

TWO

Rick Fournier

Business Computer Institute

MASTERING THE HP-12C

BOOK I, BOOK II, or BOOK III

COPYRIGHT 1984, Rick Fournier

ALL RIGHTS RESERVED

No part of this book may be reproduced in any form using any means without the express written permission of the publisher.

10	9	8	7	6	5	4	3	2	1

Direct all inquiries or comments to :
BUSINESS COMPUTER INSTITUTE
11340 SE 30th Avenue
Portland, Oregon 97222
(503) 654-4423

NOTICE
Neither the BUSINESS COMPUTER INSTITUTE or Rick Fournier makes any express or implied warranty as to the keystroke procedures offered as part of this educational material. The keystrokes provided here are made available on an "as is" basis and the entire risk with regard to their quality and performance is with the student. The BUSINESS COMPUTER INSTITUTE and Rick Fournier shall not be liable for any incidental or consequential damages in connection with or arising from the furnishing, use or performance of the procedures or keystrokes, or the opinions of the author included herein.

PREFACE

This book is the product of several years of standing in the front of a classroom presenting seminars to patient students. Throughout the many hours of discussing today's business technology with them never once have they publicly expressed their unwillingness to learn more about the fantastic devices readily available to make their work easier. This book and the others in the series are dedicated to them.

But in addition to the students I must also thank the groups or individuals among whom have allowed me to even attempt this effort. At the top of the list is Ralph Hillier. Without his expertise and creativity and professionalism in presenting seminars I doubt I would find this business such a rewarding career. Let me also thank the people of Hewlett-Packard for their unselfish encouragement and support including my teacher Mike Curran of Hewlett-Packard, Wilsonville, Oregon and Marcia Paxton of Hewlett-Packard, Corvallis, Oregon.

Finally, without the support, humor and patience of Debbie and Megan; and the understanding of the MacGilvary Clan none of this would have meaning.

CONTENTS

PART ONE

INVESTMENTS ANALYSIS
I. PERCENTAGE FUNCTIONS
A. Percentage Keys
B. Standard Percent
C. Difference in Percent
D. Percent of the Total
II. STATISTICAL FUNCTIONS
A. Statistical Storage Registers
B. Statistical Functions

1. Mean
2. Weighted Mean
3. Projected Value
4. Linear Regression
5. Multiple Regression
III. CALENDER FUNCTIONS
A. Calender Framework
B. Calender Keys
C. DATE CALCULATION
D. Difference in Days Calculation

PART TWO

ADVANCED FINANCIAL FUNCTIONS
I. SIMPLE INTEREST
A. Calculations Methods
B. Simple Interest Calculations
C. Simple Interest Example: Less than one year
D. Simple Interest Example: More than one year
II. PRICE AND YIELD CALCULATIONS
A. The Investment Relationship
B. Simple Balloon Payment Calculation
C. Calculating Price
D. Calculating Price witi a Balloon Payment
E. Calculating Yield
F. Calculating Yield with a Balloon Payment

PART THREE
CASH FLOW ANALYSIS
I. UNDERSTANDING CASH FLOW
A. Defined
B. Cash Flow Sign Convention
C. Cash Flow Diagrams
D. Cash Flow Relationship
E. Cash Flow Keys
II. NET PRESENT VALUE CALCULATIONS
A. Defined
B. Interpreting Net Present Value
C. Calculating Net Present Value - Unequal Consecutive Cash Flows
D. Calculating Net Present Value - Equal Consecutive Cash Flows
III. RECALLING OR ALTERING CASH FLOW ENTRIES
A. The Cash Flow Registers
B. Location of Cash Flows
C. Recalling or Altering Cash Flows
IV. CALCULATING INTERNAL RATE OF RETURN (IRR)
A. Defined
B. Interpreting Internal Rate of Return
C. Calculating the Simple IRR
D. Calculating IRR - Unequal Consecutive Cash Flows
E. Calculating IRR - Equal Consecutive Cash Flows
V. PROBLEMS WITH INTERNAL RATE OF RETURN CALCULATIONS
VI. MODIFIED INTERNAL RATE OF RETURN

I. PERCENTAGE FUNCTIONS

A. Percentage Keys

1. Standard Percent
(\%)
2. Difference in Percent ($\Delta \%$)
3. Percent Total (\% T)

PLEASE NOTE: Conversion to a decimal is automatic in the $H P$ financial calculator. Never enter the percentage qualtity as a decimal. Only as a whole number.
B. Standard Percent

BASE NUMBER

(ENTER)
SECOND NUMBER
(\%)

EXAMPLE:

\underline{K}	\underline{D}
300	300.
$($ ENTER $)$	300.00
14	14.
$(\%)$	42.00

a. Net Amount

The HP Financial Calculator allows you to add or subtract the calculated percentage quantity with a simple keystroke.
K
(+)
D
342.00

Try this example:

K	\underline{D}
$2500($ ENTER $)$	2500.00
$27.5(\%)$	687.50
$(-)$	$1,812.50$

C. Difference in Percent ($\Delta \%$)

BASE NUMBER
(ENTER)
SECOND NUMBER
($\Delta \%$)

\underline{K}	\underline{D}	
$2000(E N T E R)$	2000.00	
3000	3000.	
$(\Delta \%)$	$50.00 \quad$ Percent Increase	
\underline{K}	\underline{D}	
3000 (ENTER)	3000.00	
2000	2000.	
$(\Delta \%)$	$-33.00 \quad$ Percent Decrease	

1. Things to remember about difference in percent functions:
a. If the 2nd number is greater than the base number the answer will be positive.
b. If the 2nd number is less than the base number the answer will be negative.

