QUICK REFERENCE BOOK FOR THE HP-12C

INCLUDING SAMPLE PROBLEMS FOR EASY REFERENCE

The Quick Reference Book for the HP-12C is designed to be used as a training guide in learning to operate the HP-12C financial calculator. It can be carried in the case with the calculator to provide convenient reference material. The book is not intended as a replacement for the HP-12C Owner's Handbook and Problem-Solving Guide, but is designed as a supplement to reinforce concepts learned from the Owner's Handbook.
The keystroke procedures are in variance with the Owner's Handbook in two areas. First, the keystroke sfor converting annual periods and interest to monthly figures referred to as [9 [12x] and [9 [12-] in the Owner's Handbook are shown as $[8](12 x)$ and \quad 回($\left.11^{2+}\right)$ in this book as a reminder that the monthly figures are entered into the " n " and "i" registers when the $12 \times$ and 127 keys are pressed. Second, the redundant steps of keying " 0 " into financial registers which have zero values are included in this book to assist the user in understanding the problems.
The author makes no expressed or implied warranty with regard to the keystroke procedures and material contained herein. The keystroke procedures and material are made available on an "as is" basis, and the risk associated with their usage, quality, performance and fitness for use for any purpose rests entirely with the user. The author shall not be liable for damages of whatsoever nature, incidental or consequential, arising out of the usage or performance of keystroke procedures or material contained herein.
The author offiers seminars on the usage of the HP-12C. For information concerning seminars of consultation, contact Evan G. Gost, Box 2275, Saratoga, CA 95070.

Copyright 1983 Evan G. Gost
Second Edition 1984

ALPHABETICAL INDEX

SUBJECT PAGE
Ámortization 14
Annual Rercentage Rate (APR) 11. 26
Annuity Value Problem 9
Answer Box 5
Appreciation of Property 12
Balloon Payment 13
Blended Rate Mortgages 25
Bond Calculations 15
Calendar Functions 3
Canadian Mortgages 33
Cash Flow Diagram 6
Chain Calculations 2
Clearing Keys 1
Complex Annuity Problem 23
Decimal Display 1
Depreciation 15
Electronic Circuitry Check Back Cover
Error Messages Back Cover
Financial Keys 4
Future Value Problems 12
Index of Key Functions 35
Interest Rate Problems 10
Internal Rate of Return (IRR) 16
IRA or Periodic Savings 12
Large Numbers 2
Lease Problem 19
Maximum Loan for a Given Payment 8
Negative Amortization 22
Negative Numbers (CHS) 1
Net Present Value 18
Number of Payments 13
Payment on a Loan 7
Payment to Amass Future Sum 7
Percentage Problems 3
Present Value Problems 8
Programming 30
Second Loan Value 10
Sign Convention 4
Simple Interest Calculations 4
Stack 34
Status Indicators Back Cover
Storage and Memory 2
T-Bill Bond Equivalent Yield 28
T-Bill Discount Rate 27
Variable Rate Mortgage 20
Weighted Average 30
Wraparound Mortgage 24
Yield on a Second Loan 10
Yield on a Lump Sum Retum 11
Hewlett Packerd Part No. 82233 F Printed in USA

KEYS WITH MULTIPLE FUNCTIONS

Primary function is printed in white on the key Second function is printed in gold above the key. Press gold [1] followed by the respective key to perform the secondary function.
Third function is printed in blue below the key. Press blue 9 followed by the respective key for the tertiary function.
Note: After pressing the 1 or [9], a small " f " or " g " will appear on the display below digits.

NEGATIVE NUMBERS

Press CHS to change a number from positive to negative and vice versa.

CLEARING KEYS

CLIX clears the display (x register).
The symbol - CLEAR - printed in gold above and spanning 5 keys denotes clearing functions of those keys.
6 CLEAR FIN clears financial registers, but not the display.
(1) CLEAR REG clears financial registers, storage registers, stack, last x and display.
1 CLEAR PRGM clears all stored programs.
1 CLEAR \triangle clears statistic registers.
(1) CLEAR PREFXX clears " f " or " g " prefix.

DECIMAL DISPLAY

Press 10 for .00 display.
[1] 4 for .0000 display.
4 and any number $(0-9)$ to set the digits after decimal in the display. The display is rounded to the digits shown; however, the unrounded number is retained for calculations. The display is normally set to display .00 for monetary calculations.

sIMPLE ARITHMETIC CALCULATIONS

The arithmetic operation $(+,-, \times, \div)$ is keyed after the 2 nd number used in the problem. To add $2+$ 3 , press

KEYSTROKES	display	REMARKS
CLX	0.00	clears display
2	2	2 in x register
ENTER	2.00	2 in y register
3	3	3 in x register
\dagger	5.00	$x+y$ registers

For reference see "STACK" on page 34.
CHAIN CALCULATIONS
$(2,000 \times 60)+(480 \times 20)+(110 \times 120 \times 6)=$

KEYSTROKES

CLX
2000 ENTER 60 X
480 ENTER 20 X
110 ENTER 120 \triangle
6 区
\oplus
$+$
LARgE NUMBERS
To enter $3,116,700,000,000$ press 3.1167 EEX 12.
The display shows 3.1167 12. The [EEX key moves the decimal point a number of places (in this case 12).

STORAGE AND MEMORY

20 storage registers (numbered 0 thru 9 and 0 thru .9) are available for storing numbers and dates. To store, press STO followed by the desired storage register number. To recall, press RCL and the respective storage register number. A number stored in a register remains until cleared or replaced by a difference number.
KEYSTROKES
50 STO 0
display

REMARKS

50.00 stores 50 in Register 0
15.00 stores 15 in Register 1
25.00 stores 25 in Register 2
50.00 recalls Register 0
15.00 recalls Register 1

The financial registers ($n, i, P V$, PMT and FV) also may be used for the storage of numbers.

PERCENTAGE OF A NUMBER

Find 6% of $\$ 195,000$ and how much remains after 6% is deducted from \$195,000.

KEYSTROKES	DISPLAY	REMARKS
CLX x	0.00	clears display
195,000 ENTER	$195,000.00$	
6%	$11,700.00$	1st answer
$\square-$	$183,300.00$	2nd answer

PERCENTAGE DIFFERENCE BETWEEN 2 NUMBERS
If a stock price drops from $\$ 66.00$ to $\$ 47.50$, what is the percentage change?

