THE HP-12C CALCULATOR FOR THE RESIDENTIAL AGENT

THE EASY WAY TO LEARN THE LISTING & SELLING FUNCTIONS OF THE HP-12C CALCULATOR!

CONTENTS INCLUDE:
* ALL HP-12C LISTING & SELLING FUNCTIONS
* EASY-TO-FOLLOW, STEP-BY-STEP INSTRUCTIONS
* 119 PRACTICE PROBLEMS
* HOW TO PROGRAM YOUR 12C

SPECIAL BONUS!
6 Ready-to-Use Programs for Your 12C:
* Conventional Qualifying
* V.A./F.H.A. Qualifying
* Maximum A.R.M. Payment
* After-Tax Payment
* Loan Amortization
* Annual Percentage Rate

By Allen F. Hainge, G.R.I.
Real Estate's Most Dynamic Calculator and Financing Trainer
A WORD (OR TWO) ABOUT THIS MANUAL

WHO IS THE MANUAL FOR?
"The HP-12C For The Residential Agent" is written exclusively for the residential sales associate. It does not attempt to present information the residential salesperson doesn't need in his or her daily real estate activity.

It is designed to increase your ability to give better, more professional service to your customers and clients, thereby enabling you to close more sales and take more listings.

SOME SUGGESTIONS FOR USING THIS MANUAL
1. The material is presented in an easy to follow, step-by-step format. Therefore, start at the beginning and take it "one step at a time." Do the practice problems included in each chapter, then do the additional practice problems for that chapter (beginning on page 75) before going on to the next chapter.

2. Take your time. Work though the manual in short sessions. Then, when you come back to it the next time, take a moment to review the chapter you last worked on so that it will be reinforced before you move on to new material.

3. Use your HP-12C "Owner's Handbook and Problem-Solving Guide" as a supplement to this material. This manual refers you back to it several times for further study on certain points, such as the "stack registers." In addition, there is valuable information on such items as battery replacement and error messages which will supplement your study of this manual.

4. Tell yourself, "I can do it!" Perhaps the biggest barrier to learning the HP-12C is "calculator phobia." The 12C looks complicated, yet it is far easier to use than most other calculators, once you have it explained in a clear, step-by-step manner. Anyone can learn to use the 12C: all you need is this manual and a belief that you can do it. Remember, "Whether you think you can or can't, you're right!"

A FINAL WORD
Your comments and suggestions are both welcome and appreciated. If you'd like to write, here's the address: Allen F. Hainge, G.R.I., Allen F. Hainge Seminars, 8813 Side Saddle Road, Springfield, Va. 22152.

All material © 1989 by Allen F. Hainge. Material may not be reproduced by electronic or any other means without express written permission of the author.
WHAT WILL THIS BOOK DO FOR YOU?

"The HP-12C Calculator for the Residential Agent" will explain the HP-12C financial calculator in plain English: no frustrating examples which don't pertain to your day-to-day activities, no hard to follow explanations. Just a step-by-step process which is tailor-made for you, the residential sales associate.

In short, it will unlock a powerful tool for you. In doing so, it will help you give better service to buyers and sellers, and it will help you take more listings and make more sales.

ABOUT THE AUTHOR

Allen F. Hainge, G.R.I., is a former Million Dollar Sales Club member who has been a professional real estate sales trainer since 1977. He has previously served as Director of Training for both Merrill Lynch Realty, Virginia, and for Century 21 of the Mid-Atlantic States, as well as Director of Sales and Management Development for Century 21 of the Southeast.

Currently, he teaches a total of 12 courses for the REALTOR® Institute programs in 6 states (Virginia, Maryland, West Virginia, Tennessee, Wisconsin and Pennsylvania), he is the financing and calculator instructor for the Northern Virginia Association of REALTORS®, the nation's largest real estate board, and he conducts seminars for real estate boards, franchises and companies throughout the United States as President of his own training firm, Allen F. Hainge Seminars.
TABLE OF CONTENTS

CHAPTER I: THE HP-12C KEYBOARD
Key Arrangement • Key Numbering • Key Functions

CHAPTER II: SOME BASIC KEYS
ON • f • g • ENTER • CLx

CHAPTER III: TURNING ON THE 12C
Indicators in the Display • Setting Decimal Places
Retaining Data in the Display

CHAPTER IV: BASIC MATH OPERATIONS
Basic Math • Clearing Mistakes • Practice Problems

CHAPTER V: USING MEMORY FUNCTIONS
Data Storage Registers • Clearing Data Storage Registers
Financial Registers • Last X Register • Stack Registers

CHAPTER VI: CLEARING REGISTERS
f PREFIX • CLx • f FIN • f REG • f PRGM

CHAPTER VII: THE CALENDAR FUNCTION
Two Methods for Calculating Dates • Determining Future Dates • Determining Past Dates • Determining Days Between Dates • Prorations

CHAPTER VIII: USING THE PERCENTAGE KEYS
% • %T • ∆%

CHAPTER IX: LOAN KEYS
What the Loan Keys Do • Loading the Keys • Clearing Financial Registers • Payments as a Negative

CHAPTER X: CALCULATING MONTHLY PAYMENTS
Sample Problems • Recalling Loan Data

CHAPTER XI: DETERMINING OTHER PERIODIC PAYMENTS

CHAPTER XII: CALCULATING MAXIMUM LOAN AMOUNT

CHAPTER XIII: DETERMINING INTEREST RATE (YIELD)

CHAPTER XIV: SOLVING FOR REMAINING BALANCE
Table of Contents (contd.)

CHAPTER XV: ACCUMULATED INTEREST & REMAINING BALANCE 32

CHAPTER XVI: PAYMENTS TO INTEREST & PRINCIPAL 34

CHAPTER XVII: WORKING WITH NON-AMORTIZED LOANS 36
 Ways of Handling Interest • Calculating Interest Only Payments • Interest & Balance for Non-Amortized Loans

CHAPTER XVIII: CALCULATING DISCOUNT & YIELD 38

CHAPTER XIX: PROGRAMMING THE HP-12C 41
 Steps to Programming • Writing Your Program • Program Lines • Primary Program Keys • Entering a Program • Sample Program • Reviewing a Program • What You See in Program Mode • Running a Program • Changing Individual Program Lines • Determining Available Program Memory • Inserting Multiple Programs • Running a Program When 2 or More Programs are Stored

CHAPTER XX: PROGRAMS FOR THE HP-12C 54
 Determining Maximum Conventional P.I. • Maximum V.A./F.H.A. P.I. • Amortizing a Loan • Adjustable Rate Mortgage • After-Tax Payment Estimate • Annual Percentage Rate

APPENDICES:
 The Stack Registers 69
 Conventional Qualifying Form 73
 V.A./F.H.A. Qualifying Form 74

PRACTICE PROBLEMS 75

SOLUTIONS TO PRACTICE PROBLEMS 86
CHAPTER I: THE HP-12C KEYBOARD

KEY ARRANGEMENT

The HP-12C has 39 keys: 38 regular sized keys and one large, ENTER key, arranged in four rows of 10 keys each. The last 4 keys in each row are, with the exception of one key, similar to the number, decimal and "operation" keys (add, subtract, multiply and divide) found on any hand-held calculator.

There is a significant difference, however, between this keyboard and the keyboards of other financial calculators in that most keys have two or even three functions: the function printed on the key itself, the function printed above the key and the function printed below the key.

Learning to use the HP-12C begins with learning to identify the location of each key through the use of a key numbering system, then learning what each key does.

KEY NUMBERING

For purposes of key identification (and for use later when learning how to program the 12C), each key can be given a number. The 3rd key from the left in the 2nd row (%T), for example, is key #23. This shorthand tells us which row the key is in and where on that row, starting from the left, the key is located.

The %T key is designated "key 23" because it is in the 2nd row (hence, the "2") and is the 3rd key from the left in that row (hence, the "3"). Key #43 would be the g key: 4th row, third from the left.

The 10th key in each row is always the "0" key. The - key would be key #30: 3rd row, 10th key. Key #40 would be the + key.

One key, the ENTER key, could be numbered either 36 or 46, since it is the sixth key from the left in both the 3rd and 4th rows. Its correct label, however, is key #36.

Locate the following keys before proceeding to the next section:

#14 PMT
#35 CLx
#36 ENTER
#40 +
#45 RCL
The HP-12C Keyboard

KEY FUNCTIONS
As mentioned, most keys perform 2 or even 3 operations. Take, for example, key #11:

- The function indicated on the face of the key is n, which stands for "number of payments."

- The function indicated above the key in gold is AMORT, which stands for "amortize." This function is activated by first pressing the gold f key (key #42), releasing it, and then pressing the n key.

- The function indicated below the key in blue is 12x. Activating this function causes a number in the display to be multiplied by 12 and entered as the total number of payments for a loan; it is accessed by first pressing the blue g key (key #43), releasing it, and then pressing the n key.

Key #13, for example, can perform the following operations:

- **PV** Computes or enters "present value"
- **f NPV** Computes "net present value" (NPV)
- **g CFo** Computes or enters a "cash flow" (CFo)
CHAPTER II: SOME BASIC KEYS

The following keys are basic to operating the 12C:

ON Key #41. Turns calculator on & off. When the calculator is turned off, anything in the display or in any of the memories will be there when the calculator is turned on again.

f Key #42. When pressed before another key, this key activates the upper (gold) function of the key. If, for example, key #15 were pressed by itself, the FV (future value) function would be activated; if f were pressed before pressing FV, the IRR (internal rate of return) function would be activated.

g Key #43. When pressed before another key, this key activates the lower (blue) function of the key. If key #15 were pressed after pressing g, the Nj function (used to store multiple cash flows) would be activated.

ENTER Key #36. Enters whatever number is in the window into the "stack registers" so that an operation (+, -, +, etc.) can be performed on it. The stack registers will be covered in detail in Chapter V and in Appendix A.

CLx Key #35. Clears the display. As will be explained later, this key is the least powerful of several clearing functions, since it does not clear any other data stored in the "stacks," the loan registers or any other storage registers.
CHAPTER III: TURNING ON THE 12C

The 12C is turned on by pressing ON (key 41) located in the lower left hand corner of the keyboard. The same key also turns the calculator off when pressed again. There is also an automatic "off" function. If the calculator is left on with no operations being performed for 8-17 minutes, it will shut itself off as a battery-saving measure.

One nice feature of the 12C is the fact that whatever was in the display (window) when the calculator was turned off will re-appear when the calculator is turned on again. More importantly, everything that was stored in the 12C's memory is also retained. This will be covered in detail later.

INDICATORS IN THE DISPLAY

If you have not already done so, turn your calculator on. You might see various "indicators," or symbols in the display, in addition to numbers. Review the following list of indicators and perform the operation designed to eliminate them if they are now showing in the display.

<table>
<thead>
<tr>
<th>IF YOU SEE</th>
<th>PRESS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEGIN</td>
<td>g END (#43 & #18)</td>
<td>Calculator was set to calculate interest from the beginning of the period; real estate interest is calculated from the end of the period.</td>
</tr>
<tr>
<td>D.MY</td>
<td>g M.DY (#43 & #28)</td>
<td>Calculator was in the "day-month-year" mode; it is now set to the "month-day-year" mode.</td>
</tr>
<tr>
<td>c</td>
<td>STO EEX (#44 & #26)</td>
<td>Calculator was set on compound interest; real estate interest is simple interest.</td>
</tr>
<tr>
<td>PRGM</td>
<td>f P/R (#42 & #31)</td>
<td>Sets calculator in "run" mode, ready to do problems.</td>
</tr>
</tbody>
</table>

SETTING THE NUMBER OF DECIMAL PLACES

Internally, the 12C uses non-rounded numbers. You will not usually want to see the entire, non-rounded number. Therefore, the number of decimal places can be set to the number you want to see. This is accomplished by pressing f, followed by the number of decimal places you want.
Turning on the 12C

Do the following exercises. Disregard whatever you might see in the display when you first turn the calculator on.

PROCEDURE

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Turn the calculator on</td>
<td>ON</td>
</tr>
<tr>
<td>2. Key in the number "25"</td>
<td>25</td>
</tr>
<tr>
<td>3. Set to 2 decimal places</td>
<td>f 2</td>
</tr>
<tr>
<td>4. Set to 5 decimal places</td>
<td>f 5</td>
</tr>
<tr>
<td>5. Return to 2 decimal places</td>
<td>f 2</td>
</tr>
<tr>
<td>6. Turn the calculator off</td>
<td>ON</td>
</tr>
</tbody>
</table>

PROCEDURE

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Turn the calculator on</td>
<td>ON</td>
</tr>
<tr>
<td>2. Enter the number 1.78</td>
<td>1.78 ENTER</td>
</tr>
<tr>
<td>3. Multiply by 36.2</td>
<td>36.2 X</td>
</tr>
<tr>
<td>4. Set to 5 decimal places</td>
<td>f 5</td>
</tr>
<tr>
<td>5. Return to 2 decimal places</td>
<td>f 2</td>
</tr>
</tbody>
</table>

RETAINING DATA IN THE DISPLAY

Any number in the display when you turn the calculator off will reappear when the calculator is turned on again. If, for example, the result of the above problem, 64.44, was in the display when you turned the 12C off, it will be there when you turn it on again.
CHAPTER IV: BASIC MATH OPERATIONS

The HP-12C uses a mathematical system unlike most other calculators. Normally, $2 + 3$ is calculated by entering "$2 + 3 =" and getting an answer. The 12C's system is different, and, while awkward at first, it is actually a simpler, faster system for more complicated problems. The basic procedure is as follows:

- Key in the first number ("2" in the above example).
- Press the ENTER key. The number "2" is now entered and is ready to be worked on.
- Key in the next number ("3").
- Enter the operation you want performed ("+" in the above example).

The steps for adding "2 + 3" would be:

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.</td>
</tr>
<tr>
<td>ENTER</td>
<td>2.00 (Assumes you are showing 2 decimal places)</td>
</tr>
<tr>
<td>3</td>
<td>3.</td>
</tr>
<tr>
<td>+</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Once an answer is in the display, it can be worked on if you want to go directly to another problem. If you now wanted to add 45 to the answer showing in the display, for example, you would simply enter 45 +. The answer, "50," would appear in the display. **There is no need to clear the display or to "enter" the previous result.**

CLEARING MISTAKES

Mistakes made when entering data are cleared by pressing CLx, key #35. If you wanted to add $2 + 3$ but pressed "4" instead of "3," for example, you would remove the 4 by pressing CLx. The first part of the problem (2 ENTER) would still be in the calculator, ready to be worked on.
Basic Math Operations

PRACTICE PROBLEMS: BASIC MATH OPERATIONS

PROBLEM #1: Divide 167 by 35

PRESS
1. 167 ENTER
2. 35 +

DISPLAY
167.00
4.77

To see the answer to 5 decimal places, do the following:
3. f 5
4. f 2

PROBLEM #2: Subtract 7 from 21

PRESS
1. 21 ENTER
2. 7 -

DISPLAY
21.00
14.00

Notice that the display did not have to be cleared to begin this problem. If you did clear it, by pressing CLx, that’s fine, but it is an unnecessary step. Once you finish a calculation, you can go right on to the next one without clearing the display.

PROBLEM #3: Multiply 68.5 by 12

PRESS
1. 68.5 ENTER
2. 12 x

DISPLAY
68.50
822.00

PROBLEM #4: 2 + 6 + 8 - 5

PRESS
1. CLx
2. 2 ENTER
3. 6 +
4. 8 +
5. 5 -

DISPLAY
0.00
2.00
8.00
16.00
11.00
Basic Math Operations

PROBLEM #5: \((3\times 4) + (5\times 6)\)

When doing problems involving multiple operations, work the problems \textit{inside the} parentheses first. The steps to this problem would be as follows:

- Multiply \(3 \times 4\)
- Multiply \(5 \times 6\)
- Add the results of the first 2 steps
- Divide the answer by 7

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3 ENTER 4 x</td>
<td>12.00</td>
</tr>
<tr>
<td>2. 5 ENTER 6 x</td>
<td>30.00</td>
</tr>
<tr>
<td>3. +</td>
<td>42.00</td>
</tr>
<tr>
<td>4. 7 +</td>
<td>6.00</td>
</tr>
</tbody>
</table>

A feature called the "stack registers" is allowing you to do the 4 steps of this problem without storing any of your answers or having to re-enter any data. The stack registers are explained fully in Chapter V and in Appendix A.

EXERCISE

Complete the practice problems for "Basic Calculator Operations" found on page 75.
CHAPTER V: USING MEMORY FUNCTIONS

One of the main advantages the HP-12C has over other calculators is its increased memory capacity. Because of this, you rarely need to use pencil and paper when working as you do with most other calculators.

There are four storage areas in the HP-12C. Each is explained fully in the following sections.

DATA STORAGE REGISTERS

Up to 20 numbers can be stored simultaneously using the data storage registers. These 20 "storage boxes" are activated by pressing the STO key (key #44), followed by the number of the register where you want to store the particular number (0-9 or .0-.9). Recalling a particular number is accomplished by pressing RCL (key #45) and the number of the register you want to recall.

PROBLEM #6: USING DATA STORAGE REGISTERS

Store and recall the following numbers: 2, 28 and 145. Be sure to enter the decimal point (.) in steps 4, 6, 8 and 9.

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>ENTER</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Key in the 1st number</td>
<td>2</td>
<td>2.</td>
</tr>
<tr>
<td>2. Store in register "0"</td>
<td>STO 0</td>
<td>2.00</td>
</tr>
<tr>
<td>3. Key in the 2nd number</td>
<td>28</td>
<td>28.</td>
</tr>
<tr>
<td>4. Store in register ".0"</td>
<td>STO . 0</td>
<td>28.00</td>
</tr>
<tr>
<td>5. Key in the 3rd number</td>
<td>145</td>
<td>145.</td>
</tr>
<tr>
<td>6. Store in register ".6"</td>
<td>STO . 6</td>
<td>145.00</td>
</tr>
<tr>
<td>7. Recall 1st number</td>
<td>RCL 0</td>
<td>2.00</td>
</tr>
<tr>
<td>8. Recall 2nd number</td>
<td>RCL . 0</td>
<td>28.00</td>
</tr>
<tr>
<td>9. Recall 3rd number</td>
<td>RCL . 6</td>
<td>145.00</td>
</tr>
</tbody>
</table>
Using Memory Functions

PROBLEM #7: USING DATA STORAGE REGISTERS
You want to store monthly taxes, insurance and p.m.i. for future use in a qualifying program. Taxes are $60.00, insurance is $20 and p.m.i. is $32.

PROCEDURE PRESS DISPLAY
1. Key in & store taxes 60 STO .0 60.00
2. Key in & store insurance 20 STO .1 20.00
3. Key in & store p.m.i. 32 STO .2 32.00
4. Recall taxes RCL .0 60.00
5. Recall insurance RCL .1 20.00
6. Recall p.m.i. RCL .2 32.00

PROBLEM #8: USING DATA STORAGE REGISTERS
You are driving to your office and see a f.s.b.o. sign. The number on the sign is 644-4374. A while later, you see another one: 644-8537. Store both numbers in your calculator so that you can call the owners later.

