

INTRODUCTION

This HP-19C/HP-29C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.

They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become an expert on your HP calculator.

You will find general information on how to key in and run programs under "A Word about Program Usage" in the Applications book you received with your calculator.

We hope that this Solutions book will be a valuable tool in your work and would appreciate your comments about it.

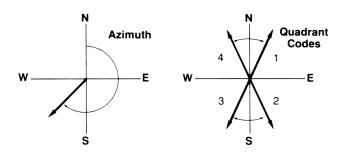

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

TABLE OF CONTENTS

AZIMUTH-BEARING CONVERSIONS	1
FIELD ANGLE OR BEARING TRAVERSE*	5
INVERSE WITH CLOSURE	9
SIDESHOTS	12
COMPASS RULE ADJUSTMENT	15
CURVE SOLUTIONS	18
HORIZONTAL CURVE LAYOUT*	21
BEARING-DISTANCE AND BEARING-BEARING INTERSECTIONS	25
DISTANCE-DISTANCE INTERSECTION	29
OFFSET FROM A POINT TO A LINE	32
EARTHWORK	35
COORDINATE TRANSFORMATION	3 9

 $^{^{*}}$ This program also appears in the HP-19C/29C Applications book, but is included here for the sake of completeness.

AZIMUTH-BEARING CONVERSIONS

Angle conventions for azimuth and quadrant bearings as used in this solution book are shown above.

Thus azimuths are measured from the north meridian following North American surveying conventions. Bearings are measured from the meridian in the quadrant in which the line falls. Quadrant codes are shown in the above sketch.

Often it is desirable to have a quick, easy method to convert to or from azimuths and bearings. In this solutions book, for example, some inputs and outputs may be in azimuths rather than bearings, or vice versa, when you desire the alternate form. The simple keystroke routines on the following page are helpful in making these conversions: If you have a number of conversions to perform the calculator program will be more convenient and faster. Subroutine 1 converts bearings to azimuths. Subroutine 2 converts azimuths to bearings. You may want to separate the two parts and only key in one section if all your conversions are in one direction.

Example:

- 1. Convert bearing S 34° 56' 37"W to an azimuth.
- 2. Convert bearing N 85° 24' 47"W to an azimuth.
- 3. Convert azimuth of 162° 15' 32" to bearing/quadrant.
- 4. Convert azimuth of 39° 42' 26" to bearing/quadrant.

Solution:

KEYSTROKE ROUTINES

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
	AZIMUTHS TO BEARINGS:						
1	Azimuth = 0° to 90°	AZ (D.MS)	NO CALO	CULATION			BRG (D.MS)
		AZ (D.MS)					QD = 1
2	Azimuth = 90° to 180°	180	ENTER↑				QD 1
		AZ (D.MS)	g	→H	_	f	
			→H.MS				BRG (D.MS)
							QD = 2
3	Azimuth = 180° to 270°	AZ (D.MS)	ENTER↑	180	_		BRG (D.MS)
		(2712)					QD = 3
4	Azimuth = 270° to 360°	360	ENTER↑				
		AZ (D.MS)	g	→H	_	f	
		(2012)	→H.MS				BRG (D.MS)
							QD = 4
	BEARINGS TO AZIMUTHS:						1
5	Quadrant = 1	BRG (D.MS)	NO CALO	CULATION			AZ (D.MS)
	Quautant - 1	DRG (D.MS)	I I				AZ (D.HS)
6	Quadrant = 2	180	ENTER↑				
	Quarture 2		g	→H		f	
		BRG (D.MS)	→H.MS	11			AZ (D.MS)
7.	Quadrant = 3	BRG (D.MS)	ENTER ↑	180	+		
'•	Quadrant - 5	DRG (D.MS)	ENTER	100			AZ (D.MS)
8	0 1 2 1	260	ENTER↑,				
P	Quadrant = 4	360		→H		f	
		BRG (D.MS)	g →H.MS	71		<u> </u>	A.F. (D. MG)
			711.115				AZ (D.MS)
						<u> </u>	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
	(steps 01 thru 26 for bearing to azimuth,			
	steps 27 thru 45 for azimuth to bearing)			
2	To convert bearing to azimuth:	BRG (D.MS)	ENT↑	
	input bearing and quadrant	AD	GSB 1	AZ (D.MS)
3	To convert azimuth to bearings, input			
	azimuth.	AZ (D.MS)	GSB 2	BRG (D.MS)
			R/S	QD
		_		
-				
		_		
		_		
		+		
				
		 		
		1		
		1		

6 7 8 9 180 .0 .1 .2 .3 .4 .5 16 17	01 *LBL1 02 FIX4 03 X	***Azi Azimut ***Bea	muth h to Bearing ring	STERS		
.2 .3 .4 .5 16 17	0	1	2	3	4	5
.2 .3 .4 .5 .16 .17	6	7	8	9 180		.1
118 119 20	1		l			
	18	19	20	21	22	23
24 25 26 27 28 29	24	25	26	27	28	29

***Print x may be used with or to replace R/S

FIELD ANGLE OR BEARING TRAVERSE

This program uses angles and/or deflections turned from a reference azimuth and horizontal distances, to compute the coordinates of successive points in a traverse. For a closed traverse, the area enclosed and closure distance and azimuth are computed.

Equations:

$$N_{i+1} = N_1 + HDist cos AZ$$

$$\begin{aligned} \mathbf{E}_{\mathbf{i}+1} &= \mathbf{E}_1 + \mathbf{HDist \ sin \ AZ} \\ \mathbf{Area} &= \sum_{k=1}^{n} \quad \mathbf{LAT}_k \begin{pmatrix} \mathbf{e}_{\mathbf{j}} \mathbf{DEP}_k + & \sum_{j=1}^{k-1} & \mathbf{DEP}_j \end{pmatrix} \end{aligned}$$

where:

$$DEP_k = E_{k+1} - E_k$$
 and $LAT_k = N_{k+1} - N_k$

Remarks:

If the user does not desire to do Field Angle Traverse, steps 012 through 026 may be eliminated; if he does not desire to do Bearing Traverse, steps 064 through 080 may be eliminated.

Angles left and deflections left must be entered as negative numbers.

This program assumes the calculator is set in DEG mode.

Example 1:

Field Angle Traverse Traverse the figure below starting at

Solution:

150.0000	ENT†	
400.0000	GSB1	
180.0000	***	
311.3955	R/S	
131.3955	***	
113.3455	GSB2	
65.1450	***	
177.9660	R/S	
224.5158	***	(37)
	R/S	(N)
561.6150	***	(E)
-100.2455	GSB3	(E)
324.4955	***	
161.4910	R/S	
356.5285	***	(N)
	R/S	
468.6000	***	(E)
87.3559	GSB2	
232.2554	***	
203.6900	R/S	

