CALCULATOR SUPPORT
1000 N.E. Circle Boulevard, Corvallis, Oregon 97330-4239, Telephone 503 757-2004 8:00 AM - 3:00 PM Pacific Time

HP 18C SOLUTIONS

The following solutions have been developed as a continuing effort by Hewlett-Packard to meet the needs of our customers.

TABLE OF CONTENTS

18-1 Bond Price and Yield
Two formulas to calculate bond price, yield to maturity, and accrued interest. The calculations assume that the price is quoted as a percentage and redemption can be at maturity or at call. Semi-annual or annual coupon payments can be specified. Either calendar basis (30/360 or
Actual/Actual) can be accommodated.
18-2 Weighted Mean
Routine to calculate the weighted mean of a set of numbers, assuming that you know the corresponding weights of each number.

18-3 Simple Interest
Formula to calculate the amount of simple interest on a 360 -day or 365 -day calendar basis. Once the interest is calculated, the total payment (loan amount plus interest) can also be calculated.

18-4 Random Number Generator
A routine to calculate 500,000 uniformly distributed pseudo-random numbers.

18-5 Amount of Periodic Payment When Balloon Payment Includes Final Payment

The TVM menu assumes that the balloon payment amount is in addition to any periodic payment. This routine describes how to calculate the payment amount when the balloon payment includes the periodic payment amount.

18-6 Discounted Notes
Two formulas to calculate the price and/or yield of a discounted note (an agreement to pay a sum of money plus interest at a specified time). The formulas assume that the calendar basis is Actual/360.

Page 2
HP 18 C SOLUTIONS

18-7 Duration of a Bond
Formula to calculate the duration of a bond (the average time that elapses until the various cash flows are received).

Hewlett-Packard supplies the procedures herein without warranty and will not be liable for damages arising from their use.

(hp) $\begin{aligned} & \text { HEWLETT } \\ & \text { PACKARD }\end{aligned}$

Business Consultant Solutions 18-1

Bond Price and Yield

The following formulas calculate bond price, yield to maturity, and accrued interest. The computations assume that the price is quoted as a percentage and redemption can be at maturity or at call. Semiannual or annual coupon payments can be specified. Either calendar basis ($30 / 360$ or Actual/Actual) can be accommodated.

Entering and Using the Formulas.

1. From the MAIN menu, press SOLVE to display the SOLVE menu.
2. Type in the following formulas. After typing in each formula, press INPUT. (To key in the < character, press Y.)
```
ACTURL: N=-DDAYS(PREV:SETT:1)\divDDAYS(PREV:NEXT:1)
```

 +RND(DDRYS(PREV:MRT:1)×M \(365: 0\))
 360: $N=$ DDAYS(SETT:MAT:3)×M $\div 360$
(PRICE+CPN $\div M \times(1-F P(N))) \times S P F V(Y L D \div M \times M I N(N: 1): I F(N<1: 1: F P(N)))$
$=C P N \div M \times(1+U S P V(Y L D \div M: I P(N)))+R U \times S P P U(Y L D \div M: I P(N))$
$A I=C P N \div M \times(1-F P(N)) \times S G N(F P(N))$
3. For Actual/Actual calendar bonds, select the ACTUAL formula and press CALC to display the custom menu. Store the following variables:

- Date of the previous coupon in PREV
- Settlement date in SETT
- Date of the next coupon in NEXT
- Maturity date in MAT
- Number of coupon payments per year in M

4. For $30 / 360$ calendar bonds, select the 360 formula and press CALC to display the custom menu. Store the following variables:

- Settlement date in SETT.
- Maturity date in MAT
- Number of coupon payments per year in M.

