
Programs for the
HP-Z28 calculator

1 4 4

0 - -

> [4 >

AJ Ll - A

- 0 Ll Cl

[3

Ll Ld - -»

3 .

0 g 0 -
) 1) [)
. (} -

By Rick Smith

S
A
N
S
A

S
A
N
S
A

 N
E
S
S

j

AN
S

N\
A
N
S
E

TABLE of CONTENTS

SUBJECT

A Brief Introduction

into Programming the HP-28 eo 0 0 0 0 0 0 0 0 0

Quadradic formulacccceccecoccacns
SONE Program «..cceecoooooososcsscsococsssaes

Linear Algebra programs:
Row operation programcecceeceaee
ROW SWAP Program «..cccecoocccocscocce
Row multiply/divide program

Synthetic division program ...ccccco0
Data Bank programccccecceceoaccoe
Statics Programs:
Magnitude of 3-space vector program
Coordinate direction angle program

Interpolation programcccceceooce
Timer Program «..ccoeceosoossocsscoscscas
Lotto programcccececceccccccsccse
Interest programccccccceetccsoccs

Plot programs:

Draw programccocececoosocscas

ReDraw program ..:...ccceeeeeeasonsas

Fast program ...cccccceeceeceoccscooc

SlOW Program ...c.ceceeeesecsccsccass
More Data Bank Programscccce000.
Probability e¢ 0 @ 0 oo oo oo 0 0 oo @ 6 & 0 0 0 0 0 0 0 O° 0 OO 0 0 0 0 0 0 O° 0 0 0

Summation Program «....cceocecesoeooo
Expected value of X program
Binomial distribution cee ees ec eae ee

Poisson distribution¢cccceeeesee

Normal distributionc¢ccceeeeeees

Pooled variance. ..cceeeeeeeoococcses

Electrical Engineering:

Parallel resistance program
Delta to Y transform program
Y to Delta transform program
Angular frequency and frequency conversion

Complex Impedence converter programs ®

*

Evaluating Boolean expressionsceee..
RLC circuit programscccoeoeeoeaee

® 6 © © ¢ ¢ 0 Oo OO 0 Oo O° O° © oo ooQuickies ® © 6 0 0 © 0 0 0 0 © oo oo

Copyright 1989 by Rick Smith.

DISCLAIMER NOTICE:

The author makes no warranty or guarantees of any kind

regarding the material contained in this book.

Determinations of accuracy, performance, proper
function and useage is the sole responsibility of the
user.

The author of this book shall not be liable for
consequential and/or incidental damages in connection
with the useage, performance or the furnishing of these
programs and written material.

Contents of this book are subject to change without

notice.

(*)- Registered Trademarks:

Hewlett-Packard, HP and HP-28 are trademarks of

Hewlett-Packard Co.

A Brief Introduction into

Programming the HP-28%

The programs in this book use the more fundamental
commands of the HP-28 language. These are the loop
commands START-NEXT and FOR-NEXT and the IF-THEN-END

command .

Before we talk about how these commands work,

let's discuss a few fundamental points.
From the point of view of the calculator, anything

enclosed in the double-arrow brackets « and » is
considered a program. For example « "Hello, world" 1
DISP ». This uses the DISP (display) command to print
Hello, world at the top of the screen.

Suppose you want to write a program that takes any
number given to it and multiplies it by 5 then

subtracts 3. The first thing you need to do is to be
able to input or "grab" a number. This is done with
the + command (the shifted U on the left side

keyboard). This command is used in conjunction with

what are called "local variables" like this: -» a .
The "a" is the local variable. Local variables differ
from "global" variables (the other kind) in that they
are only used for one calculation or procedure (which

HP calls a defining program but "procedure" is more to

the point) and then they are thrown away. By contrast,

a global variable is stored under a name in a USER

menu. For example, if you put the number 10 on the
stack and did this: 'A' STO , under the USER menu you
would see [A] for a function key. This "global"

variable doesn't disappear unless you PURGE it! This
brings up another point; notice that the lower case
letters are used for local variables and the upper case
letters are used for global variables. This is done by

convention so you know which are which.

Anyway, back to our program. We can write it

three ways:

«K +a 'a%x5-3'" »

or
K +a abd x3 -»>»

or
KK +a « 'a x5 - 3' EVAL » »

II

After typing in one of the programs you would
store it under your favorite name. Then you could put

any number on the stack and press the function key

labeled with the name you chose (under USER) and,
presto!, the result will appear. One thing you may
have noticed is that while the first program is
"readable" the second program looks like a mistake.
Thats because the first program uses an expression
which is anything enclosed in single quotes. An

expression is written just the way you would write it
on paper. Since the expression in the first program
comes after the inputted variable with no other
brackets, it is evaluated immediately. The second

program just carries out the button pushing as if you

did the function manually on the calculator and
remember it's Reverse polish notation. The third
program looks like the first program except for the
extra set of brackets. If you did not have the EVAL
command in the third program, the program would just
put 'a ¥* 5 - 3' on the stack unevaluated.

