

INTRODUCTION

This HP-19C/HP-29C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.
They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become an expert on your HP calculator.
You will find general information on how to key in and run programs under "A Word about Program Usage" in the Applications book you received with your calculator.
We hope that this Solutions book will be a valuable tool in your work and would appreciate your comments about it.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

TABLE OF CONTENTS

resistive/reactive circuit calculations 1
Performs resonance calculations.
IMPEDANCE OF LADDER NETWORK 5
Computes input impedance of arbitrary ladder network.
Standard resistance values, 8
Computes nearest standard value.
EXPONENTIAL GROWTH OR DECAY 11Performs calculations for generalized growth and decay phenomena.
EQUATIONS OF MOTION 14
Calculates an interchangeable solution for object moving under constant acceleration.
KINETIC ENERGY. 17
Calculates an interchangeable solution for weight (mass), velocity, and kinetic energy.
RPM/TORQUE/POWER. 20
This program provides interchangeable solutions for RPM, torque, and power.
BLACKBODY THERMAL RADIATION 23
This program calculates the wavelength of maximum emissive power for a given temperature (or vice versa), and the emissive power (total, from λ_{1} to λ_{2}, or at λ).
CONSERVATION OF ENERGY. 28
This program converts kinetic energy, potential energy, and pressure- volume work to energy, sums all the energy contributions, and converts the total to an equivalent velocity, height, pressure, or energy per unit mass.
MOHR CIRCLE FOR STRESS 32
This program calculates the principal stresses and their orientation given the state of stress on an element, and the maximum shear stress and its orientation.
polynomial evaluation (real or complex) 36
Evaluates polynomials with real or complex coefficients.
SINE, COSINE AND EXPONENTIAL INTEGRALS. 39
Evaluates the sine, cosine and exponential integral by means of a series approximation.

RESISTIVE/REACTIVE CIRCUIT
 CALCULATIONS

This program performs resonance calculations for R-L-C circuits, calculates the reactance of inductive and capacitive branches, the equivalent value of series capacitors or parallel resistors and inductors,and performs power calculations for resistive branches using straightforward manipulations of the following equations:

$$
\begin{aligned}
& f_{r}=\frac{1}{2 \pi \sqrt{L C}} \\
& X_{C}=\frac{1}{2 \pi f C} \\
& X_{L}=2 \pi f L \\
& P=I^{2} R=E^{2} / R \\
& \frac{A_{1} A_{2}}{A_{1}+A_{2}}=A_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{r}=\text { resonant frequency in hertz } \\
& L=\text { inductance in henrys } \\
& C=\text { capacitance in farads } \\
& X_{C}=\text { capacitive reactance in } \Omega \\
& X_{L}=\text { inductive reactance in } \Omega \\
& P=\text { power in watts } \\
& I=\text { current in amps } \\
& R=\text { resistance in } \Omega \\
& E=\text { voltage in volts }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}_{1}, \mathrm{~A}_{2}= & \text { the values of two parallel } \\
& \text { resistors in ohms, two parallel } \\
& \text { inductors in henrys, or two } \\
& \text { series capacitors in farads } \\
\mathrm{A}_{3}= & \text { the resultant, equivalent resis- } \\
& \text { tance in ohms, inductance in } \\
& \text { henrys, or capacitance in farads }
\end{aligned}
$$

NOTE: Given a resistance or capacitance, A_{1}, the value of the circuit element required to produce a desired resultant resistance or capacitance may be calculated by entering A_{1} as a negative value.

EXAMPLES:

1. $C=.01 \mu \mathrm{~F}, \mathrm{~L}=160 \mu \mathrm{~h}$. Calculate f_{r}
2. $L=2.5 \mathrm{~h}, \mathrm{f}_{\mathrm{r}}=60 \mathrm{H}_{z}$ Calculate C and X_{L} at f_{r}
3. $E=345 v, R=1.25 \mathrm{M} \Omega$

Calculate P and I
4. $R_{1}=120 \Omega, R_{2}=240 \Omega$
a. Find the equivalent resistance of these two resistors in parallel, R_{3}.
b. Parallel R_{3} with 50Ω.
c. Find the resistance required for a resultant resistance of 25Ω.

SOLUTION：

> ENG4
> 160. -96 ENTA
> 0.81-86 6581
> $125.82+03$ 車本 f_{r}
> 60.8000 ENT:
> 2.5080 6.5B2
> 2.8145-0E ** C
> 60.8080 ENTT
> 2.5000 6SB4 $942.48+08$ *** X_{L}
> 345.0800 ENT*
> 1.25+06 ESE5
> 95.220-03 *) P
> 1.25+96 6SB7
> 276.00-86 *
> 120.0000 ENTA
> 240.8069 GSRG $80.000+00$ R3
> 58.80096589 4b
> $30.769+80$ 标
> 25.0800 5SE9 4c $133.33+86$ *)

User Instructions

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATAUUNITS } \end{gathered}$	KEYS		OUTPUT DATAUNITS
1.	Key in the program and choose an appropriate				
	display format				
2.	Calculate f_{r}	L	ENT		
		C	GSB	1	f_{r}
3.	Calculate L or C	${ }^{\text {fr}}$	ENT		
		C or L	GSB	2	L or C
	REACTANCE CALCULATIONS				
4.	Calculate X_{0}	f	ENT		
		C	GSB	3	X_{6}
5.	Calculate X_{1}	f	ENT		
		L	GSB	4	χ_{L}
	POWER CALCULATIONS				
6 a	Given E: Calculate P	E	ENT		
		R	GSB	5	P
6b	Given I: Calculate P	I	ENT		
		R	GSB	6	P
	Given P,R:				
72	Calculate I	P	ENT		
		R	GSB	7	I
7b	Calculate E	P	ENT		
		R	GSB	8	E
	PARALLEL RESISTANCE/SERIES CAPACITANCE				
8.	Given two circuit elements, calculate resultant	A_{1}	ENT		
		A_{2}	GSB	9	A_{3}
9.	Given one circuit element and the desired	A_{1}	CHS	ENT	
	resultant value, calculate the value of the	A_{3}	GSB	9	A_{2}
	circuit element required.				

