

HP-27 Owner's Handbook

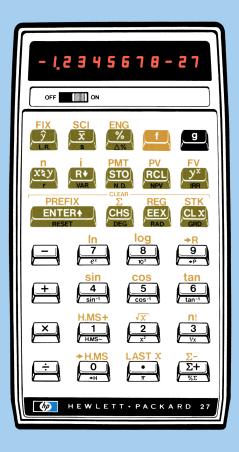
January 1976

00027-90001

Printed in U.S.A.

[®]Hewlett-Packard Company, 1976

Contents


Introduction	9
Section 1: Getting Started	11
Keyboard	11
Keying in Numbers	12
Negative Numbers	12
Clear X	12
Prefix Clear	13
Performing Simple Arithmetic	13
Chain Calculations	14
Simple Functions	17
One-Number Functions	17
Two-Number Functions	18
Section 2: The Display, Stack and Storage Registers .	23
Controlling the Display	23
Display Formatting Keys	23
Fixed Point (Business) Display	24
Scientific Notation Display	25
Engineering Notation Display	26
Automatic Display Switching	28
Keying in Exponents of Ten	30
Overflow and Underflow Display	32
Error Display	32
Low Power Display	32
The Automatic Memory Stack	33
The X-Register (Display)	33
Manipulating Stack Contents	33
Clearing the Stack	35
The ENTERN Key	36
One-Number Functions and the Stack	38
Two-Number Functions and the Stack	38
Chain Arithmetic	40
Last X Register	43
To Avoid Re-entering Numbers	43
Recovering from Mistakes	44
5	

Ten Storage Registers	44
Storing and Recalling Numbers	45
Storage and Recall Register Arithmetic	46
Storage Overflow Indicator	48
Clearing the Storage Registers	48
Availability of Storage Registers	48
Clearing Operations	48
Section 3: Keyboard Calculations	51
Exponentiation: Raising a Number to a Power	51
Squaring	52
Reciprocals	52
Extracting Roots	53
Using Pi	54
Factorials	54
Logarithms and Antilogarithms	55
Trigonometric Functions	56
Trigonometric Modes	56
Functions	57
Hours, Minutes, Seconds	57
Polar/Rectangular Coordinates Conversion	60
Calculating Percentage Problems	61
Percentage	61
Net Amount	62
Percent Difference Between Two Numbers	63
Markup	63
Margin	64
Finding Percent of Total	64
Proportions	65
The Financial Function Keys	. 66
Displaying Financial Values	67
Changing Financial Values	67
Solving for n	68
Solving for i	69
Solving for PMT	69
Solving for PV	70
Solving for FV	70
Statistical Functions	71
Summations E+	72
Correcting and Deleting Data	73

Linear Regression	
Correlation Coefficient	75
Linear Estimate	. 76
Mean	. 77
Standard Deviation	79
Variance	80
Normal Distribution	82
Vector Summations	83
Section 4: Applications	87
Statistical Applications	
Permutations	
Combinations	. 88
Exponential Curve Fit	89
Logarithmic Curve Fit	92
Power Curve Fit	
Chi-Square Statistic	
Paired t Statistic	
t Statistic for Two Means	
Analysis of Variance (One-Way)	
Covariance	
Inverse Normal Integral	108
Mathematical Applications	
Quadratic Equation	
Polynomial Evaluation	111
Complex Arithmetic	112
Complex Functions	
Vector Cross Product	. 117
Vector Dot Product	119
Determinant and Inverse of a 2 \times 2 Matrix	120
Triangle Solution a,b,C	122
Triangle Solution a,b,c	124
Triangle Solution a,A,C,	126
Triangle Solution B,b,c,	128
Triangle Solution a,B,C	131
Angle Conversions: degrees	133
Navigation Applications	
Rhumb Line Navigation	134
Great Circle Navigation	137
Sight Reduction Table	141

Surveying Applications	142
Bearing Traverse	142
Field Angle Traverse	
Inverse from Coordinates	
Financial Applications	150
Simple Interest—360 and 365 Days	151
Compound Interest	152
Interest Rate Conversions	157
Ordinary Annuities (Payments in Arrears)	159
Annuity Due (Payments in Advance)	169
Depreciation	174
Discounted Cash Flow Analysis	181
Appendix A. Accessories, Maintenance, and Service .	187
Appendix B. How the HP-27 Registers Work	193
Appendix C. Formulas	205
Index	209

HP-27 Functions and Keyboard Index

OFF ON Power switch (page 11).

Linear estimate (page 76).

FIX Fixed decimal display format (page 24).

L.B. Linear regression. Calculates linear function between two or more points (page 73).

Computes the mean or arithmetic average of two variables (page 77).

SCI Scientific display format (page 25).

S Calculates the standard deviation for two variables (page 79).

Calculates x% of y (page 61).

ENG Engineering display format (page 26).

△%) Computes % difference between two numbers (page 63).

Prefix key to select alternate function in gold above a key (page 11).

Prefix key to select alternate function in blue on lower face of a key (page 11).

Exchanges contents of X- and Y-registers (page 35).

 Number of periods in a financial transaction (page 66). **r** Correlation coefficient for L. R. data (page 75).

Rolls down contents of stack for viewing in display (page 33).

i Interest rate per period (page 66).

VAR Computes the variance (s²) of two variables (page 80).

STO Stores displayed value in one of 10 storage registers (page 45).

PMT Payment amount per period (page 66).

N.D. Calculates density function and upper tail area under a normal distribution curve (page 81).

RCL Recalls (copies) stored number onto display (page 45).

PV Present value or the amount of money at the start of financial term (page 66).

NPV Calculates the net present value of uneven cash flows (page 181).

Raises the number in the Y-register to the power of the number in the display (page 51).

FV Future value or amount received/ paid at end of term (page 67). **IRR** Calculates the internal rate of return for uneven cash flows **(page 183)**.

ENTER: Copies number in displayed X-register into Y-register; also, separates successive numerical entries (page 36).

PREFIX Clears a prefix function pressed erroneously (page 13).

RESET Resets financial status indicators (page 198).

CHS Changes sign of display number (page 12).

Clears statistical data in registers 4 thru 9 (page 71).

DEG Sets decimal degree mode for trigonometric functions **(page 56)**.

EEX Enter exponent. After pressing, next numbers keyed in are exponents of 10 (page 30).

REG Clears storage registers 0 thru 9 (page 48).

(RAD) Sets radians mode for trigonometric functions (page 56).

CLX Clears display (X-register) (page 12). STK Clears the 4-register stack (page 35).

GRD Sets grads mode for trigonometric functions (page 56).

+ - Arithmetic opera-× ÷ tions (page 13).

In Computes natural logarithm (base e) of value in display (page 55).

ex] Natural antilog. Raises e to the power of value in the display (page 55).

log Computes common logarithm (base₁₀) of value in display (page 55).

10^x Raises 10 to the power of value in display (page 55).

-R Converts polar magnitude and angle in X- and Y-registers to rectangular x and y coordinates (page 60).

◆P Converts x, y rectangular coordinates to polar magnitude and angle (page 60).

sin Calculates the

cos sine, cosine or

tangent of value in displayed X-register (page 57).

sin⁻¹ Calculates the arc

cos⁻¹ sine, arc cosine,

tan-1 or arc tangent of value in display (page 57).

H.MS+ Adds and sub-H.MS- tracts degrees in hours, minutes, seconds (page 58).

Computes positive square root on number in display (page 53).

x² Computes square of number in display (page 52).

[n] Calculates factorial of any number up to 69 (page 54).

1/x Calculates reciprocal of the number in the display (page 52).

+H.MS Converts decimal degrees to hours. minutes, seconds (page 57).

►H Converts hours. minutes, seconds to decimal hours (degrees) (page 58).

LAST X Recalls number displayed before the previous operation back into the displayed X-register (page 43).

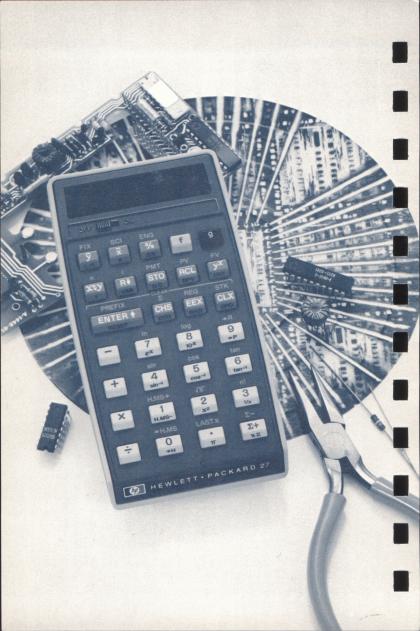
 π Places value of pi (3.14159...) into displayed X-register (page 54).

 $[\Sigma^+]$ Sums numbers and products of numbers in storage registers 4 thru 9 (page 72).

[2-] Subtracts an incorrect value from Σ^+ entries in registers 4 thru 9 (page 73).

 $\%\Sigma$ Finds what % one number is of another or of the total (page 64).

Introduction


At last, someone has made "a calculator for all seasons." The HP-27 solves the problems that you, the multi-dimensional professional, encounter everyday. Whether you are juggling budgets, answering a technical question, forecasting trends, checking lab results, or analyzing market data, the HP-27 solves problems fast and accurately to make your job easier.

It's three calculators in one. Use it to solve:

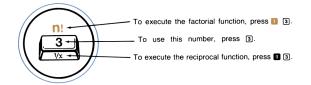
- Mathematical and scientific calculations
- Business and financial problems
- Statistical calculations.

At work, at home, or on the road. . .whether you are tackling the company's problems or your own, the HP-27 puts answers at your fingertips. Over a million HP business and scientific pocket calculators are in use throughout the world, so you're in good company with HP!

To get the most from your calculator, take the time to read through this handbook and work the sample problems. The more confidence you have in your HP-27 and your own understanding of it, the more profitably and often you will use it. So, let's get started. . . .

Section 1

Getting Started


Your HP-27 is shipped fully assembled, including a battery. You can begin using your calculator immediately by connecting the cord from the ac adapter/battery charger to the calculator and plugging the charger into an ac outlet. If you want to use your HP-27 on battery power alone, you should charge the battery for 6 hours first. Whether you operate from battery power or from power supplied by the charger, the battery *must* always be in the calculator.

To begin, slide the OFF-ON switch to ON. The display reads 0.00.

Keyboard

Most keys on the keyboard perform three functions. One function is indicated by the symbol on the flat face of the key, another by the black symbol on the slanted key face, and a third by the gold symbol written above the key.

- To select the function printed in black on the slanted face of the key, first press the black prefix key
 , then press the function key.
- To select the function printed on the flat face of the key; press the key.
- To select the function printed in gold above the key, first press the gold prefix key **[]**, then press the function key.

In this handbook, the selected key function will appear in the appropriate color (gold or black) outlined by a box, like this: $\sin \sin^{-1}$.

Keying in Numbers

Key in numbers by pressing the number keys in sequence, just as though you were writing on a piece of paper. The decimal point must be keyed in if it is part of the number.

148.84

For example, key in 148.84 by pressing the keys:

Press	Display
-------	---------

148084

The number 148.84 appears in the display.

Negative Numbers

To key in a negative number, press the keys for the number, then press **CHS** (change sign). The number, preceded by a minus (-) sign, will appear in the display. For example, to change the sign of the number now in the display:

Press

Display

CHS

-148.84

You can change the sign of either a negative or a positive number in the display. For example, to change the sign of the -148.84now in the display back to positive:

Press

Display

CHS

148.84

Notice that only negative numbers are given a sign in the display.

Clear X

You can clear any numbers that are in the display by pressing (clear x). This key erases the number in the display and replaces it with 0.00.

Press

Display

CLX

0.00

If you make a mistake while keying in a number, clear the entire number string by pressing **CLX** Then key in the correct number.

An important point about your HP-27 is that it isn't necessary to clear it between arithmetic calculations. Intermediate answers are saved, but data from previous problems is automatically pushed out of the way.

When you turn the power switch OFF, then ON again, the entire calculator is cleared.

Prefix Clear

If you inadvertently press a prefix key (9 or 1) when you really want a primary key, press 1 PREFIX, then press the correct key. If you press the wrong prefix key (1 when you actually want 9), just pressing 9 corrects that by overwriting the 1.

Performing Simple Arithmetic

Whenever you add, subtract, multiply or divide, you work with two numbers and an arithmetic operation $(+, -, \times \text{ or } \div)$. Likewise, you cannot add, subtract, multiply or divide unless there are two numbers present in the calculator.

After both numbers are in the calculator, press the operation key. Your answer immediately appears on the display. To place two numbers into the calculator and perform simple arithmetic:

- 1. Key in the first number.
- 2. Press **ENTER** to separate the first number from the second.
- 3. Key in the second number.
- 4. Press +, -, \times or \div to perform the operation.

For example, to add 12 and 3:

Press	Display	
12	12.] Th
ENTER+	12.00] Se
		fro
3	3.] Th
(+	15.00] Th
		an

The first number.

Separates the first number from the second.

The second number.

The operation is executed and your answer appears on the display.

14 Getting Started

The four arithmetic functions are all performed the same way:

To Solve	Press	Display
24 + 3	24 ENTER+ 3 +	27.00
24 - 3	24 ENTER+ 3 -	21.00
24×3	24 ENTER+ 3 🗙	72.00
24 ÷ 3	24 ENTER+ 3 ÷	8.00

In the problems above, you pressed 24 **ENTER+** 3. Try the same number sequence *without* the **ENTER+** step. What appears on the display? It's readily apparent that the **ENTER+** key separates the first number from the second.

Sample Problems: Ready to try some problems on your own? The correct answer is given; try figuring the keystroke sequences by yourself.

Problem	Answer Displayed	
$14 \times 6 =$	84.00	
$144 \div 6 =$	24.00	
1/25 =	0.04	
A customer buys 12 items at \$19.95 each.		
What is the total sale?	239.40	

Chain Calculations

The process of solving a chain calculation is as natural as if you were working it out with pencil and paper. The calculator itself takes care of the hard part. The HP-27 not only displays intermediate answers; but it also retains these results until you need them, then inserts them into the calculation.

For example, solve $(12 + 3) \times 7$.

If you work the problem with a pencil and paper, you would first calculate the intermediate result of (12 + 3).

$$15$$
 (12+3) × 7 =

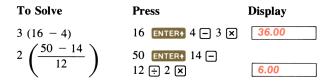
Then you would multiply 15 by 7.

$$15$$

(12+3) × 7 = 105

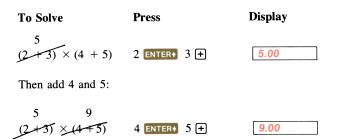
With the HP-27 you work through the problem exactly the same way—always concentrating on just two numbers at a time. First, you solve for the intermediate result. . .

To Solve	Press	Display
(12 + 3)	12 ENTER+ 3 +	15.00


. . .then solve for the final answer. You don't need to press **ENTER**, to store the intermediate result—the HP-27 stores it automatically when you key in the next number. To continue. . .

To Solve	Press	Display
15		
$(12 + 3) \times 7$	7 🗙	105.00

Now, try this problem. Remember that you have to press **ENTER** to separate the first number from the second. After that, as the calculator performs each operation, it retains the new number.


To Solve	Press	Display
$\frac{2+3}{10}$	2 ENTER 3 + 10 ÷	0.50

Following the rules of mathematics, you solve the expressions in innermost parentheses first. Then move through the equation as you did before, one successive number and function at a time.

Problems that are even more complicated can be solved in the same manner, using automatic storage of results. For example, to solve $(2 + 3) \times (4 + 5)$, you would:

First add 2 and 3:

The 5.00 and the 9.00 are already in the calculator; so for the final answer, simply multiply them.

Not once did you have to write down a "subtotal" or intermediate result. The HP-27 automatically remembered them.

Now, try solving these sample problems. (If you have trouble obtaining the correct answers, review the last few pages.)

Sample Problems:

$$(2 \times 3) + (4 \times 5) = 26.00$$

$$\frac{(14 - 12) \times (18 - 12)}{(9 - 7)} = 6.00$$

$$(17 - 12) \times 4 \div (10 - 5) = 4.00$$

Simple Functions

In spite of the dozens of functions available on the HP-27 keyboard, you will find the calculator simple to operate by using a single, all-encompassing rule: *When you press a function key, the calculator immediately executes the function written on that key.*

Pressing a function key causes the calculator to immediately perform that function.

For example, to calculate the square root of 148.84 merely:

Press	Display	
148.84	148.84	
f	148.84	
√ X	12.20	

To square the result:

Press	Display	
9	12.20	
x ²	148.84	

 \overline{x} and \overline{x} are examples of one-number function keys; that is, keys that execute upon a *single* number. Except for the financial and statistical keys, all function keys on the HP-27 operate upon either one or two numbers at a time.

One-Number Functions

To use any one-number function key:

- 1. Key in the number.
- 2. Press the function key (or press the applicable prefix key, then the function key).

18 Getting Started

For example, to use the one-number function $\sqrt[1]{x}$ key, you first key in the number represented by x, then press the function key. To calculate $\frac{1}{4}$, key in 4 (the x-number) and press 9 $\sqrt[1]{x}$.

Press	Display	
4	4.	
9	4.00	
[½]	0.25	

Now try these other one-number function problems. Remember, *first key in the number, then press the function:*

Problem Answer 1 = 0.03 36 $\sqrt{2500}$ 50.00 = (Use the 10^{x} key.) 10^{5} 100000.00 = $\sqrt{3204100}$ 1790.00 = log 12.58925411 = 1.10 71^{2} 5041.00 =

Two-Number Functions

Two-number functions are functions that must have two numbers present in order for the operation to be performed. (+, -), (\times) and (-) are examples of two-number function keys. So are (\times) , (Δ) , (+) and (+).

Two-number functions work the same way as one-number functions—that is, the operation occurs when the function key is pressed. Therefore, *both numbers must be in the calculator before the function key is pressed:*

- 1. Key in the base number.
- 2. Press **ENTER**⁺ to separate the first number from the second.
- 3. Key in the second number.
- 4. Press the function key to perform the function.

For example, to calculate 3⁴,

Press	Display	
3 ENTER+ 4 yx	81.00	

When working with any function key (including \sum), you should remember that the displayed number is always designated by the x symbol on the function key.

The number displayed is always x.

Another two-step function is %. You follow the same procedure to find 25% of 167.

Press		Display
167 ENTER+	25 %	41.75

(Percentage calculations are explained in detail in section 3.)

* * * * * * * * * * * * *

Now that you've learned how to use the calculator, you can begin to fully appreciate the benefits of the Hewlett-Packard logic system. With this system, you enter numbers using a parentheses-free, unambiguous method called RPN (Reverse Polish Notation).

- You never have to work with more than one function at a time. The HP-27 cuts problems down to size instead of making them more complex.
- Pressing a function key immediately executes the function. You work naturally through complicated problems, with fewer keystrokes and less time spent.
- Intermediate results appear as they are calculated. There are no "hidden" calculations, and you can check each step as you go.

20 Getting Started

- Intermediate results are automatically handled. You don't have to write down long intermediate answers when you work a problem.
- You can calculate in the same order you do with pencil and paper. You don't have to think the problem through ahead of time.

Before tackling more problems, take a moment to look further at your calculator. The more you understand your HP-27, the more you will use it efficiently and confidently every day.

Money In

Money Out

Far

Othe

comp

depos

met t

subst

0

12.9

39,094

TING INCOME rating Income" figures are a total of the nonems-on a taxabledetailed in the Six-Year ating Statements. on deposit accountsindividual depositorsgle non-interest 972, 1973 and

EOUIVALENT BASIS

	15	QUIVALENT DAS
	PERCENTAGE CHANGE	1974 (IN THOUSANDS)
-	41.0% 32.5 11.6	\$793,513 136,054 78,479
6	37.0	1,008,046
	41.6	520,442
108,2 12,6	43.9 41.1	155,728 17,784
488,4	42.1	693,954
247,2	27.0	314,092
66,1 220,0	(3.1) 21.6	267,638
93,29	18.5	110,550
49,18	23.0	60,476 50.074
	13.5	

OF	40014		
and a state of the	· · · · · · · · · · · · · · · · · · ·		
Fix S	SCI X	ENG %	g
		PMT PV STO RCL	FV yx
	ER 🛉	Σ REG CHS EEX	STK CLX
	in 7 ex sin	log 8 10*	+R 9 +P
+	4 sin=1 H.MS +	5 cos-1	tan 6 tan-1
×	1 H.MS-	2	nt 3 1/2
÷	0 +H	LAST*	Σ- Σ+ %Σ
(5) H	EWLETT	PACKAR	
108,228	350.3	24,032	
12,602	114.0	5,890	
488,422	98.1	246,611	1
247,262	10.6	223,477	
66,128	10.5	59,843	
220,091	10.8	198,667	
93,299	10.2	84,653	
49,180	7.9	45,559	

Trust fees 1 the mark eld in trust trust fees f imarily from isiness. Whi 974 were dep arket value of ust accounts a rough the acqu Iational Bank in nprove the trust

1970 1971

1972

the most part are b ue of the assets 14.3 per cent inc 972 to 1 ncrease fees generated due to the los s, fees from n m clie of B ary helped t ue for 1974

ent

TABLE II · USES

CASH AND DUE FRO

DEPOSITS PLACED B INVESTMENT SECUR U.S. Treasury Securities Securities of Other U.S. Agencies and Corporat Obligations of States and Other Securities (Excludin TRADING ACCOUNT SE FUNDS SOLD LOANS AND LEASES: *Commercial Loans (Net of (*Real Estate Loans *Consumer Loans (Net of Unea Loans of Overseas Offices Direct Lease Financing ALL OTHER ASSETS TOTAL

*Yields computed on an all-inclusive bas

Section 2

The Display, Stack and Storage Registers

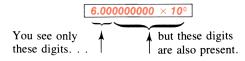
Controlling the Display

In the HP-27, numbers in the display normally appear rounded to only two decimal places. For example, the fixed constant \overline{m} , which is actually in the calculator as 3.141592654, normally appears in the display as 3.14 unless you tell the calculator to show you the number rounded to a greater or lesser number of decimal places.

Although a number is normally shown to only two decimal places, the HP-27 always computes internally using each number as a 10-digit mantissa and a two-digit exponent of 10. For example, when you compute 2×3 , you see the answer to only two decimal places:

Press

Display

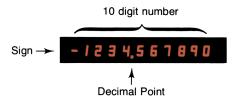

2 ENTER+ 3 🗙

4	0	0	2		
. (э.	υ	υ		
	_	_		_	

However, inside the calculator all numbers have 10-digit mantissas and two-digit exponents of 10. So the calculator actually calculates using full 10-digit numbers:

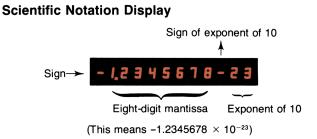
```
2.000000000 \times 10^{0} Enter 3.000000000 \times 10^{0} X
```

yields an answer that is actually carried to 10 digits:


Display Formatting Keys

There are three keys, FIX, SCI, and ENG that allow you to control the manner in which numbers are displayed in the HP-27. FIX allows numbers to be displayed in "business" (fixed decimal point) format. SCI displays numbers in scientific notation. ENG displays numbers in engineering notation with exponents of 10 shown in

24 The Display, Stack and Storage Registers


multiples of three (e.g., 10^3 , 10^{-6} , 10^9). Display control alters only the *manner* in which numbers are displayed in the HP-27. The actual number itself is not altered by any of the display control keys. No matter what notation you select, these rounding options affect the display only—the HP-27 always calculates internally with a 10-digit number multiplied by 10 raised to a two-digit exponent.

Fixed Point (Business) Display

Using fixed point display, you can specify the number of places to be shown after the decimal point. It is selected by pressing FIX, followed by a number key to specify the number of decimal places (0 thru 9) to which the display is to be rounded. The displayed number begins at the left side of the display and includes trailing zeros within the setting selected. When the calculator is turned OFF, then ON, it "wakes up" in fixed point notation with the display rounded to two decimal places. For example:

Press	Display	
(Turn the calculator	ſ	
OFF, then ON.)	0.00	
123.4567 ENTER+	123.46	Display is rounded off to
		two decimal places. Inter- nally, however, the num- ber maintains its original value of 123.4567.
🚺 FIX 4	123.4567	
🚺 FIX 7	123.4567000	
🚺 FIX 0	123.	
[] FIX 2	123.46	Normal FIX 2 display.

In scientific notation, each number is displayed with a single digit to the left of the decimal point followed by a specified number of digits (up to seven) to the right of the decimal point and multiplied by a power of 10. It is particularly useful when working with very large or small numbers.

Scientific notation is selected by pressing **[SC**] followed by a number key to specify the number of decimal places to which the number is rounded. The display is left-justified and includes trailing zeros within the selected setting. For example:

Press	Display	
123.4567 ENTER+	123.46	Normal FIX 2 display.
[SCI 2	1.23 02	Display 1.23 $\times 10^2$.
f SCI 4	1.2346 02	Display 1.2346 $\times 10^2$.
f SCI 7	1.2345670 02	Display 1.2345670 $\times 10^{2}$.

In scientific notation, although the calculator displays a maximum of seven digits after the decimal point, it always maintains the full 10-digit number and the two-digit exponent of 10 internally. The portion of the number that is not displayed affects the rounding of the displayed portion.

For example, if you key in 1.000000094 and specify full scientific notation display (Sci 7), the calculator display rounds off to the seventh digit after the decimal point:

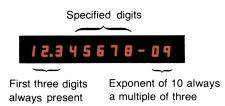
1.00000094


1

Calculator rounds to this digit in SCI 7.

26 The Display, Stack and Storage Registers

Press	Display	
1.00000094	1.00000094	
🚺 SCI 7	1.0000001 00	


In SCI 8, the display rounds off to the eighth digit after the decimal point, but you can see only out to seven digits after the decimal:

f SCI 8 1.000000 00

You can see that if you had keyed in 1.000000095, SCI 8 would also have caused the display to round the seventh and final digit after the decimal to a one (1).

Engineering Notation Display

Engineering notation allows all numbers to be shown with exponents of 10 that are multiples of three (e.g., 10^3 , 10^{-6} , 10^9). This is particularly useful in scientific and engineering calculations, where units of measure are often specified in powers of 10 that are multiples of three. See the following prefix chart.

Factor by which unit is multiplied	Prefix	Symbol
10 ¹²	tera	т
10 ⁹	giga	G
10 ⁶	mega	М
10 ³	kilo	k
10 ⁻³	milli	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10 ⁻¹²	pico	р
10 ⁻¹⁵	femto	f
10 ⁻¹⁸	atto	а


Engineering notation is selected by pressing **[] ENG** followed by a number key. In engineering notation, the first three digits are always present, and the number key specifies the number of *additional* digits displayed after the first three. For example:

Press	Display	
0.000012345	0.000012345	
f ENG 0	12.3 -06	Engineering notation display. First three digits visible and power of 10 is the proper multiple of three.
f ENG 2	12.345 -06	The number key specifies the number of digits displayed <i>beyond</i> the first three.
🚺 ENG 4	12.34500 -06	

Notice that because the first three digits are always present, the greatest number of additional digits that can be specified in engineering notation is five.

Press	Display	
f ENG 5	12.345000-06	Maximum number of digits displayed.

28 The Display, Stack and Storage Registers

Rounding of displayed numbers in ENG 5 and ENG 6 is similiar to the rounding of numbers in <u>SCI</u> 7 and <u>SCI</u> 8, discussed earlier. As with all display formats, engineering notation display does not affect the actual number as it is held internally by the calculator, but only alters the manner in which the number is displayed.

When engineering notation has been selected, the decimal point shifts to show the mantissa as units, tens, or hundreds in order to maintain the exponent of 10 as a multiple of three. For example, multiplying the number now in the calculator by 10 causes the decimal point to shift to the right without altering the exponent of 10:

Press	Display	
🚺 ENG 0	12.3 -06	
10 🗙	12306	Decima
		Power of

l point shifts. of 10 remains at 10⁻

However, multiplying again by 10 causes the exponent to shift to another multiple of three and the decimal point to move to the units position:

Display

10 🛛

1.23 -03

Decimal point shifts. Power of 10 shifts to 10^{-3} .

Automatic Display Switching

The HP-27 switches the display from fixed point notation to full scientific notation ([sc] 7) whenever the number is too large or too small to be seen with a fixed decimal point. This feature keeps you from missing unexpectedly large or small answers. For example, if you try to solve $(.05)^3$ in normal **FIX** 2 display, the answer is automatically shown in scientific notation.

Press	Display	
CLX	0.00 00	ENG 0 from previous example.
f FIX 2	0.00	Normal FIX 2 display.
.05 ENTER+	0.05	
3 💌	1.2500000-04	Display automat- ically switched to SCI 7 to show answer.

Another way of displaying the answer would be 0.000125, but in normal Fix 2 display, you would have seen only **0.00** displayed.

After automatically switching from fixed to scientific, when a new number is keyed in or **CLX** is pressed, the display automatically reverts back to the fixed point display originally selected.

The HP-27 also switches to scientific notation if the answer is too large (> 10^{10}) for fixed point display. The display will not switch from fixed if you solve 1582000×1842 :

Press	Display	
1582000 ENTER+	1582000.00	
1842 🗙	2914044000.	F

Fixed decimal point display.

However, if you multiply the result by 10, the answer is too large for fixed point notation, and switches automatically to scientific notation:

Press	Display	
10 🗙	2.9140440 10	Scientific notation display.

Notice that automatic switching is between fixed and scientific notation display modes only—engineering notation display must be selected from the keyboard.

The Display, Stack and Storage Registers 30

Keying in Exponents of Ten

You can key in numbers multiplied by powers of 10 by pressing **EEX** (enter exponent of ten). For example, to key in 15.6 trillion (15.6×10^{12}) , and multiply it by 25:

Press	Display	
15.6	15.6	
EEX	15.6 00	
12	15.6 12	(This means 15.6×10^{12} .)

Now Press	Display		
ENTER+	1.5600000	13	
25 🗙	3.9000000	14	

You can save time when keying in exact powers of 10 by merely pressing **EEX** and then pressing the desired power of 10. For example, key in 1 million (10^6) and divide by 52.

Press	Display	
EEX	1. 00	You do not have to key in the number 1 before pressing EEX when the number is an exact power of 10.
6	1. 06	
ENTER+	1000000.00	Since you have not specified scientific notation, the answer reverts to fixed point notation when you press ENTER.
52 ÷	19230.77	

To see your answer in scientific notation with six decimal places:

Press	Display	
🚺 SCI 6	1.923077	04

To key in negative exponents of 10, key in the number, press **CHS**, press **CHS** to make the exponent negative, then key in the power of 10. For example, key in Planck's constant (h)—roughly, 6.625×10^{-27} erg sec.—and multiply it by 50.

Press	Display		
CLX	0.000000 00		
FIX 2	0.00		
6.625 EEX	6.625 00		
CHS	6.625 00		
27	6.625 -27		
ENTER	6.6250000 -27		
50 🗙	3.3125000 -25	Erg sec.	

When you use the **EEX** key, the HP-27 displays each number as an eight-digit mantissa and a two-digit exponent of 10. In a few cases, a number may have to be altered slightly in form before you can key it in using the **EEX** key:

- 1. If you key in a number whose mantissa contains more than eight digits to the left of the decimal point, the **EEX** key is overridden and does not operate. Begin again and key in the number in a form that displays the mantissa with eight digits or less to the left of the decimal point before pressing the **EEX** key. Thus, $123456789.1 \times 10^{23}$ could be keyed in as $12345678.91 \times 10^{24}$.
- 2. If you key in a number whose first significant digit occurs *after* the first eight digits of the display (e.g., 0000.000025 $\times 10^{55}$) all zeros are displayed but the number is operated on correctly internally. To view the number, you may prefer to key it in as 0000.00025 $\times 10^{54}$ or as 0.000025 $\times 10^{55}$, then proceed using the EEX key.

Overflow and Underflow Displays

When the number in the display is greater than 9.9999999 \times 10⁹⁹, the HP-27 displays all 9's to indicate that the problem has exceeded the calculator's range:

```
9.9999999 99
```

If an excessively large negative number is calculated (greater than $-9.9999999 \times 10^{99}$), the overflow indicator is all 9's preceded by a minus sign.