As a rule of thumb, when you input a number into a

variable, you must use « » around whatever follows
that uses the variable. Like this:

«K + aboec

« Whatever! » program grabs three numbers off

» the stack.

This way you don't have to worry about using the

local variable more than once. For example, the
following program won't work:

« +k 'k + 5'" 'k -2'" >»

The first expression is evaluated, but then the
local variable is gone! So the second expression is

put on the stack as-is. However, the following program
does work:

« +k « 'k + 5' EVAL 'k - 2' EVAL » »

The inside set of brackets defines everything inside of

them as one procedure. Therefore, the local variable
is good for everything inside them.

III

Notice that the programs in this book are laid
out in a way so you can see the structure or

organization of the program better. You don't have to
type them in to look like this (you probably
couldn't). The calculator will squash them up anyway

after you ENTER the program. You only need to pay
attention to spaces around command words. For example,
+k is wrong it should be + k. Also, -» ARRY is wrong,

it should be -ARRY.
Program comments that are on the right side of

program listings in this book are in italics. These
are comments ONLY! Don't type them into the
calculator.

Now for the basic loops. Lets look at the START-
NEXT loop. It has the form of:

a b START

stuff

NEXT

The stuff is any set of commands you want repeated. a
and b are the beginning and ending numbers for the
loop. For example if you wanted to go through the loop
3 times a and b would be 1 and 3, 10 and 12, 22 and 24,

etc.

The FOR-NEXT loop is the same except you can
define a local variable which is given the value of the
present loop. The value (an integer) of the present
loop is called the index.

Example:

«1 10 FOR x
'x ¥ 2' EVAL

NEXT
»

The variable of your choice is defined when it is

placed directly after the FOR statement, in this case
FOR x. Notice that x is used in the expression 'x%2'
and evaluated 10 times, putting 10 numbers on the
stack.

You can change the increment of the index from 1

(default when using NEXT) to any number you choose by

replacing NEXT with increment number STEP. For
example, 2 STEP causes 2 to be added to the index. You
can also have the loop count from a high number down to

a low number by having a > b and using a negative

increment number. STEP can also replace NEXT in the
START-NEXT loop.

IV

The other important statement is the IF-THEN-END
statement. It has the form:

IF something

THEN

stuff

END

The something is a statement that tests something to

see if it's true. For example, IF y > 6. If y is
greater than 5 (True) then carry out the stuff. If y

is not greater than 5 (False) then continue program

right after the END statement.

There is also a variation called IF-THEN-ELSE-END

in which the form is:

IF something

THEN

stuff

ELSE

different stuff

END

In this case the different stuff is carried out if the

something is false.

Many of the programs in this book use the IFERR-
THEN-END statement (If error). It has the form:

IFERR

stuff

THEN

different stuff

END

If the stuff commands are carried out normally, the

program continues after the END statement (skips the
different stuff). If an error occurs while carrying
out stuff, then the different stuff commands are

executed. The IFERR statement is used in some of the

programs in this book as a way to display a help

message:

IFERR
program with an input.

THEN
display help screen

END

This is very handy, because frequently you forget what

a program does or what variables are required for
input. As structured above, you could just hit the
program key and the program would error-out because it
was expecting a numeric input, and would then display
the help screen.

You will find that the other loops and branch
commands are variations and combinations of the above
forms. Hopefully, the programs in this book will help
you to learn how to program the HP-28 by example and
give you a sense of how much time and busy work can be

saved by writing useful programs.

Quadradic formula program.

The quadradic formula takes coefficients from a
polynomial of the form:

ax? + bx + ¢c = 0

and gives the roots (zeros) of the equation.

Example use (program name: [QUADR])

for 2x2 + 3x + 4.

Press [QUADR].
Type 2,3,4 on command line.

Press [CONT].

The program displays the answer.

program listing [QUADR] Comments

« CLEAR CLLCD Clear stack.
" Quadradic Formula " 1 DISP Prompt user.
" Enter a,b,c, then " 2 DISP
" press continue " 3 DISP
HALT

+ abc
« '(-b + { (b"2-4%axc))/(2%a)' EVAL

*Yy
«

IF y IM 0 > THEN

CLLCD

" Imaginary roots are" 1 DISP
y RE 2 DISP
" + or - i" 3 DISP
y IM 4 DISP

ELSE
CLLCD
" Real roots are " 1 DISP
'(-b - | (b"2-4%axc))/(2%a)’
EVAL
-» z
« y 2 DISP

" and " 3 DISP
z 4 DISP

»

END
»

»

» End of program.

Song program.

Make a list of the form { n tone duration tone

duration} where n is the number of tone-duration

pairs. The following program will play the song.

Example use (program name [PLAY])

Put list in level 1 (see example below).
Press [PLAY]

program listing comments

« DUP Duplicate list.
1 GET =~» s Grab n from list.
« 2 1 s START
GETI -+ a Grab tone.
« GETI =~» d Grab duration.

