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1. Introduction

Welcome to the world of the HP-28 calculator. If you are a new or prospective owner
of this calculator, you may well be a little overwhelmed or intimidated by the sheer
extent of the HP-28’s capabilities. This is not surprising--the HP-28 represents the
most powerful and comprehensive set of mathematical functionality ever built into a
handheld device. Because the HP-28 presents so much that is new or different from
previous high-capability calculators, you might imagine that it will take you a long time
to master its use. Fortunately, this shouldn’t be true.

In this book we intend to give you some insight into the theory and operation of the
HP-28. The most important message to convey is that the HP-28 is actually quite easy
to use once you understand a few fundamental ideas and try a few examples. The beauty
of this calculator is that it applies its basic rules and proceaures uniformly and con-
sistently across the entire range of its capabilities. You don’t have to learn new methods
for each general area of calculator operation.

For example, here’s how you add two numbers on the HP-28:

1. Key in the first number.

2. Key in the second number.

3. Press .

If you’re familiar with traditional HP scientific calculators, you will recognize this as the
standard “RPN” keystroke sequence for addition. If you have only used so-called “alge-
braic” calculators, the sequence may seem a little awkward--but we’ll postpone explana-
tion and justification to Chapter 2. The point here is that once you’ve learned this
sequence for ordinary numbers, you immediately know also how to add, for example,

two complex numbers or two vectors. Just take the above instructions and substitute
“complex number,” or “vector,” everywhere you see “number.” You follow the same
logical sequence, and press the same key, for all of the kinds of addition that the
HP-28 provides. This is what we mean by consistency and uniformity.

1.1 Some History

In 1972, Hewlett-Packard introduced the HP-35, an “electronic slide-rule” that revolu-
tionized the world of numerical calculations. It offered high-precision arithmetic, loga-
rithmic, and trigonometric functions at the press of a key, obsoleting slide-rules and
thick function tables. The HP-35 was followed by a stream of products, from HP and
from other manufacturers, that expanded on the HP-35 theme by offering more func-
tions and more data storage registers.
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A second generation of calculators was started by the HP-65, the first programmable
calculator. This calculator allowed you to customize it by creating programs, which
effectively extended the built-in command set. Like the HP-35, the HP-65 was followed
by numerous variations of the programming theme, including handheld computers pro-
grammable in BASIC. Perhaps the most successful of these is the HP-41, which has
become the standard engineering calculator.

All of the calculators of the first two generations share two common limitations. First,
they are optimized only for dealing with real floating-point numbers. Some calculators
allow you to work with character strings, complex numbers, and/or matrices, but typi-
cally each additional data type has its own special commands or working environment,
requiring you to learn new calculation methods and making it hard to combine different
data types in the same calculation.

Second, none of these calculators allow you deal with programs as unevaluated
mathematical quantities. For example, you can write programs to calculate a +b, and
¢ +d, but there is no way for you to manipulate the program results to produce a new
result like @ +b +c +d except by running the programs to produce numerical results,
then combining the numbers.

The HP-28C, introduced in early 1987, removes both of these limitations. It allows you
to work with a variety of data types, including the strings and matrices mentioned above,
using exactly the same logic and keystrokes that you use for ordinary numbers. The
most important of these new data types is the algebraic object. You can enter algebraic
objects that represent @ +b and ¢ +d symbolically, then press the key to return the
new symbolic result @ +b +c +d. The variables don’t have to have numeric values
before you can add them. Most HP-28C mathematical functions, in fact, can accept
symbolic inputs and return symbolic results. Not only does this mean that you can per-
form symbolic algebra, and even calculus, right on the HP-28C, but at a stroke, much of

the work of programming disappears. These capabilities represent such a dramatic
advance over previous calculator technology that they merit the name “third genera-
tion.” To the built-in functions of the first generation, and the customizability of the
second, this new third generation of calculators adds the ability to apply programs to
other programs and expressions.

The HP-35 also introduced a standard “user-interface,” called RPN (short for Reverse
Polish Notation), that has been the hallmark of HP calculators ever since. RPN calcula-
tors are organized around a stack of number registers, using a last-in-first-out logic that
is optimal for the key-per-function operation. Throughout the evolution of HP calcula-
tors from the HP-35 up through the HP-41, that standard RPN interface has remained
virtually unchanged. If you are familiar with one HP calculator, you can pick up any
other and use it right away--that is, until the advent of the HP-28C. The HP-28C, while

-2-
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definitely an RPN calculator, makes some fundamental departures from the standard
RPN interface of the past.

The changes to standard RPN made by the HP-28C are actually a generalization of the
RPN interface to handle a variety of new data types, most particularly including vari-
ables and expressions for symbolic mathematics. As we explain the various aspects of
HP-28 operation throughout this book, we will also try to show how HP-28 techniques
compare with those of its HP RPN calculator predecessors. We shall use the HP-41 as
the standard of comparison, since its alphanumeric capability means that its commands
and programs have legible names, instead of the key names and keycodes used by calcu-
lators like the HP-11C and the HP-15C. However, most of what we say about the HP-
41 also applies to the other RPN calculators.

The HP-28 “language,” which includes the operating logic as well as the specific com-
mand set, is called RPL. Computer languages are known for their whimsical names;
RPL is no exception--it stands for Reverse Polish Lisp. This name suggests the HP-28’s
derivation from HP calculators (and from FORTH, another language that uses reverse
Polish logic) and from the computer language LISP, which is frequently used in com-
puter symbolic mathematics systems. Note that the HP-41 language was never given a
name, so many people call HP-41 programming “RPN programming,” which is unfor-
tunate since, properly speaking, RPN is a mathematical logic that is not specific to any
calculator or computer.

1.1.1 HP-28C and HP-28S
One year after the introduction of the HP-28C, Hewlett-Packard announced a new
model, the HP-28S. The primary difference between the two calculators is that the
HP-28S has 32K bytes of random access memory (RAM) for calculation and storage,
compared to the 2K bytes of the HP-28C. The HP-28S represents a major redesign of
the HP-28C electronics, which permitted the inclusion of the extra RAM at no increase
in price, so that the HP-28S effectively replaces the HP-28C.

The additional RAM in the HP-28S makes a profound difference in your ability to take
advantage of the capabilities of the HP-28. There is enough memory to store dozens of
procedures and data objects for customizing your calculator, while still leaving sufficient
working memory to perform operations that fail even on an “empty” HP-28C. Further-
more, the HP-28S command set is extended over the HP-28C’s in various ways to make
good use of the bigger memory, including commands to organize the user memory with
a directory system and to save, retrieve, and combine display pictures.

Nevertheless, the HP-28C is still a capable calculator, and this book is designed for both
the HP-28C and the HP-28S. There are, of course, discussions of HP-28S-only features,
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but the majority of the ideas and techniques described here apply to both calculators.
We shall use the name “HP-28” without a suffix to refer to both calculators; for topics
that are specific to either the HP-28C or the HP-28S we will append the appropriate
letter to the name.

1.2 About This Book

The HP-28 comes with an Owner’s Manual (called the Getting Started Manual for the
HP-28C) and a Reference Manual. The first book gets you off and running with the
HP-28, providing lots of sample keystroke sequences that give you a quick introduction

to many HP-28 features. It does not go very deeply any into any topic. The Reference
Manual, on the other hand, gives detailed specifications for all of the calculator’s opera-

tions, but it is almost devoid of examples. |

What’s missing from these two manuals, and what this book hopes to provide, is a little
more motivation, and some more elaborate examples. By motivation, we mean the pur-
pose and use of many of the operations, and the connections between various features
of the calculator. The scope of the HP-28 is so broad that we cannot show you how to
use it for every imaginable problem, but we can try to help you understand it enough to
solve your own problems. We delve quite deeply into the HP-28’s principles of opera-
tion, with the expectation that if you know the principles, you will learn and remember
keystrokes and methods much more easily.

We assume that you have read most of the HP-28 Owner’s Manual, so that you at least
know how to perform simple keystroke calculations, enter various object types, and find
a command in a menu. In some cases, where there are crucial ideas that we want to
communicate, we will show some actual keystroke sequences and perhaps even repeat
some material that is in one of the HP manuals. But for the most part we will assume
that you know the rudiments of HP-28 operation so that we can concentrate on ideas
and connections.

HP-28 Insights breaks roughly into two parts. In the first part, Chapters 1 through 5, we
discuss primarily the principles and concepts of HP-28 operation, starting with the
mathematical ideas that underliec the HP-28’s use of Reverse Polish Notation and the
object stack. The second part, Chapters 6 through 13, is an extended discussion of
problem solving techniques, starting with the equation solver, running through the
development and application of program objects, and concluding with a description of
plotting methods.
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Here’s a summary of the chapter topics:

Chapter Topics

1. Introduction Introductory material, notation conventions.

2. Understanding RPN The theory of RPN, and its electronic
implementation.

3. Objects and Execution Operations, objects, execution and evalua-
tion, quotes, ENTER.

4 The HP-28 Stack Stack operations, comparison with the HP-
41, postfix logic.

5. Variables Creating, storing, recalling, evaluating and
purging variables; storage arithmetic; the
USER menu; HP-28S directories.

6. Problem Solving Introduction to HP-28 problem-solving
methods.

7. The Solver The HP-28 automatic equation solver;
interpreting results; obtaining guesses; find-
ing extrema.

8. User-defined Functions HP-28 user-defined functions as a simpli-
fied programming technique.

9. Symbolic Math Performing symbolic mathematics on the
HP-28; function execution; simplification;
symbolic constants; problem solving;
automated solutions; expression manipula-
tions; calculus.

10. Programming The principles of program objects; com-

parison with HP-41 programming; tests and
flags; conditional branches; loops; error
handling; local variables.
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11. Program Development The art of program construction; editing

and debugging; starting and stopping;
optimization; input and output; programs
as arguments; recursion.

12. Arrays and Lists The application of array and list objects;
HP-28S indexed variables; symbolic arrays.

13. Plotting General principles; function plots; digitiz-

ing; storing pictures; plot ranges; scatter
plots; polar plotting and line drawing;
printing pictures.

You may find the first five chapters to be a bit tedious with their emphasis on theory
and terminology. Nevertheless, we recommend that you read those chapters through at
least enough to insure that you have a grasp of the definitions and terms that we intro-
duce there, which are used throughout the second part of the book. In particular, the
concepts of operations, objects, execution, and evaluation, described in Chapter 3, are
used extensively in all of the material that follows.

The presentation of the book’s subject matter is not always exactly linear. That is, occa-
sionally we make use of or refer to concepts or techniques that are not explained until
later sections. This occurs frequently in programming examples. Wherever possible,
examples that illustrate a concept are chosen to have practical uses as well. This often
requires combining more techniques into an example than just the one being demon-
strated. For instance, in section 5.7.3, we list some useful programs for working with
HP-28S directories. The programs are relevant to the section in which they are listed,
but at that point in the book we haven’t yet discussed programming at all. To alleviate
this kind of problem, we include many cross-references between the sections, and a sub-
ject index.

You might notice that this book is not exhaustive of HP-28 features. For example, there
are minimal references to HP-28 statistics, and none to unit conversions. Rather than

try to cover every possible topic, we try to concentrate on the key ideas of calculator
operation, especially where there are important differences from other calculators and
computers. If you master all of the topics covered here, you will have no trouble apply-
ing the principles to the remaining HP-28 features.
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1.3 Notation

In order to help you recognize various calculator commands, keystroke sequences, and
results, we use throughout this book certain notation conventions:

All calculator commands and displayed results that appear in the text are printed in

helvetica characters, e.g. DUP 1 2 SWAP. When you see characters like these, you
are to understand that they represent specific HP-28 operations rather than any ordi-
nary English-language meanings.

Italics used within calculator operations sequences indicate varying inputs or results.
For example, 123 'REG’ STO means that 123 is stored in the specific variable REG,
whereas 123 ‘name’ STO indicates that the 123 is stored in a variable for which you
may choose any name you want. Similarly, << program >> indicates an unspecified
program object; { numbers } might represent a list object containing numbers as its
elements.

Italics are also used for emphasis in ordinary text.

HP-28 keys are displayed in helvetica characters surrounded by rectangular boxes,
e.g. , , or [EEX]. The back-arrow key looks like this: , and the cur-
sor menu keylike this: [§o] .

A shifted key is shown with the key name in a box preceded by a black square I
representing the shift key, e.g. Ill[BINARY], or [ll[PURGE] .

Menu keys for commands available through the various menus are printed with the
key labels surrounded by boxes drawn to suggest the reverse characters you see in
the display, like these: ZSINE or =-LISTE .

When the six menu keys are acting as cursor keys, they are shown as [INS] [A]
V1[Gl and [=].

Examples of HP-28 operations take several forms. When appropriate, we will give
step-by-step instructions that include specific keystrokes and show the relevant levels of
the stack, with comments, as in the following sample:

Keystrokes: Results: Comments:

123 456 1: 579 Adding 123 and 456
returns 579 to level 1.

For better legibility, we don’t show individual letters and digits in key boxes--we just
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show 123 rather than [1][2][3]. We show key boxes for the multi-letter keys on the
keyboard and in menus.

In some cases, a printed listing of the stack contents isn’t adequate, so we use an actual
HP-28-generated picture of the calculator display, such as this picture from Chapter 13:

AN
: f:.'a-[

A large number of the examples, however, are given in a more compact format than the
keystroke example shown above. These examples consist of a sequence of HP-28 com-
mands and data that you are to execute, together with the stack objects that result from
the execution. The “right hand” symbol r= is used as a shorthand for “the HP-28
returns...” In the compact format, the addition example is written as

 

   

123 456 + = 579

The = means “enter the objects and commands on the left, in left-to-right order, and
the HP-28 will give back--return--the objects on the right.” If there are multiple results,
they are listed to the right of the = in the order in which they are returned. For exam-
ple,

A B C ROT SWAP = B A C

indicates that B is returned to level 3, A to level 2, and C to level 1.

Because of the flexibility of the HP-28, there are usually several ways you can accom-
plish any given sequence, so we often don’t specify precise keystrokes unless there are
non-programmable operations in the sequence. If there are no key boxes in the left-side
sequence, you can always obtain the right-side results by typing the left side as text into
the command line, then pressing when you get to the = symbol.

The = symbol is also used in the stack diagrams that are part of most program listings.
The stack diagrams show how to set up stack objects for execution of the program,
where the objects to the left of the r= are the “input” objects, and the objects following

the = are the program outputs.

In Chapter 9 there are several of examples of the use of FORM. These examples
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represent the “before” and “after” FORM displays in a format similar to ordinary stack
command examples. The following typical example demonstrates the use of the M-
operation:

A*B[F]A*B IM-EZ = (A+A)[B

The example indicates that starting with the expression A*B +A#*B, with the FORM cur-
sor (represented by a box around an object) on the +, pressing ZM=Z converts the
expression to (A+A)*B, with the cursor on the *.

 

The most elaborate examples in this book are programs. Each program is listed in a
box that includes a suggested program variable name, a stack diagram, the actual steps
that make up the program, and comments to help you understand the steps. The for-
mat is reasonably self-explanatory, and is described in detail in section 11.1.

1.4 Easy to Use or Easy to Learn?

It would be nice if you could pick up the HP-28 and use all ofits facilities without ever
referring to a manual. Some other recent HP calculator products, the HP-17B, HP-18C,
HP-19B, and HP-27S, come much closer to this ideal than the HP-28. But these calcu-
lators trade for this convenience by having very limited computational capabilities and
flexibility compared to the HP-28. If your problem “fits” on one of these other calcula-

tors, then they’re easy to use as well as easy to learn. But if you want to do something
just a little different, forgetit.

The HP-28 approach is to provide a broad, very flexible set of computational capabili-
ties, many of which have never before been available on a handheld calculator. Further-
more,it is expressly designed for “linking” calculations together--the results of one cal-
culation are always ready to be used as input for another, even if you didn’t know in

advance that your work would proceed that way, and even if the calculator designers
didn’t expect you to make that particular combination of calculations. These ideas are
what the HP-28 means by “ease-of-use.”

“Ease-of-learning” is a different story. Unfortunately, the HP-28’s rich capability set
doesn’t leave enough built-in memory to provide “no-manual” learning. And there’s no
doubt that the HP-28 does work differently from other calculators, even from its RPN
calculator predecessors like the HP-41. You have no choice but to spend some time
reading the manuals and learning new procedures. But learning the basic ideas doesn’t
take long, and once you master them, a wide range of truly easy-to-use calculating capa-
bilities is available to you.



2. Understanding RPN

The HP-28, like most of its Hewlett-Packard calculator predecessors, presents a user

interface centered around a logic called “RPN,” short for Reverse Polish Notation. 1f
you are unfamiliar with this logic, particularly if you are accustomed to so-called “alge-
braic” calculators, RPN may seem as bizarre as its name. In this chapter, we will
explain how RPN works, and whyits virtues make it the choice for the HP-28.

Many people use a calculator in a style that you might call “fingers in, eyes out.” That
is, they manually type in all of the data for a calculation and read out the result visually
from the display, perhaps writing it down on paper. For this type of use, a calculator
that uses “algebraic” entry seems desirable, because in at least simple cases the key-
strokes follow more-or-less the order of common written mathematical notation.

The algebraic style, however, is not well suited for exploratory calculation, where you
don’t necessarily know what to do next until you see the results of previous
calculations--and you need those results as part of the next calculation. When you press
an algebraic calculator’s =] key to complete a calculation, you had better be sure that
you’re finished, because the result you see in the display may vanish at the next keys-
troke.

The choice and design of an RPN system for a calculator arises from consideration of
one central principle:

o The result of any calculation, no matter how complicated, may be used as an input for
a subsequent calculation.

RPN calculators are designed to embody this principle, by providing a mechanism (the
“stack”) whereby you can apply mathematical operations to data already entered into
the calculator. The results of the operations are also held indefinitely, so that they, in
turn, can be the input data for subsequent operations.

In the calculator world, the term Reverse Polish Notation, or more specifically, the
abbreviation “RPN”, has come to mean “the way HP calculators work.” RPN actually

is a mathematical notation; HP calculators provide an electronic implementation of the
notation. In RPN, mathematical functions are written affer their arguments, not before
or between the arguments as in ordinary written expressions. The notation appears
strange, because we are not used to visualizing or writing expressions this way. How-
ever, when you actually evaluate an expression to a numerical value using pencil and
paper, you must revert to an order of operation that exactly corresponds to RPN. We
will illustrate this point by examining how mathematical expressions are evaluated.
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2.1 The Evaluation of Mathematical Expressions

A mathematical expression is an abstract representation of the calculation of a single
value. An expression combines data (numbers or other explicit quantities), variable
names, and functions. When you evaluate an expression, you perform all of the calcula-
tions represented by the expression. Examples of expressions are:

1+2

x+y+2z

sin[In(x +2)]

x3 +4x% - 6x +2

We will confine our attention to expressions that can be formed from the mathematical
functions included in the HP-28: arithmetic operations, powers, roots, transcendental
functions, etc. Expressions like these have the property that they are equivalent to a sin-
gle value. Thatis, if you perform the calculations represented by an expression, you end
up with a single value as the result.

In our discussions, we will be using the following terms:

e A function is a mathematical operation that takes zero, one, or more values as input,
and returns one value.

e A value used by a function as “input” is called an argument.

e A value returned by a function as “output”is called a result.

e A mathematical variable is a symbol that stands for a value. Evaluating a variable
replaces the symbol with the value.

e Algebraic syntax is the set of rules that governs how data, variables, and functions
may be combined in an expression.

As an example of these concepts, consider the following expression:

sin[ 123 + 451n (27-6) ]

The expression contains the functions sin, In, +, —, and X (implied multiply between
the 45 and the In), and the numbers 123, 45, 27, and 6. The expression is written in
common mathematical notation, but notice that the order in which you read or write the
expression,i.e., left to right, does not correspond very well to the order you would use if
you were actually going to evaluate the expression with pencil and paper and function
tables. For example, although the In function precedes the quantity (27-6), you can’t
actually compute (or look up) the logarithm until after you have computed the difference
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27-6. Similarly, the sin, which is the first function that appears in the expression, is
actually the last that you will execute. You have to wait until the entire rest of the
expression [123 + 451n (27~ 6)] is evaluated.

The common notation that we have been using here has been developed over the centu-
ries to present a readable picture of a mathematical expression that takes advantage of a
human’s ability to view an entire expression at once and draw general conclusions from

its structure. But the notation is not a very good prescription for actually evaluating an
expression--as you step through a calculation, you have to jump back and forth, match
parentheses, etc. to find the next step. As we will show now, converting an expression
into an orderly procedure for evaluation leads directly to RPN. First we’ll adopt a uni-
form structure that treats all functions alike, then we’ll turn it around to match actual
calculation order.

Common notation is not uniform because the notation differs for one-argument and
two-argument functions. In our sample expression, the one-argument functions sin, In,
and cos, are written in front of their arguments (“prefix” notation), whereas the two-
argument functions + and - are written between their arguments (“infix”). Further-
more, there is an implied multiply between the 45 and the In that is not explicitly writ-
ten. Infix notation also leads to ambiguity. For example, does 1+2X3 evaluate to 9 or
7?7 You either have to introduce extra parentheses, e.g. (1+2)X3 or 1+(2X3), or use
so-called precedence conventions that specify which functions are executed first in ambi-
guous situations. One of the drawbacks of non-RPN calculators is that there is no
universal standard for precedence, so you have to memorize the precedence rules of
each calculator you use.

A general-purpose form for functions is to write each function name followed by its
arguments contained in parentheses, as in f(x), g(xy), etc. You can make expressions
more uniform by writing all ofits functions in this prefix form:

sm( + (123’ X (45’ ln( - (2796) ) )))

In this notation, +(1,2) means “add 1 and 2”; X (1,2) means multiply 1 by 2; etc.

Writing expressions this way is called Polish notation, honoring the Polish logician, Jan
Kukasiweicz. Unfortunately, this notation appears practically unintelligible to people
accustomed to conventional notation. But it does show explicitly the hierarchical struc-
ture of the expression, which we will discuss later (section 9.1.1). Also, it is useful
because it is a step towards RPN. That is, you can obtain a form that corresponds more
closely to the actual order of evaluation of an expression by rewriting the Polish form so
that the function names follow their arguments’ parentheses. For example, rewrite
+(1,2) as (1,2) +. The example expression now becomes:
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((123, (45, ((27,6) = )In) X ) + ) sin

You have replaced Polish notation with Reverse Polish Notation. In this form, the
expression represents a step-by-step evaluation prescription for pencil-and-paper or elec-
tronic calculation, that follows the left-to-right order of the expression. To see this, con-
sider an orderly pencil-and-paper method for evaluation:

e Start at the left of an RPN expression, and work to the right.

e When you come to a number, write it down below any previous numbers.

e When you come to a function, compute its value using the last number(s) you wrote
as its arguments. Erase the argument number(s), and then write the function value.

Apply this procedure to calculate the example expression (keeping two decimal place

accuracy):

Object What to do What you see

123 Write 123 123

45 Write 45 123
45

27 Write 27 123
45
27

6 Write 6 123
45
27
6

- Subtract 6 from 27 123

45

21

In Find In(21) 123
45
3.04

X Multiply 45 and 3.04 123
137.00

-13-



2.1 Understanding RPN

+ Add 123 and 137.00 260.00

sin Take the sine of 260° - 98

There are two things you can notice from this exercise:

e Whenever you encounter a function, you can execute it immediately because you
have already calculated its arguments.

¢ You can ignore parentheses. When you write an expression in RPN form, you don’t
need parentheses, because there is no ambiguity of precedence--functions are always
executed left-to-right.

The latter point means that you can eliminate parentheses from the notation. Doing so,
the example becomes:

123 45 27 6 - Im X + sin

2.2 Calculator RPN

An RPN calculator allows you to substitute an electronic medium for paper. The
calculator’s key is the equivalent of “write it down” in paper calculations. You
“write” a number by pressing the appropriate digit keys, then , which terminates
digit entry and enters the number into the calculator’s memory. The memory takes the
place of paper.

For cases where you need to have more than one number written down at a time, calcu-
lator memory is organized into a “stack.” You can visualize the stack as a vertical
column of numbers, where the most recently entered numbers are at the bottom of the
column, and the oldest numbers at the top. Each new entry “pushes” previous entries
to higher stack levels. A function always operates on the latest stack entry or entries,
and replaces those entries with its result, where it is ready for use by the next function
to come along. If one or more entries are removed from the stack, older entries drop
down to fill in the vacant levels. Again, this is quite analogous to the pencil-and-paper
technique you used in the example.

To illustrate calculator RPN, redo the previous example on the HP-28. Start by setting
the numerical display mode for two decimal places:
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Keystrokes: Stack:

Il (MODE] 2 ZFIXE

123 1: 123.00

45 2: 123.00
1: 45.00

27 3: 123.00
2: 45.00

1: 27.00

6 4: 123.00
3: 45.00

2: 27.00

1: 6.00

=] 3 123.00

2: 45.00

1: 21.00

ILOGS|Z LN = 3: 123.00

2: 45.00

1: 3.04

2: 123.00
1: 137.00

1: 260.00

=SINE 1: -0.98

Note how

a. each number entered goes into level 1, raising the preceding numbers to higher
levels;

b. each function removes its argument or arguments from the stack, and returns a
new result to the stack.
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Here you can see how a stack provides for the realization of the principle stated at the
start of Chapter 2, namely, that every result can be an argument. The stack acts as cen-
tral exchange, where each function expects to find its arguments. Since each function
also returns its results to the stack, those results are automatically ready to be used as
arguments for the next function.

2.3 HP-28 RPN

The HP-28 stack is a more thorough implementation of RPN principles than those of its
predecessors. The HP-28 is the only calculator that does not limit the number of stack
levels; the stack grows and shrinks as needed. Other calculators provide only a fixed
stack of four levels, adequate for many calculations, but still a handicap. With only four
levels:

e You can’t routinely convert any expression into RPN, then execute it left to right.
Instead, you have to study the expression, looking for ways to avoid piling up more
than four stack entries at a time.

e Some calculations intrinsically require more than four entries, no matter how clever
you are. This means that you have to save one or more intermediate results in
storage registers, then recover them later for further stack operations.

The unlimited HP-28 stack allows you to concentrate on the results of a calculation
without requiring extra mental effort to rearrange it to fit the constraints of a four-level
stack.

Most “algebraic” calculators have a limit on the number of parentheses that you can
nest in a calculation. This limitation is exactly analogous to the restriction in the
number of RPN stack levels, and is perhaps even worse since algebraic entry does not
lend itself well to passing the results of one calculation on to another.

The HP-28 also provides an important new capability in its ability to intermix expres-
sions, entered in algebraic form, with RPN operations. This ability is provided through
the use of algebraic objects, which are representations of expressions that you can enter
into the stack as entire units. We discuss algebraic objects in great detail in later sec-
tions of this book; for now, you can consider them as the means by which you can calcu-
late with algebraic notation.

In section 2.1 we showed how RPN is derived by considering the manner in which
expressions are actually evaluated. However, we do not mean to imply that a com-
pletely RPN approach is always the most convenient method of calculation. In fact, to
evaluate a known expression like our example sin[123 +45In(27-6)], it is arguably
simpler to key in the expression in a manner that corresponds as nearly as possible to
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the written form, than to figure out the more efficient RPN keystrokes. RPN, on the
other hand, is most useful for exploratory calculation, when you’re not merely evaluating
a predetermined expression. The HP-28 design allows you to have the best of both
worlds, by combining algebraic and RPN logic as follows:

e If you know in advance the complete mathematical form of a calculation, enter it as
an algebraic object.

e If you are working out the solution to a problem, and don’t know in advance all of
the steps, work through the problem with an RPN approach, applying functions to
the results as they appear.

¢ In both cases, the results are held on the stack ready for use in further calculations.

Our sample problem was originally expressed as an expression, so you can enter it as an

algebraic object.

'SIN(123 + 45*+LN(27 - 6))’

puts the algebraic object representing the expression into stack level 1. (Note thatit is
the expression itself that is present, not its evaluated value; the ability to handle expres-
sions without first evaluating them is one of the unique and most powerful HP-28 capa-
bilities.) In this example, you are interested in the numerical value, so press .
This replaces the algebraic object with its value —.98. Actually, if this result were all

that was of interest, you could omit pressing , and use to take the expres-

sion directly from the command line and evaluateit.

Suppose, however, that at the beginning of the calculation you were only interested in
the expression 123 + 451n (27-6). In that case, you would compute the value by enter-
ing

'123+45%LN(27-6)' EVAL = 260.00

Then, after obtaining this result, you realize that in addition to the value itself, you also
need to know the sine of the value. Because the result of the initial calculation is on the
stack, it is ready for further calculation. In this case, you can execute DUP to make a
copy of the number for later use, then SIN to compute the sine.

The HP-28 is unique in its ability to hold the results of algebraic expression evaluation
in a manner that allows you to apply additional operations to the results after they are
calculated. Algebraic entry calculators require that you know the entire course of a cal-
culation before you start; RPN calculators overcome that problem, but you must always
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mentally rearrange an expression into reverse Polish form as you proceed. The HP-28
allows you to proceed with any mix of the two approaches that is appropriate for the
problem at hand.

In most of the examples in this chapter, you calculated by entering real, floating-point

numbers into the stack, then executing mathematical functions that replaced those
numbers with new ones. We have just shown that a stack level can also hold an entire

expression, as a unit, the same way it holds a single number. In the next chapter, we
will show how the HP-28 allows you to use the same process for a variety of mathemati-
cal or logical objects, including complex numbers, matrices, text strings, and even pro-
grams.

-18-



3. Objects and Execution

In Chapter 2, we demonstrated how you perform calculations on the HP-28 by applying
functions to numbers that are present on a stack, which acts as the electronic equivalent
of a sheet of scratch paper. This RPN system is very uniform and flexible, and there is
no particular reason to restrict its use to real numbers and ordinary mathematical func-
tions. The HP-28 generalizes the RPN approach to problem solving in two ways:

e Real numbers are just one of several types of objects that the HP-28 can manipulate
on the stack and store in memory.

e Mathematical functions are just one of several classes of HP-28 operations that can
be applied to numbers and other types of objects.

The terms object and operation are key terms for any discussion of the HP-28, and we
will study them in detail in this chapter. In addition, we will introduce the concept of

object execution, and the closely related term evaluation. In rough terms, operations are
“what things the HP-28 can do,” and objects are “what the HP-28 can do things to.”
Execution and evaluation are the actual “doing.”

We will use these four words extensively throughout this book to make general state-
ments about HP-28 principles, so it is important that you understand the meanings of
each. If you findoccasionally that the statements are too abstract, you can relate them
to more familiar ideas by substituting concrete examples for the general terms. For
example, when we refer to an object, you can think of a number as an example; for an
operation, think of an ordinary math function like + or sine. Execution is the “activa-
tion” of an object--think of executing a program. Evaluation differs from execution only
for algebraic objects: executing an algebraic object treats it as symbolic data; evaluation
actually performs the calculations defined by the object.

(Several other English words might be substituted for object; item, unit, element, etc.
The use of object for this purpose is common in mathematical jargon, and so that word
is adopted for HP-28 terminology.)

3.1 Operations

“What things the HP-28 can do” make up a very long list, and constitute the subject
matter of most of this book. Here we will concentrate on defining the different types of
operations, to facilitate later discussions.

We use the term operation to mean any of the built-in capabilities of the calculator.
Most calculator manuals use the term function for this purpose. HP-28 literature uses
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the term operation instead, so that function can be reserved for the specific group of
operations that correspond to the mathematical meaning offunction.

There are two basic methods by which you can make the HP-28 "do" something; that is,
perform an operation.

e Find the key that is labeled with the name or symbol for an operation, and press it.
Many important operations, such as the arithmetic operators, or STO and RCL, are
permanently available on the keyboard. The remaining operations are available as
menu keys.

e Spell out the operation’s name in the command line, then press . ENTER on
the HP-28C plays a role that combinesits original RPN calculator purpose of ending
number entry with a more sophisticated meaning of "do these commands." ENTER
is explored in detail in section 3.11.

Operations are classified as follows:

1. An operation can be a command or a keyboard operation, according to whetherit
is programmable or non-programmable, respectively. A command has a specific
name, so that you can

e execute the command by typing its name into the command line.

e include the command in a program that you write.

Keyboard operations don’t have names that you can spell out or include in a pro-
gram; you can only execute a keyboard operation by pressing a key. Examples are
[ENTER], [LC], and ESOLVRE .

Programmable operations--commands--are sorted into two classes. If a command
can be included in the definition of an algebraic object, it is called a function.
Examples of functions are +, SIN, LOG, and NOT. Other commands, which are
not allowed in algebraics are called RPN commands. These commands, such as
DUP, STO, or RDZ (randomize), are typically stack or memory operations that
make no sense in the context of an algebraic object, which is the HP-28 calculator
representation of a mathematical expression or equation. The logic of expressions
demands that every part of an expression (including the entire expression itself)
can be evaluated to a single value. So for an HP-28 command to be included in
an algebraic object, it must act like a mathematical function--take zero or more
values as input, and always return exactly one result.

The final classification of HP-28 operations is the division of functions into two
categories: analytic and non-analytic. Analytic functions are just those for which
the HP-28 knows the derivative and inverse. “Knowing” the inverse of a function
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f means the HP-28 can automatically solve the equation f(x) =y for x. (In
mathematics, an analytic function is continuous and differentiable, which
corresponds more-or-less to the HP-28 meaning of analytic function. For various
reasons, the HP-28 does not provide derivatives and/or inverses for every function
that is analytic mathematically. % is an example of a well-behaved function for
which no built-in derivative is provided. On the other hand, the function ABS can

be differentiated on the HP-28, even though it is not properly differentiable at
Zero.)

The main reasons for sorting HP-28 operations into these categories is to make possible
general statements about various classes of operations, and to provide information about
individual operations without unnecessary repetition. Thus when we refer to DUP as an
RPN command, we are reminding you that DUP is programmable, but not allowed in an

algebraic expression.

3.2 Objects

The HP-28 recognizes 11 distinct types of objects, as listed by type number (as returned
by the TYPE command) in Table 3.1 (next page).

The word object is the collective term for all of the different items listed in the table.
This list does not contain all imaginable object types; these are just the types that you
can create and use on the HP-28. In the abstract, an object is a collection of data or
procedures that can be treated as a single logical entity. In practical HP-28 terms, this
means that an object is something that you can put on the stack. [The HP-28 system
actually recognizes some additional types that it uses internally. Occasionally one of
these slips through a crack in the system and appears on the stack, where it is displayed
as System Object. If you see one of these, you should just drop it from the stack.]

Most objects are identified in the HP-28 by their characteristic delimiters, which are just
the symbols #, ", ’, etc., which you enter to tell the calculator what type of object you
are entering, and where it starts and stops. Similarly, the calculator uses the same del-
imiters when it displays an already entered object so that you can recognize its type. If
you enter a string of characters without any delimiters, the HP-28 attempts to interpret

it as a real number, or failing that, as a name or command.

An individual object is characterized by its type and its value. The type (number, array,
etc.) indicates the general nature and behavior of the object. The value distinguishes
one object from another of the same type. For a real number object, the value is its
simple numerical value. For a string, the value is the text characters in the string. For
a program, the “value” is the sequence of objects and commands that make up the pro-
gram. For lists, programs, and algebraic objects, which are made up of other objects,
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we will use the term definition rather than value.

Table 3.1. HP-28 Objects

Objects and Execution

 

TYPE Number

0

1

9

10 

Object Type

Real numbers

Complex numbers

Strings (text)

Real arrays (vectors and matrices)

Complex arrays (vectors and matrices)

Lists

Global names

Local names

Programs

Algebraic objects

Binary integer numbers

Identification

digits

(real number, real number)

"characters"

[ real numbers |

[ complex numbers ]

{ objects }

characterst

characterst

<< objects >>

'objects’

#digits  
 

T Names can be entered with or without ’ delimiters. See section 3.7.

A central theme of the HP-28 is the uniform treatment of different object types. This
means that the basic calculation process--applying operations to objects on the stack--is
the same for every object type:

e Each stack level holds one object, regardless of type.

e The stack commands to copy, reorder, and discard objects are the same for all

object types.

e The processes of storing (naming), recalling, and executing are the same for all
object types.
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e The same mathematical operation can be applied to as many different object types
as make sense for the operation.

These points have the very practical consequence of simplifying the learning and use of
the HP-28, for once you learn how an operation works for one object type, you
automatically know how to use it for any other object types to which it might apply. For
example,if you learn RPN arithmetic for real numbers, you don’t have to learn anything
new to do arithmetic with complex numbers or arrays--the steps and logic are the same.
There is no such thing as “complex mode” or “matrix mode” on the HP-28.

3.2.1 Operations as Objects
You might ordinarily think of operations as actions, and objects as the targets or results
of the actions. However, the existence of object types that are not simple data--names,
algebraic objects, and programs--blurs this distinction. As a matter of fact, all HP-28
commands are just built-in program objects. To demonstrate that a command is an
object, you can put it on the stack. Try this:

1 2 {+} LST- DROP

 

=
M
p

  
1
2
+
 

In level 1, you see the object +. (You have to enter the + originally in a list to prevent
its execution when you press .) If you press , the + is executed, adding the
1 and 2 you entered previously and leaving the result 3. This technique works for any
command.

This brings us to the subject of execution: when is an object “passive”--it just sits on the
stack, for example--and when is it “active?”

3.3 Execution and Evaluation

We have generalized the concept of an object to include not only data objects but also
user-defined programs and expressions, and built-in operations. We now similarly
define execution as the general term for the activation of an object: to execute an object
means to perform the “action” associated with that object. In the next sections, we will
look at the various actions associated with the different object types.
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Along with execution, we also need to define the closely related term evaluation. The
need for two terms that mean almost the same thing arises from the use of algebraic
objects as data in some situations, and as “programs” in others.

e For an algebraic object, to execute the object means to put it on the stack as sym-
bolic data. To evaluate the object means to compute the value that it represents, by
treating the object as a program, and executing the program.

e For all other object types, evaluate and execute are synonymous.

[The HP-28 owner’s manuals do not make this distinction between execution and
evaluation. We make it here to emphasize the dual nature of algebraic objects, and
because it provides for simpler explanations of program and command line execution,
quoted and unquoted objects, and global name execution.]

3.3.1 When are Objects Executed?
Before studying the execution actions of the various object types, it is helpful to review
the circumstances under which objects are executed or evaluated. It is not unreasonable
to say that object execution takes place all the time while the HP-28 is on, since virtually
any HP-28 activity--interpreting keystrokes, displaying objects, printing, etc.--can be
viewed as the automatic execution of built-in program objects. However, of most
interest are the times when objects are executed under your direction, particularly
objects that you have created. These times are as follows:

1. Execution

e When you execute ENTER (section 3.11), each object specified in the com-
mand line is executed, in the order in which it appears in the command line.
You can prevent execution of names or programs in the command line by
enclosing them in their respective delimiters ' ' or << >> as discussed in sec-
tions 3.7 and 3.8 below.

e When a program is executed, the objects that make up the program are exe-
cuted, following the same rules as command line execution (section 3.5).

e When a global name (section 3.6) is executed, the object stored in the
corresponding variable is executed. (Execution of a local name merely recalls
the stored object.)

2. Evaluation

e EVAL removes the obiect in level 1 from the stack and evaluates it. This is the
most common means for evaluating an object after it is placed on the stack.

e ~NUM, ROOT, QUAD, TAYLR, 9, and [ also evaluate their stack arguments.
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e The Solver and DRAW cause the object stored in the variable EQ to be
evaluated.

e HP-28S commands such as PUT or [ that use a list containing real numbers as
an argument numerically evaluate (-NUM) the objects in the list to convert
them to real numbers.

The HP-28 manuals identify three classes of objects: data, name, and procedure. This
classification is made according to an object’s behavior when it is evaluated. Data
objects put themselves on the stack; names execute other objects; and procedures cause
the sequential execution of the objects contained in the procedures. We will look at
these classes of behavior in the next sections. You might note that this classification is
made according to object evaluation; if the sorting were done according to execution
properties, algebraic objects would be classed as data objects.

3.4 Data Objects

The idea of a data object should be quite familiar to you, since data objects are the only
quantities that can be manipulated as objects by other calculators and BASIC comput-
ers. The archetype data object is a floating-point real number. More generally, an HP-
28 data object is the calculator’s representation of a mathematical or logical data entity
such as a number, a vector, or a character string.

You would not expect a data object to be able to do anything; rather, it exists to have
things done to it. Nevertheless, data objects do have an execution action: they just enter
themselves onto the stack. When you type in a number, for example, and press ,

the number object is executed and so ends up in level 1. When a data object is already
on the stack and you execute EVAL, nothing apparently happens. Actually, EVAL
removes the object and executes it, which putsit right back on the stack.

The HP-28 data object class includes the following types: real number, complex number,
binary integer, real array, complex array, string, and list.

3.4.1 Real Numbers
A real number object is the HP-28’s version of an ordinary real decimal number. The
number value of the objectis stored in floating-point representation, as a combination of
a 12-digit mantissa (x/100%1* 1)) between 1 and 9.99999999999, and a 3-digit exponent
(IP(log | x | )) between —499 and +499. That is, a numberis represented as

mantissa X 102Porent

When the HP-28 is in scientific number display format (execute 12 i £SCIE ),
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you can see the mantissa and exponent explicitly; for example, the number 1.234X 10% is
displayed as 1.23400000000E23. The E is a one-character symbol for “X10 to the
power...”

When the HP-28 performs internal calculations during the execution of mathematical
functions, real numbers are expanded to fifteen-digit mantissas and five-digit exponents,
and all of the calculations are carried out to that accuracy. Functions’ results are
rounded back to twelve-digit mantissas and three-digit exponents when they are returned
to the stack. Note that this does not imply that calculations involving multiple functions
are always accurate to twelve digits. The error derived from rounding intermediate
results to twelve digits accumulates as each new function executes on the result of the
previous one.

3.4.2 Complex Numbers
Complex number objects consist of two real numbers combined in an ordered pair (xy).
They have two primary uses:

e To represent complex numbers, where the first number in each ordered pair is the

real part of a complex number, and the second number is the imaginary part. A
complex number object (xy) corresponds to the complex number z = x + iy, where
x = Rez and y = Imz. The object (3,2) represents the complex number 3+2i.
Complex number objects obey the rules of complex number arithmetic; for example,

(1,2) (34 + = (4,6).

e To represent the coordinates of points in two dimensions, such as points used in
conjunction with HP-28 plotting (Chapter 13). For this purpose, the real part (the
first number of the pair) of the complex number is the horizontal coordinate of the
point, and the imaginary part (the second number) is the vertical coordinate.

HP-28 mathematical functions treat real number and complex number objects in a very
uniform manner. That is, you can intermix the two object types in almost any calcula-
tion involving arithmetic, trigonometric, logarithmic, or exponential functions. Two-
argument functions return complex results if either argument is complex:

3 (23) * = (69).

The result of a single-argument function may be real or complex, according to the argu-
ment type and the appropriate mathematics. The functions RE (real part), IM (ima-
ginary part), ARG, and ABS always return real number objects. Trigonometric, loga-
rithmic, exponential, power and root functions applied to a complex argument always
return a complex results, e.g.:
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02 V = (1,1).

These functions applied to real arguments may return either a real or a complex result.
For example,

DEG .5 ASIN = 30,

but

2 ASIN = (1.57079632679,-1.31695789692).

On most other calculators, the last example would cause an error. The HP-28’s
integrated treatment of real and complex numbers means that you can write programs
that work equally well for real and complex inputs and outputs. However,it also means
that you may have to include explicit range testing in a program that you want to stop
when a calculation strays out of the real number domain.

You should note that the last example gives the same result regardless of whether the
HP-28 is in degrees mode or radians mode. Trigonometric functions consider all com-
plex arguments and results to be expressed in radians.

3.4.3 Binary Integers
Binary integer objects represent unsigned integer numbers stored as a sequence of

binary bits (rather than decimal digits as for floating-point numbers). The maximum
value of an integer is the hexadecimal number FFFFFFFFFFFFFFFF, corresponding to
64 binary bits. The results of arithmetic and logical operations applied to binary
integers are truncated to the current word size, which you can set between 1 and 64 bits
by executing n STWS (n is a real number argument).

You can control the entry and display of binary integers by executing one of the mode
commands BIN (binary, base 2), OCT (octal, base 8), DEC (decimal, base 10) or HEX
(hexadecimal, base 16). To enter a binary integer, you type the # delimiter followed by
the number digits. The digits are interpreted according to the current base; in hex
mode, for example, you can use digits 0 - 9 and A - F. (On the HP-28S, you can over-

ride the current base by adding a lower-case letter b, 0, d, or h immediately after the
number digits. See also section 11.2.) The objects are always displayed in the current
base regardless of how they were entered.

In addition to ordinary addition, subtraction, multiplication, and division of binary
integers, the HP-28 provides a modest set of bit-shifting and logical operations as com-
mands in the BINARY menu. For the four arithmetic operations, you can intermix
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binary integer and real number arguments--the results will be binary integers.

3.4.4 Arrays
Array objects are the HP-28 representation of real or complex vectors (one-dimensional
arrays) and matrices (two-dimensional). Arrays are identified by the square-bracket de-
limiters [ ]. You enter a vector as a sequence of numbers surrounded by a single pair of
brackets. To create a matrix, you enter an initial [, then each row of the matrix as a
“vector” of numbers surrounded by [ ], with an extra closing ] after the last row. If any
of the numbers in an array entry is complex, the resulting object will be a complex
array.

As in the case of number (scalar) objects, you can intermix real and complex arrays in
calculations. You can also combine numbers and arrays for many operations, where it
makes mathematical sense. For example,

2 [1 2] * = [2 4]

However, you can’t add a number to an array, since that is not a mathematically defined
operation.

The ARRAY menu contains various commands relevant to arrays. Arrays are discussed
at more length in Chapter 12.

3.4.5 Strings
String objects are character sequences that are interpreted as simple text. Strings are
identified by the double quote delimiters " ". The characters within the quotes can be
any HP-28 characters, including the other delimiter characters, which have no special
meaning in a string. You can use string objects to prompt for input or label output (sec-
tion 11.7), or as data to be processed logically, such as names to be alphabetized by a
sorting routine (section 12.3.3). The sequence "fext” DROP can act as a program “com-
ment” that has no computational significance but helps you document a portion of a
program.

The STRING menu contains commands for performing simple string manipulations.
These commands are straightforward, and are explained adequately in the HP-28 manu-
als. The use of string objects for saving and restoring display pictures on the HP-28S is
explained in section 13.3.
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3.4.6 Lists
A list object consists of a series of any types of objects entered between { } delimiters,
which allows the series of objects to be manipulated as a single data object. Lists are
described in detail in Chapter 12, and are used in numerous program examples
throughout this book.

3.5 Procedure Objects

The concept of execution taking an object off the stack and performing the object’s
action is pretty trivial in the case of data objects, but is more complicated for name and
procedure objects. We’ll look at the latter first.

A procedure is an object defined as a series of other objects intended for sequential exe-
cution. A procedure corresponds to the conventional calculator concept of a “program.”
In an HP-41, a program is a series of numbered steps that are executed in numerical
order, with occasional jumps due to GTO, XEQ, conditionals, etc. Each step either
enters data, or performs a built-in command. The line numbers indicate the order of
execution, but they really have no meaning other than for visual reference. If you take
the line (step) numbers out of an HP-41 program, for example, and write more than
one program line on a display line, you will end up with something that looks very simi-
lar to an HP-28 program.

You can therefore understand HP-28 procedure evaluation as the HP-28 equivalent of

HP-41 program execution. In simplest terms, the action associated with a procedure is

to execute in turn each object in the procedure’s definition. Usually, execution proceeds
in the order in which the objects were originally entered, but as in the case of HP-41
programs, the order can be altered by branches, loops, subroutines, etc.

There are two types of HP-28 procedures: program and algebraic. Program objects
correspond most closely to HP-41 programs, as arbitrary sequences of any HP-28
objects and commands (see Chapter 10). Algebraic objects are special procedures that
are restricted to contain only certain commands and objects, organized in a specific
mathematical form. But in their internal representation, they are indistinguishable from
programs that make the equivalent calculations using RPN logic (for example, the alge-
braic 'A+B’ is the same as the program << A B + >>). When you evaluate an alge-
braic object, you execute its internal definition exactly as if it were a program. This con-
cept is explored further in Chapter 9.

In all previous calculators, there is a distinction between user programs and commands:

e Programs are written in the user programming language, and are executed by means
of a command like RUN, XEQ, GSB, etc., together with a program name or label
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number. Programs can call other programs (subroutines), but there is a restriction
on the number of pending returns of which the calculator can keep track (6 in the
HP-41).

e Commands, on the other hand, are executed or entered into a user program by
name, with no prefix command. In most calculators, “naming” a command consists
of pressing the key that has the command name on it. This either executes the com-
mand, or enters a function code or the name itself into a program. The HP-41
allows you also to name a command by spelling it out using the XEQ] name

sequence.

The fact that the commands themselves are just internal programs is invisible to the
user. First, the programs can’t be viewed or edited. Second, they are written in the
calculator’s assembly language, which would require much more information for the typ-
ical user to understand and apply than can be provided in owners’ manuals.

The HP-28 philosophy is that the distinction between user programs and built-in com-
mands is artificial and unnecessary, at least as regards their use from the keyboard and
as subroutines. That is, when you write a program and name it, you should be able to
use it exactly as if it were a built-in command. When you enter a program name into

the command line, and press , or include a program name in another program
definition and execute the latter program, or just press a USER menu key labeled with
the program name--the program should execute. The central idea underlying the execu-
tion of HP-28 name objects follows from these ideas.

3.6 Name Objects

So far we have seen that the execution of data objects justs returns the same objects,
and the evaluation of procedures “runs” the procedures. Name objects are designed to
let you access an object indirectly, by specifying the name of an object rather than the
object itself.

The concept of name objects is closely tied to that of HP-28 variables (Chapter 5). A
variable is a combination of one name and one other object (the variable’s value) stored
together in memory. In many cases, it is not necessary to distinguish between a variable
and the object stored in it, so that you can speak of a stored object as being named by
the variable’s name. Thus if you store a program in a variable named PROG, you can
call the program PROG.

There are two types of name objects, which work with different types of variables:

e Names that are available in the USER menu are called global names, since the
corresponding global variables are available at any time, from the command line or
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in a procedure.

e Local variables are created for temporary use by programs. The corresponding local
names can be executed only within the program that creates the variables.

Global variables are intended for storing data for general access, and for containing
named programs that act to extend the HP-28 command set. With this in mind, global
name objects are designed to work like commands:

e Execution of a global name causes execution of the object stored in the global variable
with that name.

The net result of the execution of a global name follows directly from the execution
action of the object stored in the corresponding variable:

o If the stored objectis a data object or an algebraic object,it is returned to level1.

o If the stored object is a program, the program is executed.

o If the stored object is another global name, then the object stored in the variable
corresponding to the stored name is executed.

The fact that executing the name of a stored algebraic object returns the object to the
stack without evaluation makes possible “step-wise” algebraic substitution. For example,
consider evaluating 'A+B’, where A has the value ‘C+D’, B is 5, C is 10, and D is 20.
The HP-28 will return ‘C+D+5’ at the first use of EVAL, and 35 at the next. If an

algebraic stored in a variable was automatically evaluated when the variable’s name was
executed, you would lose the intermediate step and obtain only the final result 35 at the
first EVAL. The details of algebraic evaluation are discussed in Chapter 9.

In the case where a global name is evaluated for which no variable currently exists, the
action is simple--the name itself is just returned to the stack as if it were a data object.
This behavior is necessary for symbolic operations; it means the HP-28 can deal with
symbols (names) even when no value has yet been established. Thus 'A+B’, where A is
undefined and B is 10, evaluates to ‘A+10’. Evaluation of A returns 'A’, B returns 10,

and + combines the symbolic ‘A’ and the number 10 into a new symbolic ‘A+10'. We
call A a formal variable, meaning you can work formally with the name in calculations
just as if there were an existing variable named A.

If a variable contains a global name, the stored name is executed when the variable’s
name is executed. Thus if the number 8 is stored in the variable A, and ‘A’ is stored in
B, evaluating B returns 8. This property of names leads to the possibility of “endless
loops”--if ‘A’ is stored in B, and ‘B’ is stored in A, evaluating either A or B will start an
unending circle of evaluations. Pressing does not stop execution--the HP-28 acts as
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if it were “locked up.” The lockup occurs because name evaluation is optimized for
speed, and no key check is performed during that process. Your only recourse in
this situation is to perform a system halt by pressing and [A] together (section
11.3.4).

Local variables are intended primarily for temporary storing and naming of stack

objects, in order to simplify argument manipulations in programs. Local name execu-
tion is simpler than that of global names:

e Execution of a local name recalls to level 1 the object stored in the corresponding local
variable, without executing the object.

The creation and use of local variables is described in Chapter 8, section 10.5.1, and sec-

tion 10.7.

The properties of name evaluation listed here explain why is relegated to a shifted
key position on the HP-28 keyboard. For variables containing all object types except
programs and names, you can use either or i . When a variable contains a
program or a name, you are more likely to execute the stored object by executing the
variable name than to recall the object. The primary purpose of RCL, therefore, is to
recall a stored program to the stack without evaluating it, a relatively infrequent need.

You can view name objects as the HP-28 version of storage register numbers, but this
simple picture doesn’t really do justice to their power. Register numbers are purely pas-
sive labels, of the most primitive sort--they don’t tell you anything about what is stored
in the register. Names, on the other hand, label their variable contents with readable

names that can help you remember what each variable does, and which make programs
more legible. Furthermore, HP-28 names are active instead of passive: when you exe-
cute them, they cause automatic recall or execution of another object. In the simplest
case, the other object is a data object, in which case the name execution is the same as
RCL. But if the other object is a program, global name execution plays the role of XEQ
on the HP-41.

Unquoted global names act just like built-in commands, so that you can define your own
command set by storing programs in global variables. You can execute a global name
by:

¢ Typing the name into the command line and pressing ; Or

e Pressing the USER menu key labeled with that name; or

e Including the name in a procedure (a program or an algebraic), and evaluating the

procedure.
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These three methods are identical for global name objects and HP-28 commands.

[As it happens, HP-28 commands are also programs written in a language that is a
superset of the HP-28 user RPL, so there really is no structural difference between user
programs and commands. The practical difference is that since built-in commands are
fixed in read-only memory, they can be encoded in a program by a memory address and
hence executed more quickly than user variables. The latter are referenced by name,
and must be searched for in user memory whenever their names are executed.]

3.7 Quoted Names

We have shown that names automatically replace themselves with their associated vari-
able values when executed. However, in many cases, you need the name itself on the
stack, not the value, so that you can use the name as an argument for a command like
STO or GET. You can accomplish this by enclosing the name within single quote
delimiters, e.g. ‘'name’. The quotes around a name instruct the HP-28 to return the
literal name itself, and not to execute it.

To store the value 10 into a variable X, the correct sequence is 10 ‘X’ STO. If you omit
the quotes, as in 10 X STO, you may very well get an error, since the value of X is
returned before the STO executes, rather than the name X. You can use 10 X STO if
the variable X does not yet exist, since that case executing X just returns to the stack the
name 'X’, which is a suitable argument for STO. In general, you should keep the habit
of entering the quotes around the name when you want to store, just to avoid uncer-

tainty. However, if you’re primarily performing symbolic calculations, you may want to
take the trouble to purge all of the variables you want to work with, just so you can put
the names on the stack without bothering with the quotes.

3.8 Quotes in General

There are three sets of quotation marks that are used as HP-28 delimiters:

e Single quotes ' ', (called “ticks,” for short) which identify algebraic objects, and also
create name objects on the stack;

e Double quotes ", which create strings; and

e Program quotes (guillemets) << >>, which create programs.

All three types of quotation marks have a common theme in the HP-28. They mean
“put this object on the stack--don’t execute it yet.” Preventing execution of a string
object is not particularly meaningful, since strings are data objects, but we include the
double quotes " " in this discussion for completeness. The double quotes primarily
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distinguish text strings from names.

We stated in section 3.7 that placing single quotes around a name creates an unexecuted
name object. The quotes play the same role for algebraic objects--the same symbol is
used for the two different object types (name and algebraic) because it makes sense in
many contexts to treat a name object as an algebraic expression consisting of just one
variable name. As you will see in Chapter 9, an algebraic object is an executable pro-
gram that happens to be in algebraic form rather than RPN. Again, the quotes mean
“don’t execute this program, just put it on the stack.” The HP-28 doesn’t allow you to
specify an immediate-execute algebraic object (i.e., without quotes)--if you want the
expression to be executed immediately, you have to enter it in RPN form.

Although the same delimiters are used for algebraics and names, and for many cases
you can treat them the same, they are still different object types. The distinction is
maintained for the sake of commands like PUT and RCL, which would make no sense

with an expression or an equation as an argument. The HP-28 insures a smooth
interaction between names and algebraics by treating them uniformly (as a general sym-
bolic object type) as arguments for functions, and by automatically converting algebraics
containing only a variable name into actual name objects.

Understanding the meaning of quoted and unquoted programs starts with the recogni-
tion that the contents of the command line constitute a program--an arbitrary series of
objects for sequential execution. When you’re carrying out keyboard calculations, the
execution is immediate as soon as you execute ENTER (section 3.11). The command
line program is created, then executed right away. However, you can postpone execu-
tion of the command line by inserting a << delimiter at the start. ENTER then creates a
program object containing the command line objects.

Because the command line is a program, and programs are deferred-execution com-
mand lines, it follows that whatever you can do in the command line, you can also do in
a program (and vice-versa). Thus programs can contain quoted objects: names, algebra-
ics, and even other programs. For example, here is a program named TEST that creates
a global variable containing yet another program:

<< ... << 10 *>> 'X10' STO ... >> 'TEST' STO

Executing TEST executes this program, which in turn creates a variable X10 containing
the program << 10 #* >>_ Because of the surrounding << >> the sequence 10 * is
not executed, but is put on the stack as a program, where it and the quoted name X10
are the arguments for STO. X10 then appears in the USER menu; in this manner a
program can create new named programs for later execution.
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3.9 EVAL

As you saw in the preceding section, the various types of quote delimiters cause objects
to be placed on the stack without being evaluated. The EVAL command is provided so
that you can later evaluate these “pending” objects, particularly programs, names, and
algebraics. Applying EVAL to a data object does in fact evaluate the object, but that just
returns the same object.

EVAL is the closest HP-28 equivalent to the HP-41 “run” ([R/S]) key. To “run” a HP-

28 program you can put it on the stack, then press .

Perhaps the most common use of EVAL arises in symbolic calculation, where you have
entered an algebraic object and want to substitute values for the variable names that
appear in the object’s definition. The evaluation of algebraic objects is described in
detail in Chapter 9. The key also provides a handy way of making a keyboard cal-
culation in algebraic syntax, acting like an algebraic calculator’s [=]. Just press ['] to
start algebraic entry, enter an expression, then press . For example,

]1+2*3 ¥ 7.

The command ~NUM is closely related to EVAL;it is described in section 9.2.2.

3.10 SYSEVAL

Built-in HP-28 program objects--commands--are permanently stored in the calculator.
These objects are always in the same place in memory; any such object could in princi-
ple be executed by specifying its memory address rather than its name. In fact, this
execution-by-address does take place within HP-28 system programs. Furthermore, the
HP-28 contains many hundreds of objects that are not named, and which are conse-
quently not directly executable from the keyboard. The majority of these objects are
not useful for common HP-28 operations--those that are most useful have names to
make them commands. However, some unnamed objects do have practical uses.

The SYSEVAL command provides for execution of any system object by means of its
address. That is, you enter the object address as a binary integer object, then execute
SYSEVAL, which in turn executes the specified system object. From time to time, in
response to customers’ requests, Hewlett-Packard has published the addresses of a few
system objects that help solve certain common programming problems.

For example, if a program creates a temporary display by means of DISP or other com-
mands, that display will persist until the end of the program. You can cause the calcula-
tor to restore the normal stack display while a program is running by executing a certain
system object with SYSEVAL. The address of the object depends on the HP-28 version:
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Version Address (hexadecimal)

HP-28C 1BB #13A32

HP-28C 1CC #13B2C

HP-28S 2BB #25AFC

Two additional examples of using SYSEVAL with HP-published addresses are given in
sections 11.11 and 13.2.1.

You must use extreme care when using SYSEVAL, for execution with an incorrect

address may cause a system halt or a memory reset (section 11.3.4). When you execute
SYSEVAL from the command line, or enter it in a program, you should do the follow-
ing:

e Be sure that the address you are using is the correct one for the calculator version
that you have. You can determine the version number by executing

BBINARY]ZDECE #10 SYSEVAL [ENTER] .

(Address #10 is the same on all HP-28’s.)

 

e Be sure you enter the address correctly. This means not only getting all digits right,
but also making sure that the number is correct for the current binary integer base.
All of the SYSEVAL addresses listed in this book are given in hexadecimal, so you
should execute HEX before entering the binary integer address. (Remember that
including HEX in the command line does not affect the interpretation of binary
integers entered in that same command line). On the HP-28S, you can append the
character “h” to the address to insure that it is treated as a hexadecimal number.

e Do not attempt to single-step (section 11.3.5) programs containing SYSEVAL. If you
need to do this, replace the sequences #address SYSEVAL with global names, where
each name corresponds to a variable containing a program

<< #address SYSEVAL >>.

3.11 The Meaning of ENTER

The unmistakable hallmark of RPN calculators has always been the double-wide key
that you see instead of the algebraic calculator [= key. The HP-28 also has that

familiar key (minus the arrow), but the action of the key has changed along with the
HP-28’s other alterations of traditional RPN.

In the HP-41, ENTER* plays a dual role:
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1. Pressing terminates digit entry, and enters a newly keyed number onto the
stack. This is the fundamental purpose of ENTER?.

2. ENTERt, which is a programmable command, copies the X-register into Y and
disables stack-lift. Note that this second role really has no necessary connection
with the first;it just happens to be the way it was designed on the HP-35, and has
remained ever since on HP calculators until the HP-28C.

In the HP-28, the two roles have been separated. ENTER itself retains the fundamental
purpose of terminating entry and entering new objects onto the stack. The secondary
role of duplicating the object in level 1 is provided separately by the command DUP. To

preserve more keystroke consistency with the HP-41, the HP-28 key executes

DUP if you press it when no command line is present, but you should recognize this as
only a keyboard convenience, not a property of ENTER itself.

The basic definition of the HP-28 operation ENTERis:

Take the text in the command line, check it for correct object syntax, then
treat it as a program and execute the objects defined there.

This is a much-elaborated version of the old “terminate-digit-entry and enter a number
onto the stack,” but in simple cases, it amounts to the same thing. If you press a series
of digit keys, then , you will end up with a number in level 1. The same key
sequence on an HP-41 yields the same result, except that the number is also copied into

the Y-register.

On the HP-41, you can also terminate digit entry by pressing any key other than a digit
key. In effect, the non-digit key both terminates digit entry and executes its own key
definition. But it is not correct to say that the key performs ENTERt, because no
second copy of the number is created, nor, in general, is stack-lift disabled. In the HP-
28, however, many keys do literally execute ENTER, then their own definitions. This
feature, called implicit ENTER, is provided for keystroke similarity with previous RPN
calculators, and for keystroke efficiency. Pressing the key itself is called explicit

ENTER.

An example of the use of implicit ENTER is the sequence [1] 2] . This

adds the 1 and the 2, just as it always has in HP RPN calculators. At the time you
press , the 2 is still in the command line; the implicit ENTER performed by puts
the 2 on the stack before the addition is performed.

Note, however, that the sequence [1] 2] does not give the same

results on an HP-41 and on the HP-28. The second ENTER on the HP-41 duplicates
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the 2, so that the adds 2+2 and leaves the 1 in the Y-register. In general, when you
key in a number, then press n times, you get n+1 copies of the number (up to
four). On the HP-28, the same sequence produces only n copies--the first moves
the number from the command line into level 1; each subsequent press executes DUP
once and makes one copy of the number.

[The remaining material in Chapter 3 is quite detailed; you may consider it as reference
information, and skip these sections at a first reading,]

3.11.1 Key Actions and Entry Modes
Whether or not a particular key performs ENTER depends on the key type and the
current entry mode. Any key does one of two things when you pressit:

e The key acts as an alpha key, merely adding one or more characters to the com-
mand line.

e The key acts as an immediate-execute key, causing any other kind of action.

Given these definitions, we can sort HP-28 keys (including menu keys) into three types:

1. Keys that are always alpha keys. These include the letter, digit, and delimiter keys
and the other miscellaneous symbols on the left keyboard, plus the program struc-

ture words in the BRANCH menu (section 10.2).

2. Keys that are always immediate-execute keys. These are keys that never add char-
acters to the command line. Examples are , ,[«],ESST=, and

[CONT] .

3. Keys that may act as either immediate-execute keys or alpha keys, according to
the current entry mode. These mode-dependent keys are the most common key
type in the HP-28; all are command keys.

 

There are three entry modes that affect the mode-dependent keys. The HP-28 manuals
call these immediate entry mode, algebraic entry mode, and alpha entry mode. The
modes might more mnemonically be called immediate mode, expression mode, and pro-
gram mode, respectively; these names help describe the primary purpose of the modes.
Immediate mode is for ordinary keyboard arithmetic and command execution. Expres-
sion mode is for entering algebraic objects. Program mode is for entering programs.

The active entry mode determines whether pressing a mode-dependent key executes its
command immediately or adds its command name to the command line. The rules are
simple:
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¢ In immediate entry mode, all mode-dependent keys execute their commands.

¢ In alpha entry mode (program mode), all mode-dependent keys add their names to
the command line.

e In algebraic entry mode (expression mode), keys corresponding to functions (com-
mands allowed in expressions) add their names to the command lines. A left
parenthesis is added after the names of functions that use one or more arguments.
Keys for RPN commands execute those commands.

Returning to the question of which keys perform ENTER and when, the general rule is
that only immediate-execute keys may do ENTER. There are no cases where a key act-
ing as an alpha key adds characters to the command line, and then also does ENTER.
The next “rule” is that the great majority of immediate-execute command keys do per-
form ENTER. For example, all keys for commands that use stack arguments do
ENTER. The implicit ENTER insures that pressing a command key applies the com-
mand to the most recently entered arguments, including those that are still pending in
the command line. This saves you the extra keystroke that you would otherwise
need.

The command keys that do not perform ENTER regardless of the entry mode are menu
keys for the commands that control calculator numerical modes, and which require no

arguments: ZSTD= , EDEGE , and ZRADE in the MODE menu, and EDECE , SHEX= , SOCT=
and ZBINZ in the BINARY menu. Because the modes can affect the interpretation of
command line numbers, these exceptions to the general implicit ENTER rule are pro-
vided to allow you to change the modes after you have started a command line.

  
 

m n   

Whether or not an immediate-execute non-programmable operation key performs
ENTER generally depends on whether the operation uses or affects the stack. Those
that do ENTER are:

. .

e [ [EDIT] and Il [VISIT] (these use arguments).

¢ [l [COMMAND] (the first time you press it).

e Solver menu keys, including ZEXPR=% , SLEFT==, and ERT==.

e HP-28S CUSTOM menu keys.

e =SST= and J[CONT].

 

Those that don’t do ENTER are:
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e [a], l[cLOCK] (HP-28C) or [ll[MENUS] (HP-28S), [LC], ,[EEX], and [&].

e Cursor menu keys [INS], [DEL], [A],[V],[d], and [>].

-l and ll :

e Menu selection keys, , and [ll[PREV] .

| and )

e Non-programmable mode keys:

HP28C &, E-LASTZ , S+UNDZ=,
,=TRACE= |, and ENORM= .

L

—UNDE , S+MLZ ’

g
pu
n
+ Q = O 1 n |

w
1
9 = O i
l 1

1
E o - n 1

 

HP-28S =CMDZ=, ZUNDOZ,SLAST:, S £, ZRDX,= and ZTRACE .

e [ [OFF] (you can turn the HP-28 off, then on, without affecting the command line).

SCLUSRE is a special case, because its effects are so drastic. The key’s action is mode-
dependent, but its immediate-execute behavior is to spell CLUSR into the command
line. It is not an ordinary alpha key, because it does perform ENTER in immediate- or
algebraic-entry mode before adding CLUSR to the (new) command line. In alpha
mode, it adds CLUSRto the existing command line without doing ENTER.

3.11.2 Controlling the Entry Mode
The preceding key-behavior rules may appear elaborate, but in actual use they are gen-

erally not difficult to master (in fact, you seldom need to think about them at all). This
is due in large part to the fact that the HP-28 automatically changes its entry mode to
match the objects that you enter. Also, you can manually change the entry mode for
those cases when the HP-28’s automatic choice is not what you want.

1. The default mode following an ENTER is immediate entry mode. This choice is
derived from the traditional behavior of RPN calculators, where pressing a func-
tion key causes immediate execution of the function. When you type digits or
letters to start a new command line, the HP-28 remains in immediate entry mode,

as shown by the open box cursor:

3:
2
1:
1230

 

  
 

2. The HP-28 automatically changes to algebraic entry mode when you press ] to
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start entry of an algebraic object:

 

=
0
0

[
\
)
u
=

=
u

a
n

3'H  
 

The cursor is now a box containing an = sign.

3. If you press [*] again to terminate an algebraic object, the HP-28 reverts to
immediate entry mode:

3
 

123'ABC'[]  
 

4. If you press to start entry of a program, or ["] to begin a string object, the
HP-28 automatically switches to alpha entry mode, indicated by the solid box cur-
sor:

 

3
2
1
1  23'ABC ' <N
 

While the HP-28 is in alpha entry mode, the [+ key does not change the mode.

This progression works reasonably well to spare you from having to control the entry
mode yourself, especially if you are entering one object at a time. However, there are
circumstances in which you need to override the HP-28’s automatic choice. For exam-
ple:

e The start list delimiter { does not activate alpha entry mode, but there are many
cases where you need that mode to enter objects into the list. Creating a list of
names by pressing USER menu keys is such a case.

e You are entering a program containing an algebraic object, and would like to switch
to algebraic entry mode to suppress the automatic entry of spaces and to obtain the
leading ( after function names.

e You want to accumulate a series of commands into the command line without creat-

ing a program object.

-41-



3.11 Objects and Execution

The [a] key in combination with the [+ key allows you to change entry modes any time
the command line is present. The specific keystrokes are listed in Table 3.2.

Table 3.2. Changing Entry Modes

Current Mode Desired Mode HP-28C Keys HP-28S Keys

Immediate Algebraic ¢ ) [o][e]

Immediate Alpha [a] (o]

Algebraic Alpha (o] [a][a]

Algebraic Immediate [( ) (o]

Alpha Immediate [a] [e]le]

Alpha Algebraic e][] ¢( ) [a]

The backspace[ is needed after the [+ on the HP-28C if you want to change modes

without actually entering the algebraic delimiter.

