
CUSTOMIZE YOUR HP-28

by W.A.C. Mier-Jedrzejowicz

PREV
e

NEXT)

TO E-Ic‘dd le

w; Fh ILLMI(}/ H)P“f‘)

and Bat W”’"fl)

Wi

Covvallis Confrpen,
Avgnt 4 19y

CUSTOMIZE

your HP-28

by
W.A.C. Mier-Je¢drzejowicz, Ph.D.

"Customize your HP-28" by W.A.C. Mier-J¢drzejowicz, Ph.D.

First printing June 1988

ISBN 0 9510733 1 1

Library of Congress Card Catalogue Number : 88-090895

Published by:

W.A.C. Mier-Je¢drzejowicz

40, Heathfield Road

London W3 8EJ

United Kingdom

United States publishers:

SYNTHETIX

P.O. Box 1080

Berkeley, CA 94701-1080

US.A.

Write to the above addresses for price information.

Please enclose an addressed envelope for reply.

Copyright 1988, W.A.C. Mier-Jedrzejowicz

Copyright: the text of this book is copyright and may not be

reproduced in any form, either in whole or in part, without the

written consent of the author, except that short extracts may be

quoted for review or comment, and the programs herein may be

reproduced for personal use.

Disclaimer: the design of HP-28 calculators may be changed from time

to time by the manufacturers. Hence, although reasonable care has

been taken that the material in this book will work correctly, this

cannot be guaranteed; all material in this book is published without

representation or warranty of any kind. Neither the publisher nor

the author shall have any liability, consequential or otherwise,

arising from the use of any material in this book.

INTRODUCTION

When they announced the HP-28C, Hewlett-Packard said they had

reinvented the calculator. This seems to be a well justified

description. As with most inventions though, the inventors could

not foresee all its uses, nor all the problems that would show up.

Many problems and difficulties found by users can be summed up in

the question "How can I make it behave exactly the way I want it to

behave?" This book is written to answer that sort of question - it

tells you how you can arrange for your HP-28 to behave more closely

to the way you wish - in other words how to "customize"it.

There are five chapters, subdivided into specific points, and five

appendices. The first two chapters have suggestions on fairly

simple things, such as setting modes and creating variables. The

third describes things which can be done with the special

instruction SYSEVAL. The fourth shows some ways in which control of

the HP-28 can be extended still further by machine language

programming. Chapter five shows how you can customize the HP-28 by

modifying its hardware - in particular by adding more memory to an

HP-28C. The appendices deal with additional special topics.

The information in the first two chapters and the first two

appendices is easy to understand and will be of interest to all HP-

28 users. The subsequent chapters and appendices can be left for

later reading.

Many of the suggestions have been published in the regular HP-28

NOTES column of DATAFILE, the magazine of HPCC,the British club for

users of HP handheld calculators and computers. My original reason

for writing this book was to provide members of HPCC with

information that could not be fitted into "HP-28 Notes".

Two types of customization dealt with in particular are ways to make

the HP-28 behave more like an HP-41 and ways to make its language

more similar to FORTH. Many HPCC members wanted to transfer some of

their HP-41 programs to an HP-28, so customization of the HP-28 to

let it provide commands similar to ones on an HP-41 is an important

subject. Some of the suggestions in this book come from ideas

already discussed in relation to the HP-41 or other HP calculators,

but a lot has come from ideas suggested by members of HP user clubs.

This book is written for all those people, with my sincere thanks to

everyone who has helped with suggestions and questions; where

possible I have acknowledged the originators of ideas. I want to

express my thanks to Tony Collinson of HP UK for keeping me up to

date on HP-28 matters, to Kim Holm in Denmark for enthusiastically

supporting my ideas, and especially to Dr. Bill Wickes, the master

himself. I am particularly grateful to Colin Crowther, Frans de

Vries and especially Bruce Bailey for their proofreading. My thanks

go as ever to my Mother for helping while I wrote.

The new HP-28S has additional features not provided by the HP-28C.

Some details are given in Appendix E, but programs written for the

HP-28C will work on an HP-28S too. In places I have shown how an

HP-28C can be provided with some of the additional HP-28S features.

Indeed the HP-28 provides a whole range of features which had never

previously been available on one calculator.

WARNING: Chapter Three of this book deals with the use of the

SYSEVAL command. Use of the SYSEVAL command in these ways is not

supported by Hewlett-Packard, making this a NOMAS (Not MAnufacturer

Supported) feature. As on all NOMAS features do not call Hewlett-

Packard with questions about this. Also be aware that unpredictable

behavior of the calculator is possible when using NOMAS features.

CONTENTS

Special HP-28 Keys and Symbols

CHAPTER 1. TIPS, KEYS AND MODES

1.1 Read the manuals

1.2 Do some examples

1.3 Keep notes

1.4 Practice makes perfect

1.5 Useful keys

1.6 Useful key combinations

1.7 What is a mode?

1.8 Check your modes with PRMD

1.9 Learn to use the modes

1.10 LAST, UNDO and COMMAND

1.11 A detailed look at LAST

1.12 More about UNDO and COMMAND

1.13 A look at the command line

1.14 About ENTER

1.15 Other modes

1.16 Create your own modes

1.17 Using the printer control flags

CHAPTER 2. VARIABLES, PROGRAMS AND MENUS

2.1 Simple constants

2.2 Simple variables

2.3 Commands or variables?

2.4 Variables and programs

Page

ix

0
0
9

9
O

L
t
W

W
N

e
=

e
P
t

e
t

e
t

e
t

A
L
T
L

W
=

O

17

18

19

20

2.5 COMMAND and programs

2.6 Simple programs

2.7 Longer programs

2.8 Algebraic expressions

2.9 Writing and testing programs

2.10 Some space saving tips

2.11 Subprograms and routines

2.12 Set your modes

2.13 Putting non-keyable characters in programs

2.14 Subprograms and local variables

2.15 Complex numbers and arrays

2.16 Algebra with binary numbers

2.17 Storing data in numbered registers and the stack

2.18 Tidying up memory and the USER menu

2.19 Playing with menus

2.20 One-command programs

CHAPTER 3. USING SYSEVAL

3.1 Version numbers

3.2 The system clock

3.3 A programmable SHIFT

3.4 A bit more memory?

3.5 Playing with SYSEVAL

3.6 A generalized STO

3.7 Programming with UNDO and COMMAND

3.8 ’BIP’ and error messages

3.9 Non-Normalized numbers and more about SYSEVAL

3.10 Non-Normalized objects, and a programmable CONT

and SST

3.11 Program control of menus

3.12 A NAME command

3.13 Using EDIT in your programs

21

23

25

28

30

32

33

35

36

38

42

42

43

45

46

46

47

47

48

53

54

54

56

59

61

63

68

74

77

78

CHAPTER 4. MACHINE LANGUAGE PROGRAMMING

4.1 The layout of programs

4.2 Copyrights and copy wrongs

4.3 A simple machine language program

4.4 A PEEK command

4.5 Playing with PEEK

4.6 And now a POKE command

4.7 Jumping to Conclusions

4.8 POKEing the key buffer

4.9 Where next?

CHAPTER 5. MODIFYING THE HARDWARE

5.1 A few extra labels

5.2 The memory problem

5.3 Memory configuration

5.4 Opening it up

5.5 What’s inside?

5.6 What else is there?

5.7 Adding the RAM

5.8 Customizing HP-28S and HP-28C menus

5.9 Subdirectories for the HP-28C

APPENDIX A.FURTHER SOURCES OF INFORMATION

AND EQUIPMENT

APPENDIX B. PROBLEMS

Notes for users of the HP-28S and newer HP-28Cs.

81

81

87

90

93

100

102

108

120

121

123

123

124

126

128

129

132

134

138

143

155

161

169

APPENDIX C.THE STRUCTURE OF OBJECTS

AND PROGRAMS

APPENDIX D.INTERNAL LAYOUT AND USE OF

MACHINE LANGUAGE

Overall memory layout

The display RAM

HP-28S RAM and ROM

The Saturn CPU

HP-28C command name and address list

Notes

APPENDIX E. NEW VERSIONS OF THE HP-28

New and Changed Features of the HP-28S

SYSEVAL address on new versions

INDEX

PHOTOGRAPHS

171

177

177

179

180

181

185

198

203

204

211

217

225

Special HP-28 Keys and Symbols

Some HP-28 keys and symbols are difficult to represent using ordi-

nary printer characters - this page explains how they are shown in

the book.

The purple key is used to carry out the instructions written in

purple above other keys. This is like a SHIFT key on a typewriter;

it will be called SHIFT. For example, to select the statistics menu

you press the purple key first, then the key with STAT in purple

above it. Doing this will be written as just STAT.

The key with four arrows on it, to the right of the SHIFT Kkey, is

used to hide the menu labels which you normally see in the bottom

row of the display. This lets the keys below the display act as

"cursor" keys - they let you move the "cursor" symbol around the

display according to the symbols printed above them, so the key is

called the "cursor" key. It will sometimes be printed as <>. If

you use the cursor key to see four lines of the display, then you

can press it a second time to recover the current menu, unless you

have done something else which deselects the current menu. A point

to remember is that when the keys in the top row are used as cursor

keys, they have special meanings if used with SHIFT. For example

pressing the key marked > moves the cursor one place to the right,

but pressing SHIFT and the > key moves you all the way to the right

of the display. The cursor keys marked with the symbols < and >

might be confused with the "greater than" and "less than" symbols, >

and <, so I shall usually refer to the keys in the top row as INS,

DEL, UP, DOWN, LEFT and RIGHT. When a menu is displayed I shall

usually refer to the keys according to the label in the menu above

them, just as if they were ordinary keys on the keyboard.

The left-arrow or back-arrow key deletes the character to the

immediate left of the cursor. Calling this key DELETE might cause

some confusion with the DEL cursor key; I shall usually call this

the backarrow key or <-. The right-arrow key (used to create local

variables, or a part of other command names) will usually be printed

as ->.

The symbol for pi (SHIFT .) will just be written pi, symbols for

"less than or equals", "greater than or equals", and "not equals"

will be <=, >=, #. The curly d used as a differentiation symbol

will be printed d, and the integral symbol will be INTEGRAL. SQRT

will be used for the square root symbol. The symbols used to mark

the beginning and end of a program will be printed as << and >>, the

HP-28 design team call them "French quotes", since indeed they are

often used instead of " by the French. The ’ symbol will be called

apostrophe or single quote. The alpha key, alpha lock and lower

case (LC) will be called just that. If you press -> in Alpha Entry

mode on an HP-28S then spaces will be put before and after it, for

details see the end of Appendix B.

When a set of HP-28 keystrokes or a program is printed then keys

which are pressed separately are printed with spaces between them.

For example STO means "press the key marked STO", but X Y Z means

"press X, then press Y and then Z." Numeric digits are printed

without spaces between them, so 123 means "press 1, then 2 and then

3." If numbers have spaces between them then they really are

separate numbers, for example 45 6 represents the two numbers 45

and 6. If an object does not all fit into the display, the HP-28

uses the ellipsis symbol .. to show that there is more to come at

the right or leftt When a piece of a program is printed in this

book I use ellipsis symbols as well to show that it is only part of

a program.

WARNING: Chapter Three of this book deals with the use of the

SYSEVAL command. Use of the SYSEVAL command in these ways is not

supported by Hewlett-Packard, making this a NOMAS (Not MAnufacturer

Supported) feature. As on all NOMAS features do not call Hewlett-

Packard with questions about this. Also be aware that unpredictable

behavior of the calculator is possible when using NOMAS features.

Chapter One

CHAPTER 1 - TIPS, KEYS AND MODES

This chapter deals with a few simple but important topics. First of

all, here are three simple tips that should never be forgotten.

1.1 Read the manuals. The very first piece of advice is - read the

manuals. The "Getting Started" manual introduces the HP-28 and many

of its features, using very simple examples (if you need more

examples they will be mentioned later). If you have already used

another type of calculator which uses a "stack" then look at

Appendix B in the Reference Manual; if you have used an "Algebraic

Notation" calculator then read Appendix C of that manual. After

that, read those parts of the Reference Manual that describe

functions you know you will use. This is a very important first

step - you most certainly cannot try to customize your HP-28 until

you know how it works in the first place.

1.2 Do some examples. The Owner’s Manual gives some examples to

help you learn about the HP-28C, but these explain how it works,

rather than how it can be used to solve problems. Hewlett-Packard

now provide a set of examples with each HP-28C in addition to the

two manuals, if your HP-28C did not have these then you can write to

HP to ask for a set of examples. These examples are included in the

HP-28S Owner’s Manual. Very useful too are the Solution Books which

HP have published for the HP-28C and HP-28S - these contain sets of

related examples. In many cases these books show several different

ways of solving the same problem - so you can choose a method that

suits you best. This is a good way to customize your HP-28 - find

out about the different ways to approach your kind of problems, and

then pick the method you like best. At the same time you will, no

doubt, come across some of the error and warning messages, and will

come to realize that they are not enemies - they are actually trying

to be helpful.

1.3 Keep notes. The HP-28 is about the same size as a pocket

notebook. It is very helpful to carry such a notebook with your HP-

-1-

Chapter One

28 and to put down notes and ideas in it. While reading the

manuals, while going through examples, and indeed while reading this

book, you should make notes all the time. Later on, you can refer

back to the notebook instead of carrying around a set of manuals.

Once you start writing your own programs, you can copy them into the

notebook as well; this is particularly important because the HP-28

does not provide any way of saving your programs, such as the card

readers on the HP-65, HP-67, HP-97, HP-41, HP-75 and HP-71. The

only mechanical way to save a program is to print it on the HP-

82240A printer, but a small pocket notebook is much easier to carry

with the HP-28 than is a printer. The HP-28C in particular does not

have enough memory to store all your programs at the same time, SO

you should collect a set of programs which you can copy from your

notebook to your HP-28C when you need them - and this method lets

you use any HP-28 in the way you need it. One piece of advice -

look after this notebook, put a return address in it or identify it

in some way. If your HP-28 is stolen, you can buy another one, but

it is much harder to replace the notes if they are stolen at the

same time. It might not be wise to put your home address in the

notebook though - a thief might steal your keys with it - use an

office address or a telephone number.

* ¥ ¥

Now for a few suggestions under the general heading of "keys".

1.4 Practice makes perfect. The HP-28 has lots of keys, and at first

you might find it quite a nuisance looking for the right ones. It

is a good idea to begin by using the HP-28 only as a simple

calculator for a few days, with the left-hand keyboard folded

underneath, so as to learn where the important keys are on the

right-hand (numeric) keyboard. Then start using the lefthand

keyboard too. Go through some examples (see 1.2 above) and you will

soon begin to feel at home on the keyboards. If you really do find

it difficult to look for keys or to remember command names then you

can try using the CATALOG to look through the commands, and then to

use FETCH in the CATALOG menu to fetch the command you want. After

a few days you should find that you can remember the commands you

-2-

Chapter One

use most and where the keys you need are, but you can always execute

commands by spelling them out, by picking them from their own menu,

by finding them in the CATALOG, or by writing a program which

includes your command and assigning that to a key in the USER menu

(see points 2.6 and 2.20). You can choose any one method or any

combination of methods - and thus customize your use of the HP-28.

In this book I assume you already know where most commands are, so I

shall not always give detailed instructions on how to find a

command.

1.5 Useful keys. You will soon learn that some keys are particularly

useful. Clearly ON turns the calculator on, and combined with SHIFT

turns it off - but at other times it acts as the ATTN key - it

interrupts lengthy activities or programs and makes the calculator

pay attention to the keyboard again. Sometimes ATTN interrupts an

operation at once, for example pressing ATTN when a plot is complete

clears the plot display at once; other operations will not stop at

once. For example you can use ATTN to interrupt a printing command,

but the command might not stop at once, because a print command can

only be interrupted at certain places. Even then, the printer might

carry on for quite some time, as it can store 200 characters and

will carry on printing them even when the HP-28 stops sending

characters to the printer. To stop the printer, turn it off and on

again. The cursor key (<> next to SHIFT) can be used to hide the

current menu and to activate the cursor keys instead, but remember

that pressing this key a second time will bring back the menu,

unless you have done something which cancels the current menu.

1.6 Useful key combinations. Note that you can use the cursor key

(see above) to bring back the current menu at one keystroke, without

the need for pressing SHIFT and a second key. If the second key is

on the left-hand keyboard then this saves a considerable amount of

finger moving.

There are many other ways to use single keys or key combinations

which save effort compared to the normal method. One example is

described in the manuals many times - you can carry out operations

-3-

Chapter One

without using the final ENTER command. Thus:

35 * 67

can be carried with the following key strokes (I have used spaces to

separate the keystrokes):

3 5 ENTER 6 7 ENTER *

but you can omit the second ENTER and do:

3 5 ENTER 6 7 *

This is because * automatically copies the command line to level 1

if that is required. Many other commands do the same. Another

trick is to notice that a number can be doubled by:

ENTER + orby 2 *

The first combination requires that you move a finger all the way

from the top left to the bottom right of the numeric keyboard, so

the second combination is quicker on the HP-28. In the same way,

you can square a numeric or algebraic object which is in level 1 by

doing:

ENTER * or by SHIFT + orby 2 SHIFT *

The first of these three requires the least motion of your finger,

but you might prefer one of the others, particularly if you touch-

type on the HP-28 using more than one finger. Another trick: if you

want to subtract the contents of level 1 from 17 then you can do:

17 SHIFT <- - (i.e.enter number, swap [SHIFT, backarrow] and

subtract)

but it is quicker to do: 17 - CHS

All of the above suggestions except the first two are copied from

similar suggestions for earlier HP calculators, in particular from

suggestions made to me by Martin Lennaerts, and by Fleming Madsen

and Steen Petersen of the Danish user club, while I was writing a

book about the HP-41.

If you want to see further up the stack than is shown in the display

then you can use SHIFT CHS (the VIEW” command); but note two useful

tricks. Firstly if you are using the bottom line of the display to

-4-

Chapter One

show a menu, you can see level 4 by pressing the cursor key to show

all four levels, and then bring back the menu by pressing <> again.

The second is that after pressing VIEW” several times you can bring

back the original display by pressing ATTN; you do not have to use

SHIFT EEX (VIEW down) several times.

One very useful key combination is SHIFT 7 (COMMAND) which returns

the previous command line (unless you have disabled COMMAND). This

lets you repeat a previous command or set of commands, and if you

press SHIFT, 7 more than once you can bring back any of the last

four command lines. You can then press ENTER to repeat the same

command, or you can edit this command to execute a slightly

different one.

The most common and natural way of executing a command line is to

press the ENTER key, but you can use EVAL as well (unless you are in

"alpha entry" mode, see point 1.13), and in some cases the EVAL key

will be nearer your finger than ENTER, saving some effort by using

EVAL.

A last suggestion here; it can be quicker to bring long command

names to the command line by using a menu or the CATALOG than

spelling out the command. For example Neville Joseph pointed out

early on that spelling SYSEVAL uses seven key strokes, but SHIFT Q

T followed by the PREY and FETCH menu keys takes only 5 key strokes.

We shall see in 2.20 that it is even better to use a menu key.

* % %k

Next some suggestions concerning the use of modes.

1.7 What is a mode? The word is used to mean several different

things on the HP-28; the overall meaning is that a mode controls the

way a result is evaluated, displayed, or printed. First of all, a

mode is a setting which determines how the HP-28 behaves - for

example it can do trigonometrical calculations in DEGrees mode or in

RADians mode. Again, numbers can be displayed in STD, FIX, SCI or

-5-

Chapter One

ENG mode. This kind of mode is selected from a menu and stays set

until it is specifically changed by another command. A second

meaning of "mode" describes how keys affect the command line - you

can have "insert" mode where new keystrokes are inserted into the

command line, or "replace" mode where keystrokes replace (or

"overwrite") characters in the command line with new characters. A

third set of meanings for "mode" is "Entry Mode" - Immediate entry

mode where objects are typed in and acted on at once, Algebraic

entry mode which is initiated by the single quote key and which

helps algebraic entry by adding the opening bracket after function

names, and Alpha entry mode which enters command names into the

command line and is therefore useful for keying in programs.

Remember that the shape of the cursor shows the status of

replace/insert mode and of the entry mode. In alpha mode you can

also select a "lower case" mode; unfortunately there is no visual

signal to tell you this mode is set. Users of the HP-41 and HP-71

will think of the HP-28 as being in "User" mode when the USER menu

is displayed and the top row of keys responds according to variables

created by the user. Other types of modes are described under the

general heading "Modes" in chapter 1 of the Hewlett-Packard

Reference Manual provided with your calculator. Many of the modes

are controlled by the status of HP-28 flags and you can even use

flags to invent new modes of your own.

1.8 Check your modes with PRMD. One of the most important ways in

which you can customize the HP-28 to your own use is to set it to

suitable modes. You can use the MODE menu to set and check many of

the modes, but there are two quick ways find out what modes are set.

Firstly, as mentioned above, the shape of the cursor shows you what

keyboard entry mode is set. Secondly, you can use the PRMD (PRint

MoDe¢) command from the PRINT menu or the MODE menu to show other

modes. Either press SHIFT L NEXT and the third menu key

(labelled PRMD), or simply type the letters P R M D and then

press ENTER. The PRMD command is designed to let you print the HP-

28 modes on the printer, but it also shows the modes in the display,

so you can see them even if you have no printer. You can cancel the

display by pressing any key; ATTN (the ON key) is usually best as it

-6-

Chapter One

does not do anything else. If you have no printer, then you might

find it annoying having to wait for the HP-28 while it tries to send

all the information to the printer - point 1.17 suggests a way to

speed this up.

1.9 Learn to use the modes. If you are doing your home finances on

an HP-28 then you probably only want to display pounds and pence (or

dollars and cents, or francs and centimes, and so on). Clearly it

is useful to set the display to show whole numbers (pounds, dollars,

etc.) followed by just two digits (pence, cents, etc.) and you can

arrange for this to happen by setting the HP-28 to FIX 2 mode. You

do this by typing 2 FIX and it may seem that this should be

called 2 FIX mode, but on previous HP calculators it was called

FIX 2 mode, and you can see that the PRMD display still uses this

naming system. If you are a chemist doing titrations, you may

prefer to display all results with a power of ten, and might choose

SCI 4 mode, or if you are an engineer you might prefer ENG 6 mode.

Whatever you choose, you are customizing your HP-28. If you are a

non-British European you might prefer to use a comma to separate the

fractional part of a number from its whole number part, and you can

set this by changing the radix mode. By the way, the symbol which

you choose not to act as a radix (the comma or dot) can be used as a

separator instead of the space. For example, if you are using the

dot as a radix then you can enter the complex number (1.0 , 2.0) by

keying the characters (1 SPACE 2 ENTER or equally (1 , 2

ENTER. In many cases it is much easier to use the comma instead of

going over to the left-hand keyboard just to press SPACE. Sometimes

you will need to change from your preferred modes; point 2.12 will

show how you can easily bring all modes back to your preferred

setting with just one keystroke.

1.10 LAST, UNDO and COMMAND. These three commands are designed to

help you recover from errors; they also let you repeat previous

calculations, with changes if necessary. The HP-28 has only a small

amount of memory to store information such as the stack, user

variables,and the information required by LAST, UNDO and COMMAND -

so there are modes which let you disable any combination of these

-7-

Chapter One

commands, and save the space they would otherwise use. For instance

UNDO has to save a complete copy of the stack as it was before you

executed the most recent command - and if the stack has a lot of

objects in it then this can use up valuable space in the memory. By

disabling UNDO you can save all that space, but of course you lose

the ability to recover from a mistake which altered the stack

incorrectly.

1.11 Adetailedlook at LAST. The commands LAST, UNDOand COMMAND

act in different ways; let us have a detailed look at LAST first

(M. LAST recovers the stack objects used by the most recent

command, even if this was ENTER (or DUP) in which case the object

has just been duplicated on the stack. LAST will recover one, two

or three objects - as many as were used by the most recent command;

following DROP it will recover one object, following + it will

recover two, and following an integration it will recover three.

There are a few things to be careful with though. Some commands use

no arguments (an object used by a command is called its "argument")

and so do not change the value or values stored in LAST. Thus CLEAR

will clear the whole stack but will leave LAST unchanged - of course

you can use UNDO to get the stack back after CLEAR. The main

purpose of LAST is to let you repeat calculations and correct

mistakes - the HP-28 itself uses LAST to correct mistakes; if a

mistake is found in a command and LAST is enabled then the HP-28

uses LAST to recover the original state of the stack, otherwise you

might lose the incorrect object or objects.

Some commands can take more than three arguments, for example DROPN

takes a number n from level 1 of the stack and drops n more objects

from the stack. In this case, more than three objects might be

lost, but LAST saves a maximum of three objects, so what happens?

Commands such as DROPN are treated as "indirect" commands - the n

values that were dropped were not referred to "directly" by the

command. You can compare DROP2, which "directly" commands the

dropping of 2 objects, to DROPN which "indirectly" commands the

dropping of n objects, n being specified on the stack, not in the

command itself. In commands like this the number n is treated as

-8-

Chapter One

the argument and is saved in LAST, but the objects referred to

"indirectly" are not saved - in the case of DROPN you can only

recover them with UNDO. Other "indirect" commands which save only

their "direct" argument in LAST are DUPN, PICK, ROLL and ROLLD - all

these commands move objects in the stack but do not destroy the

objects, so it is reasonable for them to save only the number n.

DEPTH "uses" the objects in the stack in that it counts them, it but

does not treat them as arguments, so it leaves the previous LAST

value saved. Judging by this, SWAP might be expected to leave LAST

unchanged, but actually it stores the objects from levels 1 and 2 in

LAST, as they were before the SWAP command. Even more unexpected is

the result of OVER, which brings a new copy of the object originally

in level 2 into level 1 and lifts the stack; the effect of OVER is

to store the objects that were in levels 1 and 2 in LAST, just like

SWAP. ROT stores the objects that were in levels 1, 2 and 3 in LAST

in their original order as might be predicted from the actions of

OVER and SWAP.

Two other "indirect" commands which take a number n from level 1 and

act on n more objects are ->ARRY and ->LIST. Both of these save n

in LAST but all the other arguments can be recovered from the array

or list created.

There is at least one other "indirect" command whose action may not

be clear; it is PRVAR (Print Variable). All the other printer

commands leave the stack and LAST unchanged, but PRYAR drops the

name that was in level 1 and saves it in LAST - remember this when

using a printer.

LAST can be enabled or disabled from the MODE menu, but also by the

setting or clearing of flag 31. This means you can enable and

disable LAST from a program, for example to save space at places

which need a lot of memory.

1.12 More about UNDO and COMMAND. The UNDO command restores the

whole stack as it was before the previous command. If that

previous command was the name of a program then the UNDO command

-9-

Chapter One

restores the stack as it was before the program started. The main

use of UNDO is to get back the whole stack as it originally was

before a command if you notice that you have used the wrong command.

Remember that using UNDO destroys the present contents of the stack,

unlike LAST which brings back the latest arguments and pushes them

onto the stack, leaving everything else as it was. The UNDO command

does not cancel itself - so if you decide that you had not meant to

use it then you cannot use UNDO again to bring back the stack as it

was before.

COMMAND is the most powerful of the three "correction" commands - it

brings back to the command line the most recent contents of the

command line, and if you repeat it then it brings back the second

most recent command line, then the third, then the fourth - after

which it goes back to the most recent command line again. Executing

COMMAND recovers the command line; it cannot be used to recover a

command that was executed directly by pressing a key. For example if

you press the DROP key in direct execution mode then you cannot

recover the DROP command by using COMMAND. On the other hand,if

you press DROP in alpha entry mode, or spell out the word DROP, and

press ENTER or EVAL then you will be able to bring DROP back to the

command line with COMMAND. The extra power of COMMANDlies in the

fact that you can edit any command line brought back by it. For

example you can type in the command line:

*(SIN(X)+3)"2

and press EVAL to evaluate this expression. Then you can use

COMMAND to bring back the expression and edit it to change the power

from 2 to 3, and evaluate the new expression, and you can repeat

this as many times as necessary. Executing COMMAND lets you

evaluate the same formula with different values, or evaluate a set

of similar formulae - it provides an alternative to writing and

storing a program.

Neither UNDO nor COMMANDcan be enabled or disabled from within a

program by normal means, but point 3.7 will show how SYSEVAL

provides a way around this limitation. In any case, LAST, UNDO and

COMMAND provide a powerful set of commands that you can use to

-10-

Chapter One

control the HP-28 in ways that suit you, so their use can help you

customize your HP-28.

1.13 A look at the command line. The example above shows how the

command line can be recovered and edited to make new commands. Let

us have a more detailed look at the command line and how it is

affected by entry modes.

In the normal "immediate entry" mode you can type in real numbers,

complex numbers, arrays and other objects - all these go into the

command line. It is only when you press ENTER that these objects

are put into level 1 of the stack. On previous HP calculators you

could normally only type numbers from the keyboard directly into the

bottom level of the stack; there was no intermediate step such as

the command line. One clear advantage of the command line is that

it can be used to edit an object that is in level 1. Thus you might

type in a long number, press ENTER, then realize the number has the

last digit wrong. On the HP-28, you can press EDIT, correct the

last digit, then press ENTER to put the number back on the stack.

If you put in a number, then press something such as + or SIN, then

realize the number was wrong, you can use LAST or UNDO, then EDIT to

correct the number, then repeat the command. All this is much

easier than on previous HP calculators - if a number was wrong you

usually had to delete it completely with CLX, then start again. If

the number at the bottom of the stack was the result of a

calculation then again it was difficult to change it; say you want

to check the result of a trig expression if you evaluate it for pi,

then want to check it again with the last digit of pi changed. On

the HP-28 you can press pi, then ->NUM, then EDIT and change the

last digit - this is much easier than on a calculator which shows

only one level of the stack and does not let you edit numbers. One

more point - if you want to edit any other stack level, you can

VISIT it or recall it to level 1 with PICK, then edit it. Examples

of editing are given in the manuals and in the solution books.

In "immediate entry" mode, if you press any key except those used to

create objects, that key will carry out its command or function.

-11-

Chapter One

This usually stops entry of the command line, so after using

immediate entry mode you can only use COMMAND to edit data objects.

If you want to enter and edit an algebraic object or a set of

commands in the command line, then you need to use "algebraic entry"”

mode or "alpha entry" mode. In algebraic entry mode you can enter

numbers and objects, as in immediate entry mode, but pressing a

function key (SIN, +, TANH and so on) puts the function name in the

command line, and if the function needs an argument then its name is

followed by a bracket, for example SIN(or TANH(. This lets you

create an algebraic expression in the command line, as in the

previous example. Such an expression can be used, recalled by

COMMAND, then edited and used again.

In "alpha entry" mode, objects, functions, and commands as well are

all put in the command line. Say you want to multiply two numbers

together and print the result. You could do:

press ALPHA (bottom right key of alpha keyboard),

press 35, then SPACE

press 67, then SPACE, then *

press PRINT, then the menu key labelled PR1

press DROP

The command line now has all the instructions required to calculate

35%67, then print the result on the printer, then drop the result

off the stack.

Now you can press ENTER to leave alpha entry mode and carry out all

the instructions in the command line. To repeat the calculation and

printing, you can use COMMAND to bring back the whole command line,

then use SHIFT < to go back to the beginning of the line, and (for

example) type 49 over the 35 - now you can press ENTER again, and

the HP-28 will print the result of 49*67. Then you can repeat the

whole trick again for another number. All this is much easier than

pressing all the keys each time for each calculation. You could do

this on earlier HP calculators by writing a program, and you can do

the same on the HP-28 too, but it can be much quicker to use the

-12-

Chapter One

command line to repeat one particular kind of operation a few times,

instead of writing and storing a program.

In summary, "immediate entry" mode lets you use the HP-28 like one

of the earlier HP calculators - numbers are entered into the stack

(from the command line) and functions are carried out at once.

"Algebraic entry" mode lets you use the HP-28 like an algebraic

calculator - you type an algebraic expression into the command line,

then evaluate it by pressing ENTER or EVAL. "Alpha entry" mode is

like a BASIC computer where you can type in a line of commands, and

if the line does not have a line number then pressing ENTER makes

the computer carry out the commands in the line. Just by choosing

the appropriate entry mode you can customize your HP-28 to work in

any one of these three ways.

1.14 About ENTER. Once you have typed in a command line, you press

the ENTER key to copy the line to level 1, or to carry out the

commands in the line. It is worth knowing some more details about

the command line and ENTER. While you are putting objects and

commands into the command line, they are held there as a string of

characters. For example the command DUP is held in the command line

as the letters D U P , not as a command. In the same way, the

number 12.75 is held in the command line as 1 2 . 7 5 , not as

a number. When you press ENTER, the HP-28 goes through the command

line and turns everything into objects or commands, which are stored

in the HP-28 in quite a different way, as a program. If there are

no mistakes, the HP-28 carries out the program, and you just see

that the command line has been worked out for you.

While it translates the command line, the HP-28 checks for simple

errors, such as spelling mistakes which result in unrecognized

commands. If any such error is found, it is highlighted by the

cursor for you to correct. This means that the command line is

still in the HP-28 while it is being translated. If you type in a

very long command line, then a lot of memory is needed to hold the

whole line and also the whole program it is being translated to.

In fact, a very long command line might cause an HP-28C to run out

-13-

Chapter One

of memory. That is one reason why it is safer to use the HP-28C

with short programs and command lines, not long ones. If you copy a

long command line to level 1, say a complicated algebraic

expression, then try to EDIT it, you will need room for the original

expression, for the command line in which it is being edited, for

the UNDO copy and the COMMAND stack copy, and for the new

translation. It is clear that with five versions of the expression,

but 1500 bytes available at most, an HP-28C can easily run out of

memory in such a case; an HP-28S should have no trouble.

Each character in the HP-28 is represented by a "byte" - a number

between 0 and 255. The number corresponding to each character is

given in a table in the STRING section of the HP-28 Reference

manual. The numbers from 32 to 126 are standard codes used by very

many computers; they are called ASCII (American Standard Code for

Information Interchange), the others are an extension of ASCII,

called ROMAN 8. The end of the command line is marked by a null

byte - a special character with a numeric value of zero. When you

are editing the command line in replace mode, the null byte helps

the HP-28 tell where the end of the command line comes, so you will

not accidentally start editing information past the end of the

command line. This is why you are prevented from editing a text

line which contains character zero - the HP-28 would not be able to

tell a character zero in the middle of the line from the character

marking the end of the line.

If the command line contains only a data object, then it is

translated into a program which simply puts that object on the

stack, otherwise it 1is translated into a set of objects, an

algebraic expression, or a whole collection of objects and commands.

All these are carried out, or put on the stack, depending on their

nature. The symbol << has a special meaning. If it appears in a

command line then the instructions after this symbol are translated

into a program which is put onto the stack, instead of being carried

out at once. This is the way in which you can write your own

programs and store them, as will be described in the next chapter.

-14-

Chapter One

Pressing ENTER at any time when there is no command line makes the

HP-28 put a copy of the object in level 1 into level 2 of the stack

and lift the rest of the stack. This is precisely the way ENTER

worked on earlier HP calculators, and it was sensible to retain it

on the HP-28 - in this case ENTER behaves like DUP. However

pressing ENTER if the command line does contain an object causes

that object to be moved from the command line to stack level 1.

Pressing ENTER a second time now will copy the object in level 1

into level 2, making a second copy. This is not the same as

happened on previous HP calculators - typing a number into a

calculator and pressing ENTER once made two copies of the number in

the stack, and pressing ENTER twice made three copies. When using

ENTER on the HP-28, you must remember that there is a command line

below the first stack level. My thanks to Colin Crowther for

pointing out this pitfall.

1.15 Other modes. Many modes are controlled by user flags 31 to 64

as listed in the table of "Reserved User Flags" in Chapter 1 of the

Reference Manual. A full understanding of these flags and the modes

they control lets you use them to set up the HP-28 to work just as

you need - to "customize" it. Unfortunately the explanations in the

table are sometimes too brief to be helpful, for example flag 45 is

described as "Level 1 display" - in fact it controls whether or not

you have a multiline display of programs, lists, and two-dimensional

arrays in level 1. It can be very useful to write out a list of

these flags and what they do, and to carry it around, either in your

pocket notebook, or on a label glued to the HP-28. Remember that

you can set or clear all these flags, so any mode controlled by them

can be controlled from within a program.

1.16 Create your own modes. Flags 31 to 64 all have special

meanings, but you can use flags 1 to 30 in a very similar way - to

create your own modes. For example you might want to calculate

temperatures in degrees Celsius or Fahrenheit - you could choose to

set flag 5 when working in Celsius and clear flag 5 when working in

Fahrenheit. Then you could write programs which check this flag and

make decisions accordingly, and you could use the built-in units

-15-

Chapter One

system to convert from one type of degrees to another as and when

necessary. Clearly this is a way to customize your HP-28 by

creating new types of modes.

1.17 Using the printer control flags. Flags 33 and 52 are normally

used to control the printer, but they can be used to speed up the

PRMD display as well. If you set flags 52 and 33 then information

is sent to the printer more quickly and without carriage returns

between lines. This speeds up the sending of the mode information

to the printer by the PRMD command, which might be a good thing if

you are using PRMD without a printer - see point 1.8 above.

-16-

CHAPTER 2 - VARIABLES, PROGRAMS & MENUS

The main aim of this chapter is to show how you can write programs

to make the HP-28 do exactly those things that you want, but I begin

with a related topic - constants and variables. If you already know

about programming the HP-28, look quickly through this chapter;

there are some useful tips in it.

2.1 Simple constants. The HP-28 provides some commands which produce

a simple constant. For example pressing SHIFT . generates the

constant pi. Pi is common on scientific calculators, but the HP-28

also provides the constants e, i, MINR and MAXR. The point about pi

and e, i, MINR, MAXR is that they are recognized as special symbols

which can be replaced by a numeric value when you wish.

The HP-28 lets you create your own symbols and constants too. If

you want to differentiate SIN(A) without knowing what the value of A

is, then the HP-28 lets you do that by means of its symbolic

differentiation ability - in this case A is a symbol. You can also

create a symbol whose value you do know, and use the symbol name

instead of having to type in its numeric value during calculations.

Say you are doing some calculations involving G, the universal

gravitational constant. The value of G in SI units is 6.670E-11

m~3*kg”-1*s”-2 so you can create a symbol called G and give it this

value by doing:

6.67 EEX 11 CHS G STO

If you press the USER key to display the USER menu you will see the

letter G above the top left-hand key of the right-hand keyboard.

You have created a variable called G. If you had already created a

variable called G then it might be somewhere else in the user menu.

(HP-28S owners should be careful which subdirectory G is in; I shall

discuss HP-28S subdirectories in Chapter 5, elsewhere I shall assume

everything is in the HOME directory.) You can now use G in very

much the same way as you can use the command pi. Say you want to

calculate:

17

Chapter Two

G*5.976E24
6.3782E6"2

You can do the following:

press the ’ key

press the menu key labelled G

enter the rest of the expression: *5.976EEX24/6.3782EEX6”2

Now you can press ENTER to put the expression on the stack or EVAL

to evaluate its numeric value. You can carry on using G like this

in other expressions much like pi or e or any other constant

provided by the HP-28. You have created a new constant which you

can use like the others, and by creating such constants you are

adding to the commands available on your HP-28, so you are

customizing it.

2.2 Simple variables. At some time you might discover that the

universal gravitational constant has been determined more

accurately, so you might want to change the numeric value of G. You

can do this very easily by simply typing in the new value then

typing in ’G and then pressing STO. (Note that once G has been

created you cannot store new values unless you put a quote in front

of the name G, to show it is a name.) On the other hand, you

certainly can not change the values of pi or e stored in the HP-28.

For this reason, G and any other object created in the same way on

an HP-28 is called a "variable" - you can vary its value.

In the case of G, you would not be likely to want to change the

numeric value often, but you can create variables whose values

change all the time. For example to use the HP-28 to solve

quadratic equations you might create variables X1 and X2 which will

contain the roots of the quadratic equation. If the quadratic has

real roots then X1 and X2 will contain real numbers, if the roots

are complex, then X1 and X2 will contain complex numbers. The HP-28

will take care of details like this and will store whatever you wish

in the variables. You can then solve another quadratic, and have

18

Chapter Two

its roots in X1 and X2, or you can use X1 and X2 just like pi or G

to provide commands which will let you use these numbers in further

calculations.

Variables like X1 and X2 can store a real number or a complex

number; and they can store more complicated objects too - vectors,

matrices, strings and so on. Anything that you can put on the stack

by typing it in from the keyboard or by creating it some other way

can be stored in a variable. Say you want a unit matrix of

dimension 2*2 then you can do the following:

[[1,0¢[0, 1 ENTER U2 STO

This creates a variable called U2 which contains the 2*2 unit

matrix. Whenever you need such a matrix in future, you can bring it

to level 1 of the stack just by pressing USER and the key labelled

U2. Note that you do not need to press] to separate the rows of a

matrix - the HP-28 only allows one- and two-dimensional matrices, so

a third or subsequent [is recognized as closing one row and opening

the next.

2.3 Commands or variables? A command is any programmable HP-28

operation. For example SWAP makes the HP-28 swap the objects in

levels 1 and 2, SIN works out the sine of the object in level 1, and

DRAVW draws a plot of the equation stored in EQ. If we look at pi or

e or MAXR again, we can see that they are all commands too; they are

a special type of command which puts an object into level 1 of the

stack. You can get them by spelling them out, pressing a single

keyboard key, or selecting a menu and pressing a key on that menu;

in each case the HP-28 recognizes pi, ¢ or MAXR because these names

are built into the HP-28, and it carries out these commands.

After you create a variable such as G or X1 and X2 described in

points 2.1 and 2.2 above, you can fetch that value by spelling out

the name of the variable, or by pressing a menu key which

corresponds to the variable’s name. This is just the same as

carrying out a command such as pi or MAXR. The main difference

between a command such as pi and a variable such as G is that the

command is built into the HP-28, and the variable is created by you,

19

Chapter Two

the user. In other words, a variable is really a new command

created by the user, and added to the list of commands built into

the HP-28.

Simple variables such as G or X1 and X2 just put a new number into

stack level 1, much the same as the simple commands pi or MAXR.

Most commands do something more complicated, and variables can do

more complicated jobs too. One example: to put a 2*2 unit matrix in

level 1 of the stack you can use the command IDN by doing:

2 IDN ENTER

Equally well you can press USER and the key labelled U2 to bring

back the 2*2 unit matrix which you had stored at the end of point

2.2. Once again we see that a variable is doing the same job as a

command. The USER menu is really there to let the user create his

or her own new commands, and use them just like commands built into

the HP-28; it is there to let you customize the HP-28 by adding new

commands that you need.

2.4 Variables and programs. So far we have only stored numbers (real

or complex) and a matrix into variables. If you have read the

manuals and used your HP-28 before reading this book then you know

that other objects, including programs, can be stored in variables.

This makes good sense - if variables are user-written commands then

you might need to write commands which do more than put an object

onto the stack. Here is a very simple example: you have probably

noticed that you often use the pair of commands SWAP DROP to remove

an object from level 2 of the stack. It can be useful to have a

command which does this at the pressing of a single key. This

command can be created by writing a short program as follows:

press << SWAP DROP

press ENTER - the program is copied to level 1 of the stack and >>

is added

type in a name for this command, say NIP, then press STO

press USER and you will see the new variable NIP in the menu

20

Chapter Two

To try out this command, press 1 ENTER 2 ENTER and then press

the key labelled NIP and see that the 1 has been removed from

level 2. NIP is a new command which "nips" the object out of

level 2. This HP-28 command was suggested to me by Jean-Daniel

Dodin. NIP and TUCK (<< SWAP OVER »>> are standard words in

the Laxen/Perry F83 implementation of FORTH.

You might be surprised that the variable G brings a number to the

stack, but NIP does not bring the program to level 1 of the stack -

it executes the program stored in NIP. The confusion is partly due

to the name "variable" - in fact G and NIP are both "commands" - G

is a command which puts a number on the stack, NIP is a command

which carries out SWAP DROP. Both commands have been created by

you, the user, and both are available on the USER menu. Anything

stored by the user can be changed later; you can put a different

number into G, you can put a different program in NIP, or you could

put a matrix into NIP and a string of letters into G - you can vary

their contents, so they are called "variables" as on most computers

and in most programming languages. Nevertheless, it is useful to

think of them as user-written commands.