« 'a' EVAL 'd' EVAL BEEP » play tone.
»

NEXT Repeat until end of list.
»

» The End.

examplesongs:

{ 11 560 .4 560 .3 560 .1 560 .4 660 .3 620 .1 620 .3

560 .1 560 .3 525 .1 560 .5 }

{ 15 440 .4 580 .3 580 .05 580 .4 650 .4 730 .3 730
.05 730 .6 730 .1 650 .1 730 .1 765 .4 550 .4

650 .4 580 .4 }

Linear Algebra Programs

The matrix in the following programs is stored in
the global variable X.

Row operation program

This program performs the row operation
g¥ROWnp + ROW; ---> ROW; .

(g,h,i,j is sequence on command line.)

Example use (program name [RWOP])

Put a matrix on stack, level 1:

Type in -2,3,4,4 on command line.

Press [RWOP].

This is: -2 times row 3 plus row 4 and put result in
row 4.

program listing [RWOP]

«K +g hij

« 'X' STO

X SIZE LIST-+ DROP + rc

«1c FOR 4d

X { h d} GET g x

NEXT

{ 1 ¢c } -ARRY

1 ¢ FOR Ad

X {id} GET

NEXT

{ 1 ¢c} -ARRY +

'Y' STO

1 ¢ FOR d

Y {1d} GET

X { jd} ROT PUT

'X' STO

NEXT

X

'Y' PURGE
»

»

»

Row Swap Program

Swaps two rows.

Example use (program name [RRSW])

Put matrix on stack, level 1.

Type in 2,4 on command line.

Press [RRSW].
This swaps rows 2 and 4.

program listing [RRSW]

«

+ hi
«

'X' STO
X SIZE LIST- DROP =r c
«

1 ¢ FOR d

X {1 4d} GET
NEXT

{1 c} -ARRY
'Y' STO

1 ¢ FOR d

Y {1 d} GET
X {h d} GET
X {h d} 4 ROLL PUT

{i d} 3 ROLL PUT
'X*' STO

NEXT
X
'Y' PURGE

»

»
»

Row Multiply/Divide program

Multiplies (divides) a row by a number.

Example use (program name [RMLT] ([RDIV]))

Put matrix on stack, level 1.

Type in -6,3 on command line.

Press [RMLT]. ([RDIV])
This multiplies (divides) row 3 by -6.

program listing

«

+ g h

«

'X' STO
X SIZE LIST» DROP +r c
«

1 ¢ FOR d
X {h d} GET g x <<NOTE: change ¥* to

NEXT / for [RDIV]
{1 c} -ARRY program.
'Y' STO

1 ¢ FOR d
Y {1 d} GET
X {h d} ROT PUT
'X' STO

NEXT
X
'Y' PURGE

»
»

»

To make the two different programs: type in the

program listing above; store as [RMLT]; then RCL and

EDIT it, and replace the ¥ with / ; then store this new
version as [RDIV].

Synthetic Division Program

A polynomial:
f(x) = anx® + ap-1x2-1 + ,... + a1x + ao

has possible rational roots equal to:

+ or - factors of ao

factors of an

Use synthetic division on the equation f(x) to
determine if each possible root produces a remainder of
0 when divided into f(x).

The remaining roots are true factors of the
"residue equation" that the previous true factor
produced after division.

[-2] 3 14 14 -8 -8
+. -6 -16 4 8

residue eq.-> 3 8 -2 -4 0 ¢(--- shows that -2
(not including 0) is a root of

3x4 +14x3+14x2-8x-8.

Example use (program name [SYNTH])

Enter the coefficients of the polynomial as a vector in
level 1.

ie [3 14 14 -8 -8]

Type in the root you what to try -2

Press [SYNTH].

The program puts the residue equation and remainder on
the stack, and stores the original vector in X.

ie 3:

2: [3,8,-2,-4]

1: 0

If the remainder is 0 (a root is found), then [DROP]
the zero, enter the next possible root, and press

[SYNTH].

If the remainder is NOT zero (not a root) then [CLEAR]

the stack and press [X] to bring up your original
vector. Then try next possible root.

program listing [SYNTH]

«

«

'X' STO
X SIZE LIST- DROP = j
«

X 1 GET DUP c ¥

2 J FOR 1
X i GET +
DUP
Cc X

NEXT
DROP +r
«

DEPTH
-+ARRY
r

»

»

»

»

Data Bank Programs

The following programs should be put in their own
sub-directory. A sub-directory can be made ,for

example, by typing:

‘DATA Name of sub-directory
[CRDIR] Command "Create Directory”

found under MEMORY menu.

[DATA] will now be a key in the USER menu. Press
[DATA] to get into the DATA sub-directory. The user

keys go blank, indicating that there is nothing in the

sub-directory DATA. Now type the following:

<< HOME >> [ENTER] Command HOME returns you
'RTN' to the HOME directory.
[STO]

Now you have [RTN] for a user key. When you press

[RTN], it returns to the HOME or Root directory. This

is just a simple way to pop back and forth between your
sub-directories and the HOME directory.