3.11.3 ENTER in Detail
Now that we’ve established at some length which keys perform ENTER, and under what
circumstances, we can return to the precise definition of ENTER. The simple use of
ENTER to move a single number from the command line onto the stack is more
straightforward on the HP-28 than on the HP-41--there is no second copy of the
number, and no stack-lift disable. ENTER, however, can do much more than just put a
number onto the stack, thanks to the flexibility of the HP-28 command line. The HP-28
manuals give a rough list of the steps involved in ENTER; here we will elaborate on
those steps. Also, those manuals describe only the action of the key specifically,
omitting the additional step that occurs when ENTER is performed implicitly.

Here are the steps that follow an explicit or implicit ENTER:

1. The “busy” annunciator is turned on. When this annunciator is on, it indicates
that the HP-28 is not ready to process additional keys. Keys that are pressed (up
to 15 keys) during this time are stored for processing after the current operations
are complete.
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2. The current stack is saved for UNDO. It is important to note that the UNDO save
is performed before the command line is processed. If the ENTER is caused by an
immediate-execute operation key, the stack save also precedes execution of the
operation. This means that although breaking up a series of commands with
ENTER (either explicit or implicit) gives the same computed results as executing

all of the commands at once in a single command line, the results of pressing
UNDO at the ends of the series will differ. For example, each of the following

keystroke sequences adds 1+2 and returns 3 to the stack. But UNDO gives a dif-
ferent result in each case (assume an empty stack to start with):

Keystrokes: Stack after UNDO:

(1] (2] 2: 1
1: 2

(1] [2] 1: 1

(1] (2] (empty)

3. The command line is converted into a series of objects--in effect, into a program.
First, the command line is broken into object strings, individual portions of the

command line text that will become objects. The object strings are defined by de-

limiters and separators:

e A delimiter is one of the symbols (,), ', ", [, ], {, }, <<, >>, and #, that identify
the different object types.

e A separator is either a space, a newline, or the non-radix--whichever of “.” or
“>”is not the current radix mark. Separators are used to separate objects like
real numbers, commands, and names, where no delimiter is used. Unlike de-
limiters, however, separators can be repeated--extra ones are ignored.

For example, the command line

12345.789 'FRED’ "123" << DROP ’'SAM’ STO > PETE

is broken into the object strings
12345.789
'FRED’
ll1 23"

<< DROP 'SAM’ STO >
PETE

The process is repeated as necessary within algebraic objects, programs and lists,
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which contain other objects. In the above example, the program object is further

broken into the object strings DROP, 'SAM’, and STO.

Each object string is checked against the syntax rules appropriate for its object
type. As each object string passes its tests, an object is created from the string

and pushed onto the stack. (This step is invisible--you won’t see a stack display
again until all of the new objects have been executed.) If any object string is
found to violate a syntax rule, all of the newly created objects are dropped from
the stack, and the command line is reactivated, with the cursor placed at the posi-
tion in the command line where the error was encountered.

When the command line has successfully been converted into stack objects, a copy
of the original text string is saved in the command stack (unless it has been dis-
abled). Normally, this only happens if there are no syntax errors. However, if the
HP-28 runs out of memory whileit is creating the command line objects, the com-
mand line is saved, giving you a chance to try again after you have cleared some
additional memory (see section 11.2). If the command stack is disabled, the com-
mand line text is never saved.

The new stack objects are combined into a program, which is then executed just
like any other program.

If the ENTER was implicit, the operation associated with the key that started the
ENTER is executed.

When the command line program plus the implicit ENTER key operation are fin-
ished, the HP-28 checks to see if there have been any keys pressed since the
ENTER. If there have, those keys are processed. If one or more of the keys per-
forms an ENTER, the “busy” annunciator blinks off momentarily and whole com-
mand line processing cycle starts over.

Finally, when all execution is complete, and no unprocessed keys remain, the stack
is displayed (unless some special display supersedes the normal stack display) and
the “busy” annunciator is turned off. Since the stack display can take an appreci-
able amount of time, the display is postponed when keys are pending to speed up
the overall process.

This elaborate HP-28 ENTER process may seem like overkill compared to the relatively
simple actions of HP-41 ENTERt. Remember, however, that you can use ENTER on

the HP-28 pretty much the same as you would on the HP-41, after every data object
that you key in--explicitly by pressing , or implicitly by pressing a command key.
To make use of the many-objects-at-a-time capabilities of the command line, just think
of the command line as a “instant” program. You write this program, execute it, and
purge it all in one operation.
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Here are three advantages of using command lines instead of immediate-execute com-
mand keys:

e You can repeat a sequence of commands without having to make the sequence into
a program. Each time you execute the sequence, you can recover the command line
with [l [COMMAND] , then press ENTER to execute it again. You can also modify the
sequence each time you execute it.

e If you get an unexpected result, you can press [ll[UNDQ] to recover the stack, then i
to reexamine what you did. (Since i itself does an implicit

ENTER, you should press i before Il to recover the original
stack.)

e It’s the fastest way to execute the command sequence from the keyboard, since you
don’t have to wait for the stack display after each object is executed.

Because the command line is a program, you can do anything within the command line
that you can in a program--create local variables, use program branch structures, HALT,
single-step, set error traps, etc. On the HP-41, certain commands, like ISG or X=07?,
are meaningless when executed from the keyboard, since they depend on a “next pro-
gram line” for meaning. In the HP-28, all program commands are usable within the
command line.

You can also turn the picture around and imagine a program as a command line for
which execution is postponed. You can take any command line, insert a << at the start,
and then you have a program that enters level 1, rather than executing, when you press
ENTER]|.



4. The HP-28 Stack

The HP-28 stack is the center of all calculator operations. It is the place where the
great majority of commands find their arguments and return their results. It’s also the
primary and most efficient means for commands and programs to transfer data and
instructions so that small calculations can be linked together. In this chapter, we’ll
describe the fundamental stack operations by which you can manipulate the objects on
the stack. There are numerous practical examples of stack manipulations in the pro-
gram examples in later chapters.

The stack consists of series of numbered levels, each of which contains one object of any
type. The stack is always filled from the lowest level up, so that there are never any
empty levels between full ones. ENTER always moves new objects from the command
line into level 1, pushing previous stack objects up to higher levels. Most commands
remove their argument objects from the lowest levels, whereupon the objects in higher
levels drop down. The only exceptions are some of the stack manipulation commands,
which can move objects to or from arbitrary stack levels. There is no limit on the
number of objects or levels of the stack; you can enter as many objects as available
memory will permit.

The HP-28 provides an extensive set of stack manipulation commands, some per-
manently assigned to keys, and the rest contained in the STACK menu. If you are fami-
liar with previous HP calculators, you’ll notice certain commands as renamed versions of

traditional commands, and others which are new. Many of the discussions in this

chapter deal with the transition from traditional HP-41-style RPN to the HP-28.

If you have no previous experience with HP RPN calculators, a good way to get used to
the RPN stack is to view it at first as a “history” stack, which keeps a record of your
calculations. Thatis, you can calculate in “algebraic” style, as we showed in sections 2.3
and 3.9, by entering algebraic expressions surrounded by ' ' delimiters, and pressing

to calculate the results. The successive results pile up on the stack, where you can
then start to get the “feel” of RPN by executing RPN commands to combine the results
into new values.

Table 4.1 lists the stack operations found on the keyboard and in the STACK menu.
The individual operations are explained in subsequent sections. [Most of the HP-28
stack commands are adapted from the FORTH computer language. Indeed, many key
HP-28 features are based on FORTH, with its unlimited data and return stacks, RPN
logic, and structured programming,.]
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Table 4.1. HP-28 Stack Manipulations

Stack Clearing DROP

DROP2
DROPN
CLEAR

Reordering Arguments  SWAP

ROT
ROLL
ROLLD

Copying Objects DUP
OVER
PICK
DUPN

Counting Objects DEPTH

Object Recovery LAST

UNDO

4.1 Clearing the Stack

Perhaps the most common stack operation is “clearing” one or more objects, either to
discard unnecessary objects so that others are moved to lower levels, or just to clear the
decks for a new calculation. The standard command is DROP, which removes the
object in level 1, and “drops” the remaining stack objects one level to fill in the empty
level. Every time you press , another object is discarded, and the stack drops one
level. You can remove the entire contents of the stack in a single operation with
CLEAR.

DROP and CLEAR correspond roughly to the HP-41 commands CLX and CLST, respec-
tively. However, as we will discuss further in section 4.5.2, the HP-41 and the HP-28
differ considerably in their concepts of a “clear” stack. CLX clears the X-register, and
CLST the entire stack, by replacing the contents of those registers with zeros. CLX is
primarily intended for replacing the contents of X with a new value. By disabling stack
lift, the zero CLX enters can be overwritten by a following entry. The HP-28 takes a
simpler approach: DROP discards the level 1 object and doesn’t replace it at all. Since
the HP-28 has no stack-lift disable, the next entry always replaces the dropped object.
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CLST is of very limited value in the HP-41, serving only to provide a “supply” of zeros.
HP-28 CLEAR, on the other hand, removes all objects from the stack, and recovers the
associated memory.

There are two additional HP-28 stack clearing commands, DROP2 and DROPN, that
are less drastic than CLEAR. DROP2 does just what its name implies: it removes two
objects, from level 2 and level 1, then drops the remaining objects down two levels to fill
in. The closest HP-41 equivalent to DROP2 is the sequence CLX RDN CLX RDN.
DROPN drops n+1 objects, including a number n in level 1 that specifies how many
objects to drop (see section 4.2.4 for a discussion of stack depth parameters).

4.2 Rearranging the Stack

4.2.1 Exchanging Two Arguments
The simplest form of stack rearrangement is the exchange of the positions of the objects
in levels 1 and 2, which is accomplished by SWAP. SWAP is used for switching the
arguments for a two-argument command, or more generally for changing the order in
which the level 1 and 2 objects may be used. SWAP is easy to illustrate:

A B SWAP = B A

The HP-41 counterpart to SWAP is X<>Y (here at least is one case where an HP-28
command and an HP-41 command produce identical results).

4.2.2 Rolling the Stack
A stack “roll” is an exchange of stack positions involving objects in two or more stack
levels. One object is moved to or from level 1, and other objects move up or down
together to make room forit.

The concept of a stack roll is simple on the HP-41: you move all of the stack register
contents by one level, up for roll up (Rt), and down for roll down (R¢ or RDN). The
object that spills off the top or bottom of the stack is moved to the other end. Thus on
the HP-41:

Register Register contents

Before After Rt After R{

T: t z x
Z: z y t
Y: y x z

X: x t y
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Which way is “up” and which is “down” depends on how you picture the stack. HP cal-
culator manuals have always pictured the stack with the X-register at the bottom, so that
“up” means towards Y, Z, and T in that order. “Roll up” means x goes to Y, y to Z, z
to T, and ¢ rolls around to X.

The HP-28 provides a more general roll up/down capability with ROLL (roll up) and
ROLLD (roll down). These work analogously to Rt and R\, respectively, but you must

specify the number of stack levels you want to roll by placing the number in level 1.
Each command drops the number from the stack, then rolls that number of the remain-

ing stack objects. So 4 ROLL is equivalent to HP-41 Rt, and 4 ROLLD is the same as
Ri:

Level Stack Contents

Before After 4 ROLL After 4 ROLLD
4: t z X

3: z y t
2: y x z

1: x t y

Although ROLL and ROLLD move several objects at once, the primary purpose of these
commands is still focused on level 1:

e n ROLL means “bring the nth level object to level 1.” That is, ROLL retrieves a pre-
viously entered or computed object that has been pushed up the stack by subsequent
entries.

e n ROLLD means “move the level 1 object to level n.” ROLLD moves the level 1
object “behind” other objects that you want to use first.

SWAP and ROT (rotate) are one-step versions of ROLL. SWAP is equivalent to 2
ROLL; ROT is the same as 3 ROLL. 0 ROLL and 1 ROLL do nothing.

4.2.3 Copying Stack Objects
One of the strengths of RPN calculators is their ability to make copies of an object on
the stack, so that you can reuse it without having to stop and create a variable. The

simplest example of this facility is the HP-28 command DUP, which makes a second
copy of the object in level 1, pushing the original copy to level 2, and all other stack
objects up one level. The HP-41 counterparts of DUP are RCL X and ENTERY,
although the use of the latter command is complicated by its extra feature of disabling

stack lift.
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The HP-28 also lets you copy a block of stack objects with DUPN. The sequence n
DUPN, where n is a real integer, makes copies of the first n objects on the stack. The

order of the objectsis preserved; for example

XY Z 3 DUPN = XY Z X Y Z

DUP2 is a one-command version of 2 DUPN:

XY DUP2 = X Y X Y.

In some casesit is desirable to copy an object that is not in level 1, by bringing a copy

to level 1 while leaving the objectin its original position relative to other objects. In the
HP-28, this combination of ROLL, DUP, and ROLLD is represented by PICK, the gen-

eral purpose stack copy command. PICK works like ROLL, returning the nth level
object to level 1, but it leaves the original copy behind. The original therefore ends up
in level n+1I:

W XY Z 4 PICK = W XY Z W

DUP is the same as 1 PICK, and OVER is a one-step version of 2 PICK:

XY OVER = X Y X

Generally, you use PICK and ROLL when you are carrying out a complicated calculation
entirely with stack objects. When you need to use a certain object repeatedly, you use
PICK to get each new copy of the object. For the final use of the object, use ROLL
instead of PICK; then you won’t leave an unneeded copy around after the calculation is
complete.

The HP-41 analogs of n PICK are RCL X, RCL Y, RCL Z, and RCL T, which are

intended for making copies of stack numbers (without disabling stack lift). Note that
RCL T is equivalent to Rt, since the original contents of T are pushed off the stack.

4.2.4 How Many Stack Objects?
Several HP-28 stack commands require you to supply an argument that specifies how
many stack levels the command will affect. Because this argument is always taken from

level 1, you might be uncertain about what the argument should be--should you count
level 1, which contains the argument? The answer is no--always count the stack levels
you need before the count is entered into level 1.

For example, suppose the stack looks like this:
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=
N

w
W
H

>
m
0
O
0

To roll D to level 1, execute 4 ROLL. But notice that at the point when ROLL actually
executes, the stack is:

a
N
N
W
H
A
O
M

A
>
T

O
O
C

Here D is actually in level 5. But don’t try to compensate for this by using 5 as the
argument to ROLL. ROLL removes its argument from the stack before it counts levels
for the roll. All other similar commands, such as DUPN, PICK, ROLLD, -LIST, etc.,
work the same way.

DEPTH, which returns the number of objects currently on the stack, works in conjunc-
tion with this class of commands. The count returned by DEPTH does not include
itself--it counts the objects before the new count object is pushed onto the stack. (Every

time you execute DEPTH, the depth increases by one.) Thus DEPTH ROLL rolls the
entire stack, DEPTH —LIST packs up all the stack objects into a list, etc.

4.3 Recovering Arguments

HP-41 LASTX recovers the X-register argument used by a previous command, for two
general purposes:

1. To allow you to re-use the same argument for a new command.

2. To help you reverse the effect of an incorrect command, by applying the inverse of
the command to the same argument.

These two purposes are split into separate operations on the HP-28:

1. The capability of recovering an argument for reuse is provided by the LAST com-

mand. It is important to note, however, that whereas HP-41 LASTX returns only
the X-register argument, LAST returns all of the arguments used by most recent
command--up to three arguments. (No HP-28 command uses more than three
arguments. Commands like DUPN or ~ARRY, which appear to use an indefinite
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number of arguments, are considered for this purpose to use only one argument,
which is the number or list in level 1 that specifies the number of stack levels that
are involved.)

The arguments saved by HP-28 commands are kept in a special area of memory
that is only accessible via LAST, rather than in an L-register that is almost an
extension of the stack as in the HP-41. Also, a wider variety of HP-28 commands
use stack arguments than is the case in the HP-41, so that the objects returned by
LAST change more frequently in the HP-28. For example, DROP and SWAP both
affect LAST, whereas HP-41 CLX and X<>Y do not affect the L-register. Only
commands like STD or HEX, that use no arguments at all, leave the LAST objects
unchanged.

2. The use of HP-41 LASTX in recovering from incorrect commands is replaced in
the HP-28 by the UNDO operation. At the start of ENTER, a copy of the entire
stack is saved (see section 3.11.3). When all of the objects processed by ENTER
have completed execution, you can cancel the stack effects of the objects by press-
ing II[UNDO]. This discards the new stack and replaces it with the stack contents
saved by ENTER.

The objects saved for recovery by LAST and UNDO can consume a substantial amount

of memory if the objects are numerous or large. In some cases, particularly on the
HP-28C, where memory is in short supply, this use of memory can actually prevent you
from carrying out various operations. For this reason, the HP-28 gives you the option of

disabling either or both of these features (and also the command stack), by means of
the appropriate keys in the MODES menu. You can also enable or disable LAST by set-
ting or clearing flag 31, respectively.

Two notes:

e Disabling LAST prevents commands that error from returning their arguments to the
stack. This makes it harder to recover from an error, and also affects the design of
error traps (section 10.6.1).

e If there is insufficient memory available to save the current stack for UNDO, the
HP-28 shows the error message No Room for UNDO, and automatically disables
UNDO. This is necessary, since you would otherwise be unable to do anything until
some memory was made available, yet any commands you tried to execute to free
memory would fail because the HP-28 tries to save the stack first, which it can’t do.
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4.4 An Example of HP-28 Stack Manipulations

The following illustrates the use of several of the HP-28 stack commands. By following
the steps, you can observe how to copy, move, and combine stack objects.

s Example. Write a program that computes the three values

P+A+B
P+ BF + A/F
P + B/F + A'F,

leaving the results on the stack. Assume that P is in level 4, A in level 3, B in level 2,
and F in level 1.

= Solution:

 

<< 4 ROLLD 3 DUPN 3 DUPN + +
8 ROLLD 7 PICK * SWAP 7 PICK
/ + + 5 ROLLD 4 PICK
/ SWAP 4 ROLL * + +

>>  
 

To help you understand this program, we will show the stack contents at each step,
using using symbolic names throughout the calculation.

Steps: Results:

IPI

IAI

IBI

IFI

(Start)

o
N
h
N
w
A

4 ROLLD 'F’
IPI

IAI

'B’m
N
h
N
e
R

3 DUPN 'F!
IPI

IAIQ
o
A
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3 DUPN

8 ROLLD

7 PICK

N
S

S
N
R
r
O
N
®

S
N
h
N
,
r
O
O
N
D
®
O
A e

S
N
O
A
R
N
O
N
®

N
W
A
R
D
O
N
®
D
O

IBI

IPI

IA’

IB’

IFI

IPI

IAI

IBI

IPI

IAI

IBI

IPI

IAI

IBI

IFI

IPI

IAI

IBI

’PI

IAI

IBI

'P+(A+B)’

'P+(A+B)’
IFI

IPI

IAI

IBI

IPI

IAI

IBI

'P+(A+B)’
IFI

'PI

IAI

lBI

IPI

IAI

IB’

The HP-28 Stack



The HP-28 Stack

* SWAP 7 PICK

5 ROLLD

4 PICK

/ SWAP

4 ROLL

- .
S
N
O
A
R
A
O
O
I
N
R
O

S
N

R
E
O
O

S
N

R
E
O
O

S
N
h
N
e
A
R
A
N
O
N

S
N

A
O
O

o

IFI

'P+(A+B)’
IFI

IPI

IA'

IBI

IPI

IB*F'

IAI

'FI

'P+(A+B)’
IFI

IPI

IA'

IB'

'P+(B*F+A/F)’

'P+(A+B)’
'P+(B*F+A/F)’

IFI

’P'

IAI

IBI

'P+(A+B)’
'P+(B*F+A/F)’

IFI

’PI

IAI

IBI

IFI

'P+(A+B)’

'P+(B*F+A/F)’
IFI

IPI

IB/F'

IAI

'P+(A+B)’

4.4
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'P+(B*F+A/F)’
IPI

IB/FI

’AI

IFIS
N
h
N
W
R
A
E
O

* + + 'P+(A+B)'

'P+(B*F+A/F)’
'P+ (B/F +A*F)’T

N

4.4.1 The Easy Way: Local Variables
The preceding example illustrates the use of stack manipulation commands, but it does

not necessarily represent the best way to solve the problem. Keeping track of numerous
objects on the stack takes considerable care when you are writing or editing a program.
In general, manipulating objects on the stack in a purely RPN manner yields the most
efficient programs. However, there are other programming techniques that are easier
and produce more legible programs.

If you were writing the above program on the HP-41, you would have to store the initial
values in registers, then recall each to the stack as it is needed in the calculations. You
can do the same thing in the HP-28, using variables instead of registers (Chapter 5),
but this has the disadvantage of cluttering up user memory with a lot of variables, which
you may or may not need after the program is finished. The cleanest method is to use
local variables.

The solution to the problem in the preceding section, written using local variables, is

 

< - p ab f
<< 'p+a+b’ EVAL

'‘p+bH+a/f’ EVAL
'‘p+b/f+ax’ EVAL

>>

>>  
 

- p a b f takes the four initial values off the stack and assigns them to local variables p,
a, b, and f (here we are using the convention of lower-case characters for local names).
The rest of the program computes the three results, then discards the local variables.
The obvious advantage of this method is that you can write the program “instantly,”
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since the program so closely resembles the written form of the expressions you are try-
ing to compute. The use of local variables is explored in detail in Chapter 8 and section
10.7.

4.5 Managing the Unlimited Stack

In our review of HP-28 stack manipulation commands, we have described the differ-
ences between the HP-28 commands and the similar commands provided by the HP-41.
In addition to these individual command differences, there are also several general
aspects of the use of the HP-28 stack that will require some adjustment if you are used
to the HP-41-style stack. The hardest part, perhaps, is changing keystroke and program-
ming practices that you have developed to use the advantages and to overcome the
disadvantages of a four-level stack. In the following sections, we will outline some of
the significant differences in stack management between a four-level stack and an unlim-
ited one.

4.5.1 Stack Housekeeping
The key difference, of course, between the HP-28 and HP-41 stacks is that the HP-28
stack can contain an unlimited number of objects, whereas the HP-41 and all other pre-
vious RPN calculator stacks have been limited to four registers. An important advan-
tage of the unlimited stack is that objects are never lost by being pushed off the end of

the stack when a new object is entered. This is also a mild disadvantage--if you don’t
clear objects from the stack when you’re through with them, more and more objects will
pile up. This not only wastes memory, but can even slow down execution, since the cal-
culator has to keep track of all of the stack objects. It can also be distracting to see old
objects appear in the display when you’ve long since forgotten their purpose.

A general recommendation for HP-28 stack management is to clean up the stack after a
calculation is complete. By all means pile up as much as you want on the stack while
you are working through a problem--that’s what its there for. But when you’re finished,
empty the stack. You can do this either at the beginning or the end of each calculation.
We recommend the latter, since at that point you will best remember what each object
is, and whetherit’s all right to throw it away.

“Clean up the stack” doesn’t always mean to DROP every object, or to CLEAR the
stack. You may very well want to keep certain objects, in which case you can store the
desired objects in variables. Notice that the STO command removes the object being
stored from the stack, reducing the number of objects on the stack.

KEEP1 and KEEPN are two programs that supplement the commands in the STACK
menu. (This is our first example of a named program; you may wish to refer to the
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description of the program listing format in section 11.1.) KEEP1 discards all objects on
the stack except the object in level 1. For example,

A B C KEEP1 = C

 

 
 

 

 

 

KEEP1 Keep 1 Object

level 1 | level 1

objects... object, or object

< - X Save object, .

<< CLEAR x Clear the stack, recover object.

>>

>>   
 

KEEPN discards all objects after the first n, where you supply n in level 1.
 

 
 

 

 

 

KEEPN Keep N Objects

level 1 |

objects n or n objects

<< =LIST Combine n objects in a list.

KEEP1 Discard all but the list.

LIST- DROP Put the saved objects back on the stack.

>>   
 

Occasionally you may need to interrupt one ongoing keyboard calculation in order to
perform another, and wish to resume the suspended work later. In this case it is not
appropriate to clear the stack with CLEAR to provide an empty stack for the new calcu-
lation. You could take the trouble to save each object in a variable, but this can be
tedious, and doesn’t guarantee that you can reconstruct the stack order of the objects.
The solution is to preserve the entire stack in a single variable by combining the stack

objects into a list.

All of the commands you need are in the second level of the STACK menu. Press [l

[STACK] [NEXT] EDEPTHE to return the number of objects on the stack, and Z-LISTZ to
combine all of the objects into a single list object. Then you can store the list into a
variable named OLDST (for example) by typing 'OLDST’ . The stack is now
cleared for another calculation. After completing any number of subsequent operations,
you can restore the old stack by pressing [USER] OLDST= [l [LIST]ZLIST-= [DROP] . (The
DROP removes the object count returned by LIST-.)
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If you expect to do this kind of stack save frequently, you can write programs to save
keystrokes:

<< DEPTH -LIST 'OLDST’ STO >>

saves the stack, and

<< OLDST LIST- DROP >

restoresit.

4.5.2 A Really Empty Stack
An important property of the HP-28 stack not shared by other RPN calculators’ stacks
is its ability to be empty. That is, when you clear the stack with DROP or CLEAR,

there’s nothing left. If you try to execute a command that requires arguments, you’ll get
an outright error--Too Few Arguments. The HP-28 makes no attempt to supply default
arguments.

On an HP-41, the stack is never empty. CLX puts a zero in the X-register; CLST (clear
stack) fills all four stack registers with zeros. This is handy if you happen to use a lot of

zeros in your calculations, but the primary reason that the HP-41 works this way is that
the stack registers are fixed memory registers that are always present. “Clearing a
register” means resetting all the memory bits to 0, which happens to correspond to the
internal representation of the floating-point number zero.

Zero is not such an obvious choice for a default value in the HP-28, since the calculator
doesn’t know what type of calculation you are working on. A null matrix, an empty
string or list, or the complex number (0,0) are just as good choices as floating-point
zero, depending on your current work. So the HP-28 avoids the problem by never sup-

plying a default. When the stack is empty, it’s really empty.

You can turn this property to advantage. The following sequence adds all of the
numbers on the stack, no matter how many there are:

IFERR DO + UNTIL 0 END THEN END

The sequence DO + UNTIL 0 END is an endless loop (section 10.5.2.1) that repeats +
indefinitely. Every time + executes, there is one fewer number on the stack, until even-
tually there is only one (the total) left. Then + will error (Too Few Arguments), but
the error is intercepted (section 10.6) by the IFERR, and the program stops without any
error display. You can embellish this sequence to label the result by inserting a display
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message

"SUM=" OVER ~-STR + 1 DISP

between the THEN and the final END.

Notice that if an empty stack were treated as if it were filled with zeros, there would be
no way for the program to know when to stop adding.

4.5.3 Disappearing Arguments
The HP-28 itself takes some steps to insure that unnecessary objects don’t pile up on
the stack. In particular, most commands that use stack arguments remove those argu-
ments from the stack. You shouldn’t find this surprising; for example, you wouldn’t

expect the sequence 1 2 + to leave the 1 and the 2 on the stack as well as the answer 3.
But it may be a little disconcerting the first time you use STO on the HP-28, to see that
the object you just stored disappears from the stack, especially by contrast with HP-41
STO, which leaves the stored object on the stack.

If commands did not remove their arguments from the stack, then you would have to
take the trouble to drop them when you no longer need them. On the other hand, since
HP-28 commands do remove their arguments, you must remember to duplicate them

before executing the commands on those occasions when you want to reuse the argu-
ments. The HP-28 chooses this approach for these reasons:

e Consistency with mathematical functions. You never want math functions to leave
their arguments on the stack--otherwise, the whole RPN calculation sequence would
be disrupted.

e Stack “discipline.” The fewer objects that are on the stack, the easier it is to keep
track of what they are.

e Efficiency. It’s easier to duplicate or retrieve a lost argument than it is to get rid of

an unwanted one.

To illustrate the last point, consider obtaining a substring from a string:

"ABCDEFG" 3 4 SUB = "CD"

This sequence returns only the result string "CD"; the original string "ABCDEFG", and
the 3, and 4 that specify the substring are discarded. If you want to keep the original
string, add a DUP to the start of the sequence:

DUP "ABCDEFG" 3 4 SUB = "ABCDEFG" "CD".
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If SUB left its arguments on the stack, the original sequence would yield a final stack
like this:

"ABCDEFG"
3
4

"CDII

s
o
h
e
R

In that case, to leave only the result on the stack, you would have to add 4 ROLLD 3
DROPN to the sequence. If you only want the two strings, you would have to add ROT
ROT DROP2. As we stated, either of these is more complicated than adding a DUP to
the start of the sequence.

When you use STO to preserve an intermediate result in the middle of a calculation,
you may prefer to keep the result on the stack so that you can continue the calculation.
In this case, just execute DUP (press if you’re just working from the keyboard)
before you enter the variable name for the STO. If you forget, the stored object is
always available by name in the USER menu.

4.5.4 Postfix Commands
Perhaps the single HP-28 feature that takes the most adjustment by HP-41 users is the
extension of postfix syntax to commands that use a prefix form in the HP-41. Prefix
commands are those like STO, SF (set flag), FIX, etc., where the command is specified
before its arguments.

For these commands, the “arguments” don’t go on the stack at all. When you’re work-
ing with a fixed stack, you can’t afford to lose objects from the end of the stack when-
ever you store an object or set the number of display digits. Instead, these HP-41 com-
mands use a syntax that combines the argument with the command into a single unit.
For example, when you press , the display shows STO _ _, indicating that STO
expects an argument in the form of a two-digit number (identifying the data register).
You must then press two digit keys, following which the store is actually executed.
When you include STO in a program, the STO nn is treated as a single program line.

One important reason for the HP-28 to abandon the prefix syntax is the inflexibility of
that form. In the HP-41, STO always requires a two-digit prefix, which is a nuisance on
a calculator with up to 319 data registers since you can directly store only in registers 00
through 99. It’s not so bad for FIX, SCI, and ENG, since a single-digit argument allows
you to specify all possible display formats. But since the HP-28 has 8-byte floating-point
numbers, you can specify up to 12 mantissa digits, so that a 1-digit prefix syntax for

these commands is inadequate.
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The HP-28 uses a postfix syntax for all of its commands, including those that correspond

to HP-41 prefix functions. This provides:

e Consistency--all commands work the same way. You don’t have to remember which
commands are prefix and which are postfix.

¢ Flexibility--no restrictions on the number of digits or characters in the arguments.
FIX, SCI, ENG, SF, CF, etc., use floating-point numbers as arguments, so they are
not limited to one or two digits. STO, RCL, etc., work with variable names with any
number of letters.

e Computed arguments--arguments can be computed using any other HP-28 opera-
tions, as well as entered manually.

The last point means that there is no necessity in the HP-28 for “indirect” addressing as
it is defined in the HP-41. Indirect addressing is the case for which a command argu-
ment is not contained as part of a prefix command syntax, but is stored in a register.
The number of the register is specified as the argument for the indirect form of the
command. For example, in the HP-41, the indirect command STO IND 01 means
“store the number in the X-register into the register named in register 01.” You use
indirect addressing when you don’t know a command argument in advance, but must
compute it. This often occurs when you are working with a set of sequentially num-

bered data registers, as in matrix operations.

To reproduce the effect of indirect addressing in the HP-28, you can define a variable
named INDEX to play the role of an index register. You store the name of the
indirectly referenced variable in INDEX. Then the sequence 'INDEX’ RCL STO is

equivalent to STO IND 01 (where we have arbitrarily chosen register 01 to be the index
register) on the HP-41, or to STO(i) on the HP-11C or the HP-15C. Assuming that the
object you want to store is already in level 1, executing 'INDEX’ RCL puts the name
stored in INDEX onto the stack, pushing the first object to level 2. Then STO is ready
to go, with its arguments correctly positioned on the stack.

You will probably find that there are few occasions when you need to use indirect
addressing of this form on the HP-28, because it already provides indexed structures--
arrays and lists. For example, suppose you want to create a sequence consisting of the
reciprocals of the integers 1 through 10. In the HP-41, you would write a program as
follows:



The HP-28 Stack 4.5

01 LBL"RECIP"

02 1.010 Set up an index for 1 through 10
03 LBL 01

04 ENTER! Copy the index
05 INT Take the integer part
06 1/X Reciprocate
07 STOINDY  Store the reciprocal
08 RDN Discard the reciprocal
09 ISG X Increment the index
10 GTO 01 Loop
11 END

This program stores the 10 reciprocals into registers 01 through 10. An HP-28
equivalent is the following program RECIP. This program returns the reciprocals
together as the elements of a list object.

 

 
 

 

 
 

RECIP Compute 10 Reciprocals

| level 1

o { reciprocals }

< 1 10 Put loop parameters on the stack

FOR x Start a loop with x as the index

x INV Compute the reciprocal of x

NEXT Loop.

10 -LIST Pack up the 10 reciprocals into a list.

>>   
 

4.5.5 Stack-lift Disable
“Stack lift” is the RPN calculator process whereby entering a new object “lifts” the pre-
vious contents of the stack into higher levels. In the HP-41, it is possible to disable
stack lift, so that a no-argument operation that returns a result to the stack will
overwrite the contents of the X-register with the result rather than lifting the stack.
This feature, which originally derived from the memory limitations of the first RPN cal-
culators and has carried over into later products, is not present in the HP-28.

The purpose of stack-lift disable centers around the behavior of CLX in a one-line

display calculator. The first RPN calculators were characterized by very limited
memory. They could not afford the luxury of having a separate register for digit entry,
so numbers were keyed directly into the X-register. Usually you don’t want to overwrite
the number already in X, so the calculators provided that entry of a new number “lifts”
the existing stack contents into higher registers. Now suppose that you start to enter an
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incorrect number, and start pressing [¢&]to remove it. What happens if you press the
back-arrow too many times, at least once after the last remaining digit of the newly
entered number? You wouldn’t want that to erase the number that was previously in
the X-register, so was designed to stop erasing in this case and just enter a zero
into the X-register. But since that zero has nothing to do with with your calculation,
and will most likely just be in the way, the zero entry is coupled with a stack-lift disable.
The next number you enter overwrites the phantom zero. For similar reasons, CLX
works the same way (and, in fact, just performs CLX when digit entry is not active).

Why doesn’t CLX just drop the stack? The answer is a psychological one. Many peo-
ple, especially if they’re used to algebraic calculators (which typically require you to
press the clear key to start new calculations), like the sense of “a clean slate” suggested
by a zero. An alternative might be to show a blank display, but then you wouldn’t know
if the calculator was turned on. Although with an RPN stack it’s never necessary to
clear anything to begin a new calculation, a zero in the display when you start is less
intrusive than some other number that you might not recognize.

The HP-28 eliminates the need for stack-lift disable by providing a command line,
where you can enter an object without disturbing the stack during entry. Since an object
in the command line is not on the stack, you can abandon it ([ON], or repeatedly
to empty the line) without having to leave a zero as a placeholder on the stack. Furth-
ermore, if you want to get rid of an object that’s already on the stack, you can use
DROP, which discards the object and drops the remaining objects on the stack one level.

The HP-41 commands that disable stack-lift are ENTERt, CLX, £+, and X-. The first
two commands each serve dual purposes. CLX can be used either to climinate an
unwanted number from the stack, or just to enter a zero. ENTER* acts either to ter-
minate digit entry, or to copy the X-register into Y. On the HP-28, the two roles of
each of these operations are separated, as shown in Table 4.2 in the next section. The
HP-41 summation commands 2+ and 2 - disable stack-lift in order to return a running
count of the number of data points that have been accumulated to the X-register, while
allowing you to overwrite the count with the next data entry if you wish. The HP-28
does not attempt to reproduce this behavior; when you execute Z +, it just removes the
data from the stack and adds it to the ZDAT matrix; no count is returned. If you like
seeing a running count, you can use the following program instead of = +:

< X+ N2 1 DISP >>,

This program displays the count as a temporary display in display line 1 after each entry.
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4.6 HP-28 Translations of HP-41 Stack Commands

Table 4.2 lists the nearest HP-28 equivalents of the HP-41 stack manipulation com-
mands.

Table 4.2. HP-41 and HP-28 Stack Commands

HP-41 Command

CLX

CLST

X<>Y

Rt

RDN

ENTER?

LASTX

RCL X

RCLY

RCL Z

RCLT

Purpose

Remove last entry
Enter a 0

Clear the stack

Enter four 0’s

Exchange X and Y

Roll up four levels
Roll up the entire stack

Roll four levels down

Roll down the entire stack

Terminate digit entry

Duplicate X into Y

Recover last argument
Correct an error
Copy X

Copy Y

Copy Z

Copy T

Nearest HP-28 Equivalent

DROP
0

CLEAR

0 DUP DUP2

SWAP

4 ROLL
DEPTH ROLL

4 ROLLD
DEPTH ROLLD

or any delimiter

or separator character

DUP

LAST

Il (UNDO]
DUP

OVER

3 PICK

4 PICK



5. Variables

The HP-28 stack has evolved from the fixed-size number registers of the HP-41 and its

predecessors into a more flexible mechanism for operations with objects of varying types
and sizes. For similar reasons, the HP-28 introduces a general storage system in which
objects are stored in named variables. Variables are similar to stack levels in that each
holds one object of any type. But whereas the stack levels are numbered, and the order
of stack objects is important, HP-28 variables are named with words, and their order is
unimportant. The names are the means by which you access the objects stored in vari-
ables, and they also serve to label the variables. Variables replace the fixed-size num-
bered data storage registers of the HP-41; the variable names act as a mnemonic form
of register “number.” With numbered registers, you must keep a mental or written
record of what is stored in each register. By choosing appropriate variable names, you
can substantially reduce the need for such records on the HP-28.

There are two kinds of HP-28 variables: global and local. Most of the discussion in this
chapter focuses on global variables, which are those variables that constitute the USER
menu and are generally accessible from any program. Local variables are “local” to
specific programs; they are discussed in detail in Chapter 8 and section 10.7 .

In HP-28 terminology, a variable is “a combination of a name object and any other

object that are stored together in memory.” Looking at each part of this definition:

e A combination... A variable has two parts, the name and the other object. You can
visualize a variable as a labeled box--the name is the label, the other object is the
content of the box. The label is permanent, but you can change what is stored in the
box.

e of a name... You always refer to a variable by its name. The name fills the role of
the storage register number in the HP-41.

e and any other object... The contents of a variable can be any single object, of any size
or complexity. You can only store one object in a variable, but if you want to store
more, you can combine any number of objects into a list, then store the list in a vari-
able.

e that are stored together... The name and the object are in fact contiguous in memory,
but it is the logical combination thatis significant, not the details of the storage.

e in memory. Global variables are all stored in a portion of memory we’ll call USER
memory because of its association with the USER menu. Local variables are stored
in one or more temporarily assigned sections of memory that are reclaimed when
the program that created the variablesis finished executing.
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HP-28 variables are the electronic version of mathematical variables. In an expression
like x +2, you understand that x stands for some specific quantity (the value of x). The
implication is that at any time you can substitute the value for the symbol, and actually
carry out the calculation prescribed by the expression. In the HP-28, name objects are
the symbols for variables. Executing a name replaces the symbol with the variable’s
value, which is the object stored in the variable.

You can only use an object stored in a variable by means of the variable name. For this
reason, it is often convenient to blur the distinction between names and variables by
using the terms interchangeably, particularly in a mathematical context. We speak, for
example, of the variables in an equation--actually, only the names are literally present in

the equation. A formal variable in the HP-28 is a name for which no variable exists.
The name potentially represents a value of some kind; the value becomes definite when
you store an object in the variable.

Also, in many situationsit is convenient to refer to the object stored in a variable by the
name of the variable. For example, if you create a program object, then store that pro-
gram in a variable named PROG, you can say that you have named the program
“PROG.” Strictly speaking, this is not correct since the program has an existence
independent of any name (for instance, you can recall the program object to the stack,
where it is nameless). What you have done is associated the program and the name by
combining them into a variable. The association may be temporary, or you may keep it
indefinitely; but as long as it is current it makes sense to refer to the program simply as
PROG rather than as “the program stored in the variable named PROG.”

5.1 Creating Global Variables

HP-28 global variables are created by the command STO, which takes a name and one
additional object as its arguments. STO moves the object from the stack to USER
memory where it and the name are added to the current set of variables that appear in
the USER menu. HP-28 variables have no particular object type associated with them,;
you might create a variable initially with one type of object, but later you can store any
other type of object into the same variable.

STO expects to find the name of the target variable in level 1, and the object to store in
level 2. As described in section 3.7, you must quote the variable name in order to enter
it as an object onto the stack. To store 25 in a variable X, for example, you execute 25
'X" STO. If you forget the quotes and execute 25 X STO, you will most likely see an
error message, since X will be executed rather than entered as a name, before the STO
is executed. (If you know that there is no current variable X, then you can omit the
quotes, since executing the name of a non-existent variable just returns the name back

to the stack. This can save you a couple of keystrokes when you’re creating a new
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variable.)

There is no direct way to change the name of a variable. However, you can easily move
the contents of a variable to a new variable with a different name by executing

‘old-name' 'new-name’ OVER RCL ROT PURGE SWAP STO

The order of these operations ensures that there is only one copy of the stored object at
a time.

5.2 Recalling Values

There are two fundamental ways to “recall” the value of a variable:

e Execute the variable’s name. Executing a global name executes the object stored in
the named variable (section 3.6). For data objects and algebraic objects, this just
recalls the object to the stack. For example, if you have stored the number25 in a
variable named X, pressing [X][ENTER] returns the number 25 to level 1.

e Use RCL. 'name’ RCL returns the object stored in the variable name to the stack,
without executing the object. RCL is primarily used for variables containing pro-
grams and names, in cases where you just want to put a copy of the stored object on
the stack. For data and algebraic objects, RCL has the same effect as simple execu-
tion of a variable’s name, which requires fewer steps.

The commands GET and GETI allow you to recall individual elements from arrays and
lists stored in variables, without having to recall the entire object to the stack. For GET,

the stack use is

object index GET 1= element,

where index specifies the element to retrieve:

e For a list, the index is a real number (the HP-28S also allows the real number itself
to be in a list, which is handy when you’re converting between lists and vectors).

e For a vector, the index is a list containing one real number (the HP-28S also allows
a real number not in a list).

e For an array, the index is a list of two real numbers representing the row and
column numbers of the element (the HP-28S also allows a real number representing
the element number, counting in “row order”-- left to right, top to bottom).

The object in the above sequence can either be the list or array itself, or the name of a
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variable in which the list or array is stored. Thus,

{A B C} 2 GET = 'B,

or
{A B C} 'D' STO 'D' 2 GET = 'B'.

GETIis designed for sequential recall of the elements in a list or array, and returns the
object or its name, and the index incremented to the next element, as well as the
recalled element. The general form of GETI is

object index GET 1= object index+ element,

where object and index are the same as for GET, and index+ is the same as index except
that its value is incremented to represent the next element. Thus,

{A B C} 2 GETl = {A B C} 3 'B,

If index points to the last element, GETI returns either 1, { 1 }, or { 1 1 } for index+, as
appropriate to cycle back to the first element. [In the HP-28S, GETI also sets flag 46
when this occurs, or clears the flag otherwise, so that a program can easily determine
when it has come to the end of a list or array.]

5.3 Altering the Contents of Variables

The most straightforward means of changing the contents of a variable is to store a new
object into the variable using STO. However, there are a number of commands that let
you modify the stored object short of replacing it entirely, without having to recall the
object to the stack.

The STORE menu contains seven commands of this type. The first four are the
“storage arithmetic” commands STO+, STO-, STO#*, and STO/, which are modeled
after their HP-41 counterparts. The remaining commands SNEG, SINV, and SCONJ
are single-argument commands that are not present in the HP-41.

In addition to the commands in the STORE menu, the four array commands CON, IDN,
RDM, and TRN can be applied to arrays stored in variables. PUT and PUTI are the
storing counterparts of GET and GETI, allowing you to alter individual elements in a
stored list or array.

Finally, there are several commands associated with the reserved-name variables EQ,

PPAR, XDAT, and 2PAR associated with the Solver, plotting and statistics operations.
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We will discuss these commands in the chapters describing their respective applications.

5.3.1 HP-28 Storage Arithmetic
Storage arithmetic commands let you combine a number in level 1 with a number stored
in a variable, without having to recall the latter to the stack. For example, 25 'X'
STO+ adds 25 to a number stored in X. More generally, STO+, STO-, STO#*, and
STO/ use a syntax similar to that of STO:

object 'name’ STOe,

where the ® stands for any of the symbols +, —, * or /. However,

‘name’ object STO®

is also allowed. Either sequence combines the object in level 2 with the object stored in
the variable name, leaving the result stored in the same variable. The object and the
name are dropped from the stack. The two objects that are combined must be
numerical--real or complex numbers or arrays--and suitable for the ® operation (you
can’t add a matrix to a real number, for example). For STO-, STO* (for arrays) and
STO/, the order of the object and the 'name’ is important:

e object 'name’ STO® computes

(new value) = (stack object) (old value).

~
%

|
+

In this case, STO® is equivalent to

DUP RCL ROT SWAP e SWAP STO.

If X has the value 1, then 3 ‘X’ STO- stores 2 in X.

e ‘name’ object STO® computes

(new value) = (old value) (stack object).

~
%

|
+
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Here STO® is equivalent to

OVER RCL SWAP e SWAP STO.

With 1 stored in X, ‘X" 3 STO- stores —2 in X.

You can understand these two choices by realizing that STO—, STO*, and STO/ com-
bine a named object with a stack object just as if you replaced the name on the stack
with the named object, then executed —, * or /, respectively. For STO+, the order
doesn’t matter.

The flexibility in the order of the stack arguments is possible because these commands
only work with numerical arithmetic--the stack object can’t be a name. For ordinary
STO, the object to be stored can be a name; to distinguish between the variable name
and the stored name, STO requires the variable name to be in level 1 and the stored
object to be in level 2.

5.3.2 Additional Storage Commands
In addition to the four storage arithmetic commands, the HP-28 has three storage com-
mands that alter a stored number or array without requiring any stack argument other

than the variable name. In each case, the result replaces the original object:

SNEG  negates the stored object.

SINV computes the reciprocal of a stored number or square matrix.

SCONJ computes the complex conjugate of the stored object.

Like the four storage arithmetic commands, these commands are provided to save keys-
trokes and/or program memory when compared to the equivalent stack object com-
mands used in conjunction with STO and RCL. However, the single-argument com-
mands are particularly useful for arrays. Because their mathematical operations are
applied to the stored arrays “in place”--replacing the stored values as the computation
proceeds, the storage commands offer the most memory-efficient method of finding the
negative, inverse, or conjugate of an array. If, for example, you recall an array from a
variable to the stack, then invert it, you will need enough memory to hold both the
stored array and its inverse at the same time. By inverting the array in place with SINV,
you only need enough room for the original array.

Similar considerations apply to certain array commands that work equally well when you
replace the array on the stack with the name of a variable containing an array:
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CON converts an arbitrary array into a constant array (all elements are the same),
where the constant number is specified on the stack.

IDN converts a square matrix into the identity matrix.

TRN transposes and conjugates an array.

RDM redimensions an array according to the dimensions specified by a list of one
or two real numbers. Note that RDM can change the total size of an array if
the new dimensions correspond to more or fewer elements than are in the
original array.

PUT and PUTI allow you to store individual elements into an existing array or list, using
a syntax similar to that of GET and GETI (section 5.2).

For example,

{A B C} 2 'D PUT = {A D C}

Here the target list itself is on the stack. The target can also be identified by name:

'MAT" { 3 3 } 25 PUTI = 'MAT' { 3 4 }

stores the number 25 in the 3-3 element of a matrix stored in the variable MAT, and
leaves the name and the incremented index (here assumed to indicate the 3-4 element)
on the stack.

5.4 Purging Variables

In section 4.5.2, we discussed the differences between an “empty” stack in the HP-28,
and a “clear” stack in the HP-41. Similar considerations apply to HP-28 variables com-
pared with HP-41 storage registers.

In the HP-41, when you reserve memory for a certain number of storage registers using
the SIZE command, the registers are “created” each with the initial value zero. This
choice of a default value is often convenient, such as for cases where you wish to use a
register as a counter or an accumulator that starts at zero.

An HP-28 variable, on the other hand, doesn’t exist until you create it with STO. Furth-
ermore, when you purge a variable,it is entirely removed from memory. If you try to
execute ‘'name’ RCL, when no variable with that name exists, you get a Undefined
Name error message, the analog of the HP-41 NONEXISTENT message. Because vari-
ables can hold any objects, not just numbers, there is no such thing as a “clear”
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variable--no empty version of a purged variable left in USER memory. You can cer-
tainly store zero in a variable if you want to use it as a counter or accumulator, but in
general, the real number zero is no better choice as a default value than any number of

other objects--an empty list, a null matrix, etc.

The ordinary use of PURGE follows the syntax ‘name’ PURGE. This sequence removes
the variable called name from USER memory. If the USER menu is active, with the
name label showing in the display, you will see that label disappear, and the other labels
move over to fill in the vacant position. As an added convenience, you can execute
PURGE with a list of names: { name, name, .. name, } PURGE simultaneously
removes the variables name, name,, ..., name,. The easiest way to purge several vari-
ables is to press [USER][e ][], then press the menu key for each variable you wish to

purge, followed by H . The turns off alpha mode so that [l
executes PURGE rather than just adding the command name to the command

line.

5.5 Grouping Variables

An advantage of numbering rather than naming variables is that a number scheme
makes it easy to index the variables and to “group” variables into logical blocks. For

example, the HP-41 Extended Functions module (built into the HP-41CX) includes two
commands for manipulating a blocks of registers: REGMOVE copies the contents of

one block of registers into another; REGSWAP exchanges the contents of two blocks.
There are two general purposes for these commands:

1. To save the contents of a block of registers in a second block, so that a new pro-
gram can use the original registers without destroying the first program’s data.

2. To allow you to write programs that access data in a specific block of registers,
then use those programs with different sets of data stored elsewhere in the calcu-
lator without having to rewrite the programs. For example, a program might use
data in registers 0 through 9. You could have alternate data in registers 10 - 19,
20 - 29, 30 - 39, etc. Prior to each execution of the program, you would use
REGSWAP or REGMOVE to move one of the alternate data blocks into registers

0-9.

There are no direct equivalents for these commands in the HP-28. The flexibility of
HP-28 variables allows you to achieve the above two purposes by using different

approaches:

1. By making variable names unique to each program, there is never any reason for
conflict between programs trying to use the same variables (unless the programs
are deliberately exchanging data via variables). Better yet, you can use local
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variables for temporary storage that is guaranteed to be unique to a program,
without worrying at all about two programs using the same variable names.

2. All of the data used by a program can be combined in a list (or in an array if all
of the data are real or complex numbers). By writing the program to use a list as
an input, you can easily supply alternate data sets by choosing different lists, each
of which can be stored in an appropriately named variable.

Lists and arrays provide all of the advantages of numbered registers for purposes of
data indexing, and have the additional advantage that the data they contain can easily be
manipulated as a unit. These ideas are explored in more detail in Chapter 12.

5.6 The USER Menu

The USER menu is a visible and operational listing of the contents of USER memory--
the current collection of global variables. When you create a variable, its name
automatically appears in the USER menu; when you purge a variable, its name disap-
pears from the menu. Pressing a USER menu key automatically executes the name that
appears in the menu label above the key.

New variable names are always added to the beginning of the menu, the left end of the
first menu level that appears when you press . In this sense, the USER menu is a
“last in, first out” arrangement almost like the stack (except that executing a name

doesn’t drop it from the menu). “First out” also means “found first.” When a name is
executed, the HP-28 searches USER memory for the corresponding variable, starting
with the newest variable and continuing in the reverse order of creation.

You can reorder the variables at any time by using ORDER. ORDER takes a list of
names, and moves the variables in USER memory so that the order of names in the
USER menu matches the order in the list. Variables not named in the list remain in
their current order, following those variables that were named. If you have a lot of vari-
ables in USER memory, you can obtain a slight improvement in a program’s execution
speed by using ORDER to move the variables named in the program to the start of the
USER menu.

5.7 HP-28S Directories

The simple linear structure of the USER menu becomes inadequate once you exceed
more than a few levels (groups of six) of variables. The HP-28S, which has enough
memory to hold dozens or even hundreds of variables, addresses this problem via direc-
tories.

-74-



Variables 5.7

A directory is a special type of variable that contains, in effect, a complete independent
USER memory consisting of a sequence of additional variables, possibly including more
directories. When a directory name is executed, the contents of that variable become
the active USER menu. The following illustrates this meaning by way of example.

Imagine that you have performed a memory reset, so that there are no global variables.
If you press , all you see is six blank menu key labels. Create three variables A,
B, and C using STO, so that the labels C, B, and A appear in the USER menu. Now
execute '‘DIR’ CRDIR--a new label DIR appears. If you press EDIRE , the menu key
labels become blank again. Pressing EDIRE switches the USER menu to the new DIR

directory, which is empty since you have not yet created any variables there. When you
do create more variables, say D, E, and F, these appear in the menu.

 

Meanwhile, what’s become of A, B, and C? They still exist--in fact, if you press [A]
, for example, the value of A is returned as usual. Now press Il

EHOMES= ; the labels C, B, A, and DIR reappear. If you press [D] , the
name 'D’ ends up on the stack, just as if the variable D didn’t exist. All of this behavior

is determined by the HP-28S rules governing name resolution, described below.

 

HOME: DIR C B A

     
 

 
 

DIR: F E D

    
 

Figure 5.1. Example USER Memory

Figure 5.1 is a schematic representation of our hypothetical USER memory. The top
level, containing DIR, C, B, and A, is called the home directory. This directory always
exists--it’s the “base” USER memory. The command HOME acts like a built-in direc-
tory name: when you execute HOME, the home directory becomes active, or current.
The current directory is the directory

e that is shown in the USER menu; and

e is where most commands that deal with variables seek those variables.
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The next level down in the picture is called the DIR directory. Executing DIR makes
that the current directory. DIR is said to be a subdirectory of the home directory; simi-
larly the home directory is called the parent directory of DIR. DIR itself can contain
additional directories, and so on indefinitely. Any directory can be a parent or a sub-
directory (the home directory can only be a parent), depending on the vantage point.

The purpose of directories is threefold:

e To let you organize the USER menu such that variables of common purpose appear
together;

e To permit the creation of utility variables that are used by programs in one or more

directories, but are not visible in the directory where the keyboard application vari-
ables are collected;

e To provide a measure of variable protection, by giving you a place to put programs
and data that you can use while reducing the chance that you might accidentally
change or replace them.

These purposes are achieved by a) the hierarchical structure of the directories as they
are organized into parents and subdirectories, and b) the rules of name resolution used
by the HP-28S. Name resolution is the method by which the HP-28S finds a variable
when its name is executed or used as a command argument.

You can understand the basic rules of name resolution by considering the two most fun-
damental name operations: execution and STO. Name execution is the means by which
you “use” (execute) the contents of a variable by specifying its name (unquoted, or

quoted with EVAL or “NUM). The idea of a “utility” variable implies that you should
be able to use it even when it’s not in the current directory. Therefore, when a name is
executed, the HP-28S searches not only the current directory, but also its parent direc-
tories all the way up to the home directory, until it finds a variable with the right name.

STO, on the other hand, overwrites (or creates) a variable. In the HP-28S, you are
prevented from storing into a variable that you can not “see”--that is, a variable that is
not in the current directory and so is not visible in the USER menu. Instead of search-
ing up through parent directories, STO looks only in the current directory. If it can’t
find the named variable there, it creates a new variable, regardless of whether there is

one or more identically named variables in other directories.

These principles of variable creation and execution suggest that you use a USER
memory organization like that shown in figure 5.2. The home directory in this scheme
contains
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e “Application” variables, which when executed by name activate third-level subdirec-
tories containing groups of related programs.

e Subdirectories containing application programs plus utility programs specific to the
application.

e General purpose variables that may be used (executed) by any program in memory,
or used in the command line no matter what directory is current.

 

Home:| MATH APPL1 APPL2 MDIR UTIL1 UTIL2

        
 

 
 

Math utilities: APPL UMAT1 UMAT2

     
 

 
 

Math programs: POLY ORD3 TRI

     
 

Figure 52. Example USER Memory Organization

The example home directory “application” variable in the figure is MATH. Pressing
EMATHE in the USER menu activates the third-level subdirectory APPL. This subdirec-
tory contains the keyboard-useful application programs, POLY, ORD3, TRI,etc., that are
associated with the EMATHE key. These programs use subroutines named UMATI,
UMAT2, etc., which are stored in the directory MDIR that is the parent directory for
APPL. The variable MATH contains the program << MDIR APPL >> which first makes
MDIR the current directory, then APPL. When you execute MATH, therefore, you
bypass the math utility subdirectory MDIR containing the programs and activate the
APPL subdirectory.

The programs in the APPL directory are those you are likely to use from the keyboard.
These programs can use any of the utility programs in MDIR or in the home directory.
But while the APPL directory is current, the USER menu contains only keyboard-useful
programs--you’re not distracted by seeing utility programs in the menu. Also, while
APPL is current, you don’t have to worry about unwittingly overwriting one of the utility

programs.
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5.7.1 Name Resolution in Detail
We have looked so far at two types of name resolution, typified by execution and STO.
The great majority of HP-28S operations that deal directly or indirectly with variables
follow the STO model, even if they only “use” the contents of variables without altering
them. For these operations, name resolution is very simple: only the current directory is
searched. The execution model of resolution--searching parent directories as well--is
very much the exception.

There are a number of operations that you might consider as variations of STO, in that
they create or alter the contents of global variables. Without exception, all of these
operations affect only variables found in the current directory. This is true for opera-
tions that specify a variable by means of an explicit name argument, like STO, PUT or
CON; and for operations that affect certain specially named variables without having the
names on the stack, such as STEQ (variable EQ) or SCLY (PPAR). The Solver and
ROOQOTare included in this general category, both when you store a value in a variable
by means of the Solver menu, and when the root-finder computes and stores a new
value for the unknown variable. Table 5.1 is a list of all such operations.

Table 5.1.
Operations That Create or Alter Global Variables

e Variables named on the stack: CON, IDN, PURGE, PUT, PUTI, RDM, ROOT,

SCONJ, SINV, SNEG, STO, STO* STO+, STO-, STO/, TRN, VISIT. Also
STORE menu keys.

e Variable EQ: STEQ.

e Variable PPAR: *H, *W, AXES, CENTR, DRAW, DRAX, DRWX, INDEP, PMAX,
PMIN, PIXEL, SCLZ.

e Variable ZDAT: CLZ, 2+, 2-.

e Variable ZPAR: COLX, CORR, COV, LR, PREDV.

Most, but not all, commands that use without altering the contents of a variable also
restrict their search for the specified variable to the current directory, as listed in Table
52

Table 5.2
Operations That Use the Contents of Global Variables in the Current Directory

e Variables named on the stack: GET, GETI.

e Variable EQ: RCEQ.

e Variable PPAR: DRAW, DRAX, DRWZ, PIXEL.
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e Variable ZDAT: CORR, COV, DRWZ, MEAN, MAXZ, MINZ, NX, RCLE, SCLZ,
SDEV, TOT, VAR, 2+, 2 -.

e Variable ZPAR: CORR, COV, DRWZ, PREDV, SCLZ.

COV, CORR, DRAW, DRAX, DRWZ, PIXEL, and SCLZ appear in both of the preceding
tables, since although they nominally don’t affect the contents of PPAR, ZDAT, or
2PAR, they will create default versions of those variables in the current directory if the
variables don’t already exist.

There are three exceptions to the general rule of searching only the current directory
for a named variable: 1) the execution of a name, either directly in a procedure or the
command line, or by EVAL or ~NUM; 2) RCL; and 3) PRVAR. We will focus on execu-
tion, but keep in mind that the following discussion applies to RCL and PRVAR.

When a name is executed, the HP-28 attempts to find the corresponding variable in the
current directory. However, if a variable with the specified name is not in the current
directory, the search continues up into the parent directory. If there’s no luck there, the
parent of the parent is searched, and so on up to the home directory if necessary. As

soon as the first occurrence of a variable with the specified name is found, the name is
said to be resolved, and the object stored in the variable is executed. If no variable of
the correct name is found anywhere in the search, the name itself is returned to the

stack.

Viewed in the reverse order of a name resolution search, a sequence of directories start-
ing with the home directory and continuing with a series of subdirectories leading to a
particular directory,is called a path. A path is effectively a prescription for making the
last directory in the series the current directory. The PATH command returns the path
to the current directory, called the current path, as a list of directory names. If you exe-
cute each name in the PATH list in turn, you’ll end up reactivating the directory that was
current when PATH was executed. (See the program DOPATH in section 5.7.3.)

The rules of global name resolution can be summarized concisely in terms of the path
concept:

Global name execution (EVAL and -NUM), RCL, and PRVAR, search

the current path upwards for a named variable. All other global name
operations search only the current directory.

It is important to note that a path search for a name never goes "sideways.” When a
directory is searched, all of the variables explicitly named in that directory are checked,
from left to right in the menu. However, the variables contained in subdirectories are
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not checked. This makes it possible for more than one variable to have a particular
name; only the first such variable in the current path will be found. If a variable is in a
directory not in the current path, it will not be found.

5.7.2 Directories as Variables
[The material in this section is quite detailed; you may consider it as reference informa-
tion, and skip this section at a first reading.]

At the beginning of section 5.7, we referred to a directory as a special type of variable.
The HP-28S owner’s manuals avoid any suggestion that a directory is a variable--an
object and a name stored together. But directory names are just global names, just like
those of ordinary variable names, and directory names and other variable names are
mixed indistinguishably in the USER menu. In this sense, you can think of a directory
as a variable containing a new object type. This type of object is essentially an ordered
collection of other variables. When you execute it, its execution action is to make those
variables the current directory.

Most commands that work with named variables do not work with directories. The
situation is analogous to that of commands like CON or STO +, which fail if their argu-
ment specifies a variable that contains an inappropriate type of object (e.g. other than
an array for CON). It is the current contents of the named variable that determine
whether such commands will succeed, not the name. Two reasons dictate that most
HP-28S variable commands must fail with directories:

1. The command doesn’t make sense. Mathematical commands obviously can not
act on directories. This eliminates commands like CON, STO +, and ROOT.

2. Memory protection. A directory may contain a significant number of objects that
you wouldn’t want to destroy accidentally. Thus, commands like STO that might
overwrite the directory contents are not allowed to apply to directories.

Attempting to apply an inappropriate operation to a directory will return one of several
error messages:

1. For operations that otherwise work with variables containing any type of object,
the Directory Not Allowed error is returned: ZPPARZ , PRVAR, RCEQ, RCL,
RCLY, ROOT, STEQ, STO (and STORE menu keys, which execute STO), STOZ,
and VISIT. CRDIR itself returns this error if the specified directory already exists.

2. If you create a directory named with one of the reserved names, any command
that works with the reserved name will fail:

e Invalid PPAR (i.e., PPAR is a directory): *H, *W, AXES, CENTR, DRAW,
DRAX, DRWZ, INDEP, PMAX, PMIN, PIXEL.
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e Invalid 2DAT (i.e., ZDAT is a directory): CORR, COV, DRWZ, LR, MEAN,
MAXZ, MINZ, NZ, SCLY, SDEV, TOT, VAR, =+, Z-.

e Invalid 2ZPAR (i.e.,, 2PAR is a directory): COLZ, CORR, COV, DRWZ, LR,
PREDV, SCLX.

e Certain commands that work with any name require specific object types to be
stored in the target variable. These will return Bad Argument Type. CON,
GET, GETI, IDN, PUT, PUTI, RDM, SCONJ, SINV, SNEG, STO=*, STO+,
STO-, STO/, TRN.

Notice that even a command as innocuous as RCL does not work with a directory.
There’s no fundamental reason for this--except that the HP-28S is not able to display
the contents of a directory on the stack. The substitute for RCL in this context is VARS,
which returns a list containing the names of all of the variables in the current directory,
in the same order as they appear in the USER menu. Thus for example, if you want to
print the contents of all of the variables in a directory, you just make that directory
current by executing its name, then execute VARS PRVAR.

The only operations that do work with directory names are the following:

Execution

PURGE

CLUSR

ORDER

by name, or by EVAL or -NUM, makes a directory current.

will remove a directory from memory, but only if it is empty. This is a
precaution to prevent accidental erasure of the directory’s contents. You
can purge a non-empty directory by making it current, then using CLUSR,
or PURGE on a list of the variables in the directory, then going back to
the parent directory and purging the empty directory.

When PURGE is applied to a list of names, it proceeds left-to-right
through the list, purging the named variables until it finishes the list or
encounters a non-empty directory. In the latter case, the Non-Empty
Directory error is returned, and the remaining variables named in the list
are not purged.

purges all of the variables in the current directory. You can view CLUSR
as equivalent to VARS PURGE--again, if there is a non-empty subdirec-
tory in the current directory, only those variables that precede the sub-
directory in the USER menu are actually purged, and the Non-Empty
Directory error is returned.

rearranges variables in the current directory so that their order matches
that specified in a list of names. ORDER works perfectly well if one or
more names in the list refer to subdirectories, with the important reserva-
tion that in order to move a subdirectory, there may need to be enough

-81-



5.7

CLZ
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room in memory to make a copy of the entire subdirectory. A copy is
required when any of objects stored in variables anywhere in the subdirec-
tory (including in its subdirectories) have been copied to the stack or the
UNDO stack, the last argument stack, or to a local variable; or when any
of the objects are currently executing procedures.

If ORDER fails (Insufficient Memory) because there is no room in
memory to copy a large subdirectory, your easiest recourse is to perform a
System Halt ( -[A]), then try ORDER again.

purges the ZDAT variable in the current directory. It is equivalent to
'2DAT’ PURGE, and will work if 2DAT happens to be an empty direc-

tory.

The fact that directories are variables can lead to results that may appear surprising but

are not errors. For example, a variable containing a directory can not appear in the
Solver variables menu, nor can it act as the independent plot variable. If a directory
variable is executed during the course of execution of a command that evaluates a user
procedure, the resulting change of directory often leads to unexpected results. If A is a
directory, and you execute ‘A+B’ EVAL, A becomes the current directory, and the con-

tents of B are added to whatever happens to be in level 1 (remember that the expres-
sion is equivalent to the sequence A B +).

5.7.3 USER Memory Utilities
The following programs are utilities for use with HP-28S directories.

CURR

SuBD

upP

DOPATH

FIND

UFIND

returns the name of the current directory.

returns a list of the subdirectories in the current directory.

activates the parent of the current directory.

“executes” a path--activates the directory that was current when the list in
level 1 was returned by PATH.

searches the current directory and all of its subdirectories for a variable speci-
fied by its name, and returns a path list for the directory in which it finds the
variable. An empty list indicates that the variable was not found.

searches all of USER memory for a specified variable, returning a path list for
the directory in which the variable is found. An empty list indicates that the
variable does not exist anywhere in memory. UFIND does not change the
current directory.
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Purge

Clusr

works just like PURGE, except that it will remove a non-empty directory.

5.7

works just like CLUSR, exceptthat it will remove non-empty subdirectories in
the current directory.

 

 

 

 

CURR Return Current Directory Name

| level 1

or 'name’
 

 

<< PATH DUP SIZE GET

>>

 

 

SuBD Find Subdirectories
 
 

| level 1
 

or { names }
 

 

  

< {1} Start an empty list.

31 SF Activate LAST.

VARS Get the list of all variables.

IF DUP2 SAME If the VARSlist is empty...

THEN DROP ...then we’re done.

ELSE ...otherwise, examine the list.

1 Initialize an index.

DO GETI Get the next variable name.

IFERR RCL If RCLfails, this is a directory.

THEN 4 ROLL SWAP + Add the name to the list.

3 ROLLD

ELSE DROP Discard the recalled object.

END

UNTIL 46 FS? Keep going to the end of the VARSlist.

END DROP2 Discard the VARS list and the index.

END

>>  
 

SUBD sets flag 31.

 

 
 

uP Activate the Parent Directory

<< PATH Get the current path.

DUP SIZE 1 - 1 MAX Index of the parent name, or HOME.

GET EVAL Activate the parent.
>>   
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DOPATH

level 1 |

Execute a Path

{path } or

level 1

 

 

<< 1

DO GETI EVAL

UNTIL 46 FS?

END DROP2

>> 

Initialize the list index.

Execute the next name.

Keep going to the end ofthe list.

Discard the list and index.

 
 

level 1 |

name

Purge Any Variable

’
or

level 1

 

 

< 31 SF

IFERR PURGE

THEN DUP EVAL

Clusr

UP PURGE

END

>>  

Activate LAST.

If PURGEfails, this is a non-

empty subdirectory.

So switch to that subdirectory,

empty it,
and then go back and purgeit.

 

Purge sets flag 31.

 

 
 

Clusr Clear Entire Directory

<<

VARS Geta list of variables.

LIST- 1 SWAP Set up a loop.

START Purge Purge each variable.

NEXT

>>  
 

Note that Purge and Clusr call each other recursively (see section 11.12).
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FIND Find a Variable

level 1 | level 1

'name’ o { path }

<< 0 - name dodir Save the name.}

<< Create the dodir subprogram:
<<

CURR 1 DISP Show the directory namet
VARS DUP Get a list of variables in this directory.
IF SIZE If the list is not empty...
THEN 1 ..Initialize an index.
DO GETI Get the next name.
DUP 2 DISP Display the name.}
IF DUP name SAME Is this the one?...
THEN DROP 1 SF ...set flag 1 to indicate success,
PATH 'name’ STO ...and replace the search name with the

path.

ELSE ...Otherwise,

IFERR RCL Is it a directory?
THEN EVAL dodir EVAL |...then search it

upP ..and come back.
ELSE DROP ...otherwise, drop the name.
END

END
UNTIL 1 FS? Keep going until found
OVER 1 == OR or the list is exhausted.

END
DROP2 Discard the list and index

ELSE DROP Empty list, discard it.
END
> End of subprogram.

'dodir’ STO Name the program dodir.
Now start the actual search:

1 CF Set flag 1 when found.
dodir EVAL Make the search.

IF 1 FS? If found...

THEN name
ELSE {} ...Else return empty list.
END
CLMF Restore the normal display.}

>>

> Flag 1 is setif the variable was found,

clear otherwise.   
 

tHere, besides saving the name, we are creating a local variable dodir, into which we will store the program

object to be created next. We create the variable before the program, so that the name dodir will be inter-

preted as a local name in the program, which calls itself.

$These lines are optional. Include them if you want the program to display directory and variable names asit

searches.
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UFIND Universal Find a Variable

level 1 | level 1

name o { path }

<< PATH Get the current path.

