Step-by-Step Examples for Your HP-28C

Algebra and College Math
Algebra and College Math

Step-by-Step Examples
for Your HP-28C
Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.

© 1987 by Hewlett-Packard Co.

This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company.

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 April 1987 Mfg No. 00028-90056
Welcome...

... to the HP-28C Step-by-Step Booklets. These books are designed to help you get the most from your HP-28C calculator.

This booklet, *Algebra and College Math*, provides examples and techniques for solving problems on your HP-28C. A variety of algebraic, trigonometric and geometric problems are designed to familiarize you with the many functions built into your HP-28C.

Before you try the examples in this book, you should be familiar with certain concepts from the owner’s documentation:

- The basics of your calculator – how to move from menu to menu, how to exit graphics and edit modes, and how to use the menu to assign values to, and solve for, user variables.

- Entering numbers and algebraic expressions into the calculator.

Please review the section "How To Use This Booklet." It contains important information on the examples in this booklet.

For more information about the topics in the *Algebra and College Math* booklet, refer to a basic textbook on the subject. Many references are available in university libraries and in technical and college bookstores. The examples in the booklet demonstrate approaches to solving certain problems, but they do not cover the many ways to approach solutions to mathematical problems.

Our thanks to Roseann M. Bate of Oregon State University for developing the problems in this book.
Contents

7 How To Use This Booklet
9 Rational Functions and Polynomial Long Division
15 Function Evaluation
19 Simultaneous Linear Equations
24 Quadratic Equations
27 Logarithms
33 Graphs of Algebraic Functions
38 Polynomial Equations
41 Determinants of Matrices
44 Systems of Linear Equations
45 Infinite Sequences and Series
49 Hyperbolic and Inverse Hyperbolic Functions
52 Trigonometric Relations and Identities
55 Trigonometric Functions for One and Two Angles
62 Graphs of Trigonometric Functions
65 Inverse Trigonometric Functions
68 Trigonometric Equations
70 Complex Numbers
76 Rectangular Coordinates
82 Polar Coordinates
89 The Straight Line
95 The Circle
98 The Parabola
103 The Ellipse and Hyperbola
112 Parametric Equations
How To Use This Booklet

Please take a moment to familiarize yourself with the formats used in this booklet.

Keys and Menu Selection

A box represents a key on the calculator keyboard:

- ENTER
- 1/x
- STO
- ARRAY
- PLOT
- ALGEBRA

In many cases, a box represents a shifted key on the HP-28C. In the example problems, the shift key is NOT explicitly shown (for example, ARRAY requires the press of the shift key, followed by the ARRAY key, found above the "A" on the left keyboard).

The "inverse" highlight represents a menu label:

- DRAW (found in the [PLOT] menu)
- ISOL (found in the [ALGEBRA] menu)
- ABCD (a user-created name, found in the [USER] menu)

Menus typically include more menu labels than can be displayed above the six redefinable menu keys. Press [NEXT] and [PREV] to roll through the menu options. For simplicity, [NEXT] and [PREV] are NOT shown in the examples.
Solving for a user variable within \(\text{SOLVR} \) is initiated by the shift key, followed by the appropriate user-defined menu key:

\[\text{ABCD} \].

The keys above indicate the shift key, followed by the user-defined key labeled "ABCD". Pressing these keys initiates the Solver function to seek a solution for "ABCD" in a specified equation.

The symbol \(\text{<>} \) indicates the cursor-menu key.

Interactive Plots and the Graphics Cursor

Coordinate values you obtain from plots using the \(\text{INS} \) and \(\text{DEL} \) digitizing keys may differ from those shown, due to small differences in the positions of the graphics cursor. The values you obtain should be satisfactory for the Solver root-finding that follows.

Display Formats and Numeric Input

Negative numbers, displayed as

\[
\begin{align*}
-5 \\
-12345.678 \\
[[-1,-2,-3] [-4,-5,-6] ...
\end{align*}
\]

are created using the \(\text{CHS} \) key:

\[
\begin{align*}
5 \text{ CHS} \\
12345.678 \text{ CHS} \\
[[1 \text{ CHS}, 2 \text{ CHS}, ...
\end{align*}
\]

The examples in this book typically specify a display format for the number of decimal places. If your display is set such that numeric displays do not match exactly, you can modify your display format with the \(\text{MODE} \) menu and the \(\text{FIX} \) key within that menu (e.g. \(\text{MODE} 2 \text{ FIX} \)).
Rational Functions and Polynomial Long Division

The quotient of two polynomials is a rational function. The Taylor series command TAYLR can be used to find the equivalent polynomial if the denominator divides evenly into the numerator. If it does not, then TAYLR gives an expression that approximates the quotient. The following examples show how to evaluate rational functions.

Example: Using the command TAYLR, find the equivalent polynomial for the following rational function.

\[
\frac{6x^3 - 5x^2 - 8x + 3}{2x - 3}
\]

Press the following keys to put the expression for the numerator in level 1.

\[\text{ENTER} \quad 4: \quad 3: \quad 2: \quad 1: \quad '6x^3-5x^2-8x+3' \]

Duplicate the expression and then store it in a variable named N (for "numerator").

\[\text{ENTER} \quad 'N \text{ STO} \quad 4: \quad 3: \quad 2: \quad 1: \quad '6x^3-5x^2-8x+3' \]

N has been added to the User menu.

Enter in the expression for the denominator and symbolically divide the numerator by the denominator.

\[\text{USER} \quad '2 \times X-3' \quad \text{ENTER} \quad 2: \quad 1: \quad '\frac{6x^3-5x^2-8x+3}{2x-3}' \]

Enter in the variable to be evaluated.

\[\text{ENTER} \quad 'X' \quad \text{ENTER} \quad 3: \quad 2: \quad 1: \quad '\frac{6x^3-5x^2-8x+3}{2x-3}' \]

\[X\]
By inspection, the quotient is of order 2 \((n = 2)\). Add the order to the stack to complete the three inputs needed to execute the Taylor series command. Also set the display to FIX 2.

\[
\begin{align*}
2 & \text{ ENTER } \\
\text{ MODE } 2 & \text{ FIX }
\end{align*}
\]

Execute the Taylor function.

\[
\text{ALGEBRA} \text{ TAYLR }
\]

The equivalent polynomial for the rational function is \(-1 + 2x + 3x^2\).

Example: Find the polynomial quotient and remainder equal to the following rational function.

\[
\frac{6x^3 - 5x^2 - 8x + 3}{3x^2 + 2x + 1}
\]

The denominator does not divide evenly into the numerator. The algorithm to solve polynomial long division is on pages 154 and 155 in the HP-28C Reference Manual. The steps of that algorithm will be followed in this example and referring to them may help you understand the problem better.

This example assumes that the expression \(-1 + 2x + 3x^2\) is in level 1 and that you've stored \(6x^3 - 5x^2 - 8x + 3\) in the variable \(N\). Modify the expression in level 1 by substituting "1" for "-1" in the first position of the expression. This is accomplished by pressing the following keys.

\[
\begin{align*}
1 & \text{ ENTER } \\
\{ & \text{ ENTER }
\end{align*}
\]

Make the substitution for the first object.

\[
\text{OBSUB}
\]
Store this expression in a variable named D (for "denominator") and store the initial value of 0 in a variable named Q (for "quotient").

\[
D \begin{array}{c} \text{STO} \\ 0 \end{array} Q \begin{array}{c} \text{STO} \\
\end{array}
\]

Recall the numerator N to the stack.

USER

\[
N
\]

Put the denominator D on the stack.

\[
D
\]

By inspection, divide the highest-order term in the numerator ($6x^3$) by the highest-order term in the denominator ($3x^2$). The quotient term is $2x$.

\[
2 \times X \begin{array}{c} \text{ENTER} \\
\end{array}
\]

Make a copy of the quotient term and return the current quotient variable to the stack.

\[
\text{ENTER} \begin{array}{c} Q \\
\end{array}
\]

Add this copy to Q.

\[
+ \begin{array}{c} \\
\end{array}
\]

Store this result in Q.

\[
Q \begin{array}{c} \text{STO} \\
\end{array}
\]
Multiply the quotient term and the denominator.

\[\times \]

Subtract the result from the numerator.

\[-\]

Simplify the result by expanding the expression and then collecting terms.

By inspection, another expansion is required for the \(x^2 \) term.

All terms are fully expanded, so now collect terms.

Collect terms until complete.

The result is a new and reduced numerator. Since its degree is equal to the denominator’s degree, continue this process of finding a quotient term, adding it to \(Q \), and reducing the numerator.

Put \(D \) on the stack.
Divide the highest-order term in the numerator $-9x^2$ by the highest-order term in the denominator $3x^2$. By inspection, the result is -3. Enter in this quotient term.

3 CHS ENTER

Make a copy of the quotient term and return the quotient variable to the stack.

ENTER Q

Add this copy to Q.

+ Q

Store the result in Q.

'Q STO

Multiply the quotient term and the denominator.

×

Subtract the resulting expression from the new numerator.

- Rational Functions and Polynomial Long Division
Continue until all terms are fully expanded.

\[3 - 9x + 2x^2 \]

Now collect terms.

\[\text{COLCT} \]

The result is the new numerator. Since its degree is less than the denominator's degree, the iteration process ends. The polynomial quotient is stored in \(Q \), and the remainder equals the final numerator divided by the denominator.

\[Q = 3 - 4x \]

Thus the answer is

\[-3 + 2x + \frac{6 - 4x}{3x^2 + 2x + 1} \]

The command TAYLR can be used to approximate this result. Executing TAYLR with \(n = 1 \) gives the result \(3 - 14x \).

Purge the variables created in this example and clear the stack.

\{ 'Q' 'D' 'N' PURGE \}
Function Evaluation

The Solver can find the values of a function (be it of one variable or of several variables) given the values of the independent variables. The values can be real or complex numbers or symbolic expressions.

Given the function \(f(x, y) = 2\pi x^2 \sqrt{y^2 - x^2} \) find \(f(1, \sqrt{2}) \), \(f(\sin T, 1) \), and \(f(3, 5) \).

Clear the stack, set the display format, and set the symbolic evaluation flag.

<table>
<thead>
<tr>
<th>CLEAR</th>
<th>4 FIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 6 ENTER SF ENTER</td>
<td></td>
</tr>
</tbody>
</table>

Note in the keystrokes above, you could also use SF within the TEST menu, as an alternative to typing the letters 'SF' and the ENTER key.

Put the expression for the function in level 1 and store it in the variable EQ.

| '2\pi x \times X^2 \times ABS(\sqrt{(Y^2 - X^2)}) ENTER |

From the SOLV menu, press the SOLVR key to display a menu of the independent variables.

| SOLVR |

Store a "1" in the variable \(X \).

| X: 1.0000 |
| 1 |
| X Y EXPB= |

| X: 1.0000 |
| 2 |
| X Y EXPB= |
Store the square root of two in the variable \(Y \).
\[
2 \sqrt{2} \quad Y
\]

Evaluate the expression.
\[
\text{EXPR} =
\]

Convert this expression into a number.
\[
\rightarrow \text{NUM}
\]

Clear the previous result and evaluate \(f(\sin T, 1) \).
\[
\text{DROP}
\]

Put \(\sin T \) on the stack.
\[
\text{TRIG} \quad \text{SIN} \quad T \quad \text{ENTER}
\]

Store the expression in the variable \(X \).
\[
\text{SOLV} \quad \text{SOLVR} \quad X
\]

Note the Solver variable \(X \) has been replaced by the variable \(T \). Store the number one in the variable \(Y \).
\[
1 \quad Y
\]
Now compute the function value.

To redisplay the variable X, its current symbolic value must be purged.

Note that the variable X is again displayed in the Solver menu.

For the last part of the example, clear flag 36 to set the calculator in the numerical evaluation mode and force numeric evaluation of π in the expression.

Put a 3 on the stack and store it in X.

Store 5 in Y.

Evaluate the expression.

With flag 36 set, we would have obtained the result '2*π*9*4'.
Lest the variables X and Y should be inadvertently incorporated in other calculations, you may elect to purge them from memory. You may also wish to set flag 36 to its default setting.

\[
\{'Y'='X'='EQ'\ \text{PURGE}\ 36\ \text{SF}\ \text{ENTER}\]

Simultaneous Linear Equations

A system of two linear equations in two unknowns can be solved by first plotting the graphs of the two lines, finding the point of intersection (if any exists), and then solving for the unknown variables by using the Solver with the intersection point as the initial guess. The system can also be solved using matrices, but this method won't work if the lines are parallel or coincident. A third method is to isolate one of the variables for one of the equations, plug this expression into the other equation (giving you one equation in one unknown), and then solving for that one unknown by using the Solver.

