

INTRODUCTION

This HP-19C/HP-29C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.
They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become an expert on your HP calculator.
You will find general information on how to key in and run programs under "A Word about Program Usage" in the Applications book you received with your calculator.
We hope that this Solutions book will be a valuable tool in your work and would appreciate your comments about it.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

TABLE OF CONTENTS

AZIMUTH-BEARING CONVERSIONS 1
Simple keystroke sequences and program listings for converting azimuths to bearings, and vice-versa, are provided.
FIELD ANGLE OR BEARING TRAVERSE* 5
Reduction of field angle or bearing traverse data with closure and area calculations.
INVERSE WITH CLOSURE, 9
Calculates distances and bearings between points in a traverse, given the coordinates. Area and closure data are also calculated.
SIDESHOTS 12
Calculates coordinates of sideshot points.
COMPASS RULE ADJUSTMENT 15
Adjusts a traverse by the compass rule.
CURVE SOLUTIONS 18
Calculates remaining curve parameters and sector, segment and filletareas given a pair of parameters.
HORIZONTAL CURVE LAYOUT*, 21
Calculates various field data for layout of an horizontal circular curve.
BEARING-DISTANCE AND BEARING-BEARING INTFRSECTIONS, 25
This program calculates the point of intersection of two lines given the bearing and distance, or two bearings.
DISTANCE-DISTANCE INTERSECTION 29
This program calculates the point of intersection of two lines of known length.
OFFSET FROM A POINT TO A LINE 32
Calculates the offset distance, point of intersection and other parameters from a point offset from a line of known bearing.
EARTHWORK 35
Calculations of volumes by average end area and volume of borrow pit.
COORDINATE TRANSFORMATION 39This program translates, rotates and rescales coordinates from one gridsystem to another.

* This program also appears in the HP-19C/29C Applications book, but is included here for the sake of completeness.

AZIMUTH-BEARING CONVERSIONS

Angle conventions for azimuth and quadrant bearings as used in this solution book are shown above.

Thus azimuths are measured from the north meridian following North American surveying conventions. Bearings are measured from the meridian in the quadrant in which the line falls. Quadrant codes are shown in the above sketch.

Often it is desirable to have a quick, easy method to convert to or from azimuths and bearings. In this solutions book, for example, some inputs and outputs may be in azimuths rather than bearings, or vice versa, when you desire the alternate form. The simple keystroke routines on the following page are helpful in making these conversions: If you have a number of conversions to perform the calculator program will be more convenient and faster. Subroutine 1 converts bearings to azimuths. Subroutine 2 converts azimuths to bearings. You may want to separate the two parts and only key in one section if all your conversions are in one direction.

Examp1e:

1. Convert bearing $S 34^{\circ} 56^{\prime} 37^{\prime \prime} \mathrm{W}$ to an azimuth.
2. Convert bearing $\mathrm{N} 85^{\circ} 24^{\prime} 47^{\prime \prime} \mathrm{W}$ to an azimuth.
3. Convert azimuth of $162^{\circ} 15^{\prime} 32^{\prime \prime}$ to bearing/quadrant.
4. Convert azimuth of $39^{\circ} 42^{\prime} 26^{\prime \prime}$ to bearing/quadrant.

Solution:

1. 34.5ET ENT*

ㄱ. GR:
214.567 wn AZ.
2. 85.2447 ENT 4.0000 ESE1
274.3513 ** AZ.
3. 162.1572 G5E2
17.442? w* BRG.

Fe
2. ** QD.
4. 39.4226 ESE2

KEYSTROKE ROUTINES

STEP	instructions	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
	AZIMUTHS TO BEARINGS:						
1	Azimuth $=0^{\circ}$ to 90°	AZ (D.MS)	No CAL	LATION			BRG (D.MS)
							$Q \mathrm{D}=1$
2	Azimuth $=90^{\circ}$ to 180°	180	ENTER \uparrow				
		AZ (D.MS)	g	\rightarrow H	-	f	
			\rightarrow H.MS				BRG (D.MS)
							$Q \mathrm{D}=2$
3	Azimuth $=180^{\circ}$ to 270°	AZ (D.MS)	ENTER \uparrow	180	-		BRG (D.MS)
							$Q D=3$
4	Azimuth $=270^{\circ}$ to 360°	360	ENTER \uparrow				
		AZ (D.MS)	g	$\rightarrow \mathrm{H}$	-	f	
			\rightarrow H.MS				BRG (D.MS)
							$Q \mathrm{D}=4$
	BEARINGS TO AZIMUTHS:						
5	Quadrant $=1$	BRG (D.MS)	NO CAL	LATION			AZ (D.MS)
6	Quadrant $=2$	180	ENTER \uparrow				
		BRG (D.MS)	g	\rightarrow H	-	f	
			\rightarrow H.MS				AZ (D.MS)
7.	Quadrant $=3$	BRG (D.MS)	ENTER \uparrow	180	+		AZ (D.MS)
8	Quadrant $=4$	360	ENTER 1 ,				
		BRG (D.MS)	g	$\rightarrow \mathrm{H}$	-	f	
			\rightarrow H.MS				AZ (D.MS)

FIELD ANGLE OR BEARING TRAVERSE

This program uses angles and/or deflections turned from a reference azimuth and horizontal distances, to compute the coordinates of successive points in a traverse. For a closed traverse, the area enclosed and closure distance and azimuth are computed.