SWAP HOME FIND

SWAP DOPATH
>>

Find the variable.

Restore the original current directory.
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The rich command set of the HP-28 allows you to solve many problems merely by
pressing a few keys. However, where the HP-28 really excels is in the ease with which
you can link command sequences together into procedures. This allows you to solve
complex problems by breaking them down into simple pieces. Once the procedure
corresponding to a problem’s solution is developed and stored, you can execute it any
number of times while you vary the input data.

The term programming is conventionally used for the process of recording a sequence of

calculator instructions in such a manner that you can later replay the sequence any
number of times without having to reenter the instructions. Here, we will use the more
general term problem solving to describe the various HP-28 solution strategies, of which
programming--creating program objects--is just one of several.

A problem solution generally consists of three parts:

1. Data input;

2. Data processing and calculations;

3. Results output.

Each of these stages can be simple or complicated. To input data, for example, you can
use a program that just takes one or more objects from the stack that are presumed to
be there when the program is executed. Or, your program can prompt for each
required value by halting with a text display that asks you for a specific input. Similarly,
a program can return its results to the stack, or it can display each result with an identi-
fying text label.

Regardless of the complexity of a calculation, in most calculators the only method of
automating calculations is to create a program, complete with labels and line numbers.
While this restriction has the virtue of simplicity in that there are no alternatives, the
process can be cumbersome for simple procedures, particularly for straightforward
mathematical expression evaluation. The HP-28 provides a series of problem solving
alternatives, ranging from simple expression evaluation to programs with loops,
branches, recursion, etc. Problem solving can be both simpler and more complicated
than in other calculators. In general, it is easier to program any given calculation on the
HP-28; additional complication only arises really when you are dealing with problems
that are not soluble at all on other calculators.

The HP-28 problem solving alternatives sort roughly into four approaches:
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e The Solver;

e User-defined functions;

e Symbolic math;

e Programs.

These are listed roughly in order of increasing complexity; not so much in the complex-
ity of the mathematics involved but rather in the amount of mental effort you need to
translate a real problem into HP-28 terms. The classification is somewhat imprecise
because there’s a great deal of overlap, such as programs that contain user-defined func-
tions; Solver exercises that use programs; even algebraic objects that execute programs.
With all of these options, your challenge is to determine which approach is most
appropriate for a particular problem.

In the remainder of this chapter, we will show which types of problems are suitable for
each general problem solving method. Then in subsequent chapters, we’ll review each
method in detail.

6.1 The Solver

The “Solver,” which is essentially a combination expression-evaluator and root-finder,
provides perhaps the easiest method of problem solving on the HP-28. It is suitable for

any problem that can be reduced to a single equation relating all of the variables in the
problem, and for which a real-valued numerical answer is sufficient. The greatest bene-

fit of the Solver is that you don’t have to solve the equation formally for the unknown--
all you have to do is enter any equation that relates the unknown to the known vari-
ables. Furthermore, you can interchange the roles of known and unknown variables as
you go along, without doing any additional work to restate the problem.

A prototype problem ideal for the solver is the simple “cost-of-travel” equation:

COST = DISTANCE X PPG / MPG,

where PPG stands for “price per gallon,” and MPG stands for “miles-per-gallon.” This
single equation relates all the relevant parameters, and has the virtue of containing only
simple arithmetic operations, so that there is only one possible solution for any choice of
values for any three of the variables. To address this problem with the Solver, all you
have to do is enter the equation in algebraic form as written above, press [SOLV] ESTEQE
to select it as the current equation, then press ZSOLVRE . The calculator presents you
with the Solver menu, which provides a menu key for each of the four variables, that you
can use to store values in any three of the variables and solve for the fourth.
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Contrast this simplicity with the process you have to follow on a calculator like the HP-
41. For each choice of unknown variable, you have to

a. Solve the equation formally (on paper) for the unknown;

Translate the solved equation to RPN logic;

c. Enter the RPN form as a series of program steps, where the variables are
represented by numbered registers;

d. Add input prompting steps to the start of the program, and output labeling to the
end.

If you’re very clever, you can figure out how to combine the four separate programs into
one, where the program figures out from the inputs which variable is to be calculated
and thus which branch of the program to use--in other words, to duplicate what the
HP-28 Solver does for you automatically.

The Solver is described in detail in Chapter 7.

6.2 User-Defined Functions

The subjects of local variables in general and user-defined functions in particular are not

given a great deal of attention in the HP-28 owner’s manuals. Local variables provide a
means of naming stack arguments, and thereby substantially increase the ease of writing
programs. User-defined functions, which are a special case of the use of local variables,
represent a simple yet powerful problem solving tool for:

¢ Evaluating algebraic expressions as functions of one or more arguments;

e Creating new functions for use in algebraic objects.

Creating a user-defined function is only a matter of

1. Naming the stack arguments, by using ~ followed by a sequence of (local) names.

2. Specifying the function in HP-28 algebraic notation, using the local names already
listed.

Consider the trip cost example from the previous section. You can represent a solution
for the trip cost by a function of three variables, e.g. COST(distance, price-per-galion,

miles-per-gallon). COST is defined as follows:

<< - dist ppg mpg 'dist¥ppg/mpg’ > 'COST' STO.

COST is a function that takes three arguments from the stack, and returns the cost
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computed from those arguments according to the formula in the definition. For exam-
ple, 100 .75 35 COST returns the price of a trip of 100 miles, at $.75/gallon, in a car
that gets 35 miles per gallon. COST is not as convenient for keyboard use as the Solver
version, since it doesn’t prompt you for input, and you have to know the correct order
for the arguments. However, it can be used in programs and algebraic objects, and will
accept symbolic arguments as well.

Chapter 8 contains a more detailed look at user-defined functions.

6.3 Symbolic Math

As we will show in section 9.1, algebraic objects are procedures that are internally the
same as programs. So just creating any algebraic object is equivalent to writing a pro-
gram. Its “inputs” are the values stored in the variables named within the algebraic
object; its “output” is the symbolic or numeric result that is returned to the stack. The
beauty of an algebraic object as a program is that you can treat it as a symbolic quan-
tity, to which you can apply additional mathematical operations, obtaining new algebraic

objects--programs--automatically.

The best time to use algebraic objects as programs is when you have already defined a
set of user variables, and wish to make calculations using their values. You can, of

course, use the values directly by evaluating the variables as you go and using RPN com-
mands and functions to combine the values. But if a calculation is defined in algebraic
terms, you’ll do better to enter the appropriate formula as an algebraic object, so that
you can verify its definition before substituting specific values.

For example, to add the values of variables A and B, you can press[A][B][+]. Or you
can type 'A+B’ . The advantage of the latter is that you can see the entire calcu-
lation symbolically before making numerical substitutions. This advantage becomes
more important as the complexity of a calculation increases. You are also relieved of
the necessity for translating the calculation into RPN logic.

The HP-28 approach to symbolic mathematics is described in Chapter 9.

6.4 Programs

If you can’t use any of the simplified problem solving methods outlined so far, your final
option is to write a program. There is a wide range of problems that don’t fit the
requirements for using the previous methods, including many that are mathematically
very simple. For example, all of the previous methods have the common limitation of
being able to return only one result at a time. If you want to automate a process as
trivial as returning the square and the cube of an argument, you must write a program.
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Here are three HP-28 programs that make those calculations:

<< DUP SQ SWAP 3 * >

K-> X < ¥ SQ x 3 ©~ >>>

< - x << 'x"2" EVAL 'x"3' EVAL >>>

The last two versions illustrate that you don’t have to give up the advantages of the
alternate problem solving methods when you create program objects; you just incor-
porate them into your programs. Even the Solver’s root-finding capabilities can be pro-
grammed, via the ROOT command.

The HP-28 is unusual among calculators in that it has no “program mode.” In other
calculators, you create a program by activating a mode where the keystrokes you press
are recorded sequentially as program steps or lines. A consecutive sequence of such
steps constitutes a program. To execute the program, you must leave program mode
and invoke the program by means of a command like RUN or XEQ (execute).

In the HP-28, programming differs from interactive calculating only in that you don’t
execute sequences of objects individually, but instead combine them into procedure
objects--programs or algebraics--for later execution. You treat the procedure objects
the same as any other objects: you enter and identify them by characteristic delimiters
(<< >> or '"’), and you can edit, visit, store, recall, evaluate, and purge them, or just
move the objects around on the stack using standard commands.

Many BASIC language computers share with the HP-28 the property of lacking a spe-
cial program mode. By placing a line number at the beginning of a command line, you

tell the computer to include the program line in the current program. However, that
style of program entry is very context-dependent: you must be sure that the line number
you assign is appropriate. It must be in the proper sequence relative to other lines, and
you must have somehow established that you are adding the line to the right program.
Some computers solve that problem by only holding one program in memory at a time;
others permit multiple programs but you must use various means to select a particular
program for editing.

Other calculator programming also uses more “program-only” concepts, like GTO (Go
To), labels, line numbers, RTN (return), and commands that behave differently when

used in a program than when they are executed from the keyboard. An example of the
latter is the HP-41 command FS? (flag set?). From the keyboard, this command
returns a temporary display of YES or NO; when executed in program, FS? acts as a
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“skip-if-false” operation, where the next program line is executed if the flag is set, and
skipped if it is clear.

These concepts are part of what makes programming a calculator a mysterious art for
many people. When you are solving a problem mentally, or with pencil and paper, you
don’t consider line numbers, GTO’s, program modes, etc. Instead, you think in terms of
a series of operations that you apply to data or symbols, which produces results that
may in turn be the input for additional operations. This translates nicely to key-per-
function interactive use of an RPN calculator; the operations become keystrokes, and
the data is kept in front of you on the stack. “Keystroke programming” on calculators
originated as a process of preserving a series of keystrokes as a program. Unfor-
tunately, as calculators became more powerful, their programming languages required
you more and more to rethink a problem in order to cast it as a program.

The HP-28 is designed to minimize or eliminate the differences between interactive
keystroke operations and programming. It does this in several ways:

e The command line is a program that is executed immediately; a program is a com-

mand line for which execution is deferred (see section 3.11.3).

¢ Anything you can do in program you can do in the command line, including halting,
single stepping, using local variables, branches, loops,etc.

e Commands work the same way in programs as they do from the keyboard.

e Programs contain no constructs that are artificial from the standpoint of the problem
being solved--no line numbers, no labels, no GTO’s. The only things that appear in

a program arc objects and commands relevant to the calculation being performed,
plus certain program structures (conditionals, loops, etc.), that are local to a particu-
lar program.

The absence of GTO’s and the corresponding labels and line numbers is a manifestation
of the HP-28’s insistence on structured programming. Every program is a self-contained
module, with a single “entry” and a single “exit”. A program can, of course, “call”
(execute by name) other programs, but only as subroutines that always return to the
same point in the same program that called them. These rules promote a programming
style whereby you break down a large programming task into smaller programs which
are easily written and understood. As you write each “building block” program, you can
test it independently before it is included in any larger program.

Methods and principles of program object design and application are covered in
Chapters 10 and 11. Chapters 12 and 13 contain many additional program examples.



Problem Solving

6.S Summary

6.4

Table 6.1 summarizes HP-28 problem solving choices, and can act as a guide to select-
ing an appropriate method for a given problem.

Table 6.1. HP-28 Problem Solving Methods

 

Method Type ofProblem Advantages
 

Solver
¢ Numerical evaluation of an alge-

braic expression for many values of

its variables.

¢ Symbolic substitution for variables.

¢ Numerical solution of an algebraic

expression, especially in combination

with DRAW.

¢ “What if”’ problems where the

independent/dependentroles of
variables are interchanged.

¢ Automatic input prompting and

labeling; automatic numerical equa-

tion solving.

o Lets you interchange known and

unknown variables.

 

User-defined Functions
¢ Evaluation of algebraic functions,

with arguments taken from the

stack.

o Creation of new symbolic func-

tions.

e Can be used in RPN or algebraic

calculations.

¢ Does not require “permanent”

user variables.

 

 

  which the other methods are insuffi-

cient:

e Multiple results.

¢ Non-mathematical problems.

¢ Special prompting or labeling.

o Iteration.

¢ Complicated decisions and branch-

ing.  
Symbolic Math ¢ Algebraic calculations using exist- ¢ Symbolic results can be used as

ing user variables. new programs.

¢ Symbolic manipulations. o Calculations can be verified before

they are performed.

Programs All problems, especially those for All calculator resources are avail-

able, including the algebraic evalua-

tion features of the other program-

ming methods.

 
 

6.6 Memory Limitations of the HP-28C

It is important to note that the modest amount of user memory (RAM) included in the
HP-28C places significant limitations on the size and number of objects, especially pro-
grams, that you can store in memory. Although 2 Kbytes (1 Kbyte = 1024 bytes) of
RAM is roughly the same as the main memory in an HP-41CV, and four times as large
as that in the HP-15C, the HP-28C uses memory more rapidly and for more purposes
than either of those calculators. The basic program “unit” in an HP-41 is one byte;
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most program steps require one byte, some two or three, and a few containing alpha
characters use four or more bytes. In the HP-28, the basic unit is 2% bytes (five nib-
bles); all built-in commands in a procedure take this amount of memory each. Thus in
rough terms, the HP-28 consumes memory 2% times as fast as the HP-41 (see section
11.6 for more detail). Furthermore, the HP-41 has no built-in commands that need any
of its program/register memory just to execute, whereas the HP-28 has numerous com-
mands like 8 or EXPAN that may use large amounts of memory and so can fail due to
lack of memory. On the other hand, the built-in capabilities of the HP-28C far exceed
those of the HP-41, so in many cases a complicated HP-41 program reduces to a few
keystrokes or to a short program in the HP-28C.

In any case,if you try to do any extensive program development on the HP-28C, you are
bound to be frustrated by running out of memory frequently. The HP-28C has enough
memory to work most simple problems and to accumulate a few programs, but its
power encourages you to try more and more things, especially those that you can’t do
on another calculator regardless of how much memory it has. The appropriate pro-
grams for the HP-28C are short utilities that you use to enhance its interactive keyboard
operation, not major application programs. You can generally afford to devote about
1200 bytes of memory to USER menu objects, leaving about 500 bytes for working
space. If you reduce the latter much below 500 bytes, you will frequently run out of
memory when editing or executing programs or performing complicated algebra.

6.7 HP-28S Memory

The HP-28S takes advantage of newer electronic memory technology than that of the
HP-28C, to provide 32 Kbytes of RAM instead of the 2 Kbytes of the HP-28C. This
amount of memory is well matched to the capabilities of the calculator; you can store
over 25 Kbytes of USER memory objects and still have several thousand bytes for work-
ing space and temporary objects. By choosing a “permanent” object storage limit of
about 25 Kbytes, you insure that there is generally enough free memory left to always
leave LAST, COMMAND, and UNDO enabled, and to perform even quite complicated
calculations and stack manipulations without running out of memory.



7. The Solver

The “Solver,” the interactive equation-solving system that has become an important
feature on several advanced HP calculators, was first introduced on the HP-18C. The
HP-28C was the second calculator to have this capability. The HP-28 Solver uses inter-

nal calculation processes very similar to those of the HP-18C Solver, although the two
user interfaces are somewhat different. Historically, the Solver is derived from two
sources: the famous “time-value-of-money” (TVM) key system that originated with the
HP-80 calculator and has been a fixture on all subsequent HP financial calculators; and
the SOLVE function that was originated by the HP-34C.

The original SOLVE function, asit still exists in the HP-15C and the HP-41 Advantage
Pac (and as the HP-71B BASIC function FNROOT), is a system designed for the
numerical solution of problems that can be expressed as a single equation containing
one unknown variable. A “solution” to such a problem is the determination of a value
of the unknown variable, called a root, for which the equation is satisfied--the left side
equals the right side. SOLVE starts with two guesses of the unknown value that you
supply to define a region of values of the unknown variable in which to start searching
for a root. It then adjusts the variable’s value iteratively until it finds a value that is a
root. This is a very powerful system, since it relieves you of the need to rearrange or
solve an equation by hand before entering it into the calculator. (On an HP-15C or an
HP-41, you do have to translate the mathematical expression of the problem into RPN
form.)

The TVM system in HP calculators uses a highly refined solving algorithm that is cus-
tomized for the time-value-of-money equation

_(1+0)-N
PV+(1+ip)PMT[1 1:' ] = —-FV(1+i)™N

where

PV is the present value;

FV is the future value;

i is the periodic interest rate;

N  is the number of compounding periods;

PMT is the periodic payment; and

P has the value 1 for “Begin” mode and 0 for “End” mode.
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An important contribution of the TVM system is its keyboard interface, that lets you use
the same key (for N, I, PV, PMT, or FV) to enter a value for a variable or to solve forit

if it is unknown. Pressing any one of the TVM keys following data entry causes a
number to be stored from the X-register into the variable corresponding to the key.
But pressing two consecutive TVM keys activates the solving algorithm, which is applied
to the TVM equation for the variable designated by the second key. This simple inter-
face makes “what if?” analysis of loan and savings amortization very efficient, and has
become a standard in the financial industry.

The HP-18C made an important contribution to the calculator art with its synthesis of

the TVM interface and a general-purpose solve function. In the HP-18C, you can
specify an arbitrary equation in any number of variables. The calculator then creates a
set of labeled menu keys corresponding to the equation variables, with the same sort of

store/solve logic as the TVM system. Again, you can store values by entering each and
pressing a menu key; when you press two consecutive menu keys, the calculator

automatically invokes the root-finder and finds a value of the variable last pressed that
satisfies the equation. Since the HP-18C allows direct entry of equations in algebraic
form, you are spared the work of translating the equation into RPN. The HP-18C also
has an additional innovation: whenever possible, it solves the equation symbolically
rather than using the numerical iterative root-finder. The result returned to the user is
the numerical evaluation of the symbolic solution.

7.1 Basic Solver Operation

The general procedure for using the HP-28 Solveris as follows:

1. Enter the expression or equation representing a problem, and store it in a variable
named EQ. You can use '‘EQ’ STO for this purpose, but the command STEQ (in
the SOLV menu) does this in one step. Typically, you use an algebraic object to
represent the problem, but you can also use an equivalent RPN program. The use
of a specially named global variable to hold the Solver equation saves you from
having to keep the equation on the stack while you perform the Solver operations.
We refer to the object stored in EQ as “the current equation,” even if it is not
actually an algebraic equation object.

2. Press JI[SOLV]ZSOLVRE to activate the Solver menu. This menu contains a menu

key for each independent variable in the equation.

3. Enter values for each of the known variables--the variables for which you already
know the values. Do this by entering a value into level 1, then pressing the
appropriate menu key. If you want to make any variable a “constant,” enclose the
constant value in program delimiters << >> before you store it. Then the vari-
able name will disappear from the menu, and you can’t accidentally change the
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value.

4. Store a guess for the value of the unknown variable, again by entering a value and
pressing the variable’s menu key.

5. Solve for the unknown: press the shift key, then the menu key for the unknown
variable. This starts the root-finder. When the root-finder is finished, it returns
the solved value for the unknown to level 1, and stores that value in the unknown

variable. You will also see a qualifying message in the display that can help you
interpret the result.

6. Verify the result, using the evaluation key ZEXPR=% that appears in the menu for
cases where EQ contains an expression or a program; or the menu keys ELEFT=%

and =RT= = that appear for an equation.

7. Repeat steps 2 through 6 with new values for the variables, and perhaps a new
choice of the unknown variable.

A nice property of the HP-28 Solver is that you can use programs, expressions, and
equations almost interchangeably for solving purposes. In effect, the Solver always
solves f(x) = 0. In the case of an HP-28 algebraic expression object, f (x) is the
expression represented by the object, where x is the name of the unknown variable. For
a program, f (x) is the expression that is equivalent to the (RPN) program. For an
equation object representing g(x) = h (x), the Solver solves f (x) = g(x)-h (x) = 0.

As an example of the basic use of the Solver, consider this problem from the HP-41
Advantage Pac manual (it is also in the HP-15C manual):

» Example. Solve for ¢t in the equation

h = 5000(1-e ~"2")-200¢ = 0.

(This is imagined as the equation of motion of a “ridget,” where h is the height in
meters of the ridget above the ground, and ¢ is the time since it was hurled into the air.
Thus you are to solve for the time at which the ridget strikes the ground.)

m Solution. Start by entering the equation:

"H=5000*(1 - EXP(-T/20)) -200*T’ ESTEQE.

Now activate the Solver menu: press ESOLVRE . The display looks like this on an HP-

28S:
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(On the HP-28C, the menu keys are white characters on black. The appearance of the
Solver menu keys on the HP-28S are changed from the HP-28C to match the menu keys
in a custom store menu--see section 11.9.) Here you see menu keys for the two vari-

ables in the problem, T and H, and the ZLEFT== and ERT=£ keys for evaluation of the
two sides of the equation. For this example, you want H to have the value zero, so
press[0] EHE.

Now you need to enter an initial guess for the solution, to give the Solver some idea of
where to start looking for the root. You can take your chances and enter any number
that seems reasonable, but usually you can do better with a quick analysis. In this case,
you can observe from the equation that

1. There is a solution for # = 0 at ¢ = 0; that solution is of no interest, so you should

choose a positive guess away from zero.

2. If t is large, you can ignore the exponential term, so that the equation approxi-
mates to

5000 - 200t = 0,

which has the solution ¢ = 25.

Since the exponential term is negative, the actual root must be less than 25. (The HP-
41 Advantage manual uses guesses of 5 and 6, which do return the right answer, but
guesses closer to 25 and farther away from 0 would be safer (that is, they are less likely
to lead to the =0 the solution). Try a guess of 20, by entering 20T .

Finally, press llT to start the root-finder. After a few seconds, the Solver returns

the solution 9.28425508759, plus the qualifying message Zero. The message indicates
that the two sides of the equation are equal (difference zero) to 12 decimal places, when

evaluated for this value of T. You can verify the accuracy of the result by pressing
and , both of which return 0, demonstrating that both sides of the equation

have the same value.
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7.2 Interpreting Results

Not all Solver problems work out as nicely as the ridget example. The equation may
have multiple solutions, no solution, discontinuities, infinities, etc. It is important when

you use the Solver that you do not accept the “solution” at face value, but take some
steps to interpret the result to assure yourself that it is a meaningful solution. This is

the purpose of the SEXPR=% , ELEFT=% , and ERT== menu keys, and of the qualifying
message.

The message Zero returned in the ridget example is the most welcome of the possible
qualifying messages. Zero means that the HP-28 succeeded in finding a value of the
unknown variable for which the EQ expression or program exactly evaluates to zero, or,
if EQ contains an equation, both sides have exactly the same value. “Exactly” in this
sense means exact to 12-digit precision, the numerical accuracy of the HP-28. When
you see the Zero message, you know that pressing ZEXPR== or ZLEFT== ZRT== [-] will
return zero.

 

When the Solver returns the qualifying message Sign Reversal, it means that it was
unable to find a value of the unknown that exactly satisfies the current equation. Butit
did find two values of the unknown that differ only in the twelfth digit, for which the
corresponding values of the equation have opposite signs. In principle, this means that
the equation crosses the zero axis somewhere between the two values, and so either
value may be a good approximation of a solution. However, the calculator can’t tell for
sure that there is a solution between the two values. For example, the Solver returns
the value 1.E-499 as the “solution” for the equation '|IFTE(X>0,1,-1)=0’, which has a

discontinuity at X=0. The Sign Reversal message warns you to check the solution.

The most immediate method of testing the result is to use the evaluation keys. In the
case of 'IFTE(X>0,1,-1)’, ELEFT== returns 1, while ERT== returns 0. The disparity
between these two results indicates that this may not be a proper solution. To check
further, you should plot the current equation to get a visual indication ofits behavior.

If you solve the equation 'X"2=2’, you obtain the result 1.41421356237, with the Sign
Reversal message. In this case pressing SLEFT== returns 1.99999999999; SRT= = returns
2.00000000000. The near-equality of these two values indicates that you have a good

solution.

Other possible Solver messages are as follows:

Bad Guess(es) The root-finder can’t get started, because the guess or guesses that you
supplied yield equation values that are not real numbers. For exam-
ple, you will see this message if you solve '\/X=2', and start with a
guess of X=—5 (for which VX is imaginary).
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Constant? At every value of the unknown tried by the root-finder, the equation

returns the same value. The equation is either a constant, or the
guesses are in a region where the equation varies so slowly that the
root-finder can’t make any progress towards finding a root.

Extremum The root-finder has found a local minimum or maximum instead of a

root. See section 7.7.

7.3 Independent, Dependent, and Unknown Solver Variables

Imagine that you are using the Solver with an equation ‘A+B=C+D’. If any of the
four variables takes only numeric values, it is an independent variable, because you can
choose any values for it without regard to the other three variables. You can also
choose any independent variable to be the unknown variable, and solve for its value
rather than assigning it. The unknown variable is considered independent because you
can at any point assign it a value and solve for one of the other variables.

Suppose now that you store the expression '‘B+C+F’ as the value of the variable A.
This changes the role of A to that of a dependent variable--you can no longer set its
value arbitrarily, but must compute it from other variables. By storing an expression in
A, you are saying that the symbol A now is just an abbreviation for the expression.

Of all the variable names that are contained in the current equation, only those that are
independent variables appear in the Solver menu. To see this, key in 'A+B=C+D’, and
press [SOLV] ESTEQ= ESOLVRE . You will see menu keys for A, B, C, and D, assuming

that these variables do not have procedures already stored in them. This indicates that
they are all independent variables. Now enter '‘B+C+F' 'A’ . The A menu key
disappears, and is replaced by an F key after B and C. A is no longer independent,
since it is defined in terms of B, C, and F, so it has been removed from the menu. You
are really trying to solve ‘B+C+F+B=C+D’; the name A now is effectively an abbrevi-
ation for the expression ‘B+C+F’'.

 

If you are working with a current equation with lots of variables, you may notice some
delays in calculator operation while the Solver menu is active. The HP-28 has to
rebuild the menu at every ENTER, because any of the commands you execute may
change one or more of the solver variables or the current equation itself. If the current
equation is complicated, this process can take a noticeable amount of time.

In the context of the mathematical function plotting performed by DRAW, the term
“independent variable” is used to refer to the variable corresponding to the horizontal
axis (Chapter 13). Thatis, the vertical coordinate represents the value of the current
equation as a function of the independent variable. The values of all of the other
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variables in the current equation are held constant during the plot.

When you use DRAW in conjunction with the Solver, you should use INDEP (section
13.13) to select the Solver unknown variable as the independent plot variable
corresponding to the horizontal coordinate. Then the plot will represent the value of
the current equation as a function of the unknown. In particular, the roots of an expres-
sion are shown by the intersections of the curve and the horizontal zero axis. For an
equation, DRAW plots two curves, which intersect at the equation’s roots.

7.4 First Guesses

You may find it disappointing that a system as sophisticated as the Solver requires you
to supply a “first guess” of the answer in order to get the root-finder off to a good start
and insure that it returns the “right” answer. After all, the HP TVM system, which is a
specialized solver, doesn’t require a first guess, yet it always returns the right result.

The problem is that generally equations can have more than one solution (or no solu-
tion at all). For example, x> +x— 12 = 0 has solutions at x = 3 and x = - 4; the equa-
tion cos(sinx) = y has infinitely many solutions for x. Furthermore:

e It is not practical for the calculator to attempt to determine how many solutions a

particular equation has.

e Of all the possible solutions to an equation, there is no way for the calculator to
know which one you want, based only on the equation itself.

The first point arises from the fact that the calculator can find solutions only by search-
ing for them. Roots may occur anywhere between plus and minus infinity. To cover
this range, of course, would require an infinite number of steps--or at least a very large
number for the finite range of the calculator (from - 10°® to 10°® in steps of 10~4?).
This is obviously not practical. On the other hand, if the Solver took relatively few steps
to cover the real number domain, it could easily skip right over a region containing a
root, and never find it. In short, an automatic solver can never know when it’s finished

finding roots, no matter how many it finds. The only reasonable thing for it to do is
search until it finds one root, then quit.

The second point is a statement that a choice among multiple roots of an equation can-
not be represented within the equation itself--it has to come from external information,
often from some physical situation. For example, if the TVM equation somehow gave a
negative solution for the interest rate, you could reject that solution as meaningless. But
the information that the equation is only supposed to be valid for positive interest is not
contained in the equation itself. As another example, consider the equation
(x=2)(x—3) = 0, which has roots at x =2 and x =3. Which root should the Solver find?

-101-



7.4 The Solver

These considerations lead to the requirement that you must specify an initial guess for
the Solver. Your guess serves to give the Solver an idea of where to start looking, and
to guide the Solver to a particular root in cases of multiple roots.

7.5 How Many Guesses?

The HP-28 root-finder works by trying to find a region of values of the unknown vari-

able in which the value of the current equation changes signs. That is, at the two
boundaries of the region, evaluating the equation gives values with opposite signs. (The
“sign” of an equation in this sense is the sign of the difference of the left and right
sides.) Then it narrows the region until it contains just one point at which the equation
is exactly satisfied (Zero message), or failing that, two neighboring points where the
equation has opposite signs (Sign Reversal). You will obtain the best results from the
Solver by specifying a good initial search region, by means of the initial guess.

The HP-28 gives you the option of making single, double, or triple initial guesses for the
Solver. A single guess is a number, a double guess is a list of two numbers, and a triple
guess is a list of three numbers. Any of the numbers can be complex--only the real
parts are used (this is a convenience provided to let you use the coordinates of points
digitized from plots, which are returned as complex number objects). The best choice is
usually the double guess; it is more reliable than a single guess, and the extra certainty
provided by the triple guess is seldom necessary. A good double guess contains two
values of the independent variable that

a. define a region in which the equation is well-behaved (no discontinuities, non-real
values, or infinities) and which contains the root you want, and only that root; and

b. yield values of the current equation with opposite signs.

With such a guess, the Solver will always home in quickly on the correct root.

It is often sufficient to supply only a single guess that is closer to your desired root than
to any other root or extremum. The Solver takes your single guess and makes its own
second guess by adding a small amount. Unless there actually is a root between the two
guesses, the search starts to look outside of the initial region. Then, it is a matter of
chance whether it finds the root you want, or some other root or extremum first. It’s
never guaranteed that the Solver will find a particular root from a single guess, unless
the equation has only one root (and no extrema). However, a single guess usually suf-
fices in cases where you are using the Solver repeatedly on the same equation, where
each time you vary one or more of the independent variables by small amounts. The
last solved value of the unknown variable is likely to be close enough to the new value
to be a good single first guess. Since that value is already stored in the unknown vari-
able, it will be used as the first guess unless you explicitly replace it with another guess.
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When you interrupt the Solver by pressing , it returns a list of three numbers. This
list is intended for use as a new triple guess, in case you want to restart the root-finder.
(Store the list in the unknown variable, then solve for the unknown.) You can also sup-
ply your own the triple guess as the fastest way to make the Solver find a particular
root. Choose the first number in the triple guess list as your best estimate for the root,
and choose the second and third numbers to define the search region as in the double
guess case.

7.5.1 Examples Using x(x-2)(x +2) = 0
To illustrate the effect of different guesses, we will use various types of guesses in solv-
ing the equation x (x—2)(x + 2) = 0 repeatedly. This cubic equation obviously (see the

plot in section 7.6.1) has roots at x = =2, x = +2, and x = 0, so you know what to
expect from the Solver. To get an idea of how quickly the Solver finds a root in each
case, we will count the number of iterations the root-finder makes, by recording each
execution of the current equation. This is achieved by using this program as the current
equation:

< '(X-2)*X+2)*X' 1 'N’ STO+ >

Each time the program is executed, the value of N is incremented by 1, so the difference
in N before and after solving is the number of root-finder iterations. N will appear in
the Solver menu, but that has no effect on the root search. Here are the results of vari-

ous trials:

Initial Guess Result Iterations Remarks

-10 -2 17 Found the most negative root.

+10 +2 17 Found the most positive root.

0.9 0 11 Found the root closest to the guess.

1.1 0 13 Did not find the root closest to the guess.

{11 10} 2 14 Found the root between the two guesses.
Feweriterations than with the single
guess 10.
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{-9 3} -2 9 Did not find the root between the two
guesses--the equation has the same sign
at both guesses.

{19 11 10} 2 8 Found the root between the two guesses;
faster than the {1.1 10} case because of
the additional “best guess.”

7.5.2 Solver Guess Summary
Table 7.1 summarizes the meaning and application of the single, double, and triple guess
options for the Solver.

Table 7.1. Solver Guesses

 

Type of Guess Meaning When to Use

Single One value close to a root. To solve equations with only

one root; to re-solve after
adjusting the values of the
independent variables.

 

 

 

Double Two values on opposite sides To guarantee that the root

of a root, where the values of found will be the one between
EQ have opposite signs. the two guesses, for equations

with multiple roots and/or

extrema.

Triple First guess in the list is a best To resume an interrupted
guess of the root; the 2nd and root-search. Also is faster in
3rd surround the root as in general than the 2-guess case.    the 2-guess case.
 

7.6 Obtaining Guesses

So far we have discussed the need for guesses and how many guesses to supply the
Solver. This still leaves the problem of how to find good values to use as guesses.
There are three general approaches you can use:

e Use the default guess.

e Use mathematical approximation.

e Use guesses obtained from a plot of the current equation.
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Of these three methods, we recommend the last, sinceit is the most reliable.

If you don’t explicitly store a guess in the unknown variable before solving, the Solver

uses a default value to start the root-finder iteration. The default value is simply the
current number stored in the unknown variable, or the number zero if the unknown
variable has no current value. When you use the default guess, you are trusting that the
Solver will happen to find the correct root. This will certainly be the case if the equa-

tion has only one solution, and no extrema or other properties that might prevent the
root-finder from converging on that value. If the current value of the unknown happens
to be sufficiently close to a root, it is likely but not certain that the Solver will return
that root, as we discussed in section 7.5.

Using mathematical approximation to obtain a guess consists of studying the equation
and trying to estimate the root from the mathematics of the equation. We did this in
the problem of the ridget flinger in section 7.1. For another example, consider solving
cosx = x. For small |x|, cosx = 1-%x2. Substituting this approximation in the equa-
tion, you obtain the quadratic equation 2-x? = 2x, which has the solutions
x = +V3-1. The choice of the negative root gives a value of x too large for the
approximation to be valid, leaving the positive root x = V3 -1 =.732. With this value
as a first guess for X for a current equation '‘COS(X)=X', the Solver returns the result
0.7391 for X, which is quite close to the guess. The approximation method evidently
can provide very good first guesses, but it does require some mathematical skill and
intuition.

In the preferred method of obtaining guesses, you plot the current equation, and see
where the roots are in the picture. You can use a plot to obtain single, double, or triple
guesses and ensure that the Solver finds the root you want. This application of plotting
is an important reason for the existence of the plotting feature in the HP-28.

The key point to remember when you plot an expression is that the roots of the expres-
sion are the values of the independent (abscissa) variable for which the plotted curve
intersects the horizontal axis. Thus you can literally see the roots in the plot (assuming
that the drawn horizontal axis passes through the origin, which is the usual case). For
an equation, the HP-28 plots the left and right sides of the equation independently. The
roots of the equation are the independent variable values for which the two sides have
the same value. So the roots of equations appear as the intersections of the two curves.

7.6.1 Single Guesses
To use a plot to obtain first guesses, all you have to do is digitize points on the plot of
the current equation which are near the curve intersection corresponding to the particu-
lar root that you want. For this purpose, you use the DRAW cursor and the [INS] key.
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To obtain a single guess, move the cursor to the desired intersection, and press .
Then press to return to the stack display. You will see the coordinates of the digi-

tized point in level 1 as a complex number object. You can use this number directly as
a first guess, since the Solver is designed to use only the first number (real part) in a
complex number guess.

To complete the solving process, press =SOLVRE to activate the Solver menu
(remember that DRAW and the Solver use the same current equation in EQ). Store the
complex number from level 1 into the unknown variable by pressing the corresponding
menu key. Then press the shifted menu key to compute the 12-digit root.

As an example, consider again the expression x (x — 2)(x +2) from section 7.5.1. To
help you understand its properties, plot the expression.

1. Enter 'X#*(X-2)*(X+2)' [M[PLOT|SSTEQGE.

2. Reset the default plot parameters: [NEXT][*]ZPPARZ= [l [PURGE] .

3. Make the plot: Il[PREV]ZDRAWE .

 

 

 

   
4. To get a better picture, try doubling the vertical range (see section 13.4.2.3):

[ONI[NEXT] 2 Z*HE= Il[PREVIZDRAWE .
 

 

1[\ ;

From the plot you can see that the expression has roots at x=2, x= -2, and x=0, plus

a local maximum at x=~ -1 and a local minimum at x=1. To get a more precise value
for the root near 2 (of course, you can see from the equation that the root is exactly
x =2, but usually roots aren’t so obvious), move the cursor over to the rightmost inter-
section and press [INS], then [ON] . You should see the complex number (2,0) in level 1.
Now solve for x:
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SSOLVREEXEG = 2.

The Zero message indicates that the expression evaluates to zero at X = 2.

7.6.2 Double Guesses
The procedure for obtaining a double guess is a simple extension ofthat for digitizing a
single guess. That is, you digitize two points, one just on each side of the intersection
representing the root. Then when you exit the plot, combine the two resulting complex
numbers into a list by pressing 2 [ll[LIST]Z=LISTZ . Next, as in the case of the single first
guess, activate the Solver menu, store the list as the guess, and solve for the root.

Returning to the previous example,

1. Press [PLOT|EDRAWEto restore the plot.

2. Use [J] to move the cursor to a point two dots to the left of the intersection at
X=2, and press[INS] .

3. Use[>]to move the cursor two dots to the right of the intersection, and press [INS]
again.

4. Press to clear the plot. You should see the numbers (1.8,0) and (2.2,0) on the
stack (or values close to these).

5. Enter 2 [l[LIST]Z=LISTE to combine the numbers into the list {(1.8,0) (2.2,0)}.

6. Solve:

 

7.6.3 Triple Guesses
To obtain a triple guess from a plot:

1. Move the cursor to the root intersection, and press[INS] .

Move the cursor just to the left of the root, and press [INS] .

Press to exit the plot, then 3 [l [LIST]Z-LIST= . 

2

3. Move the cursor just to the right of the root, and press [INS] .

4

5 Activate the Solver menu, store the guess, and solve for the unknown.
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7.7 Finding Extrema

Although the HP-28 Solver is designed for finding roots of expressions, you can also use
it to find extrema--local maxima and minima. In the process of searching for a point
where an expression has the value zero, the Solver continually works to minimize the
absolute value of the expression. To find a root, it keeps going until that absolute value
reaches zero. But it can get “stuck” in a region where there is a minimum of the abso-
lute value that is greater than zero. No matter whether the search proceeds to the left
or to the right of the minimum, the absolute value of the expression increases, so the
Solver quits and returns the message Extremum.

Consider, for example, the expression '(X—-2)*(X+2)*X+4'. To understand its proper-
ties, make a plot:

'PPAR’ PURGE 5 #H '(X-2)#(X+2)#X+4’ STEQ DRAW

 

  
 

If you give an initial guess of 1 for X, the Solver returns the result 1.1547, which is the

X-coordinate of the local minimum. Notice, however, that if the initial guess is —1, the
same result is returned; for an initial guess of —2, the root near —2.38 is found. The
Solver won’t find the local maximum near X= -1, because it is not a minimum of abso-
lute value.

You can find the coordinates of the local maximum in this case by the simple expedient
of subtracting a number from the expression large enough to move the plotted curve
down so that the maximum point is below the horizontal axis. To determine how much
to subtract, you can digitize the coordinates of a point just above the maximum, then
subtract the resulting vertical coordinate from the plotted expression.

To apply this technique to the current example, after executing DRAW do the following:

1. Press l[A] to move the cursor to the top of the screen, then press [INS] to record

the coordinates.

2. Press to clear the plot. You should see the complex number (0,8). Execute
IM to extract the vertical coordinate (imaginary part) from the complex number.
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3. Subtract the coordinate value from the current equation: ERCEQG: H =
ESTEQS

4. Execute DRAW again.

Notice that the maximum is now below the axis.

5. Solve:

ESOLVRE -1 2XE WX 1= -1.1547.

The result is the X-coordinate of the maximum. To compute the vertical coordinate,
execute the original expression using this value of X.

To summarize the process of finding extrema:

1. If the extremum is a local maximum, subtract an amount from the expression suf-
ficient to move the maximum below the horizontal axis. If the extremum is a local
minimum, add an amount to the expression sufficient to move the minimum above
the horizontal axis.

2. Supply a first guess near the extremum, then solve for the unknown variable.

To obtain the value of the expression at the extremum, restore the original expres-
sion to EQ and press SEXPR=Z .

7.7.1 Using the Derivative
There is another, more clegant way to find extrema in addition to the curve displace-
ment method described above. Extrema are points at which the derivative of a function
is zero--that is, the extrema of f (x) are the roots of df /dx =0. Therefore, to find the
extrema of an expression, you can use the d function to differentiate the expression,
store the result as the current equation, and use DRAW and the Solver to find the roots.
The roots of the derivative have the same abscissa values as the extrema of the original
expression. Note that this method will also find inflection points, which are points at
which the first and second derivatives are zero (at maxima, the second derivative is
negative; at minimait is positive).

To try this process, return again to the example expression x(x—2)(x +2). Start by
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plotting the function and its derivative:

1. Purge X if it exists: ‘X’ [ [PURGE] .

2. Enter the expression and differentiate:

‘X*(X-2)*(X+2)’ 'X’ Md/dx

7 X*¥(X-2)¥(X+2)' '(X-2+X)*(X+2)+X*(X-2)'.

3. Create the “equation” df /dx = f (x):

[ENTER] I [STACK]EROT==][ENTER]
 

= '(X-2+X)*(X+2) +X*(X-2) =X*(X-2) *(X+2)’

4. Make this the current equation: [lI[PLOT]ZSTEQGE .

5. Reset the plot parameters: [NEXT][* ]JEPPARE ll[PURGE] 5 Z*HZ.

6. Make the plot: [lI[PREV]ZDRAWE .

 
 

 

 

 

 

 
 

The parabola is the graph of the derivative. Note that its roots are at the same X values

as the extrema of the cubic curve. To obtain precise values for the roots of the deriva-
tive:

1. Clear the plot: [ON].

2. Store the derivative expression in EQ: [SOLV]ZSTEQZ SSOLVRE .
 

3. Solve for the negative root (maximum of the original expression):

-15Z lIEE o= -1.1547

4. Solve for the positive root (minimum):

1 BEX: = 1.1547.
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7.8 Evaluating Rather than Solving

Although the Solveris designed for the applicationof a numerical root-finder to expres-
sions and equations, the Solver menu is convenient also for problems where no “solv-
ing” is necessary. For example, for an equation of the form ‘A=B+C+D’, you might
want simply to obtain values of A for various inputs B, C, and D. If you store this equa-

tion in EQ, you can use the Solver menu keysEB =,C =, andD as usual to store

the inputs. However, using llZA to solve for A is unnecessarily slow.

The Solver menu always includes either the menu key EEXPR=% (when EQ contains an

expression or program) or keys SLEFT=% and ERT== (when EQ contains an equation).
In addition to their uses for verifying solutions, you can use these keys to evaluate the

current equation without solving. In the current example, after storing values of B, C,
and D, you press ZRT== to return the computed value of A. (You don’t press ELEFT=%
even though A is on the left side of the equation, because that returns the current value
of A, not the computed value of B+C+D as returned by ERT== . Note, however, that
SELEFT==, SRT==, and SEXPR=Z do not change any of the variables’ stored values; these
operations return results only to the stack.

 

Each of these three operations evaluates an expression, in the same manner as the EVAL

command. SEXPR=E evaluates the expression or program stored in EQ; ZLEFT=% and
=RT== evaluate the left and right side, respectively, of an equation stored in EQ. If the
HP-28 is currently in symbolic evaluation mode (flag 36 is set--see section 9.2.2), the
variables need not contain real or complex numbers, or exist at all, as they must when
you use the root-finder. In the current example, B, C, and D can be matrices, in which
case ZRT= returns the matrix sum.

You can even use the Solver menu as the “front-end” of a program, to provide a con-
venient menu for entering initial data for the program (this is particularly useful on the
HP-28C, which doesn’t have the custom menu feature of the HP-28S). All you do is
store your program in EQ to make it the current equation. Then ZSOLVRE creates a
menu with keys for all of the variables in the program. Use these keys to store values

for the variables, in any order, then press SEXPR== to run the program.

In many cases, you may want only certain program variables to appear in the menu.
You can “hide” any part of a program from the Solver menu system by putting it inside
a list. For example, here’s a program that adds A, B, C, and D:

< A B + C + D + >

If this program is the current equation, A, B, C, and D will all show up in the Solver
menu. But if you write it like this:
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< A B + {<C + D +>} LIST- DROP EVAL >

the result of executing the program is the same as before, but only A and B appear in
the Solver menu.

7.8.1 Using ISOL with the Solver
Since EEXPR=< is faster than numerical solving, it is often advantageous to attempt to
solve the current equation symbolically as a preliminary to using the Solver. This is par-
ticularly true in cases where you only intend to solve for one variable in the current
equation. By using ISOL once to solve the equation, you can reduce the problem from
a root-finding task to one of straightforward evaluation using ZEXPR=% .

Consider, for example, the simple travel cost problem from section 6.1:

'COST=DIST*PPG/MPG’

Imagine that you want to construct a table of distance as a function of cost. If you enter
the above equation as the current equation, you have to solve numerically for DIST after
every new entry for COST. To save time, you should first solve the equation for DIST
symbolically:

{ COST DIST PPG MPG } PURGE

makes the variables formal, for a fully symbolic solution. Then

'COST=DIST*PPG/MPG’ 'DIST’ ISOL = 'COST*MPG/PPG’

If you store the result expression '‘COST*MPG/PPG’ as the current equation (use
STEQ), the resulting Solver menu will contain menu keys for COST, PPG, and MPG,
plus EXPR=. EXPR= now represents the expression for distance, so for every set of
values you enter for COST, PPG, and MPG, just press SEXPR=Z to compute the
corresponding distance.

Note that the result of EXPR= is returned only to the stack. The variable that you
solved for with ISOL (DIST in the example) no longer appears in the current equation,
nor in the Solver menu, so the Solver computations will not affect its value.

7.8.1.1 Limitations of ISOL
It is useful at this point to review the limitations of ISOL that affect its use as a prelim-
inary to the Solver (ISOL is described in more detail in section 9.6.1):

-112-



The Solver 7.8

ISOL isolates only the first (reading left to right) occurrence of a variable in an alge-
braic object. If the variable occurs more than once, ISOL does notfail, but returns a
result that does not represent a solution for the variable. For example, 'X+Y+X=2'
‘X" ISOL returns 'Z-X-Y’. If your unknown variable appears more than once in

the current equation, you will have to use the numerical Solver, unless you can rear-
range the equation with COLCT, FORM,or other algebra tools (section 9.8) to com-
bine all occurrences of the unknown into one.

ISOL works only at the “top level” of an expression or equation; it does not evaluate

any of the names. This means that implied references to the unknown variable are
not made explicit. For example, consider the equation 'X+Y=2', where Z has the
value 'X+Y’. Solving the equation for X using ISOL, you obtain the result 'Z-Y’.
But this result, when evaluated, returns ‘X-Y+Y’, showing that the “solution” is
meaningless. To guard against this type of problem,it is wise to use SHOW with an
equation prior to using ISOL. SHOW makes all references to a specified name
explicit. In the example, 'X+Y=2Z' ‘X’ SHOW returns 'X+Y=X+Y’, making it
obvious that the equation is meaningless. SHOW is preferred over EVAL for this
purpose because a) you only need to execute it once, whereas EVAL may have to be
used repeatedly; and b) SHOW only evaluates names that reference the argument
name at some level, keeping the result expression as compact as possible.

7.9 Secondary Results

The Solver is designed to work with a single equation. However, because the Solver
menu variables, including the most recently solved value of an unknown variable, are

available in the USER menu, it is easy to obtain secondary or derived results after a
Solver solution. The general idea is as follows:

1.

2.

Create the current equation.

Create additional named algebraic objects or programs that compute results from
any or all of the Solver variables.

Use the Solver to enter values for the known variables, and to solve for the

unknown.

Switch to the USER menu, and press the appropriate menu keys to compute the
secondary results.

s Example. Compute the volume and the surface area of a right circular cylinder of

radius R and height H. Evaluate for R=3 and H=5.
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= Solution:

Keystrokes: Results:

'2+#m*R*H’ 'AREA’ Formula for area
STO (secondary pro-

cedure).

'V=1*R*2%H’ Formula for volume.

SSTEQ= SSOLVRS

3ERESEH=EV:E 1 141.37 Volume

[USER]ZAREAS I =NUM] 2: 141.37

1: 94.25 Surface Area

7.10 Differences between the HP-28 and other HP Solvers

Since the HP Solver was originally introduced on the HP-18C in 1986,it has appeared
on several other calculators, including the HP-28C and HP-28S, and the HP-17B, HP-
19B, and HP-27S. All of the calculators except the HP-28 have Solvers with a user
interface modeled on that of the HP-18C. The HP-28 Solver differs from the HP-18C
model in three important respects:

1. The HP-18C stores equations in a special equation file, and uses a keyboard-

directed pointer to select the active equation. You can enter equations into the
HP-18C only in a special Solver mode. The HP-28 stores equations in global vari-
ables in the USER memory along with all other named objects. The active equa-
tion for the Solver is the equation currently stored in a variable 'EQ’. Since HP-
28 equations are just algebraic objects or programs, you can create them at any
time, with any menu active.

The HP-18C attempts to find a symbolic solution before resorting to the numeri-
cal root-finder; the HP-28 does not.

In the HP-28, you select a variable for solving from the Solver menu by pressing
the shift key followed by the menu key for that variable. The HP-18C solve is
triggered by the second of two consecutive menu key presses.

The HP-18C implementation of the Solver may seem simpler than that of the HP-28. If
you are used to one of the other calculators, or to the original TVM interface, you may
be surprised by the necessity of pressing the shift key on the HP-28 in order to initiate a
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solve. But the differences in the Solvers are generally consistent with the differences in
overall design and use of the calculators.

For example, the HP-18C menu system has a definite hierarchy--every (main) menu is
effectively a separate environment. In some cases, exiting a menu then returning to it
even causes the loss of values stored in variables. The HP-18C doesn’t have the
equivalent of the HP-28 USER menu; instead, each menu has its own associated

variables--lists in the SUM menu, appointments in the TIME menu, equations in the
SOLVE menu, etc.

The HP-28, on the other hand, generally avoids special environments. You can change
from any menu directly to any other. Changing menus never affects objects stored on
the stack or in variables, or even calculations pending in the command line. USER
memory is “global”--you can access any variable at any time, even by spelling outits
name if you don’t want to change to the USER menu. There are no special Solver-only
equations. The Solver will work with any procedure object (programs must satisfy alge-
braic syntax). To select a particular procedure, you just store it (or its name if it is
already stored in a variable) in a variable named 'EQ’. The idea is not to make the
Solver more complicated, but to make all of the other resources of the calculator also
available for analysis of the procedure. In particular, the plotting capabilities available
with DRAW are an invaluable adjunct to the Solver, and can often make the difference
between a successful and an unsuccessful root search.

The HP-28 Solver is also “deeper” than the HP-18C version. Each HP-18C equation is
an isolated entity: the variables in the equation can represent only (real) numbers. In
the HP-28, Solver equations are ordinary algebraic objects or programs, in which the
variables can contain any object, including other algebraic expressions or equations.
When the HP-28 Solver builds its variables menu, it tests the contents of each variable
before adding its name to the menu. If a variable contains a procedure, the variable’s
name is not included in the menu; and the Solver looks for additional names in the
named procedure. This process is the reason why the HP-28 Solver does not attempt a
symbolic solve. Symbolic solving as performed by ISOL is hard enough without the
additional complication of trying to resolve all variables referenced in an expression.
Trying to do this (without even considering the problem of multiple solutions) every
time the Solver attempts a solution could waste a lot of time. In effect, the decision of
whether to solve symbolically is left to you; if a symbolic solution is appropriate, you can
use ISOL (and SHOW) to rearrange an expression before making it the current equa-
tion. Then you can just use EXPR= to evaluate it, rather than using the numeric root-
finder.

The necessity for using the shift key to initiate a root search on the HP-28 follows from
the nature of the HP-28 stack, and the greater flexibility of the Solver menu compared
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to that of the HP-18C. The key question is “how do you force the Solver to solve?”
On the HP-18C, you must press two consecutive menu keys, which in many cases is the
normal flow of events--you enter a value for the a known variable with its menu key,
then press the menu key for the unknown variable. However, if you interrupt this flow
by performing any other operation before pressing the final menu key, you will store the
value in the calculator line (or the X-register, in the case of the 12C) into the unknown
variable, rather than solving for that variable. If you press the key again, solving will

start, but now you may have compromised the solving process because the value you
stored into the unknown variable is used by the Solver as a starting point for the search.
Unless that value is a good first guess, the Solver may be unable to find the correct
solution. (Furthermore, on the HP-28, the stack may be empty, or level 1 may contain
an object that is not a real number and which is completely unsuitable as a first guess.)

Another similar problem arises when you have values for several of the known variables
in order on the stack. You should be able to store them into the variables by pressing
the menu keys in order. You could not do this if pressing two consecutive menu keys
started the root-finder.

The HP-18C Solver is perhaps a little easier to use for simple problems than that of the
HP-28. The HP-28 design allows you to use a more flexible and general approach to
solving equations, at the cost of some minor added complexity in the process.
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The archetype of a small HP-28 program is one that takes a few arguments from the
stack, combines them according to some mathematical expression, and returns the com-

puted result to the stack. For example, the distance between two points (x,y;) and

(x2,y2) is given by

[(e2—-x1)? + (v2-y1)*1%

This program takes the coordinates of two points from the stack, and returns the dis-
tance between the two points:

<< ROT - SQ 3 ROLLD - SQ + V >,

The program assumes that x,,y,,x, and y, have been entered onto the stack, in that
order (x; in level 4). It removes the four values, and returns the computed distance to
level 1.

This program is short and efficient, because you (the programmer) did the work of

translating the mathematics into the HP-28’s RPN logic. But writing a program this way
has two shortcomings:

1. When you develop the program, you have to keep track of the stack positions of
the various arguments as they are needed by the successive program commands.

2. After the program is written, it is difficult to decipher. Notice that the program
objects together bear little obvious resemblance to the original distance formula.

These problems become more severe as the number of arguments and the complexity of
the calculation increase. Imagine trying to alter the example program so that it works
with 3-dimensional points (xy,z). Because the stack positions of all of the arguments
are changed, you have to rethink all of the stack manipulations, and almost rewrite the
program entirely.

The difficulty of managing stack objects is substantially reduced if your program stores
the objects in named global variables, then recalls the values by name as they are
needed. However, there are disadvantages to using global variables for temporary
storage in a program:

e You have to choose variable names that don’t conflict with those of other programs.

e The program has to purge the variables at the end to avoid leaving unneeded vari-
ables in the USER menu.
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The problem of program legibility is reduced if you represent the calculations by alge-
braic objects. Despite the virtues of RPN for interactive calculations, by and large peo-
ple are more adept at reading calculations in a form approximating conventional
mathematical notation than in RPN form.

HP-28 user-defined functions are designed to provide a simple means of writing pro-
grams without the problems listed above. User-defined functions are defined by alge-
braic expressions for easy development and modification. Furthermore, user-defined
functions employ local variables, which exist only as long as the functions are executing.
The local variables are used to provide names for stack arguments, and to minimize the

need to manipulate lots of objects on the stack.

A user-defined function is a global variable that contains a program object which has a
special structure, designed to compute a single algebraic expression defined in terms of
local names. User-defined functions are called functions because they act like built-in

functions: you can use them like RPN commands to compute from explicit stack argu-
ments, or as prefix functions within algebraic objects, taking arguments from within
parentheses.

You can program the example at the start of this section as a user-defined function
named DIST, as follows:

< - x1 y1 x2 y2 'V(SQ(x2-x1)+SQ(y2-y1))’ >> ’'DIST' STO.

The first part of the program (- X1 y1 x2 y2) takes four numbers from the stack and
names them X1, y1, X2, and y2, by storing them in local variables with those names.
The algebraic object that makes up the rest of the program computes the distance from
the four stored values. It’s very easy to modify this program for three dimensions. Just
edit the program to add two more local names, and add a term for (z,-z,)* to the
algebraic expression:

< - x1 yl z1 x2 y2 22 'V(SQXx2-x1)+SQ(y2-y1)+SQ(z2-21))’ >

8.1 User-Defined Function Structure

In general, to create a user-defined function you first enter a program object with the
following structure:

K =Xy Xy X ’f(xl’xZ’ rxn)’ >>,

Then you store the program in a global variable. The variable’s name subsequently acts
as a user-defined function. Let’s look at the separate pieces of the general form, using
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the example DIST for illustration.

1. The first object in the program is the symbol —. In words, this symbol can be
translated as “take arguments from the stack, and assign them the following

names...” The — is always followed by a sequence of local names. The end of the
sequence of namesis indicated by the start of an algebraic object that must follow
the names. — takes one object from the stack for each name in the sequence. In
DIST, there are four names, x1, y1, X2, and y2, so DIST requires four input argu-
ments. The objects that —~ takes from the stack are matched up with the names in
the order in which they are entered. The first object entered onto the stack,
which was in the highest numbered stack level (level 4 in DIST), is matched with
the first name (x1) in the sequence.

The names x; x, --- x, in the series are local names. The combination of a
local name and an object taken from the stack is called a local variable. Local
names and variables are described in detail in section 10.7; for now, the important
thing to know is that the variables exist only as long as the procedure that follows
the local name list is executing. Local variables are stored in special areas of
memory separate from the global variable memory; they don’t appear in the
USER menu.

The final part of the user-defined function structure is the algebraic expression
'f(x1,x3, - ,x,). This expression is called the defining expression, and consti-
tutes the mathematical definition of the function. In the example, the defining

expression is 'V(SQ(x2-x1)+SQ(y2-y1))’. Within the definition of this alge-
braic, you can use the local names as many times as you want, just as you would
global names.

When you execute the name of a global variable containing a user-defined function, the
stored program is executed as follows:

1. Objects are removed from the stack and stored in local variables, one object for
each variable name.

2. The defining expression in the user-defined function is evaluated.

3. The local variables are purged.

To illustrate the function behavior of a user-defined function, consider a user-defined

function SEC that returns the secant of a number:

< - x 'INV(COS(x))’ > 'SEC' STO.

You can execute SEC
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e as an RPN command, e.g.

DEG 60 SEC = 2.

e as an algebraic function, e.g.

'SEC(60)' EVAL 1= 2.

Some other results:

'X" SEC = 'INV(COS((X))’ Symbolic arguments allowed.

RAD 'SEC(X)’ 'X'" 9 = 'SIN(XX)/SQ(COS(X))’  Differentiation works.

'SEC(X)=Y’ ‘X' ISOL = Unable to Isolate Error!

The last example shows that there is one important respect in which user-defined func-
tions differ from built-in analytic functions. There is no inverse defined for a user-
defined function, so ISOL can not solve for a name that is contained in the argument of

the function.

One minor note: If the HP-28 is in algebraic entry mode (section 3.11.1), pressing the
USER menu key corresponding to a user-defined function appends the function name to
the command line, but does not add a trailing (.

8.2 User-defined Functions as Mathematical Functions

It is interesting to note the extent to which a HP-28 user-defined function is a realiza-
tion of a mathematical function. That is, if you define a function such as
F(x) = 5x2 + 2x, you are stating that F is an operator that takes a single argument, and
returns a single result that is computed from the argument. The function’s definition
has three parts:

1. The name F of the function.

2. A name x used to identify the function’s argument. For the purpose of the defini-
tion, x does not have a value.

3. The expression in x that indicates how the result is computed from x.

When the function is applied to a specific argument, that argument is substituted for the
name x in the defining expression, and the expression is evaluated. Thus
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F(1) =512+21=7

F(?) = 50°) +20°) = »* + 2.

Each part of a function’s definition has a corresponding representation in an HP-28
user-defined function:

1. The function’s name is the name of the variable in which the user-defined function

program is stored.

2. The argument name is the local name that follows the —. A Jocal name is
appropriate because the name is not intended to have a value except when the
function is actually being evaluated.

3. The expression defining the function is represented by the defining expression.

The example function F (x) = 5x2 + 2x is created in the HP-28 as:

<< - x '5®"2+2%' > 'F STO.

Then

'F(1)’ EVAL o= 7,

and

'F(Y*2)' EVAL 1z '5%Y*2°242%Y"2’

In this example, we have considered a function of one variable. User-defined functions
defined in terms of more than one local name naturally correspond to mathematical
functions of more than one argument.

8.3 User-defined Functions Defined by Programs (HP-28S)

The HP-28S extends the definition of user defined functions to allow you to use a defin-
ing program in place of the defining expression, and still use the functions in algebraic
expressions. The primary purpose of this facility is to allow you to include various RPN
commands in algebraic calculations. For example, you can define an algebraic version

of HMS +:

< - Xy < x y HMS+ > > 'HMSP’ STO

With this function, you can perform hours-minutes-seconds arithmetic within algebraic
objects, e.g. '5*HMSP(X,Y)’.
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Note, however, that you can not evaluate user-defined functions defined this way with
symbolic arguments. When you evaluate an algebraic object containing a user-defined
function defined by a program, its arguments must evaluate to numbers. For example,
if you evaluate the algebraic '5*HMSP(X)Y)’, both X and Y must have real-number
values.

8.4 Beyond User-defined Functions

The user-defined function structure described in the preceding is a special case of the
use of local variables. That is, you can use the = names procedure structure as a more
general tool than just for creating user-defined functions. For example, if you want to
use local variables in an RPN context, you can replace the defining expression in a
user-defined function procedure with a program:

<< = name, ‘- name, << program >> >>,

where << program >> is any program, which presumably uses the local variables. Fur-
thermore, you can insert any number of objects into the outer program, ahead of the -
or after the >> of the local variable procedure.

This more general use of local variables is described in detail in section 10.7. A key
point to remember when you’re working with user-defined functions is that a variable
will not act as a user-defined function unless the program it contains has exactly the

right structure--the first object in the program must be the -, and the last must be the
single algebraic object (or program in the HP-28S) immediately following the sequence
of local names. If there is any variation from this prescription, you will not be able to
use the variable name as a prefix function in an algebraic object definition.

8.5 Additional Examples

8.5.1 Permutations and Combinations
The HP-28S has built-in commands for computing permutations and combinations. On
the HP-28C, you can easily program your own user-defined functions versions of these

commands.

® The number of permutations of n objects taken m at a time is

n!

Pm) = (n—-m)!

To create P (n,m) as a user-defined function, enter:
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<< - n m 'FACT(n)/FACT(n-m)’ >> 'P’ STO.

Then

5 2 (SERZPE = 20;
'P(20,5)’ = 1860480.

® The number of combinations of n objects taken m at a time is

The corresponding user-defined function is

<< - n m 'FACT(n)/(FACT(m)*FACT(n-m))’ >> 'C’ STO.

With this definition,

5 2 USERECE o= 10;

'C(20,5)’ = 15504.

® The nth Catalan number CN(n) is equal to the number of paths between opposite
corners of an n X n grid that may touch without crossing a straight line between the
corners:

2n)!

(n+D)(nNMnNY)

The corresponding user-defined function is

<< - n 'FACT(2#*n)/((n+1)*FACT(n)*2)’ > 'CN’ STO

CN(n) =

8.5.2 Geometric Formulae

e VCYL(r,h) returns the volume of a right-circular cylinder of radius r and height A:

<< - r h 'w*SQ(r)*h’' > 'VCYL' STO,

from the formula V = wr2h.

e SCONE(r,h) returns the curved surface area of a right cone of altitude 4 and radius
r
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< - r h 'w#**\V/(SQ()+SQ(h))’ > 'SCONE’' STO,

from the formula 4 = wr(r? + h2)%.

e CSEG(r,x) returns the area of a segment of a circle, where r is the radius, and x is
the perpendicular distance of the chord from the center:

< - r X ’w*r"2/2—x*\/(r"2—x"2)—r"2*ASIN(x/r)' > 'CSEG’' STO,

from the formula

2
A = %—x VrZ-x? —rzsin”l(-"f).

e PPER(n,7) computes the perimeter of an n-sided polygon inscribed in a circle of
radius r:

<< - n r '2#n*r*SIN(w/n)’ > 'PPER’ STO,

from the formula perimeter = 2nr sin-:—:-.

These user-defined functions return symbolic results containing v, unless you clear
either flag 35 or flag 36 (see section 9.2.2) to cause automatic numerical evaluation of
.
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The HP-28 is unique among calculatorsin its ability to apply mathematical operations to
“symbolic” quantities--objects for which no numerical value has been assigned. If you’re
a student learning algebra or calculus, or using their techniques in other mathematical
or scientific studies, this capability may be very exciting. However, if you’re not directly
interested in algebra for its own sake, you might wonder why the HP-28’s symbolic
capabilities are important to you.

Actually, if you use a programmable calculator at all for more than simple keyboard
arithmetic, you are already performing a kind of symbolic operation. Any time you per-
form a calculation more than once, using varying data, you probably represent the calcu-
lation symbolically at some point. In particular, when you write a program to automate

the calculation, that program is a symbolic operation. You write it to accept certain
inputs, without specifying their values, and to compute an unknown result. This is no
different in principle from writing an algebraic expression on paper. An expression also
“works” with unspecified inputs (variables) and returns a previously unknown value
when you evaluateit.

So in the sense that any program is a symbolic calculation, any programmable calculator
is a “symbolic” machine. The new contribution of the HP-28 is that it allows you to
apply mathematical operations to the programs themselves, and obtain new programs as
results. For example, consider a program that recalls the value of a variable and dou-
bles it. In the HP-41, the program is

01 RCL 00
02 2

03 *
04 END

Here the “variable” you’re multiplying is represented by register 00. In BASIC, you can
name the variable X:

100 Y=2*X
200 END

But suppose that after entering the program you realize that you are really interested in
the sine of the result, sin(2x). In either of these two languages, you have no choice but
to edit your program. On the HP-41, you turn on program mode, find the correct place
in the program to enter the SIN, and key it in. In BASIC, you edit line 100, being sure
to enter the SIN in the right place and to include the parentheses.

On the HP-28, the original “program” consists of the algebraic object '2*X’. To change
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this into the new program 'SIN(2#*X)’, all you have to do is execute SIN when the origi-
nal expression is in level 1. The parentheses are automatically inserted. In effect, the
calculator writes a new program for you--all you have to do is use the same keystrokes
on the symbolic “program” as you would use with a numerical quantity. We showed a
practical example of this facility in section 7.7. There you needed to modify the Solver

current equation to move a local maximum below the horizontal axis. This is achieved
by executing the sequence

RCEQ number - STEQ

where numberis the value you wish to subtract from the current equation.

Another way to see the value of the HP-28 capabilities is to consider a general
problem-solving process that consists of these steps:

1. Identify the problem.

2. Determine the known and unknown quantities.

3. Figure out the mathematical relationships between the quantities.

4. Solve the relationships for the unknowns in terms of the knowns.

5 For each set of known quantities, evaluate the solved relationships to obtain
numerical values for the unknowns.

When you use a conventional calculator, the calculator can only enter the process at the
final stage. Once you have equations for the unknowns, you can program those equa-
tions into the calculator, enter numerical values for the known variables, and run the
programs to return the numerical values for the unknowns. The HP-28, on the other
hand, can enter the process as early as step 2. You can use its symbolic capabilities to
work out the relationships and solve for the unknowns--steps for which you would need
pencil and paper using another calculator. The symbolic solution that you find with the
HP-28 is also the “program” you can use for repeated evaluation of the unknowns with
different inputs. Even if the equations you derive can not be solved symbolically for the
unknowns, you can still use the Solver to obtain numerical results, without any further
programming.

As an example of this process, consider the classic introductory calculus problem:

A farmer has 100 yards offencing to enclose a rectangular field, which is
bounded on one side by a river. What length (L) and width (W) of the
field gives the maximum area?
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m Solution:

Steps Keystrokes Results

1. The length of the fence

is 100. 'L+2*W=100' [ENTER] 'L+2*¥W=100'

2. Solve for L. 'L’ [SOLV]ZISOLE '100-2*W'

3. Assign this value to L. ‘L’

4. The area of the field is
L times W. 'L¥W=AREA’ [ENTER] 'L*W=AREA'

5. Substitute for L. EVAL (100 -2*W) *W=AREA'

6. To find the maximum area,
differentiate the expression. 'W' N '—(2*W) + (100-2*W) =0’

7. Collect terms. I (ALGEBRA|ZCOLCT= '100-4*W=0'

8. Solve for W. "W’ [SOLV]EISOLE 25

9. Assign this value to W
and evaluate L. "W’ L 50

Answer: The width of the field should be 25 yards, and the length 50 yards.

You can use the HP-28 to formulate and solve the entire problem. With a conventional
calculator, all you can do is evaluate the final answer, once you have worked it out on
paper.

As another example, in section 11.13.3 we list a program SIMEQ that solves a set of
simultaneous linear equations. Many other calculators provide this capability either
through built-in commands or as program applications. However, without exception
(including the HP-28’s own built-in method using matrices and vectors), these require
you to enter the coefficients and constants rather than the equations themselves. In
other words, you must to do the work yourself of inspecting the equations, collecting
terms and rearranging if necessary, to determine the coefficients and constants. The
SIMEQ program lets you enter the equations in any order, and without having to struc-
ture the individual equations in any particular way. It is the HP-28’s ability to deal with
expressions and equations as data to be manipulated--as symbolic objects--that makes it
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possible for you to write a program like SIMEQ in a straightforward, compact manner.
In other calculator languages, writing a program like SIMEQ would require considerable
ingenuity, and would likely end up being harder to use than the usual method of enter-
ing coefficients in order.

As you will see in the remainder of this chapter, the HP-28 takes a generally conserva-
tive approach to symbolic mathematics. This means that it does not attempt to make
decisions for you, but allows you to guide a symbolic calculation at each step. When
you enter or compute an expression, the HP-28 does not force the expression into any
particular form, but provides expression manipulation commands (section 9.8) so that
you can rearrange it if necessary. For example,

‘A+B' 'B' + = 'A+B+B’

The HP-28 does not automatically collect terms to return ‘A+2*B’; if you want that
result, you can execute COLCT (section 9.8.1).

Another example of the conservative design is in the symbolic equation solutions
returned by ISOL and QUAD (section 9.6). These commands return expressions
representing all solutions to the equations, not just one solution chosen for its “simpli-
city” or “familiarity.” The solutions are structured so that you can choose the solution
or solutions that you want.

