QUICK REFERENCE BOOK FOR THE HP-12C

					RD	HEWLETT.PACKARD	T.P/	LET	HEW
+	7'₩	••	••			STO	g	4	ş
	2 W	3.2	-	 2m		5. 20		SST BST	R/S
				PREFIX	6333	FIN		E	P/R
×	. 0	50	4	EEX	***	₩	۲% H	•**	न ५
					-	SOYD		YTM	PRICE
•1•	MEM 9	80	7	E CHS	2 Z	OFI		5 ₩	12×
					IRR	RND		. INT	AMORT
[
N S						0	2.0		

INCLUDING SAMPLE PROBLEMS FOR EASY REFERENCE The Quick Reference Book for the HP-12C is designed to be used as a training guide in learning to operate the HP-12C financial calculator. It can be carried in the case with the calculator to provide convenient reference material. The book is not intended as a replacement for the HP-12C Owner's Handbook and Problem-Solving Guide, but is designed as a supplement to reinforce concepts learned from the Owner's Handbook.

The keystroke procedures are in variance with the Owner's Handbook in two areas. First, the keystrokes for converting annual periods and interest to monthly figures referred to as $9 \ 12x$ and $9 \ 12^{\pm}$ in the Owner's Handbook are shown as $9 \ n (12x)$ and $9 \ n (12x)$ and $9 \ n (12x)$ in this book as a reminder that the monthly figures are entered into the "n" and "i" registers when the 12x and 12^{\pm} keys are pressed. Second, the redundant steps of keying "0" into linancial registers which have zero values are included in this book to assist the user in understanding the problems.

The author makes no expressed or implied warranty with regard to the keystroke procedures and material contained herein. The keystroke procedures and material are made available on an "as is" basis, and the risk associated with their usage, quality, performance and fitness for use for any purpose rests entirely with the user. The author shall not be liable for damages of whatsoever nature, incidental or consequential, arising out of the usage or performance of keystroke procedures or material contained herein.

The author offers seminars on the usage of the HP-12C. For information concerning seminars of consultation, contact Evan G. Gost, Box 2275, Saratoga, CA 95070.

Copyright 1983 Evan G. Gost Second Edition 1984

ALPHABETICAL INDEX

SUBJECT	P	AGE
Amortization		14
Annual Percentage Rate (APR)	11	1, 26
Annuity Value Problems		3, 28
Answer Box		5
Appreciation of Property		12
Balloon Payment		13
Blended Rate Mortgages		25
Bond Calculations		15
Calendar Functions		3
Canadian Mortgages		33
Cash Flow Diagram		6
Chain Calculations		2
Clearing Keys		1
Converting Monthly to Annual Yield		30
Decimal Display		1
Depreciation		15
Electronic Circuitry Check	Back C	over
	Back C	over
Financial Keys		4
Future Value Problems		12
Index of Key Functions		35
Interest Rate Problems		10
Internal Rate of Return (IRR)		16
IRA or Periodic Savings		12
Large Numbers		2
Lease Problem		19
Maximum Loan for a Given Payment		8
Negative Amortization		22
Negative Numbers (CHS)		1
Net Present Value		18
Number of Payments		13
Payment on a Loan		7
Payment to Amass Future Sum		7
Percentage Problems		3
Present Value Problems		8
Programming		30
Second Loan Value		10
Sign Convention		4
Simple Interest Calculations		4
Stack		34
Status Indicators		
Storage and Memory		2
T-Bill Bond Equivalent Yield		28
T-Bill Discount Rate		27
Variable Rate Mortgage		20
Weighted Average		30
Wraparound Mortgage		24
Yield on a Second Loan		10
Yield on a Lump Sum Return		11

KEYS WITH MULTIPLE FUNCTIONS

Primary function is printed in white on the key. Second function is printed in gold above the key. Press gold f followed by the respective key to perform the secondary function. Third function is printed in blue below the key. Press blue [] followed by the respective key for the tertiary

function.

Note: After pressing the f or 9, a small "f" or "g" will appear on the display below digits.

NEGATIVE NUMBERS

Press CHS to change a number from positive to negative and vice versa.

CLEARING KEYS

CLX clears the display (x register). The symbol — CLEAR — printed in gold above and spanning 5 keys denotes clearing functions of It clears financial registers, but not

the display.

F CLEAR REG clears financial registers, storage registers, stack, last x and display. (F) CLEAR PRGM clears all stored programs.

- Image: Control of the control of th

DECIMAL DISPLAY

Press f 2 for .00 display.

1 4 for .0000 display.
1 and any number (0-9) to set the digits after decimal in the display. The display is rounded to the digits shown; however, the unrounded number and the digits shown; how shown and the digits shown; how shown; how shown; how shown; how shown; how shown; is retained for calculations. The display is normally set to display .00 for monetary calculations.

SIMPLE ARITHMETIC CALCULATIONS

The arithmetic operation $(+, -, \times, \div)$ is keyed <u>after</u> the 2nd number used in the problem. To add 2 +3 nrace

0, p.000		
KEYSTROKES	DISPLAY	REMARKS
CLX	0.00	clears display
2	2	2 in x register
ENTER	2.00	2 in y register
3	3	3 in x register
+	5.00	x + y registers
For reference se	e "STACK" on	page 34.
CHAIN CALCULA	TIONS	

$(2,000 \times 60) + (480 \times 10^{-1})$	20) + (110 X	120 X 6)=
KEYSTROKES	DISPLAY	REMARKS
CLX	0.00	clears display
2000 ENTER 60 X	120,000.00	line 2
480 ENTER 20 X	9,600.00	line 3
110 ENTER 120 X	13,200.00	line 4
6 X	79,200.00	line 5
+	88,800.00	lines 3 + 5
+	208,800.00	lines 2 + 6
LARGE NUMBERS		

To enter 3,116,700,000,000 press 3.1167 [EEX 12. The display shows 3.1167 12. The [EEX] key moves the decimal point a number of places (in this case 12).

STORAGE AND MEMORY

20 storage registers (numbered 0 thru 9 and .0 thru .9) are available for storing numbers and dates. To store, press <u>STO</u> followed by the desired storage register number. To recall, press <u>RCL</u> and the respec-tive storage register number. A number stored in a register remains until cleared or replaced by a difference number.

KEYSTROKES	DISPLAY	REMARKS
50 STO 0	50.00	stores 50 in Register 0
15 STO 1	15.00	stores 15 in Register 1
25 STO 2	25.00	stores 25 in Register 2
RCL 0	50.00	recalls Register 0
RCL 1	15.00	recalls Register 1

The financial registers (n, i, PV, PMT and FV) also may be used for the storage of numbers.

PERCENTAGE OF A NUMBER

Find 6% of \$195,000 and how much remains after 6% is deducted from \$195,000.

KEYSTROKES	DISPLAY	REMARKS
CLX	0.00	clears display
195,000 ENTER	195,000.00	
6 %	11,700.00	1st answer
	183,300.00	2nd answer

PERCENTAGE DIFFERENCE

BETWEEN 2 NUMBERS

If a stock price drops from \$66.00 to \$47.50, what is the percentage change?

