

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

Applications Programs

00025-90011 Rev. E 7/76

INTRODUCTION

Welcome. You are about to step into a field that, ten years ago, was open only to users of large computer systems costing tens or hundreds of thousands of dollars, and even five years ago, required a several-thousand-dollar calculator that occupied the better part of a desktop. Today, the HP- 25 puts programming into the hands of the individual. It is hoped that this book will allow you to realize some of the potential of this calculating instrument.

These HP-25 Applications Programs have been drawn from the varied fields of mathematics, statistics, finance, surveying, navigation, and games. They have been arranged in eight chapters which follow roughly the above classification. Each program is furnished with a full explanation which includes a description of the problem, any pertinent equations, a list of keystrokes to be entered into program memory, a set of instructions for running the program, and an example or two, with solutions. To use the programs does not require any proficiency in programming, but some familiarity with the HP-25 Owner's Handbook is assumed.

For users who want to enhance their understanding of programming principles and techniques, a number of programs are provided to help in this respect. The first program in each chapter contains, in addition to the usual explanations, a more detailed description of the problem, a commented list of the program keystrokes with a step-by-step tracing of the contents of the stack registers, and a list of the keystrokes required to solve the example problem. Whenever an interesting programming technique is used in one of these programs, it is described in a short section headed "Programming Remarks", which, if present, will immediately precede the list of program keystrokes.

Thus, whether your interest lies in solving a particular problem in a specific area, or in learning more about the programming power of your calculator, we hope that this book will help you get the most from your HP-25.

TABLE OF CONTENTS

Introduction 1
A Word About Program Usage 4
Chapter 1: Algebra and Number Theory
Plotting/Graphing 7
Quadratic Equation 12
Complex Arithmetic (,,$+- x \div$) 15
Complex Functions ($|\mathrm{z}|, \mathrm{z}^{2}, 1 / \mathrm{z}, \sqrt{\mathrm{z}}$) 18
Determinant and Inverse of a 2×2 Matrix 20
Base Conversions
Number in Base b to Number in Base 10 22
Number in Base 10 to Number in Base b 24
Vector Operations
Cross Product 26
Angle Between, Norm, and Dot Product 28
Simultaneous Equations in 2 Unknowns 30
Chapter 2: Finance
Mortgage Loan
Accumulated Interest/Remaining Balance 32
Payment, Present Value, Number of Periods 37
Interest Rate 39
Compound Amount 41
Periodic Savings
Payment, Present Value, Number of Periods 44
Discounted Cash Flow
Net Present Value, Internal Rate of Return 46
Calendar
Day of the Week, Days Between Two Dates 49
Chapter 3: Games
Moon Landing Simulator 52
Nimb 55
Teach Arithmetic 57
Chapter 4: Navigation
Course Planning 61
Great Circle Plotting 62
Rhumbline Navigation 65
Sight Reduction Table 70
Great Circle Navigation 72
Chapter 5: Numerical Methods
Newton's Method Solution to $f(x)=0$ 76
Numerical Integration, Simpson's Rule 81
Numerical Solution to Differential Equations 83
Linear Interpolation 85
Chapter 6: Statistics
Curve Fitting
Linear Regression 87
Exponential 92
Logarithmic 95
Power 98
General Statistics
Covariance and Correlation Coefficient 101
Moments and Skewness 103
Distributions
Normal Distribution 105
Inverse Normal Integral 108
Probability
Factorial 110
Permutation 112
Combination 114
Random Number Generator 116
Test Statistics
Chi-Square Evaluation 118
Paired t Statistic 121
t Statistic for Two Means 124
One Sample Test Statistics for the Mean 127
Chapter 7: Surveying
Field Angle Traverse 129
Area by Double Meridian Distance 134
Inverse from Coordinates 136
Chapter 8: Trigonometry and Analytical Geometry
Coordinate Translation and Rotation 138
Triangle Solutions and Areas
B, b, c 143
a, b, c 146
a, A, C 149
a, b, C 152
a, B, C 155
Hyperbolic Functions 158
Inverse Hyperbolic Functions 160

A WORD ABOUT PROGRAM USAGE

Various kinds of information are provided to explain the use of each program. Besides a short description of the problem, a list of applicable equations, and an example problem with solution, there are two forms that deserve some explanation: the Program form and the User Instructions form.

Two different Program forms are provided, one of which is just a simplified version of the other. The detailed form is used for a total of eight programs, one per chapter, with the simpler form serving for the rest. A section of a detailed form, taken from the Plotting/Graphing program in Chapter 1, is shown below:

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$	X	\mathbf{Y}	Z	T	COMMENTS	REGISTERS
LINE	CODE							
00	$\pi 11118$	(1)M11	v	θ				$R_{0} \Delta t$
01	1409	$f \rightarrow R$	v_{x}	v_{y}			Use polar-to-rectangular for	
02	2302	STO 2	v_{x}	v_{v}			$\mathrm{v}_{\mathrm{x}}=\mathrm{v} \cos \theta=$ horiz. vel.	
03	21	$x \vec{y}$	v_{v}	v_{x}				$R_{1} 9$
04	2303	STO 3	v_{v}	v_{x}			$v_{y}=v \sin \theta=$ vert. vel.	
05	00	0	0					
06	2304	STO 4	0				Initialize: $\mathrm{t}=0$	$R_{2}{ }^{v_{x}}$
07	2400	RCL 0	Δt				Start of loop	$\mathrm{R}_{2} \times$
08	235104	STO + 4	Δt				Next time interval:	
09	2404	RCL 4	t				$t \leftarrow t+\Delta t$	$\mathrm{R}_{3} \mathrm{v}_{\mathrm{V}}$
10	1502	g x	t^{2}					

The rightmost column, headed REGISTERS, explains what variables are stored in storage registers R_{0} through R_{7}. The rest of the form is divided into eight columns. The first two columns describe the appearance of the display as the program is being keyed in: LINE shows the step number for the current instruction and CODE denotes the numeric keycodes corresponding to the keystrokes in the next column, KEY ENTRY. The entries in this column are the keys that must be pressed to enter the program into program memory. The ENTERA key is denoted in this column as $\boldsymbol{4}$; all other key designations are identical to those appearing on the HP-25.

The next four columns, $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and T , trace the contents of the stack registers as they would change during execution of the program in RUN mode. Each entry under $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, or T gives the contents of the respective register after the instruction on that line has been executed. The COMMENTS column contains additional step-by-step explanation of the program's calculations.

These last columns, X, Y, Z, T, and COMMENTS, are provided to help the interested user acquire a detailed, in-depth understanding of a particular program, or of programming techniques in general.

The simplified Program forms contain the same information as the detailed forms except for the omission of columns $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, and COMMENTS.

The User Instructions form is the user's guide to operating the program to solve his own particular problem. This form, which is composed of five columns, is illustrated below for the same program from Chapter 1, Plotting/ Graphing.

Reading from left to right, the STEP column gives the instruction step number. The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed. Steps are executed in sequential order except where the INSTRUCTIONS column directs otherwise.

Normally, the first instruction is "Key in program", which means to store the keystrokes of the program in program memory (switch to PRGM mode, press f PRGM , key in the program, then switch back to RUN mode).

Repeated processes, used in most cases for a long string of input/output data, are outlined with a bold border, as in steps 5 and 6 above. In this case, the steps are repeated in order to generate a number of (x, y) pairs for a graph.

The INPUT DATA/UNITS column specifies the input data to be supplied, and the units of data if applicable. The KEYS column specifies the keys to be pressed. 4 is used for the ENTERA key, and all other key designations are identical to those appearing on the HP-25. Ignore any blank positions in the KEYS column.

Some programs are complex enough that users have to press additional keys to generate some results. Those keys are also shown in the KEYS column.

The OUTPUT DATA/UNITS column shows intermediate and final results that have been calculated either from the keyboard or from an executing program, and the units of data if applicable. Parentheses around an output variable, such as (t) in step 5 , indicate that the result is displayed only briefly by a PAUSE instruction (f PAUSE).

CHAPTER 1 ALGEBRA AND NUMBER THEORY

PLOTTING/GRAPHING

Most people who have labored through a ninth-grade algebra course probably still respond with a shudder to the word "graph". Evidently the tedium of finding $y=3 x^{2}-4 x+4$, for integer values of x from $-\infty$ to $+\infty$, has etched permanent memories in us all. Fortunately, we need not endure this tedium any longer. The HP- 25 lends itself perfectly to this kind of repetitive calculation.

The basic idea is to generate (x, y) pairs by keying into program memory the keystrokes required to calculate y, assuming x is given. Then the user need only return to the top of memory, enter a value for x , press R / \mathbf{S}, and see y displayed within seconds. The process may be repeated for as many values of x as desired. The programmer can take this process one step further into automation by also having the calculator generate each new value of x , for example, by adding 1 to the old value, or, in general, by adding a specified increment Δx. A flowchart of the process is shown below.

The program used here to illustrate this process takes a slightly different tack. We will consider the problem of plotting the trajectory of a stone which is hurled into the air with an initial velocity v at an angle to the horizontal of θ. Neglecting drag due to friction with the atmosphere, the following equations describe the stone's x - and y -coordinates as functions of the time t :

$$
\mathrm{x}=\mathrm{vt} \cos \theta \quad \mathrm{y}=\mathrm{vt} \sin \theta-\frac{1}{2} \mathrm{gt}^{2}
$$

$$
\text { where } \quad \begin{aligned}
\mathrm{x} & =\text { horizontal distance the stone has traveled } \\
\mathrm{y} & =\text { height of the stone } \\
\mathrm{g} & =\text { acceleration due to gravity } \\
& \simeq 9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \simeq 32 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

These equations differ slightly from the usual graphing function in that y is not expressed directly as a function of x, but instead both x and y are expressed as functions of a third variable t. The points to be plotted are still the ordered pairs (x, y); but now it is the time t which should be incremented by an amount Δt.

Notes:

1. Any consistent set of units may be used.
2. This is not a general plotting/graphing program; it merely illustrates the method by application to a specific problem. However, some study of the program listing and the flowchart should enable the user to adapt the method to his own application.

Programming Remarks:

1. The components of the velocity in the horizontal and vertical directions, $\mathrm{v}_{\mathbf{x}}$ and $\mathrm{v}_{\mathbf{y}}$, are computed in one step by a conversion of v and θ to rectangular coordinates ($\rightarrow \rightarrow R$). The values $v_{x}=v \cos \theta$ and $v_{y}=v \sin \theta$ are returned to the X - and Y -registers, respectively.
2. A pause (\ddagger PAUSE) is used in this program in a very typical manner, to display briefly the output variable t, whose values are simple (0.25 , $0.50,0.75$, etc.) and do not need to be written down.

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$	X	Y	Z	T	COMMENTS	REGISTERS
LINE	CODE							
00	011111		v	θ				R_{0} 配
01	1409	$f \rightarrow R$	v_{x}	v_{v}			Use polar-to-rectangular for	
02	2302	STO 2	v_{x}	v_{v}			$\mathrm{v}_{\mathrm{x}}=\mathrm{v} \cos \theta=$ horiz. vel.	
03	21	$\mathrm{x} \overrightarrow{\mathrm{F}} \mathrm{y}$	v_{v}	v_{x}				R g
04	2303	STO 3	v_{y}	v_{x}			$v_{y}=v \sin \theta=$ vert. vel.	
05	00	0	0					
06	2304	STO 4	0				Initialize: $\mathrm{t}=0$	v_{x}
07	2400	RCL 0	Δt				Start of loop	
08	235104	STO + 4	$\Delta \mathrm{t}$				Next time interval:	
09	2404	RCL 4	t				$t \leftarrow t+\Delta t$	$R_{3} \mathrm{v}_{\mathbf{y}}$
10	1502	$\mathrm{g} \mathrm{x}^{2}$	t^{2}					N_{3}
11	2401	RCL 1	9	$\mathrm{t}^{\mathbf{2}}$				
12	61	x	$g t^{2}$					R_{4}
13	02	2	2	$\mathrm{g} \mathrm{t}{ }^{\text {2 }}$				
14	71	\div	$1 / 2 \mathrm{~g} \mathrm{t}^{2}$					
15	32	CHS	$-1 / 2 \mathrm{~g} \mathrm{t}^{2}$					
16	2404	RCL 4	t	$-1 / 2 \mathrm{~g} \mathrm{t}^{2}$				
17	2403	RCL 3	v_{v}	t	$-1 / 2 \mathrm{gt}$			
18	61	x	$v_{v} \mathrm{t}$	$-1 / 2 \mathrm{~g} \mathrm{t}^{2}$				
19	51	+	v				$y=v_{y} t-1 / 2 g^{2}$	
20	2404	RCL 4	t	y				
21	2402	RCL 2	v_{x}	t	y			R_{7}
22	61	x	x	y			$x=v_{x} t$	
23	2404	RCL 4	t	x	v			
24	1474	f PAUSE	t	x	v		Pause to display t	
25	22	R \downarrow	\times	y		t		
26	74	R/S	x	y		t	Halt and display x	
27	21	$x \overrightarrow{\mathrm{k}}$	y	x		t		
28	74	R/S	y	x		t	Halt and display y	
29	1307	GTO 07	v	x		t	Branch back for next t	
30								
31								
32								
33								
34								
35								
36			.					
37								
38								
39								
40								
41								
42								
43						.		
44								
45								
46								
47								
48								
49								

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS					OUTPUT DATA/UNITS
1	Key in program							
2	Store time interval	Δt	STO	0				
3	Store gravitational constant	g	STO	1				
4	Input angle and initial speed	θ	\uparrow					
		v	f	PRGM				
5	Perform steps 5 and 6 any num-							
	ber of times: Display time and		R/S					(t)
	horizontal distance							x
6	Display height		R/S					y
7	To change θ or v , go to step 4.							
	To change Δt or g , go to							
	appropriate step, store new value,							
	then go to step 4.							

Example:

Plot the trajectory of a stone cast upwards with a velocity of $20 \mathrm{~m} / \mathrm{s}$ at an angle of 30° to the horizontal. Use intervals of $1 / 4$ second between points plotted. Let $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Solution:

Continue untily becomes negative.
The table of these results is shown below:

t	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25
x	4.33	8.66	12.99	17.32	21.65	25.98	30.31	34.64	38.97
y	2.19	3.78	4.74	5.10	4.84	3.98	2.49	0.40	-2.31

The plot of these (x, y) values is made and the stone's trajectory is seen to be a parabola.

QUADRATIC EQUATION

The roots $\mathrm{x}_{1}, \mathrm{x}_{2}$ of

$$
a x^{2}+b x+c=0
$$

are given by

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If

$$
D=\left(b^{2}-4 a c\right) / 4 a^{2}
$$

is positive or zero, the roots are real. In these cases, better accuracy may sometimes be obtained by first computing the root with the larger absolute value:

If

$$
-\frac{b}{2 a} \geqslant 0, \quad x_{1}=-\frac{b}{2 a}+\sqrt{D}
$$

If

$$
-\frac{b}{2 a}<0, \quad x_{1}=-\frac{b}{2 a}-\sqrt{D}
$$

In either case,

$$
x_{2}=\frac{c}{x_{1} a} .
$$

If $\mathrm{D}<0$, the roots are complex, being

$$
u \pm i v=\frac{-b}{2 a} \pm \frac{\sqrt{4 a c-b^{2}}}{2 a} i
$$

DISPLAY		KEY ENTRY
LINE	CODE	
00	IIIIIT	ITITIT
01	31	\uparrow
02	22	R \downarrow
03	71	\div
04	02	2
05	71	\div
06	32	CHS
07	31	\uparrow
08	1502	$g x^{2}$
09	22	R \downarrow
10	22	R \downarrow
11	21	$x \vec{\leftarrow}$
12	71	\div
13	2300	STO 0
14	41	-
15	1474	f PAUSE
16	1541	$\mathrm{g} \mathrm{x}<0$
17	1331	GTO 31
18	1402	$f \sqrt{x}$
19	21	$x \stackrel{y}{ }$
20	1541	$\mathrm{gx} \times 0$
21	1324	GTO 24
22	51	+
23	1326	GTO 26
24	21	$x \neq y$

DISPLAY		KEY ENTRY
LINE	CODE	
25	41	-
26	74	R/S
27	1522	g 1/x
28	2400	RCL 0
29	61	x
30	1300	GTO 00
31	32	CHS
32	1402	$f \sqrt{x}$
33	21	$x \vec{\leftarrow}$
34	74	R/S
35	21	$x \vec{\leftarrow} \mathrm{y}$
36	1300	GTO 00
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTERS
$\mathbf{R}_{\mathbf{0}}$ c/a
\mathbf{R}_{1}
$\mathbf{R}_{\mathbf{2}}$
$\mathbf{R}_{\mathbf{3}}$
$\mathbf{R}_{\mathbf{4}}$
$\mathbf{R}_{\mathbf{5}}$
\mathbf{R}_{6}
$\mathbf{R}_{\mathbf{7}}$

| STEP | $\begin{array}{c}\text { INSTRUCTIONS }\end{array}$ | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | KEYS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OATA/UNITS | | | | |$]$

Example:

Find solutions to the three equations below:

1. $\mathrm{x}^{2}+\mathrm{x}-6=0$
2. $3 x^{2}+2 x-1=0$
3. $2 x^{2}-3 x+5=0$

Solutions:

1. $\mathrm{D}=6.25$

$$
\begin{aligned}
& \mathrm{x}_{1}=-3.00 \\
& \mathrm{x}_{2}=2.00
\end{aligned}
$$

2. $\mathrm{D}=0.44$

$$
\begin{aligned}
& x_{1}=-1.00 \\
& x_{2}=0.33
\end{aligned}
$$

3. $\mathrm{D}=-1.94$
$\mathrm{x}_{1}, \mathrm{x}_{2}=0.75 \pm 1.39 \mathrm{i}$

COMPLEX ARITHMETIC, $+,-, x, \div$

Let $a_{1}+i b_{1}$ and $a_{2}+i b_{2}$ be two complex numbers. The arithmetic operations $+,-, x, \div$ are defined as follows:

1. + , addition

$$
\left(a_{1}+i b_{1}\right)+\left(a_{2}+i b_{2}\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) i
$$

2. - , subtraction

$$
\left(a_{1}+i b_{1}\right)-\left(a_{2}+i b_{2}\right)=\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) i
$$

3. x , multiplication

$$
\left(a_{1}+i b_{1}\right) \times\left(a_{2}+i b_{2}\right)=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

4. \div, division

$$
\frac{\left(a_{1}+i b_{1}\right)}{\left(a_{2}+i b_{2}\right)}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}, a_{2}+i b_{2} \neq 0
$$

where $r_{1} e^{i \theta_{1}}$ is the polar representation of $a_{1}+i b_{1}$ and $r_{2} e^{i \theta_{2}}$ is the polar representation of $a_{2}+i b_{2}$. In each case let the answer be $x+i y$.

After a calculation is finished x is stored in R_{o} as well as the X-register and y is stored in R_{1} as well as the Y-register. In this way arithmetic operations can be chained together.

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00	\|1/1/1/1	N/1/1/V	25	2302	STO 2	$\mathbf{R}_{\mathbf{0}} \mathrm{a}_{1}, \mathbf{x}$
01	32	CHS	26	22	R \downarrow	$\mathrm{R}_{1} \mathrm{~b}_{1}, \mathrm{l}$
02	21	$x \vec{y}$	27	51	+	$\mathbf{R}_{\mathbf{2}}$ Used
03	32	CHS	28	2402	RCL 2	\mathbf{R}_{3}
04	21	$x \neq y$	29	1409	$f \rightarrow R$	\mathbf{R}_{4}
05	2400	RCL 0	30	21	$x \vec{¢} \mathrm{y}$	\mathbf{R}_{5}
06	51	+	31	2301	STO 1	\mathbf{R}_{6}
07	21	$x \vec{y}$	32	21	$x \rightleftarrows y$	\mathbf{R}_{7}
08	2401	RCL 1	33	2300	STO 0	
09	51	+	34	1300	GTO 00	
10	1331	GTO 31	35			
11	1509	$\mathrm{g} \rightarrow \mathrm{P}$	36			
12	1522	g 1/x	37			
13	21	$x \neq y$	38			
14	32	CHS	39			
15	21	$x \vec{y}$	40			
16	1318	GTO 18	41			
17	1509	$\mathrm{g} \rightarrow \mathrm{P}$	42			
18	2302	STO 2	43			
19	22	R \downarrow	44			
20	2401	RCL 1	45			
21	2400	RCL 0	46			
22	1509	$\mathrm{g} \rightarrow \mathrm{P}$	47			
23	2402	RCL 2	48			
24	61	x	49			

| STEP | $\begin{array}{c}\text { INSTRUCTIONS }\end{array}$ | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | K KEYS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OUTPUT | | | | |
| DATA/UNITS | | | | |$]$

Examples:

1. $(1.2+3.7 \mathrm{i})-(2.6-1.9 \mathrm{i})=-1.4+5.6 \mathrm{i}$
2. $\frac{3+4 i}{7-2 \mathrm{i}}=0.25+0.64 \mathrm{i}$
3. $\left[\frac{(3+4 i)+(7.4-5.6 \mathrm{i})}{(7-2 \mathrm{i})}\right][3.1+4.6 \mathrm{i}]=3.61+7.16 \mathrm{i}$

COMPLEX FUNCTIONS |z|, $z^{2}, 1 / z, \sqrt{z}$

A complex number $z=a+i b$ has polar representation $r e^{i \theta}$. The formulas used to evaluate the given functions are as follows:

1. $|z|=r$
2. $\mathrm{z}^{2}=\mathrm{r}^{2} \mathrm{e}^{\mathrm{i} 2 \theta}$
3. $1 / z=\frac{1}{r} e^{-i \theta}, z \neq 0$
4. $\sqrt{\mathrm{z}}= \pm\left(\sqrt{\mathrm{r}} \mathrm{e}^{\mathrm{i} \theta / 2}\right)= \pm(\mathrm{x}+\mathrm{iy})$

The answer is represented by $\mathrm{x}+\mathrm{iy}$.

DISPLAY		KEY ENTRY
LINE	CODE	
00	111111	IT11117
01	1509	$\mathrm{g} \rightarrow \mathrm{P}$
02	1300	GTO 00
03	1509	$\mathrm{g} \rightarrow \mathrm{P}$
04	1502	$\mathrm{gx} \mathrm{x}^{2}$
05	21	$x \vec{\square} \mathrm{y}$
06	31	\uparrow
07	51	+
08	21	$x \vec{\leftarrow} \mathrm{y}$
09	1409	$f \rightarrow \mathrm{R}$
10	1300	GTO 00
11	1509	$\mathrm{g} \rightarrow \mathrm{P}$
12	1522	g $1 / x$
13	21	$x \vec{y}$
14	32	CHS
15	21	$x \vec{y}$
16	1409	$f \rightarrow \mathrm{R}$
17	1300	GTO 00
18	1509	$\mathrm{g} \rightarrow \mathrm{P}$
19	1402	$f \sqrt{x}$
20	21	$\vec{x}+y$
21	02	2
22	71	\div
23	21	$x \vec{*} y$
24	1409	$f \rightarrow R$

DISPLAY		KEY					
ENTRY			$	$	LINE	CODE	GTO 00
:---:	:---:	:---:					
25	1300						
26							
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							

REGISTERS
R_{0}
R_{1}
R_{2}
R_{3}
R_{4}
R_{5}
R_{6}
R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS	
1	Key in program							
2	Key in z	b	\uparrow					
		a						
3	For $\|z\|$		f	PRGM	R/S		\|z	
	or							
	z^{2}		GTO	03	R/S		x	
			$x \vec{y}$				y	
	or							
	1/2		GTO	11	R/S		\times	
			$x \neq y$				v	
	or							
	$\sqrt{2}$		GTO	18	R/S		\times	
			$x \vec{Y}$				y	
4	For new case, go to step 2.							

Examples:

1. $|12-5 \mathrm{i}|=13.00$
2. $(6-\mathrm{i})^{2}=35.00-12.00 \mathrm{i}$
3. $\frac{1}{2+5 \mathrm{i}}=0.07-0.17 \mathrm{i}$
4. $\sqrt{3+4 \mathrm{i}}= \pm(2.00+1.00 \mathrm{i})$

DETERMINANT AND INVERSE OF A 2×2 MATRIX

Let $\quad \mathrm{A}=\left[\begin{array}{ll}\mathrm{a}_{11} & \mathrm{a}_{12} \\ \mathrm{a}_{21} & \mathrm{a}_{22}\end{array}\right]$ be a 2×2 matrix.
The determinant of A denoted by Det A or $|\mathrm{A}|$ is evaluated by the following formula:

$$
\operatorname{Det} A=a_{22} a_{11}-a_{12} a_{21}
$$

Also, the program evaluates the multiplicative inverse A^{-1} of A . The following formula is used:

$$
A^{-1}=\left[\begin{array}{rr}
a_{22} / \operatorname{Det} A & -a_{12} / \operatorname{Det} A \\
-a_{21} / \operatorname{Det} A & a_{11} / \operatorname{Det} A
\end{array}\right]
$$

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00			25	2400	RCL 0	\mathbf{R}_{0} Det A
01	2404	RCL 4	26	71	\div	$\mathrm{R}_{1} \mathrm{a}_{11}$
02	2401	RCL 1	27	1300	GTO 00	$\mathbf{R}_{\mathbf{2}} \mathrm{a}_{12}$
03	61	\times	28			$\mathbf{R}_{3} \mathrm{a}_{21}$
04	2402	RCL 2	29			$\mathrm{R}_{4} \mathrm{a}_{22}$
05	2403	RCL 3	30			R_{5}
06	61	x	31			\mathbf{R}_{6}
07	41	-	32			R_{7}
08	2300	STO 0	33			
09	74	R/S	34			
10	2404	RCL 4	35			
11	2400	RCL 0	36			
12	71	\div	37			
13	74	R/S	38			
14	2402	RCL 2	39			
15	2400	RCL 0	40			
16	71	\div	41			
17	32	CHS	42			
18	74	R/S	43			
19	2403	RCL 3	44			
20	2400	RCL 0	45			
21	71	\div	46			
22	32	CHS	47			
23	74	R/S	48			
24	2401	RCL 1	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Store matrix	a_{11}	STo	1			
		a_{12}	STO	2			
		a_{21}	STO	3			
		a_{22}	STO	4			
3	Compute determinant		f	PRGM	R/S		Det A
4	Compute inverse		R/S				$\mathrm{a}_{11}{ }^{-1}$
			R/S				$\mathrm{a}_{12}{ }^{-1}$
			R/S				$\mathrm{a}_{21}{ }^{-1}$
			R/S				$\mathrm{a}_{22}{ }^{-1}$
5	For new case, go to step 2.						

Example:

Find the determinant and inverse of the matrix

$$
A=\left[\begin{array}{rr}
3 & 2 \\
4 & -4
\end{array}\right]
$$

Solution:

$$
\text { Det } A=-20
$$

$$
\mathrm{A}^{-1}=\left[\begin{array}{rr}
0.20 & 0.10 \\
0.20 & -0.15
\end{array}\right]
$$

NUMBER IN BASE b TO NUMBER IN BASE 10

This program consists of two subprograms. The first changes the integer part of a number in base b to a number in base 10 .

$$
\mathrm{I}_{10}=\mathrm{i}_{\mathrm{n}} \mathrm{i}_{\mathrm{n}-1} \ldots \mathrm{i}_{2} \mathrm{i}_{1}=\mathrm{i}_{\mathrm{n}} \mathrm{~b}^{\mathrm{n}-1}+\mathrm{i}_{\mathrm{n}-1} \mathrm{~b}^{\mathrm{n}-2}+\ldots+\mathrm{i}_{2} \mathrm{~b}+\mathrm{i}_{1}
$$

This is evaluated in the form

$$
b\left(\ldots\left(b\left(b\left(i_{n} b+i_{n-1}\right)+i_{n-2}\right)+\ldots\right)+i_{2}\right)+i_{1}
$$

The second subprogram changes the fraction part of a number in base b to a number in base 10 .

$$
\mathrm{F}_{10}=\mathrm{f}_{1} \mathrm{f}_{2} \ldots \mathrm{f}_{\mathrm{m}}=\mathrm{f}_{1} \mathrm{~b}^{-1}+\mathrm{f}_{2} \mathrm{~b}^{-2}+\ldots+\mathrm{f}_{\mathrm{m}} \mathrm{~b}^{-\mathrm{m}}
$$

Together the two programs can convert any number in base b to a number in base 10 . Zeros must be entered in their proper place.

