

HEWLETT-PACKARD HP-19C/HP-29C Applications Book

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

INTRODUCTION

Welcome to the world of HP calculators. We know you will be pleased with the quality, versatility, and ease of use of your new HP-19C/HP-29C. This application book is designed to help you get the best from your calculator, whether your interest is in solving specific problems in a particular area or in learning to use the powerful programming capabilities of the HP-19C/HP-29C.

These programs have been chosen from real world problems in a variety of areas; mathematics, statistics, finance, surveying, navigation, science, medicine and games. They demonstrate the many uses of the HP-19C/HP-29C and will give you immediate calculation aids for problems you encounter every day. You will also find them useful as guides to programming techniques and models for writing your own customized software. The comments on each program listing demonstrate the approach used to reach the solution and help you follow the programmer's logic as you become an expert with your own HP-19C/HP-29C.

TABLE OF CONTENTS

ntroduction
Algebra and Number TheoryQuadratic EquationBase ConversionsUVector OperationsComplex OperationsSystem of Linear Equations With 3 Unknowns
Finance Annuities and Compound Amounts 28 Discounted Cash Flow Analysis Net Present Value 39 Calendar Functions 44
Games49Moon Rocket Lander49Queen Board52Biorhythms55Countdown Timer58
Medical Body Surface Area Calculations Pulmonary Functions and Vital Capacity
Navigation70Great Circle Navigation70Rhumb Line Navigation73Sight Reduction Table77
Numerical MethodsNewton's Method-Solution to $f(x) = 0$ Numerical Integration by Simpson's Formula
Physical SciencesIdeal Gas Equation of StateRadioactive Isotope DecayAcid-Base Equilibrium
Statistics102Curve Fitting102Normal and Inverse Normal Distribution107Factorial, Permutation and Combination112

Stress Analysis Static Equilibrium at a Point Section Properties	
Surveying	
Field Angle or Bearing Traverse	127
Horizontal Curve Layout	
Trigonometry and Analytical Geometry	
Coordinate Translation and Rotation	138
Triangle Solutions	143
Circle Determined by Three Points	
Intersections of Lines and Lines, Lines and Circles, and	
Circles and Circles	155

A WORD ABOUT PROGRAM USAGE

This Applications Book for the HP-19C/HP-29C provides a diverse selection of programs chosen from a number of areas of interest. Each program includes a brief description, a listing of the program keystrokes, a set of instructions for using the program and one or more example problems, including the actual keystrokes required for the solution.

Explanatory comments have been incorporated in each program listing to aid your understanding of the actual working of each program. Thorough study of the commented listing can help you expand your programming repertoire since interesting techniques can often be found.

The completed User Instruction Form—which accompanies each program—is your guide to operating the programs in this pac.

The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.

The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.

The INPUT-DATA/UNITS column specifies the input data, and the units of the data, if applicable. Data input keys consist of ① to ⑨ and decimal point (the numeric keys), **EEX** (enter exponent), and **CHS** (change sign).

The KEYS column specifies the keys to be pressed after keying in the corresponding input data.

The OUTPUT-DATA/UNITS column specifies intermediate and final outputs and their units, wherever applicable.

The following illustrates the User Instruction Form for Quadratic Equation, the first program in this book.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Enter coefficients of quadratic			
	x ² coefficient	а	ENTER +	
	x coefficient	b	ENTER +	
	constant	С	GSB 1	D
3	If $D \ge 0$, roots are real		R/S	X2
			R/S	X ₁
4	If $D < 0$, roots are complex of		R/S	u (real part)
	form u ± iv		R/S	v
				(imaginary part)

Step 1 requires you to key in the program. Switch the HP-19C/HP-29C to PRGM mode, depress CLEAR PRGM and key in the program steps as listed. The choice of program LABEL 1 is arbitrary and could be changed to fit the user's needs by making corresponding changes in the User's Instructions (and possibly other modifications in the program listing.) Note that some steps on the program listing require keystrokes not explicitly listed for entry in the program, e.g. LBL 1 is keyed in by three keystrokes **DLB 1**. (See the Owner's Handbook for a more detailed explanation of keying in programs.)

Step 2 of the User's Instructions asks for the coefficients of the quadratic equation. Switch the calculator to RUN mode. Coefficient a is keyed in and followed by ENTER®, coefficient b is keyed in and followed by ENTER®, and coefficient c is keyed in, followed by GSB 1. D is immediately calculated and displayed and program execution stops. Upon depressing R/S the calculator resumes program execution, automatically determining if D is positive or negative and displaying a root of the equation. Depressing R/S again displays the other root.

Display of intermediate or sequential results can be accomplished in several ways; a pause may be used to display a result for approximately 1 second before resumption of program execution, or a R/S command may be used to stop execution and display the result. Execution of the program then resumes after depressing the \mathbb{R}/\mathbb{S} key. (In these programs we have usually resorted to R/S commands to eliminate the chance of missing important results during the brief pause.) Additionally, with the printer, PRINT X commands may be used to print intermediate results.

If you own the HP-19C with printer you should note that the program listings are written to provide display outputs only and do not include PRINT commands. You will want to take advantage of the printer in recording both intermediate and final results. This can best be done by substituting a PRINT X command for the R/S commands when recording sequential or intermediate results and inserting a PRINT X command at the point in the program where the final result is displayed (usually just prior to a RTN command). Use of the printer in this manner has the advantage of eliminating halts in the program due to R/S commands.

Many of the program comments show points (designated by ***) at which the PRINT X command may be inserted or substituted, if desired. If the length of the program prevents insertion of the printer commands at the various steps the results still may be recorded by manually operating as needed.

For example, in the Quadratic Equation program the R/S instruction at step 15 could have been replaced with a PAUSE instruction if only momentary display of D was desired, or, on the HP-19C, a PRINT X command could be substituted for the R/S command at 15 and inserted after step 34 to provide a printout of the results.

QUADRATIC EQUATION

This program calculates the two roots of a quadratic equation. If the roots are real they are displayed consecutively. If complex, the real part is displayed first, followed by the imaginary part.

Equations:

The roots x_1 , x_2 of $ax^2 + bx + c = 0$ are given by $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

If $D = (b^2 - 4ac)/4a^2$ is positive or zero, the roots are real. In these cases, better accuracy may sometimes be obtained by first calculating the root with the larger absolute value:

If
$$-\frac{b}{2a} \ge 0$$
, $x_1 = -\frac{b}{2a} + \sqrt{D}$

If
$$-\frac{b}{2a} < 0$$
, $x_1 = -\frac{b}{2a} - \sqrt{D}$

In either case,
$$x_2 = \frac{c}{x_1 a}$$

If D < 0, the roots are complex, being

$$u \pm iv = \frac{-b}{2a} \pm \frac{\sqrt{4ac - b^2}}{2a} i$$

Remarks:

- The user merely inputs the coefficients in proper order; first a, then b, then c, being careful to observe signs for negative coefficients. The first result displayed is D. If it is positive the roots are real, if negative, they are complex.
- In the case of real roots the program tests for and calculates the larger root first for best accuracy, then displays the roots in reverse order.

				T			
01 #LBL1 02 Stop							
03 R‡							
04 X2Y 05 ST÷0		c/a					
8 6 ÷		C/ a					
07 2 08 ÷							
8 9 CHS		b/2a					
10 STO1 11 ENT†							
12 X2							
13 RCL0 14 -							
15 R/S		*** D					
16 X(8? 17 GTD8		_					
18 JX							
19 ST-1 20 XZY			15				
21 +		-b/2a - ∙	VD				
22 RCL1 23 LSTX		-b/2a +	√D				
23 LSTX 24 X>0?							
25 R4							
26 R↓ 27 ST÷0		Select					
28 RCL0							
29 GT03		×2					
30 #LBL0 31 ABS							
32 JX							
33 X#Y		v					
34 #LBL3 35 R/S		*** 0					
36 XZY		*** Disp	ыау				
37 6703							
			REGI	L STERS			
0 _{c/a, x2}	1 x1		2	3	4		5
6	7		8	9	.0		.1
.2	.3		.4	.5	16		17
18	19		20	21	22		23
24	25		26	27	28	1	29
	•				-		

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Enter coefficients of quadratic			
	x ² coefficient	а	ENTER +	
	x coefficient	b	ENTER +	
	constant	с	GSB 1	D
3	If $D \ge 0$, roots are real		R/S	X2
			R/S	X 1
4	If $D < 0$, roots are complex of		R/S	u (real part)
	form u \pm iv		R/S	v
				(imaginary part)

Example 1:

Find the roots of $x^2 + x - 6 = 0$

Keystrokes:

Outputs: 1 ENTER + 1 ENTER + 6 CHS GSB 1 _____ 6.25 (D) R/S ------2.00 (\mathbf{x}_2) • [R/S] -------_ -3.00 (\mathbf{x}_1)

Example 2:

Solve the quadratic equation $2x^2 - 3x + 5 = 0$

Keystrokes:	Outputs:	
2 ENTER + 3 CHS ENTER +		
5 GSB 1→	-1.94	(D)
R/S →	0.75	(u)
R/S	1.39	(v)

Since D is negative the roots are imaginary and the solutions are of the form $x_{1,2} = 0.75 \pm 1.39i$

Example 3:

A ball is thrown straight up at a velocity of 20 meters per second from a height of 2 meters. At what time, neglecting air resistance, will it reach the ground? The acceleration of gravity is 9.81 meters/second². From physics:

$$f(t) = x = \frac{1}{2}gt^2 + V_0t + x_0 = 0$$
 or $\left(-\frac{9.81}{2}\right)t^2 + 20t + 2 = 0$

Keystrokes:

Outputs:

9.81 CHS ENTER + 2 = 20 ENTER +		
2 GSB 1	4.56	(D)
R/S	-0.10	(seconds)
R/S	4.18	(*seconds)

*The answer is 4.18 seconds. The root -0.10 seconds is a legitimate root of the equation but is not relevant to the problem.

BASE CONVERSIONS

This program converts positive numbers to and from base 10 representations. The other base involved may be any integer from 2 to 99, inclusive.

Let x_b be the representation of the number in the original base b. Assume that it is to be converted to the representation x_B in base B. Either b or B must be 10. In general, the bases are stored manually (b in R_1 , B in R_2) prior to keying in x_b and pressing (BB) (), which will cause the computation of x_B .

When converting numbers from base 10, b = 10. However, the number stored for b may be either 10 or 100. If the other base B < 10, then store b in R_1 as 10. If, however, B > 10, the value stored for b in R_1 should be 100.

Similarly, when numbers are converted to base 10 representations, B = 10. When b < 10, the value of B stored in R_2 should be 10; when b > 10, a value of 100 should be stored in R_2 .

The table below shows examples of the four possible cases:

To convert	From Base	To Base	Store in R ₁	Store in R ₂
	10	2	10	2
	10	16	100	16
	2	10	2	10
	16	10	16	100

A number such as $4B6_{16}$ cannot be represented directly on the display because the display is strictly numeric. Therefore, some convention must be adopted to represent numbers R_a when a > 10. We use the convention of allocating two digit locations for each single character in R_a when a > 10.

For example, $4B6_{16}$ is represented as 041106_{16} by our convention (in hexadecimal system, A = 10, B = 11, C = 12, D = 13, E = 14, F = 15).

When displayed, this number may appear as 41106 or with an exponent

which is interpreted as $4.B6 \times 16^2$.

The displayed exponent 4 is for base 10 and only serves to locate the decimal point (in the same manner as for decimal numbers).

When base a > 10 (as in the above example), divide the displayed exponent by 2 to get the true exponent of the number. When the displayed exponent is an odd integer, shift the decimal point of the displayed number one place (to the left or right) and adjust its exponent accordingly to make the true exponent an integer.

For example, the displayed number

is interpreted as B.C \times 16⁻² or 0.BC \times 16⁻¹.

Remarks:

- When the magnitude of the number is very large or very small, this program will take a long time to execute.
- The program will not give error indication for invalid inputs for x_b . For example, 981_8 will be treated the same as 1201_8 .
- As the program now stands, the user is forced to make a decision at input time whether the number stored for base 10 is 10 or 100. An alternative approach would be to always store 10, never 100, and have the program decide whether to overwrite the 10 with 100 in some cases. Such an alteration of the program would require about 25 more program steps.

61 eLBL1 62 ST03 83 RC11 64 ST06 65 RC12 66 ST06 87 0 88 ST06 89 ST04 10 EEX 111 1 12 2 13 ST08 14 RC13 15 eLBL9 16 1 17 X)Y?		keeps tr	ht until < 1. R ₀ ack of no. places jexponent)	55 RCL 56 57 57 STC 58 R1 59 #LBL 68 EL 61 6	б 5 8 4 4 4 14 14 17 7 7 7 1 1 1 1 1 1 1 1 1		e round-off error
18 GT08 19 GT18 20 CLX 21 RCL6 22 ÷ 23 ST03 24 GT09 25 #LBL8 26 RCL6 27 RCL3 28 x 29 ST03 30 GSB7 31 RCL4 32 RCL5 33 x x		On entro normalia 0 < xb ≤	< 1.				
34 + 35 ST04 36 RCL3 37 GSB 38 RCL3 39 - 40 ABS 41 ST03 42 1 43 ST-6 44 RCL4 45 RCL8 46 X479 47 GT06 48 RCL3 49 X487 49 X487 40 X477 40 X4777 40 X4777 40 X47777 40 X477777777777777777777777777777777		Do not t beyond					
				STERS	14		
0 Used	1 b 7		2 B	3 xb	4 Used		⁵ b
⁶ в			⁸ 10 ¹²	9	.0		1
.2	.3		.4	.5	16	1	17
18	19		20	21	22	2	23
24	25		26	27	28	2	9
	L		L	I	1		

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS			
1	Key in the program.						
2	Store bases (one must be 10						
	or 100):						
	Base to be converted from	b	STO 1				
	Base to be converted to	В	STO 2				
3	Key in number in base b and						
	calculate number in base B.	X _b	GSB 1	Х _в			
4	For a new conversion between						
	the same bases, go to step 3;						
	to change either base, go to						
	step 2.						
Example 1: Convert 0.2937_{10} to base 8 representation. (Since B = 8 < 10, b = 10.)							
Keystr	okes:	Outputs:					

10 STO 18 STO 2 10 FIX 9.2937 GSB 1 → 0.226277543 (Base 8)

Example 2:

Convert $1.23_{10} \times 10^{-12}$ to base 16. (Since B = 16 > 10, b = 100.) **Keystrokes: Outputs:** 100 STO 116 STO 2 1.23 EEX CHS 12 GSB 1 \longrightarrow 1.0510030 -20 (Base 16) This is interpreted as $1.5A3_{16} \times 16^{-10}$. Example 3: Convert 7.200067₈ \times 8⁻¹⁰ to base 10. (Since b = 8 < 10, B = 10.) **Keystrokes: Outputs:** 8 STO 110 STO 2 **SCI** 97.200067 EEX CHS 10 GSB 1 → 6.7522840 -09 (Base 10) Example 4: Convert D.2EE4₁₆ × 16^{12} to base 10. (Since b = 16 > 10, B = 100.) **Keystrokes: Outputs:** 16 STO 1 100 STO 2 $13.02141404 \text{ EEX } 24 \text{ GSB} 1 \longrightarrow 3.7107314 15$ (Base 10)

VECTOR OPERATIONS

This program calculates the basic vector operations of addition, dot (scalar) product, and cross product for three dimensional vectors. It also calculates the angle between two vectors. The program is capable of doing chain calculations whenever the product is a vector (refer to examples).

Equations:

Define a vector \vec{V} in 3 dimensional rectangular coordinate system,

$$\vec{V} = x\,\vec{i} + y\,\vec{j} + z\,\vec{k}$$

then:

Vector addition:

$$\vec{V}_1 + \vec{V}_2 = (x_1 + x_2)\vec{i} + (y_1 + y_2)\vec{j} + (z_1 + z_2)\vec{k}$$

Dot or scalar product:

$$\vec{V}_1 \cdot \vec{V}_2 = x_1 x_2 + y_1 y_2 + z_1 z_2$$

Cross product:

$$\vec{V}_1 \times \vec{V}_2 = (y_1 z_2 - z_1 y_2) \vec{i} + (z_1 x_2 - x_1 z_2) \vec{j} + (x_1 y_2 - y_1 x_2) \vec{k}$$

Angle between vectors:

$$\gamma = \cos^{-1} \frac{\vec{\mathbf{V}}_1 \cdot \vec{\mathbf{V}}_2}{|\vec{\mathbf{V}}_1| |\vec{\mathbf{V}}_2|}$$

Remarks:

• For two dimensional vectors, simply consider that the k component does not exist, i.e. input 0 for z's.

01 #LEL0 02 RCL6 03 ST03 04 R4 05 ST06 06 R4 07 RCL5 08 ST02 09 R4 10 ST05 11 R4 12 RCL4 13 ST01 14 R4		Input V		50 × 51 RCL 52 RCL 53 SSB 54 ST0 55 R/ 56 RCL 57 RCL 58 × 59 RCL 60 RCSB 62 ST0	3 5 8 8 5 3 4 1 6 8		
15 ST04 16 RTN 17 #LBL1 18 GSB0 19 RCL1				63 R∕ 64 RCL 65 RCL 66 × 67 RCL	S 1 5 2	$\vec{v}_1 \times \vec{v}$	2
20 ST+4 21 RCL4 22 R/S 23 RCL2 24 ST+5 25 RCL5		$\vec{v}_1 + \vec{v}_2$		68 RCL 69 #LBL 70 × 71 - 72 STO 73 RCL 74 RCL	8 8 8		
26 R/S 27 RCL3 28 ST+6 29 RCL6 30 RTN 31 #LBL2				75 RCL 76 RT 77 #LBL 78 GSE 79 @ 80 ST.	8 14 12 2		
32 GSB0 33 RCL1 34 RCL4 35 × 36 RCL2 37 RCL5 38 ×	•	$\vec{v}_1 \cdot \vec{v}_2$		85 RCL 86 RCL 87 2	1 .4 .2 .5 :+		
39 + 40 RCL3 41 RCL6 42 × 43 + 44 ST07	,			91 RC. 92 RC. 93 9	.6 ?+ 2 4 (7%	γ	
45 RTH 46 #LBL3 47 GSBG 48 RCL2 49 RCL6	7 9 2			96 RCL 97 COS 98 RT	7		
REGISTERS							
$ \stackrel{\circ}{\nabla_1} \times \stackrel{\circ}{\nabla_2} \stackrel{\circ}{k} $	1 x ₁		² y ₁	3 _{Z1}	4 x ₂		5 y ₂
6 _{Z2}	7 ∛ ₁•	• v ₂	⁸ V ₁ × V ₂ i	9 $\vec{\nabla}_1 \times \vec{\nabla}_2 \vec{j}$	^{.0} Used		.1 Used
^{.2} Used	.3 Used	ł	.4 Used	.5 Used	16		17
18	19		20	21	22		23
24	25		26	27	28		29
L	•						

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Input the first vector \vec{V}_1	X ₁	ENTER +	X ₁
		У 1	ENTER +	У1
		Z ₁	GSB 0	X ₁
3	For vector addition, go to step 4			
	For vector dot product, go to			
	step 6.			
	For vector cross product, go			
	to step 8.			
	For the angle between two			
	vectors, go to step 10.			
4	Vector Addition:			
	Input the 2^{nd} vector \vec{V}_2 and			
	calculate $\vec{V}_1 + \vec{V}_2$	X ₂	ENTER +	X ₂
		У ₂	ENTER +	y ₂
		Z ₂	GSB 1	, i
			R/S	, j
			R/S	ĸ
5	For a new case, go to step 2.			
6	Vector Dot Product:			
	Input the 2^{nd} vector \vec{V}_2 and			
	calculate $\vec{V}_1 \cdot \vec{V}_2$	X2		X ₂
		y ₂	ENTER +	y ₂
		Z ₂	GSB 2	$\vec{V}_1 \cdot \vec{V}_2$
7	For a new case, go to step 2.			
8	Vector Cross Product:			
	Input the 2 nd vector and			
	calculate $\vec{V}_1 \times \vec{V}_2$	X2	ENTER +	X ₂
		y ₂	ENTER +	y ₂
		Z ₂	GSB 3	→ İ
			R/S	j

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
			R/S	ŕ k
9	For a new case go to step 2.			
10	Angle Between Two Vectors:			
	Input the 2 nd vector and			
	calculate γ	X ₂	ENTER +	X ₂
		y ₂	ENTER +	y ₂
		Z ₂	GSB 4	γ
11	For a new case go to step 2.			

Example 1:
$$\vec{V}_1 = (2, 5, 2), \ \vec{V}_2 = (3, 3, -4)$$

Addition: $\vec{V}_1 + \vec{V}_2 = (5, 8, -2)$

Keystrokes:	Outputs:	
2 ENTER ♦ 5 ENTER ♦		
2 GSB 0→	2.00	
3 ENTER + 3 ENTER +		
4 CHS GSB 1	5.00	(i)
R/S	8.00	(j)
R/S →	-2.00	(k)

Dot product: $\vec{V}_1 \cdot \vec{V}_2 = 13.00$

Keystrokes:	Outputs:	
2 ENTER + 5 ENTER +		
2 GSB 0→	2.00	
3 ENTER + 3 ENTER +		
4 CHS GSB 2→	13.00	$(\vec{V}_1 \cdot \vec{V}_2)$

Cross product: $\vec{V}_1 \times \vec{V}_2 = (-26, 14, -9)$

Keystrokes:	Outputs:	
2 ENTER ♦ 5 ENTER ♦ 2 GSB 0	2.00	
3 ENTER ♦ 3 ENTER ♦ 4 CHS GSB 3	-26.00	(i)
R/S → R/S →	14.00 -9.00	(j) (k)

Angle:

Keystrokes:	Outputs:			
2 ENTER + 5 ENTER +				
2 GSB 0	2.00			
3 ENTER + 3 ENTER +				
4 CHS GSB 4	67.16°	(γ)		

Example 2:

Calculate $(\vec{V}_1 + \vec{V}_2) \cdot \vec{V}_3$ for $\vec{V}_1 = (1.10, 3.00, 4.40)$ $\vec{V}_2 = (1.24, 2.17, 3.03)$, and $\vec{V}_3 = (0.072, 0.231, 0.409)$

Keystrokes:

Outputs:

1.10 ENTER + 3 ENTER +		
4.40 GSB 0	1.10	
1.24 ENTER + 2.17 ENTER +		
3.03 GSB 1	2.34	
R/S	5.17	$(\vec{V}_1 + \vec{V}_2)$
R/S	7.43	
0.072 ENTER + 0.231 ENTER +		
0.409 GSB 2	4.40	$((\vec{V}_1 + \vec{V}_2) \cdot \vec{V}_3)$

COMPLEX OPERATIONS

This program allows for chained calculations involving complex variables. The four operations of complex arithmetic $(+, -, \times, \div)$ are provided, as well as several of the most used functions of a complex variable $z(|z|, z^n, \text{ and } z^{1/n})$. Functions and operations may be mixed in the course of a calculation to allow evaluation of expressions like $z_3/(z_1 + z_2)$, $|z_1 + z_2|$, ..., etc., where z_1 , z_2 and z_3 are complex numbers of the form x + iy.

Arithmetic Operations

An arithmetic operation needs two numbers to operate on. Both numbers must be input before the operation can be performed. Suppose that $z_1 = 2 + 3i$, $z_2 = 5 - i$, and we wish to find $z_1 - z_2$. This can be calculated by the keystrokes:

2 ENTER + 3 GSB 0 5 ENTER + 1 CHS GSB 2

The result $z_3 = u + iv$ is found to be -3 + 4i. This result is now stored by the program in place of the second complex number z_2 . A further calculation $z_3 \times z_4$ could be performed by inputting z_4 and depressing \bigcirc \bigcirc \bigcirc for multiplication. This type of chaining can be continued indefinitely, and functions can be interspersed with arithmetic operations.

Equations:

Let
$$z_j = x_j + iy_j = r_j e^{i\theta_j}$$
, $j = 1, 2$
 $z = x + iy = r^{i\theta}$
 $r = \sqrt{x^2 + y^2}$

Where

Let the result in each case be u + iv

$$z_{1} + z_{2} = u + iv = (x_{1} + x_{2}) + i (y_{1} + y_{2})$$

$$z_{1} - z_{2} = u + iv = (x_{1} - x_{2}) + i (y_{1} - y_{2})$$

$$z_{1} \cdot z_{2} = r_{1} \cdot r_{2} \cdot e^{i(\theta_{1} + \theta_{2})} = u + iv$$

$$z_{1}/z_{2} = \frac{r_{1}}{r_{2}}e^{i(\theta_{1} - \theta_{2})} = u + iv$$

$$|z| = r = \sqrt{x^{2} + y^{2}}$$

$$z^{n} = r^{n}e^{in\theta} \qquad n = \pm(1, 2, 3, ...)$$

$$z^{1/n} = r^{1/n}e^{i\left(\frac{\theta}{n} + \frac{360k}{n}\right)}, \quad k = 0, 1, ..., n-1$$

01 #LBL0				58 6708		
B2 RCL4				50 6708		
0 3 ST02				52 RCL2		
84 R‡				53 RCL1		
85 ST04				54 +P		
06 R4				55 ST05		
07 RCL3		Input z ₁		56 X2Y		
08 ST01		pat 21		57 ST06		
89 R4				58 #LBL5		
10 ST03 11 0				59 RCL4	z ₁	1
11 0 12 STOR				60 RCL3		
12 STOR				61 +P		
14 #LBL2				62 RTN		
15 CHS				63 #LBL6		
16 X#Y				64 ST07		
17 CHS		$z_1 - z_2$		65 GSB5	z ⁿ	
18 XZY				66 RCL7 67 Y*		
19 #LBL1				68 ST05		
20 GSB0				68 5105		
21 RCL1				70 RCL7		
22 ST+3		z ₁ + z ₂		70 KCL/		
23 RCL2		-1 . 22		72 5706		
24 ST+4				73 6708		
25 RCL3				74 #LBL7		
26 R/S				75 ST07		
27 RCL4				76 GSB5		
28 R/S				77 RCL7		
29 #LBL3				78 1/X		
30 GSB0				79 Y×		
31 GSB9				80 X2Y		
32 ST×5		$z_1 \times z_2$		81 RCL7		
33 X2Y 34 ST+6		-1 ~ -2		82 ÷		
34 5146 35 #LBL8				83 3		
35 #LBL8 36 RCL6				84 6	z ^{1/}	n
37 RCL5				85 0		
37 KCL5 38 →R				86 RCL8		
39 ST03				87 ×		
40 R/S				88 RCL7		
41 XZY				89 ÷		
42 ST04				90 +	.	
43 RTN				91 XZY 92 +K		
44 #LBL4				93 R/9		
45 GSB0				94 XZY		
46 GSB9				95 R/S		
47 ST÷5		_ /_		96 ISZ		
48 X2Y		z ₁ /z ₂		97 RCL7		
49 ST-6				98 GT07		
 			REGI	STERS		
⁰ к	1 x1		² y ₁	³ x ₂ , Last x	⁴ y ₂ , Last y	⁵ x, ÷, r ⁿ
⁶ +, -, nθ	7 n		8	9	.0	.1
.2	.3		.4	.5	16	17
18	19		20	21	22	23
24	25		26	27	28	29
			l		1	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in the first complex number.			
	$\mathbf{z}_1 = \mathbf{x}_1 + \mathbf{i}\mathbf{y}_1$	X ₁	ENTER +	
		У1	GSB 0	0
3	For a function, go to step 7, for			
	arithmetic, go to step 4. A com-			
	plex result is u + iv			
4	Arithmetic			
	Key in the second complex			
	number $z_2 = x_2 + iy_2$	X ₂	ENTER +	
	1	y ₂		
5	Select one of the four:			
	• Add (+)		GSB 1	u
			R/S	v
	 Subtract (-) 		GSB 2	u
			R/S	v
	Multiply (×)		GSB 3	u
			R/S	v
	• Divide (÷)		GSB 4	u
			R/S	v
6	The result of the operation has			
	been stored, go to step 7 for a			
	function or to step 4 for further			
	arithmetic.			
7	Functions			
	Select one of the 3 functions:			
	 Magnitude (z₁) 		GSB 5	z
	 Raise z to integer power (z₁ⁿ) 	n	GSB 6	u
			R/S	v
	• Find the roots of (z ^{1/n})	n	GSB 7	u
			R/S	v

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
			R/S	U ₂
			R/S	V ₂
			:	÷
			R/S	u _n
			R/S	V _n
8	The result, if complex, has			
	been calculated; go to step 4			
	for arithmetic or to step 7 for			
	another function.			

