

INTRODUCTION

This HP-19C/HP-29C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.
They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become an expert on your HP calculator.
You will find general information on how to key in and run programs under "A Word about Program Usage" in the Applications book you received with your calculator.
We hope that this Solutions book will be a valuable tool in your work and would appreciate your comments about it.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

TABLE OF CONTENTS

1. PROPERTIES OF CIRCULAR SECTIONS 1This program performs an interchangeable solution for fourproperties of circular sections: moment of inertia; diameter;polar moment of inertia; and area.
2. PROPERTIES OF RECTANGULAR SECTIONS 4
This program performs an interchangeable solution for three properties of rectangular sections: moment of inertia; width; and height. The polar moment of inertia and section area are also calculated.
3. PROPERTIES OF ANNULAR SECTIONS 7
This program provides an interchangeable solution for three properties of annular sections: moment of inertia; outside diameter; and inside diameter. The polar moment of inertia and section area are also calculated.
4. thin-walled pressure vessels 10
This program provides an interchangeable solution for four properties of cylindrical and spherical pressure vessels: diameter; pressure; thickness; and stress.
5. STRESS IN THICK-WALLED CYLINDERS 13
This program calculates the stresses for thick-walled, cylindrical,pressure vessels.
6. MOHR CIRCLE FOR STRESS 16
This program calculates the principal stresses and their orienta- tion given the state of stress on an element, and the maximum shear stress and its orientation.
7. CIRCULAR PLATES WITH SIMPLY SUPPORTED EDGES 20
This program calculates deflection and stress at the center of a simply supported circular plate.
8. CIRCULAR PLATES WITH FIXED EDGES. 23
This program calculates the maximum deflection and stress at the center of a circular plate with fixed edges.
9. COMPRESSIVE BUCKLING. 26
This program performs an interchangeable solution for four proper- ties of slender compression members or columns: the critical buckling load; the modulus of elasticity; the minimum moment of inertia; and the length of the member.
10. ECCENTRICALLY LOADED COLUMNS 29
This program calculates the maximum deflection, the maximum moment, and the maximum stress on an eccentrically loaded column.

PROPERTIES OF CIRCULAR SECTIONS

This program performs an interchangeable solution for four properties of circular sections. Given either the moment of inertia I, diameter d, polar moment of inertia J, or area A, the remaining properties can be calculated.

EQUATIONS:

$$
\begin{aligned}
& I=\frac{\pi d^{4}}{64} \\
& J=\frac{\pi d^{4}}{32} \\
& A=\frac{\pi d^{2}}{4}
\end{aligned}
$$

EXAMPLE 1:

If the moment of inertia of a section must be 60 in ., what is the necessary diameter? What is the polar moment of inertia? What is the area?

EXAMPLE 2:

The diameter of a section is 10 centimeters. What is the moment of inertia? What is the polar moment of inertia? What is the area?

SOLUTIONS:

User Instructions

| STEP | INSTRUCTIONS | INPUT |
| :---: | :--- | :---: | :--- | :--- |
| DATA/UNITS | | | (

PROPERTIES OF RECTANGULAR SECTIONS

This program performs an interchangeable solution for the moment of inertia I, the width b and the height h of a rectangular section. When b and h are known, the polar moment of inertia J and the section area can also be found.

EQUATIONS:

$$
\begin{aligned}
& I=\frac{b h^{3}}{12} \\
& J=\frac{b h\left(b^{2}+h^{2}\right)}{12} \\
& A=b h
\end{aligned}
$$

REMARKS:
Values of polar moment of inertia J calculated by this program must not be used to calculate torsional stress and strain in rectangular members.

EXAMPLE:

What is the moment of inertia of a section with $b=3$ and $h=5$? What is the polar moment of inertia? What is the area? What would b have to be if $\mathrm{I}=40$?

SOLUTION:

5.00 ENT*		
3.00	ENT \uparrow	
0.00	6S81	
31.25	***	(in. ${ }^{4}$)
	R/S	
15.80	***	(in. ${ }^{2}$)
	R/S	
42.50	***	${ }^{4}$)
5.00	Enta	
0.80	ENTt	
40.06	GSE1	
3.84	***	(in.)

