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How To Use This Book
 

This book is designed to help you get the most from your HP-228S. It
includes:

m Solutions to a number of typical problems you’ll encounter in your
classwork.

m Several techniques for writing more advanced HP-22S equations.

m A useful compilation of formulas, equations, and information from
common areas of study in science and engineering.

Before you try the examples in this book, you should be familiar with cer-
tain operations covered in the owner’s manual:

m Entering numbers and using the built-in functions (LN, %, TAN,
ABS, and so on.)

m Displaying and using menus.

m Storing and recalling variables.

m Storing equations into the list of equations (using [} [EQUATIONS ).

m Using to evaluate an expression or equation, and using
to solve for an unknown variable in an equation.

Please take a moment to familiarize yourself with the formats used in this
book.

How To Use This Book 9



Keys and Menu Selection

A box represents a key on the calculator keyboard:

E
H
E
E
E

3

The shift key is represented by the symbol [ll. Thus,shifted keys appear

2

EQUATIONS

%
» 2HO

>
H
E
E
s

menu key (a key on the top row that has been assigned a new function
by a displayed menu) is represented like this:

{GR}  (found in the menu)
{Cn, r} (found in the menu)
{J} (a user-created variable in an equation)

Some menus contain submenus accessed by pressing the appropriate
menu key. (These are listed in the owner’s manual.) Also, some menus
have more than six labels; press {—} to see the other menu options.

Display Formats and Numeric Input

Display Formats. The examples in this book use a display format of
four decimal places (FIX 4) except where noted. If your current display
format does not match the one used in an example, you can change your
display format using the DISP menu (press [l ). If you wish to see
the full 12-digit precision of a number regardless of the display format,
simply press [l ; the full precision numberis displayed as long as
you hold down the key.

10 How To Use This Book



Negative Numbers. Negative numbers are created using the key:

Keys: Display:

39.087 [=] ~39.0870

29 B [E]30[=] —2.9000E30

Both the and -] keys may be used to create negative exponents of
ten:

Keys: Display:

1.408 B [E][+/-]27[=] 1.4080E-27

2.55 B(E][-]15[=] -2.5500E-15

Clearing Equation Variables.It is not necessary to clear variables
before starting an or operation. However,if you choose to
do so, you can clear all variables (A through Z) by pressing
B {VAR}. To clear the variables one at a time,store a zero in
them, or display the variable ofinterest in the VARScatalog
(B [MEM] {VARS}) and press [ [CLEAR]. (For more information, refer to
"Clearing Variables" at the end of chapter 2 in your owner’s manual.)

Entering Equations into the List of Equations

Equations you enter are stored in the list of equations. To enter equa-

tions, follow the instructions in the section "Entering Your Own Equa-
tions" in chapter 6 of your owner’s manual. Here are hints to help you in
common error situations:

m The calculator checks the syntax of your equation as you keyit in.
Thus, it prohibits you from entering equations which make no sense
to the calculator. If you press before completing an equation
(for example,if the last character is an operator, or if a function is
missing an argument), the calculator detects the syntax error and
returns the message INVALID EQN. When the equation returns
to the display, the cursor is at the end of the equation. You can then
edit the equation to put it in the correct form. To edit an equation,
backspace to the mistake and retype it from there.

How To Use This Book 11



m If the calculator accepts the equation but your answer does not match
the example, check the values stored in the variables by recalling
them (press , then the properletter key). If the values are
correct, display the equation and check it against the one in this book
for accuracy. When you find an error, edit the equation and then
press .

m If the calculator displays MEMORY FULL when you press
you must clear portions of memory before continuing. See "Clearing
Portions of Memory" in chapter 1 of the owner’s manual for informa-
tion.

The examples in this book demonstrate approaches to solving certain
problems, but by no means exhaust the many possible ways to obtain an
answer.

The units used in the examples and elsewhere throughout this book are SI
units as described in appendix E.

Ourthanks to Steven J. Sabin of Oregon State Universityfor developing the
problems and equations in this book.
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Algebra
 

This chapter gives examples of problems commonly encountered in
algebra:

m Calculating the logarithm with base other than 10 or e.

m Conversions of complex numbers to polar and exponential forms.

m Division of complex numbers.

m Powers of complex numbers.

m Complex roots of a quadratic equation.

m Finding all five roots ofa fifth-degree polynomial.

Additional formulas are found in appendix A.

1: Algebra 13



 

Using Logarithms

The change of base formula states that:

log, x

log. b
 log, x =

Example. Find log ;4783 using the change of base formula:

log. 4783 — log, 4783

087 ~ log,7

Keys: Display: Description:

4783 8.4728 Log, 4783.
] 7 +1.9459 Calculates log, 7 and
[=] 4.3542 displays the result.

Thus, log; 4783 = 4.3542.

If you frequently calculate logarithms with bases other than e or 10, you
may find it easier to use the following HP-22S equation:

L=LN (X)+LN (B)

14 1: Using Logarithms



Here, L is log, x, X isx, and B is b. Key this equation into your list of
equations, press and follow the next set of keystrokes to repeat the
previous example.

Keys: Display: Description:

EVAL X?value Displays current value of
X, prompts for the new
value.

4783 X=4,783.0000 Enters 4783 for X,
B?value prompts for B.

7 B=7.0000 Enters 7 for B,calculates
L=4.3542 L.

Notice that the HP-22S equation calculates the same result as the previ-

ous set of keystrokes.

1: Using Logarithms 15



 

Calculations With Complex Numbers

Polar, Rectangular, and Exponential Forms of
Complex Numbers

A complex number z can be expressed in rectangular form as

z=a +1b

where a (the realpart ofz) and b_(the imaginarypart ofz) are real

   

numbers and, by definition, i=V —1. The numberi is often called the
imaginary unit.

y A

bl — — — — — _ _ (a,b)

I

r : rsinf

I
6

. >[\ ~ é x

rcos f

Plotting z in the complexplane, where the x -axis correspondsto the real
part ofz and they -axis corresponds to the imaginary part ofz, generates
an alternate form for expressing complex numbers. This is thepolar form
ofz:

z =r (cosd + isinf)

16 1: Calculations With Complex Numbers



A third and frequently useful form for complex numbers also exists —the
exponential form:

z = re?

where e is the natural logarithm base.

The polar and exponential forms are closely related; r and 6 for both
forms are computed from the rectangular form using coordinate
conversions:

m The Rectangular-to-Polar Conversion

r =Va?+ b? 6= tan-1 2
a

m The Polar-to-Rectangular Conversion

a =rcosf b =rsinf

The HP-22S provides four keys for converting between rectangular and
polar coordinates: [} [x COORD], [l [y COORD |, I [RADIUS ], and [}
 

Example. Convert 3 + 14 to polar and exponential forms.

Keys: Display: Description:

N {DG} Sets Degrees mode.

3N x=3.0000 Stores real and imaginary
418 y=4.0000 parts of rectangular form

of the number.

B r=>5.0000 Calculates the magnitude
B #=53.1301 and the angle.

Thus, 3 + 14 = 5( cos 53.1301° + isin 53.1301°) = 51331301,

1: Calculations With Complex Numbers 17



Example. Convert 10¢'? to rectangular coordinates:

Keys: Display: Description:

B {DG} Sets Degrees mode.

108 r=10.0000 Stores the magnitude and
208 #=20.0000 angle of the number.

0 X=9.3969 Calculatesthe real and
0 y=3.4202 imaginary parts of the

number.

Thus, 10e'% = 9.3969 + i3.4202.

Division of Complex Numbers

If the rectangular forms of two complex numbers are converted to their
polar forms, complex division can be done using the formula:

2 (g -z _ %ia-a)
W Iy

Example. Do the following complex division:

12 + 164

15 - 189

18 1: Calculations With Complex Numbers



Keys:

B [moDES| {DG}
12 [} COORD|
6.4 [l COORD]
B [RADIUS][STO|M

B [ANGLE][STO]A

15 [l COORD]
8.9[+/-] M COORD]
@ [RADIUS]
[sTO][+]M

«
|
l
B

— O
f
|
>
» Zz

D
H

o
>
m

[RCL]M
B [RADIUS|

[RCL]A
B [ANGLE]
i COORD]

B COORD]

Display:

x=12.0000
y=6.4000
r=13.6000

6=28.0725

x=15.0000
y=—8.9000
r=17.4416

= -30.6821

M=0.7797

r=0.7797

A=58.7546
6=58.7546

x=0.4045

y=0.6666

Description:

Sets Degrees mode.

Stores real and imaginary
parts of numerator.

Calculates the magnitude
of the numerator and
stores it in M (for magni-
tude).

Calculates the angle of
the numerator and stores
itinA (for angle).

Stores real and imaginary
parts of denominator.

Calculates the magnitude
of the denominator,
stores magnitude of
numerator - magnitude
of denominator into M .

Calculates the angle of
the denominator, stores
angle of numerator -
angle of denominator
intoA.

Recalls resulting
magnitude.
Stores the value inr.

Recalls resulting angle.
Stores the value in 6.

Calculates real part of
division result.

Calculates imaginary part
of division result.

1: Calculations With Complex Numbers 19



Thus,

12 + 16.4

15 -i89

In general, addition and subtraction of complex numbersis easiest when
the arguments are in rectangular form. The other operations are best
handled when the numbers are in exponential form.

= 0.40 + 10.67

Power of a Complex Number

The following formula can be used to raise a complex numberto a real
power:

n

(a +ib)" = [re“’] = rnenif

where

r =Va2+b2and0=tan‘1—z—

20 1: Calculations With Complex Numbers



Example. Calculate (5 - i2)°.

Keys:

o {DG}
5l COORD|
2[+/-] 1 COORD]
Bl [RADIUS]
(7 3[=]
B [RADIUS|

[RCL] Ml [ANGLE]
(]38 [=]

B [ANGLE]

i COORD

B COORD]

Display:

X=5.0000

y=-2.0000

r=5.3852
156.1698

r=156.1698

f=-21.8014
—-65.4042

= -65.4042

X=65.0000

y=—142.0000

Thus, (5 - i2)® = 65 — 142,

Description:

Sets Degrees mode.

Stores real and imaginary
parts of base.

Calculates the magnitude
of the base and cubes it.

Stores result as new

radius.

Recalls the angle of the
base and multiplies by
the exponent (3).

Stores this new result as a
new angle.

Calculates real part of
result.

Calculates imaginary part
of result.
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Calculating Roots of Polynomials

Complex Roots of a Quadratic Equation

The equation for finding the roots of a quadratic equation ax? + bx + ¢
is:

-b +V b2 - 4ac

fip=
When 4ac > b?, the quantity under the square rootis negative. In this
case, the roots are complex:

x,=p +iq Xp=p - iq

where

_=b
P ="

and

_ Vdac -b?
1= 7%

The following HP-22S equation calculates the complex roots of a qua-
dratic equation. The HP-22S equation uses the control variable * J to
determine whether the real or imaginary part of the rootis displayed
when a root is calculated:

R=(J+1)+2x(-B+(2xA) )+ (1-J) +
2x (SQRT (4xAxC—SQ(B) ) ) +2+A

Notice that whenJ =1, the real part of the root (—b /2a) is multiplied

by 1 and the imaginary part (V 4ac —b?/2a) is multiplied by 0. When

* Using control variables is discussed in chapter 10 of this book.
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= —1, the imaginary part is multiplied by 1 and the real part is multiplied
by 0. Thus, depending on the value ofJ, the real and imaginary parts of
the roots are displayed. J must equal 1 or -1 for the equation to produce
a meaningful result.

Example. Use the HP-22S equation to calculate the complex roots of
x242x +5.

Press [l (EQUATIONS], then if necessary, to display the message
TYPE NEW EQUATION. Key the equation into the list of equations
and press Then, use the equation to calculate the complex roots:

Keys: Display: Description:

J?value Promptsfor value of J .

1 J=1.0000 Stores 1inJ, prompts for
B?value B.

2 B=2.0000 Stores 2 in B, prompts
A?value for A.

1 A=1.0000 Stores 1in4 , prompts
C?value for C.

5 C=5.0000 Stores 5 in C, calculates
R=-1.0000 real part of root.

J?1.0000 Promptsfor value of J .

J=-1.0000 Stores —1inJ, prompts
B?2.0000 for B.

B=2.0000 Stores 2 in B, prompts
A?1.0000 forA.

A=1.0000 Stores 1in4 , prompts
C?75.0000 for C.

C=5.0000 Stores 5 in C, calculates
R=2.0000 imaginary part of root.
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Thus, the two roots ofx2 + 2x + 5 are

X1 = —'1+i2

and

X2=_1—i2

Roots of a Fifth-Degree Polynomial

When a polynomial is odd in degree, it always has at least one real root.
This root can be found using For a fifth-degree polynomial, fac-
toring yields a fourth-degree polynomial. If the roots of this polynomial
are complex (and therefore cannot be found using [SOLVE]), you can use
the formulas in appendix A to calculate them. However,if there are no x>
and x termsin the fourth-degree polynomial, the roots can be found using
the HP-22S equation for calculating the complex roots of a quadratic
equation (page 22).

Example. Find the five roots ofy = x% — x* — 6x® + 6x% + 25x - 25.

Press then [|]if necessary, to display the message
TYPE NEW EQUATION. Keyin the following equation:

XA5-X"4—-6XxX"3+6xX"2+25xX-25

and press Now,solve for the root:

Keys: Display: Description:

B X=1.0000 Calculates the root.

Use polynomial division to factor out the root:

y =(x - 1)(x* - 6x2+ 25)

24  1: Calculating Roots of Polynomials



The roots of the resulting fourth-degree polynomial are known to be com-
plex, so you cannot use to find them. However, notice that if
x%=w, then:

xt—6x2+25=w2-6w +25

The roots of this quadratic in w are a complex conjugate pair and can be
found using the HP-22S equation for the complex roots of a quadratic
equation (page 22). If you haven’t already done so, enter the equation. {(If
you’ve already entered the equation, press [} and use the
key, if necessary, to display it.) Then follow these keystrokes:

Keys:

EVAL

1[INPUT]

6[+/-][INPUT]

1 [INPUT]

25 [INPUT]

EVAL

Display:

J?value

J=1.0000

B?value

B=-6.0000

A?value

A=1.0000

C?value

C=25.0000
R=3.0000

J?1.0000

J=-1.0000
B?-6.0000

B=-6.0000
A?1.0000

A=1.0000
C?25.0000

C=25.0000
R=4.0000

Description:

Displays current value of
J , prompts for new value.

Stores 1 inJ, prompts for
B.

Stores —6 in B, prompts
forA.

Stores 1inA, prompts
for C.

Stores 5in C and calcu-

lates the real part of the
root.

Prompts for value ofJ .

Stores —1inJ, prompts
for B.

Stores —6 in B, promnts
forA.

Stores 1inA, prompts
for C.

Stores 25 in C and calcu-

lates the imaginary part
of the root.
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Thus, the roots are w5 = 3 + 14, and:

w2-6w +25 = [w -(3+ i4)] [w— (3- i4)]

Since w =x2%x = *Vw . Therefore:

x = +*V3+14

and

x = *V3-14.

These can be solved using the method shown in the example for calculat-
ing the power of a complex number (page 21).

Keys: Display:

o {DG}
3N x=3.0000
4 @ [yCOORD] y=4.0000
| r=5.0000

2.2361

B r=2.2361

B #=53.1301
5[=] 26.5651

| §=26.5651

| x=2.0000

o y=1.0000

26 1: Calculating Roots of Polynomials

Description:

Sets Degrees mode.

Stores real and imaginary
parts of base.

Calculates the magnitude
of the base andits square
root.

Stores result in 7 (for
radius).

Recalls the angle of the
base and multiplies by
the exponent (.5).

Stores this new result as a

new angle.

Calculates real and ima-

ginary parts of root 2.



Thus, roots 2 and 3 are +(2+ i1). The following keystrokes find the two
remaining roots:

Keys:

3 [ COORD]
4[+/- ]l COORD]
B [RADIUS|

[RCL] [ [ANGLE]
[x].5 (=]

B [ANGLE]

B COORD]
B COORD]

Display:

x=3.0000
y=-4.0000

r=5.0000
2.2361

r=2.2361

§=-53.1301
—26.5651

= —26.5651

x=2.0000

y=-1.0000

Description:

Stores real and imaginary
parts of base.

Calculates the magnitude
of the base and takes the
square root (1/2 power).

Stores result in 7 (for
radius).

Recalls the angle of the
base and multiplies by
the exponent (0.5).

Stores the result as the

new 6.

Calculates the real and
imaginary parts of root
four.

Roots four and five are + (2 - i1). Thus, the five roots of the original
polynomial are 1, -2 + il,and 2 + i1.
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Trigonometry
 

This chapter gives examples of common trigonometry problems:

m Velocity of a rotating object.

m Altitude determination.

m Area of a triangle.

m Multiple triangle solution.

