asy Course in Usin

Q"
0, el

unn‘ﬂ-u
Cccrr
O LR R e vmw«uu'u.\LW

The HP-16C

by Edward M. Keefe
Illustrated by Robert L. Bloch

AN EASY COURSE
IN USING THE HP-16C

By Edward M. Keefe

Illustrated by Robert L. Bloch

Grapevine Publications, Inc.
P.O.Box 118
Corvallis, OR 97339-0118 U.S.A.

Acknowledgement

Thanks and appreciation go once again to the Hewlett-Packard Company for
continuing to produce such top quality products and documentation.

© 1987, Edward M. Keefe. All rights reserved. No portion of this book or its con-
tents, nor any portion of the programs contained herein, may be reproduced in
any form, printed or mechanical, without written permission from the author

and from Grapevine Publications, Inc.

Printed in The United States of America
First Printing -- July, 1987

ISBN 0-931011-16-7

DISCLAIMER: Neither the author nor Grapevine Publications, Inc. make any express or
implied warranty with regard to the keystroke procedures and program material herein of-
fered, nor to their merchantibility nor fitness for any particular purpose. These keystroke
procedures and program material are made available solely on an "as is" basis, and the en-
tire risk as to their quality and performance is with the user. Should the keystroke proce-
dures or program material prove defective, the user (and not Grapevine Publications, Inc.,
nor the author, nor any other party) shall bear the entire cost of all necessary correction
and all incidental or consequential damages in connection with, or arising out of, the fur-
nishing, use, or performance of these keystroke procedures or program material.

TABLE OF CONTENTS

Welcome!

The Big Picture

Your Calculator's Memory
Data Registers

The Stack

The I-Register

The Display Register

Pop Quiz

Pop Answers

Keys and the Keyboard

The Prefix Keys

Keying In Numbers

The Key

The Key and Exponential Notation
Sudden Skill Assessment Session
Inevitable Conclusions

Getting To Know the Stack

Getting Acquainted With the Stack
The Key

The Key

The Key

One-Number (X-Register) Operations
Stack Quiz

Stack Answers

Nptes

Using the Data Registers
Storing Numbers

Recalling Numbers
Unscheduled Retention Analysis
Piece of Cake, Right?

Integer Mode: The HP-16C and its Display

The HP-16C in Integer Mode

The Display in Integer Mode

The Decimal Number System

The Octal Number System

The Hexadecimal Number System
The Binary Number System

11
12
13
14
14
15
16
17

19
20
21
21
22
23

26
33

35
37
38
40

41
42

45
46

47

52

57
59

Smoke and Mirrors: The Display's Bag of Tricks
Defining the Word Size

Signed Numbers

1's or 2's?

2's Complement Format

1's Complement Format

Spontaneous Comprehension Examination
Answers to S.C.E.

Doing Windows

Flags and Machine Status

Flag 3: Show-Leading-Zeroes

Flag 4. Carry/Borrow

Flag 5: Out-of Range

The Status of the Machine

Unforeseen Regurgitative Incident

U.R.I. Answers

Integer Arithmetic

Operations That Need Two Numbers
RPN Integer Arithmetic

Some Examples

Some More Problems

Understanding Integer Arithmetic
Addition

Subtraction

More To-Do With 1's and 2's Complement
The Other Dyadic (Two-Number) Math Operations
Single-Number Integer Operations

The (x) Key

Summary

Logic Operations on Your HP-16C

Logic: The Queen of Science

Experimental Results for 17 Unkown Digital Circuits
Testing DeMorgan's Theorem

Pop Quiz

Pop Answers

Creating Masks

Innocent-Looking Little Quiz Questions (Cleverly Masked)
The Awful Truths Revealed

Bit-Twiddling Functions on the HP-16C

Arithmetic Shift Right

Logical Shifts

Logical Shift Right: The (sR) Key

Logical Shift Left: The (sU) Key

Left Justification: An Oddball Function

383

78
79
81
83

85
89

91
91
92
93

95

97

98

101
107
111
111
114
121
131
132
133
134

135
137
140
145
155
156
157
163
164
165
166
169
169
170
171

Rotating Bits

Rotating to the Right...

And Rotating to the Left

Rotating a Number of Bits at Once

Rotating Through the Carry Bit

Startling Pedagogical Device

Dramatic Conclusions

Bit Surgery: Setting, Clearing and Summing
So Short That It Barely Qualifies as a Pop Quiz
Nevertheless

Notes and Doodles

Borrowing and Carrying: Looking Back and Moving Forward

Memory Management on Your HP-16C
How Many Registers?

Data Memory Allocation

Program Memory Allocation

What To Keep In Mind As You Go On From Here
Addressing Memory Locations
Indirect Memory Addressing
Swapping Indirectly

Notes

Pop Quiz (not so Pop anymore, is it?)
Answers

Programming Your HP-16C in Integer Mode
A Second Program

Keycodes: Just In Case You Were Wondering
A Third Program

Conditional Operators

A Fourth Program

Pausing During Execution

Loop Counters

Subroutines

Just Plain Quiz

Just Plain Answers

Appendices

Double-Number Functions

The Double-Multiply Function
The Double-Divide Function

The Double-Remainder Function
Programming in Float Mode
Running the Program

The End?

172
173
174
175
176
177
178
182
185
186
187
188

189
190
193
195
203
204
205
207
208
209
210

211
213
215
220
221
224
230
231
233
239
240

241
242
242
245
247

252

WELCOME!

WELCOME!

to the world of the HP-16C Calculator. It's quite a strange place, really--all filled
with nothing but zeros and ones. It's the world of computer science and engi-
neering, full of integrated circuits and digital readouts.

And it's a world where people speak binary, hexadecimal, and octal as fluently as
they do English (...well...in some cases, at least).

This language isn't an easy one for beginners to master, and so some of the people
who live and work in that world have invented a very handy tool to make it all a
snap. These folks--at Hewlett-Packard--have built a calculator they call the
"Computer Scientist." Computer scientists call it the HP-16C (and you can call it
anything you like--Fred, Martha, whatever).

The HP-16C is very handy, partly because it slips conveniently into a briefcase or
shirt pocket--and because it fits very neatly in the palm of your hand--but its
real value is in what it does for you.

And what exactly does the HP-16C do for you? Well, first and foremost, it's a
language translator--helping you move freely between the languages of decimal,
binary, hexadecimal and even octal numbers. And beyond that, it helps you
learn about the math and logic that people use in this strange world.

