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PREFACE

Introduction. Fractals are concrete objects — pictures — that students now see in

books, on posters, and on computer, video, and television screens. Such pictures of fractals

provide vivid illustrations of abstract mathematics, but they also require mathematics to

be created and understood. Fortunately, the mathematics involved in creating and inves-
tigating fractals coincides with, and can help in understanding, the theory that students
majoring in the mathematical sciences need to master in the introductory courses in com-
plex analysis, real analysis, and topology: iterations, sequences, convergence, boundedness,

neighborhood, continuity, compactness, homeomorphisms, measures, and so forth.

Purpose. To convince students of the close relationship between theory and practice,

the present book demonstrates how the “abstract” topics taught in introductory courses

in analysis and topology apply to “concrete” pictures of fractals. Besides presenting stu-

dents with applications of mathematics at several levels, fractals offer several additional

advantages: they are familiar to many different students; they demand no prerequisites

from fields outside of mathematics; and they provide research projects with statements

accessible to undergraduates. Reflecting the ubiquity of fractals, the present book may

either serve as a main text in a seminar on fractals or on research for undergraduates, or it

may serve as a supplement — as do the instructor’s handouts on special topics — in such

courses as complex analysis, real analysis, and topology.

Chapter 1 introduces the fractals called “Julia sets,” and develops plotting algo-
rithms based upon complex variables. The material includes a new bound

for the size of quadratic Julia sets and for Mandelbrot’s set, which involves

only basic algebra and the triangle inequality with complex numbers. The

new bound then leads to a justification of the Non-Attracting Fixed-Point

Inverse Iteration Method that utilizes only elementary complex variables.

Chapter 2 begins with a simple construction of von Koch’s fractal snowflake.

The exposition then proceeds with an explanation of Hausdorff dimension,

and with a new, elementary proof of the Hausdorff dimension of von Koch’s

snowflake, which utilizes only a counting argument and the basic topological
concepts of compactness and of Cauchy sequences of continuous functions.

To accommodate readers with various mathematical backgrounds, each chapter begins

with examples at the level of a beginner in the subject. For intermediate readers, each

chapter then reviews the relevant theory from the core of complex analysis, real analysis,

or topology, as needed. Following the theory, exploratory term projects allow students

to explore lesser known aspects of fractals, at a challenging level involving computing

experiments and theoretical conjectures, in a way similar to Gleick’s account of Mitchell J.

Feigenbaum'’s discovery of Feigenbaum'’s constant with an HP-65 pocket calculator. Finally,

each chapter proposes research problems particular to the topic under consideration, which

give students opportunities to investigate practical and theoretical extensions of the text

and of their courses; the proposed problems may lead to publishable original research.

Also, each chapter contains extensive solutions to all the exercises — with explanations

and intermediate steps — as well as hints and suggested strategies for the term projects.



Computing. Throughout the text, exercises and term projects allow students to

experiment with “supercalculators,” which are pieces of software or hardware — for exam-

ple, Hewlett-Packard Company’s HP-28C, HP-28S, or HP-48SX hand-held calculators, or

any computer equipped with adequate mathematical software — that link graphic, sym-

bolic, and numerical capabilities to one another. Such experiments also demonstrate how

mathematical theory and pictures of fractals reflect each other.

 

Please note that the programs listed herein are only working

prototypes, which appear here only to illustrate the ideas explained

in the text and to document how certain displays of fractals were

obtained, without any warranty of any kind.   
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CHAPTER 1

QUADRATIC JULIA SETS

in Complex Analysis

Summary. The present chapter reviews the theory necessary to define the concept of

“Julia set” and to design an algorithm to plot Julia sets. The resulting pictures illustrate

many concepts related to complex numbers, at levels from precalculus through complex

analysis.

Prerequisites. The treatment of filled Julia sets, in the second section, demands

only a working knowledge of the arithmetic of complex numbers, as reviewed in the first

section. The presentation of Julia sets, in the fourth section, requires a familiarity with

the contents of a standard introduction to complex variables (such topics are reviewed in

the third section).

W
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0. INTRODUCTION

“Julia sets” are examples of mathematical objects informally called “fractals.” Pic-

tures of Julia sets, such as those in exhibit 1, are important, because they provide a

graphic medium for communicating certain abstract but useful concepts from real and
complex analysis. For instance, Julia sets illustrate the sensitivity to initial conditions of

the convergence or divergence of some sequences of complex numbers. Such sensitivity
forms a part of the informal concept of “chaos” and is sometimes called the “Butterfly

Effect”: weather is so sensitive to small perturbations that a butterfly flapping its wings in
Tokyo may cause the weather later to change in Paris. This sensitivity renders long term

weather forecasting practically impossible. For a historical account of the discovery of the
Butterfly Effect by M.I.T.’s Edward Lorenz, see Gleick’s Chaos (reference [38]).

(a) (b) (c) (d)
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Exhibit 1. (a) - (d) Pictures of Julia sets. (e) Similarity under magnification.

There are advanced mathematical surveys of the theory of Julia sets, for instance,

those by Barnsley [28], Blanchard [29], Devaney [30], Devaney and Keen [32], and Falconer
[33], [34], with abundant examples of images of Julia sets, notably in the works of Mandel-
brot [35] and of Peitgen et al. [36], [37]. In contrast, this chapter provides an introduction
to Julia sets, beginning at the level of precalculus and ending at about the level of a rig-

orous introduction to complex analysis. Because a treatise about Juliasets would require

a substantial amount of theory, this chapter aims at only two goals: a definition and illus-

trations of the concept of Julia set; and a rigorous — but simpler than otherwise available

— development of an algorithm to plot Julia sets with computers or supercalculators.
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1. COMPLEX GEOMETRY AND ALGEGBRA

The present section reviews those concepts from elementary complex analysis that

form the mathematical basis of “filled Julia sets,” at the level of precalculus and calculus.

1.1. The algebra of complex numbers

A definition in terms of the set R of all real numbers will demystify complex numbers.

Definition 1. A complex number is an ordered pair of real numbers, often denoted
by z = (z,y), with = € R representing the first coordinate of z, and y € R representing
the second coordinate of z, as shown in figure 1. The set of all complex numbersis called
the complex plane and denoted by the symbol C (“blackboard” or “special roman” C).

Thus, the set of complex numbers is the ordinary two-dimensional real plane: C = RZ.

EXAMPLE 1. (1,0), (0,1), (—3/;,v?2), and (7w, —e) are four complex numbers.

Besides the representation of complex numbers with cartesian coordinates, there exists

another representation, with polar coordinates.

L Im

 ; :
0

x

Figure 1. Cartesian coordinates, (z,y), and polar coordinates, (r,6).

Definition 2. The modulus (also called the magnitude) of a complex number
z = (z,y) is the number |z|, also denoted by the letter r, and defined by

r=|z| = Vz? + y2.

The principal argument (or simply the argument) of a complex number z = (z,y) is

the number Arg(z), also denoted by 6 (the Greek letter “theta”), and defined by

6= Arg(z) = { —Arccos(z//z? +y2?) if y<O,

Arccos(z/+\/z2 +y%) if y>0.
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Thus, the modulus r = |z| represents the distance from the complex number z to the

origin, and the argument 6 = Arg(z) represents the angle, in the range —7 < 6 <,
formed by the complex number z and the positive first coordinate axis, as in figure 1.

EXAMPLE 2.

(2.1) The complex number z = (1,1) has modulus r = |(1,1)] = V12 + 12 = 2
and argument # = Arg(1,1) = Arccos(1/v1% + 12) = Arccos(1/v/2) = 7/4.

(2.2) The complex number z = (0,1) has modulus r = |(0,1)] = V0?2 +12 =1
and argument 6 = Arg(0,1) = Arccos(0/v/0% + 12) = Arccos(0) = 7/2.

(2.3) The complex number w = (1,—+/3) has modulusr = |(1,—-v3)| = V1 + 3 =
2 and argument 6 = Arg(1,—v/3) = .. = —Arccos(12) = —7/3.

While the preceding definition and example proceeded from cartesian to polar coordi-

nates, the converse operation converts polar coordinates back to cartesian coordinates by

projecting a point z = (x,y) onto each of the coordinate axes:

r =r-cos(f) and y =r -sin(6).

Thus, with r = |(z,y)| and 6 = Arg(z,y), as shown in figure 1,

(z,y) = - (cos(8),sin(h)).

EXAMPLE 3. For the complex number with modulus 7 = /2 and principal argument

§ = 7/4, we obtain z=r-cos(d) =v2-1/vV2=1 and y=r-sin(d) =v2-1/vV2=1.

The first advantage of complex numbers lies in their algebra, described in the following
two definitions, which provides a concise notation for dealing with algebraic and geometric

operations in the plane.

Definition 3. The addition of complex numbers maps two complex numbers, w =
(u,v) and z = (z,y), to their sum, denoted by w + z and defined by

w+z = (u,v) + (z,y) = (v +z,v +y).

Thus, the addition of complex numbers s the ordinary addition of points (“vectors”)

in the plane. Graphically, the sum w + 2 = (u +,v 4+ y) lies at the fourth corner of the

convex parallelogram with the other three corners at the points w = (u,v), z = (z,y),
and the origin, (0,0), as shown in figure 2a.

EXAMPLE 4. (1,2)+(3,4) =(1+2,3+4)=(3,7).

REMARK 1. (TRIANGLE INEQUALITY) Since the modulus of a complex num-

ber equals the ordinary Euclidean distance from that number to the origin, the modulus

satisfies the same triangle inequality as the distance does: for all complex z and w,

|2+ w| < 2] + |l
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with equality ( |z + w| = |z| + |w| ) if, but only if, there exists a non-negative real number
¢ > 0 such that either 2z = fw or w = ¢z (with ¢z = {(z,y) = (¢z,Cly), as with
the ordinary multiplication of a number by a vector in the plane). This means that

|z + w| = |z| + |w| if, but only if, 2 and w lie in the same direction from the origin.

Definition 4. The multiplication of complex numbers maps two complex numbers,
w = (u,v) and 2z = (z,y), to their product, denoted by w -z, or w x z (which does

not denote a cross product in the present context), or wz, with

wz = (u,v)(z,y) = (v — vy, uy + vT).

EXAMPLE 5. (1,2)(3,4) = ((1x3)—(2x4), (1x4)+(2x3)) = (3—8,4+6) = (=5, 10).

Graphically, the multiplication of a complex number z by a complex number w

rotates z by the argument of w and expands or contracts z by the modulus of w, as

in figure 2b. In mathematical symbols,

Arg(wz) = Arg(w) + Arg(z),

wz] = |w] - |z].

wa

rs

   

 

(a) (b)
Figure 2. Graphic interpretations of the complex addition and multiplication.

A verification of the graphical interpretation of the complex multiplication consists of

expressing the multiplication not with cartesian coordinates (as in the definition) but with

polar coordinates (as in the graphical interpretation). To this end, let r = |z| and
6 = Arg(z) denote the polar coordinates of z, and let s = |w| and ( = Arg(w) (¢ 1s
the Greek letter “zeta”) denote the polar coordinates of w:

r =r-cos(f) and y = r-sin(f),

u=s-cos(¢) and v = s-sin(().



6 Chapter 1 QUADRATIC JULIA SETS

Consequently,

wz = (u,v)(z,y) = (uz — vy,uy +vz) =

(s-cos(¢)-r-cos(f) —s-sin(C)-r-sin(f) , s-cos(()-r-sin(f) + s -sin(¢) - r - cos(d))

= rs(cos(() cos(8) — sin(¢) sin(6) , cos(¢)sin(6) + sin(¢) cos(8))

= rs(cos(¢ + 6),sin(¢ + 9)).

Thus, the product wz = (u,v)(x,y) is the complex number with modulus |wz| =rs =
|w| - |2| and argument Arg(wz)=(+ 6 = Arg(w) + Arg(z).

EXAMPLE 6. With z =(/3,3) and w = (v/3,1) the product becomes

2w =(v3,3)(v3,1) = (V3V3-3x1,V3x1+3x V3) =(0,4V3).

Verify that |zw| = |z|- |w| and that Arg(zw) = Arg(z)+ Arg(w):

|zw| = 1(0,4V3)] = 4v3 = 2V3 x 2 = |(V/3,3)| - [(V3,1)| = || - [w], v
Arg(zw) = Arg(0,4V3) = 7/2 = 7/3 4+ 7/6 = Arg(V/3,3) + Arg(V3,1) = Arg(z) +
Arg(w).

With its addition and its multiplication, the set C forms a number field (also
abbreviated as a field), which means that the operations of addition and multiplication
satisfy the properties listed in table 1, the proof of which follows through straightforward

algebra by expanding and comparing both sides of each equation.

Table 1. The algebraic properties of the field of complex numbers, C.

The following properties hold for all complex numbers (u,v), (z,y), and (p,q).
 

 

 

Associativity of + ((u,v) + (z,y)) + (p,q) = (uw,v) + ((z,y) + (P, )
Commutativity of + (u,v)+ (z,y) = (z,y) + (u, v)
Identity (0) for + (z,y)+(0,0) = (z,y) =(0,0) + (z,y)
Inverse for + (z,y)+ (—z,-y) =(0,0) = (—z,—y) + (z,y)

Associativity of x ((u,v)(z,y))(p,q) = (uv,v)((z,y)(p,q))
Commutativity of x (u,v)(z,y) = (z,y)(u, v)

dentity (1) for x (2,9)(1,0) = (z,9) = (1,0)(z,y)
Inverse for x If (z,y) # (0,0) then (z,y)(z/(z* + y2), ~—y/(m2 + %)) =(1,0)

Distributivity of x over + (u,v)((z,y) + (p,q)) = (u,v)(z,y)) + ((v,v)(p,q))
 

REMARK2. (INCLUSION OF R INTO C ) The set of all complex numbers with
second coordinate equal to zero, of the form (z,0), satisfies all the algebraic rules of the
real numbers with ordinary addition and multiplication. Thus,

(z,0) + (u,0) = (z + «,0) and (z,0)(u,0) = (zu,O0).

Consequently, we often identify the set {(z,0): = € R} C C with R. For instance, we
identify (1,0) with 1 and (0,0) with 0. With such an identification, 1 x (p,q) means
(1,0) x (p,q) and, similarly, 0+ (p,q) means (0,0)+ (p, q).
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REMARK 3. (HISTORY) According to van der Waerden’s A History of Algebra [39],
pages 47-52, one of the first conceptions of complex numbers arose in attempts to solve

polynomial equations in finance. At the time (in the fifteenth century), complex numbers

were considered to be “imaginary,” before the availability of any formal definition. For

such historical reasons, the second coordinate y of a complex number z = (z,y) is called
the imaginary part (or the complex part) of z, abbreviated by y = Im(z), and the

first coordinate, z, is called the real part of z, abbreviated by z = Re(z). Remember,

however, that the “imaginary” part is also a “real” number.

EXAMPLE 7. For z = (1,2), the real part is Re(1,2) =1 and the complex part is
Im(1,2) = 2.

REMARK 4. (COMPLEX ARITHMETIC WITH SUPERCALCULATORS) The

HP-28 and HP-48 supercalculators (as their predecessor, the HP-15C) can perform all

the operations defined in the present subsection, as explained in table 2.

Table 2. Complex arithmetic with the HP-28 and HP-48.

Keys Comments Display
 

 

(1,2) (3,4) [£] Add two complex numbers. (4,6)

(1,2) (3,4) Multiply two complex numbers. (-5,10)

(1,2) (3,4) =] Divide two complex numbers. (.44,.08)

(3,4) ABS Compute the modulus. 5

(-1,0) ARG Compute the principal argument. 3.14159. ..

(1,2) RE Extract the real part. 1

(1,2) IM Extract the imaginary part. 2

(3,4) C—R Extract both coordinates. i

5 6 R—C Build a complex number. (5,6)

(1,1) R—P (HP-28) Convert to polar form. (1.4142...,.7853...)

(1,1) [ENTER POLAR  (HP-48) Convert to polar form. (1.4142...,4.7853...)
 

REMARK 5. (LOCATION OF COMMANDS) On the HP-28C&S, the commands
ABS, ARG, RE, IM, R—C, C—R, and R—P are in the CMPLX menu.

On the HP-48SX, the commands ABS, ARG, RE, and IM are in the PARTS submenu

of the MTH menu, the commands R—C and C—R are in the 0BJ submenu of the PRG menu,

and the command POLAR is available on the keyboard with the blue (right-hand) shift key.
To get arguments in radians, set your supercalculator in Radians mode by means of

the RAD command in the MODES menu.
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Exercises

Routine exercises

Exercise 1. Perform the following operations (which illustrate the properties listed
in table 1) either by hand or with a supercalculator.

(1.1) (0,0) +(2,3) = (1.12) (%43, —3M3) x (2,3) =
(1.2) (2,3) 4+ (0,0) = (1.13) ((2,3)+(4,5)) +(6,7) =

(1.3) (1,0) x (2,3) = (1.14) (2,3) +((4,5) + (6,7)) =

(1.4) (2,3) x (1,0) = (1.15) ((2,3)(4,5))(6,7) =

(1.5) (2,3) +(4,5) = (1.16) (2,3)((4,5)(6,7)) =

(1.6) (4,5)+(2,3) = (1.17) (2,3)((4,5) +(6,7)) =

(1.7) (2,3) x (4,5) = (1.18) ((2,3)(4,5)) +((2,3)(6,7)) =
(1.8) (4,5) x (2,3) = (1.19) (-1,0) x (2,3) =

(1.9) (2,3) +(-2,-3) = (1.20) (2, 3) x (=1,0) =

(1.10) (-2,-3)+(2,3) = (1.21) (1,0) x (1,0) =

(1.11) (2,3) % (213, ~3hs) = (1.22) (0,1)  (0,1) =
The following exercises involve only straightforward computational proofs.

Exercise 2. For each complex number z = (z,y) denote by 2z the complex number

z = (z,—y), called the complex conjugate of 2. Applying the definition of complex

addition and multiplication, express the following three results in terms of z and y.

(21)z+z2=(7,7) (22)z—z=(7,7) (23)zxz=(7,7)

Exercise 3. Prove that if a complex number z has modulus r and argument 6,
then 2? has modulus r? and argument 26. Thus, |z?| = |z|?> and Arg(z?) = 2Arg(2).

Exercise 4. Prove the reverse triangle inequality: for all w and z in C,

2] = [wl] < ]z — w].

Exercise 5. For the purpose of this exercise, let

. 1 if y>o,sientr) ={ 1) V20
Moreover, define a complex square root

V:C—oC, z=(2,y) = Vz=w=(u,v)

by the formulae [obtained by solving (z,y) = (u,v)? = (u? — v%,2uv) for u and v ]

T+t +y? . o /72 2,2
U= and v = sign(y) _+__3_a£__—f-_y_
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Prove that w? = z, that is, (u,v)(u,v) = (z,y).

Exercise 6. For each complex number z € C denote by w any square root of =.

In other words, let w represent any complex number such that w? = z.

(6.1) Prove that —w is also a square root of z; thus, (—w)? = z.

(6.2) Prove that there exists no square root of z other than w and —w.

Exercise 7. Provethatif 2 € C andif w = /z, with the complex square root defined

in exercise 5, then |w| = 4/|z| (the ordinary real square root) and Arg(w) = Arg(z)/2.

Exercise 8. Either by hand or with the square-root key on a supercalculator, compute

the square roots of the following complex numbers:

(8.1) z =—1; (8.2) z = —4; (8.3) z=1=(0,1).

Exercise 9. Prove the complex quadratic formula: for all complex coefficients (com-

plex numbers) a,b,c € C with a # 0, all the solutions of the equation

az?+bz+¢c=0

are
—b+ Vb? — 4ac q —b— Vb? — 4ac

Exercise 10. Determine all the complex solutions of the equation z2 + 6z + 25 = 0.
 

1.2. Sequences of complex numbers

Many applications of complex numbers involve not only a few complex numbers but

infinite sequences of complex numbers, usually denoted by (zx)72,, or (w; );";1, or simply

(zx) for brevity. (Such notation as {zj} is also common for complex sequences, but we
shall also need some notation for the singleton [set] consisting of only one number, z;, and
the only accepted notation for such a set is {zx}; thus, the notation (zx) for sequences
avoids a confusion with sets.) A sequence of complex numbers is a function s: N — C,

with values usually denoted by z; instead of the functional notation s(k). The study
of sequences of complex numbers begins with the question of whether a sequence remains

bounded, diverges to infinity, converges to a limit, or none of these.