3.00 ENT 1
0.00 6SE1
31.25 ** (in. ${ }^{4}$) (in. ${ }^{2}$)
(in. ${ }^{4}$)
5.00 ENT
-.
3.84 ** (in.)

User Instructions

PROPERTIES OF ANNULAR SECTIONS

This program provides an interchangeable
SOLUTION: solution for the moment of inertia I, the outside diameter d_{O}, and the inside diameter d_{j} of an annular section. Once d_{0} and d_{i} are known, the polar moment of inertia J and the area of the section can be calculated.

EXAMPLE:

If d_{i} equals 3 inches and I equals $10 \mathrm{in}^{4}$, what is d_{0} ? What is A ?

What would I be if d_{o} equals 4.5 inches?

User Instructions

Program Listings

THIN-WALLED PRESSURE VESSELS

This program can be used to correlate diameter, stress, pressure and thickness for cylindrical and spherical pressure vessels. Either the hoop stress s_{c} or the longitudinal stress S_{L} may be input for cylinders. For spheres, only the hoop stress $s_{\text {sphere }}$ is applicable.

REMARKS:
The thickness of the walls must be negligible with respect to the value of the radius. The equations are not valid in the neighborhood of end closures for cylindrical vessels.

EXAMPLE 1:

A basketball has a diameter of 9.3 inches. The thickness of the cord layer which resists virtually all of the internal pressure is $1 / 32$ inch. The recommended pressure is 9 pounds per square inch. What is the stress in the cord layer?

EXAMPLE 2:

A four inch diameter pipe contains steam at 1000 pounds per square inch. What thickness is required if hoop stress is not to exceed 15000 pounds per square inch?

SOLUTIONS:

EQUATIONS:

for hoop stress in cylinders: $s_{C}=\frac{\mathrm{Pr}}{\mathrm{t}}$
for longitudinal stress in cylinders:
$s_{L}=\frac{P r}{2 t}$
for hoop stress in spheres: $s_{\text {sphere }}=\frac{\mathrm{Pr}}{2 \mathrm{t}}$
where:
P is internal pressure;
D is diameter of vessel ($r=D / 2$);
t is thickness of vessel

1. 9.30 ENTT

$$
0.00 \text { ENTT }
$$

$$
9.00 \text { ENT }
$$

$$
32.00 \quad 1 \%
$$

GSE1
669.60 ** (psi)
2. 4.00 ENTA
15000.80 ENTA
$2.60 \div \mathrm{s}_{\mathrm{C}} / 2$
1000.00 ENTT
0.00 ESE1
Q. 13 ** (in)

User Instructions

Program Listings

STRESS IN THICK-WALLED CYLINDERS

This program calculates the radial and tangential components of normal stress for thick-walled, cylindrical, pressure vessels.

EQUATIONS:

$$
\begin{aligned}
& s_{r}=\frac{r_{i}{ }^{2} P_{i}-r_{0}{ }^{2} P_{0}}{r_{o}{ }^{2}-r_{i}{ }^{2}}-\frac{r_{i}{ }^{2} r_{0}{ }^{2}\left(P_{i}-P_{0}\right)}{r^{2}\left(r_{0}{ }^{2}-r_{i}{ }^{2}\right)} \\
& s_{t}=\frac{r_{i}{ }^{2} P_{i}-r_{0}{ }^{2} P_{0}}{r_{o}{ }^{2}-r_{i}{ }^{2}}+\frac{r_{i}{ }^{2} r_{0}{ }^{2}\left(P_{i}-P_{0}\right)}{r^{2}\left(r_{0}{ }^{2}-r_{i}{ }^{2}\right)}
\end{aligned}
$$

where:
s_{r} is the radial component of stress;
s_{t} is the tangential component of stress;
r_{i} is the internal radius;
r_{0} is the outer radius;
r is the radius where calculated stresses occur;
P_{i} is the internal pressure;
P_{\circ} is the outside pressure.

EXAMPLE:

A cylinder has an inner radius of 1.00 inch and an outer radius of 2.00 inches. The inner pressure is 10,000 pounds per square inch and the outer pressure is 150 pounds per square inch. What are the values of radial and tangential stresses for radii of $1.00,1.25,1.75$ and 2.00 inches?