IMPEDANCE OF A LADDER NETWORK

This program computes the input impedance of an arbitrary ladder network. Elements are added one at a time starting from the right. The first element must be in parallel.

Suppose we have a network whose input admittance is $Y_{i n}$. Adding a shunt R, L, or C, the input admittance becomes

$$
Y_{\text {new }}=\left\{\begin{array}{l}
Y_{i n}+\left(\frac{1}{R}+j 0\right) \\
Y_{i n}+\left(0-j \frac{1}{\omega L_{p}}\right) \\
Y_{i n}+\left(0+j \omega C_{p}\right)
\end{array}\right.
$$

Adding a series R , L , or C , we have

$$
Y_{\text {new }}=\left\{\begin{array}{l}
\left(\frac{1}{Y_{\text {in }}}+\left(R_{s}+j 0\right)\right)^{-1} \\
\left(\frac{1}{Y_{\text {in }}}+\left(0+j \omega L_{s}\right)\right)^{-1} \\
\left(\frac{1}{Y_{\text {in }}}+\left(0-j \frac{1}{\omega C_{s}}\right)\right)^{-1}
\end{array}\right.
$$

The program converts this admittance to an impedance for display.

NOTE: An erroneous entry may be corrected by entering the negative of the incorrect value.

EXAMPLE:
$f=4 \mathrm{MHz}$

SOLUTION:

User Instructions

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS		$\begin{gathered} \hline \text { OUTPUT } \\ \text { DATA/UNITS } \end{gathered}$
1.	Key in the program and choose an appropriate				
	display format.				
2.	Initialize	f	GSB	1	W
3.	Input a parallel element:				
		R_{p}	GSB	3	$\left\|Z_{\text {in }}\right\|$
			$x \leftrightarrow y$		$\angle Z_{\text {in }}$
		C_{p}	GSB	5	$\left\|Z_{\text {in }}\right\|$
			$\mathrm{X}_{\leftrightarrow} \leftrightarrow \mathrm{Y}$		LTin
			GSB	4	$\left\|Z_{i n}\right\|$
			X $\leftrightarrow y$		$\angle Z_{\text {in }}$
4a	For a series element:				
			GSB	2	
			GSB	3	$\left\|Z_{\text {in }}\right\|$
					$\angle Z_{\text {in }}$
		C_{5}	GSB	2	
			GSB	4	$\left\|Z_{\text {in }}\right\|$
					$\angle Z_{\text {in }}$
		L_{s}	GSB	2	
			GSB	5	$\left\|Z_{\text {in }}\right\|$
			W $\leftrightarrow y$		$\angle Z_{\text {in }}$
$4 b$	For a parallel element:				
	Go to step 3				
5.	Repeat step 4 until all elements are entered,				

STANDARD RESISTANCE VALUES*

For a given tolerance, a "step size" is computed which is used to determine two values, one below and one above the non-standard resistance. These are converted by a subroutine to standard values, and the geometric mean of the latter is calculated. If the given non-standard value is below the mean then the lower standard value is selected; otherwise the larger value is selected.

NOTE: Incorrect results will be obtained for tolerances other than 5%, 10%, or 20%.

REFERENCE: International Telephone and Telegraph Corp. Reference Data for Radio Engineers, fourth edition, p. 78.

EXAMPLES: Find the closest standard values for the following:
$R_{1}=432 \Omega$
$R_{2}=114 \mathrm{~K} \Omega$
$R_{3}=3.5 \mathrm{M} \Omega$

SOLUTION:

	Eng 3	
5. $\mathrm{B000}$	ce:	5\%
45.6046	SES	
$430.69+60$	W\%	R_{1}^{\prime}
114. +63	Ses	
$116.60+63$	**	R_{2}
$3.5+66$	ges	R^{\prime}
$3.6006+66$	+\%	R_{3}
10.0004	ESE:	10\%
432.0606	GES	
470.90+60	**	R_{1}
114. 163	85E	R^{\prime}
20, $60+63$	V\%	R_{2}
$3.5+66$	ges	R_{3}^{\prime}
7. $3060+65$	v:	${ }_{3}$
20.6069	6 E	20\%
432.9496	CSE	R_{1}
476.90+60	\cdots	R
114. +17	SEE	
160. $06+67$	\%	R_{2}
7. $5+68$	St-	R
$3.3640+65$	4*	R_{3}

* Adapted from HP-65 Users' Library program \#00915A by Jacob Jacobs.