K	\underline{D}
47350 (ENTER)	$47,350.00$
$72500(\Delta \%)$	53.12%
If you purchased a property for $\$ 47,350$	
5 years ago, and the property is now worth	
$\$ 72,500$, your property has increased in	
value by 53.12%.	

D. Percent Total (\%T)

1. Percent of one number to another.

EXAMPLE:

$45.36+22.95+72.45=140.76$

K \underline{D}
45.36 (ENTER) 45.36
$22.95(+) \quad 68.31$
72.45 (+) 140.76

K
22.95 (\%T) 16.30%
(CLx) 0.00
$45.36(\% \mathrm{~T}) \quad 32.23 \%$
(CLx)
0.00
72.45 (\%T)
51.47%

140.76
(IN MILLIONS)
PERCENT ON ONE NUMBER TO ANOTHER
2. Percent of one number to the total

EXAMPLE:

$\underline{\mathrm{K}}$	$\underline{\mathrm{D}}$
$175($ ENTER $)$	175.00
$52.5(\% \mathrm{~T})$	30.00%

A. Statistical Storage Registers

$$
\begin{aligned}
& \mathrm{R}_{1} \quad \ldots{ }^{n} \\
& \mathrm{R}_{2} \quad \ldots \text { Ex } \\
& \mathrm{R}_{3} \quad \ldots \ldots \ldots \ldots \ldots \mathrm{Ex}^{2} \\
& \mathrm{R}_{4} \quad \ldots \ldots \text { Ey }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}_{6} \text {...................... Exy } \\
& \text { 1. (f CIEAR E) - Clears the statistical registers (} R_{1}-R_{6} \text {) } \\
& \text { and the display. }
\end{aligned}
$$

B. Statistical Functions

1. Mean

\underline{K}	\underline{D}
(f CLEAR REG)	0.00
(f) 2	0.00
$110000(E+)^{*}$	1.00
$95000(E+)$	2.00
$96150(E+)$	3.00
$129750(E+)$	4.00
$95250(E+)$	5.00
$105000(E+)$	7.00
$99950(E+)$	$105,781.25$
$115150(E+)$	

2. Weighted Mean

Value	Sq. Ft.
110,000	3000
95,000	2475
96,150	2500
129,750	3550
95,250	2125
105,000	2950
99,950	2725
115,150	3200

[^0]

K
(f CLEAR E)
110000 (ENTER) 3000 (E+)

95000 (ENTER)
2475 ($\mathrm{E}+$)
96150 (ENTER)
2500 ($\mathrm{E}+$)
129750 (ENTER) 3550 ($\mathrm{E}+$)

95250 (ENTER) 2125 ($\mathrm{E}+$)

105000 (ENTER) 2950 (E+)

99950 (ENTER)
2725 ($\mathrm{E}+$)
115150 (ENTER) 3200 ($\mathrm{E}+$)
(g xw)
3. Projected Value

$\frac{\text { Value }}{149,950}$	$\frac{\text { Year }}{0}$	$\frac{\text { Increase in Value }}{0}$
$?$	1	3
$?$	2	5
$?$	3	-2.0
$?$	4	1.5

$200,000(\mathrm{~g} \hat{\mathrm{x}}, \mathrm{r})$	17.67 YEARS
$175,000(\mathrm{~g} \hat{\mathrm{x}}, \mathrm{r})$	8.48 YEARS
$250,000(\mathrm{~g} \hat{\mathrm{x}}, \mathrm{r})$	36.06 YEARS

4. Linear Regression

a. Correlation Coeffecient

(1) Testing the data to achieve a reasonable approximation within ± 1.

