

ONE

Rick Fournier

Business Computer Institute

MASTERING THE HP-12C

BOOK I, BOOK II, or BOOK III

COPYRIGHT 1984, Rick Fournier

ALL RIGHTS RESERVED

No part of this book may be reproduced in any form using any means without the express written permission of the publisher.

10	9	8	7	6	5	4	3	2	1

Direct all inquiries or comments to :
BUSINESS COMPUTER INSTITUTE
11340 SE 30th Avenue
Portland, Oregon 97222
(503) 654-4423

NOTICE

Neither the BUSINESS COMPUTER INSTITUTE or Rick Fournier makes any express or implied warranty as to the keystroke procedures offered as part of this educational material. The keystrokes provided here are made available on an "as is" basis and the entire risk with regard to their quality and performance is with the student. The BUSINESS COMPUTER INSTITUTE and Rick Fournier shall not be liable for any incidental or consequential damages in connection with or arising from the furnishing, use or performance of the procedures or keystrokes, or the opinions of the author included herein.

PREFACE

This book is the product of several years of standing in the front of a classroom presenting seminars to patient students. Throughout the many hours of discussing today's business technology with them never once have they publicly expressed their unwillingness to learn more about the fantastic devices readily available to make their work easier. This book and the others in the series are dedicated to them.

But in addition to the students I must also thank the groups or individuals among whom have allowed me to even attempt this effort. At the top of the list is Ralph Hillier. Without his expertise and creativity and professionalism in presenting seminars I doubt I would find this business such a rewarding career. Let me also thank the people of Hewlett-Packard for their unselfish encouragement and support including my teacher Mike Curran of Hewlett-Packard, Wilsonville, Oregon and Marcia Paxton of Hewlett-Packard, Corvallis, Oregon.

Finally, without the support, humor and patience of Debbie and Megan; and the understanding of the MacGilvary Clan none of this would have meaning.
R.F.

Portland, Oregon
1984

BOOK I - BASIC CALCULATOR FEATURES
I. A CLOSE LOOK AT THE DESIGN OF THE HP-12C
A. Functions of the Calculator 1
B. The Keys
II. ERROR CODES
A. What ERROR Codes Mean 3
B. List of ERROR Codes 4
C. Continuous Memory
D. Low Power
E. Removing an Error Code
III. THE DISPLAY AND DISPLAY ALTERATION
A. Internal Hold and Fixed Point 4
B. Digit Seperators and Keying in Numbers 5
IV. THE AUTOMATIC MEMORY STACK AND RPN LOGIC
A. Representing the Automatic Memory Stack 7
B. Examples of X and Y Written in Script 7
C. RPN Logic 7
D. ENTER and the Arrow 7
E. Algebraic versus RPN Logic 8
F. Stack Arrangement 8
G. Rearranging Numbers in the Stack 9
V. SIMPLE ARITHMETIC
A. ENTER as a Spacer 10
B. Simple Arithmetic Examples 12
C. Simple Arithmetic Answers 13
D. Arithmetic Rules 14
E. LASTx 15
VI. MEMORY-THE STORAGE REGISTERS
A. Memory Composition 17
B. Clear Features 19
C. Storing and Recalling 21
D. Recalling the Copy 23
E. Storage Register Arithmetic 23
VII. UNDERSTANDING THE COMPOUND INTEREST KEYS
A. Functions of the Compound Interest Keys 26
B. Clearing the Financial Registers 26
C. How the Calculator Interprets Financial Information 27
D. Defining the Compound Interest Keys 28
VIII. FINANCIAL PROBLEM SOLVING
A. Solving for (PMT) 32
B. Solving for (n) 33
C. Solving for (FV) 35
D. Solving for (i) 37
E. Solving for (PV) 39
IX. AMORTIZATION
A. Creating Amortization Tables 41
B. Consistency of Time 41
C. Amortization Example 41
D. Solving Amortization Problems 44

1. Amortization, Six Months 44
2. Amortization, Same Terms, 10 Years 46
3. Calculating Balloon Payments 48
4. Simple Balloon Payment Calculation 49
5. Balloon Payment Problem 50
```
    MASTERING THE HP-12C
    BOOK I
BASIC CALCULATOR FEATURES
```

I. A CLOSE LOOK AT THE DESIGN OF THE HP-12C
A. Functions of the Calculator

1. Arithmetic
2. Mathematic
3. Percentage
4. Statistical
5. Calender
6. Programming
7. Memory
8. Financial
B. The Keys
9. The Keys as Prompts
a. Mnemonics - A mnemonic is nothing more than a reminder of what the particular key will do for you.
b. EXAMPLE:

Enter
(EEX) Exponent (CHS) Change Sign (CLx) Clear x
2. Key tour
a. OPERATIONS

> ON - Power ON/OFF f - Shift key g - Shift key
b. DIGIT ENTRY

ENTER - Enter	CHS - Change Sign
EEX - Enter Exponent	$0-9$ - Digits
- Decimal point	

c. ARITHMETIC

$$
+\quad-\quad x \quad \div
$$

d. STORAGE REGISTERS

```
STO - Store RCL - Recall
```

e. PERCENTAGE
$\%$ - Standard percent $\Delta \%$ - Difference in percent
$\% \mathrm{~T}$ - Percent of the total
f. CALENDER

D.MY - Day.MonthYear	M.DY - Month.DayYear
$\triangle D Y S ~-~ D i f f e r e n c e ~ i n ~ D a y s ~$	DATE - Calculate DATE

g. FINANCIAL

BEG - Begin END - End n - Number of Compounding Periods
12X - n Multiplier AMORT - Amortization i- Interest per period
12:- - i Divider INT - Simple interest PV - Present value
FV - Future value PMT - Payment per period Cfo - Cash flow zero
Cfj - Subsequent cash flows Nj - Groups of cash flows
NPV - Calculate Net Present Value IRR - Internal Rate of Return
(12C ONLY)
PRICE - Calculate Price YTM - Calculate Yield to Maturity
SL - Straight line SOYD - Sum of the years digits
DB - Declining balance
h. STATISTICS

E+ - Data point entry E- - Data point removal \bar{X} - Mean
$\overline{\mathrm{X}} \mathrm{W}$ - Weighted mean s - Sample standard \hat{y}, r - Compute y
\wedge
\hat{x}, r - Compute x
i. MATHEMATICS
\sqrt{X} - Square root Y^{X} - Powers and Roots $1 / X$ - Reciprocal
n: - Factorial e^{x} - Natural antilogarithm LN - Natural log
j. NUMBER ALTERATION

RND - Round FRAC - Fractional INTG - Integer
k. STACK REARRANGEMENT

```
XそY R\downarrow - Roll down LstX - Last X
```

1. PROGRAMMING
P/R - Program or Run \quad R/S - Run or Stop MEM - Memory map
GTO - Go to BST - Back Step \quad SST - Single step
$X \leq Y$ - X is less than or equal to $Y \quad X=0$ - X is equal to zero
m. CLEAR FEATURES
```
CLx - Clear x-register REG - Clear registers* E - Clear Sigma
PRGM - Clear Program非 PREFIX - Clear Prefix FIN-Clear Financial
```


II. ERROR CODES

A. When you see an ERROR code in the display you can be certain of two things:

1. You cannot continue with your calculation until you clear the ERROR code, and;
2. The calculator will stop at precisely the point where it encountered the ERROR enabling you to correct it.

EXAMPLE:

K (KEYSTROKE)	\underline{D} (DISPLAY)
4	4.
(ENTER)	4.00
0	0.
(\div)	ERROR 0

* ALL - Clear ALL on the HP-38 \# CLP - Clear Program on the HP-38
B. ERROR codes

ERROR 0 - Improper operation involving zero
ERROR 1 - Storage register overflow
ERROR 2 - Improper data in statistical registers
ERROR 3 - Amortization, wrong input to x-register or; IRR, input best guess

ERROR 4 - Improper memory address
ERROR 5 - Compound interest, bad input
ERROR 6 - Discounted cash flow analysis, improper input
ERROR 7 - IRR, no solution exists
ERROR 8 - Calender, improper input
ERROR 9 - Failed self check
PR ERROR - Continuous memory cleared by power failure
C. Continuous memory

1. When the calculator is off only the display is off.
D. Low power

HP-38
-19.87
E. Removing an ERROR code

1. Press any key
2. Correct the ERROR situation
III. THE DISPLAY AND DISPLAY ALTERATION
A. Internal hold and fixed point

\underline{K}	\underline{D}
(f) 2	0.00
19.87345600	19.87345600
(ENTER)	19.87

1. The HP financial calculator has a 10 digit display. You choose the number of digits you wish to see in the display and the calculator holds the entire number in its memory.
2. You choose the number of digits you wish displayed by pressing (f) and any number between 0 and 9 representing the number of digits which will follow the decimal point.

\underline{K}	\underline{D}
(f) 4	19.8735
(f) 6	19.873456
(f) 0	20.

3. The calculator rounds the number in the display following the 5-up, 4 down method. If you choose to display no digits to the right of the decimal point, the calculator will round accordingly.

K
(f PREFIX)
(f) 9
(f) 2

D
1987345600
19.87345600
19.87
B. Digit Seperators and Keying in Numbers

1. Keying in Numbers
$\underline{K} \quad \underline{D}$
123456789
123,456,789.
2. Digit Seperators
a. The commas and decimal points in the display
b. To change the decimal point to a comma, and the comma to a decimal point:

$\frac{\mathrm{K}}{\mathrm{OFF}}$	\underline{D}
- ON .	123.456 .789,
OFF	
. ON .	$123,456,789$.