User Instructions

EXPONENTIAL GROWTH OR DECAY

Many growth or decay phenomena encountered in science and engineering obey an exponential law of the general form:

$$
x_{t}=x_{s s}-\left(x_{s s}-x_{0}\right) e^{-\frac{t}{\tau}}
$$

where:
$X_{t}=V_{\text {instantaneous value) }} \mathrm{t}$, (i.e., the

$$
\left.X_{s s}=\text { Steady }_{t=\infty}\right) \text { state value (i.e., at }
$$

$$
X_{0}=\text { Initial value (i.e., at } t=0 \text {) }
$$

$$
\mathrm{t}=\text { Elapsed time (time after } \mathrm{t}=0 \text {) }
$$

$$
\tau=\text { Exponential time-constant for }
$$ specific phenomena

This program provides interchangeable solutions for any one of the four variables $X_{t}, X_{s s}, X_{0}$ or t provided three variables and τ are known.

EXAMPLE 1:

Given a $5 \mu \mathrm{~F}$ capacitor in series with a 1 megohm resistor. 1.5 seconds after the circuit is completed 125 volts are measured across R. To what voltage was the capacitor originally charged?

Note:

```
\tau = the RC time-constant, and the
    voltage at t = m is zero
```

SOLUTION:

5.-96 ENT \uparrow		
1. +86	x	
	ST04	$\tau=$ time-constant
125.00	ST01	v
0.00	Sto2	$\mathrm{X}_{\text {S }}$
1.50	stoz	time
	Esbe	
168.73	**	volts

EXAMPLE 2:

A cobalt 60 source (half-life $=5.26$ years) had an activity of 3.54 curies when purchased 8.5 years ago. What is its present activity?

Note:
Activity at $\mathrm{t}=\infty$ will be zero, $\tau=$ half-life/LN2

SOLUTION:

5.26 ENT \uparrow		
2.00	LN	
	\div	
	ST04	τ
3.54	STOe	X_{0}
0.08	ST02	X_{ss}
8.50	sto3	t
	6 G81	
1.15	***	curies

User Instructions

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$	KEYS		$\begin{gathered} \text { OUTPUT } \\ \text { DATA/UNITS } \end{gathered}$
1	Key in the program				
2	Store time constant	τ	STO	4	τ
3	Store variables				
	Initial value	X0	STO	0	x_{0}
	Instantaneous value	x_{t}	STO	1	x_{t}
	Steady state value	$\chi_{\text {SS }}$	STO	2	$\mathrm{X}_{\text {ss }}$
	Elapsed time	t	STO	3	t
	(Store any 3 of the 4 variables)				
4	To calculate:				
	X_{0}, initial value		GSB	0	X_{0}
	X_{t}, Instantaneous value		GSB	1	x_{t}
	$\mathrm{X}_{\text {ss }}$, Steady state value		GSB	2	$\mathrm{X}_{\text {ss }}$
	t, elapsed time		GSB	3	t
5	For a new case go to step 2				

EQUATIONS OF MOTION

This program calculates an interchangeable solution among the variables: displacement, acceleration, initial velocity, and time or final velocity for an object that undergoes constant acceleration. The motion must be linear.

EQUATIONS:

Final velocity $v=\sqrt{v_{0}{ }^{2}+2 a x}$

Initial velocity $v_{0}=\sqrt{v^{2}-2 a x}$
Displacement $x=\frac{v^{2}-v_{0}{ }^{2}}{2 a}$

Acceleration $a=\frac{v^{2}-v_{0}{ }^{2}}{2 x}$

Displacement $x=v_{0} t+\frac{1}{2} a t^{2}$

Initial velocity $v_{0}=\frac{x}{t}-\frac{1}{2}$ at
Acceleration $a=\frac{x-v_{0} t}{\frac{1}{2} t^{2}}$
Time $\mathrm{t}=\frac{\sqrt{\mathrm{v}_{0}{ }^{2}+2 \mathrm{ax}}-\mathrm{v}_{0}}{\mathrm{a}}$

REMARKS:
Any consistent set of units may be used.
Displacement, acceleration, and velocity should be considered signed (vector) quantities. For example, if initial
velocity and acceleration are in opposite directions, one should be positive and the other negative.

All equations assume initial displacement, x_{0}, equals zero.

EXAMPLE 1:

An automobile accelerates for 4 seconds from a speed of 35 mph and covers a distance of 264 feet. Assuming constant acceleration, what is the acceleration in $\mathrm{ft} / \mathrm{sec}^{2}$? ($7.33 \mathrm{ft} / \mathrm{sec}^{2}$) If the acceleration continues to be constant, what distance is covered in the next second? (84.33 ft)

SOLUTION:

$$
\begin{aligned}
& \text { 264.00 STO1 } x \\
& 35.90 \text { ENT: } \\
& 5380.00 \quad x \\
& 3600.00 \div
\end{aligned}
$$

$$
\begin{aligned}
& 5.00 \mathrm{sTO} \mathrm{t}+1 \mathrm{sec} \\
& \text { GSB: } \\
& 340.3{ }^{3} \text { ** } \mathrm{x} \text { at } \mathrm{t}+1 \mathrm{sec} \\
& 264.00-x \text { at } t \\
& 84.32 \text { ** } x(t+1)-x(t)
\end{aligned}
$$

An airplanes take off velocity is 125 mph . Assume a constant acceleration of $15 \mathrm{ft} / \mathrm{sec}^{2}$. How much runway length in feet will be used from start to take-off? (1120.37 ft.$)$ How long will it take for the plane to reach take-off velocity? (12.22 sec)

SOLUTION:

$12.22 \stackrel{\text { ESE? }}{t}$

User Instructions

STEP	instructions	$\begin{array}{\|c\|} \hline \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{array}$	KEYS		OUTPUT DATA/UNITS
1.	Key in the program				
2.	Store variables				
	displacement	x	STO	1	x
	initial velocity	v_{0}	STO	2	v_{0}
	time	t	STO	3	t
	acceleration	a	STO	4	a
	final velocity	v	STO	5	v
	(store appropriate unknowns)				
3.	To calculate:				
	A. Displacement (a, v_{0} and t or v known)				
	if t is known		GSB	1	x
	if v is known		GSB	7	x
	B. Initial Velocity (a, x, and t or v known)				
	if t is known		GSB	2	v_{0}
	if v is known		GSB	6	Vo
	C. Acceleration (v_{0}, x and t or v known)				
	if t is known		GSB	4	a
	if v is known		GSB	8	a
	D. Time (v_{0}, x and a known)		GSB		t
	E. Final Velocity ($\mathrm{v}_{0}, \mathrm{x}$ and a known)		GSB	5	v
	For a new case go to step 2				

KINETIC ENERGY

This program calculates an interchangeable solution among the variables weight (or mass), velocity, and kinetic energy, for an object moving at constant velocity. The program operates in either English or metric units. For metric units, any consistent set of units may be used; the quantity mass must be used. For English units, the energy must be in foot-pounds, the velocity in feet per second, and the quantity weight in pounds.

```
K.E. = Kinetic energy
    W = Weight (1b)
    \(\mathrm{m}=\operatorname{Mass}(\mathrm{kg}, \mathrm{g})\)
    v = Velocity
    \(\mathrm{g}=\) Acceleration due to gravity \(=\)
        \(32.17398 \mathrm{ft} / \mathrm{sec}^{2}\)
```

EQUATIONS:

English

$$
\text { K.E. }=\frac{7 W}{2 g} v^{2}
$$

Metric

$$
\text { K.E. }=\frac{1}{2} \mathrm{mv}^{2}
$$

$$
1 \mathrm{ft}-1 \mathrm{~b}=1.98 \times 10^{6} \mathrm{hp}
$$

EXAMPLE 1:

The slider of a slider-crank mechanism is used to punch holes in a slab of metal. It is found that the work required to punch a hole is $775 \mathrm{ft}-1 \mathrm{~b}$. If the slider weighs $5 \mathrm{lb} .4 \mathrm{oz}$. , how fast must it be moving when it strikes the metal? ($97.46 \mathrm{ft} / \mathrm{sec}$) What is the required work in horsepower? (3.91 x $10^{-4} \mathrm{hp}$)

SOLUTION:

EXAMPLE 2:
An object weighing 4.8 kg is moving with constant velocity of $3.5 \mathrm{~m} / \mathrm{sec}$. Find its kinetic energy. (29.40 joules)

SOLUTION:

	ESE1	
2.00	**	Metric Units
4.98	stoz	
2.59	stos	
	CSE3	
29.40	**	K.E.

User Instructions

STEP	instructions	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Key in the program				
2	Choose system of units				
	Metric (SI)		GSB	1	2.00
	or				
	English		GSB	2	64.35
3	Input two of the following variables				
	Kinetic energy	K.E.	STO	1	K.E.
	Weight (mass)	W(m)	STO	2	W(m)
	Velocity	v	STO	3	v
4	Compute the remaining variables:				
	Kinetic energy		GSB	3	K.E.
	Optional: convert K.E. (ft-1b) to K.E. (hp)		R/S		K.E. (hp)
	Weight (mass)		GSB	4	W(m)
	Velocity		GSB	5	v
5	To change any input variable go to step 3				
6	For a new case, go to step 2				

RPM/TORQUE/POWER

This program provides an interchangeable solution for RPM, torque, and power in both Systeme International (metric) and English units.

	SI	English
RPM	RPM	RPM
Torque	nt-m	ft-1b
Power	watts	hp

EQUATIONS:
RPM \times Torque $=$ Power
$1 \mathrm{hp}=745.7$ watts
$1 \mathrm{ft}-1 \mathrm{~b}=1.356$ joules
1 RPM $=\pi / 30$ radians $/ \mathrm{sec}$
$1 \mathrm{hp}=550 \frac{\mathrm{ft}-1 \mathrm{~b}}{\mathrm{sec}}$

EXAMPLE 1:

Calculate the torque from an engine developing 11 hp at 6500 RPM. Find the SI equivalent.

EXAMPLE 2:
A generator is turning at 1600 RPM with a torque of $20 \mathrm{nt}-\mathrm{m}$. If it is 90% efficient, what is the power input in both systems?

SOLUTIONS:
(1)

	ESE 4	
6500.00	Ent	
0.00	ENT	
11.00	cses	
8.89	***	Torque, ft-1b
	R/S	
12.05	**	Torque, nt-m

6883
(2)
1600.00 ENT
20.00 ENT
$0.90 \div$
$0.00 \mathrm{GSB5}$
3723.37 ** Power, watts

R/s
4.99 *** Power, hp

User Instructions

BLACK BODY THERMAL RADIATION

Bodies with finite temperatures emit thermal radiation. The higher the absolute temperature, the more thermal radiation emitted. Bodies which emit the maximum possible amount of energy at every wavelength for a specified temperature are said to be black bodies. While black bodies do not actually exist in nature, many surfaces may be assumed to be black for engineering considerations.

Figure 1 is a representation of black body thermal emission as a function of wavelength. Note that as temperature increases the area under the curves (total emissive power $\mathrm{E}_{\mathrm{b}}(0-\infty)$) increases. Also note that the wavelength of maximum emissive power $\lambda_{\max }$ shifts to the left as temperature increases.

