

INTRODUCTION

This HP-19C/HP-29C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.
They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become an expert on your HP calculator.
You will find general information on how to key in and run programs under "A Word about Frogram Usage" in the Applications book you received with your calculator.
We hope that this Solutions book will be a valuable tool in your work and would appreciate your comments about it.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

TABLE OF CONTENTS

DISTANCE TO OR BEYOND HORIZON 1This program computes the distance to an object of known heightwhose base is obscured by the horizon. It also computes distanceto horizon for a given height of eye and the distance of visibilityof an object of known height.
DISTANCE BY HORIZON ANGLE AND DISTANCE SHORT OF HORIZON 5
This program calculates the distance between an observer and an object given (1) the vertical angle between its waterline and the horizon observed from a known height of eye or (2) the object's height and its subtended angle.
DISTANCE OFF AN OBJECT BY TWO BEARINGS 9
This program computes the distance off an object given two bearings and the distance run between the bearings.
VELOCITY TRIANGLE 12
This program provides interchangeable solutions for vector addition problems such as heading, current, and course problems.
COURSE TO STEER 15This program computes course to steer given initial position, finalposition, speed, current, and magnetic deviation and variation.
ESTIMATED TIME OF ARRIVAL 18This program computes ETA's given distance, speed, departure dateand time, and time zones. It also computes speed required to makean ETA given distance, date and time of arrival and departure, andtime zones.
GREAT CIRCLE NAVIGATION* 21
This program calculates the great circle course and distance be- tween two points.
GREAT CIRCLE COMPUTATION 24This program computes the latitude corresponding to a given longi-tude on a great circle passing through two given points.
COMPOSITE SAILING 27
This program computes, for two points, the longitude at which a great circle is tangent to a given limiting parallel.
RHUMB LINE NAVIGATION*, 30
This program calculates the rhumb line course and the distance fromorigin to the destination.
RHUMB LINE DEAD RECKONING 34
This program calculates DR position given course, speed, and elapsed time from the last fix or DR position.
CELESTIAL NAVIGATION AND DEAD RECKONING 38This program keeps track of the positions of a ship and also a celes-tial object. Given time and sextant altitude, an updated DR andaltitude intercept and azimuth are output.
SIGHT REDUCTION TABLE* 42
This program is a replacement for various published sight reduction tables (e.g.: H.O. 214, H.O. 229, etc.).

* THIS PROGRAM ALSO APPEARS IN THE HP-19C/29C APPLICATIONS BOOK. IT HAS BEEN INCLUDED HERE, IN SLIGHTLY MODIFIED FORM, FOR THE SAKE OF COMPLETENESS.

distance TO OR BEYOND HORIZON

This program computes the distance to an object of known height whose base is obscured by the horizon and whose top subtends a sextant altitude hs with the horizon. The sextant altitude is corrected for index error and height of eye. Additional features are the calculation of the distance to the horizon for a given height of eye and the distance of visibility of an object of height H above sea level.

EQUATIONS:

$$
\begin{aligned}
& D=\sqrt{\left(\frac{\tan h_{a}}{2.46 \times 10^{-4}}\right)^{2}+\frac{H-H E}{0.74736}}-\frac{\tan h_{a}}{2.46 \times 10^{-4}} \\
& D_{\text {hor }}=1.144 \sqrt{\mathrm{HE}} \\
& D_{\text {vis }}=1.144(\sqrt{\mathrm{HE}}+\sqrt{H})
\end{aligned}
$$

where
$D=$ distance to object, nautical miles
$D_{\text {hor }}=$ distance to horizon, nautical miles
$D_{v i s}=$ distance of visibility, naut. miles
$H=$ height of object beyond horizon, feet
$H E=$ height of eye, feet
ha= hs + IC - $0.97 \sqrt{\mathrm{HE}}$
hs= sextant altitude, D.MS
IC= index correction, M.m

EXAMPLE 1:

The height of eye of of an observer is 9 feet above sea level, how far away is his horizon?

EXAMPLE 2:
An observer "bobs" Farallon Light on the horizon and finds his height of eye to be 16 feet. The light is 358 feet above sea level. How far is the observer from the light? (Accuracy is affected by abnormal refraction)

EXAMPLE 3:

The top of a lighthouse, whose base is obscured by the horizon, is known to be 300 feet above sea level. It is found to have a sextant altitude of $25: 6$ above the horizon. The height of eye is 20 feet and the sextant requires an index correction of +1!3.

What is the distance to the lighthouse?
What is the distance to the horizon?
It has been determined that the luminous range of the light is "strong", now compute its visibility for the given height of eye.