3. CHANGE SIGN (CHS)
a. (CHS) is one of the most important financial keys on the face of the $\mathrm{HP}-12 \mathrm{C}$

\underline{K}	\underline{D}
(CHS)	$-123,456,789$.
$($ CHS $)$	$123,456,789$.
$($ ENTER $)$	$123,456,789.0$
987654321	$987,654,321$.
(X)	$1.219326 \quad 17$

4. Scientific Notation

K	\underline{D}	
2.7565	2.7565	
(EEX)	2.7565	00
22	2.7565	22
(X)	3.361072	39

NOTE: Scientific notation is most useful at times when you want to represent numbers which are larger than the ten digit display will accommodate. This new number represents the following:

$$
3.361072 \times 10^{39}
$$

or
$3,361,072,000,000,000,000,000$, 000, 000, 000, 000, 000, 000.
5. Setting the Display to Scientific Notation

\underline{K}	\underline{D}	
(CLx)	0.00	
(f) (.)	0.000000	00
1000 (ENTER)	1.000000	03

$\underline{\mathrm{K}}$	$\underline{\mathrm{D}}$	
25 (ENTER)	2.500000	01
(f) 2	25.00	
(CLx)	0.00	

IV. THE AUTOMATIC MEMORY STACK AND RPN LOGIC
A. Representing the Automatic Memory Stack

B. Examples of X and Y written in script

$$
\text { CLx } \quad 1 / x \quad x \leqslant y \quad e^{x} \quad x \leq y \quad x=0 \quad \sqrt{x}
$$

C. RPN Logic

P
 N \qquad
D. ENTER and the upward pointing arrow

1. Whenever you press the ENTER key numbers move up through the automatic memory stack.

E. Algebraic Logic versus RPN Logic
2. Algebraic: $x+y=z$
3. RPN Logic: x ENTER $y+$
F. Stack Arrangement
4. Simple arrangement

$$
5
$$

$$
-2
$$

2. Complex arrangement

$$
\frac{(3 \times 4)+(5 \times 6)}{7}
$$

STACK	T											
	$\underline{2}$						$12 \quad 12$					
	Y		3	3		12	5	5	12		42	
	X	3	3	4	12	5	5	6	30	42	7	6
KEYSTROKE		3	ENTER	4	X	5	ENTER	6	X	+		-

K \underline{D}
3 (ENTER) 3.00
4 (X) 12.00
5 (ENTER) 5.00
6 (X) 30.00
$(+) \quad 42.00$
7
7.
(\div)
6.00
G. Rearranging numbers in the stack

1. $x \leqslant y$

\underline{K}	\underline{D}
1	1.
(ENTER)	1.00
2	2.
(ENTER)	2.00
3	3.
(ENTER)	3.00
4	4
\underline{K}	\underline{D}
$x \lesseqgtr y$	3.00
$x \lessgtr y$	4.00
$x \lessgtr y$	3.00
$x \lessgtr y$	4.00

2. $x \leqslant y$ in the stack

3. $R \downarrow$ *

K	\underline{D}
$\mathrm{R} \downarrow$	3.00
$\mathrm{R} \downarrow$	2.00
$\mathrm{R} \downarrow$	1.00
$R \downarrow$	4.00

4. $R \downarrow$ in the stack

V. SIMPLE ARITHMETIC
A. (ENTER) - Acts like the space bar on a typewriter. Without it the HP financial calculator would not be capable of separating the numbers for arithmetic or other calculations.

1	12	10	5
+1	$\times 2$	$\div 2$	-3

$g R \downarrow$ on the $H P-38$

EXAMPLES:

1
1.

K
1
(SPACE) 1.00
1
(+)
2.

K
12
(SPACE)

2
(X)
3.

K
10
(SPACE)
2
(-1
4.

\underline{K}	\underline{D}
5	5.
(SPACE)	5.00
3	3.
$(-)$	2.00

10.

5.00

D
1.
1.
2.00

D
12.
12.00
2.
24.00

D
10.00
2.

D
5.
5.00
3.
2.00
B. Simple Arithmetic Examples 12

Try these simple arithmetic examples before proceeding to the next section. Complete one problem at a time, then turn the page to review your answer.

1. $42.737+125$
2. . 11532 - . 73775
3. $-22 \quad \mathrm{X} 47352$
4. $525 \div 1001.1001$
C. Answers
5.

K	\underline{D}
42.737	42.737
(ENTER)	42.74
125	125.
(+)	167.74
(f) 4	167.7370
(f) 2	167.74

2.