This program can be used to calculate the wavelength of maximum emissive power for a given temperature, the temperature corresponding to a particular wavelength of maximum emissive power, the total emissive power for all wavelengths and the emissive power at
a particular wavelength. It can also be used to calculate the emissive power from zero to an arbitrary wavelength, the emissive power between two wavelengths or the total emissive power.

EQUATIONS:

$$
\lambda_{\max }{ }^{\top} \lambda_{\text {max }}=c_{3}
$$

$$
E_{b(0-\infty)}=\sigma T^{4}
$$

$$
E_{b \lambda}=\frac{2 \pi c_{1}}{\lambda^{5}\left(e^{c_{2} / \lambda T}-1\right)}
$$

$$
E_{b(0-\lambda)}=\int_{0}^{\lambda} E_{b \lambda d \lambda}
$$

$$
=2 \pi c_{1} \sum_{k=1}^{\infty}-T / k c_{2} e^{-\frac{k c_{2}}{T \lambda}}\left[\left(\frac{1}{\lambda}\right)^{3}+\right.
$$

$$
\left.+\frac{3 T}{\lambda^{2} \mathrm{kc}_{2}}+\frac{6}{\lambda}\left(\frac{\mathrm{~T}}{\mathrm{kc}_{2}}\right)^{2}+6\left(\frac{\mathrm{~T}}{\mathrm{kc}_{2}}\right)^{3}\right]
$$

$E_{b\left(\lambda_{1}-\lambda_{2}\right)}=E_{b\left(0-\lambda_{2}\right)}-E_{b\left(0-\lambda_{1}\right)}$
where
$\lambda_{\max }$ is the wavelength of maximum
emissivity in microns;
T is the absolute temperature in
${ }^{\circ} \mathrm{R}$ or K ;

$$
\begin{aligned}
& E_{b(0-\infty)} \text { is the total emissive power } \\
& \text { in Btu/hr-ft }{ }^{2} \text { or Watts/cm }{ }^{2} \text {; } \\
& E_{b \lambda} \text { is the emissive power at } \lambda \text { in } \\
& \text { Btu/hr-ft }{ }^{2}-\mu \mathrm{m} \text { or Watts } / \mathrm{cm}^{2}-\mu \mathrm{m} \text {; } \\
& \mathrm{E}_{\mathrm{b}(0-\lambda)} \text { is the emissive power for } \\
& \text { wavelengths less than } \lambda \text { in } \\
& \text { Btu/hr-ft }{ }^{2} \text { or Watts/cm }{ }^{2} \text {; } \\
& E_{b\left(\lambda_{1}-\lambda_{2}\right)} \text { is the emissive power for } \\
& \text { wavelengths between } \lambda_{1} \text { and } \lambda_{2} \\
& \text { in Btu/hr-ft }{ }^{2} \text { or Watts } / \mathrm{cm}^{2} \text {. } \\
& c_{1}=1.8887982 \times 10^{7} B t u-\mu m^{4} / \mathrm{hr}^{-\mathrm{ft}^{2}} \\
& =5.9544 \times 10^{3} \mathrm{~W}_{\mathrm{m}} \mathrm{~m}^{4} / \mathrm{cm}^{2} \\
& c_{2}=2.58984 \times 10^{4} \mu \mathrm{~m}-{ }^{\circ} \mathrm{R}= \\
& 1.4388 \times 10^{4} \mu \mathrm{~m}-\mathrm{K} \\
& c_{3}=5.216 \times 10^{3} \mu \mathrm{~m}-{ }^{\circ} \mathrm{R}= \\
& 2.8978 \times 10^{3} \mu \mathrm{~m}-\mathrm{K} \\
& \sigma=1.71312 \times 10^{-9} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{R}^{4}= \\
& 5.6693 \times 10^{-12} \mathrm{~W} / \mathrm{cm}^{2}-\mathrm{K}^{4} \\
& \begin{aligned}
\sigma \text { exp } & =1.731 \times 10^{-9} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{R}^{4} \\
& =5.729 \times 10^{-12} \mathrm{~W} / \mathrm{cm}^{2}-\mathrm{K}^{4}
\end{aligned}
\end{aligned}
$$

REMARKS:

A minute or more may be required to obtain $E_{b}\left(0-\lambda_{i}\right)$ or $E_{b}\left(\lambda_{1}-\lambda_{2}\right)$ since the

Sources differ on values for constants. This could yield small discrepancies between published tables and outputs.

REFERENCE:

Robert Siegel and John R. Howell, Thermal Radiation Heat Transfer, Vol. 1, National Aeronautics and Space Administration, 1968.

EXAMPLE 1:

What percentage of the radiant output of a lamp is in the visible range (0.4 to 0.7 microns) if the filament of the lamp is assumed to be a black body at 2400 K?

EXAMPLE 2:

If the human eye was designed to work most efficiently in sunlight and the visible spectrum runs from about 0.4 to 0.7 microns, what is the sun's temperature in degrees Rankine? Assume that the sun is a black body. Using the temperature calculated, find the fraction of the sun's total emissive power which falls in the visible range. Find the percentage of the sun's radiation which has a wavelength less than 0.4 microns.