SOLUTIONS:
(1)

$$
\begin{array}{rrr}
9.00 & \text { STO2 } & \\
\text { GSB2 } & \\
2.43 & * * * & \text { n.m. }
\end{array}
$$

$16.00 \mathrm{ST02}$
358.009703

CSB2
RS
26.22 ** n.m.
(3)
1.30 ST01
$20.00 \mathrm{STO2}$
$300.00 \mathrm{ST03}$
0.2536 6SB1
6.28 n.m.

24.97 *** n.m.

User Instructions

distance by horizon angle and DISTANCE SHORT OF HORIZON

This program calculates the distance between an observer and an object when (1) the vertical angle between its waterline and the horizon has been observed from a known height of eye or (2) the object's height is known, together with its subtended angle.

This program also calculates the height of an object if its subtended angle and distance from the observer are known.

EQUATIONS:

$$
\begin{aligned}
& D=\frac{H E}{\tan (h s+I C+.97 \sqrt{H E})} \\
& D=\frac{H}{\tan (h s+I C)}
\end{aligned}
$$

where

$$
\begin{aligned}
& D=\text { distance to object, feet } \\
& H E=\text { height of eye, feet } \\
& I C=\text { index correction, M.m } \\
& H=\text { height of object, feet } \\
& \text { hs }=\text { sextant altitude, D.MS }
\end{aligned}
$$

NOTE:
hs < 10' may make D unreliable due to atmospheric conditions when vertical sextant altitude between object and horizon is taken.

EXAMPLE 1:
The sextant altitude between the waterline of a buoy and the horizon is found to be 21!4. The observer has a height of eye of 22 feet and the sextant requires a +1.7 index correction. How far is the observer from the buoy?

EXAMPLE 2:

The sextant altitude subtended by the base and the top of a 41 foot light tower is 56!2. The sextant requires a $-1!9$ index correction. How far is the observer from the light tower?

EXAMPLE 3:

A vessel is anchored 2015 feet from an observer. The sextant altitude between the vessel's waterline and truck of mast is $1^{\circ} 15!2$. There is no index error. How high is the truck of the mast above the waterline?

SOLUTIONS:
(1)

$$
\begin{aligned}
& 1.70 \text { STOI } \\
& 22.005 T 02 \\
& 0.21246581 \\
& 2735.25 \text { *** ft. } \\
& R \% \\
& \text { Q. } 45 \text { ** n.m. }
\end{aligned}
$$

(2)

$$
\begin{array}{rrr}
-1.90 \text { STO1 } & \\
41.00 \text { ENTA } & \\
0.5612 \text { GSE2 } & \\
2595.50 \text { *t. } & \text { ft. } \\
& \text { R/S } & \text { n.m. }
\end{array}
$$

(3)

$$
0.00 \text { STO1 }
$$

2015.00 ENT \uparrow
1.1512 GSE3
44.08 *** ft.

User Instructions

DISTANCE OFF AN OBJECT BY TWO BEARINGS

To determine the distance off an object as a vessel passes it, observe two bearings on the bow and note the distance run between bearings. The program calculates the distance off the object when it is abeam and at the time of the first and second bearings.

EQUATIONS:

$$
\begin{align*}
& D_{2}=\frac{\sin R B_{1}}{\sin \left(R B_{2}-R B_{1}\right)} D_{\text {run }} \tag{2}\\
& D_{\text {abeam }}=\left|D_{2} \sin R B_{2}\right| \\
& D_{1}=\left|\frac{D_{\text {abeam }}}{\sin R B_{1}}\right|
\end{align*}
$$

(1)

A buoy is sighted bearing 015° on the bow, after a 3 mile run it bears 105°. What was its distance when abeam?

SOLUTIONS:

A lighthouse bears $-026^{\circ}\left(26^{\circ}\right.$ counterclockwise) at 1130 and -051° at 1140 . Our speed is 15 knots. How far will we be off the light when it is abeam? How far off were we at 1130 and 1140?

