Direct Sales Consultant

Business Consultant
Professional Calculator

Edition 1 May 1986
Reorder Number 00018-90036
Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.

© 1986 by Hewlett-Packard Co.

This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company.

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 May 1986 Mfg. No. 00018-90046
Welcome...

...to the Consultant applications series! This series is designed to help you get the most from your Business Consultant professional calculator.

The purpose of the Direct Sales Consultant is to help you solve the specialized problems your industry or profession demands. We’ve worked with professionals in your field to provide a sample of analysis concepts that are useful and relevant. Included are keystrokes and routines to help you figure quotes, analyze sales performance, forecast sales and expenses, estimate the value of a sales prospect, and calculate leasing expenses. The Direct Sales Consultant is designed to serve both as a reference and a starting point for using the Business Consultant to develop your own unique analyses.

Before you use the solutions in this book, you should be familiar with certain concepts from the owner’s manual:

- Chapter 1: the basics of your calculator—how to move from menu to menu, identify and move to the MAIN menu, and use the menu keys to do calculations.
- Chapter 9: entering and using formulas.

The examples in this book show two decimal places. If your display is set to something other than two, the answers in your display will not match exactly what is in this book. Refer to your owner's manual for more information about changing the number of decimal places.

For more information about the topics in the Direct Sales Consultant, refer to a basic textbook on the subject. Specific sources on the more specialized topics are included at the end of those topics.
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>When Entering Formulas...</td>
</tr>
<tr>
<td>9</td>
<td>Forecasting Based on History</td>
</tr>
<tr>
<td>14</td>
<td>Forecasting Using Simple Moving Average</td>
</tr>
<tr>
<td>16</td>
<td>Revising Forecasts to Reflect Current Market Conditions</td>
</tr>
<tr>
<td>18</td>
<td>Markup Calculations</td>
</tr>
<tr>
<td>20</td>
<td>Setting a Sales Price</td>
</tr>
<tr>
<td>22</td>
<td>Break-Even Analysis</td>
</tr>
<tr>
<td>24</td>
<td>Leasing Calculations</td>
</tr>
<tr>
<td>24</td>
<td>Advance Payments</td>
</tr>
<tr>
<td>27</td>
<td>Skipped Payments</td>
</tr>
<tr>
<td>30</td>
<td>Figuring Quotes</td>
</tr>
<tr>
<td>37</td>
<td>Figuring Commissions</td>
</tr>
<tr>
<td>37</td>
<td>Sample Formulas</td>
</tr>
<tr>
<td>38</td>
<td>Entering and Using Your Formula</td>
</tr>
<tr>
<td>39</td>
<td>Examples</td>
</tr>
<tr>
<td>41</td>
<td>Performance Measurements</td>
</tr>
<tr>
<td>45</td>
<td>A: Conserving Memory</td>
</tr>
</tbody>
</table>
When Entering Formulas...

When entering formulas into your Business Consultant, follow the instructions in chapter 9 of your owner's manual. Here are hints to help you in common error situations:

1. If the calculator displays **INVALID FORMULA** when you press **[CALC]**, the calculator doesn't understand something in the formula. When the formula returns to the screen, the cursor is positioned where your calculator detected the error. Check the formula in the screen against the formula in the book. Make sure the parentheses match and that the operators are where they should be.

2. If the calculator accepts the formula but your answer doesn’t match the example, check the values stored in the menu key variables by recalling them (press **[RCL]**, then the menu key). If the values are correct, return to the SOLVE menu and check the formula. (Press **[EXIT]** to return to the SOLVE menu and press **[EDIT]** to view and edit the formula.) Check the formula against the one in this book for accuracy. When you find an error, edit the formula and press **[CALC]** to display the custom menu again.

3. If the calculator displays **INSUFFICIENT MEMORY** when you press **[INPUT]** or **[CALC]**, you must free portions of memory before continuing. Refer to pages 188 and 189 of the owner's manual for additional information.

The formulas in the *Direct Sales Consultant* use variable names that are intended to remind you of what to store. Feel free to change them to something more meaningful to you.
Forecasting Based on History

One method of forecasting sales, manufacturing rates or expenses is to look at historical trends. Once you have historical data, the data are fit to a curve with time on the x-axis, and the quantity you are forecasting on the y-axis. Linear curve fit is appropriate if you have a fairly constant growth rate; exponential curve fit is appropriate with compound growth, such as might occur for sales of a new product.

1. From the MAIN menu, press [SUM] to display the SUM menu.
2. Press [CLEAR ALL] [YES] to clear the list. (If you don’t want to delete the list, name the old list and get a new one.)
3. Enter your time data. Press [INPUT] after each item.
4. Name your list.
5. Press [GET] [NEW] to get a new list and enter your sales data as in step 3.
6. Name your list.
7. Press [CALC], [MORE], then [FRCST].
8. Select the list containing your x-values.
10. Key in the x-value and press [XLIST].
11. Press [YLIST] to forecast the y-value.

Example 1: Forecasting using linear curve fit. You want to estimate your sales for the next two years using a linear curve fit. The following data represents sales for the past nine years.

<table>
<thead>
<tr>
<th>Year</th>
<th>Sales ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,000</td>
</tr>
<tr>
<td>2</td>
<td>11,210</td>
</tr>
<tr>
<td>3</td>
<td>13,060</td>
</tr>
<tr>
<td>4</td>
<td>16,075</td>
</tr>
<tr>
<td>5</td>
<td>20,590</td>
</tr>
<tr>
<td>6</td>
<td>21,000</td>
</tr>
<tr>
<td>7</td>
<td>24,065</td>
</tr>
<tr>
<td>8</td>
<td>28,072</td>
</tr>
<tr>
<td>9</td>
<td>32,519</td>
</tr>
</tbody>
</table>
Start from the MAIN menu.

Keys:

Display:

Description:

SUM *

Displays SUM menu.

CLEAR ALL

Clears the list.

YES

TOTAL=45.00

Enters time values.

INPUT

TOTAL=176,591.00

Names the list.

10000 INPUT

11210 INPUT

13060 INPUT

16075 INPUT

20590 INPUT

21000 INPUT

24065 INPUT

28072 INPUT

32519 INPUT

Names the list.

