

INTRODUCTION

This HP-19C/HP-29C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.
They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become an expert on your HP calculator.
You will find general information on how to key in and run programs under "A Word about Program Usage" in the Applications book you received with your calculator.
We hope that this Solutions book will be a valuable tool in your work and would appreciate your comments about it.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

TABLE OF CONTENTS

1. RPM/TORQUE POWER 1
This program provides interchangeable solutions for RPM/Torque, and power.
2. CRITICAL SHAFT SPEED 4
This program finds the fundamental critical speed of a rotating shaft.
3. LINEAR PROGRESSION OF A SLIDER CRANK 8
This program calculates the displacement, velocity, and acceleration of the slide in a slider crank mechanism.
4. SPUR GEAR REDUCTION DRIVE 12
This program provides interchangeable solutions for reduction, dis- tance between centers, diametral pitch, and number of pinion teeth. The program also outputs values for the pitch diameters of the pinion and the gear, and the number of gear teeth.
5. beLt length 16
This program computes the belt length around an arbitrary set of pulleys.
6. REVERSIBLE POLYTROPIC PROCESS FOR AN IDEAL GAS 20
This program provides interchangeable solutions between pressure ratio, volume ratio, temperature ratio, and density ratio.
7. ISENTROPIC FLOW FOR AN IDEAL GAS 23
This program replaces isentropic flow tables for a specified specific heat ratio.
8. heat transfer through composite cylinders and walls 27
This program calculates the overall heat transfer coefficient from individual section conductances and surface coefficients.
9. BLACKBODY THERMAL RADIATION 31
This program calculates the wavelength of maximum emissive power for a given temperature (or vice versa), and the emissive power (total, from $\lambda_{\text {, to }} \lambda_{2}$, or at λ_{1}).
10. conservation of energy 36
This program converts kinetic energy, potential energy, and pressure- volume work to energy, sums all the energy contributions, and converts the total to an equivalent velocity, height, pressure, or energy per unit mass.

RPM/TORQUE/POWER

This program provides an interchangeable solution for RPM, torque, and power in both Systeme International (metric) and English units.

	SI	English
RPM	RPM	RPM
Torque	nt-m	$\mathrm{ft-1b}$
Power	watts	hp

EQUATIONS:
RPM \times Torque $=$ Power
$1 \mathrm{hp}=745.7$ watts
1 ft-1b $=1.356$ joules
1 RPM $=\pi / 30$ radians $/ \mathrm{sec}$
$1 \mathrm{hp}=550 \frac{\mathrm{ft}-1 \mathrm{~b}}{\mathrm{sec}}$

EXAMPLE 1:
Calculate the torque from an engine developing 11 hp at 6500 RPM. Find the SI equivalent.

EXAMPLE 2:
A generator is turning at 1600 RPM with a torque of $20 \mathrm{nt}-\mathrm{m}$. If it is 90% efficient, what is the power input in both systems?

SOLUTIONS:
(1)

	GSE4	
6509.90	ENT \uparrow	
0.00	ENT \uparrow	
11.80	CSB5	
8.89	***	Torque, ft-1b
	R / S	
12.85	+ H* $^{\text {\% }}$	Torque, nt-m

(2)

6SE3
1680.00 ENT 1
20.00 ENT \uparrow
$0.90 \div$
0. 00 GSB5
3723.77 **
R / S
4.99 *** Power, hp

CRITICAL SHAFT SPEED

Suppose a rotating shaft is simply supported at both ends and has a series of n weights, W_{1}, \ldots, W_{n}, attached. Then there are critical speeds at which the shaft will become dynamically unstable. This program finds the fundamental critical speed from the formula

$$
f=\frac{1}{2 \pi} \sqrt{\frac{g \sum_{i=1}^{n} W_{i} y_{i}}{\sum_{i=1}^{n} W_{i} y_{i}^{2}}} \text { cycles } / \mathrm{sec}
$$

where

$$
\begin{aligned}
g & =\text { Acceleration due to gravity } \\
y_{i} & =\text { Static deflection of weight } W_{i}
\end{aligned}
$$

The program is set up to accept the static deflections y_{i} as inputs. If the static deflections are not known, it calculates $y_{i j}$, the static deflection of weight i due to W_{j}. Then the total deflection of weight i is the sum of the deflections from all the W_{j} 's. That is,

$$
y_{i}=\sum_{j=1}^{n} y_{i j}
$$

The individual $y_{i j}$'s are added to provide the y_{i} 's which the program accepts as inputs. The $y_{i j}$'s are calculated as follows:

If $\mathrm{x}_{\mathrm{i}}<\mathrm{x}_{\mathrm{j}}$

$$
\begin{aligned}
y_{i j} & =\frac{W_{j}\left(l-x_{j}\right) x_{i}}{6 \ell E I}\left[\ell^{2}-\left(\ell-x_{j}\right)^{2}-x_{i}^{2}\right] \\
& =\frac{W_{j}\left(l-x_{j}\right) x_{i}}{6 l E I}\left[2 \ell x_{j}-x_{j}^{2}-x_{i}^{2}\right]
\end{aligned}
$$