8 An Easy Coursein

Because of this, the HP-16C will let you waltz your way through most of the in-
troductory material in computer-math courses. And it will stay with you as you
move from classroom theory to the practice of designing computer software and/
or hardware on your own.

In fact, just about the only thing this calculator won 't do is teach you how to use
it. And, like a lot of other people, you've probably found that the Owners' (Users')
Manual that comes with the HP-16C is a very good reference manual (i.e. it's
handy to use--once you know what you're doing). But it wasn't written as a
learning guide; it assumes you already "speak the language."”

And of course, that's not the case for people who are new to the world of comput-
ers....

Ahal!...that's where a book like this comes in:

If you're a beginner in computer math or with the HP-16C, then this book has
you in mind. Not only will you learn how to use the HP-16C, but you'll also learn
the theory and language of the subject.

This book is a self-teaching course; to get the most out of it, just follow the direc-
tions as you work through it. If you know some of the material already, no prob-
lem--there will be places where you're allowed to skip ahead to the next part of
the book. So you'll be learning at your own pace (and you can even repeat the
course, if you like--no extra charge for this).

But here's one word of caution:
Beware the Button-Pushing Syndrome!

The dreaded BPS will strike when you are tired or mentally distracted. Here's
how to recognize it:

Using the HP-16C 9

There you are, merrily pushing all the right buttons on your HP-16C--and
you're getting the same answers as shown in the book ("gee, this is easy!")....

...But you haven't the foggiest idea what you've done--or why the answers are
correct.

The best cure for this is to set the HP-16C aside for a time and get some sleep or
relaxation. Then come back to this course when you're refreshed and mentally
alert.

And by all means, read the sections of this book that give some of the theory be-
hind the HP-16C. That way, by the time you've learned the theory, you'll also
know how to convert numbers from one base to another in your head or on pa-
per. This will at least immunize you against Terminal BPS.

You do know what that is, don't you? TBPS occurs most often during computer
math tests. You think you understand all the material for the test, and [so the ra-
tionalizing goes] even if you don't, you always have your HP-16C. No sweat.

Just then, the professor announces: "No calculators during my tests!" Yes sweat.

That's Terminal BPS. And if you've ever seen someone go down with it during a
final exam........... well, it's not a pretty sight.

So please: Take the time to really digest this course. Then you'll have the skill to
use your HP-16C--and the knowledge that you could go "cold turkey" without it.
It's a tool, not a crutch. OK? Fine. Then it's time to get going...

10 An Easy Coursein

/

SRS — o=
\‘\.‘»’?
% l‘

a5
X \/

THE BIG PICTURE

Your Calculator's Memory

It's always best to start with a look at the machine as a whole: What is it? How
should you picture it in your mind? What are its various parts?

Well, your HP-16C is really two calculators in one. Of course, it's built with an
"Integer Mode" to help you solve your Integer math computer problems. But
there's another mode, called "Floating Point mode." There, you have an ordi-
nary, powerful HP calculator, one that will do arithmetic on ordinary decimal
numbers, take square roots and reciprocals, etc. (and if you've never used an HP
calculator before, you're going to wonder how life has had any meaning at all).

But first you have to learn how to talk to your HP-16C, so that's where to start
(actually, if you already understand the registers shown here, go on to page 16).

Imagine, if you will, this picture of the memory of the HP-16C:

Stack Registers Data Registers
T .0
Z F
Y
X \ B
\\ \\ LST X A
s 9
Display
1
I 0

Each of these boxes represents a location in your calculator's memory. And each
of these memory locations ("registers") is associated with a number or letter.

12 AnEasyCoursein

Data Registers

Those boxes on the far right are called data registers. As you might guess, they
hold data (numbers)--one per register.

Data Registers
T .0
Z F
Y
X \ B
\\ \\ LST X A

I./

|

|

|

|

|

|

|

|

|

L
(o]

Once you store a number in any given data register in the HP-16C, it's there for
good (or at least until the batteries get tired). The only way you can get rid of it is
to store a different number there instead (think about it: even when you "clear" a
register, you're really just storing a zero there, right?).

Now, as you can see, the data registers are given numbers as names, running
from 0 to 9 and then from A to F (A-F are the hexadecimal--base 16-- equival-
ents of 10 through 15).

Then there is a second set of registers beyond that. HP chose to number these ex-
tra register with the codes .0 through .9 and .A through .C.

OK so far? Those are the data registers.

Using the HP-16C 13

The Stack

Stack Registers
T .0
Z F
Y
X \ B
\\ \\ LST X A
r-—=—=—==-=-== A e

r/
L
(o]

Take a look at those four stack registers there on the left. Actually, they're just
ordinary data registers--with one important difference: HP designed them to
work together--automatically--in a "stack.” This is the key to great arithmetic!

Obviously, the four main stack registers are X, Y, Z, and T; another register is
called LST X. If you've never worked with the stack before, you're in for a very
pleasant surprise ("so stay tuned").

The I-Register

Oh, yes: Before moving on, it's probably wise to give a slight nod to the I-register.
You see it there, on the bottom, in the middle of the diagram? It's really just an-
other data register, but as you'll find out later, it can have special uses when
you're programming your HP-16C.

14 AnEasyCoursein

X < N -

\
\\ \\
The Display Register \ C _________ :

The display register is one unlike any other: it acts as an interpreter between
you and your HP-16C. When looking at your HP-16C, you actually see only
what's in this display register, and this is only its interpretation of the X-register.

But you can instruct the display register exactly how to interpret the X-register.
For example, to adjust your HP-16C to show you 2 decimal places, you would

press: (2) (go ahead--do it).

The display now shows 2 decimal places. Then to see, say, 6 places, press
(6). Get the idea? Notice that the display actually rounds the edited version.

"OK, but do I reduce the accuracy of the calculator if I limit the display?" Nope.
All numbers stored in the HP-16C always retain their full values.

Try This: Key in this number: L1BS 139492
Now press (0).

Of course, the display will show you only: c.

But now press). You'll see: L1B5 74

So remember! The display register is doing this rounding for you. The X-
register (and every data register) retains full 10-digit accuracy. OK?

Using the HP-16C 15

Unexpected Evaluative Exercise*

1. What's a data register?

2. How many data registers are available in the HP-16C in Floating Point
Mode?

3. What type of register is the T-register? The I-register?

4. What is the display register (also simply called "the display")?

* Pop Quiz

16 AnEasyCoursein

Pop Answers

1. A data register is a memory storage location somewhere inside the calcula-
tor. It holds one number at a time.

2. The HP-16C can have up to 29 numbered data registers in Floating Point
Mode. There are also the 4 stack registers, along with the Last-X register,
the I-register, and the display register.

