CALCULATOR SUPPORT
1000 N.E. Circle Boulevard, Corvallis, Oregon 97330-4239, Telephone 503 757-2004 8:00 AM - 3:00 PM Pacific Time

HP 12C SOLUTIONS

The following solutions have been developed as a continuing effort by Hewlett-Packard to meet the needs of our customers.

tABLE OF CONTENTS

12-1 Reverse Annuity Mortgage Payment
Procedure to calculate the amount of the monthly payment
to be received from a Reverse Annuity Mortgage. A graduated Reverse Annuity Mortgage can also be calculated with the program provided.

12-2 Annual Percentage Rate Calculation With Fees and a Balloon
Procedure to calculate the APR of a loan when fees are charged and a balloon payment is due at some time during the term of the loan. This expands upon the discussion in the owner's manual.

12-3 Biweekly Mortgage Payments and Amortization Schedule
Procedure to calculate the amount of the biweekly payment and the loan term. A program provides a biweekly amortization schedule.

12-4 Private Mortgage Insurance
Procedure to calculate the amount of private mortgage insurance to be paid each period.

12-5 Adjustable Rate Mortgages
Procedure to calculate periodic payment and APR of an adjustable (variable) rate mortgage.

12-6 Coupon Equivalent Yield
Program to calculate the coupon equivalent yield of a discounted note (a Treasury Bill).

12-7 Duration of a Bond
Program to calculate the duration of a bond.

Page 2
HP 12 S SOLUTIONS

12-8 Actuarial Calculations

Collection of programs to calculate the compound interest functions $n, i, P V, P M T$, and $F V$ using the actuarial method. This means that the value for n can be any positive number. The results duplicate those produced by the $H P-37 E, H P-38 E / C$, and HP-18C calculators.

12-9 Increasing Annuities

Procedure to calculate the present and future values of an annuity that increases at a constant rate and at equal intervals of time. Routines are included for both END and BEGIN mode calculations.

12-10 Annual Coupon Bond Price and Yield
Program to calculate the price, accrued interest, and yield of an annual coupon bond. The redemption can be at maturity or at call, and either calendar basis can be accommodated (30/360 or Actual/Actual).

12-11 Deposits Needed to Meet a Future Cash Flow Need
Procedure to calculate the amount of money to deposit each period to accumulate a desired amount. A typical example is "How much should I save each month to fund my daughter's college education?"

12-12 Price and Yield to Call (Actual/Actual Day Basis)
Program to calculate price and yield to call, assuming a semi-annual coupon payment and an Actual/Actual day basis.

Hewlett-Packard supplies the procedures herein without warranty and will not be liable for damages arising from their use.

HP-12C Solutions

Reverse Annuity Mortgage Payment

Reverse Annuity Mortgage

A reverse annuity mortgage allows people over 62 years of age to use the equity they have in their homes to generate regular monthly income. The following procedure determines the amount of the monthly payment that they will receive.

1. Press 9 BEG and 9 FIN.
2. Key in the number of years in the loan and press $912 x$.
3. Key in the annual interest rate (as a percentage) and press $912 \div$.
4. Key in the amount of the initial cash flow (if it exists) and press PV.
5. Key in the total loan amount and press CHS FV.
6. Press PMT to calculate the monthly payment.

Example.

Loan amount $=\$ 64000$
Term $=5$ years
Interest rate $=13 \%$
Initial payment $=\$ 2500$

Keys:	Display:	Description:
9 BEG		Selects Begin mode.
(f)		Clears finance registers.
$5912 x$	60.00	Stores known values.
13 9 $12 \div$	1.08	
2500 PV	2,500.00	
64000 CHS FV	-64,000.00	
PMT	698.41	Calculates monthly payment received.

Graduated Reverse Annuity Mortgage

A graduated reverse annuity mortgage means that the monthly payments are less in the beginning, and increase at a specified rate for the term of the loan. A program to calculate the monthly payments follows. Key in the program, then use this procedure.

1. Key in the number of years in the loan and press STO 0 .
2. Key in the annual interest rate (as a percentage) and press STO 1.
3. Key in the total loan amount and press STO 2.
4. Key in the annual percentage increase in the payment and press STO 3.
5. Key in the amount of the initial cash flow and press STO 4. If there is no initial cash flow; key in 0.
6. Press R / S to calculate the payment received in the first year.
7. Repeat step 6 to calculate the payment for subsequent years.
8. Optional: Press RCL 5 to display the loan factor. Press RCL 6 to display the initial cash flow factor.
9. For a new loan, return to step 1 and key in any values that have changed.

Example.

Loan amount $=\$ 64000$
Term $=5$ years
Interest rate $=13 \%$
Initial payment $=\$ 2500$
Increase in payment $=6 \%$
If you have not keyed in the program, do it now.

Keys:	Display:	Description:
5 STO 0	5.00	Stores known values.
13 STO 1	13.00	
64000 STO 2	64,000.00	
6 STO 3	6.00	
2500 STO 4	2,500.00	
R/S	628.85	Calculates payment in year 1.
R/S	666.58	Calculates payment in year 2.
R/S	706.58	Calculates payment in year 3.
R/S	748.97	Calculates payment in year 4.
R/S	793.91	Calculates payment in year 5.

Graduated Reverse Annuity Mortgage Payment Program.

Keys	Display		
(f)P/R			
\square PRGM	00.		
f FIN	01.	42	34
9 END	02.	43	8
1	03.		1
RCL 3	04.	45	3
\%	05.		25
\pm	06.		40
RCL 1	07.	45	1
1	08.		1
2	09.		2
0	10.		0
0	11.		0
\div	12.		10
1	13.		1
\pm	14.		40
1	15.		1
2	16.		2
y^{x}	17.		21
\div	18.		10
1	19.		1
\square	20.		30
EEX	21.		26
2	22.		2
x	23.		20
(1)	24.		12
1	25.		1
CHS	26.		16
PMT	27.		14

Keys	Display		
RCL 0	28.	45	0
STO 7	29.	44	7
n	30.		11
FV	31.		15
STO PMT	32.	44	14
9 BEG	33.	43	7
RCL 1	34.	45	1
9) $12 \div$	35.	43	12
1	36.		1
9) 12 x	37.	43	11
0	38.		0
FV	39.		15
PV	40.		13
RCL 0	41.		0
9 12x	42.		11
0	43.		0
PMT	44.		14
FV	45.		15
1/x	46.		22
STO 5	47.		5
RCL 4	48.		4
(9) $x=0$	49.	43	35
9 GTO 63	50	3,33	63
RCL 0	51.		0
9 12x	52.		11
RCL 1	53.	45	1
(9) $12 \div$	54.	43	12
1	55.		1
PV	56		13

Registers

$\mathrm{n}:$ used	$\mathrm{i}:$ used	PV : used	PMT: used
$\mathrm{FV}:$ used	R_{0} : \# years	R_{1} : \% interest	R_{2} : loan amount
R_{3} : \% increase	R_{4} : init CF	R_{5} : loan factor	$R_{6}:$ CF factor
R_{7} : used			

HP-12C Solutions
 12-2

Annual Percentage Rate Calculation With Fees and a Balloon

This procedure calculates the APR of a loan when fees are charged (either as a percentage of the loan amount or as a flat rate) and a balloon payment is due at some time during the term of the loan. Remember to use the cash flow sign convention (money received is positive, money paid out is negative).

