Marketing Consultant

Business Consultant
Professional Calculator
Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.

© 1986 by Hewlett-Packard Co.

This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company.

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 April 1986 Mfg. No. 00018-90048
Welcome...

...to the Consultant applications series! This series is designed to help you get the most from your Business Consultant professional calculator.

The purpose of the Marketing Consultant is to help you solve the specialized problems your industry or profession demands. We've worked with professionals in your field to provide a sample of analysis concepts that are useful and relevant. Included are keystrokes and routines to help you analyze sales, pricing, your market and profit. The Marketing Consultant is designed to serve both as a reference and a starting point for using the Business Consultant to develop your own unique analyses.

Before you use the solutions in this book, you should be familiar with certain concepts from the owner's manual:

- Chapter 1: the basics of your calculator—how to move from menu to menu, identify and move to the MAIN menu, and use the menu keys to do calculations.
- Chapter 9: entering and using formulas.

The examples in this book show two decimal places. If your display is set to something other than two, the answers in your display will not match exactly what is in this book. Refer to your owner’s manual for more information about changing the number of decimal places.

For more information about the topics in the Marketing Consultant, refer to a basic textbook on the subject. Specific sources on the more specialized topics are included at the end of those topics.
Contents

7 When Entering Formulas...
9 Markup Calculations
12 Setting a Sales Price
14 Forecasting Sales Based on History
19 Forecasting Sales Using Simple Moving Average
21 Forecasting Sales of Accessories
23 Revising Your Forecast to Reflect Current Market Conditions
25 Planning Advertising Expenditures
27 Stockturn or Inventory Turnover Rate
29 Break-Even Analysis
31 Estimating the Financial Feasibility of New Product Ideas
34 Return on Investment
36 Elasticity of Demand
38 Sales Analysis
41 Total Market Size Potential
43 Sample Size for Estimating Population Mean
45 A: Conserving Memory
When entering formulas into your Business Consultant, follow the instructions in chapter 9 of your owner's manual. Here are hints to help you in common error situations:

1. If the calculator displays **INVALID FORMULA** when you press [CALC], the calculator doesn't understand something in the formula. When the formula returns to the screen, the cursor is positioned where your calculator detected the error. Check the formula in the screen against the formula in the book. Make sure the parentheses match and that the operators are where they should be.

2. If the calculator accepts the formula but your answer doesn't match the example, check the values stored in the menu key variables by recalling them (press [RCL], then the menu key). If the values are correct, return to the SOLVE menu and check the formula. (Press [EXIT] to return to the SOLVE menu and press [EDIT] to view and edit the formula.) Check the formula against the one in this book for accuracy. When you find an error, edit the formula and press [CALC] to display the custom menu again.

3. If the calculator displays **INSUFFICIENT MEMORY** when you press [INPUT] or [CALC], you must free portions of memory before continuing. Refer to pages 188 and 189 of the owner's manual for additional information.

The formulas in the *Marketing Consultant* use variable names that are intended to remind you of what to store. Feel free to change them to something more meaningful to you.
Markup Calculations

Markup calculations are used by retailers and wholesalers to determine the selling price of an item. Your Business Consultant includes a built-in menu for calculating markup as a percent of cost and markup as a percent of price.

1. From the MAIN menu, press [BUS] to display the BUS menu.
2. Press [MU%C] to display the MU%C (markup on cost) menu, or [MU%P] to display the MU%P (markup on price) menu.
3. Store each of the values you know by keying in the number and pressing the appropriate menu key.
4. Press the menu key for the value you want to calculate.

Example 1: Calculating selling price and markup as a percent of cost given cost and markup as a percent of price. Part 1. An item costs $160. The reseller's required markup as a percent of selling price is 20%. What is the selling price?

Start from the MAIN menu.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[BUS] [MU%P]</td>
<td></td>
<td>Displays MU%P menu.</td>
</tr>
<tr>
<td>160 [COST]</td>
<td>COST=160.00</td>
<td>Stores your cost.</td>
</tr>
<tr>
<td>20 [MU%P]</td>
<td>MARKUP%P=20.00</td>
<td>Stores markup as a percent of price.</td>
</tr>
<tr>
<td>[PRICE]</td>
<td>PRICE=200.00</td>
<td>Calculates selling price.</td>
</tr>
</tbody>
</table>

Part 2. What is the markup as a percent of the cost?

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EXIT] [MU%C]</td>
<td></td>
<td>Displays MU%C menu.</td>
</tr>
<tr>
<td>[MU%C]</td>
<td>MARKUP%C=25.00</td>
<td>Calculates markup as a percent of cost.</td>
</tr>
</tbody>
</table>
Example 2: Calculating cost and markup as a percent of price given selling price and markup as a percent of cost. Part 1. An item sells for $21.00. The markup as a percent of cost is 50%. What is its cost?

Start from the MAIN menu.

Keys:

- **BUS**
- **MUC**
- **PRICE**
- **MARKUP%**
- **COST**

Display:

- **PRICE=21.00**
- **MARKUP%50.00**
- **COST=14.00**

Description:

- Displays MU%C menu.
- Stores selling price.
- Stores markup as a percent of cost.
- Calculates your cost.

Part 2. What is the markup expressed as a percent of price?

- **EXIT**
- **MU%P**
- **MARKUP%33.33**

Description:

- Displays MU%P menu.
- Calculates the markup as a percent of price.

Example 3: Calculating cost and markup on cost given selling price and markup on price. Part 1. An item sells for $38, with a markup on price of 30%. What is the markup on cost?

Start from the MAIN menu.