Refer to appendix B for additional formulas.

28 2: Trigonometry



 

Angular Distance and Speed

The equation for the circumference C ofa circle with radius R is:

C =2nR

and the equation for the average speed of an object that travels distance D
in time 7 is:

S =

N
|

Example. Willy Whippit’s sling is 0.5 meters long. Just before the stone
is released, it makes one third of a complete revolution in 0.03 seconds.
Calculate the approximate speed of the stone as it leaves the sling.

The distance the stone travels in time 7 = 0.03 seconds is one third the

circumference ofthe circle made by the whirling sling. Thus:

¢_D _2R/3 _ 2n(0.5)/3
T T (0.03)

To calculate the answer use the following keystrokes:

Keys: Display: Description:

2 B[] .5 [2] Calculates S .
3[z] .03 [=] 34.9066

The approximate speed of the stone, therefore, is 34.9066 meters per
second.
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Determining the Altitude of an Object

One way to measure the altitude of an objectis to use a device that
measures the angle § between the ground and the object’s peak altitude to
determine how high it went:

 

Using the definition oftan 6 for a right triangle:

tan0=% — h =dtanf

Example. If a man stands 200 feet from the launch pad of a model
rocket and measures an angle of 80° when a rocket reaches its maximum
altitude, what is the the rocket’s maximum altitude?

Keys: Display: Description:

B {DG} Sets Degrees mode.

200 80 [=] 1,134.2564 Calculates maximum
altitude.

The rocket climbs to an altitude of 1,134 feet.
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Area of a Triangle

Hero’s formula for the area ofa triangle with sides 4, B, and C is:

 

A=VS(S§-4)(S-B)(S -C)

where

1
S = E(A +B +C )

The following HP-22S equations do these calculations:

S=.5x(A+B+C)

Q=SQRT (Sx(S-A)x(S-B)x(S-C))

where Q is the area of the triangle. To enter the equations, press
B , then [}], if necessary, to display the message
TYPE NEW EQN. Type each equation and press :

Example. A triangular garden plot measures 40, 30, and 50 feet along its
three sides. Calculate its area.
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Display the first equation. Then:

Keys: Display:

EVAL A?value

40 A=40.0000
B?value

30 B=30.0000
C?value

50 C=50.0000
S=60.0000

Description:

Displays current value of
A and prompts for new
value.

Stores 40 inA, prompts
forB.

Stores 30 in B, prompts
for C.

Stores 50 in C, calculates

S.

Press and use the [}] key to display the second equation
(the one that calculates Q). Then:

Keys: Display:

EVAL S760.0000

S=60.0000
A?40.0000

A=40.0000
B?30.0000

B=30.0000
C?50.0000

C=50.0000
Q=600.0000

The area is, therefore, 600 square feet.
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Description:

Displays current value of
S and prompts for new
value.

Stores S, prompts for4.

StoresA , prompts for B.

Stores B, prompts for C.

Stores C and calculates

Q (the area).



 

Multiple Triangles

Sometimes a problem arises that requires certain relationships between
two or more triangles to be satisfied. The next example gives such a situa-
tion.

Example. For the two right triangles shown below, the angles 6 and ¢
must satisfy the equation cos (f+¢) = —0.507692. Findx.

5 2X + 3

x-1 X+ 7

To solve this problem, use the following trigonometric identity:

cos (6+¢) = cos (f) cos (¢) —sin () sin (¢)

From the figure above,

cos (6)=(x -2)/5

cos (¢)=x /(2x +3)

sin (6) = (x -1)/5

and

sin (¢)=(x +7)/(2x +3)

Substituting into the original equation for cos (6+¢) gives

cos (6+¢) = [x ;2] [2xx+3] - [x ;1] [2’;173] = —0.507692 
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After some simplification, the equation below is obtained. (The equation
is simplified so that a shorter HP-22S equation can be derived, resulting
in faster solutions.)

x(x-)-(x-Dx+7) = T7-&
= = —-0.507692

5(2x +3) 10x +15
 

Type the HP-22S equation below into your list of equations.

-.507692=(7-8xX)+(10xX+15)

To calculate x, follow the keystrokes below.

Keys: Display: Description:

B X=5.0000 Calculates x .

The conditions placed on the two triangles are met whenx = 5.
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Linear Algebra
 

This chapter contains examples from linear algebra:

m Dot product calculation.

m Cross product calculation.

m Finding a perpendicular componentof a vector relative to another

vector.

m Finding the determinant of a 3 x 3 matrix.

m Solving a system of simultaneouslinear equations using Cramer’s

Rule.

Additional formulas are found in appendix C.
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Calculating a Dot Product

The formula for the dot product of vectors A = a; i + a,j + ask and
B=>b,i+byj+bskis:

A*B= a1b1 + a2b2 + a3b3

The following HP-22S equation calculates dot products.

T=AxD+BxE+CxF

where

A=a1 D=b1

B=az E=b2

C=a3 F=b3

Example. Calculate A - B for the vectors A = 3i + 6j — 9k and
B=-1i+2j+8k

Press then [}] if necessary, to display the message TYPE
NEW EQN. Key the equation into the list of equations and press
Then follow the next set of keystrokes.
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Keys:

EVAL

3 [INPUT]

1[+/-](INPUT]

6 [INPUT]

2[INPUT]

9[+/-][INPUT]

8 [INPUT]

Thus, A+ B = -63.

Display:

A?value

A=3.0000

D?value

D=-1.0000

B?value

B=6.0000

E?value

E=2.0000

C?value

C=-9.0000

F?value

F=8.0000
= —-63.0000

Description:

Prompts for4.

StoresA, prompts for D .

Stores D, prompts for B.

Stores B, prompts for E .

Stores E , prompts for C.

Stores C, prompts for F .

Stores F, calculates T
(dot product).
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Calculating a Cross Product

The formula for the cross product of vectors A = a;1i + a,j + ask and
B = b]_i + b2j + bskis

i j ok
AXB = a, as as

b, by bs

= (azbs —agby)i+ (asb, —a,bs)j+ (a1by —azb;)k

The following HP-22S equations calculate the i, j, and k components of
the cross product of two vectors:

I=BxF-CxE

J=CxD—-AxF

K=AxXE-BxD

where

A=a1 D=b1

B=a2 E=b2

C=a3 F=b3

Example. Calculate A x B where A = 4i + 5j — 8k and
B= -2i+3j+9k

Enter each equation into the list of equations. When you’ve entered all
three equations, use the arrow keysto display the equation for 7. Then
follow these keystrokes:
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Keys:

EVAL

5 [INPUT]

9 [INPUT]

8[+/-][INPUT]

3 [INPUT]

Display:

B?value

B=5.0000

F?value

F=9.0000

C?value

C=-8.0000

E?value

E=3.0000
|=69.0000

Description:

Prompts for B.

Stores B, prompts for F .

Stores F, prompts for C.

Stores C, prompts for E .

Enters E and calculates /

(the i-component).

Now, press [} and use the arrow key to display the equation
for J. Then follow these keystrokes:

Keys:

EVAL

2[+/-][INPUT]

4[INPUT]

Display:

C?-8.0000

C=-8.0000

D?value

=-2.0000

A?value

A=4.0000
F?9.0000

F=9.0000
J=-20.0000

Description:

Prompts for C.

Stores C, prompts for D .

Stores D, prompts for4 .

StoresA , prompts for F.

Stores F, calculates J
(the j-component).
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Finally, press [ and use the arrow key to display the equation
for K. Then follow theses keystrokes:

Keys: Display: Description:

A?4.0000 Prompts for4.

A=4.0000 StoresA , promptsfor E .
E?3.0000

E=3.0000 Stores E , promptsfor B.
B?5.0000

B=5.0000 Stores B, prompts for D.
D?-2.0000

D=-2.0000 Stores D, calculates K
K=22.0000 (the k-component).

Thus, AX B = 69i — 20j + 22k.
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Perpendicular Component of a Vector

The component of vector A perpendicular to vector B is:

 

where

lBI2=b12+b22+b32

A - B, the dot product ofthe vectors, can be calculated using the HP-22S
equation on page 36.

Example. Calculate the component of A perpendicular to B for the vec-
tors:

A =4i+5j - 8k
B = -2i +3j + 9k

Calculate A - B using the HP-22S equation on page 36. You should obtain

 

aresultof T = —65.0000. Then,calculate | B |2

Keys: Display: Description:

DH 4.0000 Calculates b,2.

EN +9.0000 Calculates b2.
FE[3A[=] 94.0000 Calculates | B |2

Now, calculate A'B :
|B |2

[1/x] T[=] -0.6915 Calculates and stores

[sTO]K K=-0.6915 A-B 
|B|2
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A-B 

 

 

 

 

Next, calculate the three components of B |2 B:

Keys: Display: Description:

D[=] 1.3830 Calculates ?B Tz b;.

K E[=] -20745 Calculates rB rz ba.

K F(=] -6.2234 Calculates ‘|AB Fz bs.

Thus:

‘lAB fz B = 1.3830i - 2.0745j - 6.2234k

To calculate the final result, this vector is subtracted from A :

A‘B
|B|?
 B = (4 - 1.3830)i + (5 - (-2.0745))j + (-8 — (-6.2234))k

Therefore, the component of A that is perpendicular to B is
2.6170i + 7.0745j — 1.7766 k.
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Determinant of a 3 x 3 Matrix

The determinant of a 3 x 3 matrix is given by the equation

      
ABC EF DF DE

GHI

The determinant of a 2 X 2 matrix is computed as follows:

ab
detcd=

The following HP-22S equation calculates the determinant of a3 x 3
matrix:

ab
cd =ad - bc

  

Q=Ax (ExI-FxH) —Bx (DxI-FxG) +Cx ( DxH-ExG)

where Q is the determinant, and4 through I are the elements of the
matrix.

Example. Calculate:

—
_

N
W

S
W
W
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Key this equation into the list of equations. Then follow these keystrokes:

Keys:

EVAL

1[INPUT]

3 [INPUT]

4[INPUT]

3 [INPUT]

2[INPUT]

2 [INPUT]

1[INPUT]

1[INPUT]

3 [INPUT]

Thus,

44 3: Determinant of a 3 x 3 Matrix

Display:

A?value

A=1.0000

E?value

E=3.0000

1?value

1=4.0000

F?value

F=3.0000

H?value

H=2.0000

B?value

B=2.0000

D?value

D=1.0000

G?value

G=1.0000

C?value

C=3.0000
Q=1.0000

=
e
e

N
W
N

S
~
W
W

Description:

Prompts for4.

Stores A4 , prompts for E .

Stores E , prompts for /.

Stores I, prompts for F.

Stores F', prompts for H.

Stores H, prompts for B.

Stores B, prompts for D .

Stores D, prompts for G .

Stores G, prompts for C.

Stores C, calculates the

determinant Q.



 

Simultaneous Equations Solution

A set of three linear equations in three unknowns can be written as:

a1Xy t @12X3 + A13X3 = Cy

adynXx, + AxnXo t+ AxX3 = Co

azX, + A3Xo + d33X3 = C3

where each a;;is a constant coefficient, each c; is a constant, and each x;
is an unknown.

This system of equations is written compactly in matrix form as

Ax = C

where

F Gy Q)2 Q13

A=|ay ax ax (coefficient matrix)

| @31 @32 33
-xl

X =[x, (unknown vector) X3
and

C1

C=|cq (constant vector)

Cs
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Cramer’s Rule states that:

_ detA,

= et
 

where A, is the matrix formed by replacing the nth column of A with the
constant vector C.

The HP-22S equation on page 43 can be used to calculate the
determinants.

Example. Forthe circuit below, findi,, i, and i5.

1000

+

3
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The following three equations are generated by summing the voltage
drops around each loop.

800i; — 330i,+ 0iz=15

-330i; + 530i, - 100i3= 0

0i; — 100i5 + 1100i3= O

Here,

800 -330 0

A=| -330 530 -100

0 -100 1100

and

15

C=10|

0
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Cramer’s Rule gives

  

   
   

15 -330 0
0 530 -100

o detA, 0 -100 1100
7 detA 800 -330 0

~330 530 -100
0 -100 1100

800 15 0
-330 0 -100

; _ GetA, 0 0 1100
27 detA 800 -330 0

-330 530 -100
0 -100 1100

800 -330 15
-330 530 0

;oo GetAs 0 -100 0
37 detA 800 -330 0

~330 530 -100
0 -100 1100  

If you haven’t already done so, enter the determinant equation (on page
43) into the list of equations. Then, follow the next set of keystrokes.
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These keystrokes calculate detA and store the result in variable K :

Keys:

EVAL

800 [INPUT]

530 [INPUT]

1100 [INPUT]

100 [+/-][INPUT]

100 [+/-][INPUT]

330 [+/-][INPUT]

330 [+/-][INPUT]

0 [INPUT]

0 [INPUT]

[sTO]K

Display:

A?value

A=800.0000

E?value

E=530.0000

1?value

I=1,100.0000

F?value

=-100.0000

H?value

=-100.0000

B?value

B=-330.0000

D?value

D=-330.0000

G?value

G=0.0000

C?value

C=0.0000
Q=

338,610,000.000

K=

338,610,000.000

Description:

Prompts for4.

StoresA , prompts for E

Stores E , prompts for /.

Stores I, prompts for F.

Stores F', prompts for H.

Stores H, prompts for B.

Stores B, prompts for D .

Stores D, prompts for G .

Stores G, prompts for C.

Stores C, calculates Q

(detA).

Stores detA in K for

future use.
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The next keystrokes calculate det A; and i:

_
L
g
o

!
’
f
n

5 [INPUT

Z
Z

Z
Z

Z
T

T
T

T
T

C
c

c
C

[
=

S
=

=
=

o INPUT

NPUT

NPUT

] B[RCL]K[=]

Display:

A?800.0000

A=15.0000
E?530.0000

E=530.0000
171,100.0000

1=1,100.0000
F?-100.0000

F=-100.0000
H?-100.0000

H=-100.0000
B?-330.0000

B=-330.0000
D?-330

D=0.0000
G70.0000

G=0.0000
C?0.0000

C=0.0000
Q=

8,595,000.0000

0.0254
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Description:

Prompts for 4.

StoresA, prompts for E .

Stores E , prompts for 7.

Stores I, prompts for F.

Stores F, prompts for H .

Stores H, prompts for B.

Stores B, prompts for D .

Stores D, prompts for G .

Stores G, prompts for C.

Stores C, calculates Q
(detA,).

Calculatesi;.



The next keystrokes calculate det A, and is.

Keys:

EVAL

800 [INPUT]

0 [INPUT]

0 [INPUT]

15 [INPUT]

330 [+/=][INPUT]

[+][REL]K[<]

Display:

A?15.0000

A=800.0000
E?530.0000

E=0.0000
171,100.0000

1=1,100.0000
F?-100.0000

F=-100.0000
H?-100.0000

H=0.0000
B? -330.0000

B=15.0000
D?0.0000

D=-330.0000
G70.0000

G=0.0000
C?0.0000

C=0.0000
Q=

5,445,000.0000

0.0161

Description:

Prompts for 4.

StoresA , prompts for E .

Stores E , prompts for 7.

Stores I, prompts for F.

Stores F, prompts for H

Stores H , prompts for B

Stores B, prompts for D .

Stores D, prompts for G .

Stores G, prompts for C.

Stores C, calculates Q

(detAy).

Calculates i.
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The following keystrokes calculate det A and i 5:

Keys: Display: Description:

EVAL A?800.0000 Prompts for4.

A=800.0000 Stores4 , prompts for E .
E?0.0000

530 E=530.0000 Stores E , promptsfor /.
1?1,100.0000

0 1=0.0000 Stores I, promptsfor F.
F?-100.0000

0 F=0.0000 Stores F , prompts for H .
H?0.0000

100 H=-100.0000 Stores H , prompts for B.
B?15.0000

330 B=-330.0000 Stores B, prompts for D .
D?-330.0000

D=-330.0000 Stores D, prompts for G .
G70.0000

G=0.0000 Stores G, prompts for C.
C?0.0000

15 C=15.0000 Stores C, calculates Q
Q=495,000.0000  (detAs).

(=] K[=] 0.0015 Calculates i5.

Thus, i; = 254 mA, i, = 16.1 mA, andi; = 1.5 mA.
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Calculus
 

This chapter contains examples from calculus:

m Curve sketching.

m Minimum surface area calculation.

® Numerical integration of a normal probability density.

m Using differentials to approximate changes.

m Taylor series fore.

Additional formulas are found in appendix D.
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Using Derivatives

Derivatives give information about how a function changes as its indepen-
dent variables are changed. Often, this information is used to draw a pic-
ture of the function or to find the point at which a function is at a local
maximum or minimum. A local maximum or minimum exists at points
where the derivative is equal to zero or is undefined.

