
HEWLETT-PACKARD

HP-15C
ADVANCED FUNCTIONS

HANDBOOK

bIRO

STRyLRT

\“

A

NOTICE

Hewlett-Packard Company makes no express or implied

warranty with regard to the keystroke procedures and

program material offered or their merchantability or their

fitness for any particular purpose. The keystroke procedures

and program material are made available solely on an ‘“‘as is’’

basis, and the entire risk as to their quality and performance is

with the user. Should the keystroke procedures or program

material prove defective, the user (and not Hewlett-Packard

Company nor any other party) shall bear the entire cost of all

necessary correction and all incidental or consequential

damages. Hewlett-Packard Company shall not be liable for

any incidental or consequential damages in connection with

or arising out of the furnishing, use, or performance of the

keystroke procedures or program material.

(fi/” HEWLETT
PACKARD

HP-15C

Advanced Functions Handbook

August 1982

00015-90011

Printedin U.S.A. © Hewlett-Packard Company 1982

Contents

Introduction 5

Section 1: Using Effectively 6

FINdingROOtSie 6

How [SOLVE]Samplesovuiineinieie, 7
Handling Troublesome Situations 9

Easy Versus Hard Equations 9

Inaccurate EQUAtions...t 10

Equations With Several Rootscccuvuvin... 10

Using [SOLVE]With Polynomialsuuuuuuunenn... 10

Solving a System of Equations, 15

Finding Local Extremes of a Function 17

Usingthe Derivative 17

Using an Approximate Slope, 20

Using Repeated Estimation 23

Applicationse26

Annuities and Compound Amountsouuuiun.... 26

Discounted Cash Flow Analysis 39

Section 2: Workingwith 45

Numerical IntegrationUsingi, 45

Accuracy of the Functiontobe Integrated 47

Functions Related to Physical Situations 47

Round-Off Error in Internal Calculations 49

Shortening CalculationTimec it inunnnn.. 49

Subdividing the Interval of Integration 50

Transformation of Variables 54

Calculating DifficultIntegrals, 55

Application60

Section 3: Calculating in Complex Mode 65

Using ComplexMode..., 65

TrignomometricModes...t 68

Definitions of Math Functions 68

Arithmetic Operationsc.i, 69

Single-Valued Functionsccuiiin... 69

2

Contents 3

Multivalued Functions 69

Using [SOLVE]and [/3]in ComplexMode 73
Acuracy inComplexModecci, 73

APPliCAtioONS...e76

Storing and Recalling Complex Numbers Using a Matrix 76

Calculating the nth Roots of a Complex Number 78

Solving an Equation for Its Complex Roots 80

Contourlintegrals ...ttt 85

Complex Potentialsc.. 89

Section 4: Using Matrix Operations 96
Understanding the LU Decompositionc.co.... 96

IllI-Conditioned Matrices and the Condition Number 98

The Accuracy of Numerical Solutions to Linear Systems 103

Making Difficult Equations Easiercoo.... 104

SCaliNg .ote104

Preconditioningttte107

Least-Squares Calculations,110

Normal EqQuationsttt110

Orthogonal Factorizationc.coiiuiiiinnnnan.. 113

Singular and Nearly Singular Matrices 117

Applicationse119

Constructing an ldentity Matrixo, .. 119

One-Step Residual Correctioncvviiiiiinenenan... 119

Solving a System of Nonlinear Equations 122

Solving a Large System of Complex Equations 128

Least-Squares Using Normal Equations 131

Least-Squares Using Successive Rows 140

Eigenvalues of a Symmetric Real Matrix 148

Eigenvectors of a Symmetric Real Matrix 154

Optimizationie160

Appendix: Accuracy of Numerical Calculations 172

Misconceptions About Errorsi172

A Hierarchy of Errorso178

Level O: NOErrorete178

Level o: Overflow/Underflow 179

Level 1: Correctly Rounded, orNearlySo 179

Level 1C: ComplexLevel 1183

Level 2: Correctly Rounded for Possibly Perturbed Input 184

Trigonometric Functions of Real Radian Angles 184

Backward Error Analysis ...t187

4 Contents

Backward Error Analysis Versus Singularities 192

SummarytoHereee194

Backward Error Analysis of Matrix Inversion 200

Is Backward Error Analysisa Goodldea? 204

| 8Yo (=<SP212

Introduction

The HP-15C provides several advanced capabilities never before
combined so conveniently in a handheld calculator:

®* Finding the roots of equations.

¢ Evaluating definite integrals.

® (Calculating with complex numbers.

¢ (Calculating with matrices.

The HP-15C Owner’s Handbook gives the basic information about

performing these advanced operations. It also includes numerous
examples that show how to use these features. The owner’s hand-

book is your primary reference for information about the advanced
functions.

This HP-15C Advanced Functions Handbook continues where the
owner’s handbook leaves off. In this handbook you will find

information about how the HP-15C performs the advanced computa-
tions and information that explains how to interpret the results

that you get.

This handbook also contains numerous programs, or applications.
These programs serve two purposes. First, they suggest ways of

using the advanced functions, so that you might use these capa-
bilities more effectively in your own applications. Second, the

programs cover a wide range of applications—they may be useful
to you in the form presented in this handbook.

Note: The discussions of most topics in this handbook

presume that you already understand the basic information

about using the advanced functions and that you are

generally familiar with the subject matter being discussed.

Section 1

Using Effectively

The algorithm provides an effective method for finding a

root of an equation. This section describes the numerical method

used by and gives practical information about using
in various situations.

Finding Roots

In general, no numerical technique can be guaranteed to find a root

of every equation that has one. Because a finite number of digits

are used, the calculated function may differ from the theoretical
function in certain intervals of x, it may not be possible to
represent the roots exactly, or it may be impossible to distinguish

between zeros and discontinuities of the function being used.

Because the function can be sampled at only a finite number of
places, it’s also possible to conclude falsely that the equation has

no roots.

Despite these inherent limitations on any numerical method for
finding roots, an effective method—-like that used by [SOLVE]—
should strive to meet each of the following objectives:

® [If a real root exists and can be exactly represented by the
calculator, it should be returned. Note that the calculated

function may underflow (and be set to zero) for some values of

x other than the true roots.

e If a real root exists, but it can’t be exactly represented by the
calculator, the value returned should differ from the true root

only in the last significant digit.

¢ Ifnoreal root exists, an error message should be displayed.

The algorithm was designed with these objectives in mind.
It is also easy to use and requires little of the calculator’s memory.

And because in a program can detect the situation of not
finding a root, your programs can remain entirely automatic

regardless of whether finds a root.

6

Section 1: Using [SOLVE] Effectively 7

How SOLVE |Samples

The routine uses only five registers of allocatable memory

in the HP-15C. The five registers hold three sample values (a, b,

and c¢) and two previous function values (f(a) and f(b)) while your

function subroutine calculates f(¢).

The key to the effectiveness of [SOLVE] is how the next sample value
c is found.

Normally, uses the secant method to select the next value.
This method uses the values of a, b, f(a), and f(b) to predict a value

c where f(¢) might be close to zero.

f(x)

o
t
-

Q—
If ¢ isn’t a root, but f(c) is closer to zero than f(b), then b is

relabeled as a, c is relabeled as b, and the prediction process is

repeated. Provided the graph of f(x) is smooth and provided the

initial values of a and b are close to a simple root, the secant

method rapidly converges to a root.

However, under certain conditions the secant method doesn’t

suggest a next value that will bound the search or move the search

closer to a root, such as finding a sign change or a smaller function

magnitude. In such cases, uses a different approach.

If the calculated secant is nearly horizontal, modifies the
secant method to ensure that|c — b|<100|a — b|. This is especially
important because it also reduces the tendancy for the secant

method to go astray when rounding error becomes significant near

aroot.

8 Section 1: Using Effectively

f(x)

Y o
—
—

-
-
=

If [SOLVE has already found values a and b such that f(a) and f(b)
have opposite signs, it modifies the secant method to ensure that ¢
always lies within the interval containing the sign change. This

guarantees that the search interval decreases with each iteration,

eventually finding a root.

f(x)

 \

Q
P
—
—
—
—
=

If [SOLVE hasn’t found a sign change and a sample value ¢ doesn’t
yield a function value with diminished magnitude, then fits
a parabola through the function values at a, b, and c. finds
the value d at which the parabola has its maximum or minimum,

relabels d as a, and then continues the search using the secant

method.

Section 1: Using [SOLVE|Effectively 9

abandons the search for a root only when three successive
parabolic fits yield no decrease in the function magnitude or when

d=>b. Under these conditions, the calculator displays Error 8.

Because b represents the point with the smallest sampled function

magnitude, b and f(b) are returned in the X- and Z-registers,

respectively. The Y-register contains the value of a or ¢. With this

information, you can decide what to do next. You might resume the

search where it left off, or direct the search elsewhere, or decide

that f(b) is negligible so that x = b is a root, or transform the

equation into another equation easier to solve, or conclude that no

root exists.

Handling Troublesome Situations

The following information is useful for working with problems that
could yield misleading results. Inaccurate roots are caused by

calculated function values that differ from the intended function

values. You can frequently avoid trouble by knowing how to
diagnose inaccuracy and reduce it.

Easy Versus Hard Equations

The two equations f(x) =0 and e/**) —1 =0 have the same real

roots, yet one is almost always much easier to solve numerically

than the other. For instance, when f(x)=6x —x*—1, the first
equation is easier. When f(x) = In(6x — x%), the second is easier. The

difference lies in how the function’s graph behaves, particularly in
the vicinity of a root.

fix)=6x —x*—1 f(x)=exp(6x —x*— 1) — 1

4 60

{ =X X
0 2 0 2

10 Section 1: Using [SOLVE |Effectively

In general, every equation is one of an infinite family of equivalent

equations with the same real roots. And some of those equations

must be easier to solve than others. While [SOLVE may fail to find a

root for one of those equations, it may succeed with another.

Inaccurate Equations

can’t calculate an equation’s root incorrectly unless the
function is incorrectly calculated. The accuracy of your function

subroutine affects the accuracy of the root that you find.

You should be aware of conditions that might cause your
calculated function value to differ from the theoretical value you

want it to have. can’t infer intended values of your
function. Frequently, you can minimize calculation error by

carefully writing your function subroutine.

Equations With Several Roots

The task of finding all roots of an equation becomes more difficult

as the number of roots increases. And any roots that cluster closely
will usually defy attempts at accurate resolution. You can use

deflation to eliminate roots, as described in the HP-15C Owner’s
Handbook.

An equation with a multiple root is characterized by the function
and its first few higher-order derivatives being zero at the multiple

root. When finds a double root, the last half of its digits may
be inaccurate. For a triple root, two-thirds of the root’s digits tend

to be obscured. A quadruple root tends to lose about three-fourths of
its digits.

Using [SOLVE With Polynomials
Polynomials are among the easiest functions to evaluate. That is
why they are traditionally used to approximate functions that

model physical processes or more complex mathematical
functions.

A polynomial of degree n can be represented as

a,x"+a, X" '+...+ax+a.

This function equals zero at no more than n real values of x, called
zeros of the polynomial. A limit to the number of positive zeros of
this function can be determined by counting the number of times

Section 1: Using Effectively 11

the signs of the coefficients change as you scan the polynomial

from left to right. Similarly, a limit to the number of negative zeros

can be determined by scanning a new function obtained by

substituting — x in place of x in the original polynomial. If the

actual number of real positive or negative zeros is less than its
limit, it will differ by an even number. (These relationships are

known as Descartes’ Rule of Signs.)

As an example, consider the third-degree polynomial function

flx)=x>—3x>—6x+8.

It can have no more than three real zeros. It has at most two

positive real zeros (observe the sign changes from the first to

second and third to fourth terms) and at most one negative real

zero (obtained from f(—x) = —x? — 3x% + 6x + 8).

Polynomial functions are usually evaluated most compactly using
nested multiplication. (This is sometimes referred to as Horner’s

method.) As an illustration, the function from the previous

example can be rewritten as

f(x)=[(x—3)x—6]x+8.

This representation is more easily programmed and more

efficiently executed than the original form, especially since
fills the stack with the value of x.

Example: During the winter of ’78, Arctic explorer Jean-Claude
Coulerre, isolated at his frozen camp in the far north, began

scanning the southern horizon in anticipation of the sun’s

reappearance. Coulerre knew that the sun would not be visible to
him until early March, when it reached a declination of 5°18'S. On

what day and time in March was the chilly explorer’s vigil
rewarded?

The time in March when the sun reached 5°18'S declination can be

computed by solving the following equation fort:

D= a4t4 + a;;t:; + a2t2 + alt + Qa

where D is the declination in degrees, t is the time in days from the

beginning of the month, and

12 Section 1: Using Effectively

a;= 4.2725x1078

a;=-1.9931 X107

ay= 1.0229Xx10°3

a;= 3.7680x 107!

ap— —8.1806 .

This equation is valid for 1 <t < 32, representing March, 1978.

First convert 5°18'S to decimal degrees (press 5.18 (g][=H)),
obtaining —5.3000 (using 4 display mode). (Southern latitudes
are expressed as negative numbers for calculation purposes.)

The solution to Coulerre’s problems is the value of t satisfying

—5.3000 = at* + ast? + ast?’ + at + a.

Expressed in the form required by [SOLVE], the equation is

0=ayt* + ast® + ast’ + at — 2.8806

where the last, constant term now incorporates the value of the

declination.

Using Horner’s method, the function to be set equal to zero is

f(t) = (((agt + a3t +ay)t +a)t —2.8806 .

To shorten the subroutine, store and recall the constants using the

registers corresponding to the exponent of ¢.

Keystrokes Display

/(=] Pr Error Clears calculator’s
memory.*

[«] 0.0000
(g](P/R] 000- Program mode.

*This step is included here only to ensure that sufficient memory is available for the

examples that follow in this handbook.

Section 1: Using Effectively

Keystrokes Display

001-42,21,11
[RcL)4 002- 45 4
(x] 003- 20

3 004- 45 3
005- 40

X 006- 20
2 007- 45 2

008- 40
X 009- 20

1 010- 45 1

011- 40
[x] 012- 20
RCL]|O 013- 45 O

014- 40
[¢](RTN] 015- 4332

In Run mode, key in the five coefficients:

Keystrokes Display

(9](p/R]
4.2725(EEX)8[CHS] 4.2725 -08
(sTO0)4 4.2725 -08
1.9931

5[CHS](STO]3 -1.9931 -05

1.0229 (EEX)3[CAS] 1.0229 -03
2 0.0010

3.7680 1 3.7680 -01
1 0.3768

2.8806 [CHS)[STO]O -2.8806

13

Run mode.

Coefficient of t*.

Coefficient of¢,

Coefficient of 2.

Coefficient of t.

Constant term.

Because the desired solution should be between 1 and 32, key in
these two values for initial estimates. Then use to find the

roots.

Keystrokes Display

1 1.0000

32 32

7.5137

7.5137

Initial estimates.

Root found.

Same previous estimate.

14 Section1: Using Effectively

Keystrokes Display

0.0000 Function value.

(g](R#](9](R%] 7.5137 Restores stack.

The day was March 7th. Convert the fractional portion of the
number to decimal hours and then to hours, minutes, and seconds.

Keystrokes Display

0.5137 Fractional portion of day.

24(x] 12.3293 Decimal hours.

12.1945 Hours, minutes, seconds.

Explorer Coulerre should expect to see the sun on March 7th at

120 19m 45°% (Coordinated Universal Time).

By examining Coulerre’s function f(t), you realize that it can have

as many as four real roots—three positive and one negative. Try to

find additional positive roots by using with larger positive

estimates.

Keystrokes Display

1000 1100 1,100 Two larger, positive

estimates.

Error 8 No root found.

278.4497 Last estimate tried.

276.7942 A previous estimate.

7.8948 Nonzero value of function.

(¢](R¢](9](R%] 278.4497 Restores stack to original
state.

Error 8 Again, no root found.

278.4398 Approximately same
estimate.

278.4497 A previous estimate.

7.8948 Same function value.

You have found a positive local minimum rather than a root. Now

try to find the negative root.

Section 1: Using [SOLVE]Effectively 15

Keystrokes Display

1000 ~1,000.0000
1100 -1,100 Two larger, negative

estimates.

-108.9441 Negative root.

-108.9441 Same previous estimate.

1.6000 -08 Function value.

There is no need to search further—you have found all possible

roots. The negative root has no meaning since it is outside of the

range for which the declination approximation is valid. The graph

of the function confirms the results you have found.

f(x)

30+

ol ' ' 300
- 20}

Solving a System of Equations
is designed to find a single variable value that satisfies a

single equation. If a problem involves a system of equations with
several variables, you may still be able to to find a solution.

For some systems of equations, expressed as

fl(xl, veny x”) =0

f,,(xl, veey x”) =0

it is possible through algebraic manipulation to eliminate all but
one variable. That is, you can use the equations to derive

16 Section 1: Using [SOLVE]Effectively

expressions for all but one variable in terms of the remaining
variable. By using these expressions, you can reduce the problem to

using to find the root of a single equation. The values of the
other variables at the solution can then be calculated using the

derived expressions.

This is often useful for solving a complex equation for a complex

root. For such a problem, the complex equation can be expressed as
two real-valued equations—one for the real component and one for

the imaginary component—with two real variables—representing
the real and imaginary parts of the complex root.

For example, the complex equation z + 9 + 8¢7? = 0 has no real roots
2, but it has infinitely many complex roots z = x + iy. This equation

can be expressed as two real equations

x+9+8eFcosy=0

y —8e™'siny=0.

The following manipulations can be used to eliminate y from the
equations. Because the sign of y doesn’t matter in the equations,

assume y > 0, so that any solution (x,y) gives another solution

(x,-y). Rewrite the second equation as

x =In(8(siny)/y),

which requires that sin y >0, so that 2nr <y < (2n + 1)= for

integern =0, 1,

From the first equation

y=cos(-e*(x +9)/8) + 2nr

=(2n+ 1) — cos(e(x + 9)/8)

for n=0, 1, ... Substitute this expression into the second equation,

0.
((2n + 1)m — cos™Y(e*(x + 9)/8) _

x+1n =

64 — (e*(x + 9))?

Section 1: Using [SOLVE Effectively 17

You can then use to find the root x of this equation (for any

given value of n, the number of the root). Knowing x, you can

calculate the corresponding value of y.

A final consideration for this example is to choose the initial

estimates that would be appropriate. Because the argument of the

inverse cosine must be between -1 and 1, x must be more negative

than about -0.1059 (found by trial and error or by using [SOLVE)).
The initial guesses might be near but more negative than this

value, -0.11 and -0.2 for example.

(The complex equation used in this example is solved using an

iterative procedure in the example on page 81. Another method for
solving a system of nonlinear equations is described on page 122.)

Finding Local Extremes of a Function

Using the Derivative

The traditional way to find local maximums and minimums of a

function’s graph uses the derivative of the function. The derivative

is a function that describes the slope of the graph. Values of x at
which the derivative is zero represent potential local extremes of

the function. (Although less common for well-behaved functions,

values of x where the derivative is infinite or undefined are also
possible extremes.) If you can express the derivative of a function
in closed form, you can use to find where the derivative is
zero—showing where the function may be maximum or minimum.

Example: For the design of a vertical broadcasting tower, radio

engineer Ann Tenor wants to find the angle from the tower at
which the relative field intensity is most negative. The relative
intensity created by the tower is given by

__cos(2mhcos 6) — cos(2mh)

[1 —cos(2mh)]sin 6

where E is the relative field intensity, A is the antenna height in

wavelengths, and 6 is the angle from vertical in radians. The

height is 0.6 wavelengths for her design.

The desired angle is one at which the derivative of the intensity
with respect to 6 is zero.

18 Section 1: Using [SOLVE]Effectively

To save program memory space and execution time, store the
following constants in registers and recall them as needed:

ro=2mh and is stored in register R,

ry =cos(2mh) and is stored in register R,,

ro =1/[1 —cos(2mh)] and is stored in register R,.

The derivative of the intensity E with respect to the angle 6is given

by

dE .
- =TI E()Sln(r()cos 0) -

sin 6 tan 6

cos(rgcos 0) —r;

do

Key in a subroutine to calculate the derivative.

Keystrokes Display

(g](P/R] Program mode.

(f]CLEAR [PRGM] 000-

(f)(LBL)O 001-42,21, 0

cOoS 002- 24

[RCL]O 003- 45 0

] 004- 20

coS 005- 24

[RCL)1 006- 45 1

(-] 007- 30

(xxy] 008- 34

009- 23
(=) 010- 10

011- 34

012- 25

(<] 013- 10

CHS 014- 16

(x%y] 015- 34

cOoS 016- 24

(RCL]O 017- 45 0

Section 1: Using [SOLVE Effectively 19

Keystrokes Display

(] 018-

SIN 019-

[RCLJO 020-

(x] 021-

022-
2 023-

(x] 024-

[9][RTN] 025-

20

23

45 0

20

30

45 2

20

43 32

In Radians mode, calculate and store the three constants.

Keystrokes Display

(a](P/R]
(9](RAD]
2[9](=](x] 6.2832

.6[x](sT0]O 3.7699

[Cos](STO0)1 -0.8090
(CHS]1 1.8090

[1/x)[ST0]2 0.5528

Run mode.

Specifies Radians mode.

Constant ry,.

Constant r;.

Constant ry.

The relative field intensity is maximum at an angle of 90°

(perpendicular to the tower). To find the minimum, use angles

closer to zero as initial estimates, such as the radian equivalents of

10° and 60°.

Keystrokes Display

10 [fJ[*RAD] 0.1745

60 1.0472

[f)[SOLVE]O 0.4899
-5.5279

(oJ)(rR#][9](R%] 0.4899

(9])[+DEG] 28.0680

-10

Initial estimates.

Angle giving zero slope.

Slope at specified angle.

Restores the stack.

Angle in degrees.

20 Section 1: Using Effectively

The relative field intensity is most negative at an angle of 28.0680°
from vertical.

Using an Approximate Slope

The derivative of a function can also be approximated numerically.

If you sample a function at two points relatively close to x (namely

x + A and x — A), you can use the slope of the secant as an

approximation to the slope at x:

<= flx +23)—f(x—4)

2A

f(x)

fix+4) fp=——————

fix—4) ===

Section 1: Using [SOLVE]Effectively 21

The accuracy of this approximation depends upon the increment A

and the nature of the function. Smaller values of A give better
approximations to the derivative, but excessively small values can

cause round-off inaccuracy. A value of x at which the slope is zero

is potentially a local extreme of the function.

Example: Solve the previous example without using the equation

for the derivative dE/d6.

Find the angle at which the derivative (determined numerically) of

the intensity FE is zero.

In Program mode, key in two subroutines: one to estimate the

derivative of the intensity and one to evaluate the intensity

function E. In the following subroutine, the slope is calculated

between 6 + 0.001 and 6 — 0.001 radians (a range equivalent to

approximately 0.1°).

Keystrokes Display

(g](P/R] 000- Program Mode.

001-42,21,11
EEX 002- 26

CHS 003- 16

3 004- 3 Evaluates E at 6+ 0.001.

[+] 005- 40
006- 36
007- 3212

(x%y] 008- 34

009- 26

010- 16
3 011- 3 Evaluates E at 6§ —0.001.

& 012- 30
013- 36

014- 3212
(] 015- 30
2 016- 2

017- 26

CHS 018- 16

3 019- 3

22 Section 1: Using Effectively

Keystrokes Display

5 020- 10
(9](RTN] 021- 4332

022-42,21,12 Subroutine for E(6).

COS 023- 24

0 024- 45 0
] 025- 20
Cos 026- 24

1 027- 45 1
B 028- 30
(xxy] 029- 34

030- 23
(<] 031- 10

2 032- 45 2

X 033- 20
[9](RTN] 034- 4332

In the previous example, the calculator was set to Radians mode
and the three constants were stored in registers R, R, and R,. Key

in the same initial estimates as before and execute [SOLVE].

Keystrokes Display

(g] Run mode.

10 0.1745

60 1.0472 Initial estimates.

0.4899 Angle given zero slope.

0.0000 Slope at specified angle.

(g])(R¢](9](R?] 0.4899 Restores the stack.

-0.2043 Uses function subroutine
to calculate minimum

intensity.

(xxy] 0.4899 Recalls 6 value.

(9][+DEG] 28.0679 Angle in degrees.

This numerical approximation of the derivative indicates a
minimum field intensity of -0.2043 at an angle of 28.0679°. (This

angle differs from the previous solution by 0.0001°.)

Section 1: Using [SOLVE Effectively 23

Using Repeated Estimation

A third technique is useful when it isn’t practical to calculate the

derivative. It is a slower method because it requires the repeated

use of the key. On the other hand, you don’t have to find a

good value for A of the previous method. To find a local extreme of

the function f(x), define a new function

gx)=f(x)—e

where e is a number slightly beyond the estimated extreme value of

f(x). If e is properly chosen, g(x) will approach zero near the

extreme of f(x) but will not equal zero. Use to analyze g(x)

near the extreme. The desired result is Error 8.

e If Error 8 is displayed, the number in the X-register is an x

value near the extreme. The number in the Z-register tells

roughly how far e is from the extreme value of f(x). Revise e to

bring it closer (but not equal) to the extreme value. Then use
to examine the revised g(x) near the x value previously

found. Repeat this procedure until successive x values do not

differ significantly.

e Ifarootofg(x)isfound, either the number e is not beyond the

extreme value of f(x) or else has found a different
region where f(x) equals e. Revise e so that it is close to—but

beyond—the extreme value of f(x) and try again. It
may also be possible to modify g(x) in order to eliminate the

distant root.

f(x) f(x)

24 Section 1: Using Effectively

Example: Solve the previous example without calculating the

derivative of the relative field intensity E.

The subroutine to calculate E and the required constants have been

entered in the previous example.

In Program mode, key in a subroutine that subtracts an estimated

extreme number from the field intensity E. The extreme number

should be stored in a register so that it can be manually changed as
needed.

Keystrokes Display

(g](P/R] 000- Program mode.

(f][LBL]1 001-42,21, 1 Begins with label.

002- 3212 CalculatesE.

9 003- 45 9
(-] 004- 30 Subtracts extreme

estimate.

(g](RTN] 005- 43 32

In Run mode, estimate the minimum intensity value by manually
sampling the function.

Keystrokes Display

(g](P/R] Run mode.

10 0.1745

-0.1029

30 0.5236 Samples the function at
-0.2028 10°, 30°, 50°,

50 [f][®RAD] 0.8727

0.0405

Section 1: Using [SOLVE]Effectively 25

Based on these samples, try using an extreme estimate of -0.25 and

initial estimates (in radians) near 10° and 30°.

Keystrokes Display

.25 [CHS][ST0]9 -0.2500

2 0.2000
.6 0.6

(f](SOLVE]1 Error 8

(«](sT0]4 0.4849

[R¥)[STO)5 0.4698

0.0457
9 0.0411
(sTO](+]9 0.0411

[RCL)4 0.4849

-0.2043
0.0000

(RCL]5 0.4698

(f](SOLVE] 1 Error 8

0.4898
(xxy) 0.4893
xxy) 0.4898

-0.2043
xzy) 0.4898
(9)[*DEG) 28.0660
(9)[DEG) 28.0660

Stores extreme estimate.

Initial estimates.

No root found.

Stores 6 estimate.

Stores previous 6 estimate.

Distance from extreme.

Revises extreme estimate

by 90 percent of the
distance.

Recalls 0 estimate.

Calculates intensity FE.

Recalls other 6 estimate,
keeping first estimate in

Y-register.

No root found.

0 estimate.

Previous 6 estimate.

Recalls 6 estimate.

Calculates intensity E.

Recalls 6 value.

Anglein degrees.

Restores Degrees mode.

The second interation produces two 8 estimates that differ in the

fourth decimal place. The field intensities E for the two iterations
are equal to four decimal places. Stopping at this point, a minimum
field intensity of -0.2043 is indicated at an angle of 28.0660°. (This

angle differs from the previous solutions by about 0.002°.)

26 Section 1: Using [SOLVE]Effectively

Applications

The following applications illustrate how you can use to
simplify a calculation that would normally be difficult—finding an

interest rate that can’t be calculated directly. Other applications

that use the function are given in sections 3 and 4.

Annuities and Compound Amounts

This program solves a variety of financial problems involving

money, time, and interest. For these problems, you normally know

the values of three or four of the following variables and need to
find the value of another:

n The number of compounding periods. (For example, a 30

year loan with monthly payments has n =12 X 30 = 360.)

I The interest rate per compounding period expressed as a

percent. (To calculate i, divide the annual percentage rate

by the number of compounding periods in a year. Thatis,
12% annual interest compounded monthly equals 1%

periodic interest.)

PV The present value of a series of future cash flows or the

initial cash flow.

PMT The periodic payment amount.

FV The future value. That is, the final cash flow (balloon

payment or remaining balance) or the compounded value

of a series of prior cash flows.

Section 1: Using [SOLVE]Effectively

Possible Problems Involving Annuities and

Compound Amounts

27

calculate the

fourth.)

Allowable Typical Applications

Combination For Payments For Payments Initial
of atEnd at Beginning Procedure

Variables of Period of Period

n,i,PV,PMT Direct reduc- Lease. Use

(Enter any tion loan. Annuity due. (fJCLEAR

three and Discounted or set FV to zero.

calculate the note.

fourth.) Mortgage.

n,i, PV, Direct reduc- Lease with None.

PMT, FV tion loan residual

(Enter any with value.

four and balloon Annuity due.

calculate the payment.

fifth.) Discounted

note.

n,i,PMT, FV Sinking fund. Periodic Use

(Enter any savings. CLEAR

three and Insurance. orsetPVto

calculate the zero.

fourth.)

n, i, PV,FV Compound growth. Use

(Enter any Savings. CLEAR
three and or set PMT to

zero.

The program accommodates payments that are made at the

beginning or end of compounding periods. Payments made at the

end of compounding periods (ordinary annuity) are common in
direct reduction loans and mortgages. Payments made at the

28 Section 1: Using [SOLVE Effectively

beginning of compounding periods (annuity due) are common in
leasing. For payments at the end of periods, clear flag 0. For

payments at the beginning of periods, set flag 0. If the problem

involves no payments, the status of flag 0 has no effect.

This program uses the convention that money paid out is entered

and displayed as a negative number, and that money received is

entered and displayed as a positive number.

A financial problem can usually be represented by a cash flow
diagram. This is a pictorial representation of the timing and
direction of financial transactions. The cash flow diagram has a

horizontal time line that is divided into equal increments that

correspond to the compounding period—months or years, for

example. Vertical arrows represent exchanges of money, following

the convention that an upward arrow (positive) represents money
received and a downward arrow (negative) represents money paid

out. (The examples that follow are illustrated using cash flow
diagrams.)

Money received

N

Money paid out

Pressing CLEAR provides a convenient way to set up the
calculator for a new problem. However, it isn’t necessary to press
CLEAR between problems. You need to reenter the values of

only those variables that change from problem to problem. If a
variable isn’t applicable for a new problem, simply enter zero as its
value. For example, if PMT is used in one problem but not used in
the next, simply enter zero for the value of PMT in the second

problem.

Section 1: Using [SOLVE]Effectively 29

The basic equation used for the financial calculations is

PMTA

1/100

where i0 and

PV + [1—(1+i/100)"]+ FV(1 +i/100)™" =0

A= 1 for end-of-period payments

1 + /100 for beginning-of-period payments.

The program has the following characteristics:

° is used to find i. Because this is an iterative function,
solving for i takes longer than finding other variables. It is

possible to define problems which cannot be solved by this
technique. If[SOLVE] can’t find a root, Error 4 is displayed.

e When finding any of the variables listed on the left below,

certain conditions result in an Error 4 display:

n PMT=-PVi/(100 A)

(PMTA —FVi/100)/(PMTA + PV i/100) <0

1<-100

i [SOLVE]can’t find a root
PV 1<<-100
PMT n=0

1=0

1 <-100

FVv 1<-100

e If a problem has a specified interest rate of 0, the program

generates an Error O display (or Error 4 when solving for

PMT).

e Problems with extremely large (greater than 10%) or extremely

small (less than 107%) values for n and i may give invalid
results.

e Interest problems with balloon payments of opposite signs to

the periodic payments may have more than one mathemati-

cally correct answer (or no answer at all). This program may

find one of the answers but has no way of finding or
indicating other possibilities.

Keystrokes Display

(g](P/R] Program mode.

CLEAR 000-

30 Section 1: Using Effectively

Keystrokes

(f{LBL)(A]
[sTO]1
R/S

(GsB]1
(9](LSTx]
(RcL](x]O
[ReL)5
(x2y]
]

(9](LsTx]
[ReL](+]3

[9]){x=0]

([GT0]0
8
CHS
[9)(TEST]4
[GTo]o
(9]0
(RCL]6

(90N
8
[sT0]1
(e](RTN]
[f](teu)(e)
[sT0]2
R/S

(]
2

[ENTER]
EEX

Display

001-42,21,11

002- 44 1

003- 31
004- 32 1
005- 43 36
006-45,20, 0
007- 45 5
008- 34
009- 30

010- 43 36

011-45,40, 3

012- 4320

013- 22 0

014- 10

015- 16

016-43,30, 4

017- 22 0

018- 43 12

019- 45 6

020- 4312

021- 10

022- 44 1

023- 43 32

024-42,21,12

025- 44 2

026- 31

027- 48

028- 2

029- 36

030- 26

n routine.

Stores n.

Calculates n.

Calculates

FV—100 PMTA/:.

Calculates

PV +100 PMTA/:.

Tests

PMT=—-PVi/(100 A).

Tests x <0.

I routine.

Stores .

Keystrokes

CHS
3

[s]{cF)1

(fJ(SOLVE]3
[GTO]4
[GT0]0
[eL)4
EEX

2
[xJ
(sTO]2
(¢](RTN]
((Leu(c]
[s10]3
R/S

(GsB]1
(GSB]2
CHS

(STO]3
[e](RTN]
[1(LeL)(D]
[sT0)4
R/S
]

[sTO)4
[GSB]1
(RCL]3
(GsB]2
[x2y]
8
CHS

[sT0]4
[e](RTN]

Section 1: Using [SOLVE] Effectively

Display

031- 16
032- 3

033-43, 5, 1

034-42,10, 3

035- 22 4

036- 22 O

037-42,21, 4
038- 26

039- 2

040- 20
041- 44 2
042- 43 32

043-42,21,13

044- 44 3

045- 31

046- 32 1

047- 32 2

048- 16

049- 44 3

050- 43 32

051-42,21,14

052- 44 4

053- 31
054- 1
055- 44 4

056- 32 1

057- 45 3

058- 32 2

059- 34

060- 10

061- 16

062- 44 4

063- 4332

Clears flag 1 for SOLVE

subroutine.

Calculates :.

PV routine.

Stores PV.

Calculates PV.

PMT routine.

Stores PMT.

Calculates PMT.

31

32 Section 1: Using Effectively

Keystrokes Display

064-42,21,15 FVroutine.

(STO]5 065- 44 5 Stores FV.

R/S 066- 31

(GsB]1 067- 32 1 Calculates FV.

[Rel)(+) 3 068-45,40, 3
[REL)(5)7 069-45,10, 7
CHS 070- 16

[sTO]5 071- 44 5

(9](RTN] 072- 4332
[ALe0)1 073-42,21, 1
[g](sF]1 074-43, 4, 1 Setsflag1 for

subroutine 3.

1 075- 1

[RCL)2 076- 45 2
(9](%] 077- 43 14 Calculates i/100.

[f)(LBL) 3 078-42,21, 3
subroutine.

(sTO)8 079- 44 8
1 080- 1

(sT0JO 081- 44 0
082- 40

(g])(TEST)4 083-43,30, 4 Testsi<100.

[GT0)O 084- 22 0
[STO0)6 085- 44 6
(g](F?]0O 086-43, 6, 0 Tests for end-of-period

payments.

(sT0]O 087- 44 0

(RCL]1 088- 45 1

CHS 089- 16

y*] 090- 14 Calculates (1 +:/100)™.

(ST0)7 091- 44 7
1 092- 1

%y 093- 34
(-] 094- 30 Calculates

1—(1+:/100)™".

Section 1: Using Effectively 33

Keystrokes Display

(9](x=0] 095- 4320 Testsi=0orn=0.