Examples:

10.40 -1.60
-1.60
-4.40
9.60
70.70
-14.20
0.25
0.64
0.15
-0.23
0.15
-0.23

6.	$(7-2i)^2 = 45.00 - 28.00i$	
	7 ENTER + 2 CHS GSB 0 2 GSB 6	45.00
	R/S →	-28.00
7.	$\sqrt{7+6i} = \pm (2.85 + 1.05i)$	
	7 ENTER ♦ 6 GSB 0 2 GSB 7	2.85
	R/S	1.05
	R/S	-2.85
	R/S →	-1.05
8.	$\frac{23+13i}{(-2+i)+(4-3i)} = 2.50 + 9.00i$	
	2 CHS ENTER \downarrow 1 GSB 0 4 ENTER \downarrow 3 CHS GSB 1 \longrightarrow	2.00
	R/S	-2.00
	1 CHS GSB 6	0.25
	R/S	0.25
	23 ENTER + 13 GSB 3	2.50
	R/S	9.00

SYSTEM OF LINEAR EQUATIONS WITH 3 UNKNOWNS

This program uses Cramer's rule to solve systems of linear equations with three unknowns.

 $\Delta \bar{\mathbf{x}} = \bar{\mathbf{h}}$

Equations:

A system of linear equations can be expressed as

For 3 Unknowns,
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
$$\bar{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad \bar{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Determinant of the system

$$Det = a_{11}(a_{22} a_{33} - a_{23} a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$
$$b_i's \text{ are solved by } b_i = \frac{\det(i)}{Det}$$

Where det (i) is the determinant of the A matrix with the i^{th} column replaced by $\bar{b}.$

Remarks:

If "Error" occurs while running the program, then possibly the determinant is zero. i.e. the system is linearly dependent and this program is not applicable.

81 *LBL1 82 8 83 STOB 84 RCL6 85 RCL8 86 SSB9 87 RCL4 88 RCL9 89 SSB9 11 RCL5 11 RCL7 12 SSB9 13 CHS 14 RCL3 15 RCL8 16 GSB9 17 RCL1 18 RCL9 19 GSB9 20 RCL2 21 RCL7 22 ALL9 23 DS2 24 RCL1 25 × 26 × 27 + 28 ST.0 29 RTN 30 #LB12 31 ST.1 36 GSB1 37 RC.0 38 ST.5		Det	s and calculate	STER	62 63 64 65 66 67 70 70 71 72 73 74 75 77 78 80 81 82 81 82 83 84 85	STD0 GSB8 GSB1 RC.5 ÷ RC.4 ST00 GSB8 RC.4 ST00 RCL; RCL3 ST0; X2Y ST.1 ST01 ST01 RCL9 ST02 ST02 ST02 ST02 ST02 ST02 ST02 ST02		Swap re	gister contents
⁰ Index	1 a ₁₁		² a ₁₂	з _{а1}	3		4 a ₂₁		⁵ a ₂₂
6 _{a23}	7 _{a31}		8 _{a32}	9 _{a3}	3		^{.0} Det		. ¹ b ₁
^{.2} b ₂	.3 b ₃		.4 Index	^{.5} D			16		17
18	19		20	21			22		23
24	25		26	27			28		29
27	25			-'					

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Store elements of A matrix	a ₁₁	STO 1	a ₁₁
		a ₁₂	STO 2	a ₁₂
		a ₁₃	STO 3	a ₁₃
		a ₂₁	STO 4	a ₂₁
		a ₂₂	STO 5	a ₂₂
		a ₂₃	STO 6	a ₂₃
		a ₃₁	STO 7	a ₃₁
		a ₃₂	STO 8	a ₃₂
		a ₃₃	STO 9	a ₃₃
3	(Optional) to calculate			
	determinant		GSB 1	Det
4	Input $\overline{\mathbf{b}}$ to calculate $\overline{\mathbf{x}}$	b,	ENTER +	b,
		b ₂	ENTER +	b₂
		b₃	GSB 2	X ₁
			R/S	X ₂
			R/S	X ₃
5	For a new b with the same			
	system, go to step 4.			
6	For a new system, go to step 2.			

Example:

Find x_1 , x_2 , and x_3 for the following system.

$$\begin{bmatrix} 19 & -4 & -15 \\ -4 & 22 & -10 \\ -15 & -10 & 26 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 40 \\ 0 \\ 0 \end{bmatrix}$$

Keystrokes:	Outputs:	
19 STO 1, 4 CHS STO 2,		
15 CHS STO 3, 4 CHS STO 4,		
22 STO 5, 10 CHS STO 6,		
$15~{ m Chs}$ sto 7, $10~{ m Chs}$ sto 8,		
26 STO 9		
GSB 1→	2402.00	(Det)
0 GSB 2→	7.86	(x ₁)
R/S	4.23	(x ₂)
R/S →	6.16	(x ₃)

ANNUITIES AND COMPOUND AMOUNTS

These programs (1st part and 2nd part) can be used to solve a variety of problems involving money, time and interest. The following variables can be inputs or outputs:

n, which is the number of compounding periods. (For a 30 year loan with monthly payments, $n = 12 \times 30 = 360$.)

i, which is the periodic interest rate expressed as a percent. (For other than annual compounding, divide the annual percentage rate by the number of compounding periods in a year, i.e. 8% annual interest compounded monthly equals 8/12 or 0.667%.)

PMT, which is the periodic payment.

PV, which is the present value of the cash flows or compound amounts.

FV, which is the future value of a compounded amount or a series of cash flows.

BAL, which is the balloon or remaining balance at the end of a series of payments.

Accumulated interest and remaining balance may also be computed with this program.

The program accommodates payments which are made at the end of compounding periods or at the beginning. Payments made at the end of compounding periods (ordinary annuity) are common in direct reduction loans and mortgages while payments at the beginning of compounding periods (annuity due) are common in leasing.

This program uses the convention that cash outlays are input as negative, and cash incomes are input as positive.

1st part: When i is known

The initialization (GSB ()) performs two functions:

- 1. It sets PMT, PV, and BAL to zero (n and i are not affected).
- 2. It toggles for the ordinary annuity mode (display = 1), and annuity due mode (display = 0).

Pressing **GSD** o provides a safe, convenient, easy to remember method of preparing the calculator for a new problem. It is not necessary to use **GSD** o between problems containing the same combination of variables. For instance, any number of n, i, PMT, FV problems involving different numbers and/or different combinations of knowns could be done in succession without reinitializing. Only the values which change from problem to problem would have to be keyed in. To change the combination of variables without using

GSE (), simply input zero for any variable which is no longer applicable. To go from n, i, PMT, PV problems to n, i, PV, FV problems, a zero would be stored (0 **STO (**) in place of PMT. Table I summarizes these procedures.

2nd part: Solving for i

Newton's method is applied to solve problems with unknown i. (Refer to page 81: Newton's Method-Solution to f(x) = 0).

Allowable	Applic			
Combination of Variables	Ordinary Annuity Annuity Due		Initial Procedure	
n, i, PMT, PV(Input any three and cal- culate the fourth.)	Direct reduction loan Discounted notes Mortgages	Leases	Use GSB I or set BAL to zero	
n, i, PMT, PV, BAL. (Input any four and calculate the fifth.)	Direct reduction loan with balloon Discounted notes with balloon	Leases with residual values	None	
n, i, PMT, FV (Input any three and cal- culate the fourth.)	Sinking fund	Periodic savings insurance	Use GSB i or set PV to zero	
n, i, PV, FV (Input any three and cal- culate the fourth.)	Compound amount Savings (Annuity mode is not applicable and has no effect)		Use GSB i or set PMT to zero.	

 Table I

 Possible Solutions Using Annuities and Compound Amounts

Equations:

$$PV = \frac{PMT}{i} A [1 - (1 + i)^{-n}] + (BAL \text{ or } FV)(1 + i)^{-n}$$

where

$$A = \begin{cases} 1 & \text{ordinary annuity} \\ (1 + i) & \text{annuity due.} \end{cases}$$

Remarks:

• The equation above is solved for i using Newton's method where:

$$i_n = i_{n-1} - \frac{f(i_{n-1})}{f'(i_{n-1})}$$

This is why solutions involving PMT and i take longer than other solutions. It is quite possible to define problems which cannot be solved by this technique. Such problems usually result in an error message but may simply continue to run indefinitely. • Interest problems with balloon payment of opposite sign to the periodic payments may have more than one mathematically correct answer (or no answer at all). While this program may find one of the answers, it has no way of finding or indicating other possibilities.

				—				
01 #LBL0 02 CLX					50 + 51 CHS			
63 ST03				1	52 ST04			
84 STD4		Toggling	1	1	53 RTN		•••	
#5 ST05				1	54 #LBL5			
86 RC.2		1 for or	linary annuity	1	55 6589			
87 X=8?			nuity due	1	56 RCL4			
8 8 GT08		o ior an	iuity due	1	57 +		Calant	**
89 8				1	58 RCL8		Calcula	
10 ST.2				1	59 ÷		FV (BA	AL)
11 RTN				1	60 CHS			
12 #LBL8				1	61 ST05		***	
13 1				1	62 RTN			
14 ST.2				1	63 #LBL9			
15 RTN				1	64 1			
16 #LBL1				1	65 ST.1			
17 8				1	66 RCL2			
18 ST01				1	67 X			
19 GSB9				1	68 ST09		Calcula	te
20 RCL5				1	69 +			
21 LSTX		Calculat		1	70 ST07		РМΤ,	1 – (1 + i) ⁻ⁿ] R ₁
22 -		Calculat	e n		71 RC.2		l	$I = (I + I)^{-1} I R_1$
22 - 23 RCL4				1	72 X=0?			
				1	73 X#Y			
24 Pi				1	73 A+1 74 ST.1			
25 +				1				
26 ÷				1				
27 CHS				1	76 RCL1			
28 LN				1	77 CHS			
29 RCL7				1	78 Y*			
30 LN				1	79 ST08			
31 ÷				1	80 RCL5			
32 ST01				1	81 ×			
33 RTN		***			82 ST.3			
34 #LBL3				1	83 1			
35 1				1	84 RCL8			
36 ST03				1	85 -			
37 GSB9		Calculat	e PMT	1	86 ST.0			
38 1/8				1	87 RCL3			
39 RCL4				1	88 RCL9			
40 RC.3				1	89 ÷			
41 +				1	90 STO0 91 RC.1			
42 X				1	91 KU.1 92 ×			
43 CHS				1	92 × 93 ×			
44 ST03				1	93 × 94 RTH			
45 RTN		***		1	27 KIN			
46 #LBL4		Calculat	e PV	1				
47 1				1				
48 ST04 49 GSB9				1				
49 6589	,							
⁰ PMT/i	1		2 i	STE 3	E RS PMT	4 PV		5 EV (BAL)
⁶ n (1 + i) ^{n - 1}	7		0	9			n	.1
.2 annuity flag	.3 Used		⁸ (1 + i) ⁻ⁿ .4	.5	i/100	^{.0} 1 – (1 + 16	+ 1)=''	1 or 1 + i 17
18	Used		20	21		22		23
24	25		26	27		28		29
1	1			I				-

*** indicates that "Print X" may be inserted or used to replace "R/S".

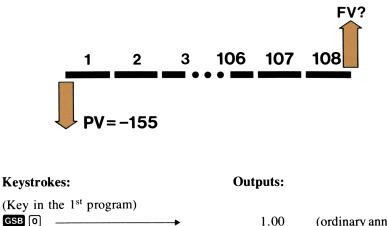
Finance 31

01 #LBL1 02 1	Annuity	50 - 51 ÷	Calculate next i
83 GT03 84 #LBL2		52 CHS 53 GSB9	
85 8	Annuity due	54 RCL2	
06 #LBL3 07 ST.2		55 ÷ 56 ABS	
88 8		57 RC.5	
09 ST02	Clear R_2 for sum of	58 X≟Y?	Test increment to i for
10 RCL5	i terms	59 GT08 60 RCL2	limit
11 RCL4 12 +		61 RTH	
13 RCL1	nPMT + BAL + PV	62 #LBL9	
14 ÷	n	63 EEX 64 2	
15 RCL3 16 +		65 ×	Calculate i to % and add
17 RCL4		66 ST+2	to i
18 ÷	guess for i	67 RTN 68 #LBL0	
19 CHS 20 .		69 1	
21 9		70 ST.1	
22 CHS	If guess is less than –0.9,	71 RCL2 72 %	
23 X≦Y? 24 X≓Y	use -0.9 for guess.	73 ST09	
25 GSB9		74 +	1 to R ₁ for ordinary annuity
26 X=8?		75 ST07 76 RC.2	annunty
27 RTN		76 RC.2 77 X=0?	
28 #LBL8 29 6580		78 X≭Y	Calculate
30 +	Calculate f(i)	79 ST.1	$\frac{PMT}{i}$ [1 - (1+i) ⁻ⁿ] x R ₁
31 RCL4		80 RCL7 81 RCL1	
32 + 33 RCL8		82 CHS	
34 RCL1		83 Y*	
35 RCL7	Calculate f' (i)	84 STO8 85 RCL5	
36 ÷ 37 ×		86 ×	
38 ST06		87 1	
39 RC.0		88 RCL8 89 -	
40 RCL9 41 ÷		90 ST.0	
42 -		91 RCL3 92 RCL9	
43 RC.1		92 RCL9 93 ÷	
44 × 45 RCLD		94 ST00	
46 X		95 RC.1 96 ×	
47 RCL6		97 ×	
48 RCL5 49 ×	f(i)/f'(i)	98 RTN	
	PEGI	STERS	
⁰ PMT/i ¹ n	2 i	3 PMT 4 PV	⁵ FV(BAL)
⁶ n(1+i) ⁻ⁿ⁻¹ ⁷ 1 + i	-	⁹ i/100 ^{.0} 1–(1+	
.2 annuity flag .3 used	.4	^{.5} 10 ⁻⁶ 16	17
18 19			
24 25	20	21 22 27 28	23

2nd Part: Solving For i

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Toggling for ordinary annuity			
	(1.00) and annuity due (0.00)		GSB 0	1.00/0.00
3	Input the known values (i must			
	be known):			
	Number of periods	n	STO 1	n
	Periodic interest rate	i (%)	STO 2	i (%)
	Periodic payment	PMT	STO 3	PMT
	Present value	PV	STO 4	PV
	Future value, balloon or			
	balance	FV (BAL)	STO 5	FV, (BAL)
4	Calculate the unknown value			
	Number of periods		GSB 1	n
	Periodic payment		GSB 3	PMT
	Present value		GSB 4	PV
	Future value, balloon or			
	balance		GSB 5	FV, (BAL)
6	For a new case, go to step 3			
	and change appropriate values.			
	Input zero for any value not			
	applicable in the new case.			

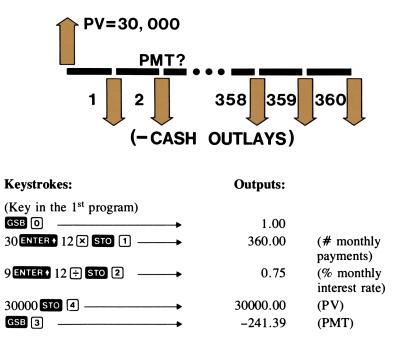
1st Part: When i Is Known


2nd Part: Solving For i

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input the known values: (0 for			
	not existing values)			
	Number of periods	n	STO 1	n
	Periodic payment	PMT	STO 3	PMT
	Present value	PV	STO 4	PV

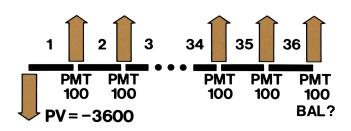
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Future value, balloon or			
	balance	FV, (BAL)	STO 5	FV, (BAL)
	and the tolerance for i (say			
	$\epsilon = 10^{-6})$	E	STO • 5	E
3	Calculate interest rate.			
	For ordinary annuity		GSB 1	i (%)
	For annuity due		GSB 2	i (%)
4	For a new case, go to step 2.			

Example 1:


If you place \$155 in a savings account paying 5%% compounded monthly, what sum of money may you withdraw at the end of 9 years?

GSB 0	1.00	(ordinary annuity)
9 ENTER ◆ 12 × STO 1	108.00	(# of month compounding)
5.75 ENTER ◆ 12 ÷ STO 2>	0.48	(% monthly interest rate)
155 CHS STO 4	-155.00	(cash outlay)
GSB 5→	259.74	(FV)
If the interest is changed to 6% what i	s the sum?	
6 ENTER ♦ 12 ÷ STO 2	0.50	(% monthly interest rate)
GSB 5→	265.62	(FV)

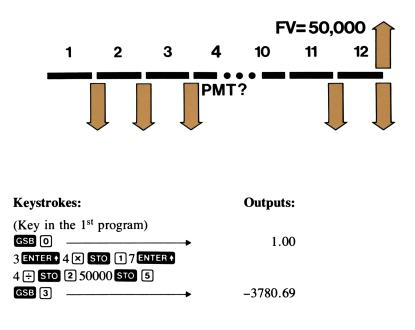
Example 2:


You receive \$30000 from the bank as a 30 year, 9% mortgage. What monthly payment must you make to the bank to fully amortize the mortgage?

Example 3:

Two individuals are constructing a loan with a balloon payment. The loan amount is 3,600 and it is agreed that the annual interest rate will be 10% with 36 monthly payments of 100. What balloon payment amount, to be paid coincident with the 36^{th} payment, is required to fulfill the loan agreement?

(Note the cash flow diagram below is with respect to the loaner. For the loanee, the appropriate diagram will be exactly the opposite.)



Keystrokes:	Outputs:
(Key in the 1 st program)	
GSB 0	1.00
36 STO 110 ENTER + 12 ÷	
STO 2 100 STO 3 3600	
CHS STO 4 GSB 5→	675.27

(Note that the final payment is 675.27 + 100.00 = 775.27 since the final payment falls at the end of the last period.)

Example 4:

A corporation has determined that a certain piece of equipment costing \$50,000 will be required in 3 years. Assuming a fund paying 7% compounded quarterly is available, what quarterly payment must be made in order to withdraw this cost from the fund if savings are to start at the end of this quarter?

Example 5:

This program may also be used to calculate accumulated interest/remaining balance for loans. The accumulated interest between two points in time, n_1 and n_2 , is just the total payments made in that period less the principal reduction in that period. The principal reduction is the difference of the remaining balances for the two points in time. The following example demonstrates the concepts above.

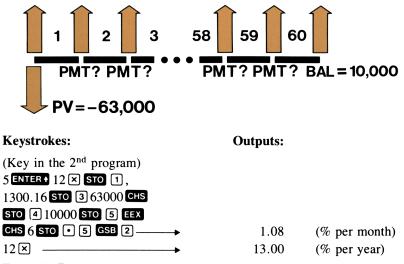
For a 360 month, \$50,000 loan at $9\frac{1}{2}\%$ annual interest, find the remaining balance after the 24^{th} payment and the accrued interest for payments 13-24 (between the 12^{th} and 24^{th} payments!).

First we must calculate the payment on the loan:

Keystrokes:

Outputs:

4706.20


(accrued interest)

(Key in the 1 st program) GSB 0 360 STO 19.5 ENTER ◆ 12 ÷	*	1.00	
STO 2 50000 CHS STO 4 GSB 3	▶ 4	20.43	(payment)
The remaining balance is found 24 STO 1 GSB 5		52.76	(remaining bal- ance at month 24)
Store this remaining balance and STO • (4) 12 STO 1	d calculate the	remaining l	balance at period 12:
GSB 5	► 496	91.68	
The principal reduction between RCL • 4 -	1.	and 24 is: 38.92	
The accrued interest is 12 payn	nents less the p	principal re	duction:
RCL 3 12 ×	► 50	45.13	(total paid out)

Example 6:

x\$y -

A "third" party leasing firm is considering the purchase of a mini-computer priced at \$63,000 and intends to achieve a certain annual yield by leasing the computer to a customer for a 5-year period. Ownership is retained by the leasing firm and at the end of lease they expect to be able to sell the equipment for at least \$10,000. If the monthly payment is \$1300.16, what is the annual yield? (Since lease payments occur at the start of the periods, this is an annuity due problem).

Example 7:

A fixed term annuity is available which requires a \$35,000 initial deposit. In return the depositor will receive monthly payments of \$231 for 20 years. What annual interest rate is being applied?

1 2 3	238 239	240
PMT PMT 231 231 PV=-35,000	PMT PM 231 23	
Keystrokes:	Outputs:	
(Key in the 2^{nd} program) 20 ENTER \rightarrow 12 \times STO 1 \longrightarrow	240.00	(# monthly payments)
231 STO 3	231.00	(monthly income)
35000 CHS STO ₫	-35000.00	(initial cash deposit)
0 STO 5	0.00	$(\mathrm{FV}=0)$
EEX CHS 6 STO \bullet 5 ———	106	(ϵ)
GSB 1	0.42	(0.42% monthly)
12⊠	5.00	(5% annual interest rate)

Example 8:

Suppose you deposit \$100 today in the bank, after 3 years you will have a total of \$116.08. If the interest is compounded quarterly, what is the interest rate?

Keystrokes:

Outputs:

(Key in the 2 nd program)
3 ENTER + 4 × STO 10 STO 3
100 CHS STO 4 116.08 STO 5
EEX CHS 6 STO • 5
GSB 1
4⊠

1.25	(% quarter))
5.00	(% annual)	

DISCOUNTED CASH FLOW ANALYSIS NET PRESENT VALUE

Assuming a minimum desired yield (cost of capital, discount rate), this program finds the present value of the future cash flows generated by the investment and subtracts the initial investment from this amount. If the final net present value is a positive value, the investment exceeds the profit objectives assumed. If the final net present value is a negative value, then the investment is not profitable to the extent of the desired yield. If the net present value is zero, the investment meets the profit objectives.

The function associated with the \bigcirc 3 key (#) is designed to accommodate those situations where a series of the cash flows are equal. You enter the number of times these equal periodic cash flows occur with \bigcirc 3, and then the amount only once with \bigcirc 4. The program automatically assumes 1 for #. If the cash flow occurs only once, there is no need to enter anything for #.

Zero must be entered for all periods with no cash flow. When a cash flow other than the initial investment is an outlay (additional investment, loss, etc.) the value must be entered as a negative number with CHS.

Cash flows are assumed to occur at the end of cash flow periods.

Equation:

$$NPV_k = -INV + \sum_{k=1}^{n} \frac{CF_k}{(1 + i)^k}$$

where:

n = number of cash flows $CF_k = k^{th} cash flow$ $NPV_k = net present value after k^{th} cash flow$

r			r			
01 *LBL1			50 R‡		***	
02 CHS			51 RTN		D	
03 ST01			52 #LBL5		Recall Σ	'n
84 8	-NPV -		53 RCL9			
05 ST09		R,	54 RTN			
06 1 07 ST03	1-	R ₃				
08 RCL1						
89 CHS						
10 RTN						
11 #LBL2						
12 EEX						
13 2						
14 ÷	$\frac{i}{100} \rightarrow$	R ₂				
15 ST02	100					
16 LSTX						
17 ×						
18 RTN						
19 *LBL3						
20 ST03	$\# \rightarrow R_3$					
21 RTN						
22 #LBL4 23 \$T04						
23 5104						
25 RCL2						
26 +						
27 RCL3						
28 ST+9	Calcula	te present value of				
29 Y*	series					
30 \$705						
31 RCL1						
32 ×						
33 RCL5						
34 1						
35 -						
36 RCL2						
37 ÷						
38 RCL4						
39 ×						
40 + 41 ST01						
41 5101						
43 RCL2						
44 +						
45 RCL9						
46 Y×						
47 ÷	Reset n	to 1				
48 1	neset n					
49 ST03						
		REGI	STERS			
0	¹ NPV	² i/100	3 #	⁴ CF		⁵ (1 + i) ⁿ
6	7	8	9 Σn	.0		.1
.2	.3	.4	.5	16		17
18	19		21	22		23
24	25	26	27	28		29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input:			
	Initial investment amount	INV	GSB 1	INV
	Periodic interest (discount)			
	rate	i (%)	GSB 2	i (%)
3	Input the number of equal cash			
	flows if greater than 1.	#	GSB 3	#
4	Input cash flow amounts and			
	calculate net present value	CF	GSB 4	NPV
5	(Optional): Display total number			
	of cash flows entered so far.		GSB 5	n
6	For next cash flow go to step 3.			
7	For a new case go to step 2.			

Example 1:

An investor has an opportunity to purchase a piece of property for \$70,000. If the going rate of return on this type of investment is 13.75%, and the after-tax cash flows are forecast as follows, should the investor purchase the property?

Year	Cash Flow (\$)
1	\$14,000	
2	11,000	
3	10,000	
4	10,000	
5	10,000	
6	9,100	
7	9,000	
8	9,000	
9	4,500	
10	71,000	(property sold in 10 th year)

Keystrokes:	Outputs:	
70000 GSB 113.75 GSB 2 14000 GSB 4	-57692.31	(NPV after 1 cash flow)

42 Finance

11000 GSB 4	-49190.92	(NPV after 2 cash flows)
3 GSB 3 10000 GSB 4→	-31172.57	(NPV after 5 cash flows)
9100 GSB 4→	-26971.76	(NPV after 6 cash flows)
2 GSB 3 9000 GSB 4→	-20108.39	(NPV after 8 cash flows)
GSB 5	8.00	(checking that
		we've entered 8 periods cash flows so far)
4500 GSB 4→	-18696.99	periods cash

Since the final NPV is positive, the investment exceeds the profit objectives.

Example 2:

The Cooper Company needs a new photocopier and is considering leasing the equipment as an alternative to buying. The end-of-the-year net cash cost of each option is:

PURCHASE	
Year	Net Cash Cost
1	\$ 533
2	948
3	1,375
4	1,815
5	2,270
Total Net Cash Cost	\$6,941
LEASE	
Year	Net Cash Cost
1	\$1,310
2	1,310
3	1,310
4	1,310
5	1,310
Total Net Cash Cost	\$6,550

Looking at total cost, leasing appears to be less. But, purchasing costs less the first two years. Mr. Cooper knows that he can make a 15% return on every dollar he puts in the business; the sooner he can reinvest money, the sooner he earns 15%. Therefore, he decides to consider the **timing of the costs**, discounting the cash flows at 15% to find the present value of the alternatives. Which option should he choose?

Keystrokes:	Outputs:
PURCHASE	
0 GSB 1 15 GSB 2 533 GSB 4	
948 GSB 4 1375 GSB 4	
1815 GSB	4250.71
LEASE	
0 GSB 1 5 GSB 3	
1310 GSB 4	4391.32

Leasing has a present value cost of \$4391.32, while purchasing has a present value cost of \$4250.71. Since these are both expense items, the lowest present value is the most desirable. So, in this case, purchase is the least costly alternative.

CALENDAR FUNCTIONS

For the period March 1, 1900 through February 28, 2100, this program solves for dates and days.

Given a date, the first part calculates an associated day number*. By using this program on two dates, the number of days between those dates may be found.

The second part takes a day number* and finds the corresponding date. The third part calculates the day of the week from a given day number*.

By using the first two parts together, a second date may be calculated from a date and a specified number of days (see example).

A date must be input in mm.ddyyyy format. For instance, June 3, 1975, is keyed in as 6.031975. It is important that the zero between the decimal point and the day of the month be included when the day of the month is less than 10. The day of the week is represented by the digits 0 through 6 where zero is Sunday.

