
HP16C Emulator Library for the HP48S/SX

(— \)

bEC i! 25 CRRY RNGE 16C

Kt
1 %15:1
li!:l

OO0
bSHOW / h . d. 0 b—

() (9 (er)(w9 @) ()
g % SInFLY SRnFXD SWAP

Y 6o) (@ &))
R Ri.”RLC mwnc’ R Rn RF 1

() fos): (oam): (=% DB00)
—SET COMPL—

#000... MLSHOW ED, T 1

Cevren) (3 (= out) (o)’
iHTRV ?L“ HSKR%SRMD CBLR FD!L'P

. r__j fn TR B?ccn mooaL

eLAQTey

-?fiflfifi
fifi?%flh
ATN

16C EMULATOR)

by
Jake Schwartz

and

Rick Grevelle

16C Emulator Registration Card

In order to be notified of program updates, documentation updates, or
new products, please fill out the information below. Tear out this sheet
and mail to:

Jake Schwartz
135 Saxby Terrace
Cherry Hill, New Jersey 08003-4606
USA

Product: HP16C Emulator for the HP48S/SX

Version: (Pleasecircle one:) Disk Card

Serial Number:

Name:

Address:

Comments:

HP16C Emulator Library for the HP48S/SX

by
Jake Schwartz

and Rick Grevelle

Copyright © Jake Schwartz and Rick Grevelle 1993

All rights reserved. No part of this book may be reproduced, transmitted,
or stored in a retrieval system in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior
written permission of the authors.

The software, this manual, and any examples contained herein are
provided “as is" and are subject to change without notice. The authors
make no warranty of any kind with regard to this software or manual,
including, but not limited to, the implied warranties of merchantability and
fitness for any purpose. The authors shall not be liable for any error or
for incidental or consequential damages in connection with the
furnishing, performance or use of this software, keyboard overlay,
manual or examples presented herein.

The owner of this manual and software may not distribute or transfer the
software under any circumstances without specific prior written
permission of the authors.

Edition 1 - April, 1993 coinciding with software version 1.20

Notes and Acknowledgements 1

Notes and Acknowledgements

Back in the summer of 1990, as I was beginning to get comfortable with the

HP48SX, my work at General Electric was demanding an increasing amount of

time working with one's-complement octal integers. The Navy computers for

which we were writing software hadn't yet caught up with the rest of the world
as far as adopting two's-complement and hexadecimal formats - which seemed

to be the standard everywhere else. As a result, my trusty 1982-vintage HP16C
"computer scientist” calculator (being the only one before or since which could
handle the job) remained close at hand. And, as it became inconvenient to

carry both the HP16C and HP48SX at all times, I began to wonderif the '48
and RPL language might not provide an adequate platform onto which the

various operations on signed octal integers could migrate.

By the fall of that year, I had managed to write a small group of RPL "user-

code" objects which emulated the 16C's handling of all four integer bases in

conjunction with both unsigned and signed numbers along with the four

arithmetic functions and some bit manipulations. The idea was to create a

situation where "16C mode" could be quickly entered, used and exited without

adversely affecting any other HP48 conditions. However, due to the

complexity of displaying negative decimal integers with a minus sign and the

slowness of activating user keys which assigned all the HP16C functions to the

keyboard, the thing never ran fast enough to be really useful.

By the Spring of 1991, a few people from the HP calculator user community

had gotten wind of the 16C emulator project and offered both encouragement
and suggestions on how to make it fly. However, no solutions came forth

which could both integrate everything into a package that started as quickly as

a single key-press and could function smooth enough to appear as seamless as

the built-in HP48 applications.

Then, at the August 1991 HP Handheld Users' Conference in Corvallis,

Oregon, I made a brief presentation on optimizing the HP48 software user
interface and cited the abandoned 16C emulator code as an example. It was
there that Rick Grevelle saw what had been attempted and thought about
possibly helping make the project work. Beginning in early 1992, Rick became

fully involved, applying his self-taught expertise in the inner-workings of the

HP48 to this task. One by one, he was able to tackle virtually every obstacle

that was encountered. As a result, we achieved the goal of coaxing

2 Notes and Acknowledgements

the HP48 to fully emulate the HP16C functionality without imposing on the

user the burden of an unfriendly environment or complex labyrinth of menus.
Without Rick's dedication, enthusiasm and knowhow, this project could not
have been completed.

The 16C Emulator code was developed both on a PC and on the HP48 itself.
The major development tools used were Hewlett-Packard's System-RPL
Development Tools (available on EduCalc's HP48 Goodies Disk #4), Jan
Brittenson's HP48 Machine Language Development Library ROM card and
Brian Maguire's HP48 System-RPL Development Library.

Additional thanks are due to Richard Nelson for providing continuing
encouragement all along the way. Jim Donnelly and Brian Maguire offered
valuable suggestions at several points in the development. Our gratitude also
goes out to Joseph Hom, Brian Walsh, Steve Thomas and Wlodek Mier-

Jedrzejowicz for finding bugs, sharing ideas and pushing buttons. And finally,

hearty thanks go out to Detlef Mueller for putting out some rather nasty fires

in the code when time had just about run out. In addition, he implemented

several significant features including the IEEE-format functions in System
RPL, allowing VISITing of variables and turning on the intereactive stack in
the emulator environment, and the MLSHOW function. Many thanks, guys.

Jake Schwartz

April, 1993

Contents 3

Table Of Contents

L INrOAUCHON....tttess ae e s ra e e s aa s nas6

AL OVEIVIEW..otttesecee e sraeesneseraeesaessaessnaneas6
B. This Manual............ccccccoeviiiiniiiiiiiiieeseee e eveeens 7

C. Conventions Usedcovveevieeriienreecrrreecneeeneeesressseennneens 7
2. Getting StArtedc.ooovuiiiuieiiecieecieeie eteteaeeeeeeeraeeenbe e e e e e s e e snenas 8

A. Installing the Emulator..............cccooeeivieeiereeeiieeeeeeecieeeeeeens 8
i. From Disk (at least 25K free RAM required). 8

ii. From Plug-in Card:ccooeiviiiinviinnieneeeeeeneenn,9
B. Entering the Emulator Environment...............ccccccvvvievrvunreennne.9

C. Keyboard Operation...............cccccuveeevieeeeiieeeenveeesieseesineeesnnennns 11
i. The Primary Key Definitions..............cccccceevcrveeeneennee. 15

ii. The Shifted Key Definitions............cccccceeevvueievueeennen. 17
D. Soft-Key Menu Functionsccccoeeeiieeicieeecsiieccieecsneenne 18
E. Returning to the "Main" Menu Page..............cccccoovvieeiiccnnnnnnn. 19

G. Exiting the Emulator................ccccoooiiiiiiiniiieccccireee19

3. Number and Display Control...............cccccoeeiiiieiiiiiee20
A. Display ANNUNCIALOLS.............coooeeiiiiiiiiiieeeeeeecciineeee e eeeevaeeens 21

B. Number Base Modes...........ccccoviiiiiiiiniiieccecieeceeceeen 21

i. A Second Set of BASE Keys......ccccooveeevveeveecneeennenne. 22
C. Temporary Display ("SHOW")coovrivrieeeeeeereeeee22
D.Entry in any Base...........cccooovviiiiiiiiiiiiiiiecececeieeeee23

E. Complement Modes and Unsigned Mode..................cccuueeneee. 24

F. Word Size Control............ccccoovviiiiiiiiiieeeeens28
G. Leading-Zeros Display Mode...........ccccevvuverrieeniinenieeneenienne 32
H. The Multi-line SHOW Function (MLSHOW) 32

I. Command-Line Editing / ENTRY modec.ccccveurereneneee. 34
i. Operation of the Change-sign (+/-) Key in the
Command Lineccccoovviiiiiiiiiiiencineceeceseieeeene 34

J. Access to the MODES Menu From Inside the Emulator40
4. Integer Arithmetic and Bit Manipulation Functions..............ccccccceeennn.e.41

A. Carry and Out-of-Range Conditions...............cccccovvverrecnnreennne.41
B. Integer Arithmetic Functions..............cccccoeeviviiiiienieece,43

i. Addition, Subtraction, Multiplication and Division.....43

a. Mixed Integer and Real Arithmetic

ATGUIMENLS.......vuiiiiiiiiiiiiiirireeeeee eiereeeee44

4 Contents

b. Addition and Subtraction in 1's

Complement Modecccceevviieniiiinniecennnne. 45
c. The Carry Flag During Addition 47
d. The Carry Flag During Subtraction.............. 48
e. The Out-of-Range Flag During
Arithmeticcoovvieiieiiiiieiiiieeeee49

f. Arithmetic with Other HP48 Objects............. 50
ii. Remainder Following Division and RMD.................. 50
iii. Square Root, y-to-the-x and x-squared 51

iv. Negative Numbers and Complementing 52
a. Changing Signs..........cccooceviiiiiiviiiiniienene 52
b. Absolute Value of Integers...............ccceuee.e. 52

C. Logical Operations on Integers.............cccococvveeeenieeiininereeennnn. 52
i. The NOT Function..............cccoeeviieeiieieeiecicieeeeee 53
ii. The AND function...............cccooeveeeiiiiieiiiiceeeeee 53
iii. The OR Functionc.ccooceevviieiieniiciieeeece, 54
iv. The Exclusive OR (XOR) Functionc.......... 54

D. Shifting and Rotating Bitscccooiiiiiiiiniiiieceees 55

i. Shifting BitS........coooviiieiiiieeeeeee55
a. Logical Shifts SLand SR............................ 55
b. Shifting More Than One Bit at a Time......... 56
c. Left-Justify (LJ)coovveiiiiiiieciecceeees 58

d. Arithmetic Shift Right (ASR)...................... 58
ii. Rotating Bits..........ccoooiiiiiiiiiceeee59

a. Rotationc.ooeeveiiiiiiiiieee, 59

b. Rotation Through the Carry Bit.................... 61

¢. Rotating More Than One Bit at a Time 61
E. Bit Manipulation.............coooiiiiiiiiiiiiiiiiereeee62

i. Setting, Clearing and Testing Bits.............ccccceeeeenn. 62
il MaSKING ...ooeeiiiiiiiiiicee63

iii. Bit Summation..............ccccevviiiiiiiiiiiiiee, 63

F. "Double" Functions (DBLx, DBL+, DBLR)........................... 64

i. Double Multiply........ccccoviiiiiiiiieiiceee,64

ii. Double Divide...........cccceevviviiiiiiiiiiiiice, 65

iii. Double Remainderccccoooviiiiiiinniniiiiiinnnnnnn. 66

5. Real Numbers and Alpha Modecccocceiiiniiiiiiiniiiiiiceeeeeeen, 68
A. Normal Real-Number Entrycccccoiviiiiiiniiiiiinniicneene, 68

i. Parser operation..............cceeevvveeeriiieeeeecieeeeeireeeee 68
B. Real-Number Math............ccooooiiiiiiiiiiteeteneeeee70

6. FOrmat CONVErSIONS.........c..uveeiieiiiiiiiiireteneeiiiieeeeeseeseiireeeeesesesasannenees 72

A. Real-to-Binary and Binary-to-Real Conversions..................... 72

Contents 5

i. Word Size Considerations..............cccccecevverrenienenuennnn 73
B. Converting Integers To and From Reals with
FLOAT/FIXEDcooiiiiiiniiniinieesieeeieetenreev eanesveee75
C. Converting To and From IEEE Floating-Point Format............ 77

7. Using the VAR MENUooovviiiiiiiiiiiee e cccciieeeccsceneeeceneeeseee e eens 80
A. Program HALT Cautions..............cccceeeevueneeeeeenrenienenneraennns 80

8. Programming with Emulator Functions............ccccccceviervnniiniiiniiinnennn. 81
A. Test functions (CRRY?, RNGE?, CMP?, ==.,.,<.,, >.,<

3 2.) creereeteetttsts e st e et et e e e e e aa e b e et aesbeentanseeteesesnaansaes 83

B. Carry and Range functions SETC, CLRC, SETR, CLRR......84
C. Writing Programs From Inside the EmulatorEnvironment....... 84
D. Programming Examples............cccceevveeiiivirininiiinieiniieenreeennen, 85

i. Recall and Set Emulator Status..................cccoceevuerennne. 85
ii. Floating-point Base Calculator.................c.ccccveeunene 85

Appendix A. Classes of Operations...............cccceeeereeevueeeenneeeeeeennnens.94
1.Active/Inactive Keys During Emulator Modes.......................... 94
2.Flags Used by the Library...........cccceeevviiiiiniiiiiciiiecieeccneee,96

Appendix B. Function Summary:cccccceeviimninnieniinniinieeenceeee97
Appendix C. XLIB Numbers & Other Details..............c.ccceeevvriierrieneennnns 109
Appendix D. Error MesSages...........ccovuvevuiiiiiiiiciiiniinnieenieeniesireesieesreeens 112
Appendix E. When All Else Fails.............cccccovuieeniiniinnieiiicieceececene 113
DXoetttettt e ettt eeeaaeetenae s eaasatasaensetnnsrnaeannrernaaerenaaernaes 115

6 Section 1: Introduction

1. Introduction

A. Overview

The HP16C Emulator/Computer Science Library is a package which provides
functionality for the HP48S/SX to perform integer arithmetic, bit
manipulation, base conversion and more in either unsigned, one's-complement
or two's-complement modes. Word sizes from 1 to 64 bits are supported. In
addition to encompassing the full run-mode functionality of the Hewlett-
Packard HP16C calculator,the library includes additional features to enhance

the HP48 user interface. All functions may be immediately accessed quickly
with the aid of a keyboard overlay and also may be found in the multi-page
library-object soft-key menu. All status information (current word size,
complement mode, base) is shown in the HP48's display status area. In
addition, all of the functions of the library may be incorporated in users'

programs.

The HP48 multi-level RPL stack and its accompanying commands (including
SWAP, DROP, CLR, LAST, stack editing, etc.) are all available in "16C

Mode." Entry of integers does not require the use of the pound-sign delimiter
as a result of the library's context-sensitive parser. If a number consists solely

of relevant digits for the current base, the number is interpreted as an integer,

likewise if the number contains other digits or a decimal point and/or an
exponent often,it is accepted as a real. Math with real numbers is supported
as well with the HP48's row-4 scientific functions accessible by toggling into
emulator "Math Mode." The hexadecimal keys A through F have been moved

down from keyboard row 1 in the ALPHA plane to primary key positions in

row 4 where they are much closer to the numeric key pad.

Conversion between integers and reals is supported via both the HP48's
R—-B / B-R function pair and the emulated versions of the HP16C's

FLOAT/FIXED* function pair. The display shows integers in the selected
base with or without leading zeros (in BIN, OCT or HEX) and correctly shows

negative integers with a minus-sign (in DEC). Most regular HP48

* In the HP16C calculator, converting a floating-point real number to integer ("FIXED") format is

performed by pressing the key corresponding to the desired integer base.

Section 1: Introduction 7

modes (such as display, angular, clock display on/off, multiline on/off, etc.)
are adjustable through the HP48 MODES menu which remains active.

All keys whose functions are not permitted in the emulator environment are
disabled, including illegal digit keys under the current base.

B. This Manual

This manual assumes that the user has a working knowledge of the HP48
calculator,its RPL stack operations and the functions in the MTH BASE menu
which operate on integer numeric values.

C. Conventions Used

Throughout this manual, there are examples of HP48 keystroke sequences,

problems and display representations. In order to differentiate between these

items, three different type styles have been used. They are as follows:

Type of data: Example of type style:

Numeric input 1.2345

HP48 function RCL ENTER STO

HP48 L.CD display information # 12345d

8 Section 2: Getting Started

2. Getting Started

A. Installing the Emulator

i. From Disk (at least 25K free RAM required):

The 16C Emulator Library may be loaded directly from the supplied floppy

disk or from a PC hard drive. Insert the disk into the computer. A directory of
the disk should show the following:

MULSR.LIB nnnnn (16C Emulator Lib. file)

EXAMPLES.DIR mmmm (Programming examples)

If it is desired, the contents of the disk may be copied to the computer's

internal hard drive and transferred to the calculator from there. Plug the HP48

serial interface cable into the computer and the calculator.

On the PC, start Kermit transfer protocol, set the baud rate to 9600 and type
the SEND command:

C: KERMIT

C: SET BAUD 9600

C: SEND A:MULS8R.LIB (or SEND MULS8R.LIB if

transferring from the current

directory in the hard drive)

Make sure the current HP48 VAR directory is the HOME directory. On the
HP48, the I/O SETUP menu should indicate that "WIRE", "9600", and
"BINARY" modes are active. At least 25K bytes of RAM should be free in
order to download the library. (As a result, the presence of a RAM card would

be useful.) From the /O menu, press RECV and the emulator library should

begin to be loaded into the calculator after a second or two. When the file

transfer is complete, the serial cable may be disconnected.

In the HP48 VAR menu, the "MULB8" soft-key label should appear. Pressing
the comresponding key should cause the display show the following in stack

level 1:

Section 2: Getting Started 9

1: Library 364: HP16...

Now, in order to preserve memory, purge the copy from the menu by pressing:

' (mUL8] k=Y PURGE .

This should delete the soft key but leave the library remaining on the stack.

Press 0 STO to store the library into main memory in port 0. Now, turn the
calculator off and back on again and the Emulator library will auto-attach.

(The LCD will blink off and on.)

To confirm that the library is accessible, press 1 LIBRARY and see
"HP16C" as one ofthe soft-key labels in the LIBRARY menu.

ii. From Plug-in Card:

Tumn the HP48 off and insert the 16C Emulator Library card into an open HP48
port. Tumn the calculator back on. To confirm that the library is accessible,

press K1 LIBRARY and see "HP16C" as one of the soft-key labels in the
LIBRARY menu.

B. Entering the Emulator Environment

After the library is installed and attached, the HP48 LIBRARY menu will
include a key labeled HP16C. Pressing this key will display the first page of
the HP16C Emulator Library menu as shown:

J8TT GTTN

The EMUL key starts up the HP16C emulator environment (referred to as
"HP16C Mode" from here on in) while the ABOUT key displays product

10 Section2: Getting Started

information about the library. The four arithmetic keys (and all subsequent

keys on the seven other soft-key menu pages) are individual functions that are
available on primary or shifted keys inside the emulator environment. These

will all be described later in this manual.

