will show in the display,

right?).

You don't have to press any other keys.

Try this: Store the number 1.234567890 in the

X—-register.

Solution: Press 1l] 2 3 4

That's all. You're done!

15

ADJUSTING THE NUMBER OF DECIMAL PLACES

Take another look at the display:

pap o e o e e o oy

 ><
<
N
—

 /
/1234567890

1234567890
DISPLAY

As you already know, the display is like a window

over the X—register. And as you may have noticed,

whenever you key in a number, this window slides open

so you can see exactly what you're keying into the

X-register.

But you usually don't need to see every decimal place

of every calculated result; and sure enough, as soon

as you perform any operation on that number, the

window ''closes'’ partly, to show you only a certain

number of digits.

16

Try this: Set the display to show you only four

decimal places of the number 1.234567890.

Solution: Press ff 4

(FIX is the gold printing on the 7 key)

fim________ T
________ Z

Mhasaenidyv[1.2345 6783,43 X

V2346
DISPLAY

The window ''closes down'' so that the number in the

display becomes 1.2346, but the number in the

X—-register remains 1.234567890.

The last digit is rounded up to 6 in the display.

BUT REMEMBER! The display is doing this rounding.

The number in the X-register is NOT rounded, and

any calculation will use ALL 10 digits of this

number. That's the way it is with HP calculators.

They use and store 10—digit numbers—ALWAYS.

The important thing here is that you learn how to

change the display setting any time you wish. So..

17

Try this: Adjust the display to show you 2 decimal

places.

Solution: [[FIX 2

Now this: Set the display to show 9 decimal places.

Solution: [FIX 9

Get the idea? Good. Now, set the display to

whatever is comfortable for you; and remember, to

properly compare your answers with ours, you should

set your display to the same number of digits as you

see in the printed answer, OK?

18

BEYOND THE X—REGISTER

——————————————————————————————————S——————————S———

Try this: Key in 100 to the X—register.

Solution: Press [0/ 0, That's all.

—CE——

Once you have a number in the X—register, there are

three things you can do with that number:

1. Store it in another register.

2. Use it to perform some calculation.

3. Erase it.

The first of these options is to store that number 100

somewhere else. (If you already know about the STO

and RCL keys, turn to page 22.)

19

STORING NUMBERS

Try, for example: Put that 100 into register 2.

Solution: 2

Notice what this [STOl (STOre) key does: the number

being stored is ALWAYS the one that appears in the

X—-register.

Also, the [STOl process 1s a copying process, not a

transferring process. That 100 is now in register

2, but it's still in the X—register as well (you

still see 100 in the display).

So to store into a numbered register, all you do is

press and then name the register: 1,

.3, etc, and as long as the register you name

1s actually there, the number will be stored.

The same is true for the [-register. If you want to

store a copy of that 100 (which is still in the
X-register) into the I-register, just press .

Try it.

20

RECALLING NUMBERS

Now that you know how to move numbers from the

X—register to other registers, try moving numbers

from those other registers back to the X—register.

To do this, you use the (ReCall) key.

This key recalls a number——from any register you

name——back to the X—register.

Key a 5 into the X—register.

Try this: Recall that 100 from register 2 back to

the X—register.

Solution: [RCL 2

[RCL] makes copies of numbers——just like

does. After you press 2, there's a 100 in

both register 2 and the X—register.

[STOl and allow you to move numbers from one

register to another——play '"'musical registers,'’ one

might say. For example, if you want to move a number

from register 2 to register 0, you press 2,

STOl 0.

21

Here's that list again. Once you get a number into

the X—register (either by recalling it or keying it

in), you can:

1. Store it in another register.

2. Use 1t in some calculation.

3. Erase 1t.

At this point, you know all about the first item in

this list. The second item——performing

calculations——is essentially the meat of this

course. For an introduction, take a look at one of

the simpler calculations you can perform on a number

as it sits unsuspectingly in the X—register.

—————————————S——————————————————————————————————

Try this: Change that 100 in the X—register to —100.

Solution: (do NOT use the = key). is

the "CHange Sign'' key, and it always operates on the

number in the X—register.
——C——————————————SS——————————S—————————S—S—S—S——S——S—————

Press again. What happens?

This i1s just one example to show how most of the

other calculation keys work. They usually operate

on the number in the X—register (and sometimes other

registers, too).

_2

FUNCTIONS

5
> £

 Q—_”b

O Pmflw(AT

Y O ”
Z fl[iT Jl\\

A function is simply any operation that the

calculator performs (except for social functions,

which it does not perform). A myriad of functions

——printed in gold, white, and blue——is available

to you on your keyboard. Here are some examples:

——

Try this: Find 103-77

Solution: 3.77 [10%] (Answer: 5888.437)
——C——————S————————S—————S——SS————S—————S——S— V——S—————C——————

The function does just what its name

implies——it raises 10 to the power of the value in

the X—register. You key in 3.77, press [10%], and

the calculator raises 10 to the 3.77th power and

places the answer in the X—register.

23

———

Try this: Find the natural logarithm (LN) of

0888.437.

Solution:
————————————————————S—————————————————S—————C———S———

(If you got this solution with no problems, confused

looks, or wrinkled forehead, you may want to skip

the text on prefix keys and turn to page 27.)

24

PREFIX KEYS

There are two prefix keys on your calculator——the

gold key and the blue key. Notice that

almost every key has a white function printed on its

face, a gold function printed above it, and a blue

function printed below it.

If you want to use a gold function, you must first

press the gold [key. Once you press the gold

key (and RELEASE it), all the keys take on their

gold meanings. When you wanted to use the FIX

function, you first pressed to change the

key to the key, right? The same is true for

the key. If you want to use a blue function,

you must first press the blue key.

23

Notice that when you press [g], a little g comes on

in the display, indicating that all the keys have

taken their blue meanings. Then, if you press [f]

the g is replaced by an f in the display (and the

keys then have their gold meanings).

On your calculator, the LN function always computes

the natural log of the number in the X-register.

So in the problem on page 24, since 5888.437 was

already in the X-register (from the previous solution),

all you had to do was find and use the LN function.

You discovered that it was a blue function and thus

required the blue [g prefix key. By pressing

L[N, you obtained the LN (natural log) of
5888.437. The answer: 8.681 (if your display is

set to FIX 3).

26

SOME OTHER GOOD THINGS TO KNOW

.—C———E—— —— C——SC—E———C————————————C—————C—C———C———————S———S—S——

Try this: Key 10,000,000 into the X—register, using

only two keystrokes.

Solution: [EEX] 7

——

The key means Enter EXponent. Your display

will show "1 07" when you finish the above

solution. But that's the same number as 10,000,000,

as you may already know. To prove this, just press

or 2 to tell the calculator that

you've finished keying in that number. It's

10,000,000 all right. (Notice that 10,000,000 has 7

zeros—no coincidence).

Expressing numbers in powers of 10 is called

"scientific notation.”” You can set your display to

use sclentific notation with the

function. For example, press fl [SCI 2. The

calculator display will now use scientific notation,

with 2 decimal places. (Press [[FIX 2 to get back

to decimal notation.)

_7

As another example, if you want to key in 50,000, you

can either press [0 [0] [0] 0] or you can press

4. By using the function, you're

expressing a number in powers of 10 (five times ten

to the fourth power). On your calculator, scientific

notation can save keystrokes and program lines, as

you'll find out later.

Notice this also: As the 10,000,000 demonstrated,

you don't have to press before you press [EEX.

If you don't press a number before you press [EEX],

the calculator assumes you meant to press a (il

o< o

.“ :{‘0:" SSSSSX S SS ’:.:‘ S S:“" N 2SS R O \\\\\\\\‘\\\ ;‘\XSO & CSSS <X O 5 > W NN

eRRSRRRRRHHRN
RSRReSRSRSRSRRRR
0,0’,“‘\‘ S‘:‘SRS “‘\R\’,S) N S8 2SR T RIIRTIRTIRED SEPTRIIN

There are some other convenient assumptions your

calculator makes about the numbers you give it, and

it's time to talk about some of them. (If you're

not interested in trigonometry——=SIN, COS, TAN,

etc.——you may want to turn to page 32.)

Question: According to your calculator, what is the

sine of 27

Answer: Well, that depends. What do you mean by 2?

Is that 2 degrees, 2 radians, or 2 grads? How do

you tell the calculator what you mean?

The calculator has three trigonometric modes.

Degrees mode is set by pressing DEG; radians

mode is set by pressing RAD; and grads mode is

set by pressing [GRD. The little words, "RAD"

or "GRAD" will come up in the display when the

calculator is set to each mode, respectively. Press

each of these keys to see the effect it has on the

display.

29

When the calculator has been set to RAD mode, it

will assume that the number in the X-register is in

radians. In DEG mode, it assumes degrees, and in

GRAD mode, it assumes grads. There are (2 X PI)
radians in a circle, or 360 degrees, or 400 grads.

(The grads system seems like a logical one, but

these authors have never seen it used.)

Now that you know about these three modes,

ask that question again...

Question: What is the sine of 2 degrees?

Answer: (0.035)

Make sure your calculator is in degrees mode (If RAD

or GRAD appears in your display, press [g] DEG).

Then, to find the SINe of 2 degrees, press 2 [SIN.

30

Try this: Find the sine of 2 radians.

Solution: 2 (Answer: 0.909)
IIGIGCE—C——CE—S—C— SE———CE—CE— CE— SH——C—S—C—S————S——————C—C—C—S—C——S——C——SE——S—S—S—

So remember, whenever you use any of the

trigonometric functions, make sure you and

your calculator are both in the same mode; if you

mean degrees, be sure your calculator is set to

degrees mode!

31

ANOTHER POP QUIZ

Again, be sure of the answers to these before you go

on. (The answers are on the next page, as usual.)

1. Which two keys allow you to move numbers from

one register to another?

2. Which stack register is always involved with

this storing and recalling?

3. Do these functions ''copy’’ or '"transfer’ numbers?

4. How do you change the sign of a number (from

positive to negative or vice versa)? In which

register must this number be in order to do this?

5. What is a prefix key, and how does it work?

6. How many prefix keys are on your calculator?

Which ones are they?

32

MORE POP ANSWERS

. The two keys are and (pages 20—21).

. These functions always use the X—register.

. They copy numbers.

. Use the key. The number you want to

change must be in the X—register (see page 22).

. A prefix key is a key you must press (and

release) before selecting the alternate (blue

and gold) functions on any key (pages 25—26).

. There are 2 prefix keys: the gold fl and the

blue [g].

33

So, what do you know by now?

A. You know how to picture the insides of your

calculator.

B. You know how to put numbers into it.

C. You know that once a number is in the

X—register, you can:

1. STOre it.

2. Perform functions and calculations with it.

3. Erase, or Clear it.

But you haven't really seen too many of those

functions and calculations yet (nor how to clear

numbers out of the calculator). You know how to set

the display to a certain number of digits, and you

know a few other things, but much more is yet to

come.

To know your HP calculator is to love it, and the

first step toward REALLY knowing it is learning

about the stack, that handy little hub of number-

crunching that hums quietly beneath the display.

This is where all that arithmetic is done.

Ah yes..

34

A,

 &4 Q ‘ / A \ \ //
‘ (A . K \ S . (X

RR"“:.:‘".'?/'R5ARxGl""'.».%'/‘,f’,si‘o”’fw’./' Y s_v.lzb\\\%\ 00.0\0, .f"o\}/'o\g ‘\ ‘\/ v ,/v/,/,./,u/;o ,-’,'o
'’\h‘\&O. \\ '“' "%"\’0/Q"Q ’0 'R 0\ ‘ \\\.'\\ Q‘\ 0."0//O% %s‘o »

ROz’RS"‘z'o}’:‘\IR “'&KA
v.‘\\':‘'.““?‘:‘3*‘1*‘9“*”5‘“@‘3~’*3’~*3'?5’~“§~"~*?4$X/i3"’s\"\KX4'*"’QXS'0’.""2X'*R",o:/:v%,'/,';‘""‘ft%ORIAR ROREKY A R . \, ’/‘~~. ,..'. ~Q¢A0\\€ . X // X

QRN '\\\@o‘Os‘?’O\\RARARG'LK~X \‘\\“KRRAR RTINS\ LK 07y3) \, XD X \\ £ \‘Q\\\ O \.‘\\\\.0.0\'\~8‘\\ \0\0“‘,\\ Sy, __Q's .\\._‘,~#./" .‘\‘\Q,\\\\\\ ‘X‘ '#
“‘,"0'06\‘\Q\\\“"Q‘\\\\"\/”""‘.“Q\Q* §\’,\Q Q) §~\\§\\,¢,\..\5\\,~,.\\QQ.’\,Q@ ~s¢‘\\\c.I.O,IQ".0~ /I.QQ.~a;.IR~\‘ o'7S

D S AD A AND

 7
s \~
/

e 1) |

1
'
7
7
L

7
47
7
M
I
I
"

77
54

,

(
2

s

A
L
V

7
L

N

Whenever you do arithmetic on your HP calculator,

you are using that set of five registers (named X,

Y, Z, T, and LSTX) known as the stack. It's

important that you understand how the stack works,

because it is the heart of your HP machine.

 X
<
N
—

 LSTX

The LSTX-register is a rather unique member of the

stack. It is important, but while you are learning

the details of the X—, Y—, Z—, and T—registers, you

can slip the LSTX—-register into the far corners of

your brain——to be retrieved later. So from here

on, when you think about ''the stack,” just think

about the X—, Y—, Z—, and T—registers. The

LASTX—-register is out of the picture——for now.

36

THE STACK

e o e e e e o

e cmr e e e en e e
The stack is designed to help you solve arithmetic

problems. It's that simple.

Try this: Solve the problem 24.2"7

x 3.86

Solution: 24.27 3.86 X

Answer: 93.68

—CE— CE———C—C—GGE—C——CE—CE—C—CE— CE— CE— CE—C—CE CE— CE—C—CE— C—C— CE— CE—SGE—C——C—C—C—CE— CE——CE— GE——S—————S—

You could probably come up with the above solution

with little or no difficulty. When you first started

playing with your HP calculator, you probably had the

general idea that the ol' 2 2 = no longer

applies (i.e. there's no = key on an HP

calculator).

37

But do you know WHY the stack is the better way? And

do you know what's happening in the stack? What

happens when you press [ENTER? Do you know

what "'stack—lift'"" is? Do you know when ''stack—lift"

1s enabled? ..disabled?

If you answered yes to all of the above questions,

turn to page 58. If you do so, however, you will

miss an absolutely stunning explanation (complete

with subtle, semi—hilarious illustrations) about

all of the above. The choice is yours...

38

The above ''stack—diagram'' is a handy visual tool to

demonstrate what's happening in the stack. The ?'s

mean, 'some number is there, but no one cares what

it is." This is to remind you that there can be

other numbers in the stack in addition to the ones

you're working with, but they will never interfere.

This means you don't have to clear all the stack

registers everytime you start a new problem! And

that saves both time and sore fingertips.

Now, there are four things to notice in the above

diagram, and these four things represent the entire

workings of the stack:

39

1. When you turn on your machine and key 24.27 into

the X—register, the values in the stack are bumped

up one notch. The value that was in the T—register

(or Top—register) is gone. It has been bumped com-—

pletely out of the stack and will never return (unless

you key it back into the X—register, of course).

When all the values in the stack are bumped up one

notch like this, the process is called a ''stack—lift."”

2. When you press [ENTER|, you cause another

stack—lift. The values in the X—, Y—, and Z—registers

are each bumped up one register. Notice, however,

that the values in the X— and Y—registers are now the

same; the X—register was copied into the Y—register.

3. Next, when you key in 3.86 AFTER pressing

[ENTER|, no stack—-lift occurs. The 3.86 is simply

written over the value that was previously in the

X—register. Stack-lift is said to have been left

""disabled'' by the function.

4. Finally, when you press X], the values in the

X—, and Y—registers are multiplied, the answer is

left in the X—register, and the other values (in
the Z—, and T-registers) each drop one notch.

Notice that the value in the T—register doesn't

change.

40

There you have it! The workings of the stack in

four easy steps. So, are you ready to write your

first program?

Well, not really. First, you'd better get a little

more practice with the stack. (Of course, if you're

quite comfortable with the stack and ALL of its

features, try page 58.)

41

[ENTER|
On page 40, Step 3 points out that

leaves stack—lift disabled; that is, when you key in

the 3.86, it replaces the number that was in the

X—register, instead of "'bumping' it up.

Take a closer look at these phrases:

1. Stack-lift is enabled.

2. Stack-lift is disabled.

The calculator's normal state is with stack—lift

ENabled. That is, most of the time, when you key

in a number (or recall one from a register), a

stack—lift occurs.

But after the function, stack—lift is left

DISabled. When you key in a number after [ENTER],

the stack doesn't lift.

42

Armed with this knowledge, try another problem.

—C—C—C—CE— CE— CE— CEE—— CE—E— CE— CE—SS—CE———C———C—C—CE—C—S—C—C—————C————

Try this: (87 + (29/5)) X 14.77

Solution: 87 29 5 @ 14.77 X

1370.66Answer:

Look at this solution in the stack. Notice how the

87 stays up in the stack until it is used.

Stack- lif« Stack-[:ft No stack-lift

| Pd__ __?_s__/__?.b__——’__?_b__
P / ?o ?a — Pa

- _Pb_ - _Po_ -~ 37.00(—s

|

87.00
2w 17 &7 e 87.00 - 29 |

r' ?G ?Q ?Q

8700l [% | [LZa
- 23.00] [87.00] [_Za
5 5.80 92.80

(

% %a
% 7a
280 |% _

Vo[y77 1370. b4
W77ox—

43

Here's another way to solve that problem:

29 [ENTER| 5 [&] 87 H 14.77 X

Try to fill in the stack diagrams for the above

 X
<
N
-

e e e o oy

e - . o o

e s e e o

solution.

24

?c

?b| _ 5

\y
H—Slsgr—— E———”L—MHJ?—-"J

e s a» oo oy

e e - e

REMEMBER! does two things (in this order):

1. It causes a stack—Ilift.

2. It disables stack-lift.

44

If you make a mistake while keying in a number, and

that mistake is now sitting in the X—-register (i.e.

you see it in the display), you can replace that

incorrect number in the X—-register with the correct

number (without disturbing the rest of the stack) by

using the function CLX (Clear X).

