
An Easy
Course In

Using The HP-28C

AGRAPEVINE PUBLICATION

By John W. Loux and Chris Coffin

Illustrated by Robert L. Bloch

AN EASY COURBSE IN

USING THE HP-28C

By John W. Loux

and Chris Coffin

Illustrated by Robert L. Bloch

Grapevine Publications, Inc.

P.O. Box 118

Corvallis, OR 97339-0118 U.S.A.

Acknowledgement

Thanks and appreciation go once again to the Hewlett-Packard Company for

continuing to produce such top-quality products and documentation. For the

sake of brevity, the full name of this calculator, "HP-28C," has been shortened to

"HP-28" throughout this book.

© 1987, Grapevine Publications, Inc. All rights reserved. No portion of this book

or its contents, nor any portion of the programs contained herein, may be repro-

duced in any form, printed or mechanical, without written permission from

Grapevine Publications, Inc.

Printed in The United States of America

First Printing — August, 1987

ISBN 0-931011-17-5

DISCLAIMER: Neither the authors nor Grapevine Publications, Inc. make any express or

implied warranty with regard to the keystroke procedures and program material herein

offered, nor to their merchantability nor fitness for any particular purpose. These keys-

troke procedures and program material are made available solely on an "as is" basis, and

the entire risk as to their quality and performance is with the user. Should the keystroke

procedures or program material prove defective, the user (and not Grapevine Publications,

Inc., nor the authors, nor any other party) shall bear the entire cost of all necessary correc-

tion and all incidental or consequential damages in connection with, or arising out of, the

furnishing, use, or performance of these keystroke procedures or program material.

CONTENTS

Introducing...The Introduction

What Is This Tool?

What Is This Book?

What's In This Book — and What's Not?

How to Picture Your HP-28

The Display

The Keyboards

Posting Memos: Interactions Between the Keyboards and the

Display

The Menu Keys: Your Command Card File

Immediate Execution ("Do-It-Now") Keys

Messages From the System — Memos From Your Staff

Status Messages: The Annunciator Area

A Tricorder Reading

Quickie Quiz

Quickie Answers

Making Your HP-28 Work For You: The Command Line

Typing Characters Into the Command Line

Changing A Character in the Command Line

Adding and Removing Characters

@\s), @0EL), and
@NEWLINE), (4) and (V)
The Key

(«Jand
Item Delimiters and

and
Command Line Quiz

Command Line Answers

Real Numbers, the Stack, and Postfix Notation

Real Numbers — and the Real World

Representing Real Numbers On the HP-28

Scientific Notation on Your HP28

12-Digit Accuracy: Rounding Error

10

12

13

16

17

18

26

32

35

37

38

39

40

41

42

43

47

50

53

56

o7

60

62

65

66

67

68

70

70

71

Magnitude: How Big (or Small) Can You Get?

Posting Real Numbers: (CHS), and Display Modes

Display Formats

The Stack and Postfix Notation

Real Number Commands: 0-, 1-, and 2- Number Operations

Arithmetic Practice

Arithmetic Practice Solutions

STACK Operations

's Second Job

The Function

How to the Stack

Strenuous But Practical Stack Practice Problems

S.B.P.S.P.P. Solutions

The "Stuff' Upon Which the HP-28 Works

An Equal Opportunity Calculator

The HP-28's Philosophy of Information

Real Numbers

Complex Numbers

Pop Quiz: Simple Questions About Complex Numbers

Simple Answers to Simple Questions About Complex Numbers

Vectors

A Visit With Vectors

Results of A Visit With Vectors

Arrays

Array Aptitude Test

A.A.T. Results

Characters

Character Strings

Character String Query

C.S.Q. Answers

Names

Name Games

Name Game Winners

Bits

Binary Integers

Binary Integer Test

B.I.T. Answers

73

76

78

81

82

88

90

91

92

93

93

105

106

109

110

111

112

114

121

122

123

133

134

136

141

142

145

146

153

154

155

161

162

164

165

167

168

A Pause For the Cause

Lists

List Lessons

List Lessons Learned

Procedures: (a) Postfix Programs

Program Problems

Program Problem Solutions

Procedures: (b) Algebraic Expressions

Algebraic Aptitude Test

A.A.T. Scores

Procedures: (c) User-Defined Functions

User-Defined Function Fun

U.D.F.F. Consequences

Appendices

Introduction to the Appendices

Appendix A: Algebra

Appendix B: Using the Equation Solver

Appendix C: Plotting

Appendix D: Postfix Programming

Appendix E: Keyboard Error Recovery

Editorial

169

170

175

176

177

181

182

185

193

194

197

201

202

206

207

215

221

225

230

234

 2

/
\
/
/
/
/
/
/
/
\
(
/

\
\
N
\
\
R
S

h
S
I
S

INTRODUCING..THE INTRODUCTION

Well now...so you have an HP-28, eh?

Now the questions are, "What do you want to do with it?" and (mostly), "How?"

These are the right questions to ask, of course. And you may have heard that

once you've decided what you want to do, the Aow should be intuitively obvious —

even to the most casual observer.

That's just not true. There's nothing wrong with your intuition or your personal

casualness index. It's simply that this machine is not all that simple. Even if

you're experienced with other HP calculators, this one is so radically different

that you may find yourself "starting over" in many respects. You may still recog-

nize some familiar HP stack-oriented arithmetic, but that's about where the

similarities end. For the most part, the HP-28 will probably be a "brave new

world."

Of course, as with all calculators, the HP-28 is only a tool, a problem-solving tool.

So is a hammer. And though it's fairly obvious (even to extremely casual ham-

mer-observers) that a hammer is good for pounding, it takes more than casual

observation to use it effectively in building a house. It takes time and practice.

So it is with the HP-28. Being just a bit more complex than a hammer, it does re-

quire more effort on your part to use it effectively. But once you make that ef-

fort, you'll be amazed at the "houses" you can build with it.

That's the purpose of this book — to help you learn to use a tool. Just be sure to re-

member that it is just a tool, not a magic box that gives you the answer to your

every question. It can't check to see if you've given it the right numbers to

"crunch,” nor can it catch you when you're attacking a problem altogether

wrongly. It's an inanimate mechanical aid — not a replacement for your under-

standing of the problem. You must understand both your tool and your problem

in order to use the one on the other.

8 AnEasy Coursein Using the HP-28

What Is This Tool?

Before you begin to use the HP-28 as such a problem-solving tool, you'd better

have at least some idea that it's actually the right tool for the job.

This calculator is not omnipotent. It does some things very well and other things

not so well. It is flexible, but for some tasks, it may cost you more effort to bend it

to your will than it's worth. In those cases, you would come out ahead by choos-

ing another, more appropriate tool.

So what is the HP-28 really "good at?"

Mostly, it's a math engine. It provides you with an extensive set of mathematical

operations. And it uses these operations on a fairly comprehensive set of mathe-

matical "things": real numbers, vectors, arrays, complex numbers, and algebraic

expressions, to name a few. So if a lot of your problems involve such math, then

the HP-28 is probably as good a "hammer" as any you will find.

But it's not a generalized computer. It doesn't have "bigabytes" of memory, nor

the means to save your calculations anywhere else (i.e., on magnetic tape or

disc). It can't run a very large variety of "user-friendly" software. For example,

you wouldn't want to try to type your doctoral thesis on it.

Of course, with some considerable effort you could coerce it into doing many dif-

ferent things, but don't be surprised (or upset) if the results are not the best. After

all, you can drive a screw with a hammer, but if you do and then things don't

turn out very well, don't go blaming the hammer for not being a screw driver. It

just wasn't built for that.

Introducing... the Introduction 9

What Is This Book?

There are (at least) four ways to approach your learning about the HP-28:

1. Be Joe Computer-Whiz, for whom it is either intuitively obvious or the es-

sence ofjoy to play with such a machine until it yields all of its secrets;

2. Apply brute force — not knowing where to start, but pressing buttons anyway,

hoping that something meaningful will result;

3. Resort to tears and despair (usually as a result of method 2);

4. Ask for some help and explanation (usually as a result of method 3).

If you're now using method 4, then this book is meant for you. And there's abso-

lutely nothing wrong with that. It carries no shame or stigma to say "I don't un-

derstand this yet." You just haven't yet seen it explained in a way that "clicked"

for you. This book is merely a different way to explain the HP-28.

Admittedly, it doesn't appeal to everybody. You may find the pace too slow or the

explanations too meticulous. But chances are, there is something presented here

that could "shed more light on your HP-28" for you. So relax and browse, if noth-

ing else. A lot of people discover the same thing — that such a slow, classroom-

style approach seems to work better than the "brute force” method.

10 AnEasy Course in Using theHP-28

Above all, please don't feel that you're being "talked down to" by this Easy Course.

Just because the printing is large and spread out and the wording is simple and

"folksy,"” you shouldn't take this as any commentary on your technical expertise

or vocabulary. The subjects here are not trivial, nor is your intellect being trivial-

ized by seeing them presented in this fashion. The only reason for all this is to

communicate to you the skills and knowledge you need to make the best use of a

very sophisticated tool. Apparently, this method of communication often helps.

And how does this method go? Here are a few things to know about the book and

its classroom approach:

1. Every so often, you'll come across a little set of quiz problems. These are just

some exercises to help you make sure you've "got things under control” before

you move on. If you have any major difficulties with the questions, you'll find

the answers immediately following, along with page numbers so you can go

back and review if you wish.

2. At certain points along the way, you'll be given the option to skip ahead if you

feel that you already know the material being discussed. If you do skip, it will

usually be to the quiz at the end of that section. This way, you can be sure

you're really as up to speed as you thought.

3. There's no race, no time limit, no clock, no exam proctor or #2-pencil-

grading-machine breathing down your neck. This is your Course, to be tak-

en at your speed. Who cares if you go back and reread something a couple of

times? The idea is to learn about your calculator, not to break a speed record

for doing so.

Introducing... theIntroduction 11

What's In This Book - and What's Not?

This book is not a re-packaging of the manuals that came with your HP-28.

Many keys, features and functions on your calculator just don't appear any-

where in this book — and this is no accident. Why should anyone try to document

every last aspect of the machine? That's what the HP manuals do so well; why

try to improve on them?

Instead, what you're going to see here are the fundamental concepts and princi-

ples of the HP-28. Of course, you'll need to learn the mechanics of the keyboard

and the display first, but the real idea here is to orient yourself and move around

in the generalized data-manipulation world of the HP-28. By the time you finish

this Easy Course, you should feel quite comfortable in using and combining the

different available data "objects" to help solve your math problems.

But all the while, keep in mind that this is only an introduction to the HP-28.

Why just an introduction? Two reasons:

First of all, this book is meant to help you get enough "calculator savvy" to begin

building a more exhaustive understanding of this tool on your own terms — and

in your own way. Hopefully, it's enough to get you on your way down that road,

without unduly burdening you with a load of preferences and biases as to how

you ought to actually apply this tool to your everyday tasks. At some point you

must take over and decide for yourself exactly when and how to use your HP-28.

Secondly, there's only so much room in one book!

12 AnEasy Course in Using theHP-28

’Il/

/Il,,l/’

.
[y

v {9 /1)o ’
[, I'l’ | .

1hred Mes
0 /4 '

3 =

N

HOW TO PICTURE YOUR HP-28

Before you can really do anything in the world of the HP-28, you'll need to know

how to move around in it. Learning these mechanical skills isn't always a whole

lot of thrills — but it is necessary.

So you need to realize right up front that these next three chapters are really just

a set of lessons in controlling and communicating with your calculator. Boring

as that may sound, don't underestimate the importance of these skills. OK?

Now then: A picture is still worth a thousand words, so it makes some sense to

have a picture of the HP-28's world to help you understand it.

Of course, the picture you'll need isn't exactly an 8-by-10 color glossy of the cal-

culator (with circles and arrows and writing on the back).

First of all, who needs such a photo when you have the real thing? And anyway,

you may already know from personal experience that you can stare at the phys-

ical HP-28 until drops of blood bead up on your forehead and you still won't come

any closer to understanding how the machine works.

So, because that's what you really want to know — Aow the thing works and not

what it looks like — you'll need instead a picture of something that doesn't physi-

cally exist, the logic of the calculator.

Unfortunately, the camera that can take that picture hasn't been invented. But

you might try another method instead: mind games....

14 AnEasy Course in Using theHP-28

The name of this particular mind game is "Easy-Course-Warmer-Upper-HP-

28-Mental-Picture-Of-Its-Logic." (Sort of catchy, don't you think?) It's for all

ages and requires only one player and one mind (and since you seem to "have a

mind" to use your HP-28, you'll do quite nicely, thank you).

As you might suspect, the object of the game is to paint for yourself a mental pic-

ture you can use as a map to explore the unfamiliar world of the HP-28. But

there are no rules; you just make it up as you go along.

So, if you're ready, flex your mental muscle, and sure enough, a picture begins to

form in your mind's eye....

The first thing you see is, not surprisingly, the HP-28 (see it there?). Of course, as

you've already observed, this doesn't get you very far (especially if, in your men-

tal picture, you've forgotten to open the calculator).

So you concentrate even harder, focusing in on its two most obvious features, the

display and the keyboards, and slowly but surely, a better picture forms....

You're the newly-elected president of a very talented little company of mathe-

maticians who make their livings by solving problems for others. By prior ar-

rangement, these mathematicians have their offices inside the HP-28.

Of course, as president, your job is to properly delegate and assign tasks, so that

the overall results are those requested by your clients. You're the go-between,

understanding and translating your clients' needs into terms that your staff can

understand and act upon.

How toPicture YourHP-28 15

The Display

Think of the display of your HP-28 as a bulletin board, and picture it that way.

It's how you communicate with your staff (the calculator).

Upon reflection, you'll find that this makes quite a bit of sense because the display

is interactive. That is to say, it changes as you and the calculator do things to

change it.

As with a real bulletin board, messages are posted in the display by you (for the

machine) — problems to solve, numbers to store or "crunch", etc.

And messages are posted by the machine (for you) — status reports, information

and graphs for your inspection and correction.

You'll see as you go along that your bulletin board is quite well organized with dif-

ferent messages from different departments posted in different areas on the

board. And you'll also find that, very much like a real-world bulletin board, your

display bulletin board can become cluttered. New messages can obscure or even

"bump off" old messages.

Not to worry though. There are ways to tell your "staff” that whenever they

need to post messages that would "bump off" other ones, they should save such

bumped messages, just in case you want to look at them again. Your staff will

obey this — and all your instructions — if you make them clear.

Actually, all things considered, you have a fairly well-organized, imaginary

math-problem-solving business here.

16 AnEasy Course in Using theHP-28

The Keyboards

The next areas to notice are the keyboards (and you should probably continue to

think of them as two distinct keyboards rather than as two halves of one key-

board because there are some significant differences in how each is used).

Continue with your mental picture: If the display is your bulletin board, then

you can envision the keyboards as your typewriter or dictation recorder. After

all, as president you need some way of creating memos and messages for posting

on the bulletin board, right? OK, draw it in your mind as a typewriter (got it?),

and look at how this typewriter is arranged.

First, look at the left-hand keyboard. If you pay attention only to the white let-

ters on the keys, the left-hand keyboard really does look like a typewriter with its

keys rearranged. And indeed, these keys are used for typing words and phrases

(ignore the other, less obvious things on the keyboard for now. You'll come back

to them later as you need them).

Likewise, if you look at the right-hand keyboard and notice only the white keys

with black lettering, you see what appears to be a simple, four-function calcula-

tor. Again, this is how it ought to appear; that's exactly what those keys are for

(and again, ignore for now the other, less self-explanatory keys.)

So, as a new president, you're beginning to at least find your way around the of-

fice. Review your picture up to this point:

You have a bulletin board (the display) through which you communicate with

your staff (the HP-28 system). You also have a simple, desktop calculator and a

typewriter to use in writing memos for posting. Not bad.

Next thing to figure out: How do you actually post memos?

How toPicture YourHP-28 17

Posting Memos: Interactions Between the Keyboards
and the Display

As you might expect, in order to get any work out of your staff, you need to tell

them what to do —1i.e. post a memo, after composing it on your typewriter.

Of course, right now is when you realize that your typewriter actually types di-

rectly onto the bulletin-board (quite a high-tech office, really).

Unlikely? Well, yes, it's true that things don't work exactly like this in the real

world, but it doesn't stretch your imagination too much to picture it this way

nevertheless.

Now then, it's time for everyone's favorite game (yep — even company presidents

like to play):

"Press the Pretty Buttons and See What Happens."

But before you do that, stop and think for a minute: Whatever memos are posted

on that bulletin board now are from the previous administration (heaven forbid).

Better clean up the bulletin board so that everyone will know exactly who to

blame (you) for anything that appears hereafter.

Be forewarned, however: As the new president, you're really going to clean

house here. Nothing whatsoever will remain of any numbers, programs, or oth-

er valuables that may now be in your HP-28. This will be a total reset of the ma-

chine. If you have already stored something meaningful in there, you'd better

make a note of it now, for you'll need to re-key it in later.

Ready?

18 AnEasy Course in Using theHP-28

ScrubAnd Dust:

Here's How:

Reset your HP-28 to the status it had when it left the factory.

Because this is such an all-powerful destructive action to

take, the keystrokes are not at all simple; there's very little

danger of your doing this by accident. Press and hold down

the key. While holding it down, press and hold down the

key (upper left of the right-hand keyboard). While hold-

ing both those keys down, press and release the (») key (upper

right of the right-hand keyboard). Now release the key.

Now release the key.

You'll hear a beep and see the Memary Lost message in

the display. Press the key once again to clear the mes-

sage, and you're finished. After doing all this, your display

will look like this:

 M
R
I
W
p
A

OK, now everyone in your company should be ready to receive instructions from

the new chief.

And now you're ready to try your typewriter to see its effects on the bulletin

board. Of course, you'll notice that the board (the display) isn't totally bare. Don't

be too concerned about what those remaining numbers and colons mean. For

now, just watch them move around as you begin to use your typewriter....

How toPicture YourHP-28 19

(At this point, if you already know how to type and post message and command

memos, how to use menus and immediate-execute keys, then you can probably

skip ahead now to page 39. Otherwise, stick around.)

Go: Find the key in the upper left-hand corner of the left-hand keyboard.

Press it once, and then look at the display. You should see this:

=
a
l
0

D
E
E

E
N

E
N

"Whoa!" (you undoubtedly say), "that's quite impressive!" Not at all (shucks). Ac-

tually, here are the really important things to notice:

Firstly, notice that almost everything that was already in the display was pushed

up one line — to make room for the newcomer on the bottom line.

The space opened up at the bottom is lovingly known as the command line. In

your mental picture, this is where the things you type on your typewriter are

first put onto the bulletin board.

Secondly, there's a flashing, empty box immediately to the right of the H.

This box, called the cursor, shows where the next character will be placed if you

type another one (notice that your typewriter does indeed produce characters —

not just letters; it can type other things, such as numerals and special symbols.

All of these things are collectively called characters).

20 AnEasy Course in Using theHP-28

Next: To prove to yourself what this cursor (the flashing box) is for, find (B) on

the left-hand keyboard and press it.

D
—
=
a
0
d

E
U

E
E

EE
N
E
E

O

The B is placed where the box was, and the box is moved one space to the

right — to where the next character will be placed. And so on.

Important point: You will see the cursor only when typing in the com-

mand line.

By the way, if you press the wrong letter key while using the command line, use

(«) to correct it. (@) is the same as the backspace key on a typewriter keyboard.

That is, by pressing it, you move the cursor one space to the left and remove the

character that was there.

If you use (@) to remove the last remaining character, the command line goes

away. If you keep pressing («) after that, nothing more will happen.

Play with it, if you wish (then restore your display to the way you see it above).

How toPicture YourHP-28 21

OK, since you're a new chief executive trying to learn the ropes around here, do a

trial run: Pretend that what you've typed so far is actually something meaning-

ful that you'd like to post on the bulletin board.

Give It A Whirl: Seeing that the cursor is still blinking merrily, you press

ENTER).

The command line goes away and the message is posted.

You see:

=
M
W
A

IHBI

What can you learn from this?

1. The message was posted at the bottom of the bulletin board. It was put in the

first spot, indicated by the 1% .

That's what those numbers on the left-hand side of the bulletin board are —

level markers. They just tell you the age of each message on the board, the

youngest (most recent) ones going on at the bottom.

And as in any normal office, those newest postings are always the most inter-

esting. If anything is to be done by your staff, therefore, they will look first at

that bottom (the last) memo you've posted.

22 AnEasy Course in Using theHP-28

2. You're already seeing the work of the "memo poster" — that loyal "office boy"

on your staff, whose job it is to make sure that your posted memos are given

the space and attention they merit.

Of course, this memo poster has worked here longer than you have, so he

knows enough to do certain things without being told all the details. After all,

weren't you wondering just who was actually cleaning and rearranging the

bulletin board to make room for the command line? And who was putting

that cursor up there?

And note that the memo poster has put single quotation marks around your

message. Why? Because he didn't recognize the memo as anything but a

message to be remembered (e.g. "softball practice today at 6:00"). Therefore

he didn't do anything special to or with the message; he just posted it.

3. The command line then went away. By posting something with the

key, you've told the memo poster that you don't need the command line any-

more, so he clears it away — to leave more space on the bulletin board for

messages.

4. The cursor went away, too. As you know, that cursor will appear only when

you're typing in the command line — and the command line is gone now.

How toPicture YourHP-28 23

Now for the real test: Post something that really is a command — a memo that

someone in your staff knows is an explicit request to do something.

Try This One: Type, from the left-hand keyboard, (DJU]P).

The display at this point shows nothing that you haven't seen

before (just different characters). And everything was pushed

up to make room for the command line, and the cursor is sitting

there, telling you where you are. No surprises, right?

Now press Here's what you should see:

-
3:
2k '"AB !
1: 'HE'

And here's why you see it:

DUP is indeed a command that someone in your staff understands. In this case,

that someone is the memo poster himself; he recognizes it as a command intend-

ed for him and, without hesitation, he does what it tells him to do. He doesn't

even bother to post it — he just does it.

24 AnEasy Course in Using theHP-28

DUP is shorthand for "DUPlicate the last message on the bulletin board."

The memo poster reads this and quickly makes a copy of the bottommost memo

(i.e., the memo at Level 1). Then he pushes the old memo (' HB ") up the board,

and posts the new memo (the copy of ' HE ') as the last message on the board.