Keys:

- **BUS**
- **MU%P**
- **PRICE**
- **MARKUP%**
- **COST**
- **EXIT**
- **MUC**

Display:

- **PRICE=38.00**
- **MARKUP%30.00**
- **COST=26.60**
- **MARKUP%42.86**

Description:

- Displays MU%P menu.
- Stores selling price.
- Stores markup on price.
- Calculates your cost.
- Displays MU%C menu.
- Calculates markup on cost.
Part 2. If the markup on cost is raised to 50%, what is the new selling price?

<table>
<thead>
<tr>
<th>Markup</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>$39.90</td>
</tr>
</tbody>
</table>

- **MARKUP%** = 50.00 Stores new markup on cost.
- **PRICE** = $39.90 Calculates new selling price.
Setting a Sales Price

One method of setting a unit sales price is to determine the unit cost of production then multiply by the desired rate of return. For this method to be accurate, you must identify all costs associated with the product.

Entering and Using the PRICE Formula:

1. From the MAIN menu, press SOLVE to display the SOLVE menu.
2. Type in the PRICE formula as follows:
 \[\text{PRICE} = \text{COST} + \text{UNITS} \times (1 + \%\text{RTN} \times 100) \]
3. Press CALC to verify the formula and display the custom menu.
4. Store three of the following variables:
 - Price per unit in PRICE.
 - Total costs in COST.
 - Number of units produced in UNITS.
 - Desired percent rate of return in %RTN.
5. Press the menu key to calculate the unknown variable.

Example: Part 1. To produce 100,000 units, your cost is $1,000,000. You want a 20% rate of return. What price should you charge?

Start from the PRICE custom menu.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000000 COST</td>
<td>COST= 1,000,000.00</td>
<td>Stores total production costs.</td>
</tr>
<tr>
<td>100000 UNITS</td>
<td>UNITS=100,000.00</td>
<td>Stores number of units.</td>
</tr>
<tr>
<td>20 %RTN</td>
<td>%RTN=20.00</td>
<td>Stores rate of return.</td>
</tr>
<tr>
<td>PRICE</td>
<td>PRICE=12.00</td>
<td>Calculates price.</td>
</tr>
</tbody>
</table>
Part 2. You know that on this particular product, you can only charge $11.50. At that price, what is your rate of return?

11.5	PRICE
PRICE=11.50

%RTN=15.00
Stores price.
Calculates percent rate of return.
Forecasting Sales Based on History

One method of forecasting sales is to look at historical trends. Once you have historical data, the data are fit to a curve with time on the x-axis, and the quantity you are forecasting on the y-axis. Linear curve fit is appropriate if you have a fairly constant growth rate; exponential curve fit is appropriate with compound growth, such as might occur for sales of a new product.

1. From the MAIN menu, press **SUM** to display the SUM menu.
2. Press **CLEAR ALL** then **YES** to clear the list. (If you don’t want to delete the list, name the old list and get a new one.)
3. Enter your time data. Press **INPUT** after each item.
4. Name your list.
5. Press **GET** then **NEW** to get a new list and enter your sales data as in step 3.
6. Name your list.
7. Press **CALC**, **MORE**, then **FRCST**.
8. Select the list containing your x-values.
9. Select the model (**LIN** for linear, **EXP** for exponential).
10. Key in the x-value and press **XLIST**.
11. Press **YLIST** to forecast the y-value.

Example 1: Forecasting sales using linear curve fit. You want to determine the sales forecast for the next two years using a linear curve fit. The following data represents your sales for the past nine years.

<table>
<thead>
<tr>
<th>Year</th>
<th>Sales ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100,000</td>
</tr>
<tr>
<td>2</td>
<td>112,100</td>
</tr>
<tr>
<td>3</td>
<td>130,600</td>
</tr>
<tr>
<td>4</td>
<td>160,750</td>
</tr>
<tr>
<td>5</td>
<td>205,900</td>
</tr>
<tr>
<td>6</td>
<td>210,000</td>
</tr>
<tr>
<td>7</td>
<td>240,650</td>
</tr>
<tr>
<td>8</td>
<td>280,720</td>
</tr>
<tr>
<td>9</td>
<td>325,190</td>
</tr>
</tbody>
</table>
Start from the MAIN menu.

Keys: Display: Description:
- **SUM**: Displays SUM menu.
- **CLEAR ALL**: Clears the list.
- **YES**: Enters time values.
- **INPUT**: Names the list.
- **NEW**: Displays a new list.
- **INPUT**: Enters sales data.

Enters time values:
1 100000
2 112100
3 130600
4 160750
5 205900
6 210000
7 240650
8 280720
9 325190

TOTAL=45.00

Names the list:
- **NAME YEARS**:
- **INPUT**

Enters sales data:
- **INPUT**

TOTAL=1,765,910.00

Names the list:
- **NAME SALES**:
- **INPUT**

Displays FRCST menu:
- **CALC MORE**
- **FRCST YEARS**

*If you want to preserve the current list, skip the next step (pressing **CLEAR ALL**), name the list, then press **GET**.*
Example 2: Forecasting sales using exponential curve fit. The sales history for your new product is shown below for the first six months after introduction.

<table>
<thead>
<tr>
<th>Month</th>
<th>Sales (SK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>31.7</td>
</tr>
<tr>
<td>July</td>
<td>52.5</td>
</tr>
<tr>
<td>August</td>
<td>48.3</td>
</tr>
<tr>
<td>September</td>
<td>56.6</td>
</tr>
<tr>
<td>October</td>
<td>72.7</td>
</tr>
<tr>
<td>November</td>
<td>90.9</td>
</tr>
</tbody>
</table>
Part 1. Using the exponential model, estimate the sales for December.

Start from the MAIN menu.