Suppose, for example, you're working out the problem:

477 —-/(7.55)* — 4(2.9)(1.63)

2(2.9)

One set of keystrokes that will work for this

problem 1s:

4.7 [ENTER] 7.53 [g] X% 4 [ENTER! 2.9 X] 1.63

X = /5] & 2 [ENTERI 2.9 Xl

But suppose that while you are going through these

keystrokes, your friend asks you what telephone

number to dial in case of an emergency, because the

backyard is on fire. So, right before you press that

last X], you realize that you have keyed in 911 and

not 2.9. How can you correct this error?

Answer: Press [CLX.

45

Here's what the stack looks like as you go through

the keystrokes:

| e e T
’b ?c | Z

B 74 Y
[2d 4.7 | X

Lo47—

%4 | 4.70_] T
4700 [57.00] 2
| 57.00_ | 4.00_ Y
4 ~.00 X

43y EnTER] TLo 2.

570] [a70] [aw0] [&7] [%w©]T
a.70] [37¢] [4a70] [&7] [4.70]z
sz00) [AIo) [470] LA7o] LAY

38.04 ©.17 -1.47 2 X

..__J*L___> promIoa—TST

| 4.70_ | 470| | 4.70_(—> | 4.70|
= 147] =137 "LAT > o3T
_ 2.00_| | 2.00_ | 2.00| —>| 2.00
2.00 qi) 0.00 2.9 e

EnTeR]T911 TbEIEXTs29—T-
HE&ES

THE BO0O-800!

The CLX function (CLear X) does two things (in this
order):

1. It simply replaces the number in the X—register

with a zero;

2. It DISABLES stack-lift, so that the next number

you key in will simply replace the zero in the

X—register, without disturbing the rest of the stack.

46

THE (BACK—ARROW) FUNCTION

The (back—arrow) function is another function
you can use to correct errors. This key will remove

one digit at a time from a number if it is currently

being keyed into the display.

Take one common example: Suppose you are casually

keying in some number while remembering the piano

concerto you performed last week with the New York

Philharmonic, and you hit a few wrong digits. You

can correct this simply by stopping. Then, before

you press any other keys, press the Kd key, and you

will see the number in the display being reduced one

digit at a time with each keystroke.

When there is only one digit of your ""partly—built"”

number left in the display, or if you're not

currently keying in any number, then pressing the

=] key is exactly like pressing [CLXl. You'll

get a zero in the X—-register, and you'll DISable

stack—-lift.

Don't worry——you'll get comfortable with these details

after some practice.

47

IN SUMMARY:

The main thing to remember about the stack is that

ENTER and CLX are the only two commonly used stack

operations that leave the stack DISabled. Most

other operations will leave the stack ENabled. This

may seem complicated, but it's really quite simple,

once you have practiced it a little bit. It's like

driving a car: you'll soon find that you're not

consciously remembering what the stack is doing

(bumping numbers to and fro), but that you know how

it works nevertheless!

48

OTHER STACK OPERATIONS

There are three other functions that you can use to

move numbers within the stack. These functions are

X<>Y], R¢], and Rtl. Simply by knowing their names,

can you tell what these functions do?

ICEIIGCERATEGGEN CE—GSCE—E—SS——C——S—SOSE— CE—————SS—S—GCE—.STC———C—.S—S——C— CE——C—C———S——

Try this: Set up your stack like this:

| 4.00 |IT
| 3.00 |2
| 2.00]Y

| X

Solution: 4 [ENTER! 3 [ENTERl 2 [ENTER 1

 2.00 |

2

27—ST—L |2

Now try this: Without keying in any numbers, reverse

the order of these values in the stack.

Solution: XY Ri] XY

49

Here's what the stack does as you work through

that solution:

| 4.00 _ | 2.00 | | 1.00 _ _..L-O_O_fl'
| 3.00 | 4.00 | 2.00 _2.00_ |2
| 1-00 _ | 3.00 _ | 4.00 _ | 3.00 Y

2.00 (.00 3.00 C 4.00 |X

As you can see, the (Roll Down) function rolls

all the values in the stack down one register, and

the value in the X-register is sent up to the

T-register. The other function, (Roll Up), does

just the opposite. You can see where these names

'""Roll Down'' and '"Roll Up'' come from.

The function XY (X exchange Y) does just what its

name implies, too. It exchanges the contents of the

X— and Y-—registers.

50

MORE STACK PROBLEMS

Now, to become totally comfortable with the stack

and its functions, you have to practice a little and

look at a few stack diagrams. So relax, take your

time, and you'll find that solving problems is no

problem at all!

Try this: 9 +/(12 x 3.3)"" — 75

Solution: 18.87

| _Pa _ e Pe Pe

P _] % | _% | _ 24]
%_ 7 | 12,00] | 12,00 _

?d 12 I2.00 3.3

— 12—EER—Y33—

| _Pe _P ?c Pc(eIl oAl [oEI] s
%4 _ | 39.60 | _fd_ _ 172.49
39.60 .4 172.49 75

X—— |4——(E—Ju—ns——fl

| _Pe _ | _P_ | _T _ _ | _ P _ T
| P _ | % _ _ 74_ L _% _]Z
| _ 74 _ | _ %4_ ..‘3.-97._.. | 24 lY

q97.44 Q.87 18.87 X

EJL__)._JL___)q.__JL__}.__:S*

51

aG

gB¢filLUTJfi.Im
'-"l

peo»eo»eooeapeoool"'l

.

eoo»eohe»eeo

l'lll

paseooooopueeooy

eeaneeeoy

pu-—-—-—-—--——-—Lpu—-—--—L
°.

eoareo»ooseea»ooeeeeoeeeeo

—C———C——————————————S————S————S—————————————————————

¥0'cG -Uomnnjog

STy}A4,

—CE— CE— CE— CE— CE— CE— CE——C—CE—WSW————S———————————S——————————————————S— S—

How about this? 0.7 x ((9.770 x 10°) + (6.89 x 104))

Solution: 177,803.00

?a e Qe

L _%o_ e] L _ U]
| _ Qe _ |_ € 477000.00

?d Q.77 05 689 o4

9776570B—LtBq-Hfl

¢ Te Pe

TRl foutl [zl
B To«TscToo'o_; B
1045900.0 177803.00

A—JL.|7___fi‘__; [—

93

DATA REGISTERS AND THE STACK

Now take a look at how you can use numbers stored in

data registers for arithmetic problems. For example,

store a 5 in register 1 and a 4 in register 2 (5 1;
4 2). As you know, the STO and RCL functions

will leave stack—lift enabled.

Try this: Add the number in register 1 to the

number in register 2 and keep the result in the

X—register.

Solution: [RCL 1 [RCL] 2

| T4 _ 2 L _2 L _ 26 (T
¢ L _e | _ ?a_ L _ o |2
T _%a_] - 5.00 _ _2e_ Y
T T 7 5.00 44,00 q.00 |x

L|—R—@—3

? o
—
p
r
r
o
o
o

Data - rea'ast'e rs

54

—S——C—S————————————————————————————————————G—————————————

Now this: Multiply the number in register 1 by the

number in register 2, but this time let the

result end up only in register 1. In other

words, use ''register arithmetic.”

Solution: 2 X 1

0 |2
.00 |}

[39.00]x 7o
i DATA-res'asters

[RCL) 2

2

_ - .00 |

? 0
”~

£.00 X -

"Register arithmetic' is convenient for performing

arithmetic and storing results at the same time.

It really comes in handy when you're writing

efficient programs, as you'll soon find out.

95

THE LSTX REGISTER

Finally, here is a quick look at that mysterious LSTX

register.

The LSTX register is really just another data

register. But what sets it apart is that the number

in this register is always changing (automatically)

as you do arithmetic on your calculator.

Whenever the number in the X—register is altered in

any arithmetic operation (like + or =), the last X

value is stored in the LSTX register. You can

recall this value by pressing [g] [LSTXI.

In general, functions that simply move numbers

around (like X<>Y and STO) don't save the last X
value. But most functions that alter the number in

the X—register will save the unaltered version in

LSTX.

LSTX is a register you may not use much, but once in

a while you may find it handy for correcting errors

you make in your stack arithmetic.

To recall to the X—register the value currently saved

in LSTX, you would simply press [g] LSTX]. It's

that simple.

56

Notes

57

QUIZ

1. To double the number in the X—register, you can use

the keystrokes ENTER 2 X (three keystrokes). Can

you accomplish the same thing with only two

keystrokes?

2. (Part 1) Without using the ENTER key, configure
the stack as such:

por o= en e o

then, (Part 2) without keying in any numbers, compute:
(35 — 2.2)° + 4.7

1.6

3. Which set of keystrokes will clear the stack

(store zeros in all the stack registers X, Y, Z, and T)?

a. [g] €]]

b. [g] [CLX] O [g] [CLX] O [g] [CLX] O [¢] [CLX] O

C. [ENTER! [ENTER]

d. 0 RI X X X

4. True or False? 1 [ENTER! [RCL] 2

gives exactly the same result and leaves the stack

set up exactly the same as 1 2 [H.

58

ANSWERS

1. Yes, [

2. To set the stack up in part 1 (without pressing

[ENTER), 1.6 3.5 g 2.2 [g] 4.7 is one

possibility. The trick here is that the execution of

almost any function leaves stack—lift enabled.

Thus, when you do something like [g] or [Re],

the calculator assumes you've finished keying in

the previous number, and stack-lift is enabled.

For the second part, you can use the keystrokes [RY

H g X1 [g] RY H XY H = 3.9938.

3. Both c and d are correct. Selections a and b

very effectively clear the X—register. There's a

rare chance that selection d can cause an error if

the numbers in the stack are huge.

4. True. Pressing [ENTER would be a waste of time

and extreme effort in this case. Draw the stack

diagrams if this isn't clear to you.

o9

1,
X OO

ow\ofi\\»wwl/
'O;N ,sco‘ss ROO ', K,,flS/‘0\".QW\\.

vy

ses7> %

A e £/A LREL Ly774
% LI2 T 77

) > 2 2 4

& soAl fseSA75 LA LLlr L e” >
R, WRRLLUETLTIT 72 oagar/2 s P
RALQ.-wm\\\\\ \ A A
B R8I AAL =

X ‘\\77Ll» d (5‘i"&“‘ 7 2 K
«hd\l&. / Wr g !lll' -/
.,.bb.'\b& % 77 27

PRIRLE52 P

AT

L7 772
! s.V(flQ.\\QN»\OO Lt

T

7

D

/ 2 \\!

=z

77NViys\= 47

Ne

L
LA =~z 75 T \

L H2D L

RISlotootS K &2 2 72

ALso7
2, B L%LIS AS72AQN\Q.\.‘V7R

A2

R\X%
I7277

s.hflfi" N.vnv."“”“\\\'flfi\.i\\\““\\Q
OAN ,-”lOQNQQ.\\\W\\\\Q

(000%\\» PNLIRL
oo o

‘
LA

fls%wo\bhv NSA2K
DAL s L5

The Naked Program

Imagine that you've just finished a physics

experiment and you have a list of fifty

temperatures. But because your lab is ill-equipped,

you had only Fahrenheit thermometers to use, so you

measured all of those temperatures in degrees

Fahrenheit. Now you need to convert them to more

acceptable units—degrees Celsius.

The formula to do this conversion 1is:

5 X ((degrees F) — 32)

9

= (degrees C)

Try this: Figure out the keystrokes you need to

convert 97 degrees Fahrenheit to degrees Celsius.

Solution: 97 [ENTER] 32 [5 X 9 [l

And now do the same conversion for 85 degrees

Fahrenheit.

Solution: 85 32 =15 X 9

61

Well, running through these keystrokes fifty times

(once for every temperature you took in your

experiment) is going to be no fun at all. You're

going to be repeating the same seven steps over and

over for each temperature, and this will probably

become a real drag.

But wouldn't it be nice if you could write a program

so that all you had to key in was the Fahrenheit

temperature, and then by pressing ONE other key, you

could get the answer in Celsius? That is, wouldn't

it be nice if you could write a program to solve this

equation?

5 X ((INPUT) — 32)

9

= (OUTPUT)

Good news....

You have already written that program!

62

You didn't know you were already programming,

did you? The keystroke sequence you developed as a

solution to this equation is indeed a program.

Right now, the program is recorded in your mind

(and a few pages back). When you work through the

sequence of keystrokes to convert a Fahrenheit

temperature to Celsius, you must first call up the

program stored in your mind, and with the help of

your fingers, work through it, step—by-—step,

starting with and ending with &l

BUT THERE IS A BETTER WAY.

Why clutter YOUR mind with the numerous keystrokes

required to solve common mathematical problems? Why

not simply store those keystrokes in the continuous

memory of your HP calculator?!? Afterall, that '"'C"

in HP-11C and HP-15C stands for '""Continuous Memory,"

so why not discover the beauty of the '"'C''?

DDSS——C—C———)—S—, —s"—s"—"—————————————————————————————————

Try this: Key in a program that you can use to

solve the equation:

5 X ((INPUT) — 32)
 = (OUTPUT)

Before you can find the solution to this, you need

to take a look at the program memory of your

calculator. This memory is where you can store

keystroke sequences (i.e. programs) for repeated use.

The program memory of the HP-11C is slightly

different from that of the HP—-15C, so there are two

separate sections on this subject. If you have an

HP-11C, you will want to read the upcoming section,

but if you have an HP—-13C, please turn to page 71.

64

PROGRAM MEMORY IN THE HP-11C

Program memory in the HP-11C is easy to understand.

First, you have 63 lines of memory to be used only

for programming (a "line'"’ is a step in a keystroke

sequence, such as ENTER], ST0 1, H, etc.).

Then, once you have used those 63 lines, if you need

more lines, the calculator starts automatically to

convert data registers to ''blank’’ program lines——as

you need them! Each data register will be converted

into 7 lines of program memory.

The first register to be converted is register .9,

the second is .8, etc. If you multiply the twenty

available registers by seven lines and add those

first 'free'’ sixty—three lines, you will find that

the longest program that will fit in your calculator

1s 203 lines.

65

It's important to remember that your calculator

automatically converts storage registers to program

memory, because once a register is converted, it is

no longer available for storing a number.

For example, if you have a program consisting of more

than 63 lines stored in your calculator, and you try

to store a number in register .9, you will get an

ERROR 3 message in your display. Storage register .9

no longer exists! It will come back only when you

clear program memory or reduce the length of the

program to 63 lines or less. OK?

Now, you may be wondering how many keystrokes can fit

in one program line. Well..that depends.

Generally, a single operation will use one program

line. Therefore, would be a program line, but

£l [FIX] 9 would use just one line, also.

66

PROGRAM MODE

Now, how do you store program steps? How do you

record those keystroke sequences for repeated use?

Well, when you turn on your calculator, it is in "Run

mode.” You can put your machine into '"Program mode"

by pressing (Program/Run). Try it.

Just as the key is used both for turning the

calculator on and turning it off, the key is

what you use to switch back and forth between

Program mode and Run mode.

Now you should see the little word PRGM (the program

annunciator) appear in the lower right—hand corner of

the display. This program annunciator tells you that

your calculator is in Program mode.

Look at the display while your calculator is in

Program mode. You see a number at the left (this is

called the line number), followed by a dash and

perhaps more numbers.

67

The first thing you need to do is clear the program

memory of your calculator. Press [fl CLEAR [PRGM]

Did you find the CLEAR key? Don't let that

bracket notation fool you.

This:

 | CLEAR]

2 PRGM REG PREFIX

means this:

CLEAR CLEAR CLEAR CLEAR

2 PRGM REG PREFIX

When you press

[fl

CLEAR [PRGM——with your

calculator in program mode——this clears away any

programs that you had stored there previously.

68

Now that you have cleared program memory, this

picture describes the memory of your calculator:

PROGRAM

MEMORY

(03 Lines)

DATA- r'esisters

69

O
=
P
W
I
L
I
M
E
N
®
O
5
L
,
h
e
N
o
o

Each DATA-regis%er can be

converted into 7 lineg of

Pr'osram meTflOrfl .

THE FUNCTION

The HP—-11C has a function called MEM (MEMory) that

gives you a description of the status of its

memory. Press and HOLD DOWN the

key. As long as you hold down this key, the

calculator will display a message like '"'p—63 r—.9."

This means you have 63 lines available for

programming (p), and the highest data storage
register (r) available is register .9 (register 19).

So you have 20 data registers (0 through .9) and 63

blank program lines. Your calculator's program

memory is a ''clean slate,’ which makes sense, because

you just pressed a key to clear away (erase) all
programs.

Now zip on ahead to page 82 (unless, of course,

you'd like to derive additional enjoyment from

learning about the program memory of the HP—-15C).

70

PROGRAM MEMORY OF THE HP-15C

Similar to us humans, the HP—-15C is endowed with a

certain amount of memory. The HP—-15C can store

lots of numbers and programming information and if

you clearly understand how it is storing this

information, you can make the best use of this

powerful little machine.

The human memory is very complex, and fortunately,

in using it we don't have to know how it works (or

doesn't work). But the HP-15C is a little pickier.

If you find your calculator frequently flashing

ERROR 3, ERROR 4 or ERROR 10 at you, then you need

to have a clearer picture of how it uses its memory.

71

S0, how much memory does your HP—15C have? That's

an easy question to answer—the HP—15C has 66

registers of memory——but that answer doesn't tell

you much, does it? This picture may help:

22
21
20
.9

-8
i

Movable boundary g
. , A A

The top of Data g

memory, .;

4
3
2.
|

0
72

Back on page 5, you saw a picture of your

calculator's data registers, and you learned that

the number of data registers in your calculator

could vary. In fact, YOU CONTROL THE NUMBER

OF DATA REGISTERS IN YOUR CALCULATOR.

Basically, you set the number of data registers and

then use the remainder of memory for storing things,

like programs, matrices, an imaginary stack, etc.

That's all there is to it. By setting the number of

data registers, you are moving a boundary that

separates ''data register memory' from "memory used

to store other things."

If you decide to use all of the calculator's memory

for data registers and you move the boundary to the

top of register 65, then you will have 66 data

registers (0 through 65). But if you do this, you

will have no memory to store programs. So, when you

try to key in a program, or key in a matrix, or

perform any other operation that makes use of

"memory used to store other things,”’ your calculator

will scream: ERROR 10, and you will probably blush

(ever so slightly).

73

Similarly, if you move the boundary down to the top

of register 6, as shown in this picture, and then

try to store a number in register 12 or 135, you will

generate another error (ERROR 3), accompanied

undoubtedly by more blushing.

O
—
-
d
D
w
L
r
n
g

¢+
¢

The “top” of data memory

set at register ©.
Every register that is located above the data

register boundary can hold seven lines of program

memory. The lowest you can move the boundary to is

the top of register 1. If you did this, the only

data registers you would have available would be

registers 0 and 1. But you would have 64 registers

of "'memory used to store other things.'" Now, 64 times

7 is 448. That means that if you didn't have

anything else stored in memory, you could fit 448

program lines into your calculator.