Example. Sketch the functiony = x® + 2x? — 5 - 6. To sketchthis
function, find the main features of the curve such as its roots (where it
crosses the x-axis), where its derivative equals zero (local minimums and
maximums), and where its second derivative equals zero (points of
inflection).

To find the rootsof this function, enter the HP-22S equation

Y=X"3+2xX"2-5xX-6

into your list of equations. Then follow the keystrokes below.

Keys: Display: Description:

Inputs the equation.

0 X X=0.0000 Stores the boundaries for
10 10_ the root search.

| XY Asks which variable to
solve for.

{X} Y?value Displays current value of
Y, prompts for new
value.

0 Y=0.0000 Locates a root of 2.
X=2.0000

By storing appropriate search boundaries initially, you should repeat the
above keystrokes and find roots of —1 and -3 as well. These are the
points where the function crosses thex -axis. To find the minimums and
maximums of the function, compute the derivative and find its roots.
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Yooy -5
dx

To find the roots ofthis function, enter

D=3xX"2+4xX-5

into your list of equations. Then follow the keystrokes below.

Keys: Display: Description:

Inputs the equation.

0 X X=0.0000 Stores the boundaries for
10 10_ the root search.

B D X Asks which variable to
solve for.

{X} D?value Displays current value of
D, prompts for new
value.

0 D=0.0000 Returns a root of 0.7863.
X=0.7863

Storing appropriate search boundaries instructs the equation solver to
look for a root in the negative direction (store values of 0 and —100).
Repeat the above keystrokes, substituting — 100 for 10, and you will find a
root at —2.1196.

To determine if these values ofx correspond to a local maximum or
minimum, press [} |[EQUATIONS and use the arrow key to display the equa-
tion for Y. Evaluate the equation for Y at the extremum points.
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Keys: Display: Description:

EVAL X?-2.1196 Displays the current
value ofx .

X=-2.1196 The value ofy at the
Y=4.0607 extremum.

EVAL X?-2.1196 Displays the current
value ofx .

0.7863 X=0.7863 The value ofy at the
Y=-8.2088 other extremum.

Thus, atx = —2.1196 is a local maximum and at x =0.7863 is a local
minimum. Now, to make the sketch more accurate, the point of inflection
can be found by computingy “ “(x) and finding its root. This is found as

4y 6 14
dx2

By inspection, the root ofthis equation isx = —4/6. Thus,the point of
inflection (point at which curvature changes from concave up to concave
down) is atx = —0.6667. The curve is shown below.

<

2 3 4 5 X
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Example. The volumeof a right circular cone of height # and radius r is
given by

1V = =mh37l'7'

and its surface area by

A =mVr?+ h?

A paper drinking cup in the shape of a right circular cone is being
designed to hold 250 cubic centimeters of liquid. Find the height # and
radius r of a cup which uses the least amount of paper in its construction
(has minimum surface area).

From the information given about the volume, 2 can be expressed in
terms of r as

1 1
2 2o(37 (29

The expression for the surface area then becomes

1 1 11 1 L

A=w[@]2[h2+75_0]2=,,[750h , 750 ]z
i mh T w2 2

To find the minimum surface area, the equation for4 is differentiated
with respect to & to give

1)=
a4 _ = |750n 750 21750 _ (2)(750%)

dh 2 V(e 1|'2h 2 o 1r2h 3

Key the following equation for T into your HP-22S list of equations:

7+2xINV (SQRT (750xH+r+SQ (750) +SQ ()
+SQ(H) ) )x(75027m—2xSQ(750) +SQ (x) +HA3)
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Then follow these keystrokes:

Keys: Display:

1 H H=1.0000

B H=7.8159

750 =18 5] 5.5267
H[=]

Description:

Avoids a divide by zero
error by starting the
search for H at a value
other than zero.

Value ofH for which
dA /dh = 0 (areais
minimum at this point).

Calculates r from the

formula r =V (750/xh ).

Thus, the necessary dimensions for the paper cup are r = 5.5267 cm and
h = 7.8159 cm.
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Numerical Integration

Simpson’s Rule is widely used to approximate definite integrals because
of its simplicity, accuracy, and ease of implementation.

For integrals of the form
b
[ f@x)a

the approximation for 2n * subintervalsis given by:

b - 2nSon =Lg s af, 4 2fy 4 4f5+ 2f4+

+2fon_2t4fom_1+foml

Example. Using Simpson’s Rule, approximate

1 .08 3
- = e /2

Y VvV 2r ";

using eight subintervals.

To use Simpson’s Rule, divide the interval of integration into the required
number of subintervals. Here, the interval length is 0.08 and the number
of subintervals is 8. This gives a subinterval length of 0.08/8 or 0.01. The
required sum is then

58=%[fo'*""fl+2f2+4f3+2f4+4f5+2f6+4f7+f8]

where f} is f (0.01k).

* The number 27 is used because the number of subintervals must be even.
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Since the integrand must be evaluated at nine different points, you need to
enter the HP-22S equation

Y=1+SQRT (2xr) xEXP (-SQ (X) +2)

in your list of equations. Then follow these keystrokes:

Keys: Display: Description:

EVAL X?value Displays the current
value ofX .

0 X=0.0000 The value of the
Y=0.3989 integrand atx = 0.

T T=0.3989 Stores the result in 7' (for
total).

EVAL X?0.0000 Displays the current
value ofX .

.01 X=0.0100 The value of the
Y=0.3989 integrand at x =0.01.

4[=] 1.5957 Multiplies by 4 and adds
T the result to T (fortotal).

You should continue to do this atx = 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, and

0.08. At each step, be sure to multiply the result by the appropriate
number (1, 2, or 4) before adding it to 7. When you have added the last
result to T, press T[x]0.01 [+] 3 [=]to obtain the value of S5g. You
should have a result of 0.0319. It is interesting to note that no known
closed-form solution exists for this integral. It represents the area under
the standard normal curvein statistics, and it must be approximated
numerically.
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Using Differentials

Ify = f (x) then the differential ofy is dy where

dy = f"(x)Ax

Thus, to find a differential dy, simplyfind % and multiply by Ax.

The differential dy can be interpreted as the approximate change iny due
to a change Ax inx. Think of dy as the change that would result iny if it
were to change along the fixed line f “(x) as x changes. The true change
iny is Ay and is based ony changing along the curve y =f (x), not the
fixed line f “(x). For small changes in x, the approximation given by the
differential is a good one.

Example. The volume of a conical chemical holding tank is given by

1
V = —xh3121rh

where h is the height of the liquid above the bottom of the tank. If the
chemical level in the tank is at 1 meter and then additional liquid is added
so the level raises by 5 cm, approximate the change in volume using
differentials and compare this to the exact change.

To find the exact change in volume, compute the volume with 2 =1
meters and subtractthis from the volume calculated with 2 =1.05 meters.
To find the approximate change in volume, find the differential dV" as

_ 1 2 _1 .24V =w3 Ah) 4 n(h Ah)

Here, & is the initial height of the liquid (1 meter), and A# is the change
in liquid height (0.05 meters). The two HP-22S equations

V=1+12xmxH"3

D=1-+4xmxSQ (H) xC

should be entered into the list of equations in your calculator.
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Whenthis is done, use the arrow keysto display the equation for V' and
follow these keystrokes:

Keys: Display:

EVAL H?value

1 H=1.0000

V=0.2618

I 1=0.2618

EVAL H?1.0000

1.05 H=1.0500

V=0.3031

[=][RreL]I[=] 0.0413

Description:

Displays current value of
H , prompts for new
value.

Enters value of H, calcu-
lates volume as 0.2618

cubic meters.

Storesinitial volume in /

for use later.

Displays current value of
H , prompts for new
value.

Enters value ofH, calcu-
lates exact new volume as

0.3031 cubic meters.

Final volume minusini-
tial volumeto give true
change in volume.

Now, press [} [EQUATIONS] and use the arrow keys to display the equation
for D (differential).
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Keys: Display: Description:

EVAL H?1.0500 Displays current value of
H, prompts for new
value.

1 H=1.0000 Enters value ofH,
C?value prompts for value of C

(change in k).

C=0.0500 Inputs change in height
D=0.0393 (0.05 meters), gives

approximate
(differential) change in
volume.

The true change in volume of 0.0413 cubic meters differs from the
differential approximation of 0.0393 cubic meters by only about 5%.
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Taylor Series

Many functions of interest can be expressed as an infinite series called a
Taylor Series. Provided that a function has derivatives of all orders on an
interval containing the point a, its Taylor seriesis given as

fx) = 3 foa) Zoa)
k=0 k!

Example. The Taylor Series expansion for e about the point g =0 is

How many terms are needed in the series to express e accurately to four
decimal places? The value of e to four decimal places is 2.7183. With the
calculator in FIX 4 mode, terms of the sum should be added until this

number appears in the display.

Key the HP-22S equation E=1-+FACT (J) into your calculator and
follow the keystrokes below.

Keys: Display: Description:

EVAL J?value Displays current value of
J , prompts for new value.

0 J=0.0000 Enters value of/, calcu-
E=1.0000 lates the first term of the

sum.

S S=1.0000 S is used to save running
total of the sum.

J70.0000 Displays current value of
J , prompts for new value.

1 J=1.0000 Increments and enters
E=1.0000 value ofJ, calculates the

second term of the sum.
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S E=1.0000 Adds second term of sum
toS.

EVAL J?1.0000 Displays current value of
J, prompts for new value.

2 J=2.0000 Increments and enters
E=0.5000 value ofJ, calculates the

third term of the sum.

S E=0.5000 Adds third term of sum
toS.

Continue to press increment J, calculate E, and add the result to
S. Be sure toview S ((RCL| S) after each term is added to see when this
process can stop. You will find that whenJ = 7 the total in S is 2.7183.
Thus, 8 terms (j = 0 to 7) are needed to achieve the specified accuracy.

In chapter 10 of this book, this example is repeated with a technique that
eliminates the need to do storage register arithmetic in adding each addi-
tional term of the series.
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O

Physics
 

This chapter gives examples of solutions to problems frequently encoun-
tered in general physics courses:

m Forces and accelerations in a mass and pulley system.

m A simple pendulum.

m The Dopplereffect.

m Measuring fluid flow rate with a venturi meter.

m Potential due to an electric dipole.
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Force and Acceleration

Newton’s three laws of motion are the foundation from which a very large
class of practical problems in mechanics can be analyzed. The three laws
are as follows:

1. A body will continue in its state of rest or of uniform motion in a
straight line unless it is compelled to change thatstate by forces
impressed on it.

2. The sum offorces acting on a body causes it to accelerate in the
direction of the resultant of forces. In equation form,

F=ma

where F is the resultant force acting on the body, 72 is the mass of
the body, and a is the acceleration of the body.

3. For every action, there is always an equal and opposite reaction; in
other words, if body 1 exerts a force on body 2, body 2 exerts an
equal and opposite force on body 1.

Example. The figure below shows a 31.8 kg mass (r,) and a 55.7 kg
mass (m) attached by a rope over an ideal pulley (frictionless and mass-
less). Find the acceleration of the masses and the tension in the rope.

A
y T T

X

4

m1g

[r\ 72 Y
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The forces acting on each mass are the weight mg (where g is the
acceleration due to gravity) and the rope tension T'. It is intuitive that the
larger mass will accelerate downward and pull the smaller mass upward.
Thus, m, will accelerate in the negative y-direction. Using Newton’s
second law for each mass

T -myg=ma

T —-myg = —mga

Combining these two equations gives

mo—m;
a=——"—""™—y2¢

mi +m2

and

2]711"12

T =172,
m1+m2

To calculate 7T and a, follow the keystrokes below. Recall thatg =
9.80665 m/sec?.

Keys: Display: Description:

9.80665 [=][(155.7 Stores&inD.
[+]31.8])][=] D=0.1121 my +my

D
[(]565.7[-]31.8[)] Calculates a .

=] 26786
[RCL] D [x]2[x]31.8 Calculates 7.

55.7[=] 397.0315

Thus, the tension in the rope is 397.0315 N and the 55.7 kg mass
accelerates downward at 2.6786 m/sec?.
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Simple Harmonic Motion

When the restoring force acting on a body is proportional and opposite to
its displacement, the body will oscillate with simple harmonic motion. The
restoring force equation is written as

F =-kx

where k is the constant of proportionality. Many physical phenomena can
be described as simple harmonic motion. Electrical oscillations in an LC
circuit, the movement of a clock pendulum, and the vibration of a guitar
string namejust a few. The equation of simple harmonic motion of the
displacement x is

x =Acos(wt +¢)

This is a sinusoid of amplitude 4, radian frequency w and phase constant
¢. It can be shown that w = Vk /m where k is the constant of propor-
tionality in the restoring force equation.

Example. The figure below shows a simple pendulum.
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As shown in the figure, the restoring force in a simple pendulum is
F = —mg sinf, and the displacementis given byx = /6. For small angles
sind = 6 and the restoring force becomes

F = -mgb = —mg%

Thus,for small angles the restoring force is proportional and opposite to
the displacement, and the pendulum swings back and forth with simple
harmonic motion. Comparing this last equation with the original equation
for the restoring force in a simple harmonic oscillator gives

F=—-kx=—mg% —~ k=18

 

/

Since T = 2m/w, the period of the pendulum can be found as

2r 2 2 2w 7T

w  Vk/m mg Vg/l

im

Find the period of a simple pendulum with string length/ = 24.8 cm.

The following HP-22S equation can be used to solve problems involving
the simple pendulem.

T=2xrxSQRT (L+G)

where T is the period, G is the acceleration due to gravity, and L is the
string length. Enterit into your list of equations and follow the keystrokes
below to solve for T'.

Keys: Display: Description:

EVAL L?value Prompts for L.

248M [E][-]2 L=0.2480 Stores L , prompts for G .
G?value

9.80665 G =9.8067 Stores G, calculates 7.
T=0.9992

Thus, the period of the pendulum is about 1 second.
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The Doppler Effect

When a listener and a source of sound are in relative motion towards one
another, the sound is heard higher in pitch than if the sources were at rest.
In an analogous fashion, the sound is heard lowerin pitch if listener and
source are receding from one another. This is called the Doppler effect
and is a familiar phenomena whenever a train goes by;as it approaches
the whistle is heard to increase in pitch until the train goes past at which
time it decreases in pitch. The equation describing thisis

 

where f “ is the frequency heard by the listener,f is the frequency of the
sound emitted by the source, v is the speed of sound in the medium, v; is
the speed of the listener relative to the medium, and v, is the speed of the
source relative to the medium. The uppersigns (+ in the numerator and
- in the denominator) are used when the listener and source move
toward each other, and the lower signs are used when the listener and
source move away from each other.

Example. The Doppler effect for sound was first tested in 1845 by Buys
Ballot. He placed a trumpet player on a railroad flatcar and rolled it
toward himself with a constant speed of about 3 m/sec. If the trumpet
player blew a note of 440 hz (concert A), calculate the frequency heard by
Ballot who stood at the side ofthe tracks.

The speed of sound in air is about 331.45 m/sec. The listener and source
are approaching relative to one another and the listener has a speed of
0 m/sec relative to the medium (air) while the source has a speed of
3 m/sec relative to the medium. The frequency of the source is 440 hz.
Thus, the Doppler effect equation becomes

v 2y v +0 33145+ 0
’: = =440__.-__.__

f fvTv, fv—3 33145 -3
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Keys: Display: Description:

440 331.45 [+][(] Calculates f °.
331.45[-]3[][=]  444.0189

Thus, the frequency heard by Ballot was about 444 hz.
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Fluid Flow

When an incompressible fluid with negligible viscosity flows steadily along
a pipe, Bernoulli’s equation holds at any point along the pipe. It’s given by

1
p +5PV2+P8)’ =K

wherep is the pressure, p is the fluid density, v is the fluid velocity, g is
the acceleration due to gravity, y is the height of the fluid above some
arbitrary reference point, and K is a constant. Thus, at any two points 1
and 2, the equation becomes

1 1
p1+ -2-pr +pgy1L=pa2+t Epvg + pgya

where the fluid is assumed incompressible, and, hence, its density p at
points 1 and 2 is the same.

The continuity equation says that the mass of fluid in a pipe is conserved
(none enters orexits the pipe). The continuity equation for an incompres-
sible fluid with steady flow is

Ayvy =Agve

where A4 is the pipe’s cross sectional area and v is the fluid’s velocity at
points 1 and 2, respectively. Informally, the equation states that the flow
rate in volume per time is constant at any pointin the pipe.