The HP-28 chooses a conservative approach for several reasons:

e The calculator can not know what you want. The factors that determine a choice of
expression form or of one among many solutions are usually not contained in the
expression itself but come from external considerations.

e There is no “standard” form for expressions.

e Solutions computed by the calculator should be general and should never obscure
any possible solution.

e In a finite-precision, floating-point calculation, the order of operations is important.
Two formally equivalent expressions, such as '(A+B)+C’ and '(A+C)+B’, may give
quite different results when evaluated numerically (see the discussion of expression
structure in section 9.1.1). When you set up an expression in a manner that takes
this point into account, you do not want the calculator to rearrange the expression.

e Symbolic operations often require a large number of individual steps. If the calcula-
tor attempted to standardize the result of each step, it would slow down the overall
process.
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This approach to symbolic operations means that you will often obtain results that don’t
“look”like you expect, or which you have to take extra steps to rearrange.

9.1 The Nature of Algebraic Objects

In the preceding section we described algebraic expressions or equations as “programs.”
In most other calculators and computer languages, a program is not a mathematical
object--it might contain mathematical expressions, but the program itself is usually a
series of numbered lines, each containing one or more instructions. But take away the
line numbers, and what you have is just a series of data and instructions that are meant
to be executed sequentially and automatically. It is easy to recognize that an HP-28
program works like this, since by definition a program contains a progression of any
HP-28 objects that are executed when the program is executed. Butit is not so obvious
for algebraic objects, since they look like mathematical expressions or equations, which
are not commonly thought of as programs.

In section 2.1, we showed how RPN logic is derived from the desire to convert a
mathematical expression into a series of steps by which you can evaluate the expression
by hand or using a machine. Looking at this from a different point of view, you can
note that since any expression can be tranlated to RPN, any expression can be
represented in a calculator by an RPN program. In fact, this is what the HP-28 does--
an algebraic object is stored in calculator memory in an RPN program form just like
that of an actual program object. As a convenience, to save you from having to convert
expressions to and from RPN as you must on an HP-41, the HP-28 provides the alge-
braic object type, for which it does the conversions automatically. '

The only difference between algebraic objects and program objects is that the two are
“marked” differently, so that the HP-28 knows which to display in algebraic form and
which to display in RPN. Also, functions that accept symbolic arguments can only
accept algebraic objects, not programs, since algebraics are by definition valid
mathematical expressions, whereas program objects are completely unrestricted in their
content and may not be suitable arguments for a mathematical function.

To illustrate the program nature of algebraic objects, create this program B:

<< DUP 20 > 'B' STO

Next, enter the algebraic object ‘'5+5+B’, and press . The algebraic object disap-
pears, and the numbers 10 and 30 appear on the stack. You can understand this result
by following the execution of the equivalent RPN sequence 5 5§ + B +. When this
sequence is executed, two 5’s are entered, then summed to 10 by the first +. B exe-
cutes next, which duplicates the 10 and enters 20. Then the final + executes, returning
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30. You can break down any algebraic object execution into RPN steps this way.
Knowing how algebraic evaluation works is the key to understanding some of the
subtleties of symbolic operations on the HP-28 in general.

Picturing an algebraic object as a program will also help you understand why evaluation

of the object causes variable substitution “one level at a time.” Consider the object
‘A+B’, where A has the value 10, B has the value 'C+D’, C has the value 20, and D
has the value 30. Evaluating ‘A+B’ once does one level of substitution, returning
'10+(C+D)’, not the numerical result 60. To see why, remember that '‘A+B’ is
represented by the sequence A B +. Evaluating 'A+B’ therefore executes A, B, and +

in sequence: A returns 10, then B returns ‘C+D’, so that + returns '10+(C+D)’.
[Note that the latter in RPN is 10 C D + +, which is obtained from the original AB +

by substituting the RPN sequence C D + for B.]

These considerations also explain why you might get unexpected objects on the stack
when an error occurs during evaluation of an algebraic object. For example, if you exe-
cute EVAL on an algebraic object and an error occurs, you might expect that the original
object would be returned to the stack. But evaluating an algebraic objectis the same as
executing a program, so that an error returns the arguments of whatever function
(within the algebraic) caused the error, along with anything else that was on the stack at
the time of the error. Again, you can predict the contents of the stack from the RPN

sequence that is equivalent to the algebraic object.

For example, suppose you execute 'A+(B+C)’ EVAL, where A and B are undefined, but
C has a vector value [1 2]. The HP-28 will halt and show the Bad Argument Type
error message, with the stack containing

3: ‘A’
2: ‘B’
1: [12]

This configuration results because the RPN sequence A B C + + errored at the first +.
A, B, and C had already executed, leaving their values on the stack as shown; the +
errored because the combination of a name ('B") and a vector ([ 1 2] ) is not valid for
addition. These arguments of +, not the original argument of EVAL, are returned to
the stack. (Note that if you execute EVAL by using the key, you can restore the
original algebraic object by pressing [l [UNDO] .)

9.1.1 Expression Structure
One advantage of writing a mathematical expression in Polish notation (section 2.1) is
that it makes explicit the organization of the expression into a hierarchy of
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subexpressions. A subexpression is any portion of a mathematical expression that can
stand alone; that is, it can be treated as a complete expression by itself. Specifically, a
subexpression consists of a number, or a name, or a function and its arguments. A
number--real or complex--is the simplest case; if you like, you can think of a number as
a function that takes no arguments and always returns the same value.

For example, consider the expression @ + sin(b—c). Rewriting this in Polish form, you

obtain + (a, sin(-(b,c))). The “outermost” subexpression is the entire expression,
consisting of the function + and its arguments @ and sin(-(b,c)). Each of the two
arguments is a subexpression--the first is just the name a, the second is the function sin
and its argument - (b,c). The latter in turn is a subexpression consisting of — and its
arguments b and c, and so on as you peel off the layers of parentheses. The level of a
subexpression is a measure of how deep it is in the hierarchy. The level is defined as
the number of pairs of parentheses that surround the subexpression. In the example,
the full expression is level 0; the @ and sin (- (b,c)) are level 1 subexpressions, — (b,c) is
level 2, etc.

There are two reasons for you to keep these ideas of expression structure in mind as
you work with the HP-28:

1. The structure of an expression determines the order of evaluation of its subexpres-

sions. For example, in the evaluation of ‘A+B+C’, the A and B are added first,
then the sum is added to C. You can alter this order by changing the expression
to 'A+(B+C)’, in which case the B and C are added first. This distinction is
important in a floating-point calculator, even though the two forms are formally
the same. To see this, assign the values 10°° to A, —=10°° to B, and 1 to C. If you
evaluate ‘A+B+C’, you obtain 1, whereas if you evaluate 'A+(B+C)’, you obtain
0.

2. Understanding the structure of an expression can help you follow the behavior of
HP-28 symbolic manipulation commands. For example, EXPAN (section 9.8.2) is
defined to work at one level of a subexpression at a time. 'A*(B+C+D)’ EXPAN
returns 'A*(B+C)+A*D’ rather than 'A*B+A*C+A#*D’ as you might expect.
This is more obvious if you think of the original expression as *(A, +(+(B,C),D)).
When one of the arguments of * is a sum, EXPAN multiplies the other argument
by each of the two arguments of +, then adds the products. The fact that in this
case the first argument of the (first) + is also a sum is not considered--EXPAN
only works one level at a time.

We can use these ideas to re-express the basic RPN calculator principle (“any result can
be an argument”) in “algebraic” terms by saying “any expression can be a subexpression.”
A subexpression is self-contained; it may or may not be embedded in a larger expres-
sion. The shortcoming of algebraic calculatorsis that they don’t recognize this principle.
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They are designed for evaluating an expression as a whole--“from the outside in,” so to
speak. On the other hand, in an HP-41, you can only calculate an expression “from the
inside out,” since you can only enter one number or function at a time. The HP-28
merges both approaches, by allowing you to enter any subexpression in its algebraic
form. You can evaluate an entire expression at once, or you can divide it into subex-
pressions of any size, or you can work only with one object at a time.

As with most of the principles of HP-28 operation, the concept of evaluation embodied
by EVAL is derived from a mathematical model. In ordinary terms, to “evaluate” means
“to find the value.” For a mathematical expression, this translates to “perform the
operations represented by the expression, to find its value.” Evaluation means to
“activate” an expression, which in turn means to execute sequentially the objects that
make up the expression.

As an example, consider the simple expression 1+2. We showed in section 2.1 that an
expression can be translated into an RPN form that represents a prescription for actu-
ally performing the operations of the expression--evaluating it. Thus the expression 1+2

is the sequence 1 2 + in RPN. This is a sequence of objects--remember (see section
3.2.1) that the +, as well as the 1 and the 2, can be considered as an object. When you
write the expression, the objects are passive; but if you execute each object in turn--
“enter the 1, enter the 2, do the +”--you obtain the value of the expression.

9.2 Function Execution

HP-28 functions have two important execution properties that are not shared by RPN
commands. These are automatic simplification, and a choice of symbolic and numerical
execution modes.

9.2.1 Automatic Simplification
When certain functions execute, they check their arguments for special cases in which
ordinary calculation can be replaced by a mathematical simplification. For example, if
you execute the sequence 1 ‘X' #*you obtain 'X’, not ‘1*X'. You can observe the
same effect by executing '1*X' EVAL. This simplification is a property of the * func-
tion; whenit is executed, * explicitly looks for cases where one of its arguments is 1. In
such cases, the subexpression consisting of the * and its two arguments is automatically
replaced by the non-1 argument. Other examples are the replacement of SIN(ASIN(X))
by X, and EXP(LN(X+1)) by X+1. Again, these simplifications are built into the func-
tions SIN and EXP. A complete list of automatic simplifications is given in the HP-28
Reference Manual.

Note that not all cases of a function applied to its own inverse are simplified. For
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example, ASIN(SIN(X)) does not automatically simplify to X, since there are infinitely
many angles with the same sine as X. Similarly, since the HP-28 treats complex
numbers uniformly with real numbers, LN(EXP(X)) does not reduce to X.

Automatic simplification is not the same as the simplification that results when a numer-
ical expression is evaluated by COLCT. For example, although '2/2’' automatically sim-
plifies to 1 when you evaluateit, '2#X/2’ does not automatically simplify to X. In order
for the simplification to take place, the two 2’s must be the arguments of the /, as in
'(2/2)*#X'. To simplify ‘2%X/2’, you can either use FORM to rearrange it to '(2/2)*X’,
or use COLCT (section 9.8).

9.2.2 Symbolic and Numerical Evaluation; ~NUM
The key to the HP-28’s ability to perform symbolic calculations is the fact that HP-28
functions used with symbolic arguments (names or algebraics) return symbolic results.
Each time you evaluate an algebraic object, the names in the expression or equation are
executed, so that those corresponding to existing variables are replaced by the objects
stored in the variables. But the replacement objects are not evaluated, so that the final
result may still be symbolic. If you want to evaluate a symbolic object all the way to a
numerical value, you may have to use EVAL repeatedly until all of the names have been

replaced by numbers.

In some circumstances, it is desirable to evaluate a symbolic object to its final numerical
value in a single operation. For example, in the course of their execution, DRAW and
the Solver both evaluate the current equation to numerical values. To deal with such
cases, as well as the symbolic evaluation described already, the HP-28 provides you with
the choice of symbolic evaluation mode or numerical evaluation mode. In symbolic
evaluation mode, a function evaluated with symbolic arguments returns a symbolic
result. In numerical evaluation mode, a function of symbolic arguments evaluates its
arguments, repeatedly if necessary, until they are data objects (usually numbers). Then
the function returns a numerical result. If any name is encountered during the evalua-
tions that has no corresponding variable, the Undefined Name error is returned.

You can select numerical evaluation mode temporarily, for a single evaluation of a sym-
bolic object, or for an indefinite period:

e To evaluate numerically a single object containing functions, use “NUM instead of
EVAL. -NUM enables numerical evaluation mode, evaluates its argument in the
same manner as EVAL then restores the original evaluation mode. A common use
of “NUM is to force the numerical evaluation of an algebraic object used as a test
for a program branch. For example,

IF 'X==3 OR X>10" -NUM THEN A ELSE B END
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executes A if X has the value 3 or is greater than 10, or B otherwise (see section
10.4).

To select numerical evaluation mode “permanently,” clear flag 36 (execute 36 CF).
As long as flag 36 is clear, the evaluation of any functions will return a numerical
result, or an error message if numerical evaluation fails. In this mode, EVAL and
-NUM produce the same results.

To restore symbolic evaluation mode, set flag 36. Symbolic evaluation mode, with

flag 36 set, is the default mode following a memory reset (section 11.3.4).

To illustrate these ideas, execute

30 ‘X' STO X

to create a variable X with the value 30, and leave its name on the stack. Next select
degrees mode by executing DEG ( lll[MODE]ZDEGE) if necessary. Now,

1. Select symbolic evaluation: 36 [[TESTIZSF=.

Compute the sine:

[RIGIESINE = 'SIN(X)'.

Atthis point, you still have a symbolic result. Find the numerical value:

= .5.

When 'SIN(X)’ is evaluated, X is replaced by its value 30; then, since SIN has a
numerical argument, a numerical result is returned.

Now try the calculation in numerical mode: [TEST] 36 ZCF= .

Compute the sine:

‘X" @RIGIZSINE 1= .5

This time, you immediately obtain the numerical result .5. This is because in
numerical evaluation mode, SIN evaluates the symbolic argument ‘X' to its value

30, then returns the numerical sin30°.

9.3 Symbolic Constants

A frequently asked questions about HP calculators is “why does the sequence 7 SIN (in
radians mode) not return 0, when everybody knows that sin () = 0?” On the HP-41,
for example, 7 SIN returns —4.1E-10. The answer is that the 7 key does not return
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mathematical T, but an approximation accurate to the numerical precision of the calcu-
lator, which is the 10 digit number 3.141592654 on the HP-41. When SIN uses this
approximation as an argument, it treats it like any other floating-point number and com-
putes its sine, again accurate to the calculator’s precision. To understand the approxi-
mate value, consider that for small x, sin(m +x)= —x. In this case, x is the difference
between 7 and the calculator approximation: 7 +x = 3.141592654. Thus

x = 3.141592654- 3.14159265359* = 4.1X10™ 10,

and

sin(m +x) = -4.1X1071,

which is just what the HP-41 returns. SIN is evidently returning an accurate result for

its argument, but the argument is not r.

Could a calculator be designed to recognize the approximation as its best numerical
representation of 7 and return zero for the sine of that number? Certainly it could, but
HP calculators generally don’t do this sort of thing, following the guideline that the limi-
tations of fixed-precision calculations make it unwise to try to guess when a numerical
value is supposed to be some special number. This sort of problem shows up in lots of
cases: for example, should .142857142857 [l [1/X] return 7.00000000001, which is the
most accurate 12-digit reciprocal of that argument, or 7.00000000000, on the chance
that .142857142857 was obtained originally by computing the reciprocal of 7? This
problem is a fundamental limitation of trying to represent arbitrary numbers with a fin-

ite number of digits.

The HP-28 provides a different approach to the problem of m from its predecessors.
Assuming for the moment that flags 35 and 36 are set, executing  returns the expres-
sion 'w' (note that this is an algebraic object, not a name--e.g. TYPE returns 9). If you

execute ™ 2 *, you obtain ‘2*w’. As long as you don’t force numerical evaluation by
executing “NUM, 7 retains its symbolic form through any number of operations. This
has two immediate benefits:

e An expression containing the symbol 7 gives you more information about the nature
and derivation of the expression. Once you convert it to a numerical form, no
matter how accurate, the presence of T in the expression becomes obscured. The
expression '/4’ is more informative than the number 0.785398163398.

e Using symbolic 1 prevents errors arising from a finite precision numerical represen-
tation of 7 from accumulating in chained calculations. By delaying the substitution
of a numerical value for 7 until a calculation is complete, you obtain maximum

accuracy.

A symbolic T also permits a new resolution of the sin(7r) issue. On the HP-28, if you
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execute 7 SIN (with flags 35 and 36 set, and radians mode active), you obtain 0. This is
an automatic simplification (section 9.2.1), not a numerical computation--when SIN is
executed, it checks its argument to see if it is symbolic 7. If so, the subexpression
SIN(w) is replaced by 0. The following additional simplifications are also made, in the
same spirit:

e SIN(w/2) is replaced by 1;

e COS(m) is replaced by 0 (note: COS(3.14159265359) also returns 0);

e COS(m) is replaced by —1.

e TAN(m) is replaced by 0.

Only these four specific subexpressions are simplified. SIN(2#*w), for example, is not
simplified, and returns 4.13523074713E - 13 when evaluated numerically.

There are occasions when the symbolic form of 7 can be an impediment. One such
case is when you want to use the numerical value of 7 as one of the limits of integration
for a numerical integral. (This difficulty is reduced on the HP-28S, where you can actu-

ally include symbolic 7 in the list argument for the integral.) The limits are specified as
two real numbers in a list containing two (implicit variable integration) or three (explicit
variable integration) objects. If you enter the list directly from the keyboard using the
{ } delimiters, you must enter 7 by typing in its digits. It’s usually easier to put the two
or three list elements on the stack, using ™ where appropriate, and then combine the
elements into a list with —-LIST.

= Example: Integrate sin(x) from x =0 to x =, with an accuracy of 107>,

Keystrokes: Results:

'SIN(X)’ [ENTER] ‘X ' [ENTER] 2: "SINKX)’
1: X'

0 [ENTER] Il(= Il -NUM] 4: "SIN(X)’
3: X
2: 0
1: 3.14159265359

3 BUSTIE-LISTE 2: 'SIN(X)’
1: {X03.14159265359 }

[EEX][CHS] 5 (1] 2 2.00000003046
1: 2.00195785979E -5
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9.3.1 Other Symbolic Constants
In addition to , the HP-28 provides four other symbolic constants: e (numerical value
2.71828182846), i (value (0,1)), MAXR (value 9.9999999999E499), and MINR (value
1E-499). There are no special simplifications associated with e, MINR or MAXR, but

the symbolic forms allow you to track the associated constants through calculations. i
has these simplifications:

Subexpression  Replacement

SQ(i) -1
i*i -1

i"2 -1

i*(2,0) -1
RE(i) 0
IM(i) 1

CONJ(i) —i

You can use i to enter complex numbers in the form a + bi rather than the standard
object format (a,b). For example, 1+2i can be entered as '1+2*’. You can perform
arithmetic with such expressions, using EXPAN and COLCT where appropriate to sim-
plify a multi-term expression into the form a + bi.

9.3.2 Evaluation of Symbolic Constants
Symbolic and numerical evaluation modes affect the way all built-in HP-28 functions
evaluate symbolic arguments. The five symbolic constants , e, i, MAXR and MINR
behave as as functions of zero arguments--and as functions they are sensitive to the
evaluation mode. When flag 36 is set, evaluation of any of these constants returns a
symbolic result, which is just the constant itself unchanged. When flag 36 is clear,
evaluation of a symbolic constant replaces it with its numerical value.

It is possible by means of flag 35 to select a restricted form of numerical evaluation
mode that affects only these constants. When symbolic evaluation mode is active (flag
36 set), clearing flag 35 causes symbolic constants to evaluate numerically, without
affecting the evaluation of other functions. This permits, for example, replacement of
symbolic constants with numerical values in expressions that contain formal variables
(undefined names). To see this, enter ‘X’ PURGE, then enter the expression '2 %1t *X'
into level 1. Then,

35 SF 36 SF EVAL = '2*w=*X’

and
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-NUM = Undefined Name error.

Butif you clear flag 35:

'2+w*X' 35 CF EVAL 1= '6.28318530718*X’.

7 evaluates to its numerical value, while with flag 36 set * still returns a symbolic pro-

duct.

9.4 General Problem Solving with Symbolics

At the start of this chapter, we outlined a five-step general problem solving process.
Now we will review those steps, and see how they are realized on the HP-28. To illus-
trate the procedure, we will solve the following problem:

Dad is 40 years old, Son is 10. In how many years will Dad be twice as old as Son?

1. Identify the problem.
Sometimes it’s helpful to restate a problem in a more general way, by using vari-
ables even for values that are already known. For example:

Dad is D years old, Son is S. In how many years T will Dad be N times as old as
Son?

This allows you to solve the problem logically once, then enter various choices for
D and S, and find a value of N for each set of choices.

2. Determine the known and unknown quantities.

The known quantities are the input parameters for the problem--these might be a
single value, or a set of input data, or several sets. The variables that you assign
to the known quantities are called known variables, or independent variables since
their values can be set arbitrarily. The unknown variables are the quantities you
are going to calculate.

In the example, the independent variables are D, S, and N. The single unknown is
represented by the variable T.

Keep in mind that the choice of which variables are known, or independent, and
which are unknown, is often arbitrary. In the example, you can specify T and
solve for N, rather than the reverse as the problem was originally stated.
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3.

4.

Figure out the mathematical relationships between the qu:antities.
This step consists primarily of converting the verbal or conceptual statement of the
problem into one or more mathematical relationships. Working the example on
the HP-28 proceeds as follows:

Verbal Statement Keystrokes Stack

(Purge existing variables.) {D T N } Ill[PURGE]

Dad is D years old now. D 1: 'D’

T years later, he’ll be... T 1: 'D+T’

Similarly, Son is S+T 'S+T’ 2: '‘D+T’
years old.

1: 'S+T’

Dadis to be N times as N *][=][ENTER] 1: 'D+T=(S+T)*N’
old:

The equation in level 1 is the relationship you need.

Solve the relationships for the unkncwns.
This is a process of algebra, where you apply standard rules for expression rear-
rangement to isolate the unknown variable as a single quantity on one side of an
equation. The HP-28 command ISOL (section 9.6.1) will do this for you automati-
cally if the variable appears just once in the expression or equation. An automatic
solution is also possible for quadratic equations, for which QUAD (section 9.6.2)
will find both solutions regardless of the specific form of the equation.

If the unknown variable appears more than once in an expression that is not a
simple quadratic, you must try to find a rearrangement of the expression using
standard rules of algebra to combine the occurrences of the unknown into a single
one. The HP-28 lets you perform many such operations right on the calculator.
To illustrate, return to the example. At the last step, you had obtained the equa-
tion ‘D+T=(S+T)*N’. The unknown T appears twice, so you can’t use ISOL yet.
Instead, you can follow the same steps on the HP-28 as you might on paper:
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Verbal Statement Keystrokes Stack

(Result of previous steps.) 1: '‘D+T=(S+T)*N’

Expand the product. B [ALGEBRA]ZEXPANZ 1: '‘D+T=S*N+T=*N’

Subtract T from both T [=] 1: 'D+T-T=S*N+T*N-T'
sides.

Simplify. ECOLCT= 1: '‘D=S*N+T*N-T'

Subtract S*N from both  'S#*N’'[-]ECOLCTE 1.  '—(S*N)+D=T*N-T'

sides.

At this point all terms containing T are on the right side of the equation, but since
there are two such terms, you still can’t use ISOL. First, you must use FORM to
merge the two terms:

Keystrokes: Display:

=FORM= (=] (S*N)+D) =((T*N)-T))

£[=1Z (11 times) ((-=(S*N)+D)=((T*N)- 1))
NEXT]Z *1 ((—(S*N)+D)=((T*N)-(T [+ 1

)

[ENTERIE[-E E[-IE ((—(S*N) +D)=((T*N) [=] (T*1
)

NEXT]S-M= ((=(S*N)+D)=(T [*] (N-1)))

[ON] 1: '—(S*N)+D=T*(N-1)’

(The use of FORM is explained in section 9.8.4) Now you have achieved the
desired goal of a single appearance of the unknown T. At this point, you can exe-
cute either

‘T ISOL = '(-(S*N)+D)/(N-1)’,

or

'(N-1)' [+]ECOLCTE = '(-(S*N)+D)/(-1+N)=T'

The second choice produces an equation rather than an expression, which has the
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advantage that it keeps T in the solution in case you want to solve later for a dif-
ferent variable. With either method, you now have a symbolic solution to the
problem, and you can proceed to substitute numbers for specific solutions.

There are, of course, many problems for which it is impossible in principle to
obtain a closed-form symbolic solution for a variable. sinx +x =y, for example,
can not be solved for x. This is where the Solver is invaluable. If you are willing
to forgo a symbolic solution, you can skip the current step in the problem-solving
entirely, and use the Solver to obtain numerical solutions for any equation, no
matter how many times the unknown variable occurs.

5. For each choice of known quantities, evaluate the solved relationships to obtain
numerical values for the unknowns.
Once you have an expression or equation that represents a solution to a problem,
the only remaining step is to assign specific numerical values to the independent
variables, and evaluate the solution object to obtain the corresponding values for
the unknown. You can do this in two general ways on the HP-28:

e Assign values to the independent variables using STO, and evaluate the algebraic
object that represents the solution. This causes substitution of the numerical
values for the variable names, yielding a numerical value for the unknown. In
the current example, you assign values to D, S, and N from the original problem:

40 'D' [STO] 10 'S’ [STQ] 2 'N’ [STO

Then, with the solution '(-(S*N)+D)/(—1+N)=T' on the stack,

EVAL] 1= '20=T'

The result shows that in 20 years, when Dad is 40+20=60, and Son is 10+20=30,

Dad will be 2 times as old as Son. You can easily change values to obtain
another result--for example, if you give the value 3 to N, and reevaluate the
expression, you find that in 5 years, Dad (45) will be 3 times as old as Son (15).
Note that if you want to evaluate the expression several times, you need to make
copies ofit, or to store it in a variable.

e Use the Solver (Chapter 7). Make your solution object the current equation by
pressing [SOLVIESTEQS , and press ESOLVRE to activate the Solver menu. Then,

40:D= 10SS 2ENE ETE = 20.n

The Solver makes it easy to solve again using different parameters. For N=3:

35N IETE = 5.
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9.5 Symbolic vs. Numerical Solutions

The following are reasons why a symbolic solution is desirable for almost any problem,
and preferable to the purely numerical answers that are provided by conventional calcu-
lators:

e A symbolic solution is a “global” solution. You can study the behavior of a problem

over a range of inputs, just by looking at the mathematical form of the solution.

e A symbolic solution acts as a “program” that allows you to determine numerical
results at any time. Once you have the symbolic solution, you can assign values to
the variables and evaluate the symbolic object to obtain specific numerical results.

e Even if you’re using the Solver for purely numerical answers, it’s faster when you

want a series of results to rearrange the current equation symbolically so that you
can use ZEXPR=Z rather than solving numerically each time.

e A symbolic expression tells you something about the calculation ‘“history” and
parameters that have contributed to an answer. Once you convert an expression to a
number, you wipe out the logical trail that led to the number.

To solve a problem symbolically means to take the equations that represent the problem
and rearrange them using the rules of algebra until you manage to isolate the unknown
variable’s name. (In this discussion, we will use the term equation to refer either to an
actual equation or to an expression f (x) that is understood to represent the equation
f(x)=0.) To “isolate” an unknown x means to obtain an equation of the form
x =f(,z ---), where x does not appear in the right side of the equation, and y, z,
etc. are known quantities.

The HP-28 provides two types of tools to help you obtain symbolic solutions once you
have entered the equation(s) for a problem. First, there are several commands for rear-
ranging expressions, that approximate the steps you carry out in pencil-and-paper calcu-
lations. Included among these is FORM, for detailed expression manipulation, EXPAN

(expand), for distributing multiplication and powers, and COLCT (collect), for combin-
ing like terms. Second, there are two automatic expression/equation solvers, ISOL and
QUAD, which can carry out several steps in the solving process at once.

ISOL and QUAD are certainly the easiest methods of solving for a variable. However,
both have certain restrictions in their application: ISOL yields a true solution onlyif the
unknown variable’s name appears just once in the equation. QUAD permits multiple
occurrences of the unknown’s name, but a QUAD result is only a solution if the equation
is second order (quadratic) in the unknown. For equations that don’t fit either of these
criteria, the typical HP-28 symbolic solving process is a combination of the two types of
solving tools. You use the expression manipulation commands to convert an equation
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into a form suitable for final solution by ISOL.

9.6 Automated Symbolic Solutions: QUAD and ISOL

The commands QUAD and ISOL automatically carry out several steps in the symbolic
solution of an expression or equation for an unknown. Each operates on an algebraic
object in level 2, and a global name specifying the unknown variable in level 1. Each
returns an expression representing the solution--the value of the unknown variable that
satisfies the original expression or equation. For example, in section 9.8 we use ISOL to
solve the equation

"((A-B)*X)=(- (A*Y) +C)’

for X, obtaining the expression

(-(A*Y)+C)/(A-B)’,

in which X does not appear. You can understand the result expression as the right side
of the equation 'X=(-(A*Y)+C)/(A-B)’'. ISOL returns only the expression, so that
you can store it in the unknown variable and use that value for the unknown in subse-
quent calculations.

If you would rather have your answer as an equation, you can use the following program
as an alternate form of ISOL:

<< SWAP OVER ISOL = >> 'ISOLE’ STO

ISOLE works just like ISOL, except that it returns an equation. You can do the same
for QUAD:

<< SWAP OVER QUAD = >> 'QUADE' STO

9.6.1 ISOL
ISOL solves an equation for an unknown much the same way you would with pencil and
paper. That is, ISOL finds the (first) term containing the unknown, and movesit to the
left side of the equation. It moves all other terms to the right side. Then, if the
unknown is contained in the argument of a function, the inverse of the function is
applied to both sides of the equation. If the result does not have the unknown by itself
on the left, then the whole process is repeated until only the unknown remains on the
left side. ISOL then returns the expression on the right side of the final equation as its
result. For example,
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'2#X+8=0" ‘X' ISOL 1= -4,

and

'A+B*X/C=D' 'X' ISOL = '(D-A)*C/B’

[In the original Version 1BB HP-28C, ISOL evaluates the solution expression before
returning it to the stack. Therefore, when you want a purely symbolic ISOL solution on
that calculator, you must purge the variables that appear in the original equation. ISOL
was modified in HP-28C Version 1CC and the HP-28S to omit the final evaluation.]

A result returned by ISOL is only a proper solution to the original equation if three con-
ditions are met:

1. the unknown variable name appears just once in the equation; and

2. the unknown appears only in the arguments of HP-28 analytic functions.

3. no variables in the equation contain algebraic objects or programs that have the

unknown in their definitions.

Condition 1 is easy to understand. If the unknown appears more than once, ISOL still
returns a result, but it is of limited value because the unknown will still be present in
the result expression. ISOL finds the first (from left-to-right) occurrence of the
unknown and solves for that, treating remaining occurrences as if they were different
variables:

'X+X=Y'" 'X" ISOL = 'Y-X

The “solution” you get in this case is not really a solution at all, but just a rearrange-
ment of the original expression. Your challenge, when you have an expression with
multiple occurrences of the unknown, is to use the various algebra tools provided by the
HP-28 to rewrite the expression so that it contains only one instance of the unknown
(this is just what you would do with pencil and paper). This process was illustrated in
section 9.4, and is described in detail in sections 9.8.

Condition 2 is really part of a circular definition--ISOL will only work with analytic func-
tions, but part of the definition of an HP-28 analytic function is that the HP-28 “knows”
its inverse and hence can isolate its argument. The HP-28 term analytic is derived from
the mathematical definition of an analytic function as one that is continuous and dif-
ferentiable. If you inspect the HP-28 function set, it is usually easy to figure out why a
particular function is analytic or not if you keep the mathematical definition in mind.
Functions like IP, FP, MOD, or MANT are not continuous, and hence are not classified
as analytic. ABS is an example of a function that is continuous but not differentiable--
it’s slope changes abruptly at 0.
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Condition 3 means that you must be aware of any occurrences of the unknown in the
objects stored in any of the other variables in the expression. ISOL only works at the
“surface level” of an expression. It does not execute any of the variable names to sub-
stitute their values. For example, if you isolate B in ‘A+B=C’, the result is 'C-A’.
Butif A has the value ‘B-C’, then the result ISOL returns does not represent a proper
solution. In that case, you need to use SHOW to make all references to B explicit:
'A+B=C' ‘B’ SHOW returns ‘B-C+B=C’, which you can then proceed to solve for B.

When ISOL returns the Unable to Isolate error message, it means that its argument

equation does not satisfy condition 2 (or does not contain the specified variable at all).
There is no error generated when condition 1 is not met. This has the disadvantage that
when you use ISOL in a program, the program will continue even if the result returned
by ISOL is meaningless in some cases. To protect against this situation, you can substi-
tute the following program ISOLCK for ISOL. ISOLCK tries to isolate the variable
twice--once from the original expression, and once from the result. If the second ISOL
does not error, then the variable occurred at least twice in the expression and the pro-
gram will abort. ISOLCK is not foolproof, however, because the error could be caused
by the unknown appearing (the second time) in a non-analytic function.

 

 

 

 

 

  
 

 

ISOLCK Isolate and Check

level 2 level 1 | level 1

'algebraic’ 'name’ or 'solution’

<<

- X

<< 31 SF Activate LAST.

x ISOL First isolation.

IFERR DUP x ISOL An error means a good solution.

THEN DROP2 Discard the extra x and solution.

ELSE DROP "Multiple” ABORT Return a message and quit.

END

>>

>>

ISOLCK sets flag 31.
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9.6.2 QUAD

QUAD is designed for solving quadratic equations ax? +bx +c = 0, where x is the
unknown variable, and a, b, and ¢ are constants with respect to x. QUAD does not
require the equation to have this form. It takes an arbitrary expression or equation and
converts it to a second-order polynomial in the specified variable by computing a
second-degree MacLaurin polynomial (like TAYLR). This representation is exact if the
original expression is quadratic in the variable. QUAD then applies the quadratic for-
mula to the coefficients in the polynomial to obtain its solution.

As part of the process of determining the coefficients, the original algebraic argument is
evaluated. Therefore, if you want to prevent substitution for the names in the algebraic,
you must purge the corresponding variables before executing QUAD.

In keeping with the HP-28’s generally conservative approach to rearranging expressions,
QUAD does not attempt to constrain its result into a standard form, so you may have to
do some manipulation of the result to make it look like a “textbook” solution. For

example,if you solve the standard quadratic equation:

‘A$X*2+B*X+C=0" ‘X' QUAD

=z '(~B+s1#%V/(B"2-4%(A*2/2)+C))/(2*(A*2/2))’,

the result is clearly not as compact as it might be. You can improve the appearance of
the result with COLCT:

COLCT = '5%(V/(-(4*A+C)+B"2)*s1-B)/A’,

which is closer to but still not quite the same as the textbook result

-B+VB2-44C
M 9

however, the two forms are equivalent when evaluated. Note that the + is represented
in the QUAD result by the variable s1. This concept is explained in the next section.

9.7 Multiple Roots

A fundamental principle of algebra is that many expressions or equations, even some
quite simple looking, have more than one solution (root). This principle is recognized
in the behavior of QUAD and ISOL.
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Quadratic equations always have two solutions, which are commonly combined into a
single expression with the use of a + sign. QUAD achieves this combination by return-
ing both solutions as a single expression containing the (global) name s1. s1 represents
a *; it is called an arbitrary sign. The use of a global name in this manner gives you a
means of choosing one sign or the other. To choose the positive root, you store +1 in

s1 and evaluate the expression. For the negative root, you similarly use —1. You can
also leave s1 without a value as long as you like, so that you can perform additional cal-
culations on both roots together.

Similarly, ISOL returns a single expression representing all possible solutions for its
algebraic argument. Such solutions may contain one or more arbitrary signs, so ISOL
uses the names s1, s2, ... to represent each successive + required by the solution. ISOL
may also include the global names n1, n2, ... as needed in a solution. These names
represent arbitrary integers. The arbitrary integers may each take any integer value 0,
+1, +2, ..., for each of which ISOL’s result will evaluate to a specific solution to the ori-

ginal expression. For example,

RAD 'SIN(X"2)=Y’ 'X’' ISOL r= 's1#V/(ASIN(Y)*(-1)*n1+*n1’

Here you can observe one arbitrary sign s1 and one arbitrary integer n1. n1 appears
twice in the expression, meaning that the same choice of integer must appear in both
places.

The appearance of arbitrary signs and integers may be confusing if you expect to find a
solution to @ problem. However,it is not ISOL or QUAD thatis introducing complexity
into your problem; they are just showing you the mathematically complete result, and
not trying to choose one particular root as “better” than any other. As a matter of fact,
there is no automatic criterion that the commands could use to choose one root over
another; that is a choice that only you can make by considering factors of the problem
that are separate from the equation being solved.

For example, consider the equation x> = y. For any y, there are two values of x that
satisfy the equation, x = y and x = —y. Mathematically, there is no distinction between
the two; either could be the correct choice for a particular physical problem. You might
prefer the positive root because it “looks nicer,” but such esthetic judgments are not
practical for an automated procedure like ISOL. Besides, —y might be the preferred
choice on other grounds.

This problem is obscured somewhat in the Solver, which only returns a single answer.
In cases with multiple roots, the Solver usually (but not always) returns the root that
happens to be closest to the value stored in the unknown variable (the “initial guess”)
when the solving starts. By supplying an initial guess (section 7.4), you are choosing a
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particular root in advance. If you don’t supply an initial guess, you must take your
chances with whatever value was left in the unknown variable by a previous calculation.
When the variable doesn’t exist, the Solver uses zero as an initial guess--which may or
may not be a good choice for the problem at hand.

The HP-28 does provide a flag-controlled mode called principal value mode, in which a
default choice for all arbitrary signs and integers is supplied automatically. When this
mode is active (flag 34 set), arbitrary signs are always chosen to be positive, and arbi-
trary integers are set to zero. The purpose of this mode is to provide an answer to a
problem, perhaps to give you a general idea of the appearance of the answer, without

the distraction of the arbitrary constants. However, the results returned by ISOL and
QUAD in this mode may not be appropriate at all for a real problem.

For example, consider the equation x> = - 1. You can see by inspection that x = — 1 is
one root; imagine that —1 is the correct choice for a particular problem. Solve this
equation for x in principal value mode:

34 SF 'X"3=-1" 'X’ ISOL = (.500000000001,.866025403784).

The complex result is one of the three cube roots of -1, but it’s not the one you’re
after. Now try solving again, with principal value mode off:

34 CF 'X"3=-1" 'X" ISOL

= 'EXP(2*w*i*n1/3)*(.500000000001,.866025403784)".

Translated to common notation, this result is

e2m’n1/3(%, _\gi)’

where we have replaced the approximate decimal values with fractions. n; is an arbi-
trary integer, which means that you can choose any integer value 0, +1,+2, - - - | for n,
to obtain a cube root of —1. There are only three distinct roots for a cubic equation,
which you can obtain with any three consecutive values of n;. Other values of n, just
repeat the same roots. The following table lists the values returned by the HP-28 along
with the exact roots, for n; = 0, 1, and 2 (the errors in the last decimal place arise from
the inaccuracy of the floating-point representation of 1/3):
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n, HP-28 Result Exact Value

0 (500000000001,866025403784) (1,%
1 (~1,4.465E—12) 1
2 (500000000001,-.866025403784) (-1, Y2

Unless you force it by setting principal value mode, the HP-28 does not attempt to
choose one possible root over any other when you use ISOL. There’s really no
mathematical grounds on which it could make such a choice. As you can see from this
example, the “obvious” choice of n; = 0 does not return the “obvious” answer to the
problem, x = -1,

You might wonder why ISOL and QUAD use arbitrary integer and sign names in their
results, rather than perhaps returning one or more expressions, each of which represents

a different root. There are three good reasons:

1. In general, a problem may have any number of roots, even an infinite number. It
is obviously impossible to return an infinite number of objects, and the HP-28 has
no way to tell that there is a finite set of different roots among the infinite possi-
bilities represented by one or more arbitrary integers.

2. By returning a single expression to represent a general result, that expression is
immediately suitable for use as an argument for further operations, symbolic or
numerical. Dealing with even a finite set of multiple results would be very diffi-
cult in a program.

3. The use of ordinary names to represent the arbitrary constants allows you to use
the normal methods available for variables (STO, the USER menu, the Solver,
etc.) to select values for the constants.

9.7.1 Using the Solver to Select Roots
The Solver provides a convenient method for selection of individual roots from a multi-
ple root solution provided by ISOL or QUAD. By storing an expression returned by one
of these commands as the current equation, you obtain a Solver menu containing all of
the arbitrary signs and integers, any other variable names in the expression, and the
ZEXPR=Z key. Then you can use the menu keys to select values for the variables, and
press EEXPR=E to obtain the evaluated expression.

To illustrate, return to the example x*> = - 1:
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Keystrokes: Results:

Il TEST] 35 =SF= 36 =SF= Select symbolic evaluation.
34 =CF= Principal value mode off.
Il [MODE] 3 EFIXE 3 decimal places.

'X"3=-1'
X' [SOLV]ZISOLE 1: "EXP(2*m *i*n1/3)*

(0.500,0.866)"

ZSTEQ= ESOLVRE Make the result the

current equation, and

activate the Solver menu.

n1 is the only variable in the current equation. To compute all three roots, use n1 = 0,
1, and 2:

Keystrokes: Results:

0 EN1ESEXPR== 1 (.500,.866)

1 EN1ZSEXPR== 2: (.500,.866)
1: "EXP(2%*i*/3) *

(0.500,0.866)’

Il -NUM] 2: (.:500,.866)
1:  (-1.000,4.465E - 12)

 

2EN1=ZeExPR=Z [lI-NUM] 3: (0.500,0.866)
2:  (-1.000,4.465E-12)
1: (0.500, -0.866)

The stack now contains all three cube roots of —1.

9.8 Expression Manipulations

The most common operations you perform when solving algebraic equations are these:

® Reordering terms. A frequent step in equation solving is moving all of the terms con-
taining the unknown variable together so that multiple occurrences of the unknown
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can be merged into a single occurrence. This is achieved in the HP-28 by means of
various operations in the FORM menu, especially the association operations A~ and
~A. Also, to move one term from one side of an equation to the other, you can sub-

tract the term from both sides using the ordinary — command.

Expansion--distribution of products or powers over sums. The conversion of

aX(b +c) into aXb +aXc is an example of the distribution of a product over a
sum. An example of the distribution of a power is the expansion of (a + b)? into
a? + 2ab + b%. Expansion in the HP-28 is represented by EXPAN, and by the D-
and <D operations in the FORM menu.

e Merging terms. Once you have all of the terms containing an unknown gathered

As

1.

2.

together, the next step is usually to combine as many of these terms as you can, to
minimize the number of occurrences of the unknown--to a single occurrence, if pos-
sible. The principal tools for this purpose are COLCT and the merge operations M-

and <M in FORM.

an example of HP-28 algebra, consider solving the equation a (x +y) = bx + ¢ for x:

Represent the equation with the algebraic object 'A*(X+Y)=B*X+C’.

Distribute the term A*(X+Y):

EXPAN = 'A*X+A*Y=B*X+C'.

Move the term A*Y to the right side, by subtracting it from both sides:

DUP 6 EXGET - COLCT 1= 'A#X=-(A*Y)+B*X+C’

The sequence DUP 6 EXGET extracts a copy of the term A*Y. You can also just
type 'A*Y’, but EXGET can save you some effort if the term is large.

Similarly, move B#*X to the left:

DUP 11 EXGET - COLCT 1= 'A#*X-B#X=-(A*Y)+C'

Now merge the terms that contain X. To achieve this, use FORM:

FORM o= '((([a] *X)-(B*X))=(-(A*Y)+C))’

Move the FORM cursor to select the —:

SFEERIESRE = (((A*X) [E] (B*X)) =(— (A*Y) +C))’

X is a common right factor of the two terms that are the arguments for —. There-

fore, you can merge the terms:
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NEXT|EM-2 = '(((A-B)[*X)=(-(A*Y)+C))’

7. Press to end FORM:

=z '(A-B)*X=-(A*Y)+C’

8. Now there is only one occurrence of X, so the equation can be solved by ISOL:

'X' I1SOL = '(-(A*Y)+C)/(A-B)’

This example illustrates the use of the three primary symbolic manipulation commands,
EXPAN, COLCT, and FORM. Each of these allows you to alter the form of an expres-
sion without changing its net value. EXPAN and COLCT are “broad brush” symbolic
manipulation commands that perform wholesale rearrangements. They both have the
shortcoming of trying to do many operations at once, which you can’t control individu-
ally. This means that in many cases you may be surprised or dissatisfied with the results
returned by these commands, because they don’t match some particular form that you
desire. Consider, for example, the expansion of x3. All of these forms are formally
equivalent: xxx, x2x, and xx2. Which form should EXPAN return? There is no “right”
answer, so the HP-28 makes one choice, namely xx2:

'X*3' EXPAN 1= 'X*X"2'.

You can obtain the other choices by using FORM to commute the arguments of the *

(switching 'X*X"2’ to 'X"2#*X") or using EXPAN again (to obtain 'X*(X*X)").

FORM, on the other hand, suffers from being foo specific. Thatis, it allows you to rear-
range expressions into a wide variety of equivalent forms, but one careful step at a time.
The path of individual operations you need to follow to change an expression from one
form to another may not be obvious, particularly since you have to work through a maze
of parentheses to identify the particular subexpressions or functions you want to work
on. FORM requires a good deal of skill and practice for any but the most straightfor-
ward rearrangements; for complicated situations you may just want to resort to EDIT.

The best approach for general use of these three commands is to use COLCT and/or
EXPAN one or more times on an expression to get it roughly into the form you want.
Then use FORM to rearrange parts of the expression, until you obtain the desired final
version. For complicated expressions, you can extract subexpressions using EXGET,
rearrange the subexpressions using the same methods, and substitute the subexpressions
back into the main expression using EXSUB.

In the next two sections we will describe the operations of COLCT and EXPAN. In
most cases you will not need to follow their workings to anywhere near the detail we
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present. You may even want to skip these sections at a first reading. Typically, it is
easier to use these commands and “see what you get” than to try to predict the out-
comes exactly. Keep in mind that the net value of an expression is the same before and
after you apply either of the commands; you use them only to rearrange the expression,

either as a preliminary to ISOL, or to change the order of calculations, or just to recast
it into a more familiar form.

9.8.1 COLCT
The purpose of COLCT is to simplify an expression by combining “like terms.” A
“term” to the HP-28 is an argument of + or —; for example, in the expression
2sinx +y, the terms are 2sinx and y. “Like terms” are terms that differ only in their
numerical coefficients. COLCT tries to reconstruct each term of an expression into the
form c *subexpression, where c¢ is a real or complex number, and then to combine all
terms with the same subexpression by adding their coefficients c. Any terms that consist
only of numbers are combined into a single term. In addition to this simple reconstruc-
tion, COLCT tries to improve the identification of like terms by applying some standard-
ization to the terms:

e Functions whose arguments are numbers are executed. In the expression
'X+5%SIN(30)’, the arguments of SIN and * are numerical. COLCT therefore
returns ‘X+2.5’ (in degrees mode).

e Factors (arguments of *) in a term are put into a standard order, and combined into
powers where appropriate:

'X#Y*X' COLCT = 'X"2#Y’.

e Factors of similar quantities raised to powers are combined by adding their
exponents:

'X+Y)"Z*#X+Y)"T' COLCT = '(X+Y)"(Z+T)'.

Even these rearrangements aren’t enough to ensure that all terms which may appear
suitable are actually combined by COLCT. For example, consider '2*(X+Y)+X'. You
might expect COLCT to modify this expression to '‘3*X+2*Y’'. However, COLCT leaves
this expression unchanged, because COLCT does not distribute multiplication (in this
case, it does not expand '2*(X+Y)' into '2*X+2*Y'). Without distribution, the terms
'2#(X+Y)’ and ‘X’ do not contain common non-numerical factors, so they are not com-

bined.

The basic operation performed by COLCT is association--the reordering of the argu-
ments and functions in multiple sums and differences, and the reordering of factors in
multiple products (and quotients). The associative property of addition (and
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subtraction) means that the order of addition doesn’t matter: @ + (b +c) has the same
value as (a +b)+c. Similarly, (a-b)c has the same value as a(b-c); this is the associa-
tive property of multiplication. COLCT applies these rules systematically throughout an
expression. An easy way to understand COLCT is to view an expression in its RPN
form; for example, (@ +b)+(c +d +e) is

a b + ¢c d + e + +.

Here the summands (arguments of +) a, b, ¢, d, and e represent any subexpressions
that do not conmsist of + (or -) and its two arguments, such as 2x or sin(3x + 4).
COLCT rearranges this expression by

1. Moving all of the summands g, b, ¢, d, and e to the left, and the + operators to

the right:

a b cde + + + +.

2. Sorting the summands into a standard order.

3. Combining consecutive summands that are the same except for a numerical coeffi-
cient by adding the coefficients.

This process is applied recursively to the individual summands, so that collection of
terms takes place at several levels at once.

To illustrate the process, consider the expression 'Y+2*(X+Y+X)+(X+Y+3*X)'. In

RPN form, this is

Y 2 XY + X + % + XY + @ X % + +

Here we have inserted parentheses to help mark the sequences in which independent
collection can take place. Now apply COLCT:

1. Move the summands to the left:

Y 2 XY X + + % XY 3 X % + + + +

2. Sort the summands:

2 X XY + + ® X @ X ®$YY + + + +

3. Combine consecutive common terms:

2 2 X ®» Y + % 4 X % @2Y ¥ + +

Converting back to algebraic form, this is

'2%(2%X+Y) +4%X+2*Y’
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Step 2, sorting the summands, may appear a bit mysterious. The sorting is necessary for
the combination of like terms, but often the final order produced by the sorting does not
correspond to any obvious rules. For example, ‘A+B+Q+R’ COLCT iz ‘A+Q+B+R’,
so the sorting is not a simple alphabetization. Actually, the ordering algorithm used by
COLCTis designed for optimum speed, and depends on the idiosyncrasies of the HP-28
CPU and the way it stores bits of information in memory. The design of COLCT
emphasizes speed rather than some form of standard ordering also because any choice
of “standard” ordering would be arbitrary, and generally as likely to be “right” or
“wrong” as any other, including the one actually used.

9.8.2 EXPAN
Although the usual effect of COLCT is to make an expression “smaller” by combining
terms, and of EXPAN is to make it “bigger” by expanding products of sums, you should
not consider them as inverses of each other. Whereas COLCT is based on the associa-
tive properties of addition and multiplication, EXPAN is derived from the distribution of
products, quotients, and powers of sums. The simple distribution rules are

e multiplication: a(b+c) = ab + ac.

e division: (b+c)/a = b/a +c/a.

e involution (powers): a®*¢ = a%a®.

Each of these rules has a straightforward representation in the actions of EXPAN:

'A¥(B+C)’ EXPAN 1= 'A*B+Ax*C’

'B+C)*A’ EXPAN 1= 'B*A+C*A’

'B+C)/A’ EXPAN 1= 'B/A+C/A’

'A*(B+C)’ EXPAN = 'A"B*A"C’

(You can also substitute — for + in the above examples.)

When both arguments of a product are sums, only the second sum is distributed:

'(A+B)*(C+D)’ EXPAN 1= '(A+B)*C+(A+B)*D’

There are two additional special cases of the distribution of powers:

n-1e Expressions of the form a” expand to a-a”~ ", where n is a positive integer real

number. For example,
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'A”5" EXPAN 1= 'A*A™4’,

e Squares of sums are expanded from (a +b)? to a® + 2ab + b?:

"(A+B)*2' EXPAN = 'A*2+2+A+B+B"2’

'SQ(A+B)’ EXPAN = 'A*2+2+%A*B+B"2’

It is also possible to distribute the logarithm of a product into a sum or difference of
logarithms:

'LN(A*B)’ EXPAN = 'LN(A)+LN(B)’

'LN(A/B)’ EXPAN = 'LN(A)-LN(B)’

EXPAN distributes the antilogs of sums and differences as follows:

'EXP(A+B)’ EXPAN 1= 'EXP(A)*EXP(B)’

'EXP(A-B)’ EXPAN 1= 'EXP(A)/EXP(B)’

Similar expansions hold for the base 10 versions of these functions (LOG and ALOG).

These cases cover all of the potential rearrangements performed by EXPAN, if you gen-
eralize them by letting A, B, and C stand for any subexpressions. However, EXPAN
does not necessarily make all possible expansions in an expression; specifically, EXPAN
does not expand any subexpressions that are part of a distribution. For example,

'A*(B*(C+D)+E*(F+G))’ EXPAN 1= 'A*(B*(C+D))+A*E*F+G)).’

To understand this example,it’s useful to write the expression in Polish notation:

*(A, +(*B,+(CD)) , *E+(F.G)))
EXPAN works into the expression, looking for products for which at least one argument
is a sum [i.e. patterns of the form *(+(a,b),c) or *(a, +(b,c)) ]. When it finds one
in any subexpression, it distributes the multiplication, then does not attempt any further
operations on the arguments of the sum. In the current example, the outermost subex-
pression is such a product, so the multiplication is distributed. The arguments of the
sum, (B*(C+D)) and (E*(F+G)) are not expanded, even though they themselves are
products of sums.

If you expand the example expression twice with EXPAN, the “inner” products are
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expanded. The result of the first expansion looks like this in Polish form:

+(*(A, *B,+(CD)) ). *(A, *E+(F.G)))
Now the outermost subexpression is a sum, which is not a candidate for expansion.
Therefore, in the second use of EXPAN, each of the arguments of the outer sum is con-
sidered in parallel. Both arguments are products, but neither is a product of a sum, so
the analysis branches again, into four subexpressions--the two arguments of each of the
“outer” products. Of these, two--*(B,+(C,D)) and *(E, + (F,G))--are suitable for expan-
sion, and are duly expanded, completing the operation in those branches. The other two
branches--the two A’s--are dead ends, so the expansion is complete, and the second
EXPAN returns

'A*(B*C+B=*D) +A*(E*F+ E*G))’

9.8.3 Simplifying Polynomials
A very convenient method of rearranging an expression into a polynomial in a specific
variable is provided by the TAYLR command (section 9.9.2). TAYLR approximates an
arbitrary expression with a finite-order MacLaurin polynomial (expansion around zero);
if the expression is already a polynomial of order n, the approximation is exact if carried
out at least to degree n.

For example, to expand the expression '(X+Y)"4' into a standard polynomial, you need
to execute EXPAN and COLCT several times. It’s hard to tell in advance how many
EXPAN’s are needed. However, you can achieve the rearrangement in a more straight-
forward manner using TAYLR:

'(X+Y)*4' 'X' 4 TAYLR COLCT

[ B*X2%Y2+4%X*Y3+4*X3RY+X4+Y4.

To use TAYLR, you must specify the name of the polynomial variable (level 2), and the
order of the polynomial. If you don’t know the order in advance, you can try any
number that you are sure is larger than the actual order. You obtain the fastest execu-
tion if you specify a number equal to the polynomial order.

9.8.4 FORM
FORM is the ultimate “conservative” HP-28 symbolic manipulation command. It pro-
vides an extensive menu of one-step operations that allow you to rearrange an expres-
sion into almost any form you want. It won’t make any changes that you don’t specify;
but this means that a substantial rearrangement can be a formidable process.

FORM shares with EXPAN and COLCT the fundamental property that it is an identity
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operation--it never changes the formal value of an expression. You can use it to rear-
range an expression into a form more suitable for further calculations, with the confi-
dence that FORM won’t let you make mistakes that alter the symbolic value of the cal-
culation that the expression represents. This differs significantly from the ordinary syn-
tax checking that an editor like EDIT or VISIT performs.

The basic use of FORM centers around subexpressions defined by functions and their
arguments. Associated with each function is a menu of operations that correspond to
various rules of mathematics that apply to the function. A function’s arguments in a
subexpression determine which of those operations is meaningful in each particular case.
For example, the FORM operations defined for * are commutation, association, distri-
bution, merging, double negation, double inversion, and replacing the product of a loga-
rithm with the logarithm of a power. In most cases, only a few of these can be applied.
For 'A*B’, the only options are commutation (to 'B*A’), double negation (to
'~ (-A=*B)"), and double inversion (to 'INV{INV(A)/B)").

The mechanics of using FORM are covered adequately in the HP-28 manuals. The
applications of FORM in the examples in sections 9.4 and 9.8 are typical of its most
common use, which is to restructure an expression for use with ISOL. Our discussion
here is limited to some observations on the individual FORM operations.

9.84.1 Commutation: «—

Commutation is the exchange of the arguments of a two-argument function. The com-
mutative laws of arithmetic can be summarized as

a+b =b+a Addition

a-b=-b+a Subtraction

ab =ba Multiplication

s _1 Division
b~ b

a

A typical use of commutation is to reorder the terms of an expression so that terms with
a common factor can be grouped together as a preliminary to factoring out the common
factor, e.g. reordering ax + by + cx to ax + cx + by, by commuting the arguments of the
second +.
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9.8.42 Association: -A and A~

Association is a change in the precedence of calculation, the order in which the opera-
tions are carried out. A common form of association is the conversion of @ + (b +¢)
into (@ +b) +c. The fact that this represents a change in the order of calculation is
easily apparent when you write the two expressions in RPN form, in which calculation
proceeds from left to right:

a+b+c) iIs a b ¢ + +

(@a+b)+c is a b + ¢ +

There are two functions involved in any association (the two +’s in the example); in
FORM, you need to select the one that defines the entire subexpression that is associ-
ated. In a+ (b +c), the first + should be selected; in (@ +b)+c, the second. Further-
more, you need to specify a “direction” for the association. In an expression like
(@ +b) + (c +d), the middle + can be selected for association in combination with
either of the other two +’s. £-AZ (associate left) works when the selected operatoris to
the left of the second operator, moving the parentheses to the left. For example,

(A+B)[HJ(C+D) A= = ((A+ B)+ C)[=ID.

Similarly, ZA-= works when the selected operator is on the right. The choice of “right”
and “left” in the operations’ names is rather arbitrary--equally good reasons could be
offered for reversing the names. It’s often easier to try one of the two choices and see
if you get what you want, than to remember which is which. If you get the wrong effect,
use the opposite operation.

Notice that the selected function changes after A~ or <A. The selected object after any
FORM operation is always the object that defines the new subexpression that contains
all of the objects from the original subexpression.

9.8.4.3 Distribution: -D and D-
The distribution operations in FORM allow you to perform EXPAN-like expansions on
individual functions and their associated subexpressions. Like association, distribution
involves two functions, and you must select the one that defines the subexpression con-
taining both. For example, to distribute the multiplication in the expression 'A*(B+C)’,
you select the *, then press E-D= . This returns 'A*B+A*C’, in which the + is
highlighted, sinceit is the defining object for the new subexpression.

Two distribution operations are necessary because of the ambiguity of expressions like
(@ + b)*(c +d). D- distributes the sum on the right:
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(A+B)[#] (C+D) ED~% = ((A+B)*C)[+] ((A+B)=*D).

«D distributes the sum on the left:

(A+B)[*] (C+D)
 
<D = ((A*(C+D)) (B*(C+D).

For logarithms and antilogarithms, which are functions of one argument, there is no
ambiguity, and only D- is allowed. Thus,

(A*B) ED~= = LN(A) [*]LN(B),

but you can not apply +D.

9.8.4.4 Merging: -M and M-
Merging is the inverse of distribution. That is, where distribution expands a-(b + ¢) into
ab + a-c, merging reverses the process, factoring ab + a-c into a+(b +c). Two forms
of merge are necessary to handle ambiguous cases:

A+B [3] A+B = (A+A)[®B, 

and

 
A*B[+]A*B =M = A[ (B+B).

Note that ~M and D- are inverses of each other, as are M- and ~D. <M also handles

the same logarithm and antilogarithm cases (in the opposite sense) as D-; for example

EXP(A) W EXP(B) E-MZ 1= EXP(A+B).
 

9.8.4.5 Prefix Operations: »( ), —(), 1/(), DNEG and DINV
This group of operations is organized around the “prefix operators” — and INV, which
also happen to be their own inverses: @ = —(—a) and @ = INV(INV(a)). The basic
operation is distribute-prefix-operator, ~( ), which “pushes” one of these operators “into”
its parentheses by altering the argument. For example,

=] (A+B) == = -(A)[=-]B
 

The inverse of »( ) depends on the operator thatis distributed.

e For negation, the effect of »( ) is reversed by — (). The latter is called double negate
and distribute, since it is equivalent to double negation (see below) followed by a dis-
tribution of a — prefix operator. Example:
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[E1(A*B) 2= = -(A)[*B.

and

-(AB £-0F = [-](A*B).
o Inverse ofpower or inverse of inverse-product:

NVl (A"B) £ = A[f] -B.

(INV(A)/B) =0 = A[#]B.

 
To return either of these subexpressions to its original form, you must use £1/()=
which inverts a subexpression by inverting its arguments. Another example of 1/( )
is

BB ((A) S0E o [ EXP(-(A).
e Double inverse:

(INV(A)) =0 o= [Al.

The reverse operation is DINV (double-inversion) which takes any subexpression 4
and changes it into INV(INV/(A)).

e Double negative:

=1(-(A) = [Al.2

The reverse operation is DNEG (double-negation), which takes any subexpression 4
and changes it into —(—(A4)).

9.8.4.6 Identities: *1, /1, *1, and +1—1
These four simple identity operations can be used with any subexpression. They are
used as preliminaries for merging, in cases where some symmetry is lacking that
prevents the merge from working. For example, if you want to factor 'A*B+A’ into
‘A*{B+1)’, you can’t use M- or ~M because the two arguments of the + are not both
products. You can achieve the factoring like this:

(A*B)+[A] E*1= o= (A*B)+(A[*]1)

SEEIFE = (A+B) [ (A1)
NEXTIE-ME = A*(B+1).

 
 

Another example:
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 (A”B)*[A] 71 o= (A"B)*(A[11)

ENTERIE[-IZE[-1Z = (A"B)[* (A™1)

NEXT][NEXT]Z-ME o= A~(B+1).

/1 and +1-1 are included for completeness, but they have little general purpose use.

9.8.4.7 Adding Fractions: AF

The AF operation allows you to combine a sum or difference of two subexpressions, one
or both of which are ratios, into a single numerator over a common denominator. The
most general form of this operation is

(A/B)[+](C/D) ZAFE = ((A*D)+(B*C)) [/ (B*D)

The + in this example can be replaced by —. Two additional points:

e AF only requires one of the two original subexpressions to be a ratio--you can com-
bine 'A+B/C’ into '(A*C+B)/C’, for example.

e If the two subexpressions have the same denominator, use M- rather than AF, so
that the final denominator is the same as the original.

9.8.4.8 Logarithms: L* and L()
L* and L( ) are a pair of operations based on the equivalence Ina® = (lna)b. L*

transforms the log of a power LN(A"B) into the product LN(A)*B; L( ) reverses the
transformation. Either works with natural logs (LN) or common logs (LOG). L( )
expects the log to be the first argument of the *; if you have the form B*LN(A), you will
have to commute the arguments with —— before applying L( ).

9.8.4.9 Exponentials: E” and E()

E” and E( ) are based on the equivalences e®® = (%)’ and e?”® = (¢%)®. E" converts

left-to-right in these equations, changing EXP(A*B) into (EXP(A))"B, for example. E()
is the right-to-left operation. Either works with / in place of *, and with ALOG instead
of EXP.

9.8.5 Subexpression Substitution
EXPAN, COLCT, and FORM let you rearrange an expression while preserving its value.
It is also possible to substitute alternate objects or subexpressions into an expression,

using OBSUB and EXSUB, respectively. These commands’ counterparts, OBGET and
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EXGET, reverse these processes, enabling you to extract an object or subexpression from
an algebraic object.

The use of the four commands requires an index to “point” to an object or subexpres-

sion, analogous to the index that identifies a particular element in an array or list. The
index of an object in an algebraic is just the position of the object in the expression or

equation, counting objects from left-to-right (ignoring parentheses). For example, in the
expression 'A+B#*C’, Ais index 1, + is 2, B is 3, *is 4, and C is 5. The index of a
subexpression is the index of the object that defines the subexpression: in the example,
index 1 refers to A, 2 to A+B*C, 3 to B, 4 to B*C, and 5 to C.

To illustrate a simple form of substitution, suppose that you decide to replace the B in
the expression 'A+B=*C’ with the number 5. You could store 5 in the variable B, then
evaluate the expression, but that would also replace A and C with their values. Instead,
use this sequence:

'‘A+B*C’ 3 5 EXSUB 1= 'A+5*C’

EXSUB requires the target algebraic object to be in level 3, the index in level 2, and the
subexpression-to-substitute in level 1. The latter can be a number, a name, or another
algebraic object. You can substitute an expression just as easily:

'A+B+C’ 3 'SIN(D)’ EXSUB t= 'A+SIN(D)*C'.

EXSUB replaces the entire subexpression indicated by the index. For the index 3, B is
the whole subexpression. But if you change the index to 4, which points to the *:

'A+B*C’ 4 'SIN(D)’ EXSUB = 'A+SIN(D)'.

The subexpression B*C is replaced by the substituted SIN(D). You can even replace
the entire subexpression by indicating the “outermost” object, in this case the +:

'A+B*C’ 2 'SIN(D)’ EXSUB = ’'SIN(D)’'.

EXGET is the reverse of EXSUB, allowing you to extract the indexed subexpression from
the original algebraic. For EXGET, the target algebraic must be in level 2, and the
index in level 1:

'A+B*C’' 3 EXGET = 'B’'.

'‘A+B*C' 4 EXGET o= 'B*C'.
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By using OBSUB, you can replace a single object, including a function, with another.
As with EXSUB, the target algebraic must be in level 3, the index in level 2, and the
substitute object in level 1. However, the substitute object must be contained in a
(one-element) list:

'A+B+C' 4 {+} OBSUB = 'A+(B+C)".

By putting the object in a list, you can include built-in objects, which can’t be entered

directly onto the stack. OBSUB requires the substitute object to have the same number
of arguments as the object that it is replacing, to preserve the structure of the target
expression:

'A+B*C' 4 {SIN} OBSUB = Bad Argument Value

Notice that for names and numbers, OBSUB and EXSUB are equivalent. However, it’s
generally easier to use EXSUB for substituting these object types since EXSUB doesn’t
require them to be in lists.

OBGET lets you pull one object from an algebraic, returning the object in a list:

'A+B*C’' 2 OBGET = {+}.

Contrast this result with that of EXGET, which returns the entire expression:

'A+B*C’ 2 EXGET = 'A+B*C’

A special form of EXGET is included in the first-level FORM menu. Pressing SEXGET=
while the FORM display is active terminates the FORM operation, and returns the
(entire) current FORM object to level 3, the index of the highlighted object to level 2,
and the selected subexpression to level 1. This provides a simple method for making a
substitution:

1. Execute FORM.

Use the FORM cursor to point to the subexpression you want to replace.

Press SEXGET= .

Drop the old subexpression from level 1.

Enter the new subexpression.

S Press EEXSUBE .
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9.9 Calculus

The HP-28’s symbolic mathematical capabilities extend into the realm of the calculus.
In particular, the derivative function d can symbolically differentiate algebraic expres-
sions containing almost any combination of HP-28 analytic functions (section 3.1).
Based on the differentiation command, there is also TAYLR for computing Taylor’s poly-
nomials; based in turn on TAYLR, there is a limited symbolic integration facility. The

integral command [ can symbolically integrate expressions that are polynomials in the
variable of integration. If the integrand is not a polynomial, / will invoke TAYLR to
make a polynomial approximation to the integrand, then integrate the polynomial. This
form of symbolic integration augments a general purpose numerical integrator.

9.9.1 Differentiation
The derivative function d is quite straightforward to use, except that you must choose
whether to carry out a chain-rule derivative in steps or all at once. In either case, you
have to identify

a. the expression to be differentiated, and

b. the variable of differentiation.

Since 9 is a function, you can specify these items as two RPN stack arguments, or as
arguments for d in an algebraic expression. This choice of RPN or algebraic format
also determines whether the differentiation is performed in a single operation (RPN) or
one step at a time (algebraic).

To use d as a stack command, you must enter the expression to be differentiated into
level 2, and the name of the differentiation variable into level 1, then execute 4. The
result is an expression representing the derivative of the original expression. It is fully
differentiated--the d function does not appear in the result.

The algebraic form of a derivative does not quite follow the normal HP-28 conversion
from a stack command to a function, where A B 9 should become 'd(A,B)’. Instead, the
algebraic form of 9 is modeled after the standard written form DzA4 (derivative of A
with respect to B): this derivative is expressed in HP-28 syntax as 'dB(A)’. The
parentheses are necessary to separate the expression A from the name B, and from the
remainder of the algebraic object, if any. The symbol 9 is used rather than d or D to
leave the ordinary letters available for names. d4/dB is perhaps a more common writ-
ten form than DgA, but given the general HP-28 rules for naming variables, 'dA/dB’
could also mean dA divided by dB, so this form is not used.

d also differs from other HP-28 functions in that it executes differently as a stack com-
mand than it does when it is part of an algebraic object. In the RPN case, the
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derivative is repeatedly executed until the 0 function is no longer present. When, how-
ever, an algebraic containing 9 is evaluated, the derivative is only carried out with a sin-
gle application of the so-called chain rule of differentiation. This rule states that

oy - Ae=TE.

For example, to compute —i—sin (cos (x)), multiply

a _ap = d@os () sin (cos (x)) = cos (cos (x))

by

= —sin (x),

to obtain the result

—cos (cos (x))sin (x).

On the HP-28, you can watch this calculation unfold by entering

RAD '9X(SIN(COS(X))’,

then

EVAL] == 'COS(COS(X))*3aX(COS(X))’

= 'COS(COS(X))*(—SIN(X)*aX(X))’

EVAL] 1= 'COS(COS(X))*(-SIN(X))'.

Each EVAL applies the chain rule through one level. If you are not interested in the
intermediate result, you can obtain the final result in one step:

'SIN(COS(X))’ 'X' 4 = 'COS(COS(X))*(-SIN(X)) .

The one-step derivative obtained by including d within an algebraic expression is con-
sistent with the general flavor of HP-28 algebraic evaluation (section 9.1) in which the
substitution of a variable’s value for its name is carried out one “level” each time the
expression is evaluated. This type of differentiation is quite useful as a teaching tool,
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with which you can watch the successive application of the chain rule.

Two additional notes on HP-28 differentiation:

e The names of the variable of differentiation and of other variables in the expression
are executed during the final stages of execution of d. Therefore, if you want a com-
pletely symbolic derivative, you should purge the appropriate variables before execut-
ing 4.

¢ If you differentiate expressions containing trigonometric functions while the HP-28 is
in degrees mode, factors of /180 will appear in the result. This is perfectly sensi-
ble mathematically, but it may surprise you when you take a derivative without think-
ing about the angle mode.

