The HP-19B Pocket Guide: Just in Case

EXIT

A GRAPEVINE PUBLICATION

19B

The HP-19B Pocket Guide: Just In Case

by Chris Coffin with help from Carol Sweet and Soraya Simons

Grapevine Publications, Inc. P.O. Box 118 Corvallis, Oregon 97339-0118

Acknowledgements

We extend our thanks once again to Hewlett-Packard for their top-quality products and documentation.

Cover photo by Tom Brennan

© 1988, Grapevine Publications, Inc. All rights reserved. No portion of this book, nor any of its contents, nor any portion of the programs contained herein, may be reproduced in any form, printed, electronic or mechanical, without written permission from Grapevine Publications, Inc.

Printed in the United States of America ISBN 0-931011-22-1

First Printing - November, 1988

NOTICE: Grapevine Publications, Inc. makes no express or implied warranty with regard to the keystroke procedures and program materials herein offered, nor to their merchantability nor fitness for any particular purpose. These keystroke procedures and program materials are made available solely on an "as is" basis, and the entire risk as to their quality and performance is with the user. Should the keystroke procedures and program materials prove defective, the user (and not Grapevine Publications, Inc., nor any other party) shall bear the entire cost of all necessary correction and all incidental or consequential damages. Grapevine Publications, Inc. shall not be liable for any incidental or consequential damages in connection with, or arising out of, the furnishing, use, or performance of these keystroke procedures or program materials.

Dear Reader:

This HP-19B Pocket Guide is for you to keep in the case with your calculator, for convenient reference...just in case you forget how to work certain kinds of problems.

This booklet is not intended to be a replacement for your HP-19B Owner's Handbook, but rather an an easy-to-carry supplement. Because it was designed to fit into your pocket, it includes what we believe are the **most** used financial functions, in brief, concise treatments. This booklet cannot and certainly does not cover all aspects and functions in your HP-19B.

The materials it does cover were mostly adapted from our full-length (full-sized) book, titled **An Easy Course In Using The HP-19B**. That Easy Course book is our more complete, indepth Course, giving you a good understanding of how your HP-19B "thinks" and works. To order the complete Easy Course book, check with your HP dealer, or see the inside back cover here to find out how to order directly.

Now, if you're ready, just check the Index on the outside back cover, find the topic you want to brush up on, and let your Pocket Guide refresh your memory!

The Basics: Arithmetic

You can do arithmetic on the HP- 19B almost anytime, *except* when you see the symbol α appearing at the top of the display, telling you that the calculator is expecting alphabetic input (i.e., characters instead of numbers). If that α appears when you don't want it, press $\boxed[MANN]$ (the gold key on the right-hand keyboard is the "shift" key, and you must first press it to use any of the functions printed in gold on the keyboard; it acts much like the shift key on a typewriter).

Your calculator has four display lines. The third one down is the Calculator Line, where all arithmetic calculations are performed. To clear this line before starting a problem (not really necessary, actually), just press **CLEAR**.

The answers here show two displayed decimal places.

Example:	(545 + 264) ÷ -12 = ?
Solution:	545+264÷-12=
Answer:	-67.42

The machine calculates from left to right as you key in the numbers; you didn't have to use any parentheses in this solution. And notice how easy it is to key in negative numbers.

Example: -484 x (652 - 246) = ? Solution: (48(4+/-)×)(652)-24(6)= Answer: -196, 504.00

Any open parentheses are closed by the calculator when you press the = key. And notice the *other* way you can key in negative numbers – with the [+/_ key.

Here's how your display should look now:

Most arithmetic problems are keyed in just as you would say them – including percentages:

Example:	Increase 24 by 8%
Solution:	24+8%=
Answer:	25.92
Example:	What is 6% of 54,532 ?
Solution:	54532×6%=
Answer:	3,271.92

The HP-19B Pocket Guide: Just In Case

Using A Menu

The HP-19B has many built-in formulas and tools which you find through the use of the MAIN menu. For example, here's the MAIN menu (your starting position):

You choose an item on a menu simply by pressing the blank key directly beneath that item.

Example: Starting from the MAIN menu, proceed to the TIME menu, then to the SET menu, then *retrace* your steps (back through the TIME menu to the MAIN menu once again).

Keystrokes	Comments
MAIN	Always sets the calculator
	to the MAIN menu.
TIME	Selects the TIME menu.
SET	Selects the SET menu.
EXIT	Goes back to the TIME
	menu.
EXIT	Goes back to the MAIN
	menu.

Adjusting The Display

To adjust the **viewing angle** of the display, press and hold down the \bigcirc key, then press and hold down either the \oplus or \bigcirc key until the angle is comfortable for your viewing.

To set a certain number of **displayed decimal places**, press the DISP key. The calculator will then show you the following instructions:

The choice **ALL** tells the calculator to display every decimal place *except for trailing zeros*. Thus, for example, the number 8.05446769000 would be displayed as 8.05446769.

The choice **FIX** allows you to set the number of decimal places to be displayed. To set the display to FIX 2 (i.e. for dollars and cents), for example, press **DISP FIX** (2)(NPUT).

Clearing The HP-19B

Three different keys are available for clearing information from the calculator. Exactly what these keys will clear depends upon what you have been doing on the calculator just prior to when you press them.

At the MAIN menu (press MAN to get there), these clearing functions are:

•: If you are in the middle of keying in a number or an operation on the Calculator Line, this key means "backspace." It clears away one digit or character each time you press it.

However, if a *complete result* is on the Calculator Line, that result is cleared to zero.

CLEAR: Clears (to zero) whatever is on the Calculator Line.

CLEAR DATA): Clears the History Stack and the Calculator Line.

Storing And Recalling Numbers

There are two ways to save numbers – in **reg**isters and in lists.

Registers: The simplest way to save the result of any calculation is in a *numbered storage register*. There are ten such registers, numbered 0-9, and each holds one number at a time.

The STO key stores a copy of the most recent number to appear on the Calculator Line.

