

INTRODUCTION

This HP-19C/HP-29C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.

They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become an expert on your HP calculator.

You will find general information on how to key in and run programs under "A Word about Program Usage" in the Applications book you received with your calculator.

We hope that this Solutions book will be a valuable tool in your work and would appreciate your comments about it.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

TABLE OF CONTENTS

RESISTIVE/REACTIVE CIRCUIT CALCULATIONS	1
IMPEDANCE OF LADDER NETWORK	5
STANDARD RESISTANCE VALUES	8
EXPONENTIAL GROWTH OR DECAY	11
EQUATIONS OF MOTION	14
KINETIC ENERGY	17
RPM/TORQUE/POWER	20
BLACKBODY THERMAL RADIATION	23
CONSERVATION OF ENERGY	28
MOHR CIRCLE FOR STRESS	32
POLYNOMIAL EVALUATION (REAL OR COMPLEX)	36
SINE, COSINE AND EXPONENTIAL INTEGRALS	39

RESISTIVE/REACTIVE CIRCUIT CALCULATIONS

This program performs resonance calculations for R-L-C circuits, calculates the reactance of inductive and capacitive branches, the equivalent value of series capacitors or parallel resistors and inductors, and performs power calculations for resistive branches using straightforward manipulations of the following equations:

$$f_{r} = \frac{1}{2\pi\sqrt{LC}}$$

$$X_{C} = \frac{1}{2\pi fC}$$

$$X_{L} = 2\pi fL$$

$$P = I^{2}R = E^{2}/R$$

$$\frac{A_1A_2}{A_1+A_2} = A_3$$

where

- f_r = resonant frequency in hertz
- L = inductance in henrys
- C = capacitance in farads
- X_{c} = capacitive reactance in Ω

$$X_L$$
 = inductive reactance in Ω

P = power in watts

I = current in amps

R = resistance in Ω

E = voltage in volts

- A1,A2 = the values of two parallel
 resistors in ohms, two parallel
 inductors in henrys, or two
 series capacitors in farads
 - A₃ = the resultant, equivalent resistance in ohms, inductance in henrys, or capacitance in farads
- <u>NOTE</u>: Given a resistance or capacitance, A_1 , the value of the circuit element required to produce a desired resultant resistance or capacitance may be calculated by entering A_1 as a negative value.

EXAMPLES:

- 2. L = 2.5h, $f_r = 60H_z$ Calculate C and X_L at f_r
- 3. E = 345v, R = $1.25M\Omega$ Calculate P and I
- 4. $R_1 = 120\Omega$, $R_2 = 240\Omega$ a. Find the equivalent resistance of these two resistors in parallel, R_3 .
 - b. Parallel R_3 with 50 Ω .
 - c. Find the resistance required for a resultant resistance of 25Ω.

SOLUTION:

ENG4 160.-06 ENT* 0.01-06 GSB1 125.82+03 ### fr 60.0000 ENT* 2.5000 GSB2 2.8145-06 *** C 60.0000 ENT+ 2.5000 GSB4 942.48+00 *** XL 345.0000 ENT: 1.25+06 GSB5 95.220-03 *** P 1.25+06 GSB7 Ι 276.00-06 *** 120.0000 ENT 240.0000 GSB9 R₃ 80.000+00 *** 50.0000 GSB9 4b 30.769+00 *** CHS 25.0000 GSB9 4c 133.33+00 ***

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	YS	OUTPUT DATA/UNITS
1.	Key in the program and choose an appropriate				
	display format				
2.	Calculate f.	L	ENT		
	r	С	GSB	1	f
3.	Calculate L or C	f _r	ENT		T.
		C or L	GSB	2	L or C
	REACTANCE CALCULATIONS				
4.	Calculate Xa	f	ENT		
		С	GSB	3	X _C
5.	Calculate X.	f	ENT		Ů
	L	L	GSB	4	XI
	POWER CALCULATIONS				
6a	Given E: Calculate P	Е	ENT		
		R	GSB	5	Р
6b	Given I: Calculate P	I	ENT		
		R	GSB	6	Р
	Given P,R:				
7a	Calculate I	Р	ENT		
		R	GSB	7	I
7b	Calculate E	Р	ENT		
		R	GSB	8	E
	PARALLEL RESISTANCE/SERIES CAPACITANCE				
8.	Given two circuit elements, calculate resultant	۲	ENT		
		^A 2	GSB	9	^A 3
9.	Given one circuit element and the desired	A	CHS	ENT	
	resultant value, calculate the value of the	A	GSB	9	A ₂
	circuit element required.	.			

01 *LBL1						
02 X 03 JX						
04 GT00						
05 #LBL2						
06 X≠Y						
07 GSB0						
08 X2						
10 -						
11 R/S		Ior	C.			
12 #LBL3		2 01	•			
13 ×						
14 GT00						
15 #LBL4						
17 ESER						
18 1/X						
19 R/S		X _I				
20 *LBL5		L				
21 1/8						
22 #LBL5						
23 AFT 24 X2						
25 X		P				
26 R/S		Р				
27 #LBL7						
28 1/X						
29 #LBL8						
36 ×		Ton	Г			
32 R/S		1 01	L			
33 *LBL0						
34 2						
35 X						
36 Pi						
37 A 78 178		f or	Xe			
39 RTN		r				
40 *LBL9						
41 X						
42 ENTT						
43 ENIT						
44 LOIA 45 =						
46 LSTX						
47 +		A ₂ or	A ₂			
48 ÷		3	2			
49 R/S						
1						
		L	REGI	L STERS		
0	1		2	3	4	5
6	7		8	9	.0	 .1
.2	.3		.4	.5	16	 17
18	19		20	21	22	23
24	25		26	27	28	29

IMPEDANCE OF A LADDER NETWORK

This program computes the input impedance of an arbitrary ladder network. Elements are added one at a time starting from the right. The first element must be in parallel.

Suppose we have a network whose input admittance is $Y_{\mbox{in}}$. Adding a shunt R, L, or C, the input admittance becomes

$$Y_{new} = \begin{cases} Y_{in} + \left(\frac{1}{R} + j0\right) \\ Y_{in} + \left(0 - j \frac{1}{\omega L_p}\right) \\ Y_{in} + (0 + j \omega C_p) \end{cases}$$

Adding a series R, L, or C, we have

$$Y_{new} = \begin{cases} \left(\frac{1}{Y_{in}} + (R_s + j0)\right)^{-1} \\ \left(\frac{1}{Y_{in}} + (0 + j \ \omega \ L_s)\right)^{-1} \\ \left(\frac{1}{Y_{in}} + \left(0 - j \ \frac{1}{\omega \ C_s}\right)\right)^{-1} \end{cases}$$

The program converts this admittance to an impedance for display.

<u>NOTE</u>: An erroneous entry may be corrected by entering the negative of the incorrect value.