.11532
(ENTER)
.73775
(-)
(f) 6
(f) 2
3.
22
(CHS)
(ENTER)
47352
(X)
4.
525
(ENTER)
1001.1001
(-7
0.52
(f) 9
. 524423082
(f) 2
0.52
K
D
(f) PREFIX

5244230822
(f) 2
0.52

D. Arithmetic Rules

1. Use ENTER only after the first number

$2+2=$	
\underline{K}	\underline{D}
2	2.
(ENTER)	2.00
2	2.
$(+)$	4.00

2. Use ENTER only after the first number in chain calculations

$58.33-22.95-13.70-10.14+1053=$	
\underline{K}	\underline{D}
58.33	58.33
(ENTER)	58.33
22.95	22.95
$(-)$	35.38
13.7	13.7
$(-)$	21.68
10.14	10.14
$(-)$	11.54
1053	1053.
$(+)$	1064.54

3. Use ENTER only after the first number in each group of numbers
$(3 \times 4)+(5 \times 6)=$

\underline{K}	\underline{D}
3	3.
(ENTER)	3.00
4	4.
(X)	12.00
5	5.
$($ ENTER)	5.00
6	6.
(X)	30.00
(+)	42.00

E. LASTx

There are two operations you can perform by using the LASTx (LSTx) key:

1. Calculations with constants

\underline{K}	\underline{D}
25	25.
$($ ENTER $)$	25.00
2.5	2.5
(X)	62.50
100	100.
$(\mathrm{~g}$ LSTx $)$	2.50
(X)	250.00

$\underline{\text { K }}$	$\underline{\mathrm{D}}$	16
250	250.	
$(\mathrm{~g} \mathrm{LSTx})$	2.50	
(X)	625.00	
R \downarrow	250.00	
R \downarrow	62.50	

2. Recovering from errors

$$
22+43+66-25+200 \div 10 \times 66+43-22=2040.60
$$

$\underline{\mathrm{K}}$	$\underline{\mathrm{D}}$
22 (ENTER)	22.00
$43(+)$	65.00
$66(+)$	131.00
$25(-)$	106.00
$200(+)$	306.00
$10(\dot{\square})$	30.60
$66(\mathrm{X})$	2019.60
$43(+)$	2040.60
$22(-)$	22.00
$(\mathrm{~g} \mathrm{LSTx})$	-137.40
$(+)$	$2,200.00$
$2200(-)$	$2,062.60$

\underline{K}	\underline{D}
$2000(-)$	62.60
$(\mathrm{~g}$ LSTx $)$	2000.00
$(X \lesseqgtr Y)$	62.60

VI. MEMORY - THE STORAGE REGISTERS
A. Memory Composition

Automatic Memory Stack	T	\square	LSTx	
Financial Registers		\square	\square	\square

1.

Every memory in a computer or calculator must have something in it. Even though zero has no mathematical value it is something. And it is this something that occupies a memory when you clear.
2. The Clear Bracket

HP-38

(g) CLP

3. Clear Keystrokes
a. CLEAR PREFIX - (1) Clears prefix errors
(2) If held down displays mantissa
h. CLEAR PROGRAM - Clears program memory of all instructions however the calculator must be in program mode before performing the clear feature.
c. CLEAR EINANCIAL - Clears n, $i, P V, P M T \& F V ; n_{0}-n_{20}$, does not clear the display
d. CLEAR STATISTICS - Clears $R_{1}-R_{6}$ and the display only.
e. CLEAR REGISTERS*- Clears everything except program memory
f. CLEAR X-REGISTER - Clears only the display

C. Storing and Recalling
1.

K
D
CLx
0.00
(f) 4
0.0000

STORING
555.1212
555.1212
(STO) 0
555.1212
$\begin{array}{ll}2 . & \underline{K} \\ \text { RECALLING } & \text { CLx } \\ & (\text { RCL })\end{array}$
D
0.0000
555.1212
3.

STORING 300
IN LAST
10 REGs. (STO) . 0
300.0000
4.

K
D
CLx
0.0000
(RCL) 0
555.1212
(RCL) . 0
300.0000

韭	NAME	DATA
1	R_{0}	555.1212
2	R_{1}	0
3	R_{2}	0
4	R_{3}	0
5	R_{4}	0
6	R_{5}	0
7	R_{6}	0
8	R_{7}	0
9	R_{8}	0
10	R_{9}	0
11	R. 0	300.0000
12	R. 1	0
13	R. 2	0
14	R. 3	0
15	R. 4	0
16	R. 5	0
17	R. 6	0
18	R. 7	0
19	R. 8	0
20	R. 9	0

5.

D
0 (STO) 0
0.0000

STORING
ZERO
(RCL) 0
0.0000
(RCL) . 0
300.0000
6.

CLEARING
(f) REG

D

REGISTERS
(f) 2
0.00
D. Recalling the Copy

K			D
3250	(STO)	1	3250.00
2500	(STO)	2	2500.00
(RCL)	1		3250.00
6 (X)			19,500.00
(RCL)	2		2500.00
(+)			22,000.00

1. When recalling you only call up a copy of the number in memory. The number in memory is the "master" the number in the djsplay the "copy".