9.9.2 Taylor’s Polynomials
The Nth degree Taylor’s polynomial for a function f(x) at the point x = xis defined by:

N - n n

e = 3L),
n=0

The special case of xo = 0 is called MacLaurin’s formula:

S 2")| om0
—on! dx"
 fx) =

These definitions are valid for functions for which all derivatives of f exist up to degree
n. For N = o, the polynomial is equal to the function f. For finite N, the polynomial
constitutes an approximation to the function; the higher the degree, the better the
approximation.

The TAYLR command computes the Nth degree Taylor’s polynomial for a function at
the origin (MacLaurin’s formula). To use TAYLR, you enter an expression for the func-
tion in level 3, the polynomial variable name in level 2, and the polynomial degree in

level 1.

m Example. Compute the fifth order Taylor’s polynomial for sinx atx = 0.

RAD 'SIN(X) ‘X' 5 TAYLR

= 'X-.166666666667*X3 +8.33333333333E — 3+X"5'

In this result, the even-degree terms are absent, because they are all proportional to
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sin” 0 = 0. 0.166666666667 and 8.33333333333E -3 are floating-point approximations
to 1/3! and 1/5!, respectively.

To produce a Taylor’s polynomial at a point x, other than the origin, it is only necessary
to make a translation of the coordinate system such that x = x’ +x(, use TAYLR with
the variable x’, then translate the system back by substituting x’ = x—x,. The program
TAYLRX0 performs these operations. TAYLRXO uses the same input arguments as
TAYLR, with an additional argument to specify the point x.

 

 
 

 

 

 

TAYLRX0 Taylor’s Polynomial atx

level 4 level 3 level 2 level 1 | level 1

' expression’ 'name’ xot degree or 'polynomial’

<< 31 SF Activate LAST.

1 CF Initialize flag 1.

3 PICK Get the expansion variable name x.

IFERR RCL

THEN 1 SF Set flag 1 if the variable has no value.

END

- x x0 d xv Save the name, x(, degree, and the

variable’s value.

>>

>> 
< x SHOW Make all instances ofx explicit.

'XPRIM' DUP x0 + x STO Substitute x' +xq for x.

d TAYLR Make the expansion.

xv x0 - 'XPRIM’ STO EVAL [Substitute x—xg forx’.

XV

IF 1 FC?C Did x have a value?

THEN x STO Then restore it.

ELSE PURGE Otherwise, purge x.

END 'XPRIM' PURGE  
 

 
txo may be a name, expression, or number.

® TAYLRXO uses and purges global variable XPRIM.

® TAYLRXO clears flag 1 and sets flag 31.
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» Example. Compute the 3rd degree Taylor’s polynomial for sinx at the point x = -’Zl

RAD ’SIN(X)’ 'X’' 'm/2' 3 TAYLRX0 r= '1-.5%(X-1m/2)"2".

Note that the result is the same as the 3rd degree Taylor’s polynomial for cos (x— =/2),
which follows from the identity sinx = cos (x— =/2).

You can only apply TAYLR meaningfully to functions for which the function itself and its
derivatives up to the Nth-order are defined at x = 0. For example, you can not com-
pute a polynomial for x*, since its first derivative is proportional to x% and thus is
infinite at x = 0.

In addition to its nominal use to compute Taylor’s polynomials, TAYLR also is a con-
venient means of simplifying polynomial expressions. This application is discussed in
section 9.8.3.

9.9.3 Integration
Unfortunately, there is no analog of the chain rule of differentiation that allows you to
compute the integral of an arbitrary expression once you know the antiderivatives of the
functions in the expression. The problem of general symbolic integration is one of pat-
tern matching, and given that HP-28 algebraic objects are not constrained into any spe-
cial structure, this task is beyond the memory resources of the calculator. Therefore,
the integration of arbitrary expressions is limited to numerical methods.

Nevertheless, the HP-28 can compute an approximate symbolic integral of an expres-
sion. For expressions which are sufficiently well-behaved, the HP-28 will compute a
MacLaurin polynomial in the variable of integration, then integrate the resulting polyno-
mial. You can specify the degree of the polynomial, which determines the accuracy of
the integral. The higher the degree, the more accurate the approximation--but also the
longer the time and the greater amount of free memory required to compute the poly-
nomial. As mentioned in section 9.9.2, “well-behaved” in this context means that you
can compute a meaningful polynomial--the expression must be differentiable at the ori-
gin. Of course, for an integrand that is already a polynomial, these conditions are met
automatically, and the integral is exact (as long as you specify a degree equal to or
greater than the degree of the polynomial).

This primitive type of integration may not seem particularly useful, since an integral
computed this way will not much resemble the correct symbolic form of the integral
unless the integrand happens to be a polynomial in the integration variable. But in
many circumstances, you may be less interested in the precise mathematical form of an
expression than in being able to determine a reasonable view of its behavior over some
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region of interest. For this purpose, the HP-28 approximate symbolic integral is an
improvement over numerical integrals, since it is much faster to recompute its value as

you vary some parameter in the expression (for example,if you plot the integral) than to
recompute the integral numerically at many points.

To illustrate the idea of an appreximate integral valid in a region, we will compare an
HP-28 symbolic integral of cos (x) with the known form of the integral, sin (x) (here we
are considering an indefinite integral, and ignoring the constant of integration). To
obtain the HP-28 integral, execute

RAD ’'COS(X)’ 'X' 6 [

where the 6 indicates a 6th degree polynomial. This also returns a 6th degree polyno-
mial in X (the 7th order term is zero). To compare this with sin (x), execute

'SIN(X)’ = STEQ DRAW

 

 

 

 
 

In the plot you can see that in the region —w=X=, the approximation is good
enough that the two curves fall on the same pixels and are indistinguishable. Outside of
this region, the curve representing the series approximation diverges rapidly away from
the ideal sine curve.

Now press [ON] to clear the screen, and [SOLV] ESOLVRE to activate the Solver menu.

Store .5 in X, then press

mLEFT= iz .479425533235

F .479425538604

(-] = -.000000005369

 
RT=

Here you have computed numerical values of the integral from the approximation (the
left side) and the true value (right side), showing that the approximation is accurate to
about one part in 1078, It takes the HP-28S about 4.2 seconds to compute the symbolic
integral once, then about 0.08 seconds to evaluate it at a specific point. You can com-
pare these times with that needed for computing the numerical integral
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5
fdx cos(x)
0

to an accuracy of .00000001, about 6.5 seconds on the HP-28S. The first evaluation of
the integral is not much different for the two methods, but a second evaluation at a dif-
ferent point takes only another 0.08 seconds using the symbolic integral compared with

the full 6.5 seconds of a numerical integral. The speed advantage of the symbolic
method can be quite dramatic when you’re attempting to use DRAW or the Solver with
an expression that contains an integral, since either operation may involve evaluating the
expression hundreds of times.

The mechanics of computing an integral on the HP-28 are straightforward. The sym-
bolic case uses the same stack set-up as TAYLR, on which it is based. You need to
specify the integrand, the variable of integration, and a number to specify the degree of
the polynomial approximation. In standard HP-28 fashion, these three items go on the
stack:

3: integrand  (an algebraic)
2: variable name  (a name)
1 degree  (a real integer)

f takes these three arguments from the stack, and returns the integrated expression to
level 1.

To obtain a numerical definite integral, you must set up the stack in a similar manner.
The integrand again can be an arbitrary algebraic object, but for the numerical case you
can also use a program that is equivalent to an algebraic expression (takes no argu-
ments, and returns one number). The integration variable is represented by a list con-
taining the variable name (first element), and the lower (second) and upper (third) lim-
its of integration. A real number in level 1 again specifies the accuracy of the integral,
but instead of being the degree of a Taylor’s polynomial, this number is an accuracy fac-
tor that specifies the maximum fractional error you will accept in the computation of the
integral. Typically, this accuracy factor is a negative power of 10 (1X107"), where
1=n=12. Larger values of n produce more accurate integrals, but also make the com-

putation time longer. You should always specify the smallest n that is consistent with
the accuracy you need for a particular problem.

For a numerical integral, the stack set-upis like this:
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3 integrand  (a procedure)
2 { name upper lower }  (a list)
1: accuracy factor  (a real number)

[On the HP-28S, the upper and lower limits can be represented in the level 2 list by real

numbers, or by names, programs, or algebraics that evaluate (-NUM) to real numbers.]

For example, to compute the integral mentioned above,

5

fdx cos(x),
0

enter (in radians mode)

'COS(X)’ {X 0 .5} .00000001 [ o= .479425538604 4.79427988979E-9

In the numerical case, [ returns two real number results. Level 2 contains the com-
puted value of the integral (.479425538604 in the example); level 1 has a number
representing an upper bound on the (absolute value) of the error in the integral
(4.79427988979E -9). The error value should be roughly the product of the integral
value in level 2 times the original accuracy factor. If this is not true, the integral value is
suspect. In particular, if a value -1 is returned for the error, it indicates that the
integration failed to converge to a reliable answer.

You might wonder why the stack arrangement for numerical integration requires you to
combine the variable name and the integration limits into a list rather than just using
five separate arguments. The answer lies in the argument count uniformity that the
HP-28 imposes on its commands. Most commands allow a variety of argument types,
but the number of arguments for any command is always the same (you can check this
by using the USE option in the command CATALOG; each entry for any single com-
mand always shows the same number of arguments). This uniformity makes possible a
very compact and fast branching process whereby a command can select the execution
logic suitable for the particular argument combination current on the stack. In the case
of [, the type of argument in level 2 signals the method of integration: a name by itself
indicates symbolic integration, and a list indicates numerical integration. If the two
methods were to use different numbers of stack arguments, each would have had to be
represented by a different command name.

If you have trouble remembering how to set up the stack for [, you can write a program
that allows you to enter the arguments as individual entries in some mnemonic order,
such as the order in which you might read a written integral. For example, the integral
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b

ff (x)dx can be read as “the integral from a to b of f(x) with respect to x.” The pro-
a

gram IGL lets you enter the arguments in the same order as they are named in the
quoted clause.

 

 

 

 

 

 

| IGL Integral

level 4 level 3 level2  level 1 | level 1

at bt fx)t 'x' or integral

<< 4 ROLL -NUM 4 ROLL -NUM i

3 -LIST ACC Set up the arguments.

J Compute the integral.

IF 0 < Check the error.

THEN "Bad Integral” 1 DISP If it’s negative, display a message.

END

>   
 

tMay be a name, number, or procedure.

$The -NUM’s are not necessary on the HP-28S.

IGL requires that you keep an accuracy factor in a global variable ACC. (This is so you
don’t have to keep reentering the accuracy for different problems if the same accuracy is
appropnatc) Also,it returns only the integral value; the error is discarded. If the error
is negative, IGL warns you with a Bad Integral message. You can enter the integration

limits as names, algebraics or programs that evaluate to numbers.

2%

m Example. Compute f cos?(x)dx, with an accuracy of 1073,
0

RAD 1E-5 'ACC’' STO 0 '2#m’ 'COS(X)*2' 'X' IGL = 3.1415927

9.9.3.1 Integration with an Implicit Variable

The method of numerical integration described in the preceding paragraphs is called
explicit variable integration, since the variable of integration appears explicitly by name in
the integrand procedure and in the level 2 list. This form of integration is straightfor-
ward, since it corresponds more or less to the way you normally write integrals as func-
tions of named variables. However, the HP-28 does offer a second method of numerical
integration, in which the variable of integration is not explicitly named, but instead is
represented by a series of values in stack level 1. This method is called implicit variable
integration; its principal virtue is that it is faster than the explicit method. It saves time
by not having to find the value of the integration variable in USER memory every time
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the integrand is evaluated; the value is always available on the stack. (This method is
similar to that used by the HP-15C integral function and by the integration program in
the HP-41 Advantage Pac.)

To use implicit variable integration, you set up another version of the three [ argu-
ments:

3: integrand  (a program)
2: { upper lower }  (a list)
1: accuracy factor  (a real number)

This time, the list in level 2 contains only two real numbers, representing the lower and
upper limits of integration. The level 3 integrand must be a program (algebraics can’t
take arguments from the stack). The program must have the logical form

<< = X ’f(x)' >>

where 'f(x)' represents the integrand in algebraic form. That is, the program should
take one number from the stack as the current value of the variable of integration, then
return to the stack the corresponding value of the integrand. You shouldn’t actually
write the program as above, since the use of a local variable defeats the intent of not
naming the variable. Instead, you should keep the input number as a stack entry.

5

To recompute the example fdx cos(x) using the explicit method:
0

<< COS >> {0 .5} .00000001 f

= .479425538604 4.79427988979E-9

The program << COS >> follows the implicit variable prescription, taking a number
from the stack and returning the value of the integrand, which is the cosine of that
number. On the HP-28S, this method takes 5.2 seconds to return exactly the same
results as the explicit variable method, which takes 6.5 seconds. The time difference is
not dramatic in this case, but a 20% time savings for an integral requiring many minutes
can be valuable.

Actually, you can still obtain an intermediate time savings over explicit variable integra-
tion by using the implicit variable method even when the integrand program does save
the variable value in a local variable. It is generally faster for the HP-28 to find the
value of a local variable than that of a global variable. For example, executing
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<< - x 'COS(x) > {0 .5} .00000001 [

7 .479425538604 4.79427988979E -9

takes 5.9 seconds on the HP-28S.

9.9.4 Double Integrals
A double integral is an integral in which the integrand itself is an integral, the limits of
which may be functions of the original variable of integration. This is a special case of
multiple integration, where the integrals are nested two or more deep. We wiil demon-
strate a method of double integration; you can extrapolate the process to multiple
integration by applying the same principles repeatedly.

Since [ is not a function and hence can not appear in algebraic objects, the integrand in
a double integral must be expressed as a program object. In section 9.9.3, we presented
the program IGL that streamlines the entry of arguments for a single integral. The pro-
gram |GL2 uses a similar approach for double integrals, and calls IGL to perform the
actual integration. These two programs make a good illustration of HP-28 structured
programming (section 10.1.3), in which complicated programs are built up from simpler

ones.

 

 

 

 

 

 

IGL2 Double Integral

level 7 6 5 4 3 2 1 | level 1

at bt 'x' ct dt fx)t 'y’ or integral

< - cd fy Store the arguments of the “inner”

integral.

<<

b
< ¢ d fy IGL Program to compute ffdy

a

>>

SWAP IGL Integral over x.

>>

>>   
 

tMay be a name, number, or procedure.

IGL2 takes stack arguments in the order

a b x c d f y.
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x and y must be names, and a, b, ¢, d, and f can be numbers, names or procedures.

These objects and their order as stack arguments are derived from the general form of a
double integral:

b d

Jax[f y)ay,

which you can read as “the integral from a to b with respect to x, of the integral from ¢
to d of f (x,y) with respect to y.” With respect to the integration variables, f can be a
function of x and or y; ¢, and d can be functions of x. Any other variables that appear in
the arguments must evaluate (-NUM) to real numbers. Like IGL, IGL2 assumes that
you have stored an accuracy factor in the variable ACC.

» Example. Find the area of a region bounded by the parabolasy = x? andy = 4-x2.

To help in setting up the problem, start by plotting the two curves:

'PPAR’ PURGE 4 *H 'X"2=4-X"2" STEQ DRAW

s Y
> -’ “

-’ “

 

   
 

To find the points where the curves intersect, execute

RCEQ 'X"2" + COLCT 'X' ISOL = 's1%1.41421356237'

from which you can observe that the intersections are at x = +V/2. The area is there-
fore given by the integral

V2 4-x2

dxLl
In this case, the integrand is just a constant f (x,y) =1. Choosing an accuracy factor
.0001 by executing .0001 ‘ACC’ STO, you obtain the integral value by executing

V20 V2l X X2 '4-X"2' 1 'Y IGL2,
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which returns 7.54247233265. This differs from the exact answer -136—\/5 only in the

twelfth decimal place.
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In preceding sections, we have reviewed the use of the Solver, symbolic math operations,
and user-defined functions, as specialized programming methods that replace much of
the programming done on conventional calculators. Each of these formula-oriented
methods, however, has its limitations, and for many types of problems there is no substi-
tute for ordinary programming. “Ordinary programming” on the HP-28 means the
creation of program objects, which have no limits on the number or type of arguments
and results, and can use all of the various resources of the calculator.

Creating a program object consists of entering a sequence of objects that are to be
automatically executed together in order, enclosing the sequence in << >> delimiters to
prevent immediate execution. When you name a program object by storing it in a user

variable, you effectively extend the calculator’s command set. You can use the variable
name just as you would a built-in command. Imagine, for example, that you have
created two program objects named DOTHIS and DOTHAT. Then if you want to create
a program that performs both of the tasks done by DOTHIS and DOTHAT, you just
enter << DOTHIS DOTHAT >>, perhaps naming it DOBOTH. This process is
unlimited--you can use DOBOTH as an element of another program. DOTHIS and
DOTHAT themselves may be combinations of other program names. As a matter of
fact, the HP-28 commands that you use in your programs are themselves programs writ-
ten the same way, stored in the calculator’s permanent memory (ROM).

We have been using the term sequence to mean a series of objects that are executed in
order. Remember (see section 3.2.1) that objects include commands--built-in program
objects--as well as data, name, and procedure objects that you create. However, we are

about to introduce the concept of a program structure, which uses command line and
program entries that are not objects, so we need to extend our definition of sequence.

The non-object “entries” are program structure words, such as FOR, DO, —», END, etc.
These are not objects, because you can’t put them on the stack or execute them indivi-
dually. You can only use them in certain specific combinations, like FOR...NEXT, or
IF..THEN...END. A complete combination, including the objects between the program
structure words,is called a program structure.

The more complete definition of sequence, then, is any series of objects and program
structures that can “stand alone,” and can constitute a program if the series is sur-
rounded by << >> delimiters. A sequence can be an entire program, or part of a pro-
gram. For example, in

< 1 2 IF A THEN B C END D >
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1 2is a sequence, B C is a sequence, and 1 2 IF A THEN B C END D is a
sequence. IF, IF A, and IF A THEN are not sequences, because the program structure
is not complete--you can not enter these by themselves without obtaining a Syntax Error
message.

10.1 Program Basics

The basic structure of an HP-28 program is very simple:

<< program body >>.

The << and >> are the program object delimiters that serve to identify this object as a

program. Program body is the sequence of objects and program structures that make up
the logical and computational definition of the program.

10.1.1 The << >> Delimiters
The << and >> that surround HP-28 programs serve a dual purpose. First, they are the
delimiters that identify an object as a program. When you enter a program into the
command line, the << tells the HP-28 to create a program object from all of the objects,
commands, names, etc., that follow, up to the next matching >>. Then, when the HP-28
displays a program object after it has been created, the << and >> identify the object to
you as a program.

The second role of these delimiters is to serve as logical “quotes” (see section 3.8) that
postpone execution of a program sequence. When << is encountered in program or
command line execution, it is interpreted by the HP-28 to mean “put the following pro-
gram object on the stack.” This behavior of << allows you to include programs within
other programs:

<< object >> EVAL

executes object, but

<< << object > >> EVAL

leaves the program << object >> on the stack. For every <<, there is always a >>.
The >> ends the definition of the program started by the preceding <<.

The and keys are the closest analog the HP-28 has to the more traditional pro-

gram mode keys you find on other calculators ( [PRGM] on the HP-41). On the HP-28,
instead of pressing to start program entry, you press . This activates alpha-
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entry mode (section 3.11.1), which we have also called “program mode” since command
names accumulate in the command line instead of executing. Then, after you have
entered the program objects, you press to terminate program entry. You can even

think of << and >> as programmable program keys, since you can include those delim-
iters in programs.

10.1.2 The Program Body
The “body” of an HP-28 program, that is, everything between the << and the >>, can
consist of any combination of objects and program structures:

e Data objects;

¢ Quoted names and procedures, which go on the stack like data;

¢ Commands--RPN commands and functions;

Unquoted names--which act like user-defined commands;

e Program structures--loops, conditionals, and local variable structures.

In general, when a program is executed, all of the items from the above list that consti-
tute the program body are executed sequentially. The nominal order of execution is
start-to-finish, or “left-to-right” in the command line order in which the program was
entered originally. Within a program structure, there may be repetitive loops or condi-
tional jumps. Of course, there’s nothing remarkable about this program flow--any pro-
gramming language exhibits similar orderly execution.

The simplest programs are those which contain no program structures. Such programs
only contain objects to be executed one after the other, starting with the first object
after the <<, and ending with the last object just before the >>. Simple programs are
very easy to create. All you do is

1. Press the [<]key;

2. Press the keys for, or spell out, the objects you want the program to execute, in
the same order used when you perform the calculation by pressing keys; then

3. End the program entry by pressing , or press to end the program and
continue with additional command line entries.

4. To name a program, enter a name (quoted) and press . You can consider
the resulting variable as a named program.

To “run” a program, you execute the program’s name, either by pressing the appropri-
ate USER or HP-28S CUSTOM menu key, or by typing the name into the command line
and pressing . If the program itself is in level 1, you can run it by executing
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.

Examples:

1. < 1 2 3 > 'P123' STO creates a program named P123 that enters
the numbers 1, 2, and 3 onto the stack.

2. < 2 / SIN > 'HSIN' STO creates a program named HSIN, that
returns the sine of 1/2 times the number in level 1.

3. < + + 8Q > 'SUMSQ’ STO creates SUMSQ, which adds three
numbers from the stack and squares the result.

You can alter the basic start-to-finish execution flow of programs by adding program
structures that define branches and loops. Branches are forward jumps in a program,
that cause program sequences to be skipped. Loops contain backward jumps, which
cause program sequences to be repeated one or more times. These structures are
described later in this chapter.

Notice that HP-28 ENTER never appears in a program, unlike HP-41 ENTER1t. As we
discussed in section 3.11, ENTER means “execute the command line,” which has no
meaning in a program. When you enter consecutive numbers into a program, just use a
space or the non-radix character (comma or period) to separate them. For other types
of objects, their delimiter characters serve to separate the objects--no space is necessary
before, after, or between delimiters.

10.1.3 Structured Programming
A property of HP-28 programs that is common among many computer languages, but
may be unfamiliar to HP-41 and other calculator language programmers, is their well-

determined “entrance” and “exit.” Thatis, in any program there is only one point--the
start--where execution can begin. Similarly, there is only one exit, or point at which a
program completes execution. A diagram to represent the execution flow in and out of
an HP-28 program is very simple:

IN _>| << Body >> ]—_—> OUT

Contrast this diagram with one that illustrates a possible program flow in an HP-41 pro-
gram:
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...Steps...

——= LBLO01
 

 

...Steps...

GTOO03 |———=
 

 

...Steps...

—={ LBLO2

...Steps...

END

 

 

   
 

There is no limit on the number of entrances and exits in an HP-41 program. The prin-

cipal program constructs that make this possible are labels and GTO commands. A
GTO (go to) is an unconditional jump, with no return, to a label (or line number in
some calculators and in BASIC). Using labels and GTO’s, program execution can jump
around from program to program, in and out of portions of programs, or round and
round within a single program. At first glance (and more, if you’re used to program-
ming this way), this capability seems like an advantage. You may wonder why the HP-
28 does not provide the same capability.

The answer is that the HP-28 is designed for structured programming. Structured pro-
gramming consists of writing small programs as building blocks, or modules, from which
bigger programs are assembled as series of subroutine executions. A subroutine is a
program that is executed, or called, from within another program, and which returns to
the original calling program when it is finished. Bigger programs themselves may
become subroutines for even bigger programs, and so on. Each program, at every level,
has a single entrance and exit; there is no jumping in and out of programs at intermedi-
ate points. Structured programming has the following advantages:

e Programs are easy to write. Each program can be designed to fulfill a single task,
and can thus consist of relatively few steps. If a program gets too long, you just
divide it into smaller programs.

-182-



Programming 10.1

e Programs are easy to decipher. By choocsing meaningful names for subprograms,

you can read a program almost as text. For example, a program might look like
this:

<< GETINPUT DOMATH
IF BIG
THEN IGNORE
ELSE SAVE
END

>>

It is easy to understand what this program does. It gets input (GETINPUT), then
does some calculations (DOMATH) on that input. Next, it checks a result to see if
it’s too large (IF BIG); if so, it discards the result (THEN IGNORE), otherwise saves
it (ELSE SAVE). At this level, you can see the overall structure of the program. To
see more detail, you can examine the individual subroutines. For example, BIG must
be a program that tests the results returned by DOMATH, and returns a true flag
(see section 10.3) if the results are too big according to some criterion. BIG might
be something like this:

< DUP2 + UMIT > >,

This program makes copies of two numbers in levels 1 and 2, then adds them and
tests to see if the sum is greater than the value of LIMIT (which might be a number,
or another calculation to perform, etc.).

e Programs are easy to alter. In the above example, you can completely change the
internal definition of BIG, without worrying about the main program. All you have
to do is ensure that BIG works the same from an external point of view--it must take
the right number of objects from the stack, and return the right number, etc. Simi-
larly, you can change the value of LIMIT from a specific number to a program that
computes a result, without any change in the design of BIG.

In a programming language that permits GTO’s into the middle of a program, any
modification of a program must ensure that the correct entry conditions are met at
any point at which execution can start. This is especially difficult to manage in
languages like BASIC, where a GTO can jump to any line in a program, with no
label or other indication to remind the programmer that execution may start at that
line.

e Programs can be written without any regard to the internal behavior of programs
that call them, or programs that they may call. All that matters about a program is
its input and output, not the steps thatit uses in its execution.
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The last point is a key concept in HP-28 structured programming. A program is defined
externally only in terms ofits input and output:

1. The number and type of objectsit takes from the stack;

2. The number and type of objects it returns to the stack;

3. The variables that it uses;

4. Flags that are tested or changed.

From the point of view of one program calling another as a subroutine, the first pro-
gram doesn’t have to care at all about how many stack levels or additional subroutine
returns are needed by the subroutine. It just has to be sure to provide the correct
inputs for the subroutine, and know where to find the results returned by the subroutine
(usually on the stack). The calling program also can depend on having program execu-
tion return to it after the subroutine is finished, no matter how many other sub-
subroutines are called by the subroutine.

10.1.4 Comparing HP-28 and HP-41 Programs
HP-41 programs have this general form:

01 LBLA
02 program line

03 program line

nn RTN (or END)

Strictly speaking, HP-41 programs don’t have to start with a label, but it is usually most
convenient to start execution at the beginning of a program, by means of a label there.
The programs always finish with a RTN or an END. A single program may contain mul-
tiple RTN’s--different programs are separated by END’s.

If you match up the parts of HP-41 and HP-28 programs, you may observe that:

e The HP-41 line 01, and the label that marks the start of a program, are replaced in

the HP-28 by the << delimiter.

e The program steps or lines that make up an HP-41 program body are replaced by
the objects that define the HP-28 program.

e The END, or last line of an HP-41 program, which acts as a subroutine return when

the program is called as a subroutine,is replaced by the HP-28 >> delimiter.
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HP-41 program lines or steps are always numbered. The line numbers help show the
program flow unambiguously, and are useful in moving a program counter to specific
points in a program for editing or single-stepping. The line numbers are artificial in the
sense that they are not stored as part of a program (they are created as part of the pro-
gram mode display), and have nothing to do with program execution while it is running,
All program branching is accomplished by GTO’s or XEQ’s (GSB’s) to labels that are
explicit program steps.

HP-28 programs have no line numbers. Whether this is an advantage or a disadvantage
is a matter of taste. Since line numbers have no purpose during execution, showing
them as part of a program can be considered as a superfluous complication. On the
other hand, in a large program, line numbers can help you keep track of where you are
looking in a program.

To some extent, you can write HP-41 programs in structured form, if you can resist the
temptation to use GTO’s. Of course, you can’t eliminate GTO’s entirely, because the
HP-41 doesn’t provide any program structures in the HP-28 sense. But you can
preserve a structured form by avoiding intertwined branches and loops. For example, to
treat the program sequence

01 LBL 01
02

98 1SG 00
99 GTO 01

as a “structure,” you must make sure that there are no labels between the LBL 01 and
the ISG 00, so that program flow can not jump into the middle of the sequence.

The fixed size stacks available on the HP-41 makes truly structured programming in the
style of the HP-28 rather difficult. The HP-41 has only a 6-level subroutine return
stack, so that any time you write one program that calls another, you must verify that
the subroutine does not itself call other routines, and so on, to such an extent that the
return stack overflows and execution never returns to the original program. The four-
register data stack produces a similar limitation: a program can’t arbitrarily leave data
on the stack when calling a subroutine, in case the subroutine needs so much of the
stack that the calling program’s data gets pushed off the stack. After writing a program,
if you later decide to modify one of its subroutines, you may also have to change the
calling program if the new version of the subroutine uses an additional stack register.

Structured programming is not just a matter of programmer style in the HP-28--you
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have no option. The HP-28 won’t let you write an unstructured program. There is no

GTO command, and all branching and looping is accomplished by means of well-defined
structures. This requirement is perhaps the single thing that HP-41 programmers will
have the most trouble getting used to on the HP-28.

Table 10.1 matches various programming concepts in the HP-41 with their analogs in
HP-28 programs. All of these topics are discussed in subsequent sections.

Table 10.1. HP-41 and HP-28 Programming Analogs

HP-41 HP-28

Program mode Alpha-entry mode, command line
Program file Program object
Global label Program name
Local label None
Line number None
GTO label None
Subroutines Named programs
XEQ label Execute by name or EVAL
RTN >>
END >
ISG, DSE DO...UNTIL...END

WHILE...REPEAT...END
FOR...NEXT
FOR...STEP
START...NEXT
START...STEP

Flag 25 error handling IFERR..THEN...ELSE...END
Test and Skip IF..THEN...ELSE...END
STOP HALT

10.2 Program Structures

A simple program consisting of a sequence of objects can be broken into two or more
programs at any point in the sequence. For example, the program

< 5 % 6 + 10 - >

is equivalent to the two programs
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< 5 * > < 6 + 10 - >

executed consecutively.

A program structure is a program segment that can not be broken into stand-alone sec-
tions. A user-defined function (Chapter 8) is an example of a program structure; for
example, this program

< - x '2#¥+3" >

can not be divided like this:

K - X > << "2%xx+3 >,

The first part would give a Syntax Error message if you entered it. Similarly, you can’t
break

<< 1 5 FOR n n SQ NEXT >

into

< 1 5 FOR > << n n SQ NEXT >>.

The FOR and the NEXT must be in the same program.

Program structures are defined by program structure words. These words are special
command line words that do not represent objects, but cause other objects to be com-
bined into structures. The structure words always appear in specific combinations that
define complete structures. Table 10.2 lists all of the HP-28 program structures and
their uses.

Table 10.2. HP-28 Program Structures

Structure Type Typical Use

IF..THEN...ELSE...END Conditional Program Decisions and Cases.

START...NEXT/STEP Definite Loop Execute a sequence a speci-
fied number of times.

FOR index ... NEXT/STEP  Indexed Definite Loop Execute a sequence once for
each value of an index.

-187-



10.2 Programming

DO...UNTIL...END Indefinite Loop Repeat a sequence until a
condition is satisfied.

WHILE...REPEAT...END Indefinite Loop While a condition is satisfied,
repeat a sequence.

- ...names... procedure Local Variable Structure User-defined functions.
Creating local variables.

IFERR...THEN...ELSE...END Error trap Handling expected and unex-
pected command errors.

Before studying the various program structures, we need to describe HP-28 test com-
mands and flags, which are key concepts in understanding the execution of program

structures.

10.3 Tests and Flags

A calculator program “asks a question” by executing a test command. A test command
is any command that in effect returns “true” or “false” as a result, which then can be

used to choose a particular program branch to execute. The HP-28 differs from the
HP-41 in that tests return stack results called flags, whereas HP-41 test commands

include immediate branching based on the test result.

In HP-28 terminology, the word flag has a dual meaning. The first meaning is the tradi-
tional one inherited from the HP-41, where a flag is one of a group of numbered
memory locations that are used to store logical true or false values. A “memory loca-
tion” in this context is just a binary bit; if the bit is 1, the flag is true; if it is 0, the flag is
false. A user flag is one that can be set (made true), cleared (made false), or tested by
by means of commands. A system flag is one reserved for use by the calculator operat-
ing system, and which can only be tested by the user, not set or cleared. The HP-41 has
56 flags, of which those numbered above 29 are system flags. The HP-28 has 64 flags;
all are user flags. In both the HP-41 and the HP-28, some of the flags represent modes,
such as the angle mode and the beeper enable/disable. Changing the state of one of
these flags changes the corresponding calculator mode, and vice-versa.

The HP-28 introduces a second meaning to flag that has no equivalent in the HP-41. A
flag can be any real number, so that flags can be represented on the stack and used as
arguments or returned as results by commands. The HP-28 conventions for real
number values used as flags are:
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e As arguments to commands, 0 means false; any non-zero real number means true.

e When a command returns a flag result, 0 again means false; the value 1 means frue.

With these ideas in mind, we can make the following definitions:

Test: A command that returns a flag to the stack. Examples: SAME,
==, F§?

Logical operator: A function that makes a logical combination of two flags (AND,
OR, XOR), or inverts a flag (NOT), and returns a new flag.

Conditional: A program structure that includes a structure word that uses a
flag as an argument, and causes a program branch according to
the flag value. The conditionals are IF...THEN...(ELSE...)...END,
DO...UNTIL...END, and WHILE...REPEAT...END.

In the HP-41, all test commands combine a test and a branching operation. If the test
is true, one choice of branch is made; if false, another choice is made. For example,

when a test such as FS? (flag set?) or X=Y? is true, the program line immediately fol-
lowing the test is executed. If the test is false, that next line is skipped.

In the HP-28, a test and a corresponding conditional branch are separate operations.
To permit this separation, a test command returns its result in the form of a (real-
number) flag on the stack, which can then be manipulated like any other stack object.
Consider a typical test command, >. > compares real numbers in levels 1 and 2: if the
numberin level 2 is greater than that in level 1, > returns 1 (true); it returns 0 (false) if
the level 2 number is equal or smaller. For example, to compare the values of X and Y

in a program, you use the sequence

XY >.

This returns 1 (true) if X is greater than Y, or O (false) otherwise.

In a conditional structure, one particular structure word actually makes the branch deci-
sion, taking a flag from the stack for this purpose:

e the THEN in IF..THEN...(ELSE...) END (section 10.4).

e the END in DO...UNTIL...END (section 10.5.2.1).

e the REPEAT in WHILE...REPEAT...END (section 10.5.2.2).

But note that you can include any number of intervening objects and commands
between the point at which the flag is put on the stack, and the structure word that uses
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the flag for a branch decision. This separation of tests and decisions makes possible the
use of logical operators to combine flags. For example, the logical operator AND takes
two flags from the stack and returns a true flag if both of the original flags are true, and
a false flag otherwise. The sequence

XY > Y Z > AND

returns 1 only if X is greater than Y, and Y is greater than Z. Furthermore, since the
logical operators and most tests (except SAME) are functions, you can rewrite the above
sequence in a more legible manner:

'X>Y AND Y>Z' -NUM.

The -NUM converts the algebraic expression into a real number suitable for use as a
flag.

Suppose you want to write a program that returns the sum of two numbers if they are
both greater than 1, and otherwise returns the difference. In HP-41 language, the pro-
gram might look like this:

01 LBL"SUMDIFF"
02 1

03 X<=Y? Is the first number < 1?
04 GTO 01 If so, go to LBL 01.
05 RDN If not, check the other number.
06 X<>Y
07 Rt

08 X<=Y? Is the second number = 1?
09 GTO 02 If so, go to LBL 01.
10 RDN Drop the 1.
11 + Add the two numbers.
12 RTN

13 LBL 02 The second number is < 1.
14 RDN
15 X<>Y Restore the original order.
16 Rt

17 LBL 01 One or both numbers are < 1.
18 RDN Drop the 1.
19 - Compute the difference.
20 RTN

In this program, there are separate tests and separate branches for each of the two
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numbers. The two branches have to be to different destinations (LBL 01 and LBL 02)
because the stack is in a different configuration at the time of the tests. In a HP-28
program, the tests are logically combined before the branching decision is made:

<<

DUP2 Make a copy of the two numbers.
IF

1 > Test the first number.

SWAP 1 > Test the second number.
AND Are both tests true?

THEN + ...then add.

ELSE - ...otherwise subtract.

END
>>

Notice how easy it is to read the HP-28 program compared to the HP-41 version. The
two tests are right next to each other between the IF and the THEN. The two possible
branches then follow immediately after the AND that combines the tests. You can also
write this program as a user-defined function (Chapter 8), using the IFTE function (sec-
tion 10.4.2):

<< - x y 'IFTE (x>1 AND y>1, x+y, x-y)' >

You can think of user flags as a kind of variable: the flag number is the variable name,
the number 1 or 0 is the value. FS? plays the role of RCL for a user flag--it transfers
the flag value to the stack. You use SF and CF to store the values 1 and 0, respectively,
into a user flag. There’s no single command to store a stack flag directly into a user
flag, but the sequence

IF SWAP THEN SF ELSE CF END

will accomplish that, where the flag number is in level 1 and the new flag value is in
level 2.

One by-product of using real numbers as flags for conditionals is that it’s easy to test a
real number to see if it’s zero. In the sequence

IF X 0 # THEN A ELSE B END,

the 0 # is superfluous. You can rewrite the sequence as

IF X THEN A ELSE B END.
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10.3.1 HP-28 Test Commands
The HP-28 test command set is comparable to that found in the HP-41 and most other
languages: numerical and string comparisons for equality, inequality, and order, and user
flag tests. It is worth emphasizing, however, the difference in the argument order for
the HP-28 tests compared with their HP-41 counterparts.

The order of test arguments in the HP-28 is chosen to be consistent with the argument
order for all other HP-28 functions: the arguments are entered onto the stack in the
same order as they appear in algebraic expressions. For example, consider the
“greater-than” operator >. In an algebraic expression, “is A greater than B?” is writ-
ten as A>B. A is the first argument, reading left-to-right; B is the second. The com-

parison is true if the first argument is greater than the second. If you rewrite the infix
operator > in Polish notation, the expression becomes ‘'>(A,B)’. Converting to RPN,
this becomes A B >, which indicates that A should be entered into the stack before B.
When > executes, A should be in level 2, and B in level 1.

This is the reverse of the order of HP-41 tests. X>Y? in the HP-41 means “is X (level
1) greater than Y (level 2)?” Therefore, when translating HP-41 programs to the HP-

28, you must be careful to use the opposite tests in cases where the order of arguments
is important.

Table 10.3. HP-28 and HP-41 Test Commands

HP-28 Test Meaning HP-41 Equivalent

< Less than? X>Y?
= Less than or equal to? X>=Y?
> Greater than? X<Y?
= Greater than or equal to? X<=Y?
== Equal to? X=Y?
#* Not equal to? X#Y?

SAME Object same? X=Y?

FS? Userflag set? FS?

FC? User flag clear? FC?
FS?C Userflag set?--clear FS?C
FC?C User flag clear?--clear FC?C

10.3.2 SAME, ==, and =
It is important to distinguish carefully between the three commands SAME, ==, and =,
which may appear to have similar meanings. The first point to note is that = is not a
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test command, so it is fundamentally different from the other two commands, which are
tests. = is a function that creates an equation from two expressions. Its execution does
not return a flag; in symbolic evaluation mode, it does nothing other than evaluate its
arguments. In numeric evaluation mode (including using “NUM) it acts the same as —,
returning the numerical difference of the two sides of the equation.

==, on the other hand, is a test, and always returns a flag when executed. == is pri-
marily intended for ordinary numerical equality comparisons. You can use == in alge-
braic expressions as an infix operator, just like <, >, etc. == and = must have dif-
ferent names to distinguish their quite different meanings, and to prevent ambiguity

within algebraic expressions. Note that A=B is an “assertion,” whereas A==B is a
“question.”

SAME is very similar to ==; in many cases you can use them interchangeably. Other
than the fact that SAME is an RPN command that is not allowed in algebraic objects,
the two commands differ only in the manner in which they deal with algebraic and
binary integer objects:

e == operates on algebraic objects like any other function, returning a symbolic result
when appropriate. SAME compares the original objects themselves, always returning

a flag. Thus, ‘1+2’ 3 == returns the expression '1+2==3" (which evaluates to a
true flag), whereas '1+2' 3 SAME returns a false flag.

e When comparing binary integers, = = ignores leading zeros and compares only the
numerical values, so that the relative wordsize of the two integers does not matter.
For SAME to return a true flag, the two integers must have the same wordsize as
well as the same value. [This distinction is not present in the first HP-28’s. In the
original 1BB version, == does compare wordsizes, and works like SAME for binary

integers.]

10.4 Conditional Branches

Many programming problems require a program to make simple decisions: “If this is
true, do that--otherwise do something else.” To deal with program decisions like this,
the HP-28 provides the IF structure, a program structure that has the general form:

IF test-sequence THEN then-sequence ELSE else-sequence END

You can read this structure as “if test-sequence is true (returns a true flag), then execute
then-sequence and jump past the END. If false, skip the then-sequence and execute else-

sequence.”

The ELSE else-sequence portion of the structure is optional; for cases where “do
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something else” is just “do nothing,” you can use:

IF test-sequence THEN then-sequence END,

which translates to “If test-sequence is true, execute then-sequence; otherwise, skip past
the END.”

m Example. Test a user flag specified by its number in level 1, and display YES if the
flag is set, or NO if it is clear:

IF FS? THEN "YES" ELSE "NO" END 1 DISP

m Example. Order two numbers so that the smaller one is returned in level 1, the
greater in level 2.

 

DUP2 Copy the two numbers.

IF < Testif the first is less than the second.

THEN SWAP If so, switch the numbers.

END   
 

m Example. RTOP is an alternate form of R~P that works on either two real numbers

or a single complex number, returning the results in the corresponding forms.

 

 
 

 

 

 

RTOP Rectangular to Polar

level 2 level 1 | level 1

x y or r 0

*y) or (r,9)

< DUP

IF TYPE Testif the argumentis not real.

THEN R-P Transform and leave in complex form.

ELSE R-C R-P C-R Convert to complex, transform, convert to

real.

END

>>   
 

Because it is THEN that actually removes a flag from the stack and makes the branch
decision, the position of the IF in the sequence that precedes THEN is unimportant:
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1 2
1 2 >
IF 1

IF > THEN
IF THEN .., and

2 > THEN

.., and

ceey

iCc.4

all produce the same result. You can choose to position the IF wherever you want to
make a program the most readable. (The most memory-efficient form has a single

object between the IF and the THEN. Thus of the three forms above, the first uses the
least memory. See section 11.6.)

10.4.1 Nested IF Strucures
Although the HP-28 does not provide a multi-case test structure, you can create multi-
branch programs by “nesting” IF structures inside other IF structures.

n Example. The program COUNT4 is a simple four “bin” counting routine.

COUNT4

level 1

X

Count in 4 Ranges

level 1

 

or

 

< |F DUP 0 <

THEN 1

ELSE

IF DUP 0 ==

THEN 2

ELSE

IF DUP 1 =

THEN 3

ELSE 4

END

END

END

1 -LIST

'COUNTS’ SWAP DUP2

GET 1 + PUT

DROP

>>  

Test x<O0.

Range 1.

Testx = 0.

Range 2.

Test x<1.

Range 3.

Othertests failed, so x must be greater than

1 (range 4).

Convert the bin number to a vector index.

Make two copies of the vector name and the

index.

Get the element, add 1, put it back.

Discard the leftover x.

 
 

COUNT4 tests an argument x to see in which of four ranges its value lies. The total in
each range is stored in the four-element vector COUNTS. The elements of the vector
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represent these ranges:

Element Range

1 x<0

2 x=0

3 0<x=1

4 x>1

Another way to make a multi-case choice is to create a list of programs, then select one
of the programs from the list according to an index. For example, this sequence takes a
real number from the stack, and executes a name corresponding to the number:

 

 

{ ONE TWO THREE FOUR FIVE } List of name choices.

SWAP Put the index in level 1.

GET Get the indexed choice.

EVAL Execute the selected name.  
 

10.4.2 Command Forms
An alternate means of achieving IF structure branching is provided by the IFTE and IFT
commands. For these commands, the various sequences included in an IF structure are
entered as stack arguments, either as single objects or as programs. Thatis,

test-sequence << then-sequence >> << else-sequence >> IFTE

is equivalent to

IF test-sequence THEN then-sequence ELSE else-sequence END.

Similarly,

test-sequence << then-sequence >> IFT

is equivalent to

IF test-sequence THEN then-sequence END.

To use IFTE, you put a flag in level 3, a program representing the then-sequence in level
2, and a program representing the else-sequence in level 1. IFTE tests the flag; if the
flag is true (non-zero), the else-sequence is dropped, and the then-sequence is executed.
If the flag is false (zero), the then-sequence is dropped, and the else-sequence is exe-
cuted. IFT works much the same way: the flag must be in level 2, and a then-sequence in

-196-



Programming 10.4

level 1. If the flag is true, the then-sequence is executed, otherwise it is dropped.

For both IFTE and IFT, if any of the then- or else- sequences consist of a single object,

you don’t need to make a program out ofit--just put the object itself in the appropriate
level.

» Example. This version of RTOP (section 10.4.1) uses IFTE:

 

 

 

 

 

 

RTOP2 Rectangular to Polar

level 2 level 1 | level 1

x y or r 0

) o (r,9)

<< DUP TYPE Get the input type.

<< R-P > Complex case (type # 0).

< R-C R*P C-R > Realcase (type 0).

IFTE Execute appropriate procedure.

>>   
 

There is no particular advantage within a single program to using IFT or IFTE rather
than the corresponding IF structure, so which form you use is mostly a matter of taste.
However, the RPN command forms have one advantage for more sophisticated pro-

gramming: their use allows you to place the fest-sequence, the then-sequence, and the
else-sequence in separate programs or program structures. If you use an IF structure, all
must be contained in the same program.

IFTE is also a function, which means you can use it in algebraic objects as well as in
programs. It is a prefix function of three arguments:

IFTE(test-expression, then-expression, else-expression)

Notice that the arguments are in the same order as the stack arguments when IFTE is
executed as an RPN command. All three arguments are ordinary expressions. Test-
expression is evaluated, and its value is interpreted as a flag. If the flag is true, then-
expression is evaluated; if the flag is false, else-expression is evaluated. Typically, the
test-expression contains a comparison operator, so that evaluation automatically returns a
flag.

w Example. 'IFTE(X>0,X,1-X)’ returns X if X>0, and 1-X otherwise.

IFT has no algebraic form. This is because algebraic objects must return a result when
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evaluated--an algebraic conditional can’t “do nothing” if the test flag is false.

10.5 Loops

A loop is a program structure containing a sequence that is executed more than once.
In a definite loop, the number of repeats is known in advance. In an indefinite loop, exe-
cution repeats until some specified condition is met, then exits the loop and continues
with the rest of the program.

10.5.1 Definite Loops
The most common form of definite loop structure is the FOR..NEXT loop. This kind
of loop is appropriate when you want a program sequence to repeat several times, mak-
ing use of an index that is incremented by 1 at each iteration of the sequence. The gen-
eral form of a FOR..NEXTloopis:

start stop FOR name sequence WNEXT,

where

e start is the (real number) initial value of the index.

e stop is the (real number) final value of the index.

e FOR identifies the start of the structure; it removes the start and stop values from
the stack.

e name is the name of the (local) variable that contains the index.

® sequence is any program sequence, which can contain any number of uses of name.

e NEXT is the structure word that identifies the end of the sequence. It increments
the index by one, then tests its value against the stop value to determine whether to
repeat the sequence.

You can read a FOR..NEXT loop as “For each value from start through stop of an
index named name, execute the sequence that ends with NEXT.”

s Example. Sum the squares of the integers from 1 through 100.
 

   

0 Initialize the sum.

1 100 Start and stop values.

FOR n Create a local variable n, with initial value 1.

n SQ + Square the current index and add to sum.

NEXT Increment n by 1. If n=100, loop again.
 

Executing this sequence returns the answer 338350.

-198-



Programming 10.5

A few observations:

e Start and stop as shown above are not part of the FOR..NEXT program structure.
FOR expects to take two real numbers from the stack, but those numbers can be
entered or computed at any time in advance of the FOR, as long as they are in levels
1 and 2 when the FOR executes.

e The start and stop values are removed from the stack by FOR. They are not accessi-

ble afterwards; if a program needs their values for other purposes, it should copy
them or store them in variables before executing the FOR.

e The index is kept in a local variable identified by the name that immediately follows
FOR. You can return the current value of the index by executing its name. You can
also change the value of the index after the loop has started, by storing a real
number into the local variable. The naming and use of the index variable are sub-
ject to the same restrictions as local variables created by - (section 10.7). After the
loop 1s finished, the index variable is automatically purged.

e The name following a FOR is not part of the sequence that is repeated. For exam-
ple,

1 10 FOR n n NEXT

puts integers 1 through 10 on the stack, but

1 10 FOR n NEXT

does nothing,

e The sequence between FOR name and NEXT always executes at least once, even if
the specified stop value is less than the start value.

e The start and stop values don’t have to be integers. NEXT always increments the
index by 1; the loop will repeat as long as the index is less than or equal to the stop
value.

5 6 FOR n sequence NEXT

executes sequence once, with n = 5.

e The combination FOR name acts like a single operation when you single-step the
FOR.

10.5.1.1 Varying the Step Size

The FOR..STEP program structure is a variation of FOR..NEXT, that allows you to
increment the loop index by amounts other than one, including negative values. A

FOR...STEP structure looks like this:
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start stop FOR name sequence STEP.

Start, stop, name, and sequence play the same roles as in FOR..NEXT loops. The struc-
ture word STEP plays a similar role to NEXT, but allows you to control the amount by
which the index is incremented (or decremented). STEP takes a real number from level
1, and adds it to the current value of the index. Then:

e If the step value is positive, the loop repeats if the index is less (more negative) than

or equal to the stop value.

o If the step value is negative, the loop repeats if the index is greater (more positive)

than or equal to the stop value.

Note that since STEP takes a number from the stack, sequence must end with the step
value on the stack (the step value doesn’t have to be the same each time).

» Example. The program DFACT computes the double factorial n!!=n (n-2)(n-4)...1,
where n is an integer.

 

 

DFACT Double Factorial

level 1 | level 1

n o n!!

< 1 Initialize the product.

SWAP 2 Loop from n down to 2.

FOR m m is the index.

m * Multiply the product by m.

-2 STEP Decrement m by 2. Repeat if

m=2.

>>   
 

10.5.1.2 Looping with No Index

In some circumstances, there is no need for an index when a program sequence is to be
repeated a fixed number of times. In such cases, you can use START in place of FOR.
START..NEXT and START..STEP are the same as FOR..NEXT and FOR...STEP,
respectively, except that the loop index is not accessible. The index name that must fol-
low FOR is not used with START (if a name does follow START,it is just treated as part
of the loop sequence, and has nothing to do with the loop index).

» Example. The program VSUM sums the n elements of a vector.
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VSUM Sum Vector Elements

level 1 | level 1

[ vector ] or sum

<< ARRY- LIST- Put the elements on the stack, with the

number of elements in level 2, and a 1 in

level 1.

SWAP OVER - Loop start and stop values for n-1 addi-

tions.

START + NEXT Execute + n-1 times.

>>   
 

You should use START instead of FOR when possible

e to save the memory used by the index variable, and

e because a START..NEXT/STEP loop executes faster than the corresponding

FOR..NEXT/STEP loop.

10.5.1.3 Exiting from a Definite Loop

Definite loop structures are designed to repeat a predetermined number of times.
There is no “exit” command that can cause program execution to jump out of a loop
before it has completed the specified number of iterations. Ordinarily, you should use
an indefinite loop (section 10.5.2) for calculations where you don’t know in advance how
many iterations are needed. However, the indefinite loops don’t provide an automatic
index like that in FOR..NEXT/STEP loops, so for some problems you may find it more
convenient to use a definite loop with a contrived exit rather than an indefinite loop

where you have to provide your own index.

All you have to do to cause a loop to exit before the prescribed number of iterationsis
to store a number greater than or equal to the stop index value into the index variable.
In loops with a positive step size, an obvious choice for an exit value is MAXR, the larg-
est number that the HP-28 can represent, although you have to be sure to convert the
symbolic constant into a real number. For loops with a negative step, you can use

-MAXR.

Typically, the exit from a definite loop is taken as the result of a test. The general form

of such a loop is as follows:
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start stop
FOR n sequence

IF test
THEN MAXR
END

NEXT

-NUM 'n" STO

This structure executes sequence for every value of n starting with start, and ends when
either n is greater than stop, or test returns a true flag.

N
= Example. Determine the value of N for which 3 n? = 1000.

 

n=1

0 1 10000 Initial value of sum; start and stop values.

FOR n Loop index is n.

n SQ + Increment the sum.

IF DUP 1000 > Is the sum =1000?

THEN n The current value of the index is N.

MAXR -NUM 'n’ S0 Set the index past the stop value.
END

NEXT   
 

Executing this sequence returns the sum 1015, and the value 14 for N.

10.5.1.4 Comparison with the HP-41

HP-28 program loop structures replace the HP-41 loops created with the ISG (“incre-
ment and skip if greater”) and DSE (“decrement and skip if equal”) commands. Those
commands combine the start, stop, index and step values into a single decimal “control
number” of the form iiiii.fffcc. The correspondence between the digits of the HP-41
control number and the HP-28 loop parameters is as follows:

value.

o fff is the three-digit integer stop value.

e cc is the two-digit integer step size. If it is omitted, the default step size is one.

The control numberis stored in a stack or memory register. This scheme has an advan-
tage over the HP-28 approach in that all three of the loop parameters are available as
long as the register is undisturbed, although it takes some calculation to extract the vari-

ous parts of the control number (and to create the control number in the first place).



Programming 10.5

The following examples show equivalent HP-41 and HP-28 sequences:

Task HP-41 Sequence HP-28 Sequence

Execute a sequence ten times. 1.010 110

STO 01 START
LBL 01 sequence
sequence NEXT
ISG 01
GTO 01

Sum the integers between the RCL 06 0 RO5 R06
values stored in variables (regis- 1000 FOR n

ters) R0OS and R06. / n +
RCL 05 NEXT
+

STO 01

0
LBL 01
RCL 01
INT
+

ISG 01
GTO 01

10.5.2 Indefinite Loops
An indefinite loop is a loop where the number of iterations is not determined in
advance. Instead, the loop repeats indefinitely until some exit condition is satisfied.
The HP-28 provides two program structures for indefinite looping, the DO loop and the
WHILE loop. The primary difference between the two structures is the relative order of

the test and the loop sequence. In a DO loop, the sequence is performed first, then the
test; in a WHILE loop, the test is performed first.

10.52.1 DO Loops
The basic form of a DO loop structure is:

DO loop-sequence UNTIL test-sequence END.

Loop-sequence is any program sequence. Test-sequence is a second program sequence,
which must end with a flag on the stack. END removes the flag; if the flag is true (non-
zero), execution jumps back to the start of loop-sequence. If the flag is false (0),
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execution proceeds with the remainder of the program after the END. You can read a
DO loop as:

“Do loop-sequence repeatedly, until test-sequence is true.”

» Example. Compute ), —15—
n=1"n

= Solution: The sequence below sums terms of the form n~>, until two consecutive
sums are equal. Executing the sequence returns 1.03692775496, after 184 iterations.

 

   

1 'N’ STO Initialize a variable N as a counter.

0 Initialize the sum.

DO Start of loop.
DUP Copy the old sum.

N -5 ~ + Addn 73,
1 'N" STO+ Increment the counter.

SWAP New sum in level 2, old in level 1.

UNTIL Start test-sequence.

OVER == True if old sum = new sum (leaves only new

sum in level 1)

END Repeat if test was true, otherwise done.
 

The position of the UNTIL between DO and END is unimportant. That is, the division
of the program steps into loop-sequence and test-sequence is only a matter of program
legibility. Both loop-sequence and test-sequence are executed at each iteration of the
loop, so it doesn’t matter where you put the UNTIL. We recommend that you use the
UNTIL to isolate that portion of the program that constitutes the logical test--the pro-
gram steps which produce the flag that determines whether or not to repeat. The por-
tion that precedes the UNTIL should be the part of the loop that computes the results
used by the remainder of the program after the END.

To reverse the sense of the test, that is, to make a loop that repeats until a test is false,
you can either substitute an opposite test command (> for <, FC? for FS?, etc.), or
insert a NOT immediately before the END:

DO loop-sequence UNTIL test-sequence NOT END.
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10.522 WHILE Loops

In a WHILE loop, a test sequence is defined in the first part of the structure:

WHILEtest-sequence REPEAT loop-sequence END.

Here again loop-sequence is any program sequence, and fest-sequence is any sequence
that returns a flag. REPEAT removes the flag; if the flag is true, the program executes
loop-sequence, then loops back to test. If the flag is false, loop-sequence is skipped, and
execution proceeds with the remainder of the program after the END. You can read a
WHILE loop like this:

“As long as fest-sequence is true, keep repeating loop-sequence.”

» Example. The program GCD finds the greatest common divisor (GCD) of two
integers n and m. GCD repeatedly computes r = m—n IP(m/n); if each successive r is

greater than zero,it replaces n with r, m with n, and repeats. When r is finally zero, the
value of n is the GCD.

 

 

 

 

 

 

GCD Greatest Common Divisor

level 2 level 1 | level 1

n m o  GCD(n,m)

<< WHILE Beginning oftest-sequence.

DUP2 DUP2 Make 2 copies of m and n.

/] 1P * - Compute r = m—n IP(m/n).

DUP 0 > Test r>0.

REPEAT If true, do the following:

ROT DROP Replace m and n by new values.

END Loop back and repeat the test-sequence.

ROT DROP2 Leave 7 in level 1.

>>    
To reverse the sense of the test, that is, to make a loop that repeats while a test is false,
you can either substitute an opposite test (> for <, FC? for FS?, etc.), or insert a NOT
immediately before the REPEAT:

WHILEtest-sequence NOT REPEAT loop-sequence END.
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10523 DO vs. WHILE
DO loops and WHILE loops are very similar in purpose, and often you can use either
form for a programming problem. Here is a summary of the differences between the
two structures:

¢ In a DO loop, the test for looping is made after the loop-sequence is executed. In a
WHILE loop, the test is made before the loop-sequence.

e In a DO loop, the loop-sequence is executed at least once, and again at every itera-
tion. In a WHILE loop, the loop-sequence may not be executed at all. In general
the WHILE loop loop-sequence is executed one time fewer than the test-sequence.

¢ The position of UNTIL between DO and END is arbitrary, and has no effect on
results. The position of REPEAT between WHILE and END is significant.

10.6 Error Handling

Any condition that produces an error beep and an error message display in the HP-28
will also cause any current procedure evaluation to stop. By means of the IFERR struc-
ture, programs can intercept all errors (except Out of Memory) and continue execution.
The IFERR structure has the following general form:

IFERR error-sequence THEN then-sequence ELSE normai-sequence END,

where the three sequences are arbitrary program sequences. You can read an IFERR
structure as:

“If any error occurs during the execution of error sequence, then execute then-
sequence and continue execution after the END. If no error occurs, skip then-
sequence and execute normal-sequence, and continue on after the END.”

There does not have to be a normal-sequence--the ELSE normal-sequence is optional.

IFERR error sequence THEN then-sequence END

executes then-sequence if an error occurs during error sequence, but does nothing special
otherwise.

m Example. Compute sinx/x, where x is a stack argument, using an IFERR structure to
handle the undefined result error condition at x =0.

DUP SIN SWAP IFERR / THEN DROP2 1 END

This sequence returns 1 for an argument of zero.
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The position of the IF structure word in the sequence preceding THEN in an IF struc-
ture is unimportant because it is THEN that actually makes the branch decision. How-
ever, the position of IFERR in an IFERR structure is significant; the IFERR and the
succeeding THEN define the extent of the sequence for which errors are trapped.
IFERR A B THEN intercepts errors in A and B, whereas A IFERR B THEN traps errors

occurring only in B. The jump to the then-sequence happens immediately upon the
error; any remaining steps preceding the THEN are skipped. Thus if an error occurs in
A in the structure IFERR A B C THEN D END, B and C are not executed--execution

jumps from the point in A where the error occurred directly to D.

Because the reaction to an error is usually specific to a particular error,it is generally a
good idea to keep the error-sequence short, containing as few as one object if possible.
Then there is no ambiguity about which object caused the error, and no part of the
sequence that will be skipped. Of course, even a single object may cause different types
of errors. To sort out such possibilities, you can use the ERRN command to return the
error number of the most recent error, and ERRM to return the text of the error mes-

sage. For example, suppose that a program adds two arguments. The addition can fail
either because the stack is empty, or because the arguments are of the wrong type. The
following IFERR structure can deal with either problem:
 

 

IFERR +
THEN ERRN Get the error number.

IF #513 == Is it error 513 (Too Few Arguments)?

THEN GETMORE Use GETMORE to get more arguments.
ELSE ERRM ABORT If the arguments are the wrong type, return

the error message as a string.
END

END   
 

10.6.1 The Effect of LAST
The design of an IFERR structure must take into account whether last arguments
recovery is active at the time an error occurs. If LAST is enabled, the arguments of the
command that errors are restored to the stack. If LAST is disabled, the arguments are
discarded. The sinx/x example in the preceding section assumes that LAST is enabled.
The DROP2 in the then-sequence is intended to discard the two zeros that cause the
division error, and which are restored by the error system. If LAST is disabled, the
DROP2 is inappropriate because the two zeros are not returned after the error.

Since in most cases it is preferable for programs to work correctly regardless of the
existing state of LAST, IFERR structures should include steps to determine whether
LAST is active or not and to act accordingly. Flag 31 provides programmable control of
LAST. A program can test the flag to determine if LAST is enabled or disabled, or it
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can set or clear the flag itself. These options allow two general approaches for design-
ing error traps:

1. Set or clear flag 31 in the program before the error trap, then write the IFERR
structure accordingly. Returning to the sinx/x example, either

31 SF DUP SIN SWAP IFERR / THEN DROP2 1 END

or

31 CF DUP SIN SWAP IFERR / THEN 1 END

will work. This method has the disadvantage that it may alter the state of flag 31
and thus affect other programs that may depend on the flag. As a rule, any pro-
gram that does depend on flag 31 or any other flag should itself set the flag the
way it wants, so this should not be a major limitation. (You can preserve the state
of the LAST flag, and all other flags, by executing RCLF, keeping the resulting
binary integer on the stack or in a local variable, then using it with STOF at the
end of a sequence that alters the flags.)

2. Include a conditional in the then-sequence that can react to the current state of
flag 31 without altering it. For example,

DUP SIN SWAP
IFERR /
THEN

IF 31 FS?
THEN DROP2
END
1

END

10.6.2 Comparison with HP-41 Error Handing
The HP-41 provides a simple error trapping mechanism centered around flag 25, the
error-ignore flag. If this flag is set, the HP-41 will abort any command causing an error,
clear the flag, and proceed with program execution with the step following the erring
command. The HP-41 analog to an HP-28 IFERR structure is a program sequence like
this:
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SF 25

command error “sequence”.
FS? 25 “IFERR”
GTO 01

normal-sequence “ELSE...”
GTO 02

LBL 01 “THEN...”
then-sequence
LBL 02 “END”

The advantages of the HP-28 system are flexibility, in that the error-sequence can contain

one or more objects; and legibility--when you read a program it is easy to identify the
various sequences because they are set off by the IFERR/THEN/ELSE/END structure
words.

An HP-28 IFERRstructure is similar in some respects to the ON ERROR GOTO capa-
bility in BASIC. The error-sequence in BASIC is the sequence between the ON ERROR
GOTO and the subsequent OFF ERROR statement; the then-sequence is the program
starting at the line identified by the GOTO.

10.6.3 Exceptions
A mathematical exception, in HP-28 terminology, is a condition encountered in the exe-

cution of certain functions for which you are given a choice of how subsequent execution
should proceed. You can treat an exception as an execution-halting error, or have the
calculator supply a default result and continue normally. You make your choice by
means of the various exception action flags (57, 58, and 59). If one of these flagsis set,
the corresponding exception results in an error. If it is clear, a default result is returned
with no error.

A typical exception is division by zero. The behavior of / when the divisor is zero is
controlled by flag 59, the infinite result action flag. If flag 59 is set, division by zero is
treated as an error, causing the Infinite Result error. However, if flag 59 is clear, no
error is reported, and one of the values +9.99999999999E499 (+MAXR) is returned,
which are the HP-28’s best representations of. The sign of the result is determined
by the sign of the dividend.

The choice to error or to supply a default generally depends on whether the exceptional
condition is expected. For example, if you don’t anticipate that a program might cause a
division by zero, it is better to set flag 59 so that the program will halt and report the
error. On the other hand, if you know that the divide-by-zero situation can happen, and
that +MAXR is a good approximate result that lets a calculation proceed to meaningful
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results, then clearing flag 59 is a good choice.

A program can detect when an exception occurs even if the action flag is cleared to

prevent an execution halt. Flags 61 through 64 act as signal flags--when an exception
occurs, the corresponding signal flag is set automatically. For example, flag 64 is set by
an infinite result exception. Therefore, a program can clear flag 64, carry out a calcula-
tion with flag 59 clear, and still determine if a division by zero occurred by testing flag
64.

In addition to the infinite result exception, the HP-28 also recognizes two other excep-
tions:

e Overflow (action flag 58, signal flag 63). Overflow occurs when a function returns a
result that is finite, but larger than the HP-28 can represent, such as FACT(2000).
With flag 58 clear (the default setting), overflowing functions return
+9.99999999999E499. An overflow is not the same as an infinite result, for which
the correct value is + rather than a too-large finite number.

e Underflow (action flag 57, signal flags 61 and 62). Underflow occurs when a function
returns a result that is not zero but smaller in absolute value than 1E-499 (MINR),
the smallest non-zero number that the HP-28 can represent. If flag 57 is clear (the
default setting), any underflowing function returns zero as its default result. Since
zero has no sign, two signal flags are used: flag 61 is set to indicate that the function
underflowed from the negative side of zero; flag 62 set indicates underflow to a
small positive number.

Note that 0+ 0 is not an exception. That quantity is mathematically undefined--it is nei-
ther an overflow nor an infinite result. There is no appropriate default result to supply,
so the HP-28 always reports the Undefined Result error and halts execution. You can,
of course, create your own exception handing by using an IFERR structure to trap this
error.

The HP-41 range-error-ignore flag (flag 24), is the HP-41’s closest equivalent to HP-28
mathematical exception handling. If that flag is set, functions that return results larger
than the HP-41 maximum 9.999999999E99 return the maximum value; if the flag is
clear, the OUT OF RANGE error occurs. The HP-41 does not distinguish between
infinite and finite-but-too-large results. For example, TAN(90°) and EXP(2000) are both
treated as the same out-of-range exception. Moreover, division by zero always returns
DATA ERROR--this exception can only be trapped by a flag 25 error branch. In con-
verting HP-41 programs to the HP-28, therefore, you can’t just use HP-28 flag 58 or 59
to act as HP-41 flag 24. If, for example, you set HP-28 flag 59 to match HP-41 flag 24
in preventing TAN(90°) from producing an error, the HP-28 then does not report an
error for division by zero, which the HP-41 always does.
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10.7 Local Variables

The HP-28 variables and their associated names that you see in the USER menu are
referred to as global variables and names. The term global implies that these variables
can be accessed by any program, or from the command line. The HP-28 also provides
variables that are associated only with individual procedures. The use of these local
variables and the corresponding local name objects is a very useful and powerful pro-
gramming technique.

It is possible, with the “unlimited” stack provided by the HP-28, to carry out an arbi-
trarily complicated calculation on the stack without any use of variables to store inputs,
intermediate results, or final outputs. The fastest and most efficient computation is usu-
ally achieved in this manner. The HP-41, which has a four-level stack, lets you keep a
few numbers “active” on the stack, but for any but the simplest calculations, you must
continually move numbers back and forth between the stack and the data registers. A
language like BASIC, which has no stack at all, requires that all input, output, and inter-

mediate results must be stored in variables. This makes individual BASIC statements
easy to read, but not particularly efficient.

The popularity of BASIC suggests that it is not always program execution efficiency that
is paramount, but rather the overall “throughput” of the problem solving process. If a
calculator is easy to program, you can usually get a result in less total time even if the
program itself may execute more slowly than if you developed a solution in an efficient
but arcane language. Thus while you can write a HP-28 program that is a marvel of
structure and efficiency by using only stack objects, the time and skill required for you
to keep track of everything on the stack during program development may be too high a
price for the result. In short, there is often a compelling advantage to assigning names
to objects to simplify the programming process.

At first glance this seems to imply the use of global variables that are created by STO,
are available at any time, and appear automatically in the USER menu. However, while
global variables are fine for “permanent” data and procedures, they are not as attractive
for storing intermediate results. They stay around indefinitely, so that you have to
remember to purge them to avoid cluttering up the USER menu and to conserve
memory. Furthermore, you have to be careful when you create a variable in one pro-
gram to avoid using the same name as that used by another program, unless you delib-
erately intend the two programs to share a common variable.

HP-28 local variables are a means for saving intermediate data and results that is inter-
mediate between using the stack cxclusively and using global variables. Local variables
exist only in a context defined by the program structure that creates them; therefore
there is no question of name conflicts with global variables or other procedures’ local
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variables. Also, when the defining structure has completed evaluation, all of its local
variables are automatically purged.

There are two methods by which you can create local variables. The primary method is
by means of local variable structures, which use the program structure word - to create
local variables. In addition, the FOR..NEXT/STEP loops described in section 10.5.1
use a local variable to store the current value of the loop index. Although the index
variable is used for a special purpose, it is otherwise the same as a local variable created
by —, with the same applicable commands and restrictions. In the remainder of this sec-
tion, we will concentrate on local variable structures.

A local variable structure starts with the structure word - (called “arrow,” or just “to”)
followed by one or more local names, and then by a program or an algebraic object
referred to as the defining procedure. The closing delimiter (' or >>) that ends the
defining procedure also marks the end of the structure:

- name, name, --° name, << program >>, Or

-~ name, name, -:- name, 'algebraic’.

The user-defined functions described in Chapter 8 are a special case of local variable
structures. A user-defined function is a program containing one local variable structure,
and no additional objects before the - or after the defining procedure. In the HP-28C,
the defining procedure must be an algebraic object; in the HP-28S, it may be either an
algebraic or a program.

The primary purpose of local variables is to provide a means of manipulating by name
the stack arguments used by a procedure. You can think of the - as meaning “take
objects from the stack and give them the following names; then evaluate a procedure
defined using the names.” Note that the procedure is evaluated, even though it is
entered between quote delimiters ' ' or << >>,

- takes objects from the stack and matches them each with one of the names that fol-
lows the ». The number of objects taken is determined by the number of names that
are specified. The end of the series of names is marked by the delimiter ' or << that
starts the defining procedure. The objects are matched in the order in which they
appear in the stack; the object in the highest stack level goes with the first name; the
object in level 1 is matched with the last name. A local variable is created for each of
the names, with the local name as its variable name, and the matching object as its
value. For example,

1 23 4 - abocd
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creates the local variables a with the value 1, b with value 2, ¢ with value 3, and d with
value 4.