Pressing EMUL activates HP16C mode in the calculator. Entering HP16C
mode will produce a display similar to the one below.

DEC 32 05 CRRY RNGE 1&6C
ME }

—
I
O

R
]
™

S
8

B
8

8
B

8
B
-

BCT=E0IS0TTY(YT

Figure 1. Initial HP16C Emulator display.

In this example, the current base was decimal, the word size was 32 bits and

the stack was empty before HP16C mode was entered. (These settings would
have been created from the HP48's built-in MTH BASE menu functions.) Note

the "16C" status message in the upper right of the display status area. In
addition, the "32" shows the current binary word size, the "0S" message
indicates that the current complement mode is "unsigned" and the "CRRY"
and "RNGE" messages show that the emulator's carry and out-of-range (or
"range” for short) flags are currently set. In addition, the first page of the soft-

key menu shows that the current base is decimal (similar to the HP48 MTH
BASE menu) and also shows that the current complement mode is "0" (or
unsigned).

Each time the HP16C emulator is exited, the various modes are saved and

restored again when the mode is re-entered. In addition, the status of leading-

zeros display mode and math mode (both to be described later) are also saved

and restored in a similar manner. These modes are retained in HP48 flags and

thus require no user RAM memory. The various flags relevant to the Emulator

are shown in the following table:

Section 2: Getting Started 11

Function Flags

Formerly Complement Modes: -13 -14
unused

system flags: Unsigned clear clear
1's Complement set clear
2's Complement set set

Already used Current Word Size -5 thru -10

system flags: Current Base -11, -12

BIN clear set
OCT set clear
DEC clear clear
HEX set set

User flags: Math Mode 61 (on if set)

Leading-Zeros 62 (on if set)
Display Mode

Carry Flag 63

Out-of-Range Flag 64

C. Keyboard Operation

When 16C Mode is entered, the HP48 keyboard becomes redefined. The
keyboard overlay supplied with the emulator is recommended to utilize the

emulator functions more easily. Sometimesit is difficult to attach the overlay

due to the six small tabs on the sides which must be inserted into the side slots

on the HP48 keyboard. One recommendation would be to snip off some of

these tabs with a sharp scissors. If all three tabs are removed from either the

left or right side of the overlay, installation becomes a simple matter of

inserting three tabs on the intact side and dropping the overlay into place.

12 Section 2: Getting Started

The initial 16C mode keyboard layout is shown below:

OO000
eSHOW / h,d. 0 ,b=

@) @
E SLnFLT SRnFXD REVIEW P

@m@fi@
fij RLRLC RR RRC&(finfl@n

—SET COUPI.—-
#000... MLSHOW ED LR

W=) =) (o)
EXIT

MSKRABS RMD DBLR DBL+

(fiv C7) (8)(9)(+
o-F JC CB TR B8? CCR ANDDSBLX

i4||5||6||x|
eLAS]ey

®GG
TTo)() =) 0+

ATTN

L 16C EMULATOR J
\=

Figure 2. HP16C Emulatorfull keyboard.

Both the primary and shifted key definitions have been redefined in many

cases. Most of the other primary keys have their definitions either retained or

enhanced to operate in 16C mode. The keys in the numeric key pad are active

based on the current base. If the base is binary, only keys 0 and 1 are allowed

and pressing any of the others will result in an error beep tone. If the base is

octal, only keys 0 through 7 are active. In decimal base, not only are keys 0

through 9 allowed, but the decimal point and EEX keys are also active so as to
permit entry of real numbers as well as integers. If hexadecimal base is current,

Section 2: Getting Started 13

not only are the 0 through 9 and decimal point and EEX keys active, but also
the keys in row 4 primary positions act as hex digits A through F keys. (The
relocation of the A through F keys from their original positions on the top row
of the alpha-shifted plane down to the fourth row not only brings all the hex

keys closer together and allows entry without shifts, but allows the emulator to

use the top row for soft-key definitions at all times.) A picture of the 16C
Mode active numeric keypad for each of the four integer bases is shown below:

@ c ° AS LRLC5S
h

i(
]
B

MSKR ABS RM

f“]

16C EMULATOR JJ (‘fi
l
l
@

Figure 3. Keyboard layout for 16C mode with current base
hexadecimal.

14 Section2: Getting Started

fi fi

XOR DBL+

-

OO
W@fl

"f"iJ
su L—

DGL

b

@%)
C8B TR 87CCR AND DBLx

Cyesjesjosfes
®5o

@E?W-fi
16C EMULATOR

\— —)

Figure 4. Keyboard layout for 16C mode with current base
decimal.

SLLJ SRASR RLRLC RRRRC RLnRLCn RR

OO0O00O00n
#000...m.suow EDITVISIT 1526CUNSGN DRQPCLR

(G80O()B
OO
@ @EE)G
®)C2))6=

T To)()() (+)
ATTN

16C EMULATOR)J
L

Figure 5. Keyboard layout for 16C mode with current base octal.

Section 2: Getting Started 15

#000... MLSHOW TS26CUMSGN LR

Cener) (53 () foxr) ()
EXIT

eLATey

®"@jfi‘j‘fi‘])
TyT() (=) B4)
AT'TN
& 16C EMULATOR J)

Figure 6. Keyboard layout for 16C mode with current base
binary.

Keys like NXT, the four "arrow" keys, ENTER, +/-, EEX, back-arrow, the
arithmetic keys and ATTN all retain their original definitions and operate in
the context of the emulator. The ' (tick), STO, EVAL, and VAR keys are also
active during 16C mode.

i. The Primary Key Definitions

Four primary keys - MTH, CST, DEL and o have completely new
definitions.

Pressing the DELkey exits the emulator, returning to the HP16C library menu.

The o key activates all the hexadecimal (0 through F) digit keys along with

the decimal point and EEX keys to allow entry of reals or numbers in any base

at any time. (Note that when the "fraction mark" is set to a comma through the

MODES menu, the decimal-point key produces a comma like the regular

HP48 behavior.) This key still turns on the alpha display annunciator and stays

on only as long as the normal o state does - untl

16 Section 2: Getting Started

ENTER or a function causing an automatic evaluation is pressed. In addition,

o may be locked with two consecutive presses or by setting system flag -60.

The CST key returns the top row keys to their "main-row” functionality

(similar to the HP48 action ofthe blue-shifted NXT key press).

The MTH key toggles the HP48 row-4 keys and most of their left- and right-
shifted definitions back and forth from their 16C-mode definitions to their
original functionality, providing limited scientific calculation functions for real

numbers while in the 16C emulator. In addition, the numeric keypad reverts to
that in 16C mode for decimal base: keys 0 through 9 plus the decimal point
and EEX are active. Also, the HP48 object delimiters are activated in their
original left- and right-shifted arithmetic key positions. When in MTH mode,
the 16C status message in the top right of the LCD is changed to "MTH". A
picture of the MTH mode keyboard is shown below.

Section 2: Getting Started 17

OO000
———e §HOW / h ,d, 0 ,p——

() 69'(es)(9 @)
E SLnFLT SRnFXD IEW AP

(969 e @ &)
o' 6@@)CRCa
#000... MLSHOW E 7S26 CUNSGN ©
ENTER“ssxi fi |¢-|

EXI

RY MSKRABS RMDDBLR

@%} (s =
JC CB_TR B? CCR

@B
® o)25B=
Wfi?(mm
& 16C EMULATOR JJ

Figure 7. HP16C Emulator MTH Mode keyboard.

ii. The Shifted Key Definitions

During 16C mode, several shifted key definitions remain intact. These are

MODES, PREV, UP, HOME, REVIEW, SWAP, EDIT, VISIT, DROP,
CLR, ENTRY, RAD, POLAR, LAST STACK, LAST ARG, LAST CMD,

LAST MENU, CONT, OFF, comma (,), carriage return (), t and Z. The

newly-defined functionality will be described throughout this manual.

18 Section2: Getting Started

In most places on the keyboard where the overlay only shows a single shifted
(orange or blue) definition (such as with the VAR or SPC keys), this means

that the other shifted key definition is undefined. If the overlay shows no
shifted functionality (such as with the up-arrow key), then both shifted

positions are undefined.

D. Soft-Key Menu Functions

The HP16C-Mode top-row soft keys are dynamically labeled in the bottom row

of the display like the normal HP48. The initial (or "main") row of definitions
are the ones which appear whenever the emulator is entered. There are seven

additional rows of six key definitions following the main row which may be

accessed by repeatedly pressing the NXT key. The entire soft-key menu is

shown below:

TR=TTTTST

EETTTRN

L)A3kKLCREC|RLEMJRECH

[T(ST3-IT

M0OFHOFWOTWESAES

 SLMZEM fDEL:

+|EEE|IEEE*[FLOATIFILEDE*EE+F

BEEEBORU
The menu includes most of the functions found in the HP48's MTH BASE
multi-page menu, along with all the integer functions from the HP16C

calculator. These functions, which all also appear elsewhere on the redefined

16C-mode keyboard, are here in the soft-key menu as a backup measure in

case the keyboard overlay is not available.

Section 2: Getting Started 19

E. Returning to the "Main" Menu Page

When any row of key definitions beyond the main (emulator’s initial) row (or
a different menu such as MODES or VAR) is displayed, the user may
immediately return to the main row by pressing the CST key.

F. HP48 Functions Remaining Active

The REVIEW operation shows a summary of the six functions in the current
page of the 16C-mode soft-key menu. The regular HP48 stack-manipulation

functions SWAP, DROP, and CLR are still active. When there is no

command line, SWAP and DROP are also accessible as primary functions on
the right-arrow and back-arrow keys, respectively. The RAD key switches
between radians and degrees mode (or between radians and grads mode if

GRADS was selected from the MODES menu). The POLAR key switches

between rectangular and polar coordinates mode (with polar mode being either

cylindrical or spherical mode, depending on which has been chosen in the

MODES menu). The MODES menu remains accessible for changing display
notation, turning the clock on or off, adjusting the radix and so forth.

The PRG key remains active in order to allow access to the PRG STK, PRG
OBJ, PRG BRCH and PRG TEST menus underneath. (Access to the PRG

CTRL and PRG DSPL menus have been disabled.)

The VAR key provides the user access to HP48 objects currently residing in
RAM memory. In conjunction with the soft keys in this menu, the normal left-

shifted and right-shifted STO and RCL capabilities to and from user objects
has been retained.

The four LAST functions (LAST STACK, LAST ARG, LAST CMD, LAST
MENU) from the regular HP48 keyboard are retained in 16C mode in their

original left- and right-shifted positions above the 2 and 3 keys.

20 Section 2: Getting Started

The EDIT and VISIT functions operate on stack entries in the way that the
normal HP48 does. If no command line is active, EDIT copies the object in
stack level 1 into the command line for editing and turns on the EDIT menu.
If a command line is already present, EDIT simply activates the EDIT menu.
The VISIT function allows editing of stack level n if value n is placed in stack
level 1 or into the command line; or normal editing of user-created objects

from the VAR menu.

The ENTRY function allows the command line to be filled with a sequence of
commands, delaying evaluation until ENTER is pressed. If no command line
exists, ENTRY causes the command line to be started.

The OFF key turns the calculator off from inside the 16C emulator. When the
HP48 is turned back on, the calculator will be in the same mode as when it was

before it was shut off.

The arrow keys assume most of their normal roles while in 16C mode. If no

command line is active, the right arrow performs a SWAP. The down arrow
begins editing the value in stack level 1. The up arrow begins the interactive

stack. All four arrow keys work correctly to move the cursor around during an

editing session. The blue-shifted arrow keys still move the cursor to the far

edges of the data in the command line. Since there is no access to the graphics

(PICT) display, the left arrow key is disabled if no command line is present.

The UP, HOME, comma (,), carriage-return (J), &, Z, tick ('), STO and

EVAL keys are also active in the emulator mode. They function in their usual
manner.

G. Exiting the Emulator

The DEL key acts as the exit key to leave the emulator. All current settings in
the emulator are retained and are reactivated when re-entered. (Note, that the

word size and current base settings are saved in flags which are also used for

the same settings made in the MTH BASE menu. If these are changed outside
the emulator, the new values will be reflected when the emulator mode is re-

entered.)

Section 3: Number and Display Control 21

3. Number and Display Control

A. Display Annunciators

The top row of the display status area shows up to eight different messages.

The table below shows these messages moving from right to left in the display:

Annunciator Function

RAD/GRAD Angular mode

RzZ/ Rz« Polar coordinate mode

HEX/DEC/ OCT/BIN Current integer base

1 or 2-digit number Current word size

0S/1S/2S Current complement mode

CRRY Carry flag on

RNGE Out-of-range flag on

16C/MTH/ PRG 16C mode/Math mode/
Delayed-eval entry mode

The second row of the status area remains unchanged in emulator mode. The
current path followed by the clock display (if turned on) is shown.

B. Number Base Modes

The four base modes of the emulator work just like those in the HP48 MTH
BASE menu. However, in order to aid the user in numeric data entry of
integers, the digit keys that are not relevant to the current base are disabled.

Thus:

22 Section 3: Number and Display Control

If current base is: The following digits are active:

BIN (base 2) Oand 1

OCT (base 8) 0 through 7

DEC (base 10) 0 through 9

HEX (base 16) 0 through 9 plus A through F

Unlike the regular HP48 where in order to enter binary integers one must
precede the numbers by the pound-sign delimiter, the HP16C emulator does
not have this requirement. Simply entering the numeric value and pressing
ENTER will place the integer onto the stack.

The current base (saved in system flags -11 and -12) outside the emulator is
carried over to 16C emulator mode for consistency.

It should also be noted that in decimal and hexadecimal bases, the decimal
point and EEX keys are also active to allow entry of real numbers as well as
integers. See section 5 ("Real Numbers and Alpha Mode") for more
information.

i. A Second Set of BASE Keys

In addition to the HEX, DEC, OCT, and BIN keys on the emulator's MAIN
soft-key page, the base functions have been duplicated in the right-shifted

positions on the second row of keys directly below their counterparts. This

allows base manipulation while the soft-key menu displays another emulator

page or perhaps another menu altogether. Due to space considerations, the

keyboard overlay does not show the blue DEC function label in the shifted
second row; howeverits functionality is indeed present in the emulator.

C. Temporary Display ("SHOW")

If one wishes to temporarily view the values in the stack in a base other than

the currently selected base, the SHOW functions may be utilized. Pressing
left-shift followed by a base key in the emulator "MAIN" soft-key menu

displays the stack values in the selected base for a short period of time, after

which the system returns to the original base. After left shift is pressed, if the

Section 3: Number and Display Control 23

key ofthe selected base to be shown is continually held down, the display will
remain in the new base until the key is released. Attempting to do a show base
with the current base will act as if no key had been pressed.

D. Entry in any Base

Sometimes the requirement exists to enter an integer in a different base than

the current base. The right-shifted base keys in the "main" soft-key menu
page append lower-case letters h, d, o or b to the numeric value in the
command line, thus allowing the calculator to interpret the number in the
desired base. For example, if the current base is decimal and the value octal

3776 is to be entered, the keystrokes 3776 ImIOCT ENTER will enter
"37760" into the command line, convert the number to the current base and

place it on the stack as "#2046d."

Despite the fact that the keys corresponding to irrelevant digits in the current

base are disabled in 16C mode, a user might wish to enter a value in a base

which requires the "illegal" digits. Pressing the a key will temporarily enable

all ofthe digit keys 0 through F to allow entry in any base. (The a annunciator

at the top of the display will also turn on.) Like the regular HP48, ALPHA

mode remains on for only one keystroke ifit is not locked. By setting system

flag -60 before pressing oor by pressing the o key twice, it will remain locked

until the entire command line is entered. Of course when ENTER is pressed,
ALPHA mode will terminate, causing the "illegal" digit keys revert to their

inactive state. The a display annunciator will also darken. Also note that

while ALPHA is on, the rest of the entire 16C mode keyboard is active with
the same functionality (with the exception ofthe shifted arithmetic keys, which
take on the original HP48 object delimiter functionality). Note that the normal

three ALPHA planes of characters are disabled throughout the 16C emulator.

Example:

While in 16C mode with the current base binary, a user wishes to enter the

integer 9AF2 hexadecimal. System flag -60 is not currently on. The key

sequence would be:

24 Section 3: Number and Display Control

o o 9AF2 =l HEX ENTER

The stack level one value will then show "#1001101011110010b." In order to

confirm that the correct value was entered, pressing EMYSHOW HEX will
briefly convert level one to #9AF2h.

E. Complement Modes and Unsigned Mode

In addition to the regular HP48's functions associated with binary integers

which only operate on unsigned values, the 16C emulator also provides 1's
Complement and 2's Complement signed modes. In the binary representation
of signed numbers, the most significant bit is the sign bit; which is cleared for

positive and set for negative values. When the current base is decimal, the

emulator (like the 16C itself), displays negative numbers with a minus sign in

front of the digits. Since the HP48 shows integers with the leading pound-sign
delimiter to distinguish them from reals, the minus sign is placed after the #

and just before the leading digit of the negative integer.

To control the complement modes while in the emulator, two methods have

been provided. First, in the main page of the soft-key menu, the sixth key

labeled "CMP:n" where n = 0, 1 or 2 is a three-way toggle between unsigned,
ones complement and twos complement modes. Each time this soft key is

pressed, the key label will change to reflect the current complement mode.

Secondly,the shifted functions above the EEX and DEL keys in row 5 of the
HP48's keyboard provide direct paths to any of the three complement modes.

By either method, when the complement mode is changed, the message in the

top row of the LCD status area changes to reflect the current complement

mode, showing "0S", "1S" or "2S" (as well as the digit being updated in the
soft-key label).

In 1's complement mode, negating the value in stack level 1 (by pressing the

+/- key) will perform a 1's complement on the value. This is done by
complementing all bits in the value.

In 2's complement mode, the +/- key will take the 2's complement of the value

in stack level 1. All the bits will be complemented followed by adding 1 to the

value.

