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PREFACE

who Should Use This Manual?

The Calculator Edge is for students of precalculus who have
HP28S calculators. Neither prior knowledge of precalculus nor
prior experience with the HP28S calculator is assumed. This
manual is intended to serve as a bridge between a precalculus
text and the oOwner’s Manual and Reference Manual that come
with the HP28S. Designed as a supplement to Precalculus by
Murray Gechtman, it can be used under the direction of an
instructor or by the individual student. There is sufficient
flexibility to use this manual as a supplement to any
precalculus course.

what this Manual is Not

This manual is not a precalculus text. Neither is it a rewrite
of the HP28S Owner’s Manual. Detailed discussions are used
only for the features of the HP28S that are most important for
the precalculus student.

How to Use Part I

In the first two chapters, series of examples are used to
progressively introduce features of the HP28S. Repeated use of
the most important features is intended for reinforcement.
Consequently all examples should be worked through carefully.
In fact, to develop a natural feel for the machine, it is
advisable to habitually go through series of examples two or
three times. People who already use the HP28S will probably go
through Part I quickly. New users will have to go through Part
I slowly.

Whether the HP28S is used by an individual adventurous student
or an entire class, time will have to be devoted to studying
The Calculator Edge as well as the HP28S Owner’s Manual and
Reference Manual. Most of this time needs to be at the very
beginning.

Work through the chapters in Part I during the first two weeks
of class. In these two chapters, references will be made to a
few specific parts of the HP28S Owner’s Manual and Reference
Manual. If these referenced sections are studied carefully at
the beginning, there will only be an occasional need to use
the Owner’s Manual or Reference Manual for the rest of your

Precalculus course.



How to Use Part II

In Part II the focus of The Calculator Edge will shift away
from the HP28S to precalculus topics. If you are using
Gechtman's Precalculus the symbol *Gxxx printed next to an
example or explanation is to refer you to a related discussion
on page xxx of the text.

Chapters 3 through 11 should be read as soon as the
appropriate precalculus topic is discussed in class. You will
find that The Calculator Edge will be easier to read after
Chapter 2. Thereafter there will not be so much to learn about
the HP28S and you will only need to use The Calculator Edge as
a reference for your precalculus text.

The HP28S Owner'’s Manual and Reference Manual referred to
throughout this book are the manuals that accompany the HP28S.
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Notational Conventions

Superscripts indicate use of the (red) shift key. For example,
in applying the stroke sequence

CLEAR 16 ENTER '/*

the shift key is used twice: just before CEA and again just
before x.

Large capital letters indicate single keystrokes. For example,
in the six stroke sequence

Q ENTER 4 ENTER + DROP

Q, ENTER, and DROP refer to particular keys. In fact 4 and +
refer to particular keys as well.

Small capital letters indicate use of a single cursor key to
select menu items. A single such keystroke might recall the
value of a variable, call up a subdirectory, perform an
operation stored in the calculator, or run a program. For
example, in the stroke sequence

51 ENTER sf

the sr means to press the key beneath the item sf in the T&T
menu. In the stroke sequence

MEMORY ome USER EDGE CH1 DIST X1

the four single keystrokes Home, eoce, cil, and bist select
directories and the single keystroke x1 puts the value of the
variable X1 on the stack.

vii





PART I THE CALCULATOR

CHAPTER 1

THE HP28S GRAPHING CALCULATOR AND PRECALCULUS

Learning Objectives

In this chapter you will:

1 get an overview of the calculator features of the
HP28S that are most useful in precalculus.

be introduced to RPN (or stack logic).

make a directory in your HP28S for precalculus.

learn how to store variables.

write and store a simple program.

1.1 Introduction

Often referred to as a graphing calculator, the HP28S is
better described as a graphing-programmable calculator-
computer. It has three general types of features that we will
use:

(a) Calculator Features.

(b) Programming Features.

(c) Graphing Features.

In order to get the best use of the calculator in your

precalculus course, you will need to

(a) become familiar with some of the calculator features.

(b) see a little programming.

(c) learn how to use most of the graphing features.
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The Calculator Edge shows how to use some of the features of
the HP28S to aid you in your study of precalculus. Patience
and care are necessary, especially at the onset. Stay in touch
with fellow students who are using the HP28S. And keep your
HP28S Owner’s Manual and Reference Manual handy. Work through
the examples in The Calculator Edge carefully. When reviewing,
repeat examples after a few days. You will be amazed how much
easier some things will become. Work on getting used to the
calculator now, so you can concentrate on precalculus later.

1.2 Getting started

Begin your study of the graphing calculator by reading (with
calculator in hand) Chapter 1, Chapter 2 and Appendix C in the
HP28S Owner’s Manual. This should take about an hour. After
you have completed your reading, return to Section 1.2.

Most of the notation used in this manual will be introduced in
this section. Remember to refer to the Notational Conventions
at the front or to the Glossary in the appendix, if you need
to. A word or phrase that is bold and underlined will be
explained in the Glossary. Let us begin with an example on

operational keys.

EXAMPLE 1.1 OPERATION KEYS

Open the calculator. Turn it on.
Press the red key and then_ the
(letter) o key to get the TEST
menu. Your screen should look I:
like the figure. If not, press IENCENLERRRA

“ie

Te
Ce

the red key and then the (numerical)
0 key to CLEAR,

Note: We will consistently use superscripted letters as in
and “fA apove to indicate use of the (red) shift key.

Test out the + operation key by adding 2 to 2, using the stack
logic (RPN logic) of the HP28S. We can write this as

 

2 ENTER 2 ENTER +

Note: We will refer to keys on the HP28S (like ENTER above) by
capitalization.

You can think of + as taking the two 2's off the stack and
operating on them, putting the sum of 4 back on the stack.
The + key, like other operation keys, looks for its arguments
on the stack and returns a result to the stack.
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Clear the 4 off the stack by pressing DROP. Now try to add 2
and 2 as you would with an ordinary calculator. Your
frustration at not seeing the sum 4 is only intensified by the
unpleasant "beep" and message. As an example of another
operation, we will silence this "beep".

Press ON and DROP until your screen again looks like the
figure on the previous page. Next enter 51 on the stack and
press the key directly above the red key. Let's write this as

51 ENTER sf

because you have run the "operation" or "program" sr.

Note: We will use small capital letters like the sf above to
indicate programs and other menu items that are activated by
pressing the keys in the first row below the screen (these
keys are the cursor keys or direction keys).

You can think of sf as taking the 51 off the stack and
operating on it. But where is the result? Not on the stack,
but still somewhere. What you have done is set flag #51. With
flag #51 set, the "beep" of an error message is silenced. With
flag #51 cleared, the "beep" is heard. Slowly go through the
stroke sequence

CLEAR 2 ENTER +

and think about what is happening. First you cleared the 4 off
the stack, and then you put a 2 on the stack. Next + looked
for two numbers on the stack to add, but found only one. The
"beep" was silenced, although the error message "Too Few
Arguments" still appears. For classroom use it is a good idea
to keep flag #51 set. If you prefer to hear the sound use

51 ENTER cf

to clear flag #51. J

By the way, the fastest way to add 2 and 2 on a clear stack is

2 ENTER ENTER +

a four stroke sequence. Try it.



4 The Calculator Edge: Using the HP28S in Precalculus

You have seen Reverse Polish Notation (RPN) as well as
algebraic notation in the HP28S Owner’s Manual. If you are
encountering RPN or stack logic for the first time, you will
need to get comfortable with it now. Stack logic is of immense
value in operating the HP28S. It is only that your familiarity
with algebraic notation makes it seem awkward at first. The
following example is just a hint of the natural advantage of
stack logic.

EXAMPLE 1.2 STACK LOGIC

ND
|
= |

w
|
=

 

Evaluate the fraction three ways:
F
y

(a) with an ordinary calculator,

(b) using algebraic notation on the HP28S, and

(c) using stack logic on the HP28S.

A RPN stroke sequence for (c) is

1 ENTER 2 ENTER / 1 ENTER 3 ENTER / - 1 ENTER 4 ENTER / /

Examine this stroke sequence step-by-step. Now using the
multiplicative inverse key "* (the red key followed by the /
key) try the stroke sequence

2 1/x 3 1/x - 4 1/x /

Aren't both of these easier to follow than

'((1/2)=-(1/3))/(1/4)"

or even the stroke sequence

'(1/2-1/3)/(1/4)"

that takes advantage of hierarchy of operations? Practice
entering the RPN stroke sequences above. Watch the stack logic
at work.ll
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1.3 variables and Directories

Before going on, you should read Chapter 3 in the HP28S
Owner’s Manual. Look over the Menu Map in the appendix of the
owner’s Manual and the Operations Index in the Reference
Manual.

In this section we create directories and use them to store
variables, programs, and subdirectories.

EXAMPLE 1.3 MAKING A DIRECTORY

Press the USER key to go
to the USER directory.
Your screen will appear as
shown if you have not saved
any variables.

— e
e

me
on

Use the stroke sequence

MEMORY + EDGE croIr

to create the directory
eoe in USER. Your USER
menu should now appear as
shown.

—

IEEIII

Now press the key underneath ebce. At the bottom of your screen
is space for all your menu items within ence. Of course there
are none so far. Perform the stroke sequence

MEMORY 1CH1' crolr USER

which creates cit as a subdirectory (and first menu item) of
oct. Use similar stroke sequences to add subdirectories cuz, cs,
cis, and cis to correspond to chapters of The Calculator Edge.

Press cil. We will store some things in the cit menu that
correspond to items for this Chapter 1 of The Calculator Edge
that you are reading. In particular we next store some
variables.|}



6 The Calculator Edge: Using the HP28S in Precalculus

EXAMPLE 1.4 STORING VARIABLES

Use choir to create nist as a subdirectory within cw. Press bist.
You are now in the oist menu (empty so far). If you are lost,
use the stroke sequence

MEMORY yom USER EDGE CH1 DIST

to orient yourself. You have created a rath of subdirectories
EDGE CH1 DIST in your koe directory. In Hoe EDGE CH1 DIST We are about to
store variables associated with finding the distance between
points in the Cartesian plane. Then we will use these stored
variables to calculate the distance between two points.

Perform the stroke sequence

1 'X1 STO 6 CHS 'Y1l STO 4 'X2 STO 2 CHS 'Y2 STO

that stores the points
(X1,Y1) = (1, -6) and
(X2,Y2) = (4, -2) as the a
four variables X1, Y1, X2, gi
and Y2 in pist. Your screen EENEEEITETI
should look like the figure.

Pressing x2 places its value of 4 on the stack. But pressing

'X2' ENTER

places its name 'X2' on the stack. Try it. Now enter the
distance formula with the stroke sequence

'X1 ENTER 'X2 ENTER - 2 ~ 'Y1l ENTER 'Y2 ENTER - 2 ~ + J

Now 'D STO will store the distance formula. Do this and then
press D EVAL. The distance between the stored points will be
calculated and put on the stack. Next store another set of
values as X1, Y1, X2, and Y2. Press po EVAL to get the distance
between the "new" pair of points (X1, Y1) and (X2, Y2). Use
the same procedure to find the distance between other pairs of
points.

The above example is not the only (or even the best) way to
calculate the distance between two points with the HP28S, but
it does provide a good lesson in the use of some of the
calculator features. The next example is an interactive
program that finds the distance between two points. In Chapter
11 you will see yet another (and better) program for the
distance formula.
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EXAMPLE 1.5 A PROGRAM TO FIND DISTANCE

Enter the program o1 to find the distance between two points.
It is given below along with a description of what it does.
Type in the program exactly as shown. Then store it as o1 by
the stroke sequence

ENTER 'D1 STO

p1 asks for two points, and D1
halts. On continuing, So BL
the points are stored, the ROP _
prompt is dropped and the ; “
distance is calculated. »

To run o1, press the key underneath its name, respond to the
prompt by entering four numbers and then press ‘““' to continue.

Note: sst is a very useful command for analyzing programs. When
a program is uted, you may use ‘““ to continue the program or
ssT to execute just the next step (and sst repeatedly to step
through the rest of the program, one step at a time). Repeated
use of sst while running a program is an extremely good
analysis tool.

Run 01 one step at a time after the mat by using sst in the CNR
menu repeatedly. Try ol for some other pairs of points.j}

1.4 Summary

In this chapter you have created a directory structure of
menus, programs, functions, and variables. To get a summary of
what you have done, consider the stroke sequence

MEMORY ome USER EDGE CH1 DIST

which first gets you into the woe directory containing the
subdirectory eee. ebce in turn contains the menu items cus, cme,
cW3, cw2, AND ci, themselves subdirectories of ebce. Within cit the
above stroke sequence sends you into its subdirectory ois,
which contains the program 1, the function or and the variables

x1, x2, vi, and va.

You have seen almost all of the programming and calculator
features of the HP28S that you will use in precalculus. The
stack logic of the HP28S has been introduced as well. In the
next chapter we turn to the important graphing capabilities of
the HP28S.



CHAPTER 2: FuNCTIONS AND GRAPHING

Learning Objectives

In this chapter you will:

lI practice storing and evaluating functions.

lI get an overview of the graphing features of the HP28S
that are most useful in precalculus.

| make a lot of graphs.

i learn about "pixel accuracy".

2.1 Introduction

Before reading this chapter you should study your textbook's
introduction to functions. It will be helpful also to study
Chapters 3, 4, and 5 from the HP28S Owner’s Manual before
continuing. Note that the HP28S Owner’s Manual does not use
the word function precisely. What your textbook calls a
function is often best thought of as an expression with one
variable when reading the HP28S Owner’s Manual. We begin with
an example on entering and evaluating functions.

2.2 Evaluating Functions

With the HP28S you can quickly evaluate functions at many
different values. Consider, for example, the function

£(X) = 2X/(1 + X2) = 2*X/(1 + X"2 )

which can be entered on the HP28S by the 12 stroke sequence

2,X*1,X,2°+/

and appears as '2*X/(1 + X"2 )' on the stack. Practice
entering this on the stack a few times. Do you see the stack
logic at work?
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Store this expression under F using the three stroke
sequence

'F STO

and then set the variable X equal to 3 by the four stroke
sequence

3,X STO

Now the stroke sequence

F EVAL

will put .6 ( that is f(3) ) on the stack. To evaluate f(5),
for example, you only need to enter

5,'X STO fr EVAL

You could also use

5,'X STO fr EVAL

but not

5,X STO fr EVAL

since 3 has been stored under X. Try each of these three
stroke sequences a few times to see what each is doing.

Naturally, more complicated functions can be evaluated just
as quickly as our f(X). Furthermore, when the need arises,
short programs can be written that evaluate functions at
many different arguments, either automatically or by
prompting. In fact the HP28S itself evaluates a function at
137 different arguments in order to produce the function's
graph, as we see in the next section.

2.3 Graphing on the HP28S

Before working through this section you should read Chapter
7 from the HP28S Owner’s Manual. Section 2.3 serves to
demonstrate the versatility and limits of the graphing
capability of the HP28S. A more careful step-by-step
analysis of the graphs of precalculus begins in the next
chapter, when we turn our focus away from the calculator and

toward the subject matter of precalculus itself.
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Start by plotting sin(x) as described in Chapter 7 of the
HP28S Owner’s Manual. With our notational conventions we can
describe this as

'X ENTER TRIG SIN PLOT sreq praw

or

'x ENTER TRIG SIN POT grea praw

Note how the two stroke sequences differ. In the first X is
placed on the command line with the X key, in the second X
is placed on the command line with a cursor key.