Definition 5. A subset Z C C is bounded if, but only if, there exists a non-negative

real number B such that

5| <B
for every element z € Z . Of course, a subset Z C C is unbounded if, but only if, it is

not bounded. Similarly, a sequence (z) in C is bounded if, but only if, the set of all

its elements, Z = {z; : k € N}, is bounded.

Definition 6. A sequence (zx) in C diverges to infinity if, but only if,

lim |z4] = oo.
k—o0
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Since the limit involves only real numbers, because |zx| € R4 , the limit means that for
each real number B € R there exists an index Kpg € N such that if & > Kpg then

|zx| > B. Informally, the definition means that we may arrange that all moduli |z;| be
as large as we want, provided that we exclude the first Kp terms.

REMARK 6. An unbounded sequence need not diverge to infinity.

EXAMPLE 8. Let z; = k(1 +(—1)*) for each k€ N. Then

k 2k if k 1s even,
zkzk(l'*'(—l)):{o

if & isodd.

Thus, (zx) neither remains bounded nor diverges to infinity.

Definition 7. A sequence (z;) in C converges (or tends) to a limit =z € C if,
but only if, for each positive tolerance (number) t there exists an index A’; such that if
k> K; then |zp —z| <t.

Informally, the definition means that we may arrange that all the terms 2z, be as

close as we want to z, provided that we exclude the first I; terms.

Proposition 1. FEvery converging sequence remains bounded.

Proof. Suppose that a sequence (z;) in C converges to a limit z € C. The definition

of convergence applied to t =1 (or any other positive number) ensures the existence of

an index I; such that if K; < k then |z — z|] < 1. For such indices k > I; the
triangle inequality shows that

2kl = |2k — 2z + 2| S ze — 2]+ 2] <14 2]

For the other indices ( £ < K ), of which there are only finitely many, let

By = max {|z|: k€ {0,...,,}}.

(The notation max means the maximum element in the set following max; thus, B
represents the largest of [z, |z1], ..., |zx,|.) Hence, |zix| < By for every k < K.
Finally, let

B = max{By, 1+ |z|},

which ensures that |zx| < B for every term z; in the sequence (zx). O

REMARK 7. A bounded sequence need not converge to any limit.

EXAMPLE 9. The sequence (zx) defined by zp = (—1)* remains bounded (it

alternates between one and negative one) but it does not converge.

2. FILLED JULIA SETS

The “filled Julia set” associated with a complex function determines whether an initial

point zy € C gives rise to a bounded or an unbounded sequence (z;) through iteration

of the function under consideration, as explained in detail below. To avoid unnecessary
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technical difficulties and to focus on the nature of filled Julia sets, the present chapter

restricts itself to those complex functions defined by quadratic polynomials.

2.1. The concept of filled Julia set

Notation. For each complex number ¢ € C let f. denote the function

fo: C—C, with fo(z) =2 +¢

EXAMPLE 10. If ¢ =0 then fy(z)= 22+ 0= 22. Similarly, if ¢ =7 = (0,1) then

fi(z) = 22 +1.

Definition 8. For each natural number n € N, the n-th iteration of f. is the

function f?™ defined inductively by

for(z) = fe (fm1(2)).
Next, for each complex number z, define a sequence (z,) by z, = f2"(z0). Thus,

21 = fe(20) = 25 + ¢,

= f2z0) = fo(flz0) =+e=(F+0)+c,

By induction, the formula z,4; = z2 + ¢ specifies the entire sequence (z,). Remember
that each complex number z, in the sequence depends not only upon n but also upon

¢ and zg, but the notation omits such references for simplification.

EXAMPLE 11. For ¢ = —1 the polynomial f. takes the values f_;(z) = z% —1.

If zo =1 then the sequence (z,) becomes 1, 0, —1, 0, —1, 0, —1, ..., because

2o=1, z1=204¢c=1°-1=0, zp=z24+c=0-1=-1, z3=224c=(-1)*-1=0,

and so forth. Thus, with zy = 1, the sequence (z,) alternates between 0 and -1
forever; in particular, the sequence (z,) remains bounded. By contrast, if zy =2 then

20 = 2, 21:z§+c=22—1:3, zzzzf+c:32—1:8, :3:z.§+c:82—1=63,
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and so forth: with zo = 2, the sequence (z,) diverges to infinity (as proved below).

Definition 9. The filled Julia set of f. is the set K. of all complex numbers
zo for which the sequence (z,) = (f3"(z¢)) remains bounded.

EXAMPLE 12. For the particular value ¢ = 0, the quadratic polynomial f. = f; is

the squaring function, fy : C — C, with fy(z) = z2. Consequently,

21 = fo(zo) = 23, )

20 = fo(z1) = 23 = (28)" = =5,

z3 = fo(z2) = 2% = (24)2 = 28

in = (ZO)(2 )7

Re

 

 
Figure 3. The sequence (z,) = (f3"(z0)) diverges to infinity if

|z0] > 1 and it remains bounded if |zo| < 1.

 
Thus, |z,| = (zo)(2n)l = |20]|®"), from which two cases emerge:

If |20| >1 then |z,]|=|z0]|®") diverges to infinity.

If 20| <1 then |z,]=]20|*" <1?") =1 remains bounded.

The preceding considerations prove that the filled Julia set Iy of the squaring function
fo: C—C, fo(z) = 2% consists of all points at a distance of at most one from the origin,
as in figure 3:

Ko ={z0: z0 € C and |z| < 1}.
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The example of the squaring function, with ¢ = 0, required only basic inequalities with

moduli to determine its filled Julia sets; unfortunately, all values of ¢ other than ¢ =0

and ¢ = —2 (examined in example 21 in the fourth section) require substantial analysis

for determining the nature of the filled Julia set. Fortunately, a few partial results that

involve only some algebra and inequalities provide some information about the location

and size of the filled Julia set. For instance, the most elementary such result guarantees

that each filled Julia set K. is bounded.

Theorem 1. For each ¢ € C let R, = max{2,|c|} (the larger of 2 and |c|).
Then the filled Julia set K. of the quadratic polynomial f. 18 bounded by R., in the

sense that if zo € K. then |z < R.. Thus, no point in K, may have a magnitude
greater than R..

Proof. (The present proof lacks elegance, but it may inspire you for exercise 12, at

the end of this section, and for the project on Mandelbrot’s set, at the end of the chapter.)

Suppose first that |c¢| < 2; in this case, R, = max{2,|c|} = 2. To show that L. 1is
bounded, consider a point zy € C such that |z9| > R. and prove that 2z, gives rise

to an unbounded sequence, as follows. Set d = |z9|] —2 > 0, so that |z9|] = 2+ d, and
estimate |z|:

|21] = |25 + ¢| 2 [lz0]* = lel| = |(2+ d)* — |e])

=[4+2d+d* —|c|| = [2+2d+ d* + (2 = |c])| > 2+ 2d.

Thus, if |20|] = 2+ d, then |z;| > 2+ 2d. By induction, the same calculation shows that
|zn| > 2 4+ 27d, which diverges to infinity.

If |¢|] >2 then R, = max{2,|c|} = |c| but a similar argument leads to the same
conclusion. If |zo| > R. = |¢|, set d = |zo| — |c|, so that |zo] = |c¢| + d. Hence,

|z1] = |20 + ¢| 2 |lz0l® = lel| = |(Je| + d)* — |el|

= ||c|* + 2d|c| + d* — |c|| = |le|(e| = 1) + 2d|c| + d*| > |e|(2 — 1) + 4d = |c| + 4d.

Thus, if |20| = |¢|+d then |z;| > |¢|+ 4d. By induction, the same calculation shows that
|zn| > |c| +4"d, which diverges to infinity. Consequently, if |zo| > R, then zy ¢ K., and,
by contraposition, if zo € I, then |z < R.. O

Notice that the theorem asserts only that if zy € K. then |20 < R.; it does not

assert the converse, because there may exist points zg such that |z9| < R, but zy ¢ IK.:

not all complex numbers with a magnitude of at most R, need be in the filled Julia set.

In other words, the filled Julia set . may be a proper subset of the disc with radius R,

and center at the origin.

REMARK 8. (A BETTER BOUND) The preceding theorem yields the standard

estimate found in texts, R. = max{2,|c|} (see the chapter by Bodil Branner, “The
Mandelbrot Set,” in the book edited by Devaney and Keen [32], page 80). Such an estimate
need not be optimal, in the sense that the filled Julia set K. may be smaller than the

bound R.. For instance, exercise 12 at the end of the present subsection shows that

_ 14 /1 + 4|c|

- 2
C
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provides a better bound for K., because r. < R. and, still, if z9 € K, then |z< ..

The availability of a bound for filled quadratic Julia sets suggests a crude algorithm

for determining whether a point 29 € C liesin K..
 

Direct Iteration Method for filled quadratic Julia sets. For each

¢ € C, the following algorithm generates points in the filled Julia set K. of
the quadratic polynomial f.: C — C with f.(2) =2%+c.

Step 1. Choose a maximum number of iterations N € N, for instance,

N = 12, depending upon time and accuracy (see Strang’s text [40], page 510).

Step 2. Choose a bound for the filled Julia set I., for instance

14 /1 + 4]|c|
T‘C = ———-‘)___—.

d

Step 3. Color white all points zy € C such that |zg9| > r.: such points

do not belong to K.

Step 4. Test each point z; such that |z9| < r. to determine whether
29 € K., as follows. Start computing elements of the sequence

.2 o 2 _ .2 _ .2
21 =z +c¢, z9=2{+¢c, z3=2z+¢, ..., Zn=2,_1+¢C, ...

and stop if either of the following conditions holds.

(oco) If at some stage n € {1,...,N} the sequence returns an element =z,
such that |z,| > r., then the sequence diverges to infinity (see exercise
12.2); consequently, color the initial zy white. By symmetry (see exercise

11), also color —z¢ white. Stop the iterations and select another z,.

(K:.?) If n=N (the maximum allowed number ofiterations) and if |z,| < r.

for all the computed elements zg,...,zy then we do not yet know whether

the sequence diverges or remains bounded; nevertheless, color the initial

zo black (it may belong to the filled Julia set . ). Also color —z

black.  
 

Exhibit 2 shows implementations of the Direct Iteration Algorithm on the HP-28(C

or S) and HP-48, with an example.

Despite its simplicity, the algorithm just presented suffers from the disadvantage that

while it can assert that an initial point zo gives rise to a diverging sequence, it cannot

assert that a point zy belongs to I,.. Thus, it colors all points zy for which it cannot

make a decision. Another algorithm, presented in the next section, provides a remedy for

this disadvantage by producing only points in K.
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Filled Julia sets

on the HP-28C&S

Comments on the programs

for filled Julia sets

15

Filled Julia sets

on the HP-48SX
 

€ CLLCD

FOR y

r NEG r

FOR x x y

R->C 1 12

START

SR < +

NEXT

IF ABS r <

THEN x y

R>C PIXEL

END h

STEFP h

STEFP LCD->
> ENTER

STO r

32 -~ '"'h' STO

h 137 * 2 -

's' STO

s r R>C PMAX

s NEG 8 R->C

PMIN
> ENTER

'setup’

X setup 9 r

scan s h NEG

R>C PMAX

s NEG r h <+

NEG R->C PMIN

r NEG h HNEG

sSscan
> ENTER

‘*f111°* STO
 

TUTORIAL

- 25 ' STO

USER fill

Subroutine setup computes a

bound for the filled Julia set,

L _1+/Tt4
C 2 )

and adjusts the screen so that it

covers the square [—r,r]Xx[—r, 7],
hence also the filled Julia set;

h equals the width of each pixel.

ENTER and STOre in 'setup’

For the HP-28C&S only, subrou-

tine scan examines each pixel in

either the upper or the lower half

of the square [—r,r]|x[—7,7]; scan
and fill perform the same task

as £ill does on the HP-48SX.

ENTER and STOre in 'scan’

Program £ill tests each pixel z
= (z,y) in the square

[—r,7] X [=r,7], by iterating

f(z)=z2"+¢

twelve times within the loop

START

SQ c +

NEXT

If |z12] < r. then £ill colors

the pixels at zp and at —zp in

black.

ENTER and STOre in '£fill’
 

Tutorial:

STOre a complex number in 'c’

execute £il1l

in the USER or VAR menu.

Exhibit 2.

€ c ABS 4 =

1 +- 4 1 + 2

< 'r' STO r

54 ~ 'hh' STO

ERRASE r 128

< 131 * r

R->C DUPFP HNEG

SWHRAP PDIM #

131d # 128d

PDIM

> ENTER

'‘'setup' STO

¥ setup 9 r

FOR g

rr NEG r

FOR x x y

R->C 1 12

START

SR < +

NEXT

IF ABS r <

THEN x 4y

R->C DUP

NEG PIXON

PIXON

END h

STEFP h

STEP

> ENTER

*f1il11°*' STO
 

TUTORIAL

- 2D ‘'c' STO

VAR fill
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Exercises

Exercise 11. Prove that every quadratic filled Julia set is symmetric with respect

to the origin.

Exercise 12. For each complex number ¢ € C let

14 /14 4|c|
rc : .

2

(12.1) Prove that if |z9| > r. then (z,) diverges to infinity.

(12.2) Prove that regardless of |zg|, if there exists an element =zsuch that |zi| >
r. for some index k € N then (z,) diverges to infinity.

(12.3) Prove that r, < max{2,|c|}.

(12.4) Prove that if ¢ is real and non-positive ( ¢ €] —00,0] ) then r. provides an
optimal bound, in the sense that I{. contains two diametrically opposite

points each at distance r. from the origin.

Exercise 13. Prove that (z,) = (f2"(z0)) either remains bounded or diverges to
infinity. (In contrast with other complex sequences, [for instance, the sequence in example

8], the sequences (z,) that arise as iterations of the quadratic functions f. cannot be

unbounded without diverging to infinity.)
 

2.2. The Fixed-Point Inverse Iteration Method

The Direct Iteration Algorithm demonstrated in the preceding subsection suffered

from the disadvantage of not recognizing points in the filled Julia set. Another algorithm,

demonstrated in the present subsection, generates points only in the filled Julia set. A

further improvement of the new algorithm, explained in the next sections, will generate

points only on the “edge” of the filled Julia set, which produces more reliable pictures.

Both algorithms rely on the concept of “fixed point.”

Definition 10. A fixed point of a function f : C — C is a point z, such that

f(z4) = 2.

EXAMPLE 13. Consider the function f;/4 : C — C with f;,4(z) = 22 4+ 1/, To

determine whether f;/,, has any fixed point, and, if so, to find such fixed points, solve

the equation f;,4(z) = 2z, which, in this particular example, yields

f1/4(2) = Z

2241 = z,
22—z 4 1/y = 0,

0 I

—(-1)+ /12 —-4-1-14 140

2.1 - 2 N
|
—
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Hence, the function f;,4 has one fixed point, z. = /2. To verify this result, observe that

f1/4(3*) = f1/4(1/2) = (1/2)2 + s = 1/4 + /s = /2 = z.; thus, f1/4(1/2) =15, v

EXAMPLE 14. For each complex number c # 1/4, the quadratic polynomial

fe: C—oC, f(z)=2+c

has two distinct fixed points,

1+ +v1—-4c 1—-+1-4c
24 =—————— and z_ = ————.

2 2

To verify this assertion, substitute z; and z_ for z and check that f.(z4)= 24 and
fe(z_) = z_, or apply the quadratic formula, which shows that

C.
,. 2 = N
M
?
’

)
fi
v

1

S
W

-
and

 

—(-1)xVv1?-4-1-¢c 1+£y1-4c

2-1 B 2 '

n Il

Finally, since ¢ # /4, it follows that 1 —4c¢ # 0 and that the two fixed points z4 and

z_ are distinct ( z4 #z_ ). O

Every fixed point z, of a function f. lies in the filled Julia set ., because the

sequence of iterations (z,) starting at zy = z, remains at z, forever: z; = f(z9) =
f(zs) = 24, 22 = f(z21) = f(2+) = 24, and so forth, z, = z, for every =z,. Therefore,
(zn) remains bounded. Moreover, fixed points play a crucial role in the context of Julia

sets, partly because they provide infinitely many points in the filled Julia set.

Proposition 2. If 2z, 13 a fized point of the quadratic polynomial f. then all

its presmages under f2" (all the complex numbers zo for which there exists an integer

n € N such that z, = f2"(z9) = z. ) belong to the filled Julia set.
C

Proof. Suppose that z, = f2"(z9) = z«. Since =z, is a fixed point of f,,

Zn41 = fc(zn) = fc(z*) = %%y Zn42 = fc(zn-i-l) - fc(z*) = Zxy .-

and all terms beyond =z, equal z,. Thus, (z;) remains bounded, hence zy € .. O

The preceding proposition suggests an algorithm to plot filled Julia sets.
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Fixed-Point Inverse Iteration Method. For each ¢ € C plot points

in the filled Julia set as follows.

Step 1. Determine a fixed point of f.: choose either of the two fixed points

1++v1—-14c
5 )2y =24 =

Step 2. Compute a preimage z_; of the fixed point z, by solving

fe(z—1 ) = 2

224+= oz

thus, chose either square root,

Z2_1 =%z« — ¢,

and plot the point z_;.

Step 3. Compute a preimage of the point just obtained by solving

fc(z—2) = 21,

22_2 +c¢c = z_y,

which gives

Z_9 = :t\/Z_l — C,

and plot z_s.

Continue in this fashion until enough points appear on the plot.   
 

The experiments in the exercises reveal that all the preimages of a fixed point belong

to the filled Julia set, but that they may fail to yield a satisfactory picture of the whole

set: the preimages may stay confined in a subset so small that they do not oultine a repre-

sentational picture of the filled Julia set. A slight variant of the inverse iteration method

remedies this problem, but an explanation of that improved method requires concepts from

topology, reviewed in the next section. For this reason, if you want to try a program at

this point, then you may try the Non-Attracting Fixed-Point Inverse Iteration Method, as

demonstrated in exhibit 4, page 33, in the fourth section.
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EXAMPLE 15. Suppose that ¢ = 1/4.

Step 1. Determine the fixed points by solving f;/4(z«) = 2«, which gives

2
z* + 1/4 - Z*’

from which it follows that f,,4 has only one fixed point, z, = 1/2. Plot =z..

Step 2. Find a preimage of the fixed point by solving

f1/4(z_1) = Zx

=2V— Ve =%=%/

Notice that one of the two solutions, 1!/2, coincides with the preceding point,

z.. Consequently, select the other solution, z_; = —1/;, and plot z;.

Step 3. Compute a preimage of z_; by solving

f1/4(z_2) = Z-1,

2o+ s = =1,

2oy = £\/=1h — 1y = +V/=1/3/s = £iV/3/2.

Choose either solution randomly, for instance, z_, = i¢1/3/2, and plotit.

Step 4. Compute a preimage z_3 of z_,, for instance

z_3 = —mz —\/i\/§/2 — 1/4,

and plot it, and so forth.

™
Exhibit 3 displays a picture generated : =~

by the Fixed-Point Inverse Iteration Method

implemented on the HP-48SX (see exhibit 4,
page 33). Observe that all the points ap- ' .

peared to lie on the “edge” of the filled Julia
set, a phenomenon explained in the fourth s
section.

Exhibit 3.  
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Exercises

Experiments and conjectures

Exercise 14. The present exercise investigates the filled Julia set K_s.

(14.1) Determine the two fixed points of f_5: C — C, f_5(z) =22 = 2.

(14.2) For each fixed point, compute the first three preimages, z_;, z_3, and z_3s,
as demonstrated in example 15.

(14.3) Prove that if —2 < z_, < 2 then -2 < z_(p41) £ 2 (with 2_(n41)

representing any solution of f_3(z_(n41)) = 2-n ). Conclude that if the

Fixed-Point Inverse Iteration Method starts from either fixed point of f_,,

then all the points that it generates lie in the interval [-2,2].

We shall prove later that the filled Julia set I_, is indeed the closed interval [—2,2],

from —2 through 2. However, the following two exercises illustrate how the choice of the

fixed point may influence the quality of the picture produced by the Fixed-Point Inverse

Iteration Method. These exercises also warn against quick unverified conjectures.

Exercise 15. Let ¢ =0 and consider the squaring function, with fy(z) = 22.

(15.1) Determine the two fixed points of the squaring function, fj.

(15.2) For each fixed point of fy, compute the first few preimages as explained

in example 15 with one modification: at each step, keep both preimages,

VZ_n —c and —\/z_,, — c. Compare the plot resulting from one fixed point

with the plot resulting from the other fixed point.