K

K

1700 ($\mathrm{g} \hat{\mathrm{y}} \mathrm{r}$)
2200 ($\mathrm{g} \hat{\mathrm{y}}, \mathrm{r}$)
$900(\mathrm{~g} \hat{\mathrm{y}}, \mathrm{r})$

K
82500 ($\mathrm{g} \hat{\mathrm{x}}, \mathrm{r}$)
56500 ($\mathrm{g} \hat{\mathrm{x}}, \mathrm{r}$)
65500 ($\mathrm{g} \hat{\mathrm{X}}, \mathrm{r}$)

D

40,954. 35
0.99

D
66,259.37 Sq.Ft. to Value
73,728. 38
$54,308.95$

D
2,787.20 Value to Sq.Ft.
1,046.68
1,649.17
5. Multiple Regression

Sq. Ft.	Lot Size	\#BDRMS	
66,250.79	65,772.82	68,787.25	
K		D	
66250.79	(E+)	1.00	
65772.82	(E+)	2.00	
68,787. 25	(E+)	3.00	
($\mathrm{g} \overline{\mathrm{X}}$)		66,936.95	Average Value

III. CALENDER FUNCTIONS

A. Your calculator operates with dates from October 15,1582 to November 25, 4046.

1. October 15, 1582: The day the Julian calender became the present day Gregorian calender.
2. November 25, 4046: This date appears to be the last date to which accuracy of the calculator is guaranteed.
B. Calender Keys
3. Format Keys

| M.DY | April 3, 1985 $=4.031985$ (U.S.) |
| :--- | :--- | :--- |
| D.MY | April 3, $1985=3.041985 \quad$ (European; Military) |

2. Calculation Keys

DATE Given the number of days, this key will calculate a date in the present, future, or past; and also display the day of the week the calculated date occurs.
$\Delta D Y S \quad$ This keystroke will display the number of days between any two dates.
C. DATE Calculations

PROCEDURE:	$1 . \quad$ Key in the first date, press (ENTER)
2.	Key in the number of days (may be negative, nositive, or zero
	3.Press (g DATE)* and the calculator will display the DATE and day of the week

[^1]
EXAMPLE:

K D
(g M.DY)* 0.00 Sets calculator to Month.DayYear format
7.041776
(ENTER)
7.04
0.
(g DATE) 7,04,1776 4

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M | T | W | Th | F | S | Su |
| | International numerical symbols | | | | | |
| for the days of the week | | | | | | |

$\underline{K} \quad \underline{D}$

180
(g DATE)

K

180 (CHS)
(g DATE)
180.

12,31,1776 2

D
-180.
7,04,1776 4

* Set the slide swith in the upper right corner of the $H P-38$ to M.DY by moving it to the right.

EXAMPLE: Calculating the Day You Were Born
August 5, 1944

K	\underline{D}		
8.051944	8.051944		
(ENTER)	8.05		
0	0.		
(g DATE)	$8,05,1944$	6	You were born on Saturday

D. \triangle DYS Calculations

PROCEDURE: 1. Key in the first date and press (ENTER)
2. Key in the second date
3. Press (g Δ DYS)* and the calculator will display the difference in days negative for dates in the past, positive for dates in the future.

\underline{K}	\underline{D}
7.041776 (ENTER)	7.04
7.041985	7.041985
$(\mathrm{~g} \triangle$ DYS $)$	$76,335.00$ Difference in days
$365(\dot{)})$	209.14 Years

K

D

12.311983 (ENTER)	12.31
12.311984 (g \triangle DYS $)$	366.00

\underline{K}	\underline{D}
10.151582	$(E N T E R)$
11.254046	$(\mathrm{~g} \Delta \mathrm{DYS})$
$(\mathrm{X} \geqslant \mathrm{Y})$	$899,999$.
$(\mathrm{X} \geqslant \mathrm{Y})$	$887,080$.
	$899,999$.
\underline{K}	\underline{D}
$12.311984 \quad(E N T E R)$	12.31
$12.311985 \quad(\mathrm{~g} \triangle D Y S)$	365.00
$(\mathrm{X} \geqslant \mathrm{Y})$	360.00
$(\mathrm{X} \geqslant \mathrm{Y})$	365.00

ADVANCED FINANCIAL FUNCTIONS

I. SIMPLE INTEREST

A. Ask yourself how much it would cost you to borrow $\$ 5000$ at 10% interest for one year. If you said $\$ 500$ you were only half right. The example below illustrates how different financial institutions calculate simple interest.

$$
\begin{aligned}
& \frac{10 \%}{360}=0.027777778 \text { Daily interest } 360 \text { day method } \\
& \frac{10 \%}{365}=0.027397260 \quad \text { Daily interest actual days method }
\end{aligned}
$$

It should be evident to you that if you were loaning money you might choose the first method for calculating interest since it affords you the opportunity to make more money.

Your HP-12C calculates simple interest using both methods.
B. Simple Interest Calculations

Steps necessary to calculate simple interest:

1. Key in or calculate the number of days interest will accrue

Press (n)
2. Key in the ANNUAL interest rate

Press (i)
3. Key in the principal amount (-) for the lender (+) for the borrower

Press (PV)
4. Press (f INT)

5. Press $R \downarrow X \geqq Y$

DISPLAY WILL THEN SHOW THE ACTUAL DAYS INTEREST CALCULATION
6. Press (+) before or after step 5 to calculate total interest and principal for interest method preferred

KEYSTROKE	DISPLAY	
5000 (PV)	5000.00	
10 (i)	10.00	
365 (n)	365.00	
(f INT)	-506.94	360 Interest
(R XZY)	-500.00	Actual Days Interest
(+)	-5,500.00	Actual Days Interest plus Principal
(f INT)	-506.94	360 Interest
(+)	-5,506.94	360 Interest plus Principal

C. Example:

It is your intention to loan $\$ 2000$ to a business associate. The transaction will take place on March 1, 1985 and you expect to collect both principal and interest on November 1, 1985. Assuming that you will lend the money on an actual days basis regarding the simple interest method, at the rate of 31%, what is the total dollar amount due and payable to you on November 1,1985 ?