Example. A venturi meter is used to measure speed of fluid flow:
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The U-shaped tube in the figure is called a manometer * and is used to
measure pressure differences. The manometer equation for pressure

difference is

P2~ D1 = Pm&

wherep is the pressure at points 1 and 2, p,, is the density of fluid in the
manometer, g is the acceleration due to gravity, and / is the difference in
fluid levels in the manometer. When the continuity equation, Bernoulli’s
equation, and the manometer equation are combined, the speed of fluid
flow at point 1 in the figure is found to be

1

2pm —P)gl )2v1=A2[ (p2 P)f;’]
p(Af - A7)

If the manometeris filled with mercury (density = 13,595 kg/m®) and the
fluid in the pipe is water (density = 1000 kg/m?), find the velocity of fluid
flow at point 1. Assume that the cross sectional area of the pipe at point 1
is 0.073 m? and at point 2 is 0.0507 m?2. The difference in mercury levels in
the manometer is 9 cm. Follow the keystrokes below to find v;.

Keys: Display: Description:

[(2[x][(]13595 -] Calculates numerator
1000 [)][x] 9.80665 inside the square root.
.09])] 22,232.6562

[+][(] 1000 [x][(].073 Divides numerator by
B [-].0507 B denominator.
nne 8,059.6613

0507 =] 4.5516 Calculates v,.

The fluid velocity at point1 is 4.5516 m/sec.

* The manometer is described in this book in chapter 8 on page 106.
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Electric Potential

A charge g will attract other charges of opposite polarity and repel
charges oflike polarity. The force of attraction or repulsion is given by
Coulomb’s law, which is described in chapter 7 of your owner’s manual. It
is convenientto think of a charge as setting up an electric field. Then the
force experienced by other charges can be found by determining the
strength of the electric field at the point in question.

The equation for the electric potential at a point in an electric field is

=
9o

where W is the work required to move a test charge g, from a point
infinitely distant from the field source to the point at which the potential
V is desired.

An electric dipole is two equal and opposite charges g separated by a dis-
tance d. The potential V' at a point P is given by the equation below.

V= gX2~ X1

47|'€0 X1X9o

 

where &, is the permittivity of free space, and the other quantities used in
the equation are from the following figure:
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If the point P is a large distance away from the dipole, thenx is much
greater thand (x >> d), and the equation for the potential is given
approximately as

Vo= qd  cosf

41l'€0 x2

Example. An electric dipole consists of two 5 nC charges placed 1.5
meters apart. Whatis the potential 160 meters away from the center of
the dipole at an angle of 30°?

Since x >> d applies in this case, the approximate equation can be used
with negligible error. The quantity 1/4¢, is used frequently in calcula-
tions involving electric fields. Its value is 8.9876 x 10° N—m?/C2. The
HP-22S equation below can be used for dipole calculations.

V=8.9876E9XxDxQxCOS (A) +SQ (X)

where V is the potential in volts,4 is the angle, D is the distance between

the charges, Q is the charge of each charge in coulombs, andX is the dis-
tance in meters from the center ofthe dipole. Enter this equation into
your list of equations and use the following keystrokes to find V.

Keys: Display: Description:

| {DG} Sets Degrees mode.

EVAL D?value Prompts for D .

15 D=1.5000 Stores D, prompts for Q.
Q?value

5B [E][-]9 Q=5.0000E-9 Stores Q, prompts forA .
A?value

30 A=30.0000 StoresA , prompts forX .
X?value

160 X=160.0000 Stores X, calculates V.
V=0.0023

The potential at this point is about 2.3 millivolts.
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6

Chemistry
 

This chapter gives examples of solutions to problems frequently encoun-
tered in general chemisty courses:

Converting between grams and moles.

Concentrations of solutions — molarity, molality, and mole fraction.

pH calculations.

n

u

m Freezing point depression and boiling point elevation of solution.

n

m Faraday’s Law.
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Converting Between Grams and Moles

One of the most fundamental chemistry calculations is converting between
grams and moles. The conversion uses the atomic weight of the element
or the molecular weight of the compound.

number of grams

atomic or molecular weight
 number of moles =

The following HP-22S equation lets you convert between grams and
moles of a substance.

M=G=W

where M is the number of moles, G is the number of grams, and W is the
atomic or molecular weight.

Example. How many moles are in 100 grams of CO,. (Atomic weights:
C=12,0=16.)

Enter the HP-22S equation into the list of equations. Then follow these
keystrokes:

Keys: Display: Description:

EVAL G?value Prompts for number of

grams.

100 G=100.0000 Stores G, prompts for
W?value molecular weight.

12[+]16[x]2 W=44.0000 Stores W,calculates
M=22727 number of moles.
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Example. You must weigh out 0.350 moles of CaCl,. How many grams
is that? (Atomic weights: Ca=40.1, C1=35.5.)

Keys: Display: Description:

B {G} M?value Selects G, prompts for
number of moles.

.35 M=0.3500 Stores M, prompts for
W?value molecular weight.

40.1[+]35.5[x]2 Stores W, calculates
W=111.1000 number of grams.
G=38.8850
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Concentrations of Solutions

Molarity

The molarity (M) of a solution is defined as the number of moles of solute
perliter of solution. The following HP-22S equation can be used to do
molarity calculations:

R=G-+ (WxV)

where R is the molarity, G is the number of grams, W is the molecular
weight, and V is the volumein liters.

Example. How many grams of KCl are needed to make 250 ml of a
46M solution? (Atomic weights: K=39.1, C1=35.5)

Enter the HP-22S equation into the list of equations. Then follow these
keystrokes:

Keys: Display: Description:

B {G} R?value Selects number of grams
as the unknown, prompts
for molarity.

46 R=0.4600 Stores R, prompts for
W?value molecular weight.

39.1[+]35.5 W=74.6000 Stores W, prompts for
Vvalue volume.

250 [+] 1000 V=0.2500 Stores V,calculates
G=8.5790 number of grams.
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Example. A solution is prepared by placing 5.25 grams of MgBr, in a
flask and adding water to create 300 ml of solution. Calculate the molar-
ity. (Atomic weights: Mg=24.3, Br=79.9.)

Keys: Display: Description:

EVAL G?value Prompts for number of
grams.

5.25 G=5.2500 Stores G, prompts for
W?value molecular weight.

24.3[+]2[x]79.9 W=184.1000 Calculates and stores W,
V?value prompts for volume.

300 [+] 1000 V=0.3000 Calculates and stores V,
R=0.0951 calculates molarity.

Molality

The molality (m) of a solution is the number of moles of solute per 1,000
grams of solvent. The following HP-22S equation can be used to do molal-
ity calculations:

L=Gx1000+ (WxS)

where L is the molality, G is the number of grams of solute, W is the
molecular weight ofthe solute, and S is the number of grams of solvent.
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Example. 40.0 g of CCl, are added to 150 g of benzene. Calculate the
molality ofthe solution. (Atomic weights: C=12, Cl= 35.5.)

Keys: Display:

EVAL G?value

40 G=40.0000
W?value

12[+]35.5[x) 4 W=154.0000
S?%value

150 $=150.0000
L=1.7316

Description:

Prompts for grams of
solute.

Stores G, prompts for
molecular weight of
solute.

Stores W, prompts for
grams of solvent.

Stores S, calculates the
molality.

Example. How many grams of ethanol (molecular weight=46) must be
added to 400 grams of methanol to make a 0.15 m solution.

Keys: Display:

0 {G} L?value

.15 L=0.1500

W?value

46 W=46.0000

S?value

400 S=400.0000
G=2.7600
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Description:

Selects number of grams,
prompts for molality.

Stores L , prompts for
molecular weight of
solute.

Stores W, prompts for
grams of solvent.

Stores S, calculates

grams of solute.



Mole Fraction

The mole fraction of a substance is the ratio of the number of moles of

that substance divided by the total number of moles:

ny
XA=

ng +ng + ---

where X, is the mole fraction of substance A, and ny is the number of
moles of substance X.

Example. You’ve mixed together 2 g of CO,, 6 g of N,, and 5 g of O,.
Calculate the mole fraction of each gas. (Use these molecular weights:
C02= 44, N2= 28, 02= 32.)

Keys: Display: Description:

2[+]44 (=] 0.0455 Calculates ngo,, stores
C C=0.0455 value into C and T. (T
T T=0.0455 will accumulate total

number of moles.)

6[+]28 (=] 0.2143 Calculates ny,, stores

N N=0.2143 value into N, and accu-
T mulates value into 7.

5[+]32[=] 0.1563 Calculates ny,, accumu-

T lates value into 7.

(] T[=] 0.3756 Calculates Xo,.

Cl<] T[=] 0.1093 Calculates X¢o,.

N[+] T[=] 0.5151 Calculates Xy,
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Boiling and Freezing Points of Solutions

When a nonvolatile substance is dissolved in a liquid, the freezing point of
the solution is lowered and the boiling point is raised. For dilute solutions,
this effect is directly proportional to the molality of the solution:

ATf=me ATb=me

where K, and K,, are constants for a particular solvent.

The following HP-22S equation can be used to do calculations based on
either freezing point depression or boiling point elevation. The term m
(molality) has been replaced by the equation for molality on page 81.

T=Gx1000xK+ (WxS)

where T is change in freezing or boiling point, G is the number of grams
of solute, K is the constant, W is the molecular weight of the solute, and
S is the number of grams of solvent.

Example. Calculate the boiling point of a solution prepared by dissolv-
ing 25 g of sucrose in 100 g of water. (The molecular weight of sucrose is
342.3; K, for wateris 0.512; the boiling point of water is 100.0 °C.)

Keys: Display: Description:

EVAL G?value Prompts for grams of
solute.

25 G=25.0000 Stores G, promptsfor
K?value K, .

512 K=0.5120 Stores K, promptsfor
W?value molecular weight.

342.3 W=342.3000 Stores W, prompts for
S?value grams of solvent.

100 S=100.0000 Stores S, calculates AT, .
T=0.3739
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[+]100[=] 100.3739 Calculates the boiling

point.

Example. A solution prepared by dissolving 0.800 g of a substance in
250 g CCl, freezes at —23.4 °C. Calculate the molecular weight of the
solute. (T, for CClyis —22.8 °C; K, for CClyis 29.8.)

Keys:

10[sTO]W

W [SoLve] {W}

22.8 [=]23.4

8

29.8

250

Display:

W=10.0000

T?value

T=0.6000

G?value

G =0.8000

K?value

K=29.8000

S?%value

S=250.0000

W=158.9333

Description:

Enters a nonzero guess

for W. This prevents a
possible DIVIDE
BY O errorlater.

Selects molecular weight
as the unknown, prompts
for freezing point depres-
sion.

Stores T, prompts for
grams of solute.

Stores G, prompts for
K,.
Stores K, prompts for
grams of solvent.

Stores S, calculates

molecular weight of
solute.
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pH Calculations

The pH is a measure of the acidity of a solution. It is defined by the equa-
tion:

pH = —log[H*]

where [H*] is the hydrogen ion concentration. If the pH is known, [H*]
can be calculated by the equation:

[H*] = 10-PH

Example. Calculate the pH of the following solutions:

[H*] = 2.5x10~°
[H*] = 6.9x10~°
[H*] = 9.2x10~1°

Keys: Display: Description:

258 [E][-]5 Calculates pH offirst
8 4.6021 solution.

698 [E][-]6 Calculates pH of second
B 5.1612 solution.

9.2 [E][-]10 Calculates pH ofthird
B 9.0362 solution.
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Example. Calculate [H*] for solutions with pH’s of 3.1 and 9.8.

Keys:

B [DISP]
{SC} 4

3.1[+/-]W (i07)

9.8[+/-]l (107

B [DisP] {FX} 4

Display:

7.9433E-4

1.5849E-10

1.5849E-10

Description:

Sets display to scientific
notation.

Calculates [H*] offirst
solution.

Calculates [H*] of
second solution.

Restores FIX 4 display
format.
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lonization of Water

Waterionizes according to the chemical equation:

H,0 — H* + OH~

The following equation for the ionization constant of water (K,,)
describes the relationship between the concentrations of H* and OH™.

K, = [H*][OH"] = 1x10~4

The equation for K,, can be expressed as the HP-22S equation:

HxO0=1E-14

This relationship lets you calculate [H*] when [OH*] is known, or vice
versa.

Example. Calculate the pH of 0.18M NaOH.

Enter the HP-22S equation into the list of equations. Then follow these
keystrokes:

Keys: Display: Description:

A {H} O?value Selects H , prompts for
0.

.18 0=0.1800 Calculates [H*].
H=5.5556E - 14

0 13.2553 Calculates the pH.
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Example. What molarity NaOH solution has a pH of 11.2?

Keys: Display: Description:

B {0} H?value Selects O, prompts for
H.

11.2 B H=6.3096E - 12 Calculates [OH™], the
0=0.0016 molarity of NaOH.
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Faraday’s Law

Faraday’s Law states that the amount of a substance liberated at an elec-
trode is directly proportional to the amount of current passing through the
electrode. Afaraday is defined as 96,487 coulombs and is the quantity of
charge of one mole of electrons.

The following HP-22S equation uses the value of the faraday to define a
relationship between current and the amount of a substance liberated or
consumed by electrolysis.

G=TxIxW+(96487xN)

where G is the number of grams of the substance, 7 is the time (in
seconds), I is the current (in amperes), W is the atomic weight, and N is
the number of moles of electrons transferred per mole of substance. For
example, N =2 for the reaction Cu*? + 2e~ — Cu; likewise, N=1 for
reaction K — K* + e~.

Example. How many grams of copper are plated out onto an electrode
during the electrolysis of CuSOy if a current of 0.50 amp flows for 15
minutes? (The atomic weight of Cu is 63.5.)

Enter the HP-22S equation into the list of equations. Then follow these
keystrokes:

Keys: Display:

EVAL T?value

15[x]60 T=900.0000
1?value

5 1=0.5000

W?value

63.5 W=63.5000

N?value
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Description:

Prompts for number of
seconds.

Stores T, prompts for
current.

Stores I, prompts for
atomic weight.

Stores W, prompts for
number of electrons.



2 [INPUT N=2.0000
G=0.1481

Stores N, calculates
number of grams of Cu.

Example. How long does it take to plate 5 g of Ag onto an electode dur-
ing the electrolysis of AgNOj3 using a current of 0.8 amps. (The atomic
weight of Ag is 107.9.)

Keys:

B {T}

[INPUT]

.8[INPUT]

107.9

1[INPUT]

[+]{J60(x]60 ][]

o
{—HMS}

Display:

G?value

G=5.0000

1?value

1=0.8000

W?value

W=107.9000

N?value

N=1.0000
T=5,588.9133

1.55625

1.3309

Description:

Selects T', prompts for
grams.

Stores G, prompts for
current.

Stores I, prompts for
atomic weight.

Stores W, prompts for
number of electrons.

Stores N, calculates

number of seconds.

Calculates number of

hours.

Converts to hours-
minutes-seconds (1 hour,
33 minutes, 9 seconds).
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Statics and Dynamics
 

This chapter contains examples from both statics and dynamics:

Equilibrium of cable tensions.

Supporting force of a gear reducer.

Resultant force on a beam.

Velocity of a plane being tracked by radar.

Velocity of a crate sliding with friction.
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Statics

Thefirst step in solving statics problemsis to identify all forces acting on
the body and draw afree-body diagram. A free-body diagram shows
clearly the forces acting on the body, the relevant dimensions of the body,
and the unknown forces or dimensions to be found.

Equilibrium of Forces

When bodies are at rest, the vector sum of those forces add to zero

(OF = 0). It is easiest to resolve the forces acting on a bodyinto their x-,

y-, and z-components when working in rectangular coordinates or into the
appropriate components when working in other coordinate systems (for
example, spherical, polar, cylindrical, and so on).

Example. For the figure below, find the tension 7 in the cable that will
balance the tension in the other two cables.

60N

 

72N

From the figure,it is clear that 7 must be such that the sum of forces in
the x-direction is zero. T contributes no force in the y-direction since the
sum of forces is already zero in that direction.
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YF,=0 — 60co0s53.13°+ 72¢c0s48.19°=T

Calculate T as shown below.

Keys: Display: Description:

| {DG} Puts calculator in
Degrees mode.

60 [x|53.13 Calculates 7.
72[x]48.19
[=] 83.9998

Thus, the tension 7 must be about 84N for all the forces to be in equili-

brium.

Moments and Couples

In addition to the vector sum of forces acting on the body, another con-
cern is that the moments (sometimes called torques) acting on a body sum
to zero as well. The moment M, of a force F about a point O is given by

M, =rxF

where r is a vector from O to any point on the line of action of F. The
. . . . * .

operation aboveis a cross product and its result (M,,) is a vector.  Since
the sum of moments must be zero,this gives

M, =0

When two-dimensional problems are encountered, the formula for
moments is particularly simple

M, =Fd

where M, is the magnitude ofM, , F is the magnitude of F, and d is the

perpendicular distance between O and the line of action of F. In two-

* For more information on cross products and vectors in general, see appendix B.
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dimensional problems the moment can be thought of as acting either
clockwise or counterclockwise about O ; this is easily determined by
inspection.