If $x_{i} \geqslant x_{j}$

$$
\begin{aligned}
y_{i j} & =\frac{W_{j} x_{j}\left(l-x_{i}\right)}{6 \ell E I}\left[\ell-x_{j}^{2}-\left(l-x_{j}\right)^{2}\right] \\
& =\frac{W_{j} x_{j}\left(l-x_{j}\right)}{6 \ell E I}\left[2 \ell x_{i}-x_{j}^{2}-x_{i}^{2}\right]
\end{aligned}
$$

where
$x_{i}, x_{j}=$ Distance of weights i, j from end of shaft
$\mathrm{E}=$ Modulus of elasticity
$I=$ Moment of inertia $=\frac{\pi d^{4}}{64}$
$\ell=$ Length of shaft

Any consistent set of units may be used. The acceleration due to gravity, g, will of course change from one set of units to another. Some useful values are listed below:

$$
\begin{aligned}
\mathrm{g} & =32.1740 \mathrm{ft} / \mathrm{sec}^{2} \\
& =386.088 \mathrm{in} / \mathrm{sec}^{2} \\
& =9.80665 \mathrm{~m} / \mathrm{sec}^{2} \\
& =980.665 \mathrm{~cm} / \mathrm{sec}^{2}
\end{aligned}
$$

REFERENCE: Design of Machine Elements, M.F. Spotts, Prentice-Hall, 1971.

EXAMPLE: A 2 inch diameter steel shaft of total length 40 inches has a fly-wheel and a gear located respectively 15 and 25 inches from the end. The flywheel weights 60 pounds and the gear 45 pounds. Assume the modulus of elasticity of the steel is 30×10^{6} psi. Find the fundamental critical speed of the shaft.

SOLUTION:
SOLUTION:

```
    2.80 ENTT
    30.+86 ENT个
    2.80 65B6 d
    4e.80 6SB1
    60.80 ENTA
    15.00 ESB2
    45.00 ENT*
    25.00 6563
    45.00 ENTT
    25.00 6SB2
    60.00 ENTT
    15.80 GSE3
386.088 6SB5
    44.15 *** f,cycles/sec
    60.00 x
2648.85 ** f, RPM
```


User Instructions

LINEAR PROGRESSION OF SLIDER CRANK

This program calculates the displacement, velocity, and acceleration of the slider in a slider crank mechanism, (e.g. the piston wrist-pin in an internal combustion engine) given crank radius, connecting rod length, slider offset, crankshaft speed, and crank position. The maximum and minimum displacements and the stroke are also calculated.
$N=$ Crankshaft speed, RPM
E = Slider offset
L = Connecting rod length
$\mathrm{R}=$ Crank radius
$\omega=$ Crank angular velocity, radians/sec
$\theta=$ Crank angle
$x=$ Slider displacement
$x_{\text {max }}=$ Maximum slider displacement
$x_{\text {min }}=$ Minimum slider displacement
$\Delta x=$ Stroke
v = Slider velocity
a = Slider acceleration
$\phi=$ Connecting rod angle

EQUATIONS:

$$
\begin{gathered}
\omega=\frac{\pi N}{30} \\
x=R \cos \theta+L \cos \phi \\
x_{\max }=(R+L) \cos \left[\sin ^{-1}\left(\frac{E}{R+L}\right)\right] \\
x_{\min }=(L-R) \cos \left[\sin ^{-1}\left(\frac{E}{L-R}\right)\right]
\end{gathered}
$$

$$
\Delta x=x_{\max }-x_{\min }
$$

$$
\phi=\sin ^{-1}\left(\frac{E+R \sin \theta}{L}\right)
$$

$$
v=\frac{d x}{d t}=R \omega\left(\frac{-\sin (\theta+\phi)}{\cos \phi}\right)
$$

$$
a=\frac{d^{2} x}{d t^{2}}=R \omega^{2}\left(\frac{-\cos (\theta+\phi)}{\cos \phi}-\frac{R \cos ^{2} \theta}{L \cos ^{3} \phi}\right)
$$

REFERENCES:

Mechanical Design and Systems Handbook, H.A. Rothbart, McGraw-Hill, 1964.

Kinematics, V.M. Faires, McGraw-Hill, 1959.

EXAMPLE:
Find the displacement, velocity and acceleration of the wrist-pin in the slider of a slider crank mechanism having a crank radius of 2.0 inches and connecting rod length of 7.0 inches, turning at 4800 RPM. Calculate values for

$$
\theta=0^{\circ}, 15^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}
$$

Assume the slider crank mechanism is in-line ($E=0$). Also find the maximum and minimum displacements and the stroke.