DISPLAY		KEY ENTRY
LINE	CODE	
00	W1/1/11	\|1/1/1T
01	2301	STO 1
02	2400	RCL 0
03	31	\uparrow
04	31	\uparrow
05	31	\uparrow
06	2401	RCL 1
07	74	R/S
08	2301	STO 1
09	34	CLX
10	51	+
11	61	\times
12	2401	RCL 1
13	51	+
14	1307	GTO 07
15	2400	RCL 0
16	1522	g 1/x
17	2302	STO 2
18	2303	STO 3
19	61	x
20	74	R/S
21	2402	RCL 2
22	2403	RCL 3
23	61	\times
24	2303	STO 3

DISPLAY		KEY ENTRY
LINE	CODE	
25	61	x
26	51	+
27	1320	GTO 20
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTERS
$\mathbf{R}_{\mathbf{0}} \mathbf{b}$
$\mathbf{R}_{\mathbf{1}}$ Used
$\mathbf{R}_{\mathbf{2}} \mathrm{b}^{-1}$
$\mathbf{R}_{\mathbf{3}} \mathrm{b}^{-\mathrm{j}}$
$\mathbf{R}_{\mathbf{4}}$
$\mathbf{R}_{\mathbf{5}}$
$\mathbf{R}_{\mathbf{6}}$
$\mathbf{R}_{\mathbf{7}}$

Examples:

1. $1777_{8}=1023_{10}$
2. $143.2044_{5}=48.4384_{10}$

NUMBER IN BASE 10 TO NUMBER IN BASE b

This program will convert any positive number in base $10, \mathrm{~N}_{10}$, to a number in base $\mathrm{b}, \mathrm{N}_{\mathrm{b}}$, where $2 \leqslant \mathrm{~b} \leqslant 100$. The algorithm used is an iterative one which adds one more digit to N_{b} at each iteration. The program pauses as each new N_{b} is computed to display successive approximations to the final answer. When the displayed value of N_{b} has reached the accuracy desired by the user, he should press R/S to halt the program, then RCL 3 to display N_{b}.

Notes:

1. When the base b is such that $11 \leqslant \mathrm{~b} \leqslant 100$, two display positions are allocated to each digit of N_{b}. Begin partitioning to the right and to the left of the decimal point. For example, 41106.12 in base 16 stands for 4B6.C.
2. An error indication during execution means that the machine's accuracy has been exceeded. The value of N_{b} is in R_{3}.

DISPLAY		KEY ENTRY
LINE	CODE	
00	1111111	11111117
01	2400	RCL 0
02	01	1
03	00	0
04	1451	$f x \geqslant y$
05	1309	GTO 09
06	01	1
07	00	0
08	00	0
09	2302	STO 2
10	00	0
11	2303	STO 3
12	2401	RCL 1
13	1407	f LN
14	2400	RCL 0
15	1407	f LN
16	71	\div
17	1541	$\mathrm{g} \times<0$
18	1321	GTO 21
19	1401	f INT
20	1324	GTO 24
21	1401	f INT
22	01	1
23	41	-
24	2304	STO 4

DISPLAY		KEY ENTRY
LINE	CODE	
25	2402	RCL 2
26	21	$x \vec{\leftarrow} \mathrm{Y}$
27	1403	$\mathrm{f}^{\text {x }}$
28	2403	RCL 3
29	51	+
30	2303	STO 3
31	1474	f PAUSE
32	1474	f PAUSE
33	2400	RCL 0
34	2404	RCL 4
35	1403	$\mathrm{f}{ }^{\text {x }}$
36	234101	STO - 1
37	1312	GTO 12
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

\quad REGISTERS
$\mathbf{R}_{0} \mathrm{~b}$
$\mathbf{R}_{1} \mathrm{~N}_{10}$
$\mathbf{R}_{\mathbf{2}} 10$ or 100
$\mathbf{R}_{3} \mathrm{~N}_{\mathrm{b}}$
$\mathbf{R}_{4} 1$ digit
\mathbf{R}_{5}
\mathbf{R}_{6}
$\mathbf{R}_{\mathbf{7}}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Set display format		f	FIX	9		
3	Store base and decimal number	b	STO	0			
		N_{10}	STO	1	f	PRGM	
4	Display successive approximat-						
	ions to N_{b}		R/S				$\left(N_{b}\right)$
5	When number is shown with						
	desired accuracy, press [R/S to						
	halt, then		RCL	3			N_{b}
6	For new case, go to step 3.						

Examples:

1. $67.32_{10}=403.050114_{16}$

$$
=43.51 \mathrm{E}_{16}
$$

2. $\pi=3.141592654_{10}=11.00100100_{2}$

VECTOR CROSS PRODUCT

If $A=\left(a_{1}, a_{2}, a_{3}\right)$ and $B=\left(b_{1}, b_{2}, b_{3}\right)$ are two three dimensional vectors then the cross product of A and B is denoted by $A \times B$ and is calculated as follows:
$A \times B=\left(\left|\begin{array}{ll}a_{2} & a_{3} \\ b_{2} & b_{3}\end{array}\right|,-\left|\begin{array}{ll}a_{1} & a_{3} \\ b_{1} & b_{3}\end{array}\right|,\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|\right)=\left(a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right)$
Let the solution be represented by $\left(c_{1}, c_{2}, c_{3}\right)$.

DISPLAY		$\begin{gathered} \text { KEY } \\ \text { ENTRY } \end{gathered}$
LINE	CODE	
00	11111117	\|11/11T
01	2402	RCL 2
02	2406	RCL 6
03	61	x
04	2403	RCL 3
05	2405	RCL 5
06	61	x
07	41	-
08	74	R/S
09	2403	RCL 3
10	2404	RCL 4
11	61	x
12	2401	RCL 1
13	2406	RCL 6
14	61	x
15	41	-
16	74	R/S
17	2401	RCL 1
18	2405	RCL 5
19	61	\times
20	2402	RCL 2
21	2404	RCL 4
22	61	x
23	41	-
24	1300	GTO 00

DISPLAY		$\begin{gathered} \text { KEY } \\ \text { ENTRY } \end{gathered}$
LINE	CODE	
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

\quad REGISTERS
R_{0}
$R_{1} a_{1}$
$R_{2} a_{2}$
$R_{3} a_{3}$
$R_{4} b_{1}$
$R_{5} b_{2}$
$R_{6} b_{3}$
R_{7}

Example:

Let $\quad \mathrm{A}=(2,5,2)$
$B=(3,3,-4)$.

Solution:

$A \times B=(-26,14,-9)$

ANGLE BETWEEN, NORM, AND DOT PRODUCT OF VECTORS

Let $\vec{a}=\left(a_{1}, a_{2} \ldots, a_{n}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be two vectors.
The norm of \vec{a} is denoted by $|\vec{a}|$ and is calculated by the following formula:

$$
|\vec{a}|=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}+\ldots+a_{n}{ }^{2}}
$$

similarly,

$$
|\vec{b}|=\sqrt{b_{1}{ }^{2}+b_{2}{ }^{2}+\ldots+b_{n}{ }^{2}}
$$

The dot product of \vec{a} and \vec{b} is denoted by $\vec{a} \cdot \vec{b}$ and is calculated by the following formula:

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}
$$

The angle between a and b is denoted by θ and is calculated by the following formula:

$$
\theta=\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}\right)
$$

The angle is calculated in any angular mode. When calculated in degrees, decimal degrees are assumed.

DISPLAY		KEYENTRY
LINE	CODE	
00		1111117
01	31	\uparrow
02	1502	$\mathrm{gx}{ }^{2}$
03	235101	STO + 1
04	22	R \downarrow
05	21	$x \rightleftarrows y$
06	31	\uparrow
07	1502	$\mathrm{gx}{ }^{2}$
08	235100	STO + 0
09	22	R \downarrow
10	61	x
11	235102	STO + 2
12	1300	GTO 00
13	2402	RCL 2
14	2400	RCL 0
15	2401	RCL 1
16	61	x
17	1402	$f \sqrt{x}$
18	71	\div
19	1505	$\mathrm{g} \mathrm{COS}^{-1}$
20	1300	GTO 00
21		
22		
23		
24		

DISPLAY		KEY ENTRY
LINE	CODE	
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTERS
$R_{0} \Sigma \mathrm{a}_{\mathrm{i}}{ }^{2}$
$R_{\mathbf{1}} \Sigma \mathrm{b}_{\mathrm{i}}{ }^{2}$
$\mathbf{R}_{\mathbf{2}} \Sigma \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}$
$\mathbf{R}_{\mathbf{3}}$
$\mathbf{R}_{\mathbf{4}}$
$\mathbf{R}_{\mathbf{5}}$
\mathbf{R}_{6}
$\mathbf{R}_{\mathbf{7}}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Initialize		f	REG	f	PRGM	
3	Perform for $\mathrm{i}=1, \ldots, \mathrm{n}$:						
	Key in $\mathrm{a}_{\mathbf{i}}$ and $\mathrm{b}_{\mathbf{i}}$	a_{i}	\uparrow				
		b_{i}	R/S				
4	Find norm of \vec{a}		RCL	0	f	\sqrt{x}	\|ä
5	Find norm of \vec{b}		RCL	1	f	\sqrt{x}	\| ${ }_{\text {b }}$
6	Find $\vec{a} \cdot \vec{b}$		RCL	2			$\stackrel{\rightharpoonup}{\mathrm{a}} \cdot \stackrel{\rightharpoonup}{\text { b }}$
7	Compute angle between \vec{a} and $\overrightarrow{\mathrm{b}}$		GTO	13	R/S		θ

Example:

Let $\quad A=(2,5,2)$

$$
B=(3,3,-4)
$$

Solution:

$|\vec{a}|=5.74$
$|\vec{b}|=5.83$
$\vec{a} \cdot \vec{b}=13.00$
$\theta=67.16^{\circ}$

SIMULTANEOUS EQUATIONS IN TWO UNKNOWNS

Let $a x+b y=e$
and $c x+d y=f$
be a system of two equations in two unknowns. Cramer's Rule is used to find the solution.

$$
x=\frac{\left|\begin{array}{ll}
e & b \\
f & d
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}=\frac{e d-b f}{a d-b c} \quad y=\frac{\left|\begin{array}{ll}
a & e \\
c & f
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}=\frac{a f-e c}{a d-b c}
$$

If $\mathrm{ad}-\mathrm{bc}=0$ the calculator displays Error. In this case no solution or no unique solution exists.

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00	1/11111	N1/1M	25	2400	RCL 0	R ${ }_{\text {o }}$ ad - bc
01	2403	RCL 3	26	71	\div	$\mathrm{R}_{1} \mathrm{a}$
02	2405	RCL 5	27	1300	GTO 00	$\mathrm{R}_{2} \mathrm{~b}$
03	61	\times	28			$\mathbf{R}_{3} \mathrm{e}$
04	2402	RCL 2	29			$\mathrm{R}_{4} \mathrm{C}$
05	2406	RCL 6	30			$\mathrm{R}_{5} \mathrm{~d}$
06	61	\times	31			$\mathbf{R}_{6} \mathrm{f}$
07	41	-	32			R_{7}
08	2401	RCL 1	33			
09	2405	RCL 5	34			
10	61	\times	35			
11	2402	RCL 2	36			
12	2404	RCL 4	37			
13	61	\times	38			
14	41	-	39			
15	2300	STO 0	40			
16	71	\div	41			
17	74	R/S	42			
18	2401	RCL 1	43			
19	2406	RCL 6	44			
20	61	\times	45			
21	2403	RCL 3	46			
22	2404	RCL 4	47			
23	61	x	48			
24	41	-	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Store constants	a	STO	1			
		b	STO	2			
		e	STO	3			
		c	STO	4			
		d	STO	5			
		f	STO	6			
3	Find x and y		f	PRGM	R/S		\times
			R/S				v
4	For new case, go to step 2.						

Example:

$5 x-3 y=12$
$2 x+y=9$

Solution:

$\mathrm{x}=3.55$
$y=1.91$

CHAPTER 2 FINANCE

Because many of the finance programs have certain quantities in common, a word about these variables and the names used to refer to them may be helpful.

Five main variables recur in finance problems: n , $\mathrm{i}, \mathrm{PMT}, \mathrm{PV}$, and FV. The first of these, n , denotes the total number of periods. The periodic interest rate i must be expressed in these programs as a decimal. Thus an annual interest rate of 6% is expressed as 0.06 , which as a monthly rate would be $0.06 / 12=0.005$. PMT refers to the amount of the periodic payment. The present value, PV , is the value occurring at the beginning of the first period, while the future value, FV , is the value at the end of the last period.

MORTGAGE LOAN ACCUMULATED INTEREST/REMAINING BALANCE

As one enters into the realm of financial calculations, one of the most striking revelations is how much of the repayment of a loan goes to interest. A new homeowner, for example, sends off his first monthly installment of \$220.13 toward repayment of a 30 -year, $\$ 30,000$ mortgage assumed at 8% annual interest. With a proud sigh and a swelling chest, the homeowner mentally checks $\$ 220$ off the $\$ 30,000$ and figures he's well on his way. Right? Well, not quite. In fact, $\$ 200$ of that payment will go to interest, and only $\$ 20.13$ to reducing the principal of the loan.

This program will allow the user to calculate the amount paid to interest, for one payment or over a number of payments, as well as the amount of principal still unpaid, i.e., the remaining balance. The user must input the following values: the initial amount of the loan, the periodic interest rate, and the periodic payment amount. He must then key in a beginning payment number, \mathbf{J}, and an ending payment number, K . The program will compute the accumulated interest charge from payment \mathbf{J} through payment K , inclusive, and the balance remaining after payment K . If one wishes to find the amount of interest paid in a single payment, he can simply set $K=J$.

The program can also be used to generate a limited amortization schedule showing the balance remaining after successive payments. This can be done by leaving $\mathbf{J}=1$ and increasing K by 1 at each iteration. Outputs will be the total amount paid to interest over the first K payments, and the balance remaining after payment K.

Equations:

$$
\begin{aligned}
& \mathrm{BAL}_{\mathrm{K}}=\frac{1}{(1+i)^{-K}}\left[\operatorname{PMT} \frac{(1+i)^{-K}-1}{i}+P V\right] \\
& \mathrm{Int}_{J-K}=\mathrm{BAL}_{\mathrm{K}}-\mathrm{BAL}_{\mathrm{J}-1}+(\mathrm{K}-\mathrm{J}+1) \mathrm{PMT}
\end{aligned}
$$

where $\quad B A L_{n}=$ remaining balance after payment n
Int $_{\mathrm{J}-\mathrm{K}}=$ accumulated interest, payments J through K
$\mathrm{PV}=$ initial loan amount
PMT = periodic payment amount
$\mathrm{i}=$ periodic interest rate

Notes:

1. The periodic interest rate i must be entered as a decimal. For example, for monthly payments with an annual interest rate of 9%, the periodic interest rate should be input as $\mathrm{i}=\frac{.09}{12}=0.0075$.
2. The use of this program is not restricted to mortgage loans, but applies equally well to any loan which is being repaid with equal periodic payments.

Programming Remarks:

In many finance programs, the expressions $(1+i)$ and $(1+i)^{\mathrm{n}}$ are used several times per program. It is often simpler to calculate the quantity once and then store it for later use, rather than calculate it anew each time. In this program, the values of $(1+i)^{-K}$ and $(1+i)^{-J}$ are calculated once and then stored in R_{7}, thus saving both program steps and execution time. The same principle, of course, applies to other expressions in other problems.

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$	X	\mathbf{Y}	Z	T	COMMENTS	REGISTERS
LINE	CODE							
00		1/111						R
01	2401	RCL 1	i				Calculate $B A L_{K}$	
02	01	1	1	i				
03	51	+	$1+\mathrm{i}$					R ${ }^{\text {i }}$
04	2405	RCL 5	K	$1+\mathrm{i}$				
05	32	CHS	-K	$1+i$				
06	1403	$f y^{x}$	$(1+i)^{-K}$					PMT
07	2307	STO 7	$(1+i)^{-K}$					
08	01	1	1	$(1+i)^{-k}$				
09	41	-	$(1+i)^{-K}-1$					PV
10	2401	RCL 1	i	$(1+i)^{-K}-1$				
11	71	\div	s				Let $s=\left[(1+i)^{-K}-1\right] \div i$	
12	2402	RCL 2	PMT	s				J
13	61	x	PMT s					
14	2403	RCL 3	PV	PMT s				
15	51	+	PMT s + PV					$\mathrm{R}_{5} \mathrm{~K}$
16	2407	RCL 7	$(1+i)^{-K}$	PMT s + PV				
17	71	\div	$B^{\text {BAL }}$ K					
18	2306	STO 6	BAL_{K}					$\mathrm{R}_{6} \mathrm{BAL}_{K}$
19	2401	RCL 1	i	$\mathrm{BAL}_{\mathrm{K}}$			Calculate BALJ-1	
20	01	1	1	-	BAL_{K}			
21	51	+	($1+\mathrm{i}$)	$\mathrm{BAL}_{\mathrm{K}}$				$R_{7}(1+i)^{-n}$
22	2404	RCL 4	J	(1+i)	$\mathrm{BAL}_{\mathrm{K}}$			
23	01	1	1	J	(1+i)	BAL_{K}		
24	41	-	$\mathrm{J}-1$	$(1+i)$	$B A L_{K}$	$B A L_{K}$		
25	32	CHS	$-(J-1)$	$(1+i)$	$B A L_{K}$	BAL_{K}		
26	1403	$f y^{x}$	$(1+i)^{-(J-1)}$	$B A L_{K}$	$B A L_{K}$	$B A L_{K}$		
27	2307	STO 7	$(1+i)^{1-J}$	$B A L_{K}$	$B A L_{K}$	$B A L_{K}$		
28	01	1	1	$(1+i)^{1-J}$	$B A L_{K}$	$B A L_{K}$		
29	41	-	$(1+i)^{1-J}-1$	BAL ${ }_{\text {k }}$	$B A L_{k}$	$B A L_{K}$		
30	2401	RCL 1	(1+i) 1	$(1+i)^{1-J}-1$	$B A L_{K}$	$B A L_{K}$		
31	71	\div	5	BAL_{K}	$B A L_{K}$	$B A L_{K}$	Let $s=\left[(1+i)^{1-J}-1\right] \div i$	
32	2402	RCL 2	PMT	s	$B A L_{K}$	$B A L_{K}$		
33	61	x	PMT s	BAL_{K}	$B A L_{K}$	$B A L_{K}$		
34	2403	RCL 3	PV	PMT s	$B A L_{K}$	$B A L_{K}$		
35	51	+	PMT s + PV	BAL_{K}	$B A L_{K}$	BAL_{K}		
36	2407	RCL 7	$(1+i)^{1-J}$	PMT s + PV	$B A L_{K}$	$B A L_{K}$		
37	71	\div	BAL ${ }_{\text {J-1 }}$	$\mathrm{BAL}_{\mathrm{K}}$	$B A L_{K}$	$B A L_{K}$		
38	41	-	Diff	BAL_{K}	$B A L_{K}$	$B A L_{K}$	Diff $=B A L_{K}-B A L_{J-1}$	
39	2405	RCL 5	K	Diff	$\mathrm{BAL}_{\mathrm{K}}$	BAL_{K}	$\mathrm{K}-\mathrm{J}+1$ gives no. PMT's	
40	2404	RCL 4	J	K	Diff	$B A L_{K}$	from J through K	
41	41	-	K-J	Diff	BALK	BAL_{K}		
42	01	1	1	K-J	Diff	$B A L_{K}$		
43	51	+	K-J + 1	Diff	BALK	$B A L_{K}$		
44	2402	RCL 2	PMT	m	Diff	$B A L_{K}$	$m=K-J+1$	
45	61	-	m PMT	Diff	$B^{\text {BAL }}$ K	$B A L_{K}$	m PMT is \$ paid, $\mathrm{J}-\mathrm{K}$	
46	51	+	Int ${ }_{\text {J-K }}$	BAL_{K}	$B A L_{K}$	$B A L_{K}$	Display Int ${ }_{\text {J-K }}$	
47	74	R/S	Int J-K	$B A L_{K}$	$B A L_{K}$	$B A L_{K}$		
48	21	$\underset{\mathrm{F}}{\mathrm{F}} \mathrm{y}$	BALK	Int ${ }_{\text {J-K }}$	$B^{\text {BAL }}$ K	BAL_{K}	Display BALK	
49	1300	GTO 00	BALK	Int ${ }_{\text {J-K }}$	BALK	$B A L_{K}$		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Store the following variables:						
	Periodic interest (decimal)	i	STO	1			
	Periodic payment	PMT	STO	2			
	Initial loan amount	PV	STO	3			
	Starting payment number	J	STO	4			
	Ending payment number	K	STO	5	f	PRGM	
3	Compute accumulated interest						
	from payments J through K.		R/S				Int $_{\text {J-K }}$
4	Display remaining balance after						
	payment K		R/S				$B A L_{K}$
5	To change any variable, store						
	the new value in the appropriate						
	register and go to step 3.						

Example:

A mortgage is arranged so that the first payment is made at the end of October, 1974 (i.e., October is payment period 1). It is a $\$ 25,000$ loan at 8% with monthly payments of $\$ 200$. What is the accumulated interest for 1974 (periods 1-3) and for 1975 (periods 4-15) and what balance remains at the end of each year? Also, generate a schedule of interest paid and remaining balance for the first 5 years of the mortgage (periods $12,24,36,48,60$).

Solution:

(Notice that i must be entered as a decimal, monthly rate.)

(interest paid in 1974)

R/S

24899.33
(remaining balance at end of 1974)

(interest paid in 1975)

Now, generate the amortization schedule:

1 STO 412 STO 5 R/S	$\underset{\text { (interest thru } 1^{\text {st }}}{ } 1985.00 \text { year) }$
R/S	$\xrightarrow[\text { (remaining balance after } 1^{\text {st }} \text { year) }]{\longrightarrow} 24585.00$
24 STO 5 R/S	$\xrightarrow[\text { (interest thru } 2^{\text {nd }}]{ } \text { year) }$
R/S	
36 STO 5 R/S	$\underset{\text { (interest thru } 3^{\text {rd }}}{ } 5848.81$
R/S	$\underset{\text { (remaining balance after } 3^{\text {rd }} \text { year) }}{\longrightarrow} 23648.81$
48 STO 5 R/S	$\xrightarrow[\text { (interest thru } 4^{\text {th }} \text { year) }]{ } 7721.67$
R/S	
60 STO 5 R/S	
R/S	

MORTGAGE LOAN
 PAYMENT, PRESENT VALUE, NUMBER OF PERIODS

PV

For a loan which is being repaid with equal periodic payments, this program will calculate the payment amount, the present value, or the number of periods of the loan, given the periodic interest rate and the two other variables.

Remember that the periodic interest rate i must be expressed as a decimal, e.g., 6% is represented as 0.06 .

The equations used are as follows:

$$
\begin{gathered}
\text { PMT }=\operatorname{PV}\left[\frac{i}{1-(1+i)^{-n}}\right] \quad P V=P M T\left[\frac{1-(1+i)^{-n}}{i}\right] \\
n=-\frac{\ln (1-i \text { PV } / \text { PMT })}{\ln (1+i)}
\end{gathered}
$$

DISPLAY		KEY ENTRY
LINE	CODE	
00		T1/11T3
01	01	1
02	2402	RCL 2
03	01	1
04	51	+
05	2401	RCL 1
06	32	CHS
07	1403	$\mathrm{f}_{\mathrm{y}}{ }^{\text {x }}$
08	41	-
09	2402	RCL 2
10	21	$x \overrightarrow{\text { ¢ }} \mathrm{y}$
11	71	\div
12	2404	RCL 4
13	61	x
14	1300	GTO 00
15	01	1
16	2402	RCL 2
17	01	1
18	51	+
19	2401	RCL 1
20	32	CHS
21	1403	$\mathrm{f}_{\mathrm{y}}{ }^{\text {x }}$
22	41	-
23	2402	RCL 2
24	71	\div

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$
LINE	CODE	
25	2403	RCL 3
26	61	\times
27	1300	GTO 00
28	01	1
29	2404	RCL 4
30	2403	RCL 3
31	71	\div
32	2402	RCL 2
33	61	x
34	41	-
35	1407	f LN
36	2402	RCL 2
37	01	1
38	51	+
39	1407	f LN
40	71	\div
41	32	CHS
42	1300	GTO 00
43		
44		
45		
46		
47		
48		
49		

\quad REGISTERS
$R_{\mathbf{0}}$
$R_{1} \mathrm{n}$
$R_{2} \mathrm{i}$
$R_{3} \mathrm{PMT}$
$R_{4} \mathrm{PV}$
R_{5}
R_{6}
R_{7}

| STEP | $\begin{array}{c}\text { INSTRUCTIONS }\end{array}$ | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | KEYS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OATA/UNITS | | | | |$]$

Examples:

1. What monthly payment is required to amortize a $\$ 3000$ loan at 9.5% (.095) in 36 months?
2. You are willing to pay $\$ 175$ per month for 24 months on a 9.5% loan. How much can you borrow?
3. How many months will it take to pay off a $\$ 4000$ loan if your monthly payment is $\$ 200$ and the annual interest rate is 9.5% ?

Solutions:

Divide 0.095 by 12 to find the monthly interest rate expressed as a decimal.

1. $\$ 96.10$
2. $\$ 3811.43$
3. 21.86 months

MORTGAGE LOAN
 INTEREST RATE

This program will calculate the interest rate on a loan with equal periodic payments. The user must specify the number of periods, the present value or initial loan amount, and the payment amount.

The program performs an iterative solution for i using Newton's method:
where

$$
\mathrm{i}_{\mathrm{k}+1}=\mathrm{i}_{\mathrm{k}}-\frac{\mathrm{f}\left(\mathrm{i}_{\mathrm{k}}\right)}{\mathrm{f}^{\prime}\left(\mathrm{i}_{\mathrm{k}}\right)}
$$

$$
f(i)=\frac{1-(1+i)^{-n}}{i}-\frac{P V}{P M T}
$$

The initial guess for i is given by

$$
\mathrm{i}_{\mathrm{o}}=\frac{\mathrm{PMT}}{\mathrm{PV}}-\frac{\mathrm{PV}}{\mathrm{n}^{2} \mathrm{PMT}}
$$

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00	11111117		25	1522	g 1/x	\mathbf{R}_{0}
01	2403	RCL 3	26	01	1	$\mathrm{R}_{1} \mathrm{n}$
02	31	\uparrow	27	51	+	$\mathbf{R}_{\mathbf{2}} \mathrm{i}$
03	1522	g $1 / \mathrm{x}$	28	71	\div	$\mathbf{R}_{3} \mathrm{PV} / \mathrm{PMT}$
04	21	$x \vec{y}$	29	01	1	$\mathrm{R}_{4}(1+i)^{-n}$
05	2401	RCL 1	30	51	+	R_{5}
06	1502	g x	31	2405	RCL 5	\mathbf{R}_{6}
07	71	\div	32	61	\times	R_{7}
08	41	-	33	01	1	
09	2302	STO 2	34	41	-	
10	2403	RCL 3	35	2402	RCL 2	
11	2402	RCL 2	36	71	\div	
12	61	x	37	71	\div	
13	01	1	38	235102	STO + 2	
14	2402	RCL 2	39	1503	g ABS	
15	01	1	40	33	EEX	
16	51	+	41	06	6	
17	2401	RCL 1	42	32	CHS	
18	32	CHS	43	1441	$\mathrm{f} \mathrm{x}<\mathrm{y}$	
19	1403	f^{y}	44	1310	GTO 10	
20	2305	STO 5	45	2402	RCL 2	
21	41	-	46	1300	GTO 00	
22	41	-	47			
23	2401	RCL 1	48			
24	2402	RCL 2	49			

Example:

You recently obtained a $\$ 2500$ car loan for 36 months. If your monthly payment is $\$ 86.67$, what is the annual percentage rate?

