

INTRODUCTION

Les programmes figurant dans ce fascicule ont été choisis dans le domaine des mathématiques, des statistiques, de la finance, de la topographie, de la navigation et des jeux; ils sont regroupés en 8 chapitres.

Chaque programme est présenté de la manière suivante: description générale, formules utilisées, listing, identification des registres mémoire utilisés, mode opératoire et résolution de 1 ou 2 exemples numériques. Pour utiliser les programmes, il n'est pas nécessaire d'être un expert en programmation: il suffit simplement de lire attentivement le manuel d'utilisation du HP-25: les programmes présentés vous permettront ensuite d'accroître vos connaissances sur les principes et les techniques de la programmation.

Le premier programme de chaque chapitre, en plus de la présentation indiquée ci-dessus, contient une description plus détaillée du problème, un listing commenté des touches utilisées lors de la programmation avec le contenu pas à pas des registres de la pile opérationnelle, et les pressions de touches nécessaires à la résolution du problème.

Chaque fois qu'une technique de programmation intéressante aura été utilisée, elle vous sera indiquée dans un paragraphe intitulé «Remarques sur la programmation», précédant immédiatement le listing des touches utilisées dans la rédaction du programme.

Que votre intérêt réside dans la résolution de problèmes particuliers d'un domaine spécifique ou dans la volonté d'en savoir plus sur la puissance de programmation de votre calculateur, nous espérons que ce fascicule vous aidera à utiliser au maximum votre HP-25.

SOMMAIRE

Un mot au sujet de la programmation	4
Chapitre 1: algèbre et théorie des nombres	
Calcul d'une courbe point par point	7
Equation du second degré	12
Opérations $(+, -, \times, \div)$ sur des nombres complexes	15
Fonctions d'une variable complexe $ z $, z^2 , $1/z$, \sqrt{z}	17
Déterminant et inverse d'une matrice 2 × 2	19
Conversions de base	
Conversion d'un nombre en base b en un nombre en base 10	21
Conversion d'un nombre en base 10 en un nombre en base b	23
Calculs vectoriels	
Produit vectoriel	25
Module, produit scalaire et angle de deux vecteurs	27
Système de 2 équations à 2 inconnues	29
Chapitre 2: calculs financiers	
Amortissement d'un emprunt	
Intérêts cumulés, capital restant dû	31
Montant, nombre de remboursements et montant d'un rem-	
boursement (versements à terme échu)	36
Taux d'intérêt d'un emprunt (versements de fin de période)	39
Intérêts composés, capitalisation, actualisation	41
Plan d'épargne	
Montant d'un versement, valeur future, nombre de versements	44
Rentabilité d'un investissement par la méthode des flux actualisés	
Valeur actuelle nette, taux interne de rentabilité	47
Calendrier	
Jour de la semaine, nombre de jours entre deux dates	50
Chapitre 3: jeux	
Simulation d'un alunissage	53
Nimb	57
Une leçon d'arithmétique	59
Chapitre 4: navigation	
Navigation orthodromique et loxodromique	63
Points intermédiaires sur l'arc de grand cercle	64
Navigation loxodromique	66
Résolution du triangle de position	71
Navigation suivant un arc de grand cercle	73

Chapitre 5: calculs numériques
Solution de l'équation $f(x) = 0$ par la méthode de Newton 77
Intégration numérique par la méthode de Simpson 82
Equation différentielle du premier ordre 84
Interpolation linéaire
Chapitre 6: statistiques
Ajustement de courbe
Régression linéaire
Fonction exponentielle
Fonction logarithmique 97
Fonction puissance
Statistique générale
Covariance et coefficient de corrélation
Moments et coefficients d'asymétrie
Fonctions de distribution
Distribution normale
Borne inférieure de l'intégrale d'une distribution normale110
Probabilité
Factorielle
Arrangement
Combinaison
Générateur de nombres aléatoires
Tests statistiques
Calcul de la valeur du chi-carré
Test t sur des paires de variables
Test t sur deux moyennes
Chapitre 7: topographie
Cheminement polygonal et compensation
Intersection de droites en série
Cotes périmétriques, gisements, surface d'un polygone
Chapitre 8: trigonométrie et géométrie analytique
Transformation et rotation d'axes de coordonnées
Résolution du triangle
B, b, c
a, b, c
a, A, C
a, b, C
a, B, C
Fonctions hyperboliques
Fonctions hyperboliques inverses

UN MOT AU SUJET DE LA PROGRAMMATION

Ce fascicule contient les informations nécessaires pour l'utilisation de chaque programme. En plus d'un bref exposé du problème, d'une liste des formules utilisées et de la résolution d'un exemple numérique, il existe deux tableaux: feuille de programmation et mode opératoire.

Feuille de programmation

La feuille de programmation détaillée est utilisée seulement dans le premier programme de chaque chapitre:

AFF	ICHAGE							
PAS	CODE	TOUCHES	X	Υ	Z	Т	COMMENTAIRES	REGISTRES
00		(11111111	٧	θ			Conversion polaire/rectangu-	h
01	14 09	f→R	v _x	v _y			laire de v _x =v cos θ	R o ∆t
02	23 02	STO 2	ν _x	Vy				
03	21	х⇄у	v _y	v _x			ν _γ =ν sin θ	- 0
04	23 03	STO 3	vy	v _x				R 1 -
05	00	0	0					
06	23 04	STO 4	0				Initialiser t=0	B . Vx
07	24 00	RCL 0	Δt				Incrémentation	R 2 - Vx
08	23 51 04	STO + 4	Δt				Intervalle du temps suivant	
09	24 04	RCL 4	t				$t \leftarrow t + \Delta t$	D V.
10	15 02	g x²	t ²					R ₃ -Vy

Feuille de programmation détaillée (calcul d'une courbe point par point – Chapitre 1).

Les deux premières colonnes indiquent les codes affichés lors de l'introduction du programme:

- la colonne PAS donne le numéro de pas occupé par l'instruction;
- la colonne CODE donne le code numérique de la touche pressée;
- la colonne TOUCHES donne la séquence de touches nécessaires à la
- rédaction du programme. La touche ENTER* est représentée dans cette colonne par **. Toutes les autres touches sont désignées par le symbole qui est le leur sur le clavier;
- les quatre colonnes X, Y, Z, T indiquent les contenus des quatre registres de la pile opérationnelle après chaque pression de touche;
- la colonne COMMENTAIRES fournit des explications supplémentaires pour les calculs du programme;
- la colonne de droite REGISTRES indique les données qui ont été stockées dans les registres mémoire R₀ à R₇.

Les colonnes X, Y, Z, T et COMMENTAIRES vous permettent de mieux suivre le déroulement d'un programme et d'augmenter vos connaissances techniques de programmation.

La feuille de programmation simplifiée est semblable à la feuille de programmation détaillée, mais elle ne comporte pas les colonnes X, Y, Z, T et COMMENTAIRES.

Mode opératoire

Le mode opératoire sert de guide pour l'utilisation des programmes, et se présente sous la forme d'un tableau comprenant 5 colonnes. L'exemple ci-après décrit le mode opératoire du programme «Calcul d'une courbe point par point» (Chapitre 1).

N°	INSTRUCTIONS	DONNÉES		TOUCHES				
1	Introduire le programme							
2	Mettre en mémoire l'incrément de temps	Δt	STO	0				
3	Mettre en mémoire la constante de gravité	g	STO	1				
4	Introduire l'angle et la vitesse initiale	θ	1					
		v	f	PRGM				
5	Effectuer 5 et 6 pour chaque point							
	Affichage du temps et de la distance horizontale		R/S				(t)	
							×	
6	Affichage de la hauteur		R/S				У	
7	Pour un autre θ ou v,							
	aller en 4. Pour un							
	autre ∆ t ou g, aller							
	en 2 ou 3, puis en 4.							

- la colonne NUMÉRO indique l'ordre séquentiel des opérations à effectuer,
- la colonne INSTRUCTIONS indique les instructions et les commentaires relatifs aux opérations à exécuter. Les instructions sont exécutées séquentiellement, sauf indication contraire donnée dans cette colonne.

Normalement, la première instruction est «Introduire le programme», c'est-à-dire mettre en mémoire la séquence de touches du programme (passer en mode PRGM, appuyer sur les touches f PRGM, introduire le programme, et revenir en mode RUN).

Lorsqu'une série d'instructions est à répéter, elle est entourée d'un cadre imprimé en gras (dans cet exemple, les instructions 5 et 6 sont répétées afin d'obtenir un nombre de paires (x, y) pour un graphe).

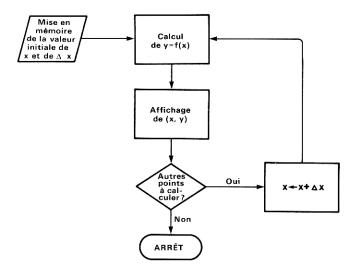
- la colonne DONNÉES indique les données à introduire et leurs unités.
- la colonne TOUCHES indique les touches à presser. → est le symbole de la touche ENTER→. Toutes les autres touches sont désignées par le symbole qui est le leur sur le clavier. Ne pas tenir compte des cases laissées en blanc dans cette colonne.

Certains programmes plus complexes nécessitent la pression de plusieurs touches avant que le calculateur n'affiche de résultat. Dans ce cas, elles sont indiquées dans la colonne TOUCHES.

la colonne RÉSULTATS donne tous les résultats, intermédiaires ou définitifs, calculés soit à partir du clavier, soit par l'exécution du programme.

Si une variable est placée entre parenthèses (par exemple (t) à l'instruction 5), cela signifie que le résultat peut être affiché momentanément par une instruction PAUSE (F PAUSE).

CHAPITRE 1: ALGÈBRE ET THÉORIE DES NOMBRES


CALCUL D'UNE COURBE POINT PAR POINT

Rien n'est plus ennuyeux que d'étudier les variations d'une fonction. Parfois même c'est un exercice bien difficile si le degré de l'équation est élevé. Le tracé de la parabole $y=3x^2-4x+4$, pour des valeurs entières de x comprises entre $-\infty$ et $+\infty$, n'est guère plus amusant. Un calculateur programmable tel que le HP-25 est un outil bien pratique pour préparer le tracé d'un graphe.

Il permet d'obtenir des couples (x, y) en mémorisant le programme calculant y pour x donné. Il suffit ensuite de revenir en début de mémoire, d'introduire une valeur de x, puis de presser la touche $\boxed{R/S}$. Ces opérations seront répétées pour chaque valeur de x.

Un pas supplémentaire inséré dans le programme permet de calculer automatiquement les y correspondants à des x tabulés, c'est-à-dire tels que $x_1, x_1 + \Delta x, x_1 + 2\Delta x, \dots$ avec Δx donné.

Ci-dessous est représenté l'organigramme:

Le programme décrit dans ce fascicule pour illustrer cette méthode est une extension de ce type général de problème. Il a pour but de représenter graphiquement la trajectoire d'une pierre projetée avec une vitesse initiale v et à un angle θ par rapport à l'horizontale. La résistance de l'air étant négligée, les équations suivantes donnent les coordonnées x et y de la pierre en fonction du temps t:

$$x = vt \cos \theta$$

$$y = vt \sin \theta - \frac{1}{2}gt^2$$

où x: distance horizontale atteinte par la pierre

y: hauteur atteinte par la pierre

g: constante de gravité ($g \approx 9.8 \text{ m/s}^2$)

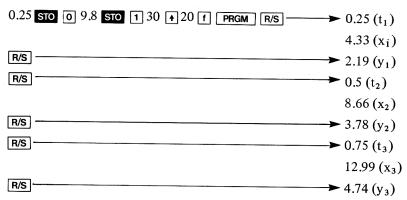
Ces équations paramétrées sont légèrement différentes des équations classiques dans lesquelles y est une fonction de x; ici, x et y sont tous deux fonctions d'un paramètre t. Les points à représenter sur le graphe sont toujours les couples (x, y). Dans cet exemple, le temps r est incrémenté selon une progression arithmétique $(\Delta t \text{ constant})$.

Remarques:

- 1. N'importe quel système d'unité peut être utilisé.
- 2. Il n'y a pas de programme général effectuant le calcul d'une courbe point par point; la méthode décrite précédemment permet de résoudre un type de problème. Toutefois, le listing des touches et l'organigramme vous permettront de modifier facilement ce programme afin de l'adapter à votre propre problème.

Remarques sur la programmation:

- Les composantes v_x et v_y du vecteur vitesse sont calculées au moyen d'un seul pas de programme, v et θ étant convertis en coordonnées rectangulaires (f→R). Les valeurs v_x=v cos θ et v_y=v sin θ se trouvent respectivement dans les registres X et Y.
- 2. Ce programme contient une instruction PAUSE (**F PAUSE**) qui permet d'afficher pendant 1 seconde environ la variable t (0.25 0.50 0.75, etc.).

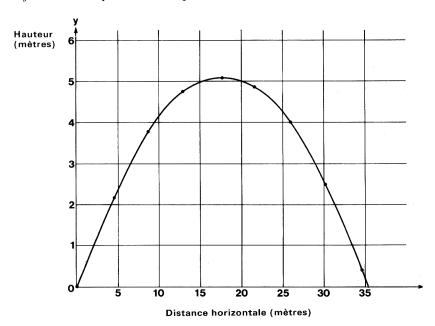

AFF	FICHAGE	TOUGH	v		-		COMMENTAIRES	
PAS	CODE	TOUCHES	Х	Y	Z	Т Т	COMMENTAIRES	L
00	//////////	///////////////////////////////////////	ν	θ			Conversion polaire/rectangu-	R
01	14 09	f→R	v _x	v _y			laire de v _x = v cos θ	П
02	23 02	STO 2	v _x	vy			1.0	ΙL
03	21	x ≠y	٧y	v _x			vy=v sin θ	R
04	23 03	STO 3	ν _y	v _x				П.
05	00	0	0					Ш
06	23 04	STO 4	0				Initialiser t=0	R
07	24 00	RCL 0	Δt				Incrémentation	II.
08	23 51 04	STO + 4	Δt				Intervalle du temps suivant	П
09	24 04	RCL 4	t				$t \leftarrow t + \Delta t$	F
10	15 02	g x²	t ²					П
11	24 01	RCL 1	g	t ²	†			П
12	61	×	g t ²	·	<u> </u>			F
13	02	2	2	g t ²				П
14	71	÷	1/2 g t ²	3,	1	1		Ш
15	32	CHS	-1/2 g t ²					١١.
16	24 04	RCL 4	t	-1/2 g t ²				
17	24 03	RCL 3	-	t	-1/2 g t ²			11
-	61		v _y	-1/2 g t ²	-1/2 g t	1		۱۲.
18	51	+ +	v _y t	-1/2 y t	+		y=vyt-½ gt²	'
CO C			У	+		 	, , , , , , , , , , , , , , , , , , , ,	П
20	24 04	RCL 4	t	<u> </u>		+		╽┝
21	24 02	RCL 2	٧x	t	У	+	x=v _X t	II۰
22	61	x	х	У				Н
23	24 04	RCL 4	t	×	У		Affichage momentané de t	┧┕
24	14 74	f PAUSE	t	×	- У	+	Amenage momentane de t	1
25	22	R↓	×	У	_	ļt	Affichage de x	1
26	74	R/S	×	У		t	Amenage do A	ł
27	21	x ₹y	У	×		t	Affichage de y	1
28	74	R/S	У	×		t	Branchement au pas 7 pour	┨
29	13 07	GTO 07	У	×		t	autre t.	1
30							autre t.	1
31								1
32								1
33								1
34								1
35								1
36								1
37								1
38								1
39								1
40								1
41			Ī					1
42			1					1
43								1
44								
45		<u> </u>						1
46		t						1
47	1		 		1			1
	+	 	†	1	-	-		1
48								

Exemple:

Tracer la trajectoire d'une pierre projetée avec une vitesse de 20 m/s et à un angle de 30° par rapport à l'horizontale.

Intervalle de temps entre les points à calculer: 0.25 seconde. Constante de gravité $g = 9.8 \text{ m/s}^2$.

Solution:



N٥	INSTRUCTIONS	DONNÉES		RÉSULTAT S		
1	Introduire le programme					
2	Mettre en mémoire l'incrément de temps	Δt	STO	0		
3	Mettre en mémoire la constante de gravité	g	STO	1		
4	Introduire l'angle et la	θ	1			
	vitesse initiale	v	f	PRGM		
5	Effectuer 5 et 6 pour chaque point					
	Affichage du temps et de la distance horizontale		R/S			(t)
						x
6	Affichage de la hauteur		R/S			у
7	Pour un autre θ ou v,					
	aller en 4. Pour un					
	autre Δ t ou g, aller					
	en 2 ou 3, puis en 4.					

Continuer à presser la touche R/S jusqu'au moment où une valeur négative de y est obtenue. Ci-dessous est donné le tableau des résultats:

t	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25
x	4.33	8.66	12.99	17.32	21.65	25.98	30.31	34.64	38.97
y	2.19	3.78	4.74	5.10	4.84	3.98	2.49	0.40	-2.31

La trajectoire de la pierre est une parabole.

ÉQUATION DU SECOND DEGRÉ

Les racines x₁, x₂ de l'équation

$$ax^2 + bx + c = 0$$

sont:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Pour obtenir une bonne précision, calculez d'abord la racine de plus grande valeur absolue au moyen de la formule suivante:

$$x_1 = \frac{-ab}{|ab|} \left(\left| \frac{b}{2a} \right| + \sqrt{\frac{b^2 - 4ac}{4a^2}} \right)$$
$$x_2 = \frac{c}{x_1 \cdot a}$$

puis l'autre racine

Si le discriminant
$$D = (b^2-4ac)/4a^2$$

est positif ou nul, les racines sont réelles. Sinon, elles sont imaginaires conjuguées et égales à:

$$u \pm iv = \frac{-b}{2a} \pm \frac{\sqrt{4ac - b^2}}{2a} i$$

AFF	ICHAGE	TOUCHES
PAS	CODE	TOUCHES
00		11111111
01	31	1
02	22	R↓
03	71	÷
04	02	2
05	71	÷
06	32	CHS
07	31	↑
08	15 02	g x ²
09	22	R↓
10	22	R↓
11	21	x
12	71	÷
13	23 00	STO 0
14	41	-
15	14 74	f PAUSE
16	15 41	g x<0
17	13 31	GTO 31
18	14 02	f√x
19	21	x
20	15 41	g x<0
21	13 24	GTO 24
22	51	+ '
23	13 26	GTO 26
24	21	x Ży

AFF	ICHAGE	TOUCHES
PAS	CODE	TOUCHES
25	41	-
26	74	R/S
27	15 22	g 1/x
28	24 00	RCL 0
29	61	x
30	13 00	GTO 00
31	32	CHS
32	14 02	$f\sqrt{x}$
33	21	x ≠y
34	74	R/S
35	21	х⇄у
36	13 00	GTO 00
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

	REGISTRES						
R _{oc/a}							
R,							
R ₂							
R ₃							
R ₄							
R ₅							
R ₆							
R,							

Exemples:

1.
$$x^2 + x - 6 = 0$$

2.
$$3x^2 + 2x - 1 = 0$$

3.
$$2x^2-3x+5=0$$

Solutions:

1.
$$D = 6.25$$

$$x_1 = -3.00$$

$$x_2 = 2.00$$

2.
$$D = 0.44$$

$$x_1 = -1.00$$

$$x_2 = 0.33$$

3.
$$D = -1.94$$

$$x_1, x_2 = 0.75 \pm 1.39 i$$

N۰	INSTRUCTIONS	DONNÉES		RÉSULTATS		
1	Introduire le programme					
2	Retourner en début de programme		f	PRGM		
3	Introduire les coefficients et démarrer le calcul; D s'affiche	c	↑			
	momentanément	b	†			
		а	R/S			(D)
4	Si D≥0, racines réelles					x ₁
	ou		R/S			× ₂
	si D < 0, racines complexes					
	de la forme u ±iv					
						u
			R/S			v
5	Pour un nouveau cas, aller en 2.					

OPÉRATIONS (+, -, ×, ÷) SUR DES NOMBRES COMPLEXES

Soient $a_1 + ib_1$ et $a_2 + ib_2$ deux nombres complexes. Les opérations arithmétiques $+, -, \times, \div$ sont définies comme suit:

- 1. addition (+) $(a_1+ib_1)+(a_2+ib_2)=(a_1+a_2)+(b_1+b_2)i$
- 2. soustraction (-) $(a_1 + ib_1) (a_2 + ib_2) = (a_1 a_2) + (b_1 b_2)i$
- 3. multiplication (×) $(a_1 + ib_1) \times (a_2 + ib_2) = r_1 r_2 e^{i(\theta_1 + \theta_2)}$
- 4. division (÷) $\frac{(a_1+ib_2)}{(a_2+ib_2)} = \frac{r_1}{r_2} e^{i(\theta_1-\theta_2)}, a_2+ib_2 \neq 0$

où $r_1e^{i\theta_1}$ est la représentation polaire de a_1+ib_1 et $r_2e^{i\theta_2}$ la représentation polaire de $a_2 + ib_2$. Dans chaque cas, la réponse sera de la forme x + iy.

Après l'exécution d'un calcul, x est stocké dans les registres R₁ et X, y dans les registres R2 et Y: des opérations arithmétiques peuvent ainsi être effectuées en chaîne.

AFFICHAGE				AFF	ICHAGE	R↓ + RCL 2 f→R x₹y STO 1 x₹y
PAS	CODE	TOUCHES		PAS	CODE	TOUCHES
00	///////////////////////////////////////	(/////////		25	23 02	STO 2
01	32	CHS		26	22	R↓
02	21	x y		27	51	+
03	32	CHS		28	24 02	RCL 2
04	21	x ≠y		29	14 09	f→R
05	24 00	RCL 0		30	21	x ≠y
06	51	+		31	23 01	STO 1
07	21	x ≠y		32	21	x ≠y
08	24 01	RCL 1		33	23 00	STO 0
09	51	+		34	13 00	GTO 00
10	13 31	GTO 31		35		
11	15 09	g →P		36		
12	15 22	g 1/x		37		
13	21	x ≠y		38		
14	32	CHS		39		
15	21	x ≠y		40		
16	13 18	GTO 18		41		
17	15 09	g →P		42		
18	24 02	STO 2		43		
19	22	R↓		44		
20	24 01	RCL 1		45		
21	24 00	RCL 0		46		
22	15 09	g →P		47		
23	24 02	RCL 2	1	48		
24	61	х		49		

REGISTRES				
R ₀ a ₁ , x				
R ₁ b ₁ , y				
R ₂ Utilisé				
R ₃				
R ₄				
R ₅				
R ₆				
R ₇				

Exemples:

1.
$$(1.2+3.7i)-(2.6-1.9i)=-1.4+5.6i$$

2.
$$\frac{3+4i}{7-2i} = 0.25 + 0.64i$$

3.
$$\left[\frac{(3+4i)+(7.4-5.6i)}{(7-2i)}\right]$$
 [3.1+4.6i]=3.61+7.16i

N°	INSTRUCTIONS	DONNÉES		TOU	CHES	 RÉSULTA TS
1	Introduire le programme					
2	Mettre en mémoire le	b ₁	STO	1		
	premier nombre complexe	aı	STO	0		
3	Introduire le second	b ₂				
	nombre	a ₂				
4	Pour une addition		GTO	05	R/S	x
	ou					
	pour une soustraction		f	PRGM	R/S	×
	ou					
	pour une multiplication		GTO	17	R/S	×
	ou					
	pour une division		GTO	11	R/S	×
5	Pour la partie imaginaire		x 			У
6	Pour le calcul en chaîne					
	suivant, aller en 3					
7	Pour un nouveau calcul, aller en 2					

FONCTIONS D'UNE VARIABLE COMPLEXE |z|, z^2 , 1/z, \sqrt{z}

Un nombre complexe z = a + ib a la représentation polaire $re^{i\theta}$. Les formules servant aux calculs de ces fonctions sont les suivantes:

1.
$$|z| = r$$

2.
$$z^2 = r^2 e^{i2\theta}$$

3.
$$1/z = \frac{1}{r} e^{-i\theta}, z \neq 0$$

4.
$$\sqrt{z} = \pm (\sqrt{r} e^{i\theta/2}) = \pm (x + iy)$$

La réponse est de la forme x + iy.

AFFICHAGE		TO 1101150		AFF	ICHAGE	TOUCHES
PAS	CODE	TOUCHES			CODE	TOUCHES
00				25	13 00	GTO 00
01	15 09	g →P	Į	26		
02	13 00	GTO 00	-	27		
03	15 09	g →P		28		
04	15 02	g x ²		29		
05	21	x 		30		
06	31	1		31		
07	51	+		32		
08	21	x ≠y		33		
09	14 09	f→R		34		
10	13 00	GTO 00		35		
11	15 09	g →P		36		
12	15 22	g 1/x		37		
13	21	x y		38		
14	32	CHS		39		
15	21	x y		40		
16	14 09	f→R		41		
17	13 00	GTO 00		42		
18	15 09	g →P		43		
19	14 02	f√x		44		
20	21	x ≠y		45		
21	02	2		46		
22	71	÷		47		
23	21	x ≠y	1	48		1
24	14 09	f→R		49		

	REGISTRES
R _o	
R,	
R ₂	
R ₃	
R ₄	
R ₅	
R ₆	
R ₇	

Exemples:

1.
$$|12-5i|=13.00$$

2.
$$(6-i)^2 = 35.00 - 12.00i$$

3.
$$\frac{1}{2+5i} = 0.07-0.17i$$

4.
$$\sqrt{3+4i} = \pm (2.00+1.00i)$$

N۰	INSTRUCTIONS	DONNÉES		TOUCHES			RÉSULT ATS
1	Introduire le programme						
2	Introduire z	b	<u></u>				
		a					
3	Pour Izi		f	PRGM	R/S		z
	ou						0
	·z ²		GTO	03	R/S		×
			x ≠y				у
	ou						
	1/z		GTO	11	R/S		x
			х⋛у				у
	ou						
	√z		GTO	18	R/S		×
			x ≠y				У
4	Pour un nouveau cas, aller en 2.						

DÉTERMINANT ET INVERSE D'UNE MATRICE 2×2

Soit A =
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 une matrice 2×2 .

Le déterminant de la matrice A (Det A ou |A|) est égal à:

Det $A = a_{22}a_{11} - a_{12}a_{21}$

En outre, le programme calcule l'inverse A-1 de A au moyen de la formule suivante:

$$A^{-1} = \begin{bmatrix} a_{22}/\text{Det A} & -a_{12}/\text{Det A} \\ -a_{21}/\text{Det A} & a_{11}/\text{Det A} \end{bmatrix}$$

AFF	ICHAGE	TOUCHES
PAS	CODE	TOUCHES
00	7////////	<i>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</i>
01	24 04	RCL 4
02	24 01	RCL 1
03	61	х
04	24 02	RCL 2
05	24 03	RCL 3
06	61	x
07	41	_
08	23 00	STO 0
09	74	R/S
10	24 04	RCL 4
11	24 00	RCL 0
12	71	÷
13	74	R/S
14	24 02	RCL 2
15	24 00	RCL 0
16	71	÷
17	32	CHS
18	74	R/S
19	24 03	RCL 3
20	24 00	RCL 0
21	71	÷
22	32	CHS
23	74	R/S
24	24 01	RCL 1

	ICHAGE	TOUCHES					
PAS	CODE	TOUCHES					
25	24 00	RCL 0					
26	71	÷					
27	13 00	GTO 00					
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							

REGISTRES				
R _o Det A				
R ₁ a ₁₁				
R ₂ a ₁₂				
R ₃ a ₂₁				
R ₄ a ₂₂				
R ₅				
R ₆				
R ₇				

Exemple:

Calcul du déterminant et de l'inverse de la matrice

$$A = \begin{bmatrix} 3 & 2 \\ 4 & -4 \end{bmatrix}$$

Solution:

Det
$$A = -20$$

$$A^{-1} = \begin{bmatrix} 0.20 & 0.10 \\ 0.20 & -0.15 \end{bmatrix}$$

N۰	INSTRUCTIONS	DONNÉES		TOUCHES			RÉSULTA TS
1	Introduire le programme						
2	Mettre en mémoire la matrice	a ₁₁	STO	1			The second section is a consecutive copy and the second section in
		a ₁₂	STO	2			
		a _{2 1}	STO	3			
		a _{2 2}	STO	4			
3	Calcul du déterminant		f	PRGM	R/S		Det A
4	Calcul de l'inverse		R/S				a ₁₁ -1
			R/S				a ₁₂ -1
			R/S				a _{2 1} -1
			R/S				a _{2 2} -1
5	Pour un nouveau cas, aller en 2.						

CONVERSION D'UN NOMBRE EN BASE b **EN UN NOMBRE EN BASE 10**

Ce programme est constitué de deux sous-programmes. Le premier convertit la partie entière d'un nombre en base b en un nombre en base 10.

$$I_{10} = i_n i_{n-1} \dots i_2 i_1 = i_n b^{n-1} + i_{n-1} b^{n-2} + \dots + i_2 b + i_1$$

L'évaluation se fait sous la forme:

$$b (...(b(b(i_nb+i_{n-1})+i_{n-2})+...)+i_2)+i_1$$

Le second sous-programme convertit la partie fractionnaire d'un nombre en base b en un nombre en base 10.

$$F_{10} = f_1 f_2 \dots f_m = f_1 b^{-1} + f_2 b^{-2} + \dots + f_m b^{-m}$$

Ces deux programmes peuvent donc convertir tout nombre en base b en un nombre en base 10. Les zéros doivent être correctement positionnés.