Equations:

To calculate the day number from the date:

Julian Day number* = INT (365.25 y') + INT (30.6001 m') + d + 1,720,982

where:

$$y' = \begin{cases} year - 1 & \text{if } m = 1 \text{ or } 2\\ year & \text{if } m > 2 \end{cases}$$
$$m' = \begin{cases} month + 13 & \text{if } m = 1 \text{ or } 2\\ month + 1 & \text{if } m > 2 \end{cases}$$

Then days between dates is found by:

 $Days = Day number_2 - Day number_1$

To calculate the date from a day number:

Day # = Julian Day Number* - 1,720,982

$$y' = INT\left[\frac{Day \# - 122.1}{365.25}\right]$$

^{*} The Julian Day number is an astronomical convention representing the number of days since January 1, 4713 B.C.

$$m' = INT \left[\frac{Day \# - INT (365.25 y')}{30.6001} \right]$$

Day of the month = Day # - INT [365.25 y']
- INT [30.6001 m']
Month = m =
$$\begin{cases} m' - 13 & \text{if } m' = 14 \text{ or } 15 \\ m' - 1 & \text{if } m' < 14 \end{cases}$$

Year = $\begin{cases} y' & \text{if } m > 2 \\ y' + 1 & \text{if } m = 1 \text{ or } 2 \end{cases}$

To calculate the day of the week:

Day of the week =
$$7 \times FRAC [(Day \# + 5)/7]$$

Remarks:

• No checking is done to determine if input data represent valid dates.

				r					
01 #LBL1				5	0	ST09			
02 ENT†				5	1	RCL 1			
03 INT			te input into the		2	x			
04 ST07			I components of	5	3	INT			
05 - 06 EEX		mm, dd,	уууу	5	4	ST-6			
07 2				5	5	RCL6		Calculat	te m'
08 ×				5	6	RCL2			
09 ENT+				5	7	÷			
10 INT				5	8	INT			
11 STOR				-	59	ST07			
12 -				6	0	RCL6			
13 EEX				-	1	XZY		Calculat	te day of month
14 4					2	RCL2		Calcula	te day of month
15 ×					3	x			
16 ST09				-	4	INT			
17 RCL7		m + 1			5	-			
18 1				-	56	STOR			
19 +					57	RCL7	,		
20 ENT† 21 1/X					58 59	1 RCL8	,		
22 .		m + 1 →	m′	-	59 70	RLL8 2	1		n'-1).dd
23 7		y → y′			71	-		Part of	display
24 +					72	_			
25 CHS					73	RCL7	,		
26 INT					74	1			
27 ST+9				,	75	4			
28 RCL4		If input	to this routine has	7	76	÷		Correct	m'-1 and y' to m
29 x			value 1 or greater,	7	77	INT	r	and y	in rundy to in
30 -		$y = y \pm 1$			78	ST+9	,	una y	
31 RCL2	·	m = m ±			79	RCL 4	ļ į		
32 ×					80	x			
33 INT					31	-			
34 RCL9					32	RCL9			
35 RCL1					53	EEX	((
36 ×					84 85	6 ÷		Finish b	uilding
37 INT 38 +		Calculate	e day number		86 86	- +			yyyy result and
38 + 39 RCL8	,		,		87	FIX6		display	
40 +	' I				88	RTN			
41 FIX8	, I					#LBL3			
42 RTN					90	5			
43- #LBL2	·			9	91	+			
44 ST06					92	7			
45 RCL3		Calculate	e y'	9	93	÷			te day of the week
46 -					74	FRC		from da	iy #
47 RCL1				-	95	7			
48 ÷	.			-	96	x			
49 INT				9	97	RTN			
			BECH	L STERS					
0	1 365.2	25	2 30.6001	3 122.1			4 12		5
6 _{Day} #	7 m	-	⁸ d	9 y			.0		. ¹ Used
.2 Used	.3		.4	.5			16		17
18	19		20	21			22		23
24	25		26	27			28		29

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input constants for calculations:	365.25	STO 1	365.25
		30.6001	STO 2	30.6001
		122.1	STO 3	122.1
		12	STO 4	12
3	For day #, go to step 4. For			
	dates from day #, go to step 7.			
	For day of the week go to step 9.			
4	Input date and calculate day #	date	GSB 1	day #
5	Repeat step 4 for any other date			
6	For # of days between dates			
	calculate day #'s for each and			
	find the difference.	date 1	GSB 1	day #1
			STO 🖸 1	day #1
		date 2	GSB 1	day #2
			RCL • 1	day #1
			Ξ	difference
7	For dates from day#'s, input			
	day # and calculate date	day #	GSB 2	date
8	Repeat step 7 for any other			
	day #			
9	For day of the week from day #,			
	input day # and calculate day			
	of the week.	day #	GSB 3	0 ,, 6
10	Repeat step 9 for any other			
	day #.			
11	For a new case, go to step 3.			

Example 1:

Senior Lieutenant Yuri Gagarin flew Vostok I into space on April 12, 1961. On July 21, 1969, Neil Armstrong set foot on the moon. How many days had passed between the first manned space flight and the moon landing? On what day of the week did each event take place.

Keystrokes:

Outputs:

(Key in the program and store		
constants by:		
365.25 STO 1 30.6001 STO 2		
122.1 STO 3 12 STO 4)		
4.121961 GSB 1 STO ● 1 →	716420.	(day # 1)
7.211969 GSB 1 STO • 2 →	719442.	(day # 2)
	3022.	(days)
RCL ● 1 GSB 3	3.	(Wednesday)
RCL ● 2 GSB 3	1.	(Monday)

Example 2:

A short term note is due in 200 days. If the issue date is June 11, 1976, what is the maturity date?*

Keystrokes:	Outputs:	
6.111976 GSB 1→	721959.	
200 +	722159.	
GSB 2	12.281976	(December 28, 1976)

* First a day number is calculated for the known date, the number of days (200) is added to it, and this new day number is converted to a date.

Some securities use a 30/360 day calendar while this program performs all calculations using the actual number of days. Do not use the program for financial purposes unless you are sure that actual calendar days are correct.

MOON ROCKET LANDER

Imagine for a moment the difficulties involved in landing a rocket on the moon with a strictly limited fuel supply. You're coming down tail-first, freefalling toward a hard rock surface. You'll have to ignite your rockets to slow your descent; but if you burn too much too soon, you'll run out of fuel 100 feet up, and then you'll have nothing to look forward to but cold eternal moon rocks coming faster every second. The object, clearly, is to space your burns just right so that you will alight on the moon's surface with no downward velocity.

The game starts off with the rocket descending at a velocity of 50 feet/second from a height of 500 feet. The velocity and altitude are shown in a combined display as -50.0500, the altitude appearing to the right of the decimal point and the velocity to the left, with a negative sign on the velocity to indicate downward motion. Then the remaining fuel is displayed and the rocket fire count-down begins: "3", "2", "1", "0",. Exactly at zero you may key in a fuel burn. You only have one second, so be ready. A zero burn, which is very common, is accomplished by doing nothing. After a burn the sequence is repeated unless:

- 1. You have successfully landed—flashing zeros.
- 2. You have smashed into the lunar surface—flashing crash velocity.

You must take care, however, not to burn more fuel than you have; for if you do, you will free-fall to your doom! The final velocity shown will be your impact velocity (generally rather high). You have 60 units of fuel initially.

Equations:

We don't want to get too specific, because that would spoil the fun of the game; but rest assured that the program is solidly based on some old friends from Newtonian physics:

$$x = x_0 + V_0 t + \frac{1}{2} at^2$$
, $V = V_0 + at$, $V^2 = V_0^2 + 2a (x - x_0)$

where:

x, V, a, and t are distance, velocity, acceleration, and time.

Remarks:

• Only integer values for fuel burn are allowed. **R/S** can be used to stop Moon Rocket Lander at any time.

01 ±LBL1 02 5 03 0 04 0 05 5706 06 5 07 0 08 CHS 09 ST07 10 6 11 0 12 ST08 13 ±LBL0 14 RCL6 15 F1X4 16 EEX 17 4 18 ÷ 19 RCL7 20 ABS 21 + 22 RCL7 23 X90 24 SS84	– – – – – Divide h for prop – – – – – Build V' taking n account	tial conditions eight by 10000 er display /.Ohhh display, egative values into	58 5T09 51 2 52 ÷ 53 RCL6 54 + 55 RCL7 56 + 57 RCL9 58 ST+7 59 R4 60 ST06 61 IMT 62 X>89 63 GT08 64 RCL7 65 #LBL7 66 PSE 67 GT07 68 #LBL7 66 PSE 67 RCL6 69 RCL6 78 C2 71 . 72 S7 73 -	If no ir anothe Flash c Fuel es call fre velocit	— — — — — — — — — — — — — — — — — — —
14 RCL6 15 FIX4 16 EEX 17 4 18 ÷ 19 RCL7 20 ABS 21 + 22 RCL7 23 X90° 24 SSB4 25 X2Y 26 CHS 27 PSE 28 PSE 29 FIX0 30 RCL8 31 PSE 32 3 33 PSE 36 1 37 PSE 38 0 39 PSE 44 BTD6 45 ST-8 46 2 47 X 48 5 49 - 0 6 6 X 18	for prop Build V ¹ taking n account Display Count d If fuel is crash vel 	er display /.Ohhh display, egative values into VV.Ohhh own for burn own for burn gone calculate ocity ne velocity and REGIS 2 8 Fuel .4 20	63 GTO0 64 RCL7 65 #LBL6 67 GTO7 68 #LBL6 69 RCL6 70 2 71 2 72 5	If no ir anothe – – – Flash c – – – Fuel es call fre velocit	r burn
					L

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Assume manual control.		GSB 1	"V.ALT"
				"FUEL"
				"3"
				"2"
				"1"
				"0"
3	Key in burn upon "0" display:			
	Press and hold R/S until			
	blinking stops.		R/S	
	Enter burn	BURN	R/S	"V. ALT"
				"FUEL"
				"3"
				"2"
				"1"
				"0"
4	Go to step 3 until you land			
	(flashing zeros) or crash			
	(flashing impact velocity).			
5	If you survived last landing			
	attempt, go to step 2 for another			
	try.			

QUEEN BOARD

This game is based on the moves of a chess queen. A queen will be allowed to move only to the left, down, or diagonally to the left. The object of the game is to be the first player to move the queen to the lower left-hand corner of the chess board (square 158), by alternating moves between you and the calculator. You start by placing the queen on any square on the top row or right-hand column. This is your first move. The play then alternates.

The playing board is numbered as follows:

				tart	Zon				-
			61		IJ		Ru L		
		20	th Pa		1 1 1	H N	uu Ma	n N	
Ω	103			7					
hund				84	ł	64		44	<u>Start Zone</u>
	125					1 1 1			
7 [10			M		UA.
\bigsqcup	147				107			P.	
	158	148		128	100	108		88	5

You tell the calculator your moves by keying in the number of the square you start on or move to. Press **GSB** 1 and the calculator responds with the square it moves to. Square 158 is the winning square.

The program does not check for illegal moves. If you win (by moving to square 158), the program will respond with 168 (the calculator acknowledges the loss by displaying a nonexistent square).

The program is in FIX 0 mode, for integer display.

Reference:

This program is based on an HP-65 Users' Library program by Jacob R. Jacobs.

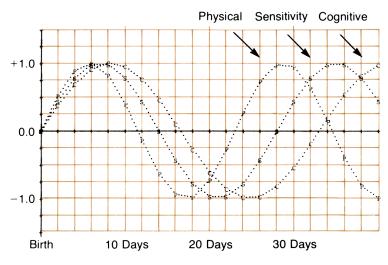
Some interesting comments on the theory of "Queen Board" may be found in: Gardner, M. "Mathematical Games", Scientific American, vol 236, no 3., p. 134, March 1977.

				1			
01 #LBL1		C	navisia a D	50 RTH			
02 FIX0 03 ST01		Current	position R ₁	51 #LBL6			
03 5701 04 6580				52 1 53 5			
85 1				54 8		159 - 0	
86 X=Y?				55 X=Y?		158 = R	2 (
87 GT08		$7 \rightarrow R_0$		56 6706			
88 7		1 110		57 3			
89 5708				58 1		127 = R	. 2
10 *LBL9				59 -		127 - 1	2 :
11 RCL1				68 X=Y3	,		
12 RCL0				61 GT06			
13 EEX				62 1			
14 1				63 -		126 = R	.7
15 ×				64 X=Y	,		2 ·
16 +		10K + R	$\rightarrow R_2$	65 GT06			
17 ST02		Position 9	good?	66 5			
18 GSB0				67 1			
19 1				68 -		75 = R ₂	?
28 X=Y?		Yes, reca	II R ₂	69 X=Y			
21 GT07			-	70 GT06			
22 RCL8		$K+R_2 \rightarrow$		71 2		70 0	
23 ST+2		Position g	jood?	72 -		73 = R ₂	?
24 RCL2				73 X=Y	,		
25 GSB0		Yes, reca	IL D	74 GT04			
26 1		res, reca	II n ₂	75 2			
27 X=Y?				76 9		44 - 0	2
28 GT07				77 -		44 = R ₂	(
29 RCL0				78 X=Y			
30 EEX	Í			79 GTO: 80 3	,		
31 1		1014		81 -		44 5	
32 ×		10K + R ₂	$_2 \rightarrow R_2$	82 X=Y	,	41 = R ₂	(
33 ST+2		Position	nood?	83 GTO			
34 RCL2		1 Official	3000.	84 RTI			
35 6SB0 36 1				85 #LBL	5		
36 I 37 X=Y?		Yes, reca	II R.	86 1 87 RTI			
37 X-17 38 GT07		163, 1664	11 11 2	0, 8,1			
39 DSZ							
48 GT09							
41 RCL1							
42 #LBL8							
43 EEX		Default n					
44 1		10 + R ₁ -	→ R ₁				
45 ST+1							
46 RCL1							
47 RTN							
48 *LBL7		Test for a	good position				
				I STERS			
⁰ Indirect	1 Used		2 Used	3	4		5
	7		8	9	.0		.1
.2	.3		.4	.5	16		17
18			20	21	22		23
	19		20	21	22		29

54 Games

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in your starting position			
	(first move).	Move	GSB 1	Calc's Move
3	Repeat step 2 until someone			
	wins.			
	Display of 158: calculator wins			
	Display of 168: you win			
4	To begin new game, repeat			
	step 2 with new starting			
	position.			

Example:


Keystrokes:	Outputs:
55 GSB 1→	75.
(You start on 55, and the calculator, after do to 75).	eep and careful thought, moves
97 GSB 1→	127.
(You respond with 97, and the calculator, s	howing no mercy moves to 127).
148 GSB 1→	158.
(You try 148, hoping the calculator's batte but no luck—it wins by moving to 158).	ries run down before it can respond,

BIORHYTHMS

From ancient days philosophers and sages have taught that human happiness lies in the harmonious integration of body, mind, and heart. Now a twentiethcentury theory claims to be able to quantitatively gauge the functioning of these three aspects of our selves: the physical, sensitive, and cognitive.

The biorhythm theory is based on the assumption that the human body has inner clocks or metabolic rhythms with constant cycle times. Currently, three cycles starting at birth in a positive direction are postulated. The 23-day or physical cycle relates with physical vitality, endurance and energy. The 28-day cycle or sensitivity cycle relates with sensitivity, intuition and cheerfulness. The 33-day or cognitive cycle relates with mental alertness and judgement.

For each cycle, a day is considered either high, low, or critical. x is the output value for a given cycle. The high $(0 < x \le 1)$ times are regarded as energetic times, you are your most dynamic in the cycle. The low $(-1 \le x < 0)$ times are regarded as the recuperative periods. The critical days (x = 0) are regarded as your accident prone days, especially for the physical and sensitivity cycles.

Remarks:

- The birthdate and biodate must be between January 1, 1901, and December 31, 2099.
- The format for input of dates is MM.DDYYYY. For example, June 3, 1976, is keyed in as 6.031976. The program does not check input data. Thus, if an improper format or an invalid date (e.g., February 30) is keyed in, erroneous answers may result.
- This program sets the angular mode to radians (RAD).

01 aLBL1 Birthdate store 51 $ 02$ RAD Birthdate store 51 $ 03$ SS8 ST09 N1 53 2 $ -$ <t< th=""><th></th></t<>	
$g3$ SS88 S2 FEX 64 \$709 N1 53 2 65 RTH 54 x 66 $6S89$ $Biodate$ 55 $ENTf$ D 67 $RCL9$ $Biodate$ 55 $ENTf$ D 67 $RCL9$ $Store N_2 - N_1$ 58 $ 10$ $81LBL9$ 57 5705 59 EEX $ 11$ 1 66 4 61 x Y 11 1 62 5704 Y 13 5707 62 5704 Y 14 $6S88$ 23 Day cycle 63 2 $$ 16 $4LBL8$ 28 Day cycle 65 5777^2 775^2 17 5 $#$ $Days$ 66 6706 6706	
04 ST09 N1 53 2 05 RTH 54 x 06 GSB0 Biodate 55 ENT + D 07 RCL9 Biodate 56 INT D 08 - - 57 ST05 B 09 ST08 Store N2 - N1 58 - - - 11 1 68 -	
85 RTN N_1 54 x 86 6588 Biodate 55 ENT1 D 87 RCL9 Biodate 56 INT D 88 $ 57$ Store 58 $ -$ 10 *LBL9 58 $ -$ 11 1 60 4 12 8 61 x Y 13 ST07 62 ST04 7 7 7 7 14 6588 23 Day cycle 63 2 $ -$ 15 6588 23 Day cycle 64 72 $ -$	
06 SS0 Biodate 55 ENT † D 07 RCL9 56 INT 57 ST05 09 ST08 Store N2 - N1 59 EEX 18 #LBL9 59 EEX 11 1 66 4 4 12 8 61 X Y 13 ST07 62 ST04 Y	
07 RCL9 Diodet 56 IMT 08 - - 57 ST05 09 ST08 Store N2 - N1 58 - - 10 #LBL9 59 EEX - - 11 1 68 4 - - 12 8 61 X Y 13 ST07 62 ST04 14 6588 23 Day cycle 63 2 15 6588 28 Day cycle 64 RCL6 16 #LBL8 - - - 17 5 # Days 66 6706	
08 - 57 \$705 09 \$708 Store N2 - N1 58 - 10 #LBL9 59 EEX - 11 1 66 4 12 8 61 x 13 \$707 62 \$704 14 \$588 23 Day cycle 63 2 15 \$588 28 Day cycle 64 #CL6 16 #LBL8 65 \$77 17 5 # Days 66 6706	
89 Store $N_2 - N_1$ 58 -	
10 #LBL9 Store N2 - N1 59 EEX 11 1 60 4 12 8 61 × 13 \$707 62 \$704 14 6588 23 Day cycle 63 2 15 6588 28 Day cycle 64 RCL6 16 4LBL6	
10 # #L8L9 59 #Exx 11 1 60 4 12 8 61 x 13 \$707 62 \$704 14 \$6\$88 23 Day cycle 15 \$6\$88 28 Day cycle 16 #L8L8	
12 8 61 x Y 13 5107 62 5104 51 51 14 6588 23 Day cycle 63 2 63 2 15 6588 28 Day cycle 64 RCL6 65 51 16 #LBL8	
13 ST07 62 ST04 Y 14 6588 23 Day cycle 63 2 15 6588 28 Day cycle 64 RCL6 16 #LBL8	
13 \$707 62 \$704 14 \$588 23 Day cycle 63 2 15 \$588 28 Day cycle 64 \$806 16 #LBL8	
15 ESB8 23 Day cycle 64 RCL6 16 #LBL8 65 %)?? 17 5 # Days 66 6706	
15 5588 28 Day cycle 64 #CL6 16 #LBL8 65 XY? 17 5 # Days 66 6706	
16 #LBL8 65 \$217' 17 5 #Days 66 \$T06	
18 ST+7 67 1	
19 RCL8 68 ST-4	
20 RCL7 6.9 1	
21 ÷ 70 2	
22 FRC 71 ST+6	
23 2 72 *LBL6	
24 × 73 1	
25 Pi 74 ST+6	
26 × 75 RCL6	
27 SIN 76 3	
28 ENT† 77 Ø	
29 ABS 78 .	
30 X≠0? 79 6	
31 ÷ 80 ×	
32 LSTX 81 INT	
33 EEX 82 RCL4	
34 7 83 3	
84 6 35 + 85 5	
36 EEX	
37 7 0 07 2	
38 - 88 5	
39 X +++ 89 X	
40 R/S Rick value 90 INT	
41 RTN 510 Tallo	
42 #LBL7 92 RCL5	
43 1 Next day 93 + N	
44 ST+8 NCALOGY 94 RTN N	
45 GSB9	
46 GT07 Compute N(M, D, Y,)	
47 #LBL0	
48 ENT†	
49 INT	
REGISTERS	
0 1 2 3 4 Y 5 D	
6 M 7 23,28,33 8 N ₂ - N ₁ 9 N ₁ .0 .1	
.2 .3 .4 .5 16 17	
18 19 20 21 22 23	
24 25 26 27 28 29	

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in birthdate	MM.DDYYYY	GSB 1	Day #*
3	Key in biodate and find bio			
	values	MM.DDYYYY	R/S	Р
			R/S	S
			R/S	С
4	To find bio values for succeed-			
	ing days.		R/S R/S	Р
			R/S	S
			R/S	С
5	For a new birthdate, go to step			
	2; for a new biodate, go to			
	step 3.			
	* See Calendar Functions for			
	explanation of this number.			

Example:

Calculate the bio values for June 29, 1976, for a person born March 27, 1948. Find the values for the two days following also.

Keystrokes:

Outputs:

3.271948 GSB 1→ 6.291976 R/S→	711656 -1.00	(day #) (June 29) (P)
[R/S] →	-0.62	(S)
R/S → R/S R/S →	-1.00 -0.98	(C) (June 30) (P)
R/S →	-0.78	(S)
R/S →	-0.97	(C)
R /S →	-0.89	(July 1) (P)
R/S	-0.90 -0.91	(S) (C)
		()

COUNTDOWN TIMER

This program provides a countdown timer and a calibration routine for measuring elapsed time. When using this program, you should remember that clock circuits of HP calculators are designed for calculator use, not for accurate time keeping. Although the routine may be calibrated quite accurately, highly stable performance should not be expected due to variable conditions about the calculator.

Equations:

01 #LBL1					
02 FIX4 03 STO2		onstant 			
04 #LBL9 05 0	Alarm				
06 R/S 07 ST01					
88 →H 89 RCL2					
10 × 11 ST00	Store ti	me			
12 RCL1 13 R/S					
14 *LBL8					
15 DSZ 16 GT08		counter			
17 GT09 18 #LBL2		alarm'' 			
19 →H 20 XZY					
21 →H 22 X±Y					
23 - 24 RCL1	Calibrat	e constant			
25 +H 26 ÷					
27 1/X 28 RCL2					
29 × 30 R/S					
31 6701					
		REGI	STERS		
0 counter	¹ time	² Ca	3	4	5
6	7	8	9	.0	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

 $Ca_{new} = Ca_{old} \frac{HP \text{ time}}{Actual \text{ Time}}$

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input timer constant (try 10000)	Ca	GSB 1	0.0000
3	Input desired time	t(H.MMSS)	R/S	t
4	Start timer		R/S	0.0000
5	Timer loops for time t. When			
	0.0000 is displayed, time has			
	elapsed. For a new time t, exe-			
	cute step 3 and 4. To calibrate,			
	proceed to step 6.			
6	Input ending time and starting			
	time to calculate new constant	te	ENTER +	
		ts	GSB 2	Ca
	To proceed depress		R/S	
	Then go to step 3.			

Example:

Measure elapsed times of 35 seconds and 1 minute 8 seconds.

Keystrokes:	Outputs:
10000 GSB 1	0.0000
0.0035 R/S →	0.0035
R/S	0.0000

Timer runs for approximately 32 seconds.

For the second desired time:

Keystrokes:	Outputs:
0.0108 R/S ───	0.0108
R/S	0.0000

Supposing you had noticed the *actual* ending and starting times of the 2^{nd} example were 9:58:03 and 9:57:01, respectively, then calibrate the timer with this information:

Keystrokes:	Outputs:
9.5803 ENTER • 9.5701	
GSB 2→	10967.7421
R/S →	0.0000
Now try the calibrated timer for 2 minu	ites 5 seconds:
0.0205 R/S →	0.0205

R/S		0.0000	0.0000	
Under the same conditions.	the new time	r constant 10	0967.742	

Under the same conditions, the new timer constant 10967.7421 should be used for subsequent use of this program. Your HP calculator will have its own "best" constant for calibration.

BODY SURFACE AREA CALCULATIONS

This program calculates body surface area by either the Dubois or Boyd formula, ... allowing your choice of the preferred method. If cardiac output is known, cardiac index may also be calculated.

The Dubois is undefined, and should not be used, for children with a BSA of less than $0.6m^2$. If the result is less than 0.6, use the Boyd formula instead.

Data inputs are patient's height and weight, in either metric or English units, and if desired, the cardiac output. If the measurements are in English units (inches and pounds) the data are input as negative values and the program automatically converts then to metric units (cm and kilograms).

Equations:

Dubois formula:

```
BSA (m^2) = Ht (cm)^{0.725} \cdot Wt (kg)^{0.425} \cdot 71.84 \cdot 10^{-4}
```

Boyd formula:

```
BSA (m<sup>2</sup>) = 3.207 \cdot Wt (gm)^{(0.7285 - 0.0188 \log Wt)} \cdot Ht (cm)^{0.3} \cdot 10^{-4}
Cardiac Index (CI):
```

$$CI = CO (\ell/min)/BSA (m^2)$$

Remarks:

- The height and weight may be input in either metric or English units. If English units are used, they must be entered as negative values, by pressing CHS after the number is input. Press GSB 1 to calculate BSA by the Dubois method, or GSB 2 for the Boyd result. The data must be reentered for calculation by the alternate method, if desired.
- Values for BSA calculated by the Dubois method are stored in Register 1 or, if by the Boyd method in Register 2 and may be recalled as needed.
- To calculate cardiac index: select BSA as calculated by the desired method and recall it from storage, then enter cardiac output and press (SSB 3).

0 ()(D) (58 3	
01 #LBL1 02 GSB0		51 1	
82 8368 83 RCL8	Calculate BSA by DuBois	52 1	
84 .	method	53 8	
85 7		54 ÷	
8 6 2		55 ST02	
Ø7 5		56 RTN	
08 Y×		57 #LBL3	Input CO and calculate CI
09 RCL9		58 X≠Y	
10 .		59 ÷	***
11 4		60 RTN	
12 2		61 #LBL0	Is ht. and wt. input
13 5		62 X(8?	metric or English?
14 Y×		63 GSB9 64 ST09	metric of Englishe
15 ×		65 R4	
16 1		66 X(8?	
17 3 18 9		67 GSB8	
		68 ST08	
19 . 20 2		69 RTN	
20 2 21 ÷		70 #LBL9	
22 ST01		71 CHS	Convert wt. to metric
23 RTN	•••	72 2	
24 #LBL2	Calculate BSA by Boyd	73 .	
25 GSB0	method	74 2	
26 RCL8	method	75 ÷	
27 .		76 RTN	Comment has an entries
28 3		77 #LBL8	Convert ht. to metric
29 YX		78 CHS 79 2	
30 RCL9		00	
31 EEX		84 .	
32 3		82 4	
33 ×		83 ×	
34 ENTT		84 RTN	
35 LOG			
36 .			
37 0			
38 1			
39 8 49 8			
48 8 41 x			
43 7			
44 2 45 8	1		
1 70 0			
46 5			
46 5 47 -			
47 -			
47 - 48 Y ^x 49 ÷	REGI	STERS	
47 - 48 Y* 49 ÷ 0 1 BS/	A (DuBois) ² BSA (Boyd)	3 4	5
47 - 48 Y [™] 49 ÷ 0 1 BS/ 6 7	A (DuBois) ² BSA (Boyd) ⁸ Ht.	3 4 9 Wt0	.1
47 - 48 Y ^x 49 ÷ 0 1 BS/ 6 7 .2 3	A (DuBois) 2 BSA (Boyd) 8 Ht. .4	3 4 9 Wt. .0 .5 16	
47 - 48 Y [™] 49 ÷ 0 1 BS/ 6 7	A (DuBois) ² BSA (Boyd) ⁸ Ht.	3 4 9 Wt0	.1

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input patient height (+ cm or-in)	Ht	ENTER +	
3	Input patient weight (+ kg or -lb)	Wt		
4	Calculate BSA			
	by Dubois formula		GSB 1	BSA (m²)
	or, by Boyd formula		GSB 2	BSA (m²)
	Note: Reenter data before per-			
	forming calculation again by			
	alternate method.			
5	Calculate cardiac index. Recall			
	desired BSA from storage	BSA, Dubois	RCL 1	BSA (m²)
	or,	BSA, Boyd	RCL 2	BSA (m²)
	Input cardiac output and	CO, ℓ/min	GSB 3	CI,(⁰ /min/m ²)
	calculate cardiac index			

Example:

A patient has the following height and weight.