EXAMPLE 2:

$$
\begin{aligned}
& -26.00 \mathrm{ENT} \uparrow \\
& -51.006581 \\
& 15.90 \text { ENTA } \\
& 0.10 \text { ESB3 } \\
& \begin{array}{cccc}
4.60 & * * * & D_{1} \\
& R \downarrow \\
2.59 & * * & D_{2} \\
& R t &
\end{array} \\
& 2.02 \text { ** } D_{\text {abeam }} \\
& 15.80 \text { ENTA } \\
& 105.006581 \\
& 3.00 \text { GSE2 } \\
& \begin{array}{l}
R \downarrow \\
R \downarrow
\end{array} \\
& 0.75 \text { *** } D_{\text {abeam }}
\end{aligned}
$$

where
$R B_{1}=$ First relative bearing
$\mathrm{RB}_{2}=$ Second relative bearing
$D_{\text {run }}=S t=$ Distance run
S = speed of vessel
$\mathrm{t}=$ time in minutes
$D_{1}, D_{2}=$ Distance at time of first or second bearing
$D_{a}=$ Distance when abeam

User Instructions

VELOCITY TRIANGLE

This program is an interchangeable solution for the vector addition problem. Given any two of the vectors shown, the program computes the third.

SOLUTION:

Compass course is corrected on input for magnetic variation and deviation. True course is decorrected on output to yield compass course. Remember to update the values used for variation (changes with location) and deviation (changes with heading).

EXAMPLE:
A vessel is making 2 knots through the water, steering 060° by the compass.
The magnetic variation is $20.5^{\circ} \mathrm{E}$ and the deviation is $5^{\circ} \mathrm{E}$. Calculate the set and drift of the current if the vessel is making good 3 knots on a course of $090^{\circ} \mathrm{T}$.
5.605701
$20.50 \mathrm{STO2}$
60.80 ENT*
2.00 ESE1
90.00 ENT \dagger
3.006583

ESES
1.02 knots
$\mathrm{X}+\mathrm{Y}$
98.86 **

User Instructions

STEP	instructions	$\begin{gathered} \hline \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$	KEYS		$\begin{gathered} \hline \text { OUTPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$
1.	Key in the program				
2.	Store compass corrections:				
	Deviation (negative if west)	$\pm{ }^{\text {Dev }}{ }^{\circ}$	STO	1	
	Variation (negative if west)	$\pm \operatorname{Var}^{\circ}$	STO	2	
3.	Enter any two of the three vectors:				
3 a.	Heading -				
	Compass course	$\mathrm{C}_{C^{\circ}}$	ENT \uparrow		
	Speed	S,knots	GSB	1	
3 b .	Current -				
	Set	Set ${ }^{\circ}$	ENT \uparrow		
	Drift	prift, knot	GSB	2	
3c.	Course -				
	Course made good	CMG ${ }^{\circ}$	ENT \uparrow		
	Speed made good	SMG, knot	GSB	3	
4.	Compute the remaining vector:				
4 a .	Heading -				
	Speed		GSB	4	S,knots
	Compass course		$x \leftrightarrow y$		$C_{C}{ }^{\circ}$
	True course		RCL	4	$C_{t}{ }^{\circ}$
4 b .	Current -				
	Drift		GSB	5	Drift/knots
	Set		\underline{x} ¢		Set ${ }^{\circ}$
4 c .	Course -				
	Speed made good		GSB	6	SMG, knots
	Course made good		$\mathrm{x} \leftrightarrow \mathrm{y}$		CMG ${ }^{\circ}$

COURSE TO STEER

This program calculates a course to steer given your location, the location where you want to go, your boat's speed through the water, and the set and drift of the current.

EXAMPLE:

A vessel making 6 knots through the water is at ($45^{\circ} \mathrm{N} .124^{\circ} 40^{\prime} \mathrm{W}$) and she wishes to steer a course toward ($44^{\circ} 40^{\prime} \mathrm{N}$, $124^{\circ} 10^{\prime} \mathrm{W}$). The magnetic variation is 20.5 E and there is a 2 knot current setting 090°. What course should she steer.

SOLUTION:

```
    0.00 ST01
    20.50 5T02
    90.00 5T08
    2.00 5709
    45.00 ENTT
124.48 ENTA
    44.40 ENTT
124.10 6SE1
    29.20 *** Dist., n.m.
    6.006582
125.93 *** Course to steer,degrees
            R/S
        7.30*** Speed made good,knots
            F%
        4.00 *** Transit time, H.MS
```

User Instructions

ESTIMATED TIME OF ARRIVAL

This program computes the time of arrival at the next port in local zone time and GMT, when distance, speed, departure date and time in local zone time are input.

It also computes speed required to make a given ETA, when distance, date and time of departure in local zone time and date and time of desired arrival in local zone time are input.

All computations can be made in GMT by storing zeros in registers 4 and 5 and entering GMT times.