[GT0]O 096- 22 0
[RCL)(X]0 097-45,20, 0
[RCL) 4 098- 45 4
[ReL)(F)8 099-45,10, 8
X] 100- 20
(9](F2)1 101-43, 6, 1 Testsflag1 set.

(g](RTN] 102- 4332

[RCL][+]3 103-45,40, 3 [SOLVE]subroutine
continues.

M02 104-42,21, 2
[RCL)5 106- 45 5
(RCL](x]7 106-45,20, 7 Calculates

Fv(a +1i:/100)™".

107- 40
(g](RTN] 108- 43 32 subroutine ends.

Labelsused: A, B,C,D, E, 0,1, 2, 3, and 4.

Registers used: Ry (A), Ry (n), R, (1), R3 (PV), Ry (PMT), R5 (FV),

Rg, R, and Rg.

To use the program:

1.

2.

3.

Press 8 [f][DIM][(i)] to reserve R, through Rg.

Press to activate User mode.

If necessary, press CLEAR to clear all of the financial
variables. You don’t need to clear the registers if you intend

to specify all of the values.

Set flag 0 according to how payments are to be figured:

e Press[g][CF]O for payments at the end of the period.

e Press [g] 0 for payments at the beginning of the

period.

Enter the known values of the financial variables:

¢ To enter n, key in the value and press [A].

* Toenteri, key in the value and press [B].

34 Section 1: Using Effectively

* Toenter PV, key in the value and press [C].

®* Toenter PMT, key in the value and press [D].

® Toenter FV, key in the value and press [E].

6. Calculate the unknown value:

® To calculate n, press [A][R/S].

® To calculate i, press [B][R/S].

® To calculate PV, press [C][R/S].

® To calculate PMT, press [D](R/S].

® To calculate FV, press [E][R/S].

7. To solve another problem, repeat steps 3 through 6 as
needed. Be sure that any variable not to be used in the

problem has a value of zero.

Example: You place $155 in a savings account paying 5%%
compounded monthly. What sum of money can you withdraw at

the end of 9 years?

FV

= 5.75

12

1 2 3 106 107 108

PV
-155

Keystrokes Display

(g][P/R] Run mode.

CLEAR Clears financial
variables.

2
Activates User mode.

(g](cF]o Ordinary annuity.

9 [ENTER] 12 [*](A] 108.00 Enters n =9 X 12.

Section 1: Using [SOLVE]Effectively 35

Keystrokes Display

5.75(ENTER]12(%][B] 0.48 Entersi=5.75/12.

155 -155.00 Enters PV= -155 (money
paid out).

259.74 Calculates FV.

If you desire a sum of $275, what would be the required interest

rate?

Keystrokes Display

275 (E] 275.00 Enters FV= 275.

0.53 Calculates .

12(x] 6.39 Calculates annual interest
rate.

Example: You receive $30,000 from the bank as a 30-year, 13%

mortgage. What monthly payment must you make to the bank to

fully amortize the mortgage?

30,000
PV

;13
12

1] 2] 3 ' ’358‘359‘360'

PMT
?

Keystrokes Display

CLEAR Clears financial variables.

30 [ENTER] 12 [x][(A] 360.00 Enters n =30 X 12.

13 [ENTER] 12 [£](B] 1.08 Entersi=13/12.

30000 30,000.00 Enters PV= 30,000.

(D][R/S] -331.86 Calculates PMT

(money paid out).

36 Section 1: Using Effectively

Example: You offer a loan of $3,600 that is to be repaid in 36

monthly payments of $100 with an annual interest rate of 10%.

What balloon payment amount, to be paid coincident with the 36th

payment, is required to pay off the loan?

FV

100
PMT

1 2 3 o 34 35 36

_10
T2

PV
-3600

Keystrokes Display

CLEAR Clears financial variables.

36 36.00 Enters n = 36.

10(ENTER] 12 [£](B] 0.83 Entersi=10/12.

3600 -3600.00 Enters PV =-3600
(money paid out).

100 (D] 100.00 Enters PMT =100
(money received).

(E][R/S] 675.27 Calculates FV.

The final payment is $675.27 + $100.00 = $775.27 because the final
payment and balloon payment are due at end of the last period.

Example: You’re collecting a $50,000 loan at 14% annual interest

over 360 months. Find the remaining balance after the 24th
payment and the interest accrued between the 12th and 24th
payments.

You can use the program to calculate accumulated interest and the

remaining balance for loans. The accumulated interest is equal to
the total payments made during that time less the principal
reduction during that time. The principal reduction is the
difference between the remaining balances at the start and end of
the period.

Section 1: Using [SOLVE Effectively 37

First, calculate the payment on the loan.

Keystrokes Display

CLEAR Clears financial variables.

360 360.00 Enter n = 360.

14 [ENTER] 12 [£](B] 1.17 Enters: =14/12.

50000 -50,000.00 Enters PV= -50,000.

(D](R/S] 592.44 Calculates PMT.

Now calculate the remaining balance at month 24.

Keystrokes Display

24 24.00 Enters n = 24.

(E]J(R/S] 49,749.56 Calculates FV at
month 24.

Store this remaining balance, then calculate the remaining

balance at month 12 and the principal reduction between
payments 12 and 24.

Keystrokes Display

[5T0)(0) 49,749.56
12[A] 12.00 Enters n =12.

(E](R/S] 49,883.48 Calculates FV at
month 12.

(RcL](1] 49,749.56 Recalls F'V at month 24.

(-] 133.92 Calculates principal
reduction.

The accrued interest is the value of 12 payments less the principal
reduction.

Keystrokes Display

(RCL]4 592.44 Recalls PMT.

12 (%] 7.109.23 Calculates value of
payments.

x%y][-] 6,975.31 Calculates accrued
interest.

38 Section 1: Using Effectively

Example: A leasing firm is considering the purchase of a

minicomputer for $63,000 and wants to achieve a 13%annual yield

by leasing the computer for a 5-year period. At the end of the lease
the firm expects to sell the computer for at least $10,000. What

monthly payment should the firm charge in order to achieve a 13%

yield? (Because the lease payments are due at the beginning of
each month, be sure to set flag 0 to specify beginning-of-period

payments.)

10,000
, Fv

PMT

1 2 3 58 59 60

13
12

PV
-63,000

Keystrokes Display

CLEAR Clears financial

variables.

(g](sF]oO Specifies beginning-of-
period payments.

5 [ENTER] 12 [x](A] 60.00 Entersn=5X12.

13 [ENTER] 12 [£](B] 1.08 Entersi=13/12.

63000 -63,000.00 Enters PV=-63,000.

10000 (E] 10,000.00 Enters FV =10,000.

(D][R/S] 1.300.16 Calculates PMT.

If the price of the computer increases to $70,000, what should the
payments be?

Keystrokes Display

70000 -70,000.00 Enters PV =-70,000.

(D][R/S] 1,457.73 Calculates PMT.

Section 1: Using [SOLVE]Effectively 39

If the payments were increased to $1,500, what would the yield be?

Keystrokes Display

1500 (D] 1,500.00 Enters PMT = 1500.

1.18 Calculates i (monthly).

12(x] 14.12 Calculates annual yield.

14.12 Deactivates User mode.

Discounted Cash Flow Analysis

This program performs two kinds of discounted cash flow analysis:
net present value (INPV) and internal rate of return (/RR). It

calculates NPV or IRR for up to 24 groups of cash flows.

The cash flows are stored in the two-column matrix C. Matrix C

has one row for each group of cash flows. In each row of C, the first

elementis the cash flow amount; the second element is the number

of consecutive cash flows having that amount (the number of flows

in that group.) The first element of C must be the amount of the

initial investment. The cash flows must occur at equal intervals; if
no cash flow occurs for several time periods, enter O for the cash

flow amount and the number of zero cash flows in that group.

After all the cash flows have been stored in matrix C, you can enter

an assumed interest rate and calculate the net present value (NPV)

of the investment. Alternatively, you can calculate the internal
rate of return (IRR). The IRR is the interest rate that makes the

present value of a series of cash flows equal to the initial
investment. It’s the interest rate that makes the NPV equal zero.
IRR is also called the yield or discounted rate of return.

The fundamental equation for NPV is

-2nk 1 —(1+i/100)" ~ZCFj(-—(—l———L)(lJri/lOO) "I fori>-100

k

ZCFJYZ] fori=0

i=1

NVP=

where Zn, is defined as -1.
<1

40 Section1: Using Effectively

The program uses the convention that money received is entered

and displayed as a positive number, and that money paid out is

entered and displayed as a negative number.

The program has the following characteristics:

® The cash flow sequence (including the initial investment)
must contain both a positive flow and a negative flow. That is,

there must be at least one sign change.

® Cash flows with multiple sign changes may have more than
one solution. This program may find one solution, but it has

no way of indicating other possibilities.

® The IRR calculation may take several minutes (5 or more)

depending of the number of cash flow entries.

® The program displays Error 4 if it is unable to find a solution

for IRR or if the yield i <-100% in the NPVcalculation.

Keystrokes Display

(g](P/R] Program mode.

(f)CLEAR 000-

(f][LBL](A] 001-42,21,11 NPVroutine.

002- 26
2 003- 2

(=) 004- 10 Calculates IRR/100.

2 005- 32 2
R/S 006- 31

LBL 007-42,21,12 IRR routine.

1 008- 1

009- 36
010- 26

011- 16
3 012- 3

(f)(SOoLVE]2 013-42,10, 2
([GTo)1 014- 22 1
(GToJO 015- 22 0 BranchfornolIRR

solution.

(f](LBL]1 016-42,21, 1
EEX 017- 26

Keystrokes
N

=
B m(I

)
-

i
N

T

(
@

N
}

STO

1

[sTo]4
+

(o](TEST]4
[GToJo
[sT0]3
0

(sT0J5
[f](MATRIX] 1
[(LBL]3
(e(Fz]o
(GT0}7
(GSBJ6
[RCL]2
[9](x=0]

o —
{

! »
£

™ (o
2}

H

—
a

o
)

®
w
n

O
B
A
Y

—
'

o

5g
E
]
H

B
l
o
o sf

(GSB]6
(f)[LBL]5

Section 1: Using [SOLVE]Effectively

Display

018- 2

019- 20

020- 31

021-42,21, 2

022-43, 5, O

023- 44 2
024- 1

025- 44 4

026- 40

027-43.30, 4

028- 22 O

029- 44 3
030- 0

031- 44 5

032-42,16, 1

033-42,21, 3

034-43, 6, 0

035- 22 7

036- 32 6
037- 45 2

038- 4320

039- 22 4

040- 1
041- 40
042- 32 6
043- 16
044- 14

045- 44 4

046- 1
047- 34

048- 30

049-45,10, 2

050-45,20, 3
051- 22 5
052-42,21, 4
053- 34
054- 32 6
055-42,21, 5

Calculates NPV.

Calculates 1 + IRR/100.

Tests IRR < -100.

Branch for IRR < -100.

Tests if all flows used.

41

Branch for all flows used.

Tests IRR = 0.

Branch for IRR =0.

42 Section 1: Using SOLVE |Effectively

Keystrokes Display

] 056- 20
[ET0l(x)5 057-44,40, 5
[RcL) 4 058- 45 4
[STO)(X]3 059-44,20, 3
[GT0)3 060- 22 3

6 061-42,21, 6 Recalls cash flow element.
062u 4513

USER
(e](RTN] 063- 4332
(g](sF]O 064-43, 4, 0 Setsflag0iflast element.

[g][RTN] 065- 4332
MBy7 066-42,21, 7
(RCL]5 067- 45 5 Recalls NPV.

[g](RTN] 068- 4332

Labels used: A, B, and 0 through 7.

Registers used: Ry through Rs.

Matrix used: C.

To use the discounted cash flow analysis program:

1.

2.

Press 5 [f][DIM][(i)] to allocate registers R, through Rs.

Press to activate User mode (unless it’s already
active).

Key in the number of cash flow groups, then press 2

to dimension matrix C.

Press 1 to set the row and column numbers to 1.

For each cash flow group:

a. Keyin the amount and press (c], then

b. Key in the number of occurrences and press (C).

Calculate the desired parameter:
e To calculate IRR, press B].
e To calculate NPV, enter periodic interest rate i in percent

and press [A]. Repeat for as many interest rates as

needed.

Repeat steps 3 through 6 for other sets of cash flows.

Section 1: Using [SOLVE]Effectively 43

Example: An investor pays $80,000 for a duplex that he intends

to sell after 7 years. He must spend some money the first year for

repairs. At the end of the seventh year the duplex is sold for

$91,000. Will he achieve a desired 9% after-tax yield with the

following after-tax cash flows?

91,000

8000 8000
7500 7500

RN
1‘234567
-600

-80,000

Keystrokes Display

(g](P/R] Run mode.

2
5 5.00 Reserve registers R

through R5.

6 2 2
2.00

1 2.00
(f)[USER] 2.00
80000 -80,000.00 Initial investment.

1 1.00
600 [CHS](ST0](C] -600.00

1 1.00
6500 6,500.00
1 1.00
8000 8,000.00
2 2.00
7500 7.500.00
2 2.00
91000 [5T0)[C] 91,000.00
1 1.00
9 9 Enters assumed yield.

~4,108.06 NPV.

44 Section1: Using Effectively

Since the NPV is negative, the investment does not achieve the

desired 9% yield. Calculate the IRR.

Keystrokes Display

8.04 IRR (after about 8
minutes).

The IRR is less than the desired 9% yield.

Example: An investment of $620,000,000 is expected to have an
annual income stream for the next 15 years as shown in the
diagram.

100,000,000
,T_T__.T__T 5,000,000

1 210 11 12 13 14 15

-620,000,000

What is the expected rate of return?

Keystrokes Display

3 (ENTER]2 2
2.00

1 2.00
620000000 -620,000,000

-620,000,000.0
1 1.00

100000000 100,000,000.0

10 10.00

5000000 5,000,000.00
5 5.00

10.06 IRR.

(f](FIX] 4 10.0649
10.0649 Deactivates User mode.

Section 2

Working With

The HP-15C gives you the ability to perform numerical integration

using [%]. This section shows you how to use effectively and
describes techniques that enable you to handle difficult integrals.

Numerical Integration Using
A calculator using numerical integration can almost never

calculate an integral precisely. But the function asks you in a

convenient way to specify how much error is tolerable. It asks you

to set the display format according to how many figures are
accurate in the integrand f(x). In effect, you specify the width of a

ribbon drawn around the graph of f(x). The integral estimated by
corresponds to the area under some unspecified graph lying

entirely within the ribbon. Of course, this estimate could vary by as

much as the area of the ribbon, so estimates this area too. If I is
the desired integral, then

7= area under a graph 1 area of

drawn in the ribbon the ribbon

The HP-15C places the first area estimate in the X-register and the
second—the uncertainty—in the Y-register.

f(x)

45

46 Section 2: Working With

For example, f(x) might represent a physical effect whose

magnitude can be determined only to within £+ 0.005. Then the

value calculated as f(x) has an uncertainty of 0.005. A display

setting of 2 tells the calculator that decimal digits beyond the

second can’t matter. The calculator need not waste time estimating
the integral with unwarranted precision. Instead, the calculator
can more quickly give you a fair idea of the range of values within

which the integral must lie.

The HP-15C doesn’t prevent you from declaring that f(x) is far

more accurate than it really is. You can specify the display setting
after a careful error analysis, or you can just offer a guess. You

may leave the display set to 4 or 4 without much further
thought. You will get an estimate of the integral and its

uncertainty, enabling you to interpret the result more intelligently
than if you got the answer with no idea of its accuracy or

Inaccuracy.

The algorithm uses a Romberg method for accumulating the

value of the integral. Several refinements make it more effective.

Instead of using uniformly spaced samples, which can induce a

kind of resonance or aliasing that produces misleading results

when the integrand is periodic, uses samples that are spaced
nonuniformly. Their spacing can be demonstrated by substituting,

say,

31,
YTy

and sampling u uniformly. Besides suppressing resonance, the

substitution has two more benefits. First, no sample need be drawn

from either end of the interval of integration (except when the

interval is so narrow that no other possibilities are available). As a

result, an integral like

Section 2. Working With (5] 47

3 sin x
f dx
0 x

won’t be interrupted by division by zero at an endpoint. Second,

can integrate functions that behave like \/|x — a|, whose slope is
infinite at an endpoint. Such functions are encountered when

calculating the area enclosed by a smooth, closed curve.

Another refinement is that uses extended precision, 13
significant digits, to accumulate the internal sums. This allows

thousands of samples to be accumulated, if necessary, without

losing to roundoff any more information than is lost within your

function subroutine.

Accuracy of the Function to be Integrated

The accuracy of an integral calculated using depends on the
accuracy of the function calculated by your subroutine. This

accuracy, which you specify using the display format, depends

primarily on three considerations:

® The accuracy of empirical constants in the function.

® The degree to which the function may accurately describe a

physical situation.

® The extent of round-off error in the internal calculations of the

calculator.

Functions Related to Physical Situations

Functions like cos(46 — sin 0) are pure mathematical functions. In

this context, this means that the functions do not contain any
empirical constants, and neither the variables nor the limits of

integration represent actual physical quantities. For such

functions, you can specify as many digits as you want in the

display format (up to nine) to achieve the desired degree of

accuracy in the integral.* All you need to consider is the trade-off
between the accuracy and calculation time.

*Provided that f(x) is still calculated accurately, despite round-off error, to the number of

digits shown in the display.

48 Section 2: Working With

There are additional considerations, however, when you’re
integrating functions relating to an actual physical situation.

Basically, with such functions you should ask yourself whether the

accuracy you would like in the integral is justified by the accuracy
in the function. For example, if the function contains empirical

constants that are specified to only, say, three significant digits,it

might not make sense to specify more than three digits in the

display format.

Another important consideration—and one which is more subtle
and therefore more easily overlooked—is that nearly every

function relating to a physical situation is inherently inaccurate to

a certain degree, because it is only a mathematical model of an
actual process or event. A mathematical model is itself an approxi-
mation that ignores the effects of known or unknown factors which

are insignificant to the degree that the results are still useful.

An example of a mathematical model is the normal distribution

function

t e—(x - ;L)2/202

fT——dx
o\ 2mr

which has been found to be useful in deriving information
concerning physical measurements on living organisms, product

dimensions, average temperatures, etc. Such mathematical descrip-

tions typically are either derived from theoretical considerations or
inferred from experimental data. To be practially useful, they are

constructed with certain assumptions, such as ignoring the effects
of relatively insignificant factors. For example, the accuracy of

results obtained using the normal distribution function as a model
of the distribution of certain quantities depends on the size of the
population being studied. And the accuracy of results obtained
from the equation s = s, — Y.gt2, which gives the height of a falling
body, ignores the variation with altitude of g, the acceleration of

gravity.

Thus, mathematical descriptions of the physical world can provide
results of only limited accuracy. If you calculated an integral with

an apparent accuracy beyond that with which the model describes

Section 2. Working With 49

the actual behavior of the process or event, you would not be

justified in using the calculated value to the full apparent accuracy.

Round-Off Error in Internal Calculations

With any computational device—including the HP-15C—calcu-

lated results must be “rounded off”’ to a finite number of digits (10

digits in the HP-15C). Because of this round-off error, calculated

results—especially results of evaluating a function that contains
several mathematical operations—may not be accurate to all 10

digits that can be displayed. Note that round-off error affects the
evaluation of any mathematical expression, not just the evaluation

of a function to be integrated using [/]. (Refer to the appendix for
additional information.)

If f(x) is a function relating to a physical situation, its inaccuracy
due to round-off typically is insignificant compared to the

inaccuracy due to empirical constants, etc. If f(x) is what we have

called a pure mathematical function, its accuracy is limited only by

round-off error. Generally, it would require a complicated analysis

to determine precisely how many digits of a calculated function

might be affected by round-off. In practice, its effects are typically

(and adequately) determined through experience rather than
analysis.

In certain situations, round-off error can cause peculiar results,

particularly if you should compare the results of calculating
integrals that are equivalent mathematically but differ by a
transformation of variables. However, you are unlikely to

encounter such situations in typical applications.

Shortening Calculation Time
The time required for to calculate an integral depends on how
soon a certain density of sample points is acl.ieved in the region
where the function is interesting. The calculation of the integral of

any function will be prolonged if the interval of integration
includes mostly regions where the function is not interesting.

Fortunately, if you must calculate such an integral, you can modify

the problem so that the calculation time is reduced. Two such

techniques are subdividing the interval of integration and

transformation of variables.

50 Section 2: Working With

Subdividing the Interval of Integration

In regions where the slope of f(x) is varying appreciably, a high

density of sample points is necessary to provide an approximation

that changes insignificantly from one iteration to the next.

However, in regions where the slope of the function stays nearly

constant, a high density of sample points is not necessary. This is

because evaluating the function at additional sample points would
not yield much new information about the function, so it would not

dramatically affect the disparity between successive approxima-
tions. Consequently, in such regions an approximation of

comparable accuracy could be achieved with substantially fewer

sample points: so much of the time spent evaluating the function in

these regions is wasted. When integrating such functions, you can

save time by using the following procedure:

1. Divide the interval of integration into subintervals over

which the function is interesting and subintervals over

which the function is uninteresting.

2. Over the subintervals where the function is interesting,

calculate the integral in the display format corresponding to
the accuracy you would like overall.

3. Over the subintervals where the function either is not

interesting or contributes negligibly to the integral, calculate
the integral with less accuracy, that is, in a display format

specifying fewer digits.

4. To get theintegral over the entire interval of integration, add
together the approximations and their uncertainties from
the integrals calculated over each subinterval. You can do

this easily using the key.

Before subdividing the integration, check whether the calculator
underflows when evaluating the function around the upper (or
lower) limit of integration.* Since there is no reason to evaluate the

function at values of x for which the calculator underflows, in some

cases the upper limit of integration can be reduced, saving

considerable calculation time.

*When the calculation of any quantity would result in a number less than 10_99, the

result is replaced by zero. This condition is known as underflow.

Section 2: Working With[] 51

Remember that once you have keyed in the subroutine that

evaluates f(x), you can calculate f(x) for any value of x by keying
that value into the X-register and pressing

followed by the label of the subroutine.

If the calculator underflows at the upper limit of integration, try

smaller numbers until you get closer to the point where the
calculator no longer underflows.

For example, consider the approximation of
oo

f xeYdx .
0

Key in a subroutine that evaluates the function f(x) = xe™.

Keystrokes Display

(g](P/R] Program mode.

CLEAR 000- Clears program memory.

[HcBL1 001-42,21, 1
002- 16
003- 12

(x] 004- 20
(9](RTN] 005- 4332

Set the calculator to Run mode and set the display format to 3.
They try several values of x to find where the calculator underflows

for your function.

Keystrokes Display

[9](P/R] Run mode.

3 Sets format to 3.

3 1 03 Keys 1000 into X-register.

1.000 03 Fillsthe stack with x.

1 0.000 00 Calculator underflows at

x = 1000.

300 3.000 02 Tries a smaller value of x.

3.000 02
1 0.000 00 Calculatorstill

underflows.

200 2.000 02 Try a smaller value of x.

52 Section 2: Working With

Keystrokes Display

2.000 02
1 2.768 -85 Calculator doesn’t

underflow at x = 200; try a

number between 200 and

250.

225 2.250 02
2.250 02

1 4.324 -96 Calculator is close to
underflow.

At this point, you can use to pinpoint the smallest value of x
at which the calculator underflows.

Keystrokes Display

2.250 02 Roll down stack until the
last value tried is in the X-

and Y-registers.

1 2280 02 Theminimum valueofx
at which the calculator

underflows is about 228.

You’ve now determined that you need integrate only from 0 to 228.
Since the integrand is interesting only for values of x less than 10,

divide the interval of integration there. The problem has now

become:

o 228 10 228

fO xe*dx %fo xe*dx =f0 xe*dx +f10 xe*dx.

Keystrokes Display

7 ()] 7.000 00 Allocates statistical
storage registers.

CLEAR 0.000 00 Clears statistical storage
registers.

0 0.000 00 Keys in lower limit of
integration over first

subinterval.

10 10 Keys in upper limit of

integration over first

subinterval.

Keystrokes

1

228

(f(scio

(2]

(flsc3

[x2)]

Section 2: Working With 53

Display

9.995 -01

1.000 00

1.841 -04

1.000 01

228

2 02

5 -04

5.328 -04

7.568 -05

Integral over (0, 10)

calculated in 3.

Sum approximation and

its uncertainty in registers

R3 and R5.

Uncertainty of
approximation.

Roll down stack until

upper limit of first
integral appears in X-

register.

Keys upper limit of second
integral into X-register.

Upper limit of first
integral is lifted into Y-

register, becoming lower

limit of second integral.

Specifies [SCI]O display
format for a quick
calculation over (10, 228).

If the uncertainty of the

approximation turns out

not to be accurate enough,
you can repeat the
approximation in a

display format specifying
more digits.

Integral over (10, 228)

calculated in [SCI]O.

Changes display format
back to 3.

Checks uncertainty of
approximation. Since it is

less than the uncertainty
of the approximation over

the first subinterval,
0 yielded an

approximation of

sufficient accuracy.

54 Section 2: Working With (/]

Keystrokes Display

(xxy] 5.328 -04 Returns approximation
and its uncertainty to the

X- and Y-registers,

respectively, before
summing them in

statistical storage

registers.

S+ 2.000 00 Sums approximation and
its uncertainty.

1.000 00 Integral over total
interval (0, 228) (recalled

from Rjy).

(x2y] 2.598 -04 Uncertainty of integral
(from R5).

Transformation of Variables

In many problems where the function changes very slowly over

most of a very wide interval of integration, a suitable transfor-

mation of variables may decrease the time required to calculate the

integral.

For example, consider again the integral

f xeYdx .
0

Let eX =ud.

Then x=-3lnu

and dx = -3d—u.
u

Substituting,

= e . du
f xe“dx =f L, (-3In u)(u")(-B—)0 o0 u

0

:fl 9u2In u du.

Key in a subroutine that evaluates the function f(u) = 9u?%In u.

Section 2: Working With /] 55

Keystrokes Display

(g](P/R] 000- Program mode.

[f)(LBL)3 001-42,21, 3
[9][LN] 002- 4312

003- 34

(9] 004- 4311
(x] 005- 20

9 006- 9

x) 007- 20
(9](RTN] 008- 4332

Key in the limits of integration, then press 3 to calculate the

integral.

Keystrokes Display

(9](P/R] Run mode.

1 1.000 00 Keys in lower limit of

integration.

0 0 Keys in upper limit of
integration.

3 1.000 00 Approximation to
equivalent integral.

(x%y] 3.020 -04 Uncertainty of
approximation.

The approximation agrees with the value calculated in the

previous problem for the same integral.

Evaluating Difficult Integrals

Certain conditions can prolong the time required to evaluate an
integral or can cause inaccurate results. As discussed in the

HP-15C Owner’s Handbook, these conditions are related to the

nature of the integrand over the interval of integration.

One class of integrals that are difficult to calculate is improper

integrals. An improper integral is one that involves % in at least

one of the following ways:

56 Section 2: Working With

¢ One or both limits of integration are +o, such as
oo

f_wedu = V.

e The integrand tends to +o someplace in the range of

integration, such as
1

fO In(u) du=1.

e The integrand oscillates infinitely rapidly somewhere in the

range of integration, such as

1

fO cos (Inu) du ='%.

Equally troublesome are nearly improper integrals, which are

characterized by

e The integrand or its first derivative changes wildly within a
relatively narrow subinterval of the range of integration, or

oscillates frequently across that range.

The HP-15C attempts to deal with certain of the second type of
improper integral by usually not sampling the integrand at the

limits of integration.

Because improper and nearly improper integrals are not
uncommon in practice, you should recognize them and take

measures to evaluate them accurately. The following examples

illustrate techniques that are helpful.

V-2 1n cos(x?)
f(x)= 2

Consider the integrand

This function loses its accuracy when x becomes small. This is
caused by rounding cos(x?) to 1, which drops information about

how small x is. But by using u = cos(x?), you can evaluate the

integrand as

1 ifu=1

f(x) =4 V-2lnu

COoS "U

ifu##1.

Section 2: Working With 57

Although the branch for u = 1 adds four steps to your subroutine,
integration near x = 0 becomes more accurate.

As a second example, consider the integral

f(x—l Inx)dx'

The derivative of the integrand approaches « as x approaches 0, as
shown in the illustration below. By substituting x = u2, the

function becomes more well behaved, as shown in the second
illustration. This integralis easily evaluated:

fl(2u? u)
_ du

O\(u+1)(u—1) Inu

Don’t replace (u + 1)(z — 1) by (u? — 1) because as u approaches1,

the second expression loses to roundoff half of its significant digits

and introduces to the integrand’s graph a spike near u = 1.

0.1
24 o u

(u+1)u—1) In(u)

As another example, consider a function whose graph has a long

tail that stretches out many, many times as far as the main “body”’
(where the graph is interesting)—a function like

2
=e or = .f(x)=e &(x) 211010

58 Section 2: Working With

Thin tails, like that of f(x), can be truncated without greatly

degrading the accuracy or speed of integration. But g(x) has too
wide a tail to ignore when calculating

f_:g(x) dx

if tis large.

For such functions, a substitution like x = a + b tan u works well,

where a lies within the graph’s main “body’” and b is roughly its

width. Doing this for f(x) from above with a =0 and 6 =1 gives

t tan-1t ,

fof(x)dx :fo etan"Y(] + tan2u)du,

which is calculated readily even with ¢ as large as 10'°. Using the
same substitution with g(x), values near a =0 and b =107 provide

good results.

This example involves subdividing the interval of integration.
Although a function may have features that look extreme over the

entire interval of integration, over portions of that interval the

function may look more well-behaved. Subdividing the interval of
integration works best when combined with appropriate substitu-
tions. Consider the integral

oo 1 oo

fo dx/(1 + x5%) =f0 dx/(1 + x5%) +fl dx/(1 + x5%)

1 1

:j;) dx/(1 + x%%) +j;) ub2du/(ubt +1)

1

:fo (1 + x52)dx /(1 + x5%)

1

=1 +f0 (x82 — x84dx/(1 + x8%)

1

=1+ l/gfo (1 —vl’4)vd58 du/(1 + vd).

These steps use the substitutions x = 1/u and x = v!'/8 and some

algebraic manipulation. Although the original integral is
improper, the last integral is easily handled by [/]. In fact, by

separating the constant term from the integral, you obtain (using

8) an answer with 13 significant digits:

Section 2: Working With 59

1.000401708155 + 1.2 X 10712,

A final example drawn from real life involves the electrostatic field

about an ellipsoidal probe with principal semiaxes a, b, and c:

oo

_ dx

0 a2+ x)V(a2+ x)(b2+ x)(c2 + x)

fora=100,b=2,andc=1.*

Transform this improper integral to a proper one by substituting
x=(a?—c2/(1— u?) — a*

1

Vprr (1—u?)/(u?+q)du

where

p=2/((a?— c?)/ a? — b%)=2.00060018 X 1076

q = (b%— c?)/(a?— b% =3.001200480 X 1073

r=c/a=0.01.

However, this integral is nearly improper because g and r are both

so nearly zero. But by using an integral in closed form that
sufficiently resembles the troublesome part of V, the difficulty can

be avoided. Try

1

W:pfrdu/\/u2+q:pln(u+\/u2+q)|i

=pIn(1+V1+q)/(r+Vr*+q)

= 8.40181880708 X 107°.

Then
1

V= W+pfr(1—u?)/(u?+q)—1/Ju?+q)du

fl(W/p
:p -—

r\1-—r

uz

d
(1+ 1 —u?)\/u2+q) ¢

*From Stratton, J.A., Electromagnetic Theory, McGraw-Hill, New York, 1941,

pp. 201-217.

60 Section 2: Working With

The HP-15C readily handles this integral. Don’t worry about
1—u? as u approaches 1 because the figures lost to roundoff

aren’t needed.

Application

The following program calculates the values of four special

functions for any argument x:

1 X

P(x)= —f_w et/2dt (normal distribution
2m function)

1 % .
Q(x)=1—P(x)=—f e/24t (complementary normal

2m= X distribution function)

__2 f * -2 :erf(x)= I Oe dt (error function)

2 [~ .
erfc(x)=1—erf(x)= ?fx e"zdt (complementary error

m function)

The program calculates these functions using the transformation

u=e"'" whenever|x|>1.6.

The function value is returned in the X-register, and the

uncertainty of the integral is returned in the Y-register. (The

uncertainty of the function value is approximately the same order

of magnitude as the number in the Y-register.) The original

argument is available in register R,.

The program has the following characteristics:

e The display format specifies the accuracy of the integrand in
the same way as it does for itself. However, if you specify

an unnecessarily large number of display digits, the
calculation will be prolonged.

e Small function values, such as Q(20), P(-20), and erfc(10), are

accurately computed as quickly as moderate values.

Section 2: Working With /3] 61

Keystrokes Display

(g](P/R] Program mode.

CLEAR 000-
001-42,21,11 Program for P(x).

2 002- 44 2 StoresxinR,.

CHS 003- 16 Calculates -x.

2 004- 22 2 Branches tocalculate

P(x) = Q(-x).
005-42,21,12 Program for Q(x).

2 006- 44 2 StoresxinR.,.

2 007-42,21, 2
2 008- 2

009- 11

() 010- 10

011- 3213 Calculates erfc(x/\/2).

2 012- 2

(=] 013- 10 Calculates
Q(x) = s erfc(x /\/2).

2 014- 45 2
0 015- 44 O StoresxinR,.

016- 33
(9](RTN] 017- 43 32 Returns function value.

018-42,21,13 Program for erfc(x).

1 019- 1

(GsB]4 020- 32 4

(g][F2]1 021-43, 6, 1 Testsflag1 set.

5 022- 22 5 Branches forflagl set.

1 023- 1

(-] 024- 30 Calculates erf(x) — 1 for
flag 1 clear.

5 025-42,21, 5
026- 16 Calculates erfc(x).

(g](RTN] 027- 43 32 Returns function value.

(f](LBL](E] 028-42,21,15 Program for erf(x).

0 029- o

4 030-42,21, 4 Subroutine for erf(x) or
erfe(x).

[g][cF)1 031-43, 5, 1 C(learsflag 1.

62 Section 2: Working With

Keystrokes

1

EFTH
(sT0]o
[9](ABS]
1
(]
6
(¢])(TEST]8
[GTo}6
0
[RcL]o
[lz)o
2
(]
()(BL)3

[9](x]

8
(9)(RTN]
((LBLI6

(e](sFN
0
[RCL]O
(917

(A2

(GSB]3
[RcL]O

(e](aBS]
8
(]

Display

032- 44 1

033- 34

034- 44 O

035- 43 16

036- 1

037- 48

038- 6

039-43,30, 8

040- 22 6

041- 0

042- 45 O

043-42,20, O

044- 2

045- 20

046-42,21, 3

047- 43 26

048- 11

049- 10

050- 43 32

051-42,21, 6

052-43, 4, 1

053- 0

054- 45 O

055- 43 11

056- 16

057- 12

058-42,20, 1

059- 32 3

060- 45 O

061- 36

062- 43 16

063- 10

064- 20

Stores 0 for erf(x), 1 for

erfe(x).

Calculates |x|.

Tests |x|>1.6 .

Branch for|x|> 1.6 .

Recalls x.

Integrates e* from 0 to x.

Subroutine to divide by

m .

Subroutine to integrate
when |x|>1.6.

Sets flag 1.

Calculates e'xz.

Integra;tes (-In)2 from

Otoe™.

Divides integral by /7 .

Calculates sign of x.

Section 2: Working With 63

Keystrokes Display

[RCL]1 065- 45 1

(g][LSTx] 066- 43 36
(-] 067- 30

068- 40

069- 16
(g][RTN] 070- 43 32
[A[LBL]O 071-42,21, 0

[9](¥*] 072- 4311
073- 16
074- 12

(9](RTN] 075- 43 32
(f](LBL]1 076-42,21, 1

(9](x=0] 077- 4320
(g](RTN] 078- 43 32

(9](N] 079- 4312
080- 16
081- 1

1/x 082- 15
(g](RTN 083- 43 32

Recalls 1 for erfe(x), O for

erf(x).

Adjusts integral for sign

of x and function.

Su})routine to calculate

et

Subroutine to calculate

(-Inu)V2

Labelsused: A, B,C,E, 0,1, 2, 3,4, 5, and 6.

