

INTRODUCTION

This HP-19C/HP-29C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.
They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become an expert on your HP calculator.
You will find general information on how to key in and run programs under "A Word about Program Usage" in the Applications book you received with your calculator.
We hope that this Solutions book will be a valuable tool in your work and would appreciate your comments about it.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

TABLE OF CONTENTS

RACETRACK 1Two players can race. Be alert to the differences betweenvelocity and acceleration, and practice your steering.
Pinball machine 6
Five balls, four flippers, and the freedom to tilt allows you to reach a high score (with luck).
15 baLL Rotation pool 10 Having trouble sinking those balls? You can make the game easier.
ROULETTE, 13Conservative? Bet on odd or even. Feeling lucky? Bet on anumber.
tic-tac-toe 16
Your best hope is to play the machine to a draw.
beLL fruit 20
A one-armed bandit that takes only imaginary money. Can you stop when your ahead?
BLACKJACK (21) 23The card dealer is guaranteed to be honest.
CANNIBALS \& MISSIONARIES 26A complete simulation of the classic river crossing problem.
hunt a moving submarine 29
Use your sonar to find and your depths charges to sink this elusiveintruder.
ARTILLERY GAME 33How is your trigonometry? Use your skill wisely (and add a dash ofluck) and you can destroy the attacker before it destroys you. Avariable difficulty game.

RACETRACK

This game simulates a two-car race (or a one-car race against time) on a track of arbitrary shape. The track shown may be used, or other tracks of any shape may be designed. The program computes the velocities and positions of the cars.

Initially, both cars are at rest on the start-finish line. Car 1 is at (x, y) position $(0,0)$ and car 2 is at position (5,0.). Player 1 starts. For each move, a player may accelerate in any direction or coast. To make a move, enter the direction (in degrees) and magnitude (0-9) of acceleration and press car number (1 or 2). To coast, enter any direction and a magnitude of zero. For a panic stop, enter a direction exactly opposite (180° away) from your present direction and use a magnitude of 9 . The faster you go, the more moves it will take to stop completely.

After making your move, the display will show your car's velocity.

By rolling down the stack, the car's direction of travel, and it's (x, y) position may be displayed.

Traction limits the maximum rate of change of velocity to 9 meters per second per second. Note that this realistically limits the ability to turn when accelerating or declerating.

If the center points of the two cars get within 2 meters of each other, the cars collide, and the display shows flashing zeros. This destroys the two cars, and the game must be started over from the beginning.

It is most convenient to use a fresh sheet of graph paper with the track drawn on it for each game; then the positions of the cars may be plotted, and sequential positions joined by straight line segments. The players
must decide after each move whether the car is off of the track, or if it had to go off of the track to travel between the last two positions.

EQUATIONS:

$$
\begin{aligned}
& V_{f}=V_{i}+\Delta V \\
& P_{f}=P_{i}+\left(\left(V_{i}+V_{f}\right) / 2\right) t
\end{aligned}
$$

where

$$
\begin{aligned}
V_{\mathbf{i}} \& V_{f}= & \begin{array}{l}
\text { Initial \& final velocities } \\
(x \& y)
\end{array} \\
\Delta V= & \text { Velocity change due to } 1 \\
& \text { sec. accel. } \\
P_{i} \& P_{f}= & \begin{array}{l}
\text { Initial \& final positions } \\
\\
(x \& y)
\end{array} \\
t= & \text { Time, seconds (1 sec. in } \\
& \text { this prog.) }
\end{aligned}
$$

NOTES:

The program halts, displaying zero if $+90^{\circ}$ is used in $\mathrm{P} \rightarrow \mathrm{R}$ function; press "R/S" to continue. Direction of car's travel is with respect to the fixed frame of reference of car's starting position (origin) and the start-finish line (0°). See the sketch.
All directions are entered and displayed as $A+o r-A n g l e$ between 0° and 180°.

A collision of the two cars (flashing zeros) ends the game.
Each move advances the car one second in time.

REFERENCES:

Martin Gardner, Mathematical Games, Scientific American, Jan. 1973 and May 1973.

