

INTRODUCTION

This HP-19C/HP-29C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.
They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become an expert on your HP calculator.
You will find general information on how to key in and run programs under "A Word about Program Usage" in the Applications book you received with your calculator.
We hope that this Solutions book will be a valuable tool in your work and would appreciate your comments about it.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

TABLE OF CONTENTS

1. Direct reduction loan amortization schedule 1This program generates the values for a loan amortization schedulegiven the interest rate, amount of payment, loan amount and period.
2. Internal rate of return -- up to 26 Cash flows 5
This program calculates the periodic internal rate of return given the initial investment and up to 26 uneven cash flows.
3. straight line depreciation schedule 8
This program generates the values for a depreciation schedule using the straight line method given the starting book values, salvage value, and useful life expectancy.
4. SUM-OF-THE-YEARS'-Digits DEPRECIATION SCHEDULE 12
This program generates the values for a depreciation schedule using the sum-of-the-years'-digits method, given the starting book value, salvage value, and useful life expectancy.
5. Variable rate declining balance depreciation schedule 16
This program generates the values for a depreciation schedule using the declining balance method, given the starting book value, salvage value, useful life expectancy, and declining rate factor.
6. CROSSOVER POINT--dECLINing BALANCE to STRAIGHT Line 20
This program calculates the optimum point in the useful life where a switch from the declining balance method to the straight line method should be made given the starting book value, salvage value, useful life expectancy, and declining balance factor.
7. Nominal to effective/effective to nominal rate conversion 24
Given either the nominal or effective rate (and the number of compound- ing periods in the case of finite compounding) the other rate is calculated for either finite or continuous compounding.
8. Lease versus purchase 27
This program calculates the present value of the cost of purchasing, the present value of the cost of leasing, and the net difference between the two.
9. real estate rental investment analysis 30
This program calculates monthly rent or cash flow, gross return on investment, and taxable income.
10. break-even analysis 33
This program calculates the break-even point, the margin of safety ratio and profit, given total fixed costs, variable cost per unit, sales price per unit, and expected sales.

Loan Amt: \$45,000 APR: 9.25\%
Monthly Payment: \$385

Payment Number	Paid to Interest	Paid to Principa	Remaining Balance
13	343.20	41.80	44480.80
14	342.87	42.13	44438.67
15	342.55	42.45	44396.22
18	341.56	43.44	44266.89
$13-18$	2054.29	255.71	44266.89

Given the periodic interest rate (i), periodic payment amount (PMT), loan amount (PV) and beginning and ending periods $\left(P_{1}, P_{2}\right)$, this program will generate the values for a loan amortization schedule as pictured above, starting with the payment P_{1} and ending with P_{2}. After P_{2} has been reached the program calculates the accumulated interest and principle for the payments made between $P_{1}-P_{2}$ inclusively. The schedule may be started at any point in the mortgages life.

The data generated is valid for loans that have a balloon payment as well as those that are arranged to be fully amortized.

For loans with a balloon payment, the remaining balance of the last payment period is the balloon payment due in addition to the last periodic payment.

For loans scheduled to be fully amortized, the remaining balance after the last payment period may be slightly more or less than zero. This is because the program assumes that all
payments are equal to the value entered for PMT. In fact for most loans the last payment is slightly more or less than the rest.

Equations:

$$
\begin{aligned}
& n=-\frac{\ln \left(-\frac{i P V}{P M T}+1\right)}{\ln (1+i)} \\
& B A L_{P_{1}-1}=\operatorname{PMT}\left[\frac{1-(1+i)^{P_{1}-1-N}}{i}\right]
\end{aligned}
$$