5. Press N to calculate the "life" of the bond. Press EXIT to continue the calculation.
6. Select the PRICE formula and press CALC to display the custom menu.
7. Store the following variables:

- Annual coupon rate as a percent in CPN
- Redemption value or call price in RV

8. To calculate the purchase price, store the annual yield in YLD and press ERICE .
9. To calculate the annual yield, store the purchase price (as a percentage) in ${ }^{2} \mathrm{RICE}$ and press rLD
10. Press EXIT CALC to designate AI (accrued interest) as the current formula and display the custom menu.
11. Press AI to calculate the amount of accrued interest.

The following examples assume that the four formulas have been entered in the order given. In addition, two decimal places are displayed.

Example 1: Bond Price. What price should you pay on April 28, 1986 for a $63 / 4 \%$ U.S. Treasury Bond that matures at 100 on December 4, 1996 if you want a yield of $81 / 4 \%$? There are two coupons each year and the Actual/Actual calendar is used.

Start from the ACTUAL menu.

Keys:	Display:	Description:
12.041985 PREV	PREV=12.04	Stores previous coupon date.
4.281986 SETT	SETT $=4.28$	Stores settlement date.
6.041986 NEXT	NEXT $=6.04$	Stores next coupon date.
12.041996 MAT	MRT $=12.04$	Stores maturity date.
2 M	$\mathrm{M}=2.00$	Stores number of coupons per year.
N	$N=21.20$	Calculates bond life.
EXIT $\rightarrow+$ CALC		Displays PRICE menu.
6.75 CPN	$C P N=6.75$	Stores annual coupon.
100 RV	$R V=100.00$	Stores redemption value.
8.25 YLD	$Y L D=8.25$	Stores annual yield.
DRICE	PRICE $=89.52$	Calculates bond price.

What is the amount of accrued interest?

EXIT CALC	Displays AI custom menu.
AI	Calculates accrued interest.

Example 2: Bond Yield. Calculate the yield of a municipal bond purchased on May 1, 1986 that matures at 100 on July 1, 1995. The coupon rate is 6.5% and the purchase price is 99.525 . There are two coupons each year and the $30 / 360$ calendar is used.

Start from the 360 menu.

Keys:	Display:	Description:
5.011986 SETT	SETT $=5.01$	Stores known values.
7.011995 MAT	MRT $=7.01$	
2 M	$\mathrm{M}=2.00$	
N	$N=18.33$	Calculates bond life.
EXIT CALC		Displays PRICE menu.
99.525 ERICE	PRICE $=99.53$	Stores known values.
$6.5{ }^{\text {CPN }}$	CPN $=6.50$	
100 RV	$\mathrm{RV}=100.00$	
VLD	YLD $=6.57{ }^{*}$	Calculates bond yield.

Example 3: Yield to Call. A 10\% coupon bond was purchased October 14, 1980 for 97.25 . If the bond is called on September 16, 1986 for 103, what is the yield to call? There are two coupons each year and the calendar basis is $30 / 360$.

Start from the 360 menu.

Keys:	Display:	Description:
10.141980 SETT	SETT $=10.14$	Stores known values.
9.161986 MAT	$M R T=9.16$	
2 M	$\mathrm{M}=2.00$	
N	$N=11.84$	Calculates bond life.
EXIT 0 CALC		Displays PRICE menu.
97.25 PRICE	PRICE $=97.25$	Stores known values.
10 CPN	$C P N=10.00$	
103 RV	$\mathrm{RV}=103.00$	
YLD *	YLD $=11.01$ *	Calculates yield to call.

[^0]
Additional Information

- Since the formulas are long, you may need to clear most of memory before keying them in.
- If you always use the same calendar, choose the appropriate calendar formula (either ACTUAL or 360) and omit the other formula.
- Use the maturity date to determine the previous coupon date (PREV) and the next coupon date (NEXT). PREV and NEXT are one coupon period apart and the following applies:

PREU \leq SETT < NEXT

Portable Computer Division 1000 N.E. Circle Blvd
Corvallis, OR 97330
18-1
2/87

(hp
 HEWLETT
 PACKARD

Business Consultant Solutions
 18-2

Weighted Mean

The following routine calculates the weighted mean of a set of numbers, assuming that you know the corresponding weights of each item.