Keys:
- **Display:**

<table>
<thead>
<tr>
<th>SUM</th>
<th>Display:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAR ALL</td>
<td>DESCRIPTION:</td>
</tr>
<tr>
<td>YES</td>
<td>Displays SUM menu.</td>
</tr>
<tr>
<td>1 [INPUT]</td>
<td>Clears the list.</td>
</tr>
<tr>
<td>2 [INPUT]</td>
<td>Enters month numbers.</td>
</tr>
<tr>
<td>3 [INPUT]</td>
<td></td>
</tr>
<tr>
<td>4 [INPUT]</td>
<td></td>
</tr>
<tr>
<td>5 [INPUT]</td>
<td></td>
</tr>
<tr>
<td>6 [INPUT]</td>
<td>TOTAL=21.00</td>
</tr>
</tbody>
</table>

 | NAME MONTHS |
 | INPUT |

 | GET MORE |
 | NEW |

31.7 [INPUT]	Names the list.
52.5 [INPUT]	Displays a new list.
48.3 [INPUT]	Enters monthly sales.
56.6 [INPUT]	
72.7 [INPUT]	
90.9 [INPUT]	TOTAL=352.70

 | NAME MOSLS |
 | INPUT |

 | CALC MORE |
 | FRCST |
 | MONT |

 | EXP |
 | XLIST=7.00 |

 | YLIST | YLIST=105.78 |

If you want to preserve the current list, skip the next step (pressing CLEAR ALL), name the list, then press GET NEW.
Part 2. Calculate the continuous compound growth rate.

\[
\text{B \times 100} = 182.9
\]

Calculates the estimate of the monthly compound growth rate.
Forecasting Sales Using Simple Moving Average

Moving averages are often useful in forecasting sales. In a moving average, a specified number of data points are averaged. When there is a new piece of input data, the oldest piece of data is discarded to make room for the most recent data. This replacement scheme makes the moving average a valuable tool in following trends. The fewer the number of data points, the more trend sensitive the averages become. With a large number of data points, the average behaves more like a regular average, responding slowly to new input.

1. From the MAIN menu, press \text{SUM} to display the SUM menu.
2. Press \text{CLEAR ALL} \text{YES} to clear the list. (If you don’t want to delete the list, name the old list and get a new one.)
3. Enter your data points.
4. Press \text{CALC}, then \text{MEAN} to calculate the average.
5. When you have a new data point, move the pointer to the oldest item. Enter the new item and press \text{INPUT}. The oldest item is replaced by the new one.

Example. You want to calculate a 3 month moving average for the units sold each month. Volumes for the first six months were:

<table>
<thead>
<tr>
<th>Month</th>
<th>Units Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>4400</td>
</tr>
<tr>
<td>February</td>
<td>5360</td>
</tr>
<tr>
<td>March</td>
<td>2900</td>
</tr>
<tr>
<td>April</td>
<td>3670</td>
</tr>
<tr>
<td>May</td>
<td>4040</td>
</tr>
<tr>
<td>June</td>
<td>3200</td>
</tr>
</tbody>
</table>
Start from the MAIN menu.

Keys:
- **SUM:** *
- **CLEAR ALL**
- **YES**

Display:

```
4400 [INPUT]  5360 [INPUT]  2900 [INPUT]
TOTAL=12,666.80
MEAN=4,228.08
```

Description:
- Displays SUM menu.
- Clears the list.
- Enters sales for the first three months.
- Calculates the average for the first three months.

```
3670 [INPUT]  TOTAL=11,930.00
MEAN=3,976.67
```

Description:
- Enters month four and deletes oldest item.
- Calculates average for months two, three and four.

```
4040 [INPUT]  TOTAL=10,610.00
MEAN=3,536.67
```

Description:
- Enters month five and deletes oldest item.
- Calculates average for months three, four and five.

```
3200 [INPUT]  TOTAL=10,910.00
MEAN=3,636.67
```

Description:
- Enters month six and deletes oldest item.
- Calculates average for months four, five and six.

*If you want to preserve the current list, skip the next step (pressing [CLEAR ALL]), name the list, then press GET *NEW*.

20 Forecasting Sales Using Simple Moving Average
Forecasting Sales of Accessories

Many products have optional accessories or peripheral products. For example, cars have lots of extras and computers have software and optional equipment.

The sales forecasts of these optional items can be based on a percentage of the sales of the main product. The following equation helps determine sales forecasts of these optional products.

Although this calculation is simple to do on any calculator, using SOLVE means you don’t have to reenter values to calculate many optional products for one main product, or to try what-if situations.

Entering and Using the **#OPT Formula:**

1. From the MAIN menu, press SOLVE to display the SOLVE menu.
2. Type in the **#OPT** formula as follows:

 \[\text{#OPT} = \text{#MAIN} \times \left(\frac{\%\text{MAIN}}{100} \right) \]

3. Press CALC to verify the formula and display the custom menu.
4. Store two of the following variables:
 - Units of the optional product in **#OPT**.
 - Units of the main product in **#MAI**.
 - Percent of main product in **%MAI**.
5. Press the menu key to calculate the unknown variable.

Example: Part 1. Seventy-five percent of your customers are expected to order a particular software product to use with your computer. The computer is forecast to sell 1,100 units per month. What should your sales forecast be for the software product?

Start from the **#OPT** custom menu.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100 #MAI</td>
<td>#MAIN=1,100.00</td>
<td>Stores computer forecast.</td>
</tr>
<tr>
<td>75 %MAI</td>
<td>%MAIN=75.00</td>
<td>Stores percent expected to buy the software.</td>
</tr>
<tr>
<td></td>
<td>#OPT=825.00</td>
<td>Calculates software sales forecast.</td>
</tr>
</tbody>
</table>
Part 2. Last month, computer sales were 900 units and software sales were 750. What should the software sales forecast be to reflect last month’s actual sales rate?