Names the list.

SALES

INPUT

Selects FRCST menu.

CALC

MORE

FRCST

* If you want to preserve the current list, skip the next step (pressing CLEAR ALL), name the list, then press GET NEW.
Selects list YEARS as the x-variable.

Selects linear model.

Selects linear model.

Stores year 10 as the x-value.

Calculates a y-value—sales forecast for year 10.

Stores year 11 as the x-value.

Calculates a y-value—sales forecast for year 11.

Example 2: Forecasting using exponential curve fit. Your sales of a new product is shown below for the first six months after introduction.

<table>
<thead>
<tr>
<th>Month</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>317</td>
</tr>
<tr>
<td>July</td>
<td>525</td>
</tr>
<tr>
<td>August</td>
<td>483</td>
</tr>
<tr>
<td>September</td>
<td>566</td>
</tr>
<tr>
<td>October</td>
<td>727</td>
</tr>
<tr>
<td>November</td>
<td>909</td>
</tr>
</tbody>
</table>
Part 1. Using the exponential model, predict your sales for December.

Start from the MAIN menu.

Keys:

SUM *

Display:

Displays SUM menu.

CLEAR ALL

Clears the list.

1 **INPUT**

Enters month numbers.

2 **INPUT**

3 **INPUT**

4 **INPUT**

5 **INPUT**

TOTAL=21.00

6 **INPUT**

TOTAL=21.00

NAME

MONTHS

Names the list.

INPUT

GET *NEW*

Displays a new list.

317 **INPUT**

Enters monthly sales.

525 **INPUT**

483 **INPUT**

566 **INPUT**

727 **INPUT**

909 **INPUT**

TOTAL=3,527.00

NAME

MOSLS

Names the list.

INPUT

CALC MORE

Displays FRCST menu.

*If you want to preserve the current list, skip the next step (pressing **CLEAR ALL**), name the list, then press*

12 Forecasting Based on History
Selects list MONTH as the x-variable.

Selects exponential model.

Stores month 7 as the x-value.

Calculates a y-value—projected sales for December, the seventh month.

Part 2. Calculate the continuous compound growth rate.

Calculates estimate of the monthly compound growth rate.
Forecasting Using Simple Moving Average

Moving averages are often useful to forecast sales, production rates, or expenses. In a moving average, a specified number of data points are averaged. When there is a new piece of input data, the oldest piece of data is discarded to make room for the most recent data. This replacement scheme makes the moving average a valuable tool in following trends. The fewer the number of data points, the more trend sensitive the averages become. With a large number of data points, the average behaves more like a regular average, responding slowly to new input.

1. From the MAIN menu, press \SUM to display the SUM menu.
2. Press \CLEAR ALL YES to clear the list. (If you don’t want to delete the list, name the old list and get a new one.)
3. Enter your data points.
4. Press \CALC, then \MEAN to calculate the average.
5. When you have a new data point, move the pointer to the oldest item. Enter the new item and press \INPUT. The oldest item is replaced by the new one.

Example. You want to calculate a 3 month moving average for the units you sold each month. Volumes for the first six months were:

<table>
<thead>
<tr>
<th>Month</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>440</td>
</tr>
<tr>
<td>February</td>
<td>536</td>
</tr>
<tr>
<td>March</td>
<td>290</td>
</tr>
<tr>
<td>April</td>
<td>367</td>
</tr>
<tr>
<td>May</td>
<td>404</td>
</tr>
<tr>
<td>June</td>
<td>320</td>
</tr>
</tbody>
</table>

14 Forecasting Using Simple Moving Average
Start from the MAIN menu.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM *</td>
<td></td>
<td>Displays SUM menu.</td>
</tr>
<tr>
<td>CLEAR ALL</td>
<td>YES</td>
<td>Clears the list.</td>
</tr>
<tr>
<td>440 INPUT</td>
<td>TOTAL=1,266.00</td>
<td>Enters sales for the first three months.</td>
</tr>
<tr>
<td>CALC MEAN</td>
<td>MEAN=422.00</td>
<td>Calculates average for first three months.</td>
</tr>
<tr>
<td>EXIT</td>
<td></td>
<td>Moves pointer to top of list.</td>
</tr>
<tr>
<td>367 INPUT</td>
<td>TOTAL=1,193.00</td>
<td>Enters month four and deletes oldest item.</td>
</tr>
<tr>
<td>CALC MEAN</td>
<td>MEAN=397.67</td>
<td>Calculates average for months two, three, and four.</td>
</tr>
<tr>
<td>EXIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>404 INPUT</td>
<td>TOTAL=1,061.00</td>
<td>Enters month five and deletes oldest item.</td>
</tr>
<tr>
<td>CALC MEAN</td>
<td>MEAN=353.67</td>
<td>Calculates average for months three, four, and five.</td>
</tr>
<tr>
<td>EXIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320 INPUT</td>
<td>TOTAL=1,091.00</td>
<td>Enters month six and deletes oldest item.</td>
</tr>
<tr>
<td>CALC MEAN</td>
<td>MEAN=363.67</td>
<td>Calculates average for months four, five, and six.</td>
</tr>
</tbody>
</table>

* If you want to preserve the current list, skip the next step (pressing CLEAR ALL), name the list, then press GET *NEW*.
Revising Forecasts to Reflect Current Market Conditions

Most sales forecasts are based on certain assumptions about, and incomplete knowledge of, your market and competition. After the forecasts are made, internal and external changes make your original assumptions and your forecast incomplete. Examples of these changes in the market that were not reflected in the original forecast are a price drop (yours or your competitors), advertising or promotional campaign, rebate offer, introduction of a new product by a competitor, or a change in distribution of your product. The formula below helps you revise your forecast, based on the perceived impact of the market changes.

Entering and Using the NEWFCST Formula:

1. From the MAIN menu, press SOLVE to display the SOLVE menu.
2. Type in the NEWFCST formula as follows:*
 \[\text{NEWFCST} = \text{BASE} + \left(\left(\frac{\text{A} \% + \text{B} \% + \text{C} \%}{\text{D} \% + \text{E} \%} \right) \times 100 \right) \times \text{BASE} \]
3. Press CALC to verify the formula and display the custom menu.
4. Store the following variables:
 - Original forecast in BASE.
 - Expected change in sales caused by each change in the market in \(\text{A} \% \), \(\text{B} \% \), and \(\text{C} \% \).*
5. Press NEWF to calculate the new forecast.