Ht = 60 in or 152.40 cm Wt = 100 lbs or 45.45 kg.

Calculate BSA by both the Dubois and Boyd methods. If the cardiac output, (CO) is 5 1/min calculate the cardiac index using the Dubois BSA.

Keystrokes:	Outputs:	
60 CHS ENTER +		
100 снз GSB 1 ————	1.39	m ² (Dubois)
152.4 ENTER + 45.45 GSB 2 →	1.40	m² (Boyd)
RCL 15 GSB 3→	3.59	CI (by Dubois)

PULMONARY FUNCTIONS AND VITAL CAPACITY

The pulmonary function testing package provides calculations of the predicted and percent predicted values for vital capacity (VC), forced expiratory volume after 1 second (FEV₁), maximum expiratory flow rate (MEFR), maximum ventilatory volume after 12 seconds (MVV₁₂), residual volume (RV), total lung capacity (TLC), functional residual capacity (FRC), and forced expiratory flow from 25% to 75% (FEF 25%-75%).

The calculations are performed for either male or female patients, given the patient's height and age.

Equations:

All of the functions (with two exceptions) are calculated from a general equation of the form: $(A \cdot Ht(cm)) - (B \cdot AGE(years)) - C$, where A, B, and C are constants given in Table 1.

The exceptions are:

- Female TLC: If height is greater than 174 cm (68.5 inches) add 1 cm to height before calculation.
- Female Predicted FEF: $(A \cdot Ht(cm)) (B \cdot AGE(years)) (0.00005 \cdot AGE^2(years)) C.$

25% VC = 0.25 VC 75% VC = 0.75 VC $\Delta t = t_{75\%} - t_{25\%}$ Measured FEF = (0.5 • VC)/ Δt

References:

Morris, J.F., Koski, A., Johnson, L.C., American Rev. Resp. Dis., 1971, 103, 57.

Bates, et. al., Respiratory Function in Disease, W.G. Saunders Co., 1971.

	FEMALE			MALE			
	Α	В	С	Α	В	С	
Predicted VC	0.045	0.024	2.852	0.058	0.025	4.24	
Predicted FEV ₁	0.035	0.025	1.932	0.036	0.032	1.26	
Predicted MEFR	0.057	0.036	2.532	0.043	0.047	-2.07	
Predicted MVV ₁₂	0.762	0.81	6.29	0.9	1.51	-27.0	
Predicted RV	0.024	-0.012	2.63	0.03	-0.015	3.75	
Predicted TLC*	0.078	0.01	7.36	0.094	0.015	9.17	
Predicted FRC	0.047	0.00	4.86	0.051	0.00	5.05	
Predicted FEF	0.02	0.03	-1.3	0.02	0.04	-2.0	

Table 1 Constants For Calculation of Predicted Values

Detailed User Instructions:

Key in the program. Then key in the patient height, in centimeters or inches (if in inches, input as a negative number) and press **GSB 1**. Then key in patient age in years and press **GSB 2**. Now any of the predicted values may be calculated by entering the appropriate constants A, B and C from table 1 and pressing **GSB 3**. The predicted value of the function is displayed. Key in the measured value of the function and press **F/S** to obtain the percent of predicted value.

The measured forced expiratory flow rate from the 25% and 75% points of a spirogram and predicted and percentage of predicted value are calculated as follows:

Enter A, B, and C from table 1, then press \bigcirc 4. The predicted FEF is displayed. Key in the vital capacity as measured from the spirogram and press \bigcirc 5. The display will show 25% VC. Read the measured time of this volume from the spirogram, key in this time in seconds and press \bigcirc 5. The display will now show 75% VC. Determine the time at this volume from the spirogram, key it in and again press \bigcirc 5. The measured FEF is now displayed. Pressing \bigcirc 3. The predicted FEF can be recalled by pressing \bigcirc 5. If the predicted \bigcirc 1.

*(Note: for female patients over 174 cm in height be sure to add 1 cm to height before calculating TLC, then reenter proper value for height before proceeding with calculations of other functions).

r						
01 #LBL1			50 7			
82 X<8? 83 GSB8	Ste	ore ht.	51 5 52 ×	I .	nput∆t@	75 VC
84 ST04			53 RTH			neasured FEF
85 RTN			54 X2Y			
06 #LBL2			55 R4			
Ø7 ST05	Sto	ore age	56 X≇Y			
88 RTN			57 -			
09 #LBL3 10 ST03			58 . 59 5			
11 R4			59 RCL6			
12 ST02	Ca	lculate functions	61 ×			
13 R4			62 XZY			
14 ST01			63 ÷		*** Displa	y Meas. FEF
15 RCL1			64 R/S			
16 RCL4 17 ×			65 RCL0			
18 RCL2			66 ÷ 67 EEX			
19 RCL5			68 2			
20 ×			69 X	Ι.	*** Displa	y % of pre-
21 -			78 R/S	d	dicted FEF	÷.
22 RCL3			71 RCL0			
23 1 24 .			72 RTN	· ·		
25 3			73 #LBL0		Change inc	hes to cm
26 CHS			74 CHS 75 2		onunge me	
27 X=Y?			75 2			
28 GSB9			77 5			
29 R4 30 -			78 4			
30 - 31 ST00			7 <u>9</u> ×			
32 RTN		 Display function 	80 RTN			
33 X2Y			81 #LBL9			
34 ÷			82 R4 83 5		Calculate f	emale FEF.
35 EEX			84 EEX		ouround to r	
36 2 37 ×	Ca	Iculate and display % of	85 5			
37 A	pre	edicted	86 CHS			
39 #LBL4			87 RCL5 88 X2			
40 GSB3	0	culate predicted FEF	88 X-			
41 R/S		iculate predicted FEF	99 ÷			
42 ST06			91 ENT†			
43 . 44 2			92 RTN			
45 5						
46 ×						
47 RTH	Ing	out ∆t @ .25VC				
48 RCL6						
49.						
			STERS			
⁰ Predicted Value		2 B	3 C	4 ht. (cm	n) 5	age (Years)
⁶ Measured VC	7	.4	9 .5	.0	.1	,
.2	.3	20	21	22	23	
	25	26	21	22	23	
24	25	26	21	20	29	

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input patient height in cm, or	Ht, cm.	GSB 1	Ht, cm
	in inches	Ht, in.	CHS GSB	Ht, cm
			1	
3	Input patient age in years	AGE, Yrs.	GSB 2	AGE, Yrs.
4	Calculate predicted values of			
	desired functions.			
	Input A from table I	А	ENTER +	
	Input B from table I	В	ENTER +	
	Input C from table I	С	GSB 3	Pred. Value
5	Calculate % of predicted value			
	Input measured value	Meas. Value	R/S	% of Pred.
6	Calculate forced expiratory flow			
	Calculate predicted FEF			
	Input A from table I	А	ENTER +	
	Input B from table I	В		
	Input C from table I	С	GSB 4	FEF Pred.
	Input measured VC	VC	R/S	25% VC
	Obtain t @ 25% VC from			
	spirogram and input	t _{25%} sec.	R/S	75% VC
	Obtain t @ 75% VC from			
	spirogram and input	t _{75%} sec.	R/S	FEF _{Meas} .
	Calculate % predicted FEF		R/S	% FEF _{Pred.}
	Recall FEF _{Pred.} if desired		R/S	FEF _{Pred.}

Example 1:

Calculate the predicted and percentage of predicted vital capacity, residual volume and forced expiratory flow for a male 6 feet tall, 28 years of age.

Measured values are:

VC = 5.2 &RV = 2.0 &

Keystrokes:	Outputs:				
Calculate VC: From table 1, $A = 0.058$, $B = 0.025$, $C = 4.24$					
72 CHS GSB 1	182.88	(cm)			
28 GSB 2	28	(years)			
.058 ENTER • .025 ENTER • 4.24					
	5.67	(i) Treu./			
5.2R/S	91.76	(% Pred.)			
Calculate RV: From table 1, $A = 0.03$, $B = -0.015$, $C = 3.75$					
.03 ENTER .015 CHS ENTER .					
3.75 GSB 3	2.16	$(\ell, RV_{Pred.})$			
2 (R/S) ►	92.75	(% Pred.)			
Calculate % of FEF: From table 1, $A = 0.02$, $B = 0.04$, $C = -2.0$					
.02 ENTER + .04 ENTER + 2.0					
	4.54	$(\ell, FEF_{Pred.})$			
Input Measured VC = $5.2 \&$.					
5.2 ℝ/s →	1.30	(25% VC)			
From Spirogram at 25% VC = 1.3 Obtain $t_{25\%} = 0.4$ sec.					
.4R/S	3.90	(75% VC)			
From Spirogram at 75% VC = 3.9 Obtain $t_{75\%} = 1.0$ sec.					
1 R/S ►	4.33	(ℓ, FEF)			
R/S►	95.50	(% Pred.)			
R/S	4.54	$(\ell, FEF_{Pred.})$			

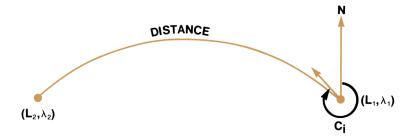
Example 2:

Calculate the predicted and percentage of predicted vital capacity for a female patient 5 feet tall, 28 years of age.

Measured VC = 3.0 &Measured RV = 1.2 &

Keystrokes:

Outputs:


Calculate VC: From table 1, A = 0.045, B = 0.024, C = 2.852

60 CHS GSB 1→	152.40	(cm)
28 GSB 2→	28.00	(years)
.045 ENTER + .024 ENTER +		
2.852 GSB 3	3.33	$(\ell, VC_{Pred.})$
3.0 R/S ►	89.98	(% Pred.)

Calculate RV: From table 1, A = 0.024, B = -0.012, C = 2.63.024 ENTER + .012 CHS ENTER + 2.63 GSB 3 _____ 1.36 (ℓ, RV_{Pred}) 1.2**R/S** _____ 88.00 (% Pred.) Calculate % FEF: From table 1, A = 0.02, B = 0.03, C = -1.3.02 ENTER + .03 ENTER + 1.3 CHS GSB 4 _____ 3.47 (ℓ, FEF_{Pred}) 3.0 R/S _____ 0.75 (25% VC) From Spirogram Find $t = 0.4 \sec @25\%$ VC .4[R/S] _____ 2.25 (75% VC) From Spirogram Find $t = 1.0 \sec @75\%$ VC $(\&, FEF_{Meas.})$ 2.50 [R/S] ------72.07 (% Pred.) [R/S] _____ $(\ell, FEF_{Pred.})$ 3.47

GREAT CIRCLE NAVIGATION

This program calculates the great circle distance between two points and the initial course from the first point. Coordinates are input in degrees-minutesseconds format. The distance is displayed in nautical miles and the initial course in decimal degrees.

Equations:

$$D = 60 \cos^{-1} \left[\sin L_1 \sin L_2 + \cos L_1 \cos L_2 \cos (\lambda_2 - \lambda_1) \right]$$
$$C = \cos^{-1} \left[\frac{\sin L_2 - \sin L_1 \cos (D/60)}{\sin (D/60) \cos L_1} \right]$$
$$C_i = \begin{cases} C; \sin (\lambda_2 - \lambda_1) < 0\\ 360 - C; \sin (\lambda_2 - \lambda_1) \ge 0 \end{cases}$$

where:

 L_1 , λ_1 = coordinates of initial point

 L_2 , λ_2 = coordinates of final point

D = distance from initial to final point

 C_i = initial course from initial to final point

Remarks:

- Southern latitudes and eastern longitudes must be entered as negative numbers.
- Truncation and round off errors occur when the source and destination are very close together (1 mile or less).
- Do not use coordinates located at diametrically opposite sides of the earth.
- Do not use latitudes of $+90^{\circ}$ or -90° .
- Do not try to compute initial heading along a line of longitude $(L_1 = L_2)$.
- This program assumes the calculator is set in DEG mode.

01 ¥LBL0 02 →H 03 sto0 04 rtn	L,	50 SIN 51 ÷ 52 COS⊣ 53 RCL4	с	
85 →H 86 ST01) 87 R/S	λ ₁	54 SIN 55 X(8° 56 GT09		
00 0702	L ₂	57 R4 58 3		
10 K/S		59 6		
10 0707		68 8		
13 R/S	λ2	61 X≢Y		
13 R/3		62 -	*** C _i	
15 RCL0		63 RTN		
		64 #LBL9		
		65 R4	*** C _i	
		66 RTN	C _i	
18 SIN				
19 X				
28 RCL0				
21 COS				
22 RCL2 23 COS				
23 C03 24 X				
25 RCL3				
26 RCL1				
27 -				
28 ST04				
29 005				
39 ×				
31 +				
32 ST05				
32 5705				
34 ST06				
34 5/06				
36 0				
36 0 37 X				
38 R/S 39 RCL2	*** D			
42 SIN 43 RCL5				
43 KLL5 44 X				
45 -				
45 - 46 RCL0				
40 KCL0 47 COS				
47 005 48 ÷				
49 RCL6				
0 L ₁ 1 λ ₁	2 L ₂	STERS 3 λ2	4 $\lambda_2 - \lambda_1$	5 COS D/60
⁶ D/60 ⁷ C _i	8		.0	.1
.2 .3	.4	.5	16	17
18 19	20	21	22	23
24 25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in latitude and longitude of			
	origin.	L ₁ (D.MS)	GSB 0	L1 (dec. deg)
		λ ₁ (D.MS)	R/S	λ_1 (dec. deg)
3	Key in latitude and longitude of			
	destination.	L ₂ (D.MS)	R/S	L ₂ (dec. deg)
		λ_2 (D.MS)	R/S	λ_2 (dec. deg)
4	Calculate distance and initial			
	course.		GSB 1	D (n.m.)
			R/S	C _i (dec. deg)

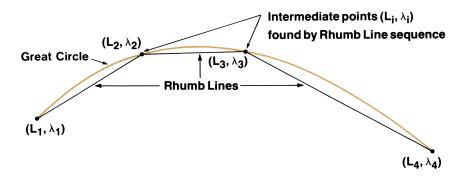
Example 1:

Find the distance and initial course for the great circle from Tokyo (L35°40'N, λ 139°45'E) to San Francisco (L37°49'N, λ 122°25'E).

Keystrokes:	Outputs:	
35.40 GSB (0 139.45		
	-139.75	
37.49 ℝ/s 122.25 ℝ/s →	122.42	
GSB 1→	4460.04	(D, n. m.)
[R/S] →	54.37	$(C_i, dec. deg.)$

Example 2:

What is the distance and initial great circle course from L33°53'30"S, $\lambda 18^{\circ}23'10"E$ to L40°27'10"N, $\lambda 73^{\circ}49'40"W$?


Keystrokes:	Outputs:	
33.533 CHS GSB 0 18.231		
CHS R/S	-18.39	
40.271 R/S 73.494 R/S →	73.83	
GSB 1►	6763.09	(D, n. m.)
R/S	304.48	$(C_i, dec. deg.)$

RHUMB LINE NAVIGATION

This program is designed to assist in the activity of course planning. You supply the latitude and longitude of the point of origin and the destination. The program calculates the rhumb line course and the distance from origin to the destination.

Since the rhumb line is the constant course path between points on the globe, it forms the basis of short distance navigation. In low and midlatitudes the rhumb line is sufficient for virtually all course and distance calculations which navigators encounter. However, as distance increases or at high latitudes the rhumb line ceases to be an efficient track since it is not the shortest distance between points.

The shortest distance between points on a sphere is the great circle. However, in order to steam great circles, an infinite number of course changes are necessary. Since it is impossible to calculate an infinite number of courses at an infinite number of points, several rhumb lines may be used to approximate a great circle. The more rhumb lines used the closer to the great circle distance the sum of the rhumb line distances will be. The Great Circle Navigation program may be used to calculate intermediate course change points which can be linked by rhumb lines.

Latitudes and longitudes are input in degrees-minutes-seconds. Course is displayed in decimal degrees. Southern latitudes and eastern longitudes are input as negative numbers.

Equations:

$$C = \tan^{-1} \frac{\pi (\lambda_1 - \lambda_2)}{180 (\ln \tan (45 + \frac{1}{2} L_2) - \ln \tan (45 + \frac{1}{2} L_1))}$$
$$D = \begin{cases} 60 (\lambda_2 - \lambda_1) \cos L; \cos C = 0\\\\ 60 \frac{(L_2 - L_1)}{\cos C}; \text{ otherwise} \end{cases}$$

where:

 (L_1, λ_1) = position of initial point

 (L_2, λ_2) = position of final point

D = rhumb line distance

C = rhumb line course

Remarks:

- No course should pass through either the south or north pole.
- Errors in distance calculations may be encountered as cos C approaches zero.
- Accuracy deteriorates for very short legs.
- This program assumes the calculator is set in DEG mode.

		T	· · · · · · · · · · · · · · · · · · ·
01 *LBL1		50 RTN	
82 +H		51 #LBL8	
8 3 ST03	λ_2	52 3	
84 R↓		53 6	E to W 360 – C
05 +H		54 8	
86 ST02	L ₂	55 RCL5	
87 R↓	-2	56 ABS	
8 8 →H	λ_1	57 -	
8 9 ST01	~1	58 #LBL7	
10 R4		59 ABS	
11) H		60 ST06	
12 STOR	L ₁	61 1	
13 FIX2			
14 RCL1	$\lambda_1 - \lambda_2$	62 8	
		63 0	
		64 RCL4	
16 -		65 ABS	
17 ST04		66 X4Y?	is $[\lambda_1 - \lambda_2] > 180^\circ$?
18 2	$Make - 180 \leqslant \lambda_1 - \lambda_2$	67 GSB6	If so subtract from 360
19 ÷	≤ 180	68 RCL2	
28 SIN	1	69 COS	
21 SIN-	1	719 ×	
22 9		71 ST07	
23 0		72 RCL2	
24 ÷		73 RCL0	
25 Pi		74 -	
26 ×		75 RCL5	
27 RCL2		76 COS	
28 GSB9		77 X≠0?	is $C = 90^{\circ}$?
29 RCL0		78 ÷	13 0 00 1
38 GSB9		79 ENT+	
31 -		80 X=0?	
32 →P			
33 R4	с	81 RCL7	
34 ST05		82 6	
35 RCL4		83 0	
36 SIN		84 X	
37 SIN-		85 ABS	
38 X(0?		86 R/S	*** Distance
39 GT08	x < 0 means east to west,	87 RCL6	*** Course
48 RCL5		88 RTN	*** Course
41 GT07		89 #LBL6	
42 #LBL9		90 3	
43 2	If west to east	91 6	If $[\lambda_1 - \lambda_2] > 180^\circ$
44 ÷	C is answer	92 6	
45 4	1	93 XZY	then 360 – $[\lambda_1 - \lambda_2]$
46 5	1	94 -	
47 +	1	95 RTN	1
48 TAN	1		
49 LN	1		
+> Ln			
0 1)	REGI	STERS	5 Llaad
	2 L ₂	Λ_2 $\Lambda_1 = \Lambda_2$	2 ⁵ Used
C Use	a		
.2 .3	.4	.5 16	17
18 19	20	21 22	23
24 25	26	27 28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

76 Navigation

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in latitude and longitude of			
	origin	L ₁ (D.MS)	ENTER +	
		λ_1 (D.MS)	ENTER +	
3	Key in latitude and longitude of			
	destination	L ₂ (D.MS)	ENTER +	
		λ_2 (D.MS)		
4	Calculate distance and course		GSB 1	D (n.m.)
			R/S	C (dec. deg.)
	Note: Southern latitudes and			
	eastern longitudes must be input			
	as negative numbers.			

Example 1:

What is the distance and course from L35°24'12"N, λ 125°02'36"W to L41°09'12"N, λ 147°22'36"E?

Keystrokes:	Outputs:	
35.2412 ENTER 125.0236		
ENTER + 41.0912 ENTER +		
147.2236 CHS GSB 1 →	4135.60	(DIST., n. m.)
[R/S] →	274.79	(C, dec. deg.)

Example 2:

What course should be sailed to travel a rhumb line from L2°13'42"S, $\lambda 179^{\circ}07'54$ "E to L5°27'24"N, $\lambda 179^{\circ}24'36$ "W? What is the distance?

Keystrokes:	Outputs:	
2.1342 CHS ENTER 179.0754		
CHS ENTER + 5.2724 ENTER +		
179.2436 GSB 1	469.31	(DIST., n. m.)
(R/S)►	10.73	(C, dec. deg.)

SIGHT REDUCTION TABLE

This program calculates the computed altitude, Hc, and azimuth, Zn, of a celestial body given the observer's latitude, L, and the local hour angle, LHA, and declination, (d), of the body. It thus becomes a replacement for the nine volumes of H0 214. Moreover, the user need not bother with the distinctions of same name and contrary name; the program itself resolves all ambiguities of this type.

Equations:

$$Hc = \sin^{-1} \left[\sin d \sin L + \cos d \cos L \cos LHA \right]$$
$$Zn = \begin{cases} Z; & \sin LHA < 0\\ 360 - Z; \sin LHA \ge 0 \end{cases}$$
$$Z = \cos^{-1} \left[\frac{\sin d - \sin L \sin Hc}{\cos L \cos Hc} \right]$$

Remarks:

- Southern latitudes and southern declinations must be entered as negative numbers.
- The meridian angle t may be input in place of LHA, but if so, eastern meridian angles must be input as negative numbers.
- The program assumes the calculator is set in DEG mode.

Note:

This program may also be used for star identification by entering observed azimuth in place of local hour angle and observed altitude in place of declination. The outputs are then declination and local hour angle instead of altitude and azimuth. The star may be identified by comparing this computed declination to the list of stars in *The Nautical Almanac*.

					
01 ±LBL1			50 3		
82 +H			51 6		
8 3 ST08	L		52 8		
84 RTN			- 53 X≄	Y	
85 +H			54 -		
8 6 ST01			55 RT	N ***	Zn
87 R/S			56 *LBL	8	
0 8 →H				Ψ.	
8 9 ST02	d		_ 58 RT		Zn
10 RCL0			- 00 %	"	2.11
11 SIN					
12 RCL1	LHA				
13 SIN					
14 ×					
15 RCLO					
16 COS					
17 RCL1					
18 COS					
18 CUS 19 ×					
20 RCL2					
21 COS 22 ×					
23 +					
24 ST03					
25 SIN-					
26 ST04	Hc, de	c. deg.			
27 +HMS					
28 FIX4	Hc, D.	MS			
29 R/S	***				
30 FIX1					
31 RCL1	í				
32 SIN					
33 RCL3					
34 RCL0					
35 SIN					
36 ×					
37 -					
38 RCL0					
39 COS					
48 ÷					
41 RCL4					
42 COS					
43 ÷					
44 COS-					
45 RCL2					
46 SIN	z				
47 X(8?					
48 GT00					
48 6708 49 RJ					
	I	PFC	SISTERS		
о L	1 d	² LHA	³ Sin Hc	4 Hc	5
6	7	8	9	.0	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29
24					

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTION	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input the following:			
	Observer's latitude	L (D.MS)	GSB 1	
	Declination	d (D.MS)	R/S	
	Local hour angle	L.H.A. (D.MS)		
3	Calculate:			
	Altitude		R/S	Hc (D.MS)
	Azimuth		R/S	Zn (dec. deg.)
	or			
2	Input:			
	Observer's latitude	L (D.MS)	GSB 1	
	Altitude	Hc (D.MS)	R/S	
	Azimuth	Zn (D.MS)		
3	Calculate:			
	Declination		R/S	d (D.MS)
	Local hour angle		R/S	L.H.A. (dec. deg.)

Example 1:

Calculate the altitude and azimuth of the moon if its LHA is $2^{\circ}39'54''W$ and its declination $13^{\circ}51'06''S$. The assumed latitude is $33^{\circ}20'N$.

Keystrokes:	Outputs:	
33.20 GSB 1►	33.33	
13.5106 CHS R/S	-13.85	
2.3954 R/S	42.4447	(Hc, D.MS)
[R/S]	183.5	(Zn, dec. deg.)
	183.5	(Zn, dec. deg.)

Example 2:

Calculate the altitude and azimuth of REGULUS if its LHA is $36^{\circ}39'18''W$ and its declination is $12^{\circ}12'42''N$. The assumed latitude is $33^{\circ}30'N$.

Keystrokes:	Outputs:	
33.30 GSB 1→	33.5	
12.1242 R/S →	12.2	
36.3918 R/S →	50.2425	(Hc, D.MS)
R/S	246.3	(Zn, dec. deg.)

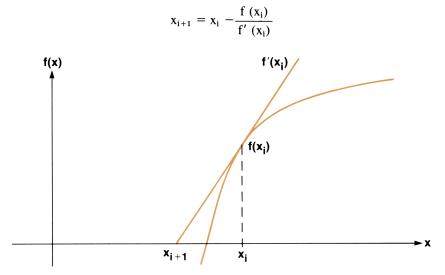
Example 3:

At 6:10 G.M.T. on January 12, 1977 a star peeked through the clouds over Corvallis (L44°34'N, λ 123°17'W). An alert observer using a bubble sextant quickly determined its altitude to be 26° and its azimuth 158°. Using *The Nautical Almanac* identify the star.

Keystrokes:	Outputs:	
44.34 GSB 126 R/S		
158 R/S	-16.3725	(d, D.MS)
R/S	339.4	(L.H.A., dec. deg.)
Obtain G.H.A. by adding latitude to L	L.H.A.	
123.17 9 ↔ + +	462.7	(G.H.A., dec. deg.)
Then convert G.H.A. to S.H.A. b	y subtracting G.H.	A. ARIES (for 6:10
G.M.T., January 12, 1977 G.H.A.	ARIES is 203.4 de	c. degrees).
203.4 - f +HMS	259.2	(S.H.A., D.MS)
From The Nautical Almanac we f	ind the star to be	SIRIUS (S H $\Delta =$

From *The Nautical Almanac* we find the star to be SIRIUS (S.H.A. = $258^{\circ}58.1'$, d = $S16^{\circ}41.2'$).

NEWTON'S METHOD-SOLUTION TO f(x) = 0


This program uses Newton's method to find a solution for f(x) = 0, where f(x) is specified by the user.

The user must define the function f(x) by keying into program memory the keystrokes required to find f(x), assuming x is in the X-register. 55 program steps are available for defining f(x); the program only uses registers R_0 through R_4 , the rest of the registers are available to the user.

The user must provide the program with an initial guess, x_1 , for the solution. The closer the initial guess is to the actual solution, the faster the program will converge to an answer. The program will halt when two successive approximations for x, say x_i and x_{i+1} , are within a tolerance ϵ , i.e., when $[x_{i+1} - x_i] < \epsilon$. The value for ϵ must be input by the user. In general a reasonable value for ϵ might be $10^{-6} x_1$.

Equations:

The basic formula used by Newton's method to generate the next approximation for the solution is:

This program makes a numerical approximation for the derivative f'(x) to give the following equation:

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \mathbf{\delta}_i \left[\frac{\mathbf{f}(\mathbf{x}_i + \mathbf{\delta}_i)}{\mathbf{f}(\mathbf{x}_i)} - 1 \right]^{-1}$$

where:

 $\delta_i = 10^{-5} x_i$

Remarks:

After the routine has finished calculating, the last value of f(x) may be displayed by pressing **RCL** 4. If this value is not close enough to zero, the program may be run again with a smaller value for ϵ .

Programming Remarks:

This is one of the more complex programs in the book. The main difficulty is that at each iteration both f(x) and $f(x + \delta)$ need to be calculated, but the function f is keyed in in only one place in program memory. Large computers handle this problem by the use of a subroutine. This program simulates that technique by a number stored in R_0 known as a flag. The flag is set to 0 to indicate that f(x) is to be calculated, or to 1 if $f(x + \delta)$ is to be found. After the calculation of f, a test is made on the flag. If it is 0, the program will branch to an instruction which will store f(x); if it is 1, the program will go on to calculate a derivative based on $f(x + \delta)$.