$$
I N T_{P n}=R N D\left(B A L_{P n} \times \frac{i}{100}\right)
$$

$$
\text { PRIN }_{P n}=P M T-I N T_{P n}
$$

$$
\mathrm{BAL}_{\mathrm{Pn}}=\mathrm{BAL}_{\mathrm{Pn}-1}-\mathrm{PRIN}_{\mathrm{Pn}}
$$

```
Example:
Duplicate the entries in the preceding
amortization schedule.
Solution:
45we.ae swe mortgage amount
            9.25 ENT* annual percentage rate
            12.00 % payments per year
            STOS periodic interest rate
    385.00 STO4 periodic payment amount
            17.00 sT00 P}\mp@subsup{P}{1}{
            18.60 stom P}\mp@subsup{P}{2}{
                    gsea
    301.14 w* actual life of mortgage
44522.60 tw remaining bal. at P P - - *
            5.ge *** payment number
    343.20* interest portion of pmt.
    41.00 *** principle portion of pmt.
44480.80** remaining after 13th pmt.
            14.00 ***
    342.87 ***
            42.93 ***
44438.57***
            15.06 ***
            742.55 **
            4.45 ***
44396.22 ***
            16.0日 **
            342.22 ***
            42.78 ***
443E3.44 ***
            17.04 w*
            341.39 ***
            45.11 ***
443:0.33 ***
            10.00 w*
            34!e5 w*
            43.44 ***
4486.35 w**
        2654.39 ** acc. interest periods 13-18
        255.7 *** acc. principle periods 13-18
44EG:% w remaining balance
*When using the HP-29C all subsequent values are produced by pressing R/S.
```


User Instructions

INTERNAL RATE OF RETURN UP TO 26 CASH FLOWS

The interest rate that equates the present value of all future cash flows with the original investment is known as the Internal Rate of Return (also called discounted rate of return or yield). Given the initial investment and up to 26 cash flows, this program calculates the periodic IRR.

When using this program, cash received is positive and cash outlays are negative. Zero should be keyed in for periods in which there are no cash flows.

The answer produced is the periodic rate of return. If the cash flow period is other than annual, the answer should be multiplied by the number of periods per year to determine the annual internal rate of return.

The program solves the following equation iteratively for IRR:

$$
I N V=\sum_{j=1}^{n} \frac{C F_{j}}{(1+I R R)^{j}}
$$

where: $n=$ number of cash flows

$$
C F_{j}=j^{\text {th }} \text { cash flow }
$$

Note:
Problems involving a large number of cash flows can often result in long execution times.

Example:
A shopping center requires a $\$ 200,000$ investment, and will be sold at the end of 3 years. If this investment results in the semi-annual net cash flows shown, what is the internal rate of return?

End of Six Month Period	Cash Flow
1	$\$-50,000$
2	0
3	11,000
4	11,000
5	13,000
6	280,000
	includes net proceeds from sale)

Solution:

```
    ESR:
-50000.00 FG
    0.00 P% 
    11000.00 RE
            RS
    13000.00 R%
    20000.00 RS
-20gang.ge GSR2 Cash paid out
    4.23 *** Semi-annual IRR (%)
    2.00 x
    8.45 *** Annual IRR
```

User Instructions

STEP	instructions	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1.	Key in the program				
2.	Clear registers		f	REG	
3.	Initialize		GSB	1	4
4.	Beginning with the first period,		R/S		$C F_{i}$
	enter all cash flows in sequence:				
	inflows positive, outflows negative,				
	and 0 for no cash flows.				
5.	Enter initial investment using the	INV	GSB	2	IRR(\%)
	cash flow sign convention.				
6.	For a new case, go to step 2				

STRAIGHT LINE DEPRECIATION SCHEDUE

Schedule - Straight-Line Method
Starting Book Value: $\$ 375,000$ Salvage Value $\$ 30,000$
Estimated Useful Life: 40.25 Years

Year (End of)	Depreciation Amount (DEP)	Remaining Depreciable Value (RDV)	Remaining Book Value (RBV)	Depreciation To Date (Reserve)
1	8571.43	336428.57	366428.57	8571.43 17142.86
2	8571.43	327857.14	357857.14	

The annual depreciation allowance using this method is determined by dividing the cost or other basis of valuation (starting book value) less its estimated salvage value by its useful life expectancy. This program develops the data shown in the example schedule, given the starting book value (SBV), salvage value (SAL), life expectancy (LIFE), and first year of the schedule (YR), (The schedule may be started at any point in the useful life.)

Fractional years lives must be entered as an integer plus a fraction.
Thus a life of 12 years 3 months would be keyed in as 12.25 for LIFE.

Values for the last year of an asset with fractional years life (i.e., the 21st year's values for an asset with 20.5 years life) are calculated cor-rectly. However, all other values represent a full year's depreciation.

For this reason only integer values (whole number, 1.0, 2.0, 17.0 etc.) may be entered for YR. The program makes no checks on this value and generates invalid results if other than whole numbers are entered.