A couple is a special kind of momentthat arises when two equal and
opposite forces F and —F are separated by a perpendicular distance d.
The moment due to a couple is given as M = Fd where F is the magni-
tude ofF andM is the magnitude ofM. It is sometimes convenient in
three-dimensional problems to use the formula

M =rxF

where r is a vector connecting any point on the line of action of —F to
any point on the line of action of F. The important thing to remember
about couplesis that they produce a momentthatis the same about any
point O .

Example. Find the vertical forces F, and F, at each of the mountings 1
and 2 for the 500N gear reducer in the figure below.

 

  
 

   

30 N'm

20 N'm

1 > 1

I— —11

€——350mm—> €—150mm—>

1 Y 2
500N
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If point 1 is chosen as the point about which moments will be calculated,
notice that F; contributes no moment (the line of action of F, passes
through point 1). The couple is the same about any point as noted previ-
ously and the sum of moments about 1 becomes

YM, =0 — 30+20+500(.350)=(.500)F,

where the clockwise moments due to the two couples and the housing
weight have been equated to the counterclockwise moment from the force
at 2. To find F,, follow the keystrokes below.

Keys: Display: Description:

30[+]20[+]500 Calculates F,,.
35[=][=].5[=] 450.0000

Next, notice that the forces act only in the y-direction, giving the equation

YF, =0 — F+F,=500

This can now be rearranged to find £, =500—-F, or F;=50N.

Resultants

Sometimes the forces, moments, and couples acting on a body are
replaced by an equivalent force that gives the same net effect on the body.
This force is called the resultant of the system. No new equations are
needed to find resultants; instead of all forces and moments adding to
zero, they now add to a resultant force R and moment M.

Example. For the beam shown in the figure below, find a resultant force
R and its distance d from the supporting weld at W'.
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The forces act only in the y-direction. Summing forces gives

YF,=R — 94+23-8-15=R

To calculate R, follow the keystrokes below.

Keys: Display: Description:

9.4[+]2.3[-]8 Calculates R .
[-]1.5[=] 2.2000

Thus, R is 2.2kN directed upward.

The moment about W is found as

SM, =M — 23(1)+9.4(.6)-8(.8)-1.5(.3) =Rd =2.2d

This gives

_23(1)+9.4(.6) —8(.8) - 1.5(.3)
- 22
 d

To calculate d, follow the keystrokes below.

Keys: Display: Description:

[(]2.3[+]9.4[x|.6[-] Calculates d .
8[x].8[-]1.5[x].3[)]
[+]2.2[=] 0.4955

Thus, d is about 0.5 meters.
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Dynamics

Motion

As a convenience, many texts use dot notation to indicate time derivatives

of quantities. Thus, % becomes x and Z—%zc- becomesx. Many motion
t

problems employ the basic relationships v =x and @ =v =x.

Example. A plane flying at velocity v is at a height 4 of 10km. It is
being tracked by radar as shown in the figure below. If the angle 6 is 56°
and is increasing at a rate of 0.01 rad/sec, find v.

 

7

From the figure, x, h, and r form a right triangle and

X
tanf=—

h

Noting that 2 is constant and differentiating with respect to time gives

fsec26=sec hx
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Some simple algebraic rearrangements yield

x =v =hfsec?0

Since 6, i, and § are known, v can be calculated as shown next.

Keys: Display: Description:

B {DG} Sets Degrees mode.

10000 [x].01 56 Calculates v .

[cos|[1/x]B

3

[=] 319.7987

Thus, the jet is flying at 319.7987 m/sec or about 1150 km/hr.

Work and Kinetic Energy

The work U done by a force F which acts on a body along a pathx is
given by

U =[Fdx

If the force is constant along the path and is in the same direction as the
motion, this simplifies to

U=Fx

where F is the magnitude of the force, and x is the path length.

The kinetic energy T of a body is the energy due to its motion, given by

1
= — 21 2mV

where m is the mass of the body in kg, v is the velocity of the body in
m/sec, and T is the kinetic energy in joules. Work and kinetic energy are
related by the work-energy relation

U=AT

where AT is the change in kinetic energy as a body moves from the begin-
ning to the end ofits path.
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Friction

In many problems, the effects of friction must be included in the analysis.
For a good number of surfaces a coefficient offriction p is known and the
simple relation

F =uN

is an adequate model. Here, F is the force due to friction and acts in a
direction opposite to the motion of the body. N is the component of
force between the two bodies which is normal to their mating surfaces.

Example. Find the velocity v of the 30 kg crate when it reaches point B.
The crate has an initial velocity of 5 m/sec at pointA and the coefficient
offriction is 0.25.

    

B
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The free body diagram is shown enlarged in the figure. The normal force
R is equal and opposite to Fy, the normal component of the crate’s
weight. From the figure, thisis

R =mgcos 20°

Keys: Display: Description:

B {DG} Puts calculator in
Degrees mode.

30 9.80665 20 Calculates R .
[cos][=] 276.4571

25[=] 69.1143 Calculates uR , the fric-
tional force.

The component of the crate’s weight in the direction of motion (Fr) is
given by

Fr =mgsin 20°

Keys: Display: Description:

30[x]9.80665[x]20  100.6222 Calculates Fr.

[SIN] (=]

Now, the work done by gravity as the crate slides down the incline is
found from the equation U =Fx. F is the total force in the direction of
motion and is given by Fr —uR for this problem.

Keys: Display: Description:

100.6222[-]69.1143 31.5079 Calculates F .

(=]
15[ =] 472.6185 Calculates U .
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The change in kinetic energy is given by

a7 = Lmgtsgvd
And finally, vg is found using the work-energy relation

U=AT=-1—mg(v32—vA2) —  yp=|=—+v}
2 mg

Since U, g, m, and v, are known, vy is calculated as shown below.

Keys: Display: Description:

[(]2[x]472.6185 =] Calculates vg.
[(]30[x]9.80665 )]

[+]150 3] =] 5.3116

Thus, the crate has a velocity of 5.3116 m/sec when it reaches point B.
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Thermodynamics
 

This chapter contains the following examples from thermodynamics:

m Using linear interpolation with thermodynamic tables.

m Pressure calculations using a manometer.

m Finding the change in quality of saturated water.

m Heat transfer using the first law of thermodynamics.

m Net change in entropy for a process using the second law of thermo-

dynamics.

To work the examples in this chapter, you may find the thermodynamic
tables available in most texts helpful.
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Linear Interpolation

When the values needed in a thermodynamics calculation fall between
successive entries in a table, linear interpolation is used. In other words,
it is usually assumed that table entries are spaced close enough together
so that negligible error is introduced when a linear relationship is
assumed between any two adjoining entries. Your HP-22S performs
linear interpolation calculations easily using the {x'} and {y'} keys in the
STAT menu.

The steps for performing linear interpolation are as follows:

1. Clear any previously stored statistical data by pressing [}

{2}
2. Enterthe first x,y -pair asx; [INPUT]y, :

3. Enter the secondx,y -pair as x, Yo .

4. Enter the known x -value in the display and press {LR.} {y}.

These keystrokes draw a straight line through the two x,y -pairs that you
input and then find ay -value (y' in the menu) lying in this line given an
x-value. You can also find an x -value given ay-value in a completely
analagous fashion to that given above.

Example. Superheated water vapor is in a rigid, sealed container at
163°C. If the pressure of the water vapor is 70kPa, whatis its specific
volume v in m3/kg?

From tables at 70kPa, the following information is available:

3

160°C — v =28412
kg
3

180°C — v =29752%
kg

* For additional information on using the statistical functions of your HP-22S, see chapter
5 of your owner’s manual.
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Use the method for linear interpolation outlined previously with

x; = 160

y1 = 2.841
Xq = 180

yo = 2975
x = 163

Keys: Display:

B {z}

160 [INPUT] 2.841 n=1.0000

180 2.975 n=2.0000

163 {LR}{y} y=28611

Description:

Clears all previously
stored statistical data.

Storesthe first x,y -pair.

Stores the secondx,y -

pair.

Calculatesy givenx.

Thus, at 163°C, v is approximately 2.8611 m®/kg.
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Pressure

Pressure is defined as the normal component of force per unit area. The
SI unit for measuring pressure is the pascal (Pa) and is given by

1Pa = 1IN/m?.

A device commonly used to measure the difference in pressure AP is a
liquid-filled u-shaped tube called a manometer. The relation

AP = pgl

is used where p is the density of the liquid in the tube, g is the acceleration
due to gravity, and L is the difference in height between the liquid levels
on the two sides of the tube.

Example. A pressure drop across an orofice in a natural gas line is
measured with a mercury manometer. At 20° C, mercury has a density of
13,546 kg/m>. Ifg = 9.80665 m/sec?, whatdifference in height L
corresponds to a 20kPa pressure drop?

The HP-22S equation

P=DxGxL

is used to solve this problem where L is the height difference, G is the
acceleration due to gravity, D is the liquid density, and P is the change in
pressure. Type this equation into your list of equations and follow the
next set of keystrokes.
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Keys: Display:

B {L} DGLP
P?value

20000 P =20,000.0000
D?value

13546 D=13,546.0000
G?value

9.80665 G=9.8067
L=0.1506

Description:

Selects L, prompts for P.

Stores P, prompts for D .

Stores D, prompts for G .

Stores G, calculates L .

Thus, a heightdifference of 150.6 mm correspondsto a 20 kPa pressure
drop.
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Specific Volume, Density, and Quality

Density is a familiar concept to most people. The reciprocal quantity,
specific volume v, is used extensively in thermodynamic calculations.
Specific volume has units of m®/kg. The qualityx of a substance is
defined as the ratio of vapor mass m, to total mass (vapor mass plus
liquid mass m,) of a substance when it is in the saturation state (exists in
both liquid and vaporstates).

_
- mg +mf

This can also be found using the equation

v = (1-x)vy +xv,

where v, and v, are the specific volumes of the liquid and vapor, respec-
tively, and v is the total specific volume.

Example. A rigid, sealed vessel contains saturated water at 150° C with a
quality of 0.47. The saturated wateris heated to a temperature of 180° C.
Find the new quality.

Since the vessel is sealed, no mass can leave or enter it. Since the vessel is
rigid, no change in volume can occur. Thus, the specific volume does not
change as the temperature changes. If the system at 150° is denoted as
state 1 and the system at 180° as state 2, then the total specific volume in
state 1 is found as

vy = (L-xq)vy,+x1v,,

From tables,

vy, = 001091

v,,= -3928

vy, = 001127

Vg, = -19405

Substitute these values into the equation above to obtain v, as shown on
the next page.
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Keys: Display: Description:

[J1[=]-47])] Calculates v;.
001091 [+].47
.3928[=] 0.1852

Now, find x,, the quality at state 2:

Vi— Vf2

vy = v = (1=xg)vp, +xov,, — — =X
Voa~V1a

To obtain x,, follow the keystrokes below.

Keys: Display: Description:

[(].1852[-].001127 Calculates x.
D][=[(.19405
[=].001127 [)][=] 0.9541

The quality at 180°C is, therefore, 0.9541.
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The First Law of Thermodynamics

Thefirst law of thermodynamics is often referred to as the law of the con-
servation of energy. When a system changes from an initial state 1 to a
finalstate 2, the 1st law may be expressed as

1'126Q - f::SW = AKE + APE + AU

where

-’.126Q is the heat transferred to the system

fl25W is the work done by the system as it goes from state 1 to 2

AKE is the change in the kinetic energy of the system
APE is the change in the potential energy of the system
AU is the change in the internal energy of the system

Notice that §6Q and §W are used as integrands instead of d Q and dW.
The § indicates that Q and W arepath functions. That is, they depend on
the process used in moving from state 1 to state 2, not just the initial and
final states.

The internal energy U is often expressed as a per unit mass quantity
where u =U/m . Like specific volume, the internal energy is included in
most thermodynamic tables and exhibits the same relationship with
quality:

u = (1-x)u; +xu,

Example. Assume that 3kg of wateris in the vessel of the previous
example. Using the first law of thermodynamics, calculate the heat in
joules added to the system to raise its temperature from 150°C to 180°C.

Here, the first law equation becomes

2 2

heatadded=f15Q = AKE + APE + AU + flsw
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No work is done by the system as it moves from state 1 to state 2 and
changesin kinetic and potential energies are negligible. This gives

2
f16Q = AU = muy-u,)

From tables,

uy= 631.68 kI/kg
u, = 2559.5 kJ/kg

uy,= 762.09 kI/kg
u,,= 2583.7kl/kg

Since the qualities in both states 1 and 2 were found in the previous exam-
ple, the equations

U, = (1—x1)uf1+x1uglu2 = (1—x2)uf2+xzug2

are employed. Follow the keystrokes on the next page to find u, and u,
recalling that x; = 0.47 andx5 = 0.9541.

Keys: Display: Description:

[J1[=].47])] Calculates u;.
631.68[+].47
2559.5[=] 1,637.7554

[STO]A A=1,537.7554 Stores 1, inA.
[(1[=].9541[)] Calculates u .
762.00 [+].9541
2583.7 =] 2,500.0881

(-] Al=] 962.3327 Calculates u,—u;.

3[=] 2,886.9981 Calculates AU = mAu.

Thus, about 2887 kJ of heat are transferred to the water to increase its

temperature.
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The Second Law of Thermodynamics

The second law of thermodynamicssays, in essence, that construction of a

perfectly efficient machine or process is impossible. For example, if 1000
kJ of heat are transferred to a steam boiler, the boiler will always deliver
less than 1000 kJ of work. The second law is described quantitatively
using a property called entropy S. As a per-unit mass quantity, the entropy

 iss = S/m. Entropy is usually expressed in units of where K is
kg-K

degrees Kelvin. Like v and u, entropy s appears in most thermodynamic
tables.

Using S, the second law demands that

2

ASne = ASp + ASpey = ASp, —Ti 50 >0
01

where AS,,, is the change in entropy of the system, AS,,,, is the change in
entropy of the surroundings, and T, is the temperature of the surround-
ings in Kelvin.

Another property, enthalpy H, is included in its per-unit mass form 4 in
most tables. The units of 4 are generally kJ/kg. For the special case in
which a quasi-equilibrium process occurs at constant pressure

2

f15Q=AH

This says that the heat transfer is equal to the change in enthalpy for con-
stant pressure, quasi-equilibrium processes.

Example. A constant pressure of S00kPa is maintained in a rigid, sealed
vessel containing 10kg of saturated water. At this pressure, the saturation
temperature is 151.86°C. The water vapor is condensed at constant tem-
perature until it is all liquid and heatis transferred to the surrounding air.
The ambient air temperature is 20°C (293.15 K). Calculate the net change
in entropy.
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To solve this problem, first find the entropy change of the system (the
water in the vessel). From tables at 500kPa and 151.86°C,

 

 

5, = 6.8213 keK (entropy of vapor)

sy = 1.8607 Ky (entropy ofliquid)
kg'K

And the system’s entropy change is found as

ASyy = MASy, = m(s2—51) = m(sy—5y)

Keys: Display: Description:

10[x][(] 1.8607 -] Calculates AS,,, .
6.8213[)]( =] —49.6060

Now the change in the entropy of the surroundingsis calculated as

ASpy = - —l—j‘sgourr To?

However, this is a constant pressure process and

_mbh m(hy—hs) _ m (hy —hy)2

J 60 =aH — AS,, = e T T,  

From tables,

h, = 2748.7 KJ/kg
h; = 640.23 kI/kg
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Follow the keystrokes below to calculate AS,,,, .

Keys: Display: Description:

10(x][(] 2748.7 -] Calculates m Ah .
640.23[)][=] 21,084.7000
[+]3[=] 7,028.2333 Divides by T(in Kelvin)

to calculate AS,,,,.

The final answeris obtained from

ASp = DSy + ASpy -

Keys: Display: Description:

49.6060 Calculates AS,,; .
B [=] 6,978.6273

The net change in entropy is positive as the second law requires and is
equal to 6,978.6273 kJ/K.
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Electrical Fundamentals
 

This chapter contains examples from electrical fundamentals:

m Current in a DC circuit.

m Finding a y-equivalent circuit.

m Steady-state current in an AC circuit.

m Cut-off frequency of a low-pass filter.
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DC Circuit Analysis

DC circuit analysis will almost always consist ofcircuits with only resis-
tors, dependent sources, and independent sources. When inductors
appear in a DC circuit, they are treated as short circuits (no resistance),
and when capacitors appear, they are treated as an open circuit (infinite
resistance). The formulas for DC analysis are:

m The passive sign convention requires thatif the voltage across a cir-
cuit element is positive to negative (a voltage drop) in the direction of
current flow through the element, a positive sign is used in the expres-
sion relating voltage and current for the element. Otherwise a nega-
tive sign is used.

m Kirchoff’s voltage law demands that the sum ofvoltage drops around

any closed loop in a circuit is zero.

m Kirchoff’s current law demands that the algebraic sum of currents at
any node in a circuit is zero.

m Ohm’s Law:

L-r

m The power in a general circuit component:

P=IV

m The powerin a resistor:

P=IR

where V is the voltage in volts, R is the resistance in ohms, I is the
current in amperes, and P is the power in watts.
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Often,resistors will be connected in series or in parallel as shown below.