* This formula can be modified to fit the number of changes for your current market condition. If you have two factors, omit \(\text{C} \% \); if you have five factors, change the part in parentheses to \(\frac{\text{A} \% + \text{B} \% + \text{C} \% + \text{D} \% + \text{E} \%}{\text{F} \% + \text{G} \%} \times 100 \).
Example. You had planned to sell 2,000 units next month. Three market changes are happening next month that are not reflected in your current forecast: the price on the product is being reduced and you expect a 20% increase in sales; the product manufacturer is advertising and you expect a 5% increase in sales; a competitor has announced a new product and you expect a 15% cut into your sales. Calculate the new forecast for the month.

Start from the NEWFCST custom menu.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>BASE=2,000.00</td>
<td>Stores original forecast.</td>
</tr>
<tr>
<td>20 A%</td>
<td>A%=20.00</td>
<td>Stores sales increase expected due to price drop.</td>
</tr>
<tr>
<td>5 B%</td>
<td>B%=5.00</td>
<td>Stores sales increase expected due to advertising.</td>
</tr>
<tr>
<td>15 C%</td>
<td>C%=-15.00</td>
<td>Stores sales decrease due to new competition.</td>
</tr>
<tr>
<td>NEWF</td>
<td>NEWFCST=2,200.00</td>
<td>Calculates new forecast for the month.</td>
</tr>
</tbody>
</table>
Markup Calculations

Markup calculations are used to determine the selling price of an item. Your Business Consultant includes a built-in menu for calculating markup as a percent of cost and markup as a percent of price.

1. From the MAIN menu, press **BUS** to display the BUS menu.
2. Press **MU%C** to display the MU%C (markup on cost) menu, or **MU%P** to display the MU%P (markup on price) menu.
3. Store each of the values you know by keying in the number and pressing the appropriate menu key.
4. Press the menu key for the value you want to calculate.

Example 1: Calculate selling price and markup as a percent of cost given cost and markup as a percent of price. Part 1. An item costs $160. The reseller’s required markup as a percent of selling price is 20%. What is the selling price?

Start from the MAIN menu.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS</td>
<td></td>
<td>Displays MU%P menu.</td>
</tr>
<tr>
<td>MU%P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 COST</td>
<td>COST=160.00</td>
<td>Stores your cost.</td>
</tr>
<tr>
<td>20 MKP</td>
<td>MARKUP%P=20.00</td>
<td>Stores markup as a per-</td>
</tr>
<tr>
<td>PRICE</td>
<td>PRICE=200.00</td>
<td>cent of price.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calculates selling price.</td>
</tr>
</tbody>
</table>

Part 2. What is the markup as a percent of the cost?

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXIT</td>
<td></td>
<td>Displays MU%C menu.</td>
</tr>
<tr>
<td>MU%C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MKC</td>
<td>MARKUP%C=25.00</td>
<td>Calculates markup as a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>percent of cost.</td>
</tr>
</tbody>
</table>

Example 2: Calculate cost and markup as a percent of price given selling price and markup as a percent of cost. Part 1. An item sells for $21.00. The markup as a percent of cost is 50%. What is its cost?
Start from the MAIN menu.

Keys:
- BUS M%C
- 21 PRICE
- 50 M%C
- COST

Display:
- PRICE=21.00
- MARKUP%C=50.00
- COST=14.00

Description:
- Displays MU%C menu.
- Stores selling price.
- Stores markup as a percent of cost.
- Calculates your cost.

Part 2. What is the markup if expressed as a percent of price?

Keys:
- EXIT M%P
- M%P

Display:
- MARKUP%P=33.33

Description:
- Displays MU%P menu.
- Calculates markup as a percent of price.

Example 3: Calculate cost and markup on cost given selling price and markup on price. Part 1. An item sells for $38, with a markup on price of 30%. What is the markup on cost?

Start from the MAIN menu.

Keys:
- BUS M%P
- 38 PRICE
- 30 M%P
- COST
- EXIT M%C
- M%C

Display:
- PRICE=38.00
- MARKUP%P=30.00
- COST=26.60
- MARKUP%C=42.86

Description:
- Displays MU%P menu.
- Stores selling price.
- Stores markup on price.
- Calculates your cost.
- Displays MU%C menu.
- Calculates markup on cost.

Part 2. If the markup on cost is raised to 50%, what is the new selling price?

Keys:
- 50 M%C
- PRICE

Display:
- MARKUP%C=50.00
- PRICE=39.90

Description:
- Stores new markup on cost.
- Calculates new selling price.

Markup Calculations 19
Setting a Sales Price

One method for setting a unit sales price is to determine the unit cost of a product then multiply by the desired rate of return. The other values you must know are your total operating cost and the number of units you expect to sell.

Entering and Using the PRICE Formula:

1. From the MAIN menu, press `SOLVE` to display the SOLVE menu.
2. Type in the PRICE formula as follows:
 \[
 \text{PRICE} = \left(\frac{\text{OPCOST}}{\text{UNITS}} + \text{UCOST} \right) \times \left(1 + \frac{\%\text{RTN}}{100} \right)
 \]
3. Press `CALC` to verify the formula and display the custom menu.
4. Store four of the following variables:
 - Price per unit in `PRICE`.
 - Total operating costs in `OPCOST`.
 - Number of units sold in `UNITS`.
 - Cost per unit in `UCOST`.
 - Desired percent rate of return in `%RTN`.
5. Press the menu key to calculate the unknown variable.
Example: Part 1. Your operating costs are $20,000. You want a 10% rate of return. You forecast sales to be 2,000 units, and each unit costs $13.50. Calculate the price to charge.

