

INTRODUCTION

This HP-19C/HP-29C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.

They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become an expert on your HP calculator.

You will find general information on how to key in and run programs under "A Word about Program Usage" in the Applications book you received with your calculator.

We hope that this Solutions book will be a valuable tool in your work and would appreciate your comments about it.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

TABLE OF CONTENTS

DISTANCE TO OR BEYOND HORIZON	1
DISTANCE BY HORIZON ANGLE AND DISTANCE SHORT OF HORIZON This program calculates the distance between an observer and an object given (1) the vertical angle between its waterline and the horizon observed from a known height of eye or (2) the object's height and its subtended angle.	5
DISTANCE OFF AN OBJECT BY TWO BEARINGS	9
VELOCITY TRIANGLE	12
COURSE TO STEER	15
ESTIMATED TIME OF ARRIVAL	18
GREAT CIRCLE NAVIGATION [*]	21
GREAT CIRCLE COMPUTATION	24
COMPOSITE SAILING	27
RHUMB LINE NAVIGATION [*]	30

RHUMB LINE DEAD RECKONING	34
CELESTIAL NAVIGATION AND DEAD RECKONING	38
SIGHT REDUCTION TABLE [*]	42

* THIS PROGRAM ALSO APPEARS IN THE HP-19C/29C APPLICATIONS BOOK. IT HAS BEEN INCLUDED HERE, IN SLIGHTLY MODIFIED FORM, FOR THE SAKE OF COMPLETENESS.

DISTANCE TO OR BEYOND HORIZON

This program computes the distance to an object of known height whose base is obscured by the horizon and whose top subtends a sextant altitude hs with the horizon. The sextant altitude is corrected for index error and height of eye. Additional features are the calculation of the distance to the horizon for a given height of eye and the distance of visibility of an object of height H above sea level.

EQUATIONS:

$$D = \sqrt{\left(\frac{\tan h_{a}}{2.46 \times 10^{-4}}\right)^{2}} + \frac{H-HE}{0.74736} - \frac{\tan h_{a}}{2.46 \times 10^{-4}}$$
$$D_{hor} = 1.144 \sqrt{HE}$$
$$D_{vis} = 1.144(\sqrt{HE} + \sqrt{H})$$

where

D = distance to object, nautical miles D_{hor} = distance to horizon, nautical miles D_{vis} = distance of visibility, naut. miles H = height of object beyond horizon, feet HE= height of eye, feet ha= hs + IC - 0.97 \sqrt{HE} hs= sextant altitude, D.MS IC= index correction, M.m

EXAMPLE 1:	SOLUTIONS:			
The height of eye of of an observer is	(1)			
his horizon?		9.00	STO2 GSB2	
EXAMPLE 2:		3.43	***	n.m.
	(2)			
An observer "bobs" Farallon Light on the horizon and finds his height of		16.00	ST02	
eye to be 16 feet. The light is 358		358.00	ST03	
feet above sea level. How far is the			GSB2	
observer from the light? (Accuracy is		26.22	K/5	
attected by abnormal retraction)		20.22	***	n.m.
EXAMPLE 3:	(3)			
		1.30	ST01	
The top of a lighthouse, whose base is		20.00	ST02	
300 feet above sea level. It is found		300.00	ST03	
to have a sextant altitude of 25'6 above		0.2536	GSB1	
the horizon. The height of eve is 20		6.28	***	n.m.
feet and the sextant requires an index			GSB2	
correction of +1:3.		5.12	***	n.m.
			R/S	n m
What is the distance to the lighthouse?		24.93	***	11.111.
What is the distance to the horizon?				

It has been determined that the luminous range of the light is "strong", now compute its visibility for the given height of eye.

2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store pertinent data:			
	Index correction (minutes)	IC	ST0 1	
	Height of eye (feet)	HE	ST0 2	
	Height of object (feet)	н	ST0 3	
3a.	Enter sextant height (D.MS) and compute distance to object	hs	GSB 1	D.(naut. mi.)
3b.	Compute distance to horizon and distance		GSB 2	D _{hor(naut.mi.}
	of visibility		R/S	D _{vis} (nautmi.

01 #LBL1 02 →H 03 RCL1 04 RCL2 05 JX 06 . 07 9 08 7 09 × 10 -	hs(D.M hs°	S)	48 × 49 LSTX 50 RCL2 51 JX 52 × 53 R/S 54 + 55 R/S	1.144 *** D ** D	hor vis
11 6 12 0 13 ÷ 14 + 15 TAN 16 2 17 . 18 4 19 6 20 EEX 21 CHS 22 4 23 ÷ 24 ST05 25 RCL3 26 RCL2	ha°				
27 - 28 . 29 7 30 4 31 7 32 3 33 6 34 ÷ 35 JX 36 →P 37 RCL5 38 - 39 R/S 40 *LBL2 41 RCL3 42 JX 43 1 44 . 45 1 46 4 47 4	√ x ² + ** D	$\overline{y^2}$	** "Printx' *** "Printx' "R/S".	' may be inse ' may be used	rted before "R/S" to replace
		REGI	STERS		
0 1	IC	2 UF	3 11	4	5 11000
6 7		8 HL	<u>Н</u> 9	.0	Used
.2 .3		.4	.5	16	17
18 10		20	21	22	22
24	- 1		21	22	23
24 25		26	27	28	29

DISTANCE BY HORIZON ANGLE AND DISTANCE SHORT OF HORIZON

This program calculates the distance between an observer and an object when (1) the vertical angle between its waterline and the horizon has been observed from a known height of eye or (2) the object's height is known, together with its subtended angle.

This program also calculates the height of an object if its subtended angle and distance from the observer are known.

EQUATIONS:

$$D = \frac{HE}{tan(hs + IC + .97 \sqrt{HE})}$$
$$D = \frac{H}{tan(hs + IC)}$$

where

D = distance to object, feet HE= height of eye, feet IC= index correction, M.m H = height of object, feet hs= sextant altitude, D.MS

NOTE:

hs < 10' may make D unreliable due to atmospheric conditions when vertical sextant altitude between object and horizon is taken.

EXAMPLE 1:

The sextant altitude between the waterline of a buoy and the horizon is found to be 21!4. The observer has a height of eye of 22 feet and the sextant requires a +1!7 index correction. How far is the observer from the buoy?

EXAMPLE 2:

The sextant altitude subtended by the base and the top of a 41 foot light tower is 56!2. The sextant requires a -1!9 index correction. How far is the observer from the light tower?

EXAMPLE 3:

A vessel is anchored 2015 feet from an observer. The sextant altitude between the vessel's waterline and truck of mast is 1°15!2. There is no index error. How high is the truck of the mast above the waterline?

