HEWLETT-PACKARD

HP 00041-15043

HP-IL Development Module

OWNER’'S MANUAL

This manual has been re-typeset using the text and code from the original HP manual. As
such, copyright remains with HP. Large parts of the text were OCRed while others were
retyped.

The front and back covers have a white background because printers always leave a
blank band around the page, so it is better not to have a background. Alternatively you
may want to use cream colored card stock.

I would like to thank Eric Rechlin for carefully proofreading the material. Please report
to me any errors in this document so that I can incorporate them into future versions of
this manual.

Vassilis Prevelakis (series80@prevelakis.net)

(&F HEWLETT

PACKARD

HP 00041-15043
HP-IL Development Module

Owner’s Manual

For use with the HP-41

September 1982

00041-90449

Printed in U.S.A. © Hewlett-Packard Company 1982

Contents

L0) =Y o P 2
TN o Yo [T o] o Y P 3
L | L AN o =YY =Y PP 5
USING SCOPE MOAEeieiieie ittt et e e et e e e e e e e e e eneaneanenas 5
Y 0@] o =V oY [T =B %€= 0 ¢ o L= 5
=T] o] TSI o oY T =1 0 1= P 9
HOW t0 Read This SECtION Liuuiiiiii ittt e et e e aenaans 9
{1 o [L PP 9

R AT 1 10
L] S I3 11

L L o I L Y 12
N2 12

L NI 13
271\ O X O PP 13
D 15

L NI 15
SEN D A ottt ettt 17
A 17

L NI 17
TSN FT T Lot TS T=T o £ o 1P 19
How t0 Read This SeCtION ..uuiuiiiiiiiii ittt e e ae e 19
Error Handling ... e e 20

L0 3 T3 Y2 0T T o Y o T 21
Buffer Utility FUNCTIONS ... e e aas 24

2 TN =T o o 11 26
=0T G O 1T 4o 11 | PP 28

2 T0 N =Tl O o Y 0T T 170 o = 30
ALPHA Register FUNCTIONSuii ettt et e e e e e e aeeeanes 31

£ = o2 Sl [oY 01U 1 k=1 Vo O 10 oYU 33
Sending Command IMESSAgES - . e uuuuiiiiiite et e et et et et e e aaaaas 34
SeNdING REAAY MBS SagES. 1.ttt ittt ittt ettt ettt et et ettt e e e e naaneans 36
Sending Identify MeSSages. .. .ouuiuiiei i eas 38
SeNdING ArDItrary MBS SagES. .o utiuiiti ittt ittt ettt e e et et e et e e aaeaaanaans 39
Boolean FUNCHIONSe ettt e e e ee e 40
Non-Decimal INput @and QUL DU ... uie it e a e et e e e eaneaaaeaneanns 42
Reading and Writing of the HP-IL IC Registers.ccoiuiiiiiiiii e 44
Receiving Messages in 1dle Modecoouiiiiiii e 45
Appendix A: Care, Warranty, and Service Information.............c.ooiiiiiiii e 47
Appendix B: NUIl CharaCters. .ottt et ettt e et e et e e aneeeaneeas 49
Appendix C: HP-41 HP-IL Integrated CirCUIt......ouiuiiiiieiii i iaeeaeaas 51
F N o] o =T o Lo [N =Y o] gl 1Y 1T Vo 1= T 55
AppendixX E: FUNCTION INAEX. ... e e e e e e eneeenes 57

Introduction

The Development Module is intended to be used for debugging an HP-IL implementation or performing
HP-IL transactions which cannot be performed with other HP products.

With the Development Module you can:

1) Make the HP-41 an HP-IL analyzer.
2) Perform HP-41 internal byte transfers between any two of:
a) The stack (X or X, Y registers).
b) The ALPHA register.
¢) A sequence of registers.
d) The HP-IL loop.
e) An array of bytes (the buffer).
3) Setup an array or arbitrary bytes (the buffer).
4) Input and output numbers in hexadecimal, octal, or binary.
5) Perform some binary arithmetic.
6) Send most HP-IL messages by specifying their mnemonic.
7) Test any of the status bits of the HP-IL integrated circuit.
8) Read or write any HP-IL message.
9) Read or write any register in the HP-IL integrated circuit.

This manual assumes that you are familiar with the HP-IL protocol as specified in the HP-IL System Intro-
ductory Guide to the Hewlett-Packard Interface Loop, by Kane, Harper, and Ushijima (Osborne-McGraw
Hill, Berkeley, 1982). You need to understand HP-IL protocol for many of the module’s functions to be
useful. This manual does not provide tutorial information about HP-IL. For more detail on HP-IL, see the
defining document: HP-IL Interface Specification (HP Part number 82166-90017). The HP-IL integrated
circuit used in the HP-41 is very similar to the general purpose integrated circuit described in The HP-IL
Integrated Circuit (HP Part number 82166-90016). The differences are described in Appendix C.

You do not need to read this manual front to back. In fact, it is possible that one function, or set of functions
will do the job for you.

The manual is organized in two sections: an example section, and a reference section.

The example section gives a number of examples of “how to do it.” Hopefully, the solution to your problem
will be illustrated by one of the example applications of the development module. Refer to the reference
section for a detailed description of the each of the module’s functions.

Section 1

HP-IL Analyzer

Using SCOPE Mode

allows the HP-41 to monitor and display the HP-IL messages as they go around the loop. In
SCOPE mode, the HP-41 will no longer source frames, but it will merely display the mnemonic of a re-
ceived message and then echo the message on to the next device.

After you execute [SCOPE |, the display will read SCOPE READY. Then, as messages are received from the
loop, their mnemonics are placed in the display one at a time. Before the message is retransmitted, a one
second delay is inserted. This gives you time to read the display before the next frame comes in. SCOPE
mode is exited by pressing [R/s .

takes control of the HP-41 keyboard. This means that only two keys can be used to exit SCOPE
mode — and [R/S]. Most of the other keys have no effect. The ones that do have an effect are de-
scribed below.

The delay between messages can be changed to zero seconds, one half second, one second, or one and a
half seconds. These changes are caused by pressing (0], (1], (2], or (3] respectively. If the delay is 1.5
seconds and an HP 82143 A Thermal Printer is plugged into the HP-41, the messages will be printed as they
are displayed.

The messages may be stored in a buffer as they are received. The buffer is maintained in the memory not
occupied by programs or data. The buffer is created using [Bsizex]. The buffer also has a pointer associated
with it. Refer to the reference section for additional information on the buffer.

Each time is pressed while the HP-41 is in SCOPE mode, the HP-41 will toggle into or out of store
mode. While in store mode the messages are stored into the buffer.

Once the messages are in the buffer, they may be viewed using [SsT). Each time is pressed, the
SCOPE pointer is advanced and the next message is placed in the display. Pressing causes the pointer
to back up to the previous message. The previous message is then placed in the display. The shift indicator
stays on until [} is pressed again, thus maintaining the BST function of the key.

SCOPE Mode Examples

Define a buffer and enter SCOPE mode.

Keystrokes Frame Received Display
14 14
14.0000
SCOPE SCOPE READY

6 Section 1: HP-IL Analyzer

Now that the scope is ready, initiate the HP-IL transaction that you wish to observe.

Keystrokes Frame Received Display
AAU AAU
AAD 1 AAD 1
TAD 1 TAD 1
RFC RFC
SAI SAl
DAB 16 DAB 16
UNT UNT
RFC RFC

Until now the messages have been staying in the display for .5 seconds. Press and start the sequence
again. The messages may be printed on the HP 82143 A printer if one is connected.

Keystrokes Frame Received Display
1.5 SEC DELAY

AAU AAU
AAD 1 AAD 1
TAD 1 TAD 1
RFC RFC
SAI SAl
DAB 16 DAB 16
UNT UNT
RFC RFC

So far the messages have not been stored in the buffer. Press to store the messages in the buffer. If you
press [0 so there is no delay while storing messages into the buffer, then the loop will respond much faster.

Keystrokes Frame Received Display
STO STORE MODE
(o] 0 SEC DELAY
AAU AAU
AAD 1 AAD 1
TAD 1 TAD 1
RFC RFC
SAI SAl
DAB 16 DAB 16
UNT UNT

The previous message just filled the buffer. The next message will result in the END OF BUF message. If
you decide to not store any more messages, press to toggle out of store mode.

Keystrokes Frame Received Display
STO RFC RFC

Section 1: HP-IL Analyzer 7

To review the messages that have just been received, press [«], which sets the pointer to the start of the

sequence.

Keystrokes

1]

You can now single step through the buffer using [SsT].

Keystrokes

SST
SST

Hl

ST
SST
SST
SST

Frame Received

Frame Received

Display

00 AAU

Display

02 AAD 1
04 TAD 1
06 RFC

08 SAI

10 DAB 16
12 UNT

If is pressed again, the UNT message stays in the display because the pointer is at the end of the
buffer. If you want to back up to the SAI message, press [followed by pressing twice. Each time
is pressed, the pointer and display move back by one message. Note that pressing does not clear
the SHIFT indicator.

Keystrokes Frame Received Display
10 DAB 16
08 SAI
BST 06 RFC
04 TAD 1
BST 02 AAD 1

Section 2

Example Programs

How to Read This Section

The programs in this section have been listed differently from the HP-41 manual. The listing is similar to
that produced by trace mode. Line numbers are not used because they are irrelevant to the program. In some
cases, multiple program steps are used on the same line. This may cause some confusion as to where one
step ends and the next begins. Entering the program will clear all doubts. Details of individual development

module functions are given in Section 3.

The following two programs demonstrate the use of the low level message handling functions.