EXAMPLES:

1. A vessel departs San Francisco at 0030 on the 2nd of January local time, bound for Guam, distance 5,146 miles. What will be the date and time of arrival Guam local time, and GMT at 15.5 knots.
2. If the same Vessel makes the same departure time and wishes to arrive in Guam at 0700 on the 16 th of January local Guam time, what speed is required.

NOTE:
Zone time of San Francisco is +8 and Guam is -10 .

REFERENCE:
This program is adapted from HP-65
Users' Library program \#02185A by Capt. Kenneth R. Orcutt.

SOLUTIONS:

5146.00	Stot	
15.50		
8.00	ST04	
-10.00	ST05	
2.0030	ESE1	
16.1430	***	Local time
	Res	
16.6439	***	GMT

(2) 2.0030 ENTH 16.07006582 15.8582 ** Knots

User Instructions
(B)

GREAT CIRCLE NAVIGATION

This program calculates the great circle distance between two points and the initial course from the first point. Coordinates are input in degrees-minutesseconds format. The distance is displayed in nautical miles and the initial course in decimal degrees.

EQUATIONS:
$D=60 \cos ^{-1}\left[\sin L_{1} \sin L_{2}+\cos L_{1} \cos L_{2} \cos \left(\lambda_{2}-\lambda_{1}\right)\right]$

$$
\mathrm{C}=\cos ^{-1}\left[\frac{\sin \mathrm{~L}_{2}-\sin \mathrm{L}_{1} \cos (\mathrm{D} / 60)}{\sin (\mathrm{D} / 60) \cos \mathrm{L}_{1}}\right]
$$

$$
\mathrm{C}_{\mathrm{i}}=\left\{\begin{array}{l}
\mathrm{C} ; \sin \left(\lambda_{2}-\lambda_{1}\right)<0 \\
360-\mathrm{C} ; \sin \left(\lambda_{2}-\lambda_{1}\right) \geqslant 0
\end{array}\right.
$$

where:
$\mathrm{L}_{1}, \lambda_{1}=$ coordinates of initial point
$\mathrm{L}_{2}, \lambda_{2}=$ coordinates of final point
D = distance from initial to final point
$\mathrm{C}_{\mathrm{i}}=$ initial course from initial to final point

REMARKS:

- Southern latitudes and eastern longitudes must be entered as negative numbers.
- Truncation and round off errors occur when the source and destination are very close together (1 mile or less).
- Do not use coordinates located at diametrically opposite sides of the earth.
- Do not use latitudes of $+90^{\circ}$ or -90°.
- Do not try to compute initial heading along a line of longitude ($L_{1}=L_{2}$).
- This program assumes the calculator is set in DEG mode.

EXAMPLE 1:
Find the distance and initial course for the great circle from Tokyo ($\mathrm{L} 35^{\circ} 40^{\prime} \mathrm{N}$, $\left.\lambda 139^{\circ} 45^{\prime} \mathrm{E}\right)$ to San Francisco (L37${ }^{\circ} 49^{\prime} \mathrm{N}$,入122 25^{\prime} W).

EXAMPLE 2:
What is the distance and initial great circle course from L3353'30"S, $\lambda 18^{\circ} 23^{\prime} 10^{\prime \prime} \mathrm{E}$ to $\mathrm{L} 40^{\circ} 27^{\prime} 10^{\prime \prime} \mathrm{N}, ~ \lambda 73^{\circ} 49^{\prime} 40^{\prime \prime} \mathrm{W}$?

SOLUTIONS:

```
-33.5336 ENT*
-18.2310 ENTG
    40.2710 ENT*
    73.4940 ESE1
    676.89 w** (D,n.m.)
            f%
        304.48 w. (Ci,dec.deg.)
```

User Instructions

STEP	instructions	$\begin{array}{\|c\|} \hline \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{array}$	KEYS		OUTPUT DATA/UNITS
1.	Key in the program.				
2.	Key in latitude and longitude of or	L ${ }_{1}$ (D.MS)	ENT \uparrow		L_{1}
		λ_{1} (D.MS)	ENT \uparrow		λ_{1}
3.	Key in latitude and longitude of	L_{2} (D.MS)	ENT \uparrow		L_{2}
	destination.	λ_{2} (D.MS)			λ_{2}
4.	Calculate distance and initial course.		GSB	1	D(n.m.)
			R/S		C_{i} (dec.deg)
				\square	
				\square	
				\square	
				\square	
				\underline{I}	

GREAT CIRCLE COMPUTATION

This program computes the latitude corresponding to a specified longitude on a great circle passing through two given points.