-9.9999999 99

Very small numbers (less than 10^{-100}) are displayed as 0.00. If you press **[** SC] 7, the display reads:

00000000 00

Error Display

If you attempt an improper or impossible operation, the word **Error** appears on the display. For example, enter a number and try to divide by zero. (Go ahead, try it.) The calculator recognizes this as an illegal operation. Other examples of improper operations are square root of a negative number or 0 raised to a negative power.

To clear the error display, press **CLX**.

Low Power Display


When the batteries get low, several decimal points will appear on the display interspersed among the numbers. Where the true decimal point appeared, there will be a blank. For example, if you have the following number on the display:

Ordinary display:

17.45

the low-power indication will look like this:

Low-power display:

This means you have approximately one minute of operating time left. Then you must either charge the battery or insert a fully-charged spare battery pack. (Refer to appendix A.)

The Automatic Memory Stack

Automatic storage of intermediate results is the reason that the HP-27 slides so easily through the most complex equations. Automatic storage is made possible by the Hewlett-Packard automatic memory stack.

The X-Register (Display)

When you first switch the calculator ON, the display shows **0.00**. This represents the contents of the display, or "X-register."

Basically, numbers are stored and manipulated in the machine "registers." Each number, no matter how few digits (e.g., 5) or how many (e.g., $2.87148907 \times 10^{27}$), occupies one entire register.

The displayed X-register, which is the only visible register, is one of four registers inside the calculator that are positioned to form the automatic memory stack. We label these registers X, Y, Z, and T. They are "stacked" one on top of the other (like bookshelves) with the displayed X-register on the bottom. When the calculator is switched ON, these four registers are cleared to 0.00.

Name	Register	
т	0.00	
Z	0.00	
Y	0.00	
Х	0.00	Always displayed.

Manipulating Stack Contents

The \overrightarrow{I} (*roll down*) and \overrightarrow{I} (*x exchange y*) keys allow you to review the stack contents or to shift data within the stack for computation at any time.

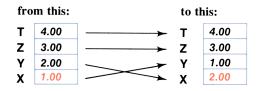
Reviewing the Stack: To see how the RV works, first load the stack with numbers 1 through 4 by pressing:

4 ENTER+ 3 ENTER+ 2 ENTER+ 1

The numbers that you entered are loaded into the stack, and its contents look like this:

Т	4.00]
Ζ	3.00]
Υ	2.00	
Χ	1.	Display

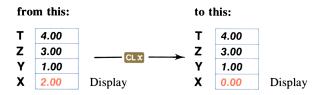
Each time you press the \mathbb{R}^3 key, the stack contents shift downward one register. So the last number that you have keyed in will be rotated around to the T-register when you press \mathbb{R}^3 .



Notice that the *contents* of the registers are shifted. The registers ("shelves") maintain in the same positions. The contents of the X-register are always displayed, so 2.00 is now visible.

Press
again and the stack contents are shifted:

Press R¹ twice more, and the stack shifts back to the start. Once again, the number 1.00 is in the displayed X-register. Now that you know how the stack is rotated, you can use the R¹ key to review the contents of the stack at any time so that you can always tell what is in the calculator. Always remember, though, that it takes four presses of the R¹ key to return the contents to their original registers. **Exchanging X and Y.** The xxy (*x exchange y*) key exchanges the contents of the X- and Y-registers without affecting the Z- and T-registers. If you press xxy with data intact from the previous example, the numbers in the X- and Y-registers will be changed


Similarly, pressing xxy again will restore the numbers in the X- and Y-registers to their original places. This key is used to position numbers in the stack or simply to view the Y-register.

Clearing the Stack

To clear the displayed X-register only, press **CLX**. To clear the entire automatic memory stack, including the displayed X-register, press **I** STK (*clear stack*). This replaces all numbers in the stack with zeros. When you turn the calculator OFF, then ON, it "wakes up" with all zeros in the stack registers.

Although it may be comforting, *it is never necessary to clear the stack or the displayed X-register when starting a new calculation*. This will become obvious when you see how old results in the stack are automatically lifted by new entries.

Press CLX now, and the stack contents are changed

You can verify that only the X-register contents are affected by CLX by using the R key to review the other stack contents.

If you press **[STK**, the contents of the entire stack are cleared.

The **ENTER** Key

When you key a number into the calculator, its contents are written into the displayed X-register and the other registers remain unchanged. For example, if you keyed in the number 314.32, your stack registers would look like this:

Name	Register	
т	0.00	
Z	0.00	
Y	0.00	
Х	314.32	Display

In order to key in a second number at this point, you must separate the digits of the first number from the digits of the second.

One way to separate numbers is to press **ENTER**. Press **ENTER** to change the contents of the registers:

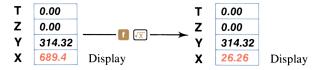
As you can see, the number in the displayed X-register is copied into Y. (The numbers in Y and Z have also been transferred to Z and T, respectively, and the number in T has been lost off the top of the stack. But this will be more apparent when we have different numbers in all four registers.) Immediately after pressing **ENTERN**, the X-register is prepared for a new number, and that new number writes over the number in X. For example, key in the number 543.28 and the contents of the stack registers change. . .

fro	m this:		to	this:	
т	0.00		т	0.00	
Ζ	0.00		Z	0.00	
Υ	314.32		Y	314.32	
Х	314.32	Display	Х	543.28	Display

CLX replaces any number in the display with zero. You can then key in a new number and write over the zero in X. For example, if you had meant to key in 689.4 instead of 543.28, you would press **CLX**:

Т	0.00		т	0.00	
Ζ	0.00		Z	0.00	
Υ	314.32		Υ	314.32	
Χ	543.28	Display	Х	0.00	Display

and then key in 689.4 to change the stack


fro	m this:		to	this:	
т	0.00		т	0.00	
Ζ	0.00		Z	0.00	
Υ	314.32		Y	314.32	
Х	0.00	Display	Х	689.4	Display

Notice that numbers in the stack do not move when a number is keyed in immediately after pressing **ENTER** or **CLX**. (However, the numbers in the stack *do* lift when a new number is keyed in immediately after pressing **R1**.)

One-Number Functions and the Stack

One-number functions execute upon the number in the X-register only, and the contents of the Y-, Z-, and T-registers are unaffected when a one-number function key is pressed.

For example, with numbers positioned in the stack as in the earlier example, pressing the [] 🗷 keys changes the stack contents, like so:

The one-number function executes upon only the number in the displayed X-register, and the answer writes over the number that was in the X-register. No other register is affected by a one-number function.

Two-Number Functions and the Stack

Hewlett-Packard calculators do arithmetic by positioning the numbers in the stack the same way you would on paper. For instance, if you wanted to add 34 and 21, you would write 34 on a piece of paper and then write 21 underneath it, like this:

and then you would add, like this:

Numbers are positioned the same way in the HP-27. Here's how it is done.

Press	Display
f STK	0.00
34	34.
ENTER	34.00
21	21.

34 is keyed into X. 34 is copied into Y. 21 writes over the 34 in X. Now 34 and 21 are sitting vertically in the stack as shown below, so we can add.

т	0.00	
Ζ	0.00	
Υ	34.00	
Χ	21.	Display

Press	Display	
+	55.00	The answer.

The simple old-fashioned math notation helps explain how to use your calculator. Both numbers are always positioned in the stack in the natural order first; then the operation is executed when the function key is pressed. *There are no exceptions to this rule*. Subtraction, multiplication, and division work the same way. In each case, the data must be in the proper position before the operation can be performed.

To subtract 21 from 34:

 Press
 Display

 34
 34.
 34 is keyed into X.

 ENTER*
 34.00
 34 is copied into Y.

 21
 21.
 21 writes over the 34 in X.

 13.00
 The answer.

To multiply 34 by 21:

40 The Display, Stack and Storage Registers

Press	Display	
34	34.	34 is keyed into X.
ENTER+	34.00	34 is copied into Y.
21	21.	21 writes over the 34 in X.
×	714.00	The answer.

To divide 34 by 21:

34
21

Press	Display	
34	34.] 34 is keyed into X.
ENTER+	34.00	34 is copied into Y.
21	21.	21 writes over the 34 in X.
÷	1.62	The answer.

Chain Arithmetic

You've already learned how to key numbers into the calculator and perform calculations with them. In each case you first needed to position the numbers in the stack manually using the **ENTERS** key. However, the stack also performs many movements automatically. These automatic movements add to its computing efficiency and ease of use, and it is these movements that automatically store intermediate results. The stack automatically "lifts" every calculated number in the stack when a new number is keyed in because it knows that after it completes a calculation, any new digits you key in are a part of a new number. Also, the stack automatically "drops" when you perform an arithmetic operation. Press **1** STK first, then calculate 16 + 30 + 11 + 17 = ? You've learned to solve such a problem by pressing: 16 ENTER 30 + 11 + 17 + . Now, let's try another method that utilizes the "lift" and "dropping" features of the stack.

Press	Stack Contents	
16 Z Y X	0.00 0.00	16 is keyed into the displayed X-register.
T ENTER♦ Z Y X	0.00 16.00	16 is copied into Y.
30 Z Y X	0.00 16.00	30 is written over the 16 in X.
T ENTER∳ Z Y X	16.00 30.00	30 is entered into Y. 16 is lifted up to Z.
11 Z Y	16.00 30.00	11 is keyed into the displayed register.

42 The Display, Stack and Storage Registers

Press

Stack Contents

|--|

Т	16.00	
Z	30.00	
Y	11.00	
X	11.00	

11 is copied into Y. 16 and 30 are lifted up to Z and T respectively.

17

Т	16.00
Ζ	30.00
Υ	11.00
Χ	17.

17 is written over the 11 in X.

(+**)**

Т	16.00	
Z	16.00	
Υ	30.00	
Х	28.00	

17 and 11 are added together and the rest of the stack drops. 16 drops to Z and is also duplicated in T. 30 and 28 are ready to be added.

+

т	16.00
Z	16.00
Υ	16.00
Χ	58.00

30 and 28 are added together and the stack drops again. Now 16 and 58 are ready to be added.

Т	16.00	16 and 58 are added
Ζ	16.00	together for the final
Υ	16.00	answer and the stack
Χ	74.00	continues to drop.

The same dropping also occurs with \Box , \ltimes and \ominus . The number in T is duplicated in T and Z, the number in Z drops to Y, and the numbers in Y and X combine to give the answer, which is visible in the X-register.

LAST X Register

(+)

In addition to the four stack registers, the HP-27 also contains a separate LAST X register that preserves the value displayed in the X-register *before* you performed a function. To place the contents of the LAST X register in the display, press **1 LAST X**. This register is convenient and helpful when you use a number repeatedly or want to recover from mistakes.

To Avoid Reentering Numbers

The LAST X register is useful in calculations where a number occurs more than once.

For example, to calculate $\frac{7.32 + 3.65}{3.65}$

Display

	_
7.32	
3.65	
10.97	
3.65	
3.01	

Intermediate answer. Recalls 3.65 to X. The answer.

44 The Display, Stack and Storage Registers

Recovering from Mistakes

 $LAST \times M$ makes it easy to recover from keystroke mistakes, such as pressing the wrong function or keying in the wrong number.

Example: Divide 12 by 2.157 after you have mistakenly divided by 3.157.

Press	Display	
12	12.	
ENTER+	12.00	
3.157 ÷	3.80	
f LAST X	3.16	
×	12.00	
2.157 ÷	5.56	

Oops! You made a mistake. Retrieves that last entry. You're back at the beginning. The correct answer.

In the above example, when $1 \\ \text{LAST } x$ is pressed, the contents of the stack and LAST X registers are changed:

fro	m this:		to t	his:	
т	0.00	7	т	0.00	7
Ζ	0.00	_	Ζ	0.00	-
Υ	0.00	LAST X	Y	3.80	LAST X
X	3.80	◄ 3.16	X	3.16	◄ 3.16

This makes possible the correction illustrated in the example above.

Ten Storage Registers

Besides the stack, another 10 memory registers (0 thru 9) are provided for manual storage and recalling numbers.

Storing and Recalling Numbers

To store a number, press **STO** then a digit from 0 to 9 to specify the storage location. **STO** 0 places the number on the display in register R_0 ; **STO** 1, in register R_1 ; **STO** 2, in register R_2 ; etc. Data in a storage register is changed by writing over it with a new value or by storage arithmetic.

To recall the number, press **RCL**, then the address digit (0 to 9). When you press **RCL** 3, a copy of the number in register R_3 appears on the display; the original value will remain in the storage location until you write over it or clear it. Recalling data also moves the numbers in the stack upward. (If you press **CLX** or **ENTER**) just prior to **RCL**, then the stack does *not* lift.)

Example 1: Suppose you want to calculate the cost of buying an item in various quantities. The unit price of the item is \$132.57 and the quantities selected are 47, 36 and 29.

One way to solve this is to store the unit price in register R_0 . Then recall it to multiply each quantity.

Press	Display	
132.57 STO O	132.57	
47 🗙	6230.79	First total.
RCL 0	132.57	
36 🗙	4772.52	Second total.
RCL 0	132.57	
29 🗙	3844.53	Third total.

The individual totals are still in the stack, so you can easily calculate the combined total cost by adding them.

Press	Display	
+	8617.05	
(+)	14847.84	

Total cost.

Example 2: Three tanks have capacities in U.S. units of 2.0, 14.4 and 55.0 gallons respectively. If one U.S. gallon is approximately equal to 3.785 liters, what is the capacity of each of the tanks in liters?

Press	Display	
1 REG 1 FIX 3 3.785 STO 0 2 X	0.000 3.785 7.570	Display mode set. Constant stored in register R_0 . Capacity of first tank in liters.
14.4 RCL 0 X	54.504 208.175	Capacity of second tank in liters. Capacity of third tank in liters.
FIX 2	208.18	Display mode reset.

Storage and Recall Register Arithmetic

Arithmetic operations $(+, -, \times, \div)$ can be performed between a storage register and the X-register in two ways: storage arithmetic and recall arithmetic.

Storage Arithmetic— Arithmetic is performed *upon* the register contents and answers are placed in the storage register—not in the display—so you have to recall them to see or use them.

To perform storage register arithmetic using the number on the display:

- 1. Press STO .
- 2. Press the desired arithmetic operation $(+, -, \times \text{ or } \in)$.
- 3. Press the storage location number (0 thru 9).

For example, to store 6 in register R_3 and add 5:

Press

Display

6.00	
5.00	
11.00	

Stores 6 in register R_3 . Adds 5 to register R_3 . Confirms that 11 is stored in register R_3 . If you had pressed: 5 **STO 3** +, that would overwrite the stored 6 with the 5—the value stored in register R₃ would be 5, not 11. Now, subtract 4 from the number in register R₃:

Press	Display
4 510 - 3	4.00
RCL 3	7.00

Notice that the general rule is:

Number on display, **STO**, operation, register number.

Recall Arithmetic—Conversely, to alter the X-register (displayed value) without affecting the contents of the storage register or the stack, press RCL, the arithmetic operation, then the register number. For example, add the current value stored in register R_3 to a new entry (2.00).

Press	Display
2 RCL + 3	9.00
RCL 3	7.00

To subtract the contents of register R_3 from the number 11:

Press	Display
11 RCL - 3	4.00
RCL 3	7.00

Recall arithmetic does not affect any other stack register except the X-register; i.e., the contents of the stack do not lift.

Remember, like storage arithmetic, the general rule is:

Number on display, RCL operation, register number.

Storage Overflow Indicator

If the value in a storage register exceeds 9.99999999 $\times 10^{99}$, the following indicator appears on the display:

OF		

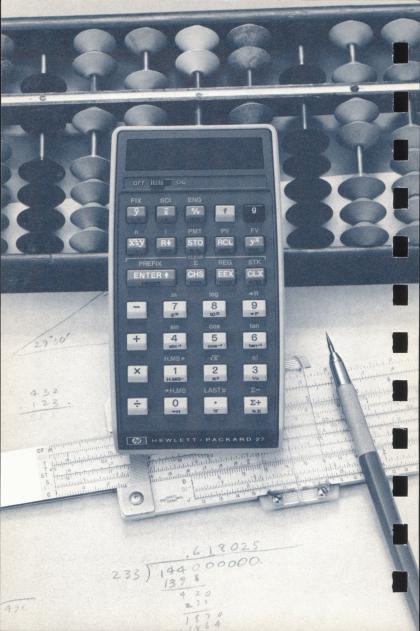
Clearing the Storage Registers

It is usually unnecessary to clear storage registers R_0 thru R_9 because you can simply write over the old number.

The \blacksquare function clears all 10 storage registers, as well as the financial registers and \blacksquare

Availability of Storage Registers

As a general practice, it is wise to use the four storage registers R_0 thru R_3 first to preserve your data.


When the Σ + key is used in statistical problems, the HP-27 uses registers R_4 thru R_9 for its own internal data storage. Therefore, those registers are temporarily not available to you for manual storage.

During iterative \Box calculations, storage registers R_7 , R_8 , and R_9 are utilized by the calculator.

Clearing Operations

At this point, it might be useful to review the HP-27 clearing operations:

CL X	Clears the display (X-register).	
PREFIX	Clears the previously pressed prefix key.	
f STK	Clears the four-register stack.	
f REG	Clears storage registers R_0 thru R_9 , the five financial registers, and $\boxed{LAST X}$.	
fΣ	Clears storage registers R_4 thru R_9 .	

Section 3

Keyboard Calculations

Exponentiation: Raising a Number to a Power

The **Mathebox** key raises a positive number to a positive or negative power or a negative number to an integer power. You use it the same simple way you've performed arithmetic operations; the function is executed immediately when you press the key.

- 1. Key in the base number. This number is designated y.
- 2. Press **ENTER**⁺ to separate the first number from the second.
- 3. Key in the second number (power). This number is designated as x.
- 4. Press 🗵.

To calculate 3⁶,

To raise a number to a negative power, follow the same procedure and change the sign (CHS) of your exponent before you perform the operation. To solve $4.37^{-2.5}$,

Press			Display
4.37 ENTER+	2.5 СНS	yx)	0.03

To raise a negative number to a positive or negative integer power, key in the base number, press CHS, press ENTER, key in the integer power, and press \mathcal{P} .

52 Keyboard Calculations

To Solve	Press	Display
-2^{3}	2 CHS ENTER+ 3 yx	-8.00
$-2^{(-3)}$	2 CHS ENTER+ 3 CHS	y ^x -0.13

With a negative base, if the exponent is an odd number, the answer will be negative. If the exponent is an even number, your answer will be positive:

```
(-2)^2 = -2 \times -2 = 4
```

 $(-2)^3 = -2 \times -2 \times -2 = -8$

You can also use **121** to raise 0 to a positive power; but of course, your answer will always be zero.

Squaring

To square a number in the displayed X-register, press \square X. For example, to find the square of 45:

Press	Display
45 9 x²	2025.00

To find the square of the result:

 Press
 Display

 9 x²
 4100625.00

Reciprocals

To calculate the reciprocal of a number in the displayed X-register, key in the number, then press \square [½]. For example, to calculate the reciprocal of 25:

Press	Display	
25 9 1/x	0.04	

You can also calculate the reciprocal of a value in a previous calculation without re-entering the number. For example, to calculate

$$\frac{1}{1/3 + 1/6}$$

Press				
3	g	[½]		
6	g	1⁄x		
(+	-)			

g 1/x

Display

0.33	
0.17	
0.50	
2.00	

Reciprocal of 3. Reciprocal of 6. Sum of reciprocals. Reciprocal of sum.

Extracting Roots

To calculate the square root of a number, key in the number, then press **1** $\boxed{1}$.

To Solve	Press	Display
$\sqrt{25}$	25 🚺 🐼	5.00
$\sqrt{81}$	81 🚺 🐼	9.00

You must use a positive number. You cannot calculate the square root of a negative number; that's an illegal operation.

You can also extract higher roots, like cube roots and fourth roots; but you use the \aleph key, not \square \aleph . The cube root of a number is that number raised to the 1/3 power. Thus, ${}^{3}\sqrt{n}$ is the same as n ${}^{1/3}$; the fourth root can be written as n ${}^{1/4}$, etc.

Use the same keystroke sequence that you learned for exponentation to extract higher roots:

- 1. Key in the base number and press **ENTER**.
- 2. Key in the root desired and press 9 $\frac{1}{2}$.
- 3. Press yx.

To solve ${}^{3}\sqrt{5}$, = 5^{1/3}:

Using Pl

The value π accurate to 10 places (3.141592654) is provided as a fixed constant in the HP-27. Merely press $\square \overline{m}$ whenever you need it in a calculation. For example, to calculate 3π ;

Example: In the *Guinness Book of Records*, you find that the largest pizza ever baked had a diameter of 21 feet. If your appetite were equal to the task, how many square feet of pizza would you have to devour in order to consume all of the world's largest pizza?

Area =
$$\pi \left(\frac{d}{2}\right)^2 = \pi \left(\frac{21}{2}\right)^2$$

Press

21 ENTER+	21.00
2 ÷	10.50
9 x²	110.25
9 π	3.14
×	346.36

Display

Square feet of pizza.

Factorials

The keys **1** n enable you to handle permutations and combinations with ease. To calculate the factorial of an integer, key in that number, then press **1** n.

Example: Calculate the number of ways 6 people can line up for a photograph. ($6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1$)

Press	Display	
6	6.	
1	720.00	

The HP-27 can calculate factorials for numbers up to 69.

Logarithms and Antilogs

The HP-27 computes both natural and common logarithms as well as their inverse functions (antilogarithms):

[] [n]	is \log_e (natural log). It takes the log of the value in the X-register to base e (2.718).
9 <i>e</i> ×	is antilog_e (natural antilog). It raises e (2.718) to the power of the value in the X-register.
f log	is \log_{10} (common log). It computes the log of the value in the X-register to base 10.
9 10 [×]	is antilog ₁₀ (common antilog). It raises 10 to the power of the value in the X-register.

Example 1: The 1906 San Francisco earthquake, with a magnitude of 8.25 on the Richter Scale is estimated to be 105 times greater than the Nicaragua quake of 1972. What would be the magnitude of the latter on the Richter Scale? The equation is

$$R_1 = R_2 - \log \frac{M_2}{M_1} = 8.25 - \left(\log \frac{105}{1}\right)$$

Solution:

Press	Display	
8.25 ENTER+	8.25	
105 🚺 🔟	2.02]
	6.23] Rati

Rating on Richter scale.

Example 2: Ace explorer Jason Quarmorte is using an ordinary barometer as an altimeter. After measuring the sea level pressure (30 inches of mercury) he climbs until the barometer indicates 9.4 inches of mercury. Although the exact relationship of pressure and altitude is a function of many factors, Jason knows that an *approximation* is given by the formula:

Altitude (feet) = 25,000 ln
$$\frac{30}{\text{Pressure}}$$
 = 25,000 ln $\frac{30}{9.4}$

Where is Jason?

56 Keyboard Calculations

Solution:

Press	Display	
30 ENTER+	30.00	
9.4 :	3.19	
🚺 🔝	1.16	
25000	25000	
×	29012.19	

Altitude in feet.

He's probably near the summit of Mount Everest (29,028 feet).

Example 3: Logarithms and antilogarithms are also used in continuous compound interest formulas. To compute the continuous effective rate, given the nominal rate, the formula is:

Continuous Effective Rate =
$$\left(e^{\frac{\text{nominal rate}}{100}} - 1\right) \times 100$$

If a savings institution quotes a nominal rate of 6%, compounded continuously, what is the effective rate?

Press

Display

6 ENTER∳ 100 ÷ 9 ℓ× 1 − 100 ×

0.06	
6.18	

% continuous effective rate.

Trigonometric Functions

Your HP-27 provides you with six trigonometric functions. It calculates angles in decimal degrees, radians, or grads. It converts between decimal degrees and degrees, minutes, seconds, and lets you add or subtract degrees, minutes, seconds.

Trigonometric Modes

When the HP-27 is first turned ON, it "wakes up" with angles specified in decimal degrees. To set radians or grads mode, press the shift key followed by either **RAD** (*radians*) or **GRD** (*grads*). To switch back to the decimal degrees mode again, press the shift key followed by the **DEG** (*degrees*) key.

Note: 360 degrees = 2π radians = 400 grads.

Functions

The six trigonometric functions provided by the calculator are:

[] **[**sin] (sine) 9 [sin⁻¹] (arc sine) [] [cos] (cosine) g [cos⁻¹] (arc cosine) [1] [tan] (tangent) 9 [tan⁻¹] (arc tangent)

Each trigonmetric function assumes angles in decimal degrees, radians, or grads. Trigonometric functions are one-number functions: so to use them, you key in the number, then press the function keys.

Example 1: Find the cosine of 35°.

Press	Display	
35	35.	Calculator "wakes up" in decimal degrees mode.
f cos	0.82	The answer.

Example 2: Find the arc sine in grads of .964.

Press	Display	
CL X	0.00	
9 GRD	0.00	Grads mode is set.
.964	0.964	
9 sin ⁻¹	82.87	Grads.

Hours, Minutes, Seconds

The **HMS** (to hours, minutes, seconds) key converts decimal hours (or degrees) to the format of hours (degrees), minutes and seconds. To see the digits for seconds, you should specify **FIX** 4 display format. For example, to convert 12.56 hours to hours, minutes, seconds:

Press	Display
🚺 FIX 4	0.0000

0 0000

Sets display format. (Assumes no results remain from previous example.)

12.56	12.56	Decimal hours.
f + H.MS	12.3336	This is read as 12 hours, 33
		minutes, 36 seconds.

Conversely, the H key permits you to change hours (degrees), minutes, seconds to decimal hours (degrees). For example, to change 173°45′ 12′′ to decimal degrees:

Press	Display	
137.4512	137.4512	
9 + H	137.7533	Decimal degrees.

The conversion is important because trigonometric functions in the HP-27 operate on angles in decimal degrees, but not in *hours, minutes, seconds.*

Two other keys **1** [HMS+] and **9** [HMS-], allow you to add and subtract in hours (degrees), minutes, and seconds without converting back to decimal hours (degrees).

Example: Lovesick sailor Oscar Odysseus dwells on the island of Tristan da Cunha $(37^{\circ}03'S, 12^{\circ}18'W)$, and his sweetheart, Penelope, lives on the nearest island. Unfortunately for the course of true love, however, Tristan da Cunha is the most isolated inhabited spot in the world. If Penelope lives on the island of St. Helena $(15^{\circ}55'S, 5^{\circ}43')$, calculate the great circle distance that Odysseus must sail in order to court her using the following formula:

$$\begin{array}{l} \text{Distance} = \cos^{-1} \left[\sin \left(\text{LAT}_{s} \right) \sin \left(\text{LAT}_{s} \right) \\ \cos \left(\text{LAT}_{d} \right) \cos \left(\text{LNG}_{d} - \text{LNG}_{s} \right) \right] \\ \times 60. \end{array}$$

Where LAT_s and LNG_s = latitude and longitude of the source (Tristan da Cunha).

 LAT_D and LNG_d = latitude and longitude of the destination.

Solution: Convert all degrees, minutes, seconds entries into decimal degrees as you key them in. The equation for the great circle distance from Tristan da Cunha to the nearest inhabited land is:

Distance =
$$\cos^{-1} \left[\sin (37^{\circ}03') \sin (15^{\circ}55') + \cos (37^{\circ}03') \cos (15^{\circ}55') \cos (5^{\circ}43' - 12^{\circ}18') \right] \times 60$$

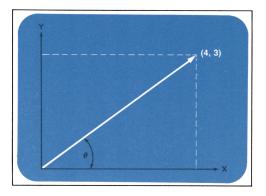
Press

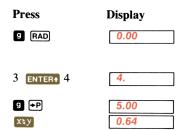
Display

Sets decimal degree mode for trigonometric functions. (Assumes no results remain from previous example.) Display mode set.

g DEG

🚺 (FIX) (2) 5.43 ENTER+ 5.43 12.18 9 H.MS- 9 +H -6.58 f COS 0.99 15.55 9 +H STO 1 15.92 f COS 0.96 0.96 X 37.03 9 H STO 0 37.05 0.80 f COS 0.76 X RCL 0 🚺 sin 0.60 0.27 RCL 1 🚺 (sin) 0.17 X 0.93 F) 21.92 g Cos-1 1315.41 60 🗙


Distance in nautical miles that Odysseus must sail to visit Penelope.


Polar/Rectangular Coordinates Conversion

Two functions are provided for polar/rectangular coordinate conversion. To convert values in the X- and Y-registers, (representing rectangular x, y coordinates, respectively) to polar r, θ coordinates (magnitude and angle, respectively), press $\P \ \bullet P$. Magnitude r appears in the X-register and angle θ appears in the Y-register.

Conversely, to convert values in the X- and Y-registers (representing polar r, θ , respectively) to rectangular coordinates (x, y respectively), press **1** \blacksquare .

Example 1: Convert rectangular coordinates (4, 3) to polar form with the angle expressed in radians.

Specifies radians mode. (Assumes no results remain from previous example.) Rectangular coordinates placed in X- and Y-registers. Magnitude r. Angle θ in radians. **Example 2:** Convert polar coordinates (8, 120°) to rectangular coordinates

Press	Display	
9 DEG	0.64	Specifies degrees mode. (Results from previous example.)
120 ENTER+ 8	8.	Polar coordinates θ and r placed in Y- and X-registers, respectively.
1 → R	-4.00	X-coordinate.
x≥y	6.93	Y-coordinate.

Calculating Percentage Problems

There are three keys on your HP-27 for calculating percentage problems: \swarrow function is used to find a percentage of a number. The \bigtriangleup function is used to find percent differences (% increase/decrease). And the $\Re \Sigma$ function is used to find what percent one number is of another or of the total sum (proportion).

With the HP-27, you don't have to convert percents to their decimal equivalents; 4% need not be changed to .04. It can be keyed in the way you see and say it, 4%.

Percentage 123

To find the percentage of a number, key in that base number and

62 Keyboard Calculations

press ENTERS. Then key in the numerical value of the percent and press \mathcal{D} .

For example, find 14% of \$300:

Press	Display
300 ENTER+ 14 %	42.00

Example: Every year you set aside 4% of your company's profits for the employee retirement fund. If your company made a profit last year of \$1,576,432, how much money was contributed to the fund?

Press

Display

1576432 ENTER+ 4 %

63057.28

Net Amount 🔀 🕂 or 🔀 🗕

If you buy a new car, you have to figure the sales tax percentage, then add that to the purchase price to find the total cost of the car. It is easy to calculate this net amount with your HP-27 because the calculator holds the base number while you calculate percentages.

For example, if the sales tax on a 6200 car is 5%, what is the amount of the tax and total cost of the car?

Press	Display	
6200 ENTER 5 %	310.00	Percentage amount (sales tax).
+	6510.00	Net amount (base plus percentage amount).

If the dealer gives you a 10% discount on the car, what will your total cost be?

Press

Display

6200 ENTER+	10	%
Ξ		
5 % 🕂		

620.00
5580.00
5859.00

Amount of discount. Discounted price. Net amount (discounted price plus sales tax). Notice in the last problem that you subtracted a percentage amount and added a percentage amount, without repeating the base number. The calculator stores intermediate answers in the stack until you need them in a calculation.

Percent Difference Between Two Numbers

To find the percent difference between two numbers—the ratio of increase or decrease—key in the base number, press **ENTER**, then key in the second number and press **\bigcirc** \bigtriangleup . Usually, the base amount, or the first number vou key in, is the one that occurred first in time.

For example, your rent jumps from \$285 a month to \$335 a month. What percent is the increase?

A positive answer denotes an increase, while a negative answer denotes a decrease.

Example: You forgot to place a stop order, and your stock fell from \$57.50 to \$13.25 a share. What percent is the decrease?

Press	Display	
57.50 ENTER+ 13.25 9 △%	-76.96	%

Markup

Markup is a simple percentage calculation using the $\Delta \mathbb{Z}$ function and wholesale or original purchase cost as the base number.

Example: You purchase typewriters at \$159.95 wholesale and retail them for \$195.00. What percent is your markup?

Press

Display

159.95 ENTER↑ 195.00 9 △%

21.91	%	markup.
-------	---	---------

Perhaps you have a fixed profit rate in mind and wish to establish your retail price. You would solve for the retail price the same as you solved for net amount.

64 Keyboard Calculations

Example: You purchase several valves @ \$2.26 from the manufacturer and wish to sell them at 25% profit. How much should you mark them up?

Press	Display	
2.26 ENTER+ 25 %	0.57	Amount of markup.
+	2.83	Retail price.