FIX2	
4.+06 GSB1	
50.00 GSB3	Zin
50.00 ***	
X ≠ Y	
6.00 ***	∠Zin
240012 GSB5	1 1
15.74 ***	Z _{in}
X≠Y	_
-71.66 ***	^{ZZ} in
2.56-06 GSB2	
GSB5	
49.65 ***	' [∠] in'
87% 04.00	· 7 ·
84.28 ***	^{∠∠} in
/9612 6985	7.
497.69 *** 141	' ^z in'
X7Y	7
后。25、米米米	/∠in

STEP	INSTRUCTIONS	INSTRUCTIONS INPUT DATA/UNITS		
1.	Key in the program and choose an appropriate			
	display format.			
2.	Initialize	f	GSB 1	W
3.	Input a parallel element:			
		R _p	GSB 3	Z _{in}
			x↔y	^{∠Z} in
		С _р	GSB 5	
			X↔y	4 ^Z in
		L _n	GSB 4	Zin
		٢	x↔y	∠Zin
4a	For a series element:			
		R _s	GSB 2	
		5	GSB 3	Z _{in}
			x↔y	^{∠Z} in
		с _s	GSB 2	
			GSB 4	Z _{in}
			х↔у	₄ Z _{in}
		Le	GSB 2	
		3	GSB 5	Z _{in}
			x↔y	∠Zin
4b	For a parallel element:			
	Go to step 3			
5.	Repeat step 4 until all elements are entered.			

91 #1 BI 1		f		50 0000		Conve	rt Yin→Zin
01 #EDE1 00 0				56 6566			
02 2 07 Y				01 K+			
03 X				52 RCL6		Dada a	dmittancos
04 Pi				53 +		Con im	nodancos
05 X		Clear	flaq	54 X≠Y		or im	pedances
06 CLRG		w	5	55 RCL7		V	
07 ST03		"		56 +			
08 R/S				57 X±Y			
89 +1 B1 B		7		50 DC 0			
10 PI				50 V400			
10 5.4				37 A+0?			
11 7 P				60 6580			
12 1/X				61 R↓		Conve	rt Z→Y
13 X≠Y				62 ST01			
14 CHS				63 X≠Y			
15 X ≠ Y				64 ST02			
16 →R				65 X≠Y			
17 A				66 0			
				57 CSRA			
10 KIN 10 - KIN		R,C,L	<i>i</i>	20 0700		Conve	rt Y→Z
19 ¥LBLZ		Set fl	ag (series)	00 0100 CO DI		Clear	flag
20 STO0				69 K¥			
21 R/S				78 →P			
22 *LBL3				71 R/S		ا يدينيند	- 1
23 1/X						***	$\frac{1}{10}$ $\frac{1}{2}$ in
24 RCL0							
25 X=0?							
26 0700		0,Y (p	oarallel)				
23 6100			•				
27 0							
28 6108							
29 *LBL4		0,Z (s	series)				
30 RCL3							
31 X							
32 1/X		X _a or	В.				
33 CHS		1.0	-L				
74 9							
07 0 75 0+0							
33 A+1 75 0700							
36 6108							
37 ¥LBL5							
38 RCL3			_				
39 X		X or	BC				
40 0		L	0				
41 X≠Y							
42 *LBL8							
43 ST07				*** "	+	ha =-	contod
44 X7V				l oot "Prin	itx" maj	De in	serieu.
45 CTOS							
40 0100							
46 KULZ							
47 RCL1							
48 RCL0							
49 X≠0?							
			REGI	STERS			
⁰ flag	¹ ReΓ	Y _{in}]	² Im[Yin]	$\omega = 2\pi f$	4		5
6	7		8	9	.0		.1
used	use	d		-			
.2	.3		.4	.5	16		17
18	19		20	21	22		23
	25			07	00		20
24	25		20	21	28		29

STANDARD RESISTANCE VALUES*

For a given tolerance, a "step size"	SOLUTION:			
two values one below and one above the			ENG4	
non-standard resistance. These are		5.0000	GSE:	5%
converted by a subroutine to standard		432.0000	GSE2	
values, and the geometric mean of the		430.09+00	***	R1
latter is calculated. If the given		114 107	0070	
non-standard value is below the mean		114.703	5352	R
then the lower standard value is selected; otherwise the larger value is		110.00703	养养养	n ₂
selected.		3.5+06	GSE2	_ 1
<u>NOTE</u> : Incorrect results will be obtain-		3.6000+06	***	R ₃
5% 10% or 20%		18.0000	GSE :	10%
070, 1070, 01 2070.		432. AARA	GSE2	1070
REFERENCE: International Telephone		470. 00 +00	***	R'_1
Reference Data for Radio		114 +97	66 22	
Engineers, fourth edition		120.00+03	XXX	R_2
p. 78.		120100-01		
F		3.5+06	GSB2	٦ŀ
EXAMPLES: Find the closest standard		3.3000+05	***	к ₃
values for the following:				
D - 1320		20.0000	GSEí	20%
$k_1 - 4525i$		432.0000	GSB2	R'.
$R_2 = 114 K\Omega$		470.00+00	***	N1
$R_{2} = 3.5 M_{\odot}$				
		114.+03	GSE2	Ы
		100.00+03	\$ \$.#	R ²
		3.5+06	GS52	ים
		3.3000+05	兼宗法	к 3

* Adapted from HP-65 Users' Library program #00915A by Jacob Jacobs.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program and choose an appropriate			
	display format			
2.	Enter tolerance (5,10, or 20)	Т%	GSB 1	
3.	Enter non-standard resistor size and compute	R,Ω	GSB 2	R¦Ω
	nearest standard value			
4.	<u>Change tolerance at any time by going to step 2</u>			

							1
01 *LBL1 02 1 03 2 04 0 05 ÷ 06 10× 07 ST02 08 R/S 09 *LBL2 10 L06 11 ENT↑ 12 INT 13 ST04 14 - 15 1 16 + 17 10× 18 ST03 19 1 20 ST-4 21 1 22 0 23 ST05 24 *LBL0 25 RCL3 26 RCL5 27 X>Y? 28 GT09 29 RCL2 30 × 31 ST05 32 GT00 33 *LBL9 34 GSB8 35 ST07 36 RCL5 37 RCL2 38 ÷ 39 GSB8 40 ST06 41 RCL7 42 × 43 JX 44 RCL3 45 X2Y? 46 GSB7 47 RCL7 48 RCL4 49 10×	10 ^{tol} This Norma This Last √(This	<pre>/120 step > 1 R? step step step step step step)*(Last step)</pre>	50 \times 51 R/S 52 $*LBL8$ 53 . 54 5 55 + 56 INT 57 STOE 58 2 59 6 60 $X > Y?$ 61 GTO6 62 4 63 7 64 RCL6 65 $X > Y?$ 66 GTO3 67 1 68 + 69 RTN 70 $*LBL3$ 71 8 72 3 73 RCL6 74 $X \neq Y?$ 75 RTN 76 8 77 2 78 RTN 79 $*LBL7$ 80 RCL6 81 STO7 82 RTN 83 $*LBL6$ 84 RCL6 85 RTN 86 R/S **** "Printx	" may b	10 EX *** R Finds value of ste Round 26 <r<4 e inse</r<4 	P R7 standard R from multiple ep size up 47 then add 1 47 then add 1 rted before "R,	YS"
49 10×							
	I	DEAN					
гт	1	REGIS	3 Novem 1 D	4	£ D	5 Thé	
<u> </u>	7	<u>^c Step size</u>	<u>°Normal R</u>	f [≄] Exp c	of R	"This step	
Temp	<u>Temp</u>	8	9	.0		.1	
.2 .	3	.4	.5	16		17	
18	19	20	21	22		22	
24	25	26	27	28		29	
I-' '				1-0			

EXPONENTIAL GROWTH OR DECAY

Many growth or decay phenomena encountered in science and engineering obey an exponential law of the general form:

$$X_{t} = X_{ss} - (X_{ss} - X_{0}) e^{\tau}$$

where:

- X_t= Value at any time, t, (i.e., the instantaneous value)
- $X_{ss} = Steady state value (i.e., at t = \infty)$
- X_0 = Initial value (i.e., at t = 0)
- t = Elapsed time (time after t = 0)
- τ = Exponential time-constant for specific phenomena

This program provides interchangeable solutions for any one of the four variables X_t , X_{ss} , X_0 or t provided three variables and τ are known.

