
HEWLETT-PACKARD

HP-15C
OWNER’S HANDBOOK

RT

S

Notice

Hewlett-Packard Company makes no express or implied

warranty with regard to the keystroke procedures and

program material offered or their merchantability or their

fitness for any particular purpose. The keystroke procedures

and program material are made available solely on an ‘‘as is’’

basis, and the entire risk as to their quality and performance is

with the user. Should the keystroke procedures or program

material prove defective, the user (and not Hewlett-Packard

Company nor any other party) shall bear the entire cost of all

necessary correction and all incidental or consequential

damages. Hewlett-Packard Company shall not be liable for

any incidental or consequential damages in connection with

or arising out of the furnishing, use, or performance of the

keystroke procedures or program material.

/A cacianc

HP-15C

Owner’s Handbook

November 1985

00015-90001 Rev. G

Printed in Canada

Introduction

Congratulations! Whether you are new to HP calculators or an

experienced user, you will find the HP-15C unmatched in the
calculator world. Besides Continuous Memory and low power

consumption, the HP-15C state-of-the-art technology provides:

® 448 bytes of program memory (one or two bytes per
instruction) and sophisticated programming capability, in-
cluding conditional and unconditional branching, subrou-

tines, flags, and editing.

® Four advanced mathematics capabilities: complex number

calculations, matrix calculations, solving for roots, and

numerical integration.

¢ Direct and indirect storage in up to 67 registers.

¢ Long-life batteries.

This handbook is written for you, regardless of your level of

expertise. The first part, Fundamentals, covers all the basic
functions of the HP-15C and how to use them. Each section in the
second part, Programming, is broken down into three sub-
sections—The Mechanics, Examples, and Further Information—in
order to make it easy for users with varying backgrounds to find
the information they need. The third part, Advanced Functions,

describes the four advanced mathematics capabilities.*

Before starting these sections, you may want to gain some
operating and programming experience on the HP-15C by work-
ing through the introductory material, The HP-15C: A Problem

Solver, on page 12.

The various appendices describe additional details of calculator
operation, as well as warranty and service information. The
Function Summary and Index and the Programming Summary
and Index at the back of this manual can be used for quick

* You certainly do not need to read every page of parts I and II before delving into the HP-

15C Advanced Functions if you are already familiar with HP calculators. The use of

and requires a knowledge of HP-15C programming.

2

Introduction 3

reference to each function key and as a handy page reference to
more comprehensive information inside the manual.

Also available from Hewlett-Packard dealers is the HP-15C
Advanced Functions Handbook, which provides applications and

technical descriptions for the root-solving, integration, complex
number, and matrix functions.

Contents

The HP-15C: A ProblemSolver 12
A Quick Look @tttt ii iteeneanss 12
Manual SolutioNSttt it i it iit 13

Programmed Solutionsc.coiiiiiiiininnennennnnnnnn 14

Part I: HP-15C Fundamentals 17

Section 1: Getting Startedc.coiiiiiiiiinn.. 18

PowerOnand Offotttiittt 18

KeyboardOperationttt iiiinnennnnnn. 18

Primary and Alternate Functionsc.ccciiiivun... 18

Prefix Keyscoiiiiiii i iiie et i ie 19

Changing Signsottt i i i i iie 19

KeyinginExponentscciiiiiiiiiiiiinnnnnnnn. 19

The "CLEAR KBYS .. iiiiiit ittt it i cicieiei 20

Display Clearing: [CLx]and[€]cviiiiininn.. 21
Calculations . ..otieee e e ee 22

One-Number FUNctionsc.civiiiriinnnennnnenn. 22

Two-Number Functions andcvvvvvnnnn... 22

Section 2: NumericFunctions 24

T24

Number Alteration Functionscciiiiiinrennnnnn. 24

One-NumberFunctionsciiiiiiiiiininnnnnnnn. 25

General FUNCLIONSitit ittt iieeenn, 25

TrigonometricOperationsc.ccouiviieinnennennns 26

Timeand AngleConversionsccovitiiinnennennn. 26

Degrees/Radians Conversionsccvivvinenenen.. 27

LogarithmicFunctionsot 28

HyperbolicFunctionsttt iiiiiiiiinenenn.. 28

Two-Number Functionsc.ciiiiiiiiinnnnnnnnnnn. 29

The Power FUNCLIONottt it it iiii it e enenenns 29

Percentagesviiiii iie i e e e e ete 29

Polar and Rectangular Coordinate Conversions 30

Section 3: The Automatic Memory Stack, LAST X,

andDataStoragecciiiiiiiii 32

The Automatic Memory Stack and Stack Manipulation 32

Stack ManipulationFunctionsccciiiiiininennn. 33

The LAST X Register andovvvvvrnreinnneennnnnn. 35
Calculator FunctionsandtheStack 36

4

Contents 5

Order of Entry and the KeY vvieiieei 37
NestedCalculationsiiiiiiiiiininiienennnnn 38

Arithmetic Calculations WithConstants 39

Storage Register Operationsc.oiiiiiernnennnnn. 42

Storing and RecallingNumbers 42

Clearing Data Storage Registersccciviiennnn.. 43

Storage and Recall Arithmeticccciviiiiienn.. 43

OverflowandUnderflow, 45

Problems ...eeeee 45

Section 4: Statistics Functions 47

Probability Calculationsccoiiiiiiiiinnnnnnnnn. 47

Random NumberGeneratoroiiiiiiiiinnennennnn 48

Accumulating Statisticsc.ciiiiiiiiiit 49

Correcting Accumulated Statistics 52

MEaN.eeeee 53

Standard Deviationttt 53

Linear Regressionciiiiiiiiiniiiinenennennn. 54

Linear Estimation and Correlation Coefficient 55

Other Applicationsccciiiiiiiiii ittt ieieennnnns. 56

Section 5: The Display and Continuous Memory 58
Display Control ...tttittti 58

FixedDecimalDisplayccoiiiiiiiiiiiniiininnnnnn, 58

Scientific NotationDisplayccoiiiiiiiiinnnn. 58

Engineering NotationDisplayccciiivun... 59

MantissaDisplayiiiiiiiiiiiittt 60

Round-Off Errorittti 60

Special Displaysc.iiiiiii itiee 60

ANNUNCIAIOIS ..ttt ittt it it it ittt nenenenann 60

Digit Separatorsiiiiiiiiiii i iie 61

Error Display ..oeee 61

OverflowandUnderflowi, 61

Low-PoweriIndicationcciiiiiiiiiiinenennnn. 62

ContinUOUSMeEmMoOryiit i i e eeeeenns 62

SAUS .otttieeete 62

Resetting Continuous Memorycvviiienennnn. 63

Part II: HP-15C Programming 65

Section 6: ProgrammingBasics 66
TheMechaniCsiiiiiiiiiii ittt ittt iienneanen 66

CreatingaProgramciiiiniiininennnnnnnnennnns 66

LoadingaProgramc.coiiiiiiiniiiiiinnnennenn. 66

6 Contents

Intermediate Program Stopscoiiiiii, 68

RunningaProgram ...ttt 68

HowtoEnterDatacciiniiniiniininiininnnennnn. 69

Program Memoryouiiniiiniiittt 70

EXample ...eeee 70

FurtherInformationi, 74

Program Instructionsc.ciiiiiiinininenenennnnn. 74

InstructionCodingittt 74

Memory Configurationc.ciiiiiiiiiiininnnnnnn. 75

Program Boundariesccuiiiiiiiiiiiie 77

Unexpected Program Stopsc.viiiiinenenennennn. 78

Abbreviated Key Sequencescciiiiiiiiiiian, 78

UserModeiiiiiiiiiiittt 79

Polynomial Expressions and Horner’'s Method 79

Nonprogrammable Functionscciiiu.n. 80

Problemseee 81

Section 7: Program Editingoi 82

TheMechanics ...tieit ei 82

Movingto alLineinProgramMemory 82

Deleting Program Linesc.cciiiiiiiiinenennnnnnn. 83

Inserting ProgramLbLinesi, 83

EXamples ..oee83

FurtherInformationit 85

Single-Step Operationsccviiiiininnnenennennn. 85

Line PoSIitioniee 86

InsertionsandDeletions ...ttt 87

Initializing Calculator Statust 87

Problemsee 87

Section 8: Program Branching and Controls 90
The MechaniCscoii itttittt iae 90

BranChingiiiiiiiiiiitit 90

Conditional TeStSttt ittt it it i ieienennnn 91

Flags .oeee 92

EXAmMPIES .oteeeee 93

Example: BranchingandlLoopingc.c.cviviievnan.. 93

Example: Flags ...ttt itittt 95

Further Informationit 97

GO T0 t ittteeeeee 97

LOOPING .oteeeee 98

Conditional Branchingt iininnnnn.n. 98

Flags ..oet98

Contents 7

The System Flags: Flags8and9 99

Section 9: Subroutines.......l 101
TheMechanics ...ttti 101

GoToSubroutineandReturnciiviiinnn.. 101

Subroutine Limitsoie102

EXamples ...ee102

FurtherInformationi, 105

The SubroutineReturncoiiiiiiiiinenennnnn. 105

Nested Subroutinesi, 105

Section 10: The Index Register and

LoopControl 106
The(HJand [(MKeysovviriiriiriii 106

Direct Versus Indirect Data Storage With

thelndex Registercciiiiiiiiininnnnnnnn. 106

Indirect Program Control With the Index Register 107

ProgramLoopControl it iiininennnn. 107

TheMechaniCscoiiiiiii ittt ittt i enennn 107

Index Register StorageandRecall 107

Index Register Arithmeticciiiiiiininnnn.. 108

Exchangingthe X-Registercciiiiiiinan.. 108

Indirect BranchingWith 1]ccoiiiiiiiinn. 108
Indirect Flag Control With (1]ccivviiniennn.n. 109
Indirect Display Format ControlWith 109

Loop Control with Counters: and(DSE] 109
Exampleset111

Examples: Register Operationscccvuvuvnen.n. 111

Example: Loop Control With[DSE]c.ccovvuueennn. 112
Example: Display FormatControl 114

Further Informationittt 115

Index RegisterContentsccitiiiiininnnnnnnn.. 115

ANA[DSE] ..ottte116
Indirect DisplayControl, 116

Part I1I: HP-15C Advanced Functions 119

Section 11: Calculating With Complex Numbers . .. 120

The Complex Stack and ComplexMode 120

Creatingthe ComplexStack 120

DeactivatingComplexModecciviiiinn. 121

Complex NumbersandtheStack 121

Entering ComplexNumbers, 121

Stack LiftinComplexMode, 124

8 Contents

Manipulating the Real and Imaginary Stacks 124

Changing SigNsiiiiii itttittt 124

Clearinga Complex Numberccciiian.. 125

EnteringaRealNumber, 128

Entering a Pure Imaginary Number 129

Storing and Recalling Complex Numbers 130

Operations With Complex Numbers 130

One-Number Functionsciiiiiiiininnnnennn. 131

Two-Number Functionsi, 131

Stack ManipulationFunctionscoiviiiinnn... 131

Conditional Testscviiiiiinitnninnennnnneenennnnn 132

Complex Results from Real Numbers 133

Polar and Rectangular Coordinate Conversions 133

Problems ...ieeeee 135

For Further Information iiiiiiiiinnnan.. 137

Section 12: Calculating With Matrices 138
Matrix DIMeNSiONSvite ittt it iieieneieeennnnaenns 140

DimensioningaMatrixcoiiiiiiiiinennnannennn 141

Displaying Matrix Dimensionsccccivivenn.. 142

Changing Matrix Dimensionsc.cciiiiiiinenn.. 142

Storing and Recalling Matrix Elements 143

Storing and Recalling All ElementsinOrder 143

Checking and Changing Matrix Elements Individually 145

Storing a Number in All Elements of a Matrix 147

Matrix Operationsc.ccuiiiieenennnnnenneenannnnnn 147

MatriXx DeSCriptOrSiiiiii ittt ittt ieeeeeenennnnns 147

TheResult MatrixXcciiiiiiiiiiiiiiiinineeennannnnn 148

CopyingaMatriX ...oovtitin ittt ittt tneninenanannn 149

One-Matrix Operationsccoviiuernenenennenennnn 149

Scalar Operationsoiiiiiiinini, 151

ArithmeticOperationscoitiiiiiieneneennnennnn. 153

Matrix Multiplicationttt ininennnn. 154

Solvingthe Equation AX =B 156

CalculatingtheResidual, 159

Using MatricesinLUForm iiiiiiiiiiinnnn.. 160

Calculations With Complex Matricesccovun... 160

Storing the Elements of a Complex Matrix 161

The Complex Transformationscoo. 164

Invertinga ComplexMatrixcovuiiiiinenennnn. 165

Multiplying ComplexMatricesccoviieinnnnennnn. 166

Solving the Complex Equation AX=B 168

Contents 9

Miscellaneous Operations Involving Matrices 173

Using a Matrix Element With Register Operations 173

Using Matrix Descriptors in the Index Register 173

Conditional Tests on Matrix Descriptors 174

Stack Operation for Matrix Calculations 174

Using Matrix OperationsinaProgram 176

Summary of Matrix Functionsc.ciiiiiininnnn.. 177

For Further Informationi, 179

Section 13: Finding the Roots of an Equation 180
USING[SOLVE] . uvtit itttete 180
WhenNoRootlIsFound 186

Choosing Initial Estimatesccoviiiiinenennnn... 188

Using [SOLVE]in aProgramouviureuneenneannnns 192
Restrictiononthe Use of [SOLVE]covvviinnnnnn.n. 193
Memory Requirementscoitiiiiiniinininnnaennn. 193

For Further Information iiiiiiiinienen... 193

Section 14: Numerical Integration 194
USING o oviete194
Accuracy of ..ottt 200
Using([]inaProgramc.viiiiiiieeeiiiinnnnnn.. 203
Memory Requirementscoviiiiiiiinnrnennnnennn. 204

For FurtherInformationot iiiiinnnnnnn. 204

Appendix A: Error Conditions 205

Appendix B: Stack Lift and the

LAST X Registerc.oiiiiiiiiiiiiiiiiieinnnnnnnn, 209

DigitEntry Terminationot iiiiiniinenenan.. 209

Stack Lift ...ee209

DisablingOperationsccitiiiniiininenennnnn. 210

EnablingOperationsciiiiiiinrnenennnnenn. 210

Neutral Operationsiiiiiiininrnnrnennnnnnnn 211

LAST X RegiStervtitititie ittt it enneeenenannns 212

Appendix C: Memory Allocationccovvvuun.. 213

TheMemory Spacec.couiiiiiiiinneienenneannnnn 213

REgISIerS ..tttiiee213

Memory Status ((MEM])ttt 215
MemoryReallocationcciiiiiiiiiiiiiiiiaan., 215

The [DIM][()JFuUNctionc.c.iiriiiiiiiiieannennn.. 215
Restrictions on Reallocation 216

ProgramMemoryiiiiniiiiiiiittt 217

10 Contents

Automatic Program Memory Reallocation 217

Two-Byte Program Instructionscovut. 218

Memory Requirements for the Advanced Functions 218

Appendix D: A Detailed Look at[SOLVE] «+-.cvovvvnenn.. 220
HOW [SOLVEJWOTKS ..\ ovtttitei it i eieeiaeannans 220
Accuracyofthe Root ...ttt 222

Interpreting Resultsitiiiienennn. 226

FindingSeveralRootscoiiiiiiininennnnnnnnennn. 233

Limitingthe EstimationTimecciiiiiiiiiinnnnn. 238

Counting lterationsc..coiiiiiiniiinnennennenn. 238

SpecifyingaTolerancecciiiiiiiiininennnnnn. 238

For Advanced Informationi, 239

Appendix E: A Detailed Look at[/3]..........oooevviiilt 240
HOW [ZJWOTKSvt240
Accuracy, Uncertainty, and CalculationTime 241

Uncertainty andthe DisplayFormat 245

Conditions That Could Cause IncorrectResults 249

Conditions That Prolong CalculationTime 254

Obtaining the Current Approximation to an Integral 257

For Advanced Information, 258

Appendix F: Battery, Warranty, and

ServiceInformationcvviiiiiiiiiiiinit 259

Batteriesoiiiiieeeetee 259

Low-PowerIndicationttt 260

InstallingNew Batteriesc.ccviiiiiininennnn.n. 261

Verifying Proper Operation (Self-Tests) 263

Limited One-YearWarrantyccutiitiininnennnnnnn. 265

WhatWeWillDo ...ti iitea 265

WhatisNotCoveredc.iiiiiiiiiiiinennnnnnn. 265

Warranty for Consumer Transactions

intheUnitedKingdomi, 266

Obligationto Make Changescccivuian... 266

Warranty Informationi, 266

SBIVICE ittt ittt i i i e ee e eete 267

Obtaining Repair Service in the United States 267

Obtaining Repair ServiceinEurope 267

International Service Information 268

ServiceRepairChargeccouiiiiiiiniiinennennnn. 269

ServiceWarrantyoouiiiiierneneneneneenanenenans 269

ShippinglInstructionsc.coiiiiiiiiiiiii.., 269

Contents 11

Further Information 270

When You Need Help 270

Temperature Specifications 270

Potential for Radio and Television Interference

(for US.A.Only)271

Function Summary andIndex 272

Complex Functions 272

CoNVersions 273

Digit Entry273

Display Control 273

Hyperbolic Functions 274

Index Register Control 274

Logarithmic and Exponential Functions 274

Mathematics 274

Matrix Functions 275

Number Alteration 276

Percentage 276

Prefix Keys276

Probability 276

Stack Manipulation 277

Statistics277

Storage278

Trigonometry278

Programming Summary andIndex 278

Subject Indexo281

The HP-15C Keyboard and Continuous

Memory Inside Back Cover

The HP-15C:
A Problem Solver

The HP-15C Advanced Programmable Scientific Calculator is a
powerful problem solver, convenient to carry and easy to hold. Its
Continuous Memory retains data and program instructions
indefinitely until you choose to reset it. Though sophisticated, it
requires no prior programming experience or knowledge of

programming languages to use it.

An important new feature of your HP-15C is its extremely low
power consumption. This efficiency is responsible for the
lightweight, compact design, and eliminates the need for a
recharger. Power consumption in the HP-15C is so low that the
average battery life in normal use is 6 to 12 months. In addition,

the low-power indicator gives you plenty of warning before the
calculator stops functioning.

The HP-15C also conserves power by automatically shutting its
display off if it is left inactive for a few minutes. But don’t worry

about losing data—any information contained in the HP-15C is

saved by Continuous Memory.

A Quick Look at
Your Hewlett-Packard calculator uses a unique operating logic,
represented by the key, that differs from the logic in most
other calculators. You will find that using makes nested
and complicated calculations easier and faster to work out. Let’s
get acquainted with how this works.

For example, let’s look at the arithmetic functions. First we have to

get the numbers into the machine. Is your calculator on? If not,
press [ON]. Is the display cleared? To display all zeros, you can
press [g][CLx], that is, press [g], then [«].* To perform arithmetic,

* If you have not used an HP calculator before, you will notice that most keys have three

labels. To use the primary function—the one printed in white on top of the key—just

press that key. For those printed in gold or blue, press the gold [f] key or the blue key

first.

12

The HP-15C: A Problem Solver 13

key in the first number, press to separate the first number
from the second, then key in the second number and press [+], [-],
(x], or [#]. The result appears immediately after you press any
numerical function key.

The display format used in this handbook is 4 (the decimal
point is “fixed” to show four decimal places) unless otherwise
mentioned. If your calculator does not show four decimal places,
you may want to press 4 to match the displays in the
examples.

Manual Solutions

Run through the following two-number calculations. It is not
necessary to clear the calculator between problems. If you enter a
digit incorrectly, press («] to undo the mistake, then key in the
correct number.

To Compute: Keystrokes Display

9-6=3 9 (ENTER]6 -] 3.0000
9 X 6 =54 9 [ENTER] 6 [X] 54.0000
9+6=1.5 9 [ENTER] 6 [£] 1.5000
9% =531,441 9 (ENTER] 6 (] 531,441.0000

Notice that in the four examples:

e Both numbers are in the calculator before you press the
function key.

° is used only to separate two numbers that are keyed in

one after the other.

o Pressing a numeric function key,in this case [-], [x], [£], or [y*],
executes the function immediately and displays the result.

To see the close relationship between manual and programmed
problem solving, let’s first calculate the solution to a problem
manually, that is, from the keyboard. Then we’ll use a program to
calculate the solution to the same problem with different data.

14 The HP-15C: A Problem Solver

The time an object takes to fall to the ground (ignoring air friction)

is given by the formula

where t = time in seconds,

h = height in meters,

g =the acceleration due to

gravity, 9.8 m/s2.

Example: Compute the time taken
by a stone falling from the top of the

Eiffel Tower (300.51 meters high) to

the earth.

Keystrokes Display

300.51 300.5100 Enter A.

2 (x] 601.0200 Calculates 2h.

9.8(] 61.3286 (2h)/g.

7.8313 Falling time, seconds.

Programmed Solutions
Suppose you wanted to calculate falling times from various
heights. The easiest way is to write a program to cover all the

constant parts of a calculation and provide for entry of variable
data.

Writing the Program. The program is similar to the keystroke
sequence you used above. A label is useful to define the beginning
of a program, and a return is useful to mark the end of a program.

Also, the program must accommodate the entry of new data.

Loading the Program. You can load a program for the above
problem by pressing the following keys in sequence. (The display

shows information which you can ignore for now, though it will be

useful later.)

Keystrokes Display

(e)(P/R] 000-

CLEAR 000-

The HP-15C: A Problem Solver 15

001-42,21,11

2 002- 2
x] 003- 20
9 004- 9

() 005- 48
8 006- 8
& 007- 10

008- 11
(g](RTN] 009- 43 32

(g](P/R] 7.8313

Sets HP-15C to Program
mode. (PRGM annuncia-

tor on.)

Clears program mem-
ory. (This step is option-
al here.)

Label “A’ defines the be-
ginning of the program.

The same keys you

pressed to solve the prob-
lem manually.

“Return’ defines the end

of the program.

Switches to Run mode.

(No PRGM annunciator.)

Running the Program. Enter the following information to run
the program.

Keystrokes Display

300.51 300.51

7.8313

1050 (f](A] 14.6385

Height of the Eiffel

Tower.

Falling time you calcu-
lated earlier.

The time (seconds) for a

stone to reach the

ground after release
from a blimp 1050 m

high.

16 The HP-15C: A Problem Solver

With this program loaded, you can quickly calculate the time of
descent of an object from different heights. Simply key in the

height and press [f][A]. Find the time of descent for objects released
from heights of 100 m, 2 m, 275 m, and 2,000 m.

The answers are: 4.5175 s; 0.6389 s; 7.4915 s; and 20.2031 s.

That program was relatively easy. You will see many more aspects

and details of programming in part II. For now, turn the page to
part I to take an in-depth look at some of the calculator’s important
operating basics.

Part1

HP-15C

Fundamentals

Section 1

Getting Started

Power On and Off

The key turns the HP-15C on and off.* To conserve power, the
calculator automatically turns itself off after a few minutes of
inactivity.

Keyboard Operation

Primary and Alternate Functions

Most keys on your HP-15C perform one primary and two alternate,
shifted functions. The primary function of any key is indicated by

the character(s) on the face of the key. The alternate functions are

indicated by the gold characters printed above the key and the blue

characters printed on the lower face of the key.

e To select the primary function
printed on the face of a key,

press only that key. For OLVE

example: []. N
e To select the alternate function

printed in gold or blue, press the
like-colored prefix key ([f] or (g])
followed by the function key. For

example: (f][SOLVE]; [g](x<y].

Throughout this handbook, we will observe certain conventions in

referring to alternate functions. References to the function itself

will appear as just the key name in a box, such as “the ([MEM]
function.” References to the use of the key will include the prefix
key, such as “press [g][MEM].” References to the four gold functions
printed under the bracket labeled “CLEAR” will be preceded by the
word “CLEAR,” such as ‘“the CLEAR function,” or “press
CLEAR [PRGM].”

* Note that the key is lower than the other keys to help prevent its being pressed

inadvertently.

18

Section 1: Getting Started 19

Notice that when you press the or

(g] prefix key, an f or g annunciator 0.0000

appears and remains in the display !

until a function key is pressed to

complete the sequence.

Prefix Keys

A prefix key is any key which must precede another key to
complete the key sequence for a function. Certain functions require
two parts: a prefix key and a digit or other key. For your reference,

the prefix keys are:

(GsB] [£]
(g HYP] [ISG

HYP (x]

If you make a mistake while keying in a prefix for a function, press
(f)CLEAR to cancel the error. The CLEAR key is also
used to show the mantissa of a displayed number, so all 10 digits of
the number in the display will appear for a moment after the

PREFIX] key is pressed.

Changing Signs

Pressing (change sign) will change the sign (positive or
negative) of any displayed number. To key in a negative number,

press after its digits have been keyed in.

Keying in Exponents

(enter exponent) is used when keying in a number with an
exponent. First key in the mantissa, then press and key in the
exponent.

For a negative exponent press after keying in the exponent.*
For example, to key in Planck’s constant (6.6262 X 1073¢ Joule-
seconds) and multiply it by 50:

* may also be pressed after and before the exponent, with the same result

(unlike the mantissa, where digit entry must precede).

20 Section 1: Getting Started

Keystrokes

6.6262
EEX

H
W

CHS

50 [x]

Display

6.6262

6.6262 00 The 00 prompts you to
key in the exponent.

6.6262 03 (6.6262 X 103).

6.6262 34 (6.6262 X 103%).

6.6262 -34 (6.6262X1073%).

6.6262 -34 Enters number.

3.3131 -32 Joule-seconds.

Note: Decimal digits from the mantissa that spill into the

exponent field will disappear from the display when you

press [EEX], but will be retained internally.

To prevent a misleading display pattern, will not operate with

a number having more than seven digits to the left of the radix
mark (decimal point), nor with a mantissa smaller than 0.000001.

To key in such a number, use a form having a greater exponent
value (whether positive or negative). For example, 123456789.8 X

10?3 can be keyed in as 1234567.898 X 1025; 0.00000025 X 1075 can
be keyed in as 2.5 X 10722,

The “CLEAR’’ Keys

Clearing means to replace a number with zero. The clearing
operations in the HP-15C are (the table is continued on the next

page):

Clearing Sequence Effect

(g)(CLx]
(¢]

In Run mode:

In Program mode:

(fJCLEAR(Z]

Clears display (X-register).

Clears last digit or entire display.

Deletes current instruction.

Clears statistics storage registers,

display, and the memory stack (described

in section 3).

Section 1: Getting Started 21

Clearing Sequence Effect

(f] CLEAR [PRGM
In Run mode: Repositions program memory to line

000.

In Program mode: Deletes all program memory.

(fJCLEAR Clears all data storageregisters.

(f) CLEAR [PREFIX]* Clears any prefix from a partially entered

key sequence.

*Also temporarily displays the mantissa.

Display Clearing: and [«]

The HP-15C has two types of display clearing operations:
(clear X) and [«](back arrow).

In Run mode:

° clears the display to zero.

® [«] deletes only the last digit in the display if digit entry has
not been terminated by or most other functions. You
can then key in a new digit or digits to replace the one(s)
deleted. If digit entry has been terminated, then [«] acts like
Clx|.

Keystrokes Display

12345 12,345 Digit entry not

terminated.

(«] 1,234 Clears only the last digit.

9 12,349
111.1261 Terminates digit entry.

(«] 0.0000 Clears all digits to zero.

In Program mode:

° is programmable: it is stored as a programmed
instruction, and will not delete the currently displayed
instruction.

¢ [«] is not programmable, so it can be used for program
correction. Pressing [«] will delete the entire instruction
currently displayed.

22 Section 1: Getting Started

Calculations

One-Number Functions

A one-number function performs an operation using only the
number in the display. To use any one-number function, press the
function key after the number has been placed in the display.

Keystrokes Display

45 45

(g][LOG] 1.6532

Two-Number Functions and [ENTER

A two-number function must have two numbers present in the
calculator before executing the function. [#], [=], [x], and (%] are
examples of two-number functions.

Terminating Digit Entry. When keying in two numbers to
perform an operation, the calculator needs a signal that digit entry

is terminated for the first number. This is done by pressing
to separate the two numbers. If, on the other hand, one of the

numbers is already in the calculator as the result of a previous
operation, you do not need to use the key. All functions
except the digit entry keys themselves* have the effect of

terminating digit entry.

Notice that, regardless of the number, a decimal point always

appears and a set number of decimal places are displayed when

you terminate digit entry (as by pressing [ENTER]).

Chain Calculations. In the following calculations, notice that:

® The key is used only for separating the sequential
entry of two numbers.

e The operator is keyed in only after both operands are in the

calculator.

® The result of any operation may itself become an operand.
Such intermediate results are stored and retrieved on a last-in,

first-out basis. New digits keyed in following an operation are
treated as a new number.

* Thedigit keys,(-], (CHS], (EEX], and [«].

Section 1: Getting Started 23

Example: Calculate (9 + 17 — 4) + 4.

Keystrokes Display

9 9.0000 Digit entry terminated.

17 (+) 26.0000 9+17).

4[5 22.0000 9+ 17— 4).
4(z] 5.5000 9+17—4) 4.

Even more complicated problems are solved in the same manner—
using automatic storage and retrieval of intermediate results. It is
easiest to work from the inside of parentheses outwards, just as you
would with calculations on paper.

Example: Calculate (6 + 7) X (9 — 3).

Keystrokes Display

6 6.0000 First solve for the
intermediate result of

6+7).

7 13.0000
9 9.0000 Then solve for the

intermediate result of
(9 —3).

3[] 6.0000

(x] 78.0000 Then multiply the
intermediate results

together (13 and 6) for the
final answer.

Try your hand at the following problems. Each time you press
or a function key in a calculation, the preceding number is

saved for the next operation.

(16 X 38) — (13 X 11) = 465.0000

4X(17—12) + (10 — 5) = 4.0000

232 — (13X 9)+ 1/7=412.1429

V(5.4 X 0.8) + (12.5 — 0.72)] = 0.5998

Section 2

Numeric Functions

This section discusses the numeric functions of the HP-15C
(excluding statistics and advanced functions). The nonnumeric
functions are discussed separately (digit entry in section 1, stack
manipulation in section 3, and display control in section 5).

The numeric functions of the HP-15C are used in the same way
whether executed from the keyboard or in a program. Some of the
functions (such as [ABS]) are, in fact, primarily of interest for

programming.

Remember that the numeric functions, like all functions except
digit entry functions, automatically terminate digit entry. This
means a numeric function does not need to be preceded or followed

by (ENTER].

Pi

Pressing [g][r] places the first 10 digits of = into the calculator. [r]
does not need to be separated from other numbers by [ENTER].

Number Alteration Functions
The number alteration functions act upon the number in the
display (X-register).

Integer Portion. Pressing (g] replaces the number in the
display with the nearest integer of lesser or equal magnitude.

Fractional Portion. Pressing [f][FRAC]replaces the number in the
display with its fractional part (that is, the difference between the
number and its integer part).

Rounding. Pressing [g][RND]rounds all 10 internally held digits of
the mantissa of the displayed value to the number of digits
specified by the current , , or [ENG]display format.

Absolute Value. Pressing [g] yields the absolute value of the
number in the display.

24

Section 2: Numeric Functions 25

Keystrokes Display

123.4567 [g)[iNT] 123.0000
(g)(LSTx](CcHS][g](INT] -123.0000 Reversing the sign does

not alter digits.

(e](LsTx](f](FRAC] -0.4567
1.23456789
[g)(RND) -1.2346
(f]CLEAR 1234600000 Temporarily displays all

(release) -1.2346 digits in the mantissa.

(g](ABS] 1.2346

One-Number Functions

One-number math functions in the HP-15C operate only upon the
number in the display (X-register).

General Functions

Reciprocal. Pressing calculates the reciprocal of the number
in the display.

Factorial and Gamma. Pressing [f][x!] calculates the factorial of
the displayed value, where x is an integer 0 < x < 69.

You can also use [x!] to calculate the Gamma function, I' (x), used in

advanced mathematics and statistics. Pressing [x!] calculates
I' (x + 1), so you must subtract 1 from your initial operand to get

I' (x). For the Gamma function, x is not restricted to nonnegative

integers.

Square Root. Pressing calculates the positive square root of
the number in the display.

Squaring. Pressing [g] (x?] calculates the square of the number in
the display.

Keystrokes Display

25 0.0400

8(f](xY 40,320.0000 Calculates 8! or I (9).

3.9 1.9748
12.3 @& 151.2900

26 Section 2: Numeric Functions

Trigonometric Operations

Trigonometric Modes. The trigonometric functions operate in

the trigonometric mode you select. Specifying a trigonometric
mode does not convert any number already in the calculator to that
mode; it merely tells the calculator what unit of measure (degrees,

radians, or grads) to assign a number for a trigonometric function.

Pressing (g] sets Degrees mode. No annunciator appears in
the display. Degrees are in decimal, not minutes-seconds form.

Pressing [g] sets Radians mode. The RAD annunciator
appears in the display. In Complex mode, all functions (except
and [®R]) assume values are in radians, regardless of the
trigonometric annunciator displayed.

Pressing (g] sets Grads mode. The GRAD annunciator
appears in the display.

Continuous Memory will maintain the last trigonometric mode

selected. At “power up” (initial condition or when Continuous

Memory is reset), the calculator is in Degrees mode.

Trigonometric Functions. Given x in the display (X-register):

Pressing Calculates

(SIN] sine of x

(g)(SINT] arc sine of x

CcOoS cosine of x

(g(cos™] arc cosine of x

TAN tangent of x

(o](TANT] arc tangent of x

Before executing a trigonometric function, be sure that the

calculator is set to the desired trigonometric mode (Degrees,

Radians, or Grads).

Time and Angle Conversions

Numbers representing time (hours) or angles (degrees) can be

converted by the HP-15C between a decimal-fraction and a

minutes-seconds format:

Section 2: Numeric Functions 27

Hours.Decimal Hours ~e——— Hours.Minutes Seconds Decimal Seconds

(H.h) (H.MMSSs)

Degrees.Decimal Degrees <e———» Degrees.Minutes Seconds Decimal Seconds

(D.d) (D.MMSSs)
Hours/Degrees-Minutes-Seconds Conversion. Pressing

converts the number in the display from a decimal
hours/degrees format to an hours/degree-minutes-seconds-decimal

seconds format.

For example, press to convert

1.2 345 1.1404
e —— ——

... seconds
I to | minutes

hours hours

Press to display the value to all possible decimal places:

1140420000
Nt

Lto the hundred-thousandths of a second.

Decimal Hours (or Degrees) Conversion. Pressing [g]
converts the number in the display from an hours/degrees-
minutes-seconds-decimal seconds format to a decimal
hours/degrees format.

Degrees/Radians Conversions

The and functions are used to convert angles to
degrees or radians (D.d ««—3R.r). The degrees must be expressed

as decimal numbers, and not in a minutes-seconds format.

Keystrokes Display

40.5 0.7069 Radians.

(g][*DEG] 40.5000 40.5 degrees (decimal
fraction).

28 Section 2: Numeric Functions

Logarithmic Functions

Natural Logarithm. Pressing [g] calculates the natural
logarithm of the number in the display; that is, the logarithm to the
basee.

Natural Antilogarithm. Pressing calculates the natural
antilogarithm of the number in the display; thatis, raises e to the
power of that number.

Common Logarithm. Pressing [g] calculates the common
logarithm of the number in the display; that is, the logarithm to the

base 10.

Common Antilogarithm. Pressing calculates the common
antilogarithm of the number in the display; thatis, raises 10 to the
power of that number.

Keystrokes Display

45 [g][LN] 3.8067 Natural log of 45.

3.4012 30.0001 Natural antilog of 3.4012.

12.4578 (g](LOG] 1.0954 Common log of 12.4578.

3.1354 1,365.8405 Common antilog of
3.1354.

Hyperbolic Functions

Given x in the display (X-register):

Pressing Calculates

(f)(HYP][SIN] hyperbolic sine of x

(g)(RYPT][SIN] inverse hyperbolic sine of x

hyperbolic cosine of x

(g)[(rYPT](cOS] inverse hyperbolic cosine of x

(f)(HYP](TAN] hyperbolic tangent of x

(g)(HYPT](TAN] inverse hyperbolic tangent of x

Section 2: Numeric Functions 29

Two-Number Functions

The HP-15C performs two-number math functions using two

values entered sequentially into the display. If you are keying in

both numbers, remember that they must be separated by or

any other function—like (g] or [1/x]—that terminates digit
entry.

For a two-number function, the first value entered is considered the
y-value because it is placed into the Y-register for memory storage.

The second value entered is considered the x-value because it
remains in the display, which is the X-register.

The arithmetic operators, [+], (=], [X], and (%], are the four basic
two-number functions. Others are given below.

The Power Function

Pressing [y*] calculates the value of y raised to the x power. The
base number, y, is keyed in before the exponent, x.

To Calculate Keystrokes Display

214 2 1.4 %) 2.6390

2714 2 1.4[cHS]y*)| 0.3789

(—2)3 2 [CHS](ENTER] 3 [] -8.0000

Y2 0r2” 2 [ENTER) 3 [1I7)7) 1.2599

Percentages

The percentage functions, and [A%], preserve the value of the
original base number along with the result of the percentage
calculation. As shown in the example below, this allows you to

carry out subsequent calculations using the base number and the
result without re-entering the base number.

Percent. The function calculates the specified percentage of a
base number.

30 Section 2: Numeric Functions

For example, to find the sales tax at 3% and total cost of a $15.76
item:

Keystrokes Display

15.76 15.7600 Enters the base number
(the price).

3(g)(%] 0.4728 Calculates 3% of $15.76
(the tax).

16.2328 Total cost of item ($15.76
+ $0.47).

Percent Difference. The function calculates the percent
difference between two numbers. The result expresses the relative

increase (a positive result) or decrease (a negative result) of the

second number entered compared to the first number entered.

For example, suppose the $15.76 item only cost $14.12 last year.

What is the percent difference in last year’s price relative to this
year’s?

Keystrokes Display

15.76 15.7600 This year’s price (our
base number).

14.12(g](a%] -10.4061 Last year’s price was
10.41% less than this

year’s price.

Polar and Rectangular Coordinate Conversions

The and functions are
provided in the HP-15C for conver-
sions between polar coordinates and

rectangular coordinates.

The angle 6 is assumed to be in the
units set by the current trigonometric

mode, whether degrees (in a decimal

format, not a minutes-seconds for-

mat), radians, or grads. 6 is measured

as shown in the illustration at right.

Polar Conversion. Pressing [g] (polar) converts a set of
rectangular coordinates (x, y) to polar coordinates (magnitude r,

Section 2: Numeric Functions 31

angle 6). The y-value must be entered first, the x-value second.
Upon executing [g][#®P], r will appear in the display. PressX(X

exchange Y) to bring 6 out of the Y-register and into the display

(X-register). 8 will be returned as a value between —180° and 180°,

between —m and 7 radians, or between —200 and 200 grads.

Rectangular Conversion. Pressing (rectangular) con-
verts a set of polar coordinates (magnitude r, angle 8) into

rectangular coordinates (x,). 6 must be entered first, then r. Upon

executing [f][®R], x will be displayed first; press to display y.

Keystrokes

(g)(DEG]

5 [ENTER]
10
(g)(=P)
[x2]

30 [ENTER]
12

(x2]

/EIN

"m

Display

5.0000

10

11.1803

26.5651

30.0000

12

10.3923

6.0000

Set to Degrees mode (no

annunciator).

y-value.

x-value.

r.

0; rectangular coordinates

converted to polar coordi-
nates.

6.

r.

x-value.

y-value. Polar coordinates

converted to rectangular

coordinates.

Section 3

The Automatic Memory Stack,
LAST X, and Data Storage

The Automatic Memory Stack

and Stack Manipulation
HP operating logic is based on a mathematical logic known as
“Polish Notation,” developed by the noted Polish logician Jan
Y.ukasiewicz (Wookashye'veech) (1878-1956). Conventional alge-

braic notation places the algebraic operators between the relevant
numbers or variables when evaluating algebraic expressions.
t.ukasiewicz’s notation specifies the operators before the variables.
For optimal efficiency of calculator use, HP applied the convention
of specifying (entering) the operators after specifying (entering) the
variable(s). Hence the term “Reverse Polish Notation’” (RPN).

The HP-15C uses RPN to solve complicated calculations in a
straightforward manner, without parentheses or punctuation. It
does so by automatically retaining and returning intermediate

results. This system is implemented through the automatic
memory stack and the key, minimizing total keystrokes.

The Automatic

Memory Stack Registers

T 0.0000

Z 0.0000

Y 0.0000

X 0.0000 Always displayed.

When the HP-15C is in Run mode (no PRGM annunciator

displayed), the number that appears in the display is the number in
the X-register.

32

Section 3: The Memory Stack, LAST X, and Data Storage 33

Any number that is keyed in or results from the execution of a

numeric function is placed into the display (X-register). This action

will cause numbers already in the stack to lift, remain in the same

register, or drop, depending upon both the immediately preceding

and the current operation. Numbers in the stack are stored on a

last-in, first-out basis. The three stacks drawn below illustrate the

three types of stack movement. Assume x, y, z, and ¢ represent any
numbers which may be in the stack.

Stack Lift No Stack Lift or Drop

lost

T ; T
2 Z

Y ;: Y

X Xr»

Keys: (g](r]

Stack Drop

T < t

Z t

Y \ z

X]\ x+y

Keys:

Notice the number in the T-register remains there when the stack

drops, allowing this number to be used repetitively as an
arithmetic constant.

Stack Manipulation Functions

(ENTER]. Pressing separates two numbers keyed in one after
the other. It does so by lifting the stack and copying the number in
the display (X-register) into the Y-register. The next number

entered then writes over the value in the X-register; there is no

stack lift. The example below shows what happens as the stack is

34 Section 3: The Memory Stack, LAST X, and Data Storage

filled with the numbers 1, 2, 3, 4. (The shading indicates that the
contents of that register will be written over when the next number
is keyed in or recalled.)

lost

 A X

Keys: 1 2

/ lost

T 1

Z ;: 2

Y 3

X r> 4 3

Keys: 3

(R¥](roll down), (R4](roll up), and (xxy] (X exchange Y). [R¥]
and roll the contents of the stack registers up or down one
register (one value moves between the X- and the T-register). No

values are lost. [xXy] exchanges the numbers in the X- and Y-
registers. If the stack were loaded with the sequence 1, 2, 3, 4, the
following shifts would result from pressing [R¥],[R#], and [xXy].

T \\ » -

z ~ /x —>
kN e

Y 4 ~
X \\ e /\:

gKeys: (g)(R4]

Section 3: The Memory Stack, LAST X, and Data Storage 35

The LAST X Register and

The LAST X register, a separate memory register, preserves the

value that was last in the display before execution of a numeric

operation.* Pressing (g] (LAST X) places a copy of the
contents of the LAST X register into the display (X-register). For
example:

 T

Z

\

X| &
 Keys: \ (g)7)

wor. [Te[t
The feature saves you from having to re-enter numbers you
want to use again (as shown under Arithmetic Calculations With

Constants, page 39). It can also assist you in error recovery, such
as executing the wrong function or keying in the wrong number.

For example, suppose you mistakenly entered the wrong divisor in
a chain calculation:

Keystrokes Display

287 287.0000
12.9(%) 22.2481 Oops! The wrong divisor.

(g](LSTx] 12.9000 Retrieves from LAST X
the last entry to the X-
register (the incorrect

divisor) before [t] was
executed.

* Unless that operation was (3], [s], or [LR.], which don’t use or preserve the value in the
display (X-register), but instead calculate from data in the statistics storage registers

(Rg to R7). For a complete list of operations which save x in LAST X,refer to appendix

36 Section 3: The Memory Stack, LAST X, and Data Storage

Keystrokes Display

(x] 287.0000 Reverses the function that
produced the wrong
answer.

13.9(%] 20.6475 The correct answer.

Calculator Functions and the Stack

When you want to key in two numbers, one after the other, you
press between entries of the numbers. However, when you
want to key in a number immediately following any function
(including manipulations like [R¥]), you do not need to use [ENTER].
Why? Executing most HP-15C functions has this additional effect:

® The automatic memory stack is lift-enabled; thatis, the stack
will lift automatically when the next number is keyed or
recalled into the display.

® Digit entry is terminated, so the next number starts a new

entry.

lost

/
T —
z T i <
Y — -7 2 \
X — /I.: 5]\

Keys: 5

There are four functions—[ENTER], [CLx], [£*], and [Z-]—that
disable stack lift.* They do not provide for the lifting of the stack

when the next number is keyed in or recalled. Following the
execution of one of these functions, a new number will simply write
over the currently displayed number instead of causing the stack to
lift. (Although the stack lifts when is pressed,it will not lift
when the next number is keyed in or recalled. The operation of

* [«]will also disable the stack lift if digit entry is terminated, making (€] clear the entire

display like [CLx]. Otherwise,it is neutral. For a further discussion ofthe stack, refer to
appendix B.

Section 3: The Memory Stack, LAST X, and Data Storage 37

illustrated on page 34 shows how thus disables the
stack.) In most cases, the above effects will come so naturally that

you won’t even think about them.

