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Welcome...
 

... to the HP-28C Step-by-Step Booklets. These books are designed to
help you get the most from your HP-28C calculator.

This booklet, Calculus, provides examples and techniques for solving prob-
lems on your HP-28C. A variety of function operations and differential
and integral calculus problems are designed to familiarize you with the
many functions built into your HP-28C.

Before you try the examples in this book, you should be familiar with cer-
tain concepts from the owner’s documentation:

m The basics of your calculator — how to move from menu to menu, how
to exit graphics and edit modes, and how to use the menu to assign
values to, and solve for, user variables.

m Entering numbers and algebraic expressions into the calculator.

Please review the section "How to Use This Booklet." It contains impor-
tant information on the examples in this booklet.

For more information about the topics in the Calculus booklet, refer to a
basic textbook on the subject. Many references are available in university
libraries and in technical and college bookstores. The examples in the
booklet demonstrate approaches to solving certain problems, but they do
not cover the many ways to approach solutions to mathematical problems.

Our thanks to Ross Greenley of Oregon State University for developing the

problems in this book.
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How To Use This Booklet
 

Please take a moment to familiarize yourself with the formats used in this
booklet.

Keys and Menu Selection: A box represents a key on the calcula-

In many cases, a box represents a shifted key on the HP-28C. In the
example problems, the shift key is NOT explicitly shown (for example,

requires the press of the shift key, followed by the ARRAYkey,
found above the "A" on the left keyboard).

The "inverse" highlight represents a menu label:

=DRAWE (found in the menu)
Z1SOLE (found in the menu)
=ABCDZ (a user-created name, found in the [USER| menu)

Menus typically include more menu labels than can be displayed above the
six redefinable menu keys. Press and to roll through the
menu options. For simplicity, and are NOT shown in the
examples.

How To Use This Booklet 7



Solving for a user variable within = SOLVR = isinitiated by the shift key, fol-
lowed by the appropriate user-defined menu key:

[JEABCDE.

The keys above indicate the shift key, followed by the user-defined key
labeled "ABCD". Pressing these keysinitiates the Solver function to seek a
solution for "ABCD"in a specified equation.

The symbol indicates the cursor-menu key.

Interactive Plots and the Graphics Cursor: Coordinate values
you obtain from plots using the [INS] and digitizing keys may differ
from those shown, due to small differences in the positions of the graphics
cursor. The values you obtain should be satisfactory for the Solver root-
finding that follows.

Display Formats and Numeric Input: Negative numbers,

displayed as

-5
-12345.678

((-1,-2,-3 [ -4,-5,-6 [ ...

are created using the key.

5
12345.678
[[1 )2 ;e

The examples in this book typically specify a display format for the
number of decimal places. If your display is set such that numeric displays
do not match exactly, you can modify your display format with the
menu and the = FIXE key within that menu (e.g. 2EFIXS).
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Function Operations
 

The primary goals of this section are to write user-defined functions and
introduce the root finding, plotting, and calculus capabilities of the
HP-28C. Problems include definition and assignment ofthe trigonometric
co-functions in the USER menu, analysis of a cubic equation, and compu-
tation of the angle between two intersecting lines in a specific and general
case.
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Function Definition

This section demonstrates creation of simple user-defined functions. The
use of functions of this type is basic to efficient use of the HP-28C.

Example: The HP-28C has three basic trigonometric functions built in
— sine, cosine, and tangent. It is simple to add the remaining co-functions
to the USER menu. Built-in functions of the HP-28C can be easily com-
bined to create new functions. The use of programs and local variables
permits the newly defined functions to be used in the same manner as the
built-in functions.

The inverse of the sine is the cosecant.

« — X '"1+SIN(x

Store the user-defined function.

'CsC

The inverse of the cosine is the secant.

« — X '1+COS (X

Store the user-defined function.

'SEC [sTO]

 

 =
M
W
A

&« > X "1/5INCxO " % 

 

 =
M
W
R

 

 

 =
N
I
W
R

&« > X '"1/C0S(x>' »
 

 

 wh
Re
n

 

The inverse of the tangentis the cotangent.

« — X '"1:+TAN(x

10 Function Definition

 

 =
M
W

&« <> X "1/-TANCxY ' »
 

 

 

 

 

 



Store the user-defined function.

'COT
 

=
M
N
W
p
A

   

Example: Evaluate, in radians, COT(X ) and CSC3(X) - COT%(X),
whereX =.2.

First, store the value ofX and select radians and standard display modes.
 

 

.2 3
'X £
[MODE| =RADE =STD= [ sTo 1NGEINISTSNSNRa ]   
Now enter the expression for COT(X) and evaluate it.
 

 

'COT (X 3:
EVAL i: 4.93315487558

[sTo )TNNMANRAD ) 

Enter the second expression and evaluate it.

 

 

 

'SQ(CSC (X)) =5Q(COT (X)) gi 4.93315487558
1; - 1

[ sto JEEHSTRNIRaD )   
As expected, this identity returns the value 1.

Purge the user-defined functions and the variable X created in this sec-
tion.

{CSC SEC COT X

Function Definition 11



 

Function Composition

This section demonstrates additional utility of user-defined functions.
Arguments of the functions may be both numeric and symbolic.

Example: Form the compositions F (G (x)) and G (F (x)) given

F(x)=x?>+1and G(x)=5¢ +2.

Create F and G as user-defined functions.

First, create F.

« - X "xA2+1

 

=
=
N
W
H

€ * x 'x¥"2+1' »   
Store in the variable F .

'F [STO]
 

=
M
N
W
H

  
Now create G .

« — X '5 x X+2 [ENTER]
 

=
N
W
H

€ 3 x 'S¥x+2' »  
Store in the variable G .

 

 

 
'G [sTO]

=
M
W

 
 

To form the composition G (F (x)), enter F as an argument of G .
 

 
 

 

'G(F(X 4:
3:
2
i: 'GCFCX)H>!

Evaluate the composite function.

EVAL 4:
3:
2

1: 'Sx(XM2+10+2!   
12 Function Composition

 

 



This expression can be simplified using EXPAN and COLCT.

= EXPAN =

S COLCT=

 

3:
2:
1t '5*X"“2+5*1+2'

 

 

3:
2:
1: '7+5¥R"2!
[COLCTJEXPRN]ST2E|FORM[0BSUEERSUE] 
 

Repeat the process using G as an argument ofF.

'F(G(X

Evaluate the composite function.

EVAL

Simplify the expression.

= EXPAN =

= EXPAN

= COLCT =

 

 
 

 

3:
2: 'P+oExT2!
1 ' F(G(X) )!
(TSTBTTEEE

3:
2% 'THOxR"2!
1: '(5*X+2)"2+1'
COLCT]ERFAN]ST2E[FORMJOESUEERSUE] 
 

 

1 ?+5 P 1

"\égi{-}:{ IT2+2%(xRX2+2
2
1

 

 

2: 'r+o¥xN2!
1: 'SEX*(SEXDI+2%(D*RI %2

+2%2+1"
[COLCTJERFAN]ST2E|FORMJOBSUEJEXSUE]
 

  3:2: '7H5EX"2!
1 = 'S+25EX2+20%K
[COLCTEXFHN]STZE|FORMJOESUBJEXSUE]
 

Purge the variables created in this problem section.

{F G [ENTER] [PURGE]
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Function Analysis

The ability to locate extreme values and other key features of functionsis
critical to the solution of many problems in science and engineering. This
section demonstrates the use of calculus to locate such features.

Example: Locate the roots, local maximum, mimimum, and inflection

points of

F(x)=x3+6x2+11x +6.

Enter and name the given function.

'XA3+6 x X"2+11 x X+6

'FN

 

=
M
W

hs

'RASHEXXM2+H]1 1¥K+6 ! 

 

  =
M
N
W
-
A

 

Recall the function, enter the PLOT menu, and storeit for plotting.
 
=FN 1 

= STEQ=

 

'RO3+H6ERM2+]1 1 2X+6"
IIINN 

 

  
Clear the plot parameters and plot the function.

' PPAR
= DRAW =

14 Function Analysis

 

   



Digitize all of the roots.
 

 
 

3 (-.9,8)
2 (ég‘gg

ATTN

Note: Differences from the displayed results may appear due to different
digitizing locations.

Now enter the SOLV menu and compute the three roots.
 

= SOLVRE 3: (-.9,8)

f 23-3:83
I)IINA  

Enter a guess from the stack and compute the root.

=XE [ EXE 2
er‘o _a

-----

  

i i i 1
]

  
After obtaining the exact root, make note of it and prepare to locate the
next root. Discard the first root. Then repeat the process for the other two
roots.
 

z
=x= [] EX= £&ro o

¢lewriz]||]  

 

er‘o _4

“EEE----  
With the three roots located, find the extrema. The extrema are located by
finding the roots ofthe first derivative.

Recall the function.
  
 

 

|CLEAR| [USER| EFNZ g:

1:: 'RM3+6FXM2+1 1 ¥X+6 "
IT7G 
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Purge the current value ofX and differentiate with respect toX .

'X [ENTER] [ENTER]
[PURGE]

Store the first derivative.

'DR1 [STO]

Plot the function and its first derivative.
 

i o b2, i  

i mn z 1 

(=] [ENTER]

g
=

2
H-

< n
a
n
j w
n
- m o n

 

  
 

  
 

  

 

 

 

 

   

3:

B 'RABHEEX2HI1EKIE,

TITII

2
I 13EX2+6R(2¥XI+11"
TITII

3:

&
NTITI

3:

D1 I BEXAHEEC2ENIFIL ]
Tt RS+6%XD] 1XX+6"
TTITI

2
13 '3EX2+6%(2%X)+11=X"

SHEENA2H] 1 EK+E
NGIT

  
Observe that the derivative is positive in regions where the function is
increasing and negative in regions where it is decreasing.

Digitize both roots of the derivative.

[<] -.. [<] [Ins]
[<] ... [<][iNs]
ATTN

 

 

3:
2: (-1.4,8)>
1: (-2.6,8)
[STEC|KCEC:[FMIN]FHARJINDEF|DRRI
 

Note: Differences from the displayed results may appear due to
differences in digitizing locations.