K
(RCL) 1
D
(RCL) 2
2500.00
E. Storage Register Arithmetic

1. One register
\underline{K}
100 (STO) $0 \quad 100.00$
25 (STO) - 0
25.00
(RCL) 0
75.00

$\underline{\mathrm{K}}$	$\underline{\mathrm{D}}$
$15(\mathrm{STO})-0$	15.00
$10(\mathrm{STO})-0$	10.00
$500(\mathrm{STO})+0$	500.00
(RCL) 0	550.00

The following restrictions are placed upon your use of storage register arithmetic in the $\mathrm{HP}-38$ and $\mathrm{HP}-$ 12C.

$$
\begin{array}{ll}
H P-12 C & R_{0}-R_{4} \\
H P-38 & R_{0}-R_{6}
\end{array}
$$

2. Several Registers
a. Calculator ledger

R1	R2	R3	R4	
CARL	PATTY	MARCIA	SAM	(IN
14	20	16	2	JAN
22	18	9	6	FEB
12	40	10	10	MAR
You ind inf sto dat	to de 1 in ion pr regist thmeti	e the to orkforc hadn' thmetic collatin	sale uppos eady ws y you	

K	D	25
14 (STO) 1	14.00	
20 (STO) 2	20.00	
16 (STO) 3	16.00	
2 (STO) 4	2.00	
$22(S T O)+1$	22.00	
$18(\mathrm{STO})+2$	18.00	
$9(\mathrm{STO})+3$	9.00	
$6(\mathrm{STO})+4$	6.00	
12 (STO) +1	12.00	
$40(S T O)+2$	40.00	
$10(S T O)+3$	10.00	
$10(S T O)+4$	10.00	
(RCL) 1	48.00	
(STO) 0	48.00	
(RCL) 2	78.00	
$(\mathrm{STO})+0$	78.00	
(RCL) 3	35.00	
$(\mathrm{STO})+0$	35.00	
(RCL) 4	18.00	
$(\mathrm{STO})+0$	18.00	
(RCL) 0	179.00	

A. Functions of the Compound Interest Keys

1. Storing Informations
K
D

22
22.
(n) 22.00
(CLx) 0.00
(RCL) (n) 22.00
2. Calculating New Data
a. New value automatically stored

n	i	PV	PMT	FV
X	X	X	$?$	0

3. Displaying New Data
a. Continuous memory
K
D
(RCL n)
22.00
B. Clearing the Financial Registers

4. Clear Keystrokes
a. (f CLEAR REG)*
b. (f CLEAR FIN)
c. (CLx) - Clears only the display
5. Clear Techniques
a. (STO) 0
b. Alter a Register
C. How the Calculator Interprets Financial Information
6. The 4 Rights
a. The Right information...
b. In the Right place...
c. Press the Right key...
d. To obtain the Right answer.
7. 3 to $4, n$ or i
a. You must input at least 3 values in the compound interest registers to obtain a 4 th.
b. One of these 3 must be (n) or (i).
8. BEGIN and END Payment Mode

END

Real Estate Mortgages Most Financial Contracts

[^0](n) - Number of Compounding Periods

Years
Months
Quarters Any period of time may be represented
Weeks
(12X) - Twelve Times
a. Performs two functions
(1) Multiplies the number in the display times 12
(2) Stores the newly calculated value in (n)
n
K
25
D
25.
(n)
25.00
(RCL n)
25.00

30
30.
(g 12X) 360.00
$\begin{array}{ll}(\mathrm{RCL} \\ \mathrm{n}) & 360.00\end{array}$
(RCL g 12X)
30.00
(RCL n)
360.00
(AMORT) - Amortization Calculation
a. Returns 5 different values
(1) Interest portion of a payment
(2) Principal portion of a payment
(3) Number of payments just calculated
(4) Total number of payments amortized
(5) Remaining balance
(i) - Interest Rate Per Compounding Period

Years
Months

> | Any period of time may be |
| :--- |
| represented however time |
| must be consistent throughout |
| the registers |

Weeks
(12:) - Twelve Divide
a. Performs two functions
(1) Divides the number in the display by 12
(2) Automatically stores the newly calculated value in (i)

K \quad D
$17 \quad 17$.
(i) 17.00
(RCL i) 17.00

13
13.
(g 12ㅍ)
1.08
(RCL i) 1.08
(RCL g 12 \div)
13.00
(RCL i)
1.08
(INT) - Simple Interest Calculation
a. This keystroke returns three values
(1) Interest on 360 day calender
(2) Principal amount
(3) Interest on an actual days calender
(PV) - Present Value
a. Defined: The initial cash flow or the present value of a series of cash flows.
D

Borrower	Lender
+PV	-PV

(NPV) - Calculate Net Present Value
(Cfo) - Input, first cash flow, initial investment
(PMT) - Payment per Compounding Period
Years
Months
Weeks
Any time period may be represented however the chosen time period must be consistent throughout the registers
Quarters

Borrower	Lender
+PV	-PV
-PMT	+PMT

a. Sign convention
(1) Money in $=+$ cash flow
(2) Money out $=-$ cash flow
(RND) - Round
a. Rounds the x-register to match the chosen number of decimal places in the display.

