
SYNTHETIC METHODS ON THE HP-15C

INTRODUCTION AND DISCLAIMER

The complexity of advanced calculators often means that it is

neither possible nor useful to keep the internal workings totally

secret. Manufacturers may find it useful to be able to test a

calculator without opening it and advanced users are always

looking for ways to squeeze more out of their machines. Thus,

bugs and other loopholes are often discovered that allow the user
to ‘see’ some of the internal workings. Over the years the use of

non-standard keystrokes to make a calculator perform operations

not described in the owner’s handbook have generally been

associated with the word ’‘synthetic’. Thus a synthetic number is
one which cannot be keyed in directly and synthetic programming

generally involves synthesizing program 1lines wusing various

tricks.

This article is intended to be a introduction to all synthetic

methods that I have investigated on my HP-15C. So far these

methods have worked on every HP-15C that I've tried, and therefore

are expected to work on your HP-15C. However, I, and I'm sure HP

also, do not guarantee that these methods will work on your

calculator or any purchased from HP in the future. There is no

reason to expect HP to support these functions.

IMPORTANT NOTICE: Most synthetic operations will not harm the

calculator in any way. In fact the ‘rotate’ function and

recalling numbers from anywhere in memory are extremely ’‘safe’

operations. However, if you do get hooked into trying out new

ideas, odds are that at some point you will do something that will

cause the complete loss of continuous memory. Consider yourself

warned.

 

If you cause the processor to crash, the display will blank and

the calculator will not respond to any keystroke. For this

problem HP recommends holding down the y* key while turning the

calculator on. This has always worked for me although the message

‘Pr Error’ often appears. The sequence of holding down the minus
key while turning on, can be used to initialize memory should this

be neccessary. Note; the status registers are also initialized.

SYNTHETIC NUMBERS

It will be useful to understand how a number is stored in the

calculator, so let us start with a quick review. For a more

detailed discussion of numbers see the book Synthetic Programming

on the HP-41C by William C. Wickes. HP uses binary coded decimal

(BCD)to store numbers. This means that 4 bits are used to store

each decimal digit 0-9. Since 4 bits are also called a nybble, we

have the following relation: 4 bits=1 nybble= 1 BCD digit. Of
course, 4 bits can also store the numbers 10-15 which I will call

by their hex names of A-F. When there may be some doubt as to

what number system has been used, I will precede hex numbers with
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a small x. It is impossible to generate the numbers xA-xF via any

legal operations.

So much for digits, what about signs and the exponent? The

sign is stored in a nybble to the left of the first displayed

digit and the exponent occupies 3 nybbles to the right of the last

displayed digit. To facilitate referring to individual nybbles I

will use the following system,

(s) 123456789 0(SEE)
where the parentheses mark off the digits that f-PREFIX does not
display. Thus, nybble 1 will always mean the first displayed

nybble, s will refer to the sign, and SEE to the exponent. All

(legal) numbers are stored internally in a f-SCI 9 format, with

the first non-zero digit of the mantissa being left justified. A
number in this format is said to be normalized. By HP convention

s and S contain O for positive and 9 for negative.

Throughout this article I will use the word rotate to describe

the series of steps which are: 1) turn calculator off and 2) hold

down y* while turning it back on. HP mentions this sequence of

steps on p. 263 of the Owner’s Handbook where they made the
tantalizing statement that "this will alter the contents of the X-
register, so clear the X-register afterward." While playing
around I discovered that the “rotate’ operation merely rotated the

number in the X-register to the right by 22 bits. If you have
access to an HP-15C T suggest trying the following. First, press

1 (no enter!) and then rotate. When you press f-PREFIX you should
see 0000004000 in the display. To understand this remember that a
BCD 1 has the following binary representation

BCD: 1 0 0 0 0 0 0 0 0 0
BIN:0001 0000 0000 0000 0000 0000 0000 0000 0000 0000

where I have inserted a space between the BCD digits to guide the

eye. Rotating right by 22 bits gives

BCD: 0 0 0 0 0 0 4 0 0 0
BIN:0000 0000 0000 0000 0000 0000 0100 0000 0000 0000

which is what was displayed. Since both the sign and the exponent

contained zero, zero was rotated in from the left.