16 Function Analysis



Recall the derivative and enter SOLVR to pinpoint the roots as was done
previously. The computed values may differ slightly depending on the
seed provided as an input to the Solver.

=DR1Z
=STEQ=

= SOLVRE=

1 x 1
[ i

 

 

 

 

3:
2: (-1.4,8)>
1: (-2.6,8)
ITIIN

ero
1: -2.57735826917
nJewer=111
 

This is one of the roots. Recall the function and evaluate to get the func-
tional value.

=FNZ
EVAL

 

 

3: (=1.4,08)
21 -2.57735026917
1 - 3845001794
ITTNT
 

Now repeat the process for the other root. First discard the root and func-
tion value.

[DROP] [DROP]
SOLV| =SOLVR=

=E

[[] EXE

 
 

2
%

|
5 i m z 1

 

  
 

  
  

3:
21
1: (-1.4,8)
I1TINN

ero
1: -1.42264973681
NG175IIN.

3:
2t -1.42264973081
1: -.38498017949
I5NTND.
 

The extreme values of the function have been located. Clear the stack and
find the inflection point. The inflection point, located at the root of the
second derivative, is the point or points at which the function changes con-
cavity. Thatis, it changes from concave up to concave down. The second
derivative of a cubic is linear and has only one root. Therefore a cubic has
only one point of inflection.
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Clear the value ofX to obtain symbolic results.

[CLEAR]
'X [PURGE]

Recall the first derivative.
 
=DR1 =

'X [ENTER]
 

Differentiate it with respect to X .

Store the second derivative.

'DR2 [STO]

 

  

 

  

 

  

 

 

3:

F
BTTITY

3:
2: '3RN2+EX(28XD41L
[oi)Jrrnk]e[PN[||

3:
2:
1: ' 3%(25K +12"
ITNT

3:

o
[viz|vklJFrak]Ec|PN||
 

Plot the function and its second derivative. Observe the location of the
root and how the function behaves at that point. It is coincidental that a
function root is located at the point ofinflection. It remains only to repeat
the root finding procedure.
 
=DR2

FN
  

i 1 

Set them equal for plotting.

(=] [ENTER]

Store and plot the equation.

18 Function Analysis

 

  

 

 

3:
2: '3(2¥XI+12"
1: 'ROSHEXXM2+H]1 1 ¥XK+6"
TTTIT

2:
10 '3(2¥X)+12=X"3+6¥X"

2+11%X+6"
TNT3TNT
 

 

   



Digitize the root.

[<] -.. [<] [INS]
ATTN

 

3:
2%
1: (-2.1,8)
lfiflflllflllfifllflflfllflmmfllflfll 
 

Recall the second derivative and solve for the root.

USER] =DR2=

=STEQ=
= SOLVR=

 

(-2.1,8)
132¢RI+2
 

 

(-2.1,8)
LwJewer=]1{11|  

Enter the digitized initial guess and solve for the root.

i 1
]X l

L] i

 

ero
1 -2

 
 

This completes the analysis. We have found roots atx = -1,-2,-3,
extrema atx = —2.58,—1.42 and an inflection point at x = —2.

Purge the user variables created in this section.

(FN X DR1 DR2
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Angle Between Two Lines

This section develops a user function to compute the angle ofintersection
of two lines. The slopes of the intersecting lines are supplied as argu-
ments. The user function is used in the subsequent section in computing
the angle ofintersection of two general functions.

Example: Compute the angle between the lines

Y=3+landY=-2x+5.

The angle between two curves is the angle formed by the tangentlines at
the point of intersection.

mqo—m;
f=tan!

1+m1m2 |

Form a function that, given the slopes, computes the angle between two
functions at a point of intersection.
  

 

 

 

|CLEAR| [MODE| =DEG = 2: '
« » a b 'ATAN((b-a)+ |1} &2ab'ATANC(b-a)/
(1+axb [ sTo JIGERIESEToeG JIETTH

'ANG g:

i:
[ sTo JIGENESEETTEN( oe6 JIETTH  

Lines have a constant slope. Read the slope for each directly from the
given formula.
 

  

 

3 3:
-2 2: 3

[ sto JIGEEESEITTH( veG JITTH

Now compute the angle.

=ANG= 31
2:
1: 45
(NG||||||  

The lines intersect at an angle of 45°.

ANG is used in the next problem section.

20 Angle Between Two Lines



 

Angle Between Two Curves

The angle ofintersection for two curves is defined to be the angle formed
by the tangent lines at the point of intersection. When an intersection
point is located, the slopes of the functions at that point can be found.
The problem is then that of two intersecting lines.

Example: Find the angle formed by the tangent lines at the points of
intersection of the following functions.

F=3x+1

Y =2x2

Enter and save the given functions.
 

  
 

   
    
 

4:
'3*X+1 3

1: '3¥X+1!

'F 4:
2
i:

'2%X"2 4:
21
1: '2%¥X"2!

'Y 4:
2:
i:   

Plot the two functions to obtain initial guesses at the points of intersection.

First, set the two functions equal to each other.
 

=SYE =F= g:
(=] I: ' DERAD=ZER+] "

IITI.  
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Store the equation.
 

= STEQE

 

3:
"f:

FMIN]FM#AY[TNDEF|DRAI 

Clear the plot parameters and draw the equation with the two functions.

'PPAR
= DRAWE

[PURGE]
 

 ]   
Expand the height to see both intersection points.

ATTN

= DRAW

=*H=
 

 

S
  

Digitize both intersection points. Enter the Solver to refine the guesses.
 

  
 

  
 

  

 

  

 

  

T
[>] ... [7] [INS %; Ei.g:gg

ATTN EE=1=1OCRETOTEE[T

= SOLVRE 3:
2% (-.3,87
1: (1.9,7)
IY96 2GO.

Use the displayed value as an initial guess.

=EXE

i: (-.3,8)
EEE(G5ONN

Compute a solution to the equation.

[] ExE
19n Reversa

1: 1.7887764864
RY50N3OIN

Repeat the procedure for the other point of intersection.

[SWAP] ;
=X= : 1.7807764064

[JLeFT=]RT= ||||

22 Angle Between Two Curves



[] i x i!  X =, 2807 64644
1g9n Keversa

1: -. 2887764064085
 IY68OIN.
 

Recall Y to compute the slope at an intersection point.

=YY=

Take the derivative with respect to x.

'X [ENTER]

Evaluate at one intersection point.

 

 
 

 

3: 1.7887764864
28 -.288776406405
1: '2¥ER"2!
[_JFPaR]EC]v|F|ANG|

3: 1.7887764064
2: -.2807764064085
1: -1.12318562562
IT3=0UGTT 
 

The last root computed remains assigned to x . The slope of the line can be
read from the given expression.

3 [ENTER]
 

  
Use the ANG function to compute the angle.

=ANG =

This is in degrees.

 

3: -.2807764064085
%5 -1.1231856256%

ITNGT

3: 1.78877640864
2: -.288776486405

: -60.1164484136
NTNGT  

Ready the stack to operate on the second intersection point.

DROP

 

 

3:
2:
1: 1.7867764064
i_JFEnk]EC]v]F|ANG| 
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Compute the derivative of Y.

Assigning a numeric value to x at this point will mean a numeric value for
the derivative whenit is computed.
 

  
 

  
 

  

 

  

 

'X 3:
1:
I7T-0GT

=SYE 3:
2
1: '2xR"2"
ITNUGT

The derivative is computed with respect to x.

'X 3
i: 7. 1231056256
L_JFpeREQvFANG

Enter the slope of the line.

3 [ENTER] 31
%‘5 7. 123135625%

-':-m-

Again use the ANG function to compute the intersection angle.

=ANG = 3:
28
1: -10.443524758

[#_JFFak]EQ |¥ |F |HNG |  
Purge the variables created in the last two sections.

(F Y X ANG [ENTER] [PURGE]
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Differential Calculus
 

This section includes problems of differential calculus, including function
minimization, computing tangentlines, and several methods of implicitly
differentiating functions. Several important features of the HP-28C are
highlighted — creating user-defined derivatives, keyboard algebra for solv-
ing complex problems, and effective use of user flag 59 (the infinite result
flag) and flag 35 (symbolic evaluation of constants).

Differential Calculus 25



 

Minimize Perimeter

Science, engineering, and business share the need to find the minimum
values of given functions as some parameter changes. In this section, the
function represents area and the parameteris the area’s perimeter.

Example: To minimize material expense, find the mimimum amount of
fencing required to enclose a rectangular plot measuring 200 square feetif
one side is next to a building and needs no fence.

Let the sides be called x andy withy parallel to the building. The perime-
ter to be minimized is

P =2x +y.

The area of the plot

x*y =200

gives the relationship betweenx and y.

Clear the display and make certain variablesX and Y have no assigned
values. Clear flag 59 to ignore ’Infinite Result’ errors while plotting.
  

   

 

   

 

   

 

[CLEAR] [MODE] 2 EFIXZ 4:
X 5
'Y Iz
59 CF

Enter the perimeter.

' 2xX+Y 4
3:
2:
1: '2¥R+Y!

Enter the area.

'Xx¥Y=200 g:

2 'OERHY !
1: 'KxY=280"

Isolate X.

'X =ISOLE 3:
2: '2¥R+Y!
1: '288-Y "
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Store the equation forX .

'X [s10]

Evaluate the expression for the perimeter.

EVAL

 

=
M
W

-

: '2¥R+Y!

  
 

 

: '2¥(200/Y)+Y"
]  
 

This expresses the perimeter in terms of one variable.

Collect terms.

= COLCT =
 

3
2
1 '408-Y+Y '

 [COLCT[EHFAN]STZE [FORM N3=

 

Compute the derivative. Roots ofthis will yield the mimimum value of Y.

'Y [ENTER]
 

 
 

Plot the derivative to obtain a guess at the
 

=STEQZ=

' PPAR

 'Y =INDEPE

3:
2
1: '-(4808-Y"2>+1"'

root.