SOLUTION:

```
    4800.00 ENT*
        0.00 ENTT
        7.00 ENTA
        2.0A GSE1
        502.65 ***
        0.00 GSB2
        9.80 *** x in.
            R/S
        9.06 ***
        \rho%
    5.00 ***
        4.00 *** \Deltax, in.
        6SB3
        0.00 ***
        6SE4
-649701.96 ***
        15.00 GSB2
        8.91 ***
        GSE3
    -332.29 ***
        GSE4
-614226.44 ***
```

225.00 ESE2
$5.44 * * *$ 6SE
564.22 ** 6SE4
$354181.29 * *$
x, in.
v, in./sec.
a, in./sec. ${ }^{2}$

User Instructions

Program Listings

SPUR GEAR REDUCTION DRIVE

For a spur gear meshing with a pinion, this program performs an interchangeable solution among the variables reduction (f), distance between the centers (C.D.), diametral pitch (P), and number of pinion teeth (N_{p}). Once these four basic variables have been determined, the program will also output values for the pitch diameters of the pinion and the gear (D_{p} and D_{g}) and the number of gear teeth $\left(N_{g}\right)$.

The basic formula used in all solutions is:

$$
\begin{equation*}
f+1=\frac{2 P \times C . D .}{N_{p}} \tag{1}
\end{equation*}
$$

The calculations for f, P, and C.D. are straightforward. The solution for N_{p} is more complicated since it must be an integer. Because of this constraint, there may not be a gear-pinion combination that will give exactly the desired reduction. In this case, the program finds the closest integer value for N_{p} by the formula

$$
N_{p}=\operatorname{INT}\left(\frac{2 P \times C . D .}{f+1}+0.5\right)
$$

where INT $(x)=$ the integer portion of x. Then a new value for the reduction, f^{\prime}, is found by substituting this N_{p} into equation (1) above. The next step is to compute the number of gear teeth (also an integer) by

$$
N_{g}=I N T\left(f^{\prime} N_{p}+0.5\right)
$$

Finally the true value of the reduction is found by

$$
f=\frac{N_{g}}{N_{p}}
$$

This modified value for f is stored in R_{7} and may be recalled by the user if desired.

REMARKS:

The program assumes that the reduction will be expressed as a decimal number greater than 1. For instance, a reduction of $9: 2$ should be input as $\frac{9}{2}$, or 4.5 . If $\mathrm{f}<1$, the program will still work but the pinion values and gear values will be reversed.

REFERENCE:

Design of Machine Elements, M.F. Spotts, Prentice-Ha11, 1971.

EXAMPLE:

A spur gear reduction mechanism is to be designed to reduce a rotation from 1800 RPM to 650 PRM. The distance between the centers of the gear and pinion is constrained to be 9 inches. If the designer wishes to use teeth of diametral pitch 9, how many teeth should be on the pinion? On the gear $(38,106)$ What will the pitch diameters of the gears be? (4.75 inches, 13.25 inches) What is the actual reduction in speed? (2.79)

SOLUTION:
1800.00 ENT个
$650.00 \div$
2.77 *** f design
9.00 ENT \uparrow
8.00 ENTA
0.00 GSE1
$38.00 \begin{gathered}\text { *** } \\ \text { CSE2 }\end{gathered} \mathrm{N}_{\mathrm{p}}$
$4.75 \underset{\sim}{* *} \underset{\sim}{*} D_{p}$
106.00 *** N_{g}

$2.79 * *$ f

User Instructions

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$	KEYS		$\begin{gathered} \text { OUTPUT } \\ \text { DATA/UNITS } \end{gathered}$
1.	Key in the program				
2.	Enter variables (the unknown quantity, x,				
	must be input as zero) and compute x .				
	Reduction	f	ENT \uparrow		
	Center distance	C.D.	ENT \uparrow		
	Diametral pitch	P	ENT \uparrow		
	Number of pinion teeth	N_{p}	GSB	1	x
3.	Display the following variables:				
	Pitch diameter of pinion		GSB	2	D_{p}
	Number of gear teeth		R/S		N_{g}
	Pitch diameter of gear		R/S		D_{g}
4.	To display any of the basic variables:				
	Reduction		RCL	1	f
	Center distance		RCL	2	
			2	\div	C.D.
	Diametral pitch		RCL	3	P
	Number of pinion teeth		RCL	4	N_{p}
5.	To change any inputs, go to step 2				

REGISTERS

0	1	f	2	C.D.	3	P	4	N_{p}	5	D_{p}
N_{g}	7	Dg	8		9		.		. 1	
2	${ }^{3}$. 4		. 5		16		17	
18	19		20		21		22		23	
24	25		26		27		28		29	

BELT LENGTH

This program calculates the belt length around an arbitrary set of pulleys. It may also be used to calculate the total length between any connected set of coordinates. The program assumes the coordinates of the first pulley to be $(0,0)$.