SOLUTION:

1.80 6SE1		
2. 98 ENT*		
150. 60 ENTA		
1.60 ENT 4		
18080.80	R/S	
-10800. 90		$s_{r} \mathrm{psi}$
16266.67	+ ${ }_{\text {¢ }}$	$\mathrm{s}_{\mathrm{t}} \mathrm{psi}$
1.25	6SE1	st ${ }^{\text {Psi}}$
	Prs	
-5272.80	* ${ }_{\text {* }}$	
	$X+Y$	${ }^{\text {S }}$ r
11538.67	**	
1.75	6SB	S_{t}
	R/S	
-1155.10	束*	S_{r}
	$\underline{x+i}$	${ }^{r}$
7421.77	***	St
2.80	GSE:	St
	R. ${ }^{\text {c }}$	
-150.00	+ ${ }^{\text {\% }}$	Sr
	$\underline{x+y}$	sr
6416.67	* ${ }_{\text {\% }}$	$s t$

REMARKS:
A negative stress indicates compression.
REFERENCE:
J.E. Shigley, Mechanical Engineering Design, McGraw Hill, 1963.

User Instructions

| STEP | INSTRUCTIONS | INPUT
 OATA/UNITS | KEYS |
| :---: | :--- | :--- | :--- | :--- | :--- |
| DATA/UNITS | | | |$|$

MOHR CIRCLE FOR STRESS

Given the state of stress on an element, the principal stresses and their orientation can be found. The maximum shear stress and its orientation can also be found.

Stress State

EQUATIONS:

$$
\begin{aligned}
s_{s \max } & =\sqrt{\left(\frac{s_{x}-s_{y}}{2}\right)^{2}+s_{x y}^{2}} \\
s_{1} & =\frac{s_{x}+s_{y}}{2}+s_{s \max } \\
s_{2} & =\frac{s_{x}+s_{y}}{2}-s_{s_{\max }} \\
\theta & =1 / 2 \tan ^{-1}\left(\frac{2 s_{x y}}{s_{x}-s_{y}}\right) \\
\theta_{s} & =1 / 2 \tan ^{-1}-\left(\frac{s_{x}-s_{y}}{2 s_{x y}}\right)
\end{aligned}
$$

where:
$\mathrm{s}_{\text {smax }}$ is the maximum shear stress;
s_{1} and s_{2} are the principal norma stresses;
θ is the angle of rotation from the principal axis to the original axis;
θ_{S} is the angle of rotation from the axis of maximum shear stress to the original axis;
s_{x} is the stress in the x direction;
s_{y} is the stress in the y direction;
$s_{x y}$ is the shear stress on the

REFERENCE:

Spotts, M.F., Design of Machine Elements, Prentic-Ha11, 1971.

EXAMPLE:

If $s_{x}=25000 \mathrm{psi}, \mathrm{s}_{\mathrm{y}}=-5000 \mathrm{psi}$, and
$s_{x y}=4000$ psi, compute the principal stresses and the maximum shear stress.

SOLUTION:

```
25000.00 ENT:
-5000.00 ENTA
4000.00 GSE1
25524.17 *** sos (psi)
-5524.17 *** s_ (psi)
    7.47 *** 0 (degrees)
    ****
    R/S
15524.17 ** s s smax (psi)
```

STEP	instructions	INPUT DATA/UNITS	KEY	$\begin{gathered} \text { OUTPUT } \\ \text { DATA/UNITS } \end{gathered}$
1.	Key in the program			
2.	Enter the following:			
	Stress in the x direction (negative for	S_{x}	ENT \uparrow	
	compression)			
	Stress in the y direction (negative for	S_{y}	ENT \uparrow	
	compression)			
	Shear stress	$S_{x y}$		
3.	Compute the following:			
	First principal stress		GSB	S_{1}
	Second principal stress		R/S	S_{2}
	Angle of rotation (principal)		R/S	θ
	Angle of rotation (shear)		R/S	θ_{S}
	Maximum shear stress		R/S	$\mathrm{s}_{\text {smax }}$
	NOTE: Do not disturb the stack during			
	step 3			
4.	For a new case, go to step 2.			