Example:	Calculate 25.3 + 19.8, and mean-
	while store 19.8 in register 1.
Solution:	25•3+19•8 STO1=
Answer:	45.10

The RCL key recalls a copy of the current contents of any numbered register.

Example:	Add what's in register 1 to the
	number on the Calculator Line.
Solution:	+RCL1=
Answer:	64.90

Numbers stored in the numbered data registers will stay there until you change them by storing a new number. To **clear a numbered register**, simply store a 0 in it. Lists: Lists are used to store sets of numbers.

Starting from the MAIN menu, press the **SUM** key. Your display should look similar to this:

Example: For the past five years, your annual gross income has increased, as shown below. Create a list from this data:

1983	19,200
1984	22,200
1985	24,000
1986	25,000
1987	26,500
1001	20,000

omments

GET XNEW

19200 (INPUT)
22200 (INPUT)
24000 (INPUT)
25000 (INPUT)
26500 INPUT

This begins a new list. Now just key in the five values, and (INPUT) after each entry:

Notice how you always get a running TOTAL of all the data in your list. **Example:** Now give your list of incomes a name ("INCOM") so you can use it later. Then return to the MAIN menu.

Keystrokes	Comments
NAME	You're told to type the
	Now go back to the MAIN menu.

Example: Suppose that upon rechecking your income figures, you discovered that your 1985 income was \$24,600 - not \$24,000. To edit your list:

Keystrokes	Comments
SUM	Go to the SUM menu.
GET INCO	Open the INCOM list for editing.
	Move the pointer to the top, then down the list.
24600 (INPUT)	Key in the true amount and then press <u>(NPUT</u>) to replace the previous value.

Notice how the *t* and *t* keys move the pointer down and up the list.

The HP-19B Pocket Guide: Just In Case

Example: Use your INCOM list to calculate your average annual income for the past five years.

Keystrokes	Comments
GET INCOM	Open your INCOM list,
	if you're not there
	already.
CALC	Go to the CALC menu.
MEAN	Solve for the average
	(mean) income.

Answer: MEAN=23,500.00

MAIN

(Return to the MAIN menu.)

Incidentally, anytime you want to delete an item in a list, you would use the **DELET** command on the SUM menu; anytime you want to insert an item, you can use the **INERT** command.

And anytime you want to clear (set to zero) all the items or delete the entire list, you would use CLEAR DATA. It will then give you the options as to what you want to clear or delete.

Business Calculations: Percentages And Markups

Select the **BUS** option from the MAIN menu. Here's what you'll see.

Example: In 1985, your gross income was \$24,000, but in 1986 it was \$25,000. By what percentage did it change?

Go from the BUS menu to the %CHG menu.
Key in your old gross. Key in your new gross. Solve for the percentage it changed.

Answer: %CHANGE=4.17

Example: If you had received a 7% increase (instead of the 4.17%), what would have been your 1986 gross income?

Keystrokes	Comments
7) XCH	Assume the OLD gross
	from the last example
	is still there, so just
	specify the %CH
NEW	And solve for the NEW
	gross that would imply.
Answer: NEW=	25,680.00

Example: Last year, out of your gross income of \$25,000, you paid \$5,602.50 in Social Security, State and Federal income taxes. What is your *effective* tax bracket; that is, what percent of your total gross did you pay in these taxes?

Keystrokes

21010

Comments

Go from the BUS menu to the %TOTL menu. Key in the TOTAL. Key in the PART. Calculate this PART's percentage of the TOTAL.

Answer: %TOTAL=22.41

Example: In order to get down to an 18% effective tax bracket, to what level would you have to reduce your total tax bill?

Keystrokes	Comments
18 XT	From the previous ex-
	ample, change only the
	%T, since your TOTAL is
	still the same.
PART	Solve for the PART this
	%T would produce.
Answer: PART=4	,500.00

Example: A software company buys computer discs for re-sale from a major distributor. The cost of a case of discs is \$270.00. The software company then marks the product up to \$450.00. What is the markup as a percentage of the cost?

Keystrokes	Comments
MUXC	Go from the BUS menu
	to the MU%C menu.
270 COST	Key in the cost.
450 PRICE	Key in the price.
MXC	Find the Markup as a
	Percentage of Cost.
Answer: MARKU	P%C=66.67

The HP-19B Pocket Guide: Just In Case

Example: For what price should the software store in the previous example sell the discs to achieve a 70% markup as a percentage of cost?

Keystrokes	Comments
70 M2C	Continuing from the previous problem, just specify your desired M%C (preserving your cost as is)
PRICE	Solve for PRICE.

Answer: PRICE=459.00

Example: A software company buys a case of discs from a distributor for \$270.00, then marks it up to \$450.00. What is the MARKUP as a percentage of the Price (i.e. the *discount* extended to the software company by the distributor)?

Keystrokes	Comments
MU2P	Go from the BUS menu to
	the MU%P menu.
270 COST	Key in the COST.
450 PRICE	Key in the PRICE.
MXP	Solve for the the MARKUP
	as a percentage of Price.

Answer: MARKUP%P=40.00

Example: What would be the software company's COST from the distributor in order to achieve a 45% discount?

Keystrokes	Comments
45 M%P	Continuing from the prev-
	ious problem, key in your
	new discount (M%P)
COST	Solve for the COST.

Answer: COST=247.50

The HP-19B Pocket Guide: Just In Case

Financial Calculations

From the MAIN menu, press **FIN**. You'll see the following menu:

Any loan, lease or investment is characterized by a certain periodic cash-flow scenario. At specified regular intervals, you either receive money or you pay money, and you represent this on a *cash-flow diagram*. Here's the diagram for a typical mortgage:

PV = 40,000

$$1 \times 2$$
 3×4
PMT = -351.03
PV = 40,000
 $1\% YR = 10\%$
 $358 \times 359 \times 360$
 $358 \times 359 \times 360$
 75×9
 75

This diagram is drawn from the perspective of the borrower. The initial cash-flow is shown as *positive*, to represent the borrowed money *coming in* for the purchase of the house. The payments are shown as *negative*, to represent money *paid out* to whittle away ("amortize") the borrowed money and its interest. Remember to use the +- key to change numbers back and forth between positive and negative when you are describing a cash-flow diagram to your calculator.