EXAMPLE 1:

Given a $5\mu F$ capacitor in series with a l megohm resistor. 1.5 seconds after the circuit is completed 125 volts are measured across R. To what voltage was the capacitor originally charged?

Note:

 τ = the RC time-constant, and the voltage at t = ∞ is zero

```
\frac{\text{SOLUTION:}}{5.-96 \text{ ENT}^{\dagger}}
1.+06 x

ST04 \tau = time-constant

125.00 ST01 v

0.00 ST02 X<sub>SS</sub>

1.50 ST03 time

6SB0

168.73 *** volts
```

EXAMPLE 2:

A cobalt 60 source (half-life = 5.26 years) had an activity of 3.54 curies when purchased 8.5 years ago. What is its present activity?

Note:

Activity at $t = \infty$ will be zero, $\tau = half-life/LN2$

```
SOLUTION:
           5.26 ENT†
           2.00
                  LN
                    ÷
                 ST04
                         τ
                         X<sub>0</sub>
           3.54 ST00
                         X<sub>SS</sub>
           0.00 ST02
           8.50 ST03
                          t
                 GSB1
                         curies
           1.15 ***
```

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Store time constant	τ	STO 4	τ
3	Store variables			
	Initial value	Χo	STO 0	X ₀
	Instantaneous value	×t	ST0 1	X ₊
	Steady state value	Xss	ST0 2	X _{ss}
	Elapsed time	t	ST0 3	t
	(Store any 3 of the 4 variables)			
4	To calculate:			
	X ₀ , initial value		GSB 0	X ₀
	X _t , Instantaneous value		GSB 1	×t
	X _{ss} , Steady state value		GSB 2	X _{ss}
	t, elapsed time		GSB 3	t
5	For a new case go to step 2			

01 *LBL1 02 RCL0 03 RCL2 04 - 05 GSB5 06 ÷ 07 RCL2 08 + 09 R/S 10 *LBL2 11 GSB5 12 ENT† 13 ENT† 14 RCL1 15 × 16 RCL0 17 - 18 X#Y 19 1	× t **	* * \$\$					
20 - 21 ÷ 22 R/S 23 *LBL0 24 GSB5 25 RCL1 26 RCL2 27 -	** X ₍	.**)					
28 × 29 RCL2 30 + 31 R/S 32 *LBL3 33 RCL0 34 RCL2 35 - 36 RCL1 37 RCL2 29 -	** t	**					
38 - 39 ÷ 40 LN 41 RCL4 42 × 43 R/S 44 *LBL5 45 RCL3 46 RCL4 47 ÷ 48 e [×] 49 RTN 50 R/S	** e	** -t/τ		*** "Printx" before '	may be "R/S".	inser	ted
			REGIS	STERS			
o X ₀	1 X t	2 X	ss	³ t	4		5
6 τ	7	8		9	.0		.1
.2	.3	.4		.5	16		17
18	19	20		21	22		23
24	25	00			20		
24	25	26		21	28		29

This program calculates an interchangeable solution among the variables: displacement, acceleration, initial velocity, and time or final velocity for an object that undergoes constant acceleration. The motion must be linear.

EQUATIONS:

Final velocity $v = \sqrt{v_0^2 + 2ax}$ Initial velocity $v_0 = \sqrt{v^2 - 2ax}$ Displacement $x = \frac{v^2 - v_0^2}{2a}$ Acceleration $a = \frac{v^2 - v_0^2}{2x}$ Displacement $x = v_0 t + \frac{1}{2} a t^2$ Initial velocity $v_0 = \frac{x}{t} - \frac{1}{2} a t$ Acceleration $a = \frac{x - v_0 t}{\frac{1}{2} t^2}$ Time $t = \frac{\sqrt{v_0^2 + 2ax} - v_0}{a}$

REMARKS:

Any consistent set of units may be used.

Displacement, acceleration, and velocity should be considered signed (vector) quantities. For example, if initial velocity and acceleration are in opposite directions, one should be positive and the other negative.

All equations assume initial displacement, x_0 , equals zero.

EXAMPLE 1:

An automobile accelerates for 4 seconds from a speed of 35 mph and covers a distance of 264 feet. Assuming constant acceleration, what is the acceleration in ft/sec²? (7.33 ft/sec²) If the acceleration continues to be constant, what distance is covered in the next second? (84.33 ft)

SOLUTION:

EXAMPLE 2:

An airplane's take off velocity is 125 mph. Assume a constant acceleration of 15 ft/sec². How much runway length in feet will be used from start to take-off? (1120.37 ft.) How long will it take for the plane to reach take-off velocity? (12.22 sec)

SOLUTION:

0.00 ST02 Vo 15.00 ST04 125.00 ENT† 5280.00 ÷ ST05 V SSB7 1120.37 ** X GSB3 12.22 *** t

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store variables			
	displacement	x	ST0 1	x
	initial velocity	۷o	ST0 2	۷o
	time	t	ST0 3	t
	acceleration	a	STO 4	a
	final velocity	v	ST0 5	v
	(store appropriate unknowns)			
3.	To calculate:			
	A. Displacement(a, v_0 and t or v known)			
	if t is known		GSB 1	x
	if v is known		GSB 7	x
	B. Initial Velocity (a,x, and t or v known)			
	if t is known		GSB 2	V o
	if v is known		GSB 6	۷۵
	C. Acceleration (v_0 ,x and t or v known)			
	if t is known		GSB 4	a
	if v is known		GSB 8	a
	D. Time (v ₀ ,x and a known)		GSB 3	t
	E. Final Velocity (v_0 ,x and a known)		GSB 5	v
4.	For a new case go to step 2			