User Instructions.

1. Set End mode ($G E N D$) and clear the financial registers ($\triangle \mathcal{F I N}$).
2. Calculate the periodic payment amount of the loan.

- Key in the total number of payment periods; press \square.
- Key in the periodic interest rate; press (i).
- Key in the mortgage amount; press PV.
- Press PMT to calculate the periodic payment amount.

3. Calculate the amount of the balloon payment.

- Key in the number of the payment period where the balloon payment occurs; press n.
- Press FV to calculate the balloon payment amount.

4. Calculate the actual net amount disbursed

- If the fees are stated as a percentage of the mortgage amount (points), recall the mortgage amount ($\overline{\mathrm{RCL}} \overline{\mathrm{PV}}$); key in the fee percentage rate; press \% $\square \mathrm{PV}$.
- If the fees are stated as a flat charge, recall the mortgage amount ($\mathrm{RCL} \overline{P V}$); key in the fee amount (flat charge); press \square PV.
- If the fees are stated as a percentage of the mortgage amount plus a flat charge, recall the mortgage amount ($\mathrm{RCL} \overline{P V}$); key in the fee percentage rate; press \% $\%$; key in the fee amount (flat charge) and press $\square P$

5. Press to calculate the percentage rate per compounding period.
6. To calculate the annual nominal percentage rate, key in the number of periods per year and press区.

Example. A 30 -year, $\$ 50000$ loan at 15% interst has fees of 2 points plus $\$ 150$. Assuming that monthly payments are made and that the loan is paid in full at the end of the seventh year, what is the APR?

Keys:	Display:	Description:
9END		Sets End mode.
TFIN		Clears the financial registers.
30 9 $12 \times$	360.00	Stores number of months.
15 9 12+	1.25	Stores monthly interest rate.
50000 PV	50,000.00	Stores loan amount.
PMT	-632.22	Calculates monthly payment amount.
7 9 $12 \times$	84.00	Stores number of payments until balloon.
FV	$-48,937.43$	Calculates balloon payment.
$\begin{aligned} & \mathrm{RCLPV} 2 \% \square 150 \\ & \square \square \mathrm{PV} \end{aligned}$	48,850,00	Subtracts fees from original loan amount and restores adjusted amount
©	1.30	Calculates monthly interest rate.
$12 \times$	15.54	Calculates annual percentage rate.

HP-12C Solutions $12-3$

Biweekly Mortgage Payments and Amortization Schedule

One way to pay off your mortgage faster is to make biweekly mortgage payments. Instead of paying once a month, you make one-half of the monthly payment every two weeks. You make 26 or 27 payments each year (depending on the payment date), increase your equity, and pay less interest.

Example 1. Part 1. On a $\$ 75,000,30$-year mortgage at 13.5% interest, what is the amount of the biweekly payment?

Keys:	Display:	Description:
GEND		Sets End mode.
TFIN		Clears the financial registers.
75000 PV	75,000.00	Stores loan amount.
30 9 12x	360.00	Stores number of months.
13.5 9 12\%	1.13	Stores monthly interest rate.
PMT	-859.06	Calculates monthly payment amount.
$2 \square$ PMT	-429.53	Calculates and stores biweekly payment amount.

Part 2. With this biweekly payment, how long will it take to pay off the mortgage?
13.5 ENTER $26 \div($
0.52
n
458.00
Calculates and stores biweekly interest rate.
$26 \div$
17.62
Calculates total number of payments.

Part 3. What is the remaining balance after 26 payments have been made?
26 OFV $\quad-73,886.65 \quad$ Calculates balance after 26 payments.
Part 4. If 27 payments are made the first year, how much interest is paid? What is the remaining balance?

$0 \square$	0.00	Clears n register.
$27 \square A M O R T$	$-10,438.07$	Interest paid in first year.
$\boxed{R C L} \overline{P V}$	$73,840.76$	Remaining balance.

Biweekly Amortization Schedule Program

The following program provides a biweekly amortization schedule, displaying the date of the payment, the amounts of interest and principal, and the remaining balance.

Keys:	Display:			Keys	Display			Keys	Display			
T P / R	00.			n RCL 0	15. 11			1	31		1	
1 PRGM				16.	45	0	AMORT	32	- 42	11		
FFIN	01.	42	34		2	17.		2	R/S	33		31
RCL 0	02.	45	0	6	18.		6	x 2 y	34		34	
9 $12 \div$	03.	43	12	4	19.		10	R/S	35		31	
RCL 1	04.	45	1	-	20.		12	0	36		0	
PV	05.		13	1	21.		1	RCL PV	37	. 45	13	
RCL 2	06.	45	2	STO 4	22.	44	4	g $x \leqslant y$. 43	34	
9 12 x	07.	43	11	RCL 3	23.	45	3	gGTO 00		-43,33	00	
PMT	08.		14	1	24.		1	R/S	40		31	
\dagger RND	09.	42	14	4	25.		4	1			1	
2	10.		2	9 DATE	26.	43	16	STO +4		.44 40	4	
\div	11.		10	STO 3	27.	44	3	9GTO 23		-43,33	23	
PMT	12.		14	[6		42	6	$\square \mathrm{P} / \mathrm{R}$				
R/S	13.		31	R/S			31					
0	14.		0	(f) 2	30.	42	2					

User Instructions.

1. Key in the program.
2. Key in the annual interest rate as a percent and press STO 0.
3. Key in the loan amount and press STO 1.
4. Key in the original term in years and press STO 2.
5. Key in the origination date (in month, day, year format) and press STO 3.
6. Press R / S to display the amount of the biweekly payment.
7. Press R / S to display the date of the first payment.
8. Press R/S to display the interest portion of the payment.
9. Press R / S to display the principal portion of the payment.
10. Press R / S to display the remaining balance.
11. Press R / S to display the date of the next payment.
12. Return to step 8 to display the interest, principal, and remaining balance for subsequent payments.

Example 2. Generate an amortization schedule for a $\$ 60,000,30$-year, 14% mortgage, paid biweekly, that originates November 12, 1984

Keys:	Display:	Description:
14 STO 0	14.00	Stores interest rate.
60000 STO 1	60,000.00	Stores loan amount.
30 STO 2	30.00	Stores number of years.
11.121984 STO 3	11.12	Stores origination date.
R/S	-355.46	Calculates biweekly payment amount.
R/S	11,26,1984	Date of first payment briefly displayed.
	11.261984	The 1 indicates a Monday.
R/S	-323.08	Amount of interest.
R/S	-32.38	Amount of principal.
R/S	59,967,62	Remaining balance.
R/S	12,10,1984	Date of next payment.
	12.101984	
R/S	-322.90	Amount of interest.
R/S	-32.56	Amount of principal.
R/S	59,935,06	Remaining balance.
R/S	$12,24,1984$	Date of next payment.
	12.241984	

Portable Computer Division
1000 N.E. Circle Blvd
Corvallis, OR 97330
12-3
12/86

HP-12C Solutions

Private Mortgage Insurance

Private mortgage insurance (PMI) is usually calculated based on a.percentage of the outstanding loan balance. Since the loan balance changes, the PMI calculation is done once each year.