Besides the sign convention, you must also remember these few rules when drawing a cash-flow diagram:

1. The *periods* must be *regular*. A month is a common period, but the period can be quarterly, annual, or any other defined length of time.

2. A cash-flow can be any amount, *including* zero. If more than one cash-flow occurs at any *point* in time, then these simultaneous flows may be netted together, but *only one cash-flow* can occur per period. In addition, you may have one initial cash-flow at the beginning of the time-line, and one final cash-flow at the end.

3. The compounding period of the interest must be the same as the payment or cash-flow period described in rule 1 above.

Any cash-flow situation with an identical cashflow amount (even zero) for each period may be analyzed with the TVM (Time Value of Money) menu. When those amounts are not identical, you'd use the CFLO menu.

A Typical Mortgage (PMT Calculation)

Example: A first-time home buyer has approached you for some advice. She has about \$10,000 that she plans to use for the down payment on a house in the \$50,000 range. The interest rate is 10% A.P.R. What kind of monthly payment will she have?

First, draw the picture...

Explanation: A typical mortgage is paid off over a 30-year period, although shorter-term mortgages have recently become more popular.

In this diagram, N is the number of periods (30 years is 360 months). PV (Present Value) is the amount financed: \$40,000. FV (Future Value) is zero, because the loan will be completely paid off in 360 months. I%YR (annual Interest rate) is 10%, and you may assume the interest also compounds monthly (if not stated otherwise).

Keystrokes	Comments
MAIN FIN TVM	Move to the TVM menu.
	The top line of the dis-
	play should show this:
12 PMTS/YF	R: END MODE
	If not,
OTHER (12) PAYR	set the payments per
	year, if they're not set to
	12 already;
END	and set END MODE (if
	it's not already set),
	because the payments
	occur at the END of
	each month.
EXIT	Go back to TVM menu.
360 N 10 IX	18
40000 PV	Store the known values.
O FY	Make sure to store zero
	in FV, because some
	other number may be
	there from a previous
	problem.
PMT	Calculate the payment.
Answer: PMT=-35	1.03

The sign convention makes this result *negative* because from the borrower's point of view (which is how the diagram was "drawn" for the calculator), the payment is paid *out* each month.

PV (Present Value) Calculations

Example: From the previous example, the woman decides she can actually afford \$750.00 monthly payments toward principal and interest. What's the highest-priced home she can afford?

Explanation: You need to work the previous example before attempting this one. Much of the value behind the TVM menu is the ability to vary one value to see how it affects another. Here everything is the same as the previous problem, except for the PMT, and now you wish to see how this new payment affects the Present Value (amount financed).

Keystrokes	Comments
750+/-) PMT	Store the new payment.
PV	Calculate the maximum
	loan amount the woman
	can afford.
Answer: PV=85,	463.11

This is how much the woman can afford to finance. So, adding in the amount of the down payment, she can actually look for a house in the \$95,000 range.

FV (Future Value) Calculations

Example: Again, refer to the previous example. If the woman now decides to move after exactly 5 years of those \$750 payments, what will be the balance left to pay on the mortgage?

Notice on the cash-flow diagram that FV is the amount left to pay immediately after making the 60th regular payment. The calculator does *not* net those two cash-flows – even though they do actually occur at that one point in time.

Both FV and PV are separate from (i.e. over and above) any regular PMT that may occur at the same time!

IRA vs. Property Appreciation

Example: Compare the relative investment merits of an IRA held for 25 years (with annual end-of-the-year deposits of \$2000), to a beachfront house acquired at the same time. The house, originally bought for \$30,000, is now worth \$110,000. If the IRA grows at the same rate as the house, which one is worth more at the end of the 25 years?

Explanation: First find the appreciation rate of the beach house. This will give you the interest rate for the IRA.

Keystrokes Comments

MAIN FIN TYM	Move to the TVM menu.
OTHER 1 P/YR EXIT	One annual payment.
25 N 3000	נ
+/- PV 11000	0
FY 🚺 PMT	Store the known values
IXYR	Find the appreciation.
I%YR=5.33	So then
0 PV 2000	change values for IRA.
+/- PMT FY	Solve for Future Value.
Answer: FV=99, 9	77.13

(Note: Long-term growth rates on IRA's are typically *much* higher than 5.33%. Try 10%.)

Balloon Payments

Example: You have borrowed \$125,000 at 12% A.P.R. At this rate, the interest that accumulates by the end of the first month is 1% of the original balance – which comes to \$1250.00, no? So, if \$1250 was your exact monthly payment, you would *always* owe the \$125,000 principal (i.e. you'd be making *"interest-only payments"*).

After a lengthy discussion with the lender, you decide to make monthly payments of \$1850.00, with the remaining balance due at the end of the 25th month in a "balloon payment." How much will that balloon payment be?

Explanation: This example is very similar to the previous one: The FV will be the amount of principal left to pay on the loan after the 25th payment. By paying *more* than just interest (like most mortgage payments), you will have whittled the balance away just a bit by the time the whole note comes due:

MAIN FIN TYM

OTHER 12 PZYR

END

Comments

Move to the TVM menu. Check top line of display for # of PMTS/YR: and MODE. If necessary: Set payments per year. Set END MODE because payments occur at the END of each month.

EXIT 25 N 12 IXYR 125000 FV 1850 +/- PMT Store the known values. FV Calculate the balloon. Answer: FV=-108,054.08

Remember: This Future Value is the amount you must pay *above and beyond* the final regular payment (so the entire amount paid at that time will be \$109,904.08, if you add in the regular payment). **Example:** A loan of \$58,000 is amortized at 9.25% over 30 years, with the balance due in 15 years. What is the monthly payment and what will be the amount of the balloon payment?

Explanation: The payment is calculated based on a term of 30 years. Then the balloon amount is figured after 15 years of those payments.