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Calculation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>#OPT=750.00</td>
<td>Stores number of software products sold last month.</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>#MAIN=900.00</td>
<td>Stores number of computers sold last month.</td>
<td></td>
</tr>
<tr>
<td>83.33%</td>
<td>%MAIN=83.33</td>
<td>Calculates percent of computer sales.</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>#MAIN=1,100.00</td>
<td>Stores computer forecast.</td>
<td></td>
</tr>
<tr>
<td>916.67</td>
<td>#OPT=916.67</td>
<td>Calculates new software forecast.</td>
<td></td>
</tr>
</tbody>
</table>
Revising Your Forecast to Reflect Current Market Conditions

Most sales forecasts are based on certain assumptions about, and incomplete knowledge of, your market and competition. After the forecasts are made, internal and external changes make your original assumptions and your forecast incomplete. Examples of these changes in the market that were not reflected in the original forecast are a price drop (yours or your competitors), advertising or promotional campaign, rebate offer, introduction of a new product by a competitor, or a change in distribution of your product. The formula below helps you revise your forecast, based on the perceived impact of the market changes.

Entering and Using the NEWFCST Formula:

1. From the MAIN menu, press **SOLVE** to display the SOLVE menu.
2. Type in the NEWFCST formula as follows:*
 \[
 \text{NEWFCST} = \text{BASE} + \left((A\% + B\% + C\%) \times 100 \right) \times \text{BASE}
 \]
3. Press **CALC** to verify the formula and display the custom menu.
4. Store the following variables:
 - Original forecast in **BASE**.
 - Expected change in sales caused by each change in the market in **A\%**, **B\%**, and **C\%**.*
5. Press **NEWF** to calculate the new forecast.

* This formula can be modified to fit the number of changes for your current market conditions. For example, if you have two factors, omit +C%; if you have five factors, change the part in parentheses to (A\% + B\% + C\% + D\% + E\%).
Example. The forecast for your product for next month is 2,000 units. Three market changes have occurred that are not reflected in your current forecast. The price on the product has dropped (causing an expected 20% increase in sales), a major sales force training program started (causing an expected 5% increase in sales), and you’ve learned that a competitor is introducing a new product (creating an expected 15% cut into your sales). Calculate the new forecast for next month.

Start from the NEWFCST custom menu.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 BASE</td>
<td>BASE=2,000.00</td>
<td>Stores original forecast.</td>
</tr>
<tr>
<td>20 A%</td>
<td>A%=20.00</td>
<td>Stores sales increase expected due to price drop.</td>
</tr>
<tr>
<td>5 B%</td>
<td>B%=5.00</td>
<td>Stores sales increase expected due to sales force training.</td>
</tr>
<tr>
<td>15 +/- C%</td>
<td>C%=-15.00</td>
<td>Stores sales decrease due to new product introduced by a competitor.</td>
</tr>
<tr>
<td>NEWF</td>
<td>NEWFCST=2,200.00</td>
<td>Calculates new forecast for the month.</td>
</tr>
</tbody>
</table>
Planning Advertising Expenditures

The advertising-sales ratio helps marketers and advertisers determine how much money to spend for advertising, based on projected sales. To use the formula below, you need to know the forecast unit sales, revenues per unit, and the percent of sales to be spent on advertising.

Although this calculation is simple to do on any calculator, using SOLVE makes it easy to try what-if situations, and analyze how a change in advertising dollars or revenues will change advertising as a percent of sales.

Entering and Using the AD$ Formula:

1. From the MAIN menu, press SOLVE to display the SOLVE menu.
2. Type in the AD$ formula as follows:
 \[\text{AD$} = \#\text{UNITS} \times \$\text{REV} \times (\text{AD\%} \div 100) \]
3. Press CALC to verify the formula and display the custom menu.
4. Store three of the following variables:
 - Advertising cost in AD$.
 - Number of units forecast to be sold in #UNIT.
 - Dollars of revenue per unit (price less discount) in $REV.
 - Percent of sales that makes up the advertising budget in AD%.
5. Press the menu key to calculate the unknown variable.
Example: Part 1. You expect to sell 78,000 units next month. The unit revenue is $10. The normal advertising budget is 5% of projected sales. How much can you spend on advertising next month?

Start from the AD$ custom menu.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>78000 #UNIT</td>
<td>#UNITS=78,000.00</td>
<td>Stores sales forecast.</td>
</tr>
<tr>
<td>10 $REV</td>
<td>$REV=10.00</td>
<td>Stores unit revenue.</td>
</tr>
<tr>
<td>5 AD%</td>
<td>AD%=5.00</td>
<td>Stores advertising percent.</td>
</tr>
<tr>
<td>AD$</td>
<td>AD$=39,000.00</td>
<td>Calculates advertising dollars for the month.</td>
</tr>
</tbody>
</table>

Part 2. To become a major factor in the marketplace, you feel you should spend $60,000 on advertising next month. What percentage of your revenue must you convince management to spend?

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>60000 AD$</td>
<td>AD$=60,000.00</td>
<td>Stores advertising dollars.</td>
</tr>
<tr>
<td>AD%</td>
<td>AD%=7.69</td>
<td>Calculates advertising as a percent of revenue.</td>
</tr>
</tbody>
</table>
Stockturn or Inventory Turnover Rate

The stockturn or inventory turnover rate is a measure of the number of times the average inventory is sold in a year. The stockturn rate is important because it shows how rapidly the firm’s inventory is moving. The data needed to compute the stockturn rate are beginning and ending inventory in cost dollars and the cost of the goods sold, or, the beginning and ending inventory in retail dollars and the retail dollars sold.