232.3372 *** R/S	(N)	Solution:	
307.1498 *** -100.4559 GSB3	(E)	100.0000 ENT†	
131.3955 ***		500.000 0 GSB1	
124.0000 R/S		180.0000 ***	
149.9048 ***	(N)	86.0223 ENT†	
R/S		1.0000 GSB4	
399.7829 ***	(E)	86.0223 ***	
GSB5	(1)	103.5000 R/S	
26558.8204 ***	(Area)	107.1482 ***	(N)
R/S	(Error Dist.)	R/S	
0.2371 ***		603.2529 ***	(E)
R/S	(Error AZ)	18.5843 ENT†	
246.1844 ***		4.0000 GSB4	
		341.0117 ***	
		101.9600 R/S	
		203.5657 ***	(N)
Example 2:		R/S	
		570.0939 ***	(E)
Bearing Traverse		64.1319 ENT†	
Traverse the figure b	olow starting at	3.0000 GSB4	
Traverse the righte b	elow Starting at	244.1319 ***	
N 100		120.4400 R/S	
E 500		151.1880 ***	(N)
		R/S	
		461.6395 ***	(E)
		37.2651 ENT↑	(-)
		2.0000 GSB4	
	3	142.3309 ***	
10'W		63.1700 R /S	
564° 13' 14	\	101.0366 *** R/S	(N)
4	1. 10 € 1. 18 €	500.0490 *** GSB5	(E)
	Z Z	8855.4922 *** R/S	(Area)
852	2	1.0378 *** R/S	(Error Dist.)
1 103 N100 N86°0 E500	3.50′ 22′23′′E	2.4219 ***	(Error AZ)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in beginning coordinates	BEG N	ENT↑	
		BEG E	GSB 1	180.00
	For Field Angle Traverse:			
3	Key in reference azimuth away	REF AZ	R/S	AZ (D.MS)
	from beginning point.			
4	Key in field angle:			
	Angle right	ang. right	GSB 2	AZ (D.MS)
	or Angle left (-)	-ang. left	GSB 2	AZ (D.MS)
	or Deflection right	deflect.rt	GSB 3	AZ (D.MS)
	or Deflection left (-)	-deflec tl f	GSB 3	AZ (D.MS)
5	Key in horizontal distance and compute			
	coordinates	HDist	R/S	N
			R/S	E
	or			
	For Bearing Traverse:			
3'	Key in bearing*and quadrant code.	BRG (D.MS)	ENT↑]	
		QD	GSB 4	AZ (D.MS)
4'	Key in horizontal distance and compute			
	coordinates.	HDist	R/S	N
			R/S	Е
	Repeat steps 3,4,5, or 3',4' for successive			
	courses.			
6	For closed figure: Compute area, error			
	distance, and error azimuth.		GSB 5	Area
			R/S	Error Dist
	* If azimuth is known rather than bearing,		R/S	Error AZ
	enter azimuth with QD = 1.			
		†		
		<u> </u>		
		†		
				1

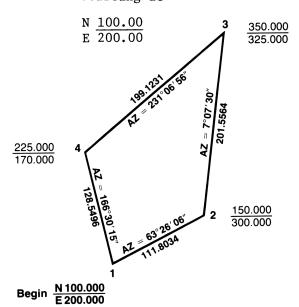
04 at 614						
01 *LBL1	Store	starting	50 2		1	
02 FIX4 03 CLRG	point	coordinates	51 ÷			
	and 1	.80°	52 RCL7			
04 STO1 05 X≠Y			53 -			
05 X47 06 ST02			54 X		1	
			55 ST+8			
			56 RCL6			
08 8 00 0			57 RCL2			
09 0			58 +			
10 STO3			59 R/S		***	
11 R/S			60 RCL7			
12 →H 13 RCL3			61 RCL1			
	Refer	ence azimuth	62 +		***	
14 →H 15 +			63 R/S		***	
16 GT00			64 *LBL4			
17 *LBL2			. 65 %#1			
18 ÷H	Anala	input	£6 \$709		Connor	t booming and
10 7H 19 RCL3	Angle	Input	67 X#Y			t bearing and nt code to
15 RULS 28 →H			68 ENT1		quadra azimut	
21 +			69 ENT↑ 70 2		azımut	11.
21 → 22 →HMS			70 2 71 ÷			
23 *LBL3	Def1e	ction angle	72 147			
24 →H	input		73 RCL3			
25 RCL4	'		74 X			
25 +			75 X ≠ Y			
27 *LEL0			76 RCL3			
28 1			77 X			
29 ⇒R			78 COS			
30 →P	Compu	te azimuth	79 RCL9			
71 *LPL9	1		80 →H			
32 X # Y			81 x			
33 X>0?			82 -			
34 GT08			83 GT00			
35 3			84 *LBL5		Area	
3€ €			85 RCL8			
37 Ø			86 ABS			
38 +			87 R/S		***	
39 *LBL8 40 STO4			88 RCL7			
40 STO4 41 →HMS			89 RCL€			
41 7HMS 42 R/S	***		90 →P		Setup	for closure
43 ST+5	"""		91 P/S		^^^	
44 RCL4	Input	horizontal	92 GT09 93 R/S			
45 X#Y	dista		93 R/S			
46 →R	30					
47 ST+6			1			
48 X ≠ Y		te next coord.	1			
49 ST+7	and a	ccumulate area	.[
		REGI	STERS			
0	¹ Beg.	2 Beg. N	³ 180	4 AZ		5 _{ΣHD}
6 Lat.	7 Dep.	8 Area	9 Bearing	.0		.1
.2	.3	.4	.5	16		17
18	19	20	21	22		23
24	25	26	27	28		29
	L					

*** indicates that "Print X" may be inserted or used to replace "R/S".

INVERSE WITH CLOSURE

This program calculates the distance and azimuth of the line joining two points. For a closed inverse, the area enclosed and closure distance and azimuth are computed.

Solution:


Equations:

HD =
$$\sqrt{(N_i - N_{i-1})^2 + (E_i - E_{i-1})^2}$$

AZ = $\tan^{-1} \frac{E_i - E_{i-1}}{N_i - N_{i-1}}$

Area =
$$\sum_{k=1}^{n} \text{LAT}_{k} \left(\frac{1}{2} \text{DEP}_{k} + \sum_{j=1}^{k-1} \text{DEP}_{j} \right)$$

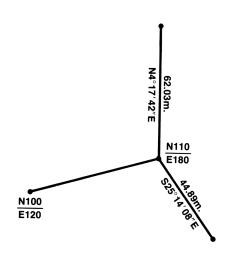
where
$$\text{DEP}_k = \text{E}_{k+1} - \text{E}_k$$
 and $\text{LAT}_k = \text{N}_{k+1} - \text{N}_k$

Example: Inverse the figure below
starting at

100.0000 ENT1 200.0000 GSE1 150.0000 ENT! 300.0000 GSB2 111.8034 *** H Dist 63.2606 *** AZ350.0000 ENT: 325.0000 GSB2 201.5564 *** H Dist R/8 7.0730 *** ΑZ 225.0000 ENT# 170.0000 GSB2 199.1231 *** H Dist AZ231.0656 *** 100.0000 ENT1 200.0000 GSB2 128.5496 *** H Dist 166.3015 *** ΑZ GSEZ 20937.5000 *** Area Error, Dist 0.0000 *** Error, AZ 368.0000 ***

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in program			
2	Enter beginning coordinates	BEG N	ENT↑	
		BEG E	GSB 1	
3	Enter coordinates of next point and	N	ENT↑	
	compute horizontal distance and azimuth	E	GSB 2	H Dist
	compate northeat distance and azimuth		R/S	AZ (DMS)
4	Repeat step 3 for successive courses			III (BIID)
5	For closed figure, compute area, error		GSB 3	Area
	distance, and error azimuth		R/S	Error Dist
	distance, and error assimuti		R/S	Error AZ
				EIIOI AZ
-				
-				
				·
-		_		

01 *LEL1 02 FIX4 03 CLRC 04 ST01 05 M±Y 06 ST02 07 R/S 08 *LBL2 09 RCL7 10 - 11 RCL1 12 - 13 ST+7 14 ST09 15 X±Y 16 RCL6 17 - 18 RCL2 19 - 20 ST+6 21 ST.0 22 X±Y 23 2 24 ÷ 25 RCL7 26 - 27 × 28 ST+8 29 RCL9 30 RC.0 31 *LBL0 32 +P 33 R/S 34 X±Y 35 X>09 36 GT09 37 3 38 6 39 0 40 + 41 *LBL9 42 +HMS 43 R/S 35 X>09 36 GT09 37 3 38 6 79 0 40 + 41 *LBL9 42 +HMS 43 R/S 44 *LEL7 45 RCL8 46 ABS 47 R/S 48 RCL7		O/Error Dist.	50 GTO0 51 R/S		
49 RCLE	1		STERS		
	EG E	2 BEG N	3	4	5
6 LAT 7 D	EP	8 Area	9 A E	.o	.1
.2 .3		.4	.5	16	17
18 19		20	21	22	23
24 25		26	27	28	29


SIDESHOTS

This program is used to make sideshots or radials from a point. Two methods may be used for a sideshot, 1) input a bearing and distance and calculate the point coordinates, or 2) input the point coordinates and calculate the azimuth and distance to the point.