Now press

ON PPAR

to display the default plot parameters. You will find rear on
the second page of the menu. Use the NEXT key to get
there. Experiment with NEXT and PY to determine what they
do. The coordinate pairs

( -6.8, -1.5) and ( 6.8, 1.6)

give the position of the lower left and upper right corners
of the screen displaying the graph of sin(x). The pairs

( -6.8, -1.5) and ( 6.8, 1.6)

are also stored as epuin and pMax. To produce the graph of
sin(x) shown below orav determines 137 equally spaced x
values between -6.8 and 6.8. The 137 corresponding

functional values are calculated so that the 137 coordinate
points can be darkened. More precisely, 137 of the pixels on
the 137 by 32 pixel grid determined by the plot parameters
are darkened.

The lack of perfect
smoothness in the graph
displayed by the HP28S ’
is due to this (necessary)
rounding to pixel accuracy.

Press ON (actually ,., if a graph is displayed) to destroy
the graph and return to the stack.

Note: Remember your ON key. After viewing a graph, use it to
return to a view of the stack.
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In the following examples we will see how to anticipate and
overcome the problems caused by the necessities to size the
screen and round to pixel accuracy.

EXAMPLE 2.1 PIXEL ACCURACY

Consider the function of Section 2.2

f(x) = 2%x/(1 + x°2 )

which can be stored as ra for plotting by the stroke
sequence

2,X*1,X,2°+/ sea

Try it now. IF the stroke sequence above does not work for
you as before, it may be because X has been assigned a
value. Use the stroke sequence

x PURGE

to remove this stored value.

ora should produce
the graph shown. Notice —
the lack of smoothness _—
due to rounding to
pixel accuracy.f}

Not all your graphs are going to fit so nicely on the
viewing screen. We address this problem with an example.

EXAMPLE 2.2 SCREEN TOO SMALL

The function in Chapter 7 of the the HP28S Owner’s Manual

f(X) = X"3-X"2-X+3

has a graph that doesn't fit the screen with the default
plot parameters

( -6.8, -1.5) and ( 6.8, 1.6)

Store it as ea for plotting by the stroke sequence

X,3°X,2"°=X=-3+ stEQ
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oraw should produce
the graph you see to the

right. This time the |
problem is that most of :
the 137 coordinates that 7
make up the graph lie off
the screen. i

By all means follow the Owner’s Manual treatment of this
problem, but try the following procedure for sizing the
screen as well.

EXAMPLE 2.3 SIZING THE SCREEN

Use rcee to put

f(x) = X"3-X"2-X+3

on the stack. Perform the stroke sequence

7,'X STO EVAL

to evaluate f(7) = 290. Now evaluate f(-7) = -382 by means
of the stroke sequence

7 CHS 'X STO rcee EVAL

This indicates that for X between -6.8 and 6.8, we should
expect a much wider range of y-values than the -1.5 to 1.6
in pear. The stroke sequence

Vppar VISIT

will display the plot parameters in the editing mode. Use
the direction keys to change the coordinate pairs

( -6.8, -1.5) and ( 6.8, 1.6)

to

( -6.8, -300) and ( 6.8, 300)

and press the stroke
sequence

ENTER DRAW

to produce the
graph shown.|}
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Occasionally rear is such that we do not obtain a
satisfactory graph due to the problem of pixel accuracy, as
in the following example.

EXAMPLE 2.4 PIXEL ACCURACY

Retaining the plot parameters
of the previous example, graph
sin(x). If the result seems }
puzzling, think about the _—————e
plot parameters. oraw has t
done the best it can up
to pixel accuracy.

Here the problem is that a single pixel represents a very
large y range. The screen represents a vertical range of 600
(from y = -300 to y = 300), but sin(x) ranges only from -1
to +1. Actually, the default plot parameters are ideal for
plotting sin(x). In general when you get graphs like the one
above, you need to adjust the range of y values downward.]]

Often it is important to consider the domain of the
function, as in the following.

EXAMPLE 2.5 DOMAIN

Use the stroke sequence

' PPAR PURGE

to return to the default
plot parameters (as shown)
and store the square root
of X as ea using the
stroke sequence

X ste nn

PPAR
<6,8,-1,5)

{6.810 1 (@,8)

Then graph ea by
pressing oraw.

There are no pixels darkened for x < 0. Why? Not because of
an inappropriate screen size, but because the function /X
is not defined for x < 0. Here a little reflection on the
domain of the function is needed.

Note: If the function stored in EQ is not defined for any
of the 137 x values determined by PPAR, oraw will not plot
points for these x values (but will still plot points for
the remainder of the 137 x values).
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We have been using the word graph to describe what the
calculator produces with oraw. More precisely, oraw gives a
pixel approximation of part of a graph. When you view such
an approximation of part of a graph on your calculator
screen, you will have to decide if you have a complete
graph, a graph that shows all the significant features of a
function. It will often be necessary to rescale rrr and
apply oraw a second time to obtain a complete graph.
Consequently it is helpful to know a little about how opraw
works.

oRaWw Will start by considering only the 137 equally-spaced x
values determined by your plot parameters, and try to
calculate 137 points on the graph of the function. If the
function is undefined at some of these 137 x values, Draw
will ignore them (consider Example 2.5 for negative x). Even
if oraw can calculate all 137 coordinates, you may not see
all (or even any) of them on the graph produced for two
reasons:

1. The pixel grid does not extend far enough up or
down (your y range is too limited). Look back at
Example 2.2.

2. Parts of the graph lie on the x axis or lie so
near the x axis that up to pixel accuracy they can
be said to lie on the x axis (your y range is too
wide). See Example 2.4.

Try graphing some of the functions from your textbook (even
straight lines, if that's all you've encountered so far).
Unfortunately most of the graphs that you will make under
the default plot parameters of

( -6.8, -1.5) and ( 6.8, 1.6)

will miss some important aspect of the function. You will
usually have to adjust the plot parameters. One good way to
do this is to evaluate the function at a point or two if you
find a graph unsuitable (as we did in Example 2.3), and use
the information to edit the rrr (or to edit eMin and pmax
directly).
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But editing era is by no means the only way to adjust the
plot parameters. You can rescale just one of the axes by
using *w or *#, re-center the viewing screen without changing
the scale with centr, and adjust the screen size quickly by
using INs, pax, and epMIN. YOu can see how to use these and
other commands in Chapter 7 of the Owner’s Manual and in
PLOT of your calculator's Reference Manual. Some of these
commands will be used later in The Calculator Edge. As you
draw more and more graphs using the features of the HP28S,
you will develop your own favorite commands. Long after your

precalculus course is completed, you can still be
discovering things that your calculator can do.

By combining the graphing capabilities of the HP28S with
statistical commands, you can automatically adjust screen
size. With the help of the string menu you can save (rather
than redraw) graphs. Furthermore automatic or interactive
programs can be written that plot points one at a time, plot
several graphs on the same screen, plot polar graphs, or
draw designs. To explore some of these possibilities now or
later, you should see the HP28S Owner’s Manual and Reference
Manual or some of the books that Hewlett-Packard publishes
for the HP28S.

The essential advantage in using oraw is that you get 137
darkened pixels representing a graph quickly. Whatever the
domain of the function stored as ee, oraw Will represent a
graph whose domain consists of the 137 equally spaced x
values determined by ppar. In fact, if ea is not defined at
some of these 137 x values, or if a pixel representing part
of the x axis is redundantly darkened or if the y range is
too narrow, you get even fewer pixels darkened. These next
examples exhibit the danger of limiting yourself to a domain
of 137 points or less.

EXAMPLE 2.6 PIXEL PROBLEMS

Let us look at the function sin(x) for x between -1377 and
+1377. Sin(x) crosses the x axis 275 times on this interval,
so a graph consisting of 137 pixels is bound to be
insufficient. Store sin(X) as et and run oraw with the rear
shown.

{hss <p
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To do this you enter

'X ENTER sin PT stea NEXT ‘pear VISIT

using the direction keys, as well as ™ and §, to VISIT the
plot parameters and edit them. The graph produced by
RaW is deceptive.

Now edit rrr to read
as shown on the right.
Then use braw again to (
see what the graph does tu
between x = -10 and
x = 10. In particular
the graph crosses the x p
axis 7 times, as shown nr a
in the graph to the
right. Compare this
with the first graph.

18,-1.5)
1.8) %°1 (8,8) >

Pretty surprising, huh? Try using ™S, euiv, and puax to look at
other parts of the graph up close.l}

Fortunately polynomials can only 'wiggle' so much, so this
kind of thing can't happen when graphing polynomials. With
rational functions you only need to think about the
asymptotes a bit to keep from going astray, as we see from
this last example.

EXAMPLE 2.7 ASYMPTOTES

Store £(X) = X/(X -200) with the stroke sequence

X,X,200-/ stea 'ppar "URGE

which sets the default plot parameters as well. Now DRAW
appears to display no pixels at all. Actually to pixel
accuracy, the graph lies on the x-axis. Use DRAW again with
x going from 15 to 25 or -10 to 10. Use raw again and again
until you think you know what the graph looks like.[}

No matter how good you get at using oraw, changing the plot
parameters without thinking a little about the function is
liable to take a lot of time, and may lead to a totally
erroneous idea of the graph of f(X). The surest procedure
for determining the graph with oraw is the same as it is for
determining the graph by hand. It consists of the following
five points:
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consider any restrictions on the domain and range.
find the intercepts.
find the asymptotes.
plot some points.
connect the dots.*

*
¥

¥*
¥

orev is helpful because it can plot some (actually 137)
points quickly. In the examples we have seen occasions when
oraW actually deceived us in each of the other points.

orRaW is a fantastic aid in understanding functions through
graphs. But you must never forget that the domain of the
function stored in ee and the domain of the graph displayed
by oraw are quite different and can lead to incorrect
assumptions about the function stored in ea. You can draw
more graphs much faster with oraw than by hand, but you must
pay just as much attention to the domain of the function as
ever.

2.4 Summary

In Chapter 2 you have seen almost all of the graphing
features of the HP28S that you will use in precalculus. You
have seen examples of rescaling by means of adjusting the
plot parameters in pear. In other examples you have seen how
to deal with the problem of "pixel accuracy" inherent in any
machine grapher.

Do not go on to Part II until you feel you understand these
first two chapters. If necessary, work through some of the
examples again. If you are ready to go on, congratulations!
You are well on the way to using a powerful tool to aid in
your study of precalculus and beyond.



PART II PRECALCULUS

CHAPTER 3

SYSTEMS OF LINEAR EQUATIONS

Learning Objectives

In this chapter you will:

l graph straight lines.

I "zoom in" on the point of intersection of two lines
geometrically.

lI use matrices to solve the linear system Ax = b.

1 enter and use a program to test the system Ax = b for
consistency.

3.1 Introduction

The focus of our attention now turns away from the calculator
and to the subject of precalculus itself. We begin with
straight lines (or just lines). If you are using Gechtman's
Precalculus, recall that the symbol #*Gxyz printed next to an
example or explanation is to refer you to a related discussion
on page xyz of that text. So *GO87 below refers you to page
87 of Precalculus.

For now, we will express lines in the slope-intercept form

y =mx +b

We begin by graphing some lines with the calculator.

18
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3.2 Straight Lines

EXAMPLE 3.1 A STRAIGHT LINE *GO087

Use the stroke sequence

MEMORY woue USER EDGE CH3

to get into your subdirectory for this chapter. Store the line

y = -3x + 2

as ea by pressing

3 CHS ENTER X * 2 + PLOT grea praw

If your screen does not
appear as shown use f:

PURGE' PPAR DRAW

PPAR _
to return to the default Ce 3215519) a, mm
plot parameters, shown to 16.81.50 “oY
the right, and then draw
another graph.

The default plot parameters have the advantage that each
square pixel represents a .1 by .1 unit square in the x-y
plane. The -3 slope of the graph of y = -3x + 2 is represented
in true scale. To see more of the graph, the y intercept for
example, it is necessary to rescale. We have already seen
several ways to do this. This time use the stroke sequence

( 10,10 ENTER ENTER CHS PMIN PMAX

to change the plot parameters
to those shown. Check rear
to see what you have done.
The stroke sequence above
put (10,10) and (-10,-10)
on the stack and then stored
them in ppar with pMin and
PMAX .

Now press orav. You should N
produce the graph shown.
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A lot of people find that the viewing rectangle

Xx € [-10, 10], Vy € [-10, 10]

determined by the rear above is more convenient for their
graphing. You may even want to store this viewing rectangle as
PPAR1, say, if you see you are using it a lot.

Now with your last graph
on the screen, press the
four direction keys a few
times. Observe how they
move the cursor (now in +
the form of a small cross) “
across the graph. Move the
cursor to the position shown
to the right.

~\

Press '. Now move it just ~
into the third quadrant, as
shown. Press '™ again.

Now press ON to return to the
stack. The pairs of numbers
you see on the stack are the
coordinates of the cursor when
you pressed '™(probably not
quite the same as those shown).

 

Now apply the stroke sequence

PMIN PMAX DRAW

to store the new plot parameters T=
and draw the graph again. Your
graph should be similar to the
one to the right.

Notice that the slope seems to have changed along with pear. Of
course, this can't really be the case. By changing rear, you
have changed the relative scales of the x and y axes. J
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One advantage of using the default plot parameters is that
slope is properly represented. This is because the 137:32
ratio of the number of square pixels in the grid matches the
13.7 by 3.2 size of the viewing rectangle

[-6.8, 6.8] by [-1.5, 1.6]

A major disadvantage of the default plot parameters is the
small y range of only 3.2 units, compared to the x range of
13.7 units. It turns out that this size screen is perfect for
trigonometric graphs, but usually unsuitable for polynomials.
This explains why many users like to start with the viewing
rectangle

[-10, 10] by [-10, 10]

Our next example shows how to graph two lines simultaneously.

EXAMPLE 3.2 TWO STRAIGHT LINES *G131

Consider the linear system

X = 4y = -8
3x - 2y = 6

or, in slope intercept form

Y
Y

xX/4 + 2
3x/2 - 3

Enter the functions on the stack and set them equal by

X,4/2+3,X*2/3-=ENTER

or

'X/4+2=3*X/2-3 ENTER

Now apply the stroke sequence

STEQ DRAW

to obtain the graph shown.
If your graph looks different
from the figure, you are not
using the default plot parameters. — f
Recall that the stroke sequence :

"PPAR PURGE

will get you back to the default
plot parameters.
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Next use

(1,1) ENTER CHS (8,8) PMAX PMIN DRAW

to set the viewing rectangle —
as [-1, 8] by [-1, 8] and ——
get a better look at the graph. =
Now you can see where the
lines cross.

Note: You may be wondering why you get graphs of both lines
when oraw operates on 'X/4+2=3*X/2-3'. After all, 'X/4+2=3*X/2-
3' is actually an equation with the one solution (4,3). The
reason is that your calculator is programmed to interpret
'X/4+2=3%X/2-3' as two different equations y=X/4+2=3 and
y=X/2-3, so oraW yields their two graphs. This unique
interpretation of "=" allows us to draw two graphs
simultaneously with a minimum of effort. As your precalculus
course progresses, you will appreciate this feature more and
more.