Entering and Using the STURN Formula:

1. From the MAIN menu, press SOLVE to display the SOLVE menu.
2. Type in the STURN formula as follows:
 \[\text{STURN} = \frac{\text{SOLD}}{\left(\frac{\text{BEGIN} + \text{ENDINV}}{2}\right)} \]
3. Press CALC to verify the formula and display the custom menu.
4. Enter three of the following variables; remember that all dollar values must be either cost dollars or retail dollars, depending on your business:
 - Stockturn rate in [STURN].
 - Dollars sold in [SOLD].
 - Beginning inventory in dollars in [BEGIN].
 - Ending inventory in dollars in [END].
5. Press the menu key to solve for the unknown variable.
Example: Part 1. Last year the cost of the goods that were sold was $30,000, beginning inventory was $8,000 and ending inventory was $7,000. Calculate the stockturn rate.

Start from the STURN custom menu.

<table>
<thead>
<tr>
<th>Keys</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30000</td>
<td>SOLD</td>
<td>Stores dollars sold.</td>
</tr>
<tr>
<td>8000</td>
<td>BEGIN</td>
<td>Stores beginning inventory.</td>
</tr>
<tr>
<td>7000</td>
<td>ENDI</td>
<td>Stores ending inventory.</td>
</tr>
<tr>
<td></td>
<td>STURN</td>
<td>Calculates stockturn rate for the year.</td>
</tr>
</tbody>
</table>

Part 2. Suppose the company prefers inventory with a limited shelf life to turn every two months (6 times a year). How would this change your ending inventory?

<table>
<thead>
<tr>
<th>Keys</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>STURN</td>
<td>Stores desired stockturn rate.</td>
</tr>
<tr>
<td>ENDI</td>
<td>ENDINV</td>
<td>Calculates ending inventory.</td>
</tr>
</tbody>
</table>
Break-Even Analysis

Break-even analysis is a technique for analyzing the relationships among fixed costs, variable costs, and income. Until the break-even point is reached (total costs equal total income), the producer operates at a loss. After the break-even point, each unit produced and sold makes a profit. The variables in the formula below are fixed costs, variable costs per unit, sales price per unit, number of units sold, and gross profit.

Entering and Using the PROFIT Formula:

1. From the MAIN menu, press **SOLVE** to display the SOLVE menu.
2. Type in the PROFIT formula as follows:
 \[\text{PROFIT} = \# \text{SOLD} \times (\text{PRICE} - \text{VARCO}) - \text{FIXCO} \]
3. Press **CALC** to verify the formula and display the custom menu.
4. Store four of the following variables:
 - Gross profit in **PROFI**.
 - Number of units sold in **#SOL**.
 - Selling price per unit in **PRICE**.
 - Variable costs per unit in **VARCO**.
 - Fixed costs in **FIXCO**.
5. Press the menu key to calculate the unknown variable.
Example: Part 1. Your product sells for $13. The fixed costs are $12,000. Variable costs are $6.75 per unit. Calculate the number of units that must be sold to break even (profit equals zero).

Start from the PROFIT custom menu.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 PROFIT</td>
<td>PROFIT=0.00</td>
<td>Stores break-even profit of zero.</td>
</tr>
<tr>
<td>13 PRICE</td>
<td>PRICE=13.00</td>
<td>Stores price per unit.</td>
</tr>
<tr>
<td>6.75 VARCO</td>
<td>VARCO=6.75</td>
<td>Stores variable costs per unit.</td>
</tr>
<tr>
<td>12000 FIXCO</td>
<td>FIXCO=12,000.00</td>
<td>Stores fixed costs.</td>
</tr>
<tr>
<td>#SOL</td>
<td>#SOLD=1,920.00</td>
<td>Calculates number that must be sold to break even.</td>
</tr>
</tbody>
</table>

Part 2. Calculate the gross profit if 2,500 units are sold.

| 2500 #SOL | #SOLD=2,500.00 | Stores number sold. |
| PROFIT | PROFIT=3,625.00 | Calculates gross profit. |

Part 3. You want a gross profit of $4,500, at the sales volume in part 2 (2,500 units). What should the selling price be?

| 4500 PROFIT | PROFIT=4,500.00 | Stores required gross profit. |
| PRICE | PRICE=13.35 | Calculates required selling price. |
Estimating the Financial Feasibility of New Product Ideas

One way to analyze a new product idea is to estimate the costs for development, the expected profit and the life of the product, then calculate the internal rate of return. Net present value (NPV) and internal rate of return (IRR) are used to determine if an investment meets a minimum rate of return and what rate of return can be expected. The built-in CFLO menu makes it easy to calculate these two values.

1. From the MAIN menu, press FIN, then CFLO to display the CFLO menu.
2. Press CLEAR ALL YES to clear the current list. (If you don't want to delete the list, name the current list and get a new list.)
3. Enter the cash flows and number of periods.
4. Press CALC to display the CFLO CALC menu.
5. To calculate the net present value, enter the periodic interest rate as a percent in i%, then press NPV.
6. To calculate the internal rate of return, press IRR.

Example: Part 1. Development costs on a new product are estimated to be one million dollars. Unit sales are estimated to be 4,000 units the first year, 5,000 in years two, three and four, and 3,000 in years five and six. Revenue (price less discount) per unit is $1,000. Your anticipated net profit is 8%. What is the IRR on the product?
Start from the MAIN menu.

Keys:

<table>
<thead>
<tr>
<th>FIN</th>
<th>CFLO</th>
</tr>
</thead>
</table>

Display:

Display:

Clears list

Enters initial cash flow.