X
<

N
-

Keys: (g) 6 7]

Order of Entry and the Key

An important aspect of two-number functions is the positioning of
the numbers in the stack. To execute an arithmetic function, the
numbers should be positioned in the stack in the same way that
you would vertically position them on paper. For example:

98 98 98 98
—15 +15 X15 15

As you can see, the first (or top) number would be in the Y-register,

while the second (or bottom) number would be in the X-register.
When the mathematics operation is performed, the stack drops,

leaving the result in the X-register. Here is how a subtraction

operation is executed in the calculator:

lost lost

y » y

x |7 «x

98 |—™ 98

| 98 r> 15

18 (=

 N
N

 X
<

N
-

 23N N
\

Keys:

The same number positioning would be used to add 15 to 98,
multiply 98 by 15, or divide 98 by 15.

38 Section 3: The Memory Stack, LAST X, and Data Storage

Nested Calculations

The automatic stack lift and stack drop make it possible to do
nested calculations without using parentheses or storing inter-
mediate results. A nested calculation is solved simply as a series of

one- and two-number operations.

Almost every nested calculation you are likely to encounter can be
done using just the four stack registers. It is usually wisest to begin

the calculation at the innermost number or pair of parentheses and
work outward (as you would for a manual calculation). Otherwise,
you may need to place an intermediate result into a storage
register. For example, consider the calculation of

3[4+5(6+7)]

Keystrokes Display

6 7 13.0000 Intermediate result of
6+17).

5(x] 65.0000 Intermediate result of
56+7).

4 69.0000 Intermediate result of
[4+5(6+7)]

3(x] 207.0000 Final result:
3[4+506+T7)].

The following sequence illustrates the stack manipulation in this

example. The stack automatically drops after each two-number
calculation, and then lifts when a new number is keyed in. (For
simplicity, throughout the rest of this handbook we will not show
arrows between the stacks.)

 6 (ENTER 7

Section 3: The Memory Stack, LAST X, and Data Storage 39

Keys:

X
<

N
-

Keys:

Arithmetic Calculations With Constants

There are three ways (without using a storage register) to

manipulate the memory stack to perform repeated calculations
with a constant:

1. Usethe LAST X register.

2. Load the stack with a constant and operate upon different
numbers. (Clear the X-register every time you want to

change the number operated upon.)

3. Load the stack with a constant and operate upon an
accumulating number. (Do not change the number in the
X-register.)

LAST X. Use your constant in the X-register (that is, enter it
second) so that it always will be saved in the LAST X register.

Pressing [g] will retrieve the constant and place it into the
X-register (the display). This can be done repeatedly.

40 Section 3: The Memory Stack, LAST X, and Data Storage

Example: Two close stellar neighbors

of Earth are Rigel Centaurus (4.3
light-years away) and Sirius (8.7

light-years away). Use the speed of
light, ¢ (3.0 x 10® meters/second, or

9.5 x 10'® meters/year), to figure the

distances to these stars in meters.
(The stack diagrams show only one

decimal place.)

T

Z

Y

X

Keys:

4.3

9.5 15

9.5 (EEX]15

LAST X: / / / /

X

X 4.1 16

4.1 16 8.7

16 8.7 9.5 15

8.7 (g)(LSTx]

o5 18] [o5 13|

T X X

Z\|4a.1 16 x

Y 8.7 4.1 16|« (Rigel Ce?éaurus is

4.1 x 10'° meters away.)
X |9.5 15 8.3 16 —(Sirius is 8.3 X 10'6

Keys: @ meters away.)

LASTX: |9.5 15 9.5 15

Section 3: The Memory Stack, LAST X, and Data Storage 41

Loading the Stack with a Constant. Because the number in the

T-register is replicated when the stack drops, this number can be
used as a constant in arithmetic operations.

T ~¢——— New constant

eneration.Z g

Y ~¢———— Drops to interact

with X-register.
X

Keys: (x]

Fill the stack with a constant by keying it into the display and
pressing three times. Key in your initial argument and
perform the arithmetic operation. The stack will drop, a copy of the
constant will “fall” into the Y-register, and a new copy of the
constant will be generated in the T-register.

If the variables change (as in the preceding example), be sure and
clear the display before entering the new variable. This disables
the stack so that the arithmetic result will be written over and only
the constant will occupy the rest of the stack.

If you do not have different arguments, that is, the operation will
be performed upon a cumulative number, then do not clear the
display—simply repeat the arithmetic operation.

Example: A bacteriologist tests a
certain strain of microorganisms

whose population typically increases
by 15% each day (a growth factor of
1.15). If she starts with a sample

culture of 1000, what will be the

bacteria population at the end of
each day for four consecutive days?

Keystrokes Display

1.16 1.15 Growth factor.

1.1500 Filling the stack.

1000 1,000 Initial culture size.

42 Section 3: The Memory Stack, LAST X, and Data Storage

Keystrokes Display

(x] 1,150.0000 Population at the end of
day 1.

(x] 1,322.5000 Day 2.

(] 1,520.8750 Day 3.

(x] 1,749.0063 Day4.

Storage Register Operations
When numbers are stored or recalled, they are copied between the

display (X-register) and the data storage registers. At “power-up”

(initial turn-on or Continuous Memory reset) the HP-15C has 21
directly accessible storage registers: R, through Ry, Rj through Ro,
and the Index register (R;) (see the diagram of the registers on the

inside back cover). Six registers, R, to R, are also used for

statistics calculations.

The number of available data storage registers can be increased or

decreased. The function, which is used to reallocate registers
in calculator memory, is discussed in appendix C, Memory
Allocation. The lowest-numbered registers are the last to be
deallocated from data storage, therefore it is wisest to store data in

the lowest-numbered registers available.

Storing and Recalling Numbers

(store). When followed by a storage register address (0

through 9 or .0 through .9*), this function copies a number from the

display (X-register) into the specified data storage register. It will

replace any existing contents of that register.

(recall). Similarly, you can recall data from a particular
register into the display by pressing followed by the register
address. This brings a copy of the desired data into the display; the

contents of the storage register remain unaltered.

(x%x] (X exchange). Followed by 0 through .9,* this function

exchanges the contents of the X-register and the addressed data

storage register. This is useful to view storage registers without

disturbing the stack.

* All storage register operations can also be performed with the Index register (using [I]

or(i)]), which is covered in section 10, and with matrices, section 12.

Section 3: The Memory Stack, LAST X, and Data Storage 43

The above are stack lift-enabling operations, so the number

remaining in the X-register can be used for subsequent calcula-
tions. If you address a nonexistent register, the display will show

Error 3.

Example: Springtime is coming and you want to keep track of 24
crocuses planted in your garden. Store the number of crocuses

blooming the first day, and add to this the number of new blooms
the second day.

Keystrokes Display

3 0 3.0000 Stores the numberoffirst-
day blooms in R,

Turn the calculator off. Next day, turn it back on again.

0 3.0000 Recalls the number ofcro-
cuses that bloomed
yesterday.

5 8.0000 Adds today’s new blooms
to get the total blooming

crocuses.

Clearing Data Storage Registers

Pressing CLEAR (clear registers) clears the contents of all
data storage registers to zero. (It does not affect the stack or the

LAST X register.) To clear a single data storage register, store zero

in that register. Resetting Continuous Memory clears all registers

and the stack.

Storage and Recall Arithmetic

Storage Arithmetic. Suppose you not only wanted to store a

number, but perform arithmetic with it and store the result in the
same register. You can do this directly—without using [RCL]—by
using the following procedure:

1. Have your second operand (besides the one in storage) in the
display (as the result of a calculation, a recall, or keying in).

2. Press(ST0].

44 Section 3: The Memory Stack, LAST X, and Data Storage

3. Press(+],[-],[x], or[z].

4. Key in the register address (0 to 9, .0 to .9). (The Index
register, discussed in section 10, can also be used.)

The new number in the register is determined as follows:

For storage arithmetic,

+

new contents _ old contents — numberin

of register of register X display

Ro T Ro rx T

Z Z

Y Y

X X

Keys: (-]o

Recall Arithmetic. Recall arithmetic allows you to perform

arithmetic with the displayed value and a stored value without
lifting the stack, that is, without losing any values from the Y-, Z-,
and T-registers. The keystroke sequence is the same as for storage

arithmetic using in place of .

For recall arithmetic,

new display = old display

o[

+

— contents of

X register

X
<

N
-

Keys: (RcLl(=]o

Section 3: The Memory Stack, LAST X, and Data Storage 45

Example: Keep a running count of your newly blooming crocuses
for two more days.

Keystrokes Display

8 0 8.0000 Places the total number of
blooms as of day 2 in R,

4 0 4.0000 Day 3: adds four new
blooms to those already
blooming.

3 0 3.0000 Day 4: adds three new
blooms.

24 (RcL][-]o 9.0000 Subtracts total number of
blooms summed in R(15)
from the total number of

plants (24): 9 crocuses

have not bloomed.

(RcL]O 15.0000 (The number in R does

not change.)

Overflow and Underflow

If an attempted storage or recall arithmetic operation would result

in overflow in a data storage register, the value in the affected

register will be replaced with +£9.999999999 X 10%° and the display
will blink. To stop the blinking (clear the overflow condition), press

[«]Jor [ON]or (g](CF]9.
In case of underflow, the value in the register will be replaced with
zero (no display blinking). Overflow and underflow are discussed
further on page 61.

Problems

1. Calculate the value of x in the following equation.

 X = \/8.33 (4—5.2) +[(8.33 — 7.46) 0.32]

4.3(3.15—2.75) — (1.71) (2.01)

Answer: 4.5728.
A possible keystroke solution is:

4 5.2 (-] 8.33 (x] (g} 7.46 [-] 0.32 [x] (2] 3.15
(ENTER]2.75(-] 4.3 [x]1.71 [ENTER] 2.01 [x] [-] (%]

46 Section 3: The Memory Stack, LAST X, and Data Storage

Use arithmetic with constants to calculate the remaining
balance of a $1000 loan after six payments of $100 each and
an interest rate of 1% (0.01) per payment period.

Procedure: Load the stack with (1 + i), where i = interest rate,

and key in the initial loan balance. Use the following

formula to find the new balance after each payment.

New Balance = ((Old Balance) X (1 +)) — Payment

The first part of the key sequence would be:

1.01 1000

For each payment, execute:

(x]J100(-]

Balance after six payments: $446.32.

Store 100 in Rs. Then:

. Divide the contents of Ry by 25.

Subtract 2 from the contents of Rs.

Multiply the contents of R5 by 0.75.

Add 1.75 to the contents of Rs.

Recall the contents of Rs,.

Answer: 3.2500.

A
R

A
S

Section 4

Statistics Functions

A word about the statistics functions: their use is based on an

understanding of memory stack operation (section 3). You will find

that order of entry is important for most statistics calculations.

Probability Calculations

The input for permutation and combination calculations is
restricted to nonnegative integers. Enter the y-value before the

x-value. These functions, like the arithmetic operators, cause the

stack to drop as the result is placed in the X-register.

Permutations. Pressing calculates the number of possible
different arrangements ofy different items taken in quantities of x

items at a time. No item occurs more than once in an arrangement,

and different orders of the same x items in an arrangement are

counted separately. The formulais

y!
P, ,=—>—

YT (y—x)

Combinations. Pressing [(g] calculates the number of
possible sets of y different items taken in quantities of x items at a

time. No item occurs more than once in a set, and different orders of

the same x items in a set are not counted separately. The formula is

y!

x!(y—x)!
y,x

Examples: How many different arrangements are possible of five
pictures which can be hung on the wall three at a time?

Keystrokes Display

5 3 3 Five (y) pictures put up
three (x) at a time.

60.0000 Sixty different arrange-
ments possible.

47

48 Section 4: Statistics Functions

How many different four-card hands can be dealt from a deck of 52

cards?

Keystrokes Display

52 4 4 Fifty-two (y) cards dealt
four (x) at a time.

(g)(Cy.x] 270,725.0000 Number of different
hands possible.

The execution times for these functions may last several seconds,

depending on the magnitude of the x and y inputs. The display will
show running during this time. The maximum size of x or y is

9,999,999,999.

Random Number Generator

Pressing [f] (random number) will generate a random
number (part of a uniformly distributed pseudo-random number

sequence) intherange0<r<1.*

At initial power-up (including reset of Continuous Memory), the

HP-15C random number generator will use zero as a ‘“seed” to

initiate a random number sequence. Any time you generate a

random number, that number becomes the seed for the next

random number. You can initiate a different random number

sequence by storing a new seed for the random number generator.

(Repetition of a random number seed will produce repetition of the

random number sequence.)

will store the X-register number (0 < r < 1) as a new
seed for the random number generator. (A value for r outside this

range will be converted to fit within the range.)

(RcL](f] will recall to the display the current random number
seed.

* Passes the spectral test (D. Knuth, Seminumerical Algorithms, vol. 2,1969).

Section 4: Statistics Functions 49

Keystrokes Display

.5764 0.5764 Stores 0.5764 as random
0.5764 number seed. (The [f] key-

stroke may be omitted.)

0.3422 Random number sequence
0.2809 initiated by the above

seed.

[« 0.0000
(RCL](f] 0.2809 Recalls last random num-

ber generated, which is
the new seed. (The [f)may
be omitted.)

Accumulating Statistics
The HP-15C performs one- and two-variable statistical calcula-
tions. The data is first entered into the Y- and X-registers. Then the

function automatically calculates and stores statistics of the
data in storage registers R, through R;. These registers are

therefore referred to as the statistics registers.

Before beginning to accumulate statistics for a new set of data,

press [f]JCLEAR [Z]to clear the statistics registers and stack. (If you
have reallocated registers in memory and any of the statistics

registers no longer exist, Error 3 will be displayed when you try to
use CLEAR [Z], [£#], or [Z-]. Appendix C explains how to reallocate
memory.)

In one-variable statistical calculations, enter each data point (x-

value) by keying in x and then press [Z+].

In two-variable statistical calculations, enter each data pair (the x-

and y-values) as follows:

1. Key yinto the displayfirst.

2. Press [ENTER]. The displayed y-value is copied into the
Y-register.

Key x into the display.

Press [Z+]. The current number of accumulated data points,
n, will be displayed. The x-value is saved in the LAST X

register and y remains in the Y-register. disables stack

lift, so the stack will not lift when the next number is keyed
in.

50 Section 4: Statistics Functions

In some cases involving x or y data values that differ by a
relatively small amount, the calculator cannot compute s, r, linear

regression, or y, and will display Error 2. This will not happen,
however, if you normalize the data by keying in only the difference
between each value and the mean or approximate mean of the
values. This difference must be added back to the calculations of x,
y, and the y-intercept ((L.R.]). For example, if your x-values were

665999, 666000, and 666001, you should enter the data as —1, 0, and

1; then add 666000 back to the relevant results.

The statistics of the data are compiled as follows:

Register Contents

R, n Number of data points accumulated (n also

appears in the X-register).

R, 3x Summation of x-values.

R4 sx2 Summation of squares of x-values.

Rs Sy Summation of y-values.

Re Sy? Summation of squares of y-values.

R5 Sxy Summation of products of x- and y-values.
You can recall any of the accumulated statistics to the display

(X-register) by pressing and the number of the data storage
register containing the desired statistic. If you press [RCL][=+], Sx
and Xy will be copied simultaneously from R3 and R, respectively,
into the X-register and the Y-register, respectively. (The sequence

lifts the stack twice if stack lift is enabled, once if not, and
then enables stack lift.)

Example: Agronomist Silas Farmer

has developed a new variety of high-
yield rice, and has measured the

plant’s yield rate as a function of
fertilization. Use the function to
accumulate the data below to find the
values for 3x, 3x2, Sy, Sy2, and Sxy
for nitrogen fertilizer application (x)

versus grain yield (y).

Section 4: Statistics Functions 51

NITROGEN APPLIED

X (kg per hectare*), x 0.00 20.00 40.00 |60.00 |80.00

GRAIN YIELD

Y |(metrictons per 463 478 6.61 7.21 7.78
hectare), y

* A hectare equals 2.47 acres.

Keystrokes Display

(fJCLEAR(Z] 0.0000 Clearsstatistical storage

registers (R, through R,
and the stack).

2 0.00 Limits display to two
decimal places, like the
data.

4.63 4.63

0 1.00 First data point.

4.78 4.78
20 2.00 Second data point.

6.61 6.61
40 3.00 Third data point.

7.21 7.21
60 4.00 Fourth data point.

7.78 7.78

80 5.00 Fifth data point.

3 200.00 Sum of x-values, 3x (kg of
nitrogen).

4 12,000.00 Sum of squares ofx-

values, Sx2.

5 31.01 Sum ofy-values, 3y (grain
yield).

6 200.49 Sum of squares ofy-

values, 3y2.

7 1,415.00 Sum of products ofx- and
y-values, Zxy.

52 Section 4: Statistics Functions

Correcting Accumulated Statistics

If you discover that you have entered data incorrectly, the
accumulated statistics can be easily corrected. Even if only one
value of an (x,y) data pair is incorrect, you must delete and re-enter

both values.

1. Key theincorrect data pair into the Y- and X-registers.

2. Press(g](Z-]to delete the incorrect data.

3. Key inthe correct values for x and y.

4. Press[Z+].

Alternatively, if the incorrect data point or pair is the most recent
one entered and has been pressed, you can press [g](LSTx](g](Z-]
to remove the incorrect data.*

Example: After keying in the preceding data, Farmer realizes he
misread a smeared figure in his lab book. The second y-value
should have been 5.78 instead of 4.78. Correct the data input.

Keystrokes Display

4.78 4.78 Keys in the data pair we
20(g](=-] 4.00 wantto replace and

deletes the accompanying
statistics. The n-value
drops to four.

5.78 5.78 Keys in and accumulates
the replacement data pair.

20 5.00 The n-valueis back to five.

We will use these statistics in the rest of the examples in this

section.

* Note that these methods of data deletion will not delete any rounding errors that may

have been generated in the statistics registers. This difference will not be serious unless

the erroneous pair has a magnitude that is enormous compared with the correct pair; in

such a case, it would be wise to start over!

Section 4: Statistics Functions 53

Mean

The (3] function computes the arithmetic mean (average) of the

x-and y-values using the formulas shown in appendix A and the

statistics accumulated in the relevant registers. When you press
(g](8], the contents of the stack lift (two registers if stack lift is

enabled, one if not); the mean of x (x) is copied into the X-register

as the mean of y (¥) is copied simultaneously into the Y-register.

Press [xX y]to view .

Example: From the corrected statistics data we have already
entered and accumulated, calculate the average fertilizer applica-
tion, X, and average grain yield y, for the entire range.

Keystrokes Display

(g](z] 40.00 Average kg of nitrogen, x,
for all cases.

(xxy] 6.40 Average tons of rice, y, for
all cases.

Standard Deviation

Pressing [g](s] computes the standard deviation of the accumulated
statistics data. The formulas used to compute s,, the standard
deviation of the accumulated x-values, and s,, the standard

deviation of the accumulated y-values, are given in appendix A.

This function gives an estimate of the population standard

deviation from the sample data, and is therefore termed the sample
standard deviation.* When you press [g] (s], the contents of the
stack registers are lifted (twice if stack lift is enabled, once if not);
s, is placed into the X-register and s, is placed into the Y-register.
Press [x%y]to view s,

* When your data constitutes not just a sample of a population but all of the population,

the standard deviation of the data is the true population standard deviation (denoted o).

The formula for the true population standard deviation differs by a factor of \/(n —1)/n

from the formula used for the [s] function. The difference between the values is small for

large n, and for most applications can be ignored. But if you want to calculate the exact

value of the population standard deviation for an entire population, you can easily do

so: simply add, using [Z+], the mean (x) of the data to the data before pressing [g](s].

The result will be the population standard deviation. (If you subsequently correct any of

your accumulated data values, remember to delete the first mean value and add the

corrected one.)

54 Section 4: Statistics Functions

Example: Calculate the standard deviation about the mean
calculated above.

Keystrokes Display

(g](s] 31.62 Standard deviation about
the mean nitrogen
application, x.

(xxy] 1.24 Standard deviation about
the mean grain yield, y.

Linear Regression

Linear regression is a statistical method for finding a straight line

that best fits a set of two or more data pairs, thus providing a
relationship between two variables. By the method of least
squares, will calculate the slope, A, and y-intercept, B, of
the linear equation:

y=Ax+B

1. Accumulate the statistics of your data using the key.

2. Press [f][LR.]. The y-intercept, B, appears in the display
(X-register). The slope, A, is copied simultaneously into the

Y-register.

3. Press [xxy]to view A. (As is the case with the functions (%]
and (s], causes the stack to lift two registers if it’s
enabled, one if not.)

slope B y-intercept

X
<

N
-

y-intercept A slope

Keys: (HLR] (x%)]

The slope and y-intercept of the least squares line of the

accumulated data are calculated using the equations shown in
appendix A.

Section 4: Statistics Functions 55

Example: Find the y-intercept and slope of the linear approxima-
tion of the data and compare to the plotted data on the graph
below.

GrainYield

(metric tons/hectare)

8.50+4+

7.50 1

6.50 4

 5.50 -

B

4.50 = : = +
0 20 40 60 80

Nitrogen Application (kg/hectare)

Keystrokes Display

(fJ(LR.] 4.86 y-intercept of the line.

(x%y] 0.04 Slope of the line.

Linear Estimation and Correlation Coefficient

When you press the linear estimate, y, is placed in the
X-register and the correlation coefficient, r, is placed in the

Y-register. To display r, press%y].

56 Section 4: Statistics Functions

Linear Estimation. With the statistics accumulated, an esti-
mated value for y, denoted y, can be calculated by keying in a

proposed value for x and pressing [f](5.r].

An Estimated value for x (denoted JE) can be calculated as

follows:

1. Press [fJ(LR.].

2. Key in the known y-value.

3. Press [xxy](-])x2y](].

Correlation Coefficient. Both linear regression and linear
estimation presume that the relationship between the x and y data
values can be approximated by a linear function. The correlation
coefficient, r, is a determination of how closely your data fit a

straight line. The range is — 1 < r < 1, with — 1 representing a
perfectly negative correlation and + 1 representing a perfectly
positive correlation.

Note that if you do not key in a value for x before executing (f][3.r],
the number previously in the X-register will be used (usually
yielding a meaningless value for y).

Example: What if 70 kg of nitrogen fertilizer were applied to the

rice field? Predict the grain yield based on Farmer’s accumulated

statistics. Because the correlation coefficient is automatically

included in the calculation, you can view how closely the data fit a

straight line by pressing%after the y prediction appears in the
display.

Yy

12

8 X o

. = 170,9)
® -

-

4 —+ = X

Section 4: Statistics Functions 57

Keystrokes Display

70(f)(5.r] 7.56 Predicted grain yield in
tons/hectare.

(x%y] 0.99 The original data closely
approximates a straight
line.

Other Applications

Interpolation. Linear interpolation of tabular values, such as in
thermodynamics and statistics tables, can be carried out very

simply on the HP-15C by using the [3,r] function. This is because
linear interpolation is linear estimation: two consecutive tabular

values are assumed to form two points on a line, and the unknown
intermediate value is assumed to fall on that same line.

Vector Arithmetic. The statistical accumulation functions
can be used to perform vector addition and subtraction. Polar
vector coordinates must be converted to rectangular coordinates
upon entry (6, (ENTER], r [#R], [(£+]). The results are recalled
from R; (2x) and Ry (Zy) (using (RCL](Z+]) and converted back
to polar coordinates, if necessary. Remember that for polar co-
ordinates the angle is between —180° and 180° (or —= and =
radians, or —200 and 200 grads). To convert to a positive angle,
add 360 (or 27 or 400) to the angle.

For the second vector entered, the final keystroke will be either
or [£-], depending on whether the two vectors should be added or
subtracted.

Section 5

The Display
and Continuous Memory

Display Control
The HP-15C has three display formats—(FiX], [SCl], and [ENG]—
that use a given number (0 through 9) to specify display format.
The illustration below shows how the number 123,456 would be
displayed specified to four places in each possible mode.

MFX] 4 : 123,456.0000
[[Sc) 4 : 1.2346 05
(f](ENG]4 : 123.46 03

Owing to Continuous Memory, any change you make in the
display format will be preserved until Continuous Memory is reset.

The current display format takes effect when digit entry is
terminated; until then, all digits you key in (up to 10) are displayed.

Fixed Decimal Display

(fixed decimal) format displays a figure with the number of
decimal places you specify (up to nine, depending on the size of the
integer portion.) Exponents will be displayed if the number is too
small or too large for the display. At “power-up,” the HP-15C is in

4 format. The key sequence is [f][FIX]n.

Keystrokes Display

123.4567895 123.4567895

(fIFx]4 123.4568
6 123.456790 Display is rounded to six

decimal places. (Ten

places are stored
internally.)

[f[Fix]4 123.4568 Usual[FIX]4 display.

Scientific Notation Display

(scientific) format displays a number in scientific notation.
The sequence n specifies the number of decimal places to be
shown. Up to six decimal places can be shown since the exponent

58

Section 5: The Display and Continuous Memory 59

display takes three spaces. The display will be rounded to the
specified number of decimal places; however, if you specify more

decimal places than the six places the display can hold (that is,

7, 8, or 9), rounding will occur in the undisplayed seventh,
eighth, or ninth decimal place.*

With the previous number still in the display:

Keystrokes Display

(f](sci)6 1.234568 02 Roundsto and shows six

decimal places.

8 1.234567 02 Rounds to eight decimal
places, but displays only
six.

Engineering Notation Display

(engineering) format displays numbers in an engineering

notation format in a manner similar to [SCI], except:

e In engineering notation, the first significant digit is always

present in the display. The number you key in after [f]
specifies the number of additional digits to which you want to
round the display.

e Engineering notation shows all exponents in multiples of

three.

Keystrokes Display

.012345 0.012345

(f]J(ENG]1 12. -03 Rounds to thefirst digit
after the leading digit.

3 12.35 -03
10(%] 123.5 -03 Decimal shifts to main-

tain multiple of three in
exponent.

(f](Fx]4 0.1235 Usual [FIX] 4 format.

* Therefore, the display shows no distinction among 7,8, and 9 unless the number

rounded up is a 9, which carries a 1 over into the next higher decimal place.

60 Section 5: The Display and Continuous Memory

Mantissa Display

Regardless of the display format, the HP-15C always internally
holds each number as a 10-digit mantissa and a two-digit exponent
of 10. For example, 7= is always represented internally as
3.141592654 X 10%, regardless of what is in the display.

When you want to view the full 10-digit mantissa of a number in
the X-register, press CLEAR [PREFIX]. To keep the mantissa in the
display, hold the key down.

Keystrokes Display

(g](r] 3.1416

(f)CLEAR
(hold) 3141592654

Round-Off Error

As mentioned earlier, the HP-15C holds every value to 10 digits
internally. It also rounds the final result of every calculation to the
10th digit. Because the calculator can provide only a finite
approximation for numbers such as 7 or 2/3 (0.666...), a small error

due to rounding can occur. This error can be increased in lengthy

calculations, but usually is insignificant. To accurately assess this
effect for a given calculation requires numerical analysis beyond

our scope and space here! Refer to the HP-15C Advanced Functions
Handbook for a more detailed discussion.

Special Displays

Annunciators

The HP-15C display contains eight annunciators that indicate the
status of the calculator for various operations. The meaning and

use of these annunciators is discussed on the following pages:

* Low-power indication, page 62.

USER User mode, pages 79 and 144.

fandg Prefixes for alternate functions, pages 18-19.

RAD and GRAD Trigonometric modes, page 26.

C Complex mode, page 121.

PRGM Program mode, page 66.

Section 5: The Display and Continuous Memory 61

Digit Separators

The HP-15C is set at power-up so that it separates integral and

fractional portions of a number with a period (a decimal point), and

separates groups of three digits in the integer portion with a

comma. You can reverse this setting to conform to the numerical
convention used in many countries. To do so, turn off the
calculator. Press and hold [ON], press and hold [-], release [ON],
then release (-] ((ON]/[:]). (Repeating this sequence will set the
calculator to the previous display convention.)

Keystrokes Display

12345.67 12,345.67

(oN)/ (] 12.345,6700
[on]/ [12,345.6700

Error Display

If you attempt an improper operation—such as division by zero—
an error message (Error followed by a digit) will appear in the

display. For a complete listing of error messages and their causes,
refer to appendix A.

To clear the Error display and restore the calculator to its prior
condition, press any key. You can then resume normal operation.

Overflow and Underflow

Overflow. When the result of a calculation in any register is a
number with a magnitude greater than 9.999999999 X 1099,

+ 9.999999999 X 10% is placed in the affected register and the
overflow flag, flag 9, is set.* Flag 9 causes the display to blink.

When overflow occurs in a running program, execution continues
until completion of the program, and then the display blinks.

The blinking can be stopped and flag 9 cleared by pressing [«],

[ON], or [g](CF)9.
Underflow. If the result of a calculation in any register is a

number with a magnitude less than 1.000000000 X 10™%?, that

number will be replaced by zero. Underflow does not have any

other effect.

* Recall that the display does not include the last three digits of the mantissa.

62 Section 5: The Display and Continuous Memory

Low-Power Indication

When a flashing asterisk, which
indicates low battery power, appears
in the lower left-hand side of the
display, there is no reason to panic.
You still have plenty of calculator
time remaining: at least 10 minutes if
you continuously run programs, and
at least an hour if you do calculations

manually. Refer to appendix F (page
259) for information on replacing the
batteries.

0.0000

Continuous Memory

Status

The Continuous Memory feature of the HP-15C retains the

following in the calculator, even when the display is turned off:

All numeric data stored in the calculator.

All programs stored in the calculator.

Position of the calculator in program memory.

Display mode and setting.

Trigonometric mode (Degrees, Radians, or Grads).

Any pending subroutine returns.

Flag settings (except flag 9, which clears when the display is
manually turned off).

e User mode setting.

e Complex mode setting.

When the HP-15C is turned on, it always “wakes up”’ in Run mode.

If the calculator is turned off, Continuous Memory will be
preserved for a short period while the batteries are removed. Data
and programs are preserved longer than other aspects of calculator

status. Refer to appendix F for instructions on changing batteries.

Section 5: The Display and Continuous Memory 63/64

Resetting Continuous Memory

If at any time you want to reset (entirely clear) the HP-15C

Continuous Memory:

1. Turn the calculator off.

2. Press and hold the key, then press and hold the [-] key.

3. Release the key, then the [-] key. (This convention is

represented as [ON]/[-].)

When Continuous Memory is reset, Pr Error (power error) will be
displayed. Press any key to clear the display.

Note: Continuous Memory can inadvertently be interrupted

and reset if the calculator is dropped or otherwise

traumatized.

Part 11

HP-15C

Programming

Section 6

Programming Basics

The next five sections are dedicated to explaining aspects of
programming the HP-15C. Each of these programming sections
will first discuss basic techniques (The Mechanics), then give

examples for the implementation of these techniques (Examples),
and lastly discuss finer points of operation in greater detail
(Further Information). Read only as far as you need to support your

use of the HP-15C.

The Mechanics

Creating a Program

Programming the HP-15C is an easy matter, based simply on
recording the keystroke sequence used when calculating manually.
(This is called “keystroke programming”.) To create a program out
of a series of calculation steps requires two extra manipulations:
deciding where and how to enter your data; and loading and
storing the program. In addition, programs can be instructed to
make decisions and perform iterations through conditional and
unconditional branching.

As we step through the fundamentals of programming, we’ll
rework the falling object program illustrated in the Problem Solver

(page 14).

Loading a Program

Program Mode. Press (g][P/R](program/run) to set the calculator
to Program mode (PRGM annunciator on). Functions are stored

and not executed when keys are pressed in Program mode.

Keystrokes Display

(g)(P/R] 000- Switches to Program
mode; PRGM annunciator
and line number (000)

displayed.

66

Section 6: Programming Basics 67

Location in Program Memory. Program memory—and there-

fore the calculator’s position in program memory—is demarcated
by line numbers. Line 000 marks the beginning of program

memory and cannot be used to store an instruction. The first line
that contains an instruction is line 001. Program lines other than
000 do not exist until instructions are written for them.

You can start a program at any existent line (designated nnn), but

it is simplest and safest to start an independent program (as
opposed to a subroutine) at the beginning of program memory. As
you write, any existing program lines will be preserved and
“bumped”’ down in program memory.

Press 000 (in Program or Run mode) to move to line 000
without recording the statement. In Run mode, CLEAR

will also reset the calculator to line 000—without clearing
program memory.

Alternatively, you can clear program memory, which will erase all

programs in memory and position you to line 000. To do so, press
CLEAR in Program mode.

Program Begin. A label instruction— [f][LBL] followed by a letter
([A]through [E]) or number (0 through 9 or .0 through .9)—is used to
define the beginning of a program or routine. The use of labels
allows you to quickly select and run one particular program or

routine out of several.

Keystrokes Display

CLEAR 000- Clears program memory
and sets to line 000 (start

of program memory).

001-42,21,11

Recording a Program. Any key pressed—operator or constant—
will be recorded in memory as a programmed instruction.*

* xcept the nonprogrammable functions, which are listed on page 80.

68 Section 6: Programming Basics

Keystrokes Display

2 002- 2

(x] 003- 20

E] gg;: 43 Given A in the X-register,

8 006- g lines 002 to 008 calculate

2 007- 10 o
008- 11 o8

Program End. There are three possible endings for a program:

* [g] (return) will end a program, return to line 000, and
halt.

° will stop a program without moving to line 000.

e The end of program memory contains an automatic [RTN].

Keystrokes Display

(g](RTN] 009- 43 32 Optional if this is the last
program in memory.

Intermediate Program Stops

Use (pause) as a program instruction to momentarily stop a
program and display an intermediate result. (Use more than one

for a longer pause.)

Usea (run/stop) instruction to stop the program indefinitely.
The program will remain positioned at that line. You can resume

program execution (from that line) by pressing during Run
mode, that is, from the keyboard.

Running a Program

Run Mode. Switch back to Run mode when you are done
programming: (g][P/R]. Program execution must take place in Run
mode.

Section 6: Programming Basics 69

Keystrokes Display

(g](P/R] Run mode; no PRGM
annunciator displayed.
(The display will depend
on any previous result.)

The position in program memory does not change when modes are
switched. Should the calculator be shut off, it always “wakes up” in
Run mode.

Executing a Program. In Run mode, press [f] letter label or
digit (or letter) label. This addresses a program and starts its
execution. The display will flash running.

Keystrokes Display

300.51 300.51 Key a value for & into the
X-register.

f][A) 7.8313 The result of executing pro-
gram “A”. (The number of

seconds it takes an object
dropped from 300.51
meters high to hit the
ground.)

Restarting a Program. Press to continue execution of a
program that was stopped with a instruction.

User Mode. User mode is an optional condition to save keystrokes

when executing letter-named programs. Pressing [f] will
interchange the [f]-shifted and primary functions of the through
(E] keys. You can then execute a program using just one keystroke
(skipping the f]or).

How to Enter Data

Every program must take into account how and when data will be
supplied. This can be done in Run mode before running the
program or during an interruption in the program.

1. Prior entry. If a variable value will be used in the first line

of the program, enter it into the X-register before starting the

program. If it will be used later, you can store it (with [STO])
into a storage register, and recall it (with a programmed

(RCL]) within the program.

70 Section 6: Programming Basics

This is the method used above, where h was placed in the
X-register before running the program. No instruc-
tion is necessary because program execution (here: [A])
both terminates digit entry and enables the stack lift. The
above program then multiplied the contents of the X-register
(h) by 2.

The presence of the stack even makes it possible to load more
than one variable prior to running a program. Keeping in
mind how the stack moves with subsequent calculations and
how the stack can be manipulated (as with [xXy]), it is
possible to write a program to use variables which have been
keyed into the X-, Y-, Z-, and T-registers.

Direct entry. Enter the data as needed as the program

runs. Write a (run/stop) instruction into the program
where needed so the program will stop execution. Enter your
data, then press to restart the program.

Do not key variable data into the program itself. Any values that
will vary should be entered anew with each program execution.

Program Memory

At power-up (Continuous Memory reset), the HP-15C offers 322
bytes of program memory and 21 storage registers. Most program
steps (instructions) use one byte, but some use two. The distribution

of memory capacity can be altered, as explained in appendix C.

The maximum attainable program memory is 448 bytes (with the

permanent storage registers—R|, R;, and R;—remaining); maxi-
mum number of storage registers is 67 (with no program memory).

Example

Mother’s Kitchen, a canning com-

pany, wants to package a ready-to-

eat spaghetti mix containing three

different cylindrical cans: one of spa-
ghetti sauce, one of grated cheese,
and one of meatballs. Mother’s needs
to calculate the base areas, total
surface areas, and volumes of the

three different cans. It would also

like to know, per package, the total

base area, surface area, and volume.

Section 6: Programming Basics 71

The program to calculate this information uses these formulas and

data:

base area = mr-.2

volume = base area X height = rr2h.

surface area = 2 base areas + side area = 27r2 + 27rh.

Radius, r Height, h Base Area Volume Surface Area

2.5cm 8.0cm ? ? ?

4.0 10.5 ? ? ?

4.5 4.0 ? ? ?

TOTALS ? ? ?

Method:

1. Enter an r value into the calculator and save it for other

calculations. Calculate the base area (rr2), store it for later
use, and add the base area to a register which will hold the

sum of all base areas.

2. Enter 4 and calculate the volume (7r2 k). Add it to a register

to hold the sum of all volumes.

3. Recall r. Divide the volume by r and multiply by 2 to yield
the side area. Recall the base area, multiply by 2, and add to
the side area to yield the surface area. Sum the surface areas
in a register.

Do not enter the actual data while writing the program—just

provide for their entry. These values will vary and so will be

entered before and/or during each program run.

Key in the following program to solve the above problem. The

display shows line numbers and keycodes (the row and column
location of a key), which will be explained under Further

Information.

Keystrokes Display

(a)(P/R] 000-

CLEAR 000-

Sets calculator to Pro-

gram mode (PRGM dis-

played).

Clears program memory.

Starts at line 000.

72 Section 6: Programming Basics

Keystrokes

(fl(cel)(A]

(sT0Jo

()]

(g)(r]
(]

(STO)4

(STO](+]1

R/S

(]

(STO](+]2

(RcL]o

Display

001-42,21,11

002- 44 O

003- 4311

004- 43 26

005- 20

006- 44 4

007-44,40, 1

008- 31

009- 20

010- 42 31

011-44.,40, 2

012- 45 O

013- 10

014- 2

015- 20

016- 45 4

017- 2

018- 20 |

Assigns this program the
label “A”.

Stores the contents of
X-register into R,. r must
be in the X-register before
running the program.

Squares the contents of
the X-register (which will
ber).

mr?, the BASE AREA of a
can.

Stores the BASE AREA in

R,.

Keeps a sum of all BASE
AREASinR,;.

Stops to display BASE
AREA and allow entry of

the h value.

Multiplies A by the BASE
AREA,giving VOLUME.

Pauses briefly to display
VOLUME.

Keeps a sum of all can
VOLUMES in R,.

Recalls r.

Divides VOLUME by r.

2nrh, the SIDE AREA of
acan.

Recalls the BASE AREA

of the can.

Multiplies base area by
two (for top and bottom).

Keystrokes

(sTO](+]3

(g)(RTN]

Section 6: Programming Basics 73

Display

019- 40

020-44.,40, 3

021- 4332

Now, let’s run the program:

Keystrokes

(e](P/R]

(fJCLEAR

2.5

(or: (GSB](A))

R/S

R/S

10.5

R/S

R/S

Display

2.5

19.6350

8

167.0796

164.9336

4

50.2655

10.5

527.7876
364.4247

4.5

63.6173

SIDE AREA + BASE

AREA = SURFACE

AREA.

Keeps a sum of all

SURFACE AREAS in R;.

Ends the program and
returns program memory
to line 000.

Sets calculator to Run

mode. (PRGM cleared.)

Clears all storage
registers. The display does
not change.

Enter r of the first can.

Starts program A. BASE
AREA offirst can.
(running flashes during
execution.)

Enter A of first can. Then

restart program.

VOLUME offirst can.

SURFACE AREA offirst

can.

Enter r of the second can.

BASE AREA of second

can.

Enter A of second can.

VOLUME of second can.

SURFACE AREA of

second can.

Enter r of the third can.

BASE AREA of third can.

74 Section 6: Programming Basics

Keystrokes Display

4 4 Enter A of third can.

R/S 254.4690 VOLUME of third can.

240.3318 SURFACE AREA of third
can.

1 133.5177 Sum ofBASE AREAS.

2 939.3362 Sum ofVOLUMES.

3 769.6902 Sum of SURFACE
AREAS.

The preceding program illustrates the basic techniques of
programming. It also shows how data can be manipulated in
Program and Run modes by entering, storing, and recalling data
(input and output) using (ENTER], [STO], [RCL], storage register
arithmetic, and programmed stops.

Further Information

Program Instructions

Each digit, decimal point, and function key is considered an

instruction and is stored in one line of program memory. An
instruction may include prefixes (such as [f], [STO], (GTO], and [LBL))
and still occupy only one line. Most instructions require one byte of

program memory; however, some require two. For a complete list of

two-byte instructions, refer to appendix C.

Instruction Coding

Each key on the HP-15C keyboard—except for the digit keys 0
through 9—is identified in Program mode by a two-digit ‘“‘keycode”

that corresponds to the key’s position on the keyboard.

Instruction Code

(sTO](*]1 006-44,40, 1 Sixth program line.

(f)(osE] (M XXX-42, 5,25 [DSE]isjust“5”.

The first digit of a keycode refers to the row (1 to 4 from top to

bottom), and the second digit refers to the column (1, 2, ... 9, 0 from

left to right). Exception: the keycode for a digit key is simply that

digit.

Section 6: Programming Basics 75

.2 3456 7 -

MATRIX FIX ENG SOLVE

LN LOG) A/ ABS DEG RAD (2
]
P o}
B

LBL HYP (i) 1 SULT X % DSE

@@flnmmlS veT, I o=y A

PSE o 3z PRGM REG PREFIX RAN# >R

GednEga/ P/R) RTN B R+ RND CLX hdid

x!FRAC USER

BREE
WMHEWLETT-PACKARD

0 ©
- ~

>

4 2 >
=
A o m

™ |
5

V.
L+

o

N

Keycode 25: second row, fifth key

Memory Configuration

Understanding memory configuration is not essential to your use

of the HP-15C. It is essential, however, for obtaining maximum

efficiency in memory and programming use. The more you

program, the more useful this knowledge will be. Memory
configuration and allocation is thoroughly explained in appendix
C, Memory Allocation.

Should you ever get an Error 10, you have run up against

limitations of the HP-15C memory. If you learn how to reallocate

memory, you can greatly increase your ability to store information

in the HP-15C.

The HP-15C memory consists of 67 registers (Ry to Rg; and the
Index register) divided between data storage and programming/

advanced function capability. The initial configuration is:

e 46 registers for both programming and the advanced

functions ([SOLVE], (%], the imaginary stack, and
functions). At seven bytes of memory per register, this is worth

322 program bytes if no memory is dedicated to advanced
functions.

o 21 registers for data storage (Ryto Rg, Ry to Rg, and the Index
register).

76 Section 6: Programming Basics

Initial Memory Configuration

STORAGE REGISTERS: R, RgtoRg COMMON

REGISTERS:

Ry R20toRes
Permanent (available for

Registers programming)

° Ro 322 program
R, bytes

R, available (if
no memory

R2 R, used for
advanced

Rj3 R functions)

R R
Statistics ¢ R4 20
Registegisters Rg R Ry,

Re Re Re3

R, Ry Res

Rg Rs Rgs

Rg Rsg
iMoveble Boundary

Allocatable Registers (shaded)

Memory is reallocated by telling the calculator which data storage

register shall be the highest data register; all other registers are left

for programming and advanced functions.

Keystrokes Display

60 (f)[DIM] ()] * 60.0000 Rgo and below allocated to
data storage; five (Rg; to
Rgs) remain for
programming.

* The optional omission of the [f] keystroke after another prefix key is explained on page

78, Abbreviated Key Sequences.

Section 6: Programming Basics 77

Keystrokes Display

1 [f)[oM] ()] 1.0000 R; and Rallocated for
data storage; R, to Rgs
available for

programming and
advanced functions.

19(f] () 19.0000 Original allocation: R;g

(Rg) and below for data

storage; Ry to Rgs for
programming and
advanced functions.*

(om](i)] 19.0000 Displays the current
highest data register.

The and [MEM] (memory status) functions are described in
detail in appendix C.

Keep in mind that an error message will result (given the above
memory configuration) if

1. You try to address a register higher than R;g9 (Rg), which
initially is the highest register allocated to data storage
(Error 3).

2. You have 322 occupied program bytes and try to load more
program lines (Error 4).

3. You try to run an advanced function with insufficient
available memory (Error 10).

Program Boundaries

End. Not every program needs to end with a or
instruction. If you are at the end of occupied program memory,

there is an automatic instruction, so you do not need to enter
one. This can save you one line of memory. On the other hand, a
program can “end” by simply transferring execution to another
routine using (section 7).

Labels. Labels in a program (or subroutine) are markers telling

the calculator where to begin execution. Following an [f] label or
label instruction, the calculator will search downward in

* For memory allocation and indirect addressing, registers R through Rg are referred to

as Rthrough Ryg.