KEYSTROKE	DISPLAY
(f CL REG)	0.00
3.011985 (ENTER)	3.01
11.011985 (g \triangle DYS)	245.00
(n)	245.00

KEYSTROKE	DISPLAY
31 (i)	31.00
2000 (CHS PV)	-2000.00
$(\mathrm{f} \mathrm{INT})$	421.94
$(R \downarrow X S Y)$	416.16
$(+)$	2416.16

D. Example - Interest Only, Real Estate

You intend to make an interest only real estate loan to a prospective real estate purchaser. You will make the loan on January 2, 1985 and the contract will expire on January 2, 1990. The loan amount is $\$ 59,000$ and the interest rate is 14%. What is the interest only monthly payment due you over the term if the contract is based upon 360 interest?

KEYSTROKE

1.021985 (ENTER)
1.021990 ($\mathrm{g} \Delta$ DYS) $\quad 1826.00 \quad$ Term in days
(n)

14 (i)
59000 (PV)
(f INT)
60 (!)

DISPLAY
1.02
1826.00
14.00 Annual rate

59,000.00 Loan amount
-41,896.56 Total interest
-698.28 Monthly payment

Problem A - Simple Interest, less than one year

An acquaintance asks you to make a short term loan of \$1500 for the purpose of investing in the stock market. You agree but with the following conditions. The interest rate will be 31% and the term will be six months from today's date July 1, 1985. Furthermore you require the loan be computed 02 a thirty day basis rather than an actual day basis. What would be the total amount due and payable on January 1,1986 ?

Problem A - Simple Interest, less than one year (ANSWER)

An acquaintance asks you to make a short loan of $\$ 1500$ for the purpose of investing in the stock market. You agree but with the following conditions. The interest rate will be 31% and the term will be six months from today's date, July l, 1985. Further more you require the loan be computed on a thirty day basis rather than an actual day basis. What would be the total amount due and payable on January 1, 1986?

KEYSTROKE	DISPLAY
1500 (CHS PV)	$-1,500.00$
31 (i)	31.00
7.011985 (ENTER)	7.01
1.011986 (\triangle DYS)	184.00
(n)	184.00
(f INT)	237.67
(+)	1737.67

Problem B - Simple Interest, more than one year, interest only

To close a sale on a piece of real property you offer to finance the sale with an interest only contract with the following terms of sale. The term of the loan will be five years beginning April 15, 1985 and will conclude April 15, 1990. If the loan amount is $\$ 25,000$ and the interest rate is 10% what is the monthly payment the borrowers will have to pay?

Problem B - Simple interest, more than one year, interest only (ANSWER)
To close a sale on a piece of real property you offer to finance the sale with an interest only contract with the following terms of sale. The term of the loan will be five years beginning April 15, 1985 and will conclude April 15, 1990. If the loan amount is $\$ 25,001$ and the interest rate is 10%, what is the monthly payment the borrowers will have to pay?

KEYSTROKE	DISPLAY
(f CL REG)	0.00
4.151985 (ENTER)	4.15
4.151990 (\triangle DYS)	1826.00
(n)	1826.00
10 (i)	10.00
25000 (PV)	$25,000.00$
(f INT)	$-12,680.56$
$60(\dot{\text { () }}$	-211.34

II. PRICE AND YIELD CALCULATIONS
A. The Investment relationship

BORROWER		INVESTOR	
(n)	Term	Term	(n)
(i)	Rate	Yield	(i)
(PV)	Loan	Price	(PV)
(PMT)	PMT	Cash Flow	(PMT)
(FV)	Balloon	Ba1loon	(FV)

B. The Simple Balloon Payment Calculation

Since in most cases your calculation of price and yield will require a working knowledge of how to calculate balloon payments, following is an illustration of the simple balloon payment calculation method.

EXAMPLE:
A thirty year mortgage is written with a 13.25% interest rate, a $\$ 60,000$ listing with 20% down. Calculate the balloon payment required after 60 payments.

$$
\begin{array}{ll}
\hline \text { KEYSTROKE } & \text { DISPLAY } \\
30(\mathrm{~g} \mathrm{12X}) & 360.00 \\
13.25(\mathrm{~g} \mathrm{12} \mathrm{\div)} & 1.10 \\
60000 \text { (ENTER) } & \\
20(\%)(-)(\mathrm{PV}) & 48,000.00 \\
(\mathrm{PMT}) & -540.37 \\
60(\mathrm{n}) & 60.00 \\
(\mathrm{FV}) & -47,124.02
\end{array}
$$

C. Calculating Price

1. Key in the total number of periods until the balloon payment occurs and press (n). If no balloon occurs enter the total number of payments then press (n).
2. Key in the desired yield and press (i).
3. Key in the payment per period and press (PMT).
4. Key in the balloon payment amount and press (FV). If no balloon go on to the next step.
5. Press (PV) to obtain the price.

