HEWLETT-PACKARD
 HP-21 Applications Book

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

Introduction

The HP-21 Applications Book gives you a sample of the problem-solving capabilities of the HP-21 Scientific Pocket Calculator. Hewlett-Packard has found that there are a number of solutions that calculator owners repeatedly seek within their specific application areas or fields of interest. In this book, we have presented key sequence routines that solve over 40 of these common problems. The routines are organized into sections covering the areas of Statistics, Mathematics, Finance, Navigation, Surveying and Conversions. No matter what your technical or professional field, whether you're a student or a scientist, statistician or surveyor, business-person or engineer, we're confident that you'll find these pages filled with useful information.

Each keystroke routine is furnished with a full explanation, including a description of the problem, any pertinent equations, instructions for keying in the problem (Standard Key Sequence Format), and an example or two, with solutions. We suggest that you first read the introductory material explaining the Standard Key Sequence Format. Then locate the routine you want with the Table of Contents or Index and go to work!

Because of the easy "cookbook" style of the solutions presented here, no knowledge of the operation of the calculator is required. All you need are an HP-21 Scientific Pocket Calculator and this Applications Book to begin getting answers to common problems.

Eventually, of course, Hewlett-Packard hopes you'll become an expert calculator user by working through the excellent HP-21 Owner's Handbook that was packaged with your HP-21. But even experts can profit from the keystroke solutions here.

With the HP-21 Applications Book, Hewlett-Packard provides you with answers to some of your more common calculating problems-immediately. But also we hope you'll use this book as a springboard. You can alter or combine these keystroke routines, or develop your own routines, for your more specific applications. In this way you will realize the maximum return from the investment in your HP-21 Scientific Pocket Calculator.

We hope you find the HP-21 Applications Book a useful tool, and always welcome your comments, requests, and suggestions-these are our most important source of ideas for future publications like this one.

Table of Contents

INTRODUCTION 1
Standard Key Sequence Format 4
CHAPTER 1 Statistics
Mean, Standard Deviation, and Sums (Ungrouped data) 7
Mean, Standard Deviation, and Sums (Grouped data) 8
Linear Regression and Correlation Coefficient 10
Exponential Curve Fit 12
Power Curve Fit 14
Logarithmic Curve Fit 16
Random Number Generator 18
Normal Distribution 19
Inverse Normal Integral 21
Chi-Square Evaluation 23
Paired t Statistic 24
CHAPTER 2 Mathematics
Quadratic Equation 26
Polynomial Evaluation 28
Complex Arithmetic 29
Complex Functions 31
Vector Operations 33
Triangle Solutions 37
Curve Solutions 49
Coordinate Translation and Rotation 53
Trigonometric Functions 54
Hyperbolic Functions 60
Integer Base Conversions 62
Iterative Techniques 65
Progressions 67
Factoring Integers-Determining Primes 73
Interpolation 75
CHAPTER 3 Finance
Compound Interest 76
Rate of Return 78
Loans (direct reduction) 79
Periodic Savings 84
Sinking Fund 86
Percent 88
Nominal Rate Converted to Effective Annual Rate 90
Depreciation 91
Discounted Cash Flow Analysis 94
CHAPTER 4 Navigation
Great Circle Navigation 96
Great Circle Computation 98
Rhumb Line Navigation 99
Sight Reduction Table 101
Most Probable Position 103
CHAPTER 5 Surveying
Field Angle Traverse 105
Area of Traverse from Coordinates 107
Slope Distance Reduction 108
Horizontal Distance to Latitude and Departure 109
Coordinates to Distance and Azimuth 110
Bearing to Azimuth-Azimuth to Bearing 111
CHAPTER 6 Conversions
Angle Conversions 112
Feet and Inches Conversions 114
Conversion Factors 116

Standard Key Sequence Format

Shown below is the key sequence routine for computing the roots of the Quadratic Equation:

$$
\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}=0
$$

Using A, B, and C, which you supply as data, the routine produces an intermediate result D . If $\mathrm{D}<0$, one root is the complex conjugate of the other; the real and imaginary parts of one complex root develop on lines 9 and 10. Except for the opposite sign of the imaginary part, the other complex root is identical. If $D \geqslant 0$, the roots are real and develop on lines 6 and 8 (if $-B / 2 A$ $\geqslant 0$) or on lines 7 and 8 (if $-\mathrm{B} / 2 \mathrm{~A}<0$).

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	B	\uparrow	2	\div	CHS		-B/2	
2	A	STO	\div				-B/2A	
3		\uparrow	\uparrow	x			$(B / 2 A)^{2}$	
4	c	RCL	\div	STO	-		D	If display is negative go to 9
5			\sqrt{x}	$x \geqslant y$			(-B/2A)	If display is negative go to 7
6		+					${ }_{1}$	Go to 8
7		$x \geq y$	-				${ }_{1}$	
8		RCL	$x \geq y$	\div			x_{2}	
9		CHS		\sqrt{x}			iv	Imaginary part
10		$x \geq y$					u	Real part

To execute the sequence, start with line 1 and read from left to right, making the appropriate keystrokes as you proceed. Interpret the respective columns as follows:

Data: Information to be supplied by you, the user. In the sample case, lines 1, 2 and 4 prompt the reader to enter coefficients A, B and C. To enter negative data, it is merely necessary to press $\mathbf{C H S}$ after pressing the data value.

Operations: The keys to be pressed after you enter any requested data item for the line. 4 is the symbol used to denote the ENTER 4 key of the HP-21. All other key designations are identical to the HP-21 keys. Ignore any blank positions in the operations column. The blue prefix key is represented as a solid key with no lettering (e.g., the first stroke of line 5). The next key to be pressed is denoted by the corresponding functional name (e.g., $\sqrt{\mathrm{x}}$, second stroke, line 5) which, on the key is printed in blue.

Display: Intermediate or final results which you should, in most cases, jot down. In the sample case, D is developed so that the reader can decide which line (5 or 9) to execute next.

Remarks: Conditional and unconditional jumps to specified lines or other information for the reader. In the sample case, the reader is prompted to continue with line 9 (ignoring lines 5 through 8) if D is negative. If the condition fails, execution continues on the next line. In the sample case, the reader proceeds to line 5, if D is zero or positive.

Thus, lines are read in sequential order except where the remarks column directs otherwise (as in line 4 of the sample case). To assist the reader in distinguishing lines to be repeated, a sequence of lines making up an iterative process is outlined with a bold border. The following sequence for computing chi-square statistic for goodness of fit illustrates this convention.

Formula:

$$
\chi^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

$$
\begin{array}{ll}
\text { where } & \mathrm{O}_{\mathrm{i}}=\text { observed frequency } \\
& \mathrm{E}_{\mathrm{i}}=\text { expected frequency }
\end{array}
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1		CLX	\uparrow					
2	O_{i}	\uparrow						Perform lines 2.4 for $\mathrm{i}=1,2, \ldots, \mathrm{n}$
3	E_{i}	STO	-	\uparrow	x	RCL		
4		\div	+					
5							χ^{2}	

In a few cases, an iterative process is embedded in a series of lines which are themselves iterated.

Chapter 1. Statistics

Mean, Standard Deviation, and Sums (Ungrouped data)

This procedure will calculate the mean, standard deviation, sum, and sum of squares for one variable.

Formulas:

Mean:

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

Standard deviation:

$$
s=\sqrt[n]{\frac{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n-1}}
$$

Sum of values:

$$
S x=\sum_{i=1}^{n} x_{i}
$$

Sum of squared values:

$$
\mathrm{SS}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{2}
$$

Example:
Find $\bar{x}, s, S x$, and S for the values $\{2,3.4,3.41,7,11,23\} .(n=6)$ Answer:

$$
\begin{aligned}
& \mathrm{SS}=726.19 \\
& \mathrm{Sx}=49.81 \\
& \overline{\mathrm{x}}=8.30 \\
& \mathrm{~s}=7.91
\end{aligned}
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1		CLX	Sto					
2	x_{i}		M +	\uparrow	\times	+		Perform line 2 for $\mathrm{i}=1,2, \ldots, \mathrm{n}$
3							Ss	
4		RCL					Sx	Stop if \bar{x} and s not needed
5		\uparrow	\uparrow					
6	n	STO	\div				$\overline{\text { x }}$	
7		R \downarrow	\uparrow	\times	RCL	\div		
8		-	RCL	1	-	\div		
9			\sqrt{x}				s	

Mean, Standard Deviation and Sums (grouped data)

This procedure will compute mean, standard deviation, sum, and sum of squares for one variable grouped data.

Formulas:
Given a set of data points

$$
\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}
$$

with respective frequencies

$$
f_{1}, f_{2}, \ldots, f_{n}
$$

Let $\mathrm{k}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{i}}$.

Then

$$
\begin{array}{r}
\bar{x}=\frac{\sum_{i=1}^{n} f_{i} x_{i}}{\sum_{i=1}^{n} f_{i}} \\
s=\sqrt{\frac{\sum_{i=1}^{n} f_{i} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} f_{i} x_{i}\right)^{2}}{k}}{k-1}} \\
S x=\sum_{i=1}^{n} f_{i} x_{i} \\
S S=\sum_{i=1}^{n} f_{i} x_{i}^{2}
\end{array}
$$

Example:

Compute mean, standard deviation, and sums for

f_{i}	3	3	1	2	1
x_{i}	1	2	3	4	5

Answer:

$$
\begin{aligned}
& \mathrm{SS}=81.00 \\
& \mathrm{Sx}=25.00 \\
& \overline{\mathrm{x}}=2.50 \\
& \mathrm{~s}=1.43
\end{aligned}
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1		CLX	Sto					
2	x_{i}	\uparrow	\uparrow					Perform lines 2-3 for $\mathrm{i}=1, \ldots, \mathrm{n}$
3	f_{i}	\times		M +	\times	+		
4							ss	
5		RCL					Sx	Stop if \bar{x} and s not needed
6		\uparrow	\uparrow					
7	k	Sto	\div				$\overline{\mathrm{x}}$	
8		R \downarrow	\uparrow	\times	RCL	\div		
9		-	RCL	1	-	\div		
10			\sqrt{x}				s	

Linear Regression and Correlation Coefficient

The following procedure will perform a least-squares fit of the line $y=a x+b$ to a set of data points $\left\{\left(x_{i}, y_{i}\right), i=1, \ldots, n\right\}$. It will compute, in addition to the constants a (slope) and b (y-intercept), the coefficient of determination and the correlation coefficient.

Formulas:

$$
\begin{gathered}
\mathrm{y}=\mathrm{ax}+\mathrm{b} \\
\mathrm{a}=\frac{\Sigma \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}-\frac{\Sigma \mathrm{x}_{\mathrm{i}} \Sigma \mathrm{y}_{\mathrm{i}}}{\mathrm{n}}}{\Sigma \mathrm{x}_{\mathrm{i}}^{2}-\frac{\left(\Sigma \mathrm{x}_{\mathrm{i}}\right)^{2}}{n}} \quad \text { (slope) } \\
\mathrm{b}=\bar{y}-\mathrm{a} \overline{\mathrm{x}} \quad
\end{gathered}
$$

where

$$
\begin{aligned}
& \overline{\mathrm{x}}=\frac{\Sigma \mathrm{x}_{\mathrm{i}}}{\mathrm{n}} \\
& \overline{\mathrm{y}}=\frac{\Sigma \mathrm{y}_{\mathrm{i}}}{\mathrm{n}}
\end{aligned}
$$

Coefficient of determination (measure of goodness of fit-the closer to 1 the better the fit).

$$
\mathrm{r}^{2}=\frac{\left[\Sigma \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}-\frac{\Sigma \mathrm{x}_{\mathrm{i}} \Sigma \mathrm{y}_{\mathrm{i}}}{\mathrm{n}}\right]^{2}}{\left[\Sigma \mathrm{x}_{\mathrm{i}}^{2}-\frac{\left(\Sigma \mathrm{x}_{\mathrm{i}}\right)^{2}}{\mathrm{n}}\right]\left[\Sigma \mathrm{y}_{\mathrm{i}}^{2}-\frac{\left(\Sigma \mathrm{y}_{\mathrm{i}}\right)^{2}}{\mathrm{n}}\right]}
$$

Correlation coefficient

$$
r=\sqrt{r^{2}} \text { (using the sign of } a \text {) }
$$

Example:

$\mathrm{x}_{\mathbf{i}}$	26	30	44	50	62	68	74
y_{i}	92	85	78	81	54	51	40

Answers:

$$
\begin{array}{ll}
S S x=19956.00000 & S x y=22200.00 \\
S x=354.0000000 & y=-1.03 x+121.04=a x+b \\
S S y=35451.00000 & r^{2}=0.92 \\
S y=481.0000000 & r=-0.96
\end{array}
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS	
1		CLX	STO	DSP	\square	\square

Exponential Curve Fit

This procedure will fit an exponential curve of the form $y=a e^{b x}(a>0)$ to a given set of data points $\left\{\left(x_{i}, y_{i}\right), i=1, \ldots, n\right\}$.

By writing the equation as $\ln \mathrm{y}=\mathrm{bx}+\ln \mathrm{a}$, the problem can be solved as a linear regression problem on the transformed variables $\left(\mathrm{x}_{\mathbf{i}}, \ln \mathrm{y}_{\mathrm{i}}\right)$. The procedure computes a and b as well as the coefficient of determination, r^{2}.

Note: y_{i} must be positive, $\mathrm{i}=1, \ldots, \mathrm{n}$.
Formulas:

Coefficients a, b

$$
\begin{aligned}
& \mathrm{b}=\frac{\sum \mathrm{x}_{\mathrm{i}} \ln \mathrm{y}_{\mathrm{i}}-\frac{1}{\mathrm{n}}\left(\sum \mathrm{x}_{\mathrm{i}}\right)\left(\sum \ln \mathrm{y}_{\mathrm{i}}\right)}{\sum \mathrm{x}_{\mathrm{i}}^{2}-\frac{1}{\mathrm{n}}\left(\sum \mathrm{x}_{\mathrm{i}}\right)^{2}} \quad \begin{array}{l}
\text { (continuous } \\
\text { growth rate) }
\end{array} \\
& \mathrm{a}=\exp \left[\frac{\Sigma \ln \mathrm{y}_{\mathrm{i}}}{\mathrm{n}}-\mathrm{b} \frac{\Sigma \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}\right]
\end{aligned} \quad \text { (y-intercept) }
$$

Coefficient of determination

$$
r^{2}=\frac{\left[\Sigma x_{i} \ln y_{i}-\frac{1}{n} \Sigma x_{i} \Sigma \ln y_{i}\right]^{2}}{\left[\Sigma x_{i}{ }^{2}-\frac{\left(\Sigma x_{i}\right)^{2}}{n}\right]\left[\Sigma\left(\ln y_{i}\right)^{2}-\frac{\left(\Sigma \ln y_{i}\right)^{2}}{n}\right]}
$$

Example:

x_{i}	26	30	44	50	62	68	74
y_{i}	92	85	78	81	54	51	40

Answers:
$\mathrm{SSx}=19956.00000$
$\mathrm{Sx}=354.0000000$
$\mathrm{SSy}=123.4548955$
Sy $=29.32528695$
Sxy $=1449.92$
$y=149.07 e^{-0.02 x}=a e^{b x}$
$r^{2}=0.89$

LINE	DATA	OPERATIONS						DISPLAY	REMARKS
1		CLX	sto	DSP			9		Record sums to full 10 -digitaccuracy
2	x_{i}		M+	\uparrow	\times		+		Perform line 2 for $\mathrm{i}=1, \ldots, \mathrm{n}$
3								ssx	
4		RCL						sx	
5		CLX	sto						
6	y_{i}		LN		M+		\uparrow		Perform lines 6.7 for $\mathrm{i}=1, \ldots, \mathrm{n}$
7		\times	+						
8								ssy	
9		RCL						Sy	
10		CLX	\uparrow						
11	x_{i}	\uparrow							Perform lines $11 \cdot 12$ for $\mathrm{i}=1, \ldots, \mathrm{n}$
12	y_{i}		LN	\times	+				
13		DSP	.	2				Sxy	
14		RCL							
15	sx	Sto	\times						
16	n	\div	-						
17	ssx	RCL	\uparrow	\times					
18	n	\div	-	\div	sto			b	
19	Sx	\times							
20	Sy	$x \geq y$	-						
21	n	\div	$\mathrm{e}^{\text {x }}$					a	Stop if r^{2} is not needed
22		R \downarrow	RCL	\times					
23	ssy	\uparrow							
24	sy	\uparrow	\times						
25	n	\div	-	\div				r^{2}	

Power Curve Fit

This procedure will fit a power curve of the form $y=a x^{b}(a>0)$ to a given set of data points $\left\{\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1, \ldots, \mathrm{n}\right\}$.