Start from the PRICE custom menu.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000 OP COS</td>
<td>OPCOST=20,000.00</td>
<td>Stores total operating costs.</td>
</tr>
<tr>
<td>2000 UNITS</td>
<td>UNITS=2,000.00</td>
<td>Stores number of units.</td>
</tr>
<tr>
<td>13.5 UCOST</td>
<td>UCOST=13.50</td>
<td>Stores cost per unit.</td>
</tr>
<tr>
<td>10 %RTN</td>
<td>%RTN=10.00</td>
<td>Stores rate of return.</td>
</tr>
<tr>
<td>PRICE</td>
<td>PRICE=25.85</td>
<td>Calculates price.</td>
</tr>
</tbody>
</table>

Part 2. On this particular product, you can only charge $22.50. At that price, what is your rate of return?

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.5 PRICE</td>
<td>PRICE=22.50</td>
<td>Stores price.</td>
</tr>
<tr>
<td>%RTN</td>
<td>%RTN=-4.26</td>
<td>Calculates percent rate of return.</td>
</tr>
</tbody>
</table>

Since the rate of return is negative, you must either charge more than the going rate, or reduce your costs.

Part 3. At a zero rate of return (the break-even point), and the price in part 2, what would your operating costs have to be?

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %RTN</td>
<td>%RTN=0.00</td>
<td>Stores zero percent return.</td>
</tr>
<tr>
<td>OPCOST</td>
<td>OPCOST=18,000.00</td>
<td>Calculates operating cost to break even.</td>
</tr>
</tbody>
</table>
Break-Even Analysis

Break-even analysis is a technique for analyzing the relationships among fixed costs, variable costs, and income. Until the break-even point is reached (total costs equal total income), the seller operates at a loss. After the break-even point, each unit produced and sold makes a profit. The variables in the formula below are fixed costs, cost per unit, sales price per unit, number of units sold, and gross profit.

Entering and Using the PROFIT Formula:

1. From the MAIN menu, press \texttt{SOLVE} to display the SOLVE menu.
2. Type in the PROFIT formula as follows:
 \[
 \text{PROFIT} = \#SOLD \times (\text{PRICE} - \text{COST}) - \text{FIXCO}
 \]
3. Press \texttt{CALC} to verify the formula and display the custom menu.
4. Store four of the following variables:
 - Gross profit in \texttt{PROFI}.
 - Number of units sold in \texttt{#SOLD}.
 - Selling price per unit in \texttt{PRICE}.
 - Cost per unit in \texttt{COST}.
 - Fixed costs of doing business in \texttt{FIXCO}.
5. Press the menu key to calculate the unknown variable.
Example: Part 1. You sell a product for $13. The product costs $6.75. Your fixed costs are $12,000. Calculate the number of units that you must sell to break even (profit equals zero).

Start from the PROFIT custom menu.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 PROFIT</td>
<td>PROFIT=0.00</td>
<td>Stores break-even profit of zero.</td>
</tr>
<tr>
<td>13 PRICE</td>
<td>PRICE=13.00</td>
<td>Stores price per unit.</td>
</tr>
<tr>
<td>6.75 COST</td>
<td>COST=6.75</td>
<td>Stores cost per unit.</td>
</tr>
<tr>
<td>12000 FIXCO</td>
<td>FIXCO=12,000.00</td>
<td>Stores fixed costs.</td>
</tr>
<tr>
<td>#SOL</td>
<td>#SOLD=1,920.00</td>
<td>Calculates number that must be sold to break even.</td>
</tr>
</tbody>
</table>

Part 2. Calculate your gross profit if you sell 2,500 units.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 #SOL</td>
<td>#SOLD=2,500.00</td>
<td>Stores number sold.</td>
</tr>
<tr>
<td>PROFIT</td>
<td>PROFIT=3,625.00</td>
<td>Calculates gross profit.</td>
</tr>
</tbody>
</table>

Part 3. You want a gross profit of $4,500 at the sales volume in part 2 (2,500 units). What should the selling price be?

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4500 PROFIT</td>
<td>PROFIT=4,500.00</td>
<td>Stores required gross profit.</td>
</tr>
<tr>
<td>PRICE</td>
<td>PRICE=13.35</td>
<td>Calculates required selling price.</td>
</tr>
</tbody>
</table>
Leasing Calculations

Advance Payments

Situations may exist where one or more payments are made in advance (leasing is a good example). These agreements call for the extra payments to be made when the transaction is closed. A residual value (salvage value) can exist at the end of the normal term.

The following formula calculates the monthly payment amount (PMT) and the annual yield (I%YR) when one or more payments are made in advance. The formula can be modified to accommodate other than monthly payments by changing the constant 12 to the number of payments per year. In that case, PMT, N, and #ADV would apply to the periodic payment. Remember to use the cash flow sign convention (money paid out is negative, money received is positive).

Entering and Using the ADVPMT Formula:

1. From the MAIN menu, press [SOLVE] to display the SOLVE menu.
2. Type in the ADVPMT formula as follows:
 \[
 \text{ADVPMT} : \text{PMT} = \frac{(-\text{PV} - \text{FV} \times (\text{SPPV}(\text{I}\%\text{YR} / 12 : N))) \div (\text{USPV}(\text{I}\%\text{YR} / 12 : N - \#\text{ADV}) + \#\text{ADV})}{\#\text{ADV}}
 \]
3. Press [CALC] to verify the formula and display the custom menu.
4. Store five of the following variables:
 - Monthly payment amount in \text{PMT}.
 - Loan amount in \text{PV}.
 - Amount of the balloon payment in \text{FV}.
 - Annual interest rate as a percent in \text{I}\%\text{YR}.
 - Total number of monthly payments in \text{N}.
 - Number of monthly payments made in advance in \text{#ADV}.
5. Press the menu key to calculate the unknown variable.
Example 1: Part 1. Equipment worth $750 is leased for 12 months. The equipment is assumed to have no salvage value at the end of the lease. The lessee has agreed to make three payments at the time of closing. What monthly payment is necessary to yield the lessor 10% annually?

Start from the ADVPMT custom menu.

Keys:

<table>
<thead>
<tr>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV=-750.00</td>
<td>Stores known values.</td>
</tr>
<tr>
<td>N=12.00</td>
<td></td>
</tr>
<tr>
<td>FV=0.00</td>
<td></td>
</tr>
<tr>
<td>#ADV=3.00</td>
<td></td>
</tr>
<tr>
<td>I%YR=10.00</td>
<td></td>
</tr>
<tr>
<td>PMT=64.45</td>
<td>Calculates monthly payment.</td>
</tr>
</tbody>
</table>

Part 2. What is the payment amount if the yearly interest rate is 15%?