For example, solve the following system
\[
\begin{align*}
2x + 1y &= 6 \\
5x - 4y &= 3
\end{align*}
\]

Clear the display and set the mode to FIX 4.

Method 1: Using PLOT.

To graph the system, first isolate the variable \(y\) in both of the equations and then set both of these expressions equal to each other.

\['2 \times X+Y=6' \quad \text{ENTER} \]

\[1: 'Y! \quad \text{ALGEBRA} \quad \text{ISOL} \]

\['5 \times X-4xY=3' \quad \text{ISOL} \]

\[3: 2: '6-2*Y' \quad \text{MATH} \quad \text{ISOL} \quad \text{QUAD} \quad \text{SHOW} \quad \text{OBJET} \quad \text{EXGET} \]

\['6-2*Y' \quad \text{ISOL} \quad \text{QUAD} \quad \text{SHOW} \quad \text{OBJET} \quad \text{EXGET} \]
Prepare to plot the lines by purging any prior plot parameters. Store the equation in EQ and draw it.

\[6 - 2x = \left(\frac{5x - 3}{4} \right) \]

Exit from the plot display. Move the center of the plot to (0,1) and draw the graph again.

Move the cursor to the approximate point of intersection and digitize the point by pressing [INS]. Press [ATTN] to return to the stack display. The coordinates of the point are returned to the stack.

Display the Solver menu. The menu consists of the variable \(X \), \(LEFT = \), and \(RT = \).

Store the digitized point in the variable \(X \) as the initial estimate (the Solver only uses the first coordinate).
Solve for X.

The variable X equals 2.0769. Since both sides of the equation are a symbolic solution for Y, pressing \[\text{LEFT=} \] or \[\text{RT=} \] will give you the numerical solution for Y.

The variable Y equals 1.8462.

Method 2: Using Matrices

Key in the constant vector (the right side of both equations).

Key in the coefficient matrix. The coefficients of the first equation make up the first row of the matrix. The coefficients of the second equation make up the second row. Divide the constant vector by the coefficient matrix.

The same results as the graphing method are obtained, $X = 2.0769$ and $Y = 1.8462$.

Clear the stack and purge all the variables that were used in this example.
Method 3: Using Solver

First, enter in the first equation and isolate the variable Y. The result is an expression for Y.

\[2x + Y = 6 \]

\[Y = \text{ISOL} \]

Enter in the second equation and store it in the variable EQ.

\[5x - 4y = 3 \]

Display the Solver menu and store the expression for Y in the variable Y. This gives you one equation in one unknown.

\[Y = \text{SOLVR} \]

Now solve for X. The same result as the two previous methods is returned to level 1.

\[X = \text{NUM} \]

Put the expression for Y on the stack.

\[Y \text{ ENTER} \]

Convert this expression into a number.

\[\rightarrow \text{NUM} \]

The value for Y is returned to level 1.
Purge the variables created in this example.

\{ 'X', 'Y' EQ \} PURGE
Quadratic Equations

The zeros of a quadratic equation can be found using the QUAD command. Plotting the equation is not necessary, but you may be interested in seeing what the graph looks like and checking if there are two real roots, two complex roots, or a double root.

For example, solve $3x^2 - x = 0$. First plot the equation.

You can easily see that the equation has two real roots. Now use QUAD to find those roots. First, recall the equation and put X on the stack to indicate that this is the variable for which you are solving (the coefficients could be variables, in which case the solution is symbolic).

Find the roots:

The QUAD function can also be found in the SOLV menu.

The resulting expression represents both roots. "$s1$" is a variable whose value is either $+1$ or -1. Store this expression in the variable EQ and use the Solver to find the numerical solutions.
Let sI be negative by entering -1 and pressing the $S1$ menu key.

$-1 \quad S1$

Press $EXPR=$ to get the first root.

$EXPR=$

Let sI be equal to $+1$.

$1 \quad S1$

Solve for the second root.

$EXPR=$

Clear the stack and all the variables used in this example.

CLEAR

{ 's1' 'PPAR' 'EQ' PURGE

For a second example, find the roots for $2x^2 - 4x + 3$ in the same manner as the first example.

First store the equation in the variable EQ, then draw it.

' $2 \times X^2 - 4 \times X + 3$ ENTER

PLOT STEQ DRAW

Quadratic Equations 25
Since the graph of this equation does not intersect the x-axis, there are no real roots; the roots are complex. Solve for these roots using the QUAD command.

\[
\begin{align*}
\text{ATTN} & \quad \text{RCEQ} \\
'X' & \quad \text{SOLV} \quad \text{QUAD} \\
\end{align*}
\]

Now use the Solver to get the numeric solutions.

\[
\begin{align*}
\text{STEQ} & \\
\text{SOLVR} &
\end{align*}
\]

Let \(s1 \) equal \(-1\) and solve for one of the roots.

\[
\begin{align*}
-1 & \quad \text{S1} \\
\end{align*}
\]

Let \(s1 \) equal \(+1\) and solve for the second root.

\[
\begin{align*}
1 & \quad \text{S1} \\
\end{align*}
\]

The roots for this equation are \(1 \pm 0.7071i \).

Purge the variables created in this example.

\[
\{ 's1' 'PPAR' 'EQ' \quad \text{PURGE} \}
\]
Logarithms

This series of examples illustrates manipulation of numeric and algebraic expressions using logarithms.

Example: Use logarithms to evaluate the following.

\[N = \frac{3.271 \times \sqrt{48.17}}{2.94^3} \]

First, enter in the equation and then take the logarithm of both sides by pressing \(\text{LOG} \).

Expand the equation so that the right side of the equation is expressed as the sum or difference of several logarithms. (This involves using the fundamental laws of logarithms, but is easily accomplished using the EXPAN command.)

Now evaluate this equation.

Solve for \(N \) by taking the antilogarithm of both sides of the equation.
Press **EVAL** to get the numerical solution.

![EVAL](image)

Example: Solve for \(x \) by using logarithms.

\[
a^{2x-3} = b^x
\]

Enter in the equation and take the logarithm of both sides.

![CLEAR](image)

\[
'a^{2x-3} = b^x' \rightarrow \log(a^{2x-3}) = \log(b^x)
\]

Expand the equation.

![ALGEBRA](image)

\[
\log(a) \cdot (2x-3) = \log(b) \cdot x
\]

The object is to isolate \(x \) on the left side (or right side, if you wish) of the equation by first moving all the terms with \(x \) to the left side and all the terms with no \(x \) to the right side.

Add \(3 \log(A) \) to both sides of the equation. Rather than entering in this term, retrieve the term by using EXGET. First duplicate the equation.

![ENTER](image)
Enter in the position of the third multiplication sign, which, in this case, is 10. (The first position consists of 'LOG'; the variable A is in the second position, '*' is in the third position, and so on.)

Execute the EXGET command. The expression $3\log(A)$ is returned to the stack.

```
10  EXGET

3:
  'LOG(A)*(2*X)-LOG(A)*3'

2:
  'LOG(A)*(2*X)-LOG(A)*3=LOG(B)*X +LOG(A)*3'
```

Add $3\log(A)$ to both sides of the equation and collect the terms.

```
+ COLCT

1:
  'LOG(A)*(2*X)-LOG(A)*3=LOG(B)*X +LOG(A)*3'

2:
  '2*LOG(A)*X=LOG(B)*X +3*LOG(A)'
```

Now move $x \log(B)$ to the left side of the equation by subtracting it from both sides of the equation. This can be accomplished using the EXGET command.

```
ENTER

10  EXGET

3:
  '2*LOG(A)*X=LOG(B)*X +3*LOG(A)'

2:
  '2*LOG(A)*X=LOG(B)*X +3*LOG(A)'
```

```
- COLCT

1:
  '2*LOG(A)*X-LOG(B)*X =LOG(B)*X+3*LOG(A)-LOG(B)*X'

2:
  '2*LOG(A)*X-LOG(B)*X =3*LOG(A)'
```

Logarithms
Use the FORM editor to merge $2x \log(A)$ and $x \log(B)$ into $(2\log(A) - \log(B))x$. Press FORM, move the cursor to the minus sign, press M- (merge right), then press ATN to exit FORM and return the modified equation to the stack.

\[
((2\log(A))x - (\log(B) \cdot x)) = (3 \cdot \log(A))
\]

Divide $2\log(A) - \log(B)$ into both sides of the equation by first using EXGET to retrieve the subexpression.

Collect the terms.

The resulting equation is the solution to this example.

\[
x = \frac{3\log(A)}{2\log(A) - \log(B)}
\]
Example: Solve for x in the following expression.

$$\log(x + 3) = 0.7$$

The goal is to isolate x, which is easily done using the isolate command ISOL. First put the equation on the stack.

![Stack with equation]

Enter in the variable to be isolated X, and execute ISOL.

![Stack with result $x = 2.0119$]

Example: Find $\log_7{36}$.

The HP-28C calculates logarithms to base 10 and base e (the LN function). You can write a program to calculate the logarithms to any given base using the following formula.

$$\log_a t = \frac{\log_{10} t}{\log_{10} a}$$

Key in the following program that returns the logarithm of a given number to a given base (provided the base is in level 2 and the number in level 1 of the stack).

![Program for logarithm]

Store this program in the variable LBN.

![Saving program to variable]

Now compute $\log_7{36}$.

![Computing logarithm]

Logarithms 31
This program will calculate the logarithm to a given base of a given number.
Graphs of Algebraic Functions

This section illustrates a number of algebraic function plots including manipulation of plot parameters for enhanced representation of the function characteristics.

Example: Plot the power function \(y = x^{-3} \).

Store \(x^{-3} \) in the variable EQ.

\[
\text{CLEAR} \quad \text{MODE} \quad 4 \quad \text{FIX} \quad \text{X}^3 \quad \text{PLOT} \quad \text{STEQ}
\]

Plot the expression.

\[
\text{PPAR} \quad \text{PURGE} \quad \text{DRAW}
\]

Version "1BB" of the HP-28C will give the error indication above, unless flag 59 is clear (59 CF [ENTER]) or you take steps to avoid evaluation of the function at \(x = 0 \). An error was returned because the function is infinite at \(x = 0 \). Another way to avoid this error is to change the plot minima and maxima PMIN and PMAX, such that DRAW does not evaluate the function at the point of error. Let PMIN be \((-6, -1.5)\) and PMAX be \((6, 1.5)\).

\[
\text{PMIN} \quad \text{PMIN} \quad \text{PMAX} \quad \text{PMAX}
\]

Plot the expression again.

\[
\text{DRAW}
\]

Press [ATTN] to return to the stack display and purge the plot parameters that are stored in the variable PPAR.

\[
\text{ATTN} \quad \text{PPAR} \quad \text{PURGE}
\]
Example: Plot the power function \(y = \pm \sqrt{x} \). Store \(\sqrt{x} \) in the variable EQ and plot the expression.

\[
\sqrt{x} \quad \text{STEQ}
\]

\[
\text{DRAW}
\]

Again, version "1BB" of the HP-28C traps this error and interrupts the plot. This time an error is given because \(y \) is imaginary for \(x < 0 \). You could write a program that only plots the function for \(x \geq 0 \), but a simpler way is to take the real part of the function \(y \). Recall the expression.

\[
\text{RCEQ}
\]

Take the real part of the function.

\[
\text{CMPLX} \quad \text{RE}
\]

If you plotted the function now, only positive values of \(y \) would be plotted. A trick to plot both positive and negative values of \(y \) at the same time is to make a copy of the function, negate the copy, and set both functions equal to each other. (They really are not equal to each other — this is just a way to plot two functions at the same time on the HP-28C.)

Duplicate the function.

\[
\text{ENTER}
\]

Negate the function.

\[
\text{CHS}
\]
Now set the two functions equal to each other.

Store this equation in EQ and plot it.

Purge the plot parameters for the next example.

Example: Plot the exponential function \(y = e^{x/2} \).

Enter in the function \(\exp(x/2) \) and store it in the variable EQ. Then plot the function.

Press \(\text{ATN} \) to return back to the stack display. This time let the point \((0,1)\) be the center of the display.

Plot the function again.
Purge the plot parameters.

Example: Plot the logarithmic function \(y = \log(x^2 + 2) \).

Enter in the expression and store it in EQ.

\[
\text{'X}\times\text{LOG} (\text{X}^2 + 2) \quad \text{STEQ}
\]

Plot the function.

Example: Plot the polynomial function \(y = x^3 + 2x^2 - 11x - 12 \).