1. From the MAIN menu, press Sum to select the SUM menu.
2. Press CLEAR ALL VES to clear the list. (If you do not want to delete the list, name the old list and get a new list.)
3. Press 0 STO 0 to clear register 0 .
4. Key in the value of the item and press \triangle.
5. Key in the weight of the item and press STO $\pm 0 \square$ INPUT.
6. Repeat steps 4 and 5 until you have entered all the values of the items and their corresponding weights.
7. Press \mp RCL 0 to calculate the weighted mean.

Example. A survey of 266 one-bedroom apartment rentals reveals that 54 rent for $\$ 190$ per month, 32 rent for $\$ 195$ per month, 88 rent for $\$ 200$ per month, and 92 rent for $\$ 206$ per month. What is the average monthly rental?

Start from the MAIN menu.

Keys:	Display:	Description:
sum *		Displays the SUM menu.
CLEAR ALL YES	- ITEM(1) =	Clears the list.
	TOTAL $=0.00$	
0 STO 0		Clears register 0.
190×54 STO ± 0 INPUT	$\begin{aligned} & \operatorname{lITEM}(2)= \\ & \operatorname{TOTAL}=10,260.00 \end{aligned}$	Stores first data pair.
195×32 STO ± 0 INPUT	$\begin{aligned} & \operatorname{ITEM}(3)= \\ & \operatorname{TOTAL}=16,500.00 \end{aligned}$	Stores second data pair.
200×88 STO ± 0 INPUT	$\begin{aligned} & \text { ITEM(4) }= \\ & \text { TOTAL }=34,100.00 \end{aligned}$	Stores third data pair.
206×92 STO ± 0 INPUT	$\begin{aligned} & \text { II } \operatorname{TEM}(5)= \\ & \text { TOTAL }=53,052.00 \end{aligned}$	Stores fourth data pair.
円RCL 0 -	199.44	Calculates average monthly rent.

[^1]
Business Consultant Solutions
 18-3

Simple Interest

With simple interest, only the principal (the original loan amount) earns interest for the entire life of the transaction. The interest earned, plus the principal, is repaid in one lump sum. The following routines calculate the amount of simple interest on a 360-day basis and a 365-day basis. Once the interest is calculated, the total payment (loan amount plus interest) can also be calculated.

1. From the MAIN menu, press SOLVE to display the SOLVE menu.
2. Type in the simple interest formula as follows:

SINT $=N \div Y E A R \times P V \times I \div 100$
3. Press CALC to verify the formula and to display the custom menu.
4. Store or calculate the following variables:

- Amount of simple interest in SINT.
- Total number of days in N
- Number of days in the calendar year (either 360 or 365) in YEAR.
- Loan amount in PV
- Annual interest rate in 1

5. Press + RCL $P V \equiv$ to calculate the total payment (interest plus principal).

Example. A friend has requested that you lend him $\$ 450$ for 60 days. You lend him the money at 7% simple interest, to be calculated on a 360-day basis. How much interest will he owe you in 60 days? What is the total amount owed?

Start from the SINT menu.

Description:

Stores known values.

Calculates amount of simple interest.

Calculates total payment amount.

PACKARD

Business Consultant Solutions 18-4

Random Number Generator

This routine calculates uniformly distributed pseudo-random numbers u_{i} in the range:

$$
0<u_{i}<1
$$

The following method is used:

$$
u_{i+1}=\text { fractional part of }\left(997 u_{i}\right)
$$

where $i=0,1,2, \ldots$
$u_{0}=0.5284163$ (seed)
Other seeds may be selected, but the quotient of (seed $\times 10^{7}$) divided by two or five must not be an integer. Also, it would be wise to statistically test other seeds before using them.

The period of this generator has a length of 500,000 numbers and the generator passes the frequency test (chi square) for uniformity, the serial test, and the run test. The most significant digits (the left hand digits) are the most random digits. The right most digits are significantly less random.