The Data bank programs scroll through a list of

data. Create a list like the following:

{ "Bob 123-4567" "Joe 234-5678" "Fred 567-3456"

"John 444-5555" "Carol 555-2323" }

Then store the list under the name 'Q'

'Q

[STO]

The programs also uses an index number which is stored
under the name 'N'. So you need to create that also:

1 [ENTER] Start out with an index of 1.
'N'!

[STO]

Now the only thing left is the following 2 programs
which will scroll up and down the list:

Program: [UP]

« Q SIZE 1 -

+s
«K IF N s >

THEN s 1 +

'N' STO

"no more" 1 DISP
ELSE Q N 1 + DUP

'N' STO GET 3 DISP

Q N1 - GET 2 DISP

QN 2 - GET 1 DISP

END

»
»

Program: [DOWN]

« IF N 4 (

THEN

3 'N' STO

"no more" 3 DISP
ELSE

Q N1 - DUP

'N' STO GET 3 DISP

Q N1 - GET 2 DISP

QN 2 - GET 1 DISP
END

»

9

Classical Mechanics

In some statics problems you are working with a 3-
space cartesian coordinate system and force vectors at
various positions. The clue to solving a system of

forces in equilibrium is that the sum of all forces
acting on point is equal to zero.

Enter vectors like 3i - 4j + 5k in HP vector

brackets like this [3 -4 5]. That way, adding 2
vectors or multipling the vector by a scalar is easy.

Vector magnitude program

When you have a force vector out in space and have
the coordinates for the head and the tail, one of the

first things you can do is find the Position Vector

which is the head coordinates minus the tail

coordinates. So for example, you would enter the head

coordinates [4 3 0] then the tail coordinates [3 5 8],

then subtract. The result [1 -2 -8] is the Position
Vector i -2j -8k. In order to use this to show the
direction of a force, you need to make it a Unit Vector

or a vector with magnitude = 1. You do this by simply

dividing the Position vector by it's magnitude or

length.

The following program finds the magnitude of a 3-
space vector:

Example use: (program name: [MAG3])

Enter the 3-space vector on level 1.

3:
2:
1 (1 -2 -8]

Press [MAG3]: Result:

3:

2: (1 -2 -8]
1 8.30662386292 This is the magnitude of

the vector.

Now to get the Unit Vector just divide.

3:
2:
1 [.120385853086 -.240771706171 -.963086824686]

This is the Unit vector:

.1203858530861 -.240771706171j -.963086824686k

10

program listing [MAG3]

« DUP 1 GET SQ -+ a

« DUP 2 GET SQ + b

« DUP 3 GET SQ

a+b + [{Remember, this is RPN!
»

»
»

Coordinate direction angle

Program

When you have a unit vector representing the

direction of a force vector whose tail is at the

origin, you can find the Coordinate Direction Angles or

the angles the vector makes with the x, y, and z axes.

These angles are defined as:

alpha = Cos-1(i of unit vector)
beta = Cos-1(j of unit vector)
gamma = Cos-1(k of unit vector)

Example use (program name: [CDA])

Enter the unit vector on level 1.

3:

2:

1 [.120385853086 -.240771706171 -.963086824686]1]

Press [CDA].

The result is:

3:

2: [.120385853086 -.240771706171 -.963086824686]
1: { 83.0856282278

103.932091549
164.383870595 }

On level 2 is your unit vector and on level 1 is the
coordinate direction angles. This says that the vector
makes a 83 degree angle with the X axis, a 103.9 degree

angle with the Y axis, and a 164.38 degree angle with
the Z axis.

11

program listing [CDA]

« DUP 1 GET ACOS = a {Duplicate vector, get Ist

« DUP 2 GET ACOS =» b entry and take arccos

« DUP 3 GET ACOS = c of it, and put it in "a".
KK abc 3 LIST »

» » »

Interpolation program

When using tables (ie. steam tables or trig

tables), many times the value your looking for is in-
between two other values. For example:

Steam table for saturated Hz; O

Temp. Press. etc......
degC kPa

165 0.7005
170 0.7917

If you need the pressure at 167.5 degrees, you
need to interpolate between the values. This would be:

P=0.7005 + (167.5-165)/(170-165) x (0.7917-0.7005)

= 0.7461 kPa

Example use (program name: [INTPO])

Press [INTPO].

Type 165, .7005 Low lookup, related value

170, .7917 High lookup, related value

167.5 Number you're trying to lookup

Press [CONT]

The program displays interpolated value for 167.5.

program listing [INTPO]

« CLLCD {Clears LCD.

"Enter LowLup,LLval" 1 DISP {Promts user.
" HighLup,HLval" 2 DISP
" YourLup " 3 DISP
"Then hit [CONT]" 4 DISP

HALT {Halts the program
+ a al b bl x to allow user

‘al + (x-a)/(b-a) x (bl-al)' to enter data.
»

12

Timer program

Example use (program name [TIMER])

Enter starting time in seconds, press [TIMER].
Timer counts down and sounds alarm. Then press any key

to stop alarm. Note: may not be extremely accurate but
you can play around with a constant in the program to

make it more accurate if you like.

program listing

« IFERR ¢{ Set up error detection.
+ 8

«

s 0 FOR t
CLLCD "Timer running" 1 DISP
t +STR 3 DISP
"seconds" 4 DISP
.890 WAIT {Play with this

-1 STEP number to adjust
51 CF accuracy.