78 Section 6: Programming Basics

program memory for the corresponding label. If need be, the search
will wrap around at the end of program memory and continue at
line 000. When it encounters an appropriate label, the search stops
and execution begins.

If a label is encountered as part of a running program, it has no
effect, that is, execution simply continues. Therefore, you can label
a subordinate routine within a program (more on subroutines in

section 9).

Since the calculator searches in only one direction from its present
position, it is possible (though not advisable) to use duplicate
program labels. Execution will begin at the first appropriately
labeled line encountered.

000-

If an entry starts the search for
“A’”here, -

it then proceeds downward through [f])(LBL]3
memory, wraps around to line 000,

and stops at label “A”. Execution
then starts and continues (ignoring R/S

any other labels) until a halt
instruction.

o
=

(stop)
=
-

b
o
e
o
e

e
e

 end of memory

Unexpected Program Stops

Pressing Any Key. Pressing any key will halt program
execution. It will not halt in the middle of an operation. This
instruction will be completed before the program stops.

Error Stops. Program execution is immediately halted when the

calculator attempts an improper operation that results in an Error
display.

To see the line number and keycode of the error-causing instruction
(the line at which the program stopped), press any one key to

remove the Error message, then switch to Program mode.

If the display is flashing when a program stops, an overflow

condition exists (page 61). Press [«], [ON], or [g] 9 to stop the
blinking.

Abbreviated Key Sequences

In certain cases, an [f] prefix you might expect to include in a key

Section 6: Programming Basics 79

sequence is not needed. The rule for using an abbreviated key
sequence is: the prefix key is unnecessary after any other prefix
key. (Page 19 contains a list of prefix keys.)

For example, becomes , (f])[oIM](]((i)) becomes
((i)), and becomes [STOI[RAN#]. The removal of

the is not ambiguous because the [f]-shifted function is the only

logical one in these cases. The keycodes for such instructions do
not include the extraneous (f] even if you do key it in.

User Mode

User mode is a convenience to save keystrokes when addressing
(calling up) programs for execution. Pressing will
exchange the primary functions and [f]-shifted functions of the
through [E] keys only. In User mode (USER annunciator displayed):

(f] shift E

Primary DC:- - i
(glshift5x? LOG % A%

Press again to deactivate User mode.

Polynomial Expressions and Horner’s Method

Some expressions, such as polynomials, use the same variable
several times for their solution. For example, the expression

f(x)=Ax*+ Bx3+Cx%2+Dx+E

uses the variable x four different times. A program to solve such an
equation could repeatedly recall a stored copy of x from a storage
register. A shorter programming method, however, would be to use
a stack which has been filled with the constant (refer to Loading

the Stack with a Constant, page 41).

Horner’s Method is a useful means of rearranging polynomial

expressions to cut calculation steps and calculation time. It is
especially expedient in and (5], two rather long-running
functions that use subroutines.

This method involves rewriting a polynomial expression in a
nested fashion to eliminate exponents greater than 1:

Ax*+ Bx3+ Cx2+Dx+E

(Ax3+Bx2+Cx+D)x+E

80 Section 6: Programming Basics

((Ax2+Bx+C)x+D)x+E

((Ax+B)x+C)x+D)x+E

Example: Write a program for 5x* + 2x3 as (5x + 2)x)x)x, then
evaluate forx = 7.

Keystrokes Display

(g)(P/R] 000- Assumes position in mem-
ory is line 000. If it is not,

clear program memory.

001-42,21,12
5 002- 5
B 003- 20 5x.
2 004- 2

005- 40 b5x+2.

(x] 006- 20 (bx+2)x.

x] 007- 20 (Bbx+2)x2

(x] 008- 20 (5x+2)x3.

(g](RTN] 009- 4332
(g](P/R] Returns to Run mode.

Prior result remains in

display.

7
7.0000 Loads the stack (X-, Y-, Z-,

and T-registers) with 7.

(18] 12,691.0000

Nonprogrammable Functions

When the calculator is in Program mode, almost every function on
the keyboard can be recorded as an instruction in program
memory. The following functions cannot be stored as instructions

in program memory.

[f]CLEAR (g)(BST] SST
[fJCLEAR (g)(MEM] (]
0| (a)(P/R] [oN)/ (]

(GTO](CHS]nnn (on]/ =)

Section 6: Programming Basics 81

Problems

1. The village of Sonance has installed a 12-0’clock whistle in

the firehouse steeple. The sound level at the firehouse door,

3.2 meters from the whistle, is 138 decibels. Write a program

to find the sound level at various distances from the whistle.

Use the equation L = Ly — 20 log (r/ry), where:

L, is the known sound level (138 db) at a point near the

source,
ro is the distance of that point from the source (3.2 m),

L is the unknown sound level at a second point, and
r is the distance of the second point from the source in

meters.

What is the sound level at 3 km from the source (r = 3 km)?

A possible keystroke sequence is:

(9] (p7R] (1] (LBL] (] 3.2 (#] (9] (LoG] 20 [x] [cHS] 138 [+]
(9] (RTN] (9] taking 15 program lines and 15 bytes of
memory. This problem can be solved in a more general way

by removing the specific values 3.2 and 138 from the pro-
gram, and instead recalling the L, and r(values from stor-
age registers; or by removing 3.2 and 138 and loading L, r,

and rinto the stack before execution: L, (ENTER]r(ENTER]r,.

(Answer: for r =3 km, L = 78.5606 db.)

A “typical” large tomato weighs about 200 grams, of which
about 188 g (94%) are water. A tomato grower is trying to

produce tomatoes of lower percentage water. Write a
program to calculate the percent change in water content of
a given tomato compared to the typical tomato. Use a
programmed stop to enter the water weight of the new

tomato.

What is the percent change in water content for a 230 g
tomato of which 205 g are water?

A possible keystroke sequence is:
(f)(BL](D] .94 (enter water weight of new
tomato) (enter weight of new tomato) []
(] (g] taking 11 program lines and 11 bytes of
memory.

(Answer: for the 230 g tomato above, the percent change in

percent water weight is —5.1804%.)

Section 7

Program Editing

There are many reasons to modify a program after you’ve already

stored it: you might want to add or delete an instruction (like [STO],
(PSE], or [R/S]), or you might even find some errors! The HP-15C is
equipped with several editing features to make this process as easy
as possible.

The Mechanics

Making a program modification of any kind involves two steps:
moving to the proper line (the location of the needed change) and

making the deletion(s) and/or insertion(s).

Moving to a Line in Program Memory

The Go To ([GTO]) Instruction. The sequence nnn will
move program memory to line number nnn, whether pressed in

Run mode or Program mode (PRGM displayed). This is not a

programmable sequence; it is for manually finding a specific

position in program memory. The line number must be a three-digit

number satisfying 000 < nnn < 448.

The Single Step ([SST]) Instruction. To move only one line at a
time forward through program memory, press (single step).
This function is not programmable.

In Program mode: will move the memory position forward one
line and display that instruction. The instruction is not executed. If
you hold the key down, the calculator will continuously scroll
through the lines in program memory.

In Run mode: will display the current program line while the
key is held down. When the key is released, the current instruction

is executed, the result displayed, and the calculator steps forward
to the next program line to be executed.

82

Section 7: Program Editing 83

The Back Step ([BST]) Instruction. To move one line backwards

in program memory, press (back step) in Program or Run

mode. This function is not programmable. will scroll (with the
key held down) in Program mode. Program instructions are not

executed.

Deleting Program Lines

Deletions of program instructions are made with (back arrow)

in Program mode. Move to the line you want to delete, then press
(«]. Any remaining following lines will be renumbered to stay in

sequence.

Pressing [(«]in Run mode does not affect program memory, but is
used for display clearing. (Refer to page 21.)

Inserting Program Lines

Additions to a program are made by moving to the line preceding

the point of insertion. Any instruction you key in will be added
following the line currently in the display. To alter an instruction,

first delete it, then add the new version.

Examples

Let’s refer back to the can volume program on page 71 in section 6

and make a few changes in the instructions. (The can program as

listed below is assumed to be in memory starting on line 001.)

Deletions: If we don’t need the summed base area, volume, and
surface area values, we can delete the storage register additions

(lines 007, 011, and 020).

Changes: To eliminate the need to stop the program to enter the
height value (h), change the instruction to a [RCL] 1
instruction (because of the above deletions, R; is no longer being
used) and store 4 in R; before running the program. To clean things

up, let’s also alter 4 (line 006) to 2 and 4 (old line
016) to 2, since we are no longer using Ry and Rg.

The editing process is diagrammed on the next page.

84 Section 7: Program Editing

Original Version Edited Version

\ /_

006-(ST0]4 change—» 006-ST0]2 new

007-(STOJ(*]1 delete - 007-[RCL]1 new

008-(R/S] change —/——> 008-(x]

009-(x] _/—-> 009-(f](PSE]

010-(f](PSE] 010-(RCL]O

011-(STOJ(*]2 delete / 011-(3]

012-[RCL]O / 012-2

013-(¢] 013-[x]

014-2 / 014-(RCL]2 new

015-(x] / 015-2

016-[RCL]4 change / 016-(x]

017-2 / 017-(+]

018-[x] / 018-(g](RTN]

019-[+] ~—

020-(ST0](+]3 delete

021-[g](RTN]

/‘\—_
Let’s start at the end of the program and work backwards. In this
way, deletions will not change the line numbers of the preceding
lines in the program.

Keystrokes Display

(g](P/R] 000- Program mode. (Assumes
position is at line 000.)

020 020-44,40, 3 Moves position to line 020
(or use [SST)) (instruction 3.)

Keystrokes

[«]
(g)(BST] (hold)

(]
(RcL]2

(GTo](cHs]o11
(or hold [BST))

[«]
(g)(BST] (hold)

(]
(RCL]1

(g)(BST]
(]

(]
(sT0]2

Section 7: Program Editing 85

Display

019- 40

016- 45 4

015- 20

016- 45 2

011-44,40, 2

010- 42 31

008- 31

007-44,40, 1

008- 45 1

007-44,40, 1

006- 44 4

005- 20

006- 44 2

Line 020 deleted.

The next line to edit is line

016 (4).

Line 016 deleted.

Line 016 changed to

2.
Moves to line 011 ([STO]

2).
Line 011 deleted.

Stop! (Single-stepping
backwards to line 008:

(R/s])
deleted.

Line 008 changed to

L
Back-step to line 007.

Line 007 (1)
deleted.

Line 006 (4) deleted.

Changed to 2.

The replacement of a line proceeds like this:

015-[x]

016-[RcL]4

017-2

—

016-2

—/——y—/ 017-(x]
 =

— ———__

015-[x]

015-[x]

Further Information

Single-Step Operations

—

016-(RCL]2

:\\—: 017-2
|

Single-Step Program Execution. If you want to check the
contents of a program or the location of an instruction, you can

single step through the program in Program mode. If, on the other

86 Section 7: Program Editing

hand, running the program produces an error, or you suspect that a
portion of the program is faulty, you can check the program by

executing it stepwise. This is done by pressing in Run mode.

Keystrokes Display

(g)(P/R] Run mode.

CLEAR Clear storage registers.

Moveto first line of pro-
gram A.

8 1 8.0000 Store a can height.

25 2.5 Enter a can radius.

(hold) 001-42,21,11 Keycode for line 001

(1abel).
(release) 2.5000 Result of executing line

001.

SST 002- 44 O 0.
2.5000 Result.

003- 4311 [g]¥7.
6.2500 Result.

004- 4326 [g(=).
3.1416 Result.

SST 005- 20 .
19.6350 Result: the base area of

the can.

Wrapping. will not move program position into ‘“unoccupied”
program territory. Instead, the calculator will “wrap around” to

line 000. In Run mode, will perform any instructions at the
end of program memory, such as [RTN], (GTO], or)

Line Position

Recall that the calculator’s position in program memory does not
change when it is shut off or Program/Run modes are changed.

Upon returning to Program mode, the calculator line position will
be where you left it. (If you executed a program ending with [RTN],

the position will be at line 000.) Therefore, if the calculator is left on

and shuts itself off, you need only turn it on and switch to Program

mode (the calculator always “wakes up”’ in Run mode) to be back

where you were.

Section 7: Program Editing 87

Insertions and Deletions

After an insertion, the display will show the instruction you just

added. After a deletion, the display will show the line prior to the

deleted (now nonexistent) one.

If all space available in memory is occupied, the calculator will not

accept any program instruction insertions and Error 4 will be

displayed.

Initializing Calculator Status

The contents of storage registers and the status of calculator
settings will affect a program if the program uses those registers or
depends on a certain status setting. If the current status is
incorrect for the program being run, you will get incorrect results.

Therefore, it is wise to clear registers and set relevant modes either
just prior to running a program or within the program itself. A

self-initializing program is more mistake-proof—but it also uses
more program lines.

Calculator-initializing functions are: CLEAR [Z], CLEAR

[PRGM], [f] CLEAR [REG], (g](DEG], (g](RAD], [g](GRD], [g](SF], and (g]
(CF].

Problems

It is good programming technique to avoid using identical program

labels. (This shouldn’t be hard, since the HP-15C provides 25

different labels.) To ensure against duplication of labels, you can
clear program memory first.

1. The following program is used by the manager of a savings

and loan company to compute the future values of savings
accounts according to the formula FV = PV (1 + i)", where

FV is future value, PV is present value, i is the periodic
interest rate, and n is the number of periods. Enter PV first

(into the Y-register) and n second (into the X-register) before

executing the program. Given is an annual interest rate of
7.5% (soi=0.075).

88 Section 7: Program Editing

Keystrokes Display

(f)(LBL)(]1 001-42,21, .1
[fFIx) 2 002-42, 7, 2

1 003- 1

O 004- 48

0 005- 0 Interest.

7 006- 7

5 007- 5

(xxy] 008- 34

) 009- 14 (1+i)™

(x] 010- 20 PVQA+i™

(g)(RTN] 011- 4332

Load the program and find the future value of $1,000

invested for 5 years; of $2,300 invested for 4 years. Remember

to use to run a program with a digit label. (Answers:
$1,435.63; $3,071.58.)

Alter the program to make the annual interest rate 8.0%.

Using the edited program, find the future value of $500

invested for 4 years; of $2,000 invested for 10 years.

(Answers: $680.24; $4,317.85.)

Create a program to calculate the length of a chord %

subtended by an angle 6 (in degrees) on a circle of radius r,
according to the equation

S

i 7
2

Find 2 when 8 = 30° and r = 25.

(Answer: 12.9410. A possible program is: (g](DEG]

{Ex]4 2 [x] (xxy] 2 [[SIN) [x] (g)(RTN]). (Assumes
01in Y-register and r in X-register when program is run.)

Section 7: Program Editing 89

Make any necessary modifications in the program to also
find and display s, the length of the circular arc cut by 0 (in
radians), according to the equation

s=ré.

Complete the following table:

0 r L |s

45° 50 ?1?

90° 100 ? ?

270° 100 ? ?
(Answers: 38.2683 and 39.2699; 141.4214 and 157.0796;

141.4214 and 471.2389. A possible new sequenceis:

(ced(A] (gl(oEG] (H](FiXJ4 [STOJO0 2(x] [xxy] (STO]1
2(+] (SIN] (x] (A(psE] [f)(psE] (RcL]O [RCL]1
[x) (a](RTIN)).

Section 8

Program Branching
and Controls

Although the instructions in a program are normally executed
sequentially,it is often desirable to transfer execution to a part of
the program other than the next line. Branching in the HP-15C
may be simple, or it may depend on a certain condition. By
branching to a previous line, it is possible to execute part of a
program more than once—a process called looping.

The Mechanics

Branching

The Go To ([GTO]) Instruction. Simple branching—that is,

unconditional branching—is carried out with the instruction
label. In a running program, will transfer execution to the
next appropriately labeled program or routine (not to a line

number).

, L

015-(GT10]7 I

016- |

017- Y

018- l

019-(f)(LBL]7 <—|

020-
 \‘

The calculator searches forward in memory, wrapping around

through line 000 if necessary, and resumes execution at the first

line containing the proper label.

Looping. If a instruction specifies a label at a lower-
numbered line (that is, a prior line), the series of instructions

90

Section 8: Program Branching and Controls 91

between the and the label will be executed repeatedly—
possibly indefinitely. The continuation of this loop can be
controlled by a conditional branch, an instruction (written
into the loop), or simply by pressing any key during execution
(which stops the program).

———

015-(f](LBL]7 -—

016-

017-

018-

019-(G10]7 —

020-
—|

e

L

Conditional Tests

Another way to alter the sequence of program execution is by a
conditional test, a true/false test which compares the number in

the X-register either to zero or to the number in the Y-register. The
HP-15C provides 12 different tests, two explicit on the keyboard
and 10 others accessible using [g][TEST]n.*

1. Direct: (g)(x<y]and[g](x=0].

2. Indirect: (g](TEST]n.

n| Test n | Test

0 x#0 5 x=y

1 x>0 |6 xFy

2 x<O0 7 x>y

3 x=0 8 «x<y

4 x<O0 9 x=y

* Four of the conditional tests can also be used for complex values, as explained in

section 11 on page 132.

92 Section 8: Program Branching and Controls

Following a conditional test, program execution follows the “Do if
True” Rule: it proceeds sequentially if the condition is true, and it
skips one instruction if the condition is false. A instruction is
often placed right after a conditional test, making it a conditional
branch; that is, the branch is executed only if the test

condition is met.

Program Execution After Test

If True If False

f_—

e 015-(f)(LBL].1

: 016-

| 017-[glx<y] e

bt 018-(GT0] .1 ‘

019- < —]

020-

~——~
Flags

Another conditional test for programming is a flag test. A flagis a
status indicator that is either set (= true) or clear (= false). Again,
execution follows the “Do if True” Rule: it proceeds sequentially if
the flag is set, and skips one line if the flag is clear.

The HP-15C has eight user flags, numbered 0 to 7, and two system
flags, numbered 8 (Complex mode) and 9 (overflow condition). The

system flags are discussed later in this section. All flags can be set,
cleared, and tested as follows:

* (g](SF]n will set flag number n (0 to 9).

* [g](CF]n will clear flag number n.

¢ (g](F?)n will check if flag n is set.

A flag n that has been set remains set untilit is cleared either by a
n instruction or by clearing (resetting) Continuous Memory.

Section 8: Program Branching and Controls 93

Examples

Example: Branching and Looping

A radiobiology lab wants to predict
the diminishing radioactivity of a

test amount of 3!, a radioisotope.
Write a program to figure the radio-
activity at 3-day intervals until a

given limit is reached. The formula
for N,;, the amount of radioisotope
remaining after ¢ days, is

N, =N, (2"*),

where k = 8 days, the half-life of 1311, and Nis the initial amount.

The following program uses a loop to calculate the number of
millicuries (mci) of isotope theoretically remaining at 3-day

intervals of decay. Included is a conditional test to check the result
and end the program when radioactivity has fallen to a given value
(a limit).

The program assumes t;—the first day of measurement—is stored

in Ry, Ny—the initial amount of isotope—is stored in R, and the
limit value for radioactivity is stored in R,.

Keystrokes Display

(g](P/R] 000- Program mode.

(fJCLEAR 000- (Optional.)

(f)(LBL][A] 001-42,21,11 Each loop returns to this
line.

(RcL]O 002- 45 0 Recalls currentt, which
changes with each loop.

(f](PSE] 003- 42 31 Pausestodisplayt.

8 004- 8 k.

(=) 005- 10
006- 16 —t/k.

2 007- 2

(xxy] 008- 34

] 009- 14 27Uk

94 Section 8: Program Branching and Controls

Keystrokes Display

(RCL)(x]1 010-45,20, 1 Recall multiplication with
the contents of R; (N),
yielding N, the mci of 1311
remaining after t days.

(f](PSE] 011- 42 31 Pausestodisplay N,.

2 012- 45 2 Recallslimit value to X-

register.

(gJ(TEST)9 013-43,30, 9 x=>y? Tests whether limit
value (in X) meets or

exceeds N, (in Y).

(a](RTN] 014- 43 32 Ifso, program ends.

3 015- 3 Ifnot, program continues.

(sTo](z]o 016-44,40, 0 Adds3daystotinR,.
017- 2211 Goto“A” and repeat exe-

cution to find a new N,
from a new ¢.

Notice that without lines 012 to 014, the loop would run indefinitely

(until stopped from the keyboard).

Let’s run the program, using t; = 2 days, Ny = 100 mci, and a limit
value of half ofN (50 mci).

Keystrokes Display

(a)(P/R] Run mode (display will
vary).

2 0 2.0000 t).
100 1 100.0000 No.

50 2 50.0000 Limit value for N,.

nle 2.0000 t,.
84.0896 N,
5.0000 to.
64.8420 N,.
8.0000 ts.
50.0000 Ns.
50.0000 N,limit; program ends.

Section 8: Program Branching and Controls 95

Example: Flags

Calculations on debts or investments can be calculated in two

ways: for payments made in advance (at the beginning of a given
period) and for payments made in arrears (at the end of a given

period). If you write a program to calculate the value (or “present
value”) of a debt or investment with periodic interest and periodic

payments, you can use a flag as a status indicator to tell the

program whether to assume payments are made in advance or
payments are made in arrears.

Suppose you are planning the payment of your child’s future
college tuition. You expect the cost to be about $3,000/year or about
$250/month. If you wanted to withdraw the monthly payments
from a bank account yielding 6% per year, compounded monthly
(which equals 0.5% per month), how much must you deposit in the
account at the start of the college years to fund monthly payments

for the next 4 years?

The formula is

1—(1+i)™" if payments are to be
- (1+19) made each month in

advance,

V=P
i

and the formula is

if payments are to be
made each month in

! arrears.

Ve p 1—(1'+z)—

V is the total value of the deposit you must make in the account;

P is the size of the periodic payment you will draw from the
account;

i is the periodic interest rate (here: ‘“periodic”’ means monthly,

since interest is compounded monthly); and

n is the number of compounding periods (months).

The following program allows for either payment mode. It assumes

that, before the program is run, P is in the Z-register, n is in the

Y-register, and i is in the X-register.

96 Section 8: Program Branching and Controls

Keystrokes

(a](P/R]

(gl(cFlo

(GTO]1
(BL(E)

(SsF]o

((BL1
(STO]1

]
Display

000-

001-42,21,12

002-43, 5, 0

003- 22 1

004-42,21,15

005-43, 4, O

006-42.21, 1

007- 44 1

008- 1
009- 40

010- 34

011- 16

012- 14

013- 16

014- 1
015- 40

016-45,10, 1

017- 20

018-43, 6, 0

019- 4332

020- 45 1

021- 1
022- 40

023- 20

024- 4332

Program mode.

Start at “B” if payments
to be made at the
beginning.

Flag 0 clear (false); indi-

cates advance payments.

Go to main routine.

Start at “E” if payments
to be made at the end.

Flag 0 set (true); indicates

payment in arrears.

Routine 1 (main routine).

Stores i (from X-register).

1+1i).

PutsninX;(1+:)inY.

—n.

aQ+)™

-1+

1-Q+)™™

Recall division with R, (i)

toget[1—(1 +i)")/

Multiplies quantity by P.

Flag 0 set?

End of calculation if flag 0
set (for payments in

arrears).

Recalls:.

1 +i).

Multiplies quantity by
final term.

End of calculation if flag 0
clear.

Section 8: Program Branching and Controls 97

Now run the program to find the total amount needed in an

account from which you want to take $250/month for 48 months.

Enter the periodic interest rate as a decimal fraction, that is, 0.005

per month. First find the sum needed if payments will be made at
the beginning of the month (payments in advance), then calculate

the sum needed if payments will be made at the end of the month
(in arrears).

Keystrokes Display

(e)(P/R] Set to Run mode.

250 250.0000 Monthly payment.

48 48.0000 Payment periods (4 years
X 12 months).

.005 0.005 Monthly interest rate as a
decimal fraction.

10,698.3049 Deposit necessary for pay-
ments to be made in
advance.

(Repeat stack entries.)

(f])(E) 10,645.0795 Deposit necessary for pay-
ments to be made in
arrears. (The difference be-
tween this deposit and the
tuition cost ($12,000) repre-

sents interest earned on

the deposit!)

Further Information

GoTo

In contrast to the nonprogrammable sequence nnn, the
programmable sequence label cannot be used to branch to a
line number, but only to a program label (a line containing
label).* Execution continues from the point of the new label, and

does not return to the original routine unless given another
instruction.

* It is possible to branch under program control to a particular line number by using

indirect addressing, discussed in section 10.

98 Section 8: Program Branching and Controls

label can also be used in Run mode (that is, from the
keyboard) to move to a labeled position in program memory. No

execution occurs.

Looping

Looping is an application of branching which uses a
instruction to repeat a portion of the program. A loop can continue
indefinitely, or may be conditional. A loop is frequently used to
repeat a calculation with different variables. At the same time, a

counter, which increments with each loop, may be included to keep
track of loop iterations. This counter can then be checked with a
conditional test to determine when to exit the loop. (This is shown

in the example on page 112.)

Conditional Branching

There are two general applications for conditional branching. One
is to control loops, as explained above. A conditional test can check
for either a certain calculated value or a certain loop count.

The other major use is to test for options and pursue one. For
example, if a salesperson made a variable commission depending
on the amount of sale, you could write a program which takes the

amount of sale, compares it to a test value, and then calculates a

specific commission depending on whether the sale is less than or
greater than the test value.

Tests. A conditional test takes what is in the X-register (“x’’) and

comparesit either to zero (such as [x=0]) or to “y”, thatis, whatis
in the Y-register (such as [(x<y]). For an x:y comparison, therefore,
you must have the x- and y-values juxtaposed in the X- and Y-
registers. This might require that you store a test value and then

recall it (bringing it into the X-register). Or, the value might be in

the stack and be moved, as necessary, using [(xxy],(R¥], or [R%].

Tests With Complex Numbers and Matrix Descriptors. Four
of the conditional tests also work with complex numbers and

matrix descriptors: [x=0], [TEST] 0 (x # 0), 5(x=y), and
6 (x # y). Refer to sections 11 and 12 for more information.

Flags

As a conditional test can be used to pick an option by comparing
two numbers in a program, a flag can be used to pick an option

Section 8: Program Branching and Controls 99

externally. Usually, a flag is set or cleared first thing in a program

by choosing a different starting point (using different labels)
depending on the condition or mode you want (refer to the example

on page 95).

In this way, a program can accommodate two different modes of
input, such as degrees and radians, and make the correct
calculation for the mode chosen. You set a flag if a conversion
needs to be made, for instance, and clear it if no conversion is

needed.

Suppose you had an equation requiring temperature input in
degrees Kelvin, although sometimes your data might be in degrees
Celsius. You could use a program with a flag to allow either a
Kelvin or Celsius input. In part, such a program might include:

Start program at “C” for degrees Celsius.

(gJ[cF]7 Flag 7 cleared (=false).

1
(f)(LBL][D] Start program at “D”for degrees Kelvin.

(g](sF)7 Flag 7 set (=true).

1 (Assuming temperature in X-register.)

(g](F?)7 Checks for flag 7 (checks for Celsius or
Kelvin input).

2 If set (Kelvin input), goes to a later routine,
skipping the next few instructions.

2 If cleared (Celsius input), adds 273 to the

7 value in the X-register, since °K = °C + 273.

3

LBL]2 Calculation continues for both modes.

The System Flags: Flags 8 and 9

Flag 8. Setting flag 8 will activate Complex mode (described in

section 11), turning on the C annunciator. If another method is

used to activate Complex mode, flag 8 will automatically be set.

Complex mode is deactivated only by clearing flag 8; flag 8 is

cleared in the same manner as the other flags.

100 Section 8: Program Branching and Controls

Flag 9. An overflow condition (described on page 61) auto-

matically sets flag 9. Flag 9 causes the display to blink or, if a
program is running, waits until execution is complete and then
starts blinking the display.

Flag 9 may be cleared in three ways:

® Press[g][CF]9 (the common procedure for clearing flags).

® Press [«]. This will only clear flag 9 and stop the blinking—it
will not clear the display.

® Turn the calculator off. (Flag 9 is not cleared if the calculator
turns itself off.)

If you set flag 9 manually ([SF] 9), it causes the display to blink
irrespective of the overflow status of the calculator. As usual, a

program will run to completion before the display starts blinking.
Therefore, flag 9 can be used as a programming tool to provide a
visual signal for a selected condition.

Section 9

Subroutines

When the same set of instructions needs to be used at more than

one point in a program, memory space can be conserved by storing
those instructions as a single subroutine.

The Mechanics

Go To Subroutine and Return

The (go to subroutine) instruction is executed in the same

way as the branch, with one major difference: it establishes a
pending return condition. label, like label* transfers
program execution to the line with the corresponding label ([A] to
(£], 0 to 9 or .0 to .9). However, execution then continues until the

first subsequent instruction is encountered—at which point
execution transfers back to the instruction immediately following
the last instruction, and continues on from there.

Subroutine Execution

1 [Hed(1

/
/

[GsB](J1 —/
4-\

V e | HEWN Y
END RETURN

Execution transfers to line 000 Execution transfers back to

and halts. original routine,after (GSB][-]1.

*A or instruction followed by a letter label is an abbreviated key sequence (no

(f] necessary). Abbreviated key sequences are explained on page 78.

101

102 Section 9: Subroutines

Subroutine Limits

A subroutine can call up another subroutine, and that subroutine

can call up yet another subroutine. This “subroutine nesting”’—the

execution of a subroutine within a subroutine—is limited to a stack
of subroutines seven levels deep (this does not count the main

program level). The operation of nested subroutines is as shown
below:

Main Program

(LBL)2

f f
/ / //

[[T=zs |/

\
\ % \
\ \

Examples

Example: Write a program to calcu-

late the slope of the secant line
joining points (x;, y;) and (x3, ¥3) on
the graph shown, where y=x° —
sin x (given x in radians). 2 0 x; %

 The secant slope is:

Yo— Y1 or (x22— sin x5) — (x12 —sinx,)
’

X9 — X X9 — X1

The solution requires that the equation for y be evaluated twice—

once for y; and once for y,, given the data input for x; and x,.

Since the same calculation must be made for different values, it

will save program space to call a subroutine to calculate y.

The following program assumes that x; has been entered into the

Y-register and x 5 into the X-register.

MAIN PROGRAM

Section 9: Subroutines 103

(a)(P/R]
CLEAR (Not programmable.)

000-

001-(f](LBL]9 Start main program.
002-(g](RAD] Radians mode.
003- 0 Stores x5 in Ry,
004-(xXy] Brings x; into X; x5 into Y.
005-(ST0](-]O (xg—x7)in R,

—006- .3 Transfer to subroutine “.3” with x;.

Return from subroutine “.3”.

007- - - Y.

008-(xXy] Brings x, into X-register.
009- .3 Transfer to subroutine with x,.

Return from subroutine “.3”.

010- - Y2— Y1
011-[RCL](5]0 Recalls (x5 — x;) from Ry and

calculates (yo —v1)/(x9— x1).

012-[g](RTN] Program end (return to line 000).

SUBROUTINE

L»013- .3 Start subroutine .3.
014-[g)(x*] x2.
015-[g][LSTx] Recall x.
016-[SIN] Sin x.
017-[7] x2 — sin x, which equals y.
018-(g] —J — Return to origin in main program.

Calculate the slope for the following values of x; and x: 0.52, 1.25;
—1, 1; 0.81, 0.98. Remember to use 9 (rather than (f] 9) when
addressing a routine with a digit label.

Answers: 1.1507; —0.8415; 1.1652.

Example: Nesting. The following subroutine, labeled “.4”,

calculates the value of the expression \/x2+ y2 + z2 + t2 as part of
a larger calculation in a larger program. The subroutine calls upon

104 Section 9: Subroutines

another subroutine (a nested subroutine), labeled “.5”, to do the

repetitive squaring.

The program is executed after placing the variables ¢, z, y, and x
into the T-, Z-, Y-, and X-registers.

Keystrokes

(f)[LBL) .4 A Start of main
subroutine.

(e](=*] x2.
—— 5 Calculates y2 and

x2+y2

— 5 w-@® Calculates 22 and
x2+y2+22

——(GSB].5 <« (® Calculates t2 and
x2+y2+22+12

-{® VaZ+yZP+22+42
(g](RTN) End ofmain subroutine;

returns to main program.

-(1] 5 Start of nested

subroutine.

2y
()% Calculates a square and

adds it to current sum of

squares.

(g] — End of nested sub-
routine; returns to main

subroutine.

If you run the subroutine (with its nested subroutine) alone using

x =43, y="179, 2= 1.3, and t = 8.0, the answer you get upon

pressing (GSB].4 is 12.1074.

Section 9: Subroutines 105

Further Information

The Subroutine Return

The pending return condition means that the instruction
occurring subsequent to a instruction causes a return to the
line following the (GSB] rather than a return to line 000. This is what

makes a subroutine useful and reuseable in different parts of a pro-

gram: it will always return execution to where it branched from,

even as that point changes. The only difference between using a
branch and a branch is the transfer of execution after a

(RTN].

Nested Subroutines

If you attempt to call a subroutine that is nested more than seven
levels deep, the calculator will halt and display Error 5 when it
encounters the instruction at the eighth level.

Note that there is no limitation (other than memory size) on the
number of nonnested subroutines or sets of nested subroutines that

you may use.

Section 10

The Index Register
and Loop Control

The Index register (R;) is a powerful tool in advanced

programming of the HP-15C. In addition to storage and recall of
data the Index register can use an index number to:

Count and control loops.

Indirectly address storage registers, including those beyond

Rg (Ryg).

Indirectly branch to program line numbers, as well as to
labels.

Indirectly control the display format.

Indirectly control flag operations.

The (I]and ((i)) Keys

Direct Versus Indirect Data Storage With the Index Register

The Index register is a data storage register that can be used
directly, with [IJ, or indirectly, with [(ij].* The difference is
important to note:

(@)
The [I]function uses The ((i)) function uses the
the number itself in the absolute value of the integer

Index register. portion of the number in the
Index register to address

another data storage register.

This is called indirect

addressing.

* Note that the matrix functions and complex functions use the I] and [(i)] keys also, but

for different purposes. Refer to sections 11 and 12 for their usage.

106

Section 10: The Index Register and Loop Control 107

Indirect Program Control With the Index Register

The (I] key is used for all forms of indirect program control other
than indirect register addressing. Hence, (I (not [(i)]) is used for
indirect program branching, indirect display format control, and

indirect flag control.

Program Loop Control

Program loop counting and control can be carried out in the
HP-15C by any storage register: Ry through Rg, R; through Rg, or
the Index register ((I]). Loop control can also be carried out
indirectly with [(i)].

The Mechanics

Both [IJand [(i)] can be used in abbreviated key sequences, omitting
the preceding prefix (as explained on page 78).

Index Register Storage and Recall

Direct. and (I). Storage and recall between the X-
register and the Index register operate in the same manner as with

other data storage registers (page 42).

Indirect. (or [RCL)) [(i)] stores into (or recalls from) the data
storage register whose number is addressed by the integer portion
of the value (0 to 65) in the Index register. See the table below and

on the next page.
Indirect Addressing

, , . [GToJ(@]or([GsB]T]willIf R contains: ()] will address: transfer to:*

0 Ro (f)(LBL]o

9 Rg (f)(LBL]
10 RO " ” O

1 1 R1 ” ” 1

19 R (f)(tBL).9
20 Rzo " "

*For Rp=0only.

(Continued on next page.)

108 Section 10: The Index Register and Loop Control

Indirect Addressing

T .

If R{ contains: ()] will address: [GTo)Mor .[g]wull
transfer to:

21 Rt HIE0E
22 R22 ” ”

23
R23

" ” @

24 R24
" " @

65 Res .

*For Rp =0 only.
Index Register Arithmetic

Direct. or { +], (=), [x], (] } (O@J. Storage or recall
arithmetic operates with the Index register in the same manner as
upon other data storage registers (page 43).

Indirect. or { [+], (=], [x], (2] } [(i)] carries out storage or
recall arithmetic with the contents of the data storage register
addressed by the integer portion of the number (0 to 65) in the

Index register. See the above table.

Exchanging the X-Register

Direct. [f] [xx] [I] exchanges contents between the X-register and
the Index register. (Works the same as [xx] n does with registers 0
through .9.)

Indirect. (f][x%][(i)] exchanges contents between the X-register and
the data storage register addressed by the number (0 to 65) in the
Index register. See the above table.

Indirect Branching With [I]

The [I) key—but not the ((i)] key—can be used for indirect branching
([GTO](1)) and subroutine calls ([GSB](I]). (Only the integer portion
of the number in R; is used.) ([(i] is only used for indirect

addressing of storage registers.)

Section 10: The Index Register and Loop Control 109

To Labels. If the R; value is positive, (IJ and will
transfer execution to the label which corresponds to the number in
the Index register (see the above table).

For instance, if the Index register contains 20.00500, then a [GTO](T]
instruction will transfer program execution to [(A]. See the
chart on page 107.

To Line numbers. If the R, value is negative, [(GTO](1] causes
branching to that line number (using the absolute value of the in-
teger portion of the value in Ry).

For instance, if R; contains —20.00500, then a (I]) instruction
will transfer program execution to program line 020.

Indirect Flag Control With

(sF] (1], (1], or (1] will set, clear, or test the flag (0 to 9)
specified in R; (by the magnitude of the integer portion).

Indirect Display Format Control With

(1] 1, (1), and [f](ENG](I] will format the display in their

customary manner (refer to pages 58-59), using the number in R;
(integer part only) for n, which must be from 0 to 9.*

Loop Control With Counters: and

The [ISG] (increment and skip ifgreater than) and (decrement
and skip if less than or equal to) functions control loop execution

by referencing and altering a loop control number in a given

register. Program execution (skipping a line or not) then depends
on that number.

The key sequenceis [f] {[ISG], [DSE]} register number. This number
is0t09,.0 to .9, 1], or [(i)].

The Loop Control Number. The format of the loop control
number is:

+nnnnn is the current counter value,

nnnnn.xxxyy, where XXX is the test (goal) value, and

Yy is the increment or decrement

value.

* Except when using [/;](section 14).

110 Section 10: The Index Register and Loop Control

For example, the number 0.05002 in a storage register represents:

nnnnNn X X X y y

000500 2
oa— —

Start count at zero. -—* ? L———— Count by twos.

Count up to 50.

and Operation. Each time a program encounters
or ,it increments or decrements nnnnn (the integer portion of
the loop control number), thereby keeping count of loop iterations.
It compares nnnnn to xxx, the prescribed test value, and exits the

loop by skipping the next line if the loop counter (nnnnn) is either
greater than ([ISG]) or less than or equal to ([DSE]) the test value
(xxx). The amount that nnnnn is incremented or decremented is

specified by yy.

With these functions (as opposed to the other conditional tests), the

rule is “Skip if True”.

False (nnnnn < xxx) True (nnnnn > xxx)

instruction l

. G]Ea -9
loop L — [GTo]()1 Y

instruction *— J exit loop

For [ISG]: given nnnnn.xxxyy, increment nnnnn to nnnnn +yy,

compare it to xxx, and skip the next program line if the new value
satisfies nnnnn > xxx. This allows you to exit a loop at this point
when nnnnn becomes greater than xxx.

Section 10: The Index Register and Loop Control 111

False (nnnnn > xxx)

loop L —

True (Nnnnn < xxx)

instruction l

MosEIm ~
GOl Y
instruction r | exit loop

For [DSE]: given nnnnn.xxxyy, decrement nnnnn to nnnnn —
yy, compare it to xxx, and skip the next program line if the new
value satisfies nnnnn < xxx. This allows you to exit a loop at this

point when nnnnn becomes less than or equal to xxx.

For example, loop iterations will alter these control numbers as

follows:

Iterations

Operation 0 1 2 3 4

(sG] 0.00602 2.00602 4.00602 6.00602 8.00602

(skip next

line)

6.00002 4.00002 2.00002 0.00002

(skip next

line)

Examples

Examples: Register Operations

Storing and Recalling

Keystrokes Display

CLEAR Clears all storage registers.

12.3456 12.3456
(sTo](1 12.3456 Stores in R;.

7 2.6458
(sTo]((i)] 2.6458 Storage in R5 by indirect

addressing (R; = 12.3456).

12.3456 Recalls contents of R;.

112 Section 10: The Index Register and Loop Control

Keystrokes Display

(ReL]() 2.6458 Indirectly recalls contents
of R'2.

(f)(xx].2 2.6458 Check: same contents re-
called by directly ad-

dressing R5.

Exchanging the X-Register

Keystrokes Display

[f]x=]d 12.3456 Exchanges contents ofR
and X-register.

(ReU[d 2.6458 Present contents of R;.

GIE) 0.0000 Exchanges contents ofR
(which is zero) with X.

(Y 2.6458

[fx%]2 2.6458 Check: directly address
R,.

Storage Register Arithmetic

Keystrokes Display

10[5T0)=M 10.0000 Adds 10toRy.
(RcL(1] 12.6458 New contents of R; (= old

+10).

(g)(=](sTO] (=[] 3.1416 Divides contents of R5
by .

(Reu(] 0.8422 New contents ofR,,.

(flxx].2 0.8422 Check: directly address
R,.

Example: Loop Control with
Remember the program in section 8 which used a loop to calculate
radioactive decay? (Refer to page 93.) This program used a test

condition (x=y?) to exit the loop when the calculated result passed
a given limit (50). As we’ve seen in this section, there’s another way

to control loop execution: through a stored loop counter that is
monitored by the [ISG]or function.

Section 10: The Index Register and Loop Control 113

Here is a revision of the original radioisotope decay program. This
time, we will limit the program to three executions of the loop

rather than setting a specific limit value. This example uses

with a loop control numberin Ryof 3. 0 0 0 1,

initial loop counterJ 1 Ldecrement value

test (goal) value

Make the following changes to the program (assuming it is in
memory). A loop counter will be stored in R, and a line number in

the Index register.

Keystrokes Display

(g 000- Program mode.

013 013-43,30, 9 Thesecond of the two loop
test condition lines.

(«](«] 011- 4231 Deletelines 013 and 012.

2 012-42, 5, 2 Addyour loop counter
function (counter stored in

R,).
(GTo)(1) 013- 2225 Gotogiven line number

(015).

Now when the loop counter (stored in Ry) has reached zero, it will
skip line 013 and go on to 014, the instruction, thereby ending
the program. If the loop counter has not yet decreased to zero,
execution continues with line 013. This branches to line 015 and

continues the program and the looping.

To run the program, put ¢, (day 1) in R, N, (initial isotope batch) in

R,, the loop counter in Ry, and the line number for branching in the

Index register.

Keystrokes Display

(g](P/R] Run mode.

2 0 2.0000 t,.
100 1 100.0000 No.
3.00001 2 3.0000 Loop counter. (This in-

struction could also be

programmed.)

114 Section 10: The Index Register and Loop Control

Keystrokes Display

15 [cHS](sTO](1] -15.0000 Branch line number.

(1] 2.0000 Running program: loop

counter = 3.

84.0896
5.0000 Loop counter = 2.

64.8420
8.0000 Loop counter = 1.

50.0000
50.0000 Loop counter = 0; program

ends.

Example: Display Format Control

The following program pauses and displays an example of
display format for each possible decimal place. It utilizes a loop
containing a instruction to automatically change the number
of decimal places.

Keystrokes

(g]
(fJCLEAR

(1]
9 nnnnn = 9. Therefore, xxx = 0 and by

default yy =1 (yy cannot be zero).

[
(f[LBLjo
[HEX)[
(Reu)(T]
(f](PSE] Displays current value ofnnnnn.

(f)(ose] (1) Value in R; is decremented and tested. Skip
aline ifnnnnn < test value.

0 Continue loop if nnnnn > test value (0).

(g](TEST]1 Tests whether value in display is greater
0 than 0, so loop will continue when nnnnn

has reached 0 but display still only shows
1.0.

(o)(RTN]

Section 10: The Index Register and Loop Control 1156

To display fixed point notation for all possible decimal places on

the HP-15C:

Keystrokes Display

(g)(P/R] Run mode.

(1) 9.000000000
8.00000000
7.0000000
6.000000
5.00000
4.0000
3.000
2.00
1.0

0. Display at [f]
instruction.

0. Display when program
halts.

Further Information

Index Register Contents

Any value stored in the Index register can be referenced in three
different ways:

e Using(I]like any other storage register. The value in R; can be

manipulated as it is: stored, recalled, exchanged, added to, etc.

e Using as a control number. The absolute value of the
integer portion in Rj is a separate entity from the fractional
portion. For indirect branching, flag control, and display

format control with (I], only this portion is used. For loop
control, the fractional portion is also used, but separately from
the integer portion.*

e Using ((i)] as a reference to the contents of another storage

register. The [(i)] key uses the indirect addressing system
shown in the tables on pages 107 and 108. (In turn, the

contents of that second register may be used as a loop control
number, in the fashion described above.)

* This is also true for the value in any storage register used for indirect loop control.

116 Section 10: The Index Register and Loop Control

(1ISG]and
For the purpose of loop control, the integer portion (the counter
value) of the stored control number can be up to five digits long
(nnnnn.xxxyy). The counter value (nnnnn) is zero if not specified

otherwise.

xxX, in the decimal portion of the control number, must be

specified as a three-digit number. (For example, “5” must be “005”.)
xxx is zero if not specified otherwise. Whenever [ISG] or is
encountered, nnnnn is compared internally to xxx, which
represents the end level for incrementing or decrementing.

yy must be specified as a two-digit number. yy cannot be zero, so if
left (or specified) as 00, the value for yy defaults to 1. The value

nnnnn is altered by the amount of yy each time the loop runs
through or [DSE]. Both yy and xxx are reference values, which
do not change with loop execution.