<table>
<thead>
<tr>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>I%YR=15.00</td>
<td>Stores new interest rate.</td>
</tr>
<tr>
<td>PMT=65.43</td>
<td>Calculates monthly payment to achieve 15% yield.</td>
</tr>
</tbody>
</table>

Example 2. A lease has been written to run for 60 months. The leased equipment has a value of $25,000 and a monthly payment of $600. The lessee has agreed to make 3 payments at the time of closing ($1,800). What is the annual yield to the lessor?
Start from the ADVPMT custom menu.

Example 3. Equipment worth $5,000 is leased for 36 months at $145 per month. The lessee has agreed to pay the first and last payments in advance. At the end of the lease, the equipment can be purchased for $1,500. What is the annual yield to the lessor if the equipment is purchased?

Start from the ADVPMT custom menu.

The solver searches for a numerical solution and displays intermediate estimates.
Skipped Payments

Sometimes a loan (or lease) can be negotiated in which a specific number of monthly payments are going to be skipped each year. Seasonality is usually the reason for such an agreement. For example, because of heavy rainfall, a bulldozer cannot be operated in Oregon during December, January, and February, and the lessee wishes to make payments only when his machinery is being used. He makes nine payments per year, but the interest continues to compound during the months in which a payment is not made.

The following procedure calculates the monthly payment amount necessary to amortize the loan in the specified amount of time. The only restriction is that the term of the loan must be an integer number of years.

1. From the MAIN menu, press F1N, then CFLD to display the cash flow menu.

2. Using a cash flow of $1.00 for each payment that is made during the first 12 months, and $0 for each payment that is skipped, calculate the NFV, at the discount rate, of the cash flows in year 1. (This is an equivalent annual cash flow that occurs at the end of the first year.) Store the result in register 0.

3. Display the interest conversion menu (ICONV) and calculate the effective annual interest rate.

4. Display the TVM menu, store the effective interest rate in I/YR, store 1 in P/Y, and set End mode.

5. Store the total number of years in N, the value from register 0 in PMT, and 0 in FV.

6. Press PV to calculate the present value of the annualized payments.

7. Key in the loan amount and press RCL PV = to calculate the monthly payment amount.

Reference:
Example 4. A bulldozer worth $100,000 is purchased in September. The first payment is due one month later, and payments continue for 5 years. Because of the weather, the machinery will not be used during the winter months, and the purchaser does not wish to make payments during January, February, and March (months 4 thru 6). If the current interest rate is 14%, what monthly payment is necessary to amortize the loan?

Start from the MAIN menu.

Keys:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>3</th>
<th>0</th>
<th>3</th>
<th>1</th>
<th>6</th>
<th>FIN</th>
<th>CFLO</th>
<th>*</th>
</tr>
</thead>
</table>
| CLEAR ALL
| YES |
| INPUT |
| 1 | INPUT |
| 3 | INPUT |
| 0 | INPUT |
| 3 | INPUT |
| 1 | INPUT |
| 6 | INPUT |
| CALC |
| + | 12 | % |

Display:

<table>
<thead>
<tr>
<th>NFV</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFV=9.55</td>
</tr>
</tbody>
</table>

Description:

Displays the CFLO menu.

Clears the list.

Stores 0 as initial cash flow.

Stores first group of cash flows.

Stores second group of cash flows.

Stores third group of cash flows.

Displays CALC menu.

Stores monthly discount rate.

Calculates net future value of cash flows in first year.

Stores NFV in register 0.

Displays ICONV menu.

Displays EFFCT menu.

If you want to preserve the current list, skip the next step (pressing CLEAR ALL), name the list, then press GET NEW.
STO 100000(=]
NOM%=14.00 P=12.00
EFF%=14.93
EXIT EXIT
TVM
STO I%YR
I%YR=14.93
OTHER
1 #P/Y
END EXIT
5 N
N=5.00
RCL 0 PMT
PMT=9.55
0 FV
FV=0.00
PV=-32.05
PV -3,119.89
100000+ RCL
Stores known values.
Calculates effective annual interest rate.
Displays TVM menu.
Stores annual interest rate.
Stores 1 payment per year and sets End mode.
Stores known values.
Calculates present value of $1 cash flows.
Calculates monthly payment amount.
Figuring Quotes

In many sales situations, you have some leeway in what you charge the customer. You can negotiate the price by changing the discount rate, offering a special rate for quantity purchase, and so on. The Business Consultant makes it easy to give your customer price quotes on the spot and to change those quotes quickly based on comments from the customer. If the price is too high, for example, the customer can select lower-cost products, or increase his quantity to get a quantity discount. You can store the new product cost or discount rate and quote the new price.

An example of some elements that may go into your formula are listed on page 31. To develop your own formula, list all the elements that you use to make a quote and how each relates to the other elements (do you add or subtract it? multiply or divide?). Then use the table of elements below and the examples to help you turn your elements into a formula to keep in your Business Consultant.
Formula Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>How It’s Figured</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate price of goods sold</td>
<td>#units × price per unit + cost</td>
<td>#UNITS×PRICE +COST</td>
</tr>
<tr>
<td>Total cost of goods sold</td>
<td>Service unit × price per unit + service + freight + freight — trade in — trade in</td>
<td>+SRVUNIT×SRVPR +SERV</td>
</tr>
<tr>
<td>Service agreement</td>
<td>Miles × rate per mile + service - trade in</td>
<td>+MILES×R/MI</td>
</tr>
<tr>
<td>Service as a flat rate</td>
<td></td>
<td>+FRT</td>
</tr>
<tr>
<td>Freight cost, based on rate per mile</td>
<td></td>
<td>-TRADE</td>
</tr>
<tr>
<td>Freight as a flat rate</td>
<td>1 + profit% ÷ 100</td>
<td>×(1+PROF%÷100)</td>
</tr>
<tr>
<td>Trade-in allowance</td>
<td>1 - discount% ÷ 100</td>
<td>×(1-DISC%÷100)</td>
</tr>
<tr>
<td>Profit or overhead</td>
<td>If bill is paid within a certain time (D days), subtract discount rate</td>
<td>×(1-IF(#DAYS<0:1:0)×DISC%÷100)†</td>
</tr>
<tr>
<td>Quantity sales discount</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit terms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* To key in the / character, press W.
† To key in the < character, press Y.