3:

2:
[STEC[KCEC:|FMIN]FHMAYJINDEF]DRAL
 

The steps below expand the plotting area and draw the graph. If you have
no prior knowledge of the appearance of the graph, you mayfirst wish to
plot the graph, modify the plotting area accordingly, and then plot the
graph a second time (i.e. = DRAW = ,
below).
 

and then proceed with the steps

 

*1 I 1  

2 1 

H
H
>

D
N

 2 s e   
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Digitize a seed for Y. Pick the guess near the positive root.

ATTN

 

  

3:
2
1: (19.60,08.00)
[STECJRCECJFMIN]FHAG[INDEF]DEAI 

Use the digitized value as a seed to compute Y.

SOLV

Y

= SOLVRE=

[] iY

 

 
!EI"O
1: 28.80
ICEIZE]NIN  
 

The side parallel to the building must be 20 feet long.

Recall and evaluate the expression forX .

X
EVAL

 

 

3:
2: 20.00
1: 18.006
vJdexer=)111

 

 

Forty feet of fencing is required (two ends ten feet long, and one side 20
feet long).

Purge the variables created in the example.

(X Y [ENTER] [PURGE]

28 Minimize Perimeter



 

Mimimize Surface Area

This section uses differential calculus to minimize surface area. An appli-
cation ofthis solution is in manufacturing, where minimization can reduce
wasted raw material and increase profit. Other problem specifications
may, of course, add constraints or considerations to the final real-world
solution.

Example: In the problem below, user flag 35 is set to maintain symbolic
constants until the end of the solution.

Find the dimensions of a one liter can that has the minimum surface area.

The surface area of a can (a right circular cylinder) is

A =2nR?+2rRH.

The volume is

V=nR?H

where R is the radius and A is the height of the can. To minimize the
surface area, the area is expressed in terms of either R or H and that
expression is then differentiated with respectto that variable. Proceed by
isolating H in the volume equation and finding the root of the derivative
of the area taken with respect toR .

 

Clear the variables R, V', and H, and set flag 35.

4
{RVH 5
35 SF 1:   
Factor out 27R and key in the expression for the surface area.
 

   

 

' 2xmxRx (R+H g

% '2¥wER*(R+H> '

Duplicate the expression and store a copy for later use.

'A 4:

% '2¥m¥R®(R+H>'  
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Enter the volume.

' V=mRA 2xH

Isolate H .

'"H [ENTER]

ALGEBRA| =ISOL=

Store it as H .

'H [STO]

 

   

 

 

 

 

4z
31
2: '2%¥T¥R*¥(R+H) '
1: 'V=nxR"2%H'

4:
3: '2*%m*R*¥(R+H)> "'
23 'V=r¥R"2%H'
1: IHI

31
2: '2%¥m*¥R*¥(R+H)> "'
1: 'MACTERM2) !  FI3] 

 

 
'2¥m¥R¥(R+H) '

TAVLE]TS0[CURD]SHOMJOEGET]ERGET]   
Now substitute for H in the area equation.

EVAL

Take the derivative with respect toR .

'R _[ENTER]
[d/dx]

Collect terms.

= COLCT 1

 

 
Pl 2EmERECR4V/CTERA2))
RI0TTOT 

 
1: '2¥wx(R+V/CT¥R™M2) )42

E*MER*¥CL-VE(T2(2%¥RI D~
(r¥R™~2)7°2)!

  RTINTTRNTe(e
 

 

10 '2¥(1-2%CR"2*¥wHX"(-2)
*R¥VEm)*¥R¥1+2%¥ (R~ (-2
¥V/4RI¥!

 FORM 

Prepare to plot the derivative to obtain a guess for the root.

=STEQ=
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 [STEQKCEC[FMIN]FMARJINDEF[DRRI 



One liter is the same as 1000 cubic centimeters. Enter the volume as

1000; the answer will be in centimeters.

1000
'V

 

 

=
M
W
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Purge the existing plot parameters and expand the plotting area.

' PPAR
100 =*HE
5 =*w

* i  

11
l

1 

 

 

3:

‘1°-f
FPRRFESREESJLENTE]04#H 

To find the radius that minimizes the area, specify R as the independent
plotting variable. Clear flag 59 to ignore ’Infinite Result’ errors that may
occur while plotting.

R =INDEP=

59 CF [ENTER]

 

 

3:
%:

FMIN]FMAR JINDEF|DEAL 

Draw the graph and digitize an initial guess for the Solver.

=DRAWE [>] ... |>] [INS]
 

  
—T
 

Now store the initial guess and compute the root.
 
[ATTN] [SOLV]| =SOLVRE

=R= ] ERE
 

Thisis the radius. Now find the height.

'H
EVAL

EVAL

 

!EFO
1: 2.42
IA172I.  
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D.42
'1908/(r¥29.37) ' 
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Compute the area.

A [EVAL

Evaluate to a numerical result.

EVAL

Reduce the expression to a real number.

[=NUM]

 

  

 

  

 

23 '1880/(nr¥29.37) '
1: '2#n*5.42%(5.42+V/(n

*R*23) !
RtvJfenFr=f11]

2% '1008-(n¥29.37)
1@ 'Z2xwx5.42%(5.42+1800

sCw¥29.37)) "
HEIAN12I

3: 2. 42
2: '1880-(w¥29.37) '
1: 293. 908

 IB77TIN 

To check thatthis is a minimum, compute the second derivative.

=RCEQE=
'R [ENTER]

 

1

31 553. 58
2 '2x(1-28(RN2y

 

 

 
3 ' 1000(1*23, 37'
2: 553.58

1) Y]
 

The second derivative is positive; therefore the curve is concave up. The
root 1s a local minimum.

Purge the variables created in this problem section.

(A H R V[ENTER] [PURGE]
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Lines Tangent To A Circle

This section demonstrates manipulation of equations using the algebraic
capabilities of the HP-28C. It is often necessary to compute the derivative
of a function that cannot easily be expressed in terms of one variable. In
this case we use implicit differentiation. This is the first of three methods
for implicit differentiation shown in this booklet. Problem sections "Impli-
cit Differentiation With User-Defined Derivative" and "Implicit Functions”
show two other methods.

Example: Find the two points on a circle of radius 1 that have tangent
lines passing through the point (2,2).

There are two expressions for the slope of the tangent lines — one from
the circle itself and the other from the point exterior to the circle.

Clear the working variables to ensure a symbolic answer. This problem
also demonstrates a simple error recovery procedure. To ensure that the
recovery works, turn on UNDO.
 

CLEAR

{Y R BAEQ X [ENTER] [PURGE]
+UND

=
M

 |I
||
|

EEETA(-cMo)IlFLASTI[«UND]RILT
 

The general equation fora circle is x?+y2—r2=0, where r is the radius.
Implicitly differentiate this equation.

Enterit for step by step differentiation. Note that "3" is obtained by press-
ing the key after the ['] key.

15X (XA 2+YA2-RA2
 

3:
2:
1: 'AX(X22-RM2) !
ST(-cmo ]CHLATI[«UND]LT
 

 

EVAL 2
1 LOK(RM2+HY20-0R(R™2)

CETA(-cMo]DEEdFLAST|[«UND]RTLT  
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Step through the derivative watching for the term representing the dy /dx
term.
 

EVAL 2
1 ! axcx'*2>+a><<w2> =344

RY*2¥R~(2-1>"
B(-cMoJECEHAFLASTI-UND]EILTH  

One more step-by-step differentiation will generate the dy /dx term from
the AX(Y"2) term in the expression.
 

EVAL 2
1: 'axcxwz*x*(z 1>2+aX(

YrxzxyYr(2-1>"
O[-cMoJEEAFLASTI[+UND]EILTE 
 

Now collect terms to shorten the expression.

[ALGEBRA] = COLCT= 21
18 AKX*#2¥K+OK (Y I ¥2%Y

COLCT|EXFAN] SI2E |FORMJOESUEJEXSUE

 

 
 

This is a critical step. Replace the derivative sub-expression with a vari-
able that can be isolated. Count all characters, except parentheses, up to
and including the second partial derivative symbol. The derivative symbol
is the ninth item for making the substitution.
 

9 31
'DY SEXSUBE el

1: 'ARCRIX2XX+DY2%

 
 

Evaluate once more to clear the last derivative.
 

 
 

 
 

EVAL 3:
28

1: 12X+DYx2%xY"

Solve for —(Q.
dx

'DY =ISOL=

=
M
W

: '=(2xXsYs2) !
TRYLE] I50L[QUAD]SHOMW [OBEGET[EXGET  
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Collect the 2’s.

= COLCT=
 

 

 

3
2
1 -(X/'T’)'
mmmmR

 

 

This is the slope of any line tangent to the circle. Tangent lines that pass
through a point (A,B) exterior to the circle have slope (y -B)/(x -A4),
where the point (x,y) is on the circle.
 

  

'(Y-B)+(X-A 3:
( % Y-Rh)

(TTo(ATS(T
 

This line must be a tangent to the circle; thatis, the expressions for the
slope must be equal.

[=] [ENTER] 3
 

 

 

- (XY)=CY-B)/(X FI)'

 

 

Use algebra to solve for y.

Y %
 

E RTRN=CY-BI/(XA
(RTTNT 

 

 

Clear the denominators by collecting terms and multiplying through by
denominator terms.
 

  
 

 

= COLCT = 2
1: ;;{>§=INV(-H+X)*(-B+Y)

[CoLcT[EHFRN]SIZE[Fokt[0ESUE[EHSLIE]

Extract the denominator term.

7 =EXGET= 3:

2

1: '-A+R
(ThyLE]IZoL[Cunt[sHol[0EGET[ERGET] 

 

 

Since EXGET ’consumes’ the original expression, a copy should have
been made first. It is easy to recover from the error.

[UNDO] 21
1: ;;)I(=INV(-FI+X)*(—B+Y)

[THVLE]TS0lJOURDSHOMJoEGET]EHGET)
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Make a copy and re-execute EXGET.