KEYSTROKES	DISPLAY	REMARKS
CLX]	0.00	clears display
$66[$ ENTER $]$	66.00	
$47.5 \boxed{\Delta \%}$	-28.03	28% loss

PERCENTAGE OF TOTAL
$\$ 32,500$ is what percentage of $\$ 60,000$?

KEYSTROKES	DISPLAY	REMARKS
CLI	0.00	clears display
60000 ENTER	$60,000.00$	
32500	$\% T$	54.17

CALENDAR FUNCTIONS

For Day/Month/Year (European notation), press 9 DMY. "D.MY" will be displayed under digits. For Month/Day/Year (U.S. notation), press 9 MDY. The "D.MY" will disappear. The examples in this book use the U.S. notation. Find the day/date 90 days after 8/23/82.

Find the number of days between 7/25/83 and 11/1/83.

	display	REmARKS
CLx	0.000000	clears display
7.251983 ENTER	7.251983	ref date
$11.011983 \square 90$	99.000000	365-day year
$x \cdot y$	96.000000	360-day year
[12	96.00	sets display

SIGN CONVENTION

The calculator uses a sign convention of positive numbers for sums received and negative numbers for sums paid out. If you borrow money, you receive an amount which is given a positive sign. Payments of interest and principal on the loan are given a negative sign. If you lend money, the sum loaned is given a negative sign. Receipts from the loan (principal and interest) are given a positive sign.
SIMPLE INTEREST CALCULATIONS
Find the interest due on a \$125,000 loan at 15.5\% interest for 100 days? (From Borrower's View)

KEYSTROKES
CLX
125000 PV
15.5 i

100 n
(1) INT
$\frac{+}{x \geq y}$
dISPLAY REMARKS
0.00 clears display 125,000.00 loan amount 15.50 interest rate 100.00 \# days -5,381.94 360-day Interest -130,381.94 Prin + Interest -5,308.22 365-day Interest

The negative sign means that interest must be paid back if the sum was borrowed.

FINANCIAL KEYS

\square		number of compounding periods.
\square		interest rate per period.
$P V$		$=$ present value
$P M T$		payment per period.
$F V$		future value.

ANSWER BOX

An aid to understanding the operation of the financial keys and the solution to financial problems is a concept called an Answer Box. The box is drawn as follows:

Known values are written down in the appropriate blanks. When 4 of the 5 blanks are filled, the problem can be solved. The 4 known values are keyed into their respective financial registers and then the key for the 5th or unknown value is pressed. The calculator calculates and displays the unknown value. The financial registers retain the last value entered until a new value is entered. To check or recall the number stored in a financial register, press RCL followed by the respective financial key. 1 CLEAR FIN clears the financial reqisters by entering a value of zero in each register. Accordingly, keystrokes are not required to enter zero in a financial register if 1 CLEAR [FIN is pressed prior to beginning the problem.
NOTE: In order to emphasize that problem solving requires entries in 4 of the 5 financial registers, the examples in this book include keystrokes for entering values in 4 of the registers even if the value for one of the registers is zero. Although redundant, this keystroke procedure reinforces the Answer Box concept and prevents errors which may result from the failure to clear the financial registers at the beginning of a financial problem. The redundant keystrokes are annotated by an asterisk and the footnote "not a required keystroke."
The time frame for [PMT, 1 a and n must be consistent. If n is entered as a number of months, 1
fust be entered as the monthly interest rate. Press [是 [1] (12) to convert an annual interest rate to a monthly figure and $[9](\sqrt{12 \times})$ to convert from years to months. If a value is paid out, it is entered as a negative figure; if a value is received, as a positive figure. Note: ERROR 5 on the display usually is the result of an error in the sign of PV, PMT or FV.
The majority of financial institutions charge interest in arrears with the payment being made at the end of the period. To set the calculator for payments at the end of the period, press g END. If your calculations are for a problem which has payments at the beginning of the period, press 9 BEG ("BEGIN" will be displayed below the digits).

CASH FLOW DIAGRAMS

In order to visualize the timing of payments and receipts, a cash flow diagram is useful. The diagram is composed of a horizontal time line, representing the time frame of the problem, and vertical payment lines extending above and below the horizontal line, representing money received (above the line) and money paid out (below the line). The cash flow diagram of a $\$ 75,000$ loan at 13% interest amortized over 30 years would be from the lender's view as follows:
i] = interest rate $=13 \%$ annual $=1.08 \%$ monthly PMT $=+$ amount of monthly payment $=\$ 829.56$

PROBLEMS FINDING THE PAYMENT:

PAYMENT ON A LOAN (MONTHLY)
$\$ 75,00030$ year loan at 13%.

What if the rate was 14% ?
KEYSTROKES DISPLAY REMARKS
$[P V,[n$ and $[F V$ remain unchanged
14 [9] (12])
PMT
888.65 PMT (a 14\%

PAYMENT TO AMASS FUTURE SUM

If you wish to accumulate $\$ 100,000$ in 10 years in an account that earns 8.5% interest, how much will you have to save each year?

10	n	
	8.5	i
	0	PV
		PMT
	100,000	FV

[^0]The answer is based upon the deposit in the account being made at the end of the year. For deposits made at the beginning of the year, press

KEYSTROKES DISPLAY

g BEG
"BEGIN"
$-6,212.69$

REMARKS timing of PMT annual savings

How much would you have to save monthly?
$10 \square(120.00$ \# of months
$8.50](12) \quad$.0.71 monthly interest
PMT
-527.79 monthly savings
The negative sign of PMT means that you must pay the sum to the savings account.

PROBLEMS FINDING PRESENT VALUE:

MAXIMUM LOAN FOR A GIVEN PAYMENT
If you can afford monthly payments of $\$ 950$, how large of a 13\% (30 year) loan can you afford?

	30 g	n
	13 g	i
	-950	PV
	0	PMT

If the interest rate is 12.5% ?
KEYSTROKES DISPLAY REMARKS
PMT, n and FV remain unchanged
12.50 O($12-1.04$ monthly interest

PV
89,013.17 maximum loan

PRESENT VALUE OF A FUTURE RECEIPT

Assume that you can earn 10% on your money. What is the value of $\$ 50,000$ to be received 5 years from today? *-not a required keystroke

5	n
10	i
0	PV
00,000	PM

KEYSTROKES
(1) CLEAR FIN

50000 FV
5 n
10 [1]
${ }^{\circ} \mathrm{O}$ PMT
PV of $\$ 50,000$ to be received 5 years from today. ANNUITY VALUE PROBLEM OR
VALUE OF A STREAM OF FUTURE PAYMENTS An insurance annuity provides payments of $\$ 400$ per month at age 65 . The life expectancy is 78 and the assumed yield on the annuity fund is 8%. What is the value of the annuity at age 65?