1. From the MAIN menu, press SOLVE to display the SOLVE menu.
2. Type in the random number formula as follows:

$$
R D M=F P(997 \times S E E D)
$$

3. Press CALC to verify the formula and to display the custom menu.
4. Store the value of the seed in SEED
5. Press RDM to determine the first random number.
6. Press STO SEED to store the random number as the seed for the next random number.
7. Press RDM to determine the next random number.
8. Repeat steps 6 and 7 as many times as desired.

Example. Generate a sequence of 5 random numbers.
Start from the RDM menu.

Keys:		
DISP	ALL	
. 5284163 SEED		
FDM		
STO SEED		
RDM		
STO	SEED	D RDM
STO	SEED	R RDM
STO	SEED	RDM

Display:

SEED=0.5284163
RDM $=0.8310511$
SEED=0.8310511
RDM $=0.5579467$
RDM $=0.2728599$
RDM $=0.0413203$
RDM $=0.1963391$

Description:

Sets display mode to display all digits.
Stores initial seed.
Calculates first random number.
Stores new seed.
Calculates second random number.
Calculates third random number.
Calculates fourth random number.
Calculates fifth random number.

Business Consultant Solutions 18 -5

Amount of Periodic Payment When Balloon Payment Includes Final Payment

The TVM menu assumes that the balloon payment amount is in addition to any periodic payment. However, given the loan amount, total number of payment periods, annual interest rate, and the amount of the balloon payment, the periodic payment amount can be calculated. Remember to use the cash flow sign convention (money paid out is negative, money received is positive).

1. From the MAIN menu, press [FIN, then TVM
2. Clear the TVM variables, store the number of payments per year in $\quad \mathrm{PB}$, and set the payment mode (Begin or End, as appropriate).
3. Store 1 in N.
4. Store the balloon payment amount in $\square \mathrm{FV}$.
5. Store the annual interest rate in \quad IFYR.
6. Press PV to discount the balloon for one period.
7. Press + FV to store the adjusted balloon payment in $F V$
8. Store the total number of periodic payments in N.
9. Store the loan amount in PV
10. Press PMT to calculate the periodic payment amount.

Example. A $\$ 10,000,12 \%$ loan has 35 monthly payments plus a $\$ 5,000$ balloon payment at the end of the 36th month. What is the monthly payment amount?

Start from the MAIN menu.

Keys:	Display:
FIN TVM	
CLEAR ALL	0.00
ITHER	
CLEAR ALL EXIT	
1 N	$N=1.00$
5000 +	$F V=-5,000.00$
12 I\% FR	$I \% Y R=12.00$
PV	$P V=4,950.50$
	$F V=-4,950.50$
35 N	$N=35.00$
10000 PV	$P V=10,000.00$
PMT	PMT $=-221.21$

Description:

Displays the TVM menu.
Clears the TVM variables.
Sets 12 payments per year; End mode.

Stores 1 in N .
Stores balloon payment.
Stores annual interest rate.
Calculates adjusted balloon payment.
Stores adjusted balloon payment in FV.
Stores total number of payments in N .
Stores loan amount in PV.
Calculates monthly payment.

Business Consultant Solutions 18-6

Discounted Notes

A note is a written agreement to pay a sum of money plus interest at a certain rate. Notes do not have periodic coupons, since all interest is paid at maturity.

A discounted note is a note that is purchased below its face value. The following formulas find the price and/or yield of a discounted note. The formulas assume the calendar basis is Actual/360.