SOLUTIONS:
1.

$$
\begin{aligned}
& \begin{array}{r|r}
5054.40 \mathrm{gr01} \\
14300.60 \mathrm{gr02} & \text { S.I. constants }
\end{array} \\
& 2097 \text { 90 } 6 T 07 \\
& \text { 5.6093-12 } 9704 \\
& 2406.005105 \\
& 0.40506 \\
& 0.76507 \\
& \text { GSE4 } \\
& 4.97 \text { *** } \\
& \begin{array}{c}
\text { SER } \\
\vdots \\
\vdots
\end{array} \mathrm{E}_{\mathrm{b}} \text { (0 to }{ }^{\infty} \text {) } \\
& \text { 100.00 \% } \\
& 2.84 \times(\%)
\end{aligned}
$$

2.
```
18807982.00 5T01
    25898.40 5T02
        5216.00 5T03
    1.71312-09 5T04 
        0.40 ENTT
        0.70 +
        2.00 \div
            0.55 *** mean value
                    RCL3
                `
                1%
        9483.64 *** T, ('R)
            sT05
            0.40 5T06
            0.70 ST07
                GSB4
    467g56.56 *** E E b (.4 to .7)
17857578.83 *** E E (0 to \infty)
        100.00 x
            33.70 **
            0.40 STOE
                GSE1
    1168006.94 w** E E ( O to .4)
        100.00 8
            8.4% *** (%)
```


User Instructions

CONSERVATION OF ENERGY

This program converts kinetic energy, potential energy, and pressure-volume work to energy. Energy is stored as a running total which may at any time be converted to an equivalent velocity, height, pressure, or energy per unit mass. The program is useful in fluid flow problems where velocity, elevation and pressure change along the path of flow.

EQUATIONS:

$$
\begin{aligned}
& \frac{\mathrm{v}_{1}{ }^{2}}{2}+\mathrm{gz}+\frac{\mathrm{P}_{1}}{\rho}+\frac{\mathrm{E}_{1}}{\dot{m}}= \\
& \frac{\mathrm{v}_{2}{ }^{2}}{2}+\mathrm{gz}{z_{2}}+\frac{\mathrm{P}_{2}}{\rho}+\frac{\mathrm{E}_{2}}{\dot{m}}
\end{aligned}
$$

where:
v is the fluid velocity;
z is the height above a reference datum;
P is the pressure;
E is an energy term which could represent inputs of work or friction loses (negative value);
g is the acceleration of gravity;
ρ is the fluid density;
$\dot{\mathrm{m}}$ is the mass flow rate (assumed to be unity);
subscripts 1 and 2 refer to upstream and downstream values respectively.

NOTES:

Downstream values should be input as negatives. However, when an output is called for, the calculator displays the relative value with no regard to upstream or downstream location.

An error will result when the total energy sum stored in register 8 is negative and an attempt is made to calculate velocity.

EXAMPLE 1:

A water tower is 100 feet high. What is the zero flow rate pressure at the base? The density of water is $62.4 \mathrm{lb} / \mathrm{ft}^{3}$.

If water is flowing out of the tower at a velocity of $10 \mathrm{ft} / \mathrm{sec}$, what is the static pressure?

What is the maximum frictionless flow velocity which could be achieved with the 100 foot tower?

If 10000 pounds of water are pumped to the top of the tower every hour, at a velocity of $20 \mathrm{ft} / \mathrm{sec}$, with a frictional pressure drop of 2 psi, how much power is needed at the pump?

EXAMPLE 2:

An incompressible fluid ($\rho=735 \mathrm{~kg} / \mathrm{m}$) flows through the converging passage of Figure 1. At point 1 the velocity is $3 \mathrm{~m} / \mathrm{s}$ and at point 2 the velocity is $15 \mathrm{~m} / \mathrm{s}$. The elevation difference between points 1 and 2 is 3.7 meters. Assuming frictionless flow, what is the static pressure difference between points 1 and 2?

EXAMPLE 3:

A reservoir's level is 25 meters above the discharge pond. Assuming 85% power generation efficiency, how much power can be generated with a flow rate of $20 \mathrm{~m}^{3} / \mathrm{s}$?

$$
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

SOLUTIONS:

$$
\begin{aligned}
& \text { (1) } 25053.407 \mathrm{ST05} \\
& 32.17 \text { stue } \\
& 4632.48 \mathrm{STOT} \\
& 62.40 \text { GSB1 } \\
& 100.006583 \\
& \text { GSE8 } \\
& \text { 43.33 ** (psig) } \\
& -10.006582 \\
& \text { GSBE } \\
& 42.66 \text { ** (psig) } \\
& 62.406581 \\
& 100.00 \text { GSE } \\
& \text { 6SEE } \\
& 80.21 \text { *** }(\mathrm{ft} / \mathrm{sec}) \\
& 62.40 \mathrm{cse} 1 \\
& 20.006582 \\
& 2.006564 \\
& 100.00 \mathrm{GSE} \\
& \text { GSE9 } \\
& 0.14 \text { ** (BTU/1b) } \\
& 10000.00 \quad x \\
& 1424.29 * * \text { (BTU/hr) }
\end{aligned}
$$

(2)

$$
\begin{aligned}
& 1.00 \mathrm{STO5} \\
& \text { STOT } \\
& 9.80665 \mathrm{STOE} \\
& 735.006581 \\
& 3.00 \text { GSB2 } \\
& 3.70 \text { ESE } \\
& \text {-15.00 GSER } \\
& \text { GSBE } \\
& -52710.82 \text { *** }\left(\mathrm{Nt} / \mathrm{m}^{2}\right)
\end{aligned}
$$

```
    1800.00 65E1
        25.00 GSE3
            GSEg
        245.17 ** (joule/kg)
        Q.85 x
        208.39 *** (joule/kg)
        20.00 ENTY (joule/kg)
    1000.0日 * (kg/s)
4167826.25 ** (watts)
```