By writing the equation as $\ln y=\ln a+b \ln x$, the problem can be solved as a linear regression problem on the transformed variables ($\ln x_{i}, \ln y_{i}$). The procedure computes the constants a and b as well as the coefficient of determination, r^{2}.

Note: x_{i} and y_{i} must both be positive, $\mathrm{i}=1, \ldots, \mathrm{n}$.

Formulas:

Regression coefficients

$$
\begin{gathered}
\mathrm{b}=\frac{\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right)\left(\ln \mathrm{y}_{\mathrm{i}}\right)-\frac{\left(\Sigma \ln \mathrm{x}_{\mathrm{i}}\right)\left(\Sigma \ln \mathrm{y}_{\mathrm{i}}\right)}{\mathrm{n}}}{\sum\left(\ln \mathrm{x}_{\mathrm{i}}\right)^{2}-\frac{\left(\Sigma \ln \mathrm{x}_{\mathrm{i}}\right)^{2}}{n}} \\
\mathrm{a}=\exp \left[\frac{\Sigma \ln y_{\mathrm{i}}}{\mathrm{n}}-\mathrm{b} \frac{\Sigma \ln \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}\right]
\end{gathered}
$$

Coefficient of determination

$$
\mathrm{r}^{2}=\frac{\left[\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right)\left(\ln \mathrm{y}_{\mathrm{i}}\right)-\frac{\left(\Sigma \ln \mathrm{x}_{\mathrm{i}}\right)\left(\Sigma \ln y_{\mathrm{i}}\right)}{\mathrm{n}}\right]^{2}}{\left[\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right)^{2}-\frac{\left(\Sigma \ln \mathrm{x}_{\mathrm{i}}\right)^{2}}{\mathrm{n}}\right]\left[\Sigma\left(\ln \mathrm{y}_{\mathrm{i}}\right)^{2}-\frac{\left(\Sigma \ln y_{\mathrm{i}}\right)^{2}}{\mathrm{n}}\right]}
$$

Example:

$\mathrm{x}_{\mathbf{i}}$	26	30	44	50	62	68	74
y_{i}	92	85	78	81	54	51	40

Answers:

$$
\begin{aligned}
& S S x=105.1698117 \\
& S x=27.00621375 \\
& S S y=123.4548955 \\
& S y=29.32528695 \\
& S x y=112.45 \\
& y=987.66 x^{-0.70}=\mathrm{ax}^{\mathrm{b}} \\
& \mathrm{r}^{2}=0.80
\end{aligned}
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1		CLX	sto	DSP		9		Record sums to full 10 -digit accuracy
2	x_{i}		LN		M +	\uparrow		Perform lines $2-3$ for $\mathrm{i}=1, \ldots, n$
3		x	+					
4							SSx	
5		RCL					Sx	
6		CLX	Sto					
7	y_{i}		LN		M +	\uparrow		Perform lines 7.8 for $\mathrm{i}=1, \ldots, \mathrm{n}$
8		\times	+					
9							SSy	
10		RCL					Sy	
11		CLX	\uparrow					
12	x_{i}		LN					Perform lines 12.13 for $\mathrm{i}=1, \ldots, \mathrm{n}$
13	y_{i}		LN	\times	+			
14		DSP		2			Sxy	
15		RCL						
16	Sx	Sto	x					
17	n	\div	-					
18	SSx	RCL	\uparrow	\times				
19	n	\div	-	\div	Sto		b	
20	Sx	x						
21	Sy	$x \geq y$	-					
22	n	\div	e^{x}				a	Stop if r^{2} is not needed
23		R \downarrow	RCL	x				
24	SSy	\uparrow						
25	Sy	\uparrow	x					
26	n	\div	-	\div			r^{2}	

Logarithmic Curve Fit

This procedure will fit a logarithmic curve of the form $y=a+b \ln x$ to a set of data points $\left\{\left(x_{i}, y_{i}\right), i=1, \ldots, n\right\}$. This problem is solved as a linear regression problem on the transformed variables ($\ln \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$). The procedure computes the coefficient of determination, r^{2}, as well as the regression constants a and b .

Note: x_{i} must be positive, $\mathrm{i}=1, \ldots, \mathrm{n}$.

Formulas:

Regression coefficients

$$
\begin{gathered}
\mathrm{b}=\frac{\sum \mathrm{y}_{\mathrm{i}} \ln \mathrm{x}_{\mathrm{i}}-\frac{1}{\mathrm{n}} \Sigma \ln \mathrm{x}_{\mathrm{i}} \sum \mathrm{y}_{\mathrm{i}}}{\sum\left(\ln \mathrm{x}_{\mathrm{i}}\right)^{2}-\frac{1}{\mathrm{n}}\left(\Sigma \ln \mathrm{x}_{\mathrm{i}}\right)^{2}} \\
\mathrm{a}=\frac{1}{\mathrm{n}}\left(\Sigma \mathrm{y}_{\mathrm{i}}-\mathrm{b} \Sigma \ln \mathrm{x}_{\mathrm{i}}\right)
\end{gathered}
$$

Coefficient of determination

$$
r^{2}=\frac{\left[\Sigma y_{i} \ln x_{i}-\frac{1}{n} \Sigma \ln x_{i} \Sigma y_{i}\right]^{2}}{\left[\Sigma\left(\ln x_{i}\right)^{2}-\frac{1}{n}\left(\Sigma \ln x_{i}\right)^{2}\right]\left[\Sigma y_{i}{ }^{2}-\frac{1}{n}\left(\Sigma y_{i}\right)^{2}\right]}
$$

Example:

$\mathrm{x}_{\mathbf{i}}$	26	30	44	50	62	68	74
$\mathrm{y}_{\mathbf{i}}$	92	85	78	81	54	51	40

Answers:
$\mathrm{SSx}=105.1698117$
$S x=27.00621375$
$\mathrm{SSy}=35451.00000$
Sy $=481.0000000$
Sxy = 1811.11
$y=244.48+(-45.56) \ln x=a+b \ln x$
$\mathrm{r}^{2}=0.85$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1		CLX	Sto	DSP	.	9		Record sums to full 10 -digitaccuracy
2	x_{i}		LN		M+	\uparrow		Perform lines 2.3 for $\mathrm{i}=1, \ldots, \mathrm{n}$
3		\times	+					
4							SSx	
5		RCL					Sx	
6		CLX	sto					
7	y_{i}		M +	\uparrow	\times	+		Perform line 7 for $\mathrm{i}=1, \ldots, \mathrm{n}$
8							SSy	
9		RCL					Sy	
10		CLX	\uparrow					
11	x_{i}		LN					Perform lines $11-12$ for $\mathrm{i}=1, \ldots, \mathrm{n}$
12	y_{i}	\times	+					
13		DSP		2			Sxy	
14		RCL						
15	Sx	STO	x					
16	n	\div	-					
17	SSx	RCL	\uparrow	\times				
18	n	\div	-	\div	Sto		b	
19	Sx	\times						
20	Sy	$x \geq y$	-					
21	n	\div					a	Stop if r^{2} is not needed
22		R \downarrow	RCL	\times				
23	SSy	\uparrow						
24	Sy	\uparrow	\times					
25	n	\div	-	\div			r^{2}	

Random Number Generator

Random numbers are used in a variety of disciplines. They provide the element of chance in computer games involving, for instance, card dealing or dice rolling. They can provide typical, but varying, values of parameters in simulation or modelling programs. For the statistician, they allow irregular and unbiased sampling from a population.
This procedure calculates uniformly distributed pseudo random numbers u_{i} in the range $0<u_{i}<1$ using the multiplicative linear congruential method:

$$
u_{i+1}=\text { fractional part of }\left(997 u_{i}\right)
$$

where $\mathrm{i}=0,1,2, \ldots$

$$
\mathrm{u}_{0}=0.5284163
$$

The period has length 500000 (i.e., 500000 different numbers can be generated before repeating). The least significant digits (the right-hand digits) of u_{i} are not as random as the most significant digits (the left-hand digits). Thus random digits, if needed, should be taken from the most significant end of the numbers.

If a different sequence of numbers is desired, a different starting value u_{0} can be chosen such that $0<u_{0}<1$. Note that if $10^{7} \mathrm{x} \mathrm{u}_{0}$ is not divisible by 2 or 5 , then the period of the generator has length 500000 .

Example:

Let $u_{0}=0.5284163$. Find the first five random numbers in this sequence $\left\{u_{i}, i=1, \ldots, 5\right\}$.

Answers:

$$
0.83,0.56,0.27,0.04,0.20
$$

Normal Distribution

Given a standard normal variable x , this program computes two functions for a normal distribution: the density function $f(x)$ and the upper tail area $\mathrm{Q}(\mathrm{x})$.

Note:
This procedure works only for $\mathrm{x} \geqslant 0$. For $\mathrm{x}<0$, f and Q can be found using the relations $f(-x)=f(x)$ and $Q(-x)=1-Q(x)$.

Formulas:

$$
\begin{gathered}
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} . \\
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\frac{t^{2}}{2}} d t .
\end{gathered}
$$

For $x \geqslant 0$, polynomial approximation is used to compute $\mathrm{Q}(\mathrm{x})$:

$$
\mathrm{Q}(\mathrm{x})=\mathrm{f}(\mathrm{x})\left(\mathrm{b}_{1} \mathrm{t}+\mathrm{b}_{2} \mathrm{t}^{2}+\mathrm{b}_{3} \mathrm{t}^{3}+\mathrm{b}_{4} \mathrm{t}^{4}+\mathrm{b}_{5} \mathrm{t}^{5}\right)+\epsilon(\mathrm{x})
$$

where $|\epsilon(x)|<7.5 \times 10^{-8}$

$$
\begin{aligned}
& t=\frac{1}{1+r x}, r=0.2316419 \\
& b_{1}=.31938153, \\
& b_{3}=1.781477937, \\
& b_{5}=1.330274429
\end{aligned}
$$

Reference:

Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1968.

Examples:

1. $\mathrm{x}=1.18$
2. $x=2.28$

Answers:

1. $\mathrm{f}(\mathrm{x})=0.20$

$$
Q(x)=0.12
$$

2. $f(x)=0.03$

$$
Q(x)=0.01
$$

LINE	DATA	operations						display	REMARKS
1	\times	STo	\uparrow	\times	2		\div		
2		CHS	e^{x}		π		2		
3		\times		\sqrt{x}	\div			$f(x)$	Stop if $\mathrm{Q}(\mathrm{x})$ is not needed
4		RCL	$x \geq y$	STo	R \downarrow				
5	'	\times	1	+	1/x		\uparrow		
6		\dagger	\uparrow					t	
7	b_{5}	\times							
8	b_{4}	+	\times						
9	b_{3}	+	\times						
10	b_{2}	+	\times						
11	b_{1}	+	\times	RCL	\times			Q(x)	

Inverse Normal Integral

This procedure determines the value of x such that

$$
Q=\int_{x}^{\infty} \frac{e^{-\frac{t^{2}}{2}}}{\sqrt{2 \pi}} d t
$$

where Q is given and $0<\mathrm{Q} \leqslant 0.5$.

Formulas:

The following rational approximation is used:

$$
\mathrm{x}=\mathrm{t}-\frac{\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{t}+\mathrm{c}_{2} \mathrm{t}^{2}}{1+\mathrm{d}_{1} \mathrm{t}+\mathrm{d}_{2} \mathrm{t}^{2}+\mathrm{d}_{3} \mathrm{t}^{3}}+\epsilon(\mathrm{Q})
$$

$$
\text { where } \begin{aligned}
&|\epsilon(\mathrm{Q})|<4.5 \times 10^{-4} \\
& \mathrm{t}=\sqrt{\ln \frac{1}{\mathrm{Q}^{2}}} \\
& \mathrm{c}_{0}=2.515517 \mathrm{~d}_{1}=1.432788 \\
& \mathrm{c}_{1}=0.802853 \mathrm{~d}_{2}=0.189269 \\
& \mathrm{c}_{2}=0.010328 \mathrm{~d}_{3}=0.001308
\end{aligned}
$$

Reference:

Abramowitz and Stegun. Handbook of Mathematical Functions, National Bureau of Standards. 1968.

Examples:

1. $\mathrm{Q}=0.12$
2. $\mathrm{Q}=0.05$

Answers:

1. $\mathrm{x}=1.18$
2. $x=1.65$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	-	\uparrow	\times	1/x		LN		
2			\sqrt{x}	\uparrow	\uparrow	\uparrow	t	
3	d_{3}	\times						
4	d_{2}	+	\times					
5	d_{1}	+	\times	1	+	Sto		
6		CLX						
7	c_{2}	\times						
8	c_{1}	+	\times					
9	c_{0}	+	RCL	\div	-		\times	

Chi-Square Evaluation

This procedure calculates the value of the χ^{2} statistic for the goodness of fit test. This statistic measures the closeness of the agreement between observed and expected frequencies.

Formulas:

$$
\chi^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

where $\quad O_{i}=$ observed frequency

$$
E_{i}=\text { expected frequency } .
$$

Notes:

1. In order to apply this test to a set of given data, it may be necessary to combine some classes to make sure that each expected frequency is not too small (say, not less than 5).
2. If the expected frequencies E_{i} are all equal to some value E, then E should be computed beforehand as

$$
\mathrm{E}=\frac{\Sigma \mathrm{O}_{\mathrm{i}}}{\mathrm{n}}
$$

and then input at each step as the expected frequency E_{i}.

Example:

$\mathrm{O}_{\mathbf{i}}$	8	50	47	56	5	14
$\mathrm{E}_{\mathbf{i}}$	9.6	46.75	51.85	54.4	8.25	9.15

Answer:

$$
\chi^{2}=4.84
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1		clx	\dagger					
2	o_{i}	\uparrow						Perform lines 2.4 for $\mathrm{i}=1, \ldots, \mathrm{n}$
3	E_{i}	STU	-	\uparrow	\times	RCL		
4		\div	+					
5							x^{2}	

Paired t Statistic

Given a set of paired observations $\left\{\left(x_{i}, y_{i}\right), i=1, \ldots, n\right\}$ drawn from two normal populations with unknown means μ_{1}, μ_{2}, this procedure will compute the paired t -statistic. This test statistic, which has $\mathrm{n}-1$ degrees of freedom, can be used to test the null hypothesis Ho: $\mu_{1}=\mu_{2}$.

Formulas:

$$
\begin{gathered}
D_{i}=x_{i}-y_{i} \\
\bar{D}=\frac{1}{n} \sum_{i=1}^{n} D_{i}
\end{gathered}
$$

$$
s_{\overline{\mathrm{I}}}=\frac{\mathrm{s}_{\mathrm{D}}}{\sqrt{\mathrm{n}}}
$$

$$
\mathrm{t}=\frac{\overline{\mathrm{D}}}{\mathrm{~s}_{\overline{\mathrm{D}}}},
$$

Example:

x_{i}	14	17.5	17	17.5	15.4
y_{i}	17	20.7	21.6	20.9	17.2

Answers:

$$
\begin{aligned}
& \bar{D}=-3.20 \\
& S_{D}^{-}=0.45 \\
& t=-7.16
\end{aligned}
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS
1		CLX	STO	\square	\square

Chapter 2. Mathematics
 Quadratic Equation

This program performs a general solution for the quadratic equation. Either real or imaginary roots may be found.

Formulas:

A general quadratic equation is of the form:

$$
A x^{2}+B x+C=0
$$

The equation has two roots, x_{1} and x_{2}.