Keystrokes

MAIN FIN TYM	
58000 PV	
30×12 N	
9•25 I%YR	
0 FY	

Comments

Move to the TVM menu Set PMT/YR:, and END MODE, if necessary. Store the loan amount. Store the loan term. Store the interest rate. The loan will amortize *completely* in 30 years. Calculate the payment.

PMT

Answer: PMT=-477.15

Now it's a simple matter to calculate the balloon payment after a term of 15 years:

Keystrokes

Comments

15×12Just 180 payments.FVCalculate the balance.Answer: FV=-46, 361.77

The HP-19B Pocket Guide: Just In Case

Example: Repeat the previous example, but use BEGIN MODE, (payment made at the beginning of the month), to see how this changes the monthly payment and final balloon.

Keystrokes	Comments
MAIN FIN TVM	Move to the TVM menu,
	if necessary.
OTHER BEG	Set BEGIN MODE, and
EXIT	go back to TVM.
58000 PV	Store the loan amount.
9•25 IXYR	Store the interest rate.
360 N	Number of months.
O FY	Complete amortization.
PMT	Solve for payment.
Answer: PMT=-47	73.50

Now solve for the balloon payment at the end of 15 years:

Keystrokes	Comments
15×12 N	15 years = 180 months.
FV	Calculate the balance.
Answer: FV=-46	,361.77

As you can see, the balloon payment stays the same, but meanwhile you're making a slightly *lower* monthly payment.

"Points Up Front" (Prepaid Finance Charges)

Example: The interest rate on F.H.A. loans depends on the amount of finance charge you pay up front (percentage "points up front"). On the day you inquire, the terms on fixed rate, 30-year loans are 10.5% with 1/4 point (0.25% of the loan paid up front), 10.0% with 1/2 point, 9.5% with 2.5 points, and 9.0% with 4.25 points. Payments and compounding are all monthly. What's the F.H.A. *really* yielding on these loans?

Explanation: The points up front do *not* reduce the payment amount. They don't change anything about the loan except the net amount of money that you are borrowing. F.H.A. will loan you, say, \$100.00, but at the same time, you will give them back a quarter (0.25%). Then they will figure your payment based on the full \$100.00 loan (at 10.5%), *not* on a \$99.75 loan.

To find the true yield, first choose an arbitrary loan amount (any amount will do because it's the interest rate you're concerned with): \$100 is simple. Next, you calculate the payment as if there were no "points up front." Then subtract the points from the loan amount (PV) and calculate the actual I%YR.

Answer: I%YR=10.53

Repeat the above steps for each of the other three interest rates (starting at 100 FU for each case). The answers are 10.06,9.79, and 9.49, respectively.

Differing Interest And Payment Periods

When the interest compounding period differs from the payment period (e.g. daily compounding with monthly payments), you need to convert to a new interest rate. This new interest rate will *compound* in accordance to the payment period, but it will *accumulate* the same amount of interest as the old rate. You calculate this new rate with the ICONV (Interest CON-Versions) menu.

Annual Payments With Monthly Compounding

Example: You operate a small lumber mill in Oregon's Rogue River Valley. You've borrowed \$200,000 for equipment and must make an annual, end-of-the-year payment on the 7-year loan. The interest rate is 7.25% compounded monthly. What is your annual payment?

Explanation: The only burr in this problem is that the payment period differs from the interest period. In such a case, *the payment period always wins out*. So all you need to do is figure an annually- compounding interest rate that is *equivalent* to 7.25% compounded monthly:

7 • 2 5 NOME

12 F

EFF2

PER

MAIN FIN ICONV

Comments

Move to the Interest CONVersions menu. Select PER for periodic interest.

The nominal rate quoted was 7.25%...

...compounded monthly. Calculate the effective annual rate for monthly compounding.

Answer: EFF%=7.50

EXIT	Leave the ICONV menu.
TYM STO IXYR	Store the correct I%YR.
	You have to press STO.
	Otherwise the calcula-
	tor will think you want
	to calculate.
OTHER 🚺 P/YR	Set the number of
	payments per year.
END	Set END mode if it is
	not already set.
EXIT 7 N	A 7-year loan.
200000 PV	Loan amount.
0 FY	Paid off in 7 years.
PMT	Calculate the payment.

Answer: PMT=-37,754.63

Quarterly Payments With Monthly Compounding

Example: You borrow \$500,000 from your brother, to purchase an apartment complex, at 14.0%, compounded monthly, with quarterly payments (annuity in advance) for 10 years. What is that quarterly payment amount?

Keystrokes

MAIN FIN TWM
10×4 N
500000 PV
0 FV
OTHER BEG
(4) P/YB
EXIT) EXIT) ICON
PER
14•0 NOM2
12 P
EFF%
4 P NOM2
TVM (STO) IXYR
PMT
Answer: PMI =- 22

Comments

Move to the TVM menu. 40 quarterly payments. Amount you're loaning. Completely re-paid. Set BEGIN mode Quarterly payments. To convert the interest. One period to another. The nominal rate. Compounded monthly. The equivalent annual rate (14.93%). Quarterly-compounded equivalent (14.16%). Leave this menu Store the interest rate. Calculate the payment. 22,756.92

Canadian Mortgage

Example: A \$100,000, 30-year mortgage, with payments in arrears, is written at 15% (Canadian)A.P.R. What is the monthly payment, and what is the equivalent U.S. A.P.R ?

Explanation: In Canada, mortgage payments are usually monthly, but interest compounds semi-annually, so you need to convert between U.S. and Canadian rates before you can "internationally" compare two mortgage A.P.R.'s.