01 #LBL1						
02 ST02		Store x,	ε			
03 XZY						
84 ST01						
85 #LBL8						
86 CLX		00				
07 ST00		Set flag 1	to 0 for f(x)			
08 RCL1 09 GT00						
10 #LBL6						
10 #LDL0						
12 ST04						
13 1						
14 STOR						
15 RCL1		Store f(x) and calculate δ			
16 RCL1		01010111				
17 EEX						
18 5						
19 ÷						
20 5703						
21 +						
22 #LBL0		User's f(;	x)			
23 #LBL7						
24 X=8?						
25 GT09						
26 RCL0						
27 X=0?						
28 GT06						
29 R4						
30 RCL4		.				
31 ÷		Calculate	e x _{i+1}			
32 1		x _i and				
33 -						
34 1/X		[x _{i+1} - >	$(1 \ge \epsilon)$			
35 RCL3		1/171	() × C.			
36 ×						
37 ST-1						
38 ABS						
39 RCL2						
48 X2Y						
41 X>Y?						
42 GT08						
43 #LBL9						
44 RCL1		***				
45 RTN						
		Output	< ₀			
			BEGI	I STERS	I	
⁰ Flag	1 x		2 e	3 δ	4 f(x)	5
6	7		8	9	.0	.1
.2	.3		.4	.5	16	17
18	19		20	21	22	23
24	25		26	27	28	29
L	1		I	1	1	4

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Press GTO 0		СТО О	
3	Switch to PRGM and key			
	in function f(x)			
4	Switch to RUN			
5	Input initial guess for solution			
	and tolerance to calculate			
	solution.	X ₁	ENTER +	
		E	GSB 1	×o
6	To recall the last f(x)		RCL 4	f(x)

Example:

Find a root x_0 of the equation $\ln x + 3x - 10.8074 = 0$ in the interval [1, 5]. An accuracy of 10^{-4} is acceptable.

Keystrokes:

Outputs:

GTO 0,

Switch to PRGM

[] In [] LAST X 3 X + 10.8074 ─

Switch to RUN

1 ENTER + EEX CHS 4

GSB 1		3.21	(root)
RCL 4	 -1.50	-07	(f(3.21))

NUMERICAL INTEGRATION BY SIMPSON'S FORMULA

This program will perform numerical integration by Simpson's formula whether a function is known explicitly or only at a finite number of equally spaced points (discrete case).

Discrete Case:

Let $x_0, x_1, ..., x_n$ be n equally spaced points $(x_j = x_0 + jh, j = 1, 2, ..., n)$ at which corresponding values $f(x_0)$, $f(x_1), ..., f(x_n)$ of the function f(x) are known. The function itself need not be known explicitly. After input of the step size h and the values of $f(x_j), j = 0, 1, ..., n$, then the integral

$$\int_{x_0}^{x_n} f(x) \, \mathrm{d}x \tag{1}$$

may be approximated using Simpson's rule:

$$\int_{x_0}^{x_n} f(x) dx \approx \frac{h}{3} \left[f(x_0) + 4f(x_i) + 2f(x_2) + \dots + 4f(x_{n-3}) + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right]$$
(2)

In order to apply Simpson's rule, n must be even.

Explicit Functions:

If an explicit formula is known for the function f(x), then the function may be keyed into program memory and numerically integrated by Simpson's rule. The user must specify the endpoints a and b of the interval over which integration is to be performed, and the number of subintervals n into which the interval (a, b) is to be divided. This n must be even; if it is not, Error will be displayed. The program will go on to compute $x_0 = a$, $x_j = x_0 + jh$, j = 1, 2, ..., n-1, and $x_n = b$ where

$$h = \frac{b-a}{n}$$

The integral $\int_{a}^{b} f(x) dx$ is approximated by equation (2) above, Simpson's rule.

17 program steps (or more) are available for user's function f(x). Refer to the Instructions for keying in the function f(x).

Remarks:

- Since there are actually 3 routines after LBL 1 for keying in the value of $f(x_j)$, one for j = 0, one for j odd, and one for j even, it is important that no other keys be pressed during the entry of the $f(x_j)$, lest the next $f(x_j)$ entered go into the wrong register.
- If n is not even erroneous results will occur.

Image: Construction of the construction of					1			
63 STO4 STO4 STO 64 P_{S} STO STO 65 STO9 STO STO 66 FRC1.3 Input f ₀ STO STO STO 67 FRC1.3 Input f ₀ STO STO STO STO 68 FXS								
44 P/S 53 57			Input h					
#F s Trop Input f_0 S3 RCL3 #F PCU3 Input f_0 S5 PCL3 #F PCU3								
66 LR19 Input f_0 55 RCL3 67 RC3								
e7 PCL3 INDUCTO S6 S7 ST04 68 S77 ST04 S8 e S9 S7 ST04 11 ESB6 S9 S7 ST04 S8 e S9 S7 S7 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>								
PR Pr S ST0 ST ST0 10 6586 59 570 57 570 11 ENT7 64 59 570 64 128 12 + 13 57 570 64 258 67 57 570 14 1 62 57 570 64 579 570 57 <td< th=""><th></th><th></th><th>Input f₀</th><th></th><th>55 RCL3</th><th></th><th></th><th></th></td<>			Input f ₀		55 RCL3			
#9 ST01 SR								
18 CSB6 <th< th=""><th></th><th></th><th></th><th></th><th>57 ST04</th><th></th><th></th><th></th></th<>					57 ST04			
11 ENT+ 0.35 51.05 51.05 12 + Input f ₁ for odd i 67 68 4.8.8 13 ST+9 Input f ₁ for odd i 67 ST+9 x + x + h 14 1 66 R13 x + x + h 15 ST+3 65 RC13 66 RC19 R ₀ + R ₀ + 4 f(x) Exit for R ₉ = n 17 R/S 67 X+79 Exit for R ₉ = n 67 X+79 Exit for R ₉ = n Exit for R ₉ = n 67 X+74 Exit for R ₉ = n 67 St+15 Subroutine 73 St+15 St+16 74 RC14 73 St+16 74 RC15 Subroutine 75 St+16 Subroutine 75 St+16 Subroutine 76 St+16					58 0			
12 + Input f ₁ for odd i 60 62 62 62 63 2 15 57+3 67 63 2 $x + x + h$ 63 2 16 RC13 65 RC13 65 RC13 66 RC19 $P_0 + R_0 + 4 f(x)$ 18 ST01 67 X + y Exit for $R_9 = n$ 65 RC19 $P_0 + R_0 + 4 f(x)$ 28 ST+9 69 ES84 74 ILBL4 72 RC14 State for $R_9 = n$ 57 State for $R_9 = n$ 57 <t< th=""><th></th><th></th><th></th><th></th><th>59 ST09</th><th></th><th></th><th></th></t<>					59 ST09			
13 ST+9 Input f ₁ for odd i 61 584 14 1 63 2 64 ST+9 15 ST+3 65 RCL3 R0 R13 17 R/S 65 RCL9 R0 +4 f(x) 19 SS86 69 SS84 SS SS RCL9 R0 +4 f(x) 20 ST+9 Input f ₁ for even i 78 67 ST St for R0 SS					60 *LBL8			
14 1 62 5748 15 51+3 63 2 16 RCL3 65 RCL3 $x \leftarrow x + h$ 18 ST01 66 RL9 $R_0 \leftarrow R_0 + 4$ f(x) 19 SS86 66 R19 R_0 \leftarrow R_0 + 4 f(x) 20 ST+9 67 x+y2 Exit for $R_9 = n$ 21 1 Input f ₁ for even i 71 rt at R14 22 ST+3 Input f ₁ for even i 71 rt at R14 23 GT09 72 RCL4 72 RCL4 25 3 73 ST+5 Subroutine 24 +L8L2 72 RCL4 72 RCL4 26 RCL9 76 RSB 28 H2L7 Calculate 77 RTM R2 R1 R10			Input f:	for odd i	61 GSB4			
15 ST+3 63 2 $x + x + h$ 16 RCL3 66 RCL3 R_0 + 4 f(x) 17 R/S 66 RCL3 R_0 + 4 f(x) 19 GSR6 67 X + x + h 66 RCL9 R_0 + 4 f(x) 20 ST+9 68 GT05 69 SSR4 21 1 Input f ₁ for even i 78 GT08 23 GT09 72 RCL4 72 RCL4 24 HL2 72 RCL4 73 ST+5 26 RCL9 77 RTM 29 LBL7 Calculate 79 3 84 RL5 30 RCL4 Calculate 79 3 82 aLBL6 37 rt 82 aLBL6 For User's function <			mparin		62 ST+8			
16 PCL3 64 \$1139 $x \leftarrow x + h$ 17 R/S 65 PCL3 R_0 \leftarrow R_0 + 4 f(x) 19 SSR6 67 X=Y R_0 \leftarrow R_0 + 4 f(x) Exit for $R_0 = n$ 20 ST+9 69 SSR4 Exit for $R_0 = n$ 21 1 Input f ₁ for even i 77 FTDE 23 ST+3 72 RCL4 72 RCL4 23 ST+5 75 SSB6 77 RTM 24 LRL2 76 SSB6 27 RCL1 Calculate 78 R1L5 38 RCL4 Calculate 78 81 FOT 33 ±LBL5 82 ±LBL6 34 RTN 83 RTN For User's function 41 STO2					63 2			
16 RL13 65 RCL3 R0 \leftarrow R0 $+$ 4 f(x) 18 ST01 66 RCL9 67 X=Y2 Exit for R9 = n 20 ST+9 68 GT05 69 S584 21 1 Input f ₁ for even i 78 GT08 23 GT09 72 RCL4 72 RCL4 24 HBL2 72 RCL4 73 ST+5 26 RCL9 75 SSB6 77 Subroutine 28 LBL7 Calculate 78 ALB15 78 ALB15 30 RCL4 Calculate 79 3 Stall 6 82 ALB16 37 stall 6 83 RTN For User's function 38 ST+4 Subroutine 83 RT <td< th=""><th></th><th></th><th></th><th></th><th>64 ST+9</th><th></th><th>x ← x +</th><th>h</th></td<>					64 ST+9		x ← x +	h
18 ST01 $h_0 + H_0 + 4 f(x)$ 19 ES86 Exit for R ₉ = n 20 ST49 Input f ₁ for even i 78 Exit for R ₉ = n 21 1 Input f ₁ for even i 78 Exit for R ₉ = n 22 ST43 Stop 78 C108 23 GT09 78 C108 24 #LBL2 78 C108 25 3 74 RCL 4 26 RCL 4 72 RCL 4 28 - 76 ES86 28 RCL 4 76 ES86 30 RCL 4 88 RCL 8 Exit					65 RCL3			
10 500 67 $2 \times 2^{\circ}$ Exit for $R_{9} = n$ 20 57.9 1 Input f ₁ for even i 78 68 6705 69 5884 21 1 Input f ₁ for even i 77 71 <i>i</i> .El.4 72 <i>C</i> 109 23 6709 72 <i>R</i> C14 73 574.5 Subroutine 24 <i>i</i> .El.2 77 <i>R</i> TN 77 <i>R</i> TN 25 3 77 <i>R</i> TN 77 <i>R</i> TN 26 <i>R</i> C19 77 <i>R</i> TN 28 77 <i>R</i> TN 80 <i>R</i> C14 30 <i>R</i> C14 Calculate 78 <i>R</i> EL15 Subroutine 33 <i>x</i> 80 <i>R</i> C16 Exit 34 <i>R</i> TN					66 RCL9		R₀ ← R	$_{0} + 4 f(x)$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					67 X=Y?		Exit for	$R_{9} = n$
21 1 Input f ₁ for even i 70 659 6584 22 57+3 Input f ₁ for even i 71 etB14 72 etC14 23 6709 71 etB14 73 S1+5 26 RC19 72 RCL4 73 S1+5 26 RC19 75 6586 77 R1+ 28 - 77 R1+ 77 R1+ 28 - 77 R1+ 77 R1+ 31 x f(x) dx 88 RCL0 Exit 33 x f(x) dx 88 RCD Exit 34 RTH 82 eLBL0 83 RTH For User's function 35 stlet6								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					69 GSB4			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Input f _i f	for even i				
23 $FIR9$ 72 $FCL4$ 24 $IRL2$ 73 $ST+5$ Subroutine 26 $FCL9$ 76 $SSB6$ 76 $SSB6$ 28 - 77 RTH 77 RTH 29 $IRL7$ Calculate 79 3 78 $REL5$ 30 RTI RTH 78 $REL5$ 31 x $f(x) dx$ 80 $RCL0$ Exit 32 $X2Y$ $f(x) dx$ 80 $RCL0$ Exit 33 $\hat{\tau}$ 82 $stl0$ Exit 34 RTH 82 $stl0$ 8 For User's function 35 $stl26$					71 #LBL4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							Subrout	tine
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
38 RCL4 79 3 31 x $\int f(x) dx$ 88 RCL6 Exit 33 + 82 st.BL6 35 t.BL6 82 st.BL6 36 FNT+ 82 st.BL6 36 FNT+			Calculate	`				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Guiculat	•				
32 22 27)			(flu) du				Evi+	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) (x) ax				LXII	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			***					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							F	de ferre d'an
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							For Use	rsfunction
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			C L .					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Subrouti	ne				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
46 5580 To calculate 47 5700 J_a^b f(x) dx 9 6 6 7 8 9 Used 1 5 x 0 Used 1 f(x_i), a 2 b 3 n 4 h 5 x 0 Used 1 f(x_i), a 2 b 3 n 4 h 5 x 12 3 4 5 16 17 18 19 20 21 22 23			Innute	h n				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
48 RCL2 Jank /								
H KL2 F REGISTERS 0 Used 1 f(x _i), a 2 b 3 n 4 h 5 x 6 7 8 9 Used 0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23			∫ ^b f(x) d	x				
REGISTERS 0 Used 1 f(x _i), a 2 b 3 n 4 h 5 x 6 7 8 9 Used .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23								
0 Used 1 f(x _i), a 2 b 3 n 4 h 5 x 6 7 8 9 Used .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23	49 GSB0							
0 Used 1 f(x _i), a 2 b 3 n 4 h 5 x 6 7 8 9 Used .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23			L	REGI	STERS			
6 7 8 9 Used .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23	⁰ Used	1 f(x _i)	a		-	⁴ h		5 _x
18 19 20 21 22 23	6				0	.0		
	.2	.3		.4	.5	16		17
	18	19		20	21	22		23
24 25 26 27 28 29	24	25		26	27	28		29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program:			
	i for discrete case only: program			
	step 1 to step 39.			
	ii for explicit functions only:			
	program step 29 to step 83.			
2	For explicit functions, go to step			
	7, for discrete case, go to step 3.			
3	Discrete Case: input h	h	GSB 1	h
4	Repeat this step for j = 0, 1,, n:			
	Key in the function value at x_i	f(x _i)	R/S	j
5	Calculate the integral		GSB 2	the integral
6	For a new case, go to step 3.			
7	Explicit Function: To key in			
	your function f(x), first press,		GTO Ο	
	then switch to PRGM and key			
	in f(x)			
	Switch back to RUN*			
8	Input a, b, and n to calculate			
	$\int_{a}^{b} f(x) dx$	а	ENTER +	
	-	b	ENTER +	
		n	GSB 3	the integral
9	For a new set of a, b, and n,			
	go to step 7.			
	*Note: Available program steps			
	for f(x) are:			
	 45 steps when only the 			
	EXPLICIT part is keyed in.			
	• 17 steps when both parts are			
	keyed in.			

Example 1:

Given the values below for $f(x_j)$, j = 0, 1, ..., 8, calculate the approximations to the integral

$$\int_0^2 f(x) \, \mathrm{d}x$$

by Simpson's formula.

The value for h is 0.25.

i	0	1	2	3	4	5	6	7	8
Xi	0	.25	.5	.75	1	1.25	1.5	1.75	2
f(x _i)	2	2.8	3.8	5.2	7	9.2	12.1	15.6	20

Keystrokes:

Outputs:

(Key in the program from step 1 to step 39)

0.25 GSB 1→	0.25	
2 R/S 2.8 R/S 3.8 R/S 5.2		
R/S 7 R/S 9.2 R/S 12.1		
R/S 15.6R/S 20R/S →	8.00	
GSB 2→	16.58	(the integral)

Example 2:

Find the value of

$$\int_0^{2\pi} \frac{\mathrm{dx}}{1 - \cos x + 0.25}$$

for n = 16. Note that x is assumed to be in radians. For safety, if you work mostly in degrees, it is good programming practice to set the angular mode to radians at the beginning of the routine, then back to degrees at the end.

Keystrokes:

Outputs:

(Key in the program from step 29 to step 83)

GTO 0,

Switch to PRGM

9 RAD 1 Cos 1 XXY -.25

+ 9 1/x 9 DEG ,

Switch back to RUN

0 ENTER ♦ 9 **π**2 ×16

GSB 3 —

8.36 (Answer)

IDEAL GAS EQUATION OF STATE

Many gases obey the ideal gas laws quite closely at reasonable temperatures and pressures. This program calculates any one of the four variables when data for the other three and the universal gas constant are entered. Likewise, the value of the universal gas constant can be determined by entering data for the four variables.

Equation:

$$PV = n RT$$

where: P is the absolute pressure

V is the volume

- n is the number of moles present
- R is the Universal Gas Constant
- T is the absolute temperature

Table 1 Values of the Universal Gas Constant

Value of R	Units of R	Units of P	Units of V	Units of T
8.314	N - m/g mole-°K	N/m²	m³/g mole	°K
83.14	cm ³ - bar/g mole - °K	bar	cm ³ /g mole	°K
82.05	cm ³ - atm/g mole - °K	atm	cm ³ /g mole	°K
0.08205	ℓ – atm/g mole-°K	atm	ℓ/g mole	°K
0.7302	atm-ft ³ /lb mole-°R	atm	ft ³ /lb mole	°R
10.73	psi-ft³/lb mole-°R	psi	ft³/lb mole	°R
1545	psf-ft³/lb mole-°R	psf	ft³/lb mole	°R

Remarks:

- At low temperatures or high pressures the ideal gas law does not represent the behavior of real gases.
- The value of R used must be compatible with the units of P, V, T.
- To ensure proper execution of the program initialize by pressing GTO
 6 before entering data.

01 #LBL6	
02 0	
83 RTN	
84 #LBL1	
05 i	
06 GT00	
67 #LBL2	
08 2 09 sto0	
10 *LBL3	
11 3	Initialize and store data
12 GTO0	
13 #LBL4	
14 4	
15 GTO0	
16 #LEL5	
17 5	
18 *LBL@	
19 STO O	
20 R.	
21 STO:	
22 X ≠ 8?	
23 GT06	
24 1	
25 STO: 26 RCL:	
26 RCL2 27 RCL2	PV
27 KOLL 28 ×	
29 RCL3	
30 RCL4	n RT
31 ×	
32 RCL5	
33 ×	
34 GTOI	
35 *LBL1	Calculate P or V
36 \$LBL2	
37 %#Y	
38 #LBL3	
39 #LBL4	Calculate n, R or T
40 #LBL5 41 ÷	
42 STO	
43 RTN	***
	REGISTERS

3 n

9

.5

21

27

4 R

.0

16

22

28

5 T

.1

17

23

29

0 Indirect

6

.2

18

24

1 P

7

.3

19

25

*** indicates that "Print X" may be inserted or used to replace "R/S".

2 V

8

.4

20

26

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input four of the following:			
	absolute pressure	Р	GSB 1	0.00*
	volume	V	GSB 2	0.00
	number of moles	n	GSB 3	0.00
	universal gas constant	R	GSB 4	0.00
	absolute temperature	Т	GSB 5	0.00
3	Calculate one of the following:**			
	absolute pressure	0.00	GSB 1	Р
	volume	0.00	GSB 2	V
	number of moles	0.00	GSB 3	n
	universal gas constant	0.00	GSB 4	R
	absolute temperature	0.00	GSB 5	Т
4	For a new case, go to step 2			
	and change appropriate inputs.			
5	If program fails to execute			
	properly press GTO 6 and			
	start again.		GTO 6	
*	Be sure that 0.00 is displayed			
	after each data entry. If not			
	press GTO 6 and reenter			
	all data.			
**	Be sure 0.00 is displayed be-			
	fore GSB is executed to			
	calculate unknown.			

Example 1:

0.63 moles of air are enclosed in 25000 cm³ of space at 1200 °K. What is the pressure in bars? In atmospheres? Assume an ideal gas.

Keystrokes:	Outputs:	
25000 GSB 2 0.63 GSB 3		
83.14 GSB 4 1200 GSB 5		
GSB 1	2.51	(bars)
82.05 GSB 4 GSB 1	2.48	(atm.)

Example 2:

What is the specific volume (ft^3/lb) of a gas at atmospheric pressure and a temperature of 513°R? The molecular weight is 29 lb/lb-mole.

Keystrokes:	Outputs:			
513 GSB 5 29 9 1/x				
GSB 3 0.7302 GSB 4 1				
GSB 1 GSB 2→	12.92	(ft ³ /lb)		
What is the density?				
g ⅓ Fix 3	0.077	(lb/ft ³)		
What is the density at 1.32 atmosphere and	555° R?			
1.32 GSB 1 555 GSB 5 GSB 2				
9 1/x	0.094	(lb/ft^3)		

RADIOACTIVE ISOTOPE DECAY

This program is designed to allow calculation of the decay in radioactivity of an isotope over a specified time interval. To use the program, select an isotope and key in its half-life. (Half-life data may be stored for up to 10 different isotopes in available storage registers.) Then key in two of the three variables:

A_o: Initial activity of the isotope.

t: Elapsed time.

A: Present activity.

The program then calculates the missing variable. Thus, for example, you are not restricted to finding the present activity, given time and initial activity; you may also solve for initial activity given time and present activity, or for time given initial activity and present activity.

The continuous memory feature of your calculator allows convenient storage and recall of the half-lifes of up to ten of the isotopes you most commonly use. Prior storage of the half-lifes eliminates having to enter them before each calculation and they are always available.

You may use any units for initial and present activity as long as they are consistent. The elapsed time *must* be input in the units: Days.Hours (DD.HH), where two full decimal places must be allotted to the hours. For instance an elapsed time of 5 days 18 hours would be keyed in and displayed as 5.18; a time of 1 day 6 hours as 1.06; and a time of 12 hours as 0.12.

Equations:

$$A = A_0 \left(\frac{1}{2}\right)^{t/\tau_{\gamma_2}}$$
$$t = \frac{\tau_{1/2} \ln (A/A_0)}{\ln (1/2)}$$

where:

 A_0 = initial radioactivity

A = present radioactivity

t = time elapsed, in hours

 $\tau_{1/2}$ = half-life of radioisotope, in hours

Isotope	Half-Life in Hours (7 _{1/2})
Cr⁵¹	6672
C0 ⁵⁷	6480
C0 ⁶⁰	46460
125	1440
1 ¹³¹	193.2
Cs ¹³⁷	262980
H³	107470
C ¹⁴	5.058 × 10 ⁷
F ¹⁸	1.87
P ³²	343.2
Se ⁷⁵	2880
Sr ⁸⁵	1536
In ¹¹³	1.73
Xe ¹³³	126.5
Hg ¹⁹⁷	65
Ra ²²⁶	1.3938×10^{7}

Remarks:

- When recalling previously stored half-life data from the storage registers the program utilizes indirect addressing. Remember that the indirect addresses of storage registers .0 thru .5 are 10 thru 15 respectively.
- If half-life of desired isotope has not previously been stored the user may key it in and store it in register 2, for use in the program.
- Time is input and displayed in DD.HH format. To prevent "untidy" displays, such as 6.24 instead of 7.00 days, residual hours of 23.5 or greater are presented as 1.00 day.
- The variable to be calculated is always input with a value of 0.00.

		_		1					
01 #LBL0			lected isotope		58	÷			
02 ST00		half-life				T01			
03 RCLI					52	LN			
04 ST02						CL2			
es RTN					54	x			
06 #LBL1					55	•			
07 FIX2		Input da	ta		56	5			
08 ST03					57	LN			
£9 R∔		Calculate	or determines which		58	÷			
10 X=0?			is to be calculated		59	2			
11 ST04		. and a set			68	4			
12 GSB9					61	÷			
13 R4					62 El	NTt		Convert	from hours to
14 ST05					63	INT		DD.HH	from nours to
15 X=0?					54	XZY		00.111	
16 6708					65 1	FRC			
17 RCL4					6E	2			
17 RCL4 18 X=0?				1	67	4			
18 X=07 19 GT07				1	68	x			
				1	69	2			
					70	3			
21 *LBL9				1	71	ž		lft≥?	3.5 hours,
22 ENT†		Convert	time from DD.HH		72	5			o nearest day
23 INT		to hours		1		£Υ?		round t	o nearest uay
24 2		to nours				±13 T05			
25 4									
26 ×					75	RJ			
27 X#Y						EEX			
28 FRC					77	2			
29 EEX					78	÷			
38 2					79	+			
31 ×						RTN			
32 +					81 ¥L	BL6		Calculat	e A,
33 ST04					82	<u>:</u>		Present	
34 RTN					83	5			
35 *LBL8		Calculate	Δ.			CL4			
36 RCL3		Initial ac				CL2			
37 RCL4			livity		86	÷			
38 RCL2					87	۲×			
30 KULL 39 ÷						CL5			
					89	x			
40 . 41 5						TQ3			
41 42 XZY						RTN			
					92 ¥L				
					93	R↓		D	> 00 F have
					94	R↓			t≥23.5 hours
45 ST05					95	1		as 1 day	
46 RTN				1	96	+			
47 #LBL7				1	97	RTN			
48 RCL3									
49 RCL5		Calculate							
				STERS					
0 i	1 A/A)	2 τ _{γ2}	3 A		4	t		⁵ A ₀
6*	7		8	9		.0			.1
.2	.3		.4	.5		16	6		17
18	19		20	21		22	2		23
24	25		26	27		28	3		29
L									

* Registers 6 through .5 are available for isotope half life storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
	To store half-lives of			
	commonly used isotopes.			
1′	Store half lifes of desired			
	isotopes in registers 6 through			
	9 and .0 through .5.*	$ au_{1/2}$, hrs.	STO 6	
			÷	
			STO 9	
			STO • 0	
			:	
			STO • 5	
	To calculate variables.			
2	Select desired isotope and			
	initialize by recalling its $ au_{1/2}$ from			
	storage, using indirect address.	$ au_{1/2}$ index	GSB 0	
2′	or, if isotope half life is not			
	stored, input $\tau_{1/2}$ manually.	$\tau_{1/2}$	STO 2	
3	Key in variables in this format:			
	 Activity at time zero 	A ₀	ENTER +	
	 Elapsed time, in days hours 			
	format	t, DD.HH	ENTER +	
	 Present activity 	А	GSB 1	unknown
	Important: Input zero for value			
	of unknown variable. Be sure			
	variables are entered in above			
	order.			
4	Other data may be recalled as			
	desired:			
	 Decay factor, A/A₀ 		RCL 1	
	• Half life, $\tau_{1/2}$		RCL 2	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	 Present activity, A 		RCL 3	
	Elapsed time		RCL 4	
	 Initial activity 		RCL 5	
	* Half lifes of up to 10 selected			
	isotopes may be permanently			
	stored in registers 6 through 9			
	and .0 through .5 having in-			
	direct addresses 6 through 15			
	respectively.			

Example:

An activity of 200 μ Ci is measured for a standard of Cr⁵¹ (with half-life 667.20 hours). What is the activity after a week?

Keystrokes:

Outputs:

667.20 STO 2	
200 ENTER +	
7 ENTER +	
0 GSB 1	

667.20	$(au_{1/2} \text{ for } Cr^{51})$
200.00	(A_0)
7.00	(t = 7 days)
167.97	$(A, \mu C_i)$

(OR)

Calculate A_0 given $A = 167.97 (\mu C_i)$ and t = 7.00

	0	Unknown
7 ENTER ◆	7.00	(t = 7 days)
167.97 GSB 1→	200.00	$(A_o, \mu C_i)$

ACID-BASE EQUILIBRIUM

This program calculates the hydrogen ion concentration, $[H_3O^+]$, and pH of a solution of a monoprotic weak acid if the ionization constant is known. Likewise, the program will calculate $[OH^-]$ concentration and pOH for solutions of weak bases given the ionization constant of the base. In addition, conversions from concentration to pH or pOH and vice versa and from pH to pOH, $[H_3O^+]$ to $[OH^-]$ etc. are included.