KEYSTROKES	DISPLAY	REMARKS
CLX	0.00	clears display
66 ENTER	66.00	. ,
47.5 🛆%	-28.03	28% loss

PERCENTAGE OF TOTAL

 \$32,500 is what percentage of \$60,000?

 KEYSTROKES
 DISPLAY
 REMARKS

 CLX
 0.00
 clears display

 60000
 ENTER
 60,000.00

 32500
 %T
 54.17
 54.17 percent

CALENDAR FUNCTIONS

DMY . "D.MY" will be displayed under digits. For Month/Day/Year (European notation), press DMY . "D.MY" will be displayed under digits. For Month/Day/Year (U.S. notation), press MDY . The "D.MY" will disappear. The examples in this book use the U.S. notation. Find the day/date 90 days after 8/23/82.

KEYSTROKES	DISPLAY	REMARKS
CLX	0.00	clears display
9 M.DY	0.00	Mo/Day/Year
f 6	0.000000	sets display
8.23 1982 ENTER		
90 g DATE	11,21,1982	7 11/21/82 Sunday
The last digit is the	e day of the	week (1 = Monday;
2=Tuesday; 3=W	ednésday;	. 7 = Sunday).

Find the number of days between 7/25/83 and 11/1/83.

KEYSTROKES

CLX 7.25 1983 ENTER 11.01 1983 9 ADYS $x \ge y$ fl2

DISPLAY 0.000000 7.251983 99.000000 96.000000 96.00

REMARKS

clears display ref. date 365-day year

360-day year sets display

SIGN CONVENTION

The calculator uses a sign convention of positive numbers for sums received and negative numbers for sums paid out. If you borrow money, you receive an amount which is given a positive sign. Payments of interest and principal on the loan are given a negative sign. If you lend money, the sum loaned is given a negative sign. Receipts from the loan (principal and interest) are given a positive sign.

SIMPLE INTEREST CALCULATIONS

Find the interest due on a \$125,000 loan at 15.5% interest for 100 days? (From Borrower's View)

KEYSTROKES	DISPLAY	REMARKS
CLX	0.00	clears display
125000 PV	125,000.00	loan amount
15.5 i	15.50	interest rate
100 n	100.00	# days
f INT	-5,381.94	360-day Interest
+	-130,381.94	Prin + Interest
$x \ge y$	-5,308.22	365-day Interest
The negative sigr	n means that inte	erest must be paid

back if the sum was borrowed.

FINANCIAL KEYS

	-	number of compounding periods.
i :		interest rate per period.
		present value
		payment per period.
FV	=	future value.

ANSWER BOX

An aid to understanding the operation of the financial keys and the solution to financial problems is a concept called an Answer Box. The box is drawn as follows:

n
i
PV
PMT
FV

Known values are written down in the appropriate blanks. When 4 of the 5 blanks are filled, the problem can be solved. The 4 known values are keyed into their respective financial registers and then the key for the 5th or unknown value is pressed. The calculator calculates and displays the unknown value. The financial registers retain the last value entered until a new value is entered. To check or recall the number stored in a financial register, press [RCL] followed by the respective financial key. [] CLEAR FIN clears the financial registers by entering a value of zero in each register. Accordingly, keystrokes are not required to enter zero in a financial register if [] CLEAR FIN is pressed prior to beginning the problem.

NOTE: In order to emphasize that problem solving requires entries in 4 of the 5 financial registers, the examples in this book include keystrokes for entering values in 4 of the registers even if the value for one of the registers is zero. Although redundant, this keystroke procedure reinforces the Answer Box concept and prevents errors which may result from the failure to clear the financial registers at the beginning of a financial problem. The redundant keystrokes are annotated by an asterisk and the footnote "not a required keystroke."

The time frame for <u>PMT</u>, i and <u>must</u> be consistent. If <u>m</u> is entered as a number of months, i The majority of financial institutions charge interest in arrears with the payment being made at the end of the period. To set the calculator for payments at the end of the period, press <a>[END]. If your calculations are for a problem which has payments at the beginning of the period, press <a>[BEG] ("BEGIN" will be displayed below the digits).

CASH FLOW DIAGRAMS

In order to visualize the timing of payments and receipts, a cash flow diagram is useful. The diagram is composed of a horizontal time line, representing the time frame of the problem, and vertical payment lines extending above and below the horizontal line, representing money received (above the line) and money paid out (below the line). The cash flow diagram of a \$75,000 loan at 13% interest amortized over 30 years would be from the lender's view as follows:

i = interest rate = 13% annual = 1.08% monthly <u>PMT</u> = + amount of monthly payment = \$829.65

$$[rv] = 0$$
(value after
30 years)

$$[rv] = 0$$
(value after
30 years)

$$[rv] = 0$$
(value after
30 years)

$$[rv] = 0$$
(value after
30 years)

PROBLEMS FINDING THE PAYMENT.

PAYMENT ON A LOAN (MONTHLY)

\$75,000 30 year loan at 13%.

30g	n
13g	i
-75,000	PV
	PMT
0	FV

KEYSTROKES

f CLEAR FIN
g END
75000 CHS PV
30 9 n (12×)
13 g i (12÷)
* 0 FV
PMT

DISPLAY
unchanged
unchanged
-75,000.00
360.00
1.08
0.00
829 65

REMARKS clears FIN reg. timing of PMT amount loaned # months monthly interest loan amortized payment

REMARKS

What if the rate was 14%?

KEYSTROKES

DISPLAY

PV, n and FV remain unchanged 14 g i (12÷) monthly int. rate 1.17 888.65 PMT @ 14%

PMT

PAYMENT TO AMASS FUTURE SUM

If you wish to accumulate \$100,000 in 10 years in an account that earns 8.5% interest, how much will you have to save each year?

•	•		
	10	n	
	8.5	i	
	0	PV	
		PMT	
	100,000	FV	
KEYSTROKES		REMARK	
f CLEAR		clears F	
100000 FV	100,000.00	future a	mount
* 0 PV	0.00	starting	with 0
10 n	10.00	# of yea	ars
8.5	8.50	annúal	
PMT	-6,740.77	annual	savings
*	- not a required keys	troke	

The answer is based upon the deposit in the account being made at the end of the year. For deposits made at the beginning of the year, press

KEYSTROKES	DISPLAY	REMARKS
9 BEG	"BEGIN"	timing of PMT
PMT	-6,212.69	annual savings
How much wo	uld you have to sa	ave monthly?
10 gn(12x)	120.00	# of months
8.5gi(12-)	0.71	monthly interest
PMT	-527.79	
The negative s	ign of PMT means	that you must pay

the sum to the savings account.

PROBLEMS FINDING PRESENT VALUE:

MAXIMUM LOAN FOR A GIVEN PAYMENT

If you can afford monthly payments of \$950, how large of a 13% (30 year) loan can you afford?

30g	n
13g	i
	PV
-950	PMT
0	FV

KEYSTROKI	ES	DISPLAY	REMARKS
f CLEAR [IN	unchanged	clears FIN reg
9 END		unchanged	timing of PMT
950 CHS	PMT	-950.00	monthly PMT
30 g n (12×)	360.00	# of months
13 9 1 (12÷)	1.08	monthly interest
*0 FV		0.00	amortized loan
PV		85,879.63	maximum loan

 If the interest rate is 12.5%?