The above example illustrates another important fact; the

number is not normalized. Thus f-PREFIX displays the mantissa

with nybble 1 going into the first place of the display, nybble 2

into the second place, etc. If you rotate a 3 and press f-PREFIX

you should see a small o in the display. Since a 3 rotates to a

xC the small o is the display code for xC. The display codes for

the other hex digits are listed in figure 1. A xD will generally

display as a P unless it is the fourth digit, when it becomes an

small (upper) u. The fourth digit is the location a u appears if
you are in program mode and have just entered a ‘User mode’

instruction.

Esoteric facts concerning rotate and Complex mode: If you do a

rotation with stack 1lift disabled, then the C annunciator will

turn on, but no registers for a complex stack will be allocated.

A Re<>Im returns an overflow to the X-register. Rotation with the
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stack 1lift enabled turns off Complex mode.

SYNTHETIC MATRICES

If the sign nybble of a register contains a 1 then the register
is treated as containing a matrix descriptor. Nybble 1, of a

matrix descriptor, contains a digit in the range xA to xXE to

logically denote matrices A to E. All other nybbles appear to be

ignored. To see this, rotate the number 1.000000070 and the

descriptor for matrix C will appear in the display. The 7 (0111)
rotated to become xC (0001 1100) with the 1 going into the sign
nybble and xC going to nybble 1. The initial ‘1.’ is needed since
the calculator will normalize any number you enter.

It is clear that nybble 1 of a descriptor can also contain the

digits 0 to 9 and xF. Matrices with these numbers are interesting

and will be useful to us. To construct matrix 1, rotate the number

1.000000044, and the matrix name (which for this case looks 1like

the Greek letter Xi) with the dimensions of (0,0) should appear in

the display. Store the descriptor in I and dimension A to be a

(2,2) matrix. If you recall I you will find that matrix 1 now has
the dimensions of (2,2). You can quickly discover that matrix 1
does not point at the same memory locations as matrix A. Remember

that to recall elements from an arbitary matrix, store the

descriptor in the index register I and then use either RCL (i)

which uses RO and Rl as pointers or RCL g (i) which uses X and Y

as pointers. Notice that when you recall an element from matrix 1
the correct descriptor (the Greek Xi) appears in the display when
you hold down the (i) key.

Where does matrix 1 point? Experimentation has shown that the

base of matrix 1 points at the first register in the unassigned
pool area. The area allocated for matrix 1 equals the area

allocated for matrix A. If we dimension A to be great enough,

matrix 1 will point into the program area. In figure 2 I have

listed the basics for all synthetic matrices.

The descriptor for synthetic matrices appears to 1light up

random segments in the left half of the display. Thus column 2 in

figure 2 shows what the standard display for the matrix

descriptors are. Matrix F lights up no segments, while matrix 5

lights the User mode annunciator but does not turn on User mode.

THE PROGRAM AREA

Using the rotate function of the HP-15C, we have constructed

synthetic matrices which are dimensioned with one standard matrix

but point at some other area of memory. This 1inconsistent

property of synthetic matrices allows us almost complete access to

all internal calculator registers. In this section we will

examine program memory and discover the op-codes for one- and two-

byte instructions.
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Construct matrix 1 (1.000000044, rotate) and then type STO I.
Zero all matrices, zero program memory, dimension (i) to be 19 and

A to be (1,23). At this point there should be 23 registers in the
pool and so the top of matrix 1 should point at the top of the

data area which is the first program register. Store 1 in RO and
23 in Rl. If you push RCL (i) at this point, element (1,23) of
matrix 1 will be returned. To test that you are looking at
program memory switch to program mode and enter LBL 1, LBL 2, LBL

3, LBL 4, LBL 5, LBL 6, and LBL 7. Switch back to run mode and RCL
(i). If you press f-PREFIX you should see the number 7060504030.
Including the sign and exponent nybbles, the true number is

(0) 706 0504030¢(201)
Remember that each LBL instruction takes one byte or two BCD

digits. It can be shown that program lines fill a data register

from right to left thus the above information tells us that the

op-code for the LBL n instruction is On. To avoid misunderstanding

I refer to the two nybbles in a program byte as left and right.

For the LBL n instruction the left nybble is 0 and right nybble n.

Figure 3 is a table of all one-byte instructions. All program

bytes that have a right nybble containing a xF are interpreted by

the processor to be the first byte of a two-byte instruction.