Enter in the expression and store it in the variable EQ.

\[
\text{'X}^3 + 2 \times \text{X}^2 - 11 \times \text{X} - 12 \quad \text{STEQ}
\]

Plot the function.

Much of the graph is not shown on the display. To see more of the graph adjust the plot parameters by multiplying the height by 15.
Draw the function again.

```
DRAW
```

Purge the variables created in this example.

```
ATTN { 'PPAR' 'EQ' PURGE }
```
Polynomial Equations

The roots of polynomial equations can be found by several methods. Graphing the polynomial enables you to estimate the roots. The estimations can then be used as guesses for the Solver or for the ROOT command. An alternative to graphing the polynomial to obtain the "guesses" is using $\pm \frac{p}{q}$ where the values of p are the positive divisors of the constant term and the values of q are the positive divisors of the coefficient of the highest-powered term. In most cases it is easier and quicker to graph the polynomial to find the approximate roots.

Example: Plot the graph and find the roots of

$$x^4 + 3x^3 - 3x^2 - 7x + 6 = 0$$

First, clear the display and any current plot parameters. Then, enter in the expression, store it in the variable EQ, and plot it.

```
CLEAR 'PAR [PURGE
'X^4+3X^3-3X^2-7X+6
PLOT STEQ
DRAW
```

Multiply the height by 10 and plot the graph again.

```
ATTN 10 *H
DRAW
```

Digitize the three points where the function equals zero (i.e., where the graph intersects or touches the x-axis) by moving the cross hairs to each of the three points and pressing [INS]. When you press the [ATTN] key, the coordinates of the three points are displayed. The x coordinate of each point will be used as initial estimates for the Solver.

```
< . . . < INS
> . . . > INS
> . . . > INS
ATTN
```

Now use these values in the Solver.

```
SOLV = SOLVR
```

38 Polynomial Equations
Store the point in level 1 in the variable X.

Now solve for X. The result is shown in level 1.

Clear this result and find the next root.

Clear this result and find the last root.

The three roots are -3, -2, and 1.

Example: Plot the graph and find one of the roots of

$$x^3 - 3x^2 - 1.5x + 6 = 0$$

For this example you will again plot the function to get the initial guesses and then use the ROOT command to find the roots. First, enter in the expression and store it in the variable EQ.

Plot the graph.
Since the plotting parameters from example 1 were not purged, the height is still multiplied by 10. Decrease the vertical scale by multiplying the height by .5.

\[\text{ATTN} \quad 0.5 \quad \text{x}H \]

Draw the graph again. Use the cross hairs and the [INS] key to digitize the left-most point that crosses the x-axis.

\[\text{DRAW} \quad < \quad \ldots \quad < \quad \text{INS} \]

The ROOT command requires three inputs, in this case, the polynomial expression, the name of the variable you're solving for, and the initial guess. The polynomial is in level 3, the name is in level 2, and the guess is in level 1. The digitized guess is in level 1 after the [INS] key above. Now recall the expression.

\[\text{ATTN} \quad \text{RCEQ} \]

Put the variable name X on the stack.

\[\text{\texttt{\textasciitilde}\texttt{X} ENTER} \]

To move the coordinates for the initial guess to level 1, rotate the stack.

\[\text{\texttt{STACK} \quad \texttt{ROT}} \]

Now solve for X and find one of the roots of the equation.

\[\text{\texttt{\texttt{SOLV} \quad \texttt{ROOT}}} \]

Purge the variables used in these two examples.

\[\{ \texttt{\texttt{\textasciitilde}\texttt{X} \texttt{PPAR} \texttt{\textasciitilde}\texttt{EQ} \quad \texttt{PURGE}} \]

40 Polynomial Equations
Determinants of Matrices

The HP-28C does calculations using matrices whose elements are real and/or complex numbers. The determinant of a matrix is easily found by using the command DET. But since DET is a command, it cannot be used in algebraics.

Example: Find the determinant of the following matrix.

\[
\begin{bmatrix}
2 & 6 & 1 & -2 \\
-3 & 4 & 5 & 7 \\
4 & -2 & 1 & 3 \\
5 & 3 & -4 & 6
\end{bmatrix}
\]

Key in the matrix and find the determinant.

```
CLEAR  | [MODE] 2  [FIX] 
[ 2 6 1 -2 ] [ -3 4 5 7 ] [ 4 ] [ ENTER EETN(FIX) MR NI kAo ]
-2 1 3 5 3 -4 6

ARRAY  | DET  

2439.0608
```

Example: Solve for x and y.

\[
\begin{align*}
7 & \quad 6 & \quad 5 \\
1 & \quad 2 & \quad 1 \\
y & \quad -2 & \quad x
\end{align*}
\]

Using the definition of the determinant of a 3 x 3 matrix, these two equations can also be written as the following:

\[
14x + 6y - 10 - (10y - 14 + 6x) = 0 \quad \text{and} \quad 21x + 8 + 10y - (3y + 20x + 28) = 2
\]

The problem reduces to a system of two equations in two unknowns. To find y, isolate x in one of the equations, then substitute this expression for x in the other equation. To find x, substitute the value for y in the expression for x.
First, key in one of the equations and simplify it by collecting terms.

\[
14x + 6y - 10 - (10y - 14 + 6x) = 0
\]

Store this equation in the variable EQ.

Key in the other equation and simplify it also.

\[
21x + 8 + 10y - (3y + 20x + 28) = 2
\]

Obtain a symbolic expression for \(x \) by isolating the variable.

Use the Solver to substitute the expression for \(x \) in the equation that is already stored in the variable EQ and solve for \(y \). First, display the Solver menu.

Press \(\text{X} \). The expression from level 1 is stored in the variable \(X \). Notice that the variable \(X \) disappears from the Solver menu.

Now solve for \(y \).

42 Determinants of Matrices
Recall the expression for x.

\[x \]

Find the numerical value for x by evaluating the expression.

\[\text{EVAL} \]

Thus $x = 1$ and $y = 3$.

Purge the variables created in this example.

\[\{ \text{'}Y\text{'} \text{'}X\text{'} \text{'}EQ \} \text{PURGE} \]
Systems of Linear Equations

Using matrices, solve the following system.

\[
\begin{align*}
6x + 1y - 3z + 0w &= 37 \\
-2x + 3y + 5z - 7w &= 6 \\
8x + 0y + 4z - 5w &= 75 \\
x - 7y - 4z + 1w &= 7
\end{align*}
\]

A similar example is shown in the HP-28C Getting Started Manual on pages 168-170.

Clear the display, set the display mode, and key in the constant vector.

\[
\begin{array}{c}
\text{CLEAR} \quad \text{MODE} \quad 1 \quad \text{FIX} \\
37 \quad 6 \quad 75 \quad 7 \quad \text{ENTER}
\end{array}
\]

Key in the coefficient matrix and divide the constant vector by the coefficient matrix.

\[
\begin{array}{c}
\begin{pmatrix}
6 & 1 & -3 & 0 \\
8 & 0 & 4 & -5 \\
0 & -7 & -4 & 1
\end{pmatrix}
\end{array}
\begin{array}{c}
\begin{pmatrix}
37.0 \\
6.0 \\
75.0 \\
7.0
\end{pmatrix}
\end{array}
\]

The solution to the system is \(x = 7, y = -2, z = 1\), and \(w = -3\).
Infinite Sequences and Series

Calculations involving infinite sequences and series are best solved by writing programs. By using FOR loops in programs, calculations can be repeated as many times as desired.

Example: Find the first 10 terms of the sequence whose general term is the following.

\[\frac{x!}{e^x} \]

A general program that calculates any number of terms for this sequence is listed below. Enter in the program and store it in the variable \(FDE\) (for 'factorial divided by exponent'). To run the program press \([\text{USER}]\) and then press the user variable key \(FDE\). When you run the program, a prompt is displayed that asks for the number of terms you want calculated. Enter a number, such as 10, press \([\text{CONT}]\) to continue running the program. The program returns a list of the first 10 numbers in the sequence.

Program Listing:

```
2 FIX
"# OF TERMS?" CLLCD 1 DISP
HALT

→ n «

1 n FOR X
X FACT
X EXP
÷
NEXT
n → LIST
```

Explanation:

Set the display format to two digits.

Prompt message.

Program halts (you key in a number and press CONT).

The number is stored in the variable \(n\).

Loop: do for \(X\) from 1 to \(n\).

Calculate the factorial of \(X\).

Take the exponent of \(X\) and divide the two numbers.

Increment \(X\) and repeat until \(X > n\).

Put the \(n\) terms into a list.
Now key in the program.

```
CLEAR
2 FIX "# OF TERMS?" CLLCD
1 n FOR X X FACT
X EXP ÷ NEXT n →LIST

ENTER <>
```

Store the program in the variable FDE.

```
'FDE STO
```

Run the program.

```
USER FDE

# OF TERMS?
```

Enter in the number 10 and press CONT to continue running the program. The list of the first 10 terms of the sequence is displayed.

```
10 CONT
```

Run the program again.

```
FDE

# OF TERMS?
```

Enter in the number 5 (or any other integer) and continue running the program.

```
5 CONT
```

46 Infinite Sequences and Series
Example: Find the sum of the first 100 terms of the series

\[\sum_{x=1}^{n} \frac{1}{x(x+1)} \]

where n is the total number of terms.

The program that finds the sum of the first n terms is listed below. When this program is run, a prompt asking for the number of terms is displayed. After entering the number and continuing the program, the prompt message and the number n is displayed in level 2 and the sum of the first n terms is in level 1.

Program Listing:

```plaintext
STD
CLLCD "# OF TERMS? "
DUP 1 DISP
HALT

→ n «
n →STR +

0 1 n FOR X

'INV((X × (X+1)))' EVAL + NEXT

CLLCD DUP 3 DISP
SWAP 1 DISP »
```

Explanation:

Standard display format.
Prompt message.
Make a copy and display and line 1.
Program halts
(you key in a number).
Store one copy of the number in n.
Convert the number into a string
and concatenate with the prompt.
Loop: do for X from 1 to n with
initial zero sum.
\[\frac{1}{((X)(X + 1))}. \]
Add to the accumulating total.
Increment X and repeat until X > n.
Generate final display.

Key in the program.
Store the program in the variable 'ONE' (the series converges to one for large \(n \)).

```
'ONE STO
```

Run the program.

```
USER \= ONE \=
```

Enter in the number 100 and continue running the program. The sum of the first 100 terms is returned to level 1.

```
100 CONT
```

Purge the two programs created in these examples.

```
{ 'ONE' 'FDE' PURGE
```
Hyperbolic and Inverse Hyperbolic Functions

The LOGS menu contains hyperbolic and inverse hyperbolic functions. The arguments to these functions can be either numeric or symbolic.

Clear the display and set the number of display digits to 3.

```
CLEAR MODE 3 FIX
```

Calculate $4/\sqrt{7}$ and store it in the variable Z.

```
4 ENTER 7 \sqrt
```

\[Z = \frac{4}{\sqrt{7}} \]

Calculate sinh Z.

```
Z LOGS SINH
```

Calculate csch Z. The csch Z is equal to the inverse of sinh Z.

```
1/x
```

Hyperbolic and Inverse Hyperbolic Functions 49
Calculate \(\cosh Z \).

\[Z = \cosh 3 \]

\(\sinh, \cosh, \tanh, \coth \)

Calculate sech \(Z \). The sech \(Z \) is equal to the inverse of \(\cosh Z \).

\(\frac{1}{x} \)

Calculate \(\tanh Z \).

\[Z = \tanh 5 \]

\(\sinh, \cosh, \tanh, \coth \)

Calculate \(\coth Z \). The \(\coth Z \) is equal to the inverse of \(\tanh Z \).

\(\frac{1}{x} \)

Example: Verify that \(\cosh(2.378) = 1.512 \) using the definition

\[\cosh(x) = \ln(x + \sqrt{x^2 - 1}), \text{ for } x \geq 1. \]

Key in the equation for the definition and store it in the variable EQ.

```
'ACOSH(X)=LN(X+sqrt(X^2-1))'
```

Display the Solver menu, key in the number 2.378 and assign it to the variable \(X \).

```
SOLVR 2.378
```

Now check if the left side of the equation \(\cosh(x) \) equals 1.512.
Now check if the right side of the equation is 1.512.

\[
\begin{array}{c|c|c}
\text{RIGHT} & \text{1.512} \\
1: & 1.512 \\
\hline
X & \text{LEFT} & \text{RT} \\
\end{array}
\]

Purge the variables used in these examples.

{ 'X' 'EQ' 'Z' PURGE}
Trigonometric Relations and Identities

This section illustrates calculations involving simple trigonometric relations and identities.