AFF	ICHAGE	T01101150		-
PAS	CODE	TOUCHES		P
00	///////////////////////////////////////	///////////////////////////////////////		2
01	23 01	STO 1		2
02	24 00	RCL 0		2
03	31	1		2
04	31	1		2
05	31	1		3
06	24 01	RCL 1		3
07	74	R/S		3
08	23 01	STO 1		3
09	34	CLX		3
10	51	+		3
11	61	×		3
12	24 01	RCL 1		3
13	51	+		3
14	13 07	GTO 07		3
15	24 00	RCL 0		4
16	15 22	g 1/x		4
17	23 02	STO 2		4
18	23 03	STO 3		4
19	61	x		4
20	74	R/S		4
21	24 02	RCL 2		4
22	24 03	RCL 3	l	4
23	61	x		4
24	23 03	STO 3		4

AFF	ICHAGE	T01101150
PAS	CODE	TOUCHES
25	61	x
26	51	+
27	13 20	GTO 20
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTRES
R _o b
R ₁ Utilisé
$R_2 b^{-1}$
R ₃ b ^{-j}
R ₄
R 5
R ₆
R ₇

Exemples:

- 1. $1777_8 = 1023_{10}$
- 2. $143.2044_5 = 48.4384_{10}$

N۰	INSTRUCTIONS	DONNÉES		TOUCHES RÉSU			RÉSULTATS
1	Introduire le programme						
2	Mettre la base en mémoire	b	STO	0			
3	Pour la partie entière, intro- duire le chiffre le plus à gauche						
		in	f	PRGM	R/S		
4	Effectuer 4 pour j=n-1, 2 Introduire le chiffre suivant						
		i _j *	R/S				
5	Introduire le dernier chiffre	i ₁ *	R/S				l ₁₀
6	Pour la partie fractionnaire, in- troduire le chiffre après la virgule						
		f_1	GTO	15	R/S		
7	Effectuer 7 pour j=2, n-1						
	Introduire le chiffre suivant	fj*	R/S				
8	Introduire le dernier chiffre	f _m *	R/S				F ₁₀
9	Pour un nouveau cas,						
	aller en 2						
	*Après ce résultat, ne pas						
	modifier le contenu de la pile.						

CONVERSION D'UN NOMBRE EN BASE 10 EN UN NOMBRE EN BASE b

Ce programme convertit n'importe quel nombre positif exprimé en base 10, N_{10} en un nombre en base b, N_b ($2 \le b \le 100$). Il utilise un algorithme itératif qui à chaque itération augmente de 1 le nombre de digit de N_b . Après chaque itération, le programme s'arrête pendant 1 seconde environ pour afficher des approximations successives de la réponse définitive. Quand la valeur affichée de N_b atteint la précision désirée, presser la touche RS pour arrêter le programme, puis les touches RCI 3 pour afficher N_b .

Remarques:

- 1. Si la base b est telle que 11≤b≤100, chaque digit s'affiche sur l'écran au moyen de 2 chiffres. Par exemple, 4B6.C sera affiché en base 16 comme 41106.12.
- 2. Si, durant l'exécution du programme, la précision du calculateur est dépassée, le HP-25 donne un résultat incorrect. La valeur de Nb se trouve dans le registre R3.

AFFICHAGE			AFF
PAS	CODE	TOUCHES	PAS
00	///////////////////////////////////////		25
01	24 00	RCL 0	26
02	01	1	27
03	00	0	28
04	14 51	f x≥y	29
05	13 09	GTO 09	30
06	01	1	31
07	00	0	32
08	00	0	33
09	23 02	STO 2	34
10	00	0	35
11	23 03	STO 3	36
12	24 01	RCL 1	37
13	14 07	f LN	38
14	24 00	RCL 0	39
15	14 07	f LN	40
16	71	÷	41
17	15 41	g x<0	42
18	13 21	GTO 21	43
19	14 01	f INT	44
20	13 24	GTO 24	45
21	14 01	f INT	46
22	01	1	47
23	41	_	48
24	23 04	STO 4	49

AFF	ICHAGE	TOUCHES
PAS	CODE	TOUCHES
25	24 02	RCL 2
26	21	x ≠y
27	14 03	f y ^x
28	24 03	RCL 3
29	51	+
30	23 03	STO 3
31	14 74	f PAUSE
32	14 74	f PAUSE
33	24 00	RCL 0
34	24 04	RCL 4
35	14 03	f y ^x
36	23 41 01	STO - 1
37	13 12	GTO 12
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTRES
R _o b
R ₁ N ₁₀
R ₂ 10 ou 100
R ₃ N _b
R ₄ 1 digit
R ₅
R ₆
R ₇

Exemples:

1.
$$67.32_{10} = 403.050114_{16}$$

= $43.51E_{16}$

2.
$$\pi = 3.141592654_{10} = 11.00100100_2$$

N٥	INSTRUCTIONS	DONNÉES	TOUCHES RÉSULTA			RÉSULTATS	
1	Introduire le programme	-					
2	Choisir le format d'affichage		f	FIX	9		
3	Mettre en mémoire la base et le	b	STO	0			
	nombre en base 10	N ₁₀	STO	1	f	PRGM	-
4	Afficher les approximations						
	successives de Nb		R/S				(N _b)
5	Lorsque le nombre est						
	affiché avec la précision désirée,						
	appuyer sur R/S (arrêt)		RCL	3			N _b
6	Pour un nouveau cas, aller en 3						

PRODUIT VECTORIEL

Si $A = (a_1, a_2, a_3)$ et $B = (b_1, b_2, b_3)$ sont deux vecteurs tridimensionnels, le produit vectoriel de A et B (A × B) se calcule de la façon suivante:

$$A \times B = \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = (a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1)$$

La solution est de la forme (c_1, c_2, c_3) .

AFF	ICHAGE			AFF	ICHAGE	
PAS	CODE	TOUCHES		PAS	CODE	TOUCHES
OÓ	777777777			25		
01	24 02	RCL 2		26		
02	24 06	RCL 6		27		
03	61	х		28		
04	24 03	RCL 3		29		
05	24 05	RCL 5		30		
06	61	х		31		
07	41	_		32		
08	74	R/S		33		
09	24 03	RCL 3		34		
10	24 04	RCL 4		35		
11	61	x		36		
12	24 01	RCL 1		37		
13	24 06	RCL 6		38		
14	61	x		39		
15	41	_		40		
16	74	R/S		41		
17	24 01	RCL 1		42		
18	24 05	RCL 5		43		
19	61	×		44		
20	24 02	RCL 2		45		
21	24 04	RCL 4		46		
22	61	x		47		
23	41	-		48		
24	13 00	GTO 00		49		

	REGISTRES
R _o	
$R_1 a_1$	
R ₂ a ₂	
R 3 a3	
R ₄ b ₁	
R 5 b2	
R ₆ b ₃	
R ₇	

Exemple:

Soit
$$A = (2, 5, 2)$$

 $B = (3, 3, -4)$

Solution:

$$A \times B = (-26, 14, -9)$$

N٥	INSTRUCTIONS	DONNÉES	TOUCHES RÉSULT				
1	Introduire le programme						1
2	Mettre A en mémoire	a _l	STO	1			
		a ₂	STO	2			
		a ₃	STO	3			
3	Mettre B en mémoire	b ₁	STO	4			
		b ₂	STO	5			
		b ₃	STO	6			
4	Calcul du produit vectoriel		f	PRGM	R/S		cı
			R/S				c ₂
			R/S				C ₃
5	Pour un nouveau cas, aller en 2.						

MODULE, PRODUIT SCALAIRE ET ANGLE DE DEUX **VECTEURS**

Soit deux vecteurs $\vec{a} = (a_1, a_2, ..., a_n)$ et $\vec{b} = (b_1, b_2, ..., b_n)$. Le module de a (a) se calcule au moyen de la formule suivante:

similairement.

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + ... + a_n^2}$$

 $|\vec{b}| = \sqrt{b_1^2 + b_2^2 + ... + b_n^2}$

Le produit scalaire de \vec{a} et \vec{b} ($\vec{a} \cdot \vec{b}$) se calcule au moyen de la formule suivante:

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + ... + a_n b_n$$

L'angle θ des vecteurs \vec{a} et \vec{b} se calcule au moyen de la formule suivante:

$$\theta = \arccos \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} \right)$$

Cet angle se calcule dans n'importe quel mode angulaire (mode DEGRÉS: degrés décimaux).

AFFICHAGE

AFF	ICHAGE	TOUCHES
PAS	CODE	TOUCHES
00		
01	31	1
02	14 02	g x ²
03	23 51 01	STO + 1
04	22	R↓
05	21	x ≠y
06	31	↑
07	14 02	g x ²
08	23 51 00	STO + 0
09	22	R↓
10	61	х
11	23 51 02	STO + 2
12	13 00	GTO 00
13	24 02	RCL 2
14	24 00	RCL 0
15	24 01	RCL 1
16	61	x
17	14 02	f√x
18	71	÷
19	15 05	g COS ⁻¹
20	13 00	GTO 00
21		
22		
23		
24		

AFF	ICHAGE	TO O FO
PAS	CODE	TOUCHES
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTRES
$ \begin{array}{c c} R_0 \Sigma a_i^2 \\ R_1 \Sigma b_i^2 \end{array} $
R ₂ Σa _i b _i
R ₃
R ₄
R ₅
R ₆
R,

Exemple:

Soit
$$A = (2, 5, 2)$$

 $B = (3, 3, -4)$.

Solution:

$$|\vec{a}| = 5.74$$

 $|\vec{b}| = 5.83$
 $\vec{a} \cdot \vec{b} = 13.00$
 $\theta = 67.16^{\circ}$

N٥	INSTRUCTIONS	DONNÉES		RÉSULT ATS			
1	Introduire le programme						
2	Initialiser		f	REG	f	PRGM	
3	Effectuer 3 pour i=1, n						
	Introduire aj et bj	ai	†				
		b _i	R/S				
4	Calcul du module de a		RCL	0	f	√×	a
5	Calcul du module de b		RCL	1	f	\sqrt{x}	161
6	Calcul de jai bij		RCL	2			la∙bl
7	Calcul de l'angle de a et b		GTO	13	R/S		θ

SYSTÈME DE 2 ÉQUATIONS À 2 INCONNUES

Soit un système de deux équations à deux inconnues:

$$\begin{cases} ax + by = e \\ cx + dy = f. \end{cases}$$

La méthode de Cramer permet de trouver la solution.

$$x = \begin{vmatrix} c & b \\ f & d \end{vmatrix} = \frac{ed - bf}{ad - bc} \qquad y = \frac{\begin{vmatrix} a & e \\ c & f \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} = \frac{af - ec}{ad - bc}$$

Si ad-bc=0, le calculateur affiche zéro. Dans ce cas, il existe aucune ou plusieurs solutions.

AFF	ICHAGE		
PAS	CODE	TOUCHES	
00	///////////////////////////////////////	///////////////////////////////////////	
01	24 03	RCL 3	
02	24 05	RCL 5	
03	61	х	
04	24 02	RCL 2	
05	24 06	RCL 6	
06	61	х	
07	41	-	
08	24 01	RCL 1	
09	24 05	RCL 5	
10	61	x	
11	24 02	RCL 2	
12	24 04	RCL 4	
13	61	х	
14	41	-	
15	23 00	STO 0	
16	71	÷	
17	74	R/S	
18	24 01	RCL 1	
19	24 06	RCL 6	
20	61	х	
21	24 03	RCL 3	
22	24 04	RCL 4	
23	61	х	
24	41		

ICHAGE	TOUCHES	
CODE	TOUCHES	
24 00	RCL 0	
71	÷	
13 00	GTO 00	
	24 00 71	

REGISTRES					
R _o ad – bc					
R ₁ a					
R ₂ b					
R ₃ e					
R ₄ c					
R ₅ d					
R ₆ f					
R,					

Exemple:

$$5x-3y=12$$
$$2x+y=9$$

Solution:

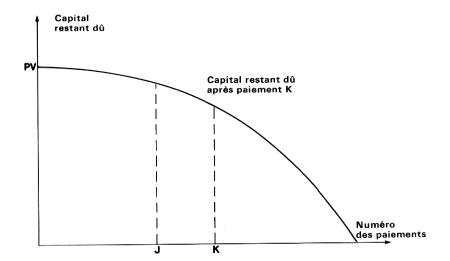
$$x = 3.55$$
$$y = 1.91$$

N۰	INSTRUCTIONS	DONNÉES		RÉSULTA TS			
1	Introduire le programme						
2	Mettre en mémoire les	a	STO	1			
	coefficients	b	STO	2			
		е	STO	3			
		С	STO	4			
		d	STO	5			
		f	STO	6			
3	Calcul de x et de y		f	PRGM	R/S		×
			R/S				У
4	Pour un nouveau cas, aller en 2.						

CHAPITRE 2: CALCULS FINANCIERS

De nombreux programmes financiers ayant des caractéristiques communes, nous pensons qu'il est intéressant de dire un mot des paramètres et des termes utilisés dans les programmes qui suivent.

Les principaux paramètres rencontrés dans les problèmes financiers sont les suivants:


n: nombre de périodes

i: taux d'intérêt périodique exprimé sous forme décimale. Un taux annuel d'intérêt de 6% sera exprimé par 0.06, le taux mensuel proportionnel valant $\frac{0.06}{12} = 0.005$.

PMT: montant d'un versement périodique

PV: valeur actuelle (au début de la première période) FV: valeur future (à la fin de la dernière période)

AMORTISSEMENT D'UN EMPRUNT INTÉRÊTS CUMULÉS – CAPITAL RESTANT DÛ

Un des problèmes financiers les plus courants est l'établissement du tableau d'amortissement d'un emprunt remboursé par annuités constantes de fin de période. Chaque versement périodique se décompose en effet en une part d'intérêt payé et une part de capital remboursé (ou amorti).

Une personne, qui a emprunté par exemple 150 000F sur 30 ans à un taux d'intérêt annuel de 8%, effectue un premier remboursement mensuel de 1100.65F. La première réaction consiste à retrancher la totalité de ce versement de la dette pour obtenir la dette résiduelle, ce qui est loin d'être un bon raisonnement. En effet, sur les 1100.65F, seuls 100.65F de capital ont été remboursés pour 1000F d'intérêts payés! Le principe est le suivant: les intérêts payés pour un versement donné sont proportionnels au montant du capital restant à rembourser (le coefficient de proportionnalité est, bien sûr, le taux périodique d'intérêt); l'amortissement du capital pour cette période est la différence entre le versement mensuel et les intérêts calculés.

Ce programme vous permet de calculer le montant des intérêts versés pour un ou plusieurs versements, ainsi que le montant du capital restant à rembourser. Introduire d'abord le montant du prêt, le taux d'intérêt périodique, le montant de chaque remboursement, puis les numéros du premier (J) et du dernier (K) remboursement de la période considérée. Le programme calcule le montant des intérêts cumulés entre les remboursements J et K inclus et le capital restant dû après le Kième remboursement. Si vous désirez connaître le montant des intérêts payés pour un versement déterminé, il vous suffit de faire K = J. Ce programme peut aussi être utilisé pour dresser un tableau d'amortissement indiquant le capital restant dû après plusieurs remboursements successifs; pour cela, faire J = 1 et augmenter K de 1 à chaque itération. Le HP-25 donne le montant total des intérêts payés pour les K premiers remboursements et le capital restant dû après le Kième remboursement.

Formules:

$$BAL_K = \frac{1}{(1+i)^{-K}} \left[PMT \frac{(1+i)^{-K}-1}{i} + PV \right]$$

 $Int_{J-K} = BAL_K - BAL_{J-1} + (K-J+1) PMT$

où BAL_n: capital restant dû après le nième remboursement

Int_{J-K}: montant des intérêts versés pour les remboursements J à K

PV: montant de l'emprunt

PMT: montant d'un remboursement

i: taux d'intérêt périodique

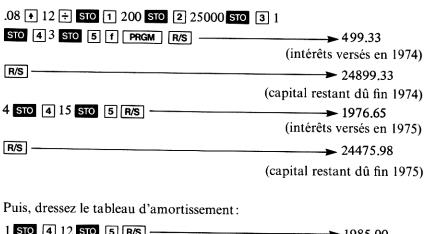
Remarques:

1. Le taux d'intérêt périodique i doit être introduit sous forme décimale. Par exemple, pour rembourser par mensualités un emprunt de taux d'intérêt annuel 9%, le taux d'intérêt mensuel à introduire est $i = \frac{0.09}{12} = 0.0075$

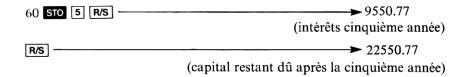
2. Ce programme est utilisable pour tout emprunt amorti par remboursement constant.

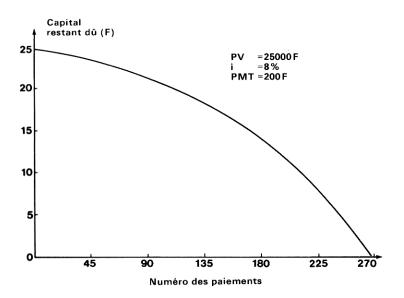
Remarques sur la programmation:

Dans de nombreux programmes financiers, les expressions (1+i) et (1+i)n sont utilisées plusieurs fois dans le même programme. Il est préférable de les calculer une seule fois et de les mettre en mémoire. Dans ce programme, les valeurs de (1+i)-K et (1+i)-J sont calculés une seule fois, puis mises en mémoire dans le registre R₇; vous économisez ainsi des pas de programme et du temps d'exécution.


	FICHAGE	TOUCHES	v	v	7	-	COMMENTAIRES	REGISTRES
PAS	CODE		Х	Y	Z	Т	COMMENTAINES	EdiaThea
00		///////////////////////////////////////						R 0
01	24 01	RCL 1	i				Calcul de BALK	
02	01	1	1	i				
03	51	+	1 + i					R 1
04	24 05	RCL 5	K	1+i				'
05	32	CHS	-K	1+i				
06	14 03	f y*	(1 + i)-K					R 2 PMT
07	23 07	STO 7	(1 + i)-K					
08	01	1	1	(1 + i)-K				
09	41	-	(1 + i)-K-1					R ₃ -PV
10	24 01	RCL 1	ļi	(1 + i) ^{-K} -1			s=[(1+j)-k-1]÷i	
11	71	÷	\$				5-[(1+1)-x-1]-1	
12	24 02	1	PMT	s				R4-J
13	61	X	PMT s					
15	24 03	RCL 3	PV PV	PMT s				<u>, </u>
16	51	+	PMT s + PV (1 + i) -K	DAT C.				R ₅ -K
17	24 07 71	RCL 7	BAL _K	PMT s + PV				
18	23 06	STO 6	BALK					BAL
19	24 01	RCL 1	i	BALK			R ₆ BALK	R 6-BALK
20	01	1	1	i	BALK		Calcul de BALJ-1	
21	51	+	(1 + i)	BALK	DALK			R 7 (1 + i)-n
22	24 04	RCL 4	J	(1 + i)	BALĸ			R 7
23	01	1	1	J	(1 + i)	BALĸ		
24	41	-	J – 1	(1 + i)	BALK	BALK		
25	32	снѕ	- (J - 1)	(1 + i)	BALK	BALK		
26	14 03	fy ^x	$(1 + i)^{-(J-1)}$	BALK	BALK	BALK		
27	23 07	STO 7	$(1+i)^{1-J}$	BALK	BALK	BALK		
28	01	1	1	$(1+i)^{1-J}$	BALK	BALK		
29	41	-	$(1+i)^{1-J}-1$	BALK	BALK	BALK		
30	24 01	RCL 1	i	$(1+i)^{1-J}-1$	BAL	BALĸ		
31	71	÷	s	BALK	BALK	BALK	s=[(1+j)1-J-1]÷i	
32	24 02	RCL 2	PMT	s	BALK	BALK		
33	61	x	PMT s	BALK	BALK	BALK		
34	24 03	RCL 3	PV	PMT s	BALK	BALK		
35	51	+	PMT s + PV	BALK	BALK	BALK		
36	24 07	RCL 7	(1 + i)1-J	PMT s + PV	BALK	BALK		
37	71	÷	BAL _{J-1}	BALK	BALK	BALK	D'# DALE DALE	
38	24.05	POL F	Diff	BALK	BALK	BALK	Diff=BALK-BALJ-1 K-J+1: nombre de	
39	24 05	RCL 5	K	Diff	BÅLK	BALK	versements entre J et K	
40	24 04	RCL 4	J	K	Diff	BALK	TOTO CHEMICA CHILD O CO. K	
41	41	-	K-J	Diff	BALK	BALK		
42	01	1	1	K-J	Diff	BALK		
43	51	+	K – J + 1	Diff	BALK	BALK	m=K-J+1	
44	24 02	RCL 2	PMT	m D:ff	Diff	BALK	m PMT est payé	
45	61 51	x	m PMT Int _{J-K}	Diff BAL _K	BAL _K	BALK	Affichage de IntJ – K	
46	74	R/S		BALK	BALK	BALK		
47 48	21	H/S x Zy	Intj_K BAL _K			BALK	Affichage de BALK	
	13 00	GTO 00	BAL _K	Intj_K	BAL _K	BALK		
49	1300	31000	DALK	Int _{I-K}	DALK	BALK		1

Exemple:


Une hypothèque est telle que le premier versement a lieu à la fin du mois d'octobre 1974 (c'est-à-dire qu'octobre est la première période de paiement). Il s'agit d'un prêt de 25000F à 8% et les paiements mensuels sont de 200F. Quels sont les intérêts versés en 1974 (périodes 1 à 3) et 1975 (périodes 4 à 15) et quel est le montant du capital restant dû à la fin de chacune de ces années? Dresser également un tableau donnant les intérêts accumulés et les capitaux restant dus pour les 5 premières années de l'hypothèque (périodes 12, 24, 36, 48 et 60).


Solution:

(Introduire le taux mensuel i sous forme décimale)

1 STO 4 12 STO 5 R/S ----→ 1985.00 (intérêts première année) R/S ----**→** 24585.00 (capital restant dû après la première année) 24 STO 5 R/S ----→ 3935.56 (intérêts deuxième année) R/S -**→** 24135.56 (capital restant dû après la deuxième année) 36 STO 5 R/S ----**→** 5848.81 (intérêts troisième année) R/S -**→** 23648.81 (capital restant dû après la troisième année) 48 STO 5 R/S → 7721.67 (intérêts quatrième année) R/S -**→** 23121.67 (capital restant dû après la quatrième année)

Nº	INSTRUCTIONS	DONNÉES	TOUCHES			RÉSULTATS	
1	Introduire le programme						
2	Mettre en mémoire les données suivantes:						
	Taux d'intérêt périodique (décimale)	i	STO	1			
	Montant d'un remboursement	PMT	STO	2			
	Montant du prêt	PV	STO	3			
	Numéro de la période de départ	J	STO	4			
	Numéro de la période finale	К	STO	5	f	PRGM	
3	Calcul du montant des intérêts						
	versés pendant les périodes J-K		R/S				Int _{J-K}
4	Affichage du capital restant dû						
	après le Kième remboursement		R/S				BALK
5	Pour modifier la valeur d'une donnée, mettre en mémoire la						
	nouvelle valeur dans le registre correspondant et aller en 3.						

EMPRUNT: MONTANT, NOMBRE DE REMBOURSEMENTS ET MONTANT D'UN REMBOURSEMENT (VERSEMENTS À TERME ÉCHU)

Ce programme calcule le montant d'un emprunt à annuités constantes (PV), le nombre de remboursement (n) ou le montant d'un remboursement (PMT), connaissant deux de ces trois données et le taux d'intérêt.

Le taux d'intérêt périodique i doit être exprimé sous forme décimale (exemple 6%: 0.06).

Les formules utilisées sont les suivantes:

$$PMT = PV \left[\frac{i}{1 - (1+i)^{-n}} \right] \qquad PV = PMT \left[\frac{1 - (1+i)^{-n}}{i} \right]$$
$$n = -\frac{\ln (1 - i PV/PMT)}{\ln (1+i)}$$

Remarque:

Les versements sont effectués à la fin de chaque période (à terme échu).

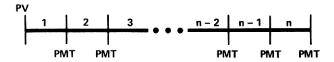
AFF	ICHAGE	TOUCHES		
PAS	CODE	TOUCHES		
00				
01	01	1		
02	24 02	RCL 2		
03	01	1		
04	51	+		
05	24 01	RCL 1		
06	32	CHS		
07	14 03	f y ^x		
08	41	-		
09	24 02	RCL 2		
10	21	x y		
11	71	÷		
12	24 04	RCL 4		
13	61	x		
14	13 00	GTO 00		
15	01	1		
16	24 02	RCL 2		
17	01	1		
18	51	+		
19	24 01	RCL 1		
20	32	CHS		
21	14 03	f y ^x		
22	41	_		
23	24 02	RCL 2		
24	71	÷		

AFI	ICHAGE	TOUCHES
PAS	CODE	TOUCHES
25	24 03	RCL 3
26	61	x
27	13 00	GTO 00
28	01	1
29	24 04	RCL 4
30	24 03	RCL 3
31	71	÷
32	24 02	RCL 2
33	61	x
34	41	_
35	14 07	f LN
36	24 02	RCL 2
37	01	1
38	51	+
39	14 07	f LN
40	71	÷
41	32	CHS
42	13 00	GTO 00
43		
44		
45		
46		
47		
48		
49		1

REGISTRES				
Ro				
R ₁ n				
R ₂ i				
R ₃ PMT				
R ₄ PV				
R ₅				
R ₆				
R,				

Exemples:

- 1. Un particulier emprunte 15000F à un taux annuel de 9.5% (0.095): il compte rembourser cette somme sur 36 mois. Quel sera le montant des mensualités?
- 2. De quelle somme pouvez-vous disposer, si vous désirez acquitter des mensualités de 750F pendant 30 mois à un taux de 9.5%?
- 3. Vous empruntez 20 000F à un taux d'intérêt annuel de 9.5%. A raison de 1000F par mois, combien de temps vous faudra-t-il pour rembourser cette somme?


Solutions:

Pour obtenir le taux d'intérêt périodique exprimé sous forme décimale, diviser 0.095 par 12.

- 1. 480.49F
- 2. 19957.77F
- 3. 21.86 mois

N۰	INSTRUCTIONS	DONNÉES		TOUCHES			RÉSULT ATS
1	Introduire le programme						
2	Pour le montant d'un remboursement	n	STO	1			0
		i	STO	2			
		PV	STO	4			
			f	PRGM	R/S		PMT
3	Pour le montant de l'emprunt	n	STO	1			
		i	STO	2			
		РМТ	STO	3			
			GTO	15	R/S		PV
4	Pour le nombre de remboursements	i	STO	2			
		PMT	STO	3			
		PV	STO	4			
			GTO	28	R/S		n
5	Pour un nouveau cas, aller en 2, 3 ou 4						

TAUX D'INTÉRÊT D'UN EMPRUNT (VERSEMENTS DE FIN DE PÉRIODE)

Ce programme calcule le taux d'intérêt d'un emprunt à annuités constantes versées en fin de chaque période, connaissant le nombre de périodes (n), la valeur actuelle ou le montant initial de l'emprunt (PV) et le montant d'un remboursement (PMT).

Ce programme calcule le taux périodique par la méthode d'itération de Newton:

$$i_{k+1} = i_k - \frac{f(i_k)}{f'(i_k)}$$

$$f(i) = \frac{1 - (1+i)^{-n}}{i} - \frac{PV}{PMT}$$

où:

La valeur initiale du taux est donnée par:

$$i_o = \frac{PMT}{PV} - \frac{PV}{n^2 PMT}$$

AFF	ICHAGE			AFF	ICHAGE	ТОИСНЕ			
PAS	CODE	TOUCHES		PAS COD		10000			
00		///////////////////////////////////////		25	15 22	g 1/x			
01	24 03	RCL 3	L	26	01	1			
02	31	↑	L	27	51	+			
03	15 22	g 1/x		28	71	÷			
04	21	x y		29	01	1			
05	24 01	RCL 1		30	51	+			
06	15 02	g x ²		31	24 05	RCL 5			
07	71	÷		32	61	x			
08	41	-	Г	33	01	1			
09	23 02	STO 2	Γ	34	41	-			
10	24 03	RCL 3	Г	35	24 02	RCL 2			
11	24 02	RCL 2		36	71	÷			
12	61	x		37	71	÷			
13	01	1		38	23 51 02	STO + 2			
14	24 02	RCL 2	Г	39	15 03	g ABS			
15	01	1	Г	40	33	EEX			
16	51	+		41	06	6			
17	24 01	RCL 1		42	32	CHS			
18	32	CHS		43	14 41	f x <y< th=""></y<>			
19	14 03	f y ^x		44	13 10	GTO 10			
20	23 05	STO 5		45	24 02	RCL 2			
21	41	-		46	13 00	GTO 00			
22	41	-		47					
23	24 01	RCL 1		48					
24	24 02	RCL 2		49					

REGISTRES
R _o
R ₁ n
R ₂ i
R ₃ PV/PMT
$R_4 (1+i)^{-n}$
R ₅
R ₆
R ₇

Exemple:


Vous prenez un crédit de 15 000F en vue d'acheter une voiture. Vous le rembourserez par 36 mensualités de 500F. Quel est le taux du crédit?