Equations:
$\mathrm{N}_{\mathrm{i}+1}=\mathrm{N}_{1}+$ HDist $\cos \mathrm{AZ}$
$E_{i+1}=E_{1}+H D i s t \sin A Z$
Area $=\sum_{k=1}^{n} \operatorname{LAT}_{k}\left(\frac{1}{2} \operatorname{DEP}_{k}+\sum_{j=1}^{k-1} \operatorname{DEP}{ }_{j}\right)$
where:
$\operatorname{DEP}_{k}=E_{k+1}-E_{k}$ and $\operatorname{LAT}_{k}=N_{k+1}-N_{k}$

Remarks:

If the user does not desire to do Field Angle Traverse, steps 012 through 026 may be eliminated; if he does not desire to do Bearing Traverse, steps 064 through 080 may be eliminated.

Angles left and deflections left must be entered as negative numbers.

This program assumes the calculator is set in DEG mode.

Example 1:
Field Angle Traverse
Traverse the figure below starting at

$$
\frac{N \quad 150}{E 400}
$$

Solution:

232.3772	$\begin{aligned} & +\# \# \\ & R / s \end{aligned}$	（ N ）
367.1498	＋${ }_{\text {\＃}}$	（E）
－100．4559	SEE	
131.3955	暒戠	
124．8080	F／S	
149．9448	＋ ＋$_{\text {ct }}$	（ N ）
	Fes	
399.7829	－ ch $^{\text {c }}$	（E）
	6985	
26558．8264	䡏	（Area）
	P6	
0.277%		（Error Dist．）
	P／S	（Error AZ）
246.1844	－${ }_{\text {韦 }}$	

Example 2：

Bearing Traverse
Traverse the figure below starting at

$$
\frac{\mathrm{N} \quad 100}{\mathrm{E} 500}
$$

Solution：

180.8008 ENT＊		
586.8690 ESE		
184.0090	俥	
86.0223 ENT4		
1．80日 65E4		
86.8223	＋ 䉼 $^{\text {c }}$	
183.5880	R／S	
107.1482	＋ Ha $^{\text {c }}$	（N）
	Prs	
683.2529	＋${ }_{\text {＋}}$	（E）
18.5843 ENTT		
4．日000 ESE4		
341.8117	＋ H $_{\text {\％}}$	
181.9600	Res	
293.5657	䡃戠	（ N ）
	Peg	
579.8939	＋${ }_{\text {a }}$	（E）
64.1319	ENT ${ }^{+}$	
3.8000	ESB4	
244.1719	＊＊＊	
120.4480	Rs	
151.1880	＋${ }_{\text {H }}^{\text {H }}$	（N）
	F／s	
461.6395	＋+ ¢	（E）
37.2651	ENT4	
2.8806	6SP4	
142.3769	＋${ }_{\text {\％}}$	
63.1700	F／S	
101.8366	＊${ }_{\text {\％}}$	（N）
	P／${ }^{\text {c }}$	
580.8498	＋${ }_{\text {H }}$	（E）
	6SE5	
8955.4922		（Area）
	F／S	
1.8378	＋${ }_{\text {H }}^{\text {\％}}$	（Error Dist．）
	R／G	
2.4219	＊＊＊	（Error AZ）

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in beginning coordinates	BEG N	ENT \uparrow	
		BEG E	GSB 1	180.00
	For Field Angle Traverse:			
3	Key in reference azimuth away	REF AZ	R/S	AZ (D.MS)
	from beginning point.			
4	Key in field angle:			
	Angle right	ang. righ	GSB 2	AZ (D.MS)
	or Angle left (-)	-ang. left	GSB 2	AZ (D.MS)
	or Deflection right	deflect.rt	GSB 3	AZ (D.MS)
	or Deflection left (-)	-deflectulf	GSB 3	AZ (D.MS)
5	Key in horizontal distance and compute			
	coordinates	HDist	R / S	N
			R/S	E
	or			
	For Bearing Traverse:			
$3{ }^{\prime}$	Key in bearing*and quadrant code.	BRG (D.MS)	ENT \uparrow	
		QD	GSB 4	AZ (D.MS)
4^{\prime}	Key in horizontal distance and compute			
	coordinates.	HDist	R/S	N
			R/S	E
	Repeat steps $3,4,5$, or $3^{\prime}, 4^{\prime}$ for successive			
	courses.			
6	For closed figure: Compute area, error			
	distance, and error azimuth.		[GSB 5	Area
			R/S	Error Dist
	* If azimuth is known rather than bearing,		R/S	Error AZ
	enter azimuth with $\mathrm{QD}=1$.			
			$\square \square$	
			$1[\square]$	
			\square	
			\square	
]	
			\square	
			$][\square$	
			\square	
] \square	
			$\square \square$	