K
D
$17 \quad 17$.
$(\mathrm{g} 12 \div) \quad 1.42$

K D
D
(f) 9
1.416666667
(f) 2
1.42
(f RND)
1.42
(f) 9
1.42000000
(f) 2
1.42
(Cfj) - Cash Flow j, Subsequent Cash Flows
(FV) - Future Value
a. Defined: The final cash flow. Or, the future value of a series of prior cash flows.
FV

Borrower	Lender
-PMT	+PMT
+PV	-PV
-FV	+FV
n	n
i	i

(IRR) - Calculate Internal Rate of Return
(Nj) - Input Number of Groups of Cash Flows

PLEASE NOTE: ALWAYS CLEAR YOUR CALCULATOR BEFORE BEGINNING A NEW FINANCIAL PROBLEM. DUE TO CONTINUOUS MEMORY, IF THE CALCULATOR IS NOT PROPERLY CLEARED YOU RUN THE RISK OF CARRYING OVER OLD DATA INTO YOUR NEW CALCULATION.

K	\underline{D}
(f CLEAR REG)	0.00
or	
$(f$ CLEAR FIN)	0.00

A. Solving for (PMT)

Find the monthly payment for a 25 year, $\$ 80,000$ mortgage loan with
a 15.75% annual interest rate.

(n)	(i)	(PV)	(PMT)	(FV)
$\begin{aligned} & 25 \\ & (\mathrm{~g} 12 \mathrm{X}) \end{aligned}$	$\begin{aligned} & 15.75 \\ & \left(\begin{array}{ll} \mathrm{g} & 12 \div \end{array}\right) \end{aligned}$	$\begin{aligned} & 80000 \\ & (\mathrm{PV}) \end{aligned}$?	0
	\underline{K}		D	
	25 (g 12		300.00	
	15.75 (g		1.31	
	80000		80,000	
	(PMT)		-1,07	
	(g BEG)		BEGIN	
	(PMT)		-1,05	
	(STO) 0		-1,05	
	(g END)		-1,05	
	(PMT) (P		-1,07	
	(STO - 0	RCL 0)	13.88	
	300 (X)		4,164	

B. Solving for (n)

Find the monthly term of a $\$ 75,000$ mortgage loan at 14.50% annual interest rate if the monthly payments are $\$ 975$ per month.
(n)
(i)
(PV)
(PMT)
(FV)
B. Solving for (n) ANSWER

Find the monthly term of a $\$ 75,000$ mortgage loan at 14.50% annual interest rate if the monthly payments are $\$ 975$ per month.

FRACTIONAL PAYMENTS

FACT: The HP-12C displays only rounded-up values whenever calculating (n). The $\mathrm{HP}-38$, on the other hand, displays the actual mathematical value required to fully amortize the loan.

Method for calculating the final fractional payment
HP-38 HP-12C

1. Store the number of full payments in (n)
2. Press (FV), the display will show the overpayment
3. Calculate the overpayment by pressing (FV)
4. Press (RCL PMT +), display shows final payment
5. Press (RCL PMT +), display shows final payment
C. Solving for (FV)

What will property presently valued at $\$ 29,500$ be worth in 10 years if property values in the area are declining at the rate of 3% per year?
(n)
(i)
(PV)
(PMT)
(FV)
C. Solving for (FV) ANSWER

What will property presently valued at $\$ 29,500$ be worth in 10 years if property values in the area are declining at the rate of 3% per year?

(n)	(i)	(PV)	(PMT)	(FV)
10	3	29500	0	$?$
(n)	$\left(\begin{array}{lll}\text { (}\end{array}\right.$	i)	(PV)	

K
10 (n)
3 (CHS i)
29500 (PV)
(FV)
2.
(CHS PV)
5 (i)
(FV)
(CHS PV)
2 (i)
(FV)
$-43,195.06$
D. Solving for (i)

What would the annual interest rate be on a 30 year, $\$ 62,750$ mortgage loan with payments of $\$ 620$ per month?
(n)
(i)
(PV)
(PMT)
(FV)
D. Solving for (i) ANSWER

What would the annual interest rate be on a 30 year, $\$ 62,750$ mortgage loan with payments of $\$ 620$ per month?

(n)	(i)	(PV)	(PMT)	(FV)
30	$?$	62750	620	0
$(\mathrm{~g}$	$12 \mathrm{X})$		(PV)	$(\mathrm{CHS} \mathrm{PMT})$

\underline{K}	\underline{D}	
$30(\mathrm{~g} \mathrm{12X})$	360.00	
$62750(\mathrm{PV})$	62750.00	
$620(\mathrm{CHS} \mathrm{PMT})$	-620.00	
$(i) *$	0.96	Rate per period
$12(X)$	11.47	Annual rate

Please note: If you have a choice between converting a variable or a constant, always choose the constant.

In the example above the variable was the level monthly payment since it contains interest and principal. The constant was term. No matter how you convert time it still remains thirty years. Converting term was a better choice since money compounds differently on a monthly schedule than it does on an annual schedule.