(Could this be rivaling the memory we humans

possess...?)

74

PROGRAM MODE

Now, how do you actually store program steps? How do

you record those keystroke sequences for repeated use?

Well, when you turn on your calculator, it is in "Run

mode." You can put your machine into '"Program mode"

by pressing (Program/Run). Try it.

Just as the [ON] key is used both for turning the

calculator on and off, the key is what you use

to switch back and forth between Program mode and

Run mode.

Now you should see the little word PRGM (the program

annunciator) appear in the lower right—hand corner

of the display. This program annunciator tells you

that your calculator is now in Program mode.

Look at the display while your calculator is in

PROGRAM mode. You see a number at the left (this is

called the line number), followed by a dash and

perhaps more numbers.

The first thing you need to do is clear your memory

(that is, clear the program memory of the

calculator). This is necessary because the

discussion on the following pages assumes that your

calculator's memory has been cleared.

75

Press [fl CLEAR [PRGMI.

Did you find the CLEAR key? Don't let that

bracket notation fool you.

This:

 l CLEAR |

2 PRGM REG PREFIX

means this:

CLEAR CLEAR CLEAR CLEAR

> PRGM REG PREFIX

When you press [fl CLEAR with your calculator

in PROGRAM mode, any programs that you had previously

keyed 1n are cleared away. Now get back into RUN

mode by pressing [P/R. The little program

annunciator disappears and the number in the

X—register comes into the display. Finish clearing

your calculator's memory by pressing

[f] 0 8

(Later on, you'll learn what that does.)

76

MOVING THE DATA REGISTER BOUNDARY

With your memory clear, you can freely move that

boundary between data registers and "memory for other

things."

T—C——————————C—GE—C—C——C——C—C——S—C——C————S——————————

Try this: Set your calculator so that the highest

numbered data register is register 65.

Solution: 65 [DIM] [(i)]
—————————————————————————————C—————S——————

(If you know all about the DIM function, and

the DIM] [({) function, then flip on over to

page 82.)

The (dimension) [@) function is what you use

to move that boundary between ''data register memory"

and '"'memory used to store other things."

When you press [fl DIM [i), the calculator moves

that boundary to (the top of) the register specified
in the X—register. The calculator wouldn't do this,

however, if in doing so it would destroy any

information currently stored in the "'memory used to

store other things.” That memory is given top

priority by the machine.

77

But since you have just cleared the entire memory,

the calculator knows you have nothing in there to

lose, so by pressing 65 [@), you have

moved that boundary to the absolute top of your

calculator's memory. You have provided the maximum

number of data registers. Pretty slick, eh?

To prove this, put your calculator into program mode

(el P/R)) and try to key in a program line (e.g.,

press BINl or [I/x]). The calculator will show

ERROR 4. This means that you have no room allocated

to store programs. Clear the ERROR message by

pressing any key, and then get out of program mode

(& [P7E).

Now suppose you want to try to store a number in

register 65 or register 50 just to prove to yourself

that they exist (do you doubt?). But you can't just

key in 3.1416 ST0 65 (try it)! The calculator will

take that as 3.1416 [STO 6, and then the 5 will go

into the X—register as the first digit of a new

number. There are new and different procedures for

using registers 20—69.

So for the moment, just take for granted that those

registers do indeed exist. You'll learn how to use

them in the section starting on page 144.

78

————————————————————C——S—C—S————————S—S————S————S—S———S—S—

Try this: Set your calculator so that the highest

numbered data register is register .4.

Solution: 14 [()]

Remember back on page 6, we said that register .4

was the same as register 14, that register .7 was the

same as register 17, etc.? When you key in 14 [f

(@), the calculator moves the boundary to

the top of register 14 (which is called register .4).

Your memory looks like this:

memorg used to

store programs

ond. other fhir}gg

4

The “top" of

DATA memory

 o
—
o
w
D

79

Now, try to store a number in register .9. Press

3.1416 [STO] .9. The calculator displays ERROR 3,

and you blush——slightly. That means data register .9

(register 19) does not exist. The highest numbered

data register is 14 (.4). Again, clear the ERROR

message by pressing any key. Now try 4. It

works. But try ST0l .5. You get ERROR 3, and more

blushing. It's obvious where the boundary is, right?

Try this: Set your calculator so that the highest

numbered data register is register .9.

Solution: 19 [l [A)]

80

THE FUNCTION

The HP-15C has a handy function called (MEMory)

that gives you a description of the status of your

memory. Press [g and HOLD DOWN THE

KEY. As long as you hold the key down, the

calculator will display a message such as ''19 46 0-0."

The first number tells you the location of the

boundary between ''data register memory'' and '"'memory

used to store other things." The second number tells

you how many registers of that "'memory used to store

other things'' are empty. And the last two digits

give you information about how much of that "'memory

for storing other things'' is being used to store

program lines. Isn't that thoughtful?

Another way to find out where the data register

boundary is located is by pressing

[@). If you do that now, the number 19 should

come into the display. Try it!

81

THE PROBLEM AT HAND

Where were we?..0h yes, temperature conversions.

The side trip you took through the details of program

memory should have left you with an empty program

memory and 20 data registers (0 —— .9).

Now that you know you have enough memory to do some

programming, it's time to look at the solution to

that temperature conversion problem.

T——————S——————S—S—S—S—S—S——S—S———S—S——————————————————S——————S—

Here are the keystrokes to create a program to solve

the equation:

5 x ((INPUT) — 32)
 = (OUTPUT).

9

Solution: [g] [P/R| 32 = 5 XI 9 & [g] [P/R]
.CEIGGCE—C—C——CE—CE—S——S—————C—S————S——S———C——S—S——S————S———S—S————S—C———

(If this is too easy for all of you calculator

wizards, go ahead to page 85.)

82

When you're going through those keystrokes, the num-

bers that come up in the display may not make much

sense. They are called '"'keycodes' and are described

in detail later on (page 91), so don't worry about

them right now.

Here's a brief description of what's happening as you

press the keystrokes of that last solution:

The keystrokes [g] P/R] switch your calculator from

RUN mode to PROGRAM mode.

If you have been following along up to this

page, your display will show ""000-" with the program

annunciator (PRGM) showing in the lower right hand

corner of the display. '""000—" means that the program

"pointer' is on line 000 of program memory. This

program pointer is simply a little counting device

that tells the calculator what line of a program it

should look at (or perform) next.

83

As you key in the program (32 = 5 9) you

will see the line number change. The program

pointer is moving!

(If you should make a mistake, just press fl CLEAR

and start again by keying in 32.)

After you press] the display will show ""007— 10"

indicating that there are 7 lines to this program.

Finally, get out of PROGRAM mode by pressing P/R]

84

RUNNING THE PROGRAM (E/S))

When you switched back to run mode, the program

pointer was positioned to the last line in the

program. You are going to run this program now, but

first you need to move to the top of the program.

Press to move the pointer up to line 000.

Now try a temperature conversion.

SToeeeeeeess.ss.Sssee,e,S,eti,S‘essSe.s‘e,ee,e

Try this: Convert 212 degrees Fahrenheit to degrees

Celsius.

Solution: 212 (Answer: 100)
GGGCE—GC—C—C—C———C—C——C—C—C—E—SC—CE——C—C—S—S—S—S—C—S—S—S—S—S—S—S—SSE——E—CE——CE—SE—C—S——S—

Try this: Convert the following Fahrenheit

temperatures to Celsius temperatures:

32, 70, 85, 100

Solution: 32

70

85

100
TC—C——C———SSE— S— SE—S————S——————S—S——————————S———S—————————S——S—

85

Now think back and compare the manual solution for

these temperature conversions to the same solution

recorded as a program. You will probably smile

smugly, and the tiny muscles in your fingers will be

eternally grateful.

On page 61, you converted 97 degrees Fahrenheit to

Celsius by keying in 97, pressing [ENTER| then

working through the keystrokes:

32 =15 X 9

Now you have a program to do the above keystrokes;

so to convert 97 degrees Fahrenheit, you would press

97 [R/S].

86

R.CE—SWS———————————CE———C——SGS——SSWGGSCEEGSS—SS——

Question: The first two steps of the recorded program

are 32; that is, the program puts the number 32 into

the X—register. But if you've just keyed in 97 before

starting to run the program, why doesn't that 32

write over the 97? Or why doesn't it continue to

form one number: 97327 Normally, if you want to

key in two numbers in a row, you have to tell your

calculator to save the first one; to do this, you

press [ENTER], as in the manual solution above.

So why don't you have to press 97 ?

Answer: Because the function—1like most

functions——ENables stack lift, so that the next

number keyed in will automatically bump the pre—

vious number up to the Y—-register, safe and sound.

Smart machine, no?

Voild! You have a program in memory and you can use

it to convert the 50 temperatures from that physics

experiment. This allows you to whip through all

the calculations of this experiment in a matter of

minutes. And this gives you more time to indulge in

other, more pleasant aspects of life (such as the

consumption of cold beer on hot days, or the

continued reading of this literary classic).

87

MOVING AROUND IN PROGRAM MEMORY

You'll probably begin to notice how often you are

thinking about the program pointer: Where is it?

What's it doing? (Will it be home by dark?), etc.

Well, your calculator is always '"'pointing'’ to a line

in program memory. To find out which line it's

pointing to, you simply have to put the calculator

into program mode and look at the display. (The line

number is the number on the far left of the display.)

Before you ran your temperatures program for the

first time, you had to move the calculator's program

pointer to the top of the program, by pressing [g

RTN] in RUN mode. This demonstrates two things that

are always true:

1. If you run a program by pressing the

calculator starts at the line it's pointing to and

works downward, executing each line in the program.

2. Pressing in RUN mode will move the

program pointer to line 000.

88

Question: Now that you've run the program, where 1s

the program pointer?

Answer: At the top of the program (line 000).
——— — — GCE—CE— CE—E—SCE——— CE—S—C—ICE—SSSNISSSE——S—S——SCE——C—S—S—

When your calculator reaches the end of a program, it

jumps to line 000 and stops. This allows you to

run your program over and over, each time keying in

a new input and pressing R/S|

But notice that there are several other ways to move

the program pointer around:

The ST (Single STep) function moves the pointer
ahead one line. The BST (Back STep) function

moves the pointer backwards one line.

And if you want to move to line "'nnn' of your program

(where '"nnn"is some 3—digit line number——002, 156,

etc.), you can key in "nnn'' (if you have
an HP-15C) or I "nnn" (if you have an HP—-11C).

89

—C—CE—C—————S———C—————S—S—C——S——————S———C——S—————S—S——S—S—

Try this: Put your calculator into program mode and

move to line 005.

Solution:

g] P/R] [GTOl [CHSI 005 (for HP—15C owners)

g] [GTol 1 005 (for HP—11C owners)

(In the next section, you'll learn why this function

is different for each of the two calculators)

—C—C———S———SE—— SE—S— SE————C——S———S—S———S——————CE— CE————————S——S—S—S——

Try this: Move backwards one line, to line 004.

Solution: [g

90

KEYCODES

When you switch into program mode and look at the

lines of a program, the display shows merely a series

of numbers (called keycodes, as you may recall).

Now, to relieve the suspense, look at what those

numbers mean:

As you already know, the number at the left in the

display is the program line number. That is,

everything to the left of the hyphen is the line

number.

Everything to the right of the hyphen is a coded

description of the keys you pressed to make up that

program line——plain and simple.

Most of the keys are described by two digits which

indicate their row (counted from the top of the

keyboard down) and column position on the keyboard

(counted from left to right). For example, the

keycode for the [CHS key is 16 (row 1, column 6),
the key is described by 34, etc.

But the number keys ([0 through) are described
by only one digit—the digit that they represent.

For example, the keycode for [l is 5, 6] is 6,

etc. This isn't so bad, is it?

91

Question: What is the keycode for the key?

Answer: 20 (row 2, column 10——called column 0)

Question: How would the program line 5 be

represented in the display?

Answer: nnn— 44 5 (nnn is the line number)

Do you feel somewhat comfortable with keycodes? If

not, don't worry; you'll get used to them.

92

REVIEW

Once again, it's time to distill things down to

essentials:

In this chapter you've learned a little about

program memory in your calculator.

You've learned that keying in a program to solve

some problem is almost identical to using manual

keystrokes to solve that same problem.

You've learned the difference between RUN mode and

PROGRAM mode; what the PRGM annunciator means in

the display; and how to move around in a program by

using the [SST], BST], and functions.

Try this quiz just to check yourself to see how much

you've absorbed.

93

QUICK QUIZ

1. What's the difference between RUN mode and

PROGRAM mode? Can you tell which mode your

calculator is switched to by looking at the display?

2. What keys do you press to clear all the

programs from program memory?

3. What do the numbers mean that come into the

display when you press [g| MEM|?

4. If the program pointer is pointing to line 005

in a program, and you press (in Run mode), the

program will begin to run at line

If you press R/S], the program will begin

to run at line

94

QUICK ANSWERS

1. In RUN mode, functions will be executed

immediately when you press the keys. In PROGRAM

mode, functions are stored as lines of a program (to

be executed when the program is run). If the

calculator is in PROGRAM mode, the little PRGM

annunciator will appear in the display.

2. g (to switch to Program mode)

fl CLEAR (to clear all programs)

3. On the HP—-11C: The number following ''p'’' is the

amount of empty program lines in the first 63 lines;

the number following ''r'' is the highest numbered data

register available for storage.

On the HP-15C: The leftmost number is the highest

numbered data register available for data storage;

the center number is the number of empty registers

in the "'memory for other things;' and the rightmost

(hyphenated) digits tell you how much of the "'memory

for other things' currently contains program lines.

4. Line 005; line 000.

95

Notes

96

~—

Decisionmaking and Branching [

DECISIONMAKING AND BRANCHING

Up to this point, you've seen only what we call "'a

naked program'' (a program that is always run from

top to bottom, with no frills, made up mainly of

arithmetic functions). Now it's time to look at

some of the niceties that your calculator is

equipped with——some functions that you can use to

create fairly elaborate programs.

98

—C——C————C——————————————————————————S———W——————S————S—

Try this: Create and run a program that uses the

display to count by ones, starting at 1. It should

first display 1 for a moment, then 2, 3, 4, etc, up

to 25. Then, if flag 1 is set and the value in

register 0 is greater than the value in register 3,

the program should finish with PI in the X—register

(rounded to 3 decimal places); otherwise, it should

finish with 0 in the X—register.

Solution: The solution to this appears on page 140.

If, without looking at the solution, you can write a

program that does all this, then GTO page 138 and

continue on from there. If not, then you should

probably continue here and read about labels.
ICE—G.SSSS—NSSE—S—T——SE—S—S——CE—S—S——S—ST——S—S—S—S—C—CE—S—S———S—S—S————C—————S—

99

LABELS

Labels are used in programs as markers. They can

mark the top of a program, or they can mark important

"landing points" for jumping within a program. You

can tell the calculator to move its program pointer

to a label either with direct (i.e. manual)

keystrokes or with "jumping' instructions that you

have recorded as program lines.

The HP—-11C is equipped with the labels 0 through 9

and labels A, B, C, D, and E. The HP-15C has all the

labels that the HP—-11C has, plus the labels .0

through .9. (This is why you must use [GTO0l [CHS
"nnn'' if you want to move the pointer of your HP-15C

to line '"'nnn." As you can see now, if you pressed

I '"n,”" your HP—-15C would understand the

instruction to be a program line which would say, in

effect, "'go to LBL.n.")

On either machine, labels A, B, C, D, and E are named

differently because they can be '"called (that is,

you can run a program with them) conveniently from

the keys on the keyboard.

100

As an example of using a label, put your calculator

into program mode, and with line 000 showing in the

display, press [f [Al. Assuming that the

temperature conversion program from the last chapter

is still intact, this puts label A at the top of

that program. (If you've changed the program, you

can key it in again after first clearing your

program memory. See page 82.)

The program now looks like this:

(In this book, we list programs in words and

symbols—rather than keycodes——so it's easier to see

what each line means. Of course, your calculator

will show you only keycodes.)

001 LBLA

002 3

003 2

004 -

005 5

006 X

007 9

008 -

101

The program line "LBL A" was inserted at the top of

the program. The rest of the program was pushed

down one line and renumbered. Your temperature

conversions program is now marked by LBL A at the

top.

Now take the calculator out of program mode:

g [P/R].
———————————————————————————————————————V——————————

Try this: Convert 150 degrees Fahrenheit to degrees

Celsius.

Solution: 150 [A]

——————CE———S———————————————————S——————S——S——————————S—S——

Because you put LBL A at the top of the temperature

conversion program, pressing the key now tells the

calculator to run that program, beginning at that

label.

102

GTOl, [GSB,, and

Well, now you know how to ''call" a letter—

label from the keyboard. But what about the other

labels? How else can you tell your calculator to

find a certain label and to start running a program

at that point?

The ("Go TO") and ("Go SuB'") functions

are both used for branching to a LBL (Label) in a

program. When the machine encounters either of

these functions in a program, it is being told

something very specific.

[GTOl is used for branching to a LBL when you have

no intention of coming back. GTO is a command that

the calculator understands as ''go to another part of

this program and forget where you came from——just

continue from there."”

[GSBl, on the other hand, is used for branching to

subroutines. In other words, it is used for '"taking

a side trip'' to a LBL when you have every intention

of coming back. GSB is a command that the calculator

understands as: "'Remember this spot and go to

another part of this program; continue from there

until you come to a RTN (ReTurN) statement; then come

right back and continue from here."”

103

That RTN statement is very important! The calculator

plays by certain rules when it encounters a RTN in a

program, and it does one of two things:

1. If the program pointer has branched off onto a

''side trip''——because it encountered a GSB statement—-

then you might say that the GSB is ""waiting'’ for the

pointer to return from its ''side trip.”" If this is

the case—if a GSB statement is indeed "waiting''—

then the RTN means: "Return to the statement

following the waiting GSB."

2. If there's no waiting GSB, then the RTN statement

means ''STOP!"

OK? Try a few problems to clear up the fog ——————>

——

Try this: Key in a program that makes your

calculator count in the display. It should start

by displaying 1 for a moment, then 2, 3, 4, etc. (a

foolish application, to be sure, but it demonstrates

some finer points).