 KEYSTROKES
 DISPLAY

 PMT], n and FV remain unchanged

 12.5 @ j (12-)
 1.04

 PV
 89,013.17

 maximum loan

PRESENT VALUE OF A FUTURE RECEIPT

Assume that you can earn 10% on your money. What is the value of \$50,000 to be received 5 years from today? *-not a required keystroke

5	n
10	i
	PV
0	PMT
50,000	FV

KEVSTROKES

DISPLAY

REMARKS

LIGHNORED
f CLEAR FIN
50000 FV
5 n
10
*0 PMT
PV

unchanged	clears FIN reg
50,000.00	received in 5 yrs
5.00	# of years
10.00	annual interest
0.00	no payments
-31,046.07	present value

of \$50,000 to be received 5 years from today. ANNUITY VALUE PROBLEM OR VALUE OF A STREAM OF FUTURE PAYMENTS

An insurance annuity provides payments of \$400 per month at age 65. The life expectancy is 78 and the assumed yield on the annuity fund is 8%. What is the value of the annuity at age 65?

13g	n
8g	i
	PV
400	PMT
0	FV

156.00

0.67

0.00

KEYSTROKES **F**CLEAR FIN 400 PMT 13gn(12x)8 9 i (12-) *0 FV PV

DISPLAY unchanged 400.00 REMARKS

clears FIN reg. monthly payments # of months monthly interest 0 upon death

-38.719.40value of annuitv

If the \$400 payments were to be received at the beginning of the month

KEYSTROKES	DISPLAY	REMARKS
g BEG	"BEGIN"	timing of PMT
9 BEG PV	-38,977.53	value of annuity

*-not a required keystroke

9

What if you wanted \$450 and the assumed rate was 9%?

 KEYSTROKES
 DISPLAY
 REMARKS

 [FV and n remain unchanged
 450.00
 monthly payments

 9 9 1 (12-)
 0.75
 monthly interest

 PV
 -41.606.23
 value of annuity

SECOND LOAN VALUE

A second loan has monthly payments (or receipts to the lender) of \$500 for 5 years with a balloon of \$50,000 at the end of 5 years. If you could earn 16% on a similar loan, what is the present value of this loan?

5g	n
16g	i
	PV
500	PMT
50,000	FV

DISPLAY

KEYSTROKES

9 END

REMARKS

unchanged clears FIN reg.

50000 FV
5 g n (12×)
16 g i (12÷)
500 PMT
PV

unchangeu	clears Filvreg.		
unchanged	timing of PMT		
	received in 5 years		
60.00	# of months		
	monthly interest		
500.00	payments		
-43,146.38	amt. paid to earn 16%		

PROBLEMS FINDING INTEREST RATE YIELD ON A SECOND LOAN

If you paid \$40,000 for the loan which had \$500 monthly payments and a \$50,000 balloon at the end of 5 years, what would be your yield? **KEYSTROKES** DISPLAY REMARKS FV, PMT and n remain unchanged 40000 CHS PV -40,000.00 paid for loan i 1.51 monthly yield 12 X 18.11 annual yield For converting the monthly yield to an effective annual yield, see page 30.

YIELD ON A LUMP SUM RETURN

If you invest \$10,000 and receive \$22,000 5 years and 6 months later, what is your vield?

5.5	n
	i
-10,000	PV
0	PMT
22,000	FV

KEYSTROKES

12 X

3 g n (12×)

f CLEAR FIN 5.5 🖻 10000 CHS PV 22000 FV * 0 [PMT]

DISPLAY
unchanged
5.50
-10,000.00 22,000.00
0.00
15 36

REMARKS

clears FIN registers #vears

amount invested

amount invested

no payments

vield 5.36

ANNUAL PERCENTAGE RATE-FINDING

Consider a loan in the amount of \$30,000 at 15% Consider a loan in the amount of \$30,000 at 15% interest, with monthly interest only payments for 3 years and a balloon payment at the end of 3 years. Payments would be \$375. If 8 points (8%) were charged as loan fees, the borrower would receive only \$27,600. What is the Annual Percentage Rate (APR) that the borrower pays?

		3g	n	
			i	
		27,600	PV	
		-375	PMT	
	-	-30,000	FV	
KEYSTROKE	S	DISPLAY	REMARK	S
f CLEAR F	IN	unchanged	clears F	IN reg.
27600 PV		27,600.00	amount	received
375 CHS	PMT	-375.00	paymer	nts
30000 CH	SFV	-30,000.00	3 year b	
		~~ ~~		

- 36.00 # of months
 - 1.54 monthly interest
- 18.49 APR

NOTE: For all APR problems, PV is the amount actually received by the borrower (face amount of the loan minus the expenses associated with the loan).

PROBLEMS FINDING FUTURE VALUE: APPRECIATION OF PROPERTY

Find the future value of \$100,000 compounded annually at 8% for 5 years (or the FV of a \$100,000 property which appreciates at a rate of 8% for 5 years).

5	n
8	i
-100,000	PV
0	PMT
	FV

KEYSTROKES

DISPLAY

REMARKS

f CLEAR FIN	unchanged	clears FIN reg.
100000 CHS PV	-100,000.00	value today
5 n	5.00	# of years
81	8.00	annual interest
*0 [PMT]	0.00	no payments
FV	146,932.81	value in 5 yrs

What if the appreciation rate is 5%? 5 1 5.00 annual interest FV 127,628.16 value in 5 yrs Note: The sign convention of the calculator requires

Note: The sign convention of the calculator requires that the present value be treated as a sum paid out and the future value as a sum received, or vice versa.

IRA OR PERIODIC SAVINGS

If you place \$1,500 annually at the end of the year in an IRA earning 12.33% for 18 years, what is the future value?

KEYSTROKES	DISPLAY	REMARKS	
f CLEAR FIN	unchanged	clears display	
1500 CHS PMT	-1,500.00	annual payment	
*0 PV	0.00	starting with 0	
18 n	18.00	# of years	
12.33	12.33	interest rate	
FV		future value	
*-not a required keystroke			
	12		

FINDING THE AMOUNT OF A BALLOON PAYMENT

If a loan of \$100,000 at 12% had payments based upon a 30 year amortization schedule, but the entire remaining balance was due as a balloon payment in 5 years, what would be the amount of the balloon payment?

30g	5g	n
12g		i
100,000		PV
		PMT
0		FV

KEYSTROKES

unchanged 100,000.00 1.00 360.00 0.00 -1.028.61

60.00 -97.663.22

DISPLAY

REMARKS clears FIN reg. loan amount monthly interest # of months amortized loan payment time of balloon

balloon amount

FINDING THE NUMBER OF PAYMENTS:

A \$5,000 loan at 9% interest can be paid off in how many \$300 monthly payments?

	n
9g	i
5,000	PV
-300	PMT
0	FV

KEYSTROKES

fCLEAR FIN 5000 PV 300 CHS PMT 9 9 1 (12-) *0 FV n DISPLAY REMARKS unchanged clears FIN reg. 5,000.00 amount borrowed -300.00 payments 0.75 monthly interest 0.00 loan amortized 18.00 # of payments

Note: To determine if the loan is overpaid, press V. In this case the display shows 38.61 indicating overpayment by \$38.61 on the 18th payment. To determine the amount of the last payment, subtract the amount of overpayment from the payment. *-not a required keystroke

KEYSTROKES	5
FV	
RCL PMT	
+	

DISPLAY 38.61 -300.00 -261.39

REMARKS overpayment PMT 18 PMT

AMORTIZATION

Consider a 30 year \$100,000 loan at 12% interest. How much interest is paid in the first 6 payments?