Registers used: R(x), R{, Ro.

Flag used: 1.

To use this program:

1. Enter the argument x into the display.

2. Evaluate the desired function:

® Press to evaluate P(x).

® Press to evaluate Q(x).

® Press to evaluate erf(x).

® Press to evaluate erfe(x).

64 Section 2: Working With

Example: Calculate Q(20), P(1.234), and erf(0.5) in 3 display

format.

Keystrokes Display

(g][P/R] Run mode.

3 Specifies format.

20 2.754 -89 Q(20).

1.234[)[A] 8.914 -01 P(1.234).
5[f][E] 5.205 -01 erf(0.5).

Example: For a Normally distributed random variable X with

mean 2.151 and standard deviation 1.085, calculate the probability

Pr2<X<3].

2—2.151 X—p _3—2151

1.085 o 1.085
Pr[2<X<3]=Pr[< <

_p(3=2151 | f2-2151
1.085 1.085

Keystrokes Display

2 2.000 00
21513 -1.510 -01
1.085 (] -1.392 -01

4.447 -01 Calculates Pr[X<2].

3 4.447 -01 Stores value.

3 3.000 00
2.151[4) 8.490 -01
1.085 [£] 7.825 -01

7.830 -01 Calculates Pr[X<3].

3 4.447 -01 Recalls Pr[X<2].

(-) 3.384 -01 Calculates Pr[2< X <3].

MFEX)4 0.3384

Section 3

Calculating in Complex Mode

Physically important problems involving real data are often solved
by performing relatively simple calculations using complex

numbers. This section gives important insights into complex

computation and shows several examples of solving problems
involving complex numbers.

Using Complex Mode

Complex mode in the HP-15C enables you to evaluate complex-
valued expressions simply. Generally, in Complex mode a
mathematical expression is entered in the same manner as in the

normal “real” mode. For example, consider a program that

evaluates the polynomial P(x) = a,x" + ... + a;x + a(for the value x
in the X-register. By activating Complex mode, this same program
can evaluate P(z), where z is complex. Similarly, other expressions,

such as the Gamma function I'(x) in the next example, can be

evaluated for complex arguments in Complex mode.

Example: Write a program that evaluates the continued-fraction
approximation

In(I"(x))=(x—%)Inx—x+ay+a,

x+ay

x+ag

x+...

for the first six values of a:

ag="1n(2m)

a,=1/12
ag = 1/30

az = 53/210

a, =195/371
a5 = 1.011523068
ag = 1.517473649.

65

66 Section 3: Calculating the Complex Mode

Because this approximation is valid for both real arguments and

complex arguments with Re(z) > 0, this program approximates

In(I'(z)) in Complex mode (for sufficiently large |z|). When |z| > 4

(and Re(z) > 0), the approximation has about 9 or 10 accurate

digits.

Enter the following program.

Keystrokes Display

(e](P/R] Program mode.

CLEAR 000-
001-42,21,11

6 002- 6

(sTo](1] 003- 44 25 Stores counterin Index
register.

T3] 004- 34
005- 36
006- 36
007- 36 Fills stack with z.

6 008- 45 6 Recallsag.

1 009-42,21, 1 Loop for continued
fraction.

010- 40
(RCL]((i)] 011- 45 24 Recallsa,.

(x2y] 012- 34 Restoresz.

013- 10

014-42, 5,25 Decrements counter.

1 015- 22 1
0 016- 45 O Recallsa,.

017- 40
(xxy] 018- 34 Restoresz.

0 019- 30
(9](LSTx] 020- 43 36 Recallsz.

(9][LN] 021- 43 12 Calculates In(2).

(9](LSTx] 022- 43 36 Recallsz.

0 023- a8
5 024- 5

(=] 025- 30 Calculatesz — Y.

Keystrokes

(]

(e])(RTN]

Section 3: Calculating in Complex Mode 67

Display

026- 20

027- 40 Calculates In(I'(2)).

028- 4332

Store the constants in registers R, through R4 in order according to
their subscripts.

Keystrokes

[9](p/R]
2 [a](x](x]
(e)N)2[¢]
(sT0Jo
12 [1/x](STO]1
30(1/x](sT0]2
53 [ENTER]210 (%]
[sTO]3
195 [ENTER] 371 (]

[sT0]4
1.011523068 [STO]5

1.5617473649(ST0]6

Display

6.2832

0.9189

0.9189

0.0833

0.0333

0.2524
0.2524

0.5256

0.5256

1.0115

1.56175

Run mode.

Stores a.

Stores a;.

Stores as.

Stores a;.

Stores ay.

Stores as,.

Stores ag.

Use this program to calculate In(I'(4.2)), then compare it with

In(3.2!) calculated with the [x!]function. Also calculate In(I'(1 + 57)).

Keystrokes

4.2

({HFx]9
3.2 [f] (=]

[9)(N]
1 [ENTER]
5 (f](1]

Display

2.0486

2.048555637

7.756689536

2.048555637

1.000000000

1.000000000

Calculates In(I'(4.2)).

Displays 10 digits.

Calculates

3.2)!=T1(3.2+1).

Calculates In(3.2!).

Enters real part of 1 + 5i.

Forms complex number

1+ 5.

68 Section 3: Calculating in Complex Mode

Keystrokes Display

-6.130324145 Real part of In(I'(1 + 5i)).

3.815898575 Imaginary part of
In(T°(1 + 57)).

MFX)4 3.8159

The complex result is calculated with no more effort than that
needed to enter the imaginary part of the argument z. (The result

In(I'(1 + 5¢)) has 10 correct digits in each component.)

Trigonometric Modes
Although the trignometric mode annunciator remains lit in

Complex mode, complex functions are always computed using
radian measure. The annunciator indicates the mode (Degrees,

Radians, or Grads) for only the two complex conversions: and

If you want to evaluate re® where 6 is in degrees, can’t be used
directly because 6 must be in radians. If you attempt to convert
from degrees to radians, there is a slight loss of accuracy,
especially at values like 180° for which the radian measure = can’t

be represented exactly with 10 digits.

However, in Complex mode the function computes re'
accurately for 6 in any measure (indicated by the annunciator).

Simply enter r and 6 into the complex X-registers in the form r + i6,
then execute [®R]to calculate the complex value

re'® =rcos 6 + ir sin 6.

(The program listed under Calculating the nth Roots of a Complex
Number at the end of this section uses this function.)

Definitions of Math Functions

The lists that follow define the operation of the HP-15C in Complex

mode. In these definitions, a complex pumber is denoted by
z=x+1iy (rectangular form) or z=re (polar form). Also

A=V

Section 3: Calculating in Complex Mode 69

Arithmetic Operations

(at+ib)t(ctid)=(atec)+i(bxd)

(a+ib)c+id)=(ac— bd) +i(ad + bc)

2=zXz

1/z2=x/|2|%2 — iy/|2|?

Zl+22221><1/22

Single-Valued Functions

e*=e*(cosy+isiny)

10?2 = ¢? In10

1 . .
sin z = —(e* — e™¥%)

2t .
cos z =1i(e*? + e?)

tan z=sin z/cos z

sinh z = Y2(e? — e7?)

cosh z="2(e* + e7?)

tanh z =sinh z/cosh z

Multivalued Functions

In general, the inverse of a function f(z)—denoted by f~1(z)—has
more than one value for any argumentz. For example, cos™!(z) has

infinitely many values for each argument. But the HP-15C
calculates the single principal value, which lies in the part of the
range defined as the principal branch of f1(2z). In the discussion
that follows, the single-valued inverse function (restricted to the

principal branch) is denoted by uppercase letters—such as
COS™1(z)—to distinguish it from the multivalued inverse—cos™!(z).

For example, consider the nth roots of a complex number 2. Write z

in polar form as z = re’® ¥ 27 for -r <9< mand k=0, 1, £2,
Then if nis a positive integer,

zl/n — rl/nei(o/n +2kn/n) — rl/neie/neian/n .

Only £=0,1, ..., n — 1 are necessary since e2*™" repeats its values

in cycles of n. The equation defines the nth roots of z, and r!/7e®/»
with -7 < 8 < 7 is the principal branch of z!/”. (A program listed on
page 78 computes the nth roots of z.)

70 Section 3: Calculating in Complex Mode

The illustrations that follow show the principal branches of the

inverse relations. The left-hand graph in each figure represents the
cut domain of the inverse function; the right-hand graph shows the

range of the principal branch.

For some inverse relations, the definitions of the principal

branches are not universally agreed upon. The principal branches

used by the HP-15C were carefully chosen. First, they are analytic
in the regions where the arguments of the real-valued inverse

functions are defined. That is, the branch cut occurs where its

corresponding real-valued inverse function is undefined. Second,
most of the important symmetries are preserved. For example,

SIN1(-z) = -SIN"!(2) for all 2.

z w=+\/z

Vz=€2 for-r<6<n

2 w =LN(2)

ImT

V ¥

i |
! I

v o 4§

' |1

! |
1 |

LILISISISLIRSSIRSISI
-

LN(z)=Inr+i6 for-7r<6<m

|
N

YI
//

1/
11

77
4

>
_
—
—
e
o
e
—
—
=
—
—

sin}(z)=-iIn[iz+(1—2z

1+2

¢

1—2z

m

R
P
N

2

w

~
—
"

cos’l(z)=-iln[z + (22— 1)"]

:

f
1

I

-
—
—
-
—
-
-

0

 <

i

2|-<--}F -«

-
-
e

-
-
-

S
I
S
/

COS™'(2)

1
1
7
//
/
/
/
7

N
N
e

N
3

w

Section 3: Calculating in Complex Mode

SIN!(2)

71

72 Section 3: Calculating in Complex Mode

2 w=COSH}(2)

-
-

-
-
-

-

—
—
—
e
—
-

00-4000}00:‘161"@':
~

7
’

—fr WILIIVI//11177177

-
-
-

-

—
—
i
—
—

cosh™l(z) =In[z + (22— 1)*]

The principal branches in the last four graphs above are obtained

from the equations shown, but don’t necessarily use the principal

branches of In(z) and \/z .

The remaining inverse functions may be determined from the

illustrations above and the following equations:

LOG(z) = LN(z)/LN(10)

SINH(z) = -i SIN"!(iz)

TANH(z) =-i TAN"(iz)

w? = 2 LN(w)_

To determine all values of an inverse relation, use the following

expressions to derive these values from the principal value
calculated by the HP-15C. In these expressions, k=0, +1, 12,

2t =4\/z

In(z)=LN(z)+i2km

sin"}(z) = (-1)¥ SIN"}(2) +k =

cosI(z2)=+COS(2)+ 2k

tan1(z)=TANYz2) +knr

sinh™(z) = (-1)* SINHY(2) + ikn

cosh™l(z) =+COSHY(z) + i2k

tanh™1(z) =TANH(z) + ik

w? = wzei2n-kz

Section 3: Calculating in Complex Mode 73

Using and [/;]in Complex Mode
The and functions use algorithms that sample your

function at values along the real axis. In Complex mode, the
and functions operate with only the real stack, even

though your function subroutine may have complex computations

in it.

For example, will not search for the roots of a complex
function, but rather will sample the function on the real axis and

search for a zero of the function’s real part. Similarly, computes
the integral of the function’s real part along an interval on the real

axis. These operations are useful in various applications, such as
calculating contour integrals and complex potentials. (Refer to

Applications at the end of this section.)

Accuracy in Complex Mode
Because complex numbers have both real components and

imaginary components, the accuracy of complex calculations takes

on another dimension compared to real-valued calculations.

When dealing with real numbers, an approximation X is close to x

if the relative difference E(X,x) =|(X — x)/x| is small. This relates

directly to the number of correct significant digits of the
approximation X. That is, if E(X,x) <5 X 10™, then there are at
least n significant digits. For complex numbers, define E(Z,2) =

|(Z — z)/2|. This does not relate directly to the number of correct

digits in each component of Z, however.

For example, if E(X,x) and E(Y,y) are both small, then for z =

x + iy, E(Z,z) must also be small. That is, if E(X,x) < s and

E(Y,y) <s, then E(Z,z) < s. But consider z = 10! + j and Z = 1010,

The imaginary component of Z is far from accurate, and yet

E(Z,z) <1071° Even though the imaginary components of z and Z
are completely different, in a relative sense z and Z are extremely

close.

There is a simple, geometric interpretation of the complex relative
error. Any approximation Z of z satisfies E(Z,2) < s (where s is a

positive real number) if and only if Z lies inside the circle of radius

s|z| centered at z in the complex plane.

74 Section 3: Calculating in Complex Mode

y

/oz \\||
s|z

| e
\ /
N 7

To require approximations with accurate components is to demand
more than keeping relative errors small. For example, consider this

problem in which the calculations are done with four significant
digits. It illustrates the limitations imposed on a complex

calculation by finite accuracy.

21=2,=371+373i

29=25=375+37.3:

and

Z| XZy

=(37.10X37.50—37.30X 37.30) +i(37.10 X 37.30 + 37.30 X 37.50)

=(1391. —1391.) +:(1384. + 1399.)

=0+1i(2783.)

The true value 2,25 = -0.04 + 2782.58:. Even though Z; and Z, have
no error, the real part of their four-digit product has no correct
significant decimals, although the relative error of the complex

product is less than 2 X 1074,

The example illustrates that complex multiplication doesn’t

propogate its errors componentwise. But even if complex
multiplication produced accurate components, the rounding errors

of a chain computation could quickly produce inaccurate
components. On the other hand, the relative error, which
corresponds to the precision of the calculation, grows only slowly.

Section 3: Calculating in Complex Mode 75

For example, using four-digit accuracy as before

2;=(1+1/300) +i

Z,=1.003+i

29=Zo=1+1i

then

Z, X Zy=(1.003+ i) X (1 +1i)

=0.003 + 2.003

=3.000 X 1073 + 2.003

The correct four-digit value is 3.333 X 10 + 2.003i. In this
example, Z; and Z, are accurate in each component and the

arithmetic is exact. But the product is inaccurate—that is, the real

component has only one significant digit. One rounding error

causes an inaccurate component, although the complex relative

error of the product remains small.

For the HP-15C the results of any complex operation are designed

to be accurate in the sense that the complex relative error E(Z,z) is
kept small. Generally, E(Z,z) <6 X 10710,

As shown earlier, this small relative error doesn’t guarantee 10

accurate digits in each component. Because the error is relative to
the size|z|, and because this is not greatly different from the size of
the largest component of z, the smaller component can have fewer

accurate digits. There is a quick way for you to see which digits are

generally accurate. Express each component using the largest

exponent. In this form, approximately the first 10 digits of each
component are accurate. For example, if

Z=1.234567890 X 10710 + §(2.222222222 X 1073),

then think of Z as

0.0000001234567890 X 1073 4 §(2.222222222 X 1073).

The accurate digits are

0.000000123 X 107 + (2.222222222 X 1073).

76 Section 3: Calculating in Complex Mode

Applications

The capability of the HP-15C to work with complex numbers

enables you to solve problems that extend beyond the realm of

real-valued numbers. On the following pages are several programs
that illustrate the usefulness of complex calculations—and the

HP-15C.

Storing and Recalling Complex Numbers Using a Matrix

This program uses the stack and matrix C to store and recall

complex numbers. It has the following characteristics:

¢ If you specify an index greater than the matrix’s dimensions,

the calculator displays Error 3 and the stack is ready for
another try.

¢ Ifthe calculatorisn’t in Complex mode, the program activates
Complex mode and the imaginary part of the number is set to

zZero.

® When you store a complex number, the index is lost, the stack

drops, and the T-register is duplicated in the Z-register.

¢ The “Store” program uses the [D] key, which is above the
key. The “Recall” program uses the [E]key, which is above the

key.

Keystrokes Display

Program mode.

(fJCLEAR 000-
(f](LBL](D] 001-42,21,14 “Store” program.

1 002-42,16, 1 SetsRy=R;=1.

(sT0]O 003- 44 0 Ry=k.

004- 33
0 005- 0 Enters0Oinreal (and

imaginary) X-registers.

006- 40 Dropsstack and has
a +ibin X-register.

(fJ(user](sT0](C] 007u 44 13 Stores a and increments
(fJ(USER] indices (User mode).

[f)(Rex1m] 008- 42 30

Keystrokes

(oJ(RTN]
()(LBL(E)
(sT0]0
(o]CLx]
2
(STO]1

0

()(DSE] 1
(o](CLy]

(9](RTN]

Section 3: Calculating in Complex Mode 77

Display

009- 4413

010- 4230

011- 43 32

012-42,21,15

013- 44 O

014- 4335

015- 2

016- 44 1

017- 33

018- 0

019- 40

020- 4513

021- 4230

022-42, 5, 1

023- 4335

024- 45 13

025- 43 32

Stores b (no User mode

here).

Restores a +ib in

X-registers.

“Recall” program.

RO = k

Disables stack.

Sets R; = 2.

Sets stack for another try
if Error 3 occurs next.

Recalls b (imaginary

part).

Decrementsto R; = 1.

Disables stack and clears

real X-register.

Recalls a (real part).

Example: Store 2 + 3i and 7 + 4i in elements 1 and 2 using the
previous program. Then recall and add them. Dimension matrix C

to 5 X 2 so that it can store up to 5 complex numbers.

After entering the preceding program:

Keystrokes

(g](p/R]
5 (ENTER]2

2 [ENTER] 3 [f](1]
1(f)(0]

Display

2

2.0000

2.0000

2.0000

Run mode.

Specifies 5 rows and 2
columns.

Dimensions matrix C.

Enters 2 + 3.

Stores number in C using
index 1.

78 Section 3: Calculating in Complex Mode

Keystrokes Display

7 (ENTER] 4 (] (1] 7.0000 Enters 7 + 4.

2 [f)[D] 7.0000 Stores number in C using

index 2.

1 (f](€] 2.0000 Recalls first number.

2 [f)(E) 7.0000 Recalls second number.

9.0000 Real part of sum.

7.0000 Imaginary part of sum.

Calculating the nth Roots of a Complex Number

This program calculates the nth roots of a complex number. The

roots are z, for k=0,1,2, ..., n — 1. You can also use the program to

calculate z!/", where r isn’t necessarily an integer. The program
operates the same way except that there may be infinitely many

roots 2, for k=0, £1,£2,...

Keystrokes Display

(g](P/R] Program mode.

CLEAR 000-

001-42,21,11
(xxy] 002- 34 Places n in X-register, zin

Y-registers.

003- 15 Calculates 1/n.

(9](LSTx] 004- 43 36 Retrievesn.

005- 33
(g](sF]8 006-43, 4, 8 Activiates Complex mode.

) 007- 14 Calculates z1/".

2 008- 44 2 Storesreal part ofz;in R,.

009- 4230
3 010- 44 3 Storesimaginary part of

zpin Rj.

3 011- 3

6 012- 6

0 013- 0

(a)(R4] 014- 4333
() 015- 10 Calculates 360/ n.

4 016- 44 4 Stores360/ninR,.

0 017- 0

1 018- 44 25 Stores 0in Index register.

Section 3: Calculating in Complex Mode 79

Keystrokes Display

[M[BL)o 019-42,21, 0
4 020- 45 4 Recalls360/n.

(RCL](X][1] 021-45,20,25 Calculates 360k/n using
Index register.

022- 4230
(9)[cx) 023- 4335
1 024- 1 Places1+i(k360/n)in

the X-register.

(g](DEG] 025- 43 7 Sets Degrees mode.

026- 42 1 Calculates %3697,

2 027- 45 2 Recallsreal partof2.

3 028- 45 3 Recallsimaginary part
of z.

(f](1) 029- 42 25 Forms complex z,,.

(x] 030- 20 Calculates z4'*36%/"root
number k.

031- 45 25 Recalls number k.

(x%y] 032- 34 Places z; in X-registers, k
in Y-register.

1 033- 1

034-44,40,25 Increments number kin
Index register.

035- 33 Restores 2, and k to X-
and Y-registers.

R/S 036- 31 Halts execution.

0 037- 22 0 Branch for nextroot.

Labels used: A and 0.

Registers used: Ry, R3, Ry, and Index register.

To use this program:

1. Enter the order n into the Y-register and the complex number
z into the X-registers.

2. Press to calculate the principal root,2, which is placed
in the real and imaginary X-registers. (Press and hold [f]((i)]
to view the imaginary part.)

80 Section 3: Calculating in Complex Mode

3. To calculate higher number roots z,:

e Press to calculate each successive higher-number
root. Each root 2, is placed in the complex X-registers and

its number % is placed in the Y-register. Between root
calculations, you can perform other calculations without

disturbing this program (if Ry, R3, R4, and the Index

register aren’t changed).

e Store the number of the root £ in the Index register (using

(sT0](1]), then press to calculate z;. The complex root
and its number are placed in the X- and Y-registers,

respectively. (By pressing again, you can continue

calculating higher-number roots.)

Example: Use the previous program to compute (1)1/1%0, Calculate
2, 21, and z5 for this expression.

Keystrokes Display

(e](P/R] Run mode.

100 (ENTER]1 1 Entersn=100andz =1
(purely real).

(f)(A) 1.0000 Calculates z (real part).

(f][G] (hold) 0.0000 Imaginary part of 2.

R/S 0.9980 Calculates z; (real part).

(f]((i)] (hold) 0.0628 Imaginary part of z;.

50 (STO](1] 50.0000 Stores root number in
Index register.

R/S -1.0000 Calculatesz5, (real part).

(][] (hold) 0.0000 Imaginary part of zs.

Solving an Equation for Its Complex Roots

A common method for solving the complex equation f(z) = 0
numerically is Newton’s iteration. This method starts with an
approximation 2 to a root and repeatedly calculates

2p1=2,—f(21)/f(2)

until z;, converges.

The following example shows how can be used with
Newton’s iteration to estimate complex roots. (A different

Section 3: Calculating in Complex Mode 81

technique that doesn’t use Complex mode is mentioned on page 16.)

Example: The response of an automatically controlled system to
small transient perturbations has been modeled by the differential-
delay equation

%w(t)+9 w(t)+8w(t—1)=0.

How stable is this system? In other words, how rapidly do solutions

of this equation decay?

Every solution w(t) is known to be expressible as a sum

w(t)= Zc(z)ez‘
k

involving constant coefficients c(z) chosen for each root z of the

differential-delay equation’s associated characteristic equation:

2+9+8e*=0.

Every root z = x + iy contributes to w(t) a component e

e*t(cos(yt) + i sin(yt)) whose rate of decay is faster as x, the real
part of z, is more negative. Therefore, the answer to the question

entails the calculation of all the roots z of the characteristic

equation. Since that equation has infinitely many roots, none of
them real, the calculation of all roots could be a large task.

2t

However, the roots z are known to be approximated for large

integers n by z = A(n) = -In((2n + %)7/8) + i(2n + Y%)r for

n=0,1,2,.... The bigger is n, the better is the approximation.

Therefore you need calculate only the few roots not well

approximated by A(n)—the roots with |z| not very big.

When using Newton’s iteration, what should f(z) be for this

problem? The obvious function f(z) = z + 9 + 8¢isn’t a good

choice because the exponential grows rapidly for larger negative
values of Re(z). This would slow convergence considerably unless

the first guess z;, were extremely close to a root. In addition, this

f(2) vanishes infinitely often, so it’s difficult to determine when all

desired roots have been calculated. But by rewriting this equation

as

ee=-8/(z+9)

and taking logarithms, you obtain an equivalent equation

82 Section 3: Calculating in Complex Mode

z2=In(-8/(z+9))ti2nnr forn=0,1,2,...

This equation has only two complex conjugate roots z for each
integer n. Therefore use the equivalent function

f(2)=z—1In(-8/(z+9))+i2nn forn=0,1,2,....

and apply Newton’s iteration

2p+1=2p— (2, —In(-8/(2, +9)) £ i2nm)/(1 + 1/(2, +9)).

As a first guess, choose z(as A(n), the approximation given earlier.
A bit of algebraic rearrangement using the fact that In(+:) = +in/2

leads to this formula:

2p+1=An)+ (2 — A(n)) + (2 + DIn(iIm(A(n))/(2 +9)))/(2 + 10) .

In the program below, Re(A(n)) is stored in Ry, and Im(A(n)) is

stored in R,;. Note that only one of each conjugate pair of roots is

calculated for each n.

Keystrokes Display

(g](P/R] Program mode.

CLEAR 000-
(fJ(LBL](A] 001-42,21,11 Program for A(n).

(g](cF]8 002-43, 5, 8 Specifies real arithmetic.

003- 36
004- 40

0 005- a8
5 006- 5

007- 40
(9](=] 008- 43 26

(x] 009- 20 Calculates (2n + Y%)m.

010- 36
STO|1 011- 44 1

8 012- 8

& 013- 10
(o])(IN] 014- 4312

015- 16 Calculates
-In((2n + %)w/8).

(sTO]O 016- 44 O
zy) 017- 34

= =) 018- 42 25 Formscomplex A(n).

[«
2

r
<

©|
(>
o|

&
~|
|3
|
@

=
=

3 = o ®

m
j
|
m

Z
|
|
2

S
5

m
i
m

o
|
|
D

E
a
n
l
c
|
|

o A
V
—

!

[} [LST]
[x%y]
(8N

(ReL](+]0

- n i ®

H
@
I
O
“
@
I
E

= = @
|
|
3
0

'
_
!

[0

m 2 = m D

Section 3: Calculating in Complex Mode

Display

019- 43 32

020-42,21,12

021- 36

022- 36
023- 45 1

024- 42 30

025- 34

026- 9
027- 40

028- 10

029- 43 36
030- 34

031- 43 12

032- 20

033- 34
034- 45 1

035- 42 30

036-45,40, O
037- 30

038- 43 36
039- 33
040- 40

041- 34

042- 1

043- 0

044- 40

045- 10

046- 40

047- 43 32

048-42,21,13

049- 36

050- 12

051- 9

052- 43 36

053- 40

054- 8

055- 34

056- 10

057- 40

Program for z; , ;.

Creates :Im(A (n)).

Program for residual,

le? + 8/(z + 9)|.

83

84 Section 3: Calculating in Complex Mode

Keystrokes Display

(g](ABS] 058- 4316 Calculates|e® + 8/(z + 9)|.

[9](RTN] 059- 4332

Labels used: A, B, and C.

Registers used: Ry and R;.

Now run the program. For each root, press until the displayed

real part doesn’t change. (You might also check that the imaginary

part doesn’t change.)

Keystrokes Display

[g](P/R] Run mode.

Activates User mode.

0 1.6279 Displays

Re(A(0)) = Re(zy).

-0.1487 Re(z)).
-0.1497 Re(z2y).

-0.1497 Re(2).

(f]{()] (hold) 2.8319 Im(z).

1.0000 -10 Calculates residual.

(x%y] -0.1497 Restores z to X-register.

By repeating the same process for n = 1 through 5, you will obtain

the results listed below. (Only one of each pair of complex roots is

listed.)

n A(n) Root z; Residual

0 1.6279 +i1.5708 -0.1497 + i2.8319 1X107'°

1 0.0184 +i7.8540 -0.4198 + i8.6361 6Xx1071°

2 -0.5694 +i14.1372 -0.7430+i14.6504 2Xx107°

3 -0.9371+i20.4204 -1.0236 +i20.7868 5x1071°

4 -1.2054 +i26.7035 -1.2553+i26.9830 9X107'°

5 -1.4167 +i32.9867 -1.4486+i33.2103 2Xx107°

Section 3: Calculating in Complex Mode 85

As n increases, the first guess A(n) comes ever closer to the desired

root z. (When you’re finished, press to deactivate User
mode.)

Since all roots have negative real parts, the system is stable, but

the margin of stability (the smallest in magnitude among the real

parts, namely -0.1497) is small enough to cause concern if the

system must withstand much noise.

Contour Integrals

You can use [/;]to evaluate the contour integralff(z)dz, whereCis a

curve in the complex plane.

First parameterize the curve C by 2(t) = x(t) + iy(¢) for t; <t < ts.

Let G(t) =f(z(t))z'(t). Then

j(;f(z)dz ZthzG(t)dt

tz t2

=ft Re(G(t))dt + ij; Im(G(t))dt.
1 1

These integrals are precisely the type that[/;] evaluates in Complex

mode. Since G(t) is a complex function of a real variable ¢, will

sample G(t) on the interval ¢t; < ¢ < t, and integrate Re(G(t))—the

value that your function returns to the real X-register. For the

imaginary part, integrate a function that evaluates G(t) and uses
to place Im (G(t)) into the real X-register.

The general-purpose program listed below evaluates the complex

integral

b

I=fa f(2)dz

along the straight line from a to b, where @ and b are complex

numbers. The program assumes that your complex function sub-
routine is labeled “B” and evaluates the complex function f(z), and

that the limits a and b are in the complex Y- and X-registers,
respectively. The complex components of the integral I and the

uncertainty Al are returned in the X- and Y-registers.

Keystrokes Display

(g](P/R] Program mode.

CLEAR 000-

86 Section 3: Calculating in Complex Mode

Keystrokes

[x%)]
=
(sTO]4

(s10]5
[9](LST]
[sT0]6

(s10]7
0

]

[z

[5T0]2

(s10]3

)1

[RCL]2
M
ETH)
(RCL)3

[x2)]
[9)(RTN]
[f]{tBL]o

(GsB]1

(o])(RTN]
((BL) 1

Display

001-42,21,11
002- 34
003- 30

004- 44 4

005- 42 30
006- 44 5

007- 43 36

008- 44 6

009- 4230
010- 44 7

011- 0

012- 36

013- 1

014-42,20, O

015- 44 2

016- 33
017- 44 3

018- 33

019-42,20, 1

020- 45 2

021- 42 25

022- 34

023- 45 3

024- 42 25

025- 34

026- 43 32

027-42,21, 0

028- 32 1

029- 42 30

030- 4332

031-42,21, 1

Calculates b —a.

Stores Re(b —a)in Ry.

Stores Im(b —a)in R,

Recalls a.

Stores Re(a) in Rg.

Stores Im(a)in R;.

Calculates Im(/) and

Im(AI).

Stores Im(/) in R,.

Stores Im(AI)in Rj.

Calculates Re(I) and
Re(AI)

Recalls Im([).

Forms complex I.

Recalls Im(AI).

Forms complex Al

Restores I to X-register.

Subroutine for

Im(f(2)2'(1)).
Calculates f(z2)z'(t).

Swaps complex
components.

Subroutine to calculate

f(2)2'(2).

Section 3: Calculating in Complex Mode 87

Keystrokes Display

[RcL)4 032- 45 4
5 033- 45 5

034- 4225 Formscomplex b —a.

(x] 035- 20 Calculates (b—a)t.

6 036- 45 6
7 037- 45 7

038- 4225 Formscomplex a.

039- 40 Calculatesa +(b—a)t.

040- 3212 Calculates f(a+(b—a)t).

[Rci)4 041- 45 4
(RCL]5 042- 45 5

043- 4225 Formscomplex
2'(t) = b —a.

(x] 044- 20 Calculates f(z)2'(¢).

(g](RTN] 045- 43 32

Labels used: A, 0, and 1.

Registers used: Ry, R3, Ry, R5, Rg, and R;.

To use this program:

1. Enter your function subroutine labeled “B” into program

memory.

Press 7 to reserve registers R through R;. (Your
subroutine may require additional registers.)

Set the display format for [/].

Enter the two complex points that define the ends of the
straight line that your function will be integrated along. The

lower limit should be in the Y-registers; the upper limit
should be in the X-registers.

Press to calculate the complex line integral. The value
of the integral is in the X-registers; the value of the

uncertainty is in the Y-registers.

Because two integrals are being evaluated, the program will

usually take longer than a real integral, although the routine

doesn’t have to use the same number of sample points for both
integrals. The easier integral will use less calculations than the

more difficult one.

88 Section 3: Calculating in Complex Mode

Example: Approximate the integrals

* cosx * sinx
I=f———d d L= ———dx.h ryrua ™ an 2= x¥

These integrands decay very slowly as x approaches infinity and
therefore require a long interval of integration and a long

execution time. You can expedite this calculation by deforming the
path of integration from the real axis into the complex plane.

According to complex variable theory, these integrals can be
combined as

1+ eiz

I, +il, =f —dz.
1 zt+1/z

This complex integrand, evaluated along the line x =1 and y =0,

decays rapidly as y increases—like e™.

To use the previous program to calculate both integrals at the same
time, write a subroutine to evaluate

iz
e

f(z) = z+1/z°

Keystrokes Display

046-42,21,12
047- 15

(g](LSTx] 048- 43 36
049- 40 Calculatesz+1/z.

(9](LSTx] 050- 43 36
1 051- 1

052- 4230 FormsO+..

(x] 053- 20 _
054- 12 Calculates €.

(xxy] 055- 34
(=] 056- 10 Calculates f(2).

(g][RTN] 057- 43 32

Approximate the complex integral by integrating the function
from 1 +0ito1 + 6i using a 2 display format to obtain three
significant digits. (The integral beyond 1 + 6i doesn’t affect the

first three digits.)

Section 3: Calculating in Complex Mode 89

Keystrokes Display

(9](P/R] Run mode.

2 Specifies 2 format.

1 1.00 00 Enters first limit of

integration, 1 + 01.

1 6 6
1.00 00 Enters second limit of

integration, 1 +61.

-3.24 -01 Calculates I and displays

Re(I) = I, (after about

9 minutes).

(f]((i)] (hold) 3.82 -01 Displays Im(I) = L.

(xxy] 7.87 -04 Displays Re(Al) = AlL.

(f]((i)]) (hold) 1.23 -03 Displays Im(AI)= AL,

4 0.0008

This result I is calculated much more quickly than if I; and I, were

calculated directly along the real axis.

Complex Potentials

Conformal mapping is useful in applications associated with a

complex potential function. The discussion that follows deals with
the problem of fluid flow, although problems in electrostatics and

heat flow are analagous.

Consider the potential function P(z). The equation Im(P(z)) = ¢

defines a family of curves that are called streamlines of the flow. That
is, for any value of ¢, all values of z that satisfy the equation lie on a
streamline corresponding to that value of c. To calculate some points
2zon the streamline, specify some values for x, and then use to
find the corresponding values of y,, using the equation

Im(P(xk + iyk)) =cC.

If the x;, values are not too far apart, you can use y, _; as an initial
estimate for y,. In this way, you can work along the streamline and
calculate the complex points 2, = x;, + iy,. Using a similar
procedure, you can define the equipotential lines, which are given

by Re(P(z)) =c.

90 Section 3: Calculating in Complex Mode

The program listed below is set up to compute the values of y;, from

evenly spaced values of x;. You must provide a subroutine labeled
“B” that places Im(P(2)) in the real X-register. The program uses

inputs that specify the step size h, the number of points n along the

real axis, and 2y, = x(+ iy, the initial point on the streamline. You
must enter n, h, and 2, into the Z-, Y-, and X-registers before
running the program.

The program computes the values of z;, and stores them in matrix
Aintheforma,; =x,_1andagy =y, fork=1,2.., n.

Keystrokes Display

(g](P/R] Program mode.

CLEAR 000-
001-42,21,11
002- 33

4 003- 44 4 StoreshinR,

004- 33
2 005- 2

006-42,23,11 Dimensions matrix A to
be n X 2.

(g](CLx] 007- 4335
008-44,16,11 Makes all elements of A

be zero.

(sT0](1] 009- 44 25 Stores zero in Index
register.

[)[(MATRIX] 1 010-42,16, 1 SetsRy=R, =1.
(g](R4] 011- 43 33 Recalls zto X-registers.

2 012- 44 2 Storesx,inR,.

013u 44 11 Setsa;; =x,.

014- 4230
3 015- 44 3 StoresyyinRj.

016u 44 11 Setsa;y=y,.

1 017- 22 1 Branchesif matrix A not
full (n>1).

(f](LBL]O 018-42,21, O

019-45,16,11 Recalls descriptor of
matrix A.

Keystrokes

S)EW
(A(LBL)

(s10]5
()[BL]2
]

(RCL]4

(]
(RCL)2

(sT0]6
[RcL]3

[f(SOLVE]3
(GTO]4
1

(sTo)=)0]
4

(sT0](+]4
(sTo](x](1]
(GT0]2

(BL)4
[RCL]6

Section 3: Calculating in Complex Mode 91

Display

020- 4332

021-42,21, 1

022- 42 30

023- 3212

024- 44 5

025-42,21, 2

026- 1

027-44,40,25

028- 45 4

029- 45 25

030- 20

031- 45 2

032- 40

033- 44 6

034- 45 3

035- 36

036-42,10, 3

037- 22 4
038- 1

039-44,30,25
040- 4
041-44,10, 4
042-44,20,25
043- 22 2

044-42,21, 4
045- 45 6
046- 42 31
047u 44 11

Restores2.