13 g	n
8 g	i
	PV
400	PMT
0	FV

400 PMT
$13 \square \Omega(12 x)$
8 9 (12)

* 0 EV

PV]

DISPLAY
unchanged clears FINreg
50,000.00 received in 5 yrs
5.00 \# of years
10.00 annual interest
0.00 nopayments
$-31,046.07$ present value

If the $\$ 400$ payments were to be received at the beginning of the month
KEYSTROKES DISPLAY
DISPLAY REMARKS
unchanged clears FINreg.
400.00 monthly payments
156.00 \# of months
0.67 monthly interest
0.00 Oupon death
$-38,719.40$ value of annuity (9) BEG REmARKS "BEGIN" timing of PMT $-38,977.53$ value of annuity
*-not a required keystroke

What it you wanted $\$ 450$ and the assumed rate was 9% ?

KEYSTROKES			remarks
问	and ${ }^{\text {n }}$ re	unchan	
	PMI]	450.00	monthly payments
9 [9]	(12)	0.75	monthly interest
PV]		-41.606.23	value of annuity

second loan value

A second loan has monthly payments (or receipts to the lender) of $\$ 500$ for 5 years with a balloon of $\$ 50.000$ at the end of 5 years it you could earn 16% on a similar loan, what is the present value of this loan?

$5 g$	n
$16 g$	i
500	PV
50,000	PM

KEYSTROKES (1)CLEAR FIN	display remarks unchanged clears FIN reg
Q END	unchanged tir
50000 FV	50,000.00 received in 5 yea
$5 \square 0](12 x)$	60.00 \# of months
16 [0] (12$])$	1.33 monthly interest
500 PMT	500.00 payments
PV	-43,146.38 amt. paid to earn 16\%
PROBLEMS FINDING INTEREST RATE: YIELD ON A SECOND LOAN	
If you paid $\$ 40,000$ for the loan which had $\$ 500$ monthly payments and a $\$ 50,000$ balloon at the end of 5 years, what would be your yield?	
KEYSTAOKES	display Remarks
FV], PMI and n remain unchanged	
40000 CHS PV	-40,000.00 paid for loan
(1)	1.51 monthly yield
12 区	18.11 annual yield

YIELD ON A LUMP SUM RETURN

If you invest $\$ 10,000$ and receive $\$ 22,0005$ years and 6 months later, what is your yield?

5.5	n
	i
$-10,000$	PV
0	PMT
22,000	FV

KEYSTROKES	display	Remarks
(1)CLEAR [FIN	unchanged	clears FIN registers
5.5 n	5.50	\#years
10000 CHS PV	-10,000.00	amount invested
22000 [FV	22,000.00	amount invested
${ }^{\circ} \mathrm{O}$ PMT	0.00	no payments
0	15.36	yield

ANNUAL PERCENTAGE RATE-FINDING

Consider a loan in the amount of $\$ 30,000$ at 15% interest, with monthly interest only payments for 3 years and a balloon payment at the end of 3 years. Payments would be $\$ 375$. If 8 points (8%) were charged as loan fees, the borrower would receive only $\$ 27.600$. What is the Annual Percentage Rate (APR) that the borrower pays?

	3 g	n
		i
	27,600	PV
	-375	PMT
	-30,000	FV
KEYSTROKES	DISPLAY	REMARKS
¢ CLEAR EIN	unchanged	clears FIN reg.
27600 PV	27,600.00	amount received
375 CHS [PMT	-375.00	payments
30000 CHS FV	-30,000.00	3 year balloon
3 g (n) 12.$)$	36.00	\# of months
(i)	1.54	monthly interest
12 区	18.49	APR

*-not a required keystroke

NOTE: For all APR problems, PV is the amount actually received by the borrower (face amount of the loan minus the expenses associated with the loan)
PROBLEMS FINDING FUTURE VALUE:
APPRECIATION OF PROPERTY
Find the future value of $\$ 100,000$ compounded annually at 8% for 5 years (or the FV of a $\$ 100,000$ property which appreciates at a rate of 8% for 5 years).

5	n
8	i
$-100,000$	PV
0	PMT
	FV

KEYSTROKES	DISPLAY	REmARKS
(1) CLEAR FIN	unchanged	clears FIN reg.
100000 CHS PV	-100,000.00	value today
5 [5.00	\# of years
8 [1]	8.00	annual interest
${ }^{\circ} 0$ PMI	0.00	no payments
[V]	146,932.81	value in 5 yrs

What if the appreciation rate is 5% ?
5.00 annual interest FV 127,628.16 value in 5 yrs
Note: The sign convention of the calculator requires that the present value be treated as a sum paid out and the future value as a sum received, or vice versa.
IRA OR PERIODIC SAVINGS
If you place $\$ 1,500$ annually at the end of the year in an IRA earning $\mathbf{1 2 . 3 3 \%}$ for 18 years, what is the future value?

KEYSTROKES
(1)CLEAR FIN

1500 CHS PMT
" 0 PV
18 n
12.33

FV

DISPLAY REMARKS unchanged clears display $-1,500.00$ annual payment
0.00 starting with 0
18.00 \# of years
12.33 interest rate
$86,474.27$ future value

- not a required keystroke

FINDING THE AMOUNT OF A BALLOON PAYMENT If a loan of $\$ 100.000$ at 12% had payments based upon a 30 year amortization schedule, but the entire remaining balance was due as a balloon payment in 5 years, what would be the amount of the balloon payment?

KEYSTROKES
(1)CLEAR FIN
100000 PV
12 g] $[12)$
30 g] n 12.
* FV
PMT
$5[9](12]$.
FV

display
unchanged 100,000.00 loan amount
1.00 monthly interest 360.00 \# of months
0.00 amortized loan
-1.028.61 payment 60.00 time of balloon -97,663.22 balloon amount

FINDING THE NUMBER OF PAYMENTS:

A $\$ 5,000$ loan at 9% interest can be paid off in how many $\$ 300$ monthly payments?

		n
	9 g	i
	5,000	PV
	-300	PMT
	0	FV

Note: To determine if the loan is overpaid, press FV. In this case the display shows 38.61 indicating overpayment by $\$ 38.61$ on the 18th payment. To determine the amount of the last payment, subtract the amount of overpayment from the payment.
--not a required keystroke

KEYSTROKES	DISPLAY	REMARKS
(FV	38.61	OVerpayment
RCL PMT	-300.00	PMT
\pm	-261.39	18 PMT

AMORTIZATION
Consider a 30 year $\$ 100,000$ loan at 12% interest. How much interest is paid in the first 6 payments?