Multiply through by the extracted term.

[x]

The denominator is now cleared.

= COLCT =

 

3
28 '-X=INVC-R+K)#(-B+Y..,
{ oA+   TAVLE]IS0lCURD]SHOMJOEGET]ERGET]
 

 

=
M

D - (RE(-AHRII=INVC-A+
RIX(-B+Y)IxY2(-A+X)'

  [N SHOM|OEGET[ERGET
 

 

2%
1: ..:,—. (C-A+X0#X)=(-B+Y)*

[COLCTJERFAN]ST2EJFORM JOESUE

 

 
 

The following expansions distribute the x andy terms.

= EXPAN

= EXPAN =i

= EXPAN =

Now collect terms.

=COLCT=
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3
2
18 '=(-A+X)*¥X=-BxY+YV*Y'
COLCTIERFAN]ST2EJFORM[DESUE[ERSUE]
 

 

'CA-X)¥X=-B*Y+Y*Y'
[COLCTJERFAN]ST2E|FORMJOESUE[ERSUE
 

 

'A¥R-XEX=-BxY+Y*Y'
[HEIE FHE

 

 
 

 

'=XM2HAXX=Y2-BEY!
 EXFAN] SIZE[FORMJOESUEJERSUE=

 



Gatherlike powers.

First gather powers of 2.
 

[ENTER] 3
1 ZExGETE 2iRh2HARR=Y2-BRY

YLE] ISOL QUAD]|SHOMW [OEGET]ERGET
 

 

2
= I3 -MrReRsRen2=Y"2-Bx

KTST(TNSeT 
 

 

= COLCT=  3-

2:
1= 'AxX=-(BxY)+X"2+Y"2’ 
 

Now gather powers of 1.
 

[ENTER| g1gx—e_a—; 25'A%K=- (B*Y)+X“2+‘é"‘$'

[TAYLR]Is0LQUAD]SHOWJOBGETIERGET]
 

 

[+]

M : 'AEREBEY=- (BRYI+K2+
Y2+BEY !

TAYLK|130L]QUADSHOW[0BGET|EXGET)
 

 

1= COLCT  3
2
1 'AxX+BEY=X"2+Y"2"
(COLCTJERFRN]ST2E|FORM[0ESUE[ERSUE] 
 

The right hand side of this equation is 72. Make a substitution for the right

hand side.

12 3
'RA2 = EXSUB = 1 ; 'A¥X+B*Y=R"2"

[COLCT[EXFHN]STI2E|FORM[OBSUE[ERSUE]

 

 
 

This linear equation can now be solved fory.
 

Y ZISOL=

=
P

'(R™2-R*X>-B'
SHOM [0BEGET[ERGET  
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Save this for later use.

'Y [STO]

Enter the equation for the circle.

' XA24+YA2-RA2

Substitute in the expression for y.

EVAL

 

 

=
P
I

 I
 

 

 

=
M
W

'RE2+Yr2-RM2!
THYLK ST(e   

 

 
M
)

' E:gf( (R*2-A*Xx)/BX)"2

THYLE]IS0LJCURDSHOMJOEGET[ERGET]  
This is a quadratic equation for x, and is easy to solve.

'X =QUADE=

Shorten it by collecting terms.

= COLCT =

Duplicate and store this expression for x .

[ENTER] 'X [sTO]

 

 

1: 'CA/B*2*(R"2/By+si1*l
CC-C(AsB*2*%(R™2/B) )"
2-4*((2-A/B*2*(-(A-B

  

 

 

12 'L(=-(2%(2+2%A"2%B"(
-2) )% CCINVCB)*R~2)72
=R*2))+(-(2¥A*B"~(-2)

[CoLCT[ERFRN]ST2E[FORM[OESUE[ERSUE
 

 

 

18 'C(-C2%(2+2%A"2%B"(
-2) )%C(INV(B)*R"2)°2
=R*2))+(-(2*¥A*B~(-2)

[COLCTIERFAN]ST2E[FORMJoESUE[ERSUE]
 

In the Solver, you can assign the numbers needed to complete the given
problem.

SOLV| ESTEQ=

= SOLVR =
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3:

2
IIIWT
 



The exterior pointis (2,2).

2 1 > 1 |

N 1 @ 1l |
The radius of the circle is 1.

1 1 X i ..i
 

IGNWG
 

 

 IECEGT.
 

 

— .
 IEIIIEIIIEIIIEIIEEEBIIIJ 

There are two roots, one for each point on the circle.
 

= Il S1 1 ._i 

Solve for the x coordinate.

=EXPR= =

Now solve for they coordinate.

Repeat the process for the other point.

= SOLVR=

 

— (1
]

IECEBWT  

 .i
— s 8.91

IGST. 

 

 

 

.91
' (R™2-RA¥X> /B’

 
 

 

 

 

 

 

8.91
-8.41

IIBW1T.  
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| = i @ 1
  

Solve for the x coordinate.

SEXPR== A
 

  

 

 

 

1: -8.41
L&Ks1[enrrz]|

Now compute they coordinate.

=YE 3: -9.41
28 -8.41
1: ' (RA2-A*KIB’
4411|

3 -9.41
2: -8.41
1: 0.91
IINDR  

The points of tangency are (0.91,-0.41) and (-0.41,0.91).

The general solution approach solves the problem for any circle and any
exterior point.

Purge the variables created in this problem section.

(X Y A B R sl [ENTER] [PURGE]
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Implicit Differentiation With User-Defined
Derivative

This section uses a user-defined derivative for implicit differentiation of a
function. Refer to the Reference Manual for additional information.

Example: Given the equation\/; +\/;r— =3, express % in terms ofx

andy.

Create a user-defined derivative for the function y (x). User-defined
derivatives must take two inputs from the stack; the definition below sim-
ply discards them and returns the variable DY, which can be isolated.
 

   

 

   

 

   

 

4:
2:

« — X dx 'DY [ENTER] 1: & » x dx 'DY' »

Store it in the variable derY .

'deryY g:

23
i:

Enter the Y variable as a function ofX.

'"VX + VY(X) - 3 4:
2:
1: 'TXHIY(KH)-3!

Differentiate with respect toX .

'X 3:
I: NY (2RIKY4DY/ (2%IYC

   
'1
X

Solve for DY . Remember that DY represents %

 
'"DY [ALGEBRA| =ISOL= 2:

1: ;;g}NV(2*J’X)*(2*J’Y(X

THVLR  

Implicit Diferentiation With User-Defined Derivative a1



Simplify to get the solution.
 

= COLCT i 3:
2:
1: '= (IYCXIATKDY!
[COLCTJERFAN]STZE[FORMJOESUEJERSUE 

Purge the user-defined derivative created in this example.

'derY |PURGE
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Taylor Series Error Term

Many physics and engineering problems are made solvable by expanding
non-linear termsin a Taylor series. Ignoring the quadratic and higher
degree terms leads to an approximate solution that is good for >small dis-
placement’. This problem shows how to find the range for which the error
in a Taylor series expansions stays small.

Example: Find the range ofx for which the error in the 3rd degree
approximation ofsin(x) is less than .1.

The Taylor Series error term is

Ru(e)=F)X
The exponent off indicates the order of differentiation.

 

It is important to recognize that the error is the next term in the expan-
sion. Since the ’sin’ function contains only odd powered terms, look at the
difference in the 5th and 3rd degree approximations. For the ’sin’ function
the n +1 derivative has a maximum of1.

n+l

Thus R(n+1)< m'— .

Compute the Sth degree expansion.

Set the angle mode. Key in the function and the variable name.
  

CLEARI MODE| =RAD= : .
"SIN(X % SIN(H%'

X (510[qF¢P]sc1ENGpeG[T  
 

Key in the order and find the Taylor Series.

5 = TAYLRE %
 

'X-0.17¥X"3+8.01*¥X"D

[TAVLE]IS0LQUAD]SHOWJOEGETIERGET]  
 

Now compute the 3rd degree approximation.
 

'SIN (X [ENTER 31
23 'X-0.17%X"3+8, B1xX",X [ENTER] : '%-p.1k"3

=TAYLR=   
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Make a copy and store this result for later use.
 

[ENTER] '"APS [STO] 3:
2: 'X-0. 1?*><"‘3+la B1xX",,
1: XB1?*X"3'

   

 

Subtract the two approximations.

'¥-0. 17¥x°3+0, 81 %X"5
[-] 2

—C%-B. 17%%~3) "
THYLE150112DADSHOWJ0EGETIERGET)

— =
e

a
s

   
Collect terms. The remaining expression is the 3rd degree error term.
 

 
 

 

= COLCT= g:

15 '8, B15%°5"
(T(]IT(I

Set it equal to .1 and then solve for x.

-1 [ENTER] [=] [ENTER] 3
2:
1: '8.081%X~5=0.10"'
COLCTJERFAN]ST2E[FORMJOESUE[ERSUE   

There are several ways to solve for x. The ISOL command will isolate x
in the displayed equation, and result in a generalized expression for x. A
second approach is to use Solver to compute x . A third approach would be
to use the laws of algebra and the capabilities of the HP-28C and solve for
x ’long-hand’. All three methods are shown below; the third approach is
included to illustrate the power of FORM in the ALBEGRA menu.

Choose any one of the three methods which follow, and then proceed to
the "Conclusion" portion ofthis problem.
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Method 1: Using ISOL

Find the generalized expression for x. The status of flags 34 and 35 will
affect the next display. The expression below is the result with both flags
34 and 35 clear. Refer to the Reference Manual for a discussion on alter-
nate settings of these flags. With flag 34 set, you would immediately
obtain the result 1.64 found after the next severalsteps.

 
"X ZISOL= 2

1: 'EXP((B.80,6.28)*¥n1~
S5)*1.64"

[TAYLR]IS0L|QUAD]SHOW[OEGET|EXGET]  
 

Assign a value of zero to the arbitrary integer n1 introduced into the isola-
tion of the variable x.
 