Example: Given $\cot(x) = 0.75$, find $\tan(x)$, $\sec(x)$, $\cos(x)$, $\sin(x)$, and $\csc(x)$ without solving for x.

Set degrees mode and the number of display digits to **FIX 5**.

Enter in the number .75, which is equal to $\cot(x)$.

$.75$ **ENTER**

Take the inverse to calculate $\tan(x)$, since $\tan(x) = 1/\cot(x)$.

$\frac{1}{x}$

Calculate $\sec(x)$ using the relation $\sec(x) = \sqrt{\tan^2(x) + 1}$. First, calculate the square of $\tan(x)$.

$\sqrt{}$

Add 1 to the square of $\tan(x)$.

$1 +$

Take the square root of the number to calculate $\sec(x)$.
Calculate \(\cos(x) \) by taking the inverse of \(\sec(x) \).

\[\frac{1}{x} \]

Calculate \(\sin(x) \) by using the relation \(\sin(x) = \sqrt{1 - \cos^2(x)} \). First, calculate the square of \(\cos(x) \).

\[x^2 \]

Enter in the number 1 and switch the order of the 1 and the square of \(\cos(x) \).

1 \(\text{SWAP} \)

Subtract the square of \(\cos(x) \) from 1.

\[- \]

Take the square root of this number to calculate \(\sin(x) \).

\[\sqrt{} \]

Take the inverse of \(\sin(x) \) to calculate \(\csc(x) \).

\[\frac{1}{x} \]

Clear the stack.

\[\text{DROP} \]
Example: Plot the unit circle \(\sin^2(x) + \cos^2(x) = 1 \).

The program to plot the unit circle is listed below.

Program Listing:

```plaintext
DEG
CLLCD DRAX
0 360 FOR X
X SIN
X COS
R→C
PIXEL
5 STEP
```

Explanation:

Set the angle mode to degrees.

Clear the display and draw the axes.

Loop: do for \(X \) from 0 to 360 degrees.

Calculate \(\sin(X) \).

Calculate \(\cos(X) \).

Form a coordinate pair \((\sin(X), \cos(X))\).

Plot the point.

Increment \(X \) by 5 and repeat until \(X > 360 \).

Key in the program.

```
MODE STD

« DEG CLLCD DRAX 0 360 FOR X X SIN X COS R→C PIXEL 5 STEP »
```

Run the program.

EVAL

54 Trigonometric Relations and Identities
Trigonometric Functions for One and Two Angles

Trigonometric relations, such as the law of cosines or the identity for the cosine of the sum of two angles, are not built into the HP-28C. However, the algebraic formula for the relations can be stored in a variable. Then by using the Solver, you can solve for any unknown in the formula.

Example: Given an oblique triangle XYZ with the following parameters

\[
\begin{align*}
 x &= 3n \\
 y &= n^2 - 1 \\
 z &= 20 \\
 Z &= 94.9 \text{ degrees},
\end{align*}
\]

where \(n \) is a positive integer, solve for \(n \) and then find sides \(x \) and \(y \) and angles \(X \) and \(Y \).

First, set the number of display digits to 2 and select the degree mode.

\[
\begin{array}{c}
\text{CLEAR} \\
\text{MODE} 2 \quad \text{FIX} \\
\text{DEG}
\end{array}
\]

Normally, capital letters denote the angles of the triangle and lower case letters denote the corresponding opposite sides. Since capital and lower case letters are indistinguishable in the Solver and User menus, let \(X \), \(Y \), and \(Z \) be called \(ANGX \), \(ANGY \), and \(ANGZ \), respectively. Also, let \(n \), \(x \), \(y \), and \(z \) be represented by capital letters.

Enter '3*N' and the variable \(X \).

\[
\text{'3*N' 'X'} \quad \text{ENTER}
\]

Enter 'N^2-1' and the variable \(Y \).

\[
\text{'N^2-1' 'Y'} \quad \text{ENTER}
\]
Enter the number 20 and the variable Z.

20 'Z' ENTER

Store the numbers in the variables \(X, Y, \) and \(Z \).

\(\text{STO} \)
\(\text{STO} \)
\(\text{STO} \)

Store the number 94.9 in the variable \(ANGZ \).

94.9 'ANGZ' STO

You can solve for \(N \) by using the law of cosines and the Solver. Enter in the formula for the law of cosines and store it in EQ. (Note: since capital and lower case letters are indistinguishable in the Solver menu, let the angle variable be \(ANGA \) rather than \(A \).) Display the Solver menu.

\[A^2 = B^2 + C^2 - 2 \times B \times C \times \cos(ANGA) \]

Store the value of the variable \(Z \) in the variable \(A \) (Note: Only press \(Z \). If you included single quotes, then the letter \(Z \) would be stored in the variable \(A \).)

\(Z \leftarrow A \)

Store the value of the variable \(X \) in the variable \(B \). (Notice that the Solver menu changes – the variable \(B \) is replaced by the variable \(N \).)

\(X \leftarrow B \)
Store the value of the variable Y in the variable C.

\[
Y \rightarrow C
\]

Store the value of the variable ANGZ in the variable ANGA.

\[
\text{ANGZ} \rightarrow \text{ANGA}
\]

Since N is a positive integer, let the number 1 be an initial guess for N.

\[
1 \rightarrow N
\]

Solve for N.

\[
\text{MODE} \rightarrow \text{STD}
\]

Display all digits of the computed result.

\[
2 \text{ FIX} \rightarrow \text{DROP}
\]

Since N is defined to be a positive integer, store the integer 4 in the variable N.

\[
4 \rightarrow N
\]

Solve for side X by pressing X and then EVAL. The same result can be obtained by pressing the letter X followed by EVAL.

\[
\text{USER} \rightarrow X
\]

\[
\text{EVAL}
\]

\[
3: \quad 12.00
\]
Solve for side Y by pressing $\frac{Y}{Y}$ followed by EVAL.

Purge the variables that were used in the law of cosines formula. Clear the stack.

\[
\{ '\text{ANGA}', 'C', 'B', 'A' \} \text{ PURGE}
\]

Use the law of cosines again to find ANGX and ANGY. First, solve for ANGX.

\[
\text{SOLV} \quad \text{SOLVR}
\]

Store X in the variable A. Notice that $'3^*N'$ is still stored in X.

\[
X \quad A
\]

Store Y in the variable B.

\[
Y \quad B
\]

Store Z in the variable C.

\[
Z \quad C
\]

You have just substituted X, Y, and Z into the law of cosines equation giving $X^2 = Y^2 + Z^2 - 2XY \cos(\text{ANGA})$. Find angle X by solving for ANGA.
Purge the following variables. Rather than typing the variable names, display the User menu and press ‹ followed by ‹ANGA›, ‹C›, ‹B›, ‹A›, and so forth.

\texttt{USER}
\{
\texttt{'ANGA' 'C' 'B' 'A'} \quad \texttt{PURGE}
\texttt{CLEAR}
\}

Display the Solver menu again.
\texttt{SOLV} \quad \texttt{SOLVR}

Find angle \(Y \) in a similar manner. Store \(Y \) in the variable \(A \).
\(Y \equiv A \)

Store \(X \) in the variable \(B \).
\(X \equiv B \)

Store \(Z \) in the variable \(C \).
\(Z \equiv C \)

The resulting equation is now \(Y^2 = X^2 + Z^2 - 2XZ \cos(\text{ANGA}) \). Find \(\text{ANGY} \) by solving for \(\text{ANGA} \).

\(\square \quad \texttt{ANGA} \)

Purge the variables used in this example.
\{\texttt{'ANGA' 'C' 'B' 'A' 'EQ' 'Z' 'Y' 'X' 'N'} \quad \texttt{PURGE}\}
Example: Given the two right triangles shown below, and the relationships \(\cos(A + B) = -0.5077 \) and \(0 < x < 10 \), find \(x \).

Use the following trigonometric identity.

\[
\cos(A + B) = \cos(A) \cdot \cos(B) - \sin(A) \cdot \sin(B)
\]

From the diagram, \(\cos(A) = \frac{x - 2}{5} \), \(\cos(B) = \frac{x}{2x + 3} \), \(\sin(A) = \frac{x - 1}{5} \), and \(\sin(B) = \frac{x + 7}{2x + 3} \).

Substituting into the identity equation that was given results in the following:

\[
\frac{(x - 2) \cdot x - (x - 1) \cdot (x + 7)}{5 \cdot (2x + 3)} = -0.5077.
\]

Simplifying,

\[
\frac{(x - 2) \cdot x - (x - 1) \cdot (x + 7)}{5 \cdot (2x + 3)} = -0.5077.
\]

Enter in this equation.

Store the equation and display the Solver menu.

Store the initial guess of 1 in the variable \(x \).
Solve for X.

Purge the variables created in this example.

'EQ PURGE 'X PURGE
Graphs of Trigonometric Functions

This section illustrates how to plot various trigonometric functions.

Example: Plot the function \(y = \frac{\sin(x)}{x} \).

Version "1BB" of the HP-28C will generate an error when the DRAW function evaluates the function above at \(x = 0 \). The following program checks for evaluation at zero, and avoids the error that would occur.

Program Listing:

```
CLLCD RAD
'IFTE(X==0,1,SIN(X)/X)'
STEQ DRAW
```

Explanation:

Clear the display and set the angular mode to radians. Evaluate the function for \(X \) not zero. Store the function and draw it.

Key in the program.

```
CLEAR
« CLLCD RAD 'IFTE(X==0,1,SIN(X)/X)'
STEQ DRAW ENTER
```

Restore the default plot parameters, expand the width by a factor of three, and press [EVAL] to run the program.
Example: Plot the first 10 terms of the Fourier series.

\[
\sin(x) + \sin\left(\frac{3x}{3}\right) + \sin\left(\frac{5x}{5}\right) + \sin\left(\frac{7x}{7}\right) + \sin\left(\frac{9x}{9}\right) + \cdots
\]

A general program can be written that plots a specified number of terms. The program below assumes you key in the desired number of terms, and then execute the program.

Program Listing:

CLLCD RAD

\[01 \text{ROT } 2 \times \text{FOR } n \text{ \n} n \times \times \text{SIN } n \div +\]

2 STEP

STEQ DRAW

Explanation:

Clear the display and set the mode to radians.

Loop: do for \(n\) from 1 to 2\(N\).

Calculate \(\sin(n\times x)/n\).

Add the sine term.

Increment \(n\) by 2 and repeat until \(n > 2N\).

Store the equation and draw the function.

Key in the program.

```
« CLLCD RAD 0 1 ROT 2 \times FOR n n \times \times \text{SIN } n \div + 2 \text{ STEP} \text{ STEQ} \text{ DRAW} »
```

Store the program in the variable SQWV. (The graph is an approximation of a square wave.) Purge any existing variable named \(X\).

`SQWV \sto`

`X \purge`

Display the User menu and execute the program for 10 terms.

```
USER 10 \sqwv
```

Run the program again, this time for 5 terms.

```
ATTN 5 \sqwv
```
Example: Plot the function $y = 2\sin(x) + \cos(3x)$. If you have the HP 82240A printer, also print the graph.

Key in the function and store it in EQ.

```
'2xSIN(X)+COS(3xX)
```

Purge the plot parameters and plot the function.

```plaintext
'PPAR PURGE
```

Double the height and plot the function again.

```
ATTN
2
```

To print the graph on the printer, first key in the following program.

```
ATTN
« CLLCD DRAW PRLCD »
```

Store the program in the variable `PRPLT`.

```
'PRPLT STO
```

Execute the program `PRPLT` which draws the graph of the expression stored in EQ and then prints it.

```
USER PRPLT
```

Purge the variables used in this section.

```
{ 'SQWV' 'PPAR' 'EQ' 'PRPLT PURGE
```

64 Graphs of Trigonometric Functions
Inverse Trigonometric Functions

The inverse trigonometric functions arc sine, arc cosine, and arc tangent are built-in to the HP-28C. To calculate arc cosecant, arc secant, and arc cotangent of a number, simply take the inverse of the number and calculate the arc sine, arc cosine, or arc tangent, respectively.

Example: Find the principal values of

a. \(\arcsin(.5) \)

b. \(\arccos(-.95) \)

c. \(\arctan(-8.98) \)

d. \(\arccsc(-7.66) \)

e. \(\text{arcsec}(2) \)

f. \(\text{arccot}(2.75) \) in HMS format.