30 g	n
12 g	i
100,000	PV
0	PMT
0	FV

DISPLAY REMARKS
unchanged clears FIN reg
100,000.00 loan amount 360.00 \# of months
1.00 monthly interest
0.00 amortized
-1,028.61 payment
0.00 reset n to 0
$-5,995.64$ interest 6 PMT
-176.02 principal
99,823.98 balance after 6 PMT
How much interest and principal are paid in the next 12 payments? What is the remaining balance after 12 more payments?

KEYSTROKES		DISPLAY	REmarks
12	AMORT	-11,958.15	interest
$x \geq y$		-385.17	principal
RCL	PV	99,438.81	balance (18 PMT)
RCL	n	18.00	\# PMT amortized

*-not a required keystroke

BOND CALCULATIONS

Purchase date 11/20'82; maturity date 12/01/98; coupon $\$ 8$; desired yield 15%; find price to pay.

KEYSTROKES
166
15 [1]

8 PMT
11.201982 ENTER
12.011998

11 [PRICE]

DISPLAY 0.000000 15.000000 8.000000 annual coupon 11201982 purchase date 12.011998 maturity date 57.917563 \$57.92

If you were to purchase the bond for $\$ 65.00$, what would be your yield?

KEYSTROKES		DIS	memarks
65 PV		65.000000	price paid
8 [PMT]		8.000000	annual coupon
11.201982	ENTEA:	11.201982	purchase date
12.011998		12.011998	maturity date
(1) YTM		13.342835	13.34\% yield
72		13.34	sets display

NOTE: Maturity dates of May 31, Aug 29-31, Oct 31 and Dec 31 result in ERROR 8. To solve such problems offset the maturity date to the 1st day of the following month and adjust the purchase date accordingly.

DEPRECIATION

Determine the annual straight line depreciation for a $\$ 600,000$ building (not including the value of the land) with a life of 15 years.

KEYSTROKES	display	Remarks
600000 PV	600,000.00	depreciable value
0 FV	0.00	salvage value
15 n	15.00	15 year life
1 (1)S	40,000.00	annual depreciation
$x \geqq y$	560,000.00	remaining value

Using 175\% declining balance, find the depreciation in the first 3 years.

KEYSTROKES	display	Remarks
175 [1]	175.00	DB rate
1 D D	70,000.00	depreciation yr 1
2 (1) DB	61,833.33	depreciation yr 2
3 (08	54,619.45	depreciation yr 3
$x \geqslant y$	413,547.22	remaining value

Find the first 3 years depreciation using sum-of-theyears digits for a 30 year life.

KEYSTROKES	DISPLAY	REMARKS
30 R	30.00	30 year life

INTERNAL RATE OF RETURN (IRR) AND NET PRESENT VALUE (NPV)

In problems where the amount of the payment or receipt (PMT) is not the same from period to period, IRR calculations are used to determine the interest rate, and NPV calculations, to determine present value.
IRR AND NPV WORKSHEET
AMOUNT

TIMING	
	CFo
	CF1
	CF2
	CF3
	CF4
	CF5

The amount of the initial cash flow is the CFo and subsequent cash flows, CF1 . . CF5. A maximum of 20 cash flows of uneven magnitude can be entered.

internal rate of return problem

If you invest $\$ 500,000$ and have the following after tax cash flow, what is your after tax IRR? Year $1=$ $-\$ 25,000$; year $2=-\$ 10,000$; year $3=+\$ 5,000$; year $4=+\$ 20,000 ;$ year $5=\$ 1,195,000$ from the combination of cash flow and proceeds from the sale of the property.

$-500,000$	CFo
$-25,000$	CF1
$-10,000$	CF2
5,000	CF3
$1,195,000$	CF4

KEYSTROKES		
(1)CLEAR REG		
500000	CHS [[g] CFF_{0}
25000 CHS CF		9, CF_{1}
10000 CHS		
5000 CF		
20000 8[CFL		
1195000 [${ }^{\text {cF }}$]		
(1) IR		

oISplay remarks
0.00
-500,000.00 initial CF
-25,000.00 CF1
-10,000.00 CF2 5,000.00 CF3 20,000.00 CF4
1,195,000.00 CF5
18.33 IRR

VERIFYING OR CHANGING IRR ENTRIES

IRR and NPV calculations use storage registers 0-9 and $.0-.9$. The initial investment (CFo) is stored in register 0; the 1st CFj (CF1), in 1; CF2, in 2; etc. To verify CFo, press $\overline{R C L} 0$, and $-500,000.00$ should be displayed. To verify CF2, press RCL 2, and $-10,000$ should be displayed. To change or correct an entry, key in the new entry and press STO followed by the respective storage register. The year 2 cash flow (CF2) could be changed to $-\$ 12,000$ by pressing 12000 CHS STO 2.
An alternative means of checking all of the IRR and NPV entries is to press RCL [8][CF]. The last CFj will be displayed. Pressing ACL , 0 CFi repeatedly will display the other CFj's in a reverse order from the last CFj to CFo. Entries can be changed as mentioned above. After veritying or changing the CFo or CFj figures using RCL O CFi, n must be set to the number of cash flow periods (the value of j for the last CFi). Change CF2 to- $\$ 12,000$ and find IRR.

-YSTROKES		Siol 2	DISPLAY	REMARKS new CF2
12000	CHS		-12,000.00	
$5[n]$			18.27	resetn new IR

For IRR problems where the cash flow is the same for several periods, use the Ni key. In the above problem if the cash flow figures for years 2.3, and 4 were $-\$ 10,000$, what is the IRR?

-500,000		CFo
-25,000		CF1
-10,000		CF2 3X
1,195,000		CF3
KEYSTROKES	display	remarks
TCLEAR REG	0.00	clears reg
500000 CHS 9 CFO	-500,000.00	investment
25000 CHS 9 CF	-25,000.00	CF1
10000 CHS 9 CFI	-10,000.00	CF2
3 N	3.00	CF2 3 times
1195000 - CF	1,195,500.00	CF3
(1) [RR	17.21	IRR

NET PRESENT VALUE

Consider the cash flow from the original investment ignoring the amount of the initial investment. How much could have been invested initially to earn an IRR of 20% ?