Section 3: Number and Display Control 25

In unsigned mode, no sign bit is used and all the bits in the number contribute

to its magnitude. Negating an unsigned number is actually meaningless,

however pressing the +/- key in this mode will result in the 2's complement of

the stack level-1 value. In addition, the out-of-range flag will be set (and the

RNGE annunciator will tun on in the display) as a reminder that the true
result is a negative value outside the range of the current unsigned mode.

The table below depicts the effects of the complement mode on the
representation of numbers in decimal in the display. A word size of 5 bits is

used in this example.

26 Section 3: Number and Display Control

Binary Octal Hex --eececeeeeee- Decimal ----------------
Base Base Base Unsigned 1's compl. 2's compl.

01111 17 F 15 15 15
01110 16 E 14 14 14
01101 15 D 13 13 13
01100 14 C 12 12 12
01011 13 B 11 11 11
01010 12 A 10 10 10
01001 11 9 9 9 9
01000 10 8 8 8
00111 7 7 7 7 7
00110 6 6 6 6 6
00101 5 5 5 5 5
00100 4 4 4 4 4
00011 3 3 3 3 3
00010 2 2 2 2 2
00001 1 1 1 1 1
00000 0 0 0 0 0
11111 37 IF 31 -0 -1
11110 36 1E 30 -1 -2
11101 35 1D 29 -2 -3
11100 34 I1C 28 -3 -4
11011 33 1B 27 4 -5
11010 32 1A 26 -5 -6
11001 31 19 25 -6 -7
11000 30 18 24 -7 -8
10111 27 17 23 -8 -9
10110 26 16 22 -9 -10
10101 25 15 21 -10 -11
10100 24 14 20 -11 -12
10011 23 13 19 -12 -13
10010 22 12 18 -13 -14
10001 21 11 17 -14 -15
10000 20 10 16 -15 -16

It becomes evident here that the 1's complement representation in decimal
provides an equal number of positive and negative numbers, with both zero

and minus zero. With 2's complement mode, however, there is only one zero

but an additional negative numberexists at the highest magnitude.

Section 3: Number and Display Control 27

Note: Since the display representation of negatively-signed decimal integers
using a minus sign is solely a feature of the 16C emulator, these numbers will
appear differently when the 16C mode is exited.

Example:

In 16C Mode, with a word size of 12 bits, the current base decimal and 2's

complement mode on, enter the numbers -255, -122 and -6. Compare the HP48
display to that when the emulator is exited.

The keystroke sequence is: The display shows:

DEC Il 2's 1 2 STWS

255 +/- ENTER DEC 12 2S 16C

122 +/- ENTER 3: # -255d
2: #-122d

6 +/- ENTER 1 # -6d

Now, exit the emulator and observe the display:

DEL 3: # 3841d
2: # 3974d
1: # 4090d

Re-entering the emulator will return to the original numerical representation:

28 Section 3: Number and Display Control

EMUL DEC 12 2S 16C

3: # -255d

2: # -122d
1: # -6d

F. Word Size Control

The HP16C emulator (like the HP48 itself) operates on integers whose word

sizes range from 1 to 64 bits long. The word size in the HP48, maintained in
system flags -5 through -10, is carried over to 16C mode just like the current

base. Unlike the requirement outside the emulator to press RCWS (from the
MTH BASE menu) in order to ascertain the current word size, the 16C

emulator displays this information (in base ten) at all times in the top line of

the display status area (between the current base and the current complement

mode). In order to change the current word size to n bits, the value n is entered

into the stack and STWS ("store word size") is pressed from the main page in

16C mode. This updates the number in the LCD status area as well.

Either integers or reals may be used as the input argument to the STWS
command. (A discussion on entry of real numbers in 16C mode may be found

in chapter 5.) For real arguments, the value is rounded to the nearest positive
whole number. Arguments which are negative cause the word size to be set to

1 bit. Arguments above 64 set the word size to 64. If the input argument is

zero, the word size is set to 64 as well. For integer arguments, values of 64
and over or zero cause the word size to be set at 64. A negative integer

argument causes the word size to equal the absolute value of the input value.

Section 3: Number and Display Control 29

If the input The word size will be

STWS set at:
argumentis:

#-1 or lower | input value |

#0 64 bits

#1 to #64 1 to 64 bits

#65 or higher 64 bits

0.0 or negative 64 bits

1.0 - 63.499999 1 to 63 bits

64.0 or higher 64 bits

A current word size less than 8 bits will limit the size of the integer value that

may be used to set a new word size. However, entering either integer 0 as an

input argument (to yield a word size of 64 bits) or a real argument (to set the
word size to any desired value) will circumvent the problem.

Note 1: Changing the word size might not maintain numerically equivalent
values as they are displayed in the stack. Since moving to a larger word size
adds bits (which are set to zero) onto the left-hand end of the word, displayed
negative values in decimal can change to positive, since the most significant
bit (which was previously set) would now be within the word itself. Likewise,

moving to a smaller word size will cause only the new smaller (least-

significant) portion of the data values to be displayed (in any base).

Immediately following the reduction of the word size, if the word size is

restored, the values will return to their original magnitudes. However this will

not be the case if other operations (such as arithmetic) are performed on the
stack first. This causes only the current word size portion of the data to be

used and the remaining portion discarded.

30 Section 3: Number and Display Control

Example:

Enter various integers and change the word size to see the displayed results.
Begin in 1's complement mode with a word size of 32 and a base of
hexadecimal.

=1 CLR HEX 32. STWS k=Y 1's

Keystrokes: Display shows: Comments:

1AFE6321 ENTER # 1AFE6321h Starting value

DEC # 452879137d Convert to decimal

24 STWS # -105694d Reduce word size, note value and

sign changes

HEX # FE6321h Back to HEX, value changes

32 =l DEC STWS # 1AFE6321h Back to original word size

DEC 24 STWS #-105694d Reduce word size again

0+ # -105694d Add zero, result unchanged

32 STWS # 16671521d Restore word size again,
value changed

HEX # FE6321h Value remains smaller;
upper 8 bits cleared

Note 2: In either of the signed modes,it is possible that the entry of a positive

number larger than the largest positive integer that can be represented in the

current word size will result in a negative number in the stack. For a current

word size of n, the value that ends up displayed in the stack is the lowest n bits

ofthe integer in the command line. Thus, if the most significant bit becomes

set, the value will be displayed as negative.

If the word size is currently 3 bits or less, it is possible to enter a single digit

that is legal in the current base, butis too large for the given word size. Again,

in this case, the lowest n bits of the digit will end up displayed in the stack.

Section 3: Number and Display Control 31

Example:

Starting in 2's complement mode, decimal base and a word size of 4 bits, enter

various large numbers and observe the results.

Keystrokes: Stack shows: Comments:

=1 CLR DEC (empty) Initial state
I=12's 4 STWS

12000 ENTER #0d Lowest 4 bits clear

HEX # Oh Still clear

DROP DEC #-7d Most significant bit
12345 ENTER is set

BIN # 1001b Showsthe bits

o o 12340 = DEC # 100b Lock ALPHA to
ENTER enable

all digits for decimal

data entry

DEC # 4d See it in decimal

9 ENTER #-7d 1 digit > allowed value

32 Section 3: Number and Display Control

G. Leading-Zeros Display Mode

Often it is helpful for integers in the stack to be displayed with zeros to the left

of the highest nonzero digit up to the entire word size. This can aid in

determining whether the most significant bit is set or clear when the current

base is other than decimal (where a leading set bit in signed mode would cause
the value to be displayed with a minus sign). Choosing the #000... function on
the left-shifted ENTER key toggles into and out of leading-zeros display
mode. This mode is preserved when exiting and re-entering the emulator and

is always suppressed when the current base is decimal.

H. The Multi-line SHOW Function (MLSHOW)

If the current word size is set high enough such that integers in the stack

exceed sixteen digits in length, the HP48 cannot display the entire contents of

those integers at one time. At the right-hand end of the number an ellipsis (...)

appears, implying that additional digits are hidden. Even if the integer is
edited, the entire value cannot be displayed at one time. Moreover, using the

arrow keys to view the hidden portions of the integer can sometimes be

misleading.

The emulator's multi-line show (MLSHOW) function (on the right-shifted
ENTER key) assists in simultaneously viewing all digits of large integers.
When the MLSHOW key is pressed, the normal stack display is cleared and
replaced with a view of the stack level-one value alone. The value is displayed

right-justified with up to two groups of 8 digits per display line, starting at the

bottom. The entire 4-line display may be filled by a 64-bit binary integer with
8 groups of 8 binary bits.

Note that while the command line is active or a program is being entered, both
the left- and right-shifted ENTER key positions generate a DUP function,
just like the normal HP48.

Example:

Initial conditions: Base: HEX Word size: 64 Complement Mode: 2's
Leading Zero's Mode OFF

Section 3: Number and Display Control 33

HEX 64. STWS =l 2's =l CLR

Keystrokes Display Shows Comments

25 ENTER 25
=1 MLSHOW

123456789ABCDEF0 # 123456789ABCDEFOh A 16-digit number
ENTER

=l MLSHOW 12345678 9ABCDEFO Two groups of 8
digits

DEC =1 MLSHOW 131 19 digits long in
17684674 63790320 decimal

+/- l=d MLSHOW -131 Supports negative
17684674 63790320 values

OCT =1 MLSHOW 166713 22 digits in octal
52303545 20620420

BIN =1 MLSHOW 11101101 11001011 64 digits in binary
10101001 10000111
01100101 01000011
00100001 00010000

=1 CLR& ocT 000000 Supports leading-
125 ENTER 00000000 00000125 zeros mode

=1 MLSHOW

aal7. STWS BIN # 0000000000101010... Full binary value
hidden

=1 MLSHOW 0
00000000 01010101

34 sSection 3: Number and Display Control

I. Command-Line Editing / ENTRY mode

Like in the regular HP48, a command line is started either by typing directly
into the HP48 keyboard while in 16C mode or by EDITing or VISITing values
in the stack. When a command line is being edited, the up- and down-arrow
keys operate normally, moving the cursor within the displayed text. The blue-

shifted left-and right-arrows will also move the cursor to the extreme left and

right ends of the command line as well. If a multiline object is present, the up
and down arrows change the current line in which the cursor is positioned and
the blue-shifted up and down-arrows move to the first and last lines of the

command line object, respectively.

If a command line is activated by either EDIT (to edit stack level 1) or VISIT

(with a stack-level number as an input parameter), the EDIT menu is
automatically enabled. With a command line activated by typing in the HP48
keyboard, the EDIT menu may always be activated by pressing Kl EDIT at
any time.

i. Operation of the Change-sign (+/-) Key in the

Command Line

Like with the regular HP48, while in 16C mode the change-sign key can have

varying effects depending on the position of the cursor in the command line. If

a single number has been entered, pressing change-sign will place a minus sign
in front of positive values and change the minus sign on negative values to a

plus sign. If multiple values are entered into the command line separated by

one or more spaces, change-sign will affect the value nearest to the cursor. To

negate a value, simply move the cursor overto that value.

If a command line is achieved by editing a stack value, the change-sign key

can have different effects depending whether the value is a real or an integer.
If the value is a real, pressing change-sign will change the sign of the value; on

the other hand if the value is an integer, the change-sign key will negate the
value and place it back onto the stack. Another effect of the change-sign key

is the way the 16C emulator mode parser interprets the resulting number in the

command line. If the current base is decimal, a negative value in the

command line will be read in as an integer and entered onto the stack

Section 3: Number and Display Control 35

as such. If the current base is binary or octal, a value in the command line
with a minus sign will be interpreted as a negative real.

In hex, if the negative value in the command line contains only digits between
0 and 9,it will be entered as a real. If the value begins with a digit between 0

and 9 but finished with a digit or digits between A and F, or only contains
digits between A and F, pressing the change-sign will negate the value and
enter it onto the stack. If the value begins with a digit between A and F and
continues with other digits, the effects of the change-sign key become more

complicated. Sometimes changing the sign of a mix of digits between 0 and
F can cause the minus sign to be embedded inside the number. This will
generate an Invalid Syntax error if ENTERis pressed.

The table below summarizes the behavior of the change-sign key.

36 Section 3: Number and Display Control

And the number Pressing +/- with Then pressing

If the current in the command the number in ENTER will:
base is: line is: the command

line will cause:

DEC A string of digits A minus (plus) Accept the

WITH a decimal sign to appear in number as a real

point and with or front of a

without a sign positive
(negative)

integer

DEC An integer with The number to N/A
a leading "#" be negated and
delimiter entered onto

stack

BIN or OCT A string of digits A minus (plus) Accept the

with or without a sign to appear in number as a real

dec. pt. and with front of a

or without a sign positive

(negative)

number

BIN or OCT An integer with The number to N/A
a leading "#" be negated and

delimiter entered onto

stack

HEX A string of digits A minus (plus) Accept the

(0-9 only) with sign to appear in number as a real

or without a dec. front of a

pt. and with or positive

without a sign (negative)

number

HEX A string of digits The number to N/A
starting with 0-9 be negated and
and continuing entered onto the

with A-F digits stack

HEX A number The number to N/A

containing only be negated and

A-F digits entered onto stack

Section 3: Number and Display Control 37

And the number Pressing +/- with Then pressing

If the current in the command the number in ENTER will:
base is: lineis: the command

line will cause:

HEX A number The numberto N/ A
starting with A- be negated and
F digits and entered onto the
continuing with stack

0-F digits ending
in A-F

HEX A number A minus sign to Cause an
starting with any appear between "Invalid Syntax"
digits and the last A-F digit error
continuing with and the 0-9

0-F digits ending digits after
in 0-9

HEX An integer with The number to N/A
a leading "#" be negated and

delimiter entered onto

stack

Example:

Enter numbers into the command line under various conditions, press change-
sign and observe the results.

38 Section 3: Number and Display Control

ENTER =Y EDIT

Keystrokes Display Shows Comments

T=Y MODES STD Initial conditions
CsT

DEC 32STWS 1.234 1.234 Initial value

+/- -1.234 Negated

ENTER -1.234 Entered onto stack

=1 CLR 1234 Editing a decimal
ENTER =Y EDIT #1234d integer

+/- #-1234d Negates and enters

=1 CLR OCT 1234 1234 Enter octal number

+/- -1234 Negated

+/- +1234 Negated again

ENTER Accepted as a real
1234

=1 CLR 1234 # 12340 Editing an octal integer
ENTER =Y EDIT
+/- # 377777765440 Negates and enters

=1 CLR HEX 1234 1234 Enter hex number

+/- -1234 Negated

ENTER -1234 Accepted as a real

=1 CLR 1234FED # 1234FEDh Editing hex number

Section 3: Number and Display Control 39

Keystrokes Display Shows Comments

+/- # FEDCBO013h Negates and enters

=1 CLR 12FED56 12FED56 Hex number ending in
0-9 digit, leaving
cursorjust after the last

digit

+/- 12FED-56 Minus sign before last
set of decimal digits

ATTN ATTN FED FED Hex number with A-F
digits only

+/- # FFFFFO13h Negates and enters

The moral to the story is to be careful when the change sign key is pressed

with data in the command line. Consult section 5 for more information on

dealing with reals in the 16C emulator.

40 Section 3: Number and Display Control

J. Access to the MODES Menu From Inside the

Emulator

While in 16C mode, it might become necessary to change one or more of the

HP48 modes which are accessible from the MODES menu. A modified
version of the MODES menu is available while the 16C emulator is active.

The functions appear in the following order:

IOTPTTROI

BCTAC)DTIISRW

0]IO=TTRW
The beeper on/off toggle key has been replaced by the fraction mark key,

which has been moved up from the last page. The connect-plotted-points

toggle key on the second page has been replaced by the leading-zeros display

mode ("LZ") toggle key. Page three is unchanged and page four has been

eliminated, since the base selections are an integral part of the emulator.

Section 4: Integer Arithmetic and Bit Manipulation Functions 41

4. Integer Arithmetic and Bit Manipulation Functions

The HP16C emulator contains virtually all of the integer arithmetic and bit

manipulation functions of the HP16C, plus a few more.

A. Carry and Out-of-Range Conditions

Several 16C-mode functions are subject to carry and out-of-range conditions.
Like in the original HP16C, the carry and out-of-range conditions are saved in

flags (being user flags 63 and 64 respectively). In the display status area will
appear "CRRY" and "RNGE" if the conditions are present. In addition, the
keyboard functions "TC" (Toggle Carry flag), "TR" (Toggle Range flag) and
"CCR" (Clear Carry and Range flags) have been provided in order to manually
adjust these conditions.

The list below shows the functions which set or clear the carry flag (and also

adjust the CRRY display annunciator) when they are performed on integer
arguments.

SL RL RLn + (carry)

SR RLC RLCn - (borrow)

SLn RR RRn + (nonzero remainder)

SRn RRC RRCn DBL+ (nonzero remainder)

ASR Jx (nonzero remainder)

Example: The following additions set and clear the carry condition.

DEC 16 STWS =1 2's

Keystrokes Display Shows Comments

HEX FFFF ENTER # FFFFh

2+ # 1h/ CRRY Carry set

4+ # 5h Carry cleared

42 Section 4: Integer Arithmetic and Bit Manipulation Functions

The out-of-range condition occurs when the correct result of an operation
cannot be represented in the current word size and complement mode. The
following functions adjust the out-of-range condition (and thus adjust the
RNGE annunciatorin the display) whenever they are performed:

+ - X + ABS +/- DBLx DBL+

Additionally, the FLOAT, —IEEE and IEEE— functions affect RNGE.

When a result is out of range, the lowest bits of the correct value which fit in
the current word size are returned. For addition and multiplication of integers,
the sign bit of the full answer will be retained in the most significant bit in the
current word size.

Example:

Multiply the sets of two numbers and observe the results.

DEC 8 STWS =l 2's

Keystrokes Display Shows Comments

11 ENTER #11d

50 x # 38d / RNGE (Out-of-Range
annunciator turns on)

=l CLR =1 CCR

25 ENTER # 25d

6 +/- x # -106d / RNGE (Negative result

Out-of-Range enabled)

In addition to the TC, TR and CCR functions on the keyboard, the flag tests
CRRY? (is the carry flag set?) and RNGE? (is the out-of-range flat set?) are
available in the emulator library for use in program objects. The functions

return 0 or 1 like the built-in HP48 FS? test. Also, the library provides SETC
(set carry), CLRC (clear carry), SETR (set range) and CLRR (clear range)

functions.