KEYSTROKE	DISPLAY
$60(\mathrm{n})$	60.00
$31(\mathrm{~g} \mathrm{12} \mathrm{\div})$	2.58
$425.75(\mathrm{PMT})$	425.75
(PV)	$-12,913.13$

D. Calculating Price with a Balloon Payment

KEYSTROKE	DISPLAY
69850 (PV)	$69,650.00$
$6(\mathrm{~g} \mathrm{12} \mathrm{\div)}$	0.50
$25(\mathrm{~g} \mathrm{12X})$	300.00
(PMT)	$-450 . \mathrm{C}$
$48(\mathrm{n})(\mathrm{FV})$	$-64,397.23$
$18(\mathrm{~g} \mathrm{12} \mathrm{\div})$	1.50
(PV)	$46,834.20$

To purchase an 8.75% mortgage with 21 years remaining and a remaining balance of $\$ 52,350$, what price will an investor have to pay if the desired yield is 19% calculated on a monthly basis?

To purchase an 8.75% mortgage with 21 years remaining and a remaining balance of $\$ 52,350$, what price would and investor have to pay if the desired yield is 19% calculated on a monthly basis?

KEYSTROKE	DISPLAY
$21(\mathrm{~g} \mathrm{12X)}$	252.00
$8.75(\mathrm{~g} \mathrm{12} \mathrm{\div)}$	0.73
$52350(\mathrm{PV})$	$52,350.00$
(PMT)	-454.58
$19(\mathrm{~g} \mathrm{12} \mathrm{\div)}$	1.58
(PV)	$28,162.23$

E. Calculating Yield

1. Key in the total number of periods until the balloon payment occurs and press (n). If no balloon occurs key in the total number of periods and press (n).
2. Key in the periodic payment amount and press (PMT)
3. Key in the purchase price of the paper then press (CHS PV).
4. Key in the balloon amount and press (FV). If no balloon go on to the next step.
5. Press (i) to obtain the yield per period.

KEYSTROKE	$\frac{\text { DISPLAY }}{}$	
$60(\mathrm{n})$	60.00	
8500 (CES PV)	$-8,500.00$	
325 (PMT)	325.00	
(i)	3.27	Periodic Yield
12 (X)	39.22	Annual Yield

F. Calculating Yield with a Balloon Payment

KEYSTROKE	DISPLAY	
48 (n)	48.00	
125 (PMT)	125.00	
11415 (CHS PV)	$-11,415.00$	
15000 (FV)	$15,000.00$	
(i)	1.54	PERIODIC YIELD
(f) 9	1.541653667	
12 (x)	18.49984400	ANNLAL YIELD
(RCL g $12 \div$)	18.49984400	
(f) 2	18.50	

Problem B - Solving for Yield
Calculated on a monthly basis, what would the annual yield of a mortgage be if an investor was willing to purchase it for $\$ 28,162$, the cash flow was $\$ 454.58$ and there was a balloon payment in five years in the amount of $\$ 40,000$.

Problem B - Solving for Yield (ANSWER)
Calculated on a monthly basis, what would the annual yield of a mortgage be if an investor was willing to purchase it for $\$ 28,162$, the cash flow was $\$ 454.58$ and there was a balloon payment in five years in the amount of $\$ 40,000$.

KEYSTROKE	DISPLAY	
454.58 (PMT)	454.58	
40000 (FV)	$40,000.00$	
28162 (CHS PV)	$-28,162.00$	
$60(n)$	60.00	Periodic Yield
(i)	1.98	Annual Yield

A young couple wish to purchase a home. The sale however is contingent upon their finding and successfully obtaining secondary financing. The seller's agent suggests selling a note to a third party private paper investor as a source of the funds. If the face value of the note is $\$ 7950$ and the interest rate to the borrowers is 12% calculated over a thirty year term with a balloon payment in two years:

1. What is the monthly payment the borrowers will have to pay?
2. What is the balloon payment amount?
3. If the investor requires a 25% annual yield:
A. What is the purchase price of the note?
B. What is the total dollar return the investor will receive including annuities and the difference between his initial investment and the balloon payment at the end of two years?

Borrower's payment
Balloon Payment
Purchase price of the note
\$ \qquad

Total dollar return of investment
\$ \qquad
\$ \qquad
\$

KEYSTROKE	DISPLAY	
7950 (PV)	7,950.00	
12 (g 12\%)	1.00	
30 (g 12X)	360.00	
(PMT)	-81.77	Monthly Payment
24 (n) (FV)	-7,888.64	Balloon Payment
25 (g 12\%)	2.08	
(PV)	6,341.53	Purchase price
(RCL FV +)	-1,547.12	Difference between purchase price and the balloon
(RCL PMT RCL n X)	-1,962.59	Total of the cash flows
(+)	-3509.71	Total dollar return of investment

CASH FLOW ANALYSIS

I. UNDERSTANDING CASH FLOW
A. Defined:

The spendable income from an investment after deducting from gross income all operating and fixed expenses including principal and interest.