30g	n
12g	i
100,000	PV
	PMT
0	FV

KEYSTROKES

f CLEAR FIN
100000 PV
30 g n (12x)
12 g i (12÷)
*0 FV
PMT
0 n
6 f AMORT
$x \ge y$
RCL PV

DISPLAY

REMARKS

DISPLAT	HEMAHKS
unchanged	clears FIN reg
100,000.00	loan amount
360.00	# of months
1.00	monthly interest
0.00	amortized
-1,028.61	payment
	reset n to 0
	interest 6 PMT
	principal
99,823.98	balance after 6 PMT

How much interest and principal are paid in the next 12 payments? What is the remaining balance after 12 more payments?

KEYSTROKES	DISPLAY	REMARKS
12 FAMORT	-11,958.15	interest
$x \ge y$	-385.17	principal
RCL	99,438.81	balance (18 PMT)
RCL n	18.00	# PMT amortized.

Purchase date 11/20/82; maturity date 12/01/98; coupon \$8; desired yield 15%; find price to pay. KEYSTROKES DISPLAY REMARKS [7]6 0.000000 sets display

 15
 15.000000
 desired yield

 8
 PMT
 8.000000
 annual coupon

 11.20
 1982
 ENTER
 11.201982
 purchase date

 12.01
 1998
 12.011998
 maturity date

 17
 PRICE
 57
 917563
 \$57.92

If you were to purchase the bond for \$65.00, what would be your yield?

65 PV

8 PMT 11.20 1982 ENTER

12.01 1998

TZ.UT T9

ī ī 2

r≥v

1

65.000000 8.000000 11.201982 12.011998 13.342835 13.34

price paid annual coupon purchase date maturity date 13.34% yield sets display

NOTE: Maturity dates of May 31, Aug 29-31, Oct 31 and Dec 31 result in ERROR 8. To solve such problems offset the maturity date to the 1st day of the following month and adjust the purchase date accordingly.

DEPRECIATION

Determine the annual straight line depreciation for a \$600,000 building (not including the value of the land) with a life of 15 years.

iunu) with u mo t	si io youio.	
KEYSTROKES	DISPLAY	REMARKS
600000 PV	600,000.00	depreciable value
0 FV	0.00	salvage value
15 n	15.00	15 year life
1 f SL	40,000.00	annual depreciation
$x \ge y$	560,000.00	remaining value
Using 175% decl	ining balance	, find the depreciation
in the first 3 year	rs.	
KEYSTROKES	DISPLAY	REMARKS
175 i	175.00	DB rate
1 f DB	70,000.00	depreciation yr 1
2 f DB	61,833.33	depreciation yr 2
3 f DB	54.619.45	depreciation vr 3

413,547.22 remaining value

Find the first 3 years depreciation using sum-of-theyears digits for a 30 year life.

DISPLAY	REMARKS
30.00	30 year life
38,709.68	depreciation yr 1
37,419.35	depreciation yr 2
36,129.03	depreciation yr 3
487,741.94	remaining value
	30.00 38,709.68 37,419.35 36,129.03

INTERNAL RATE OF RETURN (IRR) AND NET PRESENT VALUE (NPV)

In problems where the amount of the payment or receipt (PMT) is not the same from period to period, IRR calculations are used to determine the interest rate, and NPV calculations, to determine present value.

IRR AND NPV WORKSHEET AMOUNT TIMING		
	CFo	
	CF1	
	CF2	
	CF3	
	CF4	
	CF5	

The amount of the initial cash flow is the CFo and subsequent cash flows, CF1...CF5. A maximum of 20 cash flows of uneven magnitude can be entered.

INTERNAL RATE OF RETURN PROBLEM

If you invest \$500,000 and have the following after tax cash flow, what is your after tax IRR? Year 1 = -\$25,000; year 2 = -\$10,000; year 3 = +\$5,000; year 4 = +\$20,000; year 5 = \$1,195,000 from the combination of cash flow and proceeds from the sale of the property.

-500,000	CFo
-25,000	CF1
-10,000	CF2
5,000	CF3
20.000	CF4

KE	EYS	STF	JOK	ES
f	CL	.E	AR	RE

DISPLAY

REMARKS initial CF

CF5

f CLEAR REG	0.00
500000 CHS 9 CF0	-500,000.00
25000 CHS 9 CFj	-25,000.00
10000 CHS 9 CFj	-10,000.00
5000 9 CF	5,000.00
20000 9 CFj	20,000.00
	4 405 000 00

1,195,000

1195000 9 CFj f IRR

5,000.00 CF1 0.000.00 CF2

- 5.000.00 CF3
- 0.000.00 CF4
- 1.195.000.00 CF5
 - 18.33 IRR

VERIFYING OR CHANGING IRR ENTRIES

IRR and NPV calculations use storage registers 0-9 and .0-.9. The initial investment (CFo) is stored in register 0; the 1st CFj (CF1), in 1; CF2, in 2; etc. To verify CFo, press RCL 0, and -500,000.00 should be displayed. To verify CF2, press RCL 2, and -10,000 should be displayed. To change or <u>correct</u> an entry, key in the new entry and press STO followed by the respective storage register. The year 2 cash flow (CF2) could be changed to -\$12,000 by pressing 12000 CHS STO 2. An alternative means of checking all of the IRR and NPV entries is to press [RCL] [9] [CFi] . The last CFi will be displayed. Pressing RCL 9 CFJ repeatedly will display the other CFj's in a reverse order from the last CFj to CFo. Entries can be changed as mentioned above. After verifying or changing the CFo or CFj figures using Rc. [9]CFj, n must be set to the number of cash flow periods (the value of j for the last CFi). Change CF2 to-\$12,000and find IRR.

KEYSTROKES 12000 CHS STO 2	DISPLAY -12,000.00	REMARKS new CF2
5 n	5.00 18.27	reset n new IBB
f IRR	18.27	newinn

For IRR problems where the cash flow is the same for several periods, use the Nj key. In the above problem if the cash flow figures for years 2, 3, and 4 were -\$10,000, what is the IRR?

-500,000	CFo
-25,000	CF1
-10,000	CF2 3X
1,195,000	CF3

F CLEAF	REG
500000	CHS 9 CFO
25000	CHS 9 CFj
10000	CHS g CFj
3 g Nj	
119500) g CFj
f IBB	

DISPLAY	REMARKS
0.00	clears reg.
-500,000.00	investment
-25,000.00	CF1
-10,000.00	CF2
3.00	CF23 times
1,195,000.00	CF3
17.21	IRR

NET PRESENT VALUE

Consider the cash flow from the original investment ignoring the amount of the initial investment. How much could have been invested initially to earn an IRR of 20%?

RKS
s reg.
med IRR
stment

NPV also can be used with the original investment of \$500,000 in CFo to test for an assumed IRR of 20%.