» Example. Compute the five integer powers x through x> of a number x in level 1.
This first method does not use any variables except a loop index:

 

< 2 5 Powers 2 through S.

FOR n Loop with index n.

n 1 - PICK Get a copy of the number.

n * Raise to the nth power.

NEXT
>>   
 

This is not a very complicated program. It is fast and efficient, because it uses only
stack operations to obtain copies of the input number. The sequence n 1 - PICK is
needed to return a new copy each time around because when the index is n, the original
number has been pushed to level n—1 by the growing stack of computed powers.

The program looks easy to write, but you do need a little thought to figure out where

the input number will be on the stack at each iteration, and what stack operations are
required to return a copy of the number. You can avoid the mental gymnastics by writ-

ing the program to remove the number from the stack at the outset, and name it with a
local name:

 

< - X Store the number as x.

< x 2 5 Powers 1 through S.

FOR n Loop with index n.

x n * Compute x”.

« NEXT Repeat.
>

>>   
 

The latter program is slightly longer than the previous version, but the time it takes you
to write it should be less because there is no effort required to keep track of the input
number on the stack. Any time the program needs the number, it just executes the
local name. The lesson of this simple example becomes more important as the com-
plexity of the programmed calculation increases, to the point where using local variables
can make the difference between success and failure in the development of a program.

You can use local variable structures at any point in a program, not just at the
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beginning as in the case of user-defined functions. The program CINT illustrates the
use of a local variable to name an intermediate result. CINT computes the radius of a
circle inscribed in a triangle, where the lengths of the sides of the triangle are specified
on the stack. The formula is:

;= |sgs-—a)gs—b)gs—c2|”

s

where a, b, and c are the lengths of the sides, and s = ¥2(a + b + ¢).

 

 
 

 

 
 

CINT Circle in a Triangle

level 3 level 2 level 1 | level 1

a b c or r

< - a b c Name the lengths of the sides.

<< ’'(a+b+c)/2’ EVAL - s Compute and save s.

'V(s*(s—a) *(s—b) *(s-c))/s’ Compute r.

> End oflocal variable structure.

>>   
 

There are numerous additional examples of the use of local variables in programs
throughout this book. In the remainder of this section, we will review some of the
idiosyncrasies of local names and variables, and local variable structures.

10.7.1 Comparison of Local and Global Variables and Names
Local names and variables are very similar to ordinary names and variables, but there
are some important differences:

e Global variables are stored in a permanently established portion of memory we call
the USER memory. Local variables are stored in dynamically created “local
memories,” each of which is a segment of memory that acts like an independent
USER memory assigned to a particular procedure. When the procedure has finished
evaluation, the associated local memory is deleted, including all of its local variables.

e Local names are a different object type (7) from global names (6). This is how the
HP-28 system knows whether to find the variable corresponding to the name in
USER memory (global variables) or in a temporary local memory. When the HP-28

attempts to find a local variable, it searches the most recently created local memory
first, then previous local memories in reverse chronological order, until it finds a
variable matching the specified name.
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¢ Executing a local name recalls to level 1 the object stored in the corresponding local
variable, without executing the object. This means that if you store a program in a
local variable, to execute that program you must execute the variable name followed
by EVAL (or “NUM). The EVAL is not necessary for programs stored in global vari-
ables, since execution of a global name does execute the stored object.

e Most commands that can work with formal global variables (names with no associ-
ated variables) do not accept local names as arguments: 9, f, TAYLR, DRAW, ISOL,
QUAD, ROOT. OBSUB, EXSUB, and SHOW do allow local names as arguments.
INDEP accepts a local name on the HP-28C, but DRAW will error if the independent
variable entry in PPAR is a local name.

e The only command that can alter the object stored in a local variable after it is
created is STO. CON, IDN, PUT, PUTI, RDM, SCONJ, SINV, SNEG, STO+,

STO -, STO#*, and STO/ do not accept local names as arguments.

e PRVAR works only with global variables.

e You can not delete a local variable with PURGE.

e Local names can be the same as HP-28 command names (except for single-character
algebraic operator names like +, —, *, etc.). Notice that you can have local namesi
and e, but you should be careful not to use these names when you also want to use
the symbolic constants i and e.

These differences between local and global names arise from the design of local vari-
ables as a means of simplifying stack manipulations. The idea is to take one or more
objects from the stack that you expect to use repeatedly as command arguments, assign
names to them, then recall their values by name when they are needed by the com-
mands in a calculation. Local variables are not intended for storing objects that you
expect to change--for that purpose global variables are better because of the various
storage operations available (section 5.3.1). You can alter the value of a local variable
by storing a new object in the variable with STO, but you can’t use any of the com-
mands that alter part of an object “in place,” like STO+, PUT, or IDN.

Occasionally you may encounter a local name for which the associated local variable no
longer exists. For example, a defining procedure may leave the name of a local variable
on the stack after it completes evaluation.

<< 1 - X << 'Y > >

leaves the local name ‘X’ on the stack after evaluation, but the corresponding local vari-
able x that was given the value 1 is gone. You can not successfully execute this “formal
local variable”--EVAL returns the Undefined Local Name error. You should try to
avoid leaving left-over local names on the stack or in algebraic objects that result from
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symbolic calculations, to avoid confusion later.

10.8 Local Name Resolution

When ENTER processes a name in the command line, it normally interprets the name
as a global name. However, if the name follows a FOR or an —, then ENTER treats the
name as a local name while it is handling the rest of the structure that follows. After
the subsequent >>, ', or NEXT that terminates the structure, further instances of the

same names are again interpreted as global names. Thus in

<K - X < X >» X >,

the X in the inner program (<< X >>) is a local name, but the final X is a global name.
To help you keep track of which names are which type, we recommend that you adopt a
naming convention, such as using lower-case letters for local names, and upper-case
letters for global names. The above program then looks like this:

K - X K x > X >

making it clear that the global X is not to be confused with the two local X’s. We will
follow this convention in this book, except in certain examples in this section where we
are illustrating possible confusions between global and local names.

The resolution of names as global or local can be complicated when you nest local vari-
able structures. “Inner” structures can access the local variables of the “outer” struc-
tures that contain them, but not vice-versa. For example,

1 - X < 2 - §y < XYy + > xXx + Yy + >

returns '4+Yy’ (not 6), as follows:

1 - x Store 1 in local variable x.

<< Start of program in which x is recognized.

2 -y Store 2 in local variable y.

<< Start of program in which y is recognized.

Xy + Add x from “outer” program to y from “inner” program,

returning 3.

>> End of inner program where y is recognized.

x + Add x to 3, returning 4

y + This y is not a local name, because it is outside of the program

where Y is local. It therefore names a global variable, which

we are here assuming to have no current value. The sum is

therefore ‘4 +y’.

> End of outer program where x is a local variable.

If you rewrite the above sequence as
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1 - X K 2 -y << XY + X + Yy + > >,

moving the final y back inside the program where the local variable y is defined, the
sequence then returns the value 6.

When two nested local variable structures define local variables with the same name,

two separate local variables are created. Any use of the name refers to the most
recently created local variable. The fact that there is another local variable with the
same name in a previously created local memory does not matter. Thus

1 - X << 2 - X < X > >

returns 2, whereas

1 » X << 2 = X << > x >

returns 1.

It is important to note that a procedure represented by a name (rather than the pro-
cedure itself) within a local variable structure can not access the local variables defined

by that structure (unless the procedure is created while the structure is evaluating or
suspended; see below). For example, if you create the program A:

< x y + > 'A" STO,

and invoke it in another program like this:

< 1 2 - Xy << A > >

then executing the latter program returns 'x+y’ (global x and y), not 3. When you
enter the program A, X and y are created as global names. The search for their values
when A is executed in the second program therefore is made in USER memory, even
though there are identically named local variables at the time of the search.

This property of local variables, which makes it possible for each program to define its
own variables without name conflicts with those of other programs, has the disadvantage
that you can’t always easily break a program containing a local variable structure into
smaller programs. For example, you can’t rewrite

< = X Y << sequence, sequence, >> >>

as two programs
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<< sequence,; >> 'SEQ1’ STO

< - X Yy << SEQ1 sequence, > >>,

if sequence contains either of the names X or y. There are several approaches that you

can use instead:

e Use global variables. Rewrite the second program as

<< 'y’ STO 'x’ STO SEQ1 sequence, { x y } PURGE >>.

In this case you might keep the lower-case names X and y for the global variables, to
avoid editing sequence ; and sequence,.

e Use the stack to pass the values from one program to the other. Rewrite the pro-
grams as:

<< - XYy << sequence; > >> 'SEQ1’ STO

< - X y << x y SEQ1 sequence, > >

The latter program puts the values of X and y back on the stack, where SEQ1 can
store them in its own local variables X and y. This approach requires no change to
sequence;.

e Force X and y in SEQ1 to be created as local variables. You can achieve this by
entering the SEQ1 program while there is an existing local memory containing local
variables X and Y.

1. Type

0 0 - x y << HALT >> [ENTER]

You will see the suspended program annunciator turn on. Because the local
variable structure is executing when the program halts, the local memory con-
taining local variables X and is still present.

2. Enter the program SEQ1:

<< sequence, >> 'SEQ1’ STO.

All instances of X and Yy in sequence, are treated as local names.

3. Now, when you execute the main program

< - X y << SEQ1 sequence, >> >>,
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execution of the names X and y in SEQ1 returns the values stored at the start
of the main program.

This method, although it solves the problem with no rewriting, is dangerous
because if you later edit SEQ1, you must remember to create again the halted
program local memory. Otherwise, the command line reentry converts X and y
back into global names. Also, you won’t be able to use SEQ1 as a subroutine
for other programs unless those programs also define local variables X and vy.
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The process of transforming a problem into a calculator program is seldom straightfor-

ward. There are elements of art, and of personal preferences and style, that preclude a
single prescription for programming. It is not even easy to define what distinguishes a
good program from a bad one. For example, one program might require less memory,
or run faster, or have fewer steps than another. But perhaps you can develop the less
efficient program and use it to obtain results in less time than it takes just to design the
other; which, then, is the “better” program?

In this chapter, we will study some general-purpose topics in HP-28 program develop-
ment, with examples to illustrate each topic. In some cases, we’ll show several versions
of a program, to illustrate how “first tries” can evolve into more refined or capable ver-
sions. From these examples, you should be able to see how various HP-28 program-
ming tools and techniques can be combined. You can remember those methods that
appeal to you, and through practice, develop your own methodology.

11.1 Program Documentation

Throughout this book we have been using a particular format for listing programs. We
recommend that you adopt a system like this one for developing and recording your own
programs. The following sample listing illustrates the various features of the format:

 

 
 

 

 

 

 

SAMPLE Sample Program Listing

level 3 level 2 level 1 | level 1

"string”  [matrix] n or [matrix’]

< A B - ab Start of program.

<< Start oflocal variable procedure

IF C D Start of IF structure.

THEN 1 2 - n m

<< Start of local variable procedure.

START E F Start of definite loop.

DO G UNTIL H END DO loop.

NEXT End of definite loop.

> End of local variable procedure.

ELSE | J

END End of IF structure.

>>

> End of program.  
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1. The name of the program (SAMPLE) is listed first, followed by an expanded ver-
sion of the name that is descriptive of its purpose. When you have entered the
listed program, you should store it in a variable with the specified name. If no

name is given, the program is just intended to illustrate some point in the text, and
there’s no need to give it any particular name.

2. Following the program nameis a stack diagram, that specifies the program’s input
and output on the stack. The program arguments are shown to the left of the =,

and the results to the right. In the example, the stack diagram indicates that the
program requires a string in level 3, a matrix in level 2, and a real number n in
level 1, and returns a new matrix in level 1. The object symbols in the stack
diagram are as descriptive as possible, showing not only the required object type
but also the conceptual purpose of the objects. A stack diagram

length width height = volume

shows that a program takes three real numbers (no object delimiters) representing
length, width, and height, and returns another real number thatis the volume.

3. The program listing is broken into lines, where each line has one or more pro-
gram objects listed at the left, and explanatory comments on the right. There may
be just one object on a line, or several whenever the collective effect of the objects
is easy to follow. You do not have to use the same line breaks (or any at all)
when you enter the program.

4. Most program objects and program structures start on a new line. If the program
or structure is a short one, the entire structure may be shown on one line. More
frequently, each program delimiter or structure word starts a new line. The
sequences between the structure words are indented, so that the structure words
stand out. In the case of nested structures, each structure word of a particular
structure is lined up vertically at the same indentation from the left margin. (The
structure word - does not start a new line, but the local variable defining pro-
cedure that follows the ~ does start a new line.) Note that when you edit or print
a program on the HP-28S, the program display follows these same conventions,
within the limitation of the 23-character screen or printer width.

5. The comments at the right of the listing describe the purpose or results of the
program lines at the left. An especially useful “comment” is a description of the
contents of the stack that are obtained after the execution of a program line. In
our listings, the stack contents are distinguished from ordinary comments by
enclosing the stack objects between | | symbols. The leftmost object in the series
is in the highest stack level; the rightmost is in level 1. Thus

la b ¢ d|
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indicates that the object a is in level 4, b in level 3, ¢ in level 2, and 4 in level 1.

11.2 Program Editing

To make any alteration to an existing program in order to correct an error, optimize
execution, or add features, you must edit the program. Because HP-28 programs are
objects, you edit a program the same way you edit any other object. That is, you use
EDIT or VISIT to create a text version of the program in the command line, use the
facilities of the command line to make the alterations you desire, then execute ENTER
to replace the old copy of the program with the new one. Re-entering the entire pro-
gram this way ensures that objects and program structures are entered correctly.

When an object is copied into the command line by EDIT or VISIT, any numbers in the
object are shown to their full precision, regardless of the current number display mode.
That is, floating-point numbers are shown in STD format, and binary integers with a
wordsize of 64 bits. This prevents the accidental changing of numbers during editing.
On the HP-28C, there is one pitfall to watch out for, however. If you edit a binary
integer, or a list or program containing binary integers, changing the binary integer base
while the object is still in the command line will change the interpretation of the
number when you press . For example, if you select HEX mode, then edit the
number #FF, change the base to BIN, and press , you will get a Syntax Error
message because the digit F is not allowed in BIN mode. Worse,if you select BIN mode
first, edit the number (which is #11111111 in binary), then press SHEXZ , the

number will be reentered as hexadecimal #11111111, which is quite different from the
original value. Thus when you are working with binary numbers on the HP-28C, keep
these potential effects in mind when you change bases during an edit. On the HP-28S,
binary integers are shown with an identifying character (b, d, h, or 0), so that reentering
a binary integer will not change its base regardless of the current mode.

The advantages of the HP-28 program editing approach are:

e The same editing methods apply to all HP-28 object types, so that you don’t have to
learn special techniques for each object type.

e No changes you make during an edit are “final” until you press . If you
change your mind while you are editing a program, you can just press to cancel
the edit and leave the program intact.

On the other hand, there are two important disadvantages:

e For a large program, it can take a substantial amount of time for the HP-28 to

translate the entire program object into its text form, and, when you’re done editing,
to build the new program from the command line text.
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e During the execution of ENTER, there must be memory available for as many as
three versions of the program (the original, the command line text, and the new ver-
sion) simultaneously. This restricts the size of the program that can be edited.

The latter disadvantage is the most serious, because it can happen that there isn’t
enough memory to permit any changes to an existing program, even if the changes don’t
increase the final size of the program. (This is particularly serious on the HP-28C,
which has only 2 Kbytes of user memory, restricting its programming primarily to small
programs.) Both disadvantages dictate that you keep programs small, typically less than
a few dozen objects. If a program starts to get too big as you develop it, break it up
into smaller subprograms that are executed by a short main program. Even though this
costs a little more memory for the subprogram names and variables, the smaller pro-

grams will be editable when a big single program is not.

11.2.1 Low Memory Editing Strategies
When you run out of memory (No Room to ENTER) trying to enter an edited program
(or any other object), you can use the following steps to increase the available memory:

1. Remove any unwanted objects--clear the stack, kill any suspended programs (sec-
tion 11.3), and purge unneeded variables from user memory.

2. Turn off LAST and UNDO: press Il , then E—_UNDZ= Z-LST= on the
HP-28C, or ZUNDOZ ZLASTOZ on the HP-28S.

  

  

3. Recall the object you want to edit to level 1. If the object is stored in a variable,
purge the variable to save the memory used for the variable.

4. Press .

5. Press =-CMDE=then Z+CMD= (HP-28C) or =CMDoZ =CMD= (HP-28S). This empties
the command stack, but leaves COMMAND active.

6. Make your changes, and press . If you still get the No Room to ENTER
error, press Il to return the object to the command line, E-CMD=

(HP-28C) or =CMDo= (HP-28S) to disable and clear the command stack, then
. This step is unpleasant, because if there is still not enough room, you

will have lost the edited version of the object.

If the preceding steps fail, you can take the more drastic step of purging the object you
are trying to edit. Thatis,

1. With the object in level 1, press =-CMD= Z+CMD= (HP-28C) or =CMDOZ =CMD=

(HP-28S).
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Press [l [EDIT] to copy the object to the command line; make your changes.

Press . This will presumably fail, with the No Room to ENTER message.

Press to discard the object.

Press [ to recover the command line with the altered text version of

the object.

6. Try again. If there is no error message, you're finished. But if ENTER
fails again, then...

7. Press to retrieve the command line one more time. Now press
=-CMD= (HP-28C) or SCMDo: (HP-28S) to disable the command stack. Press
ENTER] . If this fails, you're out of options, and out of luck--all copies of the
object are gone. Generally, however, this process will succeed unless you are
making major additions to the edited object.

o
A
W
D

11.3 Starting and Stopping

As we have discussed in previous sections, HP-28 programs are highly structured, and
each has only a single entrance and exit. This fact makes starting and stopping an HP-
28 program a different proposition from the simple run/stop capability of other calcula-

tors. On the HP-41, for example, you can stop a running program at any time by press-
ing . When that key is pressed, the program halts after the currently executing
step, and returns control to you. You can use to move the program counter to
another line or label, or run another program, etc. When you press [R/S] again, program
execution resumes from wherever the program counter happens to be.

In the HP-28, if a program is to stop and be able to be restarted, it must include a
HALT command in its definition. You can stop any program by pressing , but as
you will see below, that abandons all pending execution in the currently executing pro-
gram and cancels pending returns to any other programs that may have called that pro-
gram. (In more precise terms, the return stack is cleared, and the normal stack display

and keyboard are reactivated.)

When HALT is executed, the program containing the HALT is suspended. The
suspended program annunciator (the octagon) turns on to remind you that there is a
program awaiting completion. The keyboard is activated, and all calculator operations
work normally. The HP-28 can maintain this state indefinitely--it behaves as if you had
started up another calculator “inside” the halted program. This suspended calculator
environment even has its own UNDO stack that is independent of the usual UNDO stack
that was present before the suspended program was started. The calculator operates in
the suspended environment until you press i (continue), whereupon the
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suspended program resumes execution at the object following the HALT. (HALT is the
HP-28 version of HP-41 STOP, and CONT corresponds to RUN--except that CONT has
no effect unless there is a program suspended. In the HP-41, RUN just means “go from

here,” from wherever the program counter happens to be.)

You can “nest” suspended program environments one within another without limit
(other than available memory). While one program is halted, you can run another pro-
gram that itself halts and sets up another calculator environment with its own UNDO
stack, and so on. When you press i , the latest suspended environment is
deleted, including the UNDO stack created for that environment. If you press [l
immediately after a program completes execution, the UNDO stack that was saved by
the ENTER that started the program is restored. To illustrate, enter the following pro-
gram and name it A:

<< CLEAR 1 2 HALT 3 4 > 'A" STO

Then:

Keystrokes: Results:

M[CLEAR] ‘X' 'Y’
2: X'
1: Y’

A 2: 1
1: 2  Suspend Annunciator is on.

The program has put 1 and

2 on the stack, and halted.

Il [CLEAR 2:
1:

Il [UNDO] 2: 1
1: 2 UNDO restores the stack

cleared by the last CLEAR.

Il [CONT] 4: 1
3: 2
2: 3
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1: 4 The program A resumes,
pushes 3 and 4 onto the

stack, and is finished.

[l [UNDO] 2: X’
"Y' Back to the original environ-

ment; the last ENTER in

this environment was the

one that started the pro-
gram A. Thus UNDO
restores the stack as it was

before that ENTER.

-

Since the command line itself is a program, you can include a HALT in any command
line even if the HALT is not explicitly contained in a program object delimited by << >>,
When you press , the command line is executed up to the HALT. Then you can
perform any normal operations; when you finally press i , the rest of the

suspended command line is executed. This suggests an easy method for saving the
current stack while you carry out some temporary calculation. With an empty command
line, execute HALT . After any series of calculations you can restore the original

stack by pressing [l N .

Keep in mind when you’re working with a suspended program that Jlocal variables
created by the program may exist (see section 10.8). For example, if a program halts
while a local variable A that it created still exists, then executing the name A from the
command line returns the value of that local variable, not the value of a global variable
A that might also exist. (Pressing theA key in the USER menu always executes the
global name A regardless of any local variables that might exist.)

11.3.1 WAIT
The WAIT command causes a simple pause in program execution. x WAIT produces a
pause of x seconds. The WAIT pause is not interactive like HP-41 PSE; you can’t use it
as a means to enter data without halting a program. The primary application of WAIT is
for displaying messages during program execution. If your program shows a series of
messages, you can put a WAIT after one or more of the DISP commands to ensure that
the message remains visible long enough to be read conveniently.

11.3.2 KEY
When you press an HP-28 key, a code representing that key is entered into a special
memory location called the key buffer. When the HP-28 is otherwise idle, it checks the
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key buffer to see if any key codes have been entered. If so, it removes the codes one at

a time (in the same order in which they were pressed), then performs whatever opera-
tions are associated with the keys. This two-stage key processing is responsible for the
HP-28s “type-ahead” capability, whereby up to 15 keystrokes can be stored in the
buffer while the busy annunciator is on (section 3.11.3).

Programs can check and act on the contents of the key buffer by executing KEY. KEY
attempts to remove the oldest keycode from the key buffer. If it succeeds, it returns a
string object representing the key nameto level 2, and a true flag (1) to level 1. If there

are no entries in the key buffer, KEY returns only a false flag (0) to level 1, and no key
string. By using KEY, programs can accept keyboard input, on a key-by-key basis,
without actually halting execution.

The program PSE (listed on the next page) uses KEY to provide a number entry

method similar to that of the HP-41 command PSE. PSE waits for up to 1 second;if a
key is pressed during that interval, the 1 second wait is started over. If the key is a
numeric key (digits [0] through [9], [EEX],[-], or [=]), the key value is appended to a
number string; all other keys (except are ignored. When no further keys are
pressed, PSE converts the current string to a number and is finished.

11.3.3 The ON key, ABORT and KILL
As the ATTN (Attention!) letters below the key suggest, this key is your means for

getting the “attention” of the calculator. When you press , you tell the calculator
to stop what it is doing: stop all operations, procedures, etc., clear any special displays,
reactivate the keyboard, and show the standard stack display. This is a “gentle”
interruption--USER memory is unaffected, the stack is preserved, and the UNDO stack,
COMMAND stack, and LAST arguments are left intact. The procedure return stack is
cleared, meaning that programs interrupted by [ON can’t be continued.

When a program is suspended, [QN acts as above, but preserves the suspended environ-
ment. That is, any suspended programs (and all of the associated UNDO stacks) are
unaffected by [ON]. This is a reassertion of the statement that all ordinary calculator
operations can be carried out while a program is suspended without affecting the
suspended program-- is considered “ordinary” in this sense.

ABORT is a programmable form of . Executing ABORT in a program (or in the
command line) acts as though the key were pressed at the point in the program
where the ABORT appears. The program stops, and all pending returns to procedures
that called that program are cleared. Like , ABORT works in the current

suspended program environment--if there are any suspended programs, they are unaf-
fected by ABORT. You can use ABORT in a program to terminate program execution
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PSE HP-41-like PSE

o

< " Start with an empty string.

WHILE Keep going as long as keys are pressed.

0 Start a counter.

DO 1 + Increment the counter.

UNTIL Increment the counter until...

IF KEY

THEN 1 ...a key is pressed

ELSE DUP 31/44t == ...or the counter reaches 31 or 44 (1 second).

END

END

DUP TYPE 2 ==

REPEAT Repeat if KEY returned a string (type 2).

SWAP DROP Discard the counter. Now process the key:

IF DUP "EEX" ==

THEN DROP "E" + Append an "E" if the key is EEX.

ELSE

IF DUP NUM Get the character number of the key.

47 OVER < OVER

58 < AND Is it a digit key?

OVER 46 == OR Or a “.”?

SWAP 45 == OR Or “-"?

THEN + Then append that character.

ELSE DROP Otherwise, discard it.

END

END

DUP 1 DISP Show the current string.

END Go get another key.

DROP Discard the counter.

STR~ CLMF Convert the string to a number.
>>

 

1Use 31 for the HP-28C, or 44 for the HP-28S.

 
early, when some situation is encountered that makes further execution pointless. Usu-
ally this is done with an IF structure, such as

IF  situation-is-hopeless THEN ABORT END.

Note that ABORT, like [ON], clears special displays. If you want a program that exe-
cutes ABORT to return a message, the program must put the message on the stack as a
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string object prior to executing ABORT.

The only command that does affect suspended programs is KILL. KILL is an extended
form of ABORT that not only terminates the current program, but also clears all

suspended programs and turns off the suspended program annunciator. All of the tem-
porary UNDO stacks associated with the suspended program environments are deleted.
You can use KILL in a program, but that is a rather drastic thing to do, since in general
a program doesn’t “know” what programs are suspended when it is executed. It’s better
to use ABORT in a program, then execute KILL manually if needed. Most likely, your
most frequent use of KILL will be to clear some half-finished program that you have
been single-stepping, once you have found the problem you have been seeking.

11.3.4 System Halt and Memory Reset
A system halt, obtained by pressing [ON][A] together, is a means of stopping execution
that is more drastic than pressing[ON]. A system halt clears the stack, the return stack,
all suspended program environments, LAST arguments, the UNDO stack, and the COM-
MAND stack (plus the CUSTOM menu in an HP-28S). System halts also stop the end-
less loops (section 3.6) caused by executing the name of a variable that contains it own
name, which you can’t stop with .

You can also perform a memory reset, by pressing [ON][INS][>] all together. A memory
reset is a complete calculator reset, deleting all global variables and resetting all flags to
their default values, as well as performing a system halt and displaying Memory Lost.
[If you see this message when you turn the calculator on, or at any other time when you
have not deliberately performed a memory reset, it indicates that the calculator has
detected a corruption of memory contents such that it can not continue normal opera-
tion without a memory reset. This corruption can be caused by a hardware fault,
including the effects of static electricity, or by the execution of SYSEVAL (section 3.10)

with an incorrect system address.]

11.3.5 Single-Stepping
The SST (single-step) operation is a combination of CONT and HALT that lets you step
through a program one object at a time. Single-stepping is an important debugging tool
(section 11.4), because it lets you follow the execution of a program step-by-step and
discover where its calculations go awry.

To understand the mechanics of SST, picture it as the equivalent of pressing Il
with a HALT temporarily inserted immediately after the next object in the program.
This model implies that in order to single-step a program, it must be suspended. Thus
any program that you want to single step through must contain a HALT at the point
where you want to start stepping. Then when you execute the program, it will suspend
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execution after the HALT and you can proceed with single steps. At each ZSSTZ press,
the HP-28 executes the next object in the suspended program, then halts and suspends
the program again. To help you keep track of where you are in the program, each
object is momentarily displayed in inverse characters in display line 1 just before it is
executed. If you single-step the >> that ends the suspended program, the program com-

pletes execution and the suspended program environment is cleared.

Another consequence of the behavior of SST as a one-step CONT is that each SST
clears the current suspended program environment, then creates a new one after the
step. This means that you can’t cancel any stack effects of the object that was single-
stepped by pressing [l --the UNDO stack present before the SST is deleted by

the SST.

Some additional notes about SST:

e An IFERR structure is treated as a single object by SST. That is, when you press

£SSTE at an IFERR, the entire IFERR...THEN...ELSE...END structure is executed. If
an error occurs between IFERR and THEN, the then-sequence between THEN and
ELSE is executed; otherwise the else-sequence (if it is present) between ELSE and
END is executed. The next ESSTE will single step whatever object follows the END.

If you want to step through individual parts of the IFERR structure, you must insert
HALT(s) within the structure.

o If a single-stepped object causes an error, the error is reported normally, but the sin-
gle step execution does not advance. If you press ZSSTZ again, the HP-28 will

attempt to execute the same object again. This gives you a chance to fix whatever it
is that causes the error, such as a missing stack argument, then proceed with single-

stepping.

e At any time while you are single-stepping a program, you can return to normal exe-
cution of the remainder of the program by pressing [l [CONT] .

11.4 Debugging

Debugging is the art of finding and removing programming errors--“bugs.” The process
ranges from simple visual inspection of a program to look for obvious errors, through
careful single-stepping of parts of a program to watch for incorrect results at each stage.

Programming errors usually manifest themselves in two ways when you execute a pro-
gram: either the program halts due to an error, or the program completes execution but
returns incorrect results (which may be due to an incorrect algorithm, rather than a pro-
gram defect). In either case, you know something is amiss--the trick is to find out
where things go wrong in the program.
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A good debugging technique for any programming language is to write the program
correctly in the first place. This sounds facetious, but chances are, if you take extra time
in designing a program before entering it into the calculator, you will save time in the
long run by reducing the amount of debugging time. For HP-28 programs, a good
approach is to write out a program of any complexity on paper, using the program for-

mating conventions discussed in section 11.1. Most importantly, as you add steps to a
program, include simple stack contents listings at least every few steps. This will help
you get the program right in the first place; failing that, the stack listings will be your
most valuable tool for debugging.

When a program fails, the first step in finding errors is to view the program to verify
that you have entered it correctly--that it matches your program listing. You can recall
the program to level 1 and use [l and [l [VIEW1] , or [l [EDIT] to scan through the
program. Usually, the program is stored in a variable, so you can use Il [VISIT] . If you
have a printer, use PRVAR to print out a complete listing of the program. If the pro-
gram matches the original listing, there must be a logical error in the program design.

Before resorting to single-stepping, you may be able to apply the HP-28’s symbolic capa-
bilities to find an error. That is, even when a program is designed for purely numerical
calculation, you can execute the program with symbolic arguments, then compare the
symbolic results with the intended program algorithms (this is a good thing to do to ver-
ify any numerical program, not just when you’re explicitly looking for an error).

For example, in section 11.5 we develop a program that finds the two roots of a qua-
dratic equation ax? + bx + ¢ = 0, where the three coefficients @, b and ¢ are specified.

The final version of the program is:
 

 
 

 

 

 

Qu Quadratic Root Finder

level 3 level 2 level 1 | level 2 level 1

a b [+ r X1 X2

< |a b c|

3 PICK / |a b cl/a |

SWAP ROT 2 * / NEG | c/a -bR2a |

DUP SQ | c/a -br2a b?*/4a? |

ROT - V | =br2a V[(br2a)*-c/a] |
DUP2 + | =br2a V[(b2a)’>-c/a] x, |
3 ROLLD - le X2 |

>>   
 

Because this program involves a lot of stack manipulations, it’s easy to lose track of the
program flow as you develop it. Suppose that when writing the program, you
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miscounted the number of stack objects, and entered SWAP in place of the 3 ROLLD at
the end. If you execute the program with numerical values for the coefficients, you
obtain incorrect results--but no indication that they are wrong. To guard against this,
you can verify the program by executing it with symbolic arguments ‘A’, '‘B’, and 'C’
(purging those variables first, if necessary, to ensure symbolic calculations). With these
arguments, the bad version of the program returns

2: '~ (B/(A*2))’
1: '~ (B/(A*2))+V(SQ(- (B

/(A%2)))-C/A) -V(SQ(-
(B/(A*2)))-C/A)’

By inspecting the level 1 result, you can see that the program correctly added the radical
'\/(SQ(—(B/(A*2)))-C/A)’ to '-B/(A*2)’, but then subtracted the same radical from
the sum in level 1 rather than from the other '—B/(A*2)’ in level 2. This suggests that
the error is a stack error near the end of the program, and it is then a simple matter to
figure out that the SWAP should have been 3 ROLLD.

The final resort in debugging is to single-step the program, from the beginning if neces-
sary, until you discover an incorrect step. As described in section 11.3.5, in order to use
SST, you must include a HALT in the program at the point where you want to single
step. To single step from the beginning of a program, the HALT must follow the initial
<< asthe first object in the program. Using SST for debugging is a three-step process:

1. Edit the program ( i or @ ), insert HALT at the appropriate point,
then press .

2. Execute the program. When the program stops (the suspended program annunci-

ator turns on), switch to the CONTRL menu (CTRL on the HP-28C) and begin
pressing ESSTE to single step through the program.

3. When you have identified the incorrect step, press EKILLE to clear the suspended
program. (At this point, if you press Il , you will recover the program’s
arguments that were on the stack when you began execution. This will save
reentering them when you try the program again.) Now edit the program to
correct the problem.

 

If you are sure you have the solution, remember to remove the HALT as you edit the
program. Otherwise, you can leave it in until after you verify the new version. When
the program halts, press [ll[CONT] to resume.

m Example. Find the error in the following program MINL. The program is designed to
return the minimum value from a list of numbers. Starting with an initial value of
MAXR, the program successively replaces the current value with the minimum (MIN) of



Program Development 114

the current value and the next number from the list.

 

 
 

 

 

MINL Minimum in a List (Bad version)

level 1 | level 1

{ numbers } or minimum
 

 

<< MAXR -NUM SWAP DUP SIZE

1

DUP ROT

START

GETI

4 ROLL MIN 4 ROLLD

NEXT

DROP2
>>  
 

If you execute this program with a list of numbers, the program aborts with the Too
Few Arguments message (on the HP-28S, the guilty ROLLD command is also identified,
which simplifies the search for the program error). You can observe that the first com-
mand in the program that can error in this manner is the SWAP in the first line. So,
you should edit the program to insert a HALT immediately before the SWAP. Then
(start with an empty stack):

 

 

 

 
  
 

Keystrokes: Results:

{123 }[USERIEMINLE 2: {1 2 3} The argument list.
1: 0.99999999999E499  Initial “minimum” value.

£SST= (SWAP) E8ST=
(DUP)SSSTE (SIZE) 3:  9.99999999999E499

2 {1 2 3}
1 3 Number of elements in

the list.

£SSTE (1) £sS1= (DUP)
£8SsT= (ROT) 5: 9.99999999999E499

4: {1 2 3}
3: 1 Start value for GETI index.
2: 1  Start value for START.

1: 3 End value for START.



 

1 n 1] - n
m (START) 

 

1 wn n - 1 (GETI)

 

1 o n - H
n (4) E85T= 

 

i o 1] - m (MIN) 

 

n mSSTE (4) ESST=
ROLLD)
 

7
~

3: 9.99999999999E499
2: {1 2 3}
1: 1

4. 9.99999999999E499

3: {1 2 3}
2: 2

1: 1

(ROLL) 4: {1 2 3}
3: 2

2: 1

1 9.99999999999E499

3: {1 2 3}
2: 2

1: 1

Too Few Arguments.

Program Development

Current minimum.

Current GETI index.

Current minimum.

New GETI index.

First list element.

GET!Iindex.

List element.

Current minimum.

GETI index.

New minimum.

Here you can see exactly what is wrong. The program tries to execute 4 ROLLD with
only three objects on the stack (attempting to put the objects back in the correct posi-
tions for the next iteration of the loop). The solution is to change the 4 ROLLD to 3
ROLLD. Here’s the correct program listing:
 

 

 

 

 

 

 

MINL Minimum of a List (Good Version)

level 1 | level 1

{ numbers } o Xmin

< MAXR -NUM SWAP DUP SIZE | maxr{x; }n |

1 Initialize m (list index).

DUP ROT Loop from 1 to n.

START | Xmin {X: } m |

GETI X

4 ROLL MIN 3 ROLLD | Xmin {x; } m |

NEXT

DROP2
>>   
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You can verify that this version works correctly by using a symbolic input. For example,

{A B C} MNL = 'MIN(CMIN(B,MIN(A9.99999999999E499)))’.

11.5 Program Optimization

The fastest, most compact, and most memory efficient HP-28 programs are usually
those that carry out all of their calculations on the stack, using no local or global vari-
ables, and only fine-tuned RPN sequences for mathematics. These programs are also
the hardest to write, since you have to keep track of the stack positions of everything,
and spend time thinking about efficient ways to write the programs.

In this section, we will illustrate the process of program optimization, the process of
revising working programs so that they execute faster or more efficiently. In general,
program optimization involves

a. writing a first version of the program,;

b. replacing pieces of the program with more efficient ones;

c. knowing when to stop optimizing and use the current version.

There is no fixed prescription for HP-28 program optimization. There are two general
purpose approaches that apply in most situations:

¢ Reduce the use of variables by keeping more objects on the stack.

e Replace long algebraic objects with RPN sequences that allow you to reuse inter-
mediate results.

We will illustrate the application and effect of these two ideas in an extended program
development example. Other methods and tricks will be apparent in the program exam-
ples in this chapter and elsewhere in the book.

m Example. Develop and optimize a program QU that computes both roots x of the
quadratic equation ax? + bx + ¢ = 0, where the (numerical) coefficients @, b, and ¢ are
supplied as stack arguments. The mathematical algorithm is

_ ~b*xVb®-dac
2a

Using local variables and algebraic objects, it is easy to translate the algorithm into a
first version of the program. This version uses 157.5 bytes (including the name QU),
and takes .28 seconds (on the HP-28S) to execute:



1.5

Version 1:

Program Development

 

<<

-

<<

>> >>

ab c

'(-b+V/(b*2-4*a*c))/(2%a)’ EVAL
'"(-b-V/(b"2-4*ax*c))/(2*a)’ EVAL

la b c|

Name the arguments.

X1

X2

   
To optimize this program, the first thing you might notice is that the solution algorithm
can be written more compactly as

= _b’i'\/blz_cl,

where b’ = b/2a and ¢’ = c/a. You can incorporate this revised form into a new ver-
sion of the program:

X

 

Version 2:

<< la b c|

- abec¢

<< 'b/(2*a)’ EVAL ‘c/a’ EVAL - c b |Storec’ and b'.

< '-b+V(b*2-c)’ EVAL X1
'-b-V/(b*2-¢)’ EVAL x,

>>

>>

>>    
 

Version 2 takes .23 seconds to execute, so compacting the algorithm has yielded a mod-
est speed improvement. However, version 2 is 169 bytes, 12.5 bytes larger than version
1--the extra local variable structure has cost more in program size than the algorithm
compaction saved. As the next step in optimization, you can eliminate that extra struc-
ture by computing b’ and ¢’ directly from the original stack arguments:

 

Version 3:

<< la b c|
3 PICK / |a b c/a|
SWAP ROT 2 =* / | ¢/a b/2a |
-

<<

c b

'-b+V(b"2-c)’
'-b-V(b"2-c)’

EVAL

EVAL

Store ¢’ and b'.

X1

X2
>>

>>    
 

Version 3 occupies 125 bytes of RAM, which is 31.5 bytes smaller than version 1. It is
also slightly faster (.21 seconds) than version 2. To improve on this version, you can
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observe that the two algebraic objects in the program are very similar, which means that
the program performs some arithmetic twice. You should therefore be able to improve
matters by breaking up the algebraic objects into smaller parts that are common to both
expressions.

 

Version 4.

<< |a b c|

3 PICK / |a b c/a|
SWAP ROT 2 =* / | ¢/a b/2a |
- c b Store ¢’ and b’.

< '-b’ 'V(b"2-c)’ DUP2 Make 2 copies ofthe partial results.

+ EVAL | =b V(b%-¢) x, |
SWAP ROT - EVAL X

>    >>
 

Version 4 has shrunk the program size to 106.5 bytes, but execution has slowed to .29
seconds. The slowdown has resulted from a subtle cause: the final + and - that com-
bine the partial results are acting on symbolic arguments, returning symbolic results
(which are then evaluated into the final numeric results using EVAL). Symbolic addition
and subtraction are intrinsically slower than numeric arithmetic. You can fix this prob-

lem with a simple rearrangement so that the partial results ' —b’ and 'V/(b*2-c)’ are

evaluated before they are added or subtracted:

 

Version 5:

< |a b c|

3 PICK / |a b c/a|
SWAP ROT 2 =* / | ¢/a b/2a |
- ¢c'b Store ¢’ and b'.

<«< '-b’ EVAL 'V(b"2-c¢)
EVAL DuUP2 Make 2 copies of the partial results.

+ | =b V(b%-c) x, |
SWAP ROT - X2

>>

>>     
Version 5 is the same size as version 4, but it executes in .13 seconds, which is the
fastest time yet.

The progress made so far in optimizing this program suggests completing the process of
converting the algebraic expressions into pure stack arithmetic, eliminating the use of

variables.
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Version 6 (final version):

 

 
 

 

 

 

Qu Quadratic Root Finder

level 3 level 2 level 1 | level 2 level 1

a b c or Z, Z;

<< |a b c|

3 PICK / | a b c/a |

SWAP ROT 2 * / NEG | c/a -b/f2a |

DUP SQ | c/a -bra b?*4a? |

ROT - V | =br2a V[(b/2a)*-c/a] |
DUP2 + | =br2a V[(b2a)*-cla] x; |
3 ROLLD - | 1 x5 |

>>   
 

Version 6 requires only 64 bytes, and executes in .11 seconds. This represents a 60%
reduction in program size, and a 2.5X speed improvement over version 1.

The lesson here is not that algebraic objects evaluate numerically more slowly than their
RPN sequence equivalents. The execution time difference between, for example,
'"1+2+3+4+5+6+7' EVAL and 1 2 + 3 + 4 + 56 + 6 + 7 +, is only a few
milliseconds--which can be accounted for by the time required to put the algebraic
object on the stack. Instead, the point is that RPN lets you avoid repeating mathemati-

cal operations by breaking calculations into unique elements, and then duplicating and
reusing the results. Furthermore, it is always faster for a program to leave results on
the stack rather than storing them in variables, and similarly faster to retrieve arguments
from the stack than to recall them from variables.

11.6 Memory Use

To help you in optimizing programs for minimum memory size, Table 11.1 lists the
memory size of various objects included in a program. There are exceptions to the sizes
listed in the table, since the HP-28 has built in certain commonly used objects, to save
memory. For example, the real number 1 uses only 2.5 bytes, instead of the 10.5 bytes
normally used by a real number. Similarly, each of the following built-in objects uses
2.5 bytes:

¢ Real integers from -9 through +9.

e The real constants 3.14159265359 (), 2.71828182846 (¢), 1E-499 (MINR), and
9.99999999999E499 (MAXR).
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e The complex constant (0,1) (7).

e The null string "".

e On the HP-28C, the single character global names A, B, C, ... Z.

Table 11.2 shows the memory occupied by program structures, not counting the objects
that are entered between the structure words.

When an object is stored in a variable, the variable requires memory for the object
itself, plus an additional amount for the variable structure. Specifically, the variable
“overhead” is 4.5 bytes plus one byte for each character in the variable name. The
memory used by a stored object is the same as the amount listed in the above table,
with one exception. Programs require 10 bytes (plus the included objects) rather than
the 12.5 bytes listed in the table for programs in programs.

Table 11.1. Object Sizes

 

Object Type Size (bytes)
 

Real number 10.5

Complex number  18.5

Binary Integer 13

String S + number of characters

Vector 12.5 + 8 X number of elements

Complex vector 125 + 16 X number of elements

Matrix 15 + 8 X number of elements

Complex matrix 15 + 16 X number of elements

List 5 + included objects

Command 2.5

Unquoted name 3.5 + number of characters

Quoted name 8.5 + number of characters

Algebraic S + included objects

Program 12.5 + included objects  
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Table 11.2. Program Structure Sizes

 

 

Structure Size (bytes)

IF/IFERR ...* THEN ...* END 17.5%

IF/IFERR ...* THEN ...* ELSE..* END 25t

DO ... UNTIL ... END 7.5t

WHILE ... REPEAT ...* END 12.5¢

START/FOR ... NEXT/STEP 5

- << L > 7.5

- 7.5  
 

tA program savings of 5 bytes in each instance is obtained whenever any of the structure sequences marked

with an asterisk ( ...* ) consists of one object.

11.7 Input and Output

In programs, as well as in keyboard calculation, the stack is the basic input/output
mechanism. You can enter all the data a program needs as stack objects, execute the
program, then read its results from the stack. This works fine under two conditions:
first, you know in advance what objects to enter at the start, and second, there are not
so many inputs or outputs that you lose track of which is which among the stack objects.
We will describe two methods for improving on this bare-bones approach:

e Using prompted input and labeled output.

e Using variables and/or menu keys for input and output.

11.7.1 Prompts and Labels

11.7.1.1 Prompted Input

The HP-28 STRING menu provides commands for building display messages suitable for
input prompting and output labeling. The central command is DISP, which displays a
string in any of the four lines of the LCD. The other commands in the menu are for
manipulating strings and characters to make strings for display.

The program PROMPT listed below is a utility program that you can use for general
purpose input prompting. The HP-41 PROMPT command serves as the model for this
program. That command halts execution and displays the contents of the alpha register
to prompt you for data entry. The HP-28 program PROMPT takes a string from the
stack to name the entry, appends that string to "Enter ", displays the result string at the

-240-



Program Development 11.7

top of the display, then halts for input. After entering the requested data, you press i
, whereupon PROMPT ends, presumably to return to another program that called

it.

 

 
 

 

 

 

PROMPT Input Prompt Utility

level 1 |

"string" or object

<< "Enter " SWAP + Take the input string, and appendit to "Enter ".

CLLCD 1 DISP Clear the display; show the prompt string in line 2.

HALT Stop for input.

>>   
 

m Example. The following sequence prompts for Length, Width, and Height:

"Length" PROMPT "Width" PROMPT "Height" PROMPT.

Upon execution, the sequence halts and displays "Enter Length". At this point, you
enter a value for the length, and press [ll[CONT]. Then the display shows "Enter Width",
and so on.

There are various ways you can extend PROMPT. Imagine a program that works only
for real numbers between 0 and 10. If you enter a number out of this range, you would
like the program to return a message and prompt you for another entry, rather than

halting with an error.

To achieve this, you can modify PROMPT as follows:
 

 

<<

"Enter " SWAP + Build the prompt.
WHILE
CLLCD DUP 1 DISP HALT Promptfor entry.
DUP 0 < OVER 10 > OR Is the entry out of range?

REPEAT
DROP Discard the entry.
"Out of Range” 1 DISP Show a message.
5 WAIT Wait .S sec.

END Go back and try again.

SWAP DROP Discard the prompt.
>>   
 

If a program requires several inputs, each of which requires a different test than the one
used here, it needs a more flexible version of PROMPT. We will show in section 11.10
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how to modify PROMPT to handle more general tests, as part of a discussion of using
programs as arguments.

You can create similar general purpose output labeling routines. The following pro-
gram LABEL makes a labeled display of an object in level 2 by converting the object
into a string, and appending it (with an “=") to a string provided in level 1. A copy of
the objectis left in level 1.

 

 
 

 

 

 

LABEL Output Labeling Utility

level 2 level 1 | level 1

object "label" or object

< "=" 4 Append “ = ” to the label.

OVER -STR Get the object and make a string.

+ Append the object string to the label string.

CLLCD 1 DISP Clear the LCD and display the string.
>>   
 

The next example program BOX computes the volume of a box, illustrating the use of
PROMPT and LABEL:

 

 

BOX Box Volume

| level 1

or Volume

<<

"Length” PROMPT Enter length.

"Width" PROMPT Enter width.

"Height” PROMPT Enter height.

*  * Compute the volume.

"Volume"” LABEL Label the result.

>>   
 

The above version of LABEL uses the current display mode (via ~STR) to determine the
appearance of numbers in the displayed string. In some cases, the string combining the
label and the result may be too long to fit on one line of the display, so part of the
result may not be shown. An alternate version of LABEL displays the label in line 1,
and the result object starting in line 2:
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LABELV Output Labeling Utility, Variation

level 2 level 1 | level 1

object "label" or object

«< | object "label" |
=" 4 Append “ =" to the label.

CLLCD 1 DISP Display the label.

2 DISP Display the object.
>>    

For programs that return more than one result, you have two choices: either show one
result at a time, or, if the results are short numbers, show up to four at once. The next
program, MULTLABEL, takes a number (from 1 to 4) from level 1 to determine how
many results to display. Then it takes that many label strings and that many numbers,

and combines them into a single display. The numbers (which will remain on the stack)
and the labels must be in the same order.
 

 
 

 

 

 

 

MULTLABEL Label Multiple Outputs

level 2n+1...level n+2  level n+1...level 2 level 1 | level n...level 1

object, - - - object, "string,"..."string," n or object, - - + object,

<< CLLCD

- n Save the number of results as n.

<< n -LIST Combine the labels into a list.

n 1 + ROLLD Move the label list behind the numbers.

n -LIST Combine the numbers into a list.

1 n

FOR m Form = 1ton:

OVER m GET Get the mth label.

ety Append “ = "
OVER m GET Get the mth number.

-STR + Append to the mth labelstring.

m DISP Display in line m.

NEXT Repeat.

SWAP DROP Discard the label list.

LIST- DROP Unpack the result list.

>>

>>   
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11.8 Using The USER Menu for Input and Output

The USER menu provides a straightforward means for visually prompted input and out-
put of several quantities in parallel. For example, when a program completes execution,
instead of returning results to the stack, it can store them in variables. Then you can

press the corresponding USER menu keys to see any of the results, in any order.

You can also use the USER menu for input, either by:

¢ using STO to enter values directly into the displayed variables ([]Zname= ); or

e including in the USER menu short programs, of the form << ‘name’ STO >> that
let you store a value you have entered with a single keystroke.

USER menu output is even simpler than input, since all you have to do is press a menu
key to see the value of any output variable. You may want to include ORDER at the
end of a program to insure that menu keys for its result variables are visible at the start
of the USER menu when the program finishes.

On the HP-28C, where you can’t activate a menu from a program, these methods
presume that the USER menu is active when the program is started (which is not unrea-
sonable, since the easiest way to start a program is to press the appropriate USER menu
key), or that the program user knows to activate the menu when the program is com-
plete. On the HP-28S, a program can activate the USER menu by executing 23 MENU.

11.9 The HP-28S CUSTOM Menu

The HP-28S CUSTOM menu is expressly designed for the input and output of data and
results by means of the menu keys. Furthermore, you can create custom menus in
which you can mix variable names and built-in commands. Here are some of the ways
you can use this feature:

¢ By building a menu of the commands that you use most frequently, you can substan-
tially reduce the number of keystrokes needed for subsequent operations.

e You can have menu keys for any of the variables in the current path (section 5.7.1),
even when they are not in the current directory. This is particularly useful for vari-
ables containing utility programs that you have stored in a parent directory of the
current directory.

e A program can halt and present its own special menus to facilitate data entry and
results output.

There are two types of custom menus, which we will call input and output menus. Both
are created by the MENU command (in the MEMORY menu); the type of custom menu
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created is determined by the list of objects that MENU uses asits argument. When you
execute MENU, the custom menu that you specify is activated on the menu keys
immediately. If you change menus, you can reactivate the custom menu from the key-
board by pressing [l , or in a program by executing 19 MENU (see section
11.9.5).

11.9.1 Output Menus
An output menu, which might also be called an execute menu, consists of menu keys that
work like those in the USER menu. That is, when you press a menu key (in immediate
entry mode--see section 3.11.1), the object that appears in the corresponding menu key
is executed (“output”).

You create an ordinary custom output menu by executing MENU with a list of names
and/or built-in commands in any order. For example, to create a custom menu with
menu keys for DUP, CON, TRN, and DET, plus variables ONE, TWO, ZIP, and ZAP,

execute

{DUP CON TRN DET ONE TWO ZIP ZAP} MENU

The first six commands/names appear immediately as menu key labels. The remaining
two appear when you press . There’s no limit on the number of objects in the
list; just like any other menu, the labels appear in groups of six as you step forward or
backward through the menu using and [l [PREV] .

Custom output menu keys corresponding to names and commands generally behave the
same as they do in the USER menu or in a built-in menu. Thatis, in immediate entry
mode (section 3.11.1), pressing a menu key executes the corresponding object. In alpha
entry mode, the text characters for the name or command are put into the command
line. In algebraic entry mode, functions and names are put into the command line, but
RPN commands are executed. These rules are always true for custom menus, even for
commands for which built-in menu keys have special behavior. For example, mode
selection keys such as SHEXE in the BINARY menu execute their respective commands in
immediate entry mode without performing ENTER (section 3.11.3). But if you put HEX
in a custom menu, the CUSTOM menu ZHEXE key is not special--pressing it does cause
ENTER in immediate entry mode.

 

A shortcoming of “ordinary” custom output menus as described so far is that you can’t
include program structure words such as IF, UNTIL, or » in a custom menu list, because
they are not objects. Attempting to enter a list containing any of these words returns
Syntax Error. However, you can include structure words in a custom menu by entering
the words as string objects in the menu list. In fact, you can put any type of object in
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the list, not just names and commands. A custom menu contains keys for each object in
a menu list; pressing a CUSTOM menu key executes the object “displayed” in the key
label. For example,if you execute { 123 } MENU, you will see

 

=
0

  (123|||||
 

Notice that £123Z appears as a menu label. When you press £123% , the number 123 is

executed, and appears in level 1. If you press [@ ]£123Z , the characters 123 are entered
into the command line.

 

In contrast to the USER menu, in which you execute stored objects by means of menu
keys corresponding to global names, and to built-in menus, which contain the names of

commands (built-in objects), custom output menus can include directly executable
objects. Among other things, this means that the menu labels may be rather cryptic--
not only is the label restricted to five or fewer characters, but objects other than real
numbers and names are displayed with their characteristic delimiters, which take up
space in the labels so that even fewer characters are left for “showing” the object.
Furthermore, there are no menu label characters available for {, }, <<, or >>, which
appear in menu labels as small box characters.

The rules for the behavior of menu keys are modified for the case of custom output
menus containing arbitrary objects. The following summarizes custom output menu key
actions, and brings out some additional strengths and weaknesses of the custom menus.

When you press a custom output menu key:

e In immediate entry mode, the current command line is entered (implicit ENTER),
then the object shown in the key labelis executed.

e In algebraic entry mode, if the menu key object is a real or complex number, a glo-
bal or local name, or a function name, the text form of the object is added to the
command line with the automatic addition of spaces (functions also have a “(”
appended). For other object types, the current command line is entered (implicit
ENTER), and the objectis executed.

e In alpha entry mode, the text form of the menu key object is added into the com-
mand line. Spaces are added if necessary to separate the new text from the existing

text. There are, however, certain limitations:
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a. The text added for numbers is determined by the the current decimal number
display format and binary integer base and wordsize.

b. String objects are “stripped” of their double-quote delimiters when added to
the command line.

c. Only the first line of text in the command line form of an object (as produced
by EDIT) is added to the command line. Thus for example, if you press a
menu key assigned to the program << X >>, only the two characters << X are
actually added to the command line in alpha entry mode. If the program starts
with << |F ..., only the delimiter << will go into the command line, since the
EDIT form of the program puts the IF on a new line after the <<.

The fact that menu key string objects are entered without their quotes allows you to
include the program structure words in a custom menu by entering them as strings in
the MENU list. Since these words are normally only entered in alpha entry mode, the
CUSTOM menu keys will enter the correct text surrounded by spaces, just like the
BRANCH menu keys. This feature also provides a means for entering into the com-
mand line any of the HP-28 display or print characters that are not available on the key-
board. For example, to create a menu with the characters @, &, :, ;, and !, execute

64 CHR 38 CHR 58 CHR 59 CHR 33 CHR 5 -LIST MENU

When you press one of the resulting menu keys in alpha entry mode, the corresponding
character is added to the command line. Spaces are automatically added around the
character, but you can use the cursor menu keys to remove the spaces if you want.

11.9.2 Input Menus
The Solver menu is a convenient means for storing data into the variables contained in
the current equation. In the HP-28S, the Solver menu key labels in the display are
shown with black letters on a white background to distinguish them from other menus,
particularly from the USER menu (white letters on black). When you press a Solver
menu key, a stack object is stored into a variable. When you press a USER menu key,
the reverse happens: the contents of a variable are executed (“recalled”). Most menus
are output menus, but the Solver menu is an input menu.

The MENU command allows you to create custom input menus with which you can
store objects into any variables. To do so, you enter a list of names, the same as for a
custom output menu, except that the first element in the list must be STO. The STO
signals MENU to create an input menu; if it’s absent, MENU creates an output menu.

All of the objects in the list other than the STO must be names.
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For example, to create a custom input menu for variables named A, B, and C, execute

{STO A B C} MENU

Notice that a custom input menu has key labels displayed in black letters on a white
background, just like the Solver menu. Another feature adopted from the Solver menu
is that when you press a custom input menu key, the top display line will show name:
object, where name is the key label and object is the object that you stored from level 1.
However, unlike the Solver menu, nothing special happens when you press the shift key
followed by a menu key. The input menu keys work the same whether shifted or
unshifted.

An important purpose of custom input menus is to let programs prompt you via menus

for data entry while the programs are halted. The advantages of using an input menu
for this purpose are:

e They provide an interface similar to that of the Solver, so that if you have learned
how to use the Solver,it is an easy matter to use a custom menu.

e The input menu prompts you for several inputs at once.

e You can enter the individual data items in any order.

¢ You can use the menu keys as typing aids for recalling the contents of any of the
menu variables ([]Zname= I[RCL] ).

e While a program is halted, you can use any of the resources of the HP-28S to com-

pute the data required by the program. If you change menus, you have only to press
Il [CUSTOM] to restore the input menu.

A typical program use of a custom input menu is illustrated by the following sequence:

{STO A B C} MENU HALT

When a program containing this sequence encounters the HALT, execution stops with
the custom menu labels visible in the display. At this point you use the menu keys to
enter data for any or all of A, B, and C, then press i . The program resumes
execution, and may use any of the new values of A, B, and C in its calculations.

11.9.3 Local Names in Custom Menus
You can include local names as well as global names in the list used by MENU to create
a custom menu. This means, for example, that a program can use a custom input menu
to prompt you for values that it will store in local variables and discard whenit is fin-
ished. This is appropriate when the data needed by the program is for temporary use,
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and has no importance to you or to other programs after the program is completed.
Similarly, a program might use a custom output menu to show you some intermediate
results computed during its execution that are of no interest later.

The use of local names in MENU lists is subject to the usual restrictions associated with
local names:

e In order for a name in a MENU list to be entered as a local name, it must be
entered within the program structure that creates the associated local variable. For
example, a program can prompt with an input menu for local variables a, b, and c,
with a sequence like this:

- ab c < { STO a b ¢ } MENU HALT .. >,

Notice that this requires that the local variables exist, i.e. have values, before the
menu list is created. It may be necessary in some cases to create the local variables
with “dummy” values (a real number O is a typical choice) that serve as place hold-
ers until the desired values are entered by means of the custom menu.

e The menu keys in the CUSTOM menu corresponding to local names are only useful

as long as the corresponding variables exist. If you run a program that creates a
CUSTOM menu containing local names, the menu will still be the CUSTOM menu
after the program is finished, but the variables will no longer exist. Pressing any of
the local name menu keys then returns an Undefined Local Name error.

e It is convenient in some calculations for a program to halt and offer you a custom

output menu of other programs to execute during the halt. However, if the original
program creates the secondary programs and stores them in local variables, pressing
the menu keys labeled with the names of those variables won’t run the correspond-
ing programs. This is because executing a local name just recalls the object stored in

the local variable without executing the object. To run one of the menu programs,
you have to press the menu key and then . Use of global variables is usually
better for this purpose, since pressing a global name menu key executes a stored
program, without the distraction and delay of seeing the program returned to the
stack and having to press .

11.9.4 Saving Custom Menus
The HP-28S stores the current CUSTOM menu list in a temporary location in memory.
A temporary location is used rather than a reserved-name variable, for example, so that
the menu list can be found by the system regardless of the current directory. The list is
preserved until it is replaced by a later use of MENU, or until you perform a system halt

([on]-[AD).

When you create a custom menu, it is a good idea to take the extra step of saving the
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menu list in a variable before using it as an argument for MENU. That is, instead of
executing a sequence like

{DUP ZIP -ARRY OVER ZAP ROT} MENU,

execute

{DUP ZIP -ARRY OVER ZAP ROT} DUP 'MENU1’ STO MENU.

This doesn’t take any extra memory (except for a few bytes for the variable name), but
it does have these advantages:

¢ You can restore this custom menu after changing to another menu, or after a system
halt, by executing MENU1 MENU.

e You can edit or add to the list without having to rebuild it.

¢ You can use the list for other purposes.

The easiest way to reconstruct a custom menu list, if you've executed MENU without
saving the argument list, is to press [{(J[« ], then each of the menu keys in the CUSTOM
menu, then .

11.9.5 Programmable Built-in Menu Selection
Besides creating CUSTOM menus as described in the preceding sections, you can use
MENU with a real number argument to activate any of the 24 built-in menus. The
menu numbers are determined by the order in which the menus appear on the HP-28S
keyboard, starting with 1 for the ARRAY menu and continuing left-to-right, top-to-
bottom down the left keyboard to TEST, menu number 15. Menus 16 (MODE) through
23 (USER) are those on the right keyboard. The SOLVR menu, which does not appear
on the keyboard, is number 24. This use of MENU is primarily intended for programm-
able menu selection. It has little use as a keyboard operation, since it is easier to press
one of the permanent menu selection keys.

11.10 Programs as Arguments

An unusual and powerful feature of the HP-28 is its ability to use procedures as argu-
ments for commands and other procedures. This capability is clearly illustrated in HP-
28 symbolic algebra, where algebraic objects can be the arguments for functions. In this
section, we will demonstrate the use of programs as arguments. The fact that HP-28
programs are objects, and that therefore you can put an unexecuted program on the
stack, means that one program can transfer procedural information to another program
as easily as it can transfer data.

For example, here’s a simple modification to the program PROMPT developed in
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section 11.7.1.1, that allows a program that calls it to specify a test for the suitability of
the input:

 

 
 

 

 
 

TESTPROMPT Input Prompt Utility

level 2 level 1

<< program >> "string" o

<<

CLLCD "Enter” SWAP + - t p Save the test and prompt.

<< WHILE

p 1 DISP HALT Get the entry.

t EVAL NOT

REPEAT

DROP Discard the entry

"Out of Range” 1 DISP Show a message.

.5 WAIT Wait .5 seconds.

END Go back and try again.

>>

>>   
 

The program used as an argument should return the input, and a true flag if the inputis
acceptable or a false flag otherwise. For example, a program that wants you to enter a
number “Length” in the range 0 through 10, can include the sequence

<< DUP DUP 0 = SWAP 10 = AND > ‘'Length" TESTPROMPT.

As a more ambitious illustration of the use of programs as arguments, we will develop a
program INFSUM to compute the sum

2 f(m),
n=ny

where f(n) is an argument for INFSUM, not part of the program. That is, to use
INFSUM,you enter, as stack arguments, n, and a program representing f (n).

The following is an example of program development, where you start with a single-
purpose program, and expand it in stages to a more general case. The first step is a

program SUM4 that computes the specific sum

M
s 1

e
n=1

SUM4 accumulates terms until successive sums are equal, i.e. additional terms are less
than 10”12 of the current total. It returns the result 1.08232323295.
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Sum 1/n%

| level 1

o sum

< 0 Initialize sum.

1 Starting value of n.

DO | sum(n) n |

DUP -4 ~ | sum@m) n n |
SWAP 1 + Increment n.

ROT ROT OVER + | n+1 sum(@n) sum(n+1) |

DUP 4 ROLLD | sum(n+1) n sum(n) sum(n+1) |

UNTIL == Keep going until sum (n +1) = sum (n).

END DROP Drop n.
>>   
 

In reviewing SUM4, you can observe that the sequence —4 "~ is the only part of SUM4

that is specific to the particular sum =n~4. The rest of the program just handles the
mechanics of adding successive terms and deciding when to stop. You can make the

program work for any sum 2f (n) by replacing —4 ” in the fourth line of the program
with the name TERM. The variable TERM should contain a program that computes
f(n), where n is provided in level 1. The summation program becomes:

 

 

 

 
 

SUMTERM Compute an Infinite Sum from TERM

| level 1

o sum

< 0 Initialize sum.

1 Starting value of n.

DO | sum(n) n

DUP TERM | sum(@n) n f(n) |

SWAP 1 + Increment n.

ROT ROT OVER + | n+1 sum(@n) sum(n+1) |

DUP 4 ROLLD | sum(n+1) n sum(n) sum(n+1) |

UNTIL == Keep going until sum (n +1)= =sum (n).

END DROP Drop n.
>   
 

To compute En ~4 with SUMTERM:

< -4 ~ > 'TERM’ STO SUMTERM = 1.08232323295.
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Actually, the use of the variable TERM is an unnecessary contrivance. The idea is to
supply SUMTERM with the information of how to compute f(n)--but that information,

which is represented by the program << -4 “ >>_ can just as well be supplied as a
stack argument. To see how, omit the 'TERM’ STO from the preceding sequence.
Then, at the point where TERM is about to be executed in SUMTERM, the stack looks
like this:

<< —4 *>

sum(n)
n
nT

N
A

Thus the effect of executing TERM (evaluating f (n)) can be achieved by the sequence 4
PICK EVAL. The program INFSUM (listed on the next page) makes that replacement,
and to generalize further, makes the initial index n( an input argument as well.

2

» Example. Use INFSUM to compute the sum ' n?
n=1

In this case, the program argument is << - n 'n"2/(2"n)’ >>, and ny = 1. So the
sum can be obtained with

< = n 'n"2/2*n’ >> 1 INFSUM = 5.99999999999

or

<< DUP SQ 2 ROT © / > 1 INFSUM 1= 5.99999999999

(The second version is faster.) INFSUM may run for a considerable amount of time if
the sum converges slowly. For f (n) = n~*%, it takes 670 terms to compute the result
1.08232323295, which is accurate to the tenth decimal place (the correct value is
1.08232323371). The program will take correspondingly longer for sums that converge
more slowly than this. We therefore list a second version INFSUMM, that you can use
instead of INFSUM when you want to monitor the sum as it accumulates.

Additional variations of INFSUM are discussed in section 11.12.4.
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INFSUM Compute an Infinite Sum

level 2 level 1 level 1

<< term >> ny or sum

< 0 Initialize sum.

SWAP

DO | proc. sum(n) n |

DUP 4 PICK EVAL | proc. sum@m) n f(n) |

SWAP 1 + Increment n.

ROT ROT OVER + | proc. n+1 sum(n) sum(n+1) |

DUP 4 ROLLD | proc. sum(n+1) n sum(n) sum(n+1) |

UNTIL == Keep going until sum (n +1)= =sum (n).

END ROT DROP2 Discard n and procedure.
>>    

The argument << terrm >> must have the logical form << = n term (n)’ >>.

 

 
 

 

 

 

 

INFSUMM Compute an Infinite Sum (Monitor)

level 2 level 1 | level 1

<< term >> no r sum

< 0 Initialize sum.

SWAP

DO | proc. sum(n) n

DUP 4 PICK EVAL | proc. sum(@m) n f(n) |

SWAP 1 + Increment n.

ROT ROT OVER + | proc. n+1 sum(n) sum(n+1) |

DUP 1 DISP Display the running sum.

DUP 4 ROLLD | proc. sum(n+1) n sum(n) sum(n+1) |

UNTIL == Keep going until sum (n + 1)= =sum (n).

END ROT DROP2 Discard n and procedure.

>>    
The argument << term >> must have the logical form << - n "term (n)’ >>.
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11.11 Timing Execution

Minimizing execution time is an important aspect of program development and optimi-
zation. The HP-28 contains a system clock that it ordinarily uses for scheduling internal

events such as blinking the cursor or turning off the calculator after ten minutes of non-
use. The program TIMED illustrates the use of the system clock to time the execution
of any object. The object may either be in level 1 or stored in a variable specified by a
name in level 1 (that is, if the level 1 object is a name, it is replaced by the contents of
the corresponding variable). TIMED was used to determine the various execution times
listed in this book. Since its argument can be any kind of object, TIMED also provides
another example of the use of procedures as arguments.

 

 
 

 

TIMED Timed Execution

level 1 | level 1

object or time

name r time
 

Note: Read section 3.10 before entering this program!
 

<< DUP TYPE Determine object type.

IF 6 == THEN RCL END If it’s a name, replace with the

named object.

MEM -~ t Force memory packing, and create

a local variable t.

<<  #123E/#1266/#11CAht SYSEVAL Get the start time.

't STO Store start time in t.

EVAL Execute the timed object.

#123E/#1266/#11CAht SYSEVAL Get the finish time.

t - Compute the net time.

B~R 8192 / Convert to decimal seconds.

017 - Subtract time for 't’ STO.
>>

>>   
 

tChoose # 123E for HP-28C Version 1BB, # 1266 for HP-28C Version 1CC, or # 11CAh for

HP-28S Version 2BB. Be sure the HP-28C is in HEX mode before entering this program.

TIMED makes use of a system program that is accessible by means of the SYSEVAL
command (section 3.10). The system program returns the current time from the system
clock, which counts time in units of 1/8192 second. The address of the system clock
program depends on the HP-28 version:
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HP-28C Version 1BB: #123E SYSEVAL
HP-28C Version 1CC: #1266 SYSEVAL

HP-28S Version 2BB: #11CA SYSEVAL

All of these integers are expressed in hexadecimal. The correct sequence returns a
binary integer representing the system time.

m Example. How long does it take the HP-28C to invert a 4 X 4 identity matrix?

4 IDN << INV > TIMED = 2.07.

The answer 1s 2.07 seconds.

11.11.1 Erratic Execution
You have probably noticed that HP-28 execution, in everything from keystroke entry to
user program execution, does not always proceed smoothly but is frequently interrupted
by momentary pauses. This is quite noticeable in plotting, for example, where the
orderly plotting of points is broken by periodic pauses as if the calculator were “catching
its breath.” This erratic execution is normal behavior for the HP-28, and should not
concern you except to keep it in mind when you are timing program execution--two con-
secutive identical operations may take quite different times to execute.