Solution:
15.01\%

COMPOUND AMOUNT

This program applies to an amount of principal that has been placed into an account and compounded periodically, with no further deposits. The important variables in this case are the number of compounding periods n, the periodic interest rate i, the principal or present value PV , the future value of the account FV, and the amount of interest accrued I. Any of these may be calculated from the others by these formulas:

$$
\begin{gathered}
n=\frac{\ln (F V / P V)}{\ln (1+i)} \quad i=\left(\frac{F V}{P V}\right)^{1 / n}-1 \quad P V=F V(1+i)^{-n} \\
F V=P V(1+i)^{n} \quad I=P V\left[(1+i)^{n}-1\right]
\end{gathered}
$$

DISPLAY		KEY ENTRY
LINE	CODE	
00	11111117	T1/1/IT
01	2405	RCL 5
02	2404	RCL 4
03	71	\div
04	1407	f LN
05	2402	RCL 2
06	01	1
07	51	+
08	1407	f LN
09	71	\div
10	1300	GTO 00
11	2405	RCL 5
12	2404	RCL 4
13	71	\div
14	2401	RCL 1
15	1522	g 1/x
16	1403	$f y^{x}$
17	01	1
18	41	-
19	1300	GTO 00
20	2402	RCL 2
21	01	1
22	51	+
23	2401	RCL 1
24	32	CHS

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$
LINE	CODE	
25	1403	$\mathrm{f}^{\text {x }}$
26	2405	RCL 5
27	61	x
28	1300	GTO 00
29	2402	RCL 2
30	01	1
31	51	+
32	2401	RCL 1
33	1403	$f y^{x}$
34	2404	RCL 4
35	61	\times
36	1300	GTO 00
37	2402	RCL 2
38	01	1
39	51	+
40	2401	RCL 1
41	1403	$f y^{x}$
42	01	1
43	41	-
44	2404	RCL 4
45	61	x
46	1300	GTO 00
47		
48		
49		

\quad REGISTERS
$\mathbf{R}_{\mathbf{0}}$
$\mathbf{R}_{1} \mathrm{n}$
$\mathbf{R}_{\mathbf{2}} \mathrm{i}$
$\mathbf{R}_{\mathbf{3}}$
$\mathbf{R}_{4} \mathrm{PV}$
$\mathbf{R}_{5} \mathrm{FV}$
\mathbf{R}_{6}
\mathbf{R}_{7}

| STEP | $\begin{array}{c}\text { INSTRUCTIONS }\end{array}$ | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | KEYS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OATA/UNITS | | | | |$]$

Examples:

1. Assuming an annual inflation rate of 10%, how long will it take prices to double? (Suggestion: let PV = 1, FV = 2)
2. Find the rate of return on $\$ 1000$ compounded quarterly if it amounts to $\$ 1500$ in 5 years.
3. How much will you need to invest today at $53 / 4 \%$ compounded quarterly to have $\$ 3000$ in 5 years?
4. What is the future value of $\$ 2000$ invested at $53 / 4 \%$ compounded quarterly for 4 years (16 quarters)?
5. How much interest do you receive on $\$ 1500$ deposited for 10 years if interest at $51 / 2 \%$ is compounded annually?

Solutions:

1. 7.27 years
2. .0205 quarterly $=8.19 \%$ annually
3. $\quad \$ 2255.02(\mathrm{i}=0.0575 / 4)$
4. $\quad \$ 2513.08(\mathrm{i}=0.0575 / 4)$
5. $\$ 1062.22(\mathrm{i}=0.055)$

PERIODIC SAVINGS
 PAYMENT, FUTURE VALUE, NUMBER OF PERIODS

This program calculates payment, future value, or number of time periods for a schedule of periodic payments into a savings account, given the interest rate and two of the three other variables. Remember that i must be input as a decimal, e.g., 6% is expressed as 0.06 .

Then n, PMT, or FV may be calculated from the following formulas:

$$
\begin{gathered}
\mathrm{n}=\frac{\ln \left[\frac{\mathrm{FV} \mathrm{i}}{\mathrm{PMT}}+(1+\mathrm{i})\right]}{\ln (1+\mathrm{i})}-1 \quad \mathrm{PMT}=\frac{\mathrm{FV} \mathrm{i}}{(1+\mathrm{i})^{\mathrm{n}+1}-(1+\mathrm{i})} \\
\mathrm{FV}=\frac{\mathrm{PMT}}{\mathrm{i}}\left[(1+\mathrm{i})^{\mathrm{n}+1}-(1+\mathrm{i})\right]
\end{gathered}
$$

DISPLAY		$\begin{gathered} \text { KEY } \\ \text { ENTRY } \end{gathered}$
LINE	CODE	
00		7
01	2402	RCL 2
02	2405	RCL 5
03	61	X
04	2403	RCL 3
05	71	\div
06	2402	RCL 2
07	01	1
08	51	+
09	2300	STO 0
10	51	+
11	1407	f LN
12	2400	RCL 0
13	1407	f LN
14	71	\div
15	01	1
16	41	-
17	1300	GTO 00
18	2405	RCL 5
19	2402	RCL 2
20	61	x
21	2402	RCL 2
22	01	1
23	51	+
24	71	\div

DISPLAY		$\begin{gathered} \text { KEY } \\ \text { ENTRY } \end{gathered}$
LINE	CODE	
25	1473	f LASTx
26	2401	RCL 1
27	1403	$\mathrm{f}_{\mathrm{y}}{ }^{\text {x }}$
28	01	1
29	41	-
30	71	\div
31	1300	GTO 00
32	2403	RCL 3
33	2402	RCL 2
34	01	1
35	51	+
36	61	x
37	1473	f LAST x
38	2401	RCL 1
39	1403	$f y^{x}$
40	01	1
41	41	-
42	61	x
43	2402	RCL 2
44	71	\div
45	1300	GTO 00
46		
47		
48		
49		

REGISTERS
$\mathbf{R}_{\mathbf{0}}(1+\mathrm{i})$
$\mathbf{R}_{\mathbf{1}} \mathrm{n}$
$\mathbf{R}_{\mathbf{2}} \mathbf{i}$
$\mathbf{R}_{\mathbf{3}} \mathrm{PMT}$
$\mathbf{R}_{\mathbf{4}}$
$\mathbf{R}_{\mathbf{5}} \mathrm{FV}$
$\mathbf{R}_{\mathbf{6}}$
$\mathbf{R}_{\mathbf{7}}$

| STEP | $\begin{array}{c}\text { INSTRUCTIONS }\end{array}$ | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | KEYS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OATA/UNITS | | | | |$]$

Examples:

1. How long will it take to save $\$ 15,000$ if you are making quarterly deposits of $\$ 400$ at 6% annual interest?
2. You will need $\$ 10,000$ in 7 years. How large a monthly payment do you need to make if the annual interest rate is $61 / 2 \%$?
3. How much money will a person have if he deposits $\$ 150$ at the end of each month for a period of 3 years? He receives 6% annual interest.

Solutions:

1. 29.62 quarters or 7.40 years $(\mathrm{i}=.06 / 4)$
2. $\$ 93.82 \quad(\mathrm{n}=84, \mathrm{i}=.065 / 12)$
3. $\$ 5929.92 \quad(\mathrm{n}=36, \mathrm{i}=.06 / 12)$

DISCOUNTED CASH FLOW NET PRESENT VALUE, INTERNAL RATE OF RETURN

The primary purpose of this program is to compute the net present value of a series of cash flows. In general, an initial investment V_{0} is made in some enterprise which is expected to bring in periodic cash flows $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{n}}$. Given a discount rate i , which must be entered as a decimal, then for each cash flow C_{k}, the program will compute the net present value at period $\mathrm{k}, \mathrm{NPV}_{\mathrm{k}}$. A negative value for NPV_{k} indicates that the enterprise has not yet been profitable. A positive $\mathrm{NPV}_{\mathrm{k}}$ means that the enterprise has been profitable, to the extent that a rate of return i on the original investment has been exceeded.

The program may also be used iteratively to calculate an internal rate of return. The objective here is to find the discount rate i which will make the final net present value, $\mathrm{NPV}_{\mathrm{n}}$, equal to zero. The procedure, then, is to store V_{0} and a first guess at the rate of return i , input the cash flows C_{1} through C_{n}, and thus find $\mathrm{NPV}_{\mathrm{n}}$. If $\mathrm{NPV}_{\mathrm{n}}$ is negative, the estimated rate of return was too high; if $\mathrm{NPV}_{\mathrm{n}}$ is positive, the estimate for i was too low. Adjust the estimate for i accordingly, store the new i, and input the cash flows again. Inspect the new value of $\mathrm{NPV}_{\mathrm{n}}$ to obtain a new estimate for i and repeat the process. The entire procedure is repeated until $\mathrm{NPV}_{\mathrm{n}}$ is zero, or very close to it. The last value of i input is then regarded as the internal rate of return.

Each figure for net present value is found by

$$
N P V_{k}=-V_{0}+\sum_{j=1}^{k} \frac{C_{j}}{(1+i)^{j}}
$$

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00	1	/1/1/1T	25			$\mathrm{R}_{\mathrm{o}} \mathrm{V}_{0}$
01	2401	RCL 1	26			$\mathrm{R}_{1} \mathrm{i}$
02	01	1	27			$\mathbf{R}_{\mathbf{2}}(1+\mathrm{i})$
03	2304	STO 4	28			$\mathbf{R}_{3} \mathrm{NPV}_{\mathrm{k}}$
04	51	+	29			$\mathbf{R}_{4} \mathrm{k}$
05	2302	STO 2	30			R_{5}
06	71	\div	31			\mathbf{R}_{6}
07	2400	RCL 0	32			\mathbf{R}_{7}
08	41	-	33			
09	2404	RCL 4	34			
10	1474	f PAUSE	35			
11	21	$\overrightarrow{\mathrm{F}} \mathrm{Y}$	36			
12	2303	STO 3	37			
13	74	R/S	38			
14	2402	RCL 2	39			
15	2404	RCL 4	40			
16	01	1	41			
17	51	+	42			
18	2304	STO 4	43			
19	1403	$f y^{x}$	44			
20	71	\div	45			
21	2403	RCL 3	46			
22	51	+	47			
23	1309	GTO 09	48			
24			49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Store fnitial investment and						
	discount rate	V_{0}	STO	0			
		i (decimal)	STO	1	f	PRGM	
3	Perform for $\mathrm{k}=1, \ldots, \mathrm{n}$:						
	Input $\mathrm{C}_{\mathbf{k}}$ and compute $\mathrm{NPV}_{\mathbf{k}}$	C_{k}	R/S				(k)
							NPV ${ }_{\text {k }}$
4	For new case, go to step 2.						

Example:

You have been offered an investment opportunity for $\$ 150,000$ at a capital cost of 10% after taxes. Based on the following cash flows, will this investment be profitable?

Year	Cash Flow
1	$\$ 30,000$
2	26,300
3	50,000
4	55,600
5	45,200

Solutions:

Remember to enter i as 0.10 .
$\mathrm{NPV}_{1}=-\$ 122,727.27$
$\mathrm{NPV}_{2}=-\$ 100,991.74$
$\mathrm{NPV}_{3}=-\$ 63,426.00$
$\mathrm{NPV}_{4}=-\$ 25,450.45$
$\mathrm{NPV}_{5}=\$ 2,615.20$
Since C_{5} is positive the cash flow is profitable to the extent that the cost of capital is 10%.

CALENDAR
 DAY OF THE WEEK DAYS BETWEEN TWO DATES

This program will compute the day of the week for a given date, or the number of days between two dates, for any dates from March 1,1700, to February 28,2100 . The program works by assigning the number 1 to March 1,1700 , and a corresponding number to each succeeding day. When computing day of the week, a 0 represents Sunday, 1 Monday, 2 Tuesday, etc. Thus for month m , day d , year y , the number N assigned to that date is

$$
\mathrm{N}(\mathrm{~m}, \mathrm{~d}, \mathrm{y})=[365.25 \mathrm{~g}(\mathrm{y}, \mathrm{~m})]+[30.6 \mathrm{f}(\mathrm{~m})]+\mathrm{D}-621049
$$

where

$$
g(y, m)=\left\{\begin{array}{l}
y-1 \text { if } m=1 \text { or } 2 \\
y \text { if } m>2
\end{array} \text { and } f(m)=\left\{\begin{array}{l}
m+13 \text { if } m=1 \text { or } 2 \\
m+1 \text { if } m>2
\end{array}\right.\right.
$$

$[\mathrm{m}]$ represents the integer function, $⿴ 囗 \mathbb{N T}$. E.g., $[6.34]=6$.

Note:

For days from March 1, 1700, to February 28, 1800, 2 days must be added to the value for N calculated by the program. For days from March 1, 1800, to February 28, 1900, 1 day must be added.

DISPLAY		$\begin{gathered} \text { KEY } \\ \text { ENTRY } \end{gathered}$
LINE	CODE	
00	T/11/1/	T1/11/T
01	03	3
02	2401	RCL 1
03	1441	$\mathrm{f} \times<\mathrm{y}$
04	1309	GTO 09
05	01	1
06	51	+
07	2403	RCL 3
08	1315	GTO 15
09	01	1
10	03	3
11	51	+
12	2403	RCL 3
13	01	1
14	41	-
15	03	3
16	06	6
17	05	5
18	73	-
19	02	2
20	05	5
21	61	x
22	1401	f INT
23	21	$x \vec{\leftarrow}+y$
24	03	3

DISPLAY		KEY ENTRY
LINE	CODE	
25	00	0
26	73	-
27	06	6
28	61	x
29	1401	f INT
30	51	+
31	2402	RCL 2
32	51	+
33	06	6
34	02	2
35	01	1
36	00	0
37	04	4
38	09	9
39	41	-
40	74	R/S
41	07	7
42	71	\div
43	1501	g FRAC
44	07	7
45	61	\times
46	1300	GTO 00
47		
48		
49		

\quad REGISTERS
$\mathbf{R}_{\mathbf{0}}$
$\mathbf{R}_{\mathbf{1}}$ Month
$\mathbf{R}_{\mathbf{2}}$ Day
$\mathbf{R}_{\mathbf{3}}$ Year
$\mathbf{R}_{\mathbf{4}}$
$\mathbf{R}_{\mathbf{5}}$
$\mathbf{R}_{\mathbf{6}}$
$\mathbf{R}_{\mathbf{7}}$ Temporary

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Store month	m	STO	1			
	day	d	STO	2			
	year	y	STO	3			
3	Compute $\mathrm{N}(\mathrm{m}, \mathrm{d}, \mathrm{y})$		f	PRGM	R/S		$N(m, d, y)$
4	For day of week, go to step 8						
5	For days between dates, store						
	first N		STO	7			
6	Repeat steps 2 and 3 for second						
	date, then		RCL	7	-		\# Days
7	For new case, go to step 2.						
8	For day of week ($0=$ Sunday)		R/S				Day (0,..., 6)
9	For new case, go to step 2.						

Examples:

1. What day of the week was July 4,1776 ?
2. Find the number of days between March 27, 1948, and April 7, 1975.

Solutions:

1. Thursday (4). (Remember to add 2 days.)
2. $\quad 9872$.
Sotes

CHAPTER 3 GAMES MOON LANDING SIMULATOR

Imagine for a moment the difficulties involved in landing a rocket on the moon with a strictly limited fuel supply. You're coming down tail-first, freefalling toward a hard rock surface. You'll have to ignite your rockets to slow your descent; but if you burn too much too soon, you'll run out of fuel 100 feet up, and then you'll have nothing to look forward to but cold eternal moon dust coming faster every second. The object, clearly, is to space your burns just right so that you will alight on the moon's surface with no downward velocity.

The game starts off with the rocket descending at a velocity of $50 \mathrm{feet} / \mathrm{sec}$ from a height of 500 feet. The velocity and height are shown in a combined display as -50.0500 , the height appearing to the right of the decimal point and the velocity to the left, with a negative sign on the velocity to indicate downward motion. If a velocity is ever displayed with no fractional part, for example, -15 ., it means that you have crashed at a speed of 15 feet $/ \mathrm{sec}$. In game terms, this means that you have lost; in real-life, it signifies an even less favorable outcome.

You will start the game with 120 units of fuel. You may burn as much or as little of your available fuel as you wish at each step of your descent; burns of zero are quite common. A burn of 5 units will just cancel gravity and hold your speed constant. Any burn over 5 will act to change your speed in an upward direction. You must take care, however, not to burn more fuel than you have; for if you do, no burn at all will take place, and you will free-fall to your doom! The final velocity shown will be your impact velocity (generally rather high). You may display your remaining fuel at any time by recalling R_{2}.

Equations:

We don't want to get too specific, because that would spoil the fun of the game; but rest assured that the program is solidly based on some old friends from Newtonian physics:

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \quad v=v_{0}+a t \quad v^{2}=v_{0}^{2}+2 a x
$$

where $\mathrm{x}, \mathrm{v}, \mathrm{a}$, and t are distance, velocity, acceleration, and time.

Notes:

1. If you crash before running out of fuel, the crash velocity shown will be the velocity before the burn, rather than the impact velocity.
2. Use only integer values for burns. Any decimal entry will cause an error in the display for V.X.

Programming Remarks:

An interesting feature of this program is the simultaneous display of both speed and altitude (V.X), as for example, -50.0500 . This is accomplished by storing the speed V and the altitude X in their normal form ($-50.00,500.00$), then dividing X by $10,000\left(10^{4}\right)$ before combining them. An additional subtlety involves the question of the sign of V , and whether $\left(\mathrm{X} / 10^{4}\right)$ is to be added to or subtracted from V. For example, if $V=-50$ and $X=500$, we should subtract: $\mathrm{V}-\left(\mathrm{X} / 10^{4}\right)$, in order to generate a display of -50.0500 . But if $\mathrm{V}=10$ and $\mathrm{X}=50$, we should add: $\mathrm{V}=\mathrm{V}+\left(\mathrm{X} / 10^{4}\right)$ in order to display 10.0050. Inspection of the program listing, lines 2 through 12, will reveal how a conditional branch was used to resolve the dilemma.

DISPLAY		$\begin{gathered} \text { KEY } \\ \text { ENTRY } \end{gathered}$	X	\mathbf{Y}	Z	T	COMMENTS	REGISTERS
LINE	CODE							
00								X
01	141104	f FIX 4					Four-place display	
02	2400	RCL 0	x				Form display V.X	
03	33	EEX	1.00	x				$R_{1} \mathrm{~V}$
04	04	4	1. 04	x				
05	71	\div	$\mathrm{X} / 10^{4}$				Divide X br 10.000	
06	2401	RCL 1	V	$\mathrm{X} / 10^{4}$				Fuel
07	1541	$\mathrm{g} \times<0$	v	$\mathrm{X} / 10^{4}$			Is V negative?	
08	1311	GTO 11	v	$\mathrm{X} / 10^{4}$			Yes, branch	
09	51	+	$v+x / 10^{4}$				No, add V and X	3 Acceler-
10	1313	GTO 13	$V+X / 10^{4}$					3 ation
11	21	$x \overrightarrow{+}$	$\mathrm{x} / 10^{4}$	V			$\mathrm{V}<0$, add V and - X	
12	41	-	$V-X / 10^{4}$					R
13	74	R/S	V.X				V. X is $V \pm\left(x / 10^{4}\right)$	
14	2402	RCL 2	F	B			Burn B has been input	
15	1441	$\mathrm{f} x<\mathrm{y}$	F	B			Burn > Fuel?	R_{5}
16	1334	GTO 34	F	B			Yes, prepare to crash	
17	22	R \downarrow	B			F	No, update A, X, V	
18	234102	STO - 2	B			F	Subtract burn from fuel	R_{6}
19	05	5	5	B			5 units cancels gravity	
20	41	-	B - 5				Acceleration $=\mathrm{B}-5$	
21	2303	STO 3	A					R_{7}
22	02	2	2	A				
23	71	\div	A/2					
24	2400	RCL 0	x	A/2				
25	51	+	X $+\mathrm{A} / 2$					
26	2401	RCL 1	V	X $+\mathrm{A} / 2$				
27	51	+	$x+V+A / 2$				New altitude: $\mathrm{X} \leftarrow \mathrm{X}+\mathrm{C}+\mathrm{C} / 2$	
28	2300	STO 0	x					
29	1541	$\mathrm{g} \times<0$	x				Is X below ground?	
30	1344	GTO 44	X				Yes, you've crashed	
31	2403	RCL 3	A	X			No, update V	
32	235101	STO + 1	A	X			New velocity: $V \leftarrow V+A$	
33	1302	GTO 02	A	X			Display V.X	
34	2401	RCL 1	V				All fuel gone, show	
35	1502	gx	v^{2}				crash velocity as	
36	2400	RCL 0	X	v^{2}			$V=\left(V^{2}+2 g X\right)^{1 / 2}$	
37	01	1	1	X	V^{2}		where $\mathrm{g}=$ gravity $=5$	
38	00	0	10	X	V^{2}			
39	61	\times	10 X	v^{2}				
40	51	$+$	$\mathrm{V}^{2}+10 \mathrm{x}$					
41	1402	$f \sqrt{x}$	V					
42	32	CHS	V				Show crash V down	
43	2301	STO 1	V					
44	2401	RCL 1	v				Come here from line 30	
45	141100	f FIX 0	v				Display integer V to	
46	1300	GTO 00	v				show crash	
47								
48								
49								

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Initialize	X	500	STO	0		500.00
		V	50	CHS	STO	1	-50.00
		Fuel	120	STO	2		120.00
3	Display initial V.X		f	PRGM	R/S		-50.0500
4	Key in burn, compute new speed						
	and distance	Burn	R/S				V.X
5	Perform step 4 till you land or						
	crash						
6	To see remaining fuel at any						
	time		RCL	2			Fuel
7	To display speed and distance						
	at any time		f	PRGM	R/S		V.X
8	To start a new game, go to step 2.						

Example:

(note constant V when burn $=5$)

$10 \mathrm{R} / \mathrm{S}$	-45.0143
$0 \mathrm{R} / \mathrm{S}$	-50.0095
RCL 2	75.0000
$10 \mathrm{R} / \mathrm{S}$	-45.0048
25 R/S	- -25.0013
20 R/S	-25.

Oops.

NIMB

The game of Nimb begins with a collection of N objects, or as the calculator plays it, with the positive number N. Each player alternately subtracts one, two, or three from the total until only one is left. The player forced to take the last one loses.

To begin the game, you must tell the machine how many objects to start with, i.e., the value of N . A reasonable number is 15 . After each move the machine will display the remaining total. A negative sign indicates that it is the user's move next, while a positive display indicates that it is the HP-25's move.

As the challenger you are allowed to make the first move. It is possible to win but of course the HP- 25 is a master player: it will not let you make an error and win. (Not, that is, unless you cheat and take a number other than 1,2, or 3 -a contingency so far beyond the realm of the HP-25's naive faith in humankind that the unsuspecting calculator has no way of knowing if you do or don't.)

DISPLAY		KEY ENTRY
LINE	CODE	
00		
01	31	\uparrow
02	01	1
03	2302	STO 2
04	22	R \downarrow
05	234100	STO-0
06	2400	RCL 0
07	1571	$\mathrm{g} \mathrm{x}=0$
08	1342	GTO 42
09	236102	STO $\times 2$
10	2402	RCL 2
11	74	R/S
12	21	$x \overrightarrow{\text { ¢ }} \mathrm{y}$
13	1551	$\mathrm{gx} \geqslant 0$
14	1317	GTO 17
15	21	$x \vec{y}$
16	1302	GTO 02
17	01	1
18	32	CHS
19	2302	STO 2
20	00	0
21	2301	STO 1
22	2401	RCL 1
23	03	3
24	1471	$f x=y$

DISPLAY		KEY ENTRY
LINE	CODE	
25	1340	GTO 40
26	01	1
27	235101	STO + 1
28	32	CHS
29	2400	RCL 0
30	51	+
31	2401	RCL 1
32	41	-
33	04	4
34	71	\div
35	1501	g FRAC
36	1561	$\mathrm{g} \mathrm{x} \neq 0$
37	1322	GTO 22
38	2401	RCL 1
39	1305	GTO 05
40	01	1
41	1305	GTO 05
42	2402	RCL 2
43	1541	$\mathrm{g} \times<0$
44	1347	GTO 47
45	2403	RCL 3
46	1300	GTO 00
47	2404	RCL 4
48	141101	f FIX 1
49	1300	GTO 00

REGISTERS
$\mathbf{R}_{\mathbf{0}}$ Total
$\mathbf{R}_{\mathbf{1}}$ Machine move
$\mathbf{R}_{\mathbf{2}} \pm$ Total
$\mathbf{R}_{\mathbf{3}} 55178$
$\mathbf{R}_{\mathbf{4}} 3507.1$
$\mathbf{R}_{\mathbf{5}}$
$\mathbf{R}_{\mathbf{6}}$
$\mathbf{R}_{\mathbf{7}}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Initialize	55178	STO	3			
		3507.1	STO	4	f	PRGM	
3	Store total number of objects						
	(usually 15) and set display	N	STO	0	CHS	\dagger	
			FIX	0			-N.
4	If number in display is negative,						
	key in your move	Your move	R/S				+ Total
5	If number in display is positive,						
	let HP-25 move		R/S				- Total
6	Perform steps 4 and 5 until game						
	is over						
7	At end of game, turn calculator						
	upside down to read message						
8	For another game, go to step 3.						

Example:

Perform the initialization with $\mathrm{N}=15$.
User takes 3.

HP-25 takes 3.
User takes 2.

HP-25 takes 2.
User takes 3.
$3 \mathrm{R} / \mathrm{S} \longrightarrow 2$.

HP-25 takes 1 .
User takes last 1.
$1 \mathrm{R} / \mathrm{S} \longrightarrow 55178$.
Turn calculator upside down for message (BLISS).

TEACH ARITHMETIC

We at Hewlett-Packard feel that the hand-held calculator, far from threatening the traditional tenets of a sound mathematics education, may be used creatively to reinforce learning in such areas as arithmetic, algebra, geometry, trigonometry, calculus, and numerical analysis. This program, which is designed to be used in teaching children the four operations of elementary arithmetic ($+,-, x, \div$), demonstrates some of the (largely unexplored) potential of the HP-25 as an educational tool.

The basic flow of the program is to pose a problem in arithmetic, check the answer that the user keys in against the correct answer, and then do one of two things: if the user's answer was correct, the program will go on to pose a new problem; if the keyed-in answer was wrong, the program restates the original problem to give the learner a second chance.

To run the program, the user must store a value called Max in $\mathrm{R}_{\mathbf{0}}$. This tells the program not to use any numbers as large as Max in its problems. If you specify a Max of 12 , for example, then all the problems will deal with numbers between 0 and 11. The user must then store in R_{1} a "seed" s , a number between 0 and 1 , which will determine the sequence of problems that will appear. Different seeds generate different problems, thus ensuring that the learning game doesn't get boring. With the display format set to \ddagger FIX 2 , the execution of the program will cause the first problem to be displayed as follows: the display will show one number to the left of the decimal place, and one number to the right. For example, the numbers 8 and 2 would be displayed as 8.02 . The user may then choose what operation to perform on the two numbers: he may add $(8+2)$, subtract $(8-2)$, multiply (8×2), or divide $(8 \div 2)$. After he keys in his answer and re-initiates program execution, the program will either display a new problem, if his answer was right, or display the same two numbers again, but this time with a negative sign in front (-8.02). The negative sign is an indication that the answer was incorrect, and does not denote a negative number. (All numbers in the problems are positive, though of course the results of some subtractions may be negative). If the problem reappears with a negative sign, the user should key in a different answer and try again. As soon as the correct answer is given, the program will go to display a new problem.