DO

2000 .1 BEEP
.1 WAIT

2000 .1 BEEP
.5 WAIT

UNTIL KEY END

51 SF
»

THEN

CLLCD

"Enter seconds" 1 DISP
"Press [TIMER]" 2 DISP

END
»

13

Lotto program

The lotto program picks 6 random numbers from 44.
You can adapt this program for different lottos.

Example use (program name [LOTTO])

Press [LOTTO].

The program displays 6 numbers.

program lising

«1 6 FOR X

RAND 44 x

0 FIX RND STD

NEXT

6 -LIST -+STR

DUP SIZE 2 -

2 SWAP SUB

2 DISP
"Lotto numbers" 1 DISP
" " 3 DISP

»

Interest program

Given the principal, interest rate, number of

times a year compounded, and number of years, this

program calculates the total amount.

Example use (program name [INTEREST])

Enter principal amount. (ex. 10,000.00)
Enter interest rate. (ex. .085)
Enter number of times a year compounded. (ex. 12 times a
year.)

Enter number of years left to accumulate.(ex. 5 years)

Press [INTEREST]

result:

15273.00 dollars.

program listing

« IFERR

* prnt

« 'p¥(l+r/n)” (nxt) ' EVAL »

THEN

"Enter P R N T" 1 DISP
END

»

14

Plot programs

The following programs make plotting a little
easier.

Program [Draw]

This program takes an equation in the form of an
expression off level 1, draws it, and stores the screen

in global variable ‘'PT'. This same plot can then be
instantly recalled later with the program [REDW].

program listing [Draw]

« IFERR

'EQ' STO CLLCD

DRAW LCD-+ ‘'PT' STO

PT -LCD DGTIZ

THEN

DROP

"Need equation on stack" 1 DISP
END

»

program listing [REDW]

Instantly redraws plot stored in 'PT'.

« PT -LCD DGTIZ »

program listing [FAST]

For fast, low resolution plots.

« 2 RES »

program listing [SLOW]

For slow, high resolution plots.

« 1 RES »

15

More Data Bank programs

These programs are simular to the previous data
bank programs except these programs "page-flip" instead
of scroll. Also when the program reaches the end of the
list, it returns to the top (or bottom) and continues.
The only catch is that when you make up your list of
items, you must have a total number of items that are

divisable by 3 (since it displays 3 at a time). This
is no problem though, since you can just put in empty
strings to take up the slack (i.e. " ").

Program name [Next] (Note this name must have some

lower case letters to distinguish from the NEXT command

word.)

listing

« IFERR

N 3 +

'N' STO

1 3 FOR r

Q NTI +

GET r DISP

NEXT

THEN

0 'N' STO

CLEAR

1 3 FOR r

Q NT +

GET r DISP

NEXT

END
»

16

Program name [PREV]

listing

« IFERR

N 3 -

'N' STO

1 3 FOR r

QNUZIr +

GET r DISP

NEXT

THEN

Q SIZE 3 - 'N' STO

CLEAR

1 3 FOR r

QNTITr +

GET r DISP

NEXT

END
»

Example list of items for previous programs:

{ "Joe Jones"
"123 Main St."
"ph. 123 4567"
"Norman Bartfaster"
"2345 E. West St."
"ph. 345 5678"
"This space for sale"

"ph. 345 2345"
"The End"
”" "

Note the use of empty strings to fill out the

"pages" and in particular to finish the last page.
Remember you must have three items for each page.

17

Probability

Flip a coin until you get a head, and count the

number of times, R, that you flipped. R could be 1, 2,
3, 4, and so on. Obviously, on the first flip, the
probability of getting a head is .5. The chance of

having to flip twice (R=2) to get a head is .5 x .5 or
(.5)2., You might guess that for an experiment like
this the probability of getting a head after R flips is
(.5)R- Where R is the number of flips it took.

Probability Density Function of a random variable

of the discrete type is denoted by f(x). It is the
probability that an event occurs.
It is also denoted by P(X=x), where X is the random
variable and x is the specific number R, ex. P(X=2).

Therefore in the experiment above:

p.d.f. f(x) = P(X=x) = (.5)x.

Now, what if you needed to know the probabily of

getting a head in 3 flips or less, ie. P(X <£ 3). This
is the cummulative sum of all the probabilities less
than or equal to three, and is formally called the

Cummulative Distribution Function (c.d.f.). The c.d.f.

is denoted by F(x) and is the following:

X

F(x) = P(X <x) = Z f(t)
t=1

Note that x can only be an integer, (discrete

variable type).

18

Summation Program

Performs the following:

b

z f(x)
X=a

Example use (program name [TFX])

Enter f(x) on stack as an expression.

3:
2:
1 '.5°X" note: capital letter X

Enter the bounds, a and b, you want the expression

summed over.