No real mystery, right?

And keep this in mind: To you, there's no real difference between posting a com-

mand memo and posting any other kind of memo. Either way, you can just type

it in and press [ENTER].

The difference to your staff is whether or not someone knows what to do with it.

In this case, your office clerk — the memo poster — was the person responsible for

carrying out the command, and he did so immediately.

Now stop and recap for a minute: What all do you now know about this HP-28

"staff" you have working for you?

You've seen basically how you and your office/business work together — how the

common language currency is the memo. You also know how to write and post

these memos, and you know that there are basically "information” memos and

"command"” memos.

Are you starting to feel more at home in your new position (a couple of ferns and

some pictures of the family ought to just about do it, then, eh)?

Weeell...unfortunately, being somewhat new at the job of president, you don't yet

quite know all the commands you might need for working with your staff.

But all is not lost. You do have a command card file.

How to Picture YourHP-28 25

The Menu Keys: Your Command Card File

The key to any efficient office is organization. And though you may not realize it

yet, your office is organized "to the max."

You have a command card file, a file containing virtually every command that

your staff can execute. Not only that, being a card file, it has index tabs (those

little category names that stick up out of the card file, effectively dividing the file

into sections). It's about time to explore this card file and see how it works, but

before you do that, you should first know about this:

The @@ ('Shift") Key

See that red key on the right-hand keyboard? Now notice that most of the keys

on both keyboards have red words or symbols written above them. This is not a

coincidence.

Up to now, you've assumed that when you press a key, it will produce the action

or character written on the key face (e.g., pressing causes an to be placed

into the command line).

Well, by pressing the red key and then any key with a red word or symbol over it,

you'll produce whatever action or character that's written in red over that key.

For example, press fY). What happens? A % is written into the command line.

And < just happens to be what's written in red above the key. The red key is

called the shift key, because it shifts the operation of the keys to a second set of op-

erations — just like the shift key on a typewriter.

(If you have indeed pressed JY), then press («) now, before you go on.)

26 AnEasy Coursein Using theHP-28

Back to this card file you were going to explore. Notice the top three rows of keys

on the left-hand keyboard. Most of these keys have red words above them — as

do the keys in the second row on the right-hand keyboard. These keys are the

index tabs for your command card file. As in a real card file, if you select one of

these index tabs, you should find a logically-related group of "things" under it.

Try One: Press (which is reallyfifARRAY)). You should see:

=
2 'AE"’
1: 'AE"’
RERY|AREY 0¥

As you look at this, you should realize:

1. The words in the black boxes at the bottom of the display are all commands.

What's more, they're all related — they're all array commands. ARRAY is the

red word over the key, which you just pressed. In other words, you select-

ed the ARRAY index tab, so you're given this set of array commands.

2. A set of commands such as this is called a menu, because it's a list of items

from which one chooses, just as in a restaurant.

3. A menu's appearance in the display moves everything else on the bulletin

board up one line. Notice that this doesn't make the memos any older; it only

moves everything up out of the way — just as the command line does.

How toPicture YourHP-28 27

Now then: You've seen how the command line will take the bottom line of the

display. But what happens if there's a menu already there when you activate

the command line?

One Way To Find Out: Type (S]T]D).

You'll see:

E: 'HB 1

1: 'AB"
sT00
*HERY[ARRY]FUT |GET |FUTI |GETI |

As you can see, the menu stays on the bottom line, and the command line takes

the next line, pushing everything else up one line farther than usual.

Why does the menu remain? Because you might actually want to use one of its

commands in the command line.

Now press to execute what you've just keyed in (apparently it was a com-

mand that was meaningful to someone on your calculator staff. You can see this

by the fact that it wasn't simply put up on the bulletin board as a message. In-

stead, someone recognized it and did it — immediately).

28 AnEasy Course in Using theHP-28

Try Another Menu: Pick another index tab from the card file, say, REAL

(WF)).

You should see;:

3
2 'AE!
1: 'AE'

|MEG |FACT |RAND |RDZ[MARE|MINFE

This is the REAL number menu. Because it's a menu, you should be able to pick

and use an item from it.

To do so, first notice that the black boxes around the items are lined up over the

top row of keys on the right-hand keyboard — and those keys are blank.

Another non-coincidence.

Whenever a menu is shown in the display, the keys in that top row take on the

meanings of the names in the menu. By pressing the key under an item, you will

be choosing that item from the menu.

How to Picture YourHP-28 29

Order From This Menu: For example, press the key under [EIHd and see:

cL 'AHE!
2 'AE’
1: 'MAxR"
MEGFACTRAMDRDZMARE|MINFE

MAXR, in this case, is another command to the message poster. It just says "Post

this name (MAXR) as the message." As you'll see later, posting such names can be

very useful in certain situations.

But here's an important point: Menus are a convenience feature, not a vital ne-

cessity. You could have typed in the name, MAXR, to get the same result. In fact,

Try It: Type (MJAIX]R)

3+ 'AE"!
2 'MARE’
1: 'MAXE’
mflmmmm

You accomplished the same thing on your typewriter as you did with your card

file! You can therefore think of your card file as your stock of ready-typed com-

mand memos.

In case you were wondering, it's true that many menus have more than 6 items.

To see the other items, you simply need to flip to the next "page" of the menu by

using the key. And to flip pages in the other direction, use . Practice

now with these two keys by looking through the entire REAL number menu.

30 AnEasy Coursein Using theHP-28

Once again, tick off the things you now know:

You know how your memo poster obeys your keyboard by posting or acting upon

memos. And you know that you can change the meanings of keys with the [

("shift") key.

You also know how to pull out various collections of related commands from

your command card file. Each such collection is called a menu, and when you

want to, you can select from it by using the blank keys on the top of the right-

hand keyboard.

But those menus just give you easy access to the names of the commands. What

if you forget the particular rules for using them?

Ask your office boy. If you press f[CATALOG), you can get him to show you the de-

tails for each command — rules and limitations that might appear on the bottom

of each card in a real, paper card file. You can check the spelling, fetch, or re-

fresh your memory on the use of these commands, either in straight alphabetical

order or beginning with whatever letter you specify.

Play around with this special CATALOG menu. The commands on this menu

are fairly self-explanatory, so go ahead — try'em out!

How to Picture YourHP-28 31

Immediate Execution ('Do-It-Now') Keys

Now that you know where to find commands and menus, the next thing to no-

tice is that menu-related keys work a bit differently than the typewriter keys.

When you pressed the typewriter keys, the command line came on and the cha-

racters that you typed were placed there — but the message you were typing

wasn't considered by the memo poster as being ready for posting until you

pressed

By contrast, when you press a menu key (either an index tab or a command

from a menu), the effect is to "do-it-now." Such keys don’t wait for you to press

before they present themselves to the memo poster; in essence, they "press

the on themselves," thus saving you a keystroke.

And some of these immediate-execution keys are so frightfully useful that

they've been awarded keys of their own. Of course, itself is one such vital

"do-it-now" key. But now it's time to introduce [ENTER)'s counterpart, which is also

a "do-it-now" key:

DROP

As you know, tells the memo poster to put memos on the bulletin board.

But what if you want to take memos off of that board? After all, what if you sim-

ply make a mistake and don't notice it until after that erroneous memo is al-

ready posted? How do you discard and replace it?

You press DROP). The command tells the memo poster to rip down and

trash the last memo and move the rest of the memos on the board down a level.

32 AnEasy Course in Using theHP-28

So if you were to press right now, what would you expect to see?

Try It: Use (it's on the right-hand keyboard, just above (9)). Press it

once and voila:

3+ 'AE!
2 'AB"
1: 'MAXE"

|MEG |FRCT |KAND |RDZ [MAbE[MINE

Memo 1 is trashed and everything else is moved down one level — just

as you would have expected, knowing the rules for DROP.

Notice, by the way, that ' AB "' sitting up there at Level 3. Where did it come

from?

It used to be up at Level 4.

Nothing had really "happened" to it; you just couldn't see it while it was on Level

4. The bulletin board is, for all practical purposes, "infinitely tall." But the display

1sn't (an infinitely tall display wouldn't fit very well in the calculator).

So for practical reasons, the HP-28 shows you, at most, the bottom four levels of

the bulletin board. But, any items you have posted which have been bumped up

above the fourth display line are still on the bulletin board, safe and sound.

How toPicture YourHP-28 33

All right, so you've seen some immediate-execution ("do-it-now") keys, a couple

of which you'll be using quite a bit: and (DROP).

But there are plenty of other such keys, too. For example, notice that weird-

looking one next to the shift key: («»).

What Does It Do? Press it once and see the following:

IHBI

 a
0
B

AE
'"MAxE"

What happened? The menu went away.

(«¢») will turn the menu display either on or off, whichever makes sense at the

moment (press it again and the menu comes back; once more and the menu goes

away again, etc.).

The big advantage of this sleight-of-hand is that when you don't need the menu,

you don't have to keep it around cluttering up the bulletin board. That («*) key is

your quick, convenient way to tell your memo poster to set that current menu

aside until you ask for it again.

34 AnEasy Coursein Using theHP-28

Messages From the System — Memos From Your Staff

At this point, you've explored some of the ways that you can use to communicate

with your staff, but you really haven't seen much about how your staff responds

to your commands and messages.

Now everybody knows that one of an employee's most important jobs is to tell the

boss when he's messed up, and it's time to see how your staff does this for you.

First, of course, you have to make a mistake (this may come as a shock to you

personally, not having done such a thing in so long; but of course, if you make a

mistake on purpose, then it's not really a mistake, is it?). All right then,

Mess Up: Press three times. All the memos are gone. You've dropped

them all.

But now, what happens if you tell the memo poster to drop a memo

when there's not one there to drop? ("Let'sfindout...1...2...3...")

Press ([DROP] once more.

You'll hear a beep (to get your attention), and you'll see:

o Few Arguments

 M
—

E
E

E
E
I
I
D

Is your staff bored because there hasn't been enough bickering in the

office lately?

How toPicture YourHP-28 35

Not really. Actually, this mathematical staff of yours is just guilty of using big

words. When they say argument, they mean "something to work on."

So your memo poster is simply telling you that when you told him to drop some-

thing off the bottom of the bulletin board, he didn't have anything to drop. A rea-

sonable objection, don't you think?

But forgetting for a moment about what this particular message says, you

should examine in general what your staff does whenever they notice a mistake

of yours.

1. They yell at you (remember the beep? Yep — that was them yelling at you).

2. They post a memo for the whole office to read. The memo says, in effect,

"You Blew It and This Is Why"

3. This message is posted at the top of the bulletin board — as are all error mes-

sages. But these messages don't bump others off or push them up the board,;

they just temporarily cover up what's there.

The next time you do anything to the bulletin-board, the memo poster will re-

move the error message (and if you just want to be rid of the error message

without otherwise changing the board, you can do so by pressing (ATTN), which

is the key).

So these error messages are simply one way your employees talk to you.

36 AnEasy Course in Using theHP-28

Status Messages: The Annunciator Area

But there's another way your staff can tell you things.

There is actually another line visible on the display/bulletin board — above the

fourth "active memo" line. Up to now, this area has been largely irrelevant as

you've been learning your way "around the office." But now take a look at it.

That line is the annunciator area, a place where little "wait-a-minute-I'm-busy"

and "remember-your-lunch-money"” messages are posted by your staff, for your

benefit.

For example, you may have noticed — though it wasn't pointed out — that many

times during the process of posting a memo (especially after pressing [ENTER)) the

symbol ((#)) will appear briefly on the top line.

Simply put, your staff is telling you that they're busy at the moment. As you may

have observed, in most cases, they're so fast that this "busy signal” only flashes

(but later on you'll know how to issue commands that will keep them occupied

for quite some time).

Another symbol you may have noticed is the one that comes on when you press

the shift key. The symbol is 4. It's there to remind you that the next key you

press will perform its shifted function (written in red above the key). You can

turn the4 off by pressing) a second time, thus shifting all keys back to their

main functions.

There are some other annunciators that can appear on this top line, but you'll

encounter them as you go along; no sense crossing those bridges now.

How to Picture YourHP-28 37

A Tricorder Reading

As usual, before going on, it's a good idea to get your bearings in this mental

"world" of your HP-28.

This first Monday at the office was all about learning to communicate with your

staff through memos and messages on a bulletin board.

You saw how the keyboards are connected to this bulletin board (the display),

and how the keys produce either immediate actions (the "do-it-now" keys) or

characters for building memos.

You specifically know about 3 immediate-execution keys: ([ENTER), (DROP), and («#»).

You know that as you type in characters, your "office boy" will show you your

memos-in-progress on the command line. And if these typed-in memos are

commands recognized by anyone on your staff, they'll be carried out promptly

after you officially give your OK to post them (by pressing [ENTER)). If nobody rec-

ognizes them, they'll stack up on the bulletin board, with the oldest memos on top.

You know how the i key changes the meaning of keys on both keyboards and

how a lot of these red-printed functions bring to the menu keys various sets of re-

lated commands for your use. And you know that you can review your entire

repertoire of commands by pressing fCATALOG).

You know how your calculator staff can give you signals or even temporary er-

ror messages when they need to — by using either the annunciator area or the

top line of the actual bulletin board.

38 AnEasy Course in Using theHP-28

So here's a set of questions to let you test your understanding before you go on.

The answers are on the next page, so check yourself; if you need to go back to re-

view, just look on the pages noted after each answer.

Quickie Quiz

1. What's the command line for?

2. What's the main purpose of the left-hand keyboard?

3. What's a menu key?

4. What are ((¢)) and _4 and how do you get rid of them?

5. What's a character?

6. When would you expect to see this: [?

7. How many days hath September?

How to Picture YourHP-28 39

Quickie Answers

. The command line is for typing and editing memos for posting (page 20).

. The left-hand keyboard is mostly used for typing, especially the alphabetic

characters A through Z (page 17).

. A menu key is one of the six blank keys at the top of the right-hand keyboard

which take on the functions of the displayed menu (page 29).

. ((&)) and —4 are both annunciators, appearing on the very top of the display.

((#)) is the busy annunciator, which you would get rid of simply by waiting

for the machine to finish what it's doing. The 4 is the shift annunciator,

and you would press [to turn it off (page 37).

. A character is any alphabetic letter, numeral, or special symbol that the HP-

28 can generate (page 20).

. You see [] (the cursor) when the command line is active (page 21).

. September hath thirty days.

AnEasy Course in Using theHP-28

MAKING YOUR HP-28 WORK FOR YOU:

The Command Line

The command line is where you'll be spending much of your time and energy as

you communicate with your HP-28. So now that you've seen most of the various

communication channels you have with your office staff, it's time to concentrate

on this particular one. This chapter is all about the editing and presentation op-

tions you have in the command line.*

Typing Characters Into the Command Line

As you know, the command line is where you type in numbers and words — as

series of characters — preparing them for posting or for issuing as commands.

Indeed, you've seen how directly it can be compared to the output portion of a

typewriter. It is, in effect, a very simple text editor.

But have you noticed that there's no command that says "Start the command

line"? Rather, certain keys that you often use in spelling out commands and me-

mos automatically tell that memo poster” to start the command line.

The most commonly used of these keys are the alphabetic and numeric keys,

through and (0) through (9). Invariably, if you press one of these keys when

you're not yet typing in the command line, the memo poster will start a com-

mand line for you and put the character you typed into it as its first character.

And of course, once you've keyed in all the characters you want on the command

line, you press (ENTER)to post it.

So if all the command line allowed you to do were to type out commands and oth-

er memo postings, life would certainly be fruitful — but it wouldn't be very easy.

That is, being not quite perfect, you'll sometimes simply need to correct your typ-

ing errors — and mercifully, the command line allows you to do this.

*Ofcourse, if you're already feeling quite comfortable with all that, then you may skip ahead to page 65.

42 AnEasy Coursein Using theHP-28

Changing a Character in the Command Line

You already know about the most commonly used correction key, backspace

(«)). In the command line, it removes the character immediately to the left of

the cursor. In this way, it's quite convenient, especially if you notice your error

before you've typed too many more characters.

But if you type something like CKARACTERISTIC, then backspacing over all

but the first character is a waste, especially since all but one character are cor-

rect. Somehow, you need to be able to move the cursor to the second character

and replace the K with an H — without erasing everything else along the way.

Fortunately, you can: Remember the («#) key? You've seen how it turns on and

off the menu area of the display — but that's not its most important talent. The

arrows on its face are the tell-tale signs:

The («4») key enables and disables the cursor-movement keys.

Those cursor-movement keys are, non-coincidentally, the same as the menu

keys. This is because the («4) key — much like the shift key — shifts the function of

the blank menu/cursor keys between the current menu's functions and those

printed in white above the menu keys. The cursor-movement functions of these

keys are available only when there is no menu in the display.

And notice that, unlike the shift key, the («#) key changes the functions of those

keys until the next time the [«¢) key is pressed. In other words, you don't need to

repeatedly press («¢*) to maintain the menu selection keys' current functions.

Making YourHP-28 Work For You: The ComunandLine 43

So look now at those cursor-movement keys (called cursor keys, for short).

As you might expect, since they affect the cursor (which exists only when the

command line is active), these keys work only with an active command line.

Time For Some Practice: (If at first you see a menu in the display, just press

(«4*) to get rid of it for now.)

Type in CKARACTERISTIC, mistake and all (but

don't press afterwards; you're going to "catch"

this "mistake" before actually posting it onto the bul-

letin board).

You should see:

 =
)

:.
E:

E
E

E
E

EH
E

ARACTERISTIC

As you know, characters can be added to the command line only at the current

location of the cursor. Thus, typing a character key now would add the charact-

er to the end of the word and move the cursor one character to the right.

As you also know, you could use («) repeatedly to delete all of the characters be-

tween the cursor and the first T, thus deleting the K in the process. But all you

really want to do is to move the cursor on top of the K and overwrite it with an H.

How can you do this?

44 AnEasy Course in Using theHP-28

The key with the white (€ over it will allow you to do this (but remember: the

white cursor symbols are only active when there's no menu in the display. If

when you press a menu key there's any menu visible, the function of that menu

key — not the cursor control function — will be performed).

So press the (€4 key.

The cursor moves to the left by one character, but it doesn't delete that character.

Press it again, and it moves one more character to the left. Press it and hold it

down, and the cursor will continue to move to the left until you let up on the key.

When the cursor has moved all the way to the left — over the top of the first cha-

racter — pressing («) will no longer move it at all.

Now press (»). What happens?

No real surprises here, right? (») moves the cursor to the right, but notice that if

you keep pressing the (») key until you reach the last character of the word, the

cursor doesn't stop there; it goes one space farther, to exactly where it was when

you stopped typing the word in the first place — and for the same reason — so that

you can add more characters to the end of the word.

Making YourHP-28 Work For You: The CommandLine 45

Now, go fix that typo.

Playing Editor: Press <. What happened?

The cursor moved all the way to the left — to the first character.

Press {»). What happened? The cursor moved all the way to

the right.

These are shortcuts. You could have accomplished the same

thing simply by pressing and holding down either the (€ or (»)

keys, respectively; but pressing [saves you some time.

So press <) and then [»).

The cursor will now be over the K. Since characters are added

to the command line at the position of the cursor, pressing

now will put an H in the command line — right where the K

used to be. Do it.

As you've come to expect, the cursor then moves one space to the

right.

46 AnEasy Course in Using theHP-28

Adding and Removing Characters

Now, what if you had simply omitted a character, rather than accidentally typed

the wrong one?

To see how you would deal with this, use («) and (») to move the cursor so that it's

positioned over the E in CHARACTERISTIC.

Now press («. What happened?

The backspace key did what it always does. It deleted the character immediately

to its left. In this case, since there were characters to the right of the deleted cha-

racter, they were all moved one space to the left, to fill up the hole.

Next, press [»).

This is what the command line would look like if you had originally forgotten to

type the first T .

 C
y
=
[
a
l
d

I
E
N

E
N

E
N

ARACERISTICO

Notice that you have just learned the way to remove a character or characters if

you've typed too many:

You use («) and (») to move to the space immediately to the right of the offending

character, then press (@) to delete it.

Making YourHP-28 Work For You: The CommandLine 47

Now the command line is all set up to look just as it would if you had just keyed in

CHARACERISTIC. You want to correct the omission.

Use («) to move to the E, which is the character that your missing T will precede.

Now, can you simply type in a T to fix things? Nope. Remember that if you type

a character now, it will replace the E. What can you do?

Press (INS).

What happens? Look closely and you'll see that the cursor — which was a flash-

ing box ([) — is now a flashing arrow().

is the INSert key. It tells the command line that you want to insert one or

more characters before (to the left of) the character that was sitting under the

flashing box cursor ([).

So the arrow is now pointing to the place (between the L and E) where a cha-

racter would be added. Make sense? OK, do it: Press(T). Now what happens?

C
=
=
a
0
d

I
E
E

E
E

E
N

ARACTORISTIC

First, the T was added to the command line at the place where the cursor was.

Then the cursor moved one space to the right. What's different is that every-

thing to the right of the arrow's point moved with the arrow. You have now cor-

rected the omission!

48 AnEasyCoursein Using theHP-28

Press («) and (») a couple of times. Notice that they work the same way with this

arrow cursor as with the box cursor. The only difference is when you press a

character key.

When the cursor is a box, the new character will replace the one on which the

cursor is sitting.

When the cursor is an arrow, the new character will be inserted before the cha-

racter on which the cursor is sitting.

Finally, press (INS). What happens?

The cursor changes from an arrow back into a box. Repeatedly pressing will

change the cursor back and forth between a box and an arrow. In this way, it's a

"toggle key" — like) and («¢+) — shifting alternatively between two modes.

Another key that you should find useful when editing the command line is the

(delete) key. works just like («), except that instead of removing the cha-

racter to the left of the cursor, it removes the character under the cursor.

And just like (@), all the characters to the right of the deleted character are moved

to the left one space to fill up the hole.

Also, both and («) will repeat their functions if you hold their keys down.

You can see now that you have a number of different ways to correct minor er-

rors you may make while keying in a memo on the command line!

Making YourHP-28 Work For You: The CommandLine 49

@S, @0EL), and

Suppose that your error isn't so minor this time: you need to delete more than

one character.

Of course, you could always fix things by moving the cursor with («) and (») and

then using either or (@] — as you just saw.

But what if it's a whole string of characters that you need to remove?

