HEWLETT-PACKARD HP25 Applications Programs

(Cover photograph courtesy of NASA.)

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

HEWLETT-PACKARD HP25 Applications Programs

00025-90011 Rev. E 7/76

INTRODUCTION

Welcome. You are about to step into a field that, ten years ago, was open only to users of large computer systems costing tens or hundreds of thousands of dollars, and even five years ago, required a several-thousand-dollar calculator that occupied the better part of a desktop. Today, the HP-25 puts programming into the hands of the individual. It is hoped that this book will allow you to realize some of the potential of this calculating instrument.

These HP-25 Applications Programs have been drawn from the varied fields of mathematics, statistics, finance, surveying, navigation, and games. They have been arranged in eight chapters which follow roughly the above classification. Each program is furnished with a full explanation which includes a description of the problem, any pertinent equations, a list of keystrokes to be entered into program memory, a set of instructions for running the program, and an example or two, with solutions. To use the programs does not require any proficiency in programming, but some familiarity with the HP-25 Owner's Handbook is assumed.

For users who want to enhance their understanding of programming principles and techniques, a number of programs are provided to help in this respect. The first program in each chapter contains, in addition to the usual explanations, a more detailed description of the problem, a commented list of the program keystrokes with a step-by-step tracing of the contents of the stack registers, and a list of the keystrokes required to solve the example problem. Whenever an interesting programming technique is used in one of these programs, it is described in a short section headed "Programming Remarks", which, if present, will immediately precede the list of program keystrokes.

Thus, whether your interest lies in solving a particular problem in a specific area, or in learning more about the programming power of your calculator, we hope that this book will help you get the most from your HP-25.

TABLE OF CONTENTS

Introduction			•	•••	• •				• •	•••	· ·	. 1 . 4
Chapter 1: Algebra and Number Theory												
Plotting/Graphing												. 7
Ouadratic Equation		ż	Ż									12
Complex Arithmetic $(+, -, x \div)$												15
Complex Functions $(z , z^2, \frac{1}{z}, \sqrt{z})$												18
Determinant and Inverse of a 2×2 Matrix .		·										20
Base Conversions												
Number in Base b to Number in Base 10												22
Number in Base 10 to Number in Base b												24
Vector Operations	•	•	•	•		•	•	•	•	•		
Cross Product												26
Angle Between, Norm, and Dot Product		÷							·	·		28
Simultaneous Equations in 2 Unknowns		·										30
	•	·	•	•	•••	·	•	•	·	·	•••	
Chapter 2: Finance												
Mortgage Loan												
Accumulated Interest/Remaining Balance .	•	•	•	•		•	•	•	•	•		32
Payment, Present Value, Number of Periods			•	•		•	•	•	•	•		37
Interest Rate	•		•	•		•	•		•	•		39
Compound Amount	•	•	•	•				•	•	•		41
Periodic Savings												
Payment, Present Value, Number of Periods				•								44
Discounted Cash Flow												
Net Present Value, Internal Rate of Return	•		•	•		•		•	•	•		46
Calendar												
Day of the Week, Days Between Two Dates	•	•	•	•		•	•	•	•	•		49
Chanter 3: Games												
Moon Landing Simulator												52
Nimh	Ċ	·	•	•	•••	•	·	·	·	·	•••	55
Teach Arithmetic	•	·	•	•			·	•	•	•	•••	57
	•	•	•	•	•••	•	·	·	•	•	•••	01
Chapter 4: Navigation												
Course Planning	•	·	·	•		•	•	·	•	•	• •	61
Great Circle Plotting	·	·	·	•		•	•	·	·	·	•••	62
Rhumbline Navigation	·	·	·	•		·	·	•	·	·	•••	65
Sight Reduction Table	•	·	•	•		•	•	•	•	•	•••	70
Great Circle Navigation	•	·	•	•		•	•	•	•	·	• •	72
Chapter 5: Numerical Methods												
Newton's Method Solution to $f(x) = 0$												76
Numerical Integration Simpson's Rule	•	·	•	•		•	•	·	•	•		81
Numerical Solution to Differential Equations	·	•	•	•		•	•	·	•	•		83
Linear Internolation	·	•	·	•	•••	•	•	·	•	•	•••	85
Emour interpolation	•	•	•	•	• •	•	•	•	•	•	• •	05

Chapter 6: Statistics	
Curve Fitting	
Linear Regression	. 87
Exponential	. 92
Logarithmic	. 95
Power	. 98
General Statistics	
Covariance and Correlation Coefficient	101
Moments and Skewness	103
Distributions	
Normal Distribution	105
Inverse Normal Integral	108
Probability	
Factorial	110
Permutation	112
Combination	114
Random Number Generator	116
Test Statistics	
Chi-Souare Evaluation	118
Paired t Statistic	121
t Statistic for Two Means	124
One Sample Test Statistics for the Mean	127
Chapter 7: Surveying	
Field Angle Traverse	1 20
Area by Double Meridian Distance	127
Inverse from Coordinates	134
	130
Chapter 8: Trigonometry and Analytical Geometry	
Coordinate Translation and Rotation	138
Triangle Solutions and Areas	
B, b, c	143
a, b, c	146
a, A, C	149
a, b, C	152
a, B, C	155
Hyperbolic Functions	158
Inverse Hyperbolic Functions	160

A WORD ABOUT PROGRAM USAGE

Various kinds of information are provided to explain the use of each program. Besides a short description of the problem, a list of applicable equations, and an example problem with solution, there are two forms that deserve some explanation: the Program form and the User Instructions form.

Two different Program forms are provided, one of which is just a simplified version of the other. The detailed form is used for a total of eight programs, one per chapter, with the simpler form serving for the rest. A section of a detailed form, taken from the Plotting/Graphing program in Chapter 1, is shown below:

D	ISPLAY	KEY	v		-	-	001015150	
LINE	CODE	ENTRY	~	T	2		COMMENTS	REGISTERS
00			v	θ				Bo ^{Δt}
01	14 09	f→R	v _x	vy			Use polar-to-rectangular for	0
02	23 02	STO 2	v _x	٧ _٧			$v_x = v \cos \theta = horiz. vel.$	
03	21	x ₹γ	vy	v _×				B . 9
04	23 03	STO 3	٧ _٧	v _x			$v_y = v \sin \theta = vert. vel.$	
05	00	0	0					
06	23 04	STO 4	0				Initialize: t = 0	B o ^V x
07	24 00	RCL 0	∆t				Start of loop	
08	23 51 04	STO + 4	Δt				Next time interval:	
09	24 04	RCL 4	t				t ← t + ∆t	Ba Vy
10	15 02	g x ²	t ²					

The rightmost column, headed REGISTERS, explains what variables are stored in storage registers R_0 through R_7 . The rest of the form is divided into eight columns. The first two columns describe the appearance of the display as the program is being keyed in: LINE shows the step number for the current instruction and CODE denotes the numeric keycodes corresponding to the keystrokes in the next column, KEY ENTRY. The entries in this column are the keys that must be pressed to enter the program into program memory. The ENTER* key is denoted in this column as $\{\cdot\}$; all other key designations are identical to those appearing on the HP-25.

The next four columns, X, Y, Z, and T, trace the contents of the stack registers as they would change during execution of the program in RUN mode. Each entry under X, Y, Z, or T gives the contents of the respective register *after* the instruction on that line has been executed. The COMMENTS column contains additional step-by-step explanation of the program's calculations.

These last columns, X, Y, Z, T, and COMMENTS, are provided to help the interested user acquire a detailed, in-depth understanding of a particular program, or of programming techniques in general.

The simplified Program forms contain the same information as the detailed forms except for the omission of columns X, Y, Z, T, and COMMENTS.

The User Instructions form is the user's guide to operating the program to solve his own particular problem. This form, which is composed of five columns, is illustrated below for the same program from Chapter 1, Plotting/Graphing.

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS		
1	Key in program					
2	Store time interval	∆t	STO	0		
3	Store gravitational constant	g	STO	1		
4	Input angle and initial speed	θ	1 1			
		v	f	PRGM		
5	Perform steps 5 and 6 any num-					
	ber of times: Display time and		R/S			(t)
	horizontal distance					x
6	Display height		R/S			У
7	To change $ heta$ or v, go to step 4.					
	To change ∆t or g, go to					
	appropriate step, store new value,					
	then go to step 4.					

Reading from left to right, the STEP column gives the instruction step number. The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed. Steps are executed in sequential order except where the INSTRUCTIONS column directs otherwise.

Normally, the first instruction is "Key in program", which means to store the keystrokes of the program in program memory (switch to PRGM mode, press **f PRGM**, key in the program, then switch back to RUN mode).

Repeated processes, used in most cases for a long string of input/output data, are outlined with a bold border, as in steps 5 and 6 above. In this case, the steps are repeated in order to generate a number of (x,y) pairs for a graph.

The INPUT DATA/UNITS column specifies the input data to be supplied, and the units of data if applicable. The KEYS column specifies the keys to be pressed. \bullet is used for the **ENTER** key, and all other key designations are identical to those appearing on the HP-25. Ignore any blank positions in the KEYS column.

Some programs are complex enough that users have to press additional keys to generate some results. Those keys are also shown in the KEYS column.

The OUTPUT DATA/UNITS column shows intermediate and final results that have been calculated either from the keyboard or from an executing program, and the units of data if applicable. Parentheses around an output variable, such as (t) in step 5, indicate that the result is displayed only briefly by a PAUSE instruction (f PAUSE).

CHAPTER 1 ALGEBRA AND NUMBER THEORY

PLOTTING/GRAPHING

Most people who have labored through a ninth-grade algebra course probably still respond with a shudder to the word "graph". Evidently the tedium of finding $y = 3x^2 - 4x + 4$, for integer values of x from $-\infty$ to $+\infty$, has etched permanent memories in us all. Fortunately, we need not endure this tedium any longer. The HP-25 lends itself perfectly to this kind of repetitive calculation.

The basic idea is to generate (x, y) pairs by keying into program memory the keystrokes required to calculate y, assuming x is given. Then the user need only return to the top of memory, enter a value for x, press **R/S**, and see y displayed within seconds. The process may be repeated for as many values of x as desired. The programmer can take this process one step further into automation by also having the calculator generate each new value of x, for example, by adding 1 to the old value, or, in general, by adding a specified increment Δx . A flowchart of the process is shown below.

The program used here to illustrate this process takes a slightly different tack. We will consider the problem of plotting the trajectory of a stone which is hurled into the air with an initial velocity v at an angle to the horizontal of θ . Neglecting drag due to friction with the atmosphere, the following equations describe the stone's x- and y-coordinates as functions of the time t:

$$x = vt \cos \theta$$
 $y = vt \sin \theta - \frac{1}{2} gt^2$

where x = horizontal distance the stone has traveled

y = height of the stone g = acceleration due to gravity $\simeq 9.8 \text{ m/s}^2$ $\simeq 32 \text{ ft/s}^2$

These equations differ slightly from the usual graphing function in that y is not expressed directly as a function of x, but instead both x and y are expressed as functions of a third variable t. The points to be plotted are still the ordered pairs (x, y); but now it is the time t which should be incremented by an amount Δt .

Notes:

- 1. Any consistent set of units may be used.
- 2. This is *not* a general plotting/graphing program; it merely illustrates the method by application to a specific problem. However, some study of the program listing and the flowchart should enable the user to adapt the method to his own application.

Programming Remarks:

- 1. The components of the velocity in the horizontal and vertical directions, v_x and v_y , are computed in one step by a conversion of v and θ to rectangular coordinates (f $\rightarrow R$). The values $v_x = v \cos \theta$ and $v_y = v \sin \theta$ are returned to the X- and Y-registers, respectively.
- 2. A pause (**f PAUSE**) is used in this program in a very typical manner, to display briefly the output variable t, whose values are simple (0.25, 0.50, 0.75, etc.) and do not need to be written down.

D	ISPLAY	KEY	v	v	7	-	COMMENTE	DEGUATERA
LINE	CODE	ENTRY	~	T	2		COMMENTS	REGISTERS
00			v	θ				B a ^{Δt}
01	14 09	f→R	vx	vv			Use polar-to-rectangular for	0
02	23 02	STO 2	vx	vv			$v_x = v \cos \theta = horiz. vel.$	
03	21	x ₹y	vv	v _x				9
04	23 03	STO 3	vv	v _x			$v_v = v \sin \theta = vert. vel.$	ⁿ 1
05	00	0	0					
06	23 04	STO 4	0				Initialize: t = 0	- Vr
07	24 00	RCL 0	Δt				Start of loop	H 2 ^
08	23 51 04	STO + 4	Δt				Next time interval:	
09	24 04	RCL 4	t				t ← t + ∆t	D Vy
10	15 02	g x ²	t ²					ⁿ 3-7
11	24 01	RCL 1	a	t ²				
12	61	x	g t ²					P. t
13	02	2	2	a t ²				n 4
14	71	÷	1/2 g t ²					
15	32	CHS	$-1/2 g t^2$					P
16	24 04	RCL 4	t	$-1/2 q t^2$				n 5
17	24 03	RCL 3	Vu	t	$-1/2 q t^2$			
18	61	x	v _u t	$-1/2 q t^2$				P
19	51	+	v				$y = y_{y_1} t - 1/2 q t^2$	ⁿ 6
20	24 04	RCL 4	t	v			,	
21	24 02	RCL 2	v.,	t	v			P -
22	61	x	x	v			x = v, t	n 7
23	24 04	RCL 4	t	x	v		A.	
24	14 74	f PAUSE	t	×	y		Pause to display t	
25	22	R↓	×	Y		t		
26	74	R/S	x	Y		t	Halt and display x	
27	21	x ₹y	y	×		t		
28	74	R/S	y	×		t	Halt and display y	
29	13 07	GTO 07	y	x		t	Branch back for next t	
30								
31								
32								
33								
34								1997 - A.
35								
36			1.00					
37								
38								
39								
40								
41								
42								
43								
44								
45								
46								
47								
48								
49								

10 Chapter 1 Algebra and Number Theory

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS			
1	Key in program						
2	Store time interval	∆t	STO	0			
3	Store gravitational constant	g	STO	1			
4	Input angle and initial speed	θ	1				
		v	f	PRGM			
5	Perform steps 5 and 6 any num-						
	ber of times: Display time and		R/S			(t)	
	horizontal distance					×	
6	Display height		R/S			У	
7	To change $ heta$ or v, go to step 4.						
	To change ∆t or g, go to						
	appropriate step, store new value,						
	then go to step 4.						

Example:

Plot the trajectory of a stone cast upwards with a velocity of 20 m/s at an angle of 30° to the horizontal. Use intervals of $\frac{1}{4}$ second between points plotted. Let $g = 9.8 \text{ m/s}^2$.

Solution:

Continue until y becomes negative.

t	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25
x	4.33	8.66	12.99	17.32	21.65	25.98	30.31	34.64	38.97
у	2.19	3.78	4.74	5.10	4.84	3.98	2.49	0.40	-2.31

The table of these results is shown below:

The plot of these (x, y) values is made and the stone's trajectory is seen to be a parabola.

QUADRATIC EQUATION

The roots x_1, x_2 of $ax^2 + bx + c = 0$

are given by
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If
$$D = (b^2 - 4ac)/4a^2$$

is positive or zero, the roots are real. In these cases, better accuracy may sometimes be obtained by first computing the root with the larger absolute value:

If
$$-\frac{b}{2a} \ge 0$$
, $x_1 = -\frac{b}{2a} + \sqrt{D}$

If
$$-\frac{b}{2a} < 0$$
, $x_1 = -\frac{b}{2a} - \sqrt{D}$

In either case,

$$\mathbf{x_2} = \frac{\mathbf{c}}{\mathbf{x_1} \mathbf{a}} \, .$$

If D < 0, the roots are complex, being

$$u \pm iv = \frac{-b}{2a} \pm \frac{\sqrt{4ac - b^2}}{2a} i$$

D	ISPLAY	KEY		DI	KEY	
LINE	CODE	ENTRY		LINE	CODE	ENTRY
00				25	41	-
01	31	1		26	74	R/S
02	22	R↓		27	15 22	g 1/x
03	71	÷		28	24 00	RCL 0
04	02	2		29	61	х
05	71	÷		30	13 00	GTO 00
06	32	CHS		31	32	CHS
07	31	1		32	14 02	$f\sqrt{x}$
08	15 02	g x ²		33	21	x컱y
09	22	R↓		34	74	R/S
10	22	R↓		35	21	x컱y
11	21	x ≩y		36	13 00	GTO 00
12	71	÷		37		
13	23 00	STO 0		38		
14	41	-		39		
15	14 74	f PAUSE		40		
16	15 41	g x<0		41		
17	13 31	GTO 31		42		
18	14 02	$f\sqrt{x}$		43		
19	21	x ≩y		44		
20	15 4 1	g x<0		45		
21	13 24	GTO 24		46		
22	51	+		47		
23	13 26	GTO 26		48		
24	21	x ₹γ		49		

REGISTERS					
R _o c/a					
R ₁					
R ₂					
R 3					
R ₄					
R₅					
R ₆					
R 7					

14 Chapter 1 Algebra and Number Theory

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	Initialize		f	PRGM		
3	Enter coefficients and display D	с	1			
		b	1			
		а	R/S			(D)
4	If $D \ge 0$, roots are real					×1
			R/S			x ₂
	or					
	If D $<$ 0, roots are complex of					
	form u ± iv					u
			R/S			v
5	For new case, go to step 3.					

Example:

Find solutions to the three equations below:

- 1. $x^2 + x 6 = 0$
- 2. $3x^2 + 2x 1 = 0$
- 3. $2x^2 3x + 5 = 0$

Solutions:

- 1. D = 6.25 $x_1 = -3.00$ $x_2 = 2.00$
- 2. D = 0.44

$$x_1 = -1.00$$

 $x_2 = 0.33$

3. D = -1.94

 $x_1, x_2 = 0.75 \pm 1.39 i$

COMPLEX ARITHMETIC, +, -, x, ÷

Let $a_1 + ib_1$ and $a_2 + ib_2$ be two complex numbers. The arithmetic operations +, -, x, \div are defined as follows:

1. +, addition

$$(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + (b_1 + b_2)i$$

2. -, subtraction

$$(a_1 + ib_1) - (a_2 + ib_2) = (a_1 - a_2) + (b_1 - b_2)i$$

3. x, multiplication

$$(a_1 + ib_1) \times (a_2 + ib_2) = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

4. ÷, division

$$\frac{(a_1 + ib_1)}{(a_2 + ib_2)} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}, a_2 + ib_2 \neq 0$$

where $r_1 e^{i\theta_1}$ is the polar representation of $a_1 + ib_1$ and $r_2 e^{i\theta_2}$ is the polar representation of $a_2 + ib_2$. In each case let the answer be x + iy.

After a calculation is finished x is stored in R_0 as well as the X-register and y is stored in R_1 as well as the Y-register. In this way arithmetic operations can be chained together.

DI	SPLAY	KEY	
LINE	CODE	ENTRY	u
00			2
01	32	CHS	2
02	21	x ₹y	2
03	32	CHS	2
04	21	x ₹y	2
05	24 00	RCL 0	3
06	51	+	3
07	21	x ₹y	3
08	24 01	RCL 1	3
09	51	+	3
10	13 31	GTO 31	3
11	15 09	g→P	3
12	15 22	g 1/x	3
13	21	x ∠y	3
14	32	CHS	3
15	21	x ∠y	4
16	13 18	GTO 18	4
17	15 09	g→P	4
18	23 02	STO 2	4
19	22	R↓	4
20	24 01	RCL 1	4
21	24 00	RCL 0	4
22	15 09	g→P	4
23	24 02	RCL 2	4
24	61	x	4

DI	SPLAY	KEY
LINE	CODE	ENTRY
25	23 02	STO 2
26	22	R↓
27	51	+
28	24 02	RCL 2
29	14 09	f→R
30	21	x ₹y
31	23 01	STO 1
32	21	x ₹y
33	23 00	STO 0
34	13 00	GTO 00
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTERS
R _o a ₁ , x
R ₁ b ₁ , y
R ₂ Used
R 3
R ₄
R ₅
R ₆
R 7

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS				
1	Key in program							
2	Store first complex number	b ₁	STO	1				
		aı	STO	0				
3	Key in next number	b ₂	1					
		a2						
4	For addition		GTO	05	R/S		x	
	or							
	subtraction		f	PRGM	R/S		x	
	or							
	multiplication		GTO	17	R/S		x	
	or							
	division		GTO	11	R/S		×	
5	For imaginary part		x ₹y				У	
6	For next calculation in chain, go							
	to step 3.							
7	For new case, go to step 2.							

Examples:

1.
$$(1.2 + 3.7i) - (2.6 - 1.9i) = -1.4 + 5.6i$$

2.
$$\frac{3+4i}{7-2i} = 0.25 + 0.64i$$

3.
$$\left[\frac{(3+4i) + (7.4 - 5.6i)}{(7-2i)}\right] [3.1 + 4.6i] = 3.61 + 7.16i$$

COMPLEX FUNCTIONS |z|, z^2 , 1/z, \sqrt{z}

A complex number z = a + ib has polar representation $re^{i\theta}$. The formulas used to evaluate the given functions are as follows:

- 1. |z| = r
- 2. $z^2 = r^2 e^{i2\theta}$
- 3. $1/z = \frac{1}{r} e^{-i\theta}, z \neq 0$
- 4. $\sqrt{z} = \pm (\sqrt{r} e^{i\theta/2}) = \pm (x + iy)$

The answer is represented by x + iy.

DISPLAY		KEY DISPLAY		KEY	REGISTERS	
LINE	CODE	ENTRY	LINE	CODE	ENTRY	neuisters
00			25	13 00	GTO 00	R _o
01	15 09	g→P	26			R ₁
02	13 00	GTO 00	27			R ₂
03	15 09	g→P	28			R 3
04	15 02	g x ²	29			R₄
05	21	x ∠y	30			R ₅
06	31	1	31			R 6
07	51	+	32			R ₇
08	21	x ₹y	33			
09	14 09	f→R	34]
10	13 00	GTO 00	35			
11	15 09	g→P	36			
12	15 22	g 1/x	37			
13	21	x ₹y	38			
14	32	CHS	39			
15	21	x ₹y	40			
16	14 09	f→R	41			
17	13 00	GTO 00	42			
18	15 09	g→P	43			
19	14 02	f√x	44			
20	21	x ₹γ	45			
21	02	2	46			
22	71	÷	47			
23	21	x ∠y	48			
24	14 09	f→R	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS		
1	Key in program					
2	Key in z	b	1			
		а				
3	For z		f	PRGM	R/S	z
	or					
	z ²		GTO	03	R/S	×
			x ₹γ			У
	or					
	¹ /z		GTO	11	R/S	×
			x ₹y			У
	or					
	√z		GTO	18	R/S	x
			x ₹y			У
4	For new case, go to step 2.					

Examples:

- 1. |12 5i| = 13.00
- 2. $(6 i)^2 = 35.00 12.00i$
- 3. $\frac{1}{2+5i} = 0.07 0.17i$
- 4. $\sqrt{3+4i} = \pm (2.00 \pm 1.00i)$

DETERMINANT AND INVERSE OF A 2 x 2 MATRIX

Let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ be a 2 x 2 matrix.

The determinant of A denoted by Det A or |A| is evaluated by the following formula:

$$Det A = a_{22} a_{11} - a_{12} a_{21}$$

Also, the program evaluates the multiplicative inverse A^{-1} of A. The following formula is used:

$$A^{-1} = \begin{bmatrix} a_{22} / \text{Det } A & -a_{12} / \text{Det } A \\ -a_{21} / \text{Det } A & a_{11} / \text{Det } A \end{bmatrix}$$

DISPLAY		KEY	D	ISPLAY	KEY	
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00	7////////		25	24 00	RCL 0	R _o Det A
01	24 04	RCL 4	26	71	÷	R ₁ a ₁₁
02	24 01	RCL 1	27	13 00	GTO 00	$R_{2} a_{12}$
03	61	x	28			R ₃ a ₂₁
04	24 02	RCL 2	29			R ₄ a _{2 2}
05	24 03	RCL 3	30			R ₅
06	61	x	31			R ₆
07	41	-	32			R ₇
08	23 00	STO 0	33			
09	74	R/S	34			
10	24 04	RCL 4	35			
11	24 00	RCL 0	36			
12	71	÷	37			
13	74	R/S	38			
14	24 02	RCL 2	39			
15	24 00	RCL 0	40			
16	71	÷	41			
17	32	CHS	42			
18	74	R/S	43			
19	24 03	RCL 3	44			
20	24 00	RCL 0	45			
21	71	÷	46			
22	32	CHS	47			
23	74	R/S	48			
24	24 01	RCL 1	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Store matrix	a _{1 1}	STO	1			
		a ₁₂	STO	2			
		a _{2 1}	STO	3			
		a _{2 2}	STO	4			
3	Compute determinant		f	PRGM	R/S		Det A
4	Compute inverse		R/S				a ₁₁ ⁻¹
			R/S				a ₁₂ ⁻¹
			R/S				a ₂₁ ⁻¹
			R/S				a _{2 2} ⁻¹
5	For new case, go to step 2.						

Example:

Find the determinant and inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 4 & -4 \end{bmatrix}$$

Solution:

Det A = -20

$$A^{-1} = \begin{bmatrix} 0.20 & 0.10 \\ 0.20 & -0.15 \end{bmatrix}$$

NUMBER IN BASE b TO NUMBER IN BASE 10

This program consists of two subprograms. The first changes the integer part of a number in base b to a number in base 10.

$$I_{10} = i_n i_{n-1} \dots i_2 i_1 = i_n b^{n-1} + i_{n-1} b^{n-2} + \dots + i_2 b + i_1$$

This is evaluated in the form

$$b(...(b(b(i_n b+i_{n-1})+i_{n-2})+...)+i_2)+i_1$$

The second subprogram changes the fraction part of a number in base b to a number in base 10.

$$F_{10} = f_1 f_2 \dots f_m = f_1 b^{-1} + f_2 b^{-2} + \dots + f_m b^{-m}$$

Together the two programs can convert any number in base b to a number in base 10. Zeros must be entered in their proper place.