REFERENCES: (continued)
This program is adapted from HP-65 Users' Library program \#04326A by Delmer D. Hinrichs.

RULES:

1. A car which goes off the track, either at a plotted position or between plotted positions, loses the race.
2. A car which collides with the other one loses.
3. If both cars cross the start/finish line on the same move, the car which finishes farthest from the line wins.

SOLUTIONS:

6560		
45.00	ENT \uparrow	
9.80	6581	
9.80	***	Car 1 velocity
	Ft	
45.00	***	Direction
	R.	
3.18	***	x-position
	R \downarrow	
3.18	***	y-position
45.00	ENT*	
9.00	GSE2	
9.00	***	Car 2 velocity
	Rt	
45.00	**	Direction
	R4	
8.18	***	x-position
	R	
3.18	***	y-position
60.00	ENT \uparrow	
9.80	6581	
	***	Car 1 velocity
17.85	R \downarrow	
52.56	***	Direction
	RU	
11.80	***	x-position
	R \downarrow	
13.44	***	y-position
135.00 ENT ${ }^{\text {P }}$		
9.00	GSE2	Car 2
0.00	***	(flashing)collision -- car 2 loses

RACETRACK
You may wish to copy this to play your game.
For variety, you may wish to draw your own track.

4
User Instructions

STEP	instructions	$\begin{array}{\|c\|} \hline \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{array}$	KEYS		$\begin{aligned} & \hline \text { OUTPUT } \\ & \text { DATA/UNITS } \end{aligned}$
1.	Key in the program				
2.	Initialize		GSB	0	5.00
3.	Enter parameters for car x^{*} :				
	Direction of acceleration, degress	Angle	ENT \uparrow		
	Magnitude of acceleration	Acc	GSB	$n *$	Velocity
	* $\mathrm{n}=1$ for car $1 ; n=2$ for car 2				
4.	Display car n's status:				
	Velocity, meters/sec				Velocity
	Direction of travel, degrees		R \downarrow		Direction
	x-position, meters		R \downarrow		x-pos.
	y-position, meters		R \downarrow		y-pos.
5.	For next move, go to step 3.				
6.	For a new game, go to step 2				
7.	Flashing zeros indicate a collision and				
	the end of the game.				

Program Listings

PINBALL MACHINE

This game allows multiple scoring for 5 balls. The balls may be controlled with 4 flippers and tilting is also allowed. As the ball scores, the score is flashed and the running total is displayed. When the ball falls, the display blinks zero. New balls may be set up and played until the 5th ball falls; at that time the total score for the game is displayed as a negative number.

NOTE:
On very rare occasions, the machine will overflow ($\theta=90^{\circ} \ldots$). In that event, store some other seed in R_{2} or start a new game.

This program is adapted from HP-65 Users' Library program \#03458A by Peter C. Wang.

SOLUTION：

```
        csez
    26400. ***
    Eset
    27200. *** Score=800,Total=27,200
    6SE3
    27300. ***
    GSE1
    27800. ***
    GSE4
    28600. ***
    GSE3
    29500. ***
    GSE1
        Flashing \emptyset-Ball 3 falls
    RCLE
    2. *** 2 balls left
        CSE3
        RCLO
    1. *** 1 ball left
        GSE2
    29500. ***
        6S83
    30000. ***
    Ese:
    30900. ***
    GSE4
    31000. ***
    ESB1
    32200. ***
        GSE1
    32700. ***
        gsez
    3980日. ***
        GSE2
    3980日. ***
    GSE2
    4020日. ***
        GSES
    40900. ***
    -40900. ©SE2 Last ball falls, total=
        40,900
```

8
User Instructions

| sTEP | INSTRUCTIoNs | INPUT
 DATA/UNITS | |
| ---: | :--- | :--- | :--- | :--- |
| OUTPUT | | | |
| DATA/UNITS | | | |

Program Listings

15 BALL ROTATION POOL

The game proceeds with a random selecttion of the players' shots being scoring shots. The balls are pocketed in rotation (1 through 15). Player skills can be varied by selecting a skill factor between 1 and 20. This determines the relative number of scoring shots to total shots. The random sequences are variable by seed number selection. The program continously tallys each of two players scores.