Exercise 16. With c¢= -3/ let f_3,4: C—> C, f_3/4(z)=2*- 31

(16.1) Verify that 2, = —1/2 is a fixed point of f_3/,4, and also determine the
other fixed point.

(16.2) Start from the fixed point, z, = —1/;, and apply the Fixed-Point Inverse
Iteration Method as explained in example 15, with one modification: select

the positive square root at each step, so that

20 ==21 =+V -1 —(=%1) =1, 22 =+Vz_1 = (=), ...

To what limit z does the sequence of preimages (z_,) appear to converge?

(16.3) Prove your conjecture (prove that lim,—eo(z_p) =z

(16.4) Start from the other fixed point and plot the resulting sequence (z_,,).
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3. COMPLEX ANALYSIS AND TOPOLOGY

3.1. The topology of the complex numbers

The concept of limit applies not only to sequences, which are functions from N to

C, but also to functions from C to C.

Definition 11. Let f: D — C be a function defined on some subset D of the

complex plane. Also, let zy € D represent a point in the domain, and let wy € C. Then

f(z) tends to wo as z tends to zo if, but only if, for each positive tolerance t € R}

there exists a positive distance (number) d € R% such that the following condition holds:

If |z— 20| <d,then z€ D and |f(z)— wo| < t.

The situation just described is abbreviated by the notation

lim f(z) = wo.
Z—*ZO

Informally, the definition means that (1) the domain contains a disc with positive radius
and centered at zp, and (2) we may arrange that f(z) lie as close as we want to wy,
specifically, within any small distance ¢, provided that we impose upon z the condition

that it lie sufficiently close to zg, specifically, within some distance d. The concept of

limit of complex functions yields the concept of continuity.

Definition 12. A function f: D — C is continuous at a point zy € D C C if,

but only if,

lim £(z) = f(z0).
Z—’ZO

The function f is continuous on a subset S C D if, but only if, the function f is

continuous at each point zy € S.

EXAMPLE 16. Let ¢ denote any complex number and consider the function

fe: C—C, fc(z)zzz'*'c-

Such complex functions will give rise to fractal Julia sets in the next sections. The function

fe 1s continuous at each zy € C, as the following argument shows. Firstly, the difference

fe(2) — fe(z9) factors,

(1) fe(z) = fe(z0) = (:" +¢) = (20 +¢) = 2% — 25 = (2 — 20) ( + 20) .

Secondly, restrict the argument to those points z € C at distance less than one from zg;

in other words, assume that |z — z9| < 1. For such points z, the triangle inequality gives

|2| = |z — z0 + 20| < |z — 20| + |20] < 1+ |20],
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and, consequently,

(2) |2 + 20 < |2+ 20| < (14 [20]) + |20] =1 + 2[20]-

Substituting this result into the factorization (1) of f(z) — f(z0) yields

(3) [f(2) = f(zo)| = |2 = 20| - |z + 20| <2 = 20| - (1 +2|20]).

Next, for each positive tolerance (real number) ¢ > 0 let

, t
d= mm{l,—-———}

1+2’20|

(the smaller of 1 and ¢/(1+4 2|20]) ). If |z — 20| < d then |z — 29| <d <1 and the
estimate (2) holds, and, consequently, (3) holds. Therefore,

1f(2) = f(z0)l = |z = 20| - [ + z0] <[z = 2z0[ - (1 + 2|20]) < d(1 + 2[20])

<t
1+2!Zol

which means that f. is continuous at zy. O

(14 2|20]) =,

The concepts of convergence, limit, and continuity may also be expressed in terms of

“open sets,” as demonstrated below.

Definition 13. The open disc with radius r and center at z 1is the set of all

complex numbers at distance less than r from =, a set denoted by D(z,r); thus,

D(z,r)={w: weCand |[w—z|<r}.

The unit disc is the set D(0,1), which consists of all complex numbers at distance less
than one from the origin.

Besides open discs, which do not include the circle surrounding them, “closed discs,”

which include the circle surrounding them, also arise in the context of Julia sets.

Definition 14. The closed disc with radius r and center z is the set of all

complex numbers at distance at most r from =z, and denoted by D(z,r); thus,

 

D(z,r)={w: weCand |w-z| <r}.

Definition 15. A subset U C C is openif, but only if, for each point 2z € U there

exists a positive real number r such that D(z,r) C U.

Thus, a subset is open if, but only if, it contains an open disc around each of its points.

EXAMPLE 17. Every open disc D(z,r) is an open set. To verify this assertion,

let w represent any point in D(z,7); thus, |w — z| < r. Next, let s = (r — |w — z|)/2,
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Figure 4. (a) Open discs are open sets. (b) The boundary of a
disc 1s the circle surrounding it.

 

  
which represents half the distance from w to the circle surrounding the disc D(z,r). If
a complex number ¢ € C belongs to the open disc D(w,s), then |¢ —w| < s, and, by

the triangle inequality,

lg—zl=l¢g—wtw—z|<|¢g—w|+|w—-z|<(r—|w—-2z|)/24+|w—2z|=r—|w—-z|/2<T.

Hence, every point ¢ in D(w,s) also liesin the disc D(z,r), which means that D(w,s) C
D(z,r), as in figure 4a. Therefore, the open disc D(z,r) is an open set. O

The concepts of “open disc” and “open set” form the basis for the concept of “bound-
7ary.

Definition 16. The boundary of a set S C C is denoted by 9S and consists of
all points z € C such that for each positive radius r the open disc D(z,r) contains at

least one point in S and at least one point not in S.

Informally stated, the definition means that a point w lies on the boundary of aset

S if, but only if, there exist points in S and points outside S as close as we want to w.

EXAMPLE 18. Let S = D(0,1) represent the closed unit disc; its boundary 9D(0,1)

consists of the unit circle, which surrounds it and has radius 1 and center at the origin,

0, as in figure 4b.

To verify this assertion, consider any point w on that circle, at distance 1 from

the origin; thus, |w| = |w — 0] = 1. For each positive radius r consider the open disc
D(w,r) with radius r and center at the same point w. Then D(w,r) contains a point
p in S and a point ¢ not in S, because we may find such points p and ¢ along the

half-line from the origin through w, for instance, p = (1 — [r/2])w, for which |p| < 1,
and ¢ = (14 [r/2])w, for which |¢| > 1, as shown in figure 4b

Consequently, for each positive radius r, the disc D(w,r) contains a point p in

D(0,1) and a point ¢ not in D(0,1). Therefore, w lies on the boundary of the unit

disc. Conversely, every point on the boundary lies on the unit circle. O
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The following proposition describes the relationship between open sets and continuity.

Proposition 3. A function f: D — C 13 continuous at a point z € D C C 1f,

but only if, for each open set V containing f(z) there ezists an open set U such that

ze€UCD and f(U)C V. In particular, if the domain D s itself open, then the

function f 1is continuous on D if, but only if, for each open set V C C the inverse

image f~Y(V)={z: z2€ D and f(z) € V} 1is open.

Proof. Suppose that for each open set V containing f(z) there exists an open set

U such that z € U C D and such that f(U) C V. For each positive real number ¢ > 0,
consider the open set V = D(f(z),t) (the open disc with radius ¢ and center at f(z) ).
Since the corresponding set U described in the hypothesis is open, there exists a positive

real number ¢ > 0 such that U contains a disc D(z,c). Consequently, again by the

hypothesis, f(D(z,¢)) C f(U) C V = D(f(z),t), which means that if |w — z| < ¢ then
w € D and |f(w)— f(z)| <t. Thus, f is continuous at z.

Conversely, suppose that f 1is continuous at a point z € D. The definition of

continuity then asserts that for each open set V containing f(z), which contains an
open disc of the form D(f(z),t), there exists a positive real number ¢ > 0 such that if
|lw — z| < ¢ then w € D; consequently, D(z,c¢) C D, and |f(w)— f(z)| < t, and hence
f(D(z,c)) C D(f(z2),t) C V. Therefore, the set U = D(z,c) satisfies the requirements of
the propositions. O

The following proposition describes the relationship between continuous functions and

converging sequences.

Proposition 4. A function f: D — C s continuous at a point z € D C C 1f, but
only if, for each sequence (z) in C converging to =z, the sequence (f(zr)) converges

to f(z).

Proof. Suppose that f is continuous at z € D, and consider a sequence (zy)

converging to z. To show that (f(zx)) convergesto f(z),let ¢t > 0 represent a positive
real number. By continuity of f at =z, there exists a positive real number ¢ > 0 such

that D(z,¢) C D and f(D(z,c)) C D(f(z),t). By convergence of the sequence (zy)
to 2z, there exists an index K € N such that if k¥ > K then |z; — z| < ¢, which

means that 2; € D(z,c); consequently, f(zx) € f(D(z,¢)) C D(f(z),t), which means
that |f(zx) — f(2)| < t. Therefore, the sequence f(zx) converges to f(z).

For the converse, proceed by contraposition: assume that f is not continuous at

€ D. Then there exists a positive number ¢t > 0 such that for each positive number

> 0 there exists a complex number z, with |z — z| < ¢ but |f(z.)— f(z)] >t or
ze ¢ D. By induction on k € N and with ¢; = 1/(k + 1), the sequence (z.,) converges
to z but f(z, ) does not converge to f(z) (some of the terms f(z.,) may also fail to
exist). O

O
W

N

REMARK 9. (This remark serves only to explain the title of the present section.)

The collection 7 of all open subsets of the complex plane,

T ={U: UcCCandU isopen},
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satisfies the following properties, which make 7 a topology on C:

(1) The empty set, 0, and the entire plane, C, both belong to the collection: 0 € T

and Ce 7.

(2) For each family (set) F C 7 of open sets, the union of all the open sets in the family

is again an open set: (JF € T.
(3) For each finite family G C 7 of open sets, the intersection of all the (finitely many)

open sets in the family is again an open set: (G € 7.

3.2. Theorems from complex analysis

Most concepts familiar from calculus have their counterparts in complex functions,

for instance, the derivative.

Definition 17. The derivative at a point z € D of a function f: DCC — C

is the following limit (if it exists), denoted by f'(z):

. f(z=+h) - f(2)"~ = -

fz) lim h '

The function f is called complex differentiable if, but only if, its derivative f'(z)
exists at every point z € D.

Notice that the definition of the derivative of a complex function coincides formally

with that of the ordinary derivative of a real function. The complex derivative differs from

the real derivative only by the fact that all values in the limit ( z, f(z), h,and f(z+h))
may be complex; in particular, this means that the complex increment h may tend to

zero in any fashion in the complex plane. Due to the similarities between complex and real

algebra, and between the topologies on the complex plane and the real line, most formulae

from ordinary calculus also hold in complex calculus.

EXAMPLE 19. Consider the function f,: C — C with f.(z) = 22 + ¢. Then

fe(z +h) — fo(2) [(z+h)? +c]—[22 + ]
 

 

T _ 1

fe(z) = Jim h i h

24 2h h? — 2?2
:1im2+ Frh = lim (2z 4+ h) = 2=.

h—0 h h—0

We shall take the following particular cases of theorems from complex analysis for

granted. Their proofs require at least a short course in complex analysis, but their state-

ments may be easily understood and are indispensable to the study of Julia sets.

Theorem 2. (Cauchy’s Inequality) Consider a complez differentiable function

f:DCC— C and a closed disc D(w,r) C D contained in the domain. Also, let
M = max{|f(z)| : |z —w| =1} denote the mazimum value of |f(z)| over all points =
on the circle with center w and radius r. Then

M
| f'(w)| < T
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Theorem 3. (Open Mapping Theorem) Let f : C — C represent a non-
constant function defined and complez differentiable on the whole plane. Then for each

open subset U C C the image f(U) 13 also open.
 

Routine exercise

Exercise 17. Prove the following assertion.

At a fized point z,, the following equality holds: (f°™)(z.) = (fi(z:))".
 

4. PROPERTIES OF QUADRATIC JULIA SETS

Complex analysis and topology provide indispensable tools to describe the nature of

“Julia sets,” for not only the properties but also the definition of Julia sets rely on topology.

4.1. Two examples of Julia sets

The topological concepts reviewed in the preceding section provide the language nec-
essary to define the nature of Julia sets, which are the boundaries of filled Julia sets.

Definition 18. The Julia set of a quadratic polynomial f, with f.(z) = z?+c¢
is the boundary OI{. of the filled Julia set K., and it is usually denoted by J..

EXAMPLE 20. Recall, from example 12, on page 12, that the filled Julia set Iy of

the squaring function fy ( fo(z) = 22 ) is the closed unit disc,

Ko =D(0,1)={z: z€ Cand |z| <1}.

Recall also, from example 18, on page 23, that the boundary of the closed unit disc is the

unit circle; therefore, the Julia set of the squaring function is the unit circle:

Jo =0Kg ={w: w € C and |w| =1}.

EXAMPLE 21. Consider the quadratic polynomial f_o : C — C, with f_5(z) =
z%2 — 2. As conjectured in exercise 14, the filled Julia set K_, of f_, is the segment

[—2,2], which coincides with its own boundary. Thus, J_, = [=2,2]. To prove this
assertion, use a composition with the function

 

2+ Vz—2Vz+2
g: C\[-2,2] - C, g(z) = 5 :

(The notation C\ [—2,2] stands for the complement of the interval [—2,2]; thus, the set
C\ [-2,2] looks like a plane with a slit along [—2,2]). As explained below, the function
g maps C\[-2,2] onto the complement of the closed unit disc K, in other words, onto

{z: z € Cand |z| > 1}, as shown in figure 5. The function ¢ has an inverse function,

1
g7 ' {w:weCand |w| >1} - C\[-2,2], ¢ ' (w) =w+ —.

w
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Figure 5. The function ¢ maps the region outside the interval
[—2,2] onto the region outside the closed unit disc.

(The formula w + 1/w also extends to the complex numbers w for which |w| =1, and
it explains why ¢ maps C\[-2,2] onto the complement of the unit disc. If w = (z,y)
lies on the unit circle, then |w| = 1, and 1/w = W, because ww = (z,y)(z,-y) =

z? +y? = |w|* = 1; moreover, |z| = V2 < /22 +y? = |lw| = 1, and, consequently,

lw+1/w| = |lw+w| = |(z,y) + (=, —y)| = 2|z| < 2. Therefore, if w lies on the unit circle,
then |w + 1/w| lies on the interval [-2,2].)

Straightforward algebra shows that g~1ofoog = f_,, which means that g~! (fo (g9(2)))
= f_2(z) for every z € C\[-2,2]. Consequently, % = (¢g~lofoog)=glofi"oyg

(because intermediate compositions g~! o g cancel out). Therefore, (z,) = (f2%3(20)) =
(971 (fe™(g(20)))) diverges if, but only if, (w,) = (f§"(9(20))) does, which means that
the complement of the filled Julia set of the squaring function, C\ Kj, is the image under
g of that of f_5. Hence, C\ Ky = g(C\ K_3) and C\K_; = ¢~}(C\ p) = C\ [-2,2].
Finally, J_o = 0K_, = 9[-2,2] =[-2,2] in C.

4.2. Invariance of Julia sets under their quadratic polynomials

Except for the particular values ¢ = 0 and ¢ = —2, examined in the preceding

subsection, the investigation of the Julia set of f. for values of ¢ other than 0 or -2

requires a more substantial analysis for each value of ¢ separately. Therefore, instead of

investigating any particular Julia set, we shall focus on a few general properties of Julia

sets that rely only upon the analysis and topology reviewed in the preceding section. The

first property of quadratic Julia sets examined here concerns their invariance under their

associated polynomial f.. That is, each function f. maps the associated filled Julia set

K. onto itself.

Proposition 5. For each complez constant c € C, the filled Julia set K. 13 invariant

under the function f.; that s, f.(K.) = K..

Proof. For each initial point z¢9 € K. in the filled Julia set, the sequence of iterations

20, %1 = fc(ZO)a 2 = fc(zl), z3 = fc(zz),
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remains bounded. Consequently, so does the sequence starting at =z,

21, 22 :fC(zl)v <3 :fC(ZZ)’ 2 ZfC(Zg),

Therefore, z; = f(z9) also lies in the filled Julia set K., which proves that f.(K.) C K..
For the converse inclusion, select either preimage of z, for instance, z_; = y/z¢ — ¢,

so that f.(z_1) = 2p; then the sequence that starts from z_; also remains bounded:

z_1, 20 = fe(2-1), 21 = fe(20), 22 = f(zl),

Consequently, the preimage z_; also belongs to the filled Julia set K., which shows that

K. C f.(K.) (because zo = fc(2-1)). O

Not only does each filled Julia set K. remain invariant under the function f., but

so does its boundary 9K, = J. (the Julia set itself), and its complement, C\ K., which
has a special name that reflects its properties.

Definition 19. The basin of attraction of infinity of a quadratic polynomial f,.

1s the set, denoted by A, which consists of all complex numbers z; € C that give rise

to an unbounded sequence. Thus, Ar.= C\ K..

The term “basin of attraction of infinity” arises from the fact that, for the particular

sequences (zp) = (f2™(20)) considered here, if a point zy does not belong to the filled
Julia set, then the unbounded sequence that it initiates diverges to infinity (recall exercise

13). Informally, infinity attracts all sequences that start at any point zy € A,.. The

following sequence of theoretical exercises shows that each of the sets Ay., K., and J,

1s invariant under mappings by f..
 

Theoretical exercises

Exercise 18. Prove the following assertion.

The basin of attraction of infinity, A., 18 an open set.

Exercise 19. Prove the following assertion.
The basin of attraction of infinity is invariant under f.. In other words, f. maps

Aco,c onto itself; thus, fe(Acoe) = Aooc = fi(Aco,c)-
Cc

Exercise 20. Demonstrate that f.(J.) C J. and that f7'(J.) C Je..

Exercise 21. Denote by K = K.\ 0K, the interior of the filled Julia set,

which consists of all points z € I, that do not lie on its boundary (all points 2z € K

for which there exists a positive radius r > 0 such that D(z,r) C L.). Prove that

fe(K2) = K2 = f7H(KQ).

Exercise 22. Apply the preceding exercises to prove the following assertion.

For each complex constant ¢ € C the Julia set J. = OK. 1s invariant under the

associated quadratic polynomial f. and its inverse; in mathematical formulae, f.(J.) =

Jc = fc—l(‘]c)
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4.3. The Non-Attracting Fixed-Point Inverse Iteration Method

The property of quadratic Julia sets examined here concerns the presence on the

boundary J. of at least one of the two fixed points of f., where the derivative f'(z,)

has a modulus of at least one. From such a fixed point, the Inverse Iteration Method

generates only points on the Julia set J..

Definition 20. A non-attracting fixed point of a function f: C — C is a fixed

point =z, where |f'(z.)| > 1. A non-attracting fixed point =z, is called repelling if
|f'(z.)] > 1 and parabolic (or neutral) if |f'(z,)| = 1. In contrast, at an attracting
fixed point, |f'(z.)| < 1. (A fixed point where f'(z,) =0 is also called superattracting,
but we shall not need so fine a classification.)

The terminology for the classification of fixed points arises from the behavior of itera-

tions beginning with an initial point near a fixed point. If 2y lies near an attracting fixed

point z,, then the sequence of iterations (z,) = (f°"(z¢)) converges to z.. In contrast,
if the initial point z; lies near a repelling fixed point z,, then the sequence (z,) may

(but need not) diverge away from z,.

EXAMPLE 22. With ¢ = 0 the squaring function fy, with fy(z) = 22, has two

fixed points, 0 and 1, since fo(0) =02 =0 and f4(1) = 1% = 1. The first fixed point is
attracting, whereas the second fixed point is repelling, as the following arguments confirm.

(22.1) At 2=0, fo(0)=0 and |f'(0)|=]2x0|=0< 1.
(22.2) At z=1, fo(l)=1 and |f'(})|=2%x1]=2>1.

Moreover, from examples 12 and 20, recall that the filled Julia set I{y; consists of the

closed unit disc, K¢ = D(0,1), and that its boundary, 0I{, = Jy, is the unit circle

Jo = {z: z € C and |z| = 1}. The attracting fixed point 0 € Iy belongs to the filled
Julia set, whereas the repelling fixed point 1 € Jy lies on the Julia set.

EXAMPLE 23. With ¢ = 1/; the function fi/4 : C — C, fi/4(z) = z* + /4 has
only one fixed point, at z, = 1/;, as shown in example 13, on page 16. This fixed point is

parabolic, because If{/4( 1/)| = |2 x 12| = 1. This particular parabolic fixed point lies on
the Julia set J,,4 = 0L, /4, as the following proposition shows.