Solution:

1.02% par mois, soit environ 12.55% par an.

N۰	INSTRUCTIONS	DONNÉES	TOUCHES				RÉSULTATS
1	Introduire le programme						
2	Introduire le nombre remboursements	n	STO	1			
3	Introduire le montant						
	du crédit et celui de chaque	PV	1				
	remboursement	PMT	÷	STO	3		PV/PMT
4	Calcul du taux d'intérêt		f	PRGM	R/S		i (décimale)
			EEX	2	x		i (%)
5	Pour un nouveau cas, aller en 2.						

INTÉRÊTS COMPOSÉS CAPITALISATION, ACTUALISATION

Ce programme s'applique à un capital unique placé à intérêts composés. Les paramètres sont le nombre de périodes n, le taux d'intérêt périodique i, la valeur actuelle du capital PV, la valeur future du capital FV et le montant des intérêts acquis I. On peut obtenir n'importe quel paramètre à partir des autres.

Les formules utilisées sont les suivantes:

$$n = \frac{\ln (FV/PV)}{\ln (1+i)} \qquad i = \left(\frac{FV}{PV}\right)^{-1/n} - 1 \qquad PV = FV (1+i)^{-n}$$

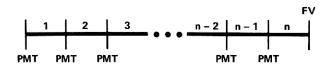
$$FV = PV (1+i)^n \qquad I = PV [(1+i)^n - 1]$$

AFF	CHAGE	TOLLOUIS
PAS	CODE	TOUCHES
00		
01	24 05	RCL 5
02	24 04	RCL 4
03	71	÷
04 14 07		f LN
05 24 02		RCL 2
06 01		1
07	51	+
08	14 07	f LN
09	71	÷
10	13 00	GTO 00
11	24 05	RCL 5
12	24 04	RCL 4
13	71	÷
14	24 01	RCL 1
15	15 22	g 1/x
16	14 03	f y ^x
17	01	1
18	41	-
19	13 00	GTO 00
20	24 02	RCL 2
21	01	1
22	51	+
23	24 01	RCL 1
24	32	CHS

AFF	ICHAGE	TOUCHES
PAS	CODE	TOUCHES
25	14 03	f y ^x
26	24 05	RCL 5
27	61	x
28	13 00	GTO 00
29	24 02	RCL 2
30	01	1
31	51	+
32	24 01	RCL 1
33	14 03	fγ ^x
34	24 04	RCL 4
35	61	x
36	13 00	GTO 00
37	24 02	RCL 2
38	01	1
39	51	+
40	24 01	RCL 1
41	14 03	f y ^x
42	01	1
43	41	-
44	24 04	RCL 4
45	61	x
46	13 00	GTO 00
47		
48		
49		

REGISTRES				
Ro				
R _{1 n}				
R ₂ i				
R ₃				
R ₄ PV				
R ₅ FV				
R ₆				
R ₇				

Exemples:


- 1. En supposant que le taux annuel d'inflation est de 10%, en combien de temps les prix doubleront-ils? (PV = 1, FV = 2).
- 2. A quel taux trimestriel faut-il placer une somme de 1000F pour disposer de 1500F dans 5 ans?
- 3. Combien vous faut-il investir maintenant au taux d'intérêt de 5.75%, les intérêts étant capitalisés trimestriellement, pour disposer de 3000F dans 5 ans?
- 4. Quelle est la valeur actuelle acquise par 2000F placés à 5.75% (0.0575) pendant 4 ans, les intérêts étant capitalisés trimestriellement?
- 5. Quel est le montant des intérêts sur un capital de 1500F placés à 5.5% pendant 10 ans, les intérêts étant capitalisés annuellement?

Solutions:

- 1. 7.27 ans
- 2. 0.0205 (taux trimestriel) = 8.19% (taux annuel)
- 3. 2255.02F (i = 0.0575/4)
- 4. 2513.08F (i = 0.0575/4)
- 5. 1062.22F (i = 0.055)

Nº	INSTRUCTIONS	DONNÉES		TOU	CHES	RÉSULTATS
1	Introduire le programme					
2	Calcul du nombre de périodes	i (décimale)	STO	2		
		PV	STO	4		
		FV	STO	5		
			f	PRGM	R/S	n
3	Calcul du taux d'intérêt					
	périodique	n	STO	1		
		PV	STO	4		
		FV	STO	5		
			GTO	11	R/S	i (décimale)
4	Calcul de la valeur actuelle	n	STO	1		
		i (décimale)	STO	2		
		FV	STO	5		
			GTO	20	R/S	PV
5	Calcul de la valeur future	n	STO	1		
		i (décimale)	STO	2		
		PV	STO	4		
			GTO	29	R/S	FV
6	Calcul du montant	n	STO	1		
	des intérêts	i (décimale)	STO	2		
		PV	STO	4		
			GTO	37	R/S	I
7	Pour un nouveau cas,					
	aller en 2, 3, 4, 5 ou 6					

PLAN D'ÉPARGNE MONTANT D'UN VERSEMENT, VALEUR FUTURE, NOMBRE DE VERSEMENTS

Ce programme calcule le montant d'un versement, la valeur future ou le nombre de versements d'un plan d'épargne, connaissant deux de ces trois données ainsi que le taux périodique d'intérêt.

Soit:

n: nombre de versements

i: taux d'intérêt périodique exprimé sous forme décimale

(ex 6% = 0.06)

PMT: montant d'un versement

FV: valeur future

n, PMT ou FV peuvent être calculés à partir des formules suivantes:

$$n = \frac{\ln \left[\frac{FV i}{PMT} + (1+i) \right]}{\ln (1+i)} - 1 \qquad PMT = \frac{FV i}{(1+i)^{n+1} - (1+i)}$$
$$FV = \frac{PMT}{i} \left[(1+i)^{n+1} - (1+i) \right]$$

Remarque:

Les versements sont effectués en début de chaque période (annuités par terme à échoir).

AFF	AFFICHAGE				
PAS	CODE	TOUCHES			
00					
01	24 02	RCL 2			
02	24 05	RCL 5			
03	61	x			
04	24 03	RCL 3			
05	71	÷			
06	24 02	RCL 2			
07	01	1			
08	51	+			
09	23 00	STO 0			
10	51	+			
11	14 07	f LN			
12	24 00	RCL 0			
13	14 07	f LN			
14	71	÷			
15	01	1			
16	41	-			
17	13 00	GTO 00			
18	24 05	RCL 5			
19	24 02	RCL 2			
20	61	×			
21	24 02	RCL 2			
22	01	1			
23	51	+			
24	71	÷			

4.55	1011405	I		
PAS CODE		TOUCHES		
PAS	CODE			
25	14 73	f LASTx		
26	24 01	RCL 1		
27	14 03	f y ^x		
28	01	1		
29	41	_		
30	71	÷		
31	13 00	GTO 00		
32	24 03	RCL 3		
33	24 02	RCL 2		
34	01	1		
35	51	+		
36	61	х		
37	14 73	f LASTx		
38	24 01	RCL 1		
39	14 03	f y ^x		
40	01	1		
41	41	_		
42	61	х		
43	24 02	RCL 2		
44	71	÷		
45	13 00	GTO 00		
46				
47				
48				
				

Exemples:

1. Vous déposez en début de chaque trimestre 2000F sur un compte d'épargne logement à 4.5% d'intérêt annuel. Combien de versements devez-vous effectuer pour capitaliser 30 000F?

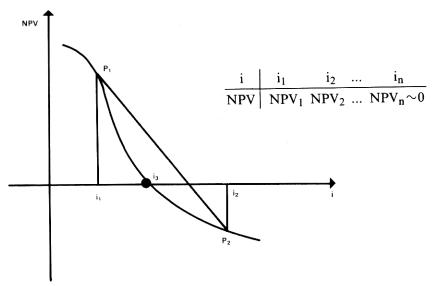
49

- 2. Vous désirez accumuler 40 000F en 7 ans. Quel doit être le montant de votre versement mensuel si le taux d'intérêt annuel est de 6.5%?
- 3. De quelle somme disposerez-vous dans 3 ans en déposant 500F à chaque début de mois sur un compte d'épargne à 4.5% par an?

Solutions:

- 1. 13.79 trimestres (3,45 années)
- 2. 375.28F
- 3. 19305.17F

46 Chapitre 2 Calculs financiers


N۰	INSTRUCTIONS	DONNÉES	TOUCHES RÉSULTATS		RÉSULTATS		
1	Introduire le programme						
2	Calcul du nombre de						
	versements	i (décimale)	STO	2			
		РМТ	STO	3			
		FV	STO	5			
			f	PRGM	R/S		n
3	Calcul du montant						
	d'un versement	n	STO	1			
		i (décimale)	STO	2			
		FV	STO	5			
			GTO	18	R/S		PMT
4	Calcul de la valeur future	n	STO	1			
		i (décimale)	STO	2			
		PMT	STO	3			
			GTO	32	R/S		FV
5	Pour un nouveau cas,						
	aller en 2, 3 ou 4.						

RENTABILITÉ D'UN INVESTISSEMENT PAR LA MÉTHODE DES FLUX ACTUALISÉS: VALEUR ACTUELLE NETTE, TAUX INTERNE DE RENTABILITÉ

Ce programme détermine la valeur actuelle nette d'une série de flux de trésorerie (cash-flows), ce qui permet de savoir si un investissement a été rentable à un taux donné. On connaît le montant de l'investissement V_0 ainsi que les bénéfices ou flux nets réalisés pour les n périodes envisagées C_1 , C_2 , ..., C_n . On se fixe un taux de rentabilité i (périodique et décimal) et le calcul consiste à actualiser chacun des bénéfices à l'époque 0, à faire la somme de ces bénéfices actualisés et la balance avec l'investissement initial. Si le résultat NPV_k est positif, l'investissement a été rentable à i% (le taux est donc plus élevé que i%). Si le résultat est négatif, l'investissement n'a pas été rentable au taux i% espéré.

$$NPV_k = -V_0 + \sum_{j=1}^k \frac{C_j}{(1+i)^j}$$

Ce programme permet de déterminer le taux i% réellement réalisé, par approximations successives. Le principe est le suivant: au taux cherché i, la valeur actuelle nette NPV doit s'annuler. On peut converger très rapidement vers la solution en utilisant une interpolation linéaire des taux.

Cette interpolation porte sur les deux derniers taux calculés. Il faut se fixer deux taux i₁ et i₂ au départ (si possible proches de la solution), puis calculer les NPV₁ et NPV₂ correspondants. Le taux suivant i₃ sera alors donné par:

$$i_3 = \frac{i_1 \times NPV_2 - i_2 \times NPV_1}{NPV_2 - NPV_1}$$

Calculer de même in à partir des points P2 et P3 et ainsi de suite jusqu'à i_n tel que NPV_n soit très proche de 0.

Remarque:

Il serait intéressant d'ajouter le calcul d'interpolation dans le programme.

AFF	ICHAGE	
PAS	CODE	TOUCHES
00		
01	24 01	RCL 1
02	01	1
03	23 04	STO 4
04	51	+
05	23 02	STO 2
06	71	÷
07	24 00	RCL 0
08	41	-
09	24 04	RCL 4
10	14 74	f PAUSE
11	21	x ≠y
12	23 03	STO 3
13	74	R/S
14	24 02	RCL 2
15	24 04	RCL 4
16	01	1
17	51	+
18	23 04	STO 4
19	14 03	f y ^x
20	71	÷
21	24 03	RCL 3
22	51	+
23	13 09	GTO 09
24		

AFF	ICHAGE	
PAS	CODE	TOUCHES
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45	w.u	
46		
47		
48		

REGISTRES
R _o V _o
R ₁ i
R ₂ (1 + i)
R ₃ NPV _k
R ₄ k
R ₅
R ₆
R,

Exemple:

Vous avez la possibilité d'investir 150 000F dans un certain projet. A partir des bénéfices réels suivants, et moyennant un taux d'actualisation de 10%, cet investissement est-il rentable?

Année	Cash-flow
1	30 000F
2	26 300F
3	50 000F
4	55 600F
5	45 200F

Solution:

(introduire i sous forme décimale 0.10)

 $NPV_1 = -122727.27F$ $NPV_2 = -100991.74F$

 $NPV_3 = -63426.00F$

 $NPV_4 = -25450.45F$

 $NPV_5 = 2615.20F$

La valeur actuelle nette C_5 étant positive, l'affaire est rentable. On pourrait calculer le taux exact en essayant d'autres taux.

N۰	INSTRUCTIONS	DONNÉES		TOU	CHES		RÉSULTATS
1	Introduire le programme						
2	Mettre en mémoire l'investisse-						
	ment initial et le taux	V _o	STO	0			
	d'actualisation	i (décimale)	STO	1	f	PRGM	
3	Effectuer 3 pour k=1,, n:						
	Introduire Ck et	Ck	R/S				(k)
	calcul de NPVk						NPV _k
4	Pour un nouveau cas, aller en 2.						

CALENDRIER: JOUR DE LA SEMAINE, NOMBRE DE JOURS ENTRE DEUX DATES

Ce programme calcule le jour de la semaine pour une date donnée et le nombre de jours exact entre deux dates, comprises entre le 1er mars 1700 (jour 1) et le 28 février 2100. Les jours d'une semaine sont affichés par un numéro:

0: dimanche

1: lundi

2: mardi, etc.

Le numéro du jour N se calcule d'après la formule suivante (a: année, m: mois, j: jour):

$$N = [365,25 g (a, m)] + [30,6 f(m)] + J - 621049$$

οù

$$g(a, m) = \begin{cases} a-1 & \text{si } m=1 \text{ ou } 2 \\ a & \text{si } m>2 \end{cases} \text{ et } f(m) = \begin{cases} m+13 & \text{si } m=1 \text{ ou } 2 \\ m+1 & \text{si } m>2 \end{cases}$$

(m) représente la partie entière d'un nombre; ainsi [6.34] = 6.

Remarque:

Pour les jours compris entre le 1er mars 1700 et le 28 février 1800, il faut ajouter 2 jours à la solution et un jour pour ceux compris entre le 1er mars 1800 et le 28 février 1900.

AFFICHAGE				
PAS	CODE	TOUCHES		
	mmm	mmm		
00	777777777	771777777		
01	03	3		
02	24 01	RCL 1		
03	14 41	f x <y< th=""></y<>		
04	13 09	GTO 09		
05	01	1		
06	51	+		
07	24 03	RCL 3		
80	13 15	GTO 15		
09	01	1		
10	03	3		
11	51	+		
12	24 03	RCL 3		
13	01	1		
14	41	-		
15	03	3		
16	06	6		
17	05	5		
18	73	•		
19	02	2		
20	05	5		
21	61	x		
22	14 01	f INT		
23	21	x 		
24	03	3		

ΔFF	AFFICHAGE				
PAS	CODE	TOUCHES			
25	00	0			
26	73	•			
27	06	6			
28	61	x			
29	14 01	f INT			
30	51	+			
31	24 02	RCL 2			
32	51	+			
33	06	6			
34	02	2			
35	01	1			
36	00	0			
37	04	4			
38	09	9			
39	41	-			
40	74	R/S			
41	07	7			
42	71	÷			
43	15 01	g FRAC			
44	07	7			
45	61	×			
46	13 00	GTO 00			
47					
48					
49					

	REGISTRES
R _o	
R,	Mois
R ₂	Jour
R ₃	Année
R ₄	
R ₅	
R ₆	
R,	Temporaire

Exemples:

- 1. Quel jour de la semaine était le 4 juillet 1776?
- 2. Combien de jours se sont écoulés entre le 27 mars 1948 et le 7 avril 1975?

Solutions:

- 1. Jeudi (4) (penser à ajouter 2 jours)
- 2. 9872 jours

N°	INSTRUCTIONS	DONNÉES	TOUCHES				RÉSULTATS
1	Introduire le programme						,
2	Mettre en mémoire le mois	m	STO	1			
	le jour	j	STO	2			
	l'année	а	STO	3			
3	Calcul de N (m, j, a)		f	PRGM	R/S		N(m, j, a)
4	Pour le jour de la semaine, aller en 8						
5	Pour le calcul de jours entre 2 dates, mettre d'abord en						
	mémoire N		STO	7			
6	Répéter les opérations 2 et 3						
	pour la deuxième date		RCL	7	-		# jours
7	Pour un nouveau cas, aller en 2						
8	Pour le jour de la semaine (0=dimanche)		R/S				jour (0,, 6)
9	Pour un nouveau cas, aller en 2.						

CHAPITRE 3: JEUX

SIMULATION D'UN ALUNISSAGE

Imaginez un instant les difficultés d'un alunissage avec réserves limitées de carburant: il s'agit de poser un engin, en douceur, sur le sol lunaire. L'allumage des rétrofusées permet de freiner la descente, mais le carburant ne doit pas être brûlé trop vite ou trop tôt, car vous risqueriez de vous trouver à 30 mètres du sol, les réservoirs à sec, avec toutes les conséquences fâcheuses que cela entraînerait! La bonne manœuvre consiste, bien sûr, à doser et à espacer les coups de freins, de manière à toucher le sol lunaire à une vitesse très faible.

Le jeu démarre alors que l'engin est, à 500 mètres, à une vitesse de 50 m/s. Vitesse et altitude sont affichées sous la forme -50.500, l'altitude étant à droite du point décimal, et la vitesse à gauche. Le signe (-) indique que le mouvement est descendant. Une vitesse affichée sans partie décimale, par exemple -50, signifie que vous vous êtes écrasés à une vitesse de 50 m/s. En termes de jeu, cela veut dire que vous avez perdu; dans la réalité, la signification serait encore bien moins amusante!

Démarrons le jeu avec 120 litres de carburant. A chaque étape de la descente, vous pouvez brûler autant de carburant que vous voulez, dans la limite des réserves encore disponibles. Il est possible de ne pas brûler de carburant. Brûler 5 litres annule la gravitation lunaire et permet de garder une vitesse constante. Brûler plus de 5 litres modifie la vitesse vers le haut. Vous devez faire attention, bien sûr, de ne pas brûler plus de carburant qu'il n'en reste. Si cela se produit, ce sera la chute libre vers un tragique destin! La vitesse finale affichée sera votre vitesse d'impact (généralement très élevée). Vous pouvez afficher à chaque instant votre réserve de carburant en appuyant sur les touches

Formules:

Pour ne pas gâcher l'attrait, nous ne rentrerons pas dans les détails, mais soyez assuré que ce programme est basé sur quelques formules classiques de la physique newtonnienne:

$$x = x_0 + v_0 t + \frac{1}{2} at^2$$
 $v = v_0 + at$ $v^2 = v_0^2 + 2 ax$

où x, v, a et t sont la distance, la vitesse, l'accélération et le temps.

Remarques:

- Si vous vous écrasez avant d'être à court de carburant, la vitesse d'impact affichée sera la vitesse atteinte avant le dernier usage de carburant, et non la vitesse réelle d'impact.
- 2. Les valeurs de carburant brûlé doivent être entières. Toute introduction illicite provoquerait une erreur dans l'affichage de V.X.

Remarques sur la programmation:

Une des particularités intéressantes de ce programme est l'affichage combiné (V.X) de la vitesse et de l'altitude, par exemple -15.0150. Ceci est obtenu par stockage de V et X sous leur forme normale (-15,00; 150,00), puis par division de X par $10000 (10^4)$ avant la combinaison. Une astuce est également utilisée pour déterminer le signe de V et la nécessité d'ajouter ou de retrancher $(X/10^4)$ de V. Si, par exemple, V=-15 et X=150, il faudrait soustraire $(X/10^4)$ de V pour obtenir -15.0150. Mais, si V=10 et X=8, il faudrait ajouter $(X/10^4)$ à V pour obtenir à l'affichage 10.0050.

Un coup d'œil aux pas 2 à 12 du programme vous montrera comment la fonction valeur absolue (ABS) a été utilisée pour cette astuce.

AF	CODE	TOUCHES	х	Y	z	т	COMMENTAIRES	REGISTRE
	CODE	<i></i>			-	+		- ×
00	7111111111	77177777					Affichage à 4 décimales	R 0_X
01	14 11 04	fFIX4				+	Elaboration de l'affichage V.X	
02	24 00	RCL 0	X				Elaboration do Farmenage	
03	33	EEX	1. 00					R 1
04	04	4		X				l ——
05	71	÷	X/10 ⁴				Division par 10 ⁴ pour placer	
06	24 01	RCL 1	V	X/10⁴			X à droite du point décimal	R 2 Carbura
07	15 4 1	g x<0	V	X/10 ⁴				
80	13 11	GTO 11	V	X/10 ⁴				
09	51	+	V + X/10 ⁴				Affichage de V+X/104	R 3 Accéléra
10	13 13	GTO 13	V + X/10 ⁴					J
11	21	x ≓ y	X/10 ⁴	٧				
12	41	-	V - X/10 ⁴				Affichage de V-X/104	R4
13	74	R/S	v.x				V.X soit V± (X/10 ⁴)	ļ <u>"</u>
14	24 02	RCL 2	F	В			Introduction du carburant B	
15	14 41	f x <y< td=""><td>F</td><td>В</td><td></td><td></td><td>carburant à brûler > réserves</td><td>R 5</td></y<>	F	В			carburant à brûler > réserves	R 5
16	13 34	GTO 34	F	В			Oui. On va s'écraser	5
17	22	R↓	В			F	Non. Calcul de A, X, V	
18	23 41 02	STO - 2	В			F	Nouveau carburant restant	-
19	05	5	5	В		+	Gravitation=5 unités	R 6
-		-		В			Accélération = B - 5	
20	41		B - 5					
21	23 03	STO 3	Α					R 7
22	02	2	2	Α				
23	71	+	A/2			_		l L
24	24 00	RCL 0	×	A/2	1			
25	51	+	X + A/2					
26	24 01	RCL 1	٧	X + A/2				l
27	51	+	X + V + A/2				Altitude: X ← X+V+A/2	1
28	23 00	STO 0	X					l
29	15 41	g x<0	X				Altitude < sol?	
30	13 44	GTO 44	X				Oui. On s'est écrasé	ļ
31	24 03	RCL 3	Α	Х			Non. Calcul de V	
32	23 51 01	STO + 1	Α	x			Nouvelle vitesse: V ← V+A	l
33	13 02	GTO 02	Α	Х			Afficher V.X	1
34	24 01	RCL 1	v				Plus de carburant	1
35	15 02	g x²	V ²				Afficher la vitesse	
36	24 00	RCL 0	x	V ²			V = (V ² + 2 g X) ½	
37	01	1	1	x	V ²		avec g=5	
38	00	0	10	x	V ²			1
39	61	×	10 X	V ²				1
40	51	+	V ² + 10 X					1
-	_		V 110 X		 			1
41	14 02	f√x	v		-		Vitesse d'impact < 0	1
42		CHS	v		+	-		1
43	23 01	STO 1				_	Branchement depuis 30	1
44	24 01	RCL 1	V					1
45	14 11 00	fFIX 0	V			_	Affichage de V entier pour montrer l'écrasement	1
46	13 00	GTO 00	V				pour montrer i ecrasement	1
47								-
48								1
49	1	1	1	1	ı	1	1	ı

Exemple:

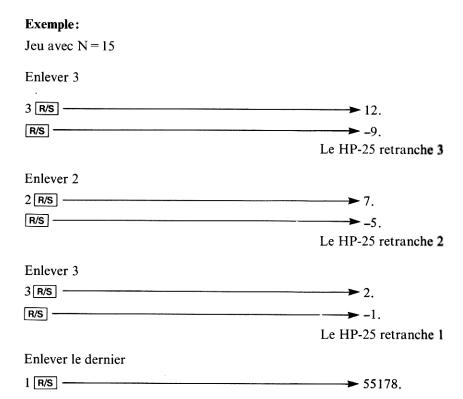
500 STO 0 50 CHS STO 1 120 STO 2	
f PRGM R/S	→ -50.0500
0 R/S	→ - 55.0448
5 R/S	→ -55.0393
(la vitesse reste constante quan	d on brûle 5 unités)
30 R/S	→ -30.0350
0 R/S	→ - 35.0318
0 R/S	→ - 40.0280
	→ -45.0238
0 R/S	→ -50.0190
RCL 2	→ 85.0000
	(carburant restant)
f PRGM R/S	→ -50.0190
	(affichage de V.X)
10 R/S	→ - 45.0143
0 R/S	→ -50.0095
RCL 2	→ 75.0000
10 R/S	→ -45.0048
25 R/S	→ -25.0013
20 R/S	→ -25.

Nº	INSTRUCTIONS	DONNÉES	TOUCHES				RÉSULTATS
1	Introduire le programme						
2	Initialiser	х	500	STO	0		500.00
		V	50	CHS	STO	1	-50.00
		Carburant	120	STO	2		120.00
3	Afficher le V.X initial		f	PRGM	R/S		-50.0500
4	Brûler du carburant	В					
			R/S				V.X
5	Recommencer l'opération 4 jusqu'à l'alunissage en						
	douceur ou non						
6	Pour afficher le						
	carburant restant		RCL	2			Carburant
7	Pour afficher V.X						
			f	PRGM	R/S		V.X
8	Pour un nouveau jeu, aller en 2.						

NIMB

Les règles du jeu de Nimb sont très simples: N objets sont mis en jeu, N étant un nombre entier positif. Chaque joueur retire, à son tour, 1, 2 ou 3 objets, jusqu'à ce qu'il n'en reste plus qu'un. Le joueur qui se trouve obligé de prendre le dernier a perdu.

Au départ, il faut indiquer à la machine le nombre d'objets mis en jeu, c'est-à-dire la valeur de N. Après chaque soustraction, la machine affiche le nombre d'objets restant. Un signe négatif indique que c'est à vous de jouer, un signe positif que c'est au HP-25 de jouer.


En tant que «challenger», c'est à vous de jouer le premier. Il vous est possible de gagner, mais le HP-25 est évidemment un champion à ce jeu, et il ne vous pardonnera aucune erreur. (Mais n'oubliez pas que le HP-25 a en vous une confiance naïve, il attend donc de votre part un jeu loyal: vous ne devez pas soustraire de nombres autres que 1, 2 ou 3.)

AFFICHAGE

AFF	ICHAGE	TOUCHES		
PAS	CODE	TOUCHES		
00		///////////////////////////////////////		
01	31	†		
02	01	1		
03	23 02	STO 2		
04	22	R↓		
05	23 41 00	STO-0		
06	24 00	RCL 0		
07	15 71	g x=0		
08	13 41	GTO 42		
09	23 61 02	STO × 2		
10	24 02	RCL 2		
11	74	R/S		
12	21	x ≠ y		
13	15 51	g x ≥ 0		
14	1316	GTO 17		
15	21	x ⇒ y		
16	13 01	GTO 02		
17	01	1		
18	32	CHS		
19	23 02	STO 2		
20	00	0		
21	23 01	STO 1		
22	24 01	RCL 1		
23	03	3		
24	1471	f x=y		

		TOUCHES		
PAS	CODE	TOUCHES		
25	1339	GTO 40		
26	01	1		
27	23 51 01	STO+1		
28	32	CHS		
29	24 00	RCL 0		
30	51	+		
31	24 01	RCL 1		
32	41	-		
33	04	4		
34	71	÷		
35	15 01	g FRAC		
36	1561	g x≠0		
37	13 21	GTO 22		
38	24 01	RCL 1		
39	13 04	GTO 05		
40	01	1		
41	13 04	GTO 05		
42	24 02	RCL 2		
43	15 41	g x < 0		
44	13 46	GTO 47		
45	24 03	RCL 3		
46	13 00	GTO 00		
47	24 04	RCL 4		
48	14 11 01	f FIX 1		
49	1300	GTO 00		

	REGISTRES					
R _o	Total					
R,	La machine joue					
R ₂	± Total					
R ₃	55178					
R ₄	3507.1					
R ₅						
R ₆						
R,						

Retourner, le calculateur pour lire, à l'affichage, son commentaire: BLISS («je suis vainqueur»).

N۰	INSTRUCTIONS	DONNÉES	TOUCHES				RÉSULTAT S
1	Introduire le programme						
2	Initialiser	55178	STO	3			
		3507.1	STO	4	f	PRGM	
3	Stocker le nombre d'objets						
	(généralement 15) et choisir le	N	STO	0	CHS	f	
	mode d'affichage		FIX	0			-N.
4	Si le nombre affiché est négatif,						
	c'est à vous de jouer	Votre jeu	R/S				+ Total
5	Si le nombre affiché est positif,						
	laisser jouer le HP-25		R/S				Total
6	Recommencer les opérations						
	4 et 5 jusqu'à ce que le jeu soit terminé						***************************************
7	A la fin du jeu, lire à l'envers						
	de l'affichage le commentaire du HP-25						
8	Pour un autre jeu, retourner en 3						

UNE LEÇON D'ARITHMÉTIQUE

Hewlett-Packard pense que le calculateur de poche, loin de menacer les principes traditionnels d'un bon enseignement des mathématiques, peut être utilisé, de manière constructive, pour consolider des études dans le domaine de l'arithmétique, l'algèbre, la géométrie, la trigonométrie, le calcul infinitésimal et l'analyse numérique. Ce programme destiné à être utilisé pour l'enseignement, aux enfants, des quatre opérations arithmétiques élémentaires, montre un des nombreux aspects du HP-25 en tant qu'instrument éducatif:

Le principe de ce programme est de poser un problème d'arithmétique et de comparer la réponse correcte à celle que vous donnez. Si votre réponse est juste, le programme continue et un nouveau problème vous est posé. Si elle est fausse, le programme vous pose à nouveau le même problème, vous donnant ainsi une seconde chance.