SOLUTIONS:

(3)

0.00	ST01	
2015.00	ENT↑	
1.1512	GSB3	
44.08	***	ft.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store pertinent data:			
	Index correction (minutes)	IC	STO 1	
	Height of eye (feet)	HE	ST0 2	
3a.	Enter sextant height (D.MS) and convert to	hs	GSB 1	D(feet)
	distance			· · · · · /
3b.	(Optional) convert to nautical miles		R/S	D(naut.mi.)
12	Un Enton hoight of chiest (feet)	.,		
4a.	Enter neight of object (leet)	<u>н</u>		
	the distance neight (D.MS) and convert	ns		D(feet)
4	(Ortical)			
4D.	(Uptional) convert to nautical miles			D(naut.mi.)
		D		
5.	Enter distance to object (feet) Enter sextant height (D_MS) and convert	hs	GSB 3	H(feet)
	to height			

01 #LBL1 02 +H 03 RCL1 04 RCL2 05 JX 06 . 07 9 08 7 09 × 10 + 11 GSB0 12 RCL2 13 X*Y 14 ÷ 15 GT09 16 #LBL2 17 +H 18 RCL1 19 GSB0 20 ÷ 21 #LBL9 22 R/S 23 6 24 0 25 7 26 6 27 ÷ 28 R/S 29 #LBL3 30 +H 31 RCL1 32 GSB0 33 × 34 R/S 35 #LBL0 36 6 37 0 38 ÷ 39 + 40 TAN 41 RTH	hs D hs H D ** [hs D(** })(ft.))(n.m.) (ft.) { (ft.)	** "Printx"	may be ir	nserted before "R/S'	
	1	REGI	L STERS			
0 1		2 UC	3	4	5	
6 7		B HE	9	0		
					. 1	
.2 .3		.4	.5	16	17	
18 19		20	21	22	23	
24 25		26	27	28	29	

DISTANCE OFF AN OBJECT BY TWO BEARINGS

To determine the distance off an object as a vessel passes it, observe two bearings on the bow and note the distance run between bearings. The program calculates the distance off the object when it is abeam and at the time of the first and second bearings.

EQUATIONS:

$$D_{2} = \frac{\sin RB_{1}}{\sin (RB_{2} - RB_{1})} D_{run}$$

$$D_{abeam} = |D_{2} \sin RB_{2}|$$

$$D_{1} = |\frac{D_{abeam}}{\sin RB_{1}}|$$

where

EXAMPLE 1:

A lighthouse bears -026° (26° counterclockwise) at 1130 and -051° at 1140. Our speed is 15 knots. How far will we be off the light when it is abeam? How far off were we at 1130 and 1140?

EXAMPLE 2:

A buoy is sighted bearing Ol5° on the bow, after a 3 mile run it bears 105°. What was its distance when abeam?

SOLUTIONS:

(1)

(2)

-26.00 ENT† -51.00 GSB1 15.00 ENT1 0.10 GSB3 D 4.60 *** ₽‡ D_2 2.59 *** R4 D_{abeam} 2.02 *** 15.00 ENT* 105.00 GSB1 3.00 GSB2 R↓ ₽∔ 0.75 *** ^Dabeam

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store bearings (D.d):			
	at ti	RB ₁		
	at t.	RBa	GSB 1	
22	Enten dictance nun (naut mi)	R		D _i (naut.mi.)
Ja.	and compute distances			
	OR			
3b.	Enter speed (knots) and time (H.MS) and	S		
	compute distances	$t=t_2-t_1$	GSB 3	D1(naut.mi.)
4.	Display remaining distances:			D ₂ (naut.mi.)
			R↓	D _a (naut.mi.)

01 #LEL1 02 STO2		Store	beari	ngs					
03 X≠Y 04 STO1 05 R∕S 06 *LBL3 07 →H		t,s							
08 × 09 #LBL2 10 RCL2 11 RCL1 12 - 13 SIN 14 ÷ 15 RCL1		D _{run}							
16 SIN 17 × 18 STO4 19 RCL2 20 SIN		D ₂							
21 × 22 ABS 23 RCL4 24 LSTX 25 RCL1		D _{abeam}	I						
26 SIN 27 ÷ 28 ABS 29 R/S		D ₁ D ₁ ,D ₂ ,	D _{abea}	am					
				REGI	STERS				
0	1	RB ₁	2	RB ₂	3	4	Use	ed	5
6	7	-	8		9	.0			.1
.2	.3		.4		.5	16			17
18	19		20		21	22			23
24	25		26		27	20			29
24	25		26		21	28			29

VELOCITY TRIANGLE

SOLUTION:

This program is an interchangeable solution for the vector addition problem. Given any two of the vectors shown, the program computes the third.

5.00	ST01	
20.50	ST02	
60.00	ENT†	
2.00	GSB1	
90.00	ENT†	
3.00	GSB3	
	GSB5	
1.02	東東東	knots
	X₽Y	
98.86	***	°T

Compass course is corrected on input for magnetic variation and deviation. True course is decorrected on output to yield compass course. Remember to update the values used for variation (changes with location) and deviation (changes with heading).

EXAMPLE:

A vessel is making 2 knots through the water, steering 060° by the compass. The magnetic variation is $20.5^{\circ}E$ and the deviation is $5^{\circ}E$. Calculate the set and drift of the current if the vessel is making good 3 knots on a course of $090^{\circ}T$.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
٦.	Key in the program			
2.	Store compass corrections:			
	Deviation (negative if west)	<u>+</u> Dev°	STO 1	
	Variation (negative if west)	<u>+</u> Var°	STO 2	
3.	Enter any two of the three vectors:			
3a	Heading -			
		٥c°	ENT↑	
	Speed	S,knots	GSB 1	
3b.	Current -			
	Set	Set°	ENT↑	
	Drift	Drift,knots	GSB 2	
3c.	Course -			
	Course made good	CMG°	ENT	
	Speed made good	SMG,knots	GSB 3	
4.	Compute the remaining vector:			
4a.	Heading —			
	Speed		GSB 4	S.knots
	Compass course		X↔V	C _C °
	True course		RCI 4	C _t °
45	furrent -			
	Drift		GSB 5	Drift/knots
	Set			Sat ^o
10	Set			Jet
40.	Speed made good		GSB 6	SMG.knots
	Course made good		x↔y	CMG°
				ana ana ina ina ang ang ang ang ang ang ang ang ang a