User Instructions

STEP	instructions	$\begin{array}{\|c\|} \hline \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{array}$	KEYS		OUTPUT DATA/UNITS
1.	Key in the program				
2.	For English units:	25033.407	STO	5	
		32.17	STO	6	
		4632.48	STO	7	1.00
	For S.I. units:	9.80665	STO	6	
3.	Enter fluid density	ρ	GSB	1	0.00
4.	Enter the following (negative values are				
	downstream values):				
	Fluid velocity	v	GSB	2	
	Height from reference datum	z	GSB	3	
	Pressure	P	GSB	4	
	Energy input	E	GSB	5	
5.	Repeat step 4 for all input values				
6.	Calculate the unknown:				
	Fluid velocity		GSB	6	v
	Height from reference datum		GSB	7	z
	Pressure		GSB	8	P
	Energy		GSB	9	E
7.	For another case, go to step 3, or clear				
	register 8 and go to step 4	0	STO	8	

MOHR CIRCLE FOR STRESS

Given the state of stress on an element, the principal stresses and their orientation can be found. The maximum shear stress and its orientation can also be found.

EQUATIONS:

$$
\begin{aligned}
s_{s \max } & =\sqrt{\left(\frac{s_{x}-s_{y}}{2}\right)^{2}+s_{x y}^{2}} \\
s_{1} & =\frac{s_{x}+s_{y}}{2}+s_{s \max } \\
s_{2} & =\frac{s_{x}+s_{y}}{2}-s_{s \max } \\
\theta & =1 / 2 \tan ^{-1}\left(\frac{2 s_{x y}}{s_{x}-s_{y}}\right) \\
\theta_{s} & =1 / 2 \tan ^{-1}-\left(\frac{s_{x}-s_{y}}{2 s_{x y}}\right)
\end{aligned}
$$

where:
$\mathrm{s}_{\text {smax }}$ is the maximum shear stress;
s_{1} and s_{2} are the principal normal stresses;
θ is the angle of rotation from the principal axis to the original axis;
θ_{S} is the angle of ratation from the axis of maximum shear stress to the original axis;
s_{x} is the stress in the x direction;
S_{y} is the stress in the y direction;
$s_{x y}$ is the shear stress on the
element.

REFERENCE:

Spotts, M.F., Design of Machine Elements, Prentice-Hall, 1971.

EXAMPLE:

If $s_{x}=25000$ psi, $s_{y}=-5000 \mathrm{psi}$, and
$s_{x y}=4000$ psi, compute the principal stresses and the maximum shear stress.

SOLUTION:

```
2500日.g0 ENT*
-5000.00 ENT:
    40BO.00 ESE1
25524.17 WH
    R%
-5524.17 ** sow (psi)
    F%G
    7.4% *** }0\mathrm{ (degrees)
    -37.57 *** 的 (degrees)
        F%
15524.17 w* s smax (psi)
```


User Instructions

STEP	Instructions	$\begin{array}{\|c\|} \hline \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{array}$	KEYS		$\begin{gathered} \text { OUTPUT } \\ \text { DATA/UNITS } \end{gathered}$
1.	Key in the program				
2.	Enter the following:				
	Stress in the x direction (negative for	S_{x}	ENT \uparrow		
	compression)				
	Stress in the y direction (negative for	S_{y}	ENT \uparrow		
	compression)				
	Shear stress	$S_{x y}$			
3.	Compute the following:				
	First principal stress		GSB	1	S_{1}
	Second principal stress		R/S		S_{2}
	Angle of rotation (principal)		R/S		θ
	Angle of rotation (shear)		R/S		θ_{s}
	Maximum shear stress		R/S		$s_{s m a x}$
	NOTE: Do not disturb the stack during				
	step 3				
4.	For a new case, go to step 2.				
				\square	
				0	
				\square	

POLYNOMIAL EVALUATION－－REAL OR COMPLEX

This program evaluates polynomials of the form：

$$
f\left(x_{0}\right)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}
$$

where the coefficients
$a_{k}, k=0, \ldots n(n \leq 28)$ and x_{0} are real
or the coefficients and x_{0} are
complex of the form

$$
\begin{aligned}
& a_{k}=\operatorname{Re}\left(a_{k}\right)+i \operatorname{Im}\left(a_{k}\right) \\
& z_{0}=\operatorname{Re}\left(z_{0}\right)+i \operatorname{Im}\left(z_{0}\right) \\
& k=0,1, \ldots n
\end{aligned}
$$

Example 1：
$f(x)=11-7 x-3 x^{2}+5 x^{4}+x^{5}$
for $x_{0}=2.5$
for $x_{0}=-5$
Solution：

$$
\begin{aligned}
& \text { CLRS } \\
& 11.89 \text { GSR1 } \\
& -7.00 \quad \text { P/ } \\
& -3.96 \mathrm{R} / \mathrm{s} \\
& 0.89 \text { R/S } \\
& \text { 5.80 R/S } \\
& \text { 1.88 R/S } \\
& 2.50 \text { 6SE2 } \\
& 267.72 \text { ** } \\
& 6.00 \text { sToe } \\
& -5.80 \text { GSB2 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { f (2.5) }
\end{aligned}
$$

Example 2：

$$
\begin{aligned}
f(x)= & (5-7 i)-10 x+(-2+i) x^{2} \\
& +18 x^{3}+(3+4 i) x^{4} \\
\text { for } x_{0}= & 2+i
\end{aligned}
$$