15

01 *LBL1 02 RCL2 03 RCL4 04 2 05 ÷ 06 RCL3 07 X 08 + 09 RCL3 10 X 11 ST01 12 R/S 13 *LBL2 14 RCL1 15 RCL3 16 ÷ 17 LSTX 18 RCL4 19 X 20 2 21 ÷ 22 - 23 ST02 24 R/S 25 *LBL4 26 RCL1 27 RCL2 28 RCL3 29 X 30 - 31 RCL3 32 M ² 33 2 34 ÷ 36 ST04 37 R/S 38 *LBL3 39 GSB5 40 RCL2 41 - 42 RCL4 43 ÷ 44 ST03 45 R/S 46 *LBL5 46 *LBL5 47 RCL2 48 Y7		x (t) *** v ₀ (t) *** t *** t	<nown)< th=""><th>51 ST05 52 RTN 53 *LPL9 54 RCL4 55 RCL1 56 × 57 × 58 + 59 JX 60 RTN 61 *LBL6 62 RCL5 63 X² 64 2 65 CHS 66 GSB9 67 ST02 69 R/S 69 *LBL7 70 4 71 ST00 72 GSB0 73 ST01 74 R/S 75 *LBL0 76 RCL5 77 X² 78 RCL2 79 X² 80 - 81 RCL5 82 X 84 ÷ 85 RTN 86 *LBL8 87 1 SP ST00 89 GSB0 90 ST04 91 R/S **** "Print before</th><th>x" may b e "R/S".</th><th>v₀(v k *** x (v k ***</th><th>(nown) (nown) nown)</th></nown)<>	51 ST05 52 RTN 53 *LPL9 54 RCL4 55 RCL1 56 × 57 × 58 + 59 JX 60 RTN 61 *LBL6 62 RCL5 63 X ² 64 2 65 CHS 66 GSB9 67 ST02 69 R/S 69 *LBL7 70 4 71 ST00 72 GSB0 73 ST01 74 R/S 75 *LBL0 76 RCL5 77 X ² 78 RCL2 79 X ² 80 - 81 RCL5 82 X 84 ÷ 85 RTN 86 *LBL8 87 1 SP ST00 89 GSB0 90 ST04 91 R/S **** "Print before	x" may b e "R/S".	v ₀ (v k *** x (v k ***	(nown) (nown) nown)
4€ *LBL5 47 RCL2 48 X² 49 2 50 GSB9		v		befor	e "R/S".		
			BEAN				
0.11.1	1	-	REGI		14		5
Used	¹ Х		² v ₀	³ t	4 a		5 V
6	7		8	9	.0		.1
.2	.3		.4	.5	16		17
							''
18	19		20	21	22		23
24	25		20	27	28		29

KINETIC ENERGY

This program calculates an interchangeable solution among the variables weight (or mass), velocity, and kinetic energy, for an object moving at constant velocity. The program operates in either English or metric units. For metric units, any consistent set of units may be used; the quantity mass must be used. For English units, the energy must be in foot-pounds, the velocity in feet per second, and the quantity weight in pounds.

\mathbf{K} . \mathbf{E} . = Kinetic energy	Κ.Ε	E. :	= Ki	net	ic	energ	y
--	-----	------	------	-----	----	-------	---

- W = Weight (lb)
- m = Mass (kg, g)
- v = Velocity
- g = Acceleration due to gravity = 32.17398 ft/sec²

EQUATIONS:

English

K.E. =
$$\frac{1W}{2g} v^2$$

Metric

K.E. =
$$\frac{1}{2}$$
mv²
l ft-lb = 1.98 x 10⁶ hp

EXAMPLE 1:

The slider of a slider-crank mechanism is used to punch holes in a slab of metal. It is found that the work required to punch a hole is 775 ft-lb. If the slider weighs 5 lb. 4 oz., how fast must it be moving when it strikes the metal? (97.46 ft/sec) What is the required work in horsepower? (3.91 x 10^{-4} hp)

SOLUTION:			
64.35	GSB2 ***	English	Units
775.00 5 00	ST01		
4.00	ENTT		
16.00	÷ +		
5.25	*** \$702	W	
97 . 46	GSB5 ***	v	
775.00	6583 ***	ft-1b	
3.91-04	R∕S ≭**	hp	

EXAMPLE 2:

An object weighing 4.8 kg is moving with constant velocity of 3.5 m/sec. Find its kinetic energy. (29.40 joules)

SOLUTION:

\$2.00 2.00 *** 4.00 \$50 \$50 \$50 \$50 \$29.40 *** K.E.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Choose system of units			
	Metric (SI)		GSB 1	2.00
	or			
	English		GSB 2	64.35
3	Input two of the following variables			
	Kinetic energy	K.E.	ST0 1	К.Е.
	Weight (mass)	W(m)	ST0 2	W(m)
	Velocity	v	ST0 3	v
4	Compute the remaining variables:			
	Kinetic energy		GSB 3	K.E.
	Optional: convert K.E.(ft-lb)to K.E.(hp)		R/S	K.E.(hp)
	Weight (mass)		GSB 4	W(m)
	Velocity		GSB 5	v
5	To change any input v ariable go to step 3			
6	For a new case, go to step 2			

01 *LBL1		Metric					
02 ST04 03 ST04 04 R/S 05 #LBL2 06 6 07 4 08		Englis	h				
09 3 10 4 11 7 12 9 13 6 14 ST04 15 R/S							
16 #LBL3 17 RCL2 18 RCL3 19 ENT† 20 × 21 × 22 RCL4 23 ÷		N.E. U	arc.				
24 ST01 25 R/S 26 RCL1 27 1 28 9 29 8 30 EEX 71 4		***					
32 ÷ 33 R/S 34 #LBL4 35 RCL1 36 RCL4 37 × 38 RCL3		*** W(m) C	alc.				
39 ENT† 40 × 41 ÷							
42 ST02 43 R/S 44 *LBL5 45 DCL1		v Calc	:.				
43 RCL1 46 RCL4 47 X 48 RCL2 49 ÷ 50 IX			**	*"Printx" may	y be in	serted	before "R/S".
51 STO3 52 R/S		***					
			REGI	STERS			
0	¹ Κ.	Ε	² W(m)	³ V	4 2(met) 64.3	(Eng)
6	7		8	9	.0		.1
.2	.3		.4	.5	16		17
18	19		20	21	22		23
24	25		26	27	28		29
_ ·				-			

RPM/TORQUE/POWER

This program provides an interchangeable solution for RPM, torque, and power in both Systeme International (metric) and English units.

	SI	English
RPM	RPM	RPM
Torque	nt-m	ft-lb
Power	watts	hp

EQUATIONS:

(2)

SOLUTIONS:

(1)

RPM x Torque = Power 1 hp = 745.7 watts 1 ft-lb = 1.356 joules 1 RPM = $\pi/30$ radians/sec 1 hp = 550 $\frac{ft-lb}{sec}$

EXAMPLE 1:

Calculate the torque from an engine developing 11 hp at 6500 RPM. Find the SI equivalent.

EXAMPLE 2:

A generator is turning at 1600 RPM with a torque of 20 nt-m. If it is 90% efficient, what is the power input in both systems? 6500.00 ENT1 0.00 ENT1 11.00 GSB5 8.89 *** Torque, ft-lb R/S 12.05 *** Torque, nt-m

GSB4

GSB3 1600.00 ENT1 20.00 ENT1 0.90 ÷ 0.00 GSB5 3723.37 *** Power, watts R/S 4.99 *** Power, hp

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Choose sytem of units:			
	Metric		GSB 3	1.36
	or			
	English		GSB 4	5251.41
3.	Enter variables (the unknown quantity, x,			
	must be input as zero) and compute x.			
	RPM	RPM	ENT↑	
	Torque	Torque	ENT	
	Power	Power	GSB 5	x
4.	(Optional) to convert torque or power to			
	other system		R/S	x converted