NOTE:
This program is adapted from HP-65 Users' Library program \#03427A by Robert A. Plack.

Guide Lines for Skill Factor Selection:
SKILL
FACTOR:
2--- To pocket 15 balls may need 120 shots
7--- " " " " " 50 "
10--- " " " " " " 30 "

13--- " " " " " 22 "
15--- " " " " " " " " 20 "

SOLUTION:

11.80	stog	Skill factor	
1.2345987	Stor	Seed	
	GSE1	Initialize	
	R/S	Shoot	
1.		Sunk bal1 \#1	
	R/S	Shoot	
2.	***		
	F\%	Shoot	
3.	***		
	R/S	Shoot	
4.	***		
	R/S	Shoot	
0.	***	Miss	
	Pes	Player 2 shoots	
5.	***		
	R/S	Shoot	
0.	***	Miss	
	GSE2	Review	
4.01	***	Score:	Player 1 has sunk 4 balls; player 2 has sunk 1.

SOLUTION:
(after more play)

```
    R/S
    11. ***
    R/
    12. ***
    R/S
    13. ***
        GSE2 Review
10.03 *** Score
        Rs Shoot
        a. ***
            R& Shoot
        0. ***
            P%Shoot
        0. ***
            R/S Shoot
        14. ***
            R/s Shoot
            10.05 w**Game over
                Player 1 wins
```


User Instructions

-

ROULETTE

The player bets by entering the dollar amount of the bet and the number on which the bet is placed in the form B.\#\#. For instance, $\$ 5$ on \#7 would be entered as 5.07 and $\$ 50$ on \#27 would be 50.27 .

A winning number bet pays off at 32-to1. A winning even-odd bet pays off at one-to-one.

In the "win" sequence, the player's total bankroll is displayed. In the "lose" sequence, the Roulette number is displayed, after which the total bankroll may be displayed by pressing R/S.

NOTES:

1. Bet only whole dollars.
2. The maximum bet is $\$ 99,999,999$
3. If your winnings cause your bankroll to exceed 9.9999999×10^{99}, ERROR will be displayed.

This program is adapted from HP-65 Users' Library program \#03076A by William A. Sholar.

SOLUTION:

6585		
0.00	$5 T 02$	
0.00	$5 T 07$	Seed
500.27	6581	
0.20	$* * *$	$\#$
	RFs	
-500.00	$* * *$	Bankroll

500.27 GSE1
0.02 ***

R/S
-1000.80 ***
500.27 ESE1
0.14 ***

R/S
-1500.80 **
500.276581
14500.00 **
500.27 6SE1
30506.00 *** Another winner

Bet even
$0.25 * * *$ R/S
Q. 00 *** Total bankroll

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$	KEYS		$\begin{gathered} \hline \text { OUTPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$
1.	Key in the program				
2.	Initialize		GSB	5	
3.	Store your bankroll	\$	STO	2	
4.	Store seed (any number)	Seed	STO	7	
5.	Play one of the following:				
5 a .	Enter bet and number in BB.\#\# format	B.\#\#	GSB	1	*
	and spin				
5b.	Enter bet on even number and spin	B.	GSB	2	*
5 c .	Enter bet on odd number	B.	GSB	3	*
6.	Repeat step 4 as often as desired, or				
	go to step 3 to change your luck.				
	* If you win, your updated total is				
	displayed. If you lose, the spin is				
	displayed. To see your new total.		R/S		Total

TIC - TAC - TOE

This program plays tic-tac-toe with the user. The keyboard of the machine is used as the playing board, with each digit representing one of the nine positions, as shown at right. The machine moves first, into a side position (position 2). The user may move into any of the eight remaining positions. As play continues, user may move into any unoccupied position for each move.

Tic-tac-toe can be won only if one player makes a mistake. This program takes advantage of user mistakes by completing a row of three, or by setting a trap to force a win. If all user moves are correct, a draw results. The side opening by the machine gives the user a better chance to avoid losing.