Equations:

 $N = N_0 + H$ Dist cos AZ $E = N_0 + H$ Dist sin AZ

Example:

Solutions:

110.0000	ENT †	
180.0000	GSB1	
4.1742	ENT†	
1.0000	GSB2	
4.1742	***	AZ
62.0300	R/S	
171.8558	***	N
	R/S	
184.6455	***	E
25.1408	ENT†	
2.0000	GSB2	
154.4552	***	AZ
44.8900	R∕S	
69.3942	***	N
	R/S	
1 99. 1384	***	E
100.0000		
120.0000		
60.8276	***	H Dist
	R/S	
260.3216	***	AZ

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
1	Enter hub coordinates	N	ENT↑	
		E	GSB 1	
3a	* For bearing sideshot: Enter bearing and quad-	BRG (D.MS)	ENT↑	
	rant;	QD	GSB 2	AZ (D.MS)
	enter horizontal distance and compute point	H Dist	R/S	N
	coordinates.		R/S	E
	*If azimuth is known rather than bearing, enter azimuth with QD = 1.			
3b	For inverse sideshot: enter coordinates of	N	ENT↑	
	sideshot point and compute horizontal distance	E	GSB 3	H Dist
	azimuth		R/S []	AZ (D.MS)
				(2.112)
4	Repeat step 3 for all desired sideshots.			
	Repeat Step 5 for all desired sideshots.			
		1		
		 		
		 		
		-		
			[][]	
		-		
-		 		
-				

	T			***N	
01 *LBL1 02 FIX4 03 CLRG 04 ST01 05 X‡Y 06 ST02 07 1 08 8 09 0 10 ST03 11 R/S 12 *LBL2 13 X‡Y 14 →H 15 X‡Y 16 ENT↑ 17 ENT↑ 18 2 19 € 20 INT 21 RCL3		ng to Azimuth	50 + 51 R/S 52 X‡Y 53 RCL1 54 + 55 R/S 56 *LBL3 57 RCL1 58 - 59 X‡Y 60 RCL2 61 - 62 +P 63 R/S 64 GT09 65 R/S	***E \(\Delta E \text{Dist} *** D	AZ
22 × 23 R4 24 X≠Y 25 R4 26 RCL3 27 × 28 COS 29 × 30 - 31 1 32 →R 33 →P 34 *LBL9 35 X≠Y 36 X>0? 37 GTO8 38 3 39 6	AZ make AZ s	<u><</u> 360°			
39 6 40 0 41 + 42 *LBL8 43 STO4 44 →HMS 45 R/S 46 RCL4 47 X‡Y 48 →R 49 RCL2	***AZ				
	T.		STERS	T.	1-
6	1 E _O	2 N _Q	3 180 9	.0	5
.2	.3	.4	.5		1.1
18	19	20		16	17
			21	22	23
24	25	26	27	28	29

*** "Print X" may replace or be used with "R/S"

COMPASS RULE ADJUSTMENT

This program adjusts a traverse by the compass rule. It is intended to follow the program "Field Angle or Bearing Traverse" (with closure). However, if the correct coordinates of the last point and the total distance traversed are known, these parameters can be used in lieu of executing the closure program.

If this program is not used immediately after "Field Angle or Bearing Traverse" (with closure) or the storage registers have been altered since the closure program was run, enter the following data into the specified storage registers:

Register Parameter:

- 1. Correct closing easting.
- 2. Correct closing northing.
- 5. Total distance traversed.
- 6. Calculated ending northing.
- 7. Calculated ending easting.

The Inverse program may be used to obtain adjusted bearings, distances and area.

Equations:

$$C_{L} = \frac{(\Delta N) \text{ (Dist)}}{\Sigma \text{Dist}}$$

$$C_{D} = \frac{(\Delta E) \text{ (Dist)}}{\Sigma \text{Dist}}$$

Where: C_L = Correction to latitude of a course. C_D = Correction to departure of a course. ΔN = Closing latitude. ΔE = Closing departure.

Dist = Length of course to be corrected. ΣD ist = Total length of traverse

Example:

667.147 Total distance traversed 400.000 Correct closing easting 150.000 Correct closing northing 399.783 Calculated ending easting 149.905 Calculated ending northing

POINT UNADJUSTED NO. COORDINATES

 $\begin{array}{r}
 N = 224.515 \\
 E = 561.615
 \end{array}$

 $\begin{array}{r}
 N = 356.529 \\
 E = 468.600
 \end{array}$

 $\begin{array}{r}
 N = 232.337 \\
 E = 307.150
 \end{array}$

Ending & $N = \frac{149.905}{399.783}$ Beginning E = $\frac{399.783}{399.783}$

Solution:

150.0000 ST02 400.0000 STO! 667.1470 STO5 149.9050 STOS **399.7830** STS7 68P1 224.5150 ENT1 561.6150 GSB2 224.5403 *** Adj. N R/3 561.6729 *** Adj. E 356.5290 ENTT **468.6000** GSB2 Adj. N 356.5773 *** ₽/9 458.7104 *** Adj. E 232,3370 ENT: 307.1500 GSE2 232.4143 *** Adj. N R/8 307.3267 *** Adj. E 149.9050 ENTA **399.7830 6832** 150.0000 *** Adj. N R/8 400.0000 *** Adj. E

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Store data	Beg N	STO 2	
	Note: If this program is run immediately	Beg E	STO 1	
	following "Field Angle or Bearing Traverse",	ΣHDist	STO 5	
	these values are already stored in the	C1 LAT	STO 6	
	correct registers.	C1 DEP	STO 7	
3	Initialize		GSB 1	
4	Compute adjusted coordinates	Unadj N	ENT↑	
		Unadj E	GSB 2	Adj N
			R/S	Adj E
	*N.E. Coordinates must be reentered in the			
	same sequence as originally traversed,			
	starting at the second point.			

01 *LSL1	initi	alize	T		7
02 RCL1					
93 STO8 94 RCL7					
05 - 05 RCL5	ΔE				
07 ÷	ΣDist				
23 STO3 29 R CL2					
16 RCL6					
12 RCL5	ΔN				
13 ÷ 14 ST04	ΣDist				
15 RCL2					
16 ST05 17 RTN					
18 *LBL2 19 X ‡Y	(x > y)			
20 STO5					
21 RCL2 22 -					
23 ST+5 24 X#Y					
25 ST07					
25 ROLI 27 -	/- 2 /	2 - 5:			
28 ST+8	v x∠ +	$y^2 = Dist$			
29 →P 38 ST09	C				
31 RCL3	$^{\rm C}_{ m D}$				
72 × 33 ST+8 34 RCL9					
35 RCL4	$^{\mathrm{C}}_{\mathrm{L}}$				
36 × 37 \$T+5					
38 RCL6 39 STO2					
40 RCL7					
41 STO1 42 RCL5	المامليات	N			
43 R/S	***Adj				
44 PCL8 45 R/S	*** Ad	j E			
0 1	Beg E	T	STERS ³ ΔE/ΣDist	4 ΔE/ΣDist	5 _{ΣHD}
	Closing DEP	8 - 1	9 Dist	.0 AE/ZD1St	.1
.2 .3	3	.4 AUJ E	.5	16	17
18 1	9	20	21	22	23
24 2	25	26	27	28	29

***"Print X" $\;$ may be used to replace "R/S" $\;$

CURVE SOLUTIONS

Given values for any of the following pairs, this program computes the remaining parameters plus the sector, segment, and fillet areas: Δ and C; Δ and R; Δ and T; R and T; R and C.