PROCEDURE PRESS DISPLAY
1. Key in & store the 1st number 6444374 STO 1 6,444,374.00
2. Key in & store the 2nd number 6448537 STO 2 6,448,537.00
3. Recall the 1st f.s.b.o. number RCL 1 6,444,374.00
4. Recall the 2nd f.s.b.o. number RCL 2 6,448,537.00

CLEARING THE DATA STORAGE REGISTERS
There are three ways to clear a number from a particular data storage register:

- Place a "0" in the display and store it in the register you want to clear. Pressing 0 followed by STO 1 would place a "0" in storage register 1, thus replacing the "6,444,374.00" stored there in problem #8 above.

- Store a new number in the register; the old number will be overridden

- Use the "Clear Register" function. This method will be explained in chapter VI.

FINANCIAL REGISTERS
The financial registers are used to store the elements of a loan: number of payments, interest rate, loan amount and p.i. payment. Loan elements are automatically stored as you enter them. The use of these registers will be covered in detail in Chapter IX.
Using Memory Functions

THE "LAST X" REGISTER

The "last X" storage register also works automatically. The last number you entered before adding, subtracting, multiplying or dividing is kept there and can be recalled at any time by entering \(g \) \(\text{LSTx} \) (\#43 & \#36). Recalling this number is useful when you have to do repeated calculations using the same number, as in the following example.

PROBLEM #9: USING LSTx

Your company earns an 8% commission on sales of $80,000, $90,000 and $115,000. What is the total of the 3 commissions? (The number you will enter last before an operation will be ".08"; this will be recalled instead of having to enter it each time you calculate a commission)

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Calculate the $80,000 commission</td>
<td>80000 ENTER .08 (\times)</td>
<td>6,400.00</td>
</tr>
<tr>
<td>2. Calculate the $90,000 commission</td>
<td>90000 (g) (\text{LSTx}) (\times)</td>
<td>7,200.00</td>
</tr>
<tr>
<td>3. Calculate the $115,000 commission</td>
<td>115000 (g) (\text{LSTx}) (\times)</td>
<td>9,200.00</td>
</tr>
<tr>
<td>4. Total the 3 commissions</td>
<td>+ +</td>
<td>22,800.00</td>
</tr>
</tbody>
</table>

NOTES:

1. When using LSTx, you do not have to press ENTER when entering each succeeding number (90,000 and 115,000 in the above problem).

2. Step #4 above, adding together the 3 commissions, was possible because the answers to steps #1 & 2 were automatically stored in the stack registers, a procedure which is covered in the next section and in Appendix A. For now, remember that the answers to your last 3 operations (add, subtract, multiply, divide, getting a loan payment, etc.) are automatically stored, ready for you to use again.

STACK REGISTERS

The final memory area, the stack registers, is automatically activated each time you do a calculation. The stack registers allowed you to automatically total the three commissions in the above problem when you did step #4 and are extremely valuable when doing long, complicated problems.

The stack registers are extremely useful and can help with everyday problems and with programming. For a complete explanation of the stack registers, and of what they can do for you once you understand them, see Appendix A, beginning on page 69. It will also be helpful to review pgs. 188-199 in your HP-12C Owner's Handbook.
EXERCISE

Before going on to the next chapter, complete the problems for "Storage Registers" beginning on page 75.

CHAPTER VI: CLEARING REGISTERS

Just as there are several types of storage registers (stacks, last x, data storage, financial and, as will be covered later, program storage), there are several ways to clear memories.

f PREFIX Key #36, preceded by f. Clears a prefix (an f or g key) you might have inadvertently entered. No other memories are cleared.

CLx Key #35. This clears only the display and the "X" register. Any data stored in other memories is not lost. This is the least powerful of the clearing functions.

f FIN Key #34, preceded by f. Clears only the financial (loan) registers. Any data stored in other memories is not erased, and the window is not cleared.

f REG Key #35, preceded by f. This is the most powerful clearing key, since it clears all registers except what you have stored in program memory. The financial, data storage and stack registers are all erased, as are LSTx and the display.

f PRGM Key #33, preceded by f. This clears all programs from memory. As a safeguard against erasing programs accidentally, you must be in "program mode" (covered later) in order for it to work.

Do the following before proceeding to the next chapter:

1. Clear your financial registers by pressing f FIN. Notice that whatever was in the display is not cleared.
2. Clear all registers by pressing f REG. The display is cleared, as are all data storage registers, loan elements and the stack registers.
CHAPTER VII: THE CALENDAR FUNCTION

The HP-12C has a built-in calendar which allows you to determine future or past dates. The calendar will handle dates from October 15, 1582 through November 25, 4046 - a long enough span to cover most real estate careers!

2 METHODS FOR CALCULATING DATES

DAY-MONTH-YEAR
When dates are entered or displayed using this method, first the day, then the month, then the year will be shown. If you wish to display day-month-year, you begin a date problem by entering g D.MY (key #27) and following these steps when entering a date:

1. Key in the day; you can use either 1 or 2 digits. The second of the month would be entered as "2"; the tenth would be entered as "10".
2. Press the decimal point key (.)
3. Key in the month. You must use 2 digits. January, for example, would be entered as "01"; October would be entered as "10".
4. Key in the year. You must use 4 digits ("1989").

MONTH-DAY-YEAR
Using this method, the month, then the day, then the year will be shown. If you want month-day-year, press g M.DY (key #28) and follow these steps to enter dates:

1. Key in the month; you can use either 1 or 2 digits. October, for example, would be "10"; January would be "1"
2. Press the decimal point key (.)
3. Key in the day. You must use 2 digits. The first of a month, for example, would be "01"; the tenth would be "10".
4. Key in the year. You must use 4 digits ("1989").
The Calendar Function

OTHER KEYS USED IN THE CALENDAR FUNCTION

DATE Key #16. When pressed after g, DATE calculates a past or future date, once you enter a starting date and a given number of days. The day of the week will also be shown in your answer.

ADYS Key #26. When pressed after g, ADYS calculates the number of days between 2 given dates. Again, you must first enter a starting date before using this key.

DETERMINING FUTURE DATES
You can determine a future settlement date (or any other future date) quickly and easily using the 12C. The following problem uses the M.DY format.

PROBLEM #10: DETERMINING A FUTURE DATE
A buyer is signing a contract on February 5, 1989 and wants to go to settlement within 45 days. What is the projected settlement date?

PROCEDURE PRESS DISPLAY
1. Set the month-day-year format g M.DY
2. Enter contract date 2.051989 ENTER 2.05
3. Calculate settlement date 45 g DATE 3,22,1989 3

NOTES:
1. The settlement date would be March 22, 1989.
2. The "3" in the right hand corner indicates the day of the week; in this case, a Wednesday. (Monday = 1, Tuesday = 2, etc.).
3. The contract date shown in step 2 is rounded to 2 decimal places when the number is displayed, assuming your calculator was set to 2 places.
The Calendar Function

DETERMINING PAST DATES

The only step you do differently when calculating dates in the past is to press CHS (key #16, "change sign") after entering the number of days you are looking for, as in the following problem.

PROBLEM #11: DETERMINING A PAST DATE

Determine a date 140 days prior to January 30, 1989, using the D.MY function.

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set the day-month-year format</td>
<td>g D.MY</td>
<td></td>
</tr>
<tr>
<td>2. Enter the known date</td>
<td>30.011989</td>
<td>ENTER 30.01</td>
</tr>
<tr>
<td>3. Key in the number of days prior</td>
<td>140 CHS</td>
<td>-140.</td>
</tr>
<tr>
<td>4. Calculate the prior date</td>
<td>g DATE</td>
<td>12,09,1988 1</td>
</tr>
</tbody>
</table>

NOTES:
1. 140 days prior was Monday, September 12, 1989.
2. Remember: to calculate days past, press CHS after entering the number of days, as you did in step 3.

DETERMINING DAYS BETWEEN DATES

Follow this procedure when calculating the number of days between 2 dates:

- Key in the earlier date and press ENTER.
- Key in the later date.
- Press g DYS (key #26, after pressing g) to see the number of days between the 2 dates.

PROBLEM #12: DAYS BETWEEN DATES

It is January 30, 1989, and your youngest child asks you how many days remain until Christmas. What is your answer?

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Use the month-day-year function</td>
<td>g M.DY</td>
<td></td>
</tr>
<tr>
<td>2. Enter today's date</td>
<td>1.301989</td>
<td>ENTER 1.30</td>
</tr>
<tr>
<td>3. Key in Christmas day</td>
<td>12.251989</td>
<td>12.251989</td>
</tr>
<tr>
<td>4. Calculate days between 2 dates</td>
<td>g DYS</td>
<td>329</td>
</tr>
</tbody>
</table>
The Calendar Function

PRORATIONS USING THE DATE FUNCTION

Prorations are used for such items on the closing statement as taxes, insurance, fuel oil left in the tank and others. The 12C will enable you to do these calculations without having to spend time doing a lot of division. The procedure for doing so is as follows:

- Calculate and store the per diem cost of the item.
- Key in the earlier date and press ENTER.
- Key in the later date and press g ▲DYS.
- Recall the per diem cost; press x to multiply the per diem cost by the number of days.

PROBLEM #13: PRORATION AT SETTLEMENT

The sellers have paid $345 for a 1 year homeowner's insurance policy which the buyer will "assume" at closing. The policy was paid for on January 1, 1989 and closing occurs on February 11, 1989. How much will the purchaser owe the sellers for the portion of the policy the sellers have used?

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enter the policy amount</td>
<td>345 ENTER</td>
<td>345.00</td>
</tr>
<tr>
<td>2. Find and store the daily cost of the policy</td>
<td>365 ÷ STO 1</td>
<td>0.95</td>
</tr>
<tr>
<td>3. Key in the date policy was purchased</td>
<td>1.011989 ENTER</td>
<td>1.01</td>
</tr>
<tr>
<td>4. Key in the closing date and determine how</td>
<td>2.111989 g ▲DYS</td>
<td>41.00</td>
</tr>
<tr>
<td>many days have passed</td>
<td>RCL 1</td>
<td>0.95</td>
</tr>
<tr>
<td>5. Recall the per diem cost</td>
<td></td>
<td>38.75</td>
</tr>
<tr>
<td>6. Multiply the per diem cost by the number of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>days</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Step 6 allowed you to use the number of days (calculated in Step 4) which were automatically stored in the stack registers after being calculated. When you pressed x, the number previously calculated (41 days) was multiplied by the number in the display (0.95).

EXERCISE

Before going on to the next chapter, do the practice problems for "Dates" beginning on page 75.
CHAPTER VIII: USING THE PERCENTAGE KEYS

The HP-12C has three keys using the % symbol, all located on the second row: %T, a%, and %. Each has a different function, and each can be useful to a residential sales associate.

USING THE % KEY
The % key, key #25, works like the % key in most calculators, as in the following problem.

PROBLEM #14: USING THE % KEY
Your prospects are interested in a $128,000 home and want to put 20% down in order to avoid p.m.i.. Calculate their down payment and their loan amount.

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enter sales price</td>
<td>128000 ENTER</td>
<td>128,000.00</td>
</tr>
<tr>
<td>2. Determine 20% down payment</td>
<td>20 %</td>
<td>25,600.00</td>
</tr>
<tr>
<td>3. Subtract down payment; result is loan amount</td>
<td>-</td>
<td>102,400.00</td>
</tr>
</tbody>
</table>

USING %T
The %T (percent of total) key, key #23, determines what percentage one number is of another number.

PROBLEM #15: USING THE %T KEY
Your firm sells an $89,000 home. Your commission on the sale is $1,234.00. What percentage of the total sales price did you receive?

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enter sales price</td>
<td>89000 ENTER</td>
<td>89,000.00</td>
</tr>
<tr>
<td>2. Key in your commission</td>
<td>1234</td>
<td>1,234.</td>
</tr>
<tr>
<td>3. Determine percentage of commission</td>
<td>%T</td>
<td>1.39</td>
</tr>
</tbody>
</table>
Using the Percentage Keys

USING ▲%
The ▲% key (key #24) calculates the percentage of difference between 2 numbers. It is useful in calculating appreciation.

PROBLEM #16: APPRECIATION USING THE ▲% KEY
A home which sold for $112,000 6 years ago is now worth $185,000. What percentage of appreciation has taken place?

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enter the original value</td>
<td>112000 ENTER</td>
<td>112,000.00</td>
</tr>
<tr>
<td>2. Key in today's value</td>
<td>185000</td>
<td>185,000.00</td>
</tr>
<tr>
<td>3. Determine appreciation over 6 years</td>
<td>▲%</td>
<td>65.18</td>
</tr>
<tr>
<td>4. Determine average yearly appreciation</td>
<td>6 +</td>
<td>10.86</td>
</tr>
</tbody>
</table>

NOTE: Most of the examples in the text begin without clearing the display. Remember that you can clear the display if you prefer but that it is not a necessary step.

HELPFUL HINT!
See pages 28-32 of your "Owner's Handbook" for other problems using the three % keys.

EXERCISE
Complete the practice problems for "Percentages" found on page 87.
CHAPTER IX: THE COMPOUND INTEREST (LOAN) KEYS

The first five keys along the top row control the loan functions of the HP-12C. Using these keys, you will be able to:

- Determine the monthly, semi-annual, quarterly or any other periodic payment (principal and interest, or "p.i.") for a loan, given the amount borrowed, the interest rate and the term of the loan.

- Determine the amount of loan your prospects can qualify for, given the monthly payment (p.i.) they can carry, the interest rate and the term of the loan.

- Determine the yield of an investment, given the payment, the term and the amount borrowed.

- Determine the time needed to pay off a loan, given the amount borrowed, the interest rate charged and the payment amount.

Knowing how to use the financial keys also opens up the entire area of investment real estate: cash flows, discounting, internal rate of return, net present value and other investment functions. While not covered in this book, since it is designed for the residential sales associate, they are covered thoroughly in your "Owner's Handbook."

NOTE!
Payments can be made either at the beginning or the end of a compounding period. Payments for real estate loans are usually made at the end of the period, so make sure your calculator is set accordingly. To do so, press g END (key #18) now.

WHAT THE LOAN KEYS DO

Understanding what each loan key does is the key to solving financial problems. This brief summary explains what each key does or what it wants from you as you enter loan data. The primary key (n, i, PV, PMT, and FV) is explained, and explanations for the upper (gold) and lower (blue) functions are given.

n Number of payments over the life of the loan (or compounding periods)

AMORT Amortizing function: used for accumulated interest and interest portion of a payment.

12x Automatically multiplies the number in the display by 12 and stores the result in n
Loan Keys

i Interest rate per payment (or per compounding period)

INT Computes simple interest. Not used for real estate loans.

12+ Automatically divides the number in the display by 12 and enters a monthly interest rate in i.

PV Loan amount (or present value of a series of cash flows)

NPV Calculates "net present value" of an uneven future cash flow. Used in investment calculations.

CFo Cash flow at the beginning of an investment period. Used in investment calculations.

PMT Amount of periodic principal and interest (p.i.) payment; can be monthly, quarterly, annual, etc.

RND Rounds off the internal number so that it matches the number in the display.

CFj Identifies periodic cash flows. Used in investment calculations.

FV Future value (what your money or an investment will be worth in the future)

IRR Used to calculate "internal rate of return" for investment calculations.

Nj Used for the number of equal cash flows in investment problems.

In order to calculate the monthly payment for an $85,000 loan written at 10% for 30 years, monthly payments, the loan keys would require the following data:

<table>
<thead>
<tr>
<th>KEY</th>
<th>INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>360 (30 years x 12 payments per year)</td>
</tr>
<tr>
<td>i</td>
<td>.83 (10% annual rate + 12 payments per year)</td>
</tr>
<tr>
<td>PV</td>
<td>85000 (the amount of the loan)</td>
</tr>
<tr>
<td>PMT</td>
<td>No data entered, since this is what will be calculated</td>
</tr>
<tr>
<td>FV</td>
<td>No data entered, since FV does not enter into the problem</td>
</tr>
</tbody>
</table>
Loan Keys

The first 4 keys are used for nearly all real estate financing problems. The 5th key, \(FV \), is used to determine appreciation and is also an important key for commercial/investment real estate problems.

LOADING THE KEYS

If any 3 elements of a loan are known, the 4th element can be determined. If you want to do a payment (\(PMT \)), for example, you must know the amount being borrowed (\(PV \)), the interest rate being charged (\(i \)) and the term of the loan (\(n \)).

To determine a loan payment, then, do the following:

- Enter what you know by putting the correct number into the display and then pressing \(n \), \(i \), or \(PV \). Although most of our examples will be entered from left to right, starting with \(n \), the information can be entered in any order.

- Ask the 12C to tell you what you don't know. This is done by pressing the key representing what you are looking for (\(PMT \)) after you have loaded the other 3 keys.

These are the steps needed to calculate the monthly payment for an $85,000 loan written for 30 years at 10.5% interest, monthly payments:

1. Enter "360" as \(n \)

 There are 360 payments over the life of the loan (30 years x 12 payments per year). It doesn't matter how "360" gets in the display before \(n \) is pressed. As a matter of fact, there are 3 ways to get to "360":

 A. Put 360 in the display and press \(n \)

 B. Do the math and load the result: 30 ENTER 12 X \(n \). "360" would appear in the display and would be entered as the total number of payments when you pressed \(n \).
C. Have the 12C do the math for you and load the result: **30 g n.** This method may be used only if you are working with **monthly payments,** since **g n** multiplies what is in the display by 12. If you were working a 30 year loan with **quarterly payments,** you would need to use method "a" or "b" with "120" as the total number of payments loaded.

Method "A" is obviously fastest if you instinctively know how many payments are in the loan, but, again, it does not matter which method you use as long as you enter the total number of payments over the life of the loan for **n.**

2. Enter the interest rate per payment as **i**

The same three methods can be used to enter the monthly interest rate:

A. Put it into the display and enter it as the monthly rate: .875 **i**

B. Do the math yourself: **10.5 ENTER 12 + i.** If you are in 2 decimal places, the rate will be shown as the rounded off "0.88".

C. Let the 12C do the math and enter the result for you by pressing **10.5 g i.** The result will be shown as a rounded number if you are in 2 decimal places.

In nearly all cases, method "C" will be the easiest and fastest way to load the interest rate per payment. Note that this method, like using method "C" for calculating the total number of payments, works only with **monthly payments.** If you had to determine a **quarterly rate,** you would press **10.5 ENTER 4 + i,** since there are only 4 payments per year.

3. Enter "**85000**" as the loan amount. To do so, press **85000 PV.**

Remember: **n** needs to know the total number of payments over the life of the loan and **i** needs to know the interest rate per payment. Remember, too, that data can be stored in any order.

EXERCISE

Complete the practice problems for "Entering Rate and Periods" found on page 77.
Loan Keys

CLEARING THE FINANCIAL REGISTERS
Before beginning a loan problem, it is best to clear the financial registers by pressing f FIN (key #34) before you begin loading data. Failure to do so can cause data left over from a previous problem to be used in the new problem. Remember: the display will not clear when you press f FIN.

PAYMENTS AS A NEGATIVE
In the loan problems which follow, notice that a payment always shows as a negative number. This is because the HP-12C is "cash flow sensitive": it makes a distinction between cash in and cash out.

This becomes clearer if you look at residential loan problems from the borrower's standpoint. The loan amount (PV) is entered as a positive, since the borrower receives the money at closing. The payment (PMT), on the other hand, is money paid out by the borrower. It will always be shown as a negative if you are solving for PMT.