Program: RGPIO

Description: Reads any control register of an HP-IL to GPIO interface (HP 82165A/HP
82166A).

Input: The X-register contains the number of the register to be read.

Output: The X-register gets the contents of the register.

Warnings: This program changes the contents of the stack. Uses register 00 to con-
tain the register number. It uses register 02 for the GPIO interface’s ad-
dress, flag 09 to store flag 33, and calls GPADR. You need a buffer of at
least 18 bytes for this program to work.

*LBL “RGPIO”

STO 00 Save the desired register.

XEQ “GPADR” Find the desired GPIO.

TAD Make it talker addressed.

0 DDT Tell it to send the registers.

0 PT= Start at the beginning of the buffer.
RCL 00 1 +

INBUFX Read only up to the register he wants.
RCL 00 PT= Point to the register he wants.

1 BUF-XB Get one register from the buffer.
UNT Tell the GPIO to stop sending registers.
FS? 09 Restore flag 33 to its original value.
CF 33

RTN

END

10 Section 2: Example Programs

Program: WGPIO

Description: ~ Writes a control register of an HP-IL to GPIO interface (HP 82165A/HP
82166A).

Input: The X-register contains the new contents of the register, the Y-register
contains the number of the register to be changed.

Output: None.

Warnings: This program changes the contents of the stack. Register OO contains

the register number, register 01 contains the GPIO register contents,
register 02 contains the GPIO interface’s address, flag 09 stores flag 33,
manual increment mode is entered, and GPADR is called. You need a
buffer of at least 18 bytes for this program to work.

*LBL “WGPIO”

STO 01 Save the new register contents.

RDN Move the register number into the X-register.
MIPT Don’t advance the buffer.

XEQ “RGPIO” Get the registers into the buffer.

RCL 01 Put the new contents into the X-register.
X-BUF Store it using the PT value from RGPIO.
RCL 02 Get the GPIO address.

LAD Make it listener active.

0 DDL Tell it to write its registers.

RCL 00 1 + Get the register number again.

OUTBUFX Send out this register and all previous ones.
UNL Unlisten the GPIO.

FS? 09 Restore flag 33 to its original value.

CF 33

END

Section 2: Example Programs

Program:
Description:

Input:
Output:
Warnings:

GPADR

This program finds the first GPIO interface on the loop by searching for a
GPIO accessory ID (64). A variation of this program, GPADR1, searches
for a GPIO device ID.

None.
The X-register contains the interface address.

Register 02 stores the device’s address, the contents of the stack are
altered, the ALPHA register is modified, flag 33 is saved in flag 09, and
flag 33 is set.

*LBL “GPADR”
SF 09
FS? 33 CF 09
SF 33
0 ENTER®
193 WREG
FS? 32
GTO 00
AAU
1 AAD
1-
1000 /
+
STO 02

*LBL 01
RCL 02
TAD
SAI
64 X=Y?
GTO 02
ISG 02
GTO 01
“NO GPIO”
PROMPT

*LBL 02
RCL 02
UNT
RTN

*LBL 00
4
RREG
STO 02
RTN
END

Save the complement of flag 33 into flag 09.

Set SC, CA, and MCL (AAU clears MCL).
AUTOIO or MANIO?

Go to label 00 if manual IO.

Auto address the loop.

Make an index for the form bbb.eee, where bbb is the address of the
first device and eee is the address of the last device.

Get the counter into the X-register.

and make it the active listener.

Get the Accessory ID of the device.

Is this equal to the Accessory ID of the GPIO?

Yes! exit with the address of the GPIO stored in register 02.
Any more devices to try?

Yes — go try the next one.

No — tell user we can’t find it.

We found the GPIO

Get the address into the X-register,
untalk the GPIO,

and return.

Manual I/O is very simple.

The HP-IL module stores the selected address in
register 4 of the HP-IL chip

Return the address in register-X and register 02.

11

11

12 Section 2: Example Programs

Program:

Input:
Output:
Warnings:

Description:

GPADR1

This program finds the first GPIO interface on the loop by searching for a
GPIO device ID (“HP82165A" or “HP82166A"). A variation of this pro-
gram, GPADR, searches for a GPIO accessory ID.

None.

The X-register gets the interface’s address.

The ALPHA register is modified, flag 33 is saved in flag 09, and flag 33
is set.

*LBL"GPADR1"

"HP82165A"
FINDID Look for the specified Device ID.
X=0? Did we find it?
GTO 01 No, search for other GPIO.
GTO 03
*LBL 01
"HP82166A"
FINDID
X=0? Again, did we find it?
GTO 02 No, put “NO GPIO” in the display.
GTO 03
*LBL 02
"NO GPIO"
PROMPT
*LBL 03 We found the GPIO — its address is in X.
SF 09 Store the complement of flag 33 in flag 9.
FS? 33 CF 09
SF33
RTN
Program: ENBINTR
Description: This program sets the HP-IL chip to automatically send IDY messages
around the loop while remaining in idle mode.
Input: None.
Output: Sets HP-IL register O to 64 (CA), sets HP-IL register 3 to 64 (AIDY), and
sets user flag 18, which enables the INTR routine.

*L8L "ENBINTR"
3 ENTER"®
64 WREG
0 ENTER"®
64 WREG
SF 18
END

Set HP-IL register 3 to 64 (AIDY).

Set HP-IL register 0 to 64 (CA).
Enable the INTR program.

Section 2: Example Programs

Program: INTR

Description: This program is executed when the HP-41 enters execution mode with
flag 18 set and any one of SRQR, INTR, FRAV, or FRNS true. This pro-
gram is enabled by executing the program ENBINTR. This routine only
executes a “TONE 9”, but an interrupt handling routine could be used in
place of the “TONE 9”.

Input: None.

Output: An IDY is sent out to clear the SRQR bit in the requesting device. The
SRQR bit is cleared only when a message is received with the SRQ bit
zero. (If no message is sent out then an infinite loop is formed which is
difficult to break out of. Pressing a key for a long time usually breaks the
infinite loop).

Warnings: The data bits in the automatically sent IDYs sometimes change, which
cause FRNS to be set and start the HP-41 executing. Reading the mes-
sage will reset FRNS.

*LBL "INTR" Must be “INTR”
FRNS? Did we start executing because of FRNS?
RFRM Yes, read the message.
SRQR1 Did we start executing because of SRQR?
TONE 9 Yes, perform all the work we’re going to.
SRQR? Did we start executing because of SRQR?
IDY Send out an IDY to clear SRQR.
RTN
END

Program: BINCALC

Description: This program, with the use of some assigned keys, emulates an HP-16C,
the Computer Scientist. You may calculate in hexadecimal (HEX), octal
(OCT), or binary (BIN) modes. The base is indicated by the number stored
in register 00. 16 means HEX, 8 means OCT, and 2 means BIN. The
meanings of the keys on the keyboard are kept by this program. Enter
still means enter, times still means times, etc. This program is useful be-
cause it displays and enters numbers in the desired base. To change
bases, the shifted keys 2 (for BIN), 8 (for OCT), and 6 (for HEX) are
used.

Input: Numbers typed from the keyboard.

Output: Results in the display.

Warnings: This program is not quite as fast as an HP-16C, nor does it handle word
sizes as large as sixty-four bits. Remember that the largest number is
thirty-two bits long, and the actual number of bits viewable is dependent
upon the current base.

*LBL "BINCALC"
*LBL "16"

Set the current base — HEX.

16 STO 00 RDN GTO 01

*LBL "2"

BIN

2 STO 00 RDN GTO 01

13

13

14 Section 2: Example Programs

* LBL “8" OCT

8 STO 00 RDN GTO 01
*LBL "-"
- GTO 01
*LBL "+ "
+ GTO 01
LBL ""
* GTO 01
*LBL "/"
/ GTO 01
*LBL "OR "
OR GTO 01
*LBL "AND "
AND GTO 01
*LBL "XOR "
XOR GTO 01
*LBL "NOT "
NOT GTO 01
*LBL "~"
XEQ 01 GTO 01
*LBL 01
4294967296 MOD
GTO IND 00
*LBL 02
BINVIEW BININ RTN
*LBL 08
OCTVIEW OCTIN RTN
*LBL 16
HEXVIEW HEXIN RTN
END

Various arithmetic and logical operations:

Note the trailing space. Also see AND, XOR, NOT.

Enter

Keep the result within 32 bits.
Magic number = FFFF,FFFF Hex.
Go to the correct "'VIEW and 'IN function.

Key Assignments:

41 "
-42 "NOT "
51 "."

Note the trailing space. Also see OR, AND, XOR

61"+"

"OR "
"16"

"AND "

"XOR "

Section 2: Example Programs

Program: DEVICE
Description: This is actually a set of programs designed to work together. The first,
DEVICE, sets up for INTR. The second, INTR, handles incoming mes-
sages. The third, SENDA, causes the ALPHA register to be sent.
The program INTR gives the HP-41 the following capability: L1,3
T1,2,3,4,6 SR1 AA1. The controller may at any time read the contents
of the buffer. The first byte of the buffer is assumed to be the length of
the data in the buffer.
Warnings: This program is slow enough that the HP-IL module will time out and give
a transmit error. In order to drive this program, a controller program must
be written with the development module. This program is given on page
17. This program initializes the HP-IL chip, the buffer, and sets flag 18
so that INTR may be executed.
*LBL "DEVICE"
25 BSIZEX AIPT Create the buffer.
3 ENTER" 64 WREG Clear OSCDIS, set AIDY.
0 ENTER" 0 WREG Clear everything in register zero.
4 ENTER" 31 WREG Initially unaddressed.
SF 18 Set flag to enable "INTR".