01	WEL!	Store starting	50		
92	FIM4	point coordinates	5	\vdots	
02	CLPE	and 180°	52	PCl?	
64	STOI		57		
$0 \cdot$	$\mathrm{X}+\mathrm{H}$		54	\times	
66	sto		5	ST+	
87	i		56	FCLE	
69	θ		5	FCL	
09	\square		56	$+$	
10	STCS		59	Fe	***
11	Fes		64	FCL	
12	+4		61	FCL 1	
13	FCl?	Reference azimuth	62	+	
14	+ ${ }^{+}$		$6 ?$	Fe	***
15	+		64	*LEL 4	
15	GTOE		65	\%+'	
17	WLEL2		5	ctoc	
18	+ +	Angle input	67	X +1	Convert bearing and
12	PCL 3		68	ENT*	quadrant code to
28	+ H		69	EUTA	azimuth.
21	+		76	2	
22	+hre		71	\div	
23	*LEL 3	Deflection angle	72	IUT	
24	+ +	input	73	FCl 3	
25	PCL 4		74	X	
26	-		P	$\underline{+Y}$	
27	*LEL		76	RCL	
28	+		7	X	
29	+		78	cos	
76	${ }^{+}$	Compute azimuth	79	RCIS	
3	ULEL9		80	+ +	
72	8+		81	x	
3	V19		82	-	
34	Cre		83	groe	
35	亏		84	WLEL5	Area
76	6		ge	PCLE	
77	0		86	AES	
38	+		87	Prg	***
79	*LELE		89	$\mathrm{FCL} \mathrm{T}^{\text {P }}$	
40	STC4		89	FCle	
41	-HME			+ +	Setup for closure
42	FS	***		Pe	***
47	CT+				
44	PCL 4	Input horizontal		PG	
45	品	distance			
46	+				
47	ST+E				
48	$\mathrm{K}+\mathrm{Y}$ $8 \mathrm{~T}+7$	Compute next coord. and accumulate area			
49	$6 T+7$				

REGISTERS

0	1 Beg.	2 Beg. N	$3 \quad 180$	4	AZ	5
6 Lat.	7 Dep.	8 Area	9 Bearing	.0	.1	
.2	3	4	.5	16	17	
18	19	20	21	22	23	
24	25	26	27	29		

*** indicates that "Print X " may be inserted or used to replace " R / S ".

inverse with CLosure

This program calculates the distance and azimuth of the line joining two points. For a closed inverse, the area enclosed and closure distance and azimuth are computed.

Equations:

$H D=\sqrt{\left(N_{i}-N_{i-1}\right)^{2}+\left(E_{i}-E_{i-1}\right)^{2}}$

$$
A Z=\tan ^{-1} \frac{E_{i}-E_{i-1}}{N_{i}-N_{i-1}}
$$

$$
\text { Area }=\sum_{k=1}^{n} \operatorname{LAT}_{k}\left({\frac{1}{2} D E P_{k}}^{n} \sum_{j=1}^{k-1} \operatorname{DEP}_{j}\right)
$$

where

$$
\mathrm{DEP}_{\mathrm{k}}=\mathrm{E}_{\mathrm{k}+1}-\mathrm{E}_{\mathrm{k}} \text { and }
$$

$$
\mathrm{LAT}_{\mathrm{k}}=\mathrm{N}_{\mathrm{k}+1}-\mathrm{N}_{\mathrm{k}}
$$

Example: Inverse the figure below starting at

Begin $\frac{\text { N } 100.000}{E 200.000}$

Solution:
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { STEP } & \text { INSTRUCTIONS } & \text { INPUT } \\ \text { OATA/UNITS }\end{array}\right]$

*** "Print X " may replace or be used with "R/S"

SIDESHOTS

This program is used to make sideshots or radials from a point. Two methods may be used for a sideshot, 1) input a bearing and distance and calculate the point coordinates, or 2) input the point coordinates and calculate the azimuth and distance to the point.

Equations:

$$
\begin{aligned}
& N=N_{0}+H \text { Dist } \cos A Z \\
& E=N_{0}+H \text { Dist sin } A Z
\end{aligned}
$$

Example:

Solutions:

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1	Key in the program				
2	Enter hub coordinates	N	ENT \uparrow		
		E	GSB		
3 a	For bearing sideshot: Enter bearing and quad-	BRG (D.MS)	ENT \uparrow		
	rant;	QD	GSB] [2	AZ (D.MS)	
	enter horizontal distance and compute point	H Dist	R/S	N	
	coordinates.		R/S	E	
	*If azimuth is known rather than bearing,		1		
	enter azimuth with $\mathrm{QD}=1$.		1		
			[\|		
3b	For inverse sideshot: enter coordinates of	N	ENT \uparrow		
	sideshot point and compute horizontal distance	E	[GSB \|	3	H Dist
	azimuth		R/S	AZ (D.MS)	
			1		
4	Repeat step 3 for all desired sideshots.		11		
			\| 1		
] 1		
			$1 \mid$		
			11		
			111		
			11		
			\| 1		
			1		
			\|		
			1		
			1		
			\|		
			\| 1		
			\| 1		
			\|		
			\| 1		
			\|		
			\|		
			$1 \mid$		
			\|		

*** "Print X " may replace or be used with "R/S"

COMPASS RULE ADJUSTMENT

This program adjusts a traverse by the compass rule. It is intended to follow the program "Field Angle or Bearing Traverse" (with closure). However, if the correct coordinates of the last point and the total distance traversed are known, these parameters can be used in lieu of executing the closure program.

If this program is not used immediately after "Field Angle or Bearing Traverse" (with closure) or the storage registers have been altered since the closure program was run, enter the following data into the specified storage registers:

Register Parameter:

1. Correct closing easting.
2. Correct closing northing.
3. Total distance traversed.
4. Calculated ending northing.
5. Calculated ending easting.

The Inverse program may be used to obtain adjusted bearings, distances and area.