DISPLAY		KEY ENTRY
LINE	CODE	
00	\|1/1/11	\|1/1/1]
01	2401	RCL 1
02	1573	$\mathrm{g} \pi$
03	1502	$\mathrm{g} \mathrm{x}^{2}$
04	61	x
05	1501	g FRAC
06	2301	STO 1
07	2400	RCL 0
08	61	\times
09	1401	f INT
10	2303	STO 3
11	2401	RCL 1
12	1573	$\mathrm{g} \pi$
13	1502	g x
14	61	X
15	1501	g FRAC
16	2301	STO 1
17	2400	RCL 0
18	61	\times
19	1401	f INT
20	2302	STO 2
21	2403	RCL 3
22	33	EEX
23	02	2
24	71	\div

DISPLAY		KEY ENTRY
LINE	CODE	
25	51	+
26	2304	STO 4
27	74	R/S
28	2402	RCL 2
29	2403	RCL 3
30	51	+
31	1343	GTO 43
32	2402	RCL 2
33	2403	RCL 3
34	41	-
35	1343	GTO 43
36	2402	RCL 2
37	2403	RCL 3
38	61	x
39	1343	GTO 43
40	2402	RCL 2
41	2403	RCL 3
42	71	\div
43	1471	$\mathrm{f} x=y$
44	1301	GTO 01
45	2404	RCL 4
46	32	CHS
47	1327	GTO 27
48		
49		

REGISTERS
$\mathbf{R}_{\mathbf{0}}$ Max
$\mathbf{R}_{\mathbf{1}}$ Random \#
$\mathbf{R}_{\mathbf{2}}$ Left \#
$\mathbf{R}_{\mathbf{3}}$ Right \#
$\mathbf{R}_{\mathbf{4}}$ Problem
$\mathbf{R}_{\mathbf{5}}$
$\mathbf{R}_{\mathbf{6}}$
$\mathbf{R}_{\mathbf{7}}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Store Max ($0<\operatorname{Max} \leqslant 100$)	Max	STO	0			
3	Store seed ($0<\mathrm{s}<1$)	s	STO	1			
4	Set display format		f	FIX	2		
5	Generate a problem		f	PRGM	R/S		$n_{1} \cdot n_{2}$
6	Choose an operation and key in						
	your answer:						
	For addition (+)	$\mathrm{n}_{1}+\mathrm{n}_{2}$	R/S				
	For subtraction (-)	$\mathrm{n}_{1}-\mathrm{n}_{2}$	GTO	32	R/S		
	For multiplication (x)	$\mathrm{n}_{1} \times \mathrm{n}_{2}$	GTO	36	R/S		
	For division (\div)	$\mathrm{n}_{1} \div \mathrm{n}_{2}$	GTO	40	R/S		
7	If you were right, program will						
	display new problem; go to step						
	6.						$\mathrm{n}_{3} . \mathrm{n}_{4}$
8	If you were wrong, program will						
	show same problem again; go to						
	step 6 again.						$-n_{1} \cdot n_{2}$
9	Repeat steps 6-8 as many times						
	as desired						
10	To change Max, go to step 2,						
	then to step 5 .						

Example:

Let Max $=12$ and the seed $\mathrm{s}=0.725$

Solution:

f PRGM R/S	- 6.01
$(6+1=7)$	
$\begin{aligned} & 7 \mathrm{R} / \mathrm{S} \\ & (8 \times 3=25) \end{aligned}$	-8.03
25 GTO 36 R/S (Try again: $8 \times 3=24$)	- -8.03
$\begin{aligned} & 24 \text { GTO } 3 \text { R/S - } \\ & (3-11=-8) \end{aligned}$	-3.11
$\begin{aligned} & 8 \text { CHS GTO } 3 \text { R/S } \\ & (9+0=9) \end{aligned}$	-9.00
9 R/S	$\rightarrow 2.05$

CHAPTER 4 NAVIGATION

COURSE PLANNING-GREAT CIRCLE PLOTTING AND RHUMBLINE NAVIGATION

Long voyages by sea or air are generally made to follow one of two sorts of routes: a rhumbline or a great circle. The rhumbline is the path of constant heading between two points on the earth's surface; it intersects all lines of longitude at the same angle. It is also the course defined by the straight line between two points on a Mercator projection. It is a convenient course for navigation because its direction does not change, and for short distances at mid and low latitudes, the rhumbline is adequate for almost all calculations of course and distance.

Outside this range, a more efficient track is the great circle, which is always the shortest route between two points on a sphere. However, in order to follow a great circle, a vehicle must be continuously changing its course. Since this is at best inconvenient, if not impossible, several rhumblines are often used to approximate a great circle.

To plan a course using this technique, the navigator should first run the program Great Circle Plotting. For this program, the user must input the latitude and longitude of his starting point and his destination. Then, for any intermediate longitude λ_{i} that he specifies, the program will calculate the latitude L_{i} at which the great circle from source to destination will intersect the specified longitude. If several pairs of coordinates $\left(L_{i}, \lambda_{i}\right)$ are calculated, then the next program, Rhumbline Navigation, may be used to find course and distance for the rhumblines linking these intermediate points along the great circle.

The inputs to Rhumbline Navigation are the coordinates of two points on the globe; outputs are the rhumbline course and distance from the first point to the second point. The program may be used alone, to determine the rhumbline from source to destination; or in conjunction with Great Circle Plotting, to compute several rhumblines to approximate a great circle.

GREAT CIRCLE PLOTTING

Equations:

$$
L_{i}=\tan ^{-1}\left[\frac{\tan L_{2} \sin \left(\lambda_{i}-\lambda_{1}\right)-\tan L_{1} \sin \left(\lambda_{i}-\lambda_{2}\right)}{\sin \left(\lambda_{2}-\lambda_{1}\right)}\right]
$$

where $\quad\left(\mathrm{L}_{1}, \lambda_{1}\right)=$ coordinates of starting point $\left(L_{2}, \lambda_{2}\right)=$ coordinates of destination $\left(L_{i}, \lambda_{i}\right)=$ coordinates of intermediate point on great circle

Note:
The program does not compute along lines of longitude $\left(\lambda_{1}=\lambda_{2}\right)$.

DISPLAY		$\begin{gathered} \text { KEY } \\ \text { ENTRY } \end{gathered}$	X	\mathbf{Y}	Z	T	COMMENTS	REGISTERS
LINE	CODE							
00	MIITV	TITIT	λ_{i}, D.MS					
01	1500	$\mathrm{g} \rightarrow \mathrm{H}$	λ_{i}, D.d				Convert λ_{i} to decimal deg.	(dec. deg.)
02	2304	STO 4	λ_{i}					
03	2401	RCL 1	λ_{1}	λ_{i}				$R_{1} \lambda_{1}$
04	41	-	$\lambda_{i}-\lambda_{1}$					(dec. deg.)
05	1404	f SIN	$\sin _{1}$				$\sin _{1}=\sin \left(\lambda_{i}-\lambda_{1}\right)$	
06	2402	RCL 2	L_{2}	$\sin _{1}$				$\mathrm{R}_{2} \mathrm{~L}_{2}$
07	1406	f TAN	$\tan _{2}$	$\sin _{1}$			$\tan _{2}=\tan \mathrm{L}_{2}$	(dec. deg.)
08	61	x	$\tan _{2} \sin _{1}$					
09	2404	RCL 4	λ_{i}	$\tan _{2} \sin _{1}$				$\mathrm{R}_{3} \lambda_{2}$
10	2403	RCL 3	λ_{2}	λ_{i}	$\tan _{2} \sin _{1}$			${ }^{3}$ (dec. deg.)
11	41	-	$\lambda_{i}-\lambda_{2}$	$\tan _{2} \sin _{1}$				
12	1404	f SIN	$\sin _{2}$	$\tan _{2} \sin _{1}$			$\sin _{2}=\sin \left(\lambda_{i}-\lambda_{2}\right)$	$R_{4} \lambda_{i}$
13	2400	RCL 0	L_{1}	$\sin _{2}$	$\tan _{2} \sin _{1}$			(dec. deg.)
14	1406	f TAN	$\tan _{1}$				$\tan _{1}=\tan \mathrm{L}_{1}$	
15	61	\times	$\tan _{1} \sin _{2}$	$\tan _{2} \sin _{1}$				
16	41	-	NUM				NUM $=\tan _{2} \sin _{1}-\tan _{1} \sin _{2}$	
17	2403	RCL 3	λ_{2}	NUM	-			
18	2401	RCL 1	λ_{1}	λ_{2}	NUM			
19	41	-	$\lambda_{2}-\lambda_{1}$	NUM				
20	1404	f SIN	DEN	NUM			DEN $=\sin \left(\lambda_{2}-\lambda_{1}\right)$	
21	71	\div	NUM/DEN					
22	1506	g TAN ${ }^{-1}$	Li, D.d					
23	1400	$f \rightarrow$ H.MS	L, D.MS				Display L_{i} in D.MS	
24	141104	f FIX 4						
25	1300	GTO 00						
26								
27								
28								
29								
30								
31								
32								
33								
34								
35								
36								
37								
38								
39								
40								
41								
42								
43								
44								
45								
46								
47								
48								
49								

STEP	INSTRUCTIONS	INPUT	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Input coordinates of starting						
	point:						
	Latitude (CHS for S)	L 1 , D.MS	9	$\rightarrow \mathrm{H}$	STO	0	L_{1}, dec. deg.
	Longitude (CHS for E)	λ_{1}, D.MS	g	$\rightarrow \mathrm{H}$	STO	1	λ_{1}, dec. deg.
3	Input coordinates of destination:						
	Latitude (CHS for S)	L_{2}, D.MS	g	$\rightarrow \mathrm{H}$	STO	2	L_{2}, dec. deg.
	Longitude (CHS for E)	λ_{2}, D.MS	g	$\rightarrow \mathrm{H}$	STO	3	λ_{2}, dec. deg.
4	Return to top of memory		f	PRGM			
5	Input the intermediate longitude						
	(CHS for S) and compute cor-						
	responding latitude	λ_{i}, D.MS	R/S				Li, D.MS
6	For new intermediate longitude,						
	go to step 5; for new source (or						
	destination) go to step 2 (or						
	step 3).						

RHUMBLINE NAVIGATION

Equations:

$$
\begin{gathered}
C=\tan ^{-1} \frac{\pi\left(\lambda_{1}-\lambda_{2}\right)}{180\left[\ln \tan \left(45+\frac{1}{2} L_{2}\right)-\ln \tan \left(45+\frac{1}{2} L_{1}\right)\right]} \\
D=\left\{\begin{array}{l}
60\left(\lambda_{2}-\lambda_{1}\right) \cos L ; \cos C=0 \\
60 \frac{\left(L_{2}-L_{1}\right)}{\cos C} ; \text { otherwise }
\end{array}\right.
\end{gathered}
$$

where $\left(\mathrm{L}_{1}, \lambda_{1}\right)=$ coordinates of initial point
$\left(L_{2}, \lambda_{2}\right)=$ coordinates of final point
C = rhumbline course
$\mathrm{D}=$ rhumbline distance

Notes:

1. No course should pass through either the south or north pole.
2. The course may not go due east or due west across the 180° meridian (International Date Line).
3. Errors in distance calculations may be encountered as \mathbf{C} approaches 90° or 270°.
4. Accuracy deteriorates for very short legs.

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTR } \end{aligned}$	X	Y	Z	T	COMMENTS	REGISTERS		
LINE	CODE									
00	(1) 1113	(1) 112	λ_{2}	λ_{1}				$\mathrm{R}_{0} \mathrm{~L}_{1}$		
01	41	-	$\lambda_{1}-\lambda_{2}$					(dec. deg.)		
02	2306	STO 6	$\lambda_{1}-\lambda_{2}$							
03	02	2	2	$\lambda_{1}-\lambda_{2}$				$R_{1} \lambda_{1}$		
04	71	\div	α				Let $\alpha=1 / 2\left(\lambda_{1}-\lambda_{2}\right)$	(dec. deg.)		
05	1404	f SIN	$\sin \alpha$				Normalize α so that			
06	1504	$\mathrm{g} \mathrm{SIN}{ }^{-1}$	norm α				$-180 \leqslant \lambda_{1}-\lambda_{2} \leqslant 180$;	L_{2}		
07	09	9	9	α			finds shortest route	(dec. deg.)		
08	00	0	90	α			round earth			
09	71	\div	</90					$\mathrm{R}_{3} \lambda_{2}$		
10	1573	$\mathrm{g} \pi$	π	$\alpha / 90$				N_{3} (dec. deg.)		
11	61	\times	$\pi \alpha / 90$	$\pi \alpha / 90$						
12	2405	RCL 5	In $\tan _{2}$	$\pi \alpha / 90$				$\mathrm{R}_{4} \ln$ ta		
13	2404	RCL 4	In $\tan _{1}$	v			Let $\mathrm{y}=\pi \alpha / 90$	(45+ $\left.\mathrm{L}_{1} / 2\right)$		
14	41	-	x	v			Let $\mathrm{x}=\ln \tan _{2}-$ In $\tan _{1}$			
15	1509	$\mathrm{g} \rightarrow \mathrm{P}$	r	C			$C=\tan ^{-1} y / x$	R_{5} In tan		
16	22	R \downarrow	C			r		$\left(45+L_{2} / 2\right)$		
17	1503	g ABS	\|C				r			
18	2307	STO 7	\|C				r		$\mathrm{R}_{6} \lambda_{1}-\lambda_{2}$	
19	2406	RCL 6	$\lambda_{1}-\lambda_{2}$	$\|C\|$						
20	1404	f SIN	$\sin 2 \alpha$	$\|C\|$			Normalize $\lambda_{1}-\lambda_{2}$ so			
21	1504	$\mathrm{g} \mathrm{SIN}{ }^{-1}$	norm 2α	$\|C\|$			that $-90 \leqslant \lambda_{1}-\lambda_{2} \leqslant 90$	$\mathrm{R}_{7} \xrightarrow{\|C\|}$		
22	1541	$\mathrm{g} \times<0$	2α	$\|C\|$			$\mathrm{x}<0$ means East to West			
23	1326	GTO 26	2α	$\|C\|$						
24	21	$x \overrightarrow{+} \mathrm{y}$	$\|\mathrm{C}\|$	2α			W to $E,\|C\|$ is answer			
25	1331	GTO 31	\|C		2α					
26	03	3	3	2α	\|C			E to W, answer is		
27	06	6	36	2α	\|C			$360-\|C\|$		
28	00	0	360	2α	\|C					
29	2407	RCL 7	\|C		360	2α	\|C			
30	41	-	$360-\|C\|$							
31	74	R/S	Course				Display course			
32	06	6	6				Compute distance D			
33	00	0	60							
34	2407	RCL 7	\|C		60					
35	1405	fCOS	$\cos \|\mathrm{C}\|$	60						
36	1561	$\mathrm{g} \mathrm{x} \neq 0$	$\cos \|\mathrm{C}\|$	60			If $\cos C \neq 0$,			
37	1345	GTO 45	$\cos \|C\|$	60			go to line 45			
38	34	CLX	0	60			$\operatorname{Cos} C=0$; heading is			
39	2406	RCL 6	$\lambda_{1}-\lambda_{2}$				due \mathbf{E} or due \mathbf{W}			
40	61	x	$60\left(\lambda_{1}-\lambda_{2}\right)$							
41	2402	RCL 2	L_{2}	$60\left(\lambda_{1}-\lambda_{2}\right)$						
42	1405	$f \mathrm{COS}$	$\cos L_{2}$	$60\left(\lambda_{1}-\lambda_{2}\right)$						
43	61	\times	Dist				$D=60\left(\lambda_{1}-\lambda_{2}\right) \cos L$			
44	1300	GTO 00	Dist				Halt and display Dist			
45	71	\div	60/cos $\|\mathrm{C}\|$				Heading is not due E or W			
46	2402	RCL 2	L_{2}				Apply formula:			
47	2400	RCL 0	L_{1}	L_{2}	60/cos $\|C\|$		$D=60\left(L_{2}-L_{1}\right) / \cos C$			
48	41	-	$L_{2}-L_{1}$	60/ $\cos \|C\|$						
49	61	x	Dist				Halt			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Input the initial latitude (CHS						
	for S)	L_{1}, D.MS	g	$\rightarrow \mathrm{H}$	STO	2	
			2	\div	45	+	
			f	TAN	f	LN	
			STO	5			In $\tan _{1}$
3	Input the initial longitude (CHS						
	for E)	λ_{1}, D.MS	9	$\rightarrow \mathrm{H}$	STO	3	λ_{1}, dec. deg.
4	Input the final latitude (CHS for						
	S)	L 2 , D.MS	g	$\rightarrow \mathrm{H}$	RCL	2	
			STO	0	$x \vec{*}$	Sto	
			2	2	\div	45	
			+	f	TAN	f	
			LN	RCL	5	STO	
			4	$x \vec{\leftarrow} \mathrm{y}$	STO	5	In $\tan _{2}$
5	Input the final longitude (CHS						
	for E)	λ_{2}, D.MS	g	$\rightarrow \mathrm{H}$	RCL	3	
			STO	1	$x \vec{¢} \mathrm{y}$	Sto	
			3				λ_{2}, dec. deg.
6	Compute course		f	PRGM	R/S		C
7	Compute distance		R/S				D
8	To continue the course, return to						
	step 4 and input a new final						
	position						

Example:

A ship sailing from San Francisco ($\mathrm{L} 37^{\circ} 49^{\prime} \mathrm{N}, \lambda 122^{\circ} 25^{\prime} \mathrm{W}$) to Tokyo $\left(\mathrm{L} 35^{\circ} 40^{\prime} \mathrm{N}, \lambda 139^{\circ} 45^{\prime} \mathrm{E}\right.$) will follow three rhumblines to approximate the great circle route. The navigator chooses the two intermediate points to be at $\lambda 155^{\circ} \mathrm{W}$ and $\lambda 175^{\circ} \mathrm{E}$. Find the rhumbline courses the ship should follow, and the distance covered on each leg.

Solution:
First key in Great Circle Plotting.

Thus the two intermediate points are ($\mathrm{L} 47^{\circ} 46^{\prime} \mathrm{N}, \lambda 155^{\circ} \mathrm{W}$) and ($\mathrm{L} 47^{\circ} 36^{\prime} \mathrm{N}$, $\lambda 175^{\circ} \mathrm{E}$).

Now key in Rhumbline Navigation.
Coordinates of starting point:

$122.25 \square \square \operatorname{STO}^{-1} 3$

Find course, distance to first intermediate point:

Find course, distance to second intermediate point:

5 STO $4 x \geqslant y$ STO 5175 CHS $9 \rightarrow$ RCL 3 STO $1 x \geqslant y$ STO 3 田 PRGM
$\mathrm{R} / \mathbf{S} \longrightarrow 269.53$ (course)
$\mathrm{R} / \mathrm{S} \longrightarrow 1211.80$ (distance)

Find course, distance to destination:

Summary:

Location

San Francisco
$1^{\text {st }}$ intermediate $\quad L 47^{\circ} 46^{\prime} \mathrm{N}, \lambda 155^{\circ} \mathrm{W}$
$2^{\text {nd }}$ intermediate $\quad L 47^{\circ} 36^{\prime} \mathrm{N}, \lambda 175^{\circ} \mathrm{E}$
Tokyo
$\mathrm{L} 35^{\circ} 40^{\prime} \mathrm{N}, \lambda 139^{\circ} 45^{\prime} \mathrm{E}$
Coordinates
L37 ${ }^{\circ} 49^{\prime} \mathrm{N}, \lambda 122^{\circ} 25^{\prime} \mathrm{W}$

Rhumbline
Course Distance $292.7^{\circ} \quad 1549.38$ n.m.
$269.5^{\circ} \quad 1211.80$ n.m.
$245.5^{\circ} \quad 1728.66$ n.m.

Rhumbline	
Course	Distance
292.7°	1549.38 n.m.
269.5°	1211.80 n.m.
245.5°	1728.66 n.m.

The total of the three rhumbline distances is 4489.8 nautical miles. The distance along the great circle from San Francisco to Tokyo may be found to be 4460 nautical miles. Even with just two intermediate points, the extra distance added by following rhumblines is less than 30 nautical miles.

SIGHT REDUCTION TABLE

This program calculates the computed altitude Hc and azimuth Zn of a celestial body given the observer's latitude L and the local hour angle LHA and declination d of the body. It thus becomes a replacement for the nine volumes of HO 214. However, the user need not bother with the distinctions of same name and contrary name; the program itself resolves all ambiguities of this type.

Equations:

$$
\begin{gathered}
\mathrm{Hc}=\sin ^{-1}[\sin \mathrm{~d} \sin \mathrm{~L}+\cos \mathrm{d} \cos \mathrm{~L} \cos L H A] \\
\mathrm{Zn}= \\
\left\{\begin{array}{l}
\mathrm{Z} \quad ; \sin L H A<0 \\
360-\mathrm{Z} ; \sin L H A \geqslant 0
\end{array} \quad \mathrm{Z}=\cos ^{-1}\left[\frac{\sin \mathrm{~d}-\sin \mathrm{L} \sin H c}{\cos L \cos H c}\right]\right.
\end{gathered}
$$

Notes:

1. Southern latitudes and southern declinations must be entered as negative numbers.
2. The meridian angle t may be input in place of LHA, but if so, eastern meridian angles must be input as negative numbers.

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00			25	61	x	$\mathrm{R}_{\mathrm{o}} \mathrm{L}$
01	2400	RCL 0	26	41	-	\mathbf{R}_{1} d
02	1404	f SIN	27	2400	RCL 0	$\mathbf{R}_{\mathbf{2}}$ LHA
03	2401	RCL 1	28	1405	fCOS	$\mathbf{R}_{\mathbf{3}} \sin \mathrm{Hc}$
04	1404	f SIN	29	71	\div	$\mathbf{R}_{\mathbf{4}} \mathrm{Hc}$
05	61	\times	30	2404	RCL 4	R_{5}
06	2400	RCL 0	31	1405	f COS	\mathbf{R}_{6}
07	1405	f COS	32	71	\div	\mathbf{R}_{7}
08	2401	RCL 1	33	1505	$\mathrm{g} \mathrm{COS}{ }^{-1}$	
09	1405	fCOS	34	2402	RCL 2	
10	61	x	35	1404	f SIN	
11	2402	RCL 2	36	1541	$\mathrm{gx} \times 0$	
12	1405	fCOS	37	1345	GTO 45	
13	61	\times	38	22	R \downarrow	
14	51	+	39	03	3	
15	2303	STO 3	40	06	6	
16	1504	gSIN^{-1}	41	00	0	
17	2304	STO 4	42	21	$x \vec{y}$	
18	1400	$f \rightarrow$ H.MS	43	41	-	
19	74	R/S	44	1300	GTO 00	
20	2401	RCL 1	45	22	R \downarrow	
21	1404	f SIN	46	1300	GTO 00	
22	2403	RCL 3	47			
23	2400	RCL 0	48			
24	1404	f SIN	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Input the following:						
	Observer's latitude	L, D.MS	g	$\rightarrow \mathrm{H}$	STO	0	L, dec. deg.
	Declination	d, D.MS	g	$\rightarrow \mathrm{H}$	STO	1	d, dec. deg.
	Local hour angle	LHA, D.MS	g	$\rightarrow \mathrm{H}$	STO	2	LHA, dec. deg.
3	Compute altitude		f	PRGM	R/S		Hc, D.MS
4	Compute azimuth		R/S				Zn , dec. deg.
5	For new case, go to step 2.						

Example:

Compute the altitude and azimuth of the moon if its LHA is $2^{\circ} 39^{\prime} 54^{\prime \prime} \mathrm{W}$ and its declination $13^{\circ} 51^{\prime} 06^{\prime \prime}$ S. The assumed latitude is $33^{\circ} 20^{\prime} \mathrm{N}$.

Solution:

$\mathrm{Hc}=42^{\circ} 44^{\prime} 47^{\prime \prime}$
$\mathrm{Zn}=183.5^{\circ}$

GREAT CIRCLE NAVIGATION

This program computes the great circle distance between two points and the initial heading from the first, given the latitude and longitude of the source (L_{1}, λ_{1}) and destination (L_{2}, λ_{2}).

Equations:

$$
\begin{array}{r}
D=60 \cos ^{-1}\left[\sin L_{1} \sin L_{2}+\cos L_{1} \cos L_{2} \cos \left(\lambda_{2}-\lambda_{1}\right)\right] \\
H=\cos ^{-1}\left[\frac{\sin L_{2}-\sin L_{1} \cos (D / 60)}{\sin (D / 60) \cos L_{1}}\right] \\
H_{i}=\left\{\begin{array}{l}
H \quad ; \sin \left(\lambda_{2}-\lambda_{1}\right)<0 \\
360-H ; \sin \left(\lambda_{2}-\lambda_{1}\right) \geqslant 0
\end{array}\right.
\end{array}
$$

Notes:

1. Southern latitudes and eastern longitudes must be entered as negative numbers.
2. Truncation and round off errors occur when the source and destination are very close together (1 mile or less).
3. Do not use coordinates located at diametrically opposite sides of the earth.
4. Do not use latitudes of 90° or -90°.
5. Do not try to compute initial heading along a line of longitude ($\mathrm{L}_{1}=\mathrm{L}_{2}$).

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$	DISPLAY		$\begin{gathered} \text { KEY } \\ \text { ENTRY } \end{gathered}$	REGISTERS
LINE	CODE		LINE	CODE		
00	111	11111%	25	1404	f SIN	$\mathrm{R}_{0} \mathrm{~L}_{1}$
01	2400	RCL 0	26	2403	RCL 3	$\mathrm{R}_{1} \mathrm{~L}_{2}$
02	1404	f SIN	27	61	\times	$\mathrm{R}_{2} \lambda_{2}-\lambda_{1}$
03	2401	RCL 1	28	41	-	$\mathbf{R}_{3} \cos (\mathrm{D} / 60)$
04	1404	f SIN	29	2400	RCL 0	$\mathrm{R}_{4} \mathrm{D} / 60$
05	61	\times	30	1405	$f \mathrm{COS}$	R_{5}
06	2400	RCL 0	31	71	\div	R_{6}
07	1405	f COS	32	2404	RCL 4	R_{7}
08	2401	RCL 1	33	1404	f SIN	
09	1405	f COS	34	71	\div	
10	61	x	35	1505	$\mathrm{g} \mathrm{COS}^{-1}$	
11	2402	RCL 2	36	2402	RCL 2	
12	1405	$f \mathrm{COS}$	37	1404	f SIN	
13	61	\times	38	1541	$\mathrm{g} \times<0$	
14	51	+	39	1347	GTO 47	
15	2303	STO 3	40	22	R \downarrow	
16	1505	$\mathrm{g} \mathrm{COS}^{-1}$	41	03	3	
17	2304	STO 4	42	06	6	
18	06	6	43	00	0	
19	00	0	44	21	$x \overrightarrow{2} \mathrm{y}$	
20	61	\times	45	41	-	
21	74	R/S	46	1300	GTO 00	
22	2401	RCL 1	47	22	R \downarrow	
23	1404	f SIN	48	1300	GTO 00	
24	2400	RCL 0	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Input the following:						
	Source latitude	L_{1}, D.MS	g	$\rightarrow \mathrm{H}$	STO	0	L_{1}, dec. deg.
	Destination latitude	L_{2}, D.MS	g	$\rightarrow \mathrm{H}$	STO	1	L_{2}, dec. deg.
	Destination longitude	λ_{2}, D.MS	g	$\rightarrow \mathrm{H}$			λ_{2}, dec. deg.
	Source longitude	λ_{1}, D.MS	g	$\rightarrow \mathrm{H}$	-	STO	
			2				$\lambda_{2}-\lambda_{1}$, dec. deg.
3	Compute great circle distance		f	PRGM	R/S		D, naut. mi.
4	Compute initial heading		R/S				H_{i}, dec. deg.
5	For new case, go to step 2.						