If you don't still have a graph of the two intersecting lines
on your screen, draw the graph above again. In the next
example, we use the cursor keys to investigate the point of
intersection more closely.

EXAMPLE 3.3 CURSOR KEYS

Use the direction keys or cursor keys just below the screen to
move your cross cursor to one of the pixels where the lines== \
overlap. Now the pixel coordinates as above.

Carefully perform the
stroke sequence

ON soLv SOLVR

Your screen should exhibit
an ordered pair of points
near (4,3), not necessarily
exactly the pair shown.

 

Pressing the '™ key sent the coordinates of the pixel location
of your cross cursor to the stack. The stroke sequence

ON soLv SOLVR
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put you in the sowv solve menu. What sowv solve has done for you is to
identify all the variables in your equation ea (press sow rcea to
see kt). These variables consist of your independent variable
x, the left hand side of your equation, and the right hand
side of your equation. sow solve is exhibiting each of these as a
menu item.

Pressing the menu key for x (that is, pressing the key beneath
the name x in the sowv solve menu) will set x equal to whatever the
X coordinate in level 1 is. In this way, you can pass your
guess of x = 3.89705882353 (or some other number close to 4)

to sov save. Pressing * (that is pressing the red key and then
the menu key for x) then runs a program that refines your
initial guess for the x coordinate of a solution to ea. The
stroke sequence for all of this is

SOLV SOLVR X X

Perform this stroke sequence and you will see the value 4
appear on the stack. The "4" is the x value of the point of
intersection of the graphs. To find the y value at the point
of intersection, press '¥f™* (to calculate X/4+2, the left side
of ra, when x=4) or *"® (to calculate 3*X/2-3, the right side of
ta, when x=4). In either case, you should get the value 3 for
y. Thus the point of intersection of the two lines is (4,3).
For more on how to use sow solvR, see the HP28S Owner’s Manual
and Reference Manual. We continue with this example on the
cursor keys by looking at some more graphs.

Apply the stroke sequence

PLOT DRAW

to get your last graph on the screen again. As in Example 3.1,
use ™ and euax and pun to zoom in on the point of intersection.
Now zoom in again. And again and again. Keep checking the
coordinates that '"gives you. It should appear more and more
likely that the intersection is the point (4,3). Roughly
speaking, the procedure in sowv solve used by your calculator to
determine that the lines cross when x is 4 is a quicker and
more sophisticated version of the zooming in that you just
did. Because the mathematics underlying sow soitve is beyond the
scope of precalculus, and because the procedure can give you
misleading results, you should verify anything sowv solv tells
you by other methods. Still you will find sowv soe to be one of
the most helpful parts of the calculator.

Graph your homework exercises in 2x2 Linear Systems(*G138).
Use '™5, per and other commands discussed above. If you like,
try out some of the many other HP28S commands described in the
HP28S Owner’s Manual and Reference Manual. Some of these will
appear later in The Calculator Edge, others will not.
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Of course, a pair of equations may have graphs that cross at
exactly one point or graphs that don't cross at all (parallel
lines). A third possibility is that the pair of equations have
the same graph. Next we analyze and run a program cst that, for
a given pair of equations, determines in which of these three
ways the graphs are related.

*G133 The program to the right, ©ay "BYE
i "A1,B1 2,B2,L2="csT, performs a consistency test whLe Rb BT RT RS

on a pair of equations B2 C2

TERT Az / m1 m2
AX + ByY = Cp " One Solution *

ELSE Co
cst asks for the six coefficients RULE
and uses them to determine whether ZliEN "No Sel.”
the system has exactly one solution, “Infinite # of Solutions
no solutions, or infinitely many END
solutions. , END CLLCD 1 DISP

2?

Try cst out on the systems below.*G133

a. 2x +y =6 b. 2x + y =6 Cc. 2x +y =6
4x + 2y = 9 4x + 2y = 12 4x + y = 12

Use ssT repeatedly after entering the coefficients in response
to the prompt. sst allows you to see the consistency test as
well as the calculator's stack logic in action.

Note: In stepping through the program notice that division by
zero yields 9.99999999999E499. This large number (almost as
large as 10°%’) is the HP28S's approximation of infinity. At
some point almost all computers and calculators must
approximate. In computing, the use of approximate values
occasionally causes baffling errors. Even with the most
sophisticated computing equipment, analysis plays a vital
role. In fact, with more sophistication, analysis becomes even
more important.

3.3 Matrix Algebra

Your HP28S is designed to do matrix algebra with the same
keystrokes used to perform algebraic operations on numbers. We

can see how this is done by looking at an example.
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EXAMPLE 3.4 MATRICES *G149

Store the matrices

( [ -1
A=

[ W
E
N 1]

-1] and B = [ 5 -3 -3]
-2]]N

N

with the stroke sequences

[[2,1CHS,1[1,2,1CHS[3,2,2CHS ENTER 'A STO

and

[5,3CHS,3CHS ENTER 'B STO

You calculator understands A to be the 3x3 coefficient matrix
above and B to be the 3x1 column matrix (5 -3 -3)~. Now the
simple stroke sequence

AB *

will yield the matrix product of A*B = [ 10 2 15 ] (meaning
the 3x1 column matrix (10 2 15)%). Similarly you can use + and
- to add or subtract matrices or vectors just as you would add
or subtract real numbers. But there is more. You can find the
solution X to the matrix equation AX=B (algebraically X=A"'B)
by the stroke sequence

17x
A B*

or even

BA /

Try both of these. Note that only the latter yields the exact
solution [ 1 -1 2 ]. The former isn't as careful in rounding,
but still comes close to [ 1 -1 2 ]. This seems too good to be
true. And it is. Just try taking the inverse of the matrix

[[ 2 -1 1)
M= [32-2]

[ 3 2 -2])

which you can get by editing a above. Although M has no
inverse (why?) the calculator finds one if flag 59 is clear.
For our purposes, it is better to keep flag 59 set. Do this
with

TEST 59 oF
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Again, analysis is important. You can depend on the procedure
we used in Example 3.4 to solve Ax=b if there is a unique
solution and if A and b are not too unusual. If you are
interested, the HP28S Owner’s Manual and Reference Manual
contain a lot on the many operations that can be applied to
matrices. Hewlett-Packard publishes a series of books for the
HP28S that deal with various mathematical topics. One of
these, Vectors and Matrices, deals exclusively with vectors
and matrices.

In addition to the matrix capabilities of the HP28S, the
programming capabilities can be exploited to fashion programs
that

(a) allow symbolic matrix operations (see HP28S Insights by
William Wickes),

(b) allow you to work in rational form (i.e. to use fractions
like 2/3 instead of decimal approximations), or

(c) allow step-by-step row operations to be carried out.

Of course, these go well beyond the scope of your precalculus
course, principally because of the programming involved. If
you're curious, the secret to symbolic matrix operation is the
use of a list like ({a,b},{c,d}} to represent the matrix
[(a,b], [c,d]]. To work in rational form you can represent a/b
as the complex number (a,b), and manipulate a and b with the
complex arithmetic features of the calculator. Other ways to
get rational results depend on mathematical methods to recover
a fraction a/b from its decimal form (faster, but riskier than
sticking with rational expressions all along).

3.4 Summary

In Chapter 3 we have concentrated on graphs of straight lines.
We zoomed in on points of intersection and rescaled the axes
by adjusting the plot parameters in rrar.

You saw how to use sov sok to find a point of intersection of
two lines. Operations on matrices were employed to solve the
linear system Ax = b. A program cst was given and explained
that tests the system Ax = b for consistency.

You are now ready for the systematic treatment of polynomials
in the next chapter.



CHAPTER 4: PoLYNoMIAL FUNCTIONS

Learning Objectives

In this chapter you will:

lI graph polynomials.

lI determine zeros of polynomials geometrically by
"zooming in".

lI determine zeros of polynomials algebraically with sou
SOLVR «

I enter and use a program wriex that calculates the
vertex of a parabola.

lI do complex arithmetic and handle complex roots.

i enter and use a program soiv that performs synthetic
division.

4.1 Introduction

This chapter deals primarily with the graphing of polynomial
functions. We will also be concerned with the algebra of
polynomial functions and the evaluation of polynomial
functions.

The graphing features of your calculator make it possible to
create graphs of polynomials quickly and accurately. In
Chapter 4 we start with graphs of quadratics and gradually
consider graphs of more and more complicated polynomials.
Together the many examples represent almost any kind of
behavior that the polynomial functions of precalculus can
exhibit. Work through them carefully.

4.2 Graphing Quadratic Functions

In this section we consider some important aspects of
quadratic functions and their graphs with a series of
examples.

27
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EXAMPLE 4.1 GRAPHING QUADRATICS *G098

As a first example that involves adjusting the plot
parameters, let's graph the quadratic function

y = x2 -2x - 3

with the default plot parameters using the stroke sequence

X,2°2,X*=3- stea 'ppAR "URGE ppaw

raw produces the graph
shown.

Change the rrr until you
get a graph (as in the
second figure on the right)
that shows the vertex NTT
and both x intercepts
in the same viewing
rectangle.

Use the cross cursor,

INS puiN, and eux to
create other views
of the graph near the
vertex. Try to get nearer
and nearer the vertex
(that is zoom in). Press 5

with the cross cursor 1: i;2 0500055
near the vertex (as in RRS
the third graph) to put the
coordinates of a point near
the vertex on the stack,
as shown.

 

With enough persistence, you can reach the point (1, -4)
itself. Even before reaching (1, =-4), you probably will become

convinced that (1, -4) is the vertex. The evidence is not
leading you astray: the vertex really is (1, -4).

We can confirm that the vertex is (1, -4) with the program rex
given on the following page. wrx determines the vertex of a
parabola, the most important point on the graph. Copy the
program exactly as shown in the right column. Then save it as
WIEX in your cw subdirectory. The left column gives a step by
step description of what wrex does.
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*G099 wiex begins with a
friendly display of the WRTEX
general quadratic function Yaa 2 +B KX +0
and asks for the parameters RyB C=" HALT + A 2
A, B, and C. Upon continuation © « DROP2 B NEG 2 R
of the program, the coordinates PLAC rE.
of the vertex (-B/2A, f(-B/2A))
are calculated and displayed. ?

Try wriex out for the quadratic function above. Just respond to
the prompt with

1,2CHS,3CHS ‘OM

and the vertex (1, -4) is displayed in level 1. Now use wrx to
find vertices of some of the parabolas in your text.

If you like, alter wrex to suit your own tastes or needs. For
example, try to come up with an Ir statement that checks the
sign of A and tells whether the parabola opens upward or
downward. You may like to use the command oiss and string
statements (see the program cst in Chapter 3) as well.

It is possible to zoom in on a zero of a function (an x value
where the graph crosses the x axis) in the same way that we
zoomed in on the vertex. But sow soove does this for us
algebraically (and much faster than we can zoom in ourselves),
as the next example shows.

EXAMPLE 4.2 ZEROS OF A QUADRATIC *G098

You are going to find the zeros of

y = x2 -2x - 3

by usingsowv solve. Begin by creating a graph of

y = x2 -2x - 3

that shows both x intercepts in the viewing rectangle. As in
Example 2.2 move your cross cursor to one of the pixels along
the negative x axis where the graph crosses the x axis. Use
IN to put the approximate coordinates of this pixel on the
stack. Now move your cross cursor to one of the pixels along
the positive x axis where the graph crosses the x axis. Use
IN to put the approximate coordinates of this pixel on the
stack.
Now apply the stroke sequence

Xx
ATTN SOLV SOLVR X
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to go to the sowv solve menu,
store the x coordinate of
the point on level 1 as x,
and have soLv SoLWR Ri
"algebraically zoom in" on re 3
the zero. If you start sowv sow (377INS—
with a point near enough
(3,0), it will produce the
display shown to the right.

Interpret the word "Zero" displayed on level 2 to mean that,
to the internal accuracy of the machine, the value of ee is
zero when x = 3.

For more on the meaning of this (and other) displayed
messages, see the HP28S Owner’s Manual and Reference Manual.
For still more about sow sovR, see HP288 Insights by William
Wickes. You should be able to use sovsove to find zeros for
quadratics or any other polynomials you will encounter in
precalculus. However you may occasionally find a zero other
than the one you anticipated. You may find it interesting to
start sowv soove with various initial guesses for zeros and watch
which zero it finds: x = -1 or x = 3.J}

In our next example we look at another way to find roots of a
quadratic, the quadratic formula.

EXAMPLE 4.3 THE QUADRATIC FORMULA *G099

Practice what you have learned about graphing quadratics by
producing a graph of the function

s = -2t% + 11t - 5

with your calculator and then doing each of the following:

(a) Alter pear in order to see the vertex and intercepts in
the same viewing rectangle.

(b) Use the program wrex above to find the vertex.

(c) Find the zeros with sowv sow.

(d) Use the quadratic formula to find the zeros t = 1/2 and
t = 5.
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For repeated use of the quadratic formula, wouldn't it be
easier just to write a program that asks for A, B, and C (like
WTEX on page 29) and then calculates the two roots? By all
means, try this, if you are so inclined. However the HP28S
already has aa (a program version of the quadratic formula) in
the MERA menu. Try it out on the equation on page 30 by
putting its arguments on the stack and then evaluating it with

Rcea 1 ALGEBRA gimp

The sl in the result is like the + in the quadratic formula

( -b £ J(B? - 4ac))/2a

Let sl be +1 to get one root and let sl be -1 to get the
other. Thus the stroke sequence

ENTER 1 ENTER 'sl STO EVAL YA 1 CHS 'sl STO EVAL

yields both zeros. Step through this stroke sequence carefully
to see it at work.|}

If you expect to use the quadratic formula a lot, no one can
blame you for writing your own program. Another approach would
be to use a in a program that incorporates something like the
stroke sequence above.

A double root causes no further hardship. You just get it
twice; once with s1 = 1 and again with sl = -1. We have only
one more case to consider: a quadratic with complex roots.

EXAMPLE 4.4 COMPLEX ROOTS *G037

Find the zeros of

using wap. Remember that
wa takes two arguments:
the function and the
independent variable.
Your stack should appear
as shown. Now set sl '
equal to -1, say, with

1 CHS 'sl STO EVAL KH

ii 0, 25.1,2918410%907
to get the stack to the FETT OT FS
right.
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The calculator is exhibiting the complex number

.25 = 1.39194109071 i

In general, the HP28S will exhibit the complex number a + bi
as the ordered pair (a,b).J}

Incidentally, with this convention, you may add, subtract,
multiply, or divide complex numbers with the same keys that
you use to add, subtract, multiply, or divide reals and
matrices. If you have been doing complex arithmetic, you will
find this example of complex division interesting:

EXAMPLE 4.5 COMPLEX DIVISION

To divide (1+i)/(1-i) use the stroke sequence

(1,1 ENTER (1,1CHS /

to get (0,1), which means 0 + 1i.[}

4.3 Polynomial Algebra

It is possible to add, subtract or multiply two polynomials
with the same +,-, and * keys that add, subtract or multiply
two real numbers, two complex numbers, and two matrices (as we
have seen). Unfortunately you must then simplify, expand, and
otherwise manipulate polynomials to get a resulting expression
in a usable form. The MB penu has programs that do this, but
they are time consuming to use.