If you do want to bring a program back to the stack, you can press

’, then the program name (on the USER menu), then RCL (SHIFT STO).

If you want to change the program without bringing it back to the

stack, you can do the same, but use VISIT instead of RCL.

2.5 COMMAND and programs. In the previous chapter I showed how you

can use a set of commands repeatedly by typing them into the command

line once, then bringing them back by use of COMMAND. From the

point above you can see that a set of commands can also be stored in

a variable for repeated use. Once again, the HP-28 provides more

than one way of doing something - you can pick the method which

suits you best. Of the two, a program is easier to execute - you

just press a single key, and of course a program 1is stored

permanently. A command line can be edited more easily, and it does

not require any special effort to save it - but if you carry out

more than three other operations which use the command line then the

21

Chapter Two

command line you want can no longer be recovered with COMMAND. A

program has one other advantage - its name can be used as a command

in other programs. Say you need a command to add together the

numbers in levels 1 and 2, then to put the number that was

originally in level 1 back into level 1. You could do this with the

following simple program:

<< + LAST SWAP DROP >>

As we already have the program NIP which does SWAP DROP , we can

simplify the above to do:

<< + LAST NIP >>

How does this work? Say you have a stack set up as below:

3: ’A*G/1793

2; 1.57981

1: -1.2138

the addition changes the stack to:

2: ’A*G/17.93

1 .36601

LAST changes it to:

4: ’A*G/17.93

3: .36601

2: 1.57981

1: -1.2138

NIP nips out the object in level 2, leaving the result of the

addition in level 2 and the original contents of level 1 still

there:

3: ’A*G/17.93

2: .36601

1: -1.2138

You could write the second of the above programs by doing:

a. press << (Note that this automatically puts the HP-28 into

alpha entry mode. At other times you have to do that yourself.)

b. press + , then press LAST

press NIP This is a USER menu key, since we just wrote NIP

above.

22

Chapter Two

d. press ENTER

e. store the new program by pressing A D D L STO

The new program is stored in a variable called ADDL. Is it any use?

Well, it replicates what would happen on older HP calculators if you

pressed + and LASTX, so it helps if you are translating HP-41

programs for the HP-28.

2.6 Simple programs. NIP is a very short program - we can write much

longer ones, but first let us look at some more short programs. NIP

has only two commands in it; it can sometimes be useful to write

programs with just one step. An example would be if you were doing

calculations on real numbers, with the USER menu displayed, but

sometimes needed to get the integer part of a number. You can get

the integer part of the number in level 1 by pressing EDIT, and

deleting the fractional part. You could also select the REAL menu,

then press NEXT twice, or PREV twice, then press the menu key

labelled IP, then press USER to get back to the user menu. Both

methods take a lot of key pushing and it is much quicker to press I

then P then ENTER, which carries out the IP command in just three

keystrokes. Even so, you have to go to the left hand keyboard to do

this, which is awkward, particularly if you have it folded under the

right hand keyboard. The simplest trick is to write a program which

contains just the one command IP, and to put this program into a

variable on the USER menu:

a. press <<, then press I and then P

b. press ENTER to create the program << IP >>

c. type in a name for the program (see below), then press STO

Now you will be able to carry out IP by pressing just one key,

without leaving the USER menu and without using the left hand

keyboard.

One problem is that you cannot call this program IP, as that is

already the name of the built-in IP command. You could use some

similar name, say INTP (INTeger Part); a neater trick is to use the

23

Chapter Two

same name, IP, but put a lower case letter in the name. Press I

then LC (Lower Case mode selection key) and P then STO. You will

have given the program the name ’Ip’; as the USER menu does not show

lower case letters, it will show a key labelled IP. Now you have a

key labelled IP, which carries out the IP command, but available

from the USER menu. Press ’ and the key to check what the program

name really is - you will see ’Ip in the command line - you will

need to use this name if you want to edit the program or PURGE it.

It is better not to use lower case letters alone in names like this,

see the end of point 2.14.

Naturally the same tricks allow other commands to be used directly

from the USER menu. One problem is that you can have no more than

six variables displayed at a time - to get more you will need to use

NEXT or PREYV, or re-order them with ORDER. This will be described

under point 2.18.

Using lower case letters for a replacement command name can be

helpful at other times. Imagine you are picking objects out of a

list. GET will pick an object out of a list in level 2, but will

lose the list. GETI will save the list, but will add 1 to the

index. You might want to write your own version of GETI, to pick

out the object at the place given by the index, without changing the

index. You could write the program:

<< GETI SWAP 1 - SWAP >>

then store it with the name Geti, using lower case ¢ t i (type the

letter G as usual, then press LC and E T I). Now you would have

your own GETI, customized to suit your needs. To make sure that

nothing goes wrong when the index is at the end of the list, you

could write a slightly longer version:

<< > I << I GETI NIP I SWAP >> >>

using the program NIP which was introduced earlier, or using SWAP

DROP in its place if you prefer. In this version the index is

stored in the local variable I, and restored from it, so that you

will not produce a 0 by subtracting 1 from the updated index when it

goes past the end of the list and is reset to 1. (Local variables

are described in point 2.7 which comes next.) This version of GETI

24

Chapter Two

is designed to work with lists - it will not work with two-

dimensional arrays; you could write a version to do that too.

These two examples should show you that even very short programs can

be used in various ways to customize your HP-28.

2.7 Longer programs. In any but the shortest programs you are likely

to need to make tests and carry out different sets of commands

depending on the results, or to need to repeat a set of commands.

Details are given in the Reference Manual under the titles -

Programs, Program Branch, Program Control and Program Test. It is

worth studying all these sections, here I shall give just one

example of how a program can be developed to use some of these

features.

Say you want a new command to calculate the SINC function of the

object in level 1. SINC is defined as:

SINC(X) = SIN(X)/X

A simple program to calculate SINC would be:

<< SIN LAST / >>

Actually, LAST might be disabled, so it would be better to use DUP

to make a second copy of the object in level 1.

Another problem is that level 1 might contain a zero! In this case

the division will give an error. The value of SINC(X) approaches 1

as X tends to zero, and it is exactly 1 when X is zero, but the

program above would not work this out. Let us rewrite the program

to deal with both problems:

<< DUP IF 0 == THEN DROP 1

ELSE DUP SIN SWAP / END >>

Now we have duplicated the object in level 1 and checked whether it

is equal to zero. 0 == is a test which will give the result 1 if

the object is equal to zero, and 0 if it is not. THEN will check

the result of this test, if the result is any number except 0 then

the test was true, and the commands after THEN will be carried out.

25

Chapter Two

If the result is 0, then the test was false, and the commands

between ELSE and END will be carried out, or nothing will be done if

there is no ELSE. In this program the commands after THEN are DROP

1 which removes the remaining copy of the value and puts in the

result 1. (You could replace these two commands with the one

command FACT which converts a zero into a 1.) If the value is not

zero, then the test result will be zero, which means "not true", so

the commands between ELSE and END will calculate SINC using the

normal formula (and making two copies of the value, so LAST does not

have to be relied on).

Even this is not perfect - we should really check flag 60 first to

see if the HP-28 is in radians mode, since SINC works correctly in

radians mode. It is up to you whether you include such a test or

leave it to the user to check the angle mode. The above program is

already rather complicated by the use of DUP and DROP, so we won’t

worry about that here.

This program is a little complicated - it might be difficult to

follow what is happening on the stack. One way to check this is to

write out what is in the stack after each step; you can do this on a

scrap of paper or you can produce a properly designed "stack

analysis form" on which you write each step and what it does to the

stack. It can be quite important to do this, otherwise you might

leave spare copies of some object on the stack; and the stack can

quickly fill up the whole memory of an HP-28C. One of the

advantages of the HP-28 over previous calculators is that up to four

levels of the stack can be seen, so it is much easier to follow what

is happening to the stack during a calculation. See point 2.9 as

well.

We could make the program easier to understand if we copied the

object from level 1 into a "local variable". If we begin the

program with:

> X

then the HP-28 takes the object from level 1 and puts it in a

variable X. Within the program, we can use X to mean "the object

26

Chapter Two

that was in level 1", but when the program ends X will vanish. Now

we can rewrite the above:

<< > X << IF X 0 == THEN 1

ELSE X SIN X / END >> >>

This is no shorter than the previous version, but it is much easier

to understand. Here X 1is a "local variable" - it is only used

locally, in this program, and will not be available after the

program has finished. See point 2.14 for some tricks with local

variables.

The program could be rewritten again to use IFTE instead of IF,

THEN, ELSE and END:

<< > X << X 0 ==1 << X SIN X / >> IFTE >> >>

In this version, we put three objects on the stack; first the result

of the test X 0 == (if the test is true then a one is left on the

stack, otherwise a zero). Next comes a 1 (this will be the answer

if the test is true), and thirdly comes the program to work out SINC

if the test is not true. IFTE uses all three objects. If the

result of the test (in level 3) is not a zero then the object in

level 2 is evaluated and left as the result, if the result is false

(zero), then the object in level 1 is evaluated and left as the

result.

Now for a trick to save a few steps. Note that we can invert the

test (# instead of ==) and invert the two possible results, getting

the same answer. The test would become:

X 0 #

but this simply puts a zero (false result) on the stack if X is

zero, and puts a one (true result) on the stack if X is not zero.

We could get exactly the same result by just leaving X itself on the

stack! After all, zero means false, non-zero means true. So the

program can be rewritten one more time:

<< > X << X << X SIN X / >> 1 IFTE >> >>

This is shorter than the earlier versions, but it is still clear

what it does if you remember that X itself can be used as the result

27

Chapter Two

of a true/false test. There is still a problem (isn’t there

always?) - if the object in level 1 is not a number but a name or an

expression then this version of the program will not work. We could

try to rewrite the program completely to deal with symbolic values,

we could use a user-defined function (see next point), we could just

force X to turn into a number if possible by using ->NUM:

<< > X << X ->NUM << X SIN X / >> 1 IFTE >> >>

or we could just say "this is a program to calculate SINC of the

object in level 1 if that object is a number".

Let’s do the last - we have done about enough with one program; it

has shown how a simple idea needs to be expanded, and then how the

resulting program can be made simpler again, but that there may

still be problems. You could, if you wish, try writing shorter

programs to do the same calculation, but they would probably not be

as clear. One possible trick is to notice that the result of the

test X == 0 1is 1 if X is zero, and 1 is the value that SINC

takes if X is zero.

2.8 Algebraic expressions. We have seen how variables can be used to

create new commands which put objects on the stack, or which are

combinations of other commands. Variables can be used to store other

objects too, including algebraic expressions. For example you could

STO ’3*SIN(X)* in a variable called SIN3, then recall this to

level 1 by pressing the key labelled SIN3.

You can do the same with the program << SIN 3 * 5>> but the

algebraic expression is clearer than the program. Another advantage

of algebraic expressions is that they let us write our own

"functions” on an HP-28C: the programs shown above work out SINC of

the object in level 1, but they can not be used in algebraic

expressions. We could not use them on an HP-28C in an expression

such as:

’3*LOG(SINC(X))

because the HP-28C only knows that SINC is a variable, not that it

works like an algebraic function. By rewriting the last program as

an algebraic though, we can turn SINC into a "user-defined function"

28

Chapter Two

(UDF) which the HP-28C will recognize in algebraic expressions:

<< -> X CIFTE(X, SIN(X)/X, 1) >> ' S I N C STO

This new program uses the algebraic form of IFTE, with its three

arguments (test, true-action, false-action) all written in algebraic

form. When the program is evaluated, it thus returns an algebraic

expression, so in effect the variable SINC contains an algebraic

expression. Now we could use this latest version of SINC in an

expression such as ’3*LOG(SINC(X)) and the HP-28C would evaluate

this with no trouble, so long as X is a number or can be evaluated

to a number. SINC is not followed by a bracket when you press its

menu key in algebraic entry mode; otherwise it works in the same way

as a function built into the HP-28C. You can even define a

derivative for it!

The programs written in the previous point will fail if you try

using them to calculate SINC of a variable which has not been given

a value. The user-defined function will not fail; it is an

algebraic expression and can deal with symbolic values. However,

try calculating SINC(ZZ); assuming you do not have a variable called

ZZ you will see SINC(ZZ) evaluates to the expression:

'IFTE(ZZ,SIN(X)/X,1)’

The first X is replaced by ZZ, but ZZ has no value so the rest of

IFTE cannot be evaluated; it is left as a symbolic expression. The

result is thus an algebraic expression; it is symbolically correct

but it will not work out the correct answer if ZZ is given a numeric

value later. This is because the second argument of IFTE was left

as SIN(X)/X and X is an undefined local name. That could be

considered a shortcoming of the HP-28 - it would be nice if all the

Xs could be replaced by ZZ at the same time. Even so, the user-

defined function has a clear advantage over any program, since it

does give an algebraic expression, not an error message.

This shows one way in which it can be very useful to create

variables that contain algebraic expressions - you can create your

own mathematical functions, in other words, once again, you can

29

Chapter Two

customize your HP-28.

NOTE: on an HP-28S you can use programs in algebraic expressions;

even if SINC is a program an HP-28S recognizes SINC(X) as a user

defined function in ’3*LOG(SINC(X))’. This gives extra versatility

to UDFs on an HP-28S, since commands can be used in programs, but

not in algebraic expressions.

2.9 Writing and testing programs. Up till now I have been describing

only programs which behave like additional HP-28 commands. Clearly

you can write other sorts of program which do much more than a

single command. You could write a program which asks for two

numbers, integrates a function between them, prints the result and

an error estimate, then asks for another pair of numbers - this

would be similar to the integrate function, but much more "user-

friendly" - it would be a true program, not just a command. The HP-

28 Example Books give examples of such programs, here I shall just

make some suggestions concerning program writing and testing.

A clear rule is that programs should be short. If you need a long

program, write it in several pieces. The user-friendly program to

integrate between two limits could be split into three parts: part A

asks for two numbers, B does the basic integration, and C copies the

results to the printer. You could write three sub-programs called

A, B and C to do these three things, (on an HP-28S you could put

them in a subdirectory) then a main program to put all three parts

together . This main program could simply be:

<< A B C >>

or it could include a WHILE..REPEAT command to keep repeating the

three parts until some condition is met that finishes the set of

values; you could for instance test that the upper and lower limits

are both zero.

One reason for doing this on an HP-28C is that it has only a small

amount of memory available for writing and storing programs. While

a program is being written or edited, you might have as many as five

copies of it in the memory. It takes much less memory to keep five

30

Chapter Two

copies of a short program than five copies of a long one. If you

split a long job into several small pieces then you will only be

editing one piece at a time, using less memory, so you will be less

likely to get the dreaded "Out of Memory" warning. The only problem

is that at the end you use a little more memory for all the small

subprograms plus the main program than you would for just one

program. It would be very nice if the + command could be used to

add together several small programs into one large program!

Another reason for writing small programs is that they are much

easier to test. The HP-28 does not provide step numbers for

programs; if a program with 114 steps goes wrong somewhere then it

is very difficult to find which of the 114 commands is the one in

error! When an HP-28 program goes wrong, you just get a BEEP and an

error message, with no indication of where the program went wrong

(HP-28S messages help somewhat by giving the name of the command

that found the error). You might be able to use the contents of the

stack to work out what was happening, but this is not always

possible. It is much easier to split a program of about 100 steps

into four or five subprograms of about 20 steps each. Then you can

test each subprogram separately, before trying to use them all

together.

If you do find a problem in a program or subprogram, a very useful

trick is to put HALT at the beginning of the program. When you

press the key to run the program, it will stop at once, with the

suspended program annunciator turned on. Now you can select the

Program Control menu (SHIFT M), then press the SST (Single STep)

menu key repeatedly to see the program carried out one step at a

time. When you reach the command which detects an error, you will

hear a BEEP and see a message. If you wish, you can change the

stack or any variables, then carry on with the program by using SST.

Alternatively, once you have corrected the problem, you can press

CONT (SHIFT 1) to let the program continue running. If you decide to

correct the program, or to stop it running, press the menu key

labelled KILL to stop the program, this will turn off the suspended

program annunciator, and will release all the space reserved for the

31

Chapter Two

running program. KILL is probably better than ABORT, since it stops

all other suspended programs, which might have been waiting to use

the results of this program. (As the design team leader admits, the

HP-28 has a pretty violent set of commands, what with KILL, ABORT,

PURGE, not to mention terms that are more ambivalent, such as CROSS,

DROP, or HEX))

Remember that when you stop a program with HALT and then SST through

it, you will only SST through the program you have HALTed. A

subprogram called from inside the HALTed program will be carried out

as a single step, and if the HALTed subprogram returns control to a

program which started it, then that program will carry on running.

To follow through several programs you will need a HALT in each one.

If you want to trace through a long program or set of programs you

can use several other methods. One trick is to DISP something (a

number or a message) every few steps, so you can see how your

program is doing. Another is to make a different BEEP every few

steps, so the sound of the program tells you how you are

progressing. Yet another method is to set the printer mode to TRACE

and to watch the results printed out by the program as it works

through its task. Unfortunately this can use up an awful lot of

paper.

2.10 Some space saving tips. If you are writing a long program and

despite all your attempts you run out of memory, then you will have

to split it up into even smaller pieces, or make it shorter in some

other way, or free some memory. Clearing the stack and PURGEing

some user variables can help; if that is not enough then disable

LAST and UNDO. Do not disable COMMAND until you really have to; if

you run out of memory when you press ENTER after entering a program,

then COMMAND will let you recover the program if it is not disabled,

otherwise you will lose everything you have done.

If all else fails, you will have to find a shorter way to write the

program (or pay to get an HP-28 with more memory). Use shorter

names for variables, make messages and other text strings shorter.

Note that the numbers -9 to -1, 0 and 1 to 9 take up two and a half

32

Chapter Two

bytes each, as do commands, whereas other real numbers take up 16

bytes. Thus 3 INV takes only five bytes, whereas 0.333333 takes

16 - savings can often be made in this way. Remember that algebraic

expressions generally use more memory than equivalent stack notation

(RPN) expressions, and arrays take less memory and are faster to use

than equivalent lists.

You might also find that some HP-28 commands you do not use much

could replace several steps or even a whole program. One such

command is RSD. RSD is designed to compute the residual array B -

AZ where B is an array in level 3 of the stack, A is a matrix in

level 2, and Z is an array in level 1. Clearly RSD can be used to

calculate B - AZ whenever you are using arrays, not just when you

need a residual. Another example I have already given (in point

2.7) is using FACT to replace a zero with a one.

2.11 Subprograms and routines. The use of subprograms to build up

larger programs has already been mentioned. Sometimes you will find

that a short program you wrote for use on its own can later turn out

to be useful as a subprogram in another program. You might have

written a SINC program, as above, just to calculate SINC functions,

then later you will find that a program you are writing needs to use

SINC - the SINC program becomes a subprogram used by the new

program. The word "routine" is often used to describe something

that can be a program or a subprogram.

It is worth making a collection of general-purpose routines which

can be used by more than one program. An example is a routine which

lets programs ask for some input. You might have a program which

asks for a number in one place and asks a YES/NO question somewhere

else. Instead of writing each question separately, you could write

a routine which prompts the user to type in an answer. A program

might ask for a number as below and add it to another number (note

the ellipsis symbols ... are used to show there are other pieces of

program before and after what is shown here):

"What is X?" 1 DISP HALT +

Later some other program might ask if an answer is accurate enough:

33

Chapter Two

. 4 DISP "Is answer in level 1 OK?"

1 DISP HALT "Y" ==

In both cases, the program has written out a question, displayed it

in line 1 of the display (1 DISP), then stopped (HALT) to wait for

an answer. You could put the three steps into a separate routine

and use that routine whenever you need to ask a question:

<< 1 DISP HALT >> P R M T STO

This creates a new command called PRMT which you can use whenever

you want to prompt the user of a program to give an answer. The

first program would now have:

"What is X?" PRMT +

When the user sees the question, he or she must type in the answer,

then press CONT to let the program continue. As stated above, a

routine like this is in effect a new HP-28 command. (The HP-28 does

not have a PRMT command built into it; the HP-28 idea is that you

should put all your inputs on the stack before you start using a

program - this is the way commands such as integration work, and

this is the way the designers expect users to write programs most of

the time. The PRMT command just described however lets you

customize your HP-28 to work in a way more similar to that of the

HP-41 which uses a PROMPT function to let a program ask for more

information.) Once PRMT is written, you can use it in other

programs; say you later need a program which asks how many yards of

your road British Gas had dug up this morning. You could write a

program which includes:

... "BG yards?" PRMT "yd" "m" CONVERT

SWAP ->STR SWAP + PRI ...

You might not like the way PRMT behaves - Bruce Bailey has pointed

out that users might be surprised when the question disappears as

soon as they begin to give an answer, and might not like having to

press the rather awkward and not at all obvious combination SHIFT

1 to continue the program. You could rewrite PRMT to suit your

preferences, or you could wait until point 3.10 which shows a trick

34

Chapter Two

to customize CONT. If you have an HP-28S then Chapter 27 of the

Owner’s Manual shows other ways of asking for input.

An important use of subprograms is when a program needs to repeat

something many times. If you use a program structure such as

FOR..STEP or START..NEXT to repeat a set of commands then you can

replace the whole set with one command which is itself a subprogram

containing those commands. This makes it easier to test the set of

commands, for example it is very important that the commands in a

loop should not increase or decrease the number of objects on the

stack. If you want to display the square roots of all the whole

numbers from 1 to 1000 you must be very careful not to end up

leaving a copy of each square root on the stack - an HP-28C would

run out of room long before you had put 1000 numbers on the stack.

2.12 Set your modes. One way to customize your HP-28 is to set the

User Flags to some special combination which sets your preferred

modes. You can save the settings of all your flags by using RCLF

(in the Program Test menu) to get a binary number with all your flag

settings. Then you can change some of the modes, and later get all

the modes back to your preferred set-up by using this binary number

and STOF. You might even like to save the binary number in a

variable and recall it whenever you need to put back your modes.

Let us see how we can simplify this by writing a program to do all

this at the press of a single key. An easy way to do this is to

save the flags in a variable, then write a program to restore them

from that variable:

a. Set all your preferred modes; angles, display, error handling

etc.

b. Use RCLF to get all the flag settings. This brings all the flag

settings to level 1 of the stack as a 64-bit number.

c. Do 64 STWS (so all 64 flags will be maintained).

d. Type FL A GS STO to put the settings in a variable called

FLAGS.

e. Now do: << FLAGS STOF >> SETM STO to create the command

35

Chapter Two

SETM which sets all the modes to your preferred combination at

the press of one key.

RCLF, STOF, RCL and STO recall and store all 64 flags even if the

binary word size is not 64, but accidentally editing a binary number

can lose part of it, so the word size is set to 64 just in case,

before the binary number is stored, but after your original word

size has been recorded by RCLF.

Creating two variables, FLAGS and SETM, is something of a nuisance

and a waste of space. It would be much neater to have the binary

number right there in the program. You can do this easily!

. Set all your modes.

. Do RCLF to recall all 64 flags as a binary number.

Set the binary word size to 64 bits: 64 STWS.

Press EDIT; now you have the whole binary number in the commanda
o
o

line.

o . Press INS and put << in front of the binary number.

. Press SHIFT > (the RIGHT key) to go past its right hand end.

.Press SPACE S T O F ENTER

This has created a program containing the binary number; you can

-
=

0

store the program and the binary number in one variable: ° S E

T M STO.

Now you can press USER and SETM to restore modes controlled by user

flags and the word size; we have used EDIT to build a program around

the binary number which holds the flag settings. This time we have

to set the word size to 64 so the whole binary number will be

displayed and edited.

2.13 Putting non-keyable characters in programs. You can use a trick

similar to the above to put non-keyable characters into a program.

Say you want to write a program to display a time as "HH:MM:SS".

The colon can not be entered directly from the keyboard - there is

no key for it. One way to do this would be to use the command CHR

to put a colon into level 1:

36

Chapter Two

. STD DUP IP ->STR 58 CHR + ..

would take the integer part of a number, turn it into a text string,

then create character number 58, which is a colon (see table in the

description of STRING), then add the colon after the number. If you

were going to do this a lot of times you might write a special

program to put a colon in the stack:

<< 58 CHR >> C O L O N STO

You could use this command, COLON, to put a colon onto the stack

whenever you need it, for example the program above would become:

. STD DUP IP ->STR COLON + ..

but it is even better to put a colon right into your program. To

write the same program as above and put a colon into it, do the

following:

1. Write the program as far as the command before the colon:

<< ... STD DUP IP ->STR

2. Press ENTER to put the program so far into level 1 of the stack.

3. Do ->STR, this turns the program into a text string:

"<< ... STD DUP IP ->STR >>"

4. Do 58 CHR to put a colon into level 1.

5. Press + to add the colon to the end of the program, you now have:

"<< ... STD DUP IP ->STR >>"

6. Press EDIT, delete the quote at the beginning of the program and

replace the >> with a quote ", this leaves you with the command line

containing the program:

<< ... STD DUP IP ->STR ""

Now you can carry on writing the rest of the program. Instead of

using a subprogram for the colon, or 58 CHR , you have "" right in

the program. Not only is this clearer; you see the character

itself, it also saves seven bytes for every non-keyable character

37

Chapter Two

entered this way instead of by use of CHR.

Putting further non-keyable characters into the program is more

difficult as it already has quotes ["] in it and these will split

the program if you edit it again. One way out is to put place

markers where you want special characters, and to put in all the

characters at one time, at the very end, putting the final program

together from several text strings, with special characters between

them, and EDITing the final string into a program.

A similar technique was used by many HP-41 owners; it was much

neater to have special non-keyable characters included in a text

string in a program, rather than to create them with XTOA (an HP-41

extended function which did the same as CHR). Unfortunately,

getting non-keyable characters into HP-41 programs was difficult:

techniques called Synthetic Programming, special barcodes, or

special plug-in modules had to be used. The HP-28 cannot read

barcode or have modules plugged into it, but it does let you put

special characters into a program, thus letting you customize your

programs easily.

2.14 Subprograms and local variables. The notes on local names and

local variables at the end of the section on Programs in the

Reference Manual deserve to be read very carefully. Local variables

(already mentioned in points 2.7 and 2.8) make it easier to write

programs which use objects from the stack, as the examples in the

Reference Manual make clear. Programs which use local variables

instead of duplicating objects on the stack and moving the stack

around are usually clearer and easier to understand, but they often

take up more of the HP-28 memory. You can decide whether you find

it easier to use local variables or to juggle objects on the stack -

yet another case of customizing your use of the HP-28.

It is important to avoid confusing local variables and their names

with ordinary, or "global" wvariables. A local wvariable is

recognized only within the program where it was created. (If

another program creates a local variable with the same name, then

38

Chapter Two

the second program will have a completely separate local variable,

and when that program finishes, then its local wvariable will

vanish.) Suppose you write and store a program T1:

<< > A << A SQ A INV + >> >> Tl STO

T1 will calculate X*2 + 1/X where X is the object in level 1 of the

stack. Suppose though, that you already have a separate program

called TT which does this job:

<< A SQ A INV + >> 'TT STO

You might want to make the program T1 shorter by using TT:

<< > A << TT >> >> Tl STO

The program TT was written separately from T1, so it expects to use

a global variable called A, not a local variable. If you do not

have an ordinary variable called A then this second version of TI

will give the algebraic answer ’SQ(A)+INV(A)’ , this is very neat

and correct, but it might not be the answer you expect. Even worse,

if an ordinary variable called A does exist, then that will be used

when the answer is worked out, so you might not notice that anything

has gone wrong (until your bridge falls down or your experimental

airplane loses its wings). To help you avoid any such horrible

possibilities, the Reference Manual suggests that you use lower case

letters for local names, and upper case letters for global

variables. In that case, T1 would be:

<< > a << TT >> >>

and TT would still be:

<< A SQ A INV + >>

There would be far less chance of confusing the local variable ’a’

with the global variable called ’A’.

What if you wanted TT to work with a local variable though? You

might want to write a subprogram which can be used from within TI1.

You could write the program:

<< a SQ a INV + >> TT STO

but this would still expect to use a global variable called
% ?a’.

You can force it to use a local variable instead by writing the

program while a local variable ’a’ exists. To do this you must

39

Chapter Two

write TT, or edit it, while a program which uses the local variable

’a’ is halted. Write the following:

1 > a << HALT

then press ENTER. You will have created a program with the local

variable ’a’, and the program will be HALTed, so that ’a’ still

exists. (Observe that you do not need to put everything into a

program, the command line is treated as a program anyway when you

press ENTER.) The suspended program annunciator will be turned on

in the display, and ’a’ will have the value 1; it does not really

matter what is in ’a’, the purpose of the 1 is only to prevent ’a’

trying to take something off the stack. Now you can write:

<< a SQ a INV + >> 'TT STO

and in future this program will expect ’a’ to be a local variable,

because the program was written while a local variable ’a’ existed.

(Press CONT to finish the HALTed program.) If TT has already been

written, you can VISIT it, then press ENTER. VISITing the program

turns it into a text string, it "decompiles" the program. Pressing

ENTER turns the text string back into a program, it "compiles" the

program. (Note: If you press ATTN then the decompiled program is

ignored, and the original compiled version is kept.) Now that TT

has been made to expect a local variable, it will not be able to use

a global variable ’a’, but it will be able to use a local variable

when a program creates this local variable and then carries out the

command TT. If you edit the subprogram later, when there is no

suspended program containing ’a’, the subprogram will go back to

treating ’a’ as an ordinary variable; so to look at the subprogram

TT, RCL a copy to the stack, do not VISIT it. ("Ordinary" names are

not really "global" on the HP-28S, as will be explained in Chapter

5)

This whole subject was raised in a letter from Jean-Daniel Dodin to

the leader of the HP-28 design team, Dr. Bill Wickes. Bill Wickes

pointed out that a subprogram would be able to use local variables

if it was compiled in a HALTed environment containing the desired

local names. My thanks go to Bill Wickes, to Jean-Daniel Dodin for

showing me their correspondence on the subject, and to Bruce Bailey

for pointing out the possible confusion depending on whether a

40

Chapter Two

program is compiled when a local variable does or does not exist.

Bill Wickes’ original point was that there are two ways to let

separate subprograms share a local variable. One method is to let

the first subprogram leave a copy of its local variable on the

stack, and to make the second subprogram pick up the object from the

stack, the other is to compile the subprograms in a HALTed

environment containing that local variable. Say you have a program

such as T1 above:

<< > a << a SQ a INV + >> >>

You might want to split the subprogram into two subprograms TT1 and

TT2:

<< a SQ > TTl STO and << a INV >> TT2 STO

The main program would become:

<< > a << TT1 TT2 + >> >>

Clearly you would want both TT1 and TT2 to recognize the local

variable ’a’ and the method described above would allow this. In

real life there would be little point in splitting up such a short

program, but if you write a long subprogram you might well need to

split it up into smaller parts so that you can edit it without

running out of memory.

One more warning: in point 2.6 above I suggested that you can write

alternative versions of HP-28 commands, and give each the same name

as the built-in HP-28 command, but with part of the name in lower

case letters. I have also repeated the HP suggestion of using lower

case letters for local names and upper case letters for ordinary

variables. To avoid confusion I suggest you stick to the following

rules:

1. For local variable names use lower case letters only. Avoid 'Y’

9,9and ’¢’ as these are the names of commands. ’I’ and ’J’ are

exceptions to this rule; many programmers (including me) use I and J

as loop counters, so use these as local loop counters and avoid

using them as global names.

2. For ordinary (global) names use upper case letters only, except I

and J.

41

Chapter Two

3. For names of variables which replace HP-28 commands, begin with

an upper case letter and put the rest of the name in lower case

letters.

2.15 Complex numbers and arrays. In HP-28 arithmetic, real numbers

are treated as complex numbers with the imaginary part missing.

Thus:

1 ENTER (2,3) +

gives the answer (3,3) as expected. Furthermore, 1 IM gives O,

which is indeed the imaginary part of (1,0), and -1 SQRT gives

(0,1). In effect, the HP-28 is able to turn a real number into a

complex number when this is necessary. The same usually works for

vectors and matrices, try entering the matrix: [[1 2][3 511,

then EDIT it to change the first element from 1 to (1,2), and press

ENTER. The whole matrix will automatically be turned into a complex

matrix.

If you specifically want to turn a real array into a complex array

(e.g. to let you PUT complex values into a real array), you can do

the following:

1. Recall the array to level 1.

2. Press ENTER to make a second copy.

3. Press 0 CON to set all the elements of the copy to zero.

4. Press R->C to create the complex array, with imaginary parts of

0.

2.16 Algebra with binary numbers. The HP-28 will not let you use

binary numbers in algebraic expressions, you cannot type in: ’#1 AND

#2’. Fortunately, you can write ’TA AND B’, and evaluate it even if

either A or B or both contain binary numbers. Thus, if you want to

do some masking calculations, picking out only the first and third

bytes of a four-byte binary number in hexadecimal notation, you

could store the mask:

#FFOOFFO0O M A S K STO

Then you could type in your binary number, store it, and do the masking:

#56789ABC B STO 'B AND MASK’ EVAL

42

Chapter Two

Mind you, only users of TI or Casio calculators are likely to need

this, users of the HP-16C know how to do binary arithmetic in stack

notation.

2.17 Storing data in numbered registers and on the stack. Unlike

earlier HP calculators the HP-28 uses named variables instead of

numbered registers. This is often easier, but it can cause trouble

if you want to translate an HP-41 program to run on the HP-28. The

makers recognized this problem and suggested a way round it;

Appendix B in the HP-28C Reference Manual and in the HP-28S Owner’s

Manual provide programs NRCL and NSTO which recall and store values

in numbered registers, for example 17.5 3 NSTO will store the

value 17.5 in register 3, just like 17.5 STO 3 on the HP-41.

NRCL and NSTO have two shortcomings. One is that they make no

provision for a register 0. To deal with this put 1 + at the

beginning of both programs. The other worry is that NRCL and NSTO

use a matrix called 'REG’, so they can only store real numbers. You

may prefer to rewrite the programs to use a list called 'REG’

instead of a matrix, then other objects such as complex numbers can

be stored and recalled.

The HP-41 allows the user to store numbers and text strings into any

of the stack registers X, Y, Z, T, L and also into the synthetically

accessible stack registers M, N, and so on. Values stored in these

registers can also be recalled from them. The HP-28 lets you recall

objects from any stack level by means of PICK, but there is no

simple way to store an object in a selected stack level. You can

use VISIT to edit the contents of any stack level (for example 9

VISIT lets you edit the 9th stack level), but this is not the same

as storing the object in level 1 in some other stack level.

If the name for a command which picks the nth object in the stack is

PICK, then PLACE would be a suitable name for a command which places

an object in the nth position. Here is a PLACE program, printed on

several lines, with explanations at the right of each line. The

43

Chapter Two

program is designed to place a new object in level n of the stack.

The stack diagram for PLACE is:

PLACE

Level n+2 ... Level 3 Level 2 Level 1 Level n .. Levell

objn obj 1 new obj n -> new obj obj 1

<< -> n ;Save n in a local variable

<< n ->LIST ;Put n objects in a list,

serror if n too small

IF DEPTH 1 > n ;If more than 1 object on stack

AND ;and n not zero:

THEN SWAP DROP ;Then OK, so remove object n,

n GETI ;pick new object from the list,

SWAP DROP SWAP;drop the GETI counter,

;put new obj above list,

LIST-> DROP2 ;turn list back to stack,

;drop n & new obj copy.

ELSE "Nonexistent" ;Else say stack level n is nonexistent,

1 DISP ;display the message in line 1

;of display,

LIST-> ;and put back the stack objects,

;new obj and n.

END ;End the IF THEN ELSE construct.

>> >> ;Finish local variable structure

;and program.

This program is rather long because it deals with errors such as n

being the wrong type or zero or larger than the number of objects in

the stack. Trying to write a shorter version would be a good

programming exercise.

Most HP calculators also have a command to exchange the contents of

register X (equivalent to level 1) with the contents of any numbered

register. You could replace this on the HP-28 with:

<< DUP NRCL ROT ROT NSTO >> 'NSWP STO

44

Chapter Two

If you manipulate the stack a lot then remember to check for

commands that make this easier. For example OVER which copies the

object from level 2 is often overlooked by users. (Sorry about the

pun!)

2.18 Tidying up memory, and the USER menu. By the time you have

written a few programs and stored a few variables in an HP-28C the

USER menu can look quite a mess and you may well be short of memory.

Use the last line of the USER menu and the keyboard operations

provided to help you tidy up USER and memory; in addition there is

an automatic Out of Memory procedure. (See Appendix B for a warning

about the Out of Memory procedure.)

If you have a lot of programs on an HP-28C, you might like to group

them into related sets - you can do this with ORDER. On an HP-28S

you can use subdirectories instead, but ORDER has other uses, for

example in programs. Say you have a new program called NEW which

you use all the time and which you want to be on the leftmost menu

key. If the program does some statistics or plotting it might

create a new statistics matrix or a list of plot parameters and put

them on the leftmost key. To make sure your program stays on the

leftmost key despite this, you can finish it with the commands:

.. { NEW } ORDER >>

If you think you might be running out of memory you can use MEM to

see how many free bytes you have left. The automatic memory

warnings begin to show up all the time if you have less than 128

bytes free; if you are approaching this limit then you should

delete your stack variables, either all of them with CLEAR, or at

least some of them. Better still, PURGE some of your variables, or

be really brave and delete them all with CLUSR! This is such a

dramatic step that the HP-28 gives you a chance to change your mind

when you press CLUSR from the USER menu. Remember you can give

PURGE a list of variables to purge, instead of purging them one by

one.

45

Chapter Two

2.19 Playing with Menus. ORDER and PURGE give you considerable

control over the USER menu on an HP-28C; you have more control on

the HP-28S, as will be described in Chapter 5. Other menus are less

under your control: you can move through them with NEXT and PREV,in

FORM within ALGEBRA the menus available depend on the expression

you are positioned at. In the MODE menu, your current modes are

highlighted on an HP-28C, or marked with a square on an HP-28S, and

in the SOLVR menu, the names of your variables are shown. One very

useful extra is the ability to let programs select which menu to

display. If for instance you HALT a program, it would be useful to

let that program select the PROGRAM CONTROL menu for you, so that

you could immediately use SST to single step through the program.

The HP-28S command MENU lets you do this, we shall see in point 3.11

how this sort of thing can be done on an HP-28C.

2.20 One-command programs. A final tip for this chapter. Point 2.6

described a simple way to put the command IP (and others) on the

USER menu. The method described there puts a whole program in the

variable ’Ip’, this stores the command IP but takes extra nybbles to

mark the beginning and end of the program. It is possible to store

the command itself in a variable using a trick discovered by Graeme

Cawsey.

1. Type { IP and press ENTER. This creates the list { IP }.

2. Type 1 GET and press ENTER. This extracts the first object

from the list, in this case that object is the command IP all on

its own. 3. Type ’Ip STO. This stores the command IP in the

variable Ip with fewer "overheads" than a complete program, saving

14 nybbles.

You can use the new variable ’Ip’ just as described in point 2.6,

and you can use Graeme’s trick to save 14 nybbles when storing any

single command. A good use for this is to store the command SYSEVAL

in a variable called S (compare this with point 1.6) and it will be

useful in the next chapter.

46

Chapter Three

CHAPTER 3 - USING SYSEVAL

Little is said in the manuals about the SYSEVAL command, but that

little suggests SYSEVAL can do a great deal for anyone wanting to

customize their HP-28. This chapter shows some uses of SYSEVAL. At

the same time, you will see how SYSEVAL can let you learn about the

internal workings of the HP-28. Information discovered this way can

lead to more uses of SYSEVAL, and to tricks needed to let you write

machine code programs.

3.1 Version numbers. The only use of SYSEVAL described in the

manuals is to find which version of the HP-28 you have. The manuals

tell you to execute #10 SYSEVAL to display the version number of

your HP-28 on the top line of the display. To restore the normal

display, just press ATTN. SYSEVAL is not in any menu, you must

spell it out or fetch it from the COMMAND list. If you use HEX mode

for binary operations, remember to execute #A SYSEVAL instead.

Actually, calling objects such as #10 or #A by the name "binary

integer" can be confusing, since they are binary integers when

displayed in BIN mode, but should really be called hexadecimal

integers when displayed in HEX mode. On the HP-28S a "b", "o", "d"

or "h" is put after all binary integers to show their base, and you

can enter a binary integer in any base by putting the appropriate

letter after it. In general, I shall use HEX mode in the rest of

this book, so "binary integer" will mean an HP-28 binary value

displayed in HEX; I shall usually write binary integers with an "h".

HP-28S owners can enter all binary integers as given here and follow

them with an "h". HP-28C users should ignore the "h" but remember

to set HEX mode - those who dislike hexadecimal can set HEX mode

before entering any binary integer given here and return to their

preferred mode afterwards - you could even write a program to do

this.

Finding the version number of a calculator or computer can be

important, since subtle changes are made from one version to the

next, and you might take a long time to notice that a program

written on one version behaves differently on another. The internal

-47-

Chapter Three

details of the operating system of a calculator are usually a

company secret and HP does not always publicize the details of

changes from one version to another. One good reason for belonging

to a user club is that members will swap information on such

changes, and sometimes HP gives the clubs details of changes. At

other times HP does not even tell the users that a change has been

made. In the case of the HP-41, it was very difficult to find what

version you had (you had to use Synthetic Programming or a special

diagnostic plug-in module to check it). With the HP-71, there is an

official instruction, VERS$, which anyone can use to check the

version of their HP-71. With the HP-28, HP has taken a half-way

position, there is no command like VERS, but they do provide a way

to find the version number with SYSEVAL.

The first version of the HP-28 that was sold was version 1BB of the

HP-28C. (If you have an earlier version then you should have been

writing this chapter!) Version 1BB was sold for about the first

three quarters of 1987. This was followed by version 1CC in late

1987, then version 2BB of the HP-28S in early 1988; further versions

may come out later. Most of this book applies to all types and

versions of the HP-28, but the SYSEVAL addresses given in this

chapter and the next are specific to version 1BB. Check your

version and if it is not 1BB then find the corresponding addresses

in Appendix E. The one address that cannot change from version to

version is #Ah (remember I am using HEX), since that has to be the

same in all versions so you can use it to find what version you

have.

Note that you can use #Ah SYSEVAL in a running program. The

program will carry on running but will not change the display after

the version has been put in the top line. To restore the display to

normal, put CLMF (clear message flag) into your program, or press

ATTN when the program stops.

3.2 The system clock. HP have released few other addresses for use

with SYSEVAL. One is the address which gives you a number that

represents the system clock; the number is incremented 8192 times a

-48-

Chapter Three

second. The HP-28 manuals do not describe this clock, but they do

admit one exists - the description of RDZ (Randomize) says the

system clock can be used as a seed for the random number generator.

In addition, the clock is used to turn the HP-28 off if it has not

been used for 10 minutes, and for timing the rate at which

information is sent to the printer. Unfortunately the designers put

in so many other functions that they did not get round to providing

commands to set and use the clock.

To read the system clock, just execute #123Eh SYSEVAL (see

Appendix E if you do not have version 1BB) or write a program << #

123Eh SYSEVAL >> and use that. The result does not look

particularly useful, it is a binary integer. If you repeat exactly

the same operation though, the second result will be different from

the first; it is a second clock reading - it should be larger than

the first - if it is not then you probably have a small wordsize set

- to avoid losing information from the clock it is best to set the

wordsize to 64 bits by doing 64 STWS . Every time you repeat

#123Eh SYSEVAL you should get another larger number, the difference

between each pair of numbers is the number of times that the clock

value has increased by 1 count, at the rate of 8192 counts per

second.