FIX 0 CF 28 CF 29
END

Get rid of radix indicators.

This program handles incoming frames.

*LBL "INTR"
IFCR? GTG 50
RFRM 256 * OR
SF 08

Must be named INTR.

Special check for IFC.
Put entire message in the X-register.
Flag 8 is true if first try.

*LBL 10
ENTER" Put a copy of message on stack.
CLA ARCL X ASTO X Put message into X as alpha.
SF 25 GTO IND X Search for the message.
FS?C 08 If not found on first try
GTO 11 then go search again.
*LBL 12 We didn’t recognize this message.
RFRM WFRM Retransmit the message.
RTN
*LBL 11 We didn’t recognize this message.
RDN Get it back and ignore
2016 AND the lower five bits to catch
GTO 10 TAD, LAD, AAU, etc.
*LBL 50 Handle IFC by setting IFCR.

0 ENTER" 2 WREG
GTO 03

*LBL "1056" CF 25 ---- LAD ---
XEQ 01 X=0? GTO 03 If not our address then leave.
0 RREG 16 OR 223 AND WREG Set LA and clear TA.

GTO 03

15

15

16 Section 2: Example Programs

*LBL "1087" CF 25
0 RREG 239 AND WREG
GTO 03

*LBL "1088" CF 25
XEQ 01 X=0? GTO "1119"
0 RREG 32 OR 239 AND WREG
GTO 03

*LBL "1119" CF 25
0 RREG 223 AND WREG
GTO 03

*LBL "1178" CF 25
4 ENTER" 31 WREG
GTO 03

*LBL "1376" CF 25
0 RREG 247 AND WREG
0 PT= MIPT
BUF-XB 1 + OUTBUFX
AIPT
RTN

*LBL "1377" CF 25
0 RREG 8 AND
28 ROTXY
OUTBIN
GTO "ETO"

*LBL "1378" CF 25
1213214004 OUTBIN
49 OUTBIN
GTO "ETO"

RTN

*LBL "13791" CF 25
0 OUTBIN

*LBL "ETO"
64 ENTER" 5 WFRM
RTN

*LBL "1408" CF 25
4 RREG 31 X>Y?
GTO 12
RFRM CLX 31 AND 4
X< >Y WREG
RFRM X<>Y 1 + X<>Y WFRM
RTN

*LBL "1439"
GTO 12

*LBL 03
0 RREG 4 OR WREG
RTN

*LBL 01
2 RREG 4 RREG
RCL Z 31 AND X=Y? RTN
CLX
END

--—- UNL ---
Clear LA.

-—-TAD ---
If not our address then UNT.
Set TA and clear LA.

--—- UNT ---
Clear TA.

- AAU ---
Remember that we don’t have an address.

--- SDA ---

Clear SSRQ.

Point to the beginning.

Get the count and output.
Restore auto-increment and exit.

--- SST ---

Get SSRQ.

Put it into bit 7.

Send 0 (no SRQ) or 128 (SRQ).

- SDI ---

Send “HP-41” and ETO.

--- SAI ---
Send DAB 0 and ETO.

-~ AAD ---
Are we already addressed?
Yes — just echo the message.

Set our address.
Increment the address and send it on.

Explicitly ignore IAD. We need
this to catch AAD 31.

Exit point for all CMD messages.
Set SLRDY.

If the incoming message contains our
address then return X<>0
else return X=0.

This program must be executed with the string that you want to send in ALPHA. When this program fin-
ishes, it must go to idle mode, otherwise INTR will not be executed. This program assumes that the con-
troller is sending IDY’s around the loop. The next IDY to go around will have the service request bit set,

and the controller will ask the HP-41 for status.

*LBL "SENDA"
0 PT=
ASIZE?
X-BUF
A-BUF

0 ENTER" 8 WREG

END

Get number of chars in ALPHA.
Put count in buffer (AIPT mode).

Put ALPHA in buffer.
Set SSRQ.

Section 2: Example Programs

17

These two programs are the controller half of the DEVICE mode pair. The first part, READ, initializes for
INTR. The second part, INTR, reads the buffer from the device half.

*LBL "READ"

25 BSIZEX AIPT

CF 28 CF 29 FIX O
3 ENTER" 64 WREG
0 ENTER" 1 WREG
CLX 192 WREG

IFC

0 RREG 2 OR WREG

AAU
1 AAD
SF 18
END

*LBL "INTR"
FRNS? GTO 01
1 TAD
SST
128 AND
X=0? GTO 08
0 PT=
BSIZE?
INBUFX
0 PT=
CLA
BUF-XB
BUF-AX
AVIEW

*LBL 03

UNT
IDY

SRQR? GTO 02

RTN

*LBL 02
"SRQR TRUE"
AVIEW
RTN

Create the buffer.

Get rid of radix indicators.

Set AIDY.

Set MCL — clear HP-IL IC.

Set SC, CA. Clear TA, LA ...
Clear device’s interface.

Set CLIFCR.
Unaddress devices.
Address devices.
Enable INTR.

Go ignore non-SRQRs.

Assume that the first device is HP-41.

Get its status.

Did it request service?
No — untalk and exit.
Point to the beginning.

Don’t read more than will fit.
Read the buffer from the HP-41.
Point to the beginning again.
Prepare to bring in ALPHA.
Get the length of new ALPHA.

Get that many characters.

Show him what we got.

Tell the HP-41 to stop sending.
See if we still have an SRQR.

If we do, tell him and exit.

Tell him that we got two SRQs

in a row.

17

18 Section 2: Example Programs

*LBL 01 Get rid of FRAV? or FRNS?.

RFRM
END

Section 3

Reference Section

How to Read This Section

This section is split into sub-sections containing logically grouped functions. Some of the sub-sections con-
tain a short introductory paragraph at the beginning containing information required for understanding the
functions described in that section.

To properly use the message or integrated circuit level functions, you need to understand how the HP-41,
the HP-IL module, and the development module interact. These interactions are described in the paragraphs
below.

The HP-41 continually accesses the HP-IL module unless flag 33 is set. (Refer to and on page
21). The HP-41 tries to print between every function; therefore, the HP-IL module constantly looks for a
printer on the loop unless flag 33 is set. Searching for a printer can change the currently addressed device;
so flag 33 must be set to maintain an active listener or active talker. Flag 33 must also be set whenever
functions from sub-sections G through P are used.

Additionally, the HP-IL integrated circuit is reset whenever the HP-41 goes into idle mode unless the AIDY
bit in the HP-IL integrated circuit is set. This bit imposes constraints upon the operation of the loop. To

avoid these constraints various functions, such as [scope| and [monITOR], keep the HP-41 in execution

mode. If you wish to use [RREG | and [WREG |, you must keep the HP-41 in execution mode, or you must obey
the constraints upon the control bits detailed in Appendix C. will keep the HP-41 in execution mode.

Any time a function expects a number which it will convert to an integer, the sign of that number is ignored.
The lone exceptions are and [A-xx]. Some of these functions will generate NONEXISTENT error if the
number is greater than 999. Exceptions to this are: buffer input functions, buffer output functions, buffer
comparison functions, boolean functions, non-decimal input and output, [OUTEIN], and the X-register argu-

ment to [OUTEINY].

The buffer is a collection of registers set aside by using [BsizEx]. To conserve memory the buffer will be
deleted the first time the HP-41 is turned on without the development module in place. The buffer will also
be deleted by a MEMIORY LOST condition. The number of registers used by the buffer is determined by the
argument to divided by seven. The buffer will never use more registers than you give it.

The buffer has an internal pointer whose value can range from zero to the number of bytes in the buffer mi-
nus one. Many of the buffer operations start at the buffer pointer.

19

20 Section 3: Reference Section

A. Error Handling

The following list describes the error codes that are placed into the X-register upon the occurrence of an
error condition.

Code Error Error Message Cause
-1 TIME OUT No message received within ten seconds.
-2 FRNS ERR A message was received not as sent.
-3 ETO ERR Message following data was not an ETO.
-4 NO RESPONSE No response to SST, SAl, SDI, or TCT.
-5 ORAV =0 ORAYV did not go true within ten seconds.

Note that when an ETO ERR is given the module is reporting an error in protocol. It is not a violation of
protocol for a listener to receive a non-ETO message immediately after a string of DABs. However, when
that listener is also the controller it is an error. Remember that ETO is a message from the talker to the con-
troller.

The development module handles some of its errors differently from the way the HP-41 handles its errors.
Flag 25 is still used to trap errors, but the flag is not cleared by an error. Instead, an error code is returned to
the X-register. The following table describes the effect of an error.

Keyboard
Execution

Program or
SST Execution

Flag 25 set

X = negative error code
Display error message
Flag 25 not cleared

X = negative error code
Flag 25 not cleared
Execution continues

Flag 25 clear

X = negative error code
Display error message

X = negative error code
Display error message
Execution stops

Section 3: Reference Section 21

B. Utility Functions

Displays HP-IL messages

Description: Displays HP-IL message mnemonics and stores them in the buffer if store mode is selected.
Messages can be delayed from 0 to 1.5 seconds. The delay for IDY messages is always zero.

Input: When executed from a program, the X-register is the number of messages to be received before ex-
iting. When executed from the keyboard, X is not used.

The keyboard is redefined to:

(570): Used to toggle in and out of store mode. When in store mode, every message received is stored
in the buffer according to the scope pointer. Upon executing [SCOPE J, the scope pointer is ini-
tialized to the same value as the buffer pointer. If a message is received which would overflow
the buffer, it is not stored or echoed. The message END OF BUF is displayed and transmission
will halt until you either hit [ST0], exiting store mode, or hit (<], setting the scope pointer to
the buffer pointer.