During the course of operations, the HP-28 creates dozens or hundreds of “temporary

objects.” These are the objects that you put on the stack, that are not also stored in a
global variable (or in another object in a variable). Between the times when the stack
display is updated, the system itself may also create many temporary objects that you
never see. When you or the system removes a temporary object from the stack, either
by using it as an argument, or storing it in a variable, or just dropping it, the memory
used for the temporary object is not recovered right away. Eventually, memory fills up
with temporary objects, and the HP-28 must perform some “memory packing” in order
to continue. This packing consists of reviewing all of the temporary objects, discarding
those that are no longer needed, then packing together the remaining objects into the
minimum amount of memory. It is this memory packing that is taking place during the
execution pauses that you observe.

Ordinarily, the execution pauses caused by packing are so short that they have little
effect on your use of the calculator. However, there are some circumstances in which
the packing can be very time consuming, effectively paralyzing the HP-28 for many
seconds or even minutes. For example, if you enter 1000 numbers onto the HP-28S
stack, executing MEM takes about five seconds (MEM always performs a memory pack).
The worst situation, which you should be careful to avoid, involves the creation of large
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temporary lists, and the extraction of the objects within the lists. After this sequence on
the HP-28S,

1 1000 FOR x x NEXT 1000 -LIST LIST-

MEM takes about 10 minutes to execute, during which the keyboard does not respond
(type-ahead still works, however). You can only interrupt the packing with a system halt
(section 11.3.4), which also clears the stack.

If you find it necessary to work with large lists, you can avoid the delays due to memory

packing by storing the lists in global variables before you take them apart. A similar
warning applies to stack programs that enter a large number of objects onto the stack
during their execution.

[The problem of memory packing is never serious on an unmodified HP-28C, in which

the available memory is too small to cause lengthy packing delays. However, if you have
added additional memory to your HP-28C, you will encounter delays, although under

different circumstances than on the HP-28S. In particular, an HP-28C stack of 1000
objects requires much longer packing times than the same stack on the HP-28S, whereas
the problem of large lists is much less severe on the HP-28C.]

The program TIMED listed in the preceding section executes MEM before starting the

actual object timing. This minimizes the chance that packing will take place during the
timing. However if the object’s execution uses a lot of temporary objects, packing may
take place one or more times anyway.

11.12 Recursive Programming

The unlimited depth of the HP-28 subroutine return stack provides that programs can
not only call other programs without limit, but they can even call themselves any
number of times. This feature permits so-called recursive programming, in which a
repetitive calculation can be achieved by a compact program that iterates by calling
itself.

A classic example of recursion is the calculation of a factorial n! = n(n-1) - - - 2-1.
This definition can be restated in a recursive form:

If n=1 then n! = 1; otherwise n! = n (n—-1)!.

The following user-defined function embodies the recursive definition:

<< - n 'IFTE(n=1,1,n*FCT(n-1))’ > °'FCT’ STO
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The function is defined in terms ofitself, so that the name of the variable in which it is
stored must match the name used within the defining procedure.

Recursion is not always the fastest or most memory efficient method of computing a
result. For the factorial (ignoring the built-in FACT function), a FOR...STEP loop is
better than the recursive version:

<< 1 SWAP OVER FOR n n =* -1 STEP >,

The looping done by FOR...STEP is faster than a program calling itself, and the pro-

gram structure also takes care of incrementing n. However, in cases involving nested
data structures, recursion may provide the only solutions.

The program MINL listed in section 11.4 finds the minimum in a list of real numbers.
Using recursion,it is a simple matter to extend that program so that any element of the
input list can itself be a list containing numbers or additional lists, and so on. Here’s

the revised version:

 

 

 

 

 

RMINL Recursive Minimum of a List

level 1 | level 1

{x; - x,} or X min

< MAXR -NUM SWAP DUP SIZE | MAXR {x; } n |

1 Initialize m (list index).

DUP ROT Loop from 1 to n.

START | Xmin {x: } |

GETI Xom

DUP TYPE Determine the type of object x,,.

IF 5§ == Lists are type 5.

THEN RMINL If it’s a list, find its minimum.

END

4 ROLL MIN 3 ROLLD | Xmin {X; } m |

NEXT

DROP2
>>   
 

This program provides another illustration of the power of the unlimited stack. At the
point in the program where RMINL calls itself, there is a list in level 1, which is the
required argument. It doesn’t matter that previous parts of the program have put other
objects on the stack--they will still be in the right place when RMINL returns (to the rest
of itself). RMINL returns one number to level 1, which is appropriate for the remainder
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of the program. The initial list can be a list of lists of lists ..., nested indefinitely. For
example:

{1{23}{4{5{678}90}{11}}12} RMINL = O.

An additional example of simple recursive programming is provided by the Purge and
Clusr programs listed in section 5.9.3 for use with HP-28S directories. More compli-
cated examples of recursive programming are described in Chapter 12, where we discuss
list objects, which play an important role in recursive programming. Examples of recur-
sive programs using lists are given by the programs SORT and GSORT,listed in section
12.3.3. Lists also figure prominently in the recursive system of programs used for com-
puting the determinants of symbolic matrices, described in section 12.6.3, and in the
HP-28S program FIND, listed in section 5.7.3. The latter program features a self-

recursive program created within a program and stored in a local variable.

A final note on recursive programs. Remember that if you change the name (variable)
of a program that calls itself, you have to edit the program to replace all incidences of
the old name with the new.

11.13 Additional Program Examples

11.13.1 Random Number Generators
The HP-28 command RAND generates uniformly distributed pseudo-random numbers
x;, where an x; is equally likely to have any value in the range 0 < x < 1. Using a uni-
form distribution generator, it is possible to generate random numbers with various

other distributions.

11.13.1.1 Poisson Distribution

Assume x is a random variable with a uniform distribution 0 < x < 1. If k is the smal-

lest integer for which

k-1
[Mx, =se™™
n=1

is satisfied, then k is a random variable from a population conforming to the Poisson
distribution with mean N. This distribution is defined as

N* _
P(k) = —;—'—e N
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where P(k) is the probability of obtaining k¥ events in an interval where the mean
number of events is N.

The program POIS uses this algorithm to return one random value k, where the mean
N is entered as a stack argument.

» Example. Generate 100 random numbers from a Poisson distribution with mean 10,

and compute the mean and standard deviation of the 100 numbers.

m Solution. Use 2+ to accumulate the random numbers into ZDAT, then use MEAN

and SDEV.

54321 RDZ CLX 1 100 START 10 POIS X+ NEXT

generates the numbers (include the sequence .54321 RDZ if you want to check your
results against those shown below). After executing the sequence, you can compute the
sample statistics:

MEAN o= 9.7400

SDEV = 3.0867

The nominal standard deviation of a Poisson distribution is \/N, which is =3.1623 for N
= 10.

 

 

POIS Poisson Generator

level 1 | level 1

N or k

<< NEG EXP exp(-N)

-1 1 Start k at —1; the product at 1.

DO SWAP 1 + Increment k.

SWAP RAND * Multiply by the next x.

UNTIL DUP 4 PICK = Keep going until the product is <exp(—N).

END DROP SWAP DROP Return k.
>>   
 

11.13.1.2 Normal Distribution

Assume x is a random variable with a uniform distribution 0 < x < 1. With a defini-

tion of y as
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y = \/—21nx,- cos (2mx;),

where x; and x; are randomly drawn from the population of x, y is a random variable
from a population conforming to the normal (Gaussian) distribution with mean 0 and

standard deviation 1. The normal distribution for a variable with mean y and standard
deviation o is

where P(y) dy is the probability of obtaining a value in the range between y and y +dy.

 

 

 

 

 

 

NORM Normal Distribution Generator

| level 1

o Yi

<< RAND x;

IN -2 = V V —2lnx;

RAND x;

2 * ¢ -NUM * RAD COS cos (2mx;)

* y
>>   
 

NORM leaves radians mode active.

You can obtain random numbers y; from a normal distribution with mean y and stan-

dard deviation o by multiplying the values y; obtained with NORM by o and adding y.
The program MNORM returns such random numbers y,’, where the mean and standard

deviation are specified on the stack:

 

 
 

 

 

 

MNORM Modified Normal Distribution Generator

level 2 level 1 | level 1

y o o y'i

<< NORM * + y’

>>   
 

MNORM leaves radians mode active.

» Example. Create a 2DAT matrix that contains points [x; y;] representing a “noisy”

straight line:
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yi = O.Sx,- + b,',

where b; is a normally distributed random variable with mean 1 and standard deviation
3, and the x; are the integers —50 through +50.

 

= Solution:

.54321 RDZ Random number seed.

CcL= Initialize ZDAT.

-50 50 x from -50 to +50.

FOR x «x X;

1 3 MNORM x 2 / + y;.

{2} -ARRY X+ Store the point.

NEXT    
You can create a plot of this data by executing SCLYZ DRWZ:

 

 

 

  
11.13.2 Prime Numbers
The program PRIMES returns a list of the first n prime numbers (not counting 1),
where n is specified on the stack. The program demonstrates the use of stack flags
(section 10.3) to “remember” the results of tests, so that those results can be used for
later decisions.

This program starts with a list of three prime numbers 2, 3, and 5, then successively

tests integers m greater than these to see if they are prime by dividing each by all prime
numbers n; for which n;=<Vm. If any quotient is an integer, m is not prime, and is dis-
carded. If m is prime, it is appended to the current list of primes. The process contin-

ues until the list grows to the specified size.

You can obtain a significant economy in the execution of this process by observing that
you don’t need to test every integer explicitly, but only those in the series 7, 11, 13, 17,
19,..., obtained by alternately adding 2 and 4. All integers not in this series are divisible

by 2 or 3, and so are not prime.
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PRIMES Find Prime Numbers

level 1 | level 1

n or { primes }

< 7 = X x is the next candidate number; start with 7

«< { 2 3 5} First three primes.

1 SF Flag 1 determines incrementsize.

DO Main loop to test x.
2 SF Flag 2 set means x may be prime.

3 Start with n=3 (3rd number in the list).

DO Inner loop—divide x by primes < Vx
GETI x OVER / | {primes} n p, =x/p, |
UNTIL Keep going until FP(x/p,) = 0 or p,>x/p,

IF SWAP OVER > | {primes} n x/p,, flag |
DUP If the test is true...

THEN SWAP DROP ...then return true to stop the loop.
ELSE Otherwise, check if evenly divisible.
SWAP
IF FP NOT If the fractional part is zero...
THEN 2 CF NOT
END

END
END DROP
IF 2 FS? If x is prime...
THEN x 1 -LIST + ... add it to the list
END
IF 1 FS?C If flag 1 is set...
THEN 4 ...then add 4;

ELSE 2 1 SF ...else add 2 and set the flag.
END
x + 'x' STO Increment x.

UNTIL Repeat untillist is the desired length.

DUP2 SIZE =
END SWAP DROP Leave the list on the stack.

>>

>>   
 

PRIMESusesflags 1 and 2.

The basic structure of PRIMES is as follows:

DO
DO Divide a number by the next prime from the list.
UNTIL (1) either a quotient is a non-integer.

or

(2) the prime is bigger than the number’s square root.
END

UNTIL enough primes are found.
END

11.13
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The combination of tests (1) and (2) is complicated by the fact that there is no point in
making test (2) if test (1) is true. In PRIMES, therefore, the (flag) result of test (1) is

used twice, once by an IF structure than contains test (2), and again to determine
whether to continue through the list of prime number divisors.

11.13.3 Simultaneous Equations
Consider the set of simultaneous linear equations

anxytapxy+ - tayux, =Cq

arxytaxnxy;+ *°° +axyx, =C)

An1X1 tQpaXxy + " tapy Xy = Cp,

where there are n equations in n unknowns x; - - - x,. The a;; are the coefficients of the

unknowns, and the c; are the constant terms.

These equations are straightforward to solve on the HP-28. Defining the coefficient
matrix

an ap " a4y,

az ax» """ ax

A = ,

Gn1 Qp2 """ Qpp

and the unknown and constant vectors

X1 1

X2 C2

f - E -— 5

Xn Cn  
then the set of simultaneous equations can be represented as the matrix equation

AX = C.

The solution can be found by premultiplying both sides of the equation by the inverse of
A:
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X =A1¢

On the HP-28, you can obtain this solution by entering the constant vector ¢ into level 2
and the coefficient matrix A into level 1, then executing / (divide). This returns the
unknown vector X to level 1.

This method is very simple, but has the drawback that it requires you to determine the
coefficients and constants from the equations, and enter them in a very specific order.
The program SIMEQ below does all of this work for you. SIMEQ expects to find a list
of names in level 1, preceded in higher levels by as many equations as there are names
in the list. The specified names indicate which of the variable names in the equations

are the unknown variables--all other variables that appear in the equations must have

numerical values (via “NUM). The equations may appear in any order, and there are
no restrictions on the form of the equations, except that they must be linear in the
unknown variables.

SIMEQ determines the constant terms in the equations by setting all of the unknowns to
zero, then evaluating the equations. It next subtracts the constants from the equations,
and determines the coefficients by assigning the value 1 to one unknown variable at a
time, and evaluating the equations. The coefficients are combined into a matrix, and
the constants into a vector so that the vector of unknowns can be obtained by dividing.
Finally, the values of the unknowns are stored in the corresponding variables.

» Example. Five packages are weighed in pairs, yielding the weights 90, 110, 120, 140,
120, 130, 150, 150, 170, and 180 pounds. What are the weights of the individual pack-

ages?

= Solution. Call the unknown weights 4, B, C, D, and E, where A is the lightest weight

package and E is the heaviest. Then the lightest combination is 4 and B, so

A + B = 90 lbs.

The next lightest combination must be 4 and C:

A +C = 110 lbs.

Similarly, the heaviest two combinations are

D +E = 180 Ibs,

and

C+E 170 1bs.
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SIMEQ Simultaneous Equations
 

 

level n ... level 2 level 1 |
 

'equation,’ ... 'equation,’ name; ... name, } o1
 

 

 

<< DUP SIZE - v n

< n ~LIST - e

< 1 n

FOR x 0 v x GET STO

NEXT

e LIST-

1 SWAP

START n ROLL -NUM NEG

NEXT

n -LIST - ¢

<< 1 n

FOR x 1

e LIST-

1 SWAP

FOR i n ROLL -NUM

c i GET +

v x GET STO

NEXT

0 v x GET STO

NEXT

n DUP 2

~ARRY TRN

-LIST

c LIST- 1

SWAP /
ARRY- DROP

n 1

FOR m v m GET STO

-1 STEP

>>

>>

-LIST -ARRY

>>

>>

Save the list of names in v, and

of names in n.

in e.

Put the equations on the stack.

Compute each constant term.

in c.

For each variable...

Assign the value 1 to the variable.

Put the equations on the stack.

For each equation...

Evaluate the equation, and

subtract the constant term,

leaving the coefficient.

Reset the variable to 0.

matrix.

Compute the unknown vector.

Put the values on the stack.

Store each value in its variable. 

Combine the equationsinto a list, and save

Store zero in each unknown variable.

Combine the constants into a list, and save

Combine all the coefficients into a square

Convert the constant list in a vector.

the number

  
Finally, you can observe that the total weight of all the combinations must be four times
the total weight of the packages:

4(A+B+C+D +E) = 1360 lbs.

These are the five equations you need to solve the problem:
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'A+B=90’ [ENTER]

'A+C=110'

'‘D+E=180’

'C+E=170’ [ENTER]

'4%(A+B+C+D+E)=1360'

puts the equations on the stack; then

{A B C D E}[SIMEQ]

solves the equations: A =40 lbs, B=50 lbs, C=70 lbs, D=80 lbs, and E= 100 Ibs.

11.13.4 Infinite Sums
In section 11.10 we presented a program INFSUM that computes an infinite sum of
terms defined by a separate program. For some sums, it is more accurate to compute
each term 7, from the previous one T,_,, rather than computing each term indepen-
dently. The programs PTINFSUM and XPTINFSUM (listed in section 11.12.4.3) use this
approach. The first program PTINFSUM is a variation of INFSUM, for which you sup-
ply a stack program that computes 7, as a function of n and 7,_;. PTINFSUM also
requires you to specify the initial value ny of the index, and the value of the first term
T,

» Example. Compute 2—%n—-

 
3

» Solution: 1In this case, T, = % [(n'—t 1)] ,no =1, and T; = 0.5. Thus,

< DUP 1 - / 3 ~ 2 / * > 5 1 PTINFSUM = 25.9999999997.

Many mathematical functions can be computed from an infinite sum for which the terms
are functions of a variable as well as of the summation index. The program
XPTINFSUM is a further variation of PTINFSUM, in which the value of a variable is also
an input argument, in addition to the arguments required by PTINFSUM. The program
that computes T, from T,_, and n can also be a function of the variable.
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The programs Sl and Cl (listed in section 11.12.4.3),illustrate the use of XPTINFSUM to

compute sine and cosine integrals, respectively. The series expansions for these
integrals are taken from M. Abramowitz and I.A. Stegun, Handbook of Mathematical
Functions (National Bureau of Standards, 1964).

11.13.4.1 Sine Integral

The sine integral Si(x) is defined as follows:

X

Si@) = [s—‘:‘—‘dt
0

The integral can be computed from the infinite series:

. o _1nx2n+1

Si@) = 2 G T1)@+n=0

for x>0, and Si (x) = -Si(-x) for x<O0.

The program Sl uses XPTINFSUM to compute this sum, with the assignments ny = 0,
Ty = x, and

T =T (n-¥)x?

roooed _4n(n+.5)2

Since T, is a function of x2, Sl saves repeated computation of the square of x by using
x? rather than x as the variable argument for XPTINFSUM.

Examples:

5 S| = .493107418043

3 Sl = 1.848652528

11.13.42 Cosine Integral

The cosine integral Ci(x) is defined by

X

Gi(x) = v+ Inx +I%’1dt,
0
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where vy = .5772156449 (Euler’s constant). Ci(x) can be calculated from the infinite

series

- lann

Cix) =y +Inx + é 2 (21)]
n=1

for x>0, and

Cix) = Ci(-x)-iw forx <O.

The parameters for XPTINFSUM are ny = 1, T, = -x%/4, and

r -7 |- X0-1)
" ey

T, is a function of —x2, so Cl uses —x? rather than x as the variable argument for

XPTINFSUM.

Examples:

05 Cl = -.177784078808

3 Cl = .11962978602
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11.13.43 Sum Programs

 
  

 

PTINFSUM Infinite Sum from Previous Term

level 3 level 2 level 1 | level 1

<< term >> T, 0 ng o sum

  < ROT - term Save << term >>.

<< OVER SWAP | Tpy Tno n |

DO | sum(n) T, n|

1 + Increment n.

SWAP OVER term -NUM | sum(n-1) n T, |

SWAP ROT 3 PICK OVER +||n T, sum(n-1) sum(n) |

DUP 5 ROLLD | sum(@n) T, n sum(@n-1) sum(n) |

UNTIL == Repeat until the sum is unchanged.

END DROP2
>>

>>   
 The argument << tern >> must have the logical form<< - ¢t n ‘'teem(t,n)’ >>.

 XPTINFSUM Infinite Sum in x from Previous Term

  level 4 level 3 level 2 level 1 | level 1

 < term > T, ng x or sum  
  << 4 ROLL - x term

<< OVER SWAP

Save << term >> and x.

|Tno Tno n0|

DO | sum(n) T n |

1 + SWAP Increment n.

OVER x | sum(n-1) n T,., n x|

term -NUM | sum(n-1) n T, |

SWAP ROT 3 PICK OVER + || T, n sum(n-1) sum(n) |

DUP 5 ROLLD | sum(n) T, n sum(n-1) sum(n) |

UNTIL == Repeat until the sum is unchanged.

END DROP2
>>

>>   
 The argument << term >> must have the logical form << = ¢t n x ’'term (t,nx)’ >>.
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level 1

X

 

Sine Integral

or

level 1

Si(x)

 

<<

IF DUP

<<

SWAP - n

< n b5 -

n 5 + SQ n

>>

>>

4 ROLLD

XPTINFSUM

SWAP SIGN *

END

>> 

THEN DUP ABS 0 OVER SQ

* NEG 4 /
*/*

If x =0, just return 0.

|x To 2
Start of << term >>.

nog X

End of << term >>.

| x <<temm > x Ty, ny x2

| x sum |

| Siq)|   
Cl

level 1

X (o

Cosine Integral

 

 

<< DUP ABS DUP LN

SWAP SQ NEG

DUP 4 / SWAP 1

<< SWAP - n

< 2 / nSQ / n

n 2 * 1 - [ *

>>

>>

4 ROLLD

XPTINFSUM

+ 5772156649 +

SWAP

IF 0 <

THEN i =

END
>> 

SWAP

1 %k

 

level 1

Ci(x)

|x In|x| -x?|

| x In|x| -x%4 1 -x?

Start of << term >>.

End of << term >>.

| x In|x | 2<term > x Ty ng x

2|| x Inj|x |

Subtract i 7 if x <0.

Ci (x).   
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12. Arrays and Lists

The HP-28 array and list object types allow you to deal with collections of numbers or
other objects as single units, as well as to access the individual objects in the collections.
You are probably familiar with arrays--vectors and matrices--from mathematics. Arrays
are one-dimensional (vectors) or two-dimensional (matrices) ordered sets of numbers
that satisfy certain rules of arithmetic and transformation properties. However, you may
find the idea of a list as a useful computational tool to be a new concept, since it has no
obvious mathematical counterpart, and there is nothing similar in the HP-41 or other
calculator languages. (Lists will be very familiar to you if you have studied LISP, or a
similar computer language.)

12.1 Arrays

The particular contribution of the HP-28 to calculator array computation is its ability to
manipulate arrays as self-contained units. This means, for example, that you can per-
form array arithmetic on the stack using the same steps and commands as you would for
real number arithmetic. Programs can use arrays as input and return arrays as output;
the arrays themselves contain all of the dimensional information that the programs need
to deal with the data in the arrays. This is in distinct contrast to the HP-41, for exam-
ple, in which an “array” is only a series of consecutive data registers, and the specifica-
tion of the location and size of the array is stored and interpreted separately from the
array data.

The mathematical operations that the HP-28 provides for matrices and vectors are not
remarkable. The strength of the HP-28 is the ease with which you can apply the opera-
tions to the arrays. We will not dwell on the mathematical commands here, since they
are described adequately in the owner’s manuals. Instead we will focus on the array
manipulation commands.

e To assemble a series of numbers on the stack into an array, use ~ARRY.

o [121 2 3 4 {22} -ARRY = 34

Note that the level 1 argument of ~ARRY (the list { 2 2 } in this example) deter-
mines how many numbers are taken from the stack to form the array, and the
dimensions of the array. If the list is { n }, n numbers are used to form an n-
element vector. If the list is { » m }, n-m numbers are combined into an nXm
matrix (the HP-28S also permits a real number n--not in a list--to specify an n-

element vector). The order in which the elements are placed on the stack is called
row-order. This order has element 1 or 1-1 in the highest stack level, followed by the
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elements of the first row in left-to-right order, then by the row 2 elements, if any,
and so forth, ending with the last element in row n.

e To take an array apart, use ARRY-. Reversing the previous example:

[34] ARRY~ = 1 2 3 4 {2 2}

ARRY- returns the elements of an array as individual numbers in row order, and
leaves the number of elements in level 1.

e To determine the dimensions of an array, use SIZE.

[[215%] SIZE = {32}
[56]]

e To extract individual numbers from an array, use GET or GETI (section 5.2).

12[{34%] {21} GET = 3.

e To substitute numbers into an array, use PUT or PUTI (section 5.3.2).

[12]{21} 8 PUTI = 1841 {22}

the { 2 1 } element in the array is replaced with a new value 8, and the next index is
returned.

34)

PUTI provides a convenient means of entering numbers into an array for cases in which

you need to compute the numbers instead of just entering them into the command line.

m Example. Enter the matrix

 

 

173 -1/6

-1/3 1

Keystrokes: Stack:

Il [MODE] 2 SFIXE Set number display
mode.

{2 2} Matrix dimensions.
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3 MbAl
I (ARRAY][NEXT]ECONE 1: [[0.33 0.33] Create a starting matrix.

[0.33 0.33]]

{1 2} 6 MQOAl[CHS
Il [PREV]EPUTIE 2: [[0.33 -0.17] Second element.

[0.33 0.33]]
1; {2 1}

 3 M1/ [CHSIEPUTIZ 2: [[ -0.33 -0.17] Third element.
[ -033 0.33]]

1 {2 2}

 
1EpuUTs 1:  [[-0.33 -0.17] Done.

[ -0.33 1.00]]
 

The program MINOR (listed on the next page) illustrates the use of array manipulation

commands. MINOR computes the nm minor of a matrix, which is defined as the origi-
nal matrix with its nth row and mth column removed. Assuming that MINOR will start
with the original matrix in level 3, the row numberr in level 2, and the column number
c in level 1, we can sketch a preliminary version of MINOR:

<< 3 ROLLD DELROW SWAP DELCOLUMN >>

DELROW must be a subroutine that removes the rth (level 1) row of a matrix (level 2);
DELCOLUMN removes the cth row. However, you can observe that removing a column
of a matrix is the same as removing a row of the transposed matrix, so that a program

that removes a row can do both jobs if combined with the transpose command TRN.
We choose to work with rows rather than columns because ARRY- puts elements on
the stack in row order, so thatit is easier to delete the elements of a row.

The programs in section 12.6 contain several additional examples of the uses of array
manipulation commands.

A note about vectors: Although HP-28 vectors are displayed with the elements laid out
horizontally, the vectors actually have the properties of column (contravariant) vectors.

This means, for example, that an n-element vector v is suitable for pre-multiplication

(A¥) by an m Xn matrix A. The vectors are displayed horizontally in order to show as
many elements as possible on the display. You can represent row (covariant) vectors as
1 X n matrices.
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<< m DROPN

s LIST- DROP

>>

n 1 - m 2 -LIST

-ARRY

>>

>>

>>  

MINOR Minor ofa Determinant

level 3 level 2 level 1 | level 1

[[ mamix ) r c or [[ marrix’ ]

< 3 ROLLD | ¢ [[marix]] r |

DELROW Remove the rth row.

TRN SWAP DELROW Remove the ¢ column.

TRN Transpose back again.

>>

DELROW Delete a Matrix Row

level 2 level 1 | level 1

[ marix]) n a  [[ matrix' ]

< -7 Store the row number.

<< ARRY- Put the array elements individually on the stack.

LIST- DROP - n m Save the dimensions in r and c.

< nr - m * -LIST

- s Save the last (n—r)m elements in a list s.

Discard m elements.

Recover the saved elements.

The new array has dimensions (n—1)Xm.

Make the result array.  
 

12.2 Lists

12.1

In this section, we’ll review the general ideas of list objects, and study their application

by means of examples.

A list is an object that is simply a collection of other objects (called the elements of the
list). At first glance, a list resembles a program, in that it contains a sequence of
objects. However, unlike the objects in a program, those in a list are not intended for
execution while they remain in the list. Also, a list contains no structures (in fact, you
can’t even enter program structure words like IF or START into a list unless they are
part of a program object). Whereas a program is intended to represent a calculation, a
list is designed to hold objects that can be the input or output of a calculation.
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Lists also resemble vectors, since they are both one-dimensional arrays of objects. You
can create either a list or a vector out of a series of numbers (using ~LIST or ~ARRY).
The difference is that in a list, the numbers do not necessarily have any particular asso-
ciation, whereas in a vector, they may be considered as the coordinates of a geometrical
point, and hence are subject to various arithmetic operations and transformation rules.

12.2.1 List Operations
The LIST menu contains several commands that enable you to manipulate lists and their

clements. The commands are quite similar to those used for array operations.

e To assemble objects into a list, use ~LIST.

1 (1,2) 'A+B’ 3 -LST = {1 (1,2) 'A+B’}.

Note that the level 1 argument of —LIST (the 3 in this example) determines how
many objects are taken from the stack to be combined into the list.

e To take a list apart, use LIST-,

{1 (1,20 'A+B’} LST» = 1 (1,2) 'A+B’ 3

LIST- returns the elements of the list as separate stack objects, and leaves the
number of elements in level1.

e To determine the number of elements in a list, use SIZE.

{1 (1,2) 'A+B'} SIZE = 3.

e To substitute objects into a list, use PUT or PUTI.

{1 (1,20 'A+B’} 2 "ABC" PUT = {1 "ABC" 'A+B’'},

where the second element (1,2) in the initial list is replaced with the string "ABC".
PUTI makes the substitution like PUT, but also leaves the index of the next element
in level 1.

e To pull individual objects out of a list, use GET or GETI.

{1 (1,2) 'A+B'} 2 GET = (1,2).

e To combine (concatenate) lists, use +.
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{1 234} {56 78} + = {123465¢6 7 8}

e To add stack objects to a list, combine —»LIST and +:

{1t 2 34} 5 6 7 8 4 -LUST + = {1 2 3 45 6 7 8},

the same result as the previous example. On the HP-28S, you can add a single
object (that is not a list itself) to a list by using +:

1 {2 3 4} + = {1 2 3 4}

{2 3 4} 1 + = {2 3 4 1}

e Since a list is an object, you can include lists within other lists. Notice the distinction
between

{1234} {5678} +={12345678}

and

{1234} {5678} 1-UST+={1234{5678})

e To extract sublists from a list, use SUB. For example, the sequence

2 OVER SIZE SuB

takes a list from level 1 and returns a shorter list consisting of the original list minus
its first element (like the LISP function CDR). Thus,

{A B C} 2 OVER SIZE SUB = {B C}.

e On the HP-28S, you can find an object in a list by using POS:

{A B C} 'A POS = 1.

POS can take a significant amount of time for large lists. Its execution time
increases roughly with the square of the element number returned.

12.3 List Applications

The basic ideas of the use of the HP-28 object stack carry over into the principles and
applications of list objects. A list is like an auxiliary stack, in which you can store and
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retrieve an indefinite number of objects, with no restrictions on the order or type of
objects in the list. To illustrate this point, try the following:

1. Enter several objects of any types onto the stack.

2. Press Il [STACK][NEXT] to activate the second row of the STACK menu.

3. Press ZDEPTHZ . This returns the number of objects currently on the stack.

4 Press E-LISTE . Now you have only one object on the stack, a list containing all of
the previous stack objects. Note that the objects are present in the list in the
same order in which they were originally entered into the stack. The object that
was in the highest stack level is the first element in the list; the object that was in
level 1 (prior to ZDEPTHE ) is the last element. The list thus preserves an image of
the original stack.

5. Save the list: 'OLD’ . The stack is now empty.

6. Imagine carrying out any number of calculations, which leave various objects on

the stack. Discard these objects with CLEAR, then enter

 

OLD LIST- DROP.

This restores the stack as it was after step 1.

The ability to "freeze” a copy of the stack, store it away, then retrieve it later, is a useful
list application in itself. But the main point of the example is to bring out the similari-

ties between the stack and a list object, which suggests how you might use lists. The

stack provides a medium for the ordered presentation of objects as input arguments for
procedures (built-in or user-created), and for receiving the result objects. Lists can be
used for the same purposes, especially for cases where juggling mixtures of input, inter-
mediate, and output objects during the course of a calculation can become complicated.

A list can also play a role like that of numbered registers in the HP-41. That is, you can
create a list of any size, store it in USER memory to give it a name, then use 'name’ n
PUT to store an object in the nth “register,” and ‘'name’ n GET to recall it. An advan-
tage of lists over HP-41 registers for this purpose is that you can have as many such lists
as you want. Also, you can manipulate the group of objects stored in a list as a single
entity, which is rather difficult on the HP-41 (that calculator provides certain register-
block commands, but they lack the simplicity and power of HP-28 list commands).

To summarize, lists are a valuable programming tool for any situation in which the
number of objects with which a program has to deal is not specified at the time the pro-
gram is written. When a program works with a definite number of objects, it is
appropriate to store those objects in variables, or to manipulate them on the stack as
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individual objects. But when you don’t know in advance how many objects are to be
handled, the best approach by far is to manage the objects together in a list. We will
give some examples of this concept in the next sections.

12.3.1 Input Lists
Certain HP-28 commands provide examples of the use of lists to combine several input
objects into a single argument. There are two basic reasons for this approach:

1. To provide flexibility along with uniformity. For example, consider the command
CON, which creates an array in which all elements have the same value. CON
requires two pieces of information: 1) the common value for the elements, and 2)
the dimensions of the array. The first is easy; the value is specified by a real or
complex number in level 1. The second is a little more difficult, since an array
can either be a one-dimensional vector, or a two-dimensional matrix. The use of

a list as the level 2 argument for CON allows CON to handle both matrices and
vectors. If the level 2 list contains one number, CON creates a vector; if the list
contains two numbers, CON creates a matrix. If the dimensions were not com-

bined into a list, there would have to be two versions of CON: one that takes two
real numbers as arguments--the value and the vector dimension; and one that
takes three numbers--the value and two matrix dimensions.

2. To reduce the number of separate arguments. [, for example, uses three argument
objects to specify as many as five inputs (section 9.9.3). All three forms of
integration provided by [ require an integrand procedure in level 3, and an accu-
racy specifier in level 1. The level 2 argument must be a name for symbolic
integration, a list containing two limits of integration for implicit variable numeri-

cal integration, or a list with a name and two limits for explicit variable integra-
tion. By using a list for the latter two cases, [ satisfies the HP-28 convention of
using a maximum of three arguments, which allows the ZUSEZ operation in CATA-
LOG to display all ofits arguments in three display lines, leaving the fourth for the
menu key labels. The limit of three arguments also keeps the number of argu-
ment type combinations that a command must check within reasonable bounds.

 

Of these two reasons, the first is the only one of significance as a model for the use of
lists as input arguments for user programs. That is, lists are ideal for situations where
you have an indefinite number of inputs. An example of this is provided by the program
MINL (section 11.4), that finds the minimum among a series of numbers in a list. The

program is written for series of any length--it has only to execute SIZE on the input list
to determine how many numbers it needs to compare. Furthermore, during its execu-
tion, the numbers remain in the list, except for when they are extracted one-by-one from
the list for the comparisons. Keeping track of that single list, which could be stored in a
global or local variable if necessary, is much simpler than trying to maintain the series
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of numbers as separate stack objects. If you are not yet convinced of the utility of lists,
try writing a version of MINL that uses no lists (or arrays). See also the recursive pro-
gram RMINL, on page 258.

123.1.1 HP-28S Command List Arguments

On the HP-28S, any command that uses an argument list containing one or more real
numbers allows you to substitute other types of objects for the numbers. The substitute
objects must evaluate (by means of “NUM) to real number values. In particular, this
means you can use symbolic values (names or expressions), or even programs, rather
than specific numerical values. For example, to compute

w

f cosx dx
-7

you can execute

'cos(X)’ { X '-w' =« } .00001 .

Or you can extract an element from an array with the sequence { A B} GET, where A
and B name variables containing the element indices.

This capability can lead to some convoluted executions when argument lists contain
(directly or indirectly) programs that manipulate the stack. You can predict the execu-
tion in such cases as follows:

1. Empty lists cause the Bad Argument Value error.

2. Lists containing only real numbers go directly on to the computation part of the
command.

3. When a list contains elements other than real numbers:

The stack depth (less the list) is recorded.

b. Each non-real number list element is evaluated numerically (-NUM). After
each evaluation, if the resulting stack is empty, the error Too Few Argu-
ments is reported. If the resulting level 1 object is not a real number, the
Bad Argument Type error is reported.

c. If the stack depth has decreased, the Too Few Arguments is returned. Oth-
erwise, the new objects, plus any excess, are combined back into a list.

d. The command execution is started over again with the new list.

Errors that occur during evaluation of user procedures within the argument list identify
the guilty command and return its arguments, as usual on the HP-28S. However, other
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errors that occur in step 2 do not identify any command.

If a non-numeric list is used as the index argument for GET| or PUTI, the incremented
index list is returned with real number indices.

12.3.2 Output Lists
Just as you can use a list to combine an indefinite number of input objects into a single
argument, you can use a list to receive the multiple-object output of a program. This
approach makes it easy to manipulate a program’s output--either to save it in a variable,
or to use it as the input for another program.

m Example. For any integer n, compute the first n+1 terms F, of the Fibonacci series.
This series is defined as follows:

 

 

 

 

 

 

Fo = 0

F,=1
Fn = Fn— 1t Fn—2

FIB Fibonacci Series Generator

level 1 | level 1

n or {o1--- f,}

< {01} Start the list with Fy and F ;.

SWAP DUP 1

IF > If nis < 2, quit.

THEN O 1 Initial values F,,_5 and F,,;.

3 4 ROLL 1 + From 3 to n...

START DUP ROT + F,,+F,,.

ROT OVER 1 -LIST + Add F,, to the output list.

3 ROLLD | {...F,} Fpy Foq |

NEXT DROP2

ELSE DROP

END

>>   
 

12.3.3 Lists of Intermediate Results
When a program contains loop structures, or is written recursively, it is usually neces-
sary to ensure that the stack has the same configuration at each iteration. A particularly
convenient means of achieving this is to use a list as an auxiliary data stack, to hold an
indefinite number of intermediate results in a constant position on the stack.
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The program SORT illustrates the use of lists of intermediate results. SORT orders a

list of numbers (or strings), so that the smallest (most negative, or alphabetically first)
object is moved to the start of the list, and so on to the largest (alphabetically last)
object as the last element. SORT uses a recursive algorithm that can be summarized as:

1. Remove the first object from the list and separate the remaining objects into two
lists, one containing objects that are smaller than the first object, and the other
containing objects larger than the first.

2. Sort the two lists using the same algorithm.

3. Combine the results back into a single list, with the sorted “smaller” objects first,
followed by the originalfirst object, then the sorted “larger” objects.

 

 
 

 

 

 

  

SORT Sont a List in Increasing Order

level 1 | level 1

{ list } o { ordered list }

< |F DUP SIZE 1 > If the list has fewer than 2 elements, just

return.

THEN LIST- Put the objects on the stack.

DUP 1 + ROLL Getthefirst object.

1 -LIST LIST- DROP - x Save the first element as x.}

< {} {} Initialize “less” and “greater”lists.

ROT 1 SWAP 1 - Iterate for n—1 elements:

START ROT Get the next element.

DUP 1 -LIST SWAP x | { list } element x |%

IF <

THEN ROT + SWAP Element < x, so add to first list.

ELSE + Element = x, so add to secondlist.

END

NEXT

SORT Sort the first list.

SWAP SORT Sort the second list.

x 1 ~LIST i

+ SWAP + Combine the lists.

>>

END

>>

 

tThe sequence 1 ~LIST LIST- DROP saves memory by separating x from the original
list. See section 12.4.

$The sequence 1 ~LIST is unnecessary on the HP-28S.
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w Example.

{51243} SORT = {1 23 4 5}.

The algorithm used by SORT is not specific to numerical ordering; you can rewrite
SORT for other types of sorting by replacing the < comparison with any other test or
sequence of tests. A more general approach is taken by the program GSORT, which
sorts a list of objects according to a test defined by another program that is supplied as
a second argument to GSORT.

 

 
 

 

 

 

  

GSORT General-purpose Sort

level 2 level 1 | level 1

{list} <<test> or { list }

<< - ftest Save test program as test.

< |F DUP SIZE 1 > If the list has fewer than 2 elements,just

return.

THEN LIST- DUP 1 + ROLL |Get the first element.

1 -LIST LIST- DROP - «x Save the first element as x.

< {} {} Initialize “true” and “false”lists.

ROT 1 SWAP 1 - Iterate for n—1 elements:

START ROT Get the next element.

DUP 1 -LIST SWAP «x t

IF test EVAL Make the test.

THEN ROT + SWAP Test is true, so add element to true-list.

ELSE + Testis false, so add element to false-list.

END

NEXT

test GSORT Sort the true-list.

SWAP test GSORT Sort the false-list.

x 1 -LIST t

+ SWAP + Combine the lists.

>>

END

>>

>>

 

tThe sequence 1 ~LIST is unnecessary on the HP-28S.

 
To use GSORT, enter the unsorted list of objects, followed by a program test-program
that represents a logical test. Test-program should work like this:

object; object, test-program = flag.
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Flag should be true if object, is to precede object,, or false otherwise. GSORT sorts the
list so that the sequence

object, object,, test-program

will return a true flag for any two consecutive objects object, and object,; in the list
(unless the order is ambiguous). For example, the numerical ordering performed by
SORT is represented by the program << < >>; therefore << < >> GSORT is
equivalent to SORT. Other examples:

e << > >> GSORT sorts numbers or strings in decreasing numerical or alphabetical

order.

e << ABS SWAP ABS > >> GSORTsorts in order of increasing absolute value.

e << SIZE SWAP SIZE > >> GSORT sorts strings or lists in order of increasing
length.

e To sort complex numbers in order of increasing polar angle from 0° to 360°

<< << ARG DUP 0 IF < THEN -1 ACOS 2 * + END >
ROT OVER EVAL ROT ROT EVAL < > GSORT

12.4 Lists and Memory

There is a subtlety in the management of lists that you should keep in mind when pro-
gramming with lists. When objects are pulled out of a list, with GET, GETI, or LIST-,
the original list remains in memory as long as any of its component objects remains on

the stack. If the list itself has been recalled from a global variable (or is part of a pro-
gram or another list in a variable), this point is unimportant, since the memory used by
the list is accounted for in the variable. However, if the list was created on the stack,
the memory it uses will not be recovered until the list and any objects that have been
extracted from it are removed from the stack. For the individual objects, “removed”
means dropped, stored in a global variable (not a local variable), or combined into a
vector or another list.

To see this effect, disable LAST, COMMAND, and UNDO so that no memory is used by
those recovery systems, then execute

1 50 FOR n n NEXT 50 -LIST

to create a list of S0 numbers. Now execute 50 GET, so that the number 50 (from the
list) is left on the stack. Next, execute MEM to determine how much memory is avail-
able. Use SWAP DROP to drop the 50, then execute MEM again. Notice that the
difference is 448 bytes (447.5 on the HP-28S)--far more memory than you would expect

-284-



Arrays and Lists 124

to be recovered by dropping the single real number 50. The large difference between
the successive MEM’s actually arises because the removal of the 50 allowed the HP-28
to delete the copy of the list that it had been preserving.

As mentioned above, you can “uncouple” an object from the list from which it came by
either storing the object in a global variable, or by including it in another list (or an
array, if the object is a number). The otherwise pointless sequence 1 -LIST LIST-
DROP, executed with an object on the stack that came from a list, is a fast and reason-
ably efficient method of minimizing the memory used by an object. This method is used

in the SORT and GSORT programs listed in the preceding section. If this sequence
were omitted from the programs, the size of the lists that could be sorted in a given
amount of free memory would be substantially reduced.

One additional note: if you are dealing only with a collection of numbers (all real or all
complex), you can often use a vector (or a matrix, if you want a rows-and-columns type
of organization) to store the numbers, instead of a list. For storing more than a few
numbers, a vector is more memory-efficient than a list, and you can perform many of
the same operations to assemble and disassemble vectors as you can with lists. The
main disadvantage of using a vector in place of a list is that there is no built-in com-
mand for adding (concatenating) numbers to vectors, or combining two vectors into a
longer one. The following program provides list-like concatenation for vectors:

 

ADDV Concatenate Vectors
 

 

level 2 level 1 | level 1
 

[ vectory 1[vector, ] or [ vectors ]
 

 

   

<<

< DUP TYPE Program to apply to both vectors.

IF 1 = Is the object a number?

THEN 1 Then treat as a one-element vector.

ELSE ARRY- LIST- DROP For a vector, putits elements on the stack.

END

DUP 2 + ROLL Get the object above the vector.

> - s Store the program as a subroutine s.

<< SWAP s EVAL s EVAL Apply s to both vectors.

+ Total number of elements.

1 -LIST -ARRY Combine the numbers into the result vector.

>>

>
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12.5 Indexed Variables on the HP-28S

The HP-28S has extended the operation of STO, and the syntax of algebraic objects,
over the respective capabilities of the HP-28C, to provide a straightforward means of
working with indexed variables. For example, if you wish to define indexed variables
X(1), X(2), and X(3), all you have to do is store a list or vector of three or more ele-
ments in a global variable X. Then

object 'X(n)' STO

stores object into the indexed variable X(n). To recall the object:

'X(n)’ EVAL = object.

If X contains a list, object may be of any type. If X contains a vector or a matrix, object
must be a number. In the case of a matrix, X can have one or two indices;

25 'X(3)" STO

or

25 'X(2,1)' STO

stores 25 into the 2-1 element of a 2X 2 matrix stored in X.

The program SUBCOL demonstrates a use of indexing. It replaces a matrix stored in

the global variable MAT with a new version in which the elements in column i have been
replaced by their original values minus the corresponding elements in column j.

 

 
 

 

 

 

SUBCOL Subtract Columns

level 2 level 1 |

i J or

< = jj Store column numbers.

< 1 MAT SIZE 1 GET Number of rows.

FOR n

'"MAT(n,i)-MAT(n,j)) EVAL Compute the difference.

'"MAT(n,i)’ STO Replace the value.

NEXT

>>

>>   
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12.6 Symbolic Arrays

HP-28 array objects are designed for the efficient storage of real and complex numbers,
and can not contain symbolic elements. Nevertheless, it is possible to deal with sym-
bolic arrays on the HP-28 by using the more flexible list objects to represent the arrays.
In this section, we will present several programs for symbolic array calculations. These
programs do not exhaust the subject, but serve as models from which you can develop
additional programs.

All of the programs follow the convention that a symbolic array is represented by a list
of lists. An n Xm array is represented as a list containing #n m-element lists. For exam-
ple, the list {{a b} {c d}{e f}} stands for the matrix

ab
c d

e f
There is no special provision for vectors, which may be represented as 1Xn or n X1
arrays in this system. Since all of the arrays are two-dimensional, we will always use two
separate (i.e. not in a list) real numbers to specify elements or dimensions.

  

The programs do not check for the integrity of the lists you may enter--they presume
that all of the inner lists in a particular symbolic array list have the same number ofele-
ments, that all of the elements are either names, numbers, or algebraic expressions, and
that there are no extraneous elements in any of the lists. If the programs are applied to
lists that violate any of these assumptions, they may error or return nonsensical results.
If this is not satisfactory, you can easily revise the programs to include more argument
testing,

12.6.1 Utilities
To start with, here are several utility programs for symbolic arrays that are analogous to
various HP-28 array commands:

DIM returns the dimensions # (rows) and m (columns) of a symbolic array.

SA- unpacks a symbolic array into separate stack objects.

-SA combines stack objects into a symbolic array.

N-S converts an ordinary numerical array into a symbolic array. Vectors are con-
verted into n X 1 symbolic arrays.

S-N attempts to evaluate all elements in a symbolic array into numbers. If suc-
cessful, it then converts the symbolic array into a numeric array.

APLY1  applies a program to each element of a symbolic array.
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APLY2  combines two symbolic arrays by applying a program to pairs of elements.

STRN transposes a symbolic array.

 

 
 

 

 

 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

 

DIM Symbolic Array Dimensions

level 1 | level 2 level 1

{aray)) o n m

<< DUP SIZE SWAP 1 GET SIZE

>>

SA- Symbolic Array to Stack

level 1 | level 2 level 1

{aag}} o ...elements... n m

<< LIST- OVER SIZE - n m Store dimensions.

< 1 n

FOR i

"i-1)*m+n-i+1’ EVAL ROLL Get the ith row.

LIST- DROP Put its elements on the stack.

NEXT

n m Return the dimensions.

>>

>>

-SA Stack to Symbolic Array

level 2 level 1 | level 1

...elements... n m or {{ aray }}

< - nm Save the dimensions.

< 1 n

FOR i

m -LIST Make the ith row.

‘'m*(n-i)+i’ EVAL ROLLD Put it at the end.

NEXT

n -LIST Combine the rows.

>>

>>   
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N-S Numeric to Symbolic
  

 

level 1 | level 1
 

[aray]] o {argy}}
 

 

 
 

 

 
 

<< ARRY-~ LIST- Put elements on the stack.

IF 1 == Is this a vector?

THEN 1 Then add the other dimension.

END

-SA Combine into a symbolic array.

>>

S=N Symbolic to Numeric

level 1 | level 1
 

{{argy}} o  [[amay]]
 

 

 
<< SA- Put elements on the stack.

DUP2 * - n m p Save dimensions and number of elements.

< 1 SF Flag 1 clear will indicate a non-number.

1p
START p ROLL Get the next element.

IFERR DUP -NUM Convert it to a number.

THEN DEPTH p - DROPN |If -NUM fails, discard any partial results.

1 CF Rememberthe failure.

ELSE SWAP DROP

IF DUP TYPE If the result is not a number...

THEN 1 CF ...Clear flag 1.

END

END

NEXT

n m Dimensions for result array.

IF 1 FC?

THEN -SA If there are non —numbers, return a symbolic

array.

ELSE 2 -LIST -ARRY Otherwise, return a numeric array.

END
>>

>>   
 

S-N sets flag 1 to indicate a successful conversion, and clears it otherwise.
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APLY1 Apply Program to 1 Symbolic Array

level 2 level 1 | level 1

{{aray}} << program >> o {{aray’ }}

< OVER DM - a f n m Store the array, program and dimen-

sions.

< 1 n

FOR i

1 m

FOR j

a i GET j GET Get the ij element.

f EVAL Apply the program.

NEXT

m -LIST Pack up the ith row.

NEXT

n -LIST Pack up the array.
>>

>>

APLY2 Apply Program to 2 Symbolic Arrays

level 3 level 2 level 1 | level 1

{{aray,}} {amray,}} << program >> o {{aray,}}

< ROT DUP DIM - a2 f a1l n m Save the arrays, the program, and

the dimensions.

< 1 n

FOR i

1 m

FOR j

al i GET j GET Get at;;.

a2 i GET j GET Get a2;.

f EVAL Execute the program.

NEXT

m -LIST Pack up the ith row.

NEXT

n -LIST Pack up the result array.
>>

>>   
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STRN Transpose Symbolic Array
 
 

level 1 | level 1

f{4; 1 wr {4: }

 

 

 

< DUP DIM - a n m Save array and dimensions.

< 1 m

FOR j 1 n

FOR i a i GET j GET Ajj

NEXT

NEXT Elements are now in transposed order.

m n

>> Discard the original array.

~SA Pack up the new array.

>>   
 

12.6.2 Symbolic Array Arithmetic
Using the APLY1 and APLY?2utilities listed in the preceding section,it is straightforward

to create programs for simple symbolic array arithmetic.

SADD  adds two symbolic arrays.

SSUB  subtracts two symbolic arrays.

SMS multiplies a symbolic array by a scalar (number, name, or algebraic).

SMUL  multiplies two symbolic arrays.
 

SADD Add Symbolic Arrays
 

 

level 2 level 1 | level 1

{{4; 3 {B;}} o {{4;+B; 1}

 

 

 

<< << + COLCT > APLY2

>>

 

 

SSuB Subtract Symbolic Arrays
 

 

level 2 level 1 | level 1

{{4;} (B} o {{4;-B; }}

<< << - COLCT > APLY2

>>
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You may wish to omit COLCT from SADD or SSUB, to speed up execution or to
prevent an unwanted rearrangement. You can execute << COLCT >> APLY1 on an
array to collect terms once after a series of calculations.
 

 

 

 

 

 

SMS Scalar Multiply Symbolic Arrays

level 2 level 1 | level 1

{4; 1 zt o {{z4;}}

2t {4;} o {z4;}}

< |F DUP TYPE 5 == Put the array in level 2.

THEN SWAP

END

-z Save the scalar.

< << 7z * >> Program for APLY1.

APLY1
>>

>>   
tz can be a number, a name, or an algebraic expression.

 

SMUL Multply Symbolic Arrays
 

 

level 2 level 1 | level 1

{4, {B;}} o { 4B); }}
 

 

 

< DuUP2 DIM ROT DIM

- al a2 n2 m2 n1t mi Save the arrays and dimensions.

< 1 n

FOR i 1 m2

FOR j 0 1 mi

FOR k Compute EAikBkj:
k

al i GET k GET Ay

a2 k GET j GET Ayj

* 4

NEXT

NEXT

m2 -LIST Pack up the ith row.

NEXT

n1 -LIST Pack up the result array.

>>

>>    
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12.6.3 Determinants and Characteristic Equations
In this section, we develop a program DETM that computes the determinant of a sym-
bolic matrix from the formula

n I3

DETA = 3 (-1)*'A;; Af,
i=1

where Afj is the ij cofactor (unsigned) of element A;j, and n is the number of rows or

columns in the (square) matrix. This is a recursive form of the definition of DET, since
the cofactor of an element is the determinant ofits minor:

Af = DETAY.

(The minor Af-}’ is defined in section 12.1. Note that some textbooks may give different
definitions for the terms minor and cofactor. )

The programs to compute determinants of symbolic matrices, SDET (symbolic deter-
minant), SCOF (symbolic cofactor), and SMINOR (symbolic minor), are straightforward
realizations of the above definitions, including the recursion. They are presented in an
order (SDET first, SMINOR last) that demonstrates a “top-down” programming
approach, where you write a program before writing the subroutines that it calls. This
kind of approach lets you concentrate on the essential main logic flow of a program,

before worrying about the details. Also, when you come to write the subroutines (the
“details”), you know exactly what the stack use of the subroutines should be. Note,
however, that the opposite, “bottom-up” order is usually more convenient for actually
entering the programs into the HP-28. By entering the subroutines first, you can then
enter their names into other programs just by pressing the appropriate USER menu

keys.

SDET computes the determinant of a matrix as a sum along the first column, of ele-
ments times their respective signed cofactors. (The sign —1**! is computed explicitly in
this program, rather than as part of the cofactor program, so that the row and column
numbers that determine the sign don’t have to be passed along down through all of the
levels of recursion.) The unsigned cofactor of a matrix element is the determinant of
the corresponding minor; for a 1X1 matrix, the cofactor is 1. The program SCOF
called by SDET embodies these points. At the point in SDET where SCOF is executed,
the stack contains a matrix and the row and column number of the desired cofactor.

The two programs SDET and SCOF call each other back and forth--each is a subroutine
of the other. The calculation proceeds the same way it would if you were computing the
determinant by hand, where you use cofactors to compute the determinants and deter-
minants to compute cofactors.
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SDET Symbolic Determinant ofa Matrix

level 1 | level 1

{{ marix}} o  determinant
 

 

<< DUP DIM DROP - a n

<< 0

1 n

FOR i

a i GET 1 GET

a i 1 SCOF =*

-1 i1 + ~ =

sion.

Initialize the sum.

Get the element.

Multiply by (- 1)**1
Add to the current sum.

Save the matrix (a) and its dimen-

For each element in column 1...

Multiply by the (unsigned) cofactor.

   
 

 

 
 

 

SCOF (Unsigned) Symbolic Cofactor

level 3 level 2 level 1 | level 1

{{ marric }} r c o cofactor
 

 

IF 1

ELSE

END
>> 
< 3 PICK DIM DROP

THEN 3 DROPN

SMINOR SDET

If it's a 1X 1 matrix...

1 ..then just return 1.

 

Get the dimension of the matrix.

...else, return the determinant of the cofactor.  
 

SCOF uses a subprogram SMINOR to compute the nm minor of a symbolic matrix. It
would be straightforward to modify the programs MINOR and DELROW from section
12.1 to work with symbolic matrices; however, because the structure we are using for
symbolic arrays makes it easy to break an array into rows, we use a different approach
and write SMINOR as a single program.
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SMINOR Minor of a Symbolic Matrix

level 3 level 2 level 1 | level 1

{{ marrix }} r c e  {{ minor}}

< =T C Save the row and column number.

<< LIST~ Put the rows on the stack.

OVER SIZE OVER 1 - - m n |Save the (final) dimensions.

< r - 1 + ROLL DROP Discard the rth row.

1 n For each remaining row:

START n ROLL Get the next row.

IF ¢ 1 - r=1 is a special case.

THEN DUP 1 ¢ 1 - SUB Elements in columns < r.

SWAP ¢ 1 + m SUB Columns > r.

+ New row.

ELSE 2 m SUB r=1 case.

END

NEXT

n ~LIST Pack up the result.

>>

>>

>>

A B
m Example. Compute the determinant of the matrix

C D

 

 

= Solution.

{{A BH{C D}} SDET 1= 'A*D-C*B’

You might note that for purely numeric matrices, SDET can occasionally produce more
accurate results than you obtain by applying the HP-28 command DET to the same
matrix. For example, applying SDET to the matrix

123

456

789

returns O, which is exactly correct, whereas using the command DET returns
2.14259999999E — 10. This happens because SDET actually carries out all of the matrix
element multiplications explicitly, whereas, except for 2 X 2 matrices, DET does not.
DET uses more advanced numerical methods to speed up calculation and minimize
memory use for large matrices, and to insure a reliable answer even for matrices with
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elements of widely varying values.

An excellent application of the symbolic array capabilities presented here is the compu-
tation of the characteristic equation of a matrix, which is used in the determination of
eigenvalues. The characteristic equation of a matrix A is defined as

DET (A -xI) = 0,

where x is an eigenvalue, and I is the identity matrix. The program CEQN returns the
characteristic equation of a symbolic or numeric matrix, where you specify the matrix in
level 2, and the name to be used for the eigenvalue variable in level 1. [Note: the
sequence X n TAYLR is used in CEQN to simplify the result (see section 9.8.3). You
can omit this sequence for faster execution of CEQN, which will then return an
equivalent but longer form of the equation.]

 

 
 

 

 

 

 

CEQN Characteristic Equation

level 1  level 2 | level 1

{{matrix}} 'name’ o  'equation'

[[marrix]] 'name’ o  'equation’

< |F OVER TYPE 5 # If it’s a numeric matrix...

THEN SWAP N-S SWAP ...make it symbolic.

END

OVER SIZE - x n Save the name and dimension.

<< n IDN Make an identity matrix.

N-S Make it symbolic.

x SMS Multiply by X

SSuB Subtract from the original matrix.

SDET Determinant

x n TAYLR Simplify the expression.

0 = Make into an equation.

>>

>>   
 

» Example. Find the characteristic equation in X of

o
c
o
r

—
-
—
o

N
S
N

  

m Solution:

[[102][014][0 1 2]] 'X CEQN 1= '-2-X+4#%X*2-X"3=0'.



13. Plotting

The HP-28 provides a modest yet versatile plotting facility that enables you to display
mathematical function curves, statistical data, and miscellaneous dot-pictures on its
liquid-crystal display (LCD). A plot gives you a picture of the behavior of a program or

mathematical expression, or a set of data, over an extended region. Such pictures are
“worth a thousand words” when you are trying to find roots or extrema (see section
7.7), to study the distribution ofstatistical data, or to understand the result of a calcula-
tion. The 32 x 137 pixel screen is adequate for such purposes; it’s not intended for fancy
high-resolution graphics.

There are three general methods for obtaining a plot on the HP-28, each associated
with a particular command:

DRAW is for automated plotting of one or two mathematical expressions that are
single-valued functions of an independent variable. The expressions can be
represented by algebraic objects or programs.

DRWX is for automated creation of scatter plots, where data points from the statis-

tics matrix 2DAT are plotted as individual dots.

PIXEL lets you create plots in situations not suitable for either of the two automatic
methods. Examples are plots in polar coordinates, multi-valued functions,
and statistical data not stored in ZDAT or requiring special processing.

The HP-28S adds an additional plotting method, via the commands -LCD and LCD-.
These commands convert strings to and from display pictures, allowing you to store,
combine, and redisplay LCD images without having to reconstruct them pixel-by-pixel.

We will start the detailed discussion of plotting by studying function plots. Then we will
use function plots to illustrate the techniques of digitizing, storing pictures, and control-
ling the plot ranges, topics which are common to statistical scatter plotting and general
pixel plotting. The final sections of this chapter cover the latter two types of plotting,
and the use of the HP 82240A Infrared Printer for plotting.

13.1 Function Plots

The most straightforward type of plotting on the HP-28 is so-called mathematical func-
tion plotting. In this type of plotting, performed by DRAW,a series of points is plotted,
for which the vertical coordinate of each point is computed as a single-valued function
of the horizontal coordinate. The function itself is specified by a procedure named EQ.
As a very simple example, try the following:
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Keystrokes: Comments:

I [MODE|=RAD= Select radians mode.

Il [PLOTI][NEXT][+|EPPARS Reset default plot parameters.

Il [PURGE]

'SIN(X)" Il [PREV]ZSTEQ= Store the expression 'SIN(X)’ in EQ.

ZDRAW:Z= Make the plot. 

You should see this picture:

 

  
 

This plot represents a graph of the values of sinx over the domain -6.8=x=+6.8.
One point is plotted for each of the 137 values of x, in steps of 0.1, corresponding to the
137 columns of pixels from left to right. The vertical scale also is 0.1/pixel, so that the
screen runs from -1.5 at the bottom row of pixels, to +1.6 at the top row. Axes are
drawn through the point (0,0).

All of the parameters that determine the precise appearance of a plot are stored
together in a user variable named PPAR (Plot PARameters). You can change any or all
of these parameters to customize a plot, either by editing PPAR, or, more commonly, by
using various PLOT menu commands.

If you execute PPAR after making the plot in the above example, you will obtain the fol-
lowing list:

{(-68,-15) (6.8,1.6) X 1 (0,0)}

In the list you can recognize the numbers that specify the horizontal and vertical ranges
of the plot, the name of the independent variable, and the coordinates of the intersec-
tion of the axes. These are specific examples of the general form of PPAR:

{(Xmin’\bmin) (Xmax’\!!max) X r (Xaxesad’axes) },
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where we have used the following notation:

X  represents the name of the horizontal coordinate, and

{  is the vertical coordinate.

Xmin 1S the x-coordinate of the leftmost column of pixels;

Xmax 1S the x-coordinate of the rightmost column of pixels;

Ymin 1S the Y-coordinate of the top row of pixels;

Umax 18 the Y-coordinate of the bottom row of pixels.

Xaxes 1S the x-coordinate of the vertical axis, and

Yayes 18 the Y-coordinate of the horizontal axis.

We will use these symbols and elaborate on the meanings of the corresponding quanti-
ties in the remainder ofthis chapter.

13.1.1 Notation
In common discussions of graphing functions, we speak of graphing the “equation”
y = f(x). That is, we set up a two-dimensional coordinate system, where the horizontal
direction represents the variable x, and the vertical direction represents y. Then the
equation is plotted by drawing a line (or lines) through all of the points (xy) for which

the equation y = f (x) is satisfied.

If you are drawing a function plot by hand, most likely you will do so by choosing a fin-
ite number of values of x, and evaluating the function f (x) at each of these values. For
each value of x, you place a dot on the paper at the point (x,f (x)). When you have
enough points to show the structure of the curve, you can finish by connecting the dots
to make a continuous line.

The HP-28 command DRAW carries out a process very much like this to create a func-
tion plot. Starting at the left edge of the screen, DRAW computes the value of the func-
tion for the horizontal position represented by each column of pixels, and turns on the
corresponding pixel. However, DRAW does not use any special names or symbols for
the ordinate or abscissa, which we called x and y in the preceding discussion. Thus it is
important for you to understand how DRAW determines which function to plot, and
which variable is represented by the plotting ordinate.

To avoid possible confusion with HP-28 variable names X and Yy, either of which may

appear in the plotted function, we will use the following symbols instead of x and y:
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X  stands for the abscissa, also called the horizontal coordinate or the independent
variable;

¢ is the ordinate, also called the vertical coordinate.

Thus we will speak of plotting the function f(x), between the limits from Xpin t0 Xmax-
The vertical range of the screen is from Y;; to {pn,,. Although we will use ¢ to iden-
tify the ordinate, we will avoid referring to the plotted curve as ¥ = f (x), because of
the distinction between “the equation ¥ = f (x) that specifies a curve,” and the curves
produced by DRAW for an equation object.

13.1.2 The Plot Procedure EQ (Current Equation)
The function-to-be-plotted, which we are calling f (x), is represented in the HP-28 by a
procedure stored in a global variable named EQ. Because this procedure is also the one
designated for use with the Solver, it is called the “current equation,” since we most
often think in terms of “solving” equations. However, we will usually call the plot pro-
cedure “EQ” as a convenient shorthand, and to remind you to select a procedure for
plotting by storing it in that variable. In most cases, it will not be necessary to distin-
guish between the variable EQ and its value--when we say “EQ” we mean “the pro-
cedure stored in EQ.”

e STEQ stores an object in the variable EQ. It is equivalent to 'EQ’ STO.

e RCEQ recalls the contents of EQ. It is equivalent to 'EQ’ RCL, except that in the
HP-28S, RCEQ only looks for EQ in the current directory (section 5.7.1).

The procedure stored in EQ can be an expression or a program as well as an equation:

e If EQ contains an expression, f (x) is that expression, where x is one of the variables
in the expression. It is important to notice that the ordinate { does not correspond
to any variable in the expression-- ¥ is the numerical value obtained by evaluation of
the expression.

e If EQ contains a program, it must behave like an algebraic expression, adding one
number to the stack when it is executed. In this case f (x) represents the expression

equivalent to the program. For the actual production of an HP-28 plot it makes no
difference whether you use a program or an algebraic object, but using programs
does provide some additional flexibility (section 13.6.3).

e If EQ contains an equation (an algebraic object that includes an “="’), the HP-28
draws two curves, one for each side of the equation. Each side is considered as an
independent expression for plotting.
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The treatment of an equation as two separate expressions has two advantages:

1. It provides a simple means of plotting two curves simultaneously. For this pur-
pose, it doesn’t matter whether the algebraic object makes sense as an equation--
combining two unrelated expressions into an equation signals the HP-28 to draw
two curves instead of one. For instance, if EQ is 'SIN(X)=COS(X)’, DRAW plots
the sine and cosine curves together:

 

   
It helps you find the numerical solutions to an equation. Any intersection of the
two plotted curves occurs at a value of x that is a solution to the equation con-
sidered as a function of x. To find, for example, the values of x for which
cos x = x, you can plot:

RAD 'COS(X)=X" STEQ ‘X' INDEP DRAW

In the picture you can see that the two curves intersect at one point. You can use
the digitizing cursor to obtain approximate values for the X-coordinate of the
point, then use the Solver to improve the accuracy of the estimate (section 7.6).

 

   
A disadvantage of the HP-28 treatment of plotting equations is that it may cause confu-
sion over the meaning of the left-hand side of a plot equation and the ordinate of the
plot. At the start of section 13.1.1, we discussed the common notion of the plot of an
equation ¥ = f(x) as a prescription for producing a curve by finding all of the points
(x,¥) that satisfy the equation. But if you have an HP-28 equation of this form stored
in EQ, DRAW produces two curves, one corresponding to f(x) and the other a straight
horizontal line. The latter comes from treating the left-hand side of the equation (the
expression ) as an independent function of x--in this case, a constant represented by a
horizontal line.

Notice that the HP-28 convention allows you to plot equations like 'SIN(X)+X=LN(X)’
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as two expressions, whereas in the usual “Y=f (x)” mode of thinking, such an equation
makes no sense for plotting. Another way to consider this is to note that the HP-28
plots equations (as a pair of expressions) rather than solutions to equations. The solu-
tions to the HP-28 equations are indicated by the intersections of the two plotted curves.

In short, if you want to plot something of the form ¥ = f (x), omit the ¥ and store the
expression f(x) in EQ. Then remember that the vertical direction corresponds to your
variable {s.

13.1.2.1 Evaluation of EQ
When DRAW makes a function plot, it creates a temporary copy of the independent
variable x in USER memory (in the HP-28S, the copy is created in the current direc-
tory). Then, starting with the leftmost column of pixels, it computes the value of x that
corresponds to that column, and stores it in the temporary variable. Next, it evaluates
EQ and uses the resulting value (two values, if EQ contains an equation) as the vertical
coordinate ¥ of a point (X,) to plot on the screen. If ¢ falls within the vertical range
of the screen, the pixel at (x,) is turned on (made black). This process is repeated for
each column of pixels on the screen (unless you have selected a resolution other than 1
to produce a faster plot with fewer dots--see section 13.1.4).

EQ is evaluated in the ordinary way, except that numerical evaluation mode is tem-

porarily set if necessary to ensure that EQ evaluates to a number. This means that
every variable (except the independent variable) in EQ must have a real number value,
or contain a procedure or name that evaluates to a real number.

13.1.2.2 Missing Points and Errors

Three things can cause a plotted curve to “miss” part or all of the screen:

1. The ¢ value for a column is out of range, being too large (positive) or too small
(negative) to match one of the 31 pixels in a column.

2. EQ evaluates to an object of a type other than a real number. This can happen
even when EQ contains an apparently simple expression, if it happens to evaluate
to a complex number. For example, 'VX' returns a complex result for X<0.

3. Evaluation of EQ produces any kind of error.

In the first version of the HP-28C (Version 1BB), the latter two problems are always
fatal--DRAW aborts and displays an error message, clearing the partially completed plot.
In HP-28C Version 1CC, and in the HP-28S, DRAW is enhanced to ignore many errors
and continue plotting, bypassing the values of x that cause errors. The newer DRAW
ignores real number math errers (errors #301 - #305), and cases where EQ returns an
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object that is not a real number. Other kinds of errors terminate the plotting.

You can make a version 1BB HP-28C show a similar tolerance as follows:

1. Store this program in EQ:

Select hexadecimal mode before entering this program.
 

 

<<

IFERR EQP -NUM If EQP errors...

THEN ...check the error type.

IF ERRN #301 <

ERRN #305 > OR If it’s not a real number error...

THEN ABORT ..then quit;
ELSE MAXR ...otherwise return MAXR.

END

ELSE

IF DUP TYPE If EQP doesn’t return a real

number...

THEN DROP MAXR ...then replace it with MAXR.
END

END
>>   
 

2. Store any program or algebraic object you want to plot in a variable named EQP.
(EQP takes the place of EQ for this and subsequent plots.)

3. Execute DRAW.

This method actually plots a point in every column, but for any value of x that causes an
error, a point is plotted at ¢ = MAXR, which is normally out of the vertical range of the
screen.

13.1.3 The Independent Variable
So far we haven’t specified how the HP-28 knows the name of the independent variable
for plotting. Often EQ contains only one variable name, so there is no ambiguity--in
such cases, the HP-28 automatically chooses that variable, and you need give it no
further thought. In general, though, procedures used for function plotting can contain
any number of variable names. For any one plot, of course, only one of the variables
can be considered as the independent variable x. The rest must either have numerical
values or contain names or procedures that evaluate to numbers. But rather than
require you to use a special name for the independent variable, the HP-28 provides
methods for you to specify any name you want for the independent variable. That name
is stored as the third object in the list stored in PPAR.
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The command INDEP (independent variable) is the most straightforward means for
choosing an independent variable. You enter the desired name into level 1, then exe-
cute INDEP. INDEP stores that name in PPAR, where it identifies the independent vari-
able for subsequent uses of DRAW. INDEP is equivalent to 'PPAR’ 3 ROT PUT,
except:

e INDEP will error if the level 1 object is not a name. (The HP-28C allows INDEP to

store local names as well as global, but DRAW can not use a local name for the
independent variable. The HP-28S INDEP is modified to accept only global names.)

e INDEP will create PPAR if it does not already exist in the current directory.