Try the following: store the program << # 123Eh SYSEVAL >> in a

variable called T, then press the key marked T twice in rapid

succession. (If you do not have version 1BB replace #123E with the

address in Appendix E.) Now SWAP the two numbers, subtract the

first from the second, and use B->R to turn the result to a decimal

number. Unless you do something unusual, the result is unlikely

ever to be much below 1500. Now 1500/8192 represents just under 0.2

seconds, so this is the fastest rate at which you can expect to

repeatedly press a key on your HP-28. This is not quite as fast as

on other calculators, and is due to the keys on the HP-28 being much

stiffer than on most calculators. If you try this several times you

will sometimes see a much larger interval - this will happen if the

HP-28 has to do something else between dealing with the two

keystrokes. For example the clock might have updated itself by a

-49-

Chapter Three

full minute, or some tidying up of the memory might have been done,

or the HP-28 might have just been woken from being dormant after

being unused for a while. The exact timing depends on the stiffness

of the keys on your HP-28, the time increases with the number of

objects already on the stack, and if COMMAND, UNDO and LAST are

enabled.

You can use this to time other things too - to check how long

different commands take, or to time a complete program. Say you

have two versions of a program - Pl and P2 - you can compare them

with the program:

<< #123Eh SYSEVAL 'TMP’ STO Pl

#123Eh SYSEVAL TMP - B->R 8192 / >>

This will tell you how long the program took in seconds. Repeat the

same for P2 and you will know which is faster. It is best to try

timing each program more than once, as the HP-28 sometimes

interrupts programs to tidy up its memory, which can make a program

scem to run longer (this tidying up of memory is called

"garbage collection"). When timing a program which does some

printing wait a while for any previous printing to finish -

otherwise the timing may be slowed down because the HP-28 slows down

to wait for the printer to catch up. (The HP-28S is faster than the

HP-28C.)

An obvious thing to try is to use the system clock to tell you the

time. The system clock usually starts up at some random value when

the first batteries are put in, so the time it gives will not be

correct. That means you will have to add a correction to the system

clock to get the real time. The system clock is stored to

sufficient accuracy that you can time things to well below a second

and yet still run it for several hundred years, so you can use it to

get dates as well, and if you just want a time then you need to

round it to the nearest second and get the hour modulo 24. The

program shown below does all that, of course you can equally well

use the clock to keep track of the date, or to provide a stopwatch.

-50-

Chapter Three

Steps Comments and explanations

<< #I123Eh SYSEVAL B->R ;Begin program, read clock, turn to

;real no.

29491199 / KOR + ;convert to hour and fraction, add

;correction

->HMS 24 MOD ;turn to 24 hour clock value HHMMSS

DUP IP ->STR "" + ;get "HH:" part

SWAP FP ->STR ;turn fractional part into a string

DUP 2 3 SUB "" + ;get "MM:" part

SWAP 4 5 SUB + + >> ;get "SS", create "HH:MM:SS", finish.

'TIME’ STO ;store the program called TIME

0 ’KOR’ STO ;store a correction of 0

This program assumes you have set the binary word size to 64 and the

display mode to STD or FIX n where n is greater than 3; you can

include these requirements in the program, or write another program

to deal with this, see below. Point 2.13 in the previous chapter

showed how you can put a colon into a program. To get the value of

KOR, type in a time HH.MMSS about 30 seconds ahead of the present,

wait for that time to arrive, then press TIME. Now EDIT the time in

level 1 to turn it into another number HH.MMSS (remove the quotes

around it, turn the first : into a radix mark, and remove the

second :) then do HMS- to get the correction. Add 24 to it if this

is negative, then use HMS-> to convert it to hours and a fraction

of an hour, and store this in KOR. Now use TIME again and make any

small corrections to KOR if you wish. The system clock is

controlled by a quartz oscillator and should be accurate to within a

few seconds a month.

If you just want to see the time, press TIME, but if you want a

running clock you can write another program which uses TIME, and

which also sets the correct binary wordsize and display mode:

-51-

Chapter Three

Steps Comments and explanations

<< RCLF ;Begin program, get current flag

;status

64 STWS STD ;set binary word size and display mode

DO :begin a loop to display the time

TIM 1 DISP ;get the time and display it on line 1

UNTIL ;test if the loop is to be repeated

KEY ;the test is to see if a key has been

;pressed

END ;if so then finish the loop

DROP STOF »>> ;drop the key name, replace flags,

;finish

’CLOCK’ STO ;store the program

Now you can press CLOCK and see a running clock in the first line of

the display. The clock might not advance quite smoothly, as the

loop takes about one third of a second to repeat, so at times the

clock display will advance by a second after three steps through the

loop, and at other times it will advance after only two steps. You

could try to rewrite the programs to make them shorter and faster so

the clock will run more smoothly. To stop the clock, press any key

except ATTN, and press ATTN to clear the clock value from the top

line of the display.

As with the version number, you can use SYSEVAL with #123E to get

the clock from a running program. This is very important - binary

numbers which work with SYSEVAL but stop a running program are less

useful.

If you do a memory reset (Memory Lost) on your HP-28, you will find

that the clock has not been reset to zero - it carries on running,

although the correction might have to be changed by a value no

larger than a minute. This shows Memory Lost is not really a memory

lost - various pointers are reset inside the HP-28 to show there is

no usable information in the stack and variables, but many numbers,

-52-

Chapter Three

including the clock, are not changed.

3.3 A programmable SHIFT. The first two points have shown

interesting uses of SYSEVAL which HP has released. Now let us begin

looking at uses which HP has not told us of. To begin with, here is

a simple example:

<< #9C96h SYSEVAL »>> ’SHIFT’ STO

This creates a program which does the same as the shift key!

(Remember to look up the equivalent to #9C96 in Appendix E if you do

not have version 1BB.) The shift key is not programmable, but you

can include this SHIFT subprogram in other programs. That might be

fun, but is it useful?

One possible use would be if you know that after a program finishes

you will want to select a new menu. Say you select the USER menu

and run a program which finishes by leaving a new object on the

stack, and you know you will need to select the ALGEBRA menu next to

examine this object, or the PRINT menu to print it. Putting SHIFT

at the end of the program will save you having to press shift before

pressing a key to select a menu. This might be useful to some

people, to others it will be of interest only as a curiosity or to

impress their friends. Let us look at another use:

<< #9C96h SYSEVAL 1 WAIT #9CA3h SYSEVAL >>

is a program which sets shift, waits for a second, then clears shift

again. This shows you can use #9C96h at any place in a program to

set the shift annunciator, and #9CA3h at any time to clear the shift

annunciator. Now, the HP-41 had five special annunciators 0, 1, 2,

3, 4 which could be set at any place in a program to show some

special condition was in effect. For example, you could set flag 00

and thus turn on the annunciator marked 0 to tell the user that a

crucial part of a program was in progress and that the program

should not be interrupted. The HP-28 does not have such special

annunciators, but knowing the addresses just given you can use

SYSEVAL to turn the shift annunciator on and off, using it like an

HP-41 flag display.

WARNING: Interrupting programs which use SYSEVAL can be dangerous.

-53-

Chapter Three

If you interrupt such a program or if it goes wrong before finishing

then be sure the binary word size and flags are put back to their

original settings - do not ask HP for help with SYSEVAL values they

have not released.

3.4 A bit more memory? If you run out of memory the first thing to

do is to delete unwanted variables. Then you clear the stack, then

disable LAST, UNDO and COMMAND. If you still have too little space

for a long program on an HP-28C, try doing:

1 #11AA SYSEVAL

This releases 50 extra bytes, by freeing some of the memory used for

things such as error messages and statistics information. The 1 1is

needed because #11AA SYSEVAL drops the stack by one level. The

extra 50 bytes will in many cases be just enough to let you enter an

unusually long program. To restore the original status of the

calculator, do a System Halt (ON UP).

You might be worried that such cavalier use of SYSEVAL could do some

damage to the HP-28. Fortunately SYSEVAL can alter only the

contents of RAM, and thus the display and the beeper, but it cannot

damage the hardware of the HP-28. The worst that can happen is that

the HP-28 will hang up - stop working normally, and that can usually

be remedied with a System Halt. If a System Halt does not work,

then try a Memory Reset (ON INS RIGHT), and if that fails too then

take the batteries out, replace them, and try again.

3.5 Playing with SYSEVAL. How can you find useful SYSEVAL numbers

such as those given just above? One method is simply trial and

error, and indeed many early discoveries were made that way. What

can we learn just by using SYSEVAL without help from HP? To begin

with, the HP-18 and HP-28 were developed after the HP-71B, and it

was believed they used the same basic chip, or CPU. The internal

design specifications (IDS) of the HP-71B are available (at a total

price greater than that of the 71 itself!), so it is possible to

check if the HP-28 is similar to the HP-71B. One of the things you

can find from the HP-71B IDS is that the HP-71B CPU (called the

Saturn) uses 20-bit addresses. This means that addresses are binary

-54-

Chapter Three

numbers 20 bits long. If the HP-28 uses the same CPU and addressing

then addresses used by the HP-28 will also be 20-bit binary

integers, and any bits past the 20th will simply be ignored. We can

check this by taking the address #Ah and writing it in binary:

#1010b, then turning it into a 21-bit number with the leftmost bit

set as well:

#100000000000000001010b (use BIN mode on an HP-28C)

Put this into level 1, then execute SYSEVAL. Indeed you will see

the version number displayed again. This leads to several points:

1. Clearly the HP-28 uses 20-bit addresses, just like the HP-71B.

If you try a 20-bit long number with the leftmost bit set then you

will not see the version number displayed, but if you try a 22-bit

number with the leftmost bit set then once again you will see the

version number.

2. The above confirms that the HP-28 uses a CPU similar to that of

the HP-71B. Indeed, HP has now stated that the CPU of the HP-18B,

the HP-19B, the HP-28C and the HP-28S is a modified Saturn CPU.

3. It is also reasonable to believe that the binary number used by

SYSEVAL is quite simply a 20-bit address at which SYSEVAL expects to

find a subprogram to be executed. The design team leader, Bill

Wickes, has given some more details of this in talks to a group of

user club members.

If the HP-28 has similarities to the HP-71B then the operating

system (the program which controls the HP-28) begins at address #O0.

As HP has said that the operating system is 128K bytes long, it must

finish at address #3FFFF and between these two there are 262,144

possible addresses which can be checked with SYSEVAL (each address

points to a nybble, which is half a byte, so there are twice as many

addresses as there are bytes). Beyond address #3FFFF there must be

addresses where the display information is held and where the stack

and user variables are stored. This kind of information changes, so

it must be kept in a type of memory which can be changed - this is

called Random Access Memory (RAM) - it is memory which you can read

-55-

Chapter Three

and write, selecting addresses at random as you need them. The HP-

28 operating system does not change and is stored in memory called

ROM - Read Only Memory. Any search must examine not only all

262,144 ROM addresses, it must also find and examine the RAM

addresses.

A hit and miss search of the whole of ROM is too much for one

person, but a limited search of selected areas by a group can find

enough information that a full search is no longer needed. Many HP-

28 owners began at #0 and went upwards, looking for anything

interesting. Some shared their results through user groups, and

understood better what was happening. On the other hand, it seems

equally possible that the top of ROM will also have interesting

addresses; two people in the UK started from that end - and Ian Maw

soon made a very useful discovery which will be described next.

First though, if you are going to use SYSEVAL frequently then to

save spelling it out each time do << SYSEVAL >> ’S’ STO, and press

S instead of SYSEVAL.

3.6 A generalized STO. The STO command needs a name object in

level 1 and any object in level 2. The name in level 1 is used to

create a variable name, and the object in level 2 is stored in that

variable. What Ian Maw found was that #3FBA7 SYSEVAL works just

like STO, but does not check that the object in level 1 really is a

name. This discovery led to two new possibilities. One is that

variables can be created with names which could not be made by

normal means. The second is that objects in the stack can be turned

into variable names, and then those names can be brought to the

command line and studied - thus objects can be turned into name

strings and their structure can be analyzed. This second is not

directly relevant to this book; it has been described in articles in

user club magazines, some details of object structures found this

way are described in Appendix C.

Creating a name which cannot be made by normal means can be a useful

form of customization. Imagine you use the constant 12345 a great

-56-

Chapter Three

deal - you can store it in a variable called CONST, but wouldn’t it

be nice to store it in a variable called ’12345’? The STO command

will not let you create a variable with a name like this, but the

generalized STO will let you do so.

A name object consists of a 5-nybble long address, followed by two

nybbles which give the length NN of the name, followed by NN bytes

each of which is one character of the name. Each character is

represented by its ASCII code, and the ASCII codes are stored

internally as one byte each. A table of ASCII codes is given in the

STRING section of the Reference Manual. (The codes are in decimal,

you can convert them to hexadecimal with R->B.) The name ’ABCDE’

would be:

21D2050 1424344454

\ /' \/ N\ \/'\/ \/ \/
adr len A B C D E

Observe that the nybbles in each byte are swapped so you get the

representation shown above.

A real number consists of a 5-nybble address followed by the

number’s 3-digit exponent and 12-digit mantissa, stored back to

front. Thus the number

-7.46454443424E105

is stored as:

33920 501 424344454647 9

\ / N/ \ /\/
adr exp mantissa sign:

9 if negative

There is a SYSEVAL address which can let you check this. To see

how, set STD mode, then type 1.23E87, then press ->STR. You will

see "1.23E87". This is the string that represents the number. Now

type in the same number again and do #2DF0OB SYSEVAL. Once again you

will see "1.23E87". #2DFOB is actually the address of a generalized

->STR command which converts the object in level 1 into a string

representation of a number, without checking if the object really is

-57-

Chapter Three

a number. (This is a bit like the generalized STO described above

which does not check if the object in level 1 is a name.) Now type

>ABCDEand ENTER - you have the name ’ABCDE’ in level 1 of the

stack. Do #2DFOB SYSEVAL. and 'ABCDE’ is replaced by "-

7.46454443424E105".

You can see that the name ’ABCDE’ has been turned into the number

described below it. Both the generalized STO and the generalized -

>STR assume that the object in level 1 has already been checked.

The checking is done by subprograms which look at the address in

front of the name or number to check its type and the "generalized"

STO and ->STR are subprograms which normally follow this check and

simply do the STO or ->STR operation.

N.B. Remember that if you do not have a version 1BB HP-28C then you

should not use the addresses given here but the corresponding ones

in Appendix E.

If you look again at the way the name and number are stored, you

will see that they are very similar. In fact you can work out a

number which is similar to a name, and reverse the process just

shown above, to create a name. Thus the name *12345’ would be:

21D2050 13233343353

\ /' \/ \/ \/ \/ \/ \/

adr len 1 2 3 4 5

Remember again that the nybbles in each byte are swapped so you get

the representation shown above. Now you could set up a number which

looks the same, for example:

1.00353433323E105

is stored as:

339205013233343530010

If you put 12345 into level 2 of the stack, 1.00353433323E105 into

level 1, and do #3FBA7 SYSEVAL then you will create a variable

whose name is 12345’ and which contains the number 12345. Try it!

You can use the same method to create other customized names for

-58-

Chapter Three

variables. If you are going to use the method often then create a

special program << #3FBA7 SYSEVAL >> and store it with the

name ’Sto’. Write down the name you want as an ASCII string, then

write down a number whose end part represents the same ASCII string,

and use #3FBA7 SYSEVAL to create the variable. (Not all names can

be represented by a number, since numbers can only contain the

hexadecimal digits 0 to 9. If you want to create other names, wait

until the point on Non-Normalized numbers.) Remember to put the

object in level 2 and the number in level 1 before using Sto. Since

Sto does not check for errors, it will try to create a new variable

if the stack contains only one object, or even none at all. If you

do this, the stack will probably end up full of things called

"System Object". In that case, do a system halt (press ON and UP at

the same time) to clear the stack and the display, then press USER

to see the USER menu. Most names created with Sto cannot easily be

PURGEd, because they are not recognized as names. After all, that

is the point of Sto - to create non-standard names. CLUSR will

delete these names (and all others!) or you can wait until you get

an Out Of Memory and can delete variables by name through the

automatic deletion offered by Out Of Memory. DATAFILE has published

a special program written by Jean-Daniel Dodin to cause Out Of

Memory and force the HP-28 to go through the names asking you which

ones to delete.

Bruce Bailey has suggested that this Sto operation be called

"lanization" after its discoverer. Let us finish this section with

one more example of Ianization. Suppose you want a variable called

#A - its ASCII form would be 2341 and it is 2 bytes long, so it can

be represented by a number such as:

1.00000000412E302

Remember that the nybbles of each byte must be swapped round! Put

into level 2 the object you want to store, put into level 1 the

number above, then press the Sto key.

3.7 Programming with UNDO and COMMAND. LAST can be used in

programs to recover the arguments of the previous command and use

them again, but UNDO and COMMAND cannot be used in programs. The

-59-

Chapter Three

HP-28 designers considered this unnecessary, since UNDO recovers the

stack as it was before the program began, and COMMAND recovers the

command line, which is not affected by a running program. Still,

UNDO can be useful in a program - for example if a program were to

find a mistake it could use UNDO to recover the stack as it was at

the beginning of the program, and try something different, or tell

the user there was something wrong. Consider the program:

<< FACT SWAP EXP / >>

This might detect overflow or underflow errors in several places.

You might like to use the IFERR..THEN..END program structure to

check if an error has occurred, and if so to recover the stack and

display a message.

<< IFERR FACT SWAP EXP / THEN

Undo "Check arguments" 1 DISP END >>

The Undo subprogram uses SYSEVAL of course:

<< # 329BE SYSEVAL »>> ’Undo’ STO

For the program shown above to work, flags 57, 58 and 59 - the

Underflow, Overflow and Infinite Result flags should all be set.

UNDO must be enabled as well of course, see below. UNDO recovers

the stack as it was before the latest command, so if any arguments

were still on the command line when the program was started then

those arguments will be lost. Of course any arguments that were in

the command line can be recovered with COMMAND. The following

program does the same as COMMAND, but leaves its result in level 1,

since the command line cannot be used during a running program

anyway:

<< #9476 SYSEVAL # 32311 SYSEVAL >> ’Comm’ STO

Store this program, then type 1.23 and press ENTER. Now press Comm

and you will see the text string "1.23" in level 1. This is just

the text string that was most recently in the command line. If you

press Comm a second time, you will see the program itself returned

to the command line, since that was the next most recent thing in

the command line. The "1.23" will not vanish as it would if you

executed COMMAND itself, because it had been returned to level 1,

not the command line. You can repeat Comm up to four times to bring

-60-

Chapter Three

back the four strings that were most recently in the command line,

and leave them in the stack. You can use Comm from the keyboard as

an alternative to COMMAND itself - to bring things onto the stack

instead of the command line, or you can use it from a running

program. One reason for using this has been mentioned in the

description of Undo above. If you want to use a text string brought

back to level 1 by Comm then you will probably need to use STR->,

for instance the "1.23" used in the example at the beginning of this

paragraph can be turned into a number with STR->.

Clearly these programmable versions of COMMAND and UNDO cannot

work unless COMMAND and UNDO have been enabled. LAST can be

enabled and disabled from a program by the setting and clearing of

flag 31, but COMMAND and UNDO are enabled and disabled only by non-

programmable operations in the MODE menu. The following four

programs make these operations programmable:

<< # 7786 SYSEVAL >> Cmon’ STO - COMMAND ON

<< # 77A8 SYSEVAL >> ’'Cmof’ STO - COMMAND OFF

<< # F412 SYSEVAL >> ’Unon’ STO - UNDO ON

<< # F44E SYSEVAL >> ’Unof’ STO - UNDO OFF

If you need to use any of these only rarely then you need not store

them as programs, just include the binary number and SYSEVAL in your

program.

3.8 ’BIP’ and error messages. When the HP-28 detects an error it

makes a short sound and stores the error message and number. You

could customize a program such as the one at the beginning of the

previous point if it could provide its own short BEEP and error

information when displaying the message "Check Arguments".

Naturally you could write your own program to do this, but:

<< "A" # 30B7 SYSEVAL >> ’BIP’ STO

sets up such a command for you. It uses the internal error BEEP and

even sets the error number to be 7; this is not used by any HP-28

errors so you can use BIP to record the information that the most

recent error was a custom-made error of your own. BIP does not

record any error message, so there is no chance of your being

confused by a wrong message.

-61-

Chapter Three

Even if you do not plan to write your own customized error messages

BIP can be useful as a short BEEP. If you want to confuse or annoy

your friends, try replacing the text string "A" with an empty text

string " - don’t worry though, the "Memory Lost" message is only a

message, nothing else happens! "Memory Lost" is error message

number 5, you can display the first four messages built into the HP-

28 with the following:

#3327 SYSEVAL Error number #1 "Insufficient Memory"

#3333 SYSEVAL Error number #2 "Range Exception”

#333F SYSEVAL Error number #3 "Undefined Local Name"

#334B SYSEVAL Error number #4 "Undefined ROM Pointer"

There are no messages 6 or 7; BIP creates an artificial error 7 that

can be used for customization as shown above. You may notice that

messages 2 and 4 do not appear in the list given in Appendix A of

the Reference Manual. Message 2 can be used for internal work by

the operating system and it is available for a future model to

handle arithmetic errors in a different way, message 4 refers to

pointers used internally by the HP-28 but not available to users

through the normal user interface. These two messages are one sign

of the complexity built into the HP-28 operating system, but hidden

from users because it is not accessible through the user interface,

that part of the operating system which communicates with you, the

user.

Other messages like this can be found too. If you want to create

more of your own error numbers, or if you want to study the error

messages built into the HP-28, then replace "A" in BIP with a real

number. The exponent (power of 10) of that number will be used as

an error number. Put 1E4 in place of "A" and then use BIP - you

will see "Undefined ROM Pointer" and the error number returned by

ERRN will be #4. Now try 1E6 and you will hear a "bip", but there

will be no error message; there is no error 6 on the HP-28C (there

is on the HP-28S). If you try a number without an exponent, say 1

or 2, then you will get no sound or message, because error 0 is

-62-

Chapter Three

treated as no error. If you want to carry on experimenting, try BIP

with 1E125, and 1E126. The first gives error #125, "Command Stack

Disabled", and the second gives error #126, "Edit line > 4096".

This second error is another one that is missing from the HP-28C

manual, and for a very interesting reason. The HP-28C operating

system treats the command line as a special text string and can deal

with a command line up to 4K (4096 bytes) long; a command line

longer than this cannot be handled. In the HP-28C though there is

only about 1.7K available to the user, so a command line 4K long

cannot be made, and there is no need for this message. If you add

extra memory to an HP-28C (see Chapter 5), you might encounter this

message, though usually an HP-28C with extra memory just gets stuck

if you try to edit a command line this long.

The HP-28 allows for exponents from -499 to 499. Negative exponents

are stored as 1000 plus the negative exponent, so that the exponent

of 1E-499 is stored as 501. Try BIP with the number 1E-499 instead

of the "A", and you will get error number 501. This lets you look

at error numbers from #501 to #999 but the exponent of a real number

cannot contain the hexadecimal digits A to F, so you cannot get at

messages such as #A01. The next point will show you how to create

Non-Normalized numbers which can have such exponents.

3.9 Non-Normalized numbers and more about SYSEVAL. You may have

noticed that the names used for COMMAND ON and other subprograms in

point 3.7 are rather awkward. This is because names such as +CMD

cannot be created by normal means - the sections on names in the HP-

28C Reference Manual and in the HP-28S Owner’s Manual explain that

some characters cannot be used in names. This is because those

characters are used for other purposes, for example an expression

beginning with > and containing + or - is automatically considered

to be an algebraic expression, not a name. In point 3.6 above we

have seen that normally impossible names can be created by means of

"lanization", however the characters that can be used in such names

are still limited to ones which are made up of the hexadecimal

digits 0 - 9. This means that the generalized STO on its own cannot

be used to make a name such as +CMD, because the ASCII code for + is

-63-

Chapter Three

hexadecimal 2B.

The generalized STO uses a number to create a name, and numbers in

the HP-28 are stored internally in a form called BCD (Binary Coded

Decimal), already mentioned in points 3.6 and 3.7. As another

example, the number pi*107257 has the value

3.14159265359E257 and is stored as:

0 314159265359 257

VoA /N
sign mantissa exponent

In fact the number is stored back to front, and with 33920 in front

of it as was shown in point 3.6, but we can ignore that here. The 0

at the front denotes a positive number, a 9 would denote a negative

number. As was explained in the previous point, the next twelve

digits are the number’s mantissa, and the last three digits are its

exponent. If the power of 10 is a negative number then it is added

to 1000 and the result is stored in the three digit exponent. This

very neat scheme allows calculators to store decimal numbers with

three-digit exponents between -499 and +500. The scheme does not

expect any digits greater than 9, but hexadecimal digits A - F are

available and could be put in a number unless it is converted to the

standard form, i.e. "normalized". Similarly, the first digit of the

mantissa is expected to be non-zero (unless the whole number is

zero), since having the most significant digit of a number stored in

the leftmost position makes calculations more efficient. Any number

which has digits A - F in it or has zeros to the left of the most

significant digit or has a sign that is not 0 or 9 is called a Non-

Normalized number. HP calculators and pocket computers sometimes

use such numbers, for instance to store hexadecimal numbers, to

denote an infinite result, or a number which is smaller than 1.0E-

499, but is not quite zero. Other HP calculators and computers are

not designed to use Non-Normalized numbers (NNNs) but can create

them and use them under certain conditions. One condition under

which the HP-28 could use NNNs would be to create error message

numbers such as #AO0l, see point 3.8 above. Another use would be to

-64-

Chapter Three

create additional non-standard names as just mentioned.

A fairly simple way to create a NNN is to build it up within a text

string in a variable, then to bring it to the stack with SYSEVAL.

The HP-28 memory layout (see also Appendix C) is such that variables

are stored as shown here:

CONTENTS ADDRESS

Contents <--- Top nybble of user RAM, address #4FFFF

of the most Next nybble down, #4FFFE

recently Nybble #4FFFD

created Lower nybbles

variable

length of

variable’s .

name (Note that the top of RAM is at a

different address in the HP-28S - as

letters in usual see Appendix E for details.)

the name

Next

variable
If you put a text string in level 2 of the stack, a previously

unused name in level 1, and press STO, then the text string will lie

at the very top of the memory, and you will be able to work out

where it is. To see this, put the string "XYZ" in level 2, put the

name 'QQQ’ in level 1, and do STO. The text string is 6 nybbles

long (3 characters which is 3 bytes or 6 nybbles). Below this come

5 nybbles which give the length of the string, and then the 5 nybble

address which defines the object to be a text string. That makes a

total length of 16 nybbles, so the text string begins 15 nybbles

below the top of memory, at address #4FFF0. Try doing #4FFFO0

SYSEVAL and the HP-28 will find the text string "XYZ" and will bring

-65-

Chapter Three

it back to level 1. If you have an HP-28C with extra memory or an

HP-28S then look in Appendix E to find what value to use instead of

#4FFFO0.

Thus you can build up a text string which contains any characters

you like, and then use SYSEVAL to bring back a selected part of that

string to the stack, producing any kind of object you like. Let us

try to make a non-normalized number with an unusual sign, with a 0

in the most significant digit, and with a value B in the exponent.

A 00123444D432 B04

Sign not Mantissa with Exponent

Oor9 leading zeros with

and digit D digit B

The number would be stored internally back to front, with its

defining address in front of it:

3392040B234D44432100A

Now we can build up a text string which contains this string of

hexadecimal digits. First of all, we need to split this string of

hex digits into bytes, and the two digits (nybbles) of each byte

must be exchanged, because the HP-28 stores characters with their

nybbles back to front too. The string of bytes becomes:

#30 #93 #02 #04 #2B #43 #4D #44 #23 #01 #A0

The first byte has to be #3x, not #3, because each byte has two

nybbles in it, in reverse order, so 3 could not be used on its own.

I have used #30, but it could be anything else from #31 to #3F,

since the second digit will not be used. We can build up this

string using CHR (from the STRING menu) to create each character in

turn, but CHR expects real numbers, so let us turn the hexadecimal

numbers into real numbers:

48 147 2 4 43 67 77 68 351 160

Finally, we can build up the required text string; type 48 CHR to

put the first character of the text string in level 1, then 147 CHR

+ to make the next character and add it to the text string, then 2

CHR + and so on. Store this character string in a completely new

-66-

Chapter Three

variable, such as NNN; °’NNN STO.

This new variable lies at the very top of memory and contains 21

nybbles which make up our Non-Normalized number (plus the spare

nybble at the front), so the NNN begins 20 nybbles below the top of

memory, at address #4FFEB. You can work this out using the HP-28

itself; #4FFFF-20 is #4FFEB. Set STD mode and do #4FFEB (see

Appendix E if necessary) SYSEVAL. If you have followed the above

instructions you will see the Non-Normalized number:

-0.01234445432E-696

It is immediately obvious that this an NNN because the exponent lies

below the normal limit of -499. There are also two leading zeros,

which would not be there in any normalized number displayed in STD

mode. Creating this NNN took a lot of time; in future we shall use

programs to make the job easier.

How does such an NNN behave, and what can you do with it? Press

ENTER twice to make two more copies of the number, and type ABS CHS

to get the number with a minus sign; this looks just like the copy

in level 2, but if you try == then you will see the two numbers are

not equal, because the lower one had a real minus sign while the

upper one had its sign given by the hexadecimal digit A. DROP the

zero, press ENTER and CHS; the number will keep its minus sign,

because CHS expects to work only with signs given by 0 or 9. Press

ABS to get the true positive value, and press LOG - you will see the

log correctly given as -697.908528103, so the LOG function can

correctly work with NNNs like this, though of course trying ALOG

will just give zero or an UNDERFLOW error. DROP the result and

ENTER to make another copy, then press #30B7 SYSEVAL (this is the

main part of BIP) and check with ERRN to see that the error number

is #32B04 - this confirms that the exponent now contains a digit

other than 0 to 9, which shows that you can now use NNNs to check

all possible error messages.

Now we come to the original point of all this - creating a name with

a plus sign in it. You may have noticed that the text string we

made a while ago had +CMD in the middle; this is the correct name

-67-

Chapter Three

for the subprogram which we wrote in section 3.7 to enable the

command stack. DROP the error number and write the program <<

#7786 SYSEVAL >>, then SWAP and use the generalized STO program to

create a variable containing the program and having the name +CMD”’.

Use °’Sto’ if you still have that program or simply do #3FBA7

SYSEVAL. You will find you have made your very own "customized"

+CMD command.

3.10 Non-Normalized objects, and a programmable CONT and SST. The

process used above to make a Non-Normalized number was very slow; it

can be speeded up a lot if you have a program to do most of the job

for you. Once the program is written, you will be able to use it to

build up a text string which contains any object you want, not just

a Non-Normalized number. Then you would use SYSEVAL to extract your

Non-Normalized object from the string. Instead of using Non-

Normalized numbers and the generalized STO, you could for example

directly create a name containing characters that are normally not

allowed inside a name. Such a name could be put on the stack, or

stored in another variable, and then it could be used to create a

variable with that name, to VISIT that variable, or to PURGE it. In

this section I shall first show what programs are needed, then I

shall use them to build up a variable which provides a programmable

CONT. On the HP-41 CONT is called R/S; this name cannot be created

on the HP-28 by normal means, but the programs shown below will let

you create the name.

As shown in the previous point, the first thing to do is to write

out your object as a string of hexadecimal characters. This cannot

be automated very far; it is up to the user to decide what non-

normalized object to create.

You must then type the string into the HP-28, and make sure it is

correct. The next thing is to make sure the string written this way

contains an even number of characters, since it will later be turned

into a string of bytes, and each byte is made up of two hexadecimal

characters. Here is a program to make sure a string contains an

even number of characters:

-68-

Chapter Three

<< IF DUP SIZE 2 MOD THEN "Q"

SWAP + END >> ’EVEN’ STO

The program duplicates the string in level 1, finds its length, and

finds the remainder of the length divided by 2. If the remainder is

1 then the length is odd, so the THEN part of the program puts a "0"

at the front of the string, to make its length even. Try typing

"ABC" and pressing EVEN; the result will be "0OABC" which now has an

even number of characters. If you press EVEN again then nothing

more will happen, as the string has an even number of characters.

The text string can now be turned into bytes - two characters at a

time must be taken from the front of the string and turned into a

byte. As was pointed out previously, the two characters must be

placed in reverse order. Thus the string "0OABC" must have its first

two characters removed and turned into the single byte whose value

is OA. Here is a program "FBYTE" which turns the first two

characters of a string into a byte, and leaves the rest of the

string in level 2:

Program lines Explanation

<< DUP 3 OVER SIZE SUB ;Save a copy with all except the

;first 2 chars.

"#" ROT 1 2 SUB + ;Turn the first two chars xy into

;string "#xy"

RCLF 8 STWS HEX ;Save flag status, set word size 8 and

;HEX mode

SWAP STR-> ;Get "#xy" and turn it into binary

;number #xy

RR RR RR RR B->R CHR ;Turn #xy into #yx, then real number,

;then char

SWAP STOF >> ;Replace original flags and modes.

;(Remember to do this yourself if the

;program fails!)

’FBYTE’ STO ;Store this as a program called FBYTE

-69-

Chapter Three

Set up this program, then make sure "0ABC" is in level 1, and press

FBYTE. You will find an odd character in level 1; this is #A0

expressed as a byte, and the rest of the string "BC" will be left in

level 2. The program sets HEX mode so as to make sure that the

string "#xy" will be converted into a binary integer correctly, and

a wordsize of 8 is set so that four rotations to the right will have

the effect of swapping the two nybbles of the number - four

rotations to the left would have just the same result.

The two programs EVEN and FBYTE can now be used as subprograms in a

program which takes a whole "source" string of hexadecimal

characters and turns it into a "result" string of bytes:

<< EVEN ;Make sure source string length is even

" SWAP ;Put result string, initially empty,

;in level 2

WHILE DUP SIZE ;Keep going while source string length

REPEAT ;not zero

FBYTE ROT SWAP + ;Get byte and add to result string

SWAP

END DROP >> ;When finished drop empty source string

’COD’ STO ;Store this as a program called COD;

;"code"

To see how this works, use it to create a result string which

contains the letters "PQR". These letters are represented in ASCII

by the hexadecimal bytes 50, 51, 52. Since the HP-28 reverses the

two hexadecimal characters in each byte, we shall have to write

these ASCII bytes as 051525. Type the source string "051525, then

press COD. If you do not see the result string "PQR" in level 1

then check the programs you have entered from the above instructions

and correct any mistakes.

You can use COD to turn any source string which gives a list of

hexadecimal digits into a result string which expresses the same

hexadecimal digits as a string of bytes. You could use this, for

-70-

Chapter Three

instance, to create strings of characters to control the printer and

use it for graphics. Our purpose here is to use COD to create a

string which can then be turned into a non-normalized object, so let

us write one more program to do that:

<< 327680 R->B ;Calculate the position where the result

OVER SIZE - ;string will begin in memory

SWAP COD ;Create the result string

’NNO’ DUP ;Store result in "NNQO?’, but first purge any

PURGE STO ;other variable with this name, so result will

;be at the top of memory (PURGE gives no error

SYSEVAL >> ;if NNO does not exist) SYSEVAL evaluates the

;object and brings it to level 1.

'NNC’ STO ;Store the program "Non-Normalized Create"

As in the last point, we know that the top of memory is at #4FFFF,

which is 327679 in decimal. If we subtract the object length from

this number + 1 then we have the address where the object begins.

This must be calculated before the string is turned into an even

number of hexadecimal digits, since we are interested in knowing

where the object begins, regardless of the need for an extra digit

which only rounds the string to an even length. I use the real

number 327680 in preference to #50000 in case the program is

accidentally typed in on an HP-28C set to DEC or OCT mode. On an

HP-28S you would avoid this problem by typing #50000h regardless of

the mode. In any case, if you have an HP-28S, or should you add

some extra memory to an HP-28C, then the top of memory will not be

at #4FFFF - you will have to replace #4FFFF (or 327679) and #50000

(or 327680) here and elsewhere by the position of the top of memory

in your HP-28; Appendix E gives details.

Here is a use for NNC. If you put HALT in a program, it stops and

waits for you to carry on one step at a time with SST, or to let the

program continue running by pressing CONT. If you often stop

programs to ask questions, it can become very tiresome pressing

SHIFT 1 to let the program continue. The HP-41 had a key called R/S

-71-

Chapter Three

(for Run/Stop) at the bottom right-hand corner. You could press

this key to restart a program just by touch - no need to press SHIFT

or to hunt around on the keyboard. People who have used an HP-41,

and others, may prefer to have an R/S key in the menu, preferably at

the right hand end, so as to be able to press a single easily

located key to let a program continue. It is also annoying to have

to move to the Program Control menu so as to use SST. Let us put

both in the USER menu, with suitable labels.

The SYSEVAL address for SST is #105BC, so you can write the program:

<< # 105BC SYSEVAL >>

and store it with the name SST (or Sst). Then you can HALT a

program and press SST in the USER menu to single step through your

program. (Again, remember to check Appendix E if you have a newer

HP-28C or an HP-28S.)

Similarly the SYSEVAL address for CONT is #1058A, so you can write

the program << # 1058A SYSEVAL >> and assign it to a menu key,

then press that key to restart a program after it has been stopped

by HALT. HP-41 users will want to call that key R/S, but ’R/S’ will

be interpreted by the HP-28 as an algebraic expression, not as a

name.

The name ’R/S’ can be written in ASCII as 522F53. To write it as a

name stored in the HP-28 we must put its defining address in front,

then its length, and reverse the length and the ASCII characters.

This makes: 21D203025F235. Put the program << # 1058A SYSEVAL >>

in level 2 of the stack, and the string "21D203025F235" in level 1,

then press the NNC key. You will have to wait a short while,

because NNC does a fair amount of work, then you will see the name

’R/S’ in level 1 of the stack. You can simply press STO to store

the program with this name, but it would be wise to make a duplicate

copy of the name and store it in another variable before creating

the variable R/S itself.

You need to keep a copy of the name because it is a "non-normalized"

name. This means that when you want to PURGE it, or RCL or VISIT or

-72-

Chapter Three

ORDER it, you will not be able to type in the name from the

keyboard. Neither will you be able to get the name by pressing the

single quote key and the menu key marked R/S. Both operations just

put the characters that make up the name into the command line.

Remember that the characters in the command line are "compiled” into

an object only when the command line is evaluated - and the

characters °R/S will be compiled into an algebraic expression

because they begin with * and include /. Thus if you want to use

the name R/S, you will have to fetch it from the stack or from a

named variable.

It might seem just as easy to recreate the name R/S again if you

need it later, using the program NNC as just shown above.

Unfortunately, this does not work. Once a name refers to a variable

that exists, a program will automatically evaluate that name when it

is found. This means that if you use NNC to create the name again

then the name will indeed be created, but NNC will not fetch it to

the stack, instead it will execute the program called R/S. To

create a non-normalized name and bring it to the stack again after a

variable with that name has been created, you need to fetch the name

from a program which contains the name in its quoted form. This

means you have to use NNC to create the program << ’R/S’ >> and to

evaluate it. That might not seem too bad but the program looks like

this:

Command Hexadecimal Meaning

code

7C620 Prepare to begin a program

<< AQF72 Initialize program

’ 43F72 The following name is quoted

21D20 The following is a name

30 The name has three characters

R/S’ 25F235 The character values (no symbol needed for

> at end)

>> E4F72 Program finishes

F1F72 Tidy up after program

09F20 Object ends, can go on to evaluate next object

-73-

Chapter Three

If you are so inclined, and if there is enough memory left in your

HP-28C, you can try typing in all the code from the second column as

one long text string, then pressing NNC, and you will get the name

’R/S’ in level 1 of the stack after a suitable wait. Each of the

hexadecimal codes represents cither an internal HP-28 subprogram

which does a specific job, or a command, or a stack object. All of

these have to be entered back to front, as given above; as usual the

addresses apply to version 1BB of the HP-28C.

These examples should give you an idea of what can be done with Non-

Normalized objects. If you have the time, you may want to

experiment further. Some of these programs will be used again in

the next chapter.

3.11 Program control of menus. Another useful operation would be to

select and control menus from within programs. If you have more than

six variables you may want to use a program which HALTs to ask

questions whose answers can be obtained by use of other programs

from the hidden part of the USER menu. Again, you might have six

commonly used programs in the first part of the USER menu, and then

the second part could contain your customized SST and R/S. 1In

either case, you can use << #E514 SYSEVAL CLMF »>> to provide a

NEXT program. Then you can use this in other programs to go from

one part of the USER menu to the next, or the one after, and so on

back to the first one. The newly selected menu does not appear

until the program HALTSs or finishes, but that is no problem as this

is when you need to see the menu. Remember the naming rules given

in 2.14; call this program 'NXT’ or ’Next’. An additional use for

it will be described in point 5.10.

If you want to select some other menu from a program then you need a

more complicated operation (unless you have an HP-28S).

<< #E38E SYSEVAL >> works to select a menu, but this expects the

menu number to be given in level 1 of the stack. The menu number is

not given by a real number or a binary integer; it is given by an

object called an "integer". An integer is a number stored with just

-74-

Chapter Three

five digits and no exponent, such objects are not available to the

user of the HP-28, but they are provided by the operating system and

are used internally by the HP-28. Objects of this type are

available on the HP-71B, and the name "integer" is used on the HP-28

by analogy with the HP-71B. (The HP-28 designers may have another

name, but we won’t know what it is unless they tell us.)) To get an

integer to the stack, we use SYSEVAL (what else?). Since integers

are used a lot by the operating system, the HP-28 provides SYSEVAL

addresses which put any of the integers from 0 to 43 onto the stack.

The integer 0 is given by #6D56 SYSEVAL, 1 is given by #6D60, and so

on every ten nybbles. Thus you can write a program to get any

integer from 0 to 43 onto the stack:

<< 10 * #6D56 + SYSEVAL >> ’INTR’ STO

Put a real number between 0 and 43 on the stack, and press INTR to

get the equivalent integer. You will see the integer displayed as

"System Object". That is the name used to represent any object

which is not recognized by the instructions used to set up the

display, you might have come across it already if you have been

playing with SYSEVAL or have been unlucky enough to meet one of the

HP-28’s few "bugs". In fact the stack itself contains only the

addresses of objects, and most such addresses are recognized by the

instructions which "decompile" and display them, but if you get an

address which has no associated display information then the display

shows System Object instead. Thus a System Object is really any

address not recognized as an object or a command, and this is

related to the cryptic explanation of SYSEVAL in the Manuals. That

explanation says SYSEVAL ‘"evaluates the system object" at the

address given to SYSEVAL. In fact this means that SYSEVAL evaluates

the program given by the address given to it, and any address at all

can be considered a system object - SYSEVAL will just go to that

address and try to use it as a program, regardless of what is really

there. SYSEVAL actually reads the number at the address given to

it, and uses that number as the address of a program to be run -

thus any address containing 0 makes SYSEVAL jump on to address #0 of

the HP-28, which is the address of the System Halt instructions;

this is why SYSEVAL so often has the effect of clearing the stack

and display - it is resetting the HP-28 according to the System

-75-

Chapter Three

Halt. Most other addresses cause SYSEVAL to bring some random

address to the stack, and this is why so many attempts to use

SYSEVAL display "System Object".

You might like to change the program so it does not try to create

integers above 43. Let’s get back to menus, their numbers on the

HP-28C are listed below; we shall see how a MENU command can be

written to select them. On an HP-28S the numbers are different but

it has a built-in MENU command anyway.

0 Cursor menu, menu line 16 STORE

cleared. 17 PRINT

1 USER 18 ARRAY

2 SOLV 19 CMPLX

3 Program Branch 20 STRING

4 LOGS 21 PLOT

5 STAT 22 Initial FORM submenu

6 MODE 23 DNEG etc. FORM submenu

7 TRIG 249 (), <> etc. FORM submenu

8 STACK 25 AF FORM submenu

9 ALGEBRA 26 1/(0, <--> etc. FORM submenu

10 SOLY (again) 27 -0, L() etc. FORM submenu

11 BINARY 28 1/(), E() etc. FORM submenu

12 LIST 29 1/0, E~ etc. FORM submenu

13 REAL 30 -, L* etc. FORM submenu

14 Program Control 31 ->() FORM submenu

15 Program Test

An awkward feature of the HP-28 is that you cannot easily use the

left-hand keyboard while holding the HP-28 in one hand. If you have

the HP-28 in one hand, with the left-hand keyboard folded under,

then you can use the right hand keyboard including the menus, but

you have to turn the whole thing over to get at the other keyboard.