Set the scope pointer to the buffer pointer.

ssT] Moves the scope pointer to the next message. If the shift annunciator is lit, the pointer moves
backwards. The pointer will not go past either end of the buffer.

Toggles the shift annunciator. Shift is not cleared by other operations.

(o). 0. (=)

The message delay is set to 0, .5, 1.0, or 1.5 seconds, depending upon whether [0, (1], or
is pressed. Messages are placed in the display even with zero delay, to show that a trans-
mission has occurred. If has been pressed and a plug-in printer is present and the mode
switch is not set to MAN, then succeeding messages will be printed.

Exits scope mode and turns the calculator off.
r/s | Exits scope mode.

Output: The display can contain message mnemonics from either the loop or the buffer. If the mnemonic is
preceded by a number, the display contains a message taken from the buffer. If the mnemonic stands alone
in the display, the display contains the latest message received from HP-IL.

Warnings: On entry, TA and LA are set to one. On exit, TA and LA are set to zero. If ten minutes elapses
without a key being pressed or a message being received, scope mode is exited. If the buffer pointer is in
auto advance mode, the buffer pointer will be set to the value of the scope pointer on exit. Each message
occupies two bytes in the buffer.

will cause errors when used in a loop with a Series 80 controller with delays other than zero, be-
cause of the way the controller tests for loop continuity. The controller sends AAU messages and expects to
get them back within a short time. If this does not happen then it will send out another one, which causes
messages to back up and errors to occur.

To avoid problems with Series 80 controllers, use a delay of zero and store the messages in the buffer.

21

22 Section 3: Reference Section

Displays HP-IL messages manually

Description: Displays HP-IL messages, but does not retransmit them. Monitor mode is useful for manually
sending and receiving messages. When a message is received, its mnemonic is placed in the display and its
value is placed in the X- and Y- registers identically to [RFRM]. The message may be immediately retrans-
mitted using [WFRM], it may be modified before retransmission, or a completely different message may be
sent out. does not let the HP-41 go to idle mode, and it sets register five of the HP-IL integrated
circuit to all ones.

Warnings: Monitor mode is exited after ten minutes of no activity, when register five is cleared using
[WREG], or whenever the HP-41 is turned off.

Sets user flag 33

Description: When user flag 33 is set, the HP 82160A HP-IL module functions will not and can not access
the loop. Setting this flag will prevent the HP-IL module from searching the loop for a printer. While flag
33 is set, executing any HP-IL module function will result in TRANSMIT ERR being displayed. exists
because user flags 31 through 35 cannot be set or cleared using or . These flags are not cleared at
turn on. Flags 31 through 35 can be cleared only by MEMIORY LOST or by some special function such as

=)
Output: Flag 33 is set.

Warnings: with an argument of 33 can be typed into a program without causing an error. When that
program is executed, will generate the NONEXISTENT error, so be sure to use [SF33].

Clears user flag 33
Description: Flag 33 is cleared. The HP-41 HP-IL module functions will not work with flag 33 set.
Warnings: with an argument of 33 can be typed into a program without causing an error. When that
program is executed, will generate the NONEXISTENT error, so be sure to use [CF33].

Keeps the HP-41 in execution mode

Description: This is actually a built-in function which prevents the HP-41 from turning itself off after ten
minutes of no activity. also sets flag 44. When flag 44 is set, the development module will keep the
HP-41 in execution mode. This prevents the HP-IL integrated circuit from being reset. The only other way
to prevent the integrated circuit from being reset is to set the AIDY bit, which then puts constraints on the
CA bit. For further details, refer to Appendix C.

Exchange user flags O through 7 with X

Description: Takes the integer part of the X-register and exchanges it with user flags 0 through 7. User flag
0 is weighted 1, flag 2 is weighted 2, flag 3 is weighted 4, etc. is the same as HP 82180A Ex-
tended Functions [x<>F).

Value of X 128 64 32 16 8 4 2 1

User Flags 7 6 5 4 3 2 1 0

Section 3: Reference Section 23

Input: X, an integer number from 0 through 255, and user flags 0 through 7.
Output: X, an integer from 0 through 255, and user flags 0 through 7.

Warnings: Any number from 0 through 999 will be converted to an integer; only the low eight bits will be
used.

Performs checksum of the Xth ROM

Description: Verifies the checksum of a plug-in ROM using the X-register as the ROM ID. The ROM ID is
determined from the first number of an XROM pair. Some modules contain two ROMs and hence have two
ROM IDs. While computing the ROM checksum, the display will show DD CC-NN TST where DD is the
ROM ID, and CC-NN is the ROM label. When the checksum computation is finished, the display will
change to DD CC-NN OK or DD CC-NN BAD. If was executed from program execution, it will
skip the next step if the checksum was bad. If the specified ROM ID is not present, the message NO ROM
DD will be placed in the display and execution will continue after skipping the next step.

Input: The X-register contains the ROM ID.

Output: A message is left in the display as detailed above.

23

24 Section 3: Reference Section

C. Buffer Utility Functions

Initializes a buffer with X bytes

Description: Creates a buffer for use by the development module. The X-register contains the buffer size
in bytes. If X is 0 then no buffer is created, and any existing one is deleted. The maximum size of the buffer
is 1771 bytes. The buffer size will be rounded up to the next larger increment of seven bytes if X is not a
multiple of seven. If the HP-41 does not have enough memory for the buffer, it will pack the memory and
ask you to try again.

Input: The X-register contains the number of bytes to use for the buffer.

Output: A buffer is created of size 7¥*INT(X/7+1) bytes.

Returns the buffer size to X

Description: The number of bytes in the buffer is pushed on the stack. This number will always be a multi-
ple of seven.

Output: The X-register contains the maximum addressable byte plus one; the stack is lifted.

PT= Sets the buffer pointer equal to X

Description: The absolute value of the X-register contains the pointer value. The buffer pointer may range
from 0 to the value returned by minus one. The END OF BUF error is generated if X is larger than
the buffer size less one.

Input: The buffer pointer gets X.

PT? Returns the buffer pointer to X

Description: The value of the buffer pointer is pushed on the stack. This number can range from zero to the

value returned by [Bsize?]. The only way to get to have the value of is if a function reached the
end of the buffer in automatic increment mode.

Input: The buffer pointer.

Output: The X-register contains the buffer pointer; the stack is lifted.

Sets auto increment of pointer mode

Description: Auto increment the buffer pointer after each operation. Every function which operates on the
buffer will increment the buffer pointer by the appropriate amount after is executed. is the

inverse of [MIPT].
Sets manual increment of pointer mode

Description: Manual increment buffer pointer. While in manual increment mode, the buffer pointer will
stay where it was after each buffer operation. The pointer will only be moved by, [PT=]. When the buffer is
first set up, it is set to be in manual advance mode. is the inverse of [AIPT J.

Section 3: Reference Section 25

Prints bytes from the buffer

Description: Prints the bytes in the buffer in hexadecimal format. The bytes are printed starting from the
buffer pointer and ending at the end of the buffer. If the HP 82143 A printer is plugged in, it will be used for
printing. If not, the HP-IL printer will be used only if flag 33 is clear and there is no other controller on the
loop. The mode switch on either printer must be set to trace or norm, or flag 15 or flag 16 must be set for
HP-IL printers other than the HP 82162A. If neither printer is present, the bytes will be displayed at about
two bytes per second. Pressing will exit [PREVTES . Pressing any other key will slow the display rate to
about one byte per second.

Prints messages from the buffer

Description: Identical to except that message mnemonics are printed instead of bytes. Each mes-
sage occupies two bytes in the buffer.

Warnings: The buffer pointer may be pointing to the second byte of the message. This will cause garbage
to be displayed in place of the correct mnemonics. The buffer pointer should always be the same as that
used to store the messages.

25

26 Section 3: Reference Section

D. Buffer Input

Stores the ALPHA register to the buffer

Description: The number of bytes stored is the same as the number returned by [Asize?]. Leading nulls in
the ALPHA register are ignored.

Input: ALPHA register.

Output: Buffer, starting at the buffer pointer.

Store X to buffer in binary

Description: The number of bytes stored is determined by the minimum number of bytes needed to repre-
sent the X-register in integer form. If X contains a string, then leading nulls are ignored, one character to a

byte.
Input: The X-register
Output: Buffer, starting at the buffer pointer, contains the contents of the X-register.

Warnings: For an arbitrary integer, you don’t know how many bytes it will take to store. 0 through 255 will
take one byte, and 256 through 65535 will take two, etc.

Copy registers to buffer using X

Description: Copies registers to buffer using the X-register as a register index in the form bbb.eee, where
bbb is the starting register number and eee is the ending register number. The copy starts at the buffer
pointer. If the buffer overflows, the END OF BUF error is given. If any of the registers do not exist, the
NONEXISTENT error is displayed. Each register is seven bytes long. The transfer is done on a byte by byte
basis; no translation is performed.

Input: Registers bbb through eee.

Output: Buffer, starting at the buffer pointer, contains the specified registers.

Warnings: Do not or any of these registers, because these functions normalize the number and
store it back in the register. If the data that was in the register doesn’t look like a normalized number, it will
be changed.

Input data messages into buffer using X

Description: Inputs data messages into buffer using the X-register as the count of bytes to input. If CA is
set, then this function sets LA and sends SDA before reading. If CA is not set, then LA is not set and an
SDA is not sent. X bytes are input from HP-IL and stored into the buffer starting at the current pointer. The
transfer is terminated by one of the following conditions:

1) ETO. The ETO is not retransmitted.
2) Any non-data message. This generates an ETO ERR.