First set the angle mode to degrees and the display setting to FIX 5.

```
MODE  DEG   3:
      FIX   5
```

a. Compute \(\arcsin(.5) \) in HMS format.

```
.5 TRIG  ASIN
```

Since the angle is an integer, there is no need to convert to HMS format.

```
→HMS
```

b. Compute \(\arccos(-.95) \) in HMS format.

```
.95 CHS ACOS
```

```
→HMS
```
c. Compute arctan\((-8.98)\) in HMS format.

\[\text{ Compute arctan}(-8.98) \]

\[8.98 \text{ CHS ATAN} \]

\[\begin{array}{ll}
3: & 30.00000 \\
2: & 161.48185 \\
1: & -83.64580 \\
\end{array} \]

\[\text{SIN ASIN COS ACOS TAN ATAN} \]

\[\rightarrow \text{HMS} \]

\[\begin{array}{ll}
3: & 30.00000 \\
2: & 161.48185 \\
1: & -83.64580 \\
\end{array} \]

\[\text{HMS+ HMS* HMS- D*E R+D} \]

d. Compute arccsc\((-7.66)\). Note that \(\text{arccsc}(-7.66) = \text{arcsin}(-1/7.66)\).
Calculate the inverse of \(-7.66\).

\[\text{ Calculate the inverse of } -7.66 \]

\[7.66 \text{ CHS 1/x} \]

\[\begin{array}{ll}
3: & 161.48185 \\
2: & -83.38449 \\
1: & -7.58128 \\
\end{array} \]

\[\text{HMS+ HMS* HMS- D*E R+D} \]

\[\text{ Press } \text{ASIN} \text{ to find } \text{arccsc}(-7.66) = \text{arcsin}(-1/7.66). \]

\[\text{ ASIN} \]

\[\begin{array}{ll}
3: & 161.48185 \\
2: & -83.38449 \\
1: & -7.58128 \\
\end{array} \]

\[\text{SIN ASIN COS ACOS TAN ATAN} \]

\[\rightarrow \text{HMS} \]

\[\begin{array}{ll}
3: & 161.48185 \\
2: & -83.38449 \\
1: & -7.58128 \\
\end{array} \]

\[\text{HMS+ HMS* HMS- D*E R+D} \]

e. Compute arcsec\((2)\). First, find the inverse of \(2\).

\[\text{ Calculate the arccosine of the number since } \text{arcsec}(2) = \text{arccos}(1/2) \]

\[2 \text{ 1/x} \]

\[\begin{array}{ll}
3: & -83.38449 \\
2: & -7.33046 \\
1: & 0.50000 \\
\end{array} \]

\[\text{HMS+ HMS* HMS- D*E R+D} \]

\[\text{ ACOS} \]

\[\begin{array}{ll}
3: & -83.38449 \\
2: & -7.33046 \\
1: & 0.50000 \\
\end{array} \]

\[\text{SIN ASIN COS ACOS TAN ATAN} \]
Since the resulting angle is an integer, there is no need to convert it to HMS format.

f. Compute arccot(2.75) in HMS format.

\[2.75 \left(\frac{1}{x} \right) \]

```
2: 60.00000
1: 0.33334
```

Calculate the arctangent of the resulting number to find \(\text{arccot}(2.75) \).

```
\[ \text{ATAN} \]
```

```
2: 0.33334
1: 19.58592
```

Example: Evaluate \(\sin(\arccos(-0.9) - \arcsin(0.6)) \)

First, calculate \(\arccos(-0.9) \).

```
\[ \text{CLEAR} \]
\[ 0.9 \text{ CHS ACOS} \]
```

Next, calculate \(\arcsin(0.6) \).

```
\[ .6 \text{ ASIN} \]
```

Subtract \(\arcsin(0.6) \) from \(\arccos(-0.9) \).

```
\[ - \]
```

```
2: 117.28817
```

Calculate the sine of the resulting number.

```
\[ \text{SIN} \]
```

```
2: 0.88871
```
Trigonometric Equations

Solutions to trigonometric equations can be found by graphing the equation, by using the Solver, or both. This section demonstrates one way to solve a trigonometric equation.

Solve \(\cos^2(x) + \cos(3x) - 5\sin(x) = 0 \), \(0 \leq x \leq 2\pi \).

First, set the angle mode to radians and set the display to FIX 2.

[Image of calculator interface]

Key in the expression.

\[
\cos(x)^2 + \cos(3x) - 5\sin(x) = 0
\]

[Image of calculator interface]

Store the equation and display the Solver menu. The menu shows \(X \) as the only variable.

[Image of calculator interface]

Let 0 be an initial estimate for \(X \).

[Image of calculator interface]

Solve for \(X \).

[Image of calculator interface]

Try solving for \(X \) again with the number 3.14 as the initial estimate.

[Image of calculator interface]
Check your results by plotting the function.

\[\text{PLOT} \ '\text{PPAR} \ \text{PURGE} \]

Increase the height by 5 and draw the function again.

\[\text{ATTN} \ 5 \ \text{*H} \ \text{DRAW} \]

Between \(x = 0 \) and \(x = 6.28 \), the graph intersects the x-axis at approximately \(x = .3 \) and \(x = 3.1 \).

Purge the variables used in this example.

\(\{ \ 'X' 'EQ' 'PPAR \ \text{PURGE} \)
Complex Numbers

Complex numbers $x + iy$ can be represented in two ways, as an object or as an algebraic. A complex number object has the form (x, y). As an algebraic, the complex number is represented by `$x + iy$`, where x and y are real numbers and i is a constant equal to the complex number $(0,1)$. Calculations with complex numbers are easily solved on the HP-28C.

Example: Evaluate the following expression.

$$\frac{\sin(0.5 + 0.3i) + (3 - 4i)(2 + i)^{1/3}}{\ln(5 - 8i) - \text{arccosh}(2 + 9i)}.$$

First, set the display for FIX 4.

```
[CLEAR]  
[MODE] 4 FIX 
```

Calculate $\sin(0.5 + 0.3i)$.

```
(0.5, 0.3 [TRIG] SIN 
```

Key in the complex number $3 - 4i$.

```
(3, -4 ENTER 
```

Key in the complex number $2 + i$.

```
(2, 1 ENTER 
```

Take the inverse of the number 3.

```
3 1/x 
```
Calculate the third root of $2+i$.

$\sqrt[3]{2+i}$

Multiply the resulting complex number by $3-4i$.

x

Add the two numbers in levels 1 and 2. The sum is equal to the numerator.

$+$

Calculate the denominator by entering it in as an algebraic expression and then converting the expression into a number.

Example: Verify the following definition by showing that both sides of the equation are equal for the case $x = 3$ and $y = 4$.

$$\tan(x + iy) = \frac{\sin(x)\cos(x) + i*\sinh(y)\cosh(y)}{\sinh(y)^2 + \cos(x)^2}$$

Key in the algebraic expression.

```
'\tan(x+y*i)=(\sin(x)*\cos(x)+\sinh(y)*\cosh(x)+i*\sinh(y)*\cosh(x)*i)/(\sinh(y)^2+\cosh(x)^2)' 
```

Complex Numbers 71
Store the equation in the variable EQ and display the Solver menu.

Store the number 3 in the variable \(x \).

Store the number 4 in the variable \(y \).

Evaluate the left-hand side of the expression.

Convert this expression into a number.

Evaluate the right-hand side of the expression.

Convert this expression into a number to show that the right and left sides of the equation are equal.
Clear the stack and purge the following variables.

```
CLEAR
{ 'y' 'x' 'EQ PURGE

Example: Express the following complex numbers in polar notation.

a. $3 - 2\sqrt{3}i$

b. $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$

c. $3 + 4i$

First, set the angle mode to degrees.

```

a. Enter in the number 3.

3 [ENTER]

Enter in the number -2.

-2 [ENTER]

Take the square root of the number 3.

3 $\sqrt{}$

Multiply -2 by the square root of 3.

\times

Complex Numbers 73
Combine the two numbers in levels 1 and 2 into a complex number.

\[R = -\frac{1}{2} + \sqrt{3}i \]

\[C = \frac{\sqrt{3}}{2} - i \]

Convert the complex number in rectangular notation to polar notation.

\[R = 1, \theta = \frac{7\pi}{6} \]

b. Enter in the complex number \(-\frac{1}{2} + \sqrt{3}i\) as an algebraic expression.

Convert the expression into a number.

\[\text{NUM} \]

Convert the complex number from rectangular form to polar form.

\[R = 1, \theta = \frac{7\pi}{6} \]

c. Enter in the complex number \(3 + 4i\) in rectangular form and take the absolute value of it. The magnitude is returned.

\[\text{ABS} \]

Return (3,4) to the stack. (If LAST is disabled, you must re-enter (3,4)).

LAST

Press \[\text{ARG} \]. The polar angle is returned.

\[\text{ARG} \]
Combine the magnitude and the polar angle into a complex number.

\[R \rightarrow C \]

\[\begin{align*} 2 \quad & \quad \text{\texttt{<5.0000,53.1301>}} \\ \end{align*} \]

Complex Numbers 75
Rectangular Coordinates

This section illustrates how to solve various problems dealing with rectangular coordinates. The object \((x,y)\) represents either a complex number or the coordinates of a point; thus it is an acceptable argument to all of the arithmetic functions.

Example: Given triangle \(ABC\) with vertices \(A (x_1,y_1)=(-4,3)\), \(B (x_2,y_2)=(2,5)\), and \(C (x_3,y_3)=(-3,-1)\), find

a. the length of side \(AC\),
b. the coordinates of the midpoint of side \(AB\),
c. the slope of side \(BC\) and the inclination,
d. the area of triangle \(ABC\), and
e. the equivalent polar coordinates of the three points.

First, set the angle mode to degrees and the display to FIX 2.

Next, enter in the coordinates of the point \(A\) and store it in the variable \(A\).

\((-4,3)'A \text{ STO} \quad \text{USER}\)

Do the same for points \(B\) and \(C\).

\((2,5)'B \text{ STO} \quad \text{STO}\)
\((-3,-1)'C \text{ STO}\)

a. The length of side \(AC\) is \(\sqrt{(x_3-x_1)^2+(y_3-y_1)^2}\). The easiest way to find the length is to subtract \(A\) from \(C\) and calculate the absolute value of the difference. (The absolute value of the complex argument \((x,y)\) is \(\sqrt{x^2+y^2}\).)

Put \(C\) on the stack.
Put point 4 on the stack.

\[A \]

Subtract point 4 from point C.

\[- \]

Calculate the absolute value by pressing \[= \text{ABS} = \]. The resulting number is the length of side AC.

\[\text{REAL} = \text{ABS} = \]

b. The coordinates of the midpoint \(M (x, y) \) of side \(AB \) is \(x = (x_1 + x_2)/2 \) and \(y = (y_1 + y_2)/2 \). Thus

\[M (x, y) = ((x_1 + x_2)/2, (y_1 + y_2)/2) = (x_1 + x_2, y_1 + y_2)/2 = (A + B)/2. \]

Put the coordinates for point 4 on the stack.

\[\text{CLEAR} \]
\[\text{USER} = A \]

Put the coordinates for point B on the stack.

\[B \]

Add the two coordinates together. The sum is shown in level 1.

\[+ \]
Divide the sum by 2 to obtain the coordinates for the midpoint.

\[
\begin{align*}
&2 \quad \div \\
&\text{C} = (-1.080, 4.608) \\
\end{align*}
\]

c. The slope \(m \) of line \(BC \) is \(m = (y_3 - y_2)/(x_3 - x_2) \). The slope is also equal to \(\tan(\theta) \) where \(\theta \) is the inclination. To calculate the slope, subtract \(B \) from \(C \), separate the result, swap the order, and divide the two numbers.

First, put the coordinates for \(C \) on the stack.

\[
\begin{align*}
\text{CLEAR} \\
\text{C} \\
\end{align*}
\]

Put the coordinates for \(B \) on the stack.

\[
\begin{align*}
\text{B} \\
\end{align*}
\]

Calculate \(C - B \).

\[
\begin{align*}
\text{C} - \text{B} \\
\end{align*}
\]

Separate the coordinates.

\[
\begin{align*}
\text{CMPLX} \quad \text{C} \rightarrow \text{R} \\
\end{align*}
\]

Swap the order of the \(x \) and \(y \) coordinates.

\[
\begin{align*}
\text{SWAP} \\
\end{align*}
\]
Calculate the slope by dividing the y coordinate in level 2 by the x coordinate in level 1.

\[\frac{\text{level 2}}{\text{level 1}} = 3 : 2 \]

The slope is equal to 1.20.