A— JTET,
Series

 

Parallel

The formulas for the equivalent resistance ofresistors connected this way
are given below.

 

m Series

N
= VR,

k=1

m Parallel

1 Y1
R,,§R,

Example. Find the current 7, in the 100{2 resistor for the circuit below.

SOQ

 

.|.

o= ==
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To solve this problem, first find the total current I by finding the
equivalent resistance of the circuit. The 1002 and 300 resistors are con-
nected in parallel. the formula for parallel resistance becomes

R, - —L

Calculate R,,, as shown below.

Keys: Display: Description:

100 [1/x][+]300[1/x] Calculates R,.
=10/x] 75.0000

The circuit can now be redrawn as shown.

%500

X 75 Q
12V =—C $

The total current I can be found easily since the 50€2 and 7502 resistors
are connected in series giving a total resistance of 50 + 75 = 125€). The
total current / is then found using Ohm’s Law of / = V'/R.

 

  
 

Keys:. Display: Description:

12[£]125[=] | 1=0.0960 Calculates and stores 1.
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From the first figure, observe that I flows through the 5012 resistor and
splits into the branches containing the 1002 and 30012 resistors. For two
reistors R, and R, in parallel, the current divider equation may be used
where

IR,
Il= 

Here, R;=1000Q and R,=30012. Use this equation to find 7,.

Keys: Display: Description:

1[x]300 [+][(] Calculates ;.
100[+]300])][=] 0.0720

Thus, 72 mA flow through the 10042 resistor.
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A-Y Conversions

Resistors can be connected in a A configuration (sometimes called a
configuration) or in a Y configuration (sometimes called a T
configuration) as shown below.

Ra Rp
 

 

Rc

z
Delta Wye

Circuit analysis is sometimes simplified by transforming a A configuration
to a Y configuration or vice-versa. The formulas below show how to do
this.

AtoY:

R -TR
* R,+R,+R,

Rb=_R_1’L
R, +R, +R,

RFRRy
° R,+R,+R,
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Y to A:

RbRc
R=——m—

R, +R, +R,

R,R,RyRR, +Ry +R,

RaRb

" R, +R, +R,

Example. Find the Y equivalentcircuit for the A circuit below.

 

   

 

L+ -

10004220V

'1
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First, calculate R, .

Keys: Display: Description:

100 200 [£] Calculates R, and stores
[(J 100 200 700 R,+R,+R, in T (for
D] T[=] 20.0000 total).

Next, calculate R, .

Keys: Display: Description:

700 200 [+] Calculates R, .
T[=] 140.0000

Finally, calculate R, .

Keys: Display: Description:

700 100 [+] T Calculates R,.
[=] 70.0000

Thus, R, =200, R, =1401), and R, =7012.
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Sinusoidal Steady-State Analysis

When a circuit consisting of resistors, inductors, and capacitors is driven

by a sinusoidal voltage or current, the steady-state response is also
sinusoidal with the same frequency as the driving voltage or current.

Impedance

In AC steady-state analysis, Kirchoff’s voltage and current lawsstill apply,
but Ohm’s law is replaced by a more general expression that allows for
other circuit elements besides resistors. Instead ofR, a quantity Z called
the impedance of the elementis used to give the formula ¥V =1Z. Notice
that ¥ and I are used to denotephasor quantities which will be explained
in a moment. The impedances oflinear circuit elements are as follows:

m Capacitors

 
ZC_jiC

m Inductors

Z; =jul

m Resistors

Zr=R

Here C is the capacitance in Farads, L is the inductance in Henrys, R is
the resistance in Ohms, w is the radian frequency of the driving source,
and j is the unit imaginary number.” Rememberthat these impedances
are only valid when the driving function is sinusoidal of radian frequency
w. Notice that the impedanceslisted above are both real and imaginary
numbers. Hence, their combinations yield complex numbers in general.
Often,it is most convenient to manipulate complex numbers such as

* It is customary to use j as the unit imaginary number instead of i since i is often used to
denote current.
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impedancesin their exponential form.” A shorthand notation called angle
notation is often used where a complex number of magnitude4 and angle
f is denoted byA /f. This notation will be used in this book.

The formulas for computing equivalent impedances are the same as for
resistors.

 

m Series

N

Zeg = YZk
k=1

m Parallel

1 _»1
Zeq k=1 Zk

Phasors

It can be shown thatif a sinusoidal voltage or current Msin (wt + ¢) is
replace byitsphasor transform Me’?, then this complex number (the pha-
sor) can be used in the equations relating voltage and current such as
V =1Z. Thus, phasors are a shorthand way of manipulating sinusoidal
functions as complex numbers. Phasors are denoted by boldface type to
distinguish them from other complex numbers.

Example. Find the steady-state current i in the circuit below.

50 0 25, F
| £
I\

v = 100 sin(1000t) v(f) C 100 10mH
i

 
 

* For more information on complex numbers see appendix A.
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From the figure, the frequency of the driving voltage is w= 1000, its magni-
tude is 100 volts, and its phase is 0°. Thus it is denoted by the phasor
V=100/0°. To find i, first redraw the circuit as shown where each of the
impedances have been calculated using the appropriate formula and
w=1000.

 
 

 
 
 

 
50 -j40

V =100/0° C*) / 10 j10

     

   
 

      

    

The impedances in parallel are converted to an equivalent impedance
using a special case of the parallel impedance formula when there are
only two impedances

ZZ
Z, 172

Z,+Z,

Here, Z,=10 and Z,=j 10 which gives

Z,, = 1190

10+j10

In angle notation, the numerator is written as 100/90°. To express the
denominator in angle notation,it is necessary to convertit to polar form
using the rectangular-to-polar function.

Keys: Display: Description:

B {DG} Sets Degrees mode.

108 x=10.0000 Stores the real part of the
number.

108 y=10.0000 Stores the imaginary part
of the number.
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B r=14.1421 Magnitude of denomina-
tor.

0 #=45.0000 Angle of denominator.

This gives the impedance in angle notation as

__100/90°
0 14.1421/45°

It is easiest to multiply and divide complex numbers when they are in
exponential form. To divide, simply divide magnitudes and subtract
angles; to multiply, multiply magnitudes and add angles. Here division is
needed. Thus,

i 100 100/90° 100Z =i - - /90°-45° = 7.0711/45°
“0T 104510  14.1421/45°  14.1421
  

This equivalent impedance in polar form is now converted to rectangular
form so it can be added easily to the impedances of the capacitor and 5002
resistor.

Keys: Display: Description:

7.0711 8 r=7.0711 Stores the magnitude of
the impedance.

458 §=45.0000 Stores the angle of the
impedance.

| X=5.0000 Calculatesthe real part
of the impedance.

B y=5.0000 Calculates the imaginary
part of the impedance.

This gives Z,, =5+ 5. Adding this to the other impedances in series with
it gives Z;4y =55-j35. This is converted to polar form and angle nota-
tion.
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Keys: Display: Description:

5508 X=55.0000 Storesthe real part of the
total impedance.

35 y=-35.0000 Stores the imaginary part
B of the total impedance.
B r=65.1920 Magnitude of total

impedance.

B f=—-32.4712 Angle of total impedance.

 To arrive at the final result, the equation I = ZV is used. Thus,

 

total

Vv 100/0° __ 100 /0—(-32.4712°) =1.5339/32.4712°I= = =
Zita  65.1920/-32.4712°  65.1920

which gives i =1.5339sin(1000¢ +32.4712°) amperes.
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Frequency Response

Frequency response is described as how a circuit responds in the steady
state to sinusoids of different frequencies.

Example. The circuit below is a simple low-pass filter.

R

 

 

o JV\, 0

Vin r7TN\NC Vout

O O  

Intuition verifies this by noting that at frequency 0 the capacitor allows no
current flow and all the input voltage V;, appears across the capacitor. At
infinite frequency the capacitor behaves like a short circuit, and no voltage
appears acrossit giving V,,, = 0. Thus, the filter effectively keeps very
high frequencies from appearing at the output but allows low frequencies
to appear as an output voltage. The cut-offfrequency is that frequency at

which |V, | =\/i5 |Vio |. IR = 1000Q and C = 50 4F, find the cut-

off frequency for the abovefilter.

Using the voltage divider equation, the input voltage can be related to the
output voltage as

V., = I/in‘ZC

" Zpt+Zg

Using the formulas for Zg andZ gives

1

 

Vo
Voo jwC Vi
o — - .

R+ .1 jwRC +1

jwC
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Comparing this equation with the defining equation for the cut-off fre-
quency gives

 

  
1 1 1

\/5 ijC +1 \/1+(wRC)2

This last step was accomplished by using the formula for finding the mag-
nitude of a complex number, given on page 143 in appendix A.

Key in the HP-22S equation

1+SQRT(2) =1+SQRT(1 + SQ(WxRxC))

Then follow these keystrokes:

Keys: Display: Description:

B {W} CRW Selects W, promptsfor
R?value R.

1000 R=1,000.0000 Stores R, and prompts
C?alue for C.

50 @ [E][-]6 C=0.0001 Stores C and calculates
W=20.0000 w.

The cut-off frequency is at 20 radians per second or 2w = f = 125.67 Hz.
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Advanced Equation Writing
Techniques
 

 

More about EVAL and SOLVE

Chapter 6 of your owner’s manual describes several differences between
and [SOLVE]. These are repeated here, with some additions.

1. When an equation is of the form:

unknown variable = algebraic expression

evaluates the right side of the equation and sets the unknown
variable equal to that value. When [} is pressed, the calcula-
tor allows you to select which variable is solved.

2. When the equation is an algebraic expression (no equal sign occurs),
prompts for the value of each variable in the

expression and then calculates the value of the expression. When
| is pressed, the calculator allows you to select which vari-
able will be solved for and then solves for this such that the expres-
sion is equal to zero.

3. When an equation contains more than one variable on the left-hand
side of the equal sign, pressing automatically switches the
HP-22S to
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4. When an equation is of the form shown in item 1 above, and the
algebraic expression contains the unknown variable, evaluates
the algebraic expression using the current value of the unknown vari-
able. This result is then assigned as the new value of the unknown
variable. Pressing [} on the other hand, finds a mathemati-
cally "correct" solution for the equation.

The use of in item 4 has many practical applications, as shown next.
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Using New and Old Values with EVAL

Many problems involve computing a new value of a variable based on the
old value ofthat variable. These are often referred to as recursive prob-
lems. The next example shows how a simple recursive problem might
arise and gives an HP-22S equation that models the problem.

Example 1: A Traffic Counter. To determine if enough traffic
passes through an intersection to justify purchasing a stoplight, a city
installs an electronic counter to record the number of vehicles that use the
intersection in a month. If the number exceeds 5,000, a stoplight is to be
purchased.

Here, the counter must incrementits current value by 1 each time a vehi-
cle passes. Thus, the current value of the counter is used to find the next
value, creating a recursive problem. The HP-22S equation

A=A+1

will behave like a counter when is pressed. Notice that4 appears
all byitself on the left side of the equation and also appears on the right
side. Thus, the conditions described in item 4 on page 131 apply. Each
time is pressed, the right side of the equation (A+1) is evaluated
using the current value of4. This result is then assigned as the new value
ofA . Key the above equation into your list of equations, press and
follow the keystrokes below.

Keys: Display: Description:

EVAL A?value Displays current value of
A, prompts for new
value.

0 A=0.0000 Enters the value 0 for4,

A=1.0000 and then computes the
new value for4 using
this value.
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EVAL A?1.0000 Displays current value of
A , prompts for new value
of4.

A=1.0000 Keeps the current value
A=2.0000 for4 (1), and then com-

putes the new value for
A using this value.

This process can be repeated indefinitely to continue incrementingA by
1. Notice that if [} is pressed instead of the calculator
displays NO ROOT FND. The equation4 =4 +1 has no solution as
can be noted by subtracting4 from each side.

Example 2: Computing a Summation. A summation can also be
thought ofas a recursive problem with the next value of the sum equal to
the current value plus the next term. Consider the series

1b
3=0 2

It is known that this sum approaches 2 as N— oco. Find the smallest value
for N such that the sum is within 1% of2.

This involves finding the smallest N such that the sum is greater than or
equal to 1.98. The HP-22S equation

A=A+.5"0

can be used to solve this problem. Notice again that the conditions of
item 4 on page 131 are met and thus, can be used to add the next
term of the sum (. 5~J) to the current value of the sum (.4). This
result is then assigned as the new value of4. Key in this equation, press

and follow the next set of keystrokes.
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Keys: Display:

EVAL A?value

0 A=0.0000

J?value

0 J=0.0000

A=1.0000

EVAL A?1.0000

A=1.0000
J?70.0000

1 J=1.0000

A=1.5000

Description:

Displays current value of
A, prompts for new value
of4.

Enters 0 forA since you
want the running total of
the sum to start with
zero. The current value
ofJ is then displayed and
the calculator prompts
for a new value.

Enters 0 for J and calcu-

lates a new value for 4.

Thisis the value of the

sum when the first term

is added (N =0).

Displays current contents
of4 and prompts for
new value of4 .

Keeps current contents of
A since thisis the value
of the sum to which you
want to add the next
term. Displays the
current value of/, and

prompts for a new value.

The value ofJ is assigned
its next value of 1, and
the next term in the sum
is added to give the new
value of4 .

You should continue this process by pressing retaining the current
contents of4, and incrementing J by 1 until a result of4 =1.9844 is
obtained. This occurs whenJ =6. Thus, the smallest value for N satisfy-
ing the given requirement is N =6.
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The previous two examples could have been done with storage arithmetic,
but this would result in more keystrokes. In example 2, for instance, each
term ofthe series could be computed with the HP-22S equation
Q=.5"J where J is incremented each time Q is calculated. Each time
Q is found, the result could be accumulated in variableA using
A. This is clearly more cumbersome than the method used in example 2.
In general, use of in the manner presented here can often replace
the manual keystrokes used in storage arithmetic.

Example 3: Computing the Covariance. In chapter 8 of your
owner’s manual you are given an equation for finding the covariance of
x,y-data. There you are required to use storage arithmetic 0).
Using the EVAL technique of this book, the HP-22S equation

C=C+ (X—x)x(¥-y)=+n

eliminates the need for manual storage arithmetic.

Find the covariance of the data in the example of your owner’s manual.
You can use the same keystrokes as shown in the owner’s manual except
now each time you press the calculator will prompt for C. Store a
zero in C initially. Thereafter, simply press after each to
retain the current value of C. Also, be sure to disregard the C,

C, and C keystrokes. You should obtain the same result of
C =1.08 but with eight less keystrokes.

* The variables X,y and » are found in the [STAT| menu.
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Using Control Variables

When a variable is used in an HP-22S equation to control the form of the
solution,it is referred to as a control variable. An example ofthis is the
variable J in the quadratic equation in the LIBRARY of your HP-22S.
Here, J simply serves the role of a + sign and allows both real roots to be
computed using the same equation.

This technique is quite useful and eliminates having to store two separate
equations in memory which differ only by a minus sign. This not only
saves memory, but it also saves keystrokes by eliminating the need to load
a different equation. An extension of this technique involves using a con-
trol variable at two different places in an equation. This is introduced
next.
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Multiplication by Zero

When you are required to find results from two expressions that use the
same variables, a simple and useful technique is that of multiplication by
zero. An HP-22S equation of the form

unknown variable = (control expression A X expression 1) +
(control expression B X expression 2)

can use a control variable in the two control expressions to display either
the value of expression 1 or expression 2 when the unknown variable is cal-
culated. This is accomplished by causing control expression A to be 1
while control expression B is 0, and vice-versa. A specific example will
illustrate this idea.

Example: Using Multiplication by Zero. Suppose you want to com-
pute both @ + b¢ and In(a —-b +c¢) for specific values ofa, b, and c.

The HP-22S equation

JIx (A+B~C)+ (1-J)xLN (A-B+C)

will accomplish this by using the control variable J. Notice that when
J =1, the natural log expression is multiplied by 0 and the other expression
is multiplied by 1. WhenJ =0, the opposite result occurs. Key this equa-
tion into your list of equations, and press to find the values of the
two expressions for a =2, b =3, and ¢ =4.
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Keys: Display:

EVAL J?value

0 J=0.0000
A?value

2 A=2.0000

B?value

3 B=3.0000
C?value

4 C=4.0000

EXPR=1.0986

EVAL J?70.0000

1 [INPUT] J=1.0000
A?2.0000

A=2.0000

B?3.0000

B=3.0000

C?4.0000

C=4.0000
EXPR=83.0000

Description:

Prompts for value ofJ
and displays current
value.