Keystrokes

Comments

MAN FIN ICONV	Move to ICONV menu.	
PER 15 NOM?	The 15% PERiodic rate,	
2 P	period is semi-annual.	
EFF2	Find the EFFective rate.	
Answer: EFF%=15	. 56 Then,	
12 P	12 monthly payments.	
NOMA	Solve for the U.S. A.P.R.	
Answer: NOM%=14	.55	
EXIT EXIT TYM	Go to the TVM menu.	
STO IXYR OTHER	Store this interest rate.	
12 P/YR END	12 payments/year, etc.	
EXIT 360 N	Store the terms of the	
100000 PV	loan.	
O FY PMT	Solve for the payment.	
Answer: PMT=-1,228.67		

Amortization Schedules

An amortization schedule is an itemized listing of the principal and interest ("P and I") paid over any given number of periods within the term of a mortgage.

The AMRT menu on your HP-19B is a set of side calculations, much like the ICONV menu, except that they use the values currently sitting in your TVM registers.

Example: You have a straightforward 30-year, fully-amortized mortgage for \$90,000 at 9.5% A.P.R., with monthly payments in arrears. Find the amount of interest and principal paid at the end of each year for the first 5 years.

Keystrokes

FIN TVM

OTHER END

EXIT 360 N 9•5 I%YR

Comments

Go to the TVM menu . Set END mode and 12 payments per year.

The HP-19B Pocket Guide: Just In Case

Now go to the AMRT menu by pressing **OTHER INTER** and follow the display's directions. To amortize 12 payments at once:

Keystrokes	Comments
12 #P	To amortize first 12
Answer:	payments at once. PAYMENTS: 1-12 BALANCE=89, 445.02 INTEREST=-8, 526.26
To see the pri Answer:	incipal paid, press PRIN PRINCIPAL=-554.98
To amortize t press NEXT.	he next set of 12 payments, just
Answer:	PAYMENTS:13-24 BALANCE=88,834.95 INTEREST=-8,471.17
Press PRIN Answer:	PRINCIPAL=-610.07

And so on.....

If you have a printer for your HP-19B, press INSTER, follow the display directions, and you'll be able to print out any portion of the amortization schedule.

Leases

There is very little difference between a lease and any other investment situation. A lease is simply the lending of valued property, rather than the lending of money itself.

Leases can still be drawn on cash-flow diagrams, and most can be analyzed using the TVM menu (if they have steady payments – and such payments usually are made at the beginning of the month – BEGIN mode). However, if the payment schedule is something *other* than a uniform series, you'll need to use the CFLO menu.

Example: Employees of your company buy their own cars, but then your company leases those cars from the employees, agreeing to pay down the principal on the 48-month loans by exactly half during that time. After that time, the employee owns the car and can sell it or keep it as he or she so chooses. What will the company's monthly lease payments be on an \$12,500 car loan at 12.5% interest?

Explanation: This example is simple once you draw the correct picture. The loan amount (PV) is \$12,500 and the company agrees to pay that amount down by 50% over two years. The cashflow diagram looks like this:

Keystrokes

MAIN FI

12 P/YR

12500 ÷2+/-

12.5

.

 $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$

PMT

(EXIT)

FIN TVM

FΨ

IZYR

Comments

Move to the TVM menu.

Set BEGin mode and 12 payments per year. Return to TVM menu. Store the loan amount. Store the amount that the company agrees to pay the loan down to. Store the interest rate. A two-year term. Calculate the company's payment.

Answer: PMT=-357.06

Example: You are leasing a \$75,000 piece of equipment for 60 months (with payments in arrears), and the residual value is 20% of the price. The payment is based on a 13% annual yield, but then 2 payments are required in advance. Find the payment and the actual yield.

Explanation: The payment is calculated like any loan with a balloon payment: Just amortize it out from the following cash-flow diagram:

Now, if you request two payments up front, how does that affect your yield? Look at this cashflow diagram:

This diagram correctly describes the actual situation, where two of the regular payments, the ones from the 59th and 60th periods, occur at the beginning of the first period. But because the final two periods now have no regular monthly payment, you cannot use the TVMmenu directly to solve for the true yield.

You have to use the CFLO menu.

Press **MAN FIN** and you'll see that one of your choices is CFLO. Whenever the payments in your cash-flow situation are *uneven*, the CFLO menu is where you'll turn.

Uneven Cash-Flows (CFLO)

You can easily represent almost any cash-flow scenario using the CFLO menu – even when the periodic payments are *not* all the same.

IRR% (Yield)

This is the diagram from the previous example. Remember that you couldn't find the I%YR on this problem with the TVM menu because the payments were not steady and uniform throughout. But with the IRR% calculation from the CFLO menu, you can calculate interest rates or yields for such situations.

Keystrokes Comments MAIN Move to the CFLO menu. CLEAR DATA,...etc. (Clear current list – or

else NAME it and then GET XNEW).

1527·68×2	
-75000	Calculate the net initial
	cash-flow.
INPUT	Store this as the initial
	cash-flow in the list.
1527.68 INPUT	Store the amount of the
	first cash-flow group.
58INPUT	There are 58 cash-flows
	in group 1.
0 INPUT	Account for every period
	on the diagram, even if
	the amount is zero.
1 INPUT	There's only one of those.
75000×20%	
INPUT	The last group amount.
1 (INPUT)	It occurs only once.
CALC IRRX	Calculate the internal
	rate of return for this
	cash-flow scenario.
×12=	Annualize the return.
Answer: 13.81	

Unlike the I%YR calculation on the TVM menu, IRR% returns a *periodic* rate that *must be annualized*. In this case, that meant you had to multiply the monthly yield by 12.

So in the lease problem on page 39, the yield changes from 13.50% to 13.81% because of the two payments up front.

"Sliding" Cash-Flows

When you are analyzing a complicated cashflow scenario, you can often simplify the problem by "sliding" cash-flows forward or backward along the cash-flow diagram to arrive at an easier, equivalent cash-flow diagram.

If you know the prevailing interest rate that applies to a cash-flow diagram, then any single cash-flow can be *moved along the timeline* one or more periods in either direction, *provided that you adjust the amount of that cash-flow according to the prevailing interest rate.*

Remember that this sliding cash-flows is for analysis purposes; it doesn't necessarily represent how the cash-flows would actually occur in the real world; if your banker is looking for regular monthly payments on a loan, he/she probably won't be enthused if you move payments around to come up with an equivalent irregular payment schedule. But the point is, you *can* do this on paper if it helps you to analyze your payments, A.P.R., etc.