3) X bytes have been received; the NRD handshake is performed if CA=1. If CA=0 then the last
frame is held. You have to pull the last frame out of the buffer and echo it when you are finished.

Section 3: Reference Section 27

4) Reaching the end of the buffer. The END OF BUF error is generated.
5) Sixty seconds after the most recent message is received; the TIME OUT error is generated.
6) Pressing any key generates the TIME OUT error.

Input: X is the count of bytes to transfer. The bytes are transmitted by the active talker. An active talker is
assumed.

Output: Starting at the buffer pointer, the buffer contains the received data.

27

28 Section 3: Reference Section

E. Buffer Output

Convert a string to a number in X

Description: Converts a string representation of a number into the X-register. Starting at the buffer pointer,
X bytes are taken as the ASCII representation of a number, whose value is returned to X. Characters which
do not fall into the set of the digits zero through nine, the radix indicator “.”, the exponent indicator “E”,
and the Line Feed character are ignored. The maximum number of characters used is given in X. Fewer

characters will be used if a Line Feed is encountered.

Input: X contains the number of characters to look at. The buffer contains a string representation of a num-
ber, starting at the buffer pointer.

Output: X contains the value of the numeric string taken from the buffer starting at the buffer pointer. If
Line Feed is encountered, the buffer pointer is left pointing at the character after the Line Feed, otherwise
the buffer pointer is incremented by the value of X on entry. Remember that the buffer pointer is changed
only in auto increment mode.

Convert bytes in buffer to an integer in X

Description: The X-register is the count of bytes to convert. The first byte taken from the buffer is the
most significant.

Input: X contains the count of bytes to convert from the buffer.

Output: X is an integer. Range is dependent upon the number of bytes converted.

Place X bytes into ALPHA register from buffer

Description: Loads the ALPHA register from the buffer using the X-register as a count of bytes. None of
the bytes are special; Carriage Return will not terminate the transfer, and nulls are not ignored. The ALPHA
register is not cleared before execution.

Input: X contains the count of bytes to transfer from the buffer.

Output: ALPHA register contains the bytes transferred from the buffer.

Copy buffer bytes to registers

Description: Copies bytes from the buffer to registers. The X-register contains a register index in the form
bbb.eee, where bbb is the starting register number and eee is the ending register number. The copy starts at
the buffer pointer. If the buffer is overflowed, END OF BUF is displayed. If any of the registers do not exist,
the NONEXISTENT error is given. Each register is seven bytes long. The transfer is done on a byte by byte
basis. No translation is performed, and nulls are not ignored.

Input: Buffer contents, and the X-register contains the register index.
Output: Registers bbb through eee contain the bytes from the buffer.

Warnings: Do not or any of these registers, because these functions normalize the number and
store it back in the register. If the data that was in the register doesn’t look like a normalized number, it will
be changed.

Section 3: Reference Section 29

Output data messages from buffer using X

Description: Outputs data messages from buffer using the X-register as a count of bytes to be transferred. If
CA set, sets TA before execution. If CA is not set then CA is not set. The bytes are taken from the buffer
starting at the buffer pointer. If an NRD is received from the listener then the transfer will be halted and the
NRD handshake performed. An ETO will be sent after the desired number of bytes has been sent.

Input: The X-register contains the count of bytes.
Output: The data messages are sent to the active listeners on HP-IL.

Warnings: Does not wait for an SDA.

29

30 Section 3: Reference Section

F. Buffer Comparisons

All of these comparison functions act just like the comparison functions in the HP-41. If the question being
asked is true, the display will contain YES, or execution will continue with the next step. If the question is
false, the display will contain NO, or execution will continue after skipping a step.

Compare X to bytes in buffer

Description: Compares the X-register to the buffer. If X contains a number, the integer part is used. The
number of bytes needed to represent X will be compared to a like number of bytes in the buffer starting at
the pointer. If X contains a string, leading nulls will be ignored.

Input: The X-register is a number or string.

Output: YES or NO.

Compare X bytes from ALPHA to the buffer

Description: Compares X bytes of the ALPHA register to the buffer starting at the buffer pointer. If the X-

register is greater than the length of the ALPHA register, then is identical to [A=BUF?]. Null bytes
are ignored.

Input: The X-register contains the count of bytes, ALPHA register contains the data to be compared.

Output: YES or NO.

Compare ALPHA register to the buffer

Description: Compares the contents of the ALPHA register to the contents of the buffer starting at the
buffer pointer. The number of bytes compared is equal to the number of characters in the ALPHA register.
Leading null bytes in the ALPHA register are ignored. If the ALPHA register is empty, the test returns NO.

Input: The ALPHA register contains a string.

Output: YES or NO.

Compare registers to buffer using X

Description: The contents of the X-register is taken as a register index in the form bbb.eee. The block of
registers will be compared with the same number of bytes in the buffer starting from the buffer pointer.
Each register contains seven bytes. The comparison is done on a byte by byte basis. No conversion is per-
formed.

Input: X contains the register index; the buffer.
Output: YES or NO.

Warnings: Do not or any of these registers, because these functions normalize the number and
store it back in the register. If the data that was in the register doesn’t look like a normalized number, it will
be changed.

Section 3: Reference Section 31

G. ALPHA Register Functions

X gets the number of characters in ALPHA

Description: Returns the number of characters contained in the ALPHA register. Leading nulls are ignored.
Input: ALPHA register.

Output: The X-register contains the number of characters in the ALPHA register; the stack is lifted.

A-XL Removes the leftmost ALPHA character and puts it in X

Description: The decimal value of the leftmost character in the ALPHA register is placed in the X-register.
The character is removed from the ALPHA register. If the leftmost character was followed by any nulls,
those nulls will be lost.

Input: The leftmost character of the ALPHA register.

Output: The X-register contains the ASCII equivalent of the character.

X-AL ASCIl number in X is put to left of ALPHA

Description: The ASCII character equivalent to the integer in the X-register is appended to the left of the
ALPHA register. If there are already 24 characters in the ALPHA register, the rightmost character will be
lost and the ALPHA register will be shifted right once.

Input: X contains the decimal value of ASCII equivalent of the character.

Output: Leftmost character of the ALPHA register.

A-XR Removes the rightmost ALPHA character and puts it in X

Description: The decimal value of the rightmost ASCII character in the ALPHA register is placed in the X-
register. The character is deleted from the ALPHA register.

Input: The rightmost character of the ALPHA register.

Output: The X-register contains the decimal equivalent of the ASCII character.

X-AR ASCII number in X is put to right of ALPHA

Description: The ASCII character specified by the integer in the X-register is appended to the right of the
ALPHA register. If there are already 24 characters in the ALPHA register, the leftmost character will be
lost and the ALPHA register shifted left once.

Input: The X-register contains the decimal equivalent of the ASCII character.

Output: Rightmost character of the ALPHA register.

31

32 Section 3: Reference Section

A-XX The Xth ALPHA character’s value is placed in X

Description: The decimal value of the Xth ASCII character in the ALPHA register is placed in the X-
register. The character in the ALPHA register is left untouched. The original position in X is saved in the
LASTX-register.

The usage of the X-register depends upon the sign of X. If X is positive, X is a count of characters from the
left end of ALPHA, starting from zero and ignoring nulls. If X is negative, X is a count of bytes from the
right end of ALPHA, starting from one and using absolute position. The X-register is interpreted as follows,
given that N is the number of characters in ALPHA:

X>=NorX>24 not valid — DATA ERROR

0<=X<N X counted from left end of string
X=0 leftmost character in string

24 <=X<0 N counted from right end of ALPHA
X<-24 not valid - DATA ERROR

Input: The Xth ALPHA register character.
Output: X contains the decimal equivalent of the ASCII character; the stack is lifted. The LASTX register
gets the old X-register.

Y-AX ASCIl number in Y is placed in ALPHA at X

Description: The ASCII character specified by the integer in the Y-register is placed into the ALPHA reg-
ister at the position given by the X-register. The new character replaces the old one at the same position.
Refer to the table under for the way this function will interpret the value specified in the X-register.

Input: A position in the X-register, the ASCII character’s decimal value in Y.

Output: A character placed in Alpha.

Section 3: Reference Section 33

H. Stack Input and Output

The next set of functions all use the same output routine. This routine waits for ORAV to become true
within ten seconds. If this does not happen, the ORAV =0 error is generated. Otherwise, the message is
sent and the routine waits for it to return. If it does not return within ten seconds, the TIME OUT error is
generated.

Output bytes from X

Description: Outputs bytes from the X-register. The number of bytes sent is the minimum number of bytes
needed to represent X. If X contains a string, leading nulls will be ignored. TA is set before execution. An
ETO is not sent after execution. At least one and no more than seven data bytes will be output by [OUTBIN].

Input: The integer part of X is output.

Output: Data bytes to the active listeners on HP-IL.

Output bytes from X, using Y as the number of bytes to send

Description: Same as except that the number of bytes transmitted is determined by the Y-register.
No matter what the value of Y, at least one and no more than seven bytes will be output by [oUTEINY .

Input: The integer part of the X-register is output, using Y as a byte count.

Output: Data bytes to the active listeners on HP-IL.

Input bytes to X

Description: Inputs bytes to the X-register. If CA set, sets LA and sends SDA before execution. If CA
clear, doesn’t set LA and doesn’t send SDA. will read data messages until a non-data message is re-
ceived. The seven most recently received data bytes are treated as a seven byte long integer which will be
placed in X. If the non-data message was not an ETO, an ETO ERR will be generated. If no messages are
received within ten seconds, a TIME OUT error will be generated. If an error was generated, X will contain
the error number and Y will contain the integer.