Once you have turned over the HP-28, you can spell out a command, or

select a menu, or select the CATALOG, then you can go back to the

right-hand menu and carry on. The SYSEVAL addresses described above

can let you write an HP-28C MENU program which you can use from the

-76-

Chapter Three

USER menu to select any other menu, without turning the HP-28C over.

That means you can use the HP-28C much more like an HP-41 or any

other truly handheld vertical format calculator. (On an HP-28S you

need only write a program which puts the built-in MENU command in

the USER menu.) Here is a general HP-28C MENU command:

<< 10 * #6D56 + SYSEVAL

#E38E SYSEVAL CLMF >> 'MENU’ STO

To select any of the menus given in the list above, put the menu

number in level 1 and press MENU, or use it from within a program.

Since menus are normally selected from the keyboard, the

instructions within #E38E do not reset the display, as that is

normally done after any keyboard command. This means that the MENU

program has to contain CLMF to force the display to be reset. Note

that only the first section of each menu is selected by this

program, you can use NEXT from the keyboard or from within a program

(see above) to select other parts of a menu. Menus 22 to 31 expect

a special form of algebraic expression in the display, so they

should not be activated from within a program, but all the others

can be fetched with MENU. If you like the idea of using MENU to

select menus without needing the lefthand keyboard then you could

glue a label with a list of menu numbers on the space above the HP-

28C display (you can this on an HP-28S too but it needs different

numbers). This label would not need to have all menu numbers, only

those of menus on the lefthand keyboard. In fact there should still

be room on it for a list of the flags which control modes.

If you only want to select a few menus then you could write programs

to select individual menus, with the address of the relevant integer

(#6D6A for 2 and so on) included directly in each program.

3.12ANAME command. Some FORTH dialects provide the command NAME

which takes the address of a command from the stack and replaces it

with the name of that variable. Steen Petersen has discovered a

similar command on the HP-28C:

<< #30064 SYSEVAL >> 'NAME STO

creates the command NAME. Now go to the USER menu and press a key

-717-

Chapter Three

which brings any user variable to the stack, or use RCL to bring a

variable to the stack. Then press NAME and the displayed variable

will be replaced by a text string giving its name. If you still

have the variable G (created in point 2.1; put it in again if you

want to try the following) in the USER menu then press G and you

will see 6.67E-11. Now press NAME and this will be replaced by "G",

the name of the variable. If the object in level 1 is not a

variable but a stack object then NAME returns a null string (except

for the numbers -5,-4,-3,-2,-1,0, 8, 9 which all return meaningless

text strings). This program will let you check whether an item on

the stack is stored in a variable, for example to see if a command

is a built-in HP-28 command or one written by the user. The main

interest of NAME, however, is in that it tells us that the stack

contains not the variables themselves, but only their addresses,

since this is what allows a variable to be replaced by its name.

3.13 Using EDIT in your programs. You can activate EDIT by doing

#C407 SYSEVAL. This drops #C407 from the stack, activates the

cursor menu, and puts the object that is now in level 1 onto the

bottom line of the display. If a program is not running then you

can do exactly the same by pressing EDIT, so the only saving

provided by an EDIT program is that you will not need to press

SHIFT. If a program is running then that program carries on running

until it comes to its end or until HALT is encountered. Only then

is the object which was in level 1 displayed in inverse (white on

black) and the HP-28 waits for you to edit it. This means that a

program can put different objects in the command line and in level 1

of the stack. If you press ENTER then the object in the command

line replaces that in level 1, if you press ATTN then the object in

level 1 stays there and the command line is removed.

You can use ...#C407 SYSEVAL... in a program to invite the user

to edit an object, then press ENTER, and then CONT (or R/S from

earlier in this chapter) to carry on a program. Because it behaves

as described above, you can also use this SYSEVAL address to give a

user a choice of two answers to a question. Say you want to ask

whether the positive or negative square root of a number is wanted.

-78-

Chapter Three

You could write the following piece of program:

..3QRT "+ve or -ve root?" 1 #C407

SYSEVAL NEG HALT SWAP DROP *...

If you press ATTN and CONT then the program drops the message and

multiplies the square root by -1, if you press ENTER and CONT then

you get the positive square root.

* ¥ %

That is quite enough for one chapter. The next one will tell you

something about machine language programming, but it also gives more

details of SYSEVAL, so it is worth reading even if you are not that

keen on machine language programming itself.

-79-

Chapter Four

CHAPTER 4 - MACHINE LANGUAGE
PROGRAMMING

To get the greatest control possible over any computer (and this

includes calculators) you have to program that computer in its

machine language. Various names are given to machine languages, and

there are various approaches to writing machine language programs,

but the fundamental aim is to produce a string of numbers, each of

which activates part of the Central Processor Unit (CPU) making it

do something rather simple. All programs and programming languages

are ultimately built up from instructions ("code") in machine

language. To obtain full control of the HP-28 you must program it

in machine language, but to do that you need to know more about the

layout of the HP-28, about the structure of programs, and how to

tell the HP-28 that something is a piece of machine language code.

This book does not cover all details of machine language

programming, but it will give some details and some examples. The

first few points of this chapter will lay the groundwork. I shall

use version 1BB addresses in the examples, remember to check

Appendix E if you have a different version of the HP-28.

4.1 The layout of programs. The simple program NIP shown in point

2.5 was:

<< SWAP DROP »>>. This can be interpreted as follows:

<< SWAP DROP >>

Begin Do the Do the Finish

a ---then--- SWAP ---then--- DROP ---then--- a

program command command program

This looks quite simple, say like beads one after another on a

string. Now look at the program in point 2.5 which uses NIP:

-81-

Chapter Four

<< + LAST NIP >>

Begin Fetch Finish the

a --add-- arguments main

Program used by + |\ / program

fall through to return to

subprogram NIP main program

\ /

<< == SWAP -- DROP -- >>

The string has an extra thread in it now. If NIP were to use

another subprogram then there would be yet another thread. If

another subprogram was used between + and LAST there would be

another thread too. Nevertheless, you would still be able to draw a

"string" which would track one command after another through the

program. (OK, I am ignoring loops, but that’s just an added

complication - you could write out each execution of the loop one

after another and still have a continuous string.) But actually the

string follows an even more complicated route, after all each

command is itself made up of simpler subprograms. Let us follow NIP

again, and concentrate on what SWAP does in more detail:

<< -- SWAP -- DROP -- >>

\ /
begin a --- check if --- swap the --- finish the

subprogram there are object subprogram

at least 2 addresses

objéects on around on

the stack the stack

Now we have reached the lowest level, each of the "beads" on this

"string" is a short(ish) subprogram written in machine language.

Each of these machine language subprograms finishes with three

instructions which let the HP-28 jump to the next subprogram on the

string. Let us go back and see how the HP-28 keeps track of where

it is on this string. The program NIP is actually stored as the

addresses of the subprograms that make it up:

-82-

Chapter Four

<< SWAP DROP >>

02C67 27F0A 17825 1783F 27FIF 02F90

begin a start a do SWAP do DROPend a finish

subprogram user program user program subprogram

The instructions at the address 02C67 are an actual machine language

program which says "hang on, what follows is not going to be machine

code yet, it’s going to be another subprogram made up of a list of

addresses". The instructions at 27F0A make sure the HP-28 knows

that what follows is a program written by the user, not a subprogram

built into the HP-28 operating system. The instructions at address

17825 look like:

02C67 1C3A5 120F5 02F90

begin a check at do a finish

subprogram least 2 SWAP subprogram

objects

The instructions at 02C67 are once again used to say "what follows

is a list of addresses". The instructions at 1C3A5 and at 120F5

both point to subprograms in machine code, and the instructions at

02F90 are machine code which takes you back up one level of

subprogram. Let us look at the sort of program that would be stored

at 120F5 - this can serve as an example of a machine language

subprogram. The first column below gives the address of each step

(instruction), the second column is the hexadecimal number which is

that instruction, the third column is the Saturn "mnemonic" for that

instruction, the fourth column briefly explains what that

instruction does.

address contents equivalent explanation

(hex) (hex) instruction

120F5 120FA REL(5) 5 address where machine code begins

120FA 143 A=DATI A copy data pointed to by DI (level

1) to A

-83-

Chapter Four

120FD 174 D1=Dl1+ 5 move pointer up by 5 to point at

level 2

12100 147 C=DATI A copy data pointed to by DI (level

2)to C

12103 141 DATI=A A copy A to level 2(pointed to by D1)

12106 1C4 D1=Dl1- 5 move pointer to point at level 1

12109 145 DATI1=C copy C to level 1(pointed to by DI)

1210C 142 A=DATO0 A copy data pointed to by DO into A

DO actually points to the address

where the address of the next

instruction is held - in this case

it is 02F90 which is the next

address after 120F5 in the list

1210F 164 D0=D0+ 5 add 5 to DO so it will point to

the next address on the thread

after this one - in fact this

will be changed since we have

reached the end of this subprogram

12112 808C PC=(A) jump to the address given by the

address in A; don’t go to 02F90

itself but to the address given

by the contents of 02F90

If you already know about machine language programming on the HP-71B

or on other CPUs then you should be able to follow the above without

too much trouble, otherwise don’t worry too much if it does not all

make sense yet. The instruction 808C is called PC=(A) and is a new

instruction used by the modified Saturn CPU which is in the HP-28.

This instruction lets a program jump from one set of instructions to

the next by using indirect addressing (a common machine code

method). Because this instruction is used to move from one piece of

machine code to the next, each piece of machine code that is reached

this way must have its address stored somewhere, usually just in

front of that code. In this example 120F5 is stored as the address

which tells how the SWAP code can be found, and at 120F5 we find

120FA which is the address where the machine code actually begins,

in this case immediately following 120F5.

-84-

Chapter Four

Note that this example of machine code just swaps round two values.

These are not two objects on the stack; they are the addresses of

two stack objects. In other words the stack itself is just a list

of addresses, each of which points to an object. This same piece of

code shows that the pointer D1 usually points to the lowest level

address of the stack, in other words to the address which gives the

address of the level 1 object. The pointer DO points to the address

which will be used for the next step of the present program or

subprogram. Whenever a subprogram begins, the previous contents of

DO must be saved in a "return stack", and D0 must be filled with the

first address of the new subprogram (thread), that is what the

instructions at 02C67 do. When a subprogram (thread) finishes, the

instructions at 02F90 bring back the previous value of DO from the

return stack so that the program which called this subprogram can

itself carry on.

Now for a little history! To learn how to write HP-28 machine

language programs it was necessary to recognize that a machine code

program could be written by starting it with the address of the

first instruction and by ending it with the three instructions that

continue the thread. Some people, particularly at HP, may wonder

how this was discovered. Let me assure the HP folks that no one at

HP gave away the secret! To discover it I first used Ianization to

find the addresses of all the standard commands in the CATALOG.

That showed most commands were separated from the next command by

N*5 + 1 nybbles, but a few had some other separation. This

suggested most commands were made up of a string of subprogram

addresses, plus one (or six) nybbles to identify the command, but

that a few commands had pieces of machine code embedded in them.

Then I used a rather tedious procedure using another useful SYSEVAL

address (which I discovered in the top 2K of the ROM whose

examination I had shared with Ian Maw). This allows the length of a

variable to be changed, so that the next variable in the USER menu

appears to begin at a different address than it really does. I

could thus make variables appear to be made up of instructions which

were really part of the ROM. Then I could use Ianization to turn

-85-

Chapter Four

these variables into new variable names, and thus bring them to the

command line.

Once the "name" was in the command line I could analyze it with NUM,

and thus find what the code was in the unusual commands. Some of

the code was indeed not made up of addresses but I could interpret

it as machine language instructions, using the list of Saturn

instruction codes given in the HP-71B Internal Documentation Set.

After checking two or three pieces of machine code I recognized the

addresses at the beginning and the code at the end - the number 808C

is not described in the HP-71B IDS, but Bill Wickes in an article

about the HP-28 had mentioned the new PC=(A) instruction and its

use, so it seemed clear that 808C was PC=(A) being used to jump to

the next command. These discoveries provided me with enough

information to write a PEEK function (see section 4.4) and from

there on it was possible to study the HP-28 and learn the many

things described here.

A language which carries out higher-level commands as pieces of

machine code and follows a string, or "thread", as has been

described is <called a threaded language, or a threaded

interpreter. The language provided to the users, with commands

such as << or DROP or SWAP, is a threaded language. The same

commands are used within commands; as we have seen, the SWAP

command itself is made up of a list of addresses. This language

is called RPL by the people who designed the HP-18, HP-19 and HP-

28 - a subset of RPL is available to the normal user of the HP-

18, HP-19 or HP-28, and a larger subset of it is made available

by SYSEVAL. The whole language has still more commands, some of

which are not needed in the HP-28, so they have not been

included. What does RPL stand for? Well, the design team

themselves do not seem to have been too sure! It is a name very

similar to RPN (Reverse Polish Notation) which was the name for

the notation used by previous HP calculators. RPL is reputed to

stand for "Reverse Polish LISP", which shows its origins in RPN,

and also its affinity to LISP which is a computer language that

uses lists and local variables (called "lambda variables" in

-86-

Chapter Four

LISP). Another suggestion is that RPL could stand for "ROM-based

Procedural Language". Anyhow, the design team says "Ripple"

without worrying too much what it stands for. If you look at my

name you will understand why I like to call it Reverse Polish

Language!

4.2 Copyrights and copy wrongs. The operating system of the HP-28 is

a valuable piece of programming and is protected by Hewlett Packard

copyrights. This means that it is wrong to copy it or publish it,

and in the examples above I have not used the actual code from the

HP-28 operating system. Instead I have written some similar code

which could do the same thing - it shows how a simple machine code

program looks and how it is executed. To write your own machine

code programs you need to know a few more things, including the

instructions and registers used by the Saturn CPU. That information

is published in the HP-71B IDS which are also copyright, so I cannot

simply copy that information here. Appendix D provides a short

summary, and information on the subject has been published in user

club journals too, but to have a full description you should get a

copy of either Volume I of the HP-71B Software IDS, or the Hardware

Specifications volume of the IDS. The former is cheaper, at a mere

$50 or thereabouts. If you are a member of a user club you might be

able to borrow a copy from the club library or from one of the

members who use an HP-71B and have a copy. The information provided

in Appendix D and in the examples in this chapter will give you

enough information to get started in machine language programming,

but it will not cover all the instructions.

Most people who write machine language programs do not actually

write out strings of numeric instructions. Instead they use

"mnemonics" which are short alphabetic names for each instruction.

These mnemonics are then translated into a string of numbers by a

program called an "assembler". This simplifies machine language

programming considerably because human beings usually find names

much easier to remember than numbers. Assemblers often simplify

machine language programming further by letting programmers use

label names (to mark places in programs) and other symbols, for

-87-

Chapter Four

example a symbol which means "the address of this instruction".

Assemblers also provide instructions which are not translated

directly into a number to specify a machine language operation, but

which create a constant to be used by an instruction, or which help

control information printed by the assembler. Such instructions are

often called pseudo-operations, or just pseudo-ops. The first

instruction in the example machine code program for SWAP is such a

pseudo-op; it does not create an instruction, instead it provides

the five-nybble number which represents the address 5 nybbles

forward RELative to the current address. Assemblers which let

people write machine language programs for the Saturn CPU are used

by Hewlett Packard on their own computers, and have also been

written for use on IBM PCs and compatible computers running under

MS-DOS. HP also sell a plug-in module for the HP-71B which includes

a FORTH language translator and a Saturn assembler. Assemblers for

the Saturn have been written by members of HP user clubs, these

include the "AREUH" Development System for the HP-71B written by

Pierre David and Janick Taillandier of the Paris club and the

"Turbo-71" assembler written by Stefano Tendon of the Italian user

club.

A program written as a list of mnemonics and pseudo-ops is often

called an assembly language program - it is written in a language

which the assembler recognizes and turns into a string of numerical

machine language instructions. Consequently the names "assembly

language" and "machine language" are often used as if they meant

exactly the same thing, and as both are related to the simple

individual instructions used by the CPU they are called low-level

languages. Both types of language are different from higher level

languages which are usually "compiled" or "interpreted" or both. An

RPL program written by a user is a string of letters, numbers and

special symbols typed in on the command line; even the names on menu

keys are put in as the characters which make up the name. After

ENTER is pressed, the HP-28 "compiles" this string and turns it into

a program made up of, and stored as, individual command addresses

and objects. When such a program is "run" or "executed", each

command address is "interpreted" and executed as a set of lower-

-88-

Chapter Four

level commands or machine language instructions. When an object or

program has to be displayed, printed or edited, the HP-28 goes

through the commands and objects, and "decompiles" them, producing a

string of letters and other characters again so that the user can

recognize them. This business of decompiling objects and programs

is complicated and therefore slow, which is why the HP-28 display

can take a (relatively) long time to catch up with what you are

doing. This is all the more noticeable because the HP-28 has a

four-line display. In order to speed things up a little, and to

save some space in memory, long objects are not decompiled

completely, only that part which needs to be put in the display is

decompiled, but even this can be slow. If an address cannot be

recognized as a command or an object then the HP-28 decompiler puts

the words "System Object" in its place. Clearly, you cannot compile

these words again, they do not stand for a unique command or object

which can be put in their place, so it is not possible successfully

to edit a program, variable, or stack object which contains the

words "System Object". The words are compiled as two unquoted

names: System and Object, and if you try to evaluate them or run a

program which contains them then the HP-28 puts them onto the stack

as unevaluated quoted names. Then you can really confuse matters if

you create variables called ’System’ or ’Object’ and the HP-28 tries

to use them!

The manual for the HP-71B FORTH/Assembler module can be of some help

to people wanting to write machine language programs for the HP-28 -

it describes the Saturn CPU and the instructions it uses, but does

not give the numbers that represent each instruction. Now, the HP-

28C has too little RAM to hold an assembler, so anyone wanting to

write their own machine language programs has to type the programs

in directly in the form of numbers (though the HP-28S has enough RAM

typing an assembler program in would still be very time-consuming).

If you have an assembler on a PC or on the HP-71B then you can write

a program in mnemonics, assemble it on the PC or 71, then type the

numbers into the HP-28C. Otherwise, you have to do the assembly by

hand, writing out the program number by number. This is not much

trouble for short programs, but can be very laborious if you decide

-89-

Chapter Four

to write a long program. The best thing to do on an HP-28 is write

a mini-assembler which takes a string of hexadecimal digits and

turns them into a program that the HP-28 will recognize. This works

much like the COD program in the previous chapter, we shall come to

it soon.

The opposite to an assembler is a "disassembler" - a program which

reads a string of numbers and prints out the mnemonics which

represent the program which the numbers provide. Once again,

entering a disassembler is too long for comfort, but a mini-

disassembler can be written to read a piece of code from the HP-28

RAM or ROM and to translate it into a string of hexadecimal digits.

Then you can type those digits into a bigger computer and

disassemble them properly, or you can try to disassemble them by

hand, comparing the numbers with a list of Saturn instruction codes.

The FORTH/Assembler module also provides a FORTH language

interpreter for the HP-71B. FORTH is in many ways similar to the

RPN used by earlier HP calculators, it uses a threaded interpreter,

and HP-28 RPL is in many ways similar to FORTH on the HP-71B. For

example the HP-71B FORTH language uses the pointer DO as an

instruction pointer, and pointer D1 as a data-stack pointer, in just

the same way as was explained above in the description of SWAP.

Thus the manual for the FORTH/Assembler module is another possible

source of information for someone trying to understand the HP-28.

Enough about sources of information! More are listed in Appendix A,

let us now see how you can write a machine language program on your

HP-28.

4.3 A simple machine language program. There is more than one way to

write and run a machine language program. In this point I shall

begin with a very simple program and a simple method of putting it

into the HP-28. The simplest possible program would have just one

instruction, here I shall show a program which carries out the one

machine language instruction INTOFF. This instruction disables all

the keys except the ON/ATTN key.

-90-

Chapter Four

As we saw in the example program in point 4.1, a machine language

program begins with an address which points to the rest of the

program, and it ends with the three instructions which point to the

next command. If the program is to be put at the top of RAM,

finishing at address #4FFFF, then we can work out all the other

addresses. The result will be as below - you can see that some

mnemonics in the third column are followed by parameters; these are

called instruction "modifiers" and are in hexadecimal notation.

address contents equivalent explanation

(hex) (hex) instruction

4FFED 4FFF2 REL(5) 5 address where machine code begins

4FFF2 808F INTOFF Disable keyboard interrupts

4FFF6 142 A=DATO A copy data pointed to by DO into A

4FFF9 164 D0=D0+ 5 add 5 to DO to point to next cmd

4FFFC 808C PC=(A) jump to the address given by A

To turn this program into a string of bytes we can use COD from

chapter 3. Moreover to turn it into a string of bytes and execute

it we just need to translate it with COD, store it at the top of

memory, and jump to the the beginning (4FFED). This is exactly what

the program NNC does.

So, make sure you have the programs EVEN, FBYTE, COD and NNC in your

HP-28; if necessary type them in again, then type in the string of

instructions as shown below, then press NNC. The string of

hexadecimal digits represents the instructions that make up the

program shown above, with the address at the front turned around.

"2FFF4808F142164808C"

If you have done everything correctly, then after pressing NNC you

will wait a few seconds for the string to be turned into bytes, the

program will be carried out, and the busy annunciator will turn off.

Now press any key except ON and nothing will happen; the key will be

ignored. Press a few more keys - they will be ignored because the

program has disabled the keyboard. After you press a few keys, the

keyboard will begin to respond, or you can reset it with a system

91-

Chapter Four

halt (ON UP). You have written and used a machine language program

which does something that no HP-28 command does!

This subprogram can be useful if you want to run a program and

prevent accidental key-pushes being stored in the key buffer and

read later on by the program. To run it again, you can do #4FFED

SYSEVAL. This will only work if the program is in its place at the

top of memory. You could do this with the following program which

uses RCL to recall NNO to the stack, then PURGEs it, then STOs it

again, then uses #4FFED SYSEVAL to execute it:

<< 'NNO’ DUP RCL OVER

PURGE SWAP STO #4FFED SYSEVAL >>

This seems complicated: later on we shall see some other ways to

store and execute machine code programs. If you want another

program which enables the keyboard again then you will need to write

a second machine language program which executes the instruction

INTON - the code for this instruction is 8080, repeat the above

process with 8080 replacing 808F. Clearly this program is no use in

keyboard operations - either the keyboard is still disabled so you

cannot use a menu key to re-enable it, or the keyboard has already

been re-enabled in which case you no longer need to re-enable it.

The program is useful though if you want to re-enable the keyboard

before prompting for some input during a program.

The instructions to go to the next command on the thread are

"142164808C", which is 10 nybbles long. These 10 nybbles could be

stored in one place in ROM and all commands could end with a 7

nybble GOVLNG instruction (Go Very Long - go to another address

anywhere in the whole memory) to go to those 10 nybbles and execute

them. There must be about a thousand pieces of code which finish

with these instructions, so this would save about one and a half

thousand bytes of memory. If the 10 nybbles were stored in four or

five places in ROM then all other commands could end with a GOLONG

to the nearest place, and each GOLONG command would be 6 nybbles

long, saving up to 2K bytes. It seems odd that the designers chose

not to use this method but to finish every command with the same 10

-92-

Chapter Four

nybbles. This saves a little time, 14 or 15 machine cycles to be

precise, per command ending, but the 2K lost this way could have

been used to provide some very useful commands, such as a few proper

clock functions. Maybe the design team really did consider it

necessary to get the extra speed, or maybe they decided it was not

worth the time and trouble to write a translator which would improve

the operating system in this way. (The same thread ending is used

in the HP-28S.) In the program above I use the 10 nybble method to

avoid relying on a ROM address which might change in new versions of

the HP-28.

The method described here can be used to write other short machine

language programs. Note how COD was used as a mini-assembler to

turn a string of hexadecimal digits into a string of machine code.

4.4 A PEEK command. Anyone who wants to make a serious study of a

computer or to program it in machine language needs a command to

read any selected piece of memory, ROM or RAM. In BASIC this

command is called PEEK. This point describes an HP-28 PEEK command,

written in machine language. PEEK commands can be written to read

different amounts of information, and to return them to the stack in

different forms. The PEEK shown here has been written to help

search the HP-28 ROM for interesting command names and messages, SO

it reads 8 bytes (16 nybbles) at a time and returns them to the

stack as a text string. As with the interrupt disable program, this

one is written so it does not rely on pieces of code in the ROM, in

order to make sure that this PEEK can be used not only on version

1BB of the HP-28, but also on future ones, again see Appendix E for

details.

First, here is a machine language program to read a piece of memory

beginning at address xxxxx and to put it into a known place. That

known place is address 4FFFFO0, the very top of memory (on an

unexpanded HP-28C). As in the previous point, instruction modifiers

are in hexadecimal.

-93-

Chapter Four

address contents equivalent explanation

(hex) (hex) instruction

77MmM 77 REL(5) 5 address where machine code begins

71 133 ADIEX exchange A with D1 to save pointer

77 103 R3=A save A (old D1) in scratch R3

7 1Fxxxxx DIl=xxxxx set pointer D1 to required address

777? 15BF A=DATIIO copy register pointed to by DI

into A

77 1FOFFF4 DI1=4FFF0 set pointer D1 to address 4FFFO

MM 159F DATI1=Al0 copy register A to this address

171 113 A=R3 recover pointer from R3

MM 131 DI=A put original pointer value back

in DI

7M 142 A=DATO0 A get address of nxt command address

77 164 D0=D0+ 5 add 5 to DO to point to following

command

7 808C PC=(A) jump to the address given by A

We do not yet know the addresses at which the instructions will be

stored, so the addresses have been written as ?????. If we store a

text string of eight bytes in a variable at the very top of memory

then this program will replace that "dummy" string with the value

taken from the eight bytes beginning at address xxxxx. Some way has

to be found though of putting that address into the program. The

order of the nybbles that make up the address must not be changed,

but the whole address must be put into the program back to front.

One way to do this is to write xXxxxx as a binary integer, since

these are stored back to front, with the order of the nybbles

unchanged. If the rest of the program is written as a binary

integer too and the space for xxxxx is left filled with 00000 then

it would be enough to OR the binary number xxxxx with the rest of

the program to produce the required program. Since a binary integer

can be a maximum of 16 nybbles long, and this program is more than

16 nybbles long, we cannot write the whole program as one binary

integer, but we can write it as a list of four integers. Since each

integer has an object definition and an object length stored in

front of it, we must jump around the definitions and lengths to make

-94-

Chapter Four

up a program which is not affected by them. We still need to know

where the program begins in memory so as to be able to jump to it

with SYSEVAL, so the program is best placed as near the top of

memory as possible, just below the dummy string. Let us use the

name ‘X1’ for the list of binary numbers which contains the program,

and the name ’X2’ for the dummy string. The layout of the top of

memory when we do this will be as shown below.

address contents equivalent explanation

(hex) (hex) instruction

4FF5F 20 length in bytes of object name X1’

4FF61 8513 object name X1’ nybbles inverted

4FF65 20 length in bytes of name, again

4FF67 69A20 address of list definition

4FF6C 07A20 address defining first binary

integer

4FF71 51000 length of binary integer+5 in

nybbles

--------------- First binary integer begins below -----------ecceeeeen

4FF76 B7FF4 REL(5) 5 address of program start

4FF7B 133 ADIEX exchange A with D1 to save pointer

4FF7E 103 R3=A save A (old DI) in scratch R3

4FF81 6E00 GOTO (*)+E jump forward over intervening info

4FF85 0 fill out to end of binary integer

--------------- First binary integer finishes here --------------------

4FF86 07A20 address defining second binary

integer

4FF8B 51000 length, +5 to allow for length

count

--------------- Second binary integer begins below ----=-ececmceemeann-

4FF90 1F00000 D1=00000 set pointer D1 to required address

4FF97 15BF A=DATI1 10 copy register pointed to by DI

into A

4FF9B 6E00 GOTO (*)+E jump over intervening stuff again

4FF9F B fill out last nybble of binary

integer

--------------- Second binary integer finishes here -------=ecccccemeu-

-95-

Chapter Four

4FFAOQO

4FFA5

4FFAA

4FFBI1

4FFB5

4FFB9

4FFBA

4FFBF

4FFC4

4FFC7

4FFCA

4FFCD

4FFDO

4FFD4

4FFD9

4FFDE

4FFEOQ

4FFEA4

4FFE6

4FFEB

4FFF0

07A20 address defining third binary

integer

51000 length +5

--- Third binary integer begins here --------ccecmceemaaea-

1IFOFFF4 DI1=4FFF0 set pointer D1 to address 4FFFO0

159F DATI=A 10 copy register A to this address

6E00 GOTO (*)+E jump over intervening stuff again

0 filler

--- Third binary integer ends here -------===cccmcmcaae--

07A20 address defining 4th binary integer

51000 length +5

--- Fourth binary integer begins here ------------cccceeue-

113 A=R3 recover pointer from R3

131 DIi1=A put original pointer value back

in DI

142 A=DATO A get address of next command address

164 D0=DO0+ 5 add 5 to DO to point to following

command

808C PC=(A) jump to the address given by A

--- Fourth and last binary integer of list ends here ------

09F20 address defining end of composite

object

A7000 length in nybbles of name, object

20 length in bytes of object name *X2’

8523 object name, X2’

20 length of name, again

E4A20 address defining a text string

51000 length+5 in nybbles

16-nybble dummy string string to be replaced by PEEK

result

extends to top of memory at 4FFFF

This is long, but only needs to be written once. Let us now see

what the list of four binary integers looks like. Since they are to

be stored in the sequence given above they will have to be entered

in reverse order.

-96-

Chapter Four

{ # E63013314FF7B

BOOE6FB5100000F1

E6F9514FFFO0F1

C808461241131311)

Now we know what the binary list to be written looks like, we can

write a program which creates this list, includes the address to be

PEEKed in the second binary integer, then does the PEEK, extracts

the result from X2 and puts it on the stack:

<< RCWS SWAP 28 STWS ;Get original wordsize, set w-size to 28

SLB 64 STWS ;shift PEEK address one byte left, set

;w-size 64

BOOE6FB5100000F1 + ;enter 2nd binary integer, add address

E63013314FF7B SWAP ;enter Ist binary integer & swap above

;2nd

E6F9514FFFO0F1 ;enter third binary integer

C808461241131311 ;enter fourth binary integer

4 ->LIST ;turn the 4 binary integers into a list

X1’ DUP PURGE STO ;purge X1 and store list as X1

"DUMMYSTR" ;enter 8-character dummy string on stack

’X2’ DUP PURGE STO ;purge X2 and store string as X2

4FF76 SYSEVAL ;jump to program created inside the list

STWS ;replace original word size

X2 >> ;bring PEEKed string from X2 to stack

'PEEK’ STO ;store the program

Now to see the contents of any address in memory, just put that

address as a binary number in level 1 of the stack, and execute

PEEK. The result comes back as a text string. Make doubly sure you

have entered the program exactly as given (but if you have an HP-28

with more memory than a standard HP-28C then you should again

remember to check Appendix E) and then test it out - for a start try

#3FE7A PEEK - if you have a version 1BB HP-28C then you should see

the text string "Version " which is the first part of the

"Version 1BB" message displayed by #A SYSEVAL.

-97-

Chapter Four

The program above uses several techniques which deserve to be

explained before we set off PEEKing all over inside the HP-28.

First of all, the user’s original wordsize is saved on the stack,

and later replaced. Secondly, a wordsize of 28 is set and the PEEK

address is shifted left by one byte. We need to shift the address

left by one byte so it will be added into the correct place in the

binary integer #BOOE6FB5100000F1 - the address must slot into the

00000 which is one byte to the left of the end of the number. By

using a wordsize of 28 during the shift operation, the program

truncates the shifted address to 28 bits long; a 20 bit address and

8 zero bits to its right. This means that if anyone accidentally

tries to PEEK an address with more than 20 bits then only 20 bits

will be used, so there is no chance of accidentally changing the

program in the rest of the binary number. Now that the address has

been shifted, the program sets a wordsize of 64 bits, so that none

of the binary integers in the list will be changed, particularly

during the addition of the address to its binary integer. OR would

be just as good as + here, but + takes one less keystroke to type

in. The remaining binary integers are entered now; note that

reading down their left hand side you get "BEEC" which sounds like

PEEK, and serves as a reminder of what this program does, to

differentiate it from the POKE program which will be introduced

later and which looks very similar. If you look back at the

detailed listing of the binary program you will see that the first

three binary integers all need an extra byte to fill them out at the

end - in two cases this "filler" has been left as a =zero, and

therefore does not need to be typed in at all, but in the other one

a B is used as a filler instead to produce this "BEEC".

Once the four binary numbers are ready and have been made into a

list, the program tries to PURGE X2, in case there is a previous

copy left which is not at the very top of memory. PURGE is a little

unusual because it does not give an error if the variable it is

trying to purge does not exist. This is helpful in cases such as

this one, but it can be annoying if you mis-spell a variable name

and therefore fail to purge it, without realizing this has happened.

-98-

Chapter Four

PURGE has to behave somewhat like this though, because it can be

used by a program to purge itself, so it cannot carry out the full

purge operation till a program stops running, by which time it would

be too late to complain if an error had occured. After the PURGE,

the program stores the list in X1, securely placed at the top of

memory. Then the program puts a dummy text string, 8 bytes long, on

the stack, and repeats the purging and storing of X2. At this

stage, everything is ready for the machine language program to be

run - the program is next to top in the memory, and the dummy string

is at the very top, ready to be replaced by the PEEKed string. The

machine language program executes the operations described in the

listing given earlier, reading 16 nybbles from the selected address,

and putting them into X2, at address 4FFF0. Finally the program

replaces the original wordsize, which has fallen to level 1 by now,

and brings the PEEKed string to the stack by evaluating X2. If you

need any more copies of the PEEKed value, you can bring them to the

stack just by evaluating X2 again, even if X2 is moved away from the

top of memory.

The binary program uses pointer D1 to pick up the PEEKed string from

memory, but D1 is used as the stack pointer, so the program has to

save the original contents of DI, and then to replace them.

Subprograms which save and replace pointers do exist in the HP-28

operating system, but they might get moved to a different address in

new versions, so I prefer to save the pointer without calling any

subprograms from ROM. In the same way, I put the three instructions

which finish a binary program into the program instead of going to

some place in ROM whose address might change as well. By avoiding

any reliance on subprograms in ROM, the program guarantees that it

will work on future versions of the HP-28, so there will be no need

to start all the deciphering of the operating system from scratch

again. The only problem is that the position of the top of memory

is not always the same, and that can be dealt with as described in

Appendix E.

-99.

Chapter Four

4.5 Playing with PEEK. Once you have a PEEK command you can go

roaming around the memory of the HP-28, RAM and ROM, looking for

interesting and amusing things. You could try just PEEKing at

random addresses, simply to see the sort of thing you can find. Try

#3FE7A PEEK, then #3FE8A PEEK, then #3FE9A, #3FEAA, #3FEBA and

#3FECA. If you have a version 1BB HP-28C then these addresses

contain the version number message and the HP copyright notice. A

piece of software is protected by copyright law if it has a

copyright notice included; even if the copyright notice is not

available to be seen! If you have some other version of the HP-28

then the version and copyright information should be somewhere in

the same part of ROM. You must get the nybble boundary right - in

version 1BB you can try #3FE78, #3FE7A, #3FE7C, #3FE7E and so on,

but if you try an odd number such as #3FE79 or #3FE7B then the

nybbles will be paired off incorrectly and you will not see a

meaningful message.

For another example try #FCCF PEEK. On a version 1BB HP-28C this

will give the string "CONTINUE". That is the full name of the non-

programmable operation CONT - once you have found a name like this

you can PEEK at the numbers immediately following it; these might

contain the addresses of some subprograms which check the stack and

so on, and then you will find the address of the operation itself.

To make it easier to read the contents of the address you have

PEEKed as a set of addresses, replace "DUMMYSTR" in the PEEK program

with #0. This means that X2 will be read as a binary number, so

PEEK will now give the contents of the PEEKed address as a string of

hexadecimal digits, which are easier to read but are stored in

reverse order. Try replacing "DUMMYSTR" with #0, then PEEK at the

address immediately after the name CONTINUE, address #FCDF. On a

version 1BB you will see the binary integer #2F901058A05334. (Set

wordsize 64 and HEX mode to see the whole binary integer.) This

means that the sixteen nybbles of memory immediately after CONTINUE

are 43350A850109F200 (the leading Os are not seen because the

display does not show leading zeros in binary integers). These are

the addresses of three subprograms, themselves stored in reverse

order: 05334, 1058A and 02F90. The first address is that of a

-100-

Chapter Four

subprogram which makes some introductory tests, the second address

is that of the CONTINUE command itself - this is the address that I

gave in the previous chapter, as though pulled out of thin air. Now

you know how the address was discovered, and you can trying finding

others the same way.

Well, you might want to try using PEEK at random for a while, but

eventually you will realize that there is just too much ROM for it

all to be examined at random. It is much better to write programs

which use PEEK to search for some characteristic piece of

information. Say you want to find where the clock value is stored.

Since it changes, it must be stored in RAM, so you could write a

program to examine every 16 nybble location from the top of ROM to

the top of RAM (from #40000 to #4FFFF on an HP-28C). The program

should PEEK at each location twice, and see if its contents have

changed - if so then this is an address which keeps changing, and it

could be the clock location. Of course other addresses might change

too, and the clock might be stored in more than one 16 nybble

register, so you would then have to examine more closely each

register that did change.

Instead of using a binary integer in X2 to read the PEEKed address

as a back-to-front binary number, we could use a program to decode a

source text string into a result string of hexadecimal digits. This

is not simple, here is a program to do it; see if you can write a

shorter version.

<< RCWS 9 STWS ;save word size, reset it to 9 bits

" ROT ;put initially empty result string in level 2

1 OVER SIZE ;set up limits to loop over bytes in source

string

FOR J ;start the loop, with counter J

DUP J DUP SUB ;pick byte (character) at position J

NUM ;convert it to a number

256 + :add 256 to make it a 3-digit hexadecimal

number

R->B ->STR ;turn it into a string of hexadecimal digits

-101-

Chapter Four

DUP 5 DUP SUB ;pick least significant hexadecimal digit

SWAP 4 DUP SUB;pick next digit, string has 3 digits so can

get 0

+ ROT SWAP + ;append digits, in reverse order, to result

string

SWAP NEXT ;recover source string in level 1, end loop

DROP ;discard source string when loop finished

SWAP STWS »>> ;replace original word size

'DECOD’ STO ;store as a decode program

Try #FCDF PEEK again with "DUMMYSTR" in X2, then press DECOD.

After a short while, you should see "43350A850109F200". This method

has the advantages that the result is the right way round and you do

not lose leading zeros.

If you use PEEK in a larger program then you can save a lot of time

by rewriting PEEK so it does not have to PURGE and recreate X1 and

X2 every time. It would be enough just to change the second binary

number in X1 so as to change the address being PEEKed. You could

also set the wordsize to 64, and avoid saving it and restoring it at

the beginning and end of each PEEK. Once you have gained some

confidence, you might try to rewrite PEEK to make it faster and

shorter, by reading the PEEK address directly off the stack (using

the address given by pointer DI1), and by using pieces of code from

ROM to replace parts of the program. If you write a really good

PEEK of your own, submit it for publication in a club journal so

that other HP-28 users will take advantage of it, and will recognize

your brilliance!

4.6 And now a POKE command. Once you have examined the insides of

the operating system, you may well want to change some things; of

course you can only change the contents of RAM. The normal name in

BASIC for a command which does this is POKE. A simple way to write

a POKE program is to change PEEK; after all you just want to write

something to a selected address, instead of reading from that

address. The natural way to use POKE is to give a value to be

-102-

Chapter Four

POKEd, then the address to POKE, and then to execute POKE. To make

POKE work like this, we can rewrite PEEK so it will store in X2 the

value to be POKEd, then create a list of binary numbers which

include the POKE address, then execute the list as a program, then

stop. This is just the reverse of what PEEK does. Here is the

layout of memory in an HP-28C which contains the machine code part

of such a program. Yet again, if you have a memory-expanded HP-28C,

an HP-28S, or some other new model, then check Appendix E.

address contents equivalent explanation

(hex) (hex) instruction

4FF5F 20 length in bytes of object name X1’

4FF61 8513 object name X1’ nybbles inverted

4FF65 20 length in bytes of name, again

4FF67 69A20 address of list definition

4FF6C 07A20 address defining first binary

integer

4FF71 51000 length of binary integer+5 in

nybbles

--------------- First binary integer begins below ------eeeccmeoocenna-

4FF76 B7FF4 REL(5) 5 address of program start

4FF7B 133 ADIEX exchange A with DI to save pointer

4FF7E 103 R3=A save A (old D1) in scratch R3

4FF81 6E00 GOTO (*)+E jump forward over intervening info

4FF85 0 fill out to end of binary integer

--------------- First binary integer finishes here --------------------

4FF86 07A20 address defining 2nd binary integer

4FF8B 51000 length, +5 to allow for length

count

--------------- Second binary integer begins below ------ceecceeceae-n--

4FF90 1FOFFF4 DI1=4FFF0 set pointer D1 to address of X2

4FF97 15BF A=DATIIO copy register pointed to by DI

into A

4FF9B 6E00 GOTO (*)+E jump over intervening stuff again

4FF9F B fill out last nybble of binary

integer

--------------- Second binary integer finishes here --------ceccccee---

-103-

Chapter Four

4FFAQ

4FFA5

4FFAA

4FFBI1

4FFB5

4FFB9

4FFBA

4FFBF

4FFC4

4FFC7

4FFCA

4FFCD

4FFDO

4FFD4

4FFD9

4FFDE

4FFEOQ

4FFEA4

4FFE6

4FFEB

4FFF0

07A20 address defining 3rd binary integer

51000 length +5

--- Third binary integer begins here --------===cceeeeea-a-

1F00000 D1=00000 set pointer D1 to address to POKE

159F DATI=A 10 copy register A to this address

6E00 GOTO (*)+E jump over intervening stuff again

0 filler

--- Third binary integer ends here -----=---=-ceeccecuua-

07A20 address defining 4th binary integer

51000 length +5

--- Fourth binary integer begins here ----------e-mcceeeeen

113 A=R3 recover pointer from R3

131 DI=A put original pointer value in DI

142 A=DATO A get address of next command address

164 D0=D0+ 5 add 5 to DO to point to following

command

808C PC=(A) jump to the address given by A

--- Fourth and last binary integer of list ends here ------

09F20 address defining end of composite

object

A7000 length in nybbles of object, name

20 length in bytes of object name *X2’

8523 object name, ’X2’

20 length of name, again

E4A20 address defining a text string

51000 length+5 in nybbles

16-nybble dummy string string to be replaced by PEEK

result

extends to top of memory at 4FFFF

This POKE is similar to PEEK, except that X2 at #4FF90 now has the

value to be POKEd, and #4FFAA contains the address to which this

will be written.

-104-

Chapter Four

<< RCWS ROT ROT SWAP ;get word size, put value to POKE in

level 1

’X2’ DUP PURGE ;purge old copy of X2

ROT 28 STWS SLB ;shift POKE address one byte left

64 STWS ;set full word size so nothing will be

;lost

#E6F95100000F1 + ;add POKE address into program

#E63013314FF7B SWAP ;put first binary integer on top

#E6FB514FFFOF1 SWAP ;put 2nd binary integer next in stack

#C808461241131311 ;third binary now in level 1, put in 4th

4 ->LIST ;convert to a list of 4 binary integers

X1’ DUP PURGE STO ;purge X1 and store list in it

STO STWS ;store POKE value in X2, replace old

word size

#4FF76 SYSEVAL >> ;use SYSEVAL to execute POKE, then stop

’POKE’ STO ;store the POKE program

Once more, check Appendix E if your HP-28 is not a standard HP-28C.

The program could be written in other ways, but writing it by

modifying PEEK shows how it is often possible to modify a piece of

code to do a new job. (You can create POKE by doing ’PEEK RCL

EDIT and storing the new program.) In a similar way it is possible

to use pieces of code from ROM to do a job for you, instead of

writing a completely new program.