DISPLAY		KEY	D	ISPLAY	KEY	DECISTERS
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	61	x	R _o b
01	23 01	STO 1	26	51	+	R 1 Used
02	24 00	RCL 0	27	13 20	GTO 20	R ₂ b ⁻¹
03	31	1	28			R₃b ^{-j}
04	31	1	29			R ₄
05	31	1	30			R₅
06	24 01	RCL 1	31			R ₆
07	74	R/S	32			R ₇
08	23 01	STO 1	33			
09	34	CLX	34			
10	51	+	35			
11	61	x	36			
12	24 01	RCL 1	37			
13	51	+	38			
14	13 07	GTO 07	39			
15	24 00	RCL 0	40	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		
16	15 22	g 1/x	41			
17	23 02	STO 2	42			
18	23 03	STO 3	43			
19	61	x	44			
20	74	R/S	45			
21	24 02	RCL 2	46			
22	24 03	RCL 3	47			
23	61	x	48			
24	23 03	STO 3	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Store base	b	STO	0			
3	For integer part, input left most						
	digit	in	f	PRGM	R/S		
4	Perform tor j = n–1,, 2:						
	Input next digit	ij*	R/S				
5	Input final digit	i1 *	R/S				l ₁₀
6	For fractional part, input digit						
	after decimal	f ₁	GTO	15	R/S		
7	Perform for j = 2,, m–1:						
	Input next digit	fj*	R/S				
8	Input final digit	f _m *	R/S				F10
9	For new case, go to step 2.						
	* The stack must be maintained						
	at these points.						

Examples:

- 1. $1777_8 = 1023_{10}$
- 2. $143.2044_5 = 48.4384_{10}$

NUMBER IN BASE 10 TO NUMBER IN BASE b

This program will convert any positive number in base 10, N_{10} , to a number in base b, N_b , where $2 \le b \le 100$. The algorithm used is an iterative one which adds one more digit to N_b at each iteration. The program pauses as each new N_b is computed to display successive approximations to the final answer. When the displayed value of N_b has reached the accuracy desired by the user, he should press \mathbb{R}/\mathbb{S} to halt the program, then \mathbb{RCL} 3 to display N_b .

Notes:

- 1. When the base b is such that $11 \le b \le 100$, two display positions are allocated to each digit of N_b. Begin partitioning to the right and to the left of the decimal point. For example, 41106.12 in base 16 stands for 4B6.C.
- 2. An error indication during execution means that the machine's accuracy has been exceeded. The value of N_b is in R_3 .

DISPLAY		NEV DISPI		ISPLAY		
LINE	CODE	ENTRY	LINE	CODE	ENTRY	
00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	25	24.02	BCL 2	
01	24 00	RCL 0	26	21	x≓v	
02	01	1	27	14 03	f v ^x	
03	00	0	28	24 03	RCL 3	
04	14 51	fx≷y	29	51	+	
05	13 09	GTO 09	30	23 03	STO 3	
06	01	1	31	14 74	f PAUSE	
07	00	0	32	14 74	f PAUSE	
08	00	0	33	24 00	RCL 0	
09	23 02	STO 2	34	24 04	RCL 4	
10	00	0	35	14 03	f y ^x	
11	23 03	STO 3	36	23 41 01	STO – 1	
12	24 01	RCL 1	37	13 12	GTO 12	
13	14 07	f LN	38			
14	24 00	RCL 0	39			
15	14 07	f LN	40			
16	71	÷	41			
17	15 41	g x<0	42			
18	13 21	GTO 21	43			
19	14 01	f INT	44			
20	13 24	GTO 24	45			
21	14 01	f INT	46			
22	01	1	47			
23	41	-	48			
24	23 04	STO 4	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Set display format		f	FIX	9		
3	Store base and decimal number	b	STO	0			
		N ₁₀	STO	1	f	PRGM	
4	Display successive approximat-						
	ions to N _b		R/S				(N _b)
5	When number is shown with						
	desired accuracy, press R/S to						
	halt, then		RCL	3			Nb
6	For new case, go to step 3.						

Examples:

1.
$$67.32_{10} = 403.050114_{16}$$

= $43.51E_{16}$

2. $\pi = 3.141592654_{10} = 11.00100100_2$

VECTOR CROSS PRODUCT

If $A = (a_1, a_2, a_3)$ and $B = (b_1, b_2, b_3)$ are two three dimensional vectors then the cross product of A and B is denoted by A x B and is calculated as follows:

$$A \times B = \left(\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \right) = (a_2 \ b_3 - a_3 \ b_2, a_3 \ b_1 - a_1 \ b_3, a_1 \ b_2 - a_2 \ b_1)$$

Let the solution be represented by (c_1, c_2, c_3) .

D	ISPLAY	PLAY KEY DISPLAY		KEY	DEGIOTEDO	
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25			Ro
01	24 02	RCL 2	26			R ₁ a ₁
02	24 06	RCL 6	27			R ₂ a ₂
03	61	x	28			R 3 a3
04	24 03	RCL 3	29			R ₄ b ₁
05	24 05	RCL 5	30			R ₅ b ₂
06	61	x	31			R ₆ b ₃
07	41	-	32			R ₇
08	74	R/S	33			
09	24 03	RCL 3	34			
10	24 04	RCL 4	35			
11	61	x	36			
12	24 01	RCL 1	37			
13	24 06	RCL 6	38			
14	61	x	39			
15	41	-	40			
16	74	R/S	41			
17	24 01	RCL 1	42			
18	24 05	RCL 5	43			
19	61	x	44			
20	24 02	RCL 2	45			
21	24 04	RCL 4	46			
22	61	x	47			
23	41	-	48			
24	13 00	GTO 00	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Store A	aı	STO	1			
		a ₂	STO	2			
		a3	STO	3			
3	Store B	b ₁	STO	4			
		b ₂	STO	5			
		b3	STO	6			
4	Compute cross-product		f	PRGM	R/S		c ₁
			R/S				c2
			R/S				C3
5	For new case, go to step 2.						

Example:

Let A = (2, 5, 2)B = (3, 3, -4).

Solution:

 $A \times B = (-26, 14, -9)$

ANGLE BETWEEN, NORM, AND DOT PRODUCT OF VECTORS

Let $\vec{a} = (a_1, a_2, ..., a_n)$ and $\vec{b} = (b_1, b_2, ..., b_n)$ be two vectors.

The norm of \vec{a} is denoted by $|\vec{a}|$ and is calculated by the following formula:

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

similarly,

$$|\vec{b}| = \sqrt{b_1^2 + b_2^2 + \dots + b_n^2}$$

The dot product of \vec{a} and \vec{b} is denoted by $\vec{a} \cdot \vec{b}$ and is calculated by the following formula:

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

The angle between a and b is denoted by θ and is calculated by the following formula:

$$\theta = \cos^{-1} \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} \right)$$

The angle is calculated in any angular mode. When calculated in degrees, decimal degrees are assumed.

DISPLAY		KEY DISPLAY		KEY	PECIETEDE	
LINE	CODE	ENTRY	LINE	CODE	ENTRY	nedis rens
00			25			$\mathbf{R}_{0} \Sigma a_{i}^{2}$
01	31	1	26			$\mathbf{R}_{1} \Sigma \mathbf{b}_{i}^{2}$
02	15 02	g x ²	27			R₂ Σa _i b _i
03	23 51 01	STO + 1	28			R ₃
04	22	R↓	29			R₄
05	21	x ₹y	30			R ₅
06	31	1	31			R ₆
07	15 02	g x ²	32			R 7
08	23 51 00	STO + 0	33			
09	22	R↓	34			
10	61	x	35			
11	23 51 02	STO + 2	36			
12	13 00	GTO 00	37			
13	24 02	RCL 2	38			
14	24 00	RCL 0	39			
15	24 01	RCL 1	40			
16	61	x	41			
17	14 02	f√x	42			
18	71	÷	43			
19	15 05	g COS ⁻¹	44			
20	13 00	GTO 00	45			
21			46			
22			47			
23			48			
24			49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Initialize		f	REG	f	PRGM	
3	Perform for i = 1,, n:						
	Key in a _i and b _i	a _i	1				
		b _i	R/S				
4	Find norm of a		RCL	0	f	\sqrt{x}	lå
5	Find norm of b		RCL	1	f	\sqrt{x}	b
6	Find a.b		RCL	2			ā∙b
7	Compute angle between \vec{a} and \vec{b}		бто	13	R/S		θ

Example:

Let
$$A = (2, 5, 2)$$

 $B = (3, 3, -4)$

Solution:

 $|\vec{a}| = 5.74$ $|\vec{b}| = 5.83$ $\vec{a} \cdot \vec{b} = 13.00$ $\theta = 67.16^{\circ}$

SIMULTANEOUS EQUATIONS IN TWO UNKNOWNS

Let ax + by = eand cx + dy = f

be a system of two equations in two unknowns. Cramer's Rule is used to find the solution.

$$x = \frac{\begin{vmatrix} e & b \\ f & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} = \frac{ed - bf}{ad - bc} \qquad \qquad y = \frac{\begin{vmatrix} a & e \\ c & f \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} = \frac{af - ec}{ad - bc}$$

If ad - bc = 0 the calculator displays *Error*. In this case no solution or no unique solution exists.

DISPLAY		KEY	DISPLAY		KEY	DEGIGTER
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	24 00	RCL 0	R _o ad – bc
01	24 03	RCL 3	26	71	÷	R ₁ a
02	24 05	RCL 5	27	13 00	GTO 00	R ₂ b
03	61	x	28			R ₃ e
04	24 02	RCL 2	29			R ₄ c
05	24 06	RCL 6	30			Rsd
06	61	x	31			R ₆ f
07	41	-	32			R ₇
08	24 01	RCL 1	33			
09	24 05	RCL 5	34			
10	61	x	35			
11	24 02	RCL 2	36			
12	24 04	RCL 4	37			
13	61	x	38			
14	41	-	39			
15	23 00	STO 0	40			
16	71	÷	41			
17	74	R/S	42			
18	24 01	RCL 1	43			
19	24 06	RCL 6	44			
20	61	x	45			
21	24 03	RCL 3	46			
22	24 04	RCL 4	47			
23	61	x	48			
24	41	-	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Store constants	а	STO	1			
		b	STO	2			
		е	STO	3			
		с	STO	4			
		d	STO	5			
		f	STO	6			
3	Find x and y		f	PRGM	R/S		×
			R/S				У
4	For new case, go to step 2.						

Example:

5x - 3y = 122x + y = 9

Solution:

x = 3.55 y = 1.91

CHAPTER 2 FINANCE

Because many of the finance programs have certain quantities in common, a word about these variables and the names used to refer to them may be helpful.

Five main variables recur in finance problems: n, i, PMT, PV, and FV. The first of these, n, denotes the total number of periods. The periodic interest rate i must be expressed in these programs as a decimal. Thus an annual interest rate of 6% is expressed as 0.06, which as a monthly rate would be 0.06/12 = 0.005. PMT refers to the amount of the periodic payment. The present value, PV, is the value occurring at the beginning of the first period, while the future value, FV, is the value at the end of the last period.

MORTGAGE LOAN ACCUMULATED INTEREST/REMAINING BALANCE

As one enters into the realm of financial calculations, one of the most striking revelations is how much of the repayment of a loan goes to interest. A new homeowner, for example, sends off his first monthly installment of \$220.13 toward repayment of a 30-year, \$30,000 mortgage assumed at 8% annual interest. With a proud sigh and a swelling chest, the homeowner mentally checks \$220 off the \$30,000 and figures he's well on his way. Right? Well, not quite. In fact, \$200 of that payment will go to interest, and only \$20.13 to reducing the principal of the loan.
This program will allow the user to calculate the amount paid to interest, for one payment or over a number of payments, as well as the amount of principal still unpaid, i.e., the remaining balance. The user must input the following values: the initial amount of the loan, the periodic interest rate, and the periodic payment amount. He must then key in a beginning payment number, J, and an ending payment number, K. The program will compute the accumulated interest charge from payment J through payment K, inclusive, and the balance remaining after payment K. If one wishes to find the amount of interest paid in a single payment, he can simply set K = J.

The program can also be used to generate a limited amortization schedule showing the balance remaining after successive payments. This can be done by leaving J = 1 and increasing K by 1 at each iteration. Outputs will be the total amount paid to interest over the first K payments, and the balance remaining after payment K.

Equations:

$$BAL_{K} = \frac{1}{(1+i)^{-K}} \left[PMT \frac{(1+i)^{-K} - 1}{i} + PV \right]$$

$$Int_{J-K} = BAL_K - BAL_{J-1} + (K - J + 1) PMT$$

where BAL_n = remaining balance after payment n Int_{J-K} = accumulated interest, payments J through K PV = initial loan amount PMT = periodic payment amount i = periodic interest rate

Notes:

- 1. The periodic interest rate i must be entered as a decimal. For example, for monthly payments with an annual interest rate of 9%, the periodic interest rate should be input as $i = \frac{.09}{.12} = 0.0075$.
- 2. The use of this program is not restricted to mortgage loans, but applies equally well to any loan which is being repaid with equal periodic payments.

Programming Remarks:

In many finance programs, the expressions (1 + i) and $(1 + i)^n$ are used several times per program. It is often simpler to calculate the quantity once and then store it for later use, rather than calculate it anew each time. In this program, the values of $(1 + i)^{-K}$ and $(1 + i)^{-J}$ are calculated once and then stored in \mathbb{R}_7 , thus saving both program steps and execution time. The same principle, of course, applies to other expressions in other problems.

D	SPLAY	KEY			_	_		
LINE	CODE	ENTRY	X	Y	2	Т	COMMENTS	REGISTERS
00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						R .
01	24 01	RCL 1	i				Calculate BAL _K	"0
02	01	1	1	i				
03	51	+	1+i					p i
04	24 05	RCL 5	к	1+i				ⁿ 1
05	32	CHS	-К	1+i				
06	14 03	fy×	(1 + i) ^{-K}					PMT
07	23 07	STO 7	(1 + i) ^{-K}					n 2
08	01	1	1	(1 + i) ^{-K}				
09	41	-	$(1 + i)^{-K} - 1$					P PV
10	24 01	RCL 1	i	$(1 + i)^{-K} - 1$				"3
11	71	÷	s				Let $s = [(1 + i)^{-K} - 1] \div i$	
12	24 02	RCL 2	PMT	s				B.J
13	61	x	PMT s					
14	24 03	RCL 3	PV	PMT s				
15	51	+	PMT s + PV					B K
16	24 07	RCL 7	(1 + i) ^{-K}	PMT s + PV				
17	71	÷	BALK					
18	23 06	STO 6	BALK					B BALK
19	24 01	RCL 1	i	BALK			Calculate BALJ-1	n 6
20	01	1	1	i	BALK			
21	51	+	(1 + i)	BALK				B - (1 + i) ⁻ⁿ
22	24 04	RCL 4	J	(1 + i)	BALK			n /
23	01	1	1	J	(1 + i)	BALK		
24	41	-	J – 1	(1 + i)	BALK	BALK		
25	32	CHS	– (J – 1)	(1 + i)	BALK	BALK		
26	14 03	fy ^x	(1 + i) ^{-(J-1)}	BALK	BALK	BALK		
27	23 07	STO 7	(1 + i) ^{1-J}	BALK	BALK	BALK		
28	01	1	1	(1 + i) ^{1 - J}	BALK	BALK		
29	41	-	(1 + i) ^{1-J} -1	BALK	BALK	BALK		
30	24 01	RCL 1	i .	(1 + i) ^{1 - J} - 1	BALK	BALK		
31	71	÷	s	BALK	BALK	BALK	Let $s = [(1 + i)^{1-J} - 1] \div i$	
32	24 02	RCL 2	РМТ	s	BALK	BALK		
33	61	x	PMT s	BALK	BALK	BALK		
34	24 03	RCL 3	PV	PMT s	BALK	BALK		
35	51	+	PMT s + PV	BALK	BALK	BALK		
36	24 07	RCL 7	(1 + i) ^{1 – J}	PMT s + PV	BALK	BALK		
37	71	÷	BAL _{J-1}	BALK	BALK	BALK		
38	41	-	Diff	BALK	BALK	BALK	Diff = BALK - BALJ-1	
39	24 05	RCL 5	к	Diff	BALK	BALK	K – J + 1 gives no. PMT's	
40	24 04	RCL 4	J	к	Diff	BALK	from J through K	
41	41	-	K–J	Diff	BALK	BALK		
42	01	1	1	K-J	Diff	BALK		
43	51	+	K – J + 1	Diff	BALK	BALK		
44	24 02	RCL 2	PMT	m	Diff	BALK	m = K – J + 1	
45	61	×	m PMT	Diff	BALK	BALK	m PMT is \$ paid, J–K	
46	51	+	Intj_K	BALK	BALK	BALK	Display Int _{J-K}	
47	74	R/S	Int _{J-K}	BALK	BALK	BALK		
48	21	x∓y	BALK	Intj_K	BALK	BALK	Display BAL _K	
49	13 00	GTO 00	BALK	Intj-K	BALK	BALK		1

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS		OUTPUT DATA/UNITS
1	Key in program						
2	Store the following variables:						
	Periodic interest (decimal)	i	STO	1			
	Periodic payment	РМТ	STO	2			
	Initial loan amount	PV	STO	3			
	Starting payment number	J	STO	4			
	Ending payment number	к	STO	5	f	PRGM	
3	Compute accumulated interest						
	from payments J through K.		R/S				Int _{J-K}
4	Display remaining balance after						
	payment K		R/S				BAL _K
5	To change any variable, store						-
	the new value in the appropriate						
	register and go to step 3.						

A mortgage is arranged so that the first payment is made at the end of October, 1974 (i.e., October is payment period 1). It is a \$25,000 loan at 8% with monthly payments of \$200. What is the accumulated interest for 1974 (periods 1-3) and for 1975 (periods 4-15) and what balance remains at the end of each year? Also, generate a schedule of interest paid and remaining balance for the first 5 years of the mortgage (periods 12, 24, 36, 48, 60).

Solution:

(Notice that i must be entered as a decimal, monthly rate.)

Now, generate the amortization schedule:

1 STO 4 12 STO 5 R/S	▶ 1985.00
	(interest thru 1 st year)
[R/S]	► 24585.00
	(remaining balance after 1 st year)
24 STO 5 R/S	→ 3935.56
	(interest thru 2 nd year)
R/S	► 24135.56
	(remaining balance after 2 nd year)
STO 4 12 STO 5 R/S R/S 5 R/S 7 R/S 5 R/S 7 R/S 5 R/S 7 R/S 5 R/S 7 STO 5 R/S 7 R/S 5 R/S 7 R/S 5 R/S 7	► 5848.81
	(interest thru 3 rd year)
R/S	► 23648.81
	(remaining balance after 3 rd year)
48 STO 5 R/S	▶ 7721.67
	(interest thru 4 th year)
[R/S]	► 23121.67
	(remaining balance after 4 th year)
60 STO 5 R/S	▶ 9550.77
	(interest thru 5 th year)
[R/S]	► 22550.77
	(remaining balance after 5 th year)

For a loan which is being repaid with equal periodic payments, this program will calculate the payment amount, the present value, or the number of periods of the loan, given the periodic interest rate and the two other variables.

Remember that the periodic interest rate i must be expressed as a decimal, e.g., 6% is represented as 0.06.

The equations used are as follows:

$$PMT = PV\left[\frac{i}{1 - (1 + i)^{-n}}\right] PV = PMT\left[\frac{1 - (1 + i)^{-n}}{i}\right]$$
$$r = -\frac{\ln(1 - i PV/PMT)}{\ln(1 - i PV/PMT)}$$

$$\ln(1 + i)$$

D	ISPLAY	KEY	D	ISPLAY	KEY	RECIETERS
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	24 03	RCL 3	R _o
01	01	1	26	61	x	R ₁ n
02	24 02	RCL 2	27	13 00	GTO 00	R ₂ i
03	01	1	28	01	1	R ₃ PMT
04	51	+	29	24 04	RCL 4	R₄ PV
05	24 01	RCL 1	30	24 03	RCL 3	R 5
06	32	CHS	31	71	÷	R ₆
07	14 03	fy ^x	32	24 02	RCL 2	R 7
08	41	-	33	61	x	
09	24 02	RCL 2	34	41	-	
10	21	x ≩y	35	14 07	f LN	
11	71	÷	36	24 02	RCL 2	
12	24 04	RCL 4	37	01	1	
13	61	x	38	51	+	
14	13 00	GTO 00	39	14 07	f LN	
15	01	1	40	71	÷	
16	24 02	RCL 2	41	32	CHS	
17	01	1	42	13 00	GTO 00	
18	51	+	43			
19	24 01	RCL 1	44			
20	32	CHS	45			
21	14 03	f y ^x	46			
22	41	-	47			
23	24 02	RCL 2	48			
24	71	÷	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	For payment	n	STO	1		
		i	STO	2		
		PV	STO	4		
			f	PRGM	R/S	РМТ
3	For present value	n	STO	1		
		i	STO	2		
		РМТ	STO	3		
			GTO	15	R/S	PV
4	For number of payments	i	STO	2		
		РМТ	STO	3		
		PV	STO	4		
			GTO	28	R/S	n
5	For new case, go to step 2, 3, or					
	4.					

- 1. What monthly payment is required to amortize a \$3000 loan at 9.5% (.095) in 36 months?
- 2. You are willing to pay \$175 per month for 24 months on a 9.5% loan. How much can you borrow?
- 3. How many months will it take to pay off a \$4000 loan if your monthly payment is \$200 and the annual interest rate is 9.5%?

Solutions:

Divide 0.095 by 12 to find the monthly interest rate expressed as a decimal.

- 1. \$96.10
- 2. \$3811.43
- 3. 21.86 months

This program will calculate the interest rate on a loan with equal periodic payments. The user must specify the number of periods, the present value or initial loan amount, and the payment amount.

The program performs an iterative solution for i using Newton's method:

$$\mathbf{i}_{k+1} = \mathbf{i}_k - \frac{\mathbf{f}(\mathbf{i}_k)}{\mathbf{f}'(\mathbf{i}_k)}$$

where

$$f(i) = \frac{1 - (1 + i)^{-n}}{i} - \frac{PV}{PMT}$$

The initial guess for i is given by

$$i_o = \frac{PMT}{PV} - \frac{PV}{n^2 PMT}$$

D	SPLAY	KEY	DI	SPLAY	KEY	REGISTERS
LINE	CODE	ENTRY	LINE	CODE	ENTRY	hedistens
00			25	15 22	g 1/x	R _o
01	24 03	RCL 3	26	01	1	R ₁ n
02	31	1	27	51	+	R ₂ i
03	15 22	g 1/x	28	71	÷	R ₃ PV/PMT
04	21	x₹γ	29	01	1	R ₄ (1 + i) ⁻ⁿ
05	24 01	RCL 1	30	51	+	R 5
06	15 02	g x ²	31	24 05	RCL 5	R 6
07	71	÷	32	61	x	R 7
08	41	-	33	01	1	
09	23 02	STO 2	34	41	-	
10	24 03	RCL 3	35	24 02	RCL 2	
11	24 02	RCL 2	36	71	÷	
12	61	x	37	71	÷	
13	01	1	38	23 51 02	STO + 2	
14	24 02	RCL 2	39	15 03	g ABS	
15	01	1	40	33	EEX	
16	51	+	41	06	6	
17	24 01	RCL 1	42	32	CHS	
18	32	CHS	43	14 41	f x <y< th=""><th></th></y<>	
19	14 03	fy×	44	13 10	GTO 10	
20	23 05	STO 5	45	24 02	RCL 2	
21	41	-	46	13 00	GTO 00	
22	41	-	47			
23	24 01	RCL 1	48			
24	24 02	RCL 2	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	Store number of payments	n	STO	1		
3	Key in present value and pay-					
	ment amount	PV	1			
		РМТ	÷	STO	3	PV/PMT
4	Compute interest		f	PRGM	R/S	i (decimal)
			EEX	2	x	i (%)
5	For new case, go to step 2.					

You recently obtained a \$2500 car loan for 36 months. If your monthly payment is \$86.67, what is the annual percentage rate?

Solution:

15.01%

This program applies to an amount of principal that has been placed into an account and compounded periodically, with no further deposits. The important variables in this case are the number of compounding periods n, the periodic interest rate i, the principal or present value PV, the future value of the account FV, and the amount of interest accrued I. Any of these may be calculated from the others by these formulas:

$$n = \frac{\ln (FV/PV)}{\ln (1+i)} \qquad i = \left(\frac{FV}{PV}\right)^{-1/n} - 1 \qquad PV = FV (1+i)^{-n}$$

$$FV = PV (1 + i)^n$$

 $I = PV [(1 + i)^n - 1]$

D	ISPLAY	KEY	DI	SPLAY	KEY	DEGIOTEDO
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	14 03	f y ^x	Ro
01	24 05	RCL 5	26	24 05	RCL 5	R ₁ n
02	24 04	RCL 4	27	61	x	R ₂ i
03	71	÷	28	13 00	GTO 00	R 3
04	14 07	f LN	29	24 02	RCL 2	R₄ PV
05	24 02	RCL 2	30	01	1	R₅FV
06	01	1	31	51	+	R ₆
07	51	+	32	24 01	RCL 1	R ₇
08	14 07	f LN	33	14 03	f y ^x	
09	71	÷	34	24 04	RCL 4	
10	13 00	GTO 00	35	61	x	
11	24 05	RCL 5	36	13 00	GTO 00	
12	24 04	RCL 4	37	24 02	RCL 2	
13	71	÷	38	01	1	
14	24 01	RCL 1	39	51	+	
15	15 22	g 1/x	40	24 01	RCL 1	
16	14 03	f y ^x	41	14 03	fy ^x	
17	01	1	42	01	1	
18	41	-	43	41	-	
19	13 00	GTO 00	44	24 04	RCL 4	
20	24 02	RCL 2	45	61	x	
21	01	1	46	13 00	GTO 00	
22	51	+	47			
23	24 01	RCL 1	48			
24	32	снѕ	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	To compute number of periods	i (decimal)	STO	2		
		PV	STO	4		
		FV	STO	5		
			f	PRGM	R/S	n
3	To compute periodic interest					
	rate	n	STO	1		
		PV	STO	4		
		FV	STO	5		
			GTO	11	R/S	i (decimal)
4	To compute principal	n	STO	1		
		i (decimal)	STO	2		
		FV	STO	5		
			GTO	20	R/S	PV
5	To compute future value	n	STO	1		
		i (decimal)	STO	2		
		PV	STO	4		
			GTO	29	R/S	FV
6	To compute accrued interest	n	STO	1		
		i (decimal)	STO	2		
		PV	STO	4		
			GTO	37	R/S	I
7	For new case, go to step 2, 3, 4,					
	5, or 6.					