This program operates on a game tree look-up basis; a different register, containing the machine responses, may be selected for each of the eight possible user first moves.

NOTES:

1. Illegal moves (to occupied positions) gives erroneous results.
2. No win, lose, or draw signals are given; the user must keep track of the progress of the game.

This program is adapted from HP-65
Users' Library program \#03363A by Delmer D. Hinrichs.

REFERENCE:

Gardner, Martin, Mathematical Puzzles \& Diversions, Simon and Schuster, New York, 1959 pages 37-46.

EXAMPLE:

Machine plays "X", User plays "0"

Turn: 1

2

3

Machine Wins

SOLUTIONS:

BELL FRUIT

Contrary to popular belief, the "AutoBell" and "Bell Fruit" brands of slot machines are not rigged. However, the odds at getting a jackpot pattern are extremely low. For example, on a real slot machine, each 'wheel' contains 20 symbols, only one of which is a bar. Thus, with 3 -wheels, a 3-bar combination (or 'Jackpot') comes up once every 8000 plays!

This program is more sporting.(depending on the seed used in initialization, this program can be down right generous). When GSB 1 is pressed the 'wheels' spin and a 3 digit decimal is arrived at. (The no. is to the right of the decimal point, ignore the ' 0 ' to the left). A dime is deducted from the 'pot' $\left(R_{1}\right)$. If you win, the payoff amount is paid into the 'pot'. This may be reviewed at any time by pressing RCL 1. Any 3-of-a-kind (except cherries) wins \$1.00. Any 2-of-a-kind (except cherries) followed by a 'bar', wins $\$ 1.00$. A cherry in the first position wins 204. A cherry in the second position, when following the lst cherry, wins an additional 30¢. All other combinations are "Fruit-Salad" and win you zilch! Good Luck.

NOTES:

It's best to key in a many digit decimal as a seed, as opposed to a small number (use a number like '251.0637948' instead of '3'). Due to the nature of the program, one is generally assured of winning 20\$ (one cherry) immediately following a jackpot (3-bars).

This program is adapted from HP-65 Users' Library program \#03044B by Craig A. Pearce.

SOLUTION:

32147.000	GSE5	Seed
	csel	Play
0.174	***	\$. 20 winner
	GSE2	Pot now has \$. 10
0.10	***	
	6SB1	Play
0.994	***	No luck
	GSE2	As expected, pot even
0.00	**	
	GSE1	
0.067	***	Lost
	6861	
0.385	***	Lost
	GSE1	
0.905	***	Lost
	ESE2	Sure enough, \$. 30 in hole
-0. 30	***	
	SSE1	
0.997	***	Lost
	SSE1	
0.120	***	Won \$. 20
	GSE1	
0.496	**	Lost
	GSE1	
0.722	***	Lost
	6581	
0.999	**	Won \$1.00!
	ESE2	Let's stop while
0.40	***	we're ahead

STEP	InSTRUCTIONS	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$	KEYS		$\begin{gathered} \hline \text { OUTPUT } \\ \text { DATA/UNITS } \end{gathered}$
1.	Key in the program				
2.	Enter seed (any number below 10^{6})	Seed	GSB	5	
	and initialize				
3.	Play		GSB	1	O.XYZ
	Winning combinations:				
	0.1 nm pays $20 ¢$				
	0.11 n pays $30 ¢$				
	0.XXX pays \$1.00				
	$0 . \mathrm{XXO}$ pays $\$ 1.00$				
	(where $\mathrm{X} \geq 2$)				
	0.000 pays \$10.00				
4.	Recall pot of winnings (or losses) at		GSB	2	Pot
	any time				
5.	Repeat steps 3-4 any number of times				
6.	For a new game, go to step 2				
7.	For a new seed (at any time)	Seed	STO	8	

BLACKJACK (21)

The player places a bet and draws a card. Jack, Queens, and Kings count as 10 and Aces count as 1. The player keeps taking "hits" (drawing cards) until satisfied with the total. If his total exceeds 21 he loses. The machine draws until its total exceeds the player's.