$$
\begin{aligned}
\left(x_{\mathbf{i}}, y_{\mathbf{i}}, R_{\mathbf{i}}\right)= & x, y \text { coordinates and } \\
& \text { radius of pully } \mathbf{i} \\
R_{0}= & \text { Radius of first pulley } \\
\text { C.D. }= & \text { Center to center distance } \\
& \text { of consecutive pulleys } \\
L= & \text { Total length of belt }
\end{aligned}
$$

EQUATIONS:

$$
L_{12}=\sqrt{C \cdot D_{12}{ }^{2}-\left(R_{2}-R_{1}\right)^{2}}
$$

Arc Length ${ }_{2}=R_{2}\left(\pi-\alpha-\beta-\gamma_{2}\right)$
$\alpha=\tan ^{-1}\left(\frac{R_{1}-R_{2}}{L_{12}}\right)$
$\beta=\tan ^{-1}\left(\frac{R_{3}-R_{2}}{L_{23}}\right)$
$\gamma=\theta_{12}-\theta_{23}$

$$
\begin{aligned}
& \theta_{12}=\tan ^{-1}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) \\
& \theta_{23}=\tan ^{-1}\left(\frac{y_{3}-y_{2}}{x_{3}-x_{2}}\right)
\end{aligned}
$$

This program generates accurate results for any convex polygon, i.e., a line between any two points within the region bounded by the center-to-center line segments is entirely contained within the region.

In some cases, there are two physically possible directions for the belt to take:

The program chooses the upper side if the middle pulley center lies above the line connecting the previous and following pulleys:

The program chooses the lower side if the middle pulley center lies below the line connecting the previous and following pulleys:

Case 2

The program generates inaccurate answers in the second case. Note the figure bounded by the center-to-center line segments for the second case is not convex.

REMARKS:
The calculator is set and left in radians mode.

EXAMPLE 1:
Assume three pulleys are positioned as shown below with the following coordinates and radii:

Pulley 1 (0,0,4 inches)
Pulley 2 ($-8,15,1.5$ inches)
Pulley 3 ($9,16,1$ inches)
Find the belt length around the three pulleys. (66.53 inches)

EXAMPLE 2:

Find the length of line connecting the points $(0,0),(1.5,7),(3.2,-6),(0,0.5)$, $(0,0)$. $(L=28.01)$. Let the radius of each "pulley" be 0 .

SOLUTION:
1.

$$
\begin{aligned}
& \text { 4.00 GSE1 } \\
& \text {-8. } 0 \text { E ENTA } \\
& \text { 15.00 ENT } \\
& 1.50 \text { ESB2 } \\
& 9.00 \text { ENT } \\
& \text { 16. } 00 \text { ENT: } \\
& \text { 1.00 ESE2 } \\
& \text { 0. } 0 \text { E ENT } \dagger \\
& \text { 0. } 60 \text { ENT: } \\
& 4.00 \text { ESE2 } \\
& \text { C6E3 } \\
& 66.57 \text { W* }
\end{aligned}
$$

2.
3. 80651
1.50 ENT
T. OA ENTT
Q. 86 ESER
3.20 ENT \uparrow
-6.00 ENTA
0.00 ESB2
0.00 ENTA
4. 50 ENTT
5. 00 ESE2
6. 90 ENT:
Q. 96 ENTT
Q. 80 GSB2

GSE
28.01 *** L

User Instructions

REVERSIBLE POLYTROPIC PROCESS FOR AN IDEAL GAS

This program may be used to solve interchangeably between pressure ratio, volume ratio, temperature ratio, and density ratio for polytropic processes involving ideal gases. Polytropic processes are defined by the relation

$$
P V^{n}=C
$$

which is shown graphically in Figure 1.

Isentropic processes are special cases of polytropic processes. For isentropic processes, k, the specific heat ratio, is equal to n.

EQUATIONS:

$$
\frac{P_{2}}{P_{1}}=\left(\frac{V_{2}}{V_{1}}\right)^{-n}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{n}{n-1}}=\left(\frac{\rho_{2}}{\rho_{1}}\right)^{n}
$$

where

$$
\begin{aligned}
& \mathrm{P}_{2} / \mathrm{P}_{1} \begin{array}{l}
\text { is the final pressure divided } \\
\text { by the inital pressure; }
\end{array} \\
& \mathrm{V}_{2} / \mathrm{V}_{1} \begin{array}{l}
\text { is the final volume divided } \\
\text { by the inital volume; }
\end{array} \\
& \mathrm{T}_{2} / \mathrm{T}_{1} \begin{array}{l}
\text { is the final temperature } \\
\text { divided by the initial } \\
\text { temperature; }
\end{array} \\
& \rho_{2} / \rho_{1} \begin{array}{l}
\text { is the final density divided } \\
\text { by the initial density. }
\end{array}
\end{aligned}
$$

EXAMPLE: A compressor has a compression ratio of $8.5\left(V_{1} / V_{2}\right)$. The polytropic constant is 1.43. If inlet air is at 300K, what is outlet temperature? What is the pressure in atmospheres if the inlet pressure is one atmosphere?