3. The T-register is one of the stack registers: the Topmost register. The I-
register is another data register (you haven't heard much about it yet).

4. The display is another register in the HP-16C. It's a special type of register
that interprets the number in the X-register, showing the rounded-off ver-
sion of the number.

Using the HP-16C 17

How did you do? If you gave answers similar to those on the previous page, then
you already have a good "mental picture” of the insides of the HP-16C.

On the other hand, if you missed some of the answers, you really should go back

and re-study the material you just read. Start on page 12--and take your time;
there's no hurry at all. The next section can wait for as long as you want it to....

Ready? All right, what do you know so far?
You've seen what the stack looks like and how the data registers and the stack
registers are named in the HP-16C. Remember that "register” is simply a con-

venient word for a "storage bin" in the memory of the HP-16C.

You also learned how to adjust the display register to vary the number of digits
after the decimal point (when you're operating in Floating Point Mode, that is).

What about the rest of the keyboard? What is all that stuff?...

18 AnEasyCoursein

KEYS AND THE KEYBOARD

The Prefix Keys

Up to now, you've been using the prefix keys without really being told what they
do (you probably guessed anyway, right?):

The gold (f) key will let you execute any operation that appears in gold letters on
the keyboard of the HP-16C. And the blue (9) key will execute the blue-labelled
functions.

Notice that you have to use these keys just like shift keys on a typewriter--once
for every shifted function you want to use.*

Notice also that when you press the (f) or (9) keys, their annunciators appear
(those tiny little symbols beneath the digits) in the display.

You can have one or the other prefix in effect--but not both. If you want neither,
just press (f) CLEAR (PREFIX). And if you do this in Floating Point mode (the mode
you're working in now), it has a secondary effect, too: It momentarily shows you
all 10 digits of the number in the X-register.

*Wondering why the gold key isn't labelled (9) for gold--and the blue key (b) for Blue? When Hewlett-Packard
started making calculators, they decided to make some keys do double duty. They labelled the prefix key with
the letter (f) for "function.” But later, when they found they needed to make some keys do triple duty, they added
a second prefix key, and this one they labelled (g), because "g" follows "f' in the alphabet. (Well, you asked.)

20 AnEasyCoursein

Keying In Numbers
Of course, you'll want to use your HP-16C just as a desktop calculator--as well as
a computer science tool. In fact, that's why you have this Floating Point Mode in

the first place--and it's time to start doing it.

But before you start to key in any kind of number, consider: Do you know how to
key in negative numbers--or very large or very small numbers?

(If so, then you can probably skip over now to page 23.)

The [CHs)Key

The key will change the sign of the number in the X-register.

Try This: Put-4Y4.0 into the X-register.

Solution(s): or (4) (4)

(But you can't do it by pressing the button as the first key-
stroke in the sequence).

If you now want to change from - to + again, just press the key once more.

See how it alternates? You'll find several such on-again-off-again keys on the
HP-16C; these keys are usually known as toggle keys.

Using the HP-16C 21

The [EEX)Key and Exponential Notation

You use the key for entering very large or very small numbers in exponen-
tial notation.

Try This: How would you enter {3400000 into the X-register--
without using the (0) key?

Solution: Press (1] - [3]4) @).

EEX stands for Enter EXponent, which means that under this format, you are
using exponential (also called "scientific") notation to represent this number.
And while you're keying it in, that's the form the number takes in your display.

Of course, once you press or any other key that terminates this numeric
entry, the display will show this number in whatever mode you've requested.

Right now, for example, you're probably in "Float 2" or "Float 5" or something; so
you see just that many decimal places.

But you could ask your display to show you exponential notation always, if you

wanted: Just press B!

22 AnEasyCoursein

Sudden Skill-Assessment Session

1. What are the prefix keys on the HP-16C, and what do they do?

2. How do you clear the prefix annunciators from the display?

3. What is the key, and when do you use it?

4. How would you key in-0.000000789°?

Using the HP-16C

Inevitable Conclusions

1. The prefix keys are the (f) and (9) keys. You must press (and release) the ap-
propriate prefix before executing one of the gold or blue functions on the key-
board.

2. You can clear the prefix annunciators by pressing (f) CLEAR (PREFIX), (which is
the gold version of the key).

3. The key changes the sign (+ or -) on the number in the X-register. You
can use it while you're keying a number in, or after it's already fully en-
tered--but not before you begin; there has to be at least one digit before you
can change its sign.

4. Press (7] - J8)9) (cHs) (f) (EEX) (CHS) (8).

(Do you see how you change the sign of an exponent?)

OK, so now you've seen a bit more of the keyboard--and how to enter floating-
point numbers (i.e. those with decimal points and fractions) into the X-register.

Wunderbar.

Now what do you do with them once you've got them there?...

P AnEasyCoursein

\\\\§ \\\Q\\\

,. \‘ \ / 7 \ \ \
\\\ .4 \\ " \\:\\\\\
il \ N\ \ \\\ \“ \\\\\\ ,
b Vi \““\\\\\\}

A :ﬂ,-‘\.\\\;\ﬁ.; P \w
/! ;

\/

\.\
§.

GETTING TO KNOW THE STACK

Getting Acquainted With the Stack

Whenever you do arithmetic with the HP-16C, you'll be using the set of five data
registers called the stack. The registers are labelled X, Y, Z, T, and LSTX, and as
you saw a few pages back, they're usually shown as a set, like this:

X < N —

LST X

(If you're sure you know all about the stack, you may skip ahead to page 35.)

As you may know--if you've ever worked with an RPN calculator before--the
HP-16C has no (=) key--nothing you press to get your answer--or so it seems.

So how can you possibly do arithmetic? And what is this "RPN," anyway?

26 AnEasyCoursein

As with all of HP's RPN calculators, the HP-16C's method for performing arith-
metic is based loosely on the work of a Polish logician and mathematician, Jan
Lukasiewicz* (1878-1956).

His writings in symbolic logic are full of abstract statements such as "AND A B,"
which most other logicians would have written as "A AND B." But Professor Lu-
kasiewicz had adopted a shorthand of his own, where he placed the logical oper-
ator (AND, OR, IF, etc.) in front of the quantities on which it would operate.

Well, HP borrowed this "Polish Notation" but chose to place the operators after
the quantities on which they would operate. Thus we get the name, "Reverse

Polish Notation," or RPN for short.