In fact, you are much better off staying away from the ALGEBRA
menu altogether. A useful trick is to think only of the
coefficients of polynomials. For example, think of the
polynomials

11x° + 9x3 - 11x2 + 11x - 3 and x2 + 10x + 3

as the arrays

[ 11 0 9 -11 11 -3] and [ 0001 10 3)

which you can enter by the stroke sequence

(11,0,9,11CHS,11,3CHS ENTER [0,0,0,1,10,3 ENTER

Now the + key can be used to add the vectors to yield

[ 11 0 9 -10 21 0]
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which naturally represents the polynomial

11x° + 9x3 - 10x? + 21x

Subtraction of polynomials can be similarly represented by
subtraction of vectors, but multiplication is more
complicated. Division is still more complicated. An excellent
source for polynomial algebra is the book Mathematical
Applications published by Hewlett-Packard. This book tells you
all you need to know to do polynomial algebra quickly on the
HP28S, giving and explaining several programs.

So that you don't feel cheated, below is a program soiv to do
synthetic division in the special important case of division
of a general polynomial by a linear term of form x - z. First
create a subdirectory rac in the directory cw. Then store soiv,
given below, in

HOME EDGE CH&4 PALG

soiv asks for the number 2

(to represent the divisor
x-Z) and the vector P ofne SDJ!
coefficients of the SNSCN
dividend polynomial. A 4% QPb DEun 2%
vector Q is formed, SIgELISI» DROP RET
initially set equal to P. gi P I GET + 'QCI)°
Q is updated to represent NEXT Q ARRY> SWAP
the last row in the 'R' STO LIST» SWAP 1
synthetic division tableau, THERTLIST HARRY

>and is finally used to
represent the quotient
polynomial. It is stored
under eo. The remainder is
stored under Rr.

Try out soiv on the following example. If you sst through this
program, you can see both the synthetic division algorithm and
stack logic at work.

Note: The use of sst in the “™® menu to "single step" through a
program is very helpful in learning about programming on the
HP28S. Even if you are not interested in programming, sst can
help you to understand the procedure that has been programmed,
in the present case the synthetic division algorithm.
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EXAMPLE 4.6 SYNTHETIC DIVISION

Use synthetic division to divide

3x4 — 2x2 + 6X - 5

by
2 "Z=7,P=[2...71 1
iH -2

Xx + 2 1: [38-26-51]

Respond to siv's prompt as
shown. spiv will store the

. . rray { 4 2)
quotient polynomial ou. 1
(represented as a vector 1 3
of coefficients) under «a 318,
and the remainder under &r.
Press a and rR to see the

results.
r
o
a

w

You may want to change soiv so that it automatically displays Q
and R, perhaps even using a string to add comments. Once you
understand soiv you may like to modify it to handle more general
divisors.

We have seen graphs of quadratics in Section 4.2. Now we look
at graphs of cubic and higher degree polynomials.

4.4 Graphing Polynomials

This section does not replace (but rather compliments) your
textbook's discussion of techniques for graphing polynomials
(Section 4.4 in Gechtman's Precalculus). The more information
you can gather about a function, the more likely you are to
construct a good graph. The graphing calculator allows you to
gather information quickly because it plots points (or more
precisely, pixels) fast. You still may have to adjust the
viewing rectangle several times before you get a complete
graph. Good analysis is indispensable. An inappropriate
viewing rectangle can easily lead you astray. For example, in
a small enough viewing rectangle, the graph of any polynomial
looks like a straight line . Graphs of most higher order
polynomials look a lot like graphs of quadratics in some
viewing rectangles. The best approach to graphing polynomials
in general is to zoom out until you are satisfied that you
have seen all the "wiggles" and then zoom in again as needed.
Proper analysis of intercepts, asymptotic behavior, and rising
and falling behavior should accompany this graphing process.
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In the following three examples, we will always begin with the
default viewing rectangle

[-6.8, 6.8] by [-1.5, 1.6]

This viewing rectangle is almost always too small for graphing
the polynomials of precalculus. You may find it better to
start with the viewing rectangle

[(-10, 10] by [-10, 10]

suggested in Chapter 2.

Note: Recall that when we say that the viewing rectangle is

[-6.8, 6.8] by [-1.5, 1.6]

we mean that the screen will show a graph for x between -6.8
and +6.8 and y between -1.5 and +1.6. This is the same screen
size described by the default plot parameters

( -6.8, -1.5) and ( 6.8, 1.6)

meaning that the lower left corner ruin has coordinates
( -6.8, -1.5) and that the upper right corner ruax has
coordinates ( 6.8, 1.6).

EXAMPLE4.7ACUBIC *G190

To the right the graph of
the function

f(x) = x3 + 2x2 - 5x - 6

is displayed for two pairs
of plot parameters
(also shown). With the
default plot parameters,
we see just enough of the
graph to understand how it

PPAR
{ (=6,8,-1.5)
(6.8,1.8) 1 (a,

behaves (if we note that a AT
cubic can change directions : 1
at most twice). The second PPAR .
graph with the viewing f iTthelty (ete
rectangle [-10, 10] by
[-10, 10] shows the complete
graph.

The second graph does not in itself assure us that it displays
the complete graph. We know that this is the complete graph
only because we know something about the graph of a cubic.
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Find the roots of the function

f(x) = x3 + 2x2 - 5x - 6

two different ways: by using sov soo and by factoring (try
factoring with the synthetic division algorithm spiv) . Remember
that sov soovk is a numerical technique that, of necessity,
approximates. You should always be a little uneasy with a sow
soi result. |]

Often your first graph of a polynomial of degree four or more
will consist of few or no darkened pixels. It is usually then
best to zoom out once or twice to see the complete graph, and
finally zoom in again. Two examples typical of this process
follow. The first involves a polynomial of sixth degree.

EXAMPLE 4.8 A SIXTH DEGREE POLYNOMIAL *G191

To the right the graph of
the function

f(x) = (x + 1) (x + 2)%(x - 1)3

is displayed for several
different plot parameters,
starting with the default
plot parameters. This time
the mess we see with the
default plot parameters is
of little use, except that
it inspires us to try a
bigger viewing rectangle.
Our standby viewing rectangle 1
[-10, 10] by [-10, 10] :
reveals just enough (to go Pp
along with the fact that the %
function has the three roots
-1, -2, and 1) to yield the
complete graph. By looking
at the second graph, a third
set of plot parameters was 5
determined and a third graph > r 4
drawn. This is about the best
representation the HP28S can
give for
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f(x) = (x + 1) (x + 2)%(x - 1)3
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In the next example we see that even an eleventh degree
polynomial like

f(x) = -x%(x - 3)°(x - 1)%

can be analyzed. Again, it is necessary to consider several
plot parameters before obtaining a satisfactory graph.

EXAMPLE 4.9 AN ELEVENTH DEGREE POLYNOMIAL *G191

As a final exercise in
graphing higher order
polynomials, consider the
function

f(x) = x%(x - 3)°(x - 11? bo

Graphs are displayed for two PPAR

different plot parameters. $.(-6.8,-1,5)
The default plot parameters (6.8,1.8) X 1 (8,8)
disappoint us as usual.
Note that f(x)20 for x<3
and f(x)<0 for x23 so the
viewing rectangle [-10, 10]
by [-10, 10] is not
appropriate either. Further
analysis suggests the plot
parameters used to make the
second graph. Again we
arrive at a complete
graph.f}

 

For more complicated polynomials, complete graphs may just be
impossible to get on the HP28S. However, none of the standard
precalculus polynomials should require any more effort than we
expended on

f(x) = -x%(x - 3)°(x - 1)?

In the last three examples you have seen the basics for
graphing polynomials with your calculator. Now you are ready
to use the calculator to analyze the polynomial graphs of
precalculus. Enhance your "natural feel" by working through
Examples 4.7, 4.8, and 4.9 again. Recreate graphs pictured in
your text. You will be pleased to see how fast your ability to
graph improves.

When your text takes up the subject of zeros (or roots or x
intercepts) of polynomials, you should study Section 4.5. In
this section we see how the HP28S can be used to determine x
intercepts of graphs.
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4.5 Zeros and Approximations to Zeros

If a polynomial function can be factored, the zeros can be
determined. If not, some type of numerical iteration is often
used to approximate (if not actually find) the zeros. One such
method is explained in Gechtman's Precalculus, Section 4.5.
The numerical iteration procedure in sowv soe of your HP28S is
designed to accept a guess for a zero, and to improve on this
guess. The method used is not foolproof, but should almost
always find a zero. Using sowv solve and oraw together, you can find
all the zeros of any function you encounter in precalculus. We
see how this is done by considering a pair of examples. In
each example we are seeking the single real zero of a cubic.

EXAMPLE 4.10 ZERO OF A CUBIC *G199

We are going to use both
pRAW and soLv soLvR to

determine the single real
root of the cubic

f(x) = x3 + 3x2 + 8x + 2 PPAR

Look at different viewing }
rectangles to convince
yourself that there is
a single real root — l
between x = -1 and x = 0.

 

Use sov solve to find the PPAR ),
zero x = -.275924448614. 4 (8,8;
Now evaluate f(x) at
X = =-.275924448614 with

the stroke sequence

'X STO rcea EVAL

REECECEESER
or, simply 15° 79904448614

CosmaCCC
EXPR=

In either case you
get 0.0

Note: The stroke sequence 'X STO rcea EVAL above does the
following: It takes the value m 275924448614 off, the stack and
stores it under x. Then ea {che equation + 2x2 - 5% - 6) is
recalled and evaluated ag O. the otherhand the two stroke
sequence P*** evaluates x° + ~ - 5x - 6 immediately.
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There is a variety of iterative techniques for approximating
zeros, but the technique programmed into your HP28S should
serve you well in precalculus and far beyond. We end this
section and chapter with an example in which sowv soe appears to
let us down.

EXAMPLE 4.11 ZERO OF A CUBIC

Start looking for a zero of
the cubic

£ (x) 3= X~ = 6x + 12

by creating a graph. As
before, look at different
viewing rectangles until you
have a complete graph. Use
the cross cursor and sowv
sok to find the single
zero near Xx = =-3.13. What
if you had not had a graph
to look at? Could you have
still made an initial guess
for the zero, and have sov
sok find the root for you?
Some initial guesses further
away from -3.13 would merely
take sowv solve more time.
But try an initial guess of
X =

2x

soLv so.L\R takes longer than
usual and yields the display
shown.

2 with the stroke sequence

;

/ +

PPAR :
{ (=5,-7) (4,28) X 1
{a,8)

<l1l3an REVEAL RU,
: -3. 12493574971

CEsCCCC

rei
[x 1,414212773%ai rok
mw eRe i

What happened? The action of sowv solve can best be thought of as
an attempt to reach an x value for which f(x) changes signs
(from positive to negative or visa versa). Somehow,

J2 = 1.41, a place at the bottom of ato home in on x =
"valley" on the graph.

it managed

You could make the same mistake hiking in fog-covered
mountains. Trying to get down
downhill, only to get hung up
The geometric explanation for
the geometric explanation for
graphing, as in hiking, there

to the tree line, you head
in a valley above the tree line.
soLv SoLWR's problem is the same as
your hiking problem. In
are ways around the problen.[}
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Remember that your HP28S has several other graphing features.
The commands +*w and *#, allow you to rescale the axes one at a
time. The command centR allows you to recenter the viewing
screen without changing the scale. See Chapter 7 of the
Oowner’s Manual and PLOT of the Reference Manual to see how to
use these commands.

4.6 Summary

In Chapter 4 you have seen how to determine zeros of
polynomials by graphing as well as by an algebraic procedure
in sov solve. You have entered and used two programs: soiv that
performs synthetic division and wrex that calculates the vertex
of a parabola. You saw how to use au, the HP28S version of the
quadratic formula. But most importantly, you created complete
graphs of a series of polynomial functions using the basic
graphing features of your calculator.



CHAPTER 5: RATIONAL FUNCTIONS

Learning Objectives

In this chapter you will:

lI graph rational functions.

1 see how to use your calculator to help find the
vertical and horizontal asymptotes of rational
functions.

lI analyze a rational function whose graph has a "hole"
rather than a vertical asymptote.

5.1 Introduction

Rational functions are functions of the form R(x)= P(x)/Q(X),
where P(x) and Q(x) are polynomials. Unless stated otherwise,
assume that P(x) and Q(x) have no factors in common. If you
can graph polynomials, there are just three more geometric
ideas you must consider in order to successfully graph
rational functions:

* the location of any discontinuities.
* the vertical asymptotes.
* the horizontal and oblique asymptotes.

In this chapter's examples you will see how to use the algebra
behind each of these geometric ideas to help you determine
complete graphs of rational functions.

5.2 Graphs With Asymptotes

We begin by looking at a rational function whose graph has
both vertical and horizontal asymptotes.

41
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EXAMPLE 5.1 ASYMPTOTES

Store the function

f(x) = 1/(x-1)

in your menu for Chapter :
5 with the stroke sequence ———

X,1-"% stea

pRAW yields the graph
shown under the default
plot parameters.

From the graph it appears that x=1 might be a vertical
asymptote. You can gather algebraic evidence that this is
indeed the case by evaluation of f(x) for values of x "near"
Xx=1l. For example, use the stroke sequence

1.00001 ENTER 'X STO rcea EVAL

to store 1.00001 as x and evaluate 1/(1-x) there to get
100,000. Now evaluate f(x) for numbers even closer to x=1
than 1.00001 is. Be sure to pick some numbers larger than 1
and others smaller than 1. Convince yourself that |f(x) |
tends to » as |x-1| tends to 0. This is what makes x=1 a
vertical asymptote. Before you graph a rational function you
should already know where the vertical asymptotes are.
Recall that x=a is a vertical asymptotes of R(x)= P(x)/Q(x)
if Q(a)=0 and P(a) is not 0.

You can investigate the apparent horizontal asymptote y=0 by
evaluating f(x) for very large or very small values of x. Do
this until you are convinced that y=0 is indeed a horizontal
asymptote.[

Note: The graphing and evaluation techniques described above
can help you find vertical and horizontal asymptotes.
However these techniques enhance, rather than replace, the
algebraic techniques found in your precalculus text (Section
5.1 in Gechtman's Precalculus).

It is best to determine the vertical and horizontal
asymptotes before you touch your graphing calculator. In
particular the next example shows you how knowing the
vertical and horizontal asymptotes can help you determine a
suitable viewing rectangle quickly.
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EXAMPLE 5.2 ASYMPTOTES AND SIZING THE SCREEN I *G212

If you graph the rational
function

(4x%+8x-6) / (x°-2x-3) ~

under the default plot on
parameters your screen
will appear as shown in
the figure.

Such a graph should alert you to zoom out or, better, to
analyze the vertical and horizontal asymptotes and change
the plot parameters to get a suitable screen size. Zooming
out without thinking about the asymptotes is quite tricky.
Try it and see. For this function it is not too difficult to
algebraically determine that the horizontal asymptote is y=4
and the two vertical asymptotes are x=-1 and x=3.