Solution: 001 LBL B

002 O

003 LBL 4

004 1

005 +

006 PSE

007 GTO 4
(D(I(ISC——SC——S—S————C—C—S———C—C————————————S———SE— S——C—AS——E—S———S—S——S—

Did you key in this program and run it without

looking at the solution? If so, you are now eligible

to graduate to page 108. Otherwise..————>

N W X5\l
\\
l\
:?
‘

\\
‘&

"\
\\
N

T

\
\

N N R

S
R
R

e
\
R

X
S
O

)
s
‘

N
L

5
o

\
-

A

>
D
R
I
I
R

4~
‘

%
0
e
,

.’
\'
\

Q\

4
‘
.

3

%
¢/ &

Q
K

3

 N

(R

KXXX
XOERNEIS

() .' ’,‘."0,/&&DA\;\)

105

PROGRAM LOOPS

Look at this last solution.

Lines 003 through 007 make up a '""program loop.” The

LBL 4 statement is the top of the loop, and GTO 4 is

the bottom.

The body of the loop (lines 004, 005, and 006)

1s a procedure that merely adds 1 to the contents of

the X-register and momentarily displays it (line 006
is the PauSE function).

Notice how the program puts a 0 into the X—register

at step 002——before it begins to go around the loop.

Finally, when the program pointer gets to the line

GTO 4, the calculator looks for LBL 4 and then

"Jjumps' to it. Thus the program will continuously go

around the loop (adding 1 to the value in the

X—register and displaying the result) until it is
stopped—when you press R/S. Make sense?

106

The keystrokes for this program are:

KEYSTROKES DISPLAY

@ [F/R] 000—
[f] 001— 42,21, 12

0 002- 0

[fl 4 003— 42,21, 4

1 004- 1

005—- 40

[f] 006— 42 31

GTOl 4 007— 22 4

A (Normal numerical display)

Now, run this program by pressing (why do you

press these keys? See page 102 for a reminder). The

program works! (If your calculator isn't counting,

then repeat the above keystrokes.)

To stop the program, just press [R/S.

107

oCE——TSGCE——CE——C———

Try this: Using three GSB statements, write a

program that counts—in the display——from one to

three.

Solution: 001 LBL B

002 O

003 GSB 4

004 GSB 4

005 GSB 4

006 R/S

007 LBL 4

008 1

009 +

010 PSE

011 RTN

(If you knew the easy way to do this—by editing the

existing program——then try page 112.)

108

EDITING A PROGRAM

As you may have noticed, this program differs only

slightly from the one you keyed in on the previous

page. To change the previous program to this one,

all you need to do is insert 4 lines (three GSB 4's

and a R/S) after line 002, and then change the last

line in the program from GTO 4 to RTN. Here's how

you would do this:

Switch into PROGRAM mode (fg] P/R). Now, if you

have an HP-11C, press 0 002 (but if you have

an HP—15C, press 002). This moves the
program pointer to line 002 of the program. Press

4 three times; then press (you'll end up
at line 006). This inserts the necessary lines after
line 002.

=

=

7

109

Now you have to change the last line in the

program from GTO 4 to RTN. First, move to the top

of the program (if you have an HP-11C, press [GTO

[000; if you have an HP—-15C, press [GT0l [CHS 000).

From the top of the program you can move to the last

line in the program by pressing BST. In other

words, if you're at the top of the program, you can

"wrap around'' to the bottom (the end) by
Back—STepping.

Once you're at the last line of the program (line

11), you can delete the GTO 4 statement by pressing
the backarrow [<-] key. Finally, press [g] [RTNI

Now you have the new program! Press to move

up to line 000 of this program.

If you want to, you can SST (single—step) through

your entire program to verify that you have it

correct. This is what you should see:

KEYSTROKES DISPLAY EXPLANATION

[SST] 001- 42,21, 12 001 LBLB

[SST 002— 0 002 O

SST 003—- 32 4 003 GSB 4

[SST 004- 32 4 004 GSB 4

005— 32 4 005 GSB 4

006— 31 006 R/S

[SSTI 007— 42,21, 4 007 LBL 4

008— 1 008 1

[SST] 009—- 40 009 +

[SSTI 010- 42 31 010 PSE

SST 011- 43 32 011 RTN

Now get out of program mode (g [P/R]) and press

f] Bl. Again, it works! You've taught your

calculator to count to three (Whoopee)!

Can you see how GSB is working? The GSB 4 at line

003 sends the program pointer to LBL 4, where 1 is

added to the X—register, and the result is

displayed. The RTN at line 011 sends the program

pointer back to the line immediately following that

GSB 4 (i.e. back to line 004).

111

This line (line 004) is another GSB 4 statement,

which sends the program pointer back to LBL 4. The

value in the X—register is incremented, displayed,

and the RTN statement sends the program pointer back

to the line immediately following the "waiting'' GSB 4

(i.e. back to line 005).

Again, (line 005) is another GSB 4 statement, and

this time, when the program pointer RTNs to the

statement immediately following line 0095, 1t finds a

R/S statement, which causes the program to STOP.

———

Question: What would happen if you used a RTN at

line 006 instead of a R/S?

Answer: The program would run exactly the same.

Unless there is a "'waiting'' GSB for the pointer to

return to (and in this case there wouldn't be), the

RTN statement means STOP.
———————————————————————————————————————S———S—S—S——S—

112

After you run the program, if you put your

calculator into PROGRAM mode by pressing [P/R],

you would see that the program pointer is waiting at

line 007 of the program. The program was stopped

by the R/S at line 006.

As you may have guessed, the program lines between

LBL 4 and RTN form a subroutine. The program is

counting to three by simply ''taking a side trip"'—

three times—to a subroutine that causes the

calculator to add 1 to the X—register and then

display the result. This gives the effect of

counting to three.

113

CONDITIONAL TESTING

All right, now you know how to make your

calculator count to three. But how could you make

that program decide to stop at ANY number you choose?

Surely you don't want to use 10 or 20 or 100

consecutive GSB statements, do you? No, not really (for

one thing, the sheer monotony of keying in all the GSB's

would put you to sleep).

Look back for a minute at that first counting

program——the one that simply keeps counting until

you press or turn the machine off (or the

battery runs low):

001 LBLB

002 O

003 LBL 4

004 1

005 +

006 PSE

007 GTO 4

114

—C—C——C————S——S—S—S————S—S———S————S——S—S—S—S——————————S——S————S—S—

Try this: Modify the counting program so that it

counts from 1 to 10 and stops.

Solution: 001 LBLB

002 9

003 ENTER

004 O

005 LBL 4

006 1

007 +

008 PSE

009 X<Y

010 GTO 04

(If you see how this program works, go to page 123.)

To breeze through the above problem, you have to be

comfortable with:

A. Moving around in program memory and editing a

prograim.

B. Conditional statements.

First, we'll look at the conditional line in this

program (line 009); then we'll look at the specific key—

strokes you can use to change a program that counts

"forever'' into a program that counts from 1 to 10.

115

CONDITIONAL TESTS

The HP—-11C has 8 different statements that are

tests (plus one flag test that we will discuss

later). These 8 tests appear as gold and blue

functions on the four keys in the right—hand column

of keys.

The HP—-15C has 12 such tests available (plus one flag

test that we will discuss later). There are only two

conditional tests on the keyboard: X<<Y and X=0.

But there is a function called TEST, which allows you

to choose any of the other 10 tests by number (TEST 0

through TEST 9)——similar to the way you choose

registers for STO and RCL.

On the back of the HP—15C, there is a table that

shows TEST 0 through TEST 9. TEST 1, for example, is

X>0, and TEST 8 is X<Y.

But just what IS a conditional test, anyway? ————>

116

THE "DO IF TRUE" RULE

By using a conditional test in a program, you are

posing a TRUE or FALSE question to your calculator.

If the answer to that question is FALSE, the

calculator will skip the program line immediately

following that test. If the answer to that

conditional test is TRUE, the calculator WILL perform

the statement immediately following that test. This

1s known as the '"'DO IF TRUE'" rule.

The "DO IF TRUE'" rule is about all you need to know

to use conditional statements in a program.

In the program that counts to 10, line 009 is

009 X< Y. This statement is understood to

be a true or false question: '"True or False? The

value in the X—register is less than or equal to the

value in the Y-register."”

[f the answer is true, that is, if the number in X

i1s less than or equal to the number in Y, then the

calculator will execute the GTO 04 statement at

line 010, which sends it to LBL 04 to continue

looping. But if the answer is false (if the number
in X is greater than the number in Y), then the

calculator skips line 010 and goes right to line

011, which ends the program.

117

(If you understand this program now, go to page 123.)

001 LBLB

002 9

003 ENTER

004 O

005 LBL 4

006 1

007 +

008 PSE

009 X<Y

010 GTO 4

Once this program is in your calculator, you can

execute the program by pressing (when the

calculator is in RUN mode).

The calculator will begin to run the program at LBL B.

Then Lines 002 through 004 set up the stack like

this:

2_ AT
_2__1z
II\

0 X

118

Line 005 begins the counting loop (LBL 4). On the

first time through this loop, lines 006 and 007 add

1 to the X—register, and line 008 momentarily

displays the X—register. Then the stack looks like
this:

e e o= eons o oy

D

%X
<
N

4

Line 009 asks the True—or False question: "Is the

number in the X—register less than or equal to the

number in the Y—register?' Since 1t is, the program

continues with GTO 04. On the second time through

the loop, 1 will be added to the X—register, and at

line 008 (PSE) the stack will look like this:

e s en - - -

e eon e oo oo oy

s e ey e e oy

N

X
<
N
=

119

The program will continue to add one to the

X—register, displaying the result, and testing the

X—value against the Y—value until it reaches the

tenth time through the loop. When it passes LBL 4

for the tenth time, the stack looks like this:

e omm e e - -

e ean e o> o> oy

e e an e e oy

X
<
N
-

The X—register is incremented (1 is added), so the

stack looks like this:

e e e e e

e e e e e o

e s e e e -

9

>
<
N
=

Now, in line 009, when the calculator is asked the

question "TRUE or FALSE? X is less than or equal to

Y,' the answer is FALSE. Thus, line 010 is skipped

and the program ends.

120

MORE EDITING

Let's look at how you would change this program,

001 LBLB

002 O

003 LBL 4

004 1

005 +

006 PSE

007 GTO 4

into this program:

001 LBLB

002 9

003 ENTER

004 O

005 LBL 4

006 1

007 +

008 PSE

009 XY

010 GTO 4

(If you can already handle this, go to page 123.)

121

To change the first program into the second program,

you must make the following two changes:

1. You have to insert the conditional statement

"X<{Y'" after line 006 in the program.

2. You have to insert the two lines ''9" and "ENTER"

after the first line of the program.

‘Assuming you haven't yet made any changes to the

original counting program, here are the steps you

will use to modify this program. Switch into program

mode (fg] P/R]) and move to line 006 of the

program (On the HP-11C use] 006 and on the

HP—-15C use 006.). Insert the conditional
test "X<< Y'" by pressing the appropriate prefix key

(£l on the HP-11C, on the HP—15C) and then XY

Now, move to line 001 of the program by pressing

twice, and then press the keys [9 [ENTERI

Are you getting the hang of program editing?

Switch out of program mode (g [P/R)) and press
f] B. The calculator should count to 10 and stop.

Whoopee!

122

FLAGS

Flags are handy tools to use in programming. A

flag is a kind of indicator that has only two

possible values: Set or Clear (up or down, yes or

no, etc.). So a flag is a good way for the

calculator to make (and remember) yes—or—no decisions

within programs.

There are three functions that deal with flags on

your calculator: (Set Flag), (Clear Flag),

and [F?. If you want to set flag 0 on your

calculator, you press SFl 0. If you want to clear

flag 0, press 0.

The function asks the calculator a true or

false question similar to a conditional test: "TRUE

or FALSE? Flag so—and—so is set.” You would

specify the flag by number: 0, 1, etc.

123

The HP—-11C has two flags: 0 and 1.

The HP-15C has 10 flags (flags 0 through 9), but
flags 8 and 9 have a special meaning to the

calculator. If you set flag 9 (8F 9), the display

will blink; and if you set flag 8 you put your

calculator into "Complex mode' indicated by the

little 'C’' in the display (the Complex mode is

discussed in Appendix 3). To stop the blinking
display or to take your calculator out of Complex

mode, press 9 or 8, respectively.

To keep things brief and clear (that is, short and

simple), we will use only flag 0 in this section.

Remember: to set flag 0, press SF 0. To clear

flag O, press 0.

124

———————————————————————————————————————C————————

Question: What does the following modification do

to your '"'count to ten' program? What does the

program do if you set flag 0 before you run 1t?

001 LBL B

002 9

003 ENTER

004 O

005 LBL 4

006 1

007 +

008 F?O0

009 1

010 F?2O0

011 +

012 PSE

013 X<Y

014 GTO 4

Answer: If you set flag 0 before you run the

program, it will count to 10 by twos.

Otherwise, there will be no change.

125

Did you answer the question? Can you make the

modifications to the program and run it first with

flag O clear, then with flag 0 set? If you can, go

to page 128.

To make the modifications, you need to add four

lines (F? 0; 1; F? 0; +) after line 7. ONLY IF FLAG

0 IS SET will these 4 lines add an additional 1 to

the value in the X—register each time through the

loop.

To add those lines, switch into program mode ([g

[P/R]), and move the program pointer to line 007

(on the HP-11C, press [l 007; on the HP—-13C,

press 007). Then press:

0
1

0

(to switch out of program mode)

126

Now clear flag 0 (CF 0), and run the program
(£l B). The calculator will simply count to ten

by ones, as usual.

But try setting flag O before you run the program:

g 57 0

The calculator counts to ten by twos (it's getting

smarter)! Do you see why it's doing this? Pretend

you are the program pointer, and see how those flags

control whether you perform (new) steps 009 and 011.

127

ISG] AND [DSE

By now, you know all about labels and how to ''call”

them; you know what subroutines are; and you know how

to use conditional tests. All of these different

topics are somehow involved in making the program

pointer jump around or skip to other lines. Now here

are two other functions that also belong in that

category.

The two functions are ISG ("Increment and Skip if

Greater than'') and DSE (''Decrement and Skip if Equal

to or less than'').

You would use these two functions to control program

loops. They act like conditional statements, because

under some conditions in a program, the calculator

will skip the line immediately following either of

these functions. It is this characteristic that

allows you to limit the number of times a program

loop is executed (as you did in the program that

counts to 10).

128

THE CONTROL NUMBER

To help count these program loops, the ISG and DSE

functions both use a number that you have stored in a

register. This number is called the control number.

On the HP-11C, you will always store this control

number in the [-register. On the HP-15C, you may

store this control number in any register.

So what does a control number look like? What is

the calculator expecting?

Well, this is a control number:

1.01001

Try this: Assuming this control number is stored in

the I-register, write a program that uses ISG (or

ISG I on the HP—-15C) to count in the display from

1 to 10 (by ones).

Solution: 001 LBLC

002 RCLI
003 INT
004 PSE
005 ISG (On the HP—15C use [5G)
006 GTO C

(If you understand control numbers and the above

program, go to page 138.)

129

A control number actually represents three numbers

to the calculator. If we call these three numbers

nnnnn, xxx, and yy, then the calculator is looking

at the control number like this:

NNNNNn.Xxxyy

Your calculator is concerned only with five digits on

elither side of the decimal place.

The number nnnnn is the current counter value, xxx

1s the counter test value, and yy is the increment

or decrement value. For example, in the control

number 1.01001, nnnnn is 1 (00001 = 1), xxx is 10

(010 = 10), and yy is 1. Look at this picture:

1.0100I

ax=10TR
nnnnn= | yy:'

130

But what does this mean? What happens when the

calculator executes the function ISG?

This is what happens:

1. The calculator adds the number "yy'' to the

number "'nnnnn'' and the result becomes the new

"nnnnn."" This is called "incrementing."”

2. The calculator tests to see if ''nnnnn'’ is

GREATER than ''xxx,’ and if it IS greater, the

calculator skips the line immediately following the

ISG statement.

Do you see where the name '"Increment and Skip 1if

Greater than'' comes from? If not, reread the above

two steps.

i
131

Assuming that this control number, 1.01001, is stored

in the I-register, it's easy to write a program that

counts (in the display) from 1 to 10. All you need

is a loop that recalls the number in the I-register,

then pauses to display the integer portion of that

number (INT), and performs an ISG on the control

number in the I-register——to test whether the loop

should be repeated or exited.

Got all that? Not quite? Well, walk through it

slowly and see how it works.

First, here are the keystrokes to key in the solution

program——once you have switched to PRGM mode (g [P/R)):

KEYSTROKES

[f] [PRGM (to clear program memory)
[fl [LBLI

[RCLI [T (recalls the number in the I-register)

2] (takes the integer portion)
[f] (pauses a moment to display the count)

[l ISG (fl ISG M if you have an HP-15C)
[GTO! [C]

132

And the display shows the following, if you single

step through the program using [SST.

DISPLAY

001— 42,21, 13

002- 45 25

003- 43 44

004- 42 31

005- 42 6 (or '"'005—- 42, 6, 25'' for the HP-15C)

006— 22 13

Now switch out of program mode, key in 1.01001, store

it in the I-register (press [), and run the

program (by pressing f [C). It works!

133

001 LBLC

002 RCLI
003 INT
004 PSE
005 ISG (I)
006 GTO C

This whole program is one loop. The first time

through the loop,line 002 digs 1.01001 out of the

I-register, line 003 takes the integer portion of

that number, which is 1, and line 004 pauses to

display the 1 in the X—register. At line 005 (ISG

on the HP-11C or ISG I on the HP-15C), the

calculator increments the nnnnn portion of the

control number by the yy portion, making nnnnn equal

to 2. It then tests to see if nnnnn (2) is greater

than xxx (10), and (since 2 isn't greater than 10) it

does NOT skip line 006. Remember, the name is

"Increment and SKIP if GREATER than,’ so this time it

doesn't skip line 006 (GTO C); thus, the loop starts

over again from LBL C.

The second time through the loop, the control number

in the [-register starts as 2.01001. The third

time through the loop, this number starts as

3.01001, etc.

134

On the tenth time through the loop, the control

number starts as 10.01001. This number is recalled

to the X—register and the integer portion is

momentarily displayed. Finally, at line 005 the

calculator increments the control number, making it

11.01001, and tests to see if nnnnn (11) is greater

than xxx (10). Since 11 is usually greater than 10,

the calculator skips line 006, which stops the

program.

So, if you press [RCL Il after running the program,

you'll see that the final number in there is

11.01001. (Be sure to store 1.01001 in the
I-register before you run the program.)

Question: What happens if you store the number

2.01002 in the I-register before you run this

program?

Answer: The program will count from 2 to 10, by twos.

The yy portion of this number is 02 (this is the
increment value); the upper limit (xxx) is 010; and
the beginning number (nnnnn) is 2.