Indirect Display Control

While you can use the Index register to format the display
manually (that is, from the keyboard), this function is most

commonly used in programming. This capability is especially

valuable for the function, for which accuracy can be stipulated

by specifying the number of digits to be displayed (as described in

section 14).

There are, as usual, certain display limitations to keep in mind.

Recall that any display formatfunction merely alters the number
of decimal places to which the display is rounded. In its memory,
the calculator always retains a number in scientific notation as a

10-digit mantissa with a two-digit exponent.

The integer portion ofthe number in the Index register specifies the
number of decimal places to which the display is rounded. A
number less than zero defaults to zero (zero decimal places

displayed in format), while a number greater than 9 defaults to
9 (9 decimal places displayed in [FIX]).*

*Note that in and [ENG] format modes, the maximum display is a seven-digit
mantissa with a two-digit exponent. However, a format number greater than six (and

less than or equal to nine) will alter the decimal place at which rounding occurs. (Refer

to pages 58-59.)

Section 10: The Index Register and Loop Control 117/118

An exception is in the case of (/;], where the display format number
in Ry may range from —6 to +9. (This is discussed in appendix E on

page 247.) A number less than zero will not affect the display

format, but will affect accuracy with this function.

Part I11

HP-15C

Advanced Functions

Section 11

Calculating With
Complex Numbers

The HP-15C enables you to calculate with complex numbers, that
is, numbers of the form

a—+ib,

where aisthereal part of the complex number,

bis the imaginary part ofthe complex number, and

i=+v-1.

As you will see, the beauty of calculating with the HP-15C in
Complex mode is that once the complex numbers are keyed in, most
operations are executed in the same manner as with real numbers.

The Complex Stack and Complex Mode

Calculations with complex numbers

are performed using a complex stack Real Imaginary
composed of two parallel four- Stack1 Stack

register stacks (and two LAST X

registers). One of these parallel

stacks—referred to as the real
stack—contains the real parts of
complex numbers used in calcula-
tions. (This is the same stack used in

ordinary calculations.) The other

stack—referred to as the imaginary
stack—contains the imaginary parts
of complex numbers used in LASTX Dj
calculations.

X
<

N
=

Creating the Complex Stack

The imaginary stack is created (by converting five storage

registers as described in appendix C) when you activate Complex
mode; it does not exist when the calculator is not in Complex mode.

120

Section 11: Calculating With Complex Numbers 121

Complex mode is activated

1) automatically, when executing [f](I] or [f][RexIm]; or

2) by setting flag 8, the Complex mode flag.

When the calculator is in Complex mode, the C annunciator in the
display is lit. This tells you that flag 8 is set and the complex stack
exists. In or out of Complex mode, the number appearing in the
display is the number in the real X-register.

Note:In Complex mode (signified by the C annunciator), the

HP-15C performs a/l trigonometric functions using radians.

The trigonometric mode annunciator in the display (RAD,

GRAD, or blank for Degrees) applies to two functions only:

(®R] and [®P] (as explained later in this section).

Deactivating Complex Mode

Since Complex mode requires the allocation of five registers from
memory, you will have more memory available for programming
and other advanced functions if you deactivate Complex mode
when you are working solely with real numbers.

To deactivate Complex mode, clear flag 8 (keystroke sequence:
(g][CF] 8). The C annunciator will disappear.

Complex mode is also deactivated when Continuous Memory is
reset (as described on page 63). In any case, deactivating Complex
mode dissolves the imaginary stack, and all imaginary numbers
there are lost.

Complex Numbers and the Stack

Entering Complex Numbers

To enter a number with real and imaginary parts:

1. Key the real part of the number into the display.

2. Press [ENTER].

3. Key the imaginary part of the number into the display.

4 Press [f](I]. (If not already in Complex mode, this creates the
imaginary stack and displays the C annunciator.)

Example: Add 2+ 3i and 4 + 5i. (The operations are illustrated in
the stack diagrams following the keystroke listing.)

122 Section 11: Calculating With Complex Numbers

Keystrokes

[(FEx)4
2 [(ENTER]

4 [ENTER]

1o

(A(hold)
(release)

Display

2.0000

2.0000

4.0000

4.0000

6.0000

8.0000
6.0000

Keys real part offirst
number into (real) Y-

register.

Keys imaginary part of
first number into (real) X-

register.

Creates imaginary stack;
moves the 3 into the
imaginary X-register, and
drops the 2 into the real X-
register.

Keys real part of second
number into (real) Y-

register.

Keys imaginary part of
second number into (real)

X-register.

Copies 5 from real X-
register into imaginary X-

register, copies 4 from real

Y-register into real X-

register, and drops stack.

Real part of sum.

Displays imaginary part

of sum while the [(i)] key is
held. (This also termi-
nates digit entry.)

The operation of the real and imaginary stacks during this process

is illustrated below. (Assume that the stack registers have been

loaded already with the numbers shown as the result of previous
calculations.) Note that the imaginary stack, which is shown below

at the right of the real stack, is not created until [f][I] is pressed.
(Recall also that the shading of the stack indicates that those
contents will be written over when the next number is keyed in or

recalled.)

Section 11: Calculating With Complex Numbers 123

Re Im Re Im Re Im Re Im Re Im

Tle] i [e]i [2]7 [7]F [770

z [s[F 7][e]7 [0 [7]o
viz| i [e| ¢ (2] i [2] i |e]o

<[lBB GLOGS
Keys: 2 3 O

The execution of causes the entire stack to drop, the T contents
to duplicate, and the real X contents to move to the imaginary
X-register.

When the second complex number is entered, the stacks operate as
shown below. Note that lifts both stacks.

Re Im Re Im Re Im Re Im

T|7]0 6|0 6|0

21|70 6|0 2|3 2|3

Y |6]|0 2|3 4|0 4|0

X |23 410 410 510

Keys: 4 5

Re Im Re Im Re Im

T|e|o0 6|0 6|0

2123 6|0 6|0

Y|4]0 2|3 6|0

X|5]|0 4 (5 6|8

Keys: {0

A second method of entering complex numbers is to enter the
imaginary part first, then use and [(«]. This method is
illustrated under Entering Complex Numbers With [«], page 127.

124 Section 11: Calculating With Complex Numbers

Stack Lift in Complex Mode

Stack lift operates on the imaginary stack as it does on the real
stack (the real stack behaves identically in and out of Complex
mode). The same functions that enable, disable, or are neutral to

lifting of the real stack will enable, disable, or be neutral to lifting

of the imaginary stack. (These processes are explained in detail in

section 3 and appendix B.)

In addition, every nonneutral function except [«] and causes
the clearing of the imaginary X-register when the next number is
entered. That is, these functions cause a zero to be placed in the

imaginary X-register when the next number is keyed in or recalled.
Refer to the stack diagrams above for illustrations. This feature
allows you to execute calculator operations using the same key
sequences you use outside of Complex mode.*

Manipulating the Real and Imaginary Stacks

(real exchange imaginary). Pressing [f] will
exchange the contents of the real and imaginary X-registers,
thereby converting the imaginary part of the number into the real
part and vice-versa. The Y-, Z-, and T-registers are not affected.
Press twice to restore a numberto its original form.

also activates Complex mode if it is not already activated.

Temporary Display of the Imaginary X-Register. Press [f]((i)]
to momentarily display the imaginary part of the number in the
X-register without actually switching the real and imaginary

parts. Hold the key down to maintain the display.

Changing Signs

In Complex mode, the function affects only the number in the
real X-register—the imaginary X-register does not change. This
enables you to change the sign of the real or imaginary part
without affecting the other. To key in a negative real or imaginary
part, change the sign of that part as you enter it.

If you want to find the additive inverse of a complex number
already in the X-register, however, you cannot simply press

as you would outside of Complex mode. Instead, you can do either
of the following:

* Except for the and functicns, as explained in this section (page 133).

Section 11: Calculating With Complex Numbers 125

e Multiply by —1.

e If you don’t want to disturb the rest of the stack, press
(f)(Rexim] [CHS] [f][RexIm].

To find the negative of only one part of a complex number in the
X-register:

e Press[CHS]to negate the real part only.

e Press [f][Rexim] [CHS] [f][RexIm]to negate the imaginary part

only, forming the complex conjugate.

Clearing a Complex Number

Inevitably you will need to clear a complex number. You can clear
only one part at a time, but you can then write over both parts
(since[«]and disable the stack).

Clearing the Real X-Register. Pressing [«](or [g][CLx]) with the
calculator in Complex mode clears only the number in the real
X-register; it does not clear the number in the imaginary X-register.

Example: Change 6 + 8i to 7 + 8i and subtract it from the previous
entry. (Use or [f][(i)] to view the imaginary part in X.)
Assumea, b, ¢, and d represent parts of complex numbers.

Re Im Re Im Re Im Re Im

T|lal|b alb alb a

Zz d d d a

Y o 6|0 6|0 c

X 8 8 8 -1|-8

Keys: [« 7 (=] (or other
operation)

Since clearing disables the stack (as explained above), the next
number you enter will replace the cleared value. If you want to
replace the real part with zero, after clearing use or any
other function to terminate digit entry (otherwise the next number

you enter will write over the zero); the imaginary part will remain

unchanged. You can then continue with any calculator function.

126 Section 11: Calculating With Complex Numbers

Clearing the Imaginary X-Register. To clear the number in the
imaginary X-register, press (Rexim], then press [«]. Press
(1] again to return the zero, or any new number keyed in, to
the imaginary X-register.

Example: Replace —1 —8i by —1 + 5i.

Re Im Re Im Re Im Re Im Re Im

(continue with

any operation)

Clearing the Real and Imaginary X-Registers. If you want to
clear or replace both the real and imaginary parts of the number in
the X-register, simply press [«], which will disable the stack, and
enter your new number. (Enter zeros if you want the X-register to

contain zeros.) Alternatively, if the new number will be purely real

(including 0 + 0:), you can quickly clear or replace the old, complex

number by pressing [R¥]followed by zero or the new, real number.

Example: Replace —1 + 5i with 4 + 7:.

Re Im Re Im Re Im

T c|d

Zz el|f

Y 5

X 5

Keys: 4 [ENTER] 7

(continue with

any operation)

Section 11: Calculating With Complex Numbers 127

Entering Complex Numbers with [«]. The clearing functions
(«]and can also be used with as an alternative method
of entering (and clearing) complex numbers. Using this method,
you can enter a complex number using only the X-register, without
affecting the rest of the stack. (This is possible because [«] and
disable stack lift.) Executing will also create an imaginary

stack if oneis not already present.

Example: Enter 9 + 8i without moving the stack and then find its
square.

Keystrokes Display

(Ce)) (0.0000) Prevents stack lift when
the next digit (8) is keyed

in. Omit this step if you'd
rather save what’s in X
and lose what’sin T.

8 8 Enter imaginary part

first.

(f][RexIm] 7.0000 Displays real part;
Complex mode activated.

(«] 0.0000 Disables stack.
(Otherwise, it would lift
following)

9 9 Enters real part (digit
entry not terminated).

(e]x*) 17.0000 Real part.

(f)[G) (hold) 144.0000 Imaginary part.

(release) 17.0000

Re Im Re Im Re Im Re Im

Tl a| b alb al| s al|b

2| c|d c|d c|d c|d

Y| el f e| f e| f e f

X|4]|7 0| 7 8| 7 7| 8
Keys: (] 8 (1)

128 Section 11: Calculating With Complex Numbers

Re Im Re Im Re Im Re Im

T| al|o» a|b al|b al|b

2| c| d c|d c |d c |d

Y|elf e f e f e f

X|7]8 0|8 9|8 17 144

Keys: (] 9 (g](=%]

Entering a Real Number

You have already seen two ways of entering a complex number.
There is a shorter way to enter a real number: simply key it (or
recall it) into the display just as you would if the calculator were
not in Complex mode. As you do so, a zero will be placed in the
imaginary X-register (as long as the previous operation was not [«]
or [CLx], as explained on page 124).

The operation of the real and imaginary stacks during this process
is illustrated below. (Assume the last key pressed was not (€] or

and the contents remain from the previous example.)

Re Im Re Im Re Im

T al b c|d e f

Zz c| d e f 17 (144

Y el| f 17 144 4 |0

17 144 4 |o0 4|0

Keys: 4 (Followed by
another number.)

Section 11: Calculating With Complex Numbers 129

Entering a Pure Imaginary Number

There is a shortcut for entering a pure imaginary number into the
X-register when you are already in Complex mode: key in the

(imaginary) number and press [f][RexIm].

Example: Enter 0 + 10: (assuming the last function executed was

not [¢]or [CLx]).

Keystrokes Display

10 10 Keys 10 into the displayed

real X-register and zero
into the imaginary X-

register.

0.0000 Exchanges numbers in

real and imaginary X-
registers. Display again

shows that the number in
the real X-register is
zero—as it should be for a

pure imaginary number.

The operation of the real and imaginary stacks during this process
is illustrated below. (Assume the stack registers contain the
numbers resulting from the preceding examples.)

Re Im Re Im Re Im

Tl el f e f e f

Z 17|144 17 n44 17 N44

Y| 4a]|oO 4 O 4 0

X]14|O0 10| O 0 |10

Keys: 10 (f][RexIm] (Continue with
any operation.)

130 Section 11: Calculating With Complex Numbers

Note that pressing simply exchanges the numbers in the

real and imaginary X-registers and not those in the remaining

stack registers.

Storing and Recalling Complex Numbers

The and functions act on the real X-register only;
therefore, the imaginary part of a complex number must be stored
or recalled separately. The keystrokes to do this can be entered as
part of a program and executed automatically.*

To store a + ib from the complex X-register to R; and Ry, you can
use the sequence

(STO]1 (sT0]2

You can follow this by to return the stack to its original
condition if desired. To recall a + ib from R; and R, you can use the
sequence

(Ret]1 [Re)2 (A

If you wish to avoid disturbing the rest of the stack, you can recall

the number using the sequence

[RcL]2 («] (Reu]1.

(In Program mode, use [g][CLx]instead of [«].)

Operations With Complex Numbers
Almost all functions performed on real numbers will yield the same
answer whether executed in or out of Complex mode,t assuming

the result is also real. In other words, Complex mode does not
restrict your ability to calculate with real numbers.

Any functions not mentioned below or in the rest of this section
(Calculating With Complex Numbers) ignore the imaginary stack.

*You can use the HP-15C matrix functions, described in section 12, to make storing and

recalling complex numbers more convenient. By dimensioning a matrix to be n X2, n

complex numbers can be stored as rows of the matrix. (This technique is demonstrated

in the HP-15C Advanced Functions Handbook, section 3, under Applications.)

tThe exceptions are and [®R], which operate differently in Complex modein orderto

facilitate converting complex numbers to polar form (page 133).

Section 11: Calculating With Complex Numbers 131

One-Number Functions

The following functions operate on both the real and imaginary

parts of the number in the X-register, and place the real and
imaginary parts of the answer back into those registers.

(=] () (LN] (LoG) [1/x] (107] [eX] (ABS] [+P] [#R]
All trigonometric and hyperbolic functions and their inverses also
belong to this group.*

The function gives the magnitude of the number in the X-
registers (the square root of the sum of the squares of the real and
imaginary parts); the imaginary part of the magnitude is zero.

converts to polar form and converts to rectangular form,
as described later in this section (page 133).

For the trigonometric functions, the calculator considers numbers

in the real and imaginary X-registers to be expressed in radians—
regardless of the current trigonometric mode. To calculate
trigonometric functions for values given in degrees, use to
convert those values to radians before executing the trigonometric
function.

Two-Number Functions

The following functions operate on both the real and imaginary
parts of the numbers in the X- and Y-registers, and place the real
and imaginary parts of the answer into the X-registers. Both stacks
drop, just as the ordinary stack drops after a two-number function

not in Complex mode.

HEHXBE Y]

Stack Manipulation Functions

When the calculator is in Complex mode, the following functions

simultaneously manipulate both the real and imaginary stacks in

the same way as they manipulate the ordinary stack when the

calculator is not in Complex mode. TheXfunction, for instance,

*Refer to the HP-15C Advanced Functions Handbook for definitions of complex

trigonometric functions and further information about doing calculations in Complex
mode.

132 Section 11: Calculating With Complex Numbers

will exchange both the real and imaginary parts of the numbers in
the X- and Y-registers.

(xx»] (R¥] [R#] [ENTER] (LSTx]

Conditional Tests

For programming, the four conditional tests below will work in the
complex sense: and 0 compare the complex number in
the (real and imaginary) X-registers to 0 + 0i, while 5 and

6 compare the complex numbers in the (real and imaginary)
X- and Y-registers. All other conditional tests besides those listed
below ignore the imaginary stack.

(ESTO(x#0) (TEST]5(x=y) (TEST]6(x#y)

Example: Complex Arithmetic. The characteristic impedance
of a ladder network is given by an equation of the form

A

2= VB
where A and B are complex numbers. Find Z, for the hypothetical
values A =1.2+4.7tand B=2.7+ 3.2i.

Keystrokes Display

1.2 (ENTER]4.7 1.2000 Enters A into real and
imaginary X-registers.

2.7 3.2(fjI] 2.7000 Enters B into real and
imaginary X-registers,
moving A into real and
imaginary Y-registers.

(=) 1.0428 Calculates A/B.

1.0491 Calculates Z; and
displays real part.

(f][G)]) (hold) 0.2406 Displays imaginary part
of Z, while [(i)] is held
down.

(release) 1.0491 Again displays real part

OfZO.

Section 11: Calculating With Complex Numbers 133

Complex Results from Real Numbers

In the preceding examples, the entry of complex numbers had
ensured the (automatic) activation of Complex mode. There will be

times, however, when you will need Complex mode to perform

certain operations on real numbers, such as /—5. (Without
Complex mode, such as operation would result in an Error 0—
improper math function.) To activate Complex mode at any time
and without disturbing the stack contents, set flag 8 before
executing the function in question.*

Example: The arc sine (sin™!) of 2.404 normally would result in an

Error 0. Assuming 2.404 in the X-register, the complex value arc sin
2.404 can be calculated as follows:

Keystrokes Display

(g](sF]8 Activates Complex Mode.

(g](SINT] 1.5708 Real part of
arc sin 2.404.

(f][G) (hold) -1.5239 Imaginary part of
arc sin 2.404.

(release) 1.56708 Display shows real part

again when [(i))is released.

Polar and Rectangular Coordinate
Conversions
In many applications, complex numbers are represented in polar

form, sometimes using phasor notation. However, the HP-15C

assumes that any complex numbers are in rectangular form.

Therefore, any numbers in polar or phasor form must be converted
to rectangular form before performing a function in Complex mode.

* Pressing [f][RexIm]twice will accomplish the same thing. The sequence (f](I]is not used
because it would combine any numbers in the real X- and Y-registers into a single

complex number.

134 Section 11: Calculating With Complex Numbers

r(cos 6+ /sinf)=rei (polar)

atib=

r/0 (phasor)

imaginary (a, b)

real

and can be used to interconvert the rectangular and polar
forms of a complex number. They operate in Complex mode as

follows:

converts the polar (or phasor) form of a complex number
to its rectangular form by replacing the magnitude r in
the real X-register with a, and replacing the angle 8 in

the imaginary X-register with b.

(g)(®P] converts the rectangular coordinates of a complex
number to the polar (or phasor) form by replacing the
real part a in the real X-register with r, and replacing

theimaginary part b in the imaginary X-register with 4.

/\

Re Im Re Im

x [o]¢] o]

N
These are the only functions in Complex mode that are affected by

the current trigonometric mode setting. That is, the angular units

for 8 must correspond to the trigonometric mode indicated by the

annunciator (or absence thereof).

Section 11: Calculating With Complex Numbers 135

Example: Find the sum 2(cos 65° + i sin 65°) + 3(cos 40° + i sin
40°) and express the result in polar form. (In phasor form, evaluate

2/65° + 3£40°.)

Keystrokes Display

(e](DEG] Sets Degrees mode for any
polar-rectangular
conversions.

2 2.0000
65 (f)(1) 2.0000 C annunciator displayed;

Complex mode activated.

0.8452 Converts polar to
rectangular form; real
part (a) displayed.

3 3.0000
40({J(1 3.0000

2.2981 Converts polar to
rectangular form; real
part (a) displayed.

3.1434
(g][(=P] 4.8863 Converts rectangular to

polar form; r displayed.

)Y (hold) 49.9612 6 (in degrees).

(release) 4.8863

Problems

By working through the following problems, you will see that
calculating with complex numbers on the HP-15C is as easy as

calculating with real numbers. In fact, once your numbers are

entered, most mathematical operations will use exactly the same

keystrokes. Try it and see!

1. Evaluate: 2i (—8+ 6i)°

(4—2v5i)(2—451)

136 Section 11: Calculating With Complex Numbers

Keystrokes Display

2 0.0000 2i. Display shows real

part.

8 -8.0000
6 {1 -8.0000 —8+ 61.

3% 352.0000 (—8+6i)3.

(x] -1,872.0000 2i (—8+6i)3.

4 4.0000
5 2.2361

2 [cHs)(x] -4.4721 —2/5.
@ 4.0000 4—2+/5i.

&) -295.4551 2i(-8+6i)°

4—2./5i
2 5 2.2361
4 [cHS][x] -8.9443
MO 2.0000 2—4+/51.

(=] 9.3982 Real part of result.

O 'gi;;:;"" } Answer: 9.3982 — 35.1344..,

. . + .
2. Write a program to evaluate the function o = §z+; for dif-

z
ferent values of z. (w represents a linear fractional transforma-
tion, a class of conformal mappings.) Evaluate w for z =1 +2i.

(Answer: 0.3902 + 0.0122 ;. One possible keystroke sequence is:

(] (BL) (A] [ENTER] [ENTER] 2 [x] 1 [#] [x2y] 5 [x] 3 [+] [#] [R/S]
(e](RTN].)

3. Try your hand at a complex polynomial and rework the

example on page 80. You can use the same program to

evaluate P(z) = 5z* + 223, where z is some complex number.

Load the stack with z = 7 + 0i and see if you get the same
answer as before.

(Answer: 12,691.0000 + 0.0000:.)

Now run the program forz=1 +.

(Answer: —24.0000 + 4.0000:.)

Section 11: Calculating With Complex Numbers 137

For Further Information

The HP-15C Advanced Functions Handbook presents more
detailed and technical aspects of using complex numbers in
various functions with the HP-15C. Applications are included. The

topics include:

e Accuracy considerations.

e Principal branches of multivalued functions.

o Complex contour integrals.

o Complex potentials.

e Storing and recalling complex numbers using a matrix.

e Calculating the nth roots of a complex number.

e Solving an equation for its complex roots.

e Using and []in Complex mode.

Section 12

Calculating With Matrices

The HP-15C enables you to perform matrix calculations, giving
you the capability to handle advanced problems with ease. The
calculator can work with up to five matrices, which are named A
through E since they are accessed using the corresponding
through [E] keys. The HP-15C lets you specify the size of each
matrix, store and recall the values of matrix elements, and perform

matrix operations—for matrices with real or complex elements. (A
summary of matrix functions is listed at the end of this section.)

A common application of matrix calculations is solving a system of
linear equations. For example, consider the equations

3.8x1+72x9 = 16.5

1.3x;—0.9x, = —22.1

for which you must determine the values of x; and x,.

These equations can be expressed in matrix form as AX = B, where

38 7.2 x 16.5
A: = = .

13 —09 | X7 x, [*™IBT| ooy

The following keystrokes show how easily you can solve this
matrix problem using your HP-15C. (The matrix operations used in
this example are explained in detail later in this section.)

First, dimension the two known matrices, A and B, and enter the

values of their elements, from left to right along each row from the

first row to the last. Also, designate matrix C as the matrix that
you will use to store the result of your matrix calculation (C = X).

138

Keystrokes

(g)(cFl8

2 [ENTER](f][DIM](A]

(] [MATRIX] 1

(f](USER]

38

7.2
1.3
9
2 [ENTER] 1

16.5
22.1
[(ReSULT](C]

Section 12: Calculating With Matrices 139

Display

2.0000

2.0000

2.0000

3.8000

7.2000

1.3000

-0.9000

1.0000

16.5000

-22.1000

-22.1000

Deactivates Complex

mode.

Dimensions matrix A to

be 2 X 2.

Prepares for automatic

entry of matrix elements

in User mode.

(Turns on the USER

annunciator.)

Denotes matrix A, row 1,

column 1. (A display like
this appears momentarily
as you enter each element
and remains as long as

you hold the letter key.)

Stores a ;.

Stores a 5.

Stores a ;.

Stores a 99.

Dimensions matrix B to

be2 X 1.

Stores b;.

Stores b ;.

Designates matrix C for

storing the result.

Using matrix notation, the solution of the matrix equation AX =B

18

X=A"B

where A7! is the inverse of matrix A. You can perform this

operation by entering the “descriptors’ for matrices B and A into
the Y- and X-registers and then pressing []. (A descriptor shows

140 Section 12: Calculating With Matrices

the name and dimensions of a matrix.) Note that if A and B were
numbers, you could calculate the answer in a similar manner.

Keystrokes Display

b 2 1 Entersdescriptor for B,
the 2 X 1 constant matrix.

A 2 2 Entersdescriptor for A,
the 2 X 2 coefficient
matrix, into the X-register,
moving the descriptor for
B into the Y-register.

(=) running Temporary display while
A~1Bis being calculated
and stored in matrix C.

C 2 1 Descriptor for the result
matrix, C, a 2 X 1 matrix.

Now recall the elements of matrix C—the solution to the matrix

equation. (Also remove the calculator from User mode and clear all

matrices.)

Keystrokes Display

cC 11 Denotes matrix C, row 1,
column 1.

-11.2887 Value of ¢q; (x).

8.2496 Value of co; (x9).

8.2496 Deactivates User mode.

(fJ(MATRIX]O 8.2496 Clears all matrices.

The solution to the system of equations is x; = —11.2887 and x5 =
8.2496.

Note: The description of matrix calculations in this section

presumes that you are already familiar with matrix theory

and matrix algebra.

Matrix Dimensions

Up to 64 matrix elements can be stored in memory. You can use all
64 elements in one matrix or distribute them among up to five

Section 12: Calculating With Matrices 141

matrices. Matrix inversion, for example, can be performed on an

8 X 8 matrix with real elements (or on a 4 X 4 matrix with complex
elements, as described later*).

To conserve memory, all matrices are initially dimensioned as 0 X

0. When a matrix is dimensioned or redimensioned, the proper
number of registers is automatically allocated in memory. You may
have to increase the number of registers allocated to matrix
memory before dimensioning a matrix or before performing certain
matrix operations. Appendix C describes how memory is
organized, how to determine the number of registers currently
available for storing matrix elements, and how to increase or

decrease that number.

Dimensioning a Matrix

To dimension a matrix to have y rows and x columns, place those
numbers in the Y- and X-registers, respectively, and then execute

followed by the letter key specifying the matrix:

1. Key the number of rows (y)
into the display, then press

to lift it into the Y-

register. y numberof
rows

2. Key the number of columns (x)

into the X-register. X number of

3. Press followed by a columns
letter key, through [E], that
specifies the name of the
matrix. f

* The matrix functions described in this section operate on real matrices only. (In

Complex mode, the imaginary stack is ignored during matrix operations.) However, the

HP-15C has four matrix functions that enable you to calculate using real representa-

tions of complex matrices, as described on pages 160-173.

t You don’t need to press (f] before the letter key. (Refer to Abbreviated Key Sequences on

page 78.)

142 Section 12: Calculating With Matrices

Example: Dimension matrix A to be a 2 X 3 matrix.

Keystrokes Display

2 2.0000 Keys number of rows into
Y-register.

3 3 Keys number of columns
into X-register.

3.0000 Dimensions matrix A to
be 2 X 3.

Displaying Matrix Dimensions

There are two ways you can display the dimensions of a matrix:

® Press followed by the letter key specifying the
matrix. The calculator displays the name of the matrix at the
left, and the number of rows followed by the number of
columns at the right.

® Press followed by the letter key specifying the
matrix. The calculator places the number of rows in the
Y-register and the number of columns in the X-register.

Keystrokes Display

b 0 O Matrix BhasOrowsand0
columns, since it has not

been dimensioned
otherwise.

3.0000 Number of columns in A.

(x%y] 2.0000 Number of rows in A.

Changing Matrix Dimensions

Values of matrix elements are stored in memory in order from left

to right along each row, from the first row to the last. If you

redimension a matrix to a smaller size, the required values are

reassigned according to the new dimensions and the extra values
are lost. For example, if the 2 X 3 matrix shown at the left below is
redimensioned to 2 X 2, then

- - -
+—2—3 pop2—4, losti| * et ——

4.5 -6-% 3-4-#% 5 6
- _ L -

Section 12: Calculating With Matrices 143

If you redimension a matrix to a larger size, elements with the
value 0 are added at the end as required by the new dimensions.
For example, if the same 2 X 3 matrix is redimensioned to 2 X 4,

then

When you have finished calculating with matrices, you’ll probably

want to redimension all five matrices to 0 X 0, so that the registers
used for storing their elements will be available for program lines
or for other advanced functions. You can redimension all five
matrices to 0 X 0 at one time by pressing 0. (You can
dimension a single matrix to 0 X 0 by pressing 0 {(A]
through (E]}.)

Storing and Recalling Matrix Elements
The HP-15C provides two ways of storing and recalling values of
matrix elements. The first method allows you to progress through
all of the elements in order. The second method allows you to

access elements individually.

Storing and Recalling All Elements in Order

The HP-15C normally uses storage

registers Ry and R; to indicate the
row and column numbers of a matrix row

element. If the calculator is in User number
mode, the row and column numbers

are automatically incremented as R column
you store or recall each matrix number
element, from left to right along each

row from the first row to the last.

-
To set the row and column numbers in Ry and R, to row 1, column

1, press [f)[MATRIX] 1.

144 Section 12: Calculating With Matrices

To store or recall sequential elements of a matrix:

1. Besurethe matrix is properly dimensioned.

2. Press 1. This stores 1 in both storage registers R
and R,, so that elements will be accessed starting at row 1,

column 1.

3. Activate User mode by pressing (USER]. With the
calculator in User mode, after each element is stored or

recalled the row number in Ror the column number in R, is
automatically incremented by 1, as shown in the example
following.

4. Ifyou are storing elements, key in the value of the element to

be stored in row 1, column 1.

5. Press or followed by the letter key specifying the
matrix.

6. Repeat steps 4 and 5 for all elements of the matrix. The row
and column numbers are incremented according to the
dimensions of the matrix you specify.

While the letter key specifying the matrix is held down after
or is pressed, the calculator displays the name of the matrix
followed by the row and column numbers of the element whose

value is being stored or recalled. If the letter key is held down for
longer than about 3 seconds, the calculator displays null, doesn’t

store or recall the element value, and doesn’t increment the row

and column numbers. (Also, the stack registers aren’t changed.)

After the last element of the matrix has been accessed, the row and

column numbers both return to 1.

Example: Store the values shown below in the elements of the
matrix A dimensioned above. (Be sure matrix A is dimensioned to
2X3.)

a;; @12 a3 |12 3

ag1 Qg Qg3 4 5 6

Keystrokes

1

(f](USER]
1

2(sT0](A]
3(sT0](A]
4(sT0](A]
5(ST0](A]
6(STO](A]

Section 12: Calculating With Matrices 145

Display

A 11

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

A 11

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

6.0000

Sets beginning row and
column numbers in R,

and R, to 1. (Display
shows the previous result.)

Activates User mode.

Row 1, column 1 of A.

(Displayed momentarily

while [A]key held down.)

Valueofa,;.

Value of a 5.

Valueofa.

Value of ay;.

Value of a 9.

Value of a 93.

Recalls element in row 1,

column 1. (Ryand R; were
reset in preceding step.)

Valueofa;.

Value of a ;5.

Valueofas.

Value of ay;.

Value of a 9,.

Value of a o3.

Deactivates User mode.

Checking and Changing Matrix Elements Individually

The calculator provides two ways to check (recall) and change

(store) the value of a particular matrix element. The first method

uses storage registers Ry and R, in the same way as described
above—except that the row and column numbers aren’t auto-

matically changed when User mode is deactivated. The second

method uses the stack to define the row and column numbers.

146 Section 12: Calculating With Matrices

Using Ry and R;. To access a particular matrix element, store its
row number in Rj and its column number in R;. These numbers
won’t change automatically (unless the calculator is in User mode).

e To recall the element value (after storing the row and column

numbers), press followed by the letter key specifying the
matrix.

e To store a value in that element (after storing the row and

column numbers), place the value in the X-register and press
followed by the letter key specifying the matrix.

Example: Store the value 9 as the element in row 2, column 3 of
matrix A from the previous example.

Keystrokes Display

2 0 2.0000 Stores row number in R,

3 1 3.0000 Stores column number in
R;.

9 9 Keys the new element
value into the X-register.

A 23 Row 2, column 3 of A.

9.0000 Value of a 3.

Using the Stack. You can use the stack registers to specify a
particular matrix element. This eliminates the need to change the
numbers in Ry and R;.

e To recall an element value, enter the row number and column

number into the stack (in that order). Then press (g]
followed by the letter key specifying the matrix. The element
value is placed in the X-register. (The row and column
numbers are lost from the stack.)

e To store an element value, first enter the value into the stack

followed by the row number and column number. Then press

(g] followed by the letter key specifying the matrix. (The
row and column numbers are lost from the stack; the element

value is returned to the X-register.)

Note that these are the only operations in which the blue [g] key

precedes a gold letter key.

Section 12: Calculating With Matrices 147

Example: Recall the element in row 2, column 1 of matrix A from
the previous example. Use the stack registers.

Keystrokes Display

2 1 1 Enters row number into Y-
register and column
number into X-register.

[RcL](g](A] 4.0000 Valueof ay;.

Storing a Number in All Elements of a Matrix

To store a number in all elements of a matrix, simply key that
number into the display, then press followed by the
letter key specifying the matrix.

Matrix Operations
In many ways, matrix operations are like numeric calculations.

Numeric calculations require you to specify the numbers to be used;
often you define a register for storing the result. Similarly, matrix

calculations require you to specify one or two matrices that you
want to use. A matrix descriptor is used to specify a particular
matrix. For many calculations, you also must specify a matrix for

storing the result. This is the result matrix.

Because matrix operations usually require many individual

calculations, the calculator flashes the running display during
most matrix operations.

Matrix Descriptors

Earlier in this section you saw that when you press
followed by a letter key specifying a matrix, the name of the matrix

appears at the left of the display and the number of rows followed
by the number of columns appears at the right. The matrix name is
called the descriptor of the matrix. Matrix descriptors can be
moved among the stack and data storage registers just like a

number—thatis, using [STO], [RCL], [ENTER], etc. Whenever a matrix
descriptor is displayed in the X-register, the current dimensions of

that matrix are shown with it.

You use matrix descriptors to indicate which matrices are used in
each matrix operation. The matrix operations discussed in the

148 Section 12: Calculating With Matrices

rest of this section operate on the matrices whose descriptors are
placed in the X-register and (for some operations) the Y-register.

Two matrix operations—calculating a determinant and solving the
matrix equation AX = B—involve calculating an LU decomposi-

tion (also known as an LU factorization) of the matrix specified in

the X-register.* A matrix that is an LU decomposition is signified
by two dashes following the matrix name in the display of its
descriptor. (Refer to page 160 for using a matrix in LUform.)

The Result Matrix

For many operations discussed in this section, you need to define
the matrix in which the result of the operation should be stored.
This matrix is called the result matrix.

Other matrix operations do not use or affect the result matrix. (This

is noted in the descriptions of these operations.) Such an operation
either replaces the original matrix with the result of the operation

(if the result is a matrix, such as a transpose) or returns a number

to the X-register (if the result is a number, such as a row norm).

Before you perform an operation that uses the result matrix, you

must designate the result matrix. Do this by pressing
followed by the letter key specifying the matrix. (If the descriptor of
the intended result matrix is already in the X-register, you can
press instead.) The designated matrix remains the
result matrix until another is designated.t To display the
descriptor of the result matrix, press RESULT].

When you perform an operation that affects the result matrix, the

matrix is automatically redimensioned to the proper size. If this
redimensioning would require more additional elements than there
are available in matrix memory (a maximum of 64 for all five
matrices), then the operation can’t be performed. This restriction

* The LU decomposition of a matrix A is another matrix in which is encoded a lower-

triangular matrix, L, and an upper-triangular matrix, U, whose product LU equals

matrix A (possibly with some rows interchanged). The HP-15C Advanced Functions

Handbook discusses L U decomposition in detail.

tMatrix A is automatically designated as the result matrix whenever Continuous

Memory is reset.

Section 12: Calculating With Matrices 149

can often be overcome by designating the result matrix to be one of
the matrices being operated on. (However, there are certain

operations for which the result matrix can not be the same one as
either of the matrices being operated on—this is noted in the

description ofthese operations.)

While the key used for any matrix operation that stores a result in
the result matrix is held down, the descriptor of the result matrix is
displayed. If the key is released within about 3 seconds, the

operation is performed, and the descriptor of the result matrix is
placed in the X-register. If the key is held down longer, the
operation is not performed and the calculator displays null.

Copying a Matrix

To copy the elements of a matrix into the corresponding elements

of another matrix, use the MATRIX sequence:

1. Press followed by the letter key specifying the
matrix to be copied. This enters the descriptor of the matrix
into the display.

2. Press followed by the letter key specifying the
matrix to be copied into.

If the matrix specified after does not have the same
dimensions as the matrix specified after [STO], the second matrix is
redimensioned to agree with the first. The matrix specified after

need not already be dimensioned.

Example: Copy matrix A from the previous example into matrix

B.

Keystrokes Display

A 2 3 Displays descriptor of
matrix to be copied.

MATRIX A 2 3 Redimensions matrix B
and copies A into B.

b 2 3 Displays descriptor ofnew
matrix B.

One-Matrix Operations

The following table shows functions that operate on only the

matrix specified in the X-register. Operations involving a single

150

matrix plus a number in another stack register are described under
Scalar Operations (page 151).

Section 12: Calculating With Matrices

Effect on

Resultin Matrix Effecton
Keystroke(s PP .

y (s) X-register Specified in Result Matrix

X-register

CHS No change. Changes sign of None.}

all elements.

Descriptor of None. Inverse of

result matrix. specified

matrix. §

(fJ(MATRIX]4 Descriptor of Replaced by None.t
transpose. transpose.

(f](MATRIX]7 Row normof None. None.
specified

matrix.*

8 Frobeniusor None. None.
Euclidean

norm of

specified

matrix.t

9 Determinant None.} LU decomposi-
of specified tion of specified

matrix. matrix. §

—+
w
,
fi

* The row norm is the largest sum of the absolute values of the elements in each row

of the specified matrix.

The Frobenius or Euclidean norm is the square root of the sum of the squares of all

elements in the specified matrix.

Unless the result matrix is the same matrix specified in the X-register.

If the specified matrix is a singular matrix (that is, one that doesn’t have an

inverse), then the HP-15C modifies the LU form by an amount that is usually small

compared to round-off error. For (1/x], the calculated inverse is the inverse of a

matrix close to the original, singular matrix. (Refer to the HP-15C Advanced

Functions Handbook for further information.)

Section 12: Calculating With Matrices 151

Example: Calculate the transpose of matrix B. Matrix B was set
in preceding examples to

[123]

B_459'

Keystrokes Display

b 2 3 Displaysdescriptor of 2 X

3 matrix B.

4 b 3 2 Descriptor of 3 X2
transpose.

Matrix B (which you can view using (B]in User mode) is now

Scalar Operations

Scalar operations perform arithmetic operations between a scalar

(that is, a number) and each element of a matrix. The scalar and

the descriptor of the matrix must be placed in the X- and

Y-registers—in either order. (Note that the register position will
affect the outcome of the (-] and [¢]functions.) The resulting values
are stored in the corresponding elements of the result matrix.

The possible operations are shown in the following table.

152 Section 12: Calculating With Matrices

Elements of Result Matrix*

Operation Matrix in Y-Register Scalarin Y-Register

Scalar in X-Register Matrix in X-Register

Adds scalar value to each matrix element.

(x] Multiplies each matrix element by scalar value.

(-] Subtracts scalar value Subtracts each matrix

from each matrix element from scalar

element. value.

() Divides each matrix Calculates inverse of
element by scalar matrix and multiplies

value. each element by scalar

value.
* Result matrix may be the specified matrix.
Example: Calculate the matrix B =2A, then subtract 1 from every
element in B. From before, use

[123]
A=

4 59

Keystrokes Display

Designates matrix B as
result matrix.

A 2 3 Displays descriptor of

matrix A.

2(x] b 2 3 Redimensions matrix B to

the same dimensions as

A, multiplies the elements

ofA by 2, stores those

values in the

corresponding elements of
B, and displays the

descriptor of the result
matrix.

Section 12: Calculating With Matrices 153

Keystrokes Display

1) b 2 3 Subtracts 1 from the

elements of matrix B and

stores those values in the

same elements of B.

The result (which you can view using in User mode) is

B:13 5'

79 17

Arithmetic Operations

With matrix descriptors in both the X- and Y-registers, pressing
or (-] calculates the sum or difference of the matrices.

Pressing Calculates*

Y+X

[Y-X
*Result is stored in result matrix.

Result matrix may be X or Y.

Example: Calculate C = B — A, where A and B are defined in the
previous example,

[1 2 3] [1 3 5]
A= dB= .

459" 79 17

Keystrokes Display

Designates C as result
matrix.

b 2 3 Recallsdescriptor of
matrix B. (This step can

be skipped if descriptor is

already in X-register.)

A 2 3 Recalls descriptor of
matrix A into X-register,

moving descriptor of
matrix B to Y-register.

154 Section 12: Calculating With Matrices

Keystrokes Display

(-] Cc 2 3 CalculatesB— A and
stores values in

redimensioned result

matrix C.

. 01 2
The result is C=

3 4 8

Matrix Multiplication

With matrix descriptors in both the X- and Y-registers, you can
calculate three different matrix products. The table below shows
the results of the three functions for a matrix X specified in the
X-register and a matrix Y specified in the Y-register. The matrix
X~!is the inverse of X, and the matrix Y7 is the transpose of Y.

Pressing Calculates*

(x] YX

(f)(MATRIX]5 YTX
(=) X1y
*Result stored in result matrix. For (], the result

matrix can be Y but not X. For the others, the

result matrix must be other than X or Y.
Note: When you use the [£] function to evaluate the

expression A~'B, you must enter the matrix descriptors in

the order B, A rather than in the order that they appearin

the expression.*

The value stored in each element of the result matrix is determined

according to the usual rules of matrix multiplication.

For 5, the matrix specified in the Y-register isn’t changed
by this operation, even though its transpose is used. The result is

identical to that obtained using 4 (transpose) and [x].

*This is the same order you would use if you were entering b and a for evaluating a1y

=b/a.

Section 12: Calculating With Matrices 155

For (¢], the matrix specified in the X-register is replaced by its LU

decomposition. The (%] function calculates X! Y using a more
direct method than does and [x], giving the result faster and

with improved accuracy.

Example: Using matrices A and B from the previous example,
calculate C=ATB.

123 13 5

A=145 9| and B=1749 17

Keystrokes Display

A 2 3 Recalls descriptor for

matrix A.

b 2 3 Recalls descriptor for

matrix B into X-register,
moving matrix A
descriptor into Y-register.

b 2 3 Designates matrix C as
result matrix.

5 Cc 3 3 CalculatessA”Band
stores result in matrix C,
which is redimensioned to

3X3.

The result, matrix C,is

29 39 173

C=]137 51 95

66 90 168

156 Section 12: Calculating With Matrices

Solving the Equation AX =B

The [£] function is useful for solving
matrix equations of the form
AX = B, where A is the coefficient

matrix, B is the constant matrix, and constant
X is the solution matrix. The descrip- Y matrix

tor of the constant matrix B should —
be entered in the Y-register and the X co:‘f:tc:;’e(nt
descriptor of the coefficient matrix A

should be entered in the X-register.
Pressing (£] then calculates the solu-
tionX=A"1B.*

Remember that the [¢] function replaces the coefficient matrix by
its L U decomposition and that this matrix must not be specified as
the result matrix. Furthermore, using (¢] rather than and (%]
gives a solution faster and with improved accuracy.

At the beginning of this section, you found the solution for a
system of linear equations in which the constant matrix and the

solution matrix each had one column. The following example
illustrates that you can use the HP-15C to find solutions for more

than one set of constants—that is, for a constant matrix and

solution matrix with more than one column.

Example: Looking at his receipts for
his last three deliveries of cabbage
and broccoli, Silas Farmer sees the

following summary.

* If A is a singular matrix (that is, one that doesn’t have an inverse), then the HP-15C

modifies the LU form of A by an amount that is usually small compared to round-off

error. The calculated solution corresponds to that for a nonsingular coefficient matrix

close to the original, singular matrix.

Section 12: Calculating With Matrices

Week
1 2 3

Total Weight (kg) 274 233 331

Total Value $120.32 $112.96 $151.36
Silas knows that he received $0.24 per kilogram for his cabbage
and $0.86 per kilogram for his broccoli. Use matrix operations to

determine the weights of cabbage and broccoli he delivered each

week.