Entering and Using Your Formula:

1. From the MAIN menu, press SOLVE to display the SOLVE menu.
2. Type in your formula.
3. Press CALC to verify the formula and display the custom menu.
4. Store the values you know.
5. Press the menu key to calculate the unknown variable.
Example 1. You sell paper goods. You figure your quotes as follows:

Price of the order
- discount rate if order is over $200
+ freight

The formula is*: $QUOTE = PRICE \times (1 - IF(PRICE > 200:1:0) \times DISC\% / 100) + FRT$

Follow the steps on page 31 to enter and use the formula.

Store three of the following variables:
- Quote in $QUOTE$.
- Total price of the goods in $PRICE$.
- Discount rate as a percent in $DISC\%$.
- Freight in FRT.

Press the menu key to calculate the unknown variable.

Part 1. Your customer places an order worth $300. The standard discount rate is 2%. The freight is $35. Calculate the quote for the order.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 PRICE</td>
<td>PRICE=300.00</td>
<td>Stores price of goods sold.</td>
</tr>
<tr>
<td>2 DISC%</td>
<td>DISC%=2.00</td>
<td>Stores discount percent.</td>
</tr>
<tr>
<td>35 FRT</td>
<td>FRT=35.00</td>
<td>Stores freight cost.</td>
</tr>
<tr>
<td>QUOTE</td>
<td>QUOTE=329.00</td>
<td>Calculates quote.</td>
</tr>
</tbody>
</table>

* To key in the > character, press $\boxed{2}$.

32 **Figuring Quotes**
Example 2. You sell two major products, plus supplies and service to go with the products. You figure your quotes as follows:

- Quantity of product 1 \times price of product 1
- Quantity of product 2 \times price of product 2
- Supplies
- Number of years of service agreement \times price per year

Your formula is: $\text{QUOTE} = \text{QUA}_1 \times \text{PR}_1 + \text{QUA}_2 \times \text{PR}_2 + \text{SUPP} + \text{YRSRV} \times \text{PRSRV}$

Follow the steps on page 31 to enter and use the formula.

Store seven of the following variables:

- Quote in QUOTE.
- Quantity sold of product 1 in QUA_1.
- Price of product 1 in PR_1.
- Quantity sold of product 2 in QUA_2.
- Price of product 2 in PR_2.
- Dollar value of supplies in SUPP.
- Number of years of service wanted in YRSRV.
- Price per year of service in PRSRV.

Press the menu key to calculate the unknown variable.

Your customer wants to order three of product 1 at $1,000 each, and two of product 2 at $4,500 each. He orders $150 in supplies, and wants a three year service agreement at $500 per year. Calculate the quote.
<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 QUAN</td>
<td>QUAN=3.00</td>
<td>Stores quantity of product 1.</td>
</tr>
<tr>
<td>1000 PR1</td>
<td>PR1=1,000.00</td>
<td>Stores price of product 1.</td>
</tr>
<tr>
<td>2 QUAN2</td>
<td>QUAN2=2.00</td>
<td>Stores quantity of product 2.</td>
</tr>
<tr>
<td>4500 PR2</td>
<td>PR2=4,500.00</td>
<td>Stores price of product 2.</td>
</tr>
<tr>
<td>MORE</td>
<td></td>
<td>Stores dollar value of supplies.</td>
</tr>
<tr>
<td>150 SUPP</td>
<td>SUPP=150.00</td>
<td>Stores years of service.</td>
</tr>
<tr>
<td>3 YRSRV</td>
<td>YRSRV=3.00</td>
<td>Stores price of service for one year.</td>
</tr>
<tr>
<td>500 PRSRV</td>
<td>PRSRV=500.00</td>
<td>Calculates quote.</td>
</tr>
<tr>
<td>MORE QUOTE</td>
<td>QUOTE=13,650.00</td>
<td></td>
</tr>
</tbody>
</table>
Example 3. You always tell your customers about your cash discount—that is, if they pay within 10 days, you give a discount. When giving quotes, you want your customer to see how this effects him. You base your quotes on:

Price of goods sold
- discount rate if paid within 10 days
+ freight

Your formula is*: \(\text{QUOTE} = \text{PRICE} \times (1 - \text{IF} \left(\frac{\text{DAY}}{11} < 1 \right) \times \frac{\text{DISC}}{100}) + \text{FRT} \)

Store four of the following variables:

- Quote in `QUOTE`.
- Total price of the goods in `PRICE`.
- Number of days until bill is paid in `#DAY`.
- Discount rate as a percent in `DISC%`.
- Freight in `FRT`.

Press the menu key to calculate the unknown variable.

* To key in the < character, press `Y`.
Part 1. The price of the goods sold is $2,575. The freight is $55. Calculate the quote if the bill will be paid in 30 days. The discount percent is 2%.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2575 PRICE</td>
<td>PRICE=2,575.00</td>
<td>Stores price of goods sold.</td>
</tr>
<tr>
<td>30 #DAY</td>
<td>#DAY=30.00</td>
<td>Stores number of days until bill is paid.</td>
</tr>
<tr>
<td>2 DISC%</td>
<td>DISC%=2.00</td>
<td>Stores discount percent.</td>
</tr>
<tr>
<td>55 FRT</td>
<td>FRT=55.00</td>
<td>Stores freight.</td>
</tr>
<tr>
<td>QUOTE</td>
<td>QUOTE=2,630.00</td>
<td>Calculates quote.</td>
</tr>
</tbody>
</table>

Part 2. Calculate the quote if the bill is paid in nine days.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 #DAY</td>
<td>#DAY=9.00</td>
<td>Stores number of days until bill is paid.</td>
</tr>
<tr>
<td>QUOTE</td>
<td>QUOTE=2,578.50</td>
<td>Calculates quote.</td>
</tr>
</tbody>
</table>
Figuring Commissions

This section helps you create a formula to figure your commissions. The table below shows some common elements in figuring commissions. Following the table are sample formulas and examples. Using these three, and your company’s commission schedule, you can write your own formula.