Equations

 $\begin{array}{l} \frac{1}{2}\Delta = \tan^{-1} \ (T/R) = \sin^{-1} \ (\frac{1}{2}C/R) = 90L/\pi R \\ T = R \ \tan \ (\frac{1}{2}\Delta) \\ C = 2T \ \cos \ (\frac{1}{2}\Delta) \\ R = T/\tan \ (\frac{1}{2}\Delta) = C/(2 \ \sin \ (\frac{1}{2}\Delta)) \\ L = \Delta\pi \ R/180 \\ Sector \ area = LR/2 \\ Segment \ area = Sector \ area - \frac{1}{2}CR \ \cos (\frac{1}{2}\Delta) \\ Fillet \ area = T \ R-Sector \ area \end{array}$

Where: T = Tangent distance
C = Chord length
L = Arc length
R = Radius

 Δ = Central angle

PC (93 6022) PI (177.2585) SEGMENT AREA PT CHORD (172.636) RADIUS (22°45′12″) SECTOR (223.181) (45°30′23″) CENTRAL ANGLE

R = 223.181 Δ = 45° 30' 23" $\frac{1}{2}\Delta$ = 22° 45' 11" C = 172.636 T = 93.602 L = 177.258 Sector area = 19780.36 Segment area = 2015.00 Fillet area = 1109.87

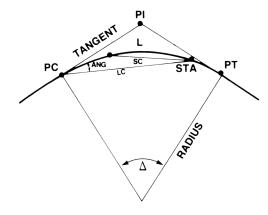
Solution:

	CLRG	
223.1810 172.6360		R C
	GSB1	
223.1810	### R/S	R
22.75 32	144	△/2
93.6022		T
172.6360	R/S ***	С
177.2584	R/S ***	T
111.2304	R/S	L
19780.3563	*** R:/S	Sector Area
2014.9 95 9	***	Segment Area
1109.87 0 5	R/S ** *	Fillet Area

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Initialize		f REG	
3	Store data for any one of the following pairs:	Δ	STO 1	
	Δ, C	R	STO 2	
	Δ, R	С	STO 3	
	Δ, Τ	T	STO 4	
	R,T	L	STO 5	
	R,L			
	R,C			
4	Run		GSB 1	R
			R/S	Δ/2
			R/S	Т
			R/S	С
			R/S	L
			R/S	Sector A
			R/S	Segment A
			R/S	Fillet A
5	For a new case, go to step 2.			
	•			

Γ 01 *LBL1	T		5 0 0	<u> </u>	
02 RCL1 03 ÷H 04 2 05 ÷ 0€ STD1 07 X=0?			50 × 51 RCL2 52 × 53 R/S 54 RCL2 55 ST×4 56 ×	***L	
08 GT09 09 RCL3 10 RCL1 11 SIN	have ∆	, calculate R	57 2 58 ÷ 59 R/S 68 -	***Sec	tor area
12 2 17 × 14 ÷ 15 M≠0?	R = f	(C,∆)	61 CHS 62 R/S 63 RCL4 64 LSTX	***Seg	ment area
16 STO2 17 RCL4			65 - 66 R/S	***D:1	let area
18 RCL1 19 TAN			67 *LBL 9 * 68 RCL5	1	, calculate Δ
20 ÷ 21 X≠09 22 STO2 23 *LBL5	R = f	(T,∆)	69 RCL2 70 ÷ 71 9 72 0		
24 RCL2 25 R/S 26 RCL1 27 R/S	*** R ***∆/2		73 × 74 Pi 75 ÷	$\Delta = f$	(L,R)
28 TAN 29 % 30 STO4			76 X≠09 77 ST01 78 RCL3 79 RCL2		
31 R/S 32 2 33 × 34 RCL1	*** T		80 2 81 × 82 ÷ 83 SIN-'	Δ = f	(C,R)
35 COS 36 X 37 R/S 38 RCL2	*** C		84 X≠0° 85 STO1 8€ RCL4 87 RCL2		
39 × 40 RCL1 41 COS 42 × 43 2			88 ÷ 89 TAN-' 90 X≠0? 91 STO1 92 GTO5	$\Delta = f$	(T,R)
44 ÷ 45 Pi 46 9			93 R /S		
47 0					
48 ÷ 49 RCL1					
			STERS		T_
0	¹ △/2	2 R	3 _C	4 T	5 L
6	7	8	9	.0	.1
.2	3	.4	.5	16	17
18 1	19	20	21	22	23
24 2	25	26	27	28	29

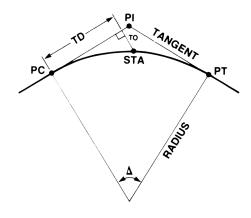
***"PrintX" may be inserted or used to replace "R/S"


HORIZONTAL CURVE LAYOUT

This program calculates various field data for layout of an horizontal circular curve. The required information on the curve is the PC station and the radius or degree of curve. With this data one computes successively the arc length, deflection angle from tangent to chord, the long chord from PC to current station, and the short chord from previous station to current station. In addition, the tangent offset and tangent distance are available if desired.

If the central angle is known the program also will compute the total arc length from PC to PT, the station PT and the length of the tangent from PC to PI.

In the program, stations are entered in the form XXXX.XX for station XX+XX.XX. For example: 20 + 10.00 is entered as 2010.00. The degree of curve D, (or central angle subtending an arc of 100 ft.) is entered in degrees with a negative sign, always.


PC Deflections

Field data output for PC deflections consist of:
STA-current station
ANG-deflection angle from tangent to long chord.
LC-long chord from PC to current station

SC-Short chord from previous station
to current station
Δ Δ-central angle
PI-point of intersection of tangents
PC,PT-ends of curve
L-Arc length
R-radius

Tangent Offsets and Distances

Field data output for tangent offsets consist of:

STA-current station
TD-tangent distance
TO-tangent offset
T-distance from PC to PI

HORIZONTAL CURVE LAYOUT

Example:

Compute field data for a curve with a central angle of $35^{\circ}30'$ and degree of curve of $12^{\circ}30'$. The PC station is 7+85.40.

Solution:

785.4000 EHT† -12.3000 GSB1		1000.0000 214.6000	GSB2 ***	(For STA. 10) (L)
785.4000 *** RCL1	(PC)	13.2445	R/S ***	(ANG)
458.3662 *** 800.0000 GSB2	(R)	212.6454	R/S *** R/S	(LC)
14.6000 6352 R/S	(For STA. 8) (L)	99.8018	*** RCL8	(SC)
0.5445 *** R/S	(ANG)	49. 3252	*** RCL9	(TO)
14.5994 *** R/S	(LC)	206.8455 35.3000 284.0000		(TD)
14.5994 *** RCL8 0.2325 ***	(SC) (TO)	1069.4000	*** R/S ***	(L) (PT)
RCL9 14.5975 ***	(TD)	146.7242	R/S ***	(T)
900.0000 GSB2	(For STA. 9)	1069.4000		(Field data: PT)
114.6000 *** R/S 7.0945 ***	(L) (ANG)	28 4.00 00 17.4500	*** R/S ***	(L) (ANG)
7.0945 *** R/S 114.3018 ***	(LC)	279.4790	R∕S ***	(LC)
R/S 99.8018 ***	(SC)	69.333 7	R/S ***	(SC)
RCL8 14.2516 ***	(TO)			
RCL9 113.4098 ***	(TD)			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input beginning station of curve	PC	ENT↑	PC
3	Input radius	R	GSB 1	
	or degree of curve (as a negative number)	-D(D.MS)	GSB 1	
3'	Radius or degree of curve are available if		RCL 1	R
	desired.		RCL 2	D
4	Input station	STA	GSB 2	L(Arc.leng)
			R/S	def. angle
			R/S	long chord
			R/S	short chord
4'	Tangent offset, TO, and tangent distance,			
	TD, are available if desired.		RCL 8	ТО
			RCL 9	TD
5	Input central angle	∆(D.MS)	GSB 3	Arc. length
			R/S	station PT
		_	R/S	T, length
-				
-				
-				
-				
-				
ļ				
ļ				
ļ		_		
-				<u> </u>
				———
-				
-		_		
-				
				<u> </u>