Stores J and prompts for
A.

StoresA and prompts for
B.

Stores B and prompts for
C.

Stores C and calculates

the value of the second

expression In(a +b —c).

Prompts for value ofJ.

Stores J and prompts for
A.

StoresA and prompts for
B.

Stores B and prompts for
C.

Stores C and calculates

the value of the first

expressiona +b°.

On page 22, multiplication by zero was used to solve a practical problem
that arises often in science and engineering, that of finding complex roots
for a quadratic equation.
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Storing Constants

When certain constants are used repeatedly, you may wish to store them
in your list of equations. For example,to store the acceleration due to
gravity (9.80665 m/sec?) in a variable called G, use the HP-22S equation

G=9.80665

When you press EVAL|, this valueis stored in G ; G can be used
whereverthis constant is needed in your calculations. A number of con-
stants can be stored in this way and used as needed.

If you wish to store the acceleration due to gravity in both SI and British
Engineering System units, the two equations

G=9.80665
G=32.1740

can be used. The second equation gives g in ft/ sec2. By making either
one of these equations the current equation in your list of equations,
pressing stores the appropriate value. You may want to adopt as a
memory aid a convention of always placing the constant with SI units in
your list of equations so that it appears before the same constant with Brit-
ish Engineering System units.
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A Helpful Hint

This chapter has introduced several tools that give you the ability to write
more powerful HP-22S equations. Of course, you will not want to enter
all the equations you encounter into the list of equations in your HP-22S.
In many casesit is faster simply to work the equation through manually.
However, when you must use an equation repeatedly, or when you are
finding roots, you will want to write an appropriate HP-22S equation.
When doing so, be sure to look for applications of the techniques
presented here. Judicious use of controlvariables, and multiplica-
tion by zero will save you time by reducing keystrokes; they also utilize the
memory available for storing equations in a more efficient manner.
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Additional Algebra Formulas
 

Exponent Properties

For the propertieslisted here, let a, b, andx be real numbers.

The Common Base Property:

xoxb = yo+b

The Power of a Power Property:

(x®)° = x

The Product of Base Property:

(ab)® = a*b*

The Negative Exponent Property:

a'-z = L

az

The Fractional Exponent Property:
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Logarithm Properties

By definition, the logarithm to the base a of b is the number x where

x =log, b ifand onlyif a® =b .

Here,a >0,a #1,and b >0.

Frequently used properties of logarithms are as follows with O, P, and a
positive numbers, @ #1, and x any real number:

The Power of a Logarithm Property:

Q%@ = 0

The Logarithm of a Product Property:

log, (PQ) = log, P + log, O

The Logarithm of a Fraction Property:

log, —IQi = log, P - log, O

The Logarithm of a Power with Common Base Property:

log, a® =x

The Logarithm of an Inverse Property:

log, 1. -log, P
P

The Logarithm of a Power with Different Base Property:

log, P* = x log, P

The Logarithm of Unity Property:

log,1=0
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The Change of Base Formula:

_ log, b
 log, b =

s log, a

where a >0,c¢ >0,a #1,¢ #1, and b >0.

Complex Numbers

Conversion Formulas

The Rectangular-to-Polar Conversion:

r =Va?+ b2 6= tan-1 2
a

The Polar-to-Rectangular Conversion:

a =r cosf = r sinf

Useful Results of Complex Numbers. For the following results,let
z =a +ib andw =c + id witha,b,c, and d real.

Equality of complex numbers:

zZ=w if and onlyif a=c and b =d

Addition of complex numbers:

z+w=(a+ib)+(c+id)=(a+c)+i(b +d)

Subtraction of complex numbers:

z-w=(a+ib)-(c+id)=(a-c)+i(b-d)

Multiplication of complex numbers in rectangular form:

zw = (a +1ib) (c +id) = (ac - bd) + i(ad + bc)
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Division of complex numbers in rectangular form:

z _a+ib _(a+ib)(c—-id) _ (ac +bd) +i(bc - ad)

w c¢+id (c +1d)(c-1d) c? +d?
  

Euler’s Identity:

et= cosf + isind

where 6 is in radians.

Complex conjugate z* ofz (wherez = a +ib = reid):

2" =a -ib =re-1°

Multiplication of complex numbers in polar form:

16y i(6 +6)igIW =T,e “rye =TI, e

Division of complex numbers in polar form:

Inverse of a complex number:

1 a—ib 1 —if
—_— = = _e

z  a?+bp2?2 1
 

Logarithm of a complex number:

In(z) = In(re'®) = In(r) + i(27k + )

where 6 is in radians, k = 0,1, 2,3,...,and k = 0 is the principal value of

the logarithm function.

Real powerp of a complex number:

zP = [rel%P = rP ¢iP? = rP [cospf + isinpf]

where 4 is in radians.
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Integer roots of a complex number:

zl/n = rl/“ eio/n = rl/n' COSM

n
+ isin———-—et 2km

n

where 0 is in radians and n is any positive integer. The n n th roots ofz
can be found by substituting k =0, 1, 2,...,n — 1. This result is known as

De Moivre’s Theorem.

Complex power of a complex number:

zw = eln(z") = ewinz (¢ Inr,— d&z)ei(dlnrz+ c)
=€

where 6 is in radians and Euler’s Identity is used to expand the second
exponential.

Complex form of the sine:

. el — o—iz

sinz = ,
21

Complex form of the cosine:

eiz + e—iz

cosz = —————
2

These results use 7,, 4,, r,,, and ,, as the magnitudes and angles of z and
w respectively. Be sure to use § in radians when computing logarithms
and powers of complex numbers. Since the real numbers are a sub-set of
the complex numbers, these results are valid for real z and w also.

Polynomial Equations

A polynomial equation of degree n is expressed in the form

Yy =@x" +a,_1x"1+ ..+ axx?+axt +ag

where the a;’s are real constants and n is any positive integer. It is a well-
known result of algebra that an equation of degree n» has exactly n roots.
A root is a value ofx for whichy equals zero.
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By factoring the above equation, the # roots can be readily seen as

Yy =8, (Xx-1,) (X ~Tpq) " (x-12)(x-11)

where the r;’s are roots.

For example, the equationy = x2 + 2x —3 can be factored to give
y =(x +3)(x —1). The roots are evident immediately asx = -3 and
x=1

Sometimes, roots are not distinct, but rather repeated as in the equations

y=x>-%-2=(x+1)(x-2)

and

y =xt+83+24x2+ 32 +16 = (x +2)*

Nature of Roots for Polynomials

m If an equation is odd in degree, it has at least one real root. If it has
more than one real root, there must be an odd number of them.

m If an equation is even in degree, its roots may consist only of complex
conjugate pairs; in other words, the equation may have no real roots.
If the equation does have real roots, there must be an even number of
them.

m If a complex root is found,its conjugate is also a root.

m When a real root is found, use polynomial division to factor out the
term containing the root. This will leave a polynomial of one less
degree, which will generally be easier to locate roots for.

m When a complex rootis found, find the complex conjugate
corresponding to the first root. Multiply the two factors together
which contain these two roots. This will give a real quadratic factor of
the form (x2 + bx + ¢). Dividing the original equation by this qua-
dratic factor will result in a polynomial of two less degrees which will
generally be easier to locate roots for.
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Quadratic, Cubic, and Quartic Equations. Exact formulas for
finding the roots of quadratic, cubic, and quartic equations are:

Quadratic equation ax? + bx +c¢ =0.

Cubic equation x®>+ ax?+bx +¢ =0

 

Let

3b -a?K=>2-%
9

9ab —27c —2a°L=28"2x"%8
54

1

M= +VEerr)?
1

N=[L-vEesr’

then

a
=M +N-—X1 3

Xg = ——(M +N)- \/EI(M N)

xg= ——— (if %, is complex, x5 =x3)
X1X2
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Quartic equation x*+ax®+bx2+cx +d =0.

If z, is a real root of the cubic equation

23— bz%+ (ac - 4d )z + (4bd — c?-a%d ) =0

then the four roots of the quartic equation are the four roots of

y2+ Ll eVgy + %[z;\/m] -0

which can be found using the quadratic formula.

Factorials

If n is a positive integer greater than 0, then

n!=(1(2)(3)..(n)

and, by definition

0! Il —

The Binomial Formula

Forn =1,2,3, - -

n n n n
(a+b)* =a™ + [1]a""1b + [z]a"‘zb2 + [3]a"‘3b3 +o00 4 [n]b“

where

etk] ~ ki(n-k)!
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Additional Geometry and
Trigonometry Formulas
 

Selected Geometric Figures

Circle of radius r:

Area = r?

Circumference = 2ar

Parallelogram:
 

¥

 

X

Area = xh = xy sinf
Perimeter = 2y +2x
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Trapezoid:

 

 

 

 
 

 

y

I
I
I
Ih

I
0 | ¢

X

1
Area = —i—h (x+y)

Perimeter = x +y +h (cscf+csce)

Ellipse:

: x

Area = mxy
o

' 2 22 24 v2
Perimeter = 4xf 1——2-Lsin20 dd = 2« —ZL

0 X
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Parallelepiped:

 

Volume = xyz sinf
Surface Area = 2xy +2xz sinf+2zy

Sphere of radius r:

Volume = —g—m's

Surface Area = 4nr?
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Ellipsoid:

Volume = %’n’xyz

 

2 _ 2
omy [L + —F— sin~t| 22— x>y

X x2—y2 X

Surface Area’ =
2 _2oy |2 ¢ g2y <XYy - n[ S X<y

Cylinder:

h

Volume = 7r?h
Surface Area = 2arh +2nr?

* This is the surface area of an ellipsoid of revolution formed when an ellipse in the xy-
plane is revolved aboutthe x-axis.
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Right Circular Cone:

Volume = —;—m"zh

Surface Area = arL +nr?

Torus:

7

Volume = %H(p +q)p -q)
Surface Area = m%(p?-¢q2?)
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Definitions of Trigonometric Formulas

 

For the right triangle above, the trigonometric functions of angle § are as
follows:

 

m sine:

sinf = a
C

m cosine:

cosf = b
c

® tangent:

a
tanf = —

b

B cosecant:

csch = ——1—-— =L
sinf a

B secant:

1 c
secl = = —

cosf b

® cotangent:

cotf = L b
tané a
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Definitions for Angles Greater Than 90°

»
<

m &) IV 
For the angle 6 in any quadrant of the figure above, the following

definitions apply:

r? = x2+y? (Pythagorean formula)

sinf = LB

cosf = X’

tanf = X
X

csch = L
Yy

secd = r
X

cotf = —
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Degrees and Radians Conversions

There are 27 radians in a complete circle giving the equality

2 radians = 360°

or

1 radian = 180 degrees
/s

1° = 1_26 radians

Your HP-22S performs these conversions easily using the {=RAD} and
{—DEG} keys found in the D——RAD menu.

Basic Trigonometric Identities

 

tand = sin @

cosf

cotd = 1  cosd
  
tand  sinf

sin®d + cos?® = 1

secd — tan% = 1

csc? - cot?d = 1
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Cofunction Formulas

sinf = cos (7/2-0)

cosf = sin (w/2-0)

cotf = tan (r/2-0)

tanf = cot (r/2-6)

secd = csc(m/2-0)

csch = sec(m/2-0)

Functions of Negative Angles

sin(—6) = —sinf

cos (—6) = cosd

sec(—0) = sech

tan(—6) = —tanf

cot(—6) = —cotf

csc(—0) = —csch

Addition Formulas

sin (¢+f) = sinacos B + sinfcosc

cos (a+p) = cosacosf — sinasinf

tana + tanpf

tan (@+f) = 1 - tanatanpf
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Subtraction Formulas

sin (a—f) = sinacosf — sin fcosa

cos (x—p) = cosacosf + sinasinf

tana — tanf

1 + tanatanf
tan (a-f) =

Double Angle Formulas

sin2d = 2sinf cosf

cos20 = cos) — sin%d = 2cos— 1 = 1 — 2sin?

2tanf
tan24 =

1 - tan?

Half Angle Formulas

coszi _ 1+cosé

2 2

. o0 1-cosf
sin— = ———

2 2

20  1-cosf

2 1+cosf
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Sums, Differences, and Products

 

sina + sinf = 25in9-‘+—ficosfl
2 2

sina —sinf = 2C0$%Sifla—;—

cosa+ cosf = 2cos%fl—c059;—

cosa — cosf = 25ina;’3 sinfi—;g

sinasinf = %[cos (x=p) — cos(a+ph)]

cosacosf = %[cos(a—fl) + cos (a+f)]

sinacosf = -—21—[sin(a—-fl) + sin (a+f)]

Inverse Trigonometric Functions and Principal
Values

An inverse trigonometric function involves finding the angle y whosetri-
gonometric function has the value x. For example,y = tan~'x means
"find the angley whose tangent isx."

The inverse trigonometric functions are multivalued. For example,
y = sin~!0is solved fory = nmwheren =1, 2,3, .... Rather than an
infinite family of solutions, a principal value is often desired for the inverse
trigonometric functions. They are as follows:

0>0° 0<0°

0° < sin~14 < 90° -90°<sin~19 < Q°

0°< cos~19 < 90° 90° < cos~19 < 180°
0°< tan~14 < 90° -90° < tan~19 < 0°
0° < cot™19 < 90° 90° < cot™14 < 180°
0°< sec™19 < 90° 90° < sec™19 < 180°
0° < csc19 <90° -90°< csc™1 < Q°
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160

Laws of Sines, Cosines, and Tangents

These formulas fold for any plane triangleABC as shown in the next
figure.

 

 

 

 

b

C

a

Law of Sines:

a_ _ b __c

sinA sinB sinC

Law of Cosines:

¢2=a%+b?%-2ab cosC

Law of Tangents:

tanA +B

a+b _ 2

a-b A -B
tan

2
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Additional Linear Algebra
Formulas
 

Basic Properties of Vectors

Assume that A, B, and C are vectors, and r and s are scalars,

A+B=B+A

A+(B+C)=(A+B)+C

rsA=r(sA)=s(rA)

(r+s)A=rA+sA

r(A+B)=rA+rB

A=aitajzjtaszk

where i, j, and k are unit vectors in the x, y, and z directions of a rec-
tangular coordinate system. For the magnitude of A (|A|):

|A| =v/a+a2+a2

A unit vector (magnitude 1) in the direction of A is given by

A

Al
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Vector Multiplication

For the formulas below,

A =a,i+ asyj + ask,

B =b,i+bsyj + b3k,

and

C=cyi+cyj+c3k

are vectors.

Dot Product

AB=|A| |B|cosf=ab,+ab,t+ashs

where 6 is the angle between A and B.

Distributive Property of Dot Product

A(B+C)=A'B+AC

Cross Product

i j k

AXB= [a, ay ag|=(azhs—aghy)i+ (ash, —abs)j + (apy—azb,)k

b, by bs

This vector is perpendicular to both A and B.

AxXB = -BxA

Ax(B+C)=AxB +AxC

| AXB| = |A| | B|sind

Thisis the area of a parallelogram with adjacent sides A and B with angle
f between them.
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More Vector Product Formulas

a, a; as

A'(BXC)= bl b2 b3

C1 C2 C3

The absolute value ofthis result is the volume of a parallelepiped with
sides A, B, and C.

Ax(BxC)=B(A:C)-C(A'B)

(AXB)XC=B(A:C)-A(B:C)

Angle 0 between vectors

A'‘B
cosf=—————

|A| |B]

Component of A in the direction of B

 

The magnitude of this vector is | A | cosé.

Component of A orthogonal to B

AB
|B|?
 A-compgA=A-
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Matrix Formulas

Let

apn @12 ... Qin

Ay Q22 --- Qo2q

A =

Amn18Gm2 """ Qqn

and

byy by ... by,

by by --- by

B =

bml bm2 e bm,n

then

@y +by app+byy ... ay, tby,

021+b21 a22+b22... a2n+b2n

A+B-=

aml + bml aml + bml e amn + bmn

A-B=A+(-B)

Multiplying a matrix A by a scalar k is done by multiplying each element
of Abyk.
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L, is the identity matrix of order n. This matrix is square with dimensions
nxn. All entries are 0 except for 1’s along the main diagonal. As an
example,

I3=

S
O
=

S
=
O

-
0

O

oTwo matrices C and D can be multiplie
C equals the number of rows in D. Let

only if the number of columns in

C= [c,-j] be an m xn matrix

and

D= [d,-j] be an n Xp matrix

The matrix product

E=CD= [e,-j] is an m Xp matrix

where the element e;; in the ith row and jth column of E is
€;;=Citb1jtCigboj+ ==+ +Cpbp;fori=1,2, .., mandj=12,..p.