Section 4: Integer Arithmetic and Bit Manipulation Functions 43

B. Integer Arithmetic Functions

i. Addition, Subtraction, Multiplication and Division

The operations addition, subtraction, multiplication and division may be

performed on two integers in any of the four number bases. Division results in
an integer quotient with the fractional part truncated. All integer arithmetic
operations except for multiplication will affect the condition of both the carry
and out-of-range flags (and comesponding display annunciators).
Multiplication affects the out-of-range flag only.

The results of integer arithmetic are affected by the current word size and

complement mode.

Example:

Initial conditions: Base: HEX Word size: 32 Complement Mode: 2's

HEX 32. STWS I=1 2's =1 CCR

Keystrokes Display Shows Comments

32AB ENTER # 32ABh

14 + # 288h / CRRY Nonzero remainder:
carry flag set

20 + # 2A8h Carry is cleared

OCT # 12500 Switch to octal

2751 - #377777762770/ CRRY Result is negative;
carry set

7 STWS # 770/ CRRY Reduce word size

44 Section 4: Integer Arithmetic and Bit Manipulation Functions

Example continued:

Keystrokes Display Shows Comments

=1 TC #770 Clear carry

70 x # 100/ RNGE Large result sets out-
of-range

DEC I=1 TR # 8d Switch to decimal,
clear range

11 + #0d / CRRY Carry set due to
remainder

Note: Division of a non-zero integer by integer zero or integer zero by integer

zero causes an Undefined Result error. This is not the case in the regular
HP48; division of an integer by integer zero outside the emulator returns

integer zero.

a. Mixed Integer and Real Arithmetic Arguments

Like on the regular HP48, arithmetic may be performed with an integer and a

real argument. The result will always be of the integer type, with the real value
having been converted to integer (as if the real-to-binary function had been

performed on the number first). This conversion results in a rounding of the

real to the nearest integer. If the complement mode is unsigned, any negative

reals involved in the arithmetic operation will be converted to zero first.

Example:

Initial conditions: Base: HEX Word size: 32 Complement Mode: 2's

HEX 32. STWS I=1 2's I=l CCR

Section 4: Integer Arithmetic and Bit Manipulation Functions 45

Keystrokes Display Shows Comments

1A ENTER # 1Ah

2. x # 34h Result is integer in hex

1.1+ # 35h Fractional part rounded off

29- # 32h Value rounds to integer 3
before being subtracted

2.1+ # 19h Effective division by two
b. Addition and Subtraction in 1's Complement Mode

While in 2's complement or unsigned mode, the result of addition or
subtraction represents simply the sum or difference of the bit patterns of the
two numbers being combined. However, in 1's complement mode, the result
of addition may be affected by the occurrence of a carry and, likewise, the

result of subtraction may be affected by the occurrence of a borrow. If a carry

out of the most significant bit occurs, a 1 is added to the result. If a borrow

into the most significant bit occurs, 1 is subtracted from the result. In both

carry and borrow situations, the carry flag (and CRRY annunciator) is set.

Examples:

Initial conditions: Base: BIN word size: 4 Complement Mode: 1's
Leading Zero's Mode on

BIN o 4 STWS= 1's (=Y #000...

46 Section 4: Integer Arithmetic and Bit Manipulation Functions

Keystrokes Display Shows: Comments:

1110 ENTER #1110b Carry Situation:
Decimal Binary

1110 + #1101b/ CRRY

111
DEC I=l CLR I=1 TC -1 1110

+CD +1110
/- ENTER -1+ #-1d _210 11002

1 4/-+ # -2d / CRRY + 1

1101,

BIN =l CLR I=1 TC

1100 ENTER # 1100b No Carry Situation:

11 + #1111b Decimal Binary

DEC =l CLR -3 1100

+3 +0011
3 +/- ENTER # -3d '010 11112

3+ # -0d

BIN =1 CLR

11 ENTER #0011b Borrow Situation:

100 - # 1110b/CRRY Decimal Binary

DEC [=ICLR I=ITC 3 1
0011

—4 -0100
3 ENTER # 3d 1 1

10 -1
4- #1d/ CRRY1 1110,

BIN Il CLR =l TC

Section 4: Integer Arithmetic and Bit Manipulation Functions 47

Keystrokes Display Shows: Comments:

No Borrow Situation:
110 ENTER #0110 b

Decimal: Binary:
101 - #0001 b

0
6 011'0

DEC I=l CLR =3 =0101

1, 0001,

6 ENTER # 6d

5- #1d
c. The Carry Flag During Addition

Whenever a binary addition results in a carry beyond the most significant bit,

the carry flag and CRRY annunciator will be set. If an addition does not result
in a carry, the flag (and annunciator) will be cleared. This is true for all

complement modes.

Example:

Initial conditions: Base: BIN Word size: 4 Complement Mode: 2's
Leading Zero's Mode on

BIN o 4 STWS &1 2's k=Y #000...

48 Section 4: Integer Arithmetic and Bit Manipulation Functions

Keystrokes Display Shows Comments

1010 ENTER #1010b Decimal Binary

1100 + #0110b/
RNGE , CRRY 1

o 1010
+(-4) +1100

1+ #011tb - e

610 0110,

(CRRY, RNGEset)

DEC I=l1 CLR
6 0110

6 +/- ENTER # -6d +1 +0001

4 4/- + # 6d/ RNGE, 710 01112

CRRY

1+ #7d (CRRY, BRNGE cleared)

When a binary subtraction results in a borrow into the most significant bit, the

carry flag (and CRRY annunciator) will be set. If a borrow does not occur, the

carry will be cleared.

d. The Carry Flag During Subtraction

Example:

Initial conditions: Base: BIN Word size: 4 Complement Mode: 2's
Leading Zero's Mode on

BIN o 4 STWS =1 2's =Y #000...

Section 4: Integer Arithmetic and Bit Manipulation Functions 49

Keystrokes] Display Shows Comments

1010 ENTER #1010b Decimal Binary

1100 - # 1110b/CRRY -6 0
1010

-(-4) -1100
DECIICLRIEITC se

25 1110,
6 +/- ENTER # 6d

(CRRY set)
4 /- - # -2d / CRRY

BIN I=l1 CLR Decimal Binary

110 ENTER # 0110b/CRRY 6 0
0110

-1 —0001
1- #0101b --eeees e

510 0101,

DEC I=l CLR =1 TC

6 ENTER # 6d/ CRRY Tum on carry flag

1- # 5d (CRRY cleared)
e. The Out-of-Range Flag During Arithmetic

The out-of-range flag will be set whenever arithmetic results cannot be

represented in the current word size and complement mode. The RNGE
display annunciator accompanies this flag. For integer division, this occurs

only in 2's complement mode when the largest possible negative number
(100000...) is divided by -1.

Example:

Initial conditions: Base: BIN Word size: 4 Complement Mode: 2's

50 Section 4: Integer Arithmetic and Bit Manipulation Functions

BIN a4 STWS =l 2's

Keystrokes Display Shows Comments

110 ENTER #111b 6
+5

101 + #1011b/RNGE |=------

510

f. Arithmetic with Other HP48 Objects

In addition to arithmetic with integers and reals, the 16C Emulator will support
normal arithmetic functions with any other HP48 object types. Using the
delimiters (which are accessible via the MTH mode), complex numbers, lists,
vectors, etc. may be entered and combined. Also, if the emulator is entered

with these objects already on the stack, they may be combined using the
arithmetic keys.

ii. Remainder Following Division and RMD

During integer division, only the integer portion of the result is returned to the
stack. If the actual remainder is non-zero, the carry flag (and CRRY
annunciator) is set. The carry flag is cleared if the remainderis zero.

If the value of the remainder is desired, use the Y RMD function instead of
+. This function calculates

lstack-level-2] MOD |[stack-level-1|.

The sign of the result will match the sign of the dividend, originally in level 2.

Example:

Initial conditions: Base: DEC Word size: 16 Complement Mode: 2's

DEC 16. STWS =l 2's

Section 4: Integer Arithmetic and Bit Manipulation Functions 51

Keystrokes Display Shows Comments

7 +/- ENTER #-7d Division example

3+ # -2d/ CRRY Integer quotient of 7/3

Remainder causes carry

2+ #-1d No remainder; carry
clear

=1 CLR

7 +/- ENTER #-7d RMD example

3 =Y RMD # -1d Remainderof -7/3
iii. Square Root, y-to-the-x and x-squared

The square root and y-to-the-x functions, which are accessible on primary keys

on row 4 in emulator MTH mode will operate properly with integer input
arguments, yielding integer results. For the square root function, if the

fractional portion of the result is non-zero, the carry flag will be set; otherwise

carry is cleared.

The X-squared function, which is also accessible via emulator MTH mode (on
the left-shifted row-4 key), also accepts integer arguments and returns an
integer result.

For results which cannot be represented in the current word size, the lower

portion of the integer will be retained.

All three aforementioned functions will process any input object type that the

HP48 would normally allow.

52 Section 4: Integer Arithmetic and Bit Manipulation Functions

iv. Negative Numbers and Complementing

a. Changing Signs

The +/- function (change sign) will change the sign of the stack level-1 value,

forming the (1's or 2's) complement. If the initial value is the largest possible
negative number in 2's complement mode, the only effect of pressing +/- will
be to set the out-of-range flag (and to turn on the RNGE annunciator).

If the emulator is currently in unsigned mode, pressing the +/- key forms the

2's complement of the level-1 value. This also causes the out-of-range flag to

be set as a reminder that negative numbers are outside the range of unsigned
mode.

To enter a negative integer, press +/- after entering all the numeric digits (just

like in the regular HP48).

b. Absolute Value of Integers

Pressing [md ABS converts the integer in stack level one to its absolute value,
forming the 1's or 2's complement of a negative number. No change in the
number results if the calculator is in unsigned mode or if the numberis already

positive.

If the stack holds the largest possible negative number in 2's complement

mode, the only effect of ABS will be to set the out-of-range flag and turn on
the RNGE annunciator.

The ABS function performs the normal absolute value function if the stack
level-one value is a real number or any other HP48 object type the normally
can be processed.

C. Logical Operations on Integers

The logical (Boolean) operations NOT, OR, AND exclusive OR (XOR)

perform a bit-by-bit analysis of the binary integer argument(s). The dyadic

functions OR, AND and XOR operate on the bits in corresponding positions of

Section 4: Integer Arithmetic and Bit Manipulation Functions 53

the integers in stack levels 1 and 2. The monadic function NOT acts only upon
the level 1 value.

i. The NOT Function

The NOT function inverts the values of all bits in the binary integer in stack
level 1. This is equivalent to performing a +/- (change-sign) while in 1's

complement mode. Only the stack level-1 value is affected.

Example:

Initial conditions: Base: BIN Word size: 16 Complement Mode: 2's
Leading-Zero's Mode

BIN o o 16 STWS &1 2's [&d CLR K=\ #000...

Keystrokes Display Shows Comments

1111 ENTER # 0000000000001111b

=Y NOT #1111111111110000b All bits are inverted

ii. The AND function

The AND function (also known as the logical product) performs the logical

AND on each pair of corresponding bits in the integers in the lowest two stack
levels. Each resulting bit becomes a 1 only if both corresponding input operand

bits are 1; otherwise it becomes 0.

Example:

Initial conditions: Base: BIN Word size: 16 Complement Mode: 2's

BIN @ o 16 STWS =l 2's =l CLR

54 Section 4: Integer Arithmetic and Bit Manipulation Functions

Keystrokes Display Shows Comments

1111000 ENTER # 1111000b Bits remain set only
where both input
arguments had bits set

(just one bit)

11110001111 # 1000b
=Y AND

iii. The OR Function

The OR function (also known as the logical sum) compares each
corresponding bit in the two lowest stack levels. Each resulting bit is O only if
both input argumentbits are 0's.

Example:

Initial conditions: Base: BIN Word size: 16 Complement Mode: 2's

BIN o o 16 STWS =1 2's I=1 CLR

Keystrokes Display Shows Commands

10101 ENTER #10101b Resulting zero bits
represent where

corresponding bits in

inputs are both zero

10011 =Y OR #10111b

iv. The Exclusive OR (XOR) Function

The XOR function (also known as the logical difference) checks the
corresponding Dbits in the integers in stack levels 1 and 2 and yields a 1 only if

the bits are different.

Section 4: Integer Arithmetic and Bit Manipulation Functions 55

Example:

Initial conditions: Base: BIN Word size: 16 Complement Mode: 2's

BIN x o 16 STWS =l 2's I=1 CLR

Keystrokes Display Shows Comments

100111000 ENTER # 100111000b Positions where
resulting bits are set
mean input bit values
differ there

101010101 #1101101b
=Y XOR
D. Shifting and Rotating Bits

The bits of an integer may be moved left or right by performing shifting and/or
rotating operations. The fate of the bit moved off the end of the integer and

the value of the bit entering the vacated bit position depend upon the type of
shift or rotate performed.

The carry flag is adjusted by any shift or rotate function except for the LJ
(Ieft-justify) function.

i. Shifting Bits

The 16C emulator can perform two types of shifts on the stack level-1 integer:
a logical shift or an arithmetic shift. The latter preserves the sign bit. Also,

the level-1 integer contents may be left-justified.

a. Logical Shifts SL and SR

Pressing K SL (shift left) or MY SR (shift right) movesall the bits of the
integer word in the bottom stack level by one bitto the left or right. A bit

shifted out ofthe integeris shifted into the carry bit position, replacing the

56 Section 4: Integer Arithmetic and Bit Manipulation Functions

previous state of the carry bit (flag). The new bits generated at the opposite

end of the integer are always zeros.

st []¢—[¢ o]é—o
Carry Level-one integer

SR 0 —>[o >1— [
Level-one integer Carry

b. Shifting More Than One Bit at a Time

The 16C Emulator also contains the functions SLn (shift left by n bits) and

SRn (shift right by n bits). In these functions, the number of bits by which the
integer in stack level two is shifted correponds to the value of the number in

level one. The level-one value of n may be either integer or real. If the value of

n is an integer, the level-two integer will be shifted by the number of bits

corresponding to the absolute value of level one. If the value of n is real, the

number of bits by which the level-two value is shifted will be the nearest

integer to the level-one real number. In addition,if the value of n is a negative

real, the level-two integer will be shifted by the magnitude of the level-one
value IN THE OPPOSITE DIRECTION. No matter whether it is real or
integer, the valid range for n is within plus or minus the current word size.

Outside this range the SLn or SRn functions will yield a "Bad Argument
Value" error.

The status of the carry flag following SLn or SRn is the same as if SL or SR
were performed n times. Thus, if the FINAL bit shift causes a 1 bit to be
shifted out of the integer value, the carry flag (and CRRY annunciator) will be
set. Otherwise, the carry flag will be cleared.

Example:

Initial conditions: Base: BIN Word size: 16 Complement Mode: 2's

Display mode: STD

BINa o 16 STWS =1 2's I=1 CLR

Section 4: Integer Arithmetic and Bit Manipulation Functions 57

Keystrokes Display Shows Comments

1100 ENTER # 1100b

10 =Y SLn # 110000b Valueshifted left two
bits

100 &=Y SRn #11b Shifted right by four
bits

10 &= SRn # Ob/CRRY Shift right by 2, carry
set

=1 CCR Start over

1 ENTER #1b Set leastsignificant bit

10 ENTER +/- #1111111111111110b Enter integer minus
two

(=Y SLn # 100b Shifted left by two

o o 1.1 ENTER 1.1 n=real 1.1

(=Y SRn #10b Shifted right by one

aa 1.9 ENTER 1.9 n=real 1.9

=Y SLn # 1000b Shifted left by two

a 4 +/- ENTER -4 n = real 4

=Y SLn #0b/CRRY Shifted right by four, carry set

58 Section 4: Integer Arithmetic and Bit Manipulation Functions

c. Left-Justify (LJ)

To left-justify a bit pattern with its word size, press [md LJ. The resulting left-
justified integer will be placed in stack level two and the count of the number

ofbits necessary to left-justify the word will go into level one. The carry flag

is not affected by LJ.

Example: Left justify the binary value 10101 in a word size of eleven.

Initial conditions: Base: BIN Word size: 11 Complement Mode: 2's

BINax o 11. STWS =l 2's =l CLR

Keystrokes Display Shows Comments

10101 ENTER #10101b

I=lLJ 2: # 10101000000b Value was shifted 6
1: #110b bits to the left

d. Arithmetic Shift Right (ASR)

Pressing Imd ASR will move the contents of the integer in stack level one a
single bit to the right like SR. However, instead of placing a zero into the new
place at the left end of the word (in the sign bit position), the sign bit is

regenerated. (In unsigned mode where there is no sign bit, ASR operates
exactly like SR.) The carry flag is set if a 1 is shifted out to the right of the
integer and cleared if a 0 is shifted out.

 AsR g > — []
Sign Bit Unchanged Carry

Example: Divide -44 by 4 by shifting the value twice to the right.

Initial conditions: Base: DEC Word size: 8 Complement Mode: 2's

Section 4: Integer Arithmetic and Bit Manipulation Functions 59

DEC 8 STWS Il 2's Il CLR =1 CCR

Keystrokes Display Shows Comments

44 +/- ENTER # -44d Original value

=Y SHOW BIN # 11010100b Display the individual bits

=1 ASR # -22d Shift right once

=Y SHOW BIN #11101010b Bits shifted, sign
maintained

=1 ASR #-11d Shift right again

=Y SHOW BIN # 11110101b Sign maintained again

ii. Rotating Bits

There are three types of rotation functions in the 16C emulator, encompassing

eight different functions:

- Rotate left and right (RL, RR)

- Rotate left and right through the carry bit (RLC, RRC)

- Rotate n places (RLn, RRn, RLCn, RRCn)

a. Rotation

The RL and RR functions cause the contents of the integer in stack level one
to rotate (or circularly shift) one bit to the left or right. If a bit is shifted out of

a word, it re-enters at the other end. The carry flag is set if a 1 bit is rotated

around either end, and is cleared if a zero is rotated around either end.