Formula Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>How It’s Figured</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic commission</td>
<td>$sales \times \text{commission}% \div 100</td>
<td>$\text{SLS} \times \text{COM}% \div 100</td>
</tr>
<tr>
<td>Premium for selling certain</td>
<td>$\text{#special units sold} \times \text{premium per unit}$</td>
<td>$+\text{#UNITS} \times $\text{PREM}</td>
</tr>
<tr>
<td>Additional commission for</td>
<td>Sales greater than break point \times additional</td>
<td>$+\text{IF}($SLS$>$BKPT$; SLS-BKPT$;0)$\times \text{AD}% \div 100^*$</td>
</tr>
<tr>
<td>exceeding quota</td>
<td>commission%</td>
<td></td>
</tr>
</tbody>
</table>

* To key in the > character, press !Z.

Sample Formulas

Here are some sample formulas for figuring commissions:

- Multiple commission rates, depending on the product:
 \[
 \text{COM} = \frac{\text{PROD1} \times \text{CO}\%1 \div 100 + \text{PROD2} \times \text{CO}\%2 \div 100 + \ldots}{\text{Basic commission} + \text{Basic commission}}
 \]
 where $\text{COM} =$ dollars of commission paid.
 $\text{PROD1} =$ dollars sold of product one.
 $\text{CO}\%1 =$ commission percent paid on product one.
 $\text{PROD2} =$ dollars sold of product two.
 $\text{CO}\%2 =$ commission percent paid on product two.
Multiple commission rates, depending on dollar sales volume*:

\[\text{FCOM} = \frac{\text{SLS} \times \text{COM}\%}{100} + \]

Basic commission

\[\text{IF}(\text{SLS} > \text{BKPT}; \text{SLS} - \text{BKPT} > 0) \times \text{AD}\% \times \frac{1}{100} \]

Additional commission for exceeding quota

where \(\text{FCOM} \) = dollars of commission paid.
\(\text{SLS} \) = dollar volume sold.
\(\text{COM}\% \) = commission percent paid on all sales.
\(\text{BKPT} \) = break point in dollars at which commission increases.
\(\text{AD}\% \) = additional commission paid on dollar sales above break point.

Premium for selling certain products.

\[\text{FCOM} = \text{SLS} \times \text{COM}\% + \text{#UNITS} \times \text{PREM} \]

Basic commission
Premium for certain products

where \(\text{FCOM} \) = dollars of commission paid.
\(\text{SLS} \) = dollar volume sold.
\(\text{COM}\% \) = commission percent paid on sales.
\(\text{#UNITS} \) = number of units sold on which premium is paid.
\(\text{PREM} \) = premium paid on each unit.

Entering and Using Your Formula

1. From the MAIN menu, press \(\text{SOLVE} \) to display the SOLVE menu.
2. Type in your formula.
3. Press \(\text{CALC} \) to verify the formula and display the custom menu.
4. Store the values you know.
5. Press the menu key to calculate the unknown variable.

* To key in the > character, press \(\boxed{2} \).
Examples

Example 1: Multiple commission rates depending on the product. Suppose you sell products for three companies. All pay 15% commission on major equipment. One pays 10% on parts and accessories. Another pays 20% on their parts.

Your formula is: \[\text{COM} = \text{EQUIP} \times 0.15 + \text{ACC} \times 0.1 + \text{PARTS} \times 0.2 \]

Follow the steps on page 38 to enter and use the formula.

Store three of the following variables:

- Commission paid in COM.
- Dollars of equipment sold in EQUIP.
- Dollars of accessories sold in ACC.
- Dollars of parts sold in PARTS.

Press the menu key to calculate the unknown variable.

You sold a $10,000 piece of equipment, $350 of accessories and supplies, and $400 in parts. What is your commission on the sale?

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000 EQUIP</td>
<td>$\text{EQUIP}=10,000.00$</td>
<td>Stores equipment sold.</td>
</tr>
<tr>
<td>350 ACC</td>
<td>$\text{ACC}=350.00$</td>
<td>Stores accessories sold.</td>
</tr>
<tr>
<td>400 PARTS</td>
<td>$\text{PARTS}=400.00$</td>
<td>Stores parts sold.</td>
</tr>
<tr>
<td>COM</td>
<td>$\text{COM}=1,615.00$</td>
<td>Calculates commission on the sale.</td>
</tr>
</tbody>
</table>

Example 2: Multiple commission rates depending on dollar sales volume. Your company pays one commission rate up to a dollar break point, and an additional rate above this point. The break point and commission percentages change from time to time.

Your formula is*: \[\text{COM} = \text{SLS} \times \text{COM}\% / 100 + \text{IF} (\text{SLS} > \text{BKPT}; \text{SLS} - \text{BKPT} : 0) \times \text{AD}\% / 100 \]

* To key in the > character, press Z.
Follow the steps on page 38 to enter and use the formula.

Store four of the following variables:

- **Commission paid in** COM.
- **Dollars sold in** SLS.
- **Commission percent on all sales in** COM\%.
- **Dollars of sales at break point in** BKPT.
- **Additional commission percent above break point in** AD\%.

Press the menu key to calculate the unknown variable.

Part 1. This quarter, your company is paying $1 \frac{1}{2}\%$ commission on sales, plus an additional 1% on all sales over $200,000. You use the SUM menu to keep a running list of all sales. Each time you have a sale, you enter the item in the list. The total from this list is $252,400. Calculate the commission paid for the period.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>252400 SLS</td>
<td>$\text{SLS}=252,400.00$</td>
<td>Stores dollar amount of sales.</td>
</tr>
<tr>
<td>1.5 COM%</td>
<td>$\text{COM}%=1.50$</td>
<td>Stores commission percent.</td>
</tr>
<tr>
<td>200000 BKPT</td>
<td>$\text{BKPT}=200,000.00$</td>
<td>Stores break point.</td>
</tr>
<tr>
<td>1 AD%</td>
<td>AD%=1.00</td>
<td>Stores additional commission percent.</td>
</tr>
<tr>
<td>COM</td>
<td>$\text{COM}=4,310.00$</td>
<td>Calculates commission paid this period.</td>
</tr>
</tbody>
</table>

Part 2. Your commission check was $3,970. Calculate the dollar amount of sales.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3970 COM</td>
<td>$\text{COM}=3,970.00$</td>
<td>Stores amount of commission check.</td>
</tr>
<tr>
<td>SLS</td>
<td>$\text{SLS}=238,800.00^*$</td>
<td>Calculates dollar sales to generate commission check.</td>
</tr>
</tbody>
</table>

* The solver searches for a numerical solution and displays intermediate estimates.