3: '.5°X"!

2: 3 This is a.

1: 5 This is b.

Press [2FX]

result:

3:

2: '.5°X! (- left on stack

1: .218175 {- This is the answer

program listing: ([ZFX 1)

« IFERR {Set up error detection
+ ab to display a help screen.
« 0 'ANS' STO

a b FOR x
x 'X' STO
DUP -NUM
'ANS' STO+

NEXT
»

ANS 'X' PURGE
'ANS' PURGE

THEN
CLLCD
"Enter 'expression' in" 1 DISP
"terms of X, then enter" 2 DISP
"summation bounds a,b" 3 DISP

END
»

19

Expected Value of X Program
(Mean of X)

The expected value of X or E(X) is defined as:

b
Tr xxf(x)

X=a

program listing: ([ZXFX])

«& IFERR

+ ab

« 0 'ANS' STO

a b FOR x

x 'X' STO

DUP +NUM X * (Difference from summing

'ANS' STO+ program.
NEXT

»

ANS 'X' PURGE

'ANS' PURGE

THEN

CLLCD

"Enter 'expression' in" 1 DISP
"terms of X, then enter" 2 DISP
"summation bounds a,b" 3 DISP

END
»

20

Binomial Distribution

The binomial distribution is a function given by:

b
Pla <x £b)=% [k!'/(k!'(n-k)!)]lpk(l-p)n-k

k=a

With the mean = np, and variance = np(l-p), where
n is the number of Bernoulli trials, and p is the
probability of success.

Example use

The probability that a part fails during the first
year of operation is 0.05. What is the probability
that out of 10 parts, between 3 and 5 are defective?

In this case n = 10, p = 0.05, a = 3, and b = 5.

Type 10,.05,3,5 on command line.

Press [BIN]

result:

3:
2:
1 1.15008027966E-2

program listing [BIN]

« IFERR

“ npab

« 0 'ANS' STO
a b FOR y

n y COMB

'p"y¥(1-p)“(n-y)' EVAL
'ANS' STO+

NEXT
»

ANS 'ANS' PURGE

THEN

"+ n,p,a,b" 1 DISP (Display help screen if
END error.

»

21

Poisson Distribution

The Poisson distribution is a function given by:

b

P(a < x £ b)= £ (Lke-1)/k!
k=a

where L = np = mean. The approximation works well
when the probability of success, p, is small and the
number of trials, n, is large.

(The greek letter lambda is usually used in place of
L.)

Example use

The probability that a part is defective is 0.02.
what is the probability that out of 200 parts, between
10 and 15 parts are defective?

In this case lambda = np = 200(0.02) = 4, a = 10,
and b = 15.

Type 4,10,15 on command line.

Press [POISS]

The answer is about .008127.

program listing [POISS]

« IFERR

+ la ab
« 0 'ANS' STO

a b FOR k

'la“kxe”(-la)' NUM

k FACT /

'ANS' STO+

NEXT
»

ANS 'ANS' PURGE

THEN

"+ la,a,b" 1 DISP {Help screen.
END

»

22

Normal Distribution

Unlike the previous distributions which were
discrete types, the normal distribution is a continuous

type. The normal distribution with mean = 0 and
variance = 1 is given by:

P(Z < 2) = 1I(z)= J [e~2"2/2]1/(2w)
-infinity

and is denoted N(0,1).

Example use

Whats the probability of Z<.77?

Type .7 on command line.

Press [NRM]

answer: .758

program listing [NRM]

« IFERR
+b

« '.39894228%xEXP(-X"2/2)"
{ X0Db}
.0001 § DROP .5 +
4 FIX RND STD {rounds answer to 4

» decimal places.
THEN
"+b" 1 DISP

END

»

23

Another version of this program can take upper and
lower bounds and compute the probability.
(i.e. P(a £X <b))

program listing [NRM2]

« IFERR

+ ab

« '.39894228%xEXP(-X"2/2)"

{ Xab}
.0001 § DROP

4 FIX RND STD

»

THEN

" + a,b " 1 DISP

END
»

Pooled Variance

Pooled variance is used in many Statistical

methods such as confidence intervals and hypothesis
tests. The following program computes this.

program listing

« IFERR

+ s1 82 nl n2

« '"((nl1-1)%s14+(n2-1)%s82)/(nl1l+n2-2)"'

-NUM DUP 3 DISP

"Pooled variance =" 2 DISP
»

THEN

"Pooled variance" 1 DISP
"Enter varl,var2,nl,n2" 2 DISP

END
»

24

Parallel resistance program

Example use (program name: [P.RES])

Enter the values of resisters.

470,1000,100,390,560 [ENTER]

Enter the number of resisters you entered.

5 [ENTER]

Press [P.RES]

The equivalent resistance of (in this case) the §
resisters is displayed.

program listing [P.RES]

« +d Grabs the "number of
« 1 d START resisters" number.

INV

d ROLL

NEXT

1 d1 - START This loop adds up all the
+ inverted numbers.