Proposition 6. The parabolic fired point z, = 152 lies on the Julia set Jy4.

Proof. Recall that proposition 2, page 17, (with n = 0 ) established that every fixed

point lies in the filled Julia set; consequently, 1/2 € K;/4. To show that 1!/2 lies on the

boundary, it suffices to prove that each open disc D(1!/2,7) contains a point zo not in

K, /4. To this end, consider the point zo = 1/2 4 [r/2], which initiates the sequence

zo = 12+ [r/2],

a=z+c=a+[r/2)" + YYo= 1+ (r/2)(1+71/2),

Comparing the distances from 1/, to zp and z;, observe that

21—z« Y+ (r/2)(141/2) =1  (r/2)(1+71/2) r/2
Z0 — Za 1y + [r/2] — 15 = 72 =1+r/2>1.  
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Hence, induction shows that |z, — z¢| > (1 4+ r/2)", which diverges to infinity. O

In contrast to the situation with ¢ = /4, for every ¢ # 1/4 the quadratic polynomial

fe has at least one repelling fixed point, and every such fixed point belongs to the boundary,

as the following two propositions show.

Proposition 7. If ¢ # /4 then f. has a repelling fized point.

Proof. Recall from example 14 that for ¢ # 1/4 the quadratic polynomial f. has

two distinct fixed points, expressed by the quadratic formula

_1xV1l-4c
.Q:t 2

At the fixed points,

filz4)=2z4 =14+ V1 —4e.

If either fixed point, for instance zy = (1 + /1 — 4¢)/2, is not repelling, then |fl(z4)| =
|1 4+ /1 —4c| < 1. For the rest of the argument, recall from definition 1 and remark 3 that

2l = (2, 9)| = V& + o7 = VRe(2)? + Im(z)2.
In particular, if y = Im(z) #0 then |z| > |z|. Thus, Re(\/1 —4c) < 0: since ¢ # /4, it
follows that 1—4c # 0, and if Re(y/1 — 4¢) were zero then Im(\/1 — 4¢) would not be zero,
and the Pythagorean theorem would show that |1 4+ /1 —4c| > 1, contrary to the initial
assumptions. With Re(v/1 —4c¢) < 0 it follows that Re(1 4+ /1 — 4¢) < 1, which means
that 1+ /1 — 4c¢ lies in the left-hand half-plane bounded on its right by the vertical line

through z = 1. Consequently, at the other fixed point, Re(—+v/1 — 4¢) = —Re(V/1 — 4¢) >
0 and Re(l —+/1—4c¢) > 1. Therefore, |1 — /1 —4c| > |Re(1 — V1 —4c)| > 1, which
means that the other fixed point, z_, is repelling. O

Proposition 8. Every repelling fized point belongs to the Julia set.

Proof. By contraposition, suppose that a fixed point z, does not belong to the Julia

set J. = ON.. Since every fixed point lies in the filled Julia set I, it follows that there

exists an open disc D(z,,7r) C K.. (If there were no such disc, then, by definition of the

boundary, z, would lie on the boundary J. .) Also, since the complement A,. = C\ I,

1s an open set, it follows that D(z,,r) C I, because no point on the boundary of the

disc D(z«,7) may lie in Ao. Since the filled Julia set remains invariant under the

function f,, it follows that f2"(L'.) C K. C D(0,M), and hence it follows from Cauchy’s

inequality and exercise 17 that

[fe(z)™ = 1(£3")(20)] < o

Thus, the powers (f!(z,))® remain bounded, which has the necessary consequence that

|fi(z+)] < 1. Therefore, z, is not a repelling fixed point. O

Corollary 1. All the preimages of every repelling fized point of f. belong to the
Julia set J,..
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Proof. Every repelling fixed point of f. belongs to the Julia set J., and all preimages

of all points on the Julia set remain on the Julia set ( f7!(J.) = J. ) by exercise 22. O

Though all the preimages of a repelling fixed point belong to the Julia set, there might

not exist enough of them to outline the Julia set. Fortunately, the following proposition
guarantees that every non-attracting fixed point has infinitely many distinct preimages.

Proposition 9. For each complex constant ¢ € C every non-attracting fized point

ze Of fo has infinitely many distinct preimages.

Proof. Observe that if the preimage f.!'({z.}) of a fixed point =z, consists of
only one point, namely f-'({z«}) = {2}, then 2z, is a double root of the equation
z?> + ¢ = z,, which has the necessary consequence that f!(z,) = 0, and, consequently,

2z, = 0. Therefore, z, is an attracting fixed point, which contradicts the assumption.

Thus, a non-attracting fixed point has at least two distinct preimages, which we denote

by z. itself and z'. Also, denote by Z the set of all preimages of z,; thus,

z=J7(=),

To obtain a contradiction, assume that Z contains only finitely many preimages, and

let N represent the smallest number of backward iterations necessary to produce all the

preimages:

N =min{m : m€Nand Z = U (fem~! ({:*})}
n=1

Notice that N > 2 because f!({z.}) = {z.,2'} contains a preimage z' different
from the fixed point z,, and because f7!({z'}) contains neither z, nor =z', since

fo(ze) = 2z # 27 and fo(z') = z. # 2t Next, let

N-1

e (£7HaP\ UM7)
n=1

represent a point obtained after exactly N backward iterations of f.. Thus, foVN(zo) = z.

but f"(z9) # z« for every n < N. Moreover, select any preimage of zy, and denote it
by z_1 € f7'({z0}). Then z_; is itself a preimage of z,, because

FENHzoy) = fN (Folz21)) = £2N(20) = 2

Consequently, there exists an integer m € {2,...,N} such that z_; € (f°™)7' ({z.}),
and, therefore,

2o = fO™(2o1) =o(felz21)) = f2™ N (20),

which has the necessary consequence that zy € (f;""_l)“1 ({z+}), contradicting the hy-

pothesis on zo. O

The foregoing results guarantee that if the Fixed-Point Inverse Iteration Method starts

from a repelling fixed point, or from the parabolic fixed point if ¢ = 1/4, andif it retains
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all the preimages that it computes, then it generates infinitely many points, all of which

belong to the Julia set. In practice, however, many implementations retain only one

preimage z_, at each stage and then select the next preimage z_(,41) = £\/2_n

through a random choice of the sign +, as in the program in exhibit 4. Yet such a random

choice does not ensure (but only makes it improbable) that the algorithm will not remain
trapped in a loop through finitely many preimages. A method for selecting the sign + at

each stage so that the algorithm generates a sequence of infinitely many distinct preimages
constitutes the topic of the second research problem in this chapter.

 

Non-Attracting Fixed-Point Inverse Iteration Method. The fol-

lowing modification of the Fixed-Point Inverse Iteration Method generates only

points on the Julia set.

Step 1'. Compute 1++/1 —4c. If |14++/1 — 4c| > 1, select the fixed point

_1+\/1—4c
_———;———-—.

e

Cx — 24

Otherwise select the other fixed point, which is

1 —-+/1-4c

0)

o

Z*IZ_—_-

Next, proceed exactly as in the Fixed-Point Inverse Iteration Method, selecting

either square root randomly at each step.  
 

REMARK 10. There exists a theorem stronger than proposition 9 (which guaranteed

that non-attracting fixed points have infinitely many preimages). Specifically, the set Z

of all preimages of a non-attracting fixed point 2z, on the Julia set, as described in

proposition 9, 1s dense in the Julia set. Informally, this means that there exist preimages

z2_pn of z, asclose as we want to any point z € J. on the Julia set. Mathematically, this

means that for each point z € J. on the Julia set, and for each open disc D(z,r) about

z, there exists a preimage z_, € f°""!(z,) in D(z,7)N J.. For a proof of this assertion,

which relies upon Montel’s theorem about normal families of complex analytic functions,

consult Linda Keen’s chapter, “Julia Sets,” page 62, in Devaney and Keen’s book [32].

REMARK 11. Though the Non-Attracting Fixed-Point Inverse Iteration Method

may generate an infinite and dense set of points on Julia sets, comparisons with pictures

obtained through different algorithms reveal that such points are not evenly distributed

on the Julia set. As a consequence, the resulting plots show many points in some parts
of the Julia sets, and very few in other parts, which yields a poor resolution of the finer

details of Julia sets. For other algorithms, consult the books by Peitgen et al. [36], [37].
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Julia sets

on the HP-28C&S

Comments on the programs

for Julia sets

33

Julia sets

on the HP-48SX
 

€« c ABS 4

1 + I 1 + 2

< 'r' STO r

32 - 'h' STO

h 137 * 2 ~»

's' STO

s r R-=>C PMRX

EmIGC» PeRTER

S 1 + <1,8)>

* DUP

IF ABS 1 <

THEN 2 -

NEG

gEL»EN?ER

'fFixed' STO

« CLLCD

1 20009

START < —-— I

C(1,8> RAND

IF .S <

THEN HNEG

END 3 DUP

PIXEL

PESS BRERTer
'back ' STO

X setup

fixed back =

h NEG R->C

PMAX = HNEG r

h + NEG R->C

PMIN
EOil £1E8Yer
‘Julia' STO

Subroutine setup computes a
bound for the filled Julia set,

o, _1+VIFdd
C 2 y

and adjusts the screen so that it

covers the square [—r,r|x[-r,7],
hence also the filled Julia set;

h equals the width of each pixel.

ENTER and STOre in 'setup’

Subroutine fixed calculates a non-
attracting fixed point; for the nu-
merator, if |1+ v1—4¢| < 1
then 2 -(1++v1—-4c) =1-
vV1—4c and |1—-+1—-4c|>1
if ¢ # 1/4 (as explained in the
text).

ENTER and STOre in 'fixed'

For the HP-28C&S only, subrou-

tine back iterates the computa-

tion of preimages,

7' {z) 3 2vVz -,

with the commands ¢ —,/, and
with a random choice of sign.

ENTER and STOre in 'back’

The main program, Julia, com-

putes and plots preimages of f.(z)
= 22 4+ ¢ (alone on the HP-48SX,
with back on the HP-28C&S).

ENTER and STOre in 'Julia’
 

 

e 2D ‘c' STO

USER Julia

"

Tutorial:

STOre a complex number in 'c’
execute Julia

in the USER or VAR menu.

Exhibit 4.

 

« c ABS 4 =

1 +- 4 1 + =

-~ 'r' STO r

&4 ~ 'h*' STO

ERASE r 128

< 131 * r

R->C DUP HNEG

SWAFP PDIM #

131d # 128d

PDIM » ENTER

‘'setup' STO

I 1 + <1,3>

* DUP

IF ABS 1 =

THEN 2 -—

NEG

END 2 -~ DUP

PIXON»®» ENTER

'fixed' STO

X setup

fixed 1 2000

START < — I

C(1,8> RAND

IF .S <

THEN NEG

END ¥ DUP

DUFP HNEG

PIXON PIXON

NEXT DROFP

 

»> ENTER

tJdJulia’ STO

e 2D 'c' STO

VAR Julia

a8
"
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Exercises

Routine exercises

Exercise 23. Verify that f_3/4 : C — C, f_3/4(z) = 22 — 3/4 has a parabolic fixed
point at z_ = —1/; and a repelling fixed point at z4 = 3/a.

Exercise 24. Identify the nature (repelling, parabolic, or attracting) of each fixed
point of the function f_, : C — C, with f_5(2) = 22 — 2.

Theoretical exercises

Exercise 25. As the preceding examples and exercises reveal, not all quadratic

polynomials of the type f.(z) = 22 + ¢ have a parabolic fixed point. In fact, f. has

a parabolic fixed point if, but only if, the constant ¢ lies on a particular curve in the

complex plane. Identify that curve. (Write the two equations that mean that f. hasa

parabolic fixed point. Then transform the resulting equations into one polar equation, and

identify the polar equation with that of a standard curve.)

Exercise 26. Prove that an attracting fixed point z, of f. cannot lie on the Julia

set, but belongs to the interior K7 of the filled Julia set. Moreover, if 2z, lies close

enough to z, then (z,) tends to z.. (The proof may require a complex line integral.)

Experiments and conjectures

Exercise 27. Try the Non-Attracting Fixed-Point Inverse Iteration Method and
generate pictures of the Julia sets J, corresponding to the following constants:

(27.1) ¢ = (—0.12256117,0.74586177) This constant c¢ satisfies the equation
¢ +2c2+c+1 =0 (which yields theoretical properties of the Julia set

J. ) and J. is called “Douady’s rabbit;” see Devaney’s An Introduction to

Chaotic Dynamical Systems, 2nd ed., [30], plate 3.

(27.2) ¢ =(0.360284,0.100376) J. is called “the dragon;” see loc. cit., plate 1.

(27.3) ¢ = —1.54368901269 This constant c¢ satisfies the equation c¢* + 4¢3 +

6c’ +6c+4 =0,and J, is Devaney’s dendrite; see loc. cit., pages 293-295.

(27.4) ¢=1=(0,1) The Julia set J; is called “the dendrite.”

(27.5) ¢ = 2/5 The resulting Julia set J,/5 consists of many disconnected pieces.

The following two exercises investigate the results of the Fixed-Point Inverse Iteration

Method with a predetermined sequence of signs to select either square root at each step.

Exercise 28. Considering the squaring function, with fo(z) = 22, start from the
fixed point z4 =1, select 2_; = —/zy = —1, and, henceforth, always choose the square

root described in exercise 5 (which coincides with the square-root key on supercalculators):

2o =24 =1, 21 =-1, z_2=\/—_1=z'—_—(0,1), 2_3‘——\/(0,1)——-(1/\/5,1/\/5),

Compute and plot several additional preimages, and describe the result.
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Exercise 29. With the function f;,43 : C — C, f,4(z) = z% + 1/4, start from its

unique fixed point, z, = 1/, and alternate the choice of the sign ( — or + ), which yields

20'—:2*:1/2,

1=~z —c= 1= a=—/TVi= -1},

z2_g = +y/7o1 —c=+y/—1h— Vi =++/-3/4 =iV3/2,

Z_g3=—\/z_g—cCc= —\/i\/§/2 — s = —/(=4,V3/2)
= (—0.570695986873 ..., —0.758744956776 ... .),

Perform about two dozen iterations and describe the result.

Exercise 30. How do Julia sets relate to the Butterfly Effect in chaos? Answer

this question with a short essay based upon the properties of Julia sets developed in the

present chapter and upon the description of the Butterfly Effect in the introduction. (Of

course, you may also consult other references, but doing so is not required.)

 

5. EXPLORATORY TERM PROJECTS

The present section proposes two projects that may be attempted in parallel with the

study of this chapter (hence the phrase “term projects”). Since the results involve only

elementary complex variables and are known to specialists, the projects do not qualify as

research. However, some of the details are not readily available in many sources, which

means that you may have to search the literature for some results and derive others yourself

(hence the adjective “exploratory”).

5.1. Julia sets of general quadratic polynomials

Project 1. Instead of the particular type of quadratic polynomial considered so far,

fe with f.(2) = 22 + ¢, consider every quadratic polynomial f, for which

f(w) = pw* + qu + 7,

with complex coefficients p, ¢, and j, such that p # 0.

How do the Julia sets of all quadratic polynomials f relate to the Julia sets of the

particular type J. for f. ?

To arrive at a conjecture (a tentative answer), you may either modify the algorithms

given in this chapter and then plot many Julia sets for various p, ¢, and 7, or you may

proceed theoretically as in example 21, on page 26. In either case, however, you then ought

to prove your conjecture (or revise it and start again).
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5.2. A better algorithm for Mandelbrot’s set

Project 2. Instead of fixing ¢ € C and examining what sequences (z,) emerge from
each point 2z, fix 290 =0 and for each ¢ € C consider the sequence (w,)= (f"(0)):

0, fo(0)=02+c=c, folc)=c+c, f+c)=(t+c)+ec, ..., f2"(0),...

The Mandelbrot set is the set, denoted by M, that consists of all complex numbers

c € C for which the sequence (w,) = (f3"(0)) remains bounded.

(1) Verify that —2 € M.

(2) Prove that if ¢ € M then |c| < 2.

(3) Prove that Mandelbrot’s set is symmetric with respect to the horizontal axis.

(4) Modify and test the “Direct Iteration Method” to plot the Mandelbrot set M, in a

fashion similar to that for filled Julia sets.

(5) Prove that your algorithm is better than the ones found in the literature.

6. RESEARCH PROBLEMS

The two research problems proposed here concern two problems already mentioned

in the text and investigated in the exercises. As is the case for all mathematical research

problems, the literature does not appear to offer any solution to these problems, and

nobody knows in advance what methods may lead to solutions.

6.1. An optimal bound for quadratic Julia sets

As proved in the text, no point z € K. in the filled Julia set of the quadratic

polynomial defined by f.(z) = z%2+c¢ may have a modulus greater than R. = max{2, |c|}.
Yet the bound R, is unnecessarily large for most Julia sets, because, as proved in the

exercises, no point z € ', may have a modulus greater than r. = (1++/1 + 4|c|)/2 < R..
Nevertheless, the better bound r. may also be unnecessarily large. Find a better estimate

of the size of the filled Julia set.

6.2. An infinite sequence of preimages

Recall that all the infinitely many preimages of every repelling fixed point — or of the

parabolic fixed point if ¢ = 1/ — of the quadratic polynomial f. lie on the Julia set

itself (the boundary of the filled Julia set), and that therefore, keeping all the preimages

at each step of the Fixed-Point Inverse Iteration Method generates infinitely many points

that outline the Julia sets J.. Yet also recall, from exercises 15 and 16, that plotting only

one preimage at each step may trap the Fixed-Point Inverse Iteration Method in a loop

through only very few points scattered on the Julia set without providing any satisfactory

picture of J.. Find a way to select either square root ( + or — ) at each step so that the

Fixed-Point Inverse Iteration Method does not generate any point more than once. Prove

that your algorithm satisfies the requirement just stated.
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7. SOLUTIONS TO ALL THE EXERCISES

7.1. Solutions to the exercises

Exercise 1.

(1.1) (0,0) +(2,3) =(2,3) (1.12) (2hs3,—343)(2,3) =(1,0)

(1.2) (2,3)+(0,0) =(2,3) (1.13) ((2,3)+(4,5)) +(6,7) =(12,15)

(1.3) (1,0) x (2,3) = (2,3) (1.14) (2,3) +((4,5) +(6,7)) = (12,15)

(1.4) (2,3) x(1,0) =(2,3) (1.15) ((2,3)(4,5))(6,7) = (—196,83)

(1.5) (2,3)+(4,5) =(6,8) (1.16) (2,3)((4,5)(6,7)) = (—196,83)

(1.6) (4,5) +(2,3)=(6,8) (1.17) (2,3)((4,5) +(6,7)) = (—16,54)

(1.7) (2,3) x (4, 5) (=7,22)  (1.18) ((2,3)(4,5)) +((2,3)(6,7)) = (—16, 54)
(1.8) (4,5) x (2,3)=(-7,22)  (1.19) (-1,0)x (2,3) =(-2,-3)
(1.9) (2,3) + (-2 3) (0,0)  (1.20) (2,3) x (~1,0) =(-2,-3)

(1.10) (-2—3)+(2,3) (0,0)  (1.21) (1,0) x (1,0) =(1,0)
(1.11) (2,3)(%/13,—3%M3) = (1,0)  (1.22) (0,1) x (0,1) = (-1,0)

Exercise 2. (2.1) z+ z = 2Re(z) = 2z. (2.2) z -2 = 2Im(z) = 2y. (2.3)
zx 2=z = 2% + ¢

Exercise 3. 22| = |zz]| = |z] - |z| = |2|%. Arg(z2) = Arg(z) + Arg(z) = 2Arg (2).

Exercise 4. |z| = |z —w+w| < |z —w| + |w|, hence |z| —|w| < |z —w]|. If |z] > |w]
then ||z| — |w|| =]z| = |w| £ |z —w]|. If |z| < |w| then permute the roles of z and w.

Exercise 5. Observe that if w = (u,v) then w? = (u,v)(u,v) = (v? —v% uwv+vu) =
(u? — v?, 2uv); thus,

2

T++yt —z + /2% + y?w? = (u,v)? = ( IEVIRY  ign(yyy SV

with
2 2

T+ \/x? + y? ) —z 4+ \/x? +y?
=u? -0’ = ( ——9————) - (s1gn(y)‘\/—

and

sign(y)
—r+ /I2+y2

5 .
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Hence,

 

2_<:c+ :32-}-y2 —x + :v2+y

- 4

T2 + y2 — 2

5 ,2sign(y)\| ———— = (z,y) = =.