Solution: Each week’s delivery represents two linear equations
(one for weight and one for value) with two unknown variables (the

weights of cabbage and broccoli). All three weeks can be handled
simultaneously using the matrix equation

11 di dig dig 274 233 331

0.24 0.86 |dy dop dos| |120.32 112.96 151.36

or AD=B

where the first row of matrix D is the weights of cabbage for the
three weeks and the second row is the weights of broccoli.

Keystrokes Display

2 2.0000 Dimensions A as 2 X 2
matrix.

(f)(MATRIX] 1 2.0000 Sets row and column
numbers in Ry and R, to 1.

(f)[USER] 2.0000 Activates User mode.

1 1.0000 Stores a;.

1.0000 Stores a ;5.

.24 0.2400 Stores a ;.

.86 0.8600 Stores a 9.

2 3(f)(oiM](B] 3.0000 Dimensions B as 2 X 3
matrix.

158 Section 12: Calculating With Matrices

Keystrokes Display

274 (sT10](B] 274.0000 Stores b;;.*

233 233.0000 Stores b 9.

331 331.0000 Stores b 3.

120.32 120.3200 Stores b;.

112.96 112.9600 Stores b 9.

151.36 151.3600 Stores bgs.

(RESULT](D] 151.3600 Designates matrix D as
result matrix.

b 2 Recalls descriptor of
constant matrix.

A 2 Recalls descriptor of
coefficient matrix A into
X-register, moving

descriptor of constant
matrix B into Y-register.

(=] d 2 Calculates A" B and
stores result in matrix D.

(RcL](D] 186.0000 Recalls d;, the weight of
cabbage for the first week.

(RcL](D] 141.0000 Recalls d 5, the weight of
cabbage for the second

week.

(o] 215.0000 Recalls d 3.

(RcL](D] 88.0000 Recalls d;.

(RcL](D] 92.0000 Recalls d 9s.

(RcL](D] 116.0000 Recalls d o5.

116.0000 Deactivates User mode.

* Note that you did not need to press [f][MATRIX] 1 before beginning to store the elements

of matrix B. This is because after you stored the last element of matrix A, the row and

column numbers in R and R| were automatically reset to 1.

Section 12: Calculating With Matrices 159

Silas’ deliveries were:

Week

Cabbage (kg) 186 141 215

Broccoli (kg) 88 92 116
Calculating the Residual

The HP-15C enables you to calculate the residual, that is, the
matrix

Residual = R—YX

where R is the result matrix and X and Y are the matrices specified
in the X- and Y-registers.

This capability is useful, for example, in doing iterative refinement
on the solution of a system of equations and for linear regression
problems. For example, if C is a possible solution for AX = B, then
B — AC indicates how well this solution satisfies the equation.
(Refer to the HP-15C Advanced Functions Handbook for

information about iterative refinement and linear regression.)

The residual function ([MATRIX] 6) uses the current contents of the
result matrix and the matrices specified in the X- and Y-registers to

calculate the residual defined above. The residualis stored in the
result matrix, replacing the original result matrix. A matrix

specified in the X- or Y-register can not be the result matrix.

Using 6 rather than [x]and (-] gives a result with improved
accuracy, particularly if the residual is small compared to the

matrices being subtracted.

To calculate the residual:

1. Enter the descriptor of the Y matrix into the Y-register.

2. Enter the descriptor of the X matrix into the X-register.

3. Designate the R matrix as the result matrix.

4 Press 6. The residual replaces the original result
matrix (R). The descriptor of the result matrix is placed in
the X-register.

160 Section 12: Calculating With Matrices

Using Matrices in LU Form

As noted earlier, two matrix operations (calculating a deter-
minant and solving the matrix equation AX = B) create an LU
decomposition of the matrix specified in the X-register. The
descriptor of such a matrix has two dashes following the matrix
name. A matrix in LU form has elements that differ from the
elements of the original matrix.

However, the descriptor for a matrix in LU form can be used in
place of the descriptor for the original matrix for operations
involving the inverse of the matrix and for the determinant
operation. That is, either the original matrix or its LU
decomposition can be used for these operations:

[#]for the matrix in the X-register

[MATRIX]9

For these three functions, using the LU form of the matrix to be
inverted gives a result that is identical to that using the original
matrix.

As an example, if you solved the matrix equation AX = B, matrix

A would be changed to its L U form. If you wanted to change the B
matrix and solve the equation again, you could do so without
changing the A matrix—the LU matrix will give the correct
solution.

For all other matrix operations, a matrix that is an LU
decomposition is not recognized as representing its original

matrix. Instead, the elements of the LU matrix are used just as

they appear in matrix memory and the result is not the result you
would obtain using the original matrix.

Calculations With Complex Matrices
The HP-15C enables you to perform matrix multiplication and
matrix inversion with complex matrices (that is, matrices whose
elements are complex numbers) and to solve systems of complex
equations (that is, equations whose coefficients and variables are

complex).

However, the HP-15C stores and operates on only real matrices.
The capability of doing calculations with complex matrices is

Section 12: Calculating With Matrices 161

completely independent of the capability of doing calculations with
complex numbers described in the preceding section. You don’t

need to activate Complex mode for calculations with complex

matrices.

Instead, calculations with complex matrices are performed by

using real matrices derived from the original complex matrices—in
a manner to be described below—and performing certain
transformations in addition to the regular matrix operations.
These transformations are performed by four calculator functions.
This section will describe how to do these calculations. (There are

more examples of calculations with complex matrices in the
HP-15C Advanced Functions Handbook.)

Storing the Elements of a Complex Matrix

Consider an m X n complex matrixZ=X +:{Y, where X and Y are
real m X n matrices. This matrix can be represented in the
calculator as a 2m X n “partitioned’” matrix:

} Real Part

} Imaginary Part

The superscript P signifies that the complex matrix is represented

by a partitioned matrix.

All of the elements of Z? are real numbers—those in the upper half
represent the elements of the real part (matrix X), those in the
lower half represent the elements of the imaginary part (matrix Y).
The elements of Z% are stored in one of the five matrices (A, for
example) in the usual manner, as described earlier in this section.

For example, if Z=X +:Y, where

X11 X312 Y11 Y12
X= [] and Y= [,

X21 X22 Y21 Yoo

162 Section 12: Calculating With Matrices

then Z can be represented in the calculator by

X11 X312

Xo1 X
A=ZP= =|T2L22,

Y Y Yi2

Yo1 Y22

Suppose you need to do a calculation with a complex matrix that is
not written as the sum of a real matrix and an imaginary matrix—
as was the matrix Z in the example above—but rather written with
an entire complex number in each element, such as

X1ty Xietiype

X9 +iyg Xogt+ives |

This matrix can be represented in the calculator by a real matrix
that looks very similar—one that is derived simply by ignoring the
i and the + sign. The 2 X 2 matrix Z shown above, for example, can
be represented in the calculator in “complex” form by the 2 X 4
matrix.

c X11 Y11 X12 Y12
A=7Z"= .

X21 Y21 X22 Y22

The superscript C signifies that the complex matrix is represented
in a “complex-like” form.

Although a complex matrix can be initially represented in the
calculator by a matrix of the form shown for ZC, the
transformations used for multiplying and inverting a complex
matrix presume that the matrix is represented by a matrix of the

form shown for Z?. The HP-15C provides two transformations that
convert the representation of a complex matrix between Z€ and
VAR

Pressing Transforms Into

z¢ z?

(9)(Cy.x] z” z¢

To do either of these transformations, recall the descriptor of Z€ or
Z? into the display, then press the keys shown above. The

Section 12: Calculating With Matrices 163

transformation is done to the specified matrix; the result matrix is
not affected.

Example: Store the complex matrix

4+3i T—2i

1+5: 3+8i

in the form Z€, since it is written in a form that shows Z€. Then

transform Z € into the form Z”.

You can do this by storing the elements of Z€ in matrix A and then
using the function, where

A=7C= 4 3 7 —2

2= 1153 8

Keystrokes Display

0 Clears all matrices.

2 4[f)[oIM][A] 4.0000 Dimensions matrix A to

be 2 X 4.

(f][MATRIX] 1 4.0000 Sets beginning row and

column numbers in R,
and R; to 1.

4.0000 Activates User mode.

4 4.0000 Stores a ;.

3 3.0000 Stores a 9.

7 7.0000 Stores a 3.

2 -2.0000 Stores a 4.

1 1.0000 Stores a ;.

5 5.0000 Stores aqs.

3 3.0000 Stores a 3.

8 8.0000 Stores a oy.

8.0000 Deactivates User mode.

A 2 4 Displays descriptor of
matrix A.

A 4 2 TransformsZCintoZ?,
and redimensions matrix

A.

164 Section 12: Calculating With Matrices

Matrix A now represents the complex matrix Z in Z? form:

1 7 } Real Part

A=7ZP=]-........
3 —2 .

8 Imaginary Part

The Complex Transformations

An additional transformation must be done when you want to
calculate the product of two complex matrices, and still another
when you want to calculate the inverse of a complex matrix. These
transformations convert between the Z? representation of an
m X n complex matrix and a 2m X 2n partitioned matrix of the
following form:

~ X -
Z= .

Y X

The matrix Z created by the 2 transformation has twice as
many elements as Z°.

For example, the matrices below show how Z is related to Z.

The transformations that convert the represention of a complex
matrix between ZF and Z are shown in the following table.

Pressing Transforms Into

(I(MATRIX] 2 z* Z
() (MATRIX] 3 Z Al

To do either of these transformations, recall the descriptor of Z? or

Z into the display, then press the keys shown above. The
transformation is done to the specified matrix; the result matrix is
not affected.

Section 12: Calculating With Matrices 165

Inverting a Complex Matrix

You can calculate the inverse of a complex matrix by using the fact

that (Z)! = (Z).
To calculate the inverse, Z™!, of a complex matrix Z:

1.

7.

8.

Store the elements of Z in memory, in the form either ofZ% or

of Z€.

Recall the descriptor of the matrix representing Z into the
display.

If the elements of Z were entered in the form ZC, press [f)[Py.x]
to transform Z€ into Z2.

Press (f][MATRIX] 2 to transform Zinto Z.

Designate a matrix as the result matrix. It may be the same
as the matrix in which Z is stored.

~

Press [1/x]. This calculates (Z)!, which is equal to (Z1). The

values of these matrix elements are stored in the result

matrix, and the descriptor of the result matrix is placed in

the X-register.
~Y

Press [f][MATRIX] 3 to transform (Z~}) into (Z71)?.

If you want the inverse in the form (Z71)€, press [g](Cy.x].

You can derive the complex elements of Z™! by recalling the

elements of Z® or Z€ and then combining them as described earlier.

Example: Calculate the inverse of the complex matrix Z from the
previous example,

4 7

1 3
A=ZP=|------|.

3 —2

5 8

Keystrokes Display

A 4 2 Recalls descriptor of
matrix A.

(f)[MATRIX] 2 A 4 4 TransformsZ?fintoZ,
and redimensions matrix

A.

166 Section 12: Calculating With Matrices

Keystrokes Display

(f)(RESULT](B] A 4 4 Designates B as the result
matrix. ~

b 4 4 Calculates(Z)=2}
and places the result in

matrix B. ~

() (MATRIX] 3 b 4 2 Tralnls>forms (ZY into
(Z7)".

The representation of Z~! in partitioned form is contained in

matrix B.

—0.0254 0.2420

—0.0122 —0.1017
} Real Part

0.1691 —0.1315 } Imaginary Part

Multiplying Complex Matrices

The product oftwocomplex matrices can be calculated by using the
fact that (YX)P = YX?.

To calculate YX, where Y and X are complex matrices:

1. Store the elements of Y and X in memory, in the form either

ofZP or of Z €.

2. Recall the descriptor of the matrix representing Y into the
display.

3. If the elements of Y were entered in the form Y, press
[f)[Py.x) to transform Yinto Y?.

Press 2 to transform Y into Y.

Recall the descriptor of the matrix representing X into the

display.

6. If the elements of X were entered in the form XC, press
to transform X € into X?.

7. Designate the result matrix; it must not be the same matrix
as either of the other two.

Section 12: Calculating With Matrices 167

8. Press [x] to calculate ¥YXP? = (YX)P. The values of these
matrix elements are placed in the result matrix, and the

descriptor of the result matrix is placed in the X-register.

9. Ifyou want the product in the form (YX), press [g][Cyx].

Note that you don’t transform X? into X.

You can derive the complex elements of the matrix product YX by
recalling the elements of (YX)? or (YX)€ and combining them
according to the conventions described earlier.

Example: Calculate the product ZZ™!, where Z is the complex
matrix given in the preceding example.

Since elements representing both matrices are already stored (Z in
A and (Z)% in B), skip steps 1, 3, 4, and 6.

Keystrokes Display

(RCL] A 4 4 Displays descriptor of
matrix A.

b 4 2 Displays descriptor of
matrix B.

(1] b 4 2 Designates C asresult
matrix.

(x] Cc 4 2 Calculates Z(Z)P =
(ZZ1)P.

(f](USER] C 4 2 Activates User mode.

c 11 Matrix C, row 1, column 1.
(Displayed momentarily
while last key held down.)

1.0000 Value of cy;.

-2.8500 -10 Valueofc,.

-4.0000 -11 Valueofcy.

1.0000 Value of cqo.

1.0000 -11 Valueofcg;.

3.8000 -10 Valueofcss.

1.0000 -11 Valueofcy;.

-1.0500 -10 Valueofcy.

(f](USER] -1.0500 -10 Deactivates User mode.

168 Section 12: Calculating With Matrices

Writing down the elements of C,

1.0000 —2.8500 % 10710

—4.0000 X 10”11 1.0000

1.0000 X 10711 3.8000 X 10710

1.0000 X 10711 —1.0500 X 10710

where the upper half of matrix C is the real part of ZZ™! and the
lower half is the imaginary part. Therefore, by inspection of matrix

C,

zz-1— 10000 —2.8500 X 10710
—4.0000 X 10711 1.0000

) 1.0000 X 1011 3.8000 X 10711

"1 1.0000x10°11 —1.0500% 10710

As expected,

~ 10 00
ZZ 1= +i :

01 00

Solving the Complex Equation AX =B

You can solve the complex matrix equation AX = B by finding
X = A1 B. Do this by calculating X= (A)"! B?.

To solve the equation AX = B, where A, X, and B are complex

matrices:

1. Store the elements of A and B in memory, in the form either
of ZP or of Z€.

2. Recall the descriptor of the matrix representing B into the
display.

3. If the elements of B were entered in the form BC, press [f]
to transform Binto BY.

9.

Section 12: Calculating With Matrices 169

Recall the descriptor of the matrix representing A into the
display.

If the elements of A were entered in the form of A€, press [f]

to transform ACinto A”.

Press [f)[MATRIX] 2 to transform Af into A.

Designate the result matrix; it must not be the same as the
matrix representing A.

Press [3); this calculates X?. The values of these matrix
elements are placed in the result matrix, and the descriptor
of the result matrix is placed in the X-register.

If you want the solution in the form X €, press [g)(Cyx].

Note that you don’t transform BZ into B.

You can derive the complex elements of the solution X by recalling
the elements of X? or X¢ and combining them according to the

conventions described earlier.

Example: Engineering student A. C. Dimmer wants to analyze the
electrical circuit shown below. The impedances of the components
are indicated in complex form. Determine the complex representa-
tion ofthe currents I, and I,.

ZR=1O

This system can be represented by the complex matrix equation

or

10 + 200i —200: I 5

—200i (200—30)i I, |oO

AX=B.

170 Section 12: Calculating With Matrices

In partitioned form,

10 0 5

)00l anam= |2,
200 —200 0

—200 170 0

where the zero elements correspond to real and imaginary parts
with zero value.

Keystrokes Display

4 2(f)(omM](A] 2.0000

[f)[MATRIX] 1 2.0000

(f](USER] 2.0000

10 10.0000

0 0.0000
0.0000

0.0000
200 200.0000

-200.0000
-200.0000

170 170.0000

4 [ENTER] 1 [f][DIM][B] 1.0000

0 0.0000

5 [ENTER] 1 1.0000

(sTo](g](8] 5.0000

b 4

A 4

Dimensions matrix A to

be 4 X 2.

Set beginning row and
column numbers in R
and R, to 1.

Activates User mode.

Stores a ;.

Stores a 5.

Stores a o;.

Stores a 9o.

Stores a 3;.

Stores a 3.

Stores a 4;.

Stores a 45.

Dimensions matrix B to
be4 X 1.

Stores value 0 in all
elements of B.

Specifies value 5 for row
1, column 1.

Stores value 5in b ;.

Recalls descriptor for
matrix B.

Places descriptor for
matrix A into X-register,

moving descriptor for
matrix B into Y-register.

Section 12: Calculating With Matrices 171

Keystrokes Display

(f][MATRIX] 2 A 4 4 Transforms AfintoA.

A 4 4 Designates matrix C as
result matrix.

(=] C 4 1 Calculates X?and
stores in C.

(g)[Cy.x] Cc 2 2 Transforms X?into XC.

0.0372 Recalls ¢ ;.

0.1311 Recalls ¢ 9.

0.0437 Recalls cy;.

0.1543 Recalls cg,.

(f][USER] 0.1543 Deactivates User mode.

(f)(MATRIX]O 0.1543 Redimensions all
matrices to 0 X 0.

The currents, represented by the complex matrix X, can be derived

from C:

[11] [0.0372 + O.1311i:|
X = = 1

I, 0.0437 4+ 0.1543:

Solving the matrix equation in the preceding example required 24
registers of matrix memory—16 for the 4 X 4 matrix A (which was
originally entered as a 4 X 2 matrix representing a 2 X 2 complex

matrix), and four each for the matrices B and C (each representing

a 2 X 1 complex matrix). (However, you would have used four fewer

registers if the result matrix were matrix B.) Note that since X and

B are not restricted to be vectors (that is, single-column matrices),

X and B could have required more memory.

The HP-15C contains sufficient memory to solve, using the method

described above, the complex matrix equation AX = B with X and
B having up to six columns ifA is 2 X 2, or up to two columns ifA is

3 X 3.* (The allowable number of columns doubles if the constant
matrix B is used as the result matrix.) If X and B have more

columns, or if A is 4 X 4, you can solve the equation using the

* If all available memory space is dimensioned to the common pool ((MEM]: 1 64 0-0).

Refer to appendix C, Memory Allocation.

172 Section 12: Calculating With Matrices

alternate method below. This method differs from the preceding
one in that it involves separate inversion and multiplication

operations and fewer registers.

1. Store the elements of A in memory, in the form either of AP
orofAC.

2. Recall the descriptor of the matrix representing A into the
display.

3. If the elements of A were entered in the form AC, press

(f)[Py.x) to transform ACinto AP,

Press 2 to transform Ainto A.

Press to designate the matrix representing A
as the result matrix.

6. Press[17x]to calculate (A)~L.

Redimension A to have half the number of rows as indicated

in the display of its descriptor after the preceding step.

8. Store the elements of B in memory,in the form either of B?

orofBC.

9. Recall the descriptor of the matrix representing A into the
display.

10. Recall the descriptor of the matrix representing B into the
display.

11. If the elements of B were entered in the form BC, press
(f)[Py.x] to transform BC into B?.

12. Press [f][MATRIX]2 to transform Binto B.

13. Designate the result matrix; it must not be the same matrix
as either of the other two.

14. Press(x].

15. Press[f][MATRIX]4 to transpose the result matrix.

16. Press(f] 2.

17. Redimension the result matrix to have half the number of
rows as indicated in the display of its descriptor after the
preceding step.

Section 12: Calculating With Matrices 173

18. Press to recall the descriptor of the result
matrix.

19. Press[f][MATRIX]4 to calculate X.

20. Ifyou want the solution in the form X ¢, press [g)[Cy.x].

A problem using this procedure is given in the HP-15C Advanced
Functions Handbook under Solving a Large System of Complex
Equations.

Miscellaneous Operations Involving Matrices

Using a Matrix Element With Register Operations

If a letter key specifying a matrix is pressed after any of the
following function keys, the operation is performed using the
matrix element specified by the row and column numbers in Ry and
R,, just as though it were a data storage register.

(sTO)* (RcL]*
(sTOJ{(+], (21, (), (213 (ReL){(+], (2, B, &y

D

Using Matrix Descriptors in the Index Register

In certain applications, you may want to perform a programmed

sequence of matrix operations using any of the matrices A through
E. In this situation, the matrix operations can refer to whatever

matrix descriptoris stored in the index register (R;).

If the index register contains a matrix descriptor:

e Pressing [(i)] after any of the functions listed above performs
the operation using the element specified by R; and R, and the

matrix specified in R;.

® Pressing ((i)] after (g] or (g] performs the operation
using the element specified by the row and column numbers in
the Y- and X-registers and the matrix specified in R;}.

* Also, in User mode the row and column numbers in Ry and R; are incremented

according to the dimensions of the specified matrix.

174 Section 12: Calculating With Matrices

e Pressing (IJ dimensions the matrix specified in R;
according to the dimensions in the X- and Y-registers.

e Pressing (I) recalls to the X- and Y-registers the
dimensions of the matrix specified in R;.

e Pressing (I or (I) has the same result as pressing
or followed by the letter of the matrix specified in

R;. (This is not actually a matrix operation—only the letter in
the matrix descriptoris used.)

Conditional Tests on Matrix Descriptors

Four conditional tests—[x=0], 0(x##0), 5(x=y), and
6 (x # y)—can be performed with matrix descriptors in the X-

and Y-registers. Conditional tests can be used to control program
execution, as described in section 8.

If a matrix descriptor is in the X-register, the result of will be
false and the result of 0 will be true (regardless of the element
values in the matrix.)

If matrix descriptors are in the X- and Y-registers when 5 or
6 conditional test is performed, x and y are equal if the same

descriptor is in the X- and Y-registers, and not equal otherwise. The

comparison is made between the descriptors themselves, not
between the elements of the specified matrices.

Other conditionaltests can’t be used with matrix descriptors.

Stack Operation for Matrix Calculations
During matrix calculations, the contents of the stack registers shift
much like they do during numeric calculations.

For some matrix calculations, the result is stored in the result
matrix. The arguments—one or two descriptors or numbers in the
X-register or the X- and Y-registers—are combined by the
operation, and the descriptor of the result matrix is placed in the
X-register. (The argument from the X-register is placed in the
LAST X register.)

Section 12: Calculating With Matrices 175

6.0000 |——» 6.0000

5.0000 |/ 5.0000

4.0000 |/ 4.0000

 X
<

N
-

matrix A result mat.

Keys: (17x]

T 5.0000 Y 5.0000

2 4.0000 \ 5.0000

Y matrix B]\ 4.0000

X matrix A result mat.

Keys: (x]

Several matrix functions operate on the matrix specified in the
X-register only and store the result in the same matrix. For these
operations the contents of the stack (including the LAST X
register) are not moved—although the display changes to show the

new dimensions if necessary.

For the 7, 8, and 9 functions, the
matrix descriptor specified in the X-register is placed in the
LAST X register and the norm or (for 9) the determinantis
placed in the X-register. The Y-, Z-, and T-registers aren’t changed.

When you recall descriptors or matrix elements into the X-register

(with the stack enabled), other descriptors and numbers already in

the stack move up in the stack—and the contents of the T-register
are lost. (The LAST X register is not changed.) When you store

descriptors or matrix elements, the stack (and the LAST X register)

isn’t changed.

In contrast to the operation described above, the (g]and
[g] functions do not affect the LAST X register and operate as
shown on the next page.

176 Section 12: Calculating With Matrices

lost

T 4.0000 !-_—> 4.0000

Zz value i 4.0000

Y row number \ 4.0000

X col. number :I value

(al(A]

I-—> lost

T 5.0000 : 5.0000

Z a.0000 | : 5.0000

Y row number j\k 4.0000

X col. number value

(Ret)(g](A]

Using Matrix Operations in a Program
If the calculator is in User mode during program entry when you
enter a or {[A] through (E], [(i)]} instruction to store or
recall a matrix element, a u replaces the dash usually displayed

after the line number. When this line is executed in a running

program, it operates as though the calculator were in User mode.
That is, the row and column numbers in R, and R; are
automatically incremented according to the dimensions of the
specified matrix. This allows you to access elements sequentially.
(The USER annunciator has no effect during program execution.)

In addition, when the last element is accessed by the “User”
or instruction—when R and R, are returned to 1—program
execution skips the next line. This is useful for programming a loop
that stores or recalls each matrix element, then continues

executing the program. For example, the following sequence
squares all elements of matrix D:

Section 12: Calculating With Matrices 177

i (f)(MATRIX] 1

> [f)(BL)4

L

(ReL](D]

(e)(®)

User" [STO|(D] 71 Forlast

_— 4 | matrix element

The 7 (row norm) and 8 (Frobenius norm)
functions also operate as conditional branching instructions in a
program. If the X-register contains a matrix descriptor, these
functions calculate the norm in the usual manner, and program
execution continues with the next program line. If the X-register
contains a number, program execution skips the next line. In both
cases, the original contents of the X-register are stored in the
LAST X register. This is useful for testing whether a matrix

descriptoris in the X-register during a program.

For all

matrix

elements

except last

Summary of Matrix Functions
Keystroke(s) Results

(g)(Cyx] Transforms ZZ into Z€.

CHS Changes sign of all elements in matrix specified in

X-register.

(fl(oM] {[A] Dimensions specified matrix.
through [E], (T]}

(f)(MATRIX]O Dimensions all matrices to 0 X O.

(f)[(MATRIX] 1 Sets row and column numbers in Rpand Ry to 1.

(f)[MATRIX] 2 Transforms ZF into Z.

(f)[MATRIX] 3 Transforms Z into Z.

(f)(MATRIX] 4 Calculates transpose of matrix specified in

X-register.

MATRIX]5 Multiplies transpose of matrix specified in

Y-register with matrix specified in X-register.

Stores in result matrix.

178 Section 12: Calculating With Matrices

Keystroke(s)

()(MATRIX] 6

() [MATRIX] 7

[][MATRIX] 8

[)[MATRIX]9

((Pxx]
(REL){(A]
through (E], (i)}

(Reu)(gl((A
through (E], [(i)]}

(ReL)(om){(A)
through (E], (1]}

[RCL][MATRIX]{[A]
through (E]}

RESULT

(f)(RESULT]{(A]
through (E]}

(sTo){(A)
through (E], ()]}

(sTol(gl{(A)
through [E]J, [(1)]}

(sTO][MATRIX]{(A]
through [E]}

Results

Calculates residual in result matrix.

Calculates row norm of matrix specified in

X-register.

Calculates Frobenius or Euclidean norm of matrix

specified in X-register.

Calculates determinant of matrix specified in

X-register. Places LU in result matrix.

Transforms ZC into Z*

Recalls value from specified matrix, using row and

column numbers in Ry and R;.

Recalls value from specified matrix, using row and

column numbers in Y- and X-registers.

Recalls dimensions of specified matrix into X- and

Y-registers.

Displays descriptor of specified matrix.

Displays descriptor of result matrix.

Designates specified matrix as result matrix.

Stores value from display into element of specified

matrix, using row and column numbers in Ry and

R,.

Stores value from Z-register into element of

specified matrix, using row and column numbers in

Y- and X-registers.

If matrix descriptor is in display, copies all

elements of that matrix into corresponding

elements of specified matrix. If number is in

display, stores that value in all elements of

specified matrix.

Keystroke(s)

().

Section 12: Calculating With Matrices 179

Results

Designates matrix specified in X-register as result

matrix.

Row and column numbers in R and Ry are
automatically incremented each time or

(RCL]{[A]through (E], ((i)]} is pressed.

Inverts matrix specified in X-register. Stores in

result matrix.

If matrix descriptors specified in both X- and

Y-registers, adds or subtracts corresponding

elements of matrices specified. If matrix descriptor

specified in only one of these registers, performs

addition or subtraction with all elements in

specified matrix and scalar in other register. Stores

in result matrix.

If matrix descriptors specified in both X- and

Y-registers, calculates product of specified
matrices (as YX). If matrix specified in only one of

these registers, multiplies all elements in specified

matrix by scalar in other register. Stores in result

matrix.

If matrix descriptors specified in both X- and Y-

registers, multiplies inverse of matrix specified in

X-register with matrix specified in Y-register. If

matrix specified in only Y-register, divides all

elements of specified matrix by scalar in other

register. If matrix specified in only X-register,

multiplies each element of inverse of specified

matrix by scalar in other register. Stores in result

matrix.

For Further Information

The HP-15C Advanced Functions Handbook presents more
detailed and technical aspects of the matrix functions in the
HP-15C, including applications. The topics include: least-squares
calculations, solving nonlinear equations, ill-conditioned and

singular matrices, accuracy considerations, iterative refinement,

and creating the identity matrix.

Section 13

Finding the Roots
of an Equation

In many applications you need to solve equations of the form

f(x)=0.*

This means finding the values of x
that satisfy the equation. Each such
value of x is called a root of the

f(x)

equation f(x) = 0 and a zero of the ROOT
function f(x). These roots (or zeros)
that are real numbers are called real

roots (or real zeros). For many X

problems the roots of an equation can
be determined analytically through
algebraic manipulation; in many
other instances, this is not possible.
Numerical techniques can be used to estimate the roots when
analytical methods are not suitable. When you use the key
on your HP-15C, you utilize an advanced numerical technique that
lets you effectively and conveniently find real roots for a wide
range of equations.t

Using [SOLVE

In calculating roots, the operation repeatedly calls up and
executes a subroutine that you write for evaluating f(x).

* Actually, any equation with one variable can be expressed in this form. For example,

f(x) =ais equivalent to f(x) —a =0, and f(x) = g(x) is equivalent to f(x) — g(x) =0.

t The[SOLVE] function does not use the imaginary stack. Refer to the HP-15C Advanced

Functions Handbook for information about complex roots.

180

Section 13: Finding the Roots of an Equation 181

The basic rules for using are:

1. In Program mode, key in a subroutine that evaluates the
function f(x) that is to be equated to zero. This subroutine

must begin with a label instruction (label) and end up
with a result for f(x) in the X-register.

In Run mode:

2. Key two initial estimates of the desired root, separated by

(ENTER], into the X- and Y-registers. These estimates merely
indicate to the calculator the approximate range of x in
which it should initially seek a root off(x) = 0.

3. Press followed by the label of your subroutine. The
calculator then searches for the desired zero of your function
and displays the result. If the function that you are
analyzing equals zero at more than one value of x, the
routine will stop when it finds any one of those values. To
find additional values, you can key in different initial
estimates and use again.

Immediately before addresses your subroutine it places a
value of x in the X-, Y-, Z-, and T-registers. This value is then used
by your subroutine to calculate f(x). Because the entire stack is

filled with the x-value, this number is continually available to your
subroutine. (The use of this technique is described on page 41).

Example: Use to find the values of x for which

f(x)=x2—3x—10=0.

Using Horner’s method (refer to page 79), you can rewrite f(x) so
that it is programmed more efficiently:

f(x)=(x—3)x —10.

In Program mode, key in the following subroutine to evaluate f(x).

Keystrokes Display

(o] 000- Program mode.

(fJCLEAR 000- Clear program memory.

182 Section 13: Finding the Roots of an Equation

Keystrokes Display

(f)[LBL]O 001-42,21, 0 Begin with [LBL]
instruction. Subroutine

assumes stack loaded

with x.

3 002- 3

(-] 003- 30 Calculatex —3.

(x] 004- 20 Calculate (x — 3)x.

1 005- 1

0 006- 0
(=) 007- 30 Calculate (x — 3)x — 10.

(e](RTN] 008- 4332

In Run mode, key two initial estimates into the X- and Y-registers.
Try estimates of 0 and 10 to look for a positive root.

Keystrokes Display*

(g] Run mode.

0 0.0000 . .
10 10 } Initial estimates.

You can now find the desired root by pressing [f] 0. When
you do this, the calculator will not display the answer right away.

The HP-15C uses an iterative algorithmt to estimate the root. The
algorithm analyzes your function by sampling it many times,
perhaps a dozen times or more. It does this by repeatedly executing
your subroutine. Finding a root will usually require about 30
seconds to 2 minutes; but sometimes the process will require even
more time.

Press 0 and sit back while your HP-15C exhibits one of its
powerful capabilities. The display flashes running while is
operating.

* Press [f](FIX] 4 to obtain the displays shown here. The display setting does not influence
the operation of [SOLVE].

t An algorithm is a step-by-step procedure for solving a mathematical problem. An

iterative algorithm is one containing a portion that is executed a number of times in the

process of solving the problem.

Section 13: Finding the Roots of an Equation 183

Keystrokes Display

(1] 0 5.0000 The desired root.

After the routine finds and displays the root, you can ensure that
the displayed number is indeed a root of f(x) = 0 by checking the
stack. You have seen that the display (X-register) contains the

desired root. The Y-register contains a previous estimate of the
root, which should be very close to the displayed root. The
Z-register contains the value of your function evaluated at the
displayed root.

Keystrokes Display

(RY] 5.0000 A previous estimate of
the root.

0.0000 Value of the function at
the root showing that

f(x)=0.

Quadratic equations, such as the one you are solving, can have two
roots. If you specify two new initial estimates, you can check for a

second root. Try estimates of 0 and —10 to look for a negative root.

Keystrokes Display

? _?'00000 } Initial estimates.

(f)(SOLVE]O -2.0000 The second root.

(RY] -2.0000 A previous estimate of
the root.

(RY] 0.0000 Value off(x) at second
root.

184 Section 13: Finding the Roots of an Equation

You have now found the two roots of
f(x) = 0. Note that this quadratic f(x)
equation could have been solved 30
algebraically—and you would have
obtained the same roots that you
found using [SOLVE].

—20
Graph of f(x)

The convenience and power of the key become more
apparent when you solve an equation for a root that cannot be
determined algebraically.

Example: Champion ridget hurler
Chuck Fahr throws a ridget with an
upward velocity of 50 meters/second.
If the height of the ridget is expressed

as

h =5000(1 — et/20) — 200¢,

how long does it take for it to reach
the ground again? In this equation, A
is the height in meters and ¢ is the
time in seconds.

Solution: The desired solution is the positive value of ¢ at which
h=0.

Use the following subroutine to calculate the height.

Keystrokes Display

(g)(P/R) 000-
(f](LL](A] 001-42,21,11 Begin with label.

2 002- 2 Subroutine assumestis

loaded in X- and Y-

registers.

0 003- 0
& 004- 10

Section 13: Finding the Roots of an Equation 185

Keystrokes Display

CHS 005- 16 —t/20.

006- 12
007- 16 —e /20,

1 008- 1
009- 40 1—eV720

5 010- 5
0 011- o
0 012- o
0 013- 0
(x] 014- 20 5000 (1 — e~ t/20),

(xxy] 015- 34 Brings anothert-value
into X-register.

2 016- 2
0 017- 0
0 018- 0
x] 019- 20 200¢t.

=] 020- 30 5000 (1 —et/20) — 200¢.

(g)(RTN] 021- 4332

Switch to Run mode, key in two initial estimates of the time (for
example, 5 and 6 seconds) and execute [SOLVE].

Keystrokes Display

(g} Run mode.

5 5.0000
6 6 } Initial estimates.

9.2843 The desired root.

Verify the root by reviewing the Y- and Z-registers.

Keystrokes Display

9.2843 A previous estimate of the
root.

(R¥] 0.0000 Value of the function at

the root showing that
h=0.

186 Section 13: Finding the Roots of an Equation

Fahr’s ridget falls to the ground
9.2843 seconds after he hurls it—a h(t)
remarkable toss. 120

t
2050 12
Graph of hversus t

When No Root Is Found

You have seen how the key estimates and displays a root of
an equation of the form f(x) = 0. However, it is possible that an
equation has no real roots (that is, there is no real value of x for
which the equality is true). Of course, you would not expect the
calculator to find a root in this case. Instead, it displays Error 8.

Example: Consider the equation

|x| =—1

which has no solution since the
absolute value function is never

negative. Express this equation in
the required form

 lx|+1=0

and attempt to use to find a Graph of f(x) =|x| +1
solution.

Keystrokes Display

(g](P/R] 000- Program mode.

(f)(LBL]1 001-42,21, 1
(g](ABS] 002- 4316
1 003- 1

004- 40
(g](RTN] 005- 43 32

Section 13: Finding the Roots of an Equation 187

Because the absolute-value function is minimum near an argument
of zero, specify the initial estimates in that region, for instance 1
and —1. Then attempt to find a root.

Keystrokes Display

(g)(P/R] Run mode.

1 1.0000 - .
1 -1 } Initial estimates.

(f)(SOLVE]1 Error 8 This display indicates
that no root was found.

(e] 0.0000 Clearerror display.

As you can see, the HP-15C stopped seeking a root off(x) =0 when
it decided that none existed—at least not in the general range of x

to which it was initially directed. The Error 8 display does not
indicate that an “illegal” operation has been attempted; it merely
states that no root was found where presumed one might
exist (based on your initial estimates).

If the HP-15C stops seeking a root and displays an error message,
one of these three types of conditions has occurred:

e Ifrepeated iterations all produce a constant nonzero value for
the specified function, execution stops with the display
Error 8.

e If numerous samples indicate that the magnitude of the
function appears to have a nonzero minimum value in the
area being searched, execution stops with the display Error 8.

e If an improper argument is used in a mathematical operation
as part of your subroutine, execution stops with the display
Error O.

In the case of a constant function value, the routine can see no

indication of a tendency for the value to move toward zero. This

can occur for a function whose first 10 significant digits are
constant (such as when its graph levels off at a nonzero horizontal

asymptote) or for a function with a relatively broad, local “flat”

region in comparison to the range of x-values being tried.

In the case where the function’s magnitude reaches a nonzero
minimum, the routine has logically pursued a sequence of samples

for which the magnitude has been getting smaller. However,it has

188 Section 13: Finding the Roots of an Equation

not found a value of x at which the function’s graph touches or

crosses the x-axis.

The final case points out a potential deficiency in the subroutine
rather than a limitation of the root-finding routine. Improper
operations may sometimes be avoided by specifying initial
estimates that focus the search in a region where such an outcome
will not occur. However, the routine is very aggressive and
may sample the function over a wide range. It is a good practice to
have your subroutine test or adjust potentially improper argu-
ments prior to performing an operation (for instance, use
prior to [(¥]). Rescaling variables to avoid large numbers can also
be helpful.

The success of the routine in locating a root depends
primarily upon the nature of the function it is analyzing and the
initial estimates at which it begins searching. The mere existence

of a root does not ensure that the casual use of the key will
find it. If the function f(x) has a nonzero horizontal asymptote or a
local minimum of its magnitude, the routine can be expected to find
aroot off(x) = 0 only if the initial estimates do not concentrate the

search in one of these unproductive regions—and, of course, if a
root actually exists.

Choosing Initial Estimates
When you use to find the root of an equation, the two initial
estimates that you provide determine the values of the variable x at
which the routine begins its search. In general, the likelihood that
you will find the particular root you are seeking increases with the
level of understanding that you have about the function you are
analyzing. Realistic, intelligent estimates greatly facilitate the
determination of a root.

The initial estimates that you use may be chosen in a number of

ways:

If the variable x has a limited range in which it is conceptually
meaningful as a solution, it is reasonable to choose initial
estimates within this range. Frequently an equation that is
applicable to a real problem has, in addition to the desired solution,
other roots that are physically meaningless. These usually occur
because the equation being analyzed is appropriate only between

Section 13: Finding the Roots of an Equation 189

certain limits of the variable. You should recognize this restriction
and interpret the results accordingly.

If you have some knowledge of the behavior of the function f(x) as

it varies with different values of x, you are in a position to specify
initial estimates in the general vicinity of a zero of the function.
You can also avoid the more troublesome ranges of x such as those

producing a relatively constant function value or a minimum of the
function’s magnitude.

Example: Using a rectangular piece

of sheet metal 4 decimeters by 8
decimeters, an open-top box having a
volume of 7.5 cubic decimeters is to be
formed. How should the metal be
folded? (A taller box is preferred to a
shorter one.)

Solution: You need to find the
height of the box (that is, the amount
to be folded up along each of the four

sides) that gives the specified volume. If x is the height (or amount
folded up), the length of the box is (8 — 2x) and the width is
(4 — 2x). The volume Vis given by

V=(8—-2x)(4—2x)x.

By expanding the expression and then using Horner’s method
(page 79), this equation can be rewritten as

V=4((x—6)x + 8)x.

To get V="7.5, find the values of x for which

f(x)=4(x—6)x +8)x—7.5=0.

The following subroutine calculates f(x):

Keystrokes Display

(g](P/R] 000- Program mode.

(f)(LBL])3 001-42,21, 3 Label.

6 002- 6 Assumes stack loaded
with x.

190 Section 13: Finding the Roots of an Equation

Keystrokes Display

(=) 003- 30

(x] 004- 20 (x—6)x.
8 005- 8

006- 40

(x] 007- 20 ((x —6)x+8)x.

4 008- 4
(x] 009- 20 4((x —6)x+8)x.

7 010- 7
O 011- 48
5 012- 5

(=) 013- 30
(g](RTN] 014- 4332

It seems reasonable that either a tall, narrow box or a short, flat

box could be formed having the desired volume. Because the taller
box is preferred, larger initial estimates of the height are
reasonable. However, heights greater than 2 decimeters are not
physically possible (because the metal is only 4 decimeters wide).
Initial estimates of 1 and 2 decimeters are therefore appropriate.

Find the desired height:

Keystrokes Display

(] Run mode.

; ;'0000 } Initial estimates.

3 1.5000 The desired height.

1.5000 Previous estimate.

(R¥] 0.0000 f(x) at root.

Section 13: Finding the Roots of an Equation 191

 By making the height 1.5 decimeters,
a 5.0 X 1.0 X 1.5-decimeter box is
specified.

If you ignore the upper limit on the

height and use initial estimates of 3
and 4 decimeters (still less than the
width), you will obtain a height of
4.2026 decimeters—a root that is
physically meaningless. If you use

small initial estimates such as 0 and

1 decimeter, you will obtain a height Graph of f(x)
of 0.2974 decimeter—producing an
undesirably short, flat box.

As an aid for examining the behavior of a function, you can easily
evaluate the function at one or more values of x using your
subroutine in program memory. To do this, fill the stack with x.
Execute the subroutine to calculate the value of the function (press
(f]letter label or label.

The values you calculate can be plotted to give you a graph of the
function. This procedure is particularly useful for a function whose

behavior you do not know. A simple-looking function may have a
graph with relatively extreme variations that you might not
anticipate. A root that occurs near a localized variation may be
hard to find unless you specify initial estimates that are close to the
root.

If you have no informed or intuitive concept of the nature of the
function or the location of the zero you are seeking, you can search

for a solution using trial-and-error. The success of finding a
solution depends partially upon the function itself. Trial-and-error

is often—but not always—successful.

® If you specify two moderately large positive or negative

estimates and the function’s graph does not have a horizontal
asymptote, the routine will seek a zero which might be the
most positive or negative (unless the function oscillates many

times, as the trigonometric functions do).

® Ifyou have already found a zero of the function, you can check

for another solution by specifying estimates that are relatively

distant from any known zeros.

192 Section 13: Finding the Roots of an Equation

e Many functions exhibit special behavior when their argu-

ments approach zero. You can check your function to
determine values of x for which any argument within your
function becomes zero, and then specify estimates at or near

those values.

Although two different initial estimates are usually supplied when
using [SOLVE], you can also use with the same estimate in
both the X- and Y-registers. If the two estimates are identical, a
second estimate is generated internally. If your single estimate is
nonzero, the second estimate differs from your estimate by one
count in the seventh significant digit. If your estimate is zero,

1 X 1077 is used as the second estimate. Then the root-finding
procedure continues as it normally would with two estimates.

Using [SOLVE |in a Program
You can use the operation as part of a program. Be sure
that the program provides initial estimates in the X- and Y-
registers just prior to the operation. The routine
stops with a value of x in the X-register and the corresponding
function value in the Z-register. If the x-value is a root, the program
proceeds to the next line. If the x-value is not a root, the next line is
skipped. (Refer also to Interpreting Results on page 226 for a
further explanation of roots.) Essentially, the instruction
tests whether the x-value is a root and then proceeds according to
the “Do if True” rule. The program can then handle the case of not
finding a root, such as by choosing new initial estimates or
changing a function parameter.

The use of as an instruction in a program utilizes one of the
seven pending returns in the calculator. Since the subroutine called
by utilizes another return, there can be only five other
pending returns. Executed from the keyboard, on the other hand,

itself does not utilize one of the pending returns, so that six
pending returns are available for subroutines within the
subroutine called by [SOLVE]. Remember that if all seven pending
returns have been utilized, a call to another subroutine will result

in a display of Error 5. (Refer to page 105.)

Section 13: Finding the Roots of an Equation 193

Restriction on the Use of SOLVE

The one restriction regarding the use of is that
cannot be used recursively. That is, you cannot use in a
subroutine that is called during the execution of [SOLVE]. If this
situation occurs, execution stops and Error 7 is displayed. It is
possible, however, to use with (], thereby using the
advanced capabilities of both of these keys.

Memory Requirements

requires five registers to operate. (Appendix C explains how
they are automatically allocated from memory.) If five unoccupied

registers are not available, will not run and Error 10 will be
displayed.