e1 #LBL3 #2Set up for metric units48 PCL3 $49 \pm$ $98 PCL7$ $51 \times$ $57 PCL7$ ** RPM86 4 66 5107 77 78 458 PCL7 53 *LBL4 55 PCL2** RPM87 4 67 77 78 458 PCL7 57 PCL7 58 \times 57 PCL7*** Torque11 7 12 ST05 13 1 14 \cdot 15 3 15 3 16 5 16 5 16 5 17 6 17 6 18 ST06 19 RTM 20 #LBL4 21 6 SE2 22 1/X 23 ST06 21 X 22 1/X 23 ST06 24 X27 23 ST06 25 1/X 26 PTN 27 \div 28 x 29 ST07 31 #LBL5 29 ST07 31 #LBL5 29 ST07 31 #LBL5 29 ST07 31 #LBL5 32 ST06 4 R1 31 #LBL5 33 ST08 4 R1 31 #LBL5 31 #LBL5 32 ST08 4 R1 33 ST08 4 R1 34 R1 35 SC2 37 R1 38 DS2 39 GT08 4 R1 31 #LBL5 38 DS2 39 GT08 4 R1 4 R1 4 SET09 4 R1 4 SET09 									1
45 6109 46 *LBL2 47 RCL4 Image: state of the s	01 *LBL3 02 3 03 0 04 P; 05 ÷ 06 ST07 07 7 08 4 09 5 10 . 11 7 12 ST05 13 1 14 . 15 3 16 5 17 6 18 ST06 19 RTN 20 *LBL4 21 GSB3 22 1/X 23 ST06 24 X ² Y 25 1/X 26 ST05 27 ÷ 28 × 29 ST07 30 RTN 31 *LBL5 32 4 33 ST00 34 R4 35 *LBL8 36 ST0; 37 R4 38 DS2 39 GT08 40 *LBL9 41 X=0? 42 GT0; 43 ISZ 44 R4		Set up unit Set up unit Store Determ to c	o for English s variables variables	48 RCL3 49 ÷ 50 RCL7 51 × 52 R/S 53 *LBL1 54 RCL4 55 RCL2 56 ÷ 57 RCL7 58 × 59 R/S 60 RCL6 61 ÷ 62 R/S 63 *LBL0 64 RCL2 65 RCL3 66 × 67 RCL7 68 ÷ 69 R/S 70 RCL5 71 ÷ 72 R/S *** "Prin *** "Prin	ntx" may ntx" may	** RPM *** To ** Tor *** Po ** Pow	n n n n n n n n n n n n n n n n n n n	"R/S".
REGISTERS 0 1 Used 2 RPM 3 Torque 4 Power 5 Used 6 Used 7 Used 8 9 .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23 24 25 26 27 28 29	43 ISZ 44 R↓ 45 GTO9 46 *LBL2 47 PCL4								
REGISTERS 0 1 Used 2 RPM 3 Torque 4 Power 5 Used 6 Used 7 Used 8 9 .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23 24 25 26 27 28 29	TI RULT								
0 1 Used 2 RPM 3 Torque 4 Power 5 Used 6 Used 7 Used 8 9 .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23 24 25 26 27 28 29				DEON					
0 i 1 Used 2 RPM 3 Torque 4 Power 5 Used 6 Used 7 Used 8 9 .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23 24 25 26 27 28 29				REGI	STERS				
6 Used 7 Used 8 9 .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23 24 25 26 27 28 29	0 i	1 llsed		2 RPM	3 Torque	4 Power		5 llead	
6 Used 7 Used 8 9 .0 .1 .2 .3 .4 .5 16 17 18 19 20 21 22 23 24 25 26 27 28 29	- 1		4	- I <u>NE</u> F1	- TOPYUE	rower		- usea	
.2.3.4.51617181920212223242526272829	⁶ Used	⁷ Used	l	8	9	.0		.1	
18 19 20 21 22 23 24 25 26 27 28 29	.2	.3		.4	.5	16		17	
24 25 26 27 28 29	18	19		20	21	22		23	
24 25 26 2 <i>1</i> 28 29	24	25		00					
	24	25		26	27	28		29	

BLACK BODY THERMAL RADIATION

Bodies with finite temperatures emit thermal radiation. The higher the absolute temperature, the more thermal radiation emitted. Bodies which emit the maximum possible amount of energy at every wavelength for a specified temperature are said to be black bodies. While black bodies do not actually exist in nature, many surfaces may be assumed to be black for engineering considerations.

Figure 1 is a representation of black body thermal emission as a function of wavelength. Note that as temperature increases the area under the curves (total emissive power $E_b(0-\infty)$) increases. Also note that the wavelength of maximum emissive power λ_{max} shifts to the left as temperature increases.

This program can be used to calculate the wavelength of maximum emissive power for a given temperature, the temperature corresponding to a particular wavelength of maximum emissive power, the total emissive power for all wavelengths and the emissive power at a particular wavelength. It can also be used to calculate the emissive power from zero to an arbitrary wavelength, the emissive power between two wavelengths or the total emissive power.

EQUATIONS:

$$\lambda_{\max} T_{\lambda_{\max}} = c_3$$

$$E_{b(0-\infty)} = \sigma T^4$$

$$E_{b\lambda} = \frac{2\pi c_1}{\lambda^5 (e^{c_2/\lambda T} - 1)}$$

$$E_{b(0-\lambda)} = \int_{0}^{\lambda} E_{b\lambda} d\lambda$$

=
$$2\pi c_1 \sum_{k=1}^{\infty} -T/kc_2 e^{-\frac{kc_2}{T_{\lambda}}} \left[\left(\frac{1}{\lambda} \right)^3 + \right]$$

+
$$\frac{3T}{\lambda^2 k c_2}$$
 + $\frac{6}{\lambda} \left(\frac{T}{k c_2}\right)^2$ + $6 \left(\frac{T}{k c_2}\right)^3$

$$E_{b(\lambda_1-\lambda_2)}=E_{b(0-\lambda_2)}-E_{b(0-\lambda_1)}$$

where

- λ_{\max} is the wavelength of maximum emissivity in microns;
- T is the absolute temperature in °R or K;

 $E_{b(0-\infty)}$ is the total emissive power in Btu/hr-ft² or Watts/cm²; ${\rm E}_{\mbox{\bf b}\,\lambda}$ is the emissive power at λ in Btu/hr-ft²- μ m or Watts/cm²- μ m; $E_{b(0-\lambda)}$ is the emissive power for wavelengths less than λ in Btu/hr-ft² or Watts/cm²; $E_{b(\lambda_1 - \lambda_2)}$ is the emissive power for wavelengths between λ_1 and λ_2 in $Btu/hr-ft^2$ or $Watts/cm^2$. $c_1 = 1.8887982 \times 10^7 Btu-\mu m^4/hr-ft^2$ = 5.9544 x 10^3 W_µm⁴/cm² $c_2 = 2.58984 \times 10^4 \mu m^{-6}R =$ 1.4388 x 10⁴ µm-K $c_3 = 5.216 \times 10^3 \mu m^{-0}R =$ 2.8978 x 10³ μm-K $\sigma = 1.71312 \times 10^{-9} \text{ Btu/hr-ft}^2 - {}^{\circ}\text{R}^4 =$ 5.6693 x 10^{-12} W/cm²-K⁴ $\sigma_{exp} = 1.731 \times 10^{-9} \text{ Btu/hr-ft}^2 - {}^{\circ}\text{R}^4$ $= 5.729 \times 10^{-12} \text{ W/cm}^2 - \text{K}^4$

REMARKS:

A minute or more may be required to obtain $E_{b(0-\lambda)}$ or $E_{b(\lambda_{1}-\lambda_{2})}$ since the integration is numerical.

Sources differ on values for constants. This could yield small discrepancies between published tables and outputs.

REFERENCE:

Robert Siegel and John R. Howell, <u>Thermal Radiation Heat Transfer</u>, Vol. 1, <u>National Aeronautics and Space Admin-</u> istration, 1968. EXAMPLE 1:

What percentage of the radiant output of a lamp is in the visible range (0.4to 0.7 microns) if the filament of the lamp is assumed to be a black body at 2400 K?