Example:

Find the great circle distance and initial heading from San Francisco (L37 ${ }^{\circ}$ $49^{\prime} \mathrm{N}, \lambda 122^{\circ} 25^{\prime} \mathrm{W}$) to Tokyo ($\mathrm{L} 35^{\circ} 40^{\prime} \mathrm{N}, \lambda 139^{\circ} 45^{\prime} \mathrm{E}$).

Solution:

D $=4460.04$
$\mathrm{H}_{\mathrm{i}}=303.29^{\circ}$

CHAPTER 5 NUMERICAL METHODS

NEWTON'S METHOD SOLUTION TO $f(x)=0$

One of the most common and frustrating problems in algebra is the solution of an equation like

$$
\ln x+3 x=10.8074
$$

in which the x's refuse to conveniently migrate to one side of the equation and isolate themselves. That is, there is no simple algebraic solution. In this case, one of several root-finding algorithms may be employed to solve the equation $f(x)=0$, where $f(x)=\ln x+3 x-10.8074$. The following program uses Newton's method to find a solution for $f(x)=0$, where $f(x)$ is specified by the user.
The user must define the function $f(x)$ by keying into program memory the keystrokes required to find $f(x)$, assuming x is in the X-register. Fourteen program steps are available for defining $f(x)$; the stack registers and storage registers R_{5} through R_{7} are also available to the user. In addition, the user must provide the program with an initial guess, x_{1}, for the solution. The closer the initial guess is to the actual solution, the faster the program will converge to an answer. The program will halt when two successive approximations for x, say x_{i} and x_{i+1}, are within a tolerance ϵ, i.e., when $\left|x_{i+1}-x_{i}\right|<\epsilon$. The value for ϵ must be input by the user. In general a reasonable value for ϵ might be $10^{-6} \mathrm{x}_{1}$.

Equations:

The basic formula used by Newton's method to generate the next approximation for the solution is

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

This program makes a numerical approximation for the derivative $f^{\prime}(x)$ to give the following equation:

$$
x_{i+1}=x_{i}-\delta_{i}\left[\frac{f\left(x_{i}+\delta_{i}\right)}{f\left(x_{i}\right)}-1\right]^{-1}
$$

where $\quad \delta_{\mathbf{i}}=10^{-5} \mathrm{x}_{\mathrm{i}}$

Notes:

1. After the routine has finished calculating, the last value of $f(x)$ may be displayed by pressing $\mathbf{R C L} 4$. If this value is not close enough to zero, the program may be run again with a smaller value for ϵ.
2. The user can watch the function converge to zero by making a slight change in the program. If the 9 NOP in line 07 is replaced by an f
PAUSE, the program will pause during each iteration, displaying successive values of $f(x)$ which should be converging to zero. To make this change to a program that has already been keyed in, perform the following operations:
3. Press GTO 06
4. Switch to PRGM
5. Press f PAUSE
6. Switch to RUN
7. Press f PRGM

Programming Remarks

This is one of the more complex programs in the book. The main difficulty is that at each iteration both $f(x)$ and $f(x+\delta)$ need to be calculated, but the function f is keyed in in only one place in program memory. Large computers handle this problem by the use of a subroutine. This program simulates that technique by a number stored in R_{0} known as a flag. The flag is set to 0 to indicate that $f(x)$ is to be calculated, or to 1 if $f(x+\delta)$ is to be found. After the calculation of f, a test is made on the flag. If it is 0 , the program will branch to an instruction which will store $f(x)$; if it is 1 , the program will go on to calculate a derivative based on $f(x+\delta)$. All operations connected with the flag occupy a total of 9 program steps.

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$	X	Y	Z	T	COMMENTS	REGISTERS
LINE	CODE							
00	(1)	(M) 11						R_{0} Flag
01	34	CLX	0				Set flag to 0 for $f(x)$	
02	2300	STO 0	0					
03	2401	RCL 1	x	0			Recall x and branch to	$\mathrm{R}_{1} \mathrm{x}$
04	1317	GTO 17	x	0			calculate $f(x)$	
05	22	R \downarrow	$f(x)$				Roll down to remove flag	
06	2304	STO 4	$f(x)$					R_{2} E
07	1522	g NOP	$f(x)$				May Pause to see convergence	${ }^{+}$
08	01	1	1	$f(x)$			Set flag to 1 for $f(x+\delta)$	
09	2300	STO 0	1	$f(x)$				R_{3}
10	2401	RCL 1	\times	1	$f(x)$			
11	2401	RCL 1	\times	x	1	$f(x)$		
12	33	EEX	1.00	x	x	1		$\mathrm{R}_{4} \mathrm{f}(\mathrm{x})$
13	05	5	1.05	x	\times	1		
14	71	\div	$10^{-5} \mathrm{x}$	x	1	1		
15	2303	STO 3	δ	x	1	1		
16	51	+	$x+\delta$	1	1	1		
17							Lines 17 through 30 are	
18							reserved for user	
19							to define $f(x)$	
20								
21							This section of pgm is	
22							used to find $f(x)$ and	
23							$f(x+\delta)$. Flag in R_{0} is	
24							0 for $f(x), 1$ for	
25							$f(\mathrm{x}+\delta$)	
26								
27								
28								
29								
30								
31	1571	$\mathrm{gx}=0$	$f(x) /(x+\delta)$				Is function value $=0$?	
32	1349	GTO 49	$f(x) /(x+\delta)$				Yes, output solution	
33	2400	RCL 0	Flag	$f(x) /(x+\delta)$			No, check flag	
34	1571	$\mathrm{gx}=0$	Flag	$f(x) /(x+\delta)$			Flag $=0$?	
35	1305	GTO 05	Flag	$f(x)$			Yes, have $f(x)$	
36	22	R \downarrow	$f(x+\delta)$			Flag	No, flag $=1$, have $f(x+\delta)$	
37	2404	RCL 4	$f(x)$	$f(x+8)$				
38	71	\div	R				$R=f(x+\delta) / f(x)$	
39	01	1	1	R				
40	41	-	R-1				$R-1=[f(x+\delta)-f(x)] / f(x)$	
41	1522	g 1/x	$(\mathrm{R}-1)^{-1}$				Approximate:	
42	2403	RCL 3	δ	$(R-1)^{-1}$			$f^{\prime}(x)=[f(x+\delta)-f(x)] / \delta$	
43	61	x	\%/(R-1)				$\Delta=f(x) / f^{\prime}(x)$	
44	234101	STO - 1	\triangle				$\mathrm{x}_{\mathrm{i}+1}=\mathrm{x}_{\mathrm{i}}-\Delta$	
45	1573	9 ABS	$\|\Delta\|$					
46	2402	RCL 2	ϵ	$\|\Delta\|$				
47	1441	$\mathrm{f} \times$ < y	$\epsilon \quad$	$\|\Delta\|$			$\left\|x_{i+1}-x_{i}\right\|>\epsilon$?	
48	1301	GTO 01	$\epsilon \quad 1$	$\|\Delta\|$			Yes, iterate again	
49	2401	RCL 1	x	ϵ	$\|\Delta\|$		No, display x and halt	

| STEP | $\begin{array}{c}\text { INSTRUCTIONS }\end{array}$ | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | KEYS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OATA/UNITS | | | | |$]$

Example:

An equation often solved by gear designers is

$$
\tan x-x-I=0
$$

where x is an angle in radians and I is the involute of x . Find the angle x_{0} corresponding to an involute of 0.0324 .

Note:

Since a gear designer might want to calculate x for several values of I , it will be simpler to store I in R_{7} for use by the function $f(x)$.

Solution:

Example User Instructions

$\mathrm{x}_{0}=25.62^{\circ}$
Last $f(x)=2.30 \times 10^{-9}$

NUMERICAL INTEGRATION, SIMPSON'S RULE

Let $x_{0}, x_{1}, \ldots, x_{n}$ be equally spaced points such that $x_{i}=x_{0}+$ ih for $\mathrm{i}=0,1,2, \ldots, \mathrm{n}$ at which corresponding values $\mathrm{f}\left(\mathrm{x}_{0}\right), \mathrm{f}\left(\mathrm{x}_{1}\right), \ldots, \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)$ of a function $f(x)$ are known. This function need not be known explicitly but if it is, these values can be found previously by writing the function into memory and evaluating at the various points. n must be an even positive integer.

Simpson's Rule is:

$$
\begin{aligned}
\int_{x_{0}}^{x_{n}} f(x) d x \cong & \frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+4 f\left(x_{n-3}\right)+2 f\left(x_{n-2}\right)\right. \\
& \left.+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

Let the solution be indicated by I.

DISPLAY		$\begin{gathered} \text { KEY } \\ \text { ENTRY } \end{gathered}$	DISPLAY		KEY ENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00	11111117		25	61	\times	$R_{0} h / 3$
01	2400	RCL 0	26	2401	RCL 1	$\mathrm{R}_{1} \mathrm{\Sigma}$
02	03	3	27	51	+	$\mathbf{R}_{\mathbf{2}}$
03	71	\div	28	2301	STO 1	\mathbf{R}_{3}
04	2300	STO 0	29	1313	GTO 13	\mathbf{R}_{4}
05	61	\times	30			R_{5}
06	2301	STO 1	31			\mathbf{R}_{6}
07	74	R/S	32			R_{7}
08	2400	RCL 0	33			
09	61	\times	34			
10	2401	RCL 1	35			
11	51	+	36			
12	2301	STO 1	37			
13	74	R/S	38			
14	2400	RCL 0	39			
15	61	\times	40			
16	04	4	41			
17	61	x	42			
18	2401	RCL 1	43			
19	51	+	44			
20	2301	STO 1	45			
21	74	R/S	46			
22	2400	RCL 0	47			
23	61	\times	48			
24	02	2	49			

Example

Compute $\int_{0}^{\pi} \sin ^{2} \mathrm{x} \mathrm{dx}$ using Simpson's rule with $\mathrm{h}=\pi / 8$.

The following data must be found first:

i	0	1	2	3	4	5	6	7	8
$\mathrm{x}_{\mathbf{i}}$	0	$\pi / 8$	$\pi / 4$	$3 \pi / 8$	$\pi / 2$	$5 \pi / 8$	$3 \pi / 4$	$7 \pi / 8$	π
$\mathrm{f}\left(\mathrm{x}_{\mathbf{i}}\right)$	0	0.1464	0.5	0.8536	1	0.8536	0.5	0.1464	0

Solution:

$$
\int_{0}^{\pi} \sin ^{2} x d x \cong 1.5708
$$

The exact solution is $\pi / 2$.

NUMERICAL SOLUTION TO DIFFERENTIAL EQUATIONS

This program may be used to solve a wide variety of first order differential equations of the form

$$
y^{\prime}=f(x, y)
$$

with initial values $\mathrm{x}_{0}, \mathrm{y}_{0}$.
The solution is a numerical solution which calculates y_{i} for $x_{i}=x_{0}+i h$, where h is an increment specified by the user and $\mathrm{i}=1,2, \ldots$.

The program uses a modified Euler method (predictor - corrector):
$\hat{y}_{i+1}=y_{i}+h f\left(x_{i}, y_{i}\right)$

$$
y_{i+1}=y_{i}+\frac{h}{2}\left[f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, \hat{y}_{i+1}\right)\right]
$$

$f(x, y)$ is keyed into memory starting at line 18 . The user has 13 program steps to write $f(x, y)$; registers R_{5}, R_{6}, and R_{7} are also available. The user should assume that x and y will be in the X - and Y -registers, respectively. The routine should return with the value of $f(x, y)$ in the X-register and should end with a GTO 31 .

DISPLAY		KEY ENTRY
LINE	CODE	
00	11111117	
01	34	CLX
02	2304	STO 4
03	2402	RCL 2
04	2401	RCL 1
05	1318	GTO 18
06	22	R \downarrow
07	2303	STO 3
08	2400	RCL 0
09	61	x
10	2402	RCL 2
11	51	+
12	2401	RCL 1
13	2400	RCL 0
14	51	+
15	01	1
16	2304	STO 4
17	22	R \downarrow
18		
19		
20		
21		
22		
23		
24		

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$
LINE	CODE	
25		
26		
27		
28		
29		
30		
31	2404	RCL 4
32	1571	$\mathrm{g} \mathrm{x}=0$
33	1306	GTO 06
34	22	R \downarrow
35	2403	RCL 3
36	51	+
37	2400	RCL 0
38	61	x
39	02	2
40	71	\div
41	2402	RCL 2
42	51	+
43	2302	STO 2
44	2401	RCL 1
45	2400	RCL 0
46	51	+
47	2301	STO 1
48	1474	f PAUSE
49	21	$x \vec{*} Y$

| |
| :--- |\quad REGISTERS

STEP	instructions	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS	
1	Key in lines 1.17 of program						17	22
2	Key in function $f(x, y)$							
3	Key in branch to line 31		GTO	31				
4	Press SST repeatedly until dis-							
	play shows line 30							
5	Key in lines 31-49 of program						49	21
6	Switch to RUN							
7	Store increment	h	STO	0				
8	Store initial conditions	x_{0}	STO	1				
		y_{0}	STO	2	f	PRGM		
9	Display next x-value and cor-							
	responding y -value		R/S					
10	Repeat step 9 as often as desired							

Example:

Solve numerically the differential equation $\mathrm{y}^{\prime}=\mathrm{x} \sqrt{\mathrm{y}}$ with initial conditions $\mathrm{x}_{0}=1, \mathrm{y}_{0}=1$. Use a step size of $\mathrm{h}=0.1$.

Solution:
Key the function in as $x \geqslant y] \sqrt{x}$ 区

x	1.0	1.1	1.2	1.3	1.4	1.5
y (by prgm)	1.0	1.1077	1.2319	1.3745	1.5372	1.7221
y (exact)	1.0	1.1078	1.2321	1.3748	1.5376	1.7227

LINEAR INTERPOLATION

If ($\mathrm{x}_{1}, \mathrm{f}\left(\mathrm{x}_{1}\right)$) and ($\left.\mathrm{x}_{2}, \mathrm{f}\left(\mathrm{x}_{2}\right)\right)$ are two points of a function $\mathrm{f}(\mathrm{x})$, then the function at x_{0} can be approximated by the following formula:

$$
f\left(x_{0}\right) \cong \frac{\left(x_{2}-x_{0}\right) f\left(x_{1}\right)+\left(x_{0}-x_{1}\right) f\left(x_{2}\right)}{\left(x_{2}-x_{1}\right)}
$$

This is called the linear interpolation formula. Of course, x_{2} cannot equal x_{1}.

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY
LINE	CODE		LINE	CODE	
00	(1/ITIV	-1/ITIV	25		
01	2304	STO 4	26		
02	2400	RCL 0	27		
03	41	-	28		
04	2403	RCL 3	29		
05	61	x	30		
06	2402	RCL 2	31		
07	2404	RCL 4	32		
08	41	-	33		
09	2401	RCL 1	34		
10	61	\times	35		
11	51	+	36		
12	2402	RCL 2	37		
13	2400	RCL 0	38		
14	41	-	39		
15	71	\div	40		
16	1300	GTO 00	41		
17			42		
18			43		
19			44		
20			45		
21			46		
22			47		
23			48		
24			49		

\quad REGISTERS
$R_{0} x_{1}$
$R_{1} f\left(x_{1}\right)$
$R_{2} x_{2}$
$R_{3} f\left(x_{2}\right)$
$R_{4} x_{0}$
R_{5}
R_{6}
R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Store first point	X_{1}	STO	0			
		$f\left(x_{1}\right)$	STO	1			
3	Store second point	${ }^{2}$	STO	2			
		$f\left(x_{2}\right)$	STO	3	f	PRGM	
4	Key in x_{0}, find $\mathrm{f}\left(\mathrm{x}_{0}\right)$	x_{0}	R/S				$f\left(x_{0}\right)$
5	Repeat step 4 for as many x -						
	values as desired.						

Example:

Given

$$
\begin{aligned}
& \mathrm{f}(7.3)=1.9879 \\
& \mathrm{f}(7.4)=2.0015
\end{aligned}
$$

find by linear interpolation $f(7.37)$.

Solution:

$\mathrm{f}(7.37)=1.9974$

CHAPTER 6 STATISTICS

CURVE FITTING-LINEAR REGRESSION

When investigating the relationship between two variables in the real world, it is a reasonable first step to make experimental observations of the system to gather paired values of the variables, (x, y). The investigator might then ask the question: What mathematical formula best describes the relationship between the variables x and y ? His first guess will often be that the relationship is linear, i.e., that the form of the equation is $y=a_{1} x+a_{0}$, where a_{1} and a_{0} are constants. The purpose of this program is to find the constants a_{1} and a_{0}, which give the closest agreement between the experimental data and the equation $y=a_{1} x+a_{0}$. The technique used is linear regression by the method of least squares.

The user must input the paired values of data he has gathered, $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$, $i=1, \ldots, n$. When all data pairs have been input, the regression constants a_{1} and a_{0} may be calculated. A third value may also be found, the coefficient of determination, r^{2}. The value of r^{2} will lie between 0 and 1 and will indicate how closely the equation fits the experimental data: the closer r^{2} is to 1 , the better the fit.

Equations:

$$
y=a_{1} x+a_{0}
$$

All summations below are performed for $\mathrm{i}=1, \ldots, \mathrm{n}$.
Regression constants:

$$
\begin{gathered}
\mathrm{a}_{1}=\frac{\Sigma \mathrm{xy}-\frac{\Sigma \mathrm{x} \Sigma \mathrm{y}}{\mathrm{n}}}{\Sigma \mathrm{x}^{2}-\frac{(\Sigma \mathrm{x})^{2}}{\mathrm{n}}} \\
\mathrm{a}_{0}=\overline{\mathrm{y}}-\mathrm{a}_{1} \overline{\mathrm{x}}
\end{gathered}
$$

where $\quad \bar{y}=\frac{\Sigma y}{n}$

$$
\overline{\mathrm{x}}=\frac{\Sigma \mathrm{x}}{\mathrm{n}}
$$

Coefficient of determination:

$$
\mathrm{r}^{2}=\frac{\left[\Sigma \mathrm{xy}-\frac{\Sigma \mathrm{x} \Sigma \mathrm{y}}{\mathrm{n}}\right]^{2}}{\left[\Sigma \mathrm{x}^{2}-\frac{(\Sigma \mathrm{x})^{2}}{\mathrm{n}}\right]\left[\Sigma \mathrm{y}^{2}-\frac{(\Sigma \mathrm{y})^{2}}{\mathrm{n}}\right]}
$$

Note:

The values for a_{0} and a_{1} are stored in R_{0} and R_{1}, respectively. After the calculation of a_{0}, a_{1}, and r^{2}, the estimated y-value, \hat{y}, corresponding to any x-value may be calculated by $y=a_{1} x+a_{0}$.

Programming Remarks:

The intermediate value $\mathrm{C}=\Sigma \mathrm{xy}-(\Sigma \mathrm{x} \Sigma \mathrm{y} / \mathrm{n})$ is first calculated at line 14 but is also needed near the end of the program to find r^{2}. Since all registers R_{0} through R_{7} are in use, the only place to save this value is in the stack. Hence C is preserved in one or more of the stack registers from lines 14 through 36 , when it is used. It is due to the presence of C in the stack that users are warned not to disturb the contents of the stack after calculation of a_{0} and a_{1} (see step 4 of User Instructions).

| STEP | $\begin{array}{c}\text { INSTRUCTIONS }\end{array}$ | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | KEYS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OUTPUT | | | | |
| DATA/UNITS | | | | |$]$

Example:

An eccentric professor of numerical analysis wakes up one morning and feels feverish. A search through his medicine cabinet reveals one oral thermometer which, unfortunately, is in degrees centigrade, a scale he is not familiar with. As he stares disconsolately out his window, he spies the outdoor thermometer affixed to the windowframe. This thermometer, however, will not fit comfortably into his mouth. Still, with some ingenuity....

The professor suspects that the relationship is $F=a_{1} C+a_{0}$. If he can get a few data pairs for F and C , he can run a linear regression program to find a_{1} and a_{0}, then convert any reading in ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$ through the equation. So tossing both thermometers into a sink of lukewarm water, he reads the following pairs of temperatures as the water cools:

C	40.5	38.6	37.9	36.2	35.1	34.6
F	104.5	102	100	97.5	95.5	94

If the relationship is indeed $F=a_{1} C+a_{0}$, what are the values for a_{1} and a_{0} ? What is the coefficient of determination?

Solution:

Thus, by the data above, $\mathrm{F}=1.76 \mathrm{C}+33.53$, with $\mathrm{r}^{2}=0.99$. (The real equation, of course, is $\mathrm{F}=1.8 \mathrm{C}+32$.)

Suppose the professor puts the centigrade thermometer in his mouth and finds he has a temperature of $37^{\circ} \mathrm{C}$. Should he be worried?
$37 \mathrm{RCL} \boldsymbol{1} \boldsymbol{x} \mathrm{RCL} 0 \rightarrow 98.65^{\circ} \mathrm{F}$

It looks like he is safe.

EXPONENTIAL CURVE FIT

This program computes the least squares fit of n pairs of data points $\left\{\left(x_{i}, y_{i}\right)\right.$, $i=1,2, \ldots, n\}$, where $y_{i}>0$, for an exponential function of the form

$$
y=a e^{b x} \quad(a>0)
$$

The equation is linearized into

$$
\ln y=\ln a+b x
$$

The following statistics are computed:

1. Coefficients a, b

$$
\begin{gathered}
\mathrm{b}=\frac{\Sigma \mathrm{x}_{\mathrm{i}} \ln \mathrm{y}_{\mathrm{i}}-\frac{1}{\mathrm{n}}\left(\Sigma \mathrm{x}_{\mathrm{i}}\right)\left(\Sigma \ln \mathrm{y}_{\mathrm{i}}\right)}{\Sigma \mathrm{x}_{\mathrm{i}}^{2}-\frac{1}{\mathrm{n}}\left(\Sigma \mathrm{x}_{\mathrm{i}}\right)^{2}} \\
\mathrm{a}=\exp \left[\frac{\Sigma \ln \mathrm{y}_{\mathrm{i}}}{\mathrm{n}}-\mathrm{b} \frac{\Sigma \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}\right]
\end{gathered}
$$

2. Coefficient of determination

$$
\mathrm{r}^{2}=\frac{\left[\Sigma \mathrm{x}_{\mathrm{i}} \ln \mathrm{y}_{\mathrm{i}}-\frac{1}{\mathrm{n}} \Sigma \mathrm{x}_{\mathrm{i}} \Sigma \ln \mathrm{y}_{\mathrm{i}}\right] 2}{\left[\Sigma \mathrm{x}_{\mathrm{i}}^{2}-\frac{\left(\Sigma \mathrm{x}_{\mathrm{i}}\right)^{2}}{\mathrm{n}}\right]\left[\Sigma\left(\ln \mathrm{y}_{\mathrm{i}}\right)^{2}-\frac{\left(\Sigma \ln \mathrm{y}_{\mathrm{i}}\right)^{2}}{\mathrm{n}}\right]}
$$

3. Estimated value \hat{y} for a given x

$$
\hat{y}=a e^{b x}
$$

Note:
n is a positive integer and $\mathrm{n} \neq 1$.

DISPLAY		KEY ENTRY
LINE	CODE	
00	\|ITIIIV	ITIV
01	1407	f LN
02	31	\uparrow
03	1502	$\mathrm{g} \mathrm{x}^{2}$
04	235102	STO + 2
05	22	R \downarrow
06	21	$\mathrm{x} \overrightarrow{\mathrm{F}}$
07	25	$\Sigma+$
08	1300	GTO 00
09	2405	RCL 5
10	2407	RCL 7
11	2404	RCL 4
12	61	x
13	2403	RCL 3
14	71	\div
15	41	-
16	2406	RCL 6
17	2407	RCL 7
18	1502	$\mathrm{gx} \mathrm{x}^{2}$
19	2403	RCL 3
20	71	\div
21	41	-
22	71	\div
23	2301	STO 1
24	2407	RCL 7

DISPLAY		KEY ENTRY
LINE	CODE	
25	61	x
26	32	CHS
27	2404	RCL 4
28	51	+
29	2403	RCL 3
30	71	\div
31	1507	ge^{x}
32	2300	STO 0
33	74	R/S
34	2401	RCL 1
35	74	R/S
36	21	$x \vec{y}$
37	22	R \downarrow
38	61	\times
39	2402	RCL 2
40	2404	RCL 4
41	1502	g x
42	2403	RCL 3
43	71	\div
44	41	-
45	71	\div
46	1300	GTO 00
47		
48		
49		

| |
| :--- |\quad REGISTERS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Initialize		f	REG	f	PRGM	
3	Perform for $\mathrm{i}=1, \ldots, \mathrm{n}$:						
	Input x-value and y-value	x_{i}	\uparrow				
		y_{i}	R/S				i
4	Compute constants		GTO	09	R/S		a*
			R/S				b^{*}
5	Compute coefficient of deter-						
	mination		R/S				r^{2}
6	To calculate \hat{y}, input x	\times	RCL	1	\times	g	
			e^{x}	RCL	0	\times	$\hat{\gamma}$
7	Perform step 6 as many times						
	as desired						
8	For new case, go to step 2.						
	* The stack must be maintained						
	at these points.						

Example:

x_{i}	.72	1.31	1.95	2.58	3.14
y_{i}	2.16	1.61	1.16	.85	0.5

Solution:

$\mathrm{a}=3.45, \mathrm{~b}=-0.58$
$y=3.45 e^{-0.58 x}$
$\mathrm{r}^{2}=0.98$
For $\mathrm{x}=1.5, \hat{\mathrm{y}}=1.44$

LOGARITHMIC CURVE FIT

This program fits a logarithmic curve

$$
y=a+b \ln x
$$

to a set of data points

$$
\left\{\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1,2, \ldots, \mathrm{n}\right\}
$$

where $\mathrm{x}_{\mathrm{i}}>0$.

Program computes:

1. Regression coefficients

$$
\begin{gathered}
\mathrm{b}=\frac{\Sigma \mathrm{y}_{\mathrm{i}} \ln \mathrm{x}_{\mathrm{i}}-\frac{1}{\mathrm{n}} \Sigma \ln \mathrm{x}_{\mathrm{i}} \Sigma \mathrm{y}_{\mathrm{i}}}{\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right)^{2}-\frac{1}{\mathrm{n}}\left(\Sigma \ln \mathrm{x}_{\mathrm{i}}\right)^{2}} \\
\mathrm{a}=\frac{1}{\mathrm{n}}\left(\Sigma \mathrm{y}_{\mathrm{i}}-\mathrm{b} \Sigma \ln \mathrm{x}_{\mathrm{i}}\right)
\end{gathered}
$$

2. Coefficient of determination

$$
r^{2}=\frac{\left[\Sigma y_{i} \ln x_{i}-\frac{1}{n} \Sigma \ln x_{i} \Sigma y_{i}\right]^{2}}{\left[\Sigma\left(\ln x_{i}\right)^{2}-\frac{1}{n}\left(\Sigma \ln x_{i}\right)^{2}\right]\left[\Sigma y_{i}{ }^{2}-\frac{1}{n}\left(\Sigma y_{i}\right)^{2}\right]}
$$

3. Estimated value $\hat{\mathrm{y}}$ for given x

$$
\hat{y}=a+b \ln x
$$

Note:
n is a positive integer and $\mathrm{n} \neq 1$.