Compute the inclination by taking the arctangent of the slope.

\[\text{ATAN} \]

\[\frac{1}{\text{level 2}} = 50.19 \]

\(\text{d.}\) The area of the triangle formed by the three points is the absolute value of the following:

\[
\begin{vmatrix}
 x_1 & y_1 & 1 \\
 1/2 & x_2 & y_2 & 1 \\
 x_3 & y_3 & 1
\end{vmatrix}
\]

To put the three points in a matrix, you first have to separate the coordinates and then put the number 1 on the stack for each of the three points.

Separate the coordinates of point \(A\).

\(\text{CLEAR}\)

\[\text{A C-R} \]

Complete row 1 of the matrix.

\[1 \text{ ENTER} \]

Separate the coordinates of point \(B\) and complete row 2 of the matrix.

\[\text{B C-R} \]

\[1 \text{ ENTER} \]
Separate the coordinates of C and complete row 3 of the matrix.

$$
\begin{array}{c}
1 & \text{ENTER} \\
\end{array}
$$

Put the nine numbers into a three-by-three matrix.

$$\begin{align*}
\{ & 3, 3 \\
\end{align*}
$$

Compute the determinant of the matrix.

$$
\begin{align*}
\text{DET} \\
\end{align*}
$$

Divide the determinant by 2 and take the absolute value of the result. The area of the triangle is returned to level 1.

$$
\begin{align*}
2 \div \\
\text{ABS} \\
\end{align*}
$$

e. To convert the points from rectangular to polar form, simply key in the variable name and press \(\text{R→P} \).

Key in the variable name A and convert point A to polar form.

$$
\begin{align*}
\text{CLEAR} \\
\text{A} \text{ TRIG} \text{ R→P} \\
\end{align*}
$$

Key in the variable B and convert the point to polar form.

$$
\begin{align*}
\text{B} \text{ R→P} \\
\end{align*}
$$

Do the same for point C.

$$
\begin{align*}
\text{C} \text{ R→P} \\
\end{align*}
$$
Purge the three variables used in this example.

{ C B A }
Polar Coordinates

A point in a plane can be represented in rectangular notation or polar notation. To draw a point that is described in polar notation on the HP-28C, first convert it to rectangular form and then plot it. To draw the graph of a polar equation, you can either write a program to do so or convert the polar equation to rectangular form.

Example: Convert the following polar coordinates (whose angles are expressed in degrees) to rectangular coordinates and then plot the points.

\[A (4, -15) \quad B (-4, 380) \quad C (-2, 570) \quad D (2, -195) \]

Converting polar coordinates is easily accomplished by executing the Polar-to-Rectangular function \(P \rightarrow R \). One way to plot the four points is to put the four points on the stack and use the PIXEL command four times, but be sure to clear the display first by pressing \(\text{CLRCD} \). You may also wish to draw the axes by executing the DRAX command. Another way to plot the points is to separate the coordinates, put them in a four-by-two matrix, and then use the statistical scatter plot commands \(\text{STOX} \) and \(\text{DRWZL} \).

To illustrate the first approach, set the angle mode to degrees and set the display to \(\text{FIX} 2 \).

\[
\begin{array}{c}
\text{CLEAR} \\
\text{MODE} \quad \text{DEG} \\
2 \quad \text{FIX}
\end{array}
\]

Key in point \(A \) and convert it to rectangular coordinates.

\[
(4, -15) \quad \text{TRIG} \quad P \rightarrow R
\]

Enter in the coordinates for point \(B \) and convert it to rectangular form.

\[
(-4, 380) \quad P \rightarrow R
\]
Do the same for points C and D.

$$(-2, 570) \quad \rightarrow \quad P \rightarrow R$$

$$\begin{array}{c}
1: \quad (1.73, 1.00) \\
2: \quad (-3.76, -1.37) \\
3: \quad (3.86, -1.04)
\end{array} \quad \text{P}, R \rightarrow \text{P}, \text{R}$$

$$(-2, -195) \quad \rightarrow \quad P \rightarrow R$$

$$\begin{array}{c}
1: \quad (-1.93, 0.52) \\
2: \quad (1.73, 1.00) \\
3: \quad (-3.76, -1.37)
\end{array} \quad \text{P}, R \rightarrow \text{P}, \text{R}$$

The rectangular form of the four points are $A (3.86, -1.04)$, $B (-3.76, -1.37)$, $C (1.73, 1.00)$, and $D (-1.93, 0.52)$.

Clear the plot parameters, clear the display and draw the axes. Note the soft key labeled \square will execute DRAX after pressing CLLCD.

Draw points D (which is in level 1 of the stack) by executing the PIXEL command. (Press the soft key labeled $\hat{1}$)

Draw points C, B, and A by executing the PIXEL command three more times.

Press ATTN to exit from the plot display; then purge the variable PPAR.
Example: Sketch the rose \(r = 2\sin (\theta) \) for \(0 < \theta < 360 \).

The following program draws the graph of a polar equation. The program assumes that the equation is in the form \(r = f (\theta) \), where \(f (\theta) \) is an expression with \(\theta \) as the unknown variable. The input to the program is the expression \(f (\theta) \).

Program Listing:

```
"EXPRESSION?"
HALT

→ r

« DROP
DEG
CLLCD
0 360 FOR I
I 'theta' STO
r EVAL
theta
R→C
P→R
PIXEL
3 STEP
{ PPAR theta }
PURGE
```

Explanation:

Prompt message.
Program stops
(you key in the expression).
Store the expression
in the local variable \(r \).
Drop the prompt message.
Set the angle mode to degrees.
Clear the display.
Loop: do for \(I \) from 0 to 360.
Store the current \(I \)
in the variable \(\theta \).
Evaluate the expression for \(r \).
Put \(\theta \) on the stack.
Combine \(r \) and \(\theta \).
Convert \((r, \theta)\)
to rectangular form.
Draw the point.
Increment \(I \) by 3 and
repeat until \(I > 360 \).
Purge the plot parameters
and \(\theta \).

Key in the program.

```
< "EXPRESSION?" HALT
→ r « DROP DEG CLLCD
0 360 FOR I I 'theta'
STO r EVAL theta R→C
P→R PIXEL 3 STEP { PPAR
theta } PURGE » »
```
Store the program in the variable PEPLT (for "polar equation plot").

'PEPLT STO

Display the User menu and execute the program.

USER PEPLT

Key in the expression '2x\(\sin(2\theta)\)' and press CONT.

'2x\(\sin(2\theta)\) CONT

If you don't want to save the program, then purge 'PEPLT'.

ATTN 'PEPLT' PURGE

Example: Transform \(r(1 - \sin(\theta)) = 2\) into its rectangular form, substituting \(x^2 + y^2\) for \(r^2\) and \(y\) for \(r\sin(\theta)\).

Key in the equation. Let the angle be called 'th'.

TRIG

'r(1-\sin(th))=2 ENTER

Display the Algebra menu. Expand the equation to get \(r - r\sin(\theta) = 2\).

ALGEBRA EXPAN

Add \(r\sin(\theta)\) to both sides of the equation. To do this, press the ENTER key to duplicate the expanded equation.
Next, enter the number 6 and press \(* \text{EXGET} \). The subexpression \(r \sin(\theta) \) is returned.

\[
\begin{align*}
6 & \quad \text{\texttt{\textasciicircum \text{EXGET}}} \\
\end{align*}
\]

Then, add this subexpression to the expression in level 2.

\[
\begin{align*}
\text{+} \\
\end{align*}
\]

Simplify the expression.

\[
\begin{align*}
\text{\texttt{\textasciicircum \text{COLCT}}} \\
\end{align*}
\]

Square both sides of the equation. The equation \(r^2 = (2 + r \sin(\theta))^2 \) is returned to level 1.

\[
\begin{align*}
\text{\texttt{x^2}} \\
\end{align*}
\]

Now you can substitute \(x^2 + y^2 \) for \(r^2 \) and \(y \) for \(r \sin(\theta) \). The Expression Substitute command \texttt{EXSUB} can accomplish this task.

Since \(\texttt{SQ(r)} \) is in the first position of the equation, put the number 1 on the stack.

\[
\begin{align*}
1 & \quad \text{\texttt{ENTER}} \\
\end{align*}
\]

Enter in \('x^2+y^2' \) and press \(* \text{EXSUB} \).

\[
\begin{align*}
'x^2+y^2' & \quad \text{\texttt{\textasciicircum \text{EXSUB}}} \\
\end{align*}
\]
The subexpression 'SIN(th)*r' is in the fourteenth position, therefore key in the number 14.

14 ENTER

Substitute 'Y' for 'SIN(th)*r'.

'Y EXSUB

To simplify this equation, subtract 'SQ(2+Y)' from both sides of the equation, expand the equation, and then collect terms.

First, duplicate the equation by pressing the ENTER key.

ENTER

Enter the number 9 and press EXGET. The subexpression 'SQ(2+Y)' is returned to level 1.

9 EXGET

Subtract 'SQ(2+Y)' from both sides of the equation.

-

Expand the equation.

EXPAN

Simplify the equation by collecting terms.

COLCT
Collect terms.

\['-4+X^2-4*Y=0' \]

The final result is the equation of a parabola.
The Straight Line

This section includes some basic analytic geometry problems for the straight line and methods to solve them on the HP-28C.

Example: Given the line passing through points $A (8, -10)$ and $B (-10, 26)$, find

a. the y-intercept and slope of the line, and
b. the corresponding value for y, given $x = -4$.

First, set the display to FIX 2.

The solutions to this example can all be found by using the commands in the Statistics menu. Since statistical data points are entered in as arrays, use brackets around the coordinates instead of parentheses.

Key in point A and press $\Sigma+$. The matrix SDAT is created with point A as the first entry in the matrix.

Add point B to the matrix.

a. Find the y-intercept and the slope by executing the Linear Regression function LR. The y-intercept is returned to level 2 and the slope to level 1.
b. To find the corresponding value for \(y \) given \(x = -4 \), enter in the number
-4 and compute the predicted value. The value for \(y \) is returned to level 1.

\[
\begin{array}{c|c}
\text{level} & \text{value} \\
\hline
3: & 6.80 \\
2: & -2.88 \\
1: & 14.00 \\
\end{array}
\]

Clear the display and purge the variables that were created in this example.

\[
\text{CLEAR} \quad \{ \text{SPAR} \, \text{ΣDAT} \} \quad \text{PURGE}
\]

Example: Given the vertices \(D(-4,3) \), \(E(2,5) \), and \(F(-3,-1) \) of triangle \(DEF \), find

a. the equation of lines \(DE \) and \(DF \) in the normal form and

b. the equation of the bisector of angle \(D \).

a. Given two points \((x_1,y_1)\) and \((x_2,y_2)\), the normal form of the equation of the line connecting the two points is
\[
s^* \left(4x + By + C \right) / (\sqrt{A^2+B^2}) = 0,
\]
where
\[
s = \{-1 \text{ or } 1\}, \quad A = y_1 - y_2, \quad B = x_2 - x_1, \quad \text{and} \quad C = x_1 y_2 - x_2 y_1.
\]

If \(C > 0 \), then \(s = -1 \).
If \(C < 0 \), then \(s = 1 \).
If \(C = 0 \) and \(B \) is non-zero, then the sign of \(s \) agrees with the sign of \(B \).
If \(C = B = 0 \), then the sign of \(s \) agrees with the sign of \(A \).

First, store \('Y1-Y2' \) in the variable \(A \).

\['Y1-Y2' 'A \quad \text{STO} \quad \text{USER} \]

Store \('X2-X1' \) in the variable \(B \).

\['X2-X1' 'B \quad \text{STO} \]

Store \('X1\times Y2-X2\times Y1' \) in the variable \(C \).

\['X1\times Y2-X2\times Y1' 'C \quad \text{STO} \]
Key in the normal form of the equation.

\[Sx (AxX + BxY + C) / \sqrt{(A^2 + B^2)} \]

Store the equation in the variable EQ and display the Solver menu. A menu of the variables is shown in the display.

Find the equation for line \(DE \). Let point \(D \) be the first point and \(E \) be the second. First, enter the coordinate \(-4\) and press the \(X_1 \) soft key.

Enter in the number \(3 \) and store it in \(Y_1 \).

Enter in a \(2 \) and store it in \(X_2 \).

Enter in a \(5 \) and store it in the variable \(Y_2 \).

Determine the sign of the variable \(S \).