01 *LBL1 02 ST05 03 X:Y 04 ST03 05 RCL1 06 + 07 RCL2 08 + 09 GSB9 10 ST04 11 R/S 12 *LBL2 13 ST09 14 X:Y 15 ST08 16 R/S 17 *LBL3 18 ST07 19 X:Y 20 ST06 21 R/S 22 *LBL4 23 GSB7 24 RCL8 25 RCL9 26 CHS 27 GSB0 28 ST04 29 RCL1 30 - 31 RCL2 32 - 33 GSE9 34 ST03 35 X:Y 36 ST05 37 R/S 38 *LBL5 39 GSB7 40 RCL4 41 RCL5 42 GSB0 44 ST08 45 X:Y 46 ST09 34 ST09 34 ST08 45 X:Y 46 ST09 34 ST09 34 ST08 45 X:Y 46 ST09 34 ST09 34 ST08 45 X:Y 46 ST09 34 ST09 34 ST08 35 X:Y 36 SE0 37 R/S 38 *LBL5 39 GSB7 40 RCL4 41 RCL5 42 GSB0 44 ST08 45 X:Y 46 ST09 34 ST09 34 ST08 45 X:Y 46 ST09 34 ST09 34 ST08 35 X:Y 36 SE0 37 R/S 38 *LBL5 39 GSB7 40 RCL4 41 RCL5 42 GSB0 44 ST08 45 X:Y 46 ST09 46 ST09 47 ST09 46 ST09 47 ST09 47 ST08 47	Enter Norma Enter Compu Ct Norma Cc Speed Compu Set Drift	<pre>heading lize angle current course lize angle lize angle te current</pre>	50 RCL5 51 →R 52 ST.0 53 X±Y 54 RCL8 55 RCL9 56 GSB0 57 ST06 58 X±Y 59 ST07 60 R/S 61 #LBL7 62 RCL6 63 RCL7 64 →R 65 ST.0 66 X±Y 67 RTN 68 #LBL0 69 →R 70 S+.0 71 R↓ 72 + 73 RC.0 74 →P 75 X±Y 76 GSB9 77 RTN 78 #LBL9 79 3 80 6 81 0 82 →R 83 →P 84 X±Y 85 X<0? 86 GT0B 87 X±Y 88 R↓ 89 RTN 90 #LBL8 91 + 92 RTN		x1,y CMG SMG x1,y: x2,y: x1+x2 Norma ∠,360 ∠ 360 +	1 1 2, y_1 2, $y_1 + y_2$ alize angle) - \angle
45 X#Y	Set					
47 R/S						
49 RCL4	Compu	te course				
		REGI	LSTERS			
0 1	Dev	² Var	³ Cc	4 C	<u>+</u>	⁵ Speed
6 CMC 7	<u> </u>	8 C-+	9 Dud Ct	.0	<u> </u>	.1
	วเทษ	Set 4	Urift 5	Use	d	17
						17
18 19		20	21	22		23
24 25		26	27	28		29

COURSE TO STEER

This program calculates a course to steer given your location, the location where you want to go, your boat's speed through the water, and the set and drift of the current.

DESTINATION CMG DISTANCE SOURCE

EXAMPLE:

A vessel making 6 knots through the water is at $(45^{\circ}N. 124^{\circ}40'W)$ and she wishes to steer a course toward $(44^{\circ}40'N, 124^{\circ}10'W)$. The magnetic variation is 20°5E and there is a 2 knot current setting 090°. What course should she steer.

SOLUTION:

0.00	ST01	
20.50	ST02	
90.00	ST08	
2.00	ST09	
45.00	ENT↑	
124.40	ENT↑	
44.40	ENTT	
124.10	GSB1	
29.20	東東東	Dist., n.m.
6.00	GSB2	-
125.93	***	Course to steer, degrees
	R∕S	
7.30	東京東	Speed made good,knots
	R∕S	geographic geographics
4.00	***	Transit time, H.MS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store compass corrections:			
	Deviation (negative if west)	+Dev°	ST0 1	
	Variation (negative if west)	±Var°	ST0 2	
3.	Store current vector:			
	Set	Set°	ST0 8	
	Drift	Drift/knots	s STO 9	
4.	Enter positions and compute distance betweer	1:		
	Source latitude	L1(D.MS)	ENT↑	
	Source longitude	λ_1 (D.MS)	ENT↑	
	Destination latitude	$L_2(D.MS)$	ENT↑	
	Destination longitude	λ_2 (D.MS)	GSB 1	Dist.(n.m.)
5.	Enter speed through the water and compute	S,knots	GSB 2	C _c °
	compass course to steer			
6.	Compute speed made good		R/S	SMG(knots)
7.	Compute time to reach destination		R/S	t(H.MS)

01 *LBL1 02 →H 03 X±Y 04 →H 05 ST.1 06 R4 07 X±Y 08 →H 09 - 10 CHS 11 ST.2 12 R4 13 →H 14 S1 15 + 16 2 17 ÷ 18 COS 19 RC.2 20 × 21 RC.1 22 →P 23 6 24 0 25 × 26 ST.1 27 X±Y 28 GSB9 29 ST06 30 X±Y 31 R×S 32 *LBL2 33 ST05 34 RCL6 35 RCL8 36 RCL6 37 - 38 SIN 39 RCL9 40 × 41 RCL5 42 ÷ 43 SIN ⁺ 44 -		$\lambda_{2}L_{2}\lambda_{3}$ L_{2} λ_{1} $\lambda_{1}' - \lambda_{3}$ $L_{1}' + L$ Ang., $\sqrt{x^{2}} + Conve$ CMG Dist. Enter Comput	$\frac{1}{y^2}$ (n.m.) speed and te C _c	50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 77 77 77 77 78 80 81 82 88 88 88 99 91 92 93 94	ST07 GSB7 CHS GSB0 RCL1 - RCL2 - GSB9 R/S RC.1 RCL7 RCS ÷ HMS RC.1 RCL7 RCS ÷ HMS RCS * RCS * HMS RCS * RCS RCS RCS RCS RCS RCS RCS RCS		SMG, C C _c Dist SMG Time Norma 0 < a Vect x_2, y $y_1 + x_1 + r$ θ Vect x_1, y	CMB (knots) (H.MS) alize: angle < 360 or add 2 y ₂ x ₂ or add
43 SIN- 44 - 45 GSB9 46 RCL5 47 GSB7 48 GSB0 49 X≠Y		C _t SMG		92 93 94 95 96 97	ST.0 X≓Y RCL8 RCL9 RTN		х ₁ ,у	1
г <u>о</u> т	1 Do	W I	REGIS	3		4		5 5 5
6	<u>· De</u>	v	- Var 8	9		0		Speed
° CMG	<u>′</u> SM	IG	Set	<u>Dr</u>	ift	Use	d	Used
^{.2} Used	3		.4	.5		16		17
18	19		20	21		22		23
24	25		26	27		28		29

ESTIMATED TIME OF ARRIVAL

This program computes the time of arrival at the next port in local zone time and GMT, when distance, speed, departure date and time in local zone time are input.

It also computes speed required to make a given ETA, when distance, date and time of departure in local zone time and date and time of desired arrival in local zone time are input.

All computations can be made in GMT by storing zeros in registers 4 and 5 and entering GMT times.

EXAMPLES:

- A vessel departs San Francisco at 0030 on the 2nd of January local time, bound for Guam, distance 5,146 miles. What will be the date and time of arrival Guam local time, and GMT at 15.5 knots.
- If the same Vessel makes the same departure time and wishes to arrive in Guam at 0700 on the 16th of January local Guam time, what speed is required.

NOTE:

Zone time of San Francisco is +8 and Guam is -10.

REFERENCE:

This program is adapted from HP-65 Users' Library program #02185A by Capt. Kenneth R. Orcutt. SOLUTIONS:

- (1) 5146.00 STO1 15.50 STO2 8.00 STO4 -10.00 STO5 2.0030 GSB1 16.1430 *** Local time R/S 16.0430 *** GMT
- (2) 2.0030 ENT† 16.0700 GSB2 15.8582 *** Knots

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
٦.	Key in the program			
2.	Store pertinent data:			
	Distance (nautical miles)	Dist	ST0 1	
	Speed (knots)	Speed	ST0 2	
	Departure time zone (negative if east)	DTZ	STO 4	
	Arrival time zone (negative if east)	ATZ	ST0 5	
3.	To compute arrival time and date:			
3a.	Enter departure time and date in DD.HHMM	DD.HHMM	GSB 1	DD.HHMM (local time)
	format and run. e.g., 2:30 p.m. Jan 3			
	would be written 3.1430			
3b.	For GMT time and date of arrival		R/S	DD.HHMM(GMT)
	Note: If arrival is in the next month,			
	subtract the number of days in the			
	month.			
4.	To compute speed required to make a given			
	ETA:			
4a.	Enter departure time and date	DD.HHMM	ENT	
4b.	Enter arrival time and date and compute	DD.HHMM	GSB 2	Speed,knots
	speed			
	NOTE: If arrival is in the next month,			
	enter date plus the number of days			
	in the month.			