To use POKE, put the value to poke, as a text string encoded by COD,

on level 2, put the address to POKE this into on level 1 of the

stack, then do POKE. POKE only modifies RAM, if the address you

give is not the address of a piece of RAM, then the program will

run, but nothing will be changed. POKE is dangerous - you can hang

up the HP-28, or stop the display working, or get a Memory Lost if

you are not careful, so do not use it at random. If you prefer not

to use COD, you can express the value that you want to POKE as a

binary integer, (a binary integer takes exactly the same amount of

memory as an 8-byte text string), but remember to write all the

digits of the binary integer in reverse order, and to allow for

-105-

Chapter Four

leading zeros in the binary integer. Thus to POKE a hex string

0123456789ABCDEF, use #FEDCBA9876543210. This version of POKE

pokes sixteen nybbles, again after some practice you might like to

try writing your own version. Good luck!

One suitable use for POKE is to set the correct time in the system

clock, so there is no need for a separate correction factor. The

system clock is stored in two parts of RAM. 8 nybbles beginning at

address #407F8 hold a 32 bit number which is decremented (reduced by

1) 8192 times a second. The counter is decremented by a clock

circuit, not the CPU which is doing its own work. Each time this

counter goes through zero, it sets an "interrupt request" flag. The

CPU checks this from time to time and if it is set then the CPU

stops what it is doing, checks what caused the interrupt, and

resets the counter to count for another minute without interrupting;

in other words the CPU adds 8192*60 to the counter. Then the CPU

adds 8192*60 to a separate 48 bit counter which is stored in the 12

nybbles beginning at #4F003. This value is the time at which the

clock will be updated next. (If you POKE a big number into #407F8

then it will be a long time before the clock is updated, so your HP-

28 will not turn off after 10 minutes.)

When you read the system clock with #123E, the 48 bit counter is

read, then the value in the 32 bit counter is read and subtracted

from it. This should be the time now, and by POKEing the correct

value into the 48 bit counter you can make it so. A 48 bit counter

updated by 8192 every second will count for nearly 1089 years before

it goes back to zero, so you could use the clock as a calendar too,

but not to count all the way from 1 AD. Nor should you set the time

so near to its top value that it will cycle back to zero and change

the time while you are still using the HP-28 and not some even newer

HP toy. If you want to use the clock as a calendar too then it

might be reasonable to set it to zero at the beginning of January

1901. The HP-28C does not have room for a full set of calendar

functions so it is best not to use its clock as a calendar but

simply set it to zero at the beginning of the present day. That

will minimize the effects of inaccuracies in the clock, and so I

-106-

Chapter Four

suggest doing the same on an HP-28S.

Let us then use POKE to correct the clock, without bothering to use

it as a calendar. In point 3.2 we obtained a correction for the

clock and stored it in the variable called KOR. If you no longer

have that variable, or if your clock is no longer accurate, then set

KOR to zero, and then recalculate it as described in point 3.2.

Then recall KOR to the stack, multiply it by 3600 to convert it to

seconds, and again by 8192 to turn it to counts. This is the

correction we are going to add to the system clock. Now PEEK the

clock value, it is simplest to treat it as a binary number, so VISIT

the PEEK program and replace the string "DUMMYSTR" with the binary

number #0, if you have not already done so. Type #4F003 PEEK to get

the 48 bit part of the clock, then press + to add the correction.

Now type #4F003 POKE to put back the 48 bit clock, corrected to give

the right time. VISIT the TIME program and remove the steps KOR +

which should no longer be needed, and PURGE KOR. Press TIME to see

if the clock is now correct. The clock might be one minute slow,

see below, or if something has gone wrong then it might be

completely wrong; in that case calculate a correction again as

described in point 3.2, then repeat the instructions above. As

ever, check Appendix E if yours is not a version 1BB HP-28C.

The 48 bit clock at #4F003 might have been updated by a minute

between the time when you PEEKed at #4F003 and the time you POKEd

the corrected value. If so, then the corrected time will be a

minute slow, and you will need to add another minute to the

correction - so PEEK at #4F003 again, add 60*8192 to the result, and

POKE it back to #4F003 again. If you are unlucky then the clock

might update itself again just when you do this, so check TIME, and

if necessary repeat the correction. Once the TIME is right, you

might want to change PEEK again to use a text string instead of a

binary number.

-107-

Chapter Four

4.7 Jumping to Conclusions. Writing HP-28 machine language programs

takes a lot of memory. Much of this is used for the ancillary

programs such as PEEK or COD, not for the machine language programs

themselves. Even so, it is better to use SYSEVAL to execute pieces

of programs from ROM, rather than write your own machine language

programs which take up valuable space in RAM. If you have an HP-28

with more than 2K of user memory in it, then you will be able to

store more programs, but after a Memory Lost you will have more work

putting the programs in again. In some cases, such as very short

programs, or programs which need to be independent of the HP-28

version, it is still better to use your own machine language

programs. The interrupt off program and PEEK are examples of this.

In addition there are operations which can only be carried out by

machine language programs.

In general though, it is best to look for pieces of programs in ROM

to provide new commands that you need. If you want a programmable

version of a non-programmable operation then write a program to look

for the name of that operation in ROM by using PEEK. If you can

find the name then check the instructions that come after the name;

they usually consist of a set of addresses, one of which should

carry out the required operation. Then you can use this address and

SYSEVAL to include the command in programs. The addresses ahead of

this one usually check that the HP-28 is in the required state, and

that the stack contains any objects needed by the operation. It is

important to make sure you check the same things in your own

program! In the same way, if you want a command which is similar to

a programmable command then it is best to use PEEK to examine the

addresses which make up that command. Say you want to write a

command similar to PIXEL; PEEK lets you find that PIXEL begins at

address 1BE87 (in version 1BB HP-28Cs), so try PEEKing at this

address and the ones after to find the addresses of the subprograms

used to execute PIXEL.

Once you have found the addresses which make up a command, you can

use SYSEVAL to execute the subprograms which make up that command,

one by one. Unfortunately, SYSEVAL cannot execute a whole string of

-108-

Chapter Four

subprograms; you cannot get it to execute part of a program. If you

do #XXXXX SYSEVAL then SYSEVAL reads the 5 nybbles at address

XXXXX, jumps to the address given by those five nybbles, and carries

out the machine language instructions beginning at that address.

One of two things can happen, as shown below:

Case 1:

#XXXXX SYSEVAL next command

\ in program

\ \
#XXXXX contains YYYYY \

\ \
SYSEVAL goes to address YYYYY \

\ \

YYYYY contains the first machine language \

step of a machine language subprogram, |

the subprogram is executed until it 1

comes to the PC=(A) instruction at its |

end. Then the HP-28 goes back to the /

next command after SYSEVAL. ------>emmmn

In this case, the HP-28 carries out one machine language subprogram,

then goes back to the command after SYSEVAL.

Case 2:

#XXXXX SYSEVAL next command

\ in program

\ \

#XXXXX contains 02C67 \

\ \

SYSEVAL goes to address 02C67 \

\ \
02C67 -- AAAAA --> BBBBB ... JJJJJ --KKKKK--> 02F90

In this special case the address 02C67 contains

-109-

Chapter Four

the first machine language step of a machine

language subprogram, which creates a new

program thread. Once the new thread is

established the HP-28 carries on executing

subprograms whose addresses come after 02C67

in the thread, until the subprogram 02F90 is

reached. When this is executed, it kills the

thread and returns the HP-28 to the previous

thread, which was the one containing SYSEVAL.

In other words, SYSEVAL can:

EITHER execute one machine language subprogram

whose starting address is stored at XXXXX

OR it can execute a whole RPL subprogram whose

starting address is stored at XXXXX and which

program begins with 02C67, is made up of other

subprograms, and ends with 029F0.

However SYSEVAL cannot execute part of an RPL subprogram; itcan NOT

do the following:

#XXXXX SYSEVAL next command

\ in program

\ \

#XXXXX contains BBBBB \

\ \

SYSEVAL goes to address BBBBB \

\ \
02C67 -- AAAAA -- BBBBB ... JJJJJ --KKKKK--> 02F90

In this case we would like SYSEVAL to execute

PART of an RPL subprogram, but SYSEVAL is not

designed to do that.

What SYSEVAL does is start at the beginning of a machine code

-110-

Chapter Four

subprogram, execute it all, and finish at the end, or start at the

beginning of an RPL subprogram, (marked by 02Cé67) execute each

subprogram within that RPL subprogram, and finish at the end.

SYSEVAL goes from commencement to conclusion, it cannot jump to the

middle of an RPL subprogram or of a machine language subprogram and

carry on to the conclusion.

The point of this section, and of its title, is that it is often

useful to jump into the middle of a machine language subprogram or

an RPL subprogram and execute that program to its conclusion. As

SYSEVAL cannot do this we need our own machine language programs to

do these things. Of course there may be times when you want to

execute a piece from a subprogram, without coming to its end. That

is more difficult; in general you have to put that piece of program

in RAM and execute it there, unless you can work out some way to

exit from a subprogram in the middle - this might be possible if a

test in the subprogram allows the subprogram to terminate early.

Jumping into the middle of a machine language subprogram is not too

bad. You neced to find the address you want to go, then execute the

single machine code instruction GOVLNG (GO Very LoNG) that allows a

machine language program to jump to any other place in memory.

Presumably the address to go to will be in level 1 of the stack, as

is the case with SYSEVAL, so our machine language subprogram must

take the address from the stack and drop the stack one level. Once

our subprogram has jumped to the machine level subprogram in ROM,

that subprogram will execute to the end, then it will use PC=(A) to

go directly to the command following our machine language

subprogram, so our subprogram does not itself need to finish with

PC=(A). The machine language part of this subprogram would look

like this:

-111-

Chapter Four

address contents equivalent explanation

(hex) (hex) instruction

4FFF4 4FFF9 REL(S) 5 address where machine

code begins

4FFF9 8DXXXXX GOVLNG XXXXX go toaddress XXXXX

(XXXXX must be stored

back to front)

This is less than 16 nybbles long, so we can write a program which

works the same way as PEEK and POKE, but stores all the machine code

in one binary integer at the top of memory.

<< RCWS SWAP 52 STWS ;save the present word size and set it to

SLB SLB SLB SLB ;52 shift the address 32 bits to the left

D84FFF90 + ;add the address to the beginning of the

;program (the 0 makes it an exact number

;of bytes long)

’X2’ DUP PURGE STO ;store the program in X2 at the top of

STWS ;memory, put back the previous word size

4FFF4 SYSEVAL >> ;jump into the machine code

'JMPM STO ;store the program "JuMP to Machine

code"

This program stores the machine language code while the binary word

size is set to 52 bits, so the word is stored in a field whose

length is rounded up to the next multiple of 4 bits, which is 52

bits anyway. That means the GOVLNG instruction is stored at address

4FFF9, so SYSEVAL has to jump to address 4FFF9, and this address is

given at 4FFF4. As an example of using JMPM, try putting an object

on the stack, then doing #205F JMPM. This jumps directly into the

machine language part of the DUP command, so the object on the stack

will be duplicated. It is clearly quicker to use DUP itself, but

the point of JMPM is that it lets you experiment by jumping to any

part of the machine language in ROM. Jumping into ROM can easily

lead to Memory Lost, so it is as well that this program is short and

does not use any other subprograms - you can re-enter it after a

Memory Lost and carry on testing. If you want to use a piece of

-112-

Chapter Four

machine language code in ROM which finishes with a RTN instruction

then rewrite JMPM so it executes GOSBVL (8F instead of 8D) and is

followed by A=DATO A, D0=D0+5, PC=(A).

Jumping into the middle of an RPL subprogram is more challenging. I

shall use this as an example to explain details of three extra

machine code techniques for the HP-28:

1. We must reset the thread pointer (in DO) so that it points to the

thread containing the target address.

2. We shall read the address directly out of the stack (using DI),

and drop the stack, using machine code.

3. Instead of storing the machine language code at the top of

memory, we shall use a special system object which is recognized as

a string of machine language code to be executed immediately. This

can be stored in the middle of a program anywhere, and although it

is displayed only as "System Object" when you look at a program, it

is executed correctly. A piece of machine code stored like this in

the middle of a program in a higher level language is called in-line

machine code.

The RPL part of the program to do all this will be:

<< RR RL ;check for a binary integer in level 1

"ABCDEFGHIJKLMNO" ;string to be replaced by machine code,

"B" >> ;see below used only to check the program

’JMPR STO ;store the program "JuMP to RPL code"

The instructions RR RL check there is at least one object on the

stack and that it is a binary integer, but do not change it. If

level 1 does not contain a binary integer then the program will stop

and display an error message here. The following string will be

replaced by in-line machine code which will transfer the program

pointer from this program to the RPL subprogram into which we want

to jump. If this jump is successful then at the end of that RPL

-113-

Chapter Four

subprogram, we shall jump directly back to the program which used

JMPR; this means we shall not go back into JMPR, so the "B" will not

be put on the stack. If you use this program and "B" is put on the

stack then there is something wrong with your version of JMPR.

The machine code program to do all this is as follows:

address content equivalent explanation

(hex) (hex) instruction

7 69C20 MCODE address defining a string of machine

code

7 32000 LEN length of string, stored back to front

7MM 147 C=DATI A get address of level 1 object

77 174 DI1=D1+ 5 add 5 to DI, then add 1 to D, this in

effect

77 E7 D=D+1 A drops the item in level 1

7 137 CDIEX put old level 1 item address in D1

MM 179 DI1=Dl+ A add 10 to DI, so it points to the

binary value

M 143 A=DATI A copy first 5 nibs from old level 1

object to A

7777 130 D0=A put this address in DO

MMM 164 D0=D0+5 next address will be 5 nibs forward

”7m 135 D1=C restore stack pointer from C to DI

77 808C PC=(A) jump to address now given by A

The addresses are all given as ????? because these instructions will

be carried out as in-line code, which is position independent. The

first two instructions are not really machine code. The first is

the address of a subprogram which tells the HP-28 to treat the

following as a string of machine code instructions. The second is

five nybbles giving the length of the string, including these five

nybbles themselves. Both of these first two are stored back to

front; they tell the HP-28 that this object is a string, not of

text, but of machine code instructions, so the address of the next

subprogram to be executed does not come immediately after the 69C20,

instead it is LEN nybbles further along. This means DO will be

-114-

Chapter Four

incremented by LEN nybbles before A=DATO A and PC=(A) are used to

jump to the next subprogram. Normally this would mean that the next

instruction to be carried out would be "B" in JMPR. In this case,

the purpose of the machine code is to change the pointer DO, so "B"

will only be put on the stack if the machine code program did not

change the pointer.

The next instruction reads the value pointed to by D1. DI points to

a place which contains the address of the level 1 object. The stack

itself is just a list of addresses, each of which points to the

place where the corresponding stack object is actually stored. The

objects themselves are stored elsewhere, they might be variables,

stored at the top of RAM, or they might be objects which exist only

in the stack, stored in a separate part of RAM, or they might be

commands which are in ROM. The list of addresses usually has room

for extra addresses so that the stack can be expanded; if the level

1 object is dropped, then D1 moves up by 5 nybbles, to point at the

previous address, and the number of free places in the stack

increases by 1. The number of free places is stored in the A field

of CPU register D; if this number ever becomes zero then the list

must be expanded, so more memory needs to be made free. (The

process of "garbage collection" is used to do this; it looks for

pieces of memory which have been used but are now free and moves

things around so that the stack list can be extended. If this is not

possible then the message "Insufficient Memory" is shown.) A

schematic diagram of all this is shown below. The next two

instructions DI=DIl+ 5 and D=D+1 A are used to drop an object

from the stack; the stack "forgets" about this object, although it

is still stored in memory and can be read. If the object existed

only in the stack then it becomes a candidate for deletion the next

time garbage collection is carried out.

-115-

Chapter Four

address of level 3 object

address of level 2 object

DI1---> address of level 1 object--- D = n, number of places

(room for another address) left in stack

(room for another address) address list before and

it runs out of space

I

I

I
| "garbage collection"” is

. | needed to provide more room

(room for nth extra address) |

I

level 1

object

Schematic of stack control by D1, the stack address list, and D

Although the program has "dropped" the object from level 1, the

address of that object is still stored in register C. That object

is the binary integer telling JMPR what address to jump to, so we

now need to read that address and jump to it. The next instruction,

CDIEX brings the object’s address to D1, and at the same time saves

the previous contents of D1 in register C. At this point, D1 points

to the beginning of the binary integer, the actual value begins 10

nybbles further, past the address of the object definition and the

object length. The next program step adds A (decimal 10) to DI so

as to point at the value itselff. A=DATI A reads this value into

register A. At this point the program is ready to jump to the

address given to JMPR, but DO is still pointing to the next

instruction in JMPR ("B"). DO0=A is used to copy the same address to

the program pointer and DO0=D0+ 5 is used to point DO to the next

RPL instruction past the present one. These two steps make sure

that the RPL instruction at the address given to JMPR, and the

instructions after it, will be carried out, unlike SYSEVAL which

carries out just one instruction. DI1=C restores the original value

of DI, and finally PC=(A) jumps from the thread of the JMPR program

-116-

Chapter Four

into the thread beginning at the address given to JMPR.

If you find this beyond comprehension, try reading it again and

drawing some simple diagrams, like the schematic shown above. You

might also find it helpful to read the Assembler chapter of the HP-

71B FORTH/Assembler ROM manual, particularly the section on FORTH

primitives. Look in Appendix D for more details too. If you still

do not understand, follow the example below, the results will be

interesting even if you do not understand them!

To enter the program, type in and store JMPR as shown above. Make

sure you have the PEEK and POKE programs in your HP-28 too. You

will need a CODE program as well. If you do not have enough room in

memory for all these programs then you may need to delete some

programs. If you still have too little room for the CODE program

then use the following short version:

<< B->R CHR »>> 'CDE STO

This can be used to build up a string of binary bytes, given the

individual bytes that make it up. For example to create the binary

bytes

1A3CSF

do: HEX ;set. HEX mode

#Al CDE ;create the character equivalent to byte 1A

#C3 CDE + ;create byte 3C and append it to 1A

#F5 CDE + ;create byte 5F and add it to the string

To set up the JMPR program do the following (take care to avoid

mistakes):

1. Put the programs PEEK, POKE, JMPR (as shown above) and CODE (or

CDE as above) in the HP-28. Make sure JMPR is the first variable -

if need be do { JMPR } ORDER to put JMPR first.

2. Use PEEK to find the beginning of the text string which is to be

replaced. We need to change the definition from that of a text

string to that of an in-line program string, so we neced the five

-117-

Chapter Four

bytes ahead of the text string too. You should find this at address

#4FF1C which PEEKs the string "N*03ABC". If you DECODe this you

will see E4A2032000142434. 02A4E is the address of the subprogram

which defines a text string, we need to replace this with 02C96. If

you have the CODE program then you can edit the original text string

to change this and then use CODE to turn the text string back into

eight bytes to be POKEd. If you do not have CODE then use CDE

instead. Do 3 8 SUB to get the piece which is not to be changed,

then do #96 CDE #2C CDE + SWAP + to set up the new string.

In either case, use #4FFIC POKE to put the new object definition

into JMPR.

3. Now we use PEEK to get the text string itself and change it. We

neced to create a 15 byte long machine language program to replace

the text string "ABCDEFGHIJKLMNO", but PEEK and POKE both work

on eight byte strings, so we need to do the job in two parts. We

can deal with seven bytes, leaving one unchanged, and then with the

other eight bytes. First PEEK address #4FF24 which should show up

as "#ABCDEFG". The first byte is 00, part of the string length

definition which we do not want to change, the other seven bytes are

to be replaced by 147174E7137179. Use DECOD to decode the string

and edit it to replace all except the first four digits, then use

CODE to set up the new string. If you do not have CODE then do 1

2 SUB to keep the first two bytes, then #17 CDE + #47 CDE +

#7E CDE + #31 CDE + #17 CDE + #97 CDE + to build up the

rest of the string. (You could use binary integers to build up the

strings instead of using CODE or CDE.) Note that the first byte is

"A" which does not need to be replaced. Use POKE to put the new

string at address #4FF24.

4. The remaining eight bytes to be replaced are at address #4FF34.

There is no need to PEEK there, unless you want to check that

everything is still working and that address still contains

"HIJKLMNO". This is to be replaced by the rest of the machine code:

143130164135808C. As this is all a single string of hexadecimal

digits it is probably fastest to do:

HEX 64 STWS #C808531461031341 #4FF34 POKE

-118-

Chapter Four

5. To check this has worked, do ’JMPR’ VISIT and you should see:

<< RR RL System Object "B" >>

The text string has been replaced by an in-line string of machine

code which the HP-28 cannot decompile, so the code is displayed only

as a System Object. Although the decompiler cannot display the in-

line code, it does recognize the code to the extent that the "B"

after it is displayed correctly. You can VISIT or RCL this program,

but if you try to edit it then the in-line code will be replaced by

the two words ’System’ and ’Object’, as was explained earlier.

6. If you have made any mistakes then trying to VISIT JMPR will

probably hang up the HP-28 (stop it working). Try doing a System

Halt - this might bring the HP-28 back to normal, but most likely

you will get a Memory Lost, and will have to start over again. This

is the sort of occasion that makes one wish the HP-28 provided some

way of reading programs back in instead of requiring you to type

them in again from the keyboard.

JMPR is provided here as an example of in-line code, and as an

experimental tool. For example the NEXT operation 1is not

programmable, but in point 3.11 we saw that instructions beginning

at #E514 provide the instructions used to do the NEXT operation. If

you use PEEK to decipher NEXT you will find that it is a long string

of subprogram addresses, beginning with 07A4A which is stored at

address E530. You can use JMPR to jump into different parts of the

NEXT program and see what they do. The first few are:

#E530 JMPR -clears the display

#E535 JMPR -clears the display

#ES53A JMPR -clears the display after a short wait

#E53F JMPR -brings a binary integer to the stack

ctc.

#ES55D JMPR -drops two objects from the stack, then initiates NEXT

You can write a program to execute just part of NEXT by using this:

-119-

Chapter Four

<< 11 ;put two numbers on stack to be dropped

#E55D JMPR ;jump to the main part of NEXT

#C148 SYSEVAL ;hide the menu labels

#A28B SYSEVAL ;show the menu labels, this shows the current

>> ;menu activated by jumping into the code.

;End the program

Try using this - you will find it does not behave exactly like NEXT,

you may be able to make use of the differences.

4.8 POKEing the key buffer. This chapter has already described how

to put non-programmable commands into programs, but looking for the

SYSEVAL values can take a long time. Another way of making a

program carry out a non-programmable command is to make it seem that

the appropriate key has been pressed by POKEing the keystroke into

the key buffer. The key buffer is in the 16 bytes from address

#4F03A to #4F058, with keystroke 1 at address #4F03A, keystroke 2 at

#4F03C, and on up to keystroke 0 at #4F058. The number of the most

recently executed keystroke is stored as one nybble at address

#4F(038, and the number of the most recently stored keystroke is in

the nybble at #4F039. Each HP-28 key has its own keycode, as shown

in the figure below - my thanks to Kim Holm for providing it. To

pretend that the "lower case" key has been pressed, for example, a

program can POKE the binary integer #0A 10 into address #4F038. When

the program stops running the HP-28 reads this string from the key

buffer, assumes the last keystroke read was at position 0 in the key

buffer, there is one more keystroke to deal with at position 1, and

the key is key 0A - so it sets lower case mode. Here’s something to

amaze your friends; write a program which does: << #5149442E8050

#4F038 POKE »>>, store it in a variable KK, then press the KK key.

The keycodes are for SHIFT, CATALOG, F, USE, NEXT, and you will see

all of this carried out! Actually, you do not need to store a

separate keystroke for the SHIFT key, you can just add #80 to the

key to be shifted, for example you can POKE #BF10 into the key

buffer to carry out PREV. Two warnings - the key buffer is only

read when your program stops, and 7F or FF (ATTN) makes the HP-28

stop reading the buffer and restart your program.

-120-

Chapter Four

51 (46 [44 [49] [4A [4Bl

|E0 @3 @0 GO GB GH
33 (8 3d GB (BA B3

[z0 (2B (28] [[Z6]
0 08 @ 3 2 [0 OB (4 [04
] 02] 08 07 06 [14] L1s] [13] (10] LoD [OE]

06 [©0d [08 [OA [08

4.9 Where next? This chapter has provided some neat "customization"

tricks and a set of programs to be used by explorers, particularly

those who already know something about Saturn machine code and want

to try it out on the HP-28. If you want to learn more or share your

discoveries, join a user club! A list is in Appendix A, some club

journals have already published machine language programs. If

enough interest is shown then maybe someone will even write a book

specifically about HP-28 machine code programming.

-121-

Chapter Five

CHAPTER 5 - FURTHER CUSTOMIZATION

This chapter describes some additional sorts of customization; such

as hardware modifications, especially adding extra memory to the HP-

28C and speeding it up, and customization of the USER menu,

particularly using HP-28S subdirectories. As not everyone will be

willing to pull their nice new (and expensive) HP-28 to bits, I

shall begin the first part with a change requiring no alterations at

all.

S.1 A few extra labels. The label above the left hand keyboard

provides useful information, but not nearly enough - it gives no

TYPE numbers, and a list of the flags that control features of the

HP-28 would be very useful too. Both sorts of information can

easily be written on an adhesive label which can be stuck to the HP-

28. Other information worth recording is the amount of memory used

by different objects, or the numbers used to get different menus

with the HP-28S MENU command or the HP-28C MENU program described

in point 3.11. As mentioned in that point, the MENU command is most

helpful when you want to hold the HP-28 in one hand, with the left

hand keyboard folded under. This means that the menu numbers should

be written on a label stuck above the display. The same label could

have a list of flag numbers and descriptions on it too, so that you

would not have to turn the HP-28 over or look for a manual when

using MENU or flags. The label could also describe any special use

you may make of some of the flags 1 to 30; it could even have some

SYSEVAL values if you use them.

Further information worth having includes the default limits of the

plot area, and the formulae for display positions, given in the PLOT

section of the Reference Manual. You might like to have a list of

the different looping commands - do you always remember that FOR

requires a name but START does not? Again, you may want to remind

yourself which objects and structures are automatically completed

for you by the HP-28 and which ones you have to complete yourself.

I often forget that, whereas END is automatically put at the end of

a program if needed, STEP or NEXT are not. You can doubtless think

-123-

Chapter Five

of other things to put on such labels. The point is that you can

customize your HP-28 by making your own labels and sticking them

above the display, and over the label above the left keyboard. If

you wish, you can put labels on the back instead of, or as well as,

putting them inside. Labels on the back are more likely to get

dirty or be torn off, but some companies (EQuCALC for one, see

Appendix A) sell soft leather cases which will keep an HP-18, an HP-

19 or an HP-28 clean and protect labels stuck to it. A nice fold-

away label was published in VIN4 of HPX Exchange, sece Appendix A.

One final point, if several people near you use HP-28s then it is

worth having a label with your name on it attached to your HP-28

too.

* % *

The next part of this chapter describes the hardware inside the HP-

28, and how you can modify it, concentrating on the HP-28C. This is

not something to be done by the faint-hearted or the non-expert. I

suggest you read through it all and only then decide whether to open

up your HP-28: several organizations offer a service of putting

extra memory into an HP-28C for you. Much of the information and

pictures here come from studying an HP-28C bought for the HPCC club

R&D project, this is just one of the advantages of belonging to a

user club - you can share out the costs of an expensive project, and

share in the discoveries that come from it. Even if you have no

intention of opening up your HP-28 you may find this part

interesting as it describes how the HP-28 works.

5.2 The memory problem. Most new HP-28C users take less than a day

to decide they would like more memory in their HP-28C. The 1683

bytes of user memory (RAM) available after a reset can hold just

over 100 real numbers or 300 program steps (or intermediate

combinations of the two) but in practice there is room for less than

that, since you need to store other things too. Some tricks that

let you use less memory have been described in previous chapters,

but eventually the question arises - can we put in more RAM? One of

the things this chapter will show is how that can be done.

-124-

Chapter Five

But first, why is so little RAM (Random Access Memory) available to

users? There is 128K of ROM (Read Only Memory) where the built-in

instructions are stored, yet only 2K bytes of RAM, with only about

1700 bytes available to the user. The HP-71B is controlled by a CPU

chip similar to that in the HP-28, has 16K bytes RAM built in, and

4K RAM modules from HP can be added to the HP-71B, so why is there

not the equivalent of at least one 4K module in the HP-28C? Well,

the Saturn CPU chip in the HP-71B and the HP-28C (and 18C) sends and

receives data only 4 bits (half a byte, or one nybble) at a time, so

as to reduce the number of data lines that have to be fitted on the

circuit boards. To speed up operations each RAM and ROM chip has a

"controller" which stores the address currently being read or

written - that way the Saturn CPU does not have to send out a

complete address every time it requests or sends some data.

Instead, the address is updated by each chip after each read or

write; at the next read or write the chip checks whether the current

address is on board that chip, and responds if necessary. This

means the RAM used with an HP-28 cannot be just any old RAM chip

bought off the shelf; it has to come with a controller. HP make

their own RAM chips for the Saturn with 1K bytes and a controller

built in. A single 4K memory module for the HP-71B contains four

such 1LGS8 chips; to put 4K of RAM into the HP-28C, HP would have had

to design it so that four such chips could be built in. These chips

are normally mounted inside larger units called hybrids, but there

is only a small amount of space inside each hybrid, and there is

very little room for hybrids on the HP-28 circuit board. As HP also

build small amounts of RAM memory into the display driver hybrid

chips, that is where they put the RAM of the HP-28C, thus reducing

the number of chips on the circuit board.

Apart from the size limits, a further design restriction was that

the HP-28 had to pass tests on its ability to withstand various

trials, including a 1 meter drop, and the only way they could have

built more RAM into the HP-28C while sticking to these strict tests

would have been to use a new type of RAM chip or display hybrid. As

we know, they did this later, on the HP-19B and the HP-28S, but the

first calculator of this type, the HP-18C, was designed to use only

-125-

Chapter Five

2K of RAM. The HP-28C software was written later and allowed extra

RAM chips to be added. (For example there is the message complaining

that you are trying to edit a line which has more than 4096

characters; the HP-28C can store a maximum of about 1600 characters,

so this message is clearly a leftover from a design allowing for

more RAM.) In the end though, the HP-28C was built using the same

circuit board and RAM chips as the HP-18C, giving just 2K RAM; a

year later more compact chips were used to produce the HP-28S with

more memory. Still, as stated above, the HP-28C software, and its

circuit design too, do allow HP-28C owners to add more RAM

themselves; if you don’t mind your HP-28C being more delicate than

HP specifications allow, then you can build in more memory.

5.3 Memory configuration. To exchange information with memory, the

Saturn CPU needs to know the address of that memory. A RAM or ROM

chip can either always have the same address, or it can let the

Saturn CPU choose an address for it. In the first case, the chip is

said to be "hard addressed" - for example the instructions which

control the fundamental operations of the HP-71B or the HP-28 need

to be in a hard-addressed ROM. In the second case, the chip is

"soft addressed", and the CPU must give it an address - selecting

this address and telling it to the chip controller is called

"configuration" - the CPU can do it either after a reset or every

time the calculator/computer is turned on. The HP-71B needs to be

able to configure itself when it turns on, since modules may have

been plugged in or removed while it was off. Thus HP-71B plug-in

RAM modules are soft addressed, and the internal 4K modules which

are nearly identical are soft addressed too. A device such as the

HP-18C which has a predetermined amount of ROM and RAMcan have all

its chip addresses chosen when the device is designed, so everything

can be hard-addressed, and there is no need for a configuration

process to be carried out. Fortunately for us, the HP-28C was built

to perform a configuration process (maybe the designers planned to

build the HP-28 so that extra modules could be plugged in) and does

have signal lines which transmit the configuration commands. This

means we can build HP-71B RAM modules into an HP-28C, and everything

will work!

-126-

Chapter Five

The simplest way to get some RAM that will respond to HP-28

configuration commands is to buy a 4K, 32K (or even 64K) plug-in

memory module for the HP-71B, open it up, remove the RAM hybrid with

its carrier board, and build that into the HP-28C. Some people have

removed built-in 4K RAMs from their HP-71Bs, and replaced them with

32K RAMs - the 4K RAMs taken out of an HP-71B during such an

operation are nearly the same as the 4K inside a plug-in module, and

can be used as well. 4K modules can be bought from HP dealers, or

from larger discount stores such as EQuCALC, and that is where you

can buy the 32K or 64K front-port HP-71B modules made by CMT.

Zengrange in the UK also sell 32K RAM modules. If you do decide to

add 32K to an HP-28C, be sure to buy it in the form of a front-

loading HP-71B module, as the ones which go in the card reader port

are larger (and more expensive). You may be able to buy a 32K RAM

board without the module case, this is cheaper but of course the

board 1is less well protected during transit. It may not be

necessary to add 32K (or 64K) RAM - clearly some people may need

this much, but remember there is no way to store all that

information outside an HP-28C and then read it back in. Many people

will find an extra 4K sufficient, and much cheaper!

* % %

WARNING! Opening up an HP-28 is not safe (for the HP-28) unless you

have a suitable workplace and suitable tools. Otherwise just read

this section and look at the pictures. If you do decide to open up

your HP-28, it would still be wise to read the whole section first,

and obtain all the necessary tools and components. It is no good

opening up an HP-28C so as to put in some extra RAM if you do not

yet have that RAM! In any case remember that opening up an HP-28C

or HP-28S renders any warranty totally null and void!

If you really do want more memory than the HP-28C has, you might

find a friend who needs less RAM and is willing to buy your HP-28C

at a reduced price, then you can use that money towards the cost of

an HP-28S. That is likely to be much cheaper and safer than adding

-127-

Chapter Five

extra memory to an HP-28C. On the other hand, you might want to

have 64K, which is only possible on an HP-28C, or you might have

other reasons for opening your HP-28C or HP-28S.

5.4 Opening it up. The HP-28 is not designed to be opened and

repaired, so you have to cut it open or break into it. The chip to

which you solder the additional RAM is exactly 1 cm. square: if you

look at the back of the HP-28C then this chip’s left-hand edge lies

exactly along the right-hand edge of the upper left-hand rubber

foot. If you have the right tools, you can study the photographs in

this book and then cut a hole in the back to get at the chip, but

the bender (the metal circle that makes the BEEP) is glued to the

case near it so this requires great care.

To open the HP-28 from the front first take out the batteries and

remove the stick-down overlays above the display and over the

keyboard. If you do this carefully then you will be able to put the

overlays back on cleanly later and the HP-28 will look as if nothing

has been done to it. Try lifting up a corner of the overlay, then

pushing a flat plastic card slowly under it and working it along the

overlay, lifting it up slowly. A thin credit card or a British

Telecom phonecard should do. (Our French friends should not use

their telephone credit cards which are much thicker.) Below the

overlays you will find a lot of round holes, with a small button in

the middle of each one - see photograph 1. The little button in

each hole is actually the top of a peg which comes up from the back

of the case, goes through the hole, and spreads out to hold down the

front of the case. You will have to remove the top of every peg by

drilling down into it using a drill bit with a diameter slightly

smaller than that of the hole. The figure below shows the peg and

the drill from the side. You should drill down only just far enough

to remove the top of the peg, so that it no longer prevents the

front being separated from the back. If you manage to leave a

little of the peg still standing in the hole then you will be able

to put the HP-28 together more easily. NEVER, NEVER drill too far

down, or you will drill into the keyboard contacts and ruin your HP-

28.

-128-

Chapter Five

| | Drill bit

||

\/

keyboard top

surface

peg holding

front to back

back plate

of calculator

Drilling down to remove peg tops

Once you have drilled through all the pegs, remove the peg tops and

the dirt left behind. Put some sticky tape over the whole keyboard

so that the keys are held in place and will not fall out when you

remove the keyboard from the case. Now pull the case apart. You

may have to take care at the top left corner where the glue around

the infra-red bulb holds the top and bottom together, but it can be

worked free. Photograph 2 shows the circuit; the mat below the keys

has been removed in this photograph to show the keyboard sandwich.

The metal circle above the keyboard is the bender.

5.5 What’s inside? You can now clearly see the circuit board. It

carries CMOS circuits which are very susceptible to damage by static

electricity, so take great care to avoid static - do not stand on a

nylon carpet. The large space above the circuit board is the

battery compartment; the two springs which hold the batteries can be

seen. These springs are held through two square holes seen above

the display in photograph 1. The two springs standing up from the

circuit board connect to the bender which is attached to the

backplane.

Photograph 3 is an enlargement of the rear of the HP-28C circuit

board. The board has been detached from the display to which it is

normally held firmly. There is no need for you to separate the

-129-

Chapter Five

them together again properly. The two large chips are the two

system ROMs. The other side has more circuitry with three chips -

two large ones at left and right which are the display drivers, and

a smaller CPU chip between them. All three are surface mounted and

covered in epoxy to hold them down firmly. The HP-28S circuit is

different, one chip carries the CPU, the ROM, and one display

driver. A second chip is an industry standard 32K RAM chip, and the

remaining chip carries all the other circuitry. The use of fewer

chips means that the HP-28S layout is less complicated and therefore

cheaper, so the HP-28S can have more RAM and yet can be sold at the

same price as the HP-28C.

The display consists of 137 vertical columns by 32 horizontal lines,

plus 7 annunciators (treated as vertical columns) and 1 horizontal

line to control the annunciators. Each display dot or annunciator

can thus be turned on if both its horizontal and vertical signals

are powered up simultaneously for a moment. The left-hand display

driver (looking from the front of the HP-28) controls the leftmost

77 vertical columns of the display, and the 7 individual display

annunciators. The right-hand display driver controls the rightmost

60 vertical columns, and all 32 horizontal lines. If you have ever

played with SYSEVAL, you have probably found some addresses which

turn on all of the left-hand half of the display, and a small part

of the right-hand half as well, but not the annunciators. This is

because these addresses carry out some operation which turns on ALL

of the left hand display driver, but leave the right-hand display

driver unchanged.

We can be sure that the middle chip on the other side is the CPU

because it connects directly to the two springs which drive the

bender. The HP-71B IDS (Internal Design Specifications) which can

be purchased from HP tell us that the bender is driven directly by

the Saturn CPU. In any case, the August 1987 HP Journal gives many

of these details. The connections to the right-hand hybrid look

rather complicated, and it is turned at a right angle compared to

the same chip in the HP-18C. It is simpler to study the connections

to the left-hand hybrid (marked 1LP3-0016 in the HP-28C). Starting

-130-

Chapter Five

at its lower right hand corner and going counter-clockwise (up the

right-hand edge) we find (after a great deal of effort, this

information is NOT given in the HP Journal) that the pin connections

are as follows:

1. BO - Bus line 0 7. *CD - Command/Data selector

2. Bl - Bus line 1 8. DIN - Daisy In

3. B2 - Bus line 2 9. DO - Daisy Out

4. B3 - Bus line 3 10.GND - Ground

5. *STR - signal strobe 11.VDD - Power supply

6. Not connected

These are all the signals we need to use for connecting additional

soft configured memory, so I shall stop there. All the other pins

are connected to one of pins 8, 10 or 11, except for pin 28 which

like pin 6 is not connected to anything. The daisy chain input line

carries the signal which tells each chip’s controller in turn to

carry out the operations required to soft configure it, and the

daisy chain output line passes this signal on to the next chip in

sequence, once the chip has been configured. For those who are

interested, pin 9 is connected to a lead which goes through the

board and under the right hand display driver, but it is not clear

that there is an electrical connection to the driver hybrid. The

right hand hybrid does not have a separate daisy chain input line;

as with port 1 of the HP-71B, its daisy chain input signal is

connected to VDD, so it is always high. Its pin 9 also goes to the

corresponding display driver; again there is no clear connection.

The Saturn design allows for more than one daisy chain, the HP-28C

seems to have two: one goes directly to the right hand hybrid, and

from there to the display driver below. The other goes to the left

hand hybrid and then to the driver below. The left hand hybrid has

a clear daisy chain input signal, which we can safely use to

configure one or two RAM chips which we build in.

-131-

Chapter Five

5.6 What else is there? Before going on to explain how to connect

the extra RAM, let me pause to describe a few other things. The

infra-red transmitter bulb is the transparent object at the top

right of photograph 3. It is connected to two signal lines, and

there are two more connectors to its right: these are not for I/O as

some people had hoped, they are just VDD and GND. The left-hand

connector to the bulb is controlled through a transistor which

amplifies the signal, if you have a sufficiently strong dislike of

communicating with a printer by I-R then you could connect a printer

directly via two wires attached to the right hand bulb connector and

to the small pad at the left of the left hand bulb connector. You

could even try using this to send data to another device. This is

one modification that can be made to the HP-28S as well as the HP-

28C. There is no easy way of using these lines to send anything TO

the HP-28, but in principle that can be done, since the I/O line is

a two-way line - it’s just that there is no circuitry or software

built in to receive inputs.

Instead of building an interface you can buy the Hook-uP made by

RUSH systems and use it to send information to a PC, see Appendix B

for details.

If you really wanted to interface your HP-28 to a microcomputer you

could send data and programs from the HP-28 to the micro using the

printer signals. Then you could send signals from the micro to the

HP-28 through the 21 keyboard connectors along the bottom edge of

the board. You would have to program the micro to interpret signals

intended for the printer, and to translate anything it sends to the

HP-28 into keystroke combinations - but this could be worthwhile if

you add 64K RAM to an HP-28C and want to send out or read in a lot

of programs or data. You could even set the HP-28 TRACE flag so

your micro could use the printer output to tell when the HP-28 has

finished with one set of keystrokes and is ready for the next.

Directly below the large capacitor at the top of the board and to

the top left of the right-hand hybrid is a 180 milliHenry inductor.

To its left are two capacitors used with the inductor to form an LC

-132-

Chapter Five

circuit. The components of this CPU timer circuit are laid out as

in the diagram below:

large

capacitor

| I 180 mH inductor

(labelled 181J)

Timer

capacitors

To speed up your HP-28C you need to replace the two smaller

capacitors with lower valued ones. These should be surface-mount

capacitors; 10 pF speeds up the HP-28C to about 180% of its normal

speed - very useful, particularly if you add extra RAM to it - the

extra RAM speeds up some operations but garbage collection takes

longer and a speed-up makes this less annoying. Nearly all HP-28Cs

will work at this higher speed, if yours refuses to work then try

another pair of 10pF capacitors (you may have a cracked cap!), but

if that still does not work then you will have to go back to higher

values. Most HP-28Cs will work at even higher speeds, but the

printer will not work with them at these higher speeds. The HP-28S

has a different timer circuit - the capacitors are not at all easily

accessible, and in any case the HP-28S already runs at IMHz, so

there is less reason to try speeding it up.

You may wonder why there is a timer circuit of this sort if the HP-

28 has a crystal oscillator built in. The crystal oscillator is

used to provide an accurate 32.768 kHz signal to control the clock

and other functions such as timing of signals to the printer. The

LC circuit described above provides a clock rate of about 617 kHz,

-133-

Chapter Five

for the HP-28C CPU. The design of the CPU and internal data bus

allows them to operate at up to 1 MHz (greater speeds are usually

possible but outside the design limits), so a speed-up as described

works on most HP-28Cs. During printing the HP-28 uses the crystal

oscillator to calibrate the CPU timer to get an accurate timing for

signals sent to the printer; the calibration instructions allow for

variations in the LC clock from one HP-28 to another, but they do

not allow for too high a speed, such as that generated by the LC

circuit when the capacitor values are much below 10pF. Thus the

printer will work with an HP-28S or an HP-28C speeded up to 1MHz,

but not much faster.

I would not like to risk doing anything else with my HP-28, but

don’t let me stop you trying. One thing worth trying is to use the

I/O line from the other display driver as an input line. If you

learn anything more, do write it up for a user club journal!