Let

$$
\mathrm{D}=\left(\frac{\mathrm{B}}{2 \mathrm{~A}}\right)^{2}-\frac{\mathrm{C}}{\mathrm{~A}}
$$

If

$$
D \geqslant 0 \text {, then } x_{1}=\left\{\begin{array}{l}
-\frac{B}{2 A}+\sqrt{D} \text { if } \frac{-B}{2 A} \geqslant 0 \\
-\frac{B}{2 A}-\sqrt{D} \text { if }-\frac{B}{2 A}<0
\end{array}\right.
$$

and $\mathrm{x}_{2}=\frac{\mathrm{C}}{\mathrm{AX}_{1}}$

If

$$
\begin{aligned}
D<0, \text { then } x_{1}, x_{2} & =-\frac{B}{2 A} \pm i \sqrt{-D} \\
& =u \pm i v
\end{aligned}
$$

The coefficient A cannot be zero.

Examples:
Find the solutions to the following equations:

1. $x^{2}-3 x-4=0$
2. $2 x^{2}+3 x+4=0$

Answers:

1. $\mathrm{D}=6.25 \quad \mathrm{x}_{1}=4, \mathrm{x}_{2}=-1$
2. $D=-1.44 \quad x_{1}, x_{2}=-.75 \pm 1.20 i$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	B	\dagger	2	\div	CHS		-B/2	
2	A	Sto	\div				$-\mathrm{B} / 2 \mathrm{~A}$	
3		\uparrow	\uparrow	\times			$(\mathrm{B} / 2 \mathrm{~A})^{2}$	
4	c	RCL	\div	sto	-		D	If display is negative go to 9
5			\sqrt{x}	$x \geq y$			$(-B / 2 A)$	If display is negative go to 7
6		+					${ }_{1}$	Go to 8
7		$x \geq y$	-				${ }_{1}$	
8		RCL	$x \geq y$	\div			${ }_{2}$	
9		CHS		\sqrt{x}			iv	Imaginary part
10		$x \geq y$					u	Real part

Polynomial Evaluation

In many instances, it is necessary to evaluate a polynomial of the form

$$
f(x)=c_{0} x^{n}+c_{1} x^{n-1}+\ldots+c_{n-1} x+c_{n}
$$

given values for x and the constants c_{0} through c_{n}. By restructuring the problem in the form

$$
f\left(x_{0}\right)=\left(\ldots\left(\left(\left(c_{0} x_{0}+c_{1}\right) x_{0}+c_{2}\right) x_{0}+c_{3}\right) x_{0}+\ldots\right) x_{0}+c_{n}
$$

maximum benefit can be gained from the HP-21's operational stack.

Example:
If $f(x)=x^{5}+5 x^{4}-3 x^{2}-7 x+11$, find $f(2.5) .\left(\right.$ Note that $\left.c_{2}=0\right)$

Answer:
Restructure as $f(x)=((((x+5) x+0) x-3) x-7) x+11$
$f(2.5)=267.72$

LINE	DATA	OPERATIONS			DISPLAY
1	x_{0}	$\square \uparrow$	\uparrow	\uparrow	\square
2	c_{0}	\square	\square	\square	\square
3		\square	\square	\square	

Complex Arithmetic

These procedures evaluate the basic complex number operations.

Complex Addition

Formula:

$$
\left(a_{1}+i b_{1}\right)+\left(a_{2}+i b_{2}\right)=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right)=u+i v
$$

Example:

$$
(3+4 i)+(7.4-5.6 i)=10.40-1.60 i
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS
1	a_{1}	\uparrow	\square	\square	\square
2	a_{2}	++	\square	\square	
3	$\mathrm{~b}_{1}$	\uparrow	\square	\square	
4	$\mathrm{~b}_{2}$	++	\square	\square	\square

Complex Subtraction

Formula:

$$
\left(\mathrm{a}_{1}+\mathrm{i} \mathrm{~b}_{1}\right)-\left(\mathrm{a}_{2}+\mathrm{ib} 2\right)=\left(\mathrm{a}_{1}-\mathrm{a}_{2}\right)+\mathrm{i}\left(\mathrm{~b}_{1}-\mathrm{b}_{2}\right)=\mathrm{u}+\mathrm{iv}
$$

Example:

$$
(3+4 i)-(7.4-5.6 i)=-4.40+9.60 i
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS
1	a_{1}	$\uparrow \uparrow$	\square	\square	\square
2	a_{2}	-	\square		
3	$\mathrm{~b}_{1}$	$\uparrow \uparrow$	\square	\square	\square
4	$\mathrm{~b}_{2}$	-	\square	\square	u

30 Chapter 2 Mathematics

Complex Multiplication

Formula:

$$
\begin{gathered}
\prod_{k=1}^{2}\left(a_{k}+i b_{k}\right)=\prod_{k=1}^{2} r_{k} e^{i \sum_{k=1} \theta_{k}}=u+i v \\
\text { where } a_{k}+i b_{k}=r_{k} e^{i \theta_{k}}
\end{gathered}
$$

Example:

$$
(3.1+4.6 i) \times(5-12 i)=70.70-14.20 i
$$

Complex Division

Formula:

$$
\frac{\left(a_{1}+i b_{1}\right)}{\left(a_{2}+i b_{2}\right)}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}=u+i v
$$

where

$$
\begin{aligned}
& a_{1}+i b_{1}=r_{1} e^{i \theta_{1}} \\
& a_{2}+i b_{2}=r_{2} e^{i \theta_{2}} \neq 0
\end{aligned}
$$

Example:

$$
\frac{(3+4 i)}{7-2 i}=.25+.64 i
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS
1	$\mathrm{~b}_{2}$	$\square \uparrow$	\square	\square	\square

Complex Functions

Complex Reciprocal

Formula:

$$
\begin{aligned}
\frac{1}{\mathrm{z}}=\frac{1}{\mathrm{a}+\mathrm{i} b} & =\frac{1}{\mathrm{r}} \mathrm{e}^{-\mathrm{i} \theta}, \mathrm{z} \neq 0 \\
& =u+i v
\end{aligned}
$$

Example:

$$
\frac{1}{2+3 \mathrm{i}}=.15-.23 \mathrm{i}
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS		
1	b	CHS	\uparrow	\square	\square	\square	
2	a		$\square \rightarrow \mathrm{P}$	y	y		$\square \rightarrow \mathrm{R}$

Complex Square

Formula:

$$
(a+i b)^{2}=r^{2} e^{i 2 \theta}
$$

Example:

$$
(7-2 i)^{2}=45.00-28.00 i
$$

LINE	DATA	OPERATIONS	DISPLAY	REMARKS	
1	b	T	\square	\square	\square
2	a		$\square \rightarrow \mathrm{P}$	$\mathrm{x} \rightleftarrows \mathrm{y}$	$\square 2$

Complex Square Root

Formula:

$$
\sqrt{\mathrm{a}+\mathrm{ib}}= \pm\left(\sqrt{\mathrm{r}} \mathrm{e}^{\mathrm{i} \theta / 2}\right)= \pm(\mathrm{u}+\mathrm{iv})
$$

Example:

$$
\sqrt{7+6 \mathrm{i}}= \pm(2.85+1.05 \mathrm{i})
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	b	\uparrow						
2	a		$\rightarrow \mathrm{P}$		\sqrt{x}	$x \geq y$		
3		2	\div	$x \geq y$		$\rightarrow \mathrm{R}$	u	
4		$x \geq y$					v	

Vector Operations

Vector Addition

Suppose vector V_{k} (in two-dimensional space) has magnitude m_{k} and direction θ_{k}. Find the sum of two vectors:

$$
V=\sum_{k=1}^{2} \quad V_{k}=x \vec{i}+y \vec{j}
$$

Example:

m_{k}	θ_{k}
2	30°
6.2	-45°

Answer:
$6.12 \vec{i}-3.38 \vec{j}$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS	
1	θ_{1}	\uparrow	\square	\square	\square	\square
2	$\mathrm{~m}_{1}$		$\square \rightarrow R$	\square	\square	\square
3	θ_{2}	\uparrow	\square	\square	\square	\square
4	$\mathrm{~m}_{2}$		$\square \rightarrow R$	$x \neq \mathrm{y}$	$\mathrm{R} \downarrow$	$\square+$
5		$\mathrm{R} \downarrow$	+	\square	\square	a

Vector Angles

Suppose

$$
\begin{aligned}
& \vec{x}=\left(x_{1}, x_{2}, x_{3}\right) \\
& \vec{y}=\left(y_{1}, y_{2}, y_{3}\right)
\end{aligned}
$$

then the angle between these two vectors is

$$
\theta=\cos ^{-1} \frac{\mathrm{x}_{1} \mathrm{y}_{1}+\mathrm{x}_{2} \mathrm{y}_{2}+\mathrm{x}_{3} \mathrm{y}_{3}}{\sqrt{\mathrm{x}_{1}{ }^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}} \sqrt{\mathrm{y}_{1}^{2}+\mathrm{y}_{2}^{2}+\mathrm{y}_{3}^{2}}}
$$

Example:

Find the angle between

$$
\begin{aligned}
& \vec{x}=(5,-6.2,-7) \\
& \vec{y}=(3.15,2.22,-0.3)
\end{aligned}
$$

Answer:

$$
\theta=84.28 \text { degrees }=1.47 \text { radians }
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1		CLX	Sto					
2	x_{i}	\uparrow	\uparrow	\times		M +		
3		CLX						
4	y_{i}	\times	+					Perform 2.4 for $\mathrm{i}=1,2, \ldots$
5	0	\uparrow						
6	y_{i}	\uparrow	\times	+				Perform 6 for $\mathrm{i}=1,2, \ldots$
7			\sqrt{x}	RCL		\sqrt{x}		
8		\times	\div		COS^{-1}		θ	

Vector Cross Product

Formula:

If $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right)$ are two vectors, then the cross product $\overrightarrow{\mathrm{z}}$ is also a vector.

$$
\begin{aligned}
\overrightarrow{\mathrm{z}} & =\overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{y}} \\
& =\left(\mathrm{x}_{2} \mathrm{y}_{3}-\mathrm{x}_{3} \mathrm{y}_{2}, \mathrm{x}_{3} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{3}, \mathrm{x}_{1} \mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{y}_{1}\right) \\
& =\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}\right)
\end{aligned}
$$

Example:

$$
\text { If } \quad \begin{aligned}
\vec{x} & =(2.34,5.17,7.43) \\
\vec{y} & =(.072, .231, .409)
\end{aligned}
$$

Find $\vec{x} \times \vec{y}$

Answer:

$$
\overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{y}}=(.40,-.42, .17)
$$

Vector Dot Product

Formulas:

Given two vectors \vec{x}, \vec{y} in an n-dimensional vector space

$$
\begin{aligned}
& \vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \vec{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)
\end{aligned}
$$

the dot product is

$$
\vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}
$$

Example:

$$
\text { If } \quad \begin{aligned}
\vec{x} & =(2.34,5.17,7.43,9.11,11.41) \\
\vec{y} & =(.072, .231, .409, .703, .891)
\end{aligned}
$$

$$
\text { then } \quad \vec{x} \cdot \vec{y}=20.97
$$

LINE	DATA	OPERATIONS						DISPLAY	REMARKS
1	x_{1}	\uparrow	\square	\square					
2	y_{1}	x	\square	\square	\square				
3	x_{i}	\uparrow	\square	\square					
4	y_{i}	x	+	\square	\square				

Triangle Solutions

Triangles are commonly encountered in engineering, surveying, aviation and navigation. The following keystrokes can be helpful in solving for the unknowns. When working with angles in degrees, minutes and seconds, the Angle Conversions in Chapter 6 may be helpful.

The basic formulas used to solve a triangle are:

1. law of sines

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

2. law of cosines

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

Note: Triangle solution routines work in any angular mode. When the calculator is in DEG mode, all angles are in decimal degrees.

Given a, b, C; find A, B, c
Given two sides and their included angle, this procedure solves the triangle for the remaining parameters.

Formulas:

$$
\begin{aligned}
& c=\sqrt{a^{2}+b^{2}-2 a b \cos C} \\
& A=\tan ^{-1}\left(\frac{a \sin C}{b-a \cos C}\right) \\
& B=\cos ^{-1}[-\cos (A+C)]
\end{aligned}
$$

Example:

Given $\quad \mathrm{b}=224$
$\mathrm{C}=28.67^{\circ}$
$\mathrm{a}=132$
Find c, A, B

Answer:

$$
\begin{aligned}
& \mathrm{c}=125.36 \\
& \mathrm{~A}=30.34^{\circ} \\
& \mathrm{B}=120.99^{\circ}
\end{aligned}
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	b	STO						
2	C	\uparrow						
3	a		$\rightarrow \mathrm{R}$	RCL	$x \overrightarrow{\mathrm{k}} \mathrm{y}$	-		
4			$\rightarrow \mathrm{P}$				c	
5		$x \gtrless y$					A	
6	C	+	cos	CHS		COS^{-1}	B	

Given a, b, c; find A, B, C
Given three sides, this procedure solves the triangle for the remaining parameters.

Formulas:

$$
\begin{gathered}
A=2 \cos ^{-1}\left(\sqrt{\frac{S(S-a)}{b c}}\right) \\
\text { where } S=(a+b+c) / 2 \\
B=\tan ^{-1}\left(\frac{b \sin A}{c-b \cos A}\right) \\
C=\cos ^{-1}[-\cos (A+B)]
\end{gathered}
$$

Example:

$$
\begin{array}{ll}
\text { Given } & a=30.3 \\
& b=40.4 \\
& c=62.6
\end{array}
$$

Find A, B, C.

Answer:

$$
\begin{aligned}
& \mathrm{A}=23.66^{\circ}=0.41 \text { radians } \\
& \mathrm{B}=32.35^{\circ}=0.56 \text { radians } \\
& \mathrm{C}=123.99^{\circ}=2.16 \text { radians }
\end{aligned}
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	a	Sto						
2	b	\uparrow						
3	c	+	+	2	\div		s	
4		\uparrow	\uparrow	RCL	-	\times		
5	b	\div						
6	c	\div		\sqrt{x}		cos^{-1}		
7		2	\times	Sto			A	
8	b		$\rightarrow \mathrm{R}$					
9	c	$x \vec{*} y$	-		$\rightarrow \mathrm{P}$		B	
10		RCL	+	cos	CHS			
11		COS^{-1}					c	

Given a, A, C; find B, b, c
Given two angles and a non-included side, this procedure solves the triangle for the remaining parameters.

Formulas:

$$
\begin{array}{r}
b=\frac{a \sin (A+C)}{\sin A} \\
c=\sqrt{a^{2}+b^{2}-2 a b \cos C} \\
B=\tan ^{-1}\left(\frac{b \sin C}{a-b \cos C}\right)
\end{array}
$$

Example: (For this example, change to RAD mode).
Given $\quad a=17.5$
$\mathrm{C}=1.09$ radians
$\mathrm{A}=0.72$ radians
Find $\quad B, b, c$.

Answer:
$b=25.78$
$\mathrm{c}=23.53$
$\mathrm{B}=1.33$ radians

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	a	STO						
2	C	\uparrow						
3	A	+	SIN					
4	A	SIN	\div	RCL	x		b	
5	C	$x \overrightarrow{\mathrm{~F}} \mathrm{y}$		$\rightarrow \mathrm{R}$	RCL	$x \rightleftarrows y$		
6		-		$\rightarrow \mathrm{P}$			c	
7		$x \neq y$					B	

Given a, B, C; find A, b, c
Given two angles and their included side, this procedure solves the triangle for the remaining parameters.

Formulas:

$$
\begin{gathered}
c=\frac{a \sin C}{\sin (B+C)} \\
b=\sqrt{a^{2}+c^{2}-2 a c \cos B} \\
A=\cos ^{-1}[-\cos (B+C)]
\end{gathered}
$$

Example:
Given $\quad \mathrm{a}=25.2$

$$
\mathrm{B}=35.33^{\circ}
$$

$$
\mathrm{C}=68.50^{\circ}
$$

Find A, b, c.
Answer:

$$
\begin{aligned}
& \mathrm{c}=24.15 \\
& \mathrm{~b}=15.01 \\
& \mathrm{~A}=76.17^{\circ}
\end{aligned}
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	a	\uparrow						
2	B	STO						
3	c	SIN	RCL					
4	c	+	SIN	\div				
5	a	\times					c	
6		RCL	x ¢ y		$\rightarrow \mathrm{R}$			
7	a	$x \overrightarrow{\mathrm{z}} \mathrm{y}$	-		$\rightarrow \mathrm{P}$		b	
8		$x \geq y$	RCL	+	cos	CHS		
9			COS^{-1}				A	

Given B, b, c; find a, A, C
Given two sides and a non-included angle, this procedure solves the triangle for the remaining parameters.