Input: The active talker on HP-IL.

Output: An integer in X, or an integer in Y and an error code in X.

33

34 Section 3: Reference Section

I. Sending Command Messages

These functions use the same output routine as that in section H. All of these functions will set CA before
execution, as it is a violation of protocol for a non-controller to send any of these messages.

AAU Sends AAU

Description: Sends the Auto Address Unconfigure command.

CMD Sends arbitrary CMD from X

Description: Sends an arbitrary command message. The eight bits, D7 through DO, of the message are
taken from the X-register.

Input: X contains an integer from zero to 255.
DDL Sends the DDL message specified in X register

Description: Sends a Device Dependent Listener command. The X-register specifies which DDL message
will be sent. If X is greater than 31 then the ADR ERR error will be generated.

Input: X contains the DDL command number.
DDT Sends the DDT message specified in X register

Description: Sends a Device Dependent Talker command. The X-register specifies which DDT message
will be sent. If X is greater than 31 then the ADR ERR error will be generated.

Input: X contains the DDT command number.
GET Sends GET message

Description: Sends the Group Execute Trigger command.

GTL Sends GTL message

Description: Sends the Go To Local command.

IFC Sends IFC message

Description: Sends the Interface Clear command. Only the system controller can source IFC, so SC will be
set before execution.

LAD Sends the LAD message specified in X

Description: Sends a Listener Address command. The X-register specifies which LAD message will be
sent. If X is greater than 31 then the ADR ERR error will be generated.

Input: X contains the LAD command number.

Section 3: Reference Section 35

LPD Sends LPD message
Description: Sends the Loop Power Down command.

Sends NRE message
Description: Sends the Not Remote Enable command.

Sends REN message
Description: Sends the Remote Enable command.

SDC Sends SDC message
Description: Sends the Selected Device Clear command.

TAD Sends the TAD message specified in X

Description: Sends a Talker Address command. The X-register specifies which TAD message will be sent.
If X is greater than 31 then the ADR ERR error will be generated.

Input: X contains the TAD command number.
UNL Sends UNL message
Description: Sends the Unlisten command, which is the same as a LAD 31.

UNT Sends UNT message

Description: Sends the Untalk command, which is the same as a TAD 31.

35

36 Section 3: Reference Section

J. Sending Ready Messages

Sending ready messages is performed in the same manner as sending command messages. In certain cases
the time out and error checking are not performed because a message is not returned. Those functions which
do not expect a message to return will explicitly state this.

AAD Sends the AAD message specified in X

Description: Sends a Auto Address message. The X-register specifies which AAD message will be sent. If
X is greater than 31 then the ADR ERR error will be generated. The value of the AAD which returns is
pushed on the stack.

Input: X contains the AAD message number.
Output: X contains the address of the highest addressable device plus one.
Warnings: No check is made to ensure that the returned message is actually an AAD. The lower five bits of

whatever message is received are returned in the X-register.

SDA Sends SDA message

Description: Sends the Send Data ready message. Does not wait for a message to return. CA is set before
execution.

SAI Sends SAl, returns ID to X

Description: Sends the Send Accessory ID message. Sets CA and LA before execution. The sequence of
bytes (assuming that more than one returns) is treated as an integer, MSB (most significant byte) first. This
integer is pushed on the stack. If the last non-data message is not an ETO, an ETO ERR error will be gener-
ated. If the SAI is retransmitted by the device, the NO RESPONSE error will be generated. If no message
returns within ten seconds, the TIME OUT error will be generated.

Output: X contains an Accessory ID, or Y contains an Accessory ID and X contains an error number.

SST Sends SST, returns status to X

Description: Sends the Send Status message. Sets CA and LA before execution. The sequence of bytes
(assuming that more than one returns) is treated as an integer, MSB (most significant byte) first. This integer
is pushed on the stack. If the last non-data message is not an ETO, an ETO ERR error will be generated. If
the SST is retransmitted by the device, the NO RESPONSE error will be generated. If no message returns
within ten seconds, the TIME OUT error will be generated.

Output: X contains the status, or Y contains the status and X contains an error number.
Sl Sends SDI, returns data to ALPHA

Description: Sends the Send Device ID message. Sets CA and LA before execution. The data bytes that
return are placed in the ALPHA register. CR and LF are ignored. If the last non-data message is not an

Section 3: Reference Section 37

ETO, an ETO ERR error will be generated. If the SDI is retransmitted by the device, the NO RESPONSE
error will be generated. If no message returns within ten seconds, the TIME OUT error will be generated.

Output: The ALPHA register contains a string of characters representing the device ID. X may contain an
error number.

TCT Sends TCT, waits for incoming message

Description: Sends the Take Control ready message. then waits for a message to return. If the active
talker cannot take control, it will return the TCT. If it can take control, it will start sending commands. If the
message which returns is a command message, it is put into the X- and Y-registers by [rRFrv]. If the TCT
returns, or no message returns within ten seconds, the NO RESPONSE error is generated.

Warnings: The test for TCT returned is satisfied by any ready message.

Performs NRD handshake on current data message

Description: Performs the NRD handshake. The message which is currently sitting in the HP-IL IC regis-
ters one and two is read and saved. CA is set. The Not Ready for Data (NRD) ready message is sent on the
loop. The HP-41 waits for the NRD message to return. If anything else returns, a FRNS ERR error is gener-
ated. The saved data message is sent out on the loop. The HP-41 waits for an ETO to return. If anything
else returns, an ETO ERR is generated.

37

38 Section 3: Reference Section

K. Sending Identify Messages.
IDY Sends an IDY message, returns data bits to X

Description: Sends out an Identify message with the data bits set to zero. CA is set before execution. When
the message returns, the eight data bits are pushed on the stack. If the message does not return within ten
seconds, a TIME OUT error is generated and -1 is pushed on the stack.

Input: none (X is not used).

Output: X contains the parallel poll bits, or X contains an error number.

Section 3: Reference Section 39

L. Sending Arbitrary Messages.

Reads the already present message into X, Y registers

Description: Reads registers one and two of the HP-IL integrated circuit and puts them on the stack where
the X-register contains the three control bits and Y-register contains the eight data bits of the message.
does not wait for FRAV or FRNS before reading the message.

Input: Registers one and two of the HP-IL integrated circuit.

Output: X and Y contain the message’s value.

Writes a message using X, Y waiting for ORAV

Description: The X-register contains an integer giving the three control bits of a message, and Y-register
contains the eight data bits. ORAV and FRNS are tested before writing the message. If FRNS is set, the
FRNS ERR error message is generated. If ORAV is not set within ten seconds, the ORAV = 0 error message
will be generated. exits after writing the message and does not wait for its return.

Input: X and Y are integers representing the message.

Output: Registers one and two of the HP-IL integrated circuit.

Tests for the IFRC bit true

Description: tests bit 4 of register 1 in the HP-IL integrated circuit. If executed from the keyboard,
it will display YES or NO. If executed from a program, it will skip a step if the answer is no.

Tests for the SRQR bit true

Description: tests bit 3 of register 1 in the HP-IL integrated circuit. If executed from the keyboard,
it will display YES or NO. If executed from a program, it will skip a step if the answer is no.

Tests for the FRAV bit true

Description: tests bit 2 of register 1 in the HP-IL integrated circuit. If executed from the keyboard,
it will display YES or NO. If executed from a program, it will skip a step if the answer is no.

Tests for the FRNS bit true

Description: tests bit 1 of register 1 in the HP-IL integrated circuit. If executed from the keyboard,
it will display YES or NO. If executed from a program, it will skip a step if the answer is no.

Tests for the ORAV bit true

Description: tests bit 0 of register 1 in the HP-IL integrated circuit. If executed from the keyboard,
it will display YES or NO. If executed from a program, it will skip a step if the answer is no.

39

40 Section 3: Reference Section

M. Boolean Functions

The following functions operate upon thirty-two bit unsigned integers. If an argument to the function re-
quires greater than thirty-two bits to be represented as an integer, the error OUT OF RANGE is given. Note
that this error does not return an error number, and behaves exactly like an HP-41 error.

AND ANDs the X-register and Y-register and returns to X

Description: Performs a boolean AND between the X-register and the Y-register. Returns the result to the
X-register with stack lift enabled. The operands are dropped from the stack. Saves the X argument in
LASTX.

Input: X and Y are integers.

Output: X is an integer.

ORs the X-register and Y-register and returns to X

Description: Performs a boolean OR between the X-register and the Y-register. Returns the result to the X-
register with stack lift enabled. The operands are dropped from the stack. Saves the X argument in LASTX.

Input: X and Y are integers.

Output: X is an integer.

XOR Exclusive ORs X and Y registers and returns to X

Description: Performs a boolean exclusive OR between the X-register and the Y-register. Returns the result
to the X-register with stack lift enabled. The operands are dropped from the stack. Saves the X argument in
LASTX.

Input: X and Y are integers.

Output: X is an integer.

NOT X gets the one’s complement of X

Description: The X-register gets the one’s complement of itself. The stack lift is enabled, and the original
X is removed from the stack and placed in LASTX.

Input: X is an integer.

Output: X is an integer.

Rotates Y to the right by X bits

Description: The Y-register is rotated to the right by X bits. The bits which fall off the right end reappear
at the left end of Y. For example, 1 rotated right by 1 will become 80000000 hexadecimal. The operands
are not removed, but are pushed onto the stack. Does not set LASTX. The sign of X is ignored. Rotating
32-X bits effectively rotates to the left by X.