EQUATIONS:
$L_{i}=\tan ^{-1}\left[\frac{\operatorname{tanL}_{2} \sin \left(\lambda_{\mathbf{i}}-\lambda_{1}\right)-\operatorname{tanL}_{1} \sin \left(\lambda_{\mathbf{i}}-\lambda_{2}\right)}{\sin \left(\lambda_{2}-\lambda_{1}\right)}\right]$
where

$$
\begin{aligned}
\left(L_{1}, \lambda_{1}\right)= & \text { coordinates of initial point } \\
\left(L_{2}, \lambda_{2}\right)= & \text { coordinates of final point } \\
\left(L_{i}, \lambda_{i}\right)= & \text { coordinates of intermediate } \\
& \text { point }
\end{aligned}
$$

NOTES:
The program does not compute along lines of longitude ($\lambda_{1}=\lambda_{2}$).

EXAMPLE:

A ship is proceeding from Manila to Los Angeles. The captain wishes to use great-circle sailing from L12 ${ }^{\circ} 45!2 \mathrm{~N}$, $\lambda 124^{\circ} 20$! 1 E , off the entrance to San Bernardino Strait, to L3348.8N, $\lambda 120^{\circ} 07!1 W$, five miles south of Santa Rosa Island. Find the latitudes corresponding to 1) $\lambda=160^{\circ} 34 \mathrm{~W}$; and 2) $\lambda=180^{\circ}$.

SOLUTION:

12.4512	ENT*
-124.2006	ENT \uparrow
73.4848	ENTA
120.0706	GSE1
160.3400	6SB2
41.2108	***
180.0009	ESE2
39.4133	串車

User Instructions

COMPOSITE SAILING

When the great circle would carry a vessel to a higher latitude than desired, a modification of great-circle sailing, called composite sailing, may be used to good advantage. The composite track consists of a great circle from the point of departure and tangent to the limiting parallel, a course line along the parallel, and a great circle tangent to the limiting parallel and through the destination. This program computes, for each of two points, the longitude at which a great circle through the point is tangent to some limiting parallel.

$$
\begin{aligned}
& \left(L_{\max }, \lambda_{\mathbf{V}^{2}}\right)=\underset{\text { parallel }}{\text { point }} \text { at which limiting } \\
& s_{1}=\operatorname{sgn}\left(\lambda_{2}-\lambda_{1}\right) \\
& s_{2}=\operatorname{sgn}\left(\left|\lambda_{2}-\lambda_{1}\right|-180\right) \\
& \mathrm{s}_{3}=-\mathrm{s}_{1} \\
& \operatorname{sgn}(x)= \begin{cases}+1 ; & x \geqslant 0 \\
-1 ; & x<0\end{cases}
\end{aligned}
$$

A ship leaves Baltimore bound for Bordeaux (Royan), France. The captain desires to use composite sailing from L36 6° ! $7 \mathrm{~N}, \lambda 75^{\circ} 42$! 2 W one mile south of Chesapeake Light to L45*39.1N, $\lambda 1^{\circ} 29.8 \mathrm{~W}$, near the entrance to Grande Passe de l'Quest, limiting the maximum latitude to $47^{\circ} \mathrm{N}$.
Required:
(1) The longitude at which the limiting parallel is reached.
(2) The longitude at which the limiting parallel should be left.

SOLUTION:

EQUATIONS:
$\lambda_{\mathbf{V}^{1}}=\lambda_{1}+\cos ^{-1}\left(\frac{\tan L_{1}}{\tan L_{\text {max }}}\right) s_{1} s_{2}$
$\lambda_{\mathbf{V}_{2}}=\lambda_{2}+\cos ^{-1}\left(\frac{\tan L_{2}}{\tan L_{\max }}\right) s_{3} s_{2}$
where

$$
\begin{aligned}
& \left(L_{1}, \lambda_{1}\right)=\text { initial position } \\
& \left(L_{2}, \lambda_{2}\right)=\text { final position } \\
& \left(L_{\text {max }}, \lambda_{\mathbf{v}^{1}}\right)=\begin{array}{c}
\text { point at which limiting } \\
\text { parallel is met }
\end{array}
\end{aligned}
$$