DISPLAY		$\begin{gathered} \text { KEY } \\ \text { ENTRY } \end{gathered}$
LINE	CODE	
00	1111111	1111113
01	31	\uparrow
02	1502	$\mathrm{gx} \mathrm{x}^{2}$
03	235102	$\mathrm{STO}+2$
04	22	R \downarrow
05	21	$x \nleftarrow y$
06	1407	f LN
07	25	$\Sigma+$
08	1300	GTO 00
09	2405	RCL 5
10	2407	RCL 7
11	2404	RCL 4
12	61	x
13	2403	RCL 3
14	71	\div
15	41	-
16	2406	RCL 6
17	2407	RCL 7
18	1502	g x
19	2403	RCL 3
20	71	\div
21	41	-
22	71	\div
23	2301	STO 1
24	2407	RCL 7

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$
LINE	CODE	
25	61	x
26	32	CHS
27	2404	RCL 4
28	51	+
29	2403	RCL 3
30	71	\div
31	2300	STO 0
32	74	R/S
33	2401	RCL 1
34	74	R/S
35	21	$x \vec{\leftarrow} \mathrm{Y}$
36	22	R \downarrow
37	61	x
38	2402	RCL 2
39	2404	RCL 4
40	1502	gx
41	2403	RCL 3
42	71	\div
43	41	-
44	71	\div
45	1300	GTO 00
46		
47		
48		
49		

REGISTERS
$R_{0} \mathrm{a}$
$R_{\mathbf{1}} \mathrm{b}$
$R_{\mathbf{2}} \Sigma \mathrm{y}^{2}$
$R_{\mathbf{3}} \mathrm{n}$
$R_{4} \Sigma \mathrm{y}$
$R_{5} \Sigma \mathrm{y} \ln \mathrm{x}$
$R_{6} \Sigma(\ln x)^{2}$
$R_{\mathbf{7}} \Sigma \ln \mathrm{x}$

| STEP | $\begin{array}{c}\text { INSTRUCTIONS }\end{array}$ | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | KEYS |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| OATA/UNITS | | | | |$]$

Example:

x_{i}	3	4	6	10	12
y_{i}	1.5	9.3	23.4	45.8	60.1

Solution:
$\mathrm{a}=-47.02, \mathrm{~b}=41.39$
$y=-47.02+41.39 \ln x$
$r^{2}=0.98$
For $\mathrm{x}=8, \hat{\mathrm{y}}=39.06$
For $x=14.5, \hat{y}=63.67$

POWER CURVE FIT

This program fits a power curve

$$
y=a x^{b} \quad(a>0)
$$

to a set of data points

$$
\left\{\left(x_{i}, y_{i}\right), i=1,2, \ldots, n\right\}
$$

where $x_{i}>0, y_{i}>0$.
By writing this equation as

$$
\ln y=b \ln x+\ln a
$$

the problem can be solved as a linear regression problem.
Output statistics are:

1. Regression coefficients

$$
\begin{gathered}
\mathrm{b}=\frac{\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right)\left(\ln \mathrm{y}_{\mathrm{i}}\right)-\frac{\left(\Sigma \ln \mathrm{x}_{\mathrm{i}}\right)\left(\Sigma \ln \mathrm{y}_{\mathrm{i}}\right)}{\mathrm{n}}}{\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right)^{2}-\frac{\left(\Sigma \ln \mathrm{x}_{\mathrm{i}}\right)^{2}}{n}} \\
\mathrm{a}=\exp \left[\frac{\Sigma \ln \mathrm{y}_{\mathrm{i}}}{\mathrm{n}}-\mathrm{b} \frac{\Sigma \ln \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}\right]
\end{gathered}
$$

2. Coefficient of determination

$$
\mathrm{r}^{2}=\frac{\left[\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right)\left(\ln \mathrm{y}_{\mathrm{i}}\right)-\frac{\left(\Sigma \ln \mathrm{x}_{\mathrm{i}}\right)\left(\Sigma \ln \mathrm{y}_{\mathrm{i}}\right)}{\mathrm{n}}\right]^{2}}{\left[\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right)^{2}-\frac{\left(\Sigma \ln \mathrm{x}_{\mathrm{i}}\right)^{2}}{\mathrm{n}}\right]\left[\Sigma\left(\ln \mathrm{y}_{\mathrm{i}}\right)^{2}-\frac{\left(\Sigma \ln \mathrm{y}_{\mathrm{i}}\right)^{2}}{\mathrm{n}}\right]}
$$

3. Estimated value \hat{y} for given x

$$
\hat{y}=a x^{b}
$$

Note:

n is a positive integer and $\mathrm{n} \neq 1$.

DISPLAY		KEY ENTRY
LINE	CODE	
00	\|1/1/1/1	\|1/1/1/T
01	1407	$f \mathrm{LN}$
02	31	\uparrow
03	1502	$\mathrm{gx} \mathrm{x}^{2}$
04	235102	STO + 2
05	22	R \downarrow
06	21	$x \overrightarrow{\text { P }}$
07	1407	f LN
08	25	$\Sigma+$
09	1300	GTO 00
10	2405	RCL 5
11	2407	RCL 7
12	2404	RCL 4
13	61	\times
14	2403	RCL 3
15	71	\div
16	41	-
17	2406	RCL 6
18	2407	RCL 7
19	1502	$\mathrm{gx}{ }^{2}$
20	2403	RCL 3
21	71	\div
22	41	-
23	71	\div
24	2301	STO 1

DISPLAY		KEY ENTRY
LINE	CODE	
25	2407	RCL 7
26	61	x
27	32	CHS
28	2404	RCL 4
29	51	+
30	2403	RCL 3
31	71	\div
32	1507	$g \mathrm{e}^{\mathrm{x}}$
33	2300	STO 0
34	74	R/S
35	2401	RCL 1
36	74	R/S
37	21	$x \overrightarrow{\mathrm{H}}$
38	22	R \downarrow
39	61	\times
40	2402	RCL 2
41	2404	RCL 4
42	1502	g x
43	2403	RCL 3
44	71	\div
45	41	-
46	71	\div
47	1300	GTO 00
48		
49		

REGISTERS
$\mathbf{R}_{\mathbf{0}} \mathrm{a}$
$\mathbf{R}_{\mathbf{1}} \mathrm{b}$
$\mathbf{R}_{\mathbf{2}} \Sigma(\ln y)^{2}$
$\mathbf{R}_{\mathbf{3}} \mathrm{n}$
$\mathbf{R}_{\mathbf{4}} \Sigma \ln y$
$\mathbf{R}_{5} \Sigma(\ln x)(\ln y)$
$\mathbf{R}_{6} \Sigma(\ln x)^{2}$
$\mathbf{R}_{\mathbf{7}} \Sigma \ln x$

| STEP | $\begin{array}{c}\text { INSTRUCTIONS }\end{array}$ | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | KEYS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OUTPUT | | | | |
| DATA/UNITS | | | | |$]$

Example:

x_{i}	10	12	15	17	20	22	25	27	30	32	35
y_{i}	0.95	1.05	1.25	1.41	1.73	2.00	2.53	2.98	3.85	4.59	6.02

Solution:

$$
\begin{aligned}
& a=.03, b=1.46 \\
& y=.03 x^{1.46} \\
& r^{2}=0.94
\end{aligned}
$$

$$
\text { For } \mathrm{x}=18, \hat{\mathrm{y}}=1.76
$$

$$
x=23, \hat{y}=2.52
$$

COVARIANCE AND CORRELATION COEFFICIENT

For a set of given data points $\left\{\left(x_{i}, y_{i}\right), i=1,2, \ldots, n\right\}$, the covariance and the correlation coefficent are defined as:

$$
\begin{array}{r}
\text { covariance } \mathrm{s}_{\mathrm{x} y}=\frac{1}{\mathrm{n}-1}\left(\Sigma \mathrm{x}_{\mathrm{i}} y_{\mathrm{i}}-\frac{1}{\mathrm{n}} \Sigma \mathrm{x}_{\mathrm{i}} \Sigma \mathrm{y}_{\mathrm{i}}\right) \\
\text { or } \mathrm{s}_{\mathrm{x} y}^{\prime}{ }^{\prime}=\frac{1}{n}\left(\Sigma \mathrm{x}_{\mathrm{i}} y_{i}-\frac{1}{n} \Sigma \mathrm{x}_{\mathrm{i}} \Sigma y_{\mathrm{i}}\right) \\
\text { correlation coefficient } \mathrm{r}=\frac{\mathrm{s}_{\mathrm{x}} \mathrm{y}}{\mathrm{~s}_{\mathrm{x}} \mathrm{~s}_{\mathrm{y}}}
\end{array}
$$

where s_{x} and s_{y} are standard deviations

$$
s_{x}=\sqrt{\frac{\sum x_{i}^{2}-\left(\sum x_{i}\right)^{2} / n}{n-1}} \quad s_{y}=\sqrt{\frac{\sum y_{i}^{2}-\left(\Sigma y_{i}\right)^{2} / n}{n-1}}
$$

Note:
$-1 \leqslant r \leqslant 1$

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00	W1/1/117	\|1/11/17	25	71	\div	$\mathbf{R}_{\mathbf{o}} \mathrm{n}-1$
01	31	\uparrow	26	74	R/S	\mathbf{R}_{1} Used
02	1502	$\mathrm{gx} \mathrm{x}^{2}$	27	1422	f s	$\mathbf{R}_{\mathbf{2}} \Sigma \mathrm{y}^{\mathbf{2}}$
03	235102	STO + 2	28	237101	STO $\div 1$	$\mathbf{R}_{3} \mathrm{n}$
04	22	R \downarrow	29	2402	RCL 2	$\mathbf{R}_{4} \Sigma{ }^{\text {r }}$
05	21	$x \vec{y}$	30	2404	RCL 4	$\mathrm{R}_{5} \Sigma \mathrm{E} \mathrm{x}$
06	25	$\Sigma+$	31	1502	$\mathrm{gx} \mathrm{x}^{2}$	$\mathrm{R}_{6} \Sigma \mathrm{x}^{2}$
07	1300	GTO 00	32	2403	RCL 3	$\mathbf{R}_{7} \mathrm{\Sigma} \mathrm{x}$
08	2405	RCL 5	33	71	\div	
09	2404	RCL 4	34	41	-	
10	2407	RCL 7	35	2400	RCL 0	
11	61	x	36	71	\div	
12	2403	RCL 3	37	1402	$f \sqrt{x}$	
13	71	\div	38	237101	STO $\div 1$	
14	41	-	39	2401	RCL 1	
15	2403	RCL 3	40	1300	GTO 00	
16	01	1	41			
17	41	-	42			
18	2300	STO 0	43			
19	71	\div	44			
20	2301	STO 1	45			
21	74	R/S	46			
22	2400	RCL 0	47			
23	61	x	48			
24	2403	RCL 3	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Initialize		f	PRGM	f	REG	
3	Perform this step for $\mathrm{i}=1,2, \ldots, n$	x_{i}	\uparrow				
		y_{i}	R/S				i
4	Compute covariance ${ }^{s_{x y}}$		GTO	08	R/S		$s_{x y}$
5	Compute $\mathrm{s} x y{ }^{\prime}$		R/S				$s_{x y}{ }^{\prime}$
6	Compute correlation coefficient		R/S				r
7	For new case, go to step 2.						

Example:

x_{i}	26	30	44	50	62	68	74
y_{i}	92	85	78	81	54	51	40

Solution:

$\mathrm{s}_{\mathrm{xy}}=-354.14$
$\mathrm{s}_{\mathrm{xy}}{ }^{\prime}=-303.55$
$\mathrm{r}=-0.96$

MOMENTS AND SKEWNESS

This program computes the following statistics for a set of given data $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right.$, \ldots, x_{n} :

$$
\begin{array}{ll}
1^{\text {st }} \text { moment } & \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
2^{\text {nd }} \text { moment } & m_{2}=\frac{1}{n} \Sigma x_{i}^{2}-\bar{x}^{2} \\
3^{\text {rd }} \text { moment } & m_{3}=\frac{1}{n} \Sigma x_{i}^{3}-\frac{3}{n} \bar{x} \Sigma x_{i}^{2}+2 \bar{x}^{3}
\end{array}
$$

moment coefficient of skewness

$$
\gamma_{1}=\frac{m_{3}}{m_{2}^{3 / 2}}
$$

DISPLAY		$\begin{gathered} \text { KEY } \\ \text { ENTRY } \end{gathered}$
LINE	CODE	
00		1/11/17
01	31	\uparrow
02	1502	$\mathrm{gx}{ }^{2}$
03	25	$\Sigma+$
04	1300	GTO 00
05	2404	RCL 4
06	2403	RCL 3
07	71	\div
08	2302	STO 2
09	74	R/S
10	2407	RCL 7
11	2403	RCL 3
12	71	\div
13	2402	RCL 2
14	1502	$\mathrm{g} \mathrm{x}^{2}$
15	41	-
16	2301	STO 1
17	74	R/S
18	2405	RCL 5
19	2403	RCL 3
20	71	\div
21	2407	RCL 7
22	2402	RCL 2
23	61	\times
24	2403	RCL 3

DISPLAY		KEY ENTRY
LINE	CODE	
25	71	\div
26	03	3
27	61	x
28	41	-
29	2402	RCL 2
30	31	\uparrow
31	1502	$\mathrm{g} \mathrm{x}^{2}$
32	61	x
33	02	2
34	61	\times
35	51	+
36	2300	STO 0
37	74	R/S
38	2400	RCL 0
39	2401	RCL 1
40	01	1
41	73	-
42	05	5
43	1403	$f y^{x}$
44	71	\div
45	1300	GTO 00
46		
47		
48		
49		

REGISTERS
$\mathbf{R}_{0} \mathrm{~m}_{3}$
$\mathbf{R}_{\mathbf{1}} \mathrm{m}_{2}$
$\mathbf{R}_{\mathbf{2}} \overline{\mathrm{x}}$
$\mathbf{R}_{3} \mathrm{n}$
$\mathbf{R}_{4} \Sigma \mathrm{x}$
$\mathbf{R}_{5} \Sigma \mathrm{x}^{3}$
$\mathbf{R}_{6} \Sigma x^{4}$
$\mathbf{R}_{7} \Sigma \mathrm{x}^{2}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Initialize		f	PRGM	f	REG	
3	Perform for $\mathrm{i}=1,2, \ldots, n$:						
	Input x-value	x_{i}	R/S				i
4	Delete erroneous data	x_{k}	\uparrow	9	x^{2}	f	
			$\Sigma-$				
5	Compute the mean		GTO	05	R/S		$\overline{\mathrm{x}}$
6	Compute the second and third						
	moments		R/S				m_{2}
			R/S				m_{3}
7	Compute the moment coefficient						
	of skewness		R/S				γ_{1}
8	For new case, go to step 2.						

Example:

i	1	2	3	4	5	6	7	8	9
x_{i}	2.1	3.5	4.2	6.5	4.1	3.6	5.3	3.7	4.9

Solution:

$\overline{\mathrm{x}}=4.21$
$\mathrm{m}_{2}=1.39$
$\mathrm{m}_{3}=0.39$
$\gamma_{1}=0.24$

NORMAL DISTRIBUTION

The density function for a standard normal variable is

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} .
$$

The upper tail area is

$$
\mathrm{Q}(\mathrm{x})=\frac{1}{\sqrt{2 \pi}} \int_{\mathrm{x}}^{\infty} \mathrm{e}^{-\frac{\mathrm{t}^{2}}{2}} \mathrm{dt}
$$

For $\mathrm{x} \geqslant 0$, polynomial approximation is used to compute $\mathrm{Q}(\mathrm{x})$:

$$
\mathrm{Q}(\mathrm{x})=\mathrm{f}(\mathrm{x})\left(\mathrm{b}_{1} \mathrm{t}+\mathrm{b}_{2} \mathrm{t}^{2}+\mathrm{b}_{3} \mathrm{t}^{3}+\mathrm{b}_{4} \mathrm{t}^{4}+\mathrm{b}_{5} \mathrm{t}^{5}\right)+\epsilon(\mathrm{x})
$$

where $|\epsilon(\mathrm{x})|<7.5 \times 10^{-8}$

$$
\begin{aligned}
& t=\frac{1}{1+r x}, r=0.2316419 \\
& b_{1}=.31938153, \\
& b_{3}=1.781477937, \\
& b_{5}=1.330274429
\end{aligned} \quad b_{4}=-1.821255978
$$

Note:

The program only works for $x \geqslant 0$. Equations $f(-x)=f(x), Q(-x)=1-Q(x)$, where $x \geqslant 0$, can be used to find f and Q for negative numbers.

Reference:

Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1968.

DISPLAY		$\begin{gathered} \text { KEY } \\ \text { ENTRY } \end{gathered}$	DISPLAY		KEY ENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00	W1/TIV	T1/1117	25	61	\times	$\mathbf{R o}_{\text {o }} \mathrm{r}$
01	31	\uparrow	26	2404	RCL 4	$\mathrm{R}_{1} \mathrm{~b}_{1}$
02	2306	STO 6	27	51	+	R_{2} b_{2}
03	61	x	28	61	\times	R_{3} b_{3}
04	02	2	29	2403	RCL 3	R_{4} b_{4}
05	71	\div	30	51	+	$\mathrm{R}_{5} \mathrm{~b}_{5}$
06	32	CHS	31	61	\times	$\mathrm{R}_{6} \times$
07	1507	g e ${ }^{\text {x }}$	32	2402	RCL 2	$\mathbf{R}_{7} \mathrm{f}(\mathrm{x})$
08	1573	$\mathrm{g} \pi$	33	51	+	
09	02	2	34	61	\times	
10	61	x	35	2401	RCL 1	
11	1402	$f \sqrt{x}$	36	51	+	
12	71	\div	37	61	x	
13	2307	STO 7	38	2407	RCL 7	
14	74	R/S	39	61	\times	
15	2400	RCL 0	40	1300	GTO 00	
16	2406	RCL 6	41			
17	61	\times	42			
18	01	1	43			
19	51	+	44			
20	1522	g 1/x	45			
21	31	\uparrow	46			
22	31	\uparrow	47			
23	31	\uparrow	48			
24	2405	RCL 5	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Initialize		f	PRGM			
3	Store constants	r	STO	0			
		b_{1}	STO	1			
		b_{2}	STO	2			
		b_{3}	STO	3			
		b_{4}	STO	4			
		b_{5}	STO	5			
4	Input x and compute $\mathrm{f}(\mathrm{x})$	\times	R/S				$f(x)$
5	Compute $\mathrm{Q}(\mathrm{x})$		R/S				$Q(x)$
6	For a new case, go to 4 .						

Examples:

1. $\mathrm{x}=1.18$
2. $\mathrm{x}=2.28$

Solutions:

1. $\mathrm{f}(\mathrm{x})=0.20$

$$
\mathrm{Q}(\mathrm{x})=0.12
$$

2. $f(x)=0.03$

$$
\mathrm{Q}(\mathrm{x})=0.01
$$

INVERSE NORMAL INTEGRAL

This program determines the value of x such that

$$
\mathrm{Q}=\int_{\mathrm{x}}^{\infty} \frac{\mathrm{e}^{-\frac{\mathrm{t}^{2}}{2}}}{\sqrt{2 \pi}} \mathrm{dt}
$$

where Q is given and $0<\mathrm{Q} \leqslant 0.5$.

The following rational approximation is used:

$$
\mathrm{x}=\mathrm{t}-\frac{\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{t}+\mathrm{c}_{2} \mathrm{t}^{2}}{1+\mathrm{d}_{1} \mathrm{t}+\mathrm{d}_{2} \mathrm{t}^{2}+\mathrm{d}_{3} \mathrm{t}^{3}}+\epsilon(\mathrm{Q})
$$

where $|\epsilon(\mathrm{Q})|<4.5 \times 10^{-4}$

$$
\begin{array}{ll}
t=\sqrt{\ln \frac{1}{Q^{2}}} \\
c_{0}=2.515517 & d_{1}=1.432788 \\
c_{1}=0.802853 & d_{2}=0.189269 \\
c_{2}=0.010328 & d_{3}=0.001308
\end{array}
$$

Reference:

Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1968.

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00	/1/1/111	\111M	25	51	+	$\mathrm{R}_{0} \mathrm{c}_{0}$
01	31	\uparrow	26	61	\times	$\mathrm{R}_{1} \mathrm{c}_{1}$
02	61	x	27	2400	RCL 0	$\mathrm{R}_{\mathbf{2}} \mathrm{C}_{2}$
03	1522	g 1/x	28	51	+	$\mathrm{R}_{3} \mathrm{~d}_{1}$
04	1407	f LN	29	2407	RCL 7	$\mathrm{R}_{4} \mathrm{~d}_{2}$
05	1402	$f \sqrt{x}$	30	71	\div	$\mathrm{R}_{5} \mathrm{~d}_{3}$
06	2306	STO 6	31	41	-	$\mathrm{R}_{6} \mathrm{t}$
07	31	\uparrow	32	1300	GTO 00	$\mathbf{R}_{7} 1+d_{1} t+d_{2} t^{2}+d_{3} t^{3}$
08	31	\uparrow	33			
09	31	\uparrow	34			
10	2405	RCL 5	35			
11	61	x	36			
12	2404	RCL 4	37			
13	51	+	38			
14	61	x	39			
15	2403	RCL 3	40			
16	51	+	41			
17	61	x	42			
18	01	1	43			
19	51	+	44			
20	2307	STO 7	45			
21	34	CLX	46			
22	2402	RCL 2	47			
23	61	x	48			
24	2401	RCL 1	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS			OUTPUT DATA/UNITS
1	Key in program					
2	Initialize		f	PRGM		
3	Store constants	c_{0}	STO	0		
		c_{1}	STO	1		
		c_{2}	STO	2		
		d_{1}	STO	3		
		d_{2}	STO	4		
		d_{3}	STO	5		
4	Input 0	0	R/S			
5	For a new case, go to 4.					

Examples:

1. $\mathrm{Q}=0.12$
2. $\mathrm{Q}=0.05$

Solutions:

1. $\mathrm{x}=1.18$
2. $x=1.65$

FACTORIAL

This program will compute factorials for positive integers between 2 and 69.

$$
n!=n(n-1)(n-2) \ldots(2)(1)
$$

Notes:

1. For large values of n, the program will take some time to arrive at a result, up to a maximum of about 20 seconds for $\mathrm{n}=69$.
2. The program does not check input values and will return incorrect answers for values of $\mathrm{n}<2$ or $\mathrm{n}>69$ or n non-integer.

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$
LINE	CODE	
00		
01	31	\uparrow
02	01	1
03	2300	STO 0
04	21	$x \vec{y}$
05	236100	STO $\times 0$
06	01	1
07	41	-
08	1461	$\mathrm{f} \mathrm{x} \neq \mathrm{y}$
09	1305	GTO 05
10	2400	RCL 0
11	1300	GTO 00
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

DISPLAY		KEY ENTRY
LINE	CODE	
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTERS
R_{0} Used
R_{1}
R_{2}
R_{3}
R_{4}
R_{5}
R_{6}
R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS			OUTPUT DATA/UNITS
1	Key in program					
2	Initialize		f	PRGM		
3	Key in $\mathrm{n}(2 \leqslant \mathrm{n} \leqslant 69)$	n	R/S			$n!$
4	For a new n, go to step 3.					

Examples:

1. $5!=120.00$
2. $10!=3628800.00$

PERMUTATION

A permutation is an ordered subset of a set of distinct objects. The number of possible permutations, each containing n objects, that can be formed from a collection of m distinct objects is given by

$$
{ }_{m} P_{n}=\frac{m!}{(m-n)!}=m(m-1) \ldots(m-n+1)
$$

where m, n are integers and $0 \leqslant n \leqslant m$.

Notes:

1. ${ }_{m} P_{n}$ can also be denoted by $P_{n}^{m}, P(m, n)$ or $(m)_{n}$.
2. ${ }_{m} P_{0}=1,{ }_{m} P_{1}=m,{ }_{m} P_{m}=m$!

DISPLAY		KEY ENTRY	DISPLAY		KEYENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00	$11111 /$	$111 / 1 \%$	25	1315	GTO 15	$\mathrm{R}_{\mathrm{o}} \mathrm{m}$
01	2400	RCL 0	26	22	$R \downarrow$	$\mathrm{R}_{1} \mathrm{n}$
02	2400	RCL 0	27	22	R \downarrow	$\mathrm{R}_{\mathbf{2}}$
03	2401	RCL 1	28	1300	GTO 00	R_{3}
04	1571	$\mathrm{g} \times=0$	29	01	1	R_{4}
05	1329	GTO 29	30	1300	GTO 00	R_{5}
06	1471	$\mathrm{f} \times \mathrm{y}$	31	01	1	R_{6}
07	1331	GTO 31	32	41	-	R_{7}
08	1451	$f x \geqslant y$	33	1571	$\mathrm{gx}=0$	
09	1339	GTO 39	34	1337	GTO 37	
10	01	1	35	236100	STO $\times 0$	
11	1471	$\mathrm{f}=\mathrm{y}$	36	1331	GTO 31	
12	1341	GTO 41	37	2400	RCL 0	
13	22	R \downarrow	38	1300	GTO 00	
14	41	-	39	00	0	
15	01	1	40	71	\div	
16	51	+	41	22	R \downarrow	
17	61	x	42	22	R \downarrow	
18	1473	f LASTx	43	1300	GTO 00	
19	2400	RCL 0	44			
20	01	1	45			
21	41	-	46			
22	1471	$f \mathrm{f}=\mathrm{y}$	47			
23	1326	GTO 26	48			
24	22	R \downarrow	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Store m, n	m	STO	0			
		n	STO	1			
3	Compute permutations		f	PRGM	R/S		${ }_{m} \mathrm{P}_{\mathrm{n}}$
4	For new case, go to step 2.						

Examples:

1. ${ }_{43} \mathrm{P}_{3}=74046.00$
2. ${ }_{73} \mathrm{P}_{4}=26122320.00$

COMBINATION

A combination is a selection of one or more of a set of distinct objects without regard to order. The number of possible combinations, each containing n objects, that can be formed from a collection of m distinct objects is given by

$$
{ }_{m} C_{n}=\frac{m!}{(m-n)!n!}=\frac{m(m-1) \ldots(m-n+1)}{1 \cdot 2 \cdot \ldots \cdot n}
$$

where m, n are integers and $0 \leqslant \mathrm{n} \leqslant \mathrm{m}$.
This program computes ${ }_{m} C_{n}$ using the following algorithm:

1. If $n \leqslant m-n$

$$
{ }_{m} C_{n}=\frac{m-n+1}{1} \cdot \frac{m-n+2}{2} \cdot \ldots \cdot \frac{m}{n} .
$$

2. If $\mathrm{n}>\mathrm{m}-\mathrm{n}$, program computes $\mathrm{m}_{\mathrm{m}-\mathrm{n}}$.

Notes:

1. ${ }_{m} \mathrm{C}_{\mathrm{n}}$, which is also called the binomial coefficient, can be denoted by $\mathrm{C}_{\mathrm{n}}^{\mathrm{m}}, \mathrm{C}(\mathrm{m}, \mathrm{n})$, or $\binom{\mathrm{m}}{\mathrm{n}}$.
2. $m_{m} C_{m} C_{m-n}$
3. $\mathrm{m}_{\mathrm{m}}={ }_{\mathrm{m}} \mathrm{C}_{\mathrm{m}}=1$
4. ${ }_{m} C_{1}={ }_{m} C_{m-1}=m$

DISPLAY		KEY ENTRY
LINE	CODE	
00	11111111	M/1/1]
01	41	-
02	1473	f LAST x
03	1441	$f x<y$
04	21	$x \vec{y}$
05	2300	STO 0
06	01	1
07	2301	STO 1
08	51	+
09	2302	STO 2
10	22	R \downarrow
11	1571	$\mathrm{g} x=0$
12	1330	GTO 30
13	01	1
14	2401	RCL 1
15	51	+
16	2301	STO 1
17	21	$x \vec{y}$
18	1451	$f x \geqslant y$
19	1322	GTO 22
20	2402	RCL 2
21	1300	GTO 00
22	21	$x \stackrel{y}{ }$
23	2400	RCL 0
24	51	+

DISPLAY		KEY ENTRY
LINE	CODE	CO
25	2401	RCL 1
26	71	\div
27	236102	STO $\times 2$
28	22	R \downarrow
29	1313	GTO 13
30	01	1
31	1300	GTO 00
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTERS
$R_{\mathbf{0}}$ max $(\mathrm{n}, \mathrm{m}-\mathrm{n})$
$\mathbf{R}_{\mathbf{1}}$ Used
$\mathbf{R}_{\mathbf{2}}$ Used
$\mathbf{R}_{\mathbf{3}}$
$\mathbf{R}_{\mathbf{4}}$
$\mathbf{R}_{\mathbf{5}}$
$\mathbf{R}_{\mathbf{6}}$
$\mathbf{R}_{\mathbf{7}}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Key in m and n	m	\uparrow				
		n	f	PRGM	R/S		${ }_{\mathrm{m}} \mathrm{C}_{\text {n }}$
3	For new case, go to step 2.						