KEYSTROKES	OISPLAY	REmarks
TCLEAR AEG	0.00	clears reg
0 O]CFO	0.00	CFO
25000 CHS 0 CF	-25,000.00	CF1
10000 CHS ${ }^{\text {C CF }}$	-10,000.00	CF2
5000 (Q) ${ }^{\text {c }}$	5,000.00	CF3
20000 CF	20,000.00	CF4
1195000 C CF]	1,195,000.00	CF5
20.1	20.00	assumed IRR
(1) NPV	465,004.50	investment

NPV also can be used with the original investment of $\$ 500.000$ in CFo to test for an assumed IRR of 20%.

The negative value means that the IRR is less than the assumed rate of 20%. A positive value of NPV means that the IRR is greater than the assumed rate (20\%)

LEASE PROBLEM

Compare the following leasing alternatives from the viewpoint of lessor and lessee. Both leases begin one month from today.
Lease \#1: $\$ 5,000$ per month for months $1-12$

$$
\$ 5,250 \text { per month for months } 13-24
$$

$\$ 5,500$ per month for months $25-36$
Lease \#2: $\$ 5,500$ per month for months $4-12$
$\$ 5,750$ per month for months $13-24$
\$6,250 per month for months 25-36
The lessor's discount rate (alternative return on money) is 12%. The lessee's discount rate (cost of money) is 18%.

LEASE * 1

0	CFo
5,000	CF1 12X
5,250	CF2 12X
5,500	CF3 12X

KEYSTROKES DISPLAY
TCLEAR REG
0 O CFO

12 N
12 g 12)
(1)NPV
$189](12)$
(4) NPV

REMARKS

0.00
0.00 initial cash flow

5,000.00 CF1
12.0012 months $5,250.00$ CF2
12.0012 months
$5,500.00$ CF3
12.0012 months
1.00 lessor's discount 157,466.66 NPV (value) to lessor
1.50 lessee's discount 144,399.29 NPV (cost) to lessee

LEASE *2

0	CFO
0	CF1 3X
5,500	CF2 9X
5,750	CF3 12X
6,250	CF4 12X

KEYSTROKES DISPLAY
(1)CLEAR REG]

$$
0
$$ 0 (g) CFO

0 g CFi
3 O
5500 (CF)
9 (N
5750 (CFI
12 N
6250 D CFi
12

$\begin{array}{ll}0.00 & \text { clears registers } \\ 0.00 & \text { initial cash flow }\end{array}$
remarks
0.00 CF1
3.00 3months 5,500.00 CF2
9.009 months

5,750.00 CF3
12.0012 months

6,250.00 CF4
12.00 months
1.00 lessor's discount

158,561.02 NPV (value) to lessor
1.50 lessee's discount

ONPV 144.120.10 NPV (cost) to lessee In this case lease \#2 is more advantageous for both lessor and lessee.

COMBINATION PROBLEMS

Complex problems should be broken down into several simple problems. The simple problems can be solved individually and combined to solve the more complex problem. An answer box or a cash flow diagram will be extremely helpful in visualizing the problem.

VARIABLE RATE MORTGAGE
What will be the payments on a variable rate mortgage in the amount of $\$ 90,000$ (30 year) if the interest rate increases from 12% to 13% at the end of the first year and to 14% at the end of the second year? Draw an answer box as follows:

1st year	2nd year	3rd year	
30 g	29 g	28 g	n
12 g	13 g	14 g	1
90,000			PV
			PMT
0	0	0	FV

Now we proceed to solve the problem by filling in the blank spaces one at a time. First, we solve for the PMT at 12%.

KEYSTROKES
OCLEAR FIN
30 日 9 (12x)
12 (1) (12)
90000 PV
${ }^{\circ} \mathrm{O}$ EV
PMT

DISPLAY REMARKS
unchanged clears FIN reg. 360.00 \# of months 1.00 monthly interest $90,000.00$ loan amount
0.00 amortized loan
-925.75 payment 1styr

Now change n to 12 payments to determine the balance of the loan (FV) after one year which is the PV at the beginning of the second year.

1st year	2nd year	3rd year	
12	29 g	28 g	n
12 g	13 g	14 g	i
90,000	89,673		PV
-925.75			PMT
$-89,673$	0	0	FV

$12\left[\begin{array}{l}\text { (FV) } \\ \hline\end{array}\right]$
CHS PV
Entering the anw. 2
 we now have sufficient data to solve PMT for the 2nd year.
29 9 ($12 x$)
13 (9) (12)
0 - FV
PMT
348.00 months remaining
1.08 monthly interest
0.00 amortized loan
-994.87 payments yr 2

Use the same method to solve for the 3rd year.
*-not a required keystroke

1st year	2nd year	3rd year	
12	12	28 g	n
12 g	13 g	14 g	i
90,000	89,673	89,375	PV
-925.75	-994.87		PMT
$-89,673$	$-89,375$	0	FV

KEYS $12 n$	OKES
FV	
CHS	PV
289	n (12x)
14	(1) (12)
0 FV	

DISPLAY REMARKS 12.0012 payments
$-89,375.21$ balance end yr 2
89,375.21 balance begyr 3 336.00 remaining PMT
1.17 monthly interest
0.00 amortized loan
-1,064.31 payments yr 3

NEGATIVE AMORTIZATION

When the payment on a loan is based upon an interest rate which is less than the rate at which the loan accrues interest, the balance of the loan increases with time (negative amortization). What is the balance after 1 year of a $\$ 90,000$ loan with payments based upon 12\% interest amortized over 30 years if the loan accrues interest at 13\%?

30 g	12	n
12 g	13 g	i
90,000		PV
		PMT
0		FV
KEYSTROKES (1)CLEAR FIN	dISPLAY unchanged	REMARKS clears FIN reg.
30 - 9 ($12 x$)		\# of months
12 O (12.	1.00	monthly interest
$\begin{aligned} & 90000 \mathrm{PV} \\ & 0 \mathrm{CV} \end{aligned}$	90,000.00	loan amount
PMT	$\begin{array}{r} 0.00 \\ -925.75 \end{array}$	amortized loan payment 1st yr
13 9 (12)	1.08	payment isty
12[${ }_{\text {[}}^{\text {FV }}$	$\begin{array}{r} 12.00 \\ -90,627.5 \end{array}$	of payments yr 1 0 balance end yr 1

COMPLEX ANNUITY PROBLEM

If your child will need $\$ 5,000$ annually for 4 years to pay college expenses beginning 10 years from today, how much will you have to deposit monthly in an account that bears 6.25% after tax interest in order to finance the educational plans?
CASH FLOW DIAGRAM AND ANSWER BOX

$$
F V=?=P V
$$

First solve for the PV required in 10 years.