Equations:

$$
\begin{aligned}
& C_{L}=\frac{(\Delta N) \text { (Dist) }}{\sum \text { Dist }} \\
& C_{D}=\frac{(\Delta E) \text { (Dist) }}{\sum D i s t} \\
& \text { Where: } \quad C_{L}=\text { Correction to latitude of } \\
& \text { a course. } \\
& C_{D}=\text { Correction to departure of } \\
& \text { a course. }
\end{aligned}
$$

Examp1e:
667.147 Total distance traversed
400.000 Correct closing easting
150.000 Correct closing northing
399.783 Calculated ending easting
149.905 Calculated ending northing

POINT UNADJUSTED
NO. COORDINATES
$2 \quad \mathrm{~N}=224.515$
$E=561.615$
$3 \quad \frac{\mathrm{~N}}{\mathrm{E}}=356.529$
$4 \quad \mathrm{~N}=232.337$

Ending \& ($\mathrm{N}=149.905$
Beginning $\}_{\mathrm{E}}=\overline{399.783}$
Solution:

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS	
1	Key in the program					
2	Store data	Beg N	STO	2		
	Note: If this program is run immediately	Beg E	STO	1		
	following "Field Angle or Bearing Traverse",	EHDist	STO			
	these values are already stored in the	C1 LAT	STO	6		
	correct registers.	C1 DEP	STO	7		
3	Initialize		GSB	1		
4	Compute adjusted coordinates	Unadj N	ENT \uparrow			
		Unadj E	GSB	2	Adj N	
			R/S		Adj E	
	*N.E. Coordinates must be reentered in the					
	same sequence as originally traversed,					
	starting at the second point.					
			11			
			$1]$			
			1			
			1			
			$\|1\|$			
			1 \|			
			1			
			1			
			\|			
			\| 1			
			\| 1			
			11			
			\| 1			
			\| 1			
			11			
			$1 \mid$			
			\| 1	I		
			\|	\|		

CURVE SOLUTIONS

Given values for any of the following pairs, this program computes the remaining parameters plus the sector, segment, and fillet areas: Δ and $C ; \Delta$ and R; \triangle and T; R and T; R and L; R and C.

Equations

```
\frac{1}{2}\Delta= \mp@subsup{\operatorname{tan}}{}{-1}(T/R)=\mp@subsup{\operatorname{sin}}{}{-1}(\frac{1}{2}C/R)=90L/\piR
    T = R tan ( (1/2 A)
    C=2T cos (\frac{1}{2}\Delta)
    R = T/tan (\frac{1}{2}\Delta)=C/(2 sin (\frac{1}{2}\Delta))
    L}=\Delta\pi\textrm{R}/18
Sector area = LR/2
Segment area = Sector area-\frac{1}{2}CR cos(\frac{1}{2}\Delta)
Fillet area = T R-Sector area
Where: T = Tangent distance
    C = Chord length
    L = Arc length
    R = Radius
    | Central angle
```


$\mathrm{R}=223.181$
$\Delta=45^{\circ} 30^{\prime} 23^{\prime \prime}$
$\frac{1}{2} \Delta=22^{\circ} \quad 45^{\prime} 11^{\prime \prime}$
$C=172.636$
$\mathrm{T}=93.602$
$\mathrm{L}=177.258$
Sector area $=19780.36$
Segment area $=2015.00$
Fillet area $=1109.87$

Solution:

227.1810	cta	R
172,666	CTas	C
	CSE:	
223.1810	$P 6$	R
22.752	+4	$\Delta / 2$
	Fs	
03.6022	+6	T
	Re	
172.6360	+4.4	C
	Fe	
17.2584	W4	L
	PS	
9760.356	**	Sector Area
	PS	
2014.0959	**	Segment Area
	RE	
1109.6705	4.4	Fillet Area

***"PrintX" may be inserted or used to replace "R/S"

HORIZONTAL CURVE LAYOUT

This program calculates various field data for layout of an horizontal circular curve. The required information on the curve is the PC station and the radius or degree of curve. With this data one computes successively the arc length, deflection angle from tangent to chord, the long chord from PC to current station, and the short chord from previous station to current station. In addition, the tangent offset and tangent distance are available if desired.

If the central angle is known the program also will compute the total arc length from PC to PT, the station PT and the length of the tangent from $P C$ to $P I$.

In the program, stations are entered in the form XXXX. XX for station
$X X+X X . X X$. For example: $20+10.00$ is entered as 2010.00. The degree of curve D, (or central angle subtending an arc of 100 ft .) is entered in degrees with a negative sign, always.

PC Deflections

Field data output for PC deflections consist of:
STA-current station
ANG-deflection angle from tangent to long chord.
LC-long chord from PC to current station

```
SC-Short chord from previous station
        to current station
\(\Delta \Delta\)-central angle
    PI-point of intersection of tangents
PC, PT-ends of curve
    L-Arc length
    R-radius
```

Tangent Offsets and Distances

Field data output for tangent offsets consist of:

$$
\begin{aligned}
& \text { STA-current station } \\
& \text { TD-tangent distance } \\
& \text { TO-tangent offset } \\
& \text { T-distance from PC to PI }
\end{aligned}
$$

HORIZONTAL CURVE LAYOUT

Example：

```
Compute field data for a curve with a
central angle of 35'30' and degree of
curve of 12 }\mp@subsup{}{}{\circ}3\mp@subsup{0}{}{\prime}\mathrm{ . The PC station is
7+85.40.
Solution：
```