HP borrowed RPN for its simplicity and logical efficiency. For example, you
might normally expect to press:

EBEEE

and get the result upon pressing the (5);

but an "RPNer" would instead press

CEETER B

and get the result upon pressing the (+).

*pronounced "Voo-ka-szee-vich"

Using the HP-16C 27

The real beauty of this is that since all operators need only one or two
"arguments” (numbers to operate upon), there is no need for any parenthesis
keys with RPN--unlike the algebraic calculators (those with (=) keys).

In this sense, the RPN system is much more "natural.”

After all, if you'll think back for a minute to when you first learned how to do ad-
dition, you'll remember how you wrote the problems out like this:

25
+ 65
90

See? You stacked the 25 and 65 and then added them. That's exactly what the
HP-16C stack does, too.

And later, when you were practicing with a big, hairy problem like this, how
were you taught to simplify and solve it?

(129 / ((63.5 + (27 - 49))) - 11
(93 + 42) x 76) - 80

“Work_from the inside parentheses outward.”

Again, that's exactly what you do here when you're doing arithmetic with the
stack!

28 AnEasyCoursein

OK, knowing just that much, then, it's time to start exploring this stack--and the
keys you use to fill it, adjust it, and crunch it:

Try This: First, press the keys to adjust the display to three
decimal places.

Next, key in 2 345 b (of course, you would do this by pressing:
2] 3] - J4J5J6).

Then press
Next, key in 9.b ...and press
Then key in 3.758

...but now pretend you made a mistake: change this number to
3.5, instead (by pressing: (BSP) (BSP)(BSP) (5).

Now press the (X] key, to multiply.

Now press the key one more time. Your number is gone,
right? OK, so key in, say, {4, and press (+).

What's going on here? To find out, do it over again--with pictures this time--and
watch the stack (but if you already know, go ahead and skip over to page 33).

(You'll notice that there's no LSTX register shown in any of the following dia-
grams. That'll come a little later on. For right now, just use this example as a
"warmer-upper'--just to get used to how the four main stack registers generally
work together.)

Using the HP-16C 29

Here's how the stack starts out (the ???x means that T | ??7d
you don't know what numbers are in these four regis- Z | ??7c
ters--and you don't care--but you want somehow to Y | ???b
identify each number and follow its movements): X | ??7a
Now key in your 23455 ...and the stack now looks T 7776
like this, because stack lift was "enabled." This means > 7770
that whatever the machine had just done previously v 7773
(+) in this case) is an operation that finishes by leaving x [33I4SE
the stack "enabled" to lift and make room for the next
number coming into the X-register.

T[7??7
Next, you press the key, terminating digit entry: - (5972
Two other things happen here also, but one is more ob- Y |c3436

X |[23456

vious than the other: First, performs a stack lift,
bumping every number up one register (this means that the T-register's previ-

ous contents are popped off the top--lost for good--and the X-register is duplicat-
ed). You can see this, all right, just by looking at the numbers in the stack.

But secondly, disables the stack, so that if the very next operation brings a
new number to the stack, then this number will not bump everything up one
notch; rather, it will overwrite (replace) the € 34b in the X-register.

Prove this: Key in your 9.5 (which is the next step in this little repeat perfor-
mance) and look what happens in the stack:

T|??7
The 3.b has overwritten the 2 34b in the X-register-- 7 599,
because the stack was disabled. Get it? When the stack v [3345pg
is enabled, a new number bumps everything up; but y g

when the stack is disabled, the new number simply re-
places what's in the X-register.

30 AnEasyCoursein

Now watch as the exercise continues:

To save the 9.b farther up in the stack and to prepare
for the 3.5, press This is the result:

Next, key in 3.198, but then correct your "mistake"
with the (backspace) key (i.e. press: (3]]J7)5)8)
(5). Here's what you did:

Now press (X), to multiply the 3.500 and the 3.600.

Notice how the stack drops when the bottom two num-
bers combine (and almost all your arithmetic behaves
this way--acting upon and between the X- and Y- reg-
isters); when this happens, the T-register is duplicated.

Now press the once more. See what happens?

So when you're not in the process of keying in a num-
ber, the backspace key will clear the entire number out
of the X-register--all at once (not just one digit at a
time). Under this circumstance, this key behaves as a
"Clear-X" key, right?

Next, key in your {M....

Whoa! Shouldn't the D.OOD in the X-register have
been "bumped up" in a normal stack lift? Instead, that
(M just overwrote the D.OOO! What gives?

Using the HP-16C

X < N - X < N -

X < N H

X < N -

X < N H

??7?a

23456

3600

9600

??77a

2345b

9600

3500

??77a

?7?7?a

2 345hb

33600

???a

??77a

23456

0.000

???a

??7a

23456

M

31

Well, what operation just happened previously? Whatever it was must have dis-
abled the stack.

"Hmmm....Aha! When used as a CLear-X key ([CLX)), the key disables the
stack!"

Exactly: and are the two major functions that disable the stack (i.e.
make it "not ready to lift"). Most other functions--such as +, -, X, etc.--will leave
the stack enabled ("ready to lift").

??77a
?77a
???a
c485b

Now, press (+}-your final result:

X < N H

All these rules and manipulations may seem a bit much to remember if you're
just now learning about them, but don't worry--with a little practice, these be-
come as automatic as, say, shifting gears on a car.

Remember: Nobody comes out of the womb knowing these things, but they're
not hard to learn and make into habits--so hang in there if you're feeling

swamped.

All it takes is a little practice!

32 AnEasyCoursein

The [R$) Key

Here are some other good things to know about the stack (and more good ways to
get some more practice in the process):

For example, how can you look at each of the four stack registers--without
messing them up.

Fortunately, you don't need to use these little diagrams all the time; the HP-16C
will show you the contents of its stack registers any time you want to see them.

Try This: Fill up your stack so it looks like this:

T 4000
Z | 3000
(Press (4) ENTER) (3) ENTER) (2) (ENTER) (1) v (>00a
X | {000
But now, press (R+) ("Roll down").
What happens?
The contents of the stack literally roll T [ooo
;lovlifl one not}cjl, all-llj tl;:.a stack winds up > (qoon
ooking something lhike this: v [3000
X (2000

That's a handy key, (R¥). You can use it to view the contents of each of the stack
registers at any time. And of course, four consecutive [R+)'s will return the stack
to its original state.

Make sense?

Using the HP-16C 33

The (Rt) Key

The contents of the stack can also be Rolled up. The usual symbol for "Roll-up" is
(Rt), and you can do this "Rolling up" by pressing the (9)(Rt) keys.