Formulas:

$$
a=\frac{c \sin \left(B+M_{1}\right)}{\sin M_{1}}
$$

where

$$
\begin{aligned}
& \mathrm{M}_{1}=\left\{\begin{array}{l}
\sin ^{-1}\left(\frac{\mathrm{c} \sin B}{b}\right) \text { or } \\
\sin ^{-1}\left(-\frac{c \sin B}{b}\right) \\
A=\tan ^{-1}\left(\frac{a \sin B}{c-a \sin B}\right) \\
C=\cos ^{-1}[-\cos (A+B)]
\end{array}\right.
\end{aligned}
$$

Note: If B is acute and $\mathrm{b}<\mathrm{c}$, two solutions exist.

Example:

Given

$$
\begin{aligned}
& \mathrm{b}=31.5 \\
& \mathrm{c}=51.8 \\
& \mathrm{~B}=33.67^{\circ}
\end{aligned}
$$

Find a, A, C.

Answer:

$$
\begin{aligned}
& \mathrm{a}=56.05 \\
& \mathrm{~A}=80.59^{\circ} \\
& \mathrm{C}=65.74^{\circ}
\end{aligned}
$$

Alternate answer:

$$
\begin{aligned}
& \mathrm{a}=30.17 \\
& \mathrm{~A}=32.07^{\circ} \\
& \mathrm{C}=114.26^{\circ}
\end{aligned}
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	b	Sto						
2	c	\uparrow						
3	B	SIN	\times	RCL	\div			
4		SIN^{-1}	sto				M	
5		SIN						
6	B	RCL	+	SIN	$x \geq y$	\div		
7	c	\times					a	
8	B	$x \vec{y}$		$\rightarrow \mathrm{R}$				
9	c	$x \vec{z} y$	-		$\rightarrow \mathrm{P}$	$x \overrightarrow{\geq} y$	A	
10	B	+	cos	CHS		cos^{-1}	C	If $\mathrm{b} \geqslant \mathrm{c}$, stop
11		RCL	CHS	Sto				Go to 5 for alternate solution

Given a, b, C; find area

Given two sides and a non-included angle, this procedure solves the triangle for the area.

Formula:

$$
\text { are } \mathrm{a}=\frac{1}{2} \mathrm{ab} \sin \mathrm{C}
$$

Example:

$$
\text { If } \begin{aligned}
\mathrm{a} & =5.3174 \\
\mathrm{~b} & =7.0898 \\
\mathrm{C} & =\frac{\pi}{4}
\end{aligned}
$$

Answer:

$$
\text { area }=13.33
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS
1	a	\uparrow	\square		\square

Given $\mathrm{a}, \mathrm{b}, \mathrm{c}$; find area

Given three sides, this procedure solves for the area of the triangle.

Formula:

$$
\text { area }=\sqrt{S(S-a)(S-b)(S-c)}
$$

where

$$
S=\frac{1}{2}(a+b+c) .
$$

Example:

$$
\begin{aligned}
& \mathrm{a}=5.31 \\
& \mathrm{~b}=7.08 \\
& \mathrm{c}=8.86
\end{aligned}
$$

Answer:

$$
\begin{aligned}
& \text { area }=18.80 \\
& (\mathrm{~S}=10.63) .
\end{aligned}
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	a	STO						
2	b	\uparrow						
3	c	\uparrow	CHS	R \downarrow	+	$+$		
		2	\div	\uparrow	\uparrow	RCL		
		CHS	$x \geq y$	sto	+	\uparrow		
		R \downarrow	R \downarrow	+	\times	RCL		
4	b	-	\times	RCL	\times			
		\sqrt{x}					area	

Given a, B, C; find area

Given two angles and the included side, this procedure solves for the area of the triangle.

Formula:

$$
\text { area }=\frac{a^{2}}{2} \frac{\sin B \sin C}{\sin (B+C)}
$$

Example:

$$
\text { If } \begin{aligned}
\mathrm{B} & =70^{\circ} \\
\mathrm{C} & =62^{\circ} \\
\mathrm{a} & =14.625
\end{aligned}
$$

Answer:

$$
\text { area }=119.40
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	a	\dagger	\times	2	\div			
2	в	STo	SIN					
3	c		M +	SIN	\times	\times		
4		RCL	SIN	\div			агеа	

Given vertices; find area

Given the coordinates of the vertices, this procedure solves for the area of the triangle.

Formula:

Given the three vertices $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ of a triangle

$$
\begin{aligned}
\text { area } & =\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right| \\
& =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]
\end{aligned}
$$

Example:

Compute the area of the triangle with vertices $(0,0),(4,0),(4,3)$.

Answer:
6.00

Curve Solutions

Curve solutions are used for design and layout of small curves on machine parts to large highway curves. It is often necessary to solve for the remaining parameters of the curve given any two of them. When working with angles in degrees, the Angle Conversions in Chapter 6 may be helpful.

Notation:

$\mathrm{T}=$ Tangent distance
C = Chord length
$\mathrm{L}=$ Arc length
$\mathrm{R}=$ Radius
$\Delta=$ Central angle

Given Δ and R, find the remaining parameters plus the sector and segment area.

Formulas:

```
\(\mathrm{T}=\mathrm{R} \tan (\Delta / 2)\)
\(\mathrm{C}=2 \mathrm{R} \sin (\Delta / 2)\)
\(\mathrm{L}=\Delta \pi \mathrm{R} / 180\)
Sector area \(=\mathrm{LR} / 2\)
Segment area \(=\) Sector area \(-1 / 2 R^{2} \sin (\Delta)\)
```


Example:

$$
\begin{aligned}
& \mathrm{R}=223.181 \\
& \Delta=45.5064^{\circ}
\end{aligned}
$$

Answers:
$1 / 2 \Delta=22.7532^{\circ}$
$\mathrm{T}=93.602$
$\mathrm{C}=172.636$
$\mathrm{L}=177.258$
Sector area $(\nabla)=19,780$
Segment area $(\bigcirc)=2,015$

LINE	DATA	OPERATIONS			DISPLAY	REMARKS
1	R	\uparrow	\uparrow	\uparrow	\square	\square
2	Δ	STO	2	\div	TAN	x

Given R and C, find the remaining parameters plus the sector

 and segment area.
Formulas:

$\mathrm{R}=\mathrm{C} /(2 \sin (\Delta / 2))$
$\Delta=2 \sin ^{-1}(1 / 2 \mathrm{C} / \mathrm{R})$
$\mathrm{T}=\mathrm{R} \tan (\mathrm{\Delta} / 2)$
$\mathrm{L}=\Delta \pi \mathrm{R} / 180$
Sector area $=\mathrm{LR} / 2$
Segment area $=$ Sector area $-1 / 2 R^{2} \sin \Delta$

Example:

$\mathrm{R}=223.181$
$\mathrm{C}=172.636$
Answers:
$\Delta=45.5064^{\circ} \quad$ (Convert to degrees, minutes and seconds, see Chapter 6 Conversions)
$\Delta / 2=22.7531^{\circ}$
$\mathrm{T}=93.602$
$\mathrm{L}=177.258$
Sector area $(\nabla)=19,780$
Segment area (\bigcirc) $=2,015$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	R	\uparrow	\uparrow	\uparrow				
2	C	$x \vec{y}$	\div	2	\div			
		SIN ${ }^{-1}$	2	\times	STO		\triangle	Δ in decimal degrees
3		2	\div	TAN	x		T	
4		CLX	RCL	\times		π		
		\times	1	8	0	\div	L	
5		\times	2	\div			Sector Area	
6		$x \neq y$	\uparrow	\times	RCL	SIN		
7		x	2	\div	-		Segment Area	

Given Δ and C, find the remaining parameters plus the sector and segment area.

Formulas:

$$
\begin{aligned}
& \mathrm{R}=\mathrm{C} /(2 \sin (\Delta / 2)) \\
& \mathrm{T}=\mathrm{R} \tan (\Delta / 2) \\
& \mathrm{L}=\Delta \pi \mathrm{R} / 180 \\
& \text { Sector area }=\mathrm{LR} / 2
\end{aligned}
$$

$$
\text { Segment area }=\text { Sector area }-1 / 2 R^{2} \sin \Delta
$$

Example:

$$
\begin{aligned}
& \mathrm{C}=172.636 \\
& \Delta=45.5064^{\circ}
\end{aligned}
$$

Answers:
$\Delta / 2=22.7532^{\circ}$
(To convert to degrees, minutes, and seconds, see Chapter 6 Conversions)
$\mathrm{R}=223.181$
$\mathrm{T}=93.602$
$\mathrm{L}=177.258$

Sector area $(\nabla)=19,780$
Segment area $(\bigcirc)=2,015$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	c	\uparrow						
2	Δ	Sto	2	\div	SIN	2		Δ in decimal degrees
		\times	\div	\uparrow	\dagger	\uparrow	R	
3		RCL	2	\div	tan	\times	T	
4		CLX	RCL	\times		π		
		\times	1	8	0	\div	L	
5		\times	2	\div			Sector Area	
6		$x \vec{x} y$	\uparrow	\times	RCL	SIN		
7		\times	2	\div	-		Segment Area	

Coordinate Translation and Rotation

Suppose point P has coordinates (x, y) with respect to the rectangular coordinate system (x, y axes). Let $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ be the center of a new coordinate system rotated through an angle θ. Find the new coordinates ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$) of P with respect to the new system having $\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$ axes.

Formulas:

$$
\begin{aligned}
& x^{\prime}=\left(x-x_{0}\right) \cos \theta+\left(y-y_{0}\right) \sin \theta \\
& y^{\prime}=-\left(x-x_{0}\right) \sin \theta+\left(y-y_{0}\right) \cos \theta
\end{aligned}
$$

Example:

Translate the point $(1,3)$ to a new coordinate system with center at $(-1,4)$ at 30° to the old system.

Answer:

$$
\begin{aligned}
& x^{\prime}=1.23 \\
& y^{\prime}=-1.87
\end{aligned}
$$

Trigonometric Functions

The HP-21 supplies the basic trigonometric functions of SIN, COS, TAN, $\mathrm{SIN}^{-1}, \mathrm{COS}^{-1}$, and TAN^{-1}. Other trigonometric functions may be found through simple manipulations of these basic functions.

Formula:

Let $\quad p=$ principal value

$$
\mathrm{q}=\text { secondary value }=\cos ^{-1}(-1)-\sin ^{-1}(\mathrm{x})
$$

We set the calculator to DEG or RAD mode, as desired..

Secondary value of $\arcsin x$

Example:

$$
x=-0.77, \text { find secondary value of } \operatorname{arc} \sin x .
$$

Answer:

$$
\mathrm{q}=230.35^{\circ}=4.02 \text { radians }
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS	
1	x		SIN^{-1}	\square	\square	\square
2		1	CHS		COS^{-1}	$\square \mathrm{x} \overrightarrow{\mathrm{y}}$
3		-		\square	\square	

Secondary value of $\operatorname{arc} \cos x$

Formula:

$$
\mathrm{q}=2 \cos ^{-1}(-1)-\cos ^{-1}(\mathrm{x})
$$

Example:

$$
x=0.76, \text { find secondary value of arc } \cos x .
$$

Answer:

$$
\mathrm{q}=319.46^{\circ}=5.58 \text { radians }
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	\times		COS^{-1}					
2		1	CHS		$\cos ^{-1}$	\uparrow	p	
3		+	$x \notin y$	-			q	

Secondary value of arc $\tan x$

Formula:

$$
q=\tan ^{-1}(x)+\cos ^{-1}(-1)
$$

Example:

$$
x=2 \text {, find secondary value of } \operatorname{arc} \tan x \text {. }
$$

Answer:

$$
\mathrm{q}=243.43^{\circ}=4.25 \text { radians }
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS
1	\times		TAN $^{-1}$	\square	\square
2		1	CHS		cOs^{-1}
	+	p	q		

Cotangent

Formula:

$$
\cot x=\frac{1}{\tan x}
$$

Example:

$$
x=37
$$

Answer:

$$
\begin{aligned}
& \cot x=1.33 \text { (in DEG mode) or } \\
& -1.19 \text { (in RAD mode). }
\end{aligned}
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS
1	\times	TAN	$1 / \mathrm{x}$	\square	\square

Cosecant
Formula:

$$
\csc x=\frac{1}{\sin x}
$$

Example:

$$
x=30
$$

Answer:
$\csc \mathrm{x}=2.00$ (in DEG mode) or
-1.01 (in RAD mode).

LINE	DATA	OPERATIONS	DISPLAY	REMARKS	
1	x	SIN	$\frac{1}{x}$	\square	\square

Secant

Formula:

$$
\sec x=\frac{1}{\cos x}
$$

Example:

$$
x=45
$$

Answer:
$\sec \mathrm{x}=1.41$ (in DEG mode) or
1.90 (in RAD mode).

LINE	DATA	OPERATIONS	DISPLAY	REMARKS	
1	x	\cos	$1 / x$		\square

Versine

Formula:

$$
\text { vers } x=1-\cos x
$$

Example:

$$
x=38
$$

Answer:
vers $x=0.21$ (in DEG mode) or 0.04 (in RAD mode).

LINE	DATA	OPERATIONS		DISPLAY	REMARKS
1	\times	COS	1	$x \neq y$	-

Coversine

Formula:

$$
\text { covers } x=1-\sin x
$$

Example:

$$
x=38
$$

Answer:

$$
\begin{aligned}
& \text { covers } x=0.38 \text { (in DEG mode) or } \\
& 0.70 \text { (in RAD mode). }
\end{aligned}
$$

LINE	DATA	OPERATIONS	DISPLAY	REMARKS	
1	\times	SIN	1	$x \overrightarrow{\mathrm{H}} \mathrm{y}$	$\square-$

Haversine

Formula:

$$
\text { hav } x=\frac{1-\cos x}{2}
$$

Example:

$$
x=42.3
$$

Answer:
hav $\mathrm{x}=0.13$ (in DEG mode) or
0.56 (in RAD mode).

LINE	DATA	OPERATIONS		DISPLAY	REMARKS
1	x	\cos	1	$\mathrm{x} \rightleftarrows \mathrm{y}$	$\square-$
2					
2		\div			\square

Arc cotangent

Formula:

$$
\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right)
$$

Example:

$$
x=0.35
$$

Answer:

$$
\cot ^{-1} \mathrm{x}=70.71^{\circ} \text { or } 1.23 \text { radians }
$$

LINE	DATA	OPERATIONS			DISPLAY	REMARKS
1	\times	1/x	TAN ${ }^{-1}$		$\cot ^{-1} \mathrm{x}$	

Arc cosecant

Formula:

$$
\csc ^{-1} x=\sin ^{-1}\left(\frac{1}{x}\right)
$$

Example:

$$
x=3.45
$$

Answer:

$$
\csc ^{-1} \mathrm{x}=16.85^{\circ} \text { or } 0.29 \text { radians }
$$

LINE	DATA	OPERATIONS	DISPLAY	REMARKS	
1	x	$1 / x$	$\square \mathrm{SIN}^{-1}$	\square	\square

Arc secant

Formula:

$$
\sec ^{-1} x=\cos ^{-1}\left(\frac{1}{x}\right)
$$

Example:

$$
x=1.1547
$$

Answer:

$$
\sec ^{-1} \mathrm{x}=30^{\circ} \text { or } 0.52 \text { radians }
$$

LINE	DATA	OPERATIONS	DISPLAY	REMARKS	
1	x	$1 / \mathrm{x}$	$\cos ^{-1}$	\square	\square

Hyperbolic Functions

These procedures evaluate three hyperbolic functions and their inverses.