60 Section 4: Integer Arithmetic and Bit Manipulation Functions

AL []¢— [&————]
arry

" =174Carry

b. Rotation Through the Carry Bit

The RLC (rotate left through carry) and RRC (rotate right through carry)
functions respectively load the leftmost or rightmost bit of a level-one integer

into the carry bit, and move the carry bit into the other end of the word.

 RLC ¢ |€ o |

Carry

 RRc [o >W
V

Carry

¢. Rotating More Than One Bit at a Time

The functions RLn, RRn, RLCn and RRCn allow rotation of the level-one
integer by a multiple numberof bits. In these functions, the number of bits by
which the integer in stack level two will be rotated will correspond to the value
in level one. The level-one value of n may be either integer or real. If the value

of n is an integer, the level-two integer will be rotated by the number of bits

corresponding to the absolute value of level one. If the value of n is real, the
number of bits that the level-two value is rotated will be the nearest integer to

the real number. In addition, if the value of n in level one is a negative real,

the level-two integer will be rotated by the magnitude of n IN THE OPPOSITE

DIRECTION. No matter whetherit is real or integer, the valid range for n is

Section 4: Integer Arithmetic and Bit Manipulation Functions 61

within plus or minus the current word size. Outside this range the rotate-by-n

functions will yield a "Bad Argument Value" error.

The status of the carry flag is the same as if RL, RR, RLC or RRC were
performed n times. Thus, if the FINAL bit rotation causes a 1 bit to be rotated
out of the integer value, the carry flag (and CRRY annunciator) will be set.
Otherwise, the carry flag will be cleared.

Example:

Initial conditions: Base: BIN Word size: 8 Complement Mode: 2's

BIN o o 8 STWS =l 2's =l CLR

Keystrokes Display Shows Comments

11000 ENTER # 11000b

o 4 =1 RRCn # 1b/ CRRY Rotated right 4 bits

o 2 =1 RRCn # 11000000b Right two more:
carry cleared

a 2 +/- =1 RRCn # 1b/ CRRY Rotated left 2 bits:
carry set again

10 =3 RLCn #110b Left two bits again

o o 2.9 =l RRCn # 11000000b Rotated 3 to the right

It should be noted that while the 16C Emulator does not include the HP48's
rotate and shift by a byte (RLB, RRB, SLB and SRB) functions, these can
easily be duplicated by performing 8 RLn, 8 RRn, 8 SLn or 8 SRn
respectively.

62 Section 4: Integer Arithmetic and Bit Manipulation Functions

E. Bit Manipulation

i. Setting, Clearing and Testing Bits

Individual bits in an integer may be set to 1 or cleared to 0 using the SB (set
bit) and CB (clear bit) functions. In addition to these bit functions, any bit may
be tested for the presence of a 1 with the B? function.

To set, clear or test a specific bit in an integer, the integer must be in placed
stack level two with the bit number in level one. Bit numbers are counted from

right-to-left, beginning with zero for the least significant bit. The bit number
may be either an integer or a real. Reals will be rounded to the nearest integer

value. The legal range for the bit number parameter is plus or minus the

current word size. Outside this range, the bit function will return a Bad
Argument Value error. Within the legal range, the value for the bit number is
taken as the absolute value of the level-one number.

When either SB or CB is executed, the updated integer value is returned to
level one of the stack. The B? function operates like the other relational tests
in the HP48: A 1 ("true") is returned if the bit is set and a 0 ("false") returned if

the bit is clear.

Example:

Initial conditions: Base: BIN Word size: 8 Complement Mode: 2's

BIN o 8 STWS =l 2's I=1 CLR

Keystrokes Display Shows Comments

11000 ENTER # 11000b

10 =Y sB #11100b Setting bit 2

100=Y cB # 1100b Clearing bit 4

a3 =l B? 1 Testing bit 3

Section 4: Integer Arithmetic and Bit Manipulation Functions 63

ii. Masking

The MSKL (mask left) and MSKR (mask right) functions create left- or right-
justified strings of 1 bits. The magnitude of the number in stack level one is
used to determine how many 1's will comprise the mask. Upon execution,
MSKL or MSKR places the mask pattern into stack level one.

A mask may be created as large as the current word size. To create a mask
which is in the middle ofthe field of a number, use one ofthe shift functions in

conjunction with MSKL or MSKR.

Example: Extract the second most significant 8 bits from the 32-bit hex value
3ABC7101 and right-justify these bits.

Initial conditions: Base: HEX Word size: 32 Complement Mode: 2's

HEX 32. STWS =l 2's I=1 CLR

Keystrokes Display Shows Comments

3ABC7101 ENTER 1. # 3ABC7101h

2: # 3ABC7101h
8 (=Y MSKL 1: # FFOO0000h Create 8-bit mask

2: # 3ABC7101h
8 (=Y SRn 1: # FFOOOOh Shift the mask to right

=Y AND 1: #BCO0O000Oh Extract the bits

16. =Y SRn 1: # BCh Shift them right
iii. Bit Summation

Pressing [=d #B (number of bits) sums the set bits in the stack level-one
integer and returns that value to level one. Note that this function is called

"no.B" outside the emulator environment. This is due to the fact that the

64 Section 4: Integer Arithmetic and Bit Manipulation Functions

HP48 would interpret "#B" to mean a hex integer value of B if entered in a
program or command line.

F. "Double" Functions (DBLx, DBL+, DBLR)

The 16C emulator (like the real HP16C) provides three "double" functions:

DBLx (double multiply), DBL+ (double divide) and DBLR (double

remainder). These functions perform the exact calculation of a product double

the current word size and the exact calculation of a quotient and remainder

from a dividend of double word size.

In order to obtain meaningful double numbers as results in hexadecimal and

octal base modes, the word boundary (which is based on the current number of

bits in the word size) must not "split" a digit. Therefore it is advised to

specify a compatible word size, i.e., a multiple of four for base HEX and a
multiple of three for OCT base. Due to the aforementioned word-boundary
effects, there is little chance that the results of the double functions will be

meaningful in decimal base mode.

i. Double Multiply

The DBLx function multiplies two single-word integers in stack levels one and

two and returns a double-word result in the same two stack levels. The result

is right-justified with the least significant bits returned in level two and the

most significant bits returned in level one. A stack diagram during the double-

multiply operation is shown below:

multiplicand 2: # yyyyyy - 2: # ...yxyxyxy lower-order bits

multiplier 1: # xxxxxx DBLx 1: # xyxyxyx... higher-order bits

Example:

Initial conditions: Base: BIN Word size: 7 Complement Mode: 2's

BIN o 7 STWS =1 2's I=l CLR

Section 4: Integer Arithmetic and Bit Manipulation Functions 65

Keystrokes Display Shows Comments

10110 ENTER #10110b Start with 7-bit word

size

2: #10100b Resultin 14-bit double

11110 =2 DBLx 1: #101b word

=1 CLR o o 14 STWS Start over with 14-bit

size

10110 ENTER #10110b

11110 x # 1010010100b Full result matches

<upper><lower> above

Unlike the original HP16C, where only the lowest stack level is visible in its
one-line display, the HP48 allows the user to view both halves of the double-
word result simultaneously.

ii. Double Divide

The DBL+ function computes the quotient of a dividend of double-word size
in stack levels two and three (with the most significant bits in level two)
divided by a single-word divisor in stack level one. The single-word resultis
placed in stack level one.

An Overflow Error occurs if the answer cannot be represented in a single word
size. The carry flag (and CRRY annunciator) is set if the remainder is not

equal to zero. The stack contents during the double divide operation are:

dividend lower half 3: # ...yzyzyz -

dividend upper half 2: # yzyzyz... DBL+ 1: # (yz/x)... quotient

divisor 1: # xxxxxxxxx

66 Section 4: Integer Arithmetic and Bit Manipulation Functions

Example: Divide 1256 by 51 in binary with word size 14 and 2's complement
mode and then double-divide the same values with word size of 7 to compare

the results.

Initial conditions: Base: DEC Word size: 14 Complement Mode: 2's

DEC 14 STWS I=l 2's I=l CLR

Keystrokes Display Shows Comments

1256 ENTER 51 2. # 1256d Enterinitial values in
ENTER 1 # 51d decimal

BIN 2: #10011101000b Convert to see the
1 # 110011b binary representation

+ # 11000b / CRRY Quotient, non-zero rmd

DEC # 24d / CRRY Decimal result

7 STWS =1 CLR BIN I=21 CCR Start over in BIN with
7-bit word size

1101000 ENTER 2 # 1101000b Place lower and upper
1001 ENTER 1 #1001b pieces in stack

110011 =1 DBL+ 11000b / CRRY Same result as above

Section 4: Integer Arithmetic and Bit Manipulation Functions 67

iii. Double Remainder

The DBLR function operates like DBL+ except that the remainderis returned

instead of the quotient. However, unlike the double-divide function, if the
quotient exceeds the current word size, an Overflow Error does not result. The
remainder is determined similarly to the RMD function, with the sin of the

result matching that of the dividend (numerator).

Example: Find the remainder when hexadecimal 329A4FCB12BFES680 is
divided by hexadecimal 71A484.

Initial conditions: Base: HEX Word size: 64

Complement Mode: Unsigned

HEX 64 STWS k=Y UNSGN =1 CLR &1 CCR

Keystrokes Display Shows Comments

29A4FCB12BFES5680 2: # 29A4FCB12BFE5680h Two-part

ENTER 3 ENTER 1: # 3h dividend

(66 bits long)

 71A484 =1 DBLR # 6DD654h Remainder

68 Section 5: Real Numbers and Alpha Mode

5. Real Numbers and Alpha Mode

A. Normal Real-Number Entry

i. Parser operation

The 16C Emulator allows real numbers (also called floating-point numbers in
the HP16C manual) to be manipulated almost as easily as integers. While
values entered without a decimal point or exponent of ten are automatically
interpreted as integers, those numbers which DO contain a decimal point

and/or exponent of ten will be interpreted to be reals. Consider the following
data-entry examples:

(Initial conditions - Base: decimal, Word size: 32 bits,

Complement mode: 2's, Display mode: standard)

DEC 32 STWS =1 2's k=Y MODES STD =1 CLR

Keystroke Command Line Level-1 Value After

Sequence: Shows: ENTERis pressed:

a) 12 12 #12d

b) 1.2 1.2 1.2

c) 12. 12. 12

d 1.2E2 1.2E2 120

e) 12E2 12E2 1200

f) E2 1E2 100

Note that if integral real numbers are desired, they must be entered with a

terminating decimal point (as in case "c" above) or the parser will interpret the
values as integers.

Section 5: Real Numbers and Alpha Mode 69

If the current base is octal or binary, the illegal numeric keys and the decimal

point and EEX keys are normally disabled. However, turning on ALPHA
mode re-enables the entire numeric keypad, keys A-F (on row 4) and the

decimal point and EEX keys. When the above examples are run while the

base is either octal or binary (with ALPHA-lock on), the same results will be

generated. In addition, if digits are used which are illegal for the current base

(such as 8 or 9 in octal or 2 through 9 in binary), the number will be

interpreted to be a real regardless of whether the decimal point and/or EEX
keys have been pressed. (See cases "j" and "k" below.) On the other hand if
hex digits A through F are used in ALPHA mode with decimal, octal or binary
base selected (as in case "1"), the result will be a syntax error when ENTER is
pressed:

(Initial conditions - Base: octal, Word size: 32 bits,

Complement mode: 2's, Display mode: standard)

OCT o o 32. STWS I=1 2's (=1 MODES STD I=1 CLR

Keystroke Command Line Level-1 Value After
Sequence: Shows: ENTERis pressed:

g) 12 12 #120

h) la.2 1.2 1.2

i) laEEX2 1E2 100

i) 1 a8 18 18

k) la.a8 1.8 1.8

) 1aB3 1B3 Invalid Syntax

70 Section 5: Real Numbers and Alpha Mode

Keystroke Command Line Level-1 Value After
Sequence: Shows: ENTER is pressed:

m) ATTN HEX 1B3 # 1B3h
ENTER

n 1.2 1.2 1.2

o 18 18 # 18h

p 18. 18. 18

qQ 1.2EEX3 1.2E3 1200

r) 1.EEX3 1.E3 1000

s) 1EEX3 1E3 # 1E3h

) 1E3 1E3 # 1E3h

n_ "
Note that the behavior in case "s" above may seem strange at first, but is

consistent with the fact that pressing the EEX key merely causes the letter "E"
to be added to the command line. (This is true whether the emulator is

activated or not.) The lesson to be learned here is to include a decimal point
when entering integral real multiples of powers of ten when the current base is

hex.

B. Real-Number Math

The 16C Emulator supports the four arithmetic functions plus change-sign at

all times. In addition, fifteen scientific functions on HP48 keyboard row 4

may be accessed by toggling into the emulator's "MTH" mode. This operation,

Section 5: Real Numbers and Alpha Mode 71

activated by pressing the "MTH" key on row 2, causes the following changes
to the emulator:

(1) The "16C" LCD annunciator changes to "MTH".

(2) Numeric digit keys 0 through 9 plus decimal point and EEX are legal
while in ANY numeric base.

(3) Keyboard row-4 keys change from hex digits A to F plus the shifted bit-
manipulation emulator functions to the original log, trig and exponential
functionality of the regular HP48 for reals. Of the 18 functions assigned to
these keys, only the blue-shifted functions on the first three keys

(derivative, integral and summation) remain inactive.

(4) The square-root, x-squared and y-to-the-x functions also will accept

integer arguments in emulator/MTH mode.

(5) The left- and right-shifted arithmetic keys provide the original HP48

object delimiter keys as labeled on the keyboard overlay to the right of the

keys.

(6) Pressing the MTH key once more toggles out of emulator/MTH and
back into emulator/16C mode.

Note that the 16C emulator keyboard overlay signifies the row-4 scientific

functions by placing their identifying labels TO THE RIGHT of the assigned

keys. The orange "-1" to the right of the first three keys in the row signifies
the inverse trigonometric functions.

72 Section 6: Format Conversions

6. Format Conversions

A. Real-to-Binary and Binary-to-Real Conversions

Due to the fact that both integers and reals may be manipulated within the

emulator environment, enhanced versions of the HP48's original "B—R" and

"R—B" functions have been included in the environment. This allows the

result of a calculation with either type of numeric values to be converted to the

other type for further calculation. Of course like in the regular 48, when non-
integral reals are converted, the numbers are rounded to the nearest integer.

For the case when the current complement mode is unsigned, negative reals

become zero after R—B. For signed modes, negative reals are rounded to the

nearest negative integer. The examples below should further clarify this

behavior:

(Initial conditions - Base: decimal, Word size: 32 bits,

Complement mode: Unsigned, Display mode: standard)

DEC 32 STWS (=Y UNSGN k=Y MODES STD =1 CLR

3 R-B # 3d

3.1 R-B # 3d

3.8 R-B # 4d

-3 R-B # 0d/ RNGE

(Switching to 1's complement mode: a1 1'S)
3 R-B # 3d

3.1 R-B # 3d

3.8 R-B # 4d

-3 R-B # -3d

-3.1 R-B # -3d

-3.8 R-B # -4d

0.9 R-B #1d

0.1 R-B # 0d

-0.1 R-B # 0d

-0.9 R-B #-1d

Section 6: Format Conversions 73

i. Word Size Considerations

In the emulator (as in the HP48 itself), the current word size can affect the

result of a real-to-binary conversion. If the number to be converted cannot be

completely represented in the current word size, the lower portion of the
number will be maintained in the stack asif it were intact. This also makes no

special considerations for maintenance of the sign of the original or resulting

number. If the new, smaller version of the number happens to have its most
significant bit set, the emulator will interpretthis as the presence of a negative
number should the current complement mode be signed. Immediately

increasing the word size at this point will reveal the upper hidden bits, however

these are discarded as soon as any operation is performed with the smaller

word size in force.

Also note thatif the conversion to an integer would result in a value larger than

can be represented in 64 bits, the resulting integer will have all bits set. This is

interpreted by the emulator as a minus one (in decimal base) if the current

complement mode is signed. Examples ofthis behavior are shown below:

(Initial conditions - Base: hex, Word size: 32 bits,

Complement mode: Unsigned, Display mode: standard)

HEX 32. STWS k=Y UNSGN k=Y MODES STD

Keystrokes Resulting Value Comments

256. ENTER 256 Entered value

R-B # 100h Converted to integer

B-R 256 Back to real: no change

8§ STWS 256 Reduce word size

R-B # Oh Back to int: lower 8 bits

B-R 0 Back to real: remain zero

74 Section 6: Format Conversions

Keystrokes Resulting Value Comments

=1 CLR 32. STWS New starting value
511. ENTER 511

R-B # 1FFh Converted to integer

DEC # 511d Switch to decimal base

B—R Ixl2's 8 511 To real and lower word
STWS size

R-B #-1d To int: a negative result

HEX # FFh Back to hex

32. STWS # 1FFh Restore word size: reveals
hidden bits

CLR 25854. 25854 New starting value

R-B # 64FEh Converted to integer

DEC # 25854d Switch to decimal

B-R 25854 Backto real: original no.

8 STWS R—-B #-2d Reduce word size and
convert to int: negative

result

HEX # FEh Switch to hex: lower 8 bits
only

0+ # FEh Perform math on the value

B-R -2 Back to real: hidden bits

have been discarded

Section 6: Format Conversions 75

B. Converting Integers To and From Reals with

FLOAT/FIXED

In the original HP16C calculator, the FLOAT function performs two functions:

(1) Tumns on floating-point (real) decimal mode
(2) Converts the integers in the lowest two stack registers X and Y into the real

number y*2*

Since the 16C emulator permits entry of reals at any time, there is no need for
the emulator's FLOAT function to change any modes. As a result, pressing fad

FLT converts stack levels one and two into the real "level-two times two to the

level-one power". If the result is greater than 9.99999999999x10** , the out-

of- range flag is set. If no overflow is generated, the out-of-range flag is

cleared.