0 2r
'ni 1:SEXT(EE.B8,6.28)*n1~

[THYLR]ISOL|QUAD|SHOW|OEGET|ERGET]  
 

Evaluate the expression.
 

EVAL

H
N
I
‘
.
D

(1.64,8. BB)
-  
 

Extract the real component of the complex result.
 

 

REAL| =ABS= g:

1 1.64
CRES|SIGN|MANT|HPON][
 

Now skip to the discussion and keystrokes labeled "Conclusion" to com-
plete this problem.
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Method 2: Using Solver

This method illustrates a simple approach to solve for x with the Solver.

Proceed to the Solver menu and store the equation.
 

=STEQE= 3:
= SOLVR= e

|%JLEFT=|{kRT=|||]  
Solve for the variable x.

[] EXE gflg—
19N eyversa

1: 1.64
IA8N3OIN.

 

1 1

  
Now skip to the discussion and keystrokes labeled "Conclusion" to com-
plete this problem.

Method 3: Using FORM and algebraic manipulation

This method illustrates the use of FORM and the keyboard capabilities of
the HP-28C to manipulate algebraic expressions. While the two methods
above are more direct,this alternative follows a traditional ’paper-and-
pencil’ approach towards the solution.

First, compute the fifth root of the equation.

'1+5
 
2
10 '(B.81%X*33"~(1/5)=

8.18"¢1-,5>"
[COLCTJERFAN]ST2E[FORMJOESUE[ERSUE  

In FORM,first distribute the left hand exponential, and then associate the
5 and 1/5. Then collect terms in the expression.

(((W(X"S) 27°C1750)0=(
6.0 732
[COLCTERPANILEVELTEXGET](€1|[31

 
= FORMZ=

  
Moveto the exponentiation sign.
   

(CCA.81xC(X"DIOW(1-5))>=(
0.81°C1-52))
[COLCT]ERPANILEVELTEXGET][€1|[|  
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Distribute the left-hand exponential.
 

=+«D=

Move to the second exponentiation sign.
 

1 :i 1 :1

 

(C(B.81"C1/5)PRDI
1-53323=(8.81"C1-3)))

 
 

 

(cCa, Bl‘“(l/S))*((X"S)fl(
1/5)))(B BIA(I/S))

 
 

Now associate the 5 and 1/5 in the expression.
 

1 iA— 

Exit FORM and collect terms.

ATIN| ECOLCT=

Solve for x.

"X ZISOLE

 

  

 

C(CA.B81(1-/5))*x(XP(S*(1
/5))))=(B.81"‘(1/5 )

HHEITEETEETETS

3:
28
1: '0.38%¥X=0.63"'

  

 

1.64

  
 

Conclusion: The variable x has now been isolated by one of the three
methods described above. Proceed with the remainder of this problem
solution.

The ’sin’ is symmetric so R®<.1 for —1.64 <x < 1.64. Check the result in
Solver.

=APS=

Compare the approximation to sin(x ).

'SIN(X

 

  

 

3:
2: 1.64
1: 'X-0.17%¥xX"3'
jaes|1411

3+ 1.64
2: 'X-8.17%x"3"'
1: 'SINCRY'
IIIIN.  
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(=] [ENTER]

=STEQ=
=SOLVR=

i x 1 .i

il — m J Il I

 

i 3 [ i 

 

 

 

3:
2: 1.64
1 'X-0.17¥X"3=SIN(X>'
(e|111t

3:
2:
1: 1.64
IYON
 

 

1
%JeFr=]kr=]|1
 

 

1 0.906
IY968OIN.
 

  1.00
I(AGIN

|
 

Clearly the difference is .1. Now plot the two equations. Purge the current
plot parameters and draw the function.

' PPAR
= DRAWE=

 

 PO   
If the Taylor series approximation is needed for values ofx that differ
significantly from 0, the center of the expansion should be shifted, as
demonstrated in the tangent line problem in the next section.

Purge the variables created in this problem section.

{X APS EQ
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Tangent Lines and Taylor Series

This section demonstrates how to use the first order Taylor series to gen-
erate a tangent line equation. The example problem expands about a
point other than the origin.

Example: Find the equation of the line tangent to the sine curve at
X=1

Clear the stack. The first degree polynomial Taylor series expansion is the
tangent line at the point of expansion.

Enter the function to be expanded.

'SIN(X

 

=
M
W

  'SINCXY!
 

Change the variable to correspond with the new center. That is, Y =0
corresponds toX =1.
 

 

 

   
 

   

 

'Y+1 4:
2t 'SIN(X)!
1: 'Y+1!

'X 4:
2
1: 'SINCXDY!

This is the function to be expanded.

EVAL 4:
3:
2:
1: 'SINCY+1)!

Enter the variable and the degree of the polynomial.

'Y 4:
1 g 'SIN<Y+;$:

1: 1.980  
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Find the Taylor expansion.

= TAYLRE

This is the equationin Y.

[USER] =EX=

Recall the change of variable equation.

'X [ENTER]
[=] [ENTER]

 

'0.84+8.54%Y'

  

 

  

 

3:
2 '0.84+0. 54Y "
Ca|1[1[|

3:
2: '8.84+9,545y
Ci||[1[ 
 

Clear the original variable change equation.

'X [PURGE]

Solve for Y.

'Y [ENTER]
=ISOL=

Save the expression for Y.

'Y [sTO]

 

  

 

 

3:
2: '0.84+0, 547!
OOTIA

3:
2 ‘0. 84+, 54%Y"

 

 

 
'0.84+08.54%Y'

  
Change back to the original variable and simplify the resulting expression.

EVAL

1 EXPAN =
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'0.84+0.54%(X-1)"'

 

 

 
2:
i:  ;@. 84+(8.54%X-0.54*1

[COLCTERFAN]STZEJFORH JOESUE

 

 



 

i= COLCT

=
M
o
o

'0.30+0.54%X"'
COLCT[EXFAN]SIZE [FORM JOESUR[ERSUE] 
 

Save a copy ofthis expression for the next problem section.
 

 

g:

'STN I: '@, 30+, S54%¥"
 

Plot the two equations for a quick check.

'SIN(X
(=]

 

=
M
W

: '@, 3048, 54¥X=SIN(X) "
[COLCT[EXFAN]ST2E|FORM[OESUEJERSUE]

= STEQ=
' PPAR %}fifiv
'*X ZINDEPE=

= DRAWE=

=y

 

 

  
 

Purge variablesX and Y for the next problem section.

ATIN] 'X [PURGE] 'Y
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Normal Line

In the previous section, the equation for the line came as a result of a Tay-
lor series expansion. This section continues by manually assembling the
expression for the normal line.

Example: Compute the equation of the line normal (perpendicular) to
the sine curve atx =1.

First recall the equation for the tangentline.

 

 

This is Y,

 

 

3: '0.38+0.54%X"
28 '0.30+0.54*X"
1: '0.30+0. 54X
T=SD. 

 

  

Since we want symbolic solutions purge the value ofx .

'X [PURGE]
 

 

3: ', 30+0. 54X '
%5 '8.3B+B.54*Xé

ITNTI

31 'Q. 30+0. 54%% '
%5 'B.SB+B.58*§;

TITNIR 

The general point slope formula for a line is

Y—Yo—_-m (X _Xo) .

Y, is on the stack. Form the left hand side of the relationship above.

Y [ENTER]
[SWAP]
(-]

 

 

3: '0.30+0. 54X
28 '0.38+0. 54X
1: 'Y-8.84'
(FPaR|ECPsTN]][]  
 

Now form the right hand side. Bring the original line in position to find
the slope.

[SwaP]
'X [ENTER]
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3t 'Y-9.84"
2 '0.30+0. 533"
INSIIN   



Find the slope by taking the derivative.
 

3: '0. 30+0. 54¥X
2 'vih,84"

TITII 
 

This is the slope of the tangent line. The slope of the normal line is

 

  

 

 

 

  
 

  

 

  
 

 

1
m,=-—.

my

Compute m,, .

3 '@.30+0. 54%K’
[1/x] 2: 'Y-8.84'

1: -1.85
T=NSOIN

Now compute the right hand side.

'X-1 3: 'Y-0,.84"
2 ;183
[FFak |EC |STN]|||

3: '0.30+0. 542X
B 2: 'Y-8.84"'

1: '-(1.85%C(X-1)>"
[PFAE ]EQ |STN]|||

Form the entire equation.

[ENTER] 2t '9.30+0, 54X’
= I: y-8.84=-{1.85%Cx-D)

INDNNN

Solve for Y.

¥ ENTER g= 0.38+0.54%x=180l : 'A.30+0,. 54%X'
=ISOL= 1: '-¢1.85%(%-1>)+D,84"

Simplify the expression.

= EXPAN= 3:
2t '0.30+0.54%X'
1: '-1.85%(X-1)+8.84"
[COLCT[ERFHN]SI2E|FORM[0ESUE[ERSUE]  
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1= EXPAN = 2 '0.30+8. 54X’
é— é‘.fiS*X- -1.85%1+

[COLCT]ERFSIZEFOKM[0ESUE|ESSUE]
 

 

i COLCT = 3:
2: 10.30+8.54*x"
1: -69-1.85*X' 
 

Plot the resulting function.

'SIN(X 3:

2 '@, 30+0, 54%X"
[=] [ENTER It 12.69-1.858%=SIN(®)"

COLCT[EXFAN] SIZE|FORM |0ESUE|[ERSUE

 

 

 

    

=STEQ=
'PPAR [PURGE]m /._\ i/(_\

"X EINDEP= \-’/l ", \_/
= DRAW =

Purge the following variables created in this section.

{STN EQ PPAR
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Implicit Functions

The Implicit Function Theorem is, perhaps, the most elegant of three
methods shown for implicit differentiation. This section demonstrates a
more general method for finding the equation of a line than the previous
sections.

Example: Find the equation ofthe line tangent to the function
x2+xy -3=0atx =1.

Begin by defining a function to compute the derivative of a general func-
tion F (x,y). The formula, a result of the implicit function theorem, can be

used as long as % #0 holds.