SOLUTION:

User Instructions

ISENTROPIC FLOW FOR IDEAL GASES

This program can be used to replace flow tables for a specified specific heat ratio, k.

EQUATIONS:
$A / A^{*}=\frac{1}{M}\left[\left(\frac{2}{k+1}\right)\left(1+\frac{k-1}{2} M^{2}\right)\right]^{\frac{k+1}{2(k-1)}}$
$T / T_{0}=\frac{2}{2+(k-1) M^{2}}$
$P / P_{0}=\left(T / T_{0}\right)^{k /(k-1)}$
$\rho / \rho_{0}=\left(T / T_{0}\right)^{l /(k-1)}$
where
M the mach number;
$\mathrm{T} / \mathrm{T}_{0}$ the ratio of flow temperature T to static or zero velocity temperature T_{0};
P / P_{0} the ratio of flow pressure P to static pressure P_{0}; ρ / ρ_{0} the ratio of flow density ρ to static density ρ_{0};
A / A^{*} sub, and A / A^{*} sup are the ratios of flow area A to the throat area A^{*} in convergingdiverging passages. A / A^{*} sub refers to subsonic flow while A / A^{*} sup refers to supersonic flow.
M^{2} is determined using Newton's method. The initial guess used is as follows with a positive exponent for supersonic flow:
$M_{0}{ }^{2}=\left(\sqrt{\operatorname{Frac}\left(A / A^{*}\right)}+A / A^{*}\right) \pm 3$

REMARKS:
After an input of A / A^{*} the program begins to iterate to find M^{2} for future use. This iteration will normally take less than one minute, but may take longer on occasion and for extreme values of k (1.4 is optimum) may fail to converge at all.

A/A* values of 1.00 are illegal inputs. $M=1$ in this case.

EXAMPLE 1:

A pilot is flying at mach 0.93 and reads an air temperature of 15 degrees Celsius (288 K) on a thermometer that reads stagnation temperature T_{0}. What is the true temperature assuming that $\mathrm{k}=1.38$?

If the pilot reads a stagnation pressure P_{0} of 28 inches of mercury, what is the true air pressure?

EXAMPLE 2:

A converging, diverging passage has supersonic flow in the diverging section. At an area ratio A / A^{*} of 1.60 , what are the isentropic flow ratios for temperature, pressure and density? What is the mach number? $k=1.74$.

SOLUTION:
1.

1.386581		
0.98	X^{2}	
	ST01	M ${ }^{2}$
	6S83	
1.09	**	A/A*
	6589	
	RCLE	T/ T_{0}
0.86	***	
288.00	x	
247.35	**	T(${ }^{\circ} \mathrm{K}$)
	RCL5	
0.58	***	$\mathrm{P} / \mathrm{P}_{0}$
28.010	x	
16.11	***	P (in. Hg)

2.

1.74 6SE1		
1.60	6SE2	
2.11	**	M
	Rt	
0.27	***	ρ / ρ
	R.	
0.16	***	$\mathrm{P} / \mathrm{P}_{0}$
	R 4	
0.38	***	T/T

User Instructions

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS		OUTPUT
1.	Key in the program				
2.	Enter specific heat ratio of gas	k	GSB	1	k + 1
3.	If M is known, then go to step 7.				
4.	Enter area ratio. Use positive values	$\pm A / A^{*}$	GSB	2	M
	for supersonic area ratios and negative				
	values for subsonic area ratios				
5.	All four parameters are now in the stack				
	or may be recalled from storage:				
	Mach number (x-register)		RCL	1	
			f	\sqrt{x}	M
	Density ratio (y -register)		RCL	6	ρ / ρ_{0}
	Pressure ratio (z-register)		RCL	5	$\mathrm{P} / \mathrm{P}_{0}$
	Temperature ratio (t-register)		RCL	8	T/To
6.	For a new case, go to step 2				
7.	Enter the Mach number	M	g	x^{2}	
			STO	1	
8.	Calculate the area ratio		GSB	3	A/A*
			GSB	9	M
9.	To determine the remaining parameters go				
	to step 5.				

HEAT TRANSFER THROUGH COMPOSITE CYLINDERS AND WALLS

This program can be used to calculate the overall heat transfer coefficient for composite tubes and walls from individual section conductances and surface coefficients.

Equations:

The overall heat transfer coefficient U is defined by:

$$
\begin{aligned}
q / L & =U \Delta T \\
& \text { or } \\
q / A & =U \Delta
\end{aligned}
$$

where ΔT is the total temperature difference $\left(T_{2}-T_{1}\right), q / L$ is the heat transfer per unit length of pipe, and q / A is the heat transfer per unit area of wall.