In that case — whenever you need to delete all characters to the right or to the

left of the cursor — you have yet another option....

Using the word CHARACTERISTIC from the previous examples, assume

that what you really wanted was the word CHARACTER.

Assume also that the cursor is now sitting over the E — because you just inserted

the T (so if you've pressed to get the [cursor, then for the purposes of follow-

ing along here, press again. Just bear in mind that the example will work no

matter which kind of cursor you use).

So you should see the following:

 =
M

I
E
N

E
E

N
N

ARACTARISTIC

50 AnEasy Course in Using theHP-28

Obviously, you want to delete IST IC. You could move the cursor to the first I

and use [DEL). Or you could move the cursor to the right end (with {ff»)) and use

(@). Or, you could move the cursor over the first I and press JDEL.

Try It (You'll Like It): Move the cursor over the I and press §DEL). What

happens? Everything to the right of — and under — the

cursor is deleted, right? It's exactly as if you had

pressed and held down the [DEL) key.

So you're left with CHARACTERSQ , and the cursor has

been left at the end of the new word, so that you can add

more to it if you like.

AndNow This: Type in MITE and move the cursor so that it's sitting

over the first (left-most) T. Press JINS).

See? Everything to the left of the cursor is deleted, and

the remaining characters are shifted to the left. It's ex-

actly as ifyou had pressed and held down the [«) key.

Last Resort: If all else fails, you can always press ((ON)) to clear

the whole command line and start with a clean slate.

Try it now. Notice that the key serves two func-

tions: When the HP-28 is off, this turns it on; when it's

already on, functions as ATTN (attention), inter-

rupting and effectively shutting off the command line,

discarding everything that was in it.

Making YourHP-28 Work For You: The CommandLine 51

While you're paused here with such a clean slate, take a minute to review all

these options for correcting errors on the command line — just to be sure you

have them all straight in your mind.

The (<) and (») keys move your cursor to the left and right, respectively. You can't

go any farther left than the first character on the line; you can go exactly one

place farther than the last character — to be ready to type another, of course.

Pressing (<) and §(») are shortcuts for moving to the very ends of the com-

mand line.

The [cursor lets you type a new character right over an existing one (thus re-

placing it). The % cursor lets you insert a new character between existing ones.

You alternate back and forth between these two cursors by pressing the key.

To delete an unwanted character, you could press (@), which would delete the

character to the left of the cursor. Or, you could use the key, which would

delete the character under the cursor.

Pressing and are shortcuts for deleting all characters from the curs-

or to the left and right ends of the command line, respectively. The one differ-

ence is that JDEU also deletes the character under the cursor, while NS)

doesn't.

OK so far?

52 AnEasy Course in Using theHP-28

BNEWLINE), (o) & (V)

If you're at all verbose with your commands, you can certainly overrun the visi-

ble 23 characters of the command line. But this is no problem, really, because the

command line is effectively infinite; you can type as much as you want.

Test This: Type in the 26 letters of the alphabet onto a fresh, clean command

line (i.e., first press if there's anything on the command line):

 ELFLGHITKILIMINIOJPLQIRS[TUVIWIX]

You'll see:

3
2
i:
wFGHIJELMHOPQRSTUYHRYZ

Notice that when you exceeded 23 characters, the command line scrolled to the

left and showed an ellipsis () as the first character to tell you that the com-

mand line does indeed continue to the left, but that this beginning part isn't cur-

rently visible.

Now press [« to get to that far left end.

The command line will scroll to the right and place the ellipsis at the right end of

the display. Makes sense, right?

Making YourHP-28 Work For You: The CommandLine 53

Well, that's all good and fine, but it doesn't take advantage of the other 3 lines in

the display that are available to you.

Happily, if you want to see more of the command line, you do have the option of

using NEWLINE) to separate words....

Try This: Press and type (TH(1)S]
EXXAMPXLE] B NEWLINE SPACE

(NEXWILXTINIEL).

This 1s what you should see:

 —
=
=

I
I

E
E

E
N

You can use as many J(NEWLINE)'s as you want in order to make

things more readable, and you don't need to fill up each line before

going on to the next line.

54 AnEasy Coursein Using theHP-28

Do you see what this implies? Your command line is essentially unbounded,

since you can add lines — separated by @NEWLINE)'s — to the point where the text

scrolls off the top of the display. And because the bulletin board is unbounded,

when these lines do scroll up out of sight, they're faithfully preserved and usable!

OK, but how can you see or edit these lines that disappear off the top?

Simple: You move from line to line and scroll lines back into the display with (a)

and (v).

These two vertical cursor-movement keys work in the same way that («¢) and (»)

do — except that they move the cursor up and down rather than from side to side.

And, as you might expect, {§(a) and @(v) also function similarly, sending the

cursor to the very top or very bottom line, respectively.

Next question: How can you get rid of these NEWLINE's that you've embedded in

your command line?

Next Answer: Use to "undo” a @NEWLINE).

Try It: Press) @») to move to the end of the first line, where you pressed

, and press . The two lines are joined into one, with the

one that was on the bottom extending off to the right.

Note: §DEL and @INS) affect only the line that the cursor is on. And you can't

use (¢} or (») to move from line to line; you must use and (v).

Making YourHP-28 Work For You: The CommandLine 55

The Key

Up to now, when you've typed something into your HP-28, it has come out in up-

per case. But that's not the only way to do things. If you need to use Lower Case

letters, just press (it's down there on the bottom line of keys on the left-hand

keyboard).

Go ahead and do that now.

Nothing obvious happens, but if you now use any of the alphabetic keys you'll

find that they all put lower-case letters into the command line.

Notice that is like in one respect. Once you press it, it stays in effect until

you press it again (or press (ENTER)), much like the upper case ("Caps") lock key of

a standard typewriter.

This may not seem like a very important feature, but you must realize that the

case of a character in any command is taken quite literally by the HP-28. If you

accidentally capitalize some character in a command that's not supposed to be

capitalized, the machine won't recognizeit.

In order to have your commands recognized, you must spell them exactly the

way they appear in the command CATALOG,including all upper and lower-case

characters.

56 AnEasy Coursein Using theHP-28

() & @(@LOoCK]

So far, you've been concentrating on the keys that function only to put their sym-

bols into the command line. You've ignored most of the immediate-execution

("do-it-now") keys, such as or (=). Recall that pressing one of those keys all by

itself normally causes the calculator to perform that function.

Watch: Press (ATTN)] iCLEAR) (+).

What happened? 'HBE' was posted just as if had been pressed,

and an error message was displayed. Don't worry right now about

why this error occurred. Just realize that immediate-execution keys

will normally try to "do their things" even when the command line is

active.

Sometimes this is convenient; sometimes it's not. After all, what if for

some reason you wanted a symbol such as + or = to appear in the

command line?

You would press (@) first. The (o) ("alpha") key tells the system (your

memo-obeying staff) to treat the keys pressed as character keys

rather than as "do-it-now" keys.

A you might suspect, certain vital immediate-execution keys, such as and

, are exempt from the (@) key's disabling influence.

Making YourHP-28 Work For You: The CommandLine 57

SoTryIt: Press (o) (FH=IX]=)

T
H
N
L
L
'
I

See how convenient (o) can be when you want to type merely symbols rather

than the commands usually associated with those symbols? All of those symbols

have been entered as plain old, garden-variety characters into the command

line.

And notice that when you pressed (o), the oo annunciator appeared in the top line

of the display and the cursor changed to a solid block (l)to remind you that you

are in this mode where most of the immediate-execution keys are "blocked" from

executing immediately.

Alpha mode will stay on until you press or (@), but if you don't want it

turned off for you like that, you can press f(&LOCK), in which case it will stay on

until you turn it off again by pressing (a).

58 AnEasy Course in Using theHP-28

You're adding rapidly to your bag of tricks for controlling the command line.

First, you learned how to correct errors. Now you've seen some ways to key in

lower-case letters, long strings of characters, or strings involving symbols nor-

mally reserved for immediate execution. Review:

The key produces an invisible character that lets you break a long com-

mand strings into manageable segments, so that you will see these segments in

your display (your bulletin board) on adjacent lines. When you have such a mul-

ti-line command line, you can move around between lines with the help of (a) and

(v) and their shortcutting versions, {f(a) and).

The key lets you type in lower-case letters — until you press it again or post

the memo.

The (o) key disables most of the immediate-execute keys so that you can use those

keys' symbols as characters in your command line. You can cancel this disabling

by pressing (@) again or by pressing :

Now go on and look at some convenient variations of skills you already have....

Making YourHP-28 Work For You: The CommandLine 59

Item Delimiters and

In past examples you've almost never completed the memo on your command

line to the point of pressing (ENTER).

That is, you seldom actually gave the go-ahead to your faithful office boy, the

memo-poster, to officially post a message or otherwise try to make sense of

("evaluate") the command line.

This is because most of what you've keyed in so far just wouldn't make much

sense — either to you or to your office staff (the calculator system) when it was

evaluated.

And on those occasions when you have pressed [ENTER), you may have noticed that

the command line may not have been posted as a single memo.

For Example: Type in (ATTN) (P]O]S]T) (SPACE ENTER).

What you'll get is this:

=
M
W

—
{
m
o

0
0
N
e

What's going on here, anyway?

60 AnEasy Course in Using theHP-28

Three things of interest:

1. The space between the two words in the command line effectively separates

them into two postings when is pressed. In this case, then, the space is

called a delimiter, because it acts as a marker, denoting the end of one memo

and the beginning of another.

2. The memos are posted from left to right; the word on the left was posted be-

fore the word on the right (and as a consequence, POST now appears farther

up on your positionally- "dated" bulletin board).

3. Neither of these words was recognized by your calculator's system, so they

were posted as is — with single quotation marks to let you know this.

Conclusion: You can use the command line for posting more than one memo at

a time by marking each successive item with a delimiter character!

So, besides (SPACE), what other characters will play this role of delimiter?

NEWLINE|will.

So will the comma: "s " or period: "« " — whichever the HP-28 is not currently us-

ing as the radix mark (decimal point). In other words, if the current radix mark

is the period (i.e. if 1 « 3 is interpreted to mean one-and-a-half), the comma is a

delimiter; but if the current radix mark is the comma (1 y 3 = one-and- a-half),

then the period is free to be used as a delimiter.

There are many other delimiters too: &, 2, [, 1, $#,", ' %« and¥*. But these all

have special meanings to the calculator — meanings you'll see later.

Making YourHP-28 Work For You: The CommandLine 61

EDIT) and COMMAND

Another variation on something you've already seen: You've seen how to correct

errors in the command line — as long as you catch them before you press [ENTER).

But what if you don't catch them that soon? How do you "undo" an error that has

gone so far as to be officially posted on your bulletin board?

Of course, you could just unpost the memo (using (DROP)) and totally retype it. But

this seems like a colossal waste of time if the error is minor and the memo is ma-

jor. Wouldn't it be nice if you could just edit the posted memo?

Good News: Press (A[C[ENTER); but now decide that you really wanted ' HBC" .

So press . You should see this:

M
0

—
T
m
o

Notice what has happened: The command line is activated containing the con-

tents ofLevel 1, which is highlit to show that it's being edited. And alpha mode is

activated for your convenience, as indicated by the o annunciator and the solid

cursor.

You may now edit the memo in the same way that you would edit anything in

the command line. And when you're finished, pressing replaces the high-

lit line with what's in the command line. Or, if you change your mind midway,

pressing aborts the edit and does not change the highlit line.

62 AnEasy Course in Using theHP-28

Even if you do DROP an erroneous memo, there is a time-saving shortcut to re-

post it:

DROP the bad memo and then press

Try It: Press (to discard whatever command line you may now have in

progress).

Then: You should see the following:*

g
u
-
n
m
r
_
u

The last thing you typed and followed with is what will be in the command

line after you press fJ(COMMAND) . Then you can edit it in the old familiar way

(cursor keys and all that) and re-post it with [ENTER).

* This feature is actually an option — one that you can disable ("turn off") if you wish. Only those commands

entered while the command memory is enabled will be remembered. It's your choice — and this and other

such preference options live in the MODE menu. Thus, you would press ERZ[A to enable this com-

mand memory (it's a command "stack," actually).

Making YourHP-28 Work For You: The CommandLine 63

By the way, {(COMMAND) has a better memory than you might have first sup-

posed. Not only does it remember the last memo you posted, it remembers the

three before that, too!

If you press a second, third and fourth time, you'll see the second-to-

last, third-to-last, and fourth-to-last commands ("memos") you [ENTER)'ed, respec-

tively. As each one of these comes to the command line, you may edit it or repost

it with (ENTER).

If you press J[COMMAND) a fifth time, it will cycle around and show you the most

recently posted command again. And as always, you can get rid of the command

line altogether by pressing :

This extra-good, short-term memory may hint to you of another advantage to

using COMMAND] .

If you're doing a lot of posting and many of the memos are the same, you don't

need to retype any that were already posted within the last four postings. You

can just use to call them up again.

As you might imagine, this is especially useful if the postings were long or tricky!

Now it's time to put it all together and see how well you know your way around

the command line....

64 AnEasy Course in Using theHP-28

Command Line Quiz

1. How do you turn on the command line?

2. What's the difference between the functions of (@) and ?

3. What's a delimiter? Name two.

4. Change 'COMFREONTAHELE ' to ' COMFORTAELE ' (assume that the

memo ' CONFRONTAHBLE ' is now sitting at Level 1 of your bulletin

board).

5. Change 'cent imeler' to 'centipede' (again, assume that what

you start with is sitting at Level 1).

6. Change 'Apples' to 'Oranges' (again, at Level 1).

7. What's the capital of Montana?

Making YourHP-28 Work For You: The CommandLine 65

Command Line Answers

. Press any character key (see page 42 to review this).

. (@) deletes the character to the left of the cursor; deletes the character

under the cursor (pages 47-49).

. A delimiter is a separator. In the case of the HP-28, it is a character separat-

ing two memos in the command line. (SPACE) and JNEWLINE) are two examples

(page 61).

. >>]>]M) or >>]>IM[FIoIR] [ENTER), for
example; of course, there are many different ways to accomplish such an ed-

iting job (page 52).

eDIT) (>1>1>)>) (PJEJDJEJDEL or {EDIT) @) («[e]«[e]e]e
(P]E]DJE) (ENTER) or EEDIT) (»]»]»[»][»]»>) EBDEL (P]E]DJE) [ENTER], for

example (pages 52 and 56

- o

—

: (©) (RIAINJGIESS] (page 56).

. Helena

AnEasy Coursein Using theHP-28

e
DO
D

D3 XIOET

K~
»

qTRYP
N
NN A
'y

“Aaf‘

e

BN

4P
)VAR

n“‘

3

[/
[}
'

 =O
S
]

S

REAL NUMBERS, THE STACK,
AND POSTFIX NOTATION

How does this imaginary HP-28 world seem to you now? On your first Monday

at your new job as president, you familiarized yourself with your office, the bulle-

tin board, your typewriter, your command file, and your faithful office boy, the

memo poster. On Tuesday, you spent all day learning all those skills for efficient-

ly posting and editing memos.

It's now Wednesday morning (time flies when you're having fun).

Real Numbers - and the Real World

There are a lot more high-powered brains working back there in the offices be-

yond the bulletin board. It's time you were introduced.

As you know, many of your HP-28 "staff" system's talents lie in the area of nu-

meric problem-solving. So you can't really relate to them unless you're brushed

up on their language: numbers.

It's probably best to begin by using real numbers, since they're probably familiar

to you already.™

Numbers can be broken up into different classes which are useful in different

circumstances. Real numbers form a collection of most of these classes into the

one big group that you normally think of as being numbers: the positive and neg-

ative integers (1, 2, -3, -5, etc.), the positive and negative rational numbers (-0.23,

4.56, etc.), the positive and negative irrational numbers (-x, e) and zero (0).

*If you already know how to key in, format, and otherwise represent real numbers on the HP-28, then now's a

good time to skip over to page 81.

68 AnEasy Course in Using theHP-28

Right, then: Your first consideration for dealing effectively with your calcula-

tor's math brains is in communicating with it. That is, when it shows you a

number, you'd better be able to recognize it.

Usually this isn't too much of a problem, except for extremely large and ex-

tremely small real numbers. These are always a bit awkward to deal with (in

any tool — from paper and pencil to a high-speed computer), because their re-

presentations use a lot of digits.

For example, the number one-half is relatively easy to write. Its representation

is 0.5, ("zero-point-five" or "five tenths"). But smaller numbers like one ten-

thousandth (0.0001) are more cumbersome and less easy to read.

And really small numbers — like one hundred-millionth (0.00000001) — or really

big numbers — like one billion (1,000,000,000) — are actually unpleasant to deal

with, precisely because of all of these zeros you need to carry around.

For this reason, an alternate representation has been developed, called scientific

notation.* In this notation, you take a number and split it into two parts. The

first part consists of all the digits except leading or trailing zeroes. The second

part tells you how many of these leading or trailing zeros you also need and

whether they're leading or trailing.

Thus, 5,280 is 5.28 x 103, 0.000231is2.3x 104 ,and 11is1x 100

Notice the convention here. The first part of the number (called the "mantissa")

shows its precision and is written with its first digit just to the left of the decimal

point, with the rest of the digits, if any, to the right. The mantissa is then multi-

plied by a power of 10 (called the "exponent”) to show the number's magnitude.

*It's called scientific notation not because it's in any way more "scientific" than other notations, but because
in science one commonly deals with very large or very small numbers. It could as easily have been called
"national debt notation,” for example.

RealNumbers, the Stack, andPostfixNotation 69

Representing Real Numbers On the HP-28

Scientific notation is especially useful for representing numbers on machines. As

you would expect, the HP-28 can be used to represent and manipulate real num-

bers of extraordinary magnitudes. But being just a finite machine, it has some

limitations, peculiarities, and rules that you need to understand if you're going to

communicate with it well. Fortunately, these are few and reasonable.

Scientific Notation on Your HP-28

First of all, the HP-28 does not use strict scientific notation. It uses a slightly

compacted, computerized version ofit.

For example, 2.5 x 104 is represented as 2« oE4

And 3.9 x 106 appears as 3« PE- 6

As you can see, the E means "...times ten to the...". That is, the number following

it is the Exponent of 10.

It's just a convenient way to write scientific notation without resorting to super-

scripts in the display of the calculator.

70 AnEasyCoursein Using theHP-28

12-Digit Accuracy: Rounding Error

Secondly, keep in mind that some real numbers have representations that are

just plain infinite. For example, the decimal representation of 1/3 is 0.333...,

where the 3's continue forever.

Of course, it's unreasonable (and fortunately, unnecessary) to try to use all of

those 3's during real-number arithmetic. What you do, naturally, is round it,

shortening it to a value that is both convenient and accurate enough for your

purposes. To be sure, the rounded number is not the same as the original, but the

difference is negligible in practice.

Well, the HP-28 rounds, too. In dealing with infinite or extremely long represen-

tations, it rounds the number, remembering 12 digits of the original number.

The inaccuracy that results is called rounding error. And as you would suspect,

multiplying together two rounded numbers will multiply this error.

So, just how great an error is this?

"Let's find out.”

Say that you're the pilot of a plane flying from Los Angeles to New York — a

distance of 3,000 miles. Well, it's a lovely day, and once airborne, your navigator

lets it slip that he's been using his HP-28 to do fuel calculations.

Not only that, he freely admits that his computations of the number of miles per

pound of fuel are only accurate to 0.000000000001 miles (the 12th digit).

Uh-oh. If his calculations are off by that much per mile, how big an error will

this make over a lot of miles (3,000)...7

RealNumbers, the Stack, andPostfixNotation 71

Oh, about one two-hundredth of a millimeter.

Not a lot, really.

If you'd flown clear to the moon and back, instead (roughly 500,000 miles), the

accumulated error would be an entire eight-tenths of a millimeter.

And in a round trip to the sun (about 186,000,000 miles) you'd gain or lose about

a foot (now you're talking gross error).

As you can see, digital accuracy to 12 decimal places as given to you by the HP-

28 is slightly more than barely adequate. So if an answer isn't exactly what you

were expecting, it's very, very close.

72 AnEasy Course in Using theHP-28

Magnitude: How Big (or Small) Can You Get?

A third limitation of the HP-28 is the magnitude of a real number (i.e. the nu-

meric value — not the number of digits) it can represent. And again, it's the finite

nature of the HP-28 that imposes this limitation; you simply cannot expect it to

be able to represent arbitrarily large or small numbers (everyone has his limit;

you do and so does your machine).

The largest real-number value representable on the HP-28 (which you can pro-

duce with the command MAXR — "MAXimum Real") is

9.99999999999 x 10499

And the smallest representable real-number value (which will result when you

use the command MINR — "MINimum Real") is

1 x1049

These numbers are extremely large and small, respectively. It's difficult, if not

truly impossible, to convey — or even contemplate — the enormity and tininess of

these values.

"It's a tough job...but someone's gotta do it..."

RealNumbers, the Stack, andPostfixNotation 73

To try to get some idea of the size of these numbers, compare them with some of

the largest and smallest things in the known world:

The best approximation for the effective radius of an electron is about 2.817938 x

1012 m(eters).

Putting this into other units, the electron radius is about 2.97861963628 x 1031

light years (a light year is the distance which light will travel through free space

in one year's time, abbreviated lyr).

Therefore, the volume of an electron (assuming that it's a sphere) is about

9.37309265246 x 10-35 m3, or about 1.10696465437 x 10-82 lyr3 (can you picture a

cubic light year?).

Now, consider that the radius of the sphere of the visible (i.e. the "known") uni-

verse is only on the order of 1010 lyr. That means that the volume of the known

universe is about 1030 lyr3. So if you packed the known universe absolutely solid-

ly with electrons (no wasted space), you would need about 10112 electrons.

Now, that's a lot, admittedly — more already than anybody can really envision.

But consider this: The number MAXR is so much larger than this, that if you ac-

tually had MAXR electrons, you would have enough electrons to fill

100,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000 known universes.

74 AnEasyCourse in Using theHP-28

On the small end of things, picture in your mind that packed pile of MAXR elec-

trons. Then picture yourself picking out just ten of those electrons. That ten —in

relation to the whole — is the fraction you're talking about when you say "MINR."

So you see, the magnitude limits of the HP-28 aren't all that restrictive. Indeed,

to further put things in perspective, you may have heard of human societies

whose numbering systems went something like:

"1...2...3...more than 3."