CIRCULAR PLATES WITH SIMPLY SUPPORTED EDGES

This program can be used to calculate the deflection and stress at the center of a simply supported circular plate with uniformly distributed or concentrated central loads.

EQUATIONS:
for a concentrated central load:

$$
\begin{aligned}
& y_{\max }=\frac{(3+\mu) \mathrm{Pr}^{2}}{16 \pi(1+\mu) D} \\
& s_{\max }=\frac{P}{h^{2}}\left[(1+\mu)\left(0.485 \ln \frac{r}{h}+0.52\right)+0.48\right]
\end{aligned}
$$

for a uniformly distributed load:

$$
\begin{aligned}
& y_{\max }=\frac{(5+\mu) W r^{4}}{64 D(1+\mu)} \\
& s_{\max }=\frac{3(3+\mu) W r^{2}}{8 h^{2}}
\end{aligned}
$$

where:

$$
D=\frac{E h^{3}}{12\left(1-\mu^{2}\right)}
$$

$y_{\text {max }}$ is the maximum deflection;
$\mathrm{S}_{\text {max }}$ is the maximum stress;
μ is Poisson's ratio;
E is the modulus of elasticity;
h is the thickness of the plate;
r is the radius of the plate;
W is the uniformly distributed load;
P is the concentrated central load.

REFERENCES:

Spotts, M.F., Design of Machine Elements, Prentice-Hall, Inc., 1971.

REMARKS:

Deflections must be small compared to thickness of plate.

EXAMPLE 1:

Assuming that a manhole cover with an automobile tire at its center may be modeled as a simply supported flat plate with concentrated central load, what is the deflection at the center of the plate? What is the stress?

$$
\begin{aligned}
& \mathrm{E}=30 \times 10^{6} \mathrm{psi} \\
& \mathrm{~h}=0.75 \mathrm{in} \\
& \mu=0.3 \\
& \mathrm{r}=15 \mathrm{in} \\
& \mathrm{P}=1500 \mathrm{lb}
\end{aligned}
$$

EXAMPLE 2:

A simply supported $1 / 4$ inch thick plate ($E=30 \times 10^{6}, \mu=0.3$) withstands 50 pounds per square inch. If the radius is 5 inches, what is the deflection and what is the stress at the center of the plate?

SOLUTIONS:
(1)

$30 .+65$	ENT*	(2) $30 .+86$	ENT ${ }^{\text {P }}$
0.75	ENT \dagger	0.25	ENT \uparrow
0.30	ENT*	0.30	ENT \uparrow
15.00	6581	5.60	CSE1
1500.00	CSB2	50.00	6SE3
0.01	*** (in)	0.05	*** (in)
	PF		R/9
8119.49	** ${ }^{\text {(psi) }}$	24750.00	*** (psi)

User Instructions

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS		OUTPUT datalunits
1.	Key in the program				
2.	Input modulus of elasticity	E	ENT \uparrow		E
3.	Input thickness of plate	h	ENT \uparrow		h
4.	Input Poisson's ratio	μ	ENT \uparrow		
5.	Input radius of plate	r	GSB	1	
6.	If the load is distributed go to step 10				
7.	Input concentrated load and calculate				
	deflection	P	GSB	2	$y_{\text {max }}$
8.	Calculate maximum stress		R/S		$\mathrm{s}_{\text {max }}$
9.	For new load go to step 7. For new case				
	go to step 2.				
10.	Input distributed load and calculate				
	deflection	W	GSB	3	$y_{\text {max }}$
11.	Calculate maximum stress		R/S		$\mathrm{s}_{\text {max }}$
12.	For new load go to step 10. For new case				
	go to step 2.				

CIRCULAR PLATES WITH FIXED EDGES

This program can be used to calculate the maximum deflection and stress for a circular plate with fixed edges. Either central concentrated loads or distributed loads may be input.