A routine that combines and requires 23 registers of

space.

For Further Information

In appendix D, Advanced Use of [SOLVE], additional techniques
and explanations for using are presented. These include:

e How works.

e Accuracy of the root.

o Interpreting results.

Finding several roots.

Limiting estimation time.

Section 14

Numerical Integration

 Many problems in mathematics, sci-
ence, and engineering require calcu-
lating the definite integral of a
function. If the function is denoted by
f(x) and the interval of integration is
a to b, the integral can be expressed
mathematically as I

f(x)

 I=j;bf(x) dx.

The quantity I can be interpreted geometrically as the area of a
region bounded by the graph off(x), the x-axis, and the limits x = a

andx=b.*

When an integral is difficult or impossible to evaluate by

analytical methods, it can be calculated using numerical

techniques. Usually, this can be done only with a fairly

complicated computer program. With your HP-15C, however, you

can easily do numerical integration using the (integrate) key.t

Using
The basic rules for using are:

1. In Program mode, key in a subroutine that evaluates the

function f(x) that you want to integrate. This subroutine

must begin with a label instruction ([f](LBL]/abel) and end up
with a value for f(x) in the X-register.

* Provided that f(x) is nonnegative throughout the interval of integration.

t The function does not use the imaginary stack. Refer to the HP-15C Advanced

Functions Handbook for information about using]in Complex mode.

194

Section 14: Numerical Integration 195

In Run mode:

2. Key the lower limit of integration (a) into the X-register, then
press to lift it into the Y-register.

Key the upper limit of integration (4) into the X-register.

Press followed by the label of your subroutine.

Example: Certain problems in physics and engineering require

calculating Bessel functions. The Bessel function of the first kind
of order O can be expressed as

Jo(x)= %fo cos (x sin 0) d6.

1 m

Find J0(1)=—j;) cos (sin 0) d6.
m

In Program mode, key in the following subroutine to evaluate the
function f(6) = cos (sin 0).

Keystrokes Display

(g][P/R] 000- Program mode.

(fJCLEAR 000- Clear program memory.

(f](BL]O 001-42,21, 0 Begin subroutine with a
instruction.

Subroutine assumes a
value of 0 is in X-register.

(SIN] 002- 23 Calculate sin 6.

CcoS 003- 24 Calculate cos (sin 0).

(e](RTN] 004- 4332

Now, in Run mode key the lower limit of integration into the Y-

register and the upper limit into the X-register. For this particular

problem, you also need to specify Radians mode for the

trigonometric functions.

196 Section 14: Numerical Integration

Keystrokes Display

(e)(P/R] Run mode.

0 0.0000 Key lower limit, 0, into
Y-register.

(g](r] 3.1416 Key upper limit, 7, into
X-register.

(g](RAD] 3.1416 Specify Radians mode for
trigonometric functions.

Now you are ready to press 0 to calculate the integral. When

you do so, you’ll find that—just as with [SOLVE]—the calculator will
not display the result right away, as it does with other operations.

The HP-15C calculates integrals using a sophisticated iterative
algorithm. Briefly, this algorithm evaluates f(x), the function to be

integrated, at many values of x between the limits of integration.

At each of these values, the calculator evaluates the function by
executing the subroutine you write for that purpose. When the

calculator must execute the subroutine many times—as it does
when you press [/;]—you can’t expect any answer right away. Most
integrals will require on the order of 30 seconds to 2 minutes; but

some integrals will require even more. Later on we’ll discuss how

you can decrease the time somewhat; but for now, press 0 and
take a break (or read ahead) while the HP-15C takes care of the

drudgery for you.

Keystrokes Display

(f](]o 2.4040 :fo cos (sin 0) d6.

In general, don’t forget to multiply the value of the integral by
whatever constants, if any, are outside the integral. In this

particular problem, we need to multiply the integral by 1/to get

J() (1)

Keystrokes Display

(g](r] 3.1416
=] 0.7652 Jo(1).

Section 14: Numerical Integration 197

Before calling the subroutine you provide to evaluate f(x), the

algorithm—just like the algorithm—places the value of x in
the X-, Y-, Z-, and T-registers. Because every stack register contains

the x-value, your subroutine can calculate with this number
without having to recall it from a storage register. The subroutines

in the next two examples take advantage of this feature. (A

polynomial evaluation technique that assumes the stack is filled
with the value of x is discussed on page 79.)

Note: Since the calculator puts the value of x into all stack

registers, any numbers previously there will be replaced by x.

Therefore, if the stack contains intermediate results that

you'll need after you calculate an integral, store those

numbers in storage registers and recall them later.

Occasionally you may want to use the subroutine that you

wrote for the [/;] operation to merely evaluate the function at

some value of x. If you do so with a function that gets x from

the stack more than once, be sure to fill the stack manually

with the value of x, by pressing (ENTER],
before you execute the subroutine.

Example: The Bessel function of the first kind of order 1 can be
expressed as

us

Jl(x)=%j; cos (6§ —xsin 0) d6.

Find J1(1)=&f0 cos (6 — sin 6) 6.

Key in the following subroutine that evaluates the function

f(8) =cos (6 —sin 0).

Keystrokes Display

(g](P/R] 000- Program mode.

(f)(LBL]1 001-42,21, 1 Begin subroutine with a
label.

198 Section 14: Numerical Integration

Keystrokes Display

[SIN] 002- 23 Calculatesin 6.

(-] 003- 30 Since a value of 8 will be
placed into the Y-register
by the algorithm before
it executes this

subroutine, the [-]
operation at this point will
calculate (6§ — sin 0).

COS 004- 24 Calculate cos (8 — sin 6).

(g](RTN] 005- 43 32

In Run mode, key the limits of integration into the X- and Y-

registers. Be sure that the trigonometric mode is set to Radians,

then press [f] 1 to calculate the integral. Finally, multiply the
integral by 1/to calculate J(1).

Keystrokes Display

(e) Run mode.

0 0.0000 Key lower limit into
Y-register.

(g](r] 3.1416 Key upper limit into
X-register.

(g][RAD] 3.1416 (If not already in Radians
mode.)

(f](z]1 1.3825 =f0 cos (6 — sin 6) d6.

(e)(=](=] 0.4401 J().

Example: Certain problems in
communications theory (for example,

pulse transmission through idealized
networks) require calculating an

integral (sometimes called the sine
integral) of the form

t .

Si(t) = f=dx.
0 X

Section 14: Numerical Integration 199

Find Si(2).

Key in the following subroutine to evaluate the function f(x) =

(sin x)/x.*

Keystrokes Display

(g] 000- Program mode.

(fJ(LBL].2 001-42,21,.2 Begin subroutine with a
instruction.

(SIN] 002- 23 Calculatesinx.

(xxy] 003- 34 Since a value ofx will be
placed in the Y-register by
the algorithm before it
executes this subroutine,

the%y]operation at this
point will return x to the
X-register and move sin x

to the Y-register.

(=] 004- 10 Dividesinx by x.

(g](RTN] 005- 43 32

Now key the limits of integration into the X- and Y-registers. In
Radians mode, press .2 to calculate the integral.

Keystrokes Display

(o)(P/R] 0.4401 Run mode

0 0.0000 Key lower limit into
Y-register.

2 2 Key upper limit into
X-register.

(g](RAD] 2.0000 (If not already in Radians
mode.)

(f][x]).2 1.6054 Si(2).

* If the calculator attempted to evaluate f(x) = (sin x)/x at x = 0, the lower limit of

integration, it would terminate with Error O in the display (signifying an attempt to

divide by zero), and the integral could not be calculated. However, the algorithm

normally does not evaluate functions at either limit of integration, so the calculator can

calculate the integral of a function that is undefined there. Only when the endpoints of

the interval of integration are extremely close together, or the number of sample points

is extremely large, does the algorithm evaluate the function at the limits of integration.

200 Section 14: Numerical Integration

Accuracy of
The accuracy of the integral of any function depends on the
accuracy of the function itself. Therefore, the accuracy of an

integral calculated using is limited by the accuracy of the
function calculated by your subroutine.* To specify the accuracy of
the function, set the display format so that the display shows no
more than the number of digits that you consider accurate in the
function’s values.t If you specify fewer digits, the calculator will
compute the integral more quickly;{ but it will presume that the
function is accurate to only the number of digits specified in the

display format. We'll show you how you can determine the
accuracy of the calculated integral after we say another word about
the display format.

You'll recall that the HP-15C provides three types of display
formating: [FIX], [SCI], and (ENG]. Which display format should be
used is largely a matter of convenience, since for many integrals
you’ll get about the same results using any of them (provided that
the number of digits is specified correctly, considering the
magnitude of the function). Because it’s more convenient to use

display format when calculating most integrals, we’ll use
when calculating integrals in subsequent examples.

Note: Remember that once you have set the display format,

you can change the number of digits appearing in the display

by storing a number in the Index register and then pressing

[{Fx](O], (])[scl(T], or [f)(ENG](I], as described in section
10. This capability is especially useful when is executed

as part of a program.

* It is possible that integrals of functions with certain characteristics (such as spikes or

very rapid oscillations) might be calculated inaccurately. However, this possibility is

very small. The general characteristics of functions that could cause problems, as well

as techniques for dealing with them, are discussed in appendix E.

t The accuracy of a calculated function depends on such considerations as the accuracy

of empirical constants in the function as well as round-off error in the calculations.

These considerations are discussed in more detail in the HP-15C Advanced Functions

Handbook.

1 The reason for this is discussed in appendix E.

Section 14: Numerical Integration 201

Because the accuracy of any integral is limited by the accuracy of
the function (as indicated in the display format), the calculator

cannot compute the value of an integral exactly, but rather only

approximates it. The HP-15C places the uncertainty* of an
integral’s approximation in the Y-register at the same time it

places the approximation in the X-register. To determine the

accuracy of an approximation, check its uncertainty by pressing

(xxy].
Example: With the display format set to 2, calculate the
integral in the expression for J;(1) (from the example on page 197).

Keystrokes Display

0 0.0000 Key lower limit into
Y-register.

(g](r] 3.1416 Key upper limit into

X-register.

(gJ[RAD] 3.1416 (If not already in Radians
mode.)

(f)(sc2 3.14 00 Set display format to
2.

1 1.38 00 Integral approximated in

2.

(xxy] 1.88 -03 Uncertainty of 2
approximation.

The integral is 1.38 + 0.00188. Since the uncertainty would not
affect the approximation until its third decimal place, you can
consider all the displayed digits in this approximation to be
accurate. In general, though,it is difficult to anticipate how many

* No algorithm for numerical integration can compute the exact difference between its

approximation and the actual integral. But the algorithm in the HP-15C estimates an

“upper bound” on this difference, which is the uncertainty of the approximation. For

example, if the integral Si(2) is 1.6054 + 0.0001, the approximation to the integral is

1.6054 and its uncertainty is 0.0001. This means that while we don’t know the exact

difference between the actual integral and its approximation, we do know thatit is

highly unlikely that the difference is bigger than 0.0001. (Note the first footnote on page

200.)

202 Section 14: Numerical Integration

digits in an approximation will be unaffected by its uncertainty.
This depends on the particular function being integrated, the limits
ofintegration, and the display format.

If the uncertainty of an approximation is larger than what you
choose to tolerate, you can decrease it by specifying a greater
number of digits in the display format and repeating the
approximation.*

Whenever you want to repeat an approximation, you don’t need to
key the limits of integration back into the X- and Y-registers. After
an integral is calculated, not only are the approximation and its
uncertainty placed in the X- and Y-registers, but in addition the
upper limit of itegration is placed in the Z-register, and the lower
limit is placed in the T-register. To return the limits to the X- and
Y-registers for calculating an integral again, simply press [R¥]

(R¥].
Example: For the integral in the expression for J;(1), you want an
answer accurate to four decimal places instead of only two.

Keystrokes Display

(f)(sci)4 1.8826 -03 Setdisplay format to
4.

(RY][R¥] 3.1416 00 Roll down stack until
upper limit appears in
X-register.

(f5]1 1.3825 00 Integral approximated in
4.

[xxy] 1.7091 -05 Uncertainty of 4
approximation.

The uncertainty indicates that this approximation is accurate to at

least four decimal places. Note that the uncertainty of the 4
approximation is about one-hundredth as large as the uncertainty
of the 2 approximation. In general, the uncertainty of any
approximation decreases by about a factor of 10 for each additional
digit specified in the display format.

* Provided that f(x) is still calculated accurately to the number of digits shown in the

display.

Section 14: Numerical Integration 203

In the preceding example, the uncertainty indicated that the
approximation might be correct to only four decimal places. If we

temporarily display all 10 digits of the approximation, however,

and compare it to the actual value of the integral (actually, an
approximation known to be accurate to a sufficient number of

decimal places), we find that the approximation is actually more
accurate than its uncertainty indicates.

Keystrokes Display

(xxy] 1.3825 00 Return approximation to
display.

CLEAR 1382459676 All 10 digits of
approximation.

The value of this integral, correct to eight decimal places, is
1.38245969. The calculator’s approximation is accurate to seven
decimal places rather than only four. In fact, since the uncertainty
of an approximation is calculated very conservatively, the
calculator’s approximation in most cases will be more accurate
than its uncertainty indicates. However, normally there is no way

to determinejust how accurate an approximation is.

For a more detailed look at the accuracy and uncertainty of
approximations, refer to appendix E.

Using [/;]in a Program
can appear as an instruction in a program provided that the

program is not called (as a subroutine) by [/;]itself. In other words,
cannot be used recursively. Consequently, you cannot use to

calculate multiple integrals; if you attempt to do so, the calculator
will halt with Error 7 in the display. However, [/;]can appear as an
instruction in a subroutine called by [SOLVE].

The use of as an instruction in a program utilizes one of the
seven pending returns in the calculator. Since the subroutine called
by utilizes another return, there can be only five other pending
returns. Executed from the keyboard, on the other hand, itself
does not utilize one of the pending returns, so that six pending

returns are available for subroutines within the subroutine called

204 Section 14: Numerical Integration

by [%]. Remember that if all seven pending returns have been
utilized, a call to another subroutine will result in a display of Error

5. (Refer to page 105.)

Memory Requirements
requires 23 registers to operate. (Appendix C explains how they

are automatically allocated from memory.) If 23 unoccupied
registers are not available, will not run and Error 10 will be
displayed.

A routine that combines (/;]and also requires 23 registers of
space.

For Further Information

This section has given you the information you need to use with
confidence over a wide range of applications. In appendix E, more
esoteric aspects of are discussed. These include:

e How works.

e Accuracy, uncertainty, and calculation time.

® Uncertainty and the display format.

e Conditions that could cause incorrect results.

e Conditions that prolong calculation time.

e Obtaining the current approximation to an integral.

Appendix A

Error Conditions

If you attempt a calculation containing an improper operation—
say division by zero—the display will show Error and a number. To
clear an error message, press any one key. This also restores the

display prior to the Error display.

The HP-15C has the following error messages. (The description of
Error 2 includes a list of statistical formulas used.)

Error O: Improper Mathematics Operation

Illegal argument to math routine:

(¢], where x = 0.

(¥*], where:

e out of Complex mode, y <0 and x is noninteger;

e out of Complex mode, y =0 and x < 0; or

e in Complex mode, y =0 and Re(x) <0.

(iz], where, out of Complex mode, x < 0.

(1/x], where x = 0.

(LOG], where:

e out of Complex mode, x < 0; or

e in Complex mode, x =0.

(LN], where:

e out of Complex mode, x < 0; or

e in Complex mode, x =0.

[SINT], where, out of Complex mode,| x| > 1.

CcOoS™], where, out of Complex mode, | x| > 1.

(sT0](%], where x = 0.

(RCL](z], where the contents of the addressed register = 0.

(A%], where the value in the Y-register is 0.

, where, out of Complex mode, x < 1.

(HYPT](TAN], where, out of Complex mode,| x| > 1.

or [Py,x], where:
e xoryis noninteger;

205

206 Appendix A: Error Conditions

o x<Oory<o;

x>y;
x ory =>101°,

Error 1: Improper Matrix Operation

Applying an operation other than a matrix operation to a matrix,
that is, attempting a nonmatrix operation while a matrix is in the
relevant register (whether the X- or Y-register or a storage register).

Error 2: Improper Statistics Operation

(k] n=0

(s] n<1

s n<1

n<l1

Error 2 is also displayed if division by zero or the square root of a
negative number would be required during computation with any
ofthe following formulas:

- x - Xy
x:— y:—

n n

/ M / N P
Sy = —_ 8y, = _ r=——

n(n—1) n(n—1) vM-N

Az_lz_ B= MXy—P3x

M n-M

5\,_ME’,y-+-P(n-x—2x)

nM

where:

M=n3x%— (3x)?

N=n3y?—(Zy)?

P=n3xy—3xly

(A and B are the values

returned by the operation

(LR], wherey = Ax + B.)

Appendix A: Error Conditions 207

Error 3: Improper Register Number or Matrix Element

Storage register named is nonexistent or matrix element indicated
is nonexistent.

Error 4: Improper Line Number or Label Call

Line number called for is currently unoccupied or nonexistent
(>448); or you have attempted to load a program line without

available space; or the label called does not exist.

Error 5: Subroutine Level Too Deep

Subroutine nested more than seven deep.

Error 6: Improper Flag Number

Attempted a flag number >9.

Error 7: Recursive [SOLVE]or (3]

A subroutine which is called by also contains a
instruction; a subroutine which is called by also contains an

instruction.

Error 8: No Root

unable to find a root using given estimates.

Error 9: Service

Self-test discovered circuitry problem, or wrong key pressed during
key test. Refer to appendix F.

Error 10: Insufficient Memory

There is not enough memory available to perform a given

operation.

Error 11: Improper Matrix Argument

Inconsistent or improper matrix arguments for a given matrix

operation:

or (-], where the dimensions are incompatible.

208 Appendix A: Error Conditions

(x], where:

¢ the dimensions are incompatible; or

e theresultis one of the arguments.

, where the matrix is not square.

scalar/matrix (£], where the matrix is not square.

(], where:
¢ the matrix in the X-register is not square;

¢ the dimensions are incompatible; or

¢ theresultis the matrix in the X-register.

MATRIX] 2, where the input is a scalar; or the number of rows is

odd.

3, where the inputis a scalar; or the number of columns

is odd.

4, where the input is scalar.

5, where:

e theinputis a scalar;

¢ the dimensions are incompatible; or

¢ theresultis one of the arguments.

6, where:

¢ theinputis scalar;

¢ the dimensions are incompatible (including the result); or

¢ theresultis one of the arguments.

9, where the matrix is not square.

(1], where contents of R; are scalar.

(1], where contents of R; are scalar.

(RESULT], where the input is scalar.

, where the number of columns is odd.

(Cy.x], where the number ofrows is odd.

Pr Error (Power Error)

Continuous Memory interrupted and reset because of power failure.

Appendix B

Stack Lift and
the LAST X Register

The HP-15C calculator has been designed to operate in a natural
manner. As you have seen working through this handbook, most
calculations do not require you to think about the operation of the
automatic memory stack.

There are occasions, however—especially as you delve into
programming—when you need to know the effect of a particular
operation upon the stack. The following explanation should help
you.

Digit Entry Termination
Most operations on the calculator, whether executed as instructions
in a program or pressed from the keyboard, terminate digit entry.

This means that the calculator knows that any digits you key in
after any of these operations are part of a new number.

The only operations that do not terminate digit entry are the digit
entry keys themselves:

(0)through[9] («]
[

Stack Lift
There are three types of operations on the calculator based on how
they affect stack lift. These are stack-disabling operations, stack-
enabling operations, and neutral operations.

When the calculator is in Complex mode, each operation affects
both the real and imaginary stacks. The stack lift effects are the
same. In addition, the number keyed into the display (real X-
register) after any operation except [«] or is accompanied by
the placement of a zero in the imaginary X-register.

209

210 Appendix B: Stack Lift and the LAST X Register

Disabling Operations

Stack Lift. There are four stack-disabling operations on the
calculator.* These operations disable the stack lift, so that a
number keyed in after one of these disabling operations writes over

the current number in the displayed X-register and the stack does

notlift. These special disabling operations are:

(z4) (=)

Imaginary X-Register. A zero is placed in the imaginary X-
register when the next number following [ENTER], (£+], or [Z-] is
keyed or recalled into the display (real X-register). However, the
next number keyed in or recalled after (] or does not change
the contents of the imaginary X-register.

Enabling Operations

Stack Lift. Most of the operations on the keyboard, including one-
and two-number mathematical functions like [¥*] and [x], are stack-

enabling operations. This means that a number keyed in after one

of these operations will lift the stack (because the stack has been
“enabled” to lift). Both the real and imaginary stacks are affected.
(Recall that a shaded X-register means that its contents will be

written over when the next number is keyed in or recalled.)

y

x

4.0000

4.0000

Keys: 4 3

(Assumes Stack Stack No stack

stack lifts. disabled. lift.
enabled.)

X
<

N
-

* Refer to footnote, page 36.

Appendix B: Stack Lift and the LAST X Register 211

T y y y
Z X X X

Y 53.1301 53.1301 53.1301

X 5.0000 0.0000 7

Keys: (a)(=P] (g)(CLs] 7

Stack Stack No stack
enabled. disabled. lift.

Imaginary X-Register. All enabling functions provide for a zero
to be placed in the imaginary X-register when the next number is
keyed or recalled into the display.

Neutral Operations

Stack Lift. Some operations, like [FIX], are neutral; that is, they do
not alter the previous status of the stack lift. Thus, if you disable
the stack lift by pressing [ENTER], then press (f] n and key in a
new number, that number will write over the number in the X-
register and the stack will not lift. Similarly, if you have previously
enabled the stack lift by executing, say [¥z], then execute a
instruction followed by a digit entry sequence, the stack will lift.*

The following operations are neutral on the HP-15C:

FIX R/S

nnn CLEAR P/R

(ENG] BST CLEAR (]t

SST CLEAR[Z]

RAD (MEM]

Imaginary X-Register. The above operations are also neutral
with respect to clearing the imaginary X-register.

* All digit entry functions are also neutral during digit entry. After digit entry

termination, and are lift-enabling; [«]is disabling.

t Thatis, the [f]((i]) sequence used to view the imaginary X-register.

212 Appendix B: Stack Lift and the LAST X Register

LAST X Register
The following operations save x in the LAST X register:

B]
EN)

[x]
(5] TAN

(Py.x]*

(Cy.x]*

(HYP](SIN] (Z-)
(1]

(x1] HYP](TAN 5through 9

(SIN] (] (5]t

* Except when used as a matrix function.

t(Jf] uses the LAST X register in a special way, as described in appendix E.

Appendix C

Memory Allocation

The Memory Space
Storage registers, program lines, and advanced function execution*
all draw on a common memory space in the HP-15C. The
availability of memory for a specific purpose depends on the
current allocation of memory, as well as on the total memory
capacity of the calculator.

Registers

Memory space in the HP-15C is allocated on the basis of registers.
This space is partitioned into two pools, which strictly define how a
register may be used. There is always a combined total of 67
registers in these two pools.

e The data storage pool contains registers which may be used

only for data storage. At power-up (Continuous Memory reset)

this equals 21 registers. This pool contains at least three
registers at all times: R}, Ry, and R;.

e The common pool contains uncommitted registers available

for allocation to programming, matrices, the imaginary stack,

and and operation. At power-up there are 46
uncommitted registers in the common pool.

*The use of [SOLVE], (2], Complex mode, or matrices temporarily requires extra memory

space, as explained later in this appendix.

213

214

Permanent
Ry

Ro

R,

Allocatable R,

Rg

Ro

R4

Highest

numbered Rg
data
register =dd —»Ro

—Raa+1

Res

Total allocatable memory: 64 registers, numbered R, through
Rgs. [(dd — 1) + uu + pp + (matrix elements) + (imaginary stack) +

([SOLVE] and (5])] = 64. For memory allocation and indirect
addressing, data registers R, through Rg are referred to as Ry
through Ryq.

MEMORY

18

19

\

Appendix C: Memory Allocation

>

3

DATA STORAGE POOL
R, to R,allocated
here.Initial config-

uration: dd = 19.

A)/ MOVABLE BOUNDARY
after R,. Initially

dd=19.

COMMON POOL
Matrix Elements
Imaginary Stack

SOLVE]and
Program Lines

Number of

uncommitted

registers = uu.

Number of registers

occupied by program
lines = pp.

Appendix C: Memory Allocation 215

Memory Status ([MEM])

To view the current memory configuration of the calculator, press

(g] [MEM] (memory), holding [MEM] to retain the display.* The
display will be four numbers,

dd uu pp-b

where:

dd = the number of the highest-numbered register in the data
storage pool (making the total number of data registers dd + 2
because of Ry and Ry);

uu = the number of uncommitted registers in the common pool;

pp = the number of registers containing program instructions; and

b = the number of bytes left before uu is decremented (to supply
seven more bytes of program memory) and pp is incremented.

The initial status of the HP-15C at power-up is:

19 46 0-0

The movable boundary between the data storage and common
pools is always between Ryyand Ry, + 1.

Memory Reallocation

There are 67 registers in memory, worth seven bytes each. Sixty-

four of these registers (R, to Rgs) are interconvertible between the
data storage and common pools.

The [(i)) Function

If you should require more common space (as for programming) or
more data storage space (but not both simultaneously!), you can
make the necessary register reallocation using ().t The
procedureis:

*[MEM] is nonprogrammable.

t(DIM] (dimension) is so called because it is also used (with through [E] or (I]) to
dimension matrices. Above, however,it is used (with [(i)]) to “dimension”the size of the

data storage pool.

216 Appendix C: Memory Allocation

1. Placedd, the number of the highest data storage register you
want allocated, into the display. 1 <dd< 65. The number of

registers in the uncommitted pool (and therefore potentially
available for programming) will be (65 — dd).

2. Press(f][DIM]((i)].

There are two ways to review your allocation:

o Press ((i)] to recall into the stack the number of the
highest-allocated data storage register, dd. (Programmable.)

e Press [g][MEM] (as explained above) to view a more complete
memory status (dd vu pp-b).

Keystrokes Display

(assuming a cleared program memory)*

1[f)[oM][(0] 1.0000 R,, Ry, and R;
(g](MEM](hold) 1 64 0-0, allocated for data storage.

Sixty-four registers are
uncommitted; none

contain program

instructions.

19 (f)[om] () 19.0000 R;9 (R) is the highest-
(RCcL][(DIM] ()] 19.0000 numbered data storage

register. Forty-six
registers left in the

common pool.

Restrictions on Reallocation

Continuous Memory will maintain the configuration you allocate

until a new [DIM]((i)] is executed or Continuous Memory is reset. If
you try to allocate a number less than 1, dd = 1. If you try to
allocate a number greater than 65, Error 10 results.

*If program memory is not cleared, the number of uncommitted registers (uu) is less,

owing to allocation of registers to program memory (pp). Therefore, pp would be >0 and

b would vary.

Appendix C: Memory Allocation 217

When converting registers, note that:

¢ You can convert registers from the common pool only if they

are uncommitted. If, for example, you try to convert registers

which contain program instructions, you will get an Error 10
(insufficient memory).

e You can convert occupied registers from the data storage pool,

causing a loss of stored data. An Error 3 results if you try to
address a “lost’’—that is, nonexistent—register. Therefore, it

is good practice to store data in the lowest-numbered registers
first, as these are the last to be converted.

Program Memory
As mentioned before, each register consists of seven bytes of

memory. Program instructions use one or two bytes of memory.

Most program lines use one byte; those using two bytes are listed
on page 218.

The maximum programming capacity of the HP-15C is 448

program bytes (64 convertible registers at seven bytes per register).
At power-up, memory can hold up to 322 program bytes (46
allocated registers at seven bytes per register).

Automatic Program Memory Reallocation

Within the common register pool, program memory will auto-

matically expand as needed. One uncommitted register at a time,
starting with the highest-numbered register available, will be

allocated to seven bytes of program memory.

Conversion of Uncommitted Registers to Program Memory

Program Bytes

Res —_— 1to7

Res —_— 8to 14

Res R 15 to 21

/

/\

Rsq — 309t0 315

R2o ———» 31610322
Movable Boundary

218 Appendix C: Memory Allocation

Your very first program instruction will commit Rgy (all seven
bytes) from an uncommitted register to a program register. Your

eighth program instruction commits Rg4, and so on, until the

boundary of the common pool is encountered. Registers from the
data storage pool (at power-up, this is R;g and below) are not
available for program memory without reallocating registers using

(oM]().

Two-Byte Program Instructions

The following instructions are the only ones which require two
bytes of calculator memory. (All others require only one byte.)

(f{LBL]()labe! (f](MATRIX] {0 to 9}
[GTO)[7) label MED2t09, .0 to.9}
(gJ(CF](n or 1)) [f)[DSE){2t0 9, .0 to .9}
(g](SF)(n or (1)) (f]J0SG]{2t09, .0 to .9}

(g)(F2](n or (1)) (sTol{(+], =), <), =1y
[fFEX] (n or (1)) (ReuJ((+], (5], [x), (=)}
(f)(scl(n or (1) [sTO](MATRIX]{[A]to [E]}
(f](ENG](n or (1)) (sTO]{[A]to [E], (1))} in User mode

(RcL]{[A]to [E], (]} in User mode

(sTo](g](()]
(ReL)(g](()]

Memory Requirements for the Advanced
Functions
The four advanced functions require temporary register space from
the common register pool.

Function Registers Needed

SOLVE .
253 } 23 if executed

- together

Complex Stack 5

Matrices 1 per matrix element

Appendix C: Memory Allocation 219

For and (5], allocation and deallocation of the required
register space takes place automatically.* Memory is thereby

allocated only for the duration of these operations.

Space for the imaginary stack is allocated whenever (1], [f]
(RexIm], or [g] 8 is pressed. The imaginary stack is deallocated
when [CF]8 is executed.

Space for matrix registers is not allocated until you dimension it
(using [DIM]). Reallocation takes place when you redimension a
matrix. 0 dimensions all matrices to 0 X 0.

*If you should interrupt a or routine in progress by pressing a key, you could

deallocate its registers by pressing [g][RTN] or [f] CLEAR in Run mode.

Appendix D

A Detailed Look at

Section 13, Finding the Roots of an Equation, includes the basic

information needed for the effective use of the algorithm.
This appendix presents more advanced, supplemental considera-

tions regarding [SOLVE].

How Works
You will be able to use most effectively by having a basic
understanding of how the algorithm works.

In the process of searching for a zero
of the specified function, the algo- f(x)
rithm uses the value of the function
at two or three previous estimates to
approximate the shape of the func-
tion’s graph. The algorithm uses this

shape to intelligently “predict” a new
estimate where the graph might
cross the x-axis. The function sub-
routine is then executed, computing
the value of the function at the new estimate. This procedure is
performed repeatedly by the algorithm.

If any two estimates yield function
values with opposite signs, the algo- f(x)
rithm presumes that the function’s

graph must cross the x-axis in at
least one place in the interval

between these estimates. The inter-
val is systematically narrowed until

aroot of the equation is found.

A root is successfully found either if
the computed function value is equal

to zero or if two estimates, differing by one unit in their last

significant digit, give function values having opposite signs. In
this case, execution stops and the estimate is displayed.

220

Appendix D: A Detailed Look at 221

As discussed in section 13, page 186, the occurrence of other
situations in the iteration process indicates the apparent absence

of a function zero. The reason is that there is no way to logically
predict a new estimate thatis likely to have a function value closer
to zero. In such cases, Error 8 is displayed.

You should note that the initial estimates you provide are used to

begin the ‘“prediction” process. By permitting more accurate
predictions than might otherwise occur, properly chosen estimates
greatly facilitate the determination of the root you seek.

The algorithm will always find a root provided one exists

(within the overflow bounds), if any one of four conditions are met:

e Any two estimates have func-

tion values with opposite signs.

e The function is monotonic, mean-

ing that f(x) either always

decreases or else always in-

creases as x is increased.

fix)

fix)

222 Appendix D: A Detailed Look at

® The function’s graph is either
convex everywhere or concave f(x)

everywhere.

X

e The only local minima and
maxima of the function’s graph f(x)
occur singly between adjacent
zeros of the function.

X
In addition, it is assumed that the algorithm will not be
interrupted by an improper operation.

Accuracy of the Root
When you use the key to find a root of an equation, the root
is found accurately. The displayed root either gives a calculated
function value (f(x)) exactly equal to zero or else is a 10-digit
number virtually adjacent to the place where the function’s graph

crosses the x-axis. Any such root has an accuracy within two or

three units in the 10th significant digit.

In most situations the calculated root is an accurate estimate of the

theoretical (infinitely precise) root of the equation. However,

certain conditions can cause the finite accuracy of the calculator to

give a result that appears to be inconsistent with your theoretical
expectation.

Appendix D: A Detailed Look at 223

If a calculation has a result whose magnitude is smaller than

1.000000000 X 1079, the result is set equal to zero. This effect is

referred to as ‘“underflow.” If the subroutine that calculates your
function encounters underflow for a range of x and if this affects

the value of the function, then a root in this range may be expected

to have some inaccuracy. For example, the equation

x4=0

has a root at x = 0. Because of underflow, produces a root of
1.5060 -25 (for initial estimates of 1 and 2). As another

example, consider the equation

1/x2=

whose root is infinite in value. Because of underflow, gives
a root of 3.1707 49 (for initial estimates of 10 and 20). In each

of these examples, the algorithm has found a value of x for which

the calculated function value equals zero. By understanding the
effect of underflow, you can readily interpret results such as these.

The accuracy of a computed value sometimes can be adversely
affected by ‘‘round-off”’ error, by which an infinitely precise
number is rounded to 10 significant digits. If your subroutine
requires extra precision to properly calculate the function for a
range of x, the result obtained by [SOLVE] may be inaccurate. For
example, the equation

|x2—5|=0

has a root at x = \/5. Because no 10-digit number exactly equals
V5, the result of using is Error 8 (for any initial estimates)
because the function never equals zero nor changes sign. On the

other hand, the equation

[(|x|+ 1)+ 10'°]%=10%

has no roots because the left side of the equation is always greater
than the right side. However, because of round-off in the
calculation of

f(x)=[(|x|+1)+10'°]2 - 10%,

224 Appendix D: A Detailed Look at

the root 1.0000 is found for initial estimates of 1 and 2. By
recognizing situations in which round-off error may influence the
operation of [SOLVE], you can evaluate the results accordingly and
perhaps rewrite the function to reduce the effects of round-off.

In a variety of practical applications, the parameters in an
equation—or perhaps the equation itself—are merely approxima-
tions. Physical parameters have an inherent accuracy (or

inaccuracy). Mathematical representations of physical processes
are only models of those processes, accurate only to the extent that
the underlying assumptions are true. An awareness of these and
other inaccuracies can be used to your advantage. By structuring
your subroutine to return a function value of zero when the
calculated value is negligible for practical purposes, you can

usually save considerable time in finding a root with [SOLVE]—
particularly for cases that would normally take a long time.

Example: Ridget hurlers such as Chuck Fahr can throw a ridget to
heights of 105 meters and more. In fact, Fahr’s hurls usually reach
a height of 107 meters. How long does it take for his remarkable
toss, described on page 184 in section 13, to reach 107 meters?

Solution: The desired solution is the value of ¢ at which A = 107.
Enter the subroutine from page 184 that calculates the height of
the ridget. This subroutine can be used in a new function

subroutine to calculate

f(t)=~h(t)—107.

The following subroutine calculates f(¢):

Keystrokes Display

(g](P/R] 000- Program mode.

001-42,21,12 Begin with new label.

002- 3211 Calculates h(t).

Keystrokes Display

1 003- 1

0 004- 0

7 005- 7 Calculates h(t) —107.

B 006- 30
(g][RTN] 007- 43 32

Appendix D: A Detailed Look at 225

In order to find the first time at which the height is 107 meters, use

initial estimates of 0 and 1 second and execute using (B].

Keystrokes Display

(e) Run mode.

(1) ?'0000 } Initial estimates.

4.1718 The desired root.

4.1718 A previous estimate of the
root.

(R¥] 0.0000 Value off(t) at root.

It takes 4.1718 seconds for the ridget to reach a height of exactly
107 meters. (It takes approximately one minute to find this
solution.)

However, suppose you assume that the function A(t) is accurate
only to the nearest whole meter. You can now change your
subroutine to give f(t) = 0 whenever the calculated magnitude of
f(t)is less than 0.5 meter. Change your subroutine as follows:

Keystrokes Display

(g](P/R] 000- Program mode.

006 006- 30 Line before
instruction.

(e)(ABS] 007- 4316 Magnitude of f(2).
O 008- a8 }
5 009-— 5 Accuracy.

(gJ(TEST]7 010-43,30, 7 Testfor x >y and return
zero if accuracy >

(g](CLx] 011- 43 35 magnitude (0.5 >|f(¢)|.

Test for x # 0 and restore

f(t) if value is nonzero.

(g](TEST]O 012-43,30, 0

(g](LSTx] 013- 4336

226 Appendix D: A Detailed Look at

Execute again:

Keystrokes Display

(g] Run mode.

? ?.0000 } Initial estimates.

4.0681 The desired root.

(R¥] 4.0681 A previous estimate of the
root.

0.0000 Value of modified f(¢) at
root.

After 4.0681 seconds, the ridget is at a height of 107 + 0.5 meters.
This solution, although different from the previous answer, is

correct considering the uncertainty of the height equation. (And
this solution is found in just under half the time of the earlier
solution.)

Interpreting Results
The numbers that places in the X-, Y-, and Z-registers help
you evaluate the results of the search for a root of your equation.*
Even when no root is found, the results are still significant.

When finds a root of the
specified equation, the root and f(x)

function values are placed in the X-
and Z-registers. A function value of

zero is the expected result. However, \

a nonzero function value is also

acceptable because it indicates that
the function’s graph apparently %
crosses the x-axis within an infini-

tesimal distance from the calculated

root. In most such cases, the function value will be relatively close

to zero.

* The number in the T-register is the same number that was left in the Y-register by the

final execution of your function subroutine. Generally, this number is not of interest.

Appendix D: A Detailed Look at 227

Special consideration is required for

a different type of situation in which f(x)
finds a root with a nonzero

function value. If your function’s
graph has a discontinuity that

crosses the x-axis, specifies
as a root an x-value adjacent to the
discontinuity. This is reasonable
because a large change in the func-

tion value between two adjacent
values of x might be the result of a very rapid, continuous
transition. Because this cannot be resolved by the algorithm, the
root is displayed for you to interpret.

A function may have a pole, where

its magnitude approaches infinity. If

the function value changes sign at a
pole, the corresponding value of x
looks like a possible root of your
equation, just as it would for any
other discontinuity crossing the

x-axis. However, for such functions,
the function value placed into the Z-
register when that root is found will
be relatively large. If the pole occurs at a value of x that is exactly
represented with 10 digits, the subroutine may try that value and
halt prematurely with an error indication. In this case, the
operation will not be completed. Of course, this may be avoided by
the prudent use of a conditional statement in your subroutine.

Example: In her analysis of the
stresses in a structural component,
design consultant Lucy I. Beame has
determined that the shear stress can
be expressed as

_ (3x3—45x2+350for 0<x<10
{ 1000 for10<x <14

where @ is the shear stress in

newtons per square meter and x is the distance from one end in

228 Appendix D: A Detailed Look at

meters. Write a subroutine to compute the shear stress for any
value of x. Use to find the location of zero shear stress.

Solution: The equation for the shear stress for x between 0 and 10

is more efficiently programmed after rewriting it using Horner’s

method:

Keystrokes

(a)(P/R]
((LeL)2
1
0
[g)lx<y]
(GTO]9
(g](CLx]

@
'
O
m
w
g
g
m
m
h
@
w

(f)(LBL)9

3
(g)(RTN]

@ =(38x —45)x2+ 350

Display

000-

001-42.,21, 2

002- 1

003- 0

004- 4310

005- 22 9

006- 43 35

007- 3

006- 20

009- 4

010- 5

011- 30

012- 20

013- 20

014- 3

015- 5

016- 0

017- 40

018- 43 32

019-42.,21, 9

020- 26

021- 3

022- 43 32

for 0 < x < 10.

Program mode.

Test for x range.

Branch for x>10.

3x.

(3x — 45).

(3x — 45)x2.

(8x — 45)x2 + 350.

End subroutine.

Subroutine for x > 10.

103 = 1000.

End subroutine.

Execute using initial estimates of 7 and 14 to start at the
outer end of the beam and search for a point of zero shear stress.

Appendix D: A Detailed Look at 229

Keystrokes Display

(o] Run mode.

;’ Z;‘OOOO } Initial estimates.

(f][SOLVE] 2 10.0000 Possible root.

1,000.0000 Stress not zero.

The large stress value at the root points out that the routine
has found a discontinuity. This is a place on the beam where the
stress quickly changes from negative to positive. Start at the other

end of the beam (estimates of 0 and 7) and use again.

Keystrokes Display

(7) 2.0000 } Initial estimates.

2 3.1358 Possible root.

[R¥]J[RY] 2.0000 -07 Negligible stress.

Beame’s beam has zero shear stress
at approximately 3.1358 meters and
an abrupt change of stress at 10.0000

meters.

—1500
Graph of Q versus x.

When no root is found and Error 8 is displayed, you can press [«]or
any one key to clear the display and observe the estimate at which
the function was closest to zero. By also reviewing the numbers in

the Y- and Z-registers, you can often determine the nature of the

function near the root estimate and use this information

constructively.

230 Appendix D: A Detailed Look at

If the algorithm terminates its search

near a local minimum of the func- f(x)
tion’s magnitude, clear the Error 8

display and observe the numbers in
the X-, Y-, and Z-registers by rolling
down the stack. If the value of the
function saved in the Z-register is
relatively close to zero, it is possible

that a root of your equation has been

found—the number returned in the

X-register may be a 10-digit number very close to a theoretical root.
You can explore this potential minimum further by rolling the

stack until the returned estimates are back in the X- and Y-registers
and then executing again using these numbers as initial
estimates. If an actual minimum has been found, Error 8 will again
be displayed and the number in the X-register will be approxi-
mately the same as before, but possibly closer to the actual location
of the minimum.

Of course, you may deliberately use [SOLVE]to find the location of a
local minimum of the function’s magnitude. However, in this case

you must be careful to confine the search in the region of the
minimum. Remember, tries hard to find a zero of the
function.

If the algorithm stops searching and
displays Error 8 because it is working f(x)
on a horizontal asymptote (when the

value of the function is essentially
constant for a large range of x), the

estimates in the X- and Y-registers

usually are significantly different

from each other. The number in the
Z-register is the value of the potential
asymptote. If you execute

again using as initial estimates the numbers that were returned in
the X- and Y-registers, a horizontal asymptote may again cause

Error 8, but with numbers in the X- and Y-registers that will differ
from the previous numbers. The value of the function in the

Z-register would then be about the same as that obtained

previously.

Appendix D: A Detailed Look at 231

If Error 8 is displayed as a result of a

search that is concentrated in a local f(x)
“flat” region of the function, the
estimates in the X- and Y-registers

will be relatively close together or
extremely small. Execute
again using for initial estimates the
numbers from the X- and Y-registers
(or perhaps two numbers somewhat
further apart). If the magnitude of

the function is neither a minimum nor constant, the algorithm will
eventually expand its search and find a more significant result.

Example: Investigate the behavior of the function

f(x)=3+ elxl/10 2e"2"_'x|

as evaluated in the following subroutine.

Keystrokes Display

(g](P/R] 000- Program mode.

[f(Cel .0 001-42,21,.0
(a)(ABS] 002- 4316

003- 16
004- 12 eH.

[x%y] 005- 34 Bring x-valueinto
X-register.

(e](=*) 006- 43 11
] 007- 20 x2e7A,

008- 12
2 009- 2

X 010- 20 -
011- 16 —2e*°¢ ™,

(x%y] 012- 34 Bring x-valueinto
X-register.

(g)(ABS) 013- 4316
014- 16

1 015- 1

0 016- 0

=] 017- 10 —|x|/10.

018- 12

232 Appendix D: A Detailed Look at

Keystrokes Display

019- 40 ell/10_gexPe
3 020- 3

021- 40 3+xl/10_ggxZetl
@[FEN) 022- 4332

Use2 with the following single initial estimates: 10, 1, and
10745,

Keystrokes Display

(e) Run mode.

10 10.0000 Single estimate.

(f)(SOLVE] .0 Error 8
(€] 455.4335 Best x-value.

48,026,721.85 Previous value.

1.0000 Function value.

(g)(R*](g](R%] 455.4335 Restore the stack.

.0 Error 8
(«) 48,026,721.85 Another x-value.

R¥]JRY] 1.0000 Same function value (an
asymptote).

1 1.0000 Single estimate.

(f)(SOLVE] .0 Error 8
(«] 2.1213 Best x-value.

2.1471 Previous value.

0.3788 Function value.

(g)[R#](g](RE] 2.1213 Restore the stack.

.0 Error 8
(«] 2.1213 Same x-value.

0.3788 Same function value (a
minimum).

20 1.0000 -20 Single estimate.

(fJ(SOLVE] .0 Error 8
(«] 1.0000 -20 Bestx-value.

1.1250 -20 Previous value.

2.0000 Function value.

Appendix D: A Detailed Look at 233

Keystrokes Display

(g](R*](g](R%] 1.0000 -20 Restore the stack.