5.7 Adding the RAM. OK, we are nearly ready to add in the extra RAM.

If you plan to remove some RAM from an HP-71B plug-in 4K or larger

module, then first break open the module. You can force it open

from the front by pushing in a wide-bladed knife and twisting it

sideways, or by pushing in a pair of thin-nosed pliers and then

forcing them open. It does not matter if you damage the gold-plated

contacts, as you will not be using them again, but be very careful

not to damage the small board itself. Once you have taken this out,

unsolder the gold-plated contacts. Solder wick or some other solder

remover is better than just applying heat and pulling. Tidy up the

board, removing any unwanted solder. The 4K RAM board should now

look something like photograph 4, though it will not look exactly

the same. There are 13 connectors, starting from the left (with the

board lying circuit side up as in the photograph); here is what each

one is and what it should be connected to on the left hand hybrid on

the HP-28C board:

-134-

Chapter Five

1. GND - ground, connect to pin 10 on 7. *CD - connect to pin 7

hybrid 8. *STR - connect to pin 5

2. *INT - do not use 9. B3 - connect to pin 4

3. OD - do not use 10.B2 - connect to pin 3

4. IR14 - do not use 11.B1 - connect to pin 2

5. DO - see notes below 12.B0 - connect to pin 1

6. DIN - daisy chain input, connect to 13.VDD - connect to pin 11

pin 8 on hybrid

Connector 5 is the daisy chain output signal. If you are putting

only one RAM board into your HP-28C then you can leave this

unconnected. If you are putting in two boards then connect this

connector from the first board to connector 6 on the second board.

That way you will have a configuration daisy chain going from pin 8

on the 1LP3-0016 hybrid to connector 6 on the first board, and then

from connector 5 on the first board to connector 6 on the second

board. In this case, leave connector 5 of the second board

unconnected. It may be wiser to connect a second RAM board to the

right hand hybrid in the HP-28C, in that case you must note that

pins 1 to 11 of this hybrid lie along its bottom edge, starting at

the left hand end.

If you use a CMT 32K RAM board then the order of connectors should

be the same if you place the board with the circuit face up

(i.e. with the components facing down, towards the surface on which

the board is lying). Some people have told me that they got

confused when they tried this, because they had the PCB lying

component side up. I have also heard claims that the four data

lines BO to B3 are in the opposite order on 4K RAM boards. If your

HP-28C refuses to show a meaningful display after you have connected

up the RAM, but does turn on (the display dots can be seen when the

HP-28C is viewed from an angle) then you may need to reverse the

data line connections or all the connections, as mentioned two

paragraphs down.

All the connections from the RAM board to the hybrid in the HP-28C

should be made with very fine insulated wire (30 gauge would be

-135-

Chapter Five

sensible) using a temperature controlled narrow-tipped soldering

pencil. Remember you will be soldering directly to CMOS chips! Use

fairly short pieces of wire, but long enough that you can reach a

suitable space for the extra RAM board or boards you are putting

into your HP-28C. It is quite difficult to fit the extra board into

the confined space in the HP-28C, particularly the 32K RAM unit. A

good place is directly below the infra-red bulb; you have to cut out

some of the reinforcing plastic in that area but the board will

replace that. With a RAM unit like this replacing the reinforcing

plastic the HP-28C is bound to be less well able to withstand shocks

such as being dropped, so be careful with it! Once you have

connected up the board or boards, put them into the space you have

made, make sure there is no risk of any cross-contacts (use some

insulation if necessary), and attach the board or boards firmly.

Use a non-corrosive adhesive or silicone compound designed for

holding together printed circuit boards (PCBs) or double-sided tape;

do not use ordinary glues since many of them can corrode a PCB.

If you used sticky tape to hold together the keyboard then you

should be able to replace the circuit and keyboard in the case

without using glue. You should then be able to install the

batteries and do a MEM without putting together your HP-28C. If

nothing happens, check the batteries are in the right way and are

firmly connected. Then check all your solder joints, check the

connections have been made as described and check for any shorts.

If the connections seem to be good but nothing happens then you may

have all of the pins 1 - 13 in reverse order, or you may have the

data lines 0 - 4 in reverse order. Try changing one or both - a

total of four possible combinations. If things still fail to work

then remove the RAM entirely and check again - if the HP-28C refuses

to work then you have probably left some solder on the board and

this is short circuiting something. Check the board, then try

again. If your HP-28C is still dead then bad luck! You may be able

to find some short circuit or some damage, otherwise you will

probably have to go out and buy a new HP-28! Be more careful next

time! As a last resort, check if there is an expert in your local

user group who might help you.

-136-

Chapter Five

Once everything is working you can put the case together - be sure

none of your wires are trapped or pressed together in such a way

that a short can occur or that the insulation might wear through.

Make sure as well that nothing is touching the bender, otherwise you

are likely to hear some very odd BEEPs. If any keys have come loose

hold the keyboard upside down and put all the keys back in. This

needs some care to make sure all the keys end up in the right

places. Push the back onto the keyboard, turn the whole thing over,

and use something to hold it together temporarily while you insert

the batteries and again check that everything is working. Now you

can reattach the keyboard to the back case, using some suitable

material to replace the drilled-out peg tops - better still use a

warm soldering iron to melt the remains of the pegs back over the

front of the keyboard. If you ever decide to re-open the case it

may be very difficult to drill it out and replace it again, so I

suggest you close only a few holes at first, until you are sure the

memory extension works and you do not want to make any more changes.

Then you can fill in all the holes. Finally, reattach the overlays

on the keyboard and above the display. You should now have an HP-

28C which looks as good as new but actually is better than new,

since it has more user memory!

Well, that’s what is inside an HP-28, and what you can add to it,

particularly to an HP-28C. This information has been confirmed by

Kim Holm, in Denmark, and several other user group members. Kim

Holm in Denmark, and David White (via EQuCALC, see Appendix A) in

California will add RAM for you if you do not want to take the risk

yourself. The extra memory will let you store more programs and

data in your HP-28C; it will also let you do things such as Taylor

expansions with more terms. The HP-28C remains a calculator though,

for example 32K extra RAM lets you expand 'EXP(SIN(X)) to 7 terms

instead of a maximum of 4 with a normal HP-28C but the 4th order

expansion takes 30 seconds whereas the 7th order one takes 3800

seconds! Even 32K extra is not enough to go to the 8th order.

The information here has come from a variety of sources. A great

-137-

Chapter Five

deal of it was gleaned from studying the HPCC club project HP-28C.

Many thanks to Colin Crowther for providing the HP-28C before there

was enough money in the fund to pay for it, and many thanks to all

who contributed to the fund. Rabin Ezra took the HP-28C apart, with

Mark Cracknell and myself looking over his shoulder; Ian Maw made

helpful suggestions. Graeme and Roger at Zengrange took apart the

little pieces left by Rabin into littler pieces and did the

electrical tests. Jeremy Smith provided spare components. (The

photographs of the HP-28C are mine.) While examining the HP-28C and

writing this I learned a lot from the HP-71B Internal Documentation

Set, of which I own a copy, and from the articles about the HP-71

Memory System by Jim De Arras in CHHU Chronicle VINI and in the

proceedings of the 1985 Atlanta HP Handheld Conference. My thanks

also to Kim Holm for testing out my original 4K RAM expansion ideas

on his HP-28C. (Yes, I have done a 32K RAM expansion myself too.)

The August and October 1987 HP Journals came out too late to help

with the original research, but provided additional interesting

information - do read them if you want to learn more about the HP-28

hardware.

* % %

5.8 Customizing HP-28S and HP-28C menus. The HP-28S has a new

internal design and its software has been rewritten, so extra memory

cannot be built in. As it has 32K bytes of RAM already in it and

runs at 1MHz this should not worry owners, at least not until HP

introduce something even better! 32K of RAM is a lot of memory for

a calculator, and could be used to store over 3000 variables. That

would make 500 USER menus! The designers very sensibly provided the

HP-28S with some extra commands to control the USER menu, in

particular to split it up into submenus or subdirectories. You can

customize your HP-28S very effectively by using subdirectories, but

this requires an understanding of how they work and some planning of

their use. This point makes some suggestions on the subject; in the

next point I shall show how submenus can be created on an HP-28C too

- this should be of particular interest to people who have added

extra memory to an HP-28C.

-138-

Chapter Five

Here is a figure to show one possible way of laying out the USER

menu and submenus on an HP-28S. I shall use this layout to explain

some important features of HP-28S menus.

HOME

MATH DUM TIME R/S NOTES P

5L
DIR1 DIR2 EQ TIME DATE NOTEL ADDL FINDL TVM INV

[
Y X X

1. If you execute HOME then the USER menu will show the variables on

the line below HOME in the layout. The six names MATH, DUM, TIME,

R/S, NOTES, and P will be visible in the display, the two other

names FIN and TMP will not be visible unless you use NEXT to move to

them. These eight variables are said to be in the "home directory",

r "top-level directory".

2. If you now execute MATH, TIME, NOTES or FIN then you will move

down into one of these "subdirectories" on the second level, and the

display will show the corresponding "submenu". For example if you

type MATH or press the menu key labelled MATH then the display will

show two menu labels with the names DIR1 and DIR2; the other menu

labels will be blank, but of course you could have more variables in

the MATH subdirectory, and they would then show up in the menu as

well. If you had more than six variables in the MATH subdirectory,

then you would need to use NEXT to see beyond the first six. The

other variables in the HOME directory are not subdirectories. DUM

is a "dummy" which is just there to make sure R/S is at the far

-139-

Chapter Five

right. If you use a dummy variable like this, then store an empty

text string in it to use the least possible amount of RAM. R/S is

the Run/Stop name which I described in point 3.10 - if you want to

use such a program then it should clearly be in the first part of

the USER menu, at the right hand end as I described. P is a useful

program which I shall describe below - it has to be in the home

directory so it can be used from any subdirectory. TMP is a

variable created to store some temporary object.

3. The MATH subdirectory contains the equation EQ and two more

subdirectories DIR1 and DIR2. You can move down to either of these

- they both contain the variable X. As is described in Chapter 4 of

the Owner’s manual, this allows you to have two different values of

X - but EQ is one directory level higher, so you can move to either

DIR1 or DIR2 and use different values of X, yet the same equation.

4. Note that EQ is in a directory directly above either X, so you

can use EQ from either of the subdirectories DIR1 and DIR2. You

could also use P or TMP, because they are both in a directory

directly above DIR1 and DIR2 - they are inside a directory in the

"current path". If you are in DIRI1, then the current path is the

list of directories { HOME MATH DIRI }; EQ is in MATH, UP and TMP

are in HOME. On the other hand, the variable NTS is not in the

current path - if you type the name 'NTS’ while you are in DIR1 or

DIR2 or MATH then the name will not be found and will be treated as

a symbolic variable. This is clearly necessary; if variables in all

other directories were available then X’ would be ambiguous, since

it could refer to ’X’ either in DIR1 or DIR2. Equally, ’X’ can not

be found while you are in any directory above it, since that could

again be ambiguous - if you were in the HOME directory then X’

could refer to either of the variables in DIR1 or DIR2; instead the

HP-28S is designed so no variable in any subdirectory below the

current one can be found until you move down to that directory.

5. An interesting result of this is that you can also have the same

name used two times one above the other, as with the subdirectory

called TIME containing a program called TIME. If you are in DIRI

-140-

Chapter Five

then you can execute TIME, and this will evaluate TIME in the HOME

directory (in the current path), putting you in the TIME

subdirectory. Now if you execute TIME again then the HP-28S will

search the new current path { HOME TIME } and will find the variable

TIME inside the TIME subdirectory, which has become the

"current directory". In the example layout given here, the TIME

subdirectory contains several programs related to time calculations,

and the TIME program finds the present time (see point 3.2). To get

the present time while you are in DIR1 you would do TIME TIME.

6. If you are in the DIR1 subdirectory and you want to move back up

to MATH then you have to type MATH - but what if you forget which

subdirectory you are in and which one is above it? You can use HOME

to get back to the top level, and then move back down to MATH, but

this is rather cumbersome. Alternatively you can use PATH to find

out where you are, then pick the second-from-last name and evaluate

it - but this is rather awkward too. The designers really should

have provided an UP command to let you move up by one subdirectory

level from wherever you are. The program UP given among the

programming examples at the end of the Owner’s manual will let you

move up one or more levels, but it is not the simple one-up command

that most users need most of the time. What is really needed is a

command that is available at all times from the keyboard, with a

minimum of fuss. An obvious place to put this command would be the

shifted P key, since this is the only unused key on the HP-28S

keyboard. (Maybe the designers plan to use it for some special

purpose on a future HP-28 model - perhaps even an I/O menu?) I

suggest the following program which will move you up by one level

from any subdirectory:

<< PATH ;use PATH to get a list of directories in the current

;path

DUP SIZE ;find number of directories in this list

1 - ;calculate position of the next directory up in this

;list

1 MAX ;if you are in HOME then you cannot go up - replace 0

;with 1

-141-

Chapter Five

GET >> :get the name of this directory to level 1 of the

;stack

HOME ’P’ STO;store this program in the HOME directory with the

;name P’

To move up from any subdirectory to the one above you can now press

P EVAL. As mentioned above, I think the shifted P key would be the

ideal key for this command - using P EVAL is the closest I could

get. If you are already in the HOME directory then PATH DUP SIZE 1

- gives the result 0, and GET gives an error, so I use 1 MAX which

is a very quick way to replace 0 with 1 under these conditions -

this causes HOME to be executed, which has no effect if you are

already in the home directory. You may prefer to put EVAL after GET

in the program, so you could use P ENTER from the keyboard or just P

in a program, but as the program stands you can use P ENTER to see

the name of the directory above the current one or P EVAL to get to

that directory - with two keystrokes for either operation.

7. This P’ command will only work in all directories if you put it

in the HOME directory; if you put some other variable called P’ in

a subdirectory then this command will not work while that other P is

in the current path. If there is no other P in the current path

then the P command will be found from the home directory or from any

subdirectory. This means that P is a "global variable" - one which

can be found by any program or subprogram, as opposed to a

"local variable" which can only be used by a program or subroutine

which knows of that variable. Details of local variables were given

in point 2.14. On an HP-28C there is only one USER menu, so all

variables that are not local are automatically global. On the HP-

28S there can be variables in subdirectories, and these are not

truly "global" - chapter 16 of the HP-28S Owner’s manual says that

all variables are either local or otherwise global - but I suggest

that non-local variables should be called "ordinary variables" if

they are not in the home directory. One more sort of name; some

ordinary variables are "temporary variables" - a few commands create

a temporary user variable, for example DRAW creates a variable whose

-142-

Chapter Five

name is the name of the independent plot variable. If DRAW (or

INTEGRATE, QUAD, TAYLR) is aborted by a System Halt or by Out of

Memory then the temporary variable is not deleted, so more than one

copy of a variable with the same name can be created. The HP-28C

Reference manual points out that PURGE can be used to delete such

duplicate variables, the HP-28S manuals do not mention them, but the

same comments apply.

8. The layout of the HOME directory in this example shows how the

HP-28S can be customized to behave like a pocket computer - with one

menu for mathematical work, a second menu for time and date

operations, a third menu for making notes or lists, and a fourth one

for financial calculations. Many pocket computers such as the HP-

41CX or the Psion Organizer provide all these features; the use of

subdirectories lets you add these features as a set of options on

the HP-28S. Programs to let you set up notes or lists on the HP-28S

will be described in point 5.10. The one thing you cannot do on an

HP-28S (except with a lot of machine language programming) is set

up alarms and reminders. There again, you can customize your HP-28S

by setting up more subdirectories for special mathematical work

which would be more difficult or impossible on other models.

5.9 Subdirectories for the HP-28C. The HP-28C does not have

subdirectories as such, but look at the following layout of a

customized HP-28C USER menu:

MATH TIME FIN MENU DUM R/S

Y X EQ DO D1 D2

TIM DATE D3 D4 D5 D6

TVM INV D7 D8 D9 DA

NXT TMP

The top line shows the first six variables which would show up in

-143-

Chapter Five

the first part of the USER menu. The next line shows the next six,

and so on. This layout is very similar to that shown in the

previous point. I have left out the NOTES, for which there would

not be enough room (unless you make very few notes or add some extra

RAM); I have put in the MENU program from point 3.11 instead. 1

have also replaced the "up" program by the "next" program from point

3.11. The variable MATH should be the program << NXT >>, the

variable TIME should be << NXT NXT >>, and the variable FIN should

be << NXT NXT NXT >>. This way, pressing MATH moves you to the

maths menu which contains X, Y and EQ, TIME moves you to the TIME

menu, and FIN moves you to the finance menu. Pressing USER returns

you to the "home" menu.

Setting up these menus takes more effort than on the HP-28S because

you have to group everything in sixes. As with the HP-28S example

there is a dummy variable in the main menu, but now we need the

additional dummy variables DO to DA which are required to set

everything up in groups of six. Since the HP-28C has less RAM than

the HP-28S and since we need more dummy variables it is important to

make every dummy as short as possible by storing the empty text

string in each one. If something goes wrong, or you decide to

add some extra variables then you can use ORDER to rearrange the

variables. One problem is that ’R/S’ is a "synthetic" or Non-

Normalized name, so if you want to use ORDER to move such a name

around then you will need to have a copy of the name, as described

in point 3.10.

This can be a very useful customization of the HP-28C, let us add

one last neat touch. As you can see, I have changed the name of the

TIME program to TIM, as it is not normally possible to have two

variables with the same name. You can, however, create a variable

called TIME and store the time program in it, then create a

duplicate variable called TIME, as described in part 7 of the

previous point. Do this by plotting an equation called 'SIN(TIME)’

and interrupting the drawing with a System Halt (ON UP). Now you

will have a second variable called TIME as well, and you will be

able to store the program << NXT NXT >> in the new copy. One

-144-

Chapter Five

problem is that you will have to position the first copy correctly

with ORDER before creating the second copy.

5.10 An electronic notebook. An electronic notebook holds a list of

items such as notes to yourself, or names and telephone numbers.

The advantage of an electronic notebook is that you can use programs

to look for names or notes, instead of having to read through the

whole list yourself when you look for a particular name or note. In

this point I shall show how you can customize an HP-28S with four

programs to make it work like an electronic notebook. The first

program adds a new note to a list called NOTEL; if the list does not

exist yet then the program creates it. The second program lets you

look for a specified item in the list. The third lets you continue

looking further down the list to see if an item occurs a second or

further time. If you wish you can modify the programs to use more

than one list, and you can add other programs (the fourth program is

an example of this, showing how you can write a program to delete

items from the list), or to sort the list (an example of a SORT

program is given as one of the examples in the HP-28S Owner’s

Manual). The programs will need to be modified to work on an HP-

28C, but that does not really have enough memory to be used as an

electronic notebook unless you have extended its memory as described

earlier in this chapter.

The notes will be held in a list called NOTEL (this stands for

NOTE List, but you can think of it as TELephone NOs. too). If the

list is to contain names and telephone numbers then each item can be

a text string with a name and a number in it; you could include

addresses too, and in that case you should keep each name and

address in one string but separate the name and lines in the address

with NEWLINESs - type ", then the name, then NEWLINE, then the first

line of the address, then another NEWLINE, and so on. The list does

not have to be made up of text strings though; for example you could

put exam marks in it, then look to see if a particular mark is in

the list. You can even mix different types of objects in the list.

A program called ADDL (ADD to List) will be used to add new notes or

other items to the list, but you can edit the list and add items to

-145-

Chapter Five

it in some other way if you wish. ADDL will add new items to the

front of the list - this is not the normal way lists are used, but

the newest items are often the ones you look for most often so it is

sensible to have them at the front - then it will take less time to

find them than if they were to be at the end.

To find a particular item in the list we shall use the program FINDL

- but this will only find the first time a given object shows up in

the list. An extra program called CONTL (CONTinue Looking) will be

used to look if the same item shows up again in the list. (In fact

FINDL uses CONTL to find the first time an item occurs in the list.)

FINDL and CONTL will look for complete objects (say the number 75 in

a list of exam marks), but if the object is a text string then they

will also look at every text string in the list to see if the text

string is part of a string in the list. For example looking for the

text string "CHR" will find all of the strings in the list

{ "CHRISTINE 999-7940" "CHRIS" "REMEMBER CHRISTMAS GIFTS" }.

If you look for "CHRIS" then "CHRIS" will be found by FINDL

(because FINDL first looks for complete objects which match) and

then CONTL will find "REMEMBER CHRISTMAS GIFTS". Christine’s

telephone number will not be found - to look for it you should use

FINDL to look for the string "CHR".

As I suggested in point 5.8, the list and all the programs should be

kept in a separate subdirectory, called something like NOTES.

Create this subdirectory, go into it, and type in the program ADDL.

ADDL

object in level 1 -> object removed from stack, added to NOTEL

list.

<<

DUP DROP ;First check for an entry on the stack

RCLF SWAP 31 CF ;Save present flags, clear LAST flag needed

;for IFERR

IF DUP TYPE 5 == ;If the object to add is a list, use ->STR

THEN ->STR "{" ;and STR-> to put it inside a second list

SWAP + STR-> ;(a useful trick!), so that + will put the

-146-

Chapter Five

END ;new list inside NOTEL instead of adding it

;to NOTEL

IFERR 'NOTEL’ RCL ;If NOTEL does not exist (RCL cannot find it)

THEN ()} ;then create an empty list - the LAST flag

END ;must be clear so an error will drop the

;name 'NOTEL’

+ ;Add new object to NOTEL or the empty list

’NOTEL’ STO ;Store the new list in NOTEL

STOF ;Restore the original flag status

>>

ADDL’ STO ;Store the program in the variable ADDL

To try the program out, type "REMEMBER CHRISTMAS GIFTS, then press

ENTER, and then ADDL. Observe that the new name NOTEL appears in

the USER menu. Repeat this for the strings "CHRIS" and Christine’s

telephone number. Now press NOTEL to bring the whole list to the

stack, and use EDIT to see the whole of each line in the list (this

is when NEWLINEs can be of help).

Next type in the program FINDL:

FINDL

object to be found, position in list

(if the whole object is found)

/

object to be found in list -> object to be found, 0 (if not found at all)

\
string containing the object looked for,

position in list (if object to find is a

a string, and the whole string is not found,

but a longer string containing the object is)

<<

’OBJL’ STO ;Store object to look for in variable OBJL

0 'POSL’ STO ;Store 0 as position where OBJL was last found

CONTL ;:Use CONTL to continue looking, from the list front

>>

-147-

Chapter Five

’FINDL’ STO ;Store the program

Note that the object to be found is stored in OBJL so it can be used

again, and the position where it was most recently found is stored

in POSL. Now we must type in the program CONTL. It will do two

things, first look for OBJL in that part of NOTEL which has not yet

been examined, using the HP-28S ability of POS to see if the object

in level 1 matches any of the objects in the list in level 2. If

OBIJL is not found this way, then CONTL will call a separate program

SRCHL to search the remaining part of NOTEL for a character string

which matches OBJL. If you do not want this search for character

strings then replace DROP SRCHL at the end with ’POSL’ STO DROP

OBJL 0, and ignore the part about SRCHL.

CONTL

-> return object and position, as defined for POSL

<<

NOTEL ;Get the full list

POSL 1 + ;Get position of Ist object not yet checked

OVER SIZE ;Position of last object to check is list size

SUB DUP ;Get sub-list still to be searched, need a

;duplicate

OBJL POS ;See if the whole OBJL can be found in it

IF DUP ;If so then add position in sublist to previous

THEN POSL’ STO+ ;position to get new POSL, then drop

DROP OBIJL POSL ;remaining copy of sublist, put OBJL and

;POSL on stack and finish

ELSE DROP SRCHL ;If not found drop the 0 and call SRCHL to

END ;look for OBJL within each character string

;in the sublist

>>

"CONTL’ STO ;Store the program

If the whole list has already been searched then SUB will get an

empty list but POS will accept that. We still have to type in the

-148-

Chapter Five

program SRCHL before we can do anything. In principle SRCHL could

be included as part of CONTL, but that would make CONTL 89 steps

long, which is uncomfortably long, particularly if you are looking

for a bug or a typing error.

SRCHL

object searched for, 0

(if object not found or is not a string)

sublist to search ->

string containing search string, position in NOTEL

(if found)

<<

RCLF SWAP 31 CF ;Save flags, clear flag 35 so IFERR

;drops objects

IF DUP SIZE ;Check sublist size (may be empty)

OBJL TYPE 2 == AND ;then check that OBJL is a character

;string, both must be true

THEN 1 1 ;JIf so then start GETI index at 1, get

;spare copy

DO DROP ;DO..WHILE to check list, drop previous

;result

GETI ;Get next list element

IFERR OBJL POS :See if OBJL is in it (error if not a

;string) -

THEN 0 ;if an error then answer is 0 anyway

END ;This element checked, result 0 if not

;found

UNTIL OVER == ;To finish DO.WHILE the GETI index

OVER OR ;:must be back at 1 or POS result must

;be non-zero

END ;JIf result of OR is not 1 then repeat

:DO loop

IF :Otherwise loop finished, check if

;OBJL found

THEN 1 - ;Yes - position in sub-list is GETI

IF DUP NOT ;index -1 but if this is zero then it

-149-

Chapter Five

THEN DROP DUP SIZE ;was at the last position, so position

;is sublist size instead

END ;Position checked, get corresponding

SWAP OVER GET SWAP ;string from other copy of sublist and

;put position in level 1

ELSE DROP2 OBJL 0 ;Loop finished, OBJL not found, put in

;OBJL and 0

END ;End THEN clause if OBJL was a

;character string

ELSE DROP OBJL 0 ;Otherwise put OBJL and 0 again

END ;End of search

’POSL’ ;Put name of 'POSL’ on stack

IF OVER ;JIf a result was found (position is not

THEN STO+ ;0), then add it to POSL,

ELSE STO ;otherwise store a 0 in POSL

END POSL ROT STOF ;End check, get position from POSL,

;restore flags

>>

’SRCHL’ STO ;Store the program SeaRch for

;CHaracters in List

At last we can check the programs. First of all, double check that

the programs in your HP-28S are exactly the same as above. Now type

"CHRIS, press ENTER, then press FINDL. FINDL will store "CHRIS" as

the object to be found, and 0 as the address where it was last

found. CONTL will then look for the whole string "CHRIS" in the

list, and will tell you it found the string "CHRIS" at position 2 in

the list. The position 2 will now be stored in POSL, and if you

press CONTL then it will continue the search, beginning at object 3

in the list (in this case that is the last object in the list, so

the sub-list to be searched contains only 1 object, but this need

not be so). CONTL will not find "CHRIS" in the list, so it will

call SRCHL to search the list for the character string "CHRIS"

inside other character strings. "CHRIS" will be found in the

remaining object in the list, so the whole item will be put in

level 2, and its position in the list will be put in level 1. If

-150-

Chapter Five

you want to read the whole of the string, drop the value from

level 1 and EDIT the string, or VISIT the string in level 2. If the

string is a name and address, then including NEWLINEs in it (as

suggested earlier) will make sure each line of the address is on a

separate line in the display when you EDIT or VISIT it, so the

address will be easier to read.

The programs have not found Christine! If you press CONTL again

then you will see "CHRIS" in level 2, and 0 in level 1, telling you

no more copies of "CHRIS" were found. If you press CONTL yet again

then the program starts over from the beginning, and finds "CHRIS"

at position 2 in the list again. To find Christine, you must look

for the text string "CHR" - this does not match any complete object

in the list so it will be searched for in every text string, from

the beginning of the list. The programs are "case-sensitive" - this

means that they know the difference between upper case and lower

case letters, so looking for "Chris" will not find anything in this

example. Changing from upper case to lower case and back again is a

bit awkward on the HP-28, so most people will use upper case letters

only in their notes and in the strings to be looked for; you can

rewrite the programs to turn all strings into upper case first if

you need.

Maybe we should get rid of that annoying "CHRIS" in the list! Use

"CHRIS" FINDL to find this text string again. Its position is now

stored in POSL as well as being on the stack. This is very useful -

to remove the unwanted value we need only make up two new lists, one

containing all the values before that marked by POSL, the other

containing all the values after POSL. Then we can add these two

sub-lists together and the result is the original list, but with the

unwanted value deleted. Type in this program:

DELL

Deletes value at position POSL from list in NOTEL, stack

unchanged.

-151-

Chapter Five

<<

NOTEL :Bring a copy of the list to the stack

1 POSL 1 - ;Start at position 1, end 1 before POSL

SUB ;:Create this sub-list

NOTEL :Get another copy of the whole list

POSL 1 + OVER SIZE ;Start 1 past POSL, end at list end (its size)

SUB ;Create this second sub-list

+ ;Add the two sub-lists together

"NOTEL’ STO ;Store the new list in NOTEL

>>

'DELL’ STO ;Store the program "DELete List item"

Compared to some of the earlier programs this is very easy - you can

write other programs for yourself using OBJL and POSL. (For example

DELL can be modified to replace the item at POSL instead of deleting

it.) Now delete "CHRIS" from the list simply by pressing DELL. To

check this has happened, press NOTEL to bring a copy to the stack.

DELL can delete the first and last items of a list; if POSL is less

than 1 or greater than the list size then the list will be

unchanged, as required. Some of the things that HP-28 commands do

may seem odd, until you write a program like this and see that the

action of the commands naturally gives the results you want - clever

design!

Now that you have checked the programs, try a different example.

PURGE the list NOTEL, and use ADDL to build up a list of exam marks

for a class in which the students had the marks 41, 49, 53, 58, 64,

69, 75, 75, 79, 83. Use ADDL to add each mark to the list. Did

anyone get 50% - press 50 FINDL; the answer is that 50 was not

found. Did anyone get 75% - press 75 FINDL - and see that the third

student got 75%. Did any more students get this mark? Press CONTL

and see that the fourth one did as well. Any more? Pressing CONTL

again will give the answer no. This is a simple use of the

electronic notebook for something other than names; you could

instead have made a list of character strings with each student’s

name and mark.

-152-

Chapter Five

This brings us to the end, except for the Appendices. I hope that

the ideas in this book have shown how versatile your HP-28 is, and

how you can customize it to your own needs. If you have been

keeping a notebook then go over it and make a shorter list of the

ideas you want to use in future. If you have not been keeping a

notebook, maybe you will go back to the beginning and use the HP-28S

notebook programs to make notes for yourself. Then, if you have a

problem, you will be able to type in the name of the command giving

the trouble, and use FINDL to find any notes about the command. If

you have a printer then you can print out the whole list, but

printing is a separate topic not covered here - to find out more

look in Appendix A for other books about the HP-28, or join a club.

-153-

Appendix A

APPENDIX A - FURTHER SOURCES
OF INFORMATION AND EQUIPMENT

This Appendix lists sources of information about the HP-28, and

equipment for it, including shops and organizations that provide

such information. First of all, the HP-28 comes with two manuals.

A booklet of programming examples was included with HP-28Cs sold

after about October 1987. Before then HP produced a different set

of examples which were sent to people asking HP for help. A

description of how SYSEVAL can be used to access the system clock

has been published by HP under the title "HP-28C Solutions 28-1",

which implies that more Solutions like this might be published.

Four Step-by-Step example booklets for the HP-28C and S have been

published by Hewlett-Packard - "Algebra and College Math",

"Calculus”", "Probability and Statistics" and "Vectors and Matrices",

plus "Electrical Engineering" for the HP-28S. All contain examples

which help explain the use of HP-28 commands, and the fourth

includes an extended example showing how matrices can be used in a

suite of programs for forest management and harvesting calculations.

The August 1987 Hewlett-Packard Journal (Vol. 38, No. 8) was devoted

to hardware and software descriptions of the HP-18C and HP-28C, with

further information on the printer, the interface to the printer and

manufacturing methods in the October 1987 HP Journal (Vol. 38,

No. 10). Previous HP Journals have had information on the Saturn

CPU, see especially the July 1984 issue (Vol. 35, No. 7).

All of the above information relates directly to the HP-28 and is

available straight from HP. (I am told that more information is

sometimes published in HP internal journals but these are not

released outside HP.) Another source of information from HP is

provided by various publications on the HP-71B, in particular the

HP-71B Internal Design Specification (IDS) - a collection of

documents describing the hardware, software, and peripherals. They

are sold at a high price to deter ordinary users from buying them,

while allowing software and hardware companies to buy them and

design new items for use with the HP-71B. For HP-28 use the most

relevant document, and the least expensive, is volume 1 of the

-155-

Appendix A

Software IDS - it describes the Saturn CPU machine language and most

of the relevant system information. One extra IDS volume - for the

FORTH/Assembler ROM - has been published by the user club CHHU.

This club has closed down but members of other clubs may still be

able to contact Richard Nelson to ask for a copy, or they may find a

copy in their club library. Some of the same information is in the

FORTH/Assembler ROM Owner’s Manual; the information is relevant

because HP-28 RPL is very similar to the HP-71B implementation of

FORTH.

Some of the HP-28 mathematical functions are taken from the HP-71B

Math Pac and from the HP-15C. The manual for the HP-71B Math Pac

can provide some useful ideas, and the "HP-15C Advanced Functions

Handbook" has many of the advanced details that HP-28 users may want

but cannot find in the Reference Manual. This "Handbook" gives

detailed explanations of matrix operations, and the best discussion

of numerical accuracy on calculators I have ever seen. It is to be

hoped that HP will produce a similar handbook for the HP-28, in the

meantime I would urge serious users to consider buying the HP-15C

version. Some of this information (and a great deal more!) is now

available in the book "HP-28 Insights - Principles and Programming

of the HP-28C/S" by Dr. Bill Wickes, leader of the HP-28 design

team, list price $25 plus postage, available from Larken

Publications, 4517 NW Queens Ave., Corvallis OR 97330, USA, and from

bookstores, including EAuCALC, see below.

Two other books about the HP-28 are "An Easy Course in Using the HP-

28C" and an update - "An Easy Course in Using the HP-28S", both by

John W. Loux and Chris Coffin, published by Grapevine Publications.

The first book was written when only the HP-28C was available, the

second one mentions the HP-28S by name, but nearly all of it relates

equally well to the HP-28C, and some of the Appendices in the first

book have been expanded into extra chapters in the second one, so it

is 82 pages longer. The books have many drawings and cartoons - the

authors make it quite clear that the books are "an easy course",

particularly for people who find the HP manuals difficult. Books

of tips and suggestions for other calculators can give you useful

-156-

Appendix A

ideas, in particular books for the HP-41, and general RPN books,

such as "Algorithms for RPN Calculators" by John A. Ball (1978)

published by John Wiley & Sons, Inc. A list of other books about

the HP-41 and RPN calculators in general is given in Appendix A of

my book "Extend your HP-41" (1985) published by SYNTHETIX, P.O. Box

1080, Berkeley, CA 94701, US.A. "The BASIC HP-71" by Richard

Harvey contains a description of Saturn machine language. All of

these books can be ordered for you by shops and bookstores which

specialize in HP calculators. If there are none near you then try

EduCALC Mail Store, 27953 Cabot Road, Laguna Niguel, CA 92677,

U.S.A. who sell all these books and print a list of products, over

100 pages long, several times a year. They accept credit card

orders from the U.S.A. or overseas by telephone and will send you

their list if you ask for one. They also provide extra RAM for the

HP-28C and sell leather cases for the HP-28.

EduCALC also sell a stand for the HP-28, with a built-in infra-red

receiver and a cable to send the signals to a serial port on a

personal computer. Anything that could go to the printer is sent to

a personal computer instead by this stand - program listings (to

print), numbers and other data (to analyze further), even graphics

(to plot). This unit is called the Hook-uP and comes with a floppy

disk containing MS-DOS software to control reception of the signals.

It costs about $80 and is made by RUSH Systems, P. O. Box 723,

Bethel, CT 06801, USA.

Further information is best obtained from user clubs. This book is

a follow-on to a regular HP-28 column I write for DATAFILE, the

journal of the British club, HPCC. HP-28 information has also been

published by the U.S. club HPX, in the Australian journal Technical

Notes, and by user clubs in Belgium, Denmark, Holland, Finland and

France. The Notes from the Copenhagen 1987 International HP

Handheld Computer Users’ Conference published by PPC-Denmark have a

lot on the HP-28. Detailed information on the Saturn CPU has been

published in the journals of PPC, PPC-Paris, and the (no longer

active) Dutch group "Users Group Twente". A list of club addresses

is given below. User clubs are often run by just a few active

-157-

Appendix A

members, so the quality of their publications can change when a few

members leave or join, and their addresses can change too. When

writing to user clubs, put a return address on your letter (so it

can be returned if need be) and if you write to one club and receive

no reply, try another one - all will understand a letter in English.

UK and other European Countries

HPCC,

Geggs Lodge,

Hempton Road,

Deddington,

Oxon OX5 4QG,

United Kingdom

PCX,

Postbus 205,

B-8000 Brugge 1,

Belgium

STAK,

c¢/o Tapani Tarvainen,

Yliopistonkatu 10 B 21,

SF-40100 Jyvaskyla,

Finland

PPC-Paris,

BP 604,

75028 Paris Cedex 01,

France

PPC-Denmark,

c/o Steen Petersen,

Gl. Landevej 19,

DK-2620 Albertslund,

Denmark

HP-GC,

Quellijnstraat 47-3,

1072 XP Amsterdam,

The Netherlands

CHHU-IT,

c/o Stefano Tendon,

Cantone delle Asse 3,

29100 Piacenza,

Italy

CCD eV,

P.O. Box 110411,

Schwalbacherstr. 50 Hhs.,

D-6000 Frankfurt 1,

West Germany

Appendix A

AUSTRALIA

PPPM Inc,, CHHU Sydney,

P.O. Box 512, C/- K. Besley,

Ringwood, Vic. 3134, Charlie Business Services,

Australia 22 Elsie Street,

Burwood, N.S.W. 2134,

Australia

USA/International

HPX, PPC,

P.O. Box 56627, P.O. Box 90579,

Atlanta, GA 30356, Long Beach, CA 90809,

US.A. US.A.

These last two clubs are located in the USA but act as international

clubs too. HPX (The Handheld Programming Exchange) has taken over

many of the activities of the club CHHU which has closed down. At

the time of writing (June 1988) the US PPC club exists but has not

been in contact with most members since May of 1987.

NOTES

You may want to put new club addresses here.

-159-

Appendix A

APPENDIX B - PROBLEMS

Only a perfect product works perfectly. In our technological

society we rarely meet such a thing. The next best thing is a good

product, one which has few faults, and whose faults are known so

they can be worked around. By this standard the HP-28 is a good

product because it has few faults, and it becomes a better product

if users know what those faults are and how to avoid them. That is

the aim of this appendix - to describe known faults and problems so

users can avoid them and get the best from their HP-28s.

The HP-18, HP-19 and HP-28 battery compartment holds two batteries

touching end-to-end. The battery compartment is noticeably wider

than the batteries - this means that if a battery corrodes and

swells then it can still be removed. It also means that if the

calculator is moved around a lot then the tip of one battery rubs

against the base of the other, and this can lead to oxidation and

poor conductivity. That in turn can lead to insufficient power

being delivered to the calculator, so that on a few calculators the

display fades, the keyboard stops responding, or even Memory Lost

occurs. This only happens on a few calculators, but it is better to

be safe than sorry. There are three ways to avoid such problems.

The first is to remove the batteries about once a week and clean the

ends with a pencil eraser. At the same time this lets you check if

the batteries are swelling or leaking. The second 1is to use

batteries whose design minimizes this problem. Kodak and Panasonic

batteries are recommended by HP, the Kodak batteries are best

because they have gold-plated tips (at least those sold in the

U.S. do) which should reduce oxidation, and because they are a

little longer than other makes, so the contact between them is

better. The third way is to increase the strength of the spring in

the battery compartment so the batteries are pushed harder against

ecach other. This has been now been done by Hewlett-Packard.

Most people discover a few HP-28 actions which confuse them or

appear to be contrary to what they would expect. Some people, for

-161-

Appendix B

example, are unhappy when they find that UNDO is not self-

cancelling; if you press UNDO then the present stack is replaced by

the stack as it was before it was most recently changed - but

pressing UNDO at once a second time does not bring back the stack as

it was before UNDO was pressed the first time. This means you

cannot recover the stack if you press UNDO by mistake instead of

LAST. My personal example is forgetting to clear the display after

drawing a plot. Typically I press SHIFT PLOT to plot another

function, and get just a warning tone. Then I remember that I

should have pressed ATTN to clear the display, so I press ATTN. The

whole display goes blank, and the HP-28 refuses to respond to the

keyboard! After about half a minute of desperate worrying and

keyboard-prodding, I press ATTN again, and the HP-28 turns on as if

there was nothing wrong. Why should this happen? Pressing SHIFT

and any other key, except the menu row, SHIFT, or ATTN, sounds the

warning tone, but leaves SHIFT activated, so by pressing ATTN next,

I simply turn the HP-28 off! This action is unexpected, but it is

not a mistake or a fault - it can be described as an unpleasant

surprise, but not as a "bug".

"Bug" is the term used to describe some action which is clearly

wrong and has to be avoided. Some actions are half way between

being an unpleasant surprise and a real bug. For example Frank

Wales described the following to me. Turn on a version 1BB HP-28C

and keep the ON key pressed down for a moment before lifting your

finger from it. Now press SHIFT; there is a 50% chance that the HP-

28C will turn off at once. If it does not, then press ON again to

turn the HP-28C off, then press ON to turn it on and keep the ON key

down a moment again. Press SHIFT again and this time the HP-28C

will turn off. This is clearly wrong, pressing SHIFT on its own

should not turn the HP-28 off! What happens is that keeping your

finger down on the ON key stores a keystroke in the key buffer, and

when SHIFT is pressed then the HP-28 "thinks" that you have pressed

SHIFT ON,so it turns off. The design team accepted that this was a

problem, and it has been corrected on newer versions of the HP-28.

On the other hand this does not cause the HP-28Cs affected to give

any incorrect results, to write incorrect programs, or to Stop

-162-

Appendix B

working properly.

The following is a list of known real bugs which can cause problems

such as those just described. My thanks go to Tony Collinson and

other people at HP who warned me of many of them, and to Brian Walsh

who listed a selection of bugs in VIN2 and VIN3 of the HPX Exchange.

These bugs have all been reported on version 1BB HP-28Cs, but many

have been removed on later versions - see the note below and

Appendix E.

1. Using the Solver with programs which do not add a result to the

stack (and thus increase the stack depth) can put a System Object on

the stack. Do not use such equations or programs with the Solver,

and if you do get a System Object from the Solver then do a System

Halt to clear the stack.

2. Trying to delete an empty row with SHIFT INS while editing a

command line containing one or more lines can lead to strange

results on the line or even Memory Lost. If you do this press ATTN

or ENTER to end editing.

3. Dividing a 64 bit binary integer with its leading bit set can

give wrong results. Do not divide anything into binary numbers

larger than 2763 - 1.

4. Binary integers with different word sizes are considered not

equal even if they contain equal numbers. The word size of a binary

integer is 64 bits unless it has been stored with a different word

size in effect or is the result of a calculation with a different

word size in effect. Try #1 DUP 50 STWS A’ STO A ENTER

== and the result is 0 even though both objects have the value #l.

The #1 on the stack is still 64 bits long, but the value stored in

’A’ is 50 bits long. To avoid this problem always make sure the two

numbers being compared have the same word size, you can do this by

adding #0 to both of them before doing the test, and never compare a

number on the stack with one which stored in a variable.

-163-

Appendix B

5. If flags 57 or 58 are set then the Solver might give an underflow

or an overflow error while it is iterating towards a solution. Do

not use SOLV with these flags set.

6. The Solver can also give incorrect "Sign Reversal" messages.

Check points near the one at which you get this message and if you

do not believe it then try starting at a different value, or

rewriting the equation.

7. Do not define your own units that are multiples of degrees

Fahrenheit or Celsius. These will give the wrong results,

apparently because degrees involve both additive and multiplicative

constants.

8. The unit "yr" has been defined as a calendar year of 365 days

instead of a solar year of (approximately) 365.242 days. The light

year "lyr" is defined in terms of this too. The same numbers are

given in the Reference Manual too.

9. RND does not work correctly in FIX mode. Try 0 FIX .7 RND and

you get 0. instead of 1. unless you have flag 51 or 52 set! If

you want to use RND in FIX mode then set one or both of the flags

51 or 52. If you do not want to do so (you are using a battery-

powered printer and you want to have audible error messages) then do

->STR STR-> to round the number. This can demonstrate another

problem, do 0 FIX, then MAXR ->NUM and you see 1.E500. Now -

>STR gives "1.E500", but then STR-> gives "Syntax Error".

10. String comparisons do not work properly if the strings have the

same first letter. For example "AA" "AB" < gives 0.

11. EDIT (and VISIT) can give unexpected results if you try to

insert CHS or EEX into a number that already exists in the command

line. If necessary, delete the old number and put in the new one,

or use the - sign and the letter E instead of CHS and EEX when

editing numbers in programs.