And that was all the farther they could describe numerical magnitude.

So it is in every society. In this modern-day, technical world, for example, the

numbering goes well beyond 3, but at some point, it runs out of names and mean-

ings, too. "Millions...billions...trillions...quadrillions..." etc, up to about "nonillions"

(?), which are on the order of 103%. But what do you call numbers on the order of
10100 _ oy 104009+

Truly, there is a limit to practical needs to describe numbers. Once society's limit

may simply be a little higher than another's — but not much.

*The authors recommend the term "several gadzillion."

RealNumbers, the Stack, andPostfixNotation 75

Posting Real Numbers: (CHS), and Display Modes

Now then: Those are the details about how the HP-28 can and cannot represent

real numbers. Knowing these rules and limitations, it's time you started posting

real numbers as memos to your calculations staff. You'll see right away that it

isn't much different than posting any other kind of information, except that you

use the number keys to key them in.

For Example: Post 5,280, 365.25 and 6.022 x 1023,

Solution: Press CLEAR] (S]T]DJENTER) (5]2]8]0)

3J8J5]-)2]5) [ENTER) (6]-J0J2]2]JE]2]3] [ENTER)

You should see:

4:
3: 2280
25 260. 22
1: 6. 022E23

Notice that when keying in that last number, 6. B22E232, you used the key.

You could have used (Enter EXponent).

works the same as except for one case. Press ([EEX]. What happens? Since

you hadn't specified the number to the left of the E (the mantissa), supplied

you with one: 1. It's just an added nicety of the EEX function.

(Now press to clear the command line).

76 AnEasy Coursein Using theHP-28

OK, now how about posting a negative number? You have two ways to do this:

First method: You can post the positive number in the usual way (up to and in-

cluding pressing ([ENTER)) and then press (CHange Sign).

Try It Now: Press (CHS). The number in Level 1 becomes negative.

Press again — to make that number positive again.

Second method: You can change the sign of either the mantissa or the exponent

at any time while you're keying in that part.

Examples: Post =1.3, 4.53E-24, -7.BE3, and -SE-324.

Solutions: Press (3IcHENER) @SEXZaCSEE FeisEER
() (eEEXIcrs)@

You'll see this:

 =
M

Notice that pressing before you start to key in the number will work only if

the command line is already active. If not, will change the sign of the num-

ber in Level 1, as in the first method, above.

RealNumbers, the Stack, andPoslfixNotation 77

Display Formats

Try this: Press (4][FJI]X]ENTER. Continuing on from the previous example,

you should see this:

4 : -1. 3880
3t 4. 9HEBEE- 24
2 -7gdd. 8884
1: -9. B0BBE-234

What's-a-goin' on?

Well, you just told the HP-28 to change the format of real numbers in the

display. That is, the values of the numbers haven't changed — just the way you

see them.

told the HP-28 to display a FIXed number of digits — four in this

case — to the right of the decimal point. As you can see, that's just what it did.

When there are no more significant digits to be displayed, one or more zeroes are

added to the end of the number to fulfill the FIX requirement.

78 AnEasy Coursein Using theHP-28

Next: Press fJCOMMAND) (0]ENTER). Here's what you'll see:

4: -1.
3 5. E-24
5 - PSa0,
1: -9.E-54

First of all, remember how [[COMMAND) retrieves your most recently posted com-

mand (4 FI X, in this case). Since the first character, 4, is the one you wanted

to change, you overwrote it with B and pressed to execute the rewritten

command.

So there are now zero digits to the right of the decimal point. Again, the numbers

haven't changed in value; only their appearances have.

Remember! All these display formats are only the display’s "editing” of the num-

bers for presentation to you. The internal representations of the numbers — for

purposes ofcomputation — are always fully 12 digits ofprecision.

RealNumbers, the Stack, andPostfixNotation 79

Once Again: Press(1]1]*]S]C]I|ENTER]. Result:

41 -1.3080000HAEEBHEN
3= 4. 500B88HEBHAHARE- 24
2 -7 . SH0BB0BEBEBBES
1: - 9. BB0BBEBBHEBBE- 34

This example brings up an important point: In the previous examples there

were numbers in the display formatted in scientific notation even though the

mode was FIX. That's because there are only 12 digits possible to display a real

number. Therefore, any number larger than 999999999999 (twelve nines) or

smaller than 0.000000000001 ("zero-point-eleven-zeros-and-a-one") will be

displayed in scientific notation by default, because its magnitude exceeds the abil-

ity of the display to show in an explicit, one-part number.

But now, with SC| mode, not only have you set the number of digits to be

displayed, but you've forced the display to use scientific notation for every num-

ber — regardless of whether or not that number could otherwise be correctly rep-

resented in the display. To see this, compare how Level 4 looks now to how it

looked after the previous example. Although the exponent is 0, the number is still

expressed in scientific notation here.

Finally: Press (S]T|D]ENTER]

This is STandarD display format, where you started on page 76.

All significant digits of all numbers are displayed and scientific

notation is used only when the number overruns the display's

magnitude limits.

80 AnEasyCoursein Using theHP-28

The Stack and Postfix Notation

"OK, ok: Scientific notation...real-number representation limits...display for-

matting...when are we going to get to the part where I start doing things — like

arithmetic — with real numbers?"

Right now. Begin by noticing that what you see in the display is, quite literally, a

stack of numbers. It's true. Everything you've posted so far has been "stacked

up" on the bulletin-board.

This particular stack may look upside down to you, compared to other stacks of

things you've seen, because you put the latest additions on the bottom here. Aside

from that, it works in much the same way as any stack of "stuftf."

If you think about it for a moment, you'll realize that a stack is merely a Last-In-

First-Out type of arrangement, where the last thing you put on the stack is the

first thing you take off.

But — as you've so eloquently put it — putting things on and taking things off the

stack doesn't accomplish a lot. You want to be able to do other things with the

stuff on the stack. With real numbers, for example, it would be nice to do some

math. Of course, you can.

But here's the idea to hang onto as you begin: An HP-28 command that uses this

stack — any math operation, for example — assumes that something to operate

on will already be in the stack when you invoke the operation itself.

In effect, you must first put onto the stack any number(s) you want to manipu-

late, and then perform the operation. This way of doing things is called postfix

(post-affix: "to add after"”) because the operation is added after the operands.

RealNumbers, the Stack, andPoslfixNotation 81

Real Number Commands:
0-, 1-, and 2- Number Operations®

Just so that you have some simple arithmetic to follow,

Do This: Key in these numbers: 100, 64, 4.6, 7, 3 —in that order.

Solution: (1]0) [ENTER) (64 ENTER] (4] (ENTER] (7) [ENTER) (3) (ENTER)

And here's how your stack should look:

 =
R

W
=

This is the reliable general procedure anytime you want to put a series of num-

bers in your stack, right? You just key in each number and press to post it.

*If you already know how to do simple, postfix arithmetic on the HP-28, skip ahead to page 88.

82 AnEasy Course in Using theHP-28

Start Crunching: With your stack set up like that, press (X).

You should see this:

g 188
3= 64
2 4.6
1: 21

The numbers in Levels 1 and 2 were multiplied together, and

the result was left at Level 1.

Try Another: Press (+).

-9.E-24
189
64

2.6=
R

The same thing happened — except that the result on Level 1

1s now the sum of the (previous) bottom two levels.

Notice that, because two numbers were combined into one number here, there is

one number fewer in the stack now, and the rest of the stack has therefore

dropped one level. This is the way each 2-number math command works. It

takes the bottom two numbers from the stack, combines them, and puts the re-

sult back on the bottom of the stack.

RealNumbers, the Stack, andPostfixNotation 83

Notice also that both addition and multiplication are commutative operations.

That is, their results do not depend upon the order of the two numbers involved.

Clearly,1+2=2+1;and2x3=3x2.

So for this addition, it wouldn't have mattered if the 4« & had been above 21 or

below it in the stack. This is not the case with other arithmetic operations, such

as division and subtraction.

To Wit: Press (=).

q: -7oga
3= -3.E-24
25 184
1: 2

Notice that the order of evaluation is "Level 2 divided by Level 1."

Then Of Course: Press(—). Here's the result — and now you know why, right?

4 : 4.2E-24
a3t alra=15%
2 -3.E-24
1: Fr. 2

84 AnEasy Course in Using theHP-28

Notice that throughout this little set of examples, all those other numbers you

had "floating around” above Level 4 have successively made their re-

appearances. Your stack has been steadily "settling" downward as you perform

these arithmetic operations that combine two numbers into one.

This settling is a very important part of the stack's operation. It becomes obvious

with any problem that forces you to compute several intermediate results before

combining them into a final answer.

For Example: Find ((24x6.8)+(5.9-2.3)-(17.5+4))x43.2

Solution: Press

(24 x6.8)
= (5.9-2.3)

(=) (17.5 + 4)
(=) (5.9-2.3)-(17.5+ 4)

(2.4x6.8) + (5.9-2.3)-(17.5+4)

(4)3]-2]

The result is 671.544. Notice how you worked from the inner parentheses out-

ward, thus eliminating the parentheses as you go. That hearkens back even to

your earliest days in arithmetic class, doesn't it?

Notice also how you combined the values in each parenthesized portion,

"melting" them into intermediate results, which you allowed to "stack up" while

you computed the next portion!

RealNumbers, the Stack, andPoslfixNotation 85

OK, that probably gives you some idea of the workings of the 2-number math

functions. What about 1-number math functions?

YouAsked For It: First, get rid of some of the extra numbers, by pressing

(DROP) (DROP) (DROP) (DROP) (DROP) (DROP) (that's 6 times).

Then press (@+). Here's what you should see at this

point:

=
M
w
h
A

n
c
n
M133487,

X2 is a 1-number function, since it takes only one number off the stack. Since it

replaces that one number with its result, only Level 1 is affected.

Affect It Again: Press 7)) (@-)). @) is also a one number function —

and no prizes for guessing what operation you just did:

=
M

n
o
n M

86 AnEasy Course in Using theHP-28

So now you've seen 2- and 1- number operations.

Believe it or don't, there are some O-number operations. That is, there are some

operations that take nothing from the stack, but leave a value there nevertheless.

PickA Card -Any Card: Press(R]A]N]JDJENTER). You'll see something like this:*

I
R

o
)

Q
o
C
n
o
n

h
e
a
0
&. 229199

RAND is the RANDom number generator. It takes no numbers from the stack,

but leaves a random number there at Level 1, thus bumping everything else up

by one level.

*Because the number on Level 1 has been chosen at random by the calculator, the number in your display may

not be the same as the one shown above. In fact,if it is the same, take a break right now and go buy a lottery

ticket.

RealNumbers, the Stack, andPostfixNotation 87

Arithmetic Practice

Here are some not-so-trivial problems to let you practice your postfix arithmetic

skills and some of those 2- and 1-number functions.

A reminder: You'll notice an abundance of parentheses here, since that's how

you're used to seeing such problems expressed on paper. But there's no need for

parenthesis keystrokes when solving these on your HP-28 (or any other postfix

calculator). The way these numerical "memos" stack up on your "bulletin board"

allows your arithmetic "staff members" to work with them without using any

parentheses!

And keep in mind the rule of thumb for handling parenthetical expressions:

"Work from the innermost parentheses outward."

1. ((A+2)x3)+4)x5)="?

2. Calculate 12 +V122- (4 x 3 X (-5))

2x3

(You might recognize this as one solution to a quadratic equation ax? + bx + ¢ =

0, wherea=3,b=12and c =-5.)

88 AnEasy Course in Using theHP-28

3.37=2

(This 1s the cube root of 7. Notice that there is no cube root command on the

HP-28 and that you "raise-to-a power" via %) Notice also that {7 = 713.)

[Aesgapsn |
4. 173e =?

(eXis EXP from the LOGS menu.)

5. 1+05+05+05% +054="
2! 3! 4!

(x! is the FACTorial of X. The command FACT lives in the REAL menu. In

case you're curious, this problem is asking you to add the first five terms of

the Taylor series approximation of €9-°. You might want to compare your re-

sult here with the result of the HP-28's EXPonential function.)

RealNumbers, the Stack, andPostfixNotation 89

Arithmetic Practice Solutions

LOEBR QHEXAWHBE X

The result = 65

2. (1)2)x?) (4JenTeER) (31X) (sIcksx]) (=) WD) (1J2Jens) (1) (2) BNTER) (3) (X) ()

The result = B. 380475614235

3. (7) EnTER) (3) (VX) ()

The result = 1.91293113277

4. (4]3) [ENTER) (-J0JoJ4) (X) (1)eJcHs) (1) (3)-)2) EnTER) (1]6)-13) (&) (=) ELOGS)

G (1173 X

The result =273. 135149585

5. (1) ENTER) ((J5) () () 3 (@) @ReAL IEEA (=) () (J5) EnTER) (3]) (3)
EHEE 5 © ()5 Ever (40 (¢ HEl)

The result = 1 . 6484375

EE-1.64587212787

90 AnEasy Coursein Using theHP-28

Of course, there's a whole lot more to this machine than just your basic arithme-

tic. You're surely itching to crack into all that — and who can blame you? It's

never any fun to hammer out the fundamentals before getting to the good stuff.

Nevertheless, there's quite a bit more hammering to do before you get into seri-

ous number-crunching. In fact, the only reason you're seeing arithmetic with

any numbers right now is to learn about how the stack works. And there's a

whole lot more to see before you're ready to manage your staff. This part of the

course, then, is still a filling-in of the details of the everyday operations of your

staff and bulletin board. After all, you need to fully construct this imaginary

world in your mind before you can operate with its help.

STACK Operations

Here's a quick rundown of all the things you know so far about the stack.

— You've already been introduced to some of the stack's basic math operations.

— You know how and the command line are used to put things on the

stack and how is used to remove them.

— You've even seen how the operation called DUP can be used to duplicate the

first level of the stack (remember way back on page 247).

There are a lot more stack commands than just these 3, and since the stack is ba-

sically your work area, you'd better know your way around it.* The next few

pages, therefore, are a continuation of your introduction to the HP-28's stack

commands. Don't expect to inscribe in your mind or on your fingertips after a

single pass here; it will take time until you're fluent in using all these different

specialized tools. But take a look now, and begin your practice....

*But if, on an outside chance, you feel at home there already, then by all means, jump now to page 105.

RealNumbers, the Stack, andPostfixNotation 91

[ENTER)'s Second Job

Before you get to any new commands, take a second look at the hardest-working

key of all: (ENTER). Apart from posting (or evaluating) the command line, it has

another use altogether!

This second use of is that, when the command line is not active,

functions as a "do-it-now version" of DUP. This is another convenient extra, be-

cause most commands "eat" items off the stack; having back-up copies becomes

important.

Try It: First, be sure there's no half-built command line (by pressing if

necessary).

Key in a number. Then press several times. See how it dupli-

cated that number?

Now DROP all those duplicate entries out by pressing several

times.

92 AnEasyCourse in Using theHP-28

The Command

Another commonly used stack operation is f(SWAP). It functions to exchange the

contents of Levels 1 and 2.

So what good is that? Well, remember that division and subtraction are not com-

mutative operations; their operation depends on the order of the numbers in

Levels 1 and 2.

gives you the ability to reverse the order of these two stack levels, and

because there are many operations (besides (=) and (+)) that are not commutative,

@sWAP) becomes very much in demand.

How to the Stack

Remember — that command that throws away the bottom (most recent)

memo and therefore "drops" all the rest of the memos down one level?

Well, CLEAR), like (DROP), is a stack clean-up command. If there are items on the

stack that you don't need any more, removes them. But you'd better be

sure about what you're doing: clears the whole stack.

CleanYour Slate: Press now — and see this:

I
R

RealNumbers, the Stack, andPostfixNotation 93

Up to now, the stack commands you've been using are all important enough to

have keys of their own.

But everyone has to live someplace; the less commonly used stack commands

live in the STACK menu ({)G).

Get That Menu: Press You should now see this:

3

2:
TTI()T(S

You see that DUP lives here. But why? If does the same thing, and it's sit-

ting right there on the keyboard, why put DUP in a menu also?

Well, recalling that is exempt from the effects of (o), if you wanted DUP to

appear on your command line, you'd have to type manually (perish the

thought) unless it were available on a menu key.

All this planning — just for your convenience!

94 AnEasy Coursein Using theHP-28

Continue your perusal of this STACK menu. Reading from left to right in the

menu, the next command over is OVER. OVER makes a copy of whatever is in

Level 2 and then pushes this copy onto the stack (to "push" something onto the

stack means to put it on at Level 1, thus bumping everything else up one level).

In effect, then, OVER makes a copy of Level 2, jumps over the current Level 1

and pushes the copy on the stack "beneath" it.

Drum Roll, Please: Press KA. And here's the result:

3= i

i: T
|DUF |0VEE JDUF2JDR0F2]K0TJLISTH

See how this works? Remember, although you never pressed to put the 1

and 2 on the stack in the first place, OVER is an immediate-execution function,

which means that, for all practical purposes, you had a command line that read

1,2:0YER before an was "caused” by the OYER. Since the HP-28

posts (or obeys) memos from left to right, this explains how the numbers got onto

the stack by the time the OVER happened!

Horse around with this some more, but after you've finished, set up your stack so

that it looks like this (from the above example, all you would need to do is press

DROP] 3JENTER)):

o 1

: %
|OUF |OVEE |DUFEJDROFE]ROTJLIZT+

RealNumbers, the Stack, andPostfixNotation 95

Now then: Just to keep things interesting, skip over to the fifth item in the

STACK menu — to the command called ROT.

This command ROTates the bottom three levels of the stack "upward.” In effect,

Level 3 is removed (not copied) and then pushed onto the stack.

Prove It: Press HIAAM. The result:

3 o

i i
DUFOvERDUFR[DREOF2]FOTJLISTS|

See? Just a simple rotation of the three bottom-most "things" in the stack. Press

twice more to return the stack to its original order.

And Just For Laughs: Press E0T|

What happened? The bottom three levels of the stack

have been reversed.

3: 3

i: 7
OLIFOVERDLUFEJDROF2]FoTLISTH

(Now press to shred all evidence of levity.)

9%6 AnEasy Course in Using theHP-28

Going back now to pick up those two commands you skipped:

DUP2 and DROP2 are analogous to DUP and DROP but — as their names imply —

they operate on both the first and second levels at the same time.

DUP2 makes a copy of both the first and the second levels and then pushes them

on the stack. That is, it DUPlicates the contents and ordering of the bottom 2 lev-

els of the stack.

Watch: Press IOThen press (#) to get the menu out of the way

for a minute so that you can see the bottom four levels of the stack:

 =
I
W
p

 =
=

And DROP2 drops (discards) the bottom two levels of the stack,

Like So: Press («) [[TEHE ().

=
M

M

No sweat, right?

RealNumbers, the Stack, andPostfixNotation 97

More? All right. Press («4*) to get the menu back and then to see more of it.

ROLL (which has a key of its own — the shifted key) and ROLLD (on the

second "page" of the STACK menu (now showing) are a matched set.

ROLL is a generalization of ROT. Its job is to retrieve a number from any given

level of the stack and push it back on again at Level 1, where it's more directly

usable. As you know, ROT does this same kind of retrieval service, but only with

Level 3. With ROLL, you can specify whatever level you want.

Easier Done Than Said: First, press (3]]4]JENTER]— to load up a total of 4 levels.

Now press (). You see:

 A =
M

The bottom four stack levels have now been ROLLed. You can see that pressing

is equivalent to pressing . Similarly, pressing is equi-

valent to pressing

But while the effect of what you're doing here is really quite simple, this may be

one of your first encounters with the use of a command that calls for an

"argument.” So take a moment for a backstage tour, a behind-the-scenes look at

what's going on here....

98 AnEasyCourse in Using theHP-28

ROLL is a do-it-now function, so it has a built-in after it. Therefore, the ar-

gument, 4, that you just keyed in does go onto the stack at Level 1 before the

ROLL gets under way (so keep in mind there's a 1 up on Level 5):

 a
0

 £
h
I
M

Next, your memo posting "office boy" obeys the do-it-now ROLL, which says, in

effect, "DROP (throw away) that bottom 4, but note its value on the way to the

dumpster." He obeys, and so the stack (bulletin board) looks like this once again:

=
M

S
O
O

He now climbs up the stack to Level 4 (because he just threw away a 4), removes

whatever's there (a 1) and pushes it back onto the stack at the bottom:

M
R
W
A

=
M

As you get more practice, of course, you won't even need to think about all these

intermediate steps. After awhile, it'll feel obvious that if you want the 4th "thing"

in the stack to "come on down," you just key in a 4 and use ROLL.

RealNumbers, the Stack, andPostfixNotation 99

The main point of this backstage tour is that ROLL is a good example of a one-

argument, postfix operation.

It's postfix because whatever it operates on (and with) had better be in position by

the time it comes along — and this is the case. Everything is sitting on the stack

exactly right — so that it does what you wantit to.

And it's a one-argument function because it needs one parameter ("argument” —

remember your staff's math jargon?) in addition to the stack’s current contents

to tell it the "where's" and "how-many's" of its operation.

The way in which ROLL simultaneously uses and discards its argumentis very

typical of the HP-28's treatment of arguments that you load into the stack. It

notes them while throwing them away (DROPping them).

Another good example of this is ROLL's twin sister, ROLLD (in the STACK menu).

ROLLD is the reverse of ROLL. It ROLLs the stack Down in the same way that

ROLL rolls it up — sending what's in Level 1 up to the specified level.

Going The Other Way: Press («4»). Thus, the stack is returned to

the order it had before you executed the ROLL.:

M
)
A

£
I
R

And you know the reasons for the parameter, 4, and the messing about with the

(«¢) key, right?

100 AnEasy Course in Using theHP-28

Onward and upward to more strange and wonderful stack manipulation stuff

(on the second "page" of the STACK menu)...

DUPN and DROPN are generalizations on DUP and DROP in the same way that

ROLL is a generalization of ROT — including the treatment of the one parameter.

Both commands first DROP a number off the stack and use it to tell the number

of levels on which to operate.

For Example: There are now four items on the stack. Press [(«#).

Voila! There are now eight levels on the stack. The bottom four

levels have been duplicated and then pushed back onto the

(bottom of the) stack.

Press four times to prove this to yourself...

Thus, [T is the equivalent ofI, and [is the equivalent of

LITE.