Solution：

$$
\begin{aligned}
& \text { 1.an ENTY } \\
& 2.00 \text { GSE } 3 \\
& \text { 4. } \mathrm{OR} \text { ENT } \\
& 3.86 \text { 6S84 } \\
& \text { 6. } 80 \mathrm{ENTT} \\
& \text { 1.00 ENT } 4 \\
& -2.80 \text { GSE4 } \\
& \text { - } 10.09 \text { ESF } 4 \\
& -7.00 \text { ENT } 4 \\
& \text { 5. 日0 ESES }
\end{aligned}
$$

$$
\begin{aligned}
& 220.06 \text { *** } \operatorname{Im} f\left(x_{0}\right)
\end{aligned}
$$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1.	Key in the program				
	For real polynomials:				
2.	Initialize		f	REG	
3.	Store coefficients	a_{0}	GSB	1	
4.	Continue for $\mathrm{i}=1$ to $\mathrm{n}, \mathrm{n} \leq 28$	a_{j}	R/S		
5.	Compute $f\left(x_{0}\right)$	x_{0}	GSB	21	$f\left(x_{0}\right)$
	Compute f(x_{0})				
6.	For a different x_{0} go to step 5	$n+1$	STO	0	
	For complex polynomials:				
7.	Enter x_{0}	Im X_{0}	ENT \uparrow		
		$\operatorname{Re} x_{0}$	GSB	3	0
8.	Enter $a_{k}, k=n, n-1, \ldots 1$		[ENT \uparrow		
		$\operatorname{Re} a_{k}^{n}$	GSB	4	
9.	Enter a_{0} and run	Im a_{0}	ENT \uparrow		
		Re ao	GSB	51	Re $f\left(x_{0}\right)$
			R/S		Im $f\left(x_{0}\right)$
10.	For a new case, go to step 7				

*** "Printx" may be inserted or used to replace "R/S".

SINE, COSINE, AND EXPONENTIAL INTEGRALS

Sine integral:

$$
\begin{aligned}
& \operatorname{si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t= \\
& \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}+1}{(2 n+1)(2 n+1)!}
\end{aligned}
$$

where x is real.
This routine computes successive partial sums of the series, stops when two consecutive partial sums are equal, and displays the last partial sum as the answer.

Notes: When x is too large, computing a new term of the series might cause an overflow. In that case, display shows all 9's and the program stops.

$$
\operatorname{Si}(-x)=-S i(x)
$$

Cosine integral:

$$
\begin{aligned}
& \operatorname{Ci}(x)=\gamma+\ln x+\int_{0}^{x} \frac{\cos t-1}{t} d t= \\
& \gamma+\ln x+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2 n(2 n)!}
\end{aligned}
$$

where $x>0$, and $\gamma=0.577215665$ is the Euler's constant.

This program computes successive partial sums of the series. When two consecutive partial sums are equal, the value is used as the sum of the series.

Notes: When x is too large, computing a new term of the series might cause an overflow. In that case, display shows all 9's and the program stops.
$\mathrm{Ci}(-x)=\mathrm{Ci}(x)-\mathrm{i} \pi$ for $\mathrm{x}>0$.
Exponential integral:

$$
E i(x)=\int_{-\infty}^{x} \frac{e^{t}}{t} d t=\gamma+\ln x+\sum_{n=1}^{\infty} \frac{x^{n}}{n n!}
$$

where $x>0$ and $\gamma=0.577215665$ is Euler's constant.

This program computes successive partial sums of the series. When two consecutive partial sums are equal, the value is used as the sum of the series.

Note: When x is too large, computing a new term of the series might cause an overflow. In that case, display shows all 9's and the program stops.

References: Handbook of Mathematical Functions, Abramowitz and Stegun, National Bureau of Standards, 1968.

Examples:

1. Si (.69)
2. $\mathrm{Si}(.98)$
3. $\mathrm{Ci}(1.38)$
4. $\mathrm{Ci}(5)$
5. Ei (1.59)
6. Ei (.61)

Solutions:
0.577215665 ST.D 0.69 GSB1 0.67 ** 0. 98 65B1 a. 93 **:
1.38 GSB2
Q. 46 **

5: 04 GSB2

- 0.19 **
1.59 6SB3
3.57 **
0.61 GSB3
D. 80 ~*

User Instructions

STEP	instructions	$\begin{array}{c\|} \hline \text { INPUT } \\ \text { DATA/UNITS } \end{array}$	KEYS	$\begin{gathered} \text { OUTPUT } \\ \text { DATA/UNITS } \end{gathered}$
1.	Key in the program			
2.	Store α	. 577215665	STO	
			0	α
3.	For Sine Integral	x	GSB 1	Si (x)
	For Cosine Integral	x	GSB 2	Ci (x)
	For Exponential Integral	X	GSB 3	Ei (x)
			｢	

*** "Print X " may be used to replace "R/S".

NOTES

In the Hewlett-Packard tradition of supporting HP programmable calculators with quality software, the following titles have been carefully selected to offer useful solutions to many of the most often encountered problems in your field of interest. These ready-made programs are provided with convenient instructions that will allow flexibility of use and efficient operation. We hope that these Solutions books will save your valuable time. They provide you with a tool that will multiply the power of your HP-19C or HP-29C many times over in the months or years ahead.

Mathematics Solutions
Statistics Solutions
Financial Solutions
Electrical Engineering Solutions
Surveying Solutions
Games
Navigational Solutions
Civil Engineering Solutions
Mechanical Engineering Solutions
Student Engineering Solutions

Reorder No. 00029-14010 Printed in U.S.A. 00029-90014