This makes it possible to uniquely decide if any given byte is

part of a two byte op-code. This was not true on the HP-41C where,

in order to back step, the calculator had to go to the beginning

of the program and forward step one fewer line numbers.

Figure 3 clearly shows that there are no unused one-byte op-

codes. However there are many unused two-byte op-codes. All two-

byte instructions require an argument, either a label, a data

register or a matrix. This argument always fills the second

nybble of the second byte. Therefore, the two-byte op-code table

need not list all of both bytes. In figure 4, I have listed two-

Footnotes for figure 4

Note argument right nybble

a 0O-E 0-E

b 2-E 2-E

c .0-.9,(1),I 0-9,D,E
d 0-9,1 0-9,E

e 0-9 0-9

f .0-.9 0-9

g A-E A-E

h user A-E A-F

i user (i) 6

] g(i) D

byte instructions. The small letters a to j inform the reader of

the legal choices for the right nybble according to the footnote

table. An example should help. Suppose you are examining program

memory and find a byte containing xDF. The xF tells you that this

is a two byte instruction, so you must examine the second byte.

Assume the second byte contains a x93. The xD in the first byte

tells us to examine row D of figure 4 and the x9 in the second
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byte tells us to go to column 9. At this point we find that the

instruction is STO+ (argument). Footnote c¢ informs us that a
right nybble of 3 is a legal argument corresponding to .3 and so

STO+.3 is the complete instruction.

SYNTHETIC NUMBER TRANSFER

Using program memory, we can now construct numbers with

arbitary bit patterns but, if we try to transfer a synthetic

number from where it was created to a new location, we will find

that sometimes the number will be changed. In this section I list

the conditions that I’ve found that cause a number to be changed.

If the copy is from memory to the X-register then, the number in

memory will never be altered. However, if the copy is from the X-

register then some operations will alter the original number. I

have not investigated memory-to-memory type moves that occur when

the STO-MATRIX command is used. I suspect the memory-to-memory

copy will cause less damage to the numbers moved. Conditions that

cause changes are:

1) The only non-zero nybble is the sign s.
From memory: Zero appears in the X-register.

To memory: The X-register is set to zero and then the copy takes

place.

2) The mantissa is zero but the exponent is not.

From memory: Zero appears in the X-register.

To memory: The correct number is stored and then the X-register is

set to zero.

3) EE=00 but the exponent sign S is greater than 7.

From memory: Zero appears in the X-register.

To memory: The correct number is stored and then the X-register is

set to zero.

4) Storing into a matrix.

From memory: No problem.

To memory: If s=1, the number is interpreted to be a matrix and

the HP-15C will not allow a matrix to be stored as an element of a

matrix. If s>9 then s will be changed and the number stored. The
change in s, is as follows,

was becomes | was becomes

A 0 | D 7

B 5 | E 8

C 6 | F 9

Note: This does not happen if you store into a numbered data

register.

5) If sign of exponent S is not O or 9.
From memory: S will be changed to 0 if S was <8 but will be

changed to 9 if S>=8.

To memory: The correct number is stored. However, the X-register
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will then be loaded with the flashing 9 display, signaling an
overflow.

Note: The HP-15C uses the exponent sign nybble of element (2,2) of
a square matrix to mark if the matrix is in LU form. If S is 1 or

8 (for + or =) then the matrix is in LU form. Since S is

automatically changed to the correct value when placed in the X-

register, all calculations based on this number will give the
correct result.

THE STATUS REGISTERS

To examine the status registers, clear program memory and then

hit f-MATRIX O. Use g-MEM to find out the number of pool

registers, say 46, and then allocate all registers to matrix A, in

this case type 1, ENTER, 46, f-DIM A. If you refer to figure 2

you will see that matrix 1 points into the pool area but by

construction there is no pool area. So where does matrix 1 point?

It can be shown that the top of the data area occurs at the

largest allowed physical address of xFF. When you add one to the

largest address you wrap around back to zero. Therefore, the base

of matrix 1 now points at address x00 which is the base of the

status area.

In figure 5 I have listed all registers from address x00 to x1F

and for the useful ones assigned a simple name based on some

function that the register is used for. Since different parts of

one register are often used for different functions, the name

assigned is not intended to describe the entire register, but

rather to serve as a memory aid. In the following I will discuss

each status register and what I’ve discovered it is used for.

There are several places where my knowledge is clearly incomplete.