36.5742 ENTA
7. 4212 ENT \uparrow
45. 300 ENT
1.2948 GSE1
47. AOPD GSE2

User Instructions

STEP	instructions	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1.	Key in the program				
2.	Enter positions:				
	Initial latitude (negative for south)	L_{1} (D.MS)	ENT \uparrow		
	Initial longitude (negative for east)	λ_{1} (D.MS)	ENT \uparrow		
	Final latitude (negative for south)	L_{2} (D.MS)	ENT \uparrow		
	Final longitude (negative for east)	λ_{2} (D.MS)	GSB	1	
3.	Enter latitude of limiting parallel	$L_{\max } \text { (D.MS) }$	GSB	2	$\lambda_{V^{1}}$ (D.MS)
	and compute $\lambda_{V_{1}}$ (limiting parallel is met)				
4.	Compute $\lambda_{V_{2}}$ (limiting parallel is left)		R/S		$\lambda_{V_{2}}$ (D.MS)
				\square	
				\square	
				\square	
				0	
				\square	
				\square	
				7	
				7	

RHUMB LINE NAVIGATION

This program is designed to assist in the activity of course planning. You supply the latitude and longitude of the point or origin and the destination. The program calculates the rhumb line course and the distance from origin to the destination.

Since the rhumb line is the constantcourse path between points on the globe, it forms the basis of short distance navigation. In low and midlatitudes the rhumb line is sufficient for virtually all course and distance calculations which navigators encounter. However, as distance increases or at high latitudes the rhumb line ceases to be an efficient track since it is not the shortest distance between points.

The shortest distance between points on a sphere is the great circle. However, in order to steam great circles, an infinite number of course changes are necessary. Since it is impossible to calculate an infinite number of courses at an infinite number of points, several rhumb lines may be used to approximate a great circle. The more rhumb lines used the closer to the great circle distance the sum of the rhumb line distances will be. The Great Circle Computation program may be used to calculate intermediate course change points which can be linked by rhumb lines.

Latitudes and longitudes are input in degrees-minutes-seconds. Course is displayed in decimal degrees. Southern latitudes and eastern longitudes are input as negative numbers.

EQUATIONS:

$$
\begin{gathered}
\mathrm{C}=\tan ^{-1} \frac{\pi\left(\lambda_{1}-\lambda_{2}\right)}{180\left(\ln \tan \left(45+1 / 2 \mathrm{~L}_{2}\right)-\ln \tan \left(45+1 / 2 \mathrm{~L}_{1}\right)\right)} \\
\mathrm{D}=\left\{\begin{array}{l}
60\left(\lambda_{2}-\lambda_{1}\right) \cos \mathrm{L} ; \cos \mathrm{C}=0 \\
60 \frac{\left(\mathrm{~L}_{2}-\mathrm{L}_{1}\right)}{\cos \mathrm{C}} ; \text { otherwise }
\end{array}\right.
\end{gathered}
$$

where:
$\left(L_{1}, \lambda_{1}\right)=$ position of initial point
$\left(L_{2}, \lambda_{2}\right)=$ position of final point
$D=$ rhumb line distance
$C=$ rhumb line course

REMARKS:

- No course should pass through either the south or north pole.
- Errors in distance calculations may be encountered as cos C approaches zero.
- Accuracy deteriorates for very short legs.
- This program assumes the calculator is set in DEG mode.

```
EXAMPLE 1:
What is the distance and course from
L35`24'12"N,\lambda125*02'36"W to L41'09'12"N,
\lambda147*}2\mp@subsup{2}{}{\prime}3\mp@subsup{6}{}{\prime\prime}\textrm{E}\mathrm{ ?
EXAMPLE 2:
What course should be sailed to travel
a rhumb line from L2o 13'42"S,
\lambda179`07'54"E to L5`27'24"N,
\lambda179`24'36"W? What is the distance?
```

SOLUTIONS:
(1)

35.2412 ENT		
125.0236 ENTH		
41.0912	EnT*	
$-147.2236 \mathrm{ES61}$		
4135.60	**	(DIST.,n.m.)
	Pes	
274.79	**	(C,dec, deg.)

(2)

```
    -2.1342 ENTH
    -179.0754 ENT/
    5.2724 ENTT
    179.2436 65E1
    46.31 *** (DIST.,n.m.)
            FC
        10.73 *** (C,dec,deg.)
```

User Instructions

RHUMB LINE DEAD RECKONING

This program calculates a ship's DR position given the ship's course, speed, and elapsed time from the last fix or DR position. The DR position is stored so that on subsequent legs just course, speed, and elapsed time need be entered to obtain the updated DR position. The program may be used for both small and large area DR problems.