135

—C—C——

Question: What number would you store in the

[-register to make this program count from 0 to 500

by 50's?

Answer: .50050 (Try it.)
—C—C—C——S—————S——————S———S———S—————————————S————————————

———

Question: How will this program count if you store

the number 5.012 1n the I-register before you run

1t?

Answer: It will count from 5 to 12 by ONES.

If the yy portion of the control number is 00, the

calculator assumes you meant 01l. The most common

increment value is 1, so if there's nothing as the

last two digits of the control number, the

calculator increments by 1 (you can't increment by

zero, right?).

136

Those are the basics of ISG. The other function, DSE

(Decrement and Skip if Equal to or less than), works

in a similar fashion——doing what its name implies.

You've been exposed to a lot of programming features

in this chapter. You may not feel absolutely

comfortable with the material up to now, but you'll

get some practice in the upcoming sections. Now try

this quiz for practice, review, and peace of mind. ———>

137

QUIZ

What are three things you can do with the

(back—arrow) key?

. How would the program on page 108 work

differently if you deleted lines 005 and 006°?

. You have the measurements for the radii of 70

different circles, and you need to find the areas

of these circles. Write a ''naked program'' that will

help you do this. Use the formula: AREA = PI X R=2.

. Create and run a program that uses the display

to count by ones, starting at 1. It should first

display 1 for a moment, then 2, 3, 4, etc. up to 29,

and then, if flag 1 is set and the value in register

0 is greater than the value in register 3, it will

finish with PI in the X—register (rounded to 3

decimal places); otherwise, it will finish with 0 in

the X—register.

138

ANSWERS

1. (a)Clear one digit at a time from the display

(when you are in the middle of keying in a number).

(b) Clear the X—register——just as with
(i.e. when you aren't currently keying in a number).

(c) Delete a program line (when in program mode).

2. There would be no difference.

3. 001 x?

002 L)

003 X

To use this program, you would simply key in a

radius, press [R/S, and the result will be the area

of that circle. Writing little programs like this

can save you plenty of time on repetitive tasks.

139

4. This is also the solution to the "Try this' on

page 99. This program tests your understanding of

the different features that you studied in this

chapter.

001 LBLD

002 2

003 4

004 ENTER

005 O

006 LBL1

007 1

008 +

009 PSE

010 X<Y

011 GTO 1

012 RCL 3

013 RCLO

014 CFO

015 X>Y (on the HP—15C press [TEST] 7)

016 SF O

017 O

018 F?0

019 GTO 2

020 GTO 3

021 LBL 2

022 F?1

023 ™

024 LBL 3

140

(Remember, there are several different ways to write

any program. The method here isn't as important as

the results.)

Lines 001 through 011 of this program simply count

from 1 to 25, the same as the counting programs that

you saw in this chapter.

Lines 012 through 024 test to see if the following

two conditions are true:

1. The value in register 0 is greater than the

value in register 3.

2. Flag 1 is set.

If both of these conditions are true, then the

calculator puts the PI into the X—register. But if

elther one of these conditions is not true, the

calculator leaves a zero in the X—register.

Go through the last 12 lines in the program a couple

times until you see how it works. Test the

program by storing a 5 in register 0 (5 0) and
a 1 in register 3 (1 3). Then set flag 1 (SF 1)
and run the program (f D). Try running
it with flag 1 clear (CH 1). Try other
combinations of values in registers 0 and 3 to see

the effect they have on the final display.

Do you see how useful labels, flags and conditional

tests can be in helping you create complex programs®?

141

Noles

142

 Indirect Addressing

INDIRECT ADDRESSING

Now that you know something about program loops and

labels, it's time to look at another nifty programming

tool (ah, the wonders of modern technology)!

When you finish this chapter you will know the basics

of indirect addressing. You will finally find out

why your calculator has a special [-register, and you

will know when to press the key and when to press

the key. (Basically, you'll know a whole lot.)

WHAT IT IS

Indirect addressing is a tool that can save you lots

of time and program memory if you learn to use 1t

properly.

There is more than one way to skin a cat. Likewise,

there is always more than one way to write a

program. It's possible to use 100 lines of program

memory to write a program one way and then turn

around and write a program that does exactly the

same thing using just 10 lines.

144

If someone asked you to store a 5 in register 0, you

would press the keys 5 0. But there is

another way to do this (as always). It's possible

to store a 5 in register 0 by pressing the keys 0

o, 5 (D).

Hmmm..., what's going on here?

———

Try this: Store PI in registers 0, 1, and 2 without

touching the [0, [, or keys.

Solution:

HP—-11C HP-15C

I I

[f]

[(3)]

1

[3)]

1

[STO] [(i)] [(3)]

(If you understand this solution, go on to page 148.)

145

Whenever you store a number in a register, you are

addressing that register. For example, when you

store a number in register 4, you first key in the

number, then you press 4. By pressing the 4

key you are telling the calculator which register

you want to store into. That is, you are

addressing register 4. This type of addressing is

called ''direct addressing."

But this chapter is all about indirect addressing.

If you're going to store a number in register 4 using

indirect addressing, you need to have a 4 in the

I-register; you then key in the number and press

[@). By pressing the key you are

telling the calculator "look in the I-register for

the name of the register in which to store.’ This is

indirect addressing.

146

Watch what happens in registers X, I, 0, 1, and 2 as

you key in the solution to the last problem:

‘ \L (@) .
2

1 P ’ 2

P b Py

[00]x [0.0]r ? lo [3.4]x [1.0]1 [3.H]o
i Vv
]

? 12 3 ? |2
\L ? l 3,141

3.4 |x [0.0]l1 L2 Jo [3.4]x [1.0]1 [3.14]0
) 3

: 1
ST(?L (i) > 2 \L() % 2

2y w T

 @05 1x [0.011 [3.04]0 3.04] [2.0] [3.14]0

l

And notice when you press (i), the calculator

looks 1n the I-register to obtain the name of the

register in which to store.

Now clear the X—register (<==); then press

o)

Question: Where did that PI come from?

Answer: Register 2.
———————————————————————————————————C————————————

There is a 2 in the [-register, so pressing

recalls the number from register 2, which is

PL.

147

TSSSSSSe——————ieS,eSyStSSee———————————————StSt etotSesS

Try this: Write a program (15 lines or less) that

stores the numbers 50 through 59 in registers 5

through 14, respectively.

Solution: 001 LBL A

002 5

003 .

004 O

005 1

006 4

007 STOI

008 5

009 O

010 LBL 6

011 STO (i)

012 1

013 +

014 ISG (ISG I on the HP-15C)

015 GTO 6
———

(If you understand this program, turn to page 152.)

148

Lines 002 through 009 set up the X— and I-registers

like this:

 50.000 |X 5014 |1

Lines 010 through 015 make up a loop starting with

LBL 6.

The first time through this loop, at line 011, the

calculator will look at the I-register to find the

name of the register in which to store 50 (from the

X—-register). In the I-register, the calculator

finds the number 5.014. But for the address, the

calculator looks only at the digits to the left of

the decimal point. Thus, this first time through

the loop (at line 011), the calculator stores a 50
in register 5. The rest of the loop adds 1 to the

o0 in the X—register, increments and tests the

[-register (remember how ISG works?), and then goes
back to LBL 6.

149

The second time through the loop, the X— and

[-registers look like this:

 51.000 |Xx .04 |1

This time, at line 011, when the calculator looks

in the I-register for an address, it will find

the number 6.014, so it stores 51 in register 6.

Then it adds 1 to the X—register, increments the

[-register and tests to see if 7 is greater than 14.

Since it isn't, it goes back to LBL 6.

(If you need to review ISG, hold your place here and

flip back to page 128 for a quick refresher.)

The calculator will continue around the loop,

storing appropriate numbers in appropriate

registers, until the 10th time through the loop.

150

At the beginning of the 10th time through, the X-

and I-registers look like this:

 54.000 X 14.014 T

The calculator finds 14 (from the 14.014 in the

[-register) as the address of the register in which

to store that 59 (at line 011). Lines 012 and 013

add 1 to the X—register. Line 014 increments the

I-register (making it 15.014) and tests to see if 15

1s greater than 14. Since it IS greater, and since

the name of the function at line 014 is Increment and

SKIP IF GREATER THAN, it WILL skip line 015. That

ends the program (whew)!

151

Try this: Write a program that recalls all those

numbers that the previous program stored (in

registers 5 through 14) and momentarily displays

them in reverse order (i.e. the number in register 14

first).

Solution: 001 LBL B

002 1

003 4

004 .

005 O

006 O

007 4

008 STOI

009 LBLO

010 RCL (i)

011 PSE

012 DSE (DSEI on the HP-15C)

013 GTO O
—————————S——

(If you're getting the hang of indirect addressing,

and you don't need additional explanation of this

program, go to page 156.)

152

Lines 002 through 007 store the control number

14.004 in the I-register (remember control numbers?

——page 129). Notice that, as before, this numberis

used both for loop control (with the DSE function)

and as an indirect address (with the RCL (i)
function). This will frequently be the case. That

is, it's common to use the integer portion of the

loop control number as a register address.

Lines 009 through 013 make up a loop starting with

LBL 0.

The first time through this loop, at line 010, the

calculator will look at the I-register to find the

name of the register from which to recall. In the

I-register, the calculator finds the number 14.004.

So the calculator recalls the value from register

14. Line 012 decrements the value in the

I-register by 1, making it 13.004. It then tests

to see if 13 is equal to or less than 4 (see page

131 if you're questioning why). Since this is NOT the

case, the calculator DOES NOT skip the line

immediately following the DSE. Thus, it starts the

loop again.

(If all this looping is causing you any slight

dizziness, don't worry——this is normal and it will

clear up as you go along.)

153

On the second pass, the [-register looks like this:

 13.004 |7

This time, when the calculator looks in the

[-register for an address at line 010, it will find

the number 13.004; so it recalls the number in

register 13. Then it decrements the I-register and

tests to see if 12 is equal to or less than 4.

Since it isn't, it goes back to LBL 0.

The calculator will continue around the loop,

recalling numbers from appropriate registers, until

the 10th time through the loop.

At the beginning of the 10th time through,

the I-register looks like this:

 5.004 |1

This time the calculator recalls the number in

register 5 (line 010), displays it for a moment

(line 011); and at line 012 it decrements the
I-register making it 4.004. Since 4 is equal to or

less than 4, line 013 is skipped, and this ends the

program.

154

(Now, if you have an HP-11C, just go to the top of

the next page.)

REGISTERS 20-65 ON THE HP-15C

On the HP—-15C, any data register above register .9

can only be addressed indirectly. So, for example,

to store the number 87.2 into register 35, you would

use these keystrokes: 35 1 87.2 (i),

assuming the top of the data memory has been set

somewhere above register 35 (35 [@).

Because indirect addressing is mainly a programming

tool, and because these registers (20—65) can only be

addressed indirectly, you will find that you will

rarely use these registers except with programmed

instructions.

As an exercise in using these registers in a program,

you might want to rewrite the program on page 148 so

that it stores the numbers 50 through 59 in

registers 15 through 24.

155

INDIRECTLY ADDRESSING LABELS

Once you understand that you can use the I-register

to specify the address of a register, it's good to

know that you can indirectly address some other

things in your calculator. On the HP—-11C and

HP—-15C, you can indirectly address labels in

programs. Also, on the HP—-15C (only), you can

indirectly address flags.

As you know, you should refer to the capital '"I"

whenever you want to ALTER the contents of the

I[-register itself. But whenever you want only to

EXAMINE these contents——to obtain the address of

another register——you should use the lower—case (i)

notation.

Well, just as you are getting that straight, the

rules are going to change on you. It turns out that

the above rules apply when you are indirectly

addressing REGISTERS, but not for other indirect

operations. So remember: the only time you will use

the [key is when you are indirectly addressing a

register. You don't use this key to indirectly

address a label. If you want to go to a label whose

address is in the [-register, you press [GT0! 1

You use the I key, not the i) key. We'll show

you an example of indirect addressing of labels in

the program development chapter that follows.

156

At this point, take a breather and look back at how

far you've come:

You know all about the keyboard, the stack, the

display and the data registers, and how to use STO

and RCL.

You know how to use the stack for arithmetic and how

to use ENTER, CLX and LSTX.

You know about program memory and how to edit a

program.

157

You know how to use labels and GTO and GSB to tell

the program pointer how to "jump'' around to different

points in a program.

You know how conditional tests work and how to use

flags, ISG and DSE to form program loops or make

decisions.

You know how to use indirect storage and recall with

the data registers.

You know that you would probably like some more

practice and review of all this—to clear up the fog

that may be lingering.

Very well. Step right this way... -———————>

158

Notes

159

PROGRAM DEVELOPMENT

Now you are about to embark on the subject that (as

the title indicates) is the purpose of this book.

This chapter will walk you through the

development of three programs. They are fairly

simple applications, but each one demonstrates

certain methods of programming on the HP-11C and

HP-15C.

CHECKBOOK BALANCING

This first program is mainly an exercise

to get you warmed up. It is a fairly common

application——balancing a checkbook——and you will

probably find that the program does not really do

much to help with that task. But the idea of

designing and writing the program is important.

161

Checkbook balancing is something most of us

have experienced (or at least the ATTEMPT is
familiar).

Try this: There are three major steps to balancing

your checkbook. Write down these three steps.

Solution:

1. Find the balance from the last time you balanced

your checkbook (and hope this wasn't too many

months ago).

2. Add all the deposits and interest since that

time. Keep a running balance of the result of

each addition.

3. Subtract all checks and charges. Keep a running

balance of the result of each subtraction.

162

After you perform the above three steps, your

checkbook will be balanced. Basically, what you've

done here is defined the process by which you balance

your checkbook, in terms that are easy to understand.

You could hand this three—step list to your friends,

and they could follow it with little or no problem.

So in a sense, your checkbook—balancing program is

complete. You understand the problem, and with

these three steps, you've developed a process to

handle the problem.

So what's the big deal? (Read on —————>)

,wy%@@

163

Question: What would happen if you were to explain

a recipe to a small child (4 to 6 years old) in the

following manner?

""Get a cup of flour, 1/3 cup shortening, 1/2

teaspoon salt, and a tablespoon of sugar. Then cut

the shortening into a mixture of the flour, salt,

and sugar, until the chunks are about the size of

peas. Next, add a couple tablespoons of cold water

and blend with a fork (not too much). Shape the

dough into a ball, and roll it out. That's it!

Pie crust!"

Answer: The child would be dumbfounded.

Nevertheless, this is the way we all think. As we

develop and gain experience in life, many of the

details of day—to—day tasks become automatic; they

require no conscious thought. Driving a car is a

good example of such details becoming automatic.

But it takes patience and effort to explain even a

"simple'' process to a small child, or to someone who

1s unfamiliar with the basic details of that process.

So we actually have to slow down our thinking process

and analyze each step.

164

If you were explaining our pie crust recipe to a

small child, the first step of the recipe would

probably translate from ''get a cup of flour' to

something like this:

"Now listen, here is a one—cup measure (note the

visual aid). Go over to the flour can and scoop

out one cup of flour. You'll need to use this knife

to level off the top, so you have exactly one cup of

flour."

So you see, it takes more words to explain a process

to a small child because a child's thinking process

is less complex than ours.

Well, to complete the analogy, the '"thinking

process'' of a calculator is far, far less complex

than ours. In order to program the HP-11C or HP—-15C

to do a task, you must first list the steps by

which you would handle the task yourself, then expand

each of those steps into several, much simpler

tasks. In other words, you have to translate your

complex thinking process into simple terms that the

calculator can understand.

165

Try this: Rewrite the three checkbook—balancing

steps in terms that are closer to the way your

calculator '""thinks."

Solution:

1. Store initial balance in a numbered register.

2. Wait for an input of either a check, charge,

deposit, or interest.

3. If the input is a check or charge, subtract it

from the balance.

4, If the input is a deposit or interest, add it to

the balance.

0. Display the new balance.

6. Go back to step 2.

Your solution may vary considerably from ours. This

1s where you start to develop your own programming

style. Everyone will approach a solution in a

slightly different manner. Try to follow our

solutions the first time through these programs;

then feel free to experiment with your own

solutions.

166

You can see that what were three general steps have

evolved into six detailed steps. And each of these

six steps carries a simpler concept than each of the

original three. And each of these six steps ''sounds

closer'' to the language of your calculator.

Try this: Equipped with the previous six steps,

develop a program to balance your checkbook.

Solution: 001 LBL B

002 STO 5
003 R/S
004 LBLC
005 CHS
006 LBL D
007 STO + 5
008 RCL 5
009 R/S

(If this makes sense to you, head to page 174.)

If you're even slightly confused, that's good. A

completely unexplained list of calculator code

should indeed be confusing.

What follows is an explanation of the thought

process you might use to proceed from the six steps

on page 166 to the 9 lines of code above.

167

First, don't expect to start at the top of the

list. Of course, the order of the steps will reflect

the order in which things will eventually be done in

the completed program. But that doesn't mean you're

going to start DEVELOPING the program at step 1.

The first thing to do is search through the list

for the steps that are most significant to the

program. Basically, what you're looking for are the

steps that look like they will take the most work.

You will develop these steps first and then design

the rest of the program around them.

168

In our list of six steps, steps 3 and 4 are the only

steps that will require some type of calculation

and some type of decisionmaking:

3. If the input is a check or charge, subtract it

from the balance.

4. If the input is a deposit or interest, add 1t to

the balance.

Looking at steps 3 and 4, you can see that your

calculator has to treat an input in one of two

ways, depending on whether it is a check or a

deposit. Now it boils down to this: one way or

another, you are going to have to tell the

calculator whether you are keying in a check or a

deposit amount.

169

There are many ways to tell this to your

calculator. One of the easiest ways (we think) is to

have one key to press for a check (or other charge)
and another key for a deposit (or other credit).

So, when the program is complete, we want to be able

to key in an amount, press [fl €, and let the

calculator treat that amount like a check (that is,

it would subtract that amount from our balance).

Likewise, we want to be able to key in an amount,

press the key, and let the calculator treat that

amount like a deposit.

The only difference between the way a check is

treated and the way a deposit is treated is that a

check 1s subtracted from the balance, while a

deposit is added to the balance. Other than that,

the program should treat a check the same as a

deposit.

170

Now look at a little arithmetic. Probably

everyone remembers that adding the negative of a

number is just like subtracting that number.

That is,

A-B=A+(-B)

So, when we press the key, if the calculator

just puts a negative sign on the amount we've keyed

in, then treats it like a deposit—thus ADDING this

(negative) number to the balance——that should do

the trick!