When you enter a payment (as you would if you knew a payment, a term and an interest rate and wanted to find the loan amount the payment would carry), you must enter the payment as a negative. This is done by placing the payment in the display and then pressing CHS (key #16) before pressing PMT to enter the payment. CHS stands for "change sign."
CHAPTER X: CALCULATING MONTHLY PAYMENTS

PROBLEM #17: MONTHLY PAYMENT (AMORTIZED LOAN)
Compute the monthly payment for a $60,000 loan amortized for 30 years at 10%.

PROCEDURE
1. Establish that payments will be made at the end of the month
 Press END
2. Clear financial registers
 Press FIN
3. Enter total # of payments
 30 g n
4. Enter the interest rate per pmt.
 10 g i
5. Enter loan amount
 60000 PV
6. Compute monthly payment
 PMT

NOTES:
1. Step #1 makes sure that interest is calculated from the end of the month. It need not be done every time you do a loan problem. Once in the "end" mode, the 12C stays there unless g BEG is pressed.
2. Step #2, clearing the financial registers, is usually not necessary, but it is not a bad habit to get into since data in FV, should there be any, can cause incorrect answers in the current problem. Most of the examples which follow, as well as the practice problems at the end of the text, call for clearing the financial registers.
3. Notice that the monthly payment is expressed as a negative since it is a cash outflow from the borrower.

PROBLEM #18: MONTHLY PAYMENT (AMORTIZED LOAN)
Calculate the monthly payment for a $70,000 loan at 9¼%, 30 years

PROCEDURE
1. Clear financial registers
 Press FIN
2. Enter total # of payments
 360 n
3. Enter monthly interest rate
 9.5 g i
4. Enter loan amount
 70000 PV
5. Calculate monthly payment
 PMT

Press DISPLAY

25
Calculating Monthly Payments

PROBLEM #19: MONTHLY PAYMENT (AMORTIZED LOAN)
Calculate the monthly payment for an $80,000 loan, 25 years, 9¼%.

PROCEDURE	PRESS	DISPLAY
1. Clear financial registers | f FIN | -588.60
2. Enter total # of payments | 25 g n | 300.00
3. Enter monthly interest rate | 9.5 g i | 0.79
4. Enter loan amount | 80000 PV | 80,000.00
5. Calculate monthly payment | PMT | -698.96

PROBLEM #20: DETERMINE MONTHLY PAYMENT, A.R.M.
What is the monthly payment for a $67,500 A.R.M., 30 years, with an initial interest rate of 9.876%? (Determining the monthly payment for an a.r.m. is the same as determining the payment for a fixed rate loan.)

PROCEDURE	PRESS	DISPLAY
1. Clear financial registers | f FIN | -698.96
2. Enter total # of payments | 360 n | 360.00
3. Enter monthly interest rate | 9.876 g i | 0.82
4. Enter loan amount | 67500 PV | 67,500.00
5. Calculate monthly payment | PMT | -586.19

RECALLING DATA STORED IN THE FINANCIAL REGISTERS
Once you have completed a loan (loaded what you know and calculated the missing data), you can recall any of the loan elements. To do so, press RCL, then press the key for the loan element you want to recall (n, i, PV or PMT).

The ability to recall a loan element is useful if, for example, you get a wrong answer due to entering an incorrect loan element. Instead of clearing all loan elements and starting over, simply recall and check each element until you find your mistake. Correct it, then solve for the answer.

EXERCISE
Complete the problems for "Calculating Monthly Payment" beginning on page 77.
CHAPTER XI: DETERMINING OTHER PERIODIC PAYMENTS

The only difference in calculating payments other than monthly payments is that the years of the loan are not multiplied by 12 and the annual interest rate is not divided by 12. Instead, they are multiplied and divided by the appropriate number of periodic payments.

PROBLEM #21: DETERMINE SEMI-ANNUAL PAYMENT (AMORTIZED LOAN)
Compute the semi-annual payment for a $95,000 loan written for 30 years at 13%.

PROCEDURE
1. Clear financial registers and display
2. Enter total # of payments
3. Enter periodic interest rate
4. Enter loan amount
5. Compute the semi-annual payment

PRESS
- f FIN CLx
- 60 n
- 13 ENTER 2 + i
- 95000 PV
- PMT

DISPLAY
- 0.00
- 60.00
- 6.50
- 95,000.00
- -6,319.44

NOTES:
1. Clearing the display by pressing CLx was not necessary, but it can be done if you prefer to do so.
2. The g n or g i function could not be used since the payments are not monthly.

PROBLEM #22: DETERMINING QUARTERLY PAYMENTS
A buyer wants a $15,000 2nd written for 20 years at 10½%, due and payable at the end of the 5th year with quarterly payments. What is the quarterly payment?

PROCEDURE
1. Clear financial registers
2. Enter total # of payments
3. Enter periodic interest rate
4. Enter loan amount
5. Compute the quarterly payment

PRESS
- f FIN CLx
- 80 n
- 10.5 ENTER 4 + i
- 15000 PV
- PMT

DISPLAY
- -6,319.44
- 80.00
- 2.63
- 15,000.00
- -450.42

NOTE: The fact that the loan "balloons" in 5 years has nothing to do with calculating the payment. It is a regular, amortized loan, and the balance remaining after 5 years will be paid in one large payment.

EXERCISE
Complete the problems for "Calculating Periodic Payment" beginning on page 80.
CHAPTER XII: CALCULATING MAXIMUM LOAN AMOUNT

One way to maximize your success in real estate is to determine the maximum loan amount prospects can carry before showing them property. It is a relatively simple procedure:

- Find out the prospect's income and debts during the qualifying interview.
- Using both conventional and government qualifying sheets (or the programs included in this book), determine the prospect's maximum affordable p.i. payment for both types of financing.
- Enter each number as PMT, preceded by CHS, and then enter the rates and terms of loans offered by local lenders.

Remember: when entering a payment, CHS must be pressed before entering the payment. The 12C needs payments entered to be negative numbers.

PROBLEM #23: DETERMINING MAXIMUM LOAN, GIVEN MAXIMUM P.I.

You have qualified a buying couple and have found that they can carry a maximum $685 per month as their p.i. payment. How large a loan can they qualify for under each of the following two loan plans?

A) Conventional, 10%, 30 year fixed, monthly payments
B) Conventional a.r.m., 8.23% initial rate, 30 years, monthly payments

PROCEDURE PRESS DISPLAY
1. Clear financial registers f FIN -450.42
2. Enter total # of loan payments (same for both loans) 30 g n 360.00
3. Enter monthly interest rate for loan A 10 g i 0.83
4. Enter maximum payment (same for both loans) 685 CHS PMT -685.00
5. Determine maximum loan amount (A) PV 78,056.31
6. Enter monthly interest rate for loan B 8.23 g i 0.69
7. Determine maximum loan amount (B) PV 91,350.26

NOTES:
1. Note that the payment was entered as a negative (cash paid out) by pressing CHS before PMT in step #4.
2. In order to calculate loan B (steps 6 & 7), the total number of payments did not have to be re-entered; it was retained from step #2. When working with multiple loans, change only what you have to change.
CHAPTER XIII: DETERMINING INTEREST RATE OR YIELD

As mentioned, if any 3 elements of a loan are known you can solve for the 4th. In the following example, the term of the loan (N), the payment (PMT) and the amount being borrowed (PV) are given. Using these, you will be looking for the interest rate the noteholder will realize.

When solving for the interest rate below, notice that calculating an interest rate is one of the few functions which takes the 12C a rather long time to perform.

PROBLEM #24: CALCULATING INTEREST RATE, GIVEN DESIRED PAYMENT & TERM

You want to borrow $20,000 for 20 years and want to have monthly payments of $300. What yield will the noteholder realize?

PROCEDURE

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Clear financial registers</td>
<td>f FIN</td>
<td>91,350.26</td>
</tr>
<tr>
<td>2.</td>
<td>Enter total # of payments</td>
<td>20 g n</td>
<td>240.00</td>
</tr>
<tr>
<td>3.</td>
<td>Enter loan amount</td>
<td>20000 PV</td>
<td>20,000.00</td>
</tr>
<tr>
<td>4.</td>
<td>Enter monthly payment</td>
<td>300 CHS PMT</td>
<td>-300.00</td>
</tr>
<tr>
<td>5.</td>
<td>Calculate monthly interest rate</td>
<td>i</td>
<td>1.45</td>
</tr>
<tr>
<td>6.</td>
<td>Determine annual yield</td>
<td>12 X</td>
<td>17.44</td>
</tr>
<tr>
<td>7.</td>
<td>Round to 4 decimals</td>
<td>f 4</td>
<td>17.4354</td>
</tr>
<tr>
<td>8.</td>
<td>Return to 2 decimals</td>
<td>f 2</td>
<td>17.44</td>
</tr>
</tbody>
</table>

NOTE: The answer given in step #5 is a monthly interest rate. Step #6 converts it to an annual rate. You do not have to press ENTER before performing this step since answers given to you by the 12C are already entered, ready to be worked on.
CHAPTER XIV: SOLVING FOR REMAINING BALANCE

Structuring alternative financing (seller-held seconds, for example) often calls for a "balloon payment." A note may be written for a 20 year amortization schedule but with a 6 year payoff, for example. This means that the normal payment for a 20 year loan is calculated, and that payment is due each month. After the 72nd payment (6 years x 12 payments per year), the entire principal balance owed is due in one large payment. Any contract calling for such a payment should include the approximate amount of the payoff. This can easily be calculated using the 12C.

Do the following to calculate the remaining balance due after a certain number of payments have been made:

- Calculate the payment in the usual manner.

- Enter the number of payments the loan will run as n. For example, if the loan was a 30 year loan, monthly payments, due at the end of the 6th year, "72" would be entered as n after the payment was determined.

- Press FV. The balance due after the last payment made will be shown.

PROBLEM #25: REMAINING BALANCE PAYMENT FOR AN EARLY PAYOFF LOAN
Your seller agrees to hold a $15,000 2nd trust, amortized for 20 years, @ 11% interest with monthly payments. The entire balance is due and payable at the end of the 5th year. What is the remaining balance owed at the end of the scheduled payment period?

PROCEDURE

1. Clear financial registers
2. Enter total number of payments
3. Enter monthly interest rate
4. Enter loan amount
5. Calculate monthly payment
6. Calculate remaining balance pmt.

PRESS
f FIN
240 n
11 g i
15000 PV
PMT
60 n FV

DISPLAY
214,901.72
240.00
0.92
15,000.00
-154.83
-13,622.09
PROBLEM #26: CALCULATING REMAINING BALANCE

A $100,000 loan is amortized, monthly payments, for 30 years. The interest rate is 12.5%. What is the remaining balance after 3 years?

PROCEDURE

1. Clear financial registers

2. Enter total number of payments
3. Enter monthly interest rate
4. Enter loan amount
5. Calculate monthly payment
6. Calculate remaining balance after 36 payments (3 years)

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>f FIN</td>
<td>-13,622.09</td>
</tr>
<tr>
<td>30 g n</td>
<td>360.00</td>
</tr>
<tr>
<td>12.75 g i</td>
<td>1.06</td>
</tr>
<tr>
<td>100000 PV</td>
<td>100,000.00</td>
</tr>
<tr>
<td>PMT</td>
<td>-1,086.69</td>
</tr>
<tr>
<td>36 n FV</td>
<td>-98,945.77</td>
</tr>
</tbody>
</table>

NOTE: This is an instance where not clearing the financial registers before beginning a problem would cause an incorrect answer. If you did not do step 1 (f FIN), the payment would be shown as -1,083.40; the remaining balance would be -99,089.38. Both answers would be incorrect. The error occurs because of the value stored in FV from the previous problem.

EXERCISE

Complete the practice problems for "Calculating Remaining Balance" beginning on page 82.
CHAPTER XV:
ACCUMULATED INTEREST AND REMAINING BALANCE

Calculating both remaining balance and accumulated interest at the same time is even more helpful than is calculating only remaining balance. Your sellers, for example, might be asked to hold a $15,000 2nd, written at 11 1/2% for 20 years with the remaining balance due at the end of the 6th year. The key to properly presenting the offer to the sellers is the ability to tell them how much interest they will earn over the 6 years and how large a check they will receive at the end of the 6th year.

With the HP-12C, finding both amounts is easy. Use the following procedure:

- Enter the loan information and determine PMT

- Place the number of payments through which you want to determine accumulated interest and remaining balance in the display.

- Press f AMORT (key #11) to get the accumulated interest through the payment you entered. The longer it takes the loan to be paid off, the longer it will take for the answer to appear.

- Press RCL PV to get the remaining balance.

PROBLEM #27: REMAINING BALANCE & ACCUMULATED INTEREST
Your seller is asked to hold a $10,000 2nd, monthly payments, amortized for 30 years at 10% with the balance due and payable at the end of the 5th year. How much interest will your seller receive over 5 years? How much will be the final, payoff check be?

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clear financial registers</td>
<td>f FIN</td>
<td></td>
</tr>
<tr>
<td>2. Enter total # of payments</td>
<td>360 n</td>
<td>360.00</td>
</tr>
<tr>
<td>3. Enter monthly interest rate</td>
<td>10 g i</td>
<td>0.83</td>
</tr>
<tr>
<td>4. Enter loan amount</td>
<td>10000 PV</td>
<td>10,000.00</td>
</tr>
<tr>
<td>5. Calculate monthly payment</td>
<td>PMT</td>
<td>-87.76</td>
</tr>
<tr>
<td>6. Calculate accumulated interest</td>
<td>60 f AMORT</td>
<td>-4,922.82</td>
</tr>
<tr>
<td>7. Calculate remaining balance</td>
<td>RCL PV</td>
<td>9,657.22</td>
</tr>
</tbody>
</table>
Accumulated Interest/Remaining Balance

PROBLEM #28: REMAINING BALANCE & ACCUMULATED INTEREST
Your seller holds a $20,000 2nd amortized for 30 years at 11% interest, monthly payments, due and payable at the end of the 3rd year. What will the remaining balance be at the end of the 3rd year and how much interest will the seller have received?

PROCEDURE
1. Clear financial registers
2. Enter total # of payments
3. Enter monthly interest rate
4. Enter loan amount
5. Calculate monthly payment
6. Calculate accumulated interest
7. Calculate remaining balance

PRESS DISPLAY
f FIN 360 n 360.00
11 g i 0.92
20000 PV 20,000.00
PMT -190.46
36 f AMORT -6,554.22
RCL PV 19,697.66

If you now wanted to determine both remaining balance and accumulated interest at the end of the 5th year, you would need to:

• Reset "n" to 0
• Re-enter the original loan amount ($20,000 in the above example)
• Repeat steps 6 & 7 above, using 60 payments in step 6

PROCEDURE
8. Reset n
9. Re-enter loan amount
10. Calculate accumulated interest through end of 5th year
11. Calculate remaining balance

PRESS DISPLAY
0 n 0.00
20000 PV 20,000.00
60 f AMORT -10,860.90
RCL PV 19,433.30

If you were only interested in the remaining balance at the end of the 5th year, you would not need to reset "n" or "PV." After step #7 above, you would:

• Add 2 more years worth of payments and compute 2 more years' interest (24 f AMORT)
• Recall the balance remaining after the additional 2 years (RCL PV)

EXERCISE
Complete the practice problems for "Calculating Accumulated Interest and Remaining Balance" beginning on page 83.
CHAPTER XVI: PAYMENTS TO INTEREST & PRINCIPAL

The procedure for determining how much you have paid in interest and how much to principal at any time during the loan is as follows:

- Compute the payment.
- Compute the accumulated interest by putting the number of payments in question in the display, then pressing f AMORT.
- Press x=y (key #34) to display the amount paid to principal during the period.

PROBLEM #29: AMOUNT PAID TO PRINCIPAL AND INTEREST
You get a $50,000 loan @ 10 1/2% interest, 30 years, monthly payments. How much would be applied to interest your first year? How much to principal?

PROCEDURE PRESS DISPLAY
1. Clear financial registers f FIN
2. Enter total # of payments 30 g n 360.00
3. Enter monthly interest rate 10.5 g i 0.88
4. Enter loan amount 50000 PV 50,000.00
5. Calculate monthly payment PMT -457.37
6. Calculate 1st 12 months' interest 12 f AMORT -5,238.19
7. Calculate 1st 12 month's payment to principal x=y -250.25

PROBLEM #30: AMOUNT PAID TO PRINCIPAL AND INTEREST
How much interest would you pay during the 2nd year of the above loan? How much principal?

PROCEDURE PRESS DISPLAY
1. Calculate next 12 month's interest 12 f AMORT -5,210.61
2. Calculate next 12 month's principal paid x=y -277.83
Payments to Interest & Principal

Once you have determined how much has been paid to interest and to principal, you can also get the remaining balance for the loan. To do so, press RCL PV after you have solved for principal paid, as in the following problem.

PROBLEM #31: PRINCIPAL, INTEREST AND REMAINING BALANCE
You take out a $32,000 loan at 10%, monthly payments, for 20 years. How much interest and principal will you have paid the first year? How much will you still owe on the loan after the first year?

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clear financial registers</td>
<td>f FIN</td>
<td>-277.83</td>
</tr>
<tr>
<td>2. Enter total # of payments</td>
<td>20 g n</td>
<td>240.00</td>
</tr>
<tr>
<td>3. Enter monthly interest rate</td>
<td>10 g i</td>
<td>0.83</td>
</tr>
<tr>
<td>4. Enter loan amount</td>
<td>32000 PV</td>
<td>32,000.00</td>
</tr>
<tr>
<td>5. Calculate monthly payment</td>
<td>PMT</td>
<td>-308.81</td>
</tr>
<tr>
<td>6. Calculate 1st years' interest</td>
<td>12 f AMORT</td>
<td>-3,176.17</td>
</tr>
<tr>
<td>7. Calculate 1st years' payment to principal</td>
<td>x~y</td>
<td>-529.55</td>
</tr>
<tr>
<td>8. Calculate balance remaining after the 1st year</td>
<td>RCL PV</td>
<td>31,470.45</td>
</tr>
</tbody>
</table>

EXERCISE

Complete the practice problems for "Payments to Interest and Principal" beginning on page 84.
CHAPTER XVII: WORKING WITH NON-AMORTIZED LOANS

So far, you have been working with "amortized" loans, the usual type offered by lenders. There are actually three ways of handling interest:

AMORTIZED LOANS have a series of equal payments, each of which contains the exact amount of principal and interest needed to reduce the loan balance to $0 over its term.

NON-AMORTIZED LOANS have payments which contain at least the correct amount of interest due, but which are short some, or all, of the principal needed to pay off the loan over its term. Therefore, a large payment remains at the end of the loan's term. The most common example of a non-amortized loan is an "interest only" loan.

NEGATIVELY-AMORTIZED LOANS have a payment which is not enough to cover the interest due. The unpaid interest is added on to what you owe. Thus, the loan balance grows with each payment. Most graduated payment loans contain negative amortization: at some point of the loan, the borrowers will owe more than they borrowed.

The 12C can calculate amortized and non-amortized payments, but trying to solve for a negatively amortized payment will result in an "ERROR" message since the loan would never be paid off. Try solving for n, given the following loan: $10,000 at 13%, monthly payments of $100 per month. You should get "ERROR 5" in the display, since $100 a month would never pay off the loan.

CALCULATING INTEREST ONLY PAYMENTS

Interest only loans are the most common example of non-amortized loans. The financial registers are not needed for calculating payments on this type of loans. Simply multiply the loan amount by the interest rate, then divide by the number of payments per year. The result will be an interest only payment.