Exercise 6. (6.1) (—w)? = w? = 2. (6.2) All square roots ¢ € C of 2z satisfy
the quadratic equation ¢?> — z = 0, and such a polynomial equation, of degree two in gq,

cannot have more than two roots.

Exercise 7. Apply the result of exercise 3: since w? = z, it follows that |z| = |w?| =
|w|?, hence |w|= \/|z|, and Arg(z) = Arg(w2) = 2Arg (w), hence Arg(w) = Arg(z)/2.

Exercise 8. (8.1) /-1 = £(0,1) = £:. (8.2) /-4 = £(0,2) = £2:. (8.3)

(0,1) = £(1/v2,1/v2).
Exercise 9. Complete the square, verbatim as in precalculus:

) , b b\* b\*
=az°+bz4+c=alz°+-2z|+c=a 24+ —] — — + c.

a 2a 2a

Hence, dividing both sides by a, rearranging terms, and taking square roots yield

2 C \/—4ac
Z+—= ——‘) -

2a

Exercise 10. z; =(-3,4) and z_ =(-3,-4); z =(—-6+£ /6% —4.25)/2.

Exercise 11. If zy € K. then —z, € I, because z; = z2 +c¢ = (—29)> + ¢ and
the sequences starting at 2y and —z; coincide from z; and beyond.

Exercise 12. Set d = |z9| —r. > 0, so that |z9| = r. + d. Then

2

1+ /14 4|c 1+\/1+4C
|ZO]2=(—-—5—J+(Z> = ... I(1+\/1+4|(‘)+d2+|0|

Use the expression just found and the reverse triangle inequality to obtain

1+ 1+4c

2] = 22 = o] 2 [l= Jel] > YEF4 g oT,

To complete the induction, assume that

1 ,/1 4
2] > VT

Ly

Vitdle d(1 4+ /1 + 4c|)"
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holds for some integer n € N*, and repeat the preceding argument with d replaced by

d(1 + /1 + 4|c|)", which leads to the corresponding inequality for n 4+ 1. Therefore, if

|zo] > (1 + /1 +4|c|)/2 then (z,) diverges to infinity.

(12.2) Start the sequence at zp instead of at z.

(12.3) If |¢| <2 then ro =(14++/1+4+4c])/2<(14+V1+4+4-2)/2=2.1If c=2
then 7. =2 =c|. If |¢|>2 then |c|—1> 1, hence (2|c|—1)? = 4|c|* -
4lc| +1 = 4|c|(Je| = 1)+ 1 > 4]|c| + 1; consequently, r. = (14 +/1+4|c|)/2 <

(1 + 4/(2|c| =1)?)/2 = |c¢|. Therefore, r. < max{2,|c|} for every complex
constant c.

(124) If ¢ €] — 00,0] then —c = |c|] and 1 —4c = 1+ 4|c|]. Consequently,
z+ = (14++v1—-4¢)/2 =(1+4++/1+ 4|c|)/2 = r., which shows that one of the
fixed points, z4, lies at distance r. from the origin, but that each fixed

point belongs to the filled Julia set, and so does its opposite —z4, by the

preceding exercise.

Exercise 13. If (z,) is unbounded then there exists an index N € N such that
lzn| > 7re = (1 + /1 + 4|c|)/2, whence (z,) diverges to infinity.

Exercise 14.

(14.1) 24 =2 and 2_ = —1: solve f_o(z) =2, 22 =2 =2, 22 —2-2 =0,
1+a2

(14.2) From z4 =2, 2_; = —/2—(=2) = -2, z_0=/-2—-(-2)=0, z_3 =

+,/0-= £/2.

Fromz_ = —1, z_; = /-1—=(=2) =1, 2_5 = £/1-= £V3,

sy =+VV3+2

(14.3) If —2<z_, <2 then |z_(yn] =2z -(-2)<V/2-(=-2)=2.

Exercise 15.

(15.1) 24 =1 and z_ =0: solve fo(z) =12z, 22=2, z(z—-1)=0.

(15.2) From =z_ = 0, the inverse iteration method remains trapped at zero: if

z2_p = 0 then z_(h4;) = VO+0 = 0. From 2z, = 1, the inverse

iteration method generates preimages z_, that are all distinct and all lie

on the circle with radius 1 and center at O.

Exercise 16.

(16.1) z4 =3/ and z_ = =1/solve f_3/4(z) =2z, 22 =31 =2, 22 —z-3/4=0.

(16.2) z_ = =1, z_y =1, z_9 =/5/2, z_3=(V/3+2V5)/2, z_4 = 1.454...,
z2_5=1484..., 2_¢=1494..., z_7; = 1.498...; thus, the sequence appears

to converge to 1.5.
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(16.3) Since z_(p4+1) = \/Z—n + 3/4, consider the function

g : [Ya, 3R] = [Vs,3h], g(z) = /z+ 3/s. Since
g'(z) = 1/(2v/z + 3/s), it follows that |¢'(z)| <
|g'(1/4)| = 1/2 < 1 forevery x € [1/4,3/2]. By the real
Mean Value Theorem, if z, € [!/s,3/2] then there
exists a real number z € [1/4, 3/2] such that

Z_(nt1) = 32 = 9(2-n) = 9(3f) = (220 = 3/2) - ¢'(2).

Consequently, |z_(ns1y — 32| < |z—n — %I/2, and,
therefore, the sequence of preimages (z_,) converges
to z = 3. Exhibit 5.

(16.4) From =z, = 3/2, the sequence of preimages (z_,) traces exhibit 5.

Exercise 17. Proof. Apply the chain rule, (fog) = (f'0g)g"

(£2) () = fL(felz0)) Filz) = fllza)filze) = (Fi(20)" .

Then apply induction on n. O

Exercise 18. Proof. The results of exercise 12 establish that a point zy initiates a

divergent sequence if, but only if, there exists an index n € N such that |z,| > r.. This
means that some term z, lies outside the closed disc with radius r. = (14 /1 + 4|c|)/2;

thus, z, € C\ D(0,r.). Since z, = f3"™(z¢), this also means that

2= (M7 (=) € (M)(€\ DO)
Consequently,

Ame = J (521(\D).
n=0

Since C\ D(0,r.) 1is an open set, and since f2™ is continuous, it follows that each

preimage (fo")”! (C \ D(O,rc)) 1s open. As a union of open sets, Ao. 1s open. O

Exercise 19. Proof. To show that f.(Ac) C Ao, suppose that zp € Aoc.

Then (z,) diverges to infinity, which means that the sequence that starts at z; = f(z)

also diverges to infinity, which also means that z; € A,.. Therefore, f.(Aw.c) C Aoey

and, equivalently, Ay. C [(Axoc); thus, fe(As,c) C Acoe C fi (Anoe)-

For the reverse inclusions, select either preimage of zg, for instance z_, = /29 — ¢, so

that fc(2-1) = z0. If 29 € A, then the sequence (z,) diverges to infinity, and so does

the sequence that starts from z_; since both sequences have the same terms with indices

shifted by one. Consequently, z_; € A¢, which means that A,. C f.(Ax.). Since the

same argument holds for all preimages of zp € A., it follows that f7'(A) C Ao

O
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Exercise 20. If 2y € f.(J.) then there exists a point z_; € J. such that

fe(z=1) = 2z9. By continuity of f., for each open disc D(z¢,r) the set f1(D(ro,r))
is open and contains z_;; hence it contains an open disc D(z_;,s) C f7'(D(zp,1)).
Since z_; € J. = OK,, it follows that D(z_;,s) contains a point p € K, and a

point ¢ € A.. Consequently, f.(p) € fo(K.)N fe(D(z2-1,s)) = K. N D(zp,7) and

fe(q) € fe(Aso,e) N fe(D(2-1,8)) = Aco,c N D(20,7). Therefore, 2z, € OK..
Moreover, the preceding argument also shows that if z_; € J. then f.(z_;) € J.,

which proves that J. C f1(J.).

Exercise 21. By proposition 5, f.(K?) C f.(K.) C K., and, by the Open Mapping
Theorem, f.(K?) is an open set. Hence, f.(K?) C K?. If also follows that K_ C
fFYRR). Similarly, fo1(K?) C foi(K.) C K. by proposition 5, and f!(K?) is open
by continuity of f., hence f!'(K?)C R?.

Moreover, if zy € K7 then there exist preimages of z,. For each such preimage,
z_1 ¢ As,c by exercise 19, and z_; ¢ 0K, = J. by exercise 20. Therefore, z_; €

C\(Aw,cUJ:) =K. and R? C f(K?).

Exercise 22. If zy € J. then there exist two preimages 24, and z_ (which
need not be distinct from each other) such that f.(z4+) = 20 = f.(z-), provided by the
quadratic formula (or the Fundamental Theorem of Algebra). If z; denotes any preimage
of zp (thus, z_; € {z4,2_} ), then z_; ¢ K? by exercise 21, and z2_; ¢ Ay. by

exercise 19. Therefore, z_; € C\ (KU Ax) = 0K, = J,, and zo = fc(2-1) € fo(Je),
hence J. C f.(Je¢).

In addition, the preceding argument also shows that if z_; € f71(J.) then z_; € J,,
which proves that f7!(J.) C J..

Finally, the results just obtained in the present exercise, and those from exercises 20,

establish that f.(J.) = J. = f71(J.).

Exercise 23. |fL;,(='2)=2x(='L)l=]-1=1 and |fL;,(3)] = (2% 3/| =
3> 1.

Exercise 24. Both are repelling. |f',(=1)|=|2x (=1)]=2>1 and |f.,(2)| =
2x2=4>1.

Exercise 25.

Solution with conformal mappings. |1 £+v/1 —4c| =1
if, but only if, 1+ /1 —4c lies on the unit circle, which

means that +./1 —4c lies on the circle C with radius

 

1 and center at (1,0). Hence, the squaring function maps /’;}\{N
++v/1 — 4c to 1—4c but it also maps the circle C onto the / .| Re

cardioid with polar equation r = 1+ cos(fd) (see Spiegel’s 1 = %I 1

Shaum’s Outline [14], chapter 8, page 210, mapping C-2). \-EL/
A rotation by one-half turn (a multiplication by —1 ) maps

1—4c to 4c—1, then a translation to the right by 1 gives

4c, and finally a compression by a factor of 1/; yields ¢

and the cardioid in exhibit 6. Exhibit 6.
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Solution with algebra in polar coordinates. 1+ /1 — 4c = (cos §,sin 8) = e'®. Thus,

1—4dc=(e? —1)2 =¢?% —2¢"% + 1 = (cos(20) —2cosf + 1, sin(26) — 2sin¥b)

= (2(cos8)? —2cosf , 2sinfcosf — 2sinf) = 2(cos§ — 1)(cosb , sinf)

which has modulus 7(8) = 2(cosé — 1) and argument Arg(cosf,sinf) = 6. Therefore,
1 — 4c lies on the cardioid with polar equation r = 2(cosé — 1).

Exercise 26. If z, isan attracting fixed point of f. then |f!(z,)| < 1. By continuity

of f!, there exists an open disc D(z,,r) such that |fl(z0)| < 12+ |fi(z4)|/2 < 1 for
each zg € D(z.,r). With an integral along the straight line segment from z, to 2o, the

Fundamental Theorem of Complex Calculus yields

z0
21— 2l = [fulz0) = fulza)] = l [ sy

 

< lz0 — z«lsup{|fe(z)] © 2 € D(2x,7)} < fz0 — za| - (1 + |fe(2)]) /2 < fz0 — 2.

Hence, induction shows that (z,) converges to z,; in particular, zy € I.

Exercise 27.

(27.1) See exhibit la, in the introduction to this chapter.

(27.2) See exhibit 1b.

(27.3) See exhibit 1c.

(27.4) See exhibit 1d.

(27.5) See exhibit le.

Exercise 28. The sequence of preimages clusters near the points —1 and 1.

Exercise 29. The sequence gets trapped and alternates between two points.

Exercise 30. The Butterfly Effect consists of the great sensitivity of changes in the

weather due to small initial perturbations; such sensitivity may give us the impression of

chaos, because we do not know what small initial perturbations cause the large changes

that we observe. Similarly, sequences (z,) = (f"(z0)) of iterations of a function f. may
exhibit great sensitivity to the initial point, 2z, especially if z¢ lies on the Julia set J.:

every perturbation that keeps zg in the filled Julia set I, keeps the sequence bounded,

whereas any perturbation of 2z, into the complement C\ K. of the filled Julia set —

even one too small to be measured — causes the sequence to diverge to infinity.

7.2. Hints for the term projects

Project 1. The present line of thoughts expands on a comment in Falconer’s Fractal

Geometry, [34], page 204, and shows that the study of the filled Julia set of each complex
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quadratic polynomial reduces to that of an associated polynomial of the type f.. To this

end, let p, ¢, and j denote three complex coefficients, with p # 0, and let

f:C—oC, f(w)=pw?+quw+j.

(1) Determine complex numbers a, b, and ¢, in terms of p, ¢, and j, such that for

each weC

pw? +qu+j = ((aw+b)2+c—b) /a.

(2) Consider the function

h: C—C, h(w)=aw+b.

Solve h(w) =z for w to obtain a formula for the inverse function hA~!: C — C,
h=1(z) =? Verify that h(h7!(z)) =z and h~!'(h(w)) = w.

(3) Prove that f=h"!o f.oh;thus, f(w)=h"1(f.(h(w))) for every w € C.
(4) Deduce that (wp) = (f°™(wp)) remains bounded if, but only if, (z,) = (f2"(h(wy)))

remains bounded.

(5) Conclude that the filled Julia set of f is the image under h~! of the filled Julia set
of f.. Multiplication by a rotates the Julia set by Arg(a) and expands (if |a| > 1)
or contracts (if |a| < 1) it by a factor of |a|. Adding b translates the Julia set by b.

Project 2.

(1) With ¢ = —2 the sequence becomes 0, f_5(0) =0? -2 = -2, f_5(=2) =(-2)>-2=
2, f_2(2) =2% —2 =2, and thereafter the sequence stays at 2 forever; in particular,

1t remains bounded, and thus —2 € M.

(2) Suppose that |c| > 2 and set d = |c|] —2 > 0, so that |¢|] = 2+ d. Then wy = 0,
w; = f(0)=02+c=c, wy= f(w;)=c?+c, and

[wa| = le*+c| = |e(c+1)| = |e[-|e+1] 2 [e]-|le[-1] = |e]-|(2+d) 1] = |e[(1+d) > |e|+2d.

Suppose that |w,| > |c| +2-4"~2d, which holds for n = 2. Then

wnsa] = w3 + | 2 [lwal? = lell > |(Iel +2-47~%a)" — |¢|  

= |[c]* + 2|c|2- 4"2d + (2-4"72d)? — ||

> el =] +2-2-2-4"2d > |¢| +2- 4"1d.

Therefore, |wy,| > |c|+2-4"~2d, which diverges to infinity. This proves that if |¢| > 2
then ¢ ¢ M.

(3) Show that if ¢ € M, then ¢ € M.
(4) Since ¢ ¢ M if |c| > 2, you need only test those complex ¢ for which |¢| < 2.

Second, for a popular algorithm, prove the following proposition.

If |lw,| > max{2,|c|} then (w,) diverges to infinity.
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Proof. Case 1: |c| < 2. If |c| < 2 then max{2,|c|} = 2. Set d = |w,|—max{2,|c|} =
|lwnp| —2 >0, so that |w,| =2+ d. Then

wnt1] = g + ¢ 2 lwal® = lel| = (2+d)* — |e] = 4 +2d + d* — |c]

=24+2d+d*+(2—|c|) > 2+ 2d.

Henceforth, |wn4k| diverges to infinity as 2 4 2%d does.

Case 2: |c| > 2. If |¢|] > 2 then max{2,|c|} = |c|. Set d = |w,| — max{2,|c|} =
|wn| — || > 0, so that |w,| = |c¢| + d. Then

Wnt1] = |wg + ¢ 2 |[wal* — lel| = (le] + d)* = || = [e]* + 2d|e| + d* — ]

= lel(le] = 1) +2dc| + d® > |e| + 4d.
Thereafter, |wn4x| diverges to infinity as |c| + 4Fd does. O

Third, choose a maximum number of iterations, N € N. For each complex constant

¢ in the closed disc D(0,2) (or in the square [-2,2] x [—2,2]), compute the first N
points of the sequence wg =0, w; =02 4+¢, wy =c*+¢, ..., Wy = w%\,_l +c If

lwn| > max{2,|c|} then ¢ ¢ M, by the proposition just proved; color ¢ in white.

If |wy| < max{2,]|c|} then the results obtained so far do not guarantee that ¢ € M.
Nevertheless, color ¢ (and €, by symmetry) in black; the accuracy of the resulting picture
of Mandelbrot’s set depends upon the number of iterations.

(5) For a better algorithm, prove the preceding proposition with r. = (1 + /1 + 4|c|)/2
instead of R, = max{2,|c|}. Exhibit 8 displays working prototypes of programs based
upon such an algorithm, which produced the pictures in exhibit 7.

Mandelbrot’s set Tutorial for plotting Mandelbrot’s set
on the HP-28C&S Mandelbrot’s set on the HP-48SX
 

(1) Type, ENTER, and STOre all
the routines in exhibit 8

(2) Execute the command Benoit.
(3) Note that the HP-28 plots the

upper and lower halves sepa-

 

rately.

Exhibit 7.

For adifferent program, see William C. Wickes’ book [41], pages 337-339.
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£ 1 'k' STO

WHILE DUP

ABS rc <=

k 12 < RHND

REFPERT

S OVER +

'k 1 STO+

END

IF ABS rc <

THEN PIXEL

ELSE DROP
END > ENTER

FOR y 4 y4 S

- 4 DUP NEG

SWAP

FOR x x y

R>C DUP

DUFP ABS 4

* 1 + I 1

+~ 2 -

STO

tests side

STEP side

STEFP LCD->
> ENTER

sweep '

lr_cl

STO = 2

R=>C PMAX =

NEG 8 R->C

PMIN .8625

'side’ T?
8 2 » NTER

'‘'up' STO

X side NEG s

OVER R->C

PMAX = HNEG

-2 side -—

R>C PMIN —E
SWAP ®» ENTER

€« up sSsweep

down swee
> ENTER

‘'Benoit® STO
 

Comments on the programs
for Mandelbrot’s set
 

Subroutine tests examines a pixel

¢ = (z,y), starting from 2z =
(0,0) and iterating f.(z) = 2%+
¢ at most twelve times; if |zx| >
r. at any iteration, then the sub-

routine leaves ¢ = (z,y) white,

otherwise it colors ¢ in black.
ENTER and STOre in 'tests’

For the HP-48SX only, scene ad-

justs the screen so that it covers

the square [—2,2]x[-2,2|, which
contains Mandelbrot’s set.

ENTER and STOre in 'scene’

For the HP-28C&S only, up ad-
justs the screen so that it covers

the upper half of the square.
ENTER and STOre in 'up’

For the HP-28C&S only, down ad-

justs the screen so that it covers

the lower half of the square.

ENTER and STOre in 'down’

For the HP-28C&S only, sweep

scans each pixel ¢ = (z,y) In
D(0,2), which contains Mandel-

brot’s set; sweep computes r. =

(14++/1 4+ 4|c|)/2 for each ¢ and
calls tests.

ENTER and STOre in 'sweep’

The main program, Benoit, man-
ages the other subroutines; on the

HP-48SX, it also performs the tasks

that sweep does on the HP-28C&S.

ENTER and STOre in 'Benoit’

Tutorial: execute Benoit

~— on the HP-28C&:S,

on the HP-48SX —

Exhibit 8.
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€ 1 'k' STO

WMHILE DUP

ABS rc <

k 12 =

REPERT

SR OVER -+

'k' 1 STO+

END

IF ABS rc <=

THEN DUP

CONJ PIXOHN

PIXOHN

ELSE DROP

END » ENTER

'tests!

€ 131

R->C DUFP NEG

SWAFP PDIM #

131d # 128d

PDIM .83125

'‘'side' STO

> ENTER

AND

X scene 8 2

FOR y

4 v s - J

DUPFP HNEG

SWAP

FOR x x y

R=>C DUP

DUFP ABS <4

* 1 + J 1

+ 2 7

STO

tests side

STEP side

STEP » ENTER

‘Benoit' STO

lr-cl

 

TUTORIAL

YAR Benoit
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FRACTALS

in Real Analysis and Topology

Summary. The first section presents the construction of von Koch’s snowflake and

shows that it is topologically equivalent to a circle but with infinite length. The second
section explains the concepts of “Hausdorff dimension” and “fractal.” The present chap-

ter also demonstrates how the description and the explanation of the result of a simple

construction (by hand or with a computer) require a substantial abstract theory.