EQUATIONS:

$$
\begin{aligned}
& y_{\max }=\frac{P r^{2}}{16 \pi D} \\
& s_{\max }=\frac{P}{h^{2}}(1+\mu)\left(0.485 \ln \frac{r}{h}+0.52\right)
\end{aligned}
$$

for distributed loads:

$$
\begin{aligned}
& y_{\max }=\frac{W r^{4}}{64 D} \\
& s_{\max }=\frac{3 W r^{2}}{4 h^{2}} \quad \text { (at edge of plate) }
\end{aligned}
$$

where:

$$
D=\frac{E h^{3}}{12\left(7-\mu^{2}\right)}
$$

$y_{\text {max }}$ is the maximum deflection
$\mathrm{s}_{\text {max }}$ is the maximum stress;
P is the concentrated load;
W is the distributed load;
r is the radius of the plate;
h is the thickness of the plate;
μ is Poisson's ratio;
E is the modulus of elasticity.

REFERENCE:

Spotts, M.F., Design of Machine Elements, Prentice-Hall, Inc., 1971.

REMARKS:
Deflections must be small compared to the thickness of plate.

EXAMPLE 1:

The cap on a pressure vessel is a $1 / 4$ inch thick steel plate ($\mathrm{E}=30 \times 10^{6} \mathrm{psi}$, $\mu=0.3$) with a 6 inch radius. It is clamped to the opening of the pressure vessel by a ring of bolts. What are the maximum and minimum deflections and stresses in the plate if pressure cycles from 50 to 60 psi ?

EXAMPLE 2:
An adjustable focal length mirror is to derive its concaved shape due to a variable force applied at its center. The mirror is chrome plated steel ($\mathrm{E}=30 \times 10^{6} \mathrm{psi}, \mu=0.3$), 0.1 inches thick and has a radius of 12 inches. What is the deflection of the center for a force of 6.0 pounds. The edges are held securely.

SOLUTIONS:
(1)
$36 .+86$ ENT
0.25 ENTA
(2)
30. +aE ENTT
0. 38 ENT个
0.10 ENTA
0.30 ENTA
6.80 GSE:
12.80 6581
50.006583
6.00 GSE2
0.82 ** (in)min
FIX5
R/S (psi)
21600.00
60.00 GSB3
Q. 03 *** (in) max
Fs
$25920.00 * *(\mathrm{psi})$

User Instructions

STEP	Instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS		$\begin{gathered} \text { OUTPUT } \\ \text { DATA/UNITS } \end{gathered}$
1.	Key in the program				
2.	Input modulus of elasticity	E	ENT \uparrow		E
3.	Input thickness of plate	h	ENT \uparrow		h
4.	Input Poisson's ratio	μ	ENT \uparrow		μ
5.	Input radius of plate	r	GSB	1	D
6.	If the load is distributed go to step 10				
7.	Input concentrated load and calcu? ate				
	deflection	P	GSB	2	$y_{\text {max }}$
8.	Calculate maximum stress		R/S		$\mathrm{s}_{\text {max }}$
9.	For new load go to step 7. For new case				
	go to step 2				
10.	Input distributed load and calculate				
	deflection	W	GSB	3	$y_{\text {max }}$
11.	Calculate maximum stress		R/S		${ }^{S_{\text {max }}}$
12.	For new load go to step 10. For new case				
	go to step 2.				

COMPRESSIVE BUCKLING

This program performs an interchangeable solution for the four properties of slender compression members or columns: $P_{c r}$, the critical buckling load; E, the modulus of elasticity; I, the minimum moment of inertia; and ℓ, the length of the member.

EQUATIONS:

Three configurations are possible, identified by the number of fixed ends on the member: 0, both ends hinged; 1 , one end free and one fixed; 2, both ends fixed.

REMARKS:

Uncertainties such as the amount of restraint at the ends, eccentricity of the load, initial warp, nonhomogeneity of the material and deflection caused by lateral loads, can cause very significant changes in the behavior of a compressive member.

EXAMPLE 1:
If an 8 inch steel ($\mathrm{E}=30 \times 10^{6} \mathrm{psi}$) piston rod (a piston rod has zero fixed ends) must withstand a load of 15000 pounds without buckling, what moment of inertia must it have?