01 *LBL1 02 4 03 ST00 04 R↓ 05 GSB0 06 RCL1 07 RCL2 08 ÷ 09 RCL9 10 ÷ 11 + 12 ST07 13 RCL5 14 RCL9 15 ÷ 16 − 17 *LBL9 18 INT 19 LSTX 20 ST02	Compu i = 4 Time Add t tim Arriv DD.	te arrival of transit o departure e al time	50 + 51 RTN 52 *LBL2 53 5 54 STO0 55 R↓ 56 GSB0 57 X≠Y 58 DS2 59 GSB0 60 - 61 RCL1 62 X≠Y 63 ÷ 64 RCL9 65 ÷ 66 R∕S		Arriv. time.Dep. Time i = 5 Dep. time i = 4 Total transit time Speed ** Speed, knots		
20 FRC 21 RCL9 22 x 23 →HMS 24 1 25 0 26 0 27 ÷ 28 + 29 R/S 30 RCL7 31 GT09 32 *LBL0 33 FIX4 34 INT 35 LSTX 36 FRC 37 1 38 0 39 0 40 x 41 →H 42 2 43 4 44 ST09 45 ÷ 46 + 47 RCL1 48 RCL9 49 ÷	Co Fo ** Arriv dat GMT Set d DD. Add D Time	nvert to hours rmat display al time and e, local and isplay D. zone	** "PRINTX"	may be	insert	ed before "R/	S".
0 • 11 -		REGI	STERS		r	-	l
$\frac{1}{2}$ i ¹ Dis	tance	² Speed	3	⁴ Dep.T	ime Zon	Arriv. TIME	Zone
۲ ۲	sed	8	⁹ 24	.0		.1	
.2 .3		.4	.5	16		17	
18 19		20	21	22		23	
24 25		26	27	28		29	

This program calculates the great circle distance between two points and the initial course from the first point. Coordinates are input in degrees-minutesseconds format. The distance is displayed in nautical miles and the initial course in decimal degrees.

EQUATIONS:

$$D = 60 \cos^{-1} \left[\sin L_1 \sin L_2 + \cos L_1 \cos L_2 \cos (\lambda_2 - \lambda_1) \right]$$

$$C = \cos^{-1} \left[\frac{\sin L_2 - \sin L_1 \cos (D/60)}{\sin (D/60) \cos L_1} \right]$$
$$C_i = \begin{cases} C; \sin (\lambda_2 - \lambda_1) < 0\\ 360 - C; \sin (\lambda_2 - \lambda_1) \ge 0 \end{cases}$$

where:

$$L_1$$
, λ_1 = coordinates of initial point

 L_2 , λ_2 = coordinates of final point

D = distance from initial to final point

 C_i = initial course from initial to final point

REMARKS:

- Southern latitudes and eastern longitudes must be entered as negative numbers.
- Truncation and round off errors occur when the source and destination are very close together (1 mile or less).

- Do not use coordinates located at diametrically opposite sides of the earth.
- Do not use latitudes of $+90^{\circ}$ or -90° .
- Do not try to compute initial heading along a line of longitude $(L_1=L_2)$.
- This program assumes the calculator is set in DEG mode.

EXAMPLE 1:

Find the distance and initial course for the great circle from Tokyo (L35°40'N, λ 139°45'E) to San Francisco (L37°49'N, λ 122°25'W).

EXAMPLE 2:

What is the distance and initial great circle course from L33°53'30"S, λ 18°23'10"E to L40°27'10"N, λ 73°49'40"W?

SOLUTIONS:

(1)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program.			
2.	Key in latitude and longitude of origin.	L1(D.MS)	ENT↑	Lı
		λ_1 (D.MS)	ENT ↑	λ1
3.	Key in latitude and longitude of	L ₂ (D.MS)	ENT ↑	L ₂
	destination.	λ_2 (D.MS)		λ2
4	Calculate distance and initial course		GSB 1	D(n.m.)
· · ·	ourourate arstance and mitthar course.		R/S	C _i (dec.deg)

01 *LBL1 02 →H 03 ST03			48 SIN 49 ÷ 50 COS→	С	
04 R↓ 05 →H 06 STC1			51 RCL0 52 SIN 53 X<0?		
07 R↓ 08 →H 09 STO4 10 R↓			54 6765 55 R↓ 56 3 57 6		
11 →H 12 STO2 13 RCL2 14 SIN			58 0 59 X≠Y 60 - 61 RTN	** C	i
15 RCL1 16 SIN 17 × 18 RCL2			62 *LBL9 €3 R↓ 64 RTN	** (^C i
19 COS 20 RCL1 21 COS					
22 × 23 RCL3 24 RCL4 25 -					
26 5100 27 COS 28 × 29 +					
30 STO5 31 COS-' 32 STO6 33 6					
34 0 35 × 36 R/S 37 RCL1	**	D			
38 SIN 39 RCL2 40 SIN			** "Print; before	x" may be in: "R/S" and "	serted RTN".
41 KCL3 42 × 43 – 44 RCL2					
45 COS 46 ÷ 47 RCL6					
		REGI	STERS		
⁰ $\lambda_2 - \lambda_1$	¹ L ₂	² L ₁	³ λ ₂	4 λ_1	⁵ COS D/60
6	7	8	9	.0	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29
			-		

This program computes the latitude corresponding to a specified longitude on a great circle passing through two given points.

EQUATIONS:

$$L_{j} = \tan^{-1} \left[\frac{\tan L_{2} \sin(\lambda_{j} - \lambda_{1}) - \tan L_{1} \sin(\lambda_{j} - \lambda_{2})}{\sin(\lambda_{2} - \lambda_{1})} \right]$$

where

 $(L_1, \lambda_1) =$ coordinates of initial point $(L_2, \lambda_2) =$ coordinates of final point $(L_i, \lambda_i) =$ coordinates of intermediate point

NOTES:

The program does not compute along lines of longitude $(\lambda_1 = \lambda_2)$.

EXAMPLE:

A ship is proceeding from Manila to Los Angeles. The captain wishes to use great-circle sailing from L12°45!2N, λ 124°20!1E, off the entrance to San Bernardino Strait, to L33°48!8N, λ 120°07!1W, five miles south of Santa Rosa Island. Find the latitudes corresponding to 1) λ = 160°34'W; and 2) λ = 180°.

SOLUTION:

	ENT†	12.4512
	ENT†	-124.2006
	ENT†	33.4848
	GSB1	120.0706
	GSB2	160.3400
°N	***	41.2108
	GSB2	180 .000 0
°N	***	39.4133

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Enter positions:			
	Initial latitude (negative for south)	L (D.MS)	ENT↑	
	Initial longitude (negative for east)	λ_1 (D.MS)	ENT↑	
	Final latitude (negative for south)	L ₂ (D.MS)	ENT↑	
	Final longitude (negative for east)	λ_2 (D.MS)	GSB 1	
3.	Enter intermediate longitude and compute	λ_i (D.MS)	GSB 2	Li
	corresponding latitude			
4.	Repeat step 3 as desired.			