[^1]E. Solving for (PV)

If a land sale contract has a remaining term of 15 years, a remaining balance of $\$ 30,000$ payable in monthly payments of $\$ 450$ per month including 13% interest, what could a private paper investor afford to pay for the contract if he desires a 20% effective yield?
(n)
(i)
(PV)
(PMT)
(FV)
E. Solving for (PV) ANSWER

If a land sale contract has a remaining term of 15 years, a remaining balance of $\$ 30,000$ payable in monthly payments of $\$ 450$ per month including 13% interest, what could a private paper investor afford to pay for the contract if he desires a 20% effective yield?

(n)	(i)	(PV)	(PMT)	(FV)
15	20	$?$	450	0
$(\mathrm{~g} 12 \mathrm{X})$	$(\mathrm{g} 12 \div)$		(PMT)	

K
D
15 (g 12X)
180.00

20 (g 12\%)
1.67

450 (PMT)
450.00
(PV)
$-25,622.10$

K
18 (g 12 \div)
1.50
(PV)
$-27,943.00$
28000 (CHS PV)
$-28,000.00$
(i)
1.50
(f) 9
1.496201825

12 (X)
17.95442190

27,000 (CHS PV)
(i)

12 (X)
(f) 2
$-27,000.00$
1.564789272
18.77747126
18.78
A. Creating Amortization Tables

INPUT	RESULT
INTEREST (i)	1st Display: INTEREST PORTION
PRINCIPAL (PV)	X \gtrless : PRINCIPAL PORTION
PAYMENT (PMT)	$R \downarrow R \downarrow: \begin{aligned} & \text { NUMBER OF PERIODS JUST } \\ & \text { AMORTIZED }\end{aligned}$
0 (n)	
KEY IN THE NUMBER	RCL n : $\frac{\text { TOTAL NUMBER OF PAYMENTS }}{\text { AMORTIZED }}$
OF PERIODS TO BE	
AMORTIZED	RCL PV : REMAINING BALANCE
PRESS (f AMORT)	

B. You may amortize for YEARS, MONTHS, WEEKS, DAYS or any other time period so long as you remember to keep time consistent throughout the compound interest registers.
C. Amortization Example

K	D	
25 (g 12x)	300.00	
13.25 (g 12:)	1.10	
50000 (PV)	50,000.00	
(PMT)	-573.35	
0 (N)	0.00	
1 (f AMORT)	-552.08	INTEREST PORTION
($\mathrm{X} \lesseqgtr \mathrm{Y}$)	-21.27	PRINCIPAL PORTION
$(R \downarrow R \downarrow)$	1.00	PRIODS JUST AMORTIZED
(RCL n)	1.00	TOTAL PERIODS AMORTIZED
(RCL PV)	49,978.73	REMAINING BALANCE

D
$-6.056 .81$
-250.04
11.00
12.00

49,728.69
(RCL PV)

1. Repeating the Amortization, Same Terms

\underline{K}	D
0 (n)	0.00
50000 (PV)	50,000.00
6 (f AMORT)	-3,308.92
$(\mathrm{X} \lesseqgtr \mathrm{Y})$	-131.18
(RCL PV)	49,868.82
1 (f AMORT)	-550.63
($\mathrm{X} \geqslant \mathrm{Y}$)	-22.72
(RCL PV)	49,846.10
(RCL n)	7.00
1 (f AMORT)	-550.38
$(\mathrm{X}>\mathrm{Y})$	-22.97
(RCL PV)	49,823.13
($\mathrm{RCL} \mathrm{n} \mathrm{)}$	8.00

$-3,308.92$
-131.18
49,868.82
-550.63
-22.72
49,846.10
7.00
(RCL n)
8.00

REMAINING BALANCE
INTEREST PORTION PRINCIPAL PORTION PERIODS JUST AMORTIZED TOTAL PERIODS AMORTIZED

KEYSTROKE	PERIOD	INTEREST	PRIN.	RB
1 (f AMORT)	9	-550.13	-23.22	49,799.91
1 (f AMORT)	10	-549.87	-23.48	49,776.43
1 (f AMORT)	11	-549.61	-23.74	49,752.69
1 (f AMORT)	12	-549.35	-24.00	49,728.69

\underline{K}	\underline{D}
$($ RCL п $)$	12.00

12 (f AMORT)	24	$-6,570.72$
12 (f AMORT)	36	$-6,527.13$
12 (f AMORT)	48	$-6,477.37$
12 (f AMORT)	60	$-6,420.65$
		\underline{K}
		(RCL n)

$60(f) A M O R T)$	120	$-30,929.61$	$-3,471.39$	$44,732.37$
60 (f AMORT)	180	$-27,692.17$	$-6,708.83$	$38,023.54$
$60($ f AMORT)	240	$-21,435.47$	$-12,965.53$	$25,058.01$

$\underline{K} \quad \underline{D}$
(RCL n) 240.00

60 (f AMORT) 300
-9,343.73
$-25.057 .27 \quad 0.74$

K
D
(RCL n)
300.00

1. Amortization, Six Months*

What amount of interest and principal would have been paid after the first six months of a 30 year, $\$ 72,500$ mortgage at 16.5% annual interest rate with monthly payments of \$1004.23? In addition, calculate the unpaid balance at the end of six months.