Examples:

1. ${ }_{73} \mathrm{C}_{4}=1088430.00$
2. ${ }_{43} \mathrm{C}_{3}=12341.00$

RANDOM NUMBER GENERATOR

This program calculates uniformly distributed pseudo random numbers u_{i} in the range

$$
0 \leqslant u_{i} \leqslant 1
$$

using the following formula:

$$
u_{i}=\text { Fractional part of }\left[\left(\pi+u_{i-1}\right)^{5}\right] .
$$

The user has to specify the starting value u_{0} (the "seed" of the sequence) such that

$$
0 \leqslant u_{0} \leqslant 1
$$

DISPLAY		KEY ENTRY
LINE	CODE	
00	11111111	11111117
01	1573	$\mathrm{g} \pi$
02	2400	RCL 0
03	51	+
04	05	5
05	1403	$f y^{x}$
06	1501	g FRAC
07	2300	STO 0
08	1300	GTO 00
09		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

DISPLAY		KEY ENTRY
LINE	CODE	
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

\quad REGISTERS
$R_{0} u_{i}$
R_{1}
R_{2}
R_{3}
R_{4}
R_{5}
R_{6}
R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Store seed	u_{0}	STO	0	f	PRGM	
3	Generate random number		R/S				u_{i}
4	Repeat step 3 as many times as						
	desired						
5	For new sequence, go to step 2.						

Example:

Find the sequence of random numbers generated from a seed of 0.192743568 .

Solution:

$0.14,0.76,0.15,0.35,0.62,0.54,0.62,0.91,0.48,0.24, \ldots$.

CHI-SQUARE EVALUATION

This program calculates the value of the χ^{2} statistic for the goodness of fit test by the equation

$$
\chi^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

where $O_{i}=$ observed frequency
$\mathrm{E}_{\mathrm{i}}=$ expected frequency.
The χ^{2} statistic measures the closeness of the agreement between the observed frequencies and expected frequencies.

Notes:

1. In order to apply this test to a set of given data, it may be necessary to combine some classes to make sure that each expected frequency is not too small (say, not less than 5).
2. If the expected frequencies E_{i} are all equal to some value E, then E should be computed beforehand as

$$
\mathrm{E}=\frac{\Sigma \mathrm{O}_{\mathrm{i}}}{\mathrm{n}}
$$

and then input at each step as the expected frequency E_{i}.

DISPLAY		KEY ENTRY
LINE	CODE	
00	111/1111	1/11/17
01	00	0
02	2300	STO 0
03	2301	STO 1
04	74	R/S
05	2302	STO 2
06	41	-
07	1502	$\mathrm{g} \mathrm{x}^{2}$
08	2402	RCL 2
09	71	\div
10	235101	STO + 1
11	2400	RCL 0
12	01	1
13	51	+
14	2300	STO 0
15	1304	GTO 04
16	2302	STO 2
17	41	-
18	1502	$\mathrm{gx}{ }^{2}$
19	2402	RCL 2
20	71	\div
21	234101	STO-1
22	2400	RCL 0
23	01	1
24	41	-

DISPLAY		KEY ENTRY
LINE	CODE	
25	2300	STO 0
26	1304	GTO 04
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTERS
$R_{0} n$
$R_{1} \chi^{2}$
$R_{2} E_{i}$
R_{3}
R_{4}
R_{5}
R_{6}
R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Initialize		f	PRGM	R/S		0.00
3	Perform for $\mathrm{i}=1, \ldots, \mathrm{n}$:						
	Input observed and expected						
	frequencies	O_{i}	\uparrow				
		E_{i}	R/S				i
4	Delete erroneous data	O_{k}	\uparrow				
		E_{k}	GTO	16	R/S		
5	Display χ^{2}		RCL	1			χ^{2}
6	For new case, go to step 2.						

Example:

O_{i}	8	50	47	56	5	14
E_{i}	9.6	46.75	51.85	54.4	8.25	9.15

Solution:

$\chi^{2}=4.84$

PAIRED t STATISTIC

Given a set of paired observations from two normal populations with means μ_{1}, μ_{2} (unknown)

x_{i}	x_{1}	x_{2}	\cdots	x_{n}
y_{i}	y_{1}	y_{2}	\cdots	y_{n}

let

$$
\begin{gathered}
D_{i}=x_{i}-y_{i} \\
\bar{D}=\frac{1}{n} \sum_{i=1}^{n} D_{i}
\end{gathered}
$$

$$
s_{\bar{D}}=\frac{s_{D}}{\sqrt{n}}
$$

The test statistic

$$
\mathrm{t}=\frac{\overline{\mathrm{D}}}{\mathrm{~s}_{\overline{\mathrm{D}}}},
$$

which has $n-1$ degrees of freedom (df), can be used to test the null hypothesis

$$
\mathrm{H}_{0}: \mu_{1}=\mu_{2}
$$

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00	(1) $11 / 11$		25			$\mathbf{R}_{\text {o }}$
01	41	-	26			R_{1}
02	25	$\Sigma+$	27			$\mathrm{R}_{\mathbf{2}}$
03	1300	GTO 00	28			$\mathbf{R}_{3} \mathrm{n}$
04	1422	$f \mathrm{~s}$	29			\mathbf{R}_{4} Used
05	2403	RCL 3	30			\mathbf{R}_{5} Used
06	1402	$f \sqrt{x}$	31			$\mathbf{R}_{6} \Sigma \mathrm{D}_{\mathrm{i}}$
07	71	\div	32			$\mathrm{R}_{7} \mathrm{\Sigma} \mathrm{D}_{\mathrm{i}}{ }^{2}$
08	1421	f \bar{x}	33			
09	21	$x \vec{\leftarrow} \mathrm{y}$	34			
10	71	\div	35			
11	74	R/S	36			
12	2403	RCL 3	37			
13	01	1	38			
14	41	-	39			
15	1300	GTO 00	40			
16			41			
17			42			
18			43			
19			44			
20			45			
21			46			
22			47			
23			48			
24			49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Initialize		f	REG	f	PRGM	
3	Perform for $\mathrm{i}=1, \ldots, \mathrm{n}$:						
	Input one pair of observations	x_{i}	\uparrow				
		y_{i}	R/S				i
4	Delete erroneous data	x_{k}	\uparrow				
		y_{k}	-	f	$\Sigma-$		
5	Compute t and df		GTO	04	R/S		t
			R/S				df
6	For new case, go to step 2.						

Example:

x_{i}	14	17.5	17	17.5	15.4
y_{i}	17	20.7	21.6	20.9	17.2

Solution:

$$
\begin{aligned}
& t=-7.16 \\
& d f=4.00
\end{aligned}
$$

t STATISTIC FOR TWO MEANS

Suppose $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}_{1}}\right\}$ and $\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}_{2}}\right\}$ are independent random samples from two normal populations having means μ_{1}, μ_{2} (unknown) and the same unknown variance σ^{2}.

We want to test the null hypothesis

$$
\mathrm{H}_{0}: \mu_{1}-\mu_{2}=\mathrm{D}
$$

where D is a given number.

Define

$$
\begin{gathered}
\bar{x}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} x_{i} \\
\bar{y}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} y_{i} \\
t=\frac{\bar{x}-\bar{y}-D}{\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \sqrt{\frac{\sum x_{i}^{2}-n_{1} \bar{x}^{2}+\sum y_{i}^{2}-n_{2} \bar{y}^{2}}{n_{1}+n_{2}-2}}}
\end{gathered}
$$

We can use this t statistic, which has the t distribution with $n_{1}+n_{2}-2$ degrees of freedom, to test the null hypothesis H_{0}.

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00			25	2401	RCL 1	$\mathrm{R}_{\mathrm{o}} \mathrm{n}_{1}$
01	2403	RCL 3	26	2402	RCL 2	$\mathrm{R}_{1} \Sigma \mathrm{x}^{2}$
02	2300	STO 0	27	1502	$\mathrm{gx}{ }^{2}$	$\mathbf{R}_{\mathbf{2}} \overline{\mathrm{x}}$
03	2406	RCL 6	28	2400	RCL 0	\mathbf{R}_{3} n_{2}
04	2301	STO 1	29	61	x	R_{4} Used
05	1421	f \bar{x}	30	41	-	R_{5} Used
06	2302	STO 2	31	2406	RCL 6	$\mathbf{R}_{6} \Sigma y^{2}$
07	34	CLX	32	51	+	$\mathbf{R}_{7} \Sigma^{\prime}$
08	2303	STO 3	33	1421	f $\overline{\mathrm{x}}$	
09	2306	STO 6	34	1502	$g \mathrm{x}^{2}$	
10	2307	STO 7	35	2403	RCL 3	
11	74	R/S	36	61	x	
12	31	\uparrow	37	41	-	
13	1421	f \bar{x}	38	2400	RCL 0	
14	51	+	39	2403	RCL 3	
15	2402	RCL 2	40	51	+	
16	21	$x \vec{\rightleftarrows} \mathrm{y}$	41	02	2	
17	41	-	42	41	-	
18	2400	RCL 0	43	71	\div	
19	1522	g $1 / \mathrm{x}$	44	1402	$f \sqrt{x}$	
20	2403	RCL 3	45	71	\div	
21	1522	g 1/x	46	1300	GTO 00	
22	51	$+$	47			
23	1402	$f \sqrt{x}$	48			
24	71	\div	49			

| STEP | $\begin{array}{c}\text { INSTRUCTIONS }\end{array}$ | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | $\begin{array}{c}\text { KEYS } \\ \text { OUTPUT }\end{array}$ |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- |
| DATANITS | | | | |$]$

Example:

x: $\quad 79,84,108,114,120,103,122,120$
$\mathrm{y}: 91,103,90,113,108,87,100,80,99,54$
$\mathrm{n}_{1}=8$
$\mathrm{n}_{2}=10$
$\mathrm{D}=0\left(\right.$ i.e., $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$)
Solution:
$\mathrm{t}=1.73$
$\overline{\mathrm{x}}=106.25$
$\overline{\mathrm{y}}=92.50$

ONE SAMPLE TEST STATISTICS FOR THE MEAN

For a normal population ($\mathrm{x}_{1}, \mathrm{x}_{2} \ldots, \mathrm{x}_{\mathrm{n}}$) with a known variance σ^{2}, a test of the null hypothesis

$$
\mathrm{H}_{0}: \text { mean } \mu=\mu_{0}
$$

is based on the z statistic (which has a standard normal distribution)

$$
\mathrm{z}=\frac{\sqrt{\mathrm{n}}\left(\overline{\mathrm{x}}-\mu_{0}\right)}{\sigma} .
$$

If the variance σ^{2} is unknown, then

$$
\mathrm{t}=\frac{\sqrt{\mathrm{n}}\left(\overline{\mathrm{x}}-\mu_{0}\right)}{\mathrm{s}}
$$

is used instead. This t statistic has the t distribution with $n-1$ degrees of freedom. \bar{x} and s are the sample mean and standard deviation.

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$
LINE	CODE	
00		111117
01	1421	f \bar{x}
02	21	$x \nrightarrow y$
03	41	-
04	2403	RCL 3
05	1402	$f \sqrt{x}$
06	61	\times
07	2300	STO 0
08	34	CLX
09	74	R/S
10	2400	RCL 0
11	1422	f s
12	71	\div
13	74	R/S
14	2400	RCL 0
15	21	$x \vec{y}$
16	71	\div
17	1300	GTO 00
18		
19		
20		
21		
22		
23		
24		

DISPLAY		KEY ENTRY
LINE	CODE	
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTERS
$\mathbf{R}_{\mathbf{0}} \sqrt{\mathrm{n}}\left(\overline{\mathrm{x}}-\mu_{0}\right)$
$\mathbf{R}_{\mathbf{1}}$
$\mathbf{R}_{\mathbf{2}}$
$\mathbf{R}_{\mathbf{3}} \mathrm{n}$
$\mathbf{R}_{\mathbf{4}}$ Used
$\mathbf{R}_{\mathbf{5}}$ Used
$\mathbf{R}_{\mathbf{6}} \Sigma \mathrm{x}$
$\mathbf{R}_{\mathbf{7}} \Sigma \mathrm{x}^{2}$

Example:

Suppose $\mu_{0}=2$, for the following set of data
$\{2.73,0.45,2.52,1.19,3.51,2.75,1.79,1.83,1,0.87,1.9,1.62,1.74,1.92$, $1.24,2.68\}$

Solution:

test statistic $\mathrm{t}=-.69$
or $\mathrm{z}=-.57$ if $\sigma=1$.

CHAPTER 7 SURVEYING

FIELD ANGLE TRAVERSE

A traverse is a series of line segments joined with specific lengths and angular relations to each other. With many applications in surveying, the field angle traverse may be used in establishing boundary lines, road layout, and in numerous construction situations. The transit and "chain" (commonly a length of steel tape) are often used to establish the angles and distances involved in a field angle traverse.

Starting at a known point from a given reference direction, the transit man establishes the direction of a new line by measuring the angle or deflection turned to align the scope of the transit to the new line. With a measured distance to the end point on the new line and its direction, coordinates of the end point relative to the origin may be established. The transit is then moved to the new "origin", the reference direction is the line just determined, and the process continues.

To run this program, the user must input the northing and easting of his starting point, the reference azimuth, and then the direction and distance from each point in the traverse to the next point. The direction may be input either as a deflection right or left, or as an angle right or left. The distance may be input either as horizontal distance, or as slope distance with zenith angle.

Equations:

H Dist = S Dist \sin (Znth ang)
$\mathrm{N}_{\mathrm{i}+1}=\mathrm{N}_{\mathrm{i}}+\mathrm{H}$ Dist $\cos \mathrm{Az}$
$\mathrm{E}_{\mathrm{i}+1}=\mathrm{E}_{\mathrm{i}}+\mathrm{H}$ Dist $\sin \mathrm{Az}$

$$
\begin{aligned}
\text { Area }= & 1 / 2 \\
& {\left[\left(N_{2}+N_{1}\right)\left(E_{2}-E_{1}\right)+\left(N_{3}+N_{2}\right)\left(E_{3}-E_{2}\right)+\right.} \\
& \left.\ldots+\left(N_{n}+N_{1}\right)\left(E_{1}-E_{n}\right)\right]
\end{aligned}
$$

where: $\mathrm{N}, \mathrm{E}=$ Northing, easting of a point
Subscript i refers to current point
Subscript n refers to next to last point
Numeric subscript refers to point number
$\mathrm{Az}=$ Azimuth of a course
H Dist $=$ Horizontal distance
S Dist = Slope distance
Znth ang $=$ Zenith angle

Notes:

1. The calculation for area of a closed traverse may be inaccurate for cases in which the coordinates of the figure are quite large, such as in state plane coordinate systems. In such cases, the user may run the Area By Double Meridian Distance program to calculate an accurate value for area once the bearings and distances have been established by this program.
2. All angular inputs and outputs are in the form degrees, minutes, and seconds (D.MS).

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$	\mathbf{X}	\mathbf{Y}	Z	T	COMMENTS	REGISTERS
LINE	CODE							
00								$\mathrm{R}_{0} \mathrm{Az}$
01	1500	$\mathrm{g} \rightarrow \mathrm{H}$	Ref Az				Convert to decimal degrees	
02	01	1	1	Ref Az				
03	08	8	18	Ref $A z$				R 1 Current
04	00	0	180	Ref Az				${ }^{1} 1$
05	51	+	$180+$ Az					
06	2300	STO 0	$180+\mathrm{Az}$					R 2 Current
07	2401	RCL 1	N_{1}	$180+A z$				$\mathrm{N}_{2} \mathrm{E}$
08	2305	STO 5	N_{1}	$180+A z$			Initialize "previous N"	
09	00	0	0	N_{1}	$180+A z$		Clear $\mathbf{R}_{3}, \mathbf{R}_{4}$, for	R_{3} 玉 H Dist
10	2303	STO 3	0	N_{1}	$180+A z$		accumulation	
11	2304	STO 4	0	N_{1}	$180+A z$			
12	74	R/S	0	N_{1}	$180+$ Az			R_{4} Area
13	1500	$\mathrm{g} \rightarrow \mathrm{H}$	Angle				Convert to decimal degrees	
14	01	1	1	Angle				
15	08	8	18	Angle				R_{5} Previous
16	00	0	180	Angle				N
17	51	+	180 + Ang					
18	1400	$f \rightarrow$ H.MS	(D.MS)					
19	1500	$\mathrm{g} \rightarrow \mathrm{H}$	Defl				Deflection comes in here	
20	2400	RCL 0	$A z$	Defl				
21	51	+	$A z+$ Defl				Find new azimuth	R_{7}
22	2300	STO 0	$A z_{i}$					
23	1400	$f \rightarrow$ H.MS	$A z_{i}$				Convert to D.MS for	
24	74	R/S	$A z_{i}$				display	
25	1329	GTO 29	H Dist					
26	21	$x \neq y$	Zn Ang	S Dist				
27	1404	f SIN	$\sin \mathrm{Zn}$	S Dist				
28	61	x	H Dist				H Dist $=\sin \mathrm{Zn}$ (S Dist)	
29	235103	STO + 3	H Dist				Accumulate H Dist	
30	2400	RCL 0	Az	H Dist				
31	21	$x \neq y$	H Dist	Az				
32	1409	$f \rightarrow R$	ΔN	$\Delta \mathrm{E}$				
33	235101	STO + 1	$\triangle N$	$\Delta \mathrm{E}$			$\Delta N=H$ Dist $(\cos A z)$	
34	21	$x \vec{y}$	$\Delta \mathrm{E}$	ΔN				
35	235102	STO + 2	$\Delta \mathrm{E}$	$\triangle N$			$\Delta E=H$ Dist $(\sin A z)$	
36	2405	RCL 5	$\mathrm{N}_{\mathrm{i}-1}$	$\Delta \mathrm{E}$	ΔN			
37	2401	RCL 1	N_{i}	$\mathrm{N}_{\mathrm{i}-1}$	$\triangle \mathrm{E}$	$\Delta \mathrm{N}$		
38	2305	STO 5	N_{i}	$\mathrm{N}_{\mathrm{i}-1}$	ΔE	ΔN	Update "previous N"	
39	51	+	$\left(N_{i}+N_{i-1}\right)$	$\Delta \mathrm{E}$	ΔN			
40	61	x	$\triangle \mathrm{A}$	ΔN			$\Delta A=\left(N_{i}+N_{i-1}\right) \Delta E$	
41	02	2	2	$\triangle \mathrm{A}$	$\Delta \mathrm{N}$			
42	71	\div	$1 / 2 \triangle A$	$\triangle N$				
43	235104	STO + 4	$1 / 2 \Delta A$	ΔN			Accumulate Area	
44	2401	RCL 1	N_{i}	$1 / 2 \triangle A$	ΔN			
45	74	R/S	N_{i}	$1 / 2 \triangle A$	ΔN		Display Northing	
46	2402	RCL 2	$\mathrm{E}_{\mathbf{i}}$	N_{i}	$1 / 2 \triangle A$	$\Delta \mathrm{N}$		
47	1312	GTO 12	E_{i}	N_{i}	$1 / 2 \triangle A$	$\triangle \mathrm{N}$	Display Easting	
48								
49								

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Input the starting point coord-						
	inates	N_{1}	STO	1			
	Input the reference azimuth	E_{1}	STO	2			
3		Ref Az, D.MS	f	PRGM	R/S		0.00
4a.	If angle right	AR, D.MS	R/S				Az ${ }_{\text {i }}$, D.MS
4 b .	If angle left	AL, D.MS	CHS	R/S			$A z_{i}$, D.MS
4c.	If deflection right	DR, D.MS	GTO	19	R/S		Azi, D.MS
4d.	If deflection left	DL, D.MS	CHS	GTO	19	R/S	Azi, D.MS
5.	If horizontal distance	H Dist	R/S				N_{i}
			R/S				E_{i}
5b.	If slope distance, input Zenith						
	Angle and Slope Distance	Zn, Ang, D.MS	\uparrow				
		S Dist	GTO	26	R/S		N_{i}
			R/S				E_{i}
6	Repeat steps 4-5 for successive						
	courses.						
7	Display total horizonal distance						
	traversed		RCL	3			$\Sigma \mathrm{H}$ Dist
8	Display area for closed traverse						
	(ignore sign)		RCL	4			Area

Example:

The diagram below shows measurements taken for a closed traverse. Find the coordinates of points 2,3 , and 4 , the total horizontal distance traversed, and the area of the figure.

Solution:

Calculated ending coordinates $\frac{N=149.903}{E=399.784}$

AREA BY DOUBLE MERIDIAN DISTANCE

This program computes the area of a straight-sided closed figure from the bearings and lengths of its sides. It is generally more accurate than methods which calculate area from the coordinates of the figure.

$$
\text { Area }=\frac{1}{2} \sum_{i} \text { DMD }_{i} \times \text { Latitude }_{i}
$$

$$
\operatorname{DMD}_{\mathrm{i}}=\mathrm{DMD}_{\mathrm{i}-1}+\text { Departure }_{\mathrm{i}-1}+\text { Departure }_{\mathrm{i}}
$$

where

$$
\text { Departure }_{i}=\text { Dist }_{i} \sin A z_{i} \quad \text { Latitude }_{i}=\text { Dist }_{i} \cos A z_{i}
$$

Note:

Angles are input as bearing and quadrant code. The quadrant code is 1 for NE, 2 for SE, 3 for SW, and 4 for NW.

DISPLAY		KEYENTRY	DISPLAY		KEY ENTRY	REGISTERS	
LINE	CODE		LINE	CODE			
00	1111117		25	1409	$f \rightarrow R$	R ${ }_{\text {o }}$	$\mathrm{Brg}, \mathrm{Az} \mathrm{i}_{\mathrm{i}}$
01	1500	$\mathrm{g} \rightarrow \mathrm{H}$	26	21	$x \vec{y}$	\mathbf{R}_{1}	$\mathrm{DMD}_{\mathrm{i}-1}$
02	2300	STO 0	27	2402	RCL 2	$\mathbf{R}_{\mathbf{2}}$	Departure $_{\text {i-1 }}$
03	74	R/S	28	21	$x \vec{y}$	\mathbf{R}_{3}	Area
04	31	\uparrow	29	2302	STO 2	R_{4}	
05	31	\uparrow	30	51	+	R_{5}	
06	02	2	31	2401	RCL 1	\mathbf{R}_{6}	
07	71	\div	32	51	+	R_{7}	
08	1401	f INT	33	2301	STO 1		
09	01	1	34	61	x		
10	08	8	35	02	2		
11	00	0	36	71	\div		
12	61	x	37	235103	STO + 3		
13	21	$x \stackrel{\rightharpoonup}{*}$	38	2403	RCL 3		
14	1473	f LASTX	39	1300	GTO 00		
15	61	x	40				
16	1405	$f \mathrm{COS}$	41				
17	2400	RCL 0	42				
18	61	x	43				
19	41	-	44				
20	2300	STO 0	45				
21	1400	$f \rightarrow$ H.MS	46				
22	74	R/S	47				
23	2400	RCL 0	48				
24	21	$x \vec{y}$	49				

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Initialize		f	REG	\dagger	PRGM	
3	Input bearing	Brg, D.MS	R/S				Brg, dec. deg.
4	Input quadrant code	Quad	R/S				Az, D.MS
5	Input distance	Dist	R/S				Area
6	Repeat steps 3, 4, 5 for succes-						
	sive courses. Area is displayed						
	after last distance has been input.						

Example:

Compute the area of the figure below.

Solution:

Area $=20937.44$ sq. ft.

INVERSE FROM COORDINATES

This program uses coordinates to calculate distance and bearing between points of a traverse. The area in square feet and a summation of distance inversed are also computed.

$$
H \text { Dist }=\sqrt{\left(N_{i}-N_{i-1}\right)^{2}+\left(E_{i}-E_{i-1}\right)^{2}} \quad A z=\tan ^{-1} \frac{E_{i}-E_{i-1}}{N_{i}-N_{i-1}}
$$

$$
\begin{aligned}
\text { Area }= & 1 / 2 \\
& {\left[\left(N_{2}+N_{1}\right)\left(E_{2}-E_{1}\right)+\left(N_{3}+N_{2}\right)\left(E_{3}-E_{2}\right)+\right.} \\
& \left.\ldots\left(N_{n}+N_{1}\right)\left(E_{1}-E_{n}\right)\right]
\end{aligned}
$$

where $\mathrm{N}, \mathrm{E}=$ Northing, easting of a point
Subscript i referes to current point
Subscript n refers to next to last point
Numeric subscript refers to point number
H Dist $=$ Horizontal distance
$\mathrm{Az}=$ Azimuth of a course

DISPLAY		KEY ENTRY
LINE	CODE	
00	\|1/1/11	T/ITIT
01	1433	f REG
02	2302	STO 2
03	21	$x \neq y$
04	2300	STO 0
05	2301	STO 1
06	74	R/S
07	2402	RCL 2
08	41	-
09	235102	STO + 2
10	2305	STO 5
11	21	$x \vec{y}$
12	2401	RCL 1
13	41	-
14	235101	STO + 1
15	1509	$\mathrm{g} \rightarrow \mathrm{P}$
16	235103	STO + 3
17	74	R/S
18	21	$x \vec{*} y$
19	1551	$\mathrm{g} x \geqslant 0$
20	1325	GTO 25
21	03	3
22	06	6
23	00	0
24	51	+

DISPLAY		KEY ENTRY
LINE	CODE	
25	31	\uparrow
26	31	\uparrow
27	09	9
28	00	0
29	71	\div
30	01	1
31	51	+
32	1401	f INT
33	21	$x \vec{\leftarrow} \mathrm{y}$
34	1404	f SIN
35	1504	$\mathrm{g} \mathrm{SIN}{ }^{-1}$
36	1541	$\mathrm{g} \mathrm{x}<0$
37	32	CHS
38	1400	$f \rightarrow$ H.MS
39	2400	RCL 0
40	2401	RCL 1
41	2300	STO 0
42	51	+
43	2405	RCL 5
44	61	x
45	02	2
46	71	\div
47	235104	STO + 4
48	22	R \downarrow
49	1306	GTO 06

REGISTERS
$\mathbf{R}_{\mathbf{0}}$ Previous N
$\mathbf{R}_{\mathbf{1}}$ Current N
$\mathbf{R}_{\mathbf{2}}$ Current E
$\mathbf{R}_{\mathbf{3}}$ H Dist
$\mathbf{R}_{\mathbf{4}}$ Area
$\mathbf{R}_{\mathbf{5}} \Delta \mathrm{E}$
$\mathbf{R}_{\mathbf{6}}$
$\mathbf{R}_{\mathbf{7}}$

| STEP | INSTRUCTIONS | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | KEYS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OATPUT | | | | |
| DATA/UNITS | | | | |$]$

Example:

Area $=\mathbf{2 0 9 3 7 . 5}$ Sq. $\mathbf{f t}$.
Total distance inversed $=\mathbf{6 4 1 . 0 3 3}$

COORDINATE TRANSLATION AND ROTATION

There are occasions, for instance in cartography or metalworking, when it is necessary or advantageous to shift one's frame of reference. In mathematical terms, the occasion calls for a translation and/or rotation of the coordinate system. The origin is translated from $(0,0)$ to a new point, $\left(x_{0}, y_{0}\right)$, and the x and y axes are then rotated through an angle α to give new axes, x^{\prime} and y^{\prime}. Suppose that a point P has coordinates (x, y) with respect to the old system of x and y axes. The problem then is to find the coordinates (x^{\prime}, y^{\prime}) of P with respect to the new system whose axes are x^{\prime} and y^{\prime}. The diagram below illustrates this situation.