James Reilly - THE LANGUAGE OF REAL ESTATE
B. Cash Flow Sign Convention

+ - Money received
- - Money paid
C. Cash Flow Diagrams

1. Compound Interest

2. Cash Flow

```
D. The relationship between compound interest calculations
    and cash flow analysis
    1. Time and payments
```

COMPOUND INTEREST
TIME

PAYMENTS
2. Level payments versus equal or unequal cash flows Solve for: PRESENT VALUE INTEREST RATE Equal
(PMT) Price (PV) Yield (i)
Equal or Unequal
(CFJ) Investment (NPV) Internal Rate of Return (IRR)
E. Cash Flow Keys

CASH FLOWS
$=$
$=\& \neq$

```
INPUT KEYS
Cfo = Initial investment, may be zero, negative, or positive
Cfj = Subsequent cash flows, may be positive, negative, or zero
\(\mathrm{Nj}=\) Number of times a cash flow occurs, semi- automatic
```

CALCULATION KEYS
NPV = Net Present Value

IRR $=$ Internal Rate of Return
A. Net Present Value is the measurement of the desirability of an investment. This computation allows you the choice of computing:

1. The investment required to earn a desired yield, and;
2. The determination of the status of an investment based upon a required yield
B. Things to remember when calculating Net Present Value:
3. If NPV is negative the actual rate of return is less than desired
4. If NPV is zero the actual rate of return is equal to the desired rate
5. If $N P V$ is positive the actual rate of return is greater than the desired rate
C. Calculating NPV - Unequal Consecutive
6. Useful for up to a maximum of 20 cash flows

\#	CASH FLOW K*	
0	0	(g Cfo)
1	150,000	(g Cfj)
2	175,000	(g Cfj)
3	200,000	(g Cfj)
4	225,000	(g Cfj)
5	250,000	(g Cfj)

Desired Yield: 15 (i)
(f NPV)

KEYSTROKE
(f NPV)
(CHS) (STO O)
(f NPV)

DISPLAY
647,201.84
$-647,201.84$
-0.00005

KEYSTROKE
(f IRR)
DISPLAY
15.00

Problem A - NPV, Unequal Consecutive Cash Flows
If cash flows are discounted at 14.75%, calculate the NPV using the following cash flows assuming no initial investment

\#	CASH FLOW
0	0
1	$1,525,000$
2	$1,475,000$
3	$-300,000$
4	$1,205,000$
5	$1,742,000$
6	$2,200,000$
7	$-950,000$
8	$1,550,000$
9	$1,725,000$
10	750,000

PROBLEM A - NPV - Unequal Consecutive Cash Flows

KEYSTROKE	DISPLAY
0 (g Cfo)	0.00
1525000 (g Cfj)	1,525,000.00
1475000 (g Cfj)	1,475,000.00
300000 (CHS g Cfj)	-300,000.00
1205000 (g Cfj)	1,205,000.00
1742000 (g Cfj)	1,742,000.00
2200000 (g Cfj)	2,200,000.00
950000 (CHS g Cfj)	-950,000.00
1550000 (g Cfj)	1,550,000.00
1725000 (g Cfj)	1,725,000.00
750000 (g Cfj)	750,000.00
14.75 (i)	14.75
(f NPV)	5,627,264.67

You shouldn't invest more than $\$ 5,527,264.67$ if you intend to earn 14.75% on your money.

(CHS STO 0)	$-5,627,264.67$
(f NPV)	0.0003

D. Calculating NPV - Equal Consecutive Cash Flows

$\#$	CASH FLOW	
0	$-80,000$	$($ CHS g Cfo $)$
1	15,000	$(\mathrm{~g} \mathrm{Cfj})$
2	12,000	$(\mathrm{~g} \mathrm{Cfj})$
3	11,000	$(\mathrm{~g} \mathrm{Cfj} 3 \mathrm{~g} \mathrm{Nj})$
4	11,000	
5	11,000	
6	10,100	$(\mathrm{~g} \mathrm{Cfj})$
7	10,000	$(\mathrm{~g} \mathrm{Cfj} 2 \mathrm{~g} \mathrm{Nj})$
8	10,000	
9	5,500	$(\mathrm{~g} \mathrm{Cfj})$
10	101,000	$(\mathrm{~g} \mathrm{Cfj})$
$14(\mathrm{i})$		
(f NPV)	$3,080.94$	

If $N P V$ is positive, the actual rate of return is greater than the desired yield.
(f IRR) 14.75% Actual Rate of Return

PROBLEM B - NPV, Equal Consecutive Cash Flows
An investor would like to determine the desirability of purchasing a duplex. If the initial investment for the property is $\$ 105,000$ and he intends to keep the property for five years and sell it for $\$ 200,000$, using the cash flow table below will the investment yield 17% ?