Margin

Margin also is a simple percentage problem with the Δ % function, only this time you use the selling price as the base number. Returning to the typewriters that you bought for \$159.95 and sold for \$195, the margin is calculated as follows:

Press	Display
195 enter ↓ 159.95 9 ∆% Chs	17.97 % margin.

So, the markup is 21.91% and the margin is 17.97%.

Finding Percent of Total ^(%)

 Σ is the Greek symbol "sigma" which we use to mean sum or total. To find what percentage one number is of the total, add the numbers first by keying in each number followed by Σ . Then key in the particular number you wish to convert to a percentage and press \Im Σ .

Example 1: You own 150 shares of stock in Sleepy-Head Waterbeds, 52 shares of Flickering Films Inc., and 200 shares of Raucous Records Company. What percent of your portfolio does each represent?

Press	Display	
150 Σ+	1.00	First entry.
52 Σ +	2.00	Second entry.
200 Σ+	3.00	Third entry.
150 9 %Σ	37.31	% Sleepy-Head Waterbeds.
52 9 %Σ	12.94	% Flickering Films.
200 9 %Σ	49.75	% Raucous Records.

The Σ + key displays the number of entries rather than the numerical value keyed in. When you use the Σ + key, press $\square \Sigma$ (clear Σ) between problems.

Example 2: Assume that the Sleepy-Head Waterbeds stock is worth \$450; Flickering Films stock, \$1404; and Raucous Records, \$1500. What percent of the total value of your portfolio does each represent?

Press	Display	
f D		
450 Σ+	1.00	
1404 Σ+	2.00	
1500 E +	3.00	Number of entries.
450 9 %Σ	13.42	% Sleepy-Head Waterbeds.
1404 9 %Σ	41.86	% Flickering Films Inc.
1500 g %Σ	44.72	% Raucous Records Co.

Proportions 9 %2

To find what percent one number is of another (proportion), state the problem as "A is what percent of B?" Key in B (the base number), press Σ +, then key in A (the number to be converted), and press \Im Σ . (An alternative solution would be to key in B, press S 5, key in A, and press \Im Σ .)

For example, 64 is what percent of 340?

Display	
1.00	
18.82	%
	1.00

Or the alternative procedure:

Press	Display
ſΣ	
340 STO 5	340.00
64 9 %Σ	18.82

66 Keyboard Calculations

Example: To purchase that \$47,000 lakefront cabin that you've had your eye on, a \$9400 down payment is required. What percentage of the price does your down payment represent?

Press	Display	
f D		
47000 Σ +	1.00	
9400 9 %Σ	20.00	%

The Financial Function Keys

Your HP-27 has the most frequently used business calculations (including the associated formulas) preprogrammed into the second row of keys:

The nature of these calculations is to use known data and solve for an unknown value. Three of these values must be entered to solve for one or both of the other values.

The n value represents the total number of compounding or payment periods. To enter 30 years, press 30 \square \square . If you wish to input that in monthly periods, press 30 \blacksquare \blacksquare 12 \boxtimes \square .

The i value is the interest rate per period. If interest is expressed as an annual rate but your problem involves monthly payments or daily compounding, then you must convert the annual rate to rate per period. To key in 9% annual interest, press 9 1 i. To input the monthly rate, press 9 ENTERS 12 \div 1 i. To input the daily rate, press 9 ENTERS 365 \div 1 i.

Remember that \square and \square must correspond to the same time frame. If n is months, then i must be the monthly interest rate.

The PMT function stands for payment or deposit amount. It assumes equal payments and must correspond to the same time frame as \square or \square . Don't mix monthly payments with annual periods or daily interest.

The \underline{PV} function stands for present value or the amount of money at the start of the transaction.

The \mathbb{FV} function represents the future value of money or the amount you will obtain/pay at the end of the term.

Both n and i are involved in all financial calculations. The nature of financial calculations on the HP-27 requires that given three of the above values (including n or i), you can solve for a fourth value. You can enter the values in any order.

Displaying Financial Values

To see what number is in a particular financial register, press **RCL** then the desired location key $(\Pi, i, PMT, PV, or FV)$.

Changing Financial Values

You may solve a problem and want to explore a different alternative by changing only one of the three known values—perhaps using a different interest rate or a greater/smaller payment amount.

With the HP-27 you don't have to re-enter the numbers all over again. Simply key in the new value and press the appropriate financial function key. The new value will be substituted for the old value.

Example: You borrow \$9000 at $9\frac{1}{2}\%$ interest, to put a new swimming pool in the backyard. What will your monthly payments be if you pay the loan in 2 years?

Display

Pre	ess
_	

9 RESET
2 ENTER+ 12 🗙 🚺 🗈
9.5 ENTER+ 12 🕂 🚺 🚺
9000 🚺 🖭
f PMT

24.00
0.79
9000.00
413.23

Number of months. Interest rate/month. Amount of your loan. Your monthly payment.

What if you take out a 3-year loan?

Press

Display

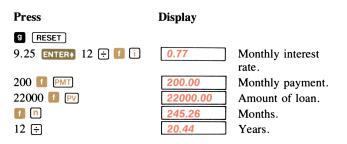
36.00
288.30

Number of months. Alternative monthly payment.

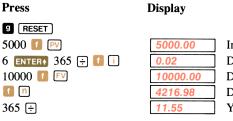
68 Keyboard Calculations

This is considered an alternative of the same problem because given n, i and PV, you solved for payment more than once.

If you decide "but I can only afford \$200 a month, what would my loan be?"—that's a new problem. It requires a different set of three input values (now n, i and PMT to solve for PV), so you solve it as a new problem.


Press RESET between problems to reset the five financial keys for new values. Your previous answer is left on the display so that you can use it again or store it, if you wish. (For a detailed explanation, refer to appendix B.)

The following examples quickly illustrate use of the financial keys. Section 4 describes how to solve loan, savings, lease, and investment ' problems.


Solving for n

Given the periodic interest rate (i) and two of the following: initial principal (PV), periodic payment (PMT), or future value (FV), you can calculate the number of periods in a compound amount or a loan.

Example 1: Fur trapper Bill Buckskin wishes to buy a \$22,000 log cabin. A local bank offered to loan Bill the \$22,000 at 9¼% interest. Making \$200 monthly payments, how long will it take Bill to repay his mortgage?

Example 2: With an eye toward the future, you put \$5,000 into an education fund for your child. If the money earns 6% interest compounded daily, how many years before the fund reaches \$10,000?

Initial principal. Daily interest rate. Desired amount. Days. Years.

Solving for i

Given the number of periods and two of the following: initial principal (PV), periodic payment (PMT) or future value (FV), you can calculate the periodic annual interest rate, annual yield, or rate of return.

Example: What is the annual interest rate on a 25-year \$32,500 mortgage with \$230 monthly payments?

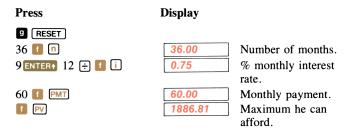
Press	Display	
9 RESET		
25 ENTER+ 12 🗙 🚺 🗖	300.00	Number of months.
230 🚺 PMT	230.00	Monthly payment.
32500 🚺 🖭	32500.00	Amount of loan.
1	0.58	% monthly interest
		rate.
12 🗙	7.01	% annual interest
		rate.

Solving for PMT

Given the number of periods, the interest rate and either present value (PV) or future value (FV), you can calculate the payment amount.

Example: Find the monthly payments on a 30-year, \$47,000 mortgage at 8.5% annual interest rate.

Press	Display	
9 RESET		
30 ENTER+ 12 🗙 🚺 🖪	360.00	Number of months.


69

8.5 ENTER+ 12 🕂 🚺 📋	0.71	% monthly interest
		rate.
47000 🚺 🖭	47000.00	Principal of loan.
f PMT	361.39	Monthly payment.

Solving for PV

Given the number of periods, the interest rate, and either payment (PMT) or future value (FV), you can calculate the initial principal.

Example: Junior Engineer wants to buy an oscilloscope. He can afford \$60 a month for 36 months and is willing to pay 9% annual interest. How much can he afford to pay for the scope?

Solving for FV

Given the number of periods, the interest rate, and either the payment (PMT) or the initial amount (PV), you can calculate the amount of money you will pay/receive in the future.

Example: A house purchased 3 years ago for 42,500 is located in an area where property values are appreciating at 12% a year. What is the current approximate value of the house?

Display

3.00	
12.00	
42500.00	
59709.44	

Number of years. % annual interest. Original price. Current value. There are two other financial keys on your HP-27: **9** NPV solves for net present value, and **9** IRR solves for internal rate of return. Both of these are sophisticated methods of evaluating investments and are explained in *Discounted Cash Flow Analysis*, section 4.

Statistical Functions

The following keys are used in statistical calculations:

- E+ Sigma plus. Totals sums, products and squares of numbers.
- I E Sigma minus. Subtracts a sum, product or square from the summation in E . Useful for subtracting out an incorrect entry.
- **G** L.R. Linear regression. Plots a straight line that best fits a set of data points by finding the slope and y-intercept.
- Distance Linear estimate. Given a value for x, this computes the predicted value for y or where the point will fit on a plotted linear function.
- **9 (** Correlation coefficient measures goodness of fit for linear regression data.
 - r = +1 (perfect fit, positive slope)
 - r = -1 (perfect fit, negative slope)
 - r = 0 (no fit)
- **IND** Normal distribution. Calculates the density function and the upper tail area under a normal distribution curve.
- Mean. Computes the mean or arithmetic average for both x and y.
- **9 S** Standard deviation. Calculates the dispersion around the mean for both x and y.
- **Var** Variance. Computes the variances of x and y, such that:

 $VAR_x = (s_x)^2$ and $VAR_y = (s_y)^2$

When completely finished with a statistical problem and before starting a new problem, press 12 2. This clears old data from the statistical registers.

Summations **D**+

Pressing the E+ key automatically gives you several different sums and products of values in the X- and Y-registers. The calculator stores these values in registers R_4 thru R_9 .

When you key in one or two numbers and press Σ , the following happens:

- 1. The number of entries is stored in register R_4 .
- 2. The number (x) on the display is added to the contents of storage register R_5 .
- 3. The square (x^2) of the display number is added to the contents of register R_6 .
- 4. The number in the Y-register of the stack is added to the contents of storage register R_7 .
- 5. The square of y (y^2) is added to the contents of register R_8 .
- 6. The product of x and y (xy) is added to the contents of register R_9 .

When you input paired data (x and y), you must key in the y value first and separate the two numbers by **ENTER!**. The general rule is:

```
y value ENTER x value \Sigma+
```

To recap, this is where values are stored inside your calculator:

Register	Contents
R₄	Number of entries (n).
R₅	Summation of x values (Σx).
R_6	Summation of x^2 values (Σx^2).
R ₇	Summation of y values (Σ y).
R ₈	Summation of y^2 values (Σy^2).
R,	Summation of products of x and y values (Σxy) .
Display (X-register)	Number of entries (n).

Immediately, you have a powerful data bank for statistical calculations. To see any of these summations at any time, simply recall the contents of the desired register. Remember, when you press RCL 4 thru 9, you will not lose that data. Only a copy of the number (sum) appears in the display. (Note that the n in register R_4 has nothing to do with the financial n.)

Deleting and Correcting Data

If you key an incorrect entry into Σ , you don't have to start over again. If you keyed it before pressing Σ , simply press C to clear the display, then continue on with the correct value.

If you had already added in the wrong value, simply key in that wrong number, subtract it out by pressing 1 \mathbb{E} , then continue with the correct number.

This applies to two variables, as well as one. Suppose you key in 10 ENTER 20 Ξ and discover that the y value is wrong. Delete the data pair by pressing 10 ENTER 20 Ξ , then continue with the correct numbers.

Linear Regression L.R.

Linear regression is a statistical method for finding a straight line that best fits a set of data points, thus providing a relationship between two variables. If there is equal time or space between data points, then this is called a trend line.

Naturally, at least two data points must be in the machine before a line can be drawn or fitted to them. After you have totaled the data points using the Σ + key, you can calculate the coefficients of the linear equation

$$\mathbf{y} = \mathbf{A} + \mathbf{B}\mathbf{x}$$

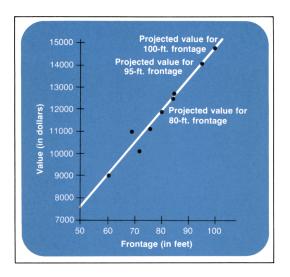
by pressing **G L**.**R**. A is the y-intercept, and appears in the display. B represents the slope of the line and is stored in the Y-register.

Example: A commercial land appraiser has examined six vacant lots in a local community, all of which have the same depths but different frontages and values. Based on the following input data, what is the relationship between frontage and lot value?

74 Keyboard Calculations

Input 1	Data:
---------	-------

(x) Lot frontage (feet)	(y) Lot value (\$)
70.8	10100
60.0	9000
85.0	12700
75.2	11120
69.5	11000
84.0	12500

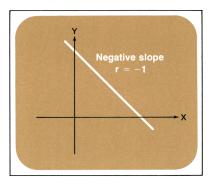

Accumulate the data using E+. (Remember that when you enter two values, x and y, you must enter the y value first.)

Press	Display	
I ≥ 10100 ENTER+ 70.8 ≥+ 9000 ENTER+ 60 ≥+ 12700 ENTER+ 85 ≥+	1.00 2.00 3.00	First entry. Second entry. Third entry.
11120 ENTER♦ 75.2 ∑+ 11000 ENTER♦ 69.5 ∑+ 12500 ENTER♦ 84 ∑+ 9 [L.R. ××Y	4.00 5.00 6.00 393.90 144.11	Fourth entry. Fifth entry. Sixth entry. A = y-intercept. B = slope of line.

Thus, the equation of the regression line is:

$$y = 393.90 + 144.11 x$$

The y-intercept value represents the projected value for x = 0. The slope indicates the change in the projected value caused by an incremental change in the x value. Plotting this example, you see that a 1-foot increase in the frontage results in a projected increase in value of \$144.11.


Correlation Coefficient

In the diagram, the solid line is the best fit for the given data points.

It's a good idea to check the "goodness of fit" of the linear function by calculating the correlation coefficient. This tells you how close to a straight line the data points lie. Since all the data is in your HP-27, to calculate the correlation coefficient,

Press	Display	
9 r	0.97	

If r = +1, then the line has a positive slope and the data fits perfectly. If r = -1, the data still is a perfect fit but the line has a negative slope, like so:

(An example of a negative trend line is declining property values or declining sales.) If r = 0, the data values are spread out all over and do not come close to a straight line.

In the example of lot frontage related to value, the correlation coefficient is close to 1, so we can feel comfortable using linear regression. Suppose, though, that the correlation coefficient was not close to 1 but instead was 0.5 or 0.6. This would indicate that a straight line is not a very good fit to the data. Then you might try to fit the data to a curve.

In the statistical applications in section 4, three different types of curve fits are described: exponential, logarithmic, and power. A correlation coefficient may be calculated for each of these curves and should be interpreted similarly: if r is close to ± 1 , the curve is a reasonable approximation to the data; if not, try a different fit.

Linear Estimate

Having plotted a line, you can quickly estimate other values. With the data totaled in registers R_4 thru R_9 , a predicted y (designated \hat{y}) can be calculated by keying in an x value and pressing \Im .

Example 1: For the previous example, find projected values for 80-, 95-, and 100-foot frontages.

Press	Display	
80 🗊	11922.65	80-foot frontage projected value.
95 🦻	14084.29	95-foot frontage projected value.
100 🗊	14804.83	100-foot frontage projected value.

To find an estimated value, it is not necessary to calculate LR first. In the next example, you key in the known data and solve for a projected unknown.

Example 2: You bought a house 3 years ago for \$47,500. The first year it appreciated \$5,000. The second year its value rose to \$60,000. Today you figure the market price to be \$64,000 if you were to sell. What will your house be worth next year?

Press	Display
47500 ENTER+ 1 Σ+	1.00
52500 ENTER+ 2 2+	2.00
60000 ENTER+ 3 Σ+	3.00
64000 ENTER+ 4 Σ+	4.00

To make a projection for next year (year 5), simply solve for \hat{y} :

Display

5 ŷ

ispiay

70250.00

Mean

Your HP-27 can quickly calculate the means or arithmetic averages of two variables. Whether it's the average of tests scores or last month's sales figures, given one or two sets of numbers, your HP-27 will calculate the mean of those samples.

1. Press $\blacksquare \Sigma$ (Clear Σ).

78 Keyboard Calculations

- 2. If you are summing *one* set of numbers, key in the first number and press $[\Sigma^+]$; then the second number and $[\Sigma^+]$ again; the third number, etc. Continue until you have entered all the values.
- 3. If you are summing *two* sets of numbers, key in the y value and press **ENTER**; key in the x value, then press **E**⁺. Key in the second y value, press **ENTER**; key in the second x value, and press **E**⁺. Continue until you have entered all the values.
- 4. Press $\overline{\mathbf{x}}$ for the mean of the x values.
- 5. Press xxy for the mean of the other set of values (\overline{y}) .

Example: A survey of seven salesmen in your company reveals that they work the following hours a week and sell the following dollar volume each month. How many hours does the average salesman work each week? How much does the average salesman sell each month?

Salesman	Hours/Week	Sales/Month
1	32	\$17,000
2	40	\$25,000
3	45	\$26,000
4	40	\$20,000
5	38	\$21,000
6	50	\$28,000
7	35	\$15,000

To find the average workweek and sales of this sample:

Press

Display

ſΣ

		17000 Σ+
40	ENTER+	25000 E+
		26000 Σ +
40	ENTER+	20000 E+
38	ENTER+	21000 S +
50	ENTER+	28000 S +

1.00	
2.00	
3.00	
4.00	
5.00	
6.00	

Storage registers cleared.

First entry. Second entry.

Note that x and y values overwrite the X- and Y-registers.

Standard Deviation

You already have data from the previous example in 2^+ so to calculate the standard deviation (a measure of dispersion around the mean), simply:

Press	Display	
9 S	4820.59	Dollars (s _x)
xzy	6.03	Hours (s _y)

The HP-27 calculates standard deviation according to the formulas:

$$s_x = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}}$$
 $s_y = \sqrt{\frac{\sum y^2 - \frac{(\sum y)^2}{n}}{n-1}}$

Notice that the seven salesmen that we used is a sample. If we used *all the salesmen*, then the data would be considered a population rather than a sample.

The relationship between *sample* standard deviation (s) and *popula*tion standard deviation (s') is given by:

$$s' = s \quad \sqrt{\frac{n-1}{n}}$$

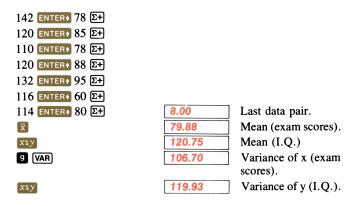
Since n (number of entries) is stored in register R_4 , you can convert sample standard deviation to population standard deviation. You already have (s) [6.03] on the display, so simply:

80 Keyboard Calculations

Press	Display	
x	21714.29	Mean (dollars).
Σ+	8.00	Number of entries $+ 1$.
9 S	4463.00	s′ _x
xzy	5.58	s ′ _y

To continue summing data pairs, press $\overline{\mathbb{X}}$ $\overline{\mathbb{I}}$ $\overline{\mathbb{E}}$ before entering more data.

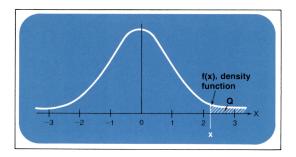
Variance


The variance of a set of data is the square of the standard deviation. Just as you can calculate the mean and standard deviation of two variables, you can compute the variances of both x and y:

```
VAR_x = (s_x)^2VAR_y = (s_y)^2
```

Example: Eight students have the following I.Q.s and received the following grades on their chemistry final. What are the mean I.Q. and exam scores? What is the variance of each?

I.Q.	Exam Grade
112	75
142	78
120	85
110	78
120	88
132	95
116	60
114	80


Just as you were able to calculate the standard deviation of a population as well as a sample, you can also calculate population variance. Press 🕱 🔁 9 VAR.

Press	Display	
x	79.88	Mean (exam scores).
Σ+	9.00	Number of entries $+1$.
9 VAR	93.36	Population variance (exam scores).
xey	104.94	Population variance (I.Q.).

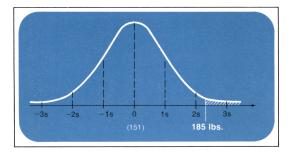
To continue summing data pairs, press $\boxed{1}$ $\boxed{2}$ before entering more data.

Normal Distribution

The ND key calculates the density function f(x) and the upper tail area Q under a standardized normal distribution curve, given x. The density function is the relative probability that a particular x value will occur. The upper tail area signifies the probability of occurrence of all values $\ge x$. The value of Q is returned to the X-register and the value f(x), to the Y-register.

The value input to N.D. is the standard variable. Given the mean (x) and standard deviation (s) of a normal population, any value x' is converted to the standard variable by the following formula:

$$x = \frac{x' - \overline{x}}{s}$$


Example: The mean weight of 500 male students is 151 lbs. and the standard deviation is 15. Assuming that the weights are normally distributed, how many students weigh 185 or more?

First, find x according to the following formula:

$$x = \frac{x' - \bar{x}}{s} = \frac{185 - 151}{15}$$

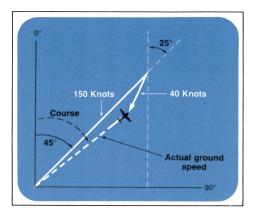
This means the standard variable (185 lbs) is 2.27 standard deviations to the right of the mean.

You already have 2.27 in the display, so to continue. . .

Press	Display	
9 N.D.	0.01	Upper tail area (Q).
🚺 FIX 4	0.0117	Displayed to four places.
xzy	0.0306	Density function.

To find approximately how many students weigh 185 or more, multiply the total number in the sample by the factor 0.0117.

 $500 \times 0.0117 = 5.85$ students


Vector Summations

You have learned rectangular to polar coordinate conversions and you have learned how to sum quantities using Σ +. Combining these functions, you can perform vector addition and subtraction.

Example: In his converted Swordfish aircraft, bush pilot Apeneck Sweeney reads an air speed of 150 knots and a heading of 045° from his instruments. The Swordfish is also being buffeted by a headwind of 40 knots from a bearing of 025° . What should Sweeney use to have a true heading of 45° ? What is the ground speed of Swordfish?

84 Keyboard Calculations

Method: The true heading and ground speed are equal to the sum of the instrument vector and the wind vector. The vectors are converted to rectangular coordinates and summed using the Ξ and Ξ keys. Their sum is recalled by recalling the values in storage registers R_5 (Σx) and R_7 (Σy), and the new rectangular coordinates are then converted back to polar coordinates to give the vector of the actual ground speed and true heading.

Press	Display	
f REG	0.00	Clears storage registers. (Dis- play assumes no results remain from previous examples.)
9 DEG	0.00	Sets degrees mode.
45 ENTER+	45.00	θ for the Swordfish instrument vector.
150	150.	r for the Swordfish instrument vector.
ſ →R	106.07	Converted to rectangular coordinates.

٤+	1.00	Instrument coordinates accumulated in storage registers R_5 and R_7 .
25 ENTER+	25.00	θ for wind vector.
40	40.	r for wind vector.
ff →R	36.25	Converted to rectangular coordinates.
f <u>2</u> -	0.00	Coordinates for wind vector subtracted from coordinates for Swordfish's instrument vector.
RCL 7	89.16	Recalls sum of y-coordinates from register R_7 .
RCL 5	69.81	Recalls sum of x-coordinates from register R_5 . (Sum of y- coordinates lifted to Y-registers.)
g •P	113.24	Actual ground speed of the Swordfish in knots.
xzy	51.94	True heading of the Swordfish in degrees.

Section 4

Applications

This section covers both common and complex problems encountered in the fields of statistics, mathematics, navigation, surveying, and finance. Problems, such as these, demonstrate the amazing versatility of your HP-27.

Statistical Applications

Permutations

A permutation of m different objects, taken n at a time, is an *arrangement* of n out of m objects with several possible ways of ordering the arrangement.

$$_{m}$$
Permutation_n = $\frac{m!}{(m - n)!}$

where m and n are integers and $0 \le n \le m \le 69$.

For example, how many ways can 10 people be seated on a bench if only 4 seats are available?

$$_{10}P_4 = \frac{10!}{6!} = 5040$$

Note:

$$_{\rm m} {\rm P}_{\rm o} = \frac{{\rm m}!}{{\rm m}!} = 1$$

$$_{m}P_{1} = \frac{m!}{(m-1)!} = m$$

$$_{m}P_{m} = m!$$

The keystrokes are as follows:

- 1. Key in the value m, and press 🚺 🖭 🚺 LAST X.
- 2. Key in the value n.
- 3. Press 🗕 🚺 🖻 🕂 .

Example: A child has a set of toy blocks with the 26 letters of the alphabet each appearing once. How many different three-letter permutations ($_{26}P_3$) can be made with these blocks?

Combinations

A combination of m different objects taken n at a time is a *selection* of n out of m objects with no attention given to the order of arrangement. The number of possible combinations is given by:

$$_{m}C_{n} = \frac{m!}{(m - n)! n!}$$

where m and n are integers and $0 \le n \le m \le 69$.

In the permutation example, you arranged 10 people in different order, four at a time. If you were to *select* four out of the same 10 people for a committee, how many combinations could you pick?

$$_{10}C_4 = \frac{10!}{6! \ 4!} = 210$$

Note:

$$_{m}C_{o} = \frac{m!}{m!} = 1$$

$$_{m}C_{1} = \frac{m!}{(m-1)!1!} = m$$

The following keystrokes give the number of possible combinations:

- 1. Key in the value m. Press 🚺 🖭 🚺 LAST X.
- 2. Key in the value n.
- 3. Press 🚺 LAST X 🚺 🔃.
- 4. Press 🗱 🚺 💷 🗶 ÷.

Example: A manager wants to choose a committee of three people from the seven engineers working for him. In how many different ways can the committee be selected?

Press	Display
7 🚺 💷 🚺 🛛 LAST X	
3 – 🚺 LAST X 🚺 🔃	
XXY 🚺 💷 🗙 ÷	35.00

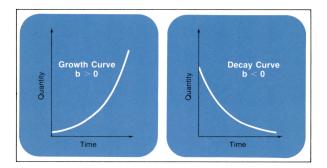
The committee may be chosen in $_{7}C_{3} = 35$ different ways.

* * * * * *

In section 3, linear regression was used as an analysis tool for plotting and projecting values. But perhaps your data doesn't fit a straight line. The three applications that follow are the methods of fitting your data to three different types of curves: exponential, logarithmic and power curves.

Exponential Curve Fit

The exponential curve is representative of situations where an increase or decrease in a quantity is "compounded" over time; e.g., financial growth curve, compounded amount, or radioactive decay.


Using natural logarithms, a least squares exponential curve fit may be calculated according to the equation $y = ae^{bx}$. The keystrokes given here compute the estimates of the constants a and b by rewriting the equation $y = ae^{bx}$ as

$$\ln y = bx + \ln a$$

and solving this equation as a linear regression problem. (The y values must be positive.) Here, a is the y-intercept.

$$b = \frac{\sum x_i \ln y_i - \frac{1}{n} (\sum x_i) (\sum \ln y_i)}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2}$$
$$a = \exp \left[\frac{\sum \ln y_i}{n} - b \frac{\sum x_i}{n} \right]$$
$$\hat{y} = ae^{bx}$$
$$x = \frac{1}{b} (\ln y - \ln a)$$

If b > 0, you will have a growth curve. If b < 0, you will have a decay curve. Examples of these are given below:

The keystrokes are as follows:

- 1. Press 🚺 🗵 .
- For each pair of values, key in y, press
 Im, key in x, press
 E+. Repeat this step for all data pairs.

- 3. Press 9 L.R. 9 e^x . The value of a is displayed.
- 4. Press xxy to obtain the slope of the curve.
- 5. Press $\bigcirc e^{\times} 1 100 \times$ to obtain the percentage growth rate.
- 6. Press **9 r** to obtain the correlation coefficient.
- 7. To solve for a projected value of y, key in the x value and press 9 9 ex. The value ŷ is displayed.
- 8. To find a projected x value, press 9 L.R. Key in the y value, and press 11 In XXY XXY -. The value \hat{x} is displayed.

Example 1: A stock's price history is listed below. If the stock continues this growth rate, what is the price projected to be at the end of 1976 (year 5)? (*Hint: Let y be the price of the stock and x, the year. Solve for* \hat{y} .)

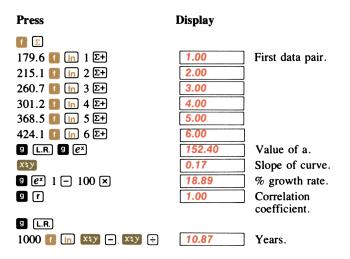
End of Year	Price			
1972 (1)	52-1⁄2			
1973 (2)	55-1⁄4			
1974 (3)	(missing data)			
1975 (4)	61			
1976 (5)	?			

Press

 [[] Σ
 [[] Σ
 [[] Σ
 [[] Γ
 [[]

Display

1.00	
2.00	

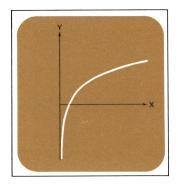

3.00
49.96
0.05
5.12
64.14


First data pair input. Second data pair input. Third data pair input. Value of a. Slope of curve. % growth rate. Projected price at the end of year 1976.

Example 2: A company's growth over a period of several years is measured by its net earnings, in thousands of dollars, at the end of each fiscal year. The data below shows this growth:

Fiscal year	1	2	3	4	5	6	?
Earnings (K\$)	179.6	215.1	260.7	301.2	368.5	424.1	1000

If the earnings (y) are assumed to be growing exponentially with time (x), at what time in the future will earnings hit \$1 million? (Here you are solving for \hat{x} .)



Logarithmic Curve Fit

If your data doesn't fit linear regression or an exponential curve, try logarithmic curve fit. This is calculated according to the equation y = a + b (ln x), and all x values must be positive.

$$b = \frac{\sum y_i \ln x_i - \frac{1}{n} \sum \ln x_i \sum y_i}{\sum (\ln x_i)^2 - \frac{1}{n} (\sum \ln x_i)^2}$$
$$a = \frac{1}{n} (\sum y_i - b \sum \ln x_i)$$
$$\hat{y} = a + b (\ln x)$$
$$x = e^{[(y - a)/b]}$$

A typical logarithmic curve is shown below.

The following keystrokes calculate logarithmic curve fit according to the equation $y = a + b(\ln x)$:

- 1. Press 🚺 Σ .
- Key in the first y value, press ENTER. Key in the first x value, press [] [n] Σ+. Repeat this step for each data pair.
- 3, After all data pairs are input, press 9 L.R. to obtain a in the equation above.
- 4. Press **XXY** to obtain b.

- 5. Press **9 r** to obtain the correlation coefficient.
- To solve for a projected y value, key in the x value, and press

 Im 2.
- To obtain a projected x value, press
 L.R. Key in the y value, and press

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

 —

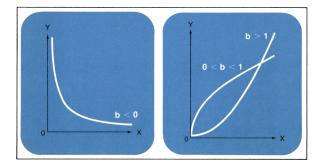
 —

Example: A manufacturer observes declining sales of a soonto-be obsoleted product, of which there were originally 10,000 units in inventory. The cumulative sales figures over a number of months, given below, may be fit by a logarithmic curve of the form $y = a + b \ln x$, where y represents cumulative sales in units and x the number of months since the beginning. Find what month the last unit (number 10,000) is projected to be sold.

Month	1	2	3	4	5	6
Cumulative Sales (units)	1431	3506	5177	6658	7810	8592
Press			Display			
[] D						
1431 ENTER+ 1	🚺 In (Σ+	1.00	F	irst data	pair.
3506 ENTER+ 2	🚺 In (Σ+	2.00			
5177 ENTER+ 3	🚺 In (Σ+	3.00			
6658 ENTER+ 4	🚺 In (Σ+	4.00			
7810 ENTER+ 5	🚺 In (Σ+	5.00			
8592 ENTER+ 6	🚺 🔝	Σ+	6.00			
9 L.R.			1066.1	5 \	alue of	a.
xzy			4069.9	I3 \	alue of	b.
9 🔽			0.99	C	Correlatio	on
				С	oefficier	nt.
g L.R. 10000	x&y -					
XXY 🕂 9 @X			8.98	N	Ionths.	