EQUATIONS:

$$
\begin{aligned}
& D E P_{k}=\frac{S B V-S A L}{L I F E} \\
& D E P_{k}(\text { last year })=\left(\frac{S B V-S A L}{L I F E}\right) \cdot F \\
& R E S=(K) \cdot\left(\frac{S B V-S A L}{L I F E}\right) \\
& R D V_{k}=(L I F E-K) \cdot\left(\frac{S B V-S A L}{L I F E}\right) \\
& R B V_{k}=R D V_{k}+S A L
\end{aligned}
$$

where

RES $=$	Reserve
$F=$	Decimal portion of LIFE
$K=$	Value for YR
EXAMPLE:	Complete the schedule shown Tor the first two years. and generate the 41st year that year.

SOLUTION:

$40.25 E^{+}$		
30006.60 ENT:		
$375006.64 \mathrm{ENT} /$		
1.06 6sbl		
	Fs	
8571.47	***	DEP ${ }_{1}$
	P\%	
736429.57	***	$\mathrm{R}_{\mathrm{D}} \mathrm{VV}_{1}$
	Reg	
366429.57	**	RBV ${ }_{1}$
	Res	
8571.43	*W	RES_{1}
	F\%	
8571.43	**	DEP 2
	F\%	
327857.14	**	RDV_{2}
	F\%	
357857.14	***	RBV 2
	Fes	
17142.86	***	RES_{2}
41.60	ST00	YR
	F\%	
2142.86	**	DEP 41
	F\%	
0.60	***	$\mathrm{R}^{\text {D }} \mathrm{V}_{41}$
	F\%	
30060.60	**	$\mathrm{RBV}_{41}=\mathrm{SAL}$
	F\%	
345090.60	**	RES_{41}
	F\% 6	

User Instructions

SUM OF THE YEARS' DIGITS

Depreciation Schedule - Sum of the Years Digits Method Starting Book Value: \$375,000 Salvage Value: \$30,000
Expected Useful Life: 40.25 Years

Year (End of)	Depreciation Amount (DEP)	Remaining Depreciable Value (RDV)	Remaining Book Value (RBV)	Depreciation To Date (Reserve)
1	$16,725.38$	$328,274.62$	$358,274.62$	$16,725.38$
2	$16,309.85$	$311,964.77$	$341,964.77$	$33,035.23$
41	103.88		0.00	$30,000.00$

The sum-of-the-years' digits method is an accelerated form of depreciation, allowing more depreciation in the early years of an asset's life than allowed under the straight line method. This program generates the data shown in the example schedule, given the starting book value (SBV), the salvage value (SAL), expected useful life in years (LIFE), and beginning year (YR) for the schedule. (The schedule may be started at any point in the useful life.)

Fractional years asset life must be entered as an integer plus a fraction. Thus a life of 12 years 3 months would be keyed in as 12.25 for LIFE.

Values for the last year of an asset with fractional years life (i.e., the 21st year's values for an asset with 20.5 years life) are calculated correctly. However, all other values represent a full year's depreciation.

For this reason only integer values (whole numbers, 1.0, 2.0, 17.0, etc.) may be entered for YR. The program makes no checks on this value and generates invalid results if other than whole numbers are entered.

EQUATIONS:

$$
\begin{aligned}
& \text { SOYD }=\frac{(W+1)(W+2 F)}{2} \\
& D E P_{k}=\left(\frac{L I F E+1-K}{S O Y D}\right) \cdot(S B V-S A L) \\
& \text { RES }_{k}=\left[1-\frac{(W-K+1) x(W-K+2 F)}{2 \times(S O Y D)}\right] \cdot(S B V-S A L) \\
& R D V_{k}=\left[\frac{(W-K+1) \times(W-K+2 F)}{2 x(S O Y D)}\right] \cdot(S B V-S A L) \\
& R B V_{k}=R D V_{k}+S A L
\end{aligned}
$$

Where

$$
\begin{aligned}
& K=\text { value for } Y R \\
& \text { RES }_{k}=\text { Reserve at period } k \\
& W=\text { Integer portion of LIFE } \\
& F=\text { Decimal portion of LIFE } \\
& \text { EXAMPLE: } \begin{array}{l}
\text { Complete the schedule shown } \\
\text { for the first two years. }
\end{array} \\
& \begin{array}{l}
\text { Then jump to the } 41 \text { st year } \\
\text { and generate the data for } \\
\text { that year. }
\end{array}
\end{aligned}
$$

SOLUTION:

49.25 ENT*		
30日ge. 日e EHT*		
375000.60 ENT*		
1. 60 ESE		
	F\%	DEP_{1}
16725. 38	**	
	R\%	RDV_{1}
72827.62	**	
	Res	
358274.62	**	RBV ${ }_{1}$
	F\%	
16725.30	***	RES ${ }_{1}$
	Fes	
16309.85	W**	$D E P_{2}$
	Res	
311964.77	***	RDV_{2}
	F\%	RBV 2
341964.77	**	
	$F \mathrm{~F}$	
33035.23	**	RES_{2}
41.60	ST00	DEP ${ }_{41}$
	Feg	
107.80	***	
	FG	
E.60	***	RDV_{41}
	Fe	
30000.60	***	RBV_{41}
	FG	
745000.00	***	RES_{41}

375000.60 ENT

1. 40 CES
16725.38 ** DEP $_{1}$

72e274.62 w* RDV_{1}
358274.62 WH RBV 1
16725.36 *** RES_{1}
16309.85 WE DEP_{2}
311964.7 *** RDV_{2}
41964.77 ** RBV_{2}
33035.23 w* RES_{2}
41.609700
*** DEP 41
6
©

RES $_{41}$

User Instructions

Variable rate declining balance DEPRECIATION SCHEDULE

Depreciation Schedule - Declining Balance Method
Starting Book Value: $\$ 375,000$ Salvage Value $\$ 30,000$
Expected Useful Life: 40 Years Rate: 1.5

The variable rate declining balance method is another form of accelerated depreciation; as such it provides for more depreciation in earlier years and decreasing depreciation in later years. This program generates the data shown in the example schedule given the starting book value (SBV), salvage value (SAL), useful life expectancy (LIFE), the declining rate factor (FACT), and the first year of the desired schedule (YR). The schedule may be started at any point in the useful life.
The "variable rate" is indicated as either a factor or percent with equal frequency in the business community. Thus, " 1.5 declining balance factor" and " 150% declining balance" have the same meaning. The number to be keyed in for FACT in this program, should be in factor form, that is $1.25,1.5$, 2, and not 125,150 or 200.
This method of depreciation is unique in that it may generate depreciation greater than the depreciable value
for some assets, while it may not generate sufficient depreciation for others.
This program will not allow an asset to be depreciated below its salvage value. That is when the generated depreciation for a year, usually the last, is greater than the remaining depreciable value, the latter is displayed as the depreciation amount. Program 6 is provided to assist in determining the best time to switch to straight line depreciation (tax laws permitting) so that an asset may be fully depreciated.
Fractional years lives must be entered as an integer plus a fraction however. Thus, a life of 12 years 3 months would be keyed in as 12.25.
Values for the last year of an asset with fractional years life (i.e., the 21st year's values of an asset with 20.5 years life) are calculated correctly. However, all other values represent a full year's depreciation. For this reason only integer values (whole
numbers 1.0, 2.0, 17.0, etc.) may be entered for YR. The program makes no checks on this value and will generate invalid results if other than whole numbers are entered.

EQUATIONS:

$$
\begin{aligned}
& \mathrm{DEP}_{k}=S B V \cdot\left(1-\frac{F A C T}{\mathrm{LIFE}}\right)^{k-1} \cdot\left(\frac{\mathrm{FACT}}{\mathrm{LIFE}}\right) \\
& \mathrm{RES}_{k}=S B V \cdot\left[1-\left(1-\frac{F A C T}{\mathrm{LIFE}}\right)^{\mathrm{k}}\right] \\
& R D V_{k}=(S B V-S A L)-\operatorname{RES}_{k} \\
& \operatorname{RBV}_{k}=\operatorname{RDV}_{k}+S A L=S B V_{k}-\operatorname{RES}_{k}
\end{aligned}
$$

Where
$k=$ Value for $Y R$
RES $_{k}=$ Reserve at year k

EXAMPLE: Duplicate the schedule shown. Also calculate the remaining depreciable value in the last year.