Try It: If the stack starts out like this: 'ZI' ;'g g g
Y | 20080

P H

T 1380008

Then after you do a [R%), it's like this: Z|c0on

Y| (OO0

And again, just as with Roll Down, four X 4000

successive (Rt)s will bring you back
where you started.

The (Xxy)Key

Another nice stack feature to know about is ("X exchange with Y").

1.000

A HHE

For Example: Here's what the stack looks like now:

{080

pAHHE

3000

And after you press (XxY): 2000

4000

X < NHd X < N -

000

34 AnEasyCoursein

One-Number (X-Register) Operations

You've already seen how the stack does your basic two-number arithmetic. But
notice that there are three mathematical operations that "crunch" only the con-

tents of the X-register? These operations are: (%), (¥X), and (CHS). You know all
about but now, look at the other two.

T 3000
Start with the stack looking like this: Z|c00d
art wi e stack looking like this: v 600
X (40008
Now Try This: Press (9)(x) ("the square root of X"):
What happens to the stack? See? T (3000
You just took the square-root of what Z |cbob
was in the X-register. Simple Y | (OGO
enough, right? X (2000
And now that your stack looks like that,
Try This: Use the ("reciprocal of X") func-
tion, by pressing (9) (x)).
T 13000
Here's what happens: Z 2000
Y | (000
It's all just as you'd expect, right? X |0.5060

Using the HP-16C 35

Well, that's about all you need to know about the stack to do most of your basic
Floating-Point arithmetic.

Look at all the stuff you know now:

-- You know how to key in large, small, and negative numbers--using and

-- You know what "stack lift" means and how it may be either "enabled" or
"disabled," depending upon the operation you've just completed.

-- You know that and are the two operations that leave the stack disa-
bled; does this after performing a stack lift (copying the X-register into
the Y-register); and does this after clearing the X-register;

-- You know how (R4}, (R+), and all manipulate the stack registers;

-- You know how the stack performs two-number and one-number arithmetic;

-- You know there's probably going to be a little quiz on this--just to make sure
you have it all down cold.
As you go through this quiz, keep in mind that there are always more ways
than one to solve any such arithmetic problems on your HP-16C. Also, set

your display format to show you as many decimal places as you need in order
to see all the significant digits.

36 AnEasyCoursein

Stack Quiz

1. What is 2 x 11.943?
Calculate the answer twice, and the second time, don't use the (X) key.

2. Find 22.11 x [13.56 - (19.98 + 20.22)]

3. How much is 1024* ?

4. Load up your stack so that it looks like this:

6.000
1500
4700
220l

X < N -

Now, without keying in any more numbers, find

(3.5 -2.22+47
6

Using the HP-16C

Stack Answers

(and there are others which are just as valid)

T | ??7¢c T1|?7?7?b T1?7?7b
Z | 7?7?77 Z | ??7?a Z | ??7?a
Y | ?2?7a Y |2000 Y 2000
X|e X|12a00 X1 1943
1. @~ = (ENTER)~ - (OCEE)”
T1?2?7b T |??7b T 1?7?77
Z|??77b Z | ?7?7?a Z|??77
Y | ??7?a Y| {943 Y | ??7a
X |23886b X | 11943 X |2388k
X)” (result) or (A)9)4)3) (ENTER)” - () (result)
T | 72?77 T|??7b T1|?7??
Z | 7?7?77 Z | ???a Z | ???a
Y | ?2??a Y| {99800 Y| {99800
X | {998 X | 1998480 X (2022
2. I8LEE~ - ” - 2OJRE~
T1|?7?7? TI|?7?7?b T1?2??
Z|?7?7b Z | ??7a Z | ?7?7?a
Y | ???a Y |402008 Y| {35680
X 402000 X | {356 X |402000
eF - 050686~ -) -
T1?2?77b T1|?7?77 T1?7?7b
Z | 7?7?77 Z | ?7?7?a Z | ??7b
Y | ?2?2?7a Y |-2bbe4HOm Y | ?2??a
X |-2bb40D Xl|ee X |-989.0 (O
= - 2RUOO~ - (X) ~ (result)

AnEasyCoursein

Stack Answers (cont.)
(and there are others which are just as valid)

T | 7?7 T]?7?7% T 7?7?70

Z |77 Z | ?777a Z | 7?7?77

Y | ?7?77a Y| (024000000 Y | ?7?a

X | {0eH X | {0evooooon X | t048516.000
3. NEE~ - [ENTER)” - (X)

T1?7?7% T17?7%

Z | ?7?77a Z 7?77

Y| (048576000 Y | 7?77a

X | (0485 16.000 X1 0995 {2

ENTER)” w(X]” (result)

T |b60OD0ODO T|4.00 T |4.700

Z (3500 Z (b.DOO Z |00

Y | 2200 Y |3500 Y |6.000

X |4.00 X|ecin X | 300
4. (xzy] ~ - ” - (o)~

T|4700 T |4.00 T |4.700

Z (6000 Z (4700 Z |b.OODO

Y| (300 Y |6.O0OO Y| bSO

X | 300 X | L6390 X |4.008

- -®~ -@ &~

T |4.700 T |4.700 T |4.700

Z |400 Z (4700 Z |00

Y |6000 Y | 6330 Y (47008

X |b.390 X |6.000 X | t0BS

B - (Xzy) ~ - ()~ (result)

Using the HP-16C

Notes

USING THE DATA REGISTERS

Using the Data Registers
Now, the next question you're probably asking is: "OK, those are the stack regis-
ters. But what about all the other data registers in my HP-16C? After all, there
are 29 of them, right?"

Right. And, as you know, these registers store numbers (one number per regis-
ter). But [you're asking] how do you actually do this storing and retrieving?

(If you already know, then leap ahead to page 45).

Storing Numbers

The easiest way to learn this is just to do it a few times:

Try This: Store the number {99 in data register 2.

Solution: Key in and press the keys @

Simple, right? The calculator has just copied the number {99 into the register
labelled "2" (and so there are now two places in your calculator that contain the
number {99 --the X-register and register 2).

The key always copies the number in the X-register into the register you
specify--never actually moving the original.

Storing does something else, also: It leaves the stack enabled, so that if your next
operation brings a number to the X-register, the stack will lift, right? (Hereafter,
you'll notice that all of the new operations you see will behave just like this.)

42 AnEasyCoursein

Try Some More:

Solutions:

Try storing 100 into the A-register, 33 into the .0-register,
and 45 into the I-register.

Press:

&)

B3

@ (or just [[--either way will work).
(Again, don't worry too much about the I-register right now.
Just think of it as another data register you can store into and

retrieve from--which it certainly is. You're going to discover
its real usefulness a little later.)