EXAMPLE 2:

If the human eye was designed to work most efficiently in sunlight and the visible spectrum runs from about 0.4 to 0.7 microns, what is the sun's temperature in degrees Rankine? Assume that the sun is a black body. Using the temperature calculated, find the fraction of the sun's total emissive power which falls in the visible range. Find the percentage of the sun's radiation which has a wavelength less than 0.4 microns.

SOLUTIONS:

1.

2.

18887982.00 25898.40 5216.00 1.71312-09 0.40 0.70	ST01 ST02 ST03 ST04 ENT† +	English constants
2.00	-	1
U. 55	***	mean value
	RCL3	
	÷	
0.40 7 64	1/X	- (0-)
9483.64	***	T, (°R)
a (a	5100	
U.4U	5106	
0.70	S107	
	GSB4	_
4670556.56	***	^E b(.4 to .7)
	GSB2	
13857578.83	**≭ ÷	^E b(O to ∞)
100.00	Х	
33.70	***	(%)
0.40	ST06	
	GSB1	
1168606.94	***	E_{L} (0 to (1)
	GSB2	υ (Ο το .4)
	÷	
100.00	Х	
8.43	***	(%)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Store constants:			
2a	English units -	18887982	ST0 1	
	(Btu, μm, ft, °R)	25898.4	ST0 2	
		5216	ST0 3	
	or .1713	12 x 10 ⁻⁸	STO 4	
2b	SI units -	5954.4	ST0 1	
	(W, μm, cm, °K)	14388	ST0 2	
		2897.8	STO 3	
	5.669	3 x 10 ⁻¹²	STO 4	
3	For experimental Stefan-Boltzmann constant	1.0105	STO X	
	instead of theoretical constant		4	
4	To calculate $\lambda_{max} = f(T)$		RCL 3	
		T(°R or k)	÷	$\lambda_{max}(\mu m)$
5	To calculate T = $f(\lambda)$ for which λ is		RCL 3	
	maximum	λ (μ m)	÷	T(°R or k)
6	To calculate total emissive power	T*	ST0 5	
			GSB 2	Eb(0 to ∞)
7	To calculate emissive power at $\boldsymbol{\lambda}$	T*	STO 5	
		λ	STO 6	
			GSB 3	E _{b.(} λ)
8	To calculate emissive power from 0 to λ_1	T*	STO 5	
		λ	STO 6	
			GSB 1	$E_{b(0 to \lambda_1)}$
9	To calculate emissive power from $~\lambda_1$ to $~\lambda_2$	T*	ST0 5	
		λ1	ST0 6	
	*any value of T stored previously is still	λ2	ST0 7	
	stored and need not be input again		GSB 4	$E_{b(\lambda_1 \text{ to } \lambda_2)}$

26

			r		
01 *LBL1			50 X¥Y?	∆≥.0	01%
02 GSB9			51 GTOØ	yes,	increment k
03 R/S	***E, //	2 + - 2 2	52 RCL9		
04 x/B/9		$J to \lambda_1$	53 2		
Q5 Q			54 x		
00 0 05 0T00					
06 5109			55 PI		
07 ST08			56 X		
08 *LBL0			57 RCL1		
09 RCL2			58 ×		
10 PCIS			59 RTN	F. c.	
10 KOLU 11 -			50 +1 PI 2	Γb(0	to λ)
11 -		_			
12 ST-8	-k c ₂ /	Γ	61 KULS		
13 3			62 4		
14 RCL8			63 YX		
15 ÷			64 RCL4		
			65 X		
10 KULO			EE D/C	***	
17 84				b(0 to ∞)
18 ÷			67 WLBL3		•
19 LSTX	λ2		68 RULI		
20 RCL6	~		69 2		
21 x			70 X		
21 4			71 Pi		
ZZ 1/X			72 X		
23 -			77 0010		
24 6			73 KULO		
25 RCL6			74 5		
26 ÷			75 YX		
20 . 27 DCLO			76 ÷		
ZT KULO			77 RCL2		
28 X2			78 RCI 6		
29 ÷			70 -		
30 -					
31 6			80 RCL5		
72 Pri 0			81 ÷		
32 KGEO			82 e ^x		
33 3			83 1		
34 Y*			84 -		
35 ÷			05 -		
36 +				***	
37 RCL8			86 K/S	r ^{ane} ba	
38 RCL6			87 *LBL4		
70 ±			88 GSB9		
32 ·			89 ST.0		to))
40 e^			90 RCL7		··· /
41 X			91 STOF	1.	
42 RCL8			02 CCPC	^ ²	
43 ÷			07 DC 0		
44 ST+9			33 KL.U		
45 RCL 9			94 -		
46 -			95 R/S	★ **E.	
47 EEV				p(λ_1 to λ_2)
48 CHS					
4 9 5		ł	**"Printx" ma	y be i h serte	ed before "R/S"
		REGIS	STERS		
0	1 C ₁	2 C ₂	з с ₃	4 σ	5 T
6 ₂	7	⁸ -Kc ₂ /T	⁹ sum	^{.0} used	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

This program converts kinetic energy, potential energy, and pressure-volume work to energy. Energy is stored as a running total which may at any time be converted to an equivalent velocity, height, pressure, or energy per unit mass. The program is useful in fluid flow problems where velocity, elevation and pressure change along the path of flow.

EQUATIONS:

$$\frac{v_1^2}{2} + gz_1 + \frac{P_1}{\rho} + \frac{E_1}{\dot{m}} = \frac{v_2^2}{2} + gz_2 + \frac{P_2}{\rho} + \frac{E_2}{\dot{m}}$$

where:

- v is the fluid velocity;
- z is the height above a reference
 datum;
- P is the pressure;
- E is an energy term which could represent inputs of work or friction loses (negative value);
- g is the acceleration of gravity;
- ρ is the fluid density;
- m is the mass flow rate (assumed to be unity);

subscripts 1 and 2 refer to upstream and downstream values respectively.

NOTES:

Downstream values should be input as negatives. However, when an output is called for, the calculator displays the relative value with no regard to upstream or downstream location. An error will result when the total energy sum stored in register 8 is negative and an attempt is made to calculate velocity.

EXAMPLE 1:

A water tower is 100 feet high. What is the zero flow rate pressure at the base? The density of water is 62.4 lb/ft^3 .

If water is flowing out of the tower at a velocity of 10 ft/sec, what is the static pressure?

What is the maximum frictionless flow velocity which could be achieved with the 100 foot tower?

If 10000 pounds of water are pumped to the top of the tower every hour, at a velocity of 20 ft/sec, with a frictional pressure drop of 2 psi, how much power is needed at the pump?

EXAMPLE 2:

An incompressible fluid (ρ = 735 kg/m) flows through the converging passage of Figure 1. At point 1 the velocity is 3 m/s and at point 2 the velocity is 15 m/s. The elevation difference between points 1 and 2 is 3.7 meters. Assuming frictionless flow, what is the static pressure difference between points 1 and 2?