01 *LBL1 02 →H 03 ST03 04 R4 05 →H 06 ST01 07 R4 08 →H 09 ST04 10 R4 11 →H 12 ST02 13 R/S 14 *LBL2 15 →H 16 ST08 17 RCL4 18 - 19 SIN 20 RCL1 21 TAN 22 × 23 RCL8 24 RCL3 25 - 26 SIN 27 RCL2 28 TAN 29 × 30 - 31 RCL3 32 RCL4 33 - 34 SIN 35 ÷ 36 TAN-1 37 →HMS 38 R/S		λ ₂ L ₂ ** λ _i	λ1 L1			** "Pri befo	ntx" ma re "R/S	y be i ".	nserted
36 TAN- 37 →HMS 38 R∕S		** ^L i		REGI	STERS	** "Pri befo	ntx" ma re "R/S	y be i ".	nserted
1	1 1		2		2	1	4		5
U	' L	2	2	Ll	3	λ2	4 ,	^ 1	5
6	7		8	λ _i	9		.0		.1
.2	3		.4		.5		16		17
18	19		20		21		22		23
24	25		26		27		28		29

When the great circle would carry a vessel to a higher latitude than desired, a modification of great-circle sailing, called composite sailing, may be used to good advantage. The composite track consists of a great circle from the point of departure and tangent to the limiting parallel, a course line along the parallel, and a great circle tangent to the limiting parallel and through the destination. This program computes, for each of two points, the longitude at which a great circle through the point is tangent to some limiting parallel.

EQUATIONS:

$$\lambda_{\mathbf{V}1} = \lambda_1 + \cos^{-1}\left(\frac{\tan L_1}{\tan L_{\max}}\right) \mathbf{s}_1 \mathbf{s}_2$$
$$\lambda_{\mathbf{V}2} = \lambda_2 + \cos^{-1}\left(\frac{\tan L_2}{\tan L_{\max}}\right) \mathbf{s}_3 \mathbf{s}_2$$

where

$$(L_1, \lambda_1)$$
 = initial position
 (L_2, λ_2) = final position
 (L_{max}, λ_{V^1}) = point at which limiting
parallel is met

$$(L_{max}, \lambda_{V^2}) = point at which limitingparallel is left $s_1 = sgn (\lambda_2 - \lambda_1)$
 $s_2 = sgn (|\lambda_2 - \lambda_1| - 180)$
 $s_3 = -s_1$$$

$$sgn(x) = \begin{cases} +1 ; x \ge 0 \\ -1 ; x < 0 \end{cases}$$

EXAMPLE:

A ship leaves Baltimore bound for Bordeaux (Royan), France. The captain desires to use composite sailing from L36°57!7N, λ 75°42!2W one mile south of Chesapeake Light to L45°39!1N, λ 1°29!8W, near the entrance to Grande Passe de l'Quest, limiting the maximum latitude to 47°N.

Required:

- The longitude at which the limiting parallel is reached.
- (2) The longitude at which the limiting parallel should be left.

SOLUTION:

36.5742 ENT1
75.4212 ENT1
45.3906 ENT1
1.2948 GSB1
47.0000 GSB2
30.1607 ***
$$\lambda_{V1}$$
 (D.MS)
R/S
18.5653 *** λ_{V2} (D.MS)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Enter positions:			
	Initial latitude (negative for south)	L1(D.MS)	ENT↑	
	Initial longitude (negative for east)	λ_1 (D.MS)	ENT↑	
	Final latitude (negative for south)	L₂(D.MS)	ENT↑	
	Final longitude (negative for east)	λ_2 (D.MS)	GSB 1	
3.	Enter latitude of limiting parallel	L _{max} (D.MS)	GSB 2	$\lambda_{V^1}(D.MS)$
	and compute $\lambda_{\mathbf{V}_1}$ (limiting parallel is met)			
4.	Compute λ_{V2} (limiting parallelis left)		R/S	$\lambda_{V_2}(D.MS)$

01 *LBL1 02 →H 03 ST03 04 R↓ 05 →H 06 ST01 07 R↓ 08 →H		λ2 L2	λ ₁ L ₁		50 ÷ 51 COS- 52 RCL6 53 × 54 RCL3 55 GTO0		sgn		
09 ST04 10 R↓ 11 →H 12 ST02 13 R/S 14 *LEL2 15 TAN 16 ST05 17 RCL2 18 TAN 19 X≠Y		Enter	L _{max}						
20 ÷ 21 COS→ 22 RCL3 23 RCL4 24 - 25 ENT↑ 26 ABS 27 1 28 8 29 0 30 -		$\lambda_2 - \lambda_2 - \lambda_2$	λ_1 $\lambda_1 \mid \lambda_2 - \lambda_1$						
30		<u>+</u> 1							
39 #LBL0 40 + 41 1 42 →R 43 →P 44 X‡Y 45 →HMS 46 R/S 46 R/S 47 RCL1 48 TAN 49 RCL5		Nor A ** ^{\2} V1	malize ngle , ^λ v2	**	"PRINTX"	may be	insert	ed before	"R/S".
			REG		;				
0	1 1	_ 2	2 L1	3	λ2	4	λι	⁵ tanLmav	
6	7	- 2	8	9	£	.0	-	.1	
.2 syn	.3		.4	.5		16		17	
18	19		20	21		22		22	
	05					22		20	
24	25		26	27		28		29	

RHUMB LINE NAVIGATION

This program is designed to assist in the activity of course planning. You supply the latitude and longitude of the point or origin and the destination. The program calculates the rhumb line course and the distance from origin to the destination.

Since the rhumb line is the constantcourse path between points on the globe, it forms the basis of short distance navigation. In low and midlatitudes the rhumb line is sufficient for virtually all course and distance calculations which navigators encounter. However, as distance increases or at high latitudes the rhumb line ceases to be an efficient track since it is not the shortest distance between points.

The shortest distance between points on a sphere is the great circle. However, in order to steam great circles, an infinite number of course changes are necessary. Since it is impossible to calculate an infinite number of courses at an infinite number of points, several rhumb lines may be used to approximate a great circle. The more rhumb lines used the closer to the great circle distance the sum of the rhumb line distances will be. The Great Circle Computation program may be used to calculate intermediate course change points which can be linked by rhumb lines.

Latitudes and longitudes are input in degrees-minutes-seconds. Course is displayed in decimal degrees. Southern latitudes and eastern longitudes are input as negative numbers.

EQUATIONS:

$$C = \tan^{-1} \frac{\pi (\lambda_1 - \lambda_2)}{180 (\ln \tan (45 + \frac{1}{2}L_2) - \ln \tan (45 + \frac{1}{2}L_1))}$$
$$D = \begin{cases} 60 (\lambda_2 - \lambda_1) \cos L; \cos C = 0\\ 60 \frac{(L_2 - L_1)}{\cos C}; \text{ otherwise} \end{cases}$$

where:

 $(L_1, \lambda_1) = position of initial point$

 (L_2, λ_2) = position of final point

D = rhumb line distance

C = rhumb line course

REMARKS:

- No course should pass through either the south or north pole.
- Errors in distance calculations may be encountered as cos C approaches zero.
- Accuracy deteriorates for very short legs.
- This program assumes the calculator is set in DEG mode.