Calculates Im(P(z))
(or Re(P(zg)) for

equipotential line.)

Stores c in Rs.

Loop for finding y,.

Increments counter k in

Index register.

Recalls A.

Recalls counter k.

Calculates kh.

Recalls x,.

Calculates x;, = x(+ kh.

Stores x;, in Rg.

Recalls y;, | from Rg.

Duplicates y; _ | for

second estimate.

Searches for y,.

Branches for valid y,, root.

Starts decreasing step

size.

Decrements counterk.

Reduces A by factor of4.

Multiplies counter by 4.

Loops back to find y,,

again.

Continues finding yy.

Displays xy.

Setsap 11= xp.

92 Section 3: Calculating in Complex Mode

Keystrokes Display

048- 33
049- 42 31 Displaysy,.

3 050- 44 3 Storesy,inR;.

051u 44 11 Setsaji12=y

2 052- 22 2 Branchfork+1<n

(A isn’t full).

(GTO0]O 053- 22 0 Branchfork+1=n
(A is full).

3 054-42,21, 3 Function subroutine for

(SOLVE].
6 055- 45 6 Recallsx,.

(x2y] 056- 34 Restores current estimate
for y,,.

057- 42 25 C(reates estimate
Rp = Xp + iyk.

058- 3212 Calculates Im(P(z;)) (or
Re(P(z)) for

equipotential lines).

5 059- 45 5 Recallsc.

(-] 060- 30 Calculates Im(P(z;)) — c.

[e](RTN] 061- 4332

Labels used: A, B, 0, 1, 2, 3, and 4.

Registers used: Ry, R;, Ry (x¢), R3 (v¢), R4 (R), R5 (¢), Rg (x3), and

Index register (k).

Matrix used: A.

One special feature of this program is that if an x; value lies
beyond the domain of the streamline (so that there is no root for

to find), then the step size is decreased so that x,

approaches the boundary where the streamline turns back. This
feature is useful for determining the nature of the streamline when
¥, isn’t a single-valued function of x,. If A is small enough, the
values of z;, will lie on one branch of the streamline and approach
the boundary. (The second example below illustrates this feature.)

Section 3: Calculating in Complex Mode 93

To use this program:

1. Enter your subroutine labeled “B’ into program memory. It

should place into the real X-register Im(P(z)) when

calculating streamlines or Re(P(z)) when calculating

equipotential lines.

2. Press 6 [f][DIM][(i)]to reserve registers R, through Rg (and the
Index register). (Your subroutine may require additional

registers.)

3. Enter the values of n and A into the Z- and Y-registers by

pressing n h [ENTER].

4. Enter the complex value of z; = x(, + iy, into the X-registers

by pressing x[ENTER] y, [f](1].
5. Press to display the successive values of x; and y,, for

k=1, ..., n and finally the descriptor of matrix A. The values

for k=0,..., n are stored in matrix A.

6. Ifdesired, recall values from matrix A.

Example: Calculate the streamline of the potential P(z) =1/z + 2z
passing throughz=-2+0.1:.

First, enter subroutine “B” to compute Im(P(z)).

Keystrokes Display

062-42,21,12
063- 36 Duplicates z.

064- 15
065- 40 Calculates1/z+z.

066- 42 30 Places Im(P(z))in X-
register.

[¢](RTN] 067- 4332

Determine the streamline using z; = -2 + 0.1, step size 2 = 0.5, and
number of points n =9.

Keystrokes Display

(g](p/R] Run mode.

9 9.0000 Enters n.

5 0.5000 Enters A.

94 Section 3: Calculating in Complex Mode

Keystrokes

2 [CHS](ENTER]
1

(e](cFl8

Display

-2.0000
-2.0000

-1.5000

0.1343

2.0000

0.1000

A 9

A 9

Entersz.

X1.

Y1

Xg.

Y9.

Descriptor for matrix A.

Deactivates Complex
mode.

Matrix A contains the following values of x;, and y,:

Xk Yk

-2.0 0.1000

-1.5 0.1343

-1.0 0.4484

-0.5 0.9161

0.0 1.0382

0.5 0.9161

1.0 0.4484

1.5 0.1343

2.0 |0.1000
The streamline and velocity equipotential lines are illustrated
below. The derived streamline corresponds to the heavier solid line.

Re(P(z))=c¢
\ /

\
\l—

::x///\\r_'m"’"”z ¢
i J i X

/ /7A\’

Section 3: Calculating in Complex Mode 95

Example: For the same potential as the previous example,

P(z)=1/z + z, compute the velocity equipotential line starting at

z =2+ i and proceeding to the left.

First change subroutine “B” so that it returns Re(P(z))—that is,

remove the instruction from “B”. Try n = 6 and h = -0.5.
(Notice that 4 is negative, which specifies that x, will be to the left
of x.)

Although the keystrokes are not listed here, the results that would

be calculated and stored in matrix A are shown below.

Xg Yk

2.0000/| 1.0000
1.8750| 0.2362
1.8672| 0.1342

1.8652| 0.0941

1.8647| 0.0811
1.8646 0.0775

The results show the nature of the top branch of the curve (the
heavier dashed line in the graph for the previous example). Note

that the step size A is automatically decreased in order to follow the
curve—rather than stop with an error—when no y-value is found
for x <1.86.

Section 4

Using Matrix Operations

Matrix algebra is a powerful tool. It allows you to more easily
formulate and solve many complicated problems, simplifying
otherwise intricate computations. In this section you will find

information about how the HP-15C performs certain matrix

operations and about using matrix operations in your applications.

Several results from numerical linear algebra theory are

summarized in this section. This material is not meant to be self-

contained. You may want to consult a reference for more complete
presentations.*

Understanding the LU Decomposition

The HP-15C can solve systems of linear equations, invert matrices,
and calculate determinants. In performing these calculations, the

HP-15C transforms a square matrix into a computationally
convenient form called the L Udecomposition of the matrix.

The LU decomposition procedure factors a square matrix A into
the matrix product LU. L is a lower-triangular matrixt with 1’s on
its diagonal and with subdiagonal elements (those below the

diagonal) between —1 and +1, inclusive. U is an upper-triangular

matrix.t For example:

*Two such references are

Atkinson, Kendall E., An Introduction to Numerical Analysis, Wiley, 1978.

Kahan, W. “Numerical Linear Algebra,” Canadian Mathematical Bulletin, Volume 9,

1966, pp. 756-801.

tA lower-triangular matrix has 0’s for all elements above its diagonal. An upper-

triangular matrix has 0’s for all elements below its diagonal.

96

Section 4: Using Matrix Operations 97

Some matrices can’t be factored into the LU form. For example,

01
A= # LU

1 2

for any pair of lower- and upper-triangular matrices L. and U.

However, if rows are interchanged in the matrix to be factored, an
LU decomposition can always be constructed. Row interchanges in

the matrix A can be represented by the matrix product PA for some

square matrix P. Allowing for row interchanges, the LU
decomposition can be represented by the equation PA = LU. So for

the above example,

01 01 1 2 1 0 2
PA = = = =LU.

1 0 2 1 01

Row interchanges can also reduce rounding errors that can occur

during the calculation of the decomposition.

The HP-15C uses the Doolittle method with extended-precision

arithmetic to construct the LU decomposition. It generates the
decomposition entirely within the result matrix. The LU

decomposition is stored in the form

U

It is not necessary to save the diagonal elements of L since they are

always equal to 1. The row interchanges are also recorded in the

same matrix in a coded form not visible to you. The decomposition
is flagged in the process, and its descriptor includes two dashes
when displayed.

When you calculate a determinant or solve a system of equations,
the LU decomposition is automatically saved. It may be useful to

use the decomposed form of a matrix as input to a subsequent
calculation. If so, it is essential that you not destroy the

information about row interchanges stored in the matrix; don’t

modify the matrix in which the decomposition is stored.

98 Section 4: Using Matrix Operations

To calculate the determinant of a matrix, A for example, the

HP-15C uses the equation A = PILU, which allows for row
interchanges. The determinantis then just (-1)" times the product

of the diagonal elements of U, where r is the number of row
interchanges. The HP-15C calculates this product with the correct

sign after decomposing the matrix. If the matrix is already

decomposed, the calculator just computes the signed product.

It’s easier to invert an upper- or lower-triangular matrix than a

general square matrix. The HP-15C calculates the inverse of a

matrix, A for example, using the relationship

Al=(PLU)'=UL'P.

It does this by first decomposing matrix A, inverting both L and U,

calculating their product U'!L’!, and then interchanging the
columns of the result. This is all done within the result matrix—

which could be A itself. If A is already in decomposed form, the

decomposition step is skipped. Using this method, the HP-15C can
invert a matrix without using additional storage registers.

Solving a system of equations, such as solving AX = B for X,is
easier with an upper- or lower-triangular system matrix A than

with a general square matrix A. Using PA = LU, the equivalent
problem is solving LUX = PB for X. The rows of B are
interchanged in the same way that the rows of the matrix A were
during decomposition. The HP-15C solves LY = PB for Y (forward

substitution) and then UX =Y for X (backward substitution). The

LU form is preserved so that you can find the solutions for several

matrices B without reentering the system matrix.

The LU decomposition is an important intermediate step for

calculating determinants, inverting matrices, and solving linear
systems. The LU decomposition can be used in lieu of the original
matrix as input to these calculations.

llI-Conditioned Matrices

and the Condition Number

In order to discuss errors in matrix calculations, it’s useful to define

a measure of distance between two matrices. One measure of the

Section 4: Using Matrix Operations 99

distance between matrices A and B is the norm of their difference,

denoted ||A — BJ|. The norm can also be used to define the condition

number of a matrix, which indicates how the relative error of a
calculation compares to the relative error of the matrix itself.

The HP-15C provides three norms. The Frobenius norm of a matrix

A, denoted || A]|s,is the square root of the sum of the squares of the
matrix elements. This is the matrix analog of the Euclidean length

of a vector.

Another norm provided by the HP-15C is the row norm. The row

norm of an m X n matrix A is the largest row sum of absolute

values and is denoted || A|p:
n

||A||R=lglla<xmj;|ai,|.

The column norm of the matrix is denoted |All and can be

computed by ||Al|c= | AT|| z. The column norm is the largest column

sum of absolute values.

For example, consider the matrices

1 2 3
A= and B=

4 5 9

Then

-1 01

0 0 3

and

|A—Blp= /11= 3.3 (Frobenius norm),

|A — B||z = 3 (row norm), and

|A — BJ|c = 4 (column norm).

The remainder of this discussion assumes that the row norm is

used. Similar results are obtained if any of the other norms is used

instead.

The condition number of a square matrix A is defined as

K(A)=|AlllA™].
Then 1 < K(A) < % using any norm. The condition number is

100 Section 4: Using Matrix Operations

useful for measuring errors in calculations. A matrix is said to be

ill-conditioned if K(A) is very large.

If rounding or other errors are present in matrix elements, these

errors will propagate through subsequent matrix calculations.
They can be magnified significantly. For example, suppose that X

and B are nonzero vectors satisfying AX = B for some square

matrix A. Suppose A is perturbed by AA and we compute B+ AB =

(A + AA)X. Then

(laBj/[|BI])
(laAll 7 [lAll)

with equality for some perturbation AA. This measures how much
the relative uncertainty in A can be magnified when propagated

into the product.

<K(A),

The condition number also measures how much larger in norm the
relative uncertainty of the solution to a system can be compared to

that of the stored data. Suppose again that X and B are nonzero

vectors satisfying AX = B for some matrix A. Suppose now that
matrix B is perturbed (by rounding errors, for example) by an

amount AB. Let X + AX satisfy A(X + AX) =B + AB. Then

(lax| /{1X])
(laBl /[IBl)

with equality for some perturbation AB.

Suppose instead that matrix A is perturbed by AA. Let X + AX
satisfy (A + AA)X + AX) = B. If d(A,AA) = K(A)||aA] / ||A|| < 1,
then

<K(A),

dlax]| /11Xl
(laAll/lIAl)

Similarly, if A™! + Z is the inverse of the perturbed matrix A + AA,

then

<K(A)/(1—d(A,AA)).

dizll /1A™D
(laAll 7|l All)

Moreover, certain perturbations AA cause the inequalities to
become equalities.

<K(A)/(1—d(A,AA)).

All of the preceding relationships show how the relative error of the
result is related to the relative error of matrix A via the condition
number K(A). For each inequality, there are matrices for which

Section 4: Using Matrix Operations 101

equality is true. A large condition number makes possible a

relatively large error in the result.

Errors in the data—sometimes very small relative errors—can

cause the solution of an ill-conditioned system to be quite different

from the solution of the original system. In the same way, the

inverse of a perturbed ill-conditioned matrix can be quite different
from the inverse of the unperturbed matrix. But both differences

are bounded by the condition number; they can be relatively large

only if the condition number K(A) is large.

Also, a large condition number K(A) of a nonsingluar matrix A

indicates that the matrix A is relatively close, in norm, to a
singular matrix. That is.

1/K(A)=min(|A - S|/||Al)

and

1/||A™Y|| = min(||A — S|)),

where the minimum is taken over all singular matrices S. Thatis,

if K(A) is large, then the relative difference between A and the

closest singular matrix S is small. If the norm of Al is large, the
difference between A and the closest singular matrix S is small.

For example, let

1

1 .9999999999

Then

-9,999,999,999 1010

101 -10%
A—l —

and ||A™}|| = 2 X 101°. Therefore, there should exist a perturbation
AA with |AA|| =5 X 107!! that makes A + AA singular. Indeed, if

0 -5x1071!
AA =

0 5x107M

with [|AA|| =5X 10711, then

1 .99999999995

1 .99999999995
A+AA=

102 Section 4: Using Matrix Operations

and A + AA is singular.

The figures below illustrate these ideas. In each figure matrix A
and matrix S are shown relative to the ‘“surface” of singular

matrices and within the space of all matrices. Distance is measured
using the norm. Around every matrix A is a region of matrices that

are practically indistinguishable from A (for example, those within
rounding errors of A). The radius of this region is ||AA||. The

distance from a nonsingular matrix A to the nearest singular

matrix Sis 1/||A™Y.

In the left diagram, ||AA| < 1/]A7Y]. If ||aA| << 1/]|A7Y| (or
K(A)|aA|/|A]l << 1), then

relative variation in A™! =|change in A™!|| /||A7}

~ (laAll/|AK(A)
=[laAll//]AM)
= (radius of sphere)/(distance to surface)

In the right diagram, ||AA|| > 1/||A7}||. In this case, there exists a
singular matrix that is indistinguishable from A, and it may not

even be reasonable to try to compute the inverse of A.

Section 4: Using Matrix Operations 103

The Accuracy of Numerical Solutions

to Linear Systems

The preceding discussion dealt with how uncertainties in the data

are reflected in the solutions of systems of linear equations and in

matrix inverses. But even when data is exact, uncertainties are

introduced in numerically calculated solutions and inverses.

Consider solving the linear system AX = B for the theoretical

solution X. Because of rounding errors during the calculations, the

calculated solution Z is in general not the solution to the original

system AX = B, but rather the solution to the perturbed system
(A + AA)Z = B. The perturbation AA satisfies | AA| < ¢||A||, where
eis usually a very small number. In many cases, AA will amount to

less than one in the 10th digit of each element of A.

For a calculated solution Z, the residual is R = B — AZ. Then

IR|| < e||Alll|Z]]. So the expected residual for a calculated solution is
small. But although the residual R is usually small, the error Z — X
may not be small ifA is ill-conditioned:

1Z = X< ellAllAT1Z]] = e K(A)]|Z].

A useful rule-of-thumb for the accuracy of the computed solution is

number of correct number of _ 1 _
(decimal digits) > (digits carried) log(||A||||A D —log(10m)

where n is the dimension of A. For the HP-15C, which carries 10
accurate digits,

(number of correct decimal digits) =9 — log(||A||[|A™}|) — log(n).

In many applications, this accuracy may be adequate. When
additional accuracy is desired, the computed solution Z can usually
be improved by iterative refinement (also known as residual

correction).

Iterative refinement involves calculating a solution to a system of

equations, then improving its accuracy using the residual

associated with the solution to modify that solution.

To use iterative refinement, first calculate a solution Z to the

original system AX = B. Z is then treated as an approximation to

104 Section 4: Using Matrix Operations

X, in error by E = X — Z. Then E satisfies the linear system AE =

AX — AZ = R, where R is the residual for Z. The next step is to

calculate the residual and then to solve AE = R for E. The
calculated solution, denoted by F,is treated as an approximation to

E = X — Z and is added to Z to obtain a new approximation to X:
F+Z=X-Z)+Z=X.

In order for F + Z to be a better approximation to X than is Z, the

residual R = B — AZ must be calculated to extended precision. The

HP-15C’s 6 operation does this. The system matrix A is
used for finding both solutions, Z and F. The LU decomposition

formed while calculating Z can be used for calculating F, thereby
shortening the execution time. The refinement process can be

repeated, but most of the improvement occurs in the first

refinement.

(Refer to Applications at the end of this section for a program that

performs one iteration of refinement.)

Making Difficult Equations Easier
A system of equations EX = B is difficult to numerically solve

accurately if E is ill-conditioned (nearly singular). Even iterative
refinement can fail to improve the calculated solution when E is
sufficiently ill-conditioned. However, instances arise in practice when
a modest extra effort suffices to change difficult equations into others
with the same solution, but which are easier to solve. Scaling and
preconditioning are two processes to do this.

Scaling

Bad scaling is a common cause of poor results from attempts to
numerically invert ill-conditioned matrices or to solve systems of
equations with ill-conditioned system matrices. But it is a cause
that you can easily diagnose and cure.

Suppose a matrix E is obtained from a matrix A by E = LAR,
where L and R are scaling diagonal matrices whose diagonal

elements are all integer powers of 10. Then E is said to be obtained
from A by scaling. L scales the rows of A, and R scales the
columns. Presumably E™! = RTA"IL"! can be obtained either from
Alby scaling or from E by inverting.

Section 4: Using Matrix Operations

For example, let matrix A be

3xX10% 1 2

A= 1 1 1

2 1 -1

The HP-15C correctly calculates A™! to 10-digit accuracy as

-2 3 -1

Al=| 3 -4 2

-1 2 -1

Now let

1020 ¢ 0

L=R=| 0 102 o

0 0 102

so that

3 1 2

E=|1 104 1040

2 10740 -10740

E is very near a singular matrix

w
n Il

N
o~

W

©
o

=

©
o

N

1056

and ||E — S|| /||E|| = ¥4 X 1074%, This means that K(S) >3 X 10%, so
it’s not surprising that the calculated E™!

-6.67 X 10711 1 10710

El= 0.8569 8.569 X 10° -4.284 X 10°

0.07155 -4.284Xx10° 2.142X10°

106 Section 4: Using Matrix Operations

is far from the true value

-2X 10740 3 -1

El= 3 -4X10%0 2x10%

-1 2%x10%0 -10%

Multiplying the calculated inverse and the original matrix verifies

that the calculated inverse is poor.

The trouble is that E is badly scaled. A well-scaled matrix, like A,

has all its rows and columns comparable in norm and the same

must hold true for its inverse. The rows and columns of E are about
as comparable in norm as those of A, but the first row and column

of E! are small in norm compared with the others. Therefore, to
achieve better numerical results, the rows and columns of E should

be scaled before the matrix is inverted. This means that the

diagonal matrices L and R discussed earlier should be chosen to
make LER and (LER)! = R!E"!Lnot so badly scaled.

In general, you can’t know the true inverse of matrix E in advance.

So the detection of bad scaling in E and the choice of scaling
matrices L and R must be based on E and the calculated E™!. The
calculated E! shows poor scaling and might suggest trying

10 0 0

L=R=| 0 105 0

0 0 10°

Using these scaling matrices,

3x10710 1 2

LER= 1 100 10730 |,

2 10730 -10730

which is still poorly scaled, but not so poorly that the HP-15C can’t
cope. The calculated inverse is

-2X1039 3 -1

(LER)! = 3 -4x 1030 21030

-1 2x10%0 -1030

Section 4: Using Matrix Operations 107

This result is correct to 10 digits, although you wouldn’t be

expected to know this. This result is verifiably correct in the sense

that using the calculated inverse,

(LER)'LER) = (LER)(LER)! =1 (the identity matrix)

to 10 digits.

Then Elis calculated as

-2X107%0 3 -1

E!'=R(LER)L= 3 -4x10% 2x10% |,

-1 2x 1040 -10%0

which is correct to 10 digits.

If (LER)! is verifiably poor, you can repeat the scaling, using

LER in place of E and using new scaling matrices suggested by
LER and the calculated (LER)™.

You can also apply scaling to solving a system of equations, for

example EX = B, where E is poorly scaled. When solving for X,
replace the system EX = B by a system (LER)Y = LB to be solved

for Y. The diagonal scaling matrices L and R are chosen as before
to make the matrix LER well-scaled. After you calculate Y from

the new system, calculate the desired solution as X =RY.

Preconditioning

Preconditioning is another method by which you can replace a
difficult system, EX = B, by an easier one, AX = D, with the same

solution X.

Suppose that E is ill-conditioned (nearly singular). You can detect

this by calculating the inverse E™! and observing that 1/|E™}|| is
very small compared to |E| (or equivalently by a large condition
number K(E)). Then almost every row vector u? will have the

property that ||u?]| /|[u”E!| is also very small compared with ||E|,
where E7! is the calculated inverse. This is because most row

vectors u? will have |[u”E!|| not much smaller than ||u”]||E"}||, and
|E-1|| will be large. Choose such a row vector ul and calculate
vT = auTE"!. Choose the scalar a so that the row vector rZ,

obtained by rounding every element of vI to an integer between

-100 and 100, does not differ much from v’. Then r7 is a row vector

108 Section 4: Using Matrix Operations

with integer elements with magnitudes less than 100. |[rTE| will be

small compared with ||r”]|||E||—the smaller the better.

Next, choose the kth element of r! having one of the largest

magnitudes. Replace the kth row of E by r’E and the kth row of B
by rTB. Provided that no roundoff has occurred during the

evaluation of these new rows, the new system matrix A should be

better conditioned (farther from singular) than E was, but the
system will still have the same solution X as before.

This process works best when E and A are both scaled so that

every row of E and of A have roughly the same norm as every

other. You can do this by multiplying the rows of the systems of
equations EX =B and AX = D by suitable powers of 10. IfA is not

far enough from singular, though well scaled, repeat the

preconditioning process.

As an illustration of the preconditioning process, consider the

system EX = B, where

= I
R
R

R

R
R

R
R

R
R

R
R

R
R
R
R

R
R

© Il

©
©

©
©

and x = 8000.00002 and y = -1999.99998 . If you attempt to solve
this system directly, the HP-15C calculates the solution X and the
inverse E™! to be

2014.6 11111

2014.6 11111

X~ |20146 andE!'~20146 |1 1 1 1 1

2014.6 11111

2014.6 11111

Section 4: Using Matrix Operations 109

Substituting, you find

1.00146

0.00146

EX ~ 0.00146

0.00146

0.00147

Upon checking (using 7), you find that 1/||EY| =
9.9 X 107, which is very small compared with ||E|| = 1.6 X 104 (or
that the calculated condition number is large—|E|||E7Y|| =
1.6 X 108).

Choose any row vectoru’ =(1, 1, 1, 1, 1) and calculate

u’E1~10,073(1,1,1,1,1).

Using a = 1074,

vI=auTE1~1.0073(1,1,1,1,1)

r’=(1,1,1,1,1)

|rTE| =~5x 107

7|l | El| ~ 8 X 10*.

As expected, [rTE|| is small compared with ||r7]|||E||.

Now replace the first row of E by

107rTE = (1000, 1000, 1000, 1000, 1000)

and the first row of B by 10’r"B = 107. This gives a new system

equation AX =D, where

1000 1000 1000 1000 1000 107

y X Yy Yy Yy 0

A= y y x y y andD=| 0

y y y x y 0

Yy Yy Yy Yy X 0

110 Section 4: Using Matrix Operations

Note that rTE was scaled by 107 so that each row of E and A has

roughly the same norm as every other. Using this new system, the

HP-15C calculates the solution

2000.000080 107

1999.999980 -107°

X = 1999.999980 |, with AX = -9x 1078

1999.999980 0

1999.999980 0

This solution differs from the earlier solution and is correct to 10
digits.

Sometimes the elements of a nearly singular matrix E are
calculated using a formula to which roundoff contributes so much

error that the calculated inverse E™! must be wrong even when it is
calculated using exact arithmetic. Preconditioning is valuable in

this case only if it is applied to the formula in such a way that the
modified row of A is calculated accurately. In other words, you

must change the formula exactly into a new and better formula by
the preconditioning process if you are to gain any benefit.

Least-Squares Calculations

Matrix operations are frequently used in least-squares calcula-
tions. The typical least-squares problem involves an n X p matrix
X of observed data and a vector y of n observations from which you
must find a vector b with p coefficients that minimizes

n

el=Dr2
=1

wherer =y — Xb is the residual vector.

Normal Equations

From the expression above,

lell2= (y — Xb)T(y — Xb) =yTy — 2b7XTy + bTXXb.

Solving the least-squares problem is equivalent to finding a
solution b to the normal equations

Section 4: Using Matrix Operations 111

XTXb=XTy.

However, the normal equations are very sensitive to rounding

errors. (Orthogonal factorization, discussed on page 113, is

relatively insensitive to rounding errors.)

The weighted least-squares problem is a generalization of the
ordinary least-squares problem. In it you seek to minimize

n

IWel2= Dwir?
=1

where W is a diagonal n X n matrix with positive diagonal

elements w, wo,..., W,

Then

IWr||7= (v — Xb)"W'W(y — Xb)
and any solution b also satisfies the weighted normal equations

XTWIWXb = XTWTWy .

These are the normal equations with X and y replaced by WX and

Wy. Consequentially, these equations are sensitive to rounding
errors also.

The linearly constrained least-squares problem involves finding b

such that it minimizes

lIlell=lly — Xbl|Z
subject to the constraints

k

Cb=d (Zcijijd,- fori=1,2, ..., m) .

=1

This is equivalent to finding a solution b to the augmented normal

equations

XTX CT||b XTy

C o0 1 d

where 1, a vector of Lagrange multipliers,is part of the solution but
isn’t used further. Again, the augmented equations are very
sensitive to rounding errors. Note also that weights can also be
included by replacing X and y with WX and Wy.

112 Section 4: Using Matrix Operations

As an example of how the normal equations can be numerically

unsatisfactory for solving least-squares problems, consider the
system defined by

100,000. -100,000. 0.1

0.1 0.1 0.1
X= and y=

0.2 0.0 0.1

0.0 0.2 0.1

Then

XTX = 10,000,000,000.05 -9,999,999,999.99

-9,999,999,999.99 10,000,000,000.05

and

10,000.03
XTy =

-9,999.97

However, when rounded to 10 digits,

10 -10%
TY ~

XX= g0 1o)

which is the same as what would be calculated if X were rounded to

five significant digits relative to the largest element:

100,000 -100,000

0 0
X =

0 0

0 0

The HP-15C solves X7Xb = XTy (perturbing the singular matrix
as described on page 118) and gets

0.060001

0.060000

Section 4: Using Matrix Operations 113

with

0.03
XTy —XTXb=

0.03

However, the correct least-squares solution is

0.5000005

0.4999995

despite the fact that the calculated solution and the exact solution
satisfy the computed normal equations equally well.

The normal equations should be used only when the elements of X

are all small integers (say between -3000 and 3000) or when you

know that no perturbations in the columns x; of X of as much as
l|x;{|/10* could make those columnslinearly dependent.

Orthogonal Factorization

The following orthogonal factorization method solves the least-

squares problem and is less sensitive to rounding errors than the
normal equation method. You might use this method when the

normal equations aren’t appropriate.

Any n X p matrix X can be factored as X = QTU, where Q is an

n X n orthogonal matrix characterized by Q7 = Q! and U is an
n X p upper-triangular matrix. The essential property of

orthogonal matrices is that they preserve length in the sense that

1QrllZ=(@Qr)’(@Qr)
=r’Q7Qr
== I'Tl‘

=||r| 7.

Therefore, if r =y — Xb, it has the same length as

Qr=Qy — QXb =Qy — Ub.

114 Section 4: Using Matrix Operations

The upper-triangular matrix U and the product Qy can be written

as

U= fJ (p rows) and Qy=— g |(p rows) .

0 |(n—prows) f |(n— prows)

Then

lellZ =lQrl#

=(Qy - Ub|;

=g — Obl7 +Ifll

>[Il

with equality when g — Ub = 0. In other words, the solution to the
ordinary least-squares problem is any solution to Ub = g and the

minimal sum of squaresis||f||2. Thisis the basis of all numerically
sound least-squares programs.

You can solve the unconstrained least-squares problem in two

steps:

1. Perform the orthogonal factorization of the augmented
n X (p + 1) matrix

[x 2]
where Q7 = Q!, and retain only the upper-triangular factor
V, which you can then partition as

A~

U g |(prows)

V=10 gq |1 row)

0O O |(n—p—1rows)

t L(l column)

(p columns)

Only the first p + 1 rows (and columns) of V need to be

retained. (Note that Q here is not the same as that mentioned

earlier, since this Q must also transform y.)

Section 4: Using Matrix Operations 115

2. Solve the following system for b:

U g b 0

0 ¢g -1 -q

(If ¢ = 0, replace it by any small nonzero number, say 10™?.)

The -1 in the solution matrix automatically appears; it
requires no additional calculations.

In the absence of rounding errors, g = £|ly — Xb||; this may
be inaccurate if |g| is too small, say smaller than ||y|/10°. If

you desire a more accurate estimate of ||y — Xb||z, you can
calculate it directly from X, y, and the computed solution b.

For the weighted least-squares problem, replace X and y by WX
and Wy, where W is the diagonal matrix containing the weights.

For the linearly constrained least-squares problem, you must
recognize that constraints may be inconsistent. In addition, they

can’t always be satisfied exactly by a calculated solution because

of rounding errors. Therefore, you must specify a tolerance ¢ such

that the constraints are said to be satisfied when ||[Cb — d| < ¢.
Certainly ¢ > ||d||/10!° for 10-digit computation, and in some cases
a much larger tolerance must be used.

Having chosen t, select a weight factor w that satisfies w > ||y||/¢.
For convenience, choose w to be a power of 10 somewhat bigger

than ||y||/t. Then w||Cb — d| > ||y|| unless ||[Cb — d|| < ¢.

However, the constraint may fail to be satisfied for one of two
reasons:

* No b exists for which ||[Cb — d|| < ¢.

® Theleading columns of C are nearly linearly dependent.

Check for the first situation by determining whether a solution
exists for the constraints alone. When [wC wd]has been factored
to Q[U g], solve this system for b

(krows)| U g b 0 |(prows)

(p+1—Fkrows)| O diag(q) -1 -q |(1row)

using any small nonzero number q. If the computed solution b

satisfies Cb = d, then the constraints are not inconsistent.

116 Section 4: Using Matrix Operations

The second situation is rarely encountered and can be avoided. It

showsitself by causing at least one of the diagonal elements of U
to be much smaller than the largest element above it in the same

column, where U is from the orthogonal factorization wC = QU.

To avoid this situation, reorder the columns of wC and X and

similarly reorder the elements (rows) of b. The reordering can be

chosen easily if the troublesome diagonal element of U is also

much smaller than some subsequent element in its row. Just swap
the corresponding columns in the original data and refactor the

weighted constraint equations. Repeat this procedure if necessary.

For example, if the factorization of wC gives

1.0 20 05-15 0.3

Uu=| 0 0.02 05 30 0.1},

0 0 25 15 -1.2

then the second diagonal element is much smaller than the value
2.0 above it. This indicates that the first and second columns in the

original constraints are nearly dependent. The diagonal elementis
also much smaller than the subsequent value 3.0 in its row. Then
the second and fourth columns should be swapped in the original

data and the factorization repeated.

It is always prudent to check for consistent constraints. The test for
small diagonal elements of U can be done at the same time.

Finally, using U and g as the first £ rows, add rows corresponding

to X and y. (Refer to Least-Squares Using Successive Rows on

page 140 for additional information.) Then solve the unconstrained

least-squares problem with

wC wd
X=> and y=

X y

Provided the calculated solution b satisfies |[Cb — d|| < ¢, that
solution will also minimize ||y — Xb| subject to the constraint
Cb~d.

Section 4: Using Matrix Operations 117

Singular and Nearly Singular Matrices
A matrix is singular if and only if its determinant is zero. The

determinant of a matrix is equal to (-1)" times the product of the

diagonal elements of U, where U is the upper-diagonal matrix of

the matrix’s LU decomposition and r is the number of row
interchanges in the decomposition. Then, theoretically, a matrix is

singular if at least one of the diagonal elements of U, the pivots, is
zero; otherwise it is nonsingular.

However, because the HP-15C performs calculations with only a

finite number of digits, some singular and nearly singular matrices
can’t be distinguished in this way. For example, consider the
matrix

which is singular. Using 10-digit accuracy, this matrix is

decomposed as

1 0 3 3

.3333333333 1 0 10710
)

which is nonsingular. The singular matrix B can’t be distin-

guished from the nonsingular matrix

3 3

9999999999 1

since they both have identical calculated L U decompositions.

On the other hand, the matrix

3 3 1 0fl3 3
A: = :LU

1 .9999999999 Vs 1 0 -10710

118 Section 4: Using Matrix Operations

is nonsingular. Using 10-digit accuracy, matrix A is decomposed

as

1 0

3333333333 1 0 0
LU=

This would incorrectly indicate that matrix A is singular. The
nonsingular matrix A can’t be distinguished from the singular
matrix

3 3

9999999999 .9999999999

since they both have identical calculated L U decompositions.

When you use the HP-15C to calculate an inverse or to solve a
system of equations, you should understand that some singular

and nearly singular matrices have the same calculated LU

decomposition. For this reason, the HP-15C always calculates a

result by ensuring that all decomposed matrices never have zero
pivots. It does this by perturbing the pivots, if necessary, by an

amount that is usually smaller than the rounding error in the
calculations. This enables you to invert matrices and solve systems
of equations without being interrupted by zero pivots. This is very
important in applications such as calculating eigenvectors using

the method of inverse iteration (refer to page 155).

The effect of rounding errors and possible intentional perturba-
tions is to cause the calculated decomposition to have all nonzero
pivots and to correspond to a nonsingular matrix A + AA usually
identical to or negligibly different from the original matrix A.
Specifically, unless every element in some column of A has

absolute value less than 1078°the column sum norm ||AA|| - will be
negligible (to 10 significant digits) compared with ||A]| ..

The HP-15C calculates the determinant of a square matrix as the
signed product of the (possibly perturbed) calculated pivots. The
calculated determinant is the determinant of the matrix A + AA
represented by the LU decomposition. It can be zero only if the
product’s magnitude becomes smaller than 10™%° (underflow).

Section 4: Using Matrix Operations 119

Applications

The following programs illustrate how you can use matrix

operations to solve many types of advanced problems.

Constructing an Identity Matrix

This program creates an identity matrix I,, in the matrix whose
descriptor is in the Index register. The program assumes that the

matrix is already dimensioned to n X n. Execute the program using

8. The final matrix will have 1’s for all diagonal elements and

0’s for all other elements.

Keystrokes Display

(g][P/R] Program mode.

(f]CLEAR 000-
[f(BL)8 001-42,21, 8
(f)(MATRIX]1 002-42,16, 1 Setsi=j=1.

(f](LBL]9 003-42,21, 9
[RCL]O 004- 45 0
[RcL)1 005- 45 1
(g](TEST]6 006-43,30, 6 Testsi#].

[9](CLx] 007- 4335
(9](TEST]5 008-43,30, 5 Testsi=].

EEX 009- 26 Setselementtolifi=j.

(f](USER](STO]((})] 010u 44 24 Skips next step at last
element.

[GT0)9 011- 22 9
[o)[RTN) 012- 4332
(¢](P/R] Run mode.

Labels used: 8 and 9.