See how simple the STOring procedure is?

If you can say it, you can do it.

Using the HP-16C

Recalling Numbers

And now that you've stored (copied) numbers from the X-register into other
data registers, just how do you propose to get them back?

Again, no harder done than said:

Press the key and then the number of the register.

Try It: Recall those four numbers that you
just stored in registers 2, A, .0, and 1.

Solution: @ ®O® @R @ (or

just .

And here's how your stack will look T 19980800

when you've finished (check it out Z | ioopoo

with the R¢) key): Y |33.000
X |45.0600

Note that the key enables the stack-lift. See how handy this is? It lets you re-
call several numbers in a row, and each time, the stack lifts up, preserving the
previous numbers above.

And keep in mind: The operation looks in the given data register and copies
it into the X-register, still leaving the number in the data register--so you can re-
call it as often as you like, just in case you lose it or "crunch" it.

44 AnEasyCoursein

Unscheduled Retention Analysis

1. Which two keys will let you move numbers from one register to another?

2. Which of the stack registers does the calculator always use when it stores or
recalls numbers?

3. Is storing and recalling more like "moving" or "copying” numbers?

4. How does the stack "enabling” process work with these two keys?

Using the HP-16C 45

Piece of Cake, Right?

1. The two keys are (STO) and (RCL).

2. The STO and RCL functions always use the X-register.

3. The STO and RCL functions copy the numbers.

4. Both and leave the stacked enabled--ready to lift when accepting
the next entry into the X-register.

OK, now what have you learned so far? You know that your HP-16C has 2 oper-
ating modes: Floating Point and Integer. But so far, you've been learning only
about the Floating Point Mode:

You now know how to: visualize the registers, adjust the display, enter numbers,
manipulate the stack, perform simple RPN arithmetic, store and recall num-
bers from other data registers, etc. (that's quite a lot, really).

And there's plenty more to learn about Floating Point Mode. For example, you
can program your HP-16C to run routines in Floating Point Mode (and if you're
curious about how to do this, check page 248).

But Floating Point isn't really why you bought the HP-16C "Computer Scientist,"
is it? You want help with your computer math (i.e., integer math), right?

Well, then, it's time for the main event....

46 AnEasyCoursein

AmeFian 1

?Af'(b

INTEGER MODE: THE HP-16C AND ITS DISPLAY

The HP-16C in Integer Mode

So now you're ready for Integer Mode, eh? The real talent of this HP-16C thing-
amabob.

OK, then what better way to do this than simply to take a "test drive?" After all,
when you buy a new car it's pretty tough just to park it in the garage for a couple
of weeks while you read the manual (do you know anyone like that)?

So go on--take a spin. Just follow along here and find the right keys to press.
Don't worry about where you're going right now. This is just an exercise in get-
ting the feel of the HP-16C. The exercise will twist and turn and wind up going

nowhere in particular--but that's all right. It's just a test drive.

Ready?

GO! >

48 AnEasyCoursein

What You Press

DEC
(18]

() SET COMPL ([Thsan)
BICI®IE
() SHOW (BES)

SET COMPL
SHOW

OoCT

(0 (Winoow) (9
DEC

@)
BIOICY

ROEN
(3@ BrRcn)
BE@ECH
() voT)

Using the HP-16C

What Appears in the Display

0.0oo

bCdE
48350

bLdE

- {1 (8B
{3b33B
(101

{011 11oo
- {71 18b
e4q {19
-{11{8b

{71 1{8Bb
- {1 1{8b
-B593
-2 {49

-B8593
- {075
-B85913
592

[« ol « N = W= ot

o. o

Q X I o

oooo oo o

(= W « I « I «

50

What You Press

SHOW
(8) (1) (ASKR)
SHOW
(1) (an)

SHOW
(8) (1) (MASKL)
SHOW
) (©R)

SHOW
SET COMPL
@

SHOW
Olm
SHOW

BROEE
&)

SHOW
9 LsTX)

®
06]0[¢3
06]0]63

What You See in the Display

2 190
255
EERNEEN
MY

. OO o

30
-25b
FFOO
-

= D= M « e of

FF30O
-
-c
e

(= IO « I « e o

dE

8
-B703
dEOQO

bu N = I = M= of

-32 161
cHObY
S1000

-32767

oL D oo

-B703
cHObY
-8703 d

o o

AnEasyCoursein

Here's the checkered flag.

Did you lose your way or crash along the way? Well, even so, you probably fig-
ured out at least a few things anyway:

Did you guess, for example, that in Integer Mode, the stack is the same arrange-
ment of data registers as in Floating Point Mode? And the stack manipulation
properties are the same, too-- you can roll the stack up or down and swap the X-
and Y- registers, etc.

You can also perform arithmetic operations just as you do in Floating Point
Mode, but there are no decimal points, fractions or exponential notation.

But with all the other, unfamiliar operations, this "test drive" may not have
taught you much else--except what it feels like to have Button Pushing Syn-
drome (yep, that was it, all right).

Pushing buttons without knowing what you're doing isn't a very comfortable
feeling, is it?

OK, then, it's time to slow down, look at a map, and find out about all these differ-
ent operations....

Using the HP-16C 51

The Display in Integer Mode

The real star of the HP-16C is the display register--as you're going to discover
right now.

As you already know, this display acts as an interpreter between you and the
number in the X-register. Of course, in Floating Point Mode, this interpretation
job wasn't much more than rounding off decimal places.

But now comes the part where that display really earns its pay:

When you switch to Integer Mode by pressing the BIN, OCT, DEC, or HEX key,
you are, in effect, telling the display register to display whatever is in the X-
register as either a binary, octal, decimal, or hexadecimal integer number.

This display register is actually a very smart set of electronic circuits that take
the integer in the X-register and convert it into what appears to be a number--
which is what you see in your HP-16C.

So, what's really in the X-register?

Would you believe...
Binary Digits (Bits).

"Ah...OK, so how many binary digits are we talking about here, anyway?"

Well, actually, you can choose how many...but before getting into all that, notice a
few other things first:

52 AnEasyCoursein

The display register hasab,d, o, orh at the right side of the display.

This is to remind you that it's translating numbers into binary, decimal, octal, or
haxadecimal format for you (awfully considerate of it, don't you think?).

And you can switch from one display format to another--for just a moment or as
long as you like:

Try This: Press to see the decimal display format.

Now press (f) SHOW to glimpse momentarily what this number
looks like in octal format. Of course, you could also press the
key itself--to keep the display in octal format until you're ready to go
back to decimal.