PROBLEM #32: INTEREST ONLY PAYMENT

Calculate the interest only monthly payment for a $12,000 loan written at 12% for 10 years.

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enter the loan amount</td>
<td>12000 ENTER</td>
<td>12,000.00</td>
</tr>
<tr>
<td>2. Calculate 1 year's interest</td>
<td>.12 x (or 12 %)</td>
<td>1,440.00</td>
</tr>
<tr>
<td>3. Divide by 12 monthly payments</td>
<td>12 ÷</td>
<td>120.00</td>
</tr>
</tbody>
</table>

36
Non-Amortized Loans

INTEREST & BALANCE: NON-AMORTIZED LOANS
The 12C works with this type of loan just as it works with amortized loans when it comes to calculating accumulated interest and remaining balance. The procedure for calculating accumulated interest and remaining balance for a non-amortized loan is as follows:

- Enter all 4 loan elements: interest rate per payment, loan amount, payment and term.

- Calculate accumulated interest and remaining balance as you did for an amortized loan (# payments, f AMORT RCL PV).

PROBLEM #33: ACCUMULATED INTEREST/REMAINING BALANCE: NON-AMORTIZED LOAN
A buyer wants your seller to hold a $10,000 2nd @ 13%, 5 years. The payment requested is a non-amortizing $150 per month. How much interest will your seller earn over the life of the loan and what is the amount of the final payment?

PROCEDURE

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clear financial registers</td>
<td>f FIN</td>
</tr>
<tr>
<td>2. Enter total # of payments</td>
<td>5 g n</td>
</tr>
<tr>
<td>3. Enter monthly interest rate</td>
<td>13 g i</td>
</tr>
<tr>
<td>4. Enter loan amount</td>
<td>10000 PV</td>
</tr>
<tr>
<td>5. Enter payment amount</td>
<td>150 CHS PMT</td>
</tr>
<tr>
<td>6. Compute 60 month’s interest</td>
<td>60 f AMORT</td>
</tr>
<tr>
<td>7. Recall remaining balance</td>
<td>RCL PV</td>
</tr>
</tbody>
</table>

NOTE: For this problem, you must enter CHS in step 5 so that the payment is entered as a negative number. If you failed to do so, your answer would be wrong.
CHAPTER XVIII: CALCULATING DISCOUNT & YIELD

DISCOUNT is the deduction (or amount subtracted) from the face value of a note by the purchaser of the note in order to increase the yield.

YIELD is the total dollars earned on a note, usually expressed in terms of an annual percentage rate.

As an example of why notes are often discounted when sold, consider the following example:

A seller is asked to hold a $10,000 2nd, monthly payments, written at 11% for 10 years. The total interest paid on the note if it goes full term will be $6,530. This represents an 11% annual return on the seller's initial investment of $10,000. If an investor buys the note for $9,000 (a $1,000 discount), he or she will earn both the $6,530 interest plus an additional $1,000 of principal ($10,000 principal will be repaid; the investor only paid $9,000 for the note). This represents a yield to the investor of 13.63%.

The ability to calculate discount and yield is useful for several reasons:

- You will be able to help your sellers take back mortgages, yet sell them for cash at closing.

- You will be able to help investors purchase this lucrative form of investment, one which offers both cash flow and a higher yield than is found with most other types of investments.

- You can buy and sell seller-held notes for your own account.

HOW TO CALCULATE DISCOUNT AND YIELD

Investors usually have a specific yield in mind when they buy seller-held 2nds. They often look to you to calculate the price they should pay in order to achieve that yield. The following steps will accomplish this:

- If you are not given the note's payment, calculate it in the regular fashion.

- Substitute the investor's desired yield as i after you have calculated the payment.

- Press **PV**. The answer will be the price the investor should pay to achieve the desired yield.
Calculating Discount & Yield

When working with discount and yield, look at the problem from the investor's point of view rather than from the borrower's, as has been the case up until this point. The amount paid for the note will be an investment, or cash out of pocket; the payment will be monthly income, or cash inflow. When calculating discount needed to achieve a desired yield, therefore, enter the loan amount as a cash outflow by pressing CHS before entering it. The payment will appear as a positive.

PROBLEM #34: BUYING A NOTE WHEN NO PAYMENTS HAVE BEEN MADE
An investor will buy your seller's $10,000 2nd (written at 10%, 10 years, monthly payments) if she can realize a 14% yield. What price must she pay for it to realize the desired yield?

PROCEDURE PRESS DISPLAY
1. Clear financial registers f FIN 120.00
2. Enter total # of payments 120 n 0.83
3. Enter note's interest rate 10 g i 10000 CHS PV -10,000.00
4. Enter loan amount 14 g i PMT 132.15
5. Calculate monthly payment PMT 1.17
6. Enter investor's desired yield PV 8,511.22
7. Calculate price investor will pay for note PV

PROBLEM #35: BUYING A NOTE WHEN PAYMENTS HAVE ALREADY BEEN MADE
Your investor considers buying a note written at 10½% with monthly payments of $269.87. The balance remaining on the note is $18,593.56. What price would she pay in order to realize a 16% yield on her investment?

The steps for working this problem are:

- Calculate the number of payments remaining
- Calculate the price to be paid in the same manner as for a new note

PROCEDURE PRESS DISPLAY
1. Enter interest rate 10.5 g i 0.88
2. Enter balance as cash outflow 18593.96 CHS PV -18,593.96
3. Enter payment as cash inflow 269.87 PMT 269.87
4. Calculate number of payments remaining n 106.00
5. Enter investor's desired yield 16 g i 1.33
6. Calculate price to pay for note PV -15,268.96
Calculating Discount & Yield

PROBLEM #36: PAYING A SPECIFIED AMOUNT FOR A NOTE
An investor wants to buy a $20,000 2nd written at 11% for 15 years. 12 payments have been made. What is the investor's yield if he pays $13,700 for the note.

PROCEDURE

1. Clear financial registers
2. Enter total # of payments
3. Enter note's interest rate
4. Enter original loan amount
5. Calculate monthly payment
6. Recall # of payments
7. Subtract payments already made; enter as new "n"
8. Enter price paid for note
9. Calculate monthly yield
10. Calculate yearly yield
11. Expand to 4 decimal places
12. Return to 2 decimal places

NOTES:
1. Steps #6 & 7 subtract the number of payments which the seller has already received since the investor will not be getting that amount.

2. Step #11 shows the non-rounded yield: 18.3574%. When giving a yield to an investor, it is important to use a non-rounded number. In this example, for instance, quoting "18.357%" is more acceptable than rounding off to "18.36%.

EXERCISE

Complete the practice problems for "Calculating Discount and Yield" beginning on page 85.
The real power of the HP-12C becomes clear once you learn how to program it. **A sequence** of keystrokes (a program) is stored in the calculator, then, when you want to **perform an** operation such as qualifying a buyer or determining an after-tax p.i. payment, you **simply** enter the known information, push a button, and the calculator does the rest.

Suppose, for example, you worked for the "Ever Right Dividing Company, Inc.," and your only job was to divide any number that came across your desk by 12. One day, the number is 500. The next day, the number is 4.2, and the third day the number is 356.2. Solving the 3 problems would take a total of 23 keystrokes:

\[
\begin{align*}
500 & \quad \text{ENTER} \quad 12 \quad + \\
4.2 & \quad \text{ENTER} \quad 12 \quad + \\
356.2 & \quad \text{ENTER} \quad 12 \quad +
\end{align*}
\]

Tiring, isn't it? As you look at the keystrokes, though, notice that each problem has 4 keystrokes in common: ENTER, 1, 2 and +. These are the keystrokes that can be made into a program. Then, when it is time to divide a number by 12, simply put the number to be divided in the display and press one key: the repetitive keystrokes are done automatically.

Using a program, the process of dividing each of the 3 numbers (500, 4.2 and 356.2) by 12 takes only about 6 seconds. When it comes to larger programs, such as qualifying a buyer or determining the after tax loan payment, the time saved is even more dramatic.

HELPFUL HINT!

Remember: almost anything you do repetitively can be made into a program for the HP-12C. It takes a little time to learn programming, but the results are worth it!
Programming the 12C

STEPS TO PROGRAMMING THE HP-12C

When you think you have a repetitive function which can be programmed, follow these steps:

1. Write your program.
2. Revise the program into the fewest possible number of lines.
3. Enter the program and test it with an answer you already know.
4. If necessary, revise the program again.
5. Place the final program into the 12-C.

WRITING YOUR PROGRAM

Follow these two steps to write any program:

1. Decide what you want to do (qualify a buyer, calculate an after-tax payment, etc.)
2. Run the steps manually on the HP-12C; write down each key you press as you do the steps.

Dividing 500 by 12, for example, would require the following keystrokes: 500 ENTER 12 ÷. As a starting point to writing a program, write down the keystrokes that, given a new number to divide each day, would be repetitive: ENTER 1 2 ÷.

Remember: "500" is not part of the program. It is a "variable," something which changes each time the program is run and which will be entered manually before running the program. If you were to write a program for qualifying prospects, for example, the prospects' income would be entered into the display at the start of the program, then the program would calculate the maximum loan payment the prospects could carry based on that income. The income would be the variable.
Programming the 12C

PROGRAM LINES

Each step in a program takes up one "line" of program memory. The divide by 12 program would be a 4 line program: ENTER, 1, 2 and + are all separate lines. In some instances, 2 keystrokes combine to make one line of memory. Instructions beginning with f, g, STO, RCL, and GTO would each take up one line of memory.

The only limitation to programming the 12C is the number of program lines which can be stored. The 12C allows a maximum of 99 separate programming lines. Whether these 99 lines are taken up by 1 program or by a number of separate programs, the 99 line limit cannot be exceeded.

PRIMARY PROGRAM KEYS

The following keys are used when programming the 12C. Each will be covered in detail in this chapter.

f P/R Key #31. Moves the calculator into (and out of) "program" mode. Programs can only be written or edited while in the program mode.

f PRGM Key #33. Erases all programs in memory. To guard against accidental erasure of stored programs, this can only be done while the calculator is in the "program" mode.

g MEM Key #19. Displays the number of program lines which are currently stored in program memory and the number of storage registers still available for use.

g PSE Key #31. Causes the program to pause at a certain point when it is keyed in as an instruction. After the pause, the program will continue running automatically.

R/S Key #31.

When this key is inserted as an instruction in a program, it causes the program to stop at that point in the program. The number or result at that point is shown in the display and will stay there until you re-start the program by pressing the R/S key.

When pressed while in "run" mode, it causes the program to start running.
Programming the 12C

ENTERING A PROGRAM

Once a program is written down (and you have done all you can to make it as brief as possible), it is ready to be entered. To do so, follow these steps:

1. Press \(\text{f P/R} \) to get into programming mode.

 You do not have to hold down \(\text{f} \) while you press P/R; simply press \(\text{f} \), release it, then press P/R. You are now in program mode, and each key you press will be entered as a program instruction.

2. Enter each step of your written program.

 Press the keys in the order you have written them. Each time you press a key (or a sequence such as \(\text{STO 5} \), for example), a line of programming will automatically be entered. Continue until you have entered all the written steps.

3. Leave program mode by again pressing \(\text{f P/R} \).

 The 12C is now back in "run" mode; keys pressed will have their normal operating function.

SAMPLE PROGRAM: DIVIDING ANY NUMBER BY 12

Now, enter the "divide by 12" example as your first program. The first number in each problem (500, 4.2, 356.2) is the number which will be divided; since this number changes each time, it is not part of the program. Instead, it will be placed in the display before the program is started.

Enter the following. For now, disregard what you see in the display as you enter the various steps.

If you have programs entered which you want saved, do not do the following. Instead, refer to page 52, "Inserting Multiple Programs," for instructions on how to enter another program if you already have a program or programs in memory.
Programming the 12C

Sample Program: Dividing any number by 12

Follow each of the following steps in order:

<table>
<thead>
<tr>
<th>PRESS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. f P/R</td>
<td>Gets you into "program" mode</td>
</tr>
<tr>
<td>2. ENTER</td>
<td>"Enters" any number you have put into the display when the program starts</td>
</tr>
<tr>
<td>3. 1</td>
<td></td>
</tr>
<tr>
<td>4. 2</td>
<td></td>
</tr>
<tr>
<td>5. +</td>
<td>Divides the number in the display by 12</td>
</tr>
<tr>
<td>6. f P/R</td>
<td>Gets you out of program mode and back into run mode</td>
</tr>
</tbody>
</table>

CONGRATULATIONS! You have just programmed your HP-12C! If you followed all of the above steps, you should be back in "run" mode: you should not see any of the "shorthand" lines you see when in program mode.

REVIEWING A PROGRAM

After entering a program, the next step is to review it in order to make sure it does what you want it to do. The program can be reviewed while in either the "run" or the "program" mode, but in most cases, it is safest to review the program while in "run" mode in order to avoid entering any unwanted program lines.

The following keystrokes are used to review a program:

REVIEWING WHEN YOU ARE IN THE "RUN" MODE:

g GTO "00" (Keys 43, 33 and the first line of the program)

This sequence moves the program to a certain line: "00" is the number of the program's first line. If you wanted to move to line 1, the keystrokes would be g GTO 01. GTO is located at the bottom of key #33.

When this instruction is given, the display does not change. The calculator sets itself to whatever line has been chosen, but the number in the display is retained. When you enter program mode or when you review your program, the line you set will be the first one shown.
Programming the 12C

SST (Key 32)

Pressing and holding down this key reviews and executes a program in order, starting at whatever line you have chosen using g GTO.

When you use the SST key, the program is shown one line at a time. As you release the key, the program will have executed the instruction for that line and the result will be shown in the display.

g BST (Keys 43 and 32)

Pressing BST after pressing g also reviews the program, but in reverse order.

Remember: when reviewing your program, the review will always begin on the line you have set using the g GTO command.

REVIEWING WHEN YOU ARE IN THE "PROGRAM" MODE:

g GTO ".00" (Keys 43, 33, 48 and the line number for the desired line)

This moves your program to any line you choose, as does g GTO "00" when in run mode. The difference is placing a decimal point before the line number. It must be inserted before the line number when reviewing a program while in program mode or you will be entering another line of programming rather than setting the program to a particular line.

If, for example, you were in program mode and wanted to see line 6 and entered g GTO 06 (forgetting the . before entering 06) you would be entering an instruction telling your program to go to line 6 when it reached that point.

Remember: the correct way to go to a certain line when you are in program mode is g GTO . and the line number you want to see.
Programming the 12C

SST (Key 32)

When you press and release SST while in program mode, the individual program lines will be reviewed in order. If SST is pressed and held down, each line is reviewed in order and flashes in the display for about ½ second.

The difference between reviewing the program while in "program" mode as opposed to "run" mode is that the program is not executed while reviewing in "program" mode.

BST (Keys 43 and 32)

Does a continuous (automatic) reverse order review of your program when used in program mode.

HELPFUL HINT!
Remember: it is safest to review a program while in "run" mode. This way, you don't run the risk of unintentionally adding an unwanted line to your program!

WHAT YOU SEE IN PROGRAM MODE
While writing a program (or while reviewing the steps of a program in "run" mode), the 12C displays a "shorthand" version of each program entry. The individual lines of the "divide by 12" program look like this:

<table>
<thead>
<tr>
<th>LINE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-</td>
<td>36</td>
</tr>
<tr>
<td>02-</td>
<td>1</td>
</tr>
<tr>
<td>03-</td>
<td>2</td>
</tr>
<tr>
<td>04-</td>
<td>10</td>
</tr>
</tbody>
</table>

Steps #1 (f P/R) and #6 (f P/R) do not show up as program lines, since f P/R simply gets you into and out of program mode and has no part in the program itself.
Programming the 12C

The shorthand shows a line number (01-, 02-, etc.) and the instruction for that line written in the form of key numbers. You will sometimes see lines which contain more than one key number, such as:

09- 45 2 The command for line 9 is to recall (key 45) what is stored in STO 2.

12- 43,33 08 The command for line 12 is g GTO (go to) line 8.

REVIEWING YOUR "DIVIDE BY 12" PROGRAM

To review the program you entered earlier, do the following. Be sure to hold down SST so that you can see each line, and disregard any numbers or "Error" message which appear in the display when the SST key is released. The right hand column below explains the instruction given for the program line displayed.

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
<th>INSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. g GTO 00</td>
<td>No change</td>
<td>Internally resets program to line 00</td>
</tr>
<tr>
<td>2. SST</td>
<td>01- 36</td>
<td>ENTER (key #36)</td>
</tr>
<tr>
<td>3. SST</td>
<td>02- 1</td>
<td>Press "1"</td>
</tr>
<tr>
<td>4. SST</td>
<td>03- 2</td>
<td>Press "2" ("12" is now entered)</td>
</tr>
<tr>
<td>5. SST</td>
<td>04- 10</td>
<td>+ (key #10)</td>
</tr>
<tr>
<td>6. SST</td>
<td>05- 43,33 00</td>
<td>g GTO 00 (resets program to line 00 after it has run)</td>
</tr>
</tbody>
</table>

If your display matched what is shown in the display column above, the program is entered correctly. If not, go back to the section "Entering Your Program." Reread it and enter your program again following exactly the steps for entering the "divide by 12" program.
Programming the 12C

RUNNING A PROGRAM

Follow these steps whenever you want to run a program you have entered:

1. **Store any information the program will need.**

 There is no information to store for our "divide by 12" program. However, most programs will require some information to be stored before running the program. When the program runs, it will pick up this information and use it at the proper time. The conventional qualifying program found on page 54, for example, asks you to store taxes, insurance, homeowner’s or condo fee and any p.m.i. in one data storage register and the prospect’s debts in another. When the program runs, it picks up this information at the appropriate place in the program.

2. **Make sure you are in "run" mode.**

 PRGM is not showing in the right hand corner of the display, and the "shorthand" for individual program lines is not showing.

3. **Set the calculator to the first line of the program you want to run.**

 This is done by pressing g GTO and the number of the first line of your program. This step is not necessary if you only have one program in memory but must be done when you have 2 or more programs. Remember: the display will not change when you do this step.

4. **Place any starting information in the display.**

 If you wanted to divide 500 by 12 using the "divide by 12" program, you would place 500 in the display. Likewise, you would place a prospect’s income in the display before beginning a qualifying program.

5. **Press R/S to start running the program.**

 The program will start running and will continue to run until finished. The only exception occurs if the program contains a g PSE or R/S instruction. If so, the program will either pause for a second or stop completely at the point where the instruction occurs.
Programming the 12C

EXERCISE: Divide 80 by 12, using Program #1

PROCEDURE	**PRESS**	**DISPLAY**
1. Make sure calculator is in "run" mode: PRGM is not showing in the display &n

EXERCISE: Divide 38.6 by 12, using Program #1

PROCEDURE	**PRESS**	**DISPLAY**
1. Enter number to be divided &n

You did not have to reset the program to line 00, since there is only one program in the calculator; therefore, the program automatically resets itself every time it is run.

CHANGING INDIVIDUAL PROGRAM LINES

There are times when you will want to change individual lines in the program. Suppose, for example, that you were so successful dividing numbers by 12 using your HP-12C that you were given a promotion: your new job is to divide numbers by 13. The instruction for line 3 (03-2) would need to be changed to a "3." Line 2 would enter the "1," and line 3 would then complete the "13" by entering a "3."