If I have never seen a non-zero number in a register then I

have put a ‘0’ for the register name in figure 5. Notice that if
the register at address xOn is zero then the register at xln is

also zero. Because of this symmetry I 1like to say that all

registers below x20 are potential status registers. Registers x05
and x06 appear to contain zero but careful examination reveals the

exponents are non—zero.

Registers y,z and t comprise the user stack. Notice that the

X-register is missing. Registers RO, Rl, I and last x are also

standard user registers. It was interesting to discover that the

lowest numbered data register in the data area was R2. This is one

reason why registers RO and Rl cannot be assigned to the pool.

 

The ran register (x14) is interesting in that only the mantissa
is used to store the random number seed. Are nybbles s and SEE

used for anything? The answer is yes. The exponent (SEE) holds

the current program line number. The sign s generally returns

zero but when a program is running all bits are set. This does

not appear to be the ’‘program running’ flag since changing the
value does not alter the calculator state.
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The map register (x15) 1is quite wuseful for synthetic
programmé;gl This gives the base address of the numbered data

registers, matrices A to E, and the pool in the following manner,

datal] A | B | C | D | E |POOL

(s) 112 314 516 718 910 (S|E E)
With no complex stack, nybbles sl will contain xCO which is the

address of the base of the data area. Unknown to the user the

numbered data registers move about in memory. Thus the

instruction STO 2, means store the X-register in the first

location relative to the numbered data area. Whereas, the

instruction STO 1 means store the X-register in the absolute

address xll. Thus STO 1 should be faster than STO 2 and my test

indicated that it is slightly (4 msec or 67%) faster.

Nybbles EE of the map register point at the first register in

the pool. If EE contains 00 then there is no program area or

pool. Nybbles 2 through O contain the addresses of the bases of

matrices A through E. Matrices A to E always exist in order in

memory. Thus if you are using matrix B and decide to allocate

some registers to A, the calculator will physically move all

elements of B upward to make room for A. The complex stack, and

any registers used by solve or integrate are located below the

numbered data registers. Thus when you allocate a complex stack

the calculator will physically move all data in the numbered data

registers and matrices upward five registers to make room for the

complex stack at address xCO. I have not tried solve, integrate,

and Complex mode together to see what happens.

When solve finishes, the data is not immediately moved back

five registers. The move does not take place until the next

memory allocation or when g-MEM is pressed. This allows solve and

integrate to share registers. Warning; g—-MEM does mnot just

compute the differences between two addresses but physically moves

data around. If you have altered the map register so that the

matrices point at unusual places in memory then, pressing g-MEM

could zero the dimensions of all matrices and the pool allocation.

With the calculator in this state, it is impossible to use the

data area or to reallocate memory. The solution is to initialize

the calculator. Moral--when doing fancy memory mapping, keep your

cotton-pickin’ fingers off g-MEM.

The dimension register (x19) contains the row-column dimensions
of matrices A through C as follows,

A i B | C | ?

(s) 1 2314567189 0 (S|E E)

I do not know what EE is used for in this register. For each

matrix the left byte contains the row length and the right byte

contains the column dimension. The dimensions are stored as

binary numbers. Thus if B is dimensioned as (1,2), (1,8) or
(1,20) then nybbles 4567 will contain x0102, x0108, or =x0114
respectively.

The flags register (x1A) contains the dimensions of matrices D
and E, the name of the result matrix, and the state of the user
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flags as follows,
D | E |R|F|flag| ?

(s) 1 2 31456 71819/0 (S|E E)
I’ve never seen nybbles EE to be non-zero. The dimensions D and E

logically complete the set in the dimension register. Nybble 8
contains a hex digit (A to E) which denotes the current result

matrix. If any bit in nybble 9 is set the display will flash.
However, flag 9 will test true only if bit 2 is set. The 8 bits

of nybbles 0S hold the current state of user flags 0 to 7, with

flag 0 being the rightmost bit and increases to the left. Logic
says that the right bit (bit 1) or nybble 9 should be flag 8.

However, testing has shown that this is not so.

Since programs often use memory at the byte level it will be

necessary to refer to a particular byte of a data register. To do

this HP numbers the bytes in a register from right to left with
the numbers 1 to 7. I understand 0 to 6 was used on the HP-41C.

Thus every byte has a unique 3 nybble address, two nybbles give

the register address and the third nybble identifies the correct

byte.