NOTE: Note that in the last year of the asset's life there would still be a total of \$51,294.43 of remaining depreciable value on the books if this schedule were used throughout the asset's life. (See program 6)

Solution:
40.00 ENT*
30000.00 ENT*
375000.00 ENT
1.50 GSE1
1.00 S6E2

Res
14062.56 ** DEP $_{1}$

R's
330977.50 ** RDV 1

R/S

1406.50 ** RES $_{1}$

Fs
13535.16 ** DEP_{2}

Res
317402.34 *** RDV_{2}

FR
347462.34 *** RBV_{2}

R
$27597.66 * * \mathrm{RES}_{2}$
15.00 sTou

Res
8235.18 *** DEP 15

RE
181369.51 ** RDV $_{15}$

Res
211369.51 *** RBV_{15}

Rs
163630.49 ** RES_{15}
40.00 STOQ

Res DEP $_{40}$
Fs
51294.43 ** RDV $_{40}$

CROSSOVER POINT-DECLINING BALANCE

TO STRAIGHT LINE

As indicated in the description and example for program 5, the declining balance method of depreciation may not fully depreciate an asset in the asset's lifetime. In these circumstances there is an optimum point in the useful life where a switch from the declining balance method to the straight line method should be made. This is the "crossover point", the first year in which the depreciation by the straight line method is greater than if depreciation were continued using declining balance method. (In accordance with Internal Revenue Service publication 534, the straight line depreciation is determined by dividing the remaining depreciable value by the remaining useful life.)

Given the starting book value (SBV), salvage value (SAL), useful life expectancy (LIFE), and declining balance factor (FACT), this program calculates the last year that the declining balance method should be used, and the remaining life and remaining book value after this "last year" so that a switch to straight line depreciation can be made. Should there be no optimum crossover point, a zero is displayed. This implies that the declining balance method is "best" for the entire depreciable life.

Thus, this program, the declining balance depreciation program (5) and the straight line depreciation program
(3) may be used as follows:
A. This program is used to determine the "crossover point" and associated values.
B. Program 5 is entered and a declining balance depreciation schedule is generated for the early years up to and including the year indicated as being the "last year".

Note that since the depreciation programs use the same storage register conventions, only a value for YR need be keyed in for program 5.
C. Finally, program 3 is entered. The remaining book value at the end of the last "declining balance year" is keyed in for starting book value and the remaining life is keyed in for the asset's life. A straight line depreciation schedule may now be generated for the remaining years.

Note that for this portion of the depreciation schedule the value for "total depreciation to date" (reserve) will be in error by an amount equal to the amount depreciated during the declining balance calculations.

As in program 5 the declining balance factor (FACT) should be entered in factor form (1.25, 1.5, 2.0), not as a percent (125, 150, 200).

Equations:
$\operatorname{SBV}\left(1-\frac{F A C T}{\text { LIFE }}\right)^{k-1} \cdot\left(\frac{F A C T}{L I F E}\right)>\frac{B V_{k-1}}{L I F E+1-k}$
$B V_{k}=S B V-S A L-R E S_{k}$
$\mathrm{RES}_{k}=\operatorname{SBV}\left[1-\left(1-\frac{\mathrm{FACT}}{\mathrm{LIFE}}\right)^{k}\right]$
K = the value for $Y R$
The largest integer value for K which maintains the above inequality is the "last year" to use the Declining Balance depreciation method.

Example:

An asset has a starting book value of $\$ 375,000$, a 40 year life expectancy, and a projected salvage value of $\$ 30,000$. Using a 1.5 declining balance factor:

1. Determine the crossover point and the associated remaining life and remaining book value.
2. Generate the depreciation data for the declining balance "last year" with program 5 (Normally the user would generate a full schedule beginning with the lst year).
3. Switching to the straight line method (program 3), generate the depreciation data for the year following the declining balance "last year".

Solution:

```
1.50 ENT*
40.00 ENT
30600.60 ENT
\(37500.00600:\)
18.00 w* last year
RE
22.00 ** remaining life
Fs
108471.01 W* RBV
Key in program 5
18.00 GSE2
Rs
7343.02 w* DEP \(_{18}\)
Rs
158471.01 ** RDV 18
```



```
36528.99 ** RES \(_{18}\)
        1.58 EN
```


Key in program 3

22.80 ENTT

308в8. 88 ENTA (the first year of
:88471.01 ENT \dagger straight line depre-
1.80 GSE: YR ciation)

Fs
7203.23 *** DEP 19
151267.78 $\begin{gathered}\text { R/G } \\ \text { N }\end{gathered}$ RDV $_{19}$
181267.78 R/: RBV $_{19}$
etc.