Follow these steps to change individual program lines:

1. **Set the program to the line before the one you want to change.**

 Press g GTO and the appropriate line number. Whatever is in the display will not change, but the calculator sets itself internally to the correct line, the line before the one to be changed.

2. **Enter program mode.**

 Press f P/R. You will now see the line before the one you want to change.
Programming the 12C

3. Enter the desired change.

You can change one line or several lines as long as they are adjoining lines. If, for example, you want to change lines 5 and 6, go to line 4, then enter the correct instruction for line 5 followed by the correct instruction for line 6.

If you next wanted to change line 18, you would go to line 17 and then enter the correct instruction for line 18.

4. Return to run mode.

Press \text{f} P/R as soon as you have made your change.

EXERCISE: Change Program #1 so that it divides any entered number by 13.

PROCEDURE

1. Set the program to line 2, the line before the change \text{g} GTO 02 (No change)
2. Enter "program" mode \text{f} P/R 02- 1
3. Enter "3" to indicate that you want to divide the number in the display by 13 3 03- 3
4. Leave "program" mode \text{f} P/R

DETERMINING AVAILABLE PROGRAM MEMORY

You can add other programs to program memory as long as the total number of program lines used does not exceed 99. Before adding another program, therefore, you will want to determine how many lines of program memory have been used so that you can make sure there is enough available memory to store the new program.

Pressing \text{g} followed by MEM (key #19) displays the number of program memory lines which have been used. Do the following: press and release \text{g}, then hold down MEM. If you have entered the "divide by 12" program (now changed to a "divide by 13" program), or even if you have not stored any programs, you should see the following: P-08 r-20.

The "P-08" means that 8 lines of program memory have been used. The 8 lines are built into the 12C and will show up even if you have not entered any programs at this point. Once you exceed 8 lines, the number changes.
If you saw anything other than "P-08," you already have a program (or programs) entered which takes up more than 8 lines of memory.

The "r-20" in the right hand corner of the display shows how many of the 20 data storage registers remain usable for storage. As you write programs, up to 13 of the 20 data storage registers are converted into additional program memory. When you enter your ninth program instruction, for example, storage register .9 is converted into 7 new lines of programming memory and is no longer available for use as a storage register. If, after using more than 9 lines of programming, you tried to store something in storage register .9, an ERROR 6 message would appear in your display.

The data storage registers are converted to program memory in the following order: .9, .8, .7, etc. Seven storage registers, 0-6, will always be available for storing data in the usual manner.

 INSERTING MULTIPLE PROGRAMS
Listing and selling situations present many opportunities to use programs stored in your HP-12C. You might want a seller's net program, an after-tax payment program and programs for qualifying a prospect for both conventional and government loans, for example. When it comes time to add a 2nd program (or any subsequent programs) to memory, specific steps must be followed if all programs are to run properly.

1. Go to the last line of the previously entered program.

 The last line of the "divide by 13" program, for example, is line 04. If you wanted to keep that program and add another behind it, you would set the calculator to line 04 by pressing g GTO 04. Remember: the display will not change.

2. Press f P/R to enter "Program" mode.

3. Do one of the following:

a) If the new program is the second program you are entering, press g GTO 00. This adds a "reset" line to the first program so that it will set itself to run again each time it is run.

b) If 2 or more programs are already stored in memory, do not enter the "g GTO 00" line: proceed with step 4 below.
Programming the 12C

4. Key in the new program.

5. Add the instructions R/S and then g GTO followed by the line number of the first line of the program you have just entered. These instructions become the last lines of the program you have just entered and stop the program when it has run and then set it to run again.

6. Exit program mode by pressing f P/R again.

EXERCISE: Enter a program which multiples any number by 8 while leaving the "divide by 13" program in the calculator.

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Go to the last line of the previous program</td>
<td>g GTO 04</td>
<td>04- 10</td>
</tr>
<tr>
<td>2. Enter program mode</td>
<td>f P/R</td>
<td>05- 43,33, 00</td>
</tr>
<tr>
<td>3. Insert buffer line</td>
<td>g GTO 00</td>
<td>06- 36</td>
</tr>
<tr>
<td>4. Add new program:</td>
<td>ENTER 8 x</td>
<td>07- 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08- 20</td>
</tr>
<tr>
<td>5. Add end lines:</td>
<td>R/S g GTO 06</td>
<td>09- 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10- 43,33 06</td>
</tr>
<tr>
<td>6. Exit program mode</td>
<td>f P/R</td>
<td></td>
</tr>
</tbody>
</table>

RUNNING A PROGRAM WHEN 2 OR MORE PROGRAMS ARE STORED

When only one program is stored, the 12C is always set on its first line, ready to run the program when given the R/S instruction. When 2 or more programs are stored, however, the calculator needs to know which program you want to run. The following steps insure that the program you want is the one which is activated.

1. Make sure calculator is in "Run" mode.

2. Enter desired information into display and storage.

3. Press "g GTO" followed by the line number of the first line of the program you want to run.

4. Press "R/S" to begin program.
Each of the following programs can be used by the residential sales associate. Due to the 99 line space limitation, however, not all of the programs can be stored in the 12C at the same time. Therefore, the following procedure is recommended before entering any of them in your calculator:

1. Decide which programs are of the most benefit to you.

2. Count the total number of lines needed by the programs you want to store; make sure the total number of lines used is within the 99 line limit.

3. Enter those programs which are the most useful and which will fit into the 99 lines of program memory.

PROGRAM 1: DETERMINING MAXIMUM P.I. - CONVENTIONAL

PROGRAM DESCRIPTION

The program gives you the maximum loan payment a buyer can carry using conventional financing. The F.N.M.A. qualifying format shown in Appendix B, p. 73, has been followed, using the standard 28%/36% ratios.

The number which appears will be the maximum conventional p.i. payment for the 36% ratio; pressing \(\text{R}4 \) twice at that point will display the 28% maximum p.i.

NOTES

1. If the lender's ratios are other than 28%-36%, only lines 5, 6, 11 and 12 need to be changed. For example, if the lender's ratios were 30%-38%, the following changes would be made to the lines listed below:

 5. 3 (05- 3)
 6. 0 (06- 0)
 12. 8 (12- 8)

2. After the program runs, you can determine the maximum loan the prospects can qualify for by simply placing the smallest of the 2 payments into \(\text{PMT} \), entering a rate and term, and solving for \(\text{PV} \).

3. The storage registers coincide with the registers used for the V.A./F.H.A. qualifying program. Therefore, both programs can be stored and the data entered for one can be used with the other.
12C Programs

STORED INPUT
1. Store estimated taxes, insurance, homeowner's or condo fee and p.m.i., if any, in STO 1.
2. Store the prospect's recurring monthly debts in STO 2.

ENTERING THE PROGRAM

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>f REG</td>
<td>0.00</td>
<td>Clears previously stored registers</td>
</tr>
<tr>
<td>f P/R</td>
<td>0.00</td>
<td>Enters "program" mode</td>
</tr>
<tr>
<td>f PRGM</td>
<td>(ONLY IF YOU HAVE NO STORED PROGRAMS YOU WANT TO SAVE!)</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>01- 1</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>02- 2</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>03- 10</td>
<td>Calculates gross monthly income</td>
</tr>
<tr>
<td>4.</td>
<td>STO 5 04- 44 5</td>
<td>Stores monthly income for later use</td>
</tr>
<tr>
<td>5.</td>
<td>2 05- 2</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>8 06- 8</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>% 07- 25</td>
<td>Calculates 28% g.m.i.</td>
</tr>
<tr>
<td>8.</td>
<td>RCL 1 08- 45 1</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>- 09- 30</td>
<td>Subtracts estimated t.i., h.o.a., condo dues, p.m.i.; result = 28% max. p.i.</td>
</tr>
<tr>
<td>10.</td>
<td>RCL 5 10- 45 5</td>
<td>Recalls g.m.i.</td>
</tr>
<tr>
<td>11.</td>
<td>3 11- 3</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>6 12- 6</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>% 13- 25</td>
<td>Calculates 36% g.m.i.</td>
</tr>
<tr>
<td>14.</td>
<td>RCL 1 14- 45 1</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>- 15- 30</td>
<td>Subtracts estimated t.i., h.o.a./condo dues, p.m.i.</td>
</tr>
<tr>
<td>16.</td>
<td>RCL 2 16- 45 2</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>- 17- 30</td>
<td>Subtracts monthly debts</td>
</tr>
<tr>
<td>f P/R</td>
<td></td>
<td>Returns calculator to "Run" mode</td>
</tr>
</tbody>
</table>
RUNNING THE PROGRAM

1. Make sure calculator is in "Run" mode.
2. Clear registers (f REG).
3. Enter new assumptions into STO 1 and STO 2.
4. Enter prospects' gross annual income into display.
5. Press g GTO 00 if more than 1 program is in storage.
6. Press R/S to start the program: number which appears in the display will be the maximum allowable p.i. for the 36% ratio.
7. Pressing the R↓ key twice will recall the 28% maximum allowable p.i.: twice more will recall the 36% figure.
8. Enter the smaller number as PMT; enter rate and term; solving for PV gives you the largest conventional loan the prospect can carry at that rate and term.
9. Keeping the same PMT while using different rates and terms will show other maximum loan amounts for those rates and terms.

PROBLEM #37: QUALIFYING FOR MAXIMUM CONVENTIONAL P.I.
Your prospects have a gross annual income of $50,000 and recurring debts of $300. You estimate monthly taxes and insurance as $120. They will be putting 10% down, so you estimate $30 as the monthly p.m.i. charge. There are no homeowners or condo fees. What is the maximum p.i. they can qualify for?

PROCEDURE

1. Make sure calculator is in "run" mode
2. Clear all registers
3. Store estimated monthly t.i., h.o.a./condo fee, p.m.i.
4. Store monthly debts
5. Display annual income
6. Begin program; number which appears is the maximum 36% p.i. payment
7. Display maximum 28% p.i. payment

PRESS

1. f REG 0.00
2. 150 STO 1 300.00
3. 300 STO 2 120.00
4. 50000 50,000.00
5. R/S 1,050.00
6. R↓ 1,016.67

DISPLAY

0.00
300.00
120.00
50,000.00
1,050.00
1,016.67

NOTE: With the smallest of the 2 numbers (1,016.67) in the display, press CHS PMT. The prospect's maximum affordable conventional p.i. is now ready to use with various conventional rates and terms to determine maximum loan capability under various options.
12C Programs

PROBLEM #38: CALCULATING MAXIMUM CONVENTIONAL LOAN
Using the maximum conventional p.i. the prospects in problem #37 can carry, determine their maximum loan capability for a 10.75%, 30 year fixed rate loan and an 8.75%, 30 year a.r.m.

PROCEDURE

1. Enter lesser of the 2 numbers as PMT
2. Enter rate & term for 1st loan
3. Calculate maximum loan (1st loan)
4. Enter rate for 2nd loan (term is the same for both loans)
5. Calculate maximum loan (2nd loan)

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>R↓ R↓ CHS PMT</td>
<td>-1,016.67</td>
</tr>
<tr>
<td>10.75 g i 30 g n</td>
<td>0.90 360.00</td>
</tr>
<tr>
<td>PV</td>
<td>108,911.30</td>
</tr>
<tr>
<td>8.75 g i</td>
<td>0.73</td>
</tr>
<tr>
<td>PV</td>
<td>129,231.75</td>
</tr>
</tbody>
</table>

PROGRAM 2: MAXIMUM P.I., V.A./F.H.A.

PROGRAM DESCRIPTION
The program calculates the maximum p.i. a prospect can qualify for using V.A. financing. It follows the standard V.A. qualifying form found in Appendix C, p. 74. In most areas of the country, the maximum allowable F.H.A. p.i. will be approximately $300 less than the maximum V.A. p.i. shown by the program.

STORED INPUT
The input for this program correlates with the input for the conventional maximum loan program. Both programs can be stored in the 12C at the same time, and data stored for the conventional program (in STO 1 and STO 2) need not be reentered in order to run the V.A./F.H.A. program.

1. Store estimated monthly taxes, insurance, homeowner's or condo fees, and m.i.p. for F.H.A. loans in STO 1 (if not previously stored in the conventional qualifying program).
2. Store the prospect's recurring monthly debts in STO 2 (if not previously stored in the conventional qualifying program).
3. Store the authorized V.A. or F.H.A. monthly housing allowance (taken from charts available through lenders) in STO 3.
12C Programs

NOTES
1. The program estimates that 29% of the purchasers' gross monthly income is withheld for the total monthly federal tax, monthly state tax and social security, government retirement or self-employment tax. If a different percentage for total withholding is desired, simply enter different numbers into lines 4 and 5 of the program.

2. The line numbers (shown under the "display" column) for entering the program assume that the first program, conventional maximum p.i., is still in the calculator. This is done to show how a second program is entered, using the "g GTO" lines which must follow the first program when a second is entered.

ENTERING THE PROGRAM

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>g GTO 17</td>
<td>(No change)</td>
<td>Resets to last line of previous program</td>
</tr>
<tr>
<td>f P/R</td>
<td>17- 30</td>
<td>Shows last line of previous program</td>
</tr>
<tr>
<td>g GTO 00</td>
<td>18- 43,33 00</td>
<td>Adds buffer line between programs</td>
</tr>
<tr>
<td>1.</td>
<td>1</td>
<td>Calculates gross monthly income</td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>21- 10</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>RCL 1</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>RCL 2</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>RCL 3</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>RCL 4</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>R/S</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>g GTO 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f P/R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35- 43,33 19</td>
<td>Sets program to beginning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns calculator to "Run" mode</td>
</tr>
</tbody>
</table>

58
RUNNING THE PROGRAM

1. Make sure calculator is in "run" mode.
2. Clear registers (f REG) only if you do not want to retain debts, t.i., h.o.a./condo fee from previous conventional qualifying program.
3. Enter new assumptions into STO 1 - STO 4. Remember, you can use what is already stored in STO 1 and STO 2 if you are qualifying the same prospect.
4. Place prospect's annual income in the display.
5. Press g GTO 19 R/S to begin the program. This instruction assumes that the program begins on line #19. If not, substitute the correct line number.

PROBLEM #39: QUALIFYING FOR MAXIMUM VA/FHA P.I.
Qualify the same prospects from problem #37 for a maximum V.A. p.i. payment. Use the same t.i. ($120) from the previous problem. Use a V.A. family allowance of $781 and a maintenance allowance of $200. Do not include a homeowner's or condo fee, since the prospects want a detached home. Do not include an estimate for F.H.A. m.i.p., since the prospects are overqualified for the maximum F.H.A. loan.

<table>
<thead>
<tr>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Make sure calculator is in "run" mode.</td>
</tr>
<tr>
<td>2. Clear registers f REG 0.00</td>
</tr>
<tr>
<td>3. Store monthly t.i., h.o.a./condo, m.i.p. 120 STO 1 300.00</td>
</tr>
<tr>
<td>4. Store monthly debts 300 STO 2 120.00</td>
</tr>
<tr>
<td>5. Store family allowance 781 STO 3 81.00</td>
</tr>
<tr>
<td>6. Store maintenance/utilities 200 STO 4 00.00</td>
</tr>
<tr>
<td>7. Display annual income 50000 50,000.00</td>
</tr>
<tr>
<td>8. Set to first program line g GTO 19 50,000.00</td>
</tr>
<tr>
<td>9. Begin program; number showing when the program stops is the maximum allowable p.i. for V.A. financing. R/S 1,557.33</td>
</tr>
</tbody>
</table>

NOTE: The maximum F.H.A. p.i. in most areas of the country is approximately $300-$400 less than the maximum V.A. p.i. Therefore, simply subtract the desired amount from the figure given by the 12C if you are qualifying for an F.H.A. loan.
12C Programs

PROGRAM 3: AMORTIZING A LOAN

PROGRAM DESCRIPTION
This program shows you the principal and interest portion of each month's loan payment, as well as the remaining loan balance after each payment.

NOTES
1. The R/S instruction in lines 7, 9 and 11 causes the program to stop at an answer until you press R/S again to re-start the program. If you prefer, you can replace the R/S command with a g PSE instruction (or several of them for a longer pause) to have the answer displayed briefly, then have the program re-start itself.

2. Remember to add the "buffer" lines if you are entering this behind another program.

ENTERING THE PROGRAM

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1</td>
<td>01- 1</td>
<td></td>
</tr>
<tr>
<td>2. n</td>
<td>02- 11</td>
<td></td>
</tr>
<tr>
<td>3. 1</td>
<td>03- 1</td>
<td></td>
</tr>
<tr>
<td>4. fn</td>
<td>04- 42 11</td>
<td>Calculates 1 month's interest</td>
</tr>
<tr>
<td>5. R/S</td>
<td>05- 31</td>
<td>Stops program</td>
</tr>
<tr>
<td>6. x≤y</td>
<td>06- 34</td>
<td>Calculates 1 month's principal</td>
</tr>
<tr>
<td>7. R/S</td>
<td>07- 31</td>
<td>Stops program</td>
</tr>
<tr>
<td>8. RCL PV</td>
<td>08- 45 13</td>
<td>Calculates remaining balance</td>
</tr>
<tr>
<td>9. R/S</td>
<td>09- 31</td>
<td>Stops program</td>
</tr>
<tr>
<td>10. RCL n</td>
<td>10- 45 11</td>
<td>Displays # of next payment</td>
</tr>
<tr>
<td>11. R/S</td>
<td>11- 31</td>
<td>Stops program</td>
</tr>
<tr>
<td>12. g GTO</td>
<td>03 12- 43,33 03</td>
<td>"Loops" program to beginning</td>
</tr>
</tbody>
</table>

RUNNING THE PROGRAM

1. Run the program after you have calculated a loan payment and the payment is in the display. With the payment in the display, press R/S.

2. The first number shown is the interest portion of payment #1; the second number is the principal portion of payment #1; the third number shown is the balance remaining after payment #1.
3. Thereafter, the sequence shown is: the number of the payment, the interest portion of that payment, the principal portion of that payment, and the balance remaining.

PROBLEM #40: AMORTIZING A LOAN

Calculate the monthly payment for an $80,000 loan written at 10\% for 30 years. Calculate the interest and principal portion of payments 1 and 2, as well as the remaining balance after each of the first 2 payments.

PROCEDURE

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clear registers</td>
<td>f REG 0.00</td>
</tr>
<tr>
<td>2. Enter total # of payments</td>
<td>30 g n 360.00</td>
</tr>
<tr>
<td>3. Enter the interest rate per pmt.</td>
<td>10.5 g i 0.88</td>
</tr>
<tr>
<td>4. Enter loan amount</td>
<td>80000 PV 80,000.00</td>
</tr>
<tr>
<td>5. Compute monthly payment</td>
<td>PMT -731.79</td>
</tr>
<tr>
<td>6. Calculate interest portion of payment #1</td>
<td>R/S -700.00</td>
</tr>
<tr>
<td>(program begins at this point)</td>
<td></td>
</tr>
<tr>
<td>7. Calculate principal portion of payment #1</td>
<td>R/S -31.79</td>
</tr>
<tr>
<td>(program continues)</td>
<td></td>
</tr>
<tr>
<td>8. Display remaining balance after payment</td>
<td>R/S 79,968.21</td>
</tr>
<tr>
<td>#1</td>
<td></td>
</tr>
<tr>
<td>9. Display number of next payment</td>
<td>R/S 2.00</td>
</tr>
<tr>
<td>10. Continue for payment #2; interest portion</td>
<td>R/S -699.72</td>
</tr>
<tr>
<td>of payment #2 is shown</td>
<td></td>
</tr>
<tr>
<td>11. Display principal portion of payment #2</td>
<td>R/S -32.07</td>
</tr>
<tr>
<td>12. Display remaining balance after payment</td>
<td>R/S 79,936.14</td>
</tr>
<tr>
<td>#2</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The program could be continued until all 360 payments had been amortized.
12C Programs

PROGRAM 4: ADJUSTABLE RATE MORTGAGE

PROGRAM DESCRIPTION
Given the initial rate, the term of the loan, and the periodic and lifetime "caps," this program shows prospective borrowers a "worst case" scenario of their maximum monthly payment each year of the loan until the maximum possible payment has been reached.