NEXT

INV Inverts the final value to give

» answer.

»

25

Delta to Y network

transformation

The resister network (A) is called a delta

network. It can be transformed into a Y network ,(B),
with the following formulas:

Riy = R2%¥R3/(R1+Rz2+R3) The R's on the right side of
Rzy = Ri *Rs/(R1+R2+R3) equation are from the delta
Rsy = Ri ¥R2/(R1+R2 +R3) network.

o--[R1]---0 o--[Rs]--1--[Rz2]1--0
\ / I

[Rz2] [Ra] [(R:1]
\ / I
\ / 0
0

(A) (B)

Notice the pattern of the transformed resisters.

Example use (program name: [D.Y])

Enter Ri, Rz2, and Rs from delta network on stack.

3: 470 Ri
2: 100 R2
1: 180 Rs

Press [D.Y]

The program returns the Ri, Rz, and Rs for the Y

network.

3: 24 R;

2: 112.8 R2

3: 62.66667 Rs

program listing [D.Y]

« + abec

«& 'bxc/(a+b+c)' EVAL
'‘axc/(a+b+c)' EVAL
'axb/(a+b+c)' EVAL

»
»

26

Y to Delta network

transformation

This program does the reverse of the Delta to Y
program. See Delta to Y program for more details.

program listing name: [Y.D]

«KK =+ abc

«& '(axb+bxc+c*a)/a' EVAL

'(axb+b*c+cxa)/b' EVAL

'(a*b+b*c+c*¥a)/c' EVAL
»

»

Angular frequency and
frequency conversion
Programs

The following program converts angular frequency
(rad/s) to frequency (Hz).

program listing: name: [W-F]

KK + Ww
« 'Ww/(2 % «)' NUM »

»

The following program converts frequency (Hz) to
angular frequency (rad/s).

program listing: name: [FW]

« +f

& '2 X 5 Xx £' NUM »

»

27

Complex Impedence converter
rrograms

This program converts a resistance into it's
complex impedence Zr. Input: resistance (ohms).

Example: enter 1000 for a 1k resistor.
Example output: (1000,0)

This is the complex number 1000 + 0j.

program listing: name: [RESI]

« IFERR

+r
«Kr 0 RC »

THEN

" Need resistance " 1 DISP
END

»

The following program converts a capacitance into
it's complex impedence Zc. Input: angular frequency
(rad/s), capacitance (F).

program listing: name: [CAP]

« IFERR
+ WC

K w c ¥ INV NEG 0 SWAP R-+C »

THEN

" Need angular freq.," 1 DISP
" capacitance " 2 DISP

END
»

The following program converts an inductance into
it's complex impedence Zp. Input: angular frequency
(rad/s), inductance (H).

program listing: name: [IDUCT]

« IFERR

* w L

«K wL x O SWAP R-C »
THEN

" Need angular freq.," 1 DISP
"

END
inductance " 2 DISP

»

28

Evaluating Boolean

Expressions

The HP-28 can evaluate boolean expressions. The
following example describes the process.

Suppose you have a 3 input function with the following
output:

ABC F

000 0
001 1
010 1
011 0
100 0
101 0
110 1
111 0

The boolean expression from the truth table is:

A'B'C + A'BC' + ABC'

To verify this expression, the values of A, B, and C

must first be stored in global variables.

Looking at A, B, and C on the truth table from bottom

to top we have:

11110000
11001100

A
B
Cc 10101010

Go into the binary menu and select [BIN] mode.

Enter the numbers (must use the pound symbol) and
store each one under A, B, and C respectfully.

Then you can use the AND OR and NOT operators (also

under binary menu) to evaluate the expression. For the

example above, you would key in:

A [NOT] B [NOT] C [ENTER] [AND] [AND]
A [NOT] B [ENTER] C [NOT] [AND] [AND] [OR]

A [ENTER] B [ENTER] C [NOT] [AND] [AND] [OR]

The result should be the output of the truth table
01000110.

29

RLC circuit programs

Damping factor and undamped angular frequency2 for RLC

This program calculates two important variables used in
determining the natural and step responses of basic
parallel and series RLC circuits. They are the damping
factor « (or neper frequency) and the undamped angular
frequency wo (or resonant radian frequency). This
program calculates wo? not wo.

example use (program name [RLC])

The program takes four values R, L, C and x. The
x is a 0 or 1 which indicates to the program whether
the circuit is a series RLC or parallel RLC. x is O
for parallel, and x is 1 for series.

If, for example R=400 ohms, L=.04H, C=1uf are the

componet values for a parallel RLC circuit, enter the
values of R, L and C on stack in this order.

Now enter a zero on the stack to indicate a parallel
circuit.