The following equation is used:

$$x^{3} + K_{a}x^{2} - (K_{w} + K_{a}C_{a}) x - K_{w}K_{a} = 0$$
 (K_b For bases)

where:

 $x = [H_{3}O^{+}] \text{ For acid, } [OH^{-}] \text{ For base}$ $K_{a} = \text{Ionization constant of acid} = \frac{[H_{3}O^{+}] [A^{-}]}{[HA]}$ $K_{b} = \text{Ionization constant of base} = \frac{[B^{+}] [OH^{-}]}{[BOH]}$ $K_{w} = \text{Ionization constant of water} = 10^{-14} @ 25^{\circ} C$

 C_a or C_b = Concentration (moles/liter) of acid or base

The program uses Newton's method of approximating the solution of a polynomial where one evaluates f(x) successively with approximate values of X. First approximation of x is $x = (K_aC_a + K_w)^{1/2}$. Successive approximations are $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

The calculation is reiterated until x_{i+1} differs from x_i a small amount (1% or less).

References:

Butler, J.N., "Ionic Equilibrium, A Mathematical Approach", Addison-Wesley, 1964.

Dick, J.G., "Analytical Chemistry", McGraw-Hill, 1973.

This program is based upon a program submitted to the HP Users' Library by Alan J. Rubin.

REGISTERS 0 $C_a \text{ or } C_b$ 1 K 2 X(est) 3 $CK + K_w$ 4 $K K_w$ 5 $f(x)/f'(x)$		stants Iteratio Test ap	2 X(est)	³ CK + K _w	Calcul matio	esult $[H_3O^+]$ or $Tt Conc to pH or or K_a, K_b to pK_a, Tt pH or pOH toor pK_a, pK_b toTt pH to pOH orTt pH to pOH orTt pH to pOH orTt pH to pOH orTt and the pOH or and the pOH or Tt and the pOH orTt and the pOH or and the pOH or Tt and the pOH or and the pOH or Tt and the pOH or and the pOH or and the pOH or Tt and the pOH or and the pOH or and the pOH or Tt and the pOH or and the pOH or and the pOH or Tt and the pOH or and the pOH or and the pOH or and the pOH or Tt and the pOH or and the pOH or and the pOH or and the pOH or Tt and the pOH or and the pOH$
6 7 8 9 .0 .1	6		-	-		
.2 .3 .4 .5 16 17	.2	.3	.4	.5	16	17
18 19 20 21 22 23	18	19	20	21	22	23
24 25 26 27 28 29	24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program:			
2	Enter ionization constant:			
	K _a or K _b	К	ENTER +	к
	or pK_a or pK_b	рК	GSB 3	к
3	Input concentration (moles/liter)			
	of acid or base and calculate			
	conc. of $[H_3O^+]$ if acid (conc. of			
	[OH⁻] if base).	Conc.	GSB 1	[H₃O⁺]or[OH⁻]
4	Convert concentration to pH or			
	р0Н:			
	$[H_3O^+] \rightarrow pH$	[H₃O ⁺]		
	or $[OH^{-}] \rightarrow pOH$	or [OH⁻]	R/S	pH or pOH
5	If desired the following con-			
	versions are available:			
	concentration of $[H_3O^+]$ or			
	[OH⁻] to pH or pOH	[H₃O⁺], [OH⁻]	GSB 2	pH or pOH
	Ionization const. K_{a} or K_{b} to			
	pK_a or pK_b	K _a , K _b	GSB 2	рК _а , рК _ь
	pH or p0H to concentration of			
	[H₃O⁺] or [OH⁻]	рН, рОН	GSB 3	[H₃O⁺], [OH⁻]
	pK to ionization constant	pK₂, pK₅	GSB 3	K _a , K _b
	pH to pOH or vice versa	рН, рОН	GSB 4	рОН, рН
	$[H_3O^+]$ to $[OH^-]$ or vice versa	[H₃O⁺], [OH⁻]	GSB 5	[OH⁻], [H₃O⁺]
6	If desired, error of calculation			
	may be reviewed.		RCL 5	f(x)/f′(x)

Example 1:

1. Calculate the pH of a 1.0×10^{-4} molar solution of acetic acid if the ionization constant is 1.75×10^{-5} .

Keystrokes:	Outputs:	
1.75 EEX CHS 5 ENTER FEEX CHS		
4 GSB 1→	3.41 -05	$([H_3O^+])$
R/S →	4.47	(pH)

Example 2:

Calculate the pH of a sample of water containing 0.85 mg of ammonia as the only contaminant. K_b of ammonium hydroxide is 1.8×10^{-5} and the molecular wt. of ammonia is 17.

Keystrokes:	Outputs:	
1.8 EEX CHS 5 ENTER 0.85		
EEX CHS 3 ENTER + 17		
÷ GSB 1	2.25 -05	([OH ⁻])
R/S	4.65	(pOH)
GSB 4→	9.35	(pH)

(Note: After entering ionization constant, calculate molar conc. of $NH_3 = 0.85 \times 10^{-3}/17 = 5 \times 10^{-5}M$).

Example 3:

Water in equilibrium with air contains carbon dioxide which forms a dilute solution of carbonic acid. If distilled water contains 1.35×10^{-5} moles/liter of carbon dioxide, what is the pH?

(The primary ionization constant of carbonic acid is 3.5×10^{-7} , the secondary ionization constant of 4.4×10^{-11} may be neglected).

Keystrokes:	Outputs:	
3.5 EEX CHS 7 ENTER 1.35		
EEX CHS 5 GSB 1	2.03 -06	$([H_3O^+])$
R/S	5.69	(pH)

(Examples 2 and 3 are taken from Kolthoff and Sandell, Textbook of Quantitative Inorganic Analysis, MacMillan, 1948).

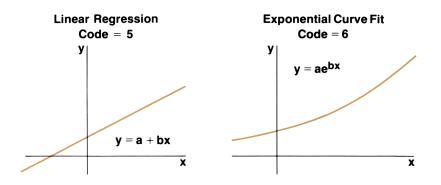
CURVE FITTING

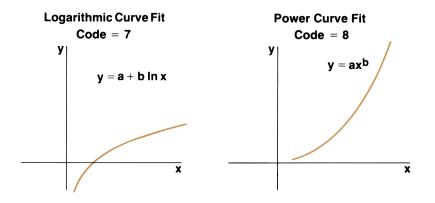
This program can be used to fit data to:

- 1. Straight lines (linear regression); y = a + bx.
- 2. Exponential curves; $y = ae^{bx}$ (a > 0),
- 3. Logarithmic curves; $y = a + b \ln x$,
- 4. Power curves; $y = ax^b (a > 0)$.

The regression coefficients a and b are found from solving the following equivalent of linear equations.

$$\begin{bmatrix} n & \Sigma X_{i} \\ \Sigma X_{i} & \Sigma X_{i}^{2} \end{bmatrix} \qquad \begin{bmatrix} A \\ b \end{bmatrix} = \begin{bmatrix} \Sigma Y_{i} \\ \Sigma Y_{i} X_{i} \end{bmatrix}$$


While the relations of the variables are defined as the following:


Regression	A	X _i	Yi	Code
Linear	а	Xi	Уi	5
Exponential	In a	x,	lny _i	6
Logarithmic	а	lnx _i	y,	7
Power	In a	lnx _i	lny _i	8

The coefficient of determination is:

$$r^{2} = \frac{A\Sigma Y_{i} + b\Sigma X_{i} Y_{i} - \frac{1}{n} (\Sigma Y_{i})^{2}}{\Sigma (Y_{i}^{2}) - \frac{1}{n} (\Sigma Y_{i})^{2}}$$

The type of curve fit must be determined before data input begins, that is, by storing the code number into register 0.

Remarks:

- Negative and zero values of x_i will cause a machine error for logarithmic curve fits. Negative and zero values of y_i will cause a machine error for exponential curve fits. For power curve fits both x_i and y_i must be positive, non-zero values.
- As the differences between x and/or y values become small, the accuracy of the regression coefficients will decrease.

01 #LBL1 02 X#Y			50 × 51 stc7		Determi	nate
03 GSB;	Input da	ta	52 RJ			
04 Σ+			53 ×			
85 RTN			54 RCL7	′ I		
06 *LBL? 07 LN			55 - 56 RTM	,		
08 RTN	Log		57 #LBL3			
89 #LBL8			58 RCL4			
10 LN			59 RC.3			
11 #LBL6	Power an	d evo	60 ×			
12 XZY		d cxp.	51 RCL5			
13 LN			62 RC.5	;		
14 XZY			63 ×			
15 RTN 16 #LBL2			64 + 65 RC.3	,		
17 RC.0			66 X			
18 RC.2			67 RC.8		Calculat	e r ²
19 RC.1			68 ÷			
20 RC.1			69 ST05	,		
21 GSB3			70 -			
22 ST03			71 RC.4			
23 RC.3 24 RC.2			72 RCL9	;		
24 RC.2 25 RC.1			73 - 74 ÷			
26 RC.5			75 R/S			
27 GSB9			76 #LBL4			
28 RCL3	Calculate	A, b, and a, b	77 GT01	:		
29 ÷			78 ¥LBL8			
30 ST04			79 RCL5			
31 GSB; 32 ST06			80 Y' 81 GTOS			
32 5108 33 R/S			82 #LBL6			
34 RC.0			83 RCL5			
35 RC.5			84 ×			
36 RC.1			85 e'			
37 RC.3			86 #LBLS			
38 GSB9			87 RCL6	5	Input x	to calculate y
39 RCL3 40 ÷			88 × 89 RTN	,		
40 - 41 ST05			90 #LBL7			
42 RTN			91 LN			
43 #LBL6	Inverse t	ransform	92 *LBL	5		
44 #LBL8			93 RCL	5		
45 e ^x			94 ×	.		
46 #LBL5 47 #LBL7			95 RCL6 96 +	`		
47 #LBL7 48 RTN			97 RTH	, I		
49 #LBL9						
			STERS	1.		_
0 Index 1		2 y	3 det	4 A		⁵ b
6 a 7	Used	8	⁹ 1/n (ΣΥ) ²	.0 n		. ¹ ΣX
· ² ΣX ² .3 18 19	ΣΥ	. ⁴ ΣΥ ² 20	^{.5} ΣΧΥ	16		17
			21	22		23
24 25		26	27	28		29

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Initialize.		T REG	
3	Store curve fit code (5 or 6 or 7			
	or 8) in register 0	code	STO Ο	code
4	(Repeat for $i = 1, 2,, n$.)			
	Input x_i value and y_i value.	Xi	ENTER +	
		y i	GSB 1	i
5	Calculate regression coeffi-			
	cients		GSB 2	а
			R/S	b
6	Calculate r ² .		GSB 3	r²
7	(Repeat if necessary.) Input x to			
	calculate ŷ.	x	GSB 4	ŷ
8	For a new case, go to step 2.			

Example 1:

(Linear, code = 5):

	40.5					
Уi	104.5	102	100	97.5	95.5	94

Solution:

a = 33.53, b = 1.76 r^2 = 0.99 i.e., y = 33.53 + 1.76 x For x = 37, \hat{y} = 98.65

Keystrokes:

Outputs:

 I REG 5 STO 0
 5.00

 40.5 ENTER ↓ 104.5 GSB 1
 38.6 ENTER ↓ 102 GSB 1

 37.9 ENTER ↓ 100 GSB 1
 36.2 ENTER ↓ 97.5 GSB 1

35.1 ENTER + 95.5 GSB 1		
34.6 ENTER	6.00	
GSB 2	33.53	(a)
R/S	1.76	(b)
GSB 3	0.99	(r ²)
37 GSB 4	98.65	(ŷ)

Example 2:

(Exponential, Code = 6):

Xi	.72	1.31	1.95	2.58	3.14
y i	2.16	1.61	1.16	.85	0.5

Solution:

a = 3.45, b = -0.58y = 3.45 e^{-0.58x} r² = 0.98 For x = 1.5, \hat{y} = 1.44

Example 3:

(Logarithmic, Code = 7):

Solution:

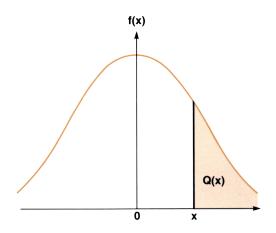
a = -47.02, b = 41.39 y = -47.02 + 41.39 ln x $r^2 = 0.98$ For x = 8, $\hat{y} = 39.06$ For x = 14.5, $\hat{y} = 63.67$

Example 4:

 $(Power, Code = 8): \\ \hline x_i & 10 & 12 & 15 & 17 & 20 & 22 & 25 & 27 & 30 & 32 & 35 \\ \hline y_i & 0.95 & 1.05 & 1.25 & 1.41 & 1.73 & 2.00 & 2.53 & 2.98 & 3.85 & 4.59 & 6.02 \\ \hline \end{array}$

Solution:

a = .03, b = 1.46 y = .03x^{1.46} r² = 0.94 For x = 18, \hat{y} = 1.76 For x = 23, \hat{y} = 2.52


NORMAL AND INVERSE NORMAL DISTRIBUTION

This program evaluates the standard normal density function f(x) and the normal integral Q(x) for given x. If Q is given, x can also be found. The standard normal distribution has mean 0 and standard deviation 1.

Equations:

1. Standard normal density

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

2. Normal integral

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{t^2}{2}} dt$$

Polynomial approximation is used to compute Q(x) for given x. Define $R = f(x) (b_1t + b_2 t^2 + b_3t^3 + b_4t^4 + b_5t^5) + \epsilon(x)$ where:

$$|\epsilon(\mathbf{x})| < 7.5 \times 10^{-8}$$

t = $\frac{1}{1 + r |\mathbf{x}|}$, r = 0.2316419

$$b_1 = .319381530$$

$$b_2 = -.356563782$$

$$b_3 = 1.781477937$$

$$b_4 = -1.821255978$$

$$b_5 = 1.330274429$$

Then Q(x) =
$$\begin{cases} R & \text{if } x \ge 0\\ 1 - R & \text{if } x < 0 \end{cases}$$

3. Inverse normal

For a given Q > 0, x can be found such that

$$Q = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{t^2}{2}} dt$$

The following rational approximation is used:

Define y = t -
$$\frac{c_0 + c_1 t + c_2 t^2}{1 + d_1 t + d_2 t^2 + d_3 t^3} + \epsilon(Q)$$

where:

$$\begin{aligned} \left| \epsilon(Q) \right| &< 4.5 \times 10^{-4} \\ t &= \begin{cases} \sqrt{\ln \frac{1}{Q^2}} & \text{if } 0 < Q \leq 0.5 \\ \sqrt{\ln \frac{1}{(1-Q)^2}} & \text{if } 0.5 < Q < 1 \end{cases} \\ c_0 &= 2.515517 & d_1 = 1.432788 \\ c_1 &= 0.802853 & d_2 = 0.189269 \\ c_2 &= 0.010328 & d_3 = 0.001308 \end{cases} \end{aligned}$$

Then x = $\begin{cases} y & \text{if } 0 < Q \le 0.5 \\ -y & \text{if } 0.5 < Q < 1 \end{cases}$

Reference:

Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1970.

				_					
01 #LBL1 02 STC7					50 ENT† 51 RCL5				
03 X2				1	52 ×				
04 2					53 RCL4				
Ø5 ÷					54 GSB7				
06 CHS					55 RCL3				
67 e×					56 GSB7				
06 Pi					57 RTN				
					58 ¥LBL3				
09 2		Calculate	f(x)						
10 ×					59 STO7				
11 4%					60 .				
12 ÷					6: 5				
13 STC9					62 X‡Y				
14 RTK					63 X>Y?				
15 #LBL2					64 GSB8				
16 GSB1					65 X2				
17 1					66 17X				
13 RCL8					67' LN				
19 RCL7					68 J.X				
28 ABS					69 ST08				
21 ×					78 GSE6				
22 +					71 1				
23 1/X		Calculate	$O(\mathbf{x})$		72 +				
23 175 24 GSB6		Calculate			73 ST09				
					74 CLX			Calculat	٩X
25 RCL2					75 RCL2			Calculat	er
26 GSB7									
27 RCL1					76 ×				
23 GSB7					77 RCL1				
29 RCL9					76 GSB7				
30 ×					79 RCL0				
31 RCL7					80 +				
32 X<0?				1	81 RCL9				
33 GT09				1	32 ÷				
34 X2Y				1	83 -				
35 RTN				1	84 STDE				
36 *LBL9				1	85 RCL7				
37 X#Y				1	86 .				
38 #LBL8					87 5				
39 1					88 X7Y				
40 -					89 X>Y?				
40 - 41 CHS				1	90 GT05				
					91 RCL6				
					92 RTN				
43 #LBL7 44 +		Subrouti	nes	1	93 #LBL5				
					94 RCL6				
				1	95 CHS				
46 RTH				1	96 RTN				
47 #LBL6				1	70 KIN				
48 ENT†				1					
49 ENT†									
			REGIS						
⁰ r, C ₀	1 b ₁ , (C ₁	² b ₂ , C ₂	3	b3, d1	4 .0	b4 , 0	12	5 b ₅ , d ₃
6 y	⁷ x, Q		⁸ t	9	f(x), deno.				.1
.2	.3		.4	.5		16			
18	19		20	21		22			23
24	25		26	27		28			29

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
	i. Normal distribution: from			
	program step 1 to step 57.			
	ii. Inverse normal distribution:			
	from program step 38 to step 96.			
	iii. Both: the entire program.			
2	For normal distribution, go to			
	step 3, for inverse, go to step 7.			
3	Store constants for normal			
	distribution.	r	STO O	r
		b,	STO 1	b ₁
		b ₂	STO 2	b ₂
		b₃	STO 3	b ₃
		b₄	STO 4	b₄
		b₅	STO 5	b₅
4	Optional: Input x to calculate f(x)	x	GSB 1	f(x)
5	Input x to calculate Q(x)	x	GSB 2	Q(x)
6	For a new x, go to step 4 or			
	step 5.			
7	Store constants for inverse	Co	STO 0	Co
		C ₁	STO 1	C ₁
		C ₂	STO 2	C ₂
		d₁	STO 3	d1
		d₂	STO 4	d₂
		d₃	STO 5	d₃
8	Input Q(x) to calculate x.	Q(x)	GSB 3	x
9	For a new Q(x), go to step 8.			

Example 1:

(Normal distribution):

Find f(x) and Q(x) for x = 1.18 and x = -2.28

Keystrokes:

Outputs:

(Key in the program as shown in the Instructions)

0.2316419 STO 00.31938153		
STO 10.356563782 CHS STO		
2 1.781477937 STO 3		
1.821255978 CHS STO 4		
1.330274429 STO 5		
1.18 GSB 1→	0.20	(f(1.18))
1.18 GSB 2→	0.12	(Q(1.18))
2.28 CHS GSB 2	0.99	(Q(-2.28))
2.28 CHS GSB 1→	0.03	(f(-2.28))

Example 2:

(Inverse):

Given Q = 0.12 and Q = 0.95, find x's

Keystrokes:

Outputs:

(Key in program as shown in the Instructions)

2.515517 STO 00.802853		
STO 10.010328 STO 2		
1.432788 STO 30.189269		
STO 40.001308 STO 5		
0.12 GSB 3→	1.18	(x)
0.95 GSB 3→	-1.65	(x)

FACTORIAL, PERMUTATION AND COMBINATION

Factorial
$$n! = n (n - 1) (n - 2) \cdot \cdot \cdot 2 \cdot 1$$

Permutation
$${}_{m}P_{n} = \frac{m!}{(m-n)!} = m(m-1)...(m-n+1)$$

Combination
$${}_{m}C_{n} = \frac{m!}{(m-n)! n!} = \frac{m(m-1)...(m-n+1)}{1 \cdot 2 \cdot ... \cdot n}$$

where m, n are integers and $0 \le n \le m$.

Remarks:

• This program will compute factorials for positive integers between 2 and 69.

$$n! = n (n - 1) (n - 2) \dots (2) (1)$$

- For large values of n, the program will take some time to arrive at a result, up to a maximum of about 20 seconds for n = 69.
- The program does not check input values and will return incorrect answers for values of n < 2 or n > 69 or non-integer n.
- ${}_{m}P_{0} = 1$, ${}_{m}P_{1} = m$, ${}_{m}P_{m} = m!$ Therefore n! should be used for large m.

$$\bullet \quad {}_{\mathrm{m}}\mathrm{C}_{0} = {}_{\mathrm{m}}\mathrm{C}_{\mathrm{m}} = 1$$

- ${}_{m}C_{1} = {}_{m}C_{m-1} = m$
- ${}_{m}C_{n} = {}_{m}C_{m-n}$

01 #LBLI 02 1 03 ST.0 04 X2Y 05 #LBL4 06 SX.0 07 1 08 - 09 X#Y? 10 GT04 11 RC.0 12 RTN 13 #LBL2 14 X>Y? 15 GT08 16 ENT† 17 0 18 X=Y? 19 GT07 20 CLX 21 1 22 X=Y? 23 GT06 24 - 25 ST00 26 R4 27 ST01 28 #LBL5 29 RCL1 30 1 31 - 31 - 32 ST01 33 × 34 DS2 35 GT05 36 RTN 37 #LBL6 38 R4 39 R4 40 RTN 41 #LBL7 42 ENT† 43 1 44 RTN		.e mPn	50 GT06 51 - 52 LST) 53 X_2'Y 54 GS05 55 ST01 56 1 57 ST02 58 + 59 ST02 60 CL1 61 X=Y 62 GT07 63 *LEL 64 RL4 65 IS2 66 RCL4 67 X>Y 68 GT06 69 RCL1 78 X_1 71 + 72 LST) 73 ± CL2 75 × 76 ST02 77 ST02 88 X_1 81 RTN 82 *LBL5 83 RCL2 84 RTN	Calcu	Jate _m C _n = mC _{m-n}
39 R4 40 RTN 41 #LBL7 42 ENT† 43 1	*** 1	n 			
46 @ 47 ÷ 48 #LBL3 49 X>Y?	Error				
		REG	STERS		
0 n!	1 m,	2 Used	3	4	5
	,				
6	7	8	9	.0	.1
.2	3	.4	.5	16	17
18	19	20	21	22	23
24		+		+	
164	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
	i. Factorial: from program			
	step 1 to step 12.			
	ii. Permutation: from pro-			
	gram step 12 to step 47.			
	iii. Combination: from pro-			
	gram step 41 to step 84.			
2	For factorial, go to step 3, for			
	permutation go to step 5, for			
	combination go to step 7.			
3	Input n to calculate n!	n	GSB 1	n!
4	Repeat step 3 for another n.			
5	Input m and n to calculate ${}_{m}P_{n}$	m	ENTER +	
		n	GSB 2	"Pn
6	Repeat step 5 for a different set			
	of m and n.			
7	Input m and n to calculate ${}_{m}C_{n}$	m	ENTER +	
		n	GSB 3	_m C _n
8	Repeat step 7 for a different set			
	of m and n.			

Example 1:

(Factorial):

Find n! for n = 5 and n = 10

Keystrokes:

Outputs:

(Key in the program as shown in the Instructions)

5 GSB 1	 120.00	(5!)
10 GSB 1 —	 3628800.00	(10!)

Example 2:

(Permutation):

Find ${}_{43}P_3$ and ${}_{73}P_4$.

Keystrokes:

Outputs:

(Key in the program as shown in the Instructions)

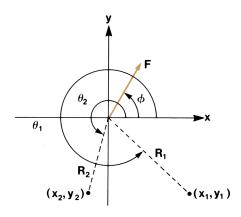
43 ENTER ♦ 3 GSB 2	74046.00	$(_{43}P_3)$
73 ENTER ♦ 4 GSB 2	26122320.00	$(_{73}P_4)$

Example 3:

(Combination):

Find $_{73}C_4$ and $_{43}C_3$.

Keystrokes:


Outputs:

(Key in the program as shown in the Instructions)

73 ENTER ♦ 4 GSB 3	1088430.00	$(_{73}C_4)$
43 ENTER ♦ 3 GSB 3	12341.00	$(_{43}C_3)$

STATIC EQUILIBRIUM AT A POINT

This program calculates the two reaction forces necessary to balance a given two-dimensional force vector. The direction of the reaction forces may be specified as a vector of arbitrary length or by Cartesian coordinates using the point of force application as the origin.

Equations:

 $R_1 \cos \theta_1 + R_2 \cos \theta_2 = F \cos \phi$ $R_1 \sin \theta_1 + R_2 \sin \theta_2 = F \sin \phi$

where:

F is the known force;

 ϕ is the direction of the known force;

 R_1 is one reaction force;

 θ_1 is the direction of R₁;

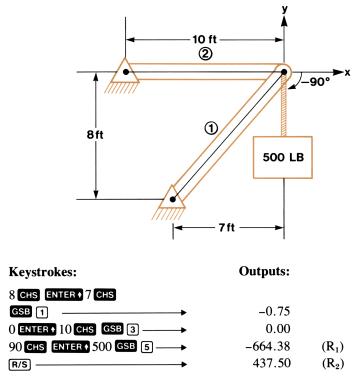
R₂ is the second reaction force;

 θ_2 is the direction of R_2 ;

The coordinates x_1 and y_1 are referenced from the point where F is applied to the end of the member along which R_1 acts; x_2 and y_2 are the coordinates referenced from the point where F is applied to the end of the member along which R_2 acts.

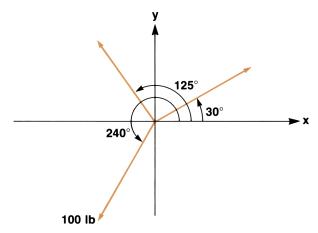
Remarks:

This program assumes the calculator is set in DEG mode.


			r			
€i ¥lBl1	Input	: y ₁ , x ₁	50 -			
82 ÷P			51 RCL6			
e 3 X ≠ Y			52 ÷			
04 #LBL2			53 RTN			
85 1		θ_1 , and store sin θ_1 ,				
06 →R	$\cos \theta$	1				
87 STC8						
68 XZY						
89 STC1						
18 RTN						
11 * LBL3 12 →F	Input	Y2, X2				
13 X2Y						
14 #LBL4						
15 1						
16 →R						
17 ST02		$t \theta_2$ and store sin θ_2 ,				
18 XZY	$\cos \theta$	2				
19 STC3						
20 RTN						
21 *LBL5						
22 →R						
23 ST04						
24 XZY						
25 ST05						
26 RCL4						
27 ROL3						
28 X						
29 RCL5						
30 RCL2	!					
31 ×						
32 -						
33 RCL1	Input	t ϕ and F and calculate				
34 RCL2 35 ×		ion forces				
35 × 36 RCL0						
37 RCL3						
33 X						
39 -						
48 ÷						
41 R/S						
42 LSTX						
43 ST06						
44 RCL5						
45 RCL8						
46 ×						
47 RCL4						
48 RCL1						
49 ×						
		REGI	STERS			
$0 \cos \theta_1$	¹ sin θ_1	$2 \cos \theta_2$	$3 \sin \theta_2$	4 Fcc	os φ	⁵ F sin φ
⁶ Used	7	8	9	.0		.1
.2	.3	.4	.5	16		17
18	19	20	21	22		23
24	25	26	27	28		29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Define reaction directions as			
	Cartesian coordinates or as			
	vectors of arbitrary magnitude.			
	(Use the point of force appli-		the second	
	cation as the origin):			
	Define direction one in rec-			
	tangular form	У 1	ENTER +	У 1
		X 1	GSB 1	$\sin \theta_1$
	or in polar form	θ_1	GSB 2	$\sin \theta_1$
	and			
	Define direction two in			
	rectangular form	y2	ENTER +	
		X ₂	GSB 3	$\sin \theta_2$
	or in polar form	θ_2	GSB 4	$\sin \theta_2$
3	Key in known force: direction			
	then magnitude and compute			
	reactions.	ϕ	ENTER +	
		F	GSB 5	R,
			R/S	R₂
4	To change force, go to step 3.			
	To change either or both reac-			
	tion directions, go to step 2.			


Example 1:

Find the reaction forces in the pin-jointed structure shown below.

Example 2:

Find the reaction forces for the diagram below:

Keystrokes:

Keystrokes:	Outputs:	
30 GSB 2→	0.50	
125 GSB ◀	0.82	
240 ENTER ♦ 100 GSB 5	90.98	(R ₁)
R/S	50.19	(R ₂)

SECTION PROPERTIES

The properties of arbitrarily shaped sections which are composed of rectangles can be evaluated using this program.