STORED INPUT
1. The number 324 is placed in STO 1. This number assumes you are calculating a 1 year adjustment period. If you are calculating any other adjustment period, use the correct number given below:

 6 month a.r.m.------ 342
 2 year a.r.m.------- 288
 3 year a.r.m.------- 252

2. Store the periodic cap (the maximum rate increase per adjustment period), divided into monthly payments, in STO 2. If a loan has a 2% periodic cap, press "2," press g i, then press STO 2.

3. Store the final rate increase in STO 3. If a loan had a 2% periodic cap and a 5% lifetime cap, for instance, you would store 1/12 of 2 in STO 2 and 1/12 of 1 in STO 3; the loan would have risen a maximum of 4% over its first two adjustment periods, leaving a maximum 1% increase before reaching the lifetime cap.

NOTES
1. Lines 5 and 6 assume a 1 year adjustment period. A remaining balance after one year has been calculated (lines 1-3), and the 12C automatically adds 12 months to the original 360 month term when this is done. Therefore, 24 months need to be subtracted to get the loan to the correct number of payments remaining after 12 payments have been made (372 - 24 = 348).

 If you are calculating an a.r.m. with an adjustment period other than 1 year, substitute the correct number to be subtracted as shown below:

 6 month a.r.m. line 5 = 1; line 6 = 2 (subtracts 12 months)
 2 year a.r.m. line 5 = 4; line 6 = 8 (subtracts 48 months)
 3 year a.r.m. line 5 = 7; line 6 = 2 (subtracts 72 months)
2. The number stored in STO 1 is a "test value" used to "branch" the program forward at the proper time. When the program reaches line 10, the stored number "324," is recalled and placed in the "x" register; line 11 then switches it with the number in the "y" register, the number of months currently remaining on the loan, calculated in line 8.

For the first two run-throughs of the program, the number of months remaining is greater than the test number: 348 months and 336 months. Line 12 tests whether the number in the "x" register (348 and then 336) is less then or equal to the test number (324). Since it is not during the first two passes, the program skips line 13, which is the instruction to go to line 21. It recalls the last interest rate (line 14), adds the correct monthly rate for a 2% maximum increase (lines 15 & 16), then calculates the new payment. The program then goes back to line 01 when it reaches the instruction in line 20.

When line 12 is reached the third time, the number in the "x" register is 324 and the number in the "y" register is 324 (the number of months remaining in the loan, which had been in the "x" register). Since the number in the "x" register is equal to the number in the "y" register, the program continues to line 13, the instruction to go to line 21. The latest interest rate is recalled (line 21) and the monthly rate for a 1% increase is added (lines 22 and 23) since two 2% caps have already been added and there is a 5% maximum rate increase. The payment is calculated at this new, maximum rate.

Although not covered in detail in our text, "branching" and "looping" can help save program lines by making programs go backward or forward at a certain point. For more on these techniques, see Section 9: "Branching and Looping" in your HP-12C "Owner's Handbook and Problem-Solving Guide".

ENTERING THE PROGRAM

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1</td>
<td>01- 1</td>
<td>Amortizes the 1st 12 payments & gives a remaining balance after the 1st year</td>
</tr>
<tr>
<td>2. 2</td>
<td>02- 2</td>
<td></td>
</tr>
<tr>
<td>3. f n</td>
<td>03- 42 11</td>
<td></td>
</tr>
<tr>
<td>4. RCL n</td>
<td>04- 45 11</td>
<td>Recalls n, now 12 payments more than original number of payments</td>
</tr>
</tbody>
</table>

(contd.)
12C Programs

<table>
<thead>
<tr>
<th>Step</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>2</td>
<td>05-2 Subtracts 24 payments; result is correct # of payments at start of year #2</td>
</tr>
<tr>
<td>6.</td>
<td>4</td>
<td>06-4 Enters new # of payments</td>
</tr>
<tr>
<td>7.</td>
<td>-</td>
<td>07-30 Recalls test value</td>
</tr>
<tr>
<td>8.</td>
<td>n</td>
<td>08-11 Enters new # of payments into stack registers</td>
</tr>
<tr>
<td>9.</td>
<td>ENTER</td>
<td>09-36 Enters new # of payments into stack registers</td>
</tr>
<tr>
<td>10.</td>
<td>RCL 1</td>
<td>10-45 1 Recallstest value</td>
</tr>
<tr>
<td>11.</td>
<td>x≈y</td>
<td>11-34 Places test value in y register; places remaining payments in x register</td>
</tr>
<tr>
<td>12.</td>
<td>g x≤y</td>
<td>12-43 34 Tests whether value in x register is equal to or greater than the value in y register</td>
</tr>
<tr>
<td>13.</td>
<td>g GTO 21</td>
<td>13-43,33 21 Instruction followed if line 12 is true</td>
</tr>
<tr>
<td>14.</td>
<td>RCL i</td>
<td>14-45 12 Recalls last interest rate used</td>
</tr>
<tr>
<td>15.</td>
<td>RCL 2</td>
<td>15-45 2 Adds 2% + 12 to rate in line 14</td>
</tr>
<tr>
<td>16.</td>
<td>+</td>
<td>16-40 Enters result of line 16 as new interest rate</td>
</tr>
<tr>
<td>17.</td>
<td>i</td>
<td>17-12 Calculates new payment</td>
</tr>
<tr>
<td>18.</td>
<td>PMT</td>
<td>18-14 Stops program so that payment is displayed</td>
</tr>
<tr>
<td>19.</td>
<td>R/S</td>
<td>19-31 Sends program back to line 1 for another run</td>
</tr>
<tr>
<td>20.</td>
<td>g GTO 01</td>
<td>20-43,33 01 Sends program back to line 1 for another run</td>
</tr>
<tr>
<td>21.</td>
<td>RCL i</td>
<td>21-45 12 Recalls latest interest rate; program has gone ahead to this line if line 12 proves false</td>
</tr>
<tr>
<td>22.</td>
<td>RCL 3</td>
<td>22-45 3 Recalls last possible rate increase</td>
</tr>
<tr>
<td>23.</td>
<td>+</td>
<td>23-40 Adds last possible increase to last rate used</td>
</tr>
<tr>
<td>24.</td>
<td>i</td>
<td>24-12 Enters maximum interest rate</td>
</tr>
<tr>
<td>25.</td>
<td>PMT</td>
<td>25-14 Calculates maximum possible payment</td>
</tr>
</tbody>
</table>

RUNNING THE PROGRAM

1. Make sure calculator is in "run" mode
2. Clear registers
3. Enter data into STO 1-3
4. Calculate the loan payment for the desired loan.
5. Enter g GTO and the starting line of this program, if necessary.
6. Press R/S to begin the program: the number which appears in the display is the maximum payment for the next period (year #2 in a 1 year a.r.m., for example).
7. Press R/S again: the number which next shows in the display will be the maximum payment for the next adjustment period.
8. Press R/S one additional time; the number appearing in the display will be the highest loan payment the borrower would have over the life of the loan.
PROBLEM #41
You are considering an $80,000 a.r.m. with an initial interest rate of 7.5% and a term of 30 years. The maximum annual cap is 2%, and the maximum lifetime cap is 5%. Using the a.r.m. program, calculate a "worst case" scenario.

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clear all registers</td>
<td>f REG</td>
<td>0.00</td>
</tr>
<tr>
<td>2. Store test value</td>
<td>324 STO 1</td>
<td>324.00</td>
</tr>
<tr>
<td>3. Store maximum periodic rate increase as a monthly increase</td>
<td>2 g i STO 2</td>
<td>0.17</td>
</tr>
<tr>
<td>4. Store maximum final rate increase as a monthly increase</td>
<td>1 g i STO 3</td>
<td>0.08</td>
</tr>
<tr>
<td>5. Enter loan data:</td>
<td>80000 PV 7.5 g i 360 n</td>
<td>80,000.00 0.63 360.00</td>
</tr>
<tr>
<td>6. Calculate 1st year payment</td>
<td>PMT</td>
<td>-559.37</td>
</tr>
<tr>
<td>7. Calculate maximum 2nd year payment</td>
<td>R/S</td>
<td>-670.62</td>
</tr>
<tr>
<td>8. Calculate maximum 3rd year payment</td>
<td>R/S</td>
<td>-786.32</td>
</tr>
<tr>
<td>9. Calculate maximum possible payment</td>
<td>R/S</td>
<td>-845.25</td>
</tr>
</tbody>
</table>

PROGRAM 5: AFTER-TAX PAYMENT ESTIMATE

PROGRAM DESCRIPTION
This program provides an estimate of the borrower's true, after-tax payment. The final amount displayed is the result of subtracting tax deductions for interest and taxes from the borrower's monthly p.i.t.i. payment.

STORED INPUT
1. Place the property taxes in STO 1.
2. Place the buyer's estimated tax bracket in STO 2.
3. Place the total of the monthly property taxes, homeowner's insurance, any homeowner's or condominium fee and any p.m.i. or m.i.p. in STO 3.
12C Programs

NOTES
1. If desired, an R/S instruction can be placed after line 11. If this is done, the program will stop and display the tax savings.

2. The program does not take into account the $5,000 standard deduction taken by those prospects who have not been itemizing their deductions, such as first-time homebuyers. If you wish to take this into consideration, add the following lines between lines 9 and 10:

 10. 416.67
 11. -

 (1/12 of the yearly $5,000 deduction)
 (Subtracts the monthly standard deduction from the total monthly interest/tax deduction)

ENTERING THE PROGRAM

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1</td>
<td>01- 1</td>
<td>Calculates 1st year's interest</td>
</tr>
<tr>
<td>2. 2</td>
<td>02- 2</td>
<td></td>
</tr>
<tr>
<td>3. f AMORT</td>
<td>03- 42 11</td>
<td>Calculates average monthly interest</td>
</tr>
<tr>
<td>4. 1</td>
<td>04- 1</td>
<td></td>
</tr>
<tr>
<td>5. 2</td>
<td>05- 2</td>
<td></td>
</tr>
<tr>
<td>6. +</td>
<td>06- 10</td>
<td>Changes negative interest # to a positive</td>
</tr>
<tr>
<td>7. CHS</td>
<td>07- 16</td>
<td></td>
</tr>
<tr>
<td>8. RCL 1</td>
<td>08- 45 1</td>
<td>Recalls monthly property taxes</td>
</tr>
<tr>
<td>9. +</td>
<td>09- 40</td>
<td>Adds property taxes & interest</td>
</tr>
<tr>
<td>10. RCL 2</td>
<td>10- 45 2</td>
<td>Recalls buyer's estimated tax bracket</td>
</tr>
<tr>
<td>11. %</td>
<td>11- 25</td>
<td>Calculates interest & taxes saved</td>
</tr>
<tr>
<td>12. STO 4</td>
<td>12- 44 4</td>
<td>Stores tax savings in register 4</td>
</tr>
<tr>
<td>13. RCL PMT</td>
<td>13- 45 14</td>
<td>Recalls p.i. payment</td>
</tr>
<tr>
<td>14. CHS</td>
<td>14- 16</td>
<td>Changes p.i. to a positive number</td>
</tr>
<tr>
<td>15. RCL 3</td>
<td>15- 45 3</td>
<td>Recalls total taxes, insurance, homeowners/condo fee + p.m.i./m.i.p.</td>
</tr>
<tr>
<td>16. +</td>
<td>16- 40</td>
<td>Calculates total p.i.t.i. + homeowners/condo fee + p.m.i./m.i.p.</td>
</tr>
<tr>
<td>17. RCL 4</td>
<td>17- 45 4</td>
<td>Recalls tax savings</td>
</tr>
<tr>
<td>18. -</td>
<td>18- 30</td>
<td>Subtracts tax savings; result = estimated after-tax payment</td>
</tr>
</tbody>
</table>
RUNNING THE PROGRAM

1. Clear all registers (f REG)

2. Store the monthly property taxes in STO 1.

3. Store the buyer's estimated tax bracket in STO 2. Store it as a whole number, not a percentage (i.e., "28" not ".28").

4. Store the total of the following in STO 3: monthly property taxes, homeowner's insurance, any homeowner's or condominium fee, any p.m.i. or m.i.p. payment.

5. Calculate the loan payment in the usual manner.

6. With the loan payment in the display, press R/S. The number which appears will be the buyer's approximate after-tax house payment.

PROBLEM #42: BUYER'S AFTER-TAX PAYMENT ESTIMATE

A buying couple hesitates at buying a home which would require an $80,000 loan, monthly payments, written at 10¼% for 30 years. The home has monthly property taxes of $100 and homeowner's insurance of $20 per month. There is no homeowner's/condo fee or p.m.i. To close the sale, you show them what an estimate of what their $851.79 p.i.t.i. payment would be after taxes. They are in the 28% tax bracket. What would the after-tax payment be?

PROCEDURE

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clear all registers</td>
<td>f REG 0.00</td>
</tr>
<tr>
<td>2. Store monthly property taxes</td>
<td>100 STO 1 100.00</td>
</tr>
<tr>
<td>3. Store tax bracket</td>
<td>28 STO 2 28.00</td>
</tr>
<tr>
<td>4. Store total of taxes & insurance</td>
<td>120 STO 3 120.00</td>
</tr>
<tr>
<td>5. Calculate monthly mortgage payment</td>
<td>80000 PV 80,000.00</td>
</tr>
<tr>
<td></td>
<td>10.5 g i 0.88</td>
</tr>
<tr>
<td></td>
<td>360 n 360.00</td>
</tr>
<tr>
<td></td>
<td>PMT -731.79</td>
</tr>
<tr>
<td>6. Calculate after-tax payment estimate</td>
<td>R/S 628.23</td>
</tr>
</tbody>
</table>
PROGRAM 6: ANNUAL PERCENTAGE RATE

PROGRAM DESCRIPTION
This program calculates the annual percentage rate (a.p.r.) for a loan, taking into account the "points" and other loan fees paid at closing.

STORED INPUT
Store the total of loan fees and points in STO 1.

ENTERING THE PROGRAM

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RCL PV</td>
<td>01- 45 13</td>
<td>Recalls loan amount</td>
</tr>
<tr>
<td>2. RCL 1</td>
<td>02- 45 1</td>
<td>Recalls loan fees</td>
</tr>
<tr>
<td>3. -</td>
<td>03- 10</td>
<td>Subtracts loan fees from loan to reflect actual amount received</td>
</tr>
<tr>
<td>4. PV</td>
<td>04- 13</td>
<td>Enters amount received as new PV</td>
</tr>
<tr>
<td>5. i</td>
<td>05- 12</td>
<td>Calculates new monthly interest rate</td>
</tr>
<tr>
<td>6. RCL g i</td>
<td>06- 45,43 12</td>
<td>Calculates annual a.p.r.</td>
</tr>
</tbody>
</table>

RUNNING THE PROGRAM
1. Clear all registers by pressing f REG.
2. Store the estimated loan fees in STO 1.
3. Calculate the loan payment in the usual manner.
4. Press R/S. The number in the display is the a.p.r. for the loan.

PROBLEM #43: DETERMINING ANNUAL PERCENTAGE RATE
You are getting a $78,000 loan, monthly payments, written at 10\% for 30 years. A total of 2 points ($1,560) will be charged at settlement. What is the a.p.r. for the loan?

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clear all registers</td>
<td>f REG</td>
<td>0.00</td>
</tr>
<tr>
<td>2. Store the loan fees in STO 1</td>
<td>1560 STO 1</td>
<td>1,560.00</td>
</tr>
<tr>
<td>3. Calculate the monthly payment</td>
<td>78000 PV</td>
<td>78,000.00</td>
</tr>
<tr>
<td></td>
<td>10.5 g i</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>360 n</td>
<td>360.00</td>
</tr>
<tr>
<td></td>
<td>PMT</td>
<td>-713.50</td>
</tr>
<tr>
<td>4. Calculate the a.p.r.</td>
<td>R/S</td>
<td>10.75</td>
</tr>
</tbody>
</table>
APPENDIX A: THE STACK REGISTERS

One feature of the 12C which saves you time and effort is the "stack registers." These 4 storage areas automatically store numbers you enter into the display or answers to calculations, so that they may be recalled for future use.

WHAT THE STACK REGISTERS DO

The stack registers can be thought of as a record changer; you have four "records" in place on a spindle, waiting to drop on the turntable. The "spindle" is the stacks, the "records" are entries or answers to previous problems, while the "turntable" is the 12C's display.

Each time you enter a number in the display or calculate a loan payment, it automatically goes into the lowest stack; when you hit ENTER, the number is entered into the next highest stack. There are 4 stacks: "X," "Y," "Z" and the top, or "T" stack.

On page 9, we had the following problem:

\[(3 \times 4) + (5 \times 6)\] / 7

The stack registers made it possible for you to do the 4 separate elements of this problem without having to manually store each answer along the way or, as would be required with calculators having only 1 memory storage register, to write down an answer to one part of the problem and then re-enter it later.

The problem would look like this as the stack registers retain different calculations in memory:
Appendix A: The Stack Registers

To use our record player comparison, the "X" register contains the record being played (the number showing in the display). The "Y" stack holds the record (number) ready to drop into play if you need it. Above it is the record (number) in the "Z" stack, and above it is the record (number) in the "T" stack.

When 3 was placed in the window in step 1, for example, it automatically went into the "X" register, the display register; when you hit ENTER in step 2, the 3 stayed in the display register ("X") and was also entered into the next register ("Y") to be held for future use. When you pressed 4, the 4 replaced the 3 in the "X" or display register; when you performed an operation, in this case multiplication in step 4 by pressing x, the bottom 2 registers were combined. The numbers in the "X" and "Y" registers were multiplied, thus giving you "12" in your display.

When you press ENTER, the number in your display moves into the "Y" stack; any number in the "Y" stack moves up into the "Z" stack, and any number in the "Z" stack moves to the top, or "T," stack. If there was a number in the "T" stack, it is lost.

Any operation (add, subtract, multiply or divide) you perform combines the numbers in the bottom 2 stack registers. This occurred in steps 4, 8, 9 and 11. Note that when the bottom 2 numbers are combined, the numbers in the stack registers above drop down one register. When you multiplied 6 x 5 in step 8, for example, the 12 in the "Z" register dropped to the "Y" register, ready for future use.

Making the Stacks Work for You

Having numbers stored in the stack registers allows you to bring them back into the display for use in other problems. Two keys make this possible:

\[\text{x} \rightarrow \text{y} \] Key #34. Exchanges the numbers stored in the "X" and "Y" registers. It allows you to bring into the display the answer to the last problem you worked on without losing the number currently in your display.