EQUATIONS:

The updated position (L, λ) is given by following a loxodrome (rhumb line) from the initial position ($\mathrm{L}_{\mathbf{i}}, \lambda_{\mathbf{j}}$) for a distance determined by the speed and time.

$$
L=L_{i}+\Delta t \frac{S \cos C}{60}
$$

$$
\lambda=\left\{\begin{array}{l}
\lambda_{i}+\frac{180 \operatorname{tanC}\left(\ln \tan \left(45+\frac{L_{i}}{2}\right)-\ln \tan \left(45+\frac{L}{2}\right)\right)}{\pi} ; \\
C \neq 90 \text { or } 270\left(L_{i} \neq L\right) \\
\lambda_{i}-\Delta t \frac{S \sin C}{60 \cos L_{i}} ; C=90 \text { or } 270\left(L_{i}=L\right)
\end{array} ;\right.
$$

where:

$$
\left.\begin{array}{rl}
L_{\mathbf{i}}= & \text { initial latitude (} \mathrm{N}, \text { positive; } \\
& \mathrm{S}, \text { negative) } \\
\mathrm{L}= & \text { updated latitude } \\
\lambda_{\mathbf{i}}= & \text { initial longitude (W, positive; } \\
& \mathrm{S}, \text { negative) }
\end{array}\right)
$$

NOTES:

1. The program cannot follow a meridian over a pole.
2. The program loses accuracy and gets incorrect answers when within 0.5° of a pole.

EXAMPLE (Fig. 1):

A vessel's position is L33'49!1N, $\lambda 120^{\circ} 52$!. OW at 1200 . If she steams as shown, what is her position at each time?

TIME	c	S	DR
1200			L33 $3^{\circ} 49^{\prime} 066^{\prime N}, \lambda_{1200} 52^{\prime} 00^{\prime \prime W}$
1330	120°	15 knots	
1510	240°	15 knots	(L33²5'21"N, 入12054'32"W)
1823	90°	17 knots	(L33025'21"N,入119049'01"W)
1955	355°	20 knots	

33.4986 ENTT
120.5200 GSE1
13.3000 ENT 1
12.0000 GSE 3
120.0000 ENTT
15. 0000 GSE2
33.3751 **

R/S
120.2834 **
15.1000 ENTt
13.36006583
240.0000 ENTT
15.0000 CSE2
33.2521 **

R/S 1510 DR
120.5433 ***
18.2300 EHTA
15.10006583
90.0000 ENT \uparrow
17.00006582
33.2521 ***

R/S
119.4902 **
19.5500 ENT \uparrow
18.2300 GSE 3
355.0000 ENTT
20. 0000 ESE2
$33.5554 * *$
R/S 1955 DR

1330 DR

User Instructions

CELESTIAL NAVIGATION AND DEAD RECKONING

This program allows you to update a vessel's position and correct it using sights on a celestial object. The program is started with your latitude and longitude and the object's GHA and declination all determined for the same time. Then when any other time is keyed in, the corresponding DR is computed. If a sight is taken at that time, the resulting altitude may be entered into the calculator to yield an intercept and azimuth. The DR may be moved accordingly if desired.

The dead reckoning technique used is midlatitude sailing which, while not as accurate as rhumb line dead reckoning, is sufficiently good for most purposes. Altitude intercepts "toward" are considered to be positive, even though careful reading of Bowditch would indicate the opposite. By using this convention, it is easy to compute the intercept terminus (most probable position or MPP).

The program contains a useful subroutine, GSB 7, which can be used for translating almanac entries in degrees, minutes and tenths (DM.M) to decimal degrees (D.d).

REFERENCE:

This program is based on private communications with Paul E. Shaad of Sacramento, California.

EXAMPLE:
On February 19, 1975, a ship is steaming on course 240 at 17 knots. At 1800 GMT her dead reckoning position is $42^{\circ} \mathrm{N}, 135^{\circ} \mathrm{W}$. Compute her position at 2115.
Her navigator shoots the Sun from a height of 65^{\prime} (dip $=7!8$). At 2340 he obtains a sextant altitude of $28^{\circ} 25^{\prime} 36^{\prime \prime}$. Compute the altitude intercept and azimuth and correct the ship's DR.

SOLUTION
From The Nautical Almanac we take the Sun's GHA and declination at 1800 and 1900 GMT and also the Sun's semidiamter.

Course
Speed
Speed converted to degrees per hour
Time
Calculation of
\} Rate of Change
of GHA
15.0000 ***

ST. 1
-1117.6000 6SE7
-11.2973 *** Calculation of

-11.3883 *** of DEC
0.0150 **

ST. 2

Now that the setup is compelte, you can dead reckon and reduce sights all day long.