- 1. Assuming an annual inflation rate of 10%, how long will it take prices to double? (Suggestion: let PV = 1, FV = 2)
- 2. Find the rate of return on \$1000 compounded quarterly if it amounts to \$1500 in 5 years.
- 3. How much will you need to invest today at 5 3/4% compounded quarterly to have \$3000 in 5 years?
- 4. What is the future value of \$2000 invested at 5 3/4% compounded quarterly for 4 years (16 quarters)?
- 5. How much interest do you receive on \$1500 deposited for 10 years if interest at 5 1/2% is compounded annually?

Solutions:

- 1. 7.27 years
- 2. .0205 quarterly = 8.19% annually
- 3. \$2255.02 (i = 0.0575/4)
- 4. \$2513.08 (i = 0.0575/4)
- 5. \$1062.22 (i = 0.055)

This program calculates payment, future value, or number of time periods for a schedule of periodic payments into a savings account, given the interest rate and two of the three other variables. Remember that i must be input as a decimal, e.g., 6% is expressed as 0.06.

Then n, PMT, or FV may be calculated from the following formulas:

$$n = \frac{\ln \left[\frac{FV i}{PMT} + (1+i)\right]}{\ln (1+i)} - 1 \qquad PMT = \frac{FV i}{(1+i)^{n+1} - (1+i)}$$
$$FV = \frac{PMT}{i} \left[(1+i)^{n+1} - (1+i) \right]$$

D	ISPLAY	KEY	0	DISPLAY	KEY	REGISTERS
LINE	CODE	ENTRY	LINE	CODE	ENTRY	hEdistens
00	7/////////		25	14 73	f LASTx	R _o (1 + i)
01	24 02	RCL 2	26	24 01	RCL 1	R ₁ n
02	24 05	RCL 5	27	14 03	fy×	R _{2 i}
03	61	x	28	01	1	R ₃ PMT
04	24 03	RCL 3	29	41	-	R ₄
05	71	÷	30	71	÷	R ₅ FV
06	24 02	RCL 2	31	13 00	GTO 00	R ₆
07	01	1	32	24 03	RCL 3	R ₇
08	51	+	33	24 02	RCL 2	
09	23 00	STO 0	34	01	1	
10	51	+	35	51	+	
11	14 07	f LN	36	61	x	
12	24 00	RCL 0	37	14 73	f LASTx	
13	14 07	f LN	38	24 01	RCL 1	
14	71	÷	39	14 03	fy×	
15	01	1	40	01	1	
16	41	-	41	41	-	
17	13 00	GTO 00	42	61	x	
18	24 05	RCL 5	43	24 02	RCL 2	
19	24 02	RCL 2	44	71	÷	
20	61	x	45	13 00	GTO 00	
21	24 02	RCL 2	46			
22	01	1	47			
23	51	+	48			
24	71	÷	49]

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	To compute number of pay-					
	ments	i (decimal)	STO	2		
		РМТ	STO	3		
		FV	STO	5		
			f	PRGM	R/S	n
3	To compute periodic payment					
	amount	n	STO	1		
		i (decimal)	STO	2		
		FV	STO	5		
			GTO	18	R/S	РМТ
4	To compute future value	n	STO	1		
		i (decimal)	STO	2		
		РМТ	STO	3		
			GTO	32	R/S	FV
5	For new case, go to step 2, 3,					
	or 4.					

- 1. How long will it take to save \$15,000 if you are making quarterly deposits of \$400 at 6% annual interest?
- 2. You will need \$10,000 in 7 years. How large a monthly payment do you need to make if the annual interest rate is 6 1/2%?
- 3. How much money will a person have if he deposits \$150 at the end of each month for a period of 3 years? He receives 6% annual interest.

Solutions:

- 1. 29.62 quarters or 7.40 years (i = .06/4)
- 2. \$93.82 (n = 84, i = .065/12)
- 3. \$5929.92 (n = 36, i = .06/12)

DISCOUNTED CASH FLOW NET PRESENT VALUE, INTERNAL RATE OF RETURN

The primary purpose of this program is to compute the net present value of a series of cash flows. In general, an initial investment V_0 is made in some enterprise which is expected to bring in periodic cash flows $C_1, C_2, ..., C_n$. Given a discount rate i, which must be entered as a decimal, then for each cash flow C_k , the program will compute the net present value at period k, NPV_k . A negative value for NPV_k indicates that the enterprise has not yet been profitable. A positive NPV_k means that the enterprise has been profitable, to the extent that a rate of return i on the original investment has been exceeded.

The program may also be used iteratively to calculate an internal rate of return. The objective here is to find the discount rate i which will make the final net present value, NPV_n , equal to zero. The procedure, then, is to store V_0 and a first guess at the rate of return i, input the cash flows C_1 through C_n , and thus find NPV_n . If NPV_n is negative, the estimated rate of return was too high; if NPV_n is positive, the estimate for i was too low. Adjust the estimate for i accordingly, store the new i, and input the cash flows again. Inspect the new value of NPV_n to obtain a new estimate for i and repeat the process. The entire procedure is repeated until NPV_n is zero, or very close to it. The last value of i input is then regarded as the internal rate of return.

Each figure for net present value is found by

NPV_k =
$$-V_0 + \sum_{j=1}^{k} \frac{C_j}{(1+i)^j}$$

D	ISPLAY	КЕҮ		DI	SPLAY	KEY	
LINE	CODE	ENTRY		LINE	CODE	ENTRY	
00				25			
01	24 01	RCL 1		26			
02	01	1		27			
03	23 04	STO 4		28			
04	51	+		29			
05	23 02	STO 2		30			
06	71	÷		31			
07	24 00	RCL 0		32			
08	41	-		33			
09	24 04	RCL 4		34			
10	14 74	f PAUSE		35			
11	21	x ≩y		36			
12	23 03	STO 3		37			
13	74	R/S		38			
14	24 02	RCL 2		39			
15	24 04	RCL 4		40			
16	01	1		41			
17	51	+		42			
18	23 04	STO 4		43			
19	14 03	fy×		44			
20	71	÷		45			
21	24 03	RCL 3		46			
22	51	+		47			
23	13 09	GTO 09		48			
24				49			

REGISTERS					
R _o V _o					
R ₁ i					
R ₂ (1 + i)					
R 3 NPVk					
R ₄ k					
R 5					
R ₆					
R ₇					

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS	
1	Key in program				
2	Store Initial investment and				
	discount rate	Vo	STO 0		
		i (decimal)	STO 1	f PRGM	
3	Perform for k = 1,, n:				
	Input C _k and compute NPV _k	Ck	R/S		(k)
					NPVk
4	For new case, go to step 2.				

You have been offered an investment opportunity for \$150,000 at a capital cost of 10% after taxes. Based on the following cash flows, will this investment be profitable?

Year	Cash Flow
1	\$30,000
2	26,300
3	50,000
4	55,600
5	45,200

Solutions:

Remember to enter i as 0.10.

 $NPV_1 = -\$122,727.27$ $NPV_2 = -\$100,991.74$ $NPV_3 = -\$63,426.00$ $NPV_4 = -\$25,450.45$ $NPV_5 = \$2,615.20$

Since C_5 is positive the cash flow is profitable to the extent that the cost of capital is 10%.

CALENDAR DAY OF THE WEEK DAYS BETWEEN TWO DATES

This program will compute the day of the week for a given date, or the number of days between two dates, for any dates from March 1, 1700, to February 28, 2100. The program works by assigning the number 1 to March 1, 1700, and a corresponding number to each succeeding day. When computing day of the week, a 0 represents Sunday, 1 Monday, 2 Tuesday, etc.

Thus for month m, day d, year y, the number N assigned to that date is

$$N(m, d, y) = [365.25 g(y,m)] + [30.6 f(m)] + D - 621049$$

where

$$g(y, m) = \begin{cases} y - 1 \text{ if } m = 1 \text{ or } 2\\ y \text{ if } m > 2 \end{cases} \text{ and } f(m) = \begin{cases} m + 13 \text{ if } m = 1 \text{ or } 2\\ m + 1 \text{ if } m > 2 \end{cases}$$

[m] represents the integer function, f [NT]. E.g., [6.34] = 6.

Note:

For days from March 1, 1700, to February 28, 1800, 2 days must be added to the value for N calculated by the program. For days from March 1, 1800, to February 28, 1900, 1 day must be added.

D	ISPLAY	KEY	D	ISPLAY	KEY	BEOIOTEDO
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	00	0	Ro
01	03	3	26	73	•	R 1 Month
02	24 01	RCL 1	27	06	6	R 2 Day
03	14 41	fx≪y	28	61	x	R 3 Year
04	13 09	GTO 09	29	14 01	f INT	R ₄
05	01	1	30	51	+	R₅
06	51	+	31	24 02	RCL 2	R 6
07	24 03	RCL 3	32	51	+	R 7 Temporary
08	13 15	GTO 15	33	06	6	
09	01	1	34	02	2	
10	03	3	35	01	1	
11	51	+	36	00	0	
12	24 03	RCL 3	37	04	4	
13	01	1	38	09	9	
14	41	-	39	41	-	
15	03	3	40	74	R/S	
16	06	6	41	07	7	
17	05	5	42	71	÷	
18	73	•	43	15 01	g FRAC	
19	02	2	44	07	7	
20	05	5	45	61	x	
21	61	x	46	13 00	GTO 00	
22	14 01	f INT	47			
23	21	x ₹γ	48			
24	03	3	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS			
1	Key in program						
2	Store month	m	STO	1			
	day	d	STO	2			
	year	У	STO	3			
3	Compute N(m, d, y)		f	PRGM	R/S		N(m, d, y)
4	For day of week, go to step 8						
5	For days between dates, store						
	first N		STO	7			
6	Repeat steps 2 and 3 for second						
	date, then		RCL	7	-		# Days
7	For new case, go to step 2.						
8	For day of week (0 = Sunday)		R/S				Day (0,, 6)
9	For new case, go to step 2.						

- 1. What day of the week was July 4, 1776?
- 2. Find the number of days between March 27, 1948, and April 7, 1975.

Solutions:

- 1. Thursday (4). (Remember to add 2 days.)
- 2. 9872.

Notes

CHAPTER 3 GAMES MOON LANDING SIMULATOR

Imagine for a moment the difficulties involved in landing a rocket on the moon with a strictly limited fuel supply. You're coming down tail-first, free-falling toward a hard rock surface. You'll have to ignite your rockets to slow your descent; but if you burn too much too soon, you'll run out of fuel 100 feet up, and then you'll have nothing to look forward to but cold eternal moon dust coming faster every second. The object, clearly, is to space your burns just right so that you will alight on the moon's surface with no downward velocity.

The game starts off with the rocket descending at a velocity of 50 feet/sec from a height of 500 feet. The velocity and height are shown in a combined display as -50.0500, the height appearing to the right of the decimal point and the velocity to the left, with a negative sign on the velocity to indicate downward motion. If a velocity is ever displayed with no fractional part, for example, -15, it means that you have crashed at a speed of 15 feet/sec. In game terms, this means that you have lost; in real-life, it signifies an even less favorable outcome.

You will start the game with 120 units of fuel. You may burn as much or as little of your available fuel as you wish at each step of your descent; burns of zero are quite common. A burn of 5 units will just cancel gravity and hold your speed constant. Any burn over 5 will act to change your speed in an upward direction. You must take care, however, not to burn more fuel than you have; for if you do, no burn at all will take place, and you will free-fall to your doom! The final velocity shown will be your impact velocity (generally rather high). You may display your remaining fuel at any time by recalling R_2 .

Equations:

We don't want to get too specific, because that would spoil the fun of the game; but rest assured that the program is solidly based on some old friends from Newtonian physics:

$$x = x_0 + v_0 t + \frac{1}{2} at^2$$
 $v = v_0 + at$ $v^2 = v_0^2 + 2ax$

where x, v, a, and t are distance, velocity, acceleration, and time.

Notes:

- 1. If you crash before running out of fuel, the crash velocity shown will be the velocity before the burn, rather than the impact velocity.
- 2. Use only integer values for burns. Any decimal entry will cause an error in the display for V.X.

Programming Remarks:

An interesting feature of this program is the simultaneous display of both speed and altitude (V.X), as for example, -50.0500. This is accomplished by storing the speed V and the altitude X in their normal form (-50.00, 500.00), then dividing X by 10,000 (10^4) before combining them. An additional subtlety involves the question of the sign of V, and whether (X/ 10^4) is to be added to or subtracted from V. For example, if V = -50 and X = 500, we should subtract: V - (X/ 10^4), in order to generate a display of -50.0500. But if V = 10 and X = 50, we should add: V = V + (X/ 10^4) in order to display 10.0050. Inspection of the program listing, lines 2 through 12, will reveal how a conditional branch was used to resolve the dilemma.

D	ISPLAY	KEY	KEY		~	_	_]
LINE	CODE	ENTRY	X	Y	2	1	COMMENTS	REGISTERS	
00	///////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						B. X	
01	14 11 04	f FIX 4					Four-place display	0	
02	24 00	RCL 0	x				Form display V.X	11	
03	33	EEX	1. 00	х				∎ V	
04	04	4	1. 04	x				"1	
05	71	÷	X/10 ⁴				Divide X by 10 000	11	
06	24 01	RCL 1	v	X/10 ⁴				- Fuel	
07	15 4 1	a x<0	v	X/10 ⁴			Is V negative?	^H 2	
08	13 11	GTO 11	v	X/10 ⁴			Yes, branch		
09	51	+	V + X/10 ⁴				No. add V and X	P Acceler-	
10	13 13	GTO 13	$V + X/10^{4}$					ation	
11	21	x ₹y	X/10 ⁴	v			V<0, add V and -X		
12	41	-	V - X/10 ⁴					B .	
13	74	R/S	V.X				$V X is V \pm (X/10^4)$	1 4	
14	24 02	RCL 2	F	В			Burn B has been input		
15	14 4 1	fx <y< th=""><th>F</th><th>в</th><th></th><th></th><th>Burn > Fuel?</th><th>P</th></y<>	F	в			Burn > Fuel?	P	
16	13 34	GTO 34	F	В			Yes, prepare to crash	n 5	
17	22	R↓	в			F	No, update A, X, V	11	
18	23 41 02	STO - 2	в			F	Subtract burn from fuel		
19	05	5	5	В			5 units cancels gravity	n 6	
20	41	-	B - 5	-			Acceleration = B - 5		
21	23 03	STO 3	A					P _	
22	02	2	2	A				ⁿ 7	
23	71	÷	A/2						
24	24 00	RCL 0	х	A/2					
25	51	+	X + A/2					1	
26	24 01	RCL 1	v	X + A/2				1	
27	51	+	X + V + A/2				New altitude: X←X+V+A/2		
28	23 00	STO 0	x					1	
29	15 4 1	g x<0	x				Is X below ground?]	
30	13 44	GTO 44	x				Yes, you've crashed]	
31	24 03	RCL 3	A	х			No, update V]	
32	23 51 01	STO + 1	A	х			New velocity: V ← V + A]	
33	13 02	GTO 02	A	х			Display V.X		
34	24 01	RCL 1	V				All fuel gone, show		
35	15 02	g x ²	V ²				crash velocity as		
36	24 00	RCL 0	X	V ²			$V = (V^2 + 2gX)^{1/2}$		
37	01	1	1	х	V ²		where g = gravity = 5		
38	00	0	10	x	V ²				
39	61	×	10 X	V ²					
40	51	+	V ² + 10 X						
41	14 02	f√x	V						
42	32	CHS	V				Show crash V down		
43	23 01	STO 1	V						
44	24 01	RCL 1	V				Come here from line 30		
45	14 11 00	f FIX 0	V				Display integer V to	1. Sec. 1. Sec	
46	13 00	GTO 00	V				show crash		
47									
48									
49									

54 Chapter 3 Games

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS			
1	Key in program						
2	Initialize	x	500	STO	0		500.00
		v	50	CHS	STO	1	-50.00
		Fuel	120	STO	2		120.00
3	Display initial V.X		f	PRGM	R/S		-50.0500
4	Key in burn, compute new speed						
	and distance	Burn	R/S				V.X.
5	Perform step 4 till you land or						
	crash						
6	To see remaining fuel at any						
	time		RCL	2			Fuel
7	To display speed and distance						
	at any time		f	PRGM	R/S		V.X
8	To start a new game, go to step 2.						

Example:

500 STO 0 50 CHS STO 1 120 STO 2]
f PRGM R/S	► -50.0500
0 R/S	► -55.0448
5 R/S	-55.0393
	(note constant V when $burn = 5$)
30 R/S	-30.0350
0 R/S	-35.0318
0 R/S	→ -40.0280
0 R/S	→ -45.0238
0 R/S	► -50.0190
RCL 2	► 85.0000 (remaining fuel)
f PRGM R/S	-50.0190
	(display V.X again)
10 R/S	► -45.0143
0 R/S	► -50.0095
RCL 2	▶ 75.0000
10 R/S	-45.0048
25 R/S	-25.0013
20 R/S	► -25.

Oops.

NIMB

The game of Nimb begins with a collection of N objects, or as the calculator plays it, with the positive number N. Each player alternately subtracts one, two, or three from the total until only one is left. The player forced to take the last one loses.

To begin the game, you must tell the machine how many objects to start with, i.e., the value of N. A reasonable number is 15. After each move the machine will display the remaining total. A negative sign indicates that it is the user's move next, while a positive display indicates that it is the HP-25's move.

As the challenger you are allowed to make the first move. It is possible to win but of course the HP-25 is a master player: it will not let you make an error and win. (Not, that is, unless you cheat and take a number other than 1, 2, or 3-a contingency so far beyond the realm of the HP-25's naive faith in humankind that the unsuspecting calculator has no way of knowing if you do or don't.)

DISPLAY		KEY		ISPLAY	KEY	BEGIOTEDO
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	13 40	GTO 40	R _o Total
01	31	1	26	01	1	R 1 Machine move
02	01	1	27	23 51 01	STO + 1	R ₂ ± Total
03	23 02	STO 2	28	32	CHS	R ₃ 55178
04	22	R↓	29	24 00	RCL 0	R₄ 3507.1
05	23 41 00	STO – 0	30	51	+	R ₅
06	24 00	RCL 0	31	24 01	RCL 1	R ₆
07	15 71	g x=0	32	41	-	R ₇
08	13 42	GTO 42	33	04	4	
09	23 61 02	STO x 2	34	71	÷	
10	24 02	RCL 2	35	15 01	g FRAC	
11	74	R/S	36	15 61	g x≠0	
12	21	x ₹y	37	13 22	GTO 22	
13	15 51	g x ≥ 0	38	24 01	RCL 1	
14	13 17	GTO 17	39	13 05	GTO 05	
15	21	x ∠y	40	01	1	
16	13 02	GTO 02	41	13 05	GTO 05	
17	01	1	42	24 02	RCL 2	
18	32	CHS	43	15 41	g x < 0	
19	23 02	STO 2	44	13 47	GTO 47	
20	00	0	45	24 03	RCL 3	
21	23 01	STO 1	46	13 00	GTO 00	
22	24 01	RCL 1	47	24 04	RCL 4	
23	03	3	48	14 11 01	f FIX 1	
24	14 71	f x=y	49	13 00	GTO 00	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Initialize	55178	STO	3			
		3507.1	STO	4	f	PRGM	
3	Store total number of objects						
	(usually 15) and set display	N	STO	0	CHS	f	
			FIX	0			-N.
4	If number in display is negative,						
	key in your move	Your move	R/S				+ Total
5	If number in display is positive,						
	let HP-25 move		R/S				– Total
6	Perform steps 4 and 5 until game						
	is over						
7	At end of game, turn calculator						
	upside down to read message						
8	For another game, go to step 3.						

Perform the initialization with N = 15.

User takes 3.

Turn calculator upside down for message (BLISS).

TEACH ARITHMETIC

We at Hewlett-Packard feel that the hand-held calculator, far from threatening the traditional tenets of a sound mathematics education, may be used creatively to reinforce learning in such areas as arithmetic, algebra, geometry, trigonometry, calculus, and numerical analysis. This program, which is designed to be used in teaching children the four operations of elementary arithmetic (+, -, x, \div), demonstrates some of the (largely unexplored) potential of the HP-25 as an educational tool.

The basic flow of the program is to pose a problem in arithmetic, check the answer that the user keys in against the correct answer, and then do one of two things: if the user's answer was correct, the program will go on to pose a new problem; if the keyed-in answer was wrong, the program restates the original problem to give the learner a second chance.

To run the program, the user must store a value called Max in R_0 . This tells the program not to use any numbers as large as Max in its problems. If you specify a Max of 12, for example, then all the problems will deal with numbers between 0 and 11. The user must then store in R_1 a "seed" s, a number between 0 and 1, which will determine the sequence of problems that will appear. Different seeds generate different problems, thus ensuring that the learning game doesn't get boring. With the display format set to f FIX 2, the execution of the program will cause the first problem to be displayed as follows: the display will show one number to the left of the decimal place, and one number to the right. For example, the numbers 8 and 2 would be displayed as 8.02. The user may then choose what operation to perform on the two numbers: he may add (8 + 2), subtract (8 - 2), multiply (8×2) , or divide $(8 \div 2)$. After he keys in his answer and re-initiates program execution, the program will either display a new problem, if his answer was right, or display the same two numbers again, but this time with a negative sign in front (-8.02). The negative sign is an indication that the answer was incorrect, and does not denote a negative number. (All numbers in the problems are positive, though of course the results of some subtractions may be negative). If the problem reappears with a negative sign, the user should key in a different answer and try again. As soon as the correct answer is given, the program will go to display a new problem.

DI	SPLAY	KEY
LINE	CODE	ENTRY
00		
01	24 01	RCL 1
02	15 73	gπ
03	15 02	g x ²
04	61	x
05	15 01	g FRAC
06	23 01	STO 1
07	24 00	RCL 0
08	61	x
09	14 01	f INT
10	23 03	STO 3
11	24 01	RCL 1
12	15 73	gπ
13	15 02	g x ²
14	61	x
15	15 01	g FRAC
16	23 01	STO 1
17	24 00	RCL 0
18	61	x
19	14 01	f INT
20	23 02	STO 2
21	24 03	RCL 3
22	33	EEX
23	02	2
24	71	÷

DI	SPLAY	KEY
LINE	CODE	ENTRY
25	51	+
26	23 04	STO 4
27	74	R/S
28	24 02	RCL 2
29	24 03	RCL 3
30	51	+
31	13 43	GTO 43
32	24 02	RCL 2
33	24 03	RCL 3
34	41	-
35	13 43	GTO 43
36	24 02	RCL 2
37	24 03	RCL 3
38	61	x
39	13 43	GTO 43
40	24 02	RCL 2
41	24 03	RCL 3
42	71	÷
43	14 71	f x=y
44	13 01	GTO 01
45	24 04	RCL 4
46	32	CHS
47	13 27	GTO 27
48		
49		

REGISTERS
R o Max
R ₁ Random #
R ₂ Left #
R₃ Right #
R₄ Problem
R ₅
R ₆
R ₇

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Store Max (0 < Max ≤ 100)	Max	STO	0			
3	Store seed ($0 < s < 1$)	S	STO	1			
4	Set display format		f	FIX	2		
5	Generate a problem		f	PRGM	R/S		n ₁ . n ₂
6	Choose an operation and key in						
	your answer:						
	For addition (+)	n ₁ + n ₂	R/S				
	For subtraction (-)	n ₁ - n ₂	GTO	32	R/S		
	For multiplication (x)	$n_1 \times n_2$	GTO	36	R/S		
	For division (÷)	$n_1 \div n_2$	GTO	40	R/S		
7	lf you were right, program will						
	display new problem; go to step						
	6.						n3.n4
8	If you were wrong, program will						
	show same problem again; go to						
	step 6 again.						-n ₁ . n ₂
9	Repeat steps 6–8 as many times						
	as desired						
10	To change Max, go to step 2,						
	then to step 5.						

Let Max = 12 and the seed s = 0.725

Solution:

[f] [PRGM] [R/S]	► 6.01
7 [R/S] (8 x 3 = 25)	► 8.03
25 GTO 3 6 R/S (Try again: 8 x 3 = 24)	► -8.03
24 GTO 3 6 R/S (3 - 11 = -8)	→ 3.11
8 CHS GTO 3 2 R/S	▶ 9.00
9 R/S	→ 2.05

Notes ____

CHAPTER 4 NAVIGATION

COURSE PLANNING-GREAT CIRCLE PLOTTING AND RHUMBLINE NAVIGATION

Long voyages by sea or air are generally made to follow one of two sorts of routes: a rhumbline or a great circle. The rhumbline is the path of constant heading between two points on the earth's surface; it intersects all lines of longitude at the same angle. It is also the course defined by the straight line between two points on a Mercator projection. It is a convenient course for navigation because its direction does not change, and for short distances at mid and low latitudes, the rhumbline is adequate for almost all calculations of course and distance.

Outside this range, a more efficient track is the great circle, which is always the shortest route between two points on a sphere. However, in order to follow a great circle, a vehicle must be continuously changing its course. Since this is at best inconvenient, if not impossible, several rhumblines are often used to approximate a great circle.