"Fine. But what are these different formats, anyway?" (you might ask).
As a matter of fact, if you're new to computer science, all these new words and
phrases must indeed have left you scratching your head--notions such as "bits,

word size, binary, octal, hexadecimal," etc.

So this is probably a good time to take an important detour and review what all
these terms mean.

(If you already know everything mankind has ever discovered about number
base conversion and word sizes, then you may speed ahead to page 65;)

(But if you're brand new--or even just a little rusty--stick around.)

(Anyway, it never hurts to review something, right?)

Using the HP-16C 53

The Decimal Number System

Since you're going to be dealing with different number systems--and learning
how to translate from one system to another--this is probably where to begin the
story:

A long time ago--before there were hand-held computers--most people did their
computing or reckoning on their hand-held fingers.

They might even have written down their answers--if they were among the few
and fortunate who learned how to read and write.

Well, the ancient Romans developed one such written numbering system--one
that some people still use, in fact (e.g. movie producers still show the date of a film
using Roman numerals).

But just offhand, can you figure out

MDCLXVII x CDXLIV ?
As you can see, the Roman system isn't very convenient for doing computations.
Then, about 800 years ago, along came the Arabic numbering system--the one
widely used today.

Back then, most people had ten fingers (i.e., ten digits)., so this system used ten
symbols (0 - 9).

Well, western Europe eventually adopted this system, but Latin was the predom-
inant written language there. And so, because the word "ten" is "decem" in Latin,
this numbering system became known as the decimal system.

54 AnEasyCoursein

And what makes the decimal system so much easier to use? Think about it:

When counting in the decimal system, you start with the digit having the lowest
value--zero. Counting upward, you reach a limit at 9--where you run out of
symbols for each successive number; there's no single symbol for "ten."

Instead, you use a combination of two of the ten existing symbols, thus signifying
that you've completely exhausted that set of symbols. You have to mark down a
1 and then a 0 beside it, meaning, "I've run through my set of symbols 1 time,
plus I've counted 0 positions farther than that."

This forms the composite symbol for the number 10.

Similarly, when you exhaust your symbol set a second time, you mark down a 2
and a 0 ("2 complete sets, plus 0 extra counts"), and so on.

Now, what happens when you reach 99--and you want to count farther? Just
keep the same pattern: "10 complete sets of my symbols, plus 0 extra counts."

So you writeit: 100

And notice that you can think of this as a 10 next to a 0 (‘ten sets of ten, plus zero
extra counts”), or as a 1 next to a 0 next to a 0.

This 1 is the running tally of a new group (called a "hundred"). Then the 0's rep-
resent the extra tens and extra counts (called "ones," naturally).

So each successive decimal place (going right to left) represents a kind of run-
ning count--keeping track of the number of times that particularly-sized group-
ing has been completed. This is called a positional number system, because a dig-
it in the second (10's) position represents ten times the value of the same digit in
the 1's position--and so on, for each successively greater position.

Using the HP-16C 55

Take a look at a particular number as it's written in this positional, decimal
number system:

547

This number means that you've gone through 5 complete sets of "ten tens," plus 4
extra sets of ten, plus 7 extra counts ("ones").

So that 5 really stands for 500; the 4 really stands for 40; only the 7 is really rep-
resenting just itself, and thus it "weighs" the least; it's the Least Significant Digit

(LSD), because it's in the ones position.

On the other end, the 5 in the hundreds position really "weighs" 500; it's the Most
Significant Digit (MSD) here. So by writing 547, you're saying:

"(5x100) + (4x10) + (7x1)"

See? Each digit has 10 times more "weight" than its right-hand neighbor, and
thus this decimal system is also called the "base 10" number system.

Now, there's probably nothing really new to you about all of this. It's probably the
way you learned to count when you were little. But here's the key:

It all comes from the fact that you use only ten different symbols (0 - 9).
Well, what would happen if you had, say, 41 different symbols available?
Or 603?

Orjust 8...7

56 AnEasyCoursein

The Octal Number System

The octal system has only 8 digits (symbols) to use, instead of 10 (sure--you do
know of two other numerals, but they're not allowed now).

Thus, when counting in octal (also called "base 8," since it's based on the use of 8
symbols), you would start with 0 and work your way up to 7. When you reach
this limit, you carry a one into the next position and continue counting with 10.

But this 10 is not "ten." "Ten" is a word from the decimal number system. The
number 10 in base 8 is written as 10(0) and is read as "one-zero, octal.”

You can't say "ten," because when you see 10, this really means you've only
counted to "eight"--not "ten!" Each successive digit in an octal number is
"weighted" (speaking in decimal now) like this:

. 812 64 8 1

And see? Your first grouping on the right may still be called "ones," but your next
group has to be called "eights," because that's when you run out of symbols and
must start over. Then the next group is "eight eights" ("sixty-fours"?), and so on.

So a number such as
314(0)

would mean there are 3 sets of 64, 1 set of 8, and 4 sets of 1. So it's easy to convert
an octal number to a decimal number--just do that arithmetic. Here are the
keystrokes you would use (in Floating Point mode):

(3) ENTER) (8]4) (X) {9200
eooon
BI0) 2oyon

Using the HP-16C 57

So 314(0) = 204(d). OK, fine. But now how do you go the other way--from deci-
mal to octal [i.e. convert 204(d) back to 314(0)]?

You repeatedly divide the decimal number by 8 until the quotient becomes 0:

204/8=25 with 4 remainder
25/8=3 with 1 remainder
3/8=0 with 3 remainder

You'll see the octal number by reading the remainders from bottom to top: 314

But of course, the whole idea here is that, with the HP-16C in hand, you don't
have to do this conversion process so laboriously. Just let your super-smart
display register work for you:

Try It: Convert 314(0) to decimal--and then back to octal again.
Solution: Begin by pressing the key, to get into octal Integer Mode.
Now key in the number, and press the key.
You'll see: ¢y d

Finally, press to return to your beginning format.

Ain't this grand? No more tedious conversions between bases!

(But remember: Always know how your HP-16C does these chores--in case
you're caught without its help some fateful day.)

58 AnEasyCoursein

The Hexadecimal Number System

Besides base 8, base 16 is another important number system in computer science
and engineering.

In base 16, of course, there must be 16 symbols available. But we have only 10
standard "numerals,” so we "invent" six more: A, B, C,D, E, F.

Thus, when counting in hexadecimal ("hex" for short), you start with 0 and
count up to 9--and then continue with A-F. When you reach that limit, you have
to carry a 1 into the next position and start over with 10.