Enters profit for year one as FLOW(1).

Enters profit for years two, three and four as FLOW(2).

Enters profit for years five and six as FLOW(3).

Description:

Displays CFLO menu.

Clears list

Enters initial cash flow.

Enters profit for year one as FLOW(1).

Enters profit for years two, three and four as FLOW(2).

Enters profit for years five and six as FLOW(3).

Displays CALC menu.

Calculates internal rate of return.

Calculates development costs to meet 30% IRR, assuming no change in cash flows.

Part 2. Your company requires an IRR% of 30%. Calculate the development costs that would meet this goal.

30 \(\%\) \(I\%=30.00\)

Stores required rate of return.

\(NPV=-80,680.92\)

Calculates the net present value of the cash flows discounted at 30%.

\(\text{EXIT} \ \ \text{RCL} \ \ \text{INPUT}\)

\(919,319.08\)

Calculates development costs to meet 30% IRR, assuming no change in cash flows.

* If you want to preserve the current list, skip the next step (pressing \(\text{CLEAR ALL}\)), name the list, then press \(\text{GET NEW}\).

32 Estimating the Financial Feasibility of New Product Ideas
Part 3. Suppose your actual profits are 25% less than forecast. Calculate the IRR%.

Moves pointer to FLOW(1).

Reduces FLOW(1) by 25%.

Reduces FLOW(2) by 25%.

Reduces FLOW(3) by 25%.

Displays CFLOW CALC menu.

Calculates rate of return with 25% less profit per year.
Return on Investment

Another way of evaluating a new investment is through a simple return on investment (ROI) analysis. Return on investment (ROI) is the ratio of net profit after taxes to the assets used to make the net profit.

Although this calculation is simple to do on any calculator, using SOLVE makes it easy to try what-if situations, and analyze what you can do to meet a minimum return on investment.

Entering and Using the ROI% Formula:

1. From the MAIN menu, press **SOLVE** to display the SOLVE menu.
2. Type in the ROI% formula as follows:

 \[
 \text{ROI}\% = \left(\frac{\text{REV}\times\text{PROF}\% - 100}{\text{INV}\times 100} \right)
 \]
3. Press **CALC** to verify the formula and display the custom menu.
4. Store three of the following variables:
 - Return on investment as a percent in **ROI%**.
 - Total revenues in **REV**.
 - Net profit as a percent of revenues in **PROF%**.
 - Capital investment in the project or business in **INV**.
5. Press the menu key to calculate the unknown variable.
Example: Part 1. A new store requires $480,000 in new assets. The anticipated revenues the first year are $1,000,000. Your net profit goal is 10%. Assuming the net profit goal is met, calculate the return on investment.

Start from the ROI% custom menu.

Keys:

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000000 $REV</td>
<td>$REV= 1,000,000.00 Stores total anticipated revenues.</td>
</tr>
<tr>
<td>10 PROF%</td>
<td>PROF%=10.00 Stores net profit percent.</td>
</tr>
<tr>
<td>480000 $INV</td>
<td>$INV=480,000.00 Stores investment.</td>
</tr>
<tr>
<td>ROI%</td>
<td>ROI%=20.83 Calculates percent return on investment.</td>
</tr>
</tbody>
</table>

Part 2. The store’s sales are actually $750,000 in the first year. Calculate the ROI%.

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>750000 $REV</td>
<td>$REV=750,000.00 Stores actual revenues.</td>
</tr>
<tr>
<td>ROI%</td>
<td>ROI%=15.63 Calculates percent return on investment.</td>
</tr>
</tbody>
</table>

Part 3. At the level of revenues in part 2, what total investment can you sustain to achieve an ROI% of 18%.

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 ROI%</td>
<td>ROI%=18.00 Stores required ROI%.</td>
</tr>
<tr>
<td>$INV</td>
<td>$INV=416,666.67 Calculates investment to reach this goal.</td>
</tr>
</tbody>
</table>

Part 4. Suppose you realize a 5% net profit on revenues of $750,000. Your investments are $480,000, as in part 1. Calculate the ROI%.

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 PROF%</td>
<td>PROF%=5.00 Stores net profit.</td>
</tr>
<tr>
<td>480000 $INV</td>
<td>$INV=480,000.00 Stores investment.</td>
</tr>
<tr>
<td>ROI%</td>
<td>ROI%=7.81 Calculates return on investment.</td>
</tr>
</tbody>
</table>
Elasticity of Demand

Elasticity of demand is a measure of how sensitive the market demand is for a product relative to price changes in the product. If a small price change results in a large change in demand, the demand is said to be highly elastic. The formula below calculates a relative measure of elasticity. You can project changes in sales given changes in prices, assuming that a price change is the only factor affecting the change in quantity.

Entering and Using the ELAST Formula:

1. From the MAIN menu, press **SOLVE** to display the SOLVE menu.
2. Type in the ELAST formula as follows:
 \[
 \text{ELAST} = \frac{(\text{LOPQ} - \text{HIPQ}) + (\text{LOPQ} + \text{HIPQ})}{2} \\
 \div (\text{LOWP} - \text{HIP}) \times (\text{LOWP} + \text{HIP}) \times 2
 \]
3. Press **CALC** to verify the formula and display the custom menu.
4. Store the following variables:
 - Quantity sold at the lower price in **LOPQ**.
 - Quantity sold at the higher price in **HIPQ**.
 - Lower price in **LOWP**.
 - Higher price in **HIP**.
5. Press **ELAST** to calculate the elasticity of demand.
Example: Part 1. You lowered the price on your product from $150 to $100. Sales increased from 11,000 units to 15,000 units. Assuming that the price change was the only factor effecting sales, calculate the estimated elasticity of demand.