With all this in mind, we can sketch out a routine

to handle steps 3 and 4 of our list:

LBL C

CHS

LBL D

RCL BALANCE
+

STO NEW BALANCE

Of course, there are no "RCL BALANCE" or "STO NEW

BALANCE'" functions on your calculator. We

haven't yet designated a storage register for keeping

the balance. But by using this terminology, we can

organize our thoughts in a language that is close

to what the calculator uses but that we can still

understand, too.

171

These six lines will just about take care of

steps 3 and 4 of our list. Now we are going to put

those steps on the back burner for awhile, and look

at the others instead.

Try this: Translate——into the language of your

calculator——steps 1 and 2 (''store initial balance

in a numbered register'' and '"wait for an input').

Solution: LBL B

STO 5

R/S

We have chosen the key to indicate "initial

balance,’ and we have chosen register 5 to store

that balance. So with this little routine in your

program memory, you can key in the initial balance

of your checking account, press [fl B, and the

calculator will copy the number in the X—register

into register 5.

172

Try this: Put steps 1, 2, 3, and 4 together, and

rewrite steps 3 and 4, now that you know where the

balance is stored (register 5).

Solution: LBL B LBL B

STO 5 STO 5

R/S R/S
LBL C or LBL C

CHS CHS

LBL D LBL D

RCL 5 STO + 5
+

STO 5

Either of the above routines will take care of steps

1 through 4. The routine on the left will even take

care of steps 5 and 6. But the routine on the right

will not do step 5 of our list unless we add RCL 5

at the end. Even then, the routine on the right will be

the shorter of the two, so let's look closely at

how it works:

001 LBL B
002 STO 5
003 R/S
004 LBLC
005 CHS
006 LBL D
007 STO +5
008 RCL 5

173

First, key this program into your calculator. Starting

in RUN mode, here are the keystrokes:

KEYSTROKES DISPLAY

g [P/E]
fl CLEAR [PRGM] 000—-

f] [LBL] B 001— 42,21, 12

[STO] 5 002— 44 5
R/S| 003- 31

[LBL] 004—- 42,21, 13

[CHS] 005- 16

[LBL] [D] 006— 42,21, 14

[STO] (+] 5 007— 44,40, 5

[RCL] 5 008— 45 5

lg] [P/R] RUN mode display

174

Now the program is ready to use. It is designed so

that when we want to balance our checkbook, all we

have to do is key in the balance from the last time

we balanced it, and press f (for Balance).

We then key in the amounts of any checks we have

written or deposits we have made and press [l

(for Checks) or (for Deposits). Simple!

Try this: The last time you balanced your checkbook

your balance was 1422.56. Since then, you have

written 3 checks (27.22, 96.00, and 445.75); you also

deposited your weekly paycheck (1242.32) and a

dividends check from an investment you made several

years ago (377.85). Using the checkbook balancing

program you just keyed in, find the current balance

of your checkbook.

Solution: 2473.76

(If you need no more explanation of this program, go

to page 177. But if you're in the slightest doubt...——>)

175

First, you need to key in the most recent balance of

1422.56 and press B. The calculator will

flash "running'' at you for a split second, and then

1t will stop with 1422.56 in the display. This

balance is now stored in register 5.

Then you simply key in 27.22 for the first

check. The calculator will subtract 27.22 from the

balance in register 5 and display the new balance.

Then you have to key in the next two check amounts,

pressing after each one.

Finally you key in the deposits, one at a time,

pressing Dl after each one. Each deposit will

be added to the balance in register 5 and the new

balance will be displayed. The final result is

2473.76. (Let's hope you have a checking account
that earns interest!)

176

As you'll recall, our program looks like this:

001 LBLB
002 STO 5
003 R/S
004 LBL C
005 CHS
006 LBL D
007 STO + 5
008 RCL 5

Is there anything we can add to this program to make

it better? Hmmm..let's see....

How about this? Since we're always dealing in

dollars and cents when we run this program, let's

make the program set the display to show only two

decimal places (FIX 2).

177

Try this: Insert a line in the program so that when

you key in the initial balance, the program will set

the display to show only two decimal places.

Solution:

001 LBLB

002 STO 5

003 FIX 2

004 R/S

005 LBLC

006 CHS

007 LBLD

008 STO + 5

009 RCL 5

The line FIX 2 is inserted right after line 002 in

the program. (If you had any difficulty inserting

this line, turn to page 109 for a review of program

editing. Then come back and continue from here.)

178

So the checkbook balancing program is complete. You

may want to take a break now, make yourself a

soothing cup of tea, and use this new program to

balance your checkbook.

You'll probably find, when using this program, that

it's just about as easy (or even easier) to balance

your checkbook by using the stack to do the

arithmetic. But developing this program was a good

exercise, don't you think?

179

Noires

180

FEET, INCHES, AND SIXTEENTHS

"For our next number,”’ we will develop a program to

convert feet, inches, and sixteenths of inches into

feet and decimal fractions of feet, and vice versa.

For example, 1 foot and 6 3/16 inches will be converted

to 1.515625 feet; and 1.515625 feet will be

converted to 1 foot 6 3/16 inches.

The calculations involved in this program will be

relatively simple. But the main emphasis of this

program will be the format of the input and output.

To put it bluntly, we have to develop a convenient

way to input feet, inches, and sixteenths of inches!

Now, it would be best if we could key in one number

to represent all three units (feet, inches,

sixteenths). To do that, we need to develop a format

to represent three different things with one number....

181

Try this: Convert 3 hours, 26 minutes, and 14

seconds into hours and decimal fractions of

hours.

Solution: 3.2614 [g =H (displays 3.43722)

So 3 hours, 26 minutes, and 14 seconds is equal to

3.43722 hours.

The point here is that for certain functions on your

calculator, one number can represent different

things. The =H (convert to Hours) function looks
at the number in the X-register and sees the digits

as representing Hours, Minutes, and Seconds, in the

form HH.MMSS.

The HH means "'number of hours,' the MM means '"'number

of minutes,’ and the SS means '"'number of seconds."

So 03.2614 means 3 hours, 26 minutes, and 14 seconds.

There are only two places reserved for minutes,

because the number of minutes will never exceed 60

(that's an hour), and fractions of minutes are

expressed in seconds. (However, there are actually

more than two places reserved for seconds. If you

want to key in 1 minute, 57 3/4 seconds, you would
key in .015775, because 3/4 = 0.75. The fraction
of a second is keyed in after the whole seconds.)

182

Well, why not take this format (that HP has

developed) for representing hours, minutes, and

seconds——with one number——and adapt it to fit our

feet, inches, and sixteenths problem? (Ahal)

183

Try this: Express 4 feet, 8 and 9/16 inches in a
format similar to the HH.MMSS format.

Solution: 4.0809 (FF.IISS)

(At this point, we are, of course, feeling enormously

pleased with ourselves for such cleverness.)

This is the input format that we'll use in our

conversion program. We will key in feet, inches,

and sixteenths of inches, using the form FF.IISS!

Here FF means '"'number of feet,' II means "number of

inches,”” and SS means '"'number of sixteenths. Two

places are reserved for the inches and the

sixteenths. This makes good sense because there

will be, at most, 11 and 15/16 inches (.1115) in any

fraction of a foot.

184

Try this: Sketch down the general steps required to

convert an input of the form FF.IISS (feet, inches,

sixteenths), to feet and a decimal fraction of a foot

(we'll represent feet and decimal fraction by the

normal numerical FF.ffffff...).

Solution:

1. Get the input of the form FF.IISS

2. Take the integer portion (FF) and save it. This

is the number of whole feet (it won't change in the

final answer). Also, save the fractional portion (.IISS).

3. Multiply this fractional portion by 100 to get (IL.SS).

4. The integer portion of (IL.SS) represents the

number of whole inches, and the fractional portion

represents the number of sixteenths. Separate these

two portions.

185

5. Divide the fractional part by 1.92 (.SS/1.92).

6. Divide the number of inches by 12 (to get II/12),

and add up all the parts.

7. The result will be the sum: FF + II/12 + SS/192.

What we're shooting for in the solution is this:

First, we want to save the FF part of the input

because this is the number of whole feet, and we

don't need to change this in the final answer.

Next, we need to find the number of inches (II) and

divide this by 12 (there are 12 inches in a foot).

Then we have to find the number of sixteenths and

divide it by 192 (12 x16), since there are 192
sixteenths—of—an—inch in one foot.

186

Try this: Sketch down the steps required to take an

input of feet and decimal fraction of a foot

(FF.ffff) and convert it to feet, inches, and
sixteenths (FF.IISS).

Solution:

1. Get an input of FF.ffff.

2. Save the integer portion, FF.

3. Multiply the fractional portion by 12 and save

the integer portion of the result, II.

4. Multiply the remaining fraction by 16, SS.

(Let's leave fractions of sixteenths just like

fractions of seconds.)

9. Save the result in the X-register in the form

FF.IISS (FF + I1/100 + SS/10,000).

187

Let's run an arbitrary number through these steps to

see if they work. Try, for example, 14.9 feet.

Step 2 says to save the integer portion. The

integer portion of 14.9 is 14. So, save 14.

Step 3 says to multiply the fractional portion by 12

to get the inches (12 X .9 = 10.8). Again, we save
the integer portion.

So far we have 14 feet, 10 inches, and 8 tenths of

an inch. To convert the 8 tenths of an inch into

whole sixteenths, multiply the .8 by 16. This gives

12.80, so the final result is 14 feet, 10 and

12.80/16 inches.

Our general idea seems to be working!

188

From the way things are working out, it looks like

we are going to develop two independent routines.

One of these routines will take an input of the form

FF.IISS and return feet and decimal fractions of feet

(FF.ffff). The other program will take an input in

the form FF.ffff and return FF.IISS. These two

routines will be a matched pair of functions much

like the (convert to hours) and
(convert to Hours Minutes and Seconds) functions.

If we combine our lists and put them under labels A

and B, they might look like this:

189

10.

11.

12.

13.

14.

LBL A (input: FF.IISS).

Save the integer portion of the input: FF.

Multiply the fractional portion by 100, to get II.SS.

Save the integer portion: II.

Divide the fractional portion by 1.92, to get SS/192.

Divide the inches by 12, to get 11/12.

Result = FF + 11/12 + SS/192.

END of LBL A (output: FF.ffff).

LBL B (input: FF.ffff)

Save the whole feet: FF.

Multiply the fractional portion by 12, to get II.

Multiply the remaining fraction by 16, to get SS.

Result = FF + II/100 + SS/10,000.

END of LBL B (output: FF.IISS).

190

————S—S————SWC———G—CE— CE— CE————S—S—S—————S—C——C——C————————GH—GC—CT—S—C————CT— CE—C——CS———

Try this: At this point, you should be able to take

the list of sixteen steps from the previous page and

convert them to HP—11 or HP-15 program lines. Give

it a try and see if you can come up with a workable

solution. It's possible to do all the calculations

using only the stack registers.

Solution:

001 LBL A 012 .

002 INT 013 9

003 LSTX 014 2

004 FRAC 015 ~+

005 EEX 016 X<>Y

006 2 017 1

007 X 018 2

008 INT 019 =+

009 LSTX 020 +

010 FRAC 021 +

011 1 022 RTN

191

023 LBLB 034 6
024 INT 035 X

025 LSTX 036 EEX
026 FRAC 037 2
027 1 038 -+
028 2 039 +
029 X 040 EEX
030 INT 041 2
031 LSTX 042 -~
032 FRAC 043 +
033 1 044 RTN

If you have no problems keying in the above program,
and you're sure you understand how it has been developed
then cruise on ahead to page 199. Otherwise.. —————>

192

Let's take a quick (exciting) look at how each step

in the list on page 190 transforms into this final listing

of program code.

{. LBL A (input FF.IISS):

001 LBL A

The first step translates directly over. When you

press [Al to execute the complete program, the

calculator will assume that an input in the form of

FF.IISS is sitting in the X—register.

2. Save the integer portion of the input:

002 INT

The function saves, in the X—-register, the

integer portion of the input, which is FF. The

original input, FF.IISS, is saved in the LASTX

register.

193

3. Multiply the fractional portion by 100:

003 LSTX 006 2
004 FRAC 007 X
005 EEX

Before we multiply the fractional portion by 100, we
have to get the fractional portion into the
X-register. The original input is in the LSTX-
register (Do you remember why? See page 56). Line
003 recalls the original input; line 004 takes the
fractional portion of it; lines 005, 006, and 007
multiply the fractional portion by two.

4. Save the integer portion of this result:

008 INT

This saves II in the X—register (and ILSS in the
LASTX-register).

194

5. Divide the fractional portion of II.SS by 1.92:

009 LSTX 013 9

010 FRAC 014 2

011 1 015 +

012

Dividing .SS by 1.92 gives the same result as

dividing SS by 192. Right? Now the stack would

look like this:

o e e ey o= oo oo oy

o H

<
<
N
—

6. Divide the inches by 12:

016 XY 018 2

017 1 019 ~+

The inches (in the Y—register) are brought into the
X—register and divided by 12. The stack looks like

this:

? T
 __FF __ |z
| _S5*F192_ |y

11 =12 X

195

7. Result (FF.ffff..) = FF + I1/12 + SS/192:

020 +

021 +

The final result ends up in the X—register.

8. END of LBL A:

022 RTN (the output is FF.ffff)

9. LBL B (input: FF.ffff):

023 LBLB

This is the beginning of the routine that converts

an input of feet and decimal fraction to feet,

inches, and sixteenths. The input of FF.ffff is

assumed to be in the X—register.

10. Save the whole feet:

024 INT

The whole feet are saved in the X—register (and the

original input is saved in LASTX).

196

11.

12.

Multiply the fractional portion by 12:

025 LSTX 028 2

026 FRAC 029 X

027 1 030 INT

This brings the original input back into the

X—-register and multiplies the fractional portion

(.ffff) by 12. The last statement (INT) saves the

integer portion in the X—register.

Multiply the remaining fraction by 16:

031 LSTX 034 6

032 FRAC 035 X

033 1

The result of multiplying .ffff by 12 is in the

LASTX-register, so we need to call it up and get the

fractional portion. Then we multiply it by 16. Now

all the numbers have been calculated. From here,

it's just a matter of moving each part into its

proper decimal place in the output. The stack looks

like this:

2T
__FF __12z
I|Y

55 X

197

13. Result = FF + I1/100 + SS/10,000:

036

037

038

039

EEX

2

+

040

041

042

043

EEX

2

+

In this final segment program we first rearrange the

above equation to this: Result = FF + (II + SS/100)/100.

In this form the equation is easier to translate into

program code. With SS in the X-register, all the

program does is divide by 100 (Remember EEX from

page 27?), add that result to II (in the Y—-register),
divide again by 100, and add that to FF.

14. END of LBL B: 044 RTN (output: FF.IISS)

198

Try this: Convert 4 feet, 11 and 5/16 inches to

feet and decimal fraction.

Solution: Assuming you have the program keyed in

(from pages 191-192), you key in 4.1105 £ [&. The

answer 1is 4.9427 feet.

Try this: Convert 7.0729 feet to feet, inches, and

sixteenths.

Solution: Key in 7.0729 £l to get 7.0014

The conversion routine is complete!

Do you see how much work you can make the calculator

do for you?

Are you starting to get the knack of manipulating

numbers through program steps?

Just to make sure, here's one more good practice

example. —————>

199

GRAPHING AN EQUATION

The final program we will develop is a program

to evaluate a table of X— and Y—values for an

equation that you program into the machine. How does

that sound? (It really isn't very difficult.)

Most of us have done this before in an old algebra

class (long, long ago, in a galaxy far, far away...).

Back in algebra, they called it ''graphing'’' an

equation or ''plotting'' an equation. We might start,

for example, with some equation like Y = X* + 5X.

Now remember, these Y's and X's don't have anything

to do with the X— and Y-registers in the stack. We

could easily rewrite this equation as: B = A? + DA,

or (OUTPUT) = (INPUT)*+ 5(INPUT).

But, because it's common to talk about equations

graphed on the X and Y axis, we'll use the original

Y = X? + 5X. So to keep our thoughts clear, whenever

we mean the X—register, we'll write ''the X—register."”

Otherwise, X means the variable number X in the

equation, OK?

200

Anyway, to plot the equation Y = X2 + 5X, we would

start at, say, zero and plug in a bunch of values

for X—to see what Y—value each X gives.

We would generate a table that looks like this:

equal _equals

d ©

1 b

2 14

3 24

1 ”
2 -6
.3 6
4 4
-5 Q@
-6 6

-7 14

-8 24
<201

Then we could take these pairs and plot them on a

graph with the X-value plotted horizontally and the

Y—value plotted vertically:

Y
A

(-aaa (3- Z“)

T1) (2,04)

(-6,6) (H6)

- o . . . (0: 0)‘ * - o x

20 I8 -w s 10 15 20

-4,4) -4 %)

-3,-¢)

29

202

The program we develop will generate the X,Y pairs,

so that we can plot the graph of any equation we

program into our HP-11C or HP—-15C.

Try this: Write a routine to do the equation:

Y=4X’ - 12X +5
or

OUTPUT = 4 x (INPUT)® - 12 x (INPUT) + 5.

Solution: 001 LBLO

002 STO 5

003 3

004 Y*

005 4

006 x

007 RCL 5

008 1

009 2

010 X

o11 -

012 5

013 +

014 RTN

(If translating an equation into a program has you

flustered, then take a break and go back to pages

64—-93. It will refresh your memory; then you can

come back and start again at the top of this page.)

203

Try this: Use the above routine to create a table

of X,Y pairs for the equation Y = 4X3*- 12X + 5.
Start with X = 0 and run the program. The result

is Y. Then increase the X—value by 0.25 each time,

up to 2. You will generate 9 pairs of X and Y.

Solution:

For X equal to Y equals

0 5.0000

0.25 2.0625

0.50 —0.5000

0.75 —2.3125

1.00 -3.0000

1.25 —-2.1875

1.50 0.5000

1.75 5.4375

2.00 13.0000

Got it? (Partly?)

204

All it amounts to is this: To get the first

Y—value (after you've keyed in the program), key in

0 0, and your calculator will return 5.0000 (if

you're set to FIX 4). So the first X,Y pair is 0,5.

An X-value of zero gives a Y—value of 5. Plain

and simple.

To get the next Y—value, key in .25 [GSB| 0, and

your calculator will return 2.0625. Keep going

until you have nine X,Y pairs.

Try this: Write out, step by step, what you just

did on the last page, as if you were explaining the

process to a friend.

Solution: '"Well, let's see...."’