Input: X is an integer count, Y is an integer.

Output: Y is pushed to Z, X is pushed to Y, and X contains the rotated value from Y.

Section 3: Reference Section 41

Tests to see if the Xth bit of Y is set

Description: works like all the rest of the HP-41 test instructions. The test is for the Xth bit of the
number in the Y-register to see if it is set. If is being executed from the keyboard it will return YES
or NO. If executed from a program, it will skip a step if the specified bit is set.

Input: X is a bit position number, Y is an integer.

Output: YES or NO.

41

42 Section 3: Reference Section

N. Non-Decimal Input and Output

Inputs a number in binary

Description: The keyboard is redefined so that the only digit keys which are active are [0] and [1]. Any
other key terminates numeric entry and is executed.

Input: (0] and [(1].
Output: An integer in the X-register.

Warnings: Because of the size of the display, the largest number that may be entered is ten digits (10 bits).
If you press a terminating key too quickly, the key may be lost after terminates.

Inputs a number in octal

Description: The keyboard is redefined so that the only digit keys which are active are the keys [0] through
(7] Any other key terminates numeric entry and is executed.

Input: (0] through [7].
Output: An integer in the X-register.

Warnings: Because of the size of the display, the largest number that may be entered is ten digits (30 bits).
If you press a terminating key too quickly, the key may be lost after terminates.

Inputs a number in hexadecimal

Description: The keyboard is redefined so that all the digit keys and the letters [A] through [F] are active.
Any other key terminates numeric entry and is executed.

Input: (0] through (9], [A] through [F].
Output: An integer in the X-register.

Warnings: If you press a terminating key too quickly, the key may be lost after terminates.

Shows the value of X in binary

Description: The display shows the value of the X-register in binary. If X is longer than ten bits, then the
OUT OF RANGE error is given. The distance between the commas in the display is given by the current FIX
value. The normal display of the X-register is restored using [<].

Input: X is an integer.

Output: The display shows X in binary.

Shows the value of X in octal

Description: The display shows the value of the X-register in octal. If X is longer than thirty bits, then the
OUT OF RANGE error is given. The distance between the commas in the display is given by the current FIX
value. The normal display of the X-register is restored using [<].

Input: X is an integer.

Section 3: Reference Section 43

Output: The display shows X in octal.

Shows the value of X in hexadecimal

Description: The display shows the value of the X-register in hexadecimal. The distance between the com-
mas in the display is given by the current FIX value. The normal display of the X-register is restored using

(<)

Input: X is an integer.

Output: The display shows X in hexadecimal.

43

44 Section 3: Reference Section

O. Reading and Writing of the HP-IL IC Registers.

Writes X to HP-IL register number in Y

Description: Writes to a given register. Y-register contains the register number, the X-register contains the
new contents of the register.

Input: Y is an integer from 0 to 7, X is an integer from a to 255.

Reads HP-IL IC register specified in X

Description: Read from a given register. The X-register contains the register number to read. The contents
of the register are pushed onto the stack. After execution Y contains the register number and X contains the
contents of the register.

Input: X is an integer from 0 to 7.

Output: X is an integer from 0 to 255, Y is the old X.

Section 3: Reference Section 45

P. Receiving Messages in Ildle Mode

The HP-IL integrated circuit has the ability to wake up the HP-41 from idle mode. This ability is detailed in
Appendix C. If flag eighteen is set, then the receipt of a message that causes IFCR, SRQR, FRAV, or FRNS
to be set will cause the execution of the program “INTR”. The INTR program must cause the interrupting
bit to be cleared, otherwise the subroutine will be re-executed just as soon as it exits.

The IFCR bit is cleared by setting the CLIFCR bit, which will automatically clear itself also. The SRQR bit
is cleared only upon receipt of a message with the SRQ bit false, such as a DAB, END, or IDY message.
Both the FRAV and FRNS bits are cleared by reading register two using either or [RREG].

Since the HP-41 cannot be both editing and running a program, never enter program mode with flag 18 set.
If you do, the first digit in the first digit string in your program will be inserted between every instruction
step. The easiest way to exit this mode is to pull the HP-IL module out of the HP-41. To repair the damage,
delete the extraneous digit strings.

45

Appendix A

Care, Warranty, and Service Information

Module Care

CAUTION

Always turn off the HP-41 before connecting or disconnecting any module or pe-
ripheral. Failure to do so could result in damage to the HP-41 or disruption of the
system’s operation.

e Keep the contact area of the module free of obstructions, Should the contacts become dirty, carefully
brush or blow the dirt out of the contact area. Do not use any liquid to clean the contacts.

e Store the module in a clean, dry place.
e Always turn off the HP-41 before installing or removing any module or peripherals.
e Observe the following temperature specifications:

Operating: 0° C to 45° C (32° F to 113° F)

Storage: -40° C to 75° C (-40° F to 167° F)

Warranty and Service

The HP 00041-15043 HP-IL Development Module is no longer supported by Hewlett-Packard. As a result
the warranty and service information from the original manual have been removed.

47

Appendix B

Null Characters

1) Null Characters and the ALPHA Register

The null character is the overbar () and corresponds to character code 0. Normally the HP-41 does not
display null characters. However, under certain conditions, using ALPHA register functions, you can place
null characters in the ALPHA register.

Since the null character doesn’t normally appear in the display, the HP-41 uses the null character as a spe-
cial indicator. As a result, nulls in the ALPHA register occasionally cause unexpected displays, as described
in this appendix.

2) Treatment of Null Characters

The distinction between the ALPHA register and the ALPHA display is important when considering the
treatment of nulls.

The ALPHA register is always 24 characters long; when it is empty, it actually contains 24 null characters.
As characters enter the ALPHA register from the right side, they displace nulls. Any leading nulls (either
that you enter or that were already there) remain, but they are ignored by HP-41 operations.

The ALPHA display consists of the characters in the ALPHA register after the leading nulls. It starts with
the first (leftmost) non-null character and displays all others to the right, including any embedded or trailing
nulls.

The HP-41 and its functions always consider that an ALPHA string starts at the first non-null character,
ignoring leading nulls. Nulls embedded between non-null characters are retained. Embedded nulls can be
lost if the ALPHA string is rotated until a null character is leftmost.

3) Appending Characters.

If you append a character to the ALPHA register (using [X-AR]), the display will differ from the actual con-
tents of the ALPHA register if the last character (before appending) was a null.

If the last character in the ALPHA register is a null, then — while you enter characters to append — the HP-
41 acts as if the register is empty, and displays only the characters that you are appending. (The cursor sign
() is present in the display while you append characters.) However, the ALPHA register itself properly
retains the original string and combines it with the appended string.

You can view the full, appended contents by pressing or (ALPHA]. (Remember that
leading nulls are never displayed.

4) Deleting Characters While Appending.

If you use or and the last character in the ALPHA string is a null, using to delete
the rightmost character will clear the entire ALPHA register. This is because when a null character gets de-
leted the HP-41 figures that it has encountered the leading nulls that precede a string, and it concludes that
the register is empty — so it clears everything.

49

50 Appendix B: Error Messages

5) ALPHA Strings in Data or Stack Registers.

If you store an ALPHA string containing nulls in a data or stack register, none of the nulls will be displayed

when you view (or print) the contents of that register (as with or (RcL]). However, if you recall
those contents to the ALPHA register and then view them (), all the characters in the ALPHA data

string will be displayed (except, of course, leading nulls).

(If you print out the ALPHA string contents of a data or stack register, the results are different and incom-

plete.)

Appendix C

HP-41 HP-IL Integrated Circuit

This appendix documents the registers of the HP-41 HP-IL integrated circuit. Some of the registers have
different meanings depending upon whether they are being read from or written to. For further information,

see the HP-IL Integrated Circuit manual.

The HP-41 HP-IL integrated circuit is slightly different from the general purpose integrated circuit. These
differences are mostly concerned with the HP-41 bus interface. All differences are indicated by a star (“*”).

Generally speaking, the only registers that you will need to directly read or write are registers zero, three,
and four. Registers one and two are adequately serviced by RFRM, WFRM, and the five tests IFCR?,
SRQR?, etc. Registers five, six, and seven are used by the HP-IL module at various times. Should you wish
to write register one, always write a zero to FLGEN.

Status 7 6 5 4 3 2 1 0
Register

0 Read sc CA TA LA SSRQ RFCR CLIFCR MCL
0 Write sC CA TA LA SSRQ SLRDY CLIFCR MCL

SC — System Controller

CA — Controller Active

TA — Talker Active

LA — Listener Active

SSRQ — Send Service Request

RFCR — RFC Received
SLRDY - Set Local Ready
CLIFCR - Clear IFC Recv
MCL — Master Clear

Note: SLRDY and CLIFCR are self-resetting bits (resetting occurs 1-2 usec after end of write pulse.)
Reading RO returns the value of CLIFCR, which will always be a logic zero by the time the HP-41 reads it.