(f][SOLVE].O Error 8
(«] 1.1250 -20 Another x-value.

1.56626 -16 Previous value.

2.0000 Same function value.

In each of the three cases,
initially searched for a root in a f(xé third case

direction suggested by the graph
around the initial estimate. Using 10

as the initial estimate, found
the horizontal asymptote (value of

1.0000). Using 1 as the initial esti-

mate, a minimum of 0.3788 at x = —2

2.1213 was found. Using 1072as the
initial estimate, the function was

essentially constant (at a value of

2.0000) for the small range of x that

was sampled.

second case
first case

Finding Several Roots
Many equations that you encounter have more than one root. For

this reason, you will find it helpful to understand some techniques

for finding several roots of an equation.

The simplest method for finding several roots is to direct the root
search in different ranges of x where roots may exist. Your initial

estimates specify the range that is initially searched. This method
was used for all examples in section 13. You can often find the roots

of an equation in this manner.

Another method is known as deflation. Deflation is a method by
which roots are “eliminated” from an equation. This involves
modifying the equation so that the first roots found are no longer

roots, but the rest of the roots remain roots.

If a function f(x) has a value of zero at x = a, then the new function

f(x)/(x — a) will not approach zero in this region (if a is a simple

root off(x) = 0). You can use this information to eliminate a known

root. Simply add a few program lines at the end of your function

subroutine. These lines should subtract the known root (to 10

234 Appendix D: A Detailed Look at

significant digits) from the x-value and divide this difference into
the function value. In many cases the root will be a simple one, and
the new function will direct away from the known root.

On the other hand, the root may be a multiple root. A multiple root
is one that appears to be present repeatedly, in the following sense:
at such a root, not only does the graph of f(x) cross the x-axis, but
its slope (and perhaps the next few higher-order derivatives) also
equals zero. If the known root of your equation is a multiple root,
the root is not eliminated by merely dividing by the factor
described above. For example, the equation

f(x)=x(x—a)*=0

has a multiple root at x = a (with a multiplicity of 3). This root is
not eliminated by dividing f(x) by (x — a). But it can be eliminated

by dividing by (x — a)3.

Example: Use deflation to help find the roots of

60x* — 944x3 + 3003x2 + 6171x — 2890 = 0.

Using Horner’s method, this equation can be rewritten in the form

{[(60x — 944)x + 3003]x + 6171} x — 2890 = 0.

Program a subroutine that evaluates the polynomial.

Keystrokes Display

(g](P/R] 000- Program mode.

(fJCLEAR 000-
(f)(LBL] 2 001-42,21, 2
6 002- 6
0 003- 0
x] 004- 20
9 005- 9

4 006- 4

4 007- 4

-] 008- 30
(x] 009- 20
3 010- 3
0 011- 0

Appendix D: A Detailed Lookat 235

Keystrokes Display

0 012- 0

3 013- 3
014- 40

x] 015- 20
6 016- 6

1 017- 1

7 018-

1 019- 1

020- 40
(x] 021- 20
2 022- 2

8 023- 8
9 024- 9
0 025- 0

& 026- 30
[g)(RTN)] 027- 4332

In Run mode, key in two large, negative initial estimates (such as
—10 and —20) and use to find the most negative root.

Keystrokes Display

(e] Run mode.

;g :;3.0000 } Initial estimates.

(f)(SOLVE]2 -1.6667 First root.

0 -1.6667 Stores root for deflation.

(R¥]J(R¥] 4.0000 -06 Function value near zero.

Return to Program mode and add instructions to your subroutine to
eliminate the root just found.

Keystrokes Display

(g)(P/R] 000- Program mode.

(g](BST][g](BST] 026- 30 Line before[RTN].

(xxy] 027- 34 Brings x into X-register.

E,CL 0 ggg: 45 0 Divides by (x — a), where

& 030- 10)¢ is known root.

236 Appendix D: A Detailed Look at

Now use the same initial estimates to find the next root.

Keystrokes Display

(g][P/R] 4.0000 -06 Run mode.

;8 :;8'0000 } Same initial estimates.

(f)(SOLVE]2 0.4000 Second root.

1 0.4000 Stores root for deflation.

(R¥J[R¥] 0.0000 Deflated function value.

Now modify your subroutine to eliminate the second root.

Keystrokes Display

(g][P/R] 000- Program mode.

(g)(BST](g](BST] 030- 10 Line before [RTN].

(xxy] 031- 34 Brings x into X-register.

1 032- 45 1
(-] 033- 30] Deflation for second root.
() 034- 10

Again, use the same initial estimates to find the next root.

Keystrokes Display

(g](P/R] 0.0000 Run mode.

;8m :;g.OOOO } Same initial estimates.

(f)(SOLVE]2 8.4999 Third root.

2 8.4999 Stores root for deflation.

-1.0929 -07 Deflated function value
near zero.

Now change your subroutine to eliminate the third root.

Keystrokes Display

(a] 000- Program mode.

(e) (e) 034- 10 Line before .
(xxy] 035- 34 Brings x into X-register.

Appendix D: A Detailed Look at 237

Keystrokes Display

2 036 45 2
G 037- 30
& 038- 10

Find the fourth root.

Keystrokes Display

(g](P/R] -1.0929 -07

10 -10.0000
20 -20

2 8.5001

3 8.5001

RYJ[RY) -0.0009

Using the same initial estimates
each time, you have found four roots
for this equation involving a fourth-
degree polynomial. However, the last
two roots are quite close to each other
and are actually one root (with a
multiplicity of 2). That is why the

root was not eliminated when you
tried deflation once at this root.

(Round-off error causes the original

function to have small positive and
negative values for values of «x
between 8.4999 and 8.5001; for x = 8.5
the function is exactly zero.)

Deflation for third root.

} Same initial estimates.

Fourth root.

Stores root for reference.

Deflated function value

near zero.

f(x)(in 10°s)
30

X

-4 12
-10

Graph of f(x)

In general, you will not know in advance the multiplicity of the root
you are trying to eliminate. If, after you have attempted to

eliminate a root, finds that same root again, you can
proceed in a number of ways:

e Use different initial estimates with the deflated function in an

attempt to search for a different root.

e Usedeflation again in an attempt to eliminate a multiple root.

If you do not know the multiplicity of the root, you may need to

repeat this a number of times.

238 Appendix D: A Detailed Look at

e Examine the behavior of the deflated function at x-values near
the known root. If the function’s calculated values cross the

x-axis smoothly, either another root or a greater multiplicity is

indicated.

® Analyze the original function and its derivatives algebra-

ically. It may be possible to determine its behavior for x-values
near the known root. (A Taylor series representation, for

example, may indicate the multiplicity of a root.)

Limiting the Estimation Time
Occasionally, you may desire to limit the time used by to
find a root. You can use two possible techniques to do this—
counting iterations and specifying a tolerance.

Counting Iterations

While searching for a root, typically samples your function

at least a dozen times. Occasionally, may need to sample it
one hundred times or more. (However, will always stop by
itself.) Because your function subroutine is executed once for each

estimate that is tried, it can count and limit the number of

iterations. An easy way to do this is with an instruction to
accumulate the number of iterations in the Index register (or other

storage register).

If you store an appropriate number in the register before using

[SOLVE], your subroutine can interrupt the algorithm when
the limit is exceeded.

Specifying a Tolerance

You can shorten the time required to find a root by specifying a
tolerable inaccuracy for your function. Your subroutine should

return a function value of zero if the calculated function value is

less than the specified tolerance. This tolerance that you specify
should correspond to a value that is negligible for practical
purposes or should correspond to the accuracy of the computation.
This technique eliminates the time required to define the estimate
more accurately than is justified by the problem. (The example on

page 224 uses this method.)

Appendix D: A Detailed Look at 239

For Advanced Information

In the HP-15C Advanced Functions Handbook, additional,

advanced techniques and applications for using are
presented. These topics include:

Using with polynomials.

Solving a system of equations.

Finding local extremes of a function.

Using for financial problems.

Using in Complex mode.

Solving an equation for its complex roots.

Appendix E

A Detailed Look at

Section 14, Numerical Integration, presented the basic information

you need to use [/;]. This appendix discusses more intricate aspects
of [/;]that are of interest if you use often.

How [/5]Works
The algorithm calculates the integral of a function f(x) by

computing a weighted average of the function’s values at many

values of x (known as sample points) within the interval of
integration. The accuracy of the result of any such sampling
process depends on the number of sample points considered:
generally, the more sample points, the greater the accuracy. Iff(x)

could be evaluated at an infinite number of sample points, the
algorithm could—neglecting the limitation imposed by the

inaccuracy in the calculated function f(x)—provide an exact

answer.

Evaluating the function at an infinite number of sample points
would take a very long time (namely, forever). However, this is not

necessary, since the maximum accuracy of the calculated integral

is limited by the accuracy of the calculated function values. Using
only a finite number of sample points, the algorithm can calculate

an integral that is as accurate as is justified considering the
inherent uncertainty in f(x).

The algorithm at first considers only a few sample points,
yielding relatively inaccurate approximations. If these approxima-

tions are not yet as accurate as the accuracy of f(x) would permit,

the algorithm is iterated (that is, repeated) with a larger number of

sample points. These iterations continue, using about twice as

many sample points each time, until the resulting approximation

is as accurate as is justified considering the inherent uncertainty in

f(x).
240

Appendix E: A Detailed Lookat 241

The uncertainty of the final approximation is a number derived

from the display format, which specifies the uncertainty for the
function.* At the end of each iteration, the algorithm compares the

approximation calculated during that iteration with the approx-

imations calculated during two previous iterations. If the

difference between any of these three approximations and the
other two is less than the uncertainty tolerable in the final
approximation, the algorithm terminates, placing the current
approximation in the X-register and its uncertainty in the
Y-register.

It is extremely unlikely that the errors in each of three successive
approximations—that is, the differences between the actual
integral and the approximations—would all be larger than the
disparity among the approximations themselves. Consequently,
the error in the final approximation will be less than its

uncertainty.t Although we can’t know the error in the final

approximation, the error is extremely unlikely to exceed the

displayed uncertainty of the approximation. In other words, the
uncertainty estimate in the Y-register is an almost certain ‘“upper
bound” on the difference between the approximation and the
actual integral.

Accuracy, Uncertainty, and Calculation Time
The accuracy of an approximation does not always change
when you increase by just one the number of digits specified in the
display format, though the uncertainty will decrease. Similarly,
the time required to calculate an integral sometimes changes when

you change the display format, but sometimes does not.

Example: The Bessel function of the first kind, of order four, can
be expressed as

Jy(x)= —:—;—fo cos (46 — x sin 0) d@

*The relationship between the display format, the uncertainty in the function, and the

uncertainty in the approximation to its integral are discussed later in this appendix.

T Provided that f(x) does not vary rapidly, a consideration that will be discussed in more

detail later in this appendix.

242 Appendix E: A Detailed Look at

Calculate the integral in the expression for J4 (1),

j; cos (46 — sin6) dé.

First, switch to Program mode and key in a subroutine that
evaluates the function f(6) = cos (460 — sin#).

Keystrokes Display

(g](P/R] 000- Program mode.

CLEAR 000-
(f](LBL]O 001-42,21, O
4 002- 4
x] 003- 20

(x%)] 004- 34
(SIN] 005- 23
(-] 006- 30

007- 24
(g](RTN] 008- 4332

Now, switch to Run mode and key the limits of integration into the

X- and Y-registers. Be sure the trigonometric mode is set to

Radians, and set the display format to 2. Finally, press 0
to calculate the integral.

Keystrokes Display

(g] Run mode.

0 0.0000 Keys lower limit into Y-
register.

(a](r] 3.1416 Keys upper limit into X-
register.

(g](RAD] 3.1416 Sets the trigonometric
mode to Radians.

2 3.14 00 Sets display format to
2.

0 7.79 -03 Integral approximated in
2.

(xxy] 1.45 -03 Uncertainty of 2
approximation.

Appendix E: A Detailed Look at 243

The uncertainty indicates that the displayed digits of the
approximation might not include any digits that could be

considered accurate. Actually, this approximation is more accurate
than its uncertainty indicates.

Keystrokes Display

(xxy] 7.79 -03 Return approximation to
display.

CLEAR

(hold) 7785820888 All 10 digits of [SCI]2
approximation.

The actual value of this integral, correct to five significant digits,is
7.7805 X 1073, Therefore, the error in this approximation is about
(7.7858 — 7.7805) X 1073 = 5.3 X 1078. This error is considerably less
than the uncertainty, 1.45 X 1073. The uncertainty is only an upper

bound on the error in the approximation; the actual error will
generally be smaller.

Now calculate the integral in 3 and compare the accuracy of
the resulting approximation to that of the 2 approximation.

Keystrokes Display

3 7.786 -03 Changes display format
to 3.

(R¥J(R¥] 3.142 00 Rolls down stack until
upper limit appears in X-
register.

(f(x]o 7.786 -03 Integral approximated in

3.
(xxy] 1.448 -04 Uncertainty of (SCI|3

approximation.

[x2y] 7.786 -03 Returns approximation to
display.

(f]CLEAR
(hold) 7785820888 All 10 digits of [SCI] 3

approximation.

244 Appendix E: A Detailed Look at

All 10 digits of the approximations in 2 and 3 are
identical: the accuracy of the approximation in 3 is no better
than the accuracy in 2 despite the fact that the uncertainty in

3is less than the uncertainty in 2. Why is this? Remember
that the accuracy of any approximation depends primarily on the
number of sample points at which the function f(x) has been
evaluated. The algorithm is iterated with increasing numbers of
sample points until the disparity among three successive
approximations is less than the uncertainty derived from the
display format. After a particular iteration, the disparity among

the approximations may already be so much less than the
uncertainty that it would still be less if the uncertainty were
decreased by a factor of 10. In such cases, if you decreased the

uncertainty by specifying one more digit in the display format, the

algorithm would not have to consider additional sample points,
and the resulting approximation would be identical to the
approximation calculated with the larger uncertainty.

If you calculated the two preceding approximations on your

calculator, you may have noticed that it did not take any longer to
calculate the integral in 3 than in 2. This is because the
time to calculate the integral of a given function depends on the
number of sample points at which the function must be evaluated

to achieve an approximation of acceptable accuracy. For the 3

approximation, the algorithm did not have to consider more
sample points than it did in 2, so it did not take any longer to
calculate the integral.

Often, however, increasing the number of digits in the display

format will require evaluating the function at additional sample
points, so that calculating the integral will take more time. Now

calculate the same integral in 4.

Keystrokes Display

(f)(sc14 7.7858 -03 4 display.

3.1416 00 Rolls down stack until
upper limit appears in X-
register.

0 7.7807 -03 Integral approximated in

(Scn4.

Appendix E: A Detailed Look at 245

This approximation took about twice as long as the approximation

in 3 or 2. In this case, the algorithm had to evaluate the
function at about twice as many sample points as before in order to

achieve an approximation of acceptable accuracy. Note, however,
that you received a reward for your patience: the accuracy of this

approximation is better, by almost two digits, than the accuracy of
the approximation calculated using half the number of sample

points.

The preceding examples show that repeating the approximation of
an integral in a different display format sometimes will give you a

more accurate answer, but sometimes it will not. Whether or not the

accuracy is changed depends on the particular function, and
generally can be determined only by trying it.

Furthermore, if you do get a more accurate answer, it will come at

the cost of about double the calculation time. This unavoidable
trade-off between accuracy and calculation time is important to
keep in mind if you are considering decreasing the uncertainty in
hopes of obtaining a more accurate answer.

The time required to calculate the integral of a given function
depends not only on the number of digits specified in the display
format, but also, to a certain extent on the limits of integration.
When the calculation of an integral requires an excessive amount
of time, the width of the interval of integration (that is, the

difference of the limits) may be too large compared with certain
features of the function being integrated. For most problems,

however, you need not be concerned about the effects of the limits

of integration on the calculation time. These conditions, as well as

techniques for dealing with such situations, will be discussed later

in this appendix.

Uncertainty and the Display Format
Because of round-off error, the subroutine you write for evaluating

f(x) cannot calculate f(x) exactly, but rather calculates

f(x)=f(x) £ 8,(x),

where 6; (x) is the uncertainty of f(x) caused by round-off error. If

246 Appendix E: A Detailed Look at

f(x) relates to a physical situation, then the function you would like
to integrate is not f(x) but rather

F(x)={f(x) £ 85 (x),

where 89 (x) is the uncertainty associated with f(x) that is caused
by the approximation to the actual physical situation.

a

Since f(x) = f(x) £ §; (x), the function you want to integrate is

F(x)=f(x) £ 8, (x) £ 85 (x)

or F(x)=f(x)+ &x),

where 6(x) is the net uncertainty associated with f(x).

Therefore, the integral you want is

b b _

j;F(x)dx=j; [f(x)*£6(x)]dx

=j;bf(x)dx i_/;ba(x)dx

=I+£A

b

where I is the approximation tof F(x) dx and A is the uncertainty
a

associated with the approximation. The algorithm places the
number 7 in the X-register and the number A in the Y-register.

The uncertainty 8(x) of f(x), the function calculated by your

subroutine, is determined as follows. Suppose you consider three
significant digits of the function’s values to be accurate, so you set

the display format to 2. The display would then show only the
accurate digits in the mantissa of a function’s values: for example,

1.23 -04.

Since the display format rounds the number in the X-register to the
number displayed, this implies that the uncertainty in the
function’s values is +0.005 X 10™* = +0.5 X 102 X 10=

Appendix E: A Detailed Look at 247

+ 0.5 X 1075, Thus,setting the display format to n or (ENG] n,
where n is an integer,* implies that the uncertainty in the

function’s values is

8(x)=0.5X 10" X 10™(*)

=0.5X10""*mx)

In this formula, n is the number of digits specified in the display
format and m(x) is the exponent of the function’s value at x that
would appear if the value were displayed in display format.

The uncertainty is proportional to the factor 10™(*) which
represents the magnitude of the function’s value at x. Therefore,

and [ENG] display formats imply an uncertainty in the
function that is relative to the function’s magnitude.

Similarly, if a function value is displayed in n, the rounding of
the display implies that the uncertainty in the function’s values is

8(x)=0.5X10""

Since this uncertainty is independent of the function’s magnitude,

display format implies an uncertainty that is absolute.

Each time the algorithm samples the function at a value of x, it
also derives a sample of 6(x), the uncertainty of the function’s

value at x. This is calculated using the number of digits n currently

specified in the display format and (if the display format is set to

* Although 8 or 9 generally results in the same display as 7, it will result in a

smaller uncertainty of a calculated integral. (The sameis true for the [ENG] format.) A

negative value for n (which can be set by using the Index register) will also affect the

uncertainty of an calculation. The minimum value for n that will affect uncertainty

is -6. A number in Ry less than -6 will be interpreted as -6.

248 Appendix E: A Detailed Look at

or [ENG]) the magnitude m(x) of the function’s value at x. The
number A, the uncertainty of the approximation to the desired
integral, is the integral of §(x):

A———j;bfi(x)dx

b

:f [0.5X 107" ™)) dx.
a

This integral is calculated using the samples of §(x) in roughly the

same ways that the approximation to the integral of the function is
calculated using the samples off(x).

Because A is proportional to the factor 107", the uncertainty of an
approximation changes by about a factor of 10 for each digit
specified in the display format. This will generally not be exact in

or display format, however, because changing the
number of digits specified may require that the function be

evaluated at different sample points, so that 8(x) ~ 10™(*) would
have different values.

Note that when an integral is approximated in display format,

m(x) = 0 and so the calculated uncertainty in the approximation

turns out to be

A=0.5X10""(b—a).

Normally you do not have to determine precisely the uncertainty in

the function. (To do so would frequently require a very complicated

analysis.) Generally, it’s more convenient to use or
display format if the uncertainty in the function’s values can be

more easily estimated as a relative uncertainty. On the other hand,

it’s more convenient to use display format if the uncertainty in
the function’s values can be more easily estimated as an absolute

uncertainty. display format may be inappropriate to use
(leading to peculiar results) when you are integrating a function

whose magnitude and uncertainty have extremely small values

within the interval of integration. Likewise, display format
may be inappropriate to use (also leading to peculiar results) if the

magnitude of the function becomes much smaller than its
uncertainty. If the results of calculating an integral seem strange,

Appendix E: A Detailed Look at 249

it may be more appropriate to calculate the integral in the alternate
display format.

Conditions That Could Cause

Incorrect Results

Although the algorithm in the HP-15C is one of the best
available, in certain situations it—like nearly all algorithms for
numerical integration—might give you an incorrect answer. The
possibility of this occurring is extremely remote. The algorithm

has been designed to give accurate results with almost any smooth

function. Only for functions that exhibit extremely erratic

behavior is there any substantial risk of obtaining an inaccurate

answer. Such functions rarely occur in problems related to actual
physical situations; when they do, they usually can be recognized
and dealt with in a straightforward manner.

As discussed on page 240, the algorithm samples the function

f(x) at various values of x within the interval of integration. By

calculating a weighted average of the function’s values at the
sample points, the algorithm approximates the integral off(x).

Unfortunately, since all that the algorithm knows about f(x) are its
values at the sample points, it cannot distinguish between f(x) and
any other function that agrees with f(x) at all the sample points.
This situation is depicted in the illustration on the next page,
which shows (over a portion of the interval of integration) three of

the infinitely many functions whose graphs include the finitely
many sample points.

250 Appendix E: A Detailed Look at

f(x)

With this number of sample points, the algorithm will calculate the
same approximation for the integral of any of the functions shown.

The actual integrals of the functions shown with solid lines are
about the same, so the approximation will be fairly accurate if f(x)

is one of these functions. However, the actual integral of the

function shown with a dashed line is quite different from those of
the others, so the current approximation will be rather inaccurate if

f(x) is this function.

The algorithm comes to know the general behavior of the

function by sampling the function at more and more points. If a

fluctuation of the function in one region is not unlike the behavior
over the rest of the interval of integration, at some iteration the
algorithm will likely detect the fluctuation. When this happens, the
number of sample points is increased until successive iterations
yield approximations that take into account the presence of the
most rapid, but characteristic, fluctuations.

For example, consider the approximation of

o0

f xe*dx.
0

Appendix E: A Detailed Look at 251

Since you’re evaluating this integral numerically, you might think

(naively in this case, as you’ll see) that you should represent the
upper limit of integration by 10%—which is virtually the largest
number you can key into the calculator. Try it and see what
happens.

Key in a subroutine that evaluates the function f(x) = xe™™.

Keystrokes Display

(g)(P/R] 000- Program mode.

(f)(LBL]1 001-42,21, 1

002- 16
003- 12

[_7_] 004- 20

(g)(RTN] 005- 4332

Set the calculator to Run mode. Then set the display format to
3 and key the limits of integration into the X- and Y-registers.

Keystrokes Display

(g] Run mode.

3 Sets display format to
3.

0 0.000 00 Keys lower limit into Y-

register.

99 1 99 Keys upper limit into X-
register.

1 0.000 00 Approximation of
integral.

The answer returned by the calculator is clearly incorrect, since the

actual integral of f(x) = xe™ from 0 to « is exactly 1. But the

problem is not that you represented < by 10, since the actual

252 Appendix E: A Detailed Look at

integralof this function from 0 to 10%? is very close to 1. The reason

you got an incorrect answer becomes apparent if you look at the

graph off(x) over the interval of integration:

f(x)

 X

The graph is a spike very close to the origin. (Actually, to illustrate

f(x) the width of the spike has been considerably exaggerated.
Shown in actual scale over the interval of integration, the spike
would be indistinguishable from the vertical axis of the graph.)
Because no sample point happened to discover the spike, the

algorithm assumed that f(x) was identically equal to zero

throughout the interval of integration. Even if you increased the

number of sample points by calculating the integral in 9, none
of the additional sample points would discover the spike when this
particular function is integrated over this particular interval.
(Better approaches to problems such as this are mentioned at the
end of the next topic, Conditions That Prolong Calculation Time.)

You’ve seen how the[/;|algorithm can give you an incorrect answer

when f(x) has a fluctuation somewhere that is very uncharacter-
istic of the behavior of the function elsewhere. Fortunately,
functions exhibiting such aberrations are unusual enough that you
are unlikely to have to integrate one unknowingly.

Functions that could lead to incorrect results can be identified in
simple terms by how rapidly it and its low-order derivatives vary

across the interval of integration. Basically, the more rapid the vari-

ation in the function or its derivatives, and the lower the order of

such rapidly varying derivatives, the less quickly will the al-

gorithm terminate, and the less reliable will the resulting

approximation be.

Appendix E: A Detailed Look at 253

Note that the rapidity of variation in the function (or its low-order

derivatives) must be determined with respect to the width of the

interval of integration. With a given number of sample points, a

function f(x) that has three fluctuations can be better character-

ized by its samples when these variations are spread out over most
of the interval of integration than if they are confined to only a

small fraction of the interval. (These two situations are shown in

the next two illustrations.) Considering the variations or
fluctuations as a type of oscillation in the function, the criterion of

interest is the ratio of the period of the oscillations to the width of
the interval of integration: the larger this ratio, the more quickly
the algorithm will terminate, and the more reliable will be the

resulting approximation.

f(x)
I I
I I

: Calculated integral :

| of this function |
| will be accurate. |

I

I
|

b

f(x) |

: Calculated integral :

| of this function |

| may be inaccurate. |

| |
| |

|

| |

| |
| |

|
| |

$ $
a b

254 Appendix E: A Detailed Look at

In many cases you will be familiar enough with the function you
want to integrate that you’ll know whether the function has any
quick wiggles relative to the interval of integration. If you’re not
familiar with the function, and you have reason to suspect that it
may cause problems, you can quickly plot a few points by
evaluating the function using the subroutine you wrote for that
purpose.

If for any reason, after obtaining an approximation to an integral,
you have reason to suspect its validity, there’s a very simple
procedure you can use to verify it: subdivide the interval of
integration into two or more adjacent subintervals, integrate the
function over each subinterval, then add the resulting approxima-
tions. This causes the function to be sampled at a brand new set of
sample points, thereby more likely revealing any previously
hidden spikes. If the initial approximation was valid, it will equal
the sum of the approximations over the subintervals.

Conditions That Prolong Calculation Time
In the preceding example (page 251), you saw that the algorithm
gave an incorrect answer because it never detected the spike in the
function. This happened because the variation in the function was
too quick relative to the width of the interval of integration. If the
width of the interval were smaller, you would get the correct

answer; but it would take a very long time if the interval were still

too wide.

For certain integrals such as the one in that example, calculating
the integral may be unduly prolonged because the width of the

interval of integration is too large relative to certain features of the
functions being integrated. Consider an integral where the interval
of integration is wide enough to require excessive calculation time

but not so wide that it would be calculated incorrectly. Note that

because f(x) = xe™* approaches zero very quickly as x approaches

oo, the contribution to the integral of the function at large values of

x is negligible. Therefore, you can evaluate the integral by

replacing o, the upper limit of integration, by a number not so
large as 10, say 103.

Appendix E: A Detailed Look at 255

Keystrokes Display

0 0.000 00 Keys lower limit into Y-
register.

3 1 03 Keys upper limit into X-
register.

(f(z])1 1.000 00 Approximation to
integral.

(xxy] 1.824 -04 Uncertainty of
approximation.

This is the correct answer, but it took a very long time. To
understand why, compare the graph of the function over the
interval of integration, which looks about identical to that shown

on page 252, to the graph of the function between x =0 and x = 10.

f(x)

0 10

By comparing the two graphs, you can see that the function is

“interesting’’ only at small values of x. At greater values of x, the
function is ‘“‘uninteresting,” since it decreases smoothly and
gradually in a very predictable manner.

As discussed earlier, the algorithm will sample the function

with higher densities of sample points until the disparity between
successive approximations becomes sufficiently small. In other
words, the algorithm samples the function at increasing numbers

of sample points until it has sufficient information about the
function to provide an approximation that changes insignificantly

when further samples are considered.

256 Appendix E: A Detailed Look at

If the interval of integration were (0, 10) so that the algorithm
needed to sample the function only at values where it was
interesting but relatively smooth, the sample points after the first
few iterations would contribute no new information about the
behavior of the function. Therefore, only a few iterations would be
necessary before the disparity between successive approximations
became sufficiently small that the algorithm could terminate with

an approximation of a given accuracy.

On the other hand,if the interval of integration were more like the
one shown in the graph on page 252, most of the sample points
would capture the function in the region where its slope is not
varying much. The few sample points at small values of x would
find that values of the function changed appreciably from one
iteration to the next. Consequently the function would have to be
evaluated at additional sample points before the disparity between
successive approximations would become sufficiently small.

In order for the integral to be approximated with the same
accuracy over the larger interval as over the smaller interval, the

density of the sample points must be the same in the region where

the function is interesting. To achieve the same density of sample

points, the total number of sample points required over the larger
interval is much greater than the number required over the smaller

interval. Consequently, several more iterations are required over

the larger interval to achieve an approximation with the same
accuracy, and therefore calculating the integral requires con-
siderably more time.

Because the calculation time depends on how soon a certain
density of sample points is achieved in the region where the
function is interesting, the calculation of the integral of any
function will be prolonged if the interval of integration includes
mostly regions where the function is not interesting. Fortunately, if

you must calculate such an integral, you can modify the problem so
that the calculation time is considerably reduced. Two such
techniques are subdividing the interval of integration and
transformation of variables. These methods enable you to change

the function or the limits of integration so that the integrand is
better behaved over the interval(s) of integration. (These

techniques are described in the HP-15C Advanced Functions

Handbook.)

Appendix E: A Detailed Look at 257

Obtaining the Current Approximation

to an Integral

When the calculation of an integral is requiring more time than

you care to wait, you may want to stop and display the current
approximation. You can obtain the current approximation, but not
its uncertainty.

Pressing while the HP-15C is calculating an integral halts the
calculation, just as it halts the execution of a running program.
When you do so, the calculator stops at the current program line in
the subroutine you wrote for evaluating the function, and displays
the result of executing the preceding program line. Note that after
you halt the calculation, the current approximation to the integral
is not the number in the X-register nor the number in any other
stack register. Just as with any program, pressing again
starts the calculation from the program line at which it was
stopped.

The algorithm updates the current approximation and stores it
in the LAST X register after evaluating the function at each new
sample point. To obtain the current approximation, therefore,
simply halt the calculator, single-step if necessary through your
function subroutine until the calculator has finished evaluating
the function and updating the current approximation. Then recall
the contents of the LAST X register, which are updated when the

instruction in the function subroutine is executed.

While the calculator is updating the current approximation, the

display is blank and does not show running. (While the calculatoris
executing your function subroutine, running is displayed.) There-

fore, you might avoid having to single-step through your
subroutine by halting the calculator at a moment when the display

is blank.

In summary, to obtain the current approximation to an integral,

follow the steps below.

1. Press to halt the calculator, preferably while the
display is blank.

2. When the calculator halts, switch to Program mode to check

the current program line.

o If that line contains the subroutine label, return to Run

mode and view the LAST X register (step 3).

258 Appendix E: A Detailed Look at

® If any other program line is displayed, return to Run
mode and single-step ([SST]) through the program until
you reach a instruction (keycode 43 32) or line 000 (if
there is no [RTN]). (Be sure to hold the key down long
enough to view the program line numbers and keycodes.)

3. Press [g] to view the current approximation. If you
want to continue calculating the final approximation, press
(«][#][R/S]. This refills the stack with the current x-value
and restarts the calculator.

For Advanced Information

The HP-15C Advanced Functions Handbook explores more esoteric
aspects of and its applications. These topics include:

® Accuracy of the function to be integrated.

® Shortening calculation time.

® (Calculating difficult integrals.

¢ Using [%]in Complex mode.

Appendix F

Battery, Warranty, and
Service Information

Batteries

The HP-15C is powered by three batteries. In “typical” use, the
HP-15C has been designed to operate 6 months or more on a set of
alkaline batteries. The batteries supplied with the calculator are
alkaline, but silver-oxide batteries (which should last twice as long)
can also be used.

A set of three fresh alkaline batteries will provide at least 60 hours
of continuous program running (the most power-consuming kind of

calculator use*). A set of three fresh silver-oxide batteries will

provide at least 135 hours of continuous program running. If the
calculator is being used to perform operations other than running
programs, it uses much less power. When only the display is on—
that is, if you are not pressing keys or running programs—very
little power is consumed.

If the calculator remains turned off, a set of fresh batteries will
preserve the contents of Continuous Memory for as long as the
batteries would last outside of the calculator—at least 1%z years for

alkaline batteries or at least 2 years for silver-oxide batteries.

The actual lifetime of the batteries depends on how often you use
the calculator, whether you use it more for running programs or

more for manual calculations, and which functions you use.*

The batteries supplied with the calculator, as well as the batteries
listed on the next page for replacement, are not rechargeable.

* Power consumption in the HP-15C depends on the mode of calculator use: off (with

Continuous Memory preserved); idle (with only the display on); or “operating” (running

a program, performing a calculation, or having a key pressed). While the calculator is

turned on, typical calculator use is a mixture of idle time and “operating” time.

Therefore, the actual lifetime of the batteries depends on how much time the calculator

spends in each of the three modes.

259

260 Appendix F: Battery, Warranty, and Service Information

WARNING

Do not attempt to recharge the batteries; do not store

batteries near a source of high heat; do not dispose of

batteries in fire. Doing so may cause the batteries to leak or

explode.

The following batteries are recommended for replacement in your

HP-15C (not all batteries available in all countries):

Alkaline Silver-Oxide

Eveready A76* Eveready 357*
UCAR A76 UCAR357

National or Panasonic LR44

Low-Power Indication

An asterisk (*) flashing in the lower left corner of the display when

the calculator is on signifies that the available battery power is

running low.

With alkaline batteries installed:

® The calculator can be used for at least 1% hours of continuous

program running after the asterisk first appears.t

¢ If the calculator remains turned off, the contents of its

Continuous Memory will be preserved for at least 1 month
after the asterisk first appears.

With silver-oxide batteries installed:

® The calculator can be used for at least 10 minutes of

continuous program running after the asterisk first appears.t

® If the calculator remains turned off, the contents of its

* Not available in the United Kingdom or Republic of Ireland.

1 Note that this time is the minimum available for continuous program running—thatis,

while continuously “operating” (as described in the footnote on page 259). If you are

using the calculator for manual calculations—a mixture of the idle and “operating”

modes—the calculator can be used for a much longer time after the asterisk first

appears.

Appendix F: Battery, Warranty, and Service Information 261

Continuous Memory will be preserved for at least 1 week after
the asterisk first appears.

Installing New Batteries

The contents of the calculator’s Continuous Memory are preserved
for a short time while the batteries are out of the calculator

(provided that you turn off the calculator before removing the

batteries). This allows you ample time to replace the batteries
without losing data or programs. If the batteries are left out of the

calculator for an extended period, the contents of Continuous
Memory may be lost.

To install new batteries, use the following procedure:

1. Be sure that the calculator is

off.

2. Holding the calculator as

shown, press outward on the

battery compartment door

until it opens slightly.

3. Grasp the outer edge of the
battery compartment door,
then tilt it up and out of the
calculator.

262 Appendix F: Battery, Warranty, and Service Information

CAUTION
In the next two steps, be careful not to press any keys while

batteries are out of the calculator. If you do so, the contents

of Continuous Memory may be lost and keyboard control may

be lost (that is, the calculator may not respond to keystrokes).

Turn the calculator over and
gently shake, allowing the

batteries to fall into the palm
of your hand.

CAUTION

In the next step, replace al/l three batteries with fresh ones. If

you leave an old battery inside, it may leak. Furthermore, be

careful not to insert the batteries backwards. If you do so, the

contents of Continuous Memory may be lost, and the

batteries may be damaged.

Insert three new batteries un-
der the plastic flap or flaps
shielding the battery
compartment. They should be
positioned with their flat

sides (the sides marked —+)
facing toward the nearby rub-
ber foot, as shown in the

illustration on the calculator
case.

Appendix F: Battery, Warranty, and Service Information 263

Insert the tab of the battery

compartment door into the slot

in the calculator case.

Lower the battery compart-

ment door until it is flush with
the case, then push the door
inward until it is tightly shut.

Turn the calculator on. If for

any reason Continuous Mem-
ory has been reset (that is, if its

contents have been lost), the

display will show Pr Error.

Pressing any key will clear

this message from the display.

Verifying Proper Operation (Self-Tests)
If it appears that the calculator will not turn on or otherwise is not
operating properly, use one of the following procedures.

For a calculator that does not respond to keystrokes:

1. Press the [y*] and keys simultaneously, then release
them. This will alter the contents of the X-register, so clear
the X-register afterward.

If the calculator still does not respond to keystrokes, remove

and reinsert the batteries. Make sure the batteries are
properly positioned in the compartment.

If the calculator still does not respond to keystrokes, leave
the batteries in the compartment and short the battery
terminals together. (The batteries must remain in place to
prevent possible internal damage to the calculator.) With a
paper clip or piece of wire, briefly connect the terminals.

264 Appendix F: Battery, Warranty, and Service Information

Only momentary contact is required. The terminals are

matching metal strips, or a combination of one spring and

one hard edged tab located at either end of the battery

compartment. After you do this, the contents of Continu-
ous Memory will be lost, and you may need to press the

key more than once to turn the calculator back on.

4. Ifthe calculator still does not turn on, install fresh batteries.

If thereis still no response, the calculator requires service.

For a calculator that does respond to keystrokes:

1. With the calculator off, hold down the key and press [x].

2. Release the key, then release the [x] key. This initiates a
complete test of the calculator’s electronic circuitry. If

everything is working correctly, within about 25 seconds
(during which the word running flashes) the display should

show -8,8,8,8,8,8,8,8,8,8, and all of the status indicators

(except the * low-power indicator) should turn on.* If the

display shows Error 9, goes blank, or otherwise does not
show the proper result, the calculator requires service.t

Note: Tests of the calculator's electronics are also per-

formed if the key or the [£]key is held down when is

released. tI These tests are included in the calculator to be

used in verifying that it is operating properly during

manufacture and service.

* The status indicators turned on at the end ofthis test include some that normally are

not displayed on the HP-15C.

t If the calculator displays Error 9 as a result of the [ON]/[x] test or the [ON]/[*] test but
you wish to continue using your calculator, you should reset Continuous Memory as

described on page 63.

1 The [ON]/[+] combination initiates a test that is similar to that described above, but
continues indefinitely. The test can be terminated by pressing any key, which will halt

the test within 25 seconds. The [ON]/ [¥] combination initiates a test of the keyboard and

the display. When the key is released, certain segments in the display will be lit. To

run the test, the keys are pressed in order from left to right along each row, from the top

row to the bottom row. As each key is pressed, different segments in the display are lit.

If the calculator is operating properly and all the keys are pressed in the proper order,

the calculator will display 15 after the last key is pressed. (The key should be

pressed both with the third-row keys and with the fourth-row keys.) If the calculator is

not working properly, or if a key is pressed out of order, the calculator will display

Error 9. Note thatif this error display results from an incorrect key being pressed, this

does not indicate that your calculator requires service. This test can be terminated by

pressing any key out of order (which will, of course, result in the Error 9 display). Both

the Error 9 display and the 15 display can be cleared by pressing any key.

Appendix F: Battery, Warranty, and Service Information 265

If you had suspected that the calculator was not working properly
but the proper display was obtained in step 2, it is likely that you

made an error in operating the calculator.We suggest you reread
the section in this handbook applicable to your calculation. If you

still experience difficulty, write or telephone Hewlett-Packard at an

address or phone number listed under Service (page 267).

Limited One-Year Warranty

What We Will Do

The HP-15C (except for the batteries, or damage caused by the bat-

teries) is warranted by Hewlett-Packard against defects in materials
and workmanship for one year from the date of original purchase. If

you sell your unit or give it as a gift, the warranty is automatically

transferred to the new owner and remains in effect for the original

one-year period. During the warranty period, we will repair or, at our

option, replace at no charge a product that proves to be defective,

provided you return the product, shipping prepaid, to a
Hewlett-Packard service center.

What Is Not Covered

Batteries, and damage caused by the batteries, are not covered by the

Heuwlett-Packard warranty. Check with the battery manufacturer

about battery and battery leakage warranties.

This warranty does not apply if the product has been damaged by

accident or misuse or as the result of service or modification by

other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a

product is your exclusive remedy. ANY OTHER IMPLIED WAR-

RANTY OF MERCHANTABILITY OR FITNESS IS
LIMITED TO THE ONE-YEAR DURATION OF THIS
WRITTEN WARRANTY. Some states, provinces, or countries do

not allow limitations on how long an implied warranty lasts, so the

above limitation may not apply to you. IN NO EVENT SHALL

HEWLETT-PACKARD COMPANY BE LIABLE FOR CON-
SEQUENTIAL DAMAGES. Some states, provinces, or countries

do not allow the exclusion or limitation of incidental or

consequential damages, so the above limitation or exclusion may

not apply to you.

266 Appendix F: Battery, Warranty, and Service Information

This warranty gives you specific legal rights, and you may also

have other rights which vary from state to state, province to
province, or country to country.

Warranty for Consumer Transactions

in the United Kingdom

This warranty shall not apply to consumer transactions and shall
not affect the statutory rights of a consumer. In relation to such
transactions, the rights and obligations of Seller and Buyer shall

be determined by statute.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the
time of manufacture. Hewlett-Packard shall have no obligation to

modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please

contact:

® In the United States:

Hewlett-Packard

Calculator Service Center

1030 N.E. Circle Blvd.

Corvallis, OR 97330

Telephone: (503) 757-2002

¢ In Europe:

Hewlett-Packard S.A.

150, route du Nant-d’Auvril

P.O. Box

CH-1217 Meyrin 2

Geneva

Switzerland

Telephone: (022) 83 81 11

Note: Do not send calculators to this address for repair.

Appendix F: Battery, Warranty, and Service Information 267

e In other countries:

Hewlett-Packard Intercontinental

3495 Deer Creek Rd.

Palo Alto, California 94304

U.S.A.

Telephone: (415) 857-1501

Note: Do not send calculators to this address for repair.

Service

Hewlett-Packard maintains service centers in most major

countries throughout the world. You may have your unit repaired

at a Hewlett-Packard service center any time it needs service,

whether the unit is under warranty or not. There is a charge for

repairs after the one-year warranty period.

Hewlett-Packard calculator products normally are repaired and
reshipped within five (5) working days of receipt at any service
center. This is an average time and could vary depending upon the

time of year and work load at the service center. The total time you
are without your unit will depend largely on the shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for handheld
and portable calculator products is located in Corvallis, Oregon:

Hewlett-Packard Company
Service Department

P.O. Box 999 or 1030 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

Telephone: (503) 757-2000

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For

countries not listed, contact the dealer where you purchased your

calculator.

AUSTRIA

HEWLETT-PACKARD Ges.m.b.H. BELGIUM

Kleinrechner-Service HEWLETT-PACKARD BELGIUM SA/NV

Wagramerstrasse-Lieblgasse 1 Woluwedal 100

A-1220 Wien (Vienna) B-1200 Brussels

Telephone: (0222) 23 65 11 Telephone: (02) 762 32 00

268 Appendix F: Battery, Warranty, and Service Information

DENMARK

HEWLETT-PACKARD A/S

Datavej 52

DK-3460 Birkerod (Copenhagen)

Telephone: (02) 81 66 40

EASTERN EUROPE

Refer to the address listed under Austria.

FINLAND

HEWLETT-PACKARD OY

Revontulentie 7

SF-02100 Espoo 10 (Helsinki)

Telephone: (90) 455 02 11

FRANCE

HEWLETT-PACKARD FRANCE

Division Informatique Personnelle

S.A.V. Calculateurs de Poche

F-91947 Les Ulis Cedex

Telephone: (6) 907 78 25

GERMANY

HEWLETT-PACKARD GmbH

Kleinrechner-Service

Vertriebszentrale

Berner Strasse 117

Postfach 560 140

D-6000 Frankfurt 56

Telephone: (611) 50041

ITALY

HEWLETT-PACKARD ITALIANA S.P.A.

Casella postale 3645 (Milano)

Via G. Di Vittorio, 9

1-20063 Cernusco Sul Naviglio (Milan)

Telephone: (2) 90 36 91

NETHERLANDS

HEWLETT-PACKARD NEDERLAND B.V.

Van Heuven Goedhartlaan 121

NL-1181 KK Amstelveen (Amsterdam)

P.O. Box 667

Telephone: (020) 472021

NORWAY

HEWLETT-PACKARD NORGE A/S

P.O. Box 34

Oesterndalen 18

N-1345 Oesteraas (Oslo)

Telephone: (2) 17 11 80

SPAIN

HEWLETT-PACKARD ESPANOLA SA.

Calle Jerez 3

E-Madrid 16

Telephone: (1) 458 2600

SWEDEN

HEWLETT-PACKARD SVERIGE AB

Skalholtsgatan 9, Kista

Box 19

S-163 93 Spanga (Stockholm)

Telephone: (08) 750 20 00

SWITZERLAND

HEWLETT-PACKARD (SCHWEIZ) AG

Kleinrechner-Service

Allmend 2

CH-8967 Widen

Telephone: (057) 31 21 11

UNITED KINGDOM

HEWLETT-PACKARD Ltd

King Street Lane

GB-Winnersh, Wokingham

Berkshire RG11 5AR

Telephone: (0734) 784 774

International Service Information

Not all Hewlett-Packard service centers offer service for all models

of HP calculator products. However, if you bought your product

from an authorized Hewlett-Packard dealer, you can be sure that

service is available in the country where you bought it.