Hyperbolic Sine

Formula:

$$
\sinh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{2}
$$

Example:
$\sinh 3.2=12.25$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS	
1	x	e^{x}	\uparrow	$1 / \mathrm{x}$	-	\square
2		\div	\square		\square	

Hyperbolic Cosine

Formula:

$$
\cosh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}{2}
$$

Example:
$\cosh 3.2=12.29$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	\times	e^{x}	\uparrow	1/x	+	2		
2		\div					$\cosh \mathrm{x}$	

Hyperbolic Tangent

Formula:

$$
\tanh x=\frac{\sinh x}{\cosh x}
$$

Example:
$\tanh 3.2=1.00$

LINE	DATA	OPERATIONS			DISPLAY	REMARKS
1	x	e^{x}	\uparrow	$1 / \mathrm{x}$	STO	-

Inverse Hyperbolic Sine

Formula:

$$
\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)
$$

Example:

$$
\sinh ^{-1} 51.777=4.64
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS
1	\times	\uparrow	\uparrow	x	\square
2			$\boxed{\sqrt{x}}+\square+$		

Inverse Hyperbolic Cosine

Formula:

$$
\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right) \quad(x \geqslant 1)
$$

Example:

$$
\cosh ^{-1} 12.29=3.20
$$

LINE	DATA	OPERATIONS			DISPLAY	REMARKS
1	x	\uparrow	\uparrow	x	$\square 1$	-

Inverse Hyperbolic Tangent

Formula:

$$
\begin{gathered}
\tanh ^{-1} \mathrm{x}=\frac{1}{2} \ln \frac{1+\mathrm{x}}{1-\mathrm{x}} \\
(-1<\mathrm{x}<1)
\end{gathered}
$$

Example:

$$
\tanh ^{-1} 0.777=1.04
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1		1	\uparrow					
2	\times	STO	+	1	RCL	-		
3		\div		LN	2	\div	$\tanh ^{-1} \mathrm{x}$	

Integer Base Conversions

Note:
Base conversion algorithms are given for positive values only. To convert a negative number, change sign, convert, and change sign of result.

Decimal Integer to Integer in Any Base

$$
\mathrm{I}_{10} \rightarrow \mathrm{~J}_{\mathrm{b}}
$$

In the following key sequence, $f+1$ is the number of digits in J_{b}. $d_{i}(i=1, \ldots, f+1)$ represents the $i^{\text {th }}$ digit in J_{b}, counting from left to right, i.e.

$$
J_{b}=\left(d_{1} d_{2} \cdots d_{f+1}\right)_{b}
$$

For large numbers, $J_{b}=\left(d_{1} d_{2} \cdots d_{f+1}\right)_{b} \cdot b^{f}$, see example 3 .
Example 1:
Convert 1206 to hexadecimal (base 16).
(The hexadecimal digits are $0,1,2,3,4,5,6,7,8,9, \mathrm{~A}(10), \mathrm{B}(11)$, $C(12), D(13), E(14), F(15)$.

Answer:

$$
1206_{10}=4 B 6_{16}(f=2)
$$

Example 2:

Convert 513 to octal (base 8).
Answer:

$$
513_{10}=1001_{8}
$$

Example 3:

Convert 6.023×10^{23} to octal.
Answer:
$6.023 \times 10^{23}=1.7743_{8} \times 8^{26}$
Note:
If we consider 6.023×10^{23} to be a scientific measurement good only to four significant digits, it is meaningless for the octal representation to contain more than 5 significant digits. Therefore, we stop before the loop is completed.

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	8	\uparrow	\uparrow	6	.	0		
2		2	3	EEX	2	3		
3		STO		LN	$x \vec{*} y$			
4		LN	\div				26.33	$f=26$ (Note: this gives the ex-
								ponent in base 8.)
5		CLX						
6	26	$x \geq y$	\uparrow	\uparrow	RCL	R \downarrow		
7		R \downarrow	$x \geqslant y$		$\mathrm{y}^{\text {x }}$	\div	1.99	$d_{1}=1$
8	1	-	\times				7.94	$d_{2}=7$
9	7	-	\times				7.54	$\mathrm{d}_{3}=7$
10	7	-	\times				4.34	$\mathrm{d}_{4}=4$
11	4	-	\times				2.69	$\mathrm{d}_{5}=3$ (rounded), stop.

In General the Key Sequence is:

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	b	\uparrow	\uparrow					$\mathrm{b}=$ base
2	1	STO		LN	$x \geq y$			$1=$ Integer number
3		LN	\div				D	Let f be the largest integer $\leqslant \mathrm{D}$
4		CLX						
5	f	$x+\vec{y}$	\uparrow	\uparrow	RCL	R \downarrow		
6		RT	$x \geq y$		y^{x}	\div	E_{1}	$d_{i}=$ integer part of $E_{i}\left(i=1,2, \ldots, f^{\prime}\right.$
7	d_{1}	-	\times				E_{2}	
8	$\mathrm{d}_{\text {i }}$	-	\times				$\mathrm{E}_{\text {i+1 }}$	Perform 8 for $i=2,3, \ldots, f$
9		DSP	-	0			$\mathrm{d}_{\text {+ }}{ }^{\text {d }}$	

64 Chapter 2 Mathematics

Integer in Base b to Decimal

$$
\left(\mathrm{d}_{1} \mathrm{~d}_{2} \cdots \mathrm{~d}_{\mathrm{n}-1} \mathrm{~d}_{\mathrm{n}}\right)_{\mathrm{b}} \rightarrow \mathrm{I}_{10}
$$

Examples:

1. $730020461_{8}=123740465_{10}$
2. $7 \mathrm{DOF}_{16}=32015_{10}$
$(\mathrm{A}=10, \mathrm{~B}=11, \mathrm{C}=12, \mathrm{D}=13, \mathrm{E}=14, \mathrm{~F}=15$ in the hexadecimal system.)

| LINE | DATA | OPERATIONS | | | DISPLAY |
| :---: | :---: | :---: | :---: | :---: | :---: | REMARKS

Iterative Techniques

Note:

We will deal here with equations of the form

$$
x=f(x)
$$

for cases where it is difficult to separate all x's to one side of the equal sign. The iterative approach is illustrated through the solution of selected equations.

Example 1: Find x such that $\mathrm{x}=\mathrm{e}^{-\mathrm{x}}$

Method:

Choose $\mathrm{x}_{\mathrm{a}}=5$ as an approximation for the solution. Then after 44 iterations, the answer is $\mathrm{x}=0.567143290$.

Note:
The algorithm will converge to 0.567143290 in about 50 iterations for any value of x_{a}.

LINE	DATA	OPERATIONS		DISPLAY	REMARKS	
1	5	CHS	e^{x}	DSP	\square	\square
2		CHS	e^{x}	\square	\square	0.006737947

Example 2: $4=\mathrm{x}-\frac{1}{\mathrm{x}}$

Method:

Rewrite the equation as

$$
x=\frac{1}{x}+4
$$

Choose an approximate solution for x, say $x_{a}=4$.
Answer:
4.236067978

| LINE | DATA | OPERATIONS | | | DISPLAY |
| :---: | :---: | :---: | :---: | :---: | :---: | REMARKS

Example 3: $\mathrm{x}^{\mathrm{x}}=1000$

Method:

Rewrite the equation in the form

$$
x=\ln 1000 / \ln x .
$$

Pick an approximation x_{a} for x, say $x_{a}=4$. If we use the following algorithm, convergence is from both sides, and takes a long time.

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	1000		LN	\uparrow	\uparrow	\uparrow		
2	4	DSP	.	9				
3			LN	\div			4.982892143	
4			LN	\div			4.301189432	
5			LN	\div			4.734933900	
6			LN	\div			4.442378437	
7			LN	\div			4.632377942	
8			LN	\div			4.505830645	
9							4.588735608	
10							4.533824354	
11							4.569933525	etc. (final result is 4.555535705)

Progressions

Evaluation of the basic types of progressions (arithmetic, geometric and harmonic) can be done very easily using RPN and the four-register operational stack.

Formulas:

Arithmetic Progression

$$
\mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}, \ldots, \mathrm{a}+(\mathrm{n}-1) \mathrm{d}
$$

Geometric Progression

$$
a, \operatorname{ar}, \operatorname{ar}^{2}, \ldots, a r^{\mathrm{n}-1}
$$

Harmonic Progression

$$
\frac{\mathrm{a}}{\mathrm{~b}}, \frac{\mathrm{a}}{\mathrm{~b}+\mathrm{c}}, \frac{\mathrm{a}}{\mathrm{~b}+2 \mathrm{c}}, \ldots, \frac{\mathrm{a}}{\mathrm{~b}+(\mathrm{n}-1) \mathrm{c}}
$$

$\mathrm{n}=$ number of terms
$\mathrm{a}=$ first term in arithmetic and geometric progressions
$l=$ last term
$\mathrm{d}=$ difference between two successive terms in an arithmetic progression
$r=$ ratio between two successive terms in a geometric progression
$\mathrm{S}=$ sum of a progression

Step through an arithmetic progression

Formula:

$$
a, a+d, a+2 d, \ldots, a+(n-1) d
$$

Example:
Display the progression with $\mathrm{a}=0, \mathrm{~d}=17$.
Answer:
$0.00,17.00,34.00,51.00,68.00,85.00,102.00,119.00, \ldots$

| LINE | DATA | OPERATIONS | | | DISPLAY |
| :---: | :---: | :---: | :---: | :---: | :---: | (REMARKS

Step through a geometric progression

Formula:

$$
\mathrm{a}, \mathrm{ar}, \operatorname{ar}^{2}, \ldots, \mathrm{ar}^{\mathrm{n}-1}
$$

Example:
Step through the powers of 8 .
Answers:
$8.00,64.00,512.00,4096.00,32768.00, \ldots$

| LINE | DATA | OPERATIONS | | | DISPLAY |
| :---: | :---: | :---: | :---: | :---: | :---: | REMARKS

Step through a harmonic progression

Formula:

$$
\frac{a}{b}, \frac{a}{b+c}, \frac{a}{b+2 c}, \ldots, \frac{a}{b+(n-1) c}
$$

Note: A harmonic progression can be obtained by multiplying the constant a by the reciprocals of the terms of the arithmetic progression $\mathrm{b}, \mathrm{b}+\mathrm{c}, \mathrm{b}+2 \mathrm{c}, \ldots, \mathrm{b}+(\mathrm{n}-1) \mathrm{c}$. In the following algorithm, $\mathrm{x}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots)$ represents the $\mathrm{i}^{\text {th }}$ term of the progression.

Example:

Step through the harmonic progression where $\mathrm{a}=1, \mathrm{~b}=2$, and $\mathrm{c}=3$.

Answers:
$0.50,0.20,0.13,0.09, \ldots$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	a	STO						
2	c	\uparrow	\uparrow	\uparrow				
3	b	\uparrow	1/x	RCL	x		x_{1}	
4		CLX	+	+	\uparrow	$1 / x$		Perform 4-5 for $\mathrm{i}=2,3, \ldots$
5		RCL	x				x_{i}	

$n^{\text {th }}$ term of an arithmetic progression

Formula:

Given the number of terms, the last term of an arithmetic progression is given by

$$
\mathrm{n}^{\text {th }} \text { term }=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}
$$

Example:

Find the $25^{\text {th }}$ term of the arithmetic progression with $\mathrm{a}=2, \mathrm{~d}=3.14$.

Answer:

77.36

LINE	DATA	OPERATIONS				DISPLAY	REMARKS
1	n	\uparrow	1	-			
2	d	\times					
3	a	+				nth term	

$n^{\text {th }}$ term of a geometric progression

Formula:

Given the number of terms, the last term of a geometric progression is given by

$$
\mathrm{n}^{\text {th }} \text { term }=\mathrm{ar}^{\mathrm{n}-1}
$$

Example:

Find the $14^{\text {th }}$ term of the geometric progression with $\mathrm{a}=2, \mathrm{r}=3.14$. Answer:

$$
5769197.69
$$

LINE	DATA	OPERATIONS				DISPLAY	REMARKS
1	r	\uparrow					
2	n	\uparrow	1	-			If $\mathrm{r}>0$, go to 4
3		$x \geq y$	CHS	$x \geq y$	y^{x}		If n is even, go to 5 .
							Otherwise, go to 6
4			$y^{\text {x }}$				Go to 6
5		CHS					
6	${ }^{\text {a }}$	\times				nth term	

Arithmetic progression sum (given the last term)

Formula:

Given the last term, the sum of an arithmetic progression to n terms is

$$
\mathrm{S}=\frac{\mathrm{n}}{2}(\mathrm{a}+\mathrm{l})
$$

Example:

$$
\text { If } \mathrm{a}=3.5, l=25 \text {, and } \mathrm{n}=11 \text {, find the sum. }
$$

Answer:

$$
S=156.75
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS
1	a	\uparrow	\square		\square
2	f	$\mathrm{+}$	\square	\square	
3	n	x	r	$\square \div$	\square

Arithmetic progression sum (given the difference)

Formula:

Given the first term and the difference between two successive terms, the sum of an arithmetic progression to n terms is:

$$
S=n a+\frac{n(n-1) d}{2}
$$

Example:

If $\mathrm{a}=3.5, \mathrm{n}=11$, and $\mathrm{d}=2.15$, find the sum of 11 terms.

Answer:

$$
S=156.75
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	n	\uparrow	\uparrow	1	-			
2	d	\times						
3	a	\uparrow	2	x	+	\times		
4		2	\div				S	

Sum of a geometric progression ($\mathrm{r}<1$)

Formula:
The sum of a geometric progression to n terms with $r<1$ is

$$
S=\frac{a\left(1-r^{n}\right)}{1-r}
$$

Example:

If $\mathrm{a}=1, \mathrm{r}=-2.1$, and $\mathrm{n}=6$, find the sum of 6 terms.
Answer:

$$
S=-27.34
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	a	\uparrow	\uparrow					
2	n	\uparrow						
3	r	STO						If $\mathrm{r}>0$, go to 5
4		CHS	$x \nLeftarrow y$		y^{x}			If n is odd, go to 6;
								Otherwise, go to 7
5		$x \vec{*} y$		y^{x}				Go to 7
				75				
6		CHS						
7		\times	-	1	RCL			
8		-	\div	$\sqrt{\square}$		\pm	S	

Sum of a geometric progression $(r>1)$

Formula:
The sum of geometric progression to n terms with $r>1$ is

$$
\mathrm{S}=\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1}
$$

Example:
If $\mathrm{a}=1, \mathrm{r}=2.1, \mathrm{n}=6$, find the sum.
Answer:

$$
S=77.06
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	a	\uparrow	\uparrow					
2	r	STO						
3	n		y^{x}	\times	$x \geq y$	-		
4		RCL	1	-	\div		S	

Sum of an infinite geometric progression $(-1<r<1)$
Formula:

$$
S=\frac{a}{1-r}
$$

Example:
If $\mathrm{a}=2$ and $\mathrm{r}=.5$, find the sum.

Answer:

$$
S=4.00
$$

Factoring Integers—Determining Primes

Prime Numbers under 100

2	13	31	53	73
3	17	37	59	79
5	19	41	61	83
7	23	43	67	89
11	29	47	71	97

With the list memorized or in sight, it is easy to factor any integer x less than 10000 (and many other integers even greater). In the following program, omit the numbers 2 and 5 from the list of primes if the integer ends in $1,3,7$ or 9 .

[^0]
Example:

Factor 4807.

Answer:

$$
4807=11 \times 19 \times 23
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	4807	DSP	-	5	\uparrow	\dagger		
2		\uparrow		\sqrt{x}			69.33253	\leftarrow MAX, P = 3
3		R \downarrow	3	\div			1602.33333	$\mathrm{P}=7$
4		R \downarrow	7	\div			686.71429	$\mathrm{P}=11$
5		R \downarrow	1	1	\div		437.00000	\bigcirc Q is an integer,
								so 11 is a factor
6		1	\dagger	\uparrow		\sqrt{x}	20.90454	$\mathrm{P}=11$
7		R \downarrow	1	1	\div		39.72727	$P=13$
8		$\mathrm{R} \downarrow$	1	3	\div		33.61538	$\mathrm{P}=17$
9		R \downarrow	1	7	\div		25.70588	$P=19$
10		R \downarrow	1	9	\div		23.00000	$\mathrm{Q}=23$ is a prime, 19 and
								23 are factors, stop

Example:

Factor 2909.
Answer:
2909 is a prime.