In the above problem, for example, pressing \[\text{x} \rightarrow \text{y} \] after having performed step 7 would have put "5" in your window, ready to be used in a problem, while the "6" which had been in the "X" register would have been stored in the "Y" register.

\[\text{R} \uparrow \] Key #33. Causes the number in each stack register to drop into the next lowest register. When it is pressed, the number formerly in "X" register goes to the top, or "T" register.
Appendix A: The Stack Registers

R↓ allows you to roll through the stack registers so that you can recover a previous number to use in a current calculation. If, for example, you wanted to recover the "12" stored in the "Z" register after step 6, you would press the R↓ 2 times; the "12" would appear in the display. Meanwhile, the 5's would have moved to the "Z" and "T" registers, ready to be recalled if you needed them.

PROBLEM #44: USING R↓

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Multiply 28 by 12</td>
<td>28 ENTER 12 x</td>
<td>336.00</td>
</tr>
<tr>
<td>2. Divide 3 by 4</td>
<td>3 ENTER 4 +</td>
<td>0.75</td>
</tr>
<tr>
<td>3. Add 28 and 2</td>
<td>28 ENTER 2 +</td>
<td>30.00</td>
</tr>
<tr>
<td>4. Recall the answer from step #1</td>
<td>R↓ R↓</td>
<td>336.00</td>
</tr>
<tr>
<td>5. Divide the number by 12.5</td>
<td>12.5 +</td>
<td>26.88</td>
</tr>
</tbody>
</table>

NOTE: By looking at the right hand column above, you can see what was happening in the stacks as you did the problem. You first answer, 336.00, gets pushed up in the stacks by the next 2 answers. After you finish step 3, and 30 is showing in the display, the other 2 answers are right on top of it. Pressing R↓ twice would bring 336.00 back into the display.

PROBLEM #45: Calculate 90%, 85% and 75% loans for a $120,000 purchase

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clear all registers</td>
<td>f REG</td>
<td>0.00</td>
</tr>
<tr>
<td>2. Enter sales price</td>
<td>120000 ENTER</td>
<td>120,000.00</td>
</tr>
<tr>
<td>3. Calculate 90% loan</td>
<td>90 %</td>
<td>108,000.00</td>
</tr>
<tr>
<td>4. Recall sales price</td>
<td>R↓</td>
<td>120,000.00</td>
</tr>
<tr>
<td>5. Calculate 85% loan</td>
<td>85 %</td>
<td>102,000.00</td>
</tr>
<tr>
<td>6. Recall sales price</td>
<td>R↓</td>
<td>120,000.00</td>
</tr>
<tr>
<td>7. Calculate 75% loan</td>
<td>75 %</td>
<td>90,000.00</td>
</tr>
</tbody>
</table>

NOTE: When calculating percentages using the % key, the numbers in the X and Y registers do not combine, as they do when multiplying, adding, subtracting or dividing. The original number, 120,000 in the above problem, remains intact.
Appendix A: The Stack Registers

USING CONSTANTS

There are times when using a "constant" number is useful. An example would be calculating individual year's appreciation. The stack registers allow you to do this.

When performing arithmetic operations such as adding, multiplying, dividing or subtracting, the bottom 2 registers combine, and the stacks "drop": what was in the Z register drops into the Y register. Whatever is in the T register, however, does not drop. It remains there and can be used as a constant. The following problem illustrates a procedure known as "loading the stacks." The number 1.07 represents a 7% appreciation rate per year and is entered three times (if a property appreciates 7%, it is worth 107% of what it was previously; 1.07 is the decimal equivalent of 107%). Each time the x key is pressed, the value in the display is multiplied by 107% and the new value of the property is shown.

PROBLEM #46: Using a constant number

You are showing a property listed at $128,000. To help the buyers make a decision, you show them what the property should be worth each year for 3 years if your area's historical appreciation rate of 7% per year continues.

PROCEDURE	**PRESS**	**DISPLAY**
1. Clear all registers | f REG | 0.00
2. Enter 1.07 as a constant | 1.07 ENTER ENTER | 1.07
3. Key in property's original value | 128000 | 128,000
4. Calculate value after 1 year | x | 136,960.00
5. Calculate value after 2 years | x | 146,547.20
6. Calculate value after 3 years | x | 156,805.50

NOTES:
1. This procedure could be continued. If you wanted to find the approximate value at the end of the 8th year, for example, you would press the x key 5 more times.
2. If you simply wanted to show value at the end of one particular year, you would not need to load the stack registers. If you just wanted to calculate value at the end of the 3rd year, for example, you would enter 128000 as PV, 7 as i, 3 as n, and press FV.
APPENDIX B: CONVENTIONAL QUALIFYING FORM

STEP ONE: Determine Maximum Allowable Loan Payment (Max. p.i.)
Complete both columns below, using whatever qualifying ratios your lenders are using. The purchaser's maximum allowable loan payment will be the lesser of (A) or (B).

$_________ Gross Annual Income

$_________ Gross Monthly Income

\[\begin{align*}
X 28\% &= \text{_______ (piti)} \\
&= \text{_____ (Est. taxes)} \\
&= \text{_____ (Est. insurance)} \\
&= \text{_____ (Est. p.m.i.)} \\
&= \text{_____ (Est. h.o.a./condo)} \\
&= \text{(A)} \\

X 36\% &= \text{_______ (piti + debts)} \\
&= \text{_____ (Est. taxes)} \\
&= \text{_____ (Est. insurance)} \\
&= \text{_____ (Est. p.m.i.)} \\
&= \text{_____ (Est. h.o.a./condo)} \\
&= \text{_____ (Monthly debts)} \\
&= \text{(B)}
\end{align*} \]

STEP TWO: Determine The Purchaser's Maximum Loan Amount

A. Research loans offered by local lenders: fixed rate and a.r.m.'s

B. Use the lesser of the two amounts above together with the rate and term of each lender's offering. Remember to use the qualifying rate, not the payment rate, for a.r.m.'s. if both rates are given.

C. Enter your data into a financial calculator and compute several maximum loan amounts.

1. The lesser of the two amounts above will be PMT
2. The rate offered will be i
3. The term offered will be n
4. Solve for PV
APPENDIX C: V.A./F.H.A. QUALIFYING FORM

Gross Annual Income $_______
Gross Monthly Income $_______

Subtract The Following:
1. Monthly Federal Tax Withheld - _______
2. Monthly State Tax Withheld - _______
3. Social Security - _______
 -or-
 Govt. Retirement Tax - _______
 -or-
 Self-Employment Tax - _______

= _______

Add Any Non-Taxable Income + _______

Total Qualifying Income: = _______

Subtract The Following: (over 70K loan)
1. Single Adult....$ 393 - _______
 Family of 2......$ 658
 " 3......$ 792
 " 4......$ 893
 " 5......$ 925
 (Add $75 for each additional family member up to 7)

2. Long Term Debts - _______
 VA: over 6 months
 FHA: over 12 months

3. Maintenance & Utilities - _______

TOTAL AMOUNT AVAILABLE FOR P.I.T.I. = _______
PRACTICE PROBLEMS

BASIC CALCULATOR OPERATIONS
(Answers begin on page 86)

1. 25 + 31.6
2. 25 + 31.6 + 8
3. 3 + 20
4. (10 + 2) + 12
5. (89 + 14) + (6 x 4)
6. (43 + 13) - (9 x 16)
7. (16 + 5) + (12 - 8)
 8
 8 + 12) + (10 + 4)

STORAGE REGISTERS
(Answers begin on page 86)

8. A. Store the number 24 in register 0
 B. Add 2 plus 4
 C. Recall the number in register 0

9. A. Store the number 15 in register .0 and the number 2 in register 6
 B. Divide 12 by 8
 C. Recall the numbers in the storage registers

10. Replace the number 15 in register .0 with the number 45.

DATES
(Answers begin on page 87)

11. You are writing a contract on April 27, 1989 and want to close in 45 days. What is the day and date of the settlement? ________________

75
Date Problems

12. It is January 14, 1989, and your youngest child asks you how many days remain until Christmas. Calculate the number of days. _________

13. Determine the day of the week you were born on. _________

PERCENTAGES
(Answers begin on page 87)

14. 20% of 1,280 is _________

15. 20% of $145,000 is _________

16. 35% of 85,000 is _________

17. A buyer wants to put down 15% on an $86,500 home. What is the buyer’s down payment and loan amount?

 Down Payment: _________ Loan Amount: _________

18. A home originally sold for $60,000 and was sold 7 years later for $123,000. What was the total percentage of appreciation for the home? _________%

19. What was the average yearly appreciation for the home in problem #18? _________%

20. Calculate 15% of each of the following numbers:
 a. 123 _________
 b. 1,487 _________
 c. 143,700 _________

21. You earned a total of $185,000 in commissions last year, $92,345 of which came from sales to small investors. What percentage of your commissions came from the investors?

 Investment Commissions: _________% of total commissions
ENTERING RATE AND PERIODS
(Answers begin on page 88)

Calculate the total number of payments or the interest rate per payment in the following problems. Use the gn or gi key combination whenever applicable.

22. 15 year loan, monthly payments _____ total payments
23. 10% interest, monthly payments _____ interest per payment
24. 30 year loan, monthly payments _____ total payments
25. 30 year loan, 9.8% interest, monthly payments _____ interest per payment
26. 30 year loan, 9.8% interest, quarterly payments _____ interest per payment
27. 15 year loan, quarterly payments _____ total payments
28. 10% interest, semi-annual payments _____ interest per payment
29. 30 year loan, quarterly payments _____ total payments

CALCULATING MONTHLY PAYMENT
(Answers begin on page 89)

Calculate the monthly payment for the following loans:

30. Loan Amount: 65,000
 Interest Rate: 10%
 Term: 30 years
 Monthly Payment: __________

31. Loan Amount: 118,000
 Interest Rate: 10½%
 Term: 20 years
 Monthly Payment: __________
Monthly Payment Problems

32. Loan Amount: 135,000
 Interest Rate: 10½%
 Term: 20 years
 Monthly Payment: ______________

33. Loan Amount: 54,000
 Interest Rate: 10½%
 Term: 30 years
 Monthly Payment: ______________

34. Loan Amount: 54,000
 Interest Rate: 9.876%
 Term: 25 years
 Monthly Payment: ______________

35. Loan Amount: 54,000
 Interest Rate: 10½%
 Term: 25 years
 Monthly Payment: ______________

36. Loan Amount: 168,000
 Interest Rate: 10½%
 Term: 30 years
 Monthly Payment: ______________

37. Loan Amount: 172,000
 Interest Rate: 10%
 Term: 30 years
 Monthly Payment: ______________

38. Loan Amount: 172,000
 Interest Rate: 10%
 Term: 20 years
 Monthly Payment: ______________

39. Loan Amount: 125,000
 Interest Rate: 10½%
 Term: 30 years
 Monthly Payment: ______________
Monthly Payment Problems

40. Loan Amount: 67,000
 Interest Rate: 10%
 Term: 25 years
 Monthly Payment:

41. Loan Amount: 67,000
 Interest Rate: 8%
 Term: 25 years
 Monthly Payment:

42. Loan Amount: 72,000
 Interest Rate: 10 1/2%
 Term: 20 years
 Monthly Payment:

43. Loan Amount: 25,000
 Interest Rate: 10 1/2%
 Term: 30 years
 Monthly Payment:

44. Loan Amount: 77,000
 Interest Rate: 10%
 Term: 30 years
 Monthly Payment:

45. Loan Amount: 870,000
 Interest Rate: 10%
 Term: 30 years
 Monthly Payment:

46. Loan Amount: 12,000
 Interest Rate: 10 1/2%
 Term: 20 years
 Monthly Payment:

47. Loan Amount: 125,000
 Interest Rate: 10%
 Term: 30 years
 Monthly Payment:

79
Monthly Payment Problems

48. Loan Amount: 79,000
 Interest Rate: 12%
 Term: 30 years
 Monthly Payment: ___________

49. Loan Amount: 470,000
 Interest Rate: 10\%
 Term: 30 years
 Monthly Payment: ___________

CALCULATING PERIODIC PAYMENT

(Answers begin on page 92)

Calculate whatever periodic payment is called for in the following loans:

50. Loan Amount: 128,000
 Interest Rate: 10\%
 Term: 25 years
 Quarterly Payment: ___________

51. Loan Amount: 89,000
 Interest Rate: 11\%
 Term: 30 years
 Semi-Annual Pmt.: ___________

52. Loan Amount: 245,000
 Interest Rate: 11\%
 Term: 30 years
 Semi-Annual Pmt.: ___________

53. Loan Amount: 100,000
 Interest Rate: 10\%
 Term: 30 years
 Quarterly Payment: ___________

54. Loan Amount: 98,000
 Interest Rate: 9\%
 Term: 30 years
 5 Payments p/yr.: ___________
Periodic Payment Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Loan Amount</th>
<th>Interest Rate</th>
<th>Term</th>
<th>Annual Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.</td>
<td>98,000</td>
<td>9 1/2%</td>
<td>30 years</td>
<td></td>
</tr>
<tr>
<td>56.</td>
<td>120,000</td>
<td>11 1/2%</td>
<td>30 years</td>
<td></td>
</tr>
<tr>
<td>57.</td>
<td>215,000</td>
<td>11 1/2%</td>
<td>30 years</td>
<td></td>
</tr>
<tr>
<td>58.</td>
<td>80,000</td>
<td>10 1/2%</td>
<td>30 years</td>
<td></td>
</tr>
<tr>
<td>59.</td>
<td>198,000</td>
<td>9 1/2%</td>
<td>30 years</td>
<td>5 Payments p/yr.:</td>
</tr>
<tr>
<td>60.</td>
<td>198,000</td>
<td>9 1/2%</td>
<td>30 years</td>
<td></td>
</tr>
</tbody>
</table>
CALCULATING MAXIMUM LOAN AMOUNT
(Answers begin on page 93)

61. Loan Amount: ____________
 Interest Rate: 10%
 Term: 20 years
 Monthly Payment: 687.00

62. Loan Amount: ____________
 Interest Rate: 10%
 Term: 30 years
 Monthly Payment: 687.00

63. Loan Amount: ____________
 Interest Rate: 8 1/2%
 Term: 30 years
 Monthly Payment: 687.00

64. Loan Amount: ____________
 Interest Rate: 10%
 Term: 20 years
 Monthly Payment: 987.00

65. Loan Amount: ____________
 Interest Rate: 10%
 Term: 20 years
 Monthly Payment: 765.00

CALCULATING REMAINING BALANCE
(Answers begin on page 94)

66. Calculate the monthly payment and the remaining balance at the end of the 3rd year for the following loan:

 Loan Amount: 100,000
 Interest Rate: 10%
 Term: 30 years
 Monthly Payment: ____________
 Remaining Balance: ____________
Remaining Balance Problems

67. Calculate the monthly payment and the remaining balance at the end of the 5th year for the same loan:

<table>
<thead>
<tr>
<th>Loan Amount:</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest Rate:</td>
<td>10%</td>
</tr>
<tr>
<td>Term:</td>
<td>30 years</td>
</tr>
<tr>
<td>Remaining Balance:</td>
<td></td>
</tr>
</tbody>
</table>

ACCUMULATED INTEREST AND REMAINING BALANCE
(Answers begin on page 94)

68. Calculate the monthly payment, the accumulated interest and remaining balance at the end of the 3rd year for the following loan.

<table>
<thead>
<tr>
<th>Loan Amount:</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest Rate:</td>
<td>11%</td>
</tr>
<tr>
<td>Term:</td>
<td>30 years</td>
</tr>
<tr>
<td>Monthly Payment:</td>
<td></td>
</tr>
<tr>
<td>Accumulated Interest:</td>
<td></td>
</tr>
<tr>
<td>Remaining Balance:</td>
<td></td>
</tr>
</tbody>
</table>

69. Calculate the quarterly payment, accumulated interest and remaining balance at the end of the 1st year for the following loan.

<table>
<thead>
<tr>
<th>Loan Amount:</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest Rate:</td>
<td>10%</td>
</tr>
<tr>
<td>Term:</td>
<td>30 years</td>
</tr>
<tr>
<td>Quarterly Payment:</td>
<td></td>
</tr>
<tr>
<td>Accumulated Interest:</td>
<td></td>
</tr>
<tr>
<td>Remaining Balance:</td>
<td></td>
</tr>
</tbody>
</table>

70. Calculate the monthly payment, accumulated interest and remaining balance at the end of the 4th year for the following loan.

<table>
<thead>
<tr>
<th>Loan Amount:</th>
<th>68,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest Rate:</td>
<td>10 1/2%</td>
</tr>
<tr>
<td>Term:</td>
<td>25 years</td>
</tr>
<tr>
<td>Monthly Payment:</td>
<td></td>
</tr>
<tr>
<td>Accumulated Interest:</td>
<td></td>
</tr>
<tr>
<td>Remaining Balance:</td>
<td></td>
</tr>
</tbody>
</table>
Accumulated Interest/Remaining Balance Problems

71. Calculate the monthly payment and the total interest paid over the life of the following loan.

<table>
<thead>
<tr>
<th>Loan Amount:</th>
<th>122,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest Rate:</td>
<td>10.4%</td>
</tr>
<tr>
<td>Term:</td>
<td>30 years</td>
</tr>
<tr>
<td>Monthly Payment:</td>
<td>__________</td>
</tr>
<tr>
<td>Accumulated Interest:</td>
<td>__________</td>
</tr>
</tbody>
</table>

PAYMENTS TO INTEREST AND PRINCIPAL
(Answers begin on page 95)

72. You get a $152,000 loan @ 10.4% interest, 30 years, monthly payments. How much would be applied to interest your first year? How much to principal?

Monthly Payment:	__________
1st Year Interest:	__________
1st Year Principal:	__________

73. How much interest would you pay during the 2nd year of the above loan? How much principal?

| 2nd Year Interest: | __________ |
| 2nd Year Principal: | __________ |

74. Calculate the monthly payment, the amount of accumulated interest and the amount paid to principal during the 5th year, and the remaining balance at the end of the 5th year for a $98,000 loan @ 10%, 30 years.

Monthly Payment:	__________
5 Year’s Interest:	__________
5th Year’s Principal:	__________
Remaining Balance:	__________
CALCULATING DISCOUNT AND YIELD
(Answers begin on page 96)

75. Your seller is asked to hold a $15,000 2nd written at 10% for 10 years. Calculate the monthly payment and the price an investor wanting an 18% yield would pay for the note when no payments have been made.

 Monthly Payment: ____________
 Price Investor Would Pay: ____________

76. A note has a balance of $19,316.88 and is written at 10½% with a monthly payment of 221.08. What price would your investor pay if she required a 16% yield?