Purge the variables to be used to ensure symbolic solutions.
 

{X Y y X [ENTER| [PURGE] [<>] 

—
M
N
W
A

   
Enter the function for computing implicit derivatives.
 

   

 

« — a'-gX(a)+dY¥Y (a 3:

% g + a '-axXca)saYday!

Store the implicit derivatives function.

'IMP 4:

   
Enter and store the general formula for a line.
 

 

 

y=mx (x-X) +Y 3
2
1: 'y=mE(x-XI+Y'

'LINE g:

21
i:   
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The function must be expressed in terms ofX and Y due to the use of
those variables in the function IMP.

' XA2+XXY=3

'F [STO]

Now find % intermsofX and Y.

[USER] =F i

 

1 = o 1 

 

=
=
P
N
W
R

'RA2+K¥Y-3! 

 

 =MNW
H

  
 

'Rh2+R¥Y-3!
STATINI

H
N
(
D

 

 

 
2
1 '= (AR (XM2+HR¥EY D 7Y(X

2+X¥Y))!
GISCT3BTI..
 

Evaluate the expression until all the partial derivative symbols are gone.

EVAL

EVAL

EVAL

 

2
1 "= (CAXCKM2IHIX(R¥EY D)

ZCAY(XM2I+AY(X¥Y) ) )
FJLINEfTMP]]]
 

 

18 '=(COR(RIX2ERN(2-1D+
(ARCRIEY+HKEIX(YID )7
AY(RI*2xX"(2-1)+(aY(
GSTBT.N
 

  =MW "= (C2EXEYIKD
PJLINelame|   

This expression for the slope ofF (x,y) at any point on the curve must be
the slope of the tangent line.

'm [STO]
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3:

&t
INT3TI
 



Now determine the value of Y that corresponds to x =2.
 

  
 

 

  

=EF= 3
= 23

: ' RA2HKEY-3 !
MFJLINEJIMF||

= STEQS 3:
=SOLVR= %‘

INTIN
 

 

™
o

i x 1

 
 

   
 

i:

II(TII

= EXPR= = -

1: ' 44+2%Y-3"
IT(TI

Solve for Y.

'Y =ISOL= g

1: -9.50
TAYLF SHOW JOEGETIERGET
 

 

'Y [sTO]

=
M  TAYLR| IS0L[QUAD]|SHOM [0EGET|EXRGET
 

With the coordinates of the point at the tangent line and the slope of the
line in terms of those coordinates, evaluate and simplify the formula for
the line.
 

 

 

= LINEZ %

1 Py=mECx-K+Y
BNOAT

EVAL 2
T 'y=- (C2ER+YI/RE(x-2D

32@.56"
ANNTAT 
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EVAL

Use EXPAN to distribute the constant.

ALGEBRA| = EXPAN

EXPAN =

 

=
N

ég§6$1.75*(x-2))—

ITNOGST 
 

 

3:
H
18 'y=-1.73%(x-2>-8.58"'
[COLCTIERFAN]SI2EJFORHM[DESUE[ERSUE] 
 

 

18 'y=-1.75%x--1.75%2-
.08’

(TRIR EHSUE   

Finally, simplify the equation for the tangent line.

= COLCT =
 

 

3:
2

: 'y=3-1.,75*x"
[COLCT[EXFAN]SIZE|FORM[0ESUE[ERSUE]
 

Purge the variables created in this problem section.

{Y X EQ M F LINE IMP [ENTER] [PURGE]

Implicit Functions



 

Integral Calculus
 

This section solves a number of problemsof integral calculus, including
integration of simple differential equations and computation of arc
lengths, surfaces, and volumes. Both symbolic and numerical solutions are
demonstrated with appropriate use of system flags.
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Integration and Free Falling Body

This problem section demonstrates derivation of standard equations of
motion through simple integration. The importance of the constant of
integration is made clear, and how that constantis incorporated into the
solution provided by the HP-28C.

Example: A stone is dropped from a bridge 100 ft above the water.
Compute how long it takes to reach the water and its final velocity.

From Newton’s 2nd law

F=mx .

The only force acting on a falling body is that of gravity.

F=-mg

Combining these,

xX=-g.

This is the equation of motion for a freely falling body. A well-posed
problem requires two initial conditions, the starting position and velocity.
The problem then may be solved by integration.

This solution approach plots the final equation to facilitate root finding.
Start by configuring the plot parameters.

' PPAR
100 =*HE= [STEQ[KCEQ[FMIN[FMAR[INDEF]DRAM
(0,-70 =PMINE

 

W

  
 

 

Plot the displacementas a function of time. Let TM represent the time.
 

'"TM = INDEP= 3
2

B=TRR 
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Start by integrating the above equation. Let GRV be the acceleration due
to gravity. Since the expressicn to be integrated includes no "TM’ terms,
the specified degree of the polynomialis zero.

'-GRV
'TM [ENTER]
O [ENTER]

[{]

 

3 '-GRY'
2 "TH
1: 8.80

PLIN]FHA[INDEFTDRAL 
 

 

 
3:
2
1: '- (GRY*TM>'
[STEQ[RCEC[FMIN]FMAR[INDEF]DRAM|
 

This is an expression for the velocity. At TM = 0 the initial velocity is V0.

VO [+]

Store this for future use.

'VEL [sT0]

 

 
 

 

3:

28

i: |- (GRVETM)+V@ '
STEG:|RLEC:PMIN]FLons[INDEF]DEA|

3:

et
SYEG:FLEG:|FMIN]FHAK[INDEF| DEAN| 
 

Now recall the velocity and prepare for a second integration. The
integrand includes "TM’to the first degree, so a ’1’ is specified for the last
parameter to the integration.
 

 
 

 

3: '~ (GRV*TM)+v@’
2: ‘TH
1: 1,00
ITYNI
 

 

3
2
1 'VO*¥TM-GRY-2*¥TM"2'
WTIDN. 
 

This is an expression for the displacement. At TM = 0, x = X0.

X0 [+]
 

2:
1: 'VB*TM-GRY-2*¥TM"2+X0

ITIIR 
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To put this in the standard form, use the expression manipulation capabili-

ties in FORM.

= FORM=
 

(((%TM)- (CGRV~2)%¥(TM"
27))+X8)
[COLCT]ERFANILEVELTERGET](€1[31  

Move the cursor to the minussign.
   

CCCVBxTMORC(GRY72> # (CTM™
2)))+Xa)
[COLCTIEXFANILEVELJERGET][€1[+]  

Commute the expressions about the minus sign.
  iifii

CC-CCGRY#2)*¥(TM"2> >@<Va
*TM) >+X8>
EEEIEKKEEETIERETENTE  

Exit FORM, make a copy, and save the expression for distance.
 

ATTN 2:
'DST 1: _;_;(éIISR\.-'/2*TI‘1"2 J+VO*TH

(COLCT[ERFAN]SIZE[FORMJ0ESUE[ERSUE]  
Store the expression for use in the Solver menu.
 == 3

= SOLVR= o
IITNY  

In English units the acceleration due to gravity is 32 ft/sec/sec.
 

  

 

32 =GRVE Fm_

i:
[GRv |TM |vo |X0JERFR=]|

The bridge is 100 feet high.

100 =x0 |
 GRYTMvono[EnFks _l
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Since the stone is dropped, the initial velocity is zero.

o i S i _E
Evaluate the expression EQ.

= EXPR= =

 

1
 GRYTvo%0JexFRs]
 

 

[GRY|TM|vo|#ofenFk=]| 
1 '-(16*TM"2)+188'|

 

To find the time required to hit the water, find a root ofthis equation.
Digitize an initial guess from a plot of the equation.

 

 

 

= DRAWE=
W ... [<] [NS]

Assign the seed to TM.

ATTN| |SOLV| =SOLVRE=

=TME

Solve for TM

[ ETME 

 

 

  
 

 

| ~

: ' (162TH2)+108"
kY|TH|VO]2OERFRE]|  

 

!ero
1: 2.58

  
The stone hits the water after 2.5 seconds. To find the velocity, recall VEL

and evaluateit.
 

 

The stoneis falling at 80 feet per second.
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3: '-(16*TM*2)>+1080'
2: 2.90
1: -80.00
ITII..
 



By changing the initial conditions, the equations of motion developed in
the previous example can be applied to a rock thrown straight up.

Example: A stone is thrown straight up
tial velocity of 70 feet per second.

Compute its peak, the time elapsed until it
velocity.

from ground level with an ini-

hits the ground, and its final

Fetch the general equation for distance traveled.
 

CLEAR
 

 

 

2:
1 '-(GRV/2xTM"2>+VYB*TM

+X8'
ECEECEEETNTEE 

Enter the SOLV menu and store the equation for analysis.
 

=STEQE=
= SOLVRE

 

=
M
W

IGTNT 

Theinitial position is ground level or x =0.
 

0 1 1X0

 [GRY ]TH |vo |KoJenFks]| 

Theinitial velocity is 70 feet per second upward, and therefore positive.
 

70 EVWE=

 
1:
GRvTtvoROJERFR=] 

The plot parameters were set in the previous problem. Plot both the velo-
city and the distance equations.
 

 

 

  

 

 
 

  

=psT= T

[=] I7IAA

Store the equation for plotting.

=STEQ=
= DRAW = b—<‘\

| T
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The velocity is the first derivative of the distance; therefore the root of the
velocity equation corresponds to a maximum ofthe distance equation.
Digitize the roots ofthe velocity (where the straight line crosses the x-axis)
and the distance (where the curve crosses the x-axis for the second time).

(<] «.. [ [INs]
[>] ... [>] [INs]
ATTN

 

 

3:
23 (2.38,-3.23)
1: 4.45,-3.23)
[STEQ|RCEC[FMIN]FMARJINDEF]DRAI 

Recall the equation for velocity and save the equation for analysis.

SVELE

= STEQ
= SOLVRE

1

 

 

 

 

31 (2.30,-3.23)
21 (4.45,-3.23)
11 - (GRYETMIHVE'
I2TAII

3:

51 (2.30,-3.23)
1 {4.45,-3.23)
CGRY|TH|Y0JERPRE] 

Enter the initial guess for the root and solve for TM.