EXAMPLE 3:		(2)		0705	
A reservoir's level is the discharge pond. A		1.00 9.80665	ST05 ST07 ST06		
generation efficiency, can be generated with 20 m ³ /s?		735.00 3.00	GSB1 GSB2		
ρ = 1000 kg/	′m³		-15.00	GSB2 CSB2	
SOLUTIONS:			-52710.82	63D0 ***	(Nt/m²)
(1) 25033.407 ST05 32.17 ST06					
4632.48 STO7 62.40 GSB1 100.00 GSB3		(3)	1000.00 25.00	GSB1 GSB3	
GSB8 43.33 *** -10.00 GSB2	(psig)		245.17 0.85	GSB9 *** X	(joule/kg)
GSB8 42.66 ***	(psig)		208.39 20.00 1000 00	*** ENT†	<pre>(joule/kg) (kg(a))</pre>
62.40 GSB1 100.00 GSB3 CSB6			4167826.25	× ***	(kg/s) (watts)
80.21 *** 62.40 GSB1	(ft/sec)				
20.00 GSB2 2.00 GSB4 100 GSB4					
100.00 6583 GSB9 0.14 ***	(BTU/16)				
10000.00 × 1424.29 ***	(BTU/hr)				

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	For English units:	25033.407	STO 5	
		32.17	STO 6	
		4632.48	ST0 7	1.00
	For S.I. units:	9.80665	STO 6	
3.	Enter fluid density	ρ	GSB 1	0.00
4.	Enter the following (negative values are			
	downstream values):			
	Fluid velocity	v	GSB 2	
	Height from reference datum	z	GSB 3	
	Pressure	Р	GSB 4	
	Energy input	E	GSB 5	
5.	Repeat step 4 for all input values			
6.	Calculate the unknown:			
	Fluid velocity		GSB 6	v
	Height from reference datum		GSB 7	z
	Pressure		GSB 8	Р
	Energy		GSB 9	E
7.	For another case, go to step 3, or clear			
	register 8 and go to step 4	0	STO 8	

01 *LBL1							
02 ST04							
A3 A	ρ						
84 ST08	Cloan	7 F					
04 0700 05 D/C		ΔĽ					
00 K/0 07 JDD							
OD #LDL2							
UT ENIT							
08 ABS							
09 X							
10 2							
11 ÷	$\frac{1}{2} \frac{1}{2} v^{2}/$	2					
12 GT05							
13 *LBL3							
14 RCL6							
15 ×							
16 GT05	qz						
17 *LBL4	J =						
18 RCL7							
19 x							
20 RCL4							
21 ÷	^μ /ρ						
22 x1 B1 5	F						
27 57+8							
20 0770 24 P/C							
24 K/0 25 ALDIC							
20 KLBL6							
26 KUL8							
27 2							
28 X							
29 VX							
30 R/S	*** v						
31 *LBL7							
32 RCL8							
33 RCL6							
34 ÷							
35 R/S	*** Z						
36 *LBL8							
37 RCL8							
38 RCL7							
39 ÷							
40 RCL4							
41 X							
42 R/S	*** P						
43 *LBL9							
44 RCL8				*** "	II		ted Lafare
45 RCL5				Printx	may D	e insei	rted before
46 ÷				"R/S".			
47 R/S	*** E						
			REGIS	STERS			5
		2		3	4	ρ	Used
° g [/] U:	sed	°	ΣΕ	Э	.0		. 1
.2 .3		.4		.5	16		17
18 19		20		21	22		23
24 25		26		27	28		29

Given the state of stress on an element, the principal stresses and their orientation can be found. The maximum shear stress and its orientation can also be found.

EQUATIONS:

where:

- s_{smax} is the maximum shear stress;
 - s1 and s2 are the principal normal stresses;
 - θ is the angle of rotation from
 the principal axis to the
 original axis;
 - θ_{S} is the angle of rotation from the axis of maximum shear stress to the original axis;
 - s_x is the stress in the x direction;
 - s_v is the stress in the y direction;
 - s_{xy} is the shear stress on the element.

REFERENCE:

Spotts, M.F., Design of Machine Elements, Prentice-Hall, 1971.

EXAMPLE:

If $s_x = 25000$ psi, $s_y = -5000$ psi, and $s_{xy} = 4000$ psi, compute the principal stresses and the maximum shear stress.

SOLUTION:

25000.00	ENTT	
-5000.00	ENT↑	
4000.00	GSB1	
25524.17	東東東	s. (nsi)
	R∕S	31 (psi)
-5524.17	***	s ₂ (psi)
	R∕S	
7.47	***	θ (degrees)
	R/S	
-37.53	***	θ_{s} (degrees)
	R ∕S	
15524.17	***	s _{smax} (psi)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Enter the following:			
	Stress in the x direction (negative for	S _x	ENT 1	
	compression)			
	Stress in the y direction (negative for	Sy	ENT↑	
	compression)			
	Shear stress	S _{xv}		
3.	Compute the following:			
	First principal stress		GSB 1	۶ ₁
	Second principal stress		R/S	s ₂
	Angle of rotation (principal)		R/S	θ
	Angle of rotation (shear)		R/S	^θ s
	Maximum shear stress		R/S	s smax
	NOTE: Do not disturb the stack during			
	step 3			
4.	For a new case, go to step 2.			

01 *LBL1 02 ENT↑ 03 R↓ 04 STD3 05 R↓ 06 X±Y 07 STD1 08 X±Y 09 ST+1 10 - 11 2 12 ST÷1 13 ÷ 14 STD4 15 →P 16 STD2 17 RCL1 18 + 19 R/S 20 X±Y 21 RCL1 22 RCL2 23 - 24 R/S 25 X±Y 26 2 27 ÷ 28 R/S 29 RCL4 30 RCL3 31 ÷ 32 CHS 33 TAN+ 34 2 35 ÷ 36 R/S 37 RCL2 38 R/S	<pre>\$xy \$ \$ \$xy \$ \$ \$x \$y \$x - (\$x - \$smax ** \$1 2.0 ** \$2 ** 0 ** \$ \$ ** \$ \$ ** \$ \$ ** \$ \$ \$ \$</pre>	y ^s x ^s xy ^s y s _y)/2 smax REGI	** "Printx" *** "Printx" STERS	may re may be	place " insert	R/S". ed before	"R/S"
0 1 (S,	+s _v)/2	² S _{Smax}	3 S _X y	4 (s _y -	s _v)/2	5	
6 7		8	9	.0	y ²¹	.1	
2 3		.4	.5	16		17	
.2 .3		- -		<u> </u>		.,	
18 19		20	21	22		23	
24 25		26	27	28		29	

POLYNOMIAL EVALUATION--REAL OR COMPLEX

This program evaluates polynomials of Example 2: the form: $f(x) = (5-7i) - 10x + (-2+i)x^2$ $f(x_0) = a_0 + a_1 x + ... + a_n x^n$ $+ 18x^{3} + (3+4i)x^{4}$ for $x_0 = 2 + i$ where the coefficients a_k , k=0,...n(n≤28) and x_0 are real Solution: or the coefficients and x_0 are 1.00 ENT† complex of the form 2.00 GSB3 4.00 ENT1 $a_k = \operatorname{Re}(a_k) + i \operatorname{Im}(a_k)$ 3.00 GSB4 0.00 ENT* $Z_0 = \text{Re}(z_0) + i \text{Im}(z_0)$ 18.00 GSB4 1.00 ENT† $k = 0, 1, \dots n$ -2.00 GSB4 0.00 ENT† Example 1: -10.00 GSB4 -7.00 ENT† $f(x) = 11-7x - 3x^2 + 5x^4 + x^5$ 5.00 GSB5 -106.00 *** Re f(x₀) for $x_0 = 2.5$ R/S220.00 *** Im f(x₀) for $x_0 = -5$ Solution: CLRG 11.00 GSB1 -7.00 R/S -3.00 R/S 0.00 R/S 5.00 R/S 1.00 R/S 2.50 GSB2