The program calculates the area of the section, the centroid of the area, the moments of inertia about any specified set of axes, the polar moment of inertia about the specified axis, the moments of inertia about an axis translated to the centroid, the moments of inertia of the principal axis, and the rotation angle between the translated axis and the principal axis.

Equations:

$$\begin{split} A_{si} &= \Delta x_i \ \Delta y_i \\ A &= S_{s1} + A_{s2} + A_{s3} + \dots + A_{sn} \\ \overline{x} &= \frac{\displaystyle\sum_{i=1}^{n} x_{oi} \ A_{si}}{A} \\ \overline{y} &= \frac{\displaystyle\sum_{i=1}^{n} y_{oi} \ A_{si}}{A} \\ I_x &= \displaystyle\sum_{i=1}^{n} \left(y_{oi}^2 + \frac{\Delta y_i^2}{12} \right) \ A_{si} \\ I_y &= \displaystyle\sum_{i=1}^{n} \left(x_{oi}^2 + \frac{\Delta x_i^2}{12} \right) \ A_{si} \\ J &= I_x + I_y \\ I_{xy} &= \displaystyle\sum_{i=1}^{n} x_{oi} y_{oi} A_{si} \\ I_{\overline{x}} &= I_x - A \overline{y}^2 \\ I_{\overline{x}\overline{y}} &= I_y - A \overline{x} \overline{y} \\ I_{\overline{y}} &= I_y - A \overline{x}^2 \\ \phi &= \frac{1}{2} \tan^{-1} \frac{-2 \ I_{\overline{x}\overline{y}}}{I_{\overline{x}} - I_{\overline{y}}} \end{split}$$

where:

 Δx_i is the width of a rectangular element;

 Δy_i is the height of a rectangular element;

 A_{si} is the area of an element;

A is the total area of the section;

 \overline{x} is the x coordinate of the centroid;

 \overline{y} is the y coordinate of the centroid;

 x_{oi} is the x coordinate of the centroid of an element;

y_{oi} is the y coordinate of the centroid of an element;

 I_x is the moment of inertia about the x-axis;

 I_y is the moment of inertia about the y-axis;

J is the moment of inertia about the origin;

 I_{xy} is the product of inertia;

 $I_{\bar{x}}$ is the moment of inertia about the x-axis translated to the centroid;

 $I_{\bar{\boldsymbol{y}}}$ is the moment of inertia about the y-axis translated to the centroid;

 $I_{\bar{x}\bar{y}}$ is the product of inertia about the translated axis;

 ϕ is the angle between the translated axis and the principal axis;

Reference:

Wojciechowski, Felix; "Properties of Plane Cross Sections"; Machine Design; P. 105, Jan 22, 1976.

01 #LBL0 02 ST04 03 R; 04 ST03				51 RU 52	CL5 CL0 + RTH	Calcula	te x̄, ȳ, and A
05 R↓ 06 STO2 07 X≠Y		Input ∆x	, Δy , x _{oi} , and y _{oi}	54 #LE 55 Rt			
08 STO1 89 × 18 ST.5 11 ENT↑ 12 ST+0		and calcu	llate	58 1 55 Ri	rth Club Rth		
13 RCL3 14 × 15 ST+5 16 R4				62 R(63 G 64	517 589 X2 510		
17 RCL4 18 × 19 ST+6 20 RCL2				66 67 68 S 69 J	x - T.2 R/S	Calculat	te I _ž , I _y , and I _x y
21 X ² 22 1 23 2 24 ÷				71 GS 72 73 RI	CL8 581 X2 CL0		
25 RCL4 26 X ² 27 + 28 RC.5				77	× - 1.3 R/S		
29 X 30 ST+7 31 RCL1 32 X ²				79 G 80 G 21	CL9 581 589 ×		
33 1 34 2 35 ÷ 36 RCL3				83 84 85 S	CL0 × - T.4		
37 X ² 38 + 39 RC.5 40 ×				87 ¥LI	RTN BL3 C.4 2		
41 ST+8 42 RCL3 43 RCL4 44 ×				92 RI 93	x C.3 C.2 -	Calculat	te φ
45 RC.5 46 × 47 ST+9 48 RTN				96 97	÷ 9Nゴ 2 ÷		
49 #LBL1					RTN		
				STERS			6
0 ΣΑ	1 ∆x _i		² ∆y _i	3 _{×oi}	4 y _{oi}		⁵ Σx _{oi} A _{si}
⁶ Σ _{Yoi} A _{si}	⁷ ΣΙ _Χ		⁸ ΣΙ _γ	⁹ ΣΙ _{χγ}			
.2 I _x	.3 I ₇		.4 I _{xy}	.5 A _{si}	16		17
18	19		20	21	22		23
24	25		26	27	28		29

124 Stress Analysis

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Initialize		T REG	
3	Input Δx, Δy, x _{oi} , y _{oi}	Δx	ENTER +	
		Δy	ENTER +	
		X _{oi}	ENTER +	
		У _{оі}	GSB O	
4	Repeat step 3 for more sections.			
5	To calculate x, y, A		GSB 1	x
			R/S	У
			R/S	А
6	Optional: To recall I_x		RCL 7	I _x
	l _y		RCL 8	l _y
	l _{xy}		RCL 9	l _{xy}
7	To calculate $I_{\overline{x}}$		GSB 2	I _x
	l _y		R/S	l _y
	l _{xy}		R/S	l _{xy}
8	To calculate ϕ		GSB 3	φ
9	For a new case, go to step 2.			

Example 1:

Given the rectangle below, find \bar{x} , \bar{y} , A, I_x , I_y , I_{xy} , $I_{\bar{x}}$, $I_{\bar{y}}$, $I_{\bar{x}\bar{y}}$ and ϕ .

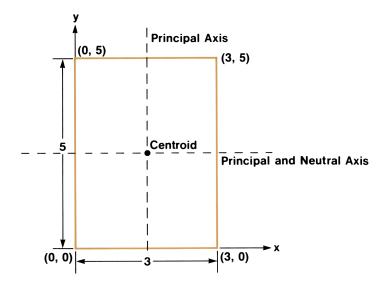
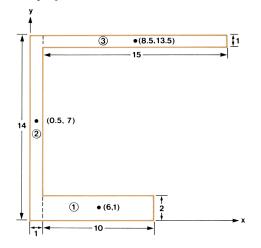


TABLE OF INPUTS

Section	Δχ	$\Delta \mathbf{y}$	xo	Уo
1	3	5	1.5	2.5


Keystrokes:

Outputs:

I REG 3 ENTER ◆ 5 ENTER ◆ 1.5		
ENTER ♦ 2.5 GSB 0	56.25	
GSB 1	1.50	(x)
R/S	2.50	(<u>y</u>)
R/S	15.00	(A)
RCL 7	125.00	(I _x)
RCL 8	45.00	(I_y)
RCL 9	56.25	(I_{xy})
GSB 2	31.25	$(I_{\overline{x}})$
R/S	11.25	$(I_{\overline{y}})$
R/S	0.00	$(I_{\overline{x}\overline{y}})$
GSB 3→	0.00	(φ)

Example 2:

Calculate the section properties for the beam shown below.

TABLE OF INPUTS

Section	Δχ	$\Delta \mathbf{y}$	x _{oi}	y _{oi}
1	10	2	6	1
2	1	14	0.5	7
3	15	1	8.5	13.5

Keystrokes:

ENTER ♦ 1 GSB 0	120.00	
1 ENTER + 14 ENTER + 0.5 ENTER +		
7 GSB 0►	49.00	
15 ENTER + 1 ENTER + 8.5 ENTER +		
13.5 GSB 0→	1721.25	
GSB 1→	5.19	$(\overline{\mathbf{x}})$
R/S	6.54	(<u>y</u>)
R/S	49.00	(A)
RCL 7→	3676.33	(I_x)
RCL 8	2256.33	(I_y)
RCL 9→	1890.25	(I_{xy})
GSB 2→	1580.00	$(I_{\overline{x}})$
R/S	934.49	$(I_{\overline{y}})$
R/S	225.61	$(I_{\bar{x}\bar{y}})$
GSB 3	-17.48	(φ)

Outputs:

FIELD ANGLE OR BEARING TRAVERSE

This program uses angles and/or deflections turned from a reference azimuth and horizontal distances, or quadrant bearings and horizontal distances, to compute the coordinates of successive points in a traverse. For a closed traverse, the area enclosed and closure distance and azimuth are computed.

(Note: Angles left and deflections left must be entered as negative numbers.)

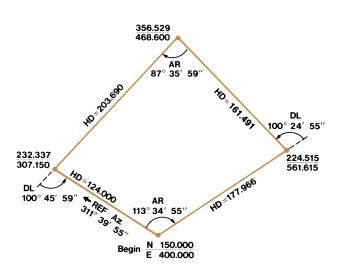
Equations:

$$N_{i+1} = N_1 + HD \cos Az$$
$$E_{i+1} = E_1 + HD \sin Az$$
$$Area = \sum_{k=1}^{n} LAT_k \left(\frac{1}{2} DEP_k + \sum_{j=1}^{k-1} DEP_j \right)$$

where:

$$DEP_k = E_{k+1} - E_k$$
 and $LAT_k = N_{k+1} - N_k$

								
01 #LBL1		Store starting	point	50	2			
02 FIX4		coordinates a	nd 180 [°]	51 ÷				
03 CLR0				52	RCL7			
04 ST01				53	-	- I -		
85 X ≓ 1				54	x			
06 STC2	2			55	ST+S			
67 1				56	RCLE			
62 8				57	RCL2			
03 0	03 0			58	+			
18 STC3	3			59	R/S			
11 R/S				60	RCL7			
12 +1				61	RCL:			
13 RCL3		D.(62	+			
14 +		Reference azi	muth	63	R∕S			
15 +	'				#LBL4			
15 GTO	,			65	XIY	-		
				66	ST09			
17 #LBL2							_	
18 +1		Angle input		67	XZY			bearing and
15 RCL3				68	ENTI		quadran	t code to azimuth.
20 +1	ч			69	ENTT			
21 ÷				78	2			
22 →HKS				71	÷	-		
23 ¥LBL3		Deflection an	gle input	72	INT			
24 +	4			73	RCL3			
25 RCL4	4			74	x			
26 +				75	XZY			
27 #LBL0	3			76	RCL3			
28 :				77	х			
29 +				78	cos			
3e →F		Compute azir	nuth	79	RCL9			
31 *LBL9				88	+H			
32 XZY				81	x			
33 X>0				82	2			
34 GTO				83	GTDB			
35 3	,				*LBL5			
				85 RCL8			Area	
36 6								
37 0				86	ABS	-		
38 +				87	R/S	· · ·	***	
39 \$LBL8				88	RCL7			
40 ST04				89	RCL6			
41 +HNS				9 e	+₽		Setup fo	or closure
42 R/S	5	***		91	R/S		***	
43 ST+5	5			92	GT09			
44 RCL4	;	Input horizor	ital distance			-		
45 XII	<i>(</i>							
46 +	2							
47 ST+6	5							
48 X21		_						
49 ST+7		Compute nex						
		accumulate a						
			REGIS					
0	¹ Beg.		eg.N 3	³ 180		Az		⁵ Σ HD
⁶ Lat.	7 Dep.	⁸ A	rea	Bearing)		.1
.2	.3	.4		5	1	6		17
18	19	20	2	21	2	2		23
24	25	26	2	27	2	8		29

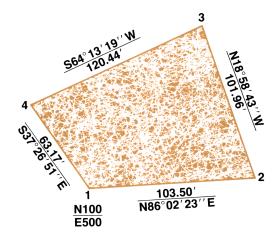

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in beginning coordinates	BEG N	ENTER +	
		BEG E	GSB 1	180.00
	For Field Angle Traverse			
3	Key in reference azimuth away			
	from beginning point.	REF AZ (D.MS)	R/S	Az (D.MS)
4	Key in field angle:			
	Angle right	ang. right	GSB 2	Az (D.MS)
	or Angle left (-)	-ang. left	GSB 2	Az (D.MS)
	or Deflection right	deflect. right	GSB 3	Az (D.MS)
	or Deflection left (-)	-deflect. left	GSB 3	Az (D.MS)
5	Key in horizontal distance and			
	compute coordinates	HD	R/S	N
			R/S	E
	or			
	For Bearing Traverse			
3′	Key in bearing and quadrant			
	code.	BRG (D.MS)	ENTER +	
		QD	GSB 4	Az (D.MS)
4′	Key in horizontal distance and			
	compute coordinates.	HD	R/S	N
			R/S	E
	Repeat steps 3, 4, 5, or 3', 4' for			
	successive courses.			
6	For closed figure: Compute			
	area, error distance, and error			
	azimuth		GSB 5	Area
			R/S	Error Dist.
			R/S	Error Az (D.MS)

Example 1:

Field Angle Traverse

Traverse the figure below starting at $\frac{N \ 150}{E \ 400}$


Keystrokes:

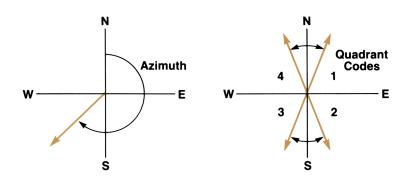
Keystrokes:	Outputs:	
150 ENTER ♦ 400 GSB 1	180.0000	
311.3955 R/s ───	131.3955	
113.3455 GSB 2	65.1450	
177.966 ₽/s →	224.5150	(N)
R/S	561.6150	(E)
100.2455 CHS GSB 3	324.4955	
161.491 R/S	356.5285	(N)
R/S	468.6000	(E)
87.3559 GSB 2	232.2554	
203.690 R/S	232.3372	(N)
R/S	307.1498	(E)
100.4559 CHS GSB 3 ———	131.3955	
124 R/S	149.9048	(N)
R/S	399.7829	(E)
GSB 5	26558.8204	(Area)
R/S →	0.2371	(Error distance)
R/S	246.1844	(Error azimuth)

Example 2:

Bearing Traverse

Traverse the figure below starting at $\frac{N \ 100}{E \ 500}$.

Keystrokes:

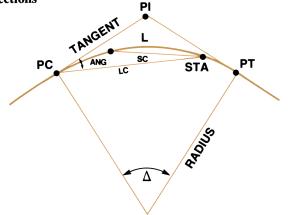

100 ENTER ♦ 500 GSB 1	1
86.0223 ENTER + 1 GSB 4>	
103.50 R/S	1
R/S	6
18.5843 ENTER ♦ 4 GSB 4	3
101.96 ℝ/s ———	2
R/S	5
64.1319 ENTER ♦ 3 GSB 4	2
120.44 ℝ/s ———	1
R/S	4
37.2651 ENTER ♦ 2 GSB 4	1
63.17 R/S ——→	1
R/S	5
 GSB [5]	88
 [R/S]	
R/S►	

Outputs:

180.0000	
86.0223	
107.1482	(N)
603.2529	(E)
341.0117	
203.5657	(N)
570.0939	(E)
244.1319	
151.1880	(N)
461.6395	(E)
142.3309	
101.0366	(N)
500.0490	(E)
3855.4922	(Area)
1.0378	(Error distance)
2.4219	(Error azimuth)

Remarks:

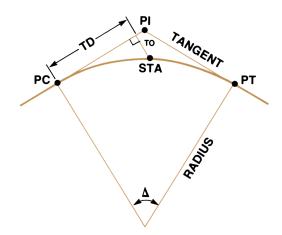
- If the user does not desire to do Field Angle Traverse, steps 012 through 026 may be eliminated; if he does not desire to do Bearing Traverse, steps 064 through 080 may be eliminated.
- Angles left and deflections left must be entered as negative numbers.
- This program assumes the calculator is set in DEG mode.


HORIZONTAL CURVE LAYOUT

This program calculates various field data for layout of a horizontal circular curve. The required information on the curve is the PC station and the radius or degree of curve. With this data one computes successively the arc length, deflection angle from tangent to long chord, the long chord from PC to current station, and the short chord from previous station to current station. In addition, the tangent offset and tangent distance are available if desired.

If the central angle is known the program also will compute the total arc length from PC to PT, the station PT and the length of the tangent from PC to PI.

In the program, stations are entered in the form XXXX.XX for station XX+XX.XX. For example: 20 + 10.00 is entered as 2010.00. The degree of curve D, (or central angle subtending an arc of 100 ft.) is entered in degrees with a negative sign, *always*.


PC Deflections

Field data output for PC deflections consist of:

STA-current station ANG-deflection angle from tangent to long chord LC-long chord from PC to current station SC-short chord from previous station to current station Δ-central angle PI-point of intersection of tangents PC, PT-ends of curve L-Arc length R-radius

Tangent Offsets and Distances

Field data output for tangent offsets consists of: STA-current station TD-tangent distance TO-tangent offset T-distance from PC to PI

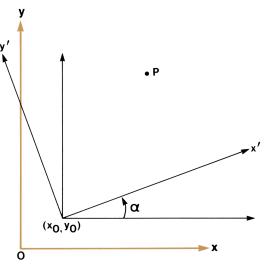
			T					
01 ¥LBL1				50	SIN		Calcula	te TO
02 CLRG				51	x			
63 FIX4		Store R & D		52	STOS			
04 X<0?				53	RCL5		Calcula	te TD
05 GSBC				54	RCL7			
06 ST01				55	COS			
87 Pi				56	×			
∂ 8 ×					ST09		dsp LC	
89 9					RCL5			
10 0				59	£∕S		•••	
11 ÷					RCL4			
12 ST02		Input PC			RC.2			
13 R4				62	-			
14 ST03					GS59			
15 ST04				64	x			
16 RTN				65				
:7 *LBL0					RCL1			
18 CHS				67	2			
13 +H		Calculate R	from D	68	×			
20 Fi				69	X		*** Cal	culate SC
21 X				70				
22 17X					#LBL9			
23 1				72	9		90	
24 8				73			$\frac{30}{\pi R}$	
25 EEX				74			<i>"</i> n	
26 3				75	÷			
27 ×					RCL1		Input ∆	
28 RTN				77 ÷ 78 rtn				
29 #LBL2		Input station	ı I					
30 RCL4				79 #LBL3				
31 ST.2				88 →H 81 2				
32 R÷					ź			
33 ST04				82				
34 RCL3					STDE			
35 -				84 6SB9		Calculat	to I	
36 R/S		*** Calculate L		85	÷		***	
37 GSB2				86				
38 ×				87 88	RCL3		Calcula	te PT
39 ST07				88 89	+ R∕S			
40 +HMS							•••	_
41 R/S		*** Calaulata ANC			RCL6			
42 RCL7		Calculate ANG		91	TAN			
43 SIN				92 RCL1 93 ×				
44 RCL1				93 94			Calculat	te T
45 X				24	K/ O			
	46 2		:					
47 × 48 ST05		Calculate LC						
48 5105 49 RCL7								
43 RUL7								
			REGIS	TERS				
0	1 R	2		³ PC		⁴ STA Cu	rrent	⁵ LC
⁶ ∆/2				, TD		.0		.1
^{.2} Prev. Sta.				.5		16		17
18	19	20	2	?1		22		23
24	25	26	2	27		28		29
	L							

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input beginning station of curve	PC	ENTER +	PC
3	Input radius	R	GSB 1	
	or degree of curve (as a			
	negative number)	–D (D.MS)	GSB 1	
3′	Radius or degree of curve are		RCL 1	R
	available if desired.		RCL 2	D
4	Input station	STA	GSB 2	L (Arc. length)
			R/S	def. angle
			R/S	long chord
			R/S	short chord
4′	Tangent offset, TO, and tangent			
	distance, TD. are available if			
	desired.		RCL 8	то
			RCL 9	TD
5	Input central angle	Δ (D.MS)	GSB 3	Arc. length
			R/S	station PT
			R/S	T, length of tan.

Example:

Compute field data for a curve with a central angle of $35^{\circ} 30'$ and degree of curve of $12^{\circ} 30'$. The PC station is 7 + 85.40.


Keystrokes:	Outputs:	
785.40 ENTER • 12.30		
	785.40	(PC)
RCL 1 (if desired) →	458.3662	(R)
For Station 8:		
800 GSB 2→	14.6000	(L)
R/S →	.5445	(ANG)
R/S →	14.5994	(LC)
R/S →	14.5994	(SC)
RCL B (if desired)	.2325	(TO)
RCL 9 (if desired)	14.5975	(TD)

For Station 9:

900 GSB 2	114.6000	(L)			
R/S	7.0945	(ANG)			
R/S →	114.3018	(LC)			
R/S	99.8018	(SC)			
RCL 8	14.2516	(TO)			
RCL 9	113.4098	(TD)			
For Station 10:					
1000 GSB 2→	214.6000	(L)			
R/S	13.2445	(ANG)			
R/S →	212.6454	(LC)			
R/S →	99.8018	(SC)			
RCL 8	49.3252	(TO)			
RCL 9	206.8455	(TD)			
35.30 GSB 3→	284.0000	(L)			
R/S	1069.4000	(PT)			
R/S	146.7242	(T)			
Now calculate field data for PT:					
1069.40 GSB 2→	284.000	(L)			
R/S	17.4500	(ANG)			
R/S	279.4790	(LC)			
R/S	69.3337	(SC)			

COORDINATE TRANSLATION AND ROTATION

This program allows for two-dimensional translation and rotation of coordinate axes. Suppose the origin of a coordinate system is translated to a new point, (x_0, y_0) , and the x and y axes are rotated through an angle α to give new axes, x' and y'. A point P having coordinates (x, y) with respect to the old system of x and y axes, now has coordinates (x', y') with respect to the new axes. Given α and one pair of coordinates, the program allows you to find the other pair of coordinates.

Equations:

Let Rect (r, θ) denote the operation P when r is in the X-register and θ is in the Y-register. Let Pol (x, y) denote the operation P when x is in X and y is in Y.

Then
$$(x', y') = \text{Rect } (r, \theta - \alpha)$$

where $(r, \theta) = \text{Pol } (x - x_0, y - y_0)$
and $(x, y) = (x_0, y_0) + \text{Rect } (r', \theta' + \alpha)$
where $(r', \theta') = \text{Pol } (x', y')$

Remarks:

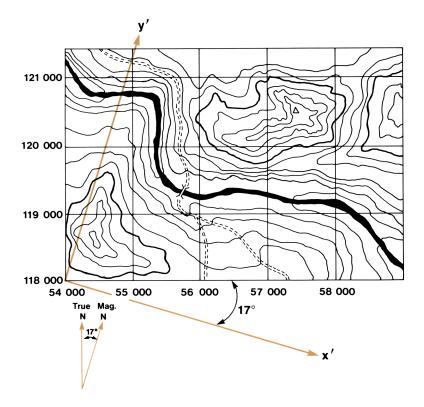
- The program may be used to solve a problem of translation only, or of rotation only, or of combined translation and rotation. If the problem involves translation alone, a value of $\alpha = 0$ must be input. For rotation alone, the values $x_0 = y_0 = 0$ must be input.
- The program assumes the following sign convention: α should be input as a positive number if the rotation is counterclockwise, and negative if clockwise.
- This program assumes the calculator is set in DEG mode.

81 *LBL0 82 ST07 83 R↓ 84 ST09 85 R↓ 86 STC8 87 RTN 89 *LBL1 89 RCL9 18 - 11 X2Y 12 RCL8 13 - 14 *F 15 X2Y 16 RCL7 17 - 18 X2Y 16 RCL7 17 - 18 X2Y 20 R/S 21 X2Y 22 RTN 23 *LBL2 24 X2Y 25 *P 26 X2Y 27 RCL7 28 *F 29 X2Y 30 *R 31 RCL8 32 F 33 R/S 34 X2Y 35 RCL9 35 F 37 RTN		···· •··	 x, y to x', y' 			
				STERS		
	1		2	3	4	5
6	⁷ θ		⁸ x ₀	9 _{Yo}	.0	.1
.2	.3		.4	.5	16	17
18 19		20	21	22	23	
24	25		26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Initialize:			
	Key in new origin	×o	ENTER +	
		Уo	ENTER +	
	Key in angle of rotation (observe			
	proper sign)	α	GSB O	xo
3	Key in old coordinates and			
	calculate coordinates in new			
	system	x	ENTER +	
		у	GSB 1	x′
			R/S	у'
4	Key in new coordinates and			
	calculate coordinates in old			
	system	x′	ENTER +	
		y'	GSB 2	x
			R/S	у

Example 1:

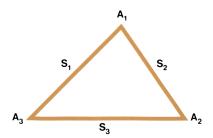

The origin of a coordinate system is translated to the point (-1, 4) and rotated 30° in a positive (counterclockwise) direction. Find the new coordinates of the point whose coordinates in the old system are (1, 3). If the coordinates of a point in the new system are (5, 7), what are its coordinates in the old system?

Keystrokes:	Outputs:	
1 CHS ENTER + 4 ENTER +		
30 GSB O→	-1.00	
1 ENTER ♦ 3 GSB 1	1.23	(x')
R/S►	-1.87	(y')
5 ENTER ↑ 7 GSB 2	-0.17	(x)
R/S→	12.56	(y)

Example 2:

Backpacker Will B. Bushed's route will take him cross-country from the marked trails of an area. He knows that he will have to check his compass frequently against his map over this terrain, and regrets that the map is in such an inconvenient format for his purposes. In the first place, the grid lines on his map represent distances in feet from an origin about 25 miles away, resulting in such large numbers that the calculations are difficult. Secondly, the map's grid is based on true north while his compass readings are relative to magnetic north, a variation of 17°.

Before he leaves home, Bushed decides to draw a rough version of the map for his own convenience, locating his origin at the grid point (54 000, 118 000) and rotating his axes by 17° in a clockwise direction. As a first step, he wants to find the new coordinates of the bridge and the peak of the hill, whose coordinates in the old system are (55 750, 119 300) and (57 450, 120 500) respectively.



Keystrokes:	Outputs:
54000 ENTER • 118000 ENTER •	
17 Снз GSB 0 55750	
ENTER ◆ 119300 GSB 1	1293.45
[R/S] →	1754.85
The new coordinates of the bridge are (1293	3, 1755).
57450 ENTER • 120500	
GSB 1	2568.32
R/S	3399.44

The new coordinates of the peak are (2568, 3399).

TRIANGLE SOLUTIONS

This program may be used to find the sides, the angles, and the area of a plane triangle.

In general, the specification of any three of the six parameters of a triangle (3 sides, 3 angles) is sufficient to define the triangle. (The exception is that three angles will not define a triangle.) There are thus five possible cases that this program will handle: two sides and the included angle (SAS), two angles and the included side (ASA), two sides and the adjacent angle (SSA—an ambiguous case), two angles and the adjacent side (AAS), and three sides (SSS).

The results are stored in storage registers 0 through 6 as follows:

AREA	Register 0
SIDE 1	Register 1
ANGLE 1	Register 2
SIDE 2	Register 3
ANGLE 2	Register 4
SIDE 3	Register 5
ANGLE 3	Register 6

Equations:

SAS (S₁, A₁, S₂):

$$S_{3} = \sqrt{S_{1}^{2} + S_{2}^{2} - 2 S_{1} S_{2} \cos A_{1}}$$

$$A_{2} = \tan^{-1} \frac{S_{1} \sin A_{1}}{S_{2} - S_{1} \cos A_{1}}$$

$$A_{3} = \cos^{-1} \left[-\cos \left(A_{1} + A_{2}\right) \right]$$

ASA (A_3 , S_1 , A_1):

$$S_2 = S_1 \frac{\sin A_3}{\sin A_2} = S_1 \frac{\sin A_3}{\sin (A_1 + A_3)}$$

Now go to SAS.

SSA (S_1 , S_2 , A_2):

$$A_3 = \sin^{-1} \left(\frac{S_2 \sin A_2}{S_1} \right)$$
$$A_1 = \cos^{-1} \left[-\cos \left(A_2 + A_3\right) \right]$$

Now go to SAS.