Considering that you start at 0 and 0.9 is near the end of the first month (it's like centuries), then $\hat{x} = 8.98$ means that the 10,000th unit will be sold near the end of the ninth month.

Power Curve Fit


Another method of analysis is the power curve or geometric curve. The equation $y = ax^b$ is linearized to the form

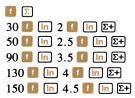
$$\ln y = \ln a + b (\ln x)$$

and values a and b are computed by calculations similar to linear regression.

$$b = \frac{\sum (\ln x_i) (\ln y_i) - \frac{(\sum \ln x_i) (\sum \ln y_i)}{n}}{\sum (\ln x_i)^2 - \frac{(\sum \ln x_i)^2}{n}}$$
$$a = \exp\left[\frac{\sum \ln y_i}{n} - b \frac{\sum \ln x_i}{n}\right]$$
$$\hat{y} = ax^b$$
$$\hat{x} = e^{\left[(y - \ln a)/b\right]}$$

Some examples of power curves are shown below.

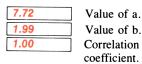
The following keystrokes fit a power curve according to the equation $\ln y = a + b$ (ln x):


- 1. Press 🚺 🗵 .
- Key in the first y value, press
 Im . Key in the first x value, press
 Im E+. Repeat this step for all data pairs.
- 3. Press 9 L.R. 9 e^{x} to obtain a in the above equation.
- 4. Press **XXX** to obtain b.
- 5. Press **9 r** to obtain the correlation coefficient.
- 6. To find a projected y, key in the x value and press 2
 ex to obtain ŷ.
- To find a projected x, press
 L.R.
 Image: Ima

Example: If Galileo had wished to investigate quantitatively the relationship between the time (t) for a falling object to hit the ground and the height (h) it has fallen, he might have released a rock from various levels of the Tower of Pisa (which was leaning even then) and timed its descent by counting his pulse. The following data are measurements Galileo might have made.

t (pulses)	2	2.5	3.5	4	4.5	
h (feet)	30	50	90	130	150	

Find the power curve formula that best expresses h as a function of t (h = at^b).



Displa	ıy
--------	----

First data pair.

g	L.R.	g	e×
X	У		
g	r		

So the formula that best expresses h as a function of t is

$$h = 7.72 t^{1.99}$$

We know, as Galileo did not, that in fact $h \propto t^2$.

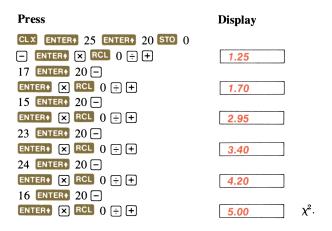
Chi-Square Statistic

The chi-square statistic measures the goodness of fit between two sets of frequencies. It's used to test whether a set of observed frequencies differ from a set of expected frequencies sufficiently to reject the hypothesis under which the expected frequencies were obtained.

In other words, you are testing whether discrepancies between the observed frequencies (O_i) and the expected frequencies (E_i) are significant, or whether they may reasonably be attributed to chance. The formula generally used is:

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

If there is a close agreement between the observed and expected frequencies, χ^2 will be small. If the agreement is poor, χ^2 will be large.


The following keystrokes calculate the χ^2 statistic:

- 1. Press CLX ENTER+.
- 2. Key in the first O_i value, press **ENTER4**.
- 3. Key in the first E_i value, press **STO** 0 **ENTER3 X RCL** 0 \Rightarrow **+**.
- 4. Repeat steps 2 and 3 for all data pairs. The χ^2 value is displayed.

Example: A suspect die from a Las Vegas casino is brought to an independent testing firm to determine its bias, if any. The die is tossed 120 times and the following results obtained.

Number	1	2	3	4	5	6
Observed Frequency	25	17	15	23	24	16

The expected frequency = 120 throws/6 sides, or E = 20 for each number, 1 thru 6. (Since E is a constant in this example, there's no need to store it in R_0 each time.)

The number of degrees of freedom is (n - 1). Since n = 6, the degrees of freedom = 5.

Consulting statistical tables, you look up χ^2 to a 0.05 significance level with 5 degrees of freedom, and see that $\chi^2_{0.05, 5} = 11.07$. Since $\chi^2 = 5$ is within 11.07, we may conclude that to a 0.05 significance level (Probability = .95), the die is fair.

Paired t Statistic

There are other tests of significance besides chi-square. Suppose you have two samples drawn from two normal populations. The t test is the most commonly used method of testing the differences between the two means.

An example might be the "before" and "after" characteristics of a group that has been subjected to some treatment. The t statistic tests the equality of the means, in this case, to determine whether the treatment has resulted in an "after" group whose characteristics differ significantly from the "before" group.

Let

$$D_i = x_i - y_i$$
 (the difference of all
the x's and y's)

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i$$
$$s_D = \sqrt{\frac{\sum D_i^2 - \frac{1}{n} (\Sigma D_i)^2}{n-1}}$$

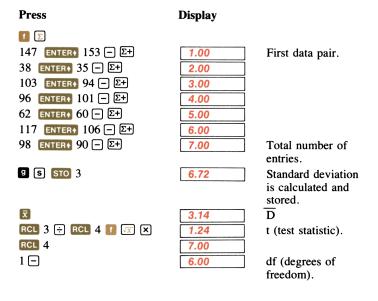
$$s_{\overline{D}} = \frac{s_{D}}{\sqrt{n}}$$

The test statistic

$$t = \frac{\overline{D}}{s_{\overline{D}}}$$

which has n - 1 degrees of freedom (df) can be used to test the null hypothesis

$$H_0: \overline{x} = \overline{y}$$


In other words, the hypothesis to be tested is that the two means are *not* significantly different. The following keystrokes calculate test statistic t and the degrees of freedom (df):

- 1. Press 🚺 🗵 .
- Key in the first x value, press ENTER!. Key in the first y value, press E+. Repeat this step for all data pairs. (Note that the order of entry differs from previous problems. Here you key in the x value first, then the y value.)

- 3. Press 9 (s) (s) 3. The s_D value is displayed.
- 4. Press $\overline{\mathbb{S}}$. The $\overline{\mathbb{D}}$ value is displayed.
- 5. Press RCL 3 ÷ RCL 4 11 ∞ ×. The test statistic t is displayed.
- 6. Press \mathbb{RCL} 4, press 1 to obtain degrees of freedom (df).

Example: An electronics firm makes an efficiency study of its production line. One of the factors to be evaluated is the ambient temperature in the building. The firm drops the temperature from the standard 23° C (73.4°F) to 21.5° C (70.7°F). The total outputs at each of 7 production stations are recorded for one day with ambient temperature 23° C, and then for a day at 21.5° C, and are given below.

23°C								
21.5°C	153	35	94	101	60	106	90	

Consulting statistical tables, we find that $t_{0.1, 6} = 1.44$; i.e., t to a 0.1 significance level, with 6 degrees of freedom, equals 1.44. Since t = 1.24 is within that limit, we conclude that the change in temperature did not appreciably affect the production line output.

t Statistic for Two Means

Suppose there are two normal populations with unknown means and the same variance. One may wish to examine the relationship between the two means, and hypothesize that there *is* a difference:

$$H_0: \mu_1 - \mu_2 = D$$

where D is some constant, and μ_1 and μ_2 are the means of the two populations.

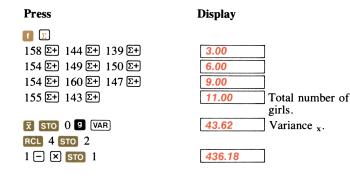
$$\overline{\mathbf{x}} = \frac{1}{\mathbf{n}_1} \sum_{i=1}^{\mathbf{n}_1} \mathbf{x}_i$$

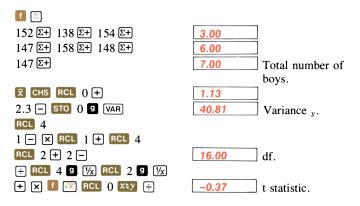
$$\overline{y} = \frac{1}{n_2} \sum_{i=1}^{n_2} y_i$$

$$t = \frac{\overline{x} - \overline{y} - D}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sqrt{\frac{\Sigma x_i^2 - n_1 \overline{x}^2 + \Sigma y_i - n_2 \overline{y}^2}{n_1 + n_2 - 2}}$$

We can use this t statistic which has the t distribution with $n_1 + n_2 - 2$ degrees of freedom (df) to test the null hypothesis H_0 .

The procedure below calculates the t statistic for two means to measure the accuracy of this hypothesis.


- 1. Press 🚺 Σ .
- Key in the first x value, press Σ+. Repeat this step for all x values.
- 3. Press 🕱 STO 0 9 VAR RCL 4 STO 2.


- 4. Press 1 🗶 STO 1.
- 5. Press 🚺 Σ .
- 6. Key in the first y value, press 🖅. Repeat this step for all y values.
- 7. Press $\overline{\mathbf{x}}$ CHS RCL 0 +.
- 8. Key in the constant D, and press STO 0 9 VAR RCL 4. Press 1 X RCL 1 +.
- 9. Press RCL 4 RCL 2 + 2 -. The degrees of freedom (df) are displayed.
- 10. Press ÷ RCL 4 9 1 RCL 2 9 1 + × 1 1 1 RCL 0 xxy ÷. The t statistic is displayed.

Example: Figures indicate that, at age 12, girls have a mean height that is 2.3 centimeters greater than the mean height of boys that age. A sixth-grade class measures the heights of its 12-year-olds and finds these data for 11 girls and 7 boys (all heights in cm):

Girls:								160,	147,	155,	143
Boys:	152,	138,	154,	147,	158,	148,	147				

Find the t statistic for this data to test the hypothesis that $\mu_1 - \mu_2 = 2.3$ cm.

Consulting statistical tables, we find that $t_{0.1, 16} = 1.337$. Since t = -0.37 falls within that limit, the hypothesis of height difference is not rejected at the 0.1 level of significance.

Analysis of Variance (One-Way)

The one-way analysis of variance tests the differences among the means of several samples to see whether the variability is due to chance or due to real differences in the populations from which the samples were drawn.

Variability by chance is measured by the Error SS (sum of the squares). Variability caused by real differences is measured by Treat SS. Error SS and Treat SS are normalized to mean square value to obtain an F ratio.

Let

 $x_{ij} = j^{th}$ observation in i^{th} treatment group

 n_i = number of observations in group i

$$\overline{x}_i$$
 = mean of group i = $\frac{1}{n_i} \sum_{j=1}^{n_i} x_{ij}$

$$\bar{x} = \text{grand mean of observations} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}}{\sum_{i=1}^{k} n_i}$$
Then Total SS = $\sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}^2 - \frac{\left(\sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}\right)^2}{\sum_{i=1}^{k} n_i}$
Treat SS = $\sum_{i=1}^{k} n_i (\bar{x}_i - \bar{x})^2 = \sum_{i=1}^{k} \frac{\left(\sum_{j=1}^{n_i} x_{ij}\right)^2}{n_i} = \frac{\left(\sum_{i=1}^{k} \sum_{j=1}^{n_i}\right)^2}{\sum_{i=1}^{k} n_i}$
Error SS = $\sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2 = \text{Total SS} - \text{Treat SS}$

 $df_1 = Treat df = k - 1$

$$df_{2} = \text{Error } df = \sum_{i=1}^{k} n_{i} - k$$

Treat MS = $\frac{\text{Treat SS}}{\text{Treat } df}$
Error MS = $\frac{\text{Error SS}}{\text{Error } df}$

 $F = \frac{\text{Treat MS}}{\text{Error MS}} \text{ (with } k - 1 \text{ and } \sum_{i=1}^{k} n_i - k \text{ degrees of freedom)}$

The following keystrokes yield the analysis of a variance table: sum of squares, mean squares, degrees of freedom, and the F ratio.

- 1. Press 🚺 📧.
- 2. Press 1 STO + 3.
- 3. Key in the first value in the first row across and press **STO** + 0 **E**+ 1 **STO** + 1. Repeat this step for the second value in the first row across, the third value, etc. to the end of the first row.
- 4. Press RCL 0 ENTERI X RCL 1 ÷ STO + 2.
- 5. Press 0 STO 0 STO 1.
- 6. Repeat steps 2 thru 5 for each row of the table.
- 7. Press RCL 6 RCL 5 ENTER X.
- 8. Press RCL 4 🕂 . The Total SS value is displayed.
- 10. Press to obtain Error SS.
- 11. Press **1** LAST **X RCL** 3, press 1 . The Treat df value is displayed.
- 12. Press \div to obtain Treat MS.
- 13. Press XXY RCL 4 RCL 3 . The Error df value is displayed.
- 14. Press \div to obtain Error MS.

Example: Lucy Shopper is choosing a new car from among three different makes of comparable price. One of the factors she wishes to evaluate is the expected resale value of the car after 2 years. After identifying a number of two-year-old cars of each make, she compiles the table of prices below (all prices in thousands of dollars):

			Cars				
		1	2	3	4	5	
	1	3.4	4.0	3.9 3.7 3.0	3.2	3.3	
Make	2	4.1	4.0 4.0 2.9	3.7	4.1		
	3	3.6	2.9	3.0	3.5	3.4	

It is not clear whether the variation in prices among the makes is a true difference, or due to randomness within the sample. To get a more quantitative answer to this question, Lucy runs an analysis of variance on the data.

Press	Display
f REG	
1 570 + 3	1.00
3.4 STO + 0 E+ 1 STO + 1	1.00
4.0 STO + 0 E + 1 STO + 1	
3.9 STO + 0 E+ 1 STO + 1	1.00
3.2 STO + 0 E+ 1 STO + 1	
3.3 STO + 0 E+ 1 STO + 1	1.00
RCL 0 ENTER+ × RCL 1 ÷ STO	
+ 2	63.37
	0.00
	(
4.1 STO + 0 E + 1 STO + 1	1.00
3.7 STO + 0 E + 1 STO + 1	1.00
4.1 STO + 0 ∑+ 1 STO + 1 RCL 0 ENTER↑ X RCL 1 ÷ STO	
	63.20
	0.00
1 STO (+) 3	0.00
$3.6 \text{ STO} + 0 \Sigma + 1 \text{ STO} + 1$	1.00
2.9 STO + 0 E+ 1 STO + 1	
3.0 STO + 0 E+ 1 STO + 1	1.00
3.5 STO + 0 E+ 1 STO + 1	
3.4 STO + 0 E+ 1 STO + 1	1.00
RCL 0 ENTER+ X RCL 1 ÷ STO	
+ 2	53.79
0 STO 0 STO 1	0.00
RCL 6 RCL 5 ENTER+ X	
	2.10

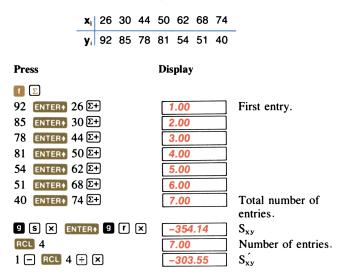
Total SS.

RCL 2 RCL 5 ENTER+ ×		
RCL 4 ÷ -	1.08	Treat SS.
	1.03	Error SS.
f LAST X RCL 3		
1 🗖	2.00	Treat df.
÷	0.54	Treat MS.
xey RCL 4 RCL 3 -	11.00	Error df.
÷	0.09	Error MS.
÷	5.76	F (with 2 and
		11 degrees of
		freedom).

Consulting statistical tables, we find that F to a .05 significance level, with 2 and 11 degrees of freedom, equals 3.98 ($F_{.05, 2, 11} = 3.98$).

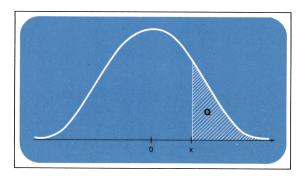
If the F ratio obtained above fell within this limit, the differences in resale price would not be significant. Since F = 5.76 exceeds the value F = 3.98, we conclude that the resale prices of different makes are significantly different.

Covariance


Covariance is a measure of the interdependence between paired variables (x and y). Like standard deviation, covariance may be defined for either a sample (S_{xy}) or a population (S_{xy}) as follows:

$$\begin{split} \mathbf{S}_{\mathbf{x}\mathbf{y}} &= \mathbf{r} \,\times\, \mathbf{s}_{\mathbf{x}} \,\times\, \mathbf{s}_{\mathbf{y}} \\ \mathbf{S}_{\mathbf{x}\mathbf{y}}^{'} &= \mathbf{r} \,\times\, \mathbf{s}_{\mathbf{x}}^{'} \,\times\, \mathbf{s}_{\mathbf{y}}^{'} \end{split}$$

The following keystrokes solve for covariance of a sample (S_{xy}) and of a population (S_{xy}') :


- 1. Press 🚺 Σ .
- 2. Key in y, press **ENTERN**, key in x, and press **E**. Repeat this step for all data pairs.
- 3. Press 9 S X ENTERS 9 T X. The value of S_{xy} appears in the display.
- 4. With S_{xy} on the display, press RCL 4, press 1 RCL 4 ÷
 ★ to obtain S'_{xy}.

Example: Find the sample covariance (S_{xy}) and population covariance (S'_{xy}) for the following paired variables:

Inverse Normal Integral

With the preprogrammed normal distribution function [N.D] in section 3, you found the upper tail area Q, given a point x.

This procedure performs the inverse or opposite operation. That is, given an upper tail area Q, you can determine the value of x. (Note: $0 < Q \le 0.5$)

$$x = t - \frac{c_0 + c_1 t + c_2 t^2}{1 + d_1 t + d_2 t^2 + d_3 t^3} + \epsilon(Q)$$

where

$$\begin{aligned} \left| \epsilon(\mathbf{Q}) \right| &< 4.5 \times 10^{-4} \\ \mathbf{t} &= \sqrt{\ln \frac{1}{\mathbf{Q}^2}} \\ \mathbf{c}_0 &= 2.515517 \quad \mathbf{d}_1 = 1.432788 \\ \mathbf{c}_1 &= 0.802853 \quad \mathbf{d}_2 = 0.189269 \\ \mathbf{c}_2 &= 0.010328 \quad \mathbf{d}_3 = 0.001308 \end{aligned}$$

This keystroke procedure solves for point x, given the upper tail area Q:

- 1. Input and store the following constants:
 - Key in 2.515517 (c₀) and press **STO** 0.
 - Key in 0.802853 (c₁) and press **STO** 1.
 - Key in 0.010328 (c₂) and press **STO** 2.
 - Key in 1.432788 (d₁) and press 50 3.
 - Key in 0.189269 (d_2) and press **STO** 4.
 - Key in 0.001308 (d₃) and press **STO** 5.
- Key in the given Q value, press ENTERT X 9 1/2 1 In 1 20 500 6.
- 3. Press ENTER+ ENTER+ ENTER+ RCL 5 × RCL 4+ × RCL 3+ × 1+ STO 7.
- 4. Press CLX RCL 2 \times RCL 1 + \times RCL 0 + RCL 7 \div -.
- 5. For a new Q, go to step 2.

If less accuracy is acceptable, it may be faster to arrive at x by successive approximations, using the \mathbb{ND} function to calculate Q for each estimate of x. Continue to revise your estimate of x until the calculated Q is within an acceptable tolerance.

Example: Find point x if Q = 0.12.

Press	Display	
2.515517 <mark>вто</mark> 0	2.52	
0.802853 STO 1	0.80	
0.010328 STO 2	0.01	
1.432788 STO 3	1.43	
0.189269 вто 4	0.19	
0.001308 STO 5	1.308000-03	
0.12 ENTER+ 🗵 9 1		
🚺 🔝 🔝 5то б	2.06	
ENTER+ ENTER+		
RCL 5 X RCL 4 + X		
RCL 3 + × 1 + STO 7	4.76	
CLX	0.00	
RCL 2 × RCL 1 + ×		
RCL 0 + RCL 7 ÷ -	1.18	Value of x.

Mathematical Applications

The following calculations solve problems commonly encountered in mathematical and scientific applications.

Quadratic Equation

This calculation solves for the roots x_1 , x_2 of the quadratic equation

$$ax^2 + bx + c = 0$$

- 1. Key in a, press STO 0 ENTER +.
- 2. Key in b, press XXY ÷ CHS ENTERI ENTERI
- 3. Key in c, press RCL $0 \div$ STO 1 -.
- 4. If the displayed number is positive or 0, the roots are real. Skip to step 5 for the solutions.

If the displayed number is negative, this means the roots are complex ($u \pm iv$). Press **CHS f c xy** for the value of u, and press **xy** to obtain v.

- 6. Press **RCL** 1 **XXY** \div to obtain the second root x_2 .

Example: A man stands at the top of a cliff 110 meters (361 feet) high. He throws a rock off the cliff with a velocity in the vertical direction of 20 m/s. How long will it take the rock to hit the ground? (Take the acceleration due to gravity as 9.8 m/s^2 .)

The equation to be solved is s = 1/2 gt² + v_ot + s_o where s = 0, g = -9.8, $v_o = 20$, and $s_o = 110$. Rewrite the equation as $4.9 t^2 - 20t - 110 = 0$.

The primary value for t is 7.20 seconds. (The secondary root, -3.12, is not meaningful here.)

Polynomial Evaluation

This calculation solves a polynomial of the form:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where n can be any positive integer.

The following routine calculates f(x):

- 1. Key in the value of x. Press **ENTER** three times.
- 2. Key in the value of a_n and press \times .

- 4. Key in the value of a_0 and press +. The value of f(x) is displayed.

Example: Let $f(x) = 4x^3 - x^2 + 17x - 5$. Find f (7).

```
Press
```

Display

7 ENTER+ ENTER+ ENTER+	7.00	
4 🗙	28.00	
1 CHS + ×	189.00	
17 🛨 🗵	1442.00	
5 CHS +	1437.00	f(7).

Complex Arithmetic

This keystroke procedure is designed to perform chain calculations on complex numbers of the form a + ib. The operations involved are the basic four functions: +, -, ×, ÷. For a calculation such as $(a_1 + ib_1) \times (a_2 + ib_2)$, a_1 , b_1 , a_2 , and b_2 are stored in registers R_1 , R_2 , R_3 , and R_4 , respectively. At the end of a calculation, the result u + iv is stored in registers R_1 (u) and R_2 (v). The next entry in the chain, $a_3 + ib_3$ is then keyed in and stored in registers R_3 (a_3) and R_4 (b_3).

Addition

$$(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + (b_1 + b_2)i$$

Subtraction

$$(a_1 + ib_1) - (a_2 + ib_2) = (a_1 - a_2) + (b_1 - b_2)i$$

Multiplication

$$(a_1 + ib_2) \times (a_2 + ib_2) = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

Division

$$\frac{(a_1 + ib_1)}{(a_2 + ib_2)} = \frac{r_1}{r_2} e^{i(\theta_1 + \theta_2)}, a_2 + ib_2 \neq 0$$

where $r_1 e^{i\theta_1}$ is the polar representation of $a_1 + ib_1$, and $r_2 e^{i\theta_2}$ is the representation of $a_2 + ib_2$.

These keystrokes cover addition, subtraction, multiplication, and division of complex numbers. After the first step, skip to the desired function.

- 1. Input and store the following:
 - Key in a₁ and press STO 1.
 - Key in b₁ and press STO 2.
 - Key in a₂ and press **STO** 3.
 - Key in b₂ and press sτο 4.

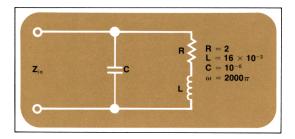
Addition

- 2. Press RCL 1 RCL 3 + to obtain the value of u.
- 3. Press RCL 2 RCL 4 + to obtain v.

Subtraction

- 2. Press RCL 1 RCL 3 to obtain the value of u.
- 3. Press RCL 2 RCL 4 to obtain v.

Multiplication


- 2. Press RCL 2 RCL 1 9 ↔P.
- 3. Press RCL 4 RCL 3 9 → P.
- 4. Press XX RV X RV + RV RV RV I to obtain the value of u.
- 5. Press **XX** to obtain v.

Division

- 2. Press RCL 2 RCL 1 9 ↔ P.
- 3. Press RCL 4 RCL 3 9 +P.
- 4. Press XXY R = R CHS R R R F G = to obtain the value of u.
- 5. Press **XX** to obtain v.

To perform another operation, press 510 2 510 1. Key in a_3 , press 510 3, key in b_3 , press 510 4, then go back to step 2 of the appropriate function.

Example:

In the above circuit, find Z_{in} if the equation is:

$$Z_{\rm in} = \frac{-\frac{500}{\pi} i (2 + 32 \pi i)}{2 + \left(32\pi - \frac{500}{\pi}\right) i}$$

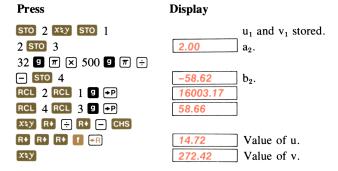
(First, multiply the complex numbers in the numerator, then divide.)

Press

Display

0 ѕто 1	0.00
500 CHS 9 7 ÷ Sto 2	-159.15
2 STO 3	2.00
32 9 T 🗙 STO 4	100.53
RCL 2 RCL 1 9 •P	159.15
RCL 4 RCL 3 9 +P	100.55
X2y R+ X R+ +	
R+ R+ R+ 1 -R	16000.00
xzy	-318.31

Value of u. Value of v.


 a_1

 b_1 a_2

 b_2

Now the problem becomes:

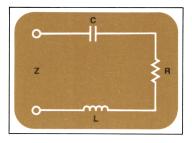
$$Z_{\rm in} = \frac{16000 - 318.31 \,\mathrm{i}}{2 + \left(32\pi - \frac{500}{\pi}\right) \,\mathrm{i}}$$

 $Z_{in} = 14.72 + 272.42 i.$

Complex Functions

This routine calculates various functions of a complex number. Let the complex number z = a + ib have polar representation re ^{i θ}. Then the functions and their formulas are as follows:

1. |z| = r. 2. $z^2 = r^2 e^{i2\theta}$. 3. $1/z = \frac{1}{r} e^{-i\theta}, z \neq 0$. 4. $\sqrt{z} = \pm (\sqrt{r} e^{i\theta/2}) = \pm (u + iv)$.


Let the answer be represented by u + iv.

The following procedures solve for |z|, z^2 , 1/z and \sqrt{z} .

- 1. Key in b, press ENTER. Key in a, press I P. The absolute value of z is displayed.
- 2. To calculate z^2 , go to step 3. To calculate 1/z, go to step 4. To calculate \sqrt{z} , go to step 5.

- 3. Press ENTERN X XXY ENTERN + XXY I PR. The value of u is displayed. Press XXY to obtain v.
- 4. Press 9 1/x XXY CHS XXY 1 FR. The value of u is displayed. Press XXY to obtain v.
- 5. Press **1** IX XX 2 ÷ XX **1** R. The value of u is displayed. Press XX to obtain v.

Example:

In the circuit above, the impedance Z is given by

$$z = 2 + i \left(\omega L - \frac{1}{\omega C} \right)$$


Given R = 2, L = 16 \times 10⁻³, C = 1.5 \times 10⁻⁶, ω = 2000 π , the formula becomes

$$z = 2 + i \left(32\pi - \frac{1000}{3\pi} \right)$$

The admittance Y of the circuit is defined as

$$Y = 1/z$$

Find Y and |Y|.

Y = 1/z = 0.06 + 0.16 i.

$$|\mathbf{Y}| = 0.17.$$

Vector Cross Product

If $A = (a_1, a_2, a_3)$ and $B = (b_1, b_2, b_3)$ are two three-dimensional vectors then the cross product of A and B is calculated as follows:

$$A \times B = \left(\begin{array}{c|c} a_2 & a_3 \\ b_2 & b_3 \end{array} \right|, - \left| \begin{array}{c} a_1 & a_3 \\ b_1 & b_3 \end{array} \right|, \left| \begin{array}{c} a_1 & a_2 \\ b_1 & b_2 \end{array} \right| \right) = \\ (a_2 & b_3 - a_3 & b_2, a_3 & b_1 - a_1 & b_3, a_1 & b_2 - a_2 & b_1) \end{array}$$

and the solution is represented by (c_1, c_2, c_3) .

This procedure calculates the cross product (c_1, c_2, c_3) of two vectors.

- 1. Input and store the following:
 - Key in a₁, press STO 1.
 - Key in a₂, press **STO** 2.
 - Key in a_3 , press **STO** 3.
 - Key in b₁, press STO 4.
 - Key in b₂, press **STO** 5.
 - Key in b₃, press **STO** 6.
- 2. Press RCL 2 RCL 6 \times RCL 3 RCL 5 \times -. The value of c_1 is displayed.

- 3. Press RCL 3 RCL 4 \times RCL 1 RCL 6 \times -. The value of c_2 is displayed.
- Press RCL 1 RCL 5 x RCL 2 RCL 4 x −. The value of c₃ is displayed.

Example: The force F on a particle with charge q which is moving with a velocity \vec{v} through a magnetic field \vec{B} is given by $F = q \vec{v} \times \vec{B}$. Suppose a proton (q = 1.6 × 10⁻¹⁹ coulomb) is moving with $\vec{v} = (0.4, 2.8, -1.2) \times 10^7$ m/s. A uniform magnetic field surrounding the proton is of a strength $\vec{B} = (1.3, -0.3, 0.7)$ tesla. Calculate the force on the proton.

This can be written as $F = q \vec{v} \times \vec{B} = (1.6 \times 10^{-19}) (10^7) (0.4, 2.8, -1.2) \times (1.3, -0.3, 0.7) N.$

Press	Display	
0.4 STO 1	0.40	a ₁ .
2.8 STO 2	2.80	a ₂ .
1.2 CHS STO 3	-1.20	a ₃ .
1.3 STO 4	1.30	$b_1.$
0.3 CHS STO 5	-0.30	$b_2.$
0.7 STO 6	0.70	b ₃ .
RCL 2 RCL 6 X RCL 3		
RCL 5 X -	1.60	c ₁ .
RCL 3 RCL 4 X RCL 1		
RCL 6 🗙 —	-1.84	c ₂ .
RCL 1 RCL 5 X RCL 2		
RCL 4 × -	-3.76	c ₃ .

The solution then becomes:

$$F = (1.6 \times 10^{-12}) (1.60, -1.84, -3.76) N$$
$$= (2.56, -2.94, -6.02) \times 10^{-12} N.$$

This is about 4×10^{14} times the weight of the proton.

Vector Dot Product

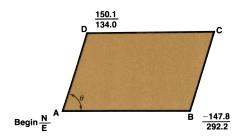
Let $\vec{a} = (a_1, a_2, ..., a_n)$ and $\vec{b} = (b_1, b_2, ..., b_n)$ be two vectors. The norm of a is denoted by $|\vec{a}|$ and the norm of \vec{b} is denoted by $|\vec{b}|$ where

$$\begin{split} |\vec{a}| &= \sqrt{a_1{}^2 + a_2{}^2 + \ldots + a_n{}^2} \\ |\vec{b}| &= \sqrt{b_1{}^2 + b_2{}^2 + \ldots + b_n{}^2} \end{split}$$

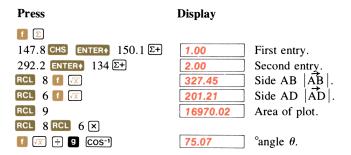
The dot product of \vec{a} and \vec{b} ($\vec{a} \cdot \vec{b}$) is calculated by the following formula:

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n.$$

The angle between a and b is denoted by θ and is calculated by the following formula:


$$\theta = \cos^{-1} \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} \right)$$

The angle is calculated in any angular mode. When calculated in degrees, decimal degrees are assumed.


This procedure calculates the vector dot product and angle θ .

- 1. Press 🚺 🗵 .
- Key in a₁, press ENTER↓. Key in b₁, press E+. Repeat this step for all values of a and b.
- 3. Press **RCL** 8 **I** $\overline{\mathbf{x}}$ to obtain $|\vec{\mathbf{a}}|$.
- 4. Press **RCL** 6 **1** $\overline{\mathbb{C}}$ to obtain $|\vec{\mathbf{b}}|$.
- 5. Press **RCL** 9 for the dot product $\vec{a} \cdot \vec{b}$.
- 6. Press RCL 8 RCL 6 \times 1 $\overline{}$ $\overline{}$ $\overline{}$ 9 $\overline{}$ cos⁻¹ for angle θ .

Example: A surveyor has determined the coordinates of three corners of a plot of land in the shape of a parallelogram. He now wants to find the area of the plot, the lengths of the sides, and the angle θ .