To plan a course using this technique, the navigator should first run the program Great Circle Plotting. For this program, the user must input the latitude and longitude of his starting point and his destination. Then, for any intermediate longitude λ_i that he specifies, the program will calculate the latitude L_i at which the great circle from source to destination will intersect the specified longitude. If several pairs of coordinates (L_i, λ_i) are calculated, then the next program, Rhumbline Navigation, may be used to find course and distance for the rhumblines linking these intermediate points along the great circle.

The inputs to Rhumbline Navigation are the coordinates of two points on the globe; outputs are the rhumbline course and distance from the first point to the second point. The program may be used alone, to determine the rhumb-line from source to destination; or in conjunction with Great Circle Plotting, to compute several rhumblines to approximate a great circle.

GREAT CIRCLE PLOTTING

Equations:

$$L_{i} = \tan^{-1} \left[\frac{\tan L_{2} \sin (\lambda_{i} - \lambda_{1}) - \tan L_{1} \sin (\lambda_{i} - \lambda_{2})}{\sin (\lambda_{2} - \lambda_{1})} \right]$$

where $(L_1, \lambda_1) = \text{coordinates of starting point}$ $(L_2, \lambda_2) = \text{coordinates of destination}$ $(L_i, \lambda_i) = \text{coordinates of intermediate point on great circle}$

Note:

The program does not compute along lines of longitude $(\lambda_1 = \lambda_2)$.

D	ISPLAY	KEY			_	-	0011115150	DECISTERS
LINE	CODE	ENTRY	X	Y	2		COMMENTS	REGISTERS
00			λ _i , D.MS					Be Li
01	15 00	g→H	λ _i , D.d				Convert λ_i to decimal deg.	(dec. deg.)
02	23 04	STO 4	λ					11
03	24 01	RCL 1	λ ₁	λ				λ_1
04	41	-	$\lambda_i - \lambda_1$					(dec. deg.)
05	14 04	fSIN	sin1				$\sin_1 = \sin(\lambda_i - \lambda_1)$	11
06	24 02	RCL 2	L ₂	sin1				
07	14 06	f TAN	tan2	sin1			$tan_2 = tan L_2$	dec. deg.)
08	61	x	tan ₂ sin ₁					11
09	24 04	RCL 4	λ	tan ₂ sin ₁				B_{2}
10	24 03	RCL 3	λ ₂	λί	tan ₂ sin ₁			(dec. deg.)
11	41	-	$\lambda_i - \lambda_2$	tan ₂ sin ₁				11
12	14 04	fSIN	sin ₂	tan ₂ sin ₁			$\sin_2 = \sin(\lambda_i - \lambda_2)$	B ₄ λ _i
13	24 00	RCL 0	Li	sin ₂	tan ₂ sin ₁			(dec. deg.)
14	14 06	f TAN	tanı				tan ₁ = tan L ₁	
15	61	x	tan1 sin2	tan ₂ sin ₁				Be
16	41	-	NUM				NUM = $tan_2 sin_1 - tan_1 sin_2$] "",
17	24 03	RCL 3	λ ₂	NUM				11
18	24 01	RCL 1	λ ₁	λ ₂	NUM			Be
19	41	-	$\lambda_2 - \lambda_1$	NUM				1
20	14 04	fSIN	DEN	NUM			DEN = sin ($\lambda_2 - \lambda_1$)	
21	71	÷	NUM/DEN					R 7
22	15 06	g TAN ⁻¹	L _i , D.d					
23	14 00	f →H.MS	L _i , D.MS				Display L _i in D.MS	
24	14 11 04	f FIX 4						
25	13 00	GTO 00						
26								
27								
28								
29								4
30								-
31								-
32								-
33								-
34	1997 - 19							-
35								4
36								-
37								4
38								4
39								4
40								4
41								4
42								4
43								4
44								4
45								4
46								4
47					l			4
48								4
49								

64 Chapter 4 Navigation

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Input coordinates of starting						
	point:						
	Latitude (CHS for S)	L ₁ , D.MS	g	→H	STO	0	L ₁ , dec. deg.
	Longitude (CHS for E)	λ_1 , D.MS	g	→H	STO	1	λ_1 , dec. deg.
3	Input coordinates of destination:						
	Latitude (CHS for S)	L ₂ , D.MS	g	→H	STO	2	L ₂ , dec. deg.
	Longitude (CHS for E)	λ_2 , D.MS	g	→H	STO	3	λ_2 , dec. deg.
4	Return to top of memory		f	PRGM			
5	Input the intermediate longitude						
	(CHS for S) and compute cor-						
	responding latitude	λ _i , D.MS	R/S				L _i , D.MS
6	For new intermediate longitude,						
	go to step 5; for new source (or						
	destination) go to step 2 (or						
	step 3).						

RHUMBLINE NAVIGATION

Equations:

C = tan⁻¹
$$\frac{\pi (\lambda_1 - \lambda_2)}{180 [\ln \tan (45 + \frac{1}{2} L_2) - \ln \tan (45 + \frac{1}{2} L_1)]}$$

$$D = \begin{cases} 60 (\lambda_2 - \lambda_1) \cos L; \cos C = 0\\ 60 \frac{(L_2 - L_1)}{\cos C}; \text{ otherwise} \end{cases}$$

where (L_1, λ_1) = coordinates of initial point (L_2, λ_2) = coordinates of final point C = rhumbline course D = rhumbline distance

Notes:

- 1. No course should pass through either the south or north pole.
- 2. The course may not go due east or due west across the 180° meridian (International Date Line).
- 3. Errors in distance calculations may be encountered as C approaches 90° or 270°.
- 4. Accuracy deteriorates for very short legs.

D	SPLAY	KEY	~	v	-	-	COMMENTE	DECIETERE
LINE	CODE	ENTRY	X	Y	2	1 1	COMMENTS	REGISTERS
00			λ ₂	λ ₁				Bo Li
01	41	-	$\lambda_1 - \lambda_2$					(dec. deg.)
02	23 06	STO 6	$\lambda_1 - \lambda_2$					11
03	02	2	2	$\lambda_1 - \lambda_2$				\mathbf{B}_{1} λ_{1}
04	71	÷	α				Let $\alpha = 1/2 (\lambda_1 - \lambda_2)$	(dec. deg.
05	14 04	f SIN	sin a				Normalize α so that	11
06	15 04	g SIN ⁻¹	norm α				$-180 \leq \lambda_1 - \lambda_2 \leq 180;$	B L2
07	09	9	9	α			finds shortest route	(dec. deg.
08	00	0	90	α			round earth	1
09	71	÷	α/90					$\mathbf{B} = \lambda_2$
10	15 73	gπ	π	α/90				(dec. deg.
11	61	x	πα/90	πα/90				11
12	24 05	RCL 5	In tan ₂	πα/90				B In tan
13	24 04	RCL 4	In tan ₁	Y			Let $y = \pi \alpha / 90$	(45+L1/2
14	41	-	x	Y			Let x = In tan ₂ - In tan ₁	11
15	15 09	g→P	r	С			$C = tan^{-1} y/x$	B In tan
16	22	R↓	С			r		(45+L ₂ /2)
17	15 03	g ABS	ICI			r		1
18	23 07	STO 7	ICI			r		$\mathbf{B} = \lambda_1 - \lambda_2$
19	24 06	RCL 6	$\lambda_1 - \lambda_2$					1
20	14 04	fSIN	sin 2a	ICI			Normalize $\lambda_1 - \lambda_2$ so	11
21	15 04	g SIN ⁻¹	norm 2a	ICI			that $-90 \le \lambda_1 - \lambda_2 \le 90$	B , ICI
22	15 4 1	g x<0	2α	ICI			x < 0 means East to West	1
23	13 26	GTO 26	2α	ICI				
24	21	x ₹y	ICI	2α			W to E, C is answer	
25	13 31	GTO 31	ICI	2α				
26	03	3	3	2α	ICI		E to W, answer is	
27	06	6	36	2α	ICI		360 - C	
28	00	0	360	2α	ICI			
29	24 07	RCL 7	ICI	360	2α			
30	41	-	360 - C					
31	74	R/S	Course				Display course	
32	06	6	6				Compute distance D	
33	00	0	60					
34	24 07	RCL 7	ICI	60				4
35	14 05	f COS	cos (C)	60				4
36	15 61	g x≠0	cos C	60			If cos C ≠ 0,	4
37	13 45	GTO 45	cos C	60			go to line 45	4
38	34	CLX	0	60			Cos C = 0; heading is	4
39	24 06	RCL 6	$\lambda_1 - \lambda_2$				due E or due W	
40	61	×	$60 \ (\lambda_1 - \lambda_2)$					
41	24 02	RCL 2	L ₂	$60 \ (\lambda_1 \ - \ \lambda_2 \)$				
42	14 05	f COS	cos L ₂	$60~(\lambda_1 - \lambda_2)$				4
43	61	×	Dist				$D = 60 (\lambda_1 - \lambda_2) \cos L$	4
44	13 00	GTO 00	Dist				Halt and display Dist	4
45	71	÷	60/cos C				Heading is not due E or W	4
46	24 02	RCL 2	L ₂				Apply formula:	4
47	24 00	RCL 0	L	L ₂	60/cos C		$D = 60(L_2 - L_1)/cos C$	4
48	41	-	L2 - L1	60/cos C				4
49	61	x	Dist				Halt	1

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Input the initial latitude (CHS						
	for S)	L ₁ , D.MS	g	→H	STO	2	
			2	÷	45	+	
			f	TAN	f	LN	
			STO	5			In tan ₁
3	Input the initial longitude (CHS						
	for E)	λ_1 , D.MS	g	→H	STO	3	λ_1 , dec. deg.
4	Input the final latitude (CHS for						
	S)	L ₂ , D.MS	g	→H	RCL	2	
			STO	0	x ₹y	STO	
			2	2	÷	45	
			+	f	TAN	f	
			LN	RCL	5	STO	
			4	x ₹y	STO	5	In tan ₂
5	Input the final longitude (CHS						
	for E)	λ_2 , D.MS	g	→H	RCL	3	
			STO	1	x ₹y	STO	
1			3				λ_2 , dec. deg.
6	Compute course		f	PRGM	R/S		С
7	Compute distance		R/S				D
8	To continue the course, return to						
	step 4 and input a new final						
	position						

A ship sailing from San Francisco $(L37^{\circ} 49'N, \lambda 122^{\circ} 25'W)$ to Tokyo $(L35^{\circ} 40'N, \lambda 139^{\circ} 45'E)$ will follow three rhumblines to approximate the great circle route. The navigator chooses the two intermediate points to be at $\lambda 155^{\circ}W$ and $\lambda 175^{\circ}E$. Find the rhumbline courses the ship should follow, and the distance covered on each leg.

Solution:

First key in Great Circle Plotting.

Thus the two intermediate points are (L47° 46'N, λ 155°W) and (L47° 36' N, λ 175°E).

Now key in Rhumbline Navigation.

Coordinates of starting point:

37.49 9 +H STO 2 2 ÷ 45 + f tan f ln STO 5 122.25 9 +H STO 3

Find course, distance to first intermediate point:

47.4606 9 →H RCL 2 STO 0 X×y STO 2	2 ÷ 45 + f tan f In RCL
5 STO 4 X×Y STO 5 155 9 +H RCL 3 S	TO 1 XEY STO 3 F PRGM
R/S	▶ 292.67
	(course)
R/S	▶ 1549.38
	(distance)

Find course, distance to second intermediate point:

Find course, distance to destination:

35.40 9 →H RCL 2 STO 0 X ≥ STO 2 2 ÷ 45	f tan f In RCL
5 STO 4 XEY STO 5 139.45 CHS 9 +H RCL 3 S	TO 1 XEY STO 3
f PRGM	
R/S	→ 245.53
	(course)
R/S	→ 1728.66
	(distance)

Summary:

-		Rhumbline			
Location	Coordinates	Course	Distance		
San Francisco	L37° 49'N, λ 122° 25'W				
		292.7°	1549.38 n.m.		
1 st intermediate	L47° 46'N, λ 155°W	0			
and		269.5°	1211.80 n.m.		
2 nd intermediate	L47° 36'N, λ 175°E	245 5°	1729 66 m m		
Tokvo	L35° 40'N. λ 139° 45'E	243.3	1720.00 11.111.		

The total of the three rhumbline distances is 4489.8 nautical miles. The distance along the great circle from San Francisco to Tokyo may be found to be 4460 nautical miles. Even with just two intermediate points, the extra distance added by following rhumblines is less than 30 nautical miles.

SIGHT REDUCTION TABLE

This program calculates the computed altitude Hc and azimuth Zn of a celestial body given the observer's latitude L and the local hour angle LHA and declination d of the body. It thus becomes a replacement for the nine volumes of HO 214. However, the user need not bother with the distinctions of same name and contrary name; the program itself resolves all ambiguities of this type.

Equations:

 $Hc = sin^{-1} [sin d sin L + cos d cos L cos LHA]$

$$Z_{n} = \begin{cases} Z ; \sin LHA < 0 \\ 360-Z; \sin LHA \ge 0 \end{cases} \qquad Z = \cos^{-1} \left[\frac{\sin d - \sin L \sin Hc}{\cos L \cos Hc} \right]$$

Notes:

- 1. Southern latitudes and southern declinations must be entered as negative numbers.
- 2. The meridian angle t may be input in place of LHA, but if so, eastern meridian angles must be input as negative numbers.

D	ISPLAY	KEY	D	ISPLAY	KEY	DEGISTERS
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	61	x	R _o L
01	24 00	RCL 0	26	41	-	R ₁ d
02	14 04	fSIN	27	24 00	RCL 0	R ₂ LHA
03	24 01	RCL 1	28	14 05	f COS	R 3 sin Hc
04	14 04	fSIN	29	71	÷	R₄ Hc
05	61	x	30	24 04	RCL 4	R₅
06	24 00	RCL 0	31	14 05	f COS	R ₆
07	14 05	f COS	32	71	÷	R 7
08	24 01	RCL 1	33	15 05	g COS ⁻¹	
09	14 05	f COS	34	24 02	RCL 2	
10	61	x	35	14 04	fSIN	
11	24 02	RCL 2	36	15 4 1	g x<0	
12	14 05	f COS	37	13 45	GTO 45	
13	61	x	38	22	R↓	
14	51	+	39	03	3	
15	23 03	STO 3	40	06	6	
16	15 04	g SIN⁻¹	41	00	0	
17	23 04	STO 4	42	21	x ≩y	
18	14 00	f →H.MS	43	41	-	
19	74	R/S	44	13 00	GTO 00	
20	24 01	RCL 1	45	22	R↓	
21	14 04	fSIN	46	13 00	GTO 00	
22	24 03	RCL 3	47			
23	24 00	RCL 0	48			
24	14 04	f SIN	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS			OUTPUT DATA/UNITS		
1	Key in program						
2	Input the following:						
	Observer's latitude	L, D.MS	9	→H	STO	0	L, dec. deg.
	Declination	d, D.MS	g	→H	STO	1	d, dec. deg.
	Local hour angle	LHA, D.MS	g	→H	STO	2	LHA, dec. deg.
3	Compute altitude		f	PRGM	R/S		Hc, D.MS
4	Compute azimuth		R/S				Zn, dec. deg.
5	For new case, go to step 2.						

Compute the altitude and azimuth of the moon if its LHA is $2^{\circ}39'54''W$ and its declination $13^{\circ}51'06''S$. The assumed latitude is $33^{\circ}20'N$.

Solution:

 $Hc = 42^{\circ}44'47''$ $Zn = 183.5^{\circ}$

GREAT CIRCLE NAVIGATION

This program computes the great circle distance between two points and the initial heading from the first, given the latitude and longitude of the source (L_1, λ_1) and destination (L_2, λ_2) .

Equations:

$$D = 60 \cos^{-1} [\sin L_1 \sin L_2 + \cos L_1 \cos L_2 \cos (\lambda_2 - \lambda_1)]$$

$$H = \cos^{-1} \left[\frac{\sin L_2 - \sin L_1 \cos (D/60)}{\sin (D/60) \cos L_1} \right]$$

$$H_i = \begin{cases} H \quad ; \sin (\lambda_2 - \lambda_1) < 0 \\ 360 \text{-H}; \sin (\lambda_2 - \lambda_1) \ge 0 \end{cases}$$

Notes:

- 1. Southern latitudes and eastern longitudes must be entered as negative numbers.
- 2. Truncation and round off errors occur when the source and destination are very close together (1 mile or less).
- 3. Do not use coordinates located at diametrically opposite sides of the earth.
- 4. Do not use latitudes of $+90^{\circ}$ or -90° .
- 5. Do not try to compute initial heading along a line of longitude $(L_1 = L_2)$.

DI	SPLAY	KEY	DI	SPLAY	KEY	
LINE	CODE	ENTRY	LINE	CODE	ENTRY	
00			25	14 04	f SIN	
01	24 00	RCL 0	26	24 03	RCL 3	
02	14 04	fSIN	27	61	x	
03	24 01	RCL 1	28	41	-	
04	14 04	fSIN	29	24 00	RCL 0	
05	61	x	30	14 05	f COS	
06	24 00	RCL 0	31	71	÷	
07	14 05	f COS	32	24 04	RCL 4	
08	24 01	RCL 1	33	14 04	f SIN	
09	14 05	f COS	34	71	÷	
10	61	x	35	15 05	g COS⁻¹	
11	24 02	RCL 2	36	24 02	RCL 2	
12	14 05	f COS	37	14 04	f SIN	
13	61	x	38	15 41	g x<0	
14	51	+	39	13 47	GTO 47	
15	23 03	STO 3	40	22	R↓	
16	15 05	g COS ⁻¹	41	03	3	
17	23 04	STO 4	42	06	6	
18	06	6	43	00	0	
19	00	0	44	21	x ≩y	
20	61	x	45	41	-	
21	74	R/S	46	13 00	GTO 00	
22	24 01	RCL 1	47	22	R↓	
23	14 04	fSIN	48	13 00	GTO 00	
24	24 00	RCL 0	49			

REGISTERS								
R _{oL1}								
R 1 L2								
$\mathbf{R}_{2} \lambda_{2} - \lambda_{1}$								
R 3 cos (D/60)								
R₄ D/60								
R 5								
R ₆								
R 7								

74 Chapter 4 Navigation

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS					
1	Key in program								
2	Input the following:								
	Source latitude	L ₁ , D.MS	g	→H	STO	0	L ₁ , dec. deg.		
	Destination latitude	L ₂ , D.MS	g	→H	STO	1	L ₂ , dec. deg.		
	Destination longitude	λ_2 , D.MS	g	→H			λ_2 , dec. deg.		
	Source longitude	λ_1 , D.MS	g	→H	-	STO			
			2				$\lambda_2 - \lambda_1$, dec. deg.		
3	Compute great circle distance		f	PRGM	R/S		D, naut. mi.		
4	Compute initial heading		R/S				H _i , dec. deg.		
5	For new case, go to step 2.								

Example:

Find the great circle distance and initial heading from San Francisco (L37° 49'N, $\lambda 122^{\circ}25'W$) to Tokyo (L35°40'N, $\lambda 139^{\circ}45'E$).

Solution:

D = 4460.04 $H_i = 303.29^\circ$

Notes _

NUMERICAL METHODS CHAPTER 5

NEWTON'S METHOD SOLUTION TO f(x) = 0

One of the most common and frustrating problems in algebra is the solution of an equation like

$$\ln x + 3x = 10.8074$$
,

in which the x's refuse to conveniently migrate to one side of the equation and isolate themselves. That is, there is no simple algebraic solution. In this case, one of several root-finding algorithms may be employed to solve the equation f(x) = 0, where $f(x) = \ln x + 3x - 10.8074$. The following program uses Newton's method to find a solution for f(x) = 0, where f(x) is specified by the user.

The user must define the function f(x) by keying into program memory the keystrokes required to find f(x), assuming x is in the X-register. Fourteen program steps are available for defining f(x); the stack registers and storage registers R_5 through R_7 are also available to the user. In addition, the user must provide the program with an initial guess, x_1 , for the solution. The closer the initial guess is to the actual solution, the faster the program will converge to an answer. The program will halt when two successive approximations for x, say x_i and x_{i+1}, are within a tolerance ϵ , i.e., when $|x_{i+1} - x_i| < \epsilon$. The value for ϵ must be input by the user. In general a reasonable value for ϵ might be 10^{-6} x₁.

Equations:

The basic formula used by Newton's method to generate the next approximation for the solution is

- X

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

This program makes a numerical approximation for the derivative f'(x) to give the following equation:

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \delta_i \left[\frac{\mathbf{f}(\mathbf{x}_i + \delta_i)}{\mathbf{f}(\mathbf{x}_i)} - 1 \right]^{-1}$$

where $\delta_i = 10^{-5} x_i$

Notes:

- 1. After the routine has finished calculating, the last value of f(x) may be displayed by pressing RCL 4. If this value is not close enough to zero, the program may be run again with a smaller value for ϵ .
- 2. The user can watch the function converge to zero by making a slight change in the program. If the \bigcirc **NOP** in line 07 is replaced by an **f PAUSE**, the program will pause during each iteration, displaying successive values of f(x) which should be converging to zero. To make this change to a program that has already been keyed in, perform the following operations:
 - 1. Press GTO 0 6
 - 2. Switch to PRGM
 - 3. Press f PAUSE
 - 4. Switch to RUN
 - 5. Press f PRGM

Programming Remarks

This is one of the more complex programs in the book. The main difficulty is that at each iteration both f(x) and $f(x + \delta)$ need to be calculated, but the function f is keyed in in only one place in program memory. Large computers handle this problem by the use of a subroutine. This program simulates that technique by a number stored in R_0 known as a flag. The flag is set to 0 to indicate that f(x) is to be calculated, or to 1 if $f(x + \delta)$ is to be found. After the calculation of f, a test is made on the flag. If it is 0, the program will branch to an instruction which will store f(x); if it is 1, the program will go on to calculate a derivative based on $f(x + \delta)$. All operations connected with the flag occupy a total of 9 program steps.

D	ISPLAY	KEY	v	v	7	т	COMMENTS	REGISTERS
LINE	CODE	ENTRY	^		2		COMMENTS	neoloreno
00								B Flag
01	34	CLX	0				Set flag to 0 for f(x)	
02	23 00	STO 0	0					
03	24 01	RCL 1	x	0			Recall x and branch to	p X
04	13 17	GTO 17	×	0			calculate f(x)	ⁿ 1
05	22	R↓	f(x)				Roll down to remove flag	
06	23 04	STO 4	f(x)					n <i>€</i>
07	15 22		f(x)				May Pause to see convergence	ⁿ 2
08	01	1	1	f(x)			Set flag to 1 for $f(x + \delta)$	
09	23 00	STO 0	1	f(x)				ο δ
10	24 01	RCL 1	x	1	f(x)			1 3
11	24 01	RCL 1	x	x	1	f(x)		
12	33	EEX	1. 00	x	x	1		P, f(x)
13	05	5	1. 05	×	x	1		n 4
14	71	÷	10 ⁻⁵ x	x	1	1		
15	23 03	STO 3	δ	x	1	1		P
16	51	+	x + δ	1	1	1		n 5
17							Lines 17 through 30 are	
18							reserved for user	
19							to define f(x)	n 6
20								
21							This section of pam is	B _
22							used to find f(x) and	ⁿ 7
23							$f(x + \delta)$. Flag in R_0 is	
24		1.1					0 for f(x), 1 for	
25							$f(x + \delta)$	
26								
27								
28								
29								1
30								
31	15 71	g x = 0	$f(x)/(x + \delta)$				Is function value = 0?	
32	13 49	GTO 49	$f(x)/(x + \delta)$				Yes, output solution	
33	24 00	RCL 0	Flag	$f(x)/(x + \delta)$			No, check flag	
34	15 71	g x = 0	Flag	$f(x)/(x + \delta)$			Flag = 0?	
35	13 05	GTO 05	Flag	f(x)			Yes, have f(x)	
36	22	R↓	f(x + δ)			Flag	No, flag = 1, have $f(x + \delta)$	
37	24 04	RCL 4	f(x)	$f(x + \delta)$				
38	71	÷	R				$R = f(x + \delta)/f(x)$	
39	01	1	1	R				
40	41	-	R – 1				$R-1 = [f(x+\delta) - f(x)]/f(x)$	
41	15 22	g 1/x	(R - 1) ⁻¹				Approximate:	
42	24 03	RCL 3	δ	$(R - 1)^{-1}$			$f'(x) = [f(x+\delta) - f(x)]/\delta$	
43	61	x	δ/(R – 1)				$\Delta = f(\mathbf{x})/f'(\mathbf{x})$	
44	23 41 01	STO - 1	Δ				$\mathbf{x}_{i+1} = \mathbf{x}_i - \Delta$	
45	15 73	g ABS	IΔI					
46	24 02	RCL 2	e	IΔI				
47	14 41	f x <y< th=""><th>e</th><th>IΔI</th><th></th><th></th><th>$\mathbf{x}_{i+1} - \mathbf{x}_i > \epsilon$?</th><th></th></y<>	e	IΔI			$ \mathbf{x}_{i+1} - \mathbf{x}_i > \epsilon$?	
48	13 01	GTO 01	e	IΔI			Yes, iterate again	
49	24 01	RCL 1	x	e			No, display x and halt	

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS					
1	Key in lines 1-16 of program						16 51		
2	Key in function f(x)								
3	Key in a branch to line 31		GTO	31					
4	Press SST until display shows								
	line 30								
5	Key in lines 31-49 of program								
6	Switch to RUN								
7	Store initial guess for solution	×1	STO	1					
8	Store tolerance	e	STO	2					
9	Compute solution		f	PRGM	R/S		×o		
10	To change x_1 or ϵ go to appro-								
	priate step and store new value.								

An equation often solved by gear designers is

 $\tan x - x - I = 0$

where x is an angle in radians and I is the *involute* of x. Find the angle x_0 corresponding to an involute of 0.0324.

Note:

Since a gear designer might want to calculate x for several values of I, it will be simpler to store I in R_7 for use by the function f(x).