AAS (A_2, A_1, S_1) :

$$S_2 = S_1 \frac{\sin A_3}{\sin A_2} = S_1 \frac{\sin (A_1 + A_2)}{\sin A_2}$$

Now go to SAS. SSS (S_1, S_2, S_3) :

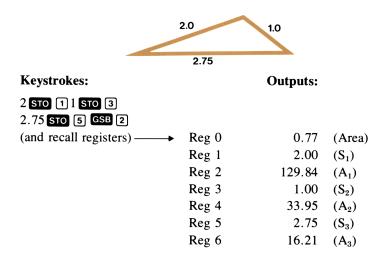
$$A_{1} = \cos^{-1}\left(\frac{S_{1}^{2} + S_{2}^{2} - S_{3}^{2}}{2 S_{1} S_{2}}\right)$$

Now go to SAS.

$$AREA: = \frac{1}{2} S_1 S_3 \sin A_3.$$

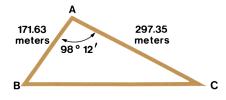
Remarks:

- Any angular mode may be used.
- Note that the triangle described by the program does not conform to standard triangle notation; i.e., A_1 is not opposite S_1 .
- Angles must be entered as decimals. The H conversion can be used to convert degrees, minutes, and seconds to decimal degrees.
- Accuracy of solution may degenerate for triangles containing extremely small angles.


01 #LBL1			50 ×		
82 RCL2		SAS, Calculate A ₂ , S ₃ by	51 ST03		
63 RCL1		law of cosines	52 GTO:		
84 →R			53 #LBL4		
05 RCL3			54 RCL3		ind A ₁ , go to SAS
86 X2Y			55 RCL4	(Soluti	on #1)
07 -			56 SIN 57 RCL1		
88 +P			58 ÷		
09 ST05 10 X2Y			59 ×		
11 ST04			60 SIN-		
12 RCL2			61 RCL4		
13 +			62 +		
14 GSB8			63 6SB0		
15 ST06			_ 64 ST02		
16 SIN			65 GSB1		
17 ×		Area	66 RCL1		
18 RCL1			67 RCL3	Two so	olution exist if
19 X			68 X¥Y?	S ₂ > S	
20 2			63 RTN		
21 ÷			70 R/S	Solve f	or Solution #2
22 STO		***	71 RCL6		
23 RTN			- 72 GSB0 73 ST06		
24 #LBL2			73 STO6 74 RCL4		
25 RCL1		000 F: I A I I I I	74 KCL4 75 +		
26 RCL3		SSS, Find A ₁ by law of	76 6SB0		
27 →F 28 X ²		cosines then go to SAS	77 ST02		
28 XE 29 RCL5			78 GT01		
29 RULS 30 X2			79 #LBL5		
30 1-			80 RCL4		
32 RCL1			81 RCL2	AAS, F	ind S ₂ go to SAS
33 RCL3			82 +		
34 ×			83 SIN		
35 2			84 RCL4		
36 ×			85 SIN		
37 ÷			85 ÷		
38 COS-			87 RCL1		
39 ST02			88 ×		
48 GT01			- 89 ST03 - 90 S T01		
41 *LBL3			- 90 GT01 91 #LBL8		
42 RCL6			92 COS		
43 SIN 44 RCL2		ASA, Find S ₂ then go to	93 CMS		
44 RUL2 45 RCL6		SAS	94 COS-		
45 RCL0 46 +			95 RTN		
47 SIN					
48 ÷					
49 RCL1					
0 Area	1 Side 1		GISTERS ³ Side 2	4 Angle 2	⁵ Side 3
6 Angle 3	7	8	9	.0	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29
				L	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Select case and key in data:			
	2A: SAS (2 sides & included			
	angle)			
	Side 1	S ₁	STO 1	
	Angle 1	Α,	STO 2	
	Side 2	S₂	STO 3	
			GSB 1	output
	2B: SSS (3 sides)			
	Side 1	S1	STO 1	
	Side 2	S₂	STO 3	
	Side 3	S ₃	STO 5	
			GSB 2	output
	2C: ASA (2 angles & included			
	side)			
	Angle 3	A ₃	STO 6	
	Side 1	S ₁	STO 1	
	Angle 1	A ₁	STO 2	
			GSB 3	output
	2D: SSA (2 sides & adjacent			
	angle) Side 1 (opposite side)	S ₁	STO 1	
	Side 2 (adjacent side)	S ₂	STO 3	
	Angle 2 (adjacent angle)	A ₂	STO 4	
			GSB 4	solution # 1*
			R/S	solution # 2**
	2E: AAS (2 angles & adjacent			(If it exists)
	side)			
	Angle 1 (adjacent angle)	A ₁	STO 2	
	Angle 2 (opposite angle)	A ₂	STO 4	
	Side 1 (adjacent side)	S ₁	STO 1	
			GSB 5	output

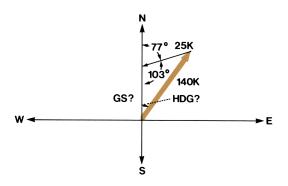
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
3	Obtain solution by reviewing			
	registers (use print reg. com-			
	mand if applicable).			
	recall reg. 0		RCL 0	area
	recall reg. 1		RCL 1	S ₁
	recall reg. 2		RCL 2	Α,
	recall reg. 3		RCL 3	S₂
	recall reg. 4		RCL 4	A ₂
	recall reg. 5		RCL 5	S₃
	recall reg. 6		RCL 6	A ₃
	* Review registers at this point			
	for solution #1.			
	** Press (R/S), once only, for solution #2, (pressing (R/S)			
	more than once will give erroneous results.)			


Example 1:

Find the angles and the area for the following triangle.

Example 2:

A surveyor is to find the area and dimensions of a triangular land parcel. From point A, the distances to B and C are measured with an electronic distance meter. The angle between AB and AC is also measured. Find the area and other dimensions of the triangle.


This is a side-angle-side problem where:

$$S_1 = 171.63$$
, $A_1 = 98^{\circ}12'$ and $S_2 = 297.35$.

Keystrokes: Outputs: 171.63 **STO** 198.12 9 •H STO 2297.35 STO 3 GSB 1 (and recall registers) -----Reg 0 25256.21 (Area (m²))171.63 Reg 1 (AB, m)(ANG. A) Reg 2 98.20 Reg 3 297.35 (AC, m)27.83 (ANG. C) Reg 4 Reg 5 363.91 (CB, m)Reg 6 (ANG. B) 53.97

Example 3:

A pilot wishes to fly due north. The wind is reported as 25 knots at 77°. Because winds are reported opposite to the direction they blow, this is interpreted as 77 + 180 or 257° . The true airspeed of the aircraft is 140 knots. What heading (HDG) should be flown? What is the ground speed (GS)?

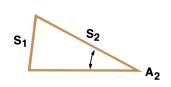
By subtracting the wind direction from 180 (yielding an angle of 103°), the problem reduces to a S₁, S₂, A₂ triangle.

Keystrokes:		Outputs:	
140 STO 125 STO 3			
103 STO 4 GSB 4			
(and recall registers)		25.00	(Side 2)
	Reg 0	1610.64	
	Reg 1	140.00	(TAS)
	Reg 2	66.98	
	Reg 3	25.00	(WIND VEL.)
	Reg 4	103.00	
	Reg 5	132.24	(GS)
	Reg 6	10.02	(HDG)
R/S	No Operation		
	(No Second S	Solution)	

Thus, the pilot should fly a heading 10.02° east due north. His ground speed equals 132.24 knots.

Example 4:

Two angles and an adjacent side of a triangle are known. Calculate the area of the triangle, the other two sides and the third angle. The known side is 19.6 ft. and the angle adjacent is 61.06° . The opposite angle is 40.25° .


This is an AAS case where $S_1 = 19.6$ ft., $A_1 = 61.06^{\circ}$ and $A_2 = 40.25^{\circ}$.

Keystrokes:	Outputs:		
19.6 STO 161.06 STO 240.25 STO 4 GSB 5 (and recall			
registers) —	Reg 0	255.11	(Area (ft ²))
	Reg 1	19.60	(S ₁ , ft)
	Reg 2	61.06	(A_1, deg)
	Reg 3	29.75	(S_2, ft)
	Reg 4	40.25	(A_2, deg)
	Reg 5	26.55	(S ₃ , ft)
	Reg 6	78.69	(A_3, deg)

Example 5:

Given 2 sides and a nonincluded angle solve for the triangle:

Side 1 = 25.6 Side 2 = 32.8 Angle 2 = 42.3°

(Note: Since $S_1 < S_2$ and $A_2 < 90^\circ$, 2 solutions exist.)

Keystrokes:

Outputs:

25.6 STO 132.8 STO			
3 42.3 STO 4 GSB 4			
(and recall registers)	Reg 0	410.85	(Area)
	Reg 1	25.60	(S ₁)
	Reg 2	78.12	(A ₁)
(Solution #1)	Reg 3	32.80	(S ₂)
	Reg 4	42.30	(A_2)
	Reg 5	37.22	(S ₃)
	Reg 6	59.58	(A ₃)
R/S (and recall			
registers) —	Reg 0	124.68	(Area)
	Reg 1	25.60	(S ₁)
	Reg 2	17.28	(A ₁)
	Reg 3	32.80	(S ₂)
(Solution #2)	Reg 4	42.30	(A ₂)
	Reg 5	11.30	(S ₃)
	Reg 6	120.42	(A ₃)

Example 6:

A triangle has angles of $64^{\circ}32'$ and $35^{\circ}06'$ with the included side 20.96 feet long. Solve for the remainder of the triangle.

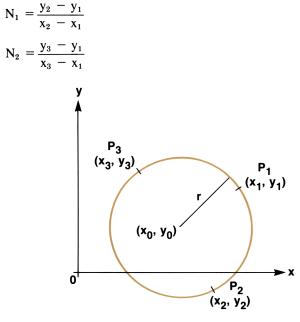
Keystrokes:

Outputs:

64.32 9 H STO 6			
20.96 STO 135.06 9 H			
STO 2 GSB 3 (and			
recall registers)	Reg 0	115.66	(Area (ft ²))
	Reg 1	20.96	(S_1, ft)
	Reg 2	35.10	(A ₁)
	Reg 3	19.19	(S_2, ft)
	Reg 4	80.37	(A_2)
	Reg 5	12.22	(S ₃ , ft)
	Reg 6	64.53	(A ₃)

CIRCLE DETERMINED BY THREE POINTS

This program calculates the center (x_0, y_0) and radius (r) of a circle given three non-collinear points.


Equations:

Circle determined by three points:

$$y_0 = \frac{K_2 - K_1}{N_2 - N_1} \cdot x_0 = K_2 - N_2 y_0$$
$$r = \sqrt{(x_3 - x_0)^2 + (y_3 - y_0)^2}$$

where:

$$K_{1} = \frac{(x_{2} - x_{1})(x_{2} + x_{1}) + (y_{2} - y_{1})(y_{2} + y_{1})}{2(x_{2} - x_{1})}$$
$$K_{2} = \frac{(x_{3} - x_{1})(x_{3} + x_{1}) + (y_{3} - y_{1})(y_{3} + y_{1})}{2(x_{3} - x_{1})}$$

Remarks:

• If $x_1 = x_2$ or $x_1 = x_3$ in the calculation of the center and radius of a circle, then point 1 replaces point 3, point 3 replaces point 2 and point 2 replaces point 1.

01 #LBL1			50 1	RTN	***	
02 RCL3			51 ¥LE	BL6		
83 RCL1			52 R(CL 1		
84 X=Y?			53 R(CL2		
8 5 GT09			54	+₽		
86 RCL5	Check fo	$\mathbf{x}_1 = \mathbf{x}_2$ or	55	X2		
07 X=Y?		$x_1 - x_2 = 0$		 TDØ		
08 GTC8	$x_1 = x_3$			CL3		
				CL4		
09 *LBL5						
10 GSB6			59	÷F		
11 ST.3			68	X2		
12 X≢Y				CLE		
13 ST07			62	-	Subrout	ine to
14 RCL3			63 R(CL3		
15 RCL5			64 R(CLI	Calculat	е К ₁ , К ₂ ,
16 ST03			65	-		
17 XZY			66	2	N_1 and	N ₂
18 ST05			67	x		-
19 RCL4	Calculate	e y _o , x _o , or r	68	÷		
	Calculate	, ,0, ,0, 0, 1	69 R			
28 RCL6						
21 ST04				CL2		
22 X ≇ Y			71	-		
23 STO6				CL3		
24 GSB6			73 Rt	CL1		
25 ST.4			74	-		
26 X ≭ Y			75	÷		
27 STO8			76 1	RTN		
28 RCL7			77 #LL	BL 9		
29 -			78 R.	015		
30 RC.4				X#Y		
31 RC.3			80 6		0	
32 -			81 #LI		Спеск то	$\operatorname{pr} x_1 = x_2 = x_3$
				CLI		
34 ST.2						
35 RC.4				CL5		
36 ×				T03		
37 RCL8			86	R↓		
38 -				T01		
39 CHS			88	R↓		
40 ST.1			89 S		Swap fo	$r x_1 = x_2 \text{ or}$
41 R/S	***		90 R	CL2	$x_1 = x_3$	
42 RC.2			91 R	CL4	~1 ~3	
43 R/S			92 R			
44 RCL4			93 S			
45 -			94	R↓		
46 RCL3			95 S			
			96	R↓		
				T06		
48 -				T05		
49 → P						
⁰ Used 1	Χ.	2 y ₁	3 X2	4 y ₂		5 _{X3}
6 y ₃ 7	~1	⁸ k ₂	9 r	.0		.1 x _o
² y ₀ .3		.4 N ₂	.5	16		17
	9	20	21	22		23
24 2	5	26	27	28		29
1-1	-					

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input x ₁ , y ₁ ; x ₂ , y ₂ ; x ₃ , y ₃	X 1	STO 1	X ₁
		У 1	STO 2	У 1
		X2	STO 3	X ₂
		y ₂	STO 4	y ₂
		X ₃	STO 5	X ₃
		y ₃	STO 6	y ₃
3	Calculate x_0 , y_0 , and r		GSB 1	Xo
			R/S	Уo
			R/S	r
4	For a new case go to step 2.			

Example:

What circle contains the points (1, 1), (3.5, -7.6) and (12, 0.8)?

Keystrokes:

Outputs:

1 STO 11 STO 23.5		
STO 37.6 CHS STO 412		
STO 50.8 STO 6		
GSB 1→	6.45	(x ₀)
R/S	-2.08	(y ₀)
[R/S] →	6.26	(r)

INTERSECTIONS OF LINES AND LINES, LINES AND CIRCLES, AND CIRCLES AND CIRCLES

This program calculates the point of intersection of two lines, the points of intersection of a coplanar circle and line, or the points of intersection of two coplanar circles.

There are three sub-programs, i.e.,

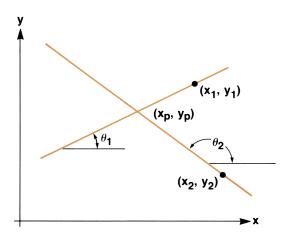
1. Calculates intersections of lines and lines.

Lines may be specified by two points $(x_1, y_1, and x_2, y_2)$, or by one point and an angle (θ) , where θ is the angle from the positive x-axis to the line.

2. Calculates intersections of circles and lines.

Lines are specified by two points $(x_1, y_1, and x_2, y_2)$.

Circles are specified by their center coordinates (x_0, y_0) and the radius (r).


3. Calculates intersections of circles and circles.

Circles are specified by their center coordinates (x_0, y_0) and the radius (r).

Equations:

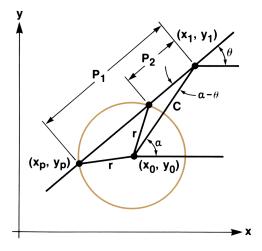
Line-Line Intersection:

$$x_{p} = \frac{x_{1} \tan \theta_{1} - x_{2} \tan \theta_{2} + y_{2} - y_{1}}{\tan \theta_{1} - \tan \theta_{2}}$$
$$y_{p} = y_{1} + (x - x_{1}) \tan \theta_{1}$$
$$y_{1} = x_{1} \tan \theta_{1} + C_{1}$$
$$y_{2} = x_{2} \tan \theta_{2} + C_{2}$$

Circle-Line Intersections:

$$x_{p1} = x_1 + P_1 \cos\theta$$

$$y_{p1} = y_1 + P_1 \sin\theta$$


$$x_{p2} = x_1 + P_2 \cos\theta$$

$$y_{p2} = y_1 + P_2 \sin\theta$$

where:

 $P_1 \mbox{ and } P_2 \mbox{ are the roots of }$

$$P^{2} - 2 D \cos (\theta - \alpha) P + D^{2} - r^{2} = 0$$

$$\theta = \tan^{-1} \left[\frac{y_{2} - y_{1}}{x_{2} - x_{1}} \right]$$

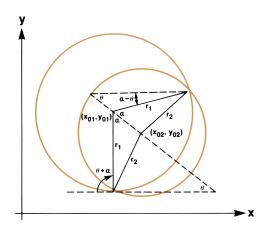
$$\alpha = \tan^{-1} \left[\frac{y_{0} - y_{1}}{x_{0} - x_{1}} \right]$$

$$D = \sqrt{(x_{0} - x_{1})^{2} + (y_{0} - y_{1})^{2}}$$

Circle-Circle Intersections:

$$x_{p1} = x_{01} + r_1 \cos (\theta + \alpha)$$

$$y_{p1} = y_{01} + r_1 \sin (\theta + \alpha)$$


$$x_{p2} = x_{01} + r_1 \cos (\theta - \alpha)$$

$$y_{p2} = y_{01} + r_1 \sin (\theta - \alpha)$$

$$\theta = \tan^{-1} \left(\frac{y_{02} - y_{01}}{x_{02} - x_{01}} \right)$$

$$\alpha = \cos^{-1} \left[\frac{D^2 + r_1^2 - r_2^2}{2Dr_1} \right]$$

$$D = \sqrt{(x_{02} - x_{01})^2 + (y_{02} - y_{01})^2}$$

01 #LBL3 02 \$T03		50 - 51 →P	
87 R.	Input one point and angle	52 R4	
04 STO2 05 RJ	for the 1 st point	53 RTN	
		54 #LEL5	
06 STC1 07 GTOS		55 RCL7	
87 6105 88 #LBL4		56 RCL3	
		57 X=Y?	
		58 GT00	To calculate x _p , y _p
10 R4 11 STO6	Input one point and angle for the 2 nd point	59 ABS	
12 R.	for the 2 nd point	60 RC.0	
12 R.		61 X≠Y?	
13 5705 14 GTC8		62 GTD6	
15 *LBL1		63 RCL1	
15 \$102		64 R/S	
16 5702 17 X#Y		E5 RCL7	
		66 TAN	
18 ST01 19 GSB6		67 X	
		68 RCL8	
20 ST03	Input coordinates of the	69 +	
21 #LBL9	1 st point	78 RTN	
22 RCL2 23 RCL1		71 ¥LBL6	
23 RCL1 24 RCL3		72 RCL7	
24 RCL3 25 TAN		73 ABS	
25 X		74 RC.0	
27 -		75 X ≠ Y?	
28 ST04		76 GT07	The 1 st line is vertical.
29 RTN		77 RCL5	
30 #LBL2		78 R/S	
30 #LBL2 31 ST06		75 GTD9	
31 3708 32 X∓Y		80 *LBL7	
33 ST05		81 RCL8	
33 5105 34 GSB6		82 RCL4	
35 ST07	Input coordinates of the	S3 -	
36 #LBL8	2 nd point.	84 RCL3	
37 RCL6		85 TAN	
38 RCL5		86 RCL7	
39 RCL7		87 TAN	The 2 nd line is vertical.
40 TAN		68 - 89 ÷	
41 X		89 - 98 R/S	
42 -	1	90 R/S 91 #LBL9	
43 ST08		92 RCL3	
44 RTN		93 TAN	
45 #LBL6	1	94 ×	
46 RJ	Subroutine to find the	95 RCL4	
47 -	slope and constant.	96 +	
48 XZY		97 RTN	
49 RCL8			
	PECH	STERS	
0 temp x_2 1 x_1'	2 γ ₁ ΄	$3 \theta_1$ $4 c_1$	5 x2'
$\begin{array}{c} 6 \\ \gamma_2 \\ \end{array} \\ \begin{array}{c} \gamma_2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \gamma_1 \\ \end{array} \\ \begin{array}{c} \gamma_2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \gamma_2 \\ \end{array} \\ \begin{array}{c} \gamma_2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \gamma_2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \gamma_2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \gamma_2 \\ \end{array} \\ $	8 _{C2}	9 .0 <u>90</u>	.1
·2 ·3	.4	.5 16	17
18 19	20	21 22	23
24 25	26	27 28	29
L I		1	

Intersections Part 1: Line-Line

81 #LBL2 82 STJ2 83 X2Y 84 ST01 85 R4 86 - 87 X2Y 88 PC(2	Input x	1, γ ₁ , x ₂ , γ ₂ , and	50 + 51 52 5705 53 RTN 54 #LBL5 55 #LBL3 56 RCL5 57 RCL6		
08 RCL0 09 - 10 →F 11 R↓		e	53 - 59 RC.1 60 ÷	Calcul	ate x _p
12 9 13 0 14 x2Y 15 x=Y? 16 2T09 17 TAK 18 ST03			61 R/S 62 RCL 63 × 64 RCL 55 + 66 #LBLS 67 RT	, , ,	
19 RCL2 20 RCL1 21 RCL3 22 × 23 -			68 #LBL4 69 1 70 CH3 71 ST×3 72 GT03	G Calcul	ate y _p
24 STO4 25 RCL6 26 - 27 ST.2 28 RCL3 29 × 30 RCL3			73 #LBL 74 RCL 75 X1 76 RCL 77 R-S 78 RCL 79 -	••••	
31 - 32 STOE 33 RC.2 34 X2 35 RCL5 36 X2 37 + 38 RCL7 39 X2 40 -			80 X: 81 - 52 J) 83 ST. 84 #LBL8 85 RCL 85 RCL 86 + 87 RTI 83 #LBL 98 RC1 98 RC1	vertic:	ate x _p and γ _p for il line.
41 RCL3 42 X ² 43 1 44 + 45 ST.1 46 X 47 CHS 48 RCL8 49 X ²			91 RC. 91 RC. 92 CH 93 GTO		
			STERS		
0 temp x ₂	1 x1'	² y ₁ '	$3_{\tan\theta_1}$	4 C1	5 x ₀
6 _{Yo}	7 r	8 α	9 β	.0	^{.1} (1 + m)
^{.2} c - y ₀	.3 Used	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29
L	1		L		

Intersections Part 2: Circle Line

01 #LEL1 02 ST03 03 R↓ 04 ST02 05 R↓ 06 ST01 07 RTN 06 #LEL2 00 0376		Input x,	D1, Y01, r1	_	50 GSB9 51 #LBL8 52 RCL0 53 SIK 54 RCL3 55 × 56 RCL2 57 +		Calculat	te x _{p2} , γ _{p2}
09 ST06 10 R4 11 ST05 12 R4 13 ST04		Input x _i	02, Y02, r2		58 RTN 59 #LBL9 60 STO0 61 COS 62 RCL3			
14 RTN 15 #LBL3 16 RCL5 17 RCL2 18 - 19 RCL4				-	63 × 64 RCL1 65 + 66 R/S 67 RTN		••• 	
20 RCL1 21 - 22 →P 23 ST08 24 X#V		Calculate	^{е х} р1, Ур1					
25 ST07 26 RCL8 27 X ² 28 RCL3 29 X ² 30 +								
31 RCL6 32 X ² 33 - 34 RCL8 35 2								
36 × 37 RCL3 38 × 39 ÷ 40 CDS-1								
41 ST09 42 RCL7 43 + 44 GSB9 45 GT08	•							
46 #LBL4 46 #LBL4 47 RCL7 48 RCL9 49 -				_				
0.0++	1 X01			GISTERS	4			5
$\frac{0}{6} \theta \pm \alpha$	-		2 y ₀₁	10		^02		5 y ₀₂
° r ₂ .2	' θ .3		⁸ D	⁹ α	1			17
.2	.3 19		.4					
				21	2			23 29
24	25		26	27	2	0		29

Intersections Part 3: Circle-Circle

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the corresponding			
	program.			
2	For lines and lines, go to step 3.			
	For circles and lines, go to step 9.			
	For circles and circles, go to			
	step 14.			
3	Lines and Lines			
4	Initialize	90	STO 💿 🛛	90
5	Input the first line:			
	by two points:			
	X ₁	X ₁	ENTER +	
	У 1	У 1	ENTER +	
	X ₂	X ₂	STO 0	
	У2	y ₂	GSB 1	C ₁
	or			
	by one point and the angle	X ₁	ENTER +	
		У 1	ENTER +	
		θ	GSB 3	C ₁
6	Input the 2 nd line:			
	by two points:			
	X′1	x′ ₁	ENTER +	
	У′1	У′ ₁	ENTER +	
	X′2	x′2	STO 0	
	y′2	y′2	GSB 2	C ₂
	or			
	by one point and the angle	x′1	ENTER +	
		У′1	ENTER +	
		heta'	GSB 4	C ₂
7	Calculate intersection point		GSB 5	Xp
			R/S	Уp
8	For a new case go to step 5.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Circles and Lines			
10	Input the circle center			
	x _o	x _o	STO 5	×o
	Уo	Уo	STO 6	Уo
	radius r	r	STO 7	r
11	Input the line by two points			
	X ₁	X ₁	ENTER +	
	У 1	У 1	ENTER +	
	X ₂	X ₂	STO O	
	y ₂	y2	GSB 2	C ₂
12	Calculate the intersection points			
	X _{p1}		GSB 3	X _{p1}
	y _{p1}		R/S	У _{Р1}
	X _{p2}		GSB 4	X _{p2}
	y _{p2}		R/S	У _{р2}
13	For a new case, go to step 9.			
14	Circles and Circles			
15	Input circle one			
	X ₀₁	X ₀₁	ENTER +	
	Y ₀₁	У ₀₁	ENTER +	
	r ₁	r ₁	GSB 1	X ₀₁
16	Input circle two			
	X ₀₂	X ₀₂	ENTER +	
	Y ₀₂	У ₀₂	ENTER +	
	r ₂	r ₂	GSB 2	X ₀₂
17	Calculate intersections			
	X _{p1}		GSB 3	X _{p1}
	y _{p1}		R/S	y _{p1}
	X _{p2}		GSB 4	X _{p2}
	y _{p2}		R/S	y _{p2}
18	For a new case, go to step 14.			

Example 1:

Find the intersection of the vertical line specified by two points:

$$P_1 = (0, 0)$$
$$P'_1 = (0, 50)$$

And the oblique line specified by one point and an angle:

$$P_2 = (10, 20)$$
$$\theta = 45^{\circ}$$

Keystrokes:	Outputs:	
(Key in the first program)		
90 570 • 0	 90.00	
0 ENTER + ENTER + STO 0 50		
GSB 1	 9.9999999 +99	(Neglect)
10 ENTER • 20 ENTER • 45		
GSB 4	 10.00	
GSB 5	 0.00	(x _p)
R/S	 10.00	(y _p)

Example 2:

Find the points of intersection for a circle with center at (0, 0) and radius 50, and the line containing the points (20, 30) and (0, -10).

Keystrokes:	Outputs:	
(Key in the second program)		
0 STO 5 STO 6 50 STO 7	50.00	
20 ENTER + 30 ENTER + 0 STO		
010 CHS GSB 2→	111.36	
GSB 3	26.27	(X _{p1})
R/S	42.54	(y _{p1})
GSB 4→	-18.27	(X _{p2})
[R/S] →	-46.54	(y _{p2})

Example 3:

Calculate the points of intersection for circles at (0, 0) radius 50 and (90, 30) radius 70.

Keystrokes:	Outputs:	
(Key in the third program)		
$0 \text{ ENTER } \bullet \text{ ENTER } \bullet 50 \text{ GSB } 1 \longrightarrow$	0.00	
90 ENTER + 30 ENTER + 70		
GSB 2	90.00	
GSB 3→	21.64	(X _{p1})
R/S	45.07	(y _{p1})
GSB 4→	44.36	(X _{p2})
R/S	-23.07	(y _{p2})

HEWLETT 🕪 PACKARD

1000 N.E. Circle Blvd., Corvallis, OR 97330

For additional Sales and Service Information contact your local Hewlett-Packard Sales Office or call 800/648-4711. (In Nevada call collect 702/323-2704.)

5955-2111

Printed In U.S.A.

)

1

3

)