205

1. "I read the problem and saw that I was supposed

to use the LBL 0 routine to generate a table of X,Y

pairs. I was to begin at X=0, end at X=2, and

increase by 0.25 each time. So I was told the name

of the program with which to evaluate the Y—values,

the beginning X—value, the ending X—value, and the

increment.

2. "'l started at the beginning X—value.

3. "I ran this current X—value through the LBL 0

routine to get Y.

4. "l wrote down the X,Y pair.

5. 'l added the increment (0.25) to X.

6. "I checked to see if this new current X—value was

greater than 2 (the ending X—value). If it wasn't,

I repeated steps 3 through 6. If it was, I stopped,

and I smiled.”

206

Question: What are the six steps that a program

would perform to do what you did on page 206 (one

page back)?

Answer:

1. The calculator needs to know the name of the

function (LBL 0) with which to generate X,Y pairs.
It also needs to know the beginning X—value (0),

the ending X—value (2), and the increment value,

(0.25). The calculator should store all this.

2. Start at the beginning X—value.

3. Run this current X—value through the named

program (LBL 0) to get Y.

4. Display the current X,Y pair.

5. Add the increment to the current X—value to

get a new current X—value.

6. Check to see if this new current X—value is

greater than the ending X—value. If it isn't,

repeat steps 3 through 6. If it is, stop.

207

See what we're getting at? These six steps are

nearly the same as those on the page 206.

The general steps that YOU take to complete a

process are quite similar to the steps a program has

to take to complete the same process.

Now it's just a matter of expanding these general

steps into calculator program lines.

Let's agree to store the required data as

follows:

I-register——Name of the function to plot

register 1-——Beginning X—value

register 2——Ending X—-value

register 3—Increment value

208

Now let's look at step 1 in our list of six steps.

1. "The calculator needs to know the name of the

function (LBL 0) with which to generate X,Y pairs,

the beginning X—value (0), the ending X—value (2),

and the increment value (0.25). The calculator

should store all this."

Question: How can we handle this step in a program?

Answer: There are many ways to do this. The final

goal to every approach is to get the four values

into the four registers (the name of a numeric label

into the I-register, the beginning X—value into

register 01, the ending X—value into register 02, and

the increment into register 03.

The way we're going to approach it is this: These

four values will be keyed into the stack (X,Y,Z,
and T) right before we run our plotting program.

209

So the first part of the program is going to assume

that the T-register contains the function name; the

Z—register contains the beginning X—value; the

Y—-register contains the ending X—value; and the

X—-register contains the increment, OK?

With this assumption, we can sketch out a routine

that could handle step 1 of the 6 step list:

LBL A

STO 3 (stores the increment in register 3)
Rt

STO I (stores—in I-——the name of the function to plot)

Rt

STO 1 (stores the beginning X—value in register 1)

Rt

STO 2 (stores the end X—value in register 2)

210

Now, look at step 2:

2. '"Start at the beginning X—value.”

This step merely reminds us that, on the first time

through, the beginning X—value will be the current

X—value. The current X—value will always be

maintained in register 1.

c11

Try this: Expand the next step for your calculator.

3. "Run this current X—value through the named

program (LBL 0) to get Y."

Solution:

LBL 1

RCL 1 (recalls the current X—value to the X-register)

GSB I (branches to the LBL named in the I-register)

(No sweat? Then head to page 214.)

Look at it this way: When you were generating the

table of X,Y pairs manually, you established a

current X—value in the X—register, and then you

ran the program under LBL 0. Well, the program you

write to generate these X,Y pairs is going to have to

go through the same process.

_12

So the line "RCL 1" brings the current X—value into

the X—register.

The line "GSB I'' says ''look at the program name in

register I and GSB (Go SuB) that program.” This is

another form of indirect addressing. You are

indirectly addressing a label.

Notice that the keystrokes are [g [GSB [, NOT

[g] GSBI (i), For some reason, HP chose to use

the [key for indirectly addressing LBL's. In

fact, as long as you remember that the (i) key 1s

used only for the indirect addressing of REGISTERS,

you'll get along fine.

Finally, notice that we put the LBL 1 at the top.

Step 6 mentions going back to step 3, so we need a

marker (LBL 1) to tell the pointer where to '"jump.”

213

—————————— ————————————————————————————————— ——————— —— ————————

Try this: Expand step 4 (''Display the current X,Y pair").

Solution:

RCL 1

R/S

This will cause the program execution to stop with

the current X—value in the display (and the

X—register, of course) and the current Y—value in the

Y—-register. You'll need to write down each X,Y pair

so you can plot the equation. So just write down X,

press XYl and write down Y.

To get the next X,Y pair, start the program running

again by pressing R/S]
—.S———————T——

Now expand the next step:

5. ""Add the increment to the current X—value to get

a new current X—value."”

Solution:

RCL 3 (increment)
RCL 1 (current X—value)
+

STO 1 (new X—value)

214

————C—S———

Finally, write the program lines for this step:

6. '"Check to see if this new current X—value is

greater than the ending X—value. If it isn't,

repeat steps 3 through 6. If it is, stop.”

Solution:

RCL 2

RCL 1

X<Y

GTO 1

RTN

Now put it all together(})

001 LBL A

002 STO 3 (stores the increment in register 3)
003 Rt

004 STOI (stores—in [-——the name of the function)

005 Rt

006 STO 1 (stores the beginning X—value in register 1)
007 Rt

008 STO 2 (stores the end X—value in register 2)
009 LBL1 (beginning of loop)
010 RCL 1 (recalls the current X—value)

011 GSBI (branches to the LBL named in the I-register)

215

012 RCL1

013 R/S
014 RCL 3 (increment)

015 RCL1 (current X—value)
016 +

017 STO1 (new X-value)

018 RCL 2

019 RCL 1

020 X<Y

021 GTO 1 (end of loop)

022 RTN

Key this program into your machine, but DON'T ERASE

the program that is there under LBL 0. Make sure

your calculator is in RUN mode and press [g] RTN.

Then put it into PROGRAM mode ([g] [P/R]), and the

display will show 000— . Now, as you key in

the above program steps, the other program steps

will be pushed farther down into program memory.

216

Before you can use this plotting program, you

have to do two things:

1. You need to key in a program under some numeric

LBL other than LBL 1. This program will represent

the function you want to plot.

2. You need to set the stack up like this:

Function Name

oy e» e-» eo» ew e» e oy

Increment

Try this: You have two programs in your calculator—

the plotting program and the program under LBL O

that gives Y values for the equation: Y = 4X° - 12X + 5

when you input X.

Now generate a table of X,Y pairs for this equation

beginning at —2.2, ending at 0.4, and increasing by

0.2 each time.

Solution: O [ENTER! 2.2 [CHS| [ENTER] .4 [ENTER] .2

£] [Al. The calculator will stop with the first

X—value in the X-register and the first Y—value in

the Y-register. Write down the first X—value, press

X<>Yl, and write down the first Y-value. Then

press to compute the next X,Y pair etc.

For X equal to Y equals

—2.2 —11.1920

-2.0 —3.0000

—1.8 3.2720

—1.6 7.8160

—1.4 10.8240

—1.2 12.4880

—-1.0 13.0000

—0.8 12.5520

—-0.6 11.3360

-0.4 9.5440

—0.2 7.3680

0.0 0.0000

0.2 2.6320

0.4 0.4560

It's easy!

218

This is what programming is all about. You must

think carefully just once——when you write the program—-

and then you can make your calculator do all of the

boring, repetitive work for you——over and over!

But remember! You have to SPEND some time first in

order to SAVE time later. So keep practicing——with

these programs or with others of your own choosing.

And for other helpful ideas for getting the most out

of your calculator, you might want to read through

the appendices that follow. But as of now, you have

graduated from the Easy Course.

CONGRATULATIONS!

Appendices

APPENDIX 1

Using The Manuals

In this course, we gave you some visualization

tools (ways to picture your calculator's insides)

and a fundamental knowledge of how your calculator

works. How much you retain will depend upon your

calculating needs and how much you practice with

your calculator.

Also, once you have this basic knowledge of the operation

of your calculator, it is much easier to work with the

manuals that came with your calculator and with other

HP books. So at this point, the manuals are good

sources to use in expanding your knowledge of the

works of your machine. You will find them to be

excellent books for this kind of continued reference.

To use the manuals effectively for reference, you

need to learn how to use the indexing in the back of

those manuals. There is a '"'Function Summary and Index”

or "Function Key Index," in case you need to know more

about using a particular function on your calculator;

and there 1s a ''Subject Index,”’ where you can look up

more general information about a particular subject.

_21

In order to look up something quickly, you have to

know enough about your calculator to have in mind a

word or two that you can refer to as a possible

lead. But it's a little bit like the old dictionary

dilemma: "How do you look up the spelling of a word

in a dictionary if you don't know how to spell it?"

Well, the best way to familiarize yourself with your

manual and its index is to skim through the

entire book, working examples here and there; also,

skim through the indexes. After all, let's face it:

Reading the whole manual thoroughly would take the

better part of a long time. And few people need to

know EVERYTHING about their calculator. Some people

may use the hyperbolic functions on their calculator

every day, and some people may never use them. The

same goes for statistical functions, etc. It's all

up to you and how you use your calculator.

This course has given you the basic vocabulary you

need to look up those subjects you want to study more

thoroughly. Hopefully, with this vocabulary, you can

now ask yourself questions such as these:

222

"Do I really know the effect that the Z FUNCTION

has on the STACK? It's not acting as I think it

should, so maybe I should look it up in the FUNCTION

INDEX to learn the details.”

or

"Is something weird happening in the DISPLAY? Maybe

I'll find the answer by looking up DISPLAY in the

Subject Index.”

or

'""Do I really know all the details of INDIRECT

ADDRESSING?"

or

"Do I need to review STORING NUMBERS?"

If you can ask yourself questions like these

whenever you have a problem, you'll be able to find

solutions by using your manuals for reference.

And occasionally, you may even see an ERROR message

in the display. If you do, and if you have no idea

why, just remember the last function you executed (or

put your calculator into program mode to see the

program line that caused the ERROR), and then look up

the ERROR number in Appendix A of your manual.

223

Appendix 2

Trigonometry and Vectors with =R and =P

The names of the functions, =R (''convert to

Rectangular coordinates'') and =P (''convert to Polar

coordinates''), may not fully reveal the usefulness of

these functions. Anyone who solves trigonometry

problems or works with vectors (in science and

engineering) should be using these functions

regularly.

The easiest way to describe what these functions do

is to look at a right triangle placed on an X,Y plane:

224

The names of these functions (=Rl and [=>P/) come

from the fact that there are two ways of describing

the location of point S.

Using rectangular coordinates, you would say '""from

the origin (point 0) move the distance 'a’' in the X

direction, then move the distance 'b' in the Y

direction to get to point S."”

Using polar coordinates, you would say '"from the

origin (point 0) move the distance 'I' at an angle B

from the X—axis to get to point S."

So the names come from describing points in two-—

dimensional (X,Y) space. To describe a point, you
can either specify an X—distance and a Y—distance, or

you can specify one distance and an angle. OK?

But describing points is not the most exciting

thing in the world. Few people can make a living by

describing points, no matter how many different ways

they can describe them.

223

So it's important to notice that we are not just

describing a point. We are describing a right

triangle and also a vector.

To describe a right triangle, you need only specify

the length of the legs (like 'a’ and 'b') or you can

specify the length of the hypotenuse ('1') and one
internal angle ('B'). Either way, you would
completely describe the triangle.

To describe a vector, you can either specify its X

and Y components or you can specify its magnitude

and direction on an X,Y plane.

Try this: Calculate the length of the hypotenuse of

this triangle and the angle B (in degrees).

Solution: 9 [ENTER| 5 [g| [=>P]

226

The length of the hypotenuse is now in the

X—register (10.30) and the angle B is in the

Y—-register (assuming your calculator is in degrees

mode, press XY to see 60.95 degrees).

Press to get the angle back into the

Y—-register. Now convert back to a rectangular

description by pressing =>R. Now O is back in

the X—register and 9 is in the Y—register!

It's easy to convert back and forth from the "polar

description'' of a right triangle to its ''rectangular

description.” Just remember that, when converting to

the '"polar description,’ the orientation of the

right triangle will determine which angle is

computed. If, in the above problem, you put a 5 into

the Y—register and a 9 into the X—register, the

hypotenuse will still be the same, but the

calculator will return the complementary angle.

_2R7

Solve this: Farmer Smith has a mule named Elum that

has a consistent walking pace of exactly 1.4

meters/second. The other day Farmer Smith timed

Elum crossing one of his rectangular fields

diagonally and it took Elum 26 minutes. Farmer

Smith knows from windrowing hay in this field that

it is three times as long as it is wide.

If Farmer Smith wants to fence in that rectangular

field for pasture, how many meters of fencing

material should he buy?

Solution:

Here's ho

1 ENTER 3 g 5P BT
1.4 [ENTER 26 X 60 X
] =>Rl # 2 X

0,929.13 meters

w we did this:

—_ :=TT(1.4TS26 minutes « 6o seconds)
o Y~

WIS
5= = 2184 meters

=)4

]we need ‘o get this angle ’\

from the coordinates:
—
3

Rec‘tqr\@le 1 3 times as \ong as it is wide

228

SUMMING VECTORS

.Em— CE——————NS—S—SE——————C——C— CE——————————————————TW———V———————C——————

Try this: What is the resultant of summing these

vectors?

n.0

7 19°
Solution: 19 [ENTER! 4.6 [fl =Rl

[STO] 0 XY [STOl 1

26 [ENTER] 12.2 [fl [=>R

STOl [+ 0 X<>Y] [STO] [+ 1

[RCL] 1 [RCLI O [g] [=>P]

Answer: 16.78 @ 24.08deg

To sum vectors, you first need to break them into

their X and Y components. This is done using the

=>Rl function. Then, you simply sum the X compo—

nents, then the Y components, to get the X and Y

components of the resultant vector. Finally, you

can convert back to a magnitude and angle using

the =>Pl function. This is what we did here.

229

Here's a program you can use to sum vectors. With

this program in your machine, simply key in the angle

of the first vector, press [ENTER], key in the

magnitude of the first vector, ENTER], key in the

angle of the second vector, ENTER|, key in the

magnitude of the second vector, and press [f [Al

The resultant vector's magnitude ends up in the X-—

register and the angle ends up in the Y—register.

001 LBL A

002 —>R

003 X<>Y

004 R?

005 R?

006 —>R

007 Rt

008 +

009 R

010 +

011 Rt

012 —>P

To solve the previous problem——using this

program——the keystrokes would be:

19 [ENTER! 4.6 26 12.2 [f] [A]

The answer is the same, with the magnitude appearing

in the X—register and the angle in the Y—register.

230

Appendix 3

(Features of the HP—15C)

FLAGS

The HP-15C has 10 flags you can use in your

programming (flags 0 through 9). As you know, a flag

1s like an indicator switch you can turn on or off, or you

can simply check its status without changing it. By

setting a flag (using 5H), you are switching it on,

and by clearing a flag (using [CFH), you are switching

1t off. This feature is useful for making decisions

in programming (if you are having trouble using flags,

you may want to review pages 123—127 in this book).

All of the flags except flag 9 will stay in the

positions to which you set them until you change

those positions (or a program changes them).

One more thing: Flags 8 and 9 have special meanings

to the calculator. Flag 8 turns on a little 'C' in

the display to indicate that the calculator is in

Complex mode (which is discussed in the following

section). Therefore, if you have Flag 8 set (so the

'C' is showing in the display) you should clear it

(unless, of course, you're working with complex

numbers).

231

Flag 9 causes the display to blink, which 1is

fun——and can be useful——1n programs. Remember,

however, that this flag 1s cleared whenever you turn

off your calculator or press [<-.

Try this: As an exercise 1n using flags, write a

program that checks each flag (0 through 9) and
generates a number in the X—register that indicates

which flags are set. For example, if flags 1, 2,

and 4 are set (and the rest are clear), the program

will generate the number 124. If flags 5 and 0 are

set, the program will generate the number 50. If no

flags are set, the program will generate: —1.

Solution: We have two program listings. They both

use the same logic, but the second listing uses

indirect addressing of flags—to shorten the routine.

O QL

f

232

Addressing the flags DIRECTLY:

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

LBL A

FIX 0

0

F? 1

1

F? 2

2

F? 2

GSB 9

F? 3

3

F? 3

GSB 9

F? 4

1

F? 4

GSB 9

F? 9

o

F? 95

GSB 9

F? 6

6

F? 6

GSB 9

F? 7

7

F? 7

GSB 9

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

0477

048

049

050

051

052

053

054

055

056

057

233

F? 8

F? 8

GSB 9

F? 9

F? 9

GSB 9

F? 0

GTO O

CHS
X<>Y
X=0
X<>Y
R/S
LBL 0

Or, addressing the flags INDIRECTLY:

001 LBLB 020 1
002 1 021 CHS
003 . 022 X<>Y
004 O 023 X=0
005 O 024 X<>Y
006 9 025 R/S
007 STO I 026 LBL 0
008 FIX 0 027 1
009 0 028 0
010 LBL 1 029 X
011 F?1 030 R/S
012 RCLI 031 LBL 9
013 INT 032 XY
014 F?1 033 1
015 GSB 9 034 O
016 ISG I 035 X
017 GTO 1 036 +
018 F? 0 037 RTN
019 GTO 0

The indirect addressing occurs in the loop starting

at line 010 and ending at line 017. This loop takes

the place of lines 004 through 037 in the first

listing. Do you see how useful this indirect

addressing can be?

234

COMPLEX MODE

When you set flag 8, a little 'C' comes on in the

display. This 'C' indicates that your calculator 1s

in Complex mode. There are two functions that

AUTOMATICALLY set flag 8, thereby putting the machine

into Complex mode. These two functions are

and [f]Re<Iml.

We can't take the pages needed to describe complex

mathematics; the full details of Complex mode on the

HP—-15C are described very well in the HP manual. But

we would like to show you a couple things you need to

know about Complex mode.

First, the only time flag 8 should be set is when you

are working with complex numbers. Some functions,

such as [=>Rl and =>P], work completely differently in

Complex mode. So, be sure the little 'C' is on

ONLY when you want it on.

When the calculator is set to Complex mode, it uses

some of that "memory used to store other things' to

set up an imaginary stack (see pages 71-74 if you don't

remember what this memory is):

235

Try this:

4 + 17

+ 9 + 18

Solution: [g] SF 8

4 [ENTER] 7 [f] [[

9 [ENTERI 8 [f] I

Answer: 13 + 115

Here's what happens in the real and imaginary stacks

when you go through these keystrokes.