Solution:

Example User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS						
1	Key in lines 1-16 of program						16	51		
2	Key in steps for $f(x) = tan x -$									
	x – I		f	TAN			17	14 06		
			f	LASTx			18	14 73		
			-				19	41		
			RCL	7			20	24 07		
			-				21	41		
3	Key in branch to 31		GTO	31			22	13 31		
4	Press SST 8 times, until display									
	shows line 30									
5	Key in lines 31-49						49	24 01		
6	Switch to RUN									
7	Set angular mode		g	RAD						
8	Store I	.0324	STO	7						
9	Guess x ₁ = 1	1	STO	1						
10	Set tolerance $\epsilon = 10^{-6}$	10 ⁻⁶	STO	2						
11	Compute solution x ₀		f	PRGM	R/S			0.45		
12	Convert the angle to degrees		180	×	g	π				
			÷					25.62		
13	Display last value of f(x)		RCL	4			2.30	0 -09		

 $x_0 = 25.62^{\circ}$

Last $f(x) = 2.30 \times 10^{-9}$

NUMERICAL INTEGRATION, SIMPSON'S RULE

Let x_0 , x_1 , ..., x_n be equally spaced points such that $x_i = x_0 + ih$ for i = 0, 1, 2, ..., n at which corresponding values $f(x_0)$, $f(x_1)$, ..., $f(x_n)$ of a function f(x) are known. This function need not be known explicitly but if it is, these values can be found previously by writing the function into memory and evaluating at the various points. n must be an even positive integer.

Simpson's Rule is:

$$\int_{x_0}^{x_n} f(x) dx \cong \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 4f(x_{n-3}) + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)].$$

Let the solution be indicated by I.

D	ISPLAY	KEY	D	DISPLAY			REGIOTERO
LINE	CODE	ENTRY	LINE	CODE	ENTRY		REGISTERS
00			25	61	x		R _o h/3
01	24 00	RCL 0	26	24 01	RCL 1		R ₁ Σ
02	03	3	27	51	+		R ₂
03	71	÷	28	23 01	STO 1		R ₃
04	23 00	STO 0	29	13 13	GTO 13		R ₄
05	61	x	30				R ₅
06	23 01	STO 1	31				R ₆
07	74	R/S	32				R 7
08	24 00	RCL 0	33			·	
09	61	x	34				
10	24 01	RCL 1	35				
11	51	+	36				
12	23 01	STO 1	37				
13	74	R/S	38				
14	24 00	RCL 0	39				
15	61	x	40				
16	04	4	41				
17	61	x	42				
18	24 01	RCL 1	43				
19	51	+	44				
20	23 01	STO 1	45				
21	74	R/S	46				
22	24 00	RCL 0	47				
23	61	x	48				
24	02	2	49				

82 Chapter 5 Numerical Methods

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Store increment	h	STO	0			
3	Enter first function value	f(x _o)	f	PRGM	R/S		Partial sum
4	Enter last function value	f(x _n)	R/S				Partial sum
5	Enter values i = 1, 2,, n – 2	f(x _i)	R/S				Partial sum
6	Enter value i = n – 1	f(x _{n-1})	R/S				I

Example

Compute $\int_{0}^{\pi} \sin^{2} x \, dx$ using Simpson's rule with h = $\pi/8$.

The following data must be found first:

i	0	1	2	3	4	5	6	7	8
xi	0	$\pi/8$	π/4	3π/8	π/2	5π/8	3π/4	$7\pi/8$	π
$f(x_i)$	0	0.1464	0.5	0.8536	1	0.8536	0.5	0.1464	0

Solution:

$$\int_0^{\pi} \sin^2 x \, \mathrm{d}x \cong 1.5708$$

The exact solution is $\pi/2$.

NUMERICAL SOLUTION TO DIFFERENTIAL EQUATIONS

This program may be used to solve a wide variety of first order differential equations of the form

$$y' = f(x, y)$$

with initial values x_0 , y_0 .

The solution is a numerical solution which calculates y_i for $x_i = x_0 + ih$, where h is an increment specified by the user and i = 1, 2, ...

The program uses a modified Euler method (predictor - corrector):

$$\hat{y}_{i+1} = y_i + h f(x_i, y_i)$$
 $y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, \hat{y}_{i+1})]$

f(x, y) is keyed into memory starting at line 18. The user has 13 program steps to write f(x, y); registers R_5 , R_6 , and R_7 are also available. The user should assume that x and y will be in the X- and Y-registers, respectively. The routine should return with the value of f(x, y) in the X-register and should end with a GTO 31.

D	ISPLAY	KEY		DI	SPLAY	KEY	DEGLOTERO
LINE	CODE	ENTRY		LINE	CODE	ENTRY	REGISTERS
00				25			R _o h
01	34	CLX		26			R _{1 X}
02	23 04	STO 4		27			R ₂ y
03	24 02	RCL 2		28			R ₃ y'
04	24 01	RCL 1		29			R₄ Flag
05	13 18	GTO 18		30			R 5
06	22	R↓		31	24 04	RCL 4	R 6
07	23 03	STO 3		32	15 71	g x=0	R ₇
08	24 00	RCL 0		33	13 06	GTO 06	
09	61	x		34	22	R↓	
10	24 02	RCL 2		35	24 03	RCL 3	
11	51	+		36	51	+	
12	24 01	RCL 1		37	24 00	RCL 0	
13	24 00	RCL 0		38	61	x	
14	51	+		39	02	2	
15	01	1		40	71	÷	
16	23 04	STO 4		41	24 02	RCL 2	
17	22	R↓		42	51	+	
18				43	23 02	STO 2	
19				44	24 01	RCL 1	
20				45	24 00	RCL 0	
21				46	51	+	
22				47	23 01	STO 1	
23				48	14 74	f PAUSE	
24			L	49	21	x ₹y	

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS		OUT DATA/	PUT UNITS
1	Key in lines 1-17 of program						17	22
2	Key in function f(x, y)							
3	Key in branch to line 31		GTO	31				
4	Press SST repeatedly until dis-							
	play shows line 30							
5	Key in lines 31-49 of program						49	21
6	Switch to RUN							
7	Store increment	h	STO	0				
8	Store initial conditions	×o	STO	1				
		Yo	STO	2	f	PRGM		
9	Display next x-value and cor-							
	responding y-value		R/S				(x	k)
							У	k
10	Repeat step 9 as often as desired							

Solve numerically the differential equation $y' = x \sqrt{y}$ with initial conditions $x_0 = 1, y_0 = 1$. Use a step size of h = 0.1.

Solution:

Key the function in as $x \ge y$ f \sqrt{x}

x	1.0	1.1	1.2	1.3	1.4	1.5
y (by prgm)	1.0	1.1077	1.2319	1.3745	1.5372	1.7221
y (exact)	1.0	1.1078	1.2321	1.3748	1.5376	1.7227

LINEAR INTERPOLATION

If $(x_1, f(x_1))$ and $(x_2, f(x_2))$ are two points of a function f(x), then the function at x_0 can be approximated by the following formula:

$$f(x_0) \cong \frac{(x_2 - x_0) f(x_1) + (x_0 - x_1) f(x_2)}{(x_2 - x_1)}$$

This is called the linear interpolation formula. Of course, x_2 cannot equal x_1 .

D	ISPLAY	KEY		DISPLAY	KEY	BEOLOTEDO
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25			R ₀ x ₁
01	23 04	STO 4	26			R ₁ f(x ₁)
02	24 00	RCL 0	27			R ₂ x ₂
03	41	-	28			$\mathbf{R}_{3} f(\mathbf{x}_{2})$
04	24 03	RCL 3	29			R 4 ×0
05	61	x	30			R 5
06	24 02	RCL 2	31			R ₆
07	24 04	RCL 4	32			R 7
08	41	-	33			
09	24 01	RCL 1	34			
10	61	x	35			
11	51	+	36			
12	24 02	RCL 2	37			
13	24 00	RCL 0	38			
14	41	-	39			
15	71	÷	40			
16	13 00	GTO 00	41			
17			42			
18			43			
19			44			
20			45			
21			46			
22			47			
23			48			
24			49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Store first point	x 1	STO	0			
		f(x1)	STO	1			
3	Store second point	×2	STO	2			
		f(x2)	STO	3	f	PRGM	
4	Key in x_0 , find $f(x_0)$	×o	R/S				f(x ₀)
5	Repeat step 4 for as many x-						
	values as desired.						

Given

f(7.3) = 1.9879

$$f(7.4) = 2.0015$$
,

find by linear interpolation f(7.37).

Solution:

f(7.37) = 1.9974

When investigating the relationship between two variables in the real world, it is a reasonable first step to make experimental observations of the system to gather paired values of the variables, (x, y). The investigator might then ask the question: What mathematical formula best describes the relationship between the variables x and y? His first guess will often be that the relationship is linear, i.e., that the form of the equation is $y = a_1 x + a_0$, where a_1 and a_0 are constants. The purpose of this program is to find the constants a_1 and a_0 , which give the closest agreement between the experimental data and the equation $y = a_1 x + a_0$. The technique used is linear regression by the method of least squares.

The user must input the paired values of data he has gathered, (x_i, y_i) , i = 1, ..., n. When all data pairs have been input, the regression constants a_1 and a_0 may be calculated. A third value may also be found, the coefficient of determination, r^2 . The value of r^2 will lie between 0 and 1 and will indicate how closely the equation fits the experimental data: the closer r^2 is to 1, the better the fit.

Equations:

$$y = a_1 x + a_0$$

All summations below are performed for i = 1, ..., n.

Regression constants:

$$a_{1} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^{2} - \frac{(\sum x)^{2}}{n}}$$
$$a_{0} = \overline{y} - a_{1} \overline{x}$$

where $\overline{y} = \frac{\Sigma y}{n}$

$$\overline{\mathbf{x}} = \frac{\Sigma \mathbf{x}}{n}$$

Coefficient of determination:

$$r^{2} = \frac{\left[\Sigma xy - \frac{\Sigma x \Sigma y}{n}\right]^{2}}{\left[\Sigma x^{2} - \frac{(\Sigma x)^{2}}{n}\right]\left[\Sigma y^{2} - \frac{(\Sigma y)^{2}}{n}\right]}$$

Note:

The values for a_0 and a_1 are stored in R_0 and R_1 , respectively. After the calculation of a_0 , a_1 , and r^2 , the estimated y-value, \hat{y} , corresponding to any x-value may be calculated by $y = a_1 x + a_0$.

Programming Remarks:

The intermediate value $C = \sum xy - (\sum x \sum y/n)$ is first calculated at line 14 but is also needed near the end of the program to find r^2 . Since all registers R_0 through R_7 are in use, the only place to save this value is in the stack. Hence C is preserved in one or more of the stack registers from lines 14 through 36, when it is used. It is due to the presence of C in the stack that users are warned not to disturb the contents of the stack after calculation of a_0 and a_1 (see step 4 of User Instructions).

D	DISPLAY KEY M							
LINE	CODE	ENTRY	X	Y	2	T	COMMENTS	REGISTERS
00			Y	×			Steps 1-7 for summation	P . 80
01	31	t	v	v	x			n 0
02	15 02	q x ²	v ²	v	×			
03	23 51 02	STO + 2	y ²	v	×		Σv^2	a aı
04	22	R↓	v	×		v ²		H 1
05	21	x≓v	x	v		v ²		
06	25	Σ+	n	v		y ²	η Σν Σχν Σχ ² Σχ	$-\Sigma y^2$
07	13 00	GTO 00	n	v		y ²		R 2
08	24.05	BCL 5	Σχγ	,		,		
09	24 07	RCL 7	Σχ	Σχγ				
10	24 04	RCL 4	Σν	Σχ	Σχν			H 3
11	61	×	Σχ Σν	Σχγ				
12	24 03	RCL 3	n	ΣχΣγ	Σχγ			ο Σν
13	71	÷	Σχ Σν/η	Σχγ	,			ⁿ 4 - /
14	41	-	C	,			$C = \Sigma x y - (\Sigma x \Sigma y/n)$	
15	24 06	RCL 6	Σx^2	с				- Σχγ
16	24 07	RCL 7	Σχ	Σx^2	с			H 5
17	15 02	q x ²	$(\Sigma x)^2$	Σx^2	С			
18	24.03	BCL 3	0	$(\Sigma_X)^2$	Σv^2	C		$-\Sigma v^2$
19	71	÷	$(\Sigma x)^2/n$	Σx^2	C C	C		R 6 2
20	41	<u> </u>	D	C	C	C	$D = \sum x^2 - \left[(\sum x)^2 / n \right]$	
21	71	÷	a	c	c	C	$a_1 = C/D$	ο Σχ
22	23.01	STO 1	- <u>1</u>	C	C.	C.		H 7
23	24 07	BCL 7	Σχ	a	c	c		
24	61	×	a. Σx	C	c	C		
25	32	CHS	-a ₁ Σx	c	С	c		
26	24 04	RCL 4	Σν	-a, Σx	с	С		
27	51	+	Σν-a, Σχ	c.	с	С		
28	24 03	RCL 3	n	$\Sigma y = a_1 \Sigma x$	с	С		
29	71	÷	an	c	с	С	$a_0 = \overline{v} - a_1 \overline{x}$	
30	23 00	STO 0	ao	С	С	С		
31	74	R/S	ao	С	С	С	Halt to display a ₀	
32	24 01	RCL 1	aı	ao	С	С		
33	74	R/S	aı	ao	С	С	Halt to display a ₁	
34	21	x ₹y	ao	aı	С	С		
35	22	R↓	a ₁	С	С	ao		
36	61	x	a ₁ C	С	ao	ao		
37	24 02	RCL 2	Σy²	a ₁ C	С	ao		
38	24 04	RCL 4	Σγ	Σy²	a ₁ C	С		
39	15 02	g x ²	(Σγ) ²	Σy ²	a ₁ C	С		
40	24 03	RCL 3	n	$(\Sigma \gamma)^2$	$\Sigma \gamma^2$	a ₁ C		
41	71	÷	$(\Sigma \gamma)^2 / n$	Σy²	a ₁ C	a ₁ C		
42	41	-	E	a ₁ C	a ₁ C	a ₁ C	$E = \Sigma y^2 - [(\Sigma y)^2/n]$	
43	71	÷	r ²	a ₁ C	a ₁ C	a ₁ C	$r^2 = a_1 C/E$	
44	13 00	GTO 00	r ²	a ₁ C	a ₁ C	a ₁ C		
45								
46								
47								
48								
49								

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS			
1	Key in program						
2	Initialize		f	REG	f	PRGM	
3	Perform for i = 1,, n:						
	Input x-value and y-value	×i	1 T				
		Yi	R/S				· i
4	Compute regression constants		GTO	08	R/S		a ₀ *
			R/S				a1 *
5	Compute coefficient of deter-						
	mination		R/S				r ²
6	To calculate a projected y-value,						
	input the x-value	x	RCL	1	x	RCL	
			0	+			Ŷ
7	Perform step 6 as many times as						
	desired						
8	For a new case, go to step 2.						
	* The contents of the stack						
	should not be disturbed at these						
	points.						

An eccentric professor of numerical analysis wakes up one morning and feels feverish. A search through his medicine cabinet reveals one oral thermometer which, unfortunately, is in degrees centigrade, a scale he is not familiar with. As he stares disconsolately out his window, he spies the outdoor thermometer affixed to the windowframe. This thermometer, however, will not fit comfortably into his mouth. Still, with some ingenuity....

The professor suspects that the relationship is $F = a_1 C + a_0$. If he can get a few data pairs for F and C, he can run a linear regression program to find a_1 and a_0 , then convert any reading in °C to °F through the equation. So tossing both thermometers into a sink of lukewarm water, he reads the following pairs of temperatures as the water cools:

C	40.5	38.6	37.9	36.2	35.1	34.6
F	104.5	102	100	97.5	95.5	94

If the relationship is indeed $F = a_1 C + a_0$, what are the values for a_1 and a_0 ? What is the coefficient of determination?

Solution:

f PRGM f REG 40.5 → 104.5 R/S	1.00
38.6 • 102 R/S	2.00
37.9 ♠ 100 R/S	3.00
36.2 ● 97.5 R/S	4.00
35.1 ₱ 95.5 R/S	5.00
34.6 ♠ 94 R/S →	6.00
GTO 0 8 R/S	33.53
R/S	1.76
R/S	0.99

Thus, by the data above, F = 1.76 C + 33.53, with r^2 = 0.99. (The real equation, of course, is F = 1.8C + 32.)

Suppose the professor puts the centigrade thermometer in his mouth and finds he has a temperature of 37° C. Should he be worried?

37 RCL 1 × RCL 0 + _____ 98.65°F

It looks like he is safe.

EXPONENTIAL CURVE FIT

This program computes the least squares fit of n pairs of data points $\{(x_i, y_i), i = 1, 2, ..., n\}$, where $y_i > 0$, for an exponential function of the form

$$y = a e^{bx}$$
 (a > 0).

The equation is linearized into

$$\ln y = \ln a + bx.$$

The following statistics are computed:

1. Coefficients a, b

$$b = \frac{\sum x_i \ln y_i - \frac{1}{n} (\sum x_i)(\sum \ln y_i)}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2}$$

$$a = \exp\left[\frac{\sum \ln y_i}{n} - b \frac{\sum x_i}{n}\right]$$

2. Coefficient of determination

$$r^{2} = \frac{\left[\sum x_{i} \ln y_{i} - \frac{1}{n} \sum x_{i} \sum \ln y_{i}\right]^{2}}{\left[\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}\right] \left[\sum (\ln y_{i})^{2} - \frac{(\sum \ln y_{i})^{2}}{n}\right]}$$

3. Estimated value \hat{y} for a given x

$$\hat{y} = a e^{bx}$$

Note:

n is a positive integer and $n \neq 1$.

DISPLAY		KEY	DISPLAY		
LINE	CODE	ENTRY	LINE	со	
00			25		
01	14 07	f LN	26		
02	31	1	27	24	
03	15 02	g x ²	28		
04	23 51 02	STO + 2	29	24	
05	22	R↓	30		
06	21	x ≩y	31	15	
07	25	Σ+	32	23	
08	13 00	GTO 00	33		
09	24 05	RCL 5	34	24	
10	24 07	RCL 7	35		
11	24 04	RCL 4	36		
12	61	x	37		
13	24 03	RCL 3	38		
14	71	÷	39	24	
15	41	-	40	24	
16	24 06	RCL 6	41	15	
17	24 07	RCL 7	42	24	
18	15 02	g x ²	43		
19	24 03	RCL 3	44		
20	71	÷	45		
21	41	-	46	13	
22	71	÷	47		
23	23 01	STO 1	48		
24	24 07	RCL 7	49		

DI	SPLAY	KEY
LINE	CODE	ENTRY
25	61	x
26	32	CHS
27	24 04	RCL 4
28	51	+
29	24 03	RCL 3
30	71	÷
31	15 07	g e [×]
32	23 00	STO 0
33	74	R/S
34	24 01	RCL 1
35	74	R/S
36	21	x ≩y
37	22	R↓
38	61	x
39	24 02	RCL 2
40	24 04	RCL 4
41	15 02	g x ²
42	24 03	RCL 3
43	71	÷
44	41	-
45	71	÷
46	13 00	GTO 00
47		
48		
49		

REGISTERS
R _{oa}
R ₁ b
$\mathbf{R}_{2} \Sigma (\ln y)^{2}$
R ₃ n
R₄ ΣInγ
R ₅ Σx In y
$R_6 \Sigma x^2$
R ₇ Σx

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Initialize		f	REG	f	PRGM	
3	Perform for i = 1,, n:						
	Input x-value and y-value	×i	1				
		Уi	R/S				i
4	Compute constants		GTO	09	R/S		a*
			R/S				b*
5	Compute coefficient of deter-						
	mination		R/S				r ²
6	To calculate ŷ, input x	×	RCL	1	×	g	
			e×	RCL	0	×	Ŷ
7	Perform step 6 as many times						
	as desired						
8	For new case, go to step 2.						
	* The stack must be maintained						
	at these points.						

x _i	.72	1.31	1.95	2.58	3.14
Уi	2.16	1.61	1.16	.85	0.5

Solution:

a = 3.45, b = -0.58 y = 3.45 e^{-0.58 x} $r^{2} = 0.98$ For x = 1.5, $\hat{y} = 1.44$

LOGARITHMIC CURVE FIT

This program fits a logarithmic curve

$$y = a + b \ln x$$

to a set of data points

$$\{(x_i, y_i), i = 1, 2, ..., n\}$$

where $x_i > 0$.

Program computes:

1. Regression coefficients

$$b = \frac{\sum y_i \ln x_i - \frac{1}{n} \sum \ln x_i \sum y_i}{\sum (\ln x_i)^2 - \frac{1}{n} (\sum \ln x_i)^2}$$
$$a = \frac{1}{n} (\sum y_i - b \sum \ln x_i)$$

2. Coefficient of determination

$$r^{2} = \frac{\left[\sum y_{i} \ln x_{i} - \frac{1}{n} \sum \ln x_{i} \sum y_{i}\right]^{2}}{\left[\sum (\ln x_{i})^{2} - \frac{1}{n} (\sum \ln x_{i})^{2}\right] \left[\sum y_{i}^{2} - \frac{1}{n} (\sum y_{i})^{2}\right]}$$

3. Estimated value \hat{y} for given x

$$\hat{\mathbf{y}} = \mathbf{a} + \mathbf{b} \ln \mathbf{x}$$

Note:

n is a positive integer and $n \neq 1$.

DISPLAY		KEY	ſ	DI	SPLAY
LINE	CODE	ENTRY	1	LINE	CODE
00				25	6
01	31	1		26	3
02	15 02	g x ²	[27	24 0
03	23 51 02	STO + 2		28	5
04	22	R↓		29	24 0
05	21	x ∠y	[30	7
06	14 07	fLN	[31	23 0
07	25	Σ+	-[32	74
08	13 00	GTO 00	[33	24 0
09	24 05	RCL 5		34	74
10	24 07	RCL 7		35	2
11	24 04	RCL 4		36	2
12	61	x		37	6
13	24 03	RCL 3		38	24 0
14	71	÷		39	24 04
15	41	-		40	15 0
16	24 06	RCL 6		41	24 0
17	24 07	RCL 7		42	7
18	15 02	g x ²		43	4
19	24 03	RCL 3		44	7
20	71	÷	ſ	45	13 0
21	41	-		46	
22	71	÷	ſ	47	
23	23 01	STO 1		48	
24	24 07	RCL 7	l	49	

DI	SPLAY	KEY
LINE	CODE	ENTRY
25	61	x
26	32	CHS
27	24 04	RCL 4
28	51	+
29	24 03	RCL 3
30	71	÷
31	23 00	STO 0
32	74	R/S
33	24 01	RCL 1
34	74	R/S
35	21	x ≩y
36	22	R↓
37	61	x
38	24 02	RCL 2
39	24 04	RCL 4
40	15 02	g x ²
41	24 03	RCL 3
42	71	÷
43	41	-
44	71	÷
45	13 00	GTO 00
46		
47		
48		
49		

REGISTERS
Roa
R ₁ b
$R_2 \Sigma v^2$
R ₃ n
R ₄ Σγ
R ₅ ΣyIn x
$\mathbf{R}_{6} \Sigma (\ln x)^2$
R ₇ Σln x

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS			
1	Key in program						
2	Initialize		f	REG	f	PRGM	
3	Perform for i = 1,, n:						
	Input x-value and y-value	×i	1				
		Yi	R/S				i
4	Compute constants		GTO	09	R/S		a*
			R/S				b*
5	Compute coefficient of deter-						
	mination		R/S				r ²
6	To calculate ŷ, input x	x	f	In	RCL	1	
			×	RCL	0	+	Ŷ
7	Perform step 6 as many times as						
	desired						
8	For new case, go to step 2.						
	* The stack must be maintained						
	at these points						

x _i	3	4	6	10	12
y _i	1.5	9.3	23.4	45.8	60.1

Solution:

a = -47.02, b = 41.39 y = -47.02 + 41.39 ln x $r^2 = 0.98$ For x = 8, $\hat{y} = 39.06$ For x = 14.5, $\hat{y} = 63.67$

POWER CURVE FIT

This program fits a power curve

$$y = ax^b \quad (a > 0)$$

to a set of data points

$$\{(x_i, y_i), i = 1, 2, ..., n\}$$

where $x_i > 0$, $y_i > 0$.

By writing this equation as

the problem can be solved as a linear regression problem.

Output statistics are:

1. Regression coefficients

$$b = \frac{\sum (\ln x_i) (\ln y_i) - \frac{(\sum \ln x_i) (\sum \ln y_i)}{n}}{\sum (\ln x_i)^2 - \frac{(\sum \ln x_i)^2}{n}}$$

$$a = \exp\left[\frac{\sum \ln y_i}{n} - b \frac{\sum \ln x_i}{n}\right]$$

2. Coefficient of determination

$$r^{2} = \frac{\left[\Sigma \left(\ln x_{i}\right) \left(\ln y_{i}\right) - \frac{\left(\Sigma \ln x_{i}\right) \left(\Sigma \ln y_{i}\right)}{n}\right]^{2}}{\left[\Sigma \left(\ln x_{i}\right)^{2} - \frac{\left(\Sigma \ln x_{i}\right)^{2}}{n}\right] \left[\Sigma \left(\ln y_{i}\right)^{2} - \frac{\left(\Sigma \ln y_{i}\right)^{2}}{n}\right]}$$

3. Estimated value \hat{y} for given x

$$\hat{\mathbf{y}} = \mathbf{a}\mathbf{x}^{t}$$

Note:

n is a positive integer and $n \neq 1$.