If its total exceeds 21, you win.
If you win, your bet is added to your bankroll and should you lose, your bet is deducted.

The program uses a random number generator to pick the cards where the probabilitites of drawing a deuce through an ace are all equal.

NOTE:
This program is based on three HP-65 Users' Library programs: 237A by Duke Castle, 1296A by Gary D. Campbel1, and 2024A by Mordecai Schwartz, M.D.

SOLUTION:

```
2.654 ST01 Enter seed
50.00 sT02 Enter your bankroll
15.80 GSE1 Enter your bet and draw
        8. *** Totat count after 1st card
            R/S Hit
    18. *** Total after second card
        Stick
        GSE2 Machine plays
            After each card, the fol-
            lowing count totals are
            flashed: 7,8,9,14, 24
65.09 *: You win, bankroll is now
        $65.00
15.00 ESE1 Bet $15.00 on another game
            1. *** Total count after 1 card
        R/S
    3. *** After 2 cards
        R/S
    12. *** After 3 cards
        R/S
    14. *** After 4 cards
        R& After 5 cards your total of
        24 is flashed.
50.00 ** You lose-Bankroll is back
        to $50.00
20.00 GSE1 Now you bet $20.00
    3. ***
        R/S
    5. 精
        R/S
    10. ***
        R/S
    14. ***
        R/s}5\mathrm{ card total is flashed:22
30.00 ** Loss reduces bankroll to
        $30.00
10.00 GSE1 You bet only $10.00
    19. 杖
        R/S
    11. ***
        R/S
    15. ** Decide to stick with a
        15 total
        GSE2 Machine wins again with
        totals of 10,16 and 20
20.00 *** You are left with $20.00
```


		50	PCL:	
01 WLELI	Bet	51		
02 STOE	Bet	52	$+$	
03.		57	X 2	
04 ST00		54	FRC	
05 ST04		55	STOI	
06 ST05		56	1	
07 FIXE		57	3	
88 *LBLT		58		
09 ESPE	Get card	59	1	
10 ST+5		60	+	
112		61	INT	
$12 \quad 1$		62	Wue	
$17 \mathrm{RCL5}$	Total	63	$\mathrm{X}+\mathrm{Y}$	10. for jack-king
14 PSE		64	RTH	10. for jack-king
$15 \mathrm{X}=Y$?				
16 ET09	You win			
17 y) \%?				
18 GT08	You lose			
19 R/S	You lose			
20 GTOT				
21 *LEL2	Machine draws			
22 ESB0				
23 ST+4				
242				
$25 \quad 1$				
26 RCL 4				
27 PSE				
28 X XY?	You win			
29 ¢T09				
30 RCL5	Your total			
$31 \mathrm{X}+\mathrm{Y}$				
32 VY?				
33 groe	You lose			
34 GTO2	Machine draws			
35 *LELS	again			
361	Set flag			
37 Stoe				
38 *LBL?				
39 RCLE	Bet			
40 DSZ	Add winnings and			
41 CHS	subtract losses			
42 CHS				
$47 \mathrm{ST}+2$				
44 FIX2				
45 RCL 2	Display total			
46 RS	(bankroll)			
47 *LBL日	random number			
$48 \quad 1$	generator			
490				

0	\mathbf{i}	1				
6	Bet	7	Seed	2	Bankrol1	3
4 Mach. Tot	5 Player's Tot					
2		3	8	9	0	.
18		19	4	.5	16	17
24	25	20	21	22	23	

CANNIBALS AND MISSIONARIES

The program completely simulates the classical cannibal-missionāry river crossing problem in the following form:
3 missionaires and 3 partially-civilized cannibals must cross a river with a boat that can hold no more than 3 passengers. At no time may cannibals outnumber missionaries at either bank or on the boat lest the cannibals regress to an earlier mode of behavior! Further, cannibal(s) left aboard the boat alone will run off with it after launching.