Re Im Re m Re Im
2. ? 2 2 7 ? T
9 |7] 2 | 7 2 1?12
2 7 ° ~4 1[o.07] _‘?“ 2 | v
"4 11 0.0 ~ 0.0 7 X

4—sR7T [ll————?)

? ? ? ? ? ? T

IT 4T[T 7 2 Tz

i a|[o0 ZEZEi:Y
" q |[o.0 0.0 q 8 |X

3

qQ—IL__ EvRIg T>fl

? 20T
2 1?1z
"z 1Lz]y
(3 15 |X

F-7

236

To see the contents of the imaginary X—register, you

can either exchange the contents of the real and

imaginary X—registers (by pressing ReIml), or
you can temporarily bring a copy of the contents of the

imaginary X-register into the display (by pressing

0).

The important function to understand is ifl I.

Whenever you press [fl I, the contents of the real

X— and Y—registers are combined to form a complex

number. These are the details of pressing I

1. The contents of the imaginary Z— and T—-registers

move down one notch.

2. The contents of the real X—register moves into

the imaginary Y-register (writing over what was

previously stored there).

3. The contents of the real Y—, Z—, and T-registers

move down one notch.

_237

Try this: Registers 0 through 3 contain the numbers

a, b, ¢, and d respectively. What are the keystrokes

to solve the problem:

a + 1ib

+c +1id

Solution: [RCLI O RCL 1 [fl O

[RCL] 2 [RCL 3 [f]

Re Im Re Im Re I~
?a ?d ?v ?e ?b 2¢ T

e o e - - et e af e e -y o ame e e oy

? e ?c ?s ?p e Z
— = e b 5‘-‘ - = o -o—o— o 7— - - ; -

b . X

 X
<
N

238

and in Complex mode

Just a word to the wise here:

Be aware that the and functions use the

imaginary X—-register in Complex mode as they would use

the Y-register in real (non—Complex mode). This is handy

for converting complex numbers from ''polar’ or "phasor”

notation to "a + ib"’ (rectangular) notation, and vice versa.

The '""out of Complex mode' operations of these

functions are covered in Appendix 2 (page 224).

[SOLVEl and [£]

The and (integrate) functions are two

useful functions that we haven't covered in this book——

and for good reason:

The manual's descriptions of these functions are

excellent, provided you have a strong fundamental

knowlege of your calculator. In other words, if you

know how the stack works, and how to write a program

to evaluate an equation (as you did in the chapter

"The Naked Program'’), then you'll have no problems in

learning to use and £

239

MATRICES ON THE HP-15C

This book is not going to cover matrices to

any significant extent. But again, the vocabulary

and foundation you have gained from this course will

aid you in working through the '"Calculating With

Matrices' section in your manual. The manual's

approach is excellent, but go slowly! The computing

power of this machine is awesome, and we mortals have

to take a little time to grasp it.

To get you started, here is a short summary of the

calculator's storage of matrices:

Your calculator stores matrices in the "'memory used

to store other things' that we discussed on page 73.

Each element of a matrix is stored in a separate

register. So one three—by—three matrix will use 9

registers of memory; one five—by—five matrix will use

29 registers.

To store these elements, you have to tell the

calculator to reserve space for them. This is called

"dimensioning'' a matrix. But remember this: The

HP—-15C won't let you dimension a matrix if that would

require destruction of a program already stored in

the "'memory for other things."

240

Likewise, if you have a matrix stored in that memory,

and you then try to key in a program which would

require some of that used memory, the calculator

wouldn't let you do it (you would see an ERROR

message).

With these ideas in mind, you can start studying your

manual; observe how programs, matrices, the complex

stack, and the and integrate functions

compete for the memory in your calculator.

Also, notice the different powerful matrix operations

(0 through § MATRIX] 9). Notice that
these operations are printed in the table on the back

of your calculator as reminders.

241

Appendix 4

Fun Facts to Know and Tell

[.R] and [F.r]

Just the names of the functions [LE] (Linear

Regression) and Fr] (linear estimate and
correlation coefficient) may not give you much of a

clue about how to use them.

In fact, like =Pl and =>R], the L.RJ and

functions are seldom used to their full extent. So

we're going to rattle off a list of things that you

can do with these two functions and then show you

some examples of how to use them....

1. If you know two points on a line, you can get

the equation for a line in the form: y = Ax + B,

where A is the slope and B is the y—intercept.

2. You can linearly interpolate and extrapolate

around two or more points on a graph (or two or more

values in a table).

242

3. You can solve for the slope and y—intercept of a

straight line that is the '""best fit" through any

two or more data points. This is very handy in any

kind of experimental environment (such as physics,

chemistry, or biology labs) where you are collecting

data and then trying to fit that data to a straight

line.

So, if you ever find yourself trying to solve

something on a piece of graph paper by drawing a

straight line through two or more points, chances are

you should try one of these functions.

Of course, to use either of them, you have to know a

little bit about the statistics registers in your

calculator, and you have to know how to key in an X,Y

pair for statistical calculations.

Your calculator uses six of the numbered data

registers (registers 2 through 7) for these and
other statistical functions.

243

If you want to do anything with statistics on your

calculator, the main function you need to know about

is the function. When you press &, this is

what happens:

1. The number in register 2 is incremented by 1.

2. The number in the X—-register is added to the

number in register 3.

3. The number in the Y—-register is added to the

number in register 9.

4. The square of the number in the X-register is

added to the number in register 4.

9. The square of the number in the Y—register is

added to the number in register 6.

6. The numbers in the X— and Y—-registers are

multiplied together and the result is added to the

number in register 7.

7. The number in the X—register is stored in the

LSTX-register.

8. The number in register 2 is stored in the

X—-register.

9. Stack-lift is left disabled.

244

Whew! That's a lot of operations for just one flick

of the finger, right?

Well, to help you remember, items 1 through 6 in the

above list are summarized in a table on the back of

your calculator. Items 7 through 9 are also useful

things to know, but don't WORRY about any of these,

because the calculator takes care of them

AUTOMATICALLY!

There are really only two things that you need to

think about, and they are:

1. Whenever you start a problem that uses the

function, you need to clear registers 2 through 7.

Do this by pressing [l CLEAR El. (This also

clears the stack.)

2. To enter a statistical X,Y data point, you just

key in the Y—value, press to put it into the

Y-register, key the X—value in (to the X—register),

and press . The number then appearing in the

X—register tells you how many X,Y points you have

keyed in.

243

Try this: A line goes through the points (4, 17) and

(7, 32). What is the slope/intercept equation for
this line.

Solution: Y =5X -3

Here are the keystrokes:

fl CLEAR & (clears the statistical registers)

17 4 (accumulates 1st point)
32 [ENTER! 7 (accumulates 2nd point)
£l [L.R.]

The Y—intercept (—3.00) is now in the X-register, and
the slope (5.00) is in the Y-register.

246

RCTEGSC—SRGGGS—CE—C————C—G——S———G——GG———C—C——ICE———C—GSS——SI—SGGSSE—— G——GGGW—E—S—

Try this: At a certain temperature, and under a

pressure of 230 lbs. per square inch, the specific

volume of superheated steam is 2.9276 cubic foot per

Ib. At that same temperature, but at a pressure of

240 1b per square inch, the specific volume is 2.8024

cubic foot per 1lb.

At that same temperature, what is the specific volume

of superheated steam at a pressure of 234 lbs. per

square inch?

Solution: Using linear interpolation, the specific

volume is 2.8775 cubic foot per lb.

This is a typical linear interpolation problem. You

are given the "X,Y'" coordinates of two points on a

line. Then you are given the '"X'" coordinate of one

other point on that line and asked to solve for its

"Y" coordinate.

The math is fairly simple to grind out, but it's

easier to use the J.r] function on your calculator.

The two points you are given in the above problem are

(230, 2.9276) and (240, 2.8024). You are asked to
find the "Y" value at X = 234, right?

247

Here are the keystrokes:

f] FIX] 4

fl CLEAR [E]

2.9276 230 X+

2.8024 240

234 [F.r]

so you can check your inputs)

to clear the X —registers)

accumulate 1st point)
accumulate 2nd point)

ask for "Y' at a given "X")

S
N
T
N
N
N
N

That's all there is to it! The answer is in the X—-register.

——

Try this: After a rigorous chemistry experiment, you

are faced with a distribution of data that looks like

this:

548, 26)

(30,17)
®

o (20,12)

©(12,7)
248

What is the slope of the line that represents the

""best linear fit" of this data®?

Solution: [fl CLEAR X

26 [ENTER] 48

17 [ENTER] 30

12 [ENTER! 20 [Z4]

Y ENTER! 12 X+

fl L.R] XY

Answer: 0.5214

249

Mean and Standard Deviation

Two other functions that use the statistical

registers are (mean) and [(standard

deviation). These functions are easy to use, once you

know how to accumulate values in the statistical

registers (using [Z4).

Notice, in the table on the back of your calculator,

that both these functions return results for

accumulated X—values (into the X—register) AND

accurmnulated Y—values (into the Y—register). Again,
remember to press CLEAR E] before starting to

accumulate statistical values.

=>HMS] and =1

We mentioned these functions, briefly, on page 182.

They are used to convert from Hours and decimal

fractions of hours to Hours, Minutes, and Seconds

(i.e., 4.23 hours = 4 hours, 13 minutes, and 48

seconds) and vice versa.

But we didn't mention this:

Hours and Degrees (for measuring angles) use the

same base as Hours Minutes and Seconds! You can use

[>HMS| and [=>H to convert from degrees, minutes,

and seconds to degrees and decimal fractions of

degrees!

230

We hope you enjoyed this book; we certainly

enjoyed writing it. In a very real sense, we were

just trying to have a conversation with you, because

we have found that this simple, one—to—one

conversational approach is really very helpful when a

person is trying to learn something easily (and

retain it well, too).

Unfortunately, some people feel that programming

and other technical subjects cannot be taught without

using technical jargon. It seems that, after

having become comfortable with some ''tech—lingo"

themselves, these people forget that only computers

can truly communicate in computer language.

Well, we TRIED to use plain English here, but if it

wasn't as plain in certain spots as it might have

been, or if we missed some plottographical errors (or

numerical boo—boos), please let us know, so we can

keep improving this book. Of course, we would enjoy

hearing any other comments you may have about this

book, too. Whether your remarks are complimentary or

otherwise, we always appreciate it when readers take

a moment to let us know how we did. Also, we

encourage your suggestions for future books. A

handwritten postcard will certainly be sufficient——

and we always read all our mail!

Thanks for the conversation. Good luck!

TABLE OF CONTENTS

Whodunit

Why Are You Here?

A Picture of Your Calculator's Memory

Data Registers
The Stack
The Display
The I-Register
Pop Quiz
Pop Answers

Numbers and Functions

Adjusting the Number of Decimal Places
Beyond the X—Register
Storing Numbers
Recalling Numbers
Functions
Prefix Keys
Another Pop Quiz
More Pop Answers

You've Got to Know Your Stack

The (Back—Arrow) Function
The Other Stack Operations
More Stack Problems
Data Registers and the Stack
The LSTX Register
Quiz
Answers

The Naked Program

Program Memory in the HP-11C

Program Mode
The Function

Program Memory in the HP-15C

Program Mode
Moving the Data Register Boundary
The Function

60

65

67
70

71

75

81

The Problem at Hand

Running the Program
Moving Around in Program Memory
Keycodes
Review
Quick Quiz
Quick Answers

Decisionmaking and Branching

Labels
[eT0], and
Program Loops
Editing a Program
Conditional Testing
The '"Do If True' Rule
More Editing
Flags

and
The Control Number
Quiz
Answers

Indirect Addressing

Indirectly Addressing Labels

Program Development

Checkbook Balancing
Feet, Inches, and Sixteenths
Graphing an Equation

Commencement

Appendix 1: Using the Manuals

Appendix 2: Trigonometry and Vectors

with and

Appendix 3: Features of the HP-15C

Flags
Complex Mode

and in Complex Mode
and [

Matrices

Appendix 4: Fun Facts to Know and Tell

and (1]
Mean and Standard Deviation

and

97

100
103
106
109
114
117
121
123
128
129
138
139

143

156

160

161
181
200

219

221

224

231

231
235
239
239
240

242

242
250
250

Other Books Also Available From The Press At
GRAPEVINE PUBLICATIONS., INC.

—An Easy Course in Programming the HP-41

—Using Your HP-41 Advantage ROM: Statics for Students

—Using Your HP-41 Advantage ROM: Electrical Circuits for Students

—Computer Science On Your HP-41 (using the Advantage ROM)

—An Easy Course in Programming the HP-11C and HP-15C

—The HP-16C Training Guide

—An Easy Course in Using the HP-12C and Other HP Financial Calculators

—The HP-12C Pocket Guide: Just In Case

—The HP Business Consultant Training Guide

—The HP Business Consultant Pocket Companion

Books from Grapevine make perfect gifts... on every occasion!

. _

XSQD XARR
%“\\\\ ANe
SR

e

SSRGSS \&'
GANERI

N

SR RN
SRSNNIey
RARAN

SR
R

&

£
A
L

y
‘
/
'

..
"”
‘0
:3
:’
R

N
,

0.
:’

”

4
/ 2"’
37'

5
<)
S 2 1
A

S
N

’.
Q’
Q
X

K
X V) @,

X
A

(Please see next page for order blank.)g

BOOKS & THEIR PRICES

An Easy Course in Programming the HP-41 $19.95
Using Your HP-41 Advantage ROM: Statics for Students $11.95
Using Your HP-41 Advantage ROM: Electrical Circuits for Students $11.95
Computer Science On Your HP-41 (using the Advantage ROM) $14.95
An Easy Course in Programming the HP-11C and HP-15C $19.95
The HP-16C Training Guide $24.95
An Easy Course in Using the HP-12C and Other HP Financial Calculators $19.95
The HP-12C Pocket Guide: Just In Case $4.95
The HP Business Consultant Training Guide $21.95
The HP Business Consultant Pocket Companion $7.95

SHIPPING & HANDLING Surface Post (allow 2-3 weeks): $2.00
UPS (for faster delivery): $3.50

Please check with your nearest Hewlett-Packard Dealer to save time & shipping costs!
(Prices subject to change without notice.)

Please send me:

__Copies ofAn Easy Course in Programming the HP-41
__Copies of Using Your HP-41 Advantage ROM: Statics for Students
__Copies of Using Your HP-41 Advantage ROM: Electrical Circuits for Students
__Copies of Computer Science On Your HP-41 (using the Advantage ROM)

__Copies ofAn Easy Course in Programming the HP-11C and HP-15C
__Copies of The HP-16C Training Guide
__Copies ofAn Easy Course in Using the HP-12C and Other HP Financial Calculators
__Copies of The HP-12C Pocket Guide: Just In Case

__Copies of The HP Business Consultant Training Guide
__Copies of The HP Business Consultant Pocket Companion

__Check Enclosed _MasterCard __VISA Signature

Account No. Expiration Date

Ship My Books To: NAME

ADDRESS

CITY STATE ZIP

TELEPHONE

AMOUNT OF PAYMENT: Cost of Books

Shipping Cost

TOTAL

Make cheques payable and send to: Grapevine Publications, Inc.
P.O. Box 118

Corvallis, OR 97339-0118, U.S.A.

Or call our Toll-Free "Order Line:" 1-800-338-4331 THANK YOU!

This cover flap is good for several
different things:

--Tuck it just inside the front cover when
you're storing this book on a shelf. That
way, you can see the title on the spine.

--Fold it inside the back cover--out ofyour
way--when you're using the book.

--Use it as a book mark when you take a
break from your reading!

>
Z

FROM THE PRESS AT
GRAMPEVINE PUBLICATIONS,INC.

This book will help you understand and feel comfortable
using your HP-11C or HP-15C calculator. Its unique, conver-
sational style makes learning to program ENJOYABLE, not
intimidating. The authors, both former Hewlett-Packard
support engineers, realize that a relaxed, jargon-free format
is the best way to present a technical subject. And if a touch
of humor and some delightful illustrations are added, then
learning to program your HP calculator becomes both easy
and fun!

“AN EASY COURSE IN PROGRAMMING THE
HP-11C AND HP-15C” is the easiest and fastest way to
master your calculator. Filled with examples, review ques-
tions, explanations and fun quizzes, this self-paced book lets
you work along at your own rate, learning all the how's and
why's of programming. Discover this amazing learning
approach, and you’ll soon find yourself ENJOYING your
calculator!

 HP 92234W

6 ISBN 0-931011-02-7e
—

O
0
e
—
—

s
y

o
_

O
—
—
—

o
_

O
_

N
—
—
—

0"™M 284

	Cover
	Whodunit
	Why Are You Here?
	A Picture of Your Calculator's Memory
	Data Registers
	The Stack
	The Display
	The I-Register
	Pop Quiz
	Pop Answers

	Numbers and Functions
	Adjusting the Number of Decimal Places
	Beyond the X-Register
	Storing Numbers
	Recalling Numbers
	Functions
	Prefix Keys
	Another Pop Quiz
	More Pop Answers

	You've Got to Know Your Stack
	[ENTER]
	[CLX]
	The [<-] (Back-Arrow) Function
	The Other Stack Operations
	More Stack Problems
	Data Registers and the Stack
	The LSTX Register
	Quiz
	Answers

	The Naked Program
	Program Memory in the HP-11C
	Program Mode
	The [MEM] Function

	Program Memory in the HP-15C
	Program Mode
	Moving the Data Register Boundary
	The [MEM] Function

	The Problem at Hand
	Running the Program
	Moving Around in Program Memory
	Keycodes
	Review
	Quick Quiz
	Quick Answers

	Decisionmaking and Branching
	Labels [LBL]
	[GTO], [GSB] and [RTN]
	Program Loops
	Editing a Program
	Conditional Testing
	The "Do If True" Rule
	More Editing
	Flags
	[ISG] and [DSE]
	The Control Number
	Quiz
	Answers

	Indirect Addressing
	Indirectly Addressing Labels

	Program Development
	Checkbook Balancing
	Feet, Inches, and Sixteenths
	Graphing an Equation

	Commencement
	Appendix 1: Using the Manuals
	Appendix 2: Trigonometry and Vectors with [->R] and [->P]
	Appendix 3: Features of the HP-15C
	Flags
	Complex Mode
	[->R] and [->P] in Complex Mode
	[SOLVE] and [integrate]
	Matrices

	Appendix 4: Fun Facts to Know and Tell
	[L.R.] and [y,r]
	Mean and Standard Deviation
	[->H.MS] and [->H]

	Table of Contents