Solution: Area = $\overrightarrow{AB} \cdot \overrightarrow{AD} = (-147.8, 292.2) \cdot (150.1, 134.0)$

Determinant and Inverse of a 2 imes 2 Matrix

Let A =
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 be a 2 × 2 matrix.

The determinant of A denoted by Det A or |A| is evaluated by the following formula:

$$Det A = a_{22} a_{11} - a_{12} a_{21}.$$

The HP-27 also calculates the multiplicative inverse A^{-1} of A according to the following formula:

$$A^{-1} = \begin{bmatrix} a_{22}/\text{Det } A & -a_{12}/\text{Det } A \\ -a_{21}/\text{Det } A & a_{11}/\text{Det } A \end{bmatrix}$$

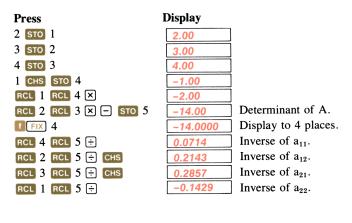
This procedure calculates the determinant of a 2 \times 2 matrix and an inverse matrix such that you can calculate A⁻¹.

- 1. Input and store the following:
 - Key in a_{11} and press **STO** 1.
 - Key in a₁₂ and press **STO** 2.
 - Key in a_{21} and press STO 3.
 - Key in a₂₂ and press 50 4.
- 2. Press RCL 1 RCL 4 X RCL 2 RCL 3 X STO 5. The determinant of A is displayed.
- 3. Press **RCL** 4 **RCL** 5 \div . The inverse of a_{11} is displayed.
- 4. Press RCL 2 RCL 5 \div CHS. The inverse of a_{12} is displayed.
- 5. Press RCL 3 RCL 5 \div CHS . The inverse of a_{21} is displayed.
- 6. Press **RCL** 1 **RCL** 5 \div . The inverse of a_{22} is displayed.

Example: Given a pair of simultaneous linear equations in two unknowns,

$$2x + 3y = 21$$
$$4x - y = 7$$

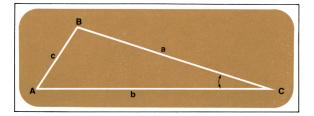
Another way to write the equations is in terms of matrices:


$$\begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 21 \\ 7 \end{bmatrix}$$

Rewriting the matrix equation gives

$$\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} 21 \\ 7 \end{bmatrix}$$
$$A = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$$

where

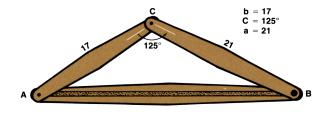

and A^{-1} is the multiplicative inverse of A. Find Det A and A^{-1} .

$$\mathbf{A}^{-1} = \begin{bmatrix} 0.0714 & 0.2143\\ 0.2857 & -0.1429 \end{bmatrix}$$

Triangle Solution a,b,C

Given two sides (a and b) and their included angle C, this calculation solves for the third side and other two angles.

$$c = \sqrt{a^2 + b^2 - 2ab \cos C}$$

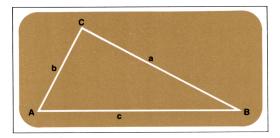

$$A = \tan^{-1} \left(\frac{a \sin C}{b - a \cos C} \right)$$

$$\mathbf{B} = \cos^{-1} \left[-\cos \left(\mathbf{A} + \mathbf{C} \right) \right]$$

These keystrokes work in any angular mode. However, if in degrees, decimal degrees are assumed.

- 1. Key in b, press **STO** 0.
- 2. Key in angle C, press STO 1.
- 3. Key in a, press 1 RCL 0 XXX 9 The length of the third side (c) is displayed.
- 4. Press **XX** to obtain angle A.
- 5. Press **RCL** 1 \div **1 COS CHS 9 COS**⁻¹ to obtain angle **B**.

Example: A mechanical linkage is to be designed so that arms AC and CB are pinned at point C. Point B is able to slide along the base, hence changing the angle C. At its maximum extension, angle C is to have a value of 125° . If the arms AC and BC have lengths 17 cm and 21 cm, respectively, what is the minimum length of the base (side AB)?



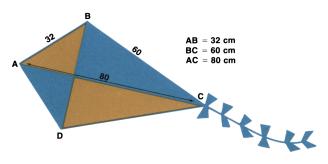
Display	
17.00	
125.00	
33.76 Value o	fc.
30.64 °angle A	\ .
24.36 °angle I	3.
	17.00 125.00 33.76 Value o 30.64 °angle A

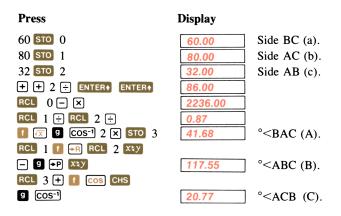
The side AB must be at least 33.76 cm in length.

Triangle Solution a,b,c

Given three sides (a, b and c), of a triangle, this calculation solves for the three angles.

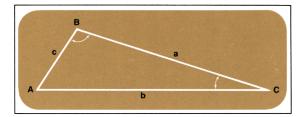
$$A = 2\cos^{-1}\left(\sqrt{\frac{S(S-a)}{bc}}\right)$$


where
$$S = (a + b + c)/2$$


$$B = \tan^{-1} \left(\frac{b \sin A}{c - b \cos A} \right)$$
$$C = \cos^{-1} \left[-\cos (A + B) \right]$$

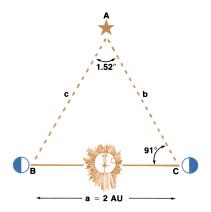
These keystrokes work in any angular mode. However, if in degrees, all angles are assumed to be in decimal degrees.

- 1. Input and store the following:
 - Key in side a, press **STO** 0.
 - Key in side b, press STO 1.
 - Key in side c, press **STO** 2.
- 2. Press + + 2 \div ENTER ENTER RCL 0 \times .
- 3. Press RCL 1 ÷ RCL 2 ÷ 1 ☑ 9 Cos⁻¹ 2 × STO 3. The value of angle A is displayed.
- 4. Press RCL 1 1 RCL 2 XXY 9 P XXY. The value of angle B is displayed.
- 5. Press RCL 3 + 1 Cos CHS 9 Cos⁻¹ to obtain angle C.

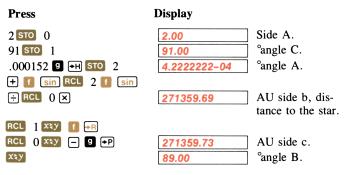

Example: You decide to make a kite with the dimensions shown below. Calculate the angles <ACB, <BAC, and <ABC.

Triangle Solution a,A,C

Given two angles (A and C) and an opposite side (a), this calculation solves for the third angle and the other two sides.

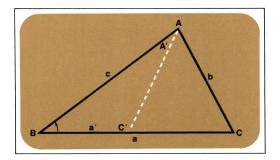

$$B = 180^{\circ} - (A + C) = 200 \text{ grads} - (A + C)$$

$$b = \frac{a \sin B}{\sin A}$$
$$c = \frac{a \sin C}{\sin A}$$


These keystrokes work in any angular mode. However, if in degree mode, all angles are assumed to be in decimal degrees.

- 1. Input and store the following:
 - Key in side a, press 500 0.
 - Key in angle C, press **50** 1.
 - Key in angle A, press STO 2.
- 2. Press + \bigcirc sin \bigcirc **RCL** 2 \bigcirc sin \bigcirc **RCL** 0 \times to obtain side B.
- 3. Press RCL 1 XXY [TRUE 0 XXY 9 P to obtain side c.
- 4. Press xxy to obtain angle B.

Example: An astronomer trying to determine the distance from the earth to a nearby star, photographs the star at approximately sixmonth intervals and records the data as shown below.

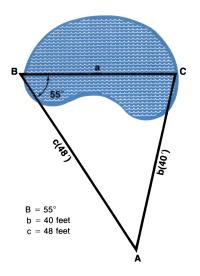


Find the distance b from the earth to the star, given that the mean distance of the earth from the sun is 1 astronomical unit (AU). (Note that A = 1.52 seconds must be converted to decimal degrees.)

Triangle Solution B,b,c,

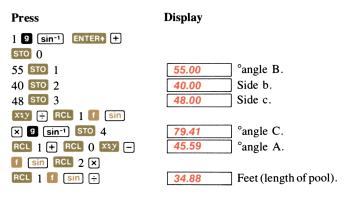
Given two sides (b and c) and a non-included angle (B), this calculation solves for the remaining two angles and the third side.

$$C = \sin^{-1} \left(\frac{c \sin B}{b} \right)$$


A = $2 \sin^{-1} - (B + C) = \pi \text{ radians} - (B + C) = 180^{\circ} - (B + C)$ = 200 grads - (B + C) a = $\frac{b \sin A}{\sin B}$ If angle B is acute $(<90^{\circ})$ and side b < side c, a second set of solutions exists. Therefore, you would also solve for A', C' and a'.

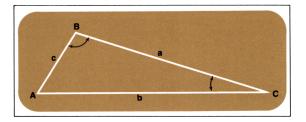
$$C' = 2 \sin^{-1} 1 - C$$

 $A' = 2 \sin^{-1} 1 - (B + C')$
 $a' = \frac{b \sin A'}{\sin B}$


These keystrokes work in any angular mode. However, if in degrees, decimal degrees are assumed.

- 1. Press 1 9 sin⁻¹ ENTER + STO 0.
- 2. Input and store the following:
 - Key in angle B, press **STO** 1.
 - Key in side b, press **STO** 2.
 - Key in side c, press **STO** 3.
- 3. Press ₩ ÷ RCL 1 f sin x 9 sin⁻¹ sto 4. Angle C is displayed.
- 4. Press RCL 1 + RCL 0 XXY to obtain angle A.
- 5. Press 1 sin RCL 2 × RCL 1 1 sin ÷ to obtain side a.
- If side b < side c, a second set of solutions exist. Press RCL 0 RCL 4 to find C'. Repeat steps 4 and 5 to find A' and a'.

Example: A landscape designer discovers Zen and decides to transform the backyard of his palacial Beverly Hills mansion into a Japanese garden. The heart of the transformation will be the conversion of his kidney-shaped swimming pool into a goldfish pond spanned by a stone bridge. To find the length of the pool and still stay dry, the designer makes measurements as shown in the diagram.


Calculate angles A and C and find the length of the pool.

The alternate solution is $C' = 100.59^{\circ}$, $A' = 24.41^{\circ}$, and a' = 20.18 ft. This solution, however, does not fit the diagram.

Triangle Solution a, B, C

Given two angles (B and C) and their included side (a), this calculation solves for the third angle and the other two sides.

 $A = 180^{\circ} - (B + C) = 200 \text{ grads} - (B + C)$

$$b = \frac{a \sin B}{\sin A}$$

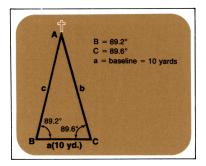
$$c = \frac{a \sin C}{\sin A}$$

These keystrokes work in any angular mode. However, if in degrees, decimal degrees are assumed.

- 1. Press 1 9 sin⁻¹ ENTER +.
- 2. Key in angle B, press 5000 -.
- 3. Key in angle C, press **STO** 1 . Angle A is displayed.
- 4. Key in side a. Press XXY [Sin ÷ STO 2 RCL 0] Sin X. Side b is displayed.
- 5. Press RCL 2 RCL 1 f sin \times to obtain side c.

Example: Alice and her mother were lying in the new spring grass on a hill overlooking the town. It was early morning and Venus was still visible near the Eastern horizon.

"Mommy," Alice mused, "how far away is that star?"


"I don't know, dear. But it's not really a star; it's a planet."

"Oh. Well, how far away is the sky?"

"The sky is everywhere. It starts right here and keeps going up and up and up."

"Oh, Mommy!" Alice sounded exasperated. "Then how far away is that church?" She pointed to a steeple that rose above the trees not far from the base of their hill.

"Ah, that we can find," her mother said, and jumped up. "Come on." They ran back to the house and returned shortly with a yardstick, string, a protractor, and some stakes. Within minutes they'd staked out a baseline 10 yards long, and measured the angle from each end point of the baseline to the steeple. The measurements they made are shown below:

With these measurements, can you tell Alice how far away the steeple is?

Press	Display
1 9 sin-1 ENTER+ +	
89.2 500 0 -	
89.6 STO 1 –	1.20 °angle A.
10 XXY 1 Sin ÷ STO 2	
RCL 0 1 sin ×	477.45 Yards (side b).
RCL 2 RCL 1 f sin ×	477.49 Yards (side c).

The steeple is about 475 yards away.

Angle Conversions: degrees \rightleftharpoons radians

Let D be an angle in degrees, R the same angle in radians.

$$D = \frac{180}{\pi} R.$$
$$R = \frac{\pi}{180} D.$$

To convert degrees to radians:

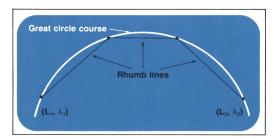
- 1. Press 9 180 . Press ENTER4 three times.
- 2. Press **CLX**, key in the degree value and press **X**. The value of the angle in radians is displayed.
- 3. For a new degree value, go to step 2.

To convert radians to degrees:

- 2. Press **CLX**, key in the radian value, and press **X**. The value of the angle in degrees is displayed.
- 3. For a new radian value, go to step 2.

Examples: Convert 1° to radians.

Press			Display
9 闭 180 ÷			
ENTER+ ENTER+	ENTER+	CL X	0.00


1 🗙	0.02	Radians.
Convert 240° to radians. CLX 240 ⊠	4.19	Radians.
Convert 1 radian to degrees. 180 9	0.00 57.30	Degrees.
Convert $\frac{3}{4} \pi$ radians to degrees. CLX 3 ENTER 4 \div 9 π X X	135.00	Degrees.

Navigation Applications

The following procedures describe how to calculate a rhumb line course, great circle navigation, and a sight reduction table.

Rhumb Line Navigation

A rhumb line is a curve on the surface of a sphere that cuts all meridians at the same angle.

Your HP-27 can calculate the rhumb line distance and course between two points on the earth. You can link successive legs without keying in the initial latitude and longitude again. (Accuracy deteriorates for very short legs.) Northern latitudes and western longitudes are keyed in and displayed as positive values. Southern latitudes and eastern longitudes are keyed in and displayed as negative values.

To avoid getting incorrect results computing distances due east or due west across the international dateline, compute up to the dateline, then proceed on the other side.

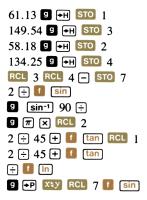
No course should pass through the North or South Pole. Also, as the rhumb line course approaches 90° or 270° , you may encounter errors in the distance calculations.

The following keystrokes calculate a rhumb line course (C) and rhumb line distance (DIST):

- 1. Key in latitude of initial point (L₁). Press \bigcirc \bigcirc \bigcirc 1.
- 2. Key in longitude of initial point (λ_1) . Press **9** \rightarrow H **STO** 3.
- 3. Key in the next latitude, and press 9 1 500 2.
- 4. Key in the next longitude, and press 9 4.
- 5. Press RCL 3 RCL 4 STO 7.
- 6. Press 2 ÷ **1** sin **9** sin⁻¹ 90 ÷ **9 π** × ℝCL 2.
- 7. Press 2 ÷ 45 + 1 tan RCL 1.
- 8. Press 2 ÷ 45 + 1 tan ÷ 1 In.
- 9. Press 9 P XXY RCL 7 1 sin 9 sin-1.
- 10. If the number on the display is positive, press xxy to obtain C (rhumb line course) in decimal degrees.

If the displayed number is negative, press $360 \pm$ to obtain C in decimal degrees.

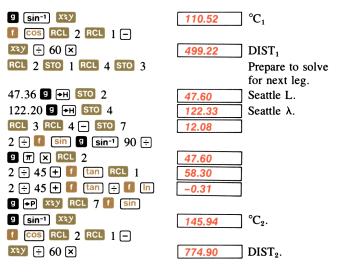
- 12. Press RCL 2 RCL 1 XXY ÷ 6 × to obtain the distance (DIST) in nautical miles. Go to step 14.
- Press RCL 7 RCL 2 I Cos x 60 x to obtain the distance (DIST) in nautical miles.
- 14. To solve for the course and distance of another leg, press RCL 2 STO 1 RCL 4 STO 3 and return to step 3.


136 Navigation Applications

Example: Find the distances and headings for a flight from Anchorage, Alaska, to Juneau, Alaska, to Seattle, Washington.

Anchorage	L 61°13′N	λ 149°54′W
Juneau	L 58°18′N	λ 134°25′W
Seattle	L 47°36′N	λ 122°20′W

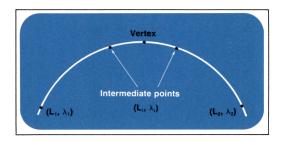
Press



Display

61.22	Anchorage L.
149.90	Anchorage λ .
58.30	Juneau L.
134.42	Juneau λ.
15.48	

58.30	
61.22	



Anchorage to Juneau $C = 110.52^{\circ}$ DIST = 499.22 naut. miles. Juneau to Seattle $C = 145.94^{\circ}$ DIST = 774.90 naut. miles.

Great Circle Navigation

This method of navigation involves travelling between two points according to the arc of a great circle.

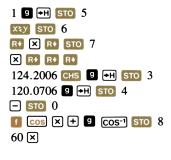
This procedure calculates the great circle distance and initial course for the great circle track between two points on the earth. You can also calculate the coordinates of the vertex, the distance from the initial point to the vertex, and the latitude where a longitude line and the great circle track intersect.

Northern latitudes and western longitudes are keyed in and displayed as positive values; southern latitudes and eastern longitudes, as negative values.

No point on a leg should be at either the North or South Pole. Nor should a leg pass more than halfway around the earth. Points located at diametrically opposite sides of the earth should not be used because there are an infinite number of great circle courses through such points.

These keystrokes solve for the great circle distance (DIST) in nautical miles; the initial course (C_i) ; the longitude (λ_v) and latitude (L_v) of the vertex; the distance (DIST_v) from the initial point to the vertex; and the latitude (L_i) when an intermediate longitude is known.

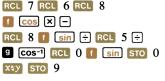
- 1. Key in the latitude of your destination. Press 9 1 500 2, then press 1 1 1.
- 2. Key in the latitude of your starting point. Press 9 ••• 500 1, then press 1 1 ••• 500 5.
- 3. Press XXY STO 6 R+ X R+ STO 7 X R+ R+ R+.
- 4. Key in the longitude of the starting point, and press **1 ••• STO** 3.
- 5. Key in the longitude of the destination, and press 9 H STO 4.
- 6. Press STO 0 1 Cos x + 9 Cos 3 8. Press 60 x. The great circle distance (DIST) is displayed.
- 7. Press RCL 7 RCL 6 RCL 8 1 COS X -.
- 9. If the number on the display is positive, press x 510 9 to obtain the great circle course (C_i). If the displayed number is negative, press x 360 x 9 = 510 9 to obtain C_i.
- 10. Press RCL 1 1 tan STO 1.


- 11. Press RCL 2 [Im STO 2. If you don't want to find the coordinates of the vertex, skip to step 17.
- 12. Press RCL 4 RCL 1 **f** \rightarrow R XXY RCL 3 RCL 2 **f** \rightarrow R R \neg R \neg R \land R \rightarrow \rightarrow **g** tan \neg ENTER **f** \rightarrow HMS. The longitude of the vertex (λ_v) is displayed.
- 13. If λ_v is negative, press 22 180 + f +HMS to obtain the alternate vertex longitude (λ_v'). If λ_v is positive, press 22 180 f +HMS to obtain the alternate vertex longitude (λ_v').
- 14. To calculate the latitude of the vertex (L_v) , let $\lambda_i = \lambda_v$ or λ_v' . Key in λ_i and press **9 •H ENTER• ENTER• .**
- 15. Press RCL 4 f sin RCL 1 × ××y.
- 16. Press RCL 3 f sin RCL 2 × RCL 0 ÷ 9 tan⁻¹
 f →HMS. The latitude of the vertex (L_v) or of any intermediate point is displayed (depending whether you keyed in λ_v or λ_i).
- 17. To calculate the distance to the vertex, press 9 ↔ f sin RCL 9 f cos RCL 5 x ÷ 9 ½ 9 sin⁻¹ 60 x. The distance from the initial point to the vertex (DIST_v) in nautical miles is displayed.

Example: A ship is proceeding from Manila to Los Angeles. The captain wishes to sail a great circle course from the entrance of San Bernardino Strait, $L12^{\circ}45'12'N$, $\lambda 124^{\circ}20'06''E$ (input as negative), to $L33^{\circ}48'48''N$, $\lambda 120^{\circ}07'06''W$, five miles south of Santa Rosa Island.

Find the initial great circle course and great circle distance, the latitude and longitude of the vertex, and the distance from the initial point to the vertex.

Press	Display
33.4848 9 H STO 2	33.81
1 🚺 🖃	0.83
12.4512 9 •H STO 1	12.75


140 Navigation Applications

0.81]
-124.34]
120.12]
-244.45	
103.10	
6185.88]

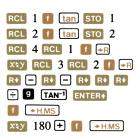
Great circle distance.

0 00

0.30	
50.32	
00.02	

Great circle course (decimal degrees).

0.23	
0.67	





160.57	
0.23	Ĵ

41.21	L_v (L_i).
50.32]
0.94]
4228.83	Distance _v .

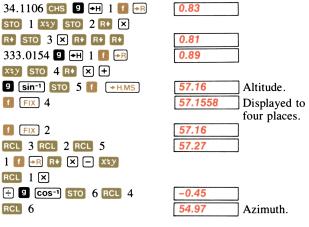
Sight Reduction Table

Given the observer's latitude and both the declination and local hour angle (LHA) of a celestial body, you can calculate the azimuth and altitude of the body.

Northern latitude, northern declinations and western hour angles are input as positive values. Southern latitudes, southern declinations, and eastern hour angles are input as negative values.

The keystrokes are as follows:

- 1. Key in the declination, and press 🛽 🕶 1 🚺 🔙.
- 2. Key in the observer's latitude, and press 9 1 1 1 R.
- 3. Press STO 1 XXY STO 2 RV X RV STO 3 X RV RV RV.
- 4. Key in the local hour angle (LHA), and press **9 •**H **1 1 1 •**R .
- 5. Press XXY STO 4 RV X + 9 Sin⁻¹ STO 5 1 +HMS. The computed altitude of the celestial body is displayed.
- 6. Press RCL 3 RCL 2 RCL 5. Press 1 1 🕶 Rt 🗶 🙁
- 7. Press RCL 1 \times \div 9 cos⁻¹ STO 6 RCL 4.
- 8. If the displayed value is positive, press 360 RCL 6 to obtain the azimuth of the body in decimal degrees.


If the displayed value is negative, press **RCL** 6 to obtain the azimuth.

This procedure may also be used for star identification. Input the azimuth in place of LHA and the observed altitude in place of declination, and your outputs are declination and LHA respectively. You can then identify the star by comparing this computed declination to the list of stars in *The Nautical Almanac*.

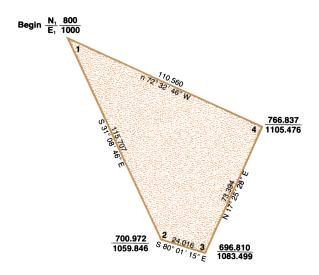
Example: Compute the altitude and azimuth of the sun if its LHA is $333^{\circ}01'54''W$ and its declination is $12^{\circ}28'06''S$ (input as negative). The assumed latitude is $34^{\circ}11'06''S$ (input as negative).

Press	Display
12.2806 CHS 9 H 1	
f →R	0.98

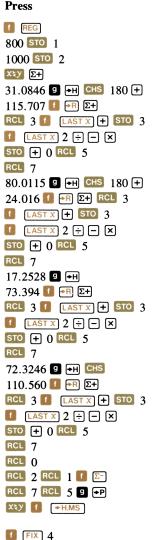
142 Surveying Applications

Altitude = $57^{\circ}15'58''$ Azimuth = 54.97°

Surveying Applications


Bearing Traverse

This procedure uses bearing and distances to calculate the coordinates of successive points in a traverse. Area, closing distance, and closing azimuth can be calculated for a closed traverse.


- 1. Press 🚺 📧.
- 2. Key in the northing of your starting point (N_1) and press stop 1.
- 3. Key in the easting of the starting point (E_1) and press **STO** 2 **STY** Σ +.
- 4. Input one of the following:
 - Key in the NE bearing, and press 9 H.
 - Key in the SE bearing, and press 9 → H CHS 180 +.
 - Key in the NW bearing, and press 9 H CHS.
 - Key in the SW bearing, and press 9 🕶 180 🛨.
- 5. Input either of the following:
 - Key in the horizontal distance.
 - Key in the slope distance, and press ENTER: Next, key in the zenith angle, and press 9 1 1 sin ×.

- 6. Press **[**] → ℝ Σ+ ℝCL 3 **[**] LAST x + **STO** 3.
- 7. Press \blacksquare LAST X 2 \div X STO + 0.
- 8. Press RCL 5 to obtain northing of the second point. Press RCL 7 to obtain the easting of the second point.
- 9. Repeat steps 4 thru 8 for each successive leg on the traverse.
- 10. Press RCL 0 to obtain the area. (Ignore the sign if your answer is negative.)
- 11. Press RCL 2 RCL 1 f E RCL 7 RCL 5 9 P to obtain the closing horizontal distance.
- 12. Press XX I HMS to obtain the closing azimuth. (If your answer is negative, add 360°.)

Example: Given the following closed traverse, find the closing northing, easting, azimuth, and distance, as well as the area.

144 Surveying Applications

Display

700.97	N_2
1059.85	E_2
99.98	

766.84	N_4
1105.48	E_4
-72.55	
5.00	
-2.3909900-03	

800.00	
1000.01	
-5104.08	
4.00	
0.01	
109.05	
109.0549	

Closing N. Closing E. Area.

Closing HD. Closing azimuth.

```
Closing N = 800

Closing E = 1000.01

Area = 5104.08 sq. feet

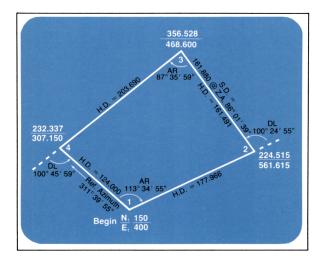
Closing Horizontal Distance = 0.01 feet

Closing Azimuth = 109^{\circ}05'49''
```

Field Angle Traverse

In the previous application, you used a bearing with respect to a reference line to calculate the coordinates of a point. With field angle traverse, you use an angle with respect to the previous side.

This procedure uses angles or deflections and distances to calculate coordinates of successive points in a traverse. Area, closing distance, and closing azimuth can be calculated for a closed traverse.


- 1. Press 🚺 📧.
- 2. Key in the initial easting (E_1) , and press **ENTER***. Key in the initial northing (N_1) , and press Σ +.
- 3. Key in the reference azimuth, and press 9 H 180 + STO 1.
- 4. Input one of the following:
 - Key in the right angle, press **9 •H** 180 **+**.
 - Key in the left angle, press 9 H CHS 180 +.
 - Key in the right deflection, press 9 H.
 - Key in the left deflection, press 9 H CHS.
- 5. Press RCL 1 + STO 1.
- 6. Input one of the following:
 - Key in the horizontal distance.
 - Key in the slope distance, and press ENTER3. Key in the zenith angle, and press ③ →H 【 Sin ★.
- 7. Press 🚺 📲 Σ+ .
- 8. Omit this step if area is not calculated. Press RCL 3 1 [LAST X]

```
+ STO 3 1 LAST X 2 ÷ - × STO + 2.
```

9. Press RCL 5 for N.

- 10. Press RCL 7 for E.
- 11. Repeat steps 4 thru 10 for all points.
- 12. Press RCL 2 for area.
- 13. For closing horizontal distance and azimuth, key in E₁ again and press ENTER*
 Key in N₁ again and press I Press RCL 7
 RCL 5 9 P to obtain closing HD.
- 14. Press XXX I HMS to obtain the closing azimuth. (If negative, add 360° by pressing 360 I HMS+.)

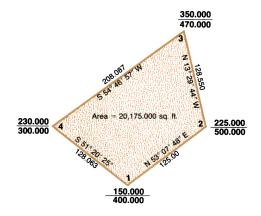
Example: Given the following traverse, calculate the northings, eastings, closing horizontal distance, and closing azimuth.

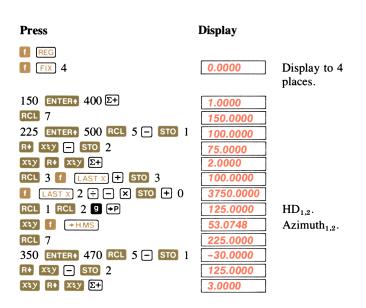
Press

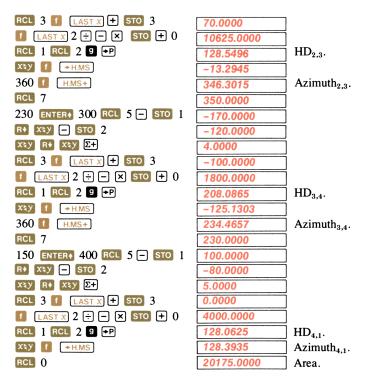
Display

1.00]
491.67 293.58 785.25 2.00 224.52 561.61 -100.42 684.83	N2 E2
86.03 161.49	
3.00 356.53 468.60	N ₃ E ₃
267.60 952.43 4.00	
232.34 307.15 -100.77	N ₄ E ₄
851.67 5.00	
149.90 399.78 4.00	
0.24	Closing HD.
246.19 246.1943	Closing azimuth. Displayed as HH. MMSS.

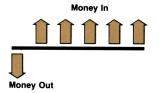
Inverse from Coordinates

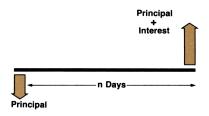

The previous two applications solved for coordinates of a traverse. This procedure uses the coordinates to calculate the distance and azimuth between points. Area can be calculated for a closed traverse.


- 1. Press 🚺 📧.
- 2. Key in N₁, press **ENTER4**, key in E₁, and press Σ +.
- 3. Press RCL 7.
- 4. Key in the next N, and press ENTER. Key in the next E, and press RCL 5 STO 1 R. XXY STO 2 XXY R. XXY Σ+.
- 5. If area is to be calculated, skip to step 6. If area is not calculated, press 1 LAST 2 P to obtain the horizontal distance. Press
 *** 1 HMS to obtain the azimuth. (If negative, add 360°.) Return to step 3 for next N and next E.
- 6. Press RCL 3 1 LAST x + STO 3.
- 7. Press 1 LAST 2 ÷ X STO + 0 RCL 1 RCL 2 9 P to obtain the horizontal distance.
- Press I [+HMS] to obtain the azimuth. (If negative, add 360°.) Return to step 3 for next N and E, and repeat until N₁ and E₁ have been keyed in again.
- 9. Press RCL 0 to obtain the area.

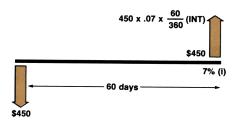

Once the azimuth is calculated, you can convert azimuth (in H.MS) to bearing (in H.MS) as follows:

Azimuth	Bearing
0° to 90°	NE.
90° to 180°	SE, press CHS 180 f (HMS+).
180° to 270°	SW, press 180 (-).
270° to 360°	NW, press CHS 360 f (HMS+).


Example: Calculate the distance and azimuth between points for the following traverse and solve for area.


Throughout the following text are cash flow diagrams associated with the financial problems. A cash flow diagram is simply a picture of money in and money out.

If the solution to your problem isn't evident, ask yourself, "What are the cash flows?" Construct a cash flow diagram; then look for a similar diagram in this applications section.


Simple Interest—360 and 365 Days

This calculation finds the amount of accrued simple interest on either a 360-day or 365-day basis when the number of days, interest rate, and principal (present value) are known.

- 1. Key in the number of days, press ENTER.
- 2. Key in 360 or 365 (whichever base you prefer to use), press ÷.
- 3. Key in principal, press 🗵.
- 4. Key in interest rate (as a decimal), press 🗵.

Example 1: Your good friend needs a loan to start his latest enterprise. He has requested that you lend him \$450 for 60 days. You lend him the money at 7% simple interest, based on a 360-day year. What is the amount of accrued interest he will owe you in 60 days?