Prerequisites. The construction and the program in the first subsection have no
formal prerequisites beyond a working knowledge of precalculus. The subsequent explana-

tions of von Koch’s snowflake and its fractal nature require the prior or concurrent study

of basic topology and real analysis.
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0. INTRODUCTION

Benoit B. Mandelbrot coined the word “fractal” in 1975 to name such sets as a circle,

a segment, all Julia sets (described in the preceding chapter), and von Koch’s snowflake
(pictured in figure 1 and examined in the present chapter).

Figure 1. An example of a fractal: von Koch’s snowflake.

Despite its popularity among some mathematicians and scientists, the word “fractal”

has eluded (and does not need) an accurate definition, perhaps because, though intended

to designate sets, the word “fractal” refers not to any type of set but to one aspect of all

sets in the plane and in other spaces: their “Hausdorff dimension” (a concept defined in

the second section). Thus, studying fractals means studying the Hausdorff dimension of

any sets. To demonstrate the need for the Hausdorff dimension, the first section constructs

a particular set, von Koch’s snowflake, which has infinite length (a measure of size with
one dimension) and null area (a measure of size with two dimensions). Consequently, any
meaningful “measure” of the “size” of such a set must occur with a “fractional dimension,”

between one and two.
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1. VON KOCH’S SNOWFLAKE

The present section constructs von Koch’s snowflake and investigates its topological

properties, which reveal that the snowflake is a simple closed curve, topologically equivalent

to a circle, but with infinite length.

1.1. Construction and plot of von Koch’s snowflake

The construction of von Koch’s snowflake starts from an oriented segment AB in

the plane. Informally, an oriented segment AB is a segment of straight line from a point

A, designated as the first point, to a point B, designated as the second point. Thus, the

oriented segment AB, oriented from A to B, differs from the oriented segment BA,
oriented from B to A. (Formally, the oriented segment AB 1s equivalent to the ordered

pair (A, B), which differs from the ordered pair (B,A) if A # B.)

 

Figure 2. The basic step of von Koch’s construction.

From the oriented segment AB, the construction of von Koch’s snowflake proceeds
inductively, through a sequence of steps. Basic to the whole construction, the first step

transforms an initial oriented segment FE, = AB into an oriented polygonal path
E, = APQRB, formally equivalent to the sequence of points (A, P, @, R, B), as shown in

figure 2, and consisting of four new oriented segments, AP, PQ, QR, and RB, each of

a length equal to one third that of AB. To specify on which side of the initial segment

AB the new vertex @ must lie, adopt the convention that the point @ must be on

the “right-hand side” of the oriented segment AB; mathematically, this means that the

ordered basis (A-Q, A—B) is right-handed, or, equivalently, that the matrix with two rows

and two columns (AQ, AB) has a positive determinant. Since all four new segments have
equal lengths, the convention also means that to construct PQ it suffices to rotate AP

by —m/3 and then to translate A to P. (Also, applied to the three sides of a triangle to

produce von Koch’s snowflake, the orientation just described agrees with the orientation

of the boundary as defined in algebraic topology.)

After the first step has transformed the initial oriented segment E; = AB into

the oriented polygonal path E; = APQRB, which forms the first stage of von Koch’s
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Exhibit 1. The first five stages of von Koch’s construction, plotted by the HP-28S.

construction, the second step applies the same transformation to each of the four segments

AP, PQ, QR,and RB. This produces an oriented polygonal path E; (the second stage

of the construction) with four times four (sixteen) segments, each with length one third
that of the preceding ones, in effect one ninth that of AB, and so forth. In general, the k-

th step produces an oriented polygonal path E; (the k-th stage) with 4* segments, each

with length (1/3)* that of AB, as in exhibit 1. Also, all the 3 x 4¥~! new vertices (new
corners) produced at the k-th step appear on the same side of the polygonal path as the

previous ones, thanks to the convention about the orientation adopted in the description

of the first step. The mathematical “limit” of von Koch’s construction yields one side of

von Koch’s snowflake, denoted by E,. Exhibit 2 lists a program that continues to execute

such steps until all the generated vertices exhaust the available memory; exhibit 1 displays

the consecutive results of such steps. To explain how such a program may work (for any

type of computer or supercalculator), the following exercises establish some quantitative

properties of the construction.
 

Routine exercises

Exercise 1. Consider the unit seg-
ment, E; = [0,1] C RZ, oriented from P "
0=(0,0) to 1=(1,0). From that in-
terval, the first step of von Koch’s con-

struction produces a polygonal path E,;

= 0PQR]1. Calculate the coordinates of

the vertices P, @, and R. ¢

Exercise 2. Instead of the specific segment [0,1], consider any oriented segment

AB and assume as given the coordinates of its endpoints, A = (z,y) and B = (u,v).

Calculate the coordinates of the new vertices, P, @, and R, in terms of z, vy, u,

and v. You may express your results with coordinates, with vectors and matrices, or with

complex numbers.
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von Koch’s snowflake

on the HP-28C&:S

Comments on the programs

for von Koch’s snowflake

Chapter 2 FRACTALS

von Koch’s snowflake

on the HP-48SX
 

« 'R’ 5T0 'B* STO B A -

32 'CsST0BBC-RC

turn ¥ - R C +AR1 4

START line DEPTH ROLLD

NEXT »

ENTER 'Koch' STO

 

« CLLCD 1 DEPTH 2 -

IFERR

S5TART Koch

NEXT

THEN CLEAR 38 SF

ELSE PRLCD CR CR

END DEPTH ROLLD

ENTER 'pass' STO

 

€ -1 3 7 INVY R3C 1.5 #

'turn' STO 3 ¥ 2 # DUP

32 # 'side' STO INY DUP

137 # 64 7~ DUP 8 R3C

PMAX SWAP R>C NEG PMIN

(.5,8) ¢(-.5,8) >

ENTER 'set' STO

 

€ set CLLCD line 38 CF

WHILE 38 FC?

REPEAT pass

END CLEAR >

ENTER 'flake' STO

 

<« DUP2 DUP2 - DUP RBS

side # CEIL DUP ROT ROT

/ 'dt' STO 1 SWAP

START DUP PIXEL dt +

NEXT DROP2 >

ENTER 'line' STO

 

TUTORIAL: USER flake

Y-

With points A onlevel 1 and B
on level 2, this subroutine leaves

A,P,Q,R,B on the stack, with

R=B-(B-A)/3,

Q=A4-(-1,1/V3)(B-A)/2,
P=A+(B-A)/3.

ENTER and STOre in 'Koch’

With an oriented polygonal path
(complex numbers) on the stack,
this subroutine performs one ele-

mentary step of von Koch’s con-

struction once for each pair of con-
secutive vertices, thus leaving the
next entire stage on the stack.

ENTER and STOre in 'pass’

This subroutine computes turn

= (—3,v/3)/2 (thus turn=* (A —
B) =(Q—-A)), the number of pix-
els per unit length side, and the
dimensions of the screen; it leaves

the initial stage on the stack.

ENTER and STOre in 'set’

This is the main program; it iter-
ates von Koch’s construction.

ENTER and STOre in 'flake’

Only for the HP-28C&:S, this sub-

routine draws the segment joining

two points on the stack.

ENTER and STOre in 'line’
 

Tutorial: execute flake

in the USER or VAR menu.

Exhibit 2.

 

£ 'R* STO0 'B' STO B A -

3+ 'C'sSTOBBC-AC

turn ¥ -AC +ARA1 4

START

DUP2 LINE DEPTH ROLLD

NEXT »

ENTER ‘'Koch' STO

« ERASE 1 DEPTH 2 -

[FERR

START Koch

NEXT

THEN CLEAR 38 SF

ELSE PICT RCL 'snow' STO

END DEPTH ROLLD >

ENTER ‘'pass' STO

 

€ -1 3 { INY R3C 1.3 ¢

‘turn' STO 1 3 § INY R2C

NEG 1 3 § R+C PDIM %

131d # 131d PDIM (-1,8)

8 37 R(1,8 (-1,08) >

ENTER 'set' STO
 

« set 38 CF

WHILE 38 FC?

REPERAT pass

END CLERR >

ENTER ‘'flake' STO

 

TUTORIAL: VYAR flake

IRIY;
P

g {‘
;f
A
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1.2. Cauchy sequences of continuous functions

The construction of von Koch’s snowflake presented in the preceding subsection pro-

ceeds with a sequence of elementary steps, but the sequence contains infinitely many such

steps, which means that the final object — von Koch’s snowflake — is a limit. Therefore,

the analysis of such sets as von Koch’s snowflake requires standard facts about limits of

sequences of functions, which will be reviewed in the present subsection.

Definition 1. A curve in the plane is a continuous function f: [0,1] — R?, ¢ —
f(t) = (X(¢),Y(t)), from the closed unit segment into the plane. (The image f([0,1]) C
R? traced by f corresponds to the intuitive concept of curve.)

EXAMPLE 1. The function s : [0,1] — R? with s(¢) = (cos(27t),sin(27t)) traces
the unit circle, with center at the origin and radius equal to one.

EXAMPLE 2. The function fo : [0,1] — R? with fo(¢) = (#,0) traces the unit
segment [0,1] x {0} on the first coordinate axis.
 

Exercise 3. Write a formula, f1(¢) = (X(¢),Y(¢)), for the curve 0PQR1 corre-
sponding to the first stage of the construction of von Koch’s snowflake (with four segments).
 

Definition 2. For each pair of real numbers a < b the notation C°([a,b],R?)
represents the linear space of all continuous functions from [a,b] into RZ?, endowed with
the maximum norm, denoted by || ||cc and defined for each function f € C°([a,d],R?)

by
[flleo = max {||f()] : t € [a,b]},

with || | denoting the usual Euclidean norm on R?. Thus, ||f||ec represents the greatest
magnitude that the vector f(t) = (X(¢),Y(#)) reaches as t traces [a,b].

REMARK 1. The notation || ||c for the maximum norm comes from a standard

exercise in real analysis, which pertains to the p-norms defined by || f||, = (fc:’ |f|?

and which shows that ||f|lecc = limp—co ||f||p- (See the references by Folland, [22], #7, p.
179, and Rudin, [20], #4, p. 71.)

Definition 3. A sequence (f,) of functions in C°%([a,b],R?) converges to a
function f € C°([a,b],R?) if, but only if, lim,—oo ||f — fnlleo = O.

Informally, the definition of “convergence” means that the sequences of vectors (f,(t))
= (Xn(t),Yn(t)) converge to f(t)=(X(t),Y(¢)) at a rate independent of ¢.

Definition 4. A Cauchy sequence (f,) of functionsin C°([a,b],R?) is a sequence
such that for each positive real number ¢ > 0 there exists an integer N. such that if

n > N, andif m > N, then ||fn — finlloo < €.

Informally, the functions in a Cauchy sequence get as close as we want to one another,

but they need not converge to a limit, except in certain particular spaces of functions, for

instance, in C°([a, b], R?).
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Theorem 1. Each Cauchy sequence in C°([a,b],R?) converges to a limat.

Proof. Firstly, observe that for each number t € [a,b] the sequence of vectors
(fn(t)) also forms a Cauchy sequence, in R?, because ||fn(t) — fm(t)|| < ||fn — fmll < ¢
if n,m > N.. Consequently, by completeness of the real numbers, each sequence (f,(t))
converges to some limit, which we denote by f(t). That is, f(¢) =lim,—os fn(?).

Secondly, the limit function f : [a,b] — R%, f(¢) = lim,,.o fa(t) is continuous: if
r,s € [a,b], then the triangle inequality gives

1£(r) = F=1(r) = fa(r) + fa(r) = fals) + fa(s) = f(s)]

<) = Fa(ml + 1fn(r) = fal)l + [[fals) = F(s)]-

Since (fn(r)) and (fn(s)) converge to f(r) and f(s) respectively, for every ¢ > 0
there exists an index N./3 such that if n > N./3 then ||f(r)— fa(r)|| < ¢/3 and
| f(3) = fn(s)|| < €/3. Moreover, since each f, is continuous on the closed and bounded,
hence compact, interval [a,bd], it follows that each f, 1is uniformly continuous, which

means that there exists a positive real number é./3 such that if r,s € [a,b] and if

|r —s| < 0cy3 then ||fn(r) — fa(s)|| < e/3. Therefore, if |r —s| < d./3 then

1f(r) = F< N1f(r) = fa(r)ll + 1 fn(r) = fals)l + | fals) = f(s)l| <e/3+¢/3+e/3=c¢,

which means that f is (uniformly) continuous on [a,b]; thus, f € C°([a,b],R?).
Thirdly, the sequence (f,) converges to its limit f with respect to the maximum

norm: for each ¢ > 0 and for each t € [a,b] there exists an index N,./; such that if

m > Ny./ then |f(t) — fm(t)|| < /2, because (fn(t)) convergesto f(t). Also, there
exists an index N./, such that if n,m > N./; then ||f, — fm| < €/2, because (f,) is

a Cauchy sequence. Consequently, if m > N,./, andif n > N/, then

1f(&) = Fa@I S M) = fm@DI + | fm(t) = F(D)]l <e/2+€/2 =

Since n does not depend upon t, this inequality means that lim,.. ||f — fal|leo = 0. O
 

Exercises

The following exercises establish the topological properties of von Koch’s snowflake.

To this end, let f, : [0,1] — R? denote the n-th stage of the construction of von Koch’s

snowflake. For example, fo(t) = (¢,0) represents the initial stage, which traces the unit

segment, and f; represents the first stage, with four segments, and so forth.

Firstly, von Koch’s snowflake is a continuous curve.

Exercise 4. Prove that ||fn4+1 — falleo < 1/(3"2v/3). Deduce that if 0 < m < n
then ||fn — fm|loo < (1/3)™. Conclude that the sequence (f,) converges uniformly to
a continuous function f : [0,1] — R2. Its image, E. = f([0,1]), forms one side of the
snowflake.
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Secondly, von Koch’s complete snowflake — constructed from each of the three sides

of an equilateral triangle — is homeomorphic to a circle.

Exercise 5. By induction, prove that at each stage of the construction the function

fn is accretive (or expansive), which means that if r,s € [a,b] then ||fn(r)— fn(s)| >
|r — s|. Deduce that the limit, f, is also accretive ( ||f(r)— f(s)|| > |r —s| ), and conclude
that f is injective: if r # s then f(r) # f(s). Finally, prove that each side of the

snowflake is topologically homeomorphic to the unit segment, [0,1], which means that the
inverse function f~! is also continuous on f([0,1]). Thus, the snowflake has topological
dimension 1. To show that the entire snowflake is homeomorphic to a circle, observe that

the three sides intersect one another only at their endpoints.

Thirdly, von Koch’s snowflake has infinite length.

Exercise 6. Prove that the length of the image of f,4+1 equals 4/3 that of f,. Then

j=nfind a double sequence of points ((tn,')jzo
oo

i ) , which you may consider as a sequence
n=0

(tn, );zg for each stage n € N, such that for each n

0= tn,O < tn,l < < tn,n—l < tn,n =1

and such that

lim max {|tn; —tnj-1]: 7€ {1,...,n}} =0,

Lim3 [ f(tn;) = f(taj-1)ll = oo.
1=1

This means that for each positive length L > 0 there exists a polygonal path with vertices

f(tn ;) on the snowflake and with length greater than L. (The curve f — the snowflake
— 1s then called non-rectifiable.)

Lastly, von Koch’s snowflake (which consists only of the “edge”) has null area.

Exercise 7. Prove that the image E. = f([0,1]) has null area. (Observe that the
image consists exclusively of the curve f, which traces only the boundary of the flake.)
 

2. HAUSDORFF DIMENSION AND FRACTALS

The existence of sets such as von Koch’s snowflake, which are closed and bounded

curves covering a null area, like a circle, but with infinite length, unlike a circle, reveals

the inadequacy of the two standard concepts for measuring the size of planar sets, length

and area: for von Koch’s snowflake, the one-dimensional measure, length, is infinite, while

the two-dimensional measure, area, is null. Neither dimension provides a satisfactory

measure of the size of such a set. This demonstrates the need for a concept of non-integral

dimensions and for a method of measuring size in such non-integral dimensions, that is, a

measure between length and area. To develop such a method, the first two subsections,

below, review the necessary concepts from analysis and topology, and the third subsection

demonstrates by examples how one might determine the dimension of a set.



54 Chapter 2 FRACTALS

2.1. The Gamma function and the volume of balls

Just as any concept of measure requires a unit, the Hausdorff measure presented here

relies upon the closed unit balls in R™, denoted by B(0, 1), which consist of all the points

at Euclidean distance at most one from the origin. The following concepts pertain to the
n-dimensional volume of the unit ball in R™, which constitutes the unit for measuring the
size of other sets.

Definition 5. The gamma function is the function T': ]0,00[— R defined by

o0

['(t) = / 'le"dz.
0

EXAMPLE 3. For example,

I'(1) = / 'le™dr = / efdr=—-e"*|77=-0-(-1)=1.
0 0

From integration by parts follows the recursion formula I'(¢+ 1) = tI'(¢) for every ¢ > 0:

I(t+1) = / gtle™"dr = (=™%)|° — / te'~!(—e%)dz = 0+ tT'(¢).
0 0

From the recursion formula and T'(1) =1 follow

I'2)=r1+1)=1I(1)=1-1=1,
I(3)=T(2+1)=2T(2)=2-1=2,
I'(4) =T(3+4+ 1) =3I'(3) =3-2 =6, and so forth,
I'(n)=T(n+[n-1])=(n—-1)I'(n-1)=(n—-1)! for each positive integer n.

The calculation of values of T' for non-integral arguments involves more substantial
analysis. For instance, multiples of one-half require the following integral.

/ e_“2du = fi
0

Lemma 1.

2

Proof. For details, see Robert Weinstock’s note [9], which presents an elementary

proof along the following line of thought. Consider the function f [0, co[— R, with

L—z(1+t%)
= ——;/o= [ S

Notice that f(0) = Arctan(1l) = 7/4, that lim,. f(z) = 0, and that

1 —z VT2 e 2flmz—/eflm*wz- / e du
0 vz Jo

 

T
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(after the change of variable u = t\/z ). Then define ¢ : R = R by

g(z) = / e~du
0

and observe that

Ttim (o)£)-/f( —/Oooj;gm)dr

=2 /Ooo g'(z)g(z)dz = 0 — (/Ooo e_“2du)2. O

REMARK 2. The integral just established is the basis of the “normal” Gaussian

distribution in probability and statistics. Another proof proceeds from cartesian to polar

coordinates in a double integral:

oo 2 oo 0o w/2 poo 0o -3

(/ e_”2d1L> = / e"zzdx/ e_y2dy = / / e_rzr dr df = Z/‘ c ds = I
0 0 0 0 0 2 Jo 2 *

The alternate proof just sketched is an exercise in many calculus texts, but a rigorous

proof of the necessary ingredients usually appears only in analysis texts.

EXAMPLE 4. For t = 1/3, setting v = /z, = = u?, and dz = 2udu gives

(1) :/ z12"dy _—-/ wle2udu = 2/ edu =£ = /.
0 0 0

Hence, the recursion formula gives

L(3R) =T(1+ 1) = (1L)T(2) = V7/2,
['(54L) =T(32+1) =(3L)(3k) = 3\/7/4, and so forth.

Exercise 8. Calculate I'(3.5).

 

 

 

 

Definition 6. For each positive real number d let ag = [(1/-)?/T(1 + d/2).

EXAMPLE 5.

=T(1/)°/T(1 + %) = /7/T(1) =
a; = T(14)"/T(1 + 1) = 7/(V7/2>
az = T(12)?/T(1 + 2h) = (V7)?/1 =

=T(1/)*/T(1 + 3k) = (V7)*/(3\/'/4)= 47/3.
Notice that

a9 = 1 is the number of point(s) in the singleton {0},
a; =2 is the length of [-1,1],
ag = 7 1s the area of the unit disc, and that

a3 = 47/3 is the volume of the unit ball in R>.

1/1 =

=2,
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A theorem from analysis also guarantees that «,; equals the d-dimensional volume of the

unit ball in R? for each integral d (see Folland’s Real Analysis text, [22], pages T6-77).

For non-integral values of d, the interpretation of «4 as the volume of a ball no longer

holds, but the numbers a4 will provide a unit of volume for all dimensions, consistent

with that for integral dimensions.