But again, this is "one zero"--not ten--because you've actually counted up to
"sixteen" already. And here are the relative (decimal-notation) "weights" of the
successive digits in the hexadecimal number system:

. 4096 256 16 1

Of course, you convert between decimal and hexadecimal similarly to your deci-
mal-octal conversions--either the hard way or with your HP-16C!

Using the HP-16C 59

The Binary Number System

Of course, the binary number system (base 2) is the most critical number system
for any computer. After all, it's the only number system a computer can under-
stand.

And of course, since it's base 2, there are only two digits in the binary numbering
system: 0 and 1. You'll often hear Binary digITS called by their shortened name:
BITS. Here are the first four positional values ("bit" values) in the binary system:

..8 4 21

(....in base 10 equivalent notation, of course).

Thus, the largest binary number that you could write, using only these first four

positions would be
1111(b)

which is the same as 15(d).
And there is an important idea: The number of binary digits (bits) you allow

when writing a binary integer is called the Word Size. Thus, in this example
above, the Word Size is 4.

60 AnEasyCoursein

Binary-to-decimal conversion works similarly to conversions from octal or hex-
adecimal--but it's a bit simpler (no pun intended)--because you only need multi-
ply each positional value by 1 or 0, right?

For example, 1011(b) would be (1 x8)+(0x4) +(1x2)+(1x1)=11(d)

And--again, as with octal and hexadecimal, you can go the other way (do deci-
mal-to-binary conversion) by repeated division (but this time by 2, of course).

Thus, to convert 100(d) to binary...

100/2=50 with 0 remainder
50/2=25 with 0 remainder

25/2=12 with 1 remainder

12/2=6 with 0 remainder

6/2=3 with 0 remainder
3/2=1 with 1 remainder
1/2=0 with 1 remainder

Result (reading the remainders in reverse order): 110 0100(b)

So it would take a Word Size of 7 bits to represent 100(d) as 110 0100(b).

You'll probably find it easier to convert between decimal and binary than be-
tween decimal and octal or hex. After all, it's easier to divide by 2 than by 8 or 16.

Before the advent of devices such as the HP-16C, if you wanted to convert a
number from decimal to hex or octal, you'd most likely do it in a two-step process:
decimal to binary and then binary to octal or hex.

Using the HP-16C 61

As an example of this two-step process, convert 42876(d) to octal and hex.

First, convert to binary with repeated division:

Remainder
42876/ 2 = 21438 0
21438/2 =10719 0
10719/2 =5359 1
5359/2 =2679 1
2679/2 =1339 1
1339/2 =669 1
669/2=334 1
334/2=167 0
167 /2 =83 1
83/2 =41 1
41/2=20 1
20/2=10 0
10/2=5 0
5/2=2 1
2/2=1 0
1/2=0 1

Result (splicing together all the remainders): 1010 0111 0111 1100(b).

Now, if you break the number up into groups of 3 digits--beginning on the right
side--you get this:
001 010 011 101 111 100

Notice that you add two zeros to the group on the far left.

62 AnEasyCoursein

Now you can write
001 010 011 101 111 100
1 2 3 5 7 4

assigning in this way the equivalent octal digits (which, hopefully, you have
memorized just for such emergencies). So 42876(d) = 123574(0).

But even better, if you break the binary number into groups of four digits each,
then you can match each group with its corresponding hex digit:

1010 0111 0111 1100
A 7 7 C

So 42876(d) = 123574(o) = A77C(h). You see? Once you've converted a number
into binary, it's fairly easy to go to either hex or octal.

It's also easy to go back to binary from hexadecimal or octal--and then on to deci-
mal format. For example, suppose you wanted to convert 18AD(h) to decimal.
To do this, you first write the hexadecimal number itself, followed beneath by the
binary representation of each digit (which you should also memorize):

1 8 A D
0001 1000 1010 1101

Then separate the bits and write their positional weights underneath them:

0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0
0 +0 +0 +4096+2048+0 +0 +0 +128 +0 +32 +0 +8 +4 +0 +1

Then if you add this resulting line of values, you get 6317.

So 18AD(h) = 6317(d).

Using the HP-16C 63

Now, for practice, make up your own decimal and hex numbers and try several
paper-and-pencil conversions--in both directions. Then check your results on
your HP-16C--to see if you have the hang of it....

...See why computer scientists prefer hex numbers to any other?
Although binary digits (bits) are really what you're dealing with, it's far easier to

use hex numbers to represent them--because hex numbers take fewer digits to
write: one hex digit corresponds to 4 bits.

Of course, after having done a few of these number base conversions with pencil
and paper, you'll certainly appreciate the speed and capability of your HP-16C.

You might even be tempted to forget how to do such conversions by hand.
Don't!
Don't ever forget the fundamentals of your science! People who can perform

number base conversions without a calculator tend to do much better work in
computer science and engineering.

64 AnEasyCoursein

Now that you've refreshed yourself on a bit of number theory (or the number

theory of bits) are you ready for that closer look at how the HP-16C works in In-
teger Mode?

Good, because it's time now for a detailed explanation of your keystrokes--and
how the HP-16C display interprets them.

(If you already know how to key in and interpret negative integers-—-in any of the
four number bases--and how to change the word size of the calculator, then feel
free to skip to page 83.)

Hewlett-Packard designed this "Computer Scientist" calculator so that casual
users wouldn't even be aware of the complexity and speed of the calculations

going on inside it. And for the most part, you really and truly don't need to think
about it.

But just so you appreciate the wonder of things a little bit, here's what's actually
happening:

Using the HP-16C 65

Smoke and Mirrors: The Display's Bag of Tricks

Yes, fans, that's right--it's all window dressing. As you heard a little while ago,
the display is the real star of the show. In fact, while in Integer Mode, most of
what goes on in the HP-16C happens right there--in the display register.

Remember what that display register is all about? It's not merely another mem-
ory location in the calculator. Rather, it's a tiny translating engine--a rather
complex set of electronic circuits.

And recall back to when you were using the calculator in Floating Point Mode.

Remember how you could adjust the display register to show more or fewer dig-
its after the decimal point? Well, the whole point to all that was this:

Although a number may appear in a rather limited form in the display, the
number itself is retained in its full precision in the X-register.

And that precision was a 10-digit real number when you were working in Float-
ing Point mode.

Well, here in Integer Mode, the rule is much the same:
The display register will show you integer numbers in several different digital
formats. But all the while, the integer actually residing in the X-register (and in

each of the other registers al<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>