Evaluation yields f(5)=11
and f(10)=6, so plot
parameters of (-5,-5) and
(20,20) might be good to
try. They yield the second Co
graph illustrated. To be 1 SN—
comfortable that this is a 2
complete graph of the PPAR
rational function, you i {gop} ee x
really need to know the
single horizontal and two
vertical asymptotes.[i

Note: When you graph rational functions, avoid the
temptation to zoom out without some analysis. As in the
previous example, a little bit of analysis can suggest a
reasonable screen size.

As another exercise in the technique of sizing the screen
consider the following example.

EXAMPLE 5.3 ASYMPTOTES AND SIZING THE SCREEN II

In this example you will see how useful it is to know the
vertical asymptotes before you size the screen.
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Begin by making the
graph of the rational a

function -

PA ™
,
be.

R
3 2 26.8,-1.5)

(x°+3) / (x°-4) 8,1.80 ¥1 (8,8)

C
o
m
m

with the default plot
parameters. Make a second
graph with the plot
parameters (-100,-100)

and (100,100). Your PRa 188)
graphs should be like t160:7885'% 1 (8,8)
those in the figures to 3
the right.

The second graph looks like a straight line. How can this
be? With the plot parameters

(-100,-100) and (100,100)

your calculator is showing you an important feature of the
graph: the function's oblique asymptote y=x. But at this
scale the vertical asymptotes are lost (either between
pixels or beyond the screen). You can zoom in from the plot
parameters

(-100,-100) and (100,100)

and find these asymptotes by trial and error, but it is much
safer to analyze the function first.

Q(x) can be readily factored
to reveal the vertical
asymptotes x=2 and x=-2. } —"

Knowing that these are the SL
two vertical asymptotes you ~The
can look at the graph shown PPAR
and feel confident that it 1710510) ele
is indeed a complete graph.j}

Note: It was pointed out in Chapter 4 that if you just zoom
in close enough, any polynomial graph looks like a straight
line. Now by zooming out on the graph of a rational function
we get the straight line look again. This is always the case
for a rational function of form R(x)= P(x)/Q(x) if the
degree of P(x) is 1 more than the degree of Q(x).

In a sense you can say the following: far enough away this
type of rational function looks like a straight line. Close
enough all polynomial functions look like straight lines.
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If the degree of P(x) is equal to the degree of Q(x), there
is a horizontal asymptote. If the degree of P(x) is 1
greater than the degree of Q(x) there is an oblique
asymptote. Your textbook(*G217) may show how to find this
oblique asymptote by long division or synthetic division on
R(x). Recall that you may be able to use the program sbiv
from Chapter 3 to do the synthetic division necessary to
find the oblique asymptote.

We have been assuming that P(x) and Q(x) have no polynomial
factors in common. In the next section we see what to expect
if P(x) and Q(x) do have a polynomial factor in common.

5.3 Graphs Without Asymptotes

If P(x) and Q(x) have a polynomial factor in common, we can
simplify R(x)= P(x)/Q(x) by dividing out the common factor.
However the resulting polynomial may not be the same as
R(x). In particular the rational function

R(x) = (x*-1)/(x-1)

is not the same as

S(x) = x+1

because the domains are different. S(x) is defined for all
real x. R(x) is defined and equal to S(x) for all x except
x=1, but R(1) is not defined. In the following example we
look at this difference geometrically.

EXAMPLE 5.4 A GRAPH WITH A "HOLE" *G207

Graph the rational function

R(x) = (x%-1)/(x-1)

and you should see what looks like the graph of the straight
line

S(x) = x+1

As you know from the comments above, these two functions are

not the same.
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Now graph R(x) with the
plot parameters (-5.8,-.5)
and (7.8,2.6). Look closely
at your graph. Like the graph
to the right, it should look t,/
like a straight line of pixels A
with a single pixel "missing". p 7
Use the direction keys (as you {
did in Example 3.3) to move 3
the cross cursor to the
"missing" pixel.
Next apply the stroke sequence

INS ON

to place the coordinates (1,2) of the "missing" pixel on the
stack. The plot parameters (-5.8,-.5) and (7.8,2.6) were
selected so that one of the 137 equally spaced x values
turned out to be x=1. In drawing the graph, the calculator
tried to evaluate R(1l) and found an undefined result, so no
point was plotted. Of course, it is much simpler to notice
that R(x) is undefined directly from the algebra. Once again
we see the importance of analysis.

Armed with the techniques of this chapter, you are ready to
work on graphing the rational functions of precalculus. With
a little prior analysis, you will produce complete graphs
quickly.

5.4 Summary

In this chapter you have seen and worked through several
examples of graphing rational functions on a calculator.
Particular attention was given to vertical, horizontal, and
oblique asymptotes and the algebra behind them. You also
learned how to identify rational functions whose graphs have
"holes" rather than vertical asymptotes.



CHAPTER 6: EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Learning Objectives

In this chapter you will:

lI learn how to use the exponential and logarithmic
function keys of your calculator.

lI graph exponential and logarithmic functions.

lI approximate the value of e using your calculator.

lI enter time value of money equations and see how to
use then.

lI get some more practice with sowv sow.

6.1 Introduction

Besides its graphing capabilities, your calculator has a
number of keys that perform exponential and logarithmic
operations. You will see how to use these operational keys to
help in the evaluation and analysis of the exponential and
logarithmic functions of precalculus. Since the behavior of
the exponential and logarithmic functions of precalculus (e*,
In(x), and functions built on them) is not nearly as varied as
the behavior of polynomials, graphing exponential and
logarithmic functions is relatively easy.

In conclusion we will take a look at the important time value
of money equations because they are

* examples of more complicated exponential functions.

* exponential functions that are practical in everyday
terms.

* a means to learn the important features of the sov
SOLVR menu.

We begin by looking at some keys and menu items on your
calculator that apply to exponential and logarithmic
functions.

47
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6.2 Evaluation

You have probably already used the exponent key “ to calculate
quantities like 2° with the stroke sequence

2,5 ENTER °

Similarly the stroke sequence

2,X ENTER ~

will calculate the quantity 2* if a value is stored under x.
Otherwise this stroke sequence will put the expression '2°X!'
on the stack. Thus you can store the exponential function

f(x) = 2%

with the stroke sequence

2 ENTER X ENTER ~ 'F STO

and evaluate it at x=5, say, by pressing

5,'X STO F EVAL

The two exponential functions 10* and e* have their own keys on
the HP28S as on most calculators. To see these (and other)
exponential and logarithmic function keys, press

LOGS NEXT NEXT

to get a look at the '%° menu. In precalculus you will most
likely only need to use the first four menu items: Loc, ALOG, LN,
and exp. Ac is the exponential function 10*. It takes a number
off the stack and returns its common antilogarithm. Thus the
stroke sequence 2 Ac returns 100, which is 10%. Similarly exe
evaluates e*. The menu keys ioc and x evaluate the common
logarithm and natural logarithm respectively. Try out these
four keys before you go on to the next section on graphing.

As a final exercise in function evaluation, store

f(h)=(1+h)""

in your calculator. It can be shown that the value of f(h)
gets closer to ex2.718281828459045 as h gets nearer and nearer

0. Try storing values of h just greater than 0 and see what
f(h) yields on evaluation. See how close you can come to e.
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6.3 Graphing

As long as you consider only the basic exponential functions
of form

M(t) = Me"

you can expect graphs that look very much like the graph of e*
if k>0 and very much like the graph of e™ if k<0. We consider
an example involving the decay of radium.

EXAMPLE 6.1 EXPONENTIAL DECAY *G237

The exponential function

gives the amount of radium in grams that remains of an
original 10 grams of radium after t years. Store the function
10e-%0%1t 35 go for graphing. Now pressing

1000 'T STO rcea EVAL

we see that M(1000)=6.64 grams. Similarly M(10000)=.17, so
let's choose to look at M(t) for 0<t<10000.

Since M(0)=10 a suitable
viewing rectangle is

[0, 10000] by ([0, 10]

Use the stroke sequence

{ (8,8 18)
(0,0 puiN (10000,10 PMAX DRAW 1 (8:83 {10088 97

and you should get the graph
shown to the right.[}

After working through the example above you should be able to
use the evaluation and graphing features of your calculator to
handle exponential growth and exponential decay problems. Do

some of these problems from your text.

Note: In working with the exponential and logarithmic
functions of precalculus you should not have to rely on the
graphing capabilities of your calculator very much. However
your calculator's ability to evaluate functions at many points
quickly will turn out to be very useful.
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There are many variations based on the formula

M(t) = Me

that model natural phenomena that we will not go into. We do,
however, look at a particular family of variations on this
formula in the next section.

6.4 The Time Value of Money Equations

We will represent the compound interest formula by

A=pP(1 + I)"

In this formula and throughout this section the (standard)
symbols A, P, I, and N will always mean the following:

: the future value.

: the present value.

I: the interest rate each compounding period.

N: the number of compounding periods.

The compound interest formula is ideal for showing the
usefulness of sov so.ve on the HP28S, as you are about to see.

EXAMPLE 6.2 THE COMPOUND INTEREST FORMULA *G238

Enter the compound interest formula as ee for use in solv soLwR
with the stroke sequence

A,P,1,I+N"*= ENTER sta

Now the stroke sequence

soLv solv will make your
screen look like the figure
to the right. what you see
is the solver menu for your
equation A = P(1 + I)". ]

There are six items. One for each of your four variables, plus
one for each side of the equation. The idea is for you to
provide sowv solve with the values of three of the four variables
and for sosolve to respond by calculating and displaying the
corresponding value of the fourth variable.
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To see how this is done consider the problem:

A bank offers 6% annual interest on savings accounts. How
large does a $1000 account become after 10 years if
interest is compounded monthly?

Enter the given values of P=1000, I=6%/12=.005, and N=120
months by means of the stroke sequence

1000 Pp .005 1 120

Now that solv soovk has
been supplied with values
for P, I, and N, press

A

(that is, the red key
followed by a) to calculate LEEREH
and display A=1819.40. TD1919,396734@2
You screen should appear C0Tnrs]
as shown.

Now what if you want to see what happens if interest is
compounded daily instead of monthly? You just enter the new
values for I and N and calculate A by means of

.06,365 / 1 10,365 * x"

to find out that A=1822.03 for daily compounding. With only a
short amount of practice you can make "what if" comparisons of
different values for any of the variables A, P, I, and N.1

Once entered into the calculator, more complicated equations
are just as easily used as the compound interest formula

A=P(1+ 1)"

Such an equation that you may be familiar with is the present
value of an annuity formula

P=R* (1- (1+I) " (-N))/I

that can be derived from the compound interest formula. This
formula involves the same P, I, and N as above. R (the
"periodic payment") represents the payment that must be made
at the end of each of N compounding periods to be equivalent
to the present value P, assuming the use of money is worth a
rate of I per period.
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For example, if you borrow $68000 at 12% compounded monthly
for 30 years, P=68000, I=.01], and N=360. If you store the
formula P=R#*(1-(1+I) "(-N))/I as ee, and then enter the values
for P, I, and N, sow soivk will calculate R=699.46 when ® is
pressed.

Another time value of money formula that you may find
interesting is the future value of an annuity formula

A=R* (((1+I) "N-1)/I)

that can be derived from the previous two formulas (Try it).
Some precalculus texts treat these time value of money
equations in detail, most texts do not. But you can certainly
see how they are useful in everyday life. Furthermore the time
value of money equations are the perfect way to get familiar
with sov solve, one of the most useful features of the
calculator.

If your text has time value of money problems you will
certainly want to practice using these equations and soLv sou.
If your text doesn't, you might still want to use them (now or
in the future) in analyzing your own finances.

6.5 Summary

In Chapter 6 you have seen how to use the exponential and
logarithmic function keys of your calculator. You worked
through an example in graphing an exponential function.
Three of the time value of money equations were discussed as
examples of more complicated exponential functions. You saw
how the time value of money equations are not only practical
for your personal finances, but also helpful in learning the
important sov so. features of the HP28S.



CHAPTER 7: TRIGONOMETRIC FUNCTIONS

Learning Objectives

In this chapter you will:

lI learn how to use the trigonometric function keys
of your calculator.

I graph the basic trigonometric functions.

lI see how to graph the inverse trigonometric functions.

lI solve trigonometric equations numerically.

7.1 Introduction

There are three features of your calculator that are
indispensable to the study of trigonometric functions and
trigonometric equations. These are the evaluation operations,
the graphing capabilities, and the numerical method in soiv soLvR.
You will see how to apply these calculator features by working
through a few examples.

After a brief tour of the trigonometric function evaluation
keys you will graph the basic trigonometric functions. Using
just the default plot parameters you will make good graphs
quickly. Through graphs you will visualize the behavior of
more complicated trigonometric functions. Most importantly,
you will see how to use graphs and sow sootve together to analyze
and then find approximate numerical solutions to trigonometric
equations.

7.2 Evaluation of Trigonometric Functions

Look at the ™!® menu on your HP28S. Use NEXT to see all three
pages. On the first page you see six, cos, and 1a as well as
their inverse functions asin, acos, and aan. There are no keys for
the cotangent, secant, and cosecant. If you want, you can
define your own USER functions for the cotangent, secant, and
cosecant as '1/tmn(X)', '1/cos(X)', and '1/siN(X)' respectively.
Otherwise you can evaluate the secant, say, of a number on the
stack with the stroke sequence
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cos 1/X

which evaluates sec(X)=1/cos(X). The other 11 functions in the
IG menu are for polar/rectangular coordinate conversion,
degree/radian conversion, and calculations with degree-
minutes-seconds. You can read about these in detail in the
HP28S Reference Manual under TRIG. Note that there are keys
for converting from degrees to radians and from radians to
degrees. You can usually avoid the use of these by setting the
angle mode in the "®t menu as described below.

on the first page of the “®t
menu, either pec or rap will
have a small square following
its name to indicate that the
calculator is in the pes or
rRa0 angle mode. To change
angle mode from rap (as in
the top figure) to bec (as in
the lower figure) press bec.
You may select rao similarly.

 

“ie
EH

=
i

FEE

With the pec angle mode and 30 on the stack, press sin. You
should get .5, the sine of 30° to appear on the stack. Now
with .5 on the stack, press asin. The inverse sine of .5 (that
is, 30) appears on the stack. Practice these six trigonometric
function keys siN, cos, TAN, Asin, Acos, and ata in both radian mode
and degree mode. Check the values you get in your text or in a
table of trigonometric function values. When you feel
comfortable with these keys you are ready to graph some
trigonometric functions.

7.3 Graphing of Trigonometric Functions

Start by graphing sin(x) under the default plot parameters
with the stroke sequence

x ENTER sin stea 'ppaR PURGE ppray

Your graph will look like :
one of the figures to the —————————
right. If you got the
familiar sine shape of the
lower figure, you are done.
If you got the uninteresting
figure on the top, you need ]
to change the angular mode aEER
and draw another graph with
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MODE RAD DRAW

Note: The most common mistake in graphing trigonometric
functions is being in the wrong angular mode.

Now try the stroke sequence

1/x
RCEQ STEQ DRAW

to produce the graph of

csc (x)

(the inverse of sin(x)). —_—
Without changing from ~~ ~~
the default plot
parameters produce the

graphs of : :
/ ’ ~
Ff

tan (x) 07

 
cos (x) ~~ ~~

and

sec (x)

respectively. Your graphs
should appear as shown
on the right.