Start from the ELAST custom menu.

<table>
<thead>
<tr>
<th>Keys</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>15000 LOPQ</td>
<td>LOPQ=15,000.00</td>
<td>Stores quantity sold at lower price.</td>
</tr>
<tr>
<td>11000 HIPQ</td>
<td>HIPQ=11,000.00</td>
<td>Stores quantity sold at higher price.</td>
</tr>
<tr>
<td>100 LOWP</td>
<td>LOWP=100.00</td>
<td>Stores lower price.</td>
</tr>
<tr>
<td>150 HIP</td>
<td>HIP=150.00</td>
<td>Stores higher price.</td>
</tr>
<tr>
<td>ELAST</td>
<td>ELAST=0.77</td>
<td>Calculates the elasticity of demand.</td>
</tr>
</tbody>
</table>

Part 2. You have another product, priced at $120. You are currently selling 18,000 units per month. Your knowledge of your market indicates that the elasticity of demand for this product is the same as for the product in example 1, that is, 0.77. Calculate the quantity sold, based on a price decrease of $25.

.77 ELAST	ELAST=0.77*	Stores elasticity of demand.
18000 HIPQ	HIPQ=18,000.00	Stores quantity sold at the higher price.
120 [-] 25 LOWP	LOWP=95.00	Stores lower price.
120 HIP	HIP=120.00	Stores higher price.
LOPQ	LOPQ=21,540.23†	Calculates an estimate of the quantity sold at the lower price.

* If you do not store .77 in ELAST, but use the value calculated in part 1, the quantity sold at the new price will be different, because the ELAST value calculated in part 1 is not exactly .77.

† The solver searches for a numerical solution and displays intermediate estimates.
Sales Analysis

Sales analysis compares actual sales to sales goals. The formulas below use forecast sales, forecast price, actual sales and actual price to calculate sales variance, variance due to a price change and variance due to volume change.

Entering and Using the Formulas:

1. From the MAIN menu, press **SOLVE** to display the SOLVE menu.
2. Type in the VOLVAR (volume variance) formula as follows:
 \[\text{VOLVAR} = \text{FPRICE} \times (\text{FCST#} - \text{ACT#}) \]
 Press **INPUT** to verify the formula.
3. Type in the PRICEVAR (price variance) formula as follows:
 \[\text{PRICEVAR} = (\text{FPRICE} - \text{APRICE}) \times \text{ACT#} \]
 Press **INPUT** to verify the formula.
4. Type in the SLSVAR (sales variance) formula as follows:
 \[\text{SLSVAR} = \text{FCST#} \times (\text{FPRICE} - \text{APRICE}) \times \text{ACT#} \]
 Press **INPUT** to verify the formula and display the SLSVAR custom menu.
5. Store the following variables:
 - Number of units forecast in **FCST**.
 - Forecast price per unit in **FPRIC**.
 - Number of units actually sold in **ACT#**.
 - Actual selling price in **APRIC**.
6. Press **SLSVA** to calculate the sales variance.
7. Press **EXIT** to display the SOLVE menu. Move the pointer to the PRICEVAR formula. Press **CALC** to verify the formula and display the PRICEVAR custom menu.
8. Press **EXIT** to display the SOLVE menu. Move the pointer to the VOLVAR formula. Press **CALC** to verify the formula and display the VOLVAR custom menu.
9. Press **VOLVA** to calculate the variance due to volume.
Example: Part 1. In your marketing plan, you forecast monthly sales to be 1,000 units, at $425. Actual sales were 730 units, at $410. What is the sales variance?

Start from the SLSVAR custom menu.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 FCST</td>
<td>FCST#=1,000.00</td>
<td>Stores forecast sales.</td>
</tr>
<tr>
<td>425 FPRICE</td>
<td>FPRICE=425.00</td>
<td>Stores forecast price.</td>
</tr>
<tr>
<td>730 ACT#</td>
<td>ACT#=730.00</td>
<td>Stores actual sales.</td>
</tr>
<tr>
<td>410 APRICE</td>
<td>APRICE=410.00</td>
<td>Stores actual price.</td>
</tr>
<tr>
<td>SLSVAR 0</td>
<td>SLSVAR=125,706.048</td>
<td>Calculates sales variance and stores it for use in part 4.</td>
</tr>
</tbody>
</table>

Part 2. Calculate the portion due to price change.

EXIT	PRICEVAR=FPRICE	Selects PRICEVAR formula.
↑ or ↓	PRICEVAR=10,950.00	Displays PRICEVAR custom menu.
CALC	PRICE PRICE	Calculates portion due to price change.

Part 3. Calculate the portion due to volume change.

EXIT	VOLVAR=FPRICE×FCST	Selects VOLVAR formula.
↑ or ↓	VOLVAR=114,750.00	Displays VOLVAR custom menu.
CALC	VOLVAR	Calculates portion due to volume change.

* Pressing PRICE the first time stores the value on the calculator line in PRICE. Pressing PRICE again causes the calculation to occur.
Part 4. Calculate the percentage of the total sales variance that is due to a change in volume.

MAIN	Displays MAIN menu.		
BUS	%TOTL	Displays %TOTL menu.	
STO	PART	STO	=114,750.00 Stores volume variance.
RCL	0 TOTAL	TOTAL	=125,700.00 Stores total variance.
	%TOTAL=91.29 Volume change is 91% of the variance in sales.		

Ninety percent of the sales variance is due to the shortfall in volume. The next step would be to analyze what caused sales to fall short of the goal.

Total Market Size Potential

Total market size potential is the total sales (in dollars or units) available to all firms selling a given product for a specified time. To estimate the total market potential, you need to estimate the number of buyers of the product, the quantity each buyer will purchase, and the average price of the product.