01 *LBL1			50 SIN 51 ×		Calcu	ılate TO
02 CLRG	Store	R&D	52 STO8			
03 FIX4 04 X<09	15010	KGD	53 RCL5		Calcu	ılate TD
05 GSB0			54 RCL7			
06 ST01			55 00S			
07 Pi			5€ × 57 ST09		1 7	
08 x			58 RCL5		dsp I	LC
09 9 10 0			59 R/S		***	
10 0 11 ÷			€0 RCL4			
12 ST02	Input	P.C.	61 RC.2			
13 RI	Impac	10	62 - 63 GSB9			
14 STO3			64 X			
15 ST04			65 SIN			
16 RTN			66 RCL1			
17 *LEL0 18 CHS			67 2			
10 ∪ns 19 ÷H	Calcu	late R from D	68 X		ے ماد ماد د	1 1
20 Pi	1	ideo it ilom b	69 X 70 RTN		***C	alculate SC
21 x			71 *LBL9			
22 1/X			72 9			
23 1			73 8		90	
24 8 25 EEX			74 Pi		$\frac{90}{\pi R}$	
26 3			75 ÷			
27 X			76 RCL1 77 ÷		Input	Ξ Δ
28 RTN			78 RTN			
29 *LBL2	Input	station	79 * LBL3			
30 RCL4			80 →H			
31 ST.2 32 R4			81 2 82 ÷			
33 ST04			83 STO6			
34 RCL3 35 -			84 GSB9			
35 - 36 R/S	district.		85 ÷		Calcul	late L
37 GSB9	*** Ca	lculate L	8€ R/S		***	
38 x			87 RCL3 88 +		0.1.1	
39 STO7					Calcul	late PT
40 →HMS			90 RCL6			
41 R/S 42 RCL7	*** Ca	lculate ANG	91 TAN			
43 SIN			92 RCL1 93 X		***	
44 RCL1			93 × 94 R/S		Calcul	late T
4 5 x					542043	
<i>4€</i> 2		1				
47 X 48 ST05	Calcu	late LC				
48 8705 49 RCL7						
			STERS	,		
0	1 R	² Ft/Deflect		⁴ STA Cu	ırrent	5 LC
6 ∆/2	7 ANG	8 TO	9 TD	.0		.1
Prev. Sta.	.3	.4	.5	16		17
18	19	20	21	22		23
24	25	26	27	28		29
				-		

^{***} indicates that "Print X" may be inserted or used to replace "R/S".

BEARING-DISTANCE AND BEARING-BEARING INTERSECTION

This program computes the coordinates of the point of intersection of two lines:
1) one of known bearing through known coordinates and the other of known length from a point of known coordinates; or 2) when the bearing of each line is known and the coordinates of a point on each line are known. For the first case, both solutions may be computed.

Equations:

Bearing-Distance

$$Az_{12} = tan^{-1} \frac{E_2 - E_1}{N_2 - N_1}$$

 $h = Dist_{12} sin\phi$

$$b = \sqrt{Dist_2^2 - h^2}$$

$$N = N_1 + ((Dist_{12} \cos \phi) + b) \cos (Az_1)$$

$$E = E_1 + ((Dist_{12} cos\phi) + b) sin (Az_1)$$

where: $AZ_{12} = Azimuth of line from$

point 1 to point 2 AZ_1 = Azimuth of line 1

point 2
= Perpendicular distance

h = Perpendicular distance
 from point 2 to line 1
b = Distance from point of

intersection to the point where the perpendicular (h) intersects line

Dist₂ = Length of line 2 (the known distance)

 $N_{\underline{1}}E_{\underline{1}}$ = Northing, easting of point

 N_2E_2 = Northing, easting of point

Dist₁₂= Distance from point 1 to point 2

Bearing-Bearing

$$N = N_1 + Dist (cos AZ_1)$$

$$E = E_1 + Dist (sin AZ_1)$$

$$Dist = Dist_{12} sin (AZ_2 - AZ_{12})$$

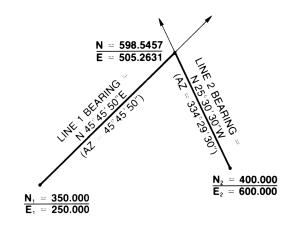
$$sin (AZ_2 - AZ_1)$$

where:

 AZ_{12} = Azimuth of line from point 1 to point 2

 AZ_1 = Azimuth of line 1 AZ_2 = Azimuth of line 2

 $N_1E_1^-$ = Northing, easting of point 1


 N_2E_2 = Northing, easting of point 2

N,E = Northing, easting of intersect point

Dist = Distance from point 1 to intersection

 $Dist_{12}$ = Distance from point 1 to point 2

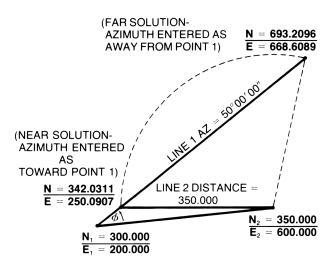
Example 1:

Solution:

Solution:

350.0000	ENT1		
250.0000	GSB1		
400.0000	ENT1		
500.0000	R/S		
45.4550	ENT1		
1.0000	GSB2		
25.3030	ENT†		
4.0000	GSE3		
	GSE4		
598.5457	***	N	
	R/9	-11	
505, 2631	***	E	
		ப	

200.0000 GSB1 350.0000 ENT1 60**0.**0000 R/S 50.0000 ENT1 1.0000 GSB2 350.0000 STO7 GSB5 6**9**3.2096 *** $N_{\,^{1}\!\!1}$ R.13 668.6089 *** Εı 300.0000 ENT1 200.0000 GSB1 350.0000 ENT1 600.0000 R/S 50.0000 ENT1 3.0000 GSE2 350.0000 STO7 GSB5 342.0311 *** N_2 **R**48


250.0907

 E_2

300.0000 ENT1

Example 2:

(or store the azimuth of line 1) 5a For bearing-bearing: enter bearing and quadrant of line 2 (or store the azimuth of line 2); and Compute intersect coordinates 5b For bearing-distance*: store the distance of line 2; and compute intersect coordinates Dist 2 AZ* (D.d) STO 5 ENT↑ GSB 3 GSB 4 R/S STO 7 GSB 5	AZ 1 (D.d) AZ 2 (D.d) N E
Enter coordinates of point 1 Butter coordinates of point 2 Enter coordinates coordinates coordinates compute intersect coordinates coord	AZ 2 (D.d)
E1 GSB 1 ENT↑ GSB 2 ENT↑ ENT↑ GSB 2 ENT↑ EN	AZ 2 (D.d)
Enter bearing and quadrant of line 1 4 Enter bearing and quadrant of line 1 (or store the azimuth of line 1) 5a For bearing-bearing: enter bearing and quadrant of line 2 quadrant of line 2 (or store the azimuth of line 2); and AZ 2 (D.d) compute intersect coordinates 5b For bearing-distance*: store the distance of line 2; and compute intersect coordinates Dist 2 *Two solutions are possible in the bearing-	AZ 2 (D.d)
E2 R/S ENT1 OD 1* GSB 2 (or store the azimuth of line 1) AZ* (D.d) STO 5 For bearing-bearing: enter bearing and quadrant of line 2 QD 2 (or store the azimuth of line 2); and AZ 2 (D.d) STO 6 compute intersect coordinates GSB 4 For bearing-distance*: store the distance of line 2; and compute intersect coordinates Dist 2 *Two solutions are possible in the bearing-	AZ 2 (D.d)
4 Enter bearing and quadrant of line 1 OD 1* (or store the azimuth of line 1) 5a For bearing-bearing: enter bearing and quadrant of line 2 quadrant of line 2 (or store the azimuth of line 2); and AZ 2 (D.d) compute intersect coordinates 5b For bearing-distance*: store the distance of line 2; and compute intersect coordinates Dist 2 *Two solutions are possible in the bearing-	AZ 2 (D.d)
QD 1* GSB 2	AZ 2 (D.d)
<pre>(or store the azimuth of line 1)</pre>	AZ 2 (D.d)
5a For bearing-bearing: enter bearing and quadrant of line 2 QD 2 GSB 3 (or store the azimuth of line 2); and AZ 2 (D.d) STO 6 Compute intersect coordinates 5b For bearing-distance*: store the distance of line 2; and compute intersect coordinates Dist 2 GSB 5 R/S STO 7 GSB 5 STO 7 GSB 5 STO 7 GSB 5 STO 7 GSB 5 STO 7 GSB 6 STO 7 GSB 7	N
quadrant of line 2 QD 2 (or store the azimuth of line 2); and AZ 2 (D.d) compute intersect coordinates 5b For bearing-distance*: store the distance of line 2; and compute intersect coordinates Dist 2 R/S	N
(or store the azimuth of line 2); and AZ 2 (D.d) compute intersect coordinates 5b For bearing-distance*: store the distance of line 2; and compute intersect coordinates Dist 2 GSB 4 R/S GSB 5 R/S *Two solutions are possible in the bearing-	N
compute intersect coordinates 5b For bearing-distance*: store the distance of line 2; and compute intersect coordinates Dist 2 R/S	
5b For bearing-distance*: store the distance of line 2; and compute intersect coordinates Dist 2 STO 7 GSB 5 R/S *Two solutions are possible in the bearing-	
of line 2; and compute intersect coordinates STO 7 GSB 5 R/S *Two solutions are possible in the bearing-	E
GSB 5	
*Two solutions are possible in the bearing-	N
*Two solutions are possible in the bearing-	
	E
distance case. To obtain the near solution	
enter the bearing as into point 4; for the	
far solution, enter the bearing as away	
from point 4.	