Likewise: DROPN will remove the specified number of levels. Press

[MAIFE. All four of the remaining levels are dropped (nuthin'

left)!

Thus, [ATd3] is equivalent to , and [[Id3] is equivalent to [T

RealNumbers, the Stack, andPostfixNotation 101

"But wait — there's more!"

PICK (same menu) is a generalization of OVER. It drops an argument from the

bottom of the stack, using its value to count up the stack. It then makes a copy of

that level (unlike ROLL, which extracts that entry altogether) and pushes this

copy onto the stack.

Thus, Ais equivalent to EIIT#, and EF{HA is equivalent toI

And more: DEPTH is a command that takes nothing from the stack. It merely

counts the number of levels currently on the stack and then pushes its resulting

count onto the stack (as the new bottom number, of course).

Do This: Be sure the stack is clear, then press («+) @&, and it returns a @ —

no mystery, right? The stack was empty.

Press it again and it returnsa 1 . (Why ?)

102 AnEasy Course in Using theHP-28

Would you believe...more?

(@cHs) and (@EEX)) don't actually change the stack in any way.

As their names imply, they allow you simply to view portions of the stack.

Take ALook: Press §0808008080008HENECD!

Now press JJVIEWt. What happens?

r
a
W
B
O
n

A

The whole stack was scrolled (not rolled) down. You can now

see what was beyond the top line of the display.

Pressing f(VIEWY again will move the view up one more line.

Pressing and holding will scroll until the top line of the

stack is visible. VIEW+has the opposite effect.

RealNumbers, the Stack, andPostfixNotation 103

One more thing:

(@is just like (EDIT), except that it uses the number in Level 1 as an ar-

gument — DROPping it and noting it in the usual manner — to select the stack

level to be edited.

Then, in terms of actual editing, VISIT is exactly like EDIT, except that when you

press the altered contents of the stack level you've been editing are placed

back at that level — not at Level 1 (and you would expect this, right?).

Try VISITing various stack levels, just to get the hang ofit.

14 AnEasy Course in Using theHP-28

Strenuous But Practical Stack Practice Problems*

Solve the following as efficiently and expertly as you now know how:

2. Assume the bottom three levels of the stack contain the coefficients of a quad-

ratic equation (i.e., ax? + bx + ¢ = 0), where Level 3 is a, Level 2is b, and Level 1

is ¢. Give a sequence of keystrokes that will produce the equation's lesser root,

whose formula is

-b - V(b2 - 4ac)

2a

3. You've seen (on page 96) how you might reverse the bottom three stack lev-

els. What are some keystrokes that will reverse the bottom four stack levels?

How about reversing Levels 2, 3 and 47?

4. Swap Levels 1 and 2 for Levels 3 and 4. Then swap Levels 1, 2 and 3 for Lev-

els 4,5 and 6. How about swapping Levels 1 and 4?

5. ((((12.45 + 3) x 12.45 + 3) x 12.45 + 3) x 12.45 + 3) x 12.45 + 3) x 1245+ 3 = ?

6. Who played Elliot Ness in the television series "The Untouchables?"”

*Try saying that three times in a row.

RealNumbers, the Stack, andPostfixNotation 105

S. B. P. S. P. P. Solutions

1. (2]ENTER) (7]+]) (2/7 in Level 1.)

(14JENTER) (1)5)+) (2/7 in Level 2; 14/15 in Level 1)

I (Copy both values)
(=) (14/15 — 2/7)

KNl KOl &)

Result =

2. One solution:

STACK (Stack = b; c¢; 2a, in descending order)

DUF (Stack = b; 2a; 2ac)

(Stack = b; 2a; 4ac)

2 (Stack = b; 2a; 4ac; b)

(Stack = b; 2a; 4ac; b2)

SWAP) (=) (Stack = b; 2a; V(b2-4ac))

(NexT) AT (CHS) (SWAP) (o) (SwAP) (=)

3. WISTACK] ESWAP) (4JROL) ;
Bs7ACK) (4NEXT) [INET

106 AnEasy Course in Using theHP-28

4, ROLL) (4 ROLL) ;

(6) (6 ROLL) (6 ROLL) ;

(4]ROLL) (SWAP STACKINEXT) [INNd or (4 ESTACK|INEXT) [TINNT

5. (1]2]-]4]5) [ENTER) (ENTER] (ENTER) ([ENTER) (ENTER) (ENTER) (Six copies.)

ENTER
MODEJNEXT) EXNEIN (Enable [COMMAND).)

(o) A (Remember these keystrokes.)

BCOMMAND]ENTER]

BCOMMAND]ENTER]

@COMMANDJENTER)

BCOMMANDJENTER]

@COMMANDJENTER) (Do them five times.)

Result = 4699759.912785

See how easily you can repeat any given set of keystrokes?

6. Robert Stack

RealNumbers, the Stack, andPostfixNotation 107

End

construction.

Thank you for your

patience.

This is it. You've fully constructed your office surroundings in your mind. Now

you're ready to learn how to work with all the high-powered brains on your HP-

28 staff. Looking back for a moment, you can see how far you've come as

"president” of this "collection of mathematicians" called the HP-28.

— You know how the keyboard connects to the "bulletin board" display, and you

have a basic understanding of the layout of the keyboard—how the character

and command keys are arranged and how the §§ key serves to change the

meanings of most of the keys (changes to the red-printed functions).

— You know how to use the command line to edit and post "memos" or com-

mands on the bulletin board. You know that you have a "card catalog" of re-

served words (menu items) that the HP-28 will recognize as commands

rather than simple messages. And you know that many of these are "do-it-

now'commands, so they won't be posted onto the stack but rather, executed

immediately (unless you have switched to (@) mode).

— You know how arithmetic works on the HP-28, with its postfix logic, where

both operands precede the operator. And you know about 0-, 1-, and 2- num-

ber arithmetic operators.

— You know several gadzillion charming and useful stack-manipulation com-

mands — ways to rearrange the numbers in the stack.

— You're familiar enough with the HP-28 that you can now dispense with this

"office world" mind game and instead see this machine for what it really is —

just a mindless but powerful calculator that will obey your commands.

108 AnEasy Course in Using theHP-28

THE "STUFF" UPON WHICH THE HP-28 WORKS

An Equal Opportunity Calculator

Unlike most calculators, the HP-28 is not limited to working only with real

numbers. Though real numbers are tremendously useful, and much real-world

work involves their manipulation, you might also want more flexibility in your

problem solving — the ability to manipulate other sorts of information, too.

Unfortunately, with increased flexibility comes increased complexity (you can't

get somethin' fer nuthin'). With all these new sorts of information and new

ways of manipulating them, there comes a whole slew of new rules — and new

exceptions to those rules.

Fortunately, however, there is an underlying, unifying logic to how things work

in the HP-28. Once you get a grip on this general operating scheme, you should

be able to move from manipulating one sort of information to another without

much discomfort.

How can that be? How can you treat characters, for instance, in any way simi-

larly to the way you treat real numbers?

Be assured, you can. Though you must remember certain details for certain

types of information, you will find that the machine treats most every "thing" in

very much the same way!

110 AnEasy Course in Using theHP-28

The HP-28's Philosophy of Information

Despite all evidence to the contrary, there are really only three basic kinds of in-

formation that the HP-28 understands. They are:

Real Numbers

Characters

Bits (short for Binary digits).

This is because these three basic information types are so very useful, forming

the backbone of almost all information processing that goes on in the real world.

But that isn't nearly the whole story.

Though these three information types are used almost universally, they are al-

most never usedjust as they are (the major exception being real numbers).

Specifically, characters are more commonly used as elements of character

strings or pages of text.

Bits are more often grouped into bytes and words, or used as binary integers.

Even real numbers are often grouped into vectors, arrays, tables, and other more

exotic "things."

The good news is this: HP-28 has anticipated your need for such complex group-

ings of these three simple information types. Built right into this calculator is the

capability to allow you to build and manipulate compound objects in familiar,

useful and convenient ways!

The 'Stuff'Upon Which theHP-28 Works 111

Real Numbers

You've already had an introduction to real numbers — what they are and some of

the things you can do with them. Now you must begin to look at them as part of

the larger scheme of things.

Real numbers are "things," objects — one specific kind of information. Sure,

they're somewhat familiar to you because you often use them to solve problems

in your daily life — including the problem of how to introduce yourself to the HP-

28's stack and arithmetic.

But stop and take a good, hard look at that. Exactly how have you used real

numbers in this Course so far?

Two ways:

1. The first way is probably so familiar to you that you didn't even notice it. You

used real numbers as object information. That is, they were data — informa-

tion for its own sake — to be manipulated in order to get other numeric infor-

mation.

This is the way that you look at real numbers when you do things like addi-

tion, subtraction, multiplication and division. You are working on numbers

that are meaningful to you in order to get another number that is meaning-

ful to you.

2. You have also seen numbers used not as data, but as parts of commands. For

example, ROLL doesn't use the Level-1 stack value as data. Rather, it uses

the number as an indicator of how it is supposed to work. In other words, real

numbers used in this way are meaningful to you only because they help you

control the machine.

112 AnEasyCourse in Using theHP-28

3. And here's yet a third way to use real numbers—a way you've not yet encoun-

tered in this book: use them as truth values.

That is, use two different real numbers (conventionally 0 and 1) to represent

opposing states or responses (e.g., yes or no, on or off, set or clear). In this

sense, then, a real number can be used to represent qualitative information.

For example, if you're comparing two real numbers to see if the first is great-

er than the second, you would use the > command.

Try It: Press (2]ENTER) (3]ENTER) @GJENTER) The result is @. Then press

The resultis 1.

To the HP-28 in this context, @ means that the comparison is false (i.e.

the answer is "no, 2 is not greater than 3"). Conversely, a 1 as a result

means that the comparison is true.

All such comparison operations (<, >, ==, SAME, <, >, #) will return either

a one or a zero depending upon whether the result is true or false.

You can begin to see that a number or any other type of information is actually

quite meaningless unto itself. It gains meaning based on how it is used. That's a

basic concept — an underlying truth — of the HP-28.

You've also seen another underlying truth of the HP-28 — the stack. It may have

been a rather new idea to you. It does present some new problems and new ways

of doing things, but it also opens up many new possibilities — new and powerful

concepts, such as postfix operation.

The 'Stuff' Upon Which theHP-28 Works 113

So it's time to begin exploring these different uses of information, seeing first-

hand just how the HP-28 builds upon the three fundamental information types,

creates other information "objects" and combines them on its stack....

REAL NUMBER STRUCTURES

Complex Numbers

A good starting point: With real numbers as your building blocks, the simplest

compound-data-type you can build is the complex number.

As an information structure, a complex number is simply an ordered pairing of

real numbers — a list with two real-number elements. The first element of the

pair is considered the real part of the number; the second is called the imaginary

part.

On the HP-28, complex numbers are represented by bracketing two real num-

bers between parentheses, separating the two numbers with a delimiter.

Build One: Press MODE) («+) CLEAR).

Then press ((]2]SPACE[3]-]4) (ENTER). This is what you'll see:

M
R

(Zy3.4)

114 AnEasy Course in Using theHP-28

Notice these things:

1. You didn't need to press at the end of the number. If the complex num-

ber has other things following it in the command line, then you must use 2 as

a delimiter. If not, the HP-28 will automatically add the right-hand paren-

thesis before posting the number.

2. The space you used as a delimiter in this example was replaced by a comma

when you posted it. Regardless of the delimiter you use when keying in the

complex number, the HP-28 will use a comma (unless you're using the com-

ma as the radix mark, in which case it will use a period) in the posted form.

3. The real and imaginary portions of the number are on the same stack level.

Both this and the fact that they are grouped together inside parentheses tells

you clearly that this is a single object — one number. From now on, unless

you purposely break it into its components, it will be treated as one number —

one object.

That's all there is to it; that's how you key in and post a complex number "object."

Now, what good is it?...

The 'Stuff'Upon Which the HP-28 Works 115

Complex numbers have, by definition, mathematical properties quite similar to

those of real numbers. Thus, many HP-28 operations meaningful for real num-

bers are also meaningful for complex numbers.

You can, for example, perform arithmetic operations (+, -, X, +, etc.), trigonomet-

ric functions (SIN, ASIN, COS, ACOS, etc.) and logarithmic functions (LOG,

ALOG, LN, EXP,etc.) on complex numbers.

And in all these operations, you can perform arithmetic using a mixture of com-

plex and real numbers. The real number is converted by the machine into a

complex number (with a 0 imaginary part) before the operation commences.

The result is always complex.

Watch: Press (5)

=
M
R

 (12,208.4)

Pretty slick, right? With those few keystrokes — and the stack logic you now

know all about — you multiplied a real number by a complex number, then added

the result to a complex number.

So you can see right away that one major advantage of a compound data type

such as a complex number is that the components of the object are manipulated

together as a unit in new and meaningful ways — and you don't have to expend

any energy trying to keep track of all the parts!

116 AnEasy Course in Using theHP-28

However, another (complementary) advantage is that you can pull apart the

complex number into its component pieces, do things to them individually, and

then reassemble them into a complex number. In fact, you can build a complex

number from pieces generated by other, unrelated operations.

So in addition to the strictly mathematical operations in your complex-number

repertoire — operations they share with the real numbers — you have other oper-

ations designed specifically for complex numbers.

Any guesses as to where these type-specific operations might "live?" In the

CMPLX (@)c)) Menu, of course!

Try This: Press (1]ENTER] 9]+ (7JENTER]4]2]+

Then ("Real to Complex"). Here's what you get:

3
2 (12,208.4)
1: ¢.111111111111,4.166..
TSTTTTO

R—C allows you to construct a complex number from two real numbers that are

in stack Levels 1 and 2. The real portion is taken from Level 2; the imaginary

portion from Level 1.

As you might expect, the function C—R (also in this menu) allows you to go the

other way — decompose a complex number into two real numbers — where the

real portion goes to Level 2 and the imaginary portion to Level 1.

The 'Stuff' Upon Which theHP-28 Works 117

Notice that the complex number is longer than the display can hold. When this

happens, the HP-28 will use an ellipsis () to indicate the over-run — just as you

saw with the command line (page 53).

To view the entire complex number, therefore, you must do one of two things:

(1) Edit Level 1 (with either EDIT or VISIT), using the cursor keys to scroll

through the entire object.

The numbers in the command line will be represented in standard display

mode (STD), regardless of the mode the rest of the display is using. Re-

member to press to leave the command line so that you don't inadver-

tently change the number;

(i1) Decompose the object with C—R and examine the elements individually in

the stack. Remember to rebuild the complex number with R—C, if neces-

sary, when you're done.

Actually, there is a third option, one that doesn't show you the whole object. You

change the display mode (as on page 78) to show you fewer digits of each of the

components of the complex number. In this case, (6)()(F)(1)(X)([ENTER) or

(3]][s]c]I]eNTER]) will show you the whole object with less precision, if you wantit.

118 AnEasy Course in Using theHP-28

Now Try This: PressI You see:

a
0

(12,20, 47
111111111111
 1EGEEBEGEERE

CRC|TR|RE]IM]COMJ]SIGN.

See how you decomposed the complex number that was at Level 1 into its two

components? The real part is now at Level 2; the imaginary part is at Level 1.

Next, press to recombine those two parts once again. Simple, right?

OK: Press B3R

Now what have you gone and done?

Nothing too awful: RE replaces the complex number on Level 1 of the stack with

only that number's REal component. IM does the same with a complex number's

IMaginary component.

The 'Stuff'Upon Which theHP-28 Works 119

Here's a point to help you wrap your mind around the HP-28's idea of data ob-

jects:

Although complex numbers are a meaningful form of information and there are

plenty of operations that use them as such, you're not limited to using them just

as complex numbers.

You can also use complex numbers as two-dimensional vectors (which are very

similar to complex numbers), or as coordinate pairs in plotting, or just as a con-

venient way to group two related numbers.

And because you can pull complex numbers apart and put them back together

again, you can actually define new operations that give new meanings to the

complex number data type in the HP-28 but which have no relationship to the

mathematical concept of complex numbers in the real world.

As far as you should be concerned, then, complex numbers are just ordered pairs

of real numbers — information objects for you to use in whatever way you see fit.

And just so you're fully confident of your skills with the mechanics of complex

numbers, here's a "little something for the occasion..."

120 AnEasyCourse in Using theHP-28

Pop Quiz: Simple Questions About Complex Numbers

1. How would the HP-28 represent these complex numbers?

3+ 4i 23-1.11 -1-1

O

+ gi

2. How would you key in the numbers in question 1?

3. Calculate the following:

T 7 (1,1)2

4. Change (1,2) into (2,1).

5. Calculate the following:

0.34(2 + 3i)(32.4 - 12.2i)

33.42 - (12.2 +iV2)

The 'Stuff’'Upon Which theHP-28 Works 121

Simple Answers to
Simple Questions About Complex Numbers

1. C3ad);

(2.3s-1.12;
(=1,-12;
C.872s1.333333333337.

2.
[(J2)-J3JsPACE]1]-J1JCHS]ENTER
L2JJENTER]CHS]

T

3. (AEs) =By 1)
(7)cHS)ENTER) GIVX(D) = . 206460091387, 1.65664639937)

(e =(Hy 22

4. (AJ2)enTER) ECMPLX)T X

5. (/3]4JENTER]
(2]]3]
(32Ja)eJaJ2)-J2)eHsIX
(3]3)-[4]2JENTER]

(112)-J2JENTER] (-5

Result = €1.34811498433, 1. 26988581897

122 AnEasy Course in Using theHP-28

Vectors

Put most succinctly, a vector is an ordered list of numbers. It's ordered such that

the left-most element is numbered 1, and the rest follow in ascending order.

You're probably familiar with two- and three-element vectors, but the HP-28

imposes no upper limit on the size of a vector. Vectors are represented by the

HP-28 as a list of numbers, separated by delimiters and enclosed within square

brackets (L and 1).

And here's a key point: The number elements of a vector may be real or com-

plex (aha)! You can see already how to build a compound data type from simple

data types and other compound types.

Better to start simply, though, so

Watch This: Press §CLEAR] («¢) (1]1]2)]2]2]3]7]4) [ENTER).

You'll see:

 —
M
w
A

[1 23 4]

The 'Stuff' Upon Which theHP-28 Works 123

Again, notice certain things:

1. You didn't need to press (1) at the end of the number. Ifthe vector needs to

be separated from other things following it in the command line, you must

use J as a delimiter. If not, the HP-28 will automatically add the right-hand

square bracket (and these rules should sound quite familiar, since you just

heard similar ones for complex number objects).

2. The commas you used as delimiters were replaced by spaces. Regardless of

the delimiters you use to enter the vector, the HP-28 will use spaces to display

the vector (also a familiar rule).

3. All elements of the vector are on the same stack level. Both this and the fact

that they're grouped together inside square brackets tell you that this is a sin-

gle object. From now on, unless you purposely break it into its components it

will be treated as one object.

124 AnEasy Course in Using theHP-28

By definition, vectors may be combined via certain mathematical operations, but

unlike complex numbers, only a few of these are in any way analogous to corre-

sponding operations on real numbers (operations such as +, -, X, +, SQ, ABS, NEG

and INV).

For the most part, then, you have vector-specific operations, collected under the

ARRAY (@A) menu. Why not a VECTOR menu? Because vectors are really ex-

amples of an object type called an array.

So an array is an ordered arrangement of objects, and a vector is just one partic-

ular arrangement — a one-row arrangement.

AnotherVector: Press (1)
(7]|8[ENTER)

2]3 4
':5! E}III =

M
o
o

[1
[C1,22 (3y42

The usual, little things to notice:

1. Since something follows each complex number in this vector (except the last

one), you need to use the right-hand parenthesis to delimit each.

2. Neither the last complex number nor the vector needs the final parenthesis

or bracket. Since it found both an opening bracket and parenthesis, the HP-

28 knows it must close them at :

The 'Stuff' Upon Which the HP-28 Works 125

In this case, the vector is longer than the display. As usual when something like

this happens, the HP-28 will use « to indicate the overrun.

To view the whole vector, you must do one of three things:

(i) Edit Level 1 (with either EDIT or VISIT), using the cursor keys to scroll

through the entire object. Then press to discard the command line so

that you don't inadvertently change the vector;

(i1) Decompose the object with ARRY— from the ARRAY menu, and if neces-

sary use [VIEwt) and J(VIEW4] to examine the elements in the stack. Re-

member to rebuild the vector with -ARRY when you are done;

(iii) Use GETI to step through the vector components.

No sense exploring (1). You already know how to EDIT.

Try Door Number (ii): Press [AFE]. Here's what you get:

(I35
(rs8)
.

HERY+]FLUTGETFLITIGETI

126 AnEasy Course in Using theHP-28

The object in Level 1 is something new called a list. You can tell that this is a dif-

ferent object type because it's represented within braces (L and). Alistis a dif-

ferent animal altogether, so you won't see it in all its glory until later. For right

now, just learn to recognize it by its braces.

You can see that the numbers up farther in the stack are the former values

within the vector you just dissected. But what's that bottom number inside the

braces?

It's the number of elements the original vector contained: 4 (complex) numbers,

in this case. ARRY— will always put this extra value on Level 1, so that you'll

know how many stack levels contain vector elements and so that the machine

will know this too (the array-building command, -ARRY, needs to know how

many stack levels to use in making the new vector).

Now, use and to scan the stack.

The vector has been decomposed from left to right (like the complex number

with C—R); the first element (the left-most) has been put on the stack first and

the last vector element (the right-most) last.

Notice that you can modify any single vector element by using @(VISIT) to edit

that element right where it is.

The 'Stuff'Upon Which the HP-28 Works 127

Rebuild: Press ELldM .

3
2 [1 23 4 1
10 [Cla2) (S5sd) C3s6).
FAREYRERYFUTGETJFUTI|GETIs

The vector has been recomposed from its pieces. The EIIAM operation used the

{ 4 2 to know how many stack elements to put into the vector.

Note that you could have filled the stack with real and/or complex numbers of

your own, put the vector size in a list in Level 1 and used —ARRY to build an en-

tirely different vector.

Like This: Press (1]](J2]*]3]ENTER] *ARFYE

a: [12341
B L (1,2) (3,4 (5,600
I [¢ci 8y ¢2533 7
*HEEYVIRRRY 3]FUT |GETJFUITI |GETI

128 AnEasy Course in Using theHP-28

What happened? First of all, the real value 1 was changed to the complex value

C1s B2, which is its complex equivalent (remember that complex numbers

with a zero for the imaginary component are mathematically identical to real

numbers). The HP-28 likes to be consistent within a vector, so if any element of

the vector is complex, all of the elements are made to be complex.