Entering and Using the POTENTIAL Formula:

1. From the MAIN menu, press **SOLVE** to display the SOLVE menu.
2. Type in the POTENTIAL formula as follows:
 $$\text{POTENTIAL} = \#\text{BYRS} \times \text{QUANT} \times \text{PRICE}$$
3. Press **CALC** to verify the formula and display the custom menu.
4. Store the following variables:
 - Estimated total number of buyers in \#BYR.
 - Quantity each buyer will purchase in QUAN.
 - Average retail price of the product in PRICE.
5. Press **POTEN** to calculate the total market potential.
Example: Part 1. Market research shows that the estimated number of buyers for your product is 3 million people this year, and that each buyer will purchase 1.3 units. The average price for the product is $95. What is the total market potential?

Start from the POTENTIAL custom menu.

Keys:

<table>
<thead>
<tr>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000000 #BYR</td>
<td>Stores estimated number of buyers.</td>
</tr>
<tr>
<td>1.3 QUANT</td>
<td>Stores number each buyer will purchase.</td>
</tr>
<tr>
<td>95 PRICE</td>
<td>Stores average unit price.</td>
</tr>
<tr>
<td>POTEN STO</td>
<td>Calculates total market size in dollars and stores the value for use in part 3.</td>
</tr>
</tbody>
</table>

Part 2. Your goal for the year is a 15% dollar share of this market. What must your yearly sales before discount be to meet this goal?

$55,575,000.00 Calculates dollar share to meet this goal.

Part 3. Realistically, your firm can achieve sales of only $40 million for the year. What share will you realize?

Displays %TOL menu.

<table>
<thead>
<tr>
<th>TOTAL</th>
<th>Stores total market size.</th>
</tr>
</thead>
<tbody>
<tr>
<td>370,500,000.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART</th>
<th>Stores maximum sales.</th>
</tr>
</thead>
<tbody>
<tr>
<td>40,000,000.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%TOTAL</th>
<th>Calculates dollar market share your firm can achieve.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.80</td>
<td></td>
</tr>
</tbody>
</table>

Sample Size for Estimating Population Mean

When performing market research, you typically can't talk to all of your potential market about their needs and opinions. Instead, a sample is selected. The formula below helps you determine how large a simple random sample should be to represent the population to the accuracy you desire.

Entering and Using the SSIZE Formula:

1. From the MAIN menu, press **SOLVE** to display the SOLVE menu.
2. Type in the SSIZE formula as follows:
 \[SSIZE = \left(\frac{Z_{NORM} \times SDEV \div ERROR}{2} \right) \]
3. Press **CALC** to verify the formula and display the custom menu.
4. Store three of the following variables:
 - Sample size in **SSIZE**.
 - Normal distribution \(Z \) value in **ZNORM**. (Note that for 95% confidence, \(Z = 1.96 \); for 99% confidence, \(Z = 2.58 \). Refer to a statistics book for more information.)
 - Population standard deviation in **SDEV**.
 - Maximum acceptable difference between the sample mean and the population in **ERROR**.
5. Press the menu key to calculate the unknown variable.
Example: Part 1. You are investigating radio advertising in your city. Prior research indicated that the standard deviation for the number of hours per week that adults listen to the radio is 2.3 hours. If you wish to estimate the average number of hours that adults listen to the radio by taking a simple random sample, how many adults must you sample to be 95% confident that your estimate is within .5 hour of the true average number of hours?

Start from the SSIZE custom menu.

Keys: Display: Description:
1.96 ZNORM=1.96 Stores normal distribution for 95% confidence.
2.3 SDEV=2.30 Stores standard deviation.
.5 ERROR=0.50 Stores error.
SSIZE SSIZE=81.29 Calculates size of the sample needed.

Part 2. Suppose you want your error to be only .25 hours. Calculate sample size.

.25 ERROR=0.25 Stores the error.
SSIZE SSIZE=325.15 Calculates sample size.
Conserving Memory

The formulas in this book are intended to provide useful solutions. The variable names are several characters long to be meaningful to you. The formulas change a percent to a decimal so you don’t have to remember to do it. These features make the formulas longer and take up more memory. Here are a few hints to help you conserve memory, should you need to:

- Shorten variable names. Variables are named to be as intuitive as possible. One way to save memory is to use single letter variable names.

- Delete division by 100. The formulas using a percent are written so you enter the percentage rather than the decimal value. Examples of this are tax rate as a percent, discount rate as a percent, or interest rate. If you do delete division by 100 from the formulas, remember to divide the percent by 100, or enter the percent and press [%], before storing the value in the variable.

- Delete variables for other formulas. When the SOLVE menu is displayed and you press [CLEAR ALL VARS], the variables are erased, giving you more usable memory. (If you select BOTH instead of VARS, all formulas and their variables will be gone.)

- Delete individual formulas. When the SOLVE menu is displayed, move the pointer to the formula you want to delete, and press [DELET BOTH].
Working With Your Business Consultant Professional Calculator

The Marketing Consultant contains a variety of applications, formulas and keystrokes to help you solve the specialized problems of your profession.

- Markup Calculations
- Setting a Sales Price
- Forecasting Sales Based on History
- Forecasting Sales Using Simple Moving Average
- Forecasting Sales of Accessories
- Revising Your Forecast to Reflect Current Market Conditions
- Planning Advertising Expenditures
- Stockturn or Inventory Turnover Rate
- Break-even Analysis
- Estimating the Financial Feasibility of New Product Ideas
- Return on Investment
- Elasticity of Demand
- Sales Analysis
- Total Market Size Potential
- Sample Size for Estimating Population Mean