Registers used: R, R, and Index register.

One-Step Residual Correction

The following program solves the system of equations AX = B for

X, then performs one stage iterative refinement to improve the

solution. The program uses four matrices:

120 Section 4: Using Matrix Operations

Matrix A B C D

Input System Right-Hand

Matrix Matrix

Output System Corrected Uncorrected LU Form

Matrix Solution Solution of A

Keystrokes Display

(9](P/R] Program mode.

(f]CLEAR 000-
MUA 001-42,21,11

002-45,16,11
(sTO][MATRIX](D] 003-44,16,14 Stores system matrix

in D.

004-45,16,12
(RCL][MATRIX](D] 005-45,16,14

006-42,26,13
(=) 007- 10 Calculates uncorrected

solution, C.

008-42,26,12

6 009-42,16, 6 Calculates residual, B.

[RCL)(MATRIX)[D] 010-45,16,14
(2] 011- 10 Calculates correction, B.

012-45,16,13
013- 40 Calculates refined

solution, B.

(¢](RTN] 014- 4332
[g](P/R] Run mode.

Label used: A.

Matrices used: A, B, C, and D.

To use this program:

1. Dimension matrix A according to the system matrix and

store those elements in A.

2. Dimension matrix B according to the right-hand matrix and

store those elements in B.

3. Press to calculate the corrected solution in matrix B.

Section 4: Using Matrix Operations 121

Example: Use the residual correction program to calculate the

inverse of matrix A for

33 16 72

A=1-24 -10 -57

-8 -4 -17

The theoretical inverse of A is

-29/3 -8/3 -32

Al= 8 5/2 51/2

83 2/3 9

Find the inverse by solving AX = B for X, where B is a 3 X 3

identity matrix.

First, enter the program from above. Then, in Run mode, enter the

elements into matrix A (the system matrix) and matrix B (the

right-hand, identity matrix). Press to execute the program.

Recall the elements of the uncorrected solution, matrix C:

-9.666666881 -2.666666726 -32.00000071

C= 8.000000167 2.500000046 25.50000055

2.666666728 0.6666666836 9.000000203

This solution is correct to seven digits. The accuracy is well within that
predicted by the equation on page 103.

(number of correct digits) =9 — log(|A||||C|) — log(3) ~ 4.8 .

Recall the elements of the corrected solution, matrix B:

-9.666666667 -2.666666667 -32.00000000

B= 8.000000000 2.500000000 25.50000000

2.666666667 0.6666666667 9.000000000

One iteration of refinement yields 10 correct digits in this case.

122 Section 4: Using Matrix Operations

Solving a System of Nonlinear Equations

Consider a system ofp nonlinear equations in p unknowns:

fixy, xg, .., x,) =0 fori=1,2,....p

for which the solution x|, x, ..., x,, is sought.

Let

X fi(x) Fiy(%) ... Fyp(x)

x=| [e00=| P| and Fx) = |T2P20

Xp fp(x) Fyi(x)... Fpp(x)

where
0 ..

Fij(x):a_xfi(x) fori,j=1,2,..,p.
J

The system of equations can be expressed as f(x) = 0. Newton’s
method starts with an initial guess x? to a root x of f(x) = 0 and

calculates

xkFD =xk) _(F(x®)1f(x*) fork=0,1,2,..

until x* TV converges.

The program in the following example performs one iteration of

Newton’s method. The computations are performed as

xB+D = g(k) _ q(k).

where d*) is the solution to the p X p linear system

F(x(k))d(k) — f(x(k)).

The program displays the Euclidean lengths of f(x*)) and the
correction d*) at the end of each iteration.

Example: For the random variable y having a normal distribution
with unknown mean m and variance v, construct an unbiased test

of the hypothesis that v? = v§ versus the alternative that v2 # vfor
a particular value v3.

For a random sample of y consisting of y,, ys, ..., ¥,, an unbiased

test rejects the hypothesis if

s, <xU¥ or s,>xoU3,n 1Y0 n 2Y0

Section 4: Using Matrix Operations 123

where

- 1
Su= D(=5 and y==)_y .

=1

for some constants x; and x,.

If the size of the test is a (0 < a < 1), you can find x; and x, by

solving the system of equations f|(x) = fo(x) = 0, where

fix)=(n—1)In(xs/x)) +x; — xy

X2
fg(x)=fx (w/2)"exp(-w/2)dw — 2(1—a)l(m+1).

1

Here xo >x; >0, a and n are known (n>1),andm=(n—1)/2— 1.

An initial guess for (x,xo) is

0) _ .2 0)_ .2
x{ =Xn—-1,a/2 and xé)_Xn—l,lr—a/Z

where xg'p is the pth percentile of the chi-square distribution with d

degrees of freedom.

For this example,

1—-(n—1)/x4 (n—1)/x9—1
F(x)=

—(x,/2)"exp(-x,/2) (x9/2)"exp(-x9/2)

Enter the following program:

Keystrokes Display

(g](P/R] Program mode.

CLEAR 000-
001-42,21,11

2 002- 2

003- 36

004-42,23,13 Dimensions F matrix to

2 X 2.

1 005- 1

006-42,23,12 Dimensions f matrix to

2X1.

124 Section 4: Using Matrix Operations

Keystrokes

()(RESULT](D]
a

8

(o](LSTy]
[(fJ(MATRIX] 8

()(MATRIX]8
(9)(RTN]

()[MATRIX] 1

[sT0]4

(ST0]5
(sT0]5
=
(RCL]5
[RCL](z]4
[9)(N]
(RCL)2
1
£
(]

1

Display

007- 3212

008-45,16,11

009-45,16,12

010-45,16,13
011-42,26,14
012- 10

013-42,26.11
014- 30

015- 43 36
016-42,16, 8

017-45,16,12

018-42,16, 8

019- 43 32

020-42,21,12

021-42,16, 1

022u 45 11

023- 44 4

024u 45 11

025- 44 5

026- 44 5

027- - 30

028- 45 5

029-45,10, 4

030- 4312

031- 45 2

032- 1

033- 30

034- 20

035- 40

036- 4412

037- 1

Calculates fand F.

Calculates d'®.

Calculates
x(k+ D = g(k) _ q(k).

Calculates || d®)|| 5.

Calculates || f(x®))|| p.

Routine to calculate

fandF.

Stores x'¥ in R,.

Skips next line for last

element.

Stores x%in Ry,

Calculates x; — xs.

Calculates In(xy/ x1).

Calculates

(n — 1) In(xy/x;).

Calculatesf;.

Stores f; in B.

Keystrokes

(RCL)2
1

8]
(RCL](:)4
8
[)(User](sTO](C]
()(USER]
[RCL]2
1
(£
(ReL)(z]5
]

8
(I(UsER](sTO](C]
(f)(USER]
(RCL]4
(RcL]5
1z)(c]
(RCL]3]

[
2
(]
(RCL]2
3
[
2
B
(]
(]
[+]
(sTO](E]
[RCL]4
(Gss](c]
(CHS]
[[USER](STO](C]
(fJ(USER]

Section 4: Using Matrix Operations

Display

038- 45 2

039- 1

040- 30

041-45,10, 4

042- 30

043u 4413

044- 45 2

045- 1

046- 30

047-45,10, 5

048- 1

049- 30

050u 44 13

051- 45 4

052- 45 5

053-42,20,13

054- 45 3

055- 1

056- 30

057- 2

058- 20

059- 45 2
060- 3
061- 30
062- 2
063- 10
064- 42 O

065- 20
066- 40
067- 4412

068- 45 4

069- 32 13

070- 16

071u 44 13

Calculates (n — 1)/ x;.

Calculates F;.

Stores F;; in C.

Calculates (n — 1)/ xs.

Calculates Fs.

Stores F;5in C.

Calculates integral.

Calculates 2(a — 1).

Calculates m.

Calculates I'(m + 1).

Calculatesfs.

Stores 5 in B.

Calculates Fo;.

Stores Fy; in C.

125

126 Section 4: Using Matrix Operations

Keystrokes Display

(RCL]5 072- 45 5
073- 3213 Calculates Fy,.

074u 44 13 Stores FyyinC.

(g](RTN] 075- 43 32 Skips this line.

(9][RTN] 076- 4332
LBL 077-42,21,13 Integrand routine.

2 078- 2

[079- 10
080- 16

081- 12 Calculates e™*’2,

(9](LSTx] 082- 43 36

083- 16
[RcL) 2 084- 45 2
3 085- 3

[086- 30
2 087- 2

B 088- 10 Calculates m.

= 089- 14
(x] 090- 20 Calculates (x/2)"e™*/2,

[g](RTN] 091- 4332

Labels used: A, B, and C.

Registers used: R, (row), R; (column), Ry (n), R3 (a), Ry (x,'%)), and
R5 (x2(k)).

Matrices used: A (x* 1), B (f(x®))), C (F(x®))), and D (d'%)).

Now run the program. For example, choose the values n =11 and
a =0.05. The suggested initial guesses are x;? = 3.25 and x,® =
20.5. Remember that the display format affects the uncertainty of
the integral calculation.

Keystrokes Display

(g](P/R] Run mode.

5 [f)[DIM][(i)] 5.0000 Reserves Rthrough Rs.

11 2 11.0000 Stores n in Ro.

Section 4: Using Matrix Operations

Keystrokes Display

.05[ST0]3 0.0500

2 (ENTER] 1 1
1.0000
1.0000

[f[MATRIX] 1 1.0000
3.25 3.2500

20.5 20.5000

[(f(scy4 2.0500
1.1677
1.0980

3.5519

2.1556

01

00

00

00

01

127

Stores a in Rj.

Dimensions A to 2 X 1.

Activates User mode.

Stores x\” from chi-square
distribution.

Stores xfrom chi-square

distribution.

Sets display format.

Displays norm of £f(x).

Displays norm of

correction d©.

Recalls x!{".

Recalls xY’

By repeating the last four steps, you will obtain these results:

B llEx®)]p [d®)|g xfth xyt

3.2500 20.500

0O 1.168 1.098 3.5519 21.556

1 1.105x10"" 1.740x107" 3.5169 21.726

2 1.918x10% 2853x10° 35162 21.729

3 6.021X107 9542x107 3.5162 21.729
This accuracy is sufficient for constructing the statistical test.
(Press 4 to reset the display format and to

deactivate User mode.)

128 Section 4: Using Matrix Operations

Solving a Large System of Complex Equations

Example: Find the output voltage at a radian frequency of

w = 15 X 103 rad/s for the filter network shown below.

L L c, C,
A~ I1€ €

R,
L) 3= © I3 /4 Vo

v c, R, L R,
o

V=10 volts L =10"2henry

R, =100 ohms C,=25X%X 108 farad
R, =10% ohms Cy=25X 107 farad

R4 =10° ohms

Describe the circuit using loop currents:

(Ri+iwL—i/wC) (i/wC)) 0 0 I, v

(l/wCl) (R2+le—l/wC1) (—Rz) O 12 _ O

0 (-Ry) (Ry—i/ wCotiwl) (-iwL) Ll |o

0 0 (-iwL) (R3t+iwL—i/wCy) 1, 0

Solve this complex system for I, I, I3, and I;. Then Vo = (R3)(1y).

Because this system is too large to solve using the standard method
for a system of complex equations, this alternate method (described
in the owner’s handbook) is used. First, enter the system matrix
into matrix A in complex form and calculate its inverse. Note that

wL =150,1/0C; =800/3,and 1/wCy=8/3.

Keystrokes Display

(g][P/R] Program mode.

(fJCLEAR 000- Clears program memory.

Keystrokes

(¢](F/R]
o (f][oM](G)]

(][MATRIX]O

4 [ENTER]8

[f](MATRIX] 1

100 (STO](A]
150 (ENTER]
800 [ENTER] 3 [+]
(-)(sTO](A]

150 (ENTER]
8 [ENTER]3 [+]
[-)(sTo](A]

() [(MATRIX] 2

Section 4: Using Matrix Operations 129

Display

0.0000

0.0000

8

8.0000

8.0000

8.0000

100.0000

1560.0000

266.6667
-116.6667

150.0000

2.6667
147.3333

>
>
»

>»
>
P
r

0
w

W
0
o

0
o

oW
&
~

Run mode.

Provides maximum

matrix memory.

Dimensions all matrices

to 0 X 0.

Dimensions matrix A to

4 X 8.

Activates User mode.

Stores Re(aq,).

Stores Im(a;).

Stores Im(ayy).

Transforms A€ to A”.

Transforms Ato A.

Calculates inverse

ofAin A.

Delete the second half of the rows ofA to provide space to store the
right-hand matrix B.

Keystrokes

4 (ENTER]8
[(om](A)

4 [ENTER] 2

Display

8
8.0000

2
2.0000

Redimensions matrix A to

4 X 8.

Dimensions matrix B to

4 X 2.

130

Keystrokes

[f][MATRIX] 1
10(ST0](8]

()[MATRIX] 2
((ResuLT](C]
(]
[f][MATRIX] 4
[J(MATRIX] 2
1 (ENTER]8

[J[(MATRIX]4
[8](Cr.x]

Display

2.0000

10.0000

A

b

b

b

b

C

C

C

8
8.0000

o
Ne

)

C

N
N
P
O

OO
O
O
H
H

1

8

4

0
H

N
M
N
N
N
=
2
N
O
®

8
1

2

Section 4: Using Matrix Operations

Stores Re(V). (Other

elements are 0.)

Transforms B¢ to B”.

Transforms B? to B.

Calculates solution in C.

Calculates transpose.

Transforms C to C.

Redimensions matrix C to

1X8.

Calculates transpose.

Transforms C? to CC.

Matrix C contains the desired values of I}, Iy, I3, and I, in
rectangular form. Their phasor forms are easy to compute:

Keystrokes

[f](MATRIX] 1
[)(scn4

[x2](g](>P]
xX%

[xxy](g][>P]
[x2)]

(x2y](g][=F]

Display

C

C
1.9950

4.0964

4.1013

8.7212

-1.4489

-3.5633
3.56662

-9.2328
-1.4541
-3.56633
3.56662

4

4

2

2
-04

-03

-03

01

-03
-02
-02

01

-03
-02
-02

Resets Ry and R;.

Recalls Re(1).

Recalls Im(1;).

Displays|1;].

Displays Arg(l;) in

degrees.

Displays| 5.

Displays|1I3|.

Section 4: Using Matrix Operations 131

Keystrokes Display

ey -9.2337 01
5.3446 -05

~2.2599 -06
(xxy)(g][*P] 5.3494 -05 Displays|],|.

2y -2.4212 00
(xxy][EEX]5 [¥] 5.3494 00 Calculates|Vy| = (Ry)|14].

[M[Fx) 4 5.3494
5.3494 Deactivates User mode.

The output voltage is 5.3494 /£ -2.4212°.

Least-Squares Using Normal Equations

The unconstrained least-squares problem is known in statistical
literature as multiple linear regression. It uses the linear model

p

y= ijxj+ r.

J=1

Here, by, ..., b, are the unknown parameters, x;, ..., x, are the

independent (or explanatory) variables, y is the dependent (or
response) variable, and r is the random error having expected

value E(r) =0, variance o2

After making n observations of y and xy, xy,..., x,, this problem can

be expressed as

y=Xb+r

where y is an n-vector, X is an n X p matrix, and r is an n-vector

consisting of the unknown random errors satisfying E(r) = 0 and

Cov(r) = E@rT) = o2In.

If the model is correct andAXTX has an inverse, then the calculated

least-squares solution b = (XTX)!'X7y has the following

properties:

° E(f)) =b, so that b is an unbiased estimator of b.

o Cov(b) =E((b — b)7(b — b)) = 0*X"X)"!,the covariance matrix
of the estimator b.

132 Section 4: Using Matrix Operations

o E(r)=0,wherer=y — Xb is the vector of residuals.

o E(ly — Xf)ll%) = (n — p)o?, so that o° = ||#]|3/(n — p) is an
unbiased estimator for o2 You can estimate Cov(b) by

replacing o? by 2.

The total sum of squares || y||§,~ can be partitioned according to

Iylz=y"y
=(y — Xb + Xb)7(y — Xb + Xb)

=(y — Xb)T(y — Xb) — 2b7XT(y — Xb) + (Xb)7(Xb)

=|ly — Xb|% + |Xb|%
_ (Residual) (Regression)

Sum of Squares Sum of Squares

When the model is correct,

E(|Xb||%/p) = o® + || Xb||%/p > o

and

E(ly — Xb|2/(n — p)) = o

for b # 0. When the simpler model y = r is correct, both of these

expectations equal ¢2.

You can test the hypothesis that the simpler model is correct
(against the alternative that the original model is correct) by

calculating the F ratio

_ IXbl|%/p
ly — Xb|l%/(n—p)

F will tend to be larger when the original model is true (b # 0) than

when the simpler model is true (b = 0). You reject the hypothesis

when Fis sufficiently large.

If the random errors have a normal distribution, the F ratio has a
central F distribution with p and (n — p) degrees of freedom if

b =0, and a noncentral distribution if b # 0. A statistical test of the
hypothesis (with probability « of incorrectly rejecting the
hypothesis) is to reject the hypothesis if the F ratio is larger than
the 100« percentile of the central F distribution with p and (n — p)

Section 4: Using Matrix Operations 133

degrees of freedom; otherwise, accept the hypothesis.

The following program fits the linear model to a set of n data points

Xi1, X9, .-, X;p, ¥; by the method of least-squares. The parameters b,

by, ..., b, are estimated by the solution b to the normal equations

XTXb = XTy. The program also estimates o® and the parameter

covariance matrix Cov(b). The regression and residual sums of

squares (Reg SS and Res SS) and the residuals are also calculated.

The program requires two matrices:

Matrix A: n X p with row i (x;3, X;9, ..., X;p)
fori=1,2,...,n.

Matrix B: n X 1 with element i (y;) fori =1, 2, ..., n.

The program outputis:

Matrix A: unchanged.

Matrix B: n X 1 containing the residuals from the fit

(y;—byxj; — ...~ byx;,) fori=1,2,..., n, where b;is the

estimate for b;.
Matrix C: p X p covariance matrix of the parameter

estimates. .

Matrix D: p X 1 containing the parameter estimates by, ...,

by,
T-register: contains an estimate of ¢°.
Y-register: contains the regression sum of squares

(Reg SS).
X-register: contains the residual sum of squares (Res SS).

The analysis of variance (ANOVA) table below partitions the total
sum of squares (Tot SS) into the regression and the residual sums

of squares. You can use the table to calculate the F ratio.

ANOVA Table

Degrees of Sum of Mean]

Source Freedom Squares Square F Ratio

Regression p Reg SS (Reg SS) (Reg MS)

p (Res MS)

(Res SS)
Residual n—p Res SS —==7

- (n—p)
Total n Tot SS

134 Section 4: Using Matrix Operations

The program calculates the regression sum of squares unadjusted

for the mean because a constant term may not be in the model. To
include a constant term, include in the model a variable that is

identically equal to one. The corresponding parameter is then the

constant term.

To calculate the mean-adjusted regression sum of squares for a
model containing a constant term, first use the program to fit the
model and to find the unadjusted regression sum of squares. Then

fit the simpler model y = b; + r by dropping all variables but the

one identically equal to one (b,, for example) and find the

regression sum of squares for this model, (Reg SS),. The mean-

adjusted regression sum of squares (Reg SS)4, = Reg SS —

(Reg SS)c. Then the ANOVA table becomes:

ANOVA Table

Source Degrees of Sum of Mean F Ratio

Freedom Squares Square

Regression | p—1 (Reg SS)4 (Reg SS), (Reg MS),
Constant (p—1) (Res MS)

Constant 1 (Reg SS)c (Res SS)c

(Res SS)
Residual n—p Res SS —

(n—p)

Total n Tot SS

You can then use the F ratio to test whether the full model fits data

significantly better than the simpler model y = b, + r.

You may want to perform a series of regressions, dropping

independent variables between each. To do this, order the variables
in the reverse order that they will be dropped from the model. They
can be dropped by transposing the matrix A, redimensioning A to
have fewer rows, and then transposing A once again.

You will need the original dependent variable data for each
regression. If there is not enough room to store the original data in

matrix E, you can compute it from the output of the regression fit.

A subroutine has been included to do this.

Section 4: Using Matrix Operations

This program has the following characteristics:

135

e Ifthe entire program is keyed into program memory, the sizes

of n and p are required to satisfy n =p and (n +p)(p + 1) <56.

Thatis,

ifpis 1 2 3 4

 then n,,, is 27

16 11

This assumes that only data storage registers R, and R, are

allocated. If subroutine ‘““B”’ is omitted, then n = p and

(n+p)(p+1)<58. That is,

ifpis 1 3

 then n,,, is 28 17 11
e Even though subroutine “B’ uses the residual function with

its extended precision, the computed dependent variable data

may not exactly agree with the original data. The agreement

will usually be close enough for statistical estimation and

tests. If more accuracy is desired, the original data can be

reentered into matrix B.

Keystrokes

(g](P/R]
(f)CLEAR [PRGM]

(f)(MATRIX]8
(917

() (MATRIX] 5
(9] (LSTx]

(f)(RESULT](D]
(f)(MATRIX] 5
[x2)]

Display

000-
001-42,21,11

002-45,16,12

003-42,16, 8
004- 4311

005-45,16,11

006- 36
007-42,26,13

008-42,16, 5

009- 43 36
010-45,16,12
011-42,26,14

012-42,16, 5

013- 34

Program mode.

Program to fit model.

Calculates Tot SS.

Calculates C = ATA.

Calculates D = ATB.

136 Section 4: Using Matrix Operations

Keystrokes

(2]

%]

()[MATRIX]6

(](MATRIX]8
(9

[
(2

(2]

() (MATRIX]8
(a1
[
(9](LSTx]
(o)(RTN]
(A(CeL)(E]

[REL](MATRIX] (D]

((RESULT](B]
[)[MATRIX] 6
[REL][MATRIX] (D]

(e](RTN]

Display

014- 10

015-45,16.11

016- 34
017-42,26,12

018-42,16, 6

019-42,16, 8
020- 4311

021-45,23,11

022- 30

023- 10

024- 36

025- 36
026-45,16,13

027-42,26,13

028- 10

029- 4333
030-45,16,12

031-42,16, 8
032- 4311

033- 30

034- 43 36

035- 43 32
036-42,21,12

037-45,16,11
038-45,16,14
039- 16
040-42,26,12
041-42,16, 6
042-45,16,14
043- 16
044- 4332

Labels used: A and B.

Calculates parameters in

D.

Calculates residuals offit

in B.

Calculates Res SS.

Calculates o estimate.

Calculates covariance

matrix in C.

Calculates Reg SS.

Returns Res SS.

Subroutine to reconstruct

dependent variable data.

Calculates B=B + AD.

Section 4: Using Matrix Operations 137

Registers used: Rj and R;.

Matrices used: A, B, C, and D.

To use this program:

10.

Press 1 to reserve registers Ry and R;.

Dimension matrix A according to the number of observa-
tions n and the number of parameters p by pressing n [ENTER

p[f)[DM][A].
Dimension matrix B according to the number of observa-

tions n (and one column) by pressing n [ENTER] 1 [f](DIM](B].

Press [f][MATRIX] 1 to set registers Ryand R;.

Press [f||USER]to activate User mode.

For each observation, store the values of the p variablesin a
row of matrix A. Repeat this for the n observations.

Store the values of the dependent variable in matrix B.

Press to calculate and display the Res SS. The Y-register

contains the Reg SS and the T-register contains the o2
estimate.

Press [RCL][D]to observe each of the p parameter estimates.

If desired, press to recalculate the dependent variable
data in matrix B.

Example: Compare two regression models of the annual change in

the consumer price index (CPI) using the annual change in the

producerprice index (PPI) and the unemployment rate (UR):

y=b;+ boxg+ byxs+r and y=b;+boxytr,

where y, x9, and x5 represent CPI, PPI, and UR (all as percentages).

Use the following data from the U.S.:

138 Section 4: Using Matrix Operations

Year CPI PPI UR

1969 5.4 3.9 3.5

1970 59 3.7 4.9

1971 4.3 3.3 5.9

1972 3.3 4.5 5.6

1973 6.2 13.1 49

1974 11.0 18.9 5.6

1975 9.1 9.2 8.5

1976 5.8 4.6 7.7

1977 6.5 6.1 7.0

1978 7.6 7.8 6.0

1979 11.5 19.3 5.8

Keystrokes Display

(e](P/R] Run mode.

(f)(MATRIX]O
11 [ENTER]3 3

3.0000 Dimensions A as
11 X 3.

11 [ENTER]1 1
1.0000 Dimensions Bas 11 X 1.

[f)[MATRIX] 1 1.0000
1.0000

1 1.0000 Enters independent
variable data.

3.9 3.9000
35 3.5000

1 1.0000

19.3 19.3000

5.8 5.8000

5.4 5.4000 Enters dependent variable
data.

5.9 5.9000

11.5(s70](B] 11.5000
9 13.51217504 Res SS for full model.

587.9878252 Reg SS for full model.

Keystrokes

(ReL](D]
(ReL](D]
(ReL](D]

()[MATRIX] 4
2 [ENTER] 11

()(MATRIX] 4

(ReL](D]
(ReL](D]

[)(MATRIX] 4
1 [ENTER] 11

(] (MATRIX] 4

(ReL](D]

[EX)4

Section 4: Using Matrix Operations 139

Display

1.689021880

1.245864326

0.379758235

0.413552218

d 3 1

A 1 3

A 3 11

11

11.00000000

A 2 11
A 11 2

16.78680552

584.7131947

1.865200613

3.701730745

0.380094935

d 2 1

A 11 2

A 2 11
11

11.00000000

A 1 11

A 11 1

68.08545454

533.4145457

6.808545454

6.963636364

6.963636364

6.9636

o® estimate.

b, estimate.

b, estimate.

bs estimate.

Recalculates dependent

data.

Drops last column of A.

New A matrix.

Res SS for reduced model.

Reg SS for reduced model.

o’ estimate.

b, estimate.

b, estimate.

Recalculates dependent

data.

Drops next column of A.

New A matrix.

Res SS.

Reg SS for constant.

o’ estimate.

b, estimate.

Deactivates User mode.

The Reg SS for the PPI variable adjusted for the constant term is
(Reg SS for reduced model) — (Reg SS for constant) =

51.29864900.

140 Section 4: Using Matrix Operations

The Reg SS for the UR variable adjusted for the PPI variable and

the constant term is

(Reg SS for full model) — (Reg SS for reduced model) =
3.274630500.

Now construct the following ANOVA table:

Source Degrees of Sum of Mean F Ratio

Freedom Squares Square

UR| PPI, Constant 1 3.2746305 3.2746305 1.939

PPI| Constant 1 51.2986490 51.2986490 30.37

Constant 1 533.4145457 533.4145457 315.8

Residual (full

model) 8 13.5121750 1.68902188

Total 11 601.5000002

The F ratio for the unemployment rate, adjusted for the producer
price index change and the constant is not statistically significant
at the 10-percent significance level (@« = 0.1). Including the
unemployment rate in the model does not significantly improve the
CPIfit.

However, the F ratio for the producer price index adjusted for the
constant is significant at the 0.1-percent level (« = 0.001). Including

the PPI in the model does improve the CPI fit.

Least-Squares Using Successive Rows

This program uses orthogonal factorization to solve the least-

squares problem. That is, it finds the parameters b, ..., b, that
minimize the sum of squares ||r||1% = (y — Xb)X(y — Xb) given the

model data

Section 4: Using Matrix Operations 141

X1 X12 X1p Y1

Xo1 X292 Xop Yo
X= . and y=

Xn1 Xn2 xnp Yn

The program does this for successively increasing values of n,

although the solution b = b'*) is meaningful only when n > p.

It is possible to factor the augmented n X (p + 1) matrix [X y]into
QTV, where Q is an orthogonal matrix,

fJ g (p rows)

V=|0 g (1row),

0 0 (n—p—1rows)

and U is an upper-triangular matrix. If this factorization results
from including n rows r,,, = (X, 1, X2, <0y Xpp, Ym) form=1,2, ..., n

in[X y], consider how to advance to n + 1 rows by appending row

rp+1 to [X)’]3

X vy Qr o A%

rp+1 0 1 rn+1

The zero rows of V are discarded.

Multiply the (p + 2) X (p + 1) matrix

A

U g (prows)

A=]10 q | QArow)

rp+1 (1row)

142 Section 4: Using Matrix Operations

by a product of elementary orthogonal matrices, each differing

from the identity matrix I, , 5 in only two rows and two columns.
Fork=1,2,...,p+ 1in turn, the kth orthogonal matrix acts on the

kth and last rows to delete the kth element of the last row to alter

subsequent elements in the last row. The kth orthogonal matrix
has the form

1]

-S c
L —

where ¢ = cos(6), s = sin(0), and 6 = tan’l(ap +or/ar). After p +1

such factors have been applied to matrix A, it will look like

U* g* |(prows)

A*=] 0 q*|({d row)

0O O |(@A row)

where U* is also an upper-triangular matrix. You can obtain the

solution b(” 1 to the augmented system ofp + 1 rows by solving

U* g* b(n+1) 0

0 g* -1 -q*

By replacing the last row of A* by r,, , , and repeating the factoriza-

tion, you can continue including additional rows of data in the
system. You can add rows indefinitely without increasing the

required storage space.

The program below begins with n = 0 and A = 0. You enter the
rows r,, successively form =1,2, ..., p — 1 in turn. You then obtain

the current solution b after entering each subsequent row.

Section 4: Using Matrix Operations 143

You can also solve weighted least-squares problems and linearly

constrained least-squares problems using this program. Make the

necessary substitutions described under Orthogonal Factorization

earlier in this section.

Keystrokes Display

(e](P/R] Program mode.

CLEAR 000-
001-42,21,11 Program to input new

row.

2 002- 44 2 Stores weightinR,.

1 003- 1

(STO]1 004- 44 1 Stores/=1inR,.

[M(CeL)4 005-42,21, 4
006-45,23,11

™ 007- 34
(sTO0]O 008- 44 O Storesk=p+2inR,.

[M[CBL)5 009-42,21, 5
1 010- 45 1

R/S 011- 31

2 012- 45 2
X 013- 20

STO 014u 44 11
USER

5 015- 22 5
[GTo)4 016- 22 4

017-42,21,12 Program to update
matrix A.

018-45,23,11 Recalls dimensions p + 2
andp + 1.

oy 019- 34
2 020- 44 2 Storesp+2inR,.

[7)[MATRIX] 1 021-42,16, 1 Setsk=1I=1.
1 022-42,21, 1 Branch to update ith row.

(g][cF]o 023-43, 5, 0

2 024- 45 2
[RcL]O 025- 45 0
(RcL](g](A] 026-45,43,11 Recallsa, ;9.

027- 4511 Recallsay,.

144 Section 4: Using Matrix Operations

Keystrokes

(e]FEST]2
(9]sFlo

[o](aBS]
[g](=P]
(o](CLy]
1

[8](F7]o

an

((eL)2
(s)(R4)

(RcL]2
(RCL)1
(ReL](g](A]
NI
(]
[RcL]2
[RCL]1
(sTo](9](A]

(RCL)1
(RcL]o
[(9)l=<y]
(GT0]2

(e]lcFls8
(sT0]1
[Rci]2

Display

028-43,30, 2

029-43, 4, O

030- 4316
031- 43 1

032- 43 35

033- 1

034- 42 1

035-43, 6, 0
036- 16

037- 4225

038- 33
039-42,21, 2

040- 43 33

041- 45 11

042- 45 2

043- 45 1

044-45,43,11
045- 4225
046- 20
047- 45 2

048- 45 1

049-44,43,11

050- 4230
051u 44 11

052- 45 1

053- 45 0

054- 43 10

055- 22 2

056-43, 5, 8

057- 44 1

058- 45 2

Tests ap, <O0.

Sets flag 0 for negative
diagonal element.

Calculates 6.

Calculates x = cos § and

y = sin 6.

Setsx =candy =s.

Forms s + ic.

Subroutine to rotate row k.

Recalls ay;.

Recallsa, ;5;.

Forms ay —ia, ;9

Stores new a;;.

Stores new a, 2,
increments Ry and R;.

Recalls [(column).

Recalls k& (row).

Tests k<.

Loops back until column
reset to 1.

Turns off Complex mode.

Stores kin R, (0).

Keystrokes

(=<
(9](RTN]
(GTO]1

[sT0]O
(sTO]1
1

0

9

9

CHS

(9](x=0]

CHS

[RcL]o
1
(sTo](e](c]

RCL
fJ[RESULT

E
]
-
I

RCL|O

H
“
I

O r o

=
m

]

—
_

Section 4: Using Matrix Operations 145

Display

059- 43 10

060- 43 32

061- 22 1

062-42,21,13

063-45,23,11

064- 36

065-42,23,11

066- 44 O

067- 44 1

068- 1

069-42,23,13

070- 0

071-44,16,13

072- 26

073- 9

074- 9

075- 16

076- 45 11

077- 43 20

078- 33

079- 16

080- 45 O

081- 1

082-44,43,13

083-45,16,13

084-45,16,11

085-42,26,13

086- 10

087- 45 O

088- 1

089- 40

090- 45 O

091-42,23,11

092- 1

Testsp +2< k.

Returns at last row.

Loops back until last row.

Program to calculate
current solution.

Eliminates last row of A.

Stores p + 1in R,,

Stores p + 1in R;.

Dimensions matrix C to

(p+1)X1.

Sets matrix C to 0.

Forms 107,

Recallsg=a, ;1p+1-

Tests g = 0.

Uses 10if g =0.

Sets Cp+ 1= -q.

Stores A"!C in C.

Dimensions matrix A as

(p+2)X(p+1).

146 Section 4: Using Matrix Operations

Keystrokes Display

(-] 093- 30
1 094- 1

095-42,23,13 Dimensions matrix C as
p X 1.

096- 4511 Recallsgq.
(f)(MATRIX] 1 097-42,16, 1 Setsk=1[:=1.

[gJ(RTN] 098- 4332

Labels used: A, B, C, and 1 through 5.

Registers used: R, R;, and Ry (p + 2 and w).

Matrices used: A (working matrix) and C (parameter estimates).

Flags used: 0 and 8.

With this program stored, the HP-15C has enough memory to work

with up to p = 4 parameters. If programs “A” and “C” are deleted,
you can work with p =5 parameters. In either case, there is no limit
to the number of rows that you can enter.

To use this program:

1. Press2 to reserve registers Ry through Ro.

2. Press to activate User mode.

3. Enter (p +2)and (p + 1) into the stack, then press
to dimension matrix A. The dimensions depend on the
number of parameters that you use, denoted by p.

Press O MATRIX][A]to initialize matrix A.

Enter the weight w;, of the current row, then press [A]. The
display should show 1.0000 to indicate that the program is
ready for the first row element. (For ordinary least-squares

problems, use wj = 1 for each row.)

6. Enterthe elements of the row m of matrix A by pressing x,,,;

Xmo e Xp ¥m [R/S]. After each element is
entered, the display should show the number of the next
element to be entered. (If you make a mistake while entering

the elements, go back and repeat steps 5 and 6 for that row.

7. Press to update the factorization to include the row

entered in the previous two steps.

Section 4: Using Matrix Operations 147

8. Optionally, press (9] [¥*] to calculate and display the

residual sum of squares ¢ and to calculate the current

solution b. Then press (RCL][C]p times to display b, b, ..., b‘ by
1n turn.

9. Repeat steps 5 through 8 for each additional row.

Example: Use this program and the CPI data from the previous
example to fit the model

y=by+byxy+bsxsz+r,

where y, x5, and x; represent the CPI, PPI, and UR (all as
precentages).

This problem involves p = 3 parameters, so matrix A should be

5 X 4. The rows of matrix A are (1, x,,9, X,,3, ¥,,) form=1,2, .., 11.
Each row has weight w,, = 1.

Keystrokes Display

(9](P/R] Run mode.

2 [f)[oM][(i)] 2.0000 Reserves R through R.

2.0000 Activates User mode.

0 2.0000 Clears matrix memory.

5 4 4
4.0000 Dimensions matrix A to

5 X 4.

0 0.0000 Stores zero in all elements.

1 1.0000 Enters weight for row 1.

1 2.0000 Enters x;.

3.9 3.0000 Enters x,.

3.5 4.0000 Enters x 3.

5.4 1.0000 Enters y;.