Entering and Using the PRICE and YIELD Formulas:

1. From the MAIN menu, press EGLVE to display the SOLVE menu.
2. Type in the PRICE formula as follows.
```
PRICE=RU-(DISC\timesRUXDDAYS(SETL:MAT:1)\div36000)
```

3. Press INPUT to verify the formula.
4. Type in the YIELD formula as follows.

YIELD $=(R U-P R I C E) \div P R I C E \times 36000 \div$ DDRYS $(S E T L: M A T: 1\rangle$
5. Press INPUT to verify the formula.
6. Press 4 CALC to select PRICE as the current formula and display the custom menu.
7. Store the following variables:

- Redemption value per $\$ 100$ in \quad RV
- Discount rate as a percent in DISC.
- Settlement date (in MM.DDYYYY format) in SETL
- Maturity date (in MM.DDYYY format) in MAT

8. To calculate the purchase price, press PRICE.
9. To calculate the yield when the price is known, press EXIT EALC to select YIELD as the current formula and display the custom menu. If you have not just calculated the price, store the price in PRICE.
10. Press MIELD to calculate the yield.

Example 1. Calculate the price and yield of the following U.S. Treasury Bill: settlement date October 14, 1986; maturity date March 17, 1987; discount rate 8.7%.

Start from the PRICE menu.

Keys:	Display:	Description:
10.141986 SETL	SETL $=10.14$	Stores known values.
3.171987 MAT	MAT $=3.17$	
8.7 DISC	DISC $=8.70$	
100 RV	PRICE $=96.28$	
ERICE		Calculates price.
EXIT	CALC	YIELD $=9.04$

Example 2. Determine the yield of the following discounted note: settlement date June 25, 1986; maturity date September 10, 1986; price 99.45; redemption value 101.33.

Start from the YIELD menu.

Koys:	Display:	Description:
6.251986 SETL	SETL $=6.25$	Stores known values.
9.101986 MAT	MAT $=9.10$	
99.45 ERICE	PRICE $=99.45$	
101.33 RV	RU $=101.33$	
IELD	YIELD $=8.84$	Calculates yield.

HP-18C Solutions 18-7

Duration of a Bond

The duration of a bond is the average time that elapses until the various cash flows (coupons and redemption value) are received. In other words, the duration is a weighted average of the number of periods until the payments occur. For coupon-bearing bonds, the duration is always shorter than the term to maturity. (For zero-coupon bonds, duration is equal to maturity.)

Entering and Using the DURATION Formula:

1. From the MAIN menu, press colve to display the SOLVE menu.
2. Type in the DURATION formula as follows. Since the formula is long, you may need to clear most of memory before keying it in.
(CPN× (($\left.1+Y L D \div 100)^{\wedge}(N+1)-(1+Y L D \div 100)-Y L D \div 100 \times N\right)$
$\left.\div(Y L D \div 100)^{\wedge} 2 \div(1+Y L D \div 100)^{\wedge} N+R D U \times N \div(1+Y L D \div 100) \wedge N\right)=$
(USPU(YLD:N)×CPN+SPPV(YLD:N) $\times R D V) \times D U R$
3. Press CALC to verify the formula and to display the custom menu.
4. Store the following variables:

- Dollar amount of each coupon in CPN.
- Periodic yield to maturity (as a percentage) in YLD.
- Total number of coupons in N
- Redemption value in RDV

5. Press DUR to calculate the number of periods in the duration.

Example. Calculate the duration of the following bond: $\$ 60$ coupon paid semi-annually for 5 years, 13.5% annual yield, $\$ 1000$ redemption value.

Start from the DURATION custom menu.

Keys:	Display:	Description:
60 CPN	$C P N=60.00$	Stores amount of periodic coupon.
13.5 + 2 YLD	YLD=6.75	Stores periodic yield.
5×2	$N=10.00$	Stores total number of coupons.
1000 RDV	$R D V=1,000.00$	Stores redemption value.
DUR	DUR=7.73	Calculates duration in semi-annual periods.
± 2 -	3.87	Duration in years.

Reference: Jess H. Chua, A Closed-Form Formula for Calculating Bond Duration, Financial Analysts Journal, May-June 1984.

[^0]: * The solver searches for a numerical solution and displays intermediate estimates.

[^1]: Hewlett-Packard supplies the procedures herein without warranty and will not be liable for damages arising from their use.