Equations:

$$
\begin{gathered}
\mathrm{x}^{\prime}=\left(\mathrm{x}-\mathrm{x}_{0}\right) \cos \alpha+\left(\mathrm{y}-\mathrm{y}_{0}\right) \sin \alpha \\
\mathrm{y}^{\prime}=-\left(\mathrm{x}-\mathrm{x}_{0}\right) \sin \alpha+\left(\mathrm{y}-\mathrm{y}_{0}\right) \cos \alpha
\end{gathered}
$$

Notes:

1. The program may be used to solve a problem of translation only, or of rotation only, or of combined translation and rotation. If the problem involves translation alone, a value of $\alpha=0$ must be input. For rotation alone, the values $\mathrm{x}_{0}=\mathrm{y}_{0}=0$ must be input.
2. The program assumes the following sign convention: α should be input as a positive number if the rotation is counterclockwise, and negative if clockwise.

Programming Remarks:

This program demonstrates a particularly powerful application of the polar-to-rectangular conversion ($\square \rightarrow \mathbb{R}$) when combined with the capabilities of the four-register stack. The subterms $\left(\mathrm{x}-\mathrm{x}_{0}\right) \cos \alpha,\left(\mathrm{x}-\mathrm{x}_{0}\right) \sin \alpha,\left(\mathrm{y}-\mathrm{y}_{0}\right)$ $\cos \alpha$, and $\left(y-y_{0}\right) \sin \alpha$ are all generated through $f \rightarrow \mathrm{R}$ and stored in the stack until needed. A more straightforward program using \square sin and \square cos would have required 30 program steps (as compared to 19) and one more storage register.

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$	X	Y	Z	T	COMments	REGISTERS
LINE	CODE							
00	11111	(11)1\%	y	x				R 0 - ${ }_{0}$
01	2303	STO 3	y	x				
02	22	R \downarrow	\times			v		
03	2402	RCL 2	α	x				$\mathrm{R}_{1} \mathrm{y}_{0}$
04	21	$x+y$	x	α				
05	2400	RCL 0	x_{0}	x	α			
06	41	-	Δx	α			$\Delta x=x-x_{0}$	R
07	1409	$f \rightarrow \mathrm{R}$	$\Delta x \cos \alpha$	$\Delta x \sin \alpha$				
08	2403	RCL 3	y	$\Delta x \cos \alpha$	$\Delta x \sin \alpha$			
09	2401	RCL 1	y_{0}	y	$\Delta x \cos \alpha$	$\Delta x \sin \alpha$		$\mathrm{R}_{3} \mathrm{~V}$
10	41	-	Δy	$\Delta x \cos \alpha$	$\Delta x \sin \alpha$	$\Delta x \sin \alpha$	$\Delta y=y-y_{0}$	${ }^{3}$
11	2402	RCL 2	α	Δy	$\Delta x \cos \alpha$	$\Delta x \sin \alpha$		
12	21	$x \geq y$	Δy	α	$\Delta x \cos \alpha$	$\Delta x \sin \alpha$		
13	1409	$f \rightarrow R$	$\Delta y \cos \alpha$	$\Delta y \sin \alpha$	$\Delta x \cos \alpha$	$\Delta x \sin \alpha$		N_{4}
14	22	R \downarrow	$\Delta y \sin \alpha$	$\Delta x \cos \alpha$	$\Delta x \sin \alpha$	$\Delta y \cos \alpha$		
15	51	+	${ }^{\prime}$	$\Delta x \sin \alpha$	$\Delta y \cos \alpha$	$\Delta y \cos \alpha$	$x^{\prime}=\Delta x \cos \alpha+\Delta y \sin \alpha$	R_{5}
16	74	R/S	${ }^{\prime}$	$\Delta x \sin \alpha$	$\Delta \mathrm{y} \cos \alpha$	$\Delta y \cos \alpha$,
17	22	R \downarrow	$\Delta x \sin \alpha$	$\Delta y \cos \alpha$	$\Delta y \cos \alpha$	${ }^{\prime}$		
18	41	-	y^{\prime}	$\Delta y \cos \alpha$	x^{\prime}	${ }^{\prime}$	$y^{\prime}=-\Delta x \sin \alpha+\Delta y \cos \alpha$	R_{6}
19	1300	GTO 00	v^{\prime}	$\Delta y \cos \alpha$	x^{\prime}	x^{\prime}		0_{6}
20								
21								R_{7}
22								
23								
24								
25								
26								
27								
28								
29								
30								
31								
32								
33								
34								
35								
36								
37								
38								
39								
40								
41								
42								
43								
44								
45								
46								
47								
48								
49								

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Store origin of new coordinate						
	system	x_{0}	STO	0			
		y_{0}	STO	1			
3	Store angle of rotation	α	STO	2	f	PRGM	
4	Convert coordinates from old to						
	new system	x	\uparrow				
		y	R/S				x^{\prime}
			R/S				y^{\prime}
5	Perform step 4 for as many						
	points as desired						
6	For a new case, go to step 2.						

Example:

A backpacker's route will take him cross-country away from the marked trails of an area. He knows that he will have to check his compass frequently against his map over this terrain, and regrets that the map is in such an inconvenient format for his purposes. In the first place, the grid lines on his map represent distances in feet from an origin about 25 miles away, which are such large numbers that they are hard to calculate with. Secondly, the map's grid is based on true north while his compass readings are relative to magnetic north, a variation of 17°.

Before he leaves home, the packer decides to draw a rough version of the map for his own convenience, locating his origin at the grid point (54000, 118000) and rotating his axes by 17° in a clockwise direction. As a first step, he wants to find the new coordinates of the bridge and the peak of the hill, whose coordinates in the old system are (55750,119300) and (57450, 120 500) respectively.

Solution:

The new coordinates of the bridge are $(1293,1755)$.

The new coordinates of the peak are $(2568,3399)$.

TRIANGLE SOLUTION B, b, c

Given two sides and a non-included angle, this program solves the triangle for the remaining parameters by the following formulas:

1. $\mathrm{C}=\sin ^{-1}\left(\frac{\mathrm{c} \sin \mathrm{B}}{\mathrm{b}}\right)$
2. $\mathrm{A}=2 \sin ^{-1} 1-(\mathrm{B}+\mathrm{C})=\pi$ radians $-(\mathrm{B}+\mathrm{C})=180^{\circ}-(\mathrm{B}+\mathrm{C})$

$$
=200 \text { grads }-(B+C)
$$

3. $\mathrm{a}=\frac{\mathrm{b} \sin \mathrm{A}}{\sin \mathrm{B}}$

If B is acute $\left(<90^{\circ}\right)$ and $\mathrm{b}<\mathrm{c}$, a second set of solutions exists and is calculated by the following formulas:
4. $\mathrm{C}^{\prime}=2 \sin ^{-1} 1-\mathrm{C}$
5. $\mathrm{A}^{\prime}=2 \sin ^{-1} 1-\left(\mathrm{B}+\mathrm{C}^{\prime}\right)$
6. $\mathrm{a}^{\prime}=\frac{\mathrm{b} \sin \mathrm{A}^{\prime}}{\sin \mathrm{B}}$

The area is computed with the formula

$$
\text { Area }=\frac{1}{2} \text { ac } \sin B
$$

This program works in any angular mode. However, if in degrees, decimal degrees are assumed.

144 Chapter 8 Trigonometry and Analytical Geometry

DISPLAY		KEY ENTRY
LINE	CODE	
00	W1/1/1/	T/1/TV
01	2403	RCL 3
02	2401	RCL 1
03	1404	f SIN
04	61	x
05	2402	RCL 2
06	71	\div
07	1504	$\mathrm{g} \mathrm{SIN}{ }^{-1}$
08	2305	STO 5
09	74	R/S
10	2401	RCL 1
11	51	+
12	01	1
13	1504	$\mathrm{g} \mathrm{SIN}{ }^{-1}$
14	02	2
15	61	x
16	2304	STO 4
17	21	$x \overrightarrow{\text { ¢ }} \mathrm{y}$
18	41	-
19	74	R/S
20	1404	f SIN
21	2402	RCL 2
22	61	x
23	2401	RCL 1
24	1404	f SIN

DISPLAY		KEY ENTRY
LINE	CODE	71
$\mathbf{2 5}$	\div	
26	74	R/S
27	2403	RCL 3
28	61	X
29	2401	RCL 1
30	1404	f SIN
31	61	X
32	02	2
33	71	\div
34	74	R/S
35	2404	RCL 4
36	2405	RCL 5
37	41	-
38	74	R/S
39	1310	GTO 10
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

\quad REGISTERS
R_{0}
$R_{1} \mathrm{~B}$
$R_{2} \mathrm{~b}$
$R_{3} \mathrm{C}$
$\mathbf{R}_{4} 2 \sin ^{-1} 1$
$R_{5} \mathrm{C}$
R_{6}
R_{7}

Example:

Given the following two sides and non-included angle:

$$
\begin{aligned}
& \mathrm{B}=42.3^{\circ} \\
& \mathrm{b}=25.6 \\
& \mathrm{c}=32.8
\end{aligned}
$$

Solve the triangle.

Solution:

Since B is less than 90° and $\mathrm{b}<\mathrm{c}$, two sets of solutions exist.
$\mathrm{C}=59.58^{\circ}$
$\mathrm{A}=78.12^{\circ}$
$\mathrm{a}=37.22$
Area $=410.85$
$\mathrm{C}^{\prime}=120.42^{\circ}$
$\mathrm{A}^{\prime}=17.28^{\circ}$
$\mathrm{a}^{\prime}=11.30$
Area' $^{\prime}=124.68$

TRIANGLE SOLUTION a, b, c

Given three sides of a triangle this program solves the triangle for the remaining parameters by the following formulas:

$$
\begin{gathered}
C=\cos ^{-1}\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right) \\
B=\sin ^{-1}\left(\frac{b \sin C}{c}\right) \quad A=\sin ^{-1}\left(\frac{a \sin C}{c}\right)
\end{gathered}
$$

This program also computes the area by the following formula:

$$
\begin{gathered}
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)} \\
\text { where } s=\frac{1}{2}(a+b+c)
\end{gathered}
$$

Reletter if necessary to make c the largest side. The program works in any angular mode. However, if in degree mode decimal degrees are assumed.

DISPLAY		KEY ENTRY
LINE	CODE	
00	11111111	1111117
01	2401	RCL 1
02	2402	RCL 2
03	1509	$\mathrm{g} \rightarrow \mathrm{P}$
04	1502	$\mathrm{g} \mathrm{x}^{2}$
05	2403	RCL 3
06	1502	$\mathrm{g} \mathrm{x}^{2}$
07	41	-
08	2401	RCL 1
09	2402	RCL 2
10	61	x
11	02	2
12	61	x
13	71	\div
14	1505	$\mathrm{g} \mathrm{COS}{ }^{-1}$
15	74	R/S
16	1404	f SIN
17	2403	RCL 3
18	71	\div
19	2300	STO 0
20	2402	RCL 2
21	61	x
22	1504	gSIN^{-1}
23	74	R/S
24	2400	RCL 0

DISPLAY		$\begin{aligned} & \text { KEY } \\ & \text { ENTRY } \end{aligned}$
LINE	CODE	
25	2401	RCL 1
26	61	\times
27	1504	$\mathrm{g} \mathrm{SIN}{ }^{-1}$
28	74	R/S
29	2401	RCL 1
30	2402	RCL 2
31	51	+
32	2403	RCL 3
33	51	+
34	02	2
35	71	\div
36	31	\uparrow
37	2300	STO 0
38	2401	RCL 1
39	41	-
40	61	\times
41	2400	RCL 0
42	2402	RCL 2
43	41	-
44	61	x
45	2400	RCL 0
46	2403	RCL 3
47	41	-
48	61	x
49	1402	$f \sqrt{x}$

REGISTERS
$R_{\mathbf{o}}$ Used
R_{1} a
R_{2} b
$R_{3} \mathrm{c}$
R_{4}
R_{5}
R_{6}
R_{7}

| STEP | $\begin{array}{c}\text { INSTRUCTIONS }\end{array}$ | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | KEYS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OATA/UNITS | | | | |$]$

Example:

Let $\mathrm{a}=5.43, \mathrm{~b}=10.46, \mathrm{c}=14.87$

Solution:

$\mathrm{C}=136.37^{\circ}$
$B=29.04^{\circ}$
$\mathrm{A}=14.59^{\circ}$
Area $=19.60$

TRIANGLE SOLUTION a, A, C

Given two angles and an opposite side this program solves the triangle for the remaining parameters by the following formulas:

$$
\begin{gathered}
\mathrm{B}=2 \sin ^{-1} 1-(\mathrm{A}+\mathrm{C})=\pi \text { radians }-(\mathrm{A}+\mathrm{C})=180^{\circ}-(\mathrm{A}+\mathrm{C}) \\
=200 \operatorname{grads}-(\mathrm{A}+\mathrm{C}) \\
\mathrm{b}=\frac{\mathrm{a} \sin \mathrm{~B}}{\sin \mathrm{~A}} \\
\mathrm{c}=\frac{\mathrm{a} \sin \mathrm{C}}{\sin \mathrm{~A}}
\end{gathered}
$$

The area is computed with the following formula:

$$
\text { Area }=\frac{1}{2} a b \sin C
$$

The program works in any angular mode. However, if in degree mode all angles are assumed to be in decimal degrees.

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY	REGISTERS
LINE	CODE		LINE	CODE		
00	1111117		25	2401	RCL 1	$\mathrm{R}_{\text {o }}$
01	01	1	26	2404	RCL 4	$\mathrm{R}_{1} \mathrm{a}$
02	1504	$\mathrm{g} \mathrm{SIN}^{-1}$	27	61	x	$\mathrm{R}_{2} \mathrm{~A}$
03	02	2	28	2403	RCL 3	$\mathbf{R}_{3} \mathrm{C}$
04	61	\times	29	1404	f SIN	$\mathrm{R}_{4} \mathrm{~b}$
05	2402	RCL 2	30	61	\times	R_{5}
06	2403	RCL 3	31	02	2	\mathbf{R}_{6}
07	51	+	32	71	\div	R_{7}
08	41	-	33	1300	GTO 00	
09	74	R/S	34			
10	1404	f SIN	35			
11	2401	RCL 1	36			
12	61	\times	37			
13	2402	RCL 2	38			
14	1404	f SIN	39			
15	71	\div	40			
16	2304	STO 4	41			
17	74	R/S	42			
18	2401	RCL 1	43			
19	1473	f LASTx	44			
20	71	\div	45			
21	2403	RCL 3	46			
22	1404	f SIN	47			
23	61	x	48			
24	74	R/S	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Store a, A, and C	a	STO	1			
		A	STO	2			
		C	STO	3			
3	Solve the triangle		\dagger	PRGM	R/S		B*
			R/S				b^{*}
			R/S				c
			R/S				Area
	* The stack must be maintained						
	at these points.						

Example:

Let $\mathrm{a}=19.6, \mathrm{~A}=40.25^{\circ}, \mathrm{C}=61.06^{\circ}$

Solution:

$\mathrm{B}=78.69^{\circ}$
$\mathrm{b}=29.75$
$\mathrm{c}=26.55$
Area $=255.11$

TRIANGLE SOLUTION a, b, C

Given two sides and their included angle this program solves the triangle for the remaining parameters by the following formulas:

$$
\begin{aligned}
& c=\sqrt{a^{2}+b^{2}-2 a b \cos C} \quad A=\sin ^{-1}\left(\frac{a \sin C}{c}\right) \\
& B=2 \sin ^{-1} 1-(A+C)=\pi \text { radians }-(A+C)=180^{\circ}-(A+C) \\
& =200 \text { grads }-(A+C)
\end{aligned}
$$

The area is calculated by

$$
\text { Area }=\frac{1}{2} a b \sin \mathrm{C}
$$

Reletter if necessary, to make a the smaller of a and b.
This program works in any angular mode. However, if in degrees decimal degrees are assumed.

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY
LINE	CODE		LINE	CODE	
00			25	1504	$\mathrm{g} \mathrm{SIN}{ }^{-1}$
01	2401	RCL 1	26	02	2
02	2402	RCL 2	27	61	x
03	1509	$\mathrm{g} \rightarrow \mathrm{P}$	28	21	$x \vec{\square} \mathrm{y}$
04	1502	g x	29	2403	RCL 3
05	2401	RCL 1	30	51	+
06	2402	RCL 2	31	41	-
07	61	\times	32	74	R/S
08	02	2	33	2403	RCL 3
09	61	x	34	1404	f SIN
10	2403	RCL 3	35	2401	RCL 1
11	1405	fCOS	36	61	x
12	61	x	37	2402	RCL 2
13	41	-	38	61	x
14	1402	$f \sqrt{x}$	39	02	2
15	74	R/S	40	71	\div
16	2401	RCL 1	41	1300	GTO 00
17	2403	RCL 3	42		
18	1404	f SIN	43		
19	61	x	44		
20	21	$x \overrightarrow{\text { ¢ }} \mathrm{y}$	45		
21	71	\div	46		
22	1504	$\mathrm{g} \mathrm{SIN}{ }^{-1}$	47		
23	74	R/S	48		
24	01	1	49		

\quad REGISTERS
R_{0}
R_{1} a
$R_{2} \mathrm{~b}$
$R_{3} \mathrm{C}$
R_{4}
R_{5}
R_{6}
R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				OUTPUT DATA/UNITS
1	Key in program						
2	Store a, b, and C (a is smaller						
	of a and b)	a	STO	1			
		b	STO	2			
		c	STO	3			
3	Solve the triangle		f	PRGM	R/S		c*
			R/S				A*
			R/S				B
			R/S				Area
4	If only the area is needed:	a	STO	1			
		b	STO	2			
		c	STO	3			
			GTO	33	R/S		Area
	* The stack must be maintained						
	at these points.						

Example:

Let $\mathrm{a}=146, \mathrm{~b}=227, \mathrm{C}=31.49^{\circ}$

Solution:

$\mathrm{c}=127.76$
$\mathrm{A}=36.65^{\circ}$
$\mathrm{B}=111.86^{\circ}$
Area $=8655.86$

TRIANGLE SOLUTION a, B, C

Given two angles and their included side this program solves the triangle for the remaining parameters by the following formulas:

$$
\begin{gathered}
A=2 \sin ^{-1} 1-(B+C)=\pi \text { radians }-(B+C)=180^{\circ}-(B+C) \\
=200 \text { grads }-(B+C) \\
b=\frac{a \sin B}{\sin \mathrm{~A}} \\
c=\frac{a \sin \mathrm{C}}{\sin \mathrm{~A}}
\end{gathered}
$$

The area is found using the formula:

$$
\text { Area }=\frac{a^{2} \sin B \sin C}{2 \sin (B+C)}
$$

The program works in any angular mode. However, if in degrees the program assumes decimal degrees.

DISPLAY		KEY ENTRY
LINE	CODE	
00	(1/1/1/1]	1/1/111
01	01	1
02	1504	$\mathrm{g} \mathrm{SIN}{ }^{-1}$
03	02	2
04	61	x
05	2402	RCL 2
06	2403	RCL 3
07	51	+
08	41	-
09	2304	STO 4
10	74	R/S
11	2401	RCL 1
12	2404	RCL 4
13	1404	f SIN
14	71	\div
15	2304	STO 4
16	2402	RCL 2
17	1404	f SIN
18	61	x
19	74	R/S
20	2404	RCL 4
21	2403	RCL 3
22	1404	f SIN
23	61	x
24	74	R/S

DISPLAY		KEY ENTRY
LINE	CODE	
25	2401	RCL 1
26	1502	g x
27	02	2
28	71	\div
29	2402	RCL 2
30	1404	f SIN
31	61	\times
32	2403	RCL 3
33	1404	f SIN
34	61	\times
35	2402	RCL 2
36	2403	RCL 3
37	51	+
38	1404	f SIN
39	71	\div
40	1300	GTO 00
41		
42		
43		
44		
45		
46		
47		
48		
49		

\quad REGISTERS
$\mathbf{R}_{\mathbf{0}}$
\mathbf{R}_{1} a
$\mathbf{R}_{\mathbf{2}} \mathrm{B}$
$\mathbf{R}_{3} \mathrm{C}$
$\mathbf{R}_{4} \mathrm{~A},(\mathrm{a} / \sin \mathrm{A})$
\mathbf{R}_{5}
\mathbf{R}_{6}
$\mathbf{R}_{\mathbf{7}}$

| STEP | $\begin{array}{c}\text { INSTRUCTIONS }\end{array}$ | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | KEYS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DATA/UNITS | | | | |$]$

Example:

Let $\mathrm{a}=20.96, \mathrm{~B}=64^{\circ} 32^{\prime}, \mathrm{C}=35^{\circ} 06^{\prime}$.

Solution:

First convert B and C to decimal degrees.
$\mathrm{A}=80.37^{\circ}$
$\mathrm{b}=19.19$
$\mathrm{c}=12.22$
Area $=115.66$

HYPERBOLIC FUNCTIONS

This program evaluates the six hyperbolic functions by the following formulas:

1. $\sinh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{2}$
2. $\cosh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}{2}$
3. $\tanh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}$
4. $\operatorname{csch} x=\frac{1}{\sinh x} \quad(x \neq 0)$
5. $\operatorname{sech} x=\frac{1}{\cosh x}$
6. $\operatorname{coth} \mathrm{x}=\frac{1}{\tanh \mathrm{x}} \quad(\mathrm{x} \neq 0)$

DISPLAY		KEY ENTRY	DISPLAY		KEY ENTRY
LINE	CODE		LINE	CODE	
00	$11 / 1$	1/11/	25		
01	1507	$\mathrm{g} \mathrm{e}^{\text {x }}$	26		
02	31	\uparrow	27		
03	1522	g 1/x	28		
04	41	-	29		
05	02	2	30		
06	71	\div	31		
07	1300	GTO 00	32		
08	1507	$g \mathrm{e}^{\mathrm{x}}$	33		
09	31	\uparrow	34		
10	1522	g 1/x	35		
11	51	+	36		
12	1305	GTO 05	37		
13	1507	$g \mathrm{e}^{\mathrm{x}}$	38		
14	31	\uparrow	39		
15	1522	g 1/x	40		
16	41	-	41		
17	31	\uparrow	42		
18	31	\uparrow	43		
19	1473	f LASTx	44		
20	02	2	45		
21	61	\times	46		
22	51	+	47		
23	71	\div	48		
24	1300	GTO 00	49		

REGISTERS
$\mathbf{R}_{\mathbf{0}}$
\mathbf{R}_{1}
$\mathbf{R}_{\mathbf{2}}$
\mathbf{R}_{3}
$\mathbf{R}_{\mathbf{4}}$
$\mathbf{R}_{\mathbf{s}}$
$\mathbf{R}_{\mathbf{6}}$
$\mathbf{R}_{\mathbf{7}}$

Examples:

1. $\quad \sinh 2.5=6.05$
2. $\quad \cosh 3.2=12.29$
3. $\tanh 1.9=0.96$
4. $\operatorname{csch} 4.6=0.02$
5. $\operatorname{sech}(-.25)=0.97$
6. $\quad \operatorname{coth}(-2.01)=-1.04$

INVERSE HYPERBOLIC FUNCTIONS

This program evaluates the inverse hyperbolic functions by the following formulas:

1. $\sinh ^{-1} \mathrm{x}=\ln \left[\mathrm{x}+\left(\mathrm{x}^{2}+1\right)^{1 / 2}\right]$
2. $\cosh ^{-1} \mathrm{x}=\ln \left[\mathrm{x}+\left(\mathrm{x}^{2}-1\right)^{1 / 2}\right] \quad \mathrm{x} \geqslant 1$
3. $\tanh ^{-1} \mathrm{x}=1 / 2 \ln \left[\frac{1+\mathrm{x}}{1-\mathrm{x}}\right] \quad \mathrm{x}^{2}<1$
4. $\operatorname{csch}^{-1} x=\sinh ^{-1}\left[\frac{1}{x}\right] \quad x \neq 0$
5. $\operatorname{sech}^{-1} x=\cosh ^{-1}\left[\frac{1}{x}\right] \quad 0<x \leqslant 1$
6. $\operatorname{coth}^{-1} \mathrm{x}=\tanh ^{-1}\left[\frac{1}{\mathrm{x}}\right] \quad \mathrm{x}^{2}>1$

DISPLAY		KEY ENTRY	DISPLAY		$\begin{gathered} \text { KEY } \\ \text { ENTRY } \end{gathered}$	REGISTERS
LINE	CODE		LINE	CODE		
00	$11 / 1 / 1 /$	11/1119	25	01	1	$\mathbf{R}_{\text {o }}$
01	31	\uparrow	26	51	+	R_{1}
02	31	\uparrow	27	71	\div	$\mathbf{R}_{\mathbf{2}}$
03	61	x	28	1407	f LN	\mathbf{R}_{3}
04	01	1	29	02	2	\mathbf{R}_{4}
05	51	+	30	71	\div	\mathbf{R}_{5}
06	1402	$f \sqrt{x}$	31	1300	GTO 00	$\mathbf{R}_{\mathbf{6}}$
07	51	+	32			\mathbf{R}_{7}
08	1407	f LN	33			
09	1300	GTO 00	34			
10	31	\uparrow	35			
11	31	\uparrow	36			
12	61	x	37			
13	01	1	38			
14	41	-	39			
15	1402	$f \sqrt{x}$	40			
16	51	+	41			
17	1407	f LN	42			
18	1300	GTO 00	43			
19	31	\uparrow	44			
20	31	\uparrow	45			
21	01	1	46			
22	51	+	47			
23	21	$x \overrightarrow{\mathrm{~F}}$	48			
24	32	CHS	49			

| STEP | $\begin{array}{c}\text { INSTRUCTIONS }\end{array}$ | $\begin{array}{c}\text { INPUT } \\ \text { DATA/UNITS }\end{array}$ | | KEYS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OATA/UNITS | | | | |$]$

Example:

1. $\sinh ^{-1}(2.4)=1.61$
2. $\cosh ^{-1}(90)=5.19$
3. $\tanh ^{-1}(-.65)=-0.78$
4. $\operatorname{csch}^{-1}(2)=0.48$
5. $\operatorname{sech}^{-1}(.4)=1.57$
6. $\operatorname{coth}^{-1}(3.4)=0.30$

INDEX

Accumulated interest/remaining balance 32
Area by double meridian distance 134
Area of triangles 143-157
Base conversions 22-25
Calendar 49
Chi-square evaluation 118
Combinations 114
Complex arithmetic 15
Complex functions 18
Compound amount 41
Coordinate translation and rotation 138
Course planning 61
Covariance and correlation coefficient 101
Cross product, vector 26
Curve fitting 87-100
Day of week, days between dates 49
Determinant and inverse of 2×2 matrix 20
Discounted cash flow 46
Distributions 105-109
Dot product, vector 28
Exponential curve fit 92
Factorials 110
Field angle traverse 129
Great circle, plotting 62
navigation 72
Hyperbolics 158-161
Interest rate, mortgage loan 39
Internal rate of return 46
Inverse, from coordinates 136
hyperbolics 160
normal integral 108 of a 2×2 matrix 20

Linear interpolation 85
regression 87
Logarithmic curve fit 95
Moments and skewness 103
Moon landing simulator 52
Mortgage loan 32-40
Net present value 46
Newton's method 76
Nimb 55
Normal distribution 105
Numerical integration 81 solution to differential equation 83

One sample test statistics for the mean 127

Periodic savings 44
Permutations 112
Plotting/graphing 7
Power curve fit 98
Probability 110-117
Quadratic equation 12
Random numbers 116
Rhumbline navigation 65
Sight reduction table 70
Simultaneous equations 30
t statistic, for two means 124 paired 121
Teach arithmetic 57
Test statistics 118-128
Traverse, field angle 129
Triangle solutions 143-157
Vector operations 26-29

HEWLETT PD PACKARD

Sales and service from 172 offices in 65 countries. 19310 Pruneridge Avenue, Cupertino, California 95014