KEYSTROKES		REMARKS
500000 CHS STO 0	-500,000.00	changes CF0
5 n		resets n
f NPV	-34,995.50	NPV

The negative value means that the IRR is less than the assumed rate of 20%. A positive value of NPV means that the IRR is greater than the assumed rate (20%).

LEASE PROBLEM

Compare the following leasing alternatives from the viewpoint of lessor and lessee. Both leases begin one month from today.

Lease #1: \$5,000 per month for months 1-12 \$5,250 per month for months 13-24 \$5,500 per month for months 25-36 Lease #2: \$5,500 per month for months 4-12

\$5,750 per month for months 13-24

\$6,250 per month for months 25-36 The lessor's discount rate (alternative return on

money) is 12%. The lessee's discount rate (cost of money) is 18%.

0	CFo
5,000	CF1 12X
5,250	CF2 12X
5,500	CF3 12X

KEYSTROKES DISPLAY

REMARKS

f CLEAR REG	0.00	clears registers
0 9 CFo	0.00	initial cash flow
5000 9 CFi	5,000.00	CF1
12 g Nj	12.00	12 months
5250 9 CFj	5,250.00	CF2
12 9 Nj	12.00	12 months
5500 9 CFj	5,500.00	CF3
12 9 Nj	12.00	12 months
12 9 i (12÷)	1.00	lessor's discount
f NPV	157,466.66	NPV (value) to lessor
18 g i (12÷)	1.50	lessee's discount
f NPV	144,399.29	NPV (cost) to lessee

LEASE #2

0	CFo	
0	CF1	ЗX
5,500	CF2	9X
5,750	CF3	12X
6,250	CF4	12X

	PLAY	REMARKS
f CLEAR REG	0.00	clears registers
0 g CFo	0.00	initial cash flow
0 9 CFj	0.00	CF1
3 9 Nj	3.00	3 months
5500 9 CFj	5,500.00	CF2
9 g Nj	9.00	9 months
5750 9 CFj	5,750.00	CF3
12 g Nj	12.00	12 months
6250 9 CFj	6,250.00	CF4
12 9 Ni	12.00	months
12 g i (12÷)	1.00	lessor's discount
f NPV	158,561.02	NPV (value) to lessor
18 g i (12÷)	1.50	lessee's discount
f NPV	144,120.10	NPV (cost) to lessee

In this case lease #2 is more advantageous for both lessor and lessee.

COMBINATION PROBLEMS

Complex problems should be broken down into several simple problems. The simple problems can be solved individually and combined to solve the more complex problem. An answer box or a cash flow diagram will be extremely helpful in visualizing the problem.

VARIABLE RATE MORTGAGE

What will be the payments on a variable rate mortgage in the amount of \$90,000 (30 year) if the interest rate increases from 12% to 13% at the end of the first year and to 14% at the end of the second year? Draw an answer box as follows:

1st year	2nd year	3rd year	
30g	29g	28g	n
12g	13g	14g	i
90,000			PV
			PMT
0	0	0	FV

Now we proceed to solve the problem by filling in the blank spaces one at a time. First, we solve for the PMT at 12%.

 KEYSTROKES
 DISPLAY
 REMARKS

 (1) CLEAR (FIN)
 unchanged
 clears FIN reg.

 30 9 n (12x)
 360.00 # of months

 12 9 i) (12+)
 1.00 monthly interest

 90000 PV
 90,000.00 loan amount

 *0 FV
 0.00 amortized loan

 PMT
 -925.75 payment 1st yr

Now change n to 12 payments to determine the balance of the loan (FV) after one year which is the PV at the beginning of the second year.

1st year	2nd year	3rd year	
12	29g	28g	n
12g	13g	14g	i
90,000	89,673		PV
-925.75			PMT
-89,673	0	0	FV

12 n 12.00 # of payments FV -89,673.41 balance end yr 1 89,673.41 balance beg. yr 2 CHS PV Entering the answer in the answer box, we find that we now have sufficient data to solve PMT for the 2nd year. 29 9 n (12×) 348.00 months remaining 13 9 i (12÷) 1.08 monthly interest 0 FV 0.00 amortized loan PMT -994.87 payments yr 2

Use the same method to solve for the 3rd year. *-not a required keystroke

1st year	2nd year	3rd year	
12	12	28g	n
12g	13g	14g	i
90,000	89,673	89,375	PV
-925.75	-994.87		PMT
-89,673	-89,375	0	FV

REMARKS KEYSTROKES DISPLAY 12.00 12 n 12 payments -89.375.21 balance end vr 2 FV CHS PV balance beg yr 3 89.375.21 remaining PMT 289 n (12×) 336.00 149i(12-) monthly interest 1.17 amortized loan 0 00 -1.064.31 payments vr 3 PMT

NEGATIVE AMORTIZATION

When the payment on a loan is based upon an interest rate which is less than the rate at which the loan accrues interest, the balance of the loan increases with time (negative amortization). What is the balance after 1 year of a \$90,000 loan with payments based upon 12% interest amortized over 30 years if the loan accrues interest at 13%?

30g 12g	12	n
12g	13g	i
90,000		PV
		PMT
0		FV

KEYSTROKES **F**CLEAR FIN $30 \ g \ n \ (12 \times)$ 12 9 (12-) 90000 PV *0 FV PMT 13 9 i (12-) 12 m FV

DISPLAY unchanged clears FIN reg.

REMARKS

360.00 # of months

- 1.00 monthly interest
- 90,000.00 loan amount
 - 0.00 amortized loan
 - -925.75 payment 1st yr
 - 1.08 monthly interest
 - 12.00 # of payments yr 1
 - -90,627.50 balance end vr 1

COMPLEX ANNUITY PROBLEM

If your child will need \$5,000 annually for 4 years to pay college expenses beginning 10 years from today, how much will you have to deposit monthly in an account that bears 6.25% after tax interest in order to finance the educational plans?

CASH FLOW DIAGRAM AND ANSWER BOX FV = ? = PV

FV = ? = PV				
	†	†		
10g	n	4	n	
6.25g	i	6.25	i	
0	PV		PV	
	PMT	-5,000	PMT	
	FV	0	FV	
+++++ +	+ + + +		1	
		· · ·	•	
PMT = ?		PMT = -	-\$5,000	
First solve for the	PV require	d in 10 years	i.	
KEYSTROKES	DISPLAY	REMARKS		
f CLEAR FIN	unchanged	clears FIN reg	g	
9 BEG	"BEGIN"	timing of PM	ŕ	
4 n	4.0) # of paymer	nts	
5000 CHS PMT	-5.000.0) amt. of paym	nents	
6.25 i	6.2	5 annual intere	est	
*0 FV	0.0	FV after 4 ye	ars	
PV		3 amt. require		
Now make PV of	this part e	gual to FV of	the other	
part of the proble		4		
KEYSTROKES	DISPLA	Y REMARKS		
ENTER FV	18,303.4	3 required in	10 years	
10 g n (12x)	120.0			
6.25 9 i (12-)	0.5	2 monthly in	terest	
0 PV	0.0			
PMT	-109.6			
In order to adjust	the probler	n for inflation,	see page	

28 (Increasing/Decreasing Annuity).