User Instructions.

1. For year 1 :

- Key in the loan amount and press ENTER.
- Key in the insurance rate as a percentage and press \%.
- Key in the number of payments per year and press \ddagger.

2. For subsequent years:

- Calculate the balance at the end of the previous year.
- Key in the insurance rate as a percentage and press \%.
- Key in the number of payments per year and press \ddagger.

Example. A 30 -year, $\$ 75000$ loan at 15% interest has private mortgage insurance of $.25 \%$ of the loan balance. Calculate the monthly private mortgage insurance (PMI) payment for year 1.

Keys:

Display:
75000 ENTER
$.25 \%$
$12 \div$

75,000.000
187.50
15.63

Description:

Enters loan amount.
Calculates year 1 PMI payment.
Calculates monthly PMI payment for year 1 .

Calculate the monthly PMI for year 2:

FIN	
$30.912 x$	360.00
15 9 $12 \div$	1.25
75000 CHS PV	-75,000.00
PMT	948.33
1 9 12x FV	74,860.68
. 25 \%	187.15
$12 \div$	15.60

Clears the financial registers. (The display does not change.)

Stores total number of payments.
Stores monthly interest rate.
Stores loan amount.
Calculates monthly mortgage payment.
Balance at the end of the first year.
Calculates year 2 PMI payment.
Calculates monthly PMI payment for year 2.

Calculate the monthly PMI payment for year 3.

$2912 x$ FV	$74,698.97$	Balance at the end of the second year.
25%	186.75	Calculates year 3 PMI payment.
12	15.56	Calculates monthly PMI payment for \vdots
		year 3.

Calculate the monthly PMI payment for year 30.

$29 \% 12 x \mathrm{FV}$	$10,506.88$
$.25 \%$	26.27
12%	2.19

Balance at the end of year 29.
Calculates year 30 PMI payment.
Calculates monthly PMI payment for year 30 .

Total PMI Program

The total PMI paid over a specified number of years is computed with the following program.

Keys:	Display:	Keys:	Display:	Keys:	Display:
$\bigcirc P / R$		STO 2	08. 442	1	17. 1
f PRGM	00.	9) $12 \times$	09. 4311	-	18-30
PMT	01. 14	FV	10. 15	RCL 2	19. 452
RCL n	02. 4511	RCL 3	11. 453	9) $x \leqslant y$	20. 4334
1	03- 1	\%	12. 25	9 GTO 09	21-43,33 09
2	04. 2	STO +0	13.44400	RCL 0	22. 450
\div	05. 10		14. 1	9 GTO 00	23.43,33 00
STO 1	06. 441	STO +2	15-44 402	$\square P / R$	
1	07. 1	RCL 1	16. 451		

User Instructions.

1. Key in the program.
2. Press REG to clear all registers.
3. Key in the insurance rate as a percentage and press STO 3.
4. Key in the loan amount and press CHS PV .
5. Key in the total number of years and press $912 x$.
6. Key in the annual interest rate as a percentage and press $912 \div$.
7. Press R/S to compute the total PMI.

Example 2. Using the information in example 1, calculate the total PMI.

Keys:
fREG
.25 STO 3
75000 CHS PV

30 12x
15 9 $12 \div$
R/S

Display:
0.25

75,000.00
360.00
1.25

4,336.12

Description:

Clears all registers.
Stores insurance rate.
Stores loan amount.
Stores total number of payments.
Stores monthly interest rate.
Calculates total PMI.
(hp) $\begin{aligned} & \text { HEWLETT } \\ & \text { PACKARD }\end{aligned}$
Portable Computer Division
1000 N.E. Circle Blvd
Corvallis, OR 97330
12-4
$12 / 86$

HP-12C Solutions 12.5

Adjustable Rate Mortgages

An adjustable rate mortgage is a mortgage loan that provides for the adjustment of its interest rate as market interest rates change. As the interest rate changes, the amount of the periodic payment changes to reflect the new interest rate. Given the terms of the original mortgage, the changes in the interest rate, and the time frame in which the changes occur, this procedure calculates the amount of each periodic payment. Once each payment is known, the APR of the entire transaction can be calculated.

User Instructions.

1. Calculate the amount of the initial periodic payment.
2. Calculate the loan balance just before payments increase the first time, change the sign, and store the result in $P V$.
3. Change the interest rate, adjust the term, store 0 in $F V$, and recalculate the periodic payment.
4. Calculate the loan balance before payments increase the next time, change the sign, and store the result in $P V$.
5. Repeat steps 3 and 4 until all payments are calculated.
6. Once the payments are determined, use 1 IRR to calculate the APR.

Example 1. A $\$ 50,000,30$-year, adjustable rate mortgage has the following terms:
12% interest in first year
13% interest in second and third years
15% interest for the remaining term
What are the monthly payments?

Keys:	Display:	Description:
OFIN		Clears the financial registers.
9 END		Sets End mode.
30 90 $12 \times$	360.00	Stores number of months.
12 9 $12+$	1.00	Stores initial monthly interest rate.
50000 CHS PV	-50,000.00	Stores loan amount.
PMT	514.31	Calculates monthly payment amount.
12 DFV CHS PV	-49,818.56	Calculates and stores balance at end of first year.
29 912x	348.00	Stores remaining number of payments.
13 912+	1.08	Stores new monthly interest rate.

PMT

Display:
0.00
552.70
$-49,464.37$
324.001.250.00
629.55

Description:

Sets future value to zero.
Calculates payment amount in years two and three.

Calculates and stores balance at end of third year.

Stores remaining number of payments and new interest rate.

Calculates final payment amount.

Example 2. Calculate the APR, given the above payments.

Keys:

\dagger IRR $12 x$
514.31 G CFi 12 Ni
552.70 G CFi 24 N
629.55 (CFi 99 Ni
x x y , $9 \mathrm{CFi}_{\mathrm{j}} 99 \mathrm{~N}$
x x y g (CFj 99 Nj
$x \geqslant y$ (FF) 27 Nj

Display:

0.00
-50,000.00

Example 3. If the previous mortgage has a balloon payment in eight years, as well as a 2 point fee, what is the APR?

Step 1. First, calculate the balance due (the balloon payment) at the end of eight years.

Keys:

49464.37 CHS PV

15 12 12
629.55 PMT

5 9 12x FV

Display:

$-49,464.37$

1. 25
629.55

48,468.32
Step 2. Calculate the APR.

Example 4. In the previous example, how much interest is paid in years $1,2,3$ and 4 ?

Keys:	Display:	Description:
Tfin		Clears the financial registers.
50000 CHS PV	-50,000.00	Stores first year loan data.
12 12\%	1.00	
514.31 PMT	514.31	
12 AMORT	5,990.23	Interest paid in year 1.
13 12\%	1.08	Stores second and third year data
552.70 PMT	552.70	
12 AMORT	6,466,76	Interest paid in year 2.
12 A AMORT	6,443.90	Interest paid in year 3.
15 12+	1.25	Stores final loan data.
629.55 PMT	629.55	
12 AMMORT	7,409.96	Interest paid in year 4.

HP-12C Solutions 12.6

Coupon Equivalent Yield

The coupon equivalent yield is a way of determining which of two investments of similar maturity will provide a higher return-a non-interest bearing obligation purchased at a discount (a Treasury Bill) or a semi-annual coupon bond on a 365 -day basis (a government bond).