The next few pages look at the concepts and tools used for sliding cash-flows – first the concepts, then the "hands-on" examples to solidify your knowledge of this type of analysis.

NPV (Net Present Value) And NFV (Net Future Value)

The NPV calculations on the CFLO menu are good examples of tools that "slide" cash-flows.

The Net Present Value (NPV) key calculates the total value of all the cash-flows on the current list if they were all "slid" to the left end (the beginning) of the time-line, adjusted according to the periodic interest rate, I%), and summed.

Example: The payment schedule on an 11.25% A.P.R. loan calls for six \$500.00 monthly payments followed by six \$1000.00 monthly payments (end of the month). What was the original amount of the loan?

Keystrokes

Comments

Move to the CFLO menu. Clear (or name) the current list.

Keystrokes

Comments

Initial cash-flow is zero. Store the amount of the first cash-flow group. 6 cash-flows in group 1. The second cash-flow group amount is \$1000... ...for six months.

With NPV, you must give the *periodic* interest rate, I%. Calculate the NPV.

NPV

Answer: NPV=8,395.68

All the cash-flows in the list are positive, and yet NPV is also positive. This is different from the PV calculation in the TVM menu. NPV only slides cash-flows, whereas PV is always assuming an investment/return situation and therefore changes the sign (\pm) on its final answer.

The Net Future Value (NFV) is the same idea as NPV except that the cash-flows are all slid to the *right* (future) end of the time-line. Other than that, everything else is the same; you build the exact same picture of the cash-flow situation, using a CFLO list to describe it.

NUS

The Net Uniform Series (NUS) key does two things: First it calculates the NPV of a cashflow scenario. Next it "mentally" amortizes this NPV, thus computing the uniform periodic payment amount that would be *equivalent* to the cash-flow scenario described in the current list.

Example: What regular payment is equivalent to the cash-flows of the previous problem?

Solution: After keying in the CFLO list from the previous problem, simply press **NUS** to see that a steady, level payment of \$743.00/ month is equivalent to six \$500 payments, followed by six \$1000 payments, if you assume a periodic (monthly) interest rate of 0.9375.

TOTAL

TOTAL simply adds up all the cash-flow amounts and returns this total. It makes no adjustments for the prevailing interest rate.

Example: What is the TOTAL of the cash-flows in the current list (keyed in on pages 44-45)?

Solution: Press TOTAL=9000.00

Using The TVM Menu To Slide Cash-Flows

The TVM menu can be used for sliding single cash-flows or for netting a group of even cashflows. The following examples show how to do this. If you can develop a pictorial understanding of this process, you never have to brush shoulders with the mathematics involved.

Example: On the following cash-flow diagram, move the first cash-flow back (to the left) by three periods, group the series of \$295 cashflows into one cash-flow at the end of the ninth period, and slide the final cash-flow back in time (to the left) by six periods. Use a periodic rate of 0.83%. In other words, take this:

And turn it into this:

Comments

Use the TVM menu. The periodic (monthly) interest rate. Set 12 payments/year... ...and END mode Return to TVM menu. Store the amount of the first cash-flow to slide. Set the number of periods it's going to slide. No other cash-flows. Find the Present Value. When you use the TVM keys for sliding a cashflow, you must change the sign on the answer.

Answer: -723.83

0 PY 5 N	Ready to slide the group
	of cash-flows.
295 PMT	There are five payments,
	each \$295.
FY	Slide four payments to
	the right, and add to
	fifth payment.
+/-	TVM changes the sign.
Answer: 1499.69	

Comments

One more cash-flow to slide – to the left. The amount of the final cash-flow. Slide it back six periods. Calculate the amount after sliding and change the sign.

Answer: 937.34

If you understand the material that has been reviewed in the last few pages, then you have a good grasp of the cash-flow diagram as a dynamic tool for analyzing problems in finance.

The following examples will give you practice in using these concepts in cash-flow analysis, and they may apply directly to the solution that you are looking for within the pages of this Pocket Guide.

Wraparound Mortgage

Example: A property owner wishes to refinance his mortgage. The property has a single mortgage at 10.5% A.P.R. on which he still owes \$2,650/month for 48 more months, plus a balloon payment of \$75,000 at the end of the 48th month.

He wishes to borrow an additional \$35,000 against the value of the property and have you (the lender) assume the payment schedule of the initial mortgage. He would like this debt to you amortized over 20 years with a \$40,000 balloon payment.

You agree to wrap his mortgage and to refinance everything at 13.5% plus a finance charge of 2% of the new money loaned. What is the property owner's monthly payment to you and what are you yielding by wrapping his mortgage?

Explanation: This example has to be approached in three steps. The first two steps involve some fairly simple calculations using the TVM menu. Then the third step requires that the results of the first two steps be combined onto one cash-flow diagram to calculate the yield, using IRR% under the CFLO menu.

The first step is to find the unpaid balance on his mortgage, by sliding those payments to the left end of the time-line with a PV calculation:

Keystrokes

Comments

MAIN FIN TYM	Go to the TVM menu.	
OTHER 12	Set the payments/year	
P/YR END	and END mode.	
EXIT	Back to the TVM menu.	
2650+/- PMT	Store the payment.	
48 N	Store the term.	
10•5 IXYR	Store the original rate.	
75000+/- FV	Store the balloon.	
PY	Calculate the PV.	
Answer: PV=152,870.58		

Next, find a new payment at 13.5% A.P.R., based on the above PV plus \$35,000.00:

Keystrokes	Comments
+35000=+/- PV	Store the new PV.
13•5 IXYR	The new interest rate.
40000 FV	The balloon.
20×12 N	20 years of months.
PMT STO 0	Calculate his payment
to you and store it. Answer: PMT=2, 235.35	

Finally, put the whole shebang on one cash-flow diagram and figure the IRR%:

Keystrokes

EXT [FL0] CLEAR DATA] YES 35000(+/-)--2% INPUT 2650(+/-)+ RCL0 INPUT 47) [INPUT]

Comments

Move to the CFLO menu. Clear the current list. Calculate the initial cash-flow. Store the initial cashflow. Calculate the amount of cash-flow group one. Fetch the last payment you calculated. Store the amount of cash-flow group one. That group lasts for 47 periods.