5.0000 Updates factorization.

1 1.0000 Enters weight for row 11.

1 2.0000 Enters x; ;.

19.3(R/S] 3.0000 Enters x|, 5.

5.8 4.0000 Enters x;; 3.

11.5(R/S] 1.0000 Enters y;;.

5.0000 Updates factorization.

148 Section 4: Using Matrix Operations

Keystrokes Display

3.6759 Calculates current
estimates and q.

[MFExX)9 3.675891055
(9](x% 13.51217505 Calculates residual sum of

squares g2.

1.245864306 Displays b{'".

0.379758235 Displays by".

0.413552221 Displays by".

These estimates agree (to within 3 in the ninth significant digit)

with the results of the preceding example, which uses the normal
equations. In addition, you can include additional data and update

the parameter estimates. For example, add this data from 1968:

CPI1=4.2PPI=25,and UR=3.6.

Keystrokes Display

1 1.000000000 Enters row weight for new
row.

1 2.000000000 Enters x;y;.

2.5 3.000000000 Enters x;5,.

3.6 4.000000000 Enters x53.

4.2 1.000000000 Enters y;,.

5.000000000 Updates factorization.

3.700256908

(9](¥*] 13.69190119 Calculates residual sum of

squares.

1.5681596327 Displays b|'?.

0.373826487 Displays b2,

0.370971848 Displays b}2.
4 0.3710

0.3710 Deactivates User mode.

Eigenvalues of a Symmetric Real Matrix

The eigenvalues of a square matrix A are the roots \A; of its
characteristic equation

det(A — AI) =0.

Section 4: Using Matrix Operations 149

When A is real and symmetric (A = A7) its eigenvalues A; are all

real and possess orthogonal eigenvectors q;. Then

Ag; = \jq;
and

. _{o ifj ~k
VBTN itj=k

The eigenvectors (q;,qo,...) constitute the columns of an orthogonal

matrix Q which satisfies.

QTAQ = dlag ()‘19}\2"--)

and

Q"=Q".
An orthogonal change of variables x = Qz, which is equivalent to

rotating the coordinate axes, changes the equation of a family of
quadratic surfaces (xTAx = constant) into the form

k

z1(QTAQ)z = Z)\jz% = constant.

J

With the equation in this form, you can recognize what kind of

surfaces these are (ellipsoids, hyperboloids, paraboloids, cones,

cylinders, planes) because the surface’s semi-axes lie along the new
coordinate axes.

The program below starts with a given matrix A that is assumed to
be symmetric (if it isn’t, it is replaced by (A + AT)/2, which is

symmetric).

Given a symmetric matrix A, the program constructs a skew-

symmetric matrix (that is, one for which B = -B7) using the
formula

tan(stan™!(2a;;/(a; —a;))) ifi#janda;#0

Y \o ifi=jora;=0.

Then Q = 2(I + B)! — I must be an orthogonal matrix whose

columns approximate the eigenvalues of A; the smaller are all the

elements of B, the better the approximation. Therefore Q”AQ must
be more nearly diagonal than A but with the same eigenvalues. If

150 Section 4: Using Matrix Operations

QTAQ is not close enough to diagonal, it is used in place of A above

for a repetition of the process.

In this way, successive orthogonal transformations Q;, Qs, Qj,...
are applied to A to produce a sequence A, Ay, Ag,..., where

Aj = (Q1 Q... Qj)TAQl Q2 Qj

with each successive A; more nearly diagonal than the one before.

This process normally leads to skew matrices whose elements are

all small and A; rapidly converging to a diagonal matrix A.
However, if some of the eigenvalues of matrix A are very close but
far from the others, convergence is slow; fortunately, this situation

is rare.

The program stops after each iteration to display

Yo Z|off—diagonal elements of Ajl / ||AJ-||F

J

which measures how nearly diagonal is A;. If this measure is not
negligible, you can press to calculate A, , ;; if it is negligible,
then the diagonal elements of A; approximate the eigenvalues of A.
The program needs only one iteration for 1 X 1 and 2 X 2 matrices,
and rarely more than six for 3 X 3 matrices. For 4 X 4 matrices the

program takes slightly longer and uses all available memory;
usually 6 or 7 iterations are sufficient, but if some eigenvalues are

very close to each other and relatively far from the rest, then 10 to

16 iterations may be needed.

Keystrokes Display

[e](P/R] Program mode.

(fJCLEAR 000-
001-42,21,11
002-45,16,11
003-44,16,12 Dimensions B.

004-44,16,13 Dimensions C.

4 005-42,16, 4 Transposes A.

006-45,16,12
007- 44 26
008- 40

Keystrokes

2
a

()[MATRIX]8
[s10]2
[9](CLx]
[sT0]3

() [(MATRIX] 1
(fJ(LeLlo
[RCL]O
[RCL]1
[9)(TEST]S
(GT0]3
(o])(TEST]7
(GTO)1
[x2y)
[ReL)(g](B)
CHS

([GT0]0
()(LBL)1
(ReL](g](A]
[9](aBS)
(sTO](+]3

[9](LSTx]

Section 4: Using Matrix Operations 151

Display

009- 2

010- 10

011-44,16,11

012-42,16, 8

013- 44 2

014- 43 35

015- 44 3

016-44,16,13

017-42,16, 1

018-42,21, O

019- 45 O

020- 45 1

021-43,30, 5

022- 22 3

023-43,30, 7

024- 22 1

025- 34

026-45,43,12

027- 16

028u 4412

029- 22 0

030-42,21, 1

031-45,43,11

032- 43 16

033-44,40, 3

034- 43 36

035- 36

036- 40

037- 45 O

038- 36

039-45,43,11

040- 45 1

041- 36

Calculates
A=(A+AD2.
Calculates ||Al|g

Stores ||Al|fin R,.

Initializes off-diagonal

sum.

Sets C=0.

Sets Rg=R;=1.

Routine to construct Q.

Tests row = column.

Tests column > row.

Sets bU = —bfl'.

Routine for column > row.

Calculates|a;;].

Accumulates off-diagonal

sum.

Calculates 2a;;.

Recalls a;;.

152 Section 4: Using Matrix Operations

Keystrokes

(ReL](g](A]
=
(9)(TEST)3
(GT0]2

[x2)]

[x2)]
[A(LeL]2
(g)(=P]

(9](CLx]
4

g

(G100
[(ceL)3
1

()(USER]
(G100
[RCL]3
[ReL)(z]2

R/S

2

(2

=

[J(MATRIX]5

Display

042-45,43,11

043- 30

044-43,30, 3

045- 22 2

046- 16

047- 34

048- 16

049- 34

050-42,21, 2

051- 43 1

052- 43 35

053- 4

054- 10

055- 25

056u 44 12

057- 22 0

058-42,21, 3

059- 1

060- 4413

061u 44 12

062- 22 0

063- 45 3

064-45,10, 2

065- 31

066- 2

067-45,16,12

068- 10

069-45,16,13
070- 30

071-45,16,11

072-42,26,13

073-42,16, 5

Recalls a;;.

Calculates a;; — aj;.

Tests x = 0.

Keeps angle of rotation

between -90° and 90°.

Calculates angle of

rotation.

Calculates b;;.

Routine for row = column.

Sets ci=1.

Sets bii =1.

Calculates off-diagonal

ratio.

Displays ratio.

Calculates

B =2(I + skew)! — L.

Calculates C = BTA.

Section 4: Using Matrix Operations 153

Keystrokes Display

074-45,16,12
075-42,26,11

[x] 076- 20 Calculates A = BTAB.

077- 2211

Labels used: A, 0, 1, 2, and 3.

Registers used: Ry, R}, R, (off-diagonal sum), and R(|Al|p).

Matrices used: A (A)), B (Q)), and C.

To use the program:

Press 4 [f][DIM][(i)] to reserve registers R, through R,.

Press to activate User mode.

Dimension and enter the elements of matrix A using
and [STO][A]. The dimensions can be up to 4 X 4, provided

that there is sufficient memory available for matrices B and
C having the same dimensions also.

Press [A]to calculate and display the off-diagonalratio.

Press repeatedly until the displayed ratio is negligible,
say less than 1078,

6. Press repeatedly to observe the elements of matrix A.
The diagonal elements are the eigenvalues.

Example: What quadratic surface is described by the equation

below?

01 2 X1

xTAx=[x; x5 x3] |1 2 3 X9

2 3 4 X3

=2x,xy + 4x,x3+ 2x3 + 6x9x3 + 4x3

=7

Keystrokes Display

[9](P/R] Run mode.

4 [f)[oIM]((i)) 4.0000 Allocates memory.

4.0000 Activates User mode.

154 Section 4: Using Matrix Operations

Keystrokes Display

3 3.0000 Dimensions A to 3 X 3.

1 3.0000 Sets Rpand R, to 1.

0(ST0][(A] 0.0000 Enters a;;.

1(sT0](A] 1.0000 Enters a,s.

3 3.0000 Enters ass.

4 4.0000 Enters ass.

0.8660 Calculates ratio—too
large.

0.2304 Again, too large.

0.1039 Again, too large.

0.0060 Again, too large.

3.0463 -05 Again, too large.

R/S 5.8257 -10 Negligible ratio.

-0.8730 Recalls a;; = A;.

-9.0006 -10 Recallsa,.

-2.0637 -09 Recallsa,s.

-9.0006 -10 Recallsas,,.

9.3429 -11 Recalls agyy = A,
1.0725 -09 Recallsays.

-2.0637 -09 Recallsay,.

1.0725 -09 Recalls as.

6.8730 Recalls ag3 = A3.

6.8730 Deactivates User mode.

In the new coordinate system the equation of the quadratic surface
is approximately

-0.87302% + 023 + 6.873023 =17.

This is the equation of a hyperbolic cylinder.

Eigenvectors of a Symmetric Real Matrix

As discussed in the previous application, a real symmetric matrix

A has real eigenvalues A}, Ay, ... and corresponding orthogonal

eigenvectors qi, qo,

Section 4: Using Matrix Operations 155

This program uses inverse iteration to calculate an eigenvector q,,

that corresponds to the eigenvalue A, such that ||q.llr = 1. The

technique uses an initial vector z’ to calculate subsequent vectors

w™ and z") repeatedly from the equations

(A _)\I)W(" + 1):z(n)

z(nt 1) =swint 1)/“w(n+ 1)“R

where s denotes the sign of the first component of w” * D having
the largest absolute value. The iterations continue until z'?

converges. That vector is an eigenvector q; corresponding to the
eigenvalue A,.

The value used for A, need not be exact; the calculated eigenvector

is determined accurately in spite of small inaccuracies in Aj.

Furthermore, don’t be concerned about having too accurate an

approximation to A,; the HP-15C can calculate the eigenvector

even when A — A1 is very ill-conditioned.

This technique requires that vector z’ have a nonzero component
along the unknown eigenvector q,. Because there are no other

restrictions on z*, the program uses random components for z®.

At the end of each iteration, the program displays ||z” "V — z™)||

to show the rate of convergence.

This program can accommodate a matrix A that isn’t symmetric

but has a diagonal Jordan canonical form—that is, there exists
some nonsingular matrix P such that P"TAP = diag(A,A,,...).

Keystrokes Display

(g][P/R] Program mode.

CLEAR 000-

(f)(LBL)(c] 001-42,21,13
2 002- 44 2 StoreseigenvalueinR,.

003-45,16,11
004-44,16,12 Stores A in B.

005-45,23,11
[STO]O 006- 44 O
(f)(CBL) 4 007-42,21, 4
(RCLJO 008- 45 0
(sTO]1 009- 44 1

010- 4512

156 Section 4: Using Matrix Operations

Keystrokes

[ReL)(-]2

[f](DSE]O
([GT0)4

1

(f](MATRIX] 1
(A(LBL]5

(GTO]5
(f(teu)e

(STOJ(MATRIX](D]

(=]

[)[MATRIX]7
a
(] (MATRIX] 1
((BL)7

(e](aBS]
1
[e]FEST]6
(G107

(9](LsTx]
=

Display

011-45,30, 2

012- 4412

013-42, 5, 0
014- 22 4
015-45,23,11
016- 1
017-42,23,13
018-42,16, 1
019-42,21, 5
020- 42 36
021u 44 13

022- 22 5

023-42,21, 6

024-45,16,13
025-44,16.14

026- 44 26
027-45,16,12
028- 10

029- 36
030-42,16, 7
031- 10

032-42,16, 1
033-42,21, 7

034u 45 13

035- 36

036- 4316
037- 1

038-43,30, 6

039- 22 7

040-45,16,13

041- 43 36

042- 10

Modifies diagonal

elements of B.

Dimensions C ton X 1.

Stores random

components in C.

Routine for iterating z"

and w™),

Stores z)in D.

Calculates w* *Vin C.

Calculates +z* * Vin C.

Routine to find sign of

largest element.

(This line skipped for last
element.)

Tests|aj|saé 1.

Recalls extreme a;.

Calculates z" " Vin C.

Section 4: Using Matrix Operations 157

Keystrokes Display

(RCL][MATRIX](D] 043-45,16,14

044- 44 26
(=] 045- 30 Calculatesz”D —z"

in D.

(f)(MATRIX] 7 046-42,16, 7 Calculates

2+—2|.
1 047-42,16, 1 SetsRy=R; =1 for

viewing C.

R/S 048- 31 Displays convergence

parameter.

6 049- 22 6

Labels used: C, 4, 5, 6, and 7.

Registers used: R, R{, and R, (eigenvalue).

Matrices used: A (original matrix), B (A — AI), C (z» * V), and
D (z(n +1) _ z(n)).

To use this program:

1. Press2 to reserve registers R, R;, and Ro.

2. Press to activate User mode.

3. Dimension and enter the elements into matrix A using

[DIM][A}, [f])[MATRIX] 1, and [STO](A].
4. Key in the eigenvalue and press [C]. The display shows the

correction parameter ||z} — z(0)||R.

5. Press repeatedly until the correction parameter is

negligibly small.

6. Press repeatedly to view the components of q, the
eigenvector.

Example: For matrix A of the previous example,

0 2

A=11 3

2 4w
N
~

calculate the eigenvectors qi, qo, and qg.

158 Section 4: Using Matrix Operations

Keystrokes Display

(g](P/R] Run mode.

2 (f][oiM] ()] 2.0000 Reserves registers R,
through R,

2.0000 Activates User mode.

3 3.0000 Dimensions matrix A to
3 X 3.

1 3.0000
0 0.0000 Enters elements of A.

1 1.0000

4 4.0000
8730 -0.8730 Enters A, = -0.8730

(approximation).

0.8982 |2V — 2] .*

R/S 0.0001 |z® — zV)]|.*

R/S 2.4000 -09 [z®—z?)|.*

R/S 1.0000 -10 ||z¥ —z3)|.*

R/S 0.0000 |z> — z@)|.*

1.0000
0.2254 Eigenvector for \;.

-0.5492
0 0.8485 Uses Ay =0

(approximation).

0.0000
-0.5000
1.0000 Eigenvectorfor Ao.

-0.5000
6.8730 0.7371 Uses A3 = 6.8730

(approximation).

R/S 1.9372 -06

R/S 1.0000 -10

R/S 0.0000

*The correction norms will vary, depending upon the current random number seed.

Section 4: Using Matrix Operations 159

Keystrokes Display

0.3923
0.6961 Eigenvector for As.

1.0000
1.0000 Deactivates User mode.

If matrix A is no larger than 3 X 3, this program can be included

with the previous eigenvalue program. Since the eigenvalue
program modifies matrix A, the original eigenvalues must be

saved and the original matrix reentered in matrix A before
running the eigenvector program. The following program can be

added to store the calculated eigenvalues in matrix E.

Keystrokes Display

(f)(LBL](E] 127-42,21,15
128-45,23,11

(sTO0]O 129- 44 0
1 130- 1

(f][DIM][E] 131-42,23,15 Dimensions Eton X 1.

(f](LBL]8 132-42,21, 8
[RcL]O 133- 45 0

134- 36
(RCL][g](A] 135-45,43,11 Recalls diagonal element.

(RCL]O 136- 45 0
1 137- 1

(sTo](9](E] 138-44,43,15 Storesa;;ine;.

(f](DSE]O 139-42, 5, 0
[GTo)8 140- 22 8
(f][MATRIX] 1 141-42,16, 1 ResetsRy=R;=1.

[g](RTN] 142- 43 32
(9](P/R] Run mode.

Labels used: E and 8.

Registers used: no additional registers.

Matrices used: A (from previous program) and E (eigenvalues).

To use the combined eigenvalue, eigenvalue storage, and
eigenvector programs for an A matrix up to 3 X 3:

1. Execute the eigenvalue program as described earlier.

o Section 4: Using Matrix Operations

Press [E]to store the eigenvalues.

Enter again the elements of the original matrix into A.

Recall the desired eigenvalue from matrix E using (E].

Execute the eigenvector program as described above.

S
o
k
W

D

Repeat steps 4 and 5 for each eigenvalue.

Optimization

Optimization describes a class of problems in which the object is to

find the minimum or maximum value of a specified function.
Often, the interest is focused on the behavior of the function in a

particular region.

The following program uses the method of steepest descent to

determine local minimums or maximums for a real-valued function
of two or more variables. This method is an iterative procedure that

uses the gradient of the function to determine successive sample

points. Four input parameters control the sampling plan.

For the function

f(x) :f(xla x2y eeey xn)

the gradient of f, V£, is defined by

af/axl

of/ov= 0
of/9x,,

The critical points of f(x) are the solutions to Vf(x) = 0. A critical

point may be a local minimum, a local maximum, or a point that is

neither.

The gradient of f(x) evaluated at a point x gives the direction of
steepest ascent—that is, the way in which x should be changed in
order to cause the most rapid increase in f(x). The negative

gradient gives the direction of steepest descent. The direction
vector is

-Vf(x) for finding a minimum

Vf(x) for finding a maximum.

Section 4: Using Matrix Operations 161

Once the direction is determined from the gradient, the program
looks for the optimum distance to move from X; in the direction

indicated by s;—the distance that gives the greatest improvement
in f(x) toward a minimum or maximum.

To do this, the program finds the optimum value t; by calculating
the slope of the function

&i(t) =f(x;+ts;)

at increasing values of ¢ until the slope changes sign. This
procedure is called “bounding search” since the program tries to

bound the desired value t; within an interval. When the program

finds a change of sign, it then reduces the interval by halving it
J + 1 times to find the best ¢ value near t = 0. This procedure is

called “interval reduction”—it yields more accurate values for tjas

X; converges toward the desired solution. (These two processes are

collectively called “line search.”) The new value of x is then

Xj+l = x]+ th}

The program uses four parameters that define how it proceeds

toward the desired solution. Although no method of line search can

guarantee success for finding an optimum value of ¢, the first two

parameters give you considerable flexibility in specifying how the
program samples ¢.

d Determines the initial step u; for the bounding search. The
first value of t tried is

_a
G+ Dlls;ll

This corresponds to a distance of

u=

d

Jj+1

which shows that d and the iteration number define how close

to the last x value the program starts the bounding search.

 l(x; +u;8)) — x;[lp= ’

a Determines the values uy, uj, ... of subsequent steps in the

bounding search. These values of t are defined by

Uj+1=au;

162 Section 4: Using Matrix Operations

Essentially, a is an expansion factor that is normally greater

than 1, producing an increasing sequence of values of .

Determines the acceptable tolerance on the size of the

gradient. The iterative process stops when

Ivf(x)lp<e.

Determines the maximum number of iterations that the

program will attempt in each of two procedures: the bounding

search and the overall optimization procedure. That is, the
program halts if the bounding search finds no change of sign

within N iterations. Also, the program halts if the norm of the

gradient is still too large at xy. Each of these situations results
in an Error 1 display. (They can be distinguished by pressing

(«].) You can continue running the program if you desire.

The program requires that you enter a subroutine that evaluates

f(x) and Vf(x). This subroutine must be labeled “E”’, use the vector

x stored in matrix A, return the gradient in matrix E, and place

f(x)1in the X-register.

In addition, the program requires an initial estimate x, of the

desired critical point. This vector must be stored in matrix A.

The program has the following characteristics:

The program searches for any point x where Vf(x) = O.

Nothing prevents convergence to a saddle-point, for example.

In general, you must use other means to determine the nature

of the critical point that is found. (Also, this program does not

address the problem of locating a maximum or minimum on
the boundary of the domain off(x).)

You may adjust the convergence parameters after starting the

program. In many cases, this dramatically reduces the time

necessary for convergence. Here are some helpful hints:

e If the program consistently enters the interval reduction

phase after sampling only one point u, the initial step size
may be too large. Try reducing the magnitude of d to

produce a more efficient search.

e [If the results of the bounding search look promising (that
is, the slopes are decreasing in magnitude), but then begin

to increase in magnitude, the search may have skipped

past a critical point. Try reducing a to produce more close
sampling; you may have to increase N also.

Section 4: Using Matrix Operations 163

* Youcan replace at line 102 with or perhaps delete it
entirely if you have no interest in the intermediate results.

¢ For a function of n variables, the program requires 4n + 1

registers devoted to matrices.

Keystrokes

(e](P/R]
(f]CLEAR [PRGM]
(filLeL)8

[STO][MATRIX](E]

[RCL][MATRIX](E]

[9)(RTN]
[f(LeL)7
[RCL]4
(RCL](:]6
(sTO]8
[GSB](E]
[RCL][MATRIX](E]
[STO](MATRIX] (D]
[RCL)MATRIX](D]
(e](F2)o
(CHS]

(I(MATRIX]8
(e])(x=0]
[9](RTN]

[ReL](x]8
[STO] 1
0
(sT0].0
[RCL]5
(ST0)7

Display

000-

001-42,21, 8

002-45,16,13
003-44,16,15

004-45,16,11

005-44,16,13
006-45,16,15

007-44,16.11

008- 43 32
009-42.,21, 7

010- 45 4

011-45,10, 6
012- 44 8

013- 3215

014-45,16.15
015-44,16,14
016-45,16,14
017-43, 6, O
018- 16

019-42,16, 8

020- 43 20
021- 43 32

022- 15

023-45,20, 8

024- 44

025-
026- 44

027- 45
028- 44 N

O
W
o
o

=

Program mode.

Routine to swap A and C
using E.

Line search routine.

Stores d/(j + 1) in Rp.

For minimum, changes

sign of gradient.

Calculates || V£(x)].

Exits if | v/(x)|| = 0.

Calculates u;.

Stores u; in R;.

Stores counter in R-.

164

Keystrokes

(f(teL)6
[RCL] 1
(GSB]3

[g](F?]o

(e](TEST]4
(G105

(GSB]8

[RCL] 1
(sT0].0
[RCL]2
[STOJ(x].1
(f)(DSE)7
([GTol6

(o](aBS]

(G106
((LeL]s
[RcL]6
(s10]7
(BL)4
(GsB]8

[RCL].0
[RCL](+].1
2
8
[sT0]8

(GsB]3
[g)(F2]o

Section 4: Using Matrix Operations

029-42,21, 6 Bounding search begins.

Display

030- 45 .1

031- 32 3
032- 42 31

033-43, 6, O
034- 16
035-43.,30, 4

036- 22 5

037- 32 8

038- 45 .1

039- 44 0

040- 45 2
041-44,20, 1

042-42, 5, 7

043- 22 6

044-45,16,11

045- 43 16

046- 22 6

047-42,21, 5

048- 45 6
049- 44 7

050-42,21, 4
051- 32 8

052- 45 .0
053-45,40, .1
054- 2
055- 0
056- 44 8

057- 32 3

058-43, 6, O
059- 16

Shows slope.

Tests for slope change.

Branch to interval

reduction.

Restores original matrix

to A.

Stores u;in R.

Storesu; +1inR;.

Decrements counter.

Branch to continue.

Displays Error 1 with A in
X-register.

Branch for continuation.

Interval reduction routine.

Storesj+ 1in R,.

Restores original matrix

to A.

Calculates midpoint of
interval.

Calculates slope.

Changes sign for

minimum.

Keystrokes

1
1
[sT0](M)

(Re)
(9)(TEST]1
(DsE(]
[RCL]8
(sTO)(@)

(f)(DSE]7
[GTO)4
[9](RTN]

(1[eu3
(RCL)(MATRIX] (D]
(J(RESULT](C]
(]
[RCL][MATRIX](A]
[+]
[GsB]8

(GsB](E]
(sT0]9
(RCL](MATRIX](E]
[RCL)(MATRIX](D]
[)(RESULT](B]
[][MATRIX] 5
]

(ENTER]
(ReL](a](B]
(oJ(RTN]

(BL(A)
0
(sTol6
(f(LBL]2
1

Section 4: Using Matrix Operations

Display

060- 1

061- 1

062- 44 25

063- 33

064-43,30, 1

065-42, 5,25

066- 45 8

067- 44 24

068-42, 5, 7

069- 22 4

070- 43 32

071-42,21, 3
072-45,16,14

073-42,26,13

074- 20

075-45,16,11

076- 40

077- 32 8

078- 3215

079- 44 9

080-45,16,15

081-45,16,14

082-42,26,12

083-42,16, 5

084- 1
085- 36
086-45,43,12
087- 43 32

088-42,21,11
089- 0

090- 44 6

091-42,21, 2

092- 1

165

Stores interval register

number.

Stores midpoint in Ror

R;.

Decrements counter.

Exits when counter is

Zero.

Routine to calculate slope.

Calculates point x; + ts;.

Swaps original matrix

and new point.

Calculates Vf(x)in E.

Stores f(x) in Rq.

Calculates slope as (vf)Ts.

Exits with slope in

X-register.

Main routine.

166 Section 4: Using Matrix Operations

Keystrokes

[sTOJ(+]6
(f(scns3
(GsB]7
[RCL]6
[H(Ex]o
(f](PSE]

(J(MATRIX] 1

((scu3
[RcL]9
R/S

(RCL]3

(I[MATRIX]8
(9)=<y]

(RCL]5
[RCL]6
(9)(EST)8
(GT0]2

(o](aBS]

([GT0]2
(f(eL)(E]
[e](sF)9e
R/S

Display

093-44,40, 6

094-42, 8, 3

095- 32 7

096- 45 6
097-42, 7, O

098- 42 31

099-42,16, 1

100-42, 8, 3

101- 45 9

102- 31

103- 45 3

104-45,16,15

105-42,16, 8

106- 43 10

107- 22 12

108- 42 31

109- 45 5

110- 45 6

111-43,30, 8

112- 22 2

113-45,16,13

114- 43 16

115- 22 2

116-42,21,12

117-43, 4, 9

118- 31

119- 22 12

Labels used: A, B, and 2 through 8.

Registers used: Ry through Rg, Ro, R|, and Index register.

Stores j + 11in Rg.

Branches to line search.

Pauses withj + 1in

display.

Sets Ry =R, =1 for
viewing.

Recalls f(x).

Stops program.

Recalls e.

Calculates || v£(x)||.

Tests | vf(x)| <e.

Branch for showing

solution.

Shows || vf(x).

Tests(j + 1) < N.

Branch to continue

iterating.

Displays Error 1 with C in
X-register.

Branch for continuing.

Routine to show solution.

Sets blink flag.

Stops with || v/(xj4 1)l in
display.

Looping branch.

Section 4: Using Matrix Operations 167

Matrices used: A, B, C, D, and E.

Your subroutine, labeled “E’’, may use any labels and registers not

listed above, plus the Index register, matrix B, and matrix E

(which should contain your calculated gradient).

To use the program:

1.

2.

7.

Enter your subroutine into program memory.

Press 11 [f](DIM]((i)] to reserve registers R, through R;. (Your

subroutine may require additional registers.)

Set flag 0 if you’re seeking a local minimum; clear flag 0 if

you’re seeking a local maximum.

Dimension matrix A to n X 1, where n is the number of

variables.

Store the required data in memory:

e Store the initial estimate x; in matrix A.

e StoreainR,.

e Storeein Rj.

e StoredinR,.

e Store Nin Rs.

Press to view the slopes during the iteration
procedure.

e View theiteration number and the value off(x).

If Error 1 appears, press [«] to clear the message. Then
either go back to step 5 and possibly revise parameters as
needed, or press [«] to provide one more bounding
search iteration or one more optimization iteration. (If the

descriptor of matrix A was in the display when the error
occurred, the number of bounding search iterations

exceeded N; if the descriptor of matrix C was in the
display, the number of optimization iterations exceeded
N.)

Press to view the norm of the gradient and to start the

next iteration.

If the display flashes the norm of the gradient, press
and then recall the values of x in matrix A.

168 Section 4: Using Matrix Operations

e If the iteration number and value of f(x) are displayed,

repeat this step as often as necessary to obtain the

solution or go back to step 5 and revise parameters as
needed.

Example: Use the optimization program to find the dimensions of
the box of largest volume with the sum of the length and girth
(perimeter of cross section) equaling 100 centimeters.

For this problem

I+ @2h+2w)=100

v=whl

v(w,h)=wh(100 —2~h —2w)

=100wh — 2wh?® — 2hw?

2h(50—h —2w)
Vu(w,h)=

2w(B0—w —2h)

The solution should satisfy w + A <50, w >0, and 2 > 0.

First, enter a subroutine to calculate the gradient and the volume.

Keystrokes Display

(f](LBL](E] 120-42,21,15 Function subroutine.

121-45,23,11
[f[oM)(E) 122-42,23,15
(f)[MATRIX] 1 123-42,16, 1

124u 451

2 1256- 44 .2 StoreswinR,.

(sT0](E] 126- 44 15 Stores win es.

127- 4511
.3 128- 44 .3 StoreshinRa.

(f][MATRIX] 1 129-42,16, 1
130- 44 15 Storeshine;.

131- 40
5 132- 5

0 133- 0

[134- 30

Keystrokes
E
]
N

[(xx].2
[s10](x].3
(RCL] .2
[RCL)(MATRIX](E]
[(RESULT](E]

|
|
~

[+
]
w

w

(RCL] .2
[ReL](x].3
[9)(RTN]

Section 4: Using Matrix Operations 169

Display

135- 16

136- 2

137- 20

138-42, 4, .2

139-44,20, .3

140- 45 .2

141-45,16,15

142-42,26,15

143- 20

144- 45 3

145-45,40, .3

146- 30

147- 45 .2

148-45,20, .3

149- 43 32

Calculates

1=250—h—w).

Stores /in R5.

Stores wh in R3.

Replaces e; with
le; — 2wh, the gradient

elements.

Calculates lwh.

Now enter the necessary information and run the program.

Keystrokes

(e](F/R]
13 (f][DIM] (0]
(e](cFlo

[)(MATRIX] 1
2 [ENTER]1

15 [STO](A]

3(s10]2
0.1(s10]3

0.05[STO]4

Display

13.0000

13.0000

13.0000

13.0000
1

1.0000

15.0000
15.0000

3.0000

0.1000

0.0500

Run mode.

Reserves R through R3.

Finds local maximum.

Activates User mode.

Enters dimensions for

matrix A.

Dimensions matrix A to

2X 1.

Stores initial estimate:

l=w=15.

Stores a = 3.

Storese=0.1.

Stores d = 0.05 .

170 Section 4: Using Matrix Operations

Keystrokes

4(sT0]5

Display

4.0000

4.415

4.243

3.718

2.045

Error 1

A 2

04

04

04

04

1

Stores N = 4.

Slope at u;.

Slope at us.

Slope at us.

Slope at uy.

Bounding search failed.

Since the results so far look promising (the derivatives are
decreasing in magnitude), allow five additional samples in this

bounding search and set N = 8 for all subsequent iterations.

Keystrokes

5(sT0]7
8(ST0]5
R/S

R/S

R/S

/S

8
(=
]
I x I

i
i

0
l
O

|
-

>
>

Display

5.000

8.000

-3.849

1.

9.253

3.480

1.121

9.431

4.126

-1.139

2.

9.259

5.479

-6.127

3.

9.259

7.726

7.726

0.0773
16.6661

16.6661

00

00

04

03

01

03

02

02

03

Sets counter to 5.

Sets N to 8.

Slope at us (sign change).

J+ 1.

Volume at this iteration.

Gradient.

Slope at u;.

Slope at us.

Slope at us.

Slope at u4 (sign change).

J+1.

Volume at this iteration.

Gradient.

Slope at u; (sign change).

J+1.

Volumeat this iteration.

Gradient less than e.

Stops blinking.

Recalls A from a;.

Recalls w from as,.

Section 4: Using Matrix Operations 171

Keystrokes Display

16.6661
0 16.6661 Deallocates matrix

memory.

The desired box size is 16.6661 X 16.6661 X 33.3355 centimeters. (An
alternate method of solving this problem would be to solve the

linear system represented by Vu(w,h)=0.)

Appendix

Accuracy of

Numerical Calculations

Misconceptions About Errors

Error is not sin, nor is it always a mistake. Numerical error is

merely the difference between what you wish to calculate and what
you get. The difference matters only if it is too big. Usually it is

negligible; but sometimes error is distressingly big, hard to

explain, and harder to correct. This appendix focuses on errors,
especially those that might be large—however rare. Here are some
examples.

Example 1: A Broken Calculator. Since (\/;)2 = x whenever
x =0, we expect also

f(x) = (.. (V- VD2)22
S i,

50 50

roots squares

should equal x too.

A program of 100 steps can evaluate the expression f(x) for any
positive x. When x = 10 the HP-15C calculates 1 instead. The error
10 —1 =9 appears enormous considering that only 100 arithmetic
operations were performed, each one presumably correct to 10

digits. What the program actually delivers instead of f(x) = x turns
out to be

1 forx>=1

flx)= 0 for0<x <1,

which seems very wrong. Should this calculator be repaired?

172

Appendix: Accuracy of Numerical Calculations 173

Example 2: Many Pennies. A corporation retains Susan as a

scientific and engineering consultant at a fee of one penny per

second for her thoughts, paid every second of every day for a year.

Rather than distract her with the sounds of pennies dropping, the

corporation proposes to deposit them for her into a bank account in

which interest accrues at the rate of 11% percent per annum

compounded every second. At year’s end these pennies will
accumulate to a sum

(I1+i/n)"—1
total = (payment) X

/'n

where payment=3$0.01 = one penny per second,

1=0.1125=11.25 percent per annum interest rate,

n =60 X 60 X 24 X 365 = number of seconds in a year.

Using her HP-15C, Susan reckons that the total will be

$376,877.67 . But at year’s end the bank account is found to hold

$333,783.35 . Is Susan entitled to the $43,094.32 difference?

In both examples the discrepancies are caused by rounding errors

that could have been avoided. This appendix explains how.

The war against error begins with a salvo against wishful

thinking, which might confuse what we want with what we get. To
avoid confusion, the true and calculated results must be given

different names even though their difference may be so small that

the distinction seems pedantic.

Example 3: Pi. The constant = =3.1415926535897932384626433....

Pressing the [r]key on the HP-15C delivers a different value

(=)= 3.141592654

which agrees with 7 to 10 significant digits. But # 1, SO wWe
should not be surprised when, in Radians mode, the calculator
doesn’t produce sin [x]=0.

Suppose we wish to calculate x but we get X instead. (This
convention is used throughout this appendix.) The error is x — X.
The absolute error is| x — X|. The relative error is usually reckoned

(x— X)/x for x #0.

174 Appendix: Accuracy of Numerical Calculations

Example 4: A Bridge Too Short. The lengths in meters of three

sections of a cantilever bridge are designed to be

x =333.76 y=195.07 z2=333.76.

The measured lengths turn out to be respectively

X=333.69 Y =195.00 Z=333.72.

The discrepancy in total length is

d=(xty+tz)—(X+Y+Z)=862.59 —862.41 =0.18.

Ed, the engineer, compares the discrepancy d with the total length

(x + y + z) and considers the relative discrepancy

d/(x+y+2)=0.0002 =2 parts in 10,000

to be tolerably small. But Rhonda, the riveter, considers the

absolute discrepancy | d| = 0.18 meters (about 7 inches) much too
large for her liking; some powerful stretching will be needed to line
up the bridge girders before she can rivet them together. Both see
the same discrepancy d, but what looks neglibible to one person
can seem awfully big to another.

Whether large or small, errors must have sources which, if

understood, usually permit us to compensate for the errors or to
circumvent them altogether. To understand the distortions in the
girders of a bridge, we should learn about structural engineering

and the theory of elasticity. To understand the errors introduced by

the very act of computation, we should learn how our calculating
instruments work and what are their limitations. These are details
most of us want not to know, especially since a well-designed

calculator’s rounding errors are always nearly minimal and

therefore appear insignificant when they are introduced. But when
on rare occasions they conspire to send a computation awry, they

must be reclassified as “significant” after all.