$\#$	CASH FLOW	
0	$-105,000$	
1	750	$\times 12$
2	775	$\times \mathrm{X} 12$
3	800	$\times 12$
4	800	X 12
5	800	X 12
6	200,000	

KEY STROKE	DISPLAY
105000 (CHS g Cfo)	-105,000.00
750 (g Cfj 12 g Nj)	12.00
775 (g Cfj 12 g Nj)	12.00
800 (g Cfj 36 g Nj)	36.00
200000 (g Cfj)	200,000.00
17 ($\mathrm{g} \mathrm{12} \mathrm{\div)}$	1.42 Desired periodic yield
(f NPV)	11,203.22
(f IRR)	1.62 Actual periodic yield
12 (X)	19.40 Actual yield
ulating the price of a mortgage with uneven cash flows periodic balloon payments	
ing you would like to even cash flow of $\$ 2$ alloon payments at the ting to $\$ 15,000$. If tment how much must	lculate the price of a mortgage ver 10 years, calculated monthly nd of each 60 month period desire a 20% yield on your invest?

You shouldn't invest more than $\$ 21,961$ if you wish to earn a 20\% yield.
III. RECALLING OR ALTERING CASH FLOW ENTRIES
A. The Cash Flow Registers

Cfo - (g Cfo) stores Cfo in Ro and stores the number 0 in the n-register

Cfj - (g Cfj) stores the Cfj amount in the next register and updates the n-register by 1

Nj - (g Nj) preceded by a number equal to the number of cash flows updates the $\mathrm{N}_{0}-\mathrm{N}_{20}$ registers. No Nj keystroke automatically updates the register by 1.
B. Location of Cash Flows

Cfo - Stored in R_{0}
Cf $_{1}$ through $C f_{9}$ stored in R_{1} through R_{9}

Cf $_{10}$ through C_{19} stored in R.0 through R.9
Cf_{20} stored in the FV-register
C. Recalling or Altering Cash Flows

KEYSTROKE	DISPLAY	
(RCL 0)	0.00	Cfo
(RCL 1)	277.00	Cf1
(RCL 2)	$15,277.00$	Cf2
(RCL 3)	277.00	Cf3
(RCL 4)	$15,277.00$	Cf4
(RCL i)	1.67	PERIODIC IRR
(RCL PV)	$21,960.97$	NPV

1. Altering cash flows
(CHS STO 0)
(f NPV)
$-21,960.97$
-0.000001
2. Changing the number of times cash flows occur

3 (n) 3.00
$29(\mathrm{~g} \mathrm{Nj})$
29.00

1 (n)
$29(\mathrm{~g} \mathrm{Nj})$
4 (n)
0 (STO 0)
0.00
(f NPV)
25.154 .63
3. Recalling cash flows and the number of times they occur
(RCL g Nj)
(RCL g Cfj)
(RCL g Nj)
(RCL g Cfj)
1.00

15,277.00
29.00
277.00

This procedure allows you to view the number of times a cash flow occurs and the cash flow.

KEYSTROKE	DISPLAY
$\left(\begin{array}{l}\text { RCL } n)\end{array}\right.$	2.00
$4(\mathrm{n})$	4.00
$($ RCL PV)	$25,154.63$

IV. CALCULATING INTERNAL RATE OF RETURN
A. Defined:

A rate of discount at which the present worth of future cash flows is exactly equal to the initial capital investment.

James Reilly - THE LANGUAGE OF REAL ESTATE
B. INTERNAL = One investment
$\underline{R A T E}=A$ measurement based upon percentages
OF RETURN $=$ On investment
C. Calculating the Simple IRR

Use this procedure to compute the required sales proceeds by using the FV key or the required cash flow by using the PMT key.

Problem A - Simple IRR

A property owner would like to know what the investment in his property has earned him, in percentage terms, over the last 20 years. If his original investment was $\$ 20,000$ and he has been receiving payments of $\$ 638.63$ per month, and recently sold the property for $\$ 150,000$, what is the IRR?

Problem A - Simple IRR (ANSWER)

KEYSTROKE	DISPLAY
$20000($ CHS PV $)$	$-20,000.00$
$20(\mathrm{~g} \mathrm{12X})$	240.00
$150000(\mathrm{FV})$	$150,000.00$
638.63 (PMT)	638.63
(i)	3.20
$12(\mathrm{X})$	38.45

D. Calculating IRR - Unequal Consecutive Cash Flows

保

KEYSTROKE	DISPLAY
10000 (CHS g Cfo)	$-10,000.00$
$1820(\mathrm{~g} \mathrm{Cfj})$	1820.00
$1825(\mathrm{~g} \mathrm{Cfj})$	1825.00
$1900(\mathrm{~g} \mathrm{Cfj})$	1900.00
$20000(\mathrm{~g} \mathrm{Cfj})$	$20,000.00$
(f IRR)	$31.35 \quad$ Periodic Yield

Problem B - IRR, Unequal Consecutive Cash Flows
Solve for IRR. Use the cash flow analysis form on the next page to obtain the :ash flows.