REMARK 3. (SUPERCALCULATORS) Such supercalculators as the HP-28, the
HP-48, and their predecessor the HP-15C, have built-in commands (called FACT or !, by

analogy to factorials of positive integers) to compute the Gamma function, as demonstrated
in table 1.

Table 1. Computation of the Gamma function with the HP-28(C&S) and HP-48
 

 

 

Keys Comments Display

.5 [red |[REAL | [FACT] (HP-28) Compute I'(0.5). .886226925453
.5 PROB ][] (HP-48) Compute I'(0.5). .886226925453

T 2[=]  Verify with /7/2. .886226925455
 

2.2. Definition of Hausdorff dimension and measure

The determination of the dimension and size of a set consists essentially of covering

the set with countably many smaller sets, each with positive diameter at most ¢, and

then adding not necessarily their length, &, or area, m(§/2)2%, or volume, 4/3m(§/2)3, but

other powers, 6. The analysis of the method just described reveals that for each set there

exists one (exactly one) exponent d > 0 that yields a measure between zero and infinity.

That exponent will be called the “Hausdorff dimension” of the set. A detailed exposition

of these concepts requires the definitions in this subsection.

The following definitions review the foundational concepts related to the construction
of the real numbers (see Spivak’s Calculus text, [7], chapter 28).

Definition 7. (Maximum and minimum) Consider a subset S of the real line.
If there exists a number M € R such that both M € S and s < M for every s € S,

then M is called the maximum of S, and is denoted by max(S). (If no such number
M exists, then S has no maximum.)

Similarly, if there exists a number m € R such that both m € S and m <s for

every s € S, then m is called the minimum of S, and is denoted by min(S). (If no
such number m exists, then S has no minimum.)

EXAMPLE 6. The closed unit segment, S = [0,1], has a maximum, M =1, and a
minimum, m = 0.

Definition 8. (Upper and lower bounds) Let S represent a subset of the real

line. An upper bound for S is a number B € R such that s < B for every s € S.

Similarly, a lower bound for S is a number b € R such that b < s for every s € S.

(Some sets have no upper or lower bound.)
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EXAMPLE 7. The open half line S =]— c0,0[ has no lower bound but many upper

bounds, for instance, B = .007, B =1, B=+v2, B=e¢ B ==, B = 37, and

B = 1,000,000 are all upper bounds for | — c0,0|.

The following theorem from analysis distinguishes the real numbers from the rational

numbers (for a proof, see Spivak’s text, [7], page 556).

Theorem 2. Ifa set SCR has an upper bound, then the set U C R of all upper

bounds for S has a minimum, min(U) € U. Similarly, if a set S C R has a lower

bound, then the set L C R of all lower bounds of S has a mazimum, max(L) € L.

Definition 9. (Supremum and infimum) If a set S C R has an upper bound,

then the supremum of S i1s the minimum upper bound for S, and it is denoted by

sup(S) or lu.b.(S) (for least upper bound). If not, then we abbreviate the statement
“S has no upper bound” by sup(S) = oc.

Similarly, if S has a lower bound, then the infimum of S is the maximum lower

bound for S, and it is denoted by inf(S) or g.lb.(S) (for greatest lower bound). The
notation inf(S) = —oo indicates that S has no lower bound.

The supremum and the infimum differ from the maximum and the minimum by the

sole additional requirement that the maximum and the minimum of a set must belong to

that set, whereas the supremum and the infimum need not belong to that set.

EXAMPLE 8. The open unit segment, |0,1[= {z : ¢ € Rand 0 < z < 1}, has a

supremum, sup|0,1[= 1 = min[1, oo[, and an infimum, inf]0,1[= 0 = max| — 00, 0]. Yet
]0,1[ has neither a maximum nor a minimum, because 1 ¢]0,1[ and 0 ¢]0,1].
 

Exercise 9. Prove that if SC T C R, then sup(S) <sup(T') and inf(S) > inf(T).
 

The following definitions establish the concept of non-integral dimensions. (See also
Morgan’s introductory text [26] and Federer’s reference [25].)

Definition 10. (Diameter) For each non-empty S C R", the diameter of S is
the “extended” real number (finite or infinite, according to the definition 9) denoted by

diam(S) and defined by

diam(S) =sup {||X - ¥|| : X,¥ € S}.

By convention, diam(@) = 0.

Definition 11. A cover of a subset E C R™ is a family C of subsets of R™, the

union of which contains FE; thus, £ C UC. A countable cover of E is a cover of E

that consists of countably many subsets of R™, of the type C = {S; : j € N} with each

Sj CR™ and E C U52,S;. (The definition allows some of the sets S; to be empty, so

that a countable cover may contain either infinitely or finitely many non-empty sets.)

The smaller the sets S; in a cover C of a set, the better the cover approximates the

size of that set.
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Definition 12. For each E C R", for each non-negative real number d, and for

each positive real number &, consider all countable covers C = {S;: 7 € N} of E where
every S; has diameter at most ¢, and define the number

Hy5(E) = inf adz(_@l?_m_?_l) EC U S; and diam(S;) < 6 for each j €N 3,

j=0

which provides a preliminary estimate of the size of the set E in dimension d.

Observe that if we decrease § then we allow fewer covers (only those with smaller di-
ameters), and, consequently, by exercise 9, the infimum increases. Consequently, Hqs(E)

tends to a limit or diverges to infinity as 4 decreases.

Definition 13. (Hausdorff measure) For each set E C R™ and for each non-
negative real number d > 0, the d-dimensional Hausdorff measure of E 1is the
extended (finite or infinite) real number denoted by Hy(E) € RU {oo} and defined by

Ha(E) = lim Hy5(E).

 

Exercise 10. From the definition of the Hausdorff measure, prove that if 0 < p <

g < oo and if H,(E) < oo, then H,(E) = 0. Thus, if the Hausdorff measure of a set is
a finite number in dimension p, then it equals zero in all higher dimensions ¢ > p.

Exercise 11. Prove that if 0 <p < ¢ < oo andif H,(E) < oo, then H,(E) =
Thus, if the Hausdorff measure of a set is a finite number in dimension ¢, then it is infinite

in all lower dimensions.
 

The preceding two exercises reveal that if we measure the size of a set in various dimen-

sions, then we obtain zero for all higher dimensions and infinity for all lower dimensions,
and there can exist at most one dimension between both extremes.

Definition 14. For each set E C R® define the Hausdorff dimension of E as
the number denoted by h(E) and expressed by

h(E) =inf {d : d € [0,00[ and H4(E) < oo} .

 

Exercise 12. From the definition of the Hausdorff dimension and from the results of

exercises 10 and 11, prove the following alternate expressions for the Hausdorff dimension:

h(E) =1inf {d : d € [0,00[ and Hq(E) = 0},

h(E) =sup{d : d € [0,00[ and H4(E) > 0},

h(E) =sup{d: d € [0,00[ and Hy4(E) = oo}.
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Exercise 13. Prove that if 0 < s < oo andif 0 < H,(E) < co then s = h(E).
(Such a set E is then called an s-set.)
 

The practical significance of the result of the foregoing exercise is that if we determine
a real number s such that the s-dimensional Hausdorff measure of E is strictly positive

(but not infinite), then we have also found the Hausdorff dimension s of E. In view of
exercises 10 and 11, it also follows that each s-set has a positive finite Hausdorff measure

only in dimension d = s, because Hy(E) = oo for d < s and Hy(E) =0 for d > s.
Such a result provides a practical method for calculating the Hausdorft dimension of certain

sets, as demonstrated in the following subsection.

2.3. Examples of Hausdorff dimensions and measures

This subsection demonstrates by examples how to calculate the Hausdorff dimension

and the Hausdorff measure of a few familiar sets in space.

EXAMPLE 9. (FINITE SET OF POINTS) Let E = {xi,...,Xk} consist of k
distinct points in R™. Further, let r = min {||Xi —Xj|| : ¢ #7 and z,7 € {1,...,k}},

which represents the minimum distance between two distinct points in FE; thus, if X; #

X; then ||xi — Xj|| > r. For each non-negative dimension d and for each positive
diameter 6 €]0,r[, we may cover the set E = {x1,...,Xx} with k& disjoint balls,
C ={B(x1,6/2),...,B(Xk,6/2)}, centered at each point X}, with radius ¢/2. For such a
cover C,

k
diamB(xj, 6/2) 54oS(BB5()eyr

=

Consequently, Hys(E) < 6%kay/2%, since Has(E) represents the infimum of all such

sums. Therefore,

. : cag/28 =k if d=00 < Ha(E) = lim Has(E) < (kag/2%) lim 6¢ = Koa/2 »< Ha(E) imHys(E) < (kaq/27) lim {0 £ d> 0

Hence, by definition of the Hausdorff dimension, E has Hausdorff dimension h(E) = 0.
To calculate the 0-dimensional Hausdorff measure of FE, observe that we never need

more than k sets to cover FE, because one set S; for each point Xj in E suffices.

Consequently, since each countable cover C = {S;: 7 € N} D E contains some set S;
containing Xj, we need only retain k sets Sp,...S; and we may discard all the others.

Moreover,
k . d 0o . d

diam(S;) < diam(S;)
Z 2 - Z 2 ’
=1 j=0

which means that the infimum over such finite subcovers {Si,..., Sk} does not exceed
(and, consequently, by exercise 9, equals) the infimum over all countable covers. However,

with d = 0, all such finite covers yield the same measure, because

Z (dlam(s)) ZlL

1=1
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Consequently,

£, /diam(S;)\° "
Hos(E) = inf ag ; (—2—]—> : EC ]L;Jl S;j, diam(S;) < 6 = inf{k} = k.

Finally,

Ho(E) = %in%) Hos(E) = %irr(l) k =k.

Therefore, a set with k points has Hausdorff dimension zero and 0-dimensional Hausdorff

measure equal to k.
 

Exercise 14. Determine the Hausdorff dimension, d, and the d-dimensional Haus-

dorff measure, of a countable set of distinct points E = {Xj : j € N} C R™.
 

REMARK4. Notice that the Hausdorff dimension of {x3,...,Xk} equals O regardless
of the relative positions of the points x3,...,Xk. In particular, this means that the

Hausdorftf dimension of a set E C R™, like its topological dimension, does not pertain to

the global position of E in R™ but to an intrinsic and local characteristic of the set

E itself. For instance, for each point Xj in E = {X1,...,Xk} the open ball B(xj,r)

contains only one point from F, namely the point Xj, and in that ball the set E looks

like one single point, which has dimension 0. (In contrast, the dimension of the space

occupied by the set E relates to the concept of embedding of E into R™.)

EXAMPLE 10. (STRAIGHT LINE SEGMENT) Let E = [0,¢] represent a closed
and bounded straight line segment of length ¢ in R™, from the origin 0 to a point ¢
on the first coordinate axis. For each positive diameter § > 0 cover the segment [0, (]
by ns = [€/6] +1 sets S;, each of diameter at most § (recall that the “floor” notation,
|£/6], represents the largest integer that does not exceed ¢/§ ). For instance, cover [0, ¢|
by |¢/6] consecutive intervals [ké,(k+1)d] of length equal to §, followed by one interval
[1€/6]6,€] of length at most §. For such a covering,

)S5(85<s() <o(0)
2 2d

As the diameter é tends to zero, notice that

¢ 54 o0 if d<1,

(1) Hd([o,f]) = %1_12) Hd,g([o,f]) _<_ ad ;III(I) (%5(1-1 + ;1') == a1€/2 = € lf (l = 1,

TN = 0 if d> 1.

Consequently, H4([0,¢]) =0 for every d > 1, and it follows that h([0,¢]) <1
To prove the converse inequality, consider any cover C = {S; : j € N} by sets S;

each of diameter at most ¢. Since the intersections I; = S; N [0,¢] C [0,€] lie on the
interval [0,¢], we may replace each set S; by I; andstill cover [0,¢]. Further, for each
positive real ¢ we may replace each set I; by an open interval J; =]a;,b;[D I; that
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contains I; and such that diam(I;) < diam(J;) < diam([;) + ¢/27. Moreover,since the
closed and bounded interval [0,¢] is compact in R™, there exists then a finite subcover
of [0,¢] by finitely many of the open intervals Jj, for instance, by {Jy,...,J;} (after a

rearrangement to avoid double indices). If k¥ =1 then a single interval J; =]ay, b;[ covers

[0,4], and by —a; > ¢. Next, proceed by induction: suppose that for some integer m € N,
the inequality >"j=1(bj—a;) > b—0 = b holds for every cover of every closed and bounded
interval [0,b] by k = m open intervals, and consider a cover of [0,¢] by k =m +1
open intervals |ay,bi[,...,]@m+1, bms1] (Wh1ch need not lie in this order on [0, ¢] ). Also,
let a; = max{a;: j € {1, ...,m+1}} denote the maximum left-hand endpoint among all

the intervals that contain ¢, and remove from the cover that interval J; =]a;, b;[. Then

the remaining m intervals Jj, for j # 1, cover the subinterval [0,a;] C [0,¢] because
[0, a;]N]a;, €] = 0. Thus,

m-+1 m+1

Zb—aj)_Z(b—a]+ (bi —a;) > (ai— 0) + (bi — a;) = b; > ¢,

which completes the induction. Consequently, with d = 1 and «a; = 2, and for each

e > 0,

k J

(2) H,.5([0, €))>alz<i&rfl(5_>ZM>€‘E'
71=0 1=1

Letting ¢ tend to zero gives Hj 5([0,¢]) > ¢, and then letting 6 tend to zero yields
H,([0,€]) > ¢. With H,([0,¢]) < a1¢/2 = ¢ in (1), the two inequalities just obtained give
H1([0, ¢]) = 1, which, by exercise 13, yields the conclusion:

A closed and bounded segment [0,¢] of length ¢ has Hausdorff dimension d =

h([0,€])) =1 and one-dimensional Hausdorff measure equal to its length: H;([0,¢]) = £.

REMARK 5. More generally than the preceding examples might suggest, the Haus-

dorff measure coincides with the ordinary measure for measurable sets in integral dimen-
sions. Differentiable curves — for example, circles — have Hausdorff dimension 1, and

their one-dimensional Hausdorff measure equals their length; similarly, differentiable sur-

faces — for example, spheres — have Hausdorff dimension 2, and their two-dimensional

Hausdorff measure equals their area. (See Morgan’s text [26], pages 14-17, or Federer’s
[25], Theorem 2.10.35, page 197.) Moreover, as indicated in remark 4, differentiable curves

have dimension 1 and surfaces have dimension 2 regardless of their position or twisting in

R™. Thus, the Hausdorff dimension and the Hausdorff measure provide generalizations of

the intuitive concepts of integral dimensions and of size.

EXAMPLE 11. (VON KOCH’S SNOWFLAKE) Cover von Koch’s snowflake, E,

with the same triangles used to prove that it has null area, in exercise 7. At the k-th

stage Ej of the construction, 4% triangles S;,...S,;+ each of diameter (1/3)F cover
the snowflake. Consequently, with &; = (1/3)F,

tass <acd (L82)ettt = 2 (5) 
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Observe that

lim
k—oco

A\ * oo if 4/3¢ > 1, which means that d < In4/In3,
(3(1) =<¢ 1 if 4/3¢ =1, which means that d =1n4/In3,

0 if 4/3% < 1, which means that d >1n4/1n3.

Consequently, Hq(E) = 0 for every d > In4/1n3, from which it follows that h(E) <
In4/1n3. Of course, the result just obtained suggests that h(E) = In4/In3, but this
does not yet prove equality, because it merely leads to Hq(E) < oo, not necessarily

Hq4(E) = oo, for every d < 1n4/In3.
The remainder of the proof follows the pattern of the treatment of Cantor’s set in

Falconer’s Fractal Geometry, [34], page 32. To prove that the Hausdorff dimension of
von Koch’s snowflake equals s = In4/1n3, it suffices to prove that it has a positive s-

dimensional Hausdorff measure (see exercise 13). To this end, consider any cover C =
{S; : 7 € N} of the snowflake E.,, with non-empty sets S; each of diameter §; at

most §, with 0 < 6 < 1. For each positive real number ¢, and for each (non-empty)

set S, select any point Xj € S; and embed S; into an open ball B]= B(xj,r;),
centered at Xj with radius r; = §; + e. (Such radlus r; exceeds the minimum radius,
6;/ V'3 + ¢, necessary for the ball B; to enclose the set S;. See the first research project,

below ) By compactness of the snowfial\e (the continuous image f([0,1]) of the compact
unit segment), there exists a cover of FE., by finitely many of the balls just constructed,

Bi,...,Bn. For each such ball Bj, there exists one integer k; such that

(1) (15)5+! < diamB; < (1/3)".
Consequently, the ball Bj contains at most one vertex of the k;-th stage FEjy;, because

all vertices of that stage lie at least (1/3)¥ apart from one another. At each subsequent
stage FE,, with ¢ < k;, the ball B, contains at most 2 x 4¢=% vertices of E,, because

B; contains at most two adjacent segments of length (1/3)* in Ej;. To relate the
number of verticesin B; to the diameter of Bj, recall that s =1n4/In3, so that 3° = 4;
consequently,

(2) 4@-16_,‘ — 4[4—k,‘ — 4((38)—-kj — 4((3—(kj+1)+1)3 — 4(38(3—(/»‘,‘-{-1))3 < 4€3s(diamBj)s

by virtue of the first inequality in (1). Thus, each ball B; € {B;,..., By} contains at
most 2 x 4‘3°(diamB;)® vertices of E,. Since the balls cover Eo, and since all the
vertices of the ¢-th stage FE, remain through the subsequent stages and belong to FE,

it follows that the m balls By,...,B,, contain the 4¢+1 vertices of E,. Therefore, by

inequality (2), and with an inequality allowing for duplication (some of the vertices may
lie in more than one ball),

44 4+1< Z number of vertices in B; < Z 2 % 4833(diamBj)3.

=1 =1

Hence, dividing by 2 x 4°3* and rearranging terms gives

m

(37 44~(HD)/2 < Z(diamBj)’ = Z(?diamS]- + 2 Z(diamS; + ¢)
j:l '-_—_J=1
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Moreover, dividing by 2° twice, letting ¢ tend to zero and ¢ tend to infinity yields

"~ (diamS;\’ <= [(diamS;\’
4=t 2 = 379270272 /2 < L) < L)/ pey(F52) <2 (%3  

1=0

Therefore, taking the infimum of all such sums for all covers shows that H,(E) >
a4~/2 > 0: von Koch’s snowflake has positive s-dimensional Hausdorff measure

with s = 1n4/In 3, which has the necessary consequence that it has Hausdorff dimension

In4/1n3 = 1.261859507 ... .
 

Exercise 15. Identify the intersection of von Koch’s snowflake and the initial segment
[0,1] (it coincides with a set famous in analysis and topology). Then calculate its Hausdorff
dimension.
 

2.4. Fractal coastlines versus planimeters

In suggesting real examples of fractals, most texts liken them to coastlines, implying

that coastlines may have a non-integral Hausdorff dimension; in particular, this means

that such coastlines have infinite lengths.
 

Exercise 16. Prove that if a set E (which represents a coastline) has a Hausdorft

dimension h(E) strictly greater than one, then E has infinite length.
 

Yet note that a coastline with infinite length would prevent geographers from using
Amsler’s planimeter to measure areas on maps, for the following reason. The planimeter

applies Green’s Theorem in the plane, which states that for each planar open set Q C R?

with a simple, closed, and differentiable boundary 02, and for all differentiable functions

P,Q : Q — R, the following two integrals agree:

//Q(%g‘g_j)d“dy=§ég(%+
cgdy).

We may think of Green’s Theorem as the Fundamental Theorem of Calculus with two

variables. In particular, for P(z,y) = —y and Q(z,y) = x, Green’s Theorem yields the

Area Formula,

Area(Q)://fldedy:%//fl(l—(—l))dm/\dy:%//fl(gi——

1
= —gg (—ydzr + zdy).

2 Jaq
Based on the Area Formula, Amsler’s planimeter consists of an articulated two-arm instru-

ment, with one end fixed and the other tracing the coastline on a map, and with the pivot
between both arms recording the line integral in the Area Formula. (For details, consult,
for example, the reference by Ronald W. Gatterdam [5].)

 

9(—vy)
0

)d:v/\dy
y

 

Exercise 17. Suppose that {2 represents the map of a country which is bordered

by a fractal coastline 92 with Hausdorff dimension strictly between one and two ( 1 <

h(0) < 2 ), and, by the preceding exercise, infinite length. Explain why a geographer

may still estimate the area of the country with the planimeter. Would tracing an infinitely

long coastline not require an infinite amount of time?
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3. EXPLORATORY TERM PROJECTS

The present section proposes two projects that may be attempted in parallel with the

study of this chapter (hence the phrase “term projects”). Since the results involve only

elementary complex variables and are known to specialists, the projects do not qualify as

research. However, some of the details are not readily available in many sources, which

means that you may have to search the literature for some results and derive others yourself

(hence the adjective “exploratory”).