Keystrokes	Comments
++	Move to the previous cash-flow.
RCL)INPUT	Bring that cash-flow to
	the calculator line.
-75000	Calculate the net 48th
	cash-flow.
+ + INPUT	Store the 48th cash-flow
INPUT	It occurs once.
RCLO	Fetch the payment.
INPUT	Store the amount of the
	next cash-flow group.
239-48 INPUT	That flow happens 191
	times.
	Move to the previous
	cash-flow.
RCLINPUT	Bring that cash-flow to
	the calculator line.
+40000 +	Add the balloon.
INPUT	Store the final cash-flow.
CALC IRRX	Calculate the yield.
X12=	Annualize it.
Answer: 15.15	Not bad.

The HP-19B Pocket Guide: Just In Case

Variable-Rate Loans

Variable interest rates need to be handled as a series of related but separate problems on any financial calculator, because any single calculation must assume that the interest rate is constant throughout its "part" of the cash-flow line.

Interest rates on variable rate loans are generally tied to some other uncontrollable lending source (like Treasury Bills, or the Prime Rate). Many variable-rate terms have ceilings set to control both the maximum rate and the maximum annual change in that rate.

If you are responsible for quoting payments on a variable rate loan, the only approach is to quote the worst-case scenario. That is, assume interest rates will increase at the maximum rate per year up to the ceiling. A person who agrees to a variable rate loan should be able to handle the payments if this worst-case scenario becomes reality. **Example:** You borrow \$45,000 with monthly payments for the next 20 years. The interest rate is now 12% A.P.R., but it can increase at 0.5% per year, up to 17%. What's the worst-case scenario for your payments during the first 3 years? What's your maximum payment?

Explanation: In a loan where the rate is adjusted annually like this, you treat each year separately, assuming the interest rate will increase at the maximum allowed rate. You need to calculate the balance owed at the end of each year, and then recalculate the payment due on that balance using the next interest rate, etc.

12	N	FV
----	---	----

+/-) PV	
240-12 N	
12•5 IXYR	
O FY	
PMT	

Comments

Calculate the balance due at the end of 12 mos. Store this as PV Store the new term and the new interest rate. Re-amortize the loan Calculate the payment amount for year 2.

and

Answer: PMT=-510.84

12 N FY	Calculate the new bal-
	ance due at the end of
	12 months.
+/-) PV	Store this as PV.
240-24 N	Store the new term and
13•0 IXYR	the new interest rate.
O FY	Re-amortize the loan.
PMT	Calculate the payment
	amount for year 3.
· DMT_ EO	E 00

Answer: PMT=-525.93

Now, to calculate the maximum payment, repeat the steps above for each year until you reach an interest rate of 17%. Other than a computer program on a more powerful computer, there are no shortcuts....sorry. After many keystrokes, you'll find the maximum payment (that's in year 11) to be -632.36.

Blended-Rate Mortgage

You can calculate the overall ("blended") interest rate for a variable-rate mortgage.

Example: What is the overall rate earned on this variable-rate mortgage?

Keystrokes

MAN FIN CFLO
CLEAR DATA YES
70000+/-(INPUT)
720003[NPUT
720.03(INPUT)

12)(INPUT) (7)7)3)•)7)8)(INPUT)

60-12 INPUT

878.75(NPUT) 360-60(NPUT) CALC IEEZ X12= Answer: 13.81

Comments

Move to the CFLO menu. Clear the current list. The initial cash-flow. Store the amount of cash-flow group 1.

Store the amount of cash-flow group 2. There are 48 cash-flows in group 2. Store amount of group 3. There are 300 of these. Find the periodic return. Annualize it.

Modified Internal Rate of Return (MIRR)

Example: You invest \$50,000 in a low-income housing project. The project will receive operating loans from several sources, so your investments and returns will be distributed rather unconventionally, alternating a lot, like this:

What would be your yield on this proposed investment scenario?

Explanation: MIRR uses two different discount rates: one to find the NPV of your investments, using a *safe rate*; and one to find the NFV of your returns (positive cash-flows), using a *risk rate*. That is, you slide your negative cash-flows backward and positive ones forward. For this problem, use a safe rate of 5.5% A.P.R., (as in a money market rate), and a risk-rate of 18% A.P.R (as in an aggressive mortgage fund).

Keystrokes

Comments

Move to the CFLO menu. Clear the current list. The initial cash-flow. Next 2 cash-flows are 0. Next cash-flow is -25,000. Another cash-flow of 0. Another cash-flow of -25,000. Last two cash-flows are each -10,000. Use the safe rate here. Solve for NPV

Answer: NPV=-104,545.53

STO 1

Store your answer

Next, EXIT to the list again, and . Now enter your positive cash-flow list:

Keystrokes

Comments

 (0) [NPUT)
 Initial cash-flow is 0.

 (25) (0) [NPUT] [NPUT]
 First cash-flow is 25,000.

 (5) (0) (NPUT] [NPUT]
 Next cash-flow is 50,000.

 (+)
 Next cash-flow is 0 (OK).

 (5) (0) (0) [NPUT] [NPUT]
 Another 50,000.

 (0) [NPUT] (NPUT]
 Last three cash-flows (0).

 (CALC_18)
 IX

 NFY
 Solve for NFV.

Answer: NFV=264,028.34

Now, to solve for MIRR:

EXIT EXIT TYM	Move to the TVM menu.
STO FY	Store the previous re-
	sult (NFV).
RCL 1 STO PU	Recall the NPV of your
	negative cash-flow list.
7 N	Number of years.
O PMT OTHER	Payment of 0. Set 1 pay-
1 PZYR END	ment per year, and exit.
EXIT) IXYR	Solve for I%YR.