Missionaries, cannibals and boat are all initially on the left bank. Press GSB 1 once for each cannibal you wish to put aboard and GSB 2 for each missionary. After each crossing (GSB 3) or return (GSB 4) the right bank distribution (those already across)is displayed in the form $0 . C_{R} M_{R}$:

For example: 0.00 No one has crossedinitial condition
0.232 cannibals \& 3 missionaries on Rt. bank
0.33 Successful simulationeveryone across
After a crossing (GSB 3 or GSB 4), improper operations are appropriately punished:

DISPLAY

A. Impossible crossingboat on wrong bank
B. Boat adrift (no one on) or stolen (no 1.00 miss. on)
C. C's outnumber M's on boat
4.00
more aboard
3.00

	DISPLAY
A. Impossible crossingboat on wrong bank	"Error"
B. Boat adrift (no one on) or stolen (no miss. on)	1.00
C. C's outnumber M's on boat	2.00
D. Boat sinks - 4 or more aboard	4.00
E. M's outnumbered at either bank	3.00

NOTE:
This program is adapted from HP-65 Users' Library program number 02286A by Mordecai Schwartz, M.D.

SOLUTION:

	GSB5	Initialize
	6581	Cannibal boards
	CSE2	Missionary boards
	GSE2	Missionary boards
	ESE2	Missionary boards
	Esb 3	Left to right crossing
4.80	***	Boat overloaded-try again
	GSE5	Initialize
	GSE2	M
	GSE2	M
	GSE2	M
	G983	--------> 3 Miss
0.03	**	0 cannibals \& 3 Miss.
	GSE2	M on right bank
	GSE2	
	GSE4	C's outnumber M's on
3.00	***	left bank
	6585	Initialize
	GSE1	C
	CSE2	M
	cse	
0.11	**	IC + 1M on right bank
	ESE2	M
	ESE4	<-------
0.10	***	1C + OM on right bank
	ESE1	
	ESE1	M
	GSE2	
	6SE3	Missionaries out-
2.00	***	numbered on boat

If crossing involves multiple errors, the display hierarchy is as above.

HUNT A MOVING SUBMARINE

Using your destroyer, you try to locate the position of the enemy submarine in a 10×10 grid, and then destroy it with a depth charge.

You input a seed (1-100) and the calculator will position the submarine in the center of one of the 100 squares (R, C), where $R=$ row and $C=$ column, and where R and C can each be $0,1,2$, ..., 9 .

You make guesses as to where you think the submarine is hiding by taking sonar readings. Input the location of your destroyer (R, C) and press GSB 2. If the submarine is in one of the 8 adjacent squares (or direclty under your destroyer), the calculator will display "1." Otherwise, a "0" will be shown.

When you think you've located the submarine, move your destroyer directly over it (move to the same square) and drop a depth charge. A blinking "1" indicates a hit, while a "0" shows a miss. If you miss, the submarine will move randomly to one of the 4 adjacent squares in the same row or column (but it will not move off the grid).

A depth charge has a range of 0.8 . When you position your destroyer for a depth charge drop, (or when you prepare for a sonar reading), you may move anywhere on the board, not just to the center of a square. For instance, a depth charge dropped from a $(2.5,6.5)$ location would destroy any submarine in the center of square $(2,6)(2,7)(3,6)$ and $(3,7)$. Note that sonar's range $=1.8$

NOTE:
This program is adapted from HP-65 Users' Library program number 01957A by Moshi M. Breiner.

SOLUTION:

	0	1	2		3	4	5	6	7	8	9		0	1	2	3	3	4	5	6	7	8		
9												9												9
8												8												8
7												7												7
6												6												6
5												5												5
4												4												4
3												3												3
2												2												2
1												1												1
0												0												0
	0	1	2		3	4	5	6	7	8	9		0	1	12		3	4	5	6	7	8	9	
9												9												9
8												8												8
7												7												7
6												6												6
5												5												5
4												4												4
3												3												3
2												2												2
1												1												1
0												0												0
	0	1	2		3	4	5	6	7	8	9		0	1	12		3	4	5	6	7	8	9	
9												9												9
8												8												8
7												7												7
6												6												6
5												5												5
4												4												4
3												3												3
2												2												2
1												1												1
0												0												0
	0		1	2	3	4	5	6	7	8	9		0	1	12		3	4	5	6	7	8	9	

Playing board for Hunt a Moving Submarine. You might wish to use copies of this page for your games.