Gt at Dis		Γ.		FO UAU				
01 *LBL1 02 STO2		Store	Coordinates	50 X‡Y 51 X>0?				
03 R4				52 RTN				
04 ST01				53 3				
0 5 1				54 6		İ		
<i>06</i> 8				55 0 56 +		l		
07 0 38 STO0				57 RTN				
09 R/S				58 *LBL4				
10 STO4				59 GSB6				
11 R4				60 RCL6				
12 ST03				61 - 62 CHS		AZ_{12} -	AZ.1.0	
13 RTN 14 *LBL2				63 SIN		12	12	
15 GSB0				64 X.				
16 ST05				65 RCL6				
17 RTN				66 RCL5 67 -				
18 *LBL3				68 SIN				
19 GSB0				69 ÷		Dist	Dist	
20 STO6 21 RTN				70 STO8				
22 *LBL0		Bearin	g→Azimuth	71 *LBL9				
23 X ≠ Y		Conv	ersion	72 RCL5 73 RCL8				
24 ÷H				74 →R		V	A7 V -1 A7	
25 X‡Y 26 EN T↑				75 RCL1		n cos .	AZ_1 , X sin AZ_1	
27 ENT↑				76 +				
28 2				77 R∕S 78 X‡Y		***N		
29 ÷ 30 INT				79 RCL2				
31 RCL0		ĺ		80 +		***E		
<i>32</i> x				81 R/S				
33 R↓ 34 X‡Y				82 *LBL5 83 GSB6				
35 R4				84 RCL5				
36 RCL0				85 -				
37 x				86 CHS		AZ_1 -	$AZ_{12} = \emptyset$	
38 COS 39 ×		AZ		87 X ≠ Y				
40 -				88 →R 89 X ≠ Y				
41 RTN				90 X2		h^2		
42 *LBL6				91 RCL7		1		
43 RCL4 44 RCL2				92 X2				
45 -				93 - 94 CHS				
46 RCL3				94 CHS 95 (X		h		
47 RCL1				96 +		Ъ		
48 - 49 →P		-Dist _l	2 AZ _{1.2}	97 ST08				
				98 GT 09				
0 180	REGISTERS 0 180							
6			10 H	9 N ₂	.0 E ₂		5 AZ ₁	
.2 AZ ₂	.3	st 2	used .4	.5	16		17	
18 19		20	21	22		23		
24 25			26	27	28		29	
	l		L	l				

***"Print X" may replace or be used with "R/S" $\,$

DISTANCE-DISTANCE INTERSECTION

Given two lines, each of known length and originating from two known points, this program computes the intersection coordinates. There are two possible solutions; this program calculates the one found by proceeding in a clockwise direction from the first known point to the second known point. The other solution is found by reversing the entry of the known point coordinates.

Equations:

$$\phi = \cos^{-1} \frac{\operatorname{Dist}_{12}^{2} + \operatorname{Dist}_{1}^{2} - \operatorname{Dist}_{2}^{2}}{2(\operatorname{Dist}_{1}) (\operatorname{Dist}_{12})}$$

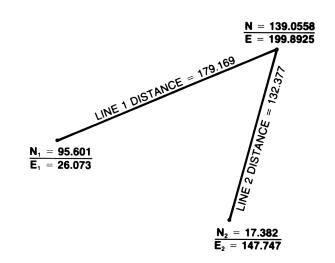
$$AZ = tan^{-1}$$
 $E_2 - E_1$ $N_2 - N_1$

$$N = N_1 + Dist_1 \cos (AZ - \phi)$$

$$E = E_1 + Dist_1 \sin (AZ - \phi)$$

where: ϕ = Angle between line 1 and line $1 \rightarrow 2$

 $Dist_{12}$ = Distance from point 1 to point 2


 $Dist_1$ = Known distance along line 1 Dist_2 = Known distance along line 2

 $N_{l}E_{l} = Northing, easting of point 1$

N,E = Northing, easting of intersection point

AZ = Azimuth of line from point 1 to point 2

Example:

Solution:

CLRS
179.1690 ENT1
132.3770 GSB1
95.6010 ENT1
26.0730 GSB2
17.3820 ENT1
147.7470 GSB3
139.0558 *** N
R S
199.8925 *** E

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Enter distances	Dist 1	ENT↑	
		Dist 2	GSB 1	
3	Enter points 1 and 2* and calculate	N 1	ENT↑	
	intersection	E 1	GSB 2	
	Intersection	N 2	ENT†	
		E 2	GSB 3	N
		<u> </u>	R/S	
		-	[K/S]	Е
-		-		
-	* Two solutions are possible. For the	-		
	alternate solutions reverse the order	_		
	of entering points 1 and 2			
				L

01 *LBL1 02 ST06 03 R4 04 ST05 05 RTN 06 *LBL2 07 ST02 08 X‡Y 09 ST01 10 RTN 11 *LBL3 12 ST04 13 R4 14 ST03 15 RCL4 16 RCL2 17 - 18 RCL3 19 RCL1 20 - 21 ÷P 22 ST07 23 X8 24 RCL5 25 X8 26 + 27 RCL6 28 X2 27 RCL6 28 X8 29 - 30 2 31 ÷ 32 RCL7 33 RCL5 34 X 35 ÷ 36 COS+ 37 - 38 RCL5 39 ÷R 40 RCL1 41 + 42 R/S 47 X‡Y 44 RCL2 45 + 45 R/S	Dist ₁ φ AZ *** N	2 AZ						
REGISTERS								
0	1 N ₁	2 E ₁	3 N ₂	4 E ₂	5 Dist 1			
6 Dist 2	7 Dist 12	8	9	.0	.1			
.2	.3	.4	.5	16	17			
18	19	20	21	22	23			
24	25	26	27	28	29			

OFFSET FROM A POINT TO A LINE

Given the point of known coordinates with a line of known bearing passing through it and a second point of known coordinates, this program calculates the offset distance from the second point to the line, the distance from the intersection to the first known point, the coordinates of the intersection, and the azimuth from the point of intersection to the second point.

Equations:

Dist_{BO} =
$$\sqrt{(N_0 - N_B)^2 + (E_0 - E_B)^2}$$

Dist_{BI} =
$$\sqrt{(N_0 - N_1)^2 + (E_0 - E_1)^2}$$

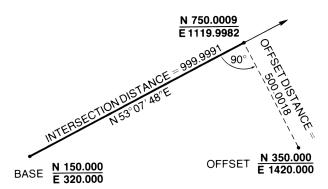
$$N_{1} = \frac{E_{0}^{-} E_{B}^{+} N_{0}^{\text{ctn (Az}_{BI})} + N_{B}^{\text{tan (Az}_{BI})}}{\text{ctn(Az}_{BI}) + \text{tan (Az}_{BI})}$$

$$E_1 = E_B + (N_I - N_B) \tan (Az_{BI})$$

Where: Dist $_{\rm BO}$ = Distance from point to offset point

 Dist_{BI} = Distance from base point to intersection point

Dist_{IO} = Distance from intersection point **to** offset point


 $N_0, E_0 = Northing, easting of offset point$

N_B,E_B = Northing, easting of base point

 N_{I} , E_{I} = Northing, easting of intersection point

AZ_{BI} = Known AZ from base point to intersection point

Example:

Solution:

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Store data	N _B	STO 1	
		E _B	STO 2	
		NO	STO 3	
		E _O	STO 4	
		BRG**	STO 5	
		QD**	STO 6	
		180	STO 7	
3	Run		GSB 1	NI
	Kuii		R/S []	EI
			R/S	
ļ			R/S	0.D.
		-		I.D.
	doce		R/S	O.AZ*
	*Offset azimuth may be incorrect for			
	bearings of 0, but for these cases, the			
ļ	offset azimuth may be obtained by			
	inspection			
	**If azimuth is known rather than bearing	Az(H.MS)	STO 5	
		1	STO] [6]	
<u> </u>				
<u> </u>				
		+		
<u> </u>				
-				
				1

01 *LBL9	beari	ng to azimuth	50 + -		
02 RCL7	conve	rsion routine	51 CHS		
0 3 RCL€			52 ÷ 53 ST.0		
84 2 85 ÷			54 R/S		}
06 INT			55 RCL8	***	N ₁
0 7 ×			56 ×		
08 RCL6			57 RCL9		
09 RCL7			58 +		
10 ×			59 ST.1		
11 008			60 R/S	***	En
12 RCL5			61 RCL3		_1
13 →H			62 RC.0		
14 x			63 -		
15 -	AZ		64 RCL4		
16 *LBL8			65 RC.1		
17 1 18 →R	1	1471 . 2600	66 -		
10 7K 19 →P	make	$ AZ \leq 360^{\circ}$	67 →P	ماد ماد ماد	
20 X ≠ Y			68 R/S 69 RCL1	XXX	offset distance
21 X> 0 ?			70 RC.0		
22 GT07			71 -		
23 3			72 RCL2		
24 6			73 RC.1		
25 0			74 -		
23 3 24 6 25 0 26 ÷			75 <i>→</i> P		
27 *LBL7			76 R/S	***	intersect distance
28 ST05			77 X ‡ Y	9 Т	.D. O.D.
29 →HMS			78 R↓		
30 RTN	***az	imuth	79 <i>→</i> P		
31 *LBL1			80 X ‡ Y		
32 GSB9			81 RCL5		
33 RCL2			82 +		
34 RCL1 35 RCL5			83 X ≠ Y		
35 ROLS 36 TAN			84 →R	N E	
37 ST08			85 X ≠ Y	F	•
38 ×			86 RCL2 87 +	$^{\mathrm{E}}\mathrm{_{B}}$	
39 -			88 RCL4	Е 1	E calculated
40 STO9			89 X=Y?	10	carcaracea
41 RCL4			90 6100		
42 RCL3			91 RCL7	180	
43 RCL8			92 ST-5		180 results
44 ÷			93 * LBL0		
45 +			94 RCL5		
46 -			95 9 96 6		
47 RCL8			96 €		
48 ENT1			97 +	AZ =	± 90
49 <u>1</u> /X		REC	<u> </u>		
0	1 N _B	2 E _R	3 N _O	4 E _O	5 BRG/AZ
6 _{QD}	7 180	-B	10	.0 N _I	.1 E _I
.2	.3	6 tan AZ	used .5	16 I	17
18	19	20	21	22	23
24	25	26	27	28	29
	5	20	L1	20	23

^{*** &}quot;Printx" may be inserted or used to replace "R/S".

EARTHWORK

VOLUME BY AVERAGE END AREA

Routines labeled 1 and 2 calculate the end area for any station, volume from previous station, and accumulated volume to the present station. Inputs are the elevations and distances from the centerline for all points of a cross section and the interval from the previous station.

Equations:

V avg =(
$$|Area_i| + |Area_{i-1}|$$
) $\frac{I}{2}$

Area =
$$\frac{1}{2}$$
[Elev₁ (H Dist₂ - H Dist_n) +
Elev₂ (H Dist₃ - H Dist₁) +
... + Elev_n (H Dist₁ - H Dist)]

Where: V avg = Average volume between two stations

Area = Cross sectional area at

a station

 $\begin{array}{c} \mbox{H Dist = Horizontal distance} \\ \mbox{from centerline at} \end{array}$

cross section

Elev = Elevation at a point on the cross section

I = Interval between
 stations

Subscript i refers to current point

Subscript n refers to last point

Numeric subscript refers to point number

VOLUME OF BORROW PIT

Routines labeled 3-6 calculate the volume of fill which can be taken from a borrow pit given grid dimensions and elevations at the grid intersections. Volume is available for each grid section and also as an accumulative volume for all previous sections.

If several grid blocks have the same horizontal dimensions, the sum of the volumes of all these blocks can be calculated at once. For example, if three rectangular blocks have the same dimensions, the 12 elevations are entered before pressing GSB 6.

Equations:

 $Vol_{\Lambda} = \frac{1}{2} (Base)(Ht)(Elev)$

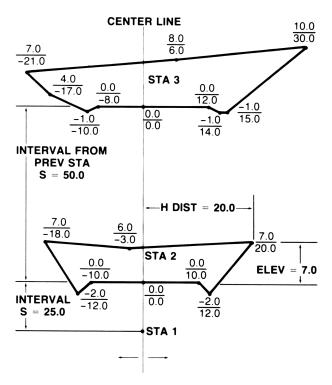
Vol = (Width)(Length)(Elev)

Where: Vol_{Λ} = Volume of triangular

grid section

Base = Base of triangle
Ht = Height of triangle

Elev = Elevation of grid section


(depth of cut)

Vol = Volume of rectangular

grid section

Width = Width of rectangle Length = Length of rectangle

Example 1:

Solution:

321,5000 ** Area

Example 2:

12' 2.3 25'

616.60 2559.36

25'

2.7

2.9

25'

```
CLRG
  0.0000 GSB2 1st Sta.
                                                                                      2275.00
                                                          2559.38
                                                                         2625.00
                                                 CU FT
                                                                         CU FT
                                                                                       CU FT
                                                           CU FT
  0.0000 ENT? Starting at 0/0 &
  0.0000 GSB1 Going CCW.
                                                       35′
                                                                     35′
                                                                                  35
                                                                                                35
  8.0000 ENT1
 10.0000 GSB1
 -2.0000 ENTA
 12.0000 GSB1
                                                                                        25'
                                                                     3 1
                                                                           25'
                                                                                   3.3
 7.8088 ENTA
                                                     3.4
                                                              515.00
 28.0000 GSB1
                                                                     <sub>12</sub>′ 1035.00
                                                             CU FT
                                                                                   12' 832.50
CU FT
                                                                                                12
  6.0000 ENTA
                                                                         CU FT
 -3.8800 GSB1
                                                                           25'
 7. 0009 ENT?
                                                                                 3.6
                                                                                         25'
                                                                                               2.2
-18.0000 GSB1
                                                               CLI
 -2.0000 ENTA
                                                      12-0000 ENTA
-12.2000 GSB1
                                                      35.0000 GSB3
  8.8888 ENTA
                                                       2.3889 GSB5
-18.8008 GSB1
                                                       3.1000 GSB5
  0.0000 ENT↑ Reinput 1st Elev &
                                                       3.4000 GSB5
  0 0000 GSB1 Dist.
                                                              GSB6
 25.6000 GS82 1st INT.
                                                     616.0000 ***
                                                                    G. Vol.
100,0000 ***
              Vol. (total)
         RCL5
                                                      25. 9999 ENTA
                                                                            12.0000 ENT1
100,0000 *** Vol. (internal)
                                                      35. 9999 GSB4
                                                                            25.0000 GSB4
         RCL 4
                                                      2.3900 GSB5
                                                                             3.8000 GSB5
216.0000 *** Area
                                                       3.4000 GSB5
                                                                             3.1990 GSB5
                                                       3.1000 GSB5
                                                                             3.6000 GSB5
                                                       2.9000 GSB5
                                                                             3 6000 6SB5
  0.0000 ENTA
                                                       2.9000 GSB5
                                                                             3.3000 GS85
  0.0000 GSB1
                                                       3.1900 GSB5
                                                                             3.3000 GSB5
  0. 9000 ENTA
                                                       3.3000 GSB5
                                                                             2.0000 GSB5
 12.0000 GSB1
                                                       3.3000 GSB5
                                                                             2.2000 OSB5
 -1.0000 ENT1
                                                       2.7000 GSB5
                                                                                    GSB6
 14.0000 GSB1
                                                       2.7000 GSB5
                                                                          1867.5000 *** G.Vol.
 -1.0000 ENTA
                                                       2.4009 GSB5
                                                                                     R/S
 15.0000 6SR1
                                                       2.0000 GSB5
                                                                         10457.8750 *** A. Vol.
 18.8000 ENTA
                                                              GSB&
 30.0000 6SB1
                                                    7459,3750 ***
                                                                     G. Vol.
  8. 8088 ENTA
  6.0000 GSR1
                                                      25. 9999 ENTA
  7. 9999 ENTA
                                                      12.9999 GSR3
-21.0000 GSB1
                                                       3.1000 GSB5
  4. 8888 ENTA
                                                       3.4999 GSB5
-17. 8000 GSB1
                                                       3.8000 GSB5
 -1.0000 ENTA
                                                              GSB6
-10.0000 GSB1
                                                     515.9000 *** G. Vol.
  8.0000 ENTA
 -8. 4444 GSB1
 0.0000 ENTA
 0 0009 6SB1
               2nd INT.
50.9999 6SB2
597.6852 XXX
               Vol. (total)
         RCL5
497.6852 ***
               Vol. (internal)
       RCL4
```