Secondly, notice that you didn't need to press before pressing EiIAAl. Most

do-it-now operations will automatically evaluate the command line before they

execute, thus saving you a step.

Since there is such a thing as a vector full of complex numbers, it would be rea-

sonable to use the complex number operations on them, too. What happens if

you do? To find out, press to get to the previous page of the ARRAY menu.

Then Press: A

[C1y22 (3340 (2B
[1 2 1]

: [8 3]
E+CCaRREIMCONJ|NEG

=
)

The complex vector has been decomposed into two real vectors, just as a complex

number would be decomposed into two real numbers. In the same way also, the

real components of the original complex vector are in the Level-2 vector, and the

complex components are in the Level-1 vector.

As you might expect, R—>C will recompose the original complex vector from the

two real vectors in Levels 1 and 2.

The 'Stuff’ ' Upon Which theHP-28 Works 129

Now Try This: Press 34, What happened?

3 [C152) (3542 C3sB)w
2 L 2 %
1: (1,22
FAREYRERYFUTSETFUTIISETI

First, you brought that 4-element complex vector to Level 1.

Second, you keyed in a list containing the number 1. This list

was created to be an index into the vector.

Third, you pressed which told the HP-28 to GET the

indexed component from the vector in Level 2, then Increment

that index and push the selected component on the stack —in

that order. Sure enough, component 1, &1y 22 was pushed

onto the stack and the index was incremented to* 2 .

Encores: Press IH3Fd. Now the second component, £33 23, is

pushed onto the stack, and the index is incremented toL 3 2.

Press IH3Fd. The third component, L2y 62, is pushed

onto the stack, after the index is incremented to X 4 2.

Press IH3Fd. Now the fourth component, £ Fy 82, is

pushed onto the stack, but since there are only 4 components in

this vector, the index is cycled backtot 1 .

130 AnEasy Course in Using theHP-28

At this point, your display will look like this:

[Cly20 €3542 (0460
£_1 >
CFPy 8

flflfl“flflfllflflfllflfl"flflfllfififl
=
M

You can see how easy it is to gain access to any element within a vector, using the

GETIl command. Remember that the | in GETI stands for Incrementing the index

(not simply the fact that you're using an index) while GETting the indexed ele-

ment.

AVariation: Press K38 Here is the result:

3
2
1 (1s22
*HEEYVIRRRY3]FUT|GETJFLITIGETI

Unlike GETI, GET consumes both the index and the vector and leaves only the

indexed component on the stack. Therefore, you would probably use this form of

GETting when you didn't care about keeping the vector in the stack. When you

did want to keep the vector, you would make a copy of it (with DUP) prior to us-

ing GET.

The 'Stuff'Upon Which the HP-28 Works 131

By now, you've probably noticed that many commands come as matched sets of

complementary functions, such as C—»R, R—»C, -ARRY, and ARRY-.

Speaking Of Which: Press ({]1]eNTER) (5[ENTER] Here's what you'll see:

3+ [1 23 4 1
= L1
1: 5
*AREYVIRRRY 3]FUT |GET |FUTI |GETI

Now try to guess what will happen if you press [III#¥dl. Hint: PUTI is the comple-

ment to GETI. Therefore, it should put the number in Level 1 into the vector in

Level 3 at the location specified by the index in Level 2. It should also increment

the index.

Yes, But Does It Really? Press [II1#4.

o
2. [52 34 1]
1: £ 2 7%
+AEEY|[AREY]FUT |SGET |FUTI |GETI |

Shur 'nuff: The machine put the = into the vector as element number 1 (the

indexed element), and the index was incremented to 2.

And Notice This: Press(6) IRl PUT is the complement of GET, functioning

similarly to PUTI, except that it doesn't keep the index around.

132 AnEasy Course in Using theHP-28

A Visit with Vectors

Like complex numbers, vectors are a meaningful form of information, and there

are operations that use them as such. But you're not limited to using them solely

as mathematical vectors (i.e. representations of "reality"). Keep in mind that be-

cause you can "dissect” vectors and reassemble them, you can define new opera-

tions that give new meanings to the vector data type — meanings that have no

relationship to the concept of vectors in the real world. So before going on, be sure

you understand vectors, how to build them, and how to take them apart.

1. Give three ways of putting the vector [(1,2) (3,4) (5,6)] into Level 1.

2. FA=[1 2 3,B=[3 25 -2]and C=[V2 -6] what is 14.5A - 0.2B + (1,1)C?

3. Sum the real and imaginary components of the result of the second problem.

I.e., split that vector into two real-valued vectors and sum them.

4. Using the result of problem 3, find the corresponding unit vector (u = I_\Yr—l)'

5. For the following table, find the total hours worked per person and overall.

Abe Ben Carl Dan

Mon 8.00 7.75 4.50 6.40

Tue 7.50 8.25 5.50 7.40

Wed 3.50 6.50 4.75 7.10

Thu 8.00 7.50 4.00 7.50

Fr 8.10 8.00 4.50 7.25

The 'Stuff'Upon Which theHP-28 Works 133

Results of A Visit With Vectors

1 (LA120LB4 DL5218 [ENTER);

(A72)enTER) (3]J4) ENTER) (J5)76JENTER ARRAY) EXTTA ;

(L35IENTER) (L)2])4*6] ARRAYIPREV) IEEIM.

2. (14l5 IenTER)

(121X &

(6[CHS]ENTER]

({13) WARRAY) EITAA

Result =L €13.4333333333,.333333333333)>
(29.9142133624,1.414213362372 (37.24,-62 1

3. @ARRAY) lPREV) IETH (+);

Result=L[13.7666666666 31.3284271248 31.94 1

134 AnEasy Course in Using theHP-28

4. [ENTER) (A]BJSJENTER] VX]X];

Result =

[.3342624325084 .664186741847 .668672249469]

Note that since the HP-28 won't allow you to divide a vector by a scalar (a

real number), you must invert the magnitude (via X)) and multiply.

5.
(Mon)75
(Tue)
(Wed)L4
(Thu)()7L

(Fri)a5

Totals=[32.18 38.88 23.23 33.62 1

B2RRAYINEXTINEXT) INARN or A

Sum total = 132 . EH hrs.

The 'Stuff'Upon Which theHP-28 Works 135

Arrays

You've already heard the word "array.”" In fact, you know that a vector is one

form of an array. Mathematically, an array is nothing more than an ordered

arrangement of numbers in rows and columns, and a vector is merely a one-

dimensional array.

So in general, you can think of an array as a list of vectors. The vectors form the

rows, and corresponding elements of the vectors form the columns. The lengths

of the component vectors must therefore be the same, but the number of rows

(vectors) does not need to be the same as the number of columns (elements per

vector).

On the HP-28, an array is represented by bracketing a list of vectors with square

brackets ([and 1). Thus, you'll see a double set of square brackets, since vectors

themselves use a set, too.

But here's a less obvious point: The HP-28 allows you to deal with arrays only as

a two-dimensional list of numbers (i.e. not as a "vector of vectors"), which of

course conforms with the normal, mathematical notions of matrices. In other

words, it may seem logical to be able to extract entire rows (vectors) from an ar-

ray and horse around with them, just as you can with the components of com-

plex numbers and vectors. There are no conceptual reasons why you can't do

this; there just aren't any built-in commands to let you do it. You can decompose

arrays only on an element basis, not on a row (vector) basis.

136 AnEasy Course in Using theHP-28

An Example: Press {JCLEAR] @MoDE) ()PREV) IEEIMH (<5+).

Then press ([JU[1)2]2)1]3)*]4) [ENTER).

Here's what you'll see:

A [L 121 [34 1]

Things To Notice That Shouldn't Be Very Surprising Any More:

Notice that you didn't need to delimit the first vector with 1 before starting the

second vector with L.

Since the HP-28 is expecting the second vector (you told it that there were to be

more than one when you typed (L]1)), it doesn't need the closing bracket. The

new starting bracket simply tells it that you're finished with the first row/vector

(and therefore tells it how many elements are in each row).

Nothing very new, right? The HP-28 has dealt with the array in much the same

fashion in which it deals with vectors. This is in fact the case with almost all of its

other operations as well. You really wouldn't want it any other way.

The 'Stuff'Upon Which theHP-28 Works 137

One thing you did that was new and purely optional was to enter the MODE

menu and select -ML. What you did was to turn Multi-Line mode off.

The best way to see what this mode does is to look at what the opposite mode does.

Compare: Press ().

3
2
1: [L 12 1

[3 4 1]

See the difference? Multi-line mode reformats Level 1 so that as many lines of

the object can be seen as possible.

Notice that the object is still on the same level; it has not been decomposed. In the

case of an array, each display line will contain one row (vector) and may trail off

the right-hand side of the display. If there are more rows than can be seen in the

display at once, you can use and to scroll the display and see all

of the rows.

Now press () to get back to single-line mode. You still have a two-by-

two array of real numbers here. It's just shown as being all on one line.

138 AnEasyCourse in Using theHP-28

Now, the only major mechanical difference between working with vectors and

arrays on the HP-28 is in the index — that list denoted with braces — associated

with -ARRY, ARRY—, GET, GETI, PUT and PUTI.

Because of its two-dimensionality, the size of an array is represented as a pair of

numbers within braces. The first number of the pair is the number of rows

(vectors) while the second is the number of columns (elements per vector).

Take It Apart: Press S

3= 3
25 4
1: {2272

 #AREYRRRY 3]FUT |GET |FUTI|GETI

Use and to look over the stack. The array has been decomposed

into its component numbers, with the elements having been pushed onto the

stack in "row-major order.” That is, they were pushed on starting with the first

row, proceeding from left to right until that row was exhausted. Then the second

row was taken left-to-right, and so forth.

The list on Level 1 contains 2 numbers specifying two rows and two columns, re-

minding you (and the HP-28) where those numbers above actually originated.

As with all decomposing commands, the stack is left in a state that allows you to

immediately recompose.

Do It: Press EfIAAl. The array is recomposed, using that index list on Level 1 as

the blueprint for rebuilding the array.

The 'Stuff’'Upon Which theHP-28 Works 139

Again, remind yourself that you're working in the same ARRAY menu as you did

with vectors. How, then, do these same commands work on two-dimensional ob-

jects?

Find Out: Press ({]1]]1]ENTER). This is the array's index, pointing to the first

row, first column.

Now press IEH3F#l. Here's the result:

3t [[L 121 [3 4 1]
2 {71273

FARRV|ER]PUT |GET |FUTI |GETT

This works exactly analogously to the way it does with vectors, with an allow-

ance for the second dimension. Indeed, the only new thing to notice is how the

index is incremented: PUTI and GETI increment the index in row-major order.

Do it a few more times to make sure you see the pattern. Press GETI|

The indexisnow® 2 1 2.

Press EEEFl The indexisnow®™ 2 2 1.

Press IEEFl. The index cyclesbacktot 1 1 X

Care to speculate on how GET and PUT work? Go ahead — experiment with

them.

140 AnEasy Course in Using theHP-28

Array Aptitude Test

1. Convert the vector[123456789](a1x9array) into a 3 x 3 array.

2. Convert the array result from problem 1 into a complex array such that all of

the imaginary components are 0. Are there different ways to do this?

3. GivenA=[[123][459]], double A and subtract 1 from every element (i.e.,

find 2A-1).

4. GivenA=[[12] [34]] andB=[[34] [21]] showthat Ax B # B x A (thus

proving that matrix multiplication is not commutative).

5. How could you extract individual rows (single vectors) from a 3 x 3 array?

The 'Stuff'Upon Which theHP-28 Works 141

AA.T. Results

1. @ARRAY)

[TAER ({13]3) EITTA

2. Method 1: [ENTERJJARRAYNEXT) BEEH (o) IXITH F* B

Find the SIZE of the array and use it to create a CONstant array of the same

size that is filled with O's.

Method 2: [(]1]*)0]X]

3.

(Find the size of the array.)

(Create a CONstant array of the same size filled with 1's.)

=

Resut=LL 1 331 [7 9 17 11

4.
L4](3U2JUJENTER)

(SWAP ROT reverses Levels 1, 2 and 3. See page 96.)

(=]=]ENTER] == tests Levels 1 and 2 for equality. If they are equal,

the test will produce a 1. If not, it produces a 0.)

Result =H. The values at Levels 1 and 2 were not the same.

142 AnEasyCoursein Using theHP-28

5. Takethearray[[123] [456] [7 89]] as an example. The strategy is to

createthe3x3array [[100] [000] [000]] and multiply this by the first

array.

Thus:

()37)3JENTER) (o) XXM (a 3 x 3 array of 0)

({12J1JENTER (put 1 at element L 151 3)

06800808008800068008008

IIIEM (redimension the array to be a vector)

Using [[010] [000] [000]] will give the second row, and

[001] [000] [00O0]]will give the third.

Be sure to keep in mind that the order of the two arrays is important in mul-

tiplication!

The 'Stuff'Upon Which theHP-28 Works 143

You've now seen three different objects you can construct with real numbers as

your basic building blocks. Before building anything else, see if you can put all

these different real-number constructions into some perspective. How do they

all relate to one another?

— Each of these information objects is built from real numbers, which are one of

the three fundamental information types (characters and binary digits are

the other two).

— Throughout these last 30 pages, you've seen that innocent-looking little word,

"list." The ordered, indexed list is really the key when it comes to thinking

about how the HP-28 associates information. In order of increasingly sophis-

ticated lists, you can think of the real-number-based objects like this:

— A complex number is a 2-element list of real numbers;

— A vector is an "n"-element list of either real or complex numbers. There-

fore, it can actually be a list of other lists (complex numbers).

— An array is an "n"-element list of vectors. Therefore (in the case of a com-

plex array), it can actually be a list oflists oflists.

Lists of "things.”" That's the compound-information object "concept” in its pure

form — the truly consistent, generalized way to think about these objects.

However, as you've already seen, you don't have exactly the same set of "list

arithmetic" and "list decomposing tools" available for each of these objects. Clear-

ly, the HP-28's command set has been tailored toward the real-life math

"meanings"” of each of the objects. For example, it's true that an array is nothing

more than a list of vectors, but the HP-28 won't decompose it into its component

vectors for you — probably because this isn't a commonly needed application.

144 AnEasy Course in Using theHP-28

Characters

Characters are another sort of simple information that you use every day with-

out thinking much about it; you're using them right now as you read this book.

They are so simple that they convey very little information by themselves. But in

mathematics, if you associate a certain character, say X, with a value or opera-

tion, it gains information value. Notice that this value is not intrinsic; you have

given it this value by association.

Characters also gain in information value when they are used to make words.

The characters on this page are only meaningful because of their association

with other characters to make words. Thus they attain a higher level of infor-

mation.

The words on the page in turn gain meaning by being associated with other

words in sentences. The process goes on through all of the sentences in each par-

agraph, all the paragraphs on a page, to all the pages in this book. And it doesn't

stop there. The book is only meaningful in the context of your HP-28, and your

HP-28 is only meaningful in the context of what you want to do with it.

Although its ability to gain meaning from higher and higher levels of associated

characters is far more limited than yours, the HP-28 can indeed go a few steps

up the ladder. However, it actually has no facility to deal with characters simply

as characters — only with characters as members of larger information types.

For example, you cannot place a single character on the stack. That is, there is

no data object type called a "character." This is different than with a real num-

ber, which may, of course, appear on the stack as itself — in its elementary build-

ing-block form. Not so with characters. They must always appear within a

compound data object.

The 'Stuff'Upon Which theHP-28 Works 145

Character Strings

A string is simply a list of characters, displayed within quotation marks ("'). And

although you can't have a single character on the stack, you can have a string of

one character(!).

If this distinction sounds a little strange, don't worry. In practice, you'll find it to

be irrelevant (i.e. you can "mess with" a 1l-character string just as if you're

"messing with" a single character), but you'll see it to be logically true. In fact, the

logic is consistent even to the point of allowing strings which contain no charact-

ers ("empty" strings).

Strings may be arbitrarily long and may contain any character.

Build One: Press JJCLEAR) («¢*) "JH]EJLIP)) (SPACE) (1)

(T]RJA]P]P]E]D) (SPACE SPACE] (H]E]R]E) (ENTER].

Here's your string at Level 1 on the stack:

M
R

"HELFPs I'M TRAFPPED ..

146 AnEasy Course in UsingtheHP-28

The Notice-These-Things-Drill:

1. As always, you don't need to key in the final delimiter. The HP-28 closes the

expression for you.

2. All characters except "' —including those that usually act as delimiters in

other objects — are included in the string.

3. All elements of the string are on the same stack level. Both this and the fact

that they are grouped together inside double quotation marks tells you that

this is a single object.

4. If a string is too long, it will run off the right hand side of the display. As al-

ways, the HP-28 indicates this with an ellipsis. The only (convenient) way to

view the entire string is to EDIT it and scroll from end to end using the cursor

keys.

The 'Stuff’'Upon Which theHP-28 Works 147

Strings are, of course, information objects and can therefore be placed on the

stack and manipulated with stack commands. But you can't use them to do

math since math isn't defined for such objects.

You can, however, use one command that is normally associated with math.

Since the concept of adding two strings together (appending one to another) is

similar to the concept of adding two numbers, the + command effectively adds

two strings.

Other than +, though, you'll need to rely mainly on the string-specific commands

that you'll find in the STRING (JD)) menu.

Explore: Press STRING) (NexT) (10[1]7) IEICH NExT) I (4.

 3
2
1: "HELP, I'M TREARPPED!"
EEABTTCTEETREE

148 AnEasyCourse in Using theHP-28

Here's what you did:

1. You selected the second level of the STRING menu.

2. You entered two parameters for the SUBstring operation. The first number

indicates the first and the second number the last character of the original

string that you want to keep.

3. You invoked the SUBstring command. The result was the string "HELP»

I'M TRAPPED" in Level 1 of the stack.

4. You keyed-in the argument for the CHaRacter operation. You may have no-

ticed that not all of the characters you might expect to be available are on the

HP-28 keyboards (though there are some you probably didn't expect). In the

HP-28 Reference Manual in the section on strings there is a table of charact-

ers and character codes. The CHR operation allows you to convert a real

number (dang, those things just keep popping up) into a one-character

string. For example, 33 is the character code for !.

5. You moved back to the first level of the STRING menu (there are only two)

and performed the character code conversion. " ! " was left in stack Level 1.

6. Finally, you added (appended) the string in Level 1 onto the end of the string

in Level 2 using (+). The result was left in Level 1.

The 'Stuff'Upon Which theHP-28 Works 149

Since you can't have individual characters on the stack (only one-character

strings), there's no convenient way to change a string into characters (sure, you

could do some tricks with SUB, using several copies of the original string, but to-

tal string decomposition isn't generally very useful).

There is, on the other hand, a very powerful method of changing a string into

other, very useful things. Strings may be converted to and from any information

object by using —STR (convert to STRing) and STR— (convert from STRing).

For Example: Press (([1]']2]ENTER) EEIA.

3
2: "HELPy, I'M TRAPPED!"
1: "C(l.22"
#5TRSTR+CHEWUMFiozDIZF

Now press BIZA.

3
2: "HELPy I'M TRAPPED!"
1: (1,22
#3TRSTR#*CHEWUFosDISF

These two objects on Level 1 don't look much different, but they are. "¢1s22"

is a string, not a complex number. The HP-28 (and you) can tell this by those

quotation marks. & 1322, on the other hand, is a complex number and the two

objects are used in radically different ways.

150 AnEasyCoursein Using theHP-28

Try This: Press ") (Notice that the Ol annunciator comes on. Remember

what that means?) (1SPACE[2)SPACE[+) (ENTER).

3+ "HELPy I'M TRAPPED!"
- | 5 2
1:]| 1 E +Il

2TTR+CHENUMFosDIZF

Press BIEA.

3: "HELPy, I'M TRAPPED!™
%: ¢1] N E%

ESABTETEETRD

What happened? STR— recognized that the string contained three different ob-

jects, and in converting the string into those objects, it posted them.

It read the string from left to right and first found the 1 (delimited by a space). It

converted that character into a real number and pushed it onto the stack. It

then kept reading and found the 2. It converted that to a real number and

pushed it onto the stack. Finally, it found the ¥, recognized it as the name of a

command, and performed it. The first two stack items were therefore added to-

gether, with the result landing at Level 1, as usual. STR— then reached the end

of the string and stopped reading.

The important point: This is exactly how the command line would have re-

sponded if it had contained those characters when was pressed.

The 'Stuff'Upon Which theHP-28 Works 151

So you see that strings may actually form "pretyped” command lines that you

can then post in their command form by converting out of string notation.

However, you probably won't use strings for this purpose nearly as much as you

will for other information. In fact, strings may quite possibly be the most infor-

mation-packed data objects available to you, because they allow the HP-28 to

communicate with you in English (or whatever language you prefer). This type

of information is probably how you'll encounter and use strings most often.

Test your understanding of them now....

152 AnEasyCourse in Using theHP-28

Character String Query

1. Given that Level 1 contains the number 188, B1 use it to build the string

"Vol.= 188.81 gal.”

2. How would you go about pulling the number back out of this string? Assume

that you don't actually know what that number is.

3. Taking the number 6. B22E23 from Level 1, format it within a string so

that it looks like this: "6. 822 ¥ 18°(232",

(Hint: use MANT and XPON from the REAL number menu.)

4. Starting the result of problem 3, what would you expect the result to be if you

invoked STR—? Why? Rewrite the string so that STR— gives you back the

original real number.

5. Change the string "You understand?" to

"You understand!"

The 'Stuff'Upon Which theHP-28 Works 153

C.S.Q. Answers

1. 8T0O)ENTER) @V (OJLX-J=)SPACE]
(GJAJLI-JENTER

Recall why you use here — to concatenate (join) strings.

2. ENTER[ENTER) @(MSPACE(ENTER) HEEM (1)) @wAP) (hexT) EEEE EEICH
"[SPACE[ENTER) (NexT) IEEEM EIA

Notice how you find the spaces on either side of the embedded number by us-

ing the POS function. You then use the position of the space as one of two in-

dices you need to extract a SUBstring.