User Instructions

ARTILLERY GAME

In this game, the gun has a maximum range of 10,000 meters. At the start of a game, the target is at a random direction ($0-360^{\circ}$) and random distance (5,000-10,000 meters) from the gun. To locate the target, fire a shell in an arbitrary direction and elevation (i.e., 90° direction and 45° elevation). The display then shows the direction and distance from the shell hit to the target. From this, it is possible to determine where the target was. The target randomly changes its direction from the gun by up to $\pm 5^{\circ}$, and randomly moves towards the gun by $0-1,000$ meters after each shell hits. Taking into account the expected movement of the target, a new direction and elevation are estimated, and another shell fired. Corrections are made and shells fired until either the target is blown up (shell hits within 100 meters of target) or the gun is destroyed (target gets within 1,000 meters of gun without being hit).

Note that due to the way that the target moves, the closer it gets to the gun, the easier it is to hit.

A difficulty factor of 10 is stored in register 4. This limits the direction change of the target to $+5^{\circ}$. This may be changed to any real number; for example, to 0 to eliminate zig-zags, or to 20 for a more difficult game. The factor 10 is automatically restored to register 4 at the beginning of the next game.

Independently, the "EEX,3" in steps 62, 63 of the program controls the distance (0-1,000 meters) that the target moves towards the gun after each shell is fired. This may be replaced by, for example, "EEX,2" to make a much easier game.

NOTE:
This program is adapted from HP-65 Users' Library program \#O3320A by Delmer D. Hinrichs.

The range of the gun is given by the formula

Range $=\operatorname{Sin} 2 \theta \cdot$ Maximum Range, where $\theta=$ elevation angle

T = Target
SH = Shell Hit
a = Angle, shell hit to target
b = Distance, shell hit to target
c = Angle, gun to target
d = Distance, gun to target
e = Elevation, angle of gun

SOLUTION: (1)

0.00658190.08000 ENT	
$\begin{aligned} & 99.80000 \\ & 45.80000 \end{aligned}$	6SE2
-75.14467	***
-45.00000	ENTT
20.80000	GSE2
141.01832	***
-47.80000	ENT \uparrow
12.08009	ESE2
92.00286	***
-46. Qeeoe	ENTt
19.00090	6SE2
-66. 0 020?	***
-47. 日8e90	ENT
10.08009	GSE
137.00527	***

Enter seed of 0 Locate target Target was -75° and 14467 meters from shell impact

Shoot
You're closer
Shoot
target is getting further away from your shell
-48. $00000 \mathrm{ENT} \uparrow$
7.58000 GSE2
59. 80192 **
-47. QQeag ENT
6.50000 6SE2
125.80167 **

Your shell hit only 167 meters away from target
-46. 00000 ENT个
5. ADOBA GSB2
Q. 80000 ***

SOLUTION: (2)

2 is put in step 63 to improve chances of victory
Seed $=5$
Find target
Target location
Shoot

Shoot

Shoot
(flashing)
Target destroyed
You win

User Instructions

NOTES

In the Hewlett-Packard tradition of supporting HP programmable calculators with quality software, the following titles have been carefully selected to offer useful solutions to many of the most often encountered problems in your field of interest. These ready-made programs are provided with convenient instructions that will allow flexibility of use and efficient operation. We hope that these Solutions books will save your valuable time. They provide you with a tool that will multiply the power of your HP-19C or HP-29C many times over in the months or years ahead.

Mathematics Solutions
Statistics Solutions
Financial Solutions
Electrical Engineering Solutions
Surveying Solutions
Games
Navigational Solutions
Civil Engineering Solutions
Mechanical Engineering Solutions
Student Engineering Solutions

Reorder No. 00029-14006 Printed in U.S.A. 00029-90010