40 **Figuring Commissions**
Performance Measurements

This section uses percentages to analyze sales performance. Percentages can be used to compare:

- Individual sales or expenses to average sales or expenses.
- Individual sales and expenses to total sales and expenses.
- Current sales and expenses to past sales and expenses.
- Call reports to actual sales.
- Individual percentages of total sales to percentages of total expenses.

The built-in BUS menu makes it easy to calculate these percentages.

1. From the MAIN menu, press BUS, then %TOTL to display the %TOTL menu, or %CHG to display the %CHG menu.

2. Store the values you know by keying in the number and pressing the appropriate menu key.

3. Press the menu key for the value you want to calculate.

Example 1: Calculate the percent change in sales over time. Sales this period were $36,450; sales last period were $33,220. Calculate the percent change in sales.

Start from the MAIN menu.

<table>
<thead>
<tr>
<th>Keys</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS</td>
<td>%CHG</td>
<td>Displays %CHG menu.</td>
</tr>
<tr>
<td>33220</td>
<td>OLD=33,220.00</td>
<td>Stores old sales.</td>
</tr>
<tr>
<td>36450</td>
<td>NEW=36,450.00</td>
<td>Stores new sales.</td>
</tr>
<tr>
<td>%CHG</td>
<td>%CHANGE=9.72</td>
<td>Calculates percent change in sales from last period to this period.</td>
</tr>
</tbody>
</table>
Example 2: Compare individual sales and expenses to total sales and expenses. Total sales for the period were $134,000. Expenses for the period were $12,250. The sales force records for the period are as follows:

<table>
<thead>
<tr>
<th>Sales Person</th>
<th>$ Sales</th>
<th>$ Expenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>35,000</td>
<td>3,500</td>
</tr>
<tr>
<td>#2</td>
<td>33,750</td>
<td>2,750</td>
</tr>
<tr>
<td>#3</td>
<td>39,500</td>
<td>4,000</td>
</tr>
<tr>
<td>#4</td>
<td>25,750</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Part 1. Calculate the percentage of individual sales to total sales for each sales person.

Start from the MAIN menu.

Keys:

<table>
<thead>
<tr>
<th>BUS</th>
<th>%TOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>134000</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>35000</th>
<th>PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>%TOTAL=26.12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33750</th>
<th>PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>%TOTAL=25.19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>39500</th>
<th>PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>%TOTAL=29.48</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25750</th>
<th>PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>%TOTAL=19.22</td>
<td></td>
</tr>
</tbody>
</table>

Description:

Displays %TOL menu.
Stores total sales.
Stores sales for #1.
Calculates percent of total sales for #1.
Stores sales for #2.
Calculates percent of total sales for #2.
Stores sales for #3.
Calculates percent of total sales for #3.
Stores sales for #4.
Calculates percent of total sales for #4.
In order of sales performance, sales person #3 was best, followed by #1, #2, and #4.

Part 2. Calculate the percentage of individual expenses to total expenses for each sales person.

Start from the %TOTL menu.

- **12250 TOTAL** TOTAL=12,250.00 Stores total expenses.
- **3500 PART** PART=3,500.00 Stores expenses for #1.
- **%T** %TOTAL=28.57 Calculates percent of total expenses for #1.
- **2750 PART** PART=2,750.00 Stores expenses for #2.
- **%T** %TOTAL=22.45 Calculates percent of total expenses for #2.
- **4000 PART** PART=4,000.00 Stores expenses for #3.
- **%T** %TOTAL=32.65 Calculates percent of total expenses for #3.
- **2000 PART** PART=2,000.00 Stores expenses for #4.
- **%T** %TOTAL=16.33 Calculates percent of total expenses for #4.

In order of expense performance, sales person #4 had the lowest expenses, followed by #2, #1, and #3.

Looking at the percentages, however, sales person #4 achieved 19.2% of the sales while spending only 16.3% of the expenses. Sales person #3, on the other hand, achieved 29.5% of the sales, but used 32.7% of the expenses. In this period, sales person #4 was more efficient than #3.
Conserving Memory

The formulas in this book are intended to provide useful solutions. The variable names are several characters long to be meaningful to you. The formulas change a percent to a decimal so you don’t have to remember to do it. These features make the formulas longer and take up more memory. Here are a few hints to help you conserve memory, should you need to:

- Shorten variable names. Variables are named to be as intuitive as possible. One way to save memory is to use single letter variable names.

- Delete division by 100. The formulas using a percent are written so you enter the percentage rather than the decimal value. Examples of this are tax rate as a percent, discount rate as a percent, or interest rate. If you do delete division by 100 from the formulas, remember to divide the percent by 100, or enter the percent and press [%], before storing the value in the variable.

- Delete variables for other formulas. When the SOLVE menu is displayed and you press [CLEAR ALL] VARS, the variables are erased, giving you more usable memory. (If you select BOTH instead of VARS, all formulas and their variables will be gone.)

- Delete individual formulas. When the SOLVE menu is displayed, move the pointer to the formula you want to delete, and press DELET BOTH.
Working With Your Business Consultant Professional Calculator

The Direct Sales Consultant contains a variety of applications, formulas and keystrokes to help you solve the specialized problems of your profession.

- Forecasting Based on History
- Forecasting Using Simple Moving Average
- Revising Forecasts to Reflect Current Market Conditions
- Markup Calculations
- Setting a Sales Price
- Break-Even Analysis
- Leasing Calculations
- Figuring Quotes
- Figuring Commissions
- Performance Measurements

HEWLETT PACKARD

Reorder Number
00018-90036

00018-90046
Printed in Canada 5/86