3. ENTER)@(REAUNEXT) IRELK I BETRING)
"sPACEXSPACE(10 I~(JENTER) (]

Same idea as in problem 1, really — except for the use of MANT and XPON.

4. The result is a S4YnNt ax Error because the expression is not in postfix

form. If you want a string that breaks the original number up into mantissa

and exponent but will still evaluate back to the original number, then use

"6.822 18 23 ~ ¥"

5. ENTER) @STRINGINEXT) IBFEE (1)@swAP) IEIEH T

CHR takes an integer and returns the corresponding character (as a string).

154 AnEasyCourse in Using theHP-28

Names

Names are also character strings, but they have special restrictions and a special

purpose in life. They're represented by bracketing lists of characters with single

quotation marks (").

A name is a descriptive word used to describe an object in the HP-28. In other

words, if you have an object — any object — you can give it a name and thereafter

refer to the object by that name. This name will be associated with the object un-

til you change the association, which you may do at any time.

You can, of course, elect not to name objects (no object you've seen so far in this

book has had a name associated with it). And as a matter of fact, you may also

have a name that has no object associated with it.

For Example: Clear the stack, clear the menu line, and load 6.022 x 1023 and

'N' onto the stack. After doing so, here's how things look:

6.822E23
1 HI

=
N

And what have you done? First, of course, you cleared the stack and the menu

line. Then you put the real number 6.022 x 1023 onto the stack.

Then you put the name 'M' on the stack: ("]NJENTER). You can tell the HP-28 re-

gards this as a name because of the single quotation marks.

The 'Stuff'Upon Which theHP-28 Works 155

That 'H"' on the stack isn't yet associated with any object. Although it need nev-

er be so linked to an object, it's often useful to do so, and you can link it to any oth-

er object (even another name) by using the STO (STOre) command.

GoForIt: Press (STO).

Both the name and the number are removed from the stack, right?

What happened to them?

To find out, press . Here's what happens:

=
=
0
0

6.822E23

You can see that when you put a name associated with an object onto the stack

without single quotation marks, this tells the HP-28 to "evaluate” the name, thus

replacing it with the object itself (and you're going to appreciate this more and

more as time goes on).

156 AnEasyCourse in Using theHP-28

Do It Differently: Press :

6.822E23
IHI =

M
R

When you use ('), you're telling the HP-28 that you

do want just the name on the stack. So there you

haveit.

Now Change Your Mind: You've decided you wanted the object after all — not

just its associated name? No problem. Just press

EVALJ.

6.822E23
b.B822E23=

N
W
-
A

Can you make an educated guess as to what

does?

It EVALuates the name in Level 1, thereby replacing

it with its object.

The 'Stuff’'Upon Which theHP-28 Works 157

But typing in an object's name isn't the only way to put the object on the stack.

Watch: Press (USER). Assuming that you don't have any other named

objects in your calculator yet, you'll see:

31
21 6. B22E23
1 6. DZEEP3
w1111T1

The USER menu is your own personal menu. You are the user. Whenever you

STOre an object in a name (i.e., associate a name with an object) that name will

appear in your user menu.

Use Your USER: Press B Pressing the menu key is a quick way

to get the named object to be put onto the stack.

Now press (') IHEIN (preceding the menu key with

(') allows you to use the name rather than the object it repre-

sents).

Your display should now look like this:

3
%= 6. BEEEE?

N8]||||

158 AnEasyCourse in Using theHP-28

Next: Press ('JA[GJA]I]N) (STO).

3
2
1 6.822E23
ICTTTTIIBB

You have now stored the name 'MH"' in the name "AGAIN"'! This is an exam-

ple of using one name to refer to another, which is quite "legal,” of course, since a

name is just an object like all the others.

And notice that [EIH;}# has been added to the USER menu. The first four or five

characters in any name are all the menu has room for (not all of the characters

are of the same width).

But the name itself has not been shortened.

Prove this by pressing (') [EIHi##8l. The complete name is loaded into the command

line. Now press to clearit.

The 'Stuff’'Upon Which theHP-28 Works 159

But what is AHGAIHN's "value?" Isit "H"' orisit 6. B22E23?

Here Goes Nothing: Press JcLEAR) B4

3
2
1: 6.822E23
ICIETYIIIDRB

There you have it. Whenever you evaluate a "name of a name of a name...etc.,"

the HP-28 continues to follow its nose, evaluating each named object until it en-

counters one that's not a name.

In this case, HGHIM points to M, and N points to 6. B22E23. Evaluating

AGAHIM causes M to be evaluated. And since the object that M points to is not a

name, the HP-28 stops evaluating and places that object on the stack.

This chain of evaluations has a potential hazard. If you were to store, say, 'H'

in 'B' and 'B" in 'A"' and then try to evaluate either name, the HP-28

would go into an infinite loop. A would point to B, and B would point back to A,

and so on, forever. In fact, the only way to stop this would be to press and (a)

at the same time (a special command just for such emergencies).

Another caution: Not all characters can be used in names. For obvious reasons,

you can't use delimiters #, L, 1,", ", L, }, €, 2, &, %4, (SPAcE), NEWLINE)). You

are allowed to use numerals, but not as first characters. And it's a definite no-no

to use symbols or names which are already commands in the HP-28 (+, =, ¥~,

~d,=L£2 #a DROP, CHS, ete.). If you were allowed to do this, then

you would really confuse your calculator!

160 AnEasyCourse in Using theHP-28

Name Games

1. @PURGE) will dissociate a name and a value. Use @PURGE)to rename "M "' .

2. The HP-28 has no data registers, unlike many calculators. Data registers

are usually a numbered series of slots for storing real numbers. Create a

named data object that looks like data registers. How would you store a num-

ber into it? How would you recall a number?

3. Store 4 in "register” 1 of the object you created in problem 2. Evaluate the

named object so that it's in Level 1 of the stack. Store 3 in "register" 1 of the

named object. Evaluate the named object so that it's in Level 1 of the stack.

Why are Levels 1 and 2 different?

4. Purge the name M. Press §(")N)ENTER). Before trying it to find out, try to

guess what the result of STR— would be on this string. Type (S]T]R]

What will 5STR do to this object?

The 'Stuff'Upon Which theHP-28 Works 161

Name Game Winners

L. 'INEPURGE) ('QJSTO

The first entry ofN is its value; the second is its name. You dissociate the two

and then, with the value remaining on the stack, you associate it with ' " .

2. (1)o)enTER) (o)ENTER] (CJOINJENTER] (*JM[EIMJOJR]YJSTO)

Store : (*JM][EJM[OJR]Y) (ENTER (1]JPJUJTJENTER

Recall : ("[M]EIM]OJR]Y) (ENTER ENTER) (G]E]T]ENTER

You have created a list of ten "registers” which you may then store into and

recall out of by using the list commands PUT and GET.

3. ("JM[EJMJOJR)Y) (ENTER|ENTERJENTER) (PJU]TJENTER) (EVAL

(PJUJTJENTER) (EVAL

The point here is that the value on the stack is not what the name is referring

to. Once you have evaluated the name, the object left on the stack is effective-

ly a copy of what was referred to by the name. Changing the value on the

stack will not change the named object and vice versa.

4. Since performing STR— on a string is identical to keying in the contents of

the string into the command line, 'H "' is left on the stack as a name that has

no object to point to. This will happen to any valid name the HP-28 doesn't al-

ready recognize as the identifier of another object. —STR will make the fol-

lowing string out of the name: " "H"'"

162 AnEasyCoursein Using theHP-28

So that's what you can build from characters. Now summarize for yourself the

differences and relationships between these objects:

Although a character is a fundamental information type, it is not recognized as

an object type on the HP-28; therefore, you can't place a character on the stack

or manipulate it in any way. You need to build a compound object from one or

more characters.

The main object to build is the character string, which is just a list of characters

within quotation marks ("). Such a string may be broken down into smaller

strings — even a string with one (or zero) characters. But the object is still a

string. You can, however, convert a string into another object (and back again).

A specialized form of string is the name, which is denoted by single quotation

marks ('). The main purpose of a name is to associate itself with another infor-

mation object (even another name), thus giving you an easy way to refer to large

or complicated objects as you manipulate them.

Your repertoire is growing:

—You can use characters to build strings and names;

—You can use real numbers to build complex numbers, vectors, and arrays.

It's time now to look at what you can do with the third fundamental information

type — bits.

The 'Stuff'Upon Which theHP-28 Works 163

Bits

You can think of bits (Binary digits) as being 1's and 0's, true and false, on and off,

or any other pair of mutually exclusive states.

As such, they're used to indicate that some thing or state is either there (valid) or

not there (invalid). As with characters and real numbers, bits gain meaning only

within the context of their use. And since they are the simplest possible kind of

information, they have almost no useful meaning unto themselves.

The HP-28 can use bits individually as flags. The word flag is computerese for a

value that indicates the current state of something else. When that something

only has two possible states, the flag can be a bit.

Many of the HP-28 flags signal certain system states of the machine. For exam-

ple, there's a flag (28) that it examines whenever it needs to remember whether

to use the « or the s as the radix (as you'll recall from page 61, you do have this

choice). But there's also a generous supply of flags that have no intrinsic mean-

ing to the system — flags that you can therefore define for your own purposes.

As with characters, the HP-28 has no facility to deal with bits as bits on the stack

— only with bits as members of larger information types. You can't place a single

bit on the stack (i.e. the command TYPE, which tells you the type of object cur-

rently at Level 1 has no provision for a bit type). But — also as with characters —

this is no serious limitation, since a larger data type may contain a single bit as its

only member, and bit oriented operations will deal with this as if it were an ele-

mental bit.

164 AnEasyCourse in Using theHP-28

Binary Integers

A binary integer is a list of bits. On the HP-28, the list may be from 1 to 64 bits

long. The length of the list is called its word size.

You have several choices for the display and entry of a binary integer. You can

use either binary (0 or 1), octal (0 - 7), decimal (0 - 9) or hexidecimal (0 - F) dig-

its. A binary integer is entered and displayed preceded by #.

Like So: Press §cLEAR) {BINARY) (l)B) IBTH #]1]1)0]1) (ENTER).

3
2
1: # 1181
TTTS[61N] T [N

You cleared the stack, selected the BINARY menu (because that's where most of

the binary operations can be found), then selected the BINary representation of

binary integers (1's and 0's). Then you used STWS (SeT Word Size) to set the size

of binary integers to 64 bits and put the binary integer # 1181 onto the stack.

Notice that you keyed in the binary integer using only zeros and ones (binary

digits). Had you tried to use any other digits when keying in the number, the

command line would have caught your error, at which point you would be

obliged to either re-enter the number using only ones and zeros or select the digit

entry mode (DEC, OCT, or HEX) compatible with the digits you keyed in.

Notice also that, although the word size is 64 bits, you only see four bits. All lead-

ing zeros are omitted.

The 'Stuff'Upon Which theHP-28 Works 165

Now Press: NIl (#]2]2]9]ENTER). What you see:

13
229

Ad|HE:0TEIN|2ThE[RCHE=
M
W

=
m
m

=E
E
m
m

Upon pressing ITI8ll, the HP-28 understands that DECimal digits

are required when keying-in binary integers. Not only that, it also

changes the representation of all binary integers to use decimal

digits (notice Level 2).

Now press and LT3 and notice how the display changes.

Like characters, literal bits cannot live on the stack, so there's no convenient

method for breaking a binary integer into its component bits. But binary inte-

gers are information objects; they can be placed on the stack and manipulated

with stack commands. You can use them to do a smattering of math (limited to

+, -, X and +).

In fact, since a binary integer and a real number are both fundamentally num-

bers, the HP-28 will allow you to mix them within this same restricted set of

math operations. The conversion is performed "on the fly," with the result al-

ways being a binary integer (any fractional portion of the real number is lost).

There are also several binary-number specific commands in the BINARY and

PROGRAM TEST (§§)(0) menus. If you're interested, by all means explore those

menus. For now, however, this is enough of an introduction to binary numbers.

166 AnEasy Course in Using theHP-28

Binary Integer Test

1. What are the binary (base 2), octal (base 8), and hexadecimal (base 16) re-

presentations of the decimal (base 10) number 1000 (a.k.a. 1000,,)?

2. What is 2,5 X FF44?

3. Calculate 2 x (FFF5+ 2). Why is the result not FFF,?

4. Set decimal mode, key in # 1B, duplicate it, and convert the Level 1 copy

to a character string. Now set binary mode. Why didn't the "number" in

Level 1 change like the number in Level 2?

The 'Stuff’'Upon Which theHP-28 Works 167

B.1I.T. Answers

1. I X (Result = # 18808);

EEH (Result = # 3EB);
(Result = # 1798);

IBETH Result= # 1111181888).

R—B converts a real number in Level 1 to a binary integer in the current base

and word size.

o. EEM EFe 2]X); (Result=# 1FE).

3. LI (#]F)F)FJENTER] (Result =# ¢FFF);
(Result =# FFE).

The point here is that the result of the division of a binary integer is also a bi-

nary integer; any fractional portion in the result is lost. Therefore, the result

of the division is accurate only to the next lowest whole digit, and doubling this

result gives you a number 1 smaller than your original.

4. (BINARY) IITXM (#)]1)0]0]ENTER]ENTER) =)S]|TIR]ENTER] IETIH

Level 2has # 11BB10BH, a binary integer. Level1is "# 188" a cha-

racter string. A character string, even though it may look like another type

of object, is simply a string of characters and as such has no binary-integer

meaning. If you were to convert this string back into a binary integer at this

point, it would be converted to 100, (4,,) and not the original 100,,.

168 AnEasyCourse in Using theHP-28

A Pause For The Cause

Take another compass reading here. You have now rounded out your repertoire

of compound objects that can be built purely from one of the three fundamental

information types:

Real Numbers may form complex numbers, vectors and arrays;

Characters may form strings and names;

Bits may form binary integers.

Now what? Where do you go from here? Is this the sum total of the objects you

can build and use on your HP-28?

Not quite. You've seen most of the possible objects, but the few remaining are the

most powerful of all. And they're different — because they aren't constructions

built from only a single information type. Every object you've built so far has

been a list of simpler, similar objects (i.e. based upon the same fundamental infor-

mation type).

This again corroborates what you read on page 144, that the HP-28 deals simply

with "lists of things." Up to now, the main concern has been those "things" and

what they can mean to you.

But what exactly is a list itself? What good is it? Can you have lists that combine

any objects you want?

It's time to answer these questions....

The 'Stuff’Upon Which theHP-28 Works 169

Lists

The actual description of a list as an object ought to sound quite familiar by now:

A list is a one-dimensional ordering of objects — any objects. It is ordered such

that the left-most element is numbered 1, with the rest of the elements num-

bered in ascending order. It may be arbitrarily large or small; in fact, it may

even be completely empty.

As you've also seen already, a list is represented by bracketing a collection of ob-

jects within braces (£ and).

Build One: Press {JCLEARJMODEJPREV)

L3 0J2)cHS) JAJENTER)

Here's what you'll see:

3
2
i: { {7 3 "A" [¢1y3).

170 AnEasyCourse in Using theHP-28

Notice these things:

1. As always, you don't need to press at the end of the list unless another ob-

ject follows it in the command line.

2. All elements of the list are on the same stack level. Both this and the fact that

they are grouped together inside braces tell you that this is a single object.

From now on, unless you purposely break it into its components, it will be

treated as one object.

3. This list contains a list (L ¢). This is the first object you've seen that can

contain an object of the same type as itself.

4. This list is longer than the display can hold. To view the whole list, you must

do one of several things:

(1) Edit Level 1 (with either EDIT or VISIT). Keep in mind that EDIT mode

will always display the object using STD and +ML modes. If the object is

still too large, you may use the cursor keys to scroll the display.

(ii) Enable +ML and use and to scroll through the display Gf

the objects within the list are quite long, this method is not too helpful).

(iii) Decompose the object, in this case with LIST—, and if necessary, use

BVEwY and @(VIEW4) to then examine the individual elements in the

stack. Remember to rebuild the list with -LIST when you're done;

(iv) Use GETI to step through the list's components.

The 'Stuff'Upon Which theHP-28 Works 171

Try That Last Choice: Press IH3#4. Result:

L<7 > "A" L '-11,.3}E

L7 X

3
2
1

The index on Level 2 has been incremented to a value of 2, and Level 1 now con-

tainsL 7 7.

Notice that, unlike arrays, the index for a list is a real number. The index for an

array must be a list because arrays may have either one or two dimensions (a

vector is the one-dimensional version) and thus one or two indices. But a list has

only one dimension, so a single real number is used for an index.

While The GETting Is Good: Press Kd3#d. The index is incremented and

Level 1 contains the character string "A" ,which

1s the second element in the list.

Press E3#d. The index is incremented and

Level 1 contains the complex vector (element

number 3 in the list).

Press E3#d. The index is incremented and

Level 1 contains the name 'H'. Notice that the

name has its single quotation marks when it's on

the stack by itself — but not when it's a member of

a list.

172 AnEasyCourse in Using theHP-28

Secession From The Union: Press to decompose the list.

 3 [C1,32 (-2,8)]
25 IH.;,

"

The number of list elements is in Level 1, all ready in case you want to rebuild the

list by pressing .

Notice that, because the index/list-length is a real number, the list elements now

"stacked up" become easily accessible to several other commands, particularly

the stack commands ROLL, ROLLD, DUPN, and DROPN (you may recall that

—LIST and LIST— are also available in the STACK menu).

It's quite feasible, therefore, to do some substantial list operations by decomposing

the list, manipulating the elements in the stack, and then recomposing the list.

Reconstruction: Press W8] Very convenient, no?

The 'Stuff'Upon Which theHP-28 Works 173

As with character strings, there's a certain analogy between numerical addition

and the addition of an element to a list. If you have two lists at Levels1 and 2 you

can "add" them together and get one list with all the elements of the original two.

Like So: Stack up two lists by pressing («) ({11)2]3).

=

The contents (1 23) of the list formerly at Level 1 have been added to

the end of the list that was in Level 2 — the pattern for "list addition."

Remember that a list may contain any number of any data object. This makes

the list the most general purpose data object available to you. In keeping with

this idea of generality, the HP-28 doesn't restrict you by imposing too many list-

specific commands (you'll note that the LIST menu isn't all that whopping huge).

But the convenience of the ability to decompose lists onto the stack, manipulate

the various elements, and then restore the lists allows you to dream up new com-

mands to manipulate them however you like!

174 AnEasyCourse in Using theHP-28

List Lessons

1. What's the difference between L 1 2 3 4 Yand[1 2 3 4]2

How would you convert between one and the other?

2. Since a vector's components are limited to either complex or real number

objects, how might you "represent” a "vector" whose elements are the name

objects I, J and K?

3. You can add elements to a list using (+), but how might you delete the last

element? The first element?

4. Say that you work with lumber. You therefore work with "lumber numbers"

in terms of feet, inches, and fractions of inches. What are some ways in

which you might use a list on the HP-28 to meaningfully represent six feet,

five and three-quarters inches?

5. You want to record the height and weight of a number of people so that you

can later do some statistical analyses on them. How might you use lists to

store/organize this information?

The 'Stuff’'Upon Which theHP-28 Works 175

List Lessons Learned

1.£ 1 2 3 4 2 is a four-element list containing the real numbers 1

through4. L 1 2 2 4 1 is a four-element real vector containing the

numbers 1 through 4.

Convert from the list to the vector: ARRAY) ENTAAS

Convert from the vector to the list: R,

Each of these decomposes the original object, alters the index so that it

matches the new object, and forms the new object out of the items and the

index on the stack.

2L I JK X

3. [SWAP|DROP][1]—) (This deletes the last element);

(This deletes the first element).

4.0 6 2.72 YorL 6 "feet" 5 "inch" 3 "quartlers

inch" > or £ € 6 "ft" > £{ 5 "in" ¥ £ 3 "r4" 3

}, et cetera.

5. L €L "HEIGHT" "WEIGHT" > € &.2 218 > { 5.9 178

> L 9.7 1332 2} 2, for example.

176 AnEasyCourse in Using theHP-28

Procedures: (a) Postfix Programs

Programs are objects just like any other object discussed up to now. They can be

put on the stack, associated with a name, and put into a list. In fact, programs

are merely one specialized version of a generalized one-dimensional list of ob-

jects. But to signify their special differences, programs are represented and

treated as an object type in its own right.

A program is indeed entered and displayed as a one-dimensional list of objects,

separated by delimiters in the usual manner, but it is bracketed between French

quotation marks (% and #) to distinguish it from a generic list.

As data objects used to store information, programs are relatively useless. Except

in the crudest manual sense — through the command line — you can't add ele-

ments to a program, nor can you break it into its components nor build it from its

components. You can't perform math on it nor can you convert it to another ob-

ject type.

Well then, what good is it?

A program is a dynamic object, not in the sense that it changes itself or can be

changed by any other object, but rather that it does things; it causes changes to

other objects.

You've already been introduced to the idea of evaluation with names. Remem-

ber when a name is evaluated, how the HP-28 actually produces the value of the

object associated with that name?

Well, programs can also be evaluated (indeed, that's their purpose in life). And

when evaluated, a program sequentially evaluates its elements.

The 'Stuff’'Upon Which theHP-28 Works 177

The best way to see this is with an example.

Watch The Birdie: Press («4) (notice that alpha mode is automati-

cally activated) (1]¢]2]*J+JENTER). Result:

g4
31
21
1: € 1 2 + %

Now press (EVAL).

g4
3:
21
1: 3

This should look vaguely familiar. In learning about strings, you saw how you

could put a similar sequence of objects into a string and then evaluate them by

using STR—.

This might also look familiar from your earlier work with the command line.

Remember when you lined up several items on the command line (separating

each with a legal delimiter) and then pressed ([ENTER), how this "posted" all of them

at once, one after another? If they were numbers or other data, they went onto

the stack. If they were commands, they were executed immediately, right?

178 AnEasy Course in Using theHP-28

So there are actually three roughly identical methods of doing this same thing:

Command Line: (1]2]2][+]

String: "1 2 +"BEix3

Program: €« 1 2 + %En)

Any operation that can be performed through the evaluation of any one of these

expressions can also be performed by the others. So how are they different?

Funny you should ask....

The Command Line:

The command line is interactive and immediate. Once you've keyed in the

string of characters representing objects, evaluates them. Thus, you have

immediate evaluation and immediate error detection. The HP-28 tells if you've

made detectable errors in your typing, and then you get immediate feedback on

execution errors by pressing ([ENTER).