YIELD ON A WRAPAROUND MORTGAGE

Consider a wraparound mortgage in the amount of \$90,000 written at 12% interest with payments based on a 30 year amortization schedule and a balloon payment of the balance at the end of 5 years. Assume that the underlying first has a balance of \$35,000 at 8% interest with 15 years remaining on the loan. What is the yield on the net loan of \$55,000? Draw an answer box.

WRAPAROUND UNDERLYING NET Amort Balloon Amort Balloon

30g	5g	15g	5g	5g	n
12	2g	8	g		i
-90	,000	35,0	000	-55,000	PV
					PMT
0		0			FV

The PV for the wraparound and the net loans is negative because it represents money loaned; the PV for the underlying loan is positive because it represents money that still is borrowed. The PV, I and PMT are the same for the scheduled amortization and balloon. Because FV = 0 in an amortized loan, the PMT can be calculated. After calculating the PMT, we can calculate the FV of the balloon as we did in the example on page 13. Combining the figures on the wraparound with the underlying for PMT and FV, we determine the PMT and FV of the net loan. Solve individual questions and fill in the blanks as follows:

KEYSTROKES	DISPLAY	REMARKS
T CLEAR FIN	unchanged	clears FIN reg.
9 END	unchanged	timing of PMT
90000 CHS PV	-90,000.00	WRAP principal
*0 FV	0.00	amortized
30 g n (12×)	360.00	# of months
12 9 i (12-)	1.00	monthly interest
PMT	925.75	monthly payment
STO 0	925.75	for future use
5 9 n (12×)	60.00	# PMT until balloon
-		

25

KEYSTROKES	DISPLAY	REMARKS	
FV	87,896.90	amt. of balloon	
STO 1	87,896.90	for future use	
35000 PV	35,000.00	UNDERLYING prin	
0 FV	0.00	amortized	
159n(12×)	180.00	# of months	
8 9 i (12-)	0.67	monthly interest	
PMT	-334.48	monthly payment	
RCL 0	925.75	recall WRAP PMT	
	591.27	NET payment	
+ 5 9 n (12×)	60.00	# PMT until balloon	
FV	-27,568.19	balance at balloon	
RCL 1	87,896.90	recall WRAP balloon	
+	60,328.71	NET balloon	
Now we have solv	ed all of the	questions except the	
i of NET. Solve	as follows:		
FV	60,328.71	NET balloon	
55000 CHS PV	-55,000.00	NET amt. loaned	
5 g n (12×)	60.00	# of months	
591.27 PMT	591.27	monthly payment	
Π	1.19	monthly yield	
12 X	14.24	annual yield	
*-not a required keystroke			

BLENDED RATE MORTGAGE

A Blended Rate Mortgage is one which "blends" the interest rate that is being charged currently with an old below market rate on an existing loan. The blended rate is used in rewriting the existing loan. Solutions to Blended Rate Mortgage problems are similar to Wraparound Mortgage problems. After reviewing the above solution, consider a fully amortized Blended Rate Mortgage which has similar figures with the exception of the balloon payments. Assume that the lending institution charges \$2,000 in loan fees to write the new loan. The net amount loaned is \$53,000; the payments remain the same The institution has loaned \$53,000 for which they will receive \$591.27 per month for 15 years, and \$925.75 per month for the following 15 years. We now have an IRR problem which can be solved as follows.

-53,000	CFo	
591.27	CF1	99X
591.27	CF2	81X
925.75	CF3	99X
925.75	CF4	81X

KEYSTBOKES DISPLAY REMARKS T CLEAR REG 0.00 clears storage reg. 53000 [CHS] 9 [CF0] -53,000.00 new money loaned 591.27 new money rec'vd 591.27 9 CFi 99.00 # of months 99 9 Ni 591.27 9 CFi 591.27 new money rec'vd 81 (9 Ni 81.00 # of months 925.75 9 [CFi] 925.75 new money rec'vd 99.00 # of months 99 9 Nj 925.75 9 CFi 925.75 new money rec'vd 81 9 Nj 81.00 # of months 1.17 monthly yield 14.00 annual IRR f IRR 12 X

NOTE: The calculator is limited to a maximum of 99 constant payments with one CFj entry.

APR ON VARIABLE RATE MORTGAGES

Review the variable rate mortgage problem on page 20. Assume that the interest rate remains at 14% for years 3-30 and that the lender charges \$2,500 in loan fees. What is the APR? The amount loaned is \$90,000 - \$2,500 = \$87,500. The payments were calculated as follows:

1st year \$925.75 2nd year \$994.87 3-30 years \$1,064.31 Solve using IRR procedures.

-87,500	CFo	
925.75	CF1	12X
994.87	CF2	12X
1,064.31	CF3	99X
1,064.31	CF4	99X
1,064.31	CF5	99X
1,064.31	CF6	39X

KEYSTROKES DISP	PLAY	REMARKS
f CLEAR REG	0.00	clears registers
87500 CHS 9 CF0]	amount loaned
925.75 9 CFj	925.75	CF1
12 g Nj	12.00	12 payments
994.879 CFj	994 .87	CF2
12 9 Nj	12.00	12 payments
1064.31 9 CFj	1,064.31	CF3
99 9 Nj	99.00	maximum Jj
1064.31 g CFj	1,064.31	CF4
99 9 Nj	99.00	maximum Nj
1064.31 9 CFj	1,064.31	CF5
99 9 Nj	99.00	maximum Nj
1064.31 9 CFj	1,064.31	CF6
39 9 Nj	39.00	total of 360 PMT
f IRR	1.17	monthly IRR
12 🗵	14.02	APR on loan

T-BILL DISCOUNT RATE

Given a purchase price of \$9,758.80, a maturity value of \$10,000 and a term of 91 days (13 weeks), calculate the discount rate based on a 360-day year.

f CLEAR FIN 10000 PV 9758.8 CHS FV 91 ENTER 360 ∃ n * 0 PMT	PLAY unchanged 10,000.00 -9,758.80 91.00 .25 0.00 -9.54	REMARKS clears FIN registers maturity value purchase price # days n in years no payments discount rate trate
*-not a required keystroke		

T-BILL BOND EQUIVALENT YIELD

Bonds are typically based upon a 365-day year versus the 360-day year used for T-Bills. Given the data from the previous T-Bill problem, what is the equivalent bond yield?

	PLAY	REMARKS
f CLEAR FIN	unchanged	clears FIN registers
9758.8 CHS PV	-9,758.80	purchase price
10000 FV	10,000.00	maturity value
91 ENTER	91.00	# days
365 🗄 n	.25	n in years
*0[PMT]	0.00	no payments
i	9.91	equivalent yield

PRESENT VALUE OF INCREASING/DECREASING ANNUITY

You desire to receive annual payments which start at \$20,000 one year from today and increase at 5% per year continuing for a total of 10 payments. How much must you invest if the annual rate of return on your funds is 8%?

KEYSTROKES	DISPLAY	REMARKS
f CLEAR FIN	unchanged	clears FIN registers
9 END	unchanged	timing of PMT
10 n	10.00	# of PMT
1.05 ENTER	1.05	increase factor
1.08 ∆% i	2.86	adjusted i
20000	20,000	PMT
$x \ge y$ \div PMT	19,047,62	adjusted PMT
PV	-163,671.08	PV of payments

The above procedure will work only for problems with payment at the end of the period (1 year from today in the above problem). For problems which require the payment to begin today (beginning of the period), use the procedure shown above to calculate PV and then increase the answer (PV) by an

amount equal to the annual rate of return.