Example: Convert hexadecimal values 4158E and 3F to a real number using
FLOAT.

Initial conditions: Base: HEX Word size: 14 Complement Mode: 2's
Display mode: 4 FIX

HEX 32. STWS &1 2's =1 CLR =Y MODES 4 FIX

Keystrokes Display Shows Comments

4158E ENTER # 4158Eh 4158E*2F

 3F l=d FLT 2.4687E24

76 Section 6: Format Conversions

To reverse the operation of the FLOAT key in the HP16C calculator, one
needs to press one of the integer base keys. This not only converts the stack

level-one real to a pair of integers but turns on integer entry mode in the

chosen base. Once again, since the 16C emulator can handle both integers and
reals at the same time, there is no need for conversion from a real to a pair of
integers to also change modes.

Considering the real number in stack level one to be in the form of Y times 2
to the X power, pressing Imd FXD (FIXED) converts this real to the pair of
integers X (in level one) and Y (in level two). If the current word size is less

than 33 bits, executing the FLOAT function changes the word size to 33 bits.
The word size is unaffected if it is 33 bits or greater. In order to achieve high
precision, the mantissa value Y generated is a signed 32-bit integer. The
decimal point is assumed to be to the right of the least significant bit in this

mantissa value. As a result, the generated exponent of two (X) will be negative

unless the original real number to be converted is greater than 2 to the 31st
power (or greater than 2 billion).

Example:

Initial conditions: Base: HEX Word size: 16 Complement Mode: 2's

Display mode: STD

HEX 16. STWS &1 2's [&1 CLR k=Y MODES STD

Keystrokes Display Shows Comments

1.2E10 ENTER 12000000000

2. # B2DO0SEOOh Word size changed to
=1 FXD 1: #2h 33 bits

DEC 2: # 3000000000d 3 billion x 2 squared

1: # 2d

Section 6: Format Conversions 77

C. Converting To and From IEEE Floating-Point
Format

In the HP16C calculator manual appendix are two programs for converting
decimal real (HP16C floating-point mode) numbers to and from the proposed
IEEEsingle-precision, floating-point binary format. These programs have been

adapted and incorporated into the emulator library as the functions —IEEE

and IEEE—. The IEEE proposed 32-bit standard is as follows:

s| e f

31 30 23 22 0 bit#

where s = 1-bit sign
e = 8-bit biased exponent (ranging -127 to +128)

f = 23-bit fraction (mantissa)

A value v in the stack would be interpreted as follows:

Value of e Value of f Value of v

(@) 255 non zero NaN (not a number)

(b) 255 zero too (based on s)

(c)0<e<255 any —1%2012Dyf

(d) zero non zero —1°%2712x, f

(e) zero Zero —1°*%0

78 Section 6: Format Converstions

In the 16C emulator,the following conventions are used:

IEEE Number Stack Value Carry Out-of-Range
Flag Flag

0 0 clear clear

-0 0 set clear

too 19.99999999999E499 set set

Not a Number —1'*Q. f*22 set clear

Others As defined above set clear

under (¢) & (d)

These two conversions turn on two's complement mode, base HEX and a word
size of 32 bits.

Example:

Initial conditions: Base: HEX Word size: 32 Complement Mode: 2's
Leading Zeros Mode On, Display Mode: FIX 8

HEX 32. STWS 2's I=1 CLR =Y MODES8 FIX

Section 6: Format Conversions 79

Keystrokes Display Shows Comments

80000000 ENTER # 80000000h -0

=1 IEEE— 0.00000000 / CRRY Carry set

=1 CLR 7F800000 # 7F800000h +o0

=1 IEEE- 1.00000000E500 / Carry & Range Set
CRRY, RNGE

=1 CLR 800000 # 00800000h 271%41.000...

=1 IEEE— 1.17549435E-38

=1 CLR 3F800001
ENTER

=l IEEE-

=1 CLR 2.5E55
ENTER

=Y -IEEE

=1 CLR 1.404E-45

=Y -IEEE
3F800001h

1.00000012

2.500000E55

7F800000h / RNGE

1.40400000E-45

00000001h
2°%(1.000....1)

=1+272

Value too large

+o00

Smallest value

80 Section 7: Using the VAR Menu

7. Using the VAR menu

While the 16C emulator is active, access to the HP48's VAR menu is
permitted. There should be no difference in the behavior of user programs

while the emulator is on, except that resulting integers in the stack will be
displayed in the context of the active base, word size and complement mode.
In addition, if a program halts to allow user input from the keyboard, the

current entry modes of the emulator take precedence. For example, if a
program halts from an INPUT instruction and expects real-number input, the
user must make sure that reals get entered under the rules of the emulator.
Either turning on MTH mode or including a decimal point or EEX will be
necessary. Following pressing K CONT the program should progress as
expected.

In the emulator, using the two shift keys in conjunction with the VAR keys
works the same way as in the regular HP48: left-shift stores the stack level-one

value into the object and right-shift recalls from the object into the stack.

A. Program HALT Cautions

Special precautionary measures must be observed with respect to encountering

the HALT instruction in user programs running while the emulator is active.
First and foremost, the PRG CTRL menu is not accessible, so single-stepping
is not possible with the emulator on. In addition, the library is not able to
accept the KILL instruction to terminate any halted conditions. If it is not
acceptable to let the halted program run to completion via a CONT (continue)
operation, the simplest way to release the halted environment would be to

warm-start the calculator by pressing the ON/C key combination. This will
clear the stack. (Check Appendix E for a method of preserving and restoring
the stack if warm-start must be performed.)

Section 8: Programming with Emulator Functions 81

8. Programming with Emulator Functions

Virtually every function in the 16C emulator can be used in a program object

outside the emulator mode. The entire list of emulator functions can be

scanned by turning on the emulator library menu and pressing NXT to see all
the emulator function pages:

Keystrokes Display Shows

YLIBRARY |[TGlII I

HP16C EHUL[REOUT]HOOTSUET]=&

NXT IATTR

NXT IITTT

NXT FiEL{MEERLSECEBtNOLE

NXT IGETONTTSRDTNT

NXT ETHETERIEETREEE

NXT +|EEE(IEEE3[FLOATIFIMED]R*EE*F.

NXT ===o-=2|

NXT BT(TAATR

NXT (UNZG{ONESTHOECHPTHE

NXT INRI

The soft-key menu names of several of the emulator functions will differ

outside the emulator environment than inside. While the emulator is on, those

functions which are analogs of original HP48 functions have the same

82 Section 8: Programming with Emulator Functions

names. However, since these functions behave differently than the regular
functions, their names outside the emulator environment are changed so they
can be differentiated. Most of these have been altered by having a decimal
point added onto the end. In addition, some of the function names differ from
the key labels on the emulator keyboard overlay. A list of these functions is

shown below:

16C Emulator Name 16C Emulator Name
HP48 Function Name Outside Emulator Inside Emulator

+ ADDT (on keyboard)
- SUBT (on keyboard)
* X (on keyboard)
/ + (on keyboard)

HEX HEX. HEX
DEC DEC. DEC
OoCT OCT. OoCT
BIN BIN. BIN
STWS STWS. STWS
SL SL. SL
SR SR. SR
RL RL. RL
RR RR. RR
ASR ASR. ASR
AND AND. AND
OR OR. OR
XOR XOR. XOR
NOT NOT. NOT
NEG NEG. NEG
ABS ABS. ABS

R-B R-B. R-B

B-R B-R. B-R

SQ sQ. (on keyboard)
A A, (on keyboard)
J v (on keyboard)

(none) ONES 1's
(none) TWOS 2's
STWS STWS. STWS
RCWS RCWS. RCWS
(none) no.B #B

Section 8: Programming with Emulator Functions 83

The above functions operate the same way outside the emulator environment
as they do inside. The carry and out-of-range flags are set and/or cleared as
usual, but the display annunciators are not on to visually reflect the changes.

Also, there are functions in the emulator library that do not get assigned to

keys when the emulator is turned on. These are for use exclusively in program

objects in orderto better take advantage of the emulator functionality.

Below is a list of these functions:

SETC SETR CRRY? CMP?
CLRC CLRR RNGE?

<. >. ==,

<. 2. #.

A. Test functions (CRRY?, RNGE?, CMP?, ==.,.,<., >.,

<., 2.)

The test functions CRRY? and RNGE? allow user-generated program objects
to test the status of the carry and out-of-range flags. These functions return a 1

to the stack if the flag is set and O if the flag is clear. Similarly, the
"relational” tests for integers return 1 if the test is true and 0 if the test if false.

Special considerations are built into these relational tests due to the differences
between emulator integers and regular HP48 unsigned integers. For instance, in
one's complement mode a positive and negative zero are considered to be
numerically equal. Negative integers test to be less than positive ones in signed

complement modes, despite the regular HP48's only being able to handle

unsigned integers.

The CMP? test returns 0, 1 or 2 reflecting the current complement mode, be it
unsigned, 1's or 2's. This may not only be used to determine the compliment

mode, but may be used to determine whether the emulator simply is in a

signed or unsigned mode. The sequence

84 Section 8: Programming with Emulator Functions

IF CMP?
THEN (code sequence for 1's and 2's comp.)
ELSE (code sequence for unsigned mode)
END

will execute the "THEN" code if CMP? returns a non-zero value or will

execute the "ELSE" codeifit returns zero.

B. Carry and Range functions SETC, CLRC, SETR,

CLRR

These functions allow user programs to control the initial conditions of the
carry and out-of-range flags. Due to the TC, TR and CCR functions existence
in emulator mode, the set/clear carry/range functions are available only as

library objects outside the emulator.

C. Writing Programs From Inside the Emulator

Environment

It is indeed possible to construct user programs from inside the emulator

environment. However, with limited access to HP48 menus, this may not be

the best practice. For instance, without access to the MATH PARTS, MATH
PROB, PRG DSPL, etc. menus, many of the HP48 functions are unavailable.

On the other hand, if the menus provided are adequate, there should be no

difficulties. In fact, this may be the easiest way to enter emulator functions into

user programs, since they will be laid out on the entire keyboard (as opposed to

in an eleven-page soft-key menu). From emulator MTH mode, one has access

to the French quotes ("<<") in order to start the program object; then toggling
out of MTH mode gives access to the normal 16C emulator keyboard. Note
that since during editing of a program the PRG annunciatoris on in the LCD,
it will be impossible to visually determine whether emulator MTH mode is on

or off. Also note that if the currently selected base happens to be one other
than hexadecimal, several of the keypad keys (between 2 and F) may be

disabled. Simply tumn on ALPHA mode while entering the program object to

get the full keypad back. Also remember that since in the emulator, the

regular ALPHA keyboard is not available, naming the new user program object

will be difficult if not impossible. Placing the object on the stack (via

ENTER),exiting the

Section 8: Porgramming with Emulator Functions 85

emulator and storing the object under the desired name is the best solution.
The user program will then be accessible inside the emulator in the VAR

menu.

D. Programming Examples

Below are a few programming examples which use the 16C emulator
functionality in user program objects. Note that it is unnecessary to manually

enter them into the calculator since these programs are available for
downloading as a single directory ASCII file named "SAMPLES.DIR" on the
floppy disk containing the emulator code. They are also stored as a directory
called SAMPLES on the plug-in card. Go to the LIBRARY menu, then choose
the key corresponding to the port in which the card is currently present. Press

the key corresponding to the SAMP soft-key label and, if memory permits, the
directory will be placed on the stack. Save it under a convenient name.

i. Recall and Set Emulator Status

Sometimes it is useful to be able to set the emulator base, word size and
complement mode all in one step. Likewise, it may be worthwhile to recall this
information and saveit for future use. The following two short routines RCST

(Recall Status) and STST (Store Status) perform this function:

RCST
<< BSS RCWS CMP? 3 5LIST >>

where BSS is the following:
BSS

<<{108216}-11FS?-12FS?2x + 1 + GET >>

86 Section 8. Programming with Emulator Functions

STST

<< OBJ— DROP 1 + { UNSGN ONES TWOS } SWAP

GET EVAL STWS
CASE DUP 2 ==

THEN BIN DROP
END DUP 8 ==

THEN OCT DROP
END 10 ==

THEN DEC
END HEX
END

>>

RCST simply generates a list object containing the current base, word size and
complement mode. STST takes such a list as an input and sets the base, word
size and complement mode accordingly.

Example:

DEC 32 STWS I=1 TWOS

Function: Display:

RCST {10322)

{8100} STST

RCST {8100}

RCWS 10

CMP? 0

BSS 8

Section 8: Programming with Emulator Functions 87

ii. Floating-point Base Calculator

Utilizing the functions of the emulator,it is possible to convert real numbers
into floating-point numbers in the current integer base. The format would be:

in.nnnnnnnnnnnZ tmmm

where

in.nnnnn = Mantissa in the current base (up to 12 sig. digits)

Z = Base letter indicator (H, E, C, B)

tmmm = Exponent of the current base (expressed in

decimal)

Just like HP48 reals may contain an "E" to indicate an exponent of ten, the
above numbers would contain one of four possible base letters. The letter "C"
was chosen for octal base since the letter "O" looks so much like a zero.

The main conversion routines are R—FB and FB—R (for "real" to and from

"floating-point base") and work as follows:

Input value: Keypress: Resulting value:

I: Hx.xxxxxEtxxx R-FB 1: "in.nnnonZimmm"

1: "in.nnnnnZimmm" FB-R I: boxxxxxEixxx

The floating-point base number generated resides inside a string object, since it

is not a valid HP48 object on its own. Since signed floating-point numbers are

valid, the conversion from real to the floating-point base turns on two's

complement mode if the current mode is unsigned. Also, in order to maintain

maximum numerical accuracy, the word size is set to 64 bits. In order to

specify the number of significant figures to the right of the radix point for

floating-point base numbers, a routine called FFIX is used just like the HP48's
FIX function.

88 Section 8: Programming with Emulator Functions

Keystrokes Display Shows Comments

T MODES STD 1.25 Set to 5 significant
HEX 5 FFIX 1.25 figures
ENTER

R-FB *1.40000H0" Convert to floating-pt.

hex

FB-R 1.25 Retumns to real

+/- -1.25 Try a negative

R-FB “-1.40000HO" Negates result

=1 CLR OCT9.8 98000 Switch to octal
EEX 4

R-FB *2.77320C5" Floating-point octal

FB-R 98000 Return to real

10 FFIX R—»FB *2.7732000000C5" Change to 10 figures

and convert

3 FFIX BIN FB-R 98000 Change back to 3
figures and switch to

binary

l=1 CLR MTH 1.74 +/- -1.74E-52 Try a negative with a
EEX 52 +/- ENTER negative exponent

R-FB "-1.000B-172" Floating-point binary
result

FB-R -1.67047794381E-52 Convert back: some

accuracy loss

Section 8: Programming with Emulator Functions 89

=1 CLR 11 FFIX

1.74 +/- EEX 52
+/- ENTER

R-FB

FB-R
-1.74E-52

"1.00001010101B-172"

-1.73980930378E-52

Try it with 11 places

Same value

Converted

Converted back: much

higher accuracy

Now, it becomesfairly simple to create a floating-point base calculator which

performs arithmetic on such numeric values embedded in strings. Routines

FADD, FSUB, FMULT and FDIV perform addition, subtraction,
multiplication and division between two floating-point base values in the stack:

90 Section 8: Programming with Emulator Functions

Keystrokes Display Shows Comments

DEC HEX 5 FFIXB Exit the emulator and

MODES STD set initial conditions

1.25 R—-FB *1.40000H0" First value

3.18 R-FB *3.2E148H0" Second value

FADD “4.6E148H0" Add them

FB-R 4.43000030517 Convert back: small

conversion error

5 =Y MODES FiIX 4.43000 Correct to S places

10 FFIX STD 1.25
R-FB
3.18 R—»FB FADD

FB-R

"1.284A6HS" ENTER

"4.45771C15" FADD

FB-R

DEC

R-FB
*1.4000000000H0"

"4.6E147AE168H0"

4.43000000003

“1.284A6H5"

“*9.2FE4012850H11"

1.61620694304E14

"1.61620694304E14"
Try 10 places

Add second value

Correct to at least 10

places

Try adding hex and
octal together

Result is in current

base

Convert back to real

Switch to decimal

Floating-point decimal

version

Section 8: Programming with Emulator Functions 91

The program listings are shown below:

FFIX

<< 11 MIN 'BSD' STO >>

BSD (The current number of desired significant figures - 0 to 11)

FADD
<< FB—>R SWAP FB-R + R—5FB >>

FSUB

<< FB—>R SWAP FB—R SWAP - R-FB >>

FMULT

<< FB-R SWAP FB-R x R—>FB >>

FDIV

<< FB—->R SWAP FB->R SWAP / R—FB >>

R-FB
<< HDB SWAP DUP

IF # Oh <.

THEN 1 SF NEG.

END

IF DUP # Oh ==

THEN DROP2 "0.00000000000" 1 BSD 2 + SUB LET + "0" +

ELSE—-STR DUP SIZE 4 - ROT + -STR SWAP DUP 33 SUB

IF1FS?C

THEN "-" SWAP +

END "." + SWAP DUP SIZE 1 -4 SWAP SUB + LET + SWAP +

END

>>

92 Section 8: Programming with Emulator Functions

HDB
<< 64 STWS

IF CMP? NOT
THEN TWOS
END DUP
IFO==

THEN DROP #0h O
ELSE DUP ABS. DUP LOG BSD 1 + SWAP BSS LOG/-FLOOR

DUP NEG. SWAP BSS SWAP A ROT *.5 + IP ABS.