Appendix: Accuracy of Numerical Calculations 175

Example 1 Explained. Here f(x) = s(r(x)), where

r(x) =VoVvE = 2050
Sesass,

50

roots

and

$(r)=((... (r)2)2..)2)2 = p2°0),
N—

50
squares

The exponents are %4°0=8.8818X 1071 and 2°0=1.1259 X 101°.
Now, x must lie between 107% and 9.999 ... X 10%? since no positive

numbers outside that range can be keyed into the calculator. Since
ris an increasing function, r(x) lies between

r(10799) = 0.9999999999997975 ...

and

r(1019%) = 1.0000000000002045

This suggests that R(x), the calculated value of r(x), would be 1 for

all valid calculator arguments x. In fact, because of roundoff,

R(x)= 0.9999999999 for0<x<1

1.000000000 for 1 < x <9.999999999 X 10%.

If 0<x<1, then x<0.9999999999 in a 10-digit calculator. We

would then rightly expect that \/x <1/0.9999999999, which is
0.999999999949999999998... , which rounds to 0.9999999999 again.

Therefore, if is pressed arbitrarily often starting with x <1, the

result cannot exceed 0.9999999999 . This explains why we obtain
R(x)=10.9999999999 for 0 <x <1 above. When R(x) is squared 50

times to produce F(x) = S(R(x)), theresult is clearly 1 for x = 1, but
whyis F(x)=0for0<x <1? When x <1,

s(R(x)) < 5(0.9999999999) = (1 — 10710)2°° ~ .14 X 10748898,

176 Appendix: Accuracy of Numerical Calculations

This value is so small that the calculated value F(x)=S(R(x))

underflows to 0. So the HP-15C isn’t broken;it is doing the best that

can be done with 10 significant digits of precision and 2 exponent

digits.

We have explained example 1 using no more information about the
HP-15C than that it performs each arithmetic operation and [x?]
fully as accurately as is possible within the limitations of 10
significant digits and 2 exponent digits. The rest of the information

we needed was mathematical knowledge about the functions f, r,

and s. For instance, the value r(10!%°) above was evaluated as

r(10100) = (10100)(1/150)

= exp (In (101%%)/259)

= exp (100 (In 10)/2%0)

= exp (2.045 X 10713)

=1+ (2.045X 10713) + 14(2.045 X 10713)2 + ...

by using the series exp (z) =1+ 2z + %22+ V623 +

Similarly, the binomial theorem was used for

\/0.9999999999 = (1 — 10710)*

=1— %1010 — 14107192 — ...

These mathematical facts lie well beyond the kind of knowledge
that might have been considered adequate to cope with a
calculation containing only a handful of multiplications and
square roots. In this respect, example 1 illustrates an unhappy

truism: Errors make computation very much harder to analyze.
That is why a well-designed calculator, like the HP-15C, will
introduce errors of its own as sparingly as is possible at a tolerable
cost. Much more error than that would turn an already difficult
task into something hopeless.

Example 1 should lay two common misconceptions to rest:

* Rounding errors can overwhelm a computation only if vast

numbers of them accumulate.

* A few rounding errors can overwhelm a computation only if

accompanied by massive cancellation.

Appendix: Accuracy of Numerical Calculations 177

Regarding the first misconception, example 1 would behave in the

same perverse way if it suffered only one rounding error, the one

that produces R(x) =1 or 0.9999999999, in error by less than one

unit in its last (10th) significant digit.

Regarding the second misconception, cancellation is what happens
when two nearly equal numbers are subtracted. For example,

calculating

c(x)=(1—cosx)/x?

in Radians mode for small values of x is hazardous because of

cancellation. Using x = 1.2 X 107 and rounding results to 10 digits,

cos x = 0.9999999999

and

1 — cos x = 0.0000000001

with cancellation leaving maybe one significant digit in the
numerator. Also

x2=1.44 X 10710,

Then

C(x)=0.6944 .

This calculated value is wrong because 0 < c(x) < Yfor all x # 0. To

avoid numerical cancellation, exploit the trigonometric identity
cos x =1 — 2sin?(x/2) to cancel the 1 exactly and obtain a better
formula

1 sin(x/2) \?
cx)y=—|——1).

2 x/2

When this latter expression is evaluated (in Radians mode) at

x=1.2X10"°, the computed result C(x)=0.5 is correct to 10

significant digits. This example, while explaining the meaning of
the word ‘““cancellation,” suggests that it is always a bad thing.

That is another misconception to be dispatched later. For the

178 Appendix: Accuracy of Numerical Calculations

present, recall that example 1 contains no subtraction, therefore no

cancellation, and is still devastated by its rounding error. In this

respect example 1 is counterintuitive, a little bit scary. Nowhere in

it can we find one or two arithmetic operations to blame for the
catastrophe; no small rearrangement will set everything right as
happened for c(x). Alas, example 1 is not an isolated example. As

computers and calculators grow in power, so do instances of
insidious error growth become more common.

To help you recognize error growth and cope with it is the ultimate
goal of this appendix. We shall start with the simplest kinds of

errors and work our way up gradually to the subtle errors that can

afflict the sophisticated computations possible on the HP-15C.

A Hierarchy of Errors
Some errors are easier to explain and to tolerate than others.

Therefore, the functions delivered by single keystrokes on the

HP-15C have been categorized, for the purposes of easier
exposition, according to how difficult their errors are to estimate.

The estimates should be regarded as goals set by the calculator’s

designers rather than as specifications that guarantee some stated
level of accuracy. On the other hand, the designers believe they can

prove mathematically that their accuracy goals have been

achieved, and extensive testing has produced no indication so far

that they might be mistaken.

Level O: No Error

Functions which should map small integers (smaller than 101°) to

small integers do so exactly, without error, as you might expect.

Examples:

Va=2 —23=-8 320 = 3,486,784,401

log (109 =9 6! = 720

cos™1(0) =90 (in Degrees mode)

ABS(4,684,660 + 4,684,659:) = 6,625,109 (in Complex mode)

Also exact for real argments are [ABS], [FRAC], [INT], [RND], and
comparisons (such as[x<y]). But the matrix functions (x], (¢], [1/x],
(MATRIX]6, and [MATRIX]9 (determinant) are exceptions (refer to
page 192).

Appendix: Accuracy of Numerical Calculations 179

Level e°: Overflow/Underflow

Results which would lie closer to zero than 102 underflow quietly

to zero. Any result that would lie beyond the overflow thresholds

1+9.999999999 X 10% is replaced by the nearest threshold, and then

flag 9 is set and the display blinks. (Pressing or [CF]9 or [«]
will clear flag 9 and stop the blinking.) Most functions that result
in more than one component can tolerate overflow/underflow in

one component without contaminating the other; examples are
(#R], [*P], complex arithmetic, and most matrix operations. The

exceptions are matrix inversion ([1/x] and [z]), [MATRIX]9
(determinant), and [L.R.].

Level 1: Correctly Rounded, or Nearly So

Operations that deliver “correctly rounded” results whose error

cannot exceed '4 unit in their last (10th) significant digit include

the real algebraic operations (+], (-], [x], (2], (%], ,(1/x], and [%],

the complex and matrix operations and [-], matrix by scalar
operations [x] and [z] (excluding division by a matrix), and [®H.MS].

These results are the best that 10 significant digits can represent,

as are familiar constants (], 1 [¢*], 2 [LN], 10 [LN], 1 [®RAD], and
many more. Operations that can suffer a slightly larger error, but

still significantly smaller than one unit in the 10th significant digit

of the result, include [A%], [®H], [®RAD], [®DEG], [Py.x], and [Cy.x];

(LN], [LOG], [10%], and [TANH] for real arguments; [+P], [SIN"], [COST],
(TANT], [SINH'], [COSHT], and [TANH'] for real and complex
arguments; [ABS], [z}, and for complex arguments; matrix
norms 7 and 8; and finally [SIN], [COS], and
for real arguments in Degrees and Grads modes (but not in

Radians mode—refer to Level 2, page 184).

A function that grows to % or decays to 0 exponentially fast as its

argument approaches to may suffer an error larger than one unit

in its 10th significant digit, but only if its magnitude is smaller

than 10720 or larger than 10%°; and though the relative error gets
worse as the result gets more extreme (small or large), the error

stays below three units in the last (10th) significant digit. The
reason for this error is explained later. Functions so affected are
(e*], [*], [x!] (for noninteger x), [SINH], and for real
arguments. The worst case known is 32!, which is calculated as

7.968419664 X 10%°. The last digit 4 should be 6 instead, as is the

case for 7.29%3, calculated as 7.968419666 X 1028,

180 Appendix: Accuracy of Numerical Calculations

The foregoing statements about errors can be summarized for all

functions in Level 1 in a way that will prove convenient later:

Attempts to calculate a function f in Level 1 produce
instead a computed value F = (1 + ¢)f whose relative error

¢, though unknown,is very small:

] < 5% 10710 ifF is correctly rounded

1Xx107° for all other functions F in Level 1.

This simple characterization of all the functions in Level 1 fails to
convey many other important properties they all possess,
properties like

e Exactinteger values: mentioned in Level 0.

e Sign symmetry: sinh(—x)=—sinh(x), cosh(—x)= cosh(x),

In(1/x) = —In(x) (if 1/x is computed exactly).

e Monotonicity: if f(x) = f(y), then computed F(x) = F(y).

These additional properties have powerful implications; for

instance, TAN(20°) = TAN(200°) = TAN(2,000°) = ... =
TAN(2 X 109 °) = 0.3639702343 correctly. But the simple character-

ization conveys most of what is worth knowing, and that can be

worth money.

Example 2 Explained. Susan tried to calculate

1+i/n)*—1
total = payment X

i/n

where

payment = $0.01,

1 =0.1125, and

n =60 X 60 X 24 X 365 = 31,536,000.

She calculated $376,877.67 on her HP-15C, but the bank’s total was

$333,783.35, and this latter total agrees with the results calculated

on good, modern financial calculators like the HP-12C, HP-37E,
HP-38E/38C, and HP-92. Where did Susan’s calculation go awry?
No severe cancellation, no vast accumulation of errors; just one

rounding error that grew insidiously caused the damage:

Appendix: Accuracy of Numerical Calculations 181

1/n=0.000000003567351598

1+i/n=1.000000004

when rounded to 10 significant digits. There is the rounding error

that hurts. Subsequently attempting to calculate (1 +i/n)", Susan
must get instead (1.000000004)31:°36:000 =1 134445516, which is
wrong in its second decimal place.

How can the correct value be calculated? Only by not throwing
away so many digits of i/n. Observe that

(1 + i/n)n = on In(1 +i/n),

so we might try to calculate the logarithm in some way that does

not discard those precious digits. An easy way to do so on the
HP-15C does exist.

To calculate A(x) =In(1 + x) accurately for all x > —1, even if | x| is

very small:

1. Calculate u =1+ x rounded.

2. Then

ifu=1
AMx)=

In(u)x/(u—1) ifu#1.

The following program calculates A(x) =In(1 + x).

Keystrokes Display

(9](P/R]
CLEAR 000-

001-42,21,11 Assumes x is in X-register.

002- 36
003- 36

EEX 004- 26 Places 1 in X-register.

005- 40 Calculatesu=1+x
rounded.

(g][LN] 006- 43 12 CalculatesIn(u) (zero for
u=1).

(x%y] 007- 34 Restores x to X-register.

(g](LSTx] 008- 4336 Recallsu.

182 Appendix: Accuracy of Numerical Calculations

Keystrokes Display

EEX 009- 26 Places1in X-register.

[9])[TEST)6 010-43,30, 6 Testsu# 1.
(-] 011- 30 Calculatesu —1 when

u#1.

(<) 012- 10 Calculatesx/(u—1)or
1/1.

(x] 013- 20 Calculates A(x).

(9)[RTN) 014- 4332

(eJ(P/R]

The calculated value of u, correctly rounded by the HP-15C, is
u=(1+¢ (1+x),wherele] <5X 10719 Ifu = 1, then

lx| =]1/1+ ¢ — 1 <5X 10710

too, in which case the Taylor series A(x) = x (1 — Yox + 4x2 — ..)

tells us that the correctly rounded value of A(x) must be just x.
Otherwise, we shall calculate x A(u — 1)/(u — 1) fairly accurately

instead of A(x). But A(x)/x =1 — Y%x + Y3x2 — ... varies very slowly,

so slowly that the absolute error A(x)/x — AMu — 1)/(u — 1) is no

worse than the absolute errorx — (v — 1) = —¢(1 + x),and ifx < 1,

this error is negligible relative to A(x)/x. When x > 1, thenu — 11is

so nearly x that the error is negligible again; A(x) is correct to nine

significant digits.

As usual in error analyses, the explanation is far longer than the

simple procedure being explained and obscures an important fact:
the errors in In(uz) and u — 1 were ignored during the explanation

because we knew they would be negligible. This knowledge, and
hence the simple procedure, is invalid on some other calculators

and big computers! Machines do exist which calculate In(z) and/or

1 — u with small absolute error, but large relative error when u is

near 1; on those machines the foregoing calculations must be

wrong or much more complicated, often both. (Refer to the

discussion under Level 2 for more about this.)

Back to Susan’s sum. By using the foregoing simple procedure to
calculate A(i/n)=1In(1 +i/n)=3.567351591 X 10?, she obtains a

better value:

(1+i/n)r=enri/n) =1119072257

Appendix: Accuracy of Numerical Calculations 183

from which the correct total follows.

To understand the error in 3%°!, note that this is calculated as

e2011n(3) = £220.821... Tkeep the final relative error below one unit in

the 10th significant digit, 201 In(3) would have to be calculated

with an absolute error rather smaller than 1071, which would

entail carrying at least 14 significant digits for that intermediate
value. The calculator does carry 13 significant digits for certain

intermediate calculations of its own, but a 14th digit would cost
more than it’s worth.

Level 1C: Complex Level 1
Most complex arithmetic functions cannot guarantee 9 or 10

correct significant digits in each of a result’s real and imaginary
parts separately, although the result will conform to the summary

statement about functions in Level 1 provided f, F, and ¢ are
interpreted as complex numbers. In other words, every complex

function f in Level 1C will produce a calculated complex value

F=(1 +¢)f whose small complex relative error ¢ must satisfy

|e] <1079. The complex functions in Level 1C are [x], (5], (7], [LN],

[LOG], [SINT], [cOST], (TANT], [SINHT], [COSH"], and [TANHT]. Therefore,
a function like A(2) =In(1 + z) can be calculated accurately for all z

by the same program as given above and with the same

explanation.

To understand why a complex result’s real and imaginary parts

might not individually be correct to 9 or 10 significant digits,

consider [x], for example: (a + ib) X (¢ + id) = (ac — bd) + i(ad + bc)

ideally. Try this with a =¢=9.999999998, b =9.999999999, and

d =9.999999997; the exact value of the product’s real part (ac — bd)

should then be

(9.999999998)% — (9.999999999) (9.999999997)

= 99.999999980000000004 — 99.999999980000000003

=10"18

which requires that at least 20 significant digits be carried during
the intermediate calculation. The HP-15C carries 13 significant
digits for internal intermediate results, and therefore obtains 0

instead of 107!® for the real part, but this error is negligible
compared to the imaginary part 199.9999999 .

184 Appendix: Accuracy of Numerical Calculations

Level 2: Correctly Rounded for Possibly

Perturbed Input

Trigonometric Functions of Real Radian Angles

Recall example 3, which noted that the calculator’s [r]key delivers
an approximation to 7 correct to 10 significant digits but still

slightly different from 7, so 0 = sin(w) # sin ([r]) for which the

calculator delivers

(SIN])([xr]) = -4.100000000 X 10719,

This computed value is not quite the same as the true value

sin ([]) =-4.10206761537356... X 10710,

Whether the discrepancy looks small (absolute error less than 2.1

X 10713) or relatively large (wrong in the fourth significant digit) for

a 10-significant-digit calculator, the discrepancy deserves to be
understood because it foreshadows other errors that look, at first

sight, much more serious.

Consider

107 = 314159265358979.3238462643...

with sin (10147) =0 and

10" X = 314159265400000

with (10™[x]) =0.7990550814, although the true

sin (104(7]) =-0.78387....

The wrong sign is an error too serious to ignore; it seems to suggest

a defect in the calculator. To understand the error in trigonometric

functions we must pay attention to small differences among 7 and

two approximations to m:

true m=3.1415926535897932384626433...

key = 3.141592654 (matches 7 to 10 digits)
internal p = 3.141592653590 (matches 7 to 13 digits)

Then all is explained by the following formula for the calculated
value: [SIN](x) = sin(xn/p) to within +0.6 units in its last (10th)

significant digit.

More generally, if trig(x) is any of the functions sin(x), cos(x), or

tan(x), evaluated in real Radians mode, the HP-15C produces

Appendix: Accuracy of Numerical Calculations 185

(TRIG)(x) = trig(x 7/p)

to within 0.6 units in its 10th significant digit.

This formula has important practical implications:

e Since 7/p =1 — 2.0676... X 10713/p = 0.9999999999999342...,

the value produced by [TRIG](x) differs from trig(x) by no more

than can be attributed to two perturbations: one in the 10th

significant digit of the output trig(x), and one in the 13th

significant digit of the input x.

If x has been calculated and rounded to 10 significant digits,

the error inherited in its 10th significant digit is probably

orders of magnitude bigger than [TRIG]’s second perturbation
in x’s 13th significant digit, so this second perturbation can be

ignored unless x is regarded as known or calculated exactly.

¢ Every trigonometric identity that does not explicitly involve =
is satisfied to within roundoff in the 10th significant digit of
the calculated values in the identity. For instance,

sin?(x) + cos*(x) = 1, so ([SIN](x))? + ([COS)(x))? = 1

sin(x)/cos(x) = tan(x), so [SIN](x)/[COS](x) = [TAN](x)

with each calculated result correct to nine significant digits

for all x. Note that [COS](x) vanishes for no value of x
representable exactly with just 10 significant digits. And if 2x

can be calculated exactly given x,

sin(2x) = 2sin(x)cos(x), so [SIN](2x) = 2 [SIN](x)[COS](x)

to nine significant digits. Try the last identity for x = 52174

radians on the HP-15C:

[SIN)(2x) = -0.00001100815000,

2[SIN](x)[COS](x) = -0.00001100815000 .

Note the close agreement even though for this x, sin(2x) =

2sin(x)cos(x) =-0.0000110150176... disagrees with [SIN](2x) in

its fourth significant digit. The same identities are satisfied by

[TRIG](x) values as by trig(x) values even though [TRIG](x) and
trig(x) may disagree.

® Despite the two kinds of errors in [TRIG], its computed values
preserve familiar relationships wherever possible:

* Sign symmetry: (COS](-x) =[COS](x)
[SIN](-x) = -[SIN](x)

186 Appendix: Accuracy of Numerical Calculations

e Monotonicity: if trig(x) = trig(y),

then (TRIG)(x) = [TRIG](y)
(provided | x — y| < 3)

o Limiting inequalities: [SIN](x)/x<1forallx#0
(TAN](x)/x=1for 0 <|x| < m/2

-1<[SIN](x) and [COS](x) < 1
for all x

What do these properties imply for engineering calculations? You

don’t have to remember them!

In general, engineering calculations will not be affected by the
difference between p and m, because the consequences of that

difference in the formula defining [TRIG](x) above are swamped by
the difference between and 7 and by ordinary unavoidable

roundoff in x or in trig(x). For engineering purposes, the ratio =/p

= 0.9999999999999342... could be replaced by 1 without visible

effect upon the behavior of [TRIG].

Example 5: Lunar Phases. If the distance between our Earth

and its moon were known accurately, we could calculate the phase
difference between radar signals transmitted to and reflected from
the moon. In this calculation the phase shift introduced by p # =

has less effect than changing the distance between Earth and
moon by as little as the thickness of this page. Moreover, the

calculation of the strength, direction, and rate of change of

radiated signals near the moon or reflected signals near the Earth,

calculations that depend upon the trigonometric identities’

continuing validity, are unaffected by the fact that p # ; they rely

instead upon the fact that p is a constant (independent of x in the

formula for (TRIG](x)), and that constant is very near .

The HP-15C’s keyboard functions that involve p are the
trigonometric functions [SIN], [COS], and for real and complex
arguments; hyperbolic functions [SINH], [COSH], and for
complex arguments; complex operations [e*], [10*], and [y*]; and
real and complex [®R].

It all seems like much ado about very little. After a blizzard of
formulas and examples, we conclude that the error caused by p # =

is negligible for engineering purposes, so we need not have
bothered to know about it. That is the burden that conscientious

error analysts must bear; if they merely took for granted that small

errors are negligible, they might be wrong.

Appendix: Accuracy of Numerical Calculations 187

Backward Error Analysis

Until the late 1950’s, most computer experts inclined to paranoia in

their assessments of the damage done to numerical computations
by rounding errors. To justify their paranoia, they could cite

published error analyses like the one from which a famous scientist

concluded that matrices as large as 40 X 40 were almost certainly

impossible to invert numerically in the face of roundoff. However,
by the mid 1960’s matrices as large as 100 X 100 were being

inverted routinely, and nowadays equations with hundreds of

thousands of unknowns are being solved during geodetic
calculations worldwide. How can we reconcile these accomplish-

ments with the fact that that famous scientist’s mathematical

analysis was quite correct?

We understand better now than then why different formulas to
calculate the same result might differ utterly in their degradation
by rounding errors. For instance, we understand why the normal

equations belonging to certain least-squares problems can be

solved only in arithmetic carrying extravagantly high precision;
this is what that famous scientist actually proved. We also know

new procedures (one is presented on page 140) that can solve the

same least-squares problems without carrying much more
precision than suffices to represent the data. The new and better

numerical procedures are not obvious, and might never have been
found but for new and better techniques of error analysis by which
we have learned to distinguish formulas that are hypersensitive to

rounding errors from formulas that aren’t. One of the new (in 1957)

techniques is now called “backward error analysis,” and you have

already seen it in action twice:first, it explained why the procedure
that calculates A(x) is accurate enough to dispel the inaccuracy in
example 2; next, it explained why the calculator’s functions

very nearly satisfy the same identities as are satisfied by trig

functions even for huge radian arguments x at which [TRIG](x) and
trig(x) can be very different. The following paragraphs explain

backward error analysis itself in general terms.

Consider some system F intended to transform an input x into an
output ¥y = f(x). For instance, F could be a signal amplifier, a filter,

a transducer, a control system, a refinery, a country’s economy, a

computer program, or a calculator. The input and output need not

be numbers; they could be sets of numbers or matrices or anything
else quantitative. Were the input x to be contaminated by noise Ax,

188 Appendix: Accuracy of Numerical Calculations

then in consequence the output y + Ay = f(x + Ax) would generally

be contaminated by noise Ay = f(x + Ax) — f(x).

Ax

xy=f(x) X (4) y =f(x + Ax)

No Noise Noisy Input

Some transformations f are stable in the presence of input noise;
they keep Ay relatively small as long as Ax is relatively small.

Other transformations f may be unstable in the presence of noise

because certain relatively small input noises Ax cause relatively
huge perturbations Ay in the output. In general, the input noise Ax
will be colored in some way by the intended transformation fon the
way from input to output noise Ay, and no diminution in Ay is

possible without either diminishing Ax or changing f. Having

accepted f as a specification for performance or as a goal for
design, we must acquiesce to the way f colors noise at its input.

The real system F differs from the intended f because of noise or

other discrepancies inside F. Before we can appraise the
consequences of that internal noise we must find a way to

represent it, a notation. The simplest way is to write

F(x)=(f+6f)x)

where the perturbation 6f represents the internal noise in F.

One Small Output Perturbation (Level 1)

We hope the noise term 6fis negligible compared with f. When that
hope is fulfilled, we classify F in Level 1 for the purposes of

Appendix: Accuracy of Numerical Calculations 189

exposition; this means that the noise internal to F can be explained

as one small addition 6/ to the intended output f.

For example, F(x) = [LN](x) is classified in Level 1 because the

dozens of small errors committed by the HP-15C during its

calculation of F(x) = (f + 6f)(x) amounts to a perturbation 8f(x)
smaller than 0.6 in the last (10th) significant digit of the desired

output f(x) = In(x). But F(x) =[SIN](x) is not in Level 1 for radian x

because F(x) can differ too much from f(x) = sin(x); for instance

F(10'%[x]) =0.799... is opposite in sign from f(10'4[x]) = —0.784...,
so the equation F(x) = (f+ 6f)(x) can be true only if §f is sometimes

rather bigger than f, which looks bad.

Real systems more often resemble than [LN]. Noise in most real
systems can accumulate occasionally to swamp the desired output,
at least for some inputs, and yet such systems do not necessarily

deserve condemnation. Many a real system F operates reliably
because its internal noise, though sometimes large, never causes

appreciably more harm than might be caused by some tolerably
small perturbation éx to the input signal x. Such systems can be
represented as

F(x)=(f+6f)x+ 6x)

where 6f is always small compared with f and éx is always smaller
than or comparable with the noise Ax expected to contaminate x.
The two noise terms 6f and dx are hypothetical noises introduced to
explain diverse noise sources actually distributed throughout F.

Some of the noise appears as a tolerably small perturbation éx to
the input—hence the term ‘“backward error analysis.” Such a
system F, whose noise can be accounted for by two tolerably small
perturbations, is therefore classified into Level 2 for purposes of
exposition.

Small Input and Output Perturbations (Level 2)

190 Appendix: Accuracy of Numerical Calculations

No difference will be perceived at first between Level 1 and Level 2

by readers accustomed to linear systems and small signals because
such systems’ errors can be referred indiscriminately to output or

input. However, other more general systems that are digital or
nonlinear do not admit arbitrary reattribution of output noise to

input noise nor vice-versa.

For example, can all the error in be attributed, merely by

writing [COS](x) = cos(x + 8x), to an input perturbation 6x small
compared with the input x? Not when x is very small. For instance,
when x approaches 107 radians, then cos(x) falls very near

0.99999999995 and must then round to either 1 = cos(0) or

0.9999999999 = cos(1.414... X 107°). Therefore [COS](x) = cos(x + 6x)
is true only if dx is allowed to be relatively large, nearly as large as
x when x is very small. If we wish to explain the error in by

using only relatively small perturbations, we need at least two of

them: one a perturbation 6x = (-6.58... X 10%)x smaller than

roundoff in the input; and another in the output comparable with
roundoff there, so that [COS](x) = (cos + 6cos)(x + 8x) for some

unknown |6cos| < (6 X 1071%]cos].

Like [COS], every system F in Level 2 is characterized by just two
small tolerances—call them ¢ and n—that sum up all you have to
know about that system’s internal noise. The tolerance ¢ constrains
a hypothetical output noise, |6f| < ¢€|f|, and n constrains a
hypothetical input noise, | §x| < n| x|, that might appear in a simple
formula like

F(x)=(+6f)(x+6x) for|6f|<elf] and |6x|< n|x]|.

The goal of backward error analysis is to ascertain that all the

internal noise of F really can be encompassed by so simple a
formula with satisfactorily small tolerances ¢ and n. At its best,

backward error analysis confirms that the realized value F(x)

scarcely differs from the ideal value f(x + 6x) that would have been

produced by an input x + 8x scarcely different from the actual

input x, and gives the word “‘scarcely’” a quantitative meaning (e

and 7). But, backward error analysis succeeds only for systems F

designed very carefully to ensure that every internal noise sourceis

equivalent at worst to a tolerably small input or output
perturbation. First attempts at system design, especially programs
to perform numerical computations, often suffer from internal
noise in a more complicated and disagreeable way illustrated by

the following example.

Appendix: Accuracy of Numerical Calculations 191

Example 6: The Smaller Root of a Quadratic. The two roots x

and y of the quadratic equation ¢ — 2bz + az2 = 0 are real whenever

d = b® — ac is nonnegative. Then the root y of smaller magnitude

can be regarded as a function y = f(a,b,c) of the quadratic’s

coefficients

(b—+/dsgn(b))/a ifa#0
’b’ =

fla,b,e) (c/b)/2 otherwise.

Were this formula translated directly in a program F(a, b, ¢)
intended to calculate f(a, b, ¢), then whenever ac is so small

compared with b2 that the computed value of d rounds to b2, that
program could deliver F = 0 even though f# 0. So drastic an error

cannot be explained by backward error analysis because no

relatively small perturbations to each coefficient a, b, and ¢ could
drive c to zero, as would be necessary to change the smaller root y

into 0. On the other hand, the algebraically equivalent formula

c/(b+\/dsgn(b)) if divisor is nonzero

otherwise
fla,b,c)=

translates into a much more accurate program F whose errors do

no more damage than would a perturbation in the last (10th)

significant digit of c. Such a program will be listed later (page 205)
and must be used in those instances, common in engineering, when

the smaller root y is needed accurately despite the fact that the

quadratic’s other unwanted root is relatively large.

Almost all the functions built into the HP-15C have been designed

so that backward error analysis will account for their errors

satisfactorily. The exceptions are [SOLVE], [/;], and the statistics
keys [s], [LR.], and which can malfunction in certain
pathological cases. Otherwise, every calculator function F

intended to produce f(x) produces instead a value F(x) no farther

from f(x) than if first x had been perturbed to x + 6x with |6x| < n|x|,
then f(x + 6x) were perturbed to (f + 6f)(x + 6x) with |6f| < ¢|f|. The

tolerances n and e vary a little from function to function; roughly
speaking,

n=0ande<107 for all functions in Level 1,

n<10'?and e<6 X 107" for other real and complex functions.

192 Appendix: Accuracy of Numerical Calculations

For matrix operations, the magnitudes |6x|, |x|,|8f], and |f| must be
replaced by matrix norms ||é6x||, ||x||, |6f|l, and ||[f|| respectively,
which are explained in section 4 and evaluated using [MATRIX]7 or

8. Then all matrix functions not in Level 1 fall into Level 2
with roughly

n<10'%n and e< 107 for matrix operations (other than
determinant 9,(z], and [1/x])

n<10®nande< 107 for determinant 9,(1/x],
and (] with a matrix divisor

where n is the largest dimension of any matrix involved in the
operation.

The implications of successful backward error analysis look simple
only when the input data x comes contaminated by unavoidable

and uncorrelated noise Ax, as is often the case. Then when we wish

to calculate f(x), the best we could hope to get is f(x + Ax), but we
actually get F(x + Ax) = (f + 6f)(x + Ax + 6x), where|6f| < ¢|f| and

|62| < mlx].
What we get is scarcely worse than the best we could hope for
provided the tolerances ¢ and n are small enough, particularly if

|Ax|is likely to be at least roughly as big as n|x|. Of course, the best
we could hope for may be very bad, especially if f possesses a

singularity closer to x than the tolerances upon x’s perturbations
Ax and 6x.

Backward Error Analysis Versus Singularities

The word ‘“singularity”’ refers to both a special value of the
argument x and to the way f(x) misbehaves as x approaches that
special value. Most commonly, f(x) or its first derivative f'(x) may

become infinite or violently oscillatory as x approaches the
singularity. Sometimes the singularities of In|f| are called

singularities of f, thereby including the zeros of f among its
singularities; this makes sense when the relative accuracy of a

computation of f is at issue, as we shall see. For our purposes the
meaning of “singularity’ can be left a little vague.

What we usually want to do with singularities is avoid or
neutralize them. For instance, the function

(1 — cos x)/x> ifx#0
c(x)=

1/2 otherwise

Appendix: Accuracy of Numerical Calculations 193

has no singularity at x = 0 even though its constituents 1 — cos x

and x2 (actually, their logarithms) do behave singularly as x

approaches 0. The constituent singularities cause trouble for the

program that calculates c(x). Most of the trouble is neutralized by

the choice of a better formula

1 sin (x/2)

c(x)= 2 x/2

1/2 otherwise.

2
) ifx/2#0

Now the singularity can be avoided entirely by testing whether

x/2=0in the program that calculates c(x).

Backward error analysis complicates singularities in a way that is

easiest to illustrate with the function A(x) = In(1 + x) that solved
the savings problem in example 2. The procedure used there

calculated u =1+ x (rounded) =1 + x + Ax. Then

ifu=1
Ax)= ,

In(u)x/(u—1) otherwise.

This procedure exploits the fact that A(x)/x has a removable

singularity at x = 0, which means that A(x)/ x varies continuously

and approaches 1 as x approaches 0. Therefore, A(x)/ x is relatively

closely approximated by A(x + Ax)/(x + Ax) when|Ax| <107, and

hence

Mx)=x(Mx)/x)=x(Mx+ Ax)/(x+ Ax)) = x(In(u)/(u—1)),

all calculated accurately because is in Level 1. What might

happen if [LN] were in Level 2 instead?

If were in Level 2, then “successful” backward error analysis
would show that, for arguments u near 1, [LN](«) = In(u + du) with

|6u| < 10°. Then the procedure above would produce not

x(In(u)/(u—1)), but

x(In(u+du)/(u—1)=xAMx+Ax+ou)/(x+ Ax)

x+Ax+déu
=x(Mx+Ax+ou)/(x+Ax+6béu)—/

x+ Ax

=x(Mx)/ x)1+du/(x+ Ax))

=NMx)1+déu/(x+ Ax)).

194 Appendix: Accuracy of Numerical Calculations

When |x + Ax|is not much bigger than 107, the last expression can

be utterly different from A(x). Therefore, the procedure that solved
example 2 would fail on machines whose is not in Level 1.

There are such machines, and on them the procedure does collapse

for certain otherwise innocuous inputs. Similar failures also occur
on machines that produce (z + 8 u) — 1 instead of u — 1 because

their [-] function lies in Level 2 instead of Level 1. And those
machines that produce In(z + du)/(u + &u — 1) instead of

In(u)/(u—1), because both and [-] lie in Level 2, would be
doubly vulnerable but for an ill-understood accident that usually

correlates the two backward errors du and & u in such a way as

causes only half the significant digits of the computed A, instead of

all of them, to be wrong.

Summary to Here

Now that the complexity injected by backward error analysis into

singularities has been exposed, the time has come to summarize, to
simplify, and to consolidate what has been discussed so far.

® Many numerical procedures produce results too wrong to be
justified by any satisfactory error analysis, backward or not.

® Some numerical procedures produce results only slightly

worse than would have been obtained by exactly solving a
problem differing only slightly from the given problem. Such
procedures, classified in Level 2 for our purposes, are widely
accepted as satisfactory from the point of view of backward
error analysis.

® Procedures in Level 2 can produce results relatively far from
what would have been obtained had no errors at all been

committed, but large errors can result only for data relatively

near a singularity of the function being computed.

® Procedures in Level 1 produce relatively accurate results
regardless of near approach to a singularity. Such procedures
are rare, but preferable if only because their results are easier

to interpret, especially when several variables are involved.

A simple example illustrates all four points.

Example 7: The Angle in a Triangle. The cosine law for

triangles says

72=p2+q2—2pqcos0

Appendix: Accuracy of Numerical Calculations 195

for the figure shown below. Engineering and scientific calculations

often require that the angle 6 be calculated from given values p, q,

and r for the length of the triangle’s sides. This calculation is

feasible provided 0<p<qg+r,0<g<p+r,and0<r<p-+gq,and

then

0<0=cosW(((p%+ g% — r¥)/(2pq)) < 180°;

otherwise, no triangle exists with those side lengths, or else 6 = 0/0

is indeterminate.

q

The foregoing formula for 6 defines a function 6 = f(p,q,r) and also
in a natural way, a program F(p,q,r) intended to calculate the
function. That program 1is labeled “A” below, with results

F4(p,q,r) tabulated for certain inputs p, g, and r corresponding to
sliver-shaped triangles for which the formula suffers badly from

roundoff. The numerical unreliability of this formula is well known

as is that of the algebraically equivalent but more reliable formula
6=f(p,q,r)=2tan'\/ab/(cs), wheres=(p+q+r)/2,a=s—p,

b=s—q,and ¢c=s—r. Another program F(p,q,r) based upon this

better formula is labeled “B” below, with results Fpg(p,q,r) for
selected inputs. Apparently Fgis not much more reliable than F4.