0 [ENTER]

Press [RLC]

The program displays the value of « and wo?.

program listing: name: [RLC]

« IFERR

+r L cx {- Note: L is local

« 'r¥xINV(2%L)' EVAL - a

« 'INV(2%rxc)' EVAL =» Db

& 'INV(Lx*c)' EVAL =» c
&« IF x 1 ==

THEN

"Series RLC" 1 DISP
"alpha=" a -+STR + 2 DISP
a c

ELSE
"Parallel RLC" 1 DISP
"alpha=" b STR + 2 DISP
b c

END

"wo®2=" c¢c STR + 3 DISP
» 0» 0» 0»

THEN

"Need R,L,C,x" 1 DISP

"where x=0 for parallel," 2 DISP
"x=1 for series RCL." 3 DISP

END
»

30

Determining expressions for basic RLC circuits.

Natural and step responses for parallel and series
RLC circuits all have the same basic functions for 3
cases. The cases are overdamped, underdamped, and
critically damped.

For the overdamped case:

f(t)= Ajeslt + A,es2t

f(0)= A: + A:

df (0) /dt= S1A; + S:2A:

For the underdamped case:

f(t)= e-at[Bicos(wat)+Bzsin(wat)]

f(0)= B:

df (0)/dt= waBz - aB;

For the critically damped case:

f(t)= e-at[D;t + Dz]

f(0)= D2

df (0)/dt= D1 - aD:

Note: a = «x (damping factor)

f(t) can be v(t) or i(t) for the natural response

and for the step response the final value, v¢ or if, is
added to the expression

This program takes the values of « and wo? and
determines if the response is overdamped, underdamped,
or critically damped and calculates the parameters S,
and S; if overdamped, x (a) and wa if underdamped, and

«x (a) if critically damped. These values can then be

used in the f(t) expressions above and the coefficients
(A: ,A2 ,B1, etc.) can then be determined from initial

conditions.

31

example use (program name: [SSAW])

You have a series RLC circuit with R=560 ohms,

L=.1H and C=.1uf. The initial conditions of V¢ap=100v

and 1=0 at t=0 is given. Find the natural response
i(t) for t>07?

First, « and woe? is determined by using the [RLC]

program.

Type 660, .1, .1E-6, 1 on command line.

Press [RLC]

The display shows:

Series RLC
alpha=2800
wo"2=100000000

Now press [SSAW]

The display shows:

Underdamped. alpha=
2800
and wd=

9600

This tells you that the response is underdamped so
you'll have to use the underdamped function:

i(t) = e-at[Bjcos(wat)+Bzsin(wat)]

Substituting «x and wa:

i(t) = e-2800t[B;cos(9600t)+B2s8in(9600t)]

B; and Bz: can then be determined from initial

conditions.

32

program listing name: [SSAW]

« IFERR +» a w

& '—-a+{(a"2-w)' EVAL +» y

« IF y IM 0 >
THEN

CLLCD

"Underdamped. alpha=" 1 DISP
y RE NEG 2 DISP

"and wd=" 3 DISP
y IM 4 DISP

ELSE

'‘~a-{(a"2-w)' EVAL =~» z
K IF y z ==

THEN
"Critically damped." 1 DISP
"alpha=" 2 DISP
z NEG 3 DISP

ELSE

"Overdamped. S1=" 1 DISP
y 2 DISP
"and S2=" 3 DISP
z 4 DISP

END
»

END
»

»

THEN

"Need alpha, wo™2" 1 DISP
END

»

33

Quickies

Program name [ON] Turns on sound. Input: none.

« 51 CF »

Program name [OFF] Turns off sound. Input: none.

« 51 SF »

Program name [DEGK] Converts degrees Celsius to
degrees Kelvin. Input: number representing degrees in
Celsius.

« 273.15 + »

Program name [MODE] Toggles between standard mode and

fixed, 2 decimal place mode. Input: none.

« IF 49 FC? THEN 2 FIX ELSE STD END »

Program name [-+VECT] Puts 3 numbers into a 3-space
vector.

Input: 3 numbers.

« 3 -ARRY »

Program name [ROT3] Rotates 3 numbers on stack. Input:

3 number's on stack.

« 3 ROLL 3 ROLL »

Program name [RTN] Returns you to the home directory.

Input: none.

«& HOME »

Program name [KILO] Multiplies a number by 1000.

Input: a number on the stack.

« 1000 x »

Program name [MICR] Divides a number by 106.

Input: a number on the stack.

« .000001 x »

	Cover
	Table of Contents
	A Brief Introduction into Programming the HP-28
	Quadratic formula
	Song Program
	Linear Algebra programs
	Row operation program
	Row swap program
	Row multiply/divide program

	Synthetic division program
	Data Bank program
	Statics Programs
	Magnitude of 3-space vector program
	Coordinate direction angle program

	Interpolation program
	Timer Program
	Lotto program
	Interest program
	Plot programs
	Draw program
	ReDraw program
	Fast program
	Slow Program

	More Data Bank Programs
	Probability
	Summation Program
	Expected value of X program
	Binomial distribution
	Poisson distribution
	Normal distribution
	Pooled variance

	Electrical Engineering
	Parallel resistance program
	Delta to Y transform program
	Y to Delta transform program
	Angular frequency and frequency conversion
	Complex Impedance converter programs
	Evaluating Boolean expressions
	RLC circuit programs

	Quickies