EXAMPLE 1:

What is the distance and course from L35°24'12"N, $\lambda125^{\circ}02'36"W$ to L41°09'12"N, $\lambda147^{\circ}22'36"E?$

EXAMPLE 2:

What course should be sailed to travel a rhumb line from L2°13'42"S, $\lambda179^{\circ}07'54"\text{E}$ to L5°27'24"N, $\lambda179^{\circ}24'36"W?$ What is the distance?

SOLUTIONS:

- (1) 35.2412 ENT↑ 125.0236 ENT↑ 41.0912 ENT↑ -147.2236 GSB1 4135.60 *** (DIST.,n.m.) R/S 274.79 *** (C,dec,deg.)
- (2)

	÷	
-2.1342	ENT↑	
-179.0754	ENT↑	
5.2724	ENT †	
179.2436	GSB1	
469.31	***	(DIST.,n.m.)
	R∕S	(,
10.73	***	(C,dec,deg.)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Key in latitude and longitude of origin	$L_1(D.MS)$	ENT↑	
		λ_1 (D.MS)	ENT↑	
3.	Key in latitude and longitude of	L ₂ (D.MS)	ENT↑	
	destination	λ_2 (D.MS)		
4.	Calculate distance and course		GSB 1	D(n.m.)
			R/S	C(dec.deg.)
	NOTE:			
	Southern latitudes and eastern longitudes			
	must be input as negative numbers.			

			T			
01 *LBL1			48 LN			
02 +H			49 RTN			
03 STO3	λ2		50 *LBL 8			
04 R.I			51 3			
05 +H			52 6		E to I	N 360 - C
06 ST01			53 0			
07 R4	λ,		54 RCL5			
0 8 →H			55 ABS			
09 ST04			56 -			
10 R4			57 *LBL7			
11 +H	lı.		58 ABS			
12 ST02	$\begin{bmatrix} \lambda \\ \lambda \\ \lambda \end{bmatrix} = \lambda_{2}$		59 ST06			
13 RCL4	~1 ~2		60 1			
14 RCL3			61 8			
15 -			62 0			
16 STO0			63 RCLU			
17 2	Make -	$180 < \lambda_1 - \lambda_2$	64 ABS		is [].	-J. 7 > 180°
18 ÷	< 180		65 XZY?		IS LA	subtract from
19 SIN			66 GSB6		360	
20 SIN-'			67 RULI			5
21 9			68 CUS			
22 0			69 ×			
23 ÷			70 \$107			
24 Pi			71 RCLI			
25 ×			72 RCL2			
26 RCL1			73 -			
27 GSB9			74 RUL5			
28 RCL2			75 005		ic C -	- 0002
29 GSB9			76 X#0?		IS C -	- 90 :
30 -						
31 - 7 2			78 EN!T			
32 E4	С		75 X=07			
33 8700 74 8 010			00 RUL7			
34 RULU Je cin			0 10			
30 51N 76 61N-			02 0 97 v			
36 31N -			84 ABC			
37 ANU? 70 CTAQ	x<0 me	ans east to	85 p/c		** Dis	tance
30 810 0 70 pris	wes	t	86 PCLE			
33 ROLD 40 CT07			87 PTN		** Cou	rse
41 ¥1 B1 9	If wes	t to east	88 *1 BLE			
42 2	Cis	answer	89 3			
47 -			90 E		If [λ ₁	$-\lambda_2$ > 180°
44 4			91 0		-	
45 5			92 X # Y			
45 +			93 -		then 3	$[360-[\lambda_1-\lambda_2]]$
47 TAN			94 RTN			
			95 R/S			
		REGI	STERS			
$\lambda_1 - \lambda_2$	1 L ₂	² L ₁	3 λ2	4 λ	1	⁵ Used
6	7	8	9	.0		.1
.2	.3 ** "Pri	ntx" may be ir	serted before	e "R/S"	& "RTN".	17
18	19	20	21	22		23
24	25	26	27 28			29.

This program calculates a ship's DR position given the ship's course, speed, and elapsed time from the last fix or DR position. The DR position is stored so that on subsequent legs just course, speed, and elapsed time need be entered to obtain the updated DR position. The program may be used for both small and large area DR problems.

EQUATIONS:

The updated position (L,λ) is given by following a loxodrome (rhumb line) from the initial position (L_i,λ_i) for a distance determined by the speed and time.

$$L = L_i + \Delta t \frac{S \cos C}{60}$$

$$\lambda = \begin{cases} \lambda_{i} + \frac{180 \tan(1 \tan(45 + \frac{L_{i}}{2}) - 1 \tan(45 + \frac{L}{2}))}{\pi}; \\ C \neq 90 \text{ or } 270 \ (L_{i} \neq L) \\ \lambda_{i} - \Delta t \ \frac{S \sin C}{60 \cos L_{i}}; \ C = 90 \text{ or } 270 \ (L_{i} = L) \end{cases}$$

where:

- L_i = initial latitude (N, positive; S, negative)
- L = updated latitude
- λ_i = initial longitude (W, positive; S, negative)
- λ = updated longitude
- S = ship's speed, knots
- C = ship's course, degrees
- Δt = the time (H.MS) between initial and final positions.

NOTES:

- The program cannot follow a meridian over a pole.
- The program loses accuracy and gets incorrect answers when within 0.5° of a pole.

EXAMPLE (Fig. 1):

A vessel's position is L33°49!1N, $\lambda 120^{\circ}52!0W$ at 1200. If she steams as shown, what is her position at each time?

TIME	С	S	DR
1200			L33°49'06"N, λ 120°52'00"W
1330	120°	15 knots	(L33°37'51"N,λ120°28'34"W)
1510	240°	15 knots	(L33°25'21"N,λ120°54'32"W)
1823	9 0°	17 knots	(L33°25'21"N,λ119°49'01"W)
1955	355°	20 knots	(L33°55'54"N,λ119°52'14"W)

SOLUTION:

33.4906 ENT↑		
120.5200 GSB1		
13.3000 ENT†		
12 .0000 GSB3		
120.0000 ENT†		
15.0000 GSB2		
33.3751 ***		
R∕S	1330	DR
120.2834 ***		
15.1000 ENT†		
13 .3000 GSB3		
240.0000 ENT†		
15.0000 GSB2		
33.2521 ***		
R∕S	1510	DR
120.5433 ***		
18.2300 ENT†		
15.1000 GSB3		
90 .0 000 ENT†		
17 .0000 GSB2		
33.2521 ***	1000	
R/S	1823	DR
119.4902 ***		
19.5500 ENT↑		
18.2300 GSB3		
355.0000 ENT†		
20.0000 GSB2		
33.5554 ***		
R/S	1955	DR
119.5214 ***		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Enter initial position:			
	Latitude (negative for south)	L _i ,D.MS		
	Longitude (negative for east)	λ _i ,D.MS		
2	Enton chinks way and compute DP.			
<u> </u>				
	Time on course*	∆t,H.MS		
	Course	C°		
	Speed	S,knots	GSB 2	L,D.MS
			R/S	λ,D.MS
*	To find the difference between two times	T ₁ ,H.MS	ENT ↑	
	T_1 may be less than or greater than T_2 ,	T ₂ ,H.MS	GSB 3	∆t, H.MS
	but if the times are in different days,	-		-
	add 24 hours to the smaller time.			