KEYSTROKES	DISPLAY unchanged RELEAARKS clears FIN reg
"BEGIN" timing of PMT	

Now make PV of this part equal to FV of the other part of the problem.

KEYSTROKES	display	REMARKS
ENTEA FV	18,303.48	required in 10 years
	120.00	\# of months
6.25 9] (12)	0.52	monthly interest
0 PV	0.00	starting with 0
PMT	-109.61	monthly savings

*-not a required keystroke

NELD ON A WRAPAROUND MORTGAGE Consider a wraparound mortgage in the amount of $\$ 90,000$ written at 12% interest with payments based on a 30 year amortization schedule and a balloon payment of the balance at the end of 5 years. Assume that the-underlying first has a balance of $\$ 35,000$ at 8% interest with 15 years remaining on the loan. What is the yield on the net loan of $\$ 55,000$? Draw an answer box.

WRAPAROUND UNDERLYING NET

Amort Balloon Amort Balloon

30 g	5 g	$15 \mathrm{~g}!5 \mathrm{~g}$	5 g	n
12 g		8 g		i
$-90,000$	35,000		$-55,000$	PV
				PMT
0		0		

The PV for the wraparound and the net loans is negative because it represents money loaned; the PV for the underlying loan is positive because it represents money that still is borrowed. The PV, I and PMT are the same for the scheduled amortization and balloon. Because FV $=0$ in an amortized loan, the PMT can be calculated. After calculating the PMT, we can calculate the FV of the balloon as we did in the example on page 13. Combining the figures on the wraparound with the underlying for PMT and FV, we determine the PMT and FV of the net loan. Solve individual questions and fill in the blanks as follows:

KEYSTROKES	display	REmARKS
1 CLEAR FIN	unchanged	clears FIN reg.
- ${ }^{\text {END }}$	unchanged	timing of PMT
90000 CHS [PV	-90,000.00	WRAP principal
* 0 FV	0.00	amortized
30 g] ([12x)	360.00	\# of months
129 (12)	1.00	monthly interest
PMT	925.75	monthly payment
STO 0	925.75	for future use
5 [0] ($12 x)$	60.00	\# PMT until balloo

*-not a required keystroke

BLENDED RATE MORTGAGE

A Blended Rate Mortgage is one which "blends" the interest rate that is being charged currently with an old below market rate on an existing loan. The blended rate is used in rewriting the existing loan. Solutions to Blended Rate Mortgage problems are similar to Wraparound Mortgage problems. After reviewing the above solution, consider a fully amortized Blended Rate Mortgage which has similar figures with the exception of the balloon payments. Assume that the lending institution charges $\$ 2,000$ in loan fees to write the new loan. The net amount loaned is $\$ 53,000$; the payments remain the same.

An institution has loaned $\$ 53,000$ for which they will receive $\$ 591.27$ per month for 15 years, and $\$ 925.75$ per month for the following 15 years. We now have an IRR problem which can be solved as follows.

$-53,000$	CFo	
591.27	CF1	99X
591.27	CF2 $81 X$	
925.75	CF3	99X
925.75	CF4 81 X	

KEYSTROKES

1) CLEAR REG

53000 [CHS [9] CFO -53,00.00 clears storage reg. 591.27 ($]$ [CFI]

99 (N
591.27 (CF$)$

81 [N]
925.75 [日] CFI

99 [0 , N]
925.75 (${ }^{C}$

81 [N
fl|RR
$12[x]$
NOTE: The calculator is limited to a maximum of 99 constant payments with one CFj entry.

APR ON VARIABLE RATE MORTGAGES

Review the variable rate mortgage problem on page 20. Assume that the interest rate remains at 14% for years $3-30$ and that the lender charges $\$ 2,500$ in loan fees. What is the APR? The amount loaned is $\$ 90,000-\$ 2,500=\$ 87,500$. The payments were calculated as follows:

1st year $\$ 925.75$
2nd year \$994.87
3-30 years $\$ 1,064.31$
Solve using IRR procedures.

KEYSTROKES	display	REm
(1)CLEAR REG	0.00	clears registers
87500 CHS 8	[CFO $-87,500.00$	amount loaned
925.75 (G) CFI	925.75	CF1
12 N ${ }^{\text {N }}$	12.00	12 payments
994.87 (${ }^{\text {cF }}$	994.87	CF2
12 (9)	12.00	12 payments
1064.31 [9 [CF]	(1,064.31	CF3
99 [9	99.00	maximum Jj
1064.31 g CFI	1 1,064.31	CF4
99 [N	99.00	maximum Nj
1064.31 [CFI $^{\text {c }}$	1 1,064.31	CF5
99 [N	99.00	maximum Nj
1064.31 (9CF)	1 1,064.31	CF6
39 9 N_{1}	39.00	total of 360 PMT
(t) 18 R	1.17	monthly IRR
12冈	14.02	APR on loan

T-BILL DISCOUNT RATE

Given a purchase price of $\$ 9,758.80$, a maturity value of $\$ 10,000$ and a term of 91 days (13 weeks), calculate the discount rate based on a 360 -day year.

[1]

FBILL BOND EQUIVALENT YIELD
Bonds are typically based upon a 365-day year versus the 360-day year used for T-Bills. Given the data from the previous T -Bill problem, what is the equivalent bond yield?

KEYSTROKES DI	DISPLAY	REMARKS
(1) CLEAR [FIN	unchanged	clears FIN
9758.8 CHS PV	-9,758.80	purchase price
10000 FV	10,000.00	maturity value
91 ENTER	91.00	\# days
$365 \square$ -	25	n in years
* 0 PMT	0.00	no payments
(1)	9.91	equivalent yield

PRESENT VALUE OF INCREASING/DECREASING ANNUITY

You desire to receive annual payments which start at $\$ 20,000$ one year from today and increase at 5% per year continuing for a total of 10 payments. How much must you invest if the rate of return on your funds is 8% ?