Cash Flow Analysis

Date
Name Purpose

Mortgage Data

Ownership Analysis of Property Income:

Cash Flows

Problem B - Unequal Consecutive Cash Flows, Solving for IRR

KEYSTROKE	DISPLAY
870000 (CHS g Cfo)	$-870,000.00$
133844 (g Cfj)	$133,844.00$
100911 (g Cfj)	$100,911.00$
133343 (g Cfj)	$133,343.00$
144216 (g Cfj)	$144,216.00$
155898 (g Cfj)	$155,898.00$
168535 (g Cfj)	$168,535.00$
1107210 (g Cfj)	$1,107,210.00$
(f IRR)	$16.56 \quad$ Periodic return

Problem C - IRR, Unequal Consecutive Cash Flows
Solve for IRR.

\#	Cash F1ow
0	$-150,000$
1	20,000
2	25,000
3	12,000
4	15,000
5	10,000
7	15,000
	20,000

(More cash flows next page)

$\#$	Cash Flow
8	17,000
9	14,000
10	13,000
11	200,000

Problem C - IRR, Unequal Consecutive Cash Flows

KEYSTROKE	DISPLAY
150000 (CHS g Cfo)	$-150,000.00$
20000 (g Cfj)	$20,000.00$
25000 (g Cfj)	$25,000.00$
12000 (g Cfj)	$12,000.00$
15000 (g Cfj)	$15,000.00$
10000 (g Cfj)	$10,000.00$
15000 (g Cfj)	$15,000.00$
20000 (g Cfj)	$20,000.00$
17000 (g Cfj)	$17,000.00$
14000 (g Cfj)	$14,000.00$
13000 (g Cfj)	$13,000.00$
200000 (g Cfj)	$200,000.00$
(f IRR)	12.19

E. Calculating IRR - Equal Consecutive Cash Flows

Problem D - Solve for IRR, Equal Consecutive Cash Flows

\#	Cash Flow	Groups
0	$-27,270,000$	1
1	5500	12
2	6000	12
3	6500	12
4	7000	12
5	7500	12
6	8000	12
7	9000	12
8	10,000	12
9	15,000	12
10	15,000	12
11	15,000	12
12	12,500	12
13	13,500	12
14	15,000	12
15	16,000	12
16	16,500	12
17	17,000	12
18	17,500	12
19	18,000	12
20	351,744,440	1

KEYSTROKE	DISPLAY
27270000 (CHS g Cfo)	-27,270,000.00
5500 (g Cfj 12 g Nj)	12.00
6000 (g Cfj 12 g Nj)	12.00
6500 (g Cfj 12 g Nj)	12.00
7000 (g Cfj 12 g Nj)	12.00
7500 (g Cfj 12 g Nj)	12.00
8000 ($\mathrm{Cffj}^{12 \mathrm{~g} \mathrm{Nj}}$)	12.00
9000 (g Cfj 12 g Nj)	12.00
10000 (g Cfj 12 g Nj)	12.00
15000 (g Cfj 36 g Nj)	36.00
12500 (g Cfj 12 g Nj)	12.00
13500 (g Cfj 12 g Nj)	12.00
15000 (g Cfj 12 g Nj)	12.00
16000 (g Cfj 12 g Nj)	12.00
16500 (g Cfj 12 g Nj)	12.00
17000 (g Cfj 12 g Nj)	12.00
17500 (g Cfj 12 g Nj)	12.00
18000 (g Cfj 12 g Mj)	12.00
351744440 (g Cfj)	351,744,440.00
(f IRR)	1.14 Periodic Return
12 (X)	13.62 Annuai Return

V. PROBLEMS WITH IRR COMPUTATIONS
A. Problems with Displayed Answers

1. Positive answer - Probably the only answer
2. Negative answer - May be other answers, some may be positive
3. ERROR 7 - No solution to your problem exists, probably due to the cash flows you entered
4. ERROR 3 - Enter Best guess (RCL g R/S)
B. Computation Problems with IRR
5. IRR assumes that all cash flows are either reinvested or discounted at the computed yield rate
6. As IRR becomes either smaller or larger the financial assumption becomes less valid as an investment measure
7. For every sign change IRR has the potential for an additional answer
VI. MODIFIED INTERNAL RATE OF RETURN
A. Instructions for calculating MIRR
8. Using a risk rate, calculate the $F V$ of the positive cash flows
9. Using a safe rate, calculate the $P V$ of the negative cash flows
10. Knowing $n, P V$ and $F V$ solve for i

\#	Cash Flow	Groups
0	$-360,000$	1
1	200,000	5
2	$-200,000$	5
4	0	9

[^0]: * ($g \mathrm{E}-$) subtracts one data point in the event of an error situation.

[^1]: * (f DATE) on the HP-38