21.1500 6581		New time
41.3223	**	Latitude JNew Position at 2115
	X Y	
136.8499	***	Longitude)
23.4000	GSE1	New time
41:1150	***	Latitude 1
	Y	N New Position at 2340
136.5154	**	Longitude
$\begin{aligned} & 28.2536 \\ & -4.3689 \end{aligned}$	ESE2	Sextant altitude
	**	Altitude intercept
	X H	
219.4574	**	Azimuth
	XH	
	GSE7	
-0.0728	**	Intercept converted to degrees
	6SE3	
41.1512	***	Latitude)
	XH	UIntercept terminus on Line of Position
136.4752		Longitude ${ }^{\text {a }}$

User Instructions

SIGHT REDUCTION TABLE

This program calculates the computed altitude, Hc , and azimuth, Zn , of a celestial body given the observer's latitude, L, and the local hour angle, LHA, and declination, d, of the body. It thus becomes a replacement for the nine volumes of HO 214. Moreover, the user need not bother with the distinctions of same name and contrary name; the program itself resolves all ambiguities of this type.

EQUATIONS:

$H c=\sin ^{-1}[\sin d \sin L+\cos d \cos L \cos L H A]$
$Z n=\left\{\begin{array}{lr}Z ; & \operatorname{sinLHA}<0 \\ 360-Z ; \operatorname{sinLHA} & 0\end{array}\right.$
$Z=\cos ^{-1}\left[\frac{\sin d-\sin L \sin H C}{\cos L \cos H c}\right]$
REMARKS:
Southern latitudes and southern declinations must be entered as negative numbers.

The meridan angle t may be input in place of LHA, but if so, eastern meridan angles must be input as negative numbers.

The program assumes the calculator is set in DEG mode.

NOTE:

EXAMPLE 1:

Calculate the altitude and azimuth of the moon if its LHA is $2^{\circ} 39^{\prime} 54$ "W and its declination $13^{\circ} 51^{\prime} 06^{\prime \prime} \mathrm{S}$. The assumed latitude is $33^{\circ} 20^{\prime} \mathrm{N}$.

EXAMPLE 2:

Calculate the altitude and azimuth of REGULUS if its LHA is $36^{\circ} 39^{\prime} 18^{\prime \prime} \mathrm{W}$ and its declination is $12^{\circ} 12^{\prime} 42^{\prime \prime} \mathrm{N}$. The assumed latitude is $33^{\circ} 30^{\prime} N$.

EXAMPLE 3:

At 6:10 G.M.T. on January 12, 1977 a star peeked through the clouds over Corvallis (L443 ${ }^{\prime} \mathrm{N}, 123^{\circ} 17^{\prime} \mathrm{W}$). An alert observer using a bubble sextant quickly determined its altitude to be 26° and its azimuth 158°. Using the Nautical Almanac identify the star.

SOLUTIONS:
(1)

33.20 ENTT		
-13.510E ENTT		
2.3954	GSE:	
42.4447	***	(Hc, D.MS)
	R/S	
183.5	***	(Zn,dec.deg.)
33.3000 ENT*		
12.1242 ENT*		
36.3918 ESE1		
50.2425	***	(HC, D.MS)
	R/S	
246.3	***	(Zn,dec.deg.)

This program may also be used for star identification by entering observed azimuth in place of local hour angle and observed altitude in place of declination. The outputs are then declination and local hour angle instead of altitude and azimuth. The star may be identified by comparing this computed declination to the list of stars in The Nautical Almanac.
(3)
44.3400 ENT*
26.0000 ENT \uparrow
158. 0000 ESB 1
-16.3725 . ${ }^{*}$ (d,D.MS)
Pr
339.4 *** (LHA,dec.deg.)
$123.17 \rightarrow 4$
462.7 *** (GHA,dec.deg.)
203.4 -
\rightarrow HMS
259.2 *** (SHA,D.MS)

Program Listings

NOTES

In the Hewlett-Packard tradition of supporting HP programmable calculators with quality software, the following titles have been carefully selected to offer useful solutions to many of the most often encountered problems in your field of interest. These ready-made programs are provided with convenient instructions that will allow flexibility of use and efficient operation. We hope that these Solutions books will save your valuable time. They provide you with a tool that will multiply the power of your HP-19C or HP-29C many times over in the months or years ahead.

Mathematics Solutions
Statistics Solutions
Financial Solutions
Electrical Engineering Solutions
Surveying Solutions
Games
Navigational Solutions
Civil Engineering Solutions
Mechanical Engineering Solutions
Student Engineering Solutions

Reorder No. 00029-14007 Printed in U.S.A. 00029-90011