Press	Display
60 ENTER+ 360 ÷	0.17
450 🗙	75.00
07 🛛	5.25

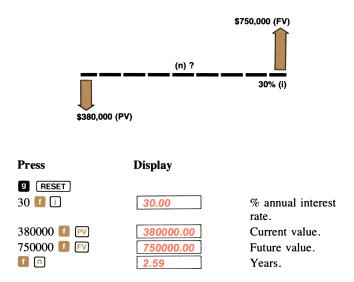
Accrued interest.

Example 2: What is the accrued interest on \$450 for 60 days at 7%, figured on a 365-day year?

Press	Display
60 ENTER+ 365 ÷	0.16
450 🗙	73.97
.07 🗙	5.18

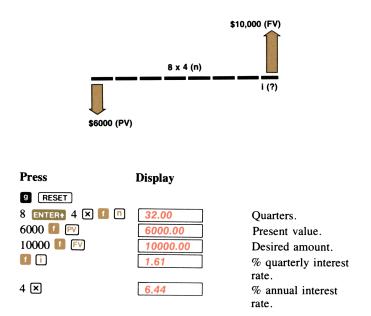
Accrued interest.

Compound Interest


The following calculations deal with a lump sum deposit or investment, subject to multiple compounding of interest.

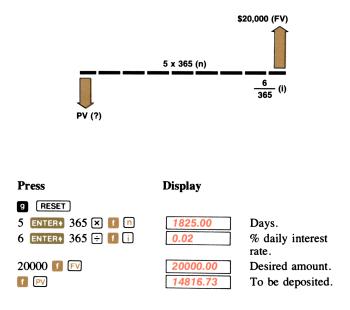
Number of Periods in a Compounded Amount. This calculation finds the number of compounding periods (n) when the interest rate (i), initial principal (present value) and compounded amount (future value) are given.

- 1. Press 9 RESET.
- 2. Input the following in any order:
 - Key in the periodic interest rate, press []. 23
 - Key in the present value, press 1 PV. 2
 - Key in the future value, press 🚺 🖭.
- 3. Press **[**] n to obtain the number of periods.


Example: A potential development site currently appraised at \$380,000 appreciates at 30% per year. If this rate continues, how many years will it be before this land is worth \$750,000?

Interest Rate for Compounded Amounts. Given the initial amount, future value, and number of time periods, this calculates the interest rate:

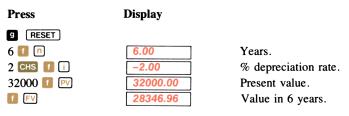
- 1. Press 9 RESET.
- 2. Input the following in any order:
 - Key in the number of periods, press
 - Key in the present value, press
 Image: PV.
 - Key in the future value, press 🚺 🖾.
- 3. Press 🚺 📋 to obtain the periodic interest rate.
- 4. Key in the number of periods per year, press imes to obtain an annual interest rate.


Example: What annual interest rate must be obtained to amass \$10,000 in 8 years on an investment of \$6000, with quarterly compounding?

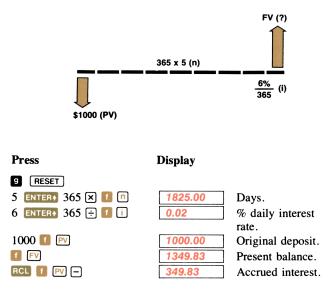
Present Value of a Compounded Amount. This calculation finds the present value of a future amount "discounted back" at a given rate for a specified number of periods.

- 1. Press 9 RESET.
- 2. Input the following in any order:
 - Key in the number of periods, press 🚺 🖻.
 - Key in the periodic interest rate, press
 - Key in the future value, press 🚺 🕅.
- 3. Press 🚺 🖭 to obtain the present value.

Example: In 5 years when your son starts college, you will need \$20,000. You deposit a lump sum in a certificate account that earns 6% compounded daily. How much do you need to deposit today to reach that goal?



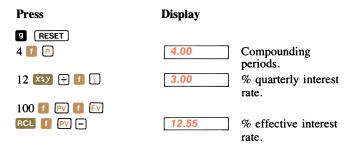
Future Value of a Compounded Amount. This calculation finds the future value of an initial amount compounded at a given rate for a specified number of periods.


- 1. Press 9 RESET.
- 2. Input the following in any order:
 - Key in the number of periods, press 🚺 🖻.

 - Key in the present value, press
 Image: Image:
- 3. Press 🚺 F to obtain the future value.

Example 1: Property values in an unattractive area are declining at the rate of 2% per year. If your property is presently valued at \$32,000, what will it be worth in 6 years if this trend continues?

Example 2: The local trading post manager opened up a savings operation 5 years ago, offering 6% compounded daily. Gold miner Yellowstone Sam deposited \$1000 at that time, and now wants to know his present balance and the total accrued interest after all this time.



Interest Rate Conversions

Nominal Rate Converted to Effective Rate. Given a nominal interest rate and the number of compounding periods per year, this keystroke procedure computes the effective annual interest rate.

- 1. Press 9 RESET.
- 2. Key in the number of compounding periods per year, press [] [n].
- 3. Key in the nominal rate, press 💷 🕂 🚺 🗋 .
- 4. Key in 100, press 🚺 🖭.
- 5. Press 🚺 🖭.
- 6. Press RCL 1 PV to obtain effective annual rate.

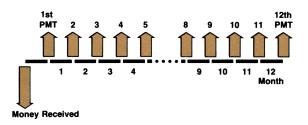
Example: What is the effective annual rate of interest if the annual nominal rate of 12% is compounded quarterly?

Add-on Interest Rate Converted to APR. An add-on interest rate determines what portion of the principal will be added on for repayment of a loan. This sum is then divided by the number of months in the loan to determine the monthly payment. For example, a 10% add-on rate for 36 months on \$3000 means add one-tenth of \$3000 for 3 years (300×3). This is usually called the "finance charge." The total (\$3900) is divided by the number of payments (36) to obtain the monthly payment (\$108.33).

This keystroke procedure converts an add-on interest rate to an annual percentage rate and calculates the monthly payment.

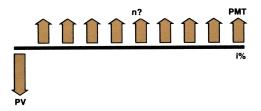
- 1. Press 9 RESET.
- 2. Key in number of *months* in loan. Press **1 I ENTERS ENTERS 12 -**.
- 3. Key in add-on rate, press ENTER 100 ÷ × 1 + ÷ 1 № 1 1 PMT.
- 4. Press **[**] i to obtain the monthly interest rate.
- 5. Press 9 RESET [] [].
- 6. Press 12 \times to obtain the APR.
- 7. Press RCL 11 11 11.
- 8. Key in the principal and press 🚺 🖭.
- 9. Press [] PMT to obtain the monthly payment.

Example: Calculate the APR and monthly payment of a 5%, \$1000 add-on loan which has a life of 18 months.


Press	Display	
9 RESET 18 1 1 ENTER+ ENTER+ 12 ÷	18.00	Months.
5 ENTER 100 ÷ × 1 + ÷ f PV 1 f PMT		
	0.77	% monthly interest rate.
9 RESET 1 i	0.77	Reuse i.
	9.27 18.00	% APR. Recall and reuse n.
1000 [] PV [] PMT	1000.00 59.72	Loan principal. Monthly payments.

What's Really Happening? A word of explanation about those last keystrokes: pressing **1 RESET** prepares the calculator to solve for a different variable. Since n is unchanged in both parts of the calculation, you can reuse that value by pressing **RCL 1 n 1 n**. For a detailed explanation, refer to appendix B.

Ordinary Annuities (Payments in Arrears)


An annuity is a series of equal payments made at regular intervals. The time between annuity payments is called the payment interval or payment period. If your payment is due at the *end* of each payment period, it's called an ordinary annuity or payment in arrears. Examples of ordinary annuities are a car loan (where you drive away now and pay later) or a mortgage (where the payments start one month after you get your loan).

The time/money relationship for an ordinary annuity with monthly payments for a year would look like this:

The following problems all pertain to ordinary annuities, e.g., loans, mortgages, and sinking funds.

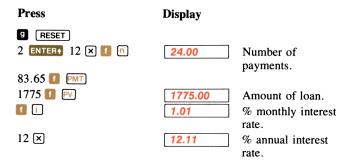
Number of Periods (Ordinary Annuity). This procedure calculates the number of periods for an ordinary annuity, when the present value and interest rate are known.

- 1. Press 9 RESET.
- 2. Input the following in any order:
 - Key in the periodic interest rate, press II .
 - Key in the payment, press
 - Key in the present value, press 🚺 🖭.
- 3. Press **[[n**] to obtain the number of periods.

Example 1: A. Hunter borrows \$2000 at 10% interest to go on an African safari. His payments are \$100 a month. How long will it take him to pay off the loan?

Press	Display	
9 (RESET) 10 (ENTER↓ 12 ÷ 1 1	0.83	% monthly interest rate.
100 🚺 PMT	100.00	Monthly payment.
2000 🚺 🖭	2000.00	Principal of loan.
1 n	21.97	Months.

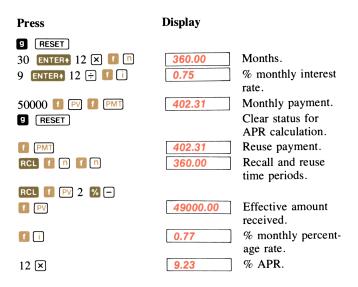
Example 2: Through an insurance fund, you have accumulated \$50,000 for your retirement. How long can you withdraw \$3000 every 6 months (starting 6 months from now) if the fund earns 5% per annum compounded semiannually?


Press	Display	
9 RESET		
5 ENTER 2 ÷ 1 i	2.50	% semiannual interest rate.
3000 🚺 PMT	3000.00	
50000 🚺 🖻 🚺 🖻	21.83	Semiannual with- drawals.

Interest Rate or APR (Ordinary Annuity). This routine computes the periodic interest rate for an ordinary annuity, given the number of periods, payment amount, and initial principal.

- 1. Press 9 RESET.
- 2. Input the following in any order:
 - Key in number of periods, press [] .
 - Key in payment amount, press 1
 PMT.
 - Key in present value, press 1
- 3. Press **[]** i to obtain the periodic interest rate.

The computed periodic rate is multiplied by the number of periods per year to obtain an annual rate.


Example 1: What is the annual interest rate on a 2-year, \$1775 loan with \$83.65 monthly payments?

Borrowers are sometimes charged fees related to the issuance of a mortgage, which effectively raises the interest rate. Given the basis of the fee charge, the true annual percentage rate may be calculated.

Example 2: A borrower is charged 2 points for the issuance of his mortgage. If the mortgage amount is \$50,000 for 30 years, and the interest rate is 9% per year, with monthly payments, what annual percentage rate is the borrower paying? (1 point is equal to 1% of the mortgage amount.)

First, compute the payment amount which is based on \$50,000.

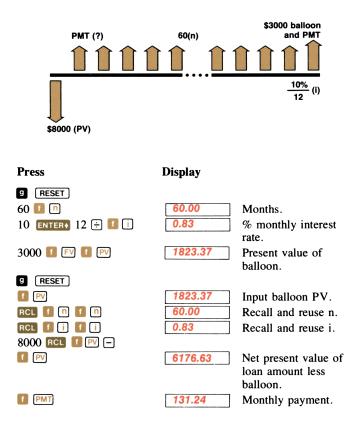
What's Really Happening? For a mortgage with fees, the borrower is making payments on the original loan amount, which corresponds with the initial calculation of the payment amount. If you borrow \$10,000, but are immediately charged \$500 in fees, you really only receive \$9500. But, your payments are based on \$10,000. With fees, then, you're really paying the same for less money, which generates the need to compute the true APR.

Payment Amount (Ordinary Annuity). This routine calculates the payment amount for an ordinary annuity given the number of periods, the initial principal, and the interest rate.


1. Press 9 RESET .

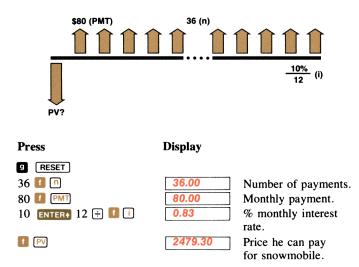
- 2. Input the following in any order:
 - Key in the number of periods, press **[n**.
 - Key in the periodic interest rate, press
 - Key in the present value, press 1 PV.
- 3. Press **[] PMT** to obtain the payment amount.

Example: Find the monthly payment amount on a 30-year, \$52,000 mortgage at 9.75% annual interest rate.

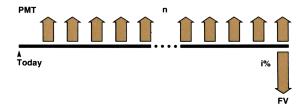

Payment Amount (Ordinary Annuity with Balloon). A common financial occurrence is an annuity that has a large payment at the end, like so:

The last payment—usually considerably larger although it could also be smaller than the others—is called a balloon payment or balloon.

By subtracting the present value of the balloon payment from the loan amount, the problem effectively becomes "What is the monthly payment on a direct reduction loan?"


Example: Yellowstone Sam is heading north, and will invest in an \$8000 dog sled and team. His loan specifies 60 monthly payments at 10% with a balloon payment in the 60th month of \$3000. What will his monthly payments be?

Present Value (Ordinary Annuity). This calculation finds the principal amount of a direct reduction loan when the interest rate, payment amount and number of payments are known.


- 1. Press 9 RESET.
- 2. Input the following in any order:
 - Key in number of periods, press 🚺 🖻.
 - Key in the periodic interest rate, press
 - Key in the payment amount, press
- 3. Press 🚺 🖭 to obtain the present value.

Example: Yellowstone Sam decides to purchase a snowmobile. He plans to pay \$80 per month for 3 years, and he's willing to pay 10% annual interest. How much can he afford to pay for the snowmobile?

Future Value (Ordinary Annuity). With loan calculations, you generally solve for n, i, PMT, or PV. There is another type of ordinary annuity called a "sinking fund," where you make payments at regular intervals into a fund to discharge a debt (for example, to pay off a bond issue at maturity). With sinking fund calculations, you solve for n, i, PMT, or FV (how much you will have in the fund at a future date).

Sinking fund payments start at the end of the first period, like so:

This is different from opening a savings account with a starting deposit *today*. Savings are annuity due calculations and will be described later in this section.

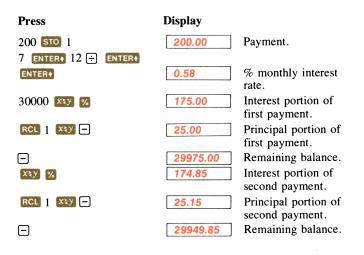
The following procedure finds the future value of an ordinary annuity:

- 1. Press 9 RESET.
- 2. Input the following in any order:
 - Key in the number of periods, press [] n.
 - Key in the periodic interest rate, press 11.
 - Key in the payment amount, press 🚺 PMT.
- 3. Press [] EV to obtain the future value.

Example: A \$100,000 bond is to be discharged by the sinking fund method. If, starting 6 months from now, you deposit \$3914.75 twice a year into a sinking fund that pays 5% compounded semiannually, will you be able to pay off the bond in 10 years?

Press	Display	
9 RESET		
10 ENTER+ 2 🗙 👩 🖻	20.00	Semiannual periods.
5 ENTER+ 2 ÷ 1 1	2.50	% semiannual interest.
3914.75 🚺 PMT	3914.75	Semiannual deposit.
f FV	100000.95	Balance of fund after 10 years.

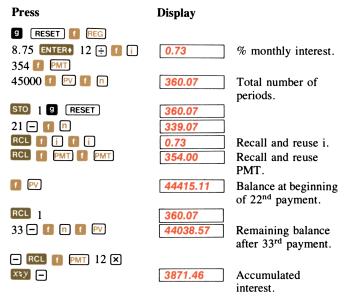
Just barely!


Amortization Schedule

This calculation generates an amortization schedule for a direct reduction loan (mortgage) from the first payment to a given payment, when the loan amount, periodic interest rate, and payment amount are known.

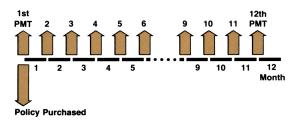
- 1. Key in payment amount, press **STO** 1.
- 2. Key in periodic interest rate, press ENTER+ ENTER+.
- 3. Key in loan amount.
- 4. Press 🗱 🕫 to obtain the interest portion of the payment.
- 5. Press RCL 1 XXY to obtain the principal portion of the payment.
- 6. Press to obtain the remaining loan balance.

Repeat steps 4 through 6 for all desired periods.


Example: Generate an amortization schedule for the first two months of a \$30,000 loan, at 7%, with monthly payments of \$200.

Accumulated Interest and Remaining Balance. This calculation finds the accumulated interest and remaining balance at any point in the life of a fully amortized mortgage, when the mortgage amount, payment amount, and periodic interest rate are known.

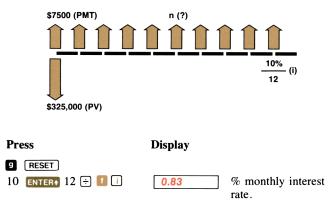
- 1. Press 9 RESET 1 REG.
- 2. Input the following in any order:
 - Key in periodic interest rate, press
 - Key in payment amount, press 🚺 PMT.
 - Key in amount of loan, press 🚺 🖭.
- 3. Press 🚺 🖻 to obtain total number of periods.
- 4. Press STO 1 9 RESET.
- 5. Key in the beginning payment number less one. Press [] [] .
- 6. Press RCL [] [] [] .
- 7. Press RCL 1 PMT 1 PMT.
- 8. Press [] 🖭 to obtain the remaining balance at the beginning of the time frame.
- 9. Press RCL 1 to recall the total number of periods.
- 10. Key in the last payment number of the time frame, press -
- 11. Press **[] [PV]** for the remaining balance at the end of the time frame.
- 12. Press 🗆 RCL 🚺 PMT. Key in the number of payments made during the time frame, press 🗵.
- 13. Press 🗱 🗁 to obtain accumulated interest paid during the time frame.


Example: For tax purposes, a home owner wants to know the accumulated interest paid on his 8.75%, \$45,000 mortgage between payments 22 and 33 inclusive. His payments are \$354; calculate the interest paid.

Annuity Due (Payments in Advance)

With some annuities—like insurance premiums or a lease—the payment is due at the beginning of the month. This is called an annuity due because the payment falls at the beginning of the payment period. Other terms are payments in advance or anticipated payments.

An annuity due with monthly payments for a year—say, a car insurance policy—looks like this:


Notice that with an annuity due, you have a payment right away at the beginning of the first interval. (With an ordinary annuity, your payment isn't due until the end of the first period, but you also have a payment at the end of the entire term.)

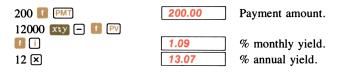
The following calculations all deal with annuity due problems, e.g., savings, insurance, leases, and rents.

Number of Periods (Annuity Due). This calculation finds the total number of periods required for an initial amount when the payment amount (paid at the beginning of each period) and interest rate are known.

- 1. Press 9 RESET.
- 2. Key in periodic interest rate, press 🚺 📋.
- 3. Key in payment amount, press 🔊 🛚 🛨 🚺 🕅 .
- 4. Key in initial amount, press **[PV**, or key in desired amount and press **[EV**.
- 5. Press 🚺 🗖 .

Example 1: Given an investment possibility of \$325,000 that will immediately produce rental income of \$7500 per month, how long must the investment be held to yield 10% per annum?

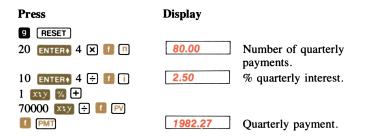
Example 2: If you deposit \$50 a month in a savings account that pays 6% interest, how long will it take to reach \$1000?


Press	Display	
9 (RESET) 6 ENTER♦ 12 ÷ 1 i	0.50	% monthly interest rate.
50 🞫 % 🕂 🚺 🎫		
1000 🚺 📧	1000.00	Desired amount.
	19.02	Months.

Interest Rate (Annuity Due). This routine calculates the interest rate on an initial amount, given the number of periods and payment amount (paid at the beginning of each period).

- 1. Press 9 RESET.
- 2. Key in *one less* than the total number of periods, press **[**] .
- 3. Key in payment amount, press 🚺 PMT.
- 4. Key in initial amount, press 💷 🗆 🚺 🖭.
- 5. Press **1 1** to obtain the periodic rate. Multiply by the number of payment periods per year to obtain the annual rate or yield.

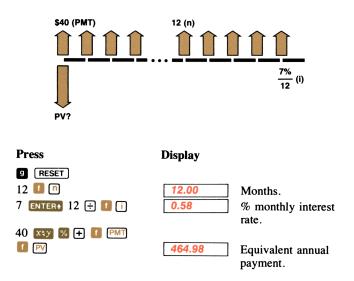
Example: Equipment worth \$12,000 is leased for 8 years with monthly payments in advance of \$200. The equipment is assumed to have no salvage value at the end of the lease. What yield rate does this represent?


Press	Display	
9 RESET 8 ENTER: 12 × 1 - 1 1	95.00	Number of periods less one.

Payment Amount (Annuity Due). This calculation finds the payment amount (paid at the beginning of each period) given the initial amount, number of periods and interest rate.

- 1. Press 9 RESET.
- 2. Key in the number of payment periods, press 🚺 🖻.
- 3. Key in the periodic interest rate, press 🚺 📋.
- 4. Press 1 🔀 🖌.
- 5. Key in initial value, press 🔤 🕀 💷 🖭.
- 6. Press 🚺 PMT.

Example: The owner of a building presently worth \$70,000 intends to lease it for 20 years at the end of which time he assumes the building will be worthless (i.e., has no residual value). How much must the quarterly payments (in advance) be to achieve a 10% annual yield?

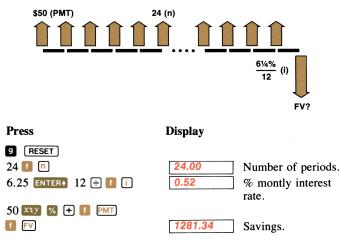


Present Value (Annuity Due). This calculation finds the present value of a series of payments (made at the beginning of each period) given the number of payments, interest rate, and payment amount.

- 1. Press 9 RESET.
- 2. Key in the number of payment periods, press 🚺 🖪.

- 3. Key in the periodic interest rate, press **[**].
- 4. Key in the payment amount, press 主 🛛 🖛 🚺 🕬
- 5. Press 🚺 PV.

Example: The owner of a downtown parking lot has achieved full occupancy and a 7% annual yield by renting parking spaces for \$40 per month payable in advance. Several regular customers want to rent their spaces on an annual basis. What annual rent, also payable in advance, will maintain a 7% annual yield rate?

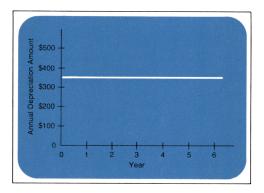


Future Value (Annuity Due). This calculation finds the future value of a series of payments in advance, given the number of periods and interest rate.

- 1. Press 9 RESET.
- 2. Key in the number of periods, press 🚺 🖻.

- 3. Key in the periodic interest rate, press 🚺 📋.
- 4. Key in the payment amount, press 🕮 🛚 🛨 🚺 🖭.
- 5. Press 🚺 🖭.

Example: If you can afford to deposit \$50 per month in an account with 64% interest compounded monthly, how much will you have 2 years from now?


Depreciation

Machines, buildings, delivery trucks, showcases, tools and other tangible assets all decline in value with the passing of time. To provide for the replacement of obsolete or worn-out equipment, you usually set aside a fixed amount of money each year that is equal to the loss in value of that article during the year.

There are three methods of depreciation commonly used: straightline, sum-of-the-digits, and declining-balance. Let's take a popcorn machine that costs \$2500 brand new and has a salvage value of \$400. We will depreciate the \$2100 over a life expectancy of 6 years, using each of these three methods.

Straight-Line Method—The straight-line method (SL) is simply a matter of dividing the total depreciable amount by the number of useful years, then subtracting that amount each year from the item's value. The depreciation on the popcorn machine is \$2100, divided by 6 years = \$350 a year.

If you plot this depreciation amount on a graph, it looks like a straight line, hence, the name.

The advantage of the straight-line method is its simplicity—it's easy to figure and it's consistent. Your deduction is always the same.

To calculate the annual depreciation allowance on your HP-27:

- 1. Calculate and key in depreciable amount (cost less salvage value), press ENTER+. ENTER+.
- 2. Key in asset's useful life (number of years), press 🕂 to obtain each year's depreciation.
- 3. Press **STO** 1 to obtain depreciable value after the first year.
- 4. Continue pressing **RCL** 1 to obtain the remaining depreciable value for each subsequent year. If book value is needed, add salvage value to depreciable value.

Example: A duplex costing \$41,500 (exclusive of land) is depreciated over 25 years, using the straight-line method. What is the annual depreciation amount and remaining depreciable value for years 1 and 2 if it has no salvage value?

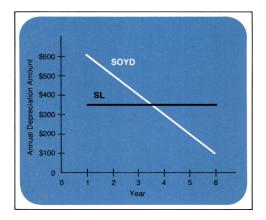
In reality, some items depreciate the most during their initial periods of use. For example, the value of your car declines the most in the first two years. Or perhaps your equipment doesn't wear out most in the early years, but you want to increase the initial depreciation for the financial advantages. This is called accelerated depreciation, and you would use one of the two following methods.

Sum-of-the-Years-Digits Method—The sum-of-the-years-digits method (SOYD) is based on the sum of the digits from one to the number of years of the asset's life. For the popcorn machine, the life is 6 years, so:

6 + 5 + 4 + 3 + 2 + 1 = 21 (sum of the years digits)

Theoretically, the first year you use up 6/21 of the asset's life; the second year, 5/21 of the asset's life, etc. So, the first year, you multiply the depreciation amount (\$2100) by that year's use (6/21).

$$\frac{6}{21}$$
 × \$2100 = \$600

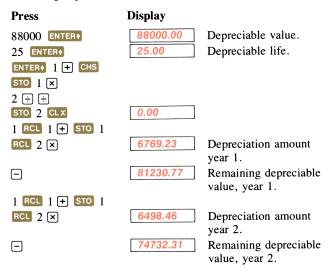

The second year, by that year's use:

$$\frac{5}{21}$$
 × \$2100 = \$500

The third year:

$$\frac{4}{21}$$
 × \$2100 = \$400

If you plot the depreciation on a graph, you can see the difference between the straight-line method and the sum-of-the-years-digits method.

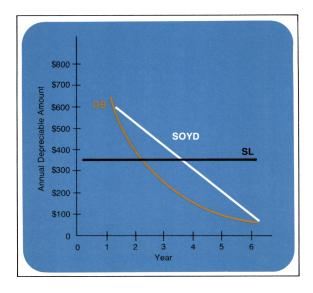


The keystroke procedure below finds the depreciation and remaining depreciable value using the SOYD method for each year of an asset's depreciable life when its useful life expectancy and cost (less salvage value) are known.

- 1. Key in the beginning depreciable value, press **ENTER4**.
- 2. Key in asset's depreciable life, press **ENTER1**.
- 3. Press ENTER 1 + CHS STO 1 × 2 \div \div STO 2 CLX.
- 4. Press 1 RCL 1 + STO 1 RCL 2 × to obtain the depreciation amount.

- 5. Press to obtain the remaining depreciable value at the end of the year.
- 6. Repeat steps 4 and 5 for subsequent year's depreciation and remaining depreciable value.

Example: Apartments valued at \$88,000 are depreciated over 25 years using SOYD depreciation. What is the depreciation amount and remaining depreciable value for the first 2 years?



Declining Balance Method—With the declining balance method (sometimes called the fixed-rate method), a constant percentage is applied each year to the remaining balance (book value) to find the depreciation amount. The salvage value is not subtracted initially, but the asset may not be depreciated below this salvage value.

Certain declining balance "factors" are authorized for income tax purposes. A factor of 1.25 simply means 125% declining balance; 2.00 means double-declining balance. To compute the annual depreciation rate, divide the factor by the asset's estimated life in years. If you use a factor of 1.50 (150%) for the popcorn machine, then you will depreciate it $\frac{150}{6}$ or 25% each year.

	Depreciation	Balance (Book Value)
1^{st} year 25% of \$2500 =	\$625.00	\$1875.00
2^{nd} year 25% of \$1875 =	\$468.75	\$1406.25
3^{rd} year 25% of \$1406.25 =	\$351.56	\$1054.69
4 th year 25% of \$154.69 =	\$263.67	\$ 791.02
5 th year 25% of \$791.02 =	\$197.75	\$ 593.27
6 th year \$593.27 - \$400		
(salvage value) =	\$193.27	\$ 400.00

You can plot the declining balance depreciation on the graph to compare it with the other two methods.

The following keystroke procedure finds the depreciation and remaining book value for each year of an asset's depreciable life when the declining factor, cost, salvage value, and life expectancy are known:

- Key in declining factor (1.25 for 125% declining balance, 2.00 for double declining etc.), press ENTER 100 X.
- 2. Key in number of years of useful life, press 🗄 **STO** 1.
- 3. Key in cost (do not deduct salvage value).
- 4. Press RCL 1 18 to obtain first year's depreciation,
- 5. Press to obtain remaining book value after first year.
- 6. Repeat steps 4 and 5 to obtain each succeeding year's depreciation and remaining book value until book value is equal to or less than the salvage value. In the period when the remaining book value is less than the salvage value, the previous book value should be reduced by the salvage value to obtain the final year's depreciation.

Example: The Drifter Apartments have a depreciable value of \$86,000. The owner wishes to use 125% declining balance depreciation over 20 years. What is the annual depreciation amount and remaining book value in years 1 and 2?

Press	Display	
1.25 ENTER+		
100 ×	125.00	
20 🕂 STO 1	6.25	
86000	86000	Deprec
RCL 1 %	5375.00	First y
\Box	80625.00	Remain value,
RCL 1 %	5039.06	Second
-	75585.94	Remain value,

Depreciable value. First year depreciation. Remaining depreciable value, year 1. Second year depreciation. Remaining depreciable value, year 2.

Discounted Cash Flow Analysis

Discounted cash flow analysis is a way of evaluating investment alternatives in which investments are compared on the same basis their present dollar worth. Two forms of discounted cash flow analysis are the net present value approach and the discounted or internal rate of return approach. These two functions, NPV and IRP, are preprogrammed on your HP-27.

Net Present Value. The **I I NPV** function solves for the net present value according to the formula:

NPV =
$$-INV + \frac{cf_1}{(1 + i)^1} + \frac{cf_2}{(1 + i)^2} + \dots \frac{cf_n}{(1 + i)^n}$$

NPV = net present value.

INV = your initial investment or cash outlay.

 $\frac{cf_1}{(1 + i)^1}$ = cash flow generated the first year.

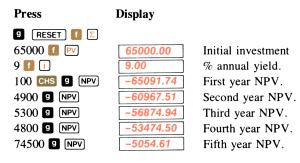
 $\frac{cf_2}{(1 + i)^2}$ = cash flow generated the second year.

i = the rate of return or desired yield.

INV, the original investment, is negative because it represents a cash outlay. With the net present value approach, you are comparing the sum of the present values of all the future cash flows (all the cf's) to that initial investment.

At the start, NPV is negative because you've put out a large amount (INV). As the cash returns flow in, NPV will increase. Eventually—hopefully—NPV will turn positive. When NPV = 0, you have reached the break-even point on the investment. If NPV is positive, your investment is profitable.

The following procedure is used to find the net present value when the assumed yield rate (interest rate) and periodic cash flows are known.


- 1. Press 🥑 RESET . Press 🚺 🗵 .
- 2. Key in the initial investment and press **[**] **PV**.
- 3. Key in the desired or known yield rate and press 🚺 📋.
- 4. Key in the first cash flow and press **I NPV**. The number displayed is the net present value. Repeat this step for all successive cash flows.

As soon as the display shows a positive number, the investment is recovered on a discounted cash flow basis.

The number of cash flows and the sum of their present values are accumulated in registers 8 and 9. Hence, you must clear the registers by pressing $\square \supseteq$ before solving for NPV.

Example 1: An investor pays \$65,000 for a duplex which he intends to keep 5 years and then sell. The first year he knows he will have to spend a considerable amount for repairs. If he desires a 9% after-tax yield rate and the after-tax cash flows are as follows, will he achieve this yield?