ICLEAR FIN
9 END
10 n
1.05 ENTER
$1.08 \triangle \%$ i
20000
$x \geqslant y-$ PMT
PV

DISPLAY unchanged unchanged
10.00 \# of PMT
2.86 adjustedi

20,000
19,047,62 adjusted PMT
-163,671.08 PV of payments
1.05 increase factor

REmarks
clears FIN registers timing of PMT
adjusted PMT
PV of payments

STATISTICAL PROBLEM
A company's advertising expenses and gross sales figures for 6 months are as follows

JAN
FEB
MAR
APR
MAY
JUN

ADVERTISING
$\$ 2,500.00$
$\$ 2,000.00$
$\$ 3,000.00$
$\$ 3,200.00$
$\$ 2,800.00$
$\$ 3,500.00$

GROSS SALES
\$45,000.00
$\$ 35,000.00$
$\$ 52,000.00$
\$57,000.00
$\$ 48,000.00$
\$62,000.00
What were the mean advertising and sales figures?
Standard deviation? Expected sales if advertising expenses were increased to $\$ 3,800$?

KEYSTROKES

(1)CLEAR \square

2500 ENTER
$45000 \square$
2000 ENTER
35000 !.
3000 ENTER
52000 !
3200 ENTER
$57000 \square \square$
2800 ENTER
48000 IT]
3500 ENTER

DISPLAY
0.00 clears registers

2,500.00 JAN
1.00

2,000.00 FEB
2.00

3,000.00 MAR
3.00

3,200.00 APR
4.00

2,800.00 MAY
5.00

3,500.00 JUN
6.00

49,833.33 mean sales 2,833.33 mean advert.
$9,495.61$ stand. dev. sales
531.66 stand. dev. ads.

67,173.08 estimated sales

Werahted average
Your investment performance on several investments is as follows:

YIELD	AMOUNT IN
12%	$\$ 25,000$
11%	$\$ 65,000$
9.25%	$\$ 15,000$
8.65%	$\$ 12,500$

What is the weighted average of your yield?

KEYSTROKES (1)CLEAR	displar 0.00	REmARKS clear statistical reg
12 ENTER	12.00	enters yield
25000[5	1.00	enters amount
11 ENTER	11.00	enters yield
65000 [I.	2.00	enters amount
9.25 [ENTER	9.25	enters yield
15000 [+	3.00	enters amount
8.65 ENTER	8.65	enters yield
12500 [4.00	enters amount
diw	10.74	weighted average

PROGRAMMING

Programs are used to automatically perform a series of keystrokes. If a real estate broker wanted to be able to project the future value of a property, he could write a program which would automatically perform the keystrokes used in the "Appreciation of Property" problem on page 12. To write such a program, review the problem and proceed as follows.

NOTE: The display format changes when the calculator is in the programming mode. The display 01-450 means the following
01-: the line number of the program
45 : the row and column location of the key in that program line (in this case the 4 th row, 5 th column or the RCL key). Digits are displayed by the number not location.
0 : the digit number of the suffix key if a prefix key (STO, RCL or GTO) is used.

KEYSTROKES	display	REMARKS
(1) P R	00-"PRGM"	programming mode
1 PRGM	unchanged	clears program
ACL 0	01-45 0	recalls Register 0
CHS	02- 16	changes sign of \#
PV	03-13	enters \# in PV
5	04- 5	\# of years
n	05-11	enters 5 in n
8	06-8	\% appreciation
i	07-12	enters 8 in i
0	08- 0	no payments
- PMT	09-14	enters 0 in PMT
FV]	10-15	calculates FV
B/S	11-31	displays results

With the exception of program line \#1(BCL 0), the program is identical to the solution on page 12. We return to the program run mode (the normal mode of the calculator) by again pressing $⿴ 囗 P / R$ ("PRGM" disappears). Key in the value of the property followed by STO 0 and R/S to execute the program.

KEYSTROKES	DISPLAY	REMARKS	
P / R 0.00 return to run mode			
100000 STO 0	$100,000.00$	stores PV in Reg. 0	
R / S		$146,932.81$	calculates FV

The answer is obtained rapidly. If we wanted to execute the program one step at a time, we would press SST repeatedly.
*-not a required keystroke

The program can be altered to adjust for varied appreciation rates and time frames by using storage registers for $[\square$ and \square inputs. Press $[P / A$ to reenter programming mode. To move from step to step within the program without disturbing the program, use one of 3 methods. Press 9 GTO followed by the 2 digit line number of the line directly before the line you wish to change; or press SST] repeatedly until reaching the line before the one you wish to change; or press 9 BST (backstep) repeatedly backing the program to the line before the one you wish to change.

$\begin{aligned} & \text { KEYSTROKES } \\ & \square[P / R] \end{aligned}$	display 00	REMARKS
9 GTO 03	03-13	goes to line \# 03
RCL	04-451	changes line \#04
SST	05-11	steps forward 1 line
RCL 2	06-452	changes line \#06
(9) GTO 00	00	goes to line \#00
(1)PR	0.00	returns to run mode

Now we can enter the value of any property in STO 0 , the number of years in STO 1, the projected annual appreciation rate in STO 2 and calculate the future value of any property at any appreciation rate over any period of time.

KEYSTROKES		
200000 STO	200,000.00	property value
10 STO 1	10.00	\# of years
8.75 STO 2	8.75	ap
P	. 67	

Programs of up to 99 lines can be stored in the calculator while leaving 7 storage registers (R0-R6) available for storage. As each additional storage register (R7-R9 and R.0-R.9) is used, the programming capacity of the calculator is dimininshed by 7 lines. Multiple programs can be stored and executed separately (use 9 GTO followed by the 2 digit line number of the 1 st line of the program to set the
calculator to the desired program). Branching and looping are made possible through the use of the GTO key. Pressing \square GTO (not followed by \square) and a 2 diait number directs the program to the 2 digit line number and executes the program beginning with that line. The keys $x \leqslant y$ and $r 0$ allow conditional branching and looping. Numerous printed program are available in other manuals.

CANADIAN MORTGAGES

Loans in Canada are based upon a 365 day year and semi-annual compounding of interest. As a result, the Canadian figures for i differ from those pre-programmed into the HP-12C. The problems below show the keystrokes required to adjust the 1 inputs in order to answer problems involving Canadian Mortgages.
How much is the payment on a 30 -year Canadian Mortgage of $\$ 50,000$ at an interest rate of 11% ?
KEYSTROKES
1 CLEAR FIN
6 n
200 ENTER
PV
$11-~$
CHS FV

50000 PV
0 FV
PMT

REMARKS clears FIN registers these keystrokes for converting the (i) factor can be programmed and stored for future use -see programming adjusted 1 factor 0.90 adjusted ii 50,000.00 amount of loan
0.00 fully amortized -466.97 monthly payment

If solving a problem for the value of i (interest rate, yield on an investment or loan, Annual Percentage Rate, etc.) you calculate an answer of 18\% (annual), what is the answer when converted to Canadian terms?