EXAMPLE 2:
Steel columns 40 feet long are used to support a bridge. What is the maximum load that the column can withstand without buckling? Assume 1 fixed end. $\mathrm{E}=30 \times 10^{6} \mathrm{psi}, \mathrm{I}=700 \mathrm{in}^{4}$.

SOLUTIONS:
(1)

```
    0.00 6581
        15000.00 ENTT
            30.+86 ENTT
        0.00 ENTT
            8.00 GSE2
    3.24-03 *** I
        0.00 ENTA
    30.+86 ENTT
    700.00 ENT个
    480.00 ESE2
224893.33 *** P
```

(2) $1.00 \operatorname{GSB1}$

User Instructions

ECCENTRICALLY LOADED COLUMNS

This program calculates the maximum deflection, the maximum moment, and the maximum stress in an eccentrically loaded column under compressive stress.

EQUATIONS:

$$
\begin{aligned}
& y_{\max }=e\left[\sec \frac{\ell}{2} \sqrt{\frac{P}{E I}}-1\right] \\
& M_{\max }=P\left[e+y_{\max }\right] \\
& S_{\max }=\frac{P}{A}\left[1+\frac{e c A}{I} \sec \frac{\ell}{2} \sqrt{\frac{P}{E I}}\right]
\end{aligned}
$$

where:

$$
\begin{aligned}
& y_{\max } \text { is the maximum deflection; } \\
& \mathrm{e} \text { is the eccentricity; } \\
& \text { l is the column length; } \\
& P \text { is the compressive load; } \\
& E \text { is the modulus of elasticity; } \\
& I \text { is the moment of inertia; } \\
& M_{\max } \text { is the maximum internal moment; } \\
& \mathrm{S}_{\max } \text { is the maximum normal stress } \\
& \text { in the column; } \\
& \mathrm{C} \text { is the distance from the } \\
& \text { neutral axis of the column to } \\
& \text { the outer surface; } \\
& \text { A is the area of the cross } \\
& \text { section }
\end{aligned}
$$

REMARKS:
Columns must be of constant cross section. Stresses may not exceed the elastic limit of the material.

REFERENCE:
Spotts, M.F., Design of Machine Elements, Prentice-Hall, 1971.

EXAMPLE:

A column 50 feet long is to support 8000 pounds. The load is to be offset 6 inches. What are the maximum values of deflection, moment, and stress in the member?

$$
\begin{aligned}
& E=30 \times 10^{6} \\
& I=107 \mathrm{in}^{4} \\
& A=7 \mathrm{in}^{2} \\
& C=2 \mathrm{in}
\end{aligned}
$$

SOLUTION:

User Instructions

STEP	instructions	$\begin{array}{\|c\|} \hline \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{array}$	KEYS		OUTPUT DATA/UNITS
1.	Key in the program				
2.	Initialize		g	RAD	
3.	Store data:				
	Moment of inertia	I	STO	1	
	Modulus of elasticity	E	STO	2	
	Length of column	ℓ	STO	3	
	Eccentricity	e	STO	4	
	Load	P	STO	5	
4.	To calculate maximum deflection		GSB	1	$y_{\text {max }}$
5.	To calculate maximum moment		GSB	2	$M_{\text {max }}$
6.	To calculate maximum stress:				
6 a.	Enter distance from neutral axis	c	ENT \uparrow		
6b.	Enter section area and run	A		3	${ }^{\text {max }}$
7.	For a new case, go to step 3 and store				
	different value(s).				

NOTES

In the Hewlett-Packard tradition of supporting HP programmable calculators with quality software, the following titles have been carefully selected to offer useful solutions to many of the most often encountered problems in your field of interest. These ready-made programs are provided with convenient instructions that will allow flexibility of use and efficient operation. We hope that these Solutions books will save your valuable time. They provide you with a tool that will multiply the power of your HP-19C or HP-29C many times over in the months or years ahead.

Mathematics Solutions
Statistics Solutions
Financial Solutions
Electrical Engineering Solutions
Surveying Solutions
Games
Navigational Solutions
Civil Engineering Solutions Mechanical Engineering Solutions
Student Engineering Solutions

Reorder No. 00029-14008 Printed in U.S.A. 00029-90012