r							T		
01 ≭LBL1 02 FIX4 03 →H 04 ST02 05 X≭Y		λ ₁ L ₁		58 51 52 53 54	STD2 RCL1 +HMS R/S RCL2		λ *** L		
06 +H 07 STO1 06 R/S 09 #LBL2		S.C.Δ	t	56 56 57 58 59	→HTS R/S #LBL0 9 0		** λ		
		See		68	+				
11 5105 12 RL		SCOSU		61	2				
13 ST06		SsinC		62	÷ Ton				
14 R4				64	RTN				
15)H				65	#LBL9				
16 5107 17 RCI5				66	RCL6				
18 ×				67	RCL7				
19 6				69	RCLI				
20 0				70	COS				
21 ÷ 22 PCL1				71	6				
23 +		Li		72	e				
24 ST01		L		74	CHS				
25 LSTX		Li		75	ETO8				
26 X=Y?				76	#LBL3		∆t ro	utine	
27 6105 28 6588		C = 9	0° or 270°	77	÷H				
29 RCL1				78	¥¥۲ لام				
30 GSB0				80	7n -				
31 ÷				81	ABS				
32 LN 77 DCI 6				82	+HMS		** ∆t		
34 X				83	R∕ S				
35 RCL5									
36 ÷									
37 1				** "	PRINTX"	may be	linsert	ed before	"R/ \$ ".
30 C 39 A				*** "	PRINTX"	may be	used t	o replace	"R/\$".
40 X									
41 Pi									
42 #LBL8									
43 - 44 PCL2		λ.							
45 +		` 1							
46 1									
47 →R		Nor	malize						
40 71 49 21 7		А	ngre						
			REGI	L STERS			I		
0	1 I		² λ	3		4		⁵ ScosC	
⁶ Ssin(7 <u>^+</u>		8	9		.0		.1	
.2	.3		.4	.5		16		17	
18	19		20	21		22		23	
24	25		26	27		28		20	
24	25		20	21		28		29	

CELESTIAL NAVIGATION AND DEAD RECKONING

This program allows you to update a vessel's position and correct it using sights on a celestial object. The program is started with your latitude and longitude and the object's GHA and declination all determined for the same time. Then when any other time is keyed in, the corresponding DR is computed. If a sight is taken at that time, the resulting altitude may be entered into the calculator to yield an intercept and azimuth. The DR may be moved accordingly if desired.

The dead reckoning technique used is midlatitude sailing which, while not as accurate as rhumb line dead reckoning, is sufficiently good for most purposes. Altitude intercepts "toward" are considered to be positive, even though careful reading of Bowditch would indicate the opposite. By using this convention, it is easy to compute the intercept terminus (most probable position or MPP).

The program contains a useful subroutine, GSB 7, which can be used for translating almanac entries in degrees, minutes and tenths (DM.M) to decimal degrees (D.d).

REFERENCE:

This program is based on private communications with Paul E. Shaad of Sacramento, California.

EXAMPLE:

On February 19, 1975, a ship is steaming on course 240 at 17 knots. At 1800 GMT her dead reckoning position is 42°N,135°W. Compute her position at 2115.

Her navigator shoots the Sun from a height of 65' (dip = 7!8). At 2340 he obtains a sextant altitude of $28^{\circ}25'36''$. Compute the altitude intercept and azimuth and correct the ship's DR.

SOLUTION

From	The	Naut	ical	Alma	anac	we	take	the	
Sun's	GH/	A and	l dec	linat	cion	at	1800	and	
1900	GMT	and	also	the	Sun	's	semidi	amte	er.

-	G M T		ç			
	u.n.r.	G.I	H.A.	De	ec.	
	d h	o	I	0	1	
	19 18	86	31.5	S11	18.5	
	19	101	31.5		17.6	
	8631.50	S.D. 00 GSB7	16.2 GHA	at 1800		
	86.52	50 ***	Grift	ut 1000		
	_1110 50	STO1	DEC	at 1800		
	-11.30	83 ***	DLU	uc 1000		
		ST02				
	16.20 9 27	100 GSB7 100 ***	Sem	idiamete	r	
	CIL:	ST03		1		
	42.00	00 STO4	Lat	.)		
	135.00	00 ST05	Long	g. (Positi	on
	7.80	00 GSB7	Dip	of the	at 18	800
	0.13	88 ***	ho	rizon		
		ST06	•	,		
	240.00	00 ST07	Cour	rse		
	17.00	00 ENT†	Spee	ed		
	60.00	00 ÷				
	0.28	33 ***	Spee	ed conve	rted to)
		ST08	deg	grees pe	r hour	
	18.00	100 STO9	Time	9		
	10131.50	100 GSB7				
	101.52	50 ***) (Calculat	ion of	
	8631.50	00 GSB7	- { I	Rate of	Change	
	86.52	150 ***) (of GHA		
	15 00	-				
	10.00	ST.1				
	-1117.60	00 GSB7				
	-11.29	33 ***) (Calculat	ion of	
	-1118.50	00 6987	- { i	Rate of	Change	
	-11.30	183 ***)	of DEC	0-	
		-				
	0.01	50 ***				
		ST.2				

Now that the setup is compelte, you can dead reckon and reduce sights all day long.

21.1500 GSB1 New time 41.3223 *** Latitude X:Y 136.0409 *** Longitude)

23.4000 GSB1 41.1150 *** X:Y 136.5134 *** 28.2536 GSB2	New time Latitude New Position at 2340 Longitude Sextant altitude
-4.3689 *** X‡Y 219.4574 ***	Altitude intercept Azimuth
X≠Y GSB7 -0.0728 *** CSB7	Intercept converted to degrees
41.1512 *** X≠Y 136.4752 ***	Latitude Intercept terminus on Line of Position

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store the following values			
	Greenwich Hour Angle of object	GHA,D.d	ST0 1	
	(negative if east)			
	Declination of object (negative if south)	DEC,D.d	ST0 2	
	Semi-diameter of object (negative if U.L.)	SD,D.d	STO 3	
	Latitude (negative if south)	L,D.d	STO 4	
	Longitude (negative if east)	λ,D.d	STO 5	
	Dip of the horizon	Dip,D.d	STO 6	
	Course	C,D.d	STO 7	
	Speed (in knots divided by 60)	S,D.d	STO 8	
	Time	t,H.h.	STO 9	
	Rate of change of GHA*	gha,D.d/hr	STO 1	
	Rate of change of dec*	dec.D.d/hr	ST0 •2	
3.	Enter a new time and compute new DR	t _{new,} H.MS	GSB 1	L,D.MS
			x↔y	λ ,D.MS
4.	Enter sextant altitude and compute inter-	h _s ,D.MS		
	cept and azimuth		GSB 2	a,mi
			х↔у	Zn,D.d
5.	Update DR to MPP after GSB 2 in Step 4		GSB 7	a,D.d
	(i.e.: An in y; a in x)		GSB 3	L,D.MS
			x↔y	λ,D.MS
*	Enter GHA or DEC for some time V	alue ₁ ,D.MS	→H	Value ₁ ,D.d
	Enter GHA or DEC for one hour earlier V	alue2,D.MS	→H	Value ₂ ,D.d
	OR		-	Rate D.d/hr
	Enter GHA or DEC for some time V	alue1,DM.M	GSB 7	Value ₁ ,D.d
	Enter GHA or DEC for one hour earlier V	alue2,DM.M	GSB 7	Value2,D.d
			-	Rate D.d/hr