Pour utiliser le programme, vous devez stocker, dans le registre mémoire R₀, une valeur Max. Cette manipulation a pour but d'empêcher le programme de prendre en considération les nombres aussi grands que la valeur Max. Si vous donnez à Max la valeur 12, par exemple, tout le problème sera traité avec des nombres compris entre 0 et 11. Vous devez en outre stocker dans le registre R₁ un nombre compris entre 0 et 1 qui permettra d'initialiser le générateur de nombres aléatoires donnant les opérandes. Des nombres initiaux différents engendreront des problèmes différents. Si le format d'affichage choisi est ([f] [FIX] [2]), le problème sera affiché de la manière suivante: le premier terme de l'opération sera à gauche du point décimal, le deuxième terme à sa droite. Les nombres 8 et 2, par exemple, seront affichés 8.02. Vous pourrez alors choisir l'opération que vous voulez effectuer: addition (8+2), soustraction (8-2), multiplication (8×2) ou division $(8\div2)$. Lorsque vous aurez frappé votre réponse au clavier et relancé l'exécution du programme, celui-ci pourra afficher soit un nouveau problème si votre réponse était juste, soit les deux mêmes nombres sous la forme négative (ce signe négatif indique simplement que la réponse était fausse, et non que les nombres sont négatifs: tous les nombres du problème sont positifs, bien que, évidemment le résultat de certaines soustractions puisse être négatif). Si le problème réapparaît avec un signe négatif, vous devez faire un nouvel essai en proposant une autre réponse. Dès que vous aurez donné la bonne réponse, le programme affichera un nouveau problème.

	ICHAGE	TOUCHES				
PAS	CODE	TOOCILES				
00						
01	24 01	RCL 1				
02	15 73	gπ				
03	15 02	g x²				
04	61	x				
05	15 01	g FRAC				
06	23 01	STO 1				
07	24 00	RCL 0				
80	61	х				
09	14 01	FINT				
10	23 03	STO 3				
11	24 01	RCL 1				
12	15 73	gπ				
13	15 02	g x²				
14	61	х				
15	15 01	g FRAC				
16	23 01	STO 1				
17	24 00	RCL 0				
18	61	×				
19	14 01	fINT				
20	23 02	STO 2				
21	24 03	RCL 3				
22	33	EEX				
23	02	2				
24	71	÷				

AFFIGUAGE						
PAS	ICHAGE	TOUCHES				
	CODE					
25	51	+				
26	23 04	STO 4				
27	74	R/S				
28	24 02	RCL 2				
29	24 03	RCL 3				
30	51	+				
31	13 43	GTO 43				
32	24 02	RCL 2				
33	24 03	RCL 3				
34	41					
35	13 43	GTO 43				
36	24 02	RCL 2				
37	24 03	RCL 3				
38	61	x				
39	13 43	GTO 43				
40	24 02	RCL 2				
41	24 03	RCL 3				
42	71	÷				
43	14 71	f x=y				
44	13 01	GTO 01				
45	24 04	RCL 4				
46	32	CHS				
47	13 27	GTO 27				
48						
49		 				

	REGISTRES					
	Max.					
	Nombres au hasard					
R ₂	Numéro de gauche					
	Numéro de droite					
	Problème					
R ₅						
R ₆						
R,						

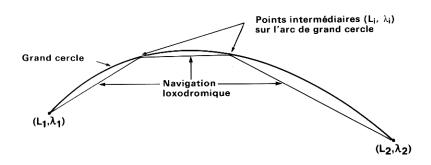
Exemple:

Soit: Max = 12 et s = 0.725

Solution:

Nº	INSTRUCTIONS	DONNÉES		тои	CHES	RÉSULTATS
1	Introduire le programme					
2	Stocker Max (0≤Max≤100)		STO	0		
3	Stocker	s	STO	1		
4	Choisir le format d'affichage		f	FIX	2	
5	Commencer le problème		f	PRGM	R/S	n ₁ . n ₂
6	Choisir une opération et frap-					
	per votre réponse au clavier					
	Pour une addition (+)	n ₁ + n ₂	R/S			
	Pour une soustraction (-)	n ₁ - n ₂	GTO	32	R/S	
	Pour une multiplication (×)	n ₁ x n ₂	GTO	36	R/S	
	Pour une division (÷)	$n_1 \div n_2$	GТО	40	R/S	
7	Si votre réponse est juste,					
	le programme affiche un nou-					
	veau problème. Aller en 6					n ₃ . n ₄
8	Si votre réponse est fausse, le					
	programme affiche le même					
	problème. Aller en 6	-				-n ₁ , n ₂
9	Effectuer les opérations 6 à 8					
	autant de fois que vous le souhaitez					
10	Pour changer la valeur de Max, aller en 2, puis en 5					

CHAPITRE 4: NAVIGATION


NAVIGATION ORTHODROMIQUE ET LOXODROMIQUE

Les longs voyages en mer ou dans l'air suivent toujours deux types de routes: l'orthodromie et la loxodromie. La trajectoire reliant deux points du globe en coupant tous les méridiens à angle constant est la loxodromie. Sur une projection de Mercator, la trajectoire est une droite passant par les deux points donnés. Du fait du cap constant, cette route est très pratique et souvent utilisée pour les traversées courtes à des latitudes moyennes ou faibles.

Pour d'autres latitudes, la traversée la plus courte suit l'arc de grand cercle, c'est-à-dire la trajectoire orthodromique. Malgré tout, cette route idéale est impossible à suivre dans la pratique, puisque le cap change continuellement. L'arc de grand cercle idéal sera donc interpolé par une succession de segments loxodromiques.

Le premier programme calcule des points intermédiaires sur l'arc de grand cercle théorique, connaissant les latitudes et longitudes du point de départ et du point de destination de la traversée, puis une série de longitudes quelconques intermédiaire λ_i . Pour chaque λ_i , le programme calcule la latitude L_i du point correspondant sur l'arc de grand cercle.

Plusieurs points intermédiaires (L_i, λ_i) étant obtenus, le second programme calcule la route loxodromique entre chaque point. Les données de ce programme sont les coordonnées de deux points du globe. Les résultats sont la distance et l'angle de la loxodromie. Le second programme peut être utilisé seul ou en liaison avec le programme précédent.

POINTS INTERMÉDIAIRES SUR L'ARC DE GRAND CERCLE

Formules:

$$L_i\!=\!arc\;tg\;\left\lceil\frac{tg\;L_2\;sin\;(\lambda_i\!-\!\lambda_1)\!-\!tg\;L_1\;sin\;(\lambda_i\!-\!\lambda_2)}{sin\;(\lambda_2\!-\!\lambda_1)}\right\rceil$$

où (L₁, λ₁): coordonnées du point de départ

 (L_2, λ_2) : coordonnées du point de destination (L_i, λ_i) : coordonnées d'un point intermédiaire

Remarque:

Le programme ne fonctionne pas pour des longitudes $\lambda_1 = \lambda_2$.

PAS	CODE	TOUCHES	X	Y	z	Т	COMMENTAIRES	REGIS
00		//////////	λ _i , D.MS			†		R _O L ₁
01	15 00	g→H	λ _i , D.d			t	(Conversion de λj en	(de
02	23 04	STO 4	λ _i			†	degrés décimaux)	- 11 -
03	24 01	RCL 1	λ_1	λ _i		†		Β, λ,
04	41	-	$\lambda_i - \lambda_1$					$\frac{1}{ A } \frac{\lambda_1}{ A }$
05	14 04	fSIN	sin ₁			1	$\sin_1 = \sin (\lambda_i - \lambda_1)$	
06	24 02	RCL 2	L ₂	sin ₁	1	t		B a L2
07	14 06	fTAN	tan ₂	sin ₁			tg2=tg L2	R 2 (de
80	61	x	tan ₂ sin ₁					TI -
09	24 04	RCL 4	λ _i	tan ₂ sin ₁				Β - λ2
10	24 03	RCL 3	λ ₂	λ _i	tan ₂ sin ₁			$R_3 \frac{\lambda_2}{\text{(de)}}$
11	41	-	$\lambda_i - \lambda_2$	tan ₂ sin ₁				- 11 -
12	14 04	f SIN	sin ₂	tan ₂ sin ₁			$\sin_2 = \sin (\lambda_1 - \lambda_2)$	R ₄ $\frac{\lambda_i}{\lambda_i}$
13	24 00	RCL 0	L ₁	sin ₂	tan ₂ sin ₁			(de
14	14 06	f TAN	tan ₁		1	i i	tg1=tg L1	11 -
15	61	×	tan ₁ sin ₂	tan ₂ sin ₁				B.
16	41	-	NUM	T		1	NUM=tg ₂ sin ₁ -tg ₁ sin ₂	
17	24 03	RCL 3	λ ₂	NUM				TI -
18	24 01	RCL 1	λι	λ ₂	NUM			
19	41	-	$\lambda_2 - \lambda_1$	NUM	<u> </u>			R 6
20	14 04	fSIN	DEN	NUM			DEN= $\sin (\lambda_2 - \lambda_1)$	TI -
21	71	÷	NUM/DEN					R7_
22	15 06	g TAN ⁻¹	L _i , D.d					71"/-
23	14 00	f→H.MS	L _i , D.MS				Affichage de Li en D.MS	
24	14 11 04	fFIX 4				1		
25	13 00	GTO 00						
26								
27								
28								
29								
30								
31				1		1		
32								
33				1				
34								
35								
36			***************************************					
37								
38								
39				1				7
40								
41					1			
42				1				7
43				T				
44				 				
45			-	t				7
46				t	1		+	┪
47				t	1	 		-1
48				t	†			\neg
				-	_	L		_

Nº	INSTRUCTIONS	DONNÉES		RÉSULTATS			
1	Introduire le programme						
2	Introduire les coordonnées						
	du point de départ:						
	latitude (CHS pour Sud)	L ₁ , D.MS	g	→H	STO	. 0	L ₁ , deg. déc.
	longitude (CHS pour Est)	λ_1 , D.MS	g	→H	STO	1	λ ₁ , deg. déc.
3	Introduire les coordonnées du point de destination:						
	latitude (CHS pour Sud)	L ₂ , D.MS	9	→H	STO	2	L2, deg. déc.
	longitude (CHS pour Est)	λ_2 , D.MS	g	→H	STO	3	λ ₂ , deg. déc.
4	Revenir en début de mémoire		f	PRGM			
5	Introduire la longitude intermé-						
	diaire (CHS pour Sud) et cal-						
	culer la latitude correspondante	λ _i , D.MS	R/S				L _i , D.MS
6	Pour d'autre λį, aller en 5.						
	Pour d'autres points de départ						
	(ou de destination), aller en 2						
	(ou en 3).						

NAVIGATION LOXODROMIQUE

Formules:

$$C = \text{arc tg} \frac{\pi (\lambda_1 - \lambda_2)}{180 \left[\ln \text{tg} (45 + \frac{1}{2} L_2) - \ln \text{tg} (45 + \frac{1}{2} L_1) \right]}$$

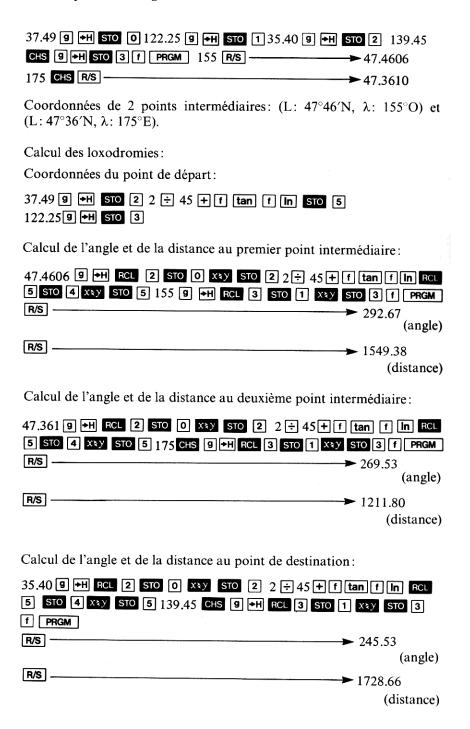
$$D = \begin{cases} 60 (\lambda_2 - \lambda_1) \cos L; \cos C = 0 \\ 60 \frac{(L_2 - L_1)}{\cos C}; \text{ autrement} \end{cases}$$

où (L_1, λ_1) : coordonnées du point de départ (L_2, λ_2) : coordonnées du point de destination

C: angle loxodromique
D: distance loxodromique

Remarques:

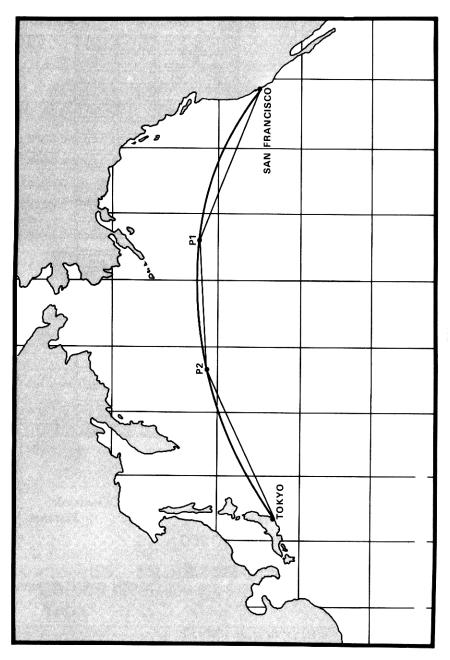
- 1. Le programme n'accepte pas les routes passant par les pôles.
- 2. La route ne doit pas traverser le méridien 180° (limite des heures internationales).
- 3. Lorsque C est très proche de 90° ou de 270°, les distances peuvent être incorrectes.
- 4. La précision est moins bonne pour des courses très courtes.


PAS	CODE	TOUCHES	x	Y	Z	т	COMMENTAIRES	REGISTR
00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	λ_2	λ				R o
01	41	-	$\lambda_1 - \lambda_2$					(deg. d
02	23 06	STO 6	$\lambda_1 - \lambda_2$					
03	02	2	2	$\lambda_1 - \lambda_2$				R ₁ $\frac{\lambda_1}{\lambda_1}$
04	71	+	α				$\alpha=1/2 (\lambda_1 - \lambda_2)$	(deg. d
05	14 04	f SIN	sin α				Ramène a tel que	
06	15 04	g SIN ⁻¹	u				-180 ≤ λ ₁ - λ ₂ ≤180	R - L2
07	09	9	9	α			Détermine la route la plus	R 2 (deg.
08	00	0	90	α			courte	
09	71	÷	α/90					R ₃ $\frac{\lambda_2}{(\text{deg.})}$
10	15 73	gπ	π	α/90				(deg.
11	61	х	πα/90	πα/90				
12	24 05	RCL 5	In tan ₂	πα/90				R a In tg
13	24 04	RCL 4	In tan ₁	у			y=π a/90	R 4 In tg
14	41	-	x	У			x=in tg ₂ -in tg ₁	
15	15 09	g→P	г	c			C=arc tg y/x	R - In tg
16	22	R↓	c	-		r		R 5 In tg
	15 03	g ABS	ICI			r		
17						l:		- \lambda - \lambda
18	23 07	STO 7	ICI	101		 		R ₆ λ ₁ -
19	24 06	RCL 6	$\lambda_1 - \lambda_2$	C			Ramène $\lambda_1 - \lambda_2$ tel que	
20	14 04	f SIN	sin 2α	ICI		 	$-90 \le \lambda_1 - \lambda_2 \le 90$	- ICI
21	15 04	g SIN ⁻¹	2α	ICI			x ≤ 0 signifie Est → Ouest	R 7 ICI
22	15 41	g x<0	2α	C			• • • • • • • • • • • • • • • • • •	II —
23	13 26	GTO 26	2α	C		ļ	Ouest → Est, C est la réponse	l
24	21	x₹y	ICI	2α		 	Odest -> Est, fo fest to reporte	1
25	13 31	GTO 31	ICI	2α	101	ļ	5 . Ourset la séconda act	1
26	03	3	3	2α	C		Est → Ouest, la réponse est 360 - [C]	1
27	06	6	36	2α	C		360 - [C]	1
28	00	0	360	2α	C			{
29	24 07	RCL 7	ICI	360	2α	C		ł
30	41	-	360 - C				Affichance de l'appelo	ł
31	74	R/S					Affichage de l'angle Calcul de la distance D	1
32	06	6	6			ļ	Calcul de la distance b	1
33	00	0	60		Ļ			1
34	24 07	RCL 7	ICI	60				1
35	14 05	f cos	cos C	60				ł
36	15 61	g x≠0	cos C	60			Si cos C≠0,	1
37	13 45	GTO 45	cos C	60			aller au pas 45	ł
38	34	CLX	0	60			cos C=0; le cap est	1
39	24 06	RCL 6	$\lambda_1 - \lambda_2$				Ouest ou Est	1
40	61	×	60 $(\lambda_1 - \lambda_2)$					1
41	24 02	RCL 2	L ₂	60 $(\lambda_1 - \lambda_2)$				1
42	14 05	f COS	cos L ₂	$60 (\lambda_1 - \lambda_2)$				4
43	61	×	Distance				$D=60 (\lambda_1 - \lambda_2) \cos L$	4
44	13 00	GTO 00	Distance				Affichage de la distance	1
45	71	÷	60/cos C				Le cap n'est pas Est ou Oues	1
46	24 02	RCL 2	L ₂				Appliquer la formule	1
47	24 00	RCL 0	L,	L ₂	60/cos C		D=60 (L ₂ -L ₁)/cos C]
48	41	-	L ₂ - L ₁	60/cos C]
49	61	×	Distance				Stop	I

Exemple:

Un navigateur désire se rendre de San Francisco (L: 37°49′N, λ : 122°25′O) à Tokyo (L: 35 40′N, λ : 139°45′E) en suivant trois routes loxodromiques pour interpoler un arc de grand cercle. Les longitudes des deux points intermédiaires sont 155°O et 175°E. Calculer pour chaque étape l'angle de route et la distance.

Solution:


Calcul de la latitude de 2 points intermédiaires:

N٥	INSTRUCTIONS	DONNÉES		тоис	HES		RÉSULTATS
1	Introduire le programme						
2	Introduire la latitude initiale	1000					
	(CHS pour Sud)	L ₁ , D.MS	g	→H	STO	2	
			2	÷	45	+	
			f	TAN	f	LN	
-			STO	5			In tg ₁
3	Introduire la longitude initiale						
	(CHS pour Est)	λ_1 , D.MS	g	→H	STO	3	λ ₁ , deg. déc.
4	Introduire la latitude finale						
	(CHS pour Sud)	L ₂ , D.MS	g	→H	RCL	2]
			STO	0	x ≠y	STO	
			2	2	÷	45	
	and analysis and analysis and analysis of the second of th		+	f	TAN	f]
			LN	RCL	5	STO	
			4	x 	STO	5	In tg₂
5	Introduire la longitude finale						
	(CHS pour Est)	λ_2 , D.MS	g	→H	RCL	3]
			STO	1	x ≠y	STO	
			3				λ ₂ , deg. déc.
6	Calcul de l'angle		f	PRGM	R/S]c
7	Calcul de la distance		R/S]
8	Pour enchaîner sur un autre						
	point, retourner en 4.						

En résumé:

		Loxoaromie		
Position	Coordonnées	Angle	Distance	
San Francisco	L: 37°49′N, λ: 122°25′O			
Premier point		292.7°	1549.16 m.n.	
intermédiaire	L: 47°46′N, λ: 155°O			
Deuxième point		269.5°	1211.81 m.n.	
intermédiaire	L: 47°36′N, λ: 175°E			
		245.5°	1728.51 m.n.	
Tokyo	L: 35°40′N, λ: 139°45′E			

La distance totale des 3 routes loxodromiques est égale à 4489.5 miles nautiques, tandis que celle suivant un arc de grand cercle est égale à 4460 miles nautiques. Pour deux points intermédiaire, la distance supplémentaire à parcourir en navigation loxodromique est inférieure à 30 miles nautiques.

RÉSOLUTION DU TRIANGLE DE POSITION

Ce programme donne la hauteur calculée Hc et l'azimuth Zn d'un astre, la latitude L de l'observateur, l'angle horaire local LHA et la déclinaison de l'astre étant connus. Il remplace les 9 tables HO 214.

Formules: $Hc = arc \sin [\sin d \sin L + \cos d \cos L \cos LHA]$

$$Z = \operatorname{arc} \cos \left[\frac{\sin d - \sin L \sin Hc}{\cos L \cos Hc} \right]$$

$$Zn = \begin{cases} Z & ; \sin LHA < 0 \\ 360-Z; \sin LHA \ge 0 \end{cases}$$

Remarques:

- 1. Introduire les latitudes Sud et les déclinaisons Sud comme des valeurs négatives.
- 2. Vous pouvez introduire l'angle méridien t à la place de l'angle horaire local LHA; dans ce cas, introduire les angles méridiens Est comme des valeurs négatives.

AFF	ICHAGE			AFF	ICHAGE	TOUCHES
PAS	CODE	TOUCHES		PAS CODE		TOUCHES
00		///////////////////////////////////////		25	61	x
01	24 00	RCL 0		26	41	-
02	14 04	fSIN		27	24 00	RCL 0
03	24 01	RCL 1		28	14 05	f COS
04	14 04	fSIN		29	71	÷
05	61	x		30	24 04	RCL 4
06	24 00	RCL 0		31	14 05	f COS
07	14 05	f COS		32	71	÷
08	24 01	RCL 1		33	15 05	g COS ⁻¹
09	14 05	f COS		34	24 02	RCL 2
10	61	х		35	14 04	f SIN
11	24 02	RCL 2		36	15 41	g x<0
12	14 05	f COS		37	13 45	GTO 45
13	61	×		38	22	R↓
14	51	+		39	03	3
15	23 03	STO 3		40	06	6
16	15 04	g SIN ⁻¹		41	00	0
17	23 04	STO 4		42	21	x y
18	14 00	f →H.MS		43	41	-
19	74	R/S		44	13 00	GTO 00
20	24 01	RCL 1		45	22	R↓
21	14 04	fSIN		46	13 00	GTO 00
22	24 03	RCL 3		47		
23	24 00	RCL 0		48		
24	14 04	fSIN	1	49		

REGISTRES				
R _o L				
R ₁ d				
R ₂ LHA				
R ₃ sin Hc				
R ₄ Hc				
R ₅				
R ₆				
R ₇				

Calculer la hauteur et l'azimuth de la lune.

Angle horaire local LHA: 2°39′54″O

Déclinaison d: 13°51′06′′S

Latitude L: 33°20'N

Solution:

 $Hc = 42^{\circ}44'4''$ $Zn = 183.5^{\circ}$

N°	INSTRUCTIONS	DONNÉES	TOUCHES				RÉSULTAT S
1	Introduire le programme						
2	Introduire:						
	la latitude de l'observateur	L, D.MS	g	→H	STO	0	L, deg. déc.
	la déclinaison	d, D.MS	g	→H	STO	1	d, deg. déc.
	l'angle horaire local	LHA, D.MS	g	→H	STO	2	LHA, deg. déc.
3	Calcul de la hauteur		f	PRGM	R/S		Hc, D.MS
4	Calcul de l'azimuth		R/S				Zn, deg. déc.
5	Pour un nouveau cas, aller en 2						

NAVIGATION SUIVANT UN ARC DE GRAND CERCLE

Ce programme calcule l'arc de grand cercle entre deux points et le cap initial à suivre, la latitude et la longitude du point de départ (L_1, λ_1) et du point de destination (L_2, λ_2) étant connues.

Formules:

$$\begin{split} D &= 60 \text{ arc cos } [\sin \ L_1 \sin \ L_2 + \cos \ L_1 \cos \ L_2 \cos \ (\lambda_2 - \lambda_1)] \\ H &= \text{arc } \cos \left[\frac{\sin \ L_2 - \sin \ L_1 \cos \ (D/60)}{\sin \ (D/60) \cos \ L_1} \right] \\ H_i &= \begin{cases} H & ; \sin \ (\lambda_2 - \lambda_1) \le 0 \\ 360 \text{-H} \; ; \sin \ (\lambda_2 - \lambda_1) \ge 0 \end{cases} \end{split}$$

Remarques:

- 1. Introduire les latitudes Sud et les longitudes Est comme des valeurs négatives.
- 2. Erreurs d'arrondi lorsque le point de départ et le point de destination sont très proches l'un de l'autre (1 mile au moins).
- 3. Ne pas introduire des coordonnées de points du globe diamétralement opposés.
- 4. Ne pas introduire les latitudes de $+90^{\circ}$ ou -90° .
- 5. Ne pas calculer un cap initial lorsque les longitudes sont égales $(L_1 = L_2)$.

AFF	AFFICHAGE							
PAS	CODE	TOUCHES						
00	7////////	/////////						
01	24 00	RCL 0						
02	14 04	fSIN						
03	24 01	RCL 1						
04	14 04	fSIN						
05	61	х						
06	24 00	RCL 0						
07	14 05	f COS						
08	24 01	RCL 1						
09	14 05	f COS						
10	61	x						
11	24 02	RCL 2						
12	14 05	f COS						
13	61	x						
14	51	+						
15	23 03	STO 3						
16	15 05	g COS ⁻¹						
17	23 04	STO 4						
18	06	6						
19	00	0						
20	61	х						
21	74	R/S						
22	24 01	RCL 1						
23	14 04	fSIN						
24	24 00	RCL 0						

AFF	ICHAGE	TOUCHES		
PAS	CODE	TOUCHES		
25	14 04	f SIN		
26	24 03	RCL 3		
27	61	x		
28	41	-		
29	24 00	RCL 0		
30	14 05	f COS		
31	71	÷		
32	24 04	RCL 4		
33	14 04	f SIN		
34	71	÷		
35	15 05	g COS ⁻¹		
36	24 02	RCL 2		
37	14 04	f SIN		
38	15 41	g x<0		
39	13 47	GTO 47		
40	22	R↓		
41	03	3		
42	06	6		
43	00	0		
44	21	x y		
45	41	-		
46	13 00	GTO 00		
47	22	R↓		
48	13 00	GTO 00		
49				

REGISTRES				
R _o L ₁				
R ₁ L ₂				
$R_2 \lambda_2 - \lambda_1$				
R ₃ cos (D/60)				
R ₄ D/60				
R ₅				
R ₆				
R ₇				

Un navigateur désire se rendre de San Francisco (L: 37°49'N, λ : 22 25'O) à Tokyo (L: 35°40'N, λ : 139°45'E). Calculer la distance suivant un arc de grand cercle entre ces deux villes et le cap initial à suivre.

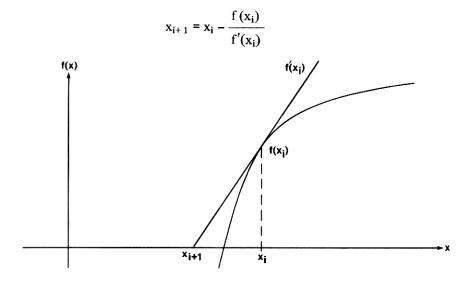
Solution:

D = 4460.04 $H_i = 303.29$

Nº	INSTRUCTIONS	DONNÉES	TOUCHES				RÉSULTATS
1	Introduire le programme						
2	Introduire:						
	latitude du point de départ	L ₁ , D.MS	g	→H	STO	0	L ₁ , deg. déc.
	latitude du point de destination	L ₂ , D.MS	g	→H	STO	1	L ₂ , deg. déc.
	longitude du point de destination	λ ₂ , D.MS	g	→H	·		λ ₂ , deg. déc.
	longitude du point de départ	λ ₁ , D.MS	g	→H	-	STO	
			2				$\lambda_2 - \lambda_1$, deg. déc.
3	Calcul de la distance suivant un arc de grand cercle		f	PRGM	R/S		D, milles naut.
4	Calcul du cap initial		R/S				H _i , deg. déc.
5	Pour un nouveau cas, aller en 2.						

CHAPITRE 5: CALCULS NUMÉRIQUES

SOLUTION DE L'ÉQUATION f(x)=0 PAR LA MÉTHODE DE NEWTON


Pour résoudre une équation telle que $\ln x + 3x = 10.8074$, il n'existe pas de solution algébrique simple. Dans de nombreux cas, plusieurs algorithmes permettent de résoudre l'équation f(x) = 0, où $f(x) = \ln x + 3x - 10.8074$.

Ce programme utilise la méthode de Newton pour résoudre l'équation f(x) = 0, dans laquelle f(x) est donnée. 14 pas de programme sont prévus pour mémoriser la séquence de touches nécessaire au calcul de f(x), x étant dans le registre X. Les registres de la pile opérationnelle et les registres mémoire R_5 à R_8 sont aussi disponibles. D'autre part, il faut définir une estimation initiale x_1 .

Le programme s'arrête quand deux approximations successives x_i et x_{i+1} sont calculées avec une tolérance ϵ , c'est-à-dire quand $|x_{i+1}-x_i|<\epsilon$. Vous devez introduire la valeur de ϵ (10-6 x_1 est une valeur raisonnable de ϵ).