Program.

Keys	Display	Keys	Display	Keys	Display
$\bigcirc P / R$		0	22. 0	RCL 5	45. 455
PRGM	00.	\div	23. 10	\square	46. 30
RCL 0	01. 450	STO 4	24. 444	RCL 4	47. 454
RCL 1	02. 451	2	25. 2	2	48- 2
9 \triangle DYS	03. 4326	\pm	26. 20	x	49- 20
STO 3	04. 443	RCL 2	27. 452	\pm	50. 10
1	05. 1	\pm	28. 40	9) GTO 64	51-43, 3364
8	06. 8	STO 5	29. 445	EEX	52. 26
2	07. 2	ENTER	30- 36	2	53- 2
x 2 y	08. 34	\pm	31. 20	RCL 2	54. 452
9 x ,	09. $43 \quad 34$	RCL 2	32. 452	\div	55. 10
9 GTO 52	10.43, 3352	2	33. 2	1	56- 1
RCL 3	11. 453	x	34. 20	\square	57- 30
2	12. 2	2	35- 2	3	58. 3
x	13. 20	0	36. 0	6	59. 6
3	14. 3	0	37- 0	5	60. 5
6	15. 6	\square	38. 30	x	61. 20
5	16. 5	4	39. 4	RCL 3	62. 453
\square	17. 30	x	40- 20	\div	63. 10
RCL 2	18. 452	RCL 4	41. 454	EEX	64- 26
\pm	19. 20	\pm	42. 20	2	65- 2
7	20. 7	\square	43- 30	x	66-20
3	21. 3	(9) \sqrt{x}	44. $43 \quad 21$	P/R	

Registers:

$\mathrm{n}:$ Unused	$\mathrm{i}:$ Unused	$\mathrm{PV}:$ Unused	PMT : Unused
$\mathrm{FV}:$ Unused	$\mathrm{R}_{0}:$ Settlement	$\mathrm{R}_{1}:$ Maturity	$\mathrm{R}_{2}:$ Price
R_{3} : \#days	$\mathrm{R}_{4}:$ Used	$\mathrm{R}_{5}:$ Used	$\mathrm{R}_{6}-R_{.0}$ Unused

User Instructions.

1. Key in the program.
2. Key in the settlement date and press STO 0 .
3. Key in the maturity date and press STO 1.
4. Key in the purchase price and press STO 2 .
5. Press R / S to calculate the coupon equivalent yield (as a percent).

Example. What is the coupon equivalent yield of a bond with a settlement date of July 13, 1984, a maturity date of May 1, 1985, and price of $\$ 96.78$?

Keys:	Display:	Description:
REG 0.00	Clears all registers.	
7.131984 STO 0	7.13	Stores settlement date.
5.011985 STO 1	5.01	Stores maturity date.
96.78 STO 2	96.78	Stores bond price.
R/S	4.13	Calculates coupon equivalent yield.

Formulas.

- For $\leqslant 182$ days
$i=\left(\frac{100}{\text { Price }}-1\right) \times \frac{365}{n}$
- For >182 days
$i=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$
Where:
$a=\frac{2(\text { Price })(n)-(\text { Price })(365)}{730}$
$b=2 a+$ Price
$c=2$ (Price) -200
$n=$ actual number of days
$i=$ coupon equivalent yield (decimal)

(hp) $\begin{aligned} & \text { HEWLETT } \\ & \text { PACKARD }\end{aligned}$

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330
12-6
2/87

HP-12C Solutions 12-7

Duration of a Bond

The duration of a bond is the average time that elapses until the various cash flows (coupons and redemption value) are received. In other words, the duration is a weighted average of the number of periods until the payments occur. For coupon-bearing bonds, the duration is always shorter than the term to maturity. (For zero-coupon bonds, duration is equal to maturity.)

Program.

Keys	Display		
RCL 1	14.	45	1
\square	15.		30
RCL 0	16.	45	0
RCL n	17.	45	11
x	18.		20
\square	19.		30
RCL 1	20.	45	1
RCL n	21.	45	11
y^{x}	22.		21
\div	23.		10
RCL 0	24.	45	0
ENTER	25.		36
x	26.		20
\square	27.		10

Keys	Display		
RCL PMT	28.	45	14
\pm	29.		20
RCL FV	30.	45	15
RCL n	31.	45	11
x	32.		20
RCL 1	33.	45	1
RCL n	34.	45	11
y^{x}	35.		21
\div	36.		10
\pm	37.		40
RCL PV	38.	45	13
CHS	39.		16
\div	40		10
$\bigcirc P / R$			

Registers:

n: \# coupons
i: Yield
FV: Redemption
R_{0} : Yield/100
PV: Used
$R_{1}:$ Yield $/ 100+1$
PMT: Coupon amount
$R_{2}-R_{4}$: Unused

User Instructions.

1. Key in the program and set End mode.
2. Key in the total number of coupons and press n
3. Key in the dollar amount of each periodic coupon and press PMT.
4. Key in the periodic yield to maturity as a percent and press i.
5. Key in the redemption value and press FV.
6. Press R / S to calculate the number of periods in the duration.
7. For a new case, return to step 2.

Example. Calculate the duration of the following bond: $\$ 60$ coupon, paid semi-annually for 5 years, 13.13% annual yield, $\$ 1000$ redemption value.

Keys:	Display:	Description:
9 END		Sets End mode.
5 ENTER $2 \times n$	10.00	Stores total number of coupons.
60 PMT	60.00	Stores amount of each periodic coupon.
13.13 ENTER $2 \div$ i	6.57	Stores semi-annual yield.
1000 FV	1,000,00	Stores redemption value.
R/S	7.75	Calculates duration in semi-annual periods.
$2 \div$	3.87	Duration in years.

Reference: Jess H. Chua, A Closed-Form Formula for Calculating Bond Duration, Financial Analysts Journal, May-June 1984.

HP-12C Solutions 12-8

Actuarial Calculations

This collection of programs calculates the compound interest functions $n, i, P V, P M T$, and $F V$ using the actuarial method. This means that the value for n can be any positive number.* The results duplicate those produced by the HP-37E, HP-38E/C, and HP-18C calculators.

The first program calculates $n, P V, P M T$, or $F V$. The second program, a shorter version of the first program, only calculates n. The third program calculates i.

Program to Calculate n, PV, PMT, FV.