795.4000 EHT＊		
－12． 3000	CSE1	
785.4000	＊＊＊	（PC）
	RCL 1	
458.3662	㒳	（R）
800.6000	GSE2	（For STA．8）
14.6009	＊＊＊	（L）
	Res	
0.5445	＊＊	（ANG）
	Res	
14.5994	＊＊＊	（LC）
	Res	
14.5994	W＊	（SC）
	RCLE	
0.2325	＊${ }^{\text {a }}$	（TO）
	RCIS	
14.5975	＊＊	（TD）
900． 0000	GSE2	（For STA．9）
114.6000	＊${ }^{*}$	（L）
	R\％	
7．0945	＊＊＊	（ANG）
	R／S	
114.3018	bl	（LC）
	R／S	
99.8018	＊＊＊	（SC）
	RCLE	
14.2516	䋛	（T0）
	RCL9	
113.4098	䊂伟	（TD）

1090． 9000	GSE2	（For STA．10）
214.6000	＊＊	（L）
	R／S	
13.2445	＊＊＊	（ANG）
	R／S	
212.6454	＊＊＊	（LC）
	R／S	
99.8018	＊＊＊	（SC）
	RCL8	
49.3252	粎	（TO）
	FCL 9	
206.8455	＊＊＊	（TD）
35．3000	GSE？	
284.0080	＊＊＊	（L）
	R\％	
1069．4000	＊＊＊	（PT）
	R／S	
146.7242	＊＊＊	（T）
1969．4000	GSE2	（Field data：PT）
284.0000	＊＊＊	（L）
	FG	
17．4500	＊＊＊	（ANG）
	Re	
279.4796	＊＊＊	（LC）
	$F \mathrm{E}$	
69.3337	W4	（SC）

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Key in the program.				
2	Input beginning station of curve	PC	ENT \uparrow		PC
3	Input radius	R	GSB	1	
	or degree of curve (as a negative number)	-D (D.MS)	GSB		
$3{ }^{\prime}$	Radius or degree of curve are available if		RCL		R
	desired.		RCL	2	D
4	Input station	STA	GSB	2	L(Arc.leng)
			R/S		def. angle
			[R/S		long chord
			R/S		short chor
4^{\prime}	Tangent offset, TO, and tangent distance,				
	TD, are available if desired.		RCL	8	T0
			RCL	9	TD
5	Input central angle	\triangle (D.MS)	GSB	3	Arc. lengt
			R/S		station PT
			R/S		T , length

*** indicates that "Print X " may be inserted or used to replace "R/S".

BEARING-DISTANCE AND BEARING-BEARING INTERSECTION

This program computes the coordinates of the point of intersection of two lines: 1) one of known bearing through known coordinates and the other of known length from a point of known coordinates; or 2) when the bearing of each line is known and the coordinates of a point on each line are known. For the first case, both solutions may be computed.

Equations:

Bearing-Distance

$$
\begin{aligned}
& A z_{12}=\tan ^{-1} \frac{E_{2}-E_{1}}{N_{2}-N_{1}} \\
& \text { h = Dist } 12 \text { sin } \phi \\
& \mathrm{b}=\sqrt{\text { Dist }_{2}^{2}-\mathrm{h}^{2}} \\
& \mathrm{~N}=\mathrm{N}_{1}+\left(\left(\text { Dist }_{12} \cos \phi\right)+\mathrm{b}\right) \cos \left(\mathrm{Az}_{1}\right) \\
& E=E_{1}+\left(\left(\text { Dist }_{12} \cos \phi\right)+b\right) \sin \left(\mathrm{Az}_{1}\right) \\
& \text { where: } A Z_{12}=\text { Azimuth of line from } \\
& \text { point } 1 \text { to point } 2 \\
& A Z_{1}=\text { Azimuth of line } 1 \\
& \phi=\text { Angle between line } 1 \text { and } \\
& \text { line from point } 1 \text { to } \\
& \text { point } 2 \\
& \text { h = Perpendicular distance } \\
& \text { from point } 2 \text { to line } 1 \\
& \mathrm{~b}=\text { Distance from point of } \\
& \text { intersection to the } \\
& \text { point where the perpendi- } \\
& \text { cular (h) intersects line } \\
& 1 \\
& \text { Dist } 2=\text { Length of line } 2 \text { (the } \\
& \text { known distance) } \\
& \mathrm{N}_{2} \mathrm{E}_{2}=\text { Northing, easting of point } \\
& 1 \\
& \mathrm{~N}_{2} \mathrm{E}_{2}=\text { Northing, easting of point } \\
& 2 \\
& \text { Dist }_{12}=\text { Distance from point } 1 \text { to } \\
& \text { point } 2
\end{aligned}
$$

```
            Bearing-Bearing
    N = N N + Dist (cos AZ I )
    E = E1 + Dist (sin AZ )
Dist = Dist 12 sin (AZ 2-AZ 12 )
```

where:

$$
\begin{aligned}
\mathrm{AZ}_{12}= & \text { Azimuth of } 1 \text { ine from point } \\
& 1 \text { to point } 2
\end{aligned}
$$

```
AZ l = Azimuth of line 1
AZ2}=\mathrm{ Azimuth of line 2
N}\mp@subsup{|}{1}{}\mp@subsup{E}{1}{}=\mathrm{ Northing, easting of point l
N}\mp@subsup{N}{2}{}\mp@subsup{E}{2}{}=\mathrm{ Northing, easting of point 2
N,E = Northing, easting of intersect
        point
Dist = Distance from point 1 to inter-
        section
Dist 12 = Distance from point 1 to point
        2
```