The return registers are best understood with an example.

Consider thefollowing program; LBL A, 1, -, x>=0?, GSB A, R/S,
RTN. If you run the program with 7 in the X-register then the
program will execute GSB A, 7 times. With 7 outstanding returns

the return registers will contain,

rtn 4|rtn 3|rtn 2|rtn 1l|current

(E) FI6 E F|6 EF|6 E F|(7 FF) reg x17
(6)|F E 6|F E 6|F E 6|01(7 F F) reg x16

jrtn 5|rtn 6|jrtn 7|?| last

The exponent of register x16 points at the 1last legal program

line, which in this case is byte 7 of register FF. The exponent

of register x17 points at the current program byte. Switch to

program mode and you see that you are indeed at the last 1line,

byte 7 of register FF. The return addresses fill register xl17
from right to left but, continue into return 2 going from left to

right. Notice that not only the order of the returns is reversed

but also the nybbles in the return addresses. This is strange!

Also, for some reason x10 has been subtracted from all the

addresses. The address loaded when either solve or integrate

calls a routine is of the form =x00n where n is a digit that

indicates what routine is calling and changes as a solution is

found.

The pointer register (x03) is used as follows,
IC| res |integ]|S|solve| ?

(s)I1 2 314561718 9 0|1(S E E)
Again I don’t know what the exponent nybbles are used for. When

the solve is called, the nybbles 890 record the byte address of

the subroutine being solved. Nybble 7 is used by solve as a

counter. A 3 stored here indicates that a root is being found.
If the number is 2, 1 or O then solve is searching for the root by
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looking outside your initial limits. When integrate is wused

nybbles 456 store the subroutine address and nybble s is used as a

counter. Matrix operations use nybbles 23 to point into the

result matrix. I suspect that nybbles 23 point at every element

in turn but, when the operation finishes the pointer is generally

pointing near the top.

The exponent register has the following structure,
R/G|U| exponent stack | ?
(s)1112 34567 89 0|1(S E E)

In run mode the number is SEE is xEAE. If, however, you examine

this area in Program mode then SEE will contain x000. TIf you are

a fast reader, then hold down SST and pass over the region. This

time you should find x10C in the exponent. These nybbles could be

related to the current calculator state, to what key is being

pressed or to something else. Nybble s of the exponent register

contains a 4 if the calculator is in rad mode, 5 if it is in grad

and 0 otherwise. Nybble 1 is F when in User mode and O otherwise.

Interesting tidbit——-if some (but not all) bits are set in nybble 1

then the calculator will be 1in User mode but f-USER will not

change it out of this mode.

The most interesting part of the exponent register is the

exponent stack. This area is logically grouped into three groups

of three nybbles each. When, for example, Px,y is executed the

numbers in 567 are pushed into nybbles 234; the numbers in 890 are

pushed into nybbles 567; and the exponent of the result appears in

nybbles 890. Trig functions, Py,x, and Cy,x cause one number to

be pushed into the exponent stack. Complex trig functions push

two numbers into the stack. However, the two functions ISG and

DSE overwrite nybbles 890 with the address of the register being
modified and anytime EEX is pressed nybbles 890 are overwritten

with xFFF. The ability of the exponent stack to shift by three

nybbles ‘must’ be useful for synthetic programmers but I cannot
think of what that use would be.

The last three registers are used by the calculator to control

what is seen in the display. To demonstrate the display register,

construct matrix 1 and store it in the I register. Dimension A to

be a (1,36) matrix. Now press g-MEM and find out the total number

of pool and program registers (which will be 10 if you started

with the default dimensions). The display register is at address

4 whith means that it is 5 registers above program memory. Since

15=10+5, then the display register will be elememt 15 of matrix 1.

So type 1, STO 0, 15, STO 1 and now RCL (i) should return the
contents of the display register. To see this register in action,

write a program with RCL (i) on the first line. If you run this

program, the number -0.0225... should appear. When you hold down

f-PREFIX you should see 00l- 45 24 which is what is displayed
when you pressed R/S. The sign nybble in this case contains a xF

which means that a program line is being displayed. With a number

in the display, nybble s will contain a 0 to 9 meaning shift the
displayed decimal point right 0O to 9 places. If the display
contains a matrix pointer then s will contain a xB. For this case
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the name of the matrix is added to the display at some later time.