Keys	Display
$\bigcirc P / R$	
PRGM	00.
STO 4	01-44 4
1	02. 1
RCL i	03. 4512
\%	04- 25
STO 2	05-44 2
\pm	06- 40
STO 1	07. 441
RCL 0	08-45 0
y^{x}	09. 21
RCL PMT	10-45 44
x	11. 20
STO 5	12. 445
1	13. 1
RCL 4	14. 454
9 $x \leqslant y$	15. 4334
9GTO 69	16-43,33 69
$x \geqslant y$	17. 34
RCL 1	18. 451
RCL n	19. 4511
CHS	20. 16
y^{x}	21. 21

Keys	Display	
STO 3	22. 44	3
\square	23.	30
RCL 2	24. 45	2
\div	25.	10
STO 4	26. 44	4
RCL 5	27. 45	5
\pm	28.	20
STO 6	29. 44	6
x x y	30.	34
2	31.	2
x x y	32.	34
9 $x \leqslant y$	33. 43	34
9 GTO 61	34-43,33	61
3	35.	3
x x y	36.	34
9 $x \leqslant y$	37- 43	34
9 GTO 47	38-43,33	47
RCL 6	39. 45	6
RCL PV	40. 45	13
\pm	41.	40
RCL 3	42. 45	3
\square	43.	10
CHS	44.	16

Keys	Display
STO FV	45. 4415
9 GTO 00	46-43,33 00
RCL FV	47. 4515
RCL 3	48. 453
x	49. 20
RCL PV	50. 4513
\pm	51. 40
RCL 4	52. 454
\dagger	53. 10
RCL 1	54. 451
RCL 0	55. 450
y^{x}	56. 21
\div	57. 10
CHS	58. 16
STO PMT	59. 4414
9GTO 00	60-43,33 00
RCL FV	61. 4515
RCL 3	62. 453
x	63. 20
RCL 6	64. 456
\pm	65. 40
CHS	66. 16
STO PV	67. 4413

[^0]| Keys | Display | Keys | Display | Keys | Display |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 GTO 00 | 68-43,33 00 | RCL 5 | 74. 455 | 9 LN | 80-43 23 |
| RCL 5 | 69. 455 | RCL PV | 75. 4513 | RCL 1 | 81-45 1 |
| RCL FV | 70. 4515 | RCL 2 | 76. 452 | G LN | 82. 4323 |
| RCL 2 | 71. 452 | x | 77. 20 | \div | 83. 10 |
| x | 72. 20 | \pm | 78. 40 | STO n | 84. 4411 |
| \square | 73. 30 | \div | 79. 10 | $\dagger P / R$ | |

Registers:

$\mathrm{n}:$ Used	$\mathrm{i}:$ Used	PV: Used	PMT: Used
$\mathrm{FV}:$ Used	$\mathrm{R}_{0}: 0$ or 1	$\mathrm{R}_{1}: 1+i$	$\mathrm{R}_{2}: i$
$\mathrm{R}_{3}:$ Used	$\mathrm{R}_{4}:$ Used	$\mathrm{R}_{5}:$ Used	$\mathrm{R}_{6}:$ Used
$\mathrm{R}_{7}:$ Unused			

User Instructions for n, PV, PMT, FV Program.

1. Key in the $n, P V, P M T, F V$ program.
2. Press \subset FIN.
3. Store 0 in register 0 for End mode; store 1 in register 0 for Begin mode.
4. Key in the periodic interest rate; press (1).
5. Key in any three of the following variables. Use the cash flow sign convention (money received is positive; money paid is negative).

- Key in the total number of periods; press n.
- Key in the present value; press PV.
- Key in the periodic payment; press PMT.
- Key in the future value; press FV.

6. To calculate n, press $1 \Omega / S$.
7. To calculate $P V$, press $2 R / S$.
8. To calculate $P M T$, press $3 R / \mathrm{S}$.
9. To calculate $F V$, press $4 R / \mathrm{S}$.
10. For subsequent problems, return to step 2 and change values as needed.

Example. A $\$ 1000$ loan has monthly payments of $\$ 80$. If the annual interest rate is 9%, how many payments are necessary to amortize the loan? The payments are made at the end of each period.

Key in the $n, P V, P M T, F V$ program.

Keys:

TFIN
0 STO 0
1000 CHS PV
$9 \square 12 \div$
80 PMT
0 FV
1 R/S

Display:
0.00
-1000.00
0. 75
80.06
0.00
13.17

Description:

Clears finance registers.
Sets End mode.
Stores known values.

Calculates number of monthly payments.

Program to Calculate n.

Keys	Display		
$\square P / R$	00.		
PRGM			
1	01.		1
RCL	02.	45	12
\%	03.		25
STO 2		44	2
\pm	05.		40
STO 1	06.	44	1
RCL 0	07.	45	0
y^{x}	08.		21

Keys	Display		
RCL PMT	09	45	14
x	10		20
STO 3	11	44	3
RCL FV	12	45	15
RCL 2	13	45	2
x	14		20
\square	15		30
RCL PV	16	45	13
RCL 2	17	45	2
x	18		20

Keys	Display		
RCL 3	19.	45	3
\pm	20.		40
\square	21.		10
9 LN	22.	43	23
RCL 1	23.	45	1
G LN	24.	43	23
\div	25.		10
STO n	26.		11
P P/R			

Registers:

n: Used
FV: Used
R_{3} : Used

> i: Used
> $R_{0}: 0$ or 1
> $R_{5}-R_{.4}$ Unused

PV: Used
$\mathrm{R}_{1}: 1+i$

PMT: Used
R_{2} : i

User Instructions for \boldsymbol{n} Program.

1. Key in the n program.
2. Press \mp FIN.
3. Store 0 in register 0 for End mode; store 1 in register 0 for Begin mode.
4. Key in the periodic interest rate; press
\qquad
5. Key in two or three of the following variables. Use the cash flow sign convention (money received is positive; money paid is negative).

- Key in the present value; press PV.
- Key in the periodic payment; press PMT.
- Key in the future value; press FV.

6. Press R / S to calculate n, the total number of periods.
7. For subsequent problems, return to step 2 and change values as needed.

Example. You deposit $\$ 150.00$ each month in an account paying $61 / 2 \%$, compounded monthly. How long will it take to accumulate $\$ 20,000.00$? Assume End mode.

Key in the n program.

Keys:

150 CHS PMT
$6.512 \div$
20000 FV
R/S

Display:
0.00
-150.00
0.54

20, 0006. 00
100.63

Description:

Clears finance registers.
Sets a End mode.
Stores known values.

Calculates number of monthly payments.

Program to Calculate i.

Keys	Display	Keys	Display	Keys	Display
$\bigcirc P / R$		RCL PMT	23. 4514	RCL FV	47. 4515
PRGM	00.	x	24. 20	RCL 4	48. 454
\square	01. 48	RCL PV	25. $45 \quad 13$	x	49. 20
0	02. 0	\pm	26. 40	\square	50. 30
1	03. 1	RCL FV	27. $45 \quad 15$	\div	51. 10
STO 3	04. 443	RCL 2	28. 452	STO - 3	52-44 30
1	05. 1	x	29. 20	ENTER	53. 36
RCL 3	06. 453	\pm	30. 40	CHS	54. 16
1	07. 1	RCL 2	31-45 2	9 $x \leqslant y$	55- 4334
\pm	08- 40	RCL 1	32. 451	$x \geq 2$	56. 34
STO 1	09. 441	\div	33. 10	EEX	57. 26
RCL n	10. 4511	$\mathrm{RCL} \cap$	34. 4511	CHS	58. 16
CHS	11. 16	x	35. 20	8	59. 8
y^{x}	12. 21	STO 4	36-44 4	9 $x \leqslant y$	60. $43 \quad 34$
STO 2	13. 442	1	37. 1	9 GTO 05	61-43,33 05
\square	$\text { 14. } 30$	RCL 2	38. 452	RCL 3	62. 453
RCL 3	15. 453	\square	39. 30	EEX	63. 26
\div	16. 10	RCL 3	40. 453	2	64. 2
RCL 3	17. 453	\div	41. 10	x	65. 20
RCL 0	18-45 0	\square	42. 30	ENTER	66. 36
x	19. 20	RCL PMT	43. 4514	STO 1	67. 4412
1	20- 1	RCL 3	44. 453	$\square P / R$	
\pm	21. 40	\div	45. 10		
x	22- 20	x	46. 20		

Registers:

n: Used
FV: Used
i: Used
R_{3} : i guess
R_{0} : 0 or 1
PV: Used
PMT: Used
$\mathrm{R}_{2}:(1-i)^{-n}$

User Instructions for i Program.