R-B. DUP

IF BSS R—-B.1BSD

START BSS R-B. x

NEXT ==

THEN BSS R—-B./SWAP 1 +
ELSE SWAP
END ROT
IFO<

THEN SWAP NEG. SWAP
END

END
>>

LET
<<{"E""C""B" "H" }-11 FS?-12FS?2*+1 + GET >>

BSS
<<{108216}-11FS?-12FS?2*+ 1+ GET >>

Section 8: Programming with Emulator Functions 93

FB-R

<<DUP 11SUB

IF "-" ==

THEN 1 SF DUP SIZE 2 SWAP SUB

END -STRING

<<14

FOR | STRING BASE | GET

IF POS DUP

THEN BSE | GET BNUM | GET ROT 4'lI' STO

ELSE DROP

END

NEXT DUP STRING SWAP 1 -1 SWAP SUB SWAP 1 +

STRING DUP SIZE ROT SWAP SUB OBJ—- OVER

SIZE 2 - - SWAP DUP 1 1 SUB SWAP DUP SIZE 3

SWAP SUB + "#" SWAP + 4 ROLL + OBJ- B-R.3

ROLLD A~ *

IF1FS?C

THEN NEG

END

>>

>>

BASE { IIHII IIEII llcll IIBII }

BSE { Ilhll lldll “0“ “b“ }

BNUM {16 1082}

94 Appendix A: Classes of Operations

Appendix A. Classes of Operations

1.Active/lnactive Keys During Emulator Modes

The following is a list of active keys in each of the 16C Emulator modes:

Numeric Kevpad While C Base is BIN:

Digit keys 0 and 1, +/-, ENTER, SPC
(Digit keys 2 through F, Decimal Point, EEX are inactive)

Numeric Kevoad While C Base is OCT:

Digit keys 0 through 7, +/-, ENTER, SPC
(Digit keys 2 through F, Decimal Point, EEX are inactive)

Numeric Kevnad While C Base is DEC:

Digit keys 0 through 9, Decimal Point, +/-, EEX, ENTER, SPC

(Digit keys Athrough F, Decimal Point, EEX are inactive)

Numeric Keynad While C Base is HEX:

Digit Keys 0 through F, Decimal Point, +/-, EEX, ENTER, SPC
(No keys in the keypad are inactive)

Numeric Keypad (as described above)
Base Keys BIN, OCT, DEC, HEX
MODES, PRG and VAR menu keys
MTH mode key, CST "main" menu page key
NXT, PREV menu page keys
UP, HOME,' (tick), STO, EVAL, REVIEW, SWAP, arrow keys
SLn, SRn, FLT, FXD functions

Bit Manipulation Functions SL, SR, RL, RR, RLn, RRn, RLC, RRC,

RLCn,RRCn, LJ, ASR

Appendix A: Classes of Operations 95

Leading-Zero's , SET COMPL UNSGN, 1'S, 2'S
EDIT, VISIT, DROP, CLR, DEL/"EXIT", back-arrow

ENTRY, o/"0...F", CONT, OFF, ON/ATTN

MSKL, MSKR,#B, SB, CB, B?
TC, TR, CCR

RAD, POLAR, LAST STACK, LAST ARG, LAST CMD, LAST
MENU

—IEEE, IEEE-

Comma, carriage-return,x, £

+, -, X, +, ABS, DBLR, RMD

Logic Functions AND, OR, XOR, NOT

B-R, R—B, DBLx, DBL+

Numeric Keypad for DEC base
Base Keys BIN, OCT, DEC, HEX
MODES, PRG and VAR menu keys
MTH mode key, CST "main" menu page key
NXT, PREV menu page keys
UP, HOME,' (tick), STO, EVAL, REVIEW, SWAP, arrow keys
SLn, SRn, FLT, FXD functions

SIN, ASIN, COS, ACOS, TAN, ATAN

i, 2, iy, ', 100, LOG, ¥, ¢, LN

Leading-Zero's , SET COMPL UNSGN, 1'S, 2'S
EDIT, VISIT, DROP, CLR, DEL/"EXIT", back-arrow

ENTRY, o/"0...F", CONT, OFF, ON/ATTN

MSKL, MSKR,#B, SB, CB, B?
TC, TR, CCR
RAD, POLAR, LAST STACK, LAST ARG, LAST CMD, LAST

MENU

—IEEE, IEEE—

Comma, carriage-return, %, £

+, -,%,+, ABS, DBLR, RMD

Object delimiters (), #,[], _, <<>>," ", {}, ::

96 Appendix A: Classes of Operations

2.Flags Used by the Library

Flags:

61: Math Mode

62: Leading-Zeroes Display Mode

63: Carry Condition

64. Out-of-Range Condition

System

-5 through -10 : Current Word Size (like regular HP48 word size)
-11, -12: Current Base (like regular HP48)
-13, -14: Complement Mode:

Both clear: Unsigned

-13 Set /-14 Clear: 1's Complement
-13 Set/-14 Set: 2's Complement

Appendix B: Function Summary 97

Appendix B. Function Summary:

Example:

ADDT (+)
Function name Function name

in library in emulator

(Emu only)- Means function only appears in 16C Emulator Mode.

(Lib only) - Means function only appears in library menu outside

emulator.

WS - Means "word size"

If a function name islisted only once, the representation in both the library

directory and the emulatoris the same.

Function Stack Diagram Explanation

a ("0...F") - Enables full numeric

(Emu only) keypad keys O - F plus
EEX and decimal point.

ABOUT (Lib only) - Displays info screen
about the 16C Emulator

Library

ABS. (ABS) L:int = l:int Takes the absolute value.
1:real = 1:real If 2's complement mode,

ABS(largest negative)
causes out-of-range flag

to be set; clears it

otherwise.

ADDT (+) 2:int l:int —1:int Addition. For the mixed

2:int l:real — l:int |cases, reals converted to

2:real 1:int — l:int |integers via R—B before
2:real l:real —» l:real |adding. Complement

Plusall otherlegal mode and word size

addition arguments

|

respected. Carry and
range flags modified as

appropriate.

98 Appendix B: Function Summary

AND. (AND) 2:int l:int — l:int

2:real 1:real — 1l:real

Combines integers
logically bit-by-bit.

Combinesreals logically

(values>0=1) to produce

Oor 1.

ASR. (ASR) l:int &> 1:int Shifts right while
keeping sign bit intact.
Sets carry if bit goes off
end, clears it otherwise.

b (Emu only) Right-shifted BIN on

emulator MAIN soft-key

menu page. Adds "b" to
command line.

B? 2:int l:int — 1:int

2:int l:real — l:int

Tests bit number n in

integer in level 2 where n
is in level 1 and returns

0 (if bit is clear) or 1 (if

bit is set). Values

between 0 and WS are

valid. Reals in level 1 are

rounded.

no.B (#B) l:int =& 1:int Returns number of bits

set in level 1 value.

B-R. (BoR) l:int = l:real Converts integer to real.

BIN (Emu only) - Sets Binary base. Also
enables keypad keys 0

and 1 only.

cB 2:int l:int — 1:int

2:int l:real — l:int

Clear bit specified in
level one. Values

between 0 and WS are

valid. Reals in level 1 are

rounded.

CCR (Emu only) Clears carry and range
flags.

CLRC (Lib only) Clears the carry flag
 CLRR (Lib only) 4 Clears the out-of-range

flag.

Appendix B: Function Summary 99

CMP:n (Emu only) - Three-way toggle

between unsigned, one's
and two's complement
mode.

CMP? (Lib only) —0,10r2 Returns value of current
complement mode

CRRY? (Lib only) — Oorl Returns1 if carry flag
set, 0 otherwise

CST (Emu only) - Returns soft-key menu to
("MAIN") 16C Emulator "main"

menu.

d (Emu only) - Right-shifted DEC on
emulator MAIN soft-key
menu page. Adds "d" to
command line.

DBLR 3:int 2:int 1:int = 1:int Same as double divide

but returns the

remainder.

DBLx 2:int 1:int = 2:int 1:int Multiplies two integers
to produce a double-

word result. Upper halfis

in level 1 with lower half

in level 2. Clears range

flag and does not affect
carry flag.

100 Appendix B: Function Summary

DBL+ 3:int 2:int 1:int = 1:int Divides double-word

dividend in level 3

(lower half) and 2 (upper

half) by single-word

divisor in level 1 to

produce single-word
quotient. If resultis

larger than a single word,

an overflow error results.

Divide by zero causes an

undefined result error.

Clears range flag and

affects carry flag (if

result is not integral).

DEC (Emu only) Sets Decimal base. Also
enables numeric keypad

keys 0 through 9, EEX

and decimal point.

DEL (Emu only)
"EXIT")

Exits 16C Emulator

mode. Also performs

DEL when editing

objects.

EMUL (Lib only) - Enters 16C Emulator

mode

FIXED (FXD) l:real — 2:int 1:int Returns 32-bit mantissa
in level 2 and exponent

of 2 in level 1 which is

equivalentto real value

input. If mode is

unsigned, absolute value

is taken on inputs and

outputs.
 FLOAT (FLT) 2:int 1:int = 1:real Returns level-2 val x

27(level-1 val). If result

is too large, sets range

flag.

Appendix B: Function Summary 101

h (Emu only) - Right-shifted HEX on
emulator MAIN soft-key

menu page. Adds "h" to
command line.

HEX (Emu only) - Sets Hexadecimal base.
Also enables numeric

keypad keys O through F,
EEX and decimal point.

IEEE- l:int = 1:real Converts IEEE 32-bit

format to real. Sets word

size = 32 bits.

—|EEE l:real — l:int Converts real to IEEE

32-bit format. Sets word

size = 32 bits.

LJ l:int — 2:int 1:int Left justify. Left justifies
and returns value in level

2 and no. bits shifted left

in level 1.

MLSHOW - Displays stack level-one
object in 8-digit groups,
occupying up to all 4

display lines for 64-bit
binary integers.

MSKL l:int = l:int Create left-justified 1's

l:real = 1l:int binary mask with n bits.

Values between (and ws
are valid. If inputis real,

value is rounded first.

Negative reals generate

#0 mask. Negative
integers have absolute

value taken for mask.

Values outside of WS

cause Bad Argument
Value error.

102 Appendix B: Function Summary

MSKR l:int = l:int

l:real — l:int

Create right-justified 1's
binary mask with n bits.

Values between 0 and
WS are valid. If inputis
real, value is rounded
first. Negative reals
generate #0 mask.
Negative integers have
absolute value taken for

mask. Values outside of

WS cause Bad Argument
Value error.

MTH (Emu only)
("REALS")

Turns on/off 16C

Emulator/Math mode.

Activates/deactivates

numeric keypad keys 0
thru 9 plus EEX and
decimal point. Also
activates/deactivates

most of HP48 original
keyboard row-4 scientific

functions plus 8 HP48
object delimiters.

NEG. (+/) l:int — l:int

l:real — 1:real

Plus all other legal

negate arguments

Takes the negative of
value in stack level one.
Respects complement
mode and word size.

In unsigned mode, the

negative of a nonzero

integer causes the range

flag to be set.

NOT. (NOT) l:int — 1:int

l:real = l:real

Complements all bits of
integers. Converts real
non-zeros to 0; 0 to 1.
 o (Emu only) - Right-shifted OCT on

emulator MAINsoft-key

menu page. Adds "o" to

command line.

Appendix B: Function Summary 103

OCT (Emu only) - Sets Octal base. Also

enables numeric keypad

keys 0 through 7 only.

ONES(1's) - Sets one's complement
mode.

OR. (OR) 2:int l:int = l:int Combines integers

2:real 1:real = 1:real logically bit-by-bit.
Combinesreals logically

(values >0=1) to produce

Oorl.

R-B. (R—B) l:real = l:int Converts real to integer.
Rounds valuesfirst.

Respects current

complement mode and

word size. Only shows
WS bits of the converted
value. Negative inputs

become integer zero and
sets range flag.

RCWS. (RCWS) — l:real Recall current word size.

RL. (RL) L:iint — l:int Rotate bits left. Sets
carry if bit goes off end
of word. Clears carry
otherwise.

RLC l:int = l:int Rotate 1 bit left thru
carry. Sets carry if bit
rotated off end, clears it

otherwise.
 RLCn 2:int l:int — l:int Rotate n bits left thru

2:int 1:real — l:int carry. Level 1 n value
only valid when within +

WS. Level-2 value is

rotated by rounded real if

level 1 is real. Carry set
if bit goes off end,

cleared otherwise.

104 Appendix B: Function Summary

RLn 2:int l:int — 1:int

2:int l:real — l:int

Rotate left by n bits.

Level 1 value only valid

when within £WS.

Negative

level-1 value causes

rotation in opposite
direction. Level-2 value
is rotated by rounded real

if level 1 is real. Carry
set if bit goes off end,
cleared otherwise.

RMD 2:int l:int — l:int

2:int 2:real = 1:int

Takes remainder after
quotient of two input
values. Real value is
converted to integer

(via R—B.) first.

RNG? (Lib only) —1:0o0r1l Returns 1 if range flag

set,) otherwise

RR. (RR) l:int — l:int Rotate bits right. Sets
carry if bit goes off end

of word. Clears carry

otherwise.

RRC l:int & l:int Rotate 1 bit right thru

carry. Sets carry ifbit
rotated off end, clears it

otherwise.
 RRCn 2:int 1:int = 1:int

2:int 1:real — 1:int Rotate n bits right thru
carry. Level 1 only valid
when within £WS.

Level-2 valueis rotated
by rounded real if level 1

is real. Carry setif bit
goes off end, cleared

otherwise.

Appendix B: Function Summary 105

RRn 2:int l:int — L:int Rotate right by n bits.
2:int l:real — 1:int Level 1 value only valid

when within +WS.

Negative level-1 value

causes rotation in

opposite direction.

Level-2 valueis rotated
by rounded real iflevel 1

is real. Carry set if bit
goes off end, cleared

otherwise.

SB 2:int l:int = l:int Set bit specified by stack
2:int l:real — 1:int level one. Values

between 0 and WS are
valid. Real level-1 values
are rounded.

SETC (Lib only) - Sets the carry flag.

SETR (Lib only) - Sets the out-of-range
flag.

SHOW BIN - Left-shifted MAIN
SHOW DEC emulator soft keys.
SHOW HEX Briefly displays the
SHOW OCT integers in the LCD in
(Emu only) HEX, DEC, OCT or BIN

base.

SL. (SL) Liint — L:int Shift left by 1 bit. Set
carry if bit goes off end

of word. Clear carry

otherwise.

SLn 2:int 1:int — L:int Shift left by n bits. Level
2:int l:real = l:int 1 value only valid when

within $WS. Negative

level-1 value causes

rotation in opposite dir.

Level-2 value is rotated

by rounded real if level 1

is real. Carry set if bit

goes off end, cleared

otherwise.

106 Appendix B: Function Summary

sQ. (x%) l:int — l:int

l:real — l:real

Plus any other legal
HP48 input arguments

Squares level 1 value.

SR. (SR) l:int — l:int Shift right by 1 bit. Sets
carry if bit goes off end
of word. Clears carry

otherwise.

SRn 2:int l:int = l:int

2:int l:real = l:int

Shift right by n bits.
Level 1 value only valid

when within £WS.

Negative level-1 value
causes rotation in

opposite dir. Level-2

value is rotated by

rounded real if level 1 is

real. Carry set if bit goes
off end, cleared

otherwise.

STWS. (STWS) l:real —» x<=0: WS=1

O<x<=64: WS=round(x)

64<x: WS=64

l:int — x<0: WS=IxI

=0: WS=64

O<x<64: WS=x

64<x: WS=64

SUBT (-) 2:int l:int — 1l:int

2:int l:real — l:int

2:real 1:int — l:int

2:real l:real — l:real

Plus all other legal
subtraction arguments

Subtraction. For the

mixed cases, reals

converted to integers via

R—B. before

subtracting. Complement
mode and word size

respected. Carry and

 Range flags modified as

appropriate.

TC (Emu only) - Toggles the carry flag.

TR (Emu only) - Toggles the out-of-range
flag.

TWOS (2's) - Sets two's complement mode.

Appendix B: Function Summary 107

UNSGN - Sets unsigned integer
mode.

XOR. (XOR) 2:int l:int — l:int Exclusive OR. Combines

2:real 1:real — l:real integers logically bit-by-
bit. Combines reals
logically (values >0=1)

to produce 0 or 1.

1/x (Emu only) l:real — I:real Reciprocal.
Plus any other legal
HP48 input arguments

X 2:int l:int — l:int Multiplies the values.

2:int l:real = l:int Does not affect carry flag
2:real l:int — Lint butaffects range flag.

2:real lireal — lireal Reals converted via
Plus all other legal R —B. before

multiplication multiplying.
arguments

+ 2:int l:int = l:int Divides level 2 by level

2:int l:real — l:int

Plus all other legal
division arguments

1. Sets carry if result is
not integral. Divide by

zero causes Undefined

Result error. Certain 2's
complement mode
situations causes range

flag to be set.

#000... (Emu only) - Toggles leading-zeros

(LZ in display mode.
MODES menu)

J- (V) l:int — l:int Takes square root. If

l:real - 1:real result of integer is non

Plus any other legal |integral, carry flag is set.
input arguments

A o5 2:int Ll:iint — lint Level 2 to the level-1 2:real l:real — l:real

Plus any other legal

HP48 input arguments power.

108 Appendix B: Function Summary

<. (Lib only) 2:int l:int = Qorl

2:real l:real > Oorl

Compares level 2 and
level 1. If level 2 is less

than level 1, returns 1;

returns O otherwise.

Respects complement

modes.

>. (Lib only) 2:int l:int = Oorl

2:real l:real > Oorl

Compares level 2 and
level 1. If level 2 is

greater than level 1,

returns 1; returns 0

otherwise. Respects

complement modes.

<. (Lib only) 2:int l:int = 0orl

2:real l:real > Oor 1

Compares level 2 and
level 1. If level 2 is less
or equal to vl 1, retumns
1; returns 0 otherwise.
Respects complement

modes.

2. (Lib only) 2:int l:int = Oorl

2:real 1:real 5 0orl

Compares level 2 and
level 1. If level 2 is

greater or equal to level

1, returns 1; returns O

otherwise. Respects

complement modes.

==, (Lib only) 2:int l:int 5 Qorl

2:real 1:real > Oorl

Compares level 2 and
level 1. If level 2 is equal

to level 1, returns 1;

returns 0 otherwise.
Respects complement
modes.
 #. (Lib only) 2:int l:int = O0orl

2:real 1:real > Qorl Compares level 2 and
level 1. If level 2 is not
equal to level 1, returns

1; returns 0 otherwise.

Respects complement

modes.