Interpolation

Linear Interpolation

If $\mathrm{f}(\mathrm{x})$ is a function of x and $\mathrm{x}_{1}<\mathrm{x}_{0}<\mathrm{x}_{2}, \mathrm{f}\left(\mathrm{x}_{0}\right)$ can be approximated by

$$
f\left(x_{0}\right)=\frac{\left(x_{2}-x_{0}\right) f\left(x_{1}\right)+\left(x_{0}-x_{1}\right) f\left(x_{2}\right)}{x_{2}-x_{1}}
$$

Example:
Suppose a table shows

x	$\mathrm{f}(\mathrm{x})$
1.2	0.30119
1.3	0.27253

Interpolate $f(x)$ to 5 decimal places for $x=1.27$.

Answer:
0.28113

Chapter 3. Finance

Compound Interest

This procedure applies to an amount of principal that has been placed into an account and compounded periodically with no further deposits. With any three of the variables given, a fourth may easily be calculated.

Note:
The above diagram is representative of diagrams which will be used in this section. The horizontal line represents the time period(s) involved, while the arrows represent the cash flows.

Notation:

$\mathrm{n}=$ number of time periods
$\mathrm{i}=$ periodic interest rate expressed as a decimal
$\mathrm{PV}=$ present value or principal
FV = future value or amount
I = interest amount

Future Value

Formula:

$$
F V=P V(1+i)^{n}
$$

Example:

Find the future amount of $\$ 1000$ invested at 6% compounded annually for 5 years.

Answer:

$\$ 1338.23$ (Note: $\mathrm{i}=0.06$)

LINE	DATA	OPERATIONS	DISPLAY	REMARKS	
1	i	$\uparrow+\square \square$	\square		
2	n		\square	\square	
3	PV	x	\square	\square	\square

Present Value

Formula:

$$
P V=\frac{F V}{(1+i)^{n}}
$$

Example:
What sum invested today, at 6% compounded annually, will amount to $\$ 1500$ in 5 years?

Answer:

$$
\$ 1120.89 \quad(\text { Note: } \mathrm{i}=0.06)
$$

LINE	DATA	OPERATIONS			DISPLAY	REMARKS
1	FV	\uparrow	\square		\square	\square
2	i	\uparrow	1	+	\square	\square
3	n		\square	y^{\times}	\div	\square

Number of Time Periods

Formula:

$$
\mathrm{n}=\frac{\ln \left(\frac{\mathrm{FV}}{\mathrm{PV}}\right)}{\ln (1+\mathrm{i})}
$$

Example:
If you deposit $\$ 250$ in a savings account at 6% annual interest, how long will it take for your money to double?

Answer:
11.90 years (Note: $\mathrm{i}=.06)$

LINE	DATA	OPERATIONS			DISPLAY	REMARKS
1	FV	\uparrow	\square	\square	\square	\square
2	PV	\div		$\square N$	1	\uparrow

Rate of Return

Formula:

$$
i=\left(\frac{F V}{P V}\right)^{1 / n}-1
$$

Example:

Find the annual rate of return if $\$ 2000$ doubles in 10 years, compounded monthly.

Answer:
6.95% (.0695) annually
(Note: $\mathrm{n}=120$ months; $\mathrm{FV}=4000$; answer must be multiplied by 12 to find an annual rate of return.)

LINE	DATA	OPERATIONS		DISPLAY	REMARKS	
1		DSP	\cdot	4	\square	\square

Loans (direct reduction)

Given any three of the variables listed below, these procedures calculate the fourth for a direct reduction loan (the type of loan commonly used for mortgages).

Notation:

$\mathrm{n}=$ number of payment periods
$\mathrm{i}=$ periodic interest rate expressed as a decimal
PMT = payment
$\mathrm{PV}=$ present value or principal

Payment Amount

Formula:

$$
\text { PMT }=\frac{P V \cdot \mathrm{i}}{1-(1+\mathrm{i})^{-n}}
$$

Example:

What monthly payment is required to pay off a $\$ 5000$ loan at 9.5% interest in 36 months?

Answer:

$$
\$ 160.16 \text { (Note: } \mathrm{i}=0.095 / 12 \text {) }
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	i	STO						
2	PV	\times	RCL	1	+			
3	n	CHS		y^{x}	1	$x \overrightarrow{2} y$		
4		-	\div				PMT	

Present Value:

Formula:

$$
\operatorname{PV}=\operatorname{PMT}\left[\frac{1-(1+i)^{-n}}{i}\right]
$$

Example:

You are willing to pay $\$ 125$ per month for 36 months. If the current interest rate is 9.5%, how much can you borrow?

Answer:

$$
\$ 3902.23 \text { (Note: } \mathrm{i}=0.095 / 12 \text {) }
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	i	STO	1	+				
2	n	CHS		y^{x}	1	$x \vec{y}$		
3		-	RCL	\div				
4	PMT	x					PV	

Number of Time Periods

Formula:

$$
n=-\frac{\ln (1-i \text { PV } / P M T)}{\ln (1+i)}
$$

Example:

How many payments does it require to pay off a loan of $\$ 4000$ at 9.5% annual interest, with payments of $\$ 175$ per month?

Answer:
25.31 months (Note: $\mathrm{i}=.095 / 12$)

LINE	DATA	OPERATIONS				DISPLAY	REMARKS
1	i	STO					
2	PV	\times					
3	PMT	\div	1	$x \geq y$	-		
4		LN	RCL	1	+		
5		LN	\div	CHS		n	

Accumulated interest

Formula:

The interest paid from payment j to payment k is

$$
I_{j-k}=P M T\left[k-j-\frac{(1+i)^{k-n}}{i}\left(1-(1+i)^{j-k}\right)\right]
$$

Compute the monthly payment, PMT, by the formula given above under "Payment Amount."

Example:

Consider a house costing $\$ 30,000$ with a 30 year, 8% mortgage. The monthly payment is $\$ 220.13$. Find the interest paid on the first 36 monthly payments $(\mathrm{i}=.08 / 12, \mathrm{j}=0, \mathrm{k}=36, \mathrm{n}=360)$.

Answer:

$$
\mathrm{I}_{0-36}=\$ 7108.72
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	i	STO	1	+				
2	i	\uparrow						
3	k	-		y^{x}	1	$x \vec{*} y$		
4		-	RCL	\div	RCL	1		
5		+						
6	k	STO						
7	n	-		y^{x}	\times	RCL		
8	j	-	$x \geq y$	-				
9	PMT	\times					${ }^{1}-\mathrm{k}$	

Remaining balance

Formula:

The remaining balance at payment $\mathrm{k}(\mathrm{k}=1,2,3, \ldots, \mathrm{n})$ is

$$
P V_{k}=\frac{P M T}{i}\left[1-(1+i)^{k-n}\right]
$$

Example:

Using the previous example, find the remaining balance at payment 36 .
Answer:
$\$ 29184.13$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	i	Sto	1	+				
2	k	\uparrow						
3	n	-		y^{x}	1	$x \geq y$		
4		-						
5	PMT	\times	RCL	\div			$\mathrm{PV}_{\text {k }}$	

Amortization Schedule

An amortization schedule consists of the interest paid, the payment to principal, and the remaining balance for each payment $\mathrm{k}=1,2, \ldots$.
$\mathrm{I}_{\mathrm{k}}=$ interest paid in $\mathrm{k}^{\text {th }}$ payment
PMT = payment
$\mathrm{PP}_{\mathrm{k}}=$ payment to principal of $\mathrm{k}^{\text {th }}$ payment
$\mathrm{PV}_{\mathrm{k}}=$ remaining balance after $\mathrm{k}^{\text {th }}$ payment
$\mathrm{PV}_{0}=$ amount of loan
$\mathrm{i}=$ periodic interest rate expressed as a decimal

These quantities are calculated with the following formulas:

1. $\mathrm{I}_{\mathrm{k}}=\mathrm{iPV}_{\mathrm{k}-1}$
2. $\quad \mathrm{PP}_{\mathrm{k}}=\mathrm{PMT}-\mathrm{I}_{\mathrm{k}}$
3. $\mathrm{PV}_{\mathrm{k}}=\mathrm{PV}_{\mathrm{k}-1}-\mathrm{PP}_{\mathrm{k}}$

Example:

Generate an amortization schedule for the first two months of a $\$ 40,000$ loan at 9% with monthly payments of $\$ 321.85$.

Answers:

$$
\begin{array}{ll}
\mathrm{I}_{1}=\$ 300.00 & \mathrm{I}_{2}=\$ 299.84 \\
\mathrm{PP}_{1}=\$ 21.85 & \mathrm{PP}_{2}=\$ 22.01 \\
\mathrm{PV}_{1}=\$ 39978.15 & \mathrm{PV}_{2}=\$ 39956.14
\end{array}
$$

(Note: $\mathrm{i}=.09 / 12$)

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	PV_{0}	\uparrow	\uparrow					
2	i	STO	\times				$1{ }_{1}$	
3	PMT	$x \vec{\chi} \mathrm{y}$	-				PP ${ }_{1}$	
4		-					$\mathrm{PV} \mathrm{V}_{1}$	
5		\uparrow	\uparrow	RCL	\times		$I_{\text {k }}$	Perform 5.7 for $\mathrm{k}=2, \ldots, \mathrm{n}$
6	PMT	$x \overrightarrow{2} y$	-				PP_{k}	
7		-					PV_{k}	

Periodic Savings

These procedures calculate the payment amount or future value of a schedule of periodic payments into a savings account, given the interest rate and two of the other three variables.

Notation:

$\mathrm{n}=$ number of payments
$\mathrm{i}=$ periodic interest rate expressed as a decimal
PMT = payment (at the beginning of the period)
$\mathrm{FV}=$ future value
Note:
Payments are assumed to occur at the beginning of the time period (annuity due or "payments in advance").

Payment Amount

Formula:

$$
\text { PMT }=\frac{\mathrm{FV} \cdot \mathrm{i}}{(1+\mathrm{i})^{\mathrm{n}+1}-(1+\mathrm{i})}
$$

Example:
In 3 years you will need $\$ 5000$. How much should you deposit each month, if you will receive 6% annual interest, compounded monthly?

Answer:
$\$ 126.48$ (Note: $\mathrm{n}=36, \mathrm{i}=.06 / 12$)

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	i	STO						
2	FV	\times	1	RCL	+	STO		
3	n	\uparrow	1	+		y^{x}		
4		RCL	-	\div			PMT	

Future Value

Formula:

$$
\mathrm{FV}=\frac{\mathrm{PMT}}{\mathrm{i}}\left[(1+\mathrm{i})^{\mathrm{n}+1}-(1+\mathrm{i})\right]
$$

Example:

You are depositing $\$ 1000$ per year in a savings account earning 7.5% interest compounded annually. How much will you have in 10 years?

Answer:

$$
\$ 15,208.12 \quad \text { (Note: } \mathrm{i}=.075 \text {) }
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS	
1	i	STO	1	+	\uparrow	\square
2	n	\uparrow	1	+		\square

Sinking Fund

These procedures calculate the payment amount or future value of a schedule of periodic payments into a fund, given the interest rate and two of the other three variables. Payments are assumed to occur at the end of the time period (ordinary annuity).

Notation:

$\mathrm{n}=$ number of time periods
$\mathrm{i}=$ periodic interest rate, expressed as a decimal
PMT = payment
$\mathrm{FV}=$ future value

Payment Amount

Formula:

$$
P M T=\frac{F V \cdot i}{(1+i)^{n}-1}
$$

Example:
Calculate the sinking fund annual payment amount necessary to accumulate $\$ 25,000$ in 15 years at $53 / 4 \%$.

Answer:

$$
\$ 1094.69 \text { (Note: } \mathrm{i}=.0575 \text {) }
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	i	STO						
2	FV	\times	1	RCL	+			
3	n		y^{x}	1	-	\div	PMT	

Future Value

Formula:

$$
\mathrm{FV}=\operatorname{PMT}\left[\frac{(1+\mathrm{i})^{\mathrm{n}}-1}{\mathrm{i}}\right]
$$

Example:

If you had secretly deposited $\$ 50$ each anniversary from your wedding date for 25 years in an 8% certificate account, how much would you have to buy a fur coat for your wife?

Answer:
$\$ 3655.30$ (Note: $\mathrm{i}=.08$)

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	i	STO	1	+				
2	n		y^{x}	1	-	RCL		
3		\div						
4	PMT	\times					FV	

Percent

Percent change

Formula:

$$
\% \text { change }=\frac{\mathrm{V}_{\mathrm{N}}-\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{O}}} \times 100
$$

where $\quad \mathrm{V}_{\mathrm{O}}=$ Original Value (base number)

$$
\mathrm{V}_{\mathrm{N}}=\text { New Value }
$$

Example:

If sales last year were $\$ 8.6$ million, and this year were $\$ 9.3$ million, what is the percent change?
Answer:

$$
8.14 \%
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	v_{N}	\uparrow						
2	V_{o}	STO	-	RCL	\div	EEX		
3		2	x				\% change	

Markup percent

Formula:

To make a gross profit of $\mathrm{G} \%$, add $\mathrm{A} \%$ to the cost price. To find A for a given G :

$$
A=\frac{100 G}{100-G}
$$

Example:
To make a profit of 30%, what is the percentage of markup?
Answer:
42.86%

LINE	DATA	OPERATIONS	DISPLAY	REMARKS		
1	G	STO	EEX	2	x	EEX
2		2	RCL	-	\div	\square

Percent profit

Formula:

If $\mathrm{A} \%$ is added to the cost price, the profit will be $\mathrm{G} \%$ of the selling price.

$$
G=\frac{100 A}{A+100}
$$

Example:

If we add 30% to our cost price, what percent of the selling price will be the profit?

Answer:
23.08\%

LINE	DATA	OPERATIONS	DISPLAY	REMARKS		
1	A	STO	EEX	2	\square	EEX

Nominal Rate Converted to Effective Annual Rate

This procedure calculates the effective or compounded annual interest rate when the number of periods per year and the nominal annual interest rate are known.

Formula:

$$
\text { Effective }=(1+i)^{\mathrm{n}}-1
$$

Example:
What is the effective annual rate of interest if the nominal (annual) rate of 6% is compounded monthly?

Answer:
$6.17 \%(.0617)($ Note: $\mathrm{n}=12, \mathrm{i}=.06 / 12)$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS	
1		DSP	\square	$\boxed{ }$	\square	\square

This procedure converts a nominal annual interest rate to the continuous effective rate.

Formula:

$$
\text { Effective }=\mathrm{e}^{\mathrm{i}}-1
$$

Example:

A bank offers a savings plan with a 5.75% annual nominal interest rate. What is the annual effective rate if compounding is continuous?

Answer:
$5.92 \%(.0592) \quad($ Note: $\mathrm{i}=.0575)$

LINE	DATA	OPERATIONS				DISPLAY	REMARKS
1		DSP	-	4			
2	i	e^{x}	1	-		Effective	

Depreciation

Machines, buildings, delivery trucks, showcases, tools and other tangible assets all decline in value with the passing of time. To provide for the replacement of obsolete or worn-out equipment, you usually set aside a fixed amount of money each year that is equal to the loss in value of that article during the year. The three common methods of depreciation are described below.

Straight Line Depreciation

The straight-line method is simply a matter of dividing the total depreciable amount by the number of useful years, then subtracting that amount each year from the item's value. The advantage of the straight-line method is its simplicity-it's easy to figure and it's consistent.

Formulas:

$$
\begin{aligned}
\mathrm{D} & =\frac{\mathrm{PV}}{\mathrm{n}} \\
\mathrm{RDV}_{\mathrm{k}} & =\mathrm{PV}-\mathrm{kD}
\end{aligned}
$$

where
$\mathrm{PV}=$ original value of asset (less salvage value)
$\mathrm{n}=$ depreciable life of asset
$\mathrm{D}=$ depreciation per year
$\mathrm{RDV}_{\mathrm{k}}=$ remaining depreciable value at time period k

Example:

A duplex costing \$40,000 (exclusive of land) is depreciated over 25 years, using the straight line method. What is the depreciation amount and remaining depreciable value after 5 years?