1. Key in the i program.
2. Press $\oplus \mathcal{F I N}$.
3. Store 0 in register 0 for End mode; store 1 in register 0 for Begin mode.
4. Key in three or four of the following variables. Use the cash flow sign convention (money received is positive; money paid is negative).

- Key in the total number of periods; press \square.
- Key in the present value; press P.
- Key in the periodic payment; press PMT
- Key in the future value; press EV.

5. Press R / S to calculate the periodic interest rate.
6. For subsequent problems, return to step 2 and change values as needed.

Example. You currently have $\$ 1000$ in a savings account. If you wish to double your money in $5^{1 / 2}$ years, what annual interest rate do you need to earn?

Key in the i program.

Keys:	Display:	Description:
FIN		Clears finance registers.
0 STO 0	0.040	Sets End mode
1000 CHS PV	-1000.00	Stores known values.
2000 FV	2010.06	
5.5 n	5.50	
$0 \times$ PMT	区. 810	
R/S	13.43	Calculates annual interest rate

Portable Computer Division
1000 N.E. Circle Blid
Corvallis, OR 97330
12-8
4/87

HP-12C Solutions

Increasing Annuities

The following routines can be used to calculate the present and future values of an annuity that increases at a constant rate at equal intervals of time. Routines are included for both END and BEGIN mode calculations.

Present Value of an Increasing Annuity (END Mode).

2. Key in the total number of payment periods and press \square :
3. Key in the payment percentage increase per period expressed as one plus the decimal interest rate and press ENTER. (If there is a percentage decrease, key it in as one minus the decimal interest rate.)
4. Key in the discount (interest) rate per period expressed as one plus the decimal interest rate and press $\Delta \%$.
5. Key in the amount of the starting payment and press $x_{2 y} \mp$ PMT.
6. Press $[P$ to calculate the present value of the payment stream.

Present Value of an Increasing Annuity (BEGIN Mode).

1. Press T FIN and QEND.
2. Key in the total number of payment periods and press n.
3. Key in the discount (interest) rate per period expressed as one plus the decimal interest rate and press ENTER
4. Key in the payment percentage increase per period expressed as one plus the decimal interest rate and press $\Delta \%$.
5. Key in the amount of the starting payment and press PMT.
6. Press $E V$ to calculate the present value of the payment stream.

Future Value of an Increasing Annuity (END Mode).

1. Press $\square \subset \mathbb{F I N}$ and G END
2. Key in the total number of payment periods and press n.
3. Key in the payment percentage increase per period expressed as one plus the decimal interest rate and press ENTER. (If there is a percentage decrease, key it in as one minus the decimal interest rate.)
4. Key in the discount (interest) rate per period expressed as one plus the decimal interest rate and press $\Delta \%$.
5. Key in the amount of the starting payment and press $x_{2 y} \mp$ PMT.
6. Press PV 0 PMT.
7. Key in the discount (interest) rate as a percentage and press
8. Press FV to calculate the future value of the payment stream.

Future Value of an Increasing Annuity (BEGIN Mode).

1. Press \cap FIN and $G E N D$.
2. Key in the total number of payment periods and press n.
3. Key in the discount (interest) rate per period expressed as one plus the decimal interest rate and press ENTER.
4. Key in the payment percentage increase per period expressed as one plus the decimal interest rate and press $\Delta \%$.
5. Key in the amount of the starting payment and press PMT.
6. Press EV STO PV 0 PMT.
7. Key in the periodic discount (interest) rate as a percentage and press (i).
8. Press $E V$ to calculate the future value of the payment stream.