NOMINAL TO EFFECTIVE/EFFECTIVE TO NOMINAL RATE CONVERSION

An annual effective interest rate demonstrates the effect of compounding for a full year of compounding periods at a particular periodic interest rate. The periodic interest rate to be used is determined by dividing the number of compounding periods in a year into the stated annual nominal interest rate. The effect is such that if the nominal rate is held constant, as the number of compounding periods per year is increased ihe annual effective interest rate will increase. The ultimate or upper limit in this process is to have an infinite number of compounding periods in a year, commonly called continuous compounding.

The first part of the program addresses finite compounding, that is quarterly compounding, monthly compounding, etc. Given the number of compounding periods in a year and one of the rates (nominal or effective) the other rate can be calculated. If for example, you require the periodic interest rate for a calculation, given the effective rate, use this program to determine the annual nominal rate first. Dividing the nominal rate by the number of compounding periods in a year will give the required periodic interest rate.

The latter part of the program is for contininuous compounding. Given either rate, the other can be calculated.

The most common and straightforward definition of effective interest rate has been implemented. Occasionally other definitions will be used and the results will not compare exactly with those calculated by these programs. For example, since the maximum annual nominal rate that savings institutions can offer is regulated by law, they may modify the process (also regulated)
so that the effective rate is even higher (e.g., for daily compounding, the periodic rate may be divided by 360 and then compounding accomplished for 365 periods). It is important then, when attempting to match results, to understand the process employed.

EQUATIONS:
finite compounding

$$
E F F=\left(1+\frac{N O M}{C}\right)^{c}-1
$$

continuous compounding

$$
E F F=\left(e^{N O M}-1\right)
$$

EXAMPLES:

1. An investment with monthly cash flows (implying monthly compounding) is said to have an annual effective yield (interest rate) of 21%. What annual (nominal) yield and periodic yield does this represent?
2. A bank offers a savings plan with a 5% annual nominal interest rate. What is the annual effective rate if compounding is continuous?

SOLUTIONS:

```
100.00 ST0日
    12.00 ST0:
    21.09 ST03
        GSE:
19.2: *** Nom(%),annual
    5.00 5T04
        6564
    5.13 ** Eff cont (%)
```


Program Listings

LEASE VERSUS PURCHASE

This program calculates the present value of the cost of purchasing, $C P$, the present value of the cost of leasing, CL, and the net difference using the following equations:

$$
\begin{aligned}
& C P=P+\frac{M(1+i)^{n}-1}{i(1+i)^{n}}-\frac{S V}{(1+i)^{n}} \\
& C L=L \frac{(1+i)^{n}-1}{i(1+i)^{n}}
\end{aligned}
$$

Net Difference = CP - CL
where

$$
\begin{aligned}
P & =\text { purchase price } \\
M & =\text { maintenance costs }, \text { per period } \\
i & =\text { the opportunity interest rate }, \\
& \text { per period } \\
n & =\text { the number of periods (useful } \\
& \text { life) } \\
S V & =\text { salvage value } \\
L & =\text { lease payments }
\end{aligned}
$$

It also calculates the cost of purchasing after leasing for n periods.
$O P=\frac{P-\text { Credits }}{(1+i)^{n}}+(L-M) \frac{(1+i)^{n}-1}{i(1+i)^{n}}$
where Credits $=$ rental credits applied toward purchase

This program is adapted from HP-65 Users' Library program \#01093A by Robert Dudugjian.

Example:
Suppose a purchase price of $\$ 14,972$, maintenance of $\$ 15 /$ month, a salvage value at the end of 84 months of $\$ 1,000$ and lease payments of $\$ 325 / \mathrm{mo}$. Suppose further an opportunity rate of interest of . 00757543 per month.

Suppose further that the equipment is leased for 12 months and then purchased with $\$ 900$ rental credits. What is the cost of doing this above the cost of outright purchasing? Suppose it is leased for 24 months with $\$ 2000$ rental credits.