01 *LBL1 02 +H 03 RCL9 04 X:Y 05 ST09 05 X:Y 07 - 08 ST.4 09 RC.1 10 × 11 ST+1 12 RC.4 13 RC.2 14 × 15 ST+2 16 RC.4 17 RCL8 18 × 19 RCL7 20 X:Y 21 *LBL3 22 +R 23 ST+4 24 2 25 ÷ 26 RCL4 27 X:Y 28 - 29 COS 30 ÷ 31 ST-5 32 RCL1 33 RCL5 34 - 35 ST00 36 RCL5 37 +HMS 38 RCL4 39 +HMS 40 RTN 41 *LBL2 42 +H 43 RCL6 44 - 45 ENT† 46 TAN 47 1/X 48 6 49 7	Update Time Update GHA And DEC Update DR New λ New L Compute a and Z _n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Conv DM.m to D.d	ert
$\begin{array}{c c} 0 & LHA & 1 & GI\\ \hline 6 & Dip & 7 \\ \hline 1^2 & doc & \frac{13}{3} & H \end{array}$	I REGINAL REGI	I STERS 3 SD 4 9 t 0 .5 Used 16	L	5 λ .1 gha 17
uec 11 18 19 24 25	20 26	21 22 27 28		23 29

SIGHT REDUCTION TABLE

This program calculates the computed altitude, Hc, and azimuth, Zn, of a celestial body given the observer's latitude, L, and the local hour angle, LHA, and declination, d, of the body. It thus becomes a replacement for the nine volumes of HO 214. Moreover, the user need not bother with the distinctions of same name and contrary name; the program itself resolves all ambiguities of this type.

EQUATIONS:

$$Zn = \begin{cases} Z; & sinLHA < 0 \\ 360-Z; sinLHA & 0 \\ Z = cos^{-1} \boxed{\frac{sin d - sin L sin Hc}{cos L cos Hc}} \end{cases}$$

REMARKS:

Southern latitudes and southern declinations must be entered as negative numbers.

The meridan angle t may be input in place of LHA, but if so, eastern meridan angles must be input as negative numbers.

The program assumes the calculator is set in DEG mode.

NOTE:

This program may also be used for star identification by entering observed azimuth in place of local hour angle and observed altitude in place of declination. The outputs are then declination and local hour angle instead of altitude and azimuth. The star may be identified by comparing this computed declination to the list of stars in The Nautical Almanac.

EXAMPLE 1:

Calculate the altitude and azimuth of the moon if its LHA is 2°39'54"W and its declination 13°51'06"S. The assumed latitude is 33°20'N.

EXAMPLE 2:

Calculate the altitude and azimuth of REGULUS if its LHA is 36°39'18"W and its declination is 12°12'42"N. The assumed latitude is 33°30'N.

EXAMPLE 3:

 $Hc=sin^{-1}[sin d sin L + cos d cos L cos LHA]$ At 6:10 G.M.T. on January 12, 1977 a star peeked through the clouds over Corvallis (L44°34'N, 123°17'W). An alert observer using a bubble sextant quickly determined its altitude to be 26° and its azimuth 158°. Using the Nautical Almanac identify the star.

SOLUTIONS:

33.20 ENT† (1)-13.5106 ENT* 2.3954 GSB1 42.4447 *** (Hc,D.MS) R/S 183.5 *** (Zn.dec.deq.) (2) 33.3000 ENT† 12.1242 ENT⁺ 36.3918 GSB1 (Hc,D.MS) 50.2425 *** R/S (Zn,dec.deq.) 246.3 ***

(3) 44.3400 ENT† 26.0000 ENT† 158.0000 GSB1 -16.3725 *** (d,D.MS) R/S 339.4 *** (LHA,dec.deg.) 123.17 +H + 462.7 *** (GHA,dec.deg.) 203.4 -+HMS 259.2 *** (SHA,D.MS)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Input the following:			
	Observer's latitude	L(D.MS)		
	Declination	d(D.MS)	ENT ⁺	
	Local hour angle	LHA (D.MS		
3.	Calculate:			
	Altitude		GSB 1	Hc(D.MS)
	Azimuth		R/S	Zn(dec.deg.)
	<u>OR</u> :			
2.	Input:			
	Observer's latitude	L(D.MS)	ENT↑	
	Altitude	Hc(D.MS)	ENT	
	Azimuth	Zn(D.MS)		
3.	Calculate:			
	Declination		GSB 1	d(D.MS)
	Local hour angle		R/S	LHA (dec.deg.)

01 *LBL1 02 →H 03 ST02 04 R4 05 →H 06 ST01 07 R4 08 →H 09 ST00 10 SIN 11 RCL1 12 SIN 13 × 14 RCL0 15 COS 16 RCL1 17 COS 18 × 19 RCL2 20 COS 21 × 22 + 23 ST03 24 SIN ⁻¹ 25 ST04 26 →HMS 27 FIX4 28 R/S 29 FIX1 30 RCL1 31 SIN 32 RCL3 33 RCL0 34 SIN 35 × 36 -	L d LH, Hc **	A ,dec.deg. ,D.MS *	48 R4 49 3 50 6 51 0 52 X:Y 53 - 54 RTN 55 *LBL0 56 RJ 57 RTN 58 R/S ** "PRINTX" *** "PRINTX"	** Zn ** Zn may be insert may be used t	ed before "RTN" to replace "R/S".
41 COS 42 ÷ 43 COS⊣ 44 RCL2 45 SIN 46 X<0? 47 GTO0	Z				
		REGIS	STERS	i	
0	1 d	2 LHA	з Sin Hc	4 Hc	5
6	7		0	0	<u> </u>
σ	/	8	Э	.0	.1
.2	.3	.4	.5	16	17
	-				
18	19	20	21	22	23
24	25	26	27	28	20
24	25	26	27	28	29

NOTES

In the Hewlett-Packard tradition of supporting HP programmable calculators with quality software, the following titles have been carefully selected to offer useful solutions to many of the most often encountered problems in your field of interest. These ready-made programs are provided with convenient instructions that will allow flexibility of use and efficient operation. We hope that these Solutions books will save your valuable time. They provide you with a tool that will multiply the power of your HP-19C or HP-29C many times over in the months or years ahead.

Mathematics Solutions Statistics Solutions Financial Solutions Electrical Engineering Solutions Surveying Solutions Games Navigational Solutions Civil Engineering Solutions Mechanical Engineering Solutions Student Engineering Solutions

Reorder No. 00029-14007 Printed in U.S.A. 00029-90011