Formules:

La méthode de Newton utilise la formule suivante pour calculer les approximations suivantes:

Ce programme utilise la dérive f'(x) selon la formule suivante:

$$x_{i+1} = x_i - \delta_i \left[\frac{f(x_i + \delta_i)}{f(x_i)} - 1 \right]^{-1}$$

où $\delta_{i} = 10^{-5} x_{i}$

Remarques:

- 1. A la fin du calcul, la dernière valeur de f(x) peut être affichée au moyen des touches RCL 4. Si vous désirez obtenir une autre valeur de f(x) plus près de 0, exécutez à nouveau le programme avec une valeur de ε plus petite.
- 2. Vous pouvez vérifier la convergence vers zéro de la fonction en modifiant légèrement le programme. Pour cela, remplacer l'instruction **9 NOP** au pas 07 par une instruction **f PAUSE** : le programme s'arrêtera pendant 1 seconde environ durant chaque itération, affichant les valeurs convergentes vers zéro de f(x). Pour effectuer cette modification dans un programme déjà enregistré:
 - 1. Appuyer sur GTO 0 6
 - Passer en mode PRGM
 - 3. Appuyer sur f PAUSE
 - 4. Passer en mode RUN
 - 5. Appuyer sur f PRGM

Remarques sur la programmation:

Ce programme est un des plus complexes de ce fascicule. A chaque itération, les fonctions f(x) et $f(x+\delta)$ doivent toutes les deux être calculées, mais la fonction f est introduite en mémoire seulement une fois. Les calculateurs disposant d'une plus grande capacité de mémoire résolvent ce problème au moyen d'un sous-programme. Ce programme utilise une astuce (9 pas de programme) en mettant en mémoire dans le registre R₀ une variable qui simule le résultat d'un test logique.

Après le calcul de f, le test suivant est effectué:

Variable à l'état 0: branchement du programme à une instruction qui mettra en mémoire f(x).

Variable à l'état 1 : calcul d'une dérivée basée sur $f(x + \delta)$.

REGISTRES

PAS	CODE	TOUCHES	х	Υ	z	Т	COMMENTAIRES	REGISTRE
	CODE	mmmm				-		- Flag
00		711111111	0			-	Mise du flag à 0 pour f(x)	R o Flag
01	34	CLX STO 0				-	Mise of flag a 6 pour (x)	
02	23 00 24 01	RCL 1	0	0		·	Rappel de x et branchement	
03		GTO 17	x	0			pour calcul de f(x)	R 1
04	13 17	RI RI	x	U		+	Permutation pour enlever	
05	22		f(x)				le flag	
06	23 04	STO 4	f(x)					R 2 -
07	15 74	g NOP	f(x)	44		+		l
08	01	1	1	f(x)		+	Mise du flag à 1 pour f(x+δ)	- 5
09	23 00	STO 0	1	f(x)	41	-	inite de rieg e constitución de la constitución de rieg e constituci	R ₃ _δ
10	24 01	RCL 1	×		f(x)	41		
11	24 01	RCL 1	x	x	1	f(x)		- 4/41
12	33	EEX	1. 00	×	×	1		R ₄ _f(x)_
13	05	5	1. 05		1	1		
14	71	+	10 ⁻⁵ x	x	1	1	· · · · · · · · · · · · · · · · · · ·	_
15	23 03	STO 3	δ	x				R 5
16	51	+	x + δ	1	1	<u> </u>		
17								
18						+	Définition de f(x)	R 6
19							par l'utilisateur	
20				ļ		+		
21							Partie du programme réservée	R 7
22					-		au calcul de $f(x)$ et de $f(x+\delta)$. Flag dans R_0 :	
23							état 0 pour f(x), état 1 pour	L
24			ļ			-	$f(x+\delta)$	
26			L				1(x+0)	
26								
27								ł
28		ļ			ļ	+		ł
20		-	-		-			1
30			_			+		ł
31	AND ASSESSMENT OF THE PARTY OF	g x = 0	$f(x)/(x+\delta)$				La valeur de la fonction est-	ł
32	13 49	GTO 49	$f(x)/(x+\delta)$				elle égale à 0?	ł
33	24 00	RCL 0	Flag	$f(x)/(x+\delta)$	ļ		Oui, solution	-
34	15 71	g x = 0	Flag	$f(x)/(x+\delta)$	<u> </u>		Non, voir flag Flag=0?	1
35	13 06	GTO 05	Flag	f(x)	-	 	Oui, calcul de f(x)	1
36	22	R↓	$f(x + \delta)$			Flag	Non, flag=1, calcul de f(x+δ)	1
37	24 04	RCL 4	f(x)	$f(x + \delta)$			$R = f(x + \delta)/f(x)$	1
38	71	+	R		ļ		H=1(x+o)/1(x)	ł
30	01	1	1	R	ļ	_		1
40	41	-	R - 1				$R-1=[f(x+\delta)-f(x)]/f(x)$	4
41	15 22	g 1/x	(R - 1) ⁻¹				Approximation de	4
42	24 03	RCL 3	δ	$(R - 1)^{-1}$			$f'(x) = [f(x+\delta) - f(x)]/\delta$	1
43	61	×	δ/(R - 1)				$\Delta = f(x)/f'(x)$	1
44	23 41 01	STO - 1	Δ				$x_{i}+1=x_{i}-\Delta$	-
45	15 03	g ABS	IΔI				xi+1	4
46	24 02	RCL 2	e	ΙΔΙ			xi+1	4
47	14 41	1 x <y< th=""><th>e</th><th> Δ </th><th></th><th></th><th>[xi+1-xi] ≥ € ?</th><th>4</th></y<>	e	Δ			[xi+1-xi] ≥ € ?	4
48	13 01	GTO 01	e	ΙΔΙ			Oui, nouvelle itération	1
49	24 01	RCL 1	×	ϵ	IΔI		Non, affichage de x et arrêt.	J

N۰	INSTRUCTIONS	DONNÉES	TOUCHES			RÉSULTA	ATS	
1	Introduire les pas 1 à 16 du programme						16	51
2	Introduire la fonction f(x)							
3	Effectuer un branchement au pas 31		GTO	31				
4	Appuyer sur SST jusqu'à							-
	obtenir l'affichage du pas 30							
5	Introduire les pas 31 à 49 du programme							
6	Passer en mode RUN							
7	Mettre en mémoire l'estimation initiale	x ₁	STO	1				
8	Mettre en mémoire la tolérance	€	STO	2				
9	Calcul de la solution		f	PRGM	R/S		× ₀	
10	Pour modifier x ₁ ou g, aller au pas correspondant,							
	puis mettre en mémoire la nouvelle valeur.							

Les constructeurs d'engrenage ont fréquemment à résoudre l'équation involute: tgx-x-I=0 dans laquelle x est un angle exprimé en radians et I l'involute de x. Quel est l'angle x₀ correspondant à une involute de 0.0324?

Remarque:

Si vous souhaitez modifier souvent la valeur de I, mettez cette valeur en mémoire dans le registre R₇.

Solution:

 $x_0 = 25.62^{\circ}$ $f(x_0) = 0.00$

N٥	INSTRUCTIONS	DONNÉES		TOUG	CHES		RÉS	SULTATS
1	Introduire les pas 1 à 16 du programme						16	51
2	Introduire							
	f(x) = tg x - x - 1		f	TAN			17	14 06
			f	LASTx			18	14 73
			_				19	41
		2	RCL	7			20	24 07
			-				21	41
3	Effectuer le branchement au pas 31		GTO	31			22	13 31
4	Appuyer 8 fois sur SST:						L	
	affichage du pas 30							
5	Introduire les pas 31 à 49 du programme						49	24 01
6	Passer en mode RUN							
7	Passer en mode angulaire		g	RAD				
8	Mettre en mémoire I	.0324	STO	7][
9	Mettre en mémoire l'estimation	1	sto	1			<u> </u>	
10	Mettre en mémoire la tolérance (ε =10-6)	10 ⁻⁶	STO	2			<u> </u>	
11	Calcul de x ₀		f	PRGM	R/S][_	0.45
12	Convertir l'angle en degrés		180	×	g	π		
			÷][][_	25.62
13	Affichage de la dernière valeur de f(x)		RCL	4				0.00

INTÉGRATION NUMÉRIQUE PAR LA MÉTHODE DE SIMPSON

Soient x_0 , x_1 , ..., x_n des points également répartis tels que $x_i = x_0 + ih$ pour i = 0, 1, 2, ..., n et $f(x_0)$, $f(x_1)$, ..., $f(x_n)$ les valeurs correspondantes de f(x). Il n'est pas nécessaire que la fonction soit connue explicitement; si elle l'est, il suffit de la programmer dans le HP-25 pour obtenir les divers points de la fonction. n doit être un entier positif pair.

La méthode de Simpson est la suivante:

$$\int_{x_0}^{x_n} f(x) dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + ... + 4f(x_{n-3}) + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)].$$

AFFICHAGE

La réponse est indiquée par I.

AFF	ICHAGE		
PAS	CODE	TOUCHES	
00	71111111	<i>/////////////////////////////////////</i>	
01	24 00	RCL 0	
02	03	3	
03	71	÷	
04	23 00	STO 0	
05	61	x	
06	23 01	STO 1	
07	74	R/S	
08	24 00	RCL 0	
09	61	×	
10	24 01	RCL 1	
11	51	+	
12	23 01	STO 1	
13	74	R/S	
14	24 00	RCL 0	
15	61	x	
16	04	4	
17	61	x	
18	24 01	RCL 1	
19	51	+	
20	23 01	STO 1	
21	74	R/S	
22	24 00	RCL 0	
23	61	x	
24	02	2	

PAS	CODE	TOUCHES
25	61	×
26	24 01	RCL 1
27	51	+
28	23 01	STO 1
29	13 13	GTO 13
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		-
45		
46		
47		
48		
49		

REGISTRES						
R _o h/3						
$R_1 \Sigma$						
R ₂						
R ₃						
R ₄						
R ₅						
R ₆						
R,						

Calculer $\int_0^{\pi} \sin^2 x \, dx$ au moyen de la méthode de Simpson avec $h = \pi/8$

Déterminer au préalable les données suivantes:

i	0	1	2	3	4	5	6	7	8
xi	0	π/8	π/4	$3\pi/8$	$\pi/2$	5π/8	$3\pi/4$	$7\pi/8$	π
f(x _i)	0	0.1464	0.5	0.8536	1	0.8536	0.5	0.1464	0

Solution:

$$\int_0^{\pi} \sin^2 x \, dx \simeq 1.5708$$

La solution exacte est $\pi/2$.

Nº	INSTRUCTIONS	DONNÉES		RÉSULTATS			
1	Introduire le programme						
2	Mettre en mémoire l'incrément	h	STO	0			
3	Introduire f(x ₀)	f(x ₀)	f	PRGM	R/S		Somme partielle
4	Introduire f(xn)	f(xn)	R/S				Somme partielle
5	Introduire les valeurs i=1, 2 n-2	f(×i)	R/S				Somme partielle
6	Introduire la valeur i≖n–1	f(x _{n-1})	R/S				I

ÉQUATION DIFFÉRENTIELLE DU PREMIER ORDRE

Ce programme peut être utilisé pour résoudre les équations différentielles de la forme:

$$y' = f(x, y)$$

avec des valeurs initiales x_0 , y_0 .

La méthode employée est numérique et calcule y_i pour $x_i = x_0 + ih$ (i = 1, 2, 3, ...), h étant l'incrément fixé par l'utilisateur.

Ce programme utilise la méthode d'Euler:

$$\hat{y}_{i+1} = y_i + h f(x_i, y_i)$$

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, \hat{y}_{i+1})]$$

f(x, y) est introduit en mémoire à partir du pas 18. Vous disposez de 13 pas de programme pour écrire la fonction f(x, y) et des registres mémoires R₅, R₆ et R₇. x et y se trouvent respectivement dans les registres X et Y de la pile opérationnelle. Ce programme doit afficher la valeur de f(x, y) dans le registre X et se terminer par GTO 31.

AFFICHAGE

AFF	CHAGE	
PAS	CODE	TOUCHES
00		
01	34	CLX
02	23 04	STO 4
03	24 02	RCL 2
04	24 01	RCL 1
05	13 18	GTO 18
06	22	R↓
07	23 03	STO 3
08	24 00	RCL 0
09	61	x
10	24 02	RCL 2
11	51	+
12	24 01	RCL 1
13	24 00	RCL 0
14	51	+
15	01	1
16	23 04	STO 4
17	22	R↓
18		
19		
20		
21		
22		
23		
24		

PAS	CODE	TOUCHES
25		
26		
27		
28		
29		
30		
31	24 04	RCL 4
32	15 71	g x=0
33	13 06	GTO 06
34	22	R↓
35	24 03	RCL 3
36	51	+
37	24 00	RCL 0
38	61	×
39	02	2
40	71	÷
41	24 02	RCL 2
42	51	+
43	23 02	STO 2
44	24 01	RCL 1
45	24 00	RCL 0
46	51	+
47	23 01	STO 1
48	14 74	f PAUSE
49	22	x ≠y

REGISTRES
R _o h
R ₁ x
R ₂ y
R ₃ y'
R ₄ Flag
R ₅
R 6
R ₇

Calculer l'équation différentielle suivante: $y' = x \sqrt{y}$ avec comme conditions initiales $x_0 = 1$ et $y_0 = 1$. h = 0.1

Solution:

Pour introduire la fonction, appuyer sur les touches $x \neq y$ f x.

x	1.0	1.1	1.2	1.3	1.4	1.5
y (programme)	1.0	1.1077	1.2319	1.3745	1.5372	1.7221
y (exact)	1.0	1.1078	1.2321	1.3748	1.5376	1.7227

Nº	INSTRUCTIONS	DONNÉES	TOUCHES				RÉSUL	TATS
1	Introduire les pas 1 à 17 du programme						17	22
2	Introduire la fonction f(x, y)							
3	Effectuer le branchement au pas 31		GTO	31				
4	Appuyer sur SST jusqu'à							
	l'affichage du pas 30							
5	Introduire les pas 31 à 49 du programme						49	13 01
6	Passer en mode RUN				L		<u> </u>	
7	Mettre en mémoire l'incrément	h	STO	0				
8	Introduire les valeurs	× ₀	STO	1]	
	initiales	Yo	STO	2	f	PRGM]	
9	Affichage de la valeur]	
	suivante de x et de la		R/S				6	(_k)
	valeur y correspondante						,	/k
10	Répéter 9 pour d'autres valeurs]	

INTERPOLATION LINÉAIRE

Si $[(x_1, f(x_1)]]$ et $[(x_2, f(x_2)]]$ sont deux points d'une fonction f(x), la fonction en x_0 peut être approximée par la formule suivante:

$$f(x_0) \cong \frac{(x_2 - x_0) f(x_1) + (x_0 - x_1) f(x_2)}{(x_2 - x_1)}$$

Cette formule est celle de l'interpolation linéaire. x_2 est toujours différent de x_1 .

AFF	ICHAGE	TOU.01153		Г
PAS	CODE	TOUCHES		P
00				
01	23 04	STO 4		-
02	24 00	RCL 0		:
03	41	_		
04	24 03	RCL 3		
05	61	x		
06	24 02	RCL 2		
07	24 04	RCL 4		;
08	41	-		"
09	24 01	RCL 1		
10	61	x		-;
11	51	+		•
12	24 02	RCL 2		**
13	24 00	RCL 0		3
14	41	-	i	3
15	71	÷		4
16	13 00	GTO 00		4
17			1	4
18			ſ	4
19				4
20				4
21			ı	4
22			1	4
23			ı	4
24			Ī	4

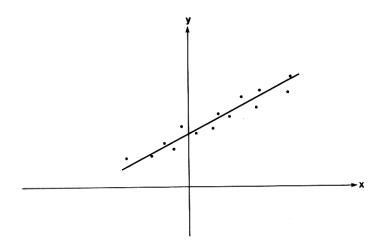
AFF	ICHAGE	
PAS		TOUCHES
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44	-	
45		
46		
47		
48		
49		

REGISTRES					
R _o x ₁					
R ₁ f(x ₁)					
R ₂ x ₂					
R ₃ f(x ₂)					
R ₄ x ₀					
R ₅					
R ₆					
R ₇					

Soit: f(7.3) = 1.9879

f(7.4) = 2.0015,

Interpolation linéaire f(7.37).


Solution:

f(7.37) = 1.9974

Nº	INSTRUCTIONS	DONNÉES		TOUCHES				
1	Introduire le programme							
2	Mettre en mémoire	x ₁	STO	0				
	le premier point	f(x1)	STO	1				
3	Mettre en mémoire	X ₂	STO	2				
Manual Constitution of	le deuxième point	f(x ₂)	STO	3	f	PRGM		
4	Introduire x ₀ ; calcul de f(x ₀)	x ₀	R/S				f(x ₀)	
5	Répéter 5 pour d'autres							
	valeurs de x							

CHAPITRE 6: STATISTIQUES

AJUSTEMENT DE COURBE - RÉGRESSION LINÉAIRE

Lors de la recherche d'une formule expérimentale pour interpréter un phénomène, il faut d'abord effectuer une série d'observations de deux caractères (x, y). A première vue, la relation entre x et y paraît linéaire, c'est-à-dire que l'équation est de la forme y = ax + b avec a et b constants. Ce programme calcule par la méthode des moindres carrés les constantes a et b qui lient au mieux les données expérimentales à l'équation $y = a_1x + a_0$.

Introduire d'abord les valeurs de tous les couples de données (x_i, y_i) , $i=1 \dots n$. Le HP-25 calculera alors les constantes de régression a_1 et a_0 et éventuellement le coefficient de détermination r^2 . Le coefficient r^2 mesure le degrés de perfection de l'ajustement de la droite de régression. La valeur de ce coefficient est comprise entre 0 et 1; si $r^2=1$, l'ajustement est idéal.

où

Equations:

90

$$y = a_1 x + a_0$$

Toutes les sommations ci-dessous sont effectuées pour i = 1, ... n.

$$a_{1} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^{2} - \frac{(\sum x)^{2}}{n}}$$

$$a_{0} = \overline{y} - a_{1} \overline{x}$$

$$\overline{y} = \frac{\sum y}{n}$$

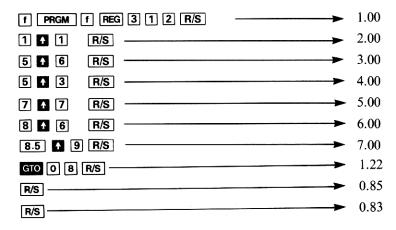
$$\overline{x} = \frac{\sum x}{n}$$

Coefficient de détermination:
$$r^{2} = \frac{\left[\sum xy - \frac{\sum x \sum y}{n}\right]^{2}}{\left[\sum x^{2} - \frac{(\sum x)^{2}}{n}\right]\left[\sum y^{2} - \frac{(\sum y)^{2}}{n}\right]}$$

Remarque:

Les valeurs de a_0 et a_1 sont respectivement contenues dans les registres mémoires R_0 et R_1 . Après calcul de a_0 , a_1 et r^2 , la valeur estimée de y, \hat{y} , correspondante à n'importe quelle valeur de x peut être calculée au moyen de l'équation $y = a_1x + a_0$.

Remarque sur la programmation:


La valeur intermédiaire $C = \sum xy - (\sum x \times \sum y/n)$ est d'abord calculée au pas 14; néanmoins, cette valeur est nécessaire en fin de programme pour le calcul de r^2 . Tous les registres mémoire R_0 à R_7 étant utilisés, la valeur de C est conservée dans la pile opérationnelle jusqu'au pas 36; ne pas modifier les contenus de la pile après le calcul de a_0 et a_1 (voir mode opératoire – instruction N^0 4).

	FICHAGE	TOUCHES	х	Y	z	1 т	i	11 -
PAS	CODE	TOUCHES		T		1 '	COMMENTAIRES	REGIST
00	711111111	(11111111)	У	×			Pas 1 à 7 pour sommation	R _O -a ₀
01	31	†	y	У	×			
02	15 02	g x ²	y ²	У	×			1 -
03	23 51 02	STO + 2	y ²	У	×		Σy^2	R 1 - a1
04	22	R↓	y	×		v ²		7 " 1
05	21	x2v	×	у		y ²		11 -
06	25	Σ+	n	у		y ²	n, Σy, Σxy, Σx², Σx	R ₂ Σy
07	13 00	GTO 00	n	y		V ²	., -, -, -, -, -, -, -, -, -, -, -, -, -,	H 2
08	24 05	RCL 5	Σχγ	,				11
09	24 07	RCL 7	Σx	Σχγ				٦١
10	24 04	RCL 4	Σγ	Σχ	Σχγ	1		- R 3-n-
11	61	x	Σχ Σγ	Σχγ				- 1
12	24 03	RCL 3	n	Σχ Σγ	Σχγ	1		- Σν
13	71	÷	Σχ Σγ/η	Σxy	2 AY			$R_4 = \Sigma_Y$
14	41		C	1			$C = \Sigma xy - (\Sigma x \Sigma y/n)$	11 —
15	24 06	RCL 6	Σx ²	С			U - DAY - (DA DYIN)	1 - 50
16	24 07	RCL 7	Σx	Σx ²	С	+		R ₅ _Σx
CONTRACTOR OF THE	15 02	g x ²	$(\Sigma x)^2$	Σx ²	c			- 11
17	A STREET OF THE OWNER, THE PARTY OF THE PART			$(\Sigma x)^2$	Σx ²	1		
18	24 03	RCL 3	n as all			С		R ₆ Σx
10	71	+	(Σx) ² /n	Σx²	C .	С	5 5 2 (m 12 1)	- 11
20	71	+	D	С	c ·	C	$D = \Sigma x^2 - [(\Sigma x)^2/n]$	┨├──╤
21			a ₁	С			a ₁ = C/D	R ₇ _Σx
22	23 01	STO 1	a ₁	С	С	С		- 11
23	24 07	RCL 7	Σχ	aı	С	С		
24	61	×	a ₁ Σx	С	С	C		-
25	32	CHS	-a ₁ Σx	С	С	С		
26	24 04	RCL 4	Σγ	-a ₁ Σx	С	С		_
27	51	+	$\Sigma_{y} - a_{1} \Sigma_{x}$	С	С	С		_
28	24 03	RCL 3	n	$\Sigma y - a_1 \Sigma x$	С	С		
20	71	+	a ₀	С	С	С	$a_0 = \overline{y} - a_1 \overline{x}$	_
30	23 00	STO 0	a ₀	C ·	С	С		4
31	74	R/S	a ₀	С	С	С	Affichage de ao	_
32	24 01	RCL 1	a ₁	a _o	С	С		_
33	74	R/S	aı	a ₀	С	С	Affichage de a ₁	
34	21	x ? ty	a ₀	a ₁	С	С		
36	22	R‡	a ₁	С	С	a ₀		_
36	61	×	a ₁ C	С	a ₀	a ₀		_
37	24 02	RCL 2	$\Sigma \gamma^2$	a ₁ C	С	a ₀		_
38	24 04	RCL 4	Σγ	Σy²	a ₁ C	С		
30	15 02	g x ²	$(\Sigma_y)^2$	Σγ²	a ₁ C	С		
40	24 03	RCL 3	n	$(\Sigma_V)^2$	Σy^2	a ₁ C		_
41	71	+	$(\Sigma y)^2/n$	Σ_{γ}^{2}	a ₁ C	a ₁ C		
42	41	-	E	a ₁ C	a ₁ C	a ₁ C	$E = \Sigma y^2 - [(\Sigma y)^2/n]$	
43	71	+	r ²	a ₁ C	a ₁ C	a ₁ C	r ² = a ₁ C/E	
44	13 00	GTO 00	r ²	a ₁ C	a ₁ C	a ₁ C		
45	ENGLES SERVICES CONT.				1	1		
46	BERRESONARIO CA ANTONIO E COM			†				7
47				1	†	—		7
46			-	†	†			1
	1	1		L				_

Lors d'un contrôle de qualité, un ingénieur constate une relation entre le volume d'un produit chimique ajouté à un lot de la concentration finale de ce produit dans le produit final $(y = a_1x + a_0)$. Les données suivantes représentent le poids en gramme ajouté (x) et le poids dans le produit final (y):

Calculer les valeurs de a₁ et a₀ ainsi que le coefficient de détermination.

Solution:

D'où l'équation y = 0.85x + 1.22. Le coefficient de détermination r^2 est égal à 0.83.

Nº	INSTRUCTIONS	DONNÉES		RÉSULTATS			
1	Introduire le programme						
2	Initialiser		f	REG	f	PRGM	
3	Introduire les valeurs de x et						
	de y pour i=1, n	×i	↑				
		Υi	R/S				i
4	Calcul des constantes		GTO	08	R/S		a ₀ *
	de régression		R/S				a ₁ *
5	Calcul du coefficient						
	de détermination		R/S				r²
6	Introduire x;						
	estimation de ŷ	×	RCL	1	×	RCL	
			0 .	+			ŷ
7	Pour une autre estimation de ŷ,						
	aller en 6						
8	Pour un nouveau cas,						
	aller en 2						
	*Après ce résultat, ne pas						
	modifier le contenu de la pile.						
]

AJUSTEMENT D'UNE FONCTION EXPONENTIELLE

Ce programme calcule l'ajustement d'un nombre n de paires de points $\{(x_i, y_i), i=1, 2, ..., n\}$ par la méthode des moindres carrés, avec $y_i>0$ à l'aide d'une fonction exponentielle du type:

$$y = a e^{bx} (a > 0).$$

Cette équation se linéarise par:

$$\ln y = \ln a + bx$$
.

Le programme calcule les éléments suivants:

1. Coefficients a, b:

$$b = \frac{\sum x_i \ln y_i - \frac{1}{n} (\sum x_i)(\sum \ln y_i)}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2}$$

$$a = \exp \left[\frac{\sum \ln y_i}{n} - b \frac{\sum x_i}{n} \right]$$

2. Coefficient de détermination

$$r^{2} = \frac{\left[\sum x_{i} \ln y_{i} - \frac{1}{n} \sum x_{i} \sum \ln y_{i}\right]^{2}}{\left[\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}\right] \left[\sum (\ln y_{i})^{2} - \frac{(\sum \ln y_{i})^{2}}{n}\right]}$$

3. La valeur estimée \hat{y} pour x donné: $\hat{y} = a e^{bx}$

Remarque:

n est un entier positif différent de 1.

· · · · · · · · · · · · · · · · · · ·							
AFF	CHAGE	TOUCHES					
PAS	CODE	10001120					
00							
01	14 07	f LN					
02	31	↑					
03	15 02	g x ²					
04	23 51 02	STO + 2					
05	22	R↓					
06	21	x ≓ y					
07	25	Σ+					
08	13 00	GTO 00 RCL 5 RCL 7					
09	24 05						
10	24 07						
11	24 04	RCL 4					
12	61	x					
13	24 03	RCL 3					
14	71	÷					
15	41	-					
16	24 06	RCL 6					
17	24 07	RCL 7					
18	15 02	g x ²					
19	24 03	RCL 3					
20	71	÷					
21	41	_					
22	71	÷					
23	23 01	STO 1					
24	24 07	RCL 7					

AFF	ICHAGE	TOUCHES	
PAS	CODE	TOUCHES	
25	61	х	
26	32	CHS	
27	24 04	RCL 4	
28	51	+	
29	24 03	RCL 3	
30	71	÷	
31	15 07	g e ^x	
32	23 00	STO 0	
33	74	R/S	
34	24 01	RCL 1	
35	74	R/S	
36	21	x y	
37	22	R↓	
38	61	x	
39	24 02	RCL 2	
40	24 04	RCL 4	
41	15 02	g x ²	
42	24 03	RCL 3	
43	71	÷	
44	41		
45	71	÷	
46	13 00	GTO 00	
47			
48			
49			

REGISTRES				
R _o a				
R ₁ b				
$R_2 \Sigma (\ln y)^2$				
R ₃ n				
R ₄ Σ In y				
R ₅ Σx In y				
R ₆ Σx ²				
R ₇ Σx				

xi	0.72	1.31	1.95	2.58	3.14
yi	2.16	1.61	1.16	0.85	0.5

Solution:

$$a = 3.45, b = -0.58$$

$$y = 3.45 e^{-0.58x}$$

$$r^2 = 0.98$$

Pour
$$x = 1.5$$
, $\hat{y} = 1.44$

N۰	INSTRUCTIONS	DONNÉES		TOU	CHES		RÉSULTATS
1							
2			f	REG	f	PRGM	
3							
		x _i	1				
		Yi	R/S				i
4	Calcul des constantes		GTO	09	R/S		a*
			R/S				b*
5	Calculs du coefficient						
	de détermination		R/S				r ²
6	Introduire x,	x	RCL	1	×	g	
	estimation de ŷ		e ^x	RCL	0	×	ŷ
7	Pour une autre estimation de ŷ						
	aller en 6						
8	Pour un nouveau cas,						
	aller en 2						
	*Après ce résultat, ne pas modifier le contenu de la pile.						

AJUSTEMENT D'UNE FONCTION LOGARITHMIQUE

Ce programme ajuste une fonction logarithmique

$$y = a + b \ln x$$

à un ensemble de points

$$\{(x_i, y_i), i = 1, 2, ..., n\}$$

avec $x_i > 0$.