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTP U T DATA/UNITS
1	Key in the program				
	VOLUME BY AVERAGE END AREA:				
2	Initialize		f	REG	
3	If station has zero end area go to step 6				
4	Input elevation and distance from the	Elev	ENT↑		
	centerline	Dist	GSB	1	
5	Repeat step 4 working around the section until				
	first Elev. and Dist. have been reinput				
6	Input interval from previous station and				
	calculate total volume	Int. (ft)	GSB	2	Total vol. (yds ³)
	(Note: input 0 interval if first station)				
7	For volume of interval		RCL	5	Int. vol. (yds ³)
8	For area of cross section		RCL	4	Area (ft ²)
9	Go to step 3 for a new section, Step 2 for a				
	new case				
	VOLUME OF BORROW PIT				
10	Initialize		f	Σ	
11a	For triangular area	Base	ENT↑		
		Height	GSB	3	
11b	For rectangular area	Width	ENT↑		
		Length	GSB	4	
12	Input as many elevations as needed to describe				
	each corner, pressing GSB 5 after each entry	Elev	GSB	5	
13	Calculate grid section volume		GSB	6	G.Vol (ft ³)
14	Calculate accumulated volume		R/S		A.Vol (ft ³)
	(To convert cubic feet to cubic yards divide				
	by 27.)				

			F0 0		
01 *LBL1		End Area	50 0 51 ENT↑	pr	epare for sub-
02 ST×1 03 PCL1	routi	nes	52 RTN	ro	outine 5
03 RCL1 04 ST-2			53 *LBL5	l	
85 R4			54 +	1	
06 X#Y			55 R/S	1	
07 STX0			56 *LBL6		
08 RCLe			57 RC.3		
09 ST+2			58 ×		
10 RJ			59 S+.2		
11 ST01			60 R/S	**	**grid section
12 FJ			51 RC.2		volume
13 ST00			62 R/S	**	
14 RCL2				1	**accumulated volume
15 2				1	
16 ÷				ĺ	
17 ST03					
18 RTN				l	
19 *LBL2					
20 RCL4 21 RCL3					
22 ABS				1	
23 ST04					
24 +					
25 5					
26 4					
27 -					
28 x	inter	val Volume			
29 ST05					
30 ST +€					
31 0	Clear	registers		l	
32 ST00					
33 ST O 1					
34 ST 0 2				1	
35 9703					
36 RCL6	Tota.	l Volume			
37 RTN					
38 *LBL3	D	. D.:			
39 ×	Borrov	v Pit routines			
40 6 41 ÷					
41 ÷ 42 \$1.3					
42 51.3 43 GT00					
44 *LBL4					
45 ×					
46 4					
47 ÷					
48 ST.3					
49 *LBL@					
	T ₄		STERS	1,	
0 used	1 used	² used	3 used	4 Area	
6 Tot vol	7	8	9	.0	.1
.2 Σ Vol.	.3 used	.4	.5	16	17
18	19	20	21	22	23
		+	ļ	-	
24	25	26	27	28	29

^{***&}quot;PrintX" may be used in place of "R/S" $\,$

COORDINATE TRANSFORMATION

This program translates, rotates, and rescales coordinates. Traverse rotation angle is entered as a negative value for counterclockwise rotation and positive for clockwise rotation. The translation factors are calculated by entering old and new grid system coordinates for the same point; rotation is also about this point.

Equations:

$$Az_{R} = \phi + tan^{-1} \frac{E_{i} - E_{p}}{N_{i} - N_{p}}$$

H Dist_s =
$$S\sqrt{(N_i - N_p)^2 + (E_i - E_p)^2}$$

$$N = H Dist_s cos (AZ_R) + N_{T_1}$$

$$E = H Dist_{s} sin (AZ_{R}) + E_{T_{1}}$$

Where: AZ_R = Rotated azimuth

 ϕ = Rotation angle

 $N_{p}E_{p} =$ Original northing, easting of pivot point

H Dist_s = Scaled horizontal distance

S = Scale factor

N,E = Northing, easting after

transformation

 N_{T_1} , E_{T_1} = Northing, easting of pivot point after transformation

Note: The scale factor is taken as one, unless the new grid system is to a different scale.

Example:

Coordinates before transformation are those computed by Compass Rule

Adjustment.

COORDINATES IN COORDINATES IN OLD SYSTEM NEW SYSTEM

N 150.000* E 400.000 N 100.00* E 350.00

N 224.540 E 561.673

N 356.577 E 468.710

N 232.414 E 307.327

* Rotated about this point

Rotation Angle = -3° 00' 00" Scale Factor = 1.00

Solution:

-3.0000 STOS 1.0000 STOS 150.0000 ENT1 400.0000 GSE1

100,0000 ENT1 350,0000 GSE2

224.5400 ENT: 561.6730 GSB7 165.9765 ***

F/S 515,3526 *** E

356.5570 ENTA 468.7100 GSB3

302.6779 *** N R/S

429.4262 *** : 232.4148 ENT*

707.3270 GSB7

187.1512 *** R/9

Ν

261.7672 *** H

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Store rotation angle and scale factor	Ø (H.MS)	STO 5	
	(scale factor usually = 1)	S	STO 6	
3	Input N and E of pivot point in old system	N	ENT↑	
		E	GSB 1	
4	Input N and E of pivot point in new system	N	ENT↑	
	Tarre present an included	E	GSB 2	
5	Calculate transformed coordinates	N	ENT↑	
	The state of the s	E	GSB 3	N
			R/S	Е
6	Person / francis			Tr .
0	Repeat step 4 for all points			
		-		
		-		
		 		
		-		

01 *LBL1 02 ST02 03 X≠Y 04 ST01 05 RTM 06 *LBL2 07 ST04 08 X≠Y 09 ST03 10 RTH 11 *LBL3 12 RCL2 13 - 14 X≠Y 15 RCL1 16 - 17 →P 18 RCL6 19 × 21 RCL5 22 →H 23 - 24 X≠Y 25 →R 26 RCL3 27 + 28 R/S 29 X≠Y 30 RCL4 31 + 32 R/S	H Dist AZ No conven *** N	s te sign tion			
0 6 S	1 N _p 7	REGI : 2 E _P 8	STERS 3	4 E _{T1}	5 Ø .1
18	19	20	21	22	23
24	25	26	27	28	29

NOTES

In the Hewlett-Packard tradition of supporting HP programmable calculators with quality software, the following titles have been carefully selected to offer useful solutions to many of the most often encountered problems in your field of interest. These ready-made programs are provided with convenient instructions that will allow flexibility of use and efficient operation. We hope that these Solutions books will save your valuable time. They provide you with a tool that will multiply the power of your HP-19C or HP-29C many times over in the months or years ahead.

Mathematics Solutions
Statistics Solutions
Financial Solutions
Electrical Engineering Solutions
Surveying Solutions
Games
Navigational Solutions
Civil Engineering Solutions
Mechanical Engineering Solutions
Student Engineering Solutions