SWAP] ETME [] ETM=
 

ero
1: 2.19
GRYTvoJexprz]1]  

After 2.19 seconds, the stone reaches a maximum height. Recall the dis-
tance equation from the User menu and evaluate to find this height.

=DST=

EVAL

 

 

 

 

2: 2.19
1: ;;{éQRV«"Z*TN"Z)+VB*TM

GETEECETTEE

3: (4.45,-3,23)
2% 2.19
1: ’6.56
ECEEEECETRTEE 

The rock reaches a height of 76.56 feet.

Now drop two numbers from the stack and fetch the distance equation for

 
 

 
2 (4.45,-3,23)
I3 ;;éQRV/Z*TMA25+VB*TM
ECEEEEETNTEE  
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= STEQE= %:

=SOLVR= i: (4.45,-3.23)
GRYTMvoRO[EnFkz]|

Enter the guess and solve for the root.

=TME | ETME
ero
: 4.38
GRvTHvo#oJexFks]| 

 

 

The rock hits after 4.38 seconds. Note thatthisis exactly twice the time
required to reach the maximum height. Therefore the time spent going up
is equal to the time spent falling back to the ground. To find the final velo-
city recall the velocity equation and evaluate.
 

 

 

 

 

USER| EVEL= 3:
23 4.38
1: '- (GRV*TM>+v@'
VeLJFFeed111|

EVAL 3:
28 4.38
1: -78.080
ITIR  
 

Note that this number differs from the initial velocity in sign only. The
rock’s final speed is the sameasits initial speed, butit is traveling in the
opposite direction.

Purge the variables created in this problem section.

{TM EQ VEL DST GRV X0 VO PPAR
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Double Integration

This section uses both symbolic and numerical integration to solve com-
mon problems of integral calculus.

Example: Compute the area between the line

Y =x

and the parabola

Y =x2.
0z

The area may be found by computing the double integral f f dy dx.
1 22

To insure a symbolic answer purge the constant and the variable of
integration.

{C Y [ENTER] [PURGE] [<>]

 

 

 

=
N
W
A

  
 

The next four displays show the calculator steps to compute f¢ dy where

¢ =1. Because the result is simplyy, you can choose to skip directly to the
evaluation ofthe integralat its limitsif you wish. If so, simply enter Y,
and proceed to the steps below beginning with "Enter the upper limit".

Otherwise, prepare the stack for a symbolic integration with a first degree
result. Start by integrating a constant.
 

  
 

 

'C 4
'y 3 .G,
1 1: 1.008

Execute the integral.

n 4:
3:
2
1: 'CxY!'   
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Eliminate the constant by equating it to 1.

1 [ENTER]
'C [s10]

Enter the upper limit.

'X [ENTER]
'Y [sTO]

 

 

 

  
 

 

4:
3:
21
1: CxY!

4:
3:
21

1: 'Y!

4:
3:
2
1: 1yt

 

Save a copy of the integrand for later use and evaluate the integral at the
limit.

EVAL

Repeat the process for the lower limit.

'X"2
'Y

 

 
 

 

 

4:
31
2: IYI

1: le

4:
3:
2: lYl

1: IXI

 

Place a copy ofthe integrand in position for evaluation at the lower limit.

EVAL

The difference is the integrand for the second integration.

(-]
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—
=
N
W
H

 Ix.fl\zl

 

 

=
M
N
W
H

 1A

 

 

 

 

 

 

 



Key in the parameters for the integration.
 

 
 

 

{(x 01 4:
3:
2: 1V _VASI

1: { X 8.08 1.80 >

Key in the error bound.

-005 4
3: 'R-xr2!
2: { X 0.00 1.68 >
1: 0.01   

Evaluate the second integral. The error bound provides accuracy to the
number of displayed digits (assuming 2 = FIX ).

(1]
 

=
M
N
W
H

fl8.1
8.37E-4  
 

The area is 0.17.

Purge the variables created in this problem section.

{Y C [ENTER] [PURGE]
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Area Between Two Curves

This section provides a general approach for finding the area between any
two intersecting curves.

Example: Find the area inclosed by the parabola f (x)=x? and the line
y(x)=x+3.

'}‘he arca between two curves can be found by computing the integral

f | f )-y(x) | dx. In this problem the limits will be the intersection

points of the curves.

Enter and store the integrand.
 

 

 

   
 

   
 

   
    
 

CLEAR 41
'ABS (F-Y [ENTER 3

1: 'ABSCF-Y)>!

'AREA 4:
3:
2:
1:

Enter and store the functions.

'X~2 |ENTER 4:
3:
2:
1: 'Re2!

'F 4:
3:
2:
1:

'X+3 |ENTER 4:
3:
2:
1: |x+3|

'Y 4:
3:
2:
1:   
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Plot both curves to find the intersection points.

'F=Y
 

=
M
W
P

|F=YI

 

 

=
M
N
W
p

'KA2=R+3!   
 

Store the equation and set up the plot parameters. If you have no prior
knowledge of the graph of the curves, you can first draw the graph, exit
and modify the plot parameters as shown below, and then proceed with a
second graph.

= STEQ=
' PPAR
5 =*H
 

 

=
M
W

 TTRGTT
 

The rightmost intersection point will become the upper limit. The left-
most intersection point is the lower limit.
the rightmost point first, followed by the

= DRAWS

-+« [1] (NS
W <. [<] [INS]
ATIN

Use the Solver to refine the initial guess.

= SOLVRE

]

Draw the equation and digitize
leftmost point.e

(2.38,53.58)
(-11 48, 2- BB)

G RCEC[FMIN]FMARJINDEF|DFAL |

 

 

 

 
<I

h
w
o
m

—
N
T
N
T
N
T
]

L
] 
 

 

(2.38,3.50)
(-1.48,2.00)

IY968 KONIN

glgn EEUETSE!
: -1.38
IY96 2OTN.

=
M
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Repeat the process for the upper limit.

2
=EXE ] 19n eversa
= : 2.38

[] ExXE I(YNGII

 

 
 

The limits are in the correct order for integration but the variable is miss-
ing. Manipulate the stack to put it in place.
 'X % m

3 = ROLLD= £ -1.58
FOLLD]FICKJOUFNJOROFN]DEFTH]>LIST]   

Now convert the 3 elements to a list.
 

  
 

 

 
 

 

 

 

 

 

3 = LISTS g:

1: { X -1.30 2.30

Recall the integrand.

= AREAE 3:
2: { ¥ -1.39 2.380 >
1: 'ABSC(F-Y)'
ITITGT

Put them in the necessary order.

3t
2: 'ABSC(F-Y>'
1: { X -1.30 2.30
%JFFaE]EC:¥FARER]

Enter the error and integrate.

.005 3: 'ABS(F-Y) '
%5 { X -1.30 2.888%

ITNIGR 
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n 3
3: 7.81
1: 9. 64
ITNIALN
 

The area is 7.81.

Purge the variables created in this problem section.

(AREA F Y EQ X PPAR [ENTER] [PURGE]
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Arc Length

This section demonstrates keystroke and programming examples for com-
puting arc lengths ofrectifiable functions. The program ARC created in
the second exampleis used in a later section entitled "Surface Area".

Example: Find the length of the curve
3vy 2

F(x)= %t_Z)_

fromx =0tox =3.

The arc length of a function is found by evaluating the integral

b

f\/ 1+f “(x)2.

First form the integrand. Enter the given function in terms ofx.
 

   

 

   

 

   

 

4
'((X12+2) 7 (3+2) ) +3 3

1: '(RM2+22M (372073

Specify the variable of differentiation.

'X 4
3:
2: '(XM2+42)7M (372073
1 : 1 x 1

Take the derivative and simplify.

%
1 '2%X%1.50%(X2+2)~

8.58-3"'

Collect terms.

= COLCT = 3
2:
1: '(2+X"2)78.50*X"
[COLCT|EXFAN]SI2EJFORMJOESUE[ERSUIE  
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Square the derivative, add one, and take the square root.

¥ 1 [+] V]

This is the differential of arc length.

 

2
I |1¢SQU(2H%°2)"0. 505X
IRRSTS(T 

Place the list containing the variable and limits ofintegration on the stack.

{X 0 3 [ENTER]
 

3-

H
N 'T(SR{C2+X"2)28. 50%,,

{ X 8.80 3EIB}
[COLCTJERFAN]ST2E|FORMJOESUE[ERSUE  

Specify the accuracy and perform the integration.

- 005 [ENTER]
n

The arc length is 12.00.

 

3
2
1
!

.02
LCTJERPAN]STZE|FORMJOESUEJERSUE= 
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Example: Compute the arc length off (x)=x2forx =0 tox =2.

For repeated problems, a simple program facilitates the computation of
arc length. The program below differentiates the function with respect to
X. This means that functions must be entered in terms ofX .

The partial derivative symbol ’d’ is obtained by pressing the key.
 

 

CLEAR 2
« — X '\/(1+3X(X) AD i: ; 3 x '"J(l+aX(x2m2H!

ENTER (COLCT[ERPAN]STZE[FORM|OESUE[ERSUE]
 

Examine this function to see thatit is equivalentto the integrand in the
previous example.

Store the program in the variable ARC.
 

'ARC %‘

i:
COLCT|EXFAN]SIZEFORM[0BSUB|ERSUE 
 

The program below first stores the error in the variable ER , then converts
the next three levels ofthe stack to the list required for integration. The
function is then brought to level 1 and operated on by the ARC function.
Finally the function is returned to its position and the error is recalled.
The integration completes the process.
 

  

 

« 'ER' STO 3 —LIST 1: « 'ER' STO 3.00
SWAP ARC SWAP ER 2LIST SWAP ARC SWAP

ER J »
/

Store the program ARCP.

'ARCP 3:
2:
i:

  
Computing the arc length of any function now only requires placing the
correct information on the stack. This program requires the function on
level 5, the variable of integration on level 4, the upper limit on level 3, the
lower integration limit on level 2, and the error bound on level 1.
 