Most of the poor results could be explained by backward error
analysis if we assume that the calculations yield F(p,q,r) =
f(p+ép,q + 8q,r + ér) for unknown but small perturbations

satisfying |6p| < 107°|p|, etc. Even if this explanation were true,it

would have perplexing and disagreeable consequences, because the

angles in sliver-shaped triangles can change relatively drastically
when the sides are perturbed relatively slightly; f(p,q,r) is

relatively unstable for marginal inputs.

Actually the preceding explanation is false. No backward error

analysis could account for the results tabulated for ¥4 and Fp
under case 1 below unless perturbations ép, g, and ér were
allowed to corrupt the fifth significant digit of the input, changing
1 to 1.0001 or 0.9999 . That much is too much noise to tolerate in a

10-digit calculation. A better program by far is F, labeled “C”’ and
explained shortly afterwards.

196 Appendix: Accuracy of Numerical Calculations

The three bottom lines in the table below show results for three
programs “A”, “B”, and “C” based upon three different formulas

F(p,q,r) all algebraically equivalent to

0=f(p,q,r)=cos X(p? + q* — r’)/(2pq)).

Disparate Results from Three Programs F4, Fg, F¢

Case 1 Case 2 Case 3

p 1. 9.999999996 10.

1. 9.999999994 5.000000001

r 1.00005 X 107 3xX107° 15.

Fa 0. 0. 180.

Fg 5.73072 X 1074 Error O 180.

Fc 5.72986 X 1074 1.28117X 108 179.9985965

Case 4 Case b Case 6

p 0.527864055 9.999999996 9.999999999

9.472135941 3x10° 9.999999999

r 9.999999996 9.999999994 20.

Fa Error O 48.18968509 180.

Fg Error O Error O 180.

Fo 180. 48.18968510 Error O

Case 7 Case 8 Case 9

p 1.00002 3.162277662 3.162277662

1.00002 2.3X107° 1.56555 X 1078

r 2.00004 3.162277661 3.162277661

F, Error O 90. 90.

Fg 180. 70.52877936 89.96318706

Fo 180. 64.22853822 89.96315156

To use a program, key in p q r, run program “A”,
“B”, or “C”, and wait to see the program’s approximation F to 6§ = f.
Only program “C” is reliable.

Appendix: Accuracy cf Numerical Calculations 197

Keystrokes Display

[o](DEG)
(e](P/R]
CLEAR 000-

001-42,21,11
(9] 002- 4311
(xxy] 003- 34
(9] 004- 4311
(o](LSTx 005- 4336
(g](R%) 006- 4333
x] 007- 20
(xxy) 008- 34

[9](LSTx] 009- 4336
(91 010- 4311

011- 40
(a](R®] 012- 4333
=] 013- 30
(xxy) 014- 34

015- 36
016- 40

& 017- 10
(g](cos 018- 4324
(a](RTN) 019- 4332

LBL 020-42,21,12
(sT0]1 021- 44 1

022- 36
(g](R¥) 023- 4333
[STOJ(*]1 024-44,40, 1
(a](R®] 025- 4333
[STO](+]1 026-44,40, 1
2 027- 2
[sTO](F)1 028-44,10, 1

029- 33
[RcL]()1 030-45,30, 1
(xxy) 031- 34
[ReL)(=)1 032-45,30, 1
%) 033- 20

034- 11
(xxy) 035- 34
[ReL](=)1 036-45,30, 1
[RCL](x]1 037-45,20, 1

198 Appendix:

Keystrokes
EE
EE

E
w

o]
(x]

= E
o
\
\
r 0]

d=
dE

=
o

5

(STO]1
(sTo(+]o
[x%y]
(sTol(+]o
]
(9)(r#)
(sT0J(=]1

[ReL](+]1
&
(=)0

(sTO)(x]O
(9](cLy]

TE
EE
og
EE
ER
E

e
s

- o ©

— m n - N

]
H
H
@

5|
l
T ©

Accuracy of Numerical Calculations

Display

038- 16
039- 11
040- 43 1

041- 33

042- 20
043- 43 32

044-42,21,13

045- 44 O

046- 33

047- 4310

048- 34
049- 44 1

050-44,40, O

051- 34

052-44,40, O
053- 30

054- 43 33

055-44,30, 1

056- 43 36
057- 36

058-45,40, 1

059- 11
060-42, 4, O
061- 11

062-44,20, O
063- 43 35

064- 40

065- 33

066- 40
067-42, 4, 1
068- 43 33

069- 43 36

070- 4310

071- 22 9

072- 33

073-43,30, 2
074- 11

075- 34

076- 22 .8

077-42,21, .9

Appendix: Accuracy of Numerical Calculations 199

Keystrokes Display

(¢)(TEST) 2 078-43,30, 2
079- 11

(9](R%] 080- 43 33
(f(LBL).8 081-42,21, .8
&) 082- 30

083- 11
[RCL)1 084- 45 1

085- 11
x] 086- 20
[RcL]O 087- 45 0
(a](=P] 088- 43 1

089- 4320
B 090- 10
Gy 091- 34

092- 36
093- 40

(9][(RTN 094- 43 32
(g](P/R

The results Fo(p,q,r) are correct to at least nine significant digits.

They are obtained from a program “C” that is utterly reliable

though rather longer than the unreliable programs “A’” and “B”.
The method underlying program “C”is:

1. Ifp<gq,thenswapthem toensurep=>=q.

2. Calculateb=(p—q)+r,c=(p—r)+q,ands=(p+r)+aq.

3. Calculate

r—(p—q) ifg=r=0

a= \q—(p—r) ifr>q=0

Error 0 otherwise (no triangle exists).

4. Calculate Fo(p,q,r)=2tan"'(v/ab/\/cs).

This procedure delivers Fq(p,q,r) = 6 correct to almost nine
significant digits, a result surely easier to use and interpret than

the results given by the other better-known formulas. But this

procedure’s internal workings are hard to explain; indeed, the
procedure may malfunction on some calculators and computers.

200 Appendix: Accuracy of Numerical Calculations

The procedure works impeccably on only certain machines like the

HP-15C, whose subtraction operation is free from avoidable error

and therefore enjoys the following property: Whenever y lies

between x/2 and 2x, the subtraction operation introduces no

roundoff error into the calculated value of x — y. Consequently,
whenever cancellation might leave relatively large errors contami-

nating a, b, or ¢, the pertinent difference (p — q) or (p — r) turns out
to be free from error, and then cancellation turns out to be

advantageous!

Cancellation remains troublesome on those other machines that

calculate (x + 8x) — (¥ + 6y) instead of x — y even though neither
6x nor §y amounts to as much as one unit in the last significant
digit carried in x or y respectively. Those machines deliver

Fq(p,q,r)=f(p + 6p, q + 8q, r + ér) with end-figure perturbations

dp, 6q, and ér that always seem negligible from the viewpoint of
backward error analysis, but which can have disconcerting

consequences. For instance, only one of the triples (p,q,r) or
(p+6p,q+6q,r+ 6r), not both, might constitute the edge lengths

of a feasible triangle, so F might produce an error message when
it shouldn’t, or vice-versa, on those machines.

Backward Error Analysis of Matrix Inversion

The usual measure of the magnitude of a matrix X is a norm || X||
such as is calculated by either 7 or 8; we shall use
the former norm, the row norm

IX]| = max)|x;
Lo

in what follows. This norm has properties similar to those of the
length of a vector and also the multiplicative property

XYl <I-

When the equation Ax = b is solved numerically with a given n X n

matrix A and column vector b, the calculated solution is a column
vector ¢ which satisfies nearly the same equation as does x,
namely

(A+6A)c=Db

with [|5A[| <109z ||A]|.

Appendix: Accuracy of Numerical Calculations 201

Consequently the residual b — Ac = (8A)c is always relatively
small; quite often the residual norm |[b — Ac| is smaller than
|b — Ax|| where X is obtained from the true solution x by rounding
each of its elements to 10 significant digits. Consequently, ¢ can

differ significantly from x only if A is nearly singular, or

equivalently only if || A"!|| is relatively large compared with 1/||Al;

Ix — ¢l =[|A"(b — Ac)|

<[|A7 lsA]l [l
<107n||el| /o(A)

where o(A) = 1/(|A|l ||A7Y]) is the reciprocal of the condition

number and measures how relatively near to A is the nearest
singular matrix S, since

min ||A — S| =0dA) Al
det(S)=0

These relations and some of their consequences are discussed

extensively in section 4.

The calculation of A™! is more complicated. Each column of the

calculated inverse [1/x](A) is the corresponding column of some
(A +6A)7!, but each column has its own small 5A. Consequently,

no single small 6A, with ||6A| < 10°n ||A||, need exist satisfying

(A +8A)— [A7=)(A) < 1070 |GA

roughly. Usually such a A exists, but not always. This does not

violate the prior assertion that the matrix operations and (%]
lie in Level 2; they are covered by the second assertion of the

summary on page 194. The accuracy of [1/x](A) can be described in
terms of the inverses of all matrices A + AA so near A that

|AA] <10°n|Al|; the worst among those (A + AA)! is at least
about as far from A™!in norm as the calculated [1/x](A). The figure

below illustrates the situation.

(A + AA)'isin here

A+AAisinhere ~——~ [1/x](A)isin here

202 Appendix: Accuracy of Numerical Calculations

As A + AA runs through matrices with | AA|| at least about as large
as roundoffin ||A[|, its inverse (A + AA)™! must roam at least about
as far from A™! as the distance from Al to the computed [17x](A).
All these excursions are very small unless A is too near a singular
matrix, in which case the matrix should be preconditioned away
from near singularity. (Refer to section 4.)

If among those neighboring matrices A + AA lurk some that are

singular, then many (A + AA)™! and [1/7x])(A) may differ utterly
from A°l. However, the residual norm will always be relatively
small:

IAA +aA)" 1| _ [laA]|
< < 10'9n.

Al A +aA)— Al

This last inequality remains true when [1/x](A) replaces
(A+aA)L

IfA is far enough from singularity that all

1/|l(A + AA)Y| > 107[|Al| = || AL,

then also

AT — (A + aA)| |aA]l I(A + AA)Y|

IA+aA) 1—[laAllA + aA)|
10°n || Al l(A + aA)7|

T 1-10°n|All (A + 2A)

This inequality also remains true when [1/x](A) replaces
(A+ AA)l, and then everything on the right-hand side can be
calculated, so the error in [1/x](A) cannot exceed a knowable
amount. In other words, the radius of the dashed ball in the figure

above can be calculated.

The estimates above tend to be pessimistic. However, to show why
nothing much better is true in general, consider the matrix

0.00002 -50,000 50,000.03 -45

X = 0 50,000 -50,000.03 45

0 0 0.00002 -50,000.03

0 0 0 52,000

Appendix: Accuracy of Numerical Calculations 203

and

50,000 50,000 p q

x-1= 0 0.00002 50,000.03 48,076.980717...

0 0 50,000 48,076.95192...

0 0 0 0.00001923076923...

Ideally, p = ¢ = 0, but the HP-15C’s approximation to X!, namely

(17x](X), has ¢ = 9,643.269231 instead, a relative error

IX™ - GZx)X) =0.0964...,
IX=1]

nearly 10 percent. On the other hand, ifX + AX differs from X only

in its second column where -50,000 and 50,000 are replaced
respectively by -50,000.000002 and 49,999.999998 (altered in the

11th significant digit), then (X + AX)! differs significantly from

X1 only insofar as p = 0 and ¢ = 0 must be replaced by p =
10,000.00600... and g = 9,615.396154.... Hence,

X" - X+ aX)"|
=0.196...;

X

the relative error in (X + AX)! is nearly twice that in [1/x](X). Do

not try to calculate (X + AX)! directly, but use instead the formula

X —cbD)1=X"1+X"1ecb’X1/(1-bTX"¢),

which is valid for any column vector ¢ and row vector b7, and

specifically for

andb?’=[0 0.000002 0 0].

O
O

=
-

Despite that

X! = A7X<X =X+ aX)7!,

it can be shown that no very small end-figure perturbation 86X
exists for which (X + 6X)™! matches [17x])(X) to more than five

significant digits in norm.

204 Appendix: Accuracy of Numerical Calculations

Of course, none of these horrible things could happen if X were not
so nearly singular. Because ||X]| [|X™!|| > 10!°, a change in X
amounting to less than one unit in the 10th significant digit of||X||
could make X singular; such a change might replace one of the
diagonal elements 0.00002 of X by zero. Since X is so nearly

singular, the accuracy of [1/x](X) in this case rather exceeds what
might be expected in general. What makes this example special is

bad scaling; X was obtained from an unexceptional matrix

2. -5. 5.000003 -4.5X10712

g_|0 B -5000003 45X 1072

0 0 2 -5.000003

0 0 0 5.2

by multiplying each row and each column by a carefully chosen

power of 10. Compensatory division of the columns and rows of the
equally unexceptional matrix

05 05 p qQ

%1 = 0 0.2 0.5000003 0.4807698077...

0 0 05 0.4807695192...

0O 0 o 0.1923076923...

yielded X!, with p = ¢ = 0. The HP-15C calculates [1/x)(X) = X!
except that ¢ = 0 is replaced by g = 9.6 X 10711, a negligible change.

This illustrates how drastically the perceived quality of computed
results can be altered by scaling. (Refer to section 4 for more
information about scaling.)

Is Backward Error Analysis a Good Idea?

The only good thing to be said for backward error analysis is that it
explains internal errors in a way that liberates a system’s user
from having to know about internal details of the system. Given
two tolerances, one upon the input noise 6x and one upon the
output noise 6f, the user can analyze the consequences of internal
noise in

{x)=(f+8N(x + 6x)

by studying the noise propagation properties of the ideal system f
without further reference to the possibly complex internal structure
of F.

Appendix: Accuracy of Numerical Calculations 205

But backward error analysis is no panacea; it may explain errors

but not excuse them. Because it complicates computations

involving singularities, we have tried to eliminate the need for it

wherever we could. If we knew how to eliminate the need for

backward error analysis from every function built into the
calculator, and to do so at tolerable cost, we would do that and

simplify life for everyone. That simplicity would cost too much
speed and memory for today’s technology. The next example will

illustrate the trade-offs involved.

Example 6 Continued. The program listed below solves the real
quadratic equation ¢ — 2bz + az? = 0 for real or complex roots.

To use the program, key the real constants into the stack (c
b [ENTER]a) and run program “A”.

The roots x and y will appear in the X- and Y-registers. If the roots

are complex, the C annunciator turns on, indicating that Complex
mode has been activated. The program uses labels “A” and “.9”

and the Index register (but none of the other registers 0 to .9);

therefore, the program may readily be called as a subroutine by

other programs. The calling programs (after clearing flag 8 if

necessary) can discover whether roots are real or complex by

testing flag 8, which gets set only if roots are complex.

The roots x and y are so ordered that |x| > |y| except possibly when

|x| and |y| agree to more than nine significant digits. The roots are
as accurate as if the coefficient ¢ had first been perturbed in its 10th
significant digit, the perturbed equation had been solved exactly,
and its roots rounded to 10 significant digits. Consequently, the
computed roots match the given quadratic’s roots to at least five
significant digits. More generally, if the roots x and y agree to n

significant digits for some positive n < 5, then they are correct to at

least 10 — n significant digits unless overflow or underflow occurs.

Keystrokes Display

(a](P/R]
CLEAR 000-

001-42,21,11

002- 36
(g](Re] 003- 4333
(x] 004- 20
[9)[LSTx) 005- 43 36

N06 Appendix: Accuracy of Numerical Calculations

Keystrokes Display

xxy) 006- 34
(eJ(R) 007- 4333
sT0](1] 008- 4425
@ 009- 4311
[010- 30
(g](TESTI 011-43,30, 1
[GT0].9 012- 22 .9

013- 16
014- 11

A= 015-42, 4,25
(g](TEST)2 016-43,30, 2
[Red)=M 017-45,30,25
[¢])(TEST)3 018-43,30, 3
ReO=M 019-45,40,25
(¢](TEST]O 020-43,30, 0
& 021- 10

022- 4336
[¢)(R¥] 023- 4333
& 024- 10

025- 4332
(..o 026-42,21, .9

027- 11
RCL 028- 4525
(9)[R¥Y] 029- 4333
=] 030- 10
(x2y) 031- 34
[¢])(LSTx] 032- 4336
B 033- 10

034- 4225
035- 36
036- 42 30

CHS 037- 16

038- 4230
039- 4332

[e](P/R]

The method uses d = b2 — ac.

Ifd <0, then the roots are a complex conjugate pair

(b/a)xi\/-d/a.

Appendix: Accuracy of Numerical Calculations 207

If d =0, then the roots are real numbers x and y calculated by

s=b++/d sgn(b)

x=s/a

c/s ifs#0
y___

0 ifs=0.

The s calculation avoids destructive cancellation.

When a = 0 # b, the larger root x, which should be %, encounters

division by zero (Error 0) that can be cleared by pressing three
times to exhibit the smaller root y correctly calculated. But when

all three coefficients vanish, the Error 0 message signals that both
roots are arbitrary.

The results of several cases are summarized below.

Case 1 Case 2 Case 3 Case 4

4 1 654,321

b 2 0 1 654,322

a 1 1 10713 654,323

Roots Real Complex Real Real

3 0+2: 2X10'3 0.9999984717

1 0.5 0.9999984717

Case 5 Case 6

c 46,152,709 12,066,163

735,246 987,644

a 11,713 80,841

Roots Real Complex

62.77179203 12.21711755 +:i0.001377461

62.77179203

208 Appendix: Accuracy of Numerical Calculations

The last three cases show how severe are the results of perturbing

the 10th significant digit of any coefficient of any quadratic whose

roots are nearly coincident. The correct roots for these cases are

Case 4: 1and0.9999969434

Case5: 62.77179203 +i8.5375 X 107

Case6: 12.21711755+i0.001374514

Despite errors in the fifth significant digit of the results, subroutine
“A” suffices for almost all engineering and scientific applications

of quadratic equations. Its results are correct to nine significant
digits for most data, including c, b, and a representable exactly
using only five significant digits; and the computed roots are

correct to at least five significant digits in any case because they
cannot be appreciably worse than if the data had been entered with

errors in the 10th significant digit. Nonetheless, some readers will

feel uneasy about results calculated to 10 significant digits but
correct to only 5. If only to simplify their understanding of the
relationship between input data and output results, they might still

prefer roots correct to nine significant digits in all cases.

Programs do exist which, while carrying only 10 significant digits
during arithmetic, will calculate the roots of any quadratic

correctly to at least nine significant digits regardless of how
nearly coincident those roots may be. All such programs calculate
d = b%2 — ac by some trick tantamount to carrying 20 significant

digits whenever b2 and ac nearly cancel, so those programs are a
lot longer and slower than the simple subroutine “A” provided
above. Subroutine “B” below, which uses such a trick,* is a very
short program that guarantees nine correct significant digits on a
10-digit calculator. It uses labels “B”’, .7, and “.8” and registers

R, through Rg and the Index register. To use it, key in ¢ b
a, run subroutine “B”, and wait for results as before.

Keystrokes Display

(g](P/R]
(fJCLEAR 000-

(f](LBL](B] 001-42,21,12
(sT0](1) 002- 4425

003- 33

*Program “B” exploits a tricky property of the and keys whereby certain

calculations can be carried out to 13 significant digits before being rounded back to 10.

Keystrokes

[sT0]O
(sT0]8
[x%y]
(sT0]1
(sT0]9
([f(scy2
(f)(LBL).8
[f)CLEAR [Z]
(RcL]8
(s10]7
(Reu(=]

(ReL)(M)

(RCL)9
[(x2]7
%]
(RCL]8

()&

Appendix:

Display

004- 44 O

005- 44 8
006- 34

007- 44 1

008- 44 9

009-42, 8, 2

010-42.21, .8
011- 4232

012- 45 8
013- 44 7

014-45,10,25

015- 43 34

016- 45 25

017- 4349
018- 45 9
019-42, 4, 7

020- 34
021- 45 8

022- 4349

023- 33
024- 4349

025- 45 7

026- 43 16

027- 45 9

028- 43 16

029- 4310

030- 2212

031- 36

032- 4333

033- 44 8

034- 45 7

035- 44 9

036- 43 16

037- 26

038- 2

039- 0
040- 20

041- 45 1

042- 4316

043- 4310

Accuracy of Numerical Calculations 209

210 Appendix: Accuracy of Numerical Calculations

Keystrokes

[GT0).8

HEX]9
[RcL]8
(9157
(51017
(ReU){
(RcL]9
(955
(ReL)7
(e)(TEST]2
(GT0].7

[Hlxx]O
(e])(TEST]2
(Rel)=]0
(e)(TEST]3
[ReLj(+]0
(=]
(e)(TESTIO
(ReL)(z]1
(RCL] 1
(ReL)(=](1]
(9)(RTN]

7

H
O
H

I
|
_

m
Hr

R
EE

EE
o
l
l
o
]
l
x
|
|
Z
|
|
o

r
-
r
—
m
m
r
—

H
O

:
U
[
E (=
)

= IaENTER

NI
(9)(RTN]
(9)(P/R]

Sl 3
Display

044- 22 .8

045-42,21,12

046-42, 7, 9
047- 45 8

048- 4311
049- 44 7

050- 45 25

051- 45 9

052- 4349
053- 45 7

054-43,30, 2

055- 22 .7

056- 11

057-42, 4, 0
058-43,30, 2
059-45,30, O

060-43,30, 3

061-45,40, O
062-42, 4, 1

063-43,30, O

064-45,10, 1

065- 45 1

066-45,10,25

067- 43 32

068-42,21, .7

069- 16
070- 11
071-45,10,25

072- 36

073- 16

074- 45 O

075- 45 25

076- 10
077- 34

078- 42 25

079- 36

080- 4333
081- 4225

082- 43 32

Appendix: Accuracy of Numerical Calculations 211

This program’s accuracy is phenomenal: better than nine

significant digits even for the imaginary parts of nearly

indistinguishable complex roots (as when ¢ = 4,877,163,849 and

b=4,877,262,613 and a = 4,877,361,379); if the roots are integers,

real or complex, and if a = 1, then the roots are calculated exactly

(as when ¢ = 1,219,332,937 X 10!, 5 = 111,111.5, and a = 1). But the
program is costly; it uses more than twice as much memory for

both program and data as does subroutine “A”, and much more
time, to achieve nine significant digits of accuracy instead of five

in a few cases that can hardly ever matter—simply because the

quadratic’s coefficients can hardly ever be calculated exactly. If

any coefficient ¢, b, or a is uncertain by as much as one unit in its

10th significant digit, then subroutine “B” is overkill. Subroutine
“B” is like Grandmother’s expensive chinaware, reserved for

special occasions, leaving subroutine “A” for everyday use.

Index

Page numbers in bold type indicate primary references; page
numbers in regular type indicate secondary references.

A

Absolute error, 173, 182

Accuracy

in Complex mode, 73-75

of integrand, 47-49
of numerical calculations, 172-211

of solutions to linear system, 103-104
Aliasing, 46

Analysis, discounted cash flow, 39-44

Analysis of variance, 133-140

Anglein triangle, 194-199
Annuities, 26-39
Annuity, ordinary, 27

Annuity due, 27-28

Annunciator, C, 205

Annunciator, trig mode, 68

ANOVA table, 133, 134, 140

Augmented matrix, 141
Augmented normal equations, 111
Augmented system, 142

B

Backward error analysis, 187-211

Balloon payment, 27, 29, 36
Binomial theorem, 176
Bounding search, 161, 162
Branch, principal, 69-72
Bridge too short, 174

Broken calculator, 172, 175-176

C

Calculation time, (5], 49-55
Calculations, numerical accuracy, 172-211

Cancellation, 176-178, 200, 207

212

Index 213

Cash flow analysis, discounted, 39-44

Cash flow diagram, 28, 28-44

Characteristic equation, 148

Column norm, 99

Complementary error function, 60-64

Complementary normal distribution function, 60-64

Complex components, accurate, 74

Complex equations, solving large system, 128-131

Complex math functions, 68-72
Complex mode, 65-95
accuracy, 73-75

and (5],73

Complex multivalued functions, 69-72

Complex number, nth roots, 69, 78-80

Complex number, storing and recalling, 76-78

Complex potential function, 89-95

Complex relative error, 183

Complex roots of equation, 16-17, 80-85
Complex roots of quadratic equation, 205-211
Complex single-valued functions, 69

Components, accurate complex, 74

Compound amounts, 26-39

Condition number, 98-102, 107, 201

Conformal mapping, 89

Constrained least-squares, 111,115-116, 143

Consumer price index, 137-140, 147-148
Contour integral, 85-89
Correctly rounded result, 179-183
perturbed input, 184-211

Covariance matrix, 131

Critical point, 160, 162, 163

D

Declination, 11-15

Decomposition, LU, 96-98, 117,118

descriptor, 97

Deflation, 10

Degrees of freedom, 132

Delay equation, 81-85
Derivative, 10, 17-20, 192

Descartes’ Rule of Signs, 10-11

214 Index

Descriptor of L U decomposition, 97

Determinant, 97-98, 118

Diagram, cash flow, 28, 28-44
Discounted cash flow analysis, 39-44

Discounted rate of return, 39
Display format, 45-46, 48

Doolittle method, 97

E
Eigenvalue, 148-160

storage, 159-160

Eigenvector, 149, 154-160

Electrostatic field, 59

Endpoint, [;]sampling at, 46-47, 56
Equations

complex, solving large system, 128-131

equivalent, 9-10

solving inaccurate, 10

solving nonlinear system, 122-128

with several roots, 10

Equipotential line, 89-95

Equivalent equations, 9-10

Error 0, 29, 196, 199, 207

Error 1,162,167

Error 4,29, 40

Error 8,9, 23

Error analysis, backward, 187-211

Error function, 60-64

complementary, 60-64
Error,173

absolute, 173, 182

hierarchy, 178

in matrix elements, 100-101

misconceptions, 172-178

relative, 173, 182, 183

Example
angle in triangle, 194-199
annuities, 34-39

bridge too short, 174

broken calculator, 172, 175-176

cash flow, 43-44

compound amounts, 34-39

Index 215

consumerprice index regression, 137-140, 147-148

contour integral, 88-89

declination of sun, 11-15

delay equation, 81-85

eigenvectors, 157-159

equipotential line, 95

field intensity of antenna, 17-25
filter network, 128-131

Gamma function, 65-68
lunar phases, 186

normal distribution function, 64

nth roots of complex number, 80

optimizing box, 168-171

pennies, 173,180-183

pi, 173,184-186
quadratic surface, 153-154

residual correction, 121

roots of quadratic equation, 191, 205-211
special functions, 64
storing and recalling complex numbers, 77-78

streamline, 93-94

subdividing interval of integration, 51-54

transformation of variables, 54-55

unbiased test of hypothesis, 122-128

Extended precision, 47, 104, 208
Extremes of function, 17-25

F

Fratio, 132-140

Factorization, orthogonal, 113-116, 140-148

Field intensity, 17-25

Financial equation, 29, 39

Financial problems, 26-44

Format, display, 45-46, 48

Frobenius norm, 99
Functions, complex, 68-73

Future value, 26-39

G

Gamma function, complex, 65-68

Gradient, 160, 162

Grandmother’s expensive chinaware, 211

216 Index

H

Hierarchy of error, 178

Horner’s method, 11, 12
Hyperbolic cylinder, 153-154

I

Identity matrix, 119

Ill-conditioned matrix, 98-102, 107, 155

Ill-conditioned system of equations, 104-110

Improper integral, 55-60

Inaccurate equations, solving, 10

Inaccurate roots, 9-10

Input noise, 187-192

Integral

contour, 85-89

evaluating difficult, 55-60

improper, 55-60

Integration, numerical, using (3], 45-64

Integration in Complex mode, 73
Interchange, row, 97, 117

Interest rate, 26-44

Internal rate of return, 39-44

Interval of integration, subdividing, 50-54, 58

Interval reduction, 161, 162

Inverse iteration, 155

Inverse of function, 69

Inverse of matrix, 98,101-102, 110,118, 187

backward error analysis, 200-204

IRR, 39-44

Iterative refinement, 103-104, 119-121

J

Jordon canonical form, 155

L

Large system of complex equations, solving, 128-131

Least-squares, 110-116,131-148, 187

linearly constrained, 111,115-116, 143

weighted, 111,115,143

Level 0,178

Level 1,179-183,190, 194
Level 1C, 183
Level 2,184-211

Index 217

Level ==, 179

Line search, 161

Linear model, 131

Linear regression, multiple, 131. See also Least-squares

Linear system, accuracy of numerical solution, 103-104

Linearly constrained least-squares, 111,115-116, 143
Lower-triangular matrix, 96

LU decomposition, 96-98, 117,118

descriptor, 97
Lunar phases, 186

M

Mapping, contour, 89

Mathematical functions, complex, 68-72
Mathematical functions, pure, 47-49

Mathematical model, 48

Matrix elements, errorsin, 100-101

Matrix inversion, backward error analysis, 200-204

Matrix operations, 76-78, 96-171

error levels, 178,179, 192

Maximum of function, 17-25, 160
Mean-adjusted regression sum of squares, 134
Minimum of function, 17-25, 160

Model, linear, 131

Model, mathematical, 48

Monotonicity, 180, 186

Multiple linear regression, 131. See also Least-squares

Multiple root, 10

Multivalued functions, complex, 69-72

N

Nearly singular matrix, 107,117-118, 201, 204

Net present value, 39-44
equation, 39

Network, filter, 128-131

Newton’s iteration method, 80-82, 122

Noise, input and output, 187-192
Nonlinear equations, solving system, 122-128

Nonsingular matrix, 101-102,117

Norm, 99, 106, 200
Normal distribution, 122-123, 132

Normal distribution function, 48, 60-64
complementary, 60-64

218 Index

Normal equations, 110-113,131-140

augmented, 111

weighted, 111

NPV, 39-44

equation, 39

nth roots of complex number, 69, 78-80

Number of correct digits, 103, 121

Numerical calculations, accuracy, 172-211

Numerical integration, 45-64

Numerical solutions to linear system, accuracy, 103-104

Numerically finding roots, 6, 6-44

o

Optimization, 160-171

Ordinary annuity, 27
Orthogonal factorization, 113-116, 140-148

Orthogonal matrix, 113, 141, 142, 149

Output noise, 188-192

Overflow, 179

P

Payment, 26-39

Pennies, 173, 180-183

Phases, lunar, 186

Physical situations, 47-49

Pi, 173,184-186
Pivots, 118

Polar form, 68

Polynomials, 10-15
Potential function, complex, 89-95

Precision, extended, 47, 104, 208

Preconditioning a system, 107-110
Present value, 26-44

Principal branch, 69-72
Principal value, 69-72

Q
Quadratic equation, roots, 191, 205-211

Quadratic surface, 149, 153-154

R

Radians, used in Complex mode, 68

Rate of return, 39-44

Index 219

Recalling complex numbers, 76-78

Rectangular form, 68

Refinement, iterative, 103-104,119-121

Regression, multiple linear, 131. See also Least-squares

Regression sum of squares, 132-140

mean-adjusted, 134

Relative error, 173, 182, 183

complex, 73-75

Relative uncertainty of matrix, 100

Repeated estimation, 23-25

Residual, 103-104, 110, 132,201

Residual correction, 103-104, 119-121

Residual sum of squares, 132-140

Resonance, 46

Return, rate of, 39-44
Romberg method, 46

Roots

complex, 16-17

equations with several, 10

inaccurate, 9-10

multiple, 10

not found, 9, 29, 92

numerically finding, 6, 6-44

of complex number, 69, 78-80

of equation, complex, 80-85
of quadratic equation, 191, 205-211

Round-off error, 47, 49. See also Rounding error

Rounding error, 111,113,118,172-211

Row interchange, 97, 117

Row norm, 99, 200

S

Saddle-point, 162

Samples, 53], 46-47, 50, 56, 73

Samples, [SOLVE], 7-9, 73
Scaling a matrix, 104-107, 204
Scaling a system, 107

Secant method, 7

Sign change, 8

Sign symmetry, 180, 185

Single-valued functions, complex, 69

Singular matrix, 101-102,117-118, 201

220 Index

Singularity and backward error analysis, 192-194

Skew-symmetric matrix, 149

Slope, 20-22

Smaller root of quadratic equation, 191, 205-211

Solutions to linear system, accuracy, 103-104

(SOLVE], 6-44
algorithm, 6-9, 73

in Complex mode, 73
Solving a system of equations, 15-17,98, 100-101, 118, 122-128

Solving a system of nonlinear equations, 122-128

Solving equation for complex roots, 80-85
Solving large system of complex equations, 128-131

Steepest descent, 160

Storing complex numbers, 76-78

Streamline, 89-94

Subdividing interval of integration, 50-54, 58

Subinterval, 50-54
Successive rows, 140-148

Sum of squares, 132, 140

Symmetric matrix, 148-149

System of complex equations, solving large, 128-131

System of equations,ill-conditioned, 104-110

System of equations, solving, 15-17, 98, 100-101, 122-128
System of nonlinear equations, solving, 122-128

T

Tail of function, 57-58

Taylor series, 182

Total sum of squares, 132-140

Transformation of variables, 54-55

Triangle, angle in, 194-199

Trigonometric functions, 184-186

Trigonometric modes, 68

U

Unbiased test, 122-123

Uncertainty for[;], 45-46
Uncertainty of matrix, 100

Unconstrained least-squares. See Least-squares
Underflow, 50-51,118, 179

Upper-triangular matrix, 96, 113-114, 141

Index 221

V

Variables, transforming, 54-55

w

Weighted least-squares, 111,115,143

Weighted normal equations, 111

Y

Yield, 39

Z

Zero of polynomial, 10

Aciciano
Corvallis Division

1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

00015-90011 Printed in U.S.A. 8/82

	Cover
	Contents
	Introduction
	Section 1: Using [SOLVE] Effectively
	Finding Roots
	How [SOLVE] Samples
	Handling Troublesome Situations
	Easy Versus Hard Equations
	Inaccurate Equations
	Equations With Several Roots

	Using [SOLVE] With Polynomials
	Solving a System of Equations
	Finding Local Extremes of a Function
	Using the Derivative
	Using an Approximate Slope
	Using Repeated Estimation

	Applications
	Annuities and Compound Amounts
	Discounted Cash Flow Analysis

	Section 2: Working with [∫ᵧˣ]
	Numerical Integration Using [∫ᵧˣ]
	Accuracy of the Function to be Integrated
	Functions Related to Physical Situations
	Round-Off Error in Internal Calculations

	Shortening Calculation Time
	Subdividing the Interval of Integration
	Transformation of Variables

	Calculating Difficult Integrals
	Application

	Section 3: Calculating in Complex Mode
	Using Complex Mode
	Trigonometric Modes
	Definitions of Math Functions
	Arithmetic Operations
	Single-Valued Functions
	Multivalued Functions

	Using [SOLVE] and [∫ᵧˣ] in Complex Mode
	Accuracy in Complex Mode
	Applications
	Storing and Recalling Complex Numbers Using a Matrix
	Calculating the nth Roots of a Complex Number
	Solving an Equation for Its Complex Roots
	Contour Integrals
	Complex Potentials

	Section 4: Using Matrix Operations
	Understanding the LU Decomposition
	Ill-Conditioned Matrices and the Condition Number
	The Accuracy of Numerical Solutions to Linear Systems
	Making Difficult Equations Easier
	Scaling
	Preconditioning

	Least-Squares Calculations
	Normal Equations
	Orthogonal Factorization

	Singular and Nearly Singular Matrices
	Applications
	Constructing an Identity Matrix
	One-Step Residual Correction
	Solving a System of Nonlinear Equations
	Solving a Large System of Complex Equations
	Least-Squares Using Normal Equations
	Least-Squares Using Successive Rows
	Eigenvalues of a Symmetric Real Matrix
	Eigenvectors of a Symmetric Real Matrix
	Optimization

	Appendix: Accuracy of Numerical Calculations
	Misconceptions About Errors
	A Hierarchy of Errors
	Level 0: No Error
	Level ∞: Overflow/Underflow
	Level 1: Correctly Rounded, or Nearly So
	Level 1C: Complex Level 1
	Level 2: Correctly Rounded for Possibly Perturbed Input
	Trigonometric Functions of Real Radian Angles
	Backward Error Analysis
	Backward Error Analysis Versus Singularities
	Summary to Here
	Backward Error Analysis of Matrix Inversion
	Is Backward Error Analysis a Good Idea?

	Index