The same default plot parameters that rarely satisfied you
when graphing polynomial functions are ideal for graphing the
basic trigonometric functions. In your precalculus course it
is likely that you will soon need to see graphs of functions
of the form f(x) = Asin(Bx) as in the following example.
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EXAMPLE 7.1 GRAPHING TRIGONOMETRIC FUNCTIONS

To see how to graph a trigonometric function with an amplitude
different from 1 and a period different from 27 consider

f(x) = 12sin(8mx)

To accommodate the amplitude of 12 we must allow y to vary
between -12 and 12. To see one period of the graph we need to
let x vary by at least 27/87=.25, so we choose the plot
parameters

(0,-12) and (.25, 12)

which yield the graph ye
shown in the top figure.
Of course

f(x) = Asin(Bx)

always has this graph (for A positive) if we pick the plot
parameters so well.

On the other hand a poor choice of plot parameters can give a
confusing graph. Recall Example 2.6 in which a graph with 275
zeros appeared to have only three. As another example suppose
we had chosen the plot parameters

(0,-12) and (4, 12)

for our graph above.
orRAW Yields the confusing
graph to the right.
Experiment with other
plot parameters of form

 

(0,-12) and (X41, 12)

for x,>4. Even with a good choice of scale for the y axis, the

graph can be difficult to analyze. Try making some graphs of
this function with the y range vary large (100 or so) and very
small (1 or so) to see what can happen with poor choices of
the size of oh

Note: When graphing trigonometric functions first determine a
reasonable y range by looking at the amplitude. Select x
values that cover one period or so.
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Try your hand at graphing some of the functions of form
Asin (Bx+C), Atan(Bx+C), Acot(Bx+C), and Acos(Bx+C) that appear
in your textbook. Your analysis should proceed much like the
analysis in Example 7.1. If your text has graphs of Asec(Bx+C)
and Acsc(Bx+C) the procedure is again similar (just be sure
that your y range is sufficient).

The inverse trigonometric functions may need some resizing of
the screen, but are not very difficult to graph, as we are
about to see in the case of the function cos’ (x).

EXAMPLE 7.2 GRAPHING INVERSE TRIGONOMETRIC FUNCTIONS

As an example of a graph of an inverse trigonometric function
consider

f(x) = cos! (x)

Store cos’ (x) as ee and graph it under the default plot
parameters by means of

X,acos sta 'prar PURGE pray

to obtain the first graph shown. The graph itself may make you
suspect that there are some
more pixels to be seen in
the second quadrant if you
extend the y range a bit.
A proper analysis tells you
this and more. From the >
definition of inverse
function and properties of
cos (x), it can be shown that
the graph of cos’'(x) goes
from (-1,w7) to (1,0)
monotonically.Thus an
appropriate set of plot
parameters is

(-1.1, -.1) and (1.1, 3.3)

These produce the second graph
to the right.}

The graphing and evaluation capabilities of the calculator
that you have covered so far are helpful in investigating
identities (or determining if a trigonometric equation is an
identity). They are most helpful, however, in approximating
(if not actually finding) solutions to trigonometric
equations, as we see in the next section.
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7.4 Numerical Techniques for Trigonometric Equations

In this section you will see how to use the calculator to find
(or numerically approximate) solutions of trigonometric
equations using sowv soivk. If your textbook discusses numerical
techniques for solving trigonometric equations (as in Section
8.4 of Gechtman's Precalculus) by all means study them.
Although the iterative procedure of the calculator is somewhat
more advanced, it is still based on simple algebraic and
geometric ideas. It is fast and accurate because it utilizes
the calculator's speed, programming capabilities, and
precision to advantage. As an example we choose a
trigonometric equation that cannot be solved by algebraic
means.

EXAMPLE 7.3 NUMERICAL APPROXIMATION *G337

As an example of the solution of a trigonometric equation by
the numerical method in sow solve consider the simple looking
equation

X = 2sin(x)

Begin by noting that since 2sin(x) oscillates between -2 and
+2 the plot parameters (-6.8, -2.5) and (6.8, 2.6) ought to be

suitable.

Do this and you should obtain
the graph in the top figure.
Now as in Example 3.1, move
the cross cursor to a point
just above and to the right
of the point of intersection TN
in the first quadrant (as shown ;
in the top figure). Press
¥ to send the coordinates
of the point to the stack
(the stack is not visible at
the moment). Now move the
cross cursor to a point just
below and to the left of the
point of intersection (as in
the second figure). Press

IN to send the coordinates VER 1 ;
of this point to the stack. ‘
Next use the stroke sequence

ON PMIN PMAX DRAW

to zoom in on the point of
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intersection. Your graph should
be similar to the graph shown.
Zoom in more if you like. Then tc
press '™ with the cross cursor
as near the point of intersection
as you can. After zooming in just
once the cross cursor and '™

yielded the approximation shown He 83411764786,
in the figure. This gives {.555Biel4
us the approximationto the point
of intersection

ba
le
d

(x, y) = (1.89411764706, 1.88886576481)

For practice try zooming in again and again relentlessly. See
how close you can approximate the point of intersection of

f(x)=x and g(x)=2sin(x)

When you think you know the point of intersection (up to the
limit of the calculator) or when you tire of the chase, put a
"guess" for the x value of the point of intersection on the
stack (you may leave a coordinate pair for the point of
intersection on the stack instead). Now as in Example 3.3
press

SOLV SOLVR X X

to have sowv sok do the
zooming for you. Your screen
should proudly display the BEN elaC
approximation 1.89549426704 iT 1.59549426704
for the x value of the point COmEEET Ee
of intersection. The point
itself is approximately

(1.89549426704, 1.89549426704)

of course. You can say that

2sin(1.89549426704) =~ 1.89549426704.]

Use the combination graphing and soiv solve procedure above to
approximate solutions to trigonometric equations from your
text. Algebraic methods may be possible on some of these
equations. When possible compare algebraic and numerical
results.
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7.5 Solving Triangles

The programming capability of the HP28S is advanced enough
that a single program can be written to solve triangles. If
you would like an ambitious project in programming, try
writing such a program. It would be best to start with special
case programs and ultimately combine them into a large user
friendly program. A much less ambitious project would be to
store the Law of Sines or Law of Cosines as ea and apply sov
SOLWR .

7.6 Summary

In Chapter 7 you saw how to use the basic trigonometric
function keys of the HP28S in order to evaluate trigonometric
functions. You graphed all the basic trigonometric functions
as well as an inverse trigonometric function. Working through
a long example using both the graphing and numerical
approximation capabilities of the calculator you learned how
to solve trigonometric equations numerically.



CHAPTER 8: SEQUENCES AND SERIES

Learning Objectives

In this chapter you will:

lI use calculator keys to evaluate permutations and
combinations.

l learn how to evaluate terms of sequences with your
calculator.

lI learn how to sum series with your calculator.

i generate terms of a sequence using a recursion formula.

8.1 Introduction

Primarily this chapter deals with evaluation: evaluation of
sequences and series and evaluation of permutations and
combinations. The expressions P(n,r) and C(n,r) that come up
so often in counting problems are often difficult to evaluate
with an ordinary calculator. The HP28S has menu items that
perform these calculations delightfully fast. The world of
sequences and series is too varied for single key evaluation,

but the programming capabilities of your calculator allow you
to evaluate sequences and series with a minimum of keystrokes.
You will have the chance to learn a little about the
programming language of the HP28S at the same time that you
learn how to evaluate sequences and series.

8.2 Counting Formulas

Combination and permutation counting problems became a lot
more fun when the ! (factorial) key became standard on
calculators. Not only does your HP28S have such a key, but
it has two others that take combinations and permutations with
a single keystroke. In this section we see how to use these
keys to evaluate factorials, combinations, and permutations.

The factorial key is REA! mcr. It takes an argument n off the
stack and returns n!. For example

61
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10, REAL pact

returns 3628800, which is 10!.

The other two counting keys are in the S™' directory, whose
four pages of menu items perform a tremendous number of the
standard operations of elementary statistics. We will content
ourselves by doing two counting problems using the keys cos and
per (for combination and permutation).

A Combination Problem:

In how many ways can five senators be chosen from a group
of 100 senators to appear before the Senate Ethics
Committee?

The solution is given by the combination formula

c(n,r) = C(100,5)

which on the HP28S is evaluated by placing the arguments on
the stack and running co with the stroke sequence

100,5 coms

yielding 75,287,520 with minimal effort.

A Permutation Problem: *G528

How many four digit numerals having no repeating digits
can be formed from the elements in (1,2,3,4,5,6,7,8,9)?

The solution is given by the permutation formula

P(n,r) = P(9,4)

which is evaluated by placing the arguments on the stack and
running perm With the stroke sequence

9,4 PERM

yielding 3024.

For more advanced problems the advantage of these keys
increases. Formulas that involve the evaluation of several
combinations (like the Hypergeometric Probability Formula) can
be programmed if they are used a lot. Expressions with lots of
combinations and other operations (for example, those that
arise when determining the probability of certain poker hands)
can be quickly evaluated using combinations in conjunction
with other keys.
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8.3 Terms of a Sequence

In Section 8.2 and 8.3 we will use the sequences

{1/(n*(n+1))} = 1/1%2, 1/2%3, 1/3%4,..., 1/(n*(n+l)),...

and

{(2n}) = 2, 4, 6, 8,...

to demonstrate how to work with sequences and series on your
calculator. First we see how to evaluate terms of a sequence.

EXAMPLE 8.1 EVALUATING TERMS OF A SEQUENCE *G510

To evaluate a, the nth term of the sequence

{1/(n*(n+1)) }

for several values of n, we first store the expression for a,
by means of the stroke sequence

N ENTER ENTER 1+ * '* 'AN STO

Then we evaluate a,;, say, with the stroke sequence

15,'N STO ax EVAL

This will put 4.16666666667E-3 on the stack, representing the
decimal approximation

.00416666666667 =~ 1/15*16

This evaluation process can
be done quickly for a lot of
values for N using the program
TERM given to the right. ters Rm
begins by prompting for a term. Foran ERD N° STO
At the wat the stroke sequence

15 CONT

instructs tM to continue as
shown in the figure to the -
lower right. Upon continuing, {
the prompt is dropped, and 15 CONTINUE. -
a is evaluated and 1:
displayed.
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Now suppose you want to evaluate terms of another sequence,
a=2n, for example. First use

tn PURGE 5 N* "an STO

to enter the nth term of the new sequence. Now you can use TERM
to evaluate terms of the sequence a=2n. With this sequence
now stored under a, pressing

Term 15 CONT

yields 30 instead of .00416666666667.[}

You are about to see how programming can help even more in the
next section, where we calculate the sum of a series.

8.4 Series

To see how the power of programming can help us in evaluating
the partial sums of a series

we look at a particular case.

EXAMPLE 8.2 CALCULATING PARTIAL SUMs *G510

If you know that n/ (n+l) is the nth partial sum of the
sequence

{1/(n*(n+l1))}

it is not too difficult to prove that it is by mathematical
induction. But how do you come to believe that n/ (n+l) is the
partial sum S? Often you begin looking for a formula for S_ by
evaluating 5,1 S,, S54 S,,... and looking for a pattern. The
program ss given to the right below helps to do this. The
program ss calculates and displays the first 15 partial sums of
the sequence {(1/(n*(n+l))}. If you would like to save it,
create a cw8 directory and store it there.

ss begins by storing 0 under
sv. Then the first 15 terms 8S it een 4 ie

of a=1/(n(n+l)) are added ©Sum STO11g
to sw one by one and the sghhe EU STO+
partial sums S, S,,...,S, “UNEMT

PYare put on the ‘stack (See
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the second figure to the right
for a sample output of ss).
S,; remains stored under sw
as well. You may or may not
be able to tell that the n‘R
partial sum S, is n/(n+1),
but by replacing the "15"
in the program by "50" you
can learn more about the
partial sums.

: “§g6666666667
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Do this by visiting ss with the stroke sequence

'ss VISIT

and then using the direction keys to move the cursor to "15"
and type "50". Next ENTER and run the revised program ss to see
what the first 50 partial sums are. You'd have to be very
lucky to notice that the value

Sy, ® .980392156861

given by the program is a signal that S,, might be

50/51 = .980392156863

But other properties of the sequence are easier to see. For
example, it appears that each S is bigger than S_, but still
less than 1.

To look at the partial sums of the sequence a =2n, use the VIS!
key to edit ss as before. This time move the direction key to
the first "1" of 'l/(I*(I+1))' and replace it by '2#*I' with
the stroke sequence

2%] DEL DEL DEL DEL DEL DEL DEL DEL

Change the "50" to a "5" to get just the first five terms. See
if you can come up with a simple formula for the general
partial sum S_.Hi

Try using the program ss to investigate the sequences and
series that you encounter in precalculus. To do so, you will
have to customize ss as in Example 8.2 above.

We conclude this section with an example that shows how the
stack logic of the HP28S can be used to generate terms of a
recursively defined sequence.
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EXAMPLE 8.3 TERMS OF THE FIBONACCI SEQUENCE *G515

Many mathematics texts have interesting stories associated
with the Fibonacci sequence defined recursively as

££. =0, £, =1, £ =f
1 n n-1 + £20

We give two short programs that calculate the terms f of the
Fibonacci sequence to demonstrate how to calculate the terms
of any recursively defined sequence. Enter the programs figs and
Fis exactly as given below on the right.

F183 is very simple. If
f, and f, are in
level 2 and level 1 of
the stack, the program FIB3
calculates f and puts < DUP2 +
f on level (moving ?
f,and f, up to
level 3 and level 2.

FIB¢ begins by putting F
£,=0 and f.=1 on the stack, :
and by prompting for the
number of terms you want
to see. After you enter
your response for "n",
FiB¢ continues by
performing a loop that
puts £,, £,, £,...,f
on the’ stack. "

Notice that in putting fiB3 on your calculator you have
essentially defined a new key, a key that takes two
consecutive terms of a Fibonacci sequence off the stack and
returns them, along with the next term of the Fibonacci
sequence. Use each of rfie3 and ris to determine the first few
terms of the Fibonacci sequence

o, 1, 1, 2, 3, 5, 8, 13, 21, 34,...

The reason that these programs above are designated ris3 and Fis

is that there are two other programs ris1 and fis2 provided and
explained in the HP28S Owner’s Manual. All four of these
programs calculate terms of the Fibonacci sequence, but in
different ways. You can learn a lot about programming on the
HP28S by studying these four programs. You can also learn a
lot about the Fibonacci sequence. Investigate the Fibonacci
sequence using these programs. For example look at the
sequence of ratios f/f.
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8.5 Summary

In Chapter 8 the menu keys ract, cows, and perv that calculate
factorials, combinations, and permutations were demonstrated
by means of some examples. However, most of this chapter dealt

with four programs helpful in working with sequences and
series:

* ery that calculates terms of a sequence from the
formula for the general term.

* ss that calculates the partial sums of a sequence.

* F183 and fies that calculate terms of the Fibonacci
sequence from the recursion formula.

You have seen how to modify these programs to calculate terms
and partial sums of other sequences. If you choose, you can
study these programs to begin to learn a little about the
programming capability of the HP28S.