Year	Cash Flows (\$)
1	-100
2	4900
3	5300
4	4800
5	74500
Year 1 100 65,000	$ \begin{array}{c} 74,500 \\ 4900 \\ 1 \\ 2 \\ 3 \\ 4800 \\ 1 \\ 4800 \\ 1 \\ 4800 \\ 1 \\ 5 \\ 5 \\ 4800 \\ 1 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$

Since the final NPV is negative, the investment does *not* achieve the desired yield.

Internal Rate of Return. The **I** IRR function solves for the internal or discounted rate of return for a maximum of 10 uneven cash flows. The same formula applies, only NPV = 0.

$$0 = -INV + \frac{cf_1}{(1+i)^1} + \frac{cf_2}{(1+i)^2} + \dots \frac{cf_{10}}{(1+i)^{10}}$$

Solving for i gives you the rate of return (IRR) on your investment. This is actually quite a complex calculation, but your HP-27 handles it with ease. In fact, the HP-27 is the *only* pocket calculator that's preprogrammed to solve IRR.

Key in the cash flows as follows:

- 1. Press 9 RESET.
- 2. Key in the amount of the initial investment, and press **1**
- 3. Key in the total number of cash flows and press 🚺 🖻.
- 4. Key in the first cash flow (followed by CHS if it is negative, i.e., if you had a loss that year). Store that number in register 0 by pressing STO 0.

184 Financial Applications

- 5. Key in the second cash flow and press **STO** 1. Continue keying in cash flows (up to 10) and store them in successive storage registers, up to register 9.
- 6. Press 9 IRR.

If each of the cash flows = 0 or if there are no cash flows, an **Error** message is displayed. If you haven't recovered even part of the initial investment, then logically there is no "return" and you can't solve for IRR.

If all the cash flows are negative, your answer is meaningless.

Example 1: What is the estimated rate of return on a restaurant costing \$200,000 that produces the following cash flows?

Year	Cash Flow	
1	\$ -4,000	
2	\$ 20,000	
3	\$ 27,000	
4	\$ 42,000	
5	\$ 56,000	
6 (You sell it.)	\$230,000	

Press

Display

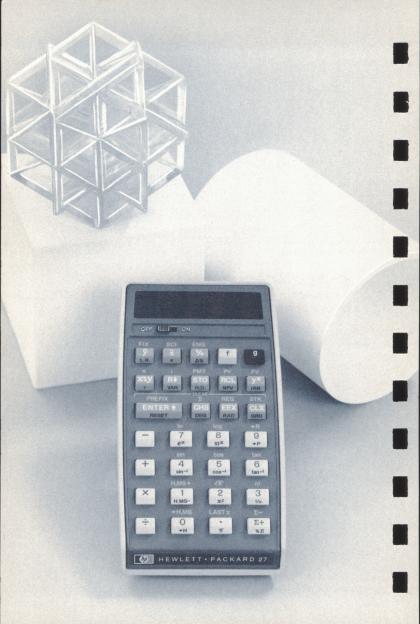
9 RESET
200000 🚺 🖭
6 🚺 🗈
4000 CHS STO 0
20000 STO 1
27000 STO 2
42000 STO 3
56000 STO 4
230000 STO 5
9 IRR

6.00 -4000.00 20000.00 27000.00 42000.00 56000.00	200000.00
20000.00 27000.00 42000.00	6.00
27000.00 42000.00	-4000.00
72000.00	20000.00
72000.00	27000.00
56000.00	42000.00
	56000.00
230000.00	230000.00
12.72	12.72

Initial investment. Number of cash flows. First cash flow. Second cásh flow. Third cash flow. Fourth cash flow. Fifth cash flow. Sixth cash flow. % annual yield or rate of return on investment. **Example 2:** In a moment of altruism, Joe Karnegie loaned his nephew, Winston, \$8000 to finish his last two years of college. Winston agreed to pay back the original amount plus \$300 in interest, within five years after graduation.

If Winston repaid the loan as follows, what was benevolent Uncle Joe's rate of return?

Year	Payment
Junior year	0.
Senior year	0.
Year 1	\$ 500.00
Year 2	\$1300.00
Year 3	\$1000.00
Year 4	\$1000.00
Year 5	\$4500.00


Press

9 RESET
8000 🚺 🖭
7 🚺 🖻
0 STO 0
0 STO 1
500 STO 2
1300 STO 3
1000 STO 4
1000 STO 5
4500 STO 6
9 IRR

Display

8000.00
7.00
0.00
0.00
500.00
1300.00
1000.00
1000.00
4500.00
0.62

Initial investment. Number of cash flows. First cash flow. Second cash flow. Third cash flow. Fourth cash flow. Fifth cash flow. Sixth cash flow. Seventh cash flow. % rate of return.

Appendix A Accessories, Maintenance, and Service

Standard Accessories

Your HP-27 comes complete with the following standard accessories: battery pack, ac adapter/recharger, soft carrying case, and the *HP-27 Owner's Handbook*.

CAUTION:

Use of any batteries other than the Hewlett-Packard battery pack may damage your calculator.

Optional Accessories

Other accessories are shown here. To order additional standard or optional accessories, see your nearest dealer or send the Accessory Order Form, along with a check or money order, to:

> Hewlett-Packard Company 19310 Pruneridge Avenue Cupertino, CA 95014

Security Cradle

Reserve Power Pack

Outside the United States, mail the Accessory Order Form to the Hewlett-Packard Sales Office nearest you.

Calculator Operation

Charging Times

Your calculator contains a rechargeable battery pack. *The batteries must be in the calculator for it to operate*. With the recharger connected to the calculator and to an ac power outlet, the batteries will charge, whether the calculator is ON or OFF. Normal charging times from dead battery to full charge are:

Calculator ON	17	hours
Calculator OFF	6	hours

Charge the battery before portable use. Shorter charge periods than the above will reduce battery operating time.

Whether the calculator is OFF or ON, the battery pack will never overcharge with the ac adapter/recharger connected to the ac line.

Traveling with the HP-27

Taking a business trip abroad? If so, take your calculator with you. The recharger has a line-voltage select switch for two ranges: 100 to 127 volts and 200 to 254 volts. Check the line voltage of the country you intend to visit, and set the switch to the appropriate range.

The only other item you will need is an ac plug adapter for the wall outlet (the same adapter you would use for an electric shaver or other personal appliance). These are available at some hotels, or you may purchase the adapter in the country of your destination.

Charging the Battery

CAUTION:

Your HP-27 may be damaged if the ac adapter/recharger is not set for the correct line voltage, or if you use any charger other than the HP ac adapter/recharger supplied with your calculator.

The procedure for using the battery charger is as follows:

- 1. Make sure the voltage select switch on the recharger is set to the proper voltage range. (In the U.S., set it to 100 to 127 volts.)
- 2. Turn the HP-27 power switch OFF.

- 3. Insert the recharger plug into the rear connector of the HP-27, and insert the power plug into a live power outlet. The HP-27 may feel warm to the touch while recharging. Don't be concerned; this is normal because part of the charging circuit is inside the calculator.
- 4. At the end of the charging period, you may continue to use your HP-27 with ac power; or turn the power switch OFF and disconnect the recharger for battery-only operation.

If the battery pack won't hold a charge, it may be defective. If the one-year warranty is in effect, return the pack to Hewlett-Packard according to the shipping instructions. If your warranty has expired, see your nearest dealer or use the Accessory Order Form to purchase a replacement.

Battery Operation

Use only the HP battery pack. A fully-charged pack provides approximately 3 to 5 hours of continuous operation. By turning the power OFF when the calculator is not in use, you can conserve energy and make the HP-27 battery pack last easily through a normal working day.

Low Power Display

When the batteries get low, several decimal points will appear on the display. This means you have approximately one minute of operating time left. Then you must either charge the battery or insert a fully-charged spare battery pack.

Replacing the Battery Pack

To replace your battery pack, use the following procedure:

- 1. Turn the HP-27 power switch to OFF, and disconnect the recharger from the calculator.
- 2. With your thumb on the square inset on the rear of the calculator, press down and slide the door in the direction of the arrow. The latch will spring open.

E.

3. Remove the battery pack.

4. To insert the new pack, slant the leading edge of the pack into the upper edge of the doorway, then snap the latch down into place.

If you use your HP-27 extensively on batteries, you may want to order the Reserve Power Pack. This optional accessory lets you charge one pack while using the other.

Blank Display

If the display blanks out, turn the calculator OFF, then ON. If 0.00 does not appear on the display, check the following:

- 1. Make sure the ac adapter/recharger is plugged into an ac outlet. If not, turn the calculator OFF before plugging in the recharger.
- 2. Examine the battery pack to see if the contacts are dirty.
- 3. Substitute a fully-charged battery pack, if available, for the one that was in the calculator.

If the display is still blank, your calculator should be serviced. (Refer to *Warranty* in this appendix.)

Temperature Range

Temperature ranges for the calculator are:

Operating:	0° to 45° C	32° to 113°F
Charging:	15° to 40°C	59° to 104°F
Storage:	-40° to $+55^{\circ}$ C	-40° to +131°F

Temperatures above or below these specified limits may not cause permanent damage to your calculator, but you probably will get incorrect answers. Also, temperature extremes will damage the batteries.

Serial Number

The serial number of your calculator is located on the back of the case, right above the battery door and below the recessed plug. It's advisable to keep a separate record of your serial number.

Warranty

Full One-Year Warranty

The HP-27 is warranted against defects in materials and workmanship for one (1) year from date of delivery. During the warranty period, Hewlett-Packard will repair or, at its option, replace at no charge components that prove to be defective, provided the calculator is returned, shipping prepaid, to Hewlett-Packard's Customer Service Facility. (Refer to Shipping Instructions.)

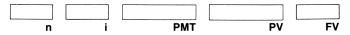
This warranty does not apply if the calculator has been damaged by accident or misuse, or as a result of service or modification by other than an authorized Hewlett-Packard Customer Service Facility. No other express warranty is given by Hewlett-Packard. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR CONSE-QUENTIAL DAMAGES.

Warranty Transfer

The warranty is recorded by calculator serial number, as well as date of purchase. If you sell your calculator or give it as a gift, the warranty is transferrable and remains in effect for the new owner until the original one-year expiration date. It is not necessary for the owner to notify Hewlett-Packard of the transfer.

Shipping Instructions

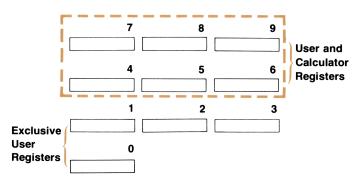
Whether the unit is under warranty or not, it is the customer's responsibility to pay shipping charges to the Hewlett-Packard Customer Service Facility. Please return the calculator with all standard accessories and a completed Service Card, describing the problem.


Under normal conditions, your calculator will be repaired and reshipped within five working days of receipt at the Hewlett-Packard Customer Service Facility.

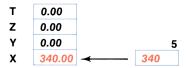
After warranty repairs are completed, the Service Center returns the unit with postage prepaid. On out-of-warranty repairs, the unit is returned C.O.D. (covering shipping costs and the service charge).

Appendix B

How the HP-27 Registers Work


Inside your calculator are five financial registers (associated with the top row keys):

There are also four registers in the operational stack:


And 10 general-purpose storage registers. Four of these (registers 0 thru 3) are dedicated exclusively for your own use. The other six registers (4 thru 9) are shared by the user and the calculator.

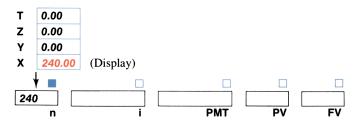
If you press 340 **STO** 5, that number is transferred from the display to register 5:

When you press \mathbb{RCL} 5, a copy of that number appears on the display but the value is still stored in register 5:

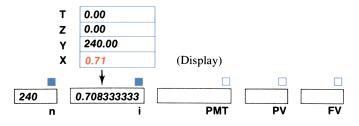
When you press **1 FEG**, all 10 storage registers are cleared. If you press **1 2**, just the statistical registers (4 thru 9) are cleared.

The Financial Registers

Associated with each of the financial registers is a status indicator. (You can't see them but they're there.)

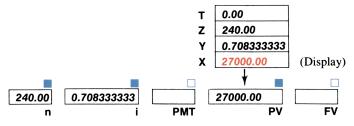

When a status indicator is on (\blacksquare) , the value in the particular register is to be used as data for the next financial calculation. When a status indicator is reset or off (\Box) , the register value cannot be used.

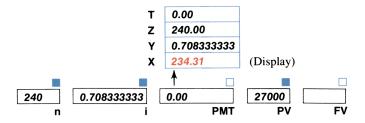
Let's take an example calculating the monthly payment on a 20-year \$27,000 mortgage with 8.5% annual interest. Press **G RESET** to reset the status indicators:


Key in 20 (the number of yearly payments):

Since the n value must be monthly payment periods, convert the yearly figure by pressing $\boxed{12}$ (X), then input it by pressing $\boxed{12}$ (n). The converted value on the display is copied into the n register and the first status indicator is turned on.

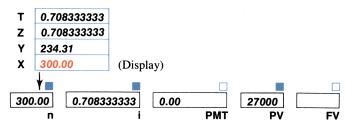
The stack lift indicator is set after a financial value has been keyed into a financial register.

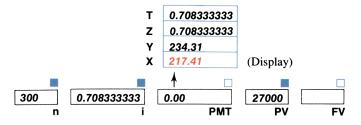

Next, key in the monthly interest rate: 8.5 **ENTERS** 12 \div **1** \bigcirc **1** \bigcirc


196 How the HP-27 Registers Work

Remember that although the value on the display is rounded off to two decimal places, your calculator always figures internally to 10 places, so the number placed in is really 0.708333333. This is extremely important when you stop to think that those extra decimal places are used over 240 months!

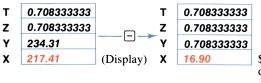
To solve a top-row financial function, three status indicators must be on. Key in 27000 and press $\boxed{1}$ $\boxed{\mathbb{P}}$:


The calculator sees that n, i and PV status indicators are turned on. Once three status indicators are on, pressing one of the other two financial keys will cause the calculator to execute and display the new value. Press **[] PMT**:


There are two important points to remember: (1) the HP-27 will never allow you to turn on more than three status indicators; and (2) of the three status indicators that are on, at least one of them must be n or i.

Suppose you want to solve for payment again but with a different time value—say, a 25-year loan instead of 20 years. Since only one value changes and the necessary status indicators are already turned

on, you can simply overwrite the new number in the n register. Press 25 ENTERN 12 \times 1 \square .



Solve for the new payment by pressing **[] PMT**:

Notice that the two calculated answers are stored in the X and Y registers of the stack for your convenience. For example, you can review both payment amounts by pressing **XXY** to look back at the first answer.

Or, with both answers positioned like that in the stack, you can quickly subtract to calculate the difference between the two payment amounts:

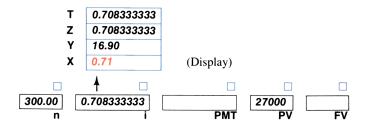
\$ per month difference in payments.

The **RESET** Function

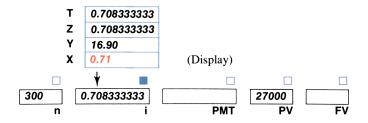
The power of RESET becomes apparent when you do a problem that requires a different status indicator. Before, the prerequisite status indicators were n, i and PV in order to obtain PMT.

Suppose you can afford \$225 a month and wish to find the length of the loan. This involves a different set of known values. Now, the prerequisite status indicators are i, PMT and PV, and you want to find n.

Because this is a new financial calculation involving different input registers, reset the status indicators by pressing **9 (RESET)**.

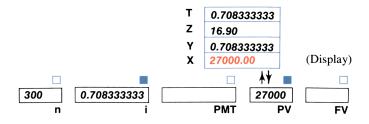


Notice that your previous answer is still on the display, and hence, in the stack. If you want to use this number in a future problem, you can **ENTER** it up in the stack, store it in one of the 10 manual storage registers, or use it in another financial problem.

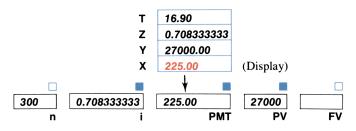

The five status indicators are reset by **EXERCISE** so the HP-27 is ready for a new problem. The values are still in the financial register—you can use them again or write over them with new values.

The i and i values are the same as the original problem so we'll use that data over again. But how do you turn on the status indicators?

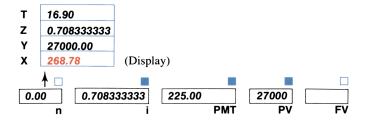
Press **RCL** [] i to place that number in the display:



Then press **1** i again to transfer the number into the i register and turn on the status indicator:

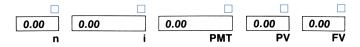

Herein lies one advantage of the **RESET** function: You don't have to calculate i again! (You may be tempted just to key in 0.71 , but multiply that rounded-off figure over 25 years and your answer would be wrong.)

Press RCL 1 PV 1 PV to do the same for the PV value:

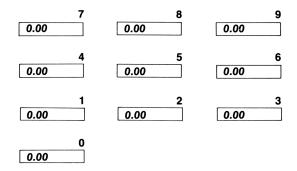


200 How the HP-27 Registers Work

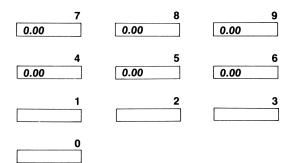
Turn on the third status indicator by inputting the new payment amount, 225 **1** PMT.


And solve for the length of the loan by pressing **[**] **[**]:

In summary, **I RESET** resets all five top-row status indicators so that the HP-27 is ready for a new financial problem. It does not erase the values in those registers.


The 🚺 📧 Function

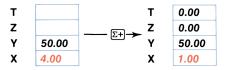
Pressing **11 REC** clears the five financial registers, clears all 10 storage registers, and clears LAST X. It does not clear the stack.


(Display)

Any data in the storage registers is eliminated.

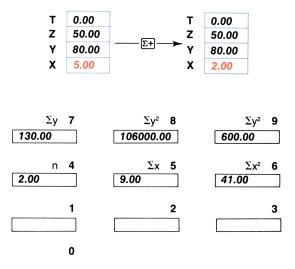
The 🚺 🗵 Function

Pressing 1 D clears the shared user-calculator registers 4 thru 9. These are the statistical registers, so you should press 🚺 🗵 before starting any new statistical problem.


202 How the HP-27 Registers Work

The Statistical Registers

Pressing the Σ + key produces several different sums and products of values in the X- and Y-registers and stores this data in registers 4 thru 9:


Register	Contents
R₄	Number of entries (n).
R₅	Summation of x values (Σx).
R_6	Summation of x^2 values (Σx^2).
R ₇	Summation of y values. (Σ y).
R ₈	Summation of y^2 values (Σy^2).
R9	Summation of products of x and y values (Σxy) .
Display (X-register)	Number of entries (n).

If you input 50 ENTER 4 2+, the values are stored as follows:

Σy 7 50.00	Σy² 8 2500.00	Σxy 9 200.00
n 4	Σx 5 [4.00]	Σx ² 6
1	2	3
0		

If the next data pair were 80 **ENTERS** 5 Σ +, the contents of registers 4 thru 9 would change as follows:

Availability of Registers

Some functions utilize or overwrite other registers when solving a calculation. Any data stored in those registers will be lost, so you should be aware of this effect.

All statistical calculations overwrite the X-register or both the Xand Y-registers. The previous X value can be salvaged from (LASTX).

When solving for **1**, **L**R and **T**, the calculator uses the PV and FV registers as "scratchpads." After execution, PV and FV are cleared. (If an error occurs, PV and FV are not cleared.)

The calculation for iterative \Box uses registers R_7 , R_8 and R_9 . After execution, these three registers are cleared (unless an error occurred).

The IRR function uses the i, PMT and FV registers as "scratchpads." After execution or if an error occurs, these three financial registers are cleared.

204 How the HP-27 Registers Work

Value Limits

The algorithms in the HP-27 can accommodate a wide range of values; however, the accuracy of your answer also depends on the values you key in (e.g., the "garbage in, garbage out" syndrome.)

A negative number for n will produce an answer, but one that's meaningless because you used a negative time period.

You cannot have a negative number of entries for statistical problems. That is, you cannot key three inputs into Σ +, then subtract out four with Σ -.

Iterative solutions for i are accurate to $\pm .0001\%$. Extreme input values cannot be used. For example, do not use interest rates smaller than i = -0.000001% or +0.000001%.

Negative interest rates close to -100% produce a meaningless answer or a continually blinking display. Do not use a value <-99.9%for iterative i or IRR. Examples of interest rates close to -100%are situations where you have a large PV but very small PMT, or where you have large payments that result in a small FV.

When solving for internal rate of return (IRR), the formula used is a polynomial equation. Therefore, a condition can be created such that more than one interest rate is considered correct in a mathematical sense. Your HP-27 calculates and displays one of these answers, but the calculator has no way of indicating when more than one answer exists or what the other values might be. This phenomenon may occur when there are multiple negative cash flows interspersed with positive cash flows, so caution should be exercised. Remember the answer displayed on your HP-27 is *a* correct answer; it may not be *the only* answer.

Appendix C Formulas

The following formulas are preprogrammed in your HP-27 calculator.

Statistical Formulas

Mean

$$\overline{x} = \frac{\Sigma x}{n}$$
$$\overline{y} = \frac{\Sigma y}{n}$$

Standard Deviation

$$s = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}}$$

Variance

$$VAR_x = (s_x)^2$$

$$VAR_y = (s_y)^2$$

Normal Distribution

f(x) = density function Q = upper tail area

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{\left(\frac{-x^2}{2}\right)}$$

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{\left(\frac{-t^2}{2}\right)} dt$$

Correlation Coefficient

$$r = \frac{\sum xy - \frac{1}{n} \sum x\sum y}{(n-1) s_x s_y}$$

Linear Regression

$$\mathbf{y} = \mathbf{A} + \mathbf{B}\mathbf{x}$$

where A = y intercept of the line B = slope of the line

$$A = \frac{\sum y \sum x^2 - \sum x \sum xy}{n \sum x^2 - (\sum x)^2}$$
$$B = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

Linear Estimate

$$\hat{\mathbf{y}} = \mathbf{A} + \mathbf{B}\mathbf{x}$$

Financial Formulas

Percentage

$$\% = \frac{\text{Base} \times \text{Rate}}{100}$$
Percent Difference = $\Delta\% = \left(\frac{\text{New Amount} - \text{Base}}{\text{Base}}\right) \times 100$

Unless otherwise stated:

- n = number of time periods
- i = periodic interest rate, expressed as a decimal value
- PMT = periodic payment
 - PV = present value or principal
 - FV = future value
 - I = interest amount

Compound Amount

$$FV = PV (1 + i)^n$$

Savings (Annuity Due)

$$FV = PMT \left[\frac{(1 + i)^n - 1}{i} \right] (1 + i)$$

Rents, Leases (Annuity Due)

$$PV = PMT \left[\frac{1 - (1 + i)^{-n}}{i} \right] (1 + i)$$

Direct Reduction Loans (Ordinary Annuity)

$$PV = PMT \left[\frac{1 - (1 + i)^{-n}}{i} \right]$$

Direct Reduction Loan with Balloon Payment (Ordinary Annuity)

$$PV = PMT \left[\frac{1 - (1 + i)^{-n}}{i} \right] + BAL (1 + i)^{-n}$$

Sinking Fund (Ordinary Annuity)

$$FV = PMT \left[\frac{(1 + i)^n - 1}{i} \right]$$

Discounted Cash Flow Analysis

NPV = Net present value INV = Initial investment cf = cash flow

NPV =
$$-INV + \frac{cf_1}{(1+i)^1} + \frac{cf_2}{(1+i)^2} + \dots + \frac{cf_n}{(1+i)^n}$$

Depreciation

L = asset's useful life expectancy

SBV = starting book value

SAL = salvage value

 DEP_k = depreciation for year k

 RBV_k = remaining book value at the end of year k

 RDV_k = remaining depreciable value at end of year k

Straight-Line Depreciation

$$DEP_{k} = \frac{SBV - SAL}{L}$$

$$RDV_k = RDV_{k-1} - DEP_k$$

Sum-of-the-Digits Depreciation

$$\text{DEP}_{k} = \frac{2(L - k + 1)}{L(L + 1)} \times (\text{SBV} - \text{SAL})$$

$$RDV_k = RDV_{k-1} - DEP_k$$

Declining Balance Depreciation

F = declining balance factor

$$DEP_{k} = RBV_{k-1} \times \frac{F}{L}$$

$$RDV_k = RDV_{k-1} - DEP_k$$

Mathematical Formulas

Polar to Rectangular

$$x = r \cos \theta$$

$$y = r \sin \theta$$

Rectangular to Polar

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1} \left(\frac{y}{x}\right)$$

General Index

AC line operation, **188** Accessories, **187** Accumulated interest, **1**

Accumulated interest, 168 Addition, 13 Add-on interest to APR, 157

Amortization schedule, 167

Analysis of variance (one-way), 103

Angle conversions, 57-61, 133

Annual interest rate, annuity due, 171

Annual interest rate, ordinary annuity, 160

Annuities, **159-174** Annuity due calculations, **169-174**

Antilogs, 55

Anticipated payments, see Annuity Due, 169 Arc sine, arc cosine, arc tangent, 57

Arithmetic operations, 13

Arithmetic, recall, **47**

Arithmetic, storage, 46

Arithmetic average, see Mean, 77

Automatic display switching, 28

Automatic memory stack, 33

B

Balance of loan/mortgage, 168 Balloon payment, 163 Battery: charging, 188; operation, 189; replacement, 189 Bearing traverse, 142 Black prefix key, 11 Blank display, 190 Book value, 175, 178-180

C

Cash flow diagrams, 150 Chain calculations, 14-16, 40 Changing financial values, 67 Changing sign, 12 Changing the battery, 189 Charging the battery, **188** Chi-square statistic, 97 Clearing: display, 12; stack, 35; statistical registers, 71; storage registers, 48 Combinations. 88 Common logarithms, 55 Complex arithmetic, 112 Complex functions, 115 Compound interest problems, 152-156 Compounding periods, 152 Continuous effective rate, 56 Conversions: degrees/radians, 133 hours/hours, minutes, seconds, 57 interest rates, 157 polar/rectangular coordinates, 60 Correlation coefficient, 75 Covariance, 107 Cube root, 53 Curve fitting, 89-97 Curves: exponential, 89; logarithmic, 92; power, 95

D

Daily compounding, 68 Data storage, 45 Decimal degrees (hours), 57 Decimal point entry, 12 Declining-balance depreciation, 178 Declining factor, 178 Defective battery pack, 189 Degrees to hours, minutes, seconds, 57 Degrees to radians, 133 Density function, 81 Depreciation, 174-180 Determinant of 2 x 2 matrix, 120 Direct reduction loan, 159-164, 167-169 Discounted cash flow analysis, **181-185** Discounted rate of return, 183 Display: blank, 190; clearing, 12; error, 32; modes, 23; rounding, 23 Display formatting, 23-28 Distance, great circle, 137 Division, 14 Double-declining-balance depreciation, 178

E

e^x, 55 Effective annual rate, 157 Engineering notation, 26 Entering numbers, 13 ENTER: key, use of, 14, 36 Error display, 32 Errors, correction of, 12, 13, 73 Exact interest, see Simple Interest (365 Days), 152 Exchange key, 35 Exponential curve fit, 89 Exponentiation, 51 Exponents of ten, 30 Exponent, sign of, 51 Extracting roots, 53

F

Factorials, 54
Field angle traverse, 145
Financial functions, 66-71; displaying values, 67; changing input values, 67
Financial keys, 66
Financial registers, 194
Fixed point notation, 24
Formatting answers, 23-28
Formulas, 205
Fundamental operations, 13
Future value, annuity due, 173
Future value, ordinary annuity, 165

G

General-purpose storage registers, 44-48 Geometric curve, 95 Gold prefix key, 11 Goodness of fit, 75 Grads, selection of, 56 Great circle navigation, 137 Growth curve, 90

H

Hours, decimal, 57

Hours, minutes, seconds: conversion, 57; addition and subtraction, 58

I

Improper operations, 32 Inputting financial values, 66 Inputting numbers, 12 Internal rate of return, 183 Interest, compound, 152-156 Interest rate conversions, 157 Interest rate, annuity due, 171 Interest rate, ordinary annuity, 160 Interest, simple, 151 Inverse from coordinates, 148 Inverse normal integral, 108

K

Keyboard summary, **6-8** Keying in numbers, **12**

L

LAST X, 43 Lease problems, 169-173 Line voltage select switch, 188 Linear estimate, 76 Linear regression, 73 Loan fees/points, 161 Loan problems, 159-169 Logarithmic curve fit, 92 Logarithms, common, 55 Logarithms, natural, 55 Low power display, 32

M

Manipulating stack contents, 33 Margin, 64 Markup, 63 Math applications, 110-134 Matrix, determinant and inverse, 120 Mean, 77 Memory: registers, 48; stack, 33 Multiplication, 14

Ν

Natural antilogarithms, 55 Natural logarithms, 55 Navigation applications, 134-142 Negative exponent, 51 Negative numbers, 12 Net amount, 62 Net present value, 181 Nominal to effective rate, 157 Normal distribution, 81 Number of periods, annuity due, 170 Number of periods, ordinary annuity, 159

0

On-Off switch, 11 One-number functions, 17, 18 One-way analysis of variance, 103 Operations, arithmetic, 13 Operations, improper, 32 Optional accessories, 187 Ordinary annuity problems, 159-169 Overflow display, 32 Overflow of storage registers, 48

P

Paired t statistic. 98 Payment amount, annuity due, 172 Payment amount, ordinary annuity, 162 Payment periods, 159, 170 Percent difference, 63 Percent of total, 64 Percentage problems, 61 Periods, compounding, 152 Permutations, 87 Pi. 54 Polar/rectangular coordinate conversions, 60, 61 Polynomial equation, 111 Population covariance, 107 Population standard deviation, 79 Population variance, 81 Positive/negative numbers, 12

214 Index

Positive/negative powers, Power curve fit, Power, low, Powers, see Exponentiation, Prefix clear, Prefix keys, Present value, annuity due, Present value, ordinary annuity, Profit margin, Proportions,

Q

Quadratic equation, 110

R

Radians mode, 56 Radians to degrees conversion, 133 Raising numbers to powers, 51 Range, temperature, 191 Ratio of increase/decrease, 63 Recall arithmetic, 47 Recalling data, 45 Recharging procedure, 188 Reciprocals, 52 Rectangular/polar coordinate conversion, 60 Registers: financial, 194; LAST X, 43; stack, 33; statistical, 72; storage, 44-48 Remaining balance, 168 Replacing the battery, 189 [RESET] function, **198** Retail pricing, 63 Reciewing the stack, 33 Rhumb line navigation, 134 Roll-down key, 33 Roots: quadratic equation, 110; polynomial, 111; square, 53 Rounding of display, 23

S

Sample covariance, 107 Sample standard deviation, 79

Sample variance, 80 Savings calculations, 169-174 Scientific notation. 25 Serial number . 191 Service, 191 Shipping instructions, **192** Sight reduction table, 141 Sigma minus key, 73 Sigma plus key, 72 Simple interest, 151 Sine, cosine, tangent, 57 Sinking funds, 165 Square, 52 Square root, 53 Stack, operational, 33 Standard accessories. 187 Standard deviation, 79 Statistical applications, 87-110 Statistical functions, 71 Status indicators, 194 Storage arithmetic, 45 Storage registers, 44-48 Storing and recalling numbers, 45 Straight-line depreciation, 174 Summations, 72; correcting, 73; vector, 83 Sum-of-the-years'-digits depreciation, 176 Surveying applications, 142-150

Т

t statistic for two means, 101 t statistic, paired, 98 Temperature range, 191 Ten, exponents of, 30 Time for battery charge, 188 Time of battery operation, 189 Transferrable warranty, 192 Traverse problems, 142-150 Trend line, see Linear Regression, 73 Triangle solutions, 122-133 Trigonometric functions, 56 Trigonometric modes, 56 Two-number functions, 18, 19

U

Underflow display, 32 Use abroad, 188

V

Value Limits, 204 Variance, 80 Variance, analysis of, 103 Vector cross product, 117 Vector dot product, 119 Vector summations, 83

W

Warranty, 191

X

X-register, **33** X-exchange-Y key, **35**

International Sales and Service Offices

NORTH AND SOUTH AMERICA

ARGENTINA

*Hewlett-Packard Argentina S.A.C.e.l. Lavalle 1171 3° Piso Buenos Aires Tel: 35-0436, 35-0341, 35-0627 Telex: 012-1009 Cable: HEWPACK ARG