Il calcule:

1. Les coefficients de régression

$$b = \frac{\sum y_i \ln x_i - \frac{1}{n} \sum \ln x_i \sum y_i}{\sum (\ln x_i)^2 - \frac{1}{n} (\sum \ln x_i)^2}$$

$$a = \frac{1}{n} \left(\sum y_i - b \sum \ln x_i \right)$$

2. Le coefficient de détermination

$$r^{2} = \frac{\left[\sum y_{i} \ln x_{i} - \frac{1}{n} \sum \ln x_{i} \sum y_{i}\right]^{2}}{\left[\sum (\ln x_{i})^{2} - \frac{1}{n} (\sum \ln x_{i})^{2}\right] \left[\sum y_{i}^{2} - \frac{1}{n} (\sum y_{i})^{2}\right]}$$

3. La valeur estimée \hat{y} pour x donné $\hat{y} = a + b \ln x$

Remarque:

n est un entier positif différent de 1.

ΔFF	ICHAGE	
PAS		TOUCHES
00	7/////////	/////////
01	31	1
02	15'02	g x ²
03	23 51 02	STO + 2
04	22	R↓
05	21	х⇄у
06	14 07	f LN
07	25	Σ+
80	13 00	GTO 00
09	24 05	RCL 5
10	24 07	RCL 7
11	24 04	RCL 4
12	61	x
13	24 03	RCL 3
14	71	÷
15	41	-
16	24 06	RCL 6
17	24 07	RCL 7
18	15 02	q x ²
19	24 03	RCL 3
20	71	÷
21	41	-
22	71	÷
23	23 01	STO 1
24	24 07	RCL 7

AFF	ICHAGE	
PAS	CODE	TOUCHES
25	61	x
26	32	CHS
27	24 04	RCL 4
28	51	+
29	24 03	RCL 3
30	71	÷
31	23 00	STO 0
32	74	R/S
33	24 01	RCL 1
34	74	R/S
35	21	x y
36	22	R↓
37	61	x
38	24 02	RCL 2
39	24 04	RCL 4
40	15 02	g x²
41	24 03	RCL 3
42	71	÷
43	41	_
44	71	÷
45	13 00	GTO 00
46		
47		
48		
49		

REGISTRES	
R _o a	
R ₁ b	
$R_2 \Sigma y^2$	
R ₃ n	
R ₄ Σ y	
R ₅ Σy In x	
R ₆ Σ In x	
$\mathbf{R}_7 \Sigma (\ln x)^2$	

xi	3	4	6	10	12
y _i	1.5	9.3	23.4	45.8	60.1

Solution:

$$a = -47.02$$
, $b = 41.39$
 $y = -47.02 + 41.39$ ln x
 $r^2 = 0.98$
Pour $x = 8$, $\hat{y} = 39.06$
Pour $x = 14.5$, $\hat{y} = 63.67$

Nº	INSTRUCTIONS	DONNÉÈS		RÉSULTATS			
1	Introduire le programme						
2	Initialiser		f	REG	f	PRGM	
3	Introduire les valeurs de x						-
	et de y pour i∈1, n	x _i	1				
	and the second s	Yi	R/S				i
4	Calcul des constantes		GTO	09	R/S		a*
	And the second s		R/S				b*
5	Calcul du coefficient						
	de détermination		R/S				r ²
6	Introduire x;	×	f	ln	RCL	1	
	estimation de ŷ		×	RCL	0	+]
7	Pour une autre estimation]
	de ŷ, aller en 6]
8	Pour un nouveau cas,]
Name (Control	aller en 2.][
	*Après ce résultat, ne pas						
600000 S-00	modifier le contenu de la pile						

AJUSTEMENT D'UNE FONCTION PUISSANCE

Ce programme ajuste une fonction puissance

$$y = a xb (a>0)$$

à un ensemble de points

$$(x_i, y_i), i = 1, 2, ..., n$$

avec $x_i>0$, $y_i>0$

Si on linéarise cette équation de la manière suivante

$$\ln y = b \ln x + \ln a$$

le problème peut être résolu comme un problème d'ajustement linéaire.

Eléments calculés par le programme:

1. Coefficients de régression

$$b = \frac{\sum (\ln x_i) (\ln y_i) - \frac{(\sum \ln x_i) (\sum \ln y_i)}{n}}{\sum (\ln x_i)^2 - \frac{(\sum \ln x_i)^2}{n}}$$

$$a = \exp \left[\frac{\sum \ln y_i}{n} - b \cdot \frac{\sum \ln x_i}{n} \right]$$

2. Coefficient de détermination

$$r^{2} = \frac{\left[\Sigma \left(\ln x_{i}\right) \left(\ln y_{i}\right) - \frac{\left(\Sigma \ln x_{i}\right) \left(\Sigma \ln y_{i}\right)}{n}\right]^{2}}{\left[\Sigma \left(\ln x_{i}\right)^{2} - \frac{\left(\Sigma \ln x_{i}\right)^{2}}{n}\right]\left[\Sigma \left(\ln y_{i}\right)^{2} - \frac{\left(\Sigma \ln y_{i}\right)^{2}}{n}\right]}$$

3. La valeur estimée \hat{y} pour x donné: $\hat{y} = axb$

Remarque:

n est un entier positif différent de 1.

AFF	ICHAGE	
PAS	CODE	TOUCHES
00	//////////	///////////////////////////////////////
01	14 07	f LN
02	31	1
03	15 02	g x ²
04	23 51 02	STO + 2
05	22	R↓
06	21	x y
07	14 07	f LN
08	25	Σ+
09	13 00	GTO 00
10	24 05	RCL 5
11	24 07	RCL 7
12	24 04	RCL 4
13	61	x
14	24 03	RCL 3
15	71	÷
16	41	_
17	24 06	RCL 6
18	24 07	RCL 7
19	15 02	g x ²
20	24 03	RCL 3
21	71	÷
22	41	-
23	71	÷
24	23 01	STO 1

AFF	CHAGE	TOUCHES
PAS	CODE	TOUCHES
25	24 07	RCL 7
26	61	x
27	32	CHS
28	24 04	RCL 4
29	51	+
30	24 03	RCL 3
31	71	÷
32	15 07	g e ^x
33	23 00	STO 0
34	74	R/S
35	24 01	RCL 1
36	74	R/S
37	21	х⇄у
38	22	R↓
39	61	x
40	24 02	RCL 2
41	24 04	RCL 4
42	15 02	g x²
43	24 03	RCL 3
44	71	÷
45	41	-
46	71	÷
47	13 00	GTO 00
48		
49		

REGISTRES
Roa
R ₁ b
$R_2 \Sigma (\ln y)^2$
R ₃ n
R ₄ ΣIny
$\mathbf{R}_{5} \Sigma (\ln \mathbf{x}) (\ln \mathbf{y})$
$R_6 \Sigma (\ln x)^2$
R ₇ ∑ In x

Xi	10	12	15	17	20	22	25	27	30	32	35
Уi	0.95	1.05	1.25	1.41	1.73	2.00	2.53	2.98	3.85	4.59	6.02

Solution:

$$a = .03, b = 1.46$$

 $y = .03x^{1.46}$
 $r^2 = .94$
Pour $x = 18, \hat{y} = 1.76$
Pour $x = 23, \hat{y} = 2.52$

N۰	INSTRUCTIONS	DONNÉES		TOUCHES		RÉSULTATS	
1	Introduire le programme						
2	Initialiser		f	REG	f	PRGM	
3	Introduire les valeurs de x						
	et de y pour i=1, n	x _i	1				
	1	Уi	R/S				i
4	Calcul des constantes		GTO	10	R/S		a*
			R/S				b*
5	Calcul du coefficient						
	de détermination		R/S				r ²
6	Introduire x;	×	RCL	1	f	y ^x	
	estimation de ŷ		RCL	0	×		ŷ
7	Pour une autre estimation						
	de ŷ, aller en 6						
8	Pour un nouveau cas,						
	aller en 2						
	*Après ce résultat, ne pas						
	modifier le contenu de la pile.						

COVARIANCE ET COEFFICIENT DE CORRÉLATION

Soit une suite de valeurs données $\{(x_i, y_i), i = 1, 2, ..., n\}$, la covariance et le coefficient de corrélation sont définis par:

covariance
$$s_{xy} = \frac{1}{n-1} \left(\sum x_i y_i - \frac{1}{n} \sum x_i \sum y_i \right)$$
ou
$$s_{xy}' = \frac{1}{n} \left(\sum x_i y_i - \frac{1}{n} \sum x_i \sum y_i \right)$$
coefficient de corrélation
$$r = \frac{s_{xy}}{s_x s_y}$$

sx et sy étant l'écart type

$$s_x = \sqrt{\frac{\sum x_i^2 - (\sum x_i)^2/n}{n-1}}$$
 $s_y = \sqrt{\frac{\sum y_i^2 - (\sum y_i)^2/n}{n-1}}$

Remarque:

_1<r<1

AFF	CHAGE	
PAS	CODE	TOUCHES
00		
01	31	1
02	15 02	g x ²
03	23 51 02	STO + 2
04	22	R↓
05	21	x
06	25	Σ+
07	13 00	GTO 00
08	24 05	RCL 5
09	24 04	RCL 4
10	24 07	RCL 7
11	61	x
12	24 03	RCL 3
13	71	-
14	41	
15	24 03	RCL 3
16	01	1
17	41	-
18	23 00	STO 0
19	71	÷
20	23 01	STO 1
21	74	R/S
22	24 00	RCL 0
23	61	×
24	24 03	RCL 3

AFF	ICHAGE	TOUCHES
PAS	CODE	TOUCHES
25	71	÷
26	74	R/S
27	14 22	f s
28	23 71 01	STO÷1
29	24 02	RCL 2
30	24 04	RCL 4
31	15 02	g x²
32	24 03	RCL 3
33	71	÷
34	41	-
35	24 00	RCL 0
36	71	÷
37	14 02	f√x
38	23 71 01	STO ÷ 1
39	24 01	RCL 1
40	13 00	GTO 00
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTRES			
R ₀ n – 1			
R ₁ Utilisé			
$R_2 \sum y^2$			
R ₃ n			
R ₄ Σγ			
R ₅ ∑ xy			
R ₆ Σ x ²			
R ₇ ∑ X			

Xi	26	30	44	50	62	68	74
y _i	92	85	78	81	54	51	40

Solution:

$$S_{xy} = -354.14$$

 $S_{xy} = -303.55$
 $r = -0.96$

N۰	INSTRUCTIONS	DONNÉES		TOUCHES			RÉSULTATS
1	Introduire le programme						
2	Initialiser		f	PRGM	f	REG	
3	Effectuer 3 pour i=1, 2, n	×i	<u> </u>				
		Υi	R/S				i
4	Calcul de la covariance sxy		GTO	08	R/S		Sxy
5	Calcul de sxy		R/S				s _{xy} '
6	Calcul du coefficient de corrélation		R/S				r
7	Pour un nouveau cas, aller en 2.						A CONTRACTOR OF THE CONTRACTOR

MOMENTS ET COEFFICIENTS D'ASYMÉTRIE

Ce programme effectue les calculs statistiques suivants pour une suite de valeur $\{x_1, x_2, ..., x_n\}$:

Moment d'ordre 1
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Moment d'ordre 2
$$m_2 = \frac{1}{n} \sum x_i^2 - \overline{x}^2$$

Moment d'ordre 3
$$m_3 = \frac{1}{n} \sum x_i^3 - \frac{3}{n} \overline{x} \sum x_i^2 + 2\overline{x}^3$$

$$\gamma_1 = \frac{m_3}{m_2^{3/2}}$$

AFF	ICHAGE	
PAS	CODE	TOUCHES
00	/////////	111111111
01	31	↑
02	15 02	g x ²
03	25	Σ+
04	13 00	GTO 00
05	24 04	RCL 4
06	24 03	RCL 3
07	71	÷
08	23 02	STO 2
09	74	R/S
10	24 07	RCL 7
11	24 03	RCL 3
12	71	÷
13	24 02	RCL 2
14	15 02	g x ²
15	41	-
16	23 01	STO 1
17	74	R/S
18	24 05	RCL 5
19	24 03	RCL 3
20	71	÷
21	24 07	RCL 7
22	24 02	RCL 2
23	61	×
24	24 03	RCL 3

AFF	ICHAGE	
PAS	CODE	TOUCHES
25	71	÷
26	03	3
27	61	x
28	41	_
29	24 02	RCL 2
30	31	↑
31	15 02	g x²
32	61	x
33	02	2
34	61	x
35	51	+
36	23 00	STO 0
37	74	R/S
38	24 00	RCL 0
39	24 01	RCL 1
40	01	1
41	73	•
42	05	5
43	14 03	f y ^x
44	71	÷
45	13 00	GTO 00
46		
47		
48		
49		

REGISTRES						
R _o m ₃						
R ₁ m ₂						
R ₂ X						
R ₃ n						
R ₄ Σx						
$R_5 \Sigma x^3$						
R ₆ Σ x ⁴						
$R_7 \Sigma x^2$						

i	1	2	3	4	5	6	7	8	9
x_i	2.1	3.5	4.2	6.5	4.1	3.6	5.3	3.7	4.9

Solution:

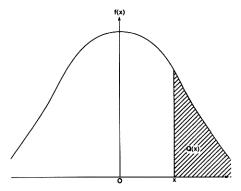
 $\overline{x} = 4.21$

 $m_2 = 1.39$

 $m_3 = 0.39$

 $\gamma_1 = 0.24$

N۰	INSTRUCTIONS	DONNÉES		RÉSULTATS			
1	Introduire le programme						
2	Initialiser		f	PRGM	f	REG	
3	Effectuer 3 pour i=1, 2 n						
		×i	R/S				i
4	Effacer la donnée incorrecte	×k	1	g	x²	f	
			Σ-				
5	Calcul de la moyenne		GTO	05	R/S		x
6	Calcul du moment m ₂ d'ordre 2						
	et du moment m ₃ d'ordre 3		R/S				m ₂
			R/S				m ₃
7	Calcul du coefficient						
	d'asymétrie		R/S				γ,
8	Pour un nouveau cas, aller en 2						


DISTRIBUTION NORMALE

Une distribution normale type est représentée par la fonction:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
.

la surface de droite étant

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{t^2}{2}} dt.$$

Pour $x \ge 0$, le programme calcule Q(x) par la formule d'approximation polynomiale:

$$Q(x) = f(x) (b_1 t + b_2 t^2 + b_3 t^3 + b_4 t^4 + b_5 t^5) + \varepsilon(x)$$

$$avec|\varepsilon(x)| < 7.5 \times 10^{-8}$$

$$t = \frac{1}{1 + rx}$$
, $r = 0.2316419$

Remarque:

Dans ce programme, x doit être ≥ 0 . Les équations f(-x) = f(x), Q(-x) = 1 - Q(x) avec $x \ge 0$, peuvent être utilisées pour f et Q pour les nombres négatifs.

Référence:

Handbook of Mathematical Functions, Abramowitz and Stegun, National Bureau of Standards, 1968.

AFF	ICHAGE	TOUCHES
PAS	CODE	TOUCHES
00	//////////	(((((((((((((((((((((((((((((((((((((((
01	31	1
02	23 06	STO 6
03	61	x
04	02	2
05	. 71	÷
06	32	CHS
07	15 07	g e ^x
08	15 73	gπ
09	02	2
10	61	×
11	14 02	f√x
12	71	÷
13	23 07	STO 7
14	74	R/S
15	24 00	RCL 0
16	24 06	RCL 6
17	61	X.
18	01	1
19	51	+
20	15 22	g 1/x
21	31	1
22	31	1
23	31	↑
24	24 05	RCL 5

AFF	ICHAGE	TOUCHES			
PAS	CODE	TOUCHES			
25	61	x			
26	24 04	RCL 4			
27	51	+			
28	61	x			
29	24 03	RCL 3			
30	51	+			
31	61	x			
32	24 02	RCL 2			
33	51	+			
34	61	x			
35	24 01	RCL 1			
36	51	+			
37	61	x			
38	24 07	RCL 7			
39	61	x			
40	13 00	GTO 00			
41					
42					
43					
44					
45					
46					
47					
48					
49					

	REGISTRES
R _o	
R,	b ₁
R ₂	b ₂
R ₃	b ₃
R ₄	b ₄
R ₅	b ₅
R ₆	x
R,	f(x)

- 1. x = 1.18
- 2. x = 2.28

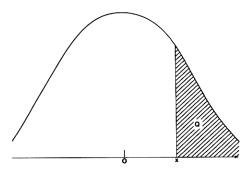
Solutions:

1. f(x) = 0.20

Q(x) = 0.12

2. f(x) = 0.03

Q(x) = 0.01


Nº	INSTRUCTIONS	DONNÉES	TOUCHES RÉSULT		RÉSULTATS	
1	Introduire le programme					
2	Initialiser		f	PRGM		
3	Mettre en mémoire les	r	STO	0		
	constantes	bı	STO	1		
	A CONTRACTOR CONTRACTO	b ₂	STO	2		
		b ₃	STO	3		
		b ₄	STO	4		
		b ₅	STO	5		
4	Introduire x; calcul de f(x)	х	R/S			f(x)
5	Calcul de Q(x)		R/S			Q(x)
6	Pour un nouveau cas, aller en 4.					

BORNE INFÉRIEURE DE L'INTÉGRALE D'UNE DISTRIBUTION NORMALE

Ce programme détermine la valeur de x telle que:

$$Q = \int_{x}^{\infty} \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}} dt$$

avec Q donné tel que 0<Q≤0.5.

On utilise la formule d'approximation suivante:

$$x = t - \frac{c_0 + c_1 t + c_2 t^2}{1 + d_1 t + d_2 t^2 + d_3 t^3} + \epsilon(Q)$$

Avec
$$|\epsilon(Q)| < 4.5 \times 10^{-4}$$

 $t = \sqrt{\ln \frac{1}{Q^2}}$

$$\begin{array}{lll} c_0 = 2.515517 & d_1 = 1.432788 \\ c_1 = 0.802853 & d_2 = 0.189269 \\ c_2 = 0.010328 & d_3 = 0.001308 \end{array}$$

Référence:

Handbook of Mathematical Functions, Abramowitz and Stegun, National Bureau of Standards, 1968.

AFFICHAGE				
PAS		TOUCHES		
00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///////////////////////////////////////		
01	31	1		
02	61	х		
03	15 22	g 1/x		
04	14 07	f LN		
05	14 02	f√x		
06	23 06	STO 6		
07	31	1		
08	31	1		
09	31	1		
10	24 05	RCL 5		
11	61	x		
12	24 04	RCL 4		
13	51	+		
14	61	x		
15	24 03	RCL 3		
16	51	+		
17	61	x		
18	01	1		
19	51	+		
20	23 07	STO 7		
21	34	CLX		
22	24 02	RCL 2		
23	61	×		
24	24 01	RCL 1		

	ICHAGE	TOUCHES			
PAS	CODE	10001120			
25	51	+			
26	61	x			
27	24 00	RCL 0			
28	51	+			
29	24 07	RCL 7			
30	71	÷			
31	41	-			
32	13 00	GTO 00			
33					
34					
35					
36					
37					
38					
39					
40					
41					
42					
43					
44					
45					
46					
47					
48					
49					

	REGISTRES
Roc	÷0
R, c	21
R ₂ (2
R3	d ₁
R ₄ (d ₂
R ₅	d ₃
R ₆	t The second sec
R,	$1 + d_1 t + d_2 t^2 + d_3 t^3$

- 1. Q = 0.12
- 2. Q = 0.05

Solutions:

- 1. x = 1.18
- 2. x = 1.65

N°	INSTRUCTIONS	DONNÉES		тои	CHES	RÉSULTATS
1	Introduire le programme					
2	Initialiser		f	PRGM		
3	Mettre en mémoire	c ₀	STO	0		
Marketo Horoco	les constantes	c ₁	STO	1		
		c ₂	STO	2		
Ballyone C. Hillian		di	STO	3		
		d ₂	STO	4		
		d ₃	STO	5		
4	Introduire Q	Q	R/S			x
5	Pour un nouveau cas, aller en 4.					

FACTORIELLE

Ce programme calcule les factorielles de nombres entiers positifs compris entre 2 et 69. Le programme de la fonction Gamma pourrait également calculer la factorielle, mais nécessiterait davantage de pas de programme.

$$n! = n(n-1)(n-2)...(2)(1)$$

Remarques:

- 1. Plus les valeurs de n sont grandes, plus le calculateur met de temps pour donner le résultat (environ 20 secondes pour n = 69).
- 2. Le programme ne vérifie pas les valeurs introduites; le calculateur donnera des résultats incorrects pour des valeurs de n non entières, <2 et > 69.

AFFICHAGE

AFF	ICHAGE	
PAS	CODE	TOUCHES
00		
01	31	1
02	01	1
03	23 00	STO 0
04	21	x≠y
05	23 61 00	STO×0
06	01	.1
07	41	_
08	1461	fx≠y
09	13 05	GTO 05
10	24 00	RCL 0
11	1300	GTO 00
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

AFFICHAGE		TOUCHES
PAS	CODE	TOUCHES
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48	7.77.00	
49		

	REGISTRES		
R _o	Utilisé		
R ₁			
R ₂			
Rз			
R ₄			
R ₅			
R ₆			
R,			

- 1. 5! = 120.00
- $2. \ 10! = 3628800.00$

Nº	INSTRUCTIONS	DONNÉES	TOUCHES RÉSULTATS
1	Introduire le programme		
2	Initialiser		f PRGM
3	Introduire n(2 ≤ n ≤ 69)	n	R/S n!
4	Pour un nouveau cas, aller en 3.		

ARRANGEMENT

Un arrangement est un sous-ensemble ordonné d'un ensemble d'objets distincts. Le nombre d'arrangements possibles, chacun contenant n objets, qui peuvent être réalisés à partir d'un ensemble de m objets distincts, est donné par:

$$_{m}A_{n} = \frac{m!}{(m-n)!} = m(m-1)...(m-n+1)$$

où m et n sont des entiers tels que 0≤n≤m

Remarques:

1. m^An peut être désigné par An^m, A (m, n) ou (m)_n.

AFFICHAGE

2. $m^{A0} = 1$, $m^{A1} = m$, $m^{Am} = m!$

AFF	ICHAGE	
PAS	CODE	TOUCHES
00	///////////////////////////////////////	//////////
01	24 00	RCL 0
02	24 00	RCL 0
03	24 01	RCL 1
04	15 71	g x=0
05	13 29	GTO 29
06	14 71	f x=y
07	13 31	GTO 31
08	14 51	f x≥y
09	13 39	GTO 39
10	01	1
11	14 71	f x=y
12	13 41	GTO 41
13	22	R↓
14	41	-
15	01	1
16	51	+
17	61	x
18	14 73	f LASTx
19	24 00	RCL 0
20	01	1
21	41	
22	14 71	f x=y
23	13 26	GTO 26
24	22	R↓

PAS	CODE	TOUCHES
25	13 15	GTO 15
26		
27	22	R↓
	22	R↓
28	13 00	GTO 00
29	01	1
30	13 00	GTO 00
31	01	1
32	41	
33	15 71	g x=0
34	13 37	GTO 37
35	23 61 00	STO x 0
36	13 31	GTO 31
37	24 00	RCL 0
38	13 00	GTO 00
39	00	0
40	71	÷
41	22	R↓
42	22	R↓
43	13 00	GTO 00
44		
45		
46		
47		
48		
49		

	REGISTRES
R _o m	
R ₁ n	
R ₂	
R ₃	
R ₄	
R ₅	
R ₆	
R,	

- 1. 43A3 = 74046.00
- 2. 73A4 = 26122320.00

N°	INSTRUCTIONS	DONNÉES		TOUCHES			RÉSULTATS
1	Introduire le programme						
2	Mettre en mémoire m et n	m	STO	0			
		n	STO	1			
3	Calcul de l'arrangement		f	PRGM	R/S		mAn
4	Pour un nouveau cas, aller en 2.						

COMBINAISON

Une combinaison est une sélection non ordonnée d'un ou plusieurs ensembles d'objets distincts. Le nombre de combinaisons possibles, chacune contenant n objets, est donné par:

$$_{m}C_{n} = \frac{m!}{(m-n)! \; n!} = \frac{m(m-1)...(m-n+1)}{1 \cdot 2 \cdot ... \cdot n}$$

où m et n sont des entiers tels que 0≤n≤m

Ce programme calcule mCn en utilisant l'algorithme suivant:

AFFICHAGE

1. Si n≤m-n

$$_{m}C_{n} = \frac{m-n+1}{1} \cdot \frac{m-n+2}{2} \cdot \dots \cdot \frac{m}{n}.$$

2. Si n>m-n, le programme calcule ${}_{m}C_{m-n}$.

Remarques:

- 1. m^Cn, qui est aussi appelé coefficient binomial, peut être désigné par C_n^m , C(m, n), ou $\binom{m}{n}$.
- $2. \quad {}_{m}C_{n} = {}_{m}C_{m-n}$
- 3. ${}_{m}C_{0} = {}_{m}C_{m} = 1$
- 4. ${}_{m}C_{1} = {}_{m}C_{m-1} = m$

AFFICHAGE					
PAS	CODE	TOUCHES			
00					
5	41	-			
02	14 73	f LASTx			
03	14 41	f x <y< th=""></y<>			
04	21	х⊋у			
05	23 00	STO 0			
06	01	1			
07	23 01	STO 1			
08	51	+			
09	23 02	STO 2			
10	22	R↓			
11	15 71	g x=0			
12	13 30	GTO 30			
13	01	1			
14	24 01	RCL 1			
15	51	+			
16	23 01	STO 1			
17	21	x 			
18	14 51	f x ≥ y			
19	13 22	GTO 22			
20	24 02	RCL 2			
21	13 00	GTO 00			
22	22	х⇄у			
23	24 00	RCL 0			
24	51	+			

25 24 01 RCL 26 71 ÷ 27 23 61 02 STO 28 22 R↓	TOUCHES		
26 71 ÷ 27 23 61 02 STO 28 22 R↓			
27 23 61 02 STO 28 22 R↓	1		
28 22 R↓			
22 117	x 2		
29 40.40 070			
29 13 13 GTO	13		
30 01 1			
31 13 00 GTO	00		
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			

REGISTRES			
\mathbf{R}_0 max $(n, m - n)$			
R ₁ Utilisé			
R ₂ Utilisé			
R ₃			
R ₄			
R ₅			
R ₆			
R ₇			

- 1. $_{73}C_4 = 1088430.00$ 2. $_{43}C_3 = 12341.00$

Nº	INSTRUCTIONS	DONNÉES	TOUCHES RÉSULTAT
1	Introduire le programme		
2	Introduire m, n	m	↑
		n	f PRGM R/S mCn
3	Pour un nouveau cas, aller en 2		

GÉNÉRATEUR DE NOMBRES ALÉATOIRES

Ce programme calcule des nombres aléatoires ui uniformément distribués tels que:

 $0 \le u_i \le 1$

à l'aide de la formule suivante:

 $u_i = partie fractionnaire de [(\pi + u_{i-1})^5].$

L'utilisateur devra choisir le nombre initial u₀ tel que:

 $0 \le u_0 \le 1$.

AFF	ICHAGE	TOUCHES	AFF	ICHAGE	
PAS	CODE	TOUCHES	PAS	CODE	TOUCHES
00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///////////////////////////////////////	25		
01	15 73	gπ	26		
02	24 00	RCL 0	27		
03	51	+	28		
04	05	5	29		
05	14 03	f y ^x	30		
06	15 01	g FRAC	31		
07	23 00	STO 0	32		
80	13 00	GTO 00	33		
09			34		
10			35		
11			36		
12			37		
13			38		
14			39		
15			40		
16			41		
17			42		
18			43		
19			44		
20			45		
21			46		
22			47		
23			48		
24			49		

	REGISTRES
R _{oui}	
R,	
R ₂	
R ₃	
R ₄	
R ₅	
R ₆	
R,	

Calculer les nombres aléatoires uniformément distribués à partir de 0.192743568.

Solution:

0.14, 0.76, 0.15, 0.35, 0.62, 0.54, 0.62, 0.91, 0.48, 0.24, ...

N٥	INSTRUCTIONS	DONNÉES		TOUCHES			RÉSULTATS
1	Introduire le programme						
2	Mettre en mémoire u ₀	u ₀	STO	0	f	PRGM	
3	Calcul de ui		R/S				u _i
4	Pour une autre valeur de ui,						
	aller en 3						
5	Pour un nouveau cas, aller en 2.						

CALCUL DE LA VALEUR DU CHI-CARRÉ

Le test de l'accord global entre une «distribution observée» et une «distribution théorique» spécifiée «a priori» ou ajustée aux observations est obtenu en calculant la quantité

$$\chi^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i}$$

où les O_i sont les fréquences observées et les E_i les fréquences prévues pour la distribution ajustée.

Remarques:

- Afin d'effectuer ce test sur un ensemble de données connues, il peut être nécessaire de réunir certaines classes pour être sûr que chaque valeur de la fréquence prévue ne soit pas trop petite (pas plus petite que 5).
- 2. Si les fréquences prévues E_i sont toutes égales à une certaine valeur E_i calculer d'abord E_i ($E = \frac{\Sigma 0_1}{n}$), puis introduire cette valeur pour la fréquence prévue E_i .