Answers:

$$
\begin{aligned}
& D=\$ 1600 \\
& R D V_{5}=\$ 32,000
\end{aligned}
$$

Declining Balance Depreciation

The declining balance method is one form of accelerated depreciation; as such it provides for more depreciation in the earlier years of ownership and less depreciation in the later years than the straight-line method. With declining balance (sometimes called the fixed-rate method), a constant percentage is applied each year to the remaining balance (book value) to find the depreciable amount. The salvage value is not subtracted initially, but the asset may not be depreciated below this salvage value.

Formulas:

$$
\begin{gathered}
D_{k}=P V \cdot \frac{R}{n}\left(1-\frac{R}{n}\right)^{k-1} \\
R_{k}=P V\left(1-\frac{R}{n}\right)^{k}
\end{gathered}
$$

where
$\mathrm{PV}=$ original value of asset
$\mathrm{n}=$ depreciable life of asset
$\mathrm{R}=$ depreciation rate (given by user)
$\mathrm{D}_{\mathrm{k}}=$ depreciation at time period k
$\mathrm{RDV}_{\mathrm{k}}=$ remaining depreciable value at time period k

Example:

A fleet car has a value of $\$ 2500$ and a life expectancy of 6 years. Use the double declining balance method $(\mathrm{R}=2)$ to find the amount of depreciation and remaining depreciable value after 4 years.

Answers:

$R D V_{4}=\$ 493.83$
$\mathrm{D}_{4}=\$ 246.91$

Sum of the Years Digits Depreciation (SOYD)

Like the declining balance method, the sum-of-the-years-digits method is an accelerated form of depreciation, allowing more depreciation in the early years of an asset's life than allowed under the straight line method. The SOYD method is based on the sum of the digits from one to the number of years of the asset's life.

Formula:

$$
\mathrm{D}_{\mathrm{k}}=\frac{2(\mathrm{n}-\mathrm{k}+1)}{\mathrm{n}(\mathrm{n}+1)} \mathrm{PV}
$$

$$
\mathrm{RDV}_{\mathrm{k}}=\mathrm{S}+(\mathrm{n}-\mathrm{k}) \mathrm{D}_{\mathrm{k}} / 2
$$

where
$\mathrm{PV}=$ original value of asset
$\mathrm{n}=$ depreciable life of asset
$\mathrm{S}=$ salvage value
$\mathrm{D}_{\mathrm{k}}=$ depreciation at time period k
$\mathrm{RDV}_{\mathrm{k}}=$ remaining depreciable value at time period k

Example:

Apartments valued at $\$ 88,000$ are depreciated over 25 years using SOYD depreciation. What is the depreciation amount and remaining depreciable value after 10 years?

Answers:

$$
\begin{aligned}
& D_{10}=\$ 4332.31 \\
& R D V_{10}=\$ 32492.31
\end{aligned}
$$

Note:
The salvage value is zero.

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	n	\uparrow	\uparrow					
2	k	-	STO	1	+	2		
3		\times	$x \neq y$	\uparrow	\uparrow	\times		
4		+	\div					
5	PV	\times					D_{k}	
6		RCL	\times	2	\div			
7	S	+					$R D V_{k}$	

Discounted Cash Flow Analysis

The primary purpose of this procedure is to compute the net present value (NPV) of a series of cash flows. The NPV is found by discounting the cash flows at the desired rate of return, and then subtracting the initial investment.

In general, an initial investment is made in some enterprise that is expected to bring in periodic cash flows. After discounting, a negative value for "NPV" indicates that the enterprise would not be profitable, while a positive value for "NPV" means that the enterprise will show a profit to the extent that a rate of return " i " on the initial investment has been exceeded.

Notation:

$\mathrm{PV}_{\mathrm{O}}=$ original investment
$\mathrm{PV}_{\mathrm{k}}=$ net cash flow of the $\mathrm{k}^{\text {th }}$ period
$\mathrm{i}=$ discount rate per period (as a decimal)
$\mathrm{NPV}_{\mathrm{k}}=$ net present value at period k
Formula:

$$
N P V_{k}=-P V_{o}+\sum_{j=1}^{k} \frac{P V_{j}}{(1+i)^{j}}
$$

Example:

A small shopping complex, which costs $\$ 137,000$, is estimated to have annual cash flows as follows:

Year	Cash Flow (\$)
1	10,000
2	13,000
3	19,000
4	152,000 (property sold in $4^{\text {th }}$ year)

The desired minimum yield is 10%. Will this rate be achieved by the above cash flows?

Answers:
$\mathrm{NPV}_{1}=-127909.09$
$\mathrm{NPV}_{2}=-117165.29$
$\mathrm{NPV}_{3}=-102890.31$
$\mathrm{NPV}_{4}=927.74$

Because the final NPV is positive, the investment more than achieves the desired yield.

Chapter 4. Navigation

The following procedures use angles, latitudes and longitudes expressed in decimal degrees. Angle Conversions (Ch. 6) may be used to convert degrees, minutes, and seconds to degrees.

Great Circle Navigation

This procedure calculates the great circle distance and initial course for the great circle between two points on a spherical earth. Since the great circle is the shortest path between two points, it is usually the minimum-time path as well.

Formulas:

$\mathrm{L}_{1}=$ latitude of initial point
$\lambda_{1}=$ longitude of initial point
$\mathrm{L}_{2}=$ latitude of final point
$\lambda_{2}=$ longitude of final point
DIST $=$ great circle distance (nautical miles)
$\mathrm{C}_{\mathrm{i}}=$ initial course
DIST $=60 \cos ^{-1}\left[\sin \left(L_{1}\right) \sin \left(L_{2}\right)+\cos \left(L_{1}\right) \cos \left(L_{2}\right) \cos \left(\lambda_{1}-\lambda_{2}\right)\right]$
$\mathrm{C}_{\mathrm{i}}=\cos ^{-1}\left(\frac{\sin \left(\mathrm{~L}_{2}\right)-\cos (\mathrm{DIST} / 60) \sin \left(\mathrm{L}_{1}\right)}{\sin (\text { DIST } / 60) \cos \left(\mathrm{L}_{1}\right)}\right)$
If $\sin \left(\lambda_{1}-\lambda_{2}\right)<0$, then $C_{i}=360-C_{i}$

Notes:

No endpoint of a leg should be at either the North or South pole.
If it is desired to go more than half way around the earth, subtract DIST from 21600 to get the distance and add 180° to C_{i} to get the initial course (subtracting 360° if $\mathrm{C}_{\mathrm{i}}>360$).
Points located at diametrically opposite sides of the earth should not be used since there are an infinite number of great circle courses through such points.
C_{i} cannot always be calculated along lines of longitude $\left(\lambda_{1}=\lambda_{2}\right)$.
Northern latitudes and western longitudes are input and output as positive values; southern latitudes and eastern longitudes are input and output as negative values.

Example:

A ship is proceeding from Manila to Los Angeles. The captain wishes to sail a great circle course from L12.7533 ${ }^{\circ} \mathrm{N}, \lambda 124.3350^{\circ} \mathrm{E}$ (input as negative), off the entrance to San Bernardino Strait, to L33.8133 ${ }^{\circ}$ N, $\lambda 120.1183^{\circ} \mathrm{W}$, five miles south of Santa Rosa Island.

Find the initial great circle course and great circle distance.

Answers:

DIST $=6185.88$ nautical miles
$\mathrm{C}_{\mathrm{i}}=50.32^{\circ}$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	L_{1}	\uparrow	cos	x ¢ y	SIN			L_{1} in decimal deg.
2	L_{2}	STO	SIN	\times	$x \geq y$	RCL		L_{2} in decimal deg.
3		cos	\times					
4	λ_{1}	\uparrow						λ_{1} in decimal deg.
5	λ_{2}	-	cos	\times	+			λ_{2} in decimal deg.
6		COS^{-1}	Sto	6	0	\times	Distance (n.m.)	
7		RCL	SIN	RCL	cos			
8	L_{1}	STO	SIN	\times				
9	L_{2}	SIN	$x \geq y$	-	$x \geq y$	RCL		
10		cos	\times	\div		COS^{-1}		
11		STO						
12	λ_{1}	\uparrow						
13	λ_{2}	-	SIN					If negative, go to line 15.
14		RCL					Course (deg.)	Stop
15		3	6	0	RCL	-	Course (deg.)	Stop

Great Circle Computation

This procedure computes the latitude corresponding to a specified longitude on a great circle passing through two given points.

Notes:

The program does not compute along lines of longitude $\left(\lambda_{1}=\lambda_{2}\right)$.

Examples:

A ship is proceeding from Manila to Los Angeles. The captain wishes to use great-circle sailing from $\mathrm{L} 12.7533^{\circ} \mathrm{N}, \lambda 124.3350^{\circ} \mathrm{E}$ (input as negative), off the entrance to San Bernardino Strait, to L33.8133 ${ }^{\circ} \mathrm{N}$, $\lambda 120.1183^{\circ} \mathrm{W}$, five miles south of Santa Rosa Island. What is the latitude on the dateline $\left(\lambda=180^{\circ}\right)$?
Answer:

$$
39.69^{\circ} \mathrm{N}
$$

Make sure that the calculator is in DEG mode.

Rhumb Line Navigation

This procedure calculates the rhumb line distance and course for the rhumb line between two points on a spherical earth. On long passages, rhumb lines should be used to sail between successive intermediate points along the great circle which passes through the source and destination.

Formulas:

$$
\begin{aligned}
& \mathrm{L}_{1}=\text { latitude of initial point } \\
& \lambda_{1}=\text { longitude of initial point } \\
& \mathrm{L}_{2}=\text { latitude of final point } \\
& \lambda_{2}=\text { longitude of final point } \\
& \mathrm{C}=\text { course }=\left|\tan ^{-1}\left(\frac{\pi \sin ^{-1}}{90 \ln \frac{\sin \left(\lambda_{1}-\lambda_{2}\right) / 2}{\tan \left(45+\mathrm{L}_{2} / 2\right)}}\right)\right|
\end{aligned}
$$

If $\sin ^{-1}\left[\sin \left(\lambda_{1}-\lambda_{2}\right)\right]<0$, then $C=360-C$
Distance $=\left\{\begin{array}{l}60\left(\lambda_{2}-\lambda_{1}\right) \cos \left(L_{1}\right), \text { if } \cos (C)=0 \\ 60 \frac{L_{2}-L_{1}}{\cos (C)}, \text { if } \cos (C) \neq 0\end{array}\right.$

Notes:

Northern latitudes and western longitudes are input and output as positive values; southern latitudes and eastern longitudes are input and output as negative values.
No course should pass through the North or South pole.
This procedure gives incorrect results when computing distances due east or due west across the dateline. To obtain correct results, compute up to the dateline and then proceed on the other side.

Errors in distance calculations may be encountered as $\cos (C)$ approaches zero (i.e., $\mathrm{C} \rightarrow 90^{\circ}$ or $\mathrm{C} \rightarrow 270^{\circ}$).

Example:

Find the distances and headings for a flight from Anchorage, Alaska to Juneau, Alaska to Seattle, Washington.

Anchorage	$\mathrm{L} 61.22^{\circ} \mathrm{N}$	$\lambda 149.90^{\circ} \mathrm{W}$
Juneau	$\mathrm{L} 58.30^{\circ} \mathrm{N}$	$\lambda 134.42^{\circ} \mathrm{W}$
Seattle	$\mathrm{L} 47.60^{\circ} \mathrm{N}$	$\lambda 122.33^{\circ} \mathrm{W}$

Answers:

Anchorage - Juneau	C $=110.55^{\circ}$	DIST $=499.17$ nautical miles
Juneau - Seattle	C $=145.93^{\circ}$	DIST $=775.03$ nautical miles

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	L_{1}	\uparrow	2	\div	4	5		L_{1} in decimal deg.
2		+	TAN					
3	L_{2}	\uparrow	2	\div	4	5		L_{2} in decimal deg.
4		+	TAN	$x \rightarrow y$	\div			
5		LN	9	0	\times			
6	λ_{1}	\uparrow						λ_{1} in decimal deg.
7	λ_{2}	-	STO	2	\div	SIN		λ_{2} in decimal deg.
8			SIN^{-1}		π	\times		
9		$x \geq y$		$\rightarrow \mathrm{P}$	$x \geq y$	\uparrow		
10		\times		\sqrt{x}	RCL	SIN		
11			SIN^{-1}					If negative, go to line 13
12		$x \geq y$					Course (deg.)	Go to line 14
13		$x \geq y$	3	6	0	+	Course (deg.)	
14		cos					$\cos \mathrm{C}$	If zero, go to line 18
15	L_{1}	\uparrow						
16	L_{2}	$x \geq y$	-	$x \geq y$	\div	6		
17		0	\times				Distance (n.m.)	Stop
18	L_{1}	cos						
19	λ_{1}	\uparrow						
20	λ_{2}	$x \geq y$	-	\times	6	0		
21		\times					Distance (n.m.)	Stop

Sight Reduction Table

This procedure calculates the computed altitude and azimuth of a celestial body given the observer's latitude and the declination and local hour angle of the body. If the observer is not actually located where he thinks he is, the celestial body will appear to be at some other altitude and azimuth. A knowledge of the difference between observed and computed altitudes provides a first-order correction to the observer's position estimate.

Formulas:

DEC $=$ declination of celestial body
LHA = local hour angle of body
$\mathrm{L}=$ observer's latitude
$\mathrm{Zn}=$ azimuth of body
$\mathrm{Hc}=$ computed altitude of body
$\mathrm{Hc}=\sin ^{-1}[\sin (\mathrm{DEC}) \sin (\mathrm{L})+\cos (\mathrm{DEC}) \cos (\mathrm{L}) \cos (\mathrm{LHA})]$
$\mathrm{Z}=\cos ^{-1}\left(\frac{\sin (\mathrm{DEC})-\sin (\mathrm{L}) \sin (\mathrm{Hc})}{\cos (\mathrm{Hc}) \cos (\mathrm{L})}\right)$
$\mathrm{Zn}=\left\{\begin{array}{l}\mathrm{Z}, \text { if } \sin (\mathrm{LHA})<0 \\ 360-\mathrm{Z}, \text { if } \sin (\mathrm{LHA})>0\end{array}\right.$

Notes:
Northern latitudes, northern declinations, and western hour angles are input as positive values; southern latitudes, southern declinations and eastern hour angles are input as negative values.

This procedure may also be used for star identification by entering the observed azimuth in place of local hour angle and observed altitude in place of declination. The outputs are then declination and local hour angle instead of altitude and azimuth, respectively. The star may be identified by comparing this computed declination to the list of stars in The Nautical Almanac.

Example:

Compute the altitude and azimuth of the Sun if its LHA is $333.0317^{\circ} \mathrm{W}$ and its declination is $12.4683^{\circ} \mathrm{S}$ (input as negative). The assumed latitude is $34.1850^{\circ} \mathrm{S}$ (input as negative).

Answers:

$$
\begin{aligned}
\mathrm{Hc} & =57.27^{\circ} \\
\mathrm{Zn} & =54.97^{\circ}
\end{aligned}
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	DEC	\uparrow	COS	$x \overrightarrow{4} y$	SIN			
2	L	STO	SIN	x	$x \rightleftarrows y$	RCL		
3		COS	\times					
4	LHA	COS	x	+		SIN ${ }^{-1}$	Hc (deg.)	
5		\uparrow	cos	$x \overrightarrow{\mathrm{~F}} \mathrm{y}$	SIN			
6	DEC	SIN	$x \neq y$					
7	L	STO	SIN	x	-	$x \vec{\leftarrow} \mathrm{y}$		
8		RCL	COS	x	\div			
9		COS^{-1}					Z	
10	LHA	SIN						If negative, go to line 12.
11		3	6	0	$x \gtrless y$	-	Zn (deg.)	Stop
12		$x \vec{*} \mathrm{y}$					Zn (deg.)	Stop

Most Probable Position

This procedure computes the most probable position (MPP) from a single observation of a celestial object by dropping a perpendicular from the dead reckoning position (DR) to the line of position (LOP) of the object.