CHAPTER 9: PoLAR COORDINATES AND PARAMETRIC

EQUATIONS

Learning Objectives

In this chapter you will:

l learn how to make polar coordinate graphs.

1 learn how to make parametric equation graphs.

9.1 Introduction

This chapter deals primarily with the graphing of polar
coordinate and parametric equation graphs. The HP28S does not
make either of these type graphs readily. Consequently we will
write and use programs that utilize some of the graphing
features of the HP28S to produce polar coordinate and
parametric equation graphs. You might like to study these
programs closely in order to improve your programming skills,
but you need not understand them completely in order to get
the graphs you want. However you can learn some things about
the mathematics of polar and parametric equations if you study
these programs.

Look in your ‘™¥X menu for a number of keys associated with
polar coordinates. They are explained in COMPLEX in the HP28S
Reference Manual. In particular note that por transforms polar
coordinates into rectangular coordinates and r=+r transforms
rectangular coordinates into polar coordinates.

9.2 Graphs in Polar Coordinates

Upon seeing the beautiful polar graphs in your text, you were
doubtlessly eager to draw your own. Plotting points of even
the most basic polar coordinate graphs is slow going. The
program rolAR below will allow you to speed this process up
considerably. Enter it exactly as shown in your ci menu.

68
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roLAR begins by asking you
for r in terms of T (there
is no © key on the HP28S).
After you enter the
function r(T), roar

clears the screen, draws ROLARr=? * WALT »
axes, and evaluates the r ’
polar coordinate pairs 8 Sedo© PRAX DROP

(r,T) for r EVRERTRSC BarTO
PIXEL

T=10°,4°,8°,...,360° persEF ¢ T PURGE

>

Then these polar
coordinate pairs are
converted to rectangular
coordinate pairs and
plotted, one point at a
time.

Since most people like to think in terms of degrees rather
than radians when dealing with polar coordinates, roar is
written to be used in pec angular mode. Use the stroke sequence

MODE DEG

to get into pec angular mode whenever you use pole. Now you are
ready to use roar to make some polar graphs.

EXAMPLE 9.1 A POLAR PLOT *@G389

Store r=1+cos (8) under ex1 in cw for graphing by means of the

stroke sequence

1,T cos + 'EX1 STO

Now press

POLAR EX1 POLERyer .

to run roar and gx1: "1+C0S(T)!
respond to the prompt
(as shown to the
right). Your screen
should exhibit the \
graph shown. Your graph me
consists of the 91 /
pixels approximating
the coordinates

(1+cos(0°),0°), (1l+cos(4°),4°),...,(1l+cos(360°),360°)
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The first and last pixels plotted are the same, since

(1+cos(0°),0°)

is the same as

(1+cos (360°) ,360°).

That leaves 90 pixels to be darkened, but a close count
reveals only about 60. Where are the other 30? Some lie on the
(already darkened) axes. Others are redundantly darkened a
second time due to rounding to pixel accuracy (see Chapter 2).
None of the 91 points correspond to pixels out of range of the
screen.

Use the cross cursor, INS
puiINn and puax to get a
more suitable screen size
(as in the figure to the
right). Run

POLAR EX1

again, watching the
pixels as they are
darkened. This will give
you a better feel for
the behavior of the graph
than the still picture
alone does.|}

Now that you see how to use roar, you

  -1.9)
) constant 1

are going to have some
fun plotting a family of interesting polar graphs quickly in
the next example.

EXAMPLE 9.2 SIN(KS)

At the top of the next
page you see graphs of
sin(ke) for k =1, 2, 3,
4, 5, and 6. PPAR is as
shown to the right. roar
has been changed slightly
as shown. The "4 STEP" in
the program roar has been
changed to read "2 STEP".
This causes a pixel to be
plotted for each 2° rather
than each 4°. The picture
is better, but it takes
twice as much time to draw.

R
=4.6,-1.1)
611 I) constant 1

w
e

O
h

POLAR
«7% r¢T)=? " HALT »:

« CLLCD DRAX DROP
8 36 oo

OR_t t 'T' STO
FEAL, RSC PaR
IREL 2

STEP ¢ T 3 PURGE
DGTIZ

>

>
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In this example we have taken advantage of the calculator's
speed to plot several graphs quickly. This leaves more time
for analysis. For example, look at the "loops" as they are
formed in each of the graphs and see if you can come up with a
conjecture for

* the number of "loops" in the graph of sin(k8).

* the values of k for which the "loops" are tangent to
one another.

* the values of k for which the "loops" are formed twice
as 6 goes from 0° to 360°.

* the reason some of the "loops" are formed twice as ©
goes from 0° to 360°.

Now make graphs for the polar coordinate functions in your
text. Try graphing whole families of graphs, as you did above
for the family sin(k®).

As a last example on polar graphs, we consider r? = 4cos (20),
a standard polar equation not of form r=r(e).
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EXAMPLE 9.3 A LEMNISCATE *(G393

One way to handle an
guation like
= 4cos (28)

is to modify roar
slightly as we did to
get the program roL2
shown on the right.
The logical statement

e

r

IF r EVAL IM O == THEN ... END

prevents the calculator
from giving an error
message in trying to
deal with a complex
number. There are other
ways to modify roar to
accomplish the same
purpose (you may like to
try). The graph produced
by poz is shown as well.]}

POL2
CEr(n=2 * HALT

< freee DRAX DROP
OR_t t _'T' STO
IF r EVAL Me

THEN. EYAL T
R+C oo TXEL -

STEP ¢ T P
DGTIZ } PURGE

>
>

~~
or

Now that you know how to use roar and poz to make polar graphs,
it is time to look at the graphs of parametric equations.

9.3 Graphs of Parametric Equations

The program para below will help you produce graphs of equations

given parametrically. The program para plots 100 (x,y)
coordinates for 100 equally spaced values of the parameter t.
Store it in your cw menu.

PARA begins by asking you
for the extreme values

t, and t,

of the parameter t, as
well as for the

parametric equations x(t)
and y(t). When these four
items are entered by the
user, they are stored and
101 points (x(t;),y(t,)),
(x(t), y(t)), 0,
(X(ty00) 1¥ (E100) )
are plotted.
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Since it is customary to think in terms of radians rather than
degrees when dealing with parametric equations, eara is written
to be used in rw angular mode. Use the stroke sequence

MODE RAD

to get into rao angular mode so you can try para out on the two
examples that follow. If you like, you could insert rw at the
beginning of rasa and pec at the beginning of roar to assure
yourself that the proper angular mode is being used for these
two programs.

EXAMPLE 9.4 MOTION OF A PROJECTILE *G395

Under certain conditions a projectile will move through the
air over time t such that the projectile's coordinates
relative to a fixed point on the surface of the earth are
given parametrically by

x(t) = 10t and y(t) = 10t-t?

for 0<t<10 sec.

Do the following to produce a graph showing the flight of the
particle over the 10 second period.

* Set the plot parameters as (0,0) and (100,50).

* Store the four arguments
for this problem as arc!
(as shown to the right).

RG1A
< "19FT 3T-1.3.10 1957

* Press para ARG! to produce the graph below.

PARA produces a graph
simulating the flight
of the projectile as ~~ ~~.
time passes.

If you modify para by replacing each "100" by "40", the graph
will be a real time simulation. That is, the calculator will
take 10 seconds to draw the graph of the 10 second flight of
the projectile.

We conclude this section on graphs of parametric functions by
considering another problem of motion.
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EXAMPLE 9.5 AN ELLIPTICAL PATH *(G396

As another example of the use of para, graph the parametric
equations

x(t) = 3cos(t) and y(t) = 2sin(t)

for o<t<2rmsec.

Do this similar to the way you did the previous example.

* Set the plot parameters as (-3,-2) and (3,2).

* Store the four arguments ARG?
for this problem as arc?
(as shown to the right).

6.3 '3#COS(TY*'
2¥SINCDY

* Press para ARG2 tO produce the graph below.

This time para simulates
the motion of an object
around an elliptical - 1 _
path. Again, with a p
parametric equation you N
don't just get a graph, ¢
you get a moving particle.|}

You should have no trouble using the procedure of the two
problems above to draw graphs of the parametric equations of
precalculus.

9.4 Summary

In Chapter 9 you were given the coding for a program roar that
allows you to plot polar coordinate graphs easily. You also
were given the coding for para, a similar program for graphing
parametric equations. Through several examples you saw how to

apply these programs in particular situations. Some
modifications of both of these programs were made (and other
modifications suggested) that give them greater flexibility.
Still in their original form, both roar and para produce good
graphs quickly for the polar coordinate and parametric
equation graphs of precalculus.



CHAPTER 10: THE CoNIC SECTIONS

Learning Objectives

In this chapter you will:

1 learn how to make graphs of conics in rectangular
coordinates.

I learn how to make graphs of conics in polar
coordinates.

10.1 Introduction

A discussion of conic sections (circles, ellipses, parabolas,
and hyperbolas) often begins with the geometric definition of
a conic section as the intersection of a plane and a cone
(*G406). Pictures are used to show how such intersections
yield circles, ellipses, parabolas, and hyperbolas (or
degenerate forms of these such as single points, no points at
all, straight lines, or two intersecting straight lines).

In rectangular coordinates the (equivalent) algebraic
definition of a conic section is given as the collection of
solutions of

Ax? + Bxy + Cy? + Dx + Ey + F = 0

for A, B, ¢, D, E, and F real. Once A, B, C, D, E, and F are
given, a particular conic is determined, so it is possible to
find its graph by substituting x values and determining
corresponding y values. It has long been necessary to look for
algebraic relationships between the coefficients A, B, C, D,
E, and F before attempting to make a graph. In Section 10.2
you will see how to use a program conic that prompts for the
coefficients A, B, C, D, E, and F and then provides you with a
graph of

Ax’ + Bxy + Cy? + Dx + Ey + F = 0

without prior algebraic analysis. This does not mean that you
can avoid algebraic analysis; it just means that you can get a
look at a graph quickly. You will still need to analyze
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algebraic relationships to determine features like asymptotes,
intercepts, directrices, domain of definition, and foci. Your
graphs can aid in this analysis, but they can't replace it.

In Section 10.3 you will see how to use the program poiAR Of
Chapter 9 to graph conics in polar coordinate form

r(8) = ed / (1 + e cos(8)) or r(8) = ed / (1 + e sin(8))

As in the case of rectangular coordinates, you can get graphs
quickly that can help you in your algebraic analysis of conics
in polar form.

10.2 Rectangular Coordinate Form

You can't use oraw directly to graph

Ax? + Bxy + cy? + Dx + Ey + F = 0

because y is not expressed (and usually not expressible) as a
function of x.

The equation eet and the program conic given below allow you to
use braW indirectly to graph conics in rectangular coordinates.
To make a place for eet and conic and some other menu items
associated with graphing conics in rectangular coordinates,
create a cHi0 subdirectory and within cwio create the subdirectory
Rect. Then store eat and covic as given below in the subdirectory
RECT.

Carefully store the
expression to the right
as el. Notice that the Beeb+f(DERE
two sides of a1 are P2-dzlx(RennaeDeisF)

Jars 2Ca=(-(BER+EI-T
the two roots of [(B*R4E A234¥CE (AER
X“+Bxy+Cy“+Dx+Ey+F=0, a 2+DEX+F I) (250)!

quadratic equation in vy.

Now enter the program
conic as shown to the
right. This program
begins by asking for
the six coefficients of MShE, Feo u

Ax%+Bxy+Cy%+Dx+Ey+F=0. HETCE R10. 210
Upon continuing, conic 370RT stp 30e
stores the coefficients SLLCD DRAM DGTIZ
and uses oraw to graph
AX%+Bxy+Cy?+Dx+Ey+F=0.
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When eat is stored under ea, covic will use raw to simultaneously
produce two graphs that together constitute the graph of

AxX’+Bxy+Cy2+Dx+Ey+F=0.

We'll see how this is done by looking at three examples,
beginning with an ellipse.

EXAMPLE 10.1 AN ELLIPSE *G424

For this example use
the plot parameters PPAR .
shown to the right. tala) (hd R 4
The "4" following the
"X" will cause evaluation
of ea for only every
fourth column of pixels.
The loss of "smoothness" is compensated by a shorter drawing
time. Be sure to store eal as ea before using conic.

Rewrite the expression

x%/9 + y%/16 = 1

for an ellipse as

16x° + 9y? -144 = 0

and run conic. At the
prompt respond by
entering

16,0,9,0,0,144 CHS CONT he

to get the graph shown.}] 77

Now use the stroke sequence

(6,6) ENTER ENTER CHS PMIN PMAX

to get the viewing rectangle

(-6, 6] by [-6, 6]

for the graph of the hyperbola in the next example.
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EXAMPLE 10.2 A HYPERBOLA *(G432

Graph the hyperbola

-9x% + 16y% -144 = 0

by pressing

 

conic 9CHS,0,16,0,0,144CHS ONT

to get the graph to the right.]}

As a final example of conic we look at a parabola whose axis is
not parallel to either of the coordinate axes.

EXAMPLE 10.3 A Parabola *G419

Graph the parabola

4%%-4xy+y?+8x+16y-16=0 1 oo
PPAR _ |

with the plot parameters 20552828, 4.0)
shown. ’

It is clear that the axis of the graph is not parallel to
either coordinate axis.|}

You are now ready to use conic to investigate graphs of conic
sections given in your text. As you use conic, Keep the
following points in mind:

* Be sure to store eal as ka.

* Investigate the equation algebraically to determine
information on the conic.

* Set a reasonable rraR. Make another graph if your
original choice of rrr gives an unsuitable graph.

Next we look at the graphing of conic sections expressed in
polar coordinate form.

10.3 Polar Coordinate Form

As you should have seen from your textbook by now (Section
11.6 in Gechtman's Precalculus), conic sections have a simpler
form when expressed in polar coordinates. Ellipses,
parabolas, and hyperbolas share the same simple general form



Chapter 10 The Conic Sections 79

r(8) = ed / (1 + e cos(8)) or r(8) =ed / (1 £ e sin(8))

with just the two parameters e and d (besides the choices
between + and =- and sin(®) and cos(®) ). Furthermore r is
expressed as a function of 6 directly, which allows us to use
the program roer of Chapter 9. A single example will suffice to
illustrate this.

EXAMPLE 10.4 A HYPERBOLA *(G456

Sketch the conic

re) = 15 / (2 + 3cos(9))

There is no need to put r(8) in standard polar form. Run polar
and enter r(6) at the prompt with the stroke sequence

POLAR 15,2,3,T cos * + , CON

Your graph should appear as
to the right if you use the
plot parameters shown. If you
find the order in which
pixels are darkened puzzling,
remember that T takes on the
values

 

0°, 2°, 4°,..., 360°

in order and that r(®) changes
from positive to negative and
back to positive as 6 goes
from 0° to 360°.

If your graph does not appear as shown, check the following:

* Are you in pec angular mode?

* Did you set rraR as shown above?

* Did you set ppar in the Chapter 9 subdirectory?fl

Of course you usually want to know more about a polar

coordinate function of the form

r(6) =ed / (1 + e cos(8)) or r(8) =ed / (1 + e sin(8))
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than the graph can tell you. To find the eccentricity in the
previous example, you would divide numerator and denominator
by 2 to get e=1.5. To find the distance between the directrix
and the pole, you must calculate d=5. Algebraic methods are
also necessary to find asymptotes and intercepts of conics.