To recall the current independent variable name, you can use 'PPAR’ 3 GET. If you
just want a visual reminder, 'PPAR’ [l (VISIT] will show you all of PPAR, where it’s easy
to pick out the independent variable name, the only name in the list.

If you don’t spec1fy an mdependent variable, the HP-28 will choose one for you. This is
a great convenience, since in many cases there is only one variable in EQ, and you are
saved the step of using INDEP to “specify the obvious.” DRAW searches for indepen-

dent variables in EQ in the same manner as the Solver builds its variables menu (section
7.3). The first independent variable encountered is selected as the default independent
variable; the name of that variable is the first that appears in the SOLVR menu for the
same EQ.

The search for independent variable names by DRAW or the Solver returns names found
either directly or indirectly in EQ, for which the corresponding variable either contains a

data object or does not exist. The name search proceeds left-to-right through the EQ
procedure; when a name is encountered that specifies a variable containing another
name or procedure, the latter is then searched for names, and so on. Thus if EQ con-
tains 'A+B’, and both A and B are undefined variables or contain just data objects, ‘A’
will be the default independent variable name for DRAW. But if you store the name X’
in A, ‘X" will become the default name. Or, if you store the program << 1 >> in A, 'B’
will be the independent variable name.

DRAW actually uses the default independent variable name in these cases:

e No PPAR exists in the USER menu (in the current directory in the HP-285). DRAW
creates a PPAR with the default independent variable name determined from EQ
(and also default values for the other plot parameters).

e The name specified in PPAR is not present in EQ, and DRAW is executed by means
of the menu key ZDRAWE . In this case, you will see the message 
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oldname Not In Equation
Using newname

displayed briefly before the plotting starts. Oldname is the name that was stored in
PPAR; newname is the new default name that replaces it. This replacement does not
occur if DRAW is used in a program.

e PPAR was created by a command other than DRAW. PMAX, PMIN, RES, AXES,
CENTR, *W, *H, DRWZ, PIXEL, and DRAX each create a default PPAR if one does
not already exist. The resulting PPAR contains the name constant. When DRAW
sees this name, it replaces it with a default determined from EQ (unless constantis
actually present in EQ), without displaying any message.

In summary, DRAW tries to use the independent variable name you have specified with
INDEP. If you have not chosen a name, or your choice is not present in EQ, DRAW

takes the first appropriate name found in EQ to be the independent variable.

13.1.4 Reducing the Number of Points Plotted
When EQ contains a complicated program or algebraic object that takes a significant
amount of time to execute, you may wish to speed up the plotting process by reducing
the number of points that are plotted. With the default plot parameters, a point (or

two, for equations) is plotted in each of the 137 pixel columns. You can instruct the
HP-28 to plot only every second column, or every third column, etc., by using the RES
(resolution) command.

RES takes a real number r and stores it as the fourth element in PPAR. DRAW uses
this number to determine the x-coordinates X, of the pointsit plots:

Xn = Xmin t (Xmax - Xmin)/r

Thus if 7 is 1 (the default) or less, DRAW plots a point in every column; if 7 is 2, it plots
points in every second column, and so forth. If 7 is non-integer, the points will be irreg-
ularly spaced across the screen.

13.2 Digitizing

The purpose of a plot is to let you observe the behavior of a function or a set of data

over an extended range. In some cases, the picture itself is the end result, but it is also

possible to extract information in the form of point coordinates from a plot for use in
subsequent calculations. The process of obtaining the coordinates is called digitizing; in
the HP-28, to digitize a point means to return its coordinates (x,) to the stack.
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You can digitize points any time the plot cursor keys are active, which is indicated by
the presence of the plot cursor on the screen. In the HP-28C, the plot cursor keys are
activated only by the menu keys DRAW and DRWZX (executing the commands in the
command line or in a program draws the plots but does not turn on the plot cursor). In
the HP-28S, the command DGTIZ allows you to turn on the plot cursor at any time.

13.2.1 HP-28C Digitizing
Digitizing is achieved in the HP-28C plot cursor menu by means of the two leftmost
menu keys, labeled INS and DEL (the names come from their ordinary command line
editing uses). Both keys return the coordinates of the cursor. The [INS] key combines
the two coordinates into a single complex number (x,). The key splits the coordi-
nates into separate real numbers, with x returned to level 2 and { returned to level 1.
The complex number form is most convenient when you are obtaining guesses for the
Solver (see the examples in section 7.6), or rescaling the plot (section 13.4.2). The real
number form is useful when you are just interested in one coordinate or the other.

It is possible to activate the plot cursor at any time in the HP-28C by means of one of
the following programs:

 

DIGITIZE For HP-28C Version 1BB
 

Note: Read section 3.1 before entering this program! Enter in hexadecimal mode.
 

<<

#A26B SYSEVAL

#1214C SYSEVAL

DROP

#32219 SYSEVAL

#4D9E SYSEVAL

#3F56D SYSEVAL

#12066 SYSEVAL

#A28B SYSEVAL
>>  
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DIGITIZE For HP-28C Version 1CC

Note: Read section 3.1 before entering this program! Enter in hexadecimal mode.
 

<<

#A236 SYSEVAL

#12183 SYSEVAL

DROP

#3230E SYSEVAL

#4D9E SYSEVAL

#3F68E SYSEVAL

#1209D SYSEVAL

#A256 SYSEVAL
>>  
 

Both programs draw axes through the point specified in the current PPAR, then activate
the plot cursor. They act nearly the same as the HP-28S command DGTIZ except that
the latter does not draw axes.

13.2.2 HP-28S Digitizing
The HP-28S plot cursor menu is the same as that of the HP-28C except for the
key, which plays a different role. The [INS] key works like its HP-28C counterpart; press-
ing it stores the cursor coordinates in level 1 of the stack as a complex number (x,{).
The HP-28S key, rather than capturing the cursor coordinates as on the HP-28C,
converts the entire display picture into a 548-character string object entered in level 1.
This feature is discussed in the next section.

The HP-28S also has two additional features not included in the HP-28C:

e When you press and hold 89 , the cursor coordinates are displayed in the bottom
line of the display. When you release the key, the full picture is restored.

e The DGTIZ command allows you to activate the plot cursor at any time. Thus, for
example, the sequence CLLCD DRAW DGTIZ has the same effect as pressing the
PLOT menu key ZDRAWE . If DGTIZ is encountered during program execution, the
program halts with the plot cursor active. When you press to clear the plot, the
program resumes execution.

13.3 Storing Pictures (HP-28S Only)

The HP-28 LCD contains 32 X 127 pixels, each of which is represented by one bit in
the display memory. At eight bits per byte, it requires 548 bytes of memory to store an
image of the display. Since the HP-28C contains only about 1700 bytes of user memory,
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it was not practical on that calculator to include facilities for storing and retrieving LCD
pictures. (We are using the term picture here to refer to any HP-28 display image, not
just those plotted by DRAW or DRWZ.)

With 32 K-bytes of user memory, the HP-28S has sufficient memory to hold and mani-
pulate several dozen stored pictures. Therefore, the HP-28S operation set was
enhanced over that of the HP-28C in four ways related to plotting:

e The command LCD- creates a 548-byte string object, which we’ll call an image string.
This string encodes a pixel-by-pixel image of the display as it appears at the moment
the command is executed. As an ordinary string object, the image string can be
manipulated on the stack or stored in a variable, and is subject to all HP-28 string
commands.

e The command ~LCD is the reverse of LCD~; it takes an image string from the stack

and converts it to an LCD picture. —LCD sets the user message flag, so that the new
picture persists until program execution halts and a key is struck. ~LCD takes only a
few hundredths of a second to execute, so it is obviously a far faster method of
reproducing a picture than re-executing DRAW or any of the other plotting com-
mands.

e In the plot cursor menu, the key executes LCD— without clearing the plot.
When you do clear the plot with , the image string is left on the stack.

e The logical operators AND, NOT, OR, and XOR accept string arguments and return
string results (the input strings must be of the same length). Of these commands,
OR is the most useful, since it allows you to create superpositions of individual plots
by combining the two image strings.

The primary purposes of these commands are to allow you to store individual pictures
for reuse, and to combine pictures. The former is accomplished by executing LCD-
after a picture is created. If you create a picture by using one of the menu keys SDRAWE
or EDRWZ , you can execute this command by pressing the key while the picture is
showing. If you create the picture by other means and intend to store the picture, you
should include the command LCD~ at the end of the command sequence that creates
the picture.

m Example. Plot sin x using the default plot ranges, and store the resulting graph in a
variable SINE.



Plotting 13.3

= Solution:

'PPAR’ PURGE RAD 'SIN(X)’ STEQ

CLLCD DRAW LCD- 'SINE'’ STO CLMF

To recreate the plot:

SINE -LCD DGTIZ

The command DGTIZ at the end is optional--include it in the command line with -LCD
when you want to use the plot cursor keys on a reconstructed picture.

To combine two or more pictures, place the appropriate image strings on the stack and
execute OR as many times, less one, as there are image strings.

» Example. Plot cos x, then combine that picture with the plot of sin x that was stored
in SINE in the previous example.

= Solution:

CLLCD ’'COS(X)’ STEQ DRAW LCD- SINE OR -LCD

 

 7 S   
 

The other logical operators, AND, XOR, and NOT can also be applied to strings, but
have less practical value.

e NOT inverts all of the bits in a string. LCD- NOT -LCD produces a picture thatis
a black/white reversed version of the current display.

e AND combines two image strings into a new image string that has pixels turned on
only in those positions where both original pictures have pixels turned on.

e XOR combines two image strings into a new image string that is the superposition of
the original pictures, except that “on” pixels common to both will not be on in the
combined picture.
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13.3.1 The Image String
The image string object produced by LCD~ is 548 characters, or bytes, long. Each char-
acter represents a partial display column of eight pixels. The first character in the
image string corresponds to the eight pixels along the left edge of display line 1 (upper
left corner). The numerical value, or character number, of the character is equal to the
binary value of the pixels read from bottom-to-top, where a black (on) pixel is 1 and a
white pixel is 0. The second character in the image string matches the next column of
pixels to the right, and so on left-to-right across line 1, followed by lines 2 through 4.

The following sequence demonstrates the numerical translation of image strings:

"0 7 FOR n 2 n © CHR + NEXT CLLCD -LCD

 

~

  
 

The sequence creates an eight-character string, where the first character is character
number 1, the second number 2 (#10b), the third 4 (#100b), and so on up to the
eighth, character number 128 (#10000000b). When —-LCD is executed, the bit patterns
of those characters are transferred to the screen starting in the upper left hand corner.
The uppermost pixel of the first column is turned on, the second in the second column,
etc.

This example also demonstrates that ~LCD does not require a full 548-character image
string. —~LCD starts building the display in the upper left corner--if it runs out of charac-
ters in the image string, it leaves the remainder of the screen unchanged. If the image
string is longer than 548 characters, ~LCD ignores the excess.

Display pictures usually contain blank regions with no pixels turned on, so that most
image strings contain one or more occurrences of character number zero. This means

that you cannot edit image strings in the ordinary way with EDIT or VISIT, since charac-
ter zero is not allowed in the command line (Can’'t Edit CHR(0) error). However, you
can use string commands to alter the contents of an image string. The next two exam-
ple programs produce amusing displays that demonstrate image string operations.
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l BARBERPOLE Scroll the Picture j

<< LCD-~ Capture the existing display.

DO DUP 548 DUP SUB Take the last character...

SWAP 1 547 SUB + ... and move it to the front.

DUP -LCD Display the new string

UNTIL KEY Repeat until a keyis struck.

END DROP2
>>

REVERSE Invert a Picture

<< LCD- Capture the current display.

" Start an empty image string.

548 1

FOR n OVER n n SUB Get the nth character.

+ Add it to the new string.

-1 STEP

-LCD DROP Display the reversed picture.
>>   
 

13.4 Plot Ranges

When you make a plot, whether on paper or on a computer screen, you must start by
specifying the plot ranges--the ranges of values of the x- and Y- coordinates that the rec-
tangular plotting area represents. For a computer,this tells its plotting programs which
point on the screen corresponds to the mathematical point (x,¥).

The HP-28 LCD consists of an array of pixels, arranged in 137 columns of 32 pixels.
The conversion between pixel column and row numbers and an x-{ coordinate system
is determined by the x and { coordinates that you assign to the two corner pixels Pi,
(lower left) and P, (upper right). The coordinates of P, and P, are stored as two
complex numbers (Xmins$min) a0d (Xmax,¥max), Which occupy the first two positions,
respectively, in the PPAR list.

Figure 13.1 illustrates the positions of the points and coordinates that determine the

scaling of an HP-28 plot.
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Figure 13.1. Plot Ranges

If you create a plot without having previously specified the plot ranges, the HP-28 uses
defaults of Py, = (—6.8, —1.5), and P, = (6.8, +1.6). These values are chosen so

that:

e The center pixel has the coordinates (0,0).

e The scale is the same horizontally and vertically.

e Moving by one pixel parallel to either axis corresponds to a coordinate change of 0.1.

The most straightforward method of choosing plot ranges other than the default values
is to use the commands PMIN and PMAX. For either command, you enter the coordi-
nates of the appropriate corner pixel (lower-left for PMIN or upper right for PMAX) as
a complex number of the form (x,)). PMIN stores its argument as the first element in
the PPAR list; PMAX stores the second element. (Either command will create PPAR if
it does not exist.)

w Example. Plot x* from x = 0 to 10, with the vertical range from 0 to 100.

 

 

   
 

m Solution:

(0,00 PMIN (10,100) PMAX 'X"2' STEQ DRAW.

m Example. Plot sinx from x = —7r to +r, vertical range —1to +1.

s Solution:

RAD = -NUM 1 R-C DUP NEG PMIN PMAX 'SIN(X)’ STEQ DRAW.
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13.4

You may find it more convenient to enter the x- and Yy-coordinates separately, espe-
cially if you want to change, for example, the x-coordinates of P, and P,,,, without
changing the Vs, or vice-versa. This can be achieved with the following programs:
 

  
 

 

 

 

  
 

  

 

  

 
 

 

 

 

  

NPPAR New PPAR

level 3 level 2 level 1

x << procedure > n or

<< ROT PPAR | <<proc > n x ppar|

IF DUP TYPE 6 == Does PPAR not exist?

THEN 1 =*=H Create a default PPAR.

END

3 PICK GET Old value.

4 ROLL EVAL R-C New value.

'PPAR’ 3 ROLLD PUT Store new value.

>>

XMIN Store Xmin

level 1 | level 3 level 2 level 1

Xmin or Xmin << IM > 1

<«< << |IM > 1 NPPAR

>>

XMAX Store Xmax

level 1 | level3 level2  level 1

Xmax d Xmax <IM> 2

<< << |IM > 2 NPPAR

>>   
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YMIN Store Pmin

level 1 | level 3 level 2 level 1

¥ min o Wmin << RE SWAP >> 1
 

 

<< << RE SWAP > 1 NPPAR

>>  
 

 

YMAX Store snay
 

level 1 | level 3 level 2 level 1

Ymax or Umax << RE SWAP > 2
 

 

 

<< << RE SWAP > 2 NPPAR

>  
 

13.4.1 Conversions Between Plot Ranges and Pixel Numbers
If the coordinates of P, are (Xmin,Wmin), and the coordinates of Ps are (XmaxsWmax)s
then the coordinates of the pixel P,,, (mth row, nth column) are

Xmn = Xmin + (7= 1)(Xmax — Xmin)/136

Umn = Umin + (m_ 1)(\l!max - \"mm)/31

Pin is P11, and P, is P137.137. In all cases, we are describing the coordinates of the
center of a pixel; a pixel is actually a square 1/31 of the LCD height in width (including
the narrow inactive areas between the pixels as part of the pixel area). Consequently,
the coordinates (x,U) fall within the nm-th pixel, where

max Xmin

m = IP [31Tp%.;——_“—'i\"'f’rin + 1.5]

n =1IP [136—2(—:—2(-"“; + 1.5]

Because the HP-28 LCD has an even number of pixel rows, the geometric center of the
screen (Pumin + Pmax)/2 lies between the sixteenth and seventeenth rows rather than
within any pixel. However, to make digitizing more straightforward, the “center” of the
screen is defined to be the pixel in row 16 (from the bottom) and column 69 (from the
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left). With the default plot ranges (see the next section), the coordinates of this pixel
are (0,0); when you use CENTR to move the center of the plot (section 13.4.1.1), this
pixel is assigned the coordinates you enter for that command.

13.4.2 Adjusting the Plot Ranges
Often after making a plot, you find that the picture is not “quite right.” Perhaps the
interesting part of the curve is not on the screen, or perhaps the scale is too large or too
small to show the features ofinterest clearly. In such cases, you need to adjust the plot
parameters, then execute DRAW again to obtain a better picture.

Although PMIN and PMAX are the most precise means of specifying the plot ranges,

they are not always the most convenient. When the plot scale is wrong, it may take
some calculation to determine what the new P;; and P,, should be for a better pic-
ture. The HP-28 provides several tools to simplify this process.

13.42.1 Moving the Center of the Plot

A simple case of adjusting the plot parameters arises when the plot scale is satisfactory

but a region of interest is off-screen. The CENTR command is designed for a simple
translation of a plot without affecting the scale. You enter the coordinates of the point
that you want to be at the center of the screen, then execute CENTR. Executing (x,¥/)
CENTR adjusts the plot parameters as follows (the primed coordinates are the results
after CENTR):

X,min =X+ %(Xmax - Xmm)

Xmax = X = ¥2(Xmax = Xmin)

Wmin = U+ 3>(Umax ~ Yimin)

\"’max =4 - ';'i_(\l’max - "’mm)

m Example. Plot the expression '.5*¥X"2-3’, adjusting the plot ranges so that the curve

minimum is visible.

m Solution: First, plot the expression using the default plot parameters:

'PPAR’ PURGE '5#*X"2-3' STEQ DRAW
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The minimum is below the edge of the screen. At X=0, the expression has the value
-3, so move the center halfway to that point:

(0,-1.5) CENTR DRAW

 

  
 

Now you can see the minimum, as desired.

13.4.2.2 Digitizing New P;, and P.,

Once you’ve made a plot using DRAW,it’s a simple matter to use the plot menu keys to
specify a smaller plotting region so that you can “zoom in” on a feature of interest in
the plot. Here’s the basic process:

1. Create the plot. If you don’t use or , be sure to include HP-28S
command DGTIZ or the HP-28C program DIGITIZE (section 13.2.1) at the end of
the plotting sequence.

Move the cursor to the upper-right corner of the area you want to expand. Press

(INS].

Movethe cursor to the lower-left corner of the area. Press[INS].

Press to exit the plot display.

Press EPMINS SPMAXE . This sets P, and P, to the values you chose with the
cursor. (Notice that since you digitized the new P, last, its coordinates are in
level 1 when you exit the plot. Thus you press EPMINZ first, then EPMAXE --the
opposite order in which you digitized the points.
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» Example. Plot the expression sin (25cosx).

= Solution:

RAD ‘PPAR’ PURGE 'SIN(25%COS(X))’ STEQ EDRAWE

produces the display

 

 

   
 

Because this expression varies so rapidly with x, the plot appears as an unintelligible
scattering of dots. You need to reduce the plot scale by zooming in on the region
around the origin:

IEI=] ... (10 times) I[A]NS]

digitizes a new P,,,; then

(K] -(20 times) I[V](INS]

digitizes a new P;. Press [ON], and you should see the coordinates (1,1.6) in level 2,
and (-1,-1.5) in level 1. Now press
 

EPMINE EPMAXE =DRAWE

 

 

 

 
 

Now you have a meaningful curve, which you can use for further analysis.

Note that although this example expands the plot of a region around the origin, the
method of digitizing new values for P, and P, works equally well for any portion of

the plot. The region can be off-center in either or both directions.
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13.423 Rescaling with *H and *W
The method of digitizing new P;;, and P, described in the preceding section works
well for focusing in on a subregion of a displayed plot. However, it won’t serve for
cases where the desired region is bigger than the current plot, or situated off-screen
partly or completely. A common problem, for example, is that the vertical range of a
plotted curve is larger than the display, so that important parts of the curve are not
shown.

The commands *H and *W provide simple means for stretching or shrinking a plot in
height and width, respectively. For either command, you supply a real number argu-
ment that is used by the command to multiply the appropriate coordinates of P;, and
Pax. For example, to double the height of a plot (i.e. to flatten a curve to half its origi-
nal height on the screen), you enter 2 *H, then DRAW again. To make a plot cover

twice the horizontal range of the previous plot (compressing the plotted curve sideways),
enter 2 *W, then DRAW.

» Example. Plot the expression x(x—8)(x + 8) to show its three roots. Start with the

default plot parameters,to illustrate the rescaling process.

» Solution:

'PPAR’ PURGE ’'X#*(X-8)*(X+8)' STEQ DRAW

 

   
 

In this first attempt, you don’t see the curve on the screen at all. This is because over
the range of X shown, the curve is too positive or too negative to fall on the screen. It
does cross the axis at X=0, but it’s so steep there that any points that appear on the
screen fall right on the axis. To improve matters you need to increase the vertical range
of the plot.

The expression is a cubic in x, so you can estimate that its maximum value in the plot
region is on the order of x3,,, = 6.8° = 314. The default ¥, is 1.6, so you need to
multiply the height of the plot by 314/1.6 = 200. Thus

200 *H DRAW

yields
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Now the curve fits nicely on the screen vertically, but the plot range is a bit too narrow

to show the roots at +8 and —8. The next step is to stretch the horizontal range:

1.5 *W DRAW

 

>,
.

[   
 

This plot shows the three roots and the two extrema.

In the HP-28C, *H and *W work by simply multiplying the appropriate coordinates of
P, and P, by the command arguments. Thus executing 2 *H produces the follow-
ing new values for P;, and P,,:

Xmin = Xmin

V min = h¥min

Xmax = Xmax

¥ max = AWmax

The primed quantities are the new values, and the unprimed quantities are the original
coordinates. Similarly, w *W transforms the x-coordinates:

Xmin = Xmin
Umin = W¥min

X’max = Xmax

‘V max = W¥max

-319-



13.4 Plotting

This simple algorithm has the consequence that the coordinates of the plot center are
multiplied by the same factor as the corner coordinates. Therefore, unless the center of

the plot is originally at (0,0), the plot “moves” when it is redrawn after a rescaling by
either of these two commands.

In the HP-28S, the algorithms for *H and *W are modified from the HP-28C versions.
The HP-28S versions rescale the plot parameters by the specified factor, but keep the
center of the plot fixed. Here are the HP-28 formulae:

*H
W o = (16+15h)¢ . (15—15h)¢

min 31 min 31 max

Vo = (16-16h)¢ . (15+16h)¢
max 31 min 31 max

*W

Xmin Y2(1+ W) Xmin + ¥2(1 = W) Xmax

(1= W) Xmin + ¥2(1 + W) Xmax’
Xmax

You can duplicate HP-28S behavior on an HP-28C by substituting the following pro-

grams for *H and *W:

TH *H Substitute

 

 

<< << =*H >> RECENTER >
 

*W Substitute

| level 1

w or

 

 

<< << *W >> RECENTER >> 1
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RECENTER Rescale and Recenter

<< 'PPAR’ DUP 1 GET C-R Get Ppin-

ROT 2 GET C-R Get Poy

15 * ROT 16 * + 31 / Ween
SWAP ROT + 2 / Xcent

SWAP R-C

3 ROLLD EVAL Execute *H or *W

CENTR Restore the center

>>   
 

13.4.2.4 Positioning the Axes
Axes in a plot normally have the x and ¢ axes drawn through the point (0,0). The HP-
28 follows this convention as its default. However, in many cases you may be interested
in a region sufficiently far from the origin that the axes don’t appear on the screen.
Then, if you still want to use axes to provide a visual reference, you can use the AXES
command to cause subsequent plotting to draw axes through any point you choose. Just
enter a complex number for the coordinates of the point at which you want the axes to
intersect, then execute AXES. The selected coordinates are stored as the fifth and last

element in the PPAR list.

The “tick” marks that are drawn on the axes are positioned at every tenth pixel, starting
at the intersection of the axes. Thus the coordinate values corresponding to the tick
marks vary according to the current plot scale, and the coordinates of the axes. With
the default parameters, the tick marks are 1 unit apart (each pixel is 0.1). If you exe-
cute, for example, 2 *W, the ticks on the horizontal axes are then 2 units apart. In gen-
eral, however, it is more trouble to figure out the positions of the ticks than the infor-
mation is worth--use the cursor to determine the coordinates of points of interest.

13.5 Scatter Plots

A scatter plot is a plot of a series of individual points that are derived from measured or
computed data. The term scatter plot indicates that the plotted points appear to be scat-
tered about the graph, in contrast to function plots, where the points usually follow each
other in a regular progression that forms a smooth curve. In the HP-28, scatter plots
are made by the DRWZ (Draw Statistics) command. The SDRWZZ key in the PLOT
menu works like EDRAWE , in that it not only executes DRWZ to draw axes and plot the

data points, but also activates the plot cursor for digitizing.

Most of the concepts that we have studied in this chapter for function plots carry over
directly for scatter plots--digitizing, plot scaling and rescaling, etc. Three of the five
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parameters stored in PPAR are used by scatter plots: Ppin, Pmax, a0d Payes. The resolu-
tion (section 13.1.4) has no meaning for scatter plots, nor do scatter plots make any use
of the independent variable name.

2DRW takes the data for a scatter plot from the statistics matrix variable 2DAT, which
plays a role for statistics analogous to EQ for function plotting and solving. Each row in
2DAT represents the coordinates of a point in n dimensions, where n is the number of

columns in the matrix. ZDAT must have at least two columns for this purpose. To
make a plot on a two-dimensional screen, you must select one column of the matrix to
represent the horizontal coordinate (x) and another column for the vertical (). These
coordinates are not independent and dependent in the sense of function plots, since the
points are just coordinate pairs; but we’ll call them x and ¥ as before.

You make the choice of ZDAT columns for x and { with the command COLY. COLX
takes two real numbers from the stack; the entry in level 2 specifies the x column, and
that in level 1 the ¥ column. For example, if your ZDAT looks like this,

[ 11 12 13 ]
[ 21 22 23 ]
[ 31 32 33 ]

then 1 2 COLY selects column 1 as the horizontal coordinate, and column 2 as the vert-
ical coordinate, so that DRWZ plots the points (11,12), (21,22), and (31, 32). 3 2 COLX
DRWZX plots the points (13,12), (23,22), and (33,32).

Because the column numbers identified by COLY are used by other statistics functions,
they are not stored in PPAR. Instead, the column numbers are stored as the first two
elements in another reserved-name list variable 2PAR (Statistics Parameters). If you
don’t specify column numbers, DRWZ (and the other commands that use the numbers)
creates a default ZPAR with horizontal coordinate column number 1 and vertical coordi-
nate column number 2.

To illustrate the process of making a scatter plot, you can use the following program to
create some sample data. MAKEZX creates a 2DAT that contains 50 points scattered
around the straight line ¢y = x, between x = —1and x = +1:
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MAKE= Make Statistics Data ]

<< .,12345 RDZ Initialize the random number generator.

Clz 1 50

START RAND 5 - 2 = Xn-

DUP RAND + 5 - Y,

{2} -ARRY =+ Add to =DAT.

NEXT
>>   
 

To plot this data, execute:

MAKEZ 'PPAR’ PURGE 1 2 COLX> DRWZX

{;‘5"

 

  
 

The picture shows a cluster of points near the origin. You can use any of the methods
of section 13.4.2 to adjust the plot scale to spread the points out over more of the
screen. However, for a scatter plot the coordinates of all of the points are known in

advance, so it is possible for the calculator automatically to compute plot parameters
such that the points are spread in both directions from one end of the screen to the
other, with no points off-screen. The command SCLE (Scale Statistics) does this rescal-
ing. Try plotting the data again:

SCLY DRWX

 

 

   
 

Notice that there is at least one point plotted on each edge of the screen. If you’re curi-
ous, you can count and verify that all 50 points are visible (you’ll have to replot the pic-
ture with the axes moved off-screen, since some of the points fall on the axes). If you
take a look at PPAR, you’ll see that P.;, and P, have been redefined from their
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default values.

Since the sample data set is a “noisy” straight line, you ought to be able to find a
straight line of the form ¥ = ax + b that fits the data. LR computes the coefficients a
and b; with the current data LR returns b = .0421 (level 2) and @ = 1.086 (level 1). To
see whether the fit is reasonable, plot the data and the regression line together:

LR << X PREDV > STEQ CLLCD DRAW DRWX

 

 

 

 
 

The picture shows how the data is scattered around the straight line.

13.6 Generalized Plotting using PIXEL

DRAW and DRW2X are very convenient methods for making certain common types of
plots. However, there are many plotting problems that don’t fit the requirements of
these commands. Plotting in polar coordinates is an obvious example of a simple func-
tion plotting task that can’t be achieved using DRAW.

To make any plot, all you need is 1) a program to determine the coordinates in two
dimensions of each point that you want plotted, and 2) a command to turn on the
display pixel that corresponds to the point coordinates. The command PIXEL satisfies
the second of these requirements; the coordinates program, of course, you must write
yourself using any of the HP-28’s capabilities.

PIXEL takes a single complex number (x,0) as its argument, interpreted as the x- and
- coordinates of a point to plot. The actual pixel that corresponds to those coordinates
is determined from the equations in section 13.4.1, using the plot parameters P, and
Pnax stored in PPAR (like the other plotting commands, PIXEL will create a default
PPAR if it doesn’t already exist).

The program DRAWPIX is equivalent to DRAW (assuming that EQ contains an expres-
sion or a program, and that PPAR already exists). Although there’s no particular reason
to use DRAWPIX instead of DRAW, the program illustrates the use of PIXEL, and you
can use it as a starting point for writing specialized forms of DRAW.
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DRAWPIX DRAWusing PIXEL
 

 

 

<< CLLCD DRAX

PPAR 1 GET RE

PPAR 2 GET RE

bDuP2 - 136 /

PPAR 4 GET =

PPAR 3 GET

- step indep

<< indep RCL 3 ROLLD

FOR x

x indep STO

EQ -NUM

x SWAP R-C

PIXEL

step STEP

indep STO
>>

>>

Prepare the screen.

Get Xmin-

Get Xmax-

Compute the step size.

Get the independent variable name .

Save the initial value of x.

Loop from Xmin tO Xmax:

Store the current value of x in the independent

variable.

Evaluate the current equation ().

Combine the coordinates into a complex number.

Plot the point.

Increment x and repeat.

Restore the original value.  
 

DRAWPIX shows the basic steps in creating a plot with PIXEL:

1. Clear the screen (unless you are adding to an existing picture).

2. Draw axes if desired.

3. Execute a loop that plots one or more points at each iteration.

13.6

You can consider the function plotting performed by DRAW as a special case of
parameterized plotting. In the general case, both coordinates of each plotted point are
computed as functions of a parameter ¢, as ¢ is varied over a specified range. To

specify a parameterized plot, you must determine:

e the range of the parameter mms(bsd)mnx,

e the increment 8¢ between successive values of the parameter; and

e the functions x(¢) and Y(d) that determine the coordinates (x,¥) of each point.

For DRAW, the parameter is just the horizontal coordinate X itself, which is varied over
the range Xmin tO Xmax- In the general case, each point in a parameterized plot is gen-

erated by a sequence like this:

x(®) W) R-C PIXEL,
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where x($) and ¥(P) represent sequences that compute the horizontal and vertical
coordinates, respectively, from the parameter ¢.

13.6.1 Polar Plots
(All of the examples in this section assume the use of the default plot parameters, and
degrees mode. If you want to follow the examples on your calculator, execute ‘PPAR’
PURGE DEG before starting.)

An excellent example of parameterized plotting is polar coordinate plotting. Since polar
plots are usually defined by specifying the radius 7 as a function of the polar angle 6, the
natural parameter to use is 0 itself. You can compute pixel coordinates as complex
numbers in polar form (7,0), then convert to the rectangular coordinates needed by
PIXEL by applying P-R.

The range 0., to 0., depends on each individual problem; typically, 6 might range
from 0° to a multiple of 360°. Similarly, the increment 80 depends on how much detail
you wish to show. The angular width of a pixel at the top middle of the screen is about
3.5° when viewed from the center of the screen; at the middle left or right edge, it is
about 0.8°. Therefore, values of 80 from 1° to 5° will generally produce satisfactory
plots.

The following program POLAR is a general-purpose polar-coordinate plotting routine.

 

 

 

 

 

POLAR Polar Draw

level4 level3  level 2 level 1

procedure Oy Omax 50 or

<< CLLCD DRAX Initialize the screen.

4 ROLL - delta r Save the radius procedure and increment.
<<

FOR theta

theta r EVAL Compute r(0).

theta R-C Polar coordinates.

P-R PIXEL Plot the point.

delta STEP Increment 6.
>>

>>   
 

POLAR takes four arguments:
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1. A procedure that takes a value for 8 and returns r(8). The procedure should have
the logical form << - ¢ 'r(t)’ >>, where r(t) is the expression that represents the
plotting function.

2. The initial value 0;,.

The final value 0,,,.

The increment 0.

» Example. Plot a circle of radius 1.5.

< -t 158 > 0 360 5 POLAR

 

  
 

Notice that in this case r does not depend on 8, so the input procedure effectively dis-
cards the value of 0 supplied by POLAR by storing it in the local variable t, which is
never used. A more efficient version of the procedure is

<< DROP 1.5 >,

Here are some examples where 7 is a function of 0:

 

 

  
 

m Figure 8.

<< - t 'ABS(1.5*SIN(t))’ > 0 360 5 POLAR

.r'}‘-.
+ + + + $ :""' ‘I: + + +

.-"l\
\1.f

= Rose.

< - t 'ABS(1.5*SIN(2#))’ > 0 360 5 POLAR
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m Spiral.

< -t 't/360° > 0 720 5 POLAR

 

 

 

  

Plotting

If you plotted the last example, you may have noticed that the plotting went slowly at
first. This is because when the radial coordinate is small, the 5° increment is insufficient
to cause consecutive points to fall within different pixels, so that some pixels get plotted
more than once. This suggests a modification of POLAR, where the new version VTPO-
LAR itself computes the increment 30 as a function of r.

 

 

 

 

 

   
 

VTPOLAR Variable © Polar Draw

level 3 level 2 level 1 |

procedure O 0max or

<< CLLCD DRAX Initialize the screen.

59 CF Handle the r=0 case.

ROT - r Save the radius procedure.
<<

FOR theta

theta r EVAL DUP Compute r(0).

theta R-C Polar coordinates.

P-R PIXEL Plot the point.

INV. 2 MIN § = Compute the increment.

STEP Increment 6.
>>

>>

VTPOLARclears flag 59.
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You use VTPOLARin the same manner as POLAR, except that you don’t specify 30 as
an argument. Try redrawing the spiral with VTPOLAR:

<< -t 't/360' > 0 720 VTPOLAR

 

   
VTPOLAR spends less time plotting near the origin than POLAR (with a 5° increment),
but more time as the spiral reaches larger radii, as it attempts to insure that no pixels
are double-plotted, and also that there are no gaps in the curve. It uses an increment
80 = r/5 (with a 10° minimum), which produces reasonable results with the default plot
parameters. If you adjust the plot scale, you may also wish to modify this algorithm.

13.6.2 Drawing Lines
A basic necessity for general plotting purposes is a program that draws a straight line
between any two points. The program LINE connects two points specified by their coor-
dinates (complex numbers) in levels 1 and 2. LINE uses the plot scale represented by
the current value of PPAR, and does not try to verify that either or both points are on
the screen. A second program, SKETCH, uses LINE to draw a series of line segments,
specified by a list of complex numbers representing points to be connected in order.

LINE draws a line consisting of the series of points

X» = Xi tnr(Xs— Xi)/N

where X; and X are the initial and final points, respectively, and n = 0, 1, ..., N. The

number of steps N is given by

where Ax and Ay are the scale per pixel in the horizontal and vertical directions:

N = MAX[ (xfXi)
 
(lbflbl) l

  

Ax Xmax1;6Xmin

"’max - ‘bmm

31
Ay
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To demonstrate the use of LINE and SKETCH, the program STAR draws a 5-pointed

star. Executing STAR produces this picture:

¢
 

  
 

 

 

Draw a Line

level 2 level 1 |

b)) (p¥yp) o

<< OVER PIXEL Plot the first point; insure PPAR exists.

IF DUP2 # Keep going only if the points are different.

THEN OVER - | Xi Xp=Xil

PPAR DUP 2 GET SWAP

1 GET

- C~R 31 / SWAP

136 / | Xi Xs—Xi A¥ Ax |

3 PICK C-R | Xi Xr~Xi ¥max—Wmin Xmax~Xmin AX AW |

4 ROLL / ABS | Xi Xf~Xi Xmax—Xmin AX Ny |
SWAP ROT / ABS | Xi Xs-Xi Ny Ny |

MAX [ Xi XrXiN|
PPAR 4 GET / Divide by resolution.

SWAP OVER / | % N‘ié = (kXN |
ROT IN k& X |

1 4 ROLL

START | & Xn |
OVER + DUP PIXEL Plot a point.

NEXT

END

DROP2
>>   
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SKETCH Sketch Lines

level 1

{ list ofpoints } or

<< - points Store the list.

<< 1 points SIZE 1 - One fewerlines than points.

FOR n

points n GETI 3 ROLLD GET Get the next pair of points.

LINE Connect the pair.

NEXT

>>

>

STAR Draw a Star

< CLLCD 'PPAR’ PURGE DEG Initialize.

(0,1) DUP R-P Start at (0,1).

0 4
START (0,144) -
DUP P-R SWAP

  
Rotate by 144°.

Add the point to the stack.

 
 

NEXT

DROP 6 -LIST Combine into a list.

SKETCH Connect the dots.

>>

STAR sets degrees mode.

13.6.3 Elaborating DRAW
Although DRAW is designed for automated plotting of algebraic expressions, the fact
that it will work perfectly well with a program as the current “equation” allows you to
extend its operation beyond its simple definition. In particular, you can combine the
automated properties of DRAW with the customized plotting you can achieve with
PIXEL.

m Example. Plot sinx, cosx, and tanx together.

m Solution:

<< X X SIN R-C PIXEL X X COS R-C PIXEL X TAN >>

STEQ RAD CLLCD DRAW
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Here DRAW accomplishes both plotting tanx and the automatic incrementing of the
independent variable X. DRAW computes each value of X, evaluates EQ, then uses the

value returned by EQ to plot one point. In addition to returning one value, EQ itself
also plots points corresponding to sinx and cosx, using the latest value of x stored in X
by DRAW.

The general rule for this sort of extension of DRAW is that the program stored in EQ
must act like an algebraic expression. This means that it must take no arguments from
the stack, and return one real number to be used as the {-coordinate for DRAW. Also,
you must insure that the independent variable name appears in the program or in one
of its subprograms. If these requirements are satisfied, you can do anything else within
the program that you want.

The program GDRAW is an extension of DRAW that you can use in conjunction with the
Solver. The program plots a specified expression, and also returns a list of independent
variable values that are suitable first guesses for the Solver.

To use GDRAW:

1. Set the plot parameters as you would for DRAW. If you don’t specify any parame-
ters, the current PPAR is used; a default PPAR is created if necessary.

2. Enter the plot procedure into level 2, and the name of the independent variable
into level 1. The procedure is the same as you would store in EQ for DRAW.

3. Execute GDRAW. GDRAW will make the plot; when you are finished viewing the
picture, press to clear the plot. You will then see (after the “busy” annuncia-
tor turns off) the plot procedure in level 2 and a list of values of the independent
variable in level 1. The values in the list are values of x at or near which the plot-
ted function crosses the x-axis.
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GDRAW Guesses from DRAW

level 2 level 1 | level 2 level 1

procedure 'name’ o  procedure { guesses }

<< DUP INDEP Store the independent variable name.

PPAR 1 GET RE OVER STO

OVER -NUM SIGN

{ } - eq x sign list

<<

< eq -NUM

sign

OVER SIGN DUP

SWAP OVER

IF - ABS 2 ==

SWAP NOT OR

THEN list x EVAL 1

+ ’list’ STO

END

> STEQ

CLLCD DRAW

'EQ’ PURGE

eq list

>

‘sign’ STO

~LIST

>>

Initialize the independent variable with

Xmin-

Compute the sign of f (Xmin)

Store the function, the name, the sign,

and an empty list.

Start of EQ procedure:

Evaluate .

Get the old sign().

Store the new sign.

If the sign has changed...

Orif ¢ = 0.

..then add x to the list.

Store the procedure in EQ.

Make the plot.

Discard EQ.

Return the function and the list.  
 

m Example. Plot x (x— 1)(x + 3), and obtain estimates ofits roots.

m Solution: 'PPAR’ PURGE 4 =*H 'X#(X—1)#(X+3)' ‘X’

=X*(X—1)*%(X+3)’

GDRAW

{ -3 01}

 

  
 

13.6

In this case, the three guesses —3, 0, and 1 returned by GDRAW are the exact roots of

the expression.
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13.7 Printing Plots

If you have an HP 82240A Printer, you can make a printed record of any plot or other
picture that you make on the HP-28 display. The primary tool for this purpose is the
PRLCD (PRint LCD) command, which causes transmission of a pixel-by-pixel replica of
the screen from the calculator to the printer.

On the HP-28C, you must decide in advance that you want to print the LCD picture
before you createit, since any keyboard action that you take to execute PRLCD will alter
or destroy the picture. For example, if you want to print a DRAW plot, you must exe-
cute DRAW from the command line or in a program (that is, don’t press EDRAWE in
immediate-execute mode), and include PRLCD as part of the same command sequence.
(The shortest such sequence is CLLCD DRAW PRLCD, executed together in a common
program or command line.) This is unfortunate, since in many cases you don’t know
that you want to print a picture until after you’ve seen it. If you want to print a plot
when you did not prearrange the printing, you have no recourse except to clear the plot

and redraw it with CLLCD DRAW PRLCD.

The HP-28S addresses this problem in two ways:

e The HP-28S has a “hot-key” version of PRLCD: at any time, you can press and hold
, then press (the PRINT menu selection key). When you release the keys,

PRLCD is executed, without disturbing the current appearance of the display. This
capability is available even when a special temporary display is showing, including
when the plot cursor menu is active.

e You can save a picture with LCD- (section 13.3), then print it later by returning the
image string to level 1 and executing ~LCD PRLCD together, or just -LCD followed
by pressing - . See section 13.3.

13.7.1 Extended Plots
PRLCD does not transmit any extra linefeed commands to the printer, so that successive
PRLCD’s can print a continuous picture. You can take advantage of this property to
produce printed plots in which the vertical range is much bigger than is possible on the
HP-28 display. As a practical illustration, the program X4PLOT stretches the vertical
range represented by the current PPAR by a factor of four, making a roughly square
printed plot (137 X 128 pixels) from four separately plotted pictures.
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X4PLOT 4 X Plotting

level 1 |

<< program >> or

< IF PPAR TYPE 6 == Does PPAR notexist?

THEN 1 =*H Then create a default PPAR.

END PPAR DUP LIST- 4 DROPN | Pmin  Pmax |

- M -127 / Vertical scale per pixel.

32 * Vertical scale per screen.

0 SWAP R-C Screen offset.

- proc ppar dy Save the procedure, PPAR and

screen offset.

< 'PPAR’ 1 OVER EVAL 1 GET Pmin

dy 3 * + New Pnin for 1st picture.

PUT Replace P, in PPAR.

CLLCD proc EVAL PRLCD Print the first picture.

1 3 Iterate 3 times:

START PPAR LIST- Unpack the plot parameters.

6 ROLL dy - New Pin

6 ROLL dy - NewPy

6 ROLLD 6 ROLLD -LIST Pack up the new parameters.

'PPAR’ STO

CLLCD proc EVAL PRLCD Print the next picture.

NEXT

ppar 'PPAR’ STO Restore the original PPAR.

>>

>>   
 

X4PLOT assumes that PPARalready exists.

X4PLOT takes one argument, a program that makes an ordinary plot by any method. It
actually executes the program four times, each time with a different set of plot para-
meters. The easiest way to use X4PLOT is as an extension of DRAW, to make a 4X
picture of the current equation. The program argument in that case is << DRAW >>.

n Example. Make a 4X plot ofsinx.

= Solution:

'SIN(X)’ STEQ 'PPAR’ PURGE RAD << DRAW > X4PLOT
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= This more elaborate example uses the polar plot program VTPOLAR (section 13.6.1):

'PPAR’ PURGE (-6.8,-6.3) PMIN (6.8,6.4) PMAX DEG

<< << - t 'ABS(6*SIN(3#))’ >> 0 360 VTPOLAR >> X4PLOT
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[HP-28C version 1BB has a defect in the algorithm for placing “tick” marks on the plot-
ted vertical axis when the origin of the axes is off-screen. When you use X4PLOT, the
tick mark spacing is not uniform across the full picture. You can either ignore this
cosmetic defect, or use AXES to move the axes out of the picture. This defect was
corrected in version 1CC, and is not present in the HP-28S.]

As a final example of extended plotting, and as a slightly whimsical note on which to
close this book, we present an HP-28S program MAND to plot the famous Mandelbrot
set. This set, which is of great importance in the study of fractals, consists of all com-
plex numbers C such that applying the operation

z-22+C

iteratively, starting at z = 0, generates a set of numbers z that stays bounded no matter
how many times the operation is applied. The program plots all points C in the set as
dark pixels. To save time, the program only considers points in a certain region of the
complex plane near the origin. It somewhat arbitrarily chooses 15 as the number of

iterations for each point; a smaller number would speed up the calculation but the pic-
ture would lose detail. A larger number makes the picture more accurate in some
respects but takes longer to execute.

To provide enough detail to make the plot attractive, MAND computes the plot in four

“frames,” which make a continuous picture when printed consecutively. Each frame is
saved as an image string; the four strings are finally combined in a list and stored in the
variable MPIC. The program MPRT makes a continuous printout from the list of image
strings.

MAND also illustrates a use of KEY (section 11.3.2) that allows you to interrupt, then

resume, program execution. This is desirable because MAND takes over 4 hours (more
than 10,000 values of C) to make all four frames. If you press any key (except )
while MAND is running, it saves the frames it has already created in a local variable, and
halts. Then you can execute any calculator operations (except KILL or a system halt);
when you’re finished, press [ll[CONT], and MAND will pick up where it left off.
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MAND Compute the Mandelbrot Set
 

| level 1
 

or { strings }
 

 

 

< 1 =2

FOR n CLLCD

n .59296 * DUP

-204 OVER R-C PMIN

57443 + .48 OVER R-C PMAX

1.22 MIN

SWAP -1.22 MAX

FOR vy

'1.61*ABS(y)-2.1" -NUM

"MIN(-1.03*ABS(y) +1.19,.5)' -~NUM

FOR x

x y R-C

DUP 1 15

START SQ OVER +

NEXT

IF ABS 3 <

THEN x y R-C PIXEL

END DROP

IF KEY

THEN DROP

LCD~ ’'-n+2’' -NUM

-LIST - pic

<< HALT

pic LIST- DROP -LCD

>>

END

.01853 STEP

-.01853 STEP

LCD-

-1 STEP

4 -LIST 'MPIC’ STO

>>

Start the next frame.

Pomin = (—2.04,.5929n)
Poax = (48,.57443+ 5929n)
y from MIN(Y may, 1.22)

t0 MAX(Y min, —1.22).

X start.

x end.

C

Iterate 15 times.

22+ C.

If z is still small,

plot the point.

If a key is hit...

save the pictures,

and suspend.

Restore and resume.

Next x.

Next y.

Save the frame.

Next frame.

Combine the frames and store.  
 

Plotting



Plotting

 

  

 

 
 

  

MPRT Mandelbrot Printout

level 1 | level 1

{ strings } or

<< LIST- 1

FOR x x ROLL -LCD Display the next frame.

PRLCD Printit.

-1 STEP

>>  
 

Here’s the picture:

 

 

 

13.7

The program to plot the Mandelbrot set was inspired by the lecture The Beauty of Frac-
tals: A Force for Teaching the Public, given by Heinz-Otto Peitgen at the Atlanta Joint
Mathematics Meetings of the American Mathematical Society and the Mathematical
Association of America, January 8, 1988. The meetings, which were held to celebrate
the centennial of the AMS, also featured the first public introduction of the HP-28S.
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ADDV

APLY1

APLY2

BARBERPOLE

BOX

C

CEQN

DFACT

DIGITIZE

DIGITIZE

DIM

DOPATH

DRAWPIX

FCT

FIB

FIND

GCD
GDRAW

GSORT

IGL

IGL2

INFSUM

INFSUMM

INVERT

ISOLCK

ISOLE

KEEP

KEEPN

LABEL

LABELV

LINE

MAKEZ

MAND

MINL

MINL

MINOR

MNORM

MPRT

Program Index

Concatenate Vectors

Apply to 1 Symbolic Array

Apply Program to 2 Symbolic Arrays

Scroll the Picture

Box Volume

Combinations

Characteristic Equation

Cosine Integral

Circle in a Triangle

Catalan Number

Count in 4 Ranges

Area of a Circle Segment

Return Current Directory Name

Clear Entire Directory

Delete a Matrix Row

Double Factorial

For HP-28C Version 1BB

For HP-28C Version 1CC

Symbolic Array Dimensions

Execute a Path

DRAW using PIXEL

Recursive Factorial

Fibonacci Series Generator

Find a Variable

Greatest Common Divisor

Guesses from DRAW

General-purpose Sort

Integral

Double Integral

Compute an Infinite Sum

Compute an Infinite Sum (Monitor)

Invert a Picture

Isolate and Check

Isolate and Return an Equation

Keep 1 Object

Keep N Objects

Output Labeling Utility

Output Labeling Utility, Variation

Draw a Line

Make Statistics Data

Compute the Mandelbrot Set

Minimum in a List (Bad version)

Minimum of a List (Good Version)

Minor of a Determinant

Modified Normal Distribution Generator

Mandelbrot Printout

289

290

311

242

123

296

2N

214

123

195

124

83

275

200

N
R
e
B
E
R

281

205

333

283

173

175

311

145

143

58

242

243

330

323

338

233

234

275

261

339



Program Index

MULTLABEL

NORM

NPPAR

N-S
P

POIS

POLAR

PPER

PRIMES

PROMPT

PSE

PTINFSUM

Purge

Qu

QUADE

RECENTER

RECIP

RMINL

RTOP

RTOP2

SADD
SA~

-SA

SCOF

SCONE

SDET

SEC

S

SIMEQ

SKETCH

SMINOR

SMS

SMUL

SORT

ssuB

STAR

STRN

SUBCOL

sSuBD

Sum4

SUMTERM

S-N

TAYLRX0

TESTPROMPT

TH

TIMED

™™

UFIND

UP

VCYL

VSUM

VTPOLAR

Label Multiple Outputs

Normal Distribution Generator

New PPAR
Numeric to Symbolic

Permutations

Poisson Generator

Polar Draw

Polygon Perimeter

Find Prime Numbers

Input Prompt Utility

HP-41-like PSE

Infinite Sum from Previous Term

Purge Any Variable

Quadratic Root Finder

Quadratic Solve to Equation

Rescale and Recenter

Compute 10 Reciprocals

Recursive Minimum of a List

Rectangular to Polar

Rectangular to Polar

Add Symbolic Arrays

Symbolic Array to Stack

Stack to Symbolic Array

(Unsigned) Symbolic Cofactor

Surface Area of a Cone

Symbolic Determinant of a Matrix

Secant

Sine Integral

Simultaneous Equations

Sketch Lines

Minor of a Symbolic Matrix

Scalar Multiply Symbolic Arrays

Multiply Symbolic Arrays

Sort a List in Increasing Order

Subtract Symbolic Arrays

Draw a Star

Transpose Symbolic Array

Subtract Columns

Find Subdirectories

Sum /n*

Compute an Infinite Sum from TERM

Symbolic to Numeric

Taylor’s Polynomial at x

Input Prompt Utility

*H Substitute

Timed Execution

*W Substitute

Universal Find a Variable

Activate the Parent Directory

Volume of a Cylinder

Sum Vector Elements

Variable 6 Polar Draw
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231,

313

119

271

331

295

292

292

282

291

331

291

83

252

252

289

168

251

320

255

320

83

123

201

328



X4PLOT

XMAX

XMIN

XPTINFSUM

YMAX

YMIN

4X Plotting

Store Xmax

Store Xmin

Infinite Sum in x from Previous Term

Store Pmax

Store ¥pmin
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335

313

313

270

314

314

Program Index



Subject Index

- 119, 212

7 8, 221

' 24, 33, 212

" 28,33

# 27

| 221

()26
[]
{; } 29, 246

<<, >> 24, 33, 179, 212, 246

= 192

-() 160

~1 161

*1 161

/1162

1/() 161

+1-1162

<A 159

-() 160

ABORT 227

aborting programs 227

abscissa 300

accuracy factor 171

activation 23

add fractions 162

addressing, indirect 62

AF 162

algebraic calculator 10, 16

entry mode 38, 40, 120, 246

evaluation 130

object 2, 16, 19, 23, 24, 29, 34, 64, 90, 129

syntax 11, 38, 41, 179, 246

alpha key 38, 39

analytic function 20, 144

AND 309

A~ 159

arbitrary integer 147, 148, 149

arbitrary sign 147, 148, 149

argument 11

array object 28, 272, 287

symbolic 287

-~ARRY51, 272

ARRY- 273

associate left 159

right 159

association 151, 153, 155, 159

ATTN 227

automatic mode changes 40

automatic simplification 132, 136

automating calculations 87

axes 321

Bad Guess(es) 99

BASIC 2, 25, 91, 125, 211

binary integer 27

built-in program object 24

busy annunciator 42, 44

calculus 165

Can't Edit CHR(0) 310

CATALOG 172

center of screen 315

CENTR 315

CF 191

chain-rule 165

change of sign 102

change variable name 68

changing variable contents 69

characteristic equation 296

CLEAR 47

clear stack 47

clearing 47

CL= 82

CLUSR 40, 81

cofactor 293

COLCT142, 152, 153

COL= 322

column number 68

column vector 274

combinations 122

combining RPN and algebraic entry 17

command 20

command line 34, 43, 45, 64, 92

command stack 44

common notation 12

commutation 158

compact format 8

complex number 26

complex results 26

CON 69, 71, 78, 279

conditional 189

conservative approach 128

constant, symbolic 137

Constant? 100

CONT 229

continuous picture 334

contravariant vector 274

copying stack objects 49
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cosine integral 268

covariant vector 274

CRDIR 75

current directory 75

equation 300

path 79

cursor, algebraic entry 41

open box 40

solid box 41

custom input menu 244

custom output menu 245

D 159

data object 25

debugging 230

default guess 105

default variables 79

defining expression 119

defining procedure 212, 221

definite loop 198, 201

definition, object 22

deleting suspended programs 229

delimiter 21, 43, 179

' 24, 33, 212

"28,33

# 27

()26
[ 128,
{,}29, 246
<<,, >> 24, 33, 179, 212, 246

dependent variable 100

9 24, 165

derivative 109, 165

determinant 293
DGTIZ 316

digitizing 102, 105, 305

HP-28C 306

HP-28S 307

DINV 161

directory 74

current 75

home 75

parent 76

variable 80

disappearing arguments 60

DISP 35, 240

display messages 240

distribute 153

distribute-prefix-operator 160

distribution 155, 159

DNEG 161

DO 206

DO loop 203

Subject Index

double guess 102, 104, 107

double integral 175

double inverse 161

double negate and distribute 160

double negative 161

double quotes 33

D- 159

DRAW 100, 171, 297, 299, 331

DROP 47

DROP2 48

DROPN 48

DRWZ 262, 297, 305, 306, 308, 321

DUP 49

DUP2 50

DUPN 49, 50, 51

e 137

E() 162

E" 162

EDIT 222, 232

editing programs 222

ELSE 193

else-sequence 193

empty stack 59

END 193

endless loops 31, 229

ENTER 14, 20, 37, 180, 181, 246

entry mode 38, 40

EQ 69, 78, 96, 297, 300
equation 129

ERRM 207

ERRN 207

error handling 206

error-sequence 207

EVAL 24, 25,31, 32, 35, 133

evaluation 11, 19, 24, 29

numerical 133, 135, 137

procedure 29

symbolic 137

exception 209

exchange of arguments 48

execute menu 245

execution 19, 23, 24, 31, 76, 79

action 23, 25, 29

by address 35

data object 25

local name 24, 32, 215

global name 24, 31, 76, 215

numerical 132

postponed 45

preventing 24

symbolic 132

timing 255



Subject Index

EXGET 152, 162, 163

exit 201

EXPAN 131, 142, 152, 155

expansion 151, 155

explicit ENTER 37
explicit variable integration 136, 171, 172, 173

exponent 25

EXPR= 111, 115

expression 11, 129

manipulation 150
mode 38

rearrangement 139

simplification 153

structure 131

EXSUB 152, 162, 163

extrema 108

Extremum 100, 108

factors 153

false 189

CUSTOM menu 244
finding extrema 109

first guess 101

flag 188

31 52, 207, 208

34 148

35135

36 134, 135

57-59 209, 210

61-64 210

exception action 209

infinite result 209

overflow 210

underflow 210

signal 210

system 188

true 189

false 189

user 188, 191

floating-point 25

FOR 198

FORM 140, 142, 152, 157, 164

formal variable 31, 67

FOR...NEXT loop 212, 198

FOR...STEP loop 199, 212

FORTH 3, 46

four-level stack 16, 57, 211

FS? 191

function 11, 19, 20, 118

analytic 20, 144

keys 39

plot 297, 299

Gaussian distribution 261

generalized plot 324

generations,calculator 2

GET 68, 69, 273, 276

GET, index for 68

GETI 68, 69, 273, 276

global name 24,30, 31, 32, 211

variable 30, 66, 74, 211, 214

guess, default 105

double 102, 104, 107

first 101

obtaining 104

single 102, 104, 105

triple 102, 103, 104, 107

guillemets 33

*H 318

HALT 224, 226, 229, 232

helvetica type 7

hiding variables from solver 111

home directory 75

horizontal coordinate x 299, 300, 322

hot-key print 334
HP-11C 3, 62

HP-15C 3, 62, 94, 95, 97, 174

HP-17B 9, 114

HP 18C 9, 96, 114

HP-19B 9, 114

HP-27S 9, 114

HP-28S memory 94

user-defined function 121

HP-34C 95

HP-35 1

HP41 2, 9, 125

Advantage Pac 95, 98, 174

array 272

CLST 47, 55, 59

CLX 47, 59, 64, 65

END 186

ENTER?* 36, 37, 42, 44, 49, 64, 65, 179, 181

errors 208

flag 188, 189

flag 24 210

flag 25 208

FS? 91

general 9, 125

GTO 185, 186

halting 224

language 3

LASTX 51, 52

memory 93, 94

prefix commands 61

PRGM 179

program 29, 87, 91, 181, 182, 184, 185, 186, 190, 202



PROMPT 240

PSE 227

RCL X 49

Rt 49
RDN 48, 65

register 66, 72, 278

REGMOVE 73

REGSWAP 73

return stack 185

Rt 49
RUN 35, 225

>+ 64

stack 57, 59, 66, 185, 211
stack-lift 63

STOP 225

storage arithmetic 69

test command 188, 189, 192

XEQ 32

X<>Y 48,55

HP-65 2

HP-71B 95

HP-80 95

i 137

identity 157

identity operations 161

IDN 69, 71

IF structure 193

IFERR structure 206, 207, 230

IFT 196, 197

IFTE 196, 197

IM 26

image 310

immediate entry mode 38, 40, 246

immediate-execute key 38

implicit ENTER 37, 44, 246

implicit variable integration 136, 173

indefinite loop 201, 198, 203

INDEP 101, 304

independentvariable 82, 100, 101, 138, 300, 303, 322

index, GET 68

loop 199, 212

object 163

subexpression 163

indexed variables 286

indirect addressing 62

infinite result action flag 209

infinite sums 267

infix notation 12

in-place operations 71

input 244

and output 240

list 279

Subject Index

menu 244, 247

prompting 240

J 24, 165

integral 136, 165, 169, 171

double 175

intermediate result list 282

intermixing binary and real 27

intermixing real and complex 27

internal accuracy 26

Invalid PPAR 80

Invalid ZDAT 81

Invalid ZPAR 81
inverse of power or inverse of inverse-product 161

ISOL 112, 115, 120, 139, 140, 142, 143, 147, 148

italics 7

KEY 227, 337

key buffer 226

key types 38

keyboard operation 20

keys, cursor 7

format 7

menu 7

shifted 7

that do ENTER 39
that do not ENTER 39

KILL 229, 232

known variable 138

L() 162

LAST 51, 207, 223

L* 162

LCD 297

LCD- 308, 310, 334

~LCD 297, 308, 310, 334

LEFT= 111

level, subexpression 131

like terms 153

line drawing 329

liquid crystal display 297

LISP 3

list arguments, HP-28S 280

object 25, 41, 43, 58, 62, 66, 68, 72 259, 272, 275

output 281

LIST- 276

~LIST 276

local name execution 24, 32, 215

name object 31, 119, 121, 211, 248

name resolution 216

local variable 31, 32, 56, 66, 73, 89, 118, 119, 211, 214, 226

local variable structure 212

locked up keyboard 32

logical operator 189, 308

loop 198
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Subject Index

loop index 199, 212

loop-sequence 203, 204, 205

LR 324

Yukasiweicz, Jan 12

<M 160

MacLaurin’s formula 157, 167

Mandelbrot set 337

mantissa 25

mathematical approximation 105

mathematical function 120

function plotting 297

variable 67

matrix 272

maxima 108

MAXR 137

memory limitations, HP-28C 93

Memory Lost 229

memory reset 229

MENU 245, 247, 250

menu, output 245

merging 151, 160

minima 108

minor 293

MINR 137

missing points 302

mode, algebraic entry 38, 40, 120, 246

alpha entry 38, 41, 246

changes 40, 38

entry 40

expression 38

immediate entry 38, 40, 246

numerical evaluation 132

principal value 148

program 38, 91, 180

symbolic execution 132

mode-dependent key 38

M- 160

multiple roots 146

name 23, 30, 62, 200

execution 76

global 30, 31, 32

local 121, 31, 119, 121, 211, 248

quoted 33

resolution 75, 76, 78, 216

variable 73

naming object 67

nested IF structures 195

non-analytic function 20, 144

Non-Empty Directory 81

non-radix 43

normal distribution 261

normal-sequence 206

No Room to ENTER 223
NOT 205, 309

notation 7

common 12

floating-point 25

infix 12

Polish 12

prefix 12

reverse Polish 10

-NUM 24, 133, 135

numerical definite integral 171

numerical evaluation 132, 133, 135, 137

OBGET 162, 164

object 19

algebraic 2, 16, 19, 23, 24, 29, 34, 64, 90, 129

array 28, 272, 287

binary integer 27

classes 25

complex number 26

data 25

list 25, 41, 43, 58, 62, 66, 68, 72 259, 272, 275

matrix 272

name 23, 30

naming 67

procedure 29, 90

program 23, 29, 90

real number 25

string 28, 240

symbolic 34

type 21

value 21

vector 272, 274

object string 43

OBSUB162, 164

ON key 224, 227

operation 19

operation, prefix 160

operator, prefix 160

optimization, program 235

ORDER 74, 81, 82

ordinate 300

output 244

labeling 240, 242

list 281

menu 245

OVER 50

Overflow 210
Owner’s Manual 4

Pmax 311

Phin 311

parameterized plot 325

parent directory 76
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path 79

current 79

pencil-and-paper 13

permutations 122

PICK 50, 51

7 124, 134, 135, 136

picture 297

PIXEL 297, 324, 331

pixel numbers 314

plot equation 301

function 297, 299

generalized 324

parameterized 325

parameters 298

polar coordinate 326

ranges 311, 315

rescaling 318

scale 323

scatter 321

printed 334

Poisson distribution 259

polar coordinate plot 326

Polish notation 12

POS 277

postfix syntax 61

postponed execution 45

PPAR 69, 78, 298, 322

precedence 12, 159

prefix notation 12

operation 160

operator 160

syntax 61

preventing execution 24

prime numbers 262

principal value mode 148

printed plot 334

PRLCD 334

problem solving 87, 126, 138

procedure 29, 90, 91

evaluation 29

as argument 250

program 23, 29, 88, 90

body 179, 180

comment 28

documentation 220

editing 222

legibility 118

listing format 220

mode 38, 91, 180

optimization 235

quoted 34

quotes 33

Subject Index

structure 92, 178, 180, 187, 239

structure word 178, 187

suspended 224

unquoted 34

programmable program key 180

programming 87, 92, 178

recursive 257

structured 92, 175, 181, 182, 185, 224

PRVAR 231

PURGE 73, 81

PUT 69, 72, 78, 273, 276

PUTI 69, 72, 273, 276

QUAD 24, 139, 142, 143, 146, 147, 148

quadratic equations 146

qualifying message 97, 99

quotation mark delimiters 33

quoted name 33

program 33, 34

variable 67

quotes, double 33

single 33

program 33, 179

RAND 259

random numbers 259

RCEQ 300

RCL 32, 191

RCLF 208

RDM 69, 71

RE 26

real number 25

recursive programming 257

reference manual 4

register 66

reordering terms 150
REPEAT 205

rescaling a plot 318

resolution 322

local name 216

name 75, 76, 78, 216

resolved 79

result 11

reverse Polish notation 10

right hand symbol 7 8, 221
ROLL 49

ROLLD 49

ROOT 24, 78, 91

root 95

ROT 49

row number 68

row order 272

row vector 274

RPL 3, 33



Subject Index

RPN 2, 10

calculator principle 10, 131

command 20

RT= 111

z+ 64

=DAT 69, 260, 261, 322

2PAR 69, 322

SAME 192

scatter plot 321

SCL 78

SCL= 262, 323

SCONJ 69, 71

screen, center

separator 43

sequence 8, 178, 198, 200

SF 191

SHOW 113, 115

signal flag 210

Sign Reversal 99, 102

simplification, automatic 132, 136

simplifying polynomials 157

simultaneous equations 264

sine integral 268

single guess 102, 104, 105

single quotes 33

single-step 229, 232

SINV 69, 71

SIZE 273, 276

SNEG 69, 71

solid box cursor 41

Solver 78, 88, 91, 95, 96, 141, 142, 147, 149, 171

constant 96

menu 82, 88, 96, 97, 100, 111, 247

SST 229

stack 8, 14, 16, 46, 66

clear 47

diagram 221

empty 59

four-level 211

level 22, 46

objects, copying 49

roll 48

unlimited 57

stack-lift 37, 47, 49, 63

stack-lift disable 42, 63

start 198, 199, 200

starting and stopping 224

START..NEXT loopr 200

START...STEP loop 200

statistics matrix 322

step 200

step-wise substitution 31

STEQ 78, 96, 300

STO 67

STO/ 69, 70

STO- 76, 78

STO#* 69, 70

STOF 208

stop 198, 199, 200

storage arithmetic 69, 70

storage register 32

storing pictures 307

string object 28, 240

structure, expression 131

program 92, 178, 180, 187, 239

structured programming 92, 175, 181, 182, 185, 224

SUB 277

subdirectory 76, 77, 81

subexpression 130, 131, 158

level 131

subroutine 182

substitution 35, 141, 162

step-wise 31

summand 154

suspended program 224

suspended program annunciator 224

SWAP 48, 49

symbolic array 287

constants 137

evaluation 137

evaluation mode 111, 132

mathematics 88, 125

object 34

solution 112, 142

syntax 37

algebraic 11

prefix 61

postfix 61

Syntax Error 179, 187, 222, 245

SYSEVAL 35

system clock 255

system flag 188

System Object 21
system halt 32, 82, 229, 249

Taylor’s polynomial 167, 168

TAYLR 24, 146, 157, 165, 167, 168, 296

term 153

test 188, 189

test command 188, 192

test-sequence 193, 203, 204, 205

THEN 193

then-sequence 193

tick 33

tick marks 321
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time value of money 95

timing execution 255

triple guess 102, 103, 104, 107

TRN 69, 71

true 189

TVM 95, 96

Unable to Isolate 120, 145

Undefined Name 72, 133, 138

Undefined Local Name 215, 249

Underfiow 210

UNDO 43, 223, 224, 230, 232

unknown variable 100, 101

unlimited stack 57

unquoted program 34

UNTIL 204

USE 172

user flag 188, 191

USER memory 66, 74

USER menu 74, 149, 211, 244, 245

menu key 74

user-defined function 88, 89, 117, 118

value 30, 67

variable 11, 30, 66, 239

change contents 69

change name 68

default 79

dependent 100

directory 80

formal 31, 67

global 30, 66, 74, 211

hiding from solver 111

independent 100, 101, 138, 300, 303, 322

indexed 286

known 138

local 31, 32, 56, 66, 73, 89, 118, 119, 211, 226

mathematical 67

name 73

quoted 67

unknown 100, 101

VARS 81

vector 272

contravariant 274

covariant 274

row 274

version 35

vertical coordinate § 299, 300, 322

VISIT 222, 232

*W 318

WAIT 226

WHILEloop 203, 205, 206

Xmax 299

Xmin 299

Subject Index

Xaxes 299
XOR 309

bmax 299
Wmin 299
Waxes 299
Zero 99, 102, 107

zoom in on plot 316

















HP-28 Insights

The HP-28 is a revolutionary calculator.
With its symbolic operations, multiple
object types, and powerful, flexible pro-
gramming language, the HP-28 offers
the most advanced computational capa-
bilities ever available in a handheld cal-
culator.     

    
  

EEEEEE
=EE=EEEEIn HP-28 Insights, Dr. William Wickes —eemL@ 0oos

offers his own special insights into the L
operation and application of the HP-28C and HP-28S. He presents in-
depth discussions of a wide spectrum of topics, starting with the most
fundamental principles of calculator operation. Most of the book is
devoted to problem solving methodology, including the operation of the

HP Solver, user-defined functions, symbolic mathematics, and general
programming. All important ideas are illustrated with specific examples.
Included are over 100 practical example programs, that demonstrate
programming concepts such as local variables, program structures,
recursion, and advanced plotting techniques. As the author of the well-
known Synthetic Programming on the HP-41C, Dr. Wickes gives special
attention to the comparison of HP-41 concepts and their HP-28 counter-
parts.

Chapter Headings:

1. Introduction 1

2. Understanding RPN 10

3. Objects and Execution 19

4. The HP-28 Stack 46

5. Variables 66

6. Problem Solving 87

7. The Solver 95

8. User-Defined Functions 117

9. Symbolic Math 125

10. Programming 178

11. Program Development 220

12. Arrays and Lists 272

13. Plotting 297
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