-164-

Appendix B

12. Incorrect use of the derivative function has been reported to

cause memory corruption. Do not give incorrect parameters to this

function.

13. Merge left in the Algebra FORM menu can give wrong results with

the divide sign.

14. Rounding of numbers in CMPLX and MATRIX arithmetic is sometimes

inaccurate (results are not exactly the same as they would have been

for the same operation using real numbers). You can usually check

the accuracy of results by using the inverse function.

15. Plotter tick marks are placed relative to the screen, not

relative to the plot origin when the origin is not on the screen.

This means that you may not get correct scale marks if you try to

make a large plot by printing several plots with PRLCD and putting

them next to one another.

16. The HP-28 has a "key buffer" which stores up to 15 keystrokes if

you press keys one after another faster than the HP-28 can deal with

them. The keystrokes are then taken from this key buffer and

interpreted. Thus if you are repeatedly carrying out an operation

by pressing a menu key then that key might be stored one or more

times in the key buffer. Now, if the HP-28C runs out of memory

while some of these keystrokes are in the buffer then it goes into

the Out of Memory procedure and puts up the YES and NO menu keys.

If any keystrokes on these keys are still left in the key buffer,

then they are interpreted as YES or NO, so you may find that

variables which you are using get deleted without any warning. If

these are running programs then this might lead to a Memory Lost.

You should therefore avoid pressing the two leftmost menu keys

repeatedly and quickly if there is any chance that this will lead to

Out of Memory.

17. The Solver does not always clear an internal flag while going

from one iteration to the next. To demonstrate this, do a Memory

Lost, then 0 1/X. This gives "Infinite Result" and sets the flag.

-165-

Appendix B

DROP the 0 and STO << A DROP 1 >> as the Solver equation. Try

to solve for A without an initial guess. This will lead to a System

Halt. The bug is not commonly encountered, and if it does come up

then the System Halt will tell you something has happened.

18. If the Solver gets a "Non-real Result" error then it can store a

"System Object" as the value of the variable being solved for.

19. Some special characters are incorrectly shown in the menu line.

For example the vertical bar (character number 124 "|") is shown

as "Z". Try the following: 1 "N" 124 CHR + STR-> STO and

you will see a new variable whose name is displayed in the menu as

NZ instead of N|. This is the most extreme example, but few people

are likely to use | in a variable name. Other characters affected

are ~ and the multiplication and division signs x and : The

proportionality sign (character 140) shows up in a most unusual

shape, and "&" shows up as "e". This last might not be a mistake,

since "&" is actually a contraction of "et" and is sometimes written

that way, but it is confusing.

20. When you edit programs containing clauses which end with a

matrix you might find a phantom } displayed in the program. As an

example type:

<< IF 1 THEN 1 [1] ENTER

This should produce the program << IF 1 THEN 1 [1] END >>

but instead you will see:

<< IF 1 THEN 1 [1] } END »>>

If you press EVAL then you will see that 1 and [1] have been

pushed onto the stack but the } has not shown up. This means that

it is a "phantom }" - the text string you have typed in was

correctly "compiled" into the first program; then the program was

"decompiled" again so it could be displayed. The decompiler has

become confused by the end of the matrix followed at once by the end

of the THEN clause, and has lost count of things that have ended.

The end of a list is not stored as a special object, so an unmatched

-166-

Appendix B

spare end is interpreted as a list end, and the decompiler displays

that. The error can occur in the THEN or ELSE clause of an IF or an

IFERR, and in the REPEAT clause of a WHILE..REPEAT program

structure, if any of these clauses ends with a matrix which has at

least one other object before it. Since this is a "phantom }" it

does not affect the programs, unless you try to edit them; if you

press ENTER after EDIT or VISIT then the unwanted } becomes a real)

in the text string which is the decompiled program, and is treated

as a syntax error when you finish editing. Worse still, if you put

a list into the program while editing it, and accidentally leave out

the } of this list then the phantom } will become the end of the

list, probably in quite the wrong place! If you edit a program

containing one or more such phantom curly brackets you should

therefore delete them before doing anything else.

* %k ¥

The following are on the border between "unexpected actions" and

bugs, but I thought I'd put them here anyway!

21. If you VISIT a variable and edit it so that there is nothing

left in the command line then it is not clear what the HP-28 should

put in that variable when you press ENTER. What the HP-28 actually

does put in is the object in level 1! (If you are not aware of this

then you will not know what has happened to what was in level 1.)

This is a natural result of the way EDIT works - VISIT uses EDIT -

so HP will probably not consider this to be a bug - but really you

should get an error message telling you that you have tried to store

a null string in a variable. The problem becomes more serious if

you do this while VISITing the stack; try the following:

i. Clear the stack and press 5 ENTER 4 ENTER 3 ENTER 2 ENTER 1

ENTER.

ii. Edit level 3 by pressing 3 VISIT, and the SPACE key to remove

the 3.

-167-

Appendix B

iii. Press ENTER to finish editing level 3. As there is only a

blank space left there, the HP-28 takes the value from level 1 so as

to put it in level 3. It uses the new value to replace level 3

(which you were editing), but the 1 has been taken out of level 1,

so the stack has dropped and it is the 4 which has dropped to level

3 that is replaced by the 1, while the 3 which you were editing

remains in level 2.

The upshot of this operation is that the stack contents have quite

unexpectedly changed from 5,4,3,2,1 to 5,1,3,2. The moral is,

don’t try to edit variables or stack objects so they will consist

only of blanks.

22. NEWLINE sometimes behaves oddly. It is actually a character

like any other, such as "A" or "7" or "$" and is often treated as

such, but because its ASCII code (10 decimal) is outside the normal

range it is displayed as a square box (#). For example if you type

", A, NEWLINE, B, ENTER then you will see the text string "A%B". If

you try to EDIT or VISIT this string then the square box vanishes

and B appears correctly on a new line. The backarrow key cannot be

used to delete a NEWLINE character, but you can move the cursor to

the right of the A on the upper line and press DEL to remove it. If

you do this, then press NEWLINE again, a new line will be put

between the A and the B - NEWLINE is always inserted, it never

replaces the current character, so the B is not replaced even though

the HP-28 is in replace mode. If you are entering a program or a

set of numbers then NEWLINE is treated as a separator, like SPACE or

the comma (point if you use comma as a radix mark) and is replaced

by a space (or the non-radix mark in complex numbers) when you press

ENTER.

That brings me to the "bug". Type in this program, exactly as

below:

<< "WHAT IS X? 1 DISP

and press ENTER. You will see that the " which should have been

after X? is missing, so the HP-28 thoughtfully put it in for you, at

the end of the program. EDIT the program, replace the space after

-168-

Appendix B

X? with ", then press ENTER. The text string "WHAT IS X?" will now

show up correctly, but the unmatched " at the end of the program

will swallow up the NEWLINE (put there by the decompiler) and >>

which were after it, so the program will now have an unwanted " >>"

at the end! I am sure that HP will argue this is your own fault,

but I am inclined to treat it as a bug, as is Bruce Bailey who first

told me of it. Either way, be careful with NEWLINEs!

A few other things should be avoided. Remember that self-reference

can lead to an infinite loop. Any program that refers to itself can

call itself repeatedly, and unless there is a clear way to end the

recursion it will eventually fill up the memory. Attempting to turn

a text string into a name will hang up the HP-28 if that name

already exists. Say you want to create a variable with the name

"N!". You have to create this name as a text string first ("N" 33

CHR +), then you can use STR-> to convert the text string into a

name. If the name exists already then the HP-28 goes into an

infinite loop trying to evaluate the name and coming back with the

name itself again. Use System Halt to get out of such infinite

loops.

Notes for users of the HP-28S and newer HP-28Cs.

The numbered bugs above, except 12, 13, 19, 20, 21 and 22 are

corrected in version 1CC of the HP-28C and in the HP-28S (see

Appendix E for more details of these new models). Bugs 12 and 13

may have been reported incorrectly, and the bugs from 19 up are less

likely to cause trouble. Minor improvements have been made as well,

for example the odd action of the ON key described at the beginning

of this appendix has been dealt with.

Some changes in the HP-28S might cause problems, especially to HP-

28C users who get an HP-28S. In Alpha Entry mode commands such as +

and - are entered with spaces automatically put before and after

them; this prevents some syntax errors, but can be very confusing in

the case of the -> character. For example, if you type the three

characters B -> R then you do not get the command B->R, instead

you get the names B and R separated by the local variable creation

-169-

Appendix B

command ->. When you type in such a program and press ENTER, the

HP-28S says there is a SYNTAX ERROR but does not identify -> as the

source of the error. To avoid this, press alpha once before and

twice after ->, so there will be no spaces around it, or delete

unwanted spaces you may find before and after an ->. If you have

moved from an HP-28C to an HP-28S look out for problems such as this

due to changes in the HP-28S; a list of differences is given in

Appendix E.

NOTES

You may want to make notes of other problems here.

-170-

Appendix C

APPENDIX C - THE STRUCTURE
OF OBJECTS AND PROGRAMS

Everything the HP-28 does is done, at the lowest level, by machine

language instructions. Collections of machine language instructions

make up machine language subprograms. If need be, a machine

language subprogram can use another machine language subprogram but

this is still all machine language. At the next level up, higher-

level subprograms use these lowest-level subprograms. These higher-

level subprograms are written in RPL and they call the machine

language subprograms simply by using the address at which each

machine language subprogram begins. Just as machine language

subprograms can use other machine language subprograms, so RPL

subprograms can use ("call") other RPL subprograms. An RPL

subprogram is therefore made up of a strivng of addresses, each

address being the address of another subprogram. All this has been

shown in the main text, including schematic diagrams in point 4.1.

An RPL program written by a user follows the same rules, but is

stored in RAM and uses only those RPL subprograms which have names

and can be included in programs - these subprograms are called

"commands" and they are listed in the Operation Index in the HP-28

Reference Manual. The structure of a user-written program includes

commands to define the program, the << and >> commands, and commands

at the end of the program, the whole layout was shown at the end of

point 3.10.

Programs can include data objects in them. For example the program

<< 17.5 DUP >>

contains the command DUP (stored as address #177F1 on a version 1BB

HP-28C) and the data object 17.5 which is a real number. This is

made up of a command (address #02933) followed by the real number

itself. The command is the address of a subprogram which specifies

that the next 16 nybbles contain a real number which is to be put on

the stack, and that they are not to be treated as a command. All

objects are stored in this way - the address of a subprogram which

defines the data, and the data value itself. The defining

subprogram is called a "prolog", so objects are stored as a prolog

-171-

Appendix C

address followed by data. The following shows how an object would

be held within a program:

Previous program step

Low address

Address of prolog

DATA
High address

Next program step

If the object is one with a variable length, such as a text string,

or a binary integer (whose length depends on the wordsize), then the

length is stored in the first five nybbles of the data. The prolog

alone, or the prolog in combination with the length field, defines

the total length of the object. In a running program, the pointer

DO has to be moved forward by this length so that it will point to

the next command after the object.

Objects do not have to be stored within a program. They can be put

on the stack, or stored in a "global" variable or in a local

variable. In such cases the object’s structure is still the same

(except that binary numbers are stored in variables with as many

nybbles are required by their word size, whereas at other times they

are stored in a field of 64 bits even if the current word size is

smaller) but what is stored before or after the object is usually no

longer a program step. Objects can also be stored in other objects

("composite" objects). For example an array of real numbers is made

up of individual real numbers, or a list is made up of other

objects. In the first case, all the objects within an array of real

-172-

Appendix C

numbers are the same, so the array needs only one prolog, which says

"this is an array of real numbers", and the prolog is followed by

the array dimensions and then the data making up all the numbers.

In the second case, the list prolog can only say "this is a list",

but the objects can be of various types, so each object must be

stored with its own prolog. The objects in a list do not therefore

need to be stored within the list, the list can contain just the

address of an object, and the object itself can be stored somewhere

else, even within another list. If you want further details, you

can find descriptions and diagrams in the August 1987 HP Journal,

mentioned in Appendix A and elsewhere in this book.

As was described in point 3.11, RPL allows for more object types

than are described in the Reference Manual. Not all objects defined

within RPL can actually be handled by the version of RPL that is

provided in the HP-28; objects which can be handled by the HP-28 are

stored as described above and can be created by the methods

described in Chapters 3 and 4. These methods allow you to create

non-normalized versions of objects which are recognized by the user

interface, and to create objects which are not recognized correctly

by the wuser interface (decompiler), but which are dealt with

correctly by programs. The addresses of the prologs of these

objects are given below. Objects whose length cannot be easily

defined, such as programs or lists, end with a special command 09F20

which acts as an end-of-object definition.

The single-digit real numbers 0 to 9 and -9 to -1 are stored in

programs not as a prolog and data but as 5 nybble commands. This is

similar to the action of the FORTH programming language which

usually treats the numbers 0O, 1 and 2 as "words" not numbers. In

the same way, one-character text strings containing the letters "A"

to "Z" are also stored as commands, not objects. Knowing this can

help you understand programs you are analyzing, but in principle you

can think of these special commands as data objects which contain a

prolog with no data.

HP-28S owners should know that subdirectories are rather like lists

-173-

Appendix C

- a first level subdirectory is stored like other variables in the

HOME menu, and variables in the subdirectory are held inside the

subdirectory itself, as if it was a list stored in the HOME menu.

More details than this are really beyond the scope of this book - if

you want further details then one place where they have been

published (by Paul Courbis) is in issue 51 of JPC, the Journal of

the Paris Club (address in Appendix A). If you cannot read French

you will be happy to know the article has been translated - you may

be less happy to know it has been translated so far only into Danish

(in Vol. 8, No. 1 of the Danish club journal USER). With any luck

an English version will be published soon in one of the English-

language club journals. If you want to follow this subject up you

really need to be a bit of a polyglot, since a lot more interesting

material is being published in the Dutch club journals by Michiel

Niemeijer.

Finally here are the addresses used in prologs to define the various

types of objects. These addresses are the same in versions 1BB, 1CC

and 2BB of the HP-28. My thanks to Bruce Bailey and Graeme Cawsey

for help in compiling this list. Objects marked * are not available

for normal HP-28 use but some are used internally.

02911 Short Integer * 02AB8 ROM/RAM pair * (used for

02933 Real HP-28S subdirectories)

02955 Long real * 02ADAAlgebraic

02977 Complex 02C67 RPL Program

0299D Long complex * 02C96 In-line machine code *

029BF Byte * 02D12 Name

029E1 Like array, not used * 02D37 Local name

02A0A Array 02D5C ROM pointer (identifies a

02A2C Like array, not used * single command, as in point

02A4E String 2.20)

02A70 Binary Integer 02F90 End a composite object

02A96 List (program, list, etc.)

-174-

Appendix C

Note that all arrays are defined by one address; the prolog has

information whether the array is a vector or a matrix and real or

complex.

There are only two kinds of name - local and "global". This is the

reason why variables are recognized as either local and global, even

though not all HP-28S variables are truly global, as was mentioned

in chapter 5 - variables are just given the same "name-type" as

their names.

NOTES

-175-

-176-

AppendixD

APPENDIX D - INTERNAL LAYOUT
AND USE OF MACHINE LANGUAGE

Chapters 3 and 4 and Appendix C have given many details of how the

HP-28 memory is arranged and how machine code is run, but some

details and lists are best given all in one place - that place is

here!

Overall Memory Layout. HP-28C ROM and RAM are arranged as below,

HP-28S users should see the extra notes that follow the layouts.

Address

#FFFFF

Unused

#50000

#4FFFF

User RAM

#4F000

Unused

#407F0

Contents

Top of address space

This area is unused, but if additional RAM is built

into an HP-28 then it is configured into this area,

beginning at #50000.

Bottom of free memory space in an HP-28C

Top of user RAM in an HP-28C

This area is used for storage of the user’s programs

and variables, for local variables and return

addresses, and for other objects created by the

system, like flags and pointers

Bottom of user RAM

This area is unused. Display RAM could expand into

it on future HP-28 models, but it is unlikely that

user RAM could.

Top of display RAM

-177-

Appendix D

Display

RAM

#40000

#3FFFF

#00000

Area used for storage of information to control the

display, or I/0O, the timers, and as scratch; part

of it is unusable.

Bottom of display RAM

Top of ROM

This is the area which contains the HP-28 operating

system, it is made up of several large "files" each

System of which looks rather like an HP-71B LEX

file. This ROM kind of layout allows the

fundamentals of RPL to be kept in one or two files,

the mathematical operations to be stored in separate

files, and the user interface to be in separate

files again. A modular system such as this allows

rapid changes to be made, and new calculators to be

designed using files which have already been

developed for previous models.

Bottom of ROM and of address space.

A great many details of the layout of RAM and ROM have been worked

out and are being published in user club journals (e.g. articles by

Paul Courbis in the PPC Paris Journal). There is not room to put

all these details in this book, but some have already been given,

for example details of how variables are stored at the top of RAM

were shown in point 3.9. As control of the display is one of the

topics most likely to interest machine code programmers, here is the

layout of the HP-28C display RAM.

-178-

Appendix D

The display RAM. This is best treated as a collection of 8 nybble

objects each of which plays some special role.

Address

#40000

#40008

#40010

#40018

#40020

#40028

#40030

#40038

#40040

#40068

#40070

#40078

#402E0

Contents and explanation

Contains FFFFF000 for the "busy" annunciator to be turned

on, otherwise contains all zeroes.

As #40000 but for Alpha annunciator

Same, battery.

Same, SHIFT

Same, RAD (two pi)

Same, suspended program

Same, printer

The above addresses act as "column" drivers for each of

the annunciators, this address acts as a "row" driver, so

when it is set it inverts the setting of all the

annunciators.

#40060 Scratch area

Contains xxxIJNNF where xxx is scratch, I is 0 until the

printer is used, then it is 8. This appears to be a flag

defining the direction of I/O on the one-bit master

display driver I/O line. J is usually F, but becomes E

after printing. NN is a cyclic count of turn-ons. It

begins at 00, then after OFF/ON becomes 11, then 22, and

so on up to FF, then back to 00. The last digit is always

F.

Scratch

#402DE 77 eight-nybble numbers each of which contains a

description of which pixels are turned on and which are

off in a vertical column of the display. These numbers

describe columns at the left of the display, controlled by

the slave display driver. The first number describes the

leftmost column.

- #402F8 Contain 00000000 and cannot be changed.

#40300 & #40308 Contains 0008888888000000. Changing this number

can destroy control of the display, though changes to the

leftmost two nybbles have little effect.

-179-

Appendix D

#40310 - #403F0 Contain 00000000 and cannot be changed.

#403F8 Slave display driver timer, used to time 0.49 seconds

between lines of output sent to the printer.

#40400 - #405D8 60 eight-nybble numbers used like #40078 - #402DE

but for the right hand columns controlled by the master

display driver.

#405E0 - #406D8 32 eight-nybble numbers controlling which

"logical" rows in the column control numbers (see above)

will actually control which "physical" rows. #405E0 is

normally 10000000 which means that the bottom row of the

display is controlled by the bits at the bottom of each

column descriptor. #405E8 is normally 00000008 which means

that the top row of the display is controlled by the bits

at the top of each column. The eight-nybble numbers

alternate between ones describing the lower half of the

display, from the bottom up, and numbers describing the

top half, from the top down.

#406EQ0 - #406F8 Contain 00000000 and cannot be changed.

#40700 & #40708 Similar to #40300 & #40308 - wused to control the

display and dangerous to change.

#40710 - #407F0 Contain 66666666 and cannot be changed.

#407F8 Master display driver timer used to control the system

clock and timing operations such as turn-off after the

counter has passed 10 minutes.

I am grateful to Graeme Cawsey who set me off on the trail of

studying all this. A similar list of addresses in main RAM would

take up many pages; many of the addresses are moveable, with the

position of objects defined by pointers. A list has been published

by Paul Courbis for the HP-28C (see previous Appendix) and he

promises a similar list for the HP-28S.

HP-28S RAM and ROM. The layout of RAM and ROM in the HP-28S is a

little different. The 32K bytes of RAM lie in the area from #C0000

to #CFFFF. Exactly the same area of RAM can also be addressed

between #D0000 and #DFFFF. Why this should be so is an interesting

question! It has been suggested that one of the address bits is

-180-

Appendix D

ignored so that D (1101 binary) and C (1100 binary) cannot be

distinguished. In that case though, addresses beginning with E

should be indistinguishable from addresses beginning with F, but

this clearly not the case, as #FFFFF is not the same as #EFFFF - the

former is the top of the display RAM whereas the latter is empty.

It may be that the lowest wire of the 32K RAM chip selector in the

HP-28S is not connected (a suggestion made to me by Paul Courbis);

my pet theory is that the HP-28S was originally designed with two

RAM controllers, so each could control a 4K RAM chip, but then one

32K RAM chip was put in instead, and both controllers are connected

to it, giving it two possible addresses.

The HP-28S display RAM has also been moved; it is now between #FF800

and #FFFFF. Thus to use the display RAM layout given above, add

#BF800 to the HP-28C addresses to get the HP-28S addresses. Most of

the contents are the same, though some of the scratch areas have

been moved around.

The position of ROM has not changed in the HP-28S but nearly all the

code in it has been moved around. Appendix E includes a list of HP-

28C version 1BB addresses used in this book, and where they have

moved to in the HP-28S (and in version 1CC of the HP-28C).

The Saturn CPU. The CPU (Central Processor Unit, the chip which

controls the calculator) used in the HP-28, the HP-18C and other new

HP calculators, is a new version of the Saturn CPU previously used

in the HP-71B handheld computer. This CPU is a CMOS device, for low

power consumption, and runs at 617kHz, though it can run at up to

IMHz, and versions exist that can run much faster than that.

(Running the chip really fast can heat it up and use up the

batteries too fast for a handheld device which is meant to be

portable and to need new batteries only every few months. The CPU

in the HP-28S and more recent calculators runs at 1IMHz.) Most data

transfers are done on a bus which is only four bits wide, so as to

reduce the number of connections on the board, and hence the size of

the calculator. Details of the original Saturn CPU have been

published in the IDS and in HP Journals (see Appendix A). Details

-181-

Appendix D

are also available in "The Basic HP-71", in the notes from the 1985

Atlanta HP Handheld Conference, in the user club journals PPC

Journal (article by John Baker in VI2N2 pages 4 to 12), PPC Computer

Journal (V2N6), CHHU Chronicle (VIN1 & V2N1) and in issues of the

PPC-Paris Journal (JPC) and issue 6 of NUTS, the journal of the

Dutch club HP Club Twente. The best place to look for these is a

user club library!

In the first edition of this book (a preliminary version dated

December 1987) I gave a list of the addresses of commands in the HP-

28C version 1BB ROM. This list was useful in studying the HP-28

memory layout - now that such studying has been done, and the layout

has changed in the newer versions, the list is less useful, so it is

not given in this edition. Instead I give a description of the

Saturn CPU and its instructions, since HP have now given permission

to publish the details - many thanks to HP.

The Saturn CPU is optimized for arithmetic, on numbers with 12 digit

mantissas and 3 digit exponents. Such numbers are stored in 16

nybble registers; one extra nybble for the mantissa sign.

Internally the calculators do a lot of their arithmetic on extended

precision numbers, with a 15 digit mantissa stored in one register

and a 5 nybble exponent stored in a second register. By no means do

all operations use a 16 nybble register. For example addresses are

only 5 nybbles long, so the Saturn defines "fields" within a 16

nybble register, these will be described later. The CPU has four 16

nybble operating registers, A, B, C and D which are used for most

operations and for arithmetic. It has five more 16 nybble registers

for temporary storage; RO, R1, R2, R3 and R4. The two data address

pointers DO and DI are 5 nybbles long each. There is a 5 nybble

program counter (PC), an eight level subroutine return stack (RTN),

and a 4 nybble status register (ST) holding 16 flags, plus a

separate Carry flag (C) set by arithmetic carry operations. There

are an input and output register, (IN and OUT; 4 and 3 nybbles long

respectively, used to read the keyboard and to send configuration

commands and for beeper control) and there is a one nybble long

pointer register (P), used when you need to define arbitrary fields

-182-

Appendix D

within a 16 nybble register. Finally there is a one nybble hardware

status register (HST) whose 4 bits store the status flags. On the

HP-71B these are: sticky bit (SB, set when a bit is shifted out of

the right of a working register), service request (SR), module

pulled (MP) and external module missing (XM, set if an instruction

jumps to an empty address). On the HP-28 the last two are not used

for their original purposes, but may be used for something else.

Here is a summary:

WORKING REGISTERS

A, B, C, D

64 bits long each

Used for data handling

and arithmetic, A and C

are also used for data

transfer to and from

memory. C is the CPU

workhorse for nearly

all data transfers and

most arithmetic.

DATA POINTER REGISTERS

DO, DI

20 bits each

Used for pointing to data

to be copied to and from

working registers.

-183-

SCRATCH REGISTERS

RO, R1, R2, R3, R4

64 bits long each

Used to hold temporary

copies of the working

registers. The bottom

20 bits of R4 are used

for interrupt handling

so they should not be

used for data storage.

FIELD POINTER REGISTER

P

4 bits

Used for field selection,

see below for details of

field selection.

Appendix D

PROGRAM CONTROL STATUS FLAGS & 1I/0

PC and 8 RTN addresses C (1 bit), ST (16 bits),

20 bits each HST (4 bits in order MP,SR,SB,XM)

IN (16 bits), OUT (12 bits).

Operations which do not use a whole 16 nybble register have to be

told which part of a register, or which "field", they are to use.

The fields are shown below:

16 Nybble register

15: 14: 13: 12: 11: 10: 9: 8 7: 6: 5: 4. 3: 2: 1: O:

|<-==menA--aaeee>

S XS|<--B-->|

I< M >|<----X---->|

A table of Saturn instructions follows. Each instruction has a

name, or "mnemonic", and a numerical representation, which is the

actual number used in machine language programs. Instructions which

need to select a field are followed by a "modifier" which specifies

the field to be operated on by that instruction. In the mnemonics

the modifier is a field select (fs) symbol which is the name of the

field. In the numeric instructions the modifier is an actual

number - some use a number in the range 0-7, others use a number in

the range 8-F. Ones which use the first will be marked (a) in the

instruction list, the others will be marked (b). The names,

positions, symbols and representations are:

Field name Nybbles Field Representation

(fs) (@) (b)
Nybble pointed to by P P 0 8

Word from nybble 0 to nybble pointed to by P WP 1 9

Exponent sign, nybble 2 XS 2

-184-

Appendix D

Exponent (including sign), nybbles 0-2 X 3 B

Sign, nybble 15 S 4 C

Mantissa, nybbles 3-14 M 5 D

Byte (or exponent), nybbles 0-1 B 6 E

Whole register, nybbles 0-15 w 7 F

Address field nybbles 0-4 A - always called A

Note that instructions which use the A field have only one

representation, there is no ambiguity because it is clear which

instructions refer to an address, for example C(A) means the address

field of register C. The numeric values of addresses will be

represented by hhhh if they are 4-digit addresses, and by hhhhh if

they are five-digit addresses. Some instructions use a modifier

which is not a field selector (fs), but a number of digits for the

instruction to use - this is written as (d). Instructions which

move data do not move 0 nybbles, so when d has a value of 1, it can

be stored as 0, and 16 (dec) can be stored as F - you will see what

this means when you look at the list of instructions - here it is:

Numeric Mnemonic Modifier Brief explanation

value

00 RTNSXM Return and set module missing bit; any

address in a part of memory that

contains no ROM or RAM will contain a

zero and will therefore be treated as

this code.

00 RTNYES Return if test true; used after tests

- if Carry flag was set by the test

then return. See end of list for

corresponding GOYES.

01 RTN Return (pop address from return stack

to PC)

02 RTNSC Return, set carry

03 RTNCC Return, clear carry

04 SETHEX Set CPU to do its arithmetic in HEX mode

05 SETDEC Set CPU to do its arithmetic in DEC mode

-185-

Appendix D

06

07

08

09

0A

0B

oC

0D

OEa0

OEal

0Ea2

OEa3

OEa4

OEa$5

0Eaé6

OEa7

OEa8

0Ea9

OEaA

OEaB

OEaC

OEaD

OEaE

OEaF

0EF0

OEF1

0EF2

OEF3

OEF4

OEFS5

OEF6

OEF7

OEF8

OEF9

OEFA

RSTK=C

C=RSTK

CLRST

C=ST

ST=C

CSTEX

P=P+1

P=P-1

A=A&B

B=B&C

C=C&A

D=C&D

B=B&A

C=C&B

A=A&C

C=C&D

A=A'B

B=B!C

C=C!A

D=C!D

B=B!A

C=C'B

A=AIC

C=C'D

A=A&B

B=B&C

C=C&A

D=C&D

B=B&A

C=C&B

A=A&C

C=C&D

A=A'B

B=B!C

C=C!A

fs

fs

fs

fs *

fs

fs

fs

fs

fs

fs

fs *

fs

fs

fs

>
>

>
>

>
>

>
>

>
>

Push C(A) onto return stack

Pop value from return stack to C(A)

clear bits 0-11 in ST

copy ST(0-11) to C(X)

copy C(X) to ST(0-11)

exchange C(X) with ST(0-11)

increment P, go from F to 0 and set carry

decrement P, go from 0 to F and set carry

logical A = A AND B, using (a) field

select

logical B = B AND C, as above

ctc.

logical A= A OR B

logical A = A AND B, using A fields of

both etc.

-186-

OEFB

OEFC

OEFD

OEFE

OEFF

OF

100

101

102

103

104

108

109

10A

10B

10C

110

111

112

113

114

118

119

11A

11B

11C

120

121

122

123

124

128

129

12A

12B

12C

130

D=C!D

B=B!A

C=C'B

A=A!C

C=C'D

RTI

R0O=A

R1=A

R2=A

R3=A

R4=A

RO0=C

R1=C

R2=C

R3=C

R4=C

A=R0

A=R1

A=R2

A=R3

A=R4

C=R0

C=R1

C=R2

C=R3

C=R4

AROEX

ARIEX

AR2EX

AR3EX

AR4EX

CROEX

CRIEX

CR2EX

CR3EX

CR4EX

D0=A

>
>

>
>

P

Appendix D

return and enable interrupts

copy A(W) - all 64 bits of A - to RO

etc.

exchange A(W) and RO

D0=A(A), address field of A to DO

-187-

Appendix D

131

132

133

134

135

136

137

138

139

13A

13B

13C

13D

13E

13F

140

141

142

143

144

145

146

147

148

149

14A

14B

14C

14D

14E

14F

D1=A

ADOEX

ADIEX

D0=C

D1=C

CDOEX

CDIEX

D0=AS

D1=AS

ADOXS

ADIXS

D0=CS

D1=CS

CDO0XS

CDI1XS

DATO0=A

DATI=A

A=DATO

A=DATI

DATO0=C

DATI1=C

C=DATO

C=DATI

DATO0=A

DATI=A

A=DATO

A=DATI

DATO0=C

DATI1=C

C=DATO

C=DATI

A*

>
>

*

W
W
W
w
w
w
m
w
m
w

>
>

>
>

>
*

exchange DO with A(A)

copy A "short" (0-3) to low 4 nybbles

of DO

exchange A and DO "short" (nybbles

0:3)

copy A(A) to address pointed to by DO

Warning: the IDS gives the wrong code

(146) for this & for the other DAT0=A

instructions, see notes below.

copy from address pointed to by DO to

A(A)

copy A(B) to address pointed to by DO

-188-

150a

151a

152a

153a

154a

155a

156a

157a

158x

159x

15Ax

15Bx

15Cx

15Dx

15Ex

15Fx

16x

17x

18x

19hh

1Ahhhh

1Bhhhhh

1Cx

1Dhh

1Ehhhh

1Fhhhhh

2n

3xn..n

DATO=A

DATI=A

A=DATO

A=DATI

DATO0=C

DATI1=C

C=DATO

C=DATI

DATO0=A

DATI=A

A=DATO

A=DATI

DATO0=C

DATI1=C

C=DATO

C=DATI

D0=D0+

D1=DI1+
D0=D0-
D0=(2)
D0=(4)

DO0=(5)

D1=Dl-

D1=(2)

D1=(4)

D1=(5)

P=

LC(m)

LCASC

LCHEX

fs *

Q
.
™

M
h
"
r
m
e
y

w
v

v
»
v

u»
mw

u»
nv

n
w
m

*
53

A
A

A
a

a
a

a

*

n..n

\A..A\

h..h

Appendix D

copy field from A as selected by (a)

codes

copy field from A using lowest d(=x+1)

digits

add n to DO (n=x+l), set Carry if

carries

copy hh to DO, also called DO=HEX hh

copy hhhh to DO, also called DO=HEX

hhhh

copy hhhhh to DO, also called DO=HEX

hhhhh

copy n to pointer P

Load C with value n..n , m digits

long, beginning at P position,

towards higher nybbles, wrap around

if need.This has 3

different names depending on whether

instruction

-189-

Appendix D

400

4hh

420

500

Shh

6hhh

6300

64000

7Thhh

800

801

802

803

804

805

806

807

8080

808?

RTNC

GOC

NOP3

RTNNC

GONC

GOTO hhh

NOP4

NOP5

GOSUB

OUT=CS

ouT=C

A=IN

C=IN

UNCNFG

CONFIG

C=ID

SHUTDN

INTON

new opcodes

it is used to load a constant, ASCII

or HEX values, but all work the same.

return if Carry flag set

jump relative if Carry, offset hh from

nybble of the opcode, hh in two’s

complement and back-to-front, see next

line.

3 nybble null operation, skips over

itself

return if carry flag not set

jump if no carry, see GOC (4hh) for

details

unconditional 3 nybble relative jump

4 nybble NOP

5 nybble NOP, the last 0 is just a

filler

save next address on RTN stack, jump

relative

put C(S) in output register(S) (system

bus)

put C(X) in whole OUT register (system

bus)

copy IN register to A(3:0)

unconfigure all chips, & load C(A)

into each chip controller’s data

pointer

configure; send C(A) to chip which has

daisy chain input high and config flag

low

identify chip; send chip ID of chip

with daisy chain input high & config

low to C(A)

send busshutdown command andstop CPU

clock

enable keyboard interrupts

new Saturn opcodes - see notes at end

-190-

808F

809

80A

80B

80Cn

80Dn

8O0E

80Fn

810

811

812

813

814

815

816

817

81C

81D

81E

81F

821

822

824

828

82?

82F

INTOFF

C+P+1

RESET

BUSCC

C=P n

P=C n

SREQ?

CPEX n

ASLC

BSLC

CSLC

DSLC

ASRC

BSRC

CSRC

DSRC

ASRB

BSRB

CSRB

DSRB

XM=0

SB=0

SR=0

MP=0

combine the above

CLRHST

Appendix D

disable keyboard (except ATTN key)

add P+1 to C(A), always done in HEX

mode

send system bus reset command, resets

chips

send system bus command "C" - not used

on 71

copy P into nybble n of C

set SR if any chip on bus requests

service; if so, device identifier 1is

latched to C(0)

exchange C(n) with P

A shift left circular, 1 nybble,

sticky bit (SB) not affected

B shift left circular, as above

A shift right circular, SB set if

nybble shifted from 0 to F position

was non-z€ro

A shift right 1 bit, low bit lost, SB

set if it was non-zero, zero put in

high bit

clear XM flag

clear sticky bit

clear service request bit

clear module pulled bit

these 4 instructions can be ORed to

clear combinations;

82F clears all hard stat flags

-191-

Appendix D

831yy

832yy

834yy

838yy

84n

85n

86nyy

87nyy

88nyy

89nyy

8AQyy

8Alyy

8A2yy

8A3yy

8Adyy

8AS5yy

8A6yy

8A7yy

8A8yy

8A9yy

8AAyy

8AByy

8ACyy

8ADyy

8AEyy

8AFyy

8B0yy

8Blyy

8B2yy

8B3yy

8B4yy

8BS5yy

7XM=0

7SB=0

7SR=0

™MP=0

ST=0

ST=1

ST=0

28T=1

P#

P=

?A=B

B=C

2A=C

2C=D

7A#B

B#C

7A#C

C#D

7A=0

7B=0

2C=0

D=0

7A#0

7B#0

C#0

7D#0

7A>B

B>C

1C>A

D>C

?7A<B

7B<C

>
B

>
R
>

>
>

>
>

>
>

test XM bit, must follow by

RTNYES/GOYES (yy) see end of list for

GOYES explanation

test SB bit, must be followed by yy

clear bit (flag) n in ST

set bit n in ST

test ST bit n, follow with

RTNYES/GOYES (yy)

test ST bit n, again follow with yy

test if P not equal to n, yy must

follow

test B(A) equal to A(A), yy must

follow

note that this code can be written

7C=B A etc.

test B(A) not equal to A(A)

test A(A) equal to zero

once again, these could be written

7B<A etc.

-192-

8B6yy

8B7yy

8B8yy

8B9yy

8BAyy

8BByy

8BCyy

8BDyy

8BEyy

8BFyy

8Chhhh

8Dhhhhh

8Ehhhh

8Fhhhhh

9alyy

9alyy

9alyy

9a3yy

9adyy

9alSyy

9abyy

9a7yy

9a8yy

9a9%yy

9aAyy

9aByy

9aCyy

9aDyy

9aEyy

9aFyy

9b0yy

9blyy

9b2yy

9b3yy

9b4yy

7C<A

D<C

?7A>=B

B>=C

7C>=A

D>=C

7A<=B

7B<=C

27C<=A

7D<=C

GOLONG hhhh

GOVLNG hhhhh

GOSUBL hhhh

GOSBVL hhhhh

7A=B

7B=C

7A=C

7C=D

7A#B

B#C

7A#C

7C#D

7A=0

7B=0

2C=0

D=0

7A#0

7”B#0

C#0

D#0

?7A>B

7B>C

C>A

D>C

7A
>

>
>

>
>

>
P>

>
*

A

fs

fs

fs

fs *

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs *

Appendix D

relative jump, hhhh is two’s

complement distance to go, relative to

3rd nybble of op

absolute goto address hhhhh

relative long GOSUB

absolute GOSUB to address hhhhh

test A=B at selected field, code (a)

etc.

test A>B at field selected using code

(b) etc.

-193-

Appendix D

9bSyy

9b6yy

9b7yy

9b8yy

9b9yy

9bAyy

9bByy

9bCyy

9bDyy

9bEyy

9bFyy

Aal

Aal

Aa2

Aa3l

Aa4

Aal

Aab

Aa7

Aa8

Aa9

AaA

AaB

AaC

AaD

AaE

AaF

ADbO

Abl

Ab2

Ab3

Ab4

7B<C

7C<A

D<C

7A>=B

B>=C

7C>=A

D>=C

7A<=B

7B<=C

7C<=A

7D<=C

A=A+B

B=B+C

C=C+A

D=D+C

A=A+A

B=B+B

C=C+C

D=D+D

B=B+A

C=C+B

A=A+C

C=C+D

A=A-1

B=B-1

C=C-1

D=D-1

A=0

C=0

D=0

A=B

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

arithmetic add selected fields in A

and B, in HEX or DEC mode as selected,

result in A,

adjust Carry flag

etc.

effectively a 1 bit shift left

decrement A in field selected, adjust

Carry

set selected field of A to 0, Carry

not adj.

-194-

AbS

Ab6

Ab7

Ab8

ADb9

AbA

AbB

AbC

AbD

AbE

AbF

Ba0

Bal

Ba2

Ba3

Ba4

Bas

Ba6

Ba7

Ba8

Ba9

BaA

BaB

BaC

BaD

BaE

BaF

BbO

Bbl

Bb2

Bb3

Bb4

BbS

Bb6

Bb7

Bb8

C=A

D=C

B=A

C=B

A=C

C=D

ABEX

BCEX

ACEX

CDEX

A=A-B

B=B-C

C=C-A

D=D-C

A=A+l

B=B+1

C=C+1

D=D+1

B=B-A

C=C-B

A=A-C

C=C-D

A=B-A

B=C-B

C=A-C

D=C-D

ASL

BSL

CSL

DSL

ASR

BSR

CSR

DSR

A=-A

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

Appendix D

exchange selected fields of A and B

shift selected field in A left, SB

unaffected

2’s complement selected field of A if

-195-

Appendix D

Bb9

BbA

BbB

BbC

BbD

BbE

BbF

Co

Cl

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

CD

CE

CF

DO

Dl

D2

D3

D4

D5

B=-B-1

C=-C-1

D=-D-1

A=A+B

B=B+C

C=C+A

D=D+C

A=A+A

B=B+B

C=C+C

D=D+D

B=B+A

C=C+B

A=A+C

C=C+D

A=A-1

B=B-1

C=C-1

D=D-1

A=0

B=0

C=0

D=0

B=C

fs

fs

fs

fs

fs

fs

fs

>
R
B
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>

in HEX mode, 10’s complement in DEC

mode, Carry set if field not zero,

otherwise Carry cleared.

one’s complement selected field, clear

Carry

arithmetic add address fields in A and

B, in HEX or DEC mode as selected,

result in A, adjust Carry flag

etc.

decrement A in address field, adjust

Carry

set address field of A to 0, Carry not

adj.

-196-

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF

EO

El

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

EF

FO

Fl

F2

F3

F4

F5

F6

F7

C=A

B=A

C=B

A=C

ABEX

BCEX

ACEX

CDEX

A=A-B

B=B-C

C=C-A

D=D-C

A=A+]

B=B+1

C=C+l

D=D+1

B=B-A

C=C-B

A=A-C

C=C-D

A=B-A

B=C-B

C=A-C

D=C-D

ASL

BSL

CSL

DSL

ASR

BSR

CSR

DSR

>
>

>
>

P>
>
R
>

P
>
>

D
>

>
>

>
>

>
>

Appendix D

exchange address fields of A and B

shift A left in address field sticky

bit (SB) not affected

A shift right address field, SB

adjusted

-197-

Appendix D

F8 A=-A A 2’s complement address field of A if

in HEX mode, 10’s complement in DEC

mode, Carry set if field not zero,

otherwise Carry cleared.

F9 B=-B A

FA C=-C A

FB D=-D A

FC A=-A-1 A one’s complement address field, clear

Carry

FD B=-B-1 A

FE C=-C-1 A

FF D=-D-1 A

yy GOYES Tests which expecta RTNYES or GOYES

to follow immediately in the next two

nybbles treat yy=00 as a RTN if test

true, other yy values are a 2’s

complement GOTO relative to the start

position of yy. If test is true Carry

is set, otherwise it is cleared.

h..h CON(m) An m-nybble long constant, often used

in the HP-28 to give the address of an

RPL routine.

h...h REL(m) An m-nybble long constant which is

generated relative to something else,

but is stored as an absolute value.

For example REL(5) 5 generates a 5-

nybble constant which is the address

of the instruction 5 nybbles ahead of

the position of REL(S) itself.

NOTES:

1. HP has let it be known that the Saturn CPU in the HP-28 has some

new operation codes, not described in the HP-71B IDS, but they have

not released full details of these new instructions. The design

team leader, Dr. Bill Wickes, did say that one instruction is

-198-

Appendix D

PC=(A), and I found it possible to deduce that this had to be the

instruction 808C, as described in Chapter 4. (It loads into PC the

address whose address is in the A field of register A.) The HP

Journal for Awugust 1987, page 35, mentioned that the new

instructions improve data manipulation and that the interrupt

structure has been enhanced. The following list of the new codes

was given by HP to Pierre David of the Paris user group; I thank

Pierre for passing the codes on to me. The codes are 80810 [RSI -

Reset System Interrupt], 808A [?CBIT#1, no further explanation],

808B [?CBIT#0, no explanation], 808C [PC=(A)] and 808E [BUSCD, no

explanation]. 80810 apparently re-enables clock interrupts, and

808E is presumably used for interrupt handling too (the name BUSCD

is analogous to the instruction BUSCC and must be a new bus control

command). 808A and 808B appear not to be used in the HP-28C or the

HP-28S, by analogy with other Saturn operations they are probably

followed by an "nyy" or a "yy" modifier.