AFFICHAGE

AFF	ICHAGE	
PAS	CODE	TOUCHES
00		/////////
01	00	0
02	23 00	STO 0
03	23 01	STO 1
04	74	R/S
05	23 02	STO 2
06	41	-
07	15 02	g x ²
08	24 02	RCL 2
09	71	÷
10	23 51 01	STO + 1
11	24 00	RCL 0
12	01	1
13	51	+
14	23 00	STO 0
15	13 04	GTO 04
16	23 02	STO 2
17	41	-
18	15 02	g x ²
19	24 02	RCL 2
20	71	÷
21	23 41 01	STO - 1
22	24 00	RCL 0
23	01	1
24	41	-

PAS CODE			TOUCHES	
26	PAS	CODE		
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	25	23 00	STO 0	
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	26	13 04	GTO 04	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	27			
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	28			
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	29			
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	30			
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	31			
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	32			
35 36 37 38 39 40 41 42 43 44 45 46 47 48	33			
36 37 38 39 40 41 42 43 44 45 46 47 48	34			
37 38 39 40 41 42 43 44 45 46 47 48	35			
38 39 40 41 42 43 44 45 46 47	36			
39 40 41 42 43 44 45 46 47 48	37			
40 41 42 43 44 45 46 47 48	38			
41 42 43 44 45 46 47 48	39			
42 43 44 45 46 47 48	40			
43 44 45 46 47 48	41			
44 45 46 47 48	42			
45 46 47 48	43			
46 47 48	44			
47 48	45			
48	46			
	47			
49	48			
	49			

	REGISTRES
R _o n	
$R_1 \chi^2$	
R ₂ E _i	
R ₃	
R ₄	
R ₅	
R ₆	
R,	

Oi	8	50	47	56	5	14
Ei	9.6	46.75	51.85	54.4	8.25	9.15

Solution:

$$\lambda^2 = 4.84$$

N۰	INSTRUCTIONS	DONNÉES		TOUCHES RÉSULTATS		RÉSULTATS	
1	Introduire le programme						
2	Initialiser		f	PRGM	R/S		0.00
3	Introduire les fréquences observées et prévues pour						
	i=1, n						
		Oi	1				
	On the second section of the second section of the second section of the second section of the second section	Ei	R/S				i
4	Effacer les données incorrectes	O _k	1				
	The state of the s	E _k	GTO	16	R/S		
5	Affichage de x2		RCL	1			x²
6	Pour un nouveau cas, aller en 2.						

TEST t SUR DES PAIRES DE VARIABLES

Soit une série d'observations prises deux par deux pour deux populations normales de moyennes inconnues μ_1 et μ_2 .

Si

$$D_{i} = x_{i} - y_{i}$$

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_{i}$$

$$s_{D} = \sqrt{\frac{\sum D_{i}^{2} - \frac{1}{n} (\sum D_{i})^{2}}{n - 1}}$$

$$s_{\overline{D}} = \frac{s_{D}}{\sqrt{n}}$$

Le test statistique

$$t = \frac{\overline{D}}{s_{\overline{D}}} ,$$

qui a (n-1) degrés de liberté peut être utilisé pour tester l'hypothèse nulle : $H_0\colon \mu_1=\mu_2$

AFFICHAGE				
PAS	CODE	TOUCHES		
00				
01	41	-		
02	25	Σ+		
03	13 00	GTO 00		
04	14 22	fs		
05	24 03	RCL 3		
06	14 02	f√x		
07	71	÷		
08	14 21	fx		
09	21	x ≠y		
10	71	÷		
11	74	R/S		
12	24 03	RCL 3		
13	01	1		
14	41	-		
15	13 00	GTO 00		
16				
17				
18				
19				
20				
21				
22				
23				
24				

AFF	ICHAGE	T01101150
PAS	CODE	TOUCHES
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTRES
R _o
R ₁
R ₂
R ₃ n
R ₄ Utilisé
R ₅ Utilisé
R ₆ ΣD_i
$R_7 \Sigma D_i^2$

Xi	14	17.5	17	17.5	15.4
y _i	17	20.7	21.6	20.9	17.2

Solution:

t = -7.16

df = 1.00

N°	INSTRUCTIONS	DONNÉES		TOUCHES RÉSULTATS		RÉSULTATS	
1	Introduire le programme						
2	Initialiser		f	REG	f	PRGM	
3	Introduire les paires d'observations pour i=1, n						
		x _i	1				
		Yi	R/S				i
4	Effacer les données incorrectes	×k	1				
		Υk	-	f	Σ-		
5	Calcul de t et df		GTO	04	R/S		t
			R/S				df
6	Pour un nouveau cas, aller en 2.						

TEST t SUR DEUX MOYENNES

Supposons que $\{x_1, x_2, ..., x_{n1}\}$ et $\{y_1, y_2, ..., y_{n2}\}$ soient deux échantillons pris au hasard de deux populations normales de moyennes inconnues μ_1 et μ_2 et de variance égale et inconnue σ^2 .

Ce programme permet de tester l'hypothèse nulle

$$H_0: \mu_1 - \mu_2 = D$$

où D est un nombre donné.

Soit

$$\overline{x} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i$$

$$\overline{y} = \frac{1}{n_2} \sum_{i=1}^{n_2} y_i$$

$$t = \frac{\overline{x} - \overline{y} - D}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \sqrt{\frac{\sum x_i^2 - n_1 \overline{x}^2 + \sum y_i^2 - n_2 \overline{y}^2}{n_1 + n_2 - 2}}}$$

On peut utiliser la statistique de t dont la distribution a $n_1 + n_2 - 2$ degrés de liberté pour tester l'hypothèse nulle.

AFF	ICHAGE	TO 1101150	
PAS	CODE	TOUCHES	
00		/////////	
01	24 03	RCL 3	
02	23 00	STO 0	
03	24 06	RCL 6	
04	23 01	STO 1	
05	14 21	fx	
06	23 02	STO 2	
07	34	CLX	
08	23 03	STO 3	
09	23 06	STO 6	
10	23 07	STO 7	
11	74	R/S	
12	31	1	
13	14 21	fx	
14	51	+	
15	24 02	RCL 2	
16	21	x y	
17	41	_	
18	24 00	RCL 0	
19	15 22	g 1/x	
20	24 03	RCL 3	
21	15 22	g 1/x	
22	51	+	
23	14 02	f√x	
24	71	÷	

AFF	ICHAGE	T01101150
PAS	CODE	TOUCHES
25	24 01	RCL 1
26	24 02	RCL 2
27	15 02	g x ²
28	24 00	RCL 0
29	61	x
30	41	_
31	24 06	RCL 6
32	51	+
33	14 21	fx
34	15 02	g x ²
35	24 03	RCL 3
36	61	x
37	41	-
38	24 00	RCL 0
39	24 03	RCL 3
40	51	+
41	02	2
42	41	_
43	71	÷
44	14 02	f√x
45	71	÷
46	13 00	GTO 00
47		
48		
49		

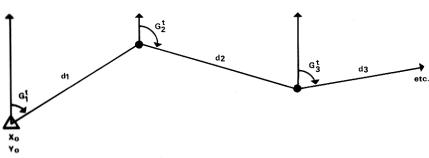
REGISTRES
R _o n ₁
$R_1 \Sigma x^2$
R ₂ x
R ₃ n ₂
R ₄ Utilisé
R ₅ Utilisé
$R_6 \Sigma y^2$
R ₇ Σy

x: 79, 84, 108, 114, 120, 103, 122, 120 y: 91, 103, 90, 113, 108, 87, 100, 80, 99, 54 $n_1 = 8$ $n_2 = 10$ $\tilde{Si} D = 0$ (c'est-à-dire $H_0: \mu_1 = \mu_2$)

Solution:

t = 1.73 $\bar{x} = 106.25$ $\bar{y} = 92.50$

N۰	INSTRUCTIONS	DONNÉES		TOUCHES			RÉSULTATS
1	Introduire le programme						
2	Initialiser		f	REG			
3	Introduire x pour i=1, n						
		×i	Σ+.				i
4	Initialiser pour y		f	PRGM	R/S		0.00
5	Introduire y pour i=1, n						
	and the state of t	Υi	Σ+				i
6	Introduire D: calcul de t	D	R/S				t
7	Calcul de x̄ et de ȳ						
			RCL	2			x
			f	x			ν
8	Pour un nouveau cas, aller en 2.]


CHAPITRE 7: TOPOGRAPHIE

CHEMINEMENT POLYGONAL ET COMPENSATION

Ce programme calcule les coordonnées compensées des stations d'une polygonation en trois étapes successives:

- 1. A partir des coordonnées X₀, Y₀ de la station de départ et des gisements et distances: calcul des coordonnées brutes.
- 2. L'introduction des coordonnées de fermeture vraies permet de connaître les écarts de fermeture en X et Y, la longueur du cheminement (Σd).
- 3. Le calcul des coordonnées définitives, compensées, est obtenu par réintroduction des gisements et distances.

Les formules employées sont les suivantes:

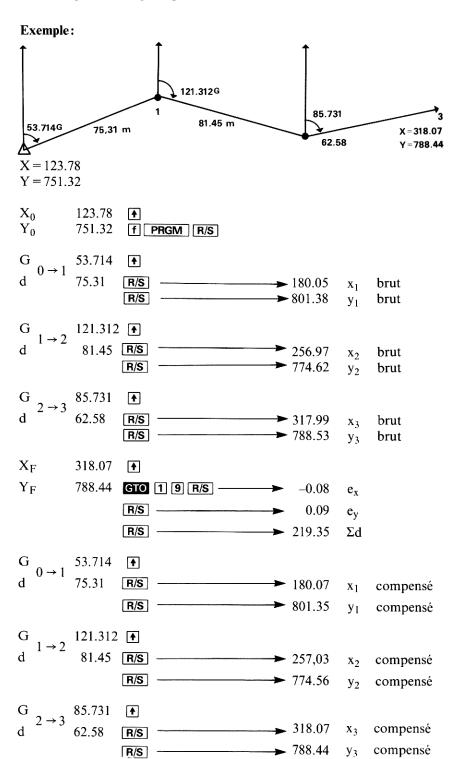
$$X_{i+1} = X_i + d \sin G - \frac{e_x \times d}{\Sigma d}$$

$$Y_{i+1} = Y_i + d \cos G - \frac{e_y \times d}{\Sigma d}$$

G et d représentent le gisement et la distance du point i au point i+1. e_x et e_y représentent les écarts en x et en y.

Remarque:

Ce programme convient pour un cheminement tendu aussi bien que fermé, quel que soit le nombre de côtés.

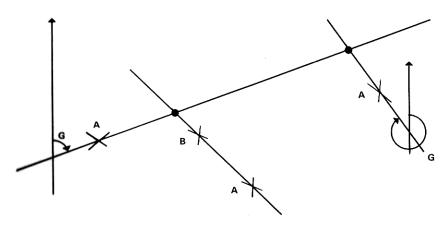

Dans le cas où vous souhaitez effectuer la compensation par une autre méthode que celle du calculateur, arrêtez l'introduction du programme après l'instruction N° 27.

AFF	ICHAGE			1	1	1		
PAS	CODE	TOUCHES	X	Y	Z	T	COMMENTAIRES	
00	111111111	//////////		1	†			
01	15 34	g GRD					Unité d'angle=grades	
02	23 04	STO 4		 	 		Stockage des	
03	23 02	STO 2		 			coordonnées	
04	22	R↓		1		-	de la station	
05	23 01	STO 1			t -	1	de départ	
06	23 03	STO 3						
07	34	α×						
08	23 00	STO 0					Σd=0	
09	74	R/S	d	Gŧ	†	†	Affichage de Y, pose de G et d	
10	23 51 00	STO+0	<u> </u>		 		Calcul de Σd	
11	14 09	f R	ΔΥ	ΔX	 	 	Calcul des Δ	
12	23 51 02	STO+2	ΔΥ	†		<u> </u>		
13	22	R↓	ΔX		†			
14	23 51 01	STO+1	ΔX		†	1	·	
15	24 01	RCL 1	X					
16	74	R/S	X		†		Affichage de X	
17	24 02	RCL 2	Y		t	1		
18	13 09	GTO 09		 	 	+		
19	23 41 02	STO-2	YF	XF		-	Y calculé-Y vrai	
20	22	R↓	XF		†	1	T carcare 1 Fig.	
21	23 41 01	STO-1	XF				X calculé – X vrai	
22	24 01	RCL 1	ex	†	 	-	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
23	74	R/S	ex	 	 	-	Affichage de ex	
24	24 02	RCL 2	ey	 	 		1	
25	74	R/S	e _V	 	 	-	Affichage de ey	
26	24 00	RCL 0	Σd	†		1		
27	74	R/S	Σd	 			Affichage de Σd,	
28	23 05	STO 5	d	G	 	1	pose de G et d	
29	14 09	f R	ΔΥ	ΔX		1	Affichage de Y compensé	
30	24 02	RCL 2	ey	 	 			
31	24 05	RCL 5	d	e _V	ΔΥ	ΔΧ	Calcul de A Y	
32	61	×	dey	ΔΥ	ΔX	1	compensé	
33	24 00	RCL 0	Σd	dev	ΔΥ	ΔX		
34	71	÷	Cy	ΔΥ	ΔX	1		
35	41	-	ΔYc	ΔX	 	1		
36	23 51 04	STO+4	ΔYc	ΔX		1		
37	22	R↓	ΔX		 	+		
38	24 01	RCL 1	ex	ΔX		+		
39	24 05	RCL 5	d d	ex	ΔX	 		
40	61	×	dex	ΔX	<u> </u>		Calcul de Δ X	
41	24 00	RCL 0	Σd	dex	ΔX	 	compensé	
42	71	÷ ·	Cx	ΔX	<u> </u>	_		
43	41	_	ΔXc			+		
44	23 51 03	STO+3	ΔXc	†	 	+		
45	24 03	RCL 3	Xc		†	+	Affichage de X compensé	
46	74	R/S	×c	 	 	+	Amonage ue A compense	
47	24 04	RCL 4	Y _C		 	+		
48	1327	GTO 27	Y _C			+	<u> </u>	
49	134/	3.027				+		

REGISTRES

R 2 Y brut

Nº	INSTRUCTIONS	DONNÉES		TOUCHES			
1	Introduire le programme						
2	Coordonnées de la						
	station de départ	Xo	1				
		Yo	f		R/S		0.00
3	Gisement	Gt	1				
4	Distance	d	R/S				X brut
5	Lire X brut		R/S				Y brut
6	Lire Y brut						
7	Retourner en 3						
	en fin de cheminement						
8	X fermeture	XF	1				
	Y fermeture	YF	€TO	1	9	R/S	ex
9	Lire ex					R/S	еу
10	Lire ey					R/S	Σd
11	Lire la longueur du chemine- ment						
12	Gisement	Gt	1				
13	Distance	d	R/S				X compensé
14	Lire X compensé		R/S				Y compensé
15	Lire Y compensé						
16	Retourner en 12]			


INTERSECTION DE DROITES EN SÉRIE

Ce programme calcule les coordonnées X_i, Y_i du point d'intersection de deux droites.

Chaque droite peut être définie indifféremment par:

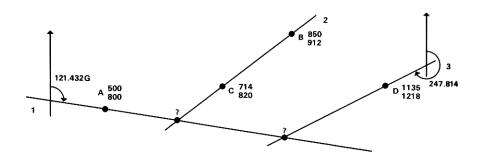
- deux points X_AY_A et X_BY_B ou par
- le gisement Gt et un point XAYA

Si une même droite est coupée par plusieurs autres, il suffit après avoir calculé le premier point d'intersection, d'introduire les éléments des droites sécantes variables.

Ce problème est résolu de la façon suivante; pour chaque droite, le programme calcule:

- la pente $a = \frac{\triangle y}{\triangle x}$ ou $a = \cot g G^t$
- l'ordonnée à l'origine $b = Y_A aX_A$

Les coordonnées du point d'intersection sont obtenues par:


$$X_i = \frac{b_2 - b_1}{a_1 - a_2}$$
 $Y_i = a_1 X_i + b_1$

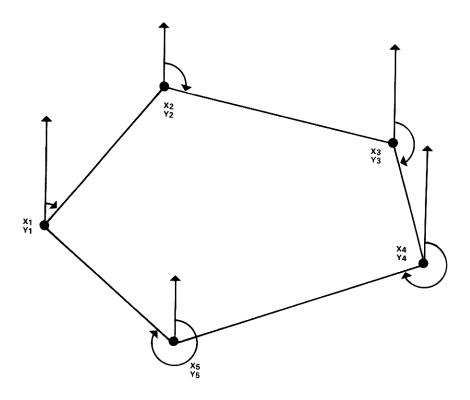
AFF	ICHAGE	
PAS	CODE	TOUCHES
00	///////////////////////////////////////	
01	14 33	f REG
02	14 34	f STK
03	74	R/S
04	23 03	STO 3
05	22	R↓
06	23 02	STO 2
07	22	R↓
08	21	x≠y
09	1571	g x=0
10	1318	GTO 18
11	24 02	RCL 2
12	41	-
13	21	x≠y
14	24 03	RCL 3
15	41	_
16	71	÷
17	1321	GTO 21
18	21	x ⇄y
19	1534	g GRD
20	14 06	f TAN
21	21 15 22 g	
22	23 04	STO 4
23	24 02	RCL 2
24	61	Х

AFF	ICHAGE	TOUCHES
PAS	CODE	TOUCHES
25	32	CHS
26	24 03	RCL 3
27	51	+
28	24 07	RCL 7
29	15 61	g X≠0
30	1336	GTO 36
31	21	x≠y
32	23 07	STO 7
33	24 04	RCL 4
34	23 06	STO 6
35	13 02	GTO 02
36	41	_
37	24 06	RCL 6
38	24 04	RCL 4
39	41	_
40	71	÷
41	74	R/S
42	24 06	RCL 6
43	61	×
44	24 07	RCL 7
45	51	+
46	74	R/S
47	13 02	GTO 02
48		
49		

	REGISTRES						
L							
R _o							
R,							
R ₂	Хв						
R ₃	ΥB						
R ₄	a ₂						
R ₅							
R ₆	a ₁						
R.	h.						

Calculer les coordonnées des points d'intersection de la droite connue par un point et le gisement, avec la droite@connue par deux points, et la droite@connue par un point et le gisement.

Presser les touches f PR	GM R/S	
Pour la droite ① G ^t 121.4	32 🛊	
X _A 500	•	
Y _A 800	R/S	→ Affichage de 0.00
Pour la droite ② X _B 850	•	
Y _B 912	•	
X _C 714	•	
Y _C 820	R/S	\rightarrow Affichage de $X_i = 621.55$
	R/S	\rightarrow Affichage de Y _i = 757.46
	R/S	→ Affichage de 0
Pour la droite 3 Gt 247.	314 ♠	
X _D 1135	1	
Y _D 1218	R/S	\rightarrow Affichage de $X_i = 684.49$
	R/S	\rightarrow Affichage de Y _i = 735.43
	R/S	→ Affichage de 0


N۰	INSTRUCTIONS	DONNÉES	TOUCHES				RÉSULTATS
1	Introduire le programme						
2	Initialiser		f	PRGM	R/S		0.00
3	Pour la première droite	ХА	1				
		YA	1				
e de la composition della comp		ХВ	1]
		YB	R/S				0.00
	ou]
3′		Gt	1][
		XA	1]
Special Communication of the C		YA	R/S				0.00
4	Pour chaque droite]
	sécante	XA	1]
Memorean	A CONTRACTOR OF THE PARTY OF TH	YA	1]
	COMPANIES INCOMES INCOMES CONTRACTOR CONTRAC	ХВ	1]
		YB	R/S]
	ou]
procession of		Gt	1]
illano e a a cinimi e		Хд	1				
ipo de districtor de		YA	R/S] x _i
5	Lire X du point d'intersection		R/S				Yi
6	Lire Y du point d'intersection]
7	Retourner en 4 ou 2 4 = nouvelle droite]
	coupant la première 2 - nouvelle intersection						
Mark Control	indépendante des précèdentes						

COTES PÉRIMÉTRIQUES, GISEMENTS, SURFACE D'UN POLYGONE

A partir de l'introduction des coordonnées successives X, Y des sommets d'un polygone, le programme calcule:

- les cotes périmétriques (affichés avec 2 décimales)
- les gisements des cotes (affichés avec 4 décimales)
- la surface du polygone (affichée avec 2 décimales).

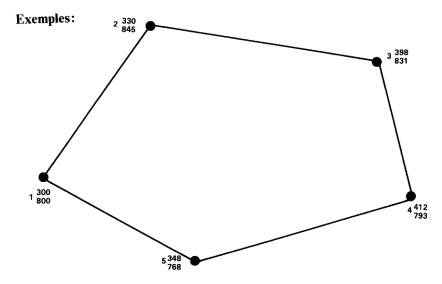
(La surface du polygone est obtenue après réintroduction des coordonnées du premier sommet.)

Les formules utilisées sont les suivantes:

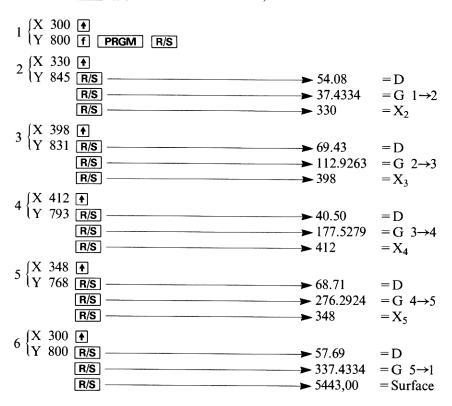
$$D = \sqrt{\Delta X^2 + \Delta Y^2}$$

$$G = arc \cos \frac{\Delta Y}{D} (+400)$$

$$S = \frac{1}{2} \Sigma (X_{i+1} - X_i) (Y_{i+1} + Y_i)$$


Ce programme convient pour un nombre quelconque de sommets.

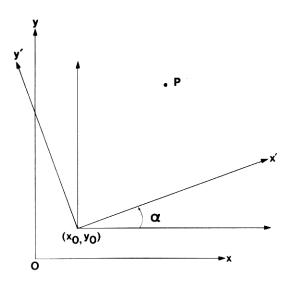
AFF	ICHAGE			
PAS	CODE	TOUCHES		
00				
01	23 01	STO 1		
02	23 03	STO 3		
03	22	R↓		
04	23 00	STO 0		
05	23 02	STO 2		
06	34	CLX		
07	23 06	STO 6		
08	74	R/S		
09	23 05	STO 5		
10	22	R↓		
11	23 04	STO 4		
12	24 02	RCL 2		
13	41			
14	24 05	RCL 5		
15	24 03	RCL 3		
16	41			
17	15 34	g GRD		
18	15 09	gР		
19	14 11 02	f FIX 2		
20	74	R/S		
21	21	x ≠ y		
22	15 51	g x ≥ 0		
23	23 26	GTO 26		
24	24 07	RCL 7		


AFF	ICHAGE	TOUCHES
PAS	CODE	TOUCHES
25	51	+
26	14 11 04	f FIX 4
27	74	R/S
28	21	х≓у
29	14 09	f R
30	24 03	RCL 3
31	51	+
32	23 03	STO 3
33	1473	f last x
34	51	+
35	61	×
36	23 51 06	STO+6
37	24 00	RCL 0
38	24 04	RCL 4
39	23 02	STO 2
40	14 61	fx≠y
41	13 08	GTO 08
42	24 01	RCL 1
43	24 03	RCL 3
44	14 61	fx≠y
45	13 08	GTO 08
46	24 06	RCL 6
47	02	2
48	71	÷
49	1319	GTO 19

	REGISTRES
R _o	X ₁
R,	Y ₁
R ₂	Xi
R ₃	Yi
R ₄	Xi+1
R ₅	Y _{i+1}
R ₆	2 S
R,	400

N°	INSTRUCTIONS	DONNÉES		TOUCHES			RÉSULTATS
1	Introduire le programme						
2	Mettre en mémoire	400	STO	7			
3	Coordonnées du premier	X1					
*************************************	sommet	Y1	f	PRGM	R/S		0.00
4	Coordonnées du point suivant	Xi+1					
	Benneral	Yi+1	R/S				Distance
5	Lire la distance		R/S				Gisement
6	Lire le gisement][Gt ou S
7	Retourner en 4 ou		R/S				Surface
8	Lire la surface après						
	réintroduction du premier][
	sommet						

400 STO 7 (à faire dans tous les cas)



CHAPITRE 8: TRIGONOMÉTRIE ET GÉOMÉTRIE ANALYTIQUE

TRANSFORMATION ET ROTATION D'AXES DE COORDONNÉES

Il est quelquesois nécessaire, en cartographie par exemple, d'avoir à effectuer une translation et/ou une rotation d'un système de coordonnées. L'origine est translatée de (0.0) à un nouveau point (x_0, y_0) , et les axes x et y tournent ensuite d'un angle α , x' et y' étant les nouveaux axes.

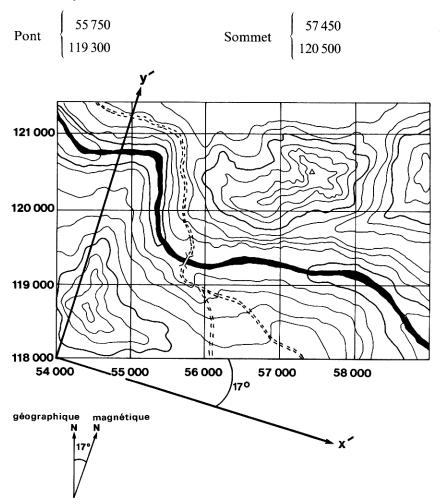
Soit un point P de coordonnées (x, y) dans l'ancien système d'axe. **Le problème** consiste à trouver les nouvelles coordonnées (x', y') du **point** P dans un nouveau système d'axe.

Equations:

$$\mathbf{x}' = (\mathbf{x} \cdot \mathbf{x}_0) \cos \alpha + (\mathbf{y} - \mathbf{y}_0) \sin \alpha$$
$$\mathbf{y}' = -(\mathbf{x} \cdot \mathbf{x}_0) \sin \alpha + (\mathbf{y} - \mathbf{y}_0) \cos \alpha$$

Remarques:

- 1. Ce programme peut être utilisé pour résoudre soit un problème de translation, soit de rotation, ou bien à la fois de translation et de rotation. Dans le cas seulement d'une translation, introduire $\alpha = 0$. Dans le cas seulement d'une rotation, introduire $x_0 = y_0 = 0$.
- 2. Dans ce programme, il faut introduire α comme un nombre positif si la rotation s'effectue dans le sens inverse des aiguilles d'une montre ou comme un nombre négatif si la rotation s'effectue dans le sens des aiguilles d'une montre.

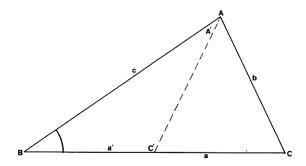

Remarque sur la programmation:

Ce programme est une application très intéressante de la conversion de des 4 registres de la pile opérationnelle. Les expressions $(x-x_0)$ cos α , $(x-x_0) \sin \alpha$, $(y-y_0) \cos \alpha$ et $(y-y_0) \sin \alpha$ sont toutes obtenues par f >R et mises en mémoire dans la pile opérationnelle pour être utilisées ultérieurement. Un programme utilisant les touches f sin et f cos aurait nécessité 30 pas de mémoire programme (alors que celui-ci en occupe 19) et un registre mémoire supplémentaire.

AF	FICHAGE			1		1 _		
AS	CODE	TOUCHES	X	Υ	Z	T	COMMENTAIRES	REGISTRE
00	mmm	mmmm	y	×	+	+	+	1 ×
01	23 03	STO 3	ý	×	-	+		R 0 ×0
02	22	RI	×			l v		
03	24 02	RCL 2				+'	 	
MINISTER COLUMN		ETALOGE STATE OF THE PARTY OF T	α	x		+	+	R 1 - Yo
04	21	x≓y	x	α				
05	24 00	RCL 0	× ₀	×	α	-	 	-
06	41		Δ×	α		_	$\Delta x = x - x_0$	R 2 α
07	14 09	f→R	Δx cos α	Δx sin α	_			
08	24 03	RCL 3	٧	Δx cos α	Δx sin α			- I
09	24 01	RCL 1	Yo	У	Δx cos α	Δx sin α		R3_Y
10	41	-	Δγ	Δx cos α	Δx sin α	Δx sin α	$\Delta y = y - y_0$	ــــــ اا
11	24 02	RCL 2	α	Δy	Δx cos α	Δx sin α		
12	21	х≓у	Δγ	α	Δx cos α	Δx sin α		R4
13	14 09	f→R	Δy cos α	∆y sin α	$\Delta x \cos \alpha$	Δx sin α		JI '
14	22	B1	Δy sin α	Δx cos α	Δx sin α	Δy cos α		1
15	51	+	x'	Δx sin α	Δy cos α	Δy cos α	$x' = \Delta x \cos \alpha + \Delta y \sin \alpha$	R 5
16	74	R/S	x'	Δx sin α	Δy cos α	Δy cos α] "5
17	22	RI	Δx sin α	Δγ cos α	Δy cos α	x'		71
10	41	65	y'	Δγ cos α	x'	x'	$y' = -\Delta x \sin \alpha + \Delta y \cos \alpha$	10-
10	13 00	GTO 00	' ,	Δγ cos α	x'	x'		R 6
20		(A) (1) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	···			T		11
<u> </u>								-
11		description of the second				+		R 7
		#J0583334379444411144444444444				+		
23	-	BANKSON 4000000000000000000000000000000000000				+		┦┗───
24				-				-{
28		and the second s						-
26								-
27	-	#0000000000000000000000000000000000000						-
20		***************************************						-
20								-
30								4
31								4
32								1
33								_
34	I	I						╛
38		I						┙
30		pacement of the second						J
37								
10	-							1
30	-					1		7
40		·						7
41	-				1			1
ä						_		┪
ä					+	+	1	┪
#		and the second second		+	1	+		┥
and the same						+	 	┥
45						+		-1
4				-				-1
47								-
40		and the second s						4
40		1	I		1	1	1	

Un éclaireur doit trouver son chemin dans une forêt à la carte et à la boussole. Malheureusement, la carte n'est pas très pratique. Tout d'abord les cotes du quadrillage sont données en mètres, mais l'origine du plan se situe à plusieurs kilomètres, ce qui donne des nombres assez imposants. Ensuite la carte est cotée par rapport au Nord géographique alors que la boussole donne des indications par rapport au Nord magnétique (écart 17°).