For cylinders
$U=\frac{2 \pi}{\frac{2}{h_{1} D_{1}}+\frac{l n D_{2} / D_{1}}{k_{1}}+\frac{l n D_{3} / D_{2}}{k_{2}}+\ldots+\frac{2}{h_{n} D_{n}}}$

For walls

$$
U=\frac{1}{\frac{1}{h_{1}}+\frac{x_{1}}{k_{1}}+\frac{x_{2}}{k_{2}}+\ldots+\frac{1}{h_{n}}}
$$

where
h is the convective surface coefficient:
D_{n} is the outside diameter of the nannulus:
k is the conductive coefficient;
x is the thickness of a wall section.

Figure 2. - Compoelte wall

Remarks:

These equations are for steady state heat transfer through materials with constant properties in all directions.

Inputs must start with the inside convective coefficient and work out in the case of composite cylinders.

Zero is an invalid input for D, k, and h.

Dimensional consistency must be maintained.

Example 1:

A steel pipe with an inside diameter of 4 inches and a thickness of 0.5 inches has a conductivity of $25 \mathrm{Btu} / \mathrm{ft}-\mathrm{hr}-{ }^{\circ} \mathrm{F}$.
Two inches of asbestos ($k=0.1$ Btu/hr-ft-
${ }^{\circ} \mathrm{F}$) enclose the pipe bringing the total diameter to 9 inches. If the inside convective coefficient is $1000 \mathrm{Btu} / \mathrm{hr}$ $\mathrm{ft}^{2}{ }^{\circ}{ }^{\circ} \mathrm{F}$ and the outside coefficient is $5 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}{ }^{\circ}{ }^{\circ} \mathrm{F}$, what is the overall heat transfer coefficient? What is the heat loss for 100 feet of pipe if ΔT is $115^{\circ} \mathrm{F}$?

Example 2:
A wall is composed of 1 foot of brick ($\mathrm{k}=0.4 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$), and 1 inch of wood ($k=0.12 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$). The convective coefficient on one side is $23 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$. The convective coefficient of the other side is $5 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$. What is the overall coefficient? What is the heat flux if the temperature difference is $70^{\circ} \mathrm{F}$?

Solutions:
1.

CLRE
1000.00 ENT \uparrow
4.00 ENT \uparrow
12.00 $=$ (convert units to feet)

6S81
25.00 ENTA
5.80 ENT \uparrow
$12.08 \div$
6SB2
0. 10 ENTA
9.00 ENT个
$12.00 \div$
6SB2
5.00 ENT \uparrow
9.00 ENT \uparrow
$12.00=$
6SE:
0.98 *** Btu/hr-ft- ${ }^{\circ} \mathrm{F}$
$115.06 x$
112.44 ***
$100.00 \times$
11244.28 *** Btu/hr
2.

	CLRG	
23.00	6SE3	
0.40	ENT \uparrow	
1.80	GSB4	
0.12	ENT \uparrow	
1.00	ENT \uparrow	
12.00	\div	
	6564	
5.80	6S83	
0.29	***	Btu/ft ${ }^{2}-\mathrm{hr}-{ }^{\circ} \mathrm{F}$
70.00	x	
20.36	***	Btu/ft ${ }^{2}-\mathrm{hr}$

User Instructions

BLACK BODY THERMAL RADIATION

Bodies with finite temperatures emit thermal radiation. The higher the absolute temperature, the more thermal radiation emitted. Bodies which emit the maximum possible amount of energy at every wavelength for a specified temperature are said to be black bodies. While black bodies do not actually exist in nature, many surfaces may be assumed to be black for engineering considerations.

Figure 1 is a representation of black body thermal emission as a function of wavelength. Note that as temperature increases the area under the curves (total emissive power $\mathrm{E}_{\mathrm{b}}(0-\infty)$) increases. Also note that the wavelength of maximum emissive power $\lambda_{\max }$ shifts to the left as temperature increases.

This program can be used to calculate the wavelength of maximum emissive power for a given temperature, the temperature corresponding to a particular wavelength of maximum emissive power, the total emissive power for all wavelengths and the emissive power at
a particular wavelength. It can also be used to calculate the emissive power from zero to an arbitrary wavelength, the emissive power between two wavelengths or the total emissive power.