3.1. Other fractals of von Koch’s type

Project 1. Von Koch’s construction generalizes
to other fractals. For instance, exhibit 3 shows how

to transform an oriented segment AB into an ori-

ented polygonal path APQRSTUVB by inserting

seven new vertices, which form eight new edges, each

of length equal to one quarter that of the initial seg-
ment. One of the new vertices, S, lies at the mid-

point of AB, with no kink in the path there. (The

fractal obtained by iteration of the particular construc- ‘—1

tion shown in exhibit 3 is called a quadric curve of von

Koch’s type.)

(1) To understand von Koch’s construction better,

LJ

write and test a program to produce consecutive

stages of von Koch’s snowflake on a different type

of supercalculator or computer.

(2) Modify the programs for von Koch’s snowflake to
experiment with fractals of von Koch’s type but

of your own design. ';:;@

(3) Conjecture the value of the Hausdorff dimension
for the fractals that you create.

(4) In appropriate cases, generalize the proof of the

Hausdorff dimension of von Koch’s snowflake (in
example 11) to your fractals. Exhibit 3.

3.2. The smallest ball containing a bounded set

Project 2. Recall that the calculation of the Hausdorff dimension of von Koch'’s

snowflake involved embedding the bounded sets of the cover into balls with radii slightly

larger than necessary (see example 11, pages 61 — 63).
For each diameter d > 0 and for each integer n > 2, determine the optimal radius

R > 0 such that for every set S C R™ with diameter d, the set S lies in a ball with
radius at most R. Note that according to the requirements just stated, the radius R
may depend upon d and n but not upon S.
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4. RESEARCH PROBLEM

4.1. The Hausdorff dimension of Julia sets

The research problem suggested here focuses on the Hausdorff dimension and measure

of quadratic Julia sets, which were presented in the preceding chapter. For the following

background, see Falconer’s Fractal Geometry, [34], pages 208-218.
For “small” values of the complex constant ¢ € C, the Julia set J. of the quadratic

polynomial f. defined by f.(z) = 22 + ¢ has a Hausdorff dimension approximated by

1
dcthc ~ 1

(Je) +4ln2
|c|2+... 

Stated more accurately, this means that there exist a positive radius r > 0 and a power

series of the type Yo_an|c|”, with real coefficients a, € R, which converges to the
Hausdorff dimension, d. = h(J.) = Y., anlc|, for every constant ¢ € C such that
lc| < r. Moreover, ap =1, a; = 0, and as = 1/(4In2). Also, for |c¢| < r, the d.-
dimensional Hausdorff measure of the Julia set J. satisfies the inequalities 0 < Hy(J.) <

0.

EXAMPLE 12. If ¢ =0 then |¢|=|0|=0<r and dy = h(Jy) =140+0+4+--- = 1.
Recall that for ¢ = 0 the Julia set Jy of the squaring function is the unit circle, which,

indeed, has topological dimension and Hausdorff dimension 1; thus, h(Jy) = 1 and
H1(Jy) = 27 (the circumference of the unit circle).

REMARK 6. If |c| < !/4 then the Juliaset J. is a simple closed curve (topologically
homeomorphic to a circle), like von Koch’s snowflake. Also as for von Koch’s snowflake, if
0<|c|]<r then 1 <1+|c]?/(4ln2)+--- <2 and the Julia set J. has a non-integral
Hausdorff dimension between 1 and 2.

For “large” values of the complex constant ¢, more accurately, for |¢| > (54 2v6)/4,
the Hausdorff dimension d. of the Julia set J. satisfies the following two inequalities:

2In2 2In2

—

s<d<
In(4[le] + v/2]el]) In(4{le] — /2]el])

Problem. Provide a more accurate estimate of the Hausdorff dimension d. of the

quadratic Julia set J. and of its d.-dimensional Hausdorff measure.
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5. SOLUTIONS TO ALL THE EXERCISES

5.1. Solutions to the exercises

Exercise 1. P = (1/3,0), R =(2/,0),and Q = (1%, —1/V3/2).

Exercise 2. P=A+1/3(B—A), R=A+24(B—A),and Q = P+e™'"/3(P-4) =

P+ (12, —V3/2)(P - A).
Exercise 3.

(t,0) if 0<t< 1y,
F(t) =< (13,0) + e/3(t — 1/3,0) = ((¢/2) + Yo, —(t — 13)V/3/2) if 13 <t < 2,

(t,0) if 26 <t<1.

Exercise 4. At the n-th stage of von Koch’s construction, the polygonal path has

sides of length (1/3)" and differs the most from the next stage at the midpoint of each
side, by a distance of (1/3)"*t1y/3/2 = 1/(3"2v/3). By the formula for the geometric series,

n—m

Z 1 3—(m+j—1)

—~ 2\/3
J)=1

”fn - fmlloo < Z ”fm+j - fm-+j——1||oo <

=1

—m n—m-—1 3—-m 1 _ (1/3)n—m < 3—-(m—1) < g-m
- 1/,)¢ — -

s & WeE o s S
Consequently, (f,) forms a Cauchy sequence, which converges to a continuous limit, f.

 

Exercise 5. Observe that the assertion holds for n = 0, in which case fo(t) = (¢,0)
and || fo(r) — fo(s)|| = ||(r,0) — (s5,0)|| = |r — s|. If the assertion holds for some index
n =k €N, then |fi+1(r) = fr+1(8)|| = || fx(r) = fx(s)|| = |r — s|, because the additional
vertices introduced by fr4+; increase distances further. Consequently, by continuity of

the norm, [£(r) — £(5)]| = | ityolf(r) — fa(s)Il = itoo [ fa(r) — fa(S)]] > I —s1.
Thus, if r # s then | f(r) — f(s)]| > |r—s| >0 and f(r) # f(s). Finally, observe
that f : [0,1] — f([0,1]) C R? is continuous and injective on its compact domain, [0, 1],
and that its image is a Hausdorff space, which has the necessary logical consequence (a

standard theorem in topology) that its inverse, f~!: f([0,1]) — [0, 1], is also continuous.

Exercise 6. For each stage of von Koch'’s construction choose for (¢, ; )zzg all the
n+ 1 vertices present at that stage. Since there are then 4" sides each of length (1/3)",
it follows that |t, ;—t,;1| = (1/3)" tends to zero, as required, and that Z?:l | f(tn;)—
f(tn,j=1)|l = (#)™ diverges to infinity.

Exercise 7. Cover the n-th stage of von Koch’s construction, f,, with 4™ isoceles

triangles each of length (1/)"~! and height (1/3)"V/3/2, so that they also cover all the
subsequent stages, and, consequently, also the limit. The limit — the snowflake itself —

has an area that does not exceed the total area covered by such triangles, which equals

4" x 1x (Y3)" 71 x (1)"V3/2 = - = 3vV34n71320= 3/3(4pp)"1,
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and which tends to zero. Therefore, the area of the snowflake melts away to zero.

Exercise 8. F(3.5) = F(7/2) = F(5/2 + 1) = 5/2P( 5/2) = 5/2 . 3\/7—;/4 = 15/8\/7?-

Exercise 9. If s € S CT then s €T and, consequently, inf(T) < s < sup(7).
Thus, inf(7T) is a lower bound for S and sup(7) is an upper bound for S, and,
therefore, inf(7) < inf(S) and sup(S) < sup(7T).

Exercise 10. If 0 <p < g <oo and Hy(E) < oo, factor 697P out of H, s, which
gives

0o di S q 00

M,5 = inf {aq 3 (L“L’;Lfi) : EC | and diam(S;) < 6 foreachj} <
7=0 J=0

oo . A\ P oo

§9P inf {aq Z (M) . EC U and diam(S;) < § foreach j} = 6T"PH,s(E).
: 2 .
=0 J=0

Consequently, as ¢ tends to zero,

Hy(E) = lim M,5(E) < lim 67~PH,,5 = 0H,(E) = 0.

Exercise 11. Proceed as in the previous exercise, but factor 6?~% out of H,s(E)
and observe that 6P~9 diverges to infinity as § tends to zero, because p — ¢ < 0.

Exercise 12. Firstly, recall the definition of the Hausdorff dimension:

h(E) = inf{d: d € [0,00[ and H4(E) < oo}.

To prove the first alternate expression, consider any d > h(E) and let p denote any

number such that 0 < p < d < oo, for example, p = (h(E) + d) /2. Since h(E) < p the
definition of h(E) shows that H,(E) < oco. Then exercise 10, with d = ¢, shows that
H4(E) = 0, which thus holds for every d > h(E). Yet Hy(E) = oo for every d < h(E),
again by definition of h(E). Therefore, h(E) =inf{d : d € [0, c0[ and Hy(E) = 0}.

For the second and third expressions, observe again that Hy(E) = oo for every
d < h(E) and that Hy4(E) = 0 for every d > h(E), by the argument just presented
for the first expression. Consequently, h(E) = sup{d : d € [0,00[ and H4(E) > 0}, and
h(E) = sup{d : d € [0,00] and Hy(FE) = 0}.

Exercise 13. Suppose that 0 < s < co and that 0 < H,(E) < oo. By exercise 10, it
follows that Hy(E) = 0 for every d > s. Also, by exercise 11, it follows that Hg(E) =
for every d < s. Consequently, s = inf{d : d € [0,00[ and H4(E) = 0} = h(E), by
definition of the Hausdorff dimension.

Exercise 14. Proceed as with finitely many points, but cover each point Xj € E

with a ball §; = B(xj,6/27) (which may also contain other points Xj € E ). Then
observe that

L()-()()-{0 i 

o0
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Consequently, h(E) =0 and then Ho(FE) = Z?j—.o 1 = oco. Therefore, a countable set of
(distinct) points has Hausdorff dimension 0 and infinite 0-dimensional Hausdorff measure.

Exercise 15. From the initial stage of von Koch’s construction, Ey = [0,1], the first
stage replaces the middle third by the polygonal path PQR, thus leaving the two extreme
thirds on the unit segment, E; = [0, 1] U[2/3,1]. Then the second stage in turn replaces
the middle thirds of both intervals in E; by polygonal paths, leaving on the unit segment

the four subintervals E, = [0, 1/9] U [2/o, /3] U [%/3, 7/o] U [8/s, 1], and so forth, which yields
Cantor’s set. As proved in Falconer’s Fractal Geometry, [34], pages 31-32, Cantor’s set

has Hausdorff dimension d =1n2/1n3 = 0.630929 753 57.. ..

Exercise 16. If E has Hausdorff dimension h(E) > 1 then exercise 12, third
expression, h(E) =sup{d : d € [0,00[ and H4(E) = oo}, shows that if d < h(E) then
H4(E) = oo. In particular, since 1 < h(E), it follows that the length of E equals

Exercise 17. If the coastline 92 is a continuous closed curve, of the type f: [0,1] —
R?, then a standard theorem of analysis guarantees that for each positive real number ¢

there exists a differentiable function f. [0,1] — R? such that f.(0) = f.(1) (which
ensures that f. also traces a closed curve) and ||f — fc|lco < €. Therefore, a geographer
may let the planimeter follow the rectified coastline f. and obtain an estimate as close

as desired to the area of the country.

5.2. Hints for the term projects

Project 1. Exhibit 4, on the following page, shows one way of plotting von Koch'’s

snowflake with Mathematica.
Returning to Hewlett-Packard supercalculators, modify subroutine Koch so that it

calculates and inserts the desired points on the stack, for instance B, B — (B — A)/4,
B—-{(B-A)/4}(1,1), B—{(B—-A)/4}(2,1), (A+B)/2, (A+ B)/2+ (B - A)(0,1)/4,
(A+ B)/2+4+ (B - A)(—-1,1)/4, A+ (B — A)/4, and A. Then let Koch iterate the loop
between START and NEXT eight times instead of four.

The proof of example 11 generalizes to constructions that do not intersect themselves

and with an equilateral path at each stage.

Project 2. In the plane R? if a set S has diameter d, then there exists one

smallest closed disc B containing S, called the circumscribed disc, and that disc has

radius r with d/2 < r < d/\/3; moreover, there exist planar sets S C R? with diameter

d such that r = d/\/g, which means that R = d/\/§ (see Yaglom and Boltyanski\ij’s

Convex Figures, [27], exercise 3, pages 105-106, and exercise 6-1, pages 213-215).
For R™, prove that d/2 <r < d/y/2(n+ 1)/n, and that there exist sets S C R"

with diameter d such that r = d/\/2(n + 1)/n, which means that R =d/\/2(n +1)/n,
a result suggested by Kit Hanes.
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flake:=( (* Mathematica program for von Koch's snowflake *)

u = N[Exp[-Pi*I/3]]; (* rotates by -1/6 turn *)

vertices={0,1,Conjugate([u],0}; (* isoceles triangle *)

u=1+ u; (* translates ¥*)

stages = 5; (* maximum number of iterations *)

Do[ stage, {stages} ]’ (* performs iterations *)

exhibit) (* exhibits the result *)

stage:=( (* "stage" goes from one stage to the next stage *)

m=1, n=1; (* next vertex and side to process *)

sides = Length[vertices]-1;

points = 4*sides + 1;

new = Table[0, {j,points}];

Do[ step, {sides} ];

vertices = new)

(* current number of sides *)

(* current number of vertices *)

(* array for new vertices *)

(* one step for each side *)

(* retains new vertices *)

(* old last point stays fixed

(* next vertex & side to process

step := ( (*"step"” does an elementary step on one segment*)

a = vertices|[[n]]; (* old left-hand endpoint *)

b = vertices[[n+1]]; (* old right-hand endpoint *)

s = (b-a)/3; (* new third of old segment *)

m = 4*n - 3; (* index of next new vertex *)

new[[m]] = a; (* old first point stays fixed *)

new[[m+l]] = a + s; (* first new vertex at third *)

new|[ [m+2]] = a + u*s; (* second new vertex rotated *)

new[ [m+3]] = b - s; (* third new vertex at 2nd third *)

*)

*)

new|[ [m+4]] = b;

m=m++ 4, n n + 1)

exhibit:=( (* "exhibit" displays the latest stage built ¥*)

n = Length[vertices]; (* number of vertices *)

image = (* converts complex numbers to graphics *)

Table[{Re[vertices[[i]]],Im[vertices[[i]]]}, {(i,n}];

ListPlot[image, Axes -> None, AspectRatio -> Automatic,

PlotJoined -> True, PlotStyle -> Thickness[.001] ] )

flake (* execute "flake"; reduce the picture to fit the page *)

Exhibit 4. Program in Mathematica for plotting von Koch'’s snowflake, based upon
the same algorithm as that for the HP-28 and HP-48 in exhibit 2.
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dimension, 58

of Julia sets, 64-65

of von Koch’s snowflake, 61-63
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measure, 58

I

imaginary part, 7

infimum, 57

infinite length, 53
interior, 28

invariance of Julia sets, 28, 41

iteration of complex functions, 11

J

Julia set, 26, 35, 42-43

invariance, 28, 41

Ji, 2, 34

Joys, 2, 34, 42

J1/4, 19, 29, 33, 35

Jo, 26, 29, 65

J_3/4, 34, 40

J_o, 26-27, 34

K

von Koch

construction, 48, 66

program, 50, 69

snowflake, 46, 47, 50, 69

Hausdorff dimension, 61-63

L

limit, 21, 52, 58

of complex sequences, 10

Lorenz (Edward), 2
lower bound, 56

M

magnitude of a complex number, 3

Mandelbrot, 47

set, 35-36, 43-45
program, 45

maximum of a set 10, 56

minimum of a set, 22, 55

modulus (of a complex number), 3
multiplication (of complex numbers), 5

N

non-attracting (fixed point), 29
Non-Attracting Fixed-Point Inverse Iteration

Method, 32

program, 33

non-rectifiable (curve), 53
null area, 53, 66-67

number field, 6

O

open

disc, 22

73

interval, 3

set, 22, 24-25

Open Mapping Theorem, 26

ordered pair, 5

oriented

segment, 48

polygonal path, 48

P

parabolic (fixed point), 29, 34
planimeter, 63

principal argument, 3

Q
quadratic polynomial, 35, 42-43

quadric curve of von Koch’s type, 64, 68

R

rabbit (Douady’s), 2, 34, 42

real part, 7

repelling (fixed point), 29
Reverse Triangle Inequality, 8, 37

S

sequence

of complex numbers, 9

of functions, 51

square root (complex), 8
s-set, 59

superattracting (fixed point), 29

supremum, 37

symmetry

offilled Julia sets, 16

of Mandelbrot’s set, 35-36, 43-45

T

to tend to, 22, 157

infinity, 9, 26

topological dimension, 53
topology, 24

Triangle Inequality, 4

Reverse, 8, 37

U

unbounded (set or sequence), 9
unit

ball, 54
volume of, 55

circle, 23

disc, 22

upper bound, 56

v

volume (of the unit ball), 55

W

weather, 2, 42
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AB oriented segment from A to B, 48

a, 8]
]Ja,b[ open interval between a and b, 57

(a,b) complex number or pair of real numbers, 3

{a,b,...}

Arg principal argument (of complex numbers), 3

closed interval from a through b, 20, 51

set consisting of a,b,...

ag volume of the d-dimensional unit ball, 55

C cover (of a set by other sets), 57

C set of all complex numbers ( C = R? ), 3

¢ complex number used with f.(z) =22 +¢, 11

C°([a,b], R)
v check mark (after verifications)

space of continuous functions, 51

D(z,r) open disc (center z and radius r), 22

D(z,7) closed disc (center z and radius r), 22

diam diameter of a set, 57

6 (Greek “delta”) bound on diameters, 56

0 boundary, 23, 63

¢ (Greek “epsilon”) tolerance, 51

f’ first derivative of the function f, 25

f: D— C function from D to C, 11, 24-25

f(z)
fo function with f.(z) = z? +¢, 11
fon

| | “floor” function (greatest smaller integer), 60

value of the function f at z, 4

n-th iteration of a function f, 11

' Gamma function (factorial), 54

Hys d-dimensional Hausdorff measure, 58

Has estimate of the size of a set, 58

h(E) Hausdorff dimension of a set FE, 58

?=-1],4,9

Im imaginary (complex) part of a complex

¢ complex number [ i = (0,1),

number [ Im(z,y) =y ], 7

inf infimum of a set, 57

oo infinity (shorthand for some limits), 9, 28

J. Jula set of f., 26

K. filled Julia set of f., 12

K? interior of K., 28

¢ length, 60

limit, 9, 10, 21, 25, 51
M Mandelbrot set, 36, 43-45

max maximum, 10, 13, 16, 56

lim

min  minimum, 22, 56

|| || norm, 51

Il {loo maximum norm of functions, 51

74

N=1{0,1,2,...} set of all natural numbers, 9

Q set of all rational numbers

r modulus of a complex number, 3:

(r=lzl=Va2+y*)
R set of all real numbers, 3

R* set of all non-zero real numbers

R, set of all non-negative real numbers

R% set of all positive real numbers

R. bound ( R, = max{2,|c|} ) for Julia sets, 13,

36

r. better bound [ r, = (1 + /1 + 4|c|)/2 ], 13,

36

Re real part of a complex number [Re (z,y) = ¢ ],

7

sign version of the sign of a real number, 8:

. 1 if y>0,

sign (y) = {—1 if y<O0.

sup supremum of a set, 57

Y (Greek “sigma”) summation sign, 53

6 (“theta”) argument of complex numbers, 3

|z| absolute value of the number z, 14

t — f(t) assignment of f(t) to ¢, 51

(z,y) ordered pair of real numbers, 3

{X : P(X)} setofall objects X with property

P(X), 6, 57

Z=1{.,-2,-1,012,..)
Z complex conjugate of =z, 8, 37

set of all integers

z, fixed point, 16

|z] modulus of a complex number, 3

(2k)
{zx} singleton (set) consisting of only zi, 31, 55

¢ Greek letter “zeta,” 5-6

(1]
C subset, 9

union (of sets), 25, 31, 68

intersection (of sets), 25, 32

difference (of sets), 26, 28

sequence of complex numbers, 9

reference numbered 41 in the references

U

N

\
5 contains, 33

€ 1In, 4

¢ notin, 17

v/ complex square root, 8, 37

O end of a proof, 10
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