Writing numbers to the display register does not alter the

display, since the calculator almost always rewrites the display

after the operation performed. The one exception occurs while a

program is running. The calculator considers a program to be a

(sometimes long) single operation. Therefore, it does not use the

display register until the program stops. The bad news is that

changing the display register does not alter the display. Thus

the display register can be used for scratch by a program.

The two control registers allow a greater degree of control

over what is seen in the display. I call these registers control

L and control R since they control what segments are on in the

left and right half of the display respectively. These registers

work via a bit map, meaning that when a bit is set in the register

the corresponding segment will light in the display. In figure 6

I have illustrated the control registers in a manner that I hope

will be useful to others. I have assigned every segment a unique

two digit code. The first digit is the nybble number I’ve used

throughout this article. The second digit is the segment number

as shown in the top half of figure 6. The segments are numbered

to aid finding in the bottom half of figure 6.

To use figure 6 photocopy the page. On the copy write the

message you want to appear in the “display’ provided near the top
of the figure (see V5N4P23d for a seven segment alphabet). Next

x-out all the boxes in the bottom half of figure 6 that correspond

to segments you want to light. Finally, using the bit numbers,

add up the columns to get the number to be stored in the

corresponding nybble. An example should help understanding.

Suppose we want to write a 1 into the display. The top half of

figure 6 tells us we want segments 2 and 6 of digit 1 to be on,

which correspond to the code numbers of 12 and 16. In the bottom

half of figure 6 we quickly find 16 as bit 8 of nybble 8 and 12 as

bit 8 nybble 9. Thus, if we write the number (0)0000000880(000)

to control L, a 1 will appear in the display. To 1light all

segments in the first digit, including the comma and decimal

point, one must write (0)080CO00FCO(000) to control L. This

obviously must be constructed via synthetic means.

We can now see a pattern in how the divide self test works. At

the start of the test 2 bits are set in control L and the same 2

bits in control R. Pushing the keys in order causes the number to

be shifted left one bit per keystroke. The display goes from four

segments to two when two of the bits are shifted out of the

register.

A DEMONSTRATION PROGRAM

I have written a program which writes the message “HEllo PPC ’
to the display while running. I have carefully selected the

message (and program) so that no synthetic program lines need to
be constructed. It does require the use of synthetic matrix 1 but
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this is easily constructed.

HEllo PPC program

001 LBL O 015 LBL A

002 LBL O 016 2

003 4 017 0O

004 4 018 STO 1

005 LBL 2 019 1

006 x! 020 STO O

007 LBL O 021 9

008 x<> O 022 RCL g(i)
009 LBL O 023 STO (USER) (i)

010 L.R. 024 1

011 DIM D 025 ENTER

012 LBL 8 026 1

013 GTO 3 027 0

014 GSB 2 028 RCL g(i)

029 STO (i)

030 LBL .0

031 GTO .0

To run;

19, DIM (i)

1, ENTER, 36, DIM A
1.000000044, rotate, STO I

GSB A

Lines 1 through 14 are not intended to be executed. This area

contains the bit patterns that will later be transferred to the

control registers. Line 22 recalls element (1,9) of matrix 1

which contains program lines 7 to l4. Line 23 stores this number

in the control L register generating ‘HEllo’ in the left half of
the display. Line 28 recalls the register containing program

lines 1 to 7. When this is stored in control R, ’ PPC ’ appears

on the right side of the display. Lines 30 and 31 loop since the
message will disappear when the program is halted.

People who run this program will notice that I have used a

blend of capital and small letters whereas I could have used all

caps. This was done to avoid memory mapping which would have made

the program more difficult and dangerous to run. It is left as an

exercise for the reader to re-write the program to make the hello

come out in all caps. This is not easy and I confess I°ve never

tried it.

ADVANCED METHODS

It is possible to modify the return 2 register so that the last

program line occurs anywhere in memory. If one sets EE of the
return 2 register to xCO then, all the numbered data registers can

be accessed as program lines. Of course, program editing in this

mode will shift around all the numbers in the number data

registers. It is also possible to make the last program line lie

in the status area. Remember that the quick, and sometimes only,
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way to get to the last program line is to go to line 000 and then

backstep once. The line numbers in the status area are generally

>600 however, simple arithmetic shows the ‘true’ line number is
>1600 meaning that the 1 has rolled off. Warning; when a program
extends into the status area, it is impossible to edit a program.