Example 1. You are appraising a piece of income property that is providing increasing rents. Assuming a 7% rate of increase over the next 5 years, what is the present value of the income stream? Your discount rate is 12%, rent for the first year is expected to be $\$ 8,500$, and payments occur at the end of the year.

```
Keys:
Display:
Description:
GFIN QEND
\square
1.07 ENTER
1.12 \Delta% (i
8500 x x % % PMT

Example 2. Today you deposit \(\$ 1000\) into a savings account that earns \(91 / 2\) interest, compounded annually: Each year you plan to increase the amount of your deposit by \(15 \%\). How much will you accumulate in 20 years?
\begin{tabular}{|c|c|c|}
\hline Keys: & Display: & Description: \\
\hline FIN END & & \\
\hline 20 n & & \\
\hline 1.095 ENTER & & \\
\hline \(1.15 \triangle \%\) & & \\
\hline 1000 PMT & & \\
\hline FV STO PV & & \\
\hline 0 PMT & & \\
\hline 9.5 ( FV & 203,568.97 & Calculates future value \\
\hline
\end{tabular}

Portable Computer Division
1000 N.E. Circle Blrd.
Corvallis, OR 97330
12-9
\(3 / 87\)

\section*{HP-12C Solutions 12-10}

\section*{Annual Coupon Bond Price and Yield}

This program calculates the price, accrued interest, and yield of an annual coupon bond. The bond can be either a short or long-term bond. Redemption can be at maturity or at call, the price is quoted as a percentage, and the calendar basis is Actual/Actual. For annual coupon bonds quoted on a \(30 / 360\) day basis, insert \(R+\) after \(9 \triangle D Y S\) at step 2 , and change program lines \(15,30,36\), and 49 to the following:
\begin{tabular}{|c|c|}
\hline Keys & Display \\
\hline 9 GTO 48 & \(\mathbf{1 5 - 4 3 , 3 3}\) \\
\hline 98 \\
\hline 9 GTO 38 & \(\mathbf{3 0 - 4 3 , 3 3}\) \\
\hline 98 \\
\hline GTO 67 & \(\mathbf{3 6 - 4 3 , 3 3}\) \\
\(\mathbf{6 7}\) \\
9 GTO 70 & \(\mathbf{4 9 - 4 3 , 3 3}\) \\
\(\mathbf{7 0}\) \\
\hline
\end{tabular}

\section*{Program.}
\begin{tabular}{|c|c|}
\hline Keys & Display \\
\hline \(\bigcirc P / R\) & \\
\hline P PRGM & 00. \\
\hline 9 BEG & 01. 43 \\
\hline \(9 \triangle \mathrm{DYS}\) & 02. 43 \\
\hline RCL 5 & 03. 45 \\
\hline \(\div\) & 04. \\
\hline STO 6 & 05. 44 \\
\hline 1 & 06. \\
\hline x 2 y & 07. \\
\hline \(\square\) & 08. \\
\hline RCL 2 & 09. 45 \\
\hline x & 10. \\
\hline STO 7 & 11. 44 \\
\hline 1 & 12. \\
\hline RCL 3 & 13. 45 \\
\hline 9 x ( & 14. 43 3 \\
\hline 9 GTO 47 & 15-43,33 47 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Keys & Display \\
\hline RCL 2 & 16. 452 \\
\hline PMT & 17. 14 \\
\hline RCL 2 & 18. 452 \\
\hline RCL 4 & 19. 454 \\
\hline \(\pm\) & 20. 40 \\
\hline FV & 21- 15 \\
\hline RCL 3 & 22-45 3 \\
\hline 1 & 23. 1 \\
\hline \(\square\) & 24. 30 \\
\hline RCL 6 & 25-45 6 \\
\hline \(\pm\) & 26- 40 \\
\hline \(n\) & 27. 11 \\
\hline RCL 0 & 28-45 0 \\
\hline \(9 \mathrm{x}=0\) & 29. \(43 \quad 35\) \\
\hline 9 GTO 37 & 30-43,33 37 \\
\hline 0 & 31. 12 \\
\hline PV & 32. 13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Keys & Display \\
\hline CHS & 33. 16 \\
\hline RCL 7 & 34. 457 \\
\hline \(\square\) & 35- 30 \\
\hline 9 GTO 66 & 36-43,33 66 \\
\hline RCL PMT & 37. 4514 \\
\hline RCL 7 & 38. 457 \\
\hline 9 \(x=0\) & 39. \(43 \quad 35\) \\
\hline \(\pm\) & 40. 40 \\
\hline RCL 1 & 41. 451 \\
\hline \(\pm\) & 42. 40 \\
\hline CHS & 43. 16 \\
\hline PV & 44. 13 \\
\hline (i) & 45. 12 \\
\hline 9 GTO 00 & 46-43,33 00 \\
\hline RCL 0 & 47. 450 \\
\hline 9 \(x=0\) & 48. \(43 \quad 35\) \\
\hline 9GTO 69 & 49-43,33 69 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Keys & \multicolumn{3}{|c|}{Display} \\
\hline RCL 6 & 50 & 45 & 6 \\
\hline RCL 0 & 51 & 45 & 0 \\
\hline 区 & 52 & & 20 \\
\hline EEX & 53 & & 26 \\
\hline 2 & 54 & & 2 \\
\hline \(\pm\) & 55 & & 40 \\
\hline RCL 4 & 56 & & 4 \\
\hline RCL 2 & & & 2 \\
\hline \(\pm\) & 58 & & 40 \\
\hline EEX & 59 & & 26 \\
\hline 2 & 60 & & 2 \\
\hline \(x\) & 61 & & 20 \\
\hline
\end{tabular}



\section*{Registers:}
\begin{tabular}{llll}
\(\mathrm{n}:\) Used & \(\mathrm{i}:\) Used & PV: Used & PMT: Used \\
\(\mathrm{FV}:\) Used & \(\mathrm{R}_{0}:\) Yield & \(\mathrm{R}_{1}:\) Price & \(\mathrm{R}_{2}:\) Coupon \\
\(\mathrm{R}_{3}:\) \# Coupons & \(\mathrm{R}_{4}:\) Redemption & \(\mathrm{R}_{5}:\) \# Days \(/ Y r\) & \(R_{6}:\) Used \\
\(R_{7}:\) Used & \(R_{8}:\) Unused & &
\end{tabular}

\section*{User Instructions.}
1. Key in the program, press \(\uparrow\) FIN to clear the finance registers, and press STO EEX if the \(C\) annunciator is not displayed.
2. Key in the amount of the annual coupon (as a percent) and press STO 2.
3. Key in the total number of coupons that are received and press STO 3.
4. Key in the redemption value and press STO 4.
5. Key in the number of days in a year (either 360 or 365 ) and press STO 5.
6. Key in the purchase price (if it is known) as a percentage of par and press STO 1.
7. Key in the annual yield (if it is known) as a percentage and press STO 0 . If you wish to calculate the annual yield, press 0 STO 0 .
8. Key in the settlement (purchase) date and press ENTER.
9. Key in the date of the next coupon and press \(R / S\). If the annual yield is nonzero, the price is calculated. Otherwise, the annual yield is calculated.
10. When price is calculated, press \(x \geqslant y\) to display the accrued interest.
11. For a new case, return to step 2 . Only those values that have been changed need to be restored.

Example 1: Bond Price. What is the price and accrued interest of a 20 -year Eurobond with annual coupons of \(6.5 \%\), purchased on August 15,1986 to yield \(7 \%\) ? The next coupon is received on December 1, 1986. The calendar basis is Actual/Actual.
\begin{tabular}{|c|c|c|}
\hline Keys: & Display: & Description: \\
\hline FFIN & & Clears financial registers. \\
\hline STO EEX & & Sets \(C\) annunciator if it is not lit. \\
\hline \(6.5 \bigcirc 2\) & 6.56 & Stores annual coupon. \\
\hline 20 STO 3 & 20.00 & Stores number of coupons. \\
\hline 100 STO 4 & 100.00 & Stores redemption value. \\
\hline 365 STO 5 & 365.00 & Stores number of days/year. \\
\hline 7 STO 0 & 7.00 & Stores annual yield. \\
\hline 8.151986 ENTER & 8.15 & Enters settlement date. \\
\hline 12.011986 R/S & 94.75 & Enters next coupon date and calculates purchase price. \\
\hline x 2 y & 4.58 & Displays accrued interest. \\
\hline
\end{tabular}

Example 2: Bond Yield. What is the yield on a 15 -year annual coupon bond purchased on September 15,1986 at a price of \(871 / 2\) ? The next coupon of \(7.6 \%\) will be received on April 15,1987 and the calendar basis is Actual/Actual.
\begin{tabular}{|c|c|c|}
\hline Keys: & Display: & Description: \\
\hline 9 FIN & & Clears financial registers. \\
\hline STO EEX & & Sets \(C\) annunciator if it is not lit. \\
\hline \(7.6 \bigcirc 2\) & 7.601 & Stores known values. \\
\hline 15 STO 3 & 15.00 & \\
\hline 100 STO 4 & 100.00 & \\
\hline 365 STO 5 & 365.00 & \\
\hline \(87.5 \bigcirc{ }^{\text {STO }} 1\) & 87.50 & \\
\hline \(0 \bigcirc 0\) & 0.001 & \\
\hline 9.151986 ENTER & 9.15 & Enters settlement date. \\