KEYSTROKES	DISPLAY	REMARKS
8 🛞	- 13,093.69	amount increase
+	-176,764.76	amount of investment

STATISTICAL PROBLEM

A company's advertising expenses and gross sales figures for 6 months are as follows.

	ADVERTISING	GROSS SALES
JAN	\$2,500.00	\$45,000.00
FEB	\$2,000.00	\$35,000.00
MAR	\$3,000.00	\$52,000,00
APR	\$3,200.00	\$57,000.00
MAY	\$2,800.00	\$48,000.00
JUN	\$3,500.00	\$62,000.00

What were the mean advertising and sales figures? Standard deviation? Expected sales if advertising expenses were increased to \$3,800?

KEYSTROKES	DISPLAY	REMARKS
TCLEAR [2]	0.00	
2500 ENTER	2.500.00	JAN
45000 2+	1.00	
2000 ENTER	2,000.00	FEB
35000 2+	2.00	
3000 ENTER	3,000.00	MAR
52000 Σ+	3.00	
3200 ENTER	3,200.00	APR
57000 Σ+	4.00	
2800 ENTER	2,800.00	MAY
48000 <u>\</u> +	5.00	
3500 ENTER	3,500.00	JUN
62000 <u>\S</u> +	6.00	
$g[\bar{x}]$	49,833.33	mean sales
$x \ge y$	2,833.33	mean advert.
9 s	9,495.61	stand. dev. sales
$x \ge y$	531.66	stand. dev. ads.
3800 g x,r	67,173.08	estimated sales

WEIGHTED AVERAGE

Your investment performance on several investments is as follows:

YIELD	AMOUNT INVESTED	
12%	\$25,000	
11%	\$65,000	
9.25%	\$15,000	
8.65%	\$12,500	
s the weighted	average of your yield?	

What is the weighted average of your yield?

KEYSTROKES	DISPLAY	REMARKS
f CLEAR 🔟	0.00	clear statistical reg.
12 ENTER	12.00	enters yield
25000 Σ+	1.00	enters amount
11 ENTER	11.00	enters yield
65000 Σ+	2.00	enters amount
9.25 ENTER	9.25	enters yield
15000 Σ+	3.00	enters amount
8.65 ENTER	8.65	enters yield
12500 Σ+	4.00	enters amount
9 \bar{x} w	10.74	weighted average

CONVERTING A MONTHLY YIELD TO AN EFFECTIVE ANNUAL YIELD

If the monthly yield is 1.51%, what is the effective annual vield?

KEYSTROKES	DISPLAY	REMARKS
1.51 i	1.51	monthly yield
12 n	12.00	12 months
1 CHS PV	-1.00	\$1 invested
0 PMT	0.00	0 payment
FV	1.20	future value
1 – 100 🗵	19.70	effective
		annual yield

PROGRAMMING

Programs are used to automatically perform a series of keystrokes. If a real estate broker wanted to be able to project the future value of a property, he could write a program which would automatically perform the keystrokes used in the "Appreciation of Property" problem on page 12. To write such a program, review the problem and proceed as follows 30

NOTE: The display format changes when the cal-culator is in the programming mode. The display 01– 45 0 means the following:

 of the line number of the program.
 the row and column location of the key in that program line (in this case the 4th row, 5th column or the RcL key). Digits are displayed by the number not location.

0 : the digit number of the suffix key if a prefix key ([STO], [RCL] or [GTO]) is used.

KEYSTROKES	DISPLAY 00–"PRGM"	REMARKS
		programming mode
f PRGM	unchanged	clears program
RCL 0	01- 45 0	recalls Register 0
CHS	02– 16	changes sign of #
PV 5	03– 13	enters # in PV
	04- 5	# of years
n 8	05– 11	enters 5 in n
8	06- 8	% appreciation
i	07– 12	enters 8 in i
* _0	08- 0	no payments
* PMT	09- 14	enters 0 in PMT
FV	10- 15	calculates FV
R/S	11- 31	displays results

With the exception of program line # 1 ($\mathbb{R}CL$ 0), the program is identical to the solution on page 12. We return to the program run mode (the normal mode of the calculator) by again pressing [\mathbb{P}/\mathbb{R} ("PRGM" disappears). Key in the value of the prop-erty followed by STO 0 and \mathbb{R}/S to execute the program.

KEYSTROKES	DISPLAY	REMARKS
f P/R	0.00	return to run mode
100000 STO 0	100,000.00	stores PV in Reg. 0
R/S	146,932.81	calculates FV

The answer is obtained rapidly. If we wanted to execute the program one step at a time, we would press $\boxed{\text{SST}}$ repeatedly.

The program can be altered to adjust for varied appreciation rates and time frames by using storage registers for n and i inputs. Press P/R to reenter programming mode. To move from step to step within the program without disturbing the program, use one of 3 methods. Press 9 GTO. followed by the 2 digit line number of the line directly before the line you wish to change; or press SST repeatedly until reaching the line before the one you wish to change; or press 0 BST (backstep) repeatedly backing the program to the line before the one you wish to change.

KEYSTROKES	DISPLAY	REMARKS
f P/R	00-	enters program mode
9 GTO · 03	03–13	goes to line # 03
RCL 1	04–451	changes line #04
SST	05–11	steps forward 1 line
RCL 2	06-452	changes line #06
g GTO . 00	00-	goes to line #00
f P/R	0.00	returns to run mode

Now we can enter the value of any property in \underline{STO} 0, the number of years in \underline{STO} 1, the projected annual appreciation rate in \underline{STO} 2 and calculate the future value of any property at any appreciation rate over any period of time.

KEYSTROKES	DISPLAY	REMARKS
200000 STO 0	200,000.00	property value
10 STO 1	10.00	# of years
8.75 STO 2	8.75	appreciation rate
R/S	462,724.67	value in 10 years

Programs of up to 99 lines can be stored in the calculator while leaving 7 storage registers (R0-R6) available for storage. As each additional storage register (R7-R9 and R.O-R.9) is used, the programming capacity of the calculator is dimininshed by 7 lines. Multiple programs can be stored and executed separately (use 9 GTO - followed by the 2 digit line number of the 1st line of the program to set the

calculator to the desired program). Branching and looping are made possible through the use of the GTO key. Pressing \mathfrak{GTO} (not followed by \cdot) and a 2 digit number directs the program to the 2 digit line number and executes the program beginning with that line. The keys $\underline{x \leq y}$ and $\underline{x = 0}$ allow conditional branching and looping. Numerous printed program are available in other manuals.

CANADIAN MORTGAGES

Loans in Canada are based upon a 365 day year and semi-annual compounding of interest. As a result, the Canadian figures for i differ from those pre-programmed into the HP-12C. The problems below show the keystrokes required to adjust the i inputs in order to answer problems involving Canadian Mortgages.

How much is the payment on a 30-year Canadian Mortgage of \$50,000 at an interest rate of 11%?