Appendix C: XLIB Numbers & Other Details 109

Appendix C. XLIB Numbers & Other Details

Where in

Library?
Function Legal Input Arguments: Affects: Inside,

XLIB Outside or
Name # |INTS REALS MIXED Other Crry Rnge Both

364, (/alt. name)

[EMUL 0 - - - - - - 0

ABOUT 1 - - - - - - 0

ADDT 2 Y Y Y Y Y Y B/ +

SUBT 3 Y Y Y Y Y Y B/ -

X 4 Y Y Y Y Y Y B

4+ 5 Y Y Y Y Y N B

SL. 6 Y N - N Y N B

SR. 7 Y N - N Y N B

RL. 8 Y N - N Y N B

RR. 9 Y N - N Y N B

RLn 10 Y N Y N Y N B

RRn 11 Y N Y N Y N B

LJ 12 Y N - N Y N B

ASR. 13 Y N - N Y N B

RLC 14 Y N - N Y N B

RRC 15 Y N - N Y N B

(RLCn 16 Y N Y N Y N B
RRCn 17 Y N Y N Y N B

[MSKL 18 Y Y - N N N B

MSKR 19 Y Y - N N N B

SB 20 Y Y Y N N N B

CB 21 Y Y Y N N N B
B? 22 Y Y Y N N N B

no.b 23 Y N - N N N B/#B

AND. 24 Y Y N N N N B

OR. 25 Y Y N N N N B

XOR. 26 Y Y N N N N B

110 Appendix C: XLIB Numbers & Other Details

Where in

Library?
Function Legal Input Arguments: Affects: Inside,

XLIB Outside or
Name # |INTS REALS MIXED Other Crry Rnge| Both

364, (/alt. name)

NOT. 27 Y N - N N N B

INEG. 28 Y Y - Y N Y B
ABS. 29 Y Y - Y N Y B

SLn 30 Y N Y N Y N B

SRn 31 Y N Y N Y N B

DBLx 32 Y N N N N Y B

DBL+ 33 Y N N N N Y B

RMD 34 Y N N N N N B

DBLR 35 Y N N N N N B

—IEEE 36 N Y - N N Y B

IEEE— 37 Y N - N Y Y B

FLOAT 38 Y N N N N Y B

[FIXED 39 N Y N N N N B

IR—B. 40 N Y - N N| Y B
IBoR. 41 Y| N - N N|N B
==, 42 Y Y Y Y N N B

. 43 Y Y Y Y N N B

<. 44 Y Y N N N N B

>, 45 Y Y N N N N B

<. 46 Y Y N N N N B

>, 47 Y Y N N N N B

SETC 48 - - - - SET| N 0

CLRC 49 - - - - CLR| N 0

CRRY? 50 - - - - N N 0

SETR 51 - - - - N SET 0

CLRR 52 - - - - N |CLR 0

RNG? 53 - - - - N N 0

UNSGN 54 - - - - N N B

ONES 55 - - - - N N B/1's

Appendix C: XLIB Numbers & Other Details 111

Where in

Library?
Function Legal Input Arguments: Affects: Inside,

XLIB Outside or
Name # |INTS REALS MIXED Other Crry Rnge| Both

364, (/alt. name)

TWOS 56 - - - - N N B/2's

CMP? 57 - - - - N N 0

STWS. 58 Y Y - N N N B

RCWS. 59 - - - - N N 0

J. 60 Y Y - Y Y N B/Vx

SQ, 61 Y Y - Y N N B/

A, 62 Y Y N Y N Y B/

{#000... - - - - - - I

TC - - - - - Y N I

TR - - - - - N Y I

CCR - - - - - CLR CLR I

MTH - - - - - - - I

112 Appendix D: Error Messages

Appendix D. Error Messages

There are five basic error messages from the emulator:

Too Few Arguments

Bad Argument Type

Undefined Result

Overflow

Invalid Syntax

Not enough arguments for the operation, such as

addition with only one stack value.

Operation requires different argument(s) than are
available in the stack, such as B—R with a real in

stack level one.

+, DBL+, RMD or DBLR with zero in the

demoninator (including the case with zero in both

numerator and denominator).

Arguments in the stack will cause DBL+ to return

a result which is larger than the current word size.

Evaluation of the command line containing an

illegal expression.

Appendix E: WhenAll Eise Fails... 113

Appendix E. When All Else Fails....

There is a possibility that at some point, an attempt may be made to:

(1) enter the 16C emulator

(by pressing the EMUL key in the emulator menu); or

(2) exit the emulator

(by pressing the DEL ("EXIT") key)

and nothing will happen except for the "wait" (hourglass) annunciator to be
flashed. If this occurs, the remedy is to "warm-start” the HP48 by pressing the
ON/C combination. Normal calculator behavior should resume at this point.
Since the warm-start operation clears the stack, any important data should be
saved first. If the emulator is active at the time, the stack can be saved and

restored by the following keystroke sequence:

Keystrokes Resulting Display Comments

HEX PRG STK 4: <stack item 3> Adds stack depth to
DEPTH 3: <stack item 2> stack level one

2: <stack item 1>

I: <depth>

PRG OBJ 1: {<stack items>} Entire stack in one list

—LIST object

' ABCDEF STO Using the HEX A thru
F keys of row 4. Stack
empties.

ON/C [PARTS][PROB]..... Machine blanks, then
comes on with MTH
menu active

VAR [ABCDE][...... See new ABCDEF
object in VAR menu

114 Appendix E: When All Else Fails...

Keystrokes Resulting Display Comments

ABCDEF 1: { <stack items>} List returned to stack

level one

PRG OBJ OBJ- 4: <stack item 3> Unpack the list
3: <stack item 2>

2: <stack item 1>

1 <depth>

DROP 3: <stack item 3> Stack is restored

2: <stack item 2>

1: <stack item 1>

If any problems (or possible bugs) are encountered or you have suggestions for
improvements, please feel free to contact Jake Schwartz at 135 Saxby Terrace,
Cherry Hill, NJ 08003-4606 USA. Phone evenings and weekends is 609-751-
1310.

Index

17X
16C Mode
16C Mode, Active Keys in

a Key

ABOUT Key
ABS
Active Keys in 16C Mode
Active Keys in Math Mode
Addition, Carry in

Addition, Integer

ADDT (Addition)
Alpha Lock

ALPHA Mode
AND
Angle Sign
Annunciators, Display

Arithmetic, Integer

Arithmetic Keys

Arithmetic, Out-of-Range Flag in
Arithmetic Shift Right
Arithmetic Shifts
Arithmetic With Other Objects
ASR
ATTN

b Key

B?

#B

B—-R

BIN

Bit Summation

Bits, Clearing
Bits, Masking

Bits, Rotating

Bits, Setting
Bits, Shifting

Bits, Testing

index 115

107
6
94

15,97

9,97
42,52,97
94
95
45,47
43
97
16,23
23
52,98
17,20
21
41
10
49
58
55
50
41,58,98
15

23,98
98
64,98

6,72,98

22,98
64
62
63
59
62
55
62

116 Index

Borrow in Subtraction

Bugs?

Carry Flag
Carry Flag, Functions Which Affect
Carry in Addition

Carry in Rotation Functions
CB
CCR
Changing Sign in the Command Line
Classes of Operations
CLEAR
Clearing Bits
CLRC
CLRR
CMP?
CMP:n

Comma Key
Command-Line Editing
Complement Modes
CONT
Conversion between Reals and Integers

Conversions, Format
CRRY?
CST

d Key

DBLXx

DBL+

DBLR
DEC
DEL
Delimiters, Object
Display Annunciators

Display Status Info
Display Status Messages
Division by Zero

Division, Integer

Division, Remainder Following

Double Functions

Double Divide

45,48
114

10,41
41
45,47
61
62,98
42,84,98
36
94
17,19
62
43,83,98
43,83,98
83,99
99
17,20
34
10,24
17,80
6
72
42,83,99
15,16,19,99

23,99
42,65,99

42,65,100

65,99
22,100
15,24,100
71
21
6
10
44
43
50
65
66

Double Multiply
Double Remainder

DROP

EDIT
Editing, Command-Line
Editing, Multiline Object
EEX
EMUL Key
ENTRY
Errors, Invalid Syntax

Error Messages

Error, Overflow

Errors, Syntax, with Command Line
Errors, Undefined Result

EVAL
Exclusive Or (XOR)

FADD Programming Example

FB—R Programming Example

FDIV
FFIX Programming Example
FIX
FIXED
FIXED, Word Size Considerations with
Flags, System
Flags Used in the Emulator
Flags, User, in the Emulator

FLOAT
Floating-Point Base Calculator Programming Example
Floppy Disk Loading of Emulator
FMULT Programing Example
Format Conversions

FS?
FSUB Programming Example
Function Summary

Functions Which Affect the Carry Flag
Functions Which Affect the Range Flag

Index 117

65
66
17,19

17,20,34
34
34
15,24
9,100
17,20
112
112
66
35
44
15,20
52

91

93

91
87
87
6,75,100
76
22,96
9
9
6,75,100
87
8
91
72
43
91
97
41
42

118 Index

GRADS

h,d,o,b Keys

HALT
HEX
Hex Keys A to F

HOME

IEEE Floating-Point Format
—IEEE

IEEE—-

Illegal Base Digits
Infinity

INPUT operation

Integer Addition

Integer Arithmetic

Integer Division

Integer Multiplication
Integer Subtraction
Integers, Complementing
Integers, Negative
Integers, X-Squared With
Integers, Y-to-the-X With

Invalid Syntax Error
I/O Setup Menu

Kemit, Loading Emulator via
Keyboard Layout, 16C Mode

KILL

LAST ARG

LAST CMD

LAST MENU

LAST STACK

Leading-Zeros Display Mode

Left Justify

LIBRARY Menu

LJ

Log, Trig, Exponentials with Reals

Logical Difference (XOR)

19

23,101
80
22,101
6,13
17,20

77

71,101

77,101

23
77
80
43
41
43
43
43
52
52
51
51
112
8

8
12
80

17,19
17,19
17,19
17,19
10,34,40,107
58
9
58,101
71
54

Logical Operations
Logical Product (AND)
Logical Shifts
Logical Sum (OR)
LZ Key (Leading Zeros)

Main HP48 Memory
"MAIN" Emulator Menu Page

Masking

Masking Bits
Math Mode, Active Keys in

MATH Mode, Emulator

MATH Mode with Reals
Minus Zero

Mixed Integer and Real Arithmetic Arguments
MODES Menu

MSKL
MSKR
MTH
MTH BASE Menu

MTH PARTS Menu

MTH PROB Menu

Multiline Object Editing
Multiplication, Integer

NaN (Not a Number)
NEG
Negative Integers
Negatively Signed Decimal Integers

no.B

NOT
Numeric Keypad
NXT

o Key

Object Delimiters with MATH Mode
OCT
OFF
Ones Complement Mode
OR
Out-of-Range Flag

52
53
55
54
40

8
19,22
63
63
95
10
71
27
44
7,40
63,101
63,102

index 119

15,16,102
7,10,15,18,20,28

84
84
34
43

77
102
30,52
26
64,98
52,102
13
15

23,102
71
22,103
17,20
24,103
52,103
10,25,41

120 Index

Out-of-Range Flag, Functions Which Affect
Out-of-Range Flag in Arithmetic
Overflow Error
Overlay, Emulator Keyboard

Overview

Parser, Emulator's
Pi
POLAR
Pound-Sign Delimiter
PREV
PRG
PRG BRCH Menu
PRG CTRL Menu
PRG DSPL Menu
PRG OBJ Menu
PRG STK Menu
PRG TEST Menu
Primary Key Definitions

Programming Examples

Programming with the Emulator

R—-B

R—FB Programming Example

RAD
RCL Function

RCST Programming Example
RCWS
Reciprocal

Real Number Entry

Real Number Math

Recall Emulator Status
Remainder Following Division
REVIEW
RL
RLB
RLC
RLCn

RLn

RMD
RNGE (Range) Flag

42
49
66
11,22
6

68
17,20
17,19
6,22,24
17
19
19
19,80
19,84
19
19
19
12
85
81

6,72,103

91

17,19
19
86
28,103
107
68
6,70
85
50
17,19
41,59,103
61
41,59,103
41,59,103
41,59,104
50,104
10,25,41,75

RNGE?
Rotating Bits
Rounding Reals as Inputs

RR
RRB
RRC
RRCn

RRn

SB
Set Emulator Status
SETC
SETR
Setting Bits
Shifted Key Definitions

Shifting Bits
SHOW Functions

22,24,105
Signed Complement Modes
SL
SLB
SLn
SPC

SQ
Square Root of Integers
SR
SRB
SRn
STO
STST Programming Example
STWS
SUBT (Subtraction)
Subtraction, Borrow in
Subtraction, Integer

Summation, Bit
SWAP
Syntax Errors With Command Line
System Flags

Test Functions

Testing Bits

TC

index 121

42,83,104
59
29
41,59,104
61
41,59,104
41,59,104
41,59,105

62,105
85
43,83,105
43,83,105
62
12,17
55

A4
41,55,105
61
41,56,105
18
106
51,107
41,55,106
61
41,56,106
15,19
86
28,106
106
45,48
43
64
17,19,20
35
22

83
62
41,84,106

122 index
TR
Twos Complement Mode

Undefined Result Errors

UNSGN

UP

Up-Arrow

VAR
VISIT

Warm-Starting (ON/C)
When All Else Fails

Word Size

Word Size, Changing
Word Size Considerations in FIXED

Word Size Considerations in Real/Binary Conversion
Word Size Control

X
XLIB Numbers

XOR
X-Squared With Integers

Y-to-the-X With Integers

Symbeols
+

+/-
*

+

' (tick) Key

vV (Square Root)
<

<

>
2

#

#000... (Leading Zeros Mode)
A

41,84,106
24,107

44
107

17,20

18

18,19,80
17,20,34

80,113
113
10,24
29
76
73
28

109-111
52,107
51

51,107

42,97
42
15,34,42,52
42,107
42,107

15,20
41,107

83,108

83,108

83,108
83,108

83,108
83,108
107
107

HP16C Emulator Library for the HP48S/SX

1. Introduction 6

2. Getting Started 8

3. Number and Display Control 20

4. Integer Arithmetic and Bit Manipulation Functions 41

5. Real Numbers and Alpha Mode 68

6. Format Conversions 72

7. Using the VAR Menu 80

8. Programming with Emulator Functions 81

Appendix A: Classes of Operations 94

Appendix B: Function Summary 97

Appendix C: XLIB Numbers & Other Details 109

Appendix D: Error Messages 112

Appendix E: When All Else Fails 113

Index 115

	Cover
	Table of Contents
	1. Introduction
	A. Overview
	B. This Manual
	C. Conventions Used

	2. Getting Started
	A. Installing the Emulator
	i. From Disk (at least 25K free RAM required)
	ii. From Plug-in Card:

	B. Entering the Emulator Environment
	C. Keyboard Operation
	i. The Primary Key Definitions
	ii. The Shifted Key Definitions

	D. Soft-Key Menu Functions
	E. Returning to the "Main" Menu Page
	G. Exiting the Emulator

	3. Number and Display Control
	A. Display Annunciators
	B. Number Base Modes
	i. A Second Set of BASE Keys

	C. Temporary Display ("SHOW")
	D. Entry in any Base
	E. Complement Modes and Unsigned Mode
	F. Word Size Control
	G. Leading-Zeros Display Mode
	H. The Multi-line SHOW Function (MLSHOW)
	I. Command-Line Editing / ENTRY mode
	i. Operation of the Change-sign (+/-) Key in the Command Line

	J. Access to the MODES Menu From Inside the Emulator

	4. Integer Arithmetic and Bit Manipulation Functions
	A. Carry and Out-of-Range Conditions
	B. Integer Arithmetic Functions
	i. Addition, Subtraction, Multiplication and Division
	a. Mixed Integer and Real Arithmetic Arguments
	b. Addition and Subtraction in 1's Complement Mode
	c. The Carry Flag During Addition
	d. The Carry Flag During Subtraction
	e. The Out-of-Range Flag During Arithmetic
	f. Arithmetic with Other HP48 Objects

	ii. Remainder Following Division and RMD
	iii. Square Root, y-to-the-x and x-squared
	iv. Negative Numbers and Complementing
	a. Changing Signs
	b. Absolute Value of Integers

	C. Logical Operations on Integers
	i. The NOT Function
	ii. The AND function
	iii. The OR Function
	iv. The Exclusive OR (XOR) Function

	D. Shifting and Rotating Bits
	i. Shifting Bits
	a. Logical Shifts SLand SR
	b. Shifting More Than One Bit at a Time
	c. Left-Justify (LJ)
	d. Arithmetic Shift Right (ASR)

	ii. Rotating Bits
	a. Rotation
	b. Rotation Through the Carry Bit
	c. Rotating More Than One Bit at a Time

	E. Bit Manipulation
	i. Setting, Clearing and Testing Bits
	ii. Masking
	iii. Bit Summation

	F. "Double" Functions (DBLx, DBL+, DBLR)
	i. Double Multiply
	ii. Double Divide
	iii. Double Remainder

	5. Real Numbers and Alpha Mode
	A. Normal Real-Number Entry
	i. Parser operation

	B. Real-Number Math

	6. Format Conversions
	A. Real-to-Binary and Binary-to-Real Conversions
	i. Word Size Considerations

	B. Converting Integers To and From Reals with FLOAT/FIXED
	C. Converting To and From IEEE Floating-Point Format

	7. Using the VAR MENU
	A. Program HALT Cautions

	8. Programming with Emulator Functions
	A. Test functions (CRRY?, RNGE?, CMP?, ==, ≠, <, >, ≤, ≥)
	B. Carry and Range functions SETC, CLRC, SETR, CLRR
	C. Writing Programs From Inside the Emulator Environment
	D. Programming Examples
	i. Recall and Set Emulator Status
	ii. Floating-point Base Calculator

	Appendix A. Classes of Operations
	1. Active/Inactive Keys During Emulator Modes
	2. Flags Used by the Library

	Appendix B. Function Summary
	Appendix C. XLIB Numbers & Other Details
	Appendix D. Error Messages
	Appendix E. When All Else Fails
	Index