\hline 4.151987 R/S & 9.18 & Calculates annual yield. \\
\hline
\end{tabular}

Example 3: Bond Price (Short Term). Calculate the price and accrued interest of the following annual coupon bond: \(7 \%\) coupon, \(8 \%\) yield, \(\$ 100\) redemption, settlement date March 21, 1986, maturity date December 1, 1986, actual day calendar. (The maturity date is the next coupon date and one coupon will be paid.)
\begin{tabular}{|c|c|c|}
\hline Keys: & Display: & Description: \\
\hline FIN & & Clears financial registers. \\
\hline STO EEX & & Sets \(C\) annunciator if it is not lit. \\
\hline 7 STO 2 & 7.00 & Stores known values. \\
\hline 1 STO 3 & 1.00 & \\
\hline 100 STO 4 & 100.00 & \\
\hline 365 STO 5 & 365.06 & \\
\hline 8 STO 0 & 8.00 & \\
\hline 3.211986 ENTER & 3.21 & \\
\hline 12.011986 R/S & 99.23 & Calculates price. \\
\hline x 2 y & 2.11 & Displays accrued interest. \\
\hline
\end{tabular}

\section*{HP-12C Solutions 12-11}

\section*{Deposits Needed to Meet a Future Cash Flow Need}

Sometimes you want to know how much money you need to save now to accumulate money for a future series of outflows. An example of this situation is saving money for college. The following procedure helps determine how much you need to save each period. You need to know when you need the money, how much is needed, and at what interest rate you can invest.

User Instructions.
Part 1. Calculate the present value of the future withdrawals using NPV. Assume a cash flow of 0 at each period where there is no withdrawal.
1. Press \(f\) REG \(g\) END
2. Press 0 CFO.
3. Press 0 CFi.
4. Key in the number of payment periods until the withdrawals begin and press \(\operatorname{GN} N\). (If this number is greater than 99 , break the number of payments into two (or more) groups.)
5. Key in the withdrawal amount and press \(g\) CFi.
6. Using \(g \subset C F]\) and \(g\), continue entering cash flows of 0 and the withdrawal amount through the last withdrawal.
7. Key in the periodic interest rate and press i
8. Press \(\oplus N P V\) to calculate the net present value of the future cash flows.

Part 2. Solve for the periodic deposit necessary over the entire term.
1. Key in the total number of deposits and press
2. Press PMT to calculate the periodic payment amount.

Example. Your daughter will be going to college in 12 years and you are starting a fund for her education. She will need \(\$ 15,000\) at the beginning of each year for four years. The fund earns \(9 \%\), compounded monthly, and you plan to make monthly deposits, starting at the end of the current month. The cash flow diagram looks like this:


How much should you deposit each month to meet her educational expenses?
\begin{tabular}{|c|c|c|}
\hline Keys: & Display: & Description: \\
\hline TREG 9 END & & Clears finance registers and sets END mode. \\
\hline 0 QCFO & 0.00 & Stores initial cash flow: \\
\hline 0 O \(0^{\text {CF }}\) & 0.001 & Stores cash flows until withdrawals begin. \\
\hline 99 N & & \\
\hline 0 g CFi & 0.00 & \\
\hline 44 N \({ }^{\text {N }}\) & & \\
\hline 15000 (GCF) & 15,000.00 & Stores first withdrawal. \\
\hline  & 0.00 & Stores cash flow of 0 . \\
\hline 15000 (GCF) & 15,000.00 & Stores second withdrawal. \\
\hline  & 0.00 & Stores cash flow of 0 . \\
\hline  & 15,000.00 & Stores subsequent cash flows. \\
\hline 9 12+ & 0.75 & Stores monthly interest rate. \\
\hline TNPV & 17,973.48 & Calculates NPV of withdrawals. \\
\hline 15 (12x & 180.00 & Stores total number of deposits. \\
\hline PMT & -182.30 & Calculates monthly payment. \\
\hline
\end{tabular}

\section*{hp HEWLETT PACKARD}

\section*{HP-12C Solutions 12-12}

\section*{Price and Yield to Call (Actual/Actual Day Basis)}

This program calculates price and yield to call, assuming a semi-annual coupon payment and an actual/actual day basis. Prices are based on a par value of 100 .

\section*{Program.}
\begin{tabular}{|c|c|c|c|}
\hline Keys & \multicolumn{3}{|c|}{Display} \\
\hline P/R & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{00.}} \\
\hline PPRGM & & & \\
\hline STO 2 & 01. & 44 & 2 \\
\hline x \(x^{2}\) & 02 & & 34 \\
\hline STO 1 & 03. & & 1 \\
\hline RCL PV & 04. & 45 & 13 \\
\hline RCL FV & 05. & 45 & 15 \\
\hline EEX & 06. & & 26 \\
\hline 2 & 07. & & 2 \\
\hline \(\div\) & 08 & & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Keys & \multicolumn{3}{|c|}{Display} \\
\hline STO 0 & 09. & 44 & 0 \\
\hline \(\div\) & 10. & & 10 \\
\hline PV & 11. & & 13 \\
\hline RCL PMT & 12. & 45 & 14 \\
\hline RCL 0 & 13. & 45 & 0 \\
\hline \(\div\) & 14. & & 10 \\
\hline PMT & 15. & & 14 \\
\hline RCL 1 & 16. & 45 & 1 \\
\hline RCL 2 & 17. & 45 & 2 \\
\hline RCL 1 & 18. & 45 & 12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Keys & Display \\
\hline g \(x=0\) & 19. 4335 \\
\hline gGTO 26 & 20-43, 3326 \\
\hline Rt & 21. 33 \\
\hline PRICE & 22. 4221 \\
\hline RCL 0 & 23. 450 \\
\hline \(x\) & 24- 20 \\
\hline g GTO 00 & 25-43, 3300 \\
\hline Rt & 26- 33 \\
\hline TYTM & 27. 4222 \\
\hline \(\square \mathrm{P} / \mathrm{R}\) & \\
\hline
\end{tabular}

\section*{Registers}
n: Used
i: Used
FV: Used
\(R_{0}\) : Used
PV: Used
PMT: Used
\(R_{1}\) : Settlement
\(R_{2}\) : Maturity
\(R_{3}-R_{6}\) : Unused

\section*{User Instructions.}
1. Key in the program.
2. Key in the annual coupon rate (as a percentage) and press PMT.
3. Key in the call price and press FV.
4. Key in the purchase price and press \(P V\). If the purchase price is unknown, key in 0 .
5. Key in the annual yield (as a percentage) and press 1 . If the yield is unknown, key in 0 .
6. Key in the settlement date and press ENTER.
7. Key in the call date and press \(R / S\). If the purchase price is 0 , the price to call is calculated. If the yield is 0 , the yield to call is calculated.
8. For a new problem, return to step 2.

Example 1. A \(10 \%\) coupon bond was purchased October 14, 1980 for 97.25 . If the bond is called on March 16, 1986 for 103, what is the yield to call?
\begin{tabular}{lll} 
Keys: & Display: & Description: \\
\(10 \boxed{P M T}\) & 10.00 & Stores annual coupon rate. \\
\(103 \boxed{F V}\) & 103.00 & Stores call price. \\
97.25 PV & 97.25 & Stores price. \\
0 R & 0.00 & Stores 0 in i. \\
10.141980 ENTER & 10.14 & Stores settlement date. \\
3.161986 R/S & 11.10 & Calculates yield to call.
\end{tabular}

Example 2. A bond with a \(9.5 \%\) coupon and a call of 102 has a settlement date of August 28, 1981 and a call date of June 1, 1990. If the bond is to yield \(11 \%\), what is the purchase price?

\section*{Display:}
9.50
102.00
11. 09
8. 28
92.45

\section*{Description:}

Stores annual coupon rate.
Stores call price.
Stores yield to call.
Stores settlement date.
Calculates purchase price.

\section*{(hp) HEWLETT \\ PACKARD}

Portable Computer Division
1000 N.E. Circle Blrd. Corvallis, OR 97330

12-12
\(4 / 87\)```


[^0]:    * Calculations using a non-integer value for $n$ produce a mathematically correct result, but this result has no simple useful interpretation