INTEREST \$ \qquad

PRINCIPAL \$ \qquad

REMAINING BALANCE \$ \qquad
(ANSWER ON NEXT PAGE)

[^2]What amount of interest and principal would have been paid after the first six months of a 30 year, $\$ 72,500$ mortgage at 16.50% annual interest rate with monthly payments of $\$ 1004.23$? In addition, calculate the unpaid balance at the end of six months.

INTEREST \$ - 5, 979.71	
PRINCIPAL \$ 4 45.67	
REMAINING BALANCE \$ 72,454.33	
K	D
(f CLEAR REG)	0.00
1004.23 (CHS PMT)	-1004.23
72500 (PV)	72,500.00
16.5 (g 12\%)	1.38
6 (f AMORT)	-5,979.71
($\mathrm{X} \lesseqgtr \mathrm{Y}$)	-45.67
(RCL PV)	72,454.33

What would be the unpaid principal balance of the loan above if payments were current at the end of 10 years?

REMAINING BALANCE \$ \qquad
(ANSWER ON NEXT PAGE)
2. Amortization, Same Terms 10 Years

What would be the unpaid principal balance of the loan above if payments were current at the end of 10 years?

REMAINING BALANCE \$ 70,280.88

K

114 (f AMORT)
(RCL PV)

D
$-112,308.77$
70,280.88
3. Calculating Balloon Payments

Assuming we would like to calculate a balloon payment after 10 years, 6 months using 非2. above as an example, what would be the steps?

STEP ONE

STEP TWO
(ANSWER ON NEXT PAGE)
3. Calculating Balloon Payments

Assuming we would like to calculate a balloon payment after 10 years, 6 months using $\|^{2}$. above as an example, what would be the steps?

```
STEP ONE 6 (f AMORT)
```

STEP TWO (RCL PV)
K
6 (f AMORT)
-5,790.22
(RCL PV) 70,045.72

4. Simple Balloon Payment Calculation

```
A buyer wishes to purchase a home with the condition written
into the contract that after five years the principal balance
will be due and payable to the lender. The buyer and lender
have arranged the terms of the loan so that it is a 15.25%
interest rate figured on a 30 year mortgage. What would
be the amount of the balloon after five years if the loan
amount is $48,500.
```


K

48500 (PV)
15.25 (g 12ㅍ)

30 (g 12x)
(PMT)
60 (n)
(FV)
-47,910.67 BALLOON PAYMENT
5. Simple Balloon Payment Calculation Problem

During the negotiation of the sale of a parcel of land you suggest to the seller that a balloon payment may be one way to attract qualified buyers while guaranteeing that the term of the financing will be relatively short.

The parcel is listed at $\$ 27,500$ and the seller is willing to accept 10% annual interest rate with the payment calculated over 25 years. The balloon will be due and payable as the 60 monthly payment, that is in five years. If the seller of the land will accept no less than 20% down, what is the monthly payment to the seller, and what is the balloon at the end of five years?
(n)
(i)
(PV)
(PMT)
(FV)
5. Simple Balloon Payment Calculation Problem

During the negotiation of the sale of a parcel of land you suggest to the seller that a balloon payment may be one way to attract qualified buyers while guaranteeing that the term of the financing will be relatively short.

The parcel is listed at $\$ 27,500$ and the seller is willing to accept no less that 10% annual interest rate with the payment calculated over 25 years. The balloon will be due and payable as the 60th monthly payment, that is in five. years. If the seller of the land will accept no less than 20% down, what is the monthly payment to the seller, and what is the is balloon payment at the end of five years?
(n)
(i)
(PV)
(PMT)
(FV)

25	10	27500		
$(\mathrm{~g} \mathrm{12x})$	$(\mathrm{g} \mathrm{12} \mathrm{\div})$		\quad	(ENTER)
:---				

0

20 (\%) (-)
(PV)

K	D	
25 (g 12x)	300.00	
10 (g 12\%)	0.83	
27500 (ENTER)	27,500.00	
20 (\%) (-) (PV)	22,000.00	
(PMT)	-199.91	Buyer's Monthly Payment
59 (n)	59.00	
(FV)	-20,743.08	Balloon Payment as the 60th Payment

[^0]: * (f CLEAR ALL) on the HP-38

[^1]: * Whenever the calculator requires more than an instant to complete the calculation it will flash running in the display. Although it looks like only half the the word, the calculator is using as much of the display it can to write the word.

[^2]: * PLEASE NOTE: The next three problems rely upon your having data from the previous problem continually stored in the financial memory. Do not clear for Problems $2 \& 3$.