EQUATIONS:

$$
\lambda_{\max } \top_{\lambda_{\text {max }}}=c_{3}
$$

$$
E_{b(0-\infty)}=\sigma T^{4}
$$

$$
E_{b \lambda}=\frac{2 \pi c_{1}}{\lambda^{5}\left(e^{c_{2} / \lambda T}-1\right)}
$$

$$
E_{b(0-\lambda)}=\int_{0}^{\lambda} E_{b \lambda d \lambda}
$$

$$
=2 \pi c_{1} \sum_{k=1}^{\infty}-T / k c_{2} e^{-\frac{k c_{2}}{T \lambda}}\left[\left(\frac{1}{\lambda}\right)^{3}+\right.
$$

$$
\left.+\frac{3 T}{\lambda^{2} \mathrm{kc}_{2}}+\frac{6}{\lambda}\left(\frac{T}{\mathrm{kc}_{2}}\right)^{2}+6\left(\frac{T}{\mathrm{kc}_{2}}\right)^{3}\right]
$$

$E_{b\left(\lambda_{1}-\lambda_{2}\right)}=E_{b\left(0-\lambda_{2}\right)}-E_{b\left(0-\lambda_{1}\right)}$
where
$\lambda_{\max }$ is the wavelength of maximum emissivity in microns;
T is the absolute temperature in ${ }^{\circ} \mathrm{R}$ or K ;

$$
\begin{aligned}
& E_{b(0-\infty)} \text { is the total emissive power } \\
& \text { in Btu/hr-ft }{ }^{2} \text { or Watts/cm²; } \\
& E_{b \lambda} \text { is the emissive power at } \lambda \text { in } \\
& \text { Btu/hr- } \mathrm{ft}^{2}-\mu \mathrm{m} \text { or Watts } / \mathrm{cm}^{2}-\mu \mathrm{m} \text {; } \\
& E_{b(0-\lambda)} \text { is the emissive power for } \\
& \text { wavelengths less than } \lambda \text { in } \\
& \text { Btu/hr-ft }{ }^{2} \text { or Watts/cm }{ }^{2} \text {; } \\
& E_{b\left(\lambda_{1}-\lambda_{2}\right)} \text { is the emissive power for } \\
& \text { wavelengths between } \lambda_{1} \text { and } \lambda_{2} \\
& \text { in Btu/hr-ft }{ }^{2} \text { or Watts } / \mathrm{cm}^{2} \text {. } \\
& c_{1}=1.8887982 \times 10^{7} \mathrm{Btu}-\mu \mathrm{m}^{4} / \mathrm{hr}-\mathrm{ft}^{2} \\
& =5.9544 \times 10^{3} \mathrm{~W}^{2} \mathrm{~m}^{4} / \mathrm{cm}^{2} \\
& c_{2}=2.58984 \times 10^{4} \mu \mathrm{~m}-{ }^{\circ} \mathrm{R}= \\
& 1.4388 \times 10^{4} \mu \mathrm{~m}-\mathrm{K} \\
& c_{3}=5.216 \times 10^{3} \mu \mathrm{~m}-{ }^{\circ} \mathrm{R}= \\
& 2.8978 \times 10^{3} \mu \mathrm{~m}-\mathrm{K} \\
& \sigma=1.71312 \times 10^{-9} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{R}^{4}= \\
& 5.6693 \times 10^{-12} \mathrm{~W} / \mathrm{cm}^{2}-\mathrm{K}^{4} \\
& \sigma_{\text {exp }}=1.731 \times 10^{-9} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{R}^{4} \\
& =5.729 \times 10^{-12} \mathrm{~W} / \mathrm{cm}^{2}-\mathrm{K}^{4}
\end{aligned}
$$

REMARKS:

A minute or more may be required to obtain $E_{b}\left(0-\lambda_{)}\right.$or $E_{b}\left(\lambda_{1}-\lambda_{2}\right)$ since the integration is numerical.

Sources differ on values for constants. This could yield small discrepancies between published tables and outputs.

REFERENCE:

Robert Siegel and John R. Howell, Thermal Radiation Heat Transfer, Vol. 1, National Aeronautics and Space Administration, 1968.

EXAMPLE 1:

What percentage of the radiant output of a lamp is in the visible range (0.4 to 0.7 microns) if the filament of the lamp is assumed to be a black body at 2400 K?

EXAMPLE 2:

If the human eye was designed to work most efficiently in sunlight and the visible spectrum runs from about 0.4 to 0.7 microns, what is the sun's temperature in degrees Rankine? Assume that the sun is a black body. Using the temperature calculated, find the fraction of the sun's total emissive power which falls in the visible range. Find the percentage of the sun's radiation which has a wavelength less than 0.4 microns.

SOLUTIONS:

1.

5954.40	stor	S.I. constants
14388.80	ST02	
2897.80	stoz	
5.6693-12	ST04	
2400.00	stos	
0.40	ST06	
Q. 70	STO?	
	GSE4	
4.97	***	
	$\begin{gathered} \text { GSE2 } \\ \vdots \end{gathered}$	E_{b} (0 to ${ }^{\text {a }}$)
100.00	\%	
2.64	***	(\%)

```
2.
```


User Instructions

GSB
 4

CONSERVATION OF ENERGY

This program converts kinetic energy, potential energy, and pressure-volume work to energy. Energy is stored as a running total which may at any time be converted to an equivalent velocity, height, pressure, or energy per unit mass. The program is useful in fluid flow problems where velocity, elevation and pressure change along the path of flow.