KEYSTROKES
18 (9) (12)
6 n
0 PMT
200 CHS PV
FV
$R C L$ PV
\oplus

DISPLAY

1.50 monthly interest rate
6.00 these keystrokes for con-
0.00 verting the [1] factor can -200.00 be programmed and
218.69 stored for future use -200.00
18.69 Canadian annual interest

STACK (AUTOMATIC MEMORY STACK)

In addition to the $\mathbf{2 0}$ storage registers and the financial keys which are used for storage, there are 4 special registers which are used to retain numbers during calculations. The number in the X register is displayed when the calculator is on and not in the programming mode. The Y, Z and T registers can be visualized as resting on top of the X register in a "stack". When ENTER is pressed, the number in the X register moves to the Y register, Y to Z and Z to T. When \oplus is keyed the number in the Y register is added to the number in the X register, the number in the T register drops to the Z register and the number in the Z register drops to the Y register. Other arithmetic operations are performed in a similar manner. Following an arithmetic operation, the stack will be lifted if a number is keyed. In summary, the stack provides an automatic storage area which makes chain calculations possible. The numbers in the stack can be manipulated through usage of the $x \geqslant y$ and $R \notin$ keys. $x \geqslant y$ exchanges the numbers which are in the X and Y registers. [$R+$ rolls the stack by dropping T to Z, Z to Y, Y to X and rolling X to T.

KEY 1 ENTER 2 ENTER
3
田
$x \geqslant y \quad R b$

INDEX OF KEY FUNCTIONS

 Functions printed in white:\square, 1, PV, PMT, [FV - defined on page 5 .
CHS - changes sign of number in display
$[x]$ - raises number in y to x power.
[x]-calculates reciprocal of number.
\%T - calculates percentage of total.
$\Delta \%$ - calculates \% difference between 2 numbers.
\%- calculates percentage of a given number.
[EEX]- enters exponent, used for large numbers.
R/S - runs or stops program stored in memory.
SST - single step execution for stored program.
[\quad - rolls stack to display $Y, Z \& T$ registers.
$x \geq y$ - exchanges numbers in $X \& Y$ registers.
CLx - clears number displayed
ENTEA - used to enter number for calculation.
ON - turns calculator on and off.
STO- stores displayed \# in storage registers.
RCL - recalls numbers stored in registers.
(0) - 9 - used to enter numbers.
$\square, \boxed{\square}, \square, \square$ - used to perform arithmetic.
\square - used for decimal point and formatting.
L- used for accumulating statistical data.

Functions printed in gold:

(1) - shift key used to access "gold" functions.

AMORT - amortizes number of payments selected.
INT - calculates simple interest.
NPV - net present value - max. of 20 CFj .
RND - rounds to number of digits displayed.
[1RA - internal rate of return - max. of 20 CFj .
PRICE - price to pay for bond (yield given).
YTM- yield to maturity for bond (price given).
[SL - calculates straight line depreciation.
SOYD - sum-of-the-years-digits depreciaiton.
DB - declining balance depreciation.
$P R$ - used to enter or exit program mode.
CLEAR keys - defined on page 1.

Functions printed in blue:
(g] - shift key to access "blue" functions.
$12 x$ - used to change n from years to months.
12+- used to change i from annual to monthly.
CFO- initial investment for IRR \& NPV.
CFi] - periodic cash flow (max. of 20 entries).
Ni] - number of even payments of a given CFj.
DATE - day and date a number of days from given date.
BEG- adjusts for PMT at beginning of period. END - adjusts for PMT at end of period.
MEM- shows program memory used and available.
\sqrt{x} - calculates square root of \# in display.
e^{x} - raises e $(2.71+)$ to power in display.
$[\mathbb{N}$ - calculates natural logarithm of display.
FRAC- reduces number to fractional portion.
INTG- reduces number to integer portion.
\triangle DYS - number of days between 2 dates.
D.MY- day/month/year format.
M.DY- month/day/year format.

ENW - calculates weighted average.
PSE - brief pause in program execution.
BST- back-step program one line.
GTO- go to program line selected and execute.
GTO - go to program line selected.
$x \leq y$ - tests if x is less than or equal to y.
$x=0$ - tests if x is equal to zero.
LSTX - displays previous number in x register.
\dot{x}, r - linear estimate of x using x , yand $\mathrm{z}+$ inputs.
[y, n - linear estimate of x using x and y inputs.
n! - calculates factorial ($4!=4 \times 3 \times 2 \times 1$).
x - mean of x entries and y entries.
s - standard deviation of sample of x 's and y 's.
[I - cancels statistical data entered.
FOR A MORE COMPLETE DESCRIPTION OF KEY FUNCTIONS CONSULT HP-12C OWNER'S HANDBOOK.

ERROR MESSAGES

Error 0: Mathematical solution does not exist
Error 1: Storage registers are overtilled.
Error 2: Statistical solution does not exist.
Error 3: Estimate of IRR required
Error 4: Memory overfilled or Program error
Error 5: Financial, Amortization or Depreciation error. Check the signs of entries.
Error 6: Storage registers, IRR or NPV error.
Error 7: IRR solution does not exist. Check the signs of entries.
Error 8: Calendar entry error.
Error 9: Calculator requires service.
PR Error: Continuous Memory has been reset.

ELECTRONIC CIRCUITRY CHECK

If the response to keystrokes is not normal, verify proper operation of the circuits as follows:
With the calculator off, press and hold down the $O N$ and X keys. Release the $O N$ key followed by releasing the X key. "Running" will be displayed followed by $-8,8,8,8,8,8,8,8,8,8$, if the electronic circuitry is functioning normally.
STATUS INDICATORS
SYMBOL
MEANING
 for odd period
D.MY day/month/yr format 9 MDY

USER and GRAD are not functional on HP 12

DECIMAL AND COMMA

To change the position of the comma (,) and decimal (.), turn off the calculator, hold down the \square key and press ON

The photograph on the cover was provided through the courtesy of Hewlett Packard

[^0]: * - not a required keystroke