The inverse A~! of an n xn matrix A is the matrix with the property
A-1A=AA-1=1,.

When A~! does not exist, A is a singular matrix. If A=! does exist, A is
nonsingular.

If det A=0, then A is singular.

The transpose AT of A is formed by interchanging the rows and columns
of A. For example, row 1 of A becomes column 1 of AT, row 2 of A

becomes column 2 of AT, and so forth. If AT =A, A is symmetric.
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Inverse of a 3 X 3 matrix:

 

      

Let

ap apz as

A= Ao Ao adox

3 a3 A33

then

Ay axp a2 a3 a2 4s

3 dsaj sz 33 axn ax

. 1 g1 A a as a as
A_ = —_ —_

detA as Az asz dass az ax

az ax an a2 a a

i a3 a3 a3 a3 Az a2 |  
Solving a System of Linear Equations

A set of n linear equations in n unknowns can be written as:

auxl +a12x2+"' +a1nxn =C1

adaXy +amx2+"' +(12nxn =Cq

an1X) + Ap2X2 oot Apn Xn = Cyp

where each a;;is a constantcoefficient, each c; is a constant, and each x;
is an unknown.

166 C: Additional Linear Algebra Formulas



This system of equations is written compactly in matrix form as

Ax = C

where

@ @12 "°° Ap

g1 G """ Q2

A=| i (coefficient matrix)

Ap1 Ap2 """ Agy

X1

X2

X =] . (unknown vector) 
and

Cy

C2

C=| . (constant vector)  LC"

The unknowns are then found as

x = A°IC
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Cramer’s Rule

Cramer’s Rule can also be used to solve a system of simultaneous linear
equations. To use Cramer’s Rule, write the system in matrix form as
shown above. Cramers Rule gives

~ detA,

"~ detA
 

Xn

where A, is the matrix formed by replacing the nth column of A with the
constant vector C.

Properties of Determinants

Determinants are defined only for square matrices.

  

     

ab ab
detcd =lc d = ad - bc

ABC EF DF DE
det|D E F =AHI— GI+CGH

G H I

If two rows or two columns of a matrix are interchanged, reverse the sign
of the determinant.

If all the elements of one row of a matrix C are multiplied by the same
constant k, then the determinant of this new matrix is k£ detA.

If all the elements of one row of a matrix C are multiplied by the same
constant k and then added to the corresponding elements of another row
of C, the determinant of this new matrix is unchanged.

det(AB) = (det A)(det B)
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Additional Calculus Formulas
 

 

Derivatives

Definition

The derivative off (x) with respect tox is defined as

£(x) =,1,if,})“x+hh2_“x!

f “(x) is also denoted by g%%l

Basic Properties of Derivatives

For the following, w,y, and z are functions ofx, e is the natural loga-
rithm base, and k and n are constants.

d _

dx(k)_o

d ) =

dx( ) =k

d—(kx™) = kx”‘l™) =n
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Lom)=i
d aw dX dz- +y+z+. )= —+ +—t ewxy£z=x.)

d dz dy
— = yv—+0z) =y zdx

Ly) - 200 /e) -ye)
z

The Chain Rule of differentiation

Derivatives of Exponential and Logarithmic
Functions

-‘i—ln(y) = yl%

%k” = %e”k”‘ = kylnk%

'dd;yz = -‘?x—e’h‘” = e’h"’—?j;-(zlny) = zy"l% +y’lny%

Derivatives of Trigonometric Functions

Here, all angles must be in radians.

%siny = oSy%

%cosy = —siny%
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%tany = sec%)%

d dy
—cot = -CO. y CSC”y

 

 

 

 

dx

-j—xcscy = —csc y cot y%

%sec y =secy tany%

—El—sin"ly -1 @ [— T <sinly < L}dx 17 dx 2 2

%cos‘ly = \/1—%)2 % [O<cos‘1y <7r]

—gx—tan‘ly = 1+1y2 % [— 12r—<tan‘ly < %}

%cot‘1 = 1:;2 % [0<cot‘1y <7r]

Partial Derivatives

Iff (u,v) is a function of two variables u and v, the partial derivative off

with respect to u is written as (—;5 and is obtained by differentiating f

with respect to u and treating v as a constant. g{— is defined analagously.
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Definition of Differentials

Ify =f (x) then the differential ofy is dy where

dy =f “(x)Ax

Thus,to find a differential dy, simply find % and multiply by Ax.

The differential dy can be interpreted as the approximate change iny due
to a change Ax inx. Think of dy as the change that would result iny if it
were to change along the fixed line f “(x) asx changes.

The true change iny is Ay and is based ony changing along the curve
y =f (x), not the fixed line f “(x). For small changes in x, the approxima-
tion given by the differential is a good one. Thefotal differential of
f (u,v,..) where f is a function of several variablesis given by

df=g'£-du +—g€dv+---

 

Integrals

If gyu— =f (u), theny (u) must be a function with derivative f (z). Com-

puting an indefinite integral involves finding y (1) given f (u ). Loosely
speaking then, integration is equivalent to "undoing" differentiation. Often,
y (v) 1s called the antiderivative off (u). The indefinite integration pro-
cedure outlined above is given by the equation

y(@)=Jf w)du

Since the derivative of a constant C is zero, the functiony (u )+ C also has
f (w) as its derivative. Thus, given a function f (i ), there is an infinite
family of antiderivatives which differ only by an arbitrary constant. This
constant is called a constant of integration. In the indefinite integrals
shown here, the constant of integration is omitted but implied.
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Properties of Integration

Here, k is a constant and y, u, and v are functions ofx.

Jkdx =kx

[ +y + -+ )dx = fudx * fvdx - -

Jiy @ )dx =k [y (x )x

Integration by Parts

fudv =uy —fvdu

Integration by Substitution

Jf G @)y (c)dx =[f (u)du

where u =y (x) and du =y “(x)dx.

dx _
f7—ln|x|

If the integrand is a function of more than one variable, treat all variables
execept the variable of integration as constants. For example, when
integrating the equation

ff(x,u,v)dx

treat the variables u and v as constants.

Definite Integrals

A definite integral is of the form
b
[f@)

It can be interpreted as the area underneath f (x ) between the points
x=a andx =b. a and b are called the limits of integration and f (x) is
called the integrand. A definite integral is computed using the result as
follows:
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[fow-60|. - c)-6@
where G (x) is the antiderivative off (x).

Properties of Definite Integrals

[Gyax=[7 ey +[f (e)ae
[e ==[f @)
[ @)ax =0

Integration by Substitution

L7 0@y@=Lf@dua y(a)

where u =y (x) and du =y “(x )dx .

The rules given for indefinite integrals also apply to definite integrals.

Improper Integrals

An improper integral is a definite integral in which one or both of the lim-
its of integration are infinite, or in which the integrand becomes infinite
or undefined at some point in the interval. Indefinite integrals must then
be computed as limits as shown below.

Cf=tim [7@)
b— oo

If ¢ is a point between z and b at which the integrand becomes infinite or
undefined, use the formula

J;bf (x )dx =li££_‘f (¢ )dx +1i£j;b+‘f (x )dx
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Differentiating Definite Integrals

The result below is often called Leibnitz’s Rule.

HOFAte=[LERe(g) 1(o))L

Transformation of Multiple Integrals

Sometimes a change of coordinate systems can make evaluation of a mul-
tiple integral easier. This is done as follows:

oxy,z)
dudvd

u.,y.w) uavaw[[fG(xy2)dxdydz = [[[H@uyw)
  

where

a/ou ax/ov ax/ow
SUVE)L | ayjou dy/ov dy/ow
@y w) &/ou 82/ 8 /ow

This determinantis called the Jacobian of the transformation. Notice that

the absolute value of the Jacobian is used in the transformation.

Somefrequently used transformation results are given below.

Rectangular to Polar Coordinates

ffG (xy)dxdy = ffH (r Ordrd b

where

X =r cosf

y =r sinf
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Rectangular to Cylindrical Coordinates

[[[G &y z)dxdydz = [[[H(r8z)rdrdbdz

where
x =r cosf
y =r sinf
z=z

Rectangular to Spherical Coordinates

[[[G @y z)dxdydz = [[[H (r 8,)r*sinbdrddd ¢

where

x =r sinfcos¢
y =r sinfsing

Z =r cosf

Numerical Integration

Simpson’s Rule is widely used to approximate definite integrals. This is
due to its simplicity, good results, and ease of implementation. Simpson’s
Rule essentially divides the area to be integrated into an even number of
subintervals and interpolates a quadratic polynomial to f (x) at the top of
each subinterval.

For integrals of the form

[fa
the approximation for an even number ofsubintervals (21 is given by:

b - 2n
Son =1—:§'L[f0+4fl+2f2+4f3+2f4+'"+2f2n—2+4f2n—1+f2n]
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This approximationis valid if the integral meets the following conditions:

1. The limits of integration are finite.

2. For alla <x <b, f (x) is both finite and defined.

 

Taylor Series

Many functions of interest can be expressed as an infinite series called a
Taylor Series. Provided that a function has derivatives ofall orders on an
interval containing the point a, its Taylor seriesis given as

o0

£ () =eyX
k=0

Thisseries is a polynomial in (x — @) that is constructed in such a way
that the polynomial and all of its derivatives match the function f (x) and
all its derivatives at the point x =a. Often it is desirable to approximate a
function with its nth degree Taylorpolynomial. This is done by replacing
the infinite upper limit for k£ in the sum with a finite value n. When a
function f (x) is to be approximated near a point a , the Taylor polyno-
mial should be built around the term (x — @ ). For the special case of
a =0, the series is sometimes called a Maclaurin series.

Maclaurin series for several common functions are given below:

3 5 7

  

. x° x° x
smx—x—¥+§—7+ —-00<Xx <00

x2 x* xS®
cosx—1—2—!+4—!—a+ —00<x <00

o x2 x3

e —1+x+2—!+§+ —o00<x <00

1) 1(x-1)> 1(x-1)°
Inx =2 [ = |+ E=| +=| 2= + - x>0

x+1 3lx+1 Slx+1
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L’Hopital’s Rule for Limits

If

im8®) - 0 or =2
hx) O oo

then

lim&&) _ m&&)
h’(x) h(x)

where lim denotes lim, lim, lim, lim ,or lim .
z—a z—at z—a~ T—+00 Z——00
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Selected Tables
 

 

Prefixes Used with Metric Quantities

Prefix:

exa-

pecta-

tera-

giga-
mega-

kilo-

hecto-

deka-

deci-

centi-

milli-

micro-

nano-

pico-
femto-

atto-

Multiple: Abbreviation:

108
1015

1012

10°
108
10°
102
10
10!
10~2
10—3
10-6
10~°
10~
10-%°
10~ P

R
B
E
R
O
A
Q
E
R
Z
Q
O
S
T
H
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Fundamental Sl Units

Quantity:

Electric current

Length
Luminous intensity
Mass

Substance amount

Temperature

Time

Unit:

ampere

meter

candela

kilogram
mole

Kelvin

second

Abbreviation:

A

m

cd

kg
mol

K

S

 

Derived Sl Units and Defined Equivalents

Quantity:

Force

Frequency

Liquid volume
Quantity of heat
Pressure

Length
Electric charge
Voltage
Capacitance
Inductance
Magnetic flux
Magnetic flux density
Electric resistance
Power

Work, Energy
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Unit:

newton

hertz

liter

calorie

pascal
angstrom

coulomb

volt

farad

henry
weber

tesla

ohm

watt

joule

Abbreviation:

N (kg-m/s?)
Hz (s7Y)
1 (1000 cm®)
cal (4.18407)
Pa (N/m?
A (107°m)
C (A-s)
vV (W/A)
F (C/V)
H (V-s/A)
Wb (V-s)
T (V-s/m?)
Q (V/A)
W (J/s)
J (N-m)



 

Fundamental Physical Constants

Avogadro’s number
Bohr atomic radius

Boltzmann’s constant

Compton electron wavelength
Electron charge
Electron charge/mass ratio
Electron rest mass
Faraday
Gas constant

Gravitational constant
Neutron rest mass

Permeability constant
Permittivity of free space
Planck’s constant
Proton rest mass

Quantum/charge ratio
Rydberg constant
Speed oflight
Stefan-Boltzmann constant

Symbol: Value:

S
Z

Q
W
I
S

c
o
w

3
3

&
3

9
0

H
I
T
I
S
O

8

6.02217x10® /mole
5.29177x10~ 11 m

1.38062x10~2 J/K
2.42631x10~12 m

1.60219x10~1° C

1.75880x10~* C/kg
9.10956x10~% kg
96,487 C/equivalent
8.31434 J/K-mole
6.6732x10~** N-m?/kg?
1.67492x10~% kg
47x10~7 H/m
8.85419x10~12 F/m
6.6262x10~>* J-sec
1.67261x10~7 kg
4.13571x10~1% J-sec/C
1.09737x10” /m
2.99792x108 m/sec?
5.66961x10~8 W/m?-K*
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Solar System Constants

The Earth

Mass of the earth
Equatorial radius ofthe earth
Polar radius of the earth
Volume of the earth
Average density of the earth
Angular velocity of the earth aboutits axis
Period of the earth’s rotation
Angular velocity of the earth about the sun
Acceleration due to gravity
Speed of sound in dry air

The Moon

Mass of the moon
Average radius of the moon
Average earth-to-moon distance
Acceleration due to the moon’s gravity

The Sun

Mass of the sun
Average radius of the sun
Average earth-to-sun distance
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5.976x10% kg
6378 km

6356 km

1.087x10% m3

5222 kg/m?
7.292x10~° rad/sec
86,164 sec

1.991x10~7 rad/sec
9.80665 m/sec?
331.45 m/sec

7.3505%10% kg
1738 km

384,398 km

1.62 m/sec?

1.97x10% kg
696,000 km

1.49x108 km



 

The Greek Alphabet

Greek Letter:

Aa

Bp
'y
Ab

Ee

Zg
Hn
e

I.

Kk

A

Mpu
Nv

B¢
Oo

I~

Pp
Yo

Tr

Tv

D4
Xx
U
Quw

Alpha
Beta

Gamma

Delta

Epsilon
Zeta

Eta

Theta

Iota

Kappa

Lambda

Mu

Nu

Xi

Omicron

Pi

Rho

Sigma
Tau

Upsilon
Phi

Chi

Psi

Omega
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Conversion Factors

For your convenience, the HP-22S has built-in SI/English unit conver-
sions for the following:

m Liters —— Gallons

m °Celsius +—— °Fahrenheit

m Kilograms +—— Pounds

m Centimeters +— Inches

m Radians +—— Degrees

When other conversions are needed, consult the table below.

For: Multiply: By:

Kilograms Tons 907.1847
Meters Feet 0.3048
Meters Yards 0.9144
Kilometers Miles 1.60934
Grams Ounces 28.34952
Cubic centimeters Fluid ounces 29.57353
Square centimeters Square inches 6.4516
Square meters Square feet 0.092903
Square meters Square yards 0.836127
Cubic centimeters Cubic inches 16.38706
Cubic meters Cubicfeet 2.83168x10~2
Cubic meters Cubic yards 0.764555
Joules BTU 1054.8
Kilowatts Horsepower 0.745712
Feet Miles 5280
Knots MPH 0.868976
Square feet Acres 43560
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Step-by-Step Solutions for Your
HP-22S Calculator
 

Science Student Applications contains a variety of applications,
examples, equation-writing hints, and useful tables to help you solve
problems in science more easily.

B Algebra

Logarithms ¢ Complex Numbers ¢ Roots of Polynomials

B Trigonometry

Angular Distance and Speed ¢ Determining Altitude of an Object
» Area of a Triangle » Multiple Triangles

B Linear Algebra

Dot Product ¢ Cross Product ¢ Perpendicular Component of a
Vector ¢ Determinant of a 3 X 3 Matrix ¢ Simultaneous Equations
Solution

B Calculus

Derivatives e Integration e Differentials * Taylor Series

B Physics

Force and Acceleration ¢ Simple Harmonic Montion ¢ The Doppler
Effect  Fluid Flow e Electric Potential

B Chemistry

Converting Between Grams and Moles ¢ Molarity ¢ Molality
* Mole Fraction ¢ Boiling and Freezing Points of Solutions
» pH Calculations ¢ Ionization of Water ¢ Faraday’s Law

B Statics and Dynamics

B Thermodynamics

Linear Interpolation ¢ Pressure e Specific Volume, Density, and
Quality

B Electrical Fundamentals

DC Circuit Analysis * A-Y Conversions ¢ Sinusoidal Steady-State
Analysis * Frequency Response

B Advanced Equation Writing Techniques

B Additional Formulas and Selected Tables
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