Control

Interrupt 7 6 4 3 2 1 Y
Register

1 Read Cl2 Ci1 Clo IFCR SRQR FRAV FRNS ORAV
1 Write C02 CO1 (e{0]0) *— *— *— *— *FLGEN

CI2-CIO0 — Input Control Bits

FRAYV — Frame Available

CO2-COO0 — Output Control Bits
IFCR — Interface Clear Received
SRQR — Service Request Received

FRNS — Frame Received Not as Sent.
ORAYV - Output Register Available.
*FLGEN — Enable FI Line

51

52

Appendix C: HP-41 HP-IL Integrated Circuit

Data bits 7 6 5 4 3 2 1 0
Register

2 Read DI7 DI6 DI5 Di4 DI3 DI2 DI1 DIO
2 Write DO7 DO6 DOb5 DO4 DO3 DO2 DO1 DOO
DI7-DIO — Input Data Bit

DO1-DOO0 — Output Data Bits

Parallel Poll 7 4 3 2 1 0
Register

3 R/W *QOSCDIS PPIST PPEN PPOL P2 P1 PO
*OSCDIS — Oscillator Disable

*AIDY — Automatic IDY Sourcing in Idle Mode

PPIST — Parallel Poll Individual Status

PPEN - Parallel Poll Enable

PPOL — Parallel Poll Polarity

P2-P0 — Parallel Poll Response Bit Designation

Loop

Address 7 6 5 4 3 2 1 0
Register

4 RIW S S S ADR4 ADR3 ADR2 ADR1 ADRO
S — Scratch Bits

ADR4-ADRO — Address Bits

Scratch 7 6 5 4 3 2 1 0
Register

5 R/W S S S S S S S S
Scratch 7 6 5 4 3 2 1 0
Register

6 R/W S S S S S S S S
Scratch 7 6 5 4 3 2 1 0
Register

7 RIW *S *S *S *S *S *S *S *S

Appendix C: HP-41 HP-IL Integrated Circuit 53

Integrated Circuit Initialization

The HP-41 HP-IL integrated circuit provides two levels of initialization, RESET and MCL. RESET occurs
whenever the HP-41 is turned off or whenever the HP-41 goes to idle mode and is not in AIDY mode. MCL
occurs whenever RESET occurs or whenever a one is written into the MCL bit in register zero.

o RESET turns off the internal oscillator, and causes MCL to be set.

e MCL resets IFCR, SRQR, FRNS, and FRAV, sets ORAYV, resets *FLGEN, and sets SC (*SC is
tied high).

There are three initialization states possible: oscillator off, cleared; oscillator on, cleared; oscillator on, run-
ning. The transition between these states is indicated in Figure 1.

clear OSCDIS clear MCL

[[
L -

- El

- -
- -

set OSCDIS set MCL

Figure 1 - Initialization Transitions.

Automatic IDY mode
The HP-IL integrated circuit will not be reset in idle mode if the AIDY bit is set, which allows for two pos-
sibilities:

1) If CA is true, then IDYs will be automatically generated. No handshaking of the IDY's will be per-

formed. The eight data bits of the IDY are undefined. The HP-41 will start executing if SRQR goes
high, indicating that some device wants service.

2) If CA is false, then the HP-41 will start executing if IFCR, FRAV, or FRNS is set.

Neither RESET nor MCL affect AIDY; however, AIDY will power on low when the HP-IL module is first
plugged into the HP-41.

53

Appendix D

Error Messages

This appendix contains a list of messages and errors that are related to module operations.

Display

ADR ERR

ALPHA DATA

BSIZE>1771
DATA ERROR
END OF BUF

ETO ERR

FRNS ERR
INVALID REG

NO BUFFER
NO RESPONSE

NONEXISTENT

ORAV=0
OUT OF RANGE

PACKING
TRY AGAIN

Functions

!

LA
TAD

=)
-

D
DDT

—all-

—all-

— all buffer
functions —

—all-

—all-

WREG

SST

|)
® |3
=18

SDI
TCT

—all-

—all-
—all -

55

Meaning

The address or device dependent function did not
fall into the range of zero through 31, inclusive.

Alpha characters are in a register where a number is
required — either a stack register or a data storage
register.

The desired buffer size is too large.
The specified number is out of range.

The end of the buffer has been reached. The buffer
pointer (if in auto-increment mode) is left pointing
at the end of the buffer plus one.

The message following the data messages was not
an ETO.

A message was not received as sent.

The HP-IL register specified does not exist.

A buffer has not been created with [Bsizex].

No response to SST, SAI, SDI, or TCT. The lis-
tener did not respond to the specified message.

The specified number is out of range or the speci-
fied register does not exist.

ORAYV did not go true within ten seconds.
The specified number is out of range.

Executed from the keyboard, memory is too small
for the specified buffer size. Memory is packed.
Try this operation again, or reallocate registers or
add memory module(s).

56 Appendix D:

Display
TIME OUT

TRANSMIT ERR

Error Messages

Functions

—all-

—none —

Meaning

A message was not received after a time specified
by the function specified.

If flag 33 is set, execution of any HP-IL module
functions will cause this error. The development
module does not generate this error.

e
=
=
(£}
=7
S
=

>
w©
c
S

>>iii
bod | B | B
w
gCXJJI—
J12
-~

iE
>
c

2
o
—

BIT?
BSIZE?

BUF-AX

BUF-XA
BUF-XB

o W w W

2|2 c||gfle 2|22

oJ|8 T N < N
2lz(® il
¥ =

o
o
=

-
J:;E
=
<
-~

-n
=)
=
2]

~

m
2

I | 2 BRI RELEd 212

>Z -“-"Umrrl m

BHEEHERREE
R ~N <||=z :
x

-
)
o

m
=

EEEBBIEE
= [32|13
~J <Z 3
o
]

(]
c
part
=
2

Appendix E

Function Index

Stores the ALPHA register to the buffer.

Removes the leftmost ALPHA character and puts it in X.
Removes the rightmost ALPHA character and puts it in X.
The Xth ALPHA character’s value is placed in X.
Compare ALPHA register to the buffer.

Compare X bytes from ALPHA to the buffer.
Sends the AAD message specified in X.

Sends AAU message.

Sets auto increment of pointer mode.

ANDs the X-register and Y-register and returns to X.
X gets the number of characters in ALPHA.

Inputs a number in binary.

Shows the value of X in binary.

Tests to see if the Xth bit of Y is set.

Returns the buffer size to X.

Initializes a buffer with X bytes.

Place X bytes into ALPHA register from buffer.
Copy buffer bytes to registers.

Convert a string to a number in X.

Convert binary in buffer to decimal in X.

Clears user flag 33.

Sends arbitrary CMD from X.

Sends the DDL message specified in X register.
Sends the DDT message specified in X register.
Tests the FRAV bit true.

Tests the FRNS bit true.

Sends GET message.

Sends GTL message.

Inputs a number in hexadecimal.

Shows the value of X in hexadecimal.

Sends an IDY message, returns data bits to X
Tests for the IFRC bit true.

Sends IFC message.

Input binary to X.

Input data messages into buffer using X.

Sends the LAD message specified in X.

Sends LPD message.

Sets manual increment of pointer mode.

Displays HP-IL messages manually.

X gets the one’s complement of X.

Performs NRD handshake on current data message.
Sends NRE message.

Inputs a number in octal.

Shows the value of X in octal.

Keeps the HP-41 in execution mode.

Tests the ORAV bit true.

ORs the X-register and Y-register and returns to X.
Output binary from X.

57

Page

26
31
31
32
30
30
36
34
24
40
31
42
42
41
24
24
28
28
28
28
22
34
34
34
39
39
34
34
42
43
38
39
34
33
26
34
35
24
22
40
37
35
42
42
22
39
40
33

58 Function Index

Function Page
Output binary from X, using Y as the number. 33
Output data messages from buffer using X. 29
Prints bytes from the buffer. 25
Prints messages from the buffer. 25
Sets the buffer pointer equal to X. 24
Returns the buffer pointer to X. 24
Sends REN message. 35
Reads the already present message into X, Y registers. 39
Copy registers to buffer using X. 26
RG =BUF? Compare registers to buffer using X. 30
Performs checksum of the Xth ROM. 23
Rotates Y to the right by X bits. 40
Reads HP-IL IC register specified in X. 44
Sends SAI returns ID to X. 36
SCOPE Displays HP-IL messages. 21
Sends SDA message. 36
Sends SDC message. 35
Sends SDI, returns data to ALPHA. 36
Sets user flag 33. 22
Tests the SRQR bit true. 39
SST Sends SST, returns status to X. 36
Sends the TAD message specified in X. 35
Sends TCT, waits for incoming message. 37
Sends UNL message. 35
Sends UNT message. 35
Writes a message using X, Y waiting for ORAV. 39
Writes X to HP-IL register number in Y. 44
ASCII number in X is put to left of ALPHA. 31
X-AR ASCII number in X is put to right of ALPHA. 31
Store X to buffer in binary. 26
Exchange user flags 0 through 7 with X. 22
X =BUF? Compare X to buffer in binary. 30
Exclusive ORs X and Y registers and returns to X. 40
Y-AX ASCII number in Y is placed in ALPHA at X. 32

(ﬁﬁ HEWLETT

PACKARD

1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

	Cover
	Contents
	Introduction
	HP-IL Analyzer
	Using SCOPE Mode
	SCOPE Mode Examples

	Example Programs
	How to Read This Section
	RGPIO
	WGPIO
	GPADR
	GPADR1
	ENBINTR
	INTR

	BINCALC
	DEVICE
	INTR

	SENDA
	READ
	INTR

	Reference Section
	How to Read This Section
	Error Handling
	Utility Functions
	Buffer Utility Functions
	Buffer Input
	Buffer Output
	Buffer Comparisons
	ALPHA Register Functions
	Stack Input and Output
	Sending Command Messages
	Sending Ready Messages
	Sending Identify Messages
	Sending Arbitrary Messages
	Boolean Functions
	Non-Decimal Input and Output
	Reading and Writing of the HP-IL IC Registers
	Receiving Messages in Idle Mode

	Appendix A: Care, Warranty, and Service Information
	Appendix B: Null Characters
	Appendix C: HP-41 HP-IL Integrated Circuit
	Appendix D: Error Messages
	Appendix E: Function Index