2. When a value is read from RAM into a working register the order

of 1its nybbles is reversed, but it is reversed again when it is

written back to RAM, so this is not normally noticed. (The

individual bits inside nybbles are not reversed.) Instructions

which load data directly into the working registers have to allow

for this too, so GOTO addresses are stored back to front in

instructions, as are values to be loaded by LCHEX. Relative GOTO

and GOSUB instructions store a number which must be added to the

address of the beginning of that number to get to the new address.

If the leading bit of a relative address is set (but remember the

value is stored right to left) then this is a backward jump and the

number is in 2’s complement.

3. The Carry bit is adjusted by arithmetic calculations and logical

tests. When a test is. true, Carry is set, otherwise it is cleared,

and when an arithmetic operation overflows or borrows then again

Carry is set, else it is cleared.

4. Just as ordinary software can have bugs, so the microcode

instructions which are built into a CPU can have bugs too! For

-199-

Appendix D

example programs in the HP-28 sometimes have SETDEC SETHEX where

one SETHEX would do - it may be that SETHEX does not work correctly

in the Saturn that is used in the HP-28 and this is a work-around.

If a you have a program you are absolutely sure should work, but it

does not, then maybe you have found a CPU bug - in that case rewrite

your code using different instructions.

5. Mnemonics marked with a * in the list above have incorrect

numeric codes given to them in the HP-71B Software IDS Volume I,

most but not all have been corrected in the Hardware IDS. If you

think you have seen an incorrect mnemonic, remember that some can be

written in two ways, for example BAEX is the same as ABEX since they

both exchange A and B. Equally ?ST=0 is equivalent to ?ST#1 - but

note that A=B is not the same as B=A !

6. There are 8 return levels available for subroutine return

addresses, but one of these is used by interrupts, so programs

should never have more than 7 pending returns. If you need more

than 7 levels you can use C=RSTK to save part of the return stack

elsewhere, and then RSTK=C to replace it, or you can use PC=(A)

instead of return instructions. Whenever a return is executed the

return stack drops and a zero is put on its top. If all 8 levels

are dropped then another return moves the Program Counter to address

0 - which is the address of the System Halt instructions.

7. As the HP-28 does not come with an assembler or disassembler I

have put the instructions in numeric order so they can be used to

disassemble a program from its numeric code. I have included the

pseudo-ops CON and REL as they are needed to disassemble HP-28 code,

but not the others as they are used by the assembler, not by the

CPU. If you need more details than are given here then you need

either Volume I of the HP-71B Software IDS to get more details of

the Saturn CPU, or you should read a book on assembly language

programming to understand the ideas behind it.

NOTICE: This instruction list and these notes are taken from the HP-

71B IDS with permission from HP for which I am very grateful.

-200-

Appendix D

Hewlett Packard Company and the author do not accept any

responsibility direct or consequential for any errors in this list

or for the results of any use to which these instructions are put.

NOTES

-201-

Appendix E

APPENDIX E - NEW VERSIONS OF THE HP-28

Late in 1987 version 1BB of the HP-28C was replaced by version 1CC,

and early in 1988 the HP-28C was replaced by the HP-28S (version

2BB). Use #A SYSEVAL to check which version you have of the HP-28C

or HP-28S. The purpose of this Appendix is to make general comments

about new versions, to list the new features of the HP-28S, and to

list the SYSEVAL addresses that have been mentioned in this book and

have changed from version to version. Appendix B has details of bug

corrections in the new models.

The manuals initially provided with version 1CC HP-28Cs are the

third edition. They have some minor changes, but the values given

for the units "yr" and "lyr" are still the original incorrect ones,

even though the calculator has the correct values in it. HP-41

users may be interested to learn that the HP-41 "append" and "angle"

signs have been added to newer 82240A printers and are shown in the

table of characters in the STRING section of the Reference Manual.

The HP-28S manuals are rewritten versions of these HP-28C manuals,

with some items moved from one manual to the other, with new

material, and with the units corrected.

It is entirely possible that HP will introduce more new versions of

the HP-28, perhaps an HP-28S with corrections or improvements, or

maybe another new model with Input/Output features to let users copy

programs and data to a storage medium, and then read them back to

the same HP-28 or to another one. After all, typing 30k bytes into

an HP-28S which has suffered a Memory Lost is not a popular pastime

among users, even if it is very rarely necessary!

If you have an HP-28 with more memory; e¢ither an HP-28C with added

memory or an HP-28S then you have to change all the programs which

rely on the top of memory being at address #4FFFF. If you add 4k

bytes to an HP-28C then the top of memory moves up by 8k nybbles, to

#51FFF. If you add 32k then it moves up by 64k nybbles, to #5FFFF.

The HP-28S has 32k of user memory, with the top address at #CFFFF,

so you should change all addresses beginning with #4FF to addresses

-203-

Appendix E

beginning with #CFF. To ensure that a variable goes at the top of

memory you must put the command HOME at the beginning of any HP-28S

program which needs to use a definite address. For example the

programs PEEK and POKE should both have the command HOME added at

the beginning, and #4FF in both programs should be replaced with

#CFF in all three places where it occurs. If you find that you have

a new version of the HP-28, you must first find the top of memory by

using SYSEVAL with various addresses and finding which ones contain

something and which do not - those that do not give a "blink" and

clear the screen and stack.

New and changed features of the HP-28S. The HP-28S is a major

improvement on the HP-28C. It has more memory, runs faster, and

provides sub-directories. As it is still an HP-28 it runs programs

written for the HP-28C. Its extra features include new operations,

new menus, new commands, and the new unit ¢ (speed of light). Here

is a full list of the new and changed features of the HP-28S, put

together using my own observations, information from Tony Collinson

of HP UK, and Brian Walsh’s notes in VIN4 of the US journal HPX

Exchange - these came in part from Jake Schwartz: my thanks to all

these people. I shall abbreviate HP-28C and 28S to C and S.

1. Hardware changes - There are 32k bytes of RAM in the S, compared

to 2k in the C. About 32,400 of these are available to the user, as

against 1,700 on the C - 19 times more user memory! The CPU clock

runs at IMHz instead of 640kHz - an increase of 56% - very

noticeable during plotting and digitising. The electronics have

been redesigned, with most parts on one IC, and the 32k RAM is

provided by a standard commercial chip. Thus adding more memory is

difficult, if not impossible. A new error message, "Power Lost" is

used to show that the electronics have detected a low power

condition, usually caused by flat batteries, but that the power loss

was not bad enough to cause a Memory Lost. When you see "Power

Lost" you will find that the display and the stack have been

cleared, but variables have not. You should check if any variables

have been altered. Some HP-28Ss have the battery compartment lined

with foam rubber to prevent the sideways motion of the batteries

-204-

Appendix E

described at the beginning of Appendix B. This should certainly

reduce the chances of Power Lost or Memory Lost, but you must shake

the HP-28S fairly hard to get the batteries out when you want to

change them.

2. COMA mode - during the redesigning of the electronics a very low

power mode was added. If you press ON, backarrow, and ENTER at the

same time then the S turns off, loses the contents of the stack and

display, and stops running the clock (values in variables are NOT

lost). Mark Cracknell points out that this mode is probably for use

when the S is packed; the batteries are packed in the calculator and

this mode lets them last longer while it lies in a shop. You can

use this mode to preserve the batteries if your S will be unused for

a long time.

3. The display has non-glare glass; so reflections from overhead

lights are less bother.

4. The manuals have been rewritten, as I have already mentioned.

They are printed on a whiter paper, in darker ink, so they are

casier to read. An index has been added to the Reference Manual.

The "Getting Started" Manual of the HP-28C is now much thicker and

is called the "Owner’s Manual."

5. Labels printed above keys which select menus are now on light

grey rectangles - this increases the legibility of the labels. All

the red labels are in smaller letters. Some menus have been moved

todifferent keys, to make room for the new MEMORY and CUSTOM menu

keys, only the P key has no shifted function. The spelling of the

names of some menus has been changed, for example the use of smaller

letters has allowed CMPLX to be rewritten as COMPLX.

6. The USER menu can include variables which are subdirectories (or

submenus). Subdirectories can contain lower subdirectories; objects

in higher directories are accessible to their subdirectories. USER

now contains only variables created by the user; a separate MEMORY

menu contains the old commands ORDER, CLUSR, and MEM, plus new

-205-

Appendix E

commands CRDIR (create a new USER subdirectory), HOME (reset USER

directory from any subdirectory to the main, or home, directory),

PATH (make a list of all menus on the path from the current

subdirectory to the HOME directory), MENU (create a custom menu),

and VARS (create a list with the names of all the variables in the

current directory). These features let you put a set of related

variables in one subdirectory to avoid confusing them with other

variables; CUSTOM menus let you combine built-in commands with your

own variables in one menu, and you can create custom menus which

prompt for input like the SOLVER menu. CLUSR clears objects only in

the current directory and you can delete a subdirectory only after

deleting all the variables in it. Two new error messages "Non-Empty

Directory" and "Directory Not Allowed" are used to indicate errors.

MEM now returns available memory to the nearest half byte, or

nybble.

7. The MENU command can also be used with a number to select a

built-in menu; I described a way to do the same thing on a C using

SYSEVAL in point 3.11.

8. SOLVER menu labels and custom input labels created by MENU are

displayed in black on a white background to distinguish them from

ordinary menu labels. Display menus which toggle functions such as

LAST now show a small rectangle by the selected mode, instead of

providing keys such as [-LAST] and [+LAST].

9. SHIFT ALPHA now toggles the action of keyboard menu keys; press

SHIFT ALPHA once and you will not need to press SHIFT before

pressing a key to select a menu such as COMPLX. Instead of this you

will have to press SHIFT C to get the letter C. If you press SHIFT

ALPHA a second time then the normal use of SHIFT will be restored.

There is no Alpha Lock key. ALPHA toggles three ways between alpha

entry mode, algebraic entry mode, and immediate entry mode. See

next point for one use of this.

10. The one-character operators + - * / A > < > <= >= %

PI Integral, Differential, and Not Equal are entered with spaces

-206-

Appendix E

before and after them during program entry. This means they do not

accidentally get mistaken for part of a name; to include one of them

in a variable name or a command name you must press ALPHA to leave

alpha entry mode, press the key, then press ALPHA two more times to

get back to alpha entry mode.

11. Some conversion constants have been changed - a radian is now

1/(2PI) and a steradian has the value 1/(4PI) - the C used 1 for

both. Photometric units defined in terms of steradians (Lumen, Lux,

Phot, Footcandle) have been changed accordingly. The speed of light

(c) has been added as a new conversion constant, and the year and

light year have been corrected, as they were in version 1CC of the

HP-28C - the year is now a solar year of 365.242 (approx.) days

instead of a calendar year of 365 days. The CATALOG and UNITS menus

no longer have a SCAN key - the NEXT and PREYVsoft keys do the same

job if you keep them down.

12. Binary integers are displayed with ’b’, ’0’, ’d’ or ’h’ after

the value to show their base. You can input binary integers in the

current base by just putting a # before them, or in any of these

bases by including one of the appropriate letters after it as well.

13. GETI and PUTI set flag 46 if they cause their index to wrap

round, otherwise they clear it. GET, PUT, GETI and PUTI can use an

integer, a real number, or a list for the index of an array or a

list. Commands, such as GETI, PUTI or integration, which can accept

a list of real numbers as an argument on the C will also accept

programs or symbolic values in the list on the S. This is because

list elements that return numeric values are automatically evaluated

when a list is used explicitly as an argument. (The PPAR list used

by plotting commands will not work with symbols instead of numbers

though.)

14. POS can find the position of an object in a list, and + can be

used to add two lists together (as on the C) or to add an object to

a list.

-207-

Appendix E

15. The algebraic expression A(I) can return the Ith element of an

array or list A, and A(I,J) works on two dimensional arrays too. I

and J can be real numbers, integers, or objects which evaluate to

one of these. This allows array elements (and list elements of the

right types) to be used in algebraic expressions.

16. CROSS accepts 2-element vectors and treats them as if they were

3-element vectors with the third element set to zero. (This is an

extension of the way real numbers are treated as complex numbers

with the imaginary part set to zero.) RND works on complex numbers

and on arrays. COMBination and PERMutation functions have been added

to the STAT menu.

17. User defined functions (UDFs) can be defined using a program,

not just an algebraic expression. This gives you much more power in

defining new functions, since they can be expressed as algorithms,

not just as formulae.

18. Two new functions in the STRING menu, LCD-> and ->LCD let you

save the display in a 548-byte character string and restore the

display from that string. These strings can be inverted (inverse

video) with NOT, and combined with AND, OR and XOR. (Other strings

can also be used with ->LCD and with AND, OR, XOR - this can be

exploited to give interesting displays and to encrypt text strings.)

During interactive plotting you can copy the display to a string in

the stack by pressing the DEL key. You can also send a copy of the

display to the printer at any time by pressing ON and L at the same

time. The new DGTIZ command allows moving of the cursor,

digitising, and saving of the display in a string as is allowed by

DRAW during interactive plotting. You can press the Cursor key

(next to SHIFT) at these times to see the coordinates of the cursor,

shown in line 4. *W and *H have been changed so the position of the

central pixel stays the same when the scale is changed.

Mathematical errors and exceptions are ignored during plotting, so

for example a function which goes to infinity at the origin can be

plotted.

-208-

Appendix E

19. Programs are displayed and printed with indentations to show

structures such as FOR/NEXT clearly. Flag 47 Set selects double-

space printing, something many users wanted. PRUSR prints the names

of variables in the current directory, PRVAR can be given a list of

the names of variables to print. Arrays are printed with the name

and dimensions first, then each element on a separate line. When a

program or list is printed any numbers in it are printed in STD

format and binary integers are printed in 64 bit word size.

20. On the C inverting a singular matrix was always done by

perturbing the matrix, giving an approximate solution. The S does

this only if flag 59 (infinite result action flag) is clear,

otherwise an INV error is signalled and flag 64 (infinite result

indicator flag) is set.

21. Error messages include the name of the command which caused the

error, for example using DROP in a program when the stack is empty

will display a message which includes "DROP Error:" - this helps in

debugging programs.

22. Bug fixes: equal binary integers are shown as equal even if

their wordsizes differ. The key buffer is NOT cleared when the

solver starts - this means a key can be pressed immediately after

starting the solver to view its progress. STOsigma will now accept

any object type, like STEQ which does this on the C and the S - this

might be considered to be a help, or a new bug.

23. The low memory code has been changed - if the command line is so

long that it causes a low memory warning it is first saved in the

command stack. At Out of Memory an extra option allows clearing of

the CUSTOM menu, the HOME menu becomes current, each object’s type

is displayed, a subdirectory is deleted only if empty, otherwise the

objects in it are offered for deletion, and Out of Memory ends if

clearing the subdirectory frees enough room. Purging UNDO, LAST or

COMMAND does not disable these modes.

24. Clearly the internal code has been extensively rewritten;

-209-

Appendix E

SYSEVAL values are changed - see the list which follows. #109Fh

tests a new "low battery?" flag, returning a 1 to the stack if there

is a low battery condition, or a 0 otherwise.

25. Finally, the self-tests and system operations have been

expanded. If OK, the tests end with OK 28S-E (E for English, the

HP-27S displays E too, but European HP-17Bs show 1 for

International). A short keyboard test has been added to the single

step self-test; a full keyboard test is provided by pressing ON and

NEXT. Pressing ON and DEL at the same time does something which is

called "Cancel System Operation" in the S Owner’s Manual but is not

explained. The C manual is more forthcoming - it calls this Cancel

Reset and explains that a System Halt (ON UP) or a Memory Reset can

be cancelled, if you change your mind, by keeping ON pressed down,

releasing the other keys, pressing and releasing DEL, and finally

releasing ON. The same method can be used to cancel the effect of

ATTN - if you press ON during a program or a plot operation then you

can cancel the ATTN by keeping ON down and pressing DEL, then

releasing both.

The rest of this Appendix is a list of SYSEVAL addresses which were

given in this book and which may have changed in the new models, or

may change in a future model. A column has been left to fill in

details of a new model for yourself if you have one. All the

addresses are in hexadecimal. If you do not want to examine the

whole list here are the most important points. On version 1CC of

the HP-28C you will find the system clock at address #1266 (my

thanks to Tony Collinson and Kim Holm for divulging this

information). On the HP-28S version 2BB the clock is at #11CA.

Most other SYSEVAL addresses given in this book will have changed

too, but PEEK will still work (see above for changes required by the

HP-28S), so you can find new addresses with a little perseverance.

For example you can find that the version number and copyright

notice begin at address #3FF9B in the HP-28C version 1CC. (Oddly

enough, the copyright notice still has 1986 as its date, although

the version 1CC code was completed in March 1987.)

-210-

Appendix E

SYSEVAL addresses on new versions. The addresses given in the text

of this book for use with SYSEVAL are for the original version 1BB

HP-28C. Here is a list of those addresses again, with the

corresponding addresses for the newer versions. In some cases the

discovery of a useful SYSEVAL address was purely fortuitous - some

of these addresses still exist on version 1CC but few exist on the

2BB. This is because version 2BB is largely rewritten - to the

extent that versions 1BB and 1CC had their code divided up into 10

recognizable separate chunks whereas 2BB has only 9 such pieces.

Where I have been unable to identify a corresponding address for the

newer models I have tried to give suggestions on alternative ways to

get the same result.

Point Purpose of SYSEVAL Operation 1BB 1CC 2BB

Number and comments on it address address address

3.1 Version no. (should never change) #A #A #A

3.2 System clock #123E #1266 #11CA

3.3 Set SHIFT #9C96 #9C61 #1F8A7

3.3 Cancel SHIFT #9CA3 #9C6E #1F8B4

3.4 50 extra bytes #11AA see not

I have not found an address to note needed

do this on the 1CC; instead use

#11CB to force an "Out of Memory"

and then delete unwanted values.

3.6 Generalized STO #3FBA7 #3FCC8 see note

On the HP-28S use the programs

in point 3.10 to create "Non-

Normalized names" and store

variables with those names.

Definition address for a #2933 #2933 #2933

real number. In fact ALL

-211-

Future

model?

#A

Appendix E

3.6

3.7

3.7

3.7

3.8

the addresses that define objects

are the same on all three models.

Generalized ->STR #2DFOB #2DFCA see note

Once again HP-28S users cannot

do this but will be able to do

similar things after point 3.10

UNDO #329BE #32AB3 #3E34A

COMMAND #9476 #94ED #20807

This needs 2 SYSEVALSs on #32311 #3248E #3DD23

versions 1BB and 1CC, but 3 on #1892B

the 2BB. The 2BB version does not

turn on alpha mode (as COMMAND normally does on the 2BB),

so as to let the user repeat COMMAND in a program.

+CMD Note that all these give #7786 #7788 #184A7

-CMD an error message unless #77A8 #T77TAA #184C9

the stack contains at

least one object.

+UND #F412 #F428 #21E5C (see

-UND #F44E #F464 #21E5C note)

Note: the HP-28S address toggles UNDO on and off in turn. To

set UNDO without knowing its present state use the subprogram:

<< IFERR #3E34A SYSEVAL THEN #21E5C SYSEVAL END >>

If UNDO is already set then this will UNDO the present stack,

so use this subprogram at the very beginning of any program

that needs to have the UNDO option set.

BIP #30B7 #30B7 see note

There is no exact equivalent on the HP-28S, you can use error

-212-

3.9

3.10

3.10

3.10

3.10

Appendix E

4 as below to generate the unused (on the HP-28S) error number

4, but there is no simple way to create other error numbers.

Error #1 #3327 #3327 #3939

Error #2 (not used on HP-28S) #3333 #3333 #3945

Error #3 #333F #333F #3951

Error #4 (not used on HP-28S) #334B #334B #395D

Throughout this point, and following ones, note that the define

a real number, are the same on all three HP-28 versions. Note

also that any programs which use a position relative to the top

of memory must use the top of memory in your particular HP-28.

For example the top of memory on an HP-28S is #CFFFF so the

position of the Non-Normalized number is #CFFFF - 20 instead of

#4FFFF - 20. As there is no "BIP" address on the HP-28S you

will not be able to use your Non-Normalized numbers to get

strange error numbers, and as there is no generalized STO you

will have to wait till the next point to find how to create

"customized" names for variables. WARNING: on the HP-28S any

program which stores something at the top of memory must do so

from the HOME menu, otherwise the variable will be at the top

of the current directory but not necessarily at the top of RAM.

The method described here to create Non-Normalized names, such

as names with algebraic signs in them, is the only method

available to HP-28S wusers (unless someone finds another

alternative to Ianization). Once again you have to use the

right address for the top of memory in your particular HP-28,

for example on an HP-28S replace 327680 with 851968 (the

decimal equivalent of #D0000) in the program NNC.

SST #105BC #105F9 #22F1D

CONTINUE #1058A #105C7 #22EF0

Program to make 'R/S’ name 7C620 76C20 76C20

AOQOF72 CEF72 O0D9EO

-213-

Appendix E

3.11

3.11

3.11

3.12

3.13

4.1

4.2

4.3

4.4

NEXT (Warning: the program

expects at least one object on the

stack, but it does not use the object.)

MENU command

Generating an integer

NAME

EDIT

The HP-28S requires 4 SYSEVALSs

to be executed one after another

for EDIT to be used in a program.

43F72

21D20

30

25F235

E4F72

F1F72

09F20

#E514

#E38E

#6D56

#30064

#C407

61082

21D20

30

25F235

03082

10082

09F20

#E52A

#E3A4

#6D56

#17564

#C3FF

CF9EQ

21D20

30

25F235

71AEQ

6E9EQ

09F20

#20256

Built-in

command

#71A9

not found

#1BFEB

#189E7

#204A

#1C009

The code and addresses are given only as an example and do not

necessarily represent real addresses in any particular version.

The HP-28S manuals are even stricter in their demands that

copyright not be infringed, so I have avoided giving any

disassembled HP-28S code ecither.

Just change RAM top position

(and use HOME on the HP-28S).

Again change RAM top positions,

e.g. as shown here for the PEEK

program itself.

-214-

#4FFF2

#4FF7B

#4FFFO0

#4FF76

#4FFF2

#4FF7B

#4FFFO0

#4FF76

#CFFF2

#CFF7B

#CFFFO

#CFF76

44

4.5

4.6

4.7

4.8

Appendix E

The version messages begin at #3FE7TA #3FF9B #3FF97

See above for version number message.

"CONTINUE" #FCCF #FCES

CONTINUE code #FCDF #FCF5

As in point 4.4 replace 4FF with CFF throughout.

32 bit part of clock #407F8 #407F8

(top of display RAM)

48 bit part of clock #4F003 #4F003

(at bottom of user RAM)

JMPM, JMPR #4FFF9 #4FFF9

Again use top of RAM #4FFF4 #4FFF4

(and HOME on HP-28S). etc. etc.

NEXT study #E530 #E532

The HP-28S behaves differently! etc. etc.

Key buffer begins at: #4F038 #4F038

(unless you have added memory).

-215-

#2263D

#2264D

#FFFF8

#C0003

#CFFF9

#CFFF4

etc.

#20252

etc.

#C0038

INDEX

+CMD, 67

/0

lack of, 118

1LGS, 124

ABORT,31

Adding RAM, 134

ADDL, 23, 146

Address 0, 74

Addresses, 54

ALGEBRA,45

Algebra with binary numbers,

42

Algebraic entry, 11

Algebraic entry like algebraic

calculators, 13

Algebraic entry mode, 6

Algebraic expressions, 28

Alpha entry, 12

Alpha entry like BASIC, 13

Alpha entry mode, 6

Answering, 78

AREUH, 88

Argument, 8

ASCII, 14, 57, 63, 70

Asking questions, 33

Assembler, 87

Assemblers, 88

Assembly language programs, 88

ATTN, 3, 6

Bailey B., 40, 59, 168

Baker J., 180

Ball J. A,, 157

Barcodes, 37

BASIC, 102

-217-

Batteries, 161

BCD, 63

BEEP, 61

Bender, 128

BIN, 47

Binary Coded Decimal, 63

Binary integers, 47

Binary masking, 42

Binary numbers, 42

BIP, 61

Breaking in, 127

Bugs, 74, 162, 163, 164, 166

Byte, 14, 57

Capacitors, 132

Casio, 42

CATALOG, 3, 5

Cawsey

Graeme, 45,179

CDE, 116

Central Processor Unit, 81

Character, 14

Charcter 0, 14

CHHU Chronicle, 137

Choice of answers, 78

CHR,36

CHR(0), 14

CHS bug in EDIT and VISIT, 164

Circuit board, 129

CLEAR, 45

CLMF, 49

CLOCK, 52

Clock corrections, 106

CLUSR,45

CLX, 11

Cmof, 61

Cmon,61

CMT, 126

COD, 70, 91

Code, 81, 116

Collinson A., 163, 204

Colon, 36

Comm, 60

Comma, 7

COMMAND,5, 7, 10, 19, 47, 59

Command line, 10, 13, 14

Command names, 63

COMMAND

as an alternative to

programs, 10

Commands, 171

Commencement of a program, 110

Compilers, 88

Compiling, 39, 72

Complex arrays, 41

Complex numbers, 41

Conclusion of a program, 110

Configuration, 126

Confusing actions, 161

CONST,56

Constants, 17

CONT,31

CONTINUE, 100

CONTL, 148

Controller, 124

Copyright, 87

Copyright notice, 99

Correcting errors, 7

Courbis P., 174, 177, 179

CPU, 54, 81, 83, 84, 130, 180

CPU registers, 182

Cracknell M., 205

-218-

Crowther C., 137

Currencies, 7

Current directory, 140

Current menu, 3

Current path, 140

Cursor, 3, 13

Custom error messages, 61

Customized names, 58

DO, 84

D1, 84

Daisy chain input, 131

Daisy chain output, 131

Data objects, 14, 171

DATAFILE, 157

David P., 88

Debugging, 31

DECOD, 101

Decompilers, 88

Decompiling, 39

Decompiling system objects, 89

DEG, 6

DELL, 151

DEPTH,8

Diagnostic module, 48

Direct commands, 8

Direct I/O connection, 131

Display, 74

Display layout and control,

130

Dodin

Jean-Daniel, 40,59

Dot, 7

Drilling in, 128

DROP, 10

Drop tests, 125

DROPN,8

Dummy, 94

Dummy variables, 144

DUP, 8

Duplicate names, 144

Duplicate variables, 142

E, 17, 41

EDIT, 13, 77

EduCALC, 126, 137, 157

EEX bug in EDIT and VISIT, 164

Electronic notebook, 144

ELSE, 25

END, 25

ENG, 6

ENTER,3, §, 8, 13, 14

ENTER and the command line, 14

Entry modes, 6, 11, 13

Error messages, 61, 62

Error recovery, 7

Errors, 13

EVAL, 5, 10

EVEN,68, 91

Examining RAM, 100

Example books, 155

Examples, 1

Execute, 88

Extend Your HP-41, 157

Extra RAM, 157

Ezra R., 137

FACT, 25, 32

Faults, 161

FBYTE, 69, 91

FETCH,3

Field, 183

Filler, 98

Filler bytes, 98

-219-

FINDL, 147

FIX, 6

Flag 31,9

Flag 60, 26

Flags, 15

Flags 57 58 and 59, 60

FOR..STEP, 34

FORM, 45

FORTH,77, 90, 155

FORTH/Assembler module, 88, 90

G, 17

Garbage collection, 50, 114,

133

Generalized ->STR, 57

Generalized STO, 56

GET, 24

GETI, 24

Getting Started manual, 1

Global and local names, 41

Global names, 175

Global variables, 38, 142

GOLONG, 92

GOVLNG,92

Grapevine Publications, 156

HALT, 31

Hang-up, 54, 118

Hard addressing, 126

Hardware, 54

Harvey R., 157

HEX, 47

Hexadecimal integers, 47

High-level languages, 88

Holm K., 137

Holm

Kim, 119

Home directory, 139

Hook-uP, 132, 157

HP calculators, 1

HP Journal, 130, 137

HP-15C, 156

HP-15C Advanced

Functions Handbook, 156

HP-16C, 42

HP-18, 54, 86

HP-18C, 125

HP-19, 86

HP-28 assembler, 89

HP-28 disassembler, 89

HP-28 INSIGHTS (book), 156

HP-28 mini-assembler, 89

HP-28C, 47

HP-28C subdirectories, 143

HP-28S, 17, 29, 30, 47

HP-28S RAM and ROM

positions, 179

HP-28S subdirectories, 17

HP-41, 6, 34, 37, 43, 48,

68, 203

HP-71, 6, 48

HP-71B, 54, 74, 84,

124, 126, 156

HP-71B assembler, 88

HP-71B FORTH/Assembler

module, 89

HP-71B IDS, 87

HP-71B internal design

specification, 54

HP-71B memory modules, 126

HP-82240A printer, 1

HPCC, 124, 157

HPX, 157, 163

Hybrid, 124

-220-

I, 17, 41

Ian Maw, 56

Ianization, 59, 85

IBM PCs, 88

IDS, 54, 87, 130, 155

IF, 25

IFTE, 27, 28

Immediate entry, 11

Immediate entry like RPN

calculators, 13

Immediate entry mode, 6

In-line code, 118

In-line machine code, 112

Indirect addressing, 84

Indirect commands, 8

Inductor, 132

Infra-red transmitter bulb,

131

Insert mode, 6

Instruction, 83

Instruction pointer, 90

Integers, 74

Interfacing, 132

Interpreters, 88

INTOFF, 91

INTOFF program, 91

INTON program, 92

IP, 23

IP and Ip, 46

J, 41

Janick Taillandier, 88

Jean-Daniel Dodin, 59

JMPM, 111

JMPR, 112, 116

Jumping into a machine

language program, 110

Jumping into an RPL program,

112

Jumping into programs, 110

Key buffer, 119

Keyboards, 3

Keycodes, 119

Keys, 91

KILL, 31

Kim Holm, 119

Labels, 123

Lambda variables, 86

LAST, 7, 59

LC, 23

Leather case, 123

Leather cases, 157

Lennaerts M., 5

LISP, 86

Local and ordinary (global)

names, 41

Local names, 175

Local variables, 24, 26, 27,

38, 142

Loop, 34

Looping and the stack, 34

Low-level languages, 88

Lower case, 23, 119

Lower case letters, 41

Machine code, 81

Machine language, 81

Machine language programs, 88

Machine instructions, 81

Madsen F., 5

Manuals, 1, 155, 203, 205

MASK, 42

-221-

Masking, 42

Matrices, 19

Maw 1., 137

MAXR, 17

MEM, 45

Memory, 13, 65, 124

Memory layout, 65

Memory Lost, 52, 118

Memory reset, 52, 54

MENU, 45, 76

Menu layout example, 138

Menu numbers, 75

Menus, 45, 74

Microcomputer interface, 132

Mini-disassembler, 89

MINR, 17

Mnemonic, 83

Mnemonics, 87, 183

Modes, 35, 35

Modifier, 183

Modifiers, 91, 93

Modules, 37

MS-DOS, 88

NAME, 77

Negative exponents, 63

Nelson R., 155

New versions, 203

NEWLINE, 145, 168

NEXT, 45, 74

Niemeijer M., 174

NIP, 21, 22, 81

NNC, 70, 91

NNN, 66, 67

NNNs, 64

NNO,67, 70

Non-keyable characters, 36

Non-Normalized name, 72

Non-Normalized numbers, 63

Non-Normalized objects, 67

Notebook, 1, 152

NRCL,42

NSTO, 42

NSWP, 44

Null, 14

NUM, 85

Numbered registers, 42

NXT, 74

Nybble, 57

Object storage, 172

Objects -their structure, 171

ON, 3

One-command programs, 45

Operating System, 55

Operation, 19

Ordinary and local names, 41

Ordinary or global names, 40

Ordinary variables, 142

Out of Memory, 30, 44

OVER,8, 44

P, 141

P command for moving between

directories, 141

Paris club, 88

PC interface, 157

PC=(A), 84, 85

PCB, 135

PEEK, 96, 116

Petersen S., 5, 77

Phantom } bug, 166

Pi, 11, 17

PICK,8, 11, 43

-222-

Pierre David, 88

Pin connections, 131

PLACE, 43

Plotting, 161

Point, 7

Pointer registers, 90

Pointers, 90

POKE, 102, 104, 116, 119

Position independent code, 113

PREYV, 45, 119

Printer, 1, 3

Printer control flags, 16

PRMD, 6

PRMT, 33

Problems, 161

Program control of COMMAND, 61

Program control of LAST, 61

Programmable EDIT, 77

Programs, 20

Programs - their structure,

171

Prolog, 171

PROMPT, 34

Prompting, 33

PRVAR, 9

Pseudo-operations, 87

Pseudo-ops, 87

PURGE, 32, 45

PURGE

a warning, 98

Quadratic, 18

R/S, 68, 71

RAD, 6

Radix, 7

Radix mode, 7

RAM, 55, 124

RCL, 39

RCLF, 35

RDZ, 49

Reference manual, 1

Register 0, 42

Replace mode, 6

Residual array, 32

Result string, 69, 101

Return stack, 84

Reverse Polish Notation, 86

Ripple, 87

RND bug, 164

ROLL, 8

ROLLD, 8

ROM,55, 124

ROM-based Procedural

Language, 87

ROMAN 8, 14

Roots, 18

ROT, 8

Routines, 33

RPL, 86, 90, 155

RPN, 86, 90

RSD, 32

Rules

for local and ordinary

(global) names, 41

Run, 88

RUSH systems, 132, 157

Saturn, 54, 83, 124

Saturn assemblers, 88

Saturn CPU, 180

Saving space, 32

Schwartz J., 204

SCI, 6

-223-

Self-reference, 168

Separator, 7

SETM, 35

Sharing local variables, 40

SHIFT, 3

Short programs, 30

Signals, 131

SINC, 33

Smith J., 137

Soft addressing, 126

Solution Books, 1

SOLVR, 45

Source string, 69, 101

Space saving, 32

Special characters, 37

Speeding-up, 133

SRCHL, 148

SST, 31, 71

Stack, 8, 38

Stack analysis form, 26

Stack operations, 114

Stack pointer, 90

START..NEXT, 34

STD, 6

Steen Petersen, 77

Stefano Tendon, 88

Step, 83

STO, 18, 56, 58

STOF, 35

STRING, 14, 82

String comparison bug, 164

Subdirectories, 30, 139

Submenus, 139

Subprogram, 82

Subprograms, 30, 33

Suspended program, 31

SWAP, 8

Synthetic Programming, 37, 48

Synthetic registers, 43

SYNTHETIX, 157

SYSEVAL, 5, 46, 47, 54, 108

SYSEVAL evaluation, 74

System clock, 49, 105

System Halt, 54, 74

System Object, 59, 89, 118

System Objects, 74

Taillandier J., 88

Technical Notes, 157

Temporary variables, 142

Tendon S., 88

THEN, 25

Thread, 82, 84

Thread pointer, 112

Threaded interpreter, 86

Threaded language, 86

TI, 42

TIME, 51

Time-out, 105

Time-out

disabling, 105

Timer circuit, 132

Timer circuits, 133

Timings, 49

Top of memory, 65, 70

TUCK, 21

Turbo-71, 88

UDF, 28

UNDO, 7, 9, 59, 60, 161

Unof, 61

Unon, 61

UP program, 141

USER,6, 44

User club addresses, 158

User clubs, 48, 152, 157

User groups, 56

USER menu, 20

User mode, 6

User-defined function, 28

User-written commands, 21

Using SYSEVAL, 108

Variables, 18

VERS, 48

Version 1BB, 48, 203

Version 1CC, 48, 203

Version 2BB, 48, 203

Version numbers, 47

VIEW, 5

VISIT, 11, 39, 43

Wales F., 162

Walsh B., 163, 204

White D., 137

Wickes

Dr.Bill, 40,55,156

XTOA, 37

YES key bug, 165

YES/NO, 33

Zengrange, 126, 137

THE PHOTOGRAPHS

The photographs should give you some idea of how to open an HP-28C

and what is inside it. The circuits inside the HP-28S or other new

models will not be exactly the same. Photo 1 shows an HP-28C with

the stick-down overlays on the keyboard and above the display

removed. You should be able to see a row of holes above the

display, with the peg-tops in the middle of each hole. The keyboard

is held down by more such pegs: you have drill out the top of every

one to be able to open an HP-28.

Photo 2 shows the right-hand part of the HP-28C after it has been

opened up. The circuit board is clearly seen, above the keyboard

(the keys have been removed) and below the battery compartment. If

the three 1.5V batteries were replaced by a single smaller battery

then the space freed by the other two could be used to hold plug-in

modules or I/O devices. The keys normally sit on a thin rubber mat

which lies on top of the keyboard "sandwich" - this rubber mat has

been removed so you can see the metal foil which detects keystrokes.

The circle above the keyboard, stuck inside the back of the case, is

the "bender" which makes the BEEP sounds.

Photo 3 is an enlargement of the circuit board seen in photo 2. In

the top right corner is the infra red bulb used to send signals to

the printer - the bulb is not clearly seen in the photograph as it

is transparent. To the left of the bulb, and lower down, is the

capacitor used to support the constant memory while the batteries

are being changed. Below this capacitor is the inductor used in the

CPU timer, and the two capacitors used for this timer are to the

left of the inductor. Other surface mounted components can be seen

on the board, the most interesting are the two hybrids at the left

and right - marked 1LP3-0016 and 1LP3-0015. The numbers and letters

below these identifiers are the date and place of manufacture

(Singapore). These hybrids carry the HP-28C ROM. Along the bottom

are the keyboard contacts. To the left of the middle are two springs

which connect to the bender.

-225-

Photo 4 shows the inside of an HP-71B 4K ROM plug-in module,

enlarged to roughly the same scale as photo 3. The inside of a RAM

module looks very similar.

PHOTO 1

e i e

SR ool S

-226-

e

_fimuiiufi |

PHOTO 4

-227-

PHOTO 3

Rotated 90 degrees

th

reference to Photo 2

i1SC Wclockw

e

-228-

ORDER BLANK

Price
per
copy Qty Amount

For HP-28C’s & HP-28S’s
Customize Your HP-28, by W.A.C. Mier-Jedrzejowicz $16.95

For HP-71°S
HP-71 Basic Made Easy, by Joseph Horn $18.95

For HP-71'S & HP-41'S
Control the World with HP-IL, by Gary Friedman $24.95

For HP-41'S
HP-41 Advanced Programming Tips, by A. McCornack & K. Jarett $20.95

HP-41 M-Code for Beginners, by Ken Emery $24.95

Inside the HP-41, by Jean-Daniel Dodin $12.95

Extend Your HP-41, by W.A.C. Mier-Jedrzejowicz $29.95

HP-41 Extended Functions Made Easy, by Keith Jarett $16.95

HP-41 Synthetic Programming Made Easy, by Keith Jarett $16.95
(Includes one Quick Reference Card)

Quick Reference Card for Synthetic Programming $2.00

Synthetic Quick Reference Guide (SQRG) $5.95

Humor
It’s Amazing How These Things Can Simplify Your Life:
The Harold Guide to Computer Literacy $4.95

ROM’s
SKWIDBC -- Barcode Generation Module by Ken Emery $199.95

SKWIDBC Plus -- for LaserJet Plus or Series II $199.95
(Upgrade from SKWIDBC for $50 plus SKWIDBC tradein)

AECROM by Redshift Software $ 99.00

Sales tax (California orders only, 6 or 7%)
Add’l

Shipping Ist book books
within USA, book rate (4th class) $1.50 $0.50
USA 48 states, United Parcel Service $2.50 $1.00
USA, Canada, air mail $3.00 $1.50
elsewhcrc book rate (6 to 8 week wait) $2.00 $1.00
elsewhere, air mail $12.05 for Extend Your HP-41, $6.05 for others

Free shipping for It’s Amazing... with purchase of any other book
Free shipping for ROM’s, QRC plastic cards or SQRG (any number)

Enter shipping total here $

Total due $

Checks must be in U.S. funds, and payable through a U.S. bank.

Name

Address

City State Zipcode
Country

Mail to:
SYNTHETIX, P.O.Box 1080, Berkeley, CA 94701-1080, USA Phone (415) 339-0601

TURBOCHARGE YOUR HP-28!

Customize Your HP-28 was written for users of all HP-28

calculators, including the HP-28S. This book begins by

showing you tips and tricks to help you use your HP-28 more

effectively. This material is invaluable to serious HP-28

users. But these tips and tricks are just the beginning...

Customize Your HP-28 continues, with an explanation of the

obscure but powerful command SYSEVAL. This command is the

trap door through which you will gain full control of your

HP-28. Through SYSEVAL you can execute any section of the

HP-28’s internal programs, providing a range of new

capabilities to the HP-28.

The next section of Customize Your HP-28 gives you a taste

of the ultimate form of control over your HP-28 -- machine

langauge programming. It’s fun to know about, even if you

decide not do your own machine langauge programming. You

can still use and admire the machine language progams

available in this book and through users’ groups.

A full chapter is dedicated to describing the HP-28’s

internal hardware layout, and explaining how you can

(carefully) add more memory. Appendices cover users’

groups, bugs, program and data structures, and detailed

information for machine language programming.

Whether you are a beginner or already an expert, Customize

Your HP-28 will help you get the most out of your HP-28!

$16.95 ISBN 0 95107331 1

	Cover
	Introduction
	Table of Contents
	Special HP-28 Keys and Symbols
	Chapter 1. Tips, Keys and Modes
	1.1 Read the manuals
	1.2 Do some examples
	1.3 Keep notes
	1.4 Practice makes perfect
	1.5 Useful keys
	1.6 Useful key combinations
	1.7 What is a mode?
	1.8 Check your modes with PRMD
	1.9 Learn to use the modes
	1.10 LAST, UNDO and COMMAND
	1.11 A detailed look at LAST
	1.12 More about UNDO and COMMAND
	1.13 A look at the command line
	1.14 About ENTER
	1.15 Other modes
	1.16 Create your own modes
	1.17 Using the printer control flags

	Chapter 2. Variables, Programs and Menus
	2.1 Simple constants
	2.2 Simple variables
	2.3 Commands or variables?
	2.4 Variables and programs
	2.5 COMMAND and programs
	2.6 Simple programs
	2.7 Longer programs
	2.8 Algebraic expressions
	2.9 Writing and testing programs
	2.10 Some space saving tips
	2.11 Subprograms and routines
	2.12 Set your modes
	2.13 Putting non-keyable characters in programs
	2.14 Subprograms and local variables
	2.15 Complex numbers and arrays
	2.16 Algebra with binary numbers
	2.17 Storing data in numbered registers and the stack
	2.18 Tidying up memory and the USER menu
	2.19 Playing with menus
	2.20 One-command programs

	Chapter 3. Using SYSEVAL
	3.1 Version numbers
	3.2 The system clock
	3.3 A programmable SHIFT
	3.4 A bit more memory?
	3.5 Playing with SYSEVAL
	3.6 A generalized STO
	3.7 Programming with UNDO and COMMAND
	3.8 ’BIP’ and error messages
	3.9 Non-Normalized numbers and more about SYSEVAL
	3.10 Non-Normalized objects, and a programmable CONT and SST
	3.11 Program control of menus
	3.12 A NAME command
	3.13 Using EDIT in your programs

	Chapter 4. Machine Language Programming
	4.1 The layout of programs
	4.2 Copyrights and copy wrongs
	4.3 A simple machine language program
	4.4 A PEEK command
	4.5 Playing with PEEK
	4.6 And now a POKE command
	4.7 Jumping to Conclusions
	4.8 POKEing the key buffer
	4.9 Where next?

	Chapter 5. Modifying the Hardware
	5.1 A few extra labels
	5.2 The memory problem
	5.3 Memory configuration
	5.4 Opening it up
	5.5 What’s inside?
	5.6 What else is there?
	5.7 Adding the RAM
	5.8 Customizing HP-28S and HP-28C menus
	5.9 Subdirectories for the HP-28C

	Appendix A. Further Sources of Information and Equipment
	Appendix B. Problems
	Notes for users of the HP-28S and newer HP-28Cs.

	Appendix C. The Structure of Objects and Programs
	Appendix D. Internal Layout and Use of Machine Language
	Overall memory layout
	The display RAM
	HP-28S RAM and ROM
	The Saturn CPU
	HP-28C command name and address list
	Notes

	Appendix E. New Versions of the HP-28
	New and Changed Features of the HP-28S
	SYSEVAL address on new versions

	Index
	Photographs