Solution:
14972.00 STOH
325.00 STO 4
0.00757543 ST05
15.00 ST06

100 Q .00 sTOT
84.00 6SE1
$15371.15 * *$ CP
RS
-4771.33 *** Net (since the answer is less than 0, it implies
QPe.00 ENTA it is cheaper to pur-
12.00 GSE2 chase rather than to lease by $\$ 4771.33$)
1424.73 ** $0 P_{1}$
2806.80 ENTA
24.00 GSE2
$2630.41 * * \mathrm{OP}_{2}$ Cost of leasing for 24 months before purchasing

Program Listings

REAL ESTATE
 RENTAL INVESTMENT ANALYSIS

Using the equations below, this program solves for monthly rent or cash flow, gross return on investment, and taxable income.
Cash flow \% = Rent/month - Cost/month
Investment/12
Gross growth return $=$ Cash flow $\%+$
$\frac{(P \times \text { Inflation rate })+\text { Equity build-up }}{\text { Investment }}$
$\underset{\text { (book value) }}{\text { Depreciation } / y r}=\frac{\text { P-Value of land }}{\text { depreciable life }}$

$$
\approx \frac{.7 p}{20}
$$

Taxable gain $=$ Actual cash flow depreciation

Taxable income (shelter if negative) $=$ Taxable gain x tax bracket

This program is adapted from HP-65 Users' Library program \#01216A by John Feemster

Example:
A house is for sale for $\$ 30,000$ with an assumable 6 3/4\% FHA Loan paid down to $\$ 23,500$. Payments of principle, interest, taxes, and insurance are $\$ 239.17$ per month. The place will rent for $\$ 275.00 /$ month. The investor is in the 30% tax bracket. The inflation rate is 7%. Determine the cash flow \%, gross growth return, and taxable income from the investment.

Solution:

```
30000.60 5701
23500.00 -
    6500.00 ***
            ST02
    239.17ST0%
    275.00 ST04
            GSE1
            65B
        6.61 ** Cash flow (%)
23500.00 ENT*
        6.75 ENT个
        7.00 c5E4
    26.37 *** Return (%)
    30.00 Re
    199.17 *** Taxable income ($)
```

User Instructions

BREAK－EVEN ANALYSIS

This program solves the following eq－ uations for Break－Even point in units （ $B E P_{u}$ ），Break－even point in dollars （BEPD），Margin of Safety Ratio（M）， and Profit or Loss：

Computation Based on Units
1）$B E P_{u}=\frac{F}{S-V}$
2）$M=\frac{u-B E P_{u}}{u}$
3）Profit or Loss $=u(S-V)-F$

Computation Based on Dollars
1）$B E P_{D}=\frac{F}{R}$
2）$M=\frac{D-B E P_{D}}{D}$
3）Profit or Loss＝DR－F
where
F＝Total fixed costs
$V=$ Variable cost per unit
S＝Sales price per unit
$u=$ Expected sales in units
$D=$ Expected sales in dollars
$R=$ Marginal income ratio $=(S-V) / S$
NOTE：The margin of safety will gen－ erally have no meaning if ex－ pected sales are less than sales at the break－even point．

This program is adapted from HP－65 Users＇Library program \＃01275A by Louis Martinez．

EXAMPLE：

The Delux Publishing Company publishes a magazine with variable costs of $\$ 0.40$ and a sales price of $\$ 0.50$ ．The company has annual fixed cost of \＄1，000，000．

Compute the following：
1）Break－even point in（a）units and （b）dollars．

2）（a）Profit or loss and（b）Margin of safety ratio for expected sales of $12,500,000$ magazines．

3）（a）Profit or loss and（b）Margin of safety ratio for expected sales of $\$ 20,000,000$ ．

4）Sales volume in（a）units and（b） dollars needed to generate a profit of $\$ 5,000,000$ ．

SOLUTION：
Q． 48 ENTT
Q． 50 ENT个
10BPBBA．OE ESB1

12500000． 06 6SB2
25090e．80 軑 Profit
0.20 ＊＊M

 RS
0.75 秧 M

5月GQRAQ． $68 \mathrm{ST}+1$
ESB4
698980日8．00＊＊＊
FS
B_{u}

NOTES

NOTES

NOTES

In the Hewlett-Packard tradition of supporting HP programmable calculators with quality software, the following titles have been carefully selected to offer useful solutions to many of the most often encountered problems in your field of interest. These ready-made programs are provided with convenient instructions that will allow flexibility of use and efficient operation. We hope that these Solutions books will save your valuable time. They provide you with a tool that will multiply the power of your HP-19C or HP-29C many times over in the months or years ahead.

Mathematics Solutions
Statistics Solutions
Financial Solutions
Electrical Engineering Solutions
Surveying Solutions
Games
Navigational Solutions
Civil Engineering Solutions
Mechanical Engineering Solutions
Student Engineering Solutions

HEWLETT PACKARD

Reorder No. 00029-14003 Printed in U.S.A. 00029-90007