Example 1:

$\overline{E_{1}}=250.000$

Solution:

> 75.0600 ENT*
> 250.0000 GE1 460.0600 ENT 604.0000 Re 45.4550 Ent
> 1. D00e GeE 25.3070 EUT* 4. 0000 ESE GEP4
> 596.5457 WH
> 505,2631 Wh E

Examp1e 2:
(FAR SOLUTION-
AZIMUTH ENTERED AS $\quad \mathbf{N}=\mathbf{6 9 3 . 2 0 9 6}$ AWAY FROM POINT 1) $\quad \bar{E}=\mathbf{6 6 8 . 6 0 8 9}$

NEAR SOLUTIONAZIMUTH ENTERED TOWARD POINT 1) /

$\mathrm{N}_{1}=\mathbf{3 0 0 . 0 0 0}$
$\overline{E_{1}}=200.000$

Solution:

***"Print X" may replace or be used with "R/S"

DISTANCE-DISTANCE INTERSECTION

Given two lines, each of known length and originating from two known points, this program computes the intersection coordinates. There are two possible solutions; this program calculates the one found by proceeding in a clockwise direction from the first known point to the second known point. The other solution is found by reversing the entry of the known point coordinates.

Equations:

$$
\begin{aligned}
& \phi=\cos ^{-1} \frac{\text { Dist }_{12}{ }^{2}+\text { Dist }_{1}^{2}-\text { Dist }_{2}^{2}}{2\left(\text { Dist }_{1}\right)\left(\text { Dist }_{12}\right)} \\
& A Z=\tan ^{-1} \frac{E_{2}-E_{1}}{N_{2}-N_{l}}
\end{aligned}
$$

$\mathrm{N}=\mathrm{N}_{\mathrm{l}}+$ Dist $_{l} \cos (\mathrm{AZ}-\phi)$

$$
E=E_{l}+\text { Dist }_{l} \sin (A Z-\phi)
$$

```
where: \phi = Angle between line 1 and
                line 1+2
    Dist }\mp@subsup{1}{2}{}=\mathrm{ Distance from point 1 to
                point 2
    Dist 
    Dist2 = Known distance along line 2
    N N\mp@code{E E = Northing, easting of point 1}
        N,E = Northing, easting of inter-
        section point
        AZ = Azimuth of line from point
                1 to point 2
```


Example:

Solution:

	Clf
179.1690	ENT*
132,3790	GSE1
95.6010	ENT*
26.8730	GSE2
17.3820	ENTA
147.7476	ESES
139.8558	***
	F 8
190.6925	***

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Key in the program				
2	Enter distances	Dist 1	ENT \uparrow		
		Dist 2	GSB	1	
3	Enter points 1 and 2* and calculate	N 1	ENT \uparrow		
	intersection	E 1	GSB	2	
		N 2	ENT \uparrow		
		E 2	GSB	3	N
			R/S		E
				\square	
				\square	
				0	
				1	
				1	
	* Two solutions are possible. For the				
	alternate solutions reverse the order				
	of entering points 1 and 2				
				0	

*** 'Print X' may be used to replace "R/S"

OFFSET FROM A POINT TO A LINE

Given the point of known coordinates with a line of known bearing passing through it and a second point of known coordinates, this program calculates the offset distance from the second point to the line, the distance from the intersection to the first known point, the coordinates of the intersection, and the azimuth from the point of intersection to the second point.

Equations:
Dist ${ }_{B O}=\sqrt{\left(N_{O}-N_{B}\right)^{2}+\left(E_{O}-E_{B}\right)^{2}}$

$$
\begin{aligned}
& \text { Dist }_{B I}=\sqrt{\left(N_{O}-N_{I}\right)^{2}+\left(E_{O}-E_{I}\right)^{2}} \\
& N_{1}=\frac{E_{O}-E_{B}+N_{O} \operatorname{ctn}\left(A z_{B I}\right)+N_{B} \tan \left(A z_{B I}\right)}{\operatorname{ctn}\left(A z_{B I}\right)+\tan \left(A z_{B I}\right)} \\
& E_{1}=E_{B}+\left(N_{I}-N_{B}\right) \tan \left(A z_{B I}\right)
\end{aligned}
$$

Where: Dist $_{\text {BO }}=$ Distance from point to offset point
Dist $_{\text {BI }}=$ Distance from base point to intersection point
Dist $_{\text {IO }}=$ Distance from intersection point to offset point
$\mathrm{N}_{\mathrm{O}}, \mathrm{E}_{\mathrm{O}}=$ Northing, easting of offset point
$N_{B}, E_{B}=$ Northing, easting of base point
$N_{I}, E_{I}=$ Northing, easting of intersection point
$A Z_{B I}=$ Known $A Z$ from base point to intersection point

Example:

Solution:

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Key in the program				
2	Store data	N_{B}	STO	1	
		E_{B}	STO	21	
		N_{O}	STO	3	
		E_{0}	STO	4	
		BRG**	STO	5	
		QD**	STO	6	
		180	STO	7	
3	Run		GSB	17	N_{I}
			R/S		E_{I}
			R/S		O.D.
			R / S		I.D.
			R/S		0.AZ*
	*Offset azimuth may be incorrect for				
	bearings of 0 , but for these cases, the				
	offset azimuth may be obtained by				
	inspection				
	**If azimuth is known rather than bearing	Az(H.MS)	STO	5	
		1	STO	61	
				\square	
				-1	
				1	

*** "Printx" may be inserted or used to replace "R/S".

EARTHWORK

VOLUME BY AVERAGE END AREA

Routines labeled 1 and 2 calculate the end area for any station, volume from previous station, and accumulated volume to the present station. Inputs are the elevations and distances from the centerline for all points of a cross section and the interval from the previous station.