DISPLAY		KEY	KEY			KEY		Г
LINE	CODE	ENTRY		LINE	CODE	ENTRY		
00				25	24 07	RCL 7	1	R
01	14 07	f LN		26	61	x	1	R
02	31	1		27	32	CHS		R
03	15 02	g x ²		28	24 04	RCL 4		R
04	23 51 02	STO + 2		29	51	+		R
05	22	R↓		30	24 03	RCL 3		R
06	21	x ₹y		31	71	÷		R
07	14 07	f LN		32	15 07	g e [×]		R
08	25	Σ+		33	23 00	STO 0		
09	13 00	GTO 00		34	74	R/S		
10	24 05	RCL 5		35	24 01	RCL 1		
11	24 07	RCL 7		36	74	R/S		
12	24 04	RCL 4		37	21	x ≩y		
13	61	x		38	22	R↓		
14	24 03	RCL 3		39	61	x		
15	71	÷		40	24 02	RCL 2		
16	41	-		41	24 04	RCL 4		
17	24 06	RCL 6		42	15 02	g x ²		
18	24 07	RCL 7		43	24 03	RCL 3		
19	15 02	g x ²		44	71	÷		
20	24 03	RCL 3		45	41	-		
21	71	÷		46	71	÷		
22	41	-		47	13 00	GTO 00		
23	71	÷		48				
24	23 01	STO 1		49				

REGISTERS
R _o a
R ₁ b
$\mathbf{R}_2 \Sigma (\ln y)^2$
R ₃ n
$\mathbf{R}_{4} \Sigma \ln y$
R ₅ Σ (In x) (In y)
$\mathbf{R}_{6} \Sigma (\ln \mathbf{x})^2$
R ₇ Σ In x

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS				
1	Key in program							
2	Initialize		f	REG	f	PRGM		
3	Perform for i = 1,, n:							
	Input x-value and y-value	×i	1					
		Уi	R/S				i	
4	Compute constants		GTO	10	R/S		a*	
	1		R/S				b*	
5	Compute coefficient of deter-							
	mination		R/S				r ²	
6	Input x-value and compute $\hat{\mathbf{y}}$	×	RCL	1	f	у×		
			RCL	0	x		ŷ	
7	Perform step 6 as many times as							
	desired							
8	For new case, go to step 2.							
	* The stack must be maintained							
	at these points.							

x _i	10	12	15	17	20	22	25	27	30	32	35
Уi	0.95	1.05	1.25	1.41	1.73	2.00	2.53	2.98	3.85	4.59	6.02

Solution:

a = .03, b = 1.46 y = .03x^{1.46} r² = 0.94 For x = 18, \hat{y} = 1.76 x = 23, \hat{y} = 2.52

COVARIANCE AND CORRELATION COEFFICIENT

For a set of given data points $\{(x_i, y_i), i = 1, 2, ..., n\}$, the covariance and the correlation coefficent are defined as:

covariance
$$s_{xy} = \frac{1}{n-1} \left(\Sigma x_i y_i - \frac{1}{n} \Sigma x_i \Sigma y_i \right)$$

or $s_{xy}' = \frac{1}{n} \left(\Sigma x_i y_i - \frac{1}{n} \Sigma x_i \Sigma y_i \right)$
correlation coefficient $r = \frac{s_{xy}}{s_x s_y}$

where s_x and s_y are standard deviations

$$s_x = \sqrt{\frac{\sum x_i^2 - (\sum x_i)^2/n}{n-1}}$$
 $s_y = \sqrt{\frac{\sum y_i^2 - (\sum y_i)^2/n}{n-1}}$

Note:

- 1 ≤ r ≤ 1

DISPLAY		KEY	DI	SPLAY	KEY	
LINE	CODE	ENTRY	LINE	CODE	ENTRY	
00			25	71	÷	R
01	31	1	26	74	R/S	R
02	15 02	g x ²	27	14 22	fs	R
03	23 51 02	STO + 2	28	23 71 01	STO ÷ 1	R
04	22	R↓	29	24 02	RCL 2	R
05	21	x ≩y	30	24 04	RCL 4	R
06	25	Σ+	31	15 02	g x ²	R
07	13 00	GTO 00	32	24 03	RCL 3	R
08	24 05	RCL 5	33	71	÷	
09	24 04	RCL 4	34	41	-	
10	24 07	RCL 7	35	24 00	RCL 0	
11	61	x	36	71	÷	
12	24 03	RCL 3	37	14 02	f√x	
13	71	÷	38	23 71 01	STO ÷ 1	
14	41	-	39	24 01	RCL 1	
15	24 03	RCL 3	40	13 00	GTO 00	
16	01	1	41			
17	41	-	42			
18	23 00	STO 0	43			
19	71	÷	44			
20	23 01	STO 1	45			
21	74	R/S	46			
22	24 00	RCL 0	47			
23	61	x	48			
24	24 03	RCL 3	49			

	REGISTERS
R _o n – 1	
R ₁ Used	
$R_2 \Sigma y^2$	
R ₃ n	
R ₄ Σ γ	
R ₅ Σ xy	
$R_6 \Sigma x^2$	
R ₇ Σ x	

102 Chapter 6 Statistics

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Initialize		f	PRGM	f	REG	
3	Perform this step for i = 1, 2,,n	×i	1				
		Yi	R/S				i
4	Compute covariance ^s xy		GTO	08	R/S		s _{xγ}
5	Compute s _{xy} '		R/S				s _{xy} ′
6	Compute correlation coefficient		R/S				r
7	For new case, go to step 2.						

Example:

x _i	26	30	44	50	62	68	74
y _i	92	85	78	81	54	51	40

Solution:

 $s_{xy} = -354.14$ $s_{xy}' = -303.55$ r = -0.96

MOMENTS AND SKEWNESS

This program computes the following statistics for a set of given data $\{x_1, x_2, \dots, x_n\}$ \dots, x_n

1st moment
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

2nd moment $m_2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2$
3rd moment $m_3 = \frac{1}{n} \sum_{i=1}^{n} x_i^3 - \frac{3}{n} \overline{x} \sum_{i=1}^{n} x_i^2 + 2\overline{x}^3$

n

moment coefficient of skewness

$$\gamma_1 = \frac{\mathrm{m}_3}{\mathrm{m}_2^{3/2}}$$

DISPLAY		KEY D		ISPLAY	KEY	RECIETERS
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	71	÷	R ₀ m ₃
01	31	1	26	03	3	R ₁ m ₂
02	15 02	g x ²	27	61	x	R ₂ x
03	25	Σ+	28	41	-	R ₃ n
04	13 00	GTO 00	29	24 02	RCL 2	R ₄ Σ ×
05	24 04	RCL 4	30	31	1	$R_5 \Sigma x^3$
06	24 03	RCL 3	31	15 02	g x ²	$R_6 \Sigma x^4$
07	71	÷	32	61	x	$\mathbf{R}_{7} \Sigma \mathbf{x}^{2}$
08	23 02	STO 2	33	02	2	
09	74	R/S	34	61	x	
10	24 07	RCL 7	35	51	+	
11	24 03	RCL 3	36	23 00	STO 0	
12	71	÷	37	74	R/S	
13	24 02	RCL 2	38	24 00	RCL 0	
14	15 02	g x ²	39	24 01	RCL 1	
15	41	-	40	01	1	
16	23 01	STO 1	41	73	•	
17	74	R/S	42	05	5	
18	24 05	RCL 5	43	14 03	f y ^x	
19	24 03	RCL 3	44	71	÷	
20	71	÷	45	13 00	GTO 00	
21	24 07	RCL 7	46			
22	24 02	RCL 2	47			
23	61	x	48			
24	24 03	RCL 3	49			

104 Chapter 6 Statistics

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS			
1	Key in program						
2	Initialize		f	PRGM	f	REG	
3	Perform for i = 1, 2,, n:						
	Input x-value	×i	R/S				i
4	Delete erroneous data	×k	1	g	x ²	f	
			Σ-				
5	Compute the mean		GTO	05	R/S		x
6	Compute the second and third						
	moments		R/S				m ₂
			R/S				m ₃
7	Compute the moment coefficient						
	of skewness		R/S				γ1
8	For new case, go to step 2.						

Example:

i	1	2	3	4	5	6	7	8	9
x _i	2.1	3.5	4.2	6.5	4.1	3.6	5.3	3.7	4.9

Solution:

$$\overline{\mathbf{x}} = 4.21$$

 $m_2 = 1.39$

 $m_3 = 0.39$

 $\gamma_1 = 0.24$
NORMAL DISTRIBUTION

The density function for a standard normal variable is

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} .$$

The upper tail area is

For $x \ge 0$, polynomial approximation is used to compute Q(x):

$$Q(x) = f(x) (b_1 t + b_2 t^2 + b_3 t^3 + b_4 t^4 + b_5 t^5) + \epsilon(x)$$

where $|\epsilon(x)| < 7.5 \times 10^{-8}$

$$t = \frac{1}{1 + rx}, r = 0.2316419$$

$$b_1 = .31938153, \quad b_2 = -.356563782$$

$$b_3 = 1.781477937, \quad b_4 = -1.821255978$$

$$b_5 = 1.330274429$$

Note:

The program only works for $x \ge 0$. Equations f(-x) = f(x), Q(-x) = 1-Q(x), where $x \ge 0$, can be used to find f and Q for negative numbers.

Reference:

Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1968.

DISPLAY		KEY		DI	KEY	
LINE	CODE	ENTRY	LI	NE	CODE	ENTR
00			2	5	61	x
01	31	1	2	6	24 04	RCL 4
02	23 06	STO 6	2	7	51	+
03	61	x	2	8	61	x
04	02	2	2	9	24 03	RCL 3
05	71	÷	3	ю	51	+
06	32	CHS	3	81	61	x
07	15 07	g e [×]	3	2	24 02	RCL 2
08	15 73	gπ	3	3	51	+
09	02	2	3	4	61	x
10	61	x	3	5	24 01	RCL 1
11	14 02	f√x	3	6	51	+
12	71	÷	3	17	61	x
13	23 07	STO 7	3	8	24 07	RCL 7
14	74	R/S	3	9	61	x
15	24 00	RCL 0	4	0	13 00	GTO 0
16	24 06	RCL 6	4	11		
17	61	x	4	2		
18	01	1	4	3		
19	51	+	4	4		
20	15 22	g 1/x	4	15		
21	31	1	4	6		
22	31	1	4	17		
23	31	1	4	8		
24	24 05	RCL 5	4	9		

	REGISTERS
\mathbf{R}_{o}	r
R 1	bı
R_2	b ₂
\mathbf{R}_{3}	b ₃
R 4	b ₄
R ₅	b ₅
R 6	x
R,	f(x)

KEY ENTRY

x GTO 00

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS		
1	Key in program					
2	Initialize		f	PRGM		
3	Store constants	r	STO	0		
		bı	STO	1		
		b ₂	STO	2		
		b3	STO	3		
		b ₄	STO	4		
		b ₅	STO	5		
4	Input x and compute f(x)	×	R/S			f(x)
5	Compute Q(x)		R/S			Q(x)
6	For a new case, go to 4.					

1. x = 1.18

2.
$$x = 2.28$$

Solutions:

1.
$$f(x) = 0.20$$

 $Q(x) = 0.12$

2.
$$f(x) = 0.03$$

 $Q(x) = 0.01$

INVERSE NORMAL INTEGRAL

This program determines the value of x such that

$$Q = \int_{x}^{\infty} \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}} dt$$

where Q is given and $0 < Q \le 0.5$.

The following rational approximation is used:

$$x = t - \frac{c_0 + c_1 t + c_2 t^2}{1 + d_1 t + d_2 t^2 + d_3 t^3} + \epsilon(Q)$$

where $|\epsilon(Q)| < 4.5 \times 10^{-4}$

$$t = \sqrt{\ln \frac{1}{Q^2}}$$

$$c_0 = 2.515517 \quad d_1 = 1.432788$$

$$c_1 = 0.802853 \quad d_2 = 0.189269$$

$$c_2 = 0.010328 \quad d_3 = 0.001308$$

Reference:

Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1968.

DI	SPLAY	KEY	D	DISPLAY		
LINE	CODE	ENTRY	LINE	CODE	ENTRY	
00	7/////////		25	51	+	R ₀ c ₀
01	31	1	26	61	x	R ₁ c ₁
02	61	x	27	24 00	RCL 0	R ₂ c ₂
03	15 22	g 1/x	28	51	+	R 3 d1
04	14 07	f LN	29	24 07	RCL 7	R ₄ d ₂
05	14 02	f√x	30	71	÷	R 5 d ₃
06	23 06	STO 6	31	41	-	R ₆ t
07	31	1	32	13 00	GTO 00	R ₇ 1 + d ₁ t
08	31	1	33			
09	31	1	34			
10	24 05	RCL 5	35			
11	61	x	36			
12	24 04	RCL 4	37			
13	51	+	38			
14	61	x	39			
15	24 03	RCL 3	40			
16	51	+	41			
17	61	x	42			
18	01	1	43			
19	51	+	44			
20	23 07	STO 7	45			
21	34	CLX	46			
22	24 02	RCL 2	47			
23	61	x	48			
24	24 01	RCL 1	49			

REGISTERS
R ₀ c ₀
R ₁ c ₁
R ₂ c ₂
R ₃ d ₁
R ₄ d ₂
R ₅ d ₃
R ₆ t
R ₇ 1 + d ₁ t + d ₂ t ² + d ₃ t ³

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS		
1	Key in program					
2	Initialize		f	PRGM		
3	Store constants	C ₀	STO	0		
		c ₁	STO	1		
		c2	STO	2		
		dı	STO	3		
		d ₂	STO	4		
		d3	STO	5		
4	Input Q	Q	R/S			
5	For a new case, go to 4.					

- 1. Q = 0.12
- 2. Q = 0.05

Solutions:

- 1. x = 1.18
- 2. x = 1.65

FACTORIAL

This program will compute factorials for positive integers between 2 and 69.

$$n! = n (n - 1) (n - 2) ... (2) (1)$$

Notes:

- 1. For large values of n, the program will take some time to arrive at a result, up to a maximum of about 20 seconds for n = 69.
- 2. The program does not check input values and will return incorrect answers for values of n < 2 or n > 69 or n non-integer.

D	ISPLAY	SPLAY KEY		SPLAY	KEY	REGIOTERO
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25			R _o Used
01	31	1	26			R 1
02	01	1	27			R ₂
03	23 00	STO 0	28			R 3
04	21	x ≩y	29			R ₄
05	23 61 00	STO x 0	30			R ₅
06	01	1	31			R 6
07	41		32			R ,
08	14 61	fx≠y	33			
09	13 05	GTO 05	34			
10	24 00	RCL 0	35			
11	13 00	GTO 00	36			
12			37			
13			38			
14			39			
15			40			
16			41			
17			42			
18			43			
19			44			
20			45			
21			46			
22			47			
23			48			
24			49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in program]
2	Initialize		f PRGM]
3	Key in n (2 ≤ n ≤ 69)	n	R/S	n!
4	For a new n, go to step 3.]

- 1. 5! = 120.00
- 2. 10! = 3628800.00

PERMUTATION

A permutation is an ordered subset of a set of distinct objects. The number of possible permutations, each containing n objects, that can be formed from a collection of m distinct objects is given by

$${}_{m}P_{n} = \frac{m!}{(m-n)!} = m(m-1)...(m-n+1)$$

where m, n are integers and $0 \le n \le m$.

Notes:

- 1. ${}_{m}P_{n}$ can also be denoted by P_{n}^{m} , P(m,n) or $(m)_{n}$.
- 2. ${}_{m}P_{0} = 1, {}_{m}P_{1} = m, {}_{m}P_{m} = m!$

D	SPLAY	KEY		DIS	SPLAY	KEY ENTRY		RECIETERS
LINE	CODE	ENTRY	LIN	1E	CODE			REGISTERS
00			2	5	13 15	GTO 15		R _o m
01	24 00	RCL 0	20	6	22	R↓		R ₁ n
02	24 00	RCL 0	2	7	22	R↓		R ₂
03	24 01	RCL 1	2	в	13 00	GTO 00		R 3
04	15 71	g x=0	2	9	01	1		R₄
05	13 29	GTO 29	3	0	13 00	GTO 00		R 5
06	14 71	f x=y	3	1	01	1		R ₆
07	13 31	GTO 31	3	2	41	-		R ₇
08	14 51	fx≷γ	3	3	15 71	g x=0		
09	13 39	GTO 39	3	4	13 37	GTO 37		
10	01	1	3	5	23 61 00	STO x 0		
11	14 71	f x=y	3	6	13 31	GTO 31		
12	13 41	GTO 41	3	7	24 00	RCL 0	L	
13	22	R↓	3	в	13 00	GTO 00		
14	41	-	3	9	00	0		
15	01	1	4	0	71	÷		
16	51	+	4	1	22	R↓		
17	61	x	4	2	22	R↓		
18	14 73	f LASTx	4	3	13 00	GTO 00		
19	24 00	RCL 0	4	4				
20	01	1	4	5				
21	41	-	4	6				
22	14 71	f x=y	4	7				
23	13 26	GTO 26	4	8				
24	22	R↓	4	9				

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in program			
2	Store m, n	m	STO 0	
		n	STO 1	
3	Compute permutations		f PRGM R/S	mPn
4	For new case, go to step 2.			

- 1. ${}_{43}P_3 = 74046.00$
- 2. $_{73}P_4 = 26122320.00$

COMBINATION

A combination is a selection of one or more of a set of distinct objects without regard to order. The number of possible combinations, each containing n objects, that can be formed from a collection of m distinct objects is given by

$${}_{m}C_{n} = \frac{m!}{(m-n)! n!} = \frac{m(m-1) \dots (m-n+1)}{1 \cdot 2 \cdot \dots \cdot n}$$

where m, n are integers and $0 \le n \le m$.

This program computes ${}_{m}C_{n}$ using the following algorithm:

1. If $n \le m - n$

 $_{m}C_{n} = \frac{m-n+1}{1} \cdot \frac{m-n+2}{2} \cdot \dots \cdot \frac{m}{n}$.

2. If n > m - n, program computes ${}_{m}C_{m-n}$.

Notes:

- 1. ${}_{m}C_{n}$, which is also called the binomial coefficient, can be denoted by C_{n}^{m} , C(m,n), or $\binom{m}{n}$.
- 2. ${}_{m}C_{n} = {}_{m}C_{m-n}$
- 3. ${}_{m}C_{0} = {}_{m}C_{m} = 1$
- 4. ${}_{m}C_{1} = {}_{m}C_{m-1} = m$

D	SPLAY	KEY		D	SPLAY	KEY	
LINE	CODE	ENTRY		LINE	CODE	ENTRY	
00				25	24 01	RCL 1	
01	41	-		26	71	÷	
02	14 73	f LASTx		27	23 61 02	STO x 2	
03	14 41	f x≺y		28	22	R↓	
04	21	x ₹y		29	13 13	GTO 13	
05	23 00	STO 0		30	01	1	
06	01	1		31	13 00	GTO 00	
07	23 01	STO 1		32			
08	51	+		33			
09	23 02	STO 2		34			
10	22	R↓		35			
11	15 71	g x=0		36			
12	13 30	GTO 30		37			
13	01	1		38			
14	24 01	RCL 1		39			
15	51	+		40			
16	23 01	STO 1		41			
17	21	x ≩y		42			
18	14 51	fx≷y		43			
19	13 22	GTO 22		44			
20	24 02	RCL 2		45			
21	13 00	GTO 00		46			
22	21	x ₹y		47			
23	24 00	RCL 0		48			
24	51	+		49			

REGISTERS
R o max (n, m – n)
R 1 Used
R ₂ Used
R 3
R ₄
R 5
R ₆
R ₇

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in program			
2	Key in m and n	m		
		n	f PRGM R/S	mCn
3	For new case, go to step 2.			

- 1. $_{73}C_4 = 1088430.00$
- 2. $_{43}C_3 = 12341.00$

RANDOM NUMBER GENERATOR

This program calculates uniformly distributed pseudo random numbers \boldsymbol{u}_i in the range

$$0 \le u_i \le 1$$

using the following formula:

$$u_i = Fractional part of [(\pi + u_{i-1})^5].$$

The user has to specify the starting value u_0 (the "seed" of the sequence) such that

$$0 \leq u_0 \leq 1$$
.

D	SPLAY	KEY	DI	SPLAY	KEY	PECIETERE
LINE	CODE	ENTRY	LINE	CODE	ENTRY	neusters
00			25			R _{oui}
01	15 7 3	g π	26			R ₁
02	24 00	RCL 0	27			R ₂
03	51	+	28			R 3
04	05	5	29			R₄
05	14 03	fy ^x	30			R 5
06	15 01	g FRAC	31			R ₆
07	23 00	STO 0	32			R 7
08	13 00	GTO 00	33			
09			34			
10			35			
11			36			
12			37			
13			38			
14			39			
15			40			
16			41			
17			42			
18			43			
19			44			
20			45			
21			46			1
22			47			
23			48			
24			49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS				
1	Key in program							
2	Store seed	u ₀	STO	0	f	PRGM		
3	Generate random number		R/S				ui	
4	Repeat step 3 as many times as							
	desired							
5	For new sequence, go to step 2.							

Find the sequence of random numbers generated from a seed of 0.192743568.

Solution:

0.14, 0.76, 0.15, 0.35, 0.62, 0.54, 0.62, 0.91, 0.48, 0.24,

CHI-SQUARE EVALUATION

This program calculates the value of the χ^2 statistic for the goodness of fit test by the equation

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

where O_i = observed frequency

 E_i = expected frequency.

The χ^2 statistic measures the closeness of the agreement between the observed frequencies and expected frequencies.

Notes:

- 1. In order to apply this test to a set of given data, it may be necessary to combine some classes to make sure that each expected frequency is not too small (say, not less than 5).
- 2. If the expected frequencies E_i are all equal to some value E, then E should be computed beforehand as

$$E = \frac{\Sigma O_i}{n}$$

and then input at each step as the expected frequency E_i.

D	ISPLAY	KEY	DISPLAY		KEY	
LINE	CODE	ENTRY	LINE	CODE	ENTRY	
00			25	23 00	STO 0	F
01	00	0	26	13 04	GTO 04	F
02	23 00	STO 0	27			F
03	23 01	STO 1	28			F
04	74	R/S	29			F
05	23 02	STO 2	30			F
06	41	-	31			F
07	15 02	g x ²	32			R
08	24 02	RCL 2	33			-
09	71	÷	34			
10	23 51 01	STO + 1	35			
11	24 00	RCL 0	36			
12	01	1	37			
13	51	+	38			
14	23 00	STO 0	39			
15	13 04	GTO 04	40			
16	23 02	STO 2	41			
17	41	-	42			
18	15 02	g x ²	43			
19	24 02	RCL 2	44			
20	71	÷	45			
21	23 41 01	STO - 1	46			
22	24 00	RCL 0	47			
23	01	1	48			
24	41	-	49			

	REGISTERS
R _o n	
$\mathbf{R}_1 \chi^2$	
R ₂ E _i	
R ₃	
R₄	
R ₅	
R ₆	
R,	

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS				
1	Key in program							
2	Initialize		f	PRGM	R/S		0.00	
3	Perform for i = 1,, n:							
	Input observed and expected							
	frequencies	Oi	1					
		Ei	R/S				i	
4	Delete erroneous data	0 _k	1					
		Ek	GTO	16	R/S			
5	Display χ^2		RCL	1			χ ²	
6	For new case, go to step 2.							

O _i	8	50	47	56	5	14
Ei	9.6	46.75	51.85	54.4	8.25	9.15

Solution:

 $\chi^2 = 4.84$

PAIRED t STATISTIC

Given a set of paired observations from two normal populations with means μ_1, μ_2 (unknown)

let

$$D_i = x_i - y_i$$
$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i$$

$$s_{\rm D} = \sqrt{\frac{\Sigma {\rm D_i}^2 - \frac{1}{n} (\Sigma {\rm D_i})^2}{n-1}}$$

$$s_{\overline{D}} = \frac{s_{\overline{D}}}{\sqrt{n}}$$

The test statistic

$$t = \frac{\overline{D}}{s_{\overline{D}}} ,$$

which has n - 1 degrees of freedom (df), can be used to test the null hypothesis

$$\mathbf{H_0}: \boldsymbol{\mu_1} = \boldsymbol{\mu_2}.$$

D	ISPLAY	KEY	D	ISPLAY	KEY	DECISTEDS
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25			Ro
01	41	-	26			R ₁
02	25	Σ+	27			R ₂
03	13 00	GTO 00	28			R ₃ n
04	14 22	fs	29			R₄ Used
05	24 03	RCL 3	30			R 5 Used
06	14 02	$f\sqrt{x}$	31			R ₆ ΣD _i
07	71	÷	32			$\mathbf{R}_{7} \Sigma D_{i}^{2}$
08	14 21	fx	33			
09	21	x ≩y	34			
10	71	÷	35			
11	74	R/S	36			
12	24 03	RCL 3	37			
13	01	1	38			
14	41	-	39			
15	13 00	GTO 00	40			
16			41			
17			42			
18			43			
19			44			
20			45			
21			46			
22			47			
23			48			
24			49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS					
1	Key in program								
2	Initialize		f	REG	f	PRGM			
3	Perform for i = 1,, n:								
	Input one pair of observations	×i	1						
		Уi	R/S				i		
4	Delete erroneous data	×k	1						
		٧k	-	f	Σ-				
5	Compute t and df		GTO	04	R/S		t		
			R/S				df		
6	For new case, go to step 2.								

xi	14	17.5	17	17.5	15.4
y _i	17	20.7	21.6	20.9	17.2

Solution:

t = -7.16df = 4.00

t STATISTIC FOR TWO MEANS

Suppose $\{x_1, x_2, ..., x_{n_1}\}$ and $\{y_1, y_2, ..., y_{n_2}\}$ are independent random samples from two normal populations having means μ_1, μ_2 (unknown) and the same unknown variance σ^2 .

We want to test the null hypothesis

$$H_0: \mu_1 - \mu_2 = D$$

where D is a given number.

Define

$$\overline{\mathbf{x}} = \frac{1}{\mathbf{n}_1} \sum_{i=1}^{\mathbf{n}_1} \mathbf{x}_i$$

$$\overline{\mathbf{y}} = \frac{1}{n_2} \sum_{i=1}^{2} \mathbf{y}_i$$

$$t = \frac{\overline{x} - \overline{y} - D}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sqrt{\frac{\Sigma x_i^2 - n_1 \overline{x}^2 + \Sigma y_i^2 - n_2 \overline{y}^2}{n_1 + n_2 - 2}}$$

We can use this t statistic, which has the t distribution with $n_1 + n_2 - 2$ degrees of freedom, to test the null hypothesis H_0 .