The Straight Line 91
Evaluate C.

\[\text{EVAL}\]

\[\begin{array}{c|c|c|c|c|c|c}
3: & 1: & -26.00 \\
S & Y1 & Y2 & X & X2 & X1 \\
\end{array}\]

The value of C is returned to level 1 and it is negative. Drop the value of C from the stack.

\[\text{DROP}\]

\[\begin{array}{c|c|c|c|c|c|c}
3: & 1: & & & & \\
S & Y1 & Y2 & X & X2 & X1 \\
\end{array}\]

Since C is negative, S is equal to 1. Enter the number 1 into the variable S.

\[\begin{array}{c}
1 \quad S \\
\end{array}\]

Display the resulting expression.

\[\text{EXPR=}\]

\[\begin{array}{c}
\frac{y + (x1 + y2 - x2 + y1)}{y1 - y2 + 2 + (x2 - x1)^2} \\
\end{array}\]

Evaluate the expression by pressing \[\text{EVAL}\]. The left side of the normal form of the equation of line DE is returned to level 1. (The right side is equal to zero.)

\[\text{EVAL}\]

\[\begin{array}{c}
\frac{-(2x + 6y - 26)}{6.32} \\
\end{array}\]

Now find the equation for line DF.

Store the coordinate -3 in the variable $X2$.

\[\begin{array}{c}
-3 \quad X2 \\
\end{array}\]
Store the coordinate -1 in the variable $Y2$.

\[-1 \in Y2\]

Press C followed by the ENTER key.

C ENTER

Evaluate C.

EVAL

Since $C > 0$, then $S = -1$. Enter in -1 and press S.

\[-1 \in S\]

Display the resulting expression.

$\texttt{EXPR=}$

Evaluate the expression to obtain the normal form of the equation of line DF. This is also only the left side of the equation; the right side is equal to zero.

\texttt{EVAL}
b. To find the equation of the bisector of angle D simply equate the two expressions in levels 1 and 2 and simplify. To simplify this process even more, subtract the two expressions and equate the difference to zero.

Key in the number 0 and set the expression in level 2 equal to the number in level 1.

Expand the equation.

Expand it again.

Simplify the equation by collecting terms. The final result is the equation of the bisector of angle D.

Purge the variables used in this example.
The Circle

Finding the points of intersection of two equations is a common problem in analytic geometry. In this section you'll work through the steps to find the points of intersection of two circles.

Example: Given two circles $x^2 + y^2 - 5 = 0$ and $(x + 2)^2 + (y - 1)^2 - 20 = 0$, find the point(s) of intersection, if any exists.

First, set the display to FIX 2.

Key in the expression for the second circle as shown below and simplify it by expansion and collection of terms.

$'(X+2)^2 + (Y-1)^2 - 20'$

Expand again.

Simplify the expression by collecting terms.

Key in the expression for the first circle as shown below and press [ENTER].

'$X^2 + Y^2 - 5$ [ENTER]
Find the equation for the radical axis by subtracting the expression in level 1 from the expression in level 2.

\[-15+X^2+Y^2+4X-2Y = (X^2+Y^2-5)\]

Expand the expression.

\[-15+X^2+Y^2+4X-2Y = (X^2+Y^2-5)\]

Simplify the expression by collecting terms. The result is the left side of the equation for the radical axis. (The right side is equal to zero.)

To find the point(s) where the two circles intersect, simultaneously solve the equation for the radical axis and either one of the equations for the circles. In this example, take the equation for the radical axis and solve for the variable \(Y\). Then substitute the resulting expression for \(Y\) in the equation for the first circle. This gives an equation with one unknown, namely, \(X\). Solve for \(X\) and then find the corresponding value(s) for \(Y\).

Solve for the variable \(Y\).

\[\begin{align*}
\text{Y} & = \text{ISOL} \\
\text{Y} & = \text{STO}
\end{align*}\]

Key in the equation for the first circle. Then use the command SHOW to substitute the expression stored in \(Y\) into the equation of the circle. The resulting equation is a function of one variable, \(X\).

\[\begin{align*}
X^2+Y^2-5 & = 0 \\
X & = \text{SHOW}
\end{align*}\]
Since the equation in level 1 is a quadratic, use the QUAD command to find the value(s) of X.

$'X'$ QUAD

The single number $X = 2$ is returned to level 1, thus the circles intersect in one point. If there were two values of X, then the circles intersect in two points. A complex value of X means there are no intersection points.

Now use the Solver to find the corresponding value of Y. First, put the expression stored in the variable Y on the stack.

$'Y'$ RCL

Store this expression in the variable EQ and display the Solver menu.

SOLVE STEQ SOLVER

Store the value that you just found in the variable X.

X

Press $\text{EXPR}=\text{ }$ to get the corresponding value of Y.

$\text{EXPR}=\text{ }$

Thus the circles intersect at the point $(2, -1)$.

Purge the variables that were created in this example.

$\{ 'X' 'EQ' 'Y' \}$ PURGE
The Parabola

This section describes how to plot the graph of a parabola. Vertical parabolas are plotted as you would expect — solve for y, store the expression, and draw with the DRAW key. If you attempt to draw a horizontal parabola in the same manner, an error would result. This section demonstrates a program to draw a horizontal parabola.

Example: Plot the graph of $x^2 = 4(y + 1)$.

First, set the display to FIX 2.

```
CLEAR
MODE 2 FIX
```

The semi-reduced form of the equation of a vertical parabola is $(x - h)^2 = 4p(y - k)$, where (h, k) is the vertex, $x = h$ is the axis, $(h, k + p)$ is the focus, and $y = k - p$ is the directrix. In this example, $h = 0$, $k = -1$, and $p = 1$. Therefore, the vertex is $V(0, -1)$; the axis is $x = 0$; the focus is $F(0, 0)$; and the directrix is $y = -2$.

Key in the equation for the parabola.

```
'X^2=4*Y+1)
```

Isolate the variable Y.

```
Y ALGEBRA ISOL
```

Store the expression for Y in the variable EQ.

```
PLOT STEQ
```
Draw the graph of the parabola.

Purge the variables created in this example.

Example: Plot the graph of the horizontal parabola \(y^2 = -4(x - 1) \).

The general equation of a horizontal parabola is \((y - k)^2 = 4p(x - h)\). The vertex is \((h,k)\); the axis is \(y = k\); the focus is \((h + p,k)\); and the directrix is \(x = h - p\). Therefore, in this case, \(h, k,\) and \(p\) are equal to 1, 0, and -1, respectively. The vertex is \(V(1,0)\); the axis is \(y = 0\); the focus is at \((0,0)\); and the directrix is \(x = 2\).

The following program plots a horizontal parabola. The program expects three numbers to be entered onto the stack as inputs into the program – the values of \(h, k,\) and \(p\). (A prompt message is displayed requesting you to enter the numbers.) Given these three numbers, the program draws the graph of the parabola with the vertex at the center of the display and each tic mark on the axes represents 10 units.

Program Listing:

```
"ENTER h,k,p"
HALT

→ h k p «
DROP
CLLCD
10 *H 10 *W
h k R→C CENTR
DRAX
'(y-k)^2=4px(x-h)'
'X' ISOL
'X' STO
k 20 - k 20 + FOR I
I 'Y' STO
X EVAL Y R→C
PIXEL
```

Explanation:

Prompt message.
Program halts
(you key in 3 numbers).
Store the 3 numbers in \(h,k,\) and \(p\).
Drop the prompt message.
Clear the display.
Multiply the height and width by 10.
The center of the display is \((h,k)\).
Draw the axes.
Equation for a horizontal parabola.
Isolate \(X\) in the above equation.
Store the expression in the variable \(X\).
Loop: do for \(I\) from \(k -20\) to \(k + 20\).
Store the current \(I\) in variable \(Y\).
Evaluate \(X\) and form point \((X,Y)\).
Draw point \((X,Y)\).
Key in the program as shown below.

```
1: « "ENTER h, k, p" HALT
   → h k p « DROP CLLCD
   10 *H 10 *W h k R→C
   CENTR DRAX (Y-k)^2 =
   4*p*(X-h) 'X' ISOL
   'X' STO k 20 - k 20 +
   FOR I I 'Y' STO X EVAL
   Y R→C PIXEL 1 STEP
   { X Y PPAR } PURGE » »
```

Store the program in variable HPAR (for 'horizontal parabola').

'HPAR' [STO]

Display the User menu and execute the program.

Enter in the values for h, k, and p. Continue running the program by pressing [CONT]. The graph of the parabola is drawn.

1, 0, -1 [CONT]

Press [ATTN] to exit from the plot display.
Example: Plot the graph of \((y + 10)^2 = 12(x + 35)\).

This is the equation of a horizontal parabola with the vertex at \(V(h,k) = (-35,-10)\) and \(p=3\). Run the program HPAR.

```
HPAR
```

Key in the value of \(h\).

\(-35\) ENTER

Key in the value of \(k\).

\(-10\) ENTER

Key in the value for \(p\) and continue running the program. The graph of the parabola is drawn.

3 CONT

To purge the program HPAR, do the following.

'HPAR PURGE
Example: Horizontal Parabolas Using DRAW.

The program below is an alternate approach from the point-by-point function plot in program HPAR. This program takes h, k, and p from the stack and creates an EQ representing the upper and lower halves of the parabola and uses the DRAW command to create the plot. Note for $y^2(x) < 0$, the DRAW routine produces a line intersecting the curve at the vertex.

Key in the following program.

```
« 'X' PURGE
→ h k p «
'2 × √((X-h)×p)'
EVAL DUP NEG = k + RE
STEQ CLLCD DRAW
```

Store the program by the name HPAR2 and purge the current plot parameters.

```
'HPAR2' STO
'PPAR' PURGE
```

Execute the program for the previous horizontal parabola.

```
1,0,-1 USER HPAR2
```

Purge program HPAR2 if you wish.

```
'HPAR2' PURGE
```
The Ellipse and Hyperbola

This section describes the procedure for drawing the graphs of ellipses and hyperbolas.

Example: Plot the graph of the following ellipse.

\[
\frac{(x + 2)^2}{9} + \frac{(y - 1)^2}{4} = 1
\]

The general equation of an ellipse is

\[
\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1
\]

The center is at the point \((h,k)\). If \(a > b\), then the major axis is parallel to the x-axis. The vertices are at points \((h \pm a, k)\); the foci are at points \((h \pm c, k)\), where \(c = \sqrt{a^2 - b^2}\); and the ends of the minor axis are at points \((h, k \pm b)\). If \(b > a\), then the major axis is parallel to the y-axis; the vertices are at points \((h, k \pm b)\); the foci are at points \((h, k \pm c)\); and the ends of the minor axis are at points \((h \pm a, k)\).

For this example, \(h = -2, k = 1, a = 3, b = 2, c = 2.24\), and the major axis is parallel to the x-axis. The center is at \((3,2)\); the vertices are at points \((1,1)\) and \((-5,1)\); the foci are at \((0.24,1)\) and \((-4.24,1)\); and the ends of the minor axis are at points \((-2,3)\) and \((-2,-1)\).

The following program draws the graph of an ellipse. After a prompt message is displayed, the program expects the values of \(h, k, a,\) and \(b\) to be entered onto the stack. The graph of the ellipse is drawn with its center in the center of the display. Each tic mark on the axes represents two units.

Program Listing:

```
"ENTER h,k,a,b"
HALT
→ h k a b
DROP
CLLCD
2 *H 2 *W
h k R→C CENTR
DRAX
'(X-h)^2/a^2 +'
```

Explanation:

Prompt message.
Program halts
(you enter in the 4 values).
Values are stored in \(h,k,a\) and \(b\).
Drop the prompt message.
Clear the display.
Multiply the height and width by 2.
The center of the display is \((h,k)\).
Draw the axes.
The general equation
\[(Y-k)^2/b^2=1\]

'Y' ISOL

'Y' STO

-1 1 FOR J

J 's1' STO

h a - h a + FOR I

I 'X' STO

X Y EVAL R→C

PIXEL

.2 STEP

2 STEP

{ PPAR X Y s1 }

PURGE

Isolate \(Y\) from the equation.

Store the expression in the variable \(Y\).

Loop1: do for \(J\) from \(-1\) to \(1\).

Store the current \(J\) in variable \(s1\).

Loop2: do for \(I\) from \(h-a\) to \(h+a\).

Store the current \(I\) in variable \(X\).

Form the point \((X,Y)\).

Plot the point \((X,Y)\).

Increment \(I\) by .2 and repeat until \(I>h+a\).

Increment \(J\) by 2 and repeat loop1.

Purge the variables created by this program.

Key in the program as shown below.

\[
\begin{align*}
\text{« "ENTER h,k,a,b" HALT} \\
\to h k a b \leftarrow \text{DROP} \\
\text{CLLCD 2 *H 2 *W h k} \\
\text{R→C CENTR DRAX} \\
'(X-h)*2/a^2+(Y-k)*2/b^2=1' \ 'Y' \ ISOL \ 'Y' \ STO \\
-1 1 \text{FOR J} \ 's1' \ STO \\
h a - h a + \text{FOR I I 'X'} \ STO \\
X Y EVAL R→C PIXEL \\
.2 \text{STEP} \ 2 \text{STEP} \ \{ \text{PPAR X Y s1} \} \ \text{PURGE » »}
\end{align*}
\]

Store the program in the variable 'ELLIPSE'.