Equations:

$$
\begin{aligned}
& V \text { avg }=\left(\mid \text { Area }_{i}|+| \text { Area }_{i-1} \mid\right) \frac{I}{2} \\
& \text { Area }=\frac{1}{2}\left[\text { Elev }_{1}\left(\text { H Dist }_{2}-\text { HDist }_{\mathrm{n}}\right)+\right. \\
& \text { Elev }_{2}\left(\text { H Dist }_{3}-\text { HDist }_{1}\right)+ \\
&\left.\cdots+\text { Elev }_{n}\left(\text { H Dist }_{1}-\text { HDist }\right)\right]
\end{aligned}
$$

Where: V avg = Average volume between two stations
Area $=$ Cross sectional area at a station
H Dist $=$ Horizontal distance from centerline at cross section
Elev = Elevation at a point on the cross section
I = Interval between stations
Subscript i refers to current point
Subscript n refers to last point
Numeric subscript refers to point number

VOLUME OF BORROW PIT
Routines labeled 3-6 calculate the volume of fill which can be taken from a borrow pit given grid dimensions and elevations at the grid intersections. Volume is available for each grid section and also as an accumulative volume for all previous sections.

If several grid blocks have the same horizontal dimensions, the sum of the volumes of all these blocks can be calculated at once. For example, if three rectangular blocks have the same dimensions, the 12 elevations are entered before pressing GSB 6.

Equations:

```
Vo1
Vol = (Width)(Length)(Elev)
Where: Vol
                grid section
    Base = Base of triangle
        Ht = Height of triangle
    Elev = Elevation of grid section
                (depth of cut)
            Vol = Volume of rectangular
                grid section
    Width = Width of rectangle
    Length = Length of rectangle
```


Example 1:

Example 2：
CLRG
0.0000 GSB2 1st Sta．
0.0000 ENT个 Starting at $0 / 0$ \＆
0. 月月 18 GSB1 Going CCW．

B．0日BD ENTT
1月：月AD日 6SB1 -2 ： QAAB ENT \uparrow 12． 1 ABAD GSB1
7．00R4 ENT个
20．ABAR GSB1
6． 8 R19 ENTA
－3：в
7 日月a月 ENT个
－18．DEAB GSB1
-2.8 R日B ENT个
-12.80 E® GSB1
O．RBOB ENTA
$-18.8908 \mathrm{ESB1}$
0.8909 ENT个 Reinput lst Elev \＆

O． 0 日0日 GSB1 Dist．
25．

D． 1000 ENTA
D．gana GSB1
0． 1200 ENT \uparrow
12．0000 GSB1
－1：घúด̆ ENT个
14： 0080 GSB1
－1．日anã ENTA
15．иै
18． 1000 ENT个
30．80at GSB1
8． 1000 ENTA
6． 18100 65B1
7．日0日G ENT个
－21．日㫙 6SB1
4． 8804 ENTT
－17．000G 6SB1
－1．gana ENT个
－18． 1000 ESB1
O．00BE ENTT
－8．1046 GSB1
（1） 000 ENT

50．9ana 6SB2
597． 6852 ＊＊K
RCL5
497：6852＊＊Vo1．（interna1）
321．5490＊＊＊Area

	CLE
12．0000	ENT \uparrow
35.0800	GSB3
2． 38019	GSB5
3．1600	GSBS
3．4йй	6SB5
	GSB6
616．0800	＊＊＊

25． angay	ENTA		
35．дapay	GSB4	12：Яुलिดิ ENT个	
2.3 зй	GS85	25．ดुทด GSB4	
3． 4 促	GSB5	3．8йด̆ด GSB5	
3.10 an	GSB5	3．19［19 GSB5	
2.9000	6SB5	3.6045 CSB5	
2.9080	GSB5	3． 62 日4 ESB5	
3．1星品	6585	3．Зий GSB5	
3.3 990	GSB5	3．30109 GSB5	
3.3999	GSB5	2．gnan GSB5	
2.7081	6SB5	2． 2 90］	OSB5GSB6
2.7098	6SB5		
2.4099	6SB5	1867． 5480	$\begin{aligned} & \text { *** G.Vol. } \\ & \text { R/S } \end{aligned}$
2． 6 为	GSB5		
	GSEG	16457．8754	＊＊＊A．Vol．
459．3756	＊＊＊	Vol．	