Concession of the local division of the loca	and the second	the second s	Concession of the local division of the loca		
D	SPLAY	KEY	DI	SPLAY	KEY
LINE	CODE	ENTRY	LINE CODE		ENTRY
00			25	24 01	RCL 1
01	24 03	RCL 3	26	24 02	RCL 2
02	23 00	STO 0	27	15 02	g x ²
03	24 06	RCL 6	28	24 00	RCL 0
04	23 01	STO 1	29	61	x
05	14 21	fxī	30	41	-
06	23 02	STO 2	31	24 06	RCL 6
07	34	CLX	32	51	+
08	23 03	STO 3	33	14 21	fxī
09	23 06	STO 6	34	15 02	g x ²
10	23 07	STO 7	35	24 03	RCL 3
11	74	R/S	36	61	x
12	31	1	37	41	-
13	14 21	fx	38	24 00	RCL 0
14	51	+	39	24 03	RCL 3
15	24 02	RCL 2	40	51	+
16	21	x ≩y	41	02	2
17	41	-	42	41	-
18	24 00	RCL 0	43	71	÷
19	15 22	g 1/x	44	14 02	$f\sqrt{x}$
20	24 03	RCL 3	45	71	÷
21	15 22	g 1/x	46	13 00	GTO 00
22	51	+	47		
23	14 02	$f\sqrt{x}$	48		
24	71	÷	49		

REGISTERS
R _o n ₁
$\mathbf{R}_{1} \Sigma x^{2}$
R ₂ x
R ₃ n ₂
R₄ Used
R 5 Used
$R_6 \Sigma y^2$
R ₇ Σy

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Initialize		f	REG			
3	Perform for i = 1,, n ₁ :						
	Input x-value	×i	Σ+				i
4	Initialize for y		f	PRGM	R/S		0.00
5	Perform for i = 1,, n ₂ :						
	Input y-value	Yi	Σ+				i
6	Input D and compute t	D	R/S				t
7	To find the means of x- and y-						
	values		RCL	2			x
			f	x			ÿ
8	For a new case, go to step 2.						

x: 79, 84, 108, 114, 120, 103, 122, 120 y: 91, 103, 90, 113, 108, 87, 100, 80, 99, 54 $n_1 = 8$ $n_2 = 10$ D = 0 (i.e., $H_0: \mu_1 = \mu_2$)

Solution:

t = 1.73 $\overline{x} = 106.25$ $\overline{y} = 92.50$

ONE SAMPLE TEST STATISTICS FOR THE MEAN

For a normal population $(x_1, x_2, ..., x_n)$ with a known variance σ^2 , a test of the null hypothesis

$$H_0$$
: mean $\mu = \mu_0$

is based on the z statistic (which has a standard normal distribution)

$$z = \frac{\sqrt{n} (\overline{x} - \mu_0)}{\sigma}$$

•

If the variance σ^2 is unknown, then

$$t = \frac{\sqrt{n} (\overline{x} - \mu_0)}{s}$$

is used instead. This t statistic has the t distribution with n - 1 degrees of freedom. \overline{x} and s are the sample mean and standard deviation.

D	ISPLAY	KEY DISPLAY		ISPLAY	KEY	REGISTERS
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25			$\mathbf{R}_{o}\sqrt{n} (\bar{\mathbf{x}}-\mu_{0})$
01	14 21	fx	26			R ₁
02	21	x ₹y	27			R ₂
03	41	-	28			R _{3 n}
04	24 03	RCL 3	29			R ₄ Used
05	14 02	f√x	30			R₅ Used
06	61	x	31			R ₆ _{2x}
07	23 00	STO 0	32			$\mathbf{R}_{7} \Sigma \mathbf{x}^{2}$
08	34	CLX	33			
09	74	R/S	34			
10	24 00	RCL 0	35			
11	14 22	fs	36			
12	71	÷	37			
13	74	R/S	38			
14	24 00	RCL 0	39			
15	21	x ≩y	40			
16	71	÷	41			
17	13 00	GTO 00	42			
18			43			
19			44			
20			45			
21			46			
22			47			
23			48			
24			49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Initialize		f	REG			
3	Perform for i = 1,, n:						
	Input value	×i	Σ+				i
4	Input μ_0	μ_0	f	PRGM	R/S		0.00
5	Compute t		GTO	10	R/S		t
	or						
5	Input σ and compute z	σ	GTO	14	R/S		z
6	For new case, go to step 2.						

Suppose $\mu_0 = 2$, for the following set of data

{2.73, 0.45, 2.52, 1.19, 3.51, 2.75, 1.79, 1.83, 1, 0.87, 1.9, 1.62, 1.74, 1.92, 1.24, 2.68}

Solution:

test statistic t = -.69or z = -.57 if $\sigma = 1$.

CHAPTER 7 SURVEYING

FIELD ANGLE TRAVERSE

A traverse is a series of line segments joined with specific lengths and angular relations to each other. With many applications in surveying, the field angle traverse may be used in establishing boundary lines, road layout, and in numerous construction situations. The transit and "chain" (commonly a length of steel tape) are often used to establish the angles and distances involved in a field angle traverse.

Starting at a known point from a given reference direction, the transit man establishes the direction of a new line by measuring the angle or deflection turned to align the scope of the transit to the new line. With a measured distance to the end point on the new line and its direction, coordinates of the end point relative to the origin may be established. The transit is then moved to the new "origin", the reference direction is the line just determined, and the process continues.

To run this program, the user must input the northing and easting of his starting point, the reference azimuth, and then the direction and distance from each point in the traverse to the next point. The direction may be input either as a deflection right or left, or as an angle right or left. The distance may be input either as horizontal distance, or as slope distance with zenith angle.

Equations:

H Dist = S Dist sin (Znth ang) $N_{i+1} = N_i + H$ Dist cos Az $E_{i+1} = E_i + H$ Dist sin Az Area = $\frac{1}{2}[(N_2 + N_1) (E_2 - E_1) + (N_3 + N_2) (E_3 - E_2) + \dots + (N_n + N_1) (E_1 - E_n)]$

130 Chapter 7 Surveying

where: N, E = Northing, easting of a point Subscript i refers to current point Subscript n refers to next to last point Numeric subscript refers to point number Az = Azimuth of a course H Dist = Horizontal distance S Dist = Slope distance Znth ang = Zenith angle

Notes:

- 1. The calculation for area of a closed traverse may be inaccurate for cases in which the coordinates of the figure are quite large, such as in state plane coordinate systems. In such cases, the user may run the Area By Double Meridian Distance program to calculate an accurate value for area once the bearings and distances have been established by this program.
- 2. All angular inputs and outputs are in the form degrees, minutes, and seconds (D.MS).

D	ISPLAY	KEY	v		_	-	001017170	
LINE	CODE	ENTRY	X	Y	2	Т	COMMENTS	REGISTERS
00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						B AZ
01	15 00	g→H	Ref Az				Convert to decimal degrees	0
02	01	1	1	Ref Az				1
03	08	8	18	Ref Az				Current
04	00	0	180	Ref Az				1 1 N
05	51	+	180 + Az					11
06	23 00	STO 0	180 + Az					B Current
07	24 01	RCL 1	N ₁	180 + Az				" 2 E
08	23 05	STO 5	N ₁	180 + Az			Initialize "previous N"	11
09	00	0	0	N ₁	180 + Az	1	Clear R ₃ , R ₄ , for	Σ H Dist
10	23 03	STO 3	0	N ₁	180 + Az		accumulation	"3
11	23 04	STO 4	0	N ₁	180 + Az			11
12	74	R/S	0	N ₁	180 + Az			R Area
13	15 00	g→H	Angle				Convert to decimal degrees	1
14	01	1	1	Angle				11
15	08	8	18	Angle				B Previous
16	00	0	180	Angle				N
17	51	+	180 + Ang					
18	14 00	f →H.MS	(D.MS)					Be
19	15 00	g→H	Defl				Deflection comes in here	
20	24 00	RCL 0	Az	Defl				
21	51	+	Az + Defl				Find new azimuth	B 7
22	23 00	STO 0	Azi],
23	14 00	f →H.MS	Azi				Convert to D.MS for	
24	74	R/S	Azi				display	
25	13 29	GTO 29	H Dist					
26	21	x ≩y	Zn Ang	S Dist				
27	14 04	fSIN	sin Zn	S Dist				
28	61	x	H Dist				H Dist = sin Zn (S Dist)	1
29	23 51 03	STO + 3	H Dist				Accumulate H Dist	4
30	24 00	RCL 0	Az	H Dist				
31	21	x ₹y	H Dist	Az				-
32	14 09	f→R	ΔN	ΔE				-
33	23 51 01	STO + 1	ΔN	ΔE			$\Delta N = H \text{ Dist } (\cos Az)$	4
34	21	x컱y	ΔE	ΔN				4
35	23 51 02	STO + 2	ΔE	ΔN			$\Delta E = H Dist (sin Az)$	4
36	24 05	RCL 5	N _{i-1}	ΔE	ΔN			4
37	24 01	RCL 1	Ni	N _{i-1}	ΔE	ΔN		-
38	23 05	510 5	Ni	Ni-1	ΔE	ΔN	Update "previous N"	-
39	51	+	$(N_i + N_{i-1})$	ΔE	ΔN			4
40	61	x	ΔA	ΔN			$\Delta A = (N_i + N_{i-1}) \Delta E$	4
41	02	2	2		ΔN			4
42	/1	-	1/2 ΔA	ΔN				4
43	23 51 04	510+4	1/2 ΔA		4.81		Accumulate Area	4
44	24 01	RUL I	IN ₁	1/2 (A	ΔN AN		Dial Number	4
45	/4	n/5	n _i	1/2 🛆 A			Display Northing	4
46	24 02	HCL 2	ti c	Ni	1/2 ΔA	ΔN		4
47	13 12	GTU 12	E;	Ni	1/2 ΔA	ΔN	Display Easting	4
40								4
49	1	1	1	1	1	1	1	1

132 Chapter 7 Surveying

STEP	INSTRUCTIONS	INPUT DATA/UNITS			OUTPUT DATA/UNITS		
1	Key in program						
2	Input the starting point coord-						
	inates	N ₁	STO	1			
		E1	STO	2			
3	Input the reference azimuth	Ref Az, D.MS	f	PRGM	R/S		0.00
4a.	If angle right	AR, D.MS	R/S				Az _i , D.MS
4b.	If angle left	AL, D.MS	CHS	R/S			Az _i , D.MS
4c.	If deflection right	DR, D.MS	GTO	19	R/S		Az _i , D.MS
4d.	If deflection left	DL, D.MS	CHS	GTO	19	R/S	Az _i , D.MS
5a.	If horizontal distance	H Dist	R/S				Ni
			R/S				Ei
5b.	If slope distance, input Zenith						
	Angle and Slope Distance	Zn, Ang, D.MS	t				
		S Dist	GTO	26	R/S		Ni
			R/S				Ei
6	Repeat steps 4-5 for successive						
	courses.						
7	Display total horizonal distance						
	traversed		RCL	3			Σ H Dist
8	Display area for closed traverse						
	(ignore sign)		RCL	4			Area

Example:

The diagram below shows measurements taken for a closed traverse. Find the coordinates of points 2, 3, and 4, the total horizontal distance traversed, and the area of the figure.

Calculated ending coordinates $\frac{N = 149.903}{E = 399.784}$

AREA BY DOUBLE MERIDIAN DISTANCE

This program computes the area of a straight-sided closed figure from the bearings and lengths of its sides. It is generally more accurate than methods which calculate area from the coordinates of the figure.

Area =
$$\frac{1}{2} \sum_{i} DMD_i \times Latitude_i$$

$$DMD_i = DMD_{i-1} + Departure_{i-1} + Departure_i$$

where

 $Departure_i = Dist_i sin Az_i$

 $Latitude_i = Dist_i \cos Az_i$

Note:

Angles are input as bearing and quadrant code. The quadrant code is 1 for NE, 2 for SE, 3 for SW, and 4 for NW.

D	ISPLAY	KEY	D	ISPLAY	KEY	1		DEOLOTEDO
LINE	CODE	ENTRY	LINE	CODE	ENTRY			REGISTERS
00			25	14 09	f→R		Ro	Brg, Az _i
01	15 00	g→H	26	21	x ≩y		R ₁	DMD _{i-1}
02	23 00	STO 0	27	24 02	RCL 2		R ₂	Departure _{i-1}
03	74	R/S	28	21	x ∠y		R ₃	Area
04	31	1	29	23 02	STO 2		R₄	
05	31	↑	30	51	+		R ₅	
06	02	2	31	24 01	RCL 1		R ₆	
07	71	÷	32	51	+		R,	
08	14 01	f INT	33	23 01	STO 1] '		
09	01	1	34	61	x			
10	08	8	35	02	2			
11	00	0	36	71	÷			
12	61	x	37	23 51 03	STO + 3			
13	21	x ₹v	38	24 03	RCL 3			
14	14 73	f LAST X	39	13 00	GTO 00			
15	61	x	40					
16	14 05	f COS	41					
17	24 00	RCL 0	42					
18	61	x	43					
19	41	-	44					
20	23 00	STO 0	45					
21	14 00	f →H.MS	46					
22	74	R/S	47					
23	24 00	RCL 0	48					
24	21	x ≩y	49					

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Initialize		f	REG	f	PRGM	
3	Input bearing	Brg, D.MS	R/S				Brg, dec. deg.
4	Input quadrant code	Quad	R/S				Az, D.MS
5	Input distance	Dist	R/S				Area
6	Repeat steps 3, 4, 5 for succes-						
	sive courses. Area is displayed						
	after last distance has been input.						

Compute the area of the figure below.

Solution:

Area = 20937.44 sq. ft.

INVERSE FROM COORDINATES

This program uses coordinates to calculate distance and bearing between points of a traverse. The area in square feet and a summation of distance inversed are also computed.

H Dist =
$$\sqrt{(N_i - N_{i-1})^2 + (E_i - E_{i-1})^2}$$
 Az = tan⁻¹ $\frac{E_i - E_{i-1}}{N_i - N_{i-1}}$

Area =
$$\frac{1}{2}[(N_2 + N_1)(E_2 - E_1) + (N_3 + N_2)(E_3 - E_2) + \dots .(N_n + N_1)(E_1 - E_n)]$$

where N, E = Northing, easting of a point
 Subscript i referes to current point
 Subscript n refers to next to last point
 Numeric subscript refers to point number
 H Dist = Horizontal distance
 Az = Azimuth of a course

D	SPLAY	KEY	
LINE	CODE	ENTRY	L
00			
01	14 33	f REG	:
02	23 02	STO 2	:
03	21	x컱y	
04	23 00	STO 0	:
05	23 01	STO 1	:
06	74	R/S	
07	24 02	RCL 2	:
08	41	-	:
09	23 51 02	STO + 2	:
10	23 05	STO 5	:
11	21	x ₹y	:
12	24 01	RCL 1	;
13	41	-	:
14	23 51 01	STO + 1	;
15	15 09	g →P	4
16	23 51 03	STO + 3	
17	74	R/S	4
18	21	x ≩y	4
19	15 51	g x≽0	
20	13 25	GTO 25	
21	03	3	
22	06	6	4
23	00	0	4
24	51	+	4

DI	SPLAY	KEY
LINE	CODE	ENTRY
25	31	1
26	31	1
27	09	9
28	00	0
29	71	÷
30	01	1
31	51	+
32	14 01	f INT
33	21	x컱y
34	14 04	fSIN
35	15 04	g SIN⁻¹
36	15 4 1	g x<0
37	32	CHS
38	14 00	f →H.MS
39	24 00	RCL 0
40	24 01	RCL 1
41	23 00	STO 0
42	51	+
43	24 05	RCL 5
44	61	x
45	02	2
46	71	÷
47	23 51 04	STO + 4
48	22	R↓
49	13 06	GTO 06

REGISTERS
R ₀ Previous N
R ₁ Current N
R ₂ Current E
$R_3 \Sigma$ H Dist
R₄ Area
R ₅ ∆E
R ₆
R ₇

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS		
1	Key in program					
2	Input starting coordinates	N ₁	1			
		E1	f	PRGM	R/S	
3	Input next coordinates and					
	display distance	Ni	1			
		Ei	R/S			H Dist
4	Compute bearing and quadrant					
	code		R/S			Brg, D.MS
			R↓			Quad code
5	Repeat steps 3-4 for successive					
	courses					
6	Display total distance inversed		RCL	3		Σ H Dist
7	Display area of closed figure					
	(ignore the sign)		RCL	4		Area

Area = 20937.5 Sq. ft.

Total distance inversed = 641.033

CHAPTER 8

TRIGONOMETRY AND ANALYTICAL GEOMETRY

COORDINATE TRANSLATION AND ROTATION

There are occasions, for instance in cartography or metalworking, when it is necessary or advantageous to shift one's frame of reference. In mathematical terms, the occasion calls for a translation and/or rotation of the coordinate system. The origin is translated from (0, 0) to a new point, (x_0, y_0) , and the x and y axes are then rotated through an angle α to give new axes, x' and y'. Suppose that a point P has coordinates (x, y) with respect to the old system of x and y axes. The problem then is to find the coordinates (x', y') of P with respect to the new system whose axes are x' and y'. The diagram below illustrates this situation.

Equations:

 $x' = (x - x_0) \cos \alpha + (y - y_0) \sin \alpha$ $y' = -(x - x_0) \sin \alpha + (y - y_0) \cos \alpha$

Notes:

- 1. The program may be used to solve a problem of translation only, or of rotation only, or of combined translation and rotation. If the problem involves translation alone, a value of $\alpha = 0$ must be input. For rotation alone, the values $x_0 = y_0 = 0$ must be input.
- 2. The program assumes the following sign convention: α should be input as a positive number if the rotation is counterclockwise, and negative if clockwise.

Programming Remarks:

This program demonstrates a particularly powerful application of the polarto-rectangular conversion ($\mathbf{f} \bullet \mathbf{R}$) when combined with the capabilities of the four-register stack. The subterms $(\mathbf{x} - \mathbf{x}_0) \cos \alpha$, $(\mathbf{x} - \mathbf{x}_0) \sin \alpha$, $(\mathbf{y} - \mathbf{y}_0) \cos \alpha$, and $(\mathbf{y} - \mathbf{y}_0) \sin \alpha$ are all generated through $\mathbf{f} \bullet \mathbf{R}$ and stored in the stack until needed. A more straightforward program using $\mathbf{f} \bullet \mathbf{sin}$ and $\mathbf{f} \bullet \mathbf{so}$ would have required 30 program steps (as compared to 19) and one more storage register.

INF CODE BitTity X Y Z I COMMENTS Redistens 00 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	D	ISPLAY	KEY			_	_		
00 10 23/03 570 y x n	LINE	CODE	ENTRY	X	Ŷ	Z	Т	COMMENTS	REGISTERS
Image: marked biological state in the st	00			y	×				B - X0
1 22 1 24 1 x 10 41 - 40 x	01	23 03	STO 3	У	x				
103 2402 RCL 2 a x a <th< th=""><th>02</th><th>22</th><th>R↓</th><th>x</th><th></th><th></th><th>Y</th><th></th><th></th></th<>	02	22	R↓	x			Y		
OA 21 x^2y x a </th <th>03</th> <th>24 02</th> <th>RCL 2</th> <th>α</th> <th>x</th> <th></th> <th></th> <th></th> <th>B. Yo</th>	03	24 02	RCL 2	α	x				B. Yo
05 2400 RC10 x_0 x a	04	21	x ₹y	x	α				"1
0041- Δx α α $\Delta x = x - x_0$ $\Delta x = x - x_0$ R_2^{α} 071400 $f = R$ $\Delta x \cos \alpha$ $\Delta x in \alpha$ $\Delta x in \alpha$ $\Delta x = x - x_0$ R_2^{α} 082401RCL 1 v_0 $\Delta x \cos \alpha$ $\Delta x in \alpha$ $\Delta x in \alpha$ $\Delta x = x - x_0$ R_2^{α} 082401RCL 1 v_0 $X \propto co \alpha$ $\Delta x in \alpha$ $\Delta x in \alpha$ $\Delta x = x - x_0$ R_2^{α} 092401RCL 2 α Δy $\Delta x \cos \alpha$ $\Delta x in \alpha$ $\Delta x = x - x_0$ R_1^{α} 1041 $ \Delta y$ $\Delta x \cos \alpha$ $\Delta x in \alpha$ $\Delta x in \alpha$ $\Delta x = y - y_0$ R_1^{α} 112402RCL 2 α Δy α $\Delta x \cos \alpha$ $\Delta x in \alpha$ $\Delta y \cos \alpha$ $x' = x - x_0$ R_1^{α} 131400f = R $\Delta y \cos \alpha$ $\Delta x in \alpha$ $\Delta y \cos \alpha$ $X' = x - x_0$ R_1^{α} 1422R1 $\Delta y \sin \alpha$ $\Delta y \cos \alpha$ $X' = x - x_0 = x + \Delta y \sin \alpha$ R_1^{α} 151 x' $\Delta x \sin \alpha$ $\Delta y \cos \alpha$ $x' = x - x_0 = x + \Delta y \sin \alpha$ R_1^{α} 1674R/S x' $\Delta x \sin \alpha$ $\Delta y \cos \alpha$ $x' = x - x_0 = x + \Delta y \sin \alpha$ R_1^{α} 1722R1 $\Delta x \sin \alpha$ $\Delta y \cos \alpha$ x' $x' = x - x_0 = x + \Delta y \cos \alpha$ R_1^{α} 1874 $-x'$ $\Delta x \sin \alpha$ $\Delta y \cos \alpha$ x' $y' = -\Delta x \sin \alpha + \Delta y \cos \alpha$ R_1^{α} 191300GTO 0 y' $\Delta y \cos \alpha$ x'	05	24 00	RCL 0	×0	x	α			
14 09 1+R Ax cos a Ax sin a Ay u ax cos a Ax sin a Ay u a x cos a Ax sin a Ay u a x cos a Ax sin a Ay u a x cos a Ax sin a Ay u a x cos a Ax sin a Ay u a x cos a Ax sin a Ay u a x cos a Ax sin a Ay u a x cos a Ax sin a Ay u a x cos a Ax sin a Ay u a x cos a Ax sin a Ay u cos a Ax u cos a Ax sin a Ay u cos a Ax u c	06	41	-	Δx	α			$\Delta \mathbf{x} = \mathbf{x} - \mathbf{x}_0$	B a
00 2403 RC1.3 y $\Delta x \cos \alpha$ $\Delta x \sin \alpha$ $\Delta x \sin \alpha$ $\Delta y = \gamma - \gamma_{0}$ 10 41 - Δy $\Delta x \cos \alpha$ $\Delta x \sin \alpha$ $\Delta y = \gamma - \gamma_{0}$ R_{1} 11 2402 RC1.2 α Δy $\Delta x \cos \alpha$ $\Delta x \sin \alpha$ $\Delta y = \gamma - \gamma_{0}$ R_{1} 11 2402 RC1.2 α Δy $\Delta x \cos \alpha$ $\Delta x \sin \alpha$ $\Delta y = \gamma - \gamma_{0}$ R_{1} 12 21 $x^{2}\gamma$ Δy α $\Delta x \cos \alpha$ $\Delta x \sin \alpha$ $\Delta y = \gamma - \gamma_{0}$ R_{1} 13 14.09 $1 - R$ $\Delta y \cos \alpha$ $\Delta x \sin \alpha$ $\Delta x \cos \alpha$ $\Delta $	07	14 09	f→R	$\Delta x \cos \alpha$	Δx sin α				
90 2401 RC1.1 y₀ y Δx cos α Δx sin α Δx y σ γ γ γ σ 10 41 - Δy Δx cos α Δx sin α Δx sin α Δx y γ γ γ σ 11 2402 RC1.2 α Δy Δx cos α Δx sin α Δx sin α 12 21 x ² /γ Δy α Δx cos α Δx sin α Δy cos α Δx sin α 14 020 1+8 Δy cos α Δx cos α Δx sin α Δy cos α Δy cos α Δy cos α Δy cos α 15 51 + x' Δx sin α Δy cos α X' Δx sin α + Δy cos α Λy cos α X' Δx cos α Δx sin α Δy cos α X' Δx cos α Δx sin α Δy cos α X' Δx cos α Δx cos α X' X' Ax cos α Δx sin α Δy cos α X' X' Δx cos α X' X' Ax cos α Δx cos α X' X' Δx cos α X'	08	24 03	RCL 3	У	∆x cos α	Δx sin α			
10 41 - Δγ Δx cos α Δx sin α Δx cos α Δx sin α Δx -y -y_0 β 11 24 02 RC 2 α Δy Δx cos α Δx sin α Δx cos α Δy cos α <th>09</th> <th>24 01</th> <th>RCL 1</th> <th>Yo</th> <th>У</th> <th>Δx cos α</th> <th>∆x sin α</th> <th></th> <th>R₂ V</th>	09	24 01	RCL 1	Yo	У	Δx cos α	∆x sin α		R ₂ V
11 2402 RCL2 a $\Delta x \cos a$ $\Delta x \sin a$ $\Delta x \sin a$ 12 21 $x x^2y$ Δy a $\Delta x \cos a$ $\Delta x \sin a$ $\Delta x \sin a$ $\Delta x \sin a$ $\Delta x \sin a$ $\Delta x \cos a$ $\Delta x \sin a$ $\Delta x \cos a$ $\Delta x \cos a$ $\Delta x \cos a$ <t< th=""><th>10</th><th>41</th><th>-</th><th>Δy</th><th>$\Delta x \cos \alpha$</th><th>Δx sin α</th><th>∆x sin α</th><th>$\Delta \mathbf{y} = \mathbf{y} - \mathbf{y}_0$</th><th>,</th></t<>	10	41	-	Δy	$\Delta x \cos \alpha$	Δx sin α	∆x sin α	$\Delta \mathbf{y} = \mathbf{y} - \mathbf{y}_0$,
12 14 2 N/X 0	11	24 02	RCL 2	α	Δy	Δx cos α	Δx sin α		
13 14 PR Δy cos α Δy sin α Δx cos α Δx sin α Δy cos α X' Δy cos α X' Δy cos α X' Y' = -Δx sin α + Δy cos α R G 10 1300 GTO 00 Y' Δy cos α x' x' y' = -Δx sin α + Δy cos α R G 20 I I I Δy cos α x' x' y' = -Δx sin α + Δy cos α R G	12	21	x ₹y	Δγ	α	Δx cos α	∆x sin α		R
14 22 R4 2 yor a 2 yor	13	14 09	f→R	∆y cos α	Δy sin α	Δx cos α	∆x sin α		
15 1 + x' Ax sin a Ay cos a X' Y' Ay cos a X' X' X' X' X' X	14	22	R↓	Δy sin α	Δx cos α	Δx sin α	∆y cos α		
16 74 R/S x' Δx sin α Δy cos α x' Y' =Δx sin α + Δy cos α R 18 41 - y' Δy cos α x' x' y' =Δx sin α + Δy cos α R 20 - Y' Δy cos α x' x' y' =Δx sin α + Δy cos α R 20 - Y' Δy cos α x' x' Y' =Δx sin α + Δy cos α R 20 - Y' Δy cos α x' x' X' R R 21 - - - - - - - R R - R - R - - R - R - R - R - R - - R - R - R - R - R - - R - - R - R -	15	51	+	x	$\Delta x \sin \alpha$	∆γ cos α	∆y cos α	$x' = \Delta x \cos \alpha + \Delta y \sin \alpha$	R 5
17 22 R↓ Δx sina Δy cosa x' x' y' = -Δx sina + Δy cosa R 18 41 - y' Δy cosa x' x' y' = -Δx sina + Δy cosa R 19 1300 GT000 y' Δy cosa x' x' y' = -Δx sina + Δy cosa R 20 - P	16	74	R/S	x'	∆x sin α	∆y cos α	∆y cos α		
18 41 - y' $\Delta y \cos \alpha$ x' x' $y' = -\Delta x \sin \alpha + \Delta y \cos \alpha$ R_{1-1} 19 1300 GTO 00 y' $\Delta y \cos \alpha$ x' x' $y' = -\Delta x \sin \alpha + \Delta y \cos \alpha$ R_{1-1} 20	17	22	R↓	Δx sin α	∆y cos α	∆y cos α	x'		
19 13 00 GTO 00 y Ay cos a x' x' <th>18</th> <th>41</th> <th>-</th> <th>Y'.</th> <th>∆y cos α</th> <th>×'</th> <th>x'</th> <th>$y' = -\Delta x \sin \alpha + \Delta y \cos \alpha$</th> <th>R 6</th>	18	41	-	Y'.	∆y cos α	×'	x'	$y' = -\Delta x \sin \alpha + \Delta y \cos \alpha$	R 6
20 0	19	13 00	GTO 00	Y'	Δy cos α	×′	×′		
21 R7 23 R7 24 24 24 24 25 27 28 30 31 32 34 36	20								
22	21								R 7
23	22								
24 I	23								
28 A A A A 26 A A A A 27 A A A A 28 A A A A 28 A A A A 28 A A A A 29 A A A A 30 A A A A 31 A A A A 32 A A A A 33 A A A A 34 A A A A 35 A A A A 36 A A A A 37 A A A A 38 A A A A 39 A A A A 40 A A A A 41 A A A A 44 A<	24								
26 0 0 0 0 0 27 0 0 0 0 0 28 0 0 0 0 0 29 0 0 0 0 0 30 0 0 0 0 0 31 0 0 0 0 0 32 0 0 0 0 0 33 0 0 0 0 0 34 0 0 0 0 0 35 0 0 0 0 0 36 0 0 0 0 0 37 0 0 0 0 0 0 38 0 0 0 0 0 0 39 0 0 0 0 0 0 41 0 0 0 0 0 0 42 0 0 0 0 0 0 <th>25</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	25								
27 0 0 0 0 0 28 0 0 0 0 0 29 0 0 0 0 0 0 30 0 0 0 0 0 0 31 0 0 0 0 0 0 32 0 0 0 0 0 0 33 0 0 0 0 0 0 34 0 0 0 0 0 0 35 0 0 0 0 0 0 36 0 0 0 0 0 0 37 0 0 0 0 0 0 38 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 42 0 0	26								
28 <	27								
30	20								
31 <	29								
32 <	31								
33 <	32								
34 <	32								
35 <	34								
36 <	35								
37 38 39 40 41 42 43 44 45 46 48	36								
38 39 39 40 41 42 43 44 45 46 48	37								
39	38								
40	39								
41	40								
42	41								
43	42								
44	43								
45	44								
46	45								
47	46								
48	47								
49	48								
	49								
STEP	INSTRUCTIONS	INPUT DATA/UNITS		ĸ	EYS		OUTPUT DATA/UNITS		
------	---------------------------------	---------------------	-----	---	-----	------	----------------------		
1	Key in program								
2	Store origin of new coordinate								
	system	×o	STO	0					
		Yo	STO	1					
3	Store angle of rotation	α	STO	2	f	PRGM			
4	Convert coordinates from old to								
	new system	x	1						
		У	R/S				×'		
			R/S				y'		
5	Perform step 4 for as many								
	points as desired								
6	For a new case, go to step 2.								