'ELLIPSE' STO

Display the User menu and run the program. The prompt message is returned to level 1.
Enter in the value for h.

-2 ENTER

Key in the value for k.

1 ENTER

Enter in the value for a.

3 ENTER

Enter in the value for b and press [CONT] to continue running the program. The graph of the ellipse is drawn.

2 [CONT]

Press [ATTN] to exit from the plot display and, if desired, purge the program.

[ATTN] 'ELLIPSE PURGE

Example: Plot the graph of the vertical hyperbola

$$\frac{(y+1)^2}{4} - \frac{(x-4)^2}{2} = 1$$

The graph of the vertical hyperbola can be drawn by first isolating the variable y. Since y is a squared term, the result of isolating y is an expression representing the two solutions. One solution represents the top half of the hyperbola and the other solution represents the lower half. Use the Solver to find the two solutions. After the two expressions for y are found, set them equal to each other and draw their graphs. (This technique is used to draw two functions simultaneously).
Enter in the equation as shown below.

\[(Y + 1)^2 + 4 - (X - 4)^2 / 2 = 1\]

Isolate the variable Y. The result is an expression representing two solutions. The variable \(s1\) can be either +1 or -1.

'Y [SOLV] [ISOL]

Store the expression for Y in the variable EQ and display the Solver menu.

STEQ
SOLVR

Store the number 1 in the variable \(s1\).

1 [S1]

Press [EXPR=].

Store the number -1 in the variable \(s1\).

-1 [S1]

Press [EXPR=].
Set the expression in level 2 equal to the one in level 1.

\[
1: \sqrt{(1+(x-4)^2/2)^2-1} - \sqrt{(1+(x-4)^2/2)^2}
\]

Store this equation in the variable EQ and plot the graph of the hyperbola.

\[
\text{PLOT \ STEQ \ DRAW}
\]

Press \text{ATTN} to exit from the plot display and multiply the height by 10.

\[
\text{ATTN \ 10 \ \ast H}
\]

Multiply the width by 10.

\[
10 \ \ast W
\]

Draw the graph again. Each tic mark represents 10 units.

\[
\text{DRAW}
\]

Press \text{ATTN} and purge the variables used in this example.

\[
\{ \text{PPAR}'s1'EQ' \ \text{PURGE}
\]

The Ellipse and Hyperbola
Example: Plot the graph of the horizontal hyperbola

\[
\frac{(x - 4)^2}{4} - \frac{(y + 1)^2}{2} = 1
\]

The general equation of a hyperbola is \((x - h)^2/a^2 - (y - k)^2/b^2 = 1\).
For this example \(h = 4, k = -1, a = 2, \) and \(b = \sqrt{2}\).

A combination of the program to draw a horizontal parabola and the program to draw an ellipse can be used to draw the horizontal hyperbola. (A listing and explanation is not given here. Refer to the section entitled "The Parabola" for an explanation of specific program steps.)

Key in the program as shown below.

```
« "ENTER h, k, a, b" HALT
→ h k a b « DROP
CLLCD 2 *H 2 *W h k
R→C CENTR DRAX
'(X-h)^2+a^2-(Y-k)^2+b^2=1' 'X' ISOL 'X' STO
-1 1 FOR J J 's1' STO
k 4 - k 4 + FOR I I 'Y' STO
X EVAL Y R→C PIXEL
.2 STEP 2 STEP { X Y s1
PPAR } PURGE » »
```

Store the program in the variable HHYPERBOLA (for 'horizontal hyperbola').

'HHYPERBOLA' STO

Display the User menu and execute the program. A prompt message is displayed requesting you to enter in the values for \(h, k, a, \) and \(b\).
Enter in the value for h.

4 ENTER

Enter in the value for k.

-1 ENTER

Key in the value for a.

2 ENTER

Calculate the value of b by entering in the number 2 and taking the square root of it. Press [CONT] to continue running the program. The graph of the horizontal hyperbola is drawn.

2 [√] [CONT]

If desired, purge the program.

USER 'HHYPERBOLA PURGE
Example: Plotting the General Form of the Equation.

As an alternative to point-by-point plotting of the functions, the DRAW command can be used by separating the ellipse and hyperbola equations into upper and lower halves. The following programs take $h, k, a, \text{ and } b$ from the stack and produce an EQ representing the ellipse and hyperbola equations. The two halves are then drawn in parallel. The program HHYP and MELL will draw horizontal lines at points where $y^2(x) < 0$.

Key in the programs below.

The first program’s parameters specify a vertical hyperbola.

```
« -1 1 MCON ENTER 'VHYP STO
```

The second program’s parameters specify a horizontal hyperbola.

```
« 1 -1 MCON ENTER 'HHYP STO
```

An ellipse has both squared terms positive, and thus parameters 1,1.

```
« 1 1 MCON ENTER 'MELL STO
```

The last program implements the general form of the equation for an ellipse and hyperbola, with parameters input from programs VHYP, HHYP and MELL.

```
« {X Y s1} PURGE → h k a b sx sy « 'sx×SQ((X-h)/a)+ sy×SQ((Y-k)/b)=1' EVAL 'Y' ISOL DUP 1 's1' STO EVAL SWAP 's1' SNEG EVAL = RE STEQ CLLCD DRAW 's1' PURGE » » 'MCON STO
```
Now try the previous examples from this section. Purge any plot parameters that have been specified.

\[
\begin{align*}
\text{'PPAR } & \text{PURGE} \\
& -2, 1, 3, 2 \text{ ENTER} \\
\text{USER } & \text{MELL }
\end{align*}
\]

Note the difference in the centering of the ellipse from the previous program in the section.

Now draw the vertical hyperbola.

\[
\begin{align*}
\text{ATTN} \\
4, -1, 2, '\sqrt{2} \text{ ENTER} \\
\text{VHYP }
\end{align*}
\]

The horizontal hyperbola has the same parameters as the preceding graph.

\[
\begin{align*}
\text{ATTN} \\
4, -1, 2, '\sqrt{2} \text{ ENTER} \\
\text{HHYP }
\end{align*}
\]

Purge the programs above if desired.

\[
\{ 'VHYP' 'HHYP' 'MELL' 'MCON' \text{ PURGE} \}
\]
Parametric Equations

Typical parametric equation problems include plotting the graph described by the equations and describing the path of a projectile. Examples of these two problems are included in this section.

Example: Make a table of values and plot the points for
\[x = 2 - 3 \cos(t) \] and \[y = 4 + 2 \sin(t) \], \(0 \leq t \leq 360 \).

First, set the angle mode to degrees.

The following program creates a table of values and plots the points. The program assumes the expression for the \(x \) coordinate is stored in variable \(X \) and the expression for the \(y \) coordinate stored in the variable \(Y \). The program also assumes that the variable for time is capital \(T \). The inputs to the program are the range (the low and high values) and the increment of \(T \).

Program Listing:

```
"LO,HI,INC?"
HALT

→ lo hi inc
« DROP
lo hi FOR I
I 'T' STO
TX EVAL Y EVAL
{3} →ARRY
Σ+
inc STEP

CLLCD
2 3 COLΣ
SCLΣ DRWS

{T ΣPAR PPAR}
PURGE
```

Explanation:

Prompt message.

Program halts

(you enter in the 3 inputs).

Inputs are stored in the respective variables.

Drop the prompt message.

Loop: do for I from lo to hi.

Store the current I in the variable \(T \).

Take \(T, X, \) and \(Y \) and put them in a vector.

Add the vector to the ΣDAT matrix.

Increment I by the value inc and repeat loop.

Clear the display.

Denote which columns to plot.

Scale the coordinates and draw the points.

Purge the variables created by the program.
Key in the program as shown below.

```
« "LO,HI,INC?" HALT
  → lo hi inc « DROP
  lo hi FOR I I 'T'
  STO T X EVAL Y EVAL
{3} →ARRY Σ+
  inc STEP CLLLCD
  2 3 COLΣ SCIΣ
  DRWE { T ΣPAR
  PPAR } PURGE » »
```

Enter in the expression for the x coordinate and store it in the variable X.

```
'2-3x COS (T) ' 'X STO
```

Enter in the expression for the y coordinate and store it in the variable Y.

```
'4+2x SIN (T) ' 'Y STO
```

Display the User menu and execute the program. The prompt message is returned to level 1.

```
USER PARE
```

Enter in the low value of T.

```
0 ENTER
```
Enter in the high value of T.

360 ENTER

Let the value for the increment be 20. Continue running the program.

20 CONT

The graph of the parametric equations is plotted. Press [ATTN] to exit from the plot display. The table of values is stored in ΣDAT. T is in column 1; X is in column 2; and Y is in column 3. You can see the first few entries to the matrix by pressing the soft key labeled ΣDAT. To see the individual entries, use the GETI command.

Purge the variables used in this example.

{ 'ΣDAT' 'Y' 'X' 'PAREQ' } PURGE

Example: An archer stands 200 meters from a target. (The target is at the same height as the archer.) The archer shoots the arrow at an initial velocity of 170 miles per hour. At what angle should the archer aim the arrow in order to hit the target?

First, set the angle mode to degrees and the display to FIX 2.

The parametric equations for the path of a projectile moving in a plane at time t with the origin as the starting point are

$$x = v_i t \cos(\alpha) \quad \text{and} \quad y = v_i t \sin(\alpha) - \frac{1}{2} gt^2$$

where v_i is the initial velocity, α is the angle from the horizontal at which the projectile starts, and g is the force due to gravity. (All other forces are assumed negligible.)

When the arrow hits the target, the height y is zero and the range x is 200 meters. The initial velocity is $v_i = 170$ mph. Thus there are two equations in two unknowns (the angle and time). To find the angle, first isolate t in
the first parametric equation. The result is an expression for t. Substitute
the expression in the second parametric equation. Now you have one
equation in one unknown. Use the Solver to find the angle.

Key in the first parametric equation and isolate T.

\[X = V_x T \cos(A) \quad T \]

Store the resulting expression for T in the variable T.

\[T \]

Key in the second parametric equation with $g = 9.8 \text{m/s}^2$. Substitute the
expression for T in the equation by using the SHOW command so that all
implicit references to X are made explicit. The result is the equation for
the path in rectangular coordinates.

\[Y = V_x T \sin(A) - 0.5 \times 9.8 \times T^2 \quad X \]

Store the equation in the variable EQ and display the Solver menu.

Store the number 0 in the variable Y.

0

Store the number 200 in the variable X.

200
Since we are using SI units to solve this problem, convert mph to m/s.
Enter in the number 170.

170 ENTER

Key in the units 'mph'.

LC 'mph' ENTER

Convert 170 mph to m/s. Key in the units "m/s". Since m/s is not in the Units catalog, use double quotes around the units. CONVERT recognizes multiplicative combinations of the units listed in the catalog.

LC "m/s" ENTER

DROP

Store the velocity 76 m/s in the variable V.

V

Let the number 0 be an initial estimate for the angle A.

0 A

Find the angle.
Thus the archer must aim the arrow at an angle of 9.92 degrees to hit the target.

How long will it take for the arrow to hit the target? To find the time, simply press T followed by $\rightarrow\text{NUM}$ (Equivalently, T ENTER EVAL will recall the expression and then evaluate it with the current variable assignments).

$$T = \rightarrow\text{NUM}$$

Purge the following variables.

```
\{ 'A' 'V' 'X' 'Y' 'EQ' 'T' \} \text{ PURGE}
```
Step-by-Step Examples for Your HP-28C

Algebra and College Math contains a variety of examples and solutions to show how you can solve your technical problems more easily.

- Functions and Equations
 - Rational Functions and Polynomial Long Division
 - Complex Numbers
 - Hyperbolic and Inverse Hyperbolics
 - Function Evaluation and Plotting
 - Quadratic and Polynomial Equations
 - Systems of Linear Equations

- Infinite Sequences and Series

- Trigonometry
 - Relations and Identities
 - Functions of One and Two Angles
 - Function Plotting
 - Inverse Trigonometric Function
 - Trigonometric Equations

- Geometry
 - Rectangular and Polar Coordinates
 - Line, Circle, Parabola, Ellipse and Hyperbola Plotting
 - Parametric Equations

Reorder Number 00028-90041

00028-90056
Printed in U.S.A. 3/87