25．ดดต่ ENT个

12：9990 GSB3

3．19月明 GSBS
3：4GQ9 GSB5
3．8008 GSE5
6SB6
515． 908 粈系 G．Vol．

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Key in the program				
	VOLUME BY AVERAGE END AREA:				
2	Initialize		f	REG	
3	If station has zero end area go to step 6				
4	Input elevation and distance from the	Elev	ENT \uparrow		
	centerline	Dist	GSB	1	
5	Repeat step 4 working around the section until				
	first Elev. and Dist. have been reinput				
6	Input interval from previous station and				
	calculate total volume	Int. (ft)	GSB	2	$\begin{aligned} & \text { Total } \left.{ }^{\text {Tot }} \begin{array}{l} \text { (yds } \end{array}\right) \text { vol } \\ & \hline \end{aligned}$
	(Note: input 0 interval if first station)				
7	For volume of interval		RCL	5	$\begin{aligned} & \text { Int } \cdot{ }^{3}{ }^{3} \mathrm{val}^{2} . \end{aligned}$
8	For area of cross section		RCL	4	Area (ft ${ }^{2}$)
9	Go to step 3 for a new section, Step 2 for a				
	new case				
	VOLUME OF BORROW PIT				
10	Initialize		f	Σ	
11a	For triangular area	Base	ENT \uparrow		
		Height	GSB	3	
11b	For rectangular area	Width	ENT \uparrow		
		Length	GSB	4	
12	Input as many elevations as needed to describe				
	each corner, pressing GSB 5 after each entry	Elev	GSB	5	
13	Calculate grid section volume		GSB	6	G. Vol (ft ${ }^{3}$
14	Calculate accumulated volume		k/s		A.Vol (ft^{3})
	(To convert cubic feet to cubic yards divide				
	by 27.)				

COORDINATE TRANSFORMATION

This program translates, rotates, and rescales coordinates. Traverse rotation angle is entered as a negative value for counterclockwise rotation and positive for clockwise rotation. The translation factors are calculated by entering old and new grid system coordinates for the same point; rotation is also about this point.

Equations:
$A z_{R}=\phi+\tan ^{-1} \frac{E_{i}-E_{p}}{N_{i}-N_{p}}$
$H^{\text {Dist }}=S \sqrt{\left(N_{i}-N_{p}\right)^{2}+\left(E_{i}-E_{p}\right)^{2}}$
$N=H$ Dist $_{S} \cos \left(\mathrm{AZ}_{\mathrm{R}}\right)+\mathrm{N}_{\mathrm{T}}$
$E=H$ Dist ${ }_{s} \sin \left(A Z_{R}\right)+E_{T_{1}}$

Where: $A Z_{R}=$ Rotated azimuth

$$
\left.\begin{array}{rl}
\phi= & \text { Rotation angle } \\
\mathrm{N}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}= & \text { Northing, easting of } \\
& \text { current point before } \\
& \text { transformation }
\end{array}\right\} \begin{aligned}
& \mathrm{N}_{\mathrm{p}} \mathrm{E}_{\mathrm{p}}= \begin{array}{l}
\text { Original northing, easting } \\
\text { of pivot point }
\end{array} \\
& \mathrm{HD} \mathrm{Dist}_{\mathrm{S}}= \begin{array}{l}
\text { Scaled horizontal } \\
\\
\text { distance }
\end{array} \\
& \mathrm{S}= \text { Scale factor } \\
& \mathrm{N}, \mathrm{E}= \text { Northing, easting after } \\
& \text { transformation } \\
& \mathrm{N}_{\mathrm{T}_{1}, \mathrm{E}_{\mathrm{T}}=}=\begin{array}{l}
\text { Northing, easting of } \\
\\
\begin{array}{l}
\text { pivot point after } \\
\text { transformation }
\end{array}
\end{array}
\end{aligned}
$$

Note: The scale factor is taken as one, unless the new grid system is to a different scale.

Example:
Coordinates before transformation are those computed by Compass Rule

Adjustment.

COORDINATES IN OLD SYSTEM	COORDINATES IN NEW SYSTEM
N $150.000 *$ E 400.000	$\frac{\mathrm{~N}}{\mathrm{E}} \frac{100.00 *}{350.00}$
N	224.540
E	561.673

$\mathrm{N} \quad 356.577$
$\mathrm{E} \quad 468.710$

N	232.414
E	307.327

* Rotated about this point

Rotation Angle $=-3^{\circ} 00^{\prime} 00^{\prime \prime}$
Scale Factor $=1.00$

Solution:

-3.aper gra		
1. ane	Crys	
SECo日ES EN		
469. ${ }^{\text {ang }}$		
Sed.eoge ENT*		
350 a0e 5 ese		
224.548 EENT		
ESLETE GEE		
165.97E5	*k.	N
	Feg	
515.358	***	E
756.500	ENTA	
468.7100	SSE3	
302.ETP	4.	N
	Fs	
499.4262	-**	E
232.446	ENT*	
20.3279	ESE:	
107.1512	ver	N
	FE	
26.75	...	E

In the Hewlett-Packard tradition of supporting HP programmable calculators with quality software, the following titles have been carefully selected to offer useful solutions to many of the most often encountered problems in your field of interest. These ready-made programs are provided with convenient instructions that will allow flexibility of use and efficient operation. We hope that these Solutions books will save your valuable time. They provide you with a tool that will multiply the power of your HP-19C or HP-29C many times over in the months or years ahead.

Mathematics Solutions
Statistics Solutions
Financial Solutions
Electrical Engineering Solutions
Surveying Solutions
Games
Navigational Solutions
Civil Engineering Solutions
Mechanical Engineering Solutions
Student Engineering Solutions

HEWLETT hP PACKARD

Reorder No. 00029-14005 Printed in U.S.A. 00029-90009