Avant de partir, l'éclaireur décide de refaire une carte sommaire en prenant pour origine le point (54000, 118000) de l'ancienne carte et en faisant tourner les axes de 17° dans le sens des aiguilles d'une montre. Il doit trouver la position du pont et du sommet de la colline dans le nouveau système d'axes. Les anciennes coordonnées sont les suivantes:


Solution:

54000 STO 0 118000 STO 1 17 CHS STO 2 f PR	GM
55750 • 119300 R/S	→1293.45
R/S	→1754.85
Les nouvelles coordonnées du pont sont (1293, 1755).

Les nouvelles coordonnées du sommet de la colline sont (2568, 3399).

N۰	INSTRUCTIONS	DONNÉES		RÉSULTATS			
1	Introduire le programme						
2	Mettre en mémoire l'origine						
	du nouveau système de	x ₀	STO	0			
	coordonnées	Yo	STO	1			
3	Mettre en mémoire l'angle de rotation	α	STO	2	f	PRGM	
4	Conversion de coordonnées						
	de l'ancien au nouveau	×					
	système	У	R/S				x'
			R/S				y'
5	Effectuer 4 pour d'autres						
	points						
6	Pour un nouveau cas, aller en 2.						

RÉSOLUTION DU TRIANGLE (B, b, c)

Connaissant un angle (B), le côté opposé (b) et un des côtés adjacents (c), ce programme calcule au moyen des formules suivantes, les autres éléments du triangle:

1.
$$C = \arcsin\left(\frac{c \sin B}{b}\right)$$

2.
$$A = 2$$
 arc sin $[1-(B+C)] = \pi - (B+C) = 180^{\circ} - (B+C) = 200$ grades $-(B+C)$

3.
$$a = \frac{b \sin A}{\sin B}$$

Si B est aigu ($<90^{\circ}$) et b<c, il existe une deuxième solution qui se calcule au moyen des formules suivantes:

4.
$$C' = 2 \arcsin (1-C)$$

5.
$$A' = 2 \arcsin [1 - (B + C')]$$

6.
$$a' = \frac{b \sin A'}{\sin B}$$

Ce programme s'exécute dans n'importe quel mode angulaire (en mode DEGRÉS: degrés décimaux).

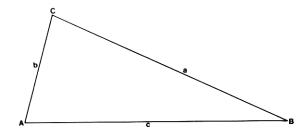
AFF	ICHAGE	TOUCHES
PAS	CODE	TOUCHES
00		///////////////////////////////////////
01	24 03	RCL 3
02	24 01	RCL 1
03	14 04	fSIN
04	61	×
05	24 02	RCL 2
06	71	÷
07	15 04	g SIN ⁻¹
08	23 05	STO 5
09	74	R/S
10	24 01	RCL 1
11	51	+
12	01	1
13	15 04	g SIN ⁻¹
14	02	2
15	61	x
16	23 04	STO 4
17	21	x ≠y
18	41	-
19	74	R/S
20	14 04	fSIN
21	24 02	RCL 2
22	61	×
23	24 01	RCL 1
24	14 04	fSIN

AFF	ICHAGE	
PAS	CODE	TOUCHES
25	71	÷
26	74	R/S
27	24 03	RCL 3
28	61	x
29	24 01	RCL 1
30	14 04	f SIN
31	61	x
32	02	2
33	71	÷
34	74	R/S
35	24 04	RCL 4
36	24 05	RCL 5
37	41	-
38	74	R/S
39	13 10	GTO 10
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTRES			
Ro			
R, B			
R ₂ b			
R ₃ c			
R ₄ 2 arc sin 1			
R ₅ C			
R ₆			
R ₇			

Soit: $B = 42.3^{\circ}$ b = 25.6c = 32.8

Calculer le triangle.


Solution:

B étant inférieur à 90° et b<c, deux solutions existent:

 $C = 59.58^{\circ}$ $A = 78.12^{\circ}$ $C' = 120.42^{\circ}$ a = 37.22 $A' = 17.28^{\circ}$ Surface = 410.85 a' = 11.30Surface = 124.68

N۰	INSTRUCTIONS	DONNÉES	TOUCHES			RÉSULTATS	
1	Introduire le programme						
2	Mettre en mémoire B, b, c	В	STO	1			
		b	STO	2			
		С	STO	3			
3	Calcul du triangle		f	PRGM	R/S		C*
	The state of the s		R/S				A*
			R/S				a*
			R/S				Surface
4	Si B < 90° et b < c, il existe						
	une deuxième solution		R/S				c'*
	'Après ce résultat, ne pas		R/S				A'*
	modifier le contenu de la pile.		R/S				a'*
			R/S				Surface '

RÉSOLUTION DU TRIANGLE (a, b, c)

Connaissant les trois côtés (a, b, c) d'un triangle, ce programme calcule, au moyen des formules suivantes, les trois angles:

C = arc cos
$$\left(\frac{a^2 + b^2 - c^2}{2ab}\right)$$

B = arc sin $\left(\frac{b \sin C}{c}\right)$ A = arc sin $\left(\frac{a \sin C}{c}\right)$

Modifier si nécessaire l'affectation des lettres pour que c désigne le plus grand côté. Le programme s'exécute dans n'importe quel mode angulaire (en mode DEGRÉS: degrés décimaux).

Ce programme calcule aussi la surface du triangle au moyen de la formule suivante:

Surface =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

où $s = \frac{1}{2}(a+b+c)$

AFF	ICHAGE	
PAS	CODE	TOUCHES
00		
01	24 01	RCL 1
02	24 02	RCL 2
03	15 09	g →P
04	15 02	g x ²
05	24 03	RCL 3
06	15 02	g x ²
07	41	_
08	24 01	RCL 1
09	24 02	RCL 2
10	61	x
11	02	2
12	61	x
13	71	÷
14	15 05	g COS ⁻¹
15	74	R/S
16	14 04	fSIN
17	24 03	RCL 3
18	71	÷
19	23 00	STO 0
20	24 02	RCL 2
21	61	x
22	15 04	g SIN ⁻¹
23	74	R/S
24	24 00	RCL 0

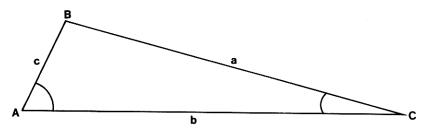
AFF	AFFICHAGE					
PAS	CODE	TOUCHES				
25	24 01	RCL 1				
26	61	x				
27	15 05	g SIN ⁻¹				
28	74	R/S				
29	24 01	RCL 1				
30	24 02	RCL 2				
31	51	+				
32	24 03	RCL 3				
33	51	+				
34	02	2				
35	71	÷				
36	31	↑				
37	23 00	STO 0				
38	24 01	RCL 1				
39	41	-				
40	61	x				
41	24 00	RCL 0				
42	24 02	RCL 2				
43	41	-				
44	61	х				
45	24 00	RCL 0				
46	24 03	RCL 3				
47	41	-				
48	61	x				
49	14 02	f√x				

REGISTRES				
R _o Utilisé				
R ₁ a				
R ₂ b				
R _{3 C}				
R ₄				
R ₅				
R ₆				
R ₇				
R ₇				

Soit: a = 5.43, b = 10.46, c = 14.87

Solution:

 $C = 136.37^{\circ}$


 $B = 29.04^{\circ}$

 $A = 14.59^{\circ}$

Surface = 19.60

N°	INSTRUCTIONS	DONNÉES	TOUCHES			RÉSULTATS	
1	Introduire le programme						
2	Mettre en mémoire les côtés	a	STO	1			
	(c est le plus grand côté)	b	STO	2			
		С	STO	3			
3	Calcul du triangle		f	PRGM	R/S		C*
			R/S				В*
			R/S				А
			R/S				Surface
A	Calcul uniquement de la surface	a	STO	1			
and the second s	WA MOUNT	b	STO	2			
		С	STO	3			
amanus es -	NAME OF THE PARTY		GTO	29	R/S		Surface
	*Après ce résultat, ne pas						
	modifier le contenu de la pile.						

RÉSOLUTION DU TRIANGLE (a, A, C)

Connaissant deux angles (A, C) et un côté opposé (a), ce programme calcule au moyen des formules suivantes, les autres éléments du triangle:

$$B = 2\arcsin[1 - (A + C)] = \pi - (A + C) = 180^{\circ} - (A + C) = 200 \text{ grades} - (A + C)$$

$$b = \frac{a \sin B}{\sin A}$$

$$c = \frac{a \sin C}{\sin A}$$

Le programme s'exécute dans n'importe quel mode angulaire (en mode DEGRÉS: degrés décimaux).

La surface est calculée au moyen de la formule suivante :

Surface =
$$\frac{1}{2}$$
 ab sin C

ΔEE	AFFICHAGE						
PAS	CODE	TOUCHES					
00	/////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
01	01	1					
02	15 04	g SIN ⁻¹					
03	02	2					
04	61	x					
05	24 02	RCL 2					
06	24 03	RCL 3					
07	51	+					
08	41	-					
09	74	R/S					
10	14 04	fSIN					
11	24 01	RCL 1					
12	61	x					
13	24 02	RCL 2					
14	14 04	fSIN					
16	71	÷					
16	23 04	STO 4					
17	74	R/S					
18	24 01	RCL 1					
19	14 73	f LASTx					
20	71	÷					
21	24 03	RCL 3					
22	14 04	fSIN					
23	61	×					
24	74	R/S					

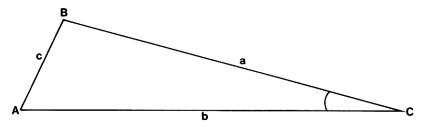
AFFICHAGE		
PAS	CODE	TOUCHES
25	24 01	RCL 1
26	24 04	RCL 4
27	61	x
28	24 03	RCL 3
29	14 04	f SIN
30	61	x
31	02	2
32	71	÷
33	13 00	GTO 00
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

	REGISTRES				
R _o	-				
R ₁ a					
R ₂ A					
R ₃ C					
R₄b					
R ₅					
R ₆					
R,					
R ₅					

Soit a = 19.6, $A = 40.25^{\circ}$, $C = 61.06^{\circ}$

Solution:

B = 78.69°


b = 29.75

c = 26.55

Surface = 255.11

N°	INSTRUCTIONS	DONNÉES	TOUCHES			RÉSULTATS	
1	Introduire le programme						
2	Mettre en mémoire a, A et C	а	STO	1			
Miles Morrows	physiological control of the control	Α	STO	2			
populari	all the second section of the second	С	STO	3			
3	Calcul du triangle		f	PRGM	R/S		В*
lace			R/S				b*
			R/S				С
Black No.			R/S				Surface
B0000000000000000000000000000000000000	*Après ce résultat, ne pas						
Marie Carl	modifier le contenu de la pile.						

RÉSOLUTION DU TRIANGLE (a, b, C)

Connaissant les deux côtés (a, b) et l'angle de ces deux côtés (C), ce programme calcule au moyen des formules suivantes, les autres éléments du triangle:

$$c = \sqrt{a^2 + b^2 - 2ab \cos C}$$

$$A = \arcsin \left(\frac{a \sin C}{c}\right)$$

$$B = 2 \arcsin[1 - (A + C)] = \pi - (A + C) = 180^{\circ} - (A + C) = 200 \text{ grades } - (A + C)$$

La surface est calculée par la formule suivante:

Surface =
$$\frac{1}{2}$$
 ab sin C

Modifier si nécessaire l'affectation des lettres pour que a soit inférieur à b. Ce programme s'exécute dans n'importe quel mode angulaire (en mode DEGRÉS: degrés décimaux).

AFF		
PAS	CODE	TOUCHES
00		11111111
01	24 01	RCL 1
02	24 02	RCL 2
03	15 09	g →P
04	15 02	g x ²
05	24 01	RCL 1
06	24 02	RCL 2
07	61	x
08	02	2
09	61	x
10	24 03	RCL 3
11	14 05	f COS
12	61	x
13	41	_
14	14 02	f√x
18	74	R/S
16	24 01	RCL 1
17	24 03	RCL 3
18	14 04	fSIN
19	61	x
20	21	x
21	71	÷
22	15 04	g SIN ⁻¹
23	74	R/S
24	01	1

AFF	ICHAGE	
PAS	CODE	TOUCHES
25	15 04	g SIN ⁻¹
26	02	2
27	61	x
28	21	x y
29	24 03	RCL 3
30	51	+
31	41	-
32	74	R/S
33	24 03	RCL 3
34	14 04	fSIN
35	24 01	RCL 1
36	61	x
37	24 02	RCL 2
38	61	х
39	02	2
40	71	÷
41	13 00	GTO 00
42		
43		
44		
45		
46		
47		
48		
49		

REGISTRES				
R _o				
R ₁ a				
R ₂ b				
R ₃ C				
R ₄				
R ₅				
R ₆				
R,				

152 Chapitre 8 Trigonométrie et géométrie analytique

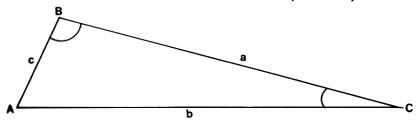
Exemple:

Soit: a = 146

b = 227

 $C = 31.49^{\circ}$

Solution:


c = 127.76

 $A = 36.65^{\circ}$ $B = 111.86^{\circ}$

Surface = 8655.86

N۰	INSTRUCTIONS	DONNÉES	•	TOUCHES			RÉSULTATS		
1	Introduire le programme		Introduire le programme		Introduire le programme				
2	Mettre en mémoire a, b et C								
	(a < b)	a	STO	1					
		b	STO	2					
		С	ѕто	3					
3	Calcul du triangle		f	PRGM	R/S		c*		
			R/S				A*		
			R/S				В		
			R/S				Surface		
4	Calcul uniquement de la surface	a	STO	1					
		b	STO	2					
		С	STO	3					
			GTO	33	R/S		Surface		
	*Après ce résultat, ne pas								
	modifier le contenu de la pile.								

RÉSOLUTION DU TRIANGLE (a, B, C)

Connaissant deux angles (B, C) et leur côté commun (a), ce programme calcule au moyen des formules suivantes les autres éléments du triangle:

$$A = 2 \arcsin [1 - (B + C)] = \pi - (B + C) = 180^{\circ} - (B + C) = 200 \text{ grades } - (B + C)$$

$$\mathbf{b} = \frac{\mathbf{a} \sin \mathbf{B}}{\sin \mathbf{A}} \quad \mathbf{c} = \frac{\mathbf{a} \sin \mathbf{C}}{\sin \mathbf{A}}$$

La surface est calculée par la formule:

Surface =
$$\frac{a^2 \sin B \sin C}{2 \sin (B+C)}$$

Ce programme s'exécute dans n'importe quel mode angulaire (mode **DEGRÉS**: degrés décimaux).

AFFICHAGE

AFF	ICHAGE	
PAS	CODE	TOUCHES
80		111111111
01	01	1
02	15 04	g SIN ⁻¹
03	02	2
04	61	x
05	24 02	RCL 2
06	24 03	RCL 3
07	51	+
08	41	also
09	23 04	STO 4
10	74	R/S
11	24 01	RCL 1
12	24 04	RCL 4
13	14 04	fSIN
14	71	÷
15	23 04	STO 4
16	24 02	RCL 2
17	14 04	fSIN
18	61	x
19	74	R/S
20	24 04	RCL 4
21	24 03	RCL 3
22	14 04	fSIN
23	61	×
24	74	R/S

AFF	ICHAGE	TOUCHES		
PAS	CODE	TOUCHES		
25	24 01	RCL 1		
26	15 02	g x²		
27	02	2		
28	71	÷		
29	24 02	RCL 2		
30	14 04	f SIN		
31	61	×		
32	24 03	RCL 3		
33	14 04	f SIN		
34	61	x		
35	24 02	RCL 2		
36	24 03	RCL 3		
37	51	+		
38	14 04	f SIN		
39	71	÷		
40	13 00	GTO 00		
41				
42				
43				
44				
45				
46				
47				
48				
49				

	REGISTRES
R _o	
R ₁	a
R ₂	В
R ₃	С
R ₄	A, (a/sin A)
R ₅	
R ₆	
R,	

Soit: a = 20.96 $B = 64^{\circ}32'$ $C = 35^{\circ}06'$

Solution:

Convertir d'abord les angles B et C en degrés décimaux.

 $A = 80.37^{\circ}$

b = 19.19

c = 12.22

Surface = 115.66

N۰	INSTRUCTIONS	DONNÉES	TOUCHES			RÉSULTATS	
1	Introduire le programme						
2	Mettre en mémoire a, B, C	a	STO	1			
		В	STO	2			
		С	STO	3			
3	Calcul du triangle		f	PRGM	R/S		Α*
			R/S				b*
			R/S				С
			R/S				Surface
4	Calcul uniquement de la surface	a	STO	1			
		В	STO	2			
		С	STO	3			
			GTO	25	R/S		Surface
	*Après ce résultat, ne pas						
	modifier le contenu de la pile.						

FONCTIONS HYPERBOLIQUES

Ce programme calcule les six fonctions hyperboliques au moyen des formules suivantes:

1. sh x =
$$\frac{e^x - e^{-x}}{2}$$

2. ch x =
$$\frac{e^x + e^{-x}}{2}$$

3. th
$$x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

4. csch x =
$$\frac{1}{\sinh x}$$
 (x \neq 0)

5. sech
$$x = \frac{1}{\cosh x}$$

6. coth
$$x = \frac{1}{\text{th } x} (x \neq 0)$$

AFF	ICHAGE			
PAS	CODE	TOUCHES		
8	111111111			
01	15 07	g e ^x		
02	31	1		
03	15 22	g 1/x		
04	41			
06	02	2		
06	71	÷		
07	13 00	GTO 00		
08	15 07	g e ^x		
09	31	†		
10	15 22	g 1/x		
11	51	+		
12	13 05	GTO 05		
13	15 07	g e ^x		
14	31	1		
16	15 22	g 1/x		
16	41	Man .		
17	31	↑		
18	31	†		
19	14 73	f LASTx		
20	02	2		
21	61	x		
22	51	+		
23	71	+		
14	13 00	GTO 00		

AFF	ICHAGE	
PAS	CODE	TOUCHES
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

REGISTRES				
R _o				
R ₁				
R ₂				
R ₃				
R ₄				
R ₅				
R ₆				
R ₇				

- 1. sh 2.5 = 6.05
- 2. ch 3.2 = 12.29
- 3. th 1.9 = 0.96
- 4. $\operatorname{csch} 4.6 = 0.02$
- 5. sech (-0.25) = 0.97
- 6. $\coth(-2.01) = -1.04$

N۰	INSTRUCTIONS	DONNÉES	TOUCHES				RÉSULTATS
1	Introduire le programme						
2	sh x	×	f	PRGM	R/S		sh x
	ou						
	ch x	×	GTO	08	R/S		ch x
	ou						
	th x	×	GTO	13	R/S		th x
	ou						
	csch x	х	f	PRGM	R/S		
			g	1/x			csch x
	ou						
	sech x	×	GTO	08	R/S		
			9	¹/x			sech x
	ou						
	coth x	×	GTO	13	R/S		
			9	1/x	-		coth x

FONCTIONS HYPERBOLIQUES INVERSES

Ce programme calcule les fonctions hyperboliques inverses au moyen des formules suivantes:

1. arg sh
$$x = \ln [x + (x^2 + 1)^{1/2}]$$

2. arg ch
$$x = \ln [x + (x^2 - 1)^{1/2}]$$
 $x \ge 1$

3. arg th
$$x = \frac{1}{2} \ln \left[\frac{1+x}{1-x} \right]$$
 $x^2 < 1$

4. arc csch x = arg sh
$$\left[\frac{1}{x}\right]$$
 $x \neq 0$

5. arc sech
$$x = \arg \operatorname{ch} \left[\frac{1}{x} \right]$$
 $0 < x \le 1$

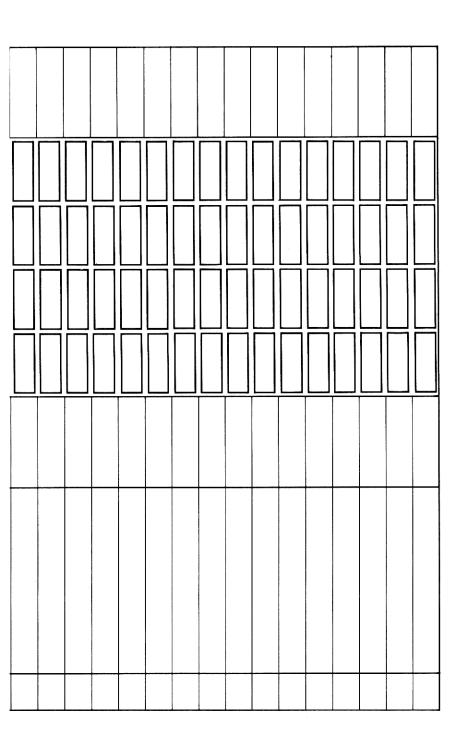
6. arg coth
$$x = arg th \left[\frac{1}{x}\right]$$
 $x^2 > 1$

AFF	ICHAGE	TOUCHES				
PAS	CODE					
00						
01	31	1				
02	31	1				
03	61	x				
04	01	1				
05	51	+				
06	14 02	$f\sqrt{x}$				
07	51	+				
08	14 07	f LN				
09	13 00	GTO 00				
10	31	↑				
11	31 -	1				
12	61	1				
13	01					
14	41	-				
15	14 02	f√x				
16	51	+				
17	14 07	f LN				
18	13 00	GTO 00				
19	31	1				
20	31	1				
21	01	1				
22	51	+				
23	21	x 				
24	32	CHS				

AFFICHAGE PAS CODE 25 01 1 26 51 + 27 71 ÷ 28 14 07 f LN 29 02 2 30 71 ÷ 31 13 00 GTO 0 32 33 34 34 35	HES
26	
27 71 ÷ 28 14 07 f LN 29 02 2 30 71 ÷ 31 13 00 GTO 0 32 33 34 35	
28 14 07 f LN 29 02 2 30 71 ÷ 31 13 00 GTO 0 32 33 34 34 35	
29 02 2 30 71 ÷ 31 13 00 GTO 0 32 33 34 35	
30 71 ÷ 31 13 00 GTO 0 32 33 34 35	
31 13 00 GTO 0 32 33 34 35 5	
32 33 34 35	
33 34 35	00
34 35	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	

REGISTRES					
R _o					
R,					
R ₂					
R ₃					
R ₄					
R ₅					
R ₆					
R,					

- 1. arg sh (2.4) = 1.61
- 2. arg ch (90) = 5.19
- 3. arg th (-0.65) = -0.78
- 4. arc csch (2) = 0.48
- 5. arc sech (0.4) = 1.57
- 6. arg coth (3.4) = 0.30


Nº	INSTRUCTIONS	DONNÉES		RÉSULTATS			
1	Introduire le programme						
2	arg sh x	×	f	PRGM	R/S		arg sh x
	ou						
	arg ch x	×	GTO	GTO 10			arg ch x
	ou						
	arg th x	×	GTO	19	R/S		arg th x
	ou						
	arc csch x	×	f	PRGM	R/S		
			g	1/x			arc csch x
	ou						
	arc sech x	×	GTO	10	R/S		
			9	1/x			arc sech x
	ou						
	arg coth x	x	GTO	19	R/S		
			g	1/x			arg coth x

FEUILLE DE PROGRAMMATION POUR LE HP-25

Appu)	Titre
/ez sur	
BST	
en mode	
RUN,	
Appuyez sur es en mode RUN, passez en mode PRGM, puis introduisez votre programme	
PRGM,	
puis introduise	
z votre	Page
) programme	

49	4 8	47	46	45	90	05	04	03	02	9	8	PAS	AFF
												CODE	AFFICHAGE
									-			TOUCHES	
												×	
												* *	:
												2	
												_	•
												COMMENTAIRES	
					,			7			R O	REGISTRES	

INDEX

Ajustement de courbe 89, 94, 97, 100 Amortissement d'un emprunt 31, 36, 39, 41	Intérêts cumulés, capita Interpolation linéaire
Arrangement 114	Intersection de droites of
Borne inférieure de l'intégrale d'une distribu-	Jour de la semaine, nor
tion normale 110	deux dates 50
Calcul de la valeur du chi-carré 120	Moments et coefficients
Calcul d'une courbe point par point 7	 Navigation orthodromi
Calcula vectoriels 25, 27, 29	loxodromique 63
Calendrier 50	Navigation loxodromic
Cheminement polygonal et compensa-	Navigation suivant un a
tion 127	Nimb 57
Combination 116	Opérations sur des non
Conversions de base 21, 23	Plan d'épargne 44, 47
Colos périphériques, gisements, surface	Points intermédiaires su
un polygone 134	cercle 64
Covariance et coefficient de corrélation 103	Régression linéaire 89
Electricant et inverse d'une matrice	Rentabilité d'un investi
IN 2 19	Résolution du triangle
Distribution normale 107	153
auntion différentielle du premier ordre 84	Résolution du triangle
Ministen du second deuré 12	Simulation d'un aluniss
netorielle 112	Solution de l'équation f
Praction exponentialle 94	de Newton 77
Penetion Ingarithmique 97	Taux d'intérêt d'un em
Ponetion pulmance 100	Test t sur des paires de
Ponetions d'une variable complexe 17	Test t sur deux moyenn
Ponetions hyperboliques 155	Transformation et rota
Ponctions by perboliques inverses 157	coordonnées 137
Contrateur de nombres aléatoires 118	Une lecon d'arithmétiq
ntégration numérique par la méthode de	Valeur actuelle nette, t
Miraguern 82	bilité 47
Intérête composée, capitalisation, actualisa-	
tion 41	

al restant dû 31 86 en série 131 mbre de jours entre s d'asymétrie 105 ique ot ue **66** irc de grand cercle 73 nbres complexes 15 ur l'arc de grand issement 47 142, 145, 148, 150, de position 71 sage 53 f(x) = 0 par la méthode prunt 39 variables 122 nes 124 tion d'axes de ue **59** aux interne de renta-

172 points de vente dans 65 pays assurent le service après-vente

Hewlett-Packard France:

Siège social: Quartier de Courtabœuf, boîte postale nº 6, 91401 Orsay, tél. (1) 907 78 25

Agence de Lille: Centre Vauban, 201, rue Colbert, Entrée A2, 59000 Lille, tél. (20) 51 44 14

Agence de Lyon: Chemin des Mouilles, boîte postale nº 12, 69130 Ecully, tél. (78) 338125

Agence de Marseille: Aéroport principal de Marseille-Marignane, 13721 Marignane, tél. (91) 8912 36

Agence de Rennes: 63, avenue de Rochester, 35000 Rennes, tél. (99) 36 33 21 Agence de Strasbourg: 74, allée de la Robertsau, 67000 Strasbourg, tél. (88) 35 23 20/21

Agence de Toulouse: Péricentre de la Cépière, chemin de la Cépière, 31300 Toulouse Le Mirail, tél. (61) 40 11 12

Pour la Belgique: Hewlett-Packard Benelux S.A., 1, avenue du Col-Vert, B-1170 Bruxelles, tél. (02/03) 672 22 40

Pour la Suisse romande: Hewlett-Packard (Schweiz) AG, 9, chemin Louis-Pictet, 1214 Vernier-Genève, tél. (022) 41 49 57

Pour les pays du bassin méditerranéen, Afrique du Nord et Moyen-Orient: 35, Kolokotroni Street – Platia Kefallariou, GR-Kifissia-Athènes, Grèce, tél. 80 80 337/359/429, 80 81 741/742/743/744 et 80 18 693

Pour l'Autriche/Pour les pays socialistes: Hewlett-Packard Ges.m.b.H., Handelskai 52,53, boîte postale nº 7, A-1205 Vienne, Autriche, tél. (0222) 351621 à 32

Pour l'URSS: Hewlett-Packard Representative Office USSR, Hotel Budapest, Room 201, Petrovskie Linii 2/18, 103-051 Moscow

Pour le Canada: Hewlett-Packard (Canada) Ltd., 275 Hymus Boulevard, Pointe-Claire H9R 1G7, tél. (514) 697-4232 Hewlett-Packard (Canada) Ltd., 2376 Galvani, Ste-Foy G1N 4G4, tél. (418) 688-8710

Direction pour l'Europe: Hewlett-Packard S.A., 7, rue du Bois-du-Lan, boîte postale n° 349, CH-1217 Meyrin 1-Genève, Suisse, tél. (022) 41 54 00

Printed in Singapore