A backpacker's route will take him cross-country away from the marked trails of an area. He knows that he will have to check his compass frequently against his map over this terrain, and regrets that the map is in such an inconvenient format for his purposes. In the first place, the grid lines on his map represent distances in feet from an origin about 25 miles away, which are such large numbers that they are hard to calculate with. Secondly, the map's grid is based on true north while his compass readings are relative to magnetic north, a variation of 17° .

Before he leaves home, the packer decides to draw a rough version of the map for his own convenience, locating his origin at the grid point (54 000, 118 000) and rotating his axes by 17° in a clockwise direction. As a first step, he wants to find the new coordinates of the bridge and the peak of the hill, whose coordinates in the old system are (55 750, 119 300) and (57 450, 120 500) respectively.

The new coordinates of the peak are (2568, 3399).

TRIANGLE SOLUTION B, b, c

Given two sides and a non-included angle, this program solves the triangle for the remaining parameters by the following formulas:

1.
$$C = \sin^{-1}\left(\frac{c \sin B}{b}\right)$$

2. $A = 2 \sin^{-1} 1 - (B + C) = \pi \text{ radians} - (B + C) = 180^{\circ} - (B + C)$
 $= 200 \text{ grads} - (B + C)$
3. $a = \frac{b \sin A}{\sin B}$

If B is acute (< 90°) and b < c, a second set of solutions exists and is calculated by the following formulas:

4.
$$C' = 2 \sin^{-1} 1 - C$$

5. $A' = 2 \sin^{-1} 1 - (B + C')$
6. $a' = \frac{b \sin A'}{\sin B}$

The area is computed with the formula

Area =
$$\frac{1}{2}$$
 ac sin B

This program works in any angular mode. However, if in degrees, decimal degrees are assumed.

KEY ENTRY

RCL 1 f SIN

R/S 74

RCL 4

RCL 5

71 ÷ 74 R/S RCL 3

04

05 41 _ 74 R/S GTO 10

10

DI	SPLAY	KEY		DI	SPLAY
LINE	CODE	ENTRY	L	INE	CODE
00				25	71
01	24 03	RCL 3		26	74
02	24 01	RCL 1	1	27	24 03
03	14 04	f SIN		28	61
04	61	х		29	24 01
05	24 02	RCL 2		30	14 04
06	71	÷		31	61
07	15 04	g SIN ⁻¹		32	02
08	23 05	STO 5		33	71
09	74	R/S		34	74
10	24 01	RCL 1		35	24 04
11	51	+		36	24 05
12	01	1		37	41
13	15 04	g SIN ⁻¹		38	74
14	02	2		39	13 10
15	61	х	4	40	
16	23 04	STO 4		41	
17	21	x ≩y		42	
18	41	-		43	
19	74	R/S		44	
20	14 04	fSIN		45	
21	24 02	RCL 2		46	
22	61	х		47	
23	24 01	RCL 1	-	48	
24	14 04	fSIN		49	

REGISTERS	
R _o	
R ₁ B	
R ₂ b	
R ₃ c	
R ₄ 2 sin ⁻¹ 1	
R₅C	
R ₆	
R ₇	

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	Store B, b, and c	В	STO	1		
		b	STO	2		
		с	STO	3		
3	Solve the triangle		f	PRGM	R/S	С*
			R/S			A*
			R/S			a*
			R/S			Area
4	If B $<$ 90 $^{\circ}$ and b $<$ c, find al-					
	ternate solution		R/S			C'*
			R/S			A'*
			R/S			a'*
			R/S			Area'
	* The stack must be maintained					
	at these positions.					

Given the following two sides and non-included angle:

$$B = 42.3^{\circ}$$

b = 25.6
c = 32.8

Solve the triangle.

Solution:

Since B is less than 90° and b < c, two sets of solutions exist.

$$C = 59.58^{\circ}$$

$$A = 78.12^{\circ}$$

$$a = 37.22$$

Area = 410.85

$$C' = 120.42^{\circ}$$

$$A' = 17.28^{\circ}$$

$$a' = 11.30$$

Area' = 124.68

TRIANGLE SOLUTION a, b, c

Given three sides of a triangle this program solves the triangle for the remaining parameters by the following formulas:

$$C = \cos^{-1} \left(\frac{a^2 + b^2 - c^2}{2ab} \right)$$
$$B = \sin^{-1} \left(\frac{b \sin C}{c} \right) \qquad A = \sin^{-1} \left(\frac{a \sin C}{c} \right)$$

This program also computes the area by the following formula:

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

where s = $\frac{1}{2}$ (a + b + c)

Reletter if necessary to make c the largest side. The program works in any angular mode. However, if in degree mode decimal degrees are assumed.

D	ISPLAY	KEY	
LINE	CODE	ENTRY	L
00			1
01	24 01	RCL 1	:
02	24 02	RCL 2	1
03	15 09	g→P	
04	15 02	g x ²	
05	24 03	RCL 3	
06	15 02	g x ²	
07	41	-	
08	24 01	RCL 1	
09	24 02	RCL 2	1
10	61	x	1
11	02	2	
12	61	x	;
13	71	÷	;
14	15 05	g COS ^{−1}	1
15	74	R/S	
16	14 04	f SIN	
17	24 03	RCL 3	
18	71	÷	4
19	23 00	STO 0	
20	24 02	RCL 2	
21	61	x	
22	15 04	g SIN ^{−1}	
23	74	R/S	
24	24 00	RCL 0	

DI	SPLAY	KEY
LINE	CODE	ENTRY
25	24 01	RCL 1
26	61	x
27	15 04	g SIN⁻¹
28	74	R/S
29	24 01	RCL 1
30	24 02	RCL 2
31	51	+
32	24 03	RCL 3
33	51	+
34	02	2
35	71	÷
36	31	1
37	23 00	STO 0
38	24 01	RCL 1
39	41	-
40	61	x
41	24 00	RCL 0
42	24 02	RCL 2
43	41	-
44	61	x
45	24 00	RCL 0
46	24 03	RCL 3
47	41	-
48	61	x
49	14 02	$f\sqrt{x}$

	REGISTERS
\mathbf{R}_{0}	Used
R ₁	а
R ₂	b
\mathbf{R}_{3}	с
R₄	
R ₅	
R ₆	
R,	

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	Store sides (c is the largest)	а	STO	1		
		b	STO	2		
		с	STO	3		
3	Solve the triangle		f	PRGM	R/S	C*
			R/S			в*
			R/S			Α
			R/S			Area
4	If only the area is needed:	а	STO	1		
		b	STO	2		
		с	STO	3		
			GTO	29	R/S	Area
	* The stack must be maintained					
	at these points.					

Let a = 5.43, b = 10.46, c = 14.87

Solution:

 $C = 136.37^{\circ}$ $B = 29.04^{\circ}$ $A = 14.59^{\circ}$

Area = 19.60

Given two angles and an opposite side this program solves the triangle for the remaining parameters by the following formulas:

$$B = 2 \sin^{-1} 1 - (A + C) = \pi \text{ radians} - (A + C) = 180^{\circ} - (A + C)$$
$$= 200 \text{ grads} - (A + C)$$
$$b = \frac{a \sin B}{\sin A}$$
$$c = \frac{a \sin C}{\sin A}$$

The area is computed with the following formula:

Area =
$$\frac{1}{2}$$
 ab sin C

The program works in any angular mode. However, if in degree mode all angles are assumed to be in decimal degrees.

DI	SPLAY	KEY	D	SPLAY	KEY
LINE	CODE	ENTRY	LINE	CODE	ENTRY
00	/////////		25	24 01	RCL 1
01	01	1	26	24 04	RCL 4
02	15 04	g SIN⁻¹	27	61	x
03	02	2	28	24 03	RCL 3
04	61	x	29	14 04	fSIN
05	24 02	RCL 2	30	61	x
06	24 03	RCL 3	31	02	2
07	51	+	32	71	÷
08	41	-	33	13 00	GTO 00
09	74	R/S	34		
10	14 04	fSIN	35		
11	24 01	RCL 1	36		
12	61	x	37		
13	24 02	RCL 2	38		
14	14 04	fSIN	39		
15	71	÷	40		
16	23 04	STO 4	41		
17	74	R/S	42		
18	24 01	RCL 1	43		
19	14 73	f LASTx	44		
20	71	÷	45		
21	24 03	RCL 3	46		
22	14 04	fSIN	47		
23	61	x	48		
24	74	R/S	49	Sec. Sec.	

	REGISTERS
\mathbf{R}_{o}	
\mathbf{R}_1	а
R 2	A
R 3	С
R₄	b
R 5	
R ₆	
R,	

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	Store a, A, and C	а	STO	1		
		А	STO	2		
		С	STO	3		
3	Solve the triangle		f	PRGM	R/S	в*
			R/S			b*
			R/S			с
			R/S			Area
	* The stack must be maintained					
	at these points.					

Let a = 19.6, A = 40.25° , C = 61.06°

Solution:

B = 78.69° b = 29.75 c = 26.55 Area = 255.11 **TRIANGLE SOLUTION a, b, C**

Given two sides and their included angle this program solves the triangle for the remaining parameters by the following formulas:

$$c = \sqrt{a^{2} + b^{2} - 2ab \cos C} \qquad A = \sin^{-1} \left(\frac{a \sin C}{c}\right)$$

B = 2 sin⁻¹ 1 - (A + C) = π radians - (A + C) = 180° - (A + C)
= 200 grads - (A + C)

The area is calculated by

Area =
$$\frac{1}{2}$$
 ab sin C

Reletter if necessary, to make a the smaller of a and b.

This program works in any angular mode. However, if in degrees decimal degrees are assumed.

D	SPLAY	KEY	
LINE	CODE	ENTRY	
00			
01	24 01	RCL 1	
02	24 02	RCL 2	
03	15 09	g→P	
04	15 02	g x ²	
05	24 01	RCL 1	
06	24 02	RCL 2	
07	61	x	
08	02	2	
09	61	x	
10	24 03	RCL 3	
11	14 05	f COS	
12	61	x	
13	41	-	
14	14 02	f√x	
15	74	R/S	
16	24 01	RCL 1	
17	24 03	RCL 3	
18	14 04	fSIN	
19	61	x	
20	21	x ₹γ	
21	71	÷	
22	15 04	g SIN ^{−1}	
23	74	R/S	
24	01	1	L

DI	SPLAY	KEY		
LINE	CODE	ENTRY		
25	15 04	g SIN ⁻¹		
26	02	2		
27	61	x		
28	21	x ≩y		
29	24 03	RCL 3		
30	51	+		
31	41	-		
32	74	R/S		
33	24 03	RCL 3		
34	14 04	fSIN		
35	24 01	RCL 1		
36	61	x		
37	24 02	RCL 2		
38	61	x		
39	02	2		
40	71	÷		
41	13 00	GTO 00		
42				
43				
44				
45				
46				
47				
48				
49				

,	REGISTERS
	R _o
	R ₁ a
	R ₂ b
	R₃ C
	R ₄
	R₅
	R ₆
	R ₇

154 Chapter 8 Trigonometry and Analytical Geometry

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS					
1	Key in program								
2	Store a, b, and C (a is smaller								
	of a and b)	а	STO	1					
		b	STO	2					
		С	STO	3					
3	Solve the triangle		f	PRGM	R/S		c*		
			R/S				A*		
			R/S				В		
			R/S				Area		
4	If only the area is needed:	а	STO	1					
		b	STO	2					
		С	STO	3					
			GTO	33	R/S		Area		
	* The stack must be maintained								
	at these points.								

Example:

Let a = 146, b = 227, $C = 31.49^{\circ}$

Solution:

c = 127.76 A = 36.65° B = 111.86° Area = 8655.86

TRIANGLE SOLUTION a, B, C

Given two angles and their included side this program solves the triangle for the remaining parameters by the following formulas:

$$A = 2 \sin^{-1} 1 - (B + C) = \pi \text{ radians} - (B + C) = 180^{\circ} - (B + C)$$
$$= 200 \text{ grads} - (B + C)$$
$$b = \frac{a \sin B}{\sin A}$$
$$c = \frac{a \sin C}{\sin A}$$

The area is found using the formula:

Area =
$$\frac{a^2 \sin B \sin C}{2 \sin (B+C)}$$

The program works in any angular mode. However, if in degrees the program assumes decimal degrees.

DISPLAY		KEY] [
LINE	CODE	ENTRY	
00			
01	01	1	
02	15 04	g SIN ⁻¹	
03	02	2	
04	61	x	
05	24 02	RCL 2	
06	24 03	RCL 3	[
07	51	+	
08	41	-	
09	23 04	STO 4	
10	74	R/S	
11	24 01	RCL 1	
12	24 04	RCL 4	
13	14 04	fSIN	
14	71	÷	
15	23 04	STO 4	
16	24 02	RCL 2	
17	14 04	fSIN	
18	61	x	
19	74	R/S	
20	24 04	RCL 4	
21	24 03	RCL 3	
22	14 04	fSIN	
23	61	x	
24	74	R/S	

DI	SPLAY	KEY		
LINE	CODE	ENTRY		
25	24 01	RCL 1		
26	15 02	g x ²		
27	02	2		
28	71	÷		
29	24 02	RCL 2		
30	14 04	fSIN		
31	61	x		
32	24 03	RCL 3		
33	14 04	fSIN		
34	61	x		
35	24 02	RCL 2		
36	24 03	RCL 3		
37	51	+		
38	14 04	fSIN		
39	71	÷		
40	13 00	GTO 00		
41				
42				
43				
44				
45				
46				
47				
48				
49				

REGISTERS
R _o
R ₁ a
R ₂ B
R ₃ C
R ₄ A, (a/sin A)
R 5
R ₆
R ₇

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS		
1	Key in program					
2	Store a, B, C	а	STO	1		
		В	STO	2		
		С	STO	3		
3	Solve the triangle		f	PRGM	R/S	A*
			R/S			b*
			R/S			с
			R/S			Area
4	If only the area is needed:	а	STO	1		
		В	STO	2		
		с	STO	3		
			GTO	25	R/S	Area
	* The stack must be maintained					
	at these points.					

Let a = 20.96, $B = 64^{\circ}32'$, $C = 35^{\circ}06'$.

Solution:

First convert B and C to decimal degrees.

A = 80.37° b = 19.19 c = 12.22 Area = 115.66

HYPERBOLIC FUNCTIONS

This program evaluates the six hyperbolic functions by the following formulas:

1. $\sinh x = \frac{e^x - e^{-x}}{2}$ 2. $\cosh x = \frac{e^x + e^{-x}}{2}$ 3. $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ 4. $\operatorname{csch} x = \frac{1}{\sinh x} \quad (x \neq 0)$ 5. $\operatorname{sech} x = \frac{1}{\cosh x}$

6.
$$\operatorname{coth} x = \frac{1}{\tanh x}$$
 $(x \neq 0)$

DISPLAY		KEY		ISPLAY	KEY	RECIETERS
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25			Ro
01	15 07	g e ^x	26			R ₁
02	31	1	27			R ₂
03	15 22	g 1/x	28			R 3
04	41	-	29			R ₄
05	02	2	30			R _s
06	71	÷	31			R ₆
07	13 00	GTO 00	32			R ₇
08	15 07	g e [×]	33			
09	31	1	34			
10	15 22	g 1/x	35			
11	51	+	36			
12	13 05	GTO 05	37			
13	15 07	g e [×]	38			
14	31	↑	39			
15	15 22	g 1/x	40			
16	41	-	41			
17	31	1	42			
18	31	1	43			
19	14 73	f LASTx	44			
20	02	2	45			
21	61	x	46			
22	51	+	47			
23	71	÷	48			
24	13 00	GTO 00	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	sinh x	x	f	PRGM	R/S		sinh x
	or						
	cosh x	×	GTO	08	R/S		cosh x
	or						
	tanh x	×	GTO	13	R/S		tanh x
	or						
	csch x	×	ŧ	PRGM	R/S		
			g	¹ /x			csch x
	or						
	sech x	×	GTO	08	R/S		
			g	¹ /x			sech x
	or						
	coth x	x	GTO	13	R/S		
			g	¹ /x			coth x

- 1. $\sinh 2.5 = 6.05$
- 2. $\cosh 3.2 = 12.29$
- 3. $\tanh 1.9 = 0.96$
- 4. $\operatorname{csch} 4.6 = 0.02$
- 5. sech (-.25) = 0.97
- 6. $\operatorname{coth}(-2.01) = -1.04$

INVERSE HYPERBOLIC FUNCTIONS

This program evaluates the inverse hyperbolic functions by the following formulas:

1.	$\sinh^{-1} x = \ln [x + (x^2 + 1)^{\frac{1}{2}}]$	
2.	$\cosh^{-1} x = \ln [x + (x^2 - 1)^{\frac{1}{2}}]$	$x \ge 1$
3.	$\tanh^{-1} x = \frac{1}{2} \ln \left[\frac{1+x}{1-x} \right]$	$x^{2} < 1$
4.	$\operatorname{csch}^{-1} x = \sinh^{-1} \left[\frac{1}{x} \right]$	x ≠ 0
5.	$\operatorname{sech}^{-1} x = \cosh^{-1} \left[\frac{1}{x} \right]$	$0 < x \le 1$
6.	$\operatorname{coth}^{-1} x = \operatorname{tanh}^{-1} \left[\frac{1}{x} \right]$	$x^{2} > 1$

DISPLAY		KEY	D	SPLAY	KEY	
LINE	CODE	ENTRY	LINE	CODE	ENTRY 1	REGISTERS
00			25	01	1	Ro
01	31	1	26	51	+	R ₁
02	31	1	27	71	÷	R ₂
03	61	x	28	14 07	f LN	R 3
04	01	1	29	02	2	R ₄
05	51	+	30	71	÷	R 5
06	14 02	f√x	31	13 00	GTO 00	R ₆
07	51	+	32			R ₇
08	14 07	fLN	33			
09	13 00	GTO 00	34			
10	31	1	35			
11	31	1	36]
12	61	x	37]
13	01	1	38]
14	41	-	39			
15	14 02	f√x	40			
16	51	+	41]
17	14 07	f LN	42]
18	13 00	GTO 00	43]
19	31	1	44]
20	31	1	45]
21	01	1	46]
22	51	+	47]
23	21	x ≩y	48]
24	32	CHS	49]

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	sinh ⁻¹ x	x	f	PRGM	R/S		sinh ⁻¹ x
	or						
	cosh ⁻¹ x	×	GTO	10	R/S		cosh ⁻¹ x
	or						
	tanh ⁻¹ x	×	GTO	19	R/S		tanh ⁻¹ x
	or						
	csch ⁻¹ x	x	9	¹ /x	f	PRGM	
			R/S				csch ⁻¹ x
	or						
	sech ⁻¹ x	×	g	¹ /x	GTO	10	
			R/S				sech ⁻¹ x
	or						
	coth ⁻¹ x	×	g	¹ /x	GTO	19	
			R/S				coth ⁻¹ x

1. $\sinh^{-1}(2.4) = 1.61$

- 2. $\cosh^{-1}(90) = 5.19$
- 3. $\tanh^{-1}(-.65) = -0.78$
- 4. $\operatorname{csch}^{-1}(2) = 0.48$
- 5. $\operatorname{sech}^{-1}(.4) = 1.57$
- 6. $\operatorname{coth}^{-1}(3.4) = 0.30$

INDEX

Accumulated interest/remaining balance 32 Area by double meridian distance 134 Area of triangles 143-157 Base conversions 22-25 Calendar 49 Chi-square evaluation 118 Combinations 114 Complex arithmetic 15 Complex functions 18 Compound amount 41 Coordinate translation and rotation 138 Course planning 61 Covariance and correlation coefficient 101 Cross product, vector 26 Curve fitting 87-100 Day of week, days between dates 49 Determinant and inverse of 2 x 2 matrix 20 Discounted cash flow 46 Distributions 105-109 Dot product, vector 28 Exponential curve fit 92 Factorials 110 Field angle traverse 129 Great circle, plotting 62 navigation 72 Hyperbolics 158-161 Interest rate, mortgage loan 39 Internal rate of return 46 Inverse, from coordinates 136 hyperbolics 160 normal integral 108 of a 2 x 2 matrix 20

Linear interpolation 85 regression 87 Logarithmic curve fit 95 Moments and skewness 103 Moon landing simulator 52 Mortgage loan 32-40 Net present value 46 Newton's method 76 Nimb 55 Normal distribution 105 Numerical integration 81 solution to differential equation 83 One sample test statistics for the mean 127 Periodic savings 44 Permutations 112 Plotting/graphing 7 Power curve fit 98 Probability 110-117 Quadratic equation 12 Random numbers 116 Rhumbline navigation 65 Sight reduction table **70** Simultaneous equations 30 t statistic, for two means 124 paired 121 Teach arithmetic 57 Test statistics 118-128 Traverse, field angle 129 Triangle solutions 143-157 Vector operations 26-29

Sales and service from 172 offices in 65 countries. 19310 Pruneridge Avenue, Cupertino, California 95014

00025-90011 Rev. E 7/76