1.00 R/S 2.50 GSB2 267.72 *** f (2.5) 6.00 STOO -5.00 GSB2 -29.00 *** f (-5)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1.	Key in the program				
	For real polynomials:				
2.	Initialize		f_REG		
	· · · · · · · · · · · · · · · · · · ·				
3.	Store coefficients	a ₀	GSB		
	Continue for $i = 1$ to $n = n/20$	a.			
4.					
		X	GSB 2	$f(x_0)$	
- .	Compute t(x ₀)				
6.	For a different x_0 go to step 5	n+1	STO 0		
	For complex polynomials:				
7.	Enter X ₀	Im x _o	ENT 1		
		Re x₀	GSB 3	0	
8.	Enter a _k ,k=n,n-1,1	Im a _k			
		Re ak			
	Fator a and win	Imp			
9.	Enter do and run			Pof(x)	
		Re d ₀	R/S	Im $f(x_0)$	
10.	For a new case, go to step 7				

01 *LBL1 02 ISZ 03 STOT 04 R/S 05 GTOT 06 *LBL2 07 ENT 08 ENT 10 FCL; 11 × 12 DSZ 13 *LBL0 14 RCL; 15 + 16 × 17 DSZ 18 GTO0 19 X#Y 20 ÷ 21 R/S 22 *LBL3 27 0 28 ENT 24 STOT 29 ENT 26 STO2 27 0 28 ENT 30 ENT 31 RTN 32 *LBL4 33 GSE9 34 GTO8 35 *LEL5 36 GSE9 37 R/S 38 X#Y 39 R/S 30 *LEL8 41 *P 42 RCL1 43 × 44 X#Y 45 RCL2 46 + 47 X#Y 48 FT	Μι Π Ο κ κ κ κ ν θ Ρ Ι	ultipl ultipl ivide ** f(x outine omplex repare ** Re ** Im ultipl form	y by x ₀ y by x ₀ by x ₀ s for polynomials for LBL 9 f(x ₀) f(x ₀) y in polar	50 51 52 53 54 55 56 57 58 59 60	*L8L9 X=Y R+ + R: + X=Y RIN R/S		Add re imag	eal pa ginar	arts and y parts
48 →R 49 RTN			RECK	TFRS					
0 · 1	1		nEGIS	3		4		5	
° i	' r or	a_0	θ or a_1	3	a ₂	*	. a,	3	
6	7	8		9		.0	п	.1	
.2	.3	.4	1	.5		16		17	
18	19	2	0	21		22		23	
24	25	2	6	27		28		29	a ₂₈

*** "Printx" may be inserted or used to replace "R/S".

Sine integral:

$$Si(x) = \int_{0}^{\infty} \frac{\sin t}{t} dt =$$

$$\int_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)(2n+1)!}$$

where x is real.

This routine computes successive partial sums of the series, stops when two consecutive partial sums are equal, and displays the last partial sum as the answer.

<u>Notes</u>: When x is too large, computing a new term of the series might cause an overflow. In that case, display shows all 9's and the program stops.

$$Si(-x) = -Si(x)$$

Cosine integral:

Ci(x) =
$$\gamma + \ln x + \int_{0}^{\infty} \frac{\cos t - 1}{t} dt =$$

 $\gamma + \ln x + \sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2n}}{2n(2n)!}$

where x>0, and Υ = 0.577215665 is the Euler's constant.

This program computes successive partial sums of the series. When two consecutive partial sums are equal, the value is used as the sum of the series.

<u>Notes</u>: When x is too large, computing a new term of the series might cause an overflow. In that case, display shows all 9's and the program stops.

$$Ci(-x) = Ci(x) - i\pi$$
 for x>0.

Exponential integral:

$$Ei(x) = \int_{-\infty}^{x} \frac{e^{t}}{t} dt = \gamma + \ln x + \sum_{n=1}^{\infty} \frac{x^{n}}{nn!}$$

where x>0 and γ = 0.577215665 $% \gamma$ is Euler's constant.

This program computes successive partial sums of the series. When two consecutive partial sums are equal, the value is used as the sum of the series.

Note: When a new cause case, and the test of test	k is too large, computing term of the series might an overflow. In that display shows all 9's ne program stops.	<u>Solutions:</u>	0.577215665 ST.0 0.69 GSB1 0.67 *** 0.98 GSB1
<u>References</u> :	Handbook of Mathematical Functions, Abramowitz and Stegun, National Bureau of Standards, 1968.		0.93 *** 1.38 GSB2 0.46 *** 5.00 GSB2 -0.19 ***
Examples:			1.59 GSB3 3.57 ***
1.	Si (.69)		0.61 GSB3
2.	Si (.98)		U.80 ***
3.	Ci (1.38)		
4.	Ci (5)		
5.	Ei (1.59)		

6. Ei (.61)

User	Instructions
------	--------------

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store α	.577215665	STO •	
			0	α
3.	For Sine Integral	x	GSB 1	Si(x)
	For Cosine Integral	x	GSB 2	Ci(x)
	For Exponential Integral	x	GSB 3	Ei(x)

01 *LBL1 02 ST03 03 X ² 04 CHS 05 ST01 06 1 07 ST02 08 RCL3 09 *LBL0 18 RCL1 11 RCL2 12 1 13 + 14 ÷ 15 LSTX 16 1 17 + 18 ST02 19 ÷ 20 RCL3 21 × 22 ST07 23 RCL2 24 ÷ 25 + 26 X≠Y? 27 GT00 28 R×S 29 *LBL2 30 X ² 31 CHS 32 ST01 33 1 34 ST03 35 0 36 ST02 37 LSTX 38 LN 39 RC.0 40 + 41 ST00 42 *LBL3	Sine rout: *** Cosi: rout	Integral ine Si(x)/Ci(x) ne Integral ine	50 RC.0 51 + 52 *LBL9 53 RCL1 54 RCL2 55 1 56 + 57 STO2 58 ÷ 59 RCL3 60 × 61 STO3 62 RCL2 63 ÷ 64 + 65 X≠Y? 66 GTO9 67 R/S	*** E	i(x)
41 GTO0 42 *LBL3 43 STO1 44 1 45 STO3 46 0 47 STO2 48 RCL1	Expo tegra	nential In- al routine			
- 49 LN	L	REGI	STERS		
0	¹ used	² used	³ used	4	5
6	7	8	9	^{.0} used	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** "Print X" may be used to replace "R/S".

NOTES

In the Hewlett-Packard tradition of supporting HP programmable calculators with quality software, the following titles have been carefully selected to offer useful solutions to many of the most often encountered problems in your field of interest. These ready-made programs are provided with convenient instructions that will allow flexibility of use and efficient operation. We hope that these Solutions books will save your valuable time. They provide you with a tool that will multiply the power of your HP-19C or HP-29C many times over in the months or years ahead.

Mathematics Solutions Statistics Solutions Financial Solutions Electrical Engineering Solutions Surveying Solutions Games Navigational Solutions Civil Engineering Solutions Mechanical Engineering Solutions Student Engineering Solutions

Reorder No. 00029-14010 Printed in U.S.A. 00029-90014