Formulas:

$\mathrm{L}_{\mathrm{ap}}=$ latitude of observer's assumed position
$\lambda_{\mathrm{ap}}=$ longitude of observer's assumed position
$\mathrm{L}_{\mathrm{mpp}}=$ latitude of most probable position
$\lambda_{\mathrm{mpp}}=$ longitude of most probable position
$\mathrm{Hc}=$ computed altitude of object
Ho = corrected sextant height
$\mathrm{a}=$ altitude intercept: $(-)=$ toward,$(+)=$ away
$\mathrm{a}=\mathrm{Hc}-\mathrm{Ho}$
$\mathrm{Zn}=$ azimuth of object
$\lambda_{\mathrm{mpp}}=\lambda_{\mathrm{ap}}+\frac{\mathrm{a} \sin (\mathrm{Zn})}{\cos \left(\mathrm{L}_{1}\right)}$
$\mathrm{L}_{\mathrm{mpp}}=\mathrm{L}_{\mathrm{ap}}-\mathrm{a} \cos (\mathrm{Zn})$

Notes:
Northern latitudes and western longitudes are input and output as positive values; southern latitudes and eastern longitudes are input and output as negative values.

Example:

A navigator determines his DR to be $\mathrm{L} 40.20^{\circ} \mathrm{S}$ (input as negative), $\lambda 159.95^{\circ} \mathrm{E}$ (input as negative). He observes Procyon to be 11.1883° above the horizon. The computed altitude is 10.95° at azimuth 73.4°. What is his MPP?

Answers:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{mpp}}=40.13^{\circ} \mathrm{S} \text { (output as negative) } \\
& \lambda_{\mathrm{mpp}}=160.25^{\circ} \mathrm{E} \text { (output as negative) }
\end{aligned}
$$

Make sure that the calculator is in DEG mode.

LINE	DATA	OPERATIONS				DISPLAY	REMARKS
1	Zn	\uparrow					Zn in decimal deg.
2	Hc	\uparrow					Hc in decimal deg.
3	Ho	-		$\rightarrow \mathrm{R}$			Ho in decimal deg.
4	$L_{\text {ap }}$	STO	$x \vec{y} y$	-		$\mathrm{L}_{\text {mpp }}$ (deg.)	$\mathrm{L}_{\text {ap }}$ in decimal deg.
5		$x \neq y$	RCL	COS	\div		
6	$\lambda_{\text {ap }}$	+				$\lambda_{\text {mpp }}$ (deg.)	$\lambda_{\text {ap }}$ in decimal deg.

Chapter 5. Surveying

Surveyors will also find useful routines in the Mathematics, Navigation and Conversions chapters, e.g., Triangle Solutions, Curve Solutions, Great Circle Navigation, and Angle Conversions.

Field Angle Traverse

This procedure can be used to calculate coordinates of points in a traverse from field angles or deflections and horizontal distances.

Formulas:

$\mathrm{N}, \mathrm{E}=$ coordinates of point
PRE N, PRE E = coordinates of previous point
$\mathrm{AR}, \mathrm{AL}=$ angle right, angle left
DR, $D L=$ deflection right, deflection left
AZ $=$ azimuth
REF AZ = reference azimuth
$\mathrm{HD}=$ horizontal distance
LAT = latitude
DEP = departure
$\mathrm{LAT}=\mathrm{HD} \cos (\mathrm{AZ})$
$\mathrm{DEP}=\mathrm{HD} \sin (\mathrm{AZ})$
$N_{i}=N_{i-1}+$ LAT
$\mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}-1}+\mathrm{DEP}$

Example:

The field angles and distances for a traverse are shown on the figure. If the coordinates of the starting point are N 150, E 400, calculate the coordinates of the other points.

Answers:

First convert the angles in degrees, minutes and seconds to decimal degrees using the angle conversions (ch. 6) procedure.

Point	\mathbf{N}	\mathbf{E}
1	150	400
2	224.52	561.61
3	356.53	468.59
4	232.34	307.14
1	149.91	399.77

Area of Traverse from Coordinates

The area of a closed traverse can be calculated from the coordinates of the points using this procedure.

Formulas:

$$
\begin{gathered}
\mathrm{N}_{1}, \mathrm{E}_{1}=\text { starting coordinates } \\
\operatorname{AREA}=\frac{1}{2}\left\{\mathrm{E}_{1}\left(\mathrm{~N}_{2}-\mathrm{N}_{1}\right)+\left[\mathrm{E}_{2}\left(\mathrm{~N}_{3}-\mathrm{N}_{1}\right)+\mathrm{E}_{3}\left(\mathrm{~N}_{4}-\mathrm{N}_{2}\right)+\right.\right. \\
\left.\left.\ldots+\mathrm{E}_{\mathrm{n}-1}\left(\mathrm{~N}_{\mathrm{n}}-\mathrm{N}_{\mathrm{n}-2}\right)\right]+\mathrm{E}_{\mathrm{n}}\left(\mathrm{~N}_{1}-\mathrm{N}_{\mathrm{n}-1}\right)\right\}
\end{gathered}
$$

Example:

\mathbf{N}	\mathbf{E}
100	100
100	500
500	500
500	100

Answer:
AREA $=160000$ sq. feet

LINE	DATA	OPERATIONS		DISPLAY	REMARKS	
1			CLR	STO	\square	\square

Slope Distance Reduction

This procedure can be used to reduce a sloped distance and zenith angle or vertical angle to the horizontal distance and elevation change.

Formulas:
$\mathrm{ZA}=$ zenith angle
$\mathrm{VA}=$ vertical angle
SD = slope distance
$\mathrm{HD}=$ horizontal distance
$\Delta \mathrm{EL}=$ elevation change

$$
\begin{array}{ll}
\mathrm{HD}=\mathrm{SD} \sin (\mathrm{ZA}) & \Delta \mathrm{EL}=\mathrm{SD} \cos (\mathrm{ZA}) \\
\mathrm{HD}=\mathrm{SD} \cos (\mathrm{VA}) & \Delta \mathrm{EL}=\mathrm{SD} \sin (\mathrm{VA})
\end{array}
$$

Example:

With an EDM (electronic distance meter) and theodolite you measure a slope distance of 857.49 feet with a zenith angle of $87^{\circ} 49^{\prime} 33^{\prime \prime}$. What is the horizontal distance and elevation change?

Answer:
First convert the angle in degrees, minutes and seconds to decimal degrees using the Angle Conversions (Ch. 6) procedure.
$\mathrm{HD}=856.87$ feet
$\Delta E L=32.53$ feet

Horizontal Distance to Latitude and Departure

This procedure calculates the latitude and departure given the azimuth and horizontal distance for a course. If the coordinates of the starting point are known, the coordinates of the final point can be calculated.

Formulas:

LAT = latitude (difference of northings)
DEP = departure (difference of eastings)
$\mathrm{HD}=$ horizontal distance
AZ = azimuth
$\mathrm{N}_{1}, \mathrm{E}_{1}=$ coordinates of starting point
$\mathrm{N}_{2}, \mathrm{E}_{2}=$ coordinates of final point
$\mathrm{LAT}=\mathrm{HD} \cos (\mathrm{AZ})$
$\mathrm{DEP}=\mathrm{HD} \sin (\mathrm{AZ})$
$\mathrm{N}_{2}=\mathrm{N}_{1}+\mathrm{LAT}$
$\mathrm{E}_{2}=\mathrm{E}_{1}+\mathrm{DEP}$

Example:

For a course from N 100, E 500, the distance is 583 feet along an azimuth of 43.47°. Find the latitude, departure and coordinates of the final point.

Answers:
LAT $=423.10$
DEP $=401.09$
$\mathrm{N}_{2}=523.10$
$\mathrm{E}_{2}=901.09$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS	
1	AZ	\uparrow	\square	\square	\square	\square

Coordinates to Distance and Azimuth

This procedure inverses between two points to give distance and azimuth. Formulas:
$\mathrm{N}_{1}, \mathrm{E}_{1}=$ coordinates of point 1
$\mathrm{N}_{2}, \mathrm{E}_{2}=$ coordinates of point 2
AZ $=$ azimuth
$\mathrm{HD}=$ horizontal distance
$A Z=\tan ^{-1}\left(\frac{E_{2}-E_{1}}{N_{2}-N_{1}}\right)$
$H D=\sqrt{\left(N_{2}-N_{1}\right)^{2}+\left(E_{2}-E_{1}\right)^{2}}$
Example:
Inverse from point N 1000, E 1000 to point N 1500, E 2000.
Answer:

$$
\begin{aligned}
& \mathrm{HD}=1118.03 \text { feet } \\
& \mathrm{AZ}=63.43 \text { degrees }
\end{aligned}
$$

Bearing to Azimuth-Azimuth to Bearing

This procedure can be used to convert azimuths to quadrant bearings or quadrant bearings to azimuths.

Example:

Convert $\mathrm{S} 80^{\circ} 47^{\prime} 53^{\prime \prime} \mathrm{W}$ to an azimuth and back to a quadrant bearing.
Answer:
First use Angle Conversions (Chapter 6) to convert bearing in degrees, minutes and seconds to decimal degrees.
$A Z=260.80$ degrees
$B R G=80.80$ degrees

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	NE BRG						AZ	No conversion required
or 1	SE BRG	CHS	\uparrow	1	8	0		
		+					AZ	
or 1	SW brg	\uparrow	1	8	0	+	AZ	
or 1	NW brg	CHS	\uparrow	3	6	0		
		+					AZ	
1	AZ							
or 2	0.90						NE BRG	No conversion required
or 2	90-180	CHS	\uparrow	1	8	0		
		+					SE BRG	
or 2	$180-270$	\dagger	1	8	0	-	SW Brg	
or 2	$270 \cdot 360$	CHS	\uparrow	3	6	0		
		+					NW BRG	

Chapter 6. Conversions

Angle Conversions

Degrees, minutes, and seconds to decimal degrees
Example:

$$
46^{\circ} 17^{\prime} 32.6^{\prime \prime}=46.29^{\circ}
$$

LINE	DATA	OPERATIONS			DISPLAY	REMARKS
1	Seconds	\uparrow	6	0	STO	$\square \div$
2	Minutes	+	RCL	\square	\square	
3	Degrees	+				\square

Decimal degrees to degrees, minutes and seconds
Note:

$$
x=\text { decimal degrees }
$$

Example:

$$
23.32916667^{\circ}=23^{\circ} 19^{\prime} 45^{\prime \prime}
$$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1	X	\uparrow						Let $\mathrm{D}=$ integer part of X
2	D						Degrees	
3		-	6	0	STO	\times	A	Let $M=$ integer part of A
4	M						Minutes	
5		-	RCL	x			B	Let $\mathrm{S}=$ nearest integer to B
5	S						Seconds	

Radians to degrees

Examples:

1. 1 radian $=57.29577951^{\circ}$
2. $\frac{3}{4} \pi$ radians $=135^{\circ}$

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1		1	8	0	π	\div		
2		\uparrow	\uparrow	\uparrow				
3		CLX						
4	Radians	\times					Degrees	Stop. For new case, go to 3

Degrees to radians

Examples

1. $1^{\circ}=.0174532925$ radians
2. $266^{\circ}=4.64$ radians

LINE	DATA	OPERATIONS		DISPLAY	REMARKS
1		π	1	8	\square
2		\square	\uparrow	\square	\square

Grads to degrees

Example:

$$
300 \text { grads }=270^{\circ}
$$

LINE	DATA	OPERATIONS			DISPLAY

Degrees to grads

Example:

$$
360^{\circ}=400 \text { grads }
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS
1	Degrees	\uparrow	\cdot	9	\div

Feet and Inches Conversions

Feet and Inches to Decimal Feet

Example:

$$
43^{\prime} 5-3 / 8^{\prime \prime}=43.45 \text { feet }
$$

LINE	DATA	OPERATIONS		DISPLAY	REMARKS	
1	inches	\uparrow	1	2	\div	\square
2	feet	+		\square		\square

Decimal Feet to Feet and Inches

Note:
$\mathrm{x}=$ decimal feet
Example:

$$
7.373 \text { feet }=7^{\prime} 4-1 / 2^{\prime \prime}
$$

LINE	DATA	OPERATIONS	DISPLAY	REMARKS	
1	x	\square	\square	\square	
		\square	\square	\square	\square
2	F	\square	\square	Let $\mathrm{F}=$ integer part of x , e.g.,	
3		\square	\square	feet	integer part of 7.375 is 7.
	\square	\square	\square		

Formulas with Two Constants.

Celsius to Fahrenheit $\left(\mathrm{a}^{\circ} \mathrm{C} \rightarrow \mathrm{b}^{\circ} \mathrm{F}\right)$
Formula:

$$
b=\frac{9}{5} a+32
$$

Examples:

a	-30	0	28	100	539
b	-22.	32.	82.4	212.	1002.2

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1		3	2	STO	9	\uparrow		
2		5	\div	\uparrow	\uparrow	\uparrow		
3		CLX						
4	a	x	RCL	+			b	Stop. For new case, go to 3

Fahrenheit to Celsius $\left(\mathrm{b}^{\circ} \mathrm{F} \rightarrow \mathrm{a}^{\circ} \mathrm{C}\right)$
Formula:

$$
\mathrm{a}=\frac{5}{9}(\mathrm{~b}-32)
$$

Examples:

b	-460	-40	0	32	212
a	-273.33	-40.	-17.78	0.	100.

LINE	DATA	OPERATIONS					DISPLAY	REMARKS
1		3	2	STO	5	\uparrow		
2		9	\div	\uparrow	\uparrow	\uparrow		
3		CLX						
4	b	RCL	-	\times			a	Stop. For new case, go to 3

Useful Conversion Factors

The following factors are provided to 10 digits of accuracy where possible. Exact values are marked with an asterisk. For more complete information on conversion factors, refer to Metric Practice Guide E380-74 by the American Society for Testing and Materials (ASTM).

```
Length
1 inch = 25.4 millimeters*
1 foot = 0.3048 meter*
1 mile (statute) }\dagger=1.609344 kilometers*'
1 mile (nautical) }\dagger=1.852 kilometers**
1 mile (nautical) }\dagger=1.150779448 miles (statute) \dagger
Area
1 square inch = 6.4516 square centimeters*
1 square foot = 0.09290304 square meter*
1 acre = 43560 square feet
1 square mile }\dagger=640\mathrm{ acres
Volume
1 cubic inch = 16.387064 cubic centimeters*
1 cubic foot = 0.028316847 cubic meter
1 ounce (fluid) }\dagger=29.57352956 cubic centimeters
1 ounce (fluid) }\dagger=0.029573530 liter
1 gallon (fluid) }\dagger=3.785411784 liters
Mass
1 ounce (mass) = 28.34952312 grams
1 pound (mass) = 0.45359237 kilogram*
1 ton (short) = 0.907 18474 metric ton*
Energy
1 British thermal unit = 1055.055853 joules
1 kilocalorie (mean) = 4190.02 joules
1 watt-hour = 3600 joules*
Force
1 ounce (force) = 0.27801385 newton
1 pound (force) = 4.448221615 newtons
Power
1 horsepower (electric) = 746 watts*
```


Pressure

```
1 atmosphere = 760 mm Hg at sea level
1 atmosphere = 14.7 pounds per square inch
1 atmosphere = 101325 pascals
Temperature
Fahrenheit \(\quad=1.8\) Celsius +32
Celsius \(\quad=5 / 9\) (Fahrenheit-32)
kelvin \(\quad=\) Celsius +273.15
kelvin \(\quad=5 / 9(\) Fahrenheit +459.67\()\) kelvin \(\quad=5 / 9\) Rankine
\(\dagger\) U.S. values chosen. * Exact values.
```


HEWLETT hP PACKARD

Sales and Service from 172 offices in 65 countries. 19310 Pruneridge Avenue, Cupertino, CA 95014

[^0]: Note: If Q is not an integer, let $\mathrm{P}=$ next prime number, go to 3 . If Q is a prime, then both P and Q are factors, stop. Otherwise P is a factor, let $P=$ current prime, go to 2 .