Answer: I%YR=14.15

The HP-19B Pocket Guide: Just In Case

Creating And Using Your Own Formulas

The HP-19B lets you create your own formulas and use them in menu form, just like you use the built-in ones. From the MAIN menu, press SOLVE. The display should now look like this:

Example: As a professional carpetlayer, you often give estimates for carpeting rooms and hallways. Your estimation formula is

Cost = 1.1 x (Length x Width x Price) + 9

with Length and Width measured in feet, and the price is per square yard. Put this formula into your HP-19B.

Solution: At the SOLVE menu, type:

CARP=1.1XLENGTHX WIDTHXPRICE+9(NPUT).

Here's how it should look when you're finished:

CARP=1.1×LENGTH×WIDTH×PRICE÷9

The HP-19B Pocket Guide: Just In Case

Example: Using the formula from the previous example, give a quote for carpeting a 12'x15' room with carpet priced at \$18 per square yard.

Keystrokes	Comments
CALC	(from the SOLVE menu)
	lets you use the form-
	ula currently displayed.
15 LENG	Key in the length.
12 HIDT	Key in the width.
18 PRICE	Key in the price.
CARP	Solve for estimated cost.
Answer: CARP=396.00	

Example: Change your CARP formula to

CARP=1.05×LENGTH×WIDTH×PRICE÷9

Keystrokes	Comments
use the † and ɨ	From the SOLVE menu until you're pointing to the CARP formula, then
EDIT	to prepare to edit.
	Move over to the 1.1 .
DEL	Delete the second ${f l}$.
INSINS 05	Make room for and key
	in the digits 05.
CALC	Now verify its validity.

Example: Another material you install is wall molding. Your bidding formula for this is:

Molding Cost = 2.1xPrice(Length+Width)

Add this to your HP-19B's list of formulas.

Solution: From the SOLVE menu, press:

MOLDING=2·1×PRC× (LENGTH+WIDTH)INPUT.

If all is well, you should then see this:

MOLDING=2.1×PRC×(LENGTH+WIDTH)

Example: Using the molding formula from the previous example, give a bid on a 12'x15' room, with molding priced at \$1.00 per foot.

Keystrokes	Comments
CALC	The calculator will ver-
	ify the molding formula
	and then present a menu
	of its variables.
1•00 PRC	Key in the per-foot price.
15 LENG	Key in the room length.
12 HIDT	Key in the room width.
MOLD	Solve for the molding bid.
Answer: MOLDI	NG=56.70

The HP-19B Pocket Guide: Just In Case

Shared Variables And Formulas

Example: Give one bid for installing carpeting and molding in a 15' x 20' room. The carpet costs \$24/ square yard; the wall molding is \$2.25/foot.

Explanation: The two equations, for CARP and MOLD, *share* two variables, (length and width). To find the total cost, you can therefore write one additional formula, as follows:

TOTAL=CARP+MOLDING

Keystrokes	Comments
CALC	The calculator will ver-
	ify the TOTAL formula.
EXIT + + CALC	Move to CARP formula.
15 WIDT	Store the width.
20 LENG	Store the length.
24 PRICE	Store the price.
CARP	Solve for carpet price.
Answer: CARP=840.00	
EXIT 🗗 CALC	Move to MOLD formula.
2•25 PRC	Enter the price.
MOLD	Solve for molding cost.
Answer: MOLDING=165.38	
EXIT 🛃 CALC	Move to TOTAL formula.
TOTAL	Solve for total cost.
Answer: TOTAL=1,005.38	

An Easy Course In Using The HP-19B

Price \$22.00 plus \$2.00 Shipping

This book is the last word in friendly, easyto-read-and-truly-understand home-study courses. It gives you the strong conceptual grasp you need to master your HP-19B calculator, teaching you those necessary skills

and tools you need to solve your own problems. So don't be intimidated by new situations – be confident instead:

- Mortgages Investments IRA's
- IRR/MIRR
- Cash-Flow Analyses
- Writing your own SOLVE equations and much more.

Call or write for more information on our entire series of books for HP calculators!

Grapevine Publications, Inc.

P.O. Box 118 Corvallis, OR 97339-0118

Call Our 24-Hr. Toll-Free Order Number 1-800-338-4331

(In Oregon: 754-0583)

Index

Annuities (PMT) 20-25, 28-29
Alphabetic input (a)4, 61
Amortization schedules
Arithmetic4-5
Backspace8
Balloon payment25
BEGin mode28, 37
Blended rate mortgage57
BUS menu13
Calculator Line4
Canadian mortgage34
Cash-flow diagrams18
CFLO19, 40
Change sign (+/-)19
Clearing the calculator8
Clearing a list12
Clearing registers9
Compound interest
Decimal places (DISP)7
END mode21
EXIT
FHA loans29
FINancial calculations18
Finance charges (pre-paid) 29
Formulas 61-64
FV (Future Value)23
Gold 🔳 (shift) key4
History Stack5
ICONV
I%YR20, 42
IRA's24
IRR%41, 50
Interest-only payments25

Interest calculation	19
Lease	37
Lists	10
MAIN menu	6
MU%C	15
MU%P	17
Menus	6
MIRR	58
Mortgages2	20-25
NFV (Net Future Value)	45
NPV (Net Present Value)	44
NUS (Net Uniform Series)	46
Naming a list	11
Order form	65
Percentage calculations 5, 1	3-14
Payment period	31
PMT2	21-23
Points up front	29
Principal25, 3	85-36
Printer (for AMRT TABLE) .	36
PV (Present Value)	22
Recalling numbers RCL	9
Registers	9
Sliding cash-flows4	13-47
Storing numbers (STO)	9
SOLVE6	61-64
SUM	10
TOTAL	46
TVM19, 21-24, 3	3, 37
Variable-rate loans	54-57
Viewing angle	7
Wraparound mortgages	50
Yield24, 2	9, 41

I2BN 0-837077-55-7