If you happen to be outside of the country where you bought your

unit, you can contact the local Hewlett-Packard service center to

see if service is available for it. If service is unavailable, please ship

the unit to the address listed above under Obtaining Repair Service

Appendix F: Battery, Warranty, and Service Information 269

in the United States. A list of service centers for other countries can

be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are

your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The
repair charges include all labor and materials. In the United
States, the full charge is subject to the customer’s local sales tax. In
European countries, the full charge is subject to Value Added Tax
(VAT) and similar taxes wherever applicable. All such taxes will
appear as separate items on invoiced amounts.

Calculator products damaged by accident or misuse are not
covered by the fixed repair charges. In these situations, repair

charges will be individually determined based on time and
material.

Service Warranty

Any out-of-warranty repairs are warranted against defects in

materials and workmanship for a period of 90 days from date of
service.

Shipping Instructions

Should your unit require service, return it with the following items:

A completed Service Card, including a description of the

problem.

A sales receipt or other documentary proof of purchase date if

the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem,
and (if required) the proof of purchase date should be packaged in
the original shipping case or other adequate protective packaging

to prevent in-transit damage. Such damage is not covered by the

one-year limited warranty; Hewlett-Packard suggests that you

insure the shipment to the service center. The packaged unit should
be shipped to the nearest Hewlett-Packard designated collection

point or service center. Contact your dealer for assistance. (If you
are not in the country where you originally purchased the unit,

refer to International Service Information above.)

270 Appendix F: Battery, Warranty, and Service Information

Whether the unit is under warranty or not,it is your responsibility
to pay shipping charges for delivery to the Hewlett-Packard service

center.

After warranty repairs are completed, the service center returns the
unit with postage prepaid. On out-of-warranty repairs in the
United States and some other countries, the unit is returned C.O.D.

(covering shipping costs and the service charge).

Further Information

Service contracts are available. For information about service con-

tracts, please contact the Calculator Service Center in Corvallis,

Oregon.

Calculator product circuitry and design are proprietary to Hewlett-

Packard, and service manuals are not available to customers.

Should other problems or questions arise regarding repairs, please

call your nearest Hewlett-Packard service center.

When You Need Help

Technical Assistance. For technical assistance with this prod-
uct, call:

(503) 757-2004

8 a.m. to 3 p.m.

Pacific time

or write to:

Hewlett-Packard Co.
Portable Computer Division
Calculator Technical Support

1000 N.E. Circle Blvd.
Corvallis, OR 97330

Product Information. For information about Hewlett-Packard
products and prices, contact your local Hewlett-Packard dealer.
For the name of the dealer nearest you, or to order free literature

about Hewlett-Packard products, call toll-free:

(800) FOR-HPPC
(800) 367-4772

Appendix F: Battery, Warranty, and Service Information 271

or write to:

Hewlett-Packard Co.

Personal Computer Group
PCG Telemarketing

10520 Ridgeview Court
Cupertino, CA 95014

Temperature Specifications

e QOperating: 0°to 55° C (32°to 131° F)

e Storage: —40° to 65° C (—40° to 149° F)

Potential for Radio and Television

Interference (for U.S.A. Only)

The HP-15C generates and uses radio frequency energy and if not
installed and used properly, that is, in strict accordance with the
manufacturer’s instructions, may cause interference to radio and

television reception. It has been type tested and found to comply
with the limits for a Class B computing device in accordance with
the specifications in Subpart J of Part 15 of FCC Rules, which are
designed to provide reasonable protection against such inter-

ference in a residential installation. However, there is no guarantee

that interference will not occur in a particular installation. If your
HP-15C does cause interference to radio or television reception, you

are encouraged to try to correct the interference by one or more of

the following measures:

e Reorient the receiving antenna.

e Relocate the calculator with respect to the receiver.

e Move the calculator away from the receiver.

If necessary, you should consult your dealer or an experienced ra-

dio/television technician for additional suggestions. You may find

the following booklet prepared by the Federal Communications
Commission helpful: How to Identify and Resolve Radio-TV

Interference Problems. This booklet is available from the U.S.

Government Printing Office, Washington, D.C. 20402, Stock No.

004-000-00345-4.

Function Summary and Index

.. 272
ComplexFunctionsciiiiiiiniinnnnnnnnennn. 272

CONVEISIONS & ittt ittt ittt it ittt tnneeneneananans 273

Digit ENtry ...iieee 273

DisplayControlottt inneaennns 273

HyperbolicFunctionscciiiiiiiiiiiiinnnnennn. 274

Index Register Controlcoviiiiiiiiniininenennnnns 274

Logarithmic and Exponential Functions 274

MathematiCscoiuiiiin ittt iinieeanennnens 274

Matrix FUNCLIONSitiit it ee, 275

Number Alterationc.oiiiiiiiiiineeennennnnnnnn 276

Percentage ...teeee 276

Prefix Keys .ottti i et i etiee 276

Probabilityc.ccoiiiiiiiii i iiie 276

Stack Manipulationcciiiiiiiiiiiiiit 277

StatiStiCS .. itiieetee 277

SOTAgE .ot i iteeettt 278

TrigoNOMetrY ...ttt ittt ittt ittt et ine 278

Complex (1]Uused to enter

Functions complex numbers.

[ON]Turnsthe calcu-

lator’s display on and

off (page 18). Itis

also used in resetting

Continuous Memory

(page 63), changing

the digit separator

(page 61), and in var-

ious tests of the cal-

culator’s operation

(pages 263-264).

[Rezim|Real ex-

change imaginary.

Activates Complex

mode (establishing

an imaginary stack)

and exchanges the

real and imaginary

X-registers

(page 124).

Activates Complex

mode (establishing

an imaginary stack)

(page 121). Also

used with [DIMto
indirectly dimension

matrices (page 174).

(For Index register

functions, refer to

Index Register Con-

trol keys, page 274.)

272

Function Summary and Index 273

((i)|Displays the con- minutes, seconds (or [-]Decimal point

tents of the imagi- degrees, minutes, (page 22).

nary X-register while seconds) (page 27).

the key is held

(page 124). H|Converts hours, Display Control

minutes, seconds (or .

[5F|8 Setsflag8, degrees, minutes, Sglects fixed

which activates seconds) to decimal PPint display mode
Complex mode hours (or degrees) (Page 58).
(page 121). (page 27).

[sci]Selects scientif-

(CF)8 Clearsflag8, [+RAD|Converts ic notation display

deactivating Com- degreestoradians mode (page 58).

plex mode (page 27).
(page 121). [ENG|Selects en-

(+DEG|Converts gineering notation

radians to degrees display mode (page

Conversions (page 27). 59).

90"(‘1’3"5 p(c;lar Mantissa. Pressing
magnituder an CLEAR-—

angle 6 in X- and Y- Digit Entry c[izi]splays allprgl;'?:;its
registers respectively [ENTER |Enters a copy of the number in the
to rectangular x- and

y-coordinates (page

31). For operation in

Complex mode, refer

to page 134.

[+P]Converts x, y rec-

tangular coordinates

placed in X- and Y-

registers respectively

to polar magnitude r

and angle 6 (page

30). For operation in

Complex mode, refer

to page 134.

Converts

decimal hours (or

degrees) to hours,

of number in X-

register (display) into

Y-register; used to

separate multiple

number entries

(pages 22, 37).

[CHS|Changes sign
of number or expon-

ent of 10 in display

(pages 19, 124).

Enter exponent;

next digits keyed in

are exponents of 10

(page 19).

(0]through [o]digit

keys (page 22).

X-register as long as

the [PREFIXkey is

held down (page

60). It also clears

any partial key se-

quences (page 19).

Hyperbolic

Functions

[HYP][SIN].
[cos).
Compute hyperbolic

sine, hyperbolic co-

sine, or hyperbolic

tangent, respectively

(page 28).

274 Function Summary and Index

(HYPT](SIN]. (HYPT]
[coS]. (HYPT](TAN]
Compute inverse

hyperbolic sine,

inverse hyperbolic

cosine, or inverse

hyperbolic tangent,

respectively (page

28).

Index Register

Control

(1 Index register (R)).

Storage registerfor:

indirect program exe-

cution—branching

with and (GSB]

looping with

and [DSE|—indirect

flag control, and

indirect display

format control (page

107). Also used to

enter complex num-

bers and activate

Complex mode (page

121).

[Indirect opera-

tions. Used to

address another

storage register

through R,for pur-

poses of storage, re-

call, storage, arith-

metic, and program

loop control (page

107). Also used with

[Div]to allocate

storage registers

(page 215).

Logarithmic and

Exponential

Functions

[Ln]Computes

natural logarithm

(page 28).

Natural antiloga-

rithm. Raises e to

power of number in

display (X-register)

(page 28).

[LOG|Computes

common logarithm

(base 10) (page 28).

Common anti-

logarithm. Raises 10

to power of number

in display (X-register)

(page 28).

[y*|Raises number in

Y-register to power

of number in display

(X-register) (enter y,

then x). Causes the

stack to drop (page

29).

Mathematics

CIEEE]
Arithmetic operators;

cause the stack to

drop(page 29).

[z |Computes

square root x (page

25).

[«”] Computes the

square of x (page

25).

[xI]Calculates the

factorial (n!) of x or

Gamma function (T")

of (1 + x) (page 25).

[1/x|Computes

reciprocal (page 25).

(For matrix use, refer

to Matrix Functions,

page 275.)

[|Places value of m

in display (page 24).

SOLVE Solves for

real root of a function

f(x), with the expres-

sion for f(x) defined

by the user ina

labeled subroutine

(page 180).

[/;]Integrate. Com-

putes the definite

integral of f(x), with

the expression f(x)

defined by the user

in a labeled sub-

routine (page 194).

Matrix Functions

Dimensions a

matrix of a given

name {[A]to [E], [1]}

(page 141).

Function Summary and Index

Designates

the matrix into which

the result of certain

matrix operations is

placed (page 148).

(USER|User mode.

Row and column

numbers in Ry and
R, are automatically

incremented each

time or
{to, ()]yis

pressed (page 144).

and{to

(E],} Stores or re-

calls matrix elements

using the row and

column numbers in

Ro and R, (pages

144, 146).

(sTO](g)and (RCL](g]
{[AltoE], ()]}
Stores or recalls

matrix elements

using the row and

column numbers in

the Y- and X-

registers (page 146).

and

{[AltoE]y
Stores or recalls

matrices for the

specified matrix

(pages 142, 147).

and
RESULT] Stores or re-

calls descriptor of the

result matrix (page

148).

(ReL][DIM] {[A]
through [E], [1]}

Recalls the dimen-

sions of the given

matrix into the Y-

(row) and X-(column)

registers (page 142).

Inverts the

matrix whose descrip-

tor is displayed and

places theresult in

the specified result

matrix. The descrip-

tor of the result

matrix is then dis-

played (page 150).

(+],[-],[x] Adds, sub-
tracts, or multiplies

the corresponding

elements of two

matrices or of one

matrix and a scalar.

Stores inresult

matrix (page

152-155).

=] For two matrices,

multiplies inverse of

matrix in X by matrix

inY. For only one

matrix: if matrix in,

divides all elements

of matrix by scalar in

X; if matrix in X, mul-

tiplies each element

of inverse of matrix

by the scalarin.

Stores inresult

matrix (pages

152-155).

Changes sign

of all elements in

matrix specified in X-

register (page 150).

{0 through

9} Matrix operations.

(MATRIX] 0 Dimen-

sions all matrices to

0 X O (page 143).

1 Setsrow

and column numbers

inRgand R, to 1
(page 143).

2 Complex

transform: ZP to Z

(page 164).

3 Inverse

complex transform:

ZtoZ? (page 164).

4 Trans-

pose: X to X7 (page

150).

5 Trans-

pose multiply: Y and

X to YTX (page

154).

6 Calcu-
lates residuals in re-

sult matrix (page

159).

7 Calcu-
lates row norm of

matrix specified in X-

register (page 150).

275

276 Function Summary and Index

8 Calcu-

lates Frobenius norm

of matrix specified in

X-register (page

150).

9 Calcu-
lates determinant of

matrix specified in X-

register (also does

LU decomposition of

the matrix) (page

150).

Transforms

matrix stored in

“partitioned form"’

(ZP)to "complex

form” (Z€) (page

162).

Transforms

matrix stored in

“‘complex form’" (Z€)

to “‘partitioned

form” (Z?) (page

162).

0
5 6 Con-

ditional tests for

matrix descriptors in

the X- or X- and Y-

registers. and

O (x # 0) test

the quantity in the X-

register for zero.

Matrix descriptors

are considered

nonzero. 5

(x =y)and 6
(x #y)testifthe

descriptors in X and

Y are the same. The

result affects

program execution:

skip (one line) if false

(page 174).

Number Alteration

Yields absolute

value of number in

display (page 24).

Leaves only

fractional portion of

number in display

(X-register) by trun-

cating integer por-

tion (page 24).

Leaves only inte-

ger portion of num-

ber in display (X-

register) by

truncating fractional

portion (page 24).

Rounds man-

tissa of entire (10-

digit) number in

X-register to match

display format (page

24).

Percentage

Percent. Com-

putes x % (value in

display) of number in

the Y-register (page

29). Unlike most

two-number func-

tions, does not

drop the stack.

Percent differ-

ence. Computes per-

cent of change be-

tween number in

Y-register and

number in display

(page 30). Does not

drop the stack.

Prefix Keys

Pressed before a

function key to select

the gold function

printed above that

key (page 18).

(9] Pressed before a

function key to select

the blue function

printed below that

key (page 18).

For other prefix keys,

refer to Display Con-

trol keys (page 273),

Storage keys (page

278), and the Pro-

gramming Summary

and Index (page 278).

CLEAR Can-
cels any prefix key-

strokes and partially

entered instructions

such as/f][SCl] (page

19). Also displays

the complete 10-digit

mantissa of the num-

ber in the display
(page 60).

Probability

Combination.

Computes the num-

Function Summary and Index 277

ber of possible sets

of y different items

taken x at a time, and

causes the stack to

drop (page 47). (For

matrix use, refer to

Matrix Functions

keys, page 276.)

Permutation.
Computes the num-

ber of possible differ-

ent arrangements of

y different items

taken x at a time, and

causes the stack to

drop (page 47). (For

matrix use, refer to

Matrix Functions

keys, page 276.)

Stack Manipulation

[xzy] Exchanges con-
tents of X- and Y-

stack registers (page

34).

[xz] X-register ex-
change. Exchanges

contents of X-

register with those of

any other named

storage register.

Used with [1], [(i)],

digit, or Eldigit

address (page 42).

Real ex-

change imaginary.

Exchanges the con-

tents of the real and

imaginary X-

registers and acti-

vates Complex mode

(page 124).

Rolls down con-

tents of stack (page

34).

Rolls up con-

tents of stack (page

34).

Clears contents

of display (X-register)

to zero (page 21).

[«]In Run mode:re-

moves the last digit

keyed in, or clears

the display (if digit

entry has been ter-

minated) (page 21).

Statistics

[Z+] Accumulates

numbers from X- and

Y-registers into stor-

ageregisters R,

through R(page

49).

[Z-]Removes num-

bersin X- and Y-

registers from stor-

age registers R,

through Rfor cor-

recting accumu-
lations (page 52).

E]Computes mean

of x- and y-values ac-

cumulated by

(page 53).

[E]Computes sample

standard deviations

of x- and y-values ac-

cumulated by

(page 53).

[fl] Linear estimate

and correlation coeffi-

cient. Computes esti-

mated value of y (y)
for a given value of x

by least squares

method and places re-

sultin X-register.

Computes the corre-

lation coefficient, r,

of the accumulated

data and places re-

sultin Y-register

(page 55).

Linear Regres-

sion. Computes the

y-intercept and slope

for the linear func-

tion best approxi-

mating the accumu-

lated data. The value

of the y-intercept is

placed in the X-

register; the value of

the slope is placed in

the Y-register (page

54).

[RAN#]Random num-

ber. Yields a pseudo-

random number as

generated from a

seed stored using

(page

48).

CLEAR [Z] Clears
contents of the statis-

tics registers (R, to

R;) (page 49).

278 Programming Summary and Index

Storage

[STO]store. Stores a

copy of a number

into the storage regis-

ter specified {Oto 9,

0t0.9, (1], }page
42). Also used for

storage register arith-

metic: new register

contents = old regis-

ter contents {Eb

(x], B} display (page

44).

Recall. Recalls

a copy of the number

from the storage reg-

ister specified {Oto 9,

0to.9, [1], [()]
(page 42). Also used

for storage register

arithmetic: new dis-

play = old display

(4, 5, ¢,

ter contents (page

44).

CLEAR Clears
contents of all stor-

age registers to zero

(page 43).

(LSTx|Recalls into

the display the num-

ber present before

the previous opera-

tion (page 35).

Trigonometry

Sets decimal

Degrees mode for

trigonometric func-

tions—indicated by

absence of GRAD or

RAD annunciator

(page 26). Not oper-

ative for complex

trigonometry.

} regis- (RAD|Sets Radians

mode for trigono-

metric functions—in-

dicated by RAD an-

nunciator (page 26).

[GRD]Sets Grads

mode for trigono-

metric functions—in-

dicated by GRAD an-

nunciator (page 26).

Not operative for com-

plex trigonometry.

(), [€os),
Compute sine, co-

sine, or tangent, re-

spectively, of number

in display (X-register)

(page 26).

(S, [cos™),
Compute arc sine,

arc cosine, or arc tan-

gent, respectively, of

number in display (X-

register) (page 26).

Programming Summary

and Index

Program/Run

mode. Sets the calcu-

lator to Program

mode (PRGM annun-

ciator on) or Run

mode (PRGM annun-

ciator cleared) (page

66).

CLEAR In
Program mode:

clears all program

memory and deallo-

cates all program reg-

isters. In Run mode:

only resets calculator

to line 000 (page 67).

@Dismays cur-

rent status of calcula-

tor memory (number

of registers dedi-

cated to data storage,

the common pool,

and program mem-

ory) (page 215).

Programming Summary and Index 279

(«] Back arrow.In
Program mode, de-

letes displayed in-

struction from pro-

gram memory. All

subsequent instruc-

tions are moved up

(page 83).

Label. Used
with the label desig-

nations below to de-

note the start of a pro-

gram routine (page

67).

(Al(B]J[c][D][El012
3456789.0.1.2

.3.45.6.7.8.9

Label designations.

When preceded by

, define the
beginning of a pro-

gram routine (page

67). Also used (with-

out[LBL]) to initiate
execution of a

specific routine

(page 69).

Activates and
deactivates User

mode, which ex-

changes the primary

(white) and gold alter-

nate functions ((A]
through(E]) of the
top left five functions

(page 69). User

mode also affects the

matrix use of[STO|
or[RCL] {{A] through
[E],[(0]}. User mode

automatically incre-

ments Rq (row num-

ber) or Ry (column

number) for storage

or recall of matrix

elements (page

144).

Go to. Used
with a label designa-

tor (listed above) or

(1] to transfer the pos-
ition of the calculator

to the designated

label. If it is a pro-

gram instruction, pro-

gram execution con-

tinues. Ifitis not a

program instruction,

only the position

change occurs (page

90). If a negative

numberis stored in

Ry, [GTO][1] will effect
a transfer to a /ine

number (page 109).

nnn Go
to line number. Posi-

tions calculator to

the existing line num-

ber specified by nnn.

Not programmable

(page 82).

Go to sub-
routine. Used with a

label designator

(listed above) or [1] to
start the execution of

a given, labeled rou-

tine. Can be used

both in a program

and from the key-

board (in Run mode).

A[RTN] instruction
transfers execution

back to the first line

following the[GSE]
(page 101).

Back step.
Moves calculator

back one or more

lines in program

memory. (Also

scrolls in Program

mode.) Displays line

number and contents

of previous program

line (page 83).

Single step. In
Program mode:

moves calculator for-

ward one or more

lines in program

memory. In Run

mode: displays and

executes the current

program line, then

steps to next line to

be executed (page

82).

Pause. Halts
program execution

for about 1 second to

display contents of

X-register, then re-

sumes execution

(page 68).

280 Programming Summary and Index

Run/Stop. Be-

gins program execu-

tion from current line

number in program

memory. Stops exe-

cution if program is

running (page 68).

Return. Causes

calculator to return

to line 000 and halt

execution (if running)

(page 68). If in a sub-

routine, merely re-

turns to line after

[GSe](page 101).

Set flag (= true).

Sets designated flag
(Oto 9). Flags O

through 7 are user

flags, flag 8 signifies

Complex mode, and

flag 9 signifies an

overflow condition

(page 92).

Clearflag

(= false). Clears de-
signated flag (O to 9)

(page 92).

Is flag set? Tests
for designated flag. If

set, program execu-
tion continues; if

cleared, program exe-

cution skips one line

before continuing
(page 92).

{0
through 9} Condition-

al tests. Each test

compares value in X-

register against O or

value in Y-register as

indicated. If true, cal-

culator executes in-

struction in next line

of program memory.

If false, calculator

skips one line in pro-

gram memory before

resuming execution

(page 91).[x=0]and

[TEST]0, 5, and 6 are
also valid for com-

plex numbers and

matrix descriptors
(pages 132, 174).

[TEST]0 x#0)
[TEst]1 x>0

[TEST]2 x<O
[TEST]3 x=0
[TEST]4 x<O

[TEST]5 x =y
[TEST|6 x#y
[TEST]7 x>y

[TEST)8 x <y
[TEST]9 x>y

Decrement and
skip if equal to or less

than. Decrements

counter value in

given register as stip-

ulated. Skips one pro-

gram line if new

counter value is

equal to or less than

specified test value

(page 109).

Increment and
skip if greater than.

Increments counter

value in given regis-

ter as stipulated.

Skips one program

line if new counter

value is greater than

specified test value

(page 109).

Subject Index 281

Subject Index

Page numbers in bold type indicate primary references; page
numbers in regular type indicate secondary references.

A

Abbreviated key sequences, 78
Absolute value ([ABS)), 24
Allocating memory, 42,213-219
Altering program lines, 83
Annunciators,

complex, 121
list of, 60
PRGM, 32, 66
trigonometric, 26

Antilogarithms, common and natural,28
Arithmetic operation, 29, 37
Assistance, technical, 270

Asymptotes, horizontal, 230

Automatic incrementing ofrow and column numbers, 143

B

Back-stepping ([BST)), 83
Bacterial population example, 41

Battery life, 259
Battery replacement, 260, 261-263

Bessel functions, 195, 197

Branching,
conditional, 91, 98,177, 192

indirect, 108-109, 112-114, 115

simple, 90

C

C annunciator, 99, 121

Can volume and area example, 70-74
Chain calculations, 22-23, 38

282 Subject Index

Changing signs, 19
in Complex mode, 124-125

in matrices, 177

(cHs], 19
Clearing
blinking in display, 100
complex numbers, 125-127
display, 21

memory, 63

operations, 20-21

overflow condition, 45, 61
prefix keys, 19

statistics registers, 49

Coefficient matrix, 156
Combinations function ([Cy,x]), 47
Common pool, 213
Complex arithmetic example, 132
Complex conjugate, forming, 125
Complex matrix,

inverting, 162, 164, 165

multiplying, 162, 164, 166

storing elements, 161
transforming, 162, 164

Complex mode, 120-121
activating, 99, 120-121, 133

deactivating, 121

mathematics functions in, 131

stack lift in, 124

Complex numbers,
clearing, 125-127

converting polar and rectangular forms, 133-135
entering, 121, 127, 128-129

storing and recalling, 130

Conditionals, indirect, 109-111,112,116

Conditionaltests, 91, 98, 192
in Complex mode, 132
with matrix descriptors, 174

Constant matrix, 156
Constants,

calculations with, 39-42

using in arithmetic calculations, 35, 39-42
Continuous Memory,
duration of, 62

Subject Index 283

resetting (clearing), 63
what it retains, 43, 48, 58, 61, 62

Conventions, handbook, 18
Conversions,
degrees and radians, 27
polar and rectangular coordinates, 30-31

time and angle, 26-27
Correcting accumulated statistics data, 52
Correlation coefficient, find the ((3.r]), 55-56

(cos], (cosT), 26
Counters in program loops, 98,112-114
Crocus example, 43
Cumulative calculations, 41

D

Data storage, 42
Data storage pool, 213-214

Debt payment example, 95
Decimal point, 22
Decimal point display, 61
Deflation, 233, 234, 237

[DEG], 26
Determinant, 150

Digit entry, 22

in Complex mode, 121, 125, 127, 128-129

termination, 22, 36, 209

Digit separator display, 61
(omM], 76-77,215-217
Disabling stack lift, 36
Display (See also X-register),

blinking, 100

clearing, 21

error messages, 61

full mantissa, 60

in Complex mode, 121

Display format, 58-59, 61

effect on (%3], 200, 241, 244, 245-249
Do if True rule, 92, 192

(DSE], 109-111,112,116

284 Subject Index

E

(EEX], 19
Electrical circuit example, 169-171
Enabling stack lift, 36

(ENG], 59
Engineering notation, 59

(ENTER], 12, 33-34, 36
effect on digit entry, 22, 29
effect on stack movement, 37, 41

Entering data for statistical analysis, 49
Error

conditions, 205-208
display, 61
stops, 78

Errors,

with (5], 203-204
with [SOLVE], 187,192, 193

Euclidean norm (See Frobenius norm)

Exchanging the real and imaginary stacks, 124
Exponential function (See Power function)

Exponents, 19, 20

F

(f],18
Factorial function ([x!]), 25
Falling stone example, 14

(Fix], 58
Fixed decimal notation, 58
Flag tests, 92, 98

Flag 8,99
Flag 9,100
Format, handbook, 2, 18

Fractional portion ([FRAC]), 24
Frobenius norm, 150, 177

Functions, nonprogrammable, 80

Functions, one-number, 22, 25

Functions, primary and alternate, 18

Functions, two-number, 22, 29

G

(o), 18

Subject Index 285

Gamma function ([x!]), 25

(GRD], 26
(GsB], 101

(GT0], 90, 97, 98

82

H

Horner’s Method, 79, 181

Hyperbolic functions, 28

I

Imaginary stack,
clearing the, 124
creation of, 121-123, 133

display of, 124
stack lift of, 124

Index register
arithmetic, 108, 112

display format control, 109, 114, 115,116
exchange with X-register, 108, 112

flag control, 109, 115

loop control, 107, 109-111
storage and recall, 107,111,115

Indirect addressing, 106-108, 115
Initialization, 87

Instructions, 74

Integer portion ([INT]), 24
Integrate function ([5]), 194-204

accuracy of, 200-203, 240, 241-245

algorithm for, 196, 240-241, 249-251, 255-256

display format with, 245-249
execution time for, 196, 200, 244, 245, 254-256

memory usage, 204

obtaining an approximation for, 257-258
problems with erratic functions, 249-254
programmed, 203-204

recursive use of, 203

subroutines for, 194-195

uncertainty in, 202-203, 240-244, 245-249
Interchanging functions (See User mode)

Interference, radio and television, 271

286 Subject Index

Intermediate results, 22, 38

Interpolation, using , B7
(5G], 109-111, 116
Iterations using and [DSE], 111

K

Keycodes, 74-75

Keyingin

chain calculations, 22
exponents, 19-20

one-number functions, 22

two-number functions, 22, 29

L

Labels, 67,77, 90, 97

LAST X register, 35
in matrix functions, 174-176

operations saved by, 212

putting constants in, 39-40

to correct statistics data, 52
Linear equations, solving with matrices, 138, 156

Linear estimation ((3.r]), 55-56

Linear regression ([L.R.]), 54
Loading the stack with constants, 39, 41

Logarithmic functions, common and natural, 28

Loop control number, 109, 116

Looping, 90, 98

Low-power indication, 62, 260-261

LU decomposition, 148, 155, 156, 160

Fukasiewicz, Jan, 32

M
Mantissa, displaying full 10 digits, 60

Matrix

complex, 160-163

copying, 149

descriptors, 139, 147,160, in Ry, 173-174

dimensioning, 140, 142, 142,174

dimensions, displaying, 142,147

equation, complex, 168

memory, 140,171

Subject Index 287

name (See Matrix descriptors)

partitioned, 161, 164
Matrix elements,

accessing individually, 145-147
displaying, 144
storing and recalling, 143-144, 147, 149, 176

Matrix functions,

using R}, 173-174
using registers, 173
arithmetic, 153

conditional, 177
inverse, 150, 154

multiplication 154
one-matrix, 149-151

programmed, 176-177
reciprocal, 150

residual, 159

row norm, 150, 177

summary, 177-179

transpose, 150, 151, 154

Mean ([x]), 53
(MEM], 215
Memory

allocation, 76,215-217

availability, 75-77, 213, 215
configuration, initial, 75-76

distribution, 75,213-214

limitations, 75, 77,217

requirements for advanced functions, 218-219
requirements for programming, 218

stack (See Stack)

status display, 215
registersin, 213-215

Metal box dimensions example, 189-191
Minima, finding with [SOLVE], 230
Modes, trigonometric, 26

Multiple roots, 234

N

Negative numbers, 19

in Complex mode, 124-125

288 Subject Index

Nested calculations, 38

Neutral operations, 211
Nonprogrammable functions, 80
Normalizing statistics data, 50
null display, 144, 149

o

(on],
and off, 18

to reset Continuous Memory, 63
to set decimal point display, 61

Overflow condition, 45, 61, 100

P

(P/R], 66, 68
Pause ([PSE]), 68
Percent difference ([4%]), 29
Percentage functions, 29-30

Permutations function ([Py,x]), 47
Phasor notation, 133

Pi, 24
Polar coordinates, 30, in Complex mode, 133-135

Power function ([y*]), 29
Prefix keys, 19

PRGM annunciator, 66, 82

Program

control, indirect, 107,109-111
data entry techniques, 69-70
end, 68, 77

entering, 66-68

labels, 67, 77

loading 66
loop counters, 109, 112-114, 116

mode, 66, 68, 86

position, changing, 82, 86

running, 68-69

starting, 69

stops, 68, 78

Program execution, 69

after (GSB], 101
after ,97

Subject Index 289

after overflow, 100
after test, 92

from or through labels, 78-79

Program lines (instructions), 67, 74

deleting, 83, 86
inserting, 83, 86

Program memory, 67, 70, 75,217-219

automatic reallocation, 217-218

clearing, 67

moving in, 67

Q
Quadratic equation, solving, 181

R

Rj and Ry, using to access matrix elements, 143, 146, 176

(RAD], 26
Radioisotope example, 93-94
Random number generator ([RAN#]), 48
Random number storage and recall, 48
Recall arithmetic, 44
Recalling accumulated statistics data, 50
Recalling numbers ([RCL]), 42, 44, with matrices, 144, 149, 176

Reciprocal ([1/x]), 25, with matrix, 150
Rectangular coordinates, 31, in Complex mode, 133-135
Registers, converting, 215-217

Residual, 159

Result matrix, 147, 148, 150, 152

Return ([RTN]), 68, 77
Returns, pending, 101, 105, 192, 204

Reverse Polish Notation, 32
[Rexim], 124, 127
Rice yield example, 50-56
Ridget hurling example, 184-186, 224-226
Roll down, 34
Roll up, 34
Roots, eliminating, 233, 234, 237

Roots, meaningless, 188, 191
Rounding ([RND]), 24
Rounding in the display, 59

Round-off errors, 52, 60, with [SOLVE], 223, 237

290 Subject Index

Row norm, 150,177

Run/Stop ([R/S]), 68, 91
running display, 69, 147, 182

S
Scalar operations, 151-153

(scil, 58
Scientific notation, 58
Scrolling, 82
Secant line calculation example, 102
Self-tests, 263-265
Service information, 267-270

Shearstress example, 227-228

(SIN], (SINT], 26
Sine integral example, 198-199

Single-stepping ([SST)), 82, 85
Skip if True rule, 110
Slope, finding the, 54

[SOLVE], 180-181

accuracy, 222-226, specifying, 238

algorithm, 182, 187-188, 220-222, 230-231
conditions necessary for, 221-222

constant function value with, 187, 189

execution time, 238

illegal math routine with, 187-188

initial estimates with, 181, 188-192, 221, 233, 237

memory usage, 193

nonzero minimum of function with, 187

programmed, 192

recursive use of, 193

restrictions on, 193

using as a conditional test, 192

using functions with discontinuities, 227
using functions with poles, 227

using functions with several roots, 233-238

with no root, 186-188, 192, 229

Square root ([Jz), 25
Squaring ([¥%)), 25
Stack

contents, with (%], 197, 202
drop, 33, 38

lift, 33, 36, 38, 44, 209-211

Subject Index 291

manipulation functions, 33-34, in Complex mode, 131
imaginary, 120-125
used to access matrix elements, 146-147

Stack-disabling operations, 210
Stack-enabling operations, 210-211
Stack movement, 32, 33-37

in matrix functions, 174-176
with [SOLVE], 181

Standard deviation ([s]), 53, sample vs. population, 53
Star example, 40

Statistics, accumulation of data ([Z+]), 49
Statistics, correction of accumulated data ([Z-]), 52

Statistics functions,
combinations, 47
correlation coefficient, 55
linear estimation, 55
linear regression, 54

mean, 53

permutations, 47
probability, 47
standard deviation, 53

Statistics registers, 49-50

Status indicators, 60
Storage and recall ([STO], [RCL]), 42, 43, 44
complex numbers, 130
direct (with [1]), 106, 107
indirect, 106-107, 111

matrices, 144, 149, 176

matrix elements, 143-144, 147, 149

Storage arithmetic, 43

Storage registers, 42
allocation, 42,215-217
arithmetic, 43

clearing, 43

statistics, 42, 49

Subroutine
levels, 102, 105

limits, 102, 105
nesting example, 103

returns, 101, 105

using with [SOLVE], 180-181, 192
System flags, 92, 99

292 Subject Index

T

T-register, 32, 33

in matrix functions, 174-176

with (], 202

(TAN], (TANT], 26
Temperature specifications, 271

(TEST], 91
Tracing, 82

Transpose, 150,151, 154

Trigonometric modes in Complex mode, 121, 134

Trigonometric operations, 26

U

u display, 176

Uncommitted registers, 213,215, 217

Underflow,
in any register, 61

storage register arithmetic, 45

with ,223
User flags, 92

User mode, 69, 79, with matrices, 143, 176

Vv

Vector arithmetic, using statistics functions, 57

w

Warranty information, 265-267

Wrapping, 86, 90

X

X exchange ([x%]), 42
X exchange Y ([x%y]), 34
X-register, 32, 35, 37, 42, 60, 209-210
imaginary, 210,211
in matrix functions, 141, 156, 175-176

with (%], 202
with [SOLVE], 181, 183, 192, 226

Y

y-intercept, finding, 54

Subject Index 293

Y-register, 32, 37

in matrix functions, 141, 156, 175-176
with 5], 202

with [SOLVE], 181, 183, 192, 226

Z

Z-register, 32

in matrix functions, 174-176

with 5], 202
with [SOLVE], 181, 183, 192, 226

The HP-15C
Keyboard and Continuous Memory

123456 71- {5

MEMORY STACK

Real |mag|nary

l |

T ' :' i
heme————4

MAmx FOC SCTENG soive Z ' '

....e ' io & oo oo IR boemm———<
' |

ISG Y ' '

bbT GTO sw cos =3 L________ :
o= ; .1
— '

REG PREFIX RAN# ‘R “HMS “RAD Rexlm x 1 :

bececcem- 4

o * |[Canvo IR LY

FRAC usER

M ! [s10 lRc
I Y SRS

HEWLETT-PACKARD

e ([
N R ER
=3 = L2TE TEST

x! Vo LR Py.x Display shows real X-register.
pom===—=-1

becacaan -

DATA STORAGE POOL

R: COMMON POOL

Ro 0

10 R2o
R, 1

1 Matrix Memory

n . 12
Imaginary Stack

Ix) 13

sx2 2% SOLVE]and

dy . 15 Uncommitted
Registers

iy? R 16
Sxy 17 Program Memory

: up to seven pro-
18 gram lines per

register
9 19 Res

Initial allocation is Ry through Memory allocation for
R,oto data storage. program lines is automatic

Allocations can be changed with within the common memory

the ((i)) function. pool.
Initial allocation is Ry
through Rgs to the common
pool, from which the above

functions and programming

draw memory space.

There are seven bytes of memory

per register. One or two bytes are

needed per program instruction.

One register at a time is con-

verted to program memory as

needed, starting at the highest-

numbered available register and

proceeding to the lower registers.

[bfi HEWLETT
PACKARD

Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

European Headquarters HP-United Kingdom

150, Route du Nant-D’Avril (Pinewood)

P.O. Box, CH-1217 Meyrin 2 GB-Nine Mile Ride, Wokingham

Geneva-Switzerland Berkshire RG11 3LL

00015-90001 Rev. G English Printed in Canada 11/85

	Cover
	Introduction
	Contents
	The HP-15C: A Problem Solver
	A Quick Look at [ENTER]
	Manual Solutions
	Programmed Solutions

	Part I: HP-15C Fundamentals
	Section 1: Getting Started
	Power On and Off
	Keyboard Operation
	Primary and Alternate Functions
	Prefix Keys
	Changing Signs
	Keying in Exponents
	The "CLEAR" Keys
	Display Clearing: [CLx] and [←]

	Calculations
	One-Number Functions
	Two-Number Functions and [ENTER]

	Section 2: Numeric Functions
	Pi
	Number Alteration Functions
	One-Number Functions
	General Functions
	Trigonometric Operations
	Time and Angle Conversions
	Degrees/Radians Conversions
	Logarithmic Functions
	Hyperbolic Functions

	Two-Number Functions
	The Power Function
	Percentages
	Polar and Rectangular Coordinate Conversions

	Section 3: The Automatic Memory Stack, LAST X, and Data Storage
	The Automatic Memory Stack and Stack Manipulation
	Stack Manipulation Functions
	The LAST X Register and [LSTx]
	Calculator Functions and the Stack
	Order of Entry and the [ENTER] Key
	Nested Calculations
	Arithmetic Calculations With Constants

	Storage Register Operations
	Storing and Recalling Numbers
	Clearing Data Storage Registers
	Storage and Recall Arithmetic
	Overflow and Underflow

	Problems

	Section 4: Statistics Functions
	Probability Calculations
	Random Number Generator
	Accumulating Statistics
	Correcting Accumulated Statistics
	Mean
	Standard Deviation
	Linear Regression
	Linear Estimation and Correlation Coefficient
	Other Applications

	Section 5: The Display and Continuous Memory
	Display Control
	Fixed Decimal Display
	Scientific Notation Display
	Engineering Notation Display
	Mantissa Display
	Round-Off Error

	Special Displays
	Annunciators
	Digit Separators
	Error Display
	Overflow and Underflow
	Low-Power Indication

	Continuous Memory
	Status
	Resetting Continuous Memory

	Part II: HP-15C Programming
	Section 6: Programming Basics
	The Mechanics
	Creating a Program
	Loading a Program
	Intermediate Program Stops
	Running a Program
	How to Enter Data
	Program Memory

	Example
	Further Information
	Program Instructions
	Instruction Coding
	Memory Configuration
	Initial Memory Configuration
	Program Boundaries
	Unexpected Program Stops
	Abbreviated Key Sequences
	User Mode
	Polynomial Expressions and Horner's Method
	Nonprogrammable Functions

	Problems

	Section 7: Program Editing
	The Mechanics
	Moving to a Line in Program Memory
	Deleting Program Lines
	Inserting Program Lines

	Examples
	Further Information
	Single-Step Operations
	Line Position
	Insertions and Deletions
	Initializing Calculator Status

	Problems

	Section 8: Program Branching and Controls
	The Mechanics
	Branching
	Conditional Tests
	Flags

	Examples
	Example: Branching and Looping
	Example: Flags

	Further Information
	Go To
	Looping
	Conditional Branching
	Flags
	The System Flags: Flags 8 and 9

	Section 9: Subroutines
	The Mechanics
	Go To Subroutine and Return
	Subroutine Limits

	Examples
	Further Information
	The Subroutine Return
	Nested Subroutines

	Section 10: The Index Register and Loop Control
	The [I] and [(i)] Keys
	Direct Versus Indirect Data Storage With the Index Register
	Indirect Program Control With the Index Register
	Program Loop Control

	The Mechanics
	Index Register Storage and Recall
	Index Register Arithmetic
	Exchanging the X-Register
	Indirect Branching With [I]
	Indirect Flag Control With [I]
	Indirect Display Format Control With [I]
	Loop Control With Counters: [ISG] and [DSE]

	Examples
	Examples: Register Operations
	Example: Loop Control With [DSE]
	Example: Display Format Control

	Further Information
	Index Register Contents
	[ISG] and [DSE]
	Indirect Display Control

	Part III: HP-15C Advanced Functions
	Section 11: Calculating With Complex Numbers
	The Complex Stack and Complex Mode
	Creating the Complex Stack
	Deactivating Complex Mode

	Complex Numbers and the Stack
	Entering Complex Numbers
	Stack Lift in Complex Mode
	Manipulating the Real and Imaginary Stacks
	Changing Signs
	Clearing a Complex Number
	Entering a Real Number
	Entering a Pure Imaginary Number
	Storing and Recalling Complex Numbers

	Operations With Complex Numbers
	One-Number Functions
	Two-Number Functions
	Stack Manipulation Functions
	Conditional Tests
	Complex Results from Real Numbers

	Polar and Rectangular Coordinate Conversions
	Problems
	For Further Information

	Section 12: Calculating With Matrices
	Matrix Dimensions
	Dimensioning a Matrix
	Displaying Matrix Dimensions
	Changing Matrix Dimensions

	Storing and Recalling Matrix Elements
	Storing and Recalling All Elements in Order
	Checking and Changing Matrix Elements Individually
	Storing a Number in All Elements of a Matrix

	Matrix Operations
	Matrix Descriptors
	The Result Matrix
	Copying a Matrix
	One-Matrix Operations
	Scalar Operations
	Arithmetic Operations
	Matrix Multiplication
	Solving the Equation AX = B
	Calculating the Residual
	Using Matrices in LU Form

	Calculations With Complex Matrices
	Storing the Elements of a Complex Matrix
	The Complex Transformations
	Inverting a Complex Matrix
	Multiplying Complex Matrices
	Solving the Complex Equation AX = B

	Miscellaneous Operations Involving Matrices
	Using a Matrix Element With Register Operations
	Using Matrix Descriptors in the Index Register
	Conditional Tests on Matrix Descriptors

	Stack Operation for Matrix Calculations
	Using Matrix Operations in a Program
	Summary of Matrix Functions
	For Further Information

	Section 13: Finding the Roots of an Equation
	Using [SOLVE]
	When No Root Is Found
	Choosing Initial Estimates
	Using [SOLVE] in a Program
	Restriction on the Use of [SOLVE]
	Memory Requirements
	For Further Information

	Section 14: Numerical Integration
	Using [∫ᵧˣ]
	Accuracy of [∫ᵧˣ]
	Using [∫ᵧˣ] in a Program
	Memory Requirements
	For Further Information

	Appendix A: Error Conditions
	Appendix B: Stack Lift and the LAST X Register
	Digit Entry Termination
	Stack Lift
	Disabling Operations
	Enabling Operations
	Neutral Operations

	LAST X Register

	Appendix C: Memory Allocation
	The Memory Space
	Registers
	Memory Status ([MEM])

	Memory Reallocation
	The [DIM] [(i)] Function
	Restrictions on Reallocation

	Program Memory
	Memory Requirements for the Advanced Functions

	Appendix D: A Detailed Look at [SOLVE]
	How [SOLVE] Works
	Accuracy of the Root
	Interpreting Results
	Finding Several Roots
	Limiting the Estimation Time
	Counting Iterations
	Specifying a Tolerance

	For Advanced Information

	Appendix E: A Detailed Look at [∫ᵧˣ]
	How [∫ᵧˣ] Works
	Accuracy, Uncertainty, and Calculation Time
	Uncertainty and the Display Format
	Conditions That Could Cause Incorrect Results
	Conditions That Prolong Calculation Time
	Obtaining the Current Approximation to an Integral
	For Advanced Information

	Appendix F: Battery, Warranty, and Service Information
	Batteries
	Low-Power Indication
	Installing New Batteries

	Verifying Proper Operation (Self-Tests)
	Limited One-Year Warranty
	What We Will Do
	What is Not Covered
	Warranty for Consumer Transactions in the United Kingdom
	Obligation to Make Changes
	Warranty Information

	Service
	Obtaining Repair Service in the United States
	Obtaining Repair Service in Europe
	International Service Information
	Service Repair Charge
	Service Warranty
	Shipping Instructions
	Further Information

	When You Need Help
	Temperature Specifications
	Potential for Radio and Television Interference (for U.S.A. Only)

	Function Summary and Index
	Complex Functions
	Conversions
	Digit Entry
	Display Control
	Hyperbolic Functions
	Index Register Control
	Logarithmic and Exponential Functions
	Mathematics
	Matrix Functions
	Number Alteration
	Percentage
	Prefix Keys
	Probability
	Stack Manipulation
	Statistics
	Storage
	Trigonometry

	Programming Summary and Index
	Subject Index
	The HP-15C Keyboard and Continuous Memory