XA2' Xxr o0 2 .005 3: a.68

4 Z89
(>LISTILISTS|FUTGETJFUTIGETI] 
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Compute the arc length.
 

 

USER| = ARCP = 3:
2: 4.65
1: a.062
I3O3TSI
 

Purge the program ARCP and variable ER. Program ARC is used in the
next problem section.

'ARCP 'ER
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Surface Area

The function created to compute arc lengths can be extended to comput-
ing surface areas.

Example: Compute the surface area of the solid formed by revolving
the section off (x)=x2 between 0 and 1 about the x axis.

In this problem the integrand is expressed in terms of a function ofx. The
surface area can be computed from

b

S =[2nf @)V1+f "(x)2.

The square root factor in the integrand is identical to the ARC function
used in the problem section entitled "Arc Length". If you have not already
done so, key in the ARC function from the previous section. Enter the
integrand using ARC as a function.
 

   

 

4
' 2xexFXARC (F g

1: '2¥n*¥F*ARCCF) !

Enter the function to be integrated.

'X"2 4:
3:
2: '2*w*¥F*ARCC(F) !
1 : ! x/\z !   

Store the function by the corresponding name appearing in the integrand.
 

'F [STO]

=
M
N
W
H

'2#w*¥F*ARCCF ) !   
Purge the variable ofintegration to ensure that the name is notin use.
 

'X [PURGE]

—
=
N
W
h
H

 '2*#n*¥F*¥ARCC(F) !   
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Enter the variable of integration and the limits.

{X 0 1 [ENTER]
 

=
M
W
A

 
'2¥m*F*ARCCED !

{ X 0.60 1.80 >
 

Enter the error bound and compute the surface area.
 .005 3

n 2t 3.81
i: 8.62  
 

The surface area is 3.81.

Purge the variables created in this problem section.

(F ARC [ENTER] [PURGE]
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Arc Length of Parametric Equations

It is often necessary to work with equations expressed in terms of a
parameter. The coordinates of a particle moving in a plane as a function
of time is a common example.

Example: Compute the length of the curve corresponding to the equa-

tions

3

2 2

x()=% and y(t)=£2L;—1L

fort =0tot =4.

In parametric form the arc lengthis

b

L =[Vax?+dy?.

Enter the integrand in terms ofthe differentials ofx andy . This general
relationship can be used for any set of parametric equations with 7' as the
parameter.

GLEAR 3
'V (SQ (3T (X)) +SQ (3T (Y S
ENTER )

 

SRCAT(XI>+SRACaTCY

 
¢
2
 

Save the parametric arc length in PARC.

'PARC
 

=
M
N
w
W
-
H

 
 

Enter the parametric equations. Store them under the namesX and Y as
expected by the PARC function.

'TA2+2
'(2xT+1)~ (3+2)=3

 

ITA2/2I

'(2¥T+127(372)>/3"—
=
M
N
W
-
H
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'Y [sTO]
'X [s1O]

 

 =
M
N
W
h
s

  
Now integrate with respect to 7 from 0 to 4.

First recall the integrand.

= PARC=
 

 

2:
1: ;{§$Q(6T(X))+SQ(6T(Y

IU77TI
 

Key in the variable of integration and the limits.

{T 0 4 [ENTER]

Enter the desired error bound.

. 005 IENTER

Now perform the integration.

/]

The arc length is 12.00.

 

 

3:

 

 

  

 

 

2t 1 ICSRCATIRI I+SA(AT (o
I: °1 6.00 4.00 3
ITTIS

3t ' T(SA(ATCRI I+SA(ATC,n
2 °T 0.00 4.00 3
ITTIN

3:

2 12.00
i: 6. 06
ITTNN
 

Program PARCis used in the next section, andX and Y are replaced by
new functions.
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Surface Area of Parametric Equations

The function created to compute arc lengths can be extended to compute
surface areas. The surface area can be found by computing the integral

b

S =[2rYVdx?+dy?

Example: Determine the surface area of the sphere formed by revolv-
ing a circle about the x axis.

x(t)=2cos(t) y(t)=2sin(t)

These are the parametric equations for a circle of radius 2.

Note that the integrand includes the parametric arc length as a factor. Use
the function defined in the previous section in the integrand. Clear user
flag 35 for numeric evaluation of = when it is supplied as a limit to the
integration.
 

CLEAR| 35 CF |ENTER g:

' :
2xmxYxXPARC |ENTER 1: '2xw*Y*PARC"

IEEII3DN 

 

 

Now enter theX and Y equations.
 

 
 

 

  
 

   
 

  

'2xSIN(T g= 2*w*Y*PARC: ‘2%m ,T '2%SINCT) !
i[vTeiec]T||

'Y 3
It ' 2%*Y*PARC
IN77NIN

'2xCOS (T g 2m*Y*PARC: '2¥m ,I: ' 2%C0S(T)
i[vTriec]]|

'X 3I: ' 2%WY£PARC '
iLvTreec]_[[|  
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Key in the variable and limits of integration. With flag 35 cleared, = is
evaluated to its numeric representation. The integration that follows
requires a non-symbolic representation. Convert the parameters into a
list.

T O «n |ENTER g:
_L1IST= : '2%¥wxY*PHRC'

3 [usT] SLISTE I: (T 6.00 3143

 

 
Key in the error bound and perform the integration.
 

 

. 005 [ENTER 3:
[/] 2: 98.27

: 8.25

 

Note that 50.27 is 4nr2.

Purge the programs and variables created in this problem section.

{X Y PARC [ENTER] [PURGE]
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Volume of Solid of Revolution: Method of
Shells

This section demonstrates computation of the volume of a solid of revolu-
tion by the method of shells.

The method of shells requires evaluation ofthe integral

b

[2mxF (x)dx

Example: Find the volume ofthe solid formed by revolving the curve

F(x)=e*

from x =0 tox =3 about the Y axis. Consider the behavior ofthe integral
as the region of integration is extended.

Form an algebraic expression for the integrand including a general func-
tion F (x).
 

   

 

4:
' 2xaxXxF %

1: '2¥mEXEF!

Store the integrand.

'SHEL g:

21
i:   

Now enter the function. This must be a function ofX as specified in the
volume integrand.
 

'"EXP(-X"2

 : 'EXP(-X"2)>!   
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Store the function by the name used in the SHEL program.
 

   

 

  

 

  

 

  

 

  

 

'F 4:
3:
2
i:

Recall the expression to be integrated.

S SHELE g:

1: '2%mER*F!
[FJdswec]|||

Place the variable of integration and the limits on the stack.

(X 03 3
2: ' 2ETEXEF!
1: { X 6.68 3.68
ITIIR

Specify the error bound ofthe integration.

. 005 [ENTER] 31 2REREF
%5 { X 8.68 3.898%

[Dweel1[[

Now integrate the function.

3:
1 23 3.14

1: 0.062
GTIDN

The result corresponds to = within the error specified.

Reset the display to show four digits.

[MODE] 4 =EFIXE 3:
213 3.1483
1: 8.8158
ECE( F1x JIESETNIkap ]   
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As expected, the accuracy is limited by the specification of two digits.

Perform the integration again, increasing the accuracy to produce four
digits to the right of the decimal.

SSHELE
{X 03
.00005
n

 

  

3: 0.0158
2: 3.1412
1: 0.068082
GTIN
 

The desired accuracy was not achieved. By extending the region of
integration, it may be possible to generate more digits of accuracy.

=ESHEL=

(X 0 4
.00005
n

 

 

 

3: a.0862
2: 3.1416
1: 8.08082
GECTYIN.
 

This is indeed = to four digits. This process does not prove that the
integral, taken to infinity, converges to x. That proof requires an explicit
solution to the integral. The curve that was specified is, of course, the
"bell curve" used frequently in statistical analysis.

Purge the programs and variables used in the last two sections.

{SHEL F
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Volume of Solids of Revolution : Method of
Disks.

This problem section computes volume of solids of revolution by the
method of disks.

The method of disks requires evaluation of the integral

b

fnf (x)%dx .

In general, for a given integral, the smaller the error bound the longer the
integration will take. The appropriate choice of error bound depends on
the problem being solved, but the method to reach a solution remains con-
stant.

Example: Compute the volume of the solid formed by revolving the
function f (x)=x2 from 0 to 1 about the x axis.

Key in the first program for the general form of the integrand.
 

   

 

4:
« — X '"mxx"2 g:

1: € 3 x 'wEx"2' %

Store the program in the variable DSK.

' DSK 3
2
i:   

Key in the second program. This program puts the function and integra-
tion parameters in the appropriate form on the stack and calls DSK for

the general form ofthe integrand. It then performs the volume computa-
tion.

« 'ER' STO 3.00 —LIST 2
SWAP DSK SWAP ER | 1

 

« 'ER' STO 3.0008
2LIST SWAP DSK SWAP
ER J »   
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Store the second program by the name DSKP.

'DSKP
 

=
M
N
W
H

 
 

Now enter the function and integration data.

'X~2''X' 0 1 .005 [ENTER]
  

  
 

 

4: ‘X!
3: 0. 8088
28 1.08088
1: B.0850

Execute the program.

= DSKP= 3:
2% 8.6283
1: 0.0831

|ER_Joske]osef|]] 
 

The computed volume is .6283. The explicit solution to the integral is 7/5.

For greater accuracy, increase the error bound as appropriate.

Purge the programs and variables created in this problem section.

{DSK DSKP ER
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Step-by-Step Examples
for Your HP-28C

Calculus contains a variety of examples and solutions to show
how you can solve your technical problems more easily.

® Function Operations
Definition, Composition, Analysis, Angle Between Lines
and Functions

® Differential Calculus
Maximization/Minimization, Differentiation and Tangent
Lines, Implicit Function Theorem

B Integral Calculus
Integration and Free Falling Bodies, Double Integrals and
Area Between Two Curves, Arc Length and Surface
Area, Volume of Solids of Revolution
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