	PLAY	REMARKS
f CLEAR FIN	unchanged	_clears FIN registers
6 n	6.00	these keystrokes
200 ENTER	200.00	for converting the
PV	200.00	i factor can be pro-
11 🛨	211.00	grammed and
CHS FV	-211.00	stored for future use
		L-see programming
i	0.90	adjusted i factor
30 9 n (12×)	360.00	# of months
50000 PV	50,000.00	amount of loan
0 FV	0.00	fully amortized
PMT	-466.97	monthly payment

If solving a problem for the value of i (interest rate, yield on an investment or loan, Annual Percentage Rate, etc.) you calculate an answer of 18% (annual), what is the answer when converted to Canadian terms?

KEYSTROKES	DISPLAY	REMARKS
18 9 i (12÷)		monthly interest rate
6 n	6.00	these keystrokes for con-
0 PMT	0.00	verting the i factor can
200 CHS PV		be programmed and
FV	218.69	stored for future use
RCL	-200.00	
±	18.69	Canadian annual interest

STACK (AUTOMATIC MEMORY STACK)

In addition to the 20 storage registers and the financial keys which are used for storage, there are 4 special registers which are used to retain numbers during calculations. The number in the X register is displayed when the calculator is on and not in the programming mode. The Y, Z and T registers can be visualized as resting on top of the X register in a "stack". When ENTER is pressed, the number in the X register moves to the Y register, Y to Z and Z to T. When \oplus is keyed the number in the Y register is added to the number in the X register, the number in the T register drops to the Z register and the number in the Z register drops to the Y register. Other arithmetic operations are performed in a similar manner. Following an arithmetic operation, the stack will be lifted if a number is keyed. In summary, the stack provides an automatic storage area which makes chain calculations possible. The numbers in the stack can be manipulated through usage of the $x \ge y$ and $\mathbb{R} \to \mathbb{R}$ keys. $x \ge y$ exchanges the numbers which are in the X and Y registers. $\mathbb{R} \to \mathbb{R}$ rolls the stack by dropping T to Z, Z to Y, Y to X and rolling X to T

Т	0	_ 0-	→ 0	# 0-	→ 0、	0	0	0	→0
Ζ	0	x 0-	→ 0	_ 1-	→ 1 、	×0,	≁0	0	> 0
Y	0	×1-	→ 1 ′	* 2-	→ 2、	×1,	×0.	7 6	`▲0
Х	1	1	2	2	3-	5-	▶6∕	<u>∼_0</u> -	№6
KEY	1 [ENTER	2 [NTER	3	+	+	<i>x</i> ≥ <i>y</i>	R♦

INDEX OF KEY FUNCTIONS Functions printed in white:

n, i, PV, PMT, FV - defined on page 5. CHS - changes sign of number in display.

 $\overline{\mathcal{M}}$ — raises number in y to x power. $\overline{\mathcal{M}}$ — calculates reciprocal of number.

- calculates percentage of total.

 $\boxed{\Delta\%}$ — calculates % difference between 2 numbers.

[%]— calculates percentage of a given number. **EEX** — enters exponent, used for large numbers.

R/S - runs or stops program stored in memory.

 $\underbrace{\text{SST}}_{\textbf{R}} - \text{single step execution for stored program.}$

 $\overline{x \ge y}$ – exchanges numbers in X & Y registers. CLx - clears number displayed.

ENTER — used to enter number for calculation. ON - turns calculator on and off.

STO - stores displayed # in storage registers.

RCL - recalls numbers stored in registers.

 $\boxed{0}$ – $\boxed{9}$ — used to enter numbers.

 \vdots , [X], [-], [+] — used to perform arithmetic. \Box — used for decimal point and formatting.

 $\overline{\Sigma_{+}}$ — used for accumulating statistical data.

Functions printed in gold: [] — shift key used to access "gold" functions. AMORT — amortizes number of payments selected. INT - calculates simple interest.

NPV - net present value - max. of 20 CFi.

RND - rounds to number of digits displayed.

IRR — internal rate of return – max. of 20 CFi.

PRICE — price to pay for bond (yield given).

<u>YTM</u> - vield to maturity for bond (price given).

SL — calculates straight line depreciation.

SOYD - sum-of-the-years-digits depreciaiton.

DB - declining balance depreciation.

P/R - used to enter or exit program mode.

CLEAR keys - defined on page 1.

Functions printed in blue: 9 — shift key to access "blue" functions.

- $12\times$ used to change n from years to months.
- <u>12÷</u>— used to change i from annual to monthly. <u>CFo</u>— initial investment for IRR & NPV.
- CFil periodic cash flow (max. of 20 entries).
- N number of even payments of a given CFi.
- DATE day and date a number of days from given date.
- [BEG] adjusts for PMT at beginning of period.
- END adjusts for PMT at end of period.
- MEM shows program memory used and available.
- $\overline{\sqrt{x}}$ calculates square root of # in display.
- raises e (2.71 +) to power in display.
 acalculates natural logarithm of display.
- FRAC reduces number to fractional portion.
- INTG reduces number to integer portion.
- <u>ADYS</u> number of days between 2 dates.
- D.MY day/month/year format.

- xw calculates weighted average. PSE brief pause in program execution.
- BST back-step program one line.
- GTO go to program line selected and execute.
- GTO . go to program line selected.
- $\overline{x \leq y}$ tests if x is less than or equal to y.
- x=0 tests if x is equal to zero.
- LSTx displays previous number in x register.
- \hat{x}, r linear estimate of x using x, y and \hat{x} + inputs.
- $\overline{y.r}$ linear estimate of x using x and y inputs.
- $\boxed{n!}$ calculates factorial (4!=4 X 3 X 2 X 1). \boxed{R} mean of x entries and y entries.
- $\overline{\mathbb{S}}$ standard deviation of sample of x's and y's.
- Σ^{-} cancels statistical data entered.

FOR A MORE COMPLETE DESCRIPTION OF KEY FUNCTIONS CONSULT HP-12C OWNER'S HANDBOOK.

EBBOB MESSAGES

- Error 0: Mathematical solution does not exist
- Error 1: Storage registers are overfilled.
- Error 2: Statistical solution does not exist.
- Error 3: Estimate of IRR required
- Error 4: Memory overfilled or Program error.
- Error 5: Financial, Amortization or Depreciation error. Check the signs of entries. Error 6: Storage registers, IRR or NPV error.
- Error 7: IBB solution does not exist. Check the signs of entries.
- Error 8: Calendar entry error.
- Error 9: Calculator requires service.

PR Error: Continuous Memory has been reset.

ELECTRONIC CIRCUITRY CHECK

If the response to keystrokes is not normal, verify proper operation of the circuits as follows:

With the calculator off, press and hold down the ON and X keys. Release the ON key followed by releasing the X key. "Running" will be displayed circuitry is functioning normally.

STATUS INDICATORS

SYMBOL	MEANING	
t.	fprefix	f CLEAR PREFIX
g	g prefix	f CLEAR PREFIX
BEGIN	PMT at beginning	9 END
	of period	
С	compound interest	STO EEX
	for odd period	
D.MY	day/month/yr forma	t g M.DY
PRGM	programming mode	f P/R
LICED and	GRAD are not fund	tional on HD 12

USER and GRAD are not functional on HP 12

DECIMAL AND COMMA

To change the position of the comma (,) and decimal (.), turn off the calculator, hold down the kev and press ON

> Hewlett Packard Part No. 92233F Printed in USA