10.4 Summary

In Chapter 10 you have entered and learned how to use the
program conic to graph a conic section given in its general
rectangular form

Ax? + BXy + Cy? + Dx + Ey + F = 0

You also saw that the program roar from Chapter 9 can be used
to graph a conic section given in its general polar form

r(6) = ed / (1 + e cos(8)) or r(8) =ed / (1 + e sin(8))

After going through the examples of producing graphs of conics
in this chapter, you should be able to obtain good graphs of
the conics you encounter in precalculus.



CHAPTER 11: Vectors

Learning Objectives

In this chapter you will:

lI see how to do the operations of vector algebra using
keys on the HP28S.

lI enter and use several programs that perform multiple
step calculations on vectors.

11.1 Introduction

A vector is represented on the HP28S as a one-dimensional
array, numbers within brackets separated by spaces. For
example the vector (2, 3, 4) is entered on the stack with the
stroke sequence

[2,3,4 ENTER

Chapter 11 in the HP28S Owner’s Manual and ARRAY in the HP28S
Reference Manual explain the many operations that the HP28S
can perform on vectors and matrices. In this chapter we look
at the vector operations most important for the precalculus
student. Some of these operations can be done by single
keystrokes on the HP28S. Programs that perform some other
vector operations are given and explained in Section 11.3.

11.2 Vector Operation Keys

Vector addition is the most basic algebraic operation on
vectors. You can add two vectors just as you add two numbers:
put both of them on the stack and press + .

As an example place the vectors

(1, -2, 2) and (2, 4, 6)
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on the stack with the stroke
sequence

[1,2 CHS,2 ENTER [2,4,6 ENTER 3 [1-22
i: iid]
IEto make your screen appear as

shown to the right. Now press

+

to get the sum of (3, 2, 8)
to appear on the stack as
shown.

r
o
w

[323]

Vector subtraction is done similarly, using the - key.
Multiplication and division are not defined for arrays.
However scalar multiplication and division can be done using
the * and + keys.

The keys that perform vector functions are found on the third
page of the arrav menu.

Use the stroke sequence

ARRAY NEXT NEXT

a
0
)

we
an

to see the menu items oor
and ass. These are the
only two vector function
keys that you will need
in precalculus.

i:
uN

 

The key ass calculates the length of a vector as in the
following example.

EXAMPLE 11.1 LENGTH OF VECTORS *G470

Find the length || A || of the vector

A= (3, 4)

Recall that || A || = /x%+y? = /3%+4% = 5. Perform the stroke
sequence

[3,4 ass

to do this calculation automatically. Think of as as a program
that squares the entries of A, adds the result, and then takes
the square root.
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This is a lot of effort to get 5, but ass works just as well
for any numbers x and y. In fact ass will find the length
 

= 2 2 2 2 2[| A || = Ja, +a taj +a, f+... tay

of any vector. For example press

(1,2,3,4,5,6,7,8,9 ass

to calculate

|| (1, 2, 3, 4, 5, 6, 7, 8, 9) || = 16.88 |

In the next example we turn to por that calculates the dot
product of two vectors.

EXAMPLE 11.2 DOT PRODUCTS *G477

Use the stroke sequence

[5,0 ENTER [4,4 ENTER CHS

|
F
E
L

to place the vectors (5, 0)
and (-4, -4) on the stack
as shown. Now press oor
which puts -20 on the stack.l}

The dot product is involved in the formula

@ = cos’'(A+B/||A]
 “IBID

for the angle 6 between two vectors. To calculate the angle
between two vectors A and B, you must calculate the lengths of
A and B, take the dot product of A and B, perform a
multiplication, take a quotient, and finally evaluate an
inverse cosine. In the next section we see how to combine all

of these operations into a program.

11.3 Vector Operation Programs

Suppose you want to find the angle 6 between two vectors A and

B for many pairs of vectors. The formula

8 = cos’ '(A-B/||A]| |  |B| |)
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that gives this angle takes about a dozen keystrokes, even if
A and B are stored as menu items. A program made up of these
dozen or so keystrokes can serve as a single key for finding
the angle between two vectors.

Two such programs, ant and AvG2, are given below. Enter these
programs as shown.

Act begins by putting the
calculator in pec angular fA
mode and asking for two 5
vectors A and B. Upon S
continuing, this program b
uses stack operations to
calculate the angle
between A and B.

ANG2 begins by putting the
calculator in pec angular ANG
mode and asking for two BE
vectors A and B, which are D
stored under the names a A
and s. Upon continuing,
the angle between A and B
is calculated, taking
advantage of stack logic.

Now you are ready to test these programs with an example.

EXAMPLE 11.3 THE ANGLE BETWEEN TWO VECTORS *G479

Find the angle between the vectors A=(7,-2) and B=(6,3). Use
the stroke sequence

AG2 [7,2 CHS ENTER [6,3 CONT

and your screen will appear
as show. The angle between
the vectors is about 42.5°.

The cH11 subdirecto now : 42,518447472
contains the menatome A NCECC5
and 8 where the vectors
A=(7,-2) and B=(6,3) are
stored.

r
a
l
O
0
)

ae
ae
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In a sense amc is better than a key since it reminds you that
it requires two vectors. You might want to modify aNve1 or awe2
slightly so that the program really behaves like a key. If
either A or B is the zero vector both programs (properly)
display the message "Undefined Result."Jj

The calculation of the distance between a point (%,,y,) and a
line ax+by+c=0 from the formula

d=| ax, + by, + c | / Ja? + b?

is another multi-step procedure that is easily automated by
combining all the steps into a single program. The program ote
below shows one way to do this.

p.p asks for the five
parameters in the formula DPL

fpxhyese
d=|ax,+by+c|/J/a? + b? "arbi gy xl,y1=2" HALT

a tx1%g1
, < 2 xl # 8 gl £ C

for the distance between i: BS a § SQ +
a point and a line and >
uses them to calculate the >
distance.

Store or to use on the next example.

EXAMPLE 11.4 DISTANCE FROM A POINT TO A LINE *G482

Use oir to find the distance from (4,-7) to y = 2x+3.

Write the equation for the line as

2x + y -3=20

in order to use or (as you would do to use the formula

directly). Then the stroke sequence

op 2 CHS,1,3 CHS,4,7 CHS ®N

will yield the distance 8.049844719 between the line and the
point.

As a final example of a useful program combining keystrokes we
present the program n2 on the next page that finds the distance
between two points.
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p2 asks for two points D2
and uses ass to find . y=2"
the length of the wich 21 RasBip DROP
vector they determine.

p2 is the "better" program promised in Chapter 1 (p. 6) where
the program p1 was given for finding the distance between two
points. We close by using p2 to do a calculation.

EXAMPLE 11.5 DISTANCE BETWEEN TWO POINTS

Calculate the distance between the points (4,-2) and (7,2)
using p2. To do this press the stroke sequence

b2 (4,2 CHS ENTER (7,2 ©

and the distance 5 appears on the stack.]]

11.4 Summary

In Chapter 11 you have seen how to represent vectors as arrays
on the HP28S. You learned how to do the basic operations of
vector algebra using calculator keys. You entered and used the
following programs that perform calculations associated with
vector operations:

* ant and ac2 for finding the angle between two
vectors.

* pir for calculating the distance between a point and a
line.

* p2 for calculating the distance between two points.

You can be proud of your success in learning to use your
graphing-programmable calculator-computer at the same time
that you studied precalculus. The calculator skills that you
developed will serve you well in future mathematics and
mathematics based courses. There are many keyboard features
that we did not go into in The Calculator Edge that you may
find useful in the future. Furthermore there is no limit to
what you can do with the programming features of your
calculator.



APPENDIX

A.l1l Glossary

Terms introduced in the HP28S Owner’s Manual and Reference
Manual are defined in the Glossary of the Reference Manual.
Bold underlined terms in The Calculator Edge are defined
below.

algebraic notation The common mathematical notation (as
opposed to RPN) of high school algebra that uses parentheses
and hierarchy of operations.

anqular mode (or angle mode) The calculator mode that
determines whether angles are to be understood as measured in
degrees or radians.

argument The number (or other object) on which a function
operates.

command line The input line that ENTER sends to the stack.

complete graph A graph that shows all the significant features
of a function.

compound interest formula The exponential function
relationship between time, interest, present value, and future
value that defines compound interest.

cross cursor The cursor activated when a graph is displayed.

cursor keys The same as the six menu item keys. When the
calculator is in cursor mode, these keys can be used for
editing programs and locating points on a graph.

default plot parameters The default information for graphs
that includes the lower left and upper right viewing screen
corners of (-6.8, -1.5) and (6.8, 1.6) respectively.

direction keys See cursor keys.

editing mode The command line mode that allows editing and
does not allow immediate evaluation.
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error message A message sent to the screen when normal
execution is impossible (such as division by zero or applying
+ to an empty stack).

function In The Calculator Edge function has the same meaning
as it does in your precalculus text.

menu items Programs, variables, constants, functions, and
directories that are activated by the six keys in the top row
of the right hand keyboard.

numerical iteration A process that yields numbers that get
closer and closer to a solution to a problem.

operation key A key that performs an arithmetic operation (for
example, the + key).

page Menu items that appear together on the screen. For
example press SAT NEXT NEXT to see three pages of the ™ menu.

pixel A single indivisible picture element. The calculator
approximation to a point.

pixel grid The 137 by 32 grid of pixels that make up the
screen of the HP28S.

plot parameters The information stored under rrr determining
the position, scaling, and center of a graph as well as the
name of the independent variable.

program A menu item combining a sequence of calculator
operations in a single unit.

rescale To change the scale of the axes.

round to pixel accuracy To replace a "point" by the pixel
(really a collection of points) that covers it.

RPN or Reverse Polish Notation The mathematical notational
convention of having a function follow its arguments, for
example "x SIN 3 +" to mean "sin(x) + 3". The Stack Logic of
the HP28S is designed to follow RPN, as opposed to algebraic
notation.

shift key The red key that changes the action of a key to the
operation printed above the key in red.

size the screen To adjust the plot parameters in order to get
a more suitable representation of a graph.
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stack The series of objects "stacked" on level 1, level 2,
etc. that follower the "first in, last out" logic of the
calculator operations.

stack logic The convention of operators taking arguments from
the stack on a "last in, first out" basis and returning the
result to the stack. For example + divides the object in
level 2 by the object in level 1 and puts the result in level
1.

subdirectory A menu item which is itself a menu.

variable A name that is allowed to take on different values.

viewing rectangle The x and y values that cover the screen
used for a graph. For example the default plot parameters
correspond to the viewing rectangle [-6.8, 6.8] by
[-1.5, 1.6].

zoom in To change the plot parameters to give a smaller
viewing rectangle.

zoom out To change the plot parameters to give a bigger
viewing rectangle.
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A.2 Index of Programs

CONIC Graphs conics in rectangular fOrm.......ceeeeeeeeens 76

CST Tests a pair of equations for consistency ..........24

D1 Finds the distance between two points................ 7

FIB3 Calculates terms of the Fibonacci sequence..........64

FIB2 Calculates terms of the Fibonacci sequence.......... 65

PARA Graphs parametric equations...........c.ccceeea.n ceeaT2

POLAR Makes graphs of equations in polar form............. 69

POL2 A customized version Of POLAR. ....ceeeeeeenccocoannn 72

SDIV Performs synthetic division........ceeteeeeenneeenn. 23

SS Calculates partial sums of a sequence..... ceseeeessa63

TERM Evaluates terms of a sequence.............. ceeeceesab2

VRTEX Finds the vertex of a parabola....cceeeeeeencecencss 29



A.3 Index of Examples

ASYMPTOTES........ ..6,42,43

COMPLEX
DIVISION....... Ce eeeen..a32

COMPOUND INTEREST
FORMULA. eve veneennnnenns 50

CURSOR KEYS... vvreunenn. 22

DIRECTORY «eevee ennennennnn 5

DISTANCE BETWEEN
POINTS. ove vteenennennnn 7,86

DISTANCE FROM A POINT
TO A LINE. vv eunnn. Cee 85

DOT PRODUCTS..... Cen 83

EXPONENTIAL DECAY........ 49

FIBONACCI
SEQUENCE. + vet vveenennnns .64

GRAPHS OF CONICS...77,78,79

LINES..........cc.....19,21

MATRICES.......... eeeeeees2b

MOTION OF A
PROJECTILE... ce ceeeeeeeen. 73

NUMERICAL
APPROXIMATION. ...... ..22,58

OPERATION KEYS........ cee

PARAMETRIC
GRAPHS. ..vvveueennnnn .73,74

PARTIAL SUMS. ....c0vunnnn 63

PIXEL ACCURACY..... 11,13,15

POLAR
GRAPHS.......... 69,70,72,79

POLYNOMIAL
GRAPHS.......... 35,36,37,38

QUADRATICS.....v... 28,29,30

SCREEN SIZE..... 11,12,13,43

SEQUENCES... veeeunrnn.. 62,64

SINGULARITIES. ....euun... 45

STACK LOGIC. +e everenennnnn 4

STORING VARIABLES......... 6

SYNTHETIC
DIVISION.......SR

TRIGONOMETRIC
GRAPHS.............56,57,58

VECTOR LENGTH. ..ev0eeuen.. 82

VECTORS. + vvvenennn. 82,83,84

ZEROS. .eevennnn. 29,31,38,39
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A
analysis, 24,26,27,

46
asymptotes, 16,41

beep, 3

C

lene” 5

clear flag, 3
combinations, 66
command line, 9
complete graph, 14
complex division, 32
complex root, 31
compound interest,

50
conic section

graphs, 77
conics, 75
CONT © 5

CRDIR, 5
cross cursor, 22

cursor key, 3,9,22

D
default plot

parameters, 10
direction key, 3
directory, 5
distance 7,85,86
domain, 13

92

E
edit, 12
error message, 3
exponential decay,

48
exponential function

evaluation, 48

F

Fibonacci, 64
function evaluation,

8

G
graphing, 9,28,35,19

42,54,69
Gxyz, 18

H
HALT, 7

HP28S Owner’s

Manual, 2

I
INS 20,22

J. KL
line, 19
logarithmic function

evaluation, 48

matrix, 25
MEMORY

I

missing pixel, 46

numerical approx.
(see soLv SOLWR)

0
ON, 10
operation key, 2

P
page, 10
parametric equation

graphs, 72
permutations, 66
pixel, 10,15
pixel accuracy,

11,13
pixel grid, 14
plot parameters, 14
PMAX, 20
polar coordinates,

69
polar graphs,

69
polynomial algebra,

32
polynomial graph,

34
PPAR, 14
projectile, 73

16’



Q T
quadratic, 28 TEST menu, 2

time value of money,
50

trigonometric
R functions, 54

rational function,
41

Reverse Polish U
Notation, 4

USER, 5

S
screen size,

11,15,43
set flag, 3
sequence, 62,64

sF, 3

shift key, 2
SOLV SOLVR, 22,29,38

58

ss, 7,33

stack, 2
stack logic, 2,4
STO, 6
subdirectory, 5
synthetic division,

33,34

Vv
viewing rectangle,

20
vector operations,

81

W XY 2
zero, 29,38

zoom in (out), 28,44
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