BOLIVIA

*Stambuk & Mark (Bolivia) Ltda. Av. Mariscal Santa Cruz 1342 La Paz Tel: 40626, 53163, 52421 Telex: 3560014 Cable: BUKMAR

BRASIL

*Hewlett-Packard Do Brasil I.E.C. Ltda. Rua Frei Caneca, 1.152–Bela Vista 01307–Sao Paulo–SP Tel: 288-71-11, 287-81-20, 287-61-93 Telex: 309151/2/3 Cable: HEWPACK Sao Paulo

*Hewlett-Packard Do Brasil
I.E.C. Ltda.
Praca Dom Feliciano, 78-8° andar (Sala 806/8)
90000-Porto Alegre-RS
Tel: 25-84-70-DDD (0512)
Cable: HEWPACK Porto Alegre

*Hewlett-Packard Do Brasil I.E.C. Ltda. Rua Siqueira Campos, 53-4° andar-Copacabana 20000-Rio de Janeiro-GB Tel: 257-80-94-DDD (021) Telex: 210079 HEWPACK Cable: HEWPACK Rio de Janeiro

CANADA

*Hewlett-Packard (Canada) Ltd. 275 Hymus Boulevard Pointe Claire, Quebec H9R 1G7 Tel: (514) 697-4232 TWX: 610-422-3022 Telex: 01-20607

*Hewlett-Packard (Canada) Ltd. 837 E. Cordova Street Vancouver 6, British Columbia Tel: (604) 254-0531 TWX: 610-922-5059

Hewlett-Packard (Canada) Ltd. Winnipeg, Manitoba R 3H 0L8 Tel: (204) 786-7581

Hewlett-Packard (Canada) Ltd. Calgary, Alberta Tel: (403) 287-1672

Hewlett-Packard (Canada) Ltd. Dartmouth, Nova Scotia B3C 1L1 Tel: (902) 469-7820

Hewlett-Packard (Canada) Ltd. Ottawa 3, Ontario K2C 0P9 Tel: (613) 225-6180, 225-6530

Hewlett-Packard (Canada) Ltd. Mississauga, L4V 1L9 Ontario Tel: (416) 678-9430

Hewlett-Packard (Canada) Ltd. Edmonton, Alberta T5G 0X5 Tel: (403) 452-3670

Hewlett-Packard (Canada) Ltd. Ste. Foy, Quebec G1N 4G4 Tel: (418) 688-8710

CHILE

*Calcagni y Metcalfe Ltda. Calle Lira 81, Oficina 5 Casilla 2118 Santiago, 1 Tel: 398613 Cable: CALMET

218 COLOMBIA

*Instrumentacion H.A. Langebaek & Kier S.A. Carrera 7 No. 48-59 Apartado Aereo 6287 Bogota 1, D.E. Tel: 45-78-06, 45-55-46 Cable: AARIS Bogota Telex: 444001NSTCO

COSTA RICA

*Lic. Alfredo Gallegos Gurdian Apartado 10159 San Jose Tel: 21-86-13 Cable: GALGUR San Jose

ECUADOR

*Oscar Gonzalez Artigas Compania Ltda. Avda. 12 De Octubre No. 2207 Sagitra-Quito Tel: 233-869, 236-6783

*EL SALVADOR

IPESA Bulevar de Los Heroes 11-48 San Salvador Tel: 252-787

GUATEMALA

*IPESA Avenida La Reforma 3-48, Zona Guatemala City Tel: 63-6-27, 64-7-86 Telex: 4192 Teletro Gu

MEXICO

Hewlett-Packard Mexicana, S.A. de C.V. Mexico 12, D.F. Tel: (905) 543-42-32

Hewlett-Packard Mexicana, S.A. de C.V. Monterrey, N.L. Tel: 48-71-32, 48-71-84

NICARAGUA

*Roberto Terán G. Apartado Postal 689 Edificio Terán Managua Tel: 3451, 3452 Cable: ROTERAN Managua

PANAMA

*Electrónico Balboa, S.A. P.O. Box 4929 Calle Samuel Lewis Ciudad de Panama Tel: 64-2700 Cable: ELECTRON Panama Telex: 3431103 Curundu, Canal Zone

PARAGUAY

*Z.J. Melamed S.R.L. División: Aparatos y Equipos Medicós División: Aparatos y Equipos Cientificos y de Investigación P.O.B. 676 Chile-482, Edificio Victoria Asunción Tel: 4-5069, 4-6272 Cable: RAMEL

PERU

*Compañiá Electro Medica S.A. Ave. Enrique Canaval 312 San Isidro Casilla 1030 Lima Tel: 22-3900 Cable: ELMED Lima

PUERTO RICO

*HP Puerto Rico P.O. Box 41224 Minillas Station San Juan PR 00940

Mobil Oil Caribe Building 272 Street Carolina PR 00630

UNITED STATES OF AMERICA

*Hewlett-Packard APD Service Department P.O. Box 5000 Cupertino, CA 95014 Tel: (408) 996-0100 TWX: 910-338-0546

VENEZUELA

*Hewlett-Packard de Venezuela C.A. Apartado 50933
Edificio Segre
Tercera Transversal
Los Ruices Norte
Caracas 107
Tel: 35-00-11
Telex: 21146 HEWPACK
Cable: HEWPACK Caracas

FOR COUNTRIES NOT LISTED, CONTACT:

Hewlett-Packard Inter-Americas 3200 Hillview Avenue Palo Alto, California 94304 Tel: (415) 493-1501 TWX: 910-373-1260 Telex: 034-8300, 034-8493 Cable: HEWPACK Palo Alto

ASIA, AFRICA AND AUSTRALIA

AMERICAN SAMOA

*Oceanic Systems Inc. P.O. Box 777 Pago Pago Bayfront Road Pago Pago 96799 Tel: 633-5513 Cable: OCEANIC-Pago Pago

ANGOLA

*Telectra Empresa Tecnica de Equipamentos Electricos, S.A.R.L. R. Barbosa Rodrigues, 42-1° DT.° Caixa Postal, 6487-Luanda Tel: 35515/6 Cable: TELECTRA Luanda

AUSTRALIA

*Hewlett-Packard Australia Pty., Ltd. 31-41 Joseph Street Blackburn, Victoria 3130 P.O. Box 36 Doncaster East, Victoria 3109 Tel: 89-6351, 89-6306 Telex: 31-024 Cable: HEWPARD Melbourne

*Hewlett-Packard Australia Pty., Ltd. 31 Bridge Street Pymble, New South Wales, 2073 Tel: 449-6566 Telex: 21561 Cable: HEWPARD Sydney

Hewlett-Packard Australia Pty., Ltd. Prospect, South Australia Tel: 44-8151

Hewlett-Packard Australia Pty., Ltd. Claremont, W.A. 6010 Tel: 86-5455

Hewlett-Packard Australia Pty., Ltd. Fyshwick, A.C.T. 2609 Tel: 95-3733

Hewlett-Packard Australia Pty., Ltd. Spring Hill, 4000 Queensland Tel: 29-1544

BAHARAIN

Green Salon Arabian Gulf Tel: 5503

BURUNDI

Typomeca S.P.R.L. B.P. 533 Bujambura

CYPRUS

Kypronics Ltd. Nicosia Tel: 45628/29

220 ETHIOPIA

*EMESCO Ltd. P.O. Box 2550 Kassate Teshome Bldg. Omedla Square Addis Ababa Tel: 12-13-87 Cable: EMESCO Addis Ababa

GUAM

*Guam Medical Supply, Inc. Jay Ease Building, Room 210 P.O. Box 8383 Tamuning 96911 Tel: 646-4513

HONG KONG

*Schmidt & Co. (Hong Kong) Ltd. P.O. Box 297 Connaught Road, Central Hong Kong Tel: 240168, 232735 Telex: HX4766 Cable: SCHMIDTCO Hong Kong

INDIA

*Blue Star Ltd. Sahas 414/2 Vir Savarkar Marg Prabhadevi Bombay 400 025 Tel: 45 78 87 Telex: 4093 Cable: FROSTBLUE

Blue Star Ltd. Bombay 400 020 Tel: 29 50 21

Blue Star Ltd. Bombay 400 025 Tel: 45 73 01

Blue Star Ltd. Kanpur 208 001 Tel: 6 88 82

Blue Star Ltd. Calcutta 700 001 Tel: 23-0131

*Service

Blue Star Ltd. New Delhi 110 024 Tel: 62 32 76

Blue Star Ltd. Secunderabad 500 003 Tel: 7 63 91, 7 73 93

Blue Star Ltd. Madras 600 001 Tel: 23954

Blue Star Ltd. Jamshedpur 831 001 Tel: 7383

Blue Star Ltd. Bangalore 560 025 Tel: 55668

Blue Star Ltd. Cochin 682 001 Tel: 32069, 32161, 32282

INDONESIA

*BERCA Indonesia P.T. P.O. Box 496 1st Floor JL, Cikini Raya 61 Jakarta Tel: 56038, 40369, 49886 Telex: 2895 Jakarta

IRAN

*Hewlett-Packard Iran Daftar Machine Building (No. 19) Roosevelt Avenue, 14th Street Tehran Tel: 851082/3/4/5/6 Telex: 212574

IRAQ

Electromac Services Baghdad Tel: 95456

JAPAN

*Yokogawa-Hewlett-Packard Ltd. Ohashi Building 1-59-1 Yoyogi Shibuya-ku, Tokyo Tel: 03-370-2281/92 Telex: 232-2024 YHP Cable: YHPMARKET TOK 23 724

*Yokogawa-Hewlett-Packard Ltd. Nisei Ibaragi Bldg. 2-2-8, Kasuga Ibaragi-shi Osaka Tel: 0726-23-1641 Telex: 5332-385 YHP-Osaka

Yokogawa-Hewlett-Packard Ltd. Nakamura-Ku, Nagoya City Tel: 052-571-5171

Yokogawa-Hewlett-Packard Ltd. Yokohama, 221 Tel: 045-312-1252

Yokogawa-Hewlett-Packard Ltd. Mito, 310 Tel: 0292-25-7470

Yokogawa-Hewlett-Packard Ltd. Atsugi, 243 Tel: 0462-24-0452

KENYA

*Business Machines Kenya Limited Olivetti House Uhru Highway/Lusaka Road P.O. Box 49991 NBI Nairobi Tel: 556066 Cable: PRESTO Nairobi

KOREA

*American Trading Company Korea, Ltd.
I.P.O. Box 1103
Dae Kyung Bldg., 8th Floor 107 Sejong-Ro
Chongro Ku, Seoul
Tel: (4 lines) 73 8924 7
Cable: AMITRACO Seoul

KUWAIT

*Photo and Cine Equipment P.O. Box 270 Safat Tel: 422846/423801 Telex: 2247

LEBANON

Constantin Macridis Beirut Tel: 366397/8

LIBYA

Kabir Stationery Tripoli Tel: 35201

H.M. Zeidan and Sons Organization Benghazi Tel: 94930/94963/93689

MOROCCO

Gerep Ltd. Casablanca Tel: 258196/279469

MOZAMBIQUE

*A.N. Goncalves, Lta. 162, 1° Apt. 14 Av. D. Luis Caixa Postal 107 Lourenco Marques Tel: 27091, 27114 Telex: 6-203 NEGON Mo Cable: NEGON

222 NEW ZEALAND

*Hewlett-Packard (N.Z.) Ltd. 94-96 Dixon Street P.O. Box 9443 Courtenay Place, Wellington Tel: 59-559 Telex: 3898 Cable: HEWPACK Wellington

*Hewlett-Packard (N.Z.) Ltd. Pakuranga Professional Centre 267 Pakuranga Highway Box 51092 Pakuranga Tel: 569-651 Cable: HEWPACK, Auckland

NIGERIA

*The Electronics Instrumentations Ltd. N6B/770 Oyo Road Oluseun House P.M.B. 5402 Ibadan Tel: 22325

PAKISTAN

*Mushko & Company Ltd. 38B, Satellite Town Rawalpindi Tel: 41924 Cable: REMUS Rawalpindi

Mushko & Company Ltd. Karachi-3, Tel: 511027, 512927

PHILLIPINES

*Electronic Specialist & Proponents, Inc. Room 417 Federation Center Bldg. Muella de Binondo P.O. Box 2649 Manila Tel: 48-46-10 & 48-46-25 Cable: Espinc Manila

REUNION ISLANDS

*ZOOM B.P. 938, 97400 Saint Denis 85 Rue Jean Chatel Ile de la Reunion Tel: 21-13-75 Cable: ZOOM

RHODESIA

*Field Technical Sales 45 Kelvin Road North P.O. Box 3458 Salisbury Tel: 705231 (5 lines) Telex: RH 4122

RWANDA

*Buromeca R.C. Kigali 1228 B.P. 264 Kigoli Rwanda

SAUDI ARABIA

* Modern Electronic Establishment (M.E.E.)
P.O. Box 1228
Jeddah
Tel: 27798/31173
Telex: 40035

M.E.E. Riyadh Tel: 62596/29269

M.E.E. Al Khobar Tel: 44678/44813

Riyadh House Establishment Riyadh Tel: 21741/27360

SINGAPORE

*Hewlett-Packard Singapore (Pte.) Ltd. Blk. 2, 6th Floor, Jalan Bukit Merah Redhill Industrial Estate Alexandra P.O. Box 87, Singapore 3 Tel: 633022 Telex: HPSG RS 21486 Cable: HEWPACK, Singapore

SOUTH AFRICA

*Hewlett-Packard South Africa (Pty.), Ltd.
P.O. Box 31716, Braamfontein Transvaal Milnerton
30 DeBeer Street Johannesburg
Street Delivery Zip Code: 2001
P.O. Box Delivery Zip Code: 2017
Tel: 725-2030, 725-2080, 725-2081
Telex: 0226 JH
Cable: HEWPACK Johannesburg

*Hewlett-Packard South Africa (Pty.), Ltd.
Breecastle House
Bree Street
Cape Town
Street Delivery Zip Code: 8001
P.O. Box Delivery Zip Code: 8018
Tel: 2-6941/2/3
Telex: 0006 CT
Cable: HEWPACK Cape Town

*Hewlett-Packard South Africa (Pty.), Ltd.
641 Ridge Road, Durban P.O. Box 37099
Overport, Natal Street Delivery Zip Code: 4001
P.O. Box Delivery Zip Code: 4067 Tel: 88-6102
Telex: 67954
Cable: HEWPACK Hewlett-Packard South Africa (Pty.), Ltd. Sandton, Transvaal 2001 Tel: 802-1040/6

SYRIA

Sawah and Company Damascus Tel: 16367/19697

Suleiman Hilal el Mlawi Damascus Tel: 114663

TAHITI

*Metagraph B.P. 1741 Papeete Tahiti Tel: 20/320, 29/979 Cable: METAGRAPH PAPEETE Telex: SOMAC 033 F.P.

TAIWAN

*Hewlett-Packard Taiwan 39 Chung Hsiao West Road Section 1 Overpass Insurance Corp. Bldg. 7th Floor Taipei Telex: TP824 HEWPACK Cable: HEWPACK Taipei Tel: 3819160, 3819161, 3819162

Hewlett-Packard Taiwan Kaohsiung Tel: 297319

THAILAND

*UNIMESA Co., Ltd. Elsom Research Building Bangjak Sukumvit Avenue Bangkok Tel: 932387, 930338 Cable: UNIMESA Bangkok

224

TUNISIA

Societe Samos Tunis Tel: 284 355

TURKEY

Melodi Records Istanbul Tel: 442636

Talekom Istanbul Tel: 494040

UNITED ARAB EMIRATES

*Emitac Limited P.O. Box 1641 Sharjah Tel: Sharjah 22779 Dubai 25795 Telex: Sharjah 8033

YEMEN

A. Besse and Co. Yemen Ltd. Sanaa Tel: 2182/2342

ZAMBIA

*R.J. Tilbury (Zambia) Ltd. P.O. Box 2792 Lusaka Tel: 73793 Cable: ARJAYTEE, Lusaka

FOR AREAS NOT LISTED, CONTACT:

Hewlett-Packard Export Trade Company 3200 Hillview Avenue Palo Alto, California 94034 Tel: (415) 493-1501 TWX: 910-373-1260 Telex: 034-8300, 034-8493 Cable: HEWPACK Palo Alto

EUROPE

AUSTRIA

*Hewlett-Packard Ges. m.b.H. Handelskai 52/53 P.O. Box 7 A-1205 Vienna Tel: (0222) 35 15 21 to 32 Cable: HEWPACK Vienna Telex: 75923 hewpack a

BELGIUM

*Hewlett-Packard Benelux S.A./N.V.
Avenue del Col Vert, 1, (Groenkraaglaan)
B-1170 Brussels
Tel: (02) 672 22 40
Cable: PALOBEN Brussels
Telex: 23-494 paloben bru

DENMARK

*Hewlett-Packard A/S Datevej 52 DK-3460 Birkerod Tel: (01) 81-66-40 Cable: HEWPACK AS Telex: 16640 hp as

Hewlett-Packard A/S DK-8600 Silkeborg Tel: (06) 8271 66

FINLAND

*Hewlett-Packard Oy Bulevard 26 P.O. Box 185 SF-00120 Helsinki 12 Tel: (90) 13730 Cable: HEWPACKOY Helsinki Telex: 12-15363 hel

FRANCE

*Hewlett-Packard France Quartier de Courtaboeuf Boite Postale No. 6 F-91401 Orsay Tel: (1) 907 78 25 Cable: HEWPACK Orsay Telex: 60048

Hewlett-Packard France F-69130 Ecully Tel: (78) 33 81 25/83 65 25

Hewlett-Packard France F-31770 Colomiers Tel: (61) 78 11 55

Hewlett-Packard France F-13271 Aéroport de Marignane Tel: (91) 89 12 36

Hewlett-Packard France F-35000 Rennes Tel: (99) 36 33 21

Hewlett-Packard France F-67000 Strasbourg Tel: (88) 35 23 20/21

GERMAN FEDERAL REPUBLIC

*Hewlett-Packard GmbH Vertriebszentrale Frankfurt Bernerstrasse 117 Postfach 560 140 D-6000 Frankfurt 56 Tel: (0611) 50 04-1 Cable: HEWPACKSA Frankfurt Telex: 41 32 49 fra

Hewlett-Packard GmbH D-1000 Berlin 30 Tel: (030) 24 90 86

Hewlett-Packard GmbH D-7030 Boeblingen, Wurttemberg Tel: (07031) 66 72 87

Hewlett-Packard GmbH D-4000 Dusseldorf Tel: (0211) 63 80 31/5 Hewlett-Packard GmbH D-2000 Hamburg 1 Tel: (040) 24 13 93

Hewlett-Packard GmbH D-8012 Ottobrunn Tel: (089) 601 30 61/7

Hewlett-Packard GmbH D-3000 Hannover-Kleefeld Tel: (0511) 55 60 46

Hewlett-Packard GmbH D-8500 Nuremberg Tel: (0911) 57 10 66/75

GREECE

*Kostas Karayannis 18 Ermou Str. Athens 126 Tel: 3230-303 Telex: 315962

*Hewlett-Packard Athens Kolokotroni Str. 35 Platia Kefallariou/Kifissia Athens Tel: 8080337/8080359/ 8080429/8018693 Telex: 216588

ICELAND

Skrifstofuvelar H.F. Reykjavik Tel: 20560

IRELAND

*Hewlett-Packard Ltd. King Street Lane GB-Winnersh, Wokingham Berks. RG11 5AR. Tel: Wokingham 784774 Telex: 847178&9

Hewlett-Packard Ltd. GB-Altrincham, Cheshire Tel: (061) 928-9021

226

*Hewlett-Packard Italiana S.p.A. Via Amerigo Vespucci, 2 1-20124 Milan Tel: (2) 62 51 (10 lines) Cable: HEWPACKIT Milan Telex: 32046

Hewlett-Packard Italiana S.p.A. 1-00143 Roma-Eur Tel: (6) 5912544/5, 5915947

Hewlett-Packard Italiana S.p.A. 1-10121 Turin Tel: 53 82 64

Hewlett-Packard Italiana S.p.A. 1-95126 Catania Tel: (095) 370504

Hewlett-Packard Italiana S.p.A. 1-35100 Padova Tel: 66 40 62, 66 31 88

Hewlett-Packard Italiana S.p.A. 1-56100 Pisa Tel: (050) 500022

LUXEMBURG

*Hewlett-Packard Benelux S.A./N.V. Avenue del Col Vert, 1, (Groenkraaglaan) B-1170 Brussels Tel: (02) 672 22 40 Cable: PALOBEN Brussels Telex: 23-494 paloben bru

NETHERLANDS

*Hewlett-Packard Benelux/N.V. Weerdestein 117 P.O. Box 7825 NL-Amsterdam, 1011 Tel: (020) 5411522 Cable: PALOBEN Amsterdam Telex: 13 216 hepa nl

NORWAY

*Hewlett-Packard Norge A/S Box 149 Nesveien 13 N-1344 Haslum Tel: (02) 53 83 60 Telex: 16621 hpnas n

POLAND

*Hewlett-Packard Warsaw Technical Office U1, Szpitalna 1/Apartment 50 00-120 Warsaw Tel: 268031 Telex: 812453

PORTUGAL

Telectra Empresa Técnica de Equipamentos Electricos Lisbon Tel: 686072/3/4

SPAIN

*Hewlett-Packard Española S.A. Jerez No. 3 E-Madrid 16 Tel: 458 26 00 Telex: 23515 hpe

Hewlett-Packard Española S.A. E. Seville Tel: 64 44 54/58

Hewlett-Packard Española S.A. E-Barcelona, 17 Tel: (3) 2036200-08 & 2044098/9

Hewlett-Packard Española S.A. E-Bilbao Tel: 23 83 06/23 82 06

SWEDEN

*Hewlett-Packard Sverige AB S-431 41 Molndal Tel: (031) 27 68 00/01

*SWITZERLAND

Hewlett-Packard (Schweiz) AG Zürcherstrasse 20 P.O. Box 64 CH-8952 Schlieren-Zürich Tel: (01) 98 18 21/24/98 52 40 Cable: HPAG CH Telex: 53933 hpag ch

Hewlett-Packard (Schweiz) AG CH-1214 Vernier-Geneva Tel: (022) 41 49 50

UNITED KINGDOM

*Hewlett-Packard Ltd. King Street Lane GB-Winnersh, Wokingham Berks. RG11 5 AR. Tel: Wokingham 784774 Tel: 847178&9

Hewlett-Packard Ltd. GB-Altrincham, Cheshire Tel: (061) 928-9021

Hewlett-Packard Ltd. c/o Makro GB-Halesowen, Worcs. Tel: Birmingham 7860

Hewlett-Packard Ltd. GB-Thornton Heath CR4 6XL, Surry Tel: (01) 684 0105

Hewlett-Packard Ltd. c/o Makro GB-New Town, County Durham Tel: Washington 464001, ext 57/58

USSR

*Hewlett-Packard Representative Office USSR Hotel Budapest/Room 201 Petrovskie Linii 2/18 Moscow Tel: 221-79-71 EUROPEAN AREAS NOT LISTED, CONTACT:

Hewlett-Packard S.A. 7, Rue du Bois-du-Lan P.O. Box 349 CH-1217 Meyrin 1 Geneva, Switzerland Tel: (022) 41 54 00 Cable: HEWPACKSA Geneva Telex: 2 24 86

MEDITERRANEAN AND MIDDLE EAST AREAS NOT LISTED, CONTACT:

Hewlett-Packard S.A. Mediterranean & Middle East Operations 35, Kolokotroni Str. Platia Kefallariou GR-Kifissia-Athens Tel: 8080337, 8080359, 8080429, 8018693 Telex: 21-6588 Cable: HEWPACKSA Athens

SOCIALIST COUNTRIES, CONTACT:

Hewlett-Packard Ges.m.b.H. Handelskai 52/53 P.O. Box 7 A-1205 Vienna Tel: (0222) 33 66 06 to 09 Cable HEWPACK Vienna Telex: 75923 hewpak a

Service Card

Refer to the appendix of your Owner's Handbook to diagnose a calculator malfunction. The warranty period for your calculator is one year from date of purchase. Unless **Proof Of Purchase** is enclosed (sales slip or validation) Hewlett-Packard will assume any unit over 12 months old is out of warranty. **Proof Of Purchase** will be returned with your calculator. Should service be required, please return your calculator, charger, batteries and this card protectively packaged to avoid in-transit damage. Such damage is not covered under warranty.

Inside the U.S.A.

Return items safely packaged directly to:

Hewlett-Packard APD Service Department P.O. Box 5000 Cupertino, Calif. 95014

We advise that you insure your calculator and use priority (AIR) mail for distances greater than 300 miles to minimize transit times. All units will be returned by fastest practical means.

Outside the U.S.A.

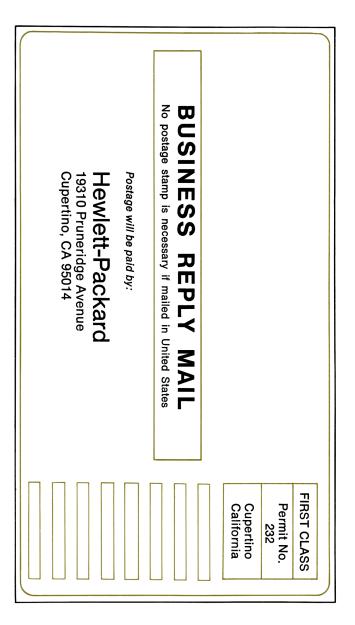
Where required please fill in the validation below and return your unit to the nearest designated Hewlett-Packard Sales and Service Office. Your warranty will be considered invalid if this completed card is not returned with the calculator.

Model No.

Serial No.

Date Received

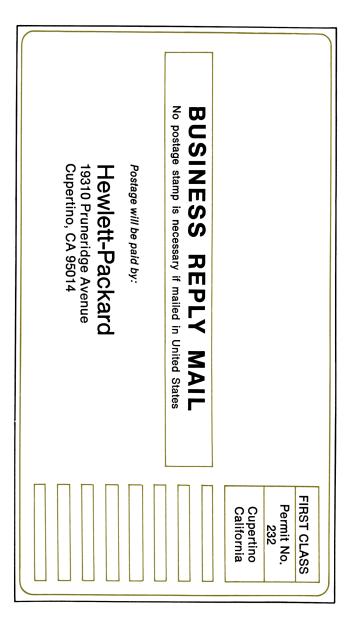
Invoice No./Delivery Note No.


Sold by:

Sel	rvice In	formation
Mus		nd returned with your ger and batteries.
Owner's Name		Date
Home Phone		Work Phone
Ship-	to address for retu	irning repaired calculator
Street Address		
City	State	Zip
	nethod of paymer	I No. nt for out of warranty repairs. will be returned C.O.D.
	BankAmericard	Master Charge
Card No.		Expiration Date
Name appeari	ng on credit card	
Purchase Packard cre shipment)	e Order, Compan edit only. (Include	ies with established Hewlett- copy of Purchase Order with
P.O. Number		
Authorized Sign	ature	
	HEWLETT	D PACKARD

ļ

۱


Calculator Catalog and Buying Guide Request Card	Primary Interest: A friend or associate might also want to know about Hewlett-Packard calculators. If vou would like us to send	Scientific him the Hewlett-Packard Calculator Catalog and Buying Guide, please mail his name and address on this postage paid Request Card.	Business Calculators Name	3 <i>oth</i> Title	S. only Company	Street	CityStateZip
Calcula	Primar	Cal Cal	Calı Calı	🔲 Both	Valid in U.S. only	HEWLETT	430A

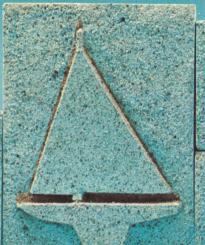
-		State Zip		50 From Employer 99 Other		80 Professional Association 99 Other		15Plant Operations16Pollution Control17Quality Control10Bosorch
HP-27 Warranty Card Please fill in and return this card within 10 days of receipt of calculator.	Street Address	City		Direct Mail HP Salesperson Received as gift	our Purchase:	Direct Mail Brochure HP Salesperson Previous Use Employer		Engineering/Technical Management Financial Management Forecasting/Planning
HP-27 (s card within 10 c		Serial Number		30 H 30 H 40 N	in Leading to Yo	40 50 70	for Your HP-27	80 90 90 90 90 90 90 90 90 90 90 90 90 90
fill in and return this	Title		(1) Where Purchased:	Department Store College Bookstore Other Retail Store	2 Source of Information Leading to Your Purchase:	Retail Store HP Owner Retail Store Advertisement HP Advertisement	(3) Areas of Application for Your HP-27:	Architecture Aviation Capital Budgeting
Please	Your Name	Date Received		11 13 13	2 So	10 31 32	3 Ar	03 03

	0 06 over 10,000 ct
	05 1001-10,000 ewlett-Packard Sale
 12 Navigation/Guidance 13 Nuclear Science 14 Physics Ir Industry: 06 Computers 07 Education 08 Federal Gov't 09 Food Production 	 Communications Number of Employees At Your Location: 1-10 02 11-50 03 51-100 04 101-1000 If you are outside the United States: Return this card in the enclosed warranty envelope. If no envelope, please mail this card to the nearest H
ng pment escribing Your In ucts 006 076 09 007 00 00 00 00 00 00 00 00 00 00 00 00	overs At Your L oyees At Your L 1-50 03 51-10 the United States: the enclosed v please mail this c
05 Data Processing 12 Navigati 06 Design/Development 13 Nuclear 07 Engineering 14 Physics 07 Category Best Describing Your Industry: 0 A 01 Aerospace 06 Compute 03 Chemical Products 00 Federal 04 Construction 00 Food Processing	 Communications Number of Employees At Your Location: 1-10 02 11-50 03 51-100 04 If you are outside the United States: Return this card in the enclosed warranty e If no envelope, please mail this card to the
\bigcirc	

(Fold, moisten and seal to form mailing envelope.)

Useful Conversion Factors

The following factors are provided to 10 digits of accuracy where possible. Exact values are marked with an asterisk. For more complete information on conversion factors, refer to *Metric Practice Guide E380-74* by the American Society for Testing and Materials (ASTM).


Length

Length	
1 inch	= 25.4 millimeters*
1 foot	= 0.304 8 meter*
1 mile (statute)†	= 1.609 344 kilometers*
1 mile (nautical)†	= 1.852 kilometers*
1 mile (statute)†	= 1.150 779 448 miles (nautical) †
Area	
1 square inch	= 6.451 6 square centimeters*
1 square foot	= 0.092 903 04 square meter*
1 acre	= 43 560 square feet
1 square mile†	= 640 acres
Volume	
1 cubic inch	= 16.387 064 cubic centimeters*
1 cubic foot	= 0.028 316 847 cubic meter
1 ounce (fluid)†	= 29.57352956 cubic centimeters
1 ounce (fluid)†	= 0.029 573 530 liter
1 gallon (fluid)†	= 3.785 411 784 liters*
• • •	
Mass	
1 ounce (mass)	= 28.349 523 12 grams
1 pound (mass)	= 0.453 592 37 kilogram*
1 ton (short)	= 0.907 184 74 metric ton*
Energy	
1 British thermal	unit = 1 055.055 853 joules
1 kilocalorie (me	an) = 4 190.02 joules
1 watt-hour	= 3 600 joules*
Farmer	,
Force	
1 ounce (force)	= 0.278 013 85 newton
1 pound (force)	= 4.448 221 615 newtons
Power	
1 horsepower (el	lectric) = 746 watts*
December	
Pressure	
1 atmosphere	= 760 mm Hg at sea level
1 atmosphere	= 14.7 pounds per square inch
1 atmosphere	= 101 325 pascals
Temperature	
Fahrenheit	= 1.8 Celsius + 32
Celsius	= 5/9(Fahrenheit – 32)
kelvin	= Celsius + 273.15
kelvin	= 5/9 (Fahrenheit + 459.67)
kelvin	= 5/9 Rankine

† U.S. values chosen. * Exact values.

Sales and Service from 172 offices in 65 countries. 19310 Pruneridge Avenue, Cupertino, CA 95014

For additional Sales and Service Information Contact Your Local Hewlett Packard Sales Office or Call 408/996-0100 (Ask for Calculator Customer Service).

00027-90001

Printed in U.S.A.