If you do try to insert or delete a line, the processor will

crash.

If the effective exponent of the number in the X-register is

greater than 99 then the figure 1 display codes can be seen

directly (without using f-PREFIX). The effective exponent equals

the exponent (EE) plus C, where C=1 if there is a carry out of
nybble 1 when you normalize the mantissa and C=0 otherwise. To

see this enter the program LBL .0, LN, LN, INT, y*, LBL A and

recall the register containing the program entered. The message

roPE--- should appear.

FUTURE PROSPECTS

Currently I have only synthesized a few of the unused two-byte

op-codes. I can report that often a synthetic instruction will

display the keycodes for a known function and often the synthetic

appears to preform the displayed function. However, I have seen

the display show STO .0 but the operation acts like STO (i). If

anyone out there would like to search two-byte op-codes, I suggest

that that person concentrate on the column number, in figure 4,

that equals his PPC number mod(16). I suspect that most two-byte

instructions will be wuninteresting. Therefore, until I start

getting tons of mail, I will act as the central clearinghouse for

negative results. If you send results to me, please include what

keycodes were displayed, and what the synthetic function appears

to do. If enough people respond, I will summarize the results for

publication including names and numbers of contributers. I would
be interested if anyone can figure out the use of any status

register or part of that I've marked with a ‘?’. Of course, if
you find anything exciting, you should also send the information

to PPC directly.

Warning; the synthetic function f-MATRIX A (which displays the

keycodes for f-MATRIX-SST) is a nasty two-byte instruction.

Executing this instruction with certain numbers in the X-register
causes the status registers (including the map register) to be

altered. I don’t know what it is doing but it is definitely doing
something.

In closing I would like to point out that I think the HP-15C is

a very well designed scientific calculator (the only serious flaw

is that it is too slow). The ‘inside’ view that I’ve had of the

HP-15C has also impressed me. I can now see some of the careful

and detailed planning that needed to be done at HP in order to

make this calculator a success.

Esther Hu, Jack Saba, Rick Shafer and Andy Szymkowiak all

contributed useful comments to this paper.
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Allyn F. Tennant (10106)
2719 Curry Dr.

Adelphi, MD 20783





 

 

 

 

 

  

dec hex displey

10| A r

11| B -

12| C o

131D P or “

14| E E

151 F   
 

Fig 1

Display codes

(when using {-PREFIX)



Fig 2 Synthetic Matrices

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POINTS AT

MATRIX DISPLAY DIMENSION BASE OF

v b C E
1 - _ A POOL
2 - B DATA

3 M_ C A

4 H A B

5 —e B C

B ! C D

/ d_ A E

8 d_ B DATA

g - C DATA

A H A A

B b B B

C L C C

D - D D
E E E E
F B D
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Fig 3 One-Byte Op-Codes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Right Nybble

LBL |LBL [LBL [LBL |LBL |LBL {LBL [LBL |LBL {LBL {LBL {LBL |LBL |LBL [LBL
@|1]2|z3|4]s]|]6]7]|]8]9]AlBjc]|D]lE
GTO[{CTO|GTO|{GTO|GTO|{GTO|GTO|GTO|CTO|GTO|GTO|GTO|GTO{GTO|CTO
@ 1 2 13 4 S |86 7 8 9 A B |C1|D]E

GSB|GSB|GSB|GSB|GSB|GSB|GSB|GSB|GSB|GSB|CSB|GSB|GSB|GSB|CSB
@ 1|2 |3|4|s|86]7]8|9]|A]|B|C|D]|E
RCL{RCL|RCL|RCL|RCL|RCL|RCL|RCL|RCL|RCL|RCL|RCL|RCL|RCL|RCL
o 1 2 3 4 S 6 7 8 g A B C D E

STO|STO|STO|STO[STO[{STO|STO|STO|{STO|STO|STO|STO|STO|STO|STO
@ 1 2 3 4 S 8 7 8 9 A B |C|OD|]E

RCL|RCL|RCL |RCL|{RCL |RCL|RCL|{RCL|RCL [RCL|RCL|RCL|RCL|RCL|RCL
@l.1]1.2|.3|.41.5/.6/.7|.8|].9|gA|gB|gC|gD]gE
STO|STO|STO|STO[STO|STO|STO|STO|STO|{STO|STO|STO|STO|STO|{STO
0f/.1}.2]1.3]1.41.5|.6].71.8].9]gA|gB|gC|gD|gE