 Price Investor Would Pay: ____________
SOLUTIONS TO PRACTICE PROBLEMS

BASIC CALCULATOR OPERATIONS

PRESS	**DISPLAY**
1. 25 ENTER 31.6 + | 56.60
2. 8 + | 64.60
(Using information from previous problem)
3. 3 ENTER 20 ÷ | 0.15
4. 10 ENTER 2 + 12 + | 1.00
5. 89 ENTER 14 ÷ | 6.36
6 ENTER 4 x | 24.00
+ | 30.36
6. 43 ENTER 13 + | 56.00
9 ENTER 16 x | 144.00
- | -88.00
8 + | -11.00
7. 16 ENTER 5 + | 3.20
12 ENTER 8 - | 4.00
+ | 7.20
8 ENTER 12 + | 20.00
10 ENTER 4 + | 2.50
+ | 22.50
+ | 0.32

STORAGE REGISTERS

PRESS	**DISPLAY**
8. A. 24 STO 0 | 24.00
B. 2 ENTER 4 + | 6.00
C. RCL 0 | 24.00

86
Storage Register Answers

9. A. 15 STO 0
 2 STO 6
 B. 12 ENTER 8 ÷
 C. RCL 0
 RCL 6

10. 45 STO 0

DATES
(Solutions are shown using the M.DY format)

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. 4.271989 ENTER</td>
<td>4.27</td>
</tr>
<tr>
<td>45</td>
<td>45.</td>
</tr>
<tr>
<td>g DATE</td>
<td>6,11,1989 7</td>
</tr>
<tr>
<td>12. 1.141989 ENTER</td>
<td>1.14</td>
</tr>
<tr>
<td>12.251989 g aDYS</td>
<td>345</td>
</tr>
</tbody>
</table>

13. a) Enter the date 2 days after your birthday
 b) Enter 2 CHS and press g DATE.
 c) The number to the right indicates the day of the week you were born on.

PERCENTAGES

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. 1280 ENTER 20 %</td>
<td>256.00</td>
</tr>
<tr>
<td>15. 145000 ENTER 20 %</td>
<td>29,000.00</td>
</tr>
<tr>
<td>16. 85000 ENTER 35 %</td>
<td>29,750.00</td>
</tr>
<tr>
<td>17. 86500 ENTER 15 %</td>
<td>86,500.00</td>
</tr>
<tr>
<td>-</td>
<td>12,975.00 (Down Payment)</td>
</tr>
<tr>
<td>-</td>
<td>73,525.00 (Loan Amount)</td>
</tr>
<tr>
<td>18. 60000 ENTER 123000 △%</td>
<td>60,000.00</td>
</tr>
<tr>
<td>-</td>
<td>105.00 (105%)</td>
</tr>
</tbody>
</table>
Percentage Answers

19. 7 + 15.00 (15%)

20. a. 123 ENTER 15 % 18.45
 b. 1487 ENTER 15 % 223.05
 c. 143700 ENTER 15 % 21,555.00

21. 185000 ENTER 92,345
 92345 %T 49.92 (49.92%)

ENTERING RATE AND PERIODS

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. 15 g n</td>
<td>180.00</td>
</tr>
<tr>
<td>23. 10 g i</td>
<td>0.83</td>
</tr>
<tr>
<td>24. 30 g n</td>
<td>360.00</td>
</tr>
<tr>
<td>25. 9.8 g i</td>
<td>0.82</td>
</tr>
<tr>
<td>26. 9.8 ENTER 4 ÷ i</td>
<td>2.45</td>
</tr>
<tr>
<td>27. 15 ENTER 4 x n</td>
<td>60.00</td>
</tr>
<tr>
<td>28. 10 ENTER 2 ÷ i</td>
<td>5.00</td>
</tr>
<tr>
<td>29. 30 ENTER 4 x n</td>
<td>120.00</td>
</tr>
</tbody>
</table>
CALCULATING MONTHLY PAYMENT

The following solutions assume you are doing the practice problems in order. Therefore, steps which need not be re-entered because the information has not changed from the previous problem have been omitted.

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>30. f FIN</td>
<td>360.00</td>
</tr>
<tr>
<td>360 n</td>
<td>360.00</td>
</tr>
<tr>
<td>10 g i</td>
<td>0.83</td>
</tr>
<tr>
<td>65000 PV</td>
<td>65,000.00</td>
</tr>
<tr>
<td>PMT</td>
<td>-570.42</td>
</tr>
<tr>
<td>31. f FIN</td>
<td>-570.42</td>
</tr>
<tr>
<td>20 g n</td>
<td>240.00</td>
</tr>
<tr>
<td>10.25 g i</td>
<td>0.85</td>
</tr>
<tr>
<td>118000 PV</td>
<td>118,000.00</td>
</tr>
<tr>
<td>PMT</td>
<td>-1,158.34</td>
</tr>
<tr>
<td>32. 10.75 g i</td>
<td>0.90</td>
</tr>
<tr>
<td>135,000 PV</td>
<td>135,000.00</td>
</tr>
<tr>
<td>PMT</td>
<td>-1,370.56</td>
</tr>
<tr>
<td>(You did not have to re-enter the number of payments, since they were the same as in problem 31.)</td>
<td></td>
</tr>
<tr>
<td>33. f FIN</td>
<td>-1,370.56</td>
</tr>
<tr>
<td>360 n</td>
<td>360.00</td>
</tr>
<tr>
<td>10.5 g i</td>
<td>0.88</td>
</tr>
<tr>
<td>54000 PV</td>
<td>54,000.00</td>
</tr>
<tr>
<td>PMT</td>
<td>-493.96</td>
</tr>
<tr>
<td>34. 25 g n</td>
<td>300.00</td>
</tr>
<tr>
<td>9.876 g i</td>
<td>0.82</td>
</tr>
<tr>
<td>PMT</td>
<td>-485.99</td>
</tr>
<tr>
<td>(Loan amount remains from previous problem)</td>
<td></td>
</tr>
<tr>
<td>35. 10.25 g i</td>
<td>0.85</td>
</tr>
<tr>
<td>PMT</td>
<td>-500.25</td>
</tr>
<tr>
<td>(Loan amount and term did not change from previous problem)</td>
<td></td>
</tr>
</tbody>
</table>
Monthly Payment Answers

36.

f FIN	-500.25
360 n	360.00
10.5 g i	0.88
168,000 PV	168,000.00
PMT	-1,536.76

37.

10 g i	0.83
172,000 PV	172,000.00
PMT	-1,509.42

(Number of payments did not change from previous problem)

38.

| 20 g n | 240.00 |
| PMT | -1,659.84 |

(Loan amount and interest rate did not change)

NOTE: Remember that pressing R↓ three times, will display the answers to the last 3 problems.

39.

f FIN	360.00
360 n	360.00
10.75 g i	0.90
125,000 PV	125,000.00
PMT	-1,166.85

40.

f FIN	-1,166.85
25 g n	300.00
10 g i	0.83
67,000 PV	67,000.00
PMT	-608.83

41.

| 8 g i | 0.67 |
| PMT | -517.12 |

(Term and loan amount did not change)

42.

f FIN	-517.12
20 g n	240.00
10.5 g i	0.88
72,000 PV	72,000.00
PMT	-718.83
Monthly Payment Answers

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>43.</td>
<td>360 n</td>
<td>360.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25000 PV</td>
<td>25,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PMT</td>
<td>-228.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Rate did not change)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

44.	10 g i	0.83
	77000 PV	77,000.00
	PMT	-675.73
	(Term did not change)	

45.	870000 PV	870,000.00
	PMT	-7,634.87
	(Term and rate did not change)	

46.	f FIN	-7,634.87
	20 g n	240.00
	10.5 g i	0.88
	12000 PV	12,000.00
	PMT	-119.81

47.	f FIN	-119.81
	360 n	360.00
	10 g i	0.83
	125000 PV	125,000.00
	PMT	-1,096.96

48.	12 g i	1.00
	790000 PV	79,000.00
	PMT	-812.60
	(Term did not change)	

49.	10.5 g i	0.88
	470000 PV	470,000.00
	PMT	-4,299.27
	(Term did not change)	
CALCULATING PERIODIC PAYMENT

50. PRESS
 f FIN
 100 n
 10.5 ENTER 4 ÷ i
 128000 PV
 PMT
 DISPLAY
 -4,299.27
 100.00
 2.63
 128,000.00
 -3,632.18

51. PRESS
 f FIN
 60 n
 11 ENTER 2 ÷ i
 89000 PV
 PMT
 DISPLAY
 -3,632.18
 60.00
 5.50
 89,000.00
 -5,100.33

52. PRESS
 245000 PV
 PMT
 (Rate and term did not change)
 245,000.00
 -14,040.23

53. PRESS
 f FIN
 120 n
 10.75 ENTER 4 ÷ i
 100000 PV
 PMT
 DISPLAY
 -14,040.23
 120.00
 2.69
 100,000.00
 -2,803.82

54. PRESS
 f FIN
 150 n
 9.5 ENTER 5 ÷ i
 98000 PV
 PMT
 DISPLAY
 -2,803.82
 150.00
 1.90
 98,000.00
 -1,979.61

55. PRESS
 30 n
 9.5 i
 PMT
 (Loan amount did not change)
 30.00
 9.50
 -9,964.70

56. PRESS
 f FIN
 30 ENTER 4 x n
 11.5 ENTER 4 ÷ i
 120000 PV
 PMT
 DISPLAY
 -9,964.70
 120.00
 2.88
 120,000.00
 -3,568.95

92
Periodic Payment Answers

57. 11.75 ENTER 4 + i
215000 PV
PMT -6,517.58
(Number of payments did not change)

58. 10.5 ENTER 4 + i
80000 PV
PMT -2,198.10
(Number of payments did not change)

59. f FIN
30 ENTER 5 x n
9.5 ENTER 5 + i
198000 PV
PMT -3,999.62

60. 30 n
9.5 i
PMT -20,132.76
(Loan amount did not change)

CALCULATING MAXIMUM LOAN AMOUNT
(Note: With actual loans, the loan amount would be rounded down to the next nearest $50)

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>61. f FIN</td>
<td>-20,132.76</td>
</tr>
<tr>
<td>20 g n</td>
<td>240.00</td>
</tr>
<tr>
<td>10 g i</td>
<td>0.83</td>
</tr>
<tr>
<td>687 CHS PMT</td>
<td>-687.00</td>
</tr>
<tr>
<td>PV</td>
<td>71,190.11</td>
</tr>
</tbody>
</table>

(Payment was entered as a negative; it can be entered as a positive, without pressing CHS, and loan amount will be shown as a negative.)

62. 360 n
PV 78,284.21
(Rate and payment did not change)
Maximum Loan Amount Answers

63. 8.5 g i 0.71
PV 89,346.85
(Payment and term did not change)

64. 987 CHS PMT -987.00
240 n 240.00
10 g i 0.83
PV 102,277.50

65. 765 CHS PMT -765.00
PV 79,272.83
(Rate and term did not change)

CALCULATING REMAINING BALANCE

PRESS DISPLAY
66. f FIN 79,272.83
30 g n 360.00
10 g i 0.83
100000 PV 100,000.00
PMT -877.57
36 n FV -98,151.65

67. 60 n FV -96,574.32
(No loan elements needed to be re-entered)

CALCULATING ACCUMULATED INTEREST/REMAINING BALANCE

PRESS DISPLAY
68. f FIN -96,574.32
360 n 360.00
11 g i 0.92
100000 PV 100,000.00
PMT -952.32
36 f AMORT -32,771.03
RCL PV 98,487.51
Accumulated Interest/Remaining Balance Answers

69. f FIN
 120 n 120.00
 10 ENTER 4 + i 2.50
 100000 PV 100,000.00
 PMT -2,636.18
 4 f AMORT -9,979.24
 RCL PV 99,434.52

70. f FIN 98,121.34
 25 g n
 10.5 g i 0.88
 68000 PV 68,000.00
 PMT -642.04
 48 f AMORT -28,026.77
 RCL PV 65,208.85

71. f FIN 65,208.85
 360 n 360.00
 10.75 g i 0.90
 122000 PV 122,000.00
 PMT -1,138.85
 360 f AMORT -287,978.75

PAYMENTS TO INTEREST AND PRINCIPAL

PRESS DISPLAY
72. f FIN 65,208.85
 30 g n 360.00
 10.75 g i 0.90
 152000 PV 152,000.00
 PMT -1,418.89
 12 f AMORT -16,305.13
 x≈y -721.55

73. 12 f AMORT -16,223.63
 x≈y -803.05
Interest/Principal Payment Answers

74.
 f FIN
 30 g n 360.00
 10 g i 0.83
 98000 PV 98,000.00
 PMT -860.02
 60 f AMORT -48,244.03
 x= y -3,357.17
 RCL PV 94,642.83

CALCULATING DISCOUNT AND YIELD

<table>
<thead>
<tr>
<th>PRESS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.</td>
<td>f FIN</td>
</tr>
<tr>
<td>10 g n</td>
<td>120.00</td>
</tr>
<tr>
<td>10 g i</td>
<td>0.83</td>
</tr>
<tr>
<td>15000 PV</td>
<td>15,000.00</td>
</tr>
<tr>
<td>PMT</td>
<td>-198.23</td>
</tr>
<tr>
<td>18 g i</td>
<td>1.50</td>
</tr>
<tr>
<td>PV</td>
<td>11,001.24</td>
</tr>
</tbody>
</table>

76.	f FIN
10.5 g i	0.88
19316.88 CHS PV	-19,316.88
221.08 PMT	221.08
n	166.00
16 g i	1.33
PV	-14,741.40
INDEX

% 18
%T 18
12x 20

Accumulated Interest and Remaining Balance 32, 37
AMORT 20
Appreciation:
 Using Constant 72
 Using FV 72

Basic Math Operations 7-9
BEGIN 5
Branching & Looping 63
BST 46, 47

c 5
CFj 21
Cfo 21
CHS 16, 24, 28
Clearing the Financial Registers 24
CLx 4, 7
Constants 72
Conventional Qualifying Form 73

D.MY 5, 14, 16
Data Storage Registers 10, 11, 13, 52
DATE 15
Dates 14-17
 Day-Month-Year 5, 14
 Days Between Dates 16
 Future Dates 15
 Past Dates 16
Determining Interest Rate 29
Discount 38-40

Display 5
 Clearing 4, 7, 11, 13, 24
 Clearing Indicators 5
 Data Retained While Calculator Off 6
Early Payoff Loan 30
ENTER 4, 69

f 3, 4
f FIN 13, 24
f REG 13
Financial Registers 11
 Clearing 13
 Recalling Loan Data 26
FV 20-22, 25, 30, 72

GTO 45, 46, 48-50, 52, 53

i 20, 21, 23
INT 21
Interest Only Payments 36
IRR 4, 21

Keys 2-4
 Arrangement 2
 Functions 2-4, 10-13, 20, 29
 Loading Loan Keys 22
 Numbering 2

Loan Keys 20
LSTx 12, 13

M.DY 5, 14-16
Maximum Loan Amount 28, 73
MEM 43, 51
Memory Functions 10-13

n 20-23
Nj 4, 21
Non-Amortized Loans 36, 37
NPV 3, 21

ON 4

P/R 43
Payments 11, 20, 21
 A.R.M. 26, 62
 Amortized 25-27, 36, 61
 As a Negative 24, 28, 37
 Monthly 20-23, 25, 26
 Quarterly 27
 Recalling 26
 Semi-Annual 27
Payments to Interest and Principal 34, 35
Percentage Keys 18, 19
PMT 21, 22, 24
Practice Problems 75-85
 Solutions 86-96
PRGM 5, 13, 43
Principal, Interest and Remaining Balance 35
Programs:
 Adjustable Rate Mortgage 62
 After-Tax Payment Estimate 65
 Amortizing a Loan 60
 Annual Percentage Rate 68
 Maximum P.I. - Conventional 54
 Maximum P.I., V.A./F.H.A. 57
Programming 41-53
 Changing Individual Lines 50
 Determining Available Memory 51
 Entering 44, 52
 Keys 43
 Lines 43, 50
 Multiple Programs 52
 Reviewing 45-48
 Running 49, 53
 Starting Information 49
 Steps 42
 Writing 42
Prorations 17
PSE 43, 49, 60
PV 20-23

R↓ 70
R/S 43
RCL 10
Remaining Balance 30-33
 Amortized Loan 30-32, 35
 Non-Amortized Loan 37
RND 21

SST 46-48
Stack Registers 9, 12, 64, 69-72
 Clearing 13
STO 10

V.A./F.H.A. Qualifying Form 74

\(xy \) 34, 70

Yield 29, 38-40

\(A\% \) 18, 19
\(A\text{DYS} \) 15-17
INNOVATIVE REAL ESTATE FINANCING TECHNIQUES ($85.00)
This six cassette album, taped at a full day Allen F. Hainge "Innovative Financing Seminar," gives you specific innovative financing strategies designed to help you earn more commissions! Contents include:

- Review of some of the more complicated institutional financing techniques (g.p.m.'s, large V.A. loans, etc.)
- 12 ways to increase a buyer's loan capability
- 22 ways to help the cash poor buyer
- How to structure seller-held mortgages
- How to sell seller-held mortgages at little or no discount
- How to present seller-held options to your sellers
- Case studies of innovative techniques used by top producers nationwide
- 32 page workbook containing details on all strategies

REAL ESTATE FINANCING FOR THE RESIDENTIAL AGENT (Price to be announced)
Scheduled for publication in the fall of '89, "Real Estate Financing for the Residential Agent" is designed to make you the financing expert in your office. This easy-to-use manual includes:

- Easy qualifying methods for all loans
- Conventional, V.A. and F.H.A. underwriting guidelines
- Working with fixed rate, a.r.m. and g.p.m. loans
- State funded loan programs
- How lenders look at borrowers
- Smoothing out loan processing
- Conducting the qualifying interview
- How to work with appraisers
- Assumption financing

45 DAY MONEY-BACK GUARANTEE: If you feel either product won't help you dramatically increase your commission income, simply return the product within 45 days of purchase for a full refund.

___ PLEASE RUSH ME "INNOVATIVE REAL ESTATE FINANCING TECHNIQUES." I understand that if I'm not completely satisfied, I may return my order within 45 days for a full refund. Enclosed is $85 for the tapes and manual.

___ Please notify me when "REAL ESTATE FINANCE FOR THE RESIDENTIAL AGENT" is published.

NAME: ___________________________ OFFICE PHONE: ____________
STREET: __________________________ HOME PHONE: ____________
CITY: ____________ STATE: ____________ ZIP: ____________

___Enclosed is my check for ____________
___Please charge to my: ___Visa ___MasterCard ___American Express
Account #: __________________________ Expiration Date: __________
Signature: __________________________
PLEASE NOTE

MAKE THE FOLLOWING CHANGES TO YOUR MANUAL:

Page 56: The "Display" column for problem #37 should read "150" for step 3 and "300" for step 2.

Page 59: The "Display" column for problem #39 should read "120" for step 3 and "300" for step 2.

ADDITIONAL NOTES ON PROGRAMS
1. The first 5 programs (conventional qualifying, V.A./F.H.A. qualifying, amortization, maximum a.r.m. payment and after-tax payment) are of the most value to the residential agent and can all be stored in the 12C at the same time.

2. If you choose to store all 5 programs in sequence, their line numbers will be as follows:

 Conventional qualifying: 1-18
 V.A./F.H.A.: 19-35
 Amortization: 36-47
 A.R.M.: 48-74
 After-tax payment: 75-94

3. Remember to add the R/S line, followed by g GTO and the number of the first line of the program as the last 2 lines of the program when storing multiple programs. These steps are already included for programs #1 and #2 but are not included in programs #3, #4, #5 or #6. Be sure to add them.

4. Remember to change the g GTO lines if necessary. For example:

 a. Line #12 in program #3 needs to be changed to g GTO 38 if the program is stored behind the first 2 programs.

 b. Line #13 in program #4 needs to be changed to g GTO 68 if the program is stored behind the first 3 programs.

 c. Line #20 in program #4 needs to be changed to g GTO 48 if the program is stored behind the first 3 programs.

5. Finally, remember to tell the 12C which line to start on when doing the programming problems. The starting line will be the first line of the program as you have it entered into your calculator.

Good luck &
Good selling!

Allen