EQUATIONS:

$$
\begin{aligned}
& \frac{v_{1}{ }^{2}}{2}+g z_{1}+\frac{P_{1}}{\rho}+\frac{E_{1}}{\dot{m}}= \\
& \frac{v_{2}{ }^{2}}{2}+g z_{2}+\frac{P_{2}}{\rho}+\frac{E_{2}}{\dot{m}}
\end{aligned}
$$

where:
v is the fluid velocity;
z is the height above a reference datum;
P is the pressure;
E is an energy term which could represent inputs of work or friction loses (negative value);
g is the acceleration of gravity;
ρ is the fluid density;
$\dot{\mathrm{m}}$ is the mass flow rate (assumed to be unity);
subscripts 1 and 2 refer to upstream and downstream values respectively.

NOTES:

Downstream values should be input as negatives. However, when an output is called for, the calculator displays the relative value with no regard to upstream or downstream location.

An error will result when the total energy sum stored in register 8 is negative and an attempt is made to calculate velocity.

EXAMPLE 1:

A water tower is 100 feet high. What is the zero flow rate pressure at the base? The density of water is $62.4 \mathrm{lb} / \mathrm{ft}^{3}$.

If water is flowing out of the tower at a velocity of $10 \mathrm{ft} / \mathrm{sec}$, what is the static pressure?

What is the maximum frictionless flow velocity which could be achieved with the 100 foot tower?

If 10000 pounds of water are pumped to the top of the tower every hour, at a velocity of $20 \mathrm{ft} / \mathrm{sec}$, with a frictional pressure drop of 2 psi , how much power is needed at the pump?

EXAMPLE 2:

An incompressible fluid ($\rho=735 \mathrm{~kg} / \mathrm{m}$) flows through the converging passage of Figure 1. At point 1 the velocity is $3 \mathrm{~m} / \mathrm{s}$ and at point 2 the velocity is $15 \mathrm{~m} / \mathrm{s}$. The elevation difference between points 1 and 2 is 3.7 meters. Assuming frictionless flow, what is the static pressure difference between points 1 and 2?

EXAMPLE 3:

A reservoir's level is 25 meters above the discharge pond. Assuming 85\% power generation efficiency, how much power can be generated with a flow rate of $20 \mathrm{~m}^{3} / \mathrm{s}$?

$$
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

SOLUTIONS:

(2)

```
\[
\begin{aligned}
& 1.00 \mathrm{ST05} \\
& \text { STOT } \\
& \text { 9. } 80665 \mathrm{STOE} \\
& 735.006581 \\
& 3.00 \text { ESE2 } \\
& 3.76 \text { ESE } \\
& -15.00 \text { GSE2 } \\
& -52710.82 * * *\left(\mathrm{Nt} / \mathrm{m}^{2}\right) \\
& \text { GSB8 }
\end{aligned}
\]
        1.00 ST05
            STOT
            B1
```

(3)

```
    10Be.00 6SE1
        25.80 GSE3
            ESEP
    245.17 ** (joule/kg)
        Q.85 x
        208.39 *** (joule/kg)
        000.0日 & (kg/s)
416782G.25 *** (watts)
```

STEP	instructions	$\begin{array}{\|c\|} \hline \text { INPUT } \\ \text { DATA/UNITS } \end{array}$	KEYS		OUTPUT dATA/UNITS
1.	Key in the program				
2.	For English units:	25033.407	STO	5	
		32.17	STO	6	
		4632.48	STO	7	1.00
	For S.I. units:	9.80665	STO	6	
3.	Enter fluid density	ρ	GSB	1	0.00
4.	Enter the following (negative values are				
	downstream values):				
	Fluid velocity	v	GSB	2	
	Height from reference datum	z	GSB	3	
	Pressure	P	GSB	4	
	Energy input	E	GSB	5	
5.	Repeat step 4 for all input values				
6.	Calculate the unknown:				
	Fluid velocity		GSB	6	v
	Height from reference datum		GSB	7	z
	Pressure		GSB	8	P
	Energy		GSB	9	E
7.	For another case, go to step 3, or clear				
	register 8 and go to step 4	0	STO	8	

NOTES

NOTES

In the Hewlett-Packard tradition of supporting HP programmable calculators with quality software, the following titles have been carefully selected to offer useful solutions to many of the most often encountered problems in your field of interest. These ready-made programs are provided with convenient instructions that will allow flexibility of use and efficient operation. We hope that these Solutions books will save your valuable time. They provide you with a tool that will multiply the power of your HP-19C or HP-29C many times over in the months or years ahead.

Mathematics Solutions
Statistics Solutions
Financial Solutions
Electrical Engineering Solutions
Surveying Solutions
Games
Navigational Solutions
Civil Engineering Solutions
Mechanical Engineering Solutions
Student Engineering Solutions

Reorder No. 00029-14009 Printed in U.S.A. 00029-90013