TEST TEST TEST TEST TEST TEST |TEST |[rEST 1ESY |TEST RCL|RCL |RCL|RCL|RCL
g 1 2 z 4 S 6 7 8 o MATA |MATB |MATC |MATD [MATE

*> {%> |OSE|DSE| 1SG| ISG|RCL|RCL|GTO{GSB|RES|RES|RES|RES|RES
@ 1|0 (1))@ jepdjuegd} 1111 A]BJC|OD|E

.5 |*%> |OSE|DSE|1SG|ISC|STO|STO|OIM|DIM|DIM|{DIM|DIM{DIM|DIM
o vt o e r eyl r fAafBjc o E

S STO|RCL [RCL {RCL|RCL|RCL|RCL|RCL [RCL
v or |RANICUxerac) [ REC oo "5 lorwi [Dimi [D1m [o1me [o1mc |o1rD |oINE

s |LSTx[RTN[ABS| RT [RND| T [sinjcos™'|tan"| x2 LN |LOG| X [AX

. Eer |R/S|CHS| RS "<>y EEX|SIN|COS|TAN| v~ ™ [1@%| v* |1/x

HYP|HYP |HYP|RCL|RCL|STO R
x1 >RR0 o1yl cos Tan|res ran [raN |™ %n PSE|FL LR

% >P >n |>0ec|EEIMTR MYE) 0eG |RAD [GRO v ox INT [xet? [xer7 £~

Q111213 |49|S[(6|7]|8|9 ]|+ ]|-|X]|/ |                 



Fig 4 Two-Byte Op-Codes
Left nybble of second byte

1235345060/ 8B9ABCOEF
 

 

 

 

 

 

 

 

 

 

 

 

RCL|STO RCL|STO

 

L
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t

n
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b
b
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f
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RCL |RCL |RCL|RCL |RCL|RCL|RCL|RCL

+a|l +tc| -0 -c Xe| Xc /0] /C
 

STO|STO|STO|STO|STO|STO|STO|STO

+8 *tc -a] -c Xa| Xc /0| /c
 

soLve soLve inTec ivTec X DSE|DSE ISG| I1SC

o f o f
 

T
M
U
O
U
M
W
U
>
O
O
N
O
U
T
A
N
N
—
Q
N

         LBL]GTO|GSB| SF CF ? |FIX|SCI|ENG|MAT|STO

f f f d d d d d d 8 |MATg         



Figb OStatus Registers

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

  

REG NAME |REG NAME
dec hex dec hex

31|1F B 15|0F 0

3011E @ 14|{0E 0

29|10 @ 13|00 2

28|1C @ 12{8C 0

27|18 @ 11{08B @

26[1A flags 18|BAl control R

25(19] dimension (9 |08| control L

24|18 @ 8 |28 B

23117 return 1 7 @7 exponent

22116 return 2 |6 |B6 (?)

21115 map 5 |85 (?)

20|14 ran 4 |04 display

19|13 last x 3 |83 pointer

18(12 I 2 |82 t

17111 R1 1 |91 z

16(10 RA 0 (R0 Y       
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F1g 6 Control Registers

 

  

 

 

 

 

 

 

  

 

 

     

 

  

 

 

  

 

 
 

SI—LIG SI_L

! 2 !

7

7 8

4 4

3 8 3

S -5

1 2 1

7

2 3

 

  

 

  

 

 

 

 

Nybble of Control R

s)1 23450678805 EE)

 

  

  

  

 

 

 

 

B3 95 g1 PRGM 8, C 83 7 73 6, 65 61
 

B4 96 92 37 8. g7 84 7 74 6. 66 62
 

@5 @1 93 ez’
D.MY g, 85 81 75 71 C B3 RAD
 

@6 B2  94 B  87  9. 86  82  76  72  67  64  77    
Nybble of Control L

)1 2345678380 EE)
 

 

 

 

            

35|31|55(51(4,(43(25|21|13user| f |g

36(32|56|5214 |44(26(22|14|27|37|47

3,133 — |53|1,|45(41{23[15]11(2,|5 ,|wcm

Z 134|171|54|1 |46(42|24|16(|12|2 |5.|57   
 