Strings:

In sharp contrast to the command line, "stringed” collections of evaluable objects

are non-interactive and non-immediate — but portable. They are non-

interactive because a string may contain any character. The HP-28 won't look

at a string for syntax errors. Therefore, you won't know until you convert the

collection into non-string form whether or not the string contained errors.

It's also not as easy to evaluate a string as it is a program or a command line. For

a string, you must explicitly use STR—. And if you have a name associated with

it, you must first evaluate the name. But strings do have advantages over pro-

grams: they can take up less memory and can be modified by other commands.

The 'Stuff'Upon Which theHP-28 Works 179

Programs:

So how do program objects stack up beside those other two ways to collect evalu-

able sequences of objects? A little of this and a little of that: Programs are some-

what interactive, non-immediate, and portable.

They are somewhat interactive because entry errors are detected just as when

you use the command line. This happens because a program, though not imme-

diately evaluated, is immediately scanned and turned into objects for storage.

And during this scan, certain input errors can be detected.

A program is portable because it's an information object; you can put it onto the

stack and "store" it in a name. Its association with a name makes it very conven-

ient to use, because, as you remember, typing an unquoted variable name evalu-

ates the name and all other objects the name points to.

Therefore, named programs are virtually identical to HP-28 system commands.

180 AnEasyCourse in Using theHP-28

Program Problems

1. Rewrite the solutions to problem 1 from page 176 as postfix programs. Name

the first L—V and the second V—L.

2. UseL>Vtoconvertt B X £ 1 2 3 Jand?C 1 B8 (1,82 >to

vectors.

3. Try to convert L 2 to a vector using L—V. What happens? Why?

4. Using L—V and V—L, write a program named LADD ("List ADD") that will add

two lists together such that the resultant list's elements are the sums of the

corresponding elements of the original two lists.

5. Use the program from problem 4 to add the following:

a. {1234} {5678)
b. {(1,1) (-3,4)} {-5.4(4.3,-8.1)}
c. {968} {11}
d. {[12][34]} {[-31][69]}

Why do ¢ and d fail?

The 'StuffUpon Which theHP-28 Works 181

Program Problem Solutions

1. («) @LsT)M(1) ETWE1 @(ARRAY) EXTTAN (ENTER)
U[UE=]VISTO);

ARRAY) (AR

UVI=IL[STO).

It's certainly not very hard to translate postfix keystroke sequences into post-

fix program objects,is it?

2. (UsER) (o)XM Result=L[8 1I;

(23) =Xl Result=[L 1 2 3 1;

OO)o)XM Result=[1,82 <(@,8> {(1,d> 1.

Notice — as you know — that a list will tolerate components of differing types,

but a vector will not. Therefore, you get a vector with either all real or all

complex components.

182 AnEasyCourse in Using theHP-28

3. Here's what you do: And here's what you get:

ad Argument Yalue

=
M
o
m

L8 2

Why? To find out, mentally "walk through" the program L—V:

LIST— puts the contents of a list onto the stack, followed by the number of ele-

ments in Level 1. £ Z has no elements; its size is 0. Therefore, L Z is re-

placed with .

1 LIST— then makes a 1-element list from the B, thus preparing the stack for

the use of >ARRY. So at this point, L B X isleft on the stack at Level 1.

Then —ARRYtries to use this index to build a vector, but there's no such thing

as a zero-length vector on the HP-28, so the error is generated and the stack

is left as it was when the error occurred.

4. % LY SHAP L*Y + ¥3L * would be one reasonable approach.

After all, you can't sum lists directly — but you can sum vectors!

Here are the keystrokes to create the program and name it LADD:

(«) (UsER) IFEX @swAP)I(+)T(ENTER) ("JLYAJDJD) (STO) (USER)

The 'StuffUpon Which theHP-28 Works 183

5.

184

a. 080080000EE0600000a0

Result=%* &6 8 18 12 >

OO)E0) (AB)eHs)2)4 060000800006

Result =1 (-d.4y12 (1.3,-4.12 >

000000CEN060060

Result: The two lists are of different lengths and are therefore convert-

ed to two vectors of different length. The Inwalid Dimension

error occurs because the HP-28 can't add two vectors that aren't the

same length. Note that the vectors are left on the stack after the error

is reported.

008080800EIEIOCE5000000

Result: Bad HAraument Type occurs when LADD attempts to

make a vector out of vectors (i.e., when L—V tries to perform —ARRY on

a stack full of vectors.)

AnEasyCourse in Using theHP-28

Procedures: (b) Algebraic Expressions

Algebraic expressions are exactly like programs, only different.

They are programs whose syntax is algebraic (i.e. operand-operator-operand)

rather than postfix.

Algebraic expressions are represented by bracketing a syntactically correct list of

algebraically meaningful objects within single quotation marks ('). Since those

single quotation marks also apply to names, this explains why you can't have a

name that looks like a syntactically correct (and therefore executable) expres-

sion (see page 160).

For example, compare % 1 2 + % and '1+2'.

Both evaluateto 3 .

The major difference between them is the order of the objects within them. The

ordering within a program is postfix (i.e. just like the stack — with the operands

first and the operator last); a program can therefore contain stack commands.

By contrast, the ordering of an algebraic expression is, not surprisingly, algebra-

ic, and thus it cannot contain stack commands.

This ability to contain stack commands is very important, since most commands

in the HP-28 are stack commands and therefore postfix in nature. Consequent-

ly, programs are general purpose and may do virtually anything because they

may contain any command. Algebraic objects may only contain mathematically

meaningful expressions.

The 'StuffUpon Which theHP-28 Works 185

Notice that they're called algebraic objects, not simply mathematical objects.

The reason is that algebraic objects may contain name objects (remember

them?), thus giving the expressions the classical form of algebra with one or

more variables.

("Aha!") Say that you want to solve some quadratic equations. The form of one

solution is:

_ b +\b? - 4ac

2a
X

You want to create an algebraic object which, when evaluated, will give you x.

No Problem:

Here are the keystrokes to do this, along with a play-by-play analysis.

First, press {JCLEAR] IMODE) (NEXTINEXT) IEETHH («¢*)

Here, you're clearing the stack, selecting multi-line mode, and disabling the

menu. This is just "clearing the decks for action.”

Next, press ({JA]2]B]’]C) PURGE

Why? Well, you want to use the names A, B, and C (you may prefer a, b, and c,

but lower-case is somewhat cumbersome). So you PURGE these names, dissoci-

ating them from any objects that they might otherwise belong to. This allows

you to key in names without single quotation marks — not necessary, but con-

venient.

186 AnEasyCourse in Using theHP-28

Now you start to build your algebraic expression. Press (B)ENTER)(CHS). Here's

what you have so far:

B!

You've keyed in "negative B." The CHS placed a negative sign in front of the B.

Notice that before you did the (cHS), B was a name sitting on the stack, not an al-

gebraic expression. But since the single quotation marks can mean either object

type, whenever you perform any allowable mathematical operation — such as

CHS — on a name,the operation’s effect will be to build an algebraic object.

Next, press (BJENTER|2)

IBIEI

=
R

Here you key in B again and square it by raising it to the second power (you

could have used and the result would have been 'SECB> ' . The two ver-

sions of B? evaluate to be the same thing; they just look different). Notice that

circumflex, ™. Because the HP-28 can't display superscripts, it uses the circum-

flex to indicate "raising to a power."

The 'StuffUpon Which theHP-28 Works 187

Now press (4]ENTER]A]X]C]X]

g
a1 g
E: |B.fi-2|

12 rreenly

You key in 4 and multiply it by A and C. Notice that the result is ' 4¥H*¥C'

and not '4HC " . If the HP-28 didn't use ¥ to indicate multiplication, neither it

nor you could distinguish A x B (' H¥B ") from the name AB ("HB "'). In written

algebra, you can omit the multiplication sign (it's implied) because you typically

use only single character variables, such as x, y, and z.

Then: (=)

B!

'Br2-4%A*C"=
I
R

You subtract '4¥H¥C" from 'B™2"'. Notice again that when objects — even

algebraic objects — are on the stack, you use postfix logic commands. Therefore

you pressed (<) after the two arguments were on the stack. The HP-28 then in-

terprets that arithmetic command in terms of the objects on which it must act.

When acting upon two algebraic expressions,it just so happens that (=) means to

combine them into one, with a minus sign embedded in the resulting expression.

188 AnEasyCourse in Using theHP-28

Next step:

_B!

'JCBr2-4=R[%C>!'

4
3
2
1

You take the square root of ' B*2-4%¥H%L"'. Notice the parentheses. Again,

because the HP-28's display is limited, it cannot draw the radical so that it in-

cludes the entire expression under it. Instead, the radical sign is represented as a

mathematical function, like f(x) (read "f of x"), and in the same way, parenthe-

ses are used to enclose the argument. 4L% is therefore "square root of x."

Then press

=
M
N
W
A

'-B+I(B"Z2-4%RA*C) "'
Youadd '-B"' to 'TCB*2-4¥H¥C)"'. No surprises, right?

Keep going: (2]ENTER

=
M
r
W
p

'-B+I(B*2-4¥R*¥C) !
1 E*HI

You multiply 2 by A. Again, no surprises.

The 'StuffUpon Which theHP-28 Works 189

At last: (=)

=
M
J

=B+l(B™2-4%RA%¥C) 2~ (
2¥H2 "

You have divided ' =B+{{B*2-4¥A*C> "' by '2%R".

Notice the extra parentheses. Since the display's limited capacity forces the divi-

sion sign onto the same line with the rest of the expression, it needs a way to indi-

cate what is divided by what. That's where the parentheses come in. They group

the things that are in the numerator, ' ~-B+{ {B*2-4¥H%C2 "' and the

things in the denominator, ' 2%H"' .

If these extra parentheses weren't there, the order of evaluation of the expres-

sion would be different, because in algebraic notation, the convention is that mul-

tiplication and division are performed before addition and subtraction.

Notice also that the final object doesn't fit on one line. In multi-line mode, an al-

gebraic object in Level 1 will be broken between internal objects and displayed on

several lines.

Of course, you could have simply typed in the expression above; the result would

be the same. It's up to you which you find more convenient.

("Now they tell us.")

190 AnEasyCourse in Using theHP-28

Now that you have an algebraic object, what do you do with it?

You use it as a mathematical procedure to solve problems.

Like This: Press (ENTER] (1]JA]STO) (2]CHS]*|B]STO) (1]*]C]STO) (EVAL).

'C-B+ICB*2-4%RA%C) .‘-'f'.i.

=
I
R

What have you done? You've associated a real number 1 with the name A, a 2

with the name B and a 1 with the name C (and you could verify this in your

USER menu right?).

Then you've evaluated your algebraic expression, at which time all of the names

that have associated objects were replaced by the objects themselves, and all

mathematical expressions were performed.

Thus, you get the mathematical result of this expression — for the case where

A=1, B=-2, and C=1.

The 'StuffUpon Which theHP-28 Works 191

In this case, the result was a real-number object, 1. With other coefficients, it

would , of course, be another result, possibly a complex-number object.

But at no time will any algebraic expression ever leave more than one resultant

object on the stack.

This is quite different than a program, which may make lots of changes to the

stack — say, decompose an array or something equally hairy.

So you see the limitations of an algebraic object. It's merely a way to list certain

mathematical objects and operations in a collection that is evaluable in algebraic

("left-to-right") notation — rather than in postfix. And even this collecting pro-

cess can be done with postfix operations on the stack, unless you choose to type in

the entire expression manually.

Happily, this alternative notation can refer to named objects as its variables and

thus it resembles written algebraic logic quite closely. And since so much of sym-

bolic math is represented in algebraic form, even these few rudimentary capabil-

ities on the HP-28 open up vast horizons for you.

192 AnEasyCourse in Using theHP-28

Algebraic Aptitude Test

1. Build an algebraic object for the expression x? - 2x + 1 and evaluate it for:

X=1

b. x=-2

c. Xx=(2,3)

d. x=12.

2. Evaluate the expression ' A+B¥C-D"' for:

-1,B=-2,C=3,D=4
(1,2), B = (-2,-2), C = (.5,1.3), D = (104,.2)

—[12],B=2,C=[.51.3],D=[104 .2]
= 14,5, B =20, C =34, D =101,

a. A

b. A

c. A

d. A

3. Evaluate the expression ' 2%¥X+Y ' for:

a. X=-2Y

b. Y=-2X

c. X=T,Y=T-1

d X=2-3Y,Y=Y-3Z

4. Evaluate the expression 'A+B+C+D"' for:

A="THIS ",B="IS ",Cc="0DD" andD="u."

The 'StuffUpon Which theHP-28 Works 193

1.

194

A.A.T. Scores

)CIXENTER[2]X) (5) (JEIQJSTO

a. EEEE (EVAL; Result=#

Notice that invoking the (unquoted) name of an algebraic expression does not

immediately evaluate it numerically; rather, it is left on the stack in its sym-

bolic form.

This is an exception to the normal immediate-EVALuation rule for other

named objects, but there's a good reason for this: Often the forms of the ex-

pression itself — and the possibilities for modifying those forms — are as much

of interest to you as the numeric results of "plugging in" variables. Therefore,

the HP-28 asks you to confirm that you are indeed interested in a numeric

answer; you must explicitly use EVALto tell it so.

b. (2JcHs) (Ix[sTO) MEEM [EVAD) ; Result =3

c. (2"300) (JX[STO) ME=M (EVAL) ; Result= (-862

d. 20DSTOMEEM EVAD ; Result=. 171572870235

AnEasyCourse in Using theHP-28

2. ("JAIHJBJXJCJ=JDJENTER] ("JEJQ]ISTO

A reminder: According to conventional algebraic notation, you don't neces-

sarily evaluate an expression strictly from left to right. Instead, your evalua-

tion order is based upon the priority of various operators.

Thus, since multiplication and division have a higher priority than addition

and subtraction, the expression A + B x C - D is taken to mean: A + (B x C) - D.

Only after performing the multiplication are all remaining operations of the

same priority; then the evaluation proceeds from left to right.

So the fact that you use no parentheses in keying in this expression means

that you, too, are reading it and understanding it not just from left to right but

also according to this hierarchy of priorities (which is called infix notation, by

the way).

a. (1) JAXsTo) (2)cHs))B)sTO) (3) c)sTO) (4) JD)sTo) IE=MM (EVAL);
Result=—9

b. ((J1)X2JENTER] ('JAIsTO] ()2»J2JENTER]CHS) ('[BJSTO) (L-N8»1)-X3JENTER]

(JcIsTo) ((J1JoJ4[)-T2JenTER) ("IDJsTo) =M (EVAL);
Result = ':_ 1@1 m 4! = 1 m 8:‘

c. ([JE)(2ENTER) (J(A)STO) (BT (DEEME)E)ENTER) ()T
(1Yo4]-J2JENTER] =N EVAL)
Result=[-184 -.8 1

d. I (]1)4]JA]STO] #]2)0]'JB]sTO) IEIEM (#]3]4]'JC]STO]

T(21o1)"[D]STO =N EVAL);
Result=# 1181H8B1B8H1 (because you're still in BIN mode).

The 'StuffUpon Which theHP-28 Works 195

3. (J2IXIX]+Y JENTER) ('JEJQJSTO)

a. (J=J2Ix]YJenter) JxJsTo) PURGE) IEEENM [EVAL)
Result = ' 2% (-2¥Y) +Y';
[COJL)JC[TJENTER); Result = "= C3*Y)

Notice how the COLCT (COLleCT) command affects an algebraic result. It

collects like terms and attempts to reduce the expression to lower terms.

b. ("J=[2]X]XJENTER] XPurcE)IE=M (EVAL);
Result = ' 2¥R+-2%K':

(C)o[L]C]T)ENTER), Result = H

c. (ITIENTER]'[X]STO) (*JTJ=]1JENTER] IE=N EVAL);
Result= '2¥T+(T-1>";

CIO[LCTEnTER); '~ 1+3%T"

d. ("JZI=IBIXIYJENTER) (IX[STO) (LY=[3IX]ZJENTER =N (EVAL);
Result = ' 2¥(2-3¥Y 2+ Y-3%2> ",

Now use EVAL and COLCT a couple of times on this result. Each time you

use EVAL, the expression becomes more complex, because Y is replaced

with a more complex expression containing Y.

4. ('JA]+]B]+]c]+]D) (ENTER) "T]H]1]S]SPACE) (ENTER) ('JA]ISTO) "]I]S]SPACE

RENTER ("Jo]D)D) (ENTER) (*Jc]sTO) ("] (ENTE

Result= "THIS IS 0ODD."

This works only because addition is defined on character strings.

196 AnEasyCourse in Using theHP-28

Procedures: (¢) User-Defined Functions

You've seen how algebraic objects can be used to solve problems. You simply

create an algebraic object of the proper form and assign values to the names in it.

Then, when you evaluate this algebraic object, it combines the values represent-

ed as the expression specifies, and you get a result. Fine and dandy.

But if the algebraic object contains a lot of named objects, then associating

(STOring) the data objects with their names can be a lengthy and therefore er-

ror-prone process.

One way around this — a method that stream-lines the use of algebraic objects —

is the User-Defined Function.

Take, for example, the old standby: one of the two roots of a quadratic equation

(remember that an algebraic object or expression can generate only one result,

and therefore you can't get both roots at once).

You've already generated an algebraic expression (pages 186-190) to do this.

And you've seen that in order to use this algebraic object to solve for numerical

roots, you must assign values to the names — the variables — in the algebraic ex-

pression.

So you did that (e.g., (1]'JA[sTO) (2]JcHs]'[B]STO] (1]*JcJSTO) and then EVALuated

the expression.

The "StuffUpon Which theHP-28 Works 197

But Try This: Create the following object:

€ + a b c "(-b-Tib"2-d4*¥ax*cr) /(2*%a3)' »

And give a name to this odd-looking hybrid (it's a sort of cross

between a postfix program and an algebraic object).

For this example, use the name 'RUTE' (there's an HP-28 sys-

tem command already called ROOT, so you can't use that); type:

('IRJUJT]E[STO).

Now type (USER) (1)»J2]cHs]1) EEE.

What happened?

RUTE took the three objects off the stack and used them in its al-

gebraic expression(!). The result, 1, was left on the stack.

That's a real step saver, eh? But how did RUTE do it? Look at the object itself, to

see if you can surmise some things from what you already know....

198 AnEasyCourse in Using theHP-28

First, the French quotation marks () make it look similar to a postfix program.

And postfix programs have the feature that when evaluated, they evaluate their

contents element by element, from left to right. This thing should do the same.

So, going from left to right, the first few symbols,* & b C, seem to be some-

thing new. But see if you can guess what they mean after looking at the rest of

the object.

Skipping therefore to the next (and last) object, you find it to be an algebraic ob-

ject. This is an algebraic object inside another kind ofprogram, which is perfect-

ly "legal” and often very useful.

So, the question is: Where does this user-defined function get the values for its

variables, a, b, and ¢? After all, you certainly haven't created such names nor

STOred any values into them. "Aha! The answer must have something to do

with the #* preceding the list of variable names."

That's right: This # symbol inside a postfix program associates objects on the

stack to whatever names follow the .

In other words, the bottom three stack entries will be associated with (stored

into) &, b, and €. And pay close attention to the order: & will be associated with

Level 3, b with Level 2 and € with Level 1 (because you would naturally load the

stack in the order a (ENTER) Db (ENTER) ¢ (ENTER). So this is the way your listing of the

variable names will be interpreted also. Makes sense, right?)

Of course, once these stack values have been associated with the names, the alge-

braic object is evaluated in the normal algebraic manner.

The 'StuffUpon Which theHP-28 Works 199

So that's how the U.D.F. works. It's truly a function, because it's an algebraic ex-

pression (which, as you'll recall, can produce exactly one result), but instead of

looking into your USER menu collection of named objects to find its variables, it

instead pulls objects off the stack — in the quantity and order you specify with the

*# in the function definition.

Once again, you can see the hybrid nature of the U.D.F. It evaluates like an alge-

braic object, but it uses values from off the stack like a postfix program.

And here's an added bonus: U.D.F. names that are created and associated with #

are temporary. In other words, they are created at the beginning of the program

and PURGE'd at the end.

No* only that, they are created in such a way that they don't conflict with other

names that might already exist and have the same spellings. So if you had a list

or some other object already STOred under the name of &, and you nevertheless

evaluated RUTE as written (with its temporary #* &), the contents of your named

object would not be changed!

200 AnEasyCourse in UsingtheHP-28

User-Defined Function Fun

1. Build a user-defined function for the expression x2 —2x + 1 and evaluate it

at:

;

2

(2,3)
V2.Q

e
o
o

X
X

X
X
i

2. Build and evaluate a U.D.F. for the expression ' H+B¥C-D"' when:

a. A=1,B=2,C=3,D=4

b. A=(1,2), B =(-2,-2), C=(.5,1.3), D = (104,.2)
c. A=[12],B=-2,C=[.51.3],D=[104 2]

3. Evaluate the expression ' 2%¥X+Y ' using a UD.F. for:

a. X=-2Y

b. Y=-2X

c. X=T,Y=T-1

d X=2Z2-3Y,Y=Y-3Z

4. Define the UD.F. & * ¥ '"K+1' ¥ and name it INCR (increment).

Then create both a postfix program and an algebraic object that use INCR to

sum a number and its increment (i.e., X+INCR(X)).

The 'StuffUpon Which theHP-28 Works 201

U. D. F. F. Consequences

1. (SPACE) (SPACE) XAR

a. IEEM; Result = B

b. BEE; Result = 9

c. BN Result = {-836)

d. BEE; Result = . 17157287525

Note that, unlike a plain algebraic expression, a U.D.F. does follow the rule

for immediate evaluation — just like a postfix program and the other objects;

if you invoke its (unquoted) name, it will produce its ultimate result right

away, without stopping to let you see its algebraic form.

2. («) (SPACE) (=) (sPACE) (A]*[B]7Jc]7JD) (SPACE) ("JA[+[BIX)[C]=ID) (ENTER)

USER

a. (2]chs7)3]7) (4) IIEMM; Result = =9
b. (0MWC)RENTER) (ORI2)ENTER)(CHS) (OC)E)DEE)ENTER) (OW0O)@C)E)E)
BEEResult=¢-181.4,-1.8>

c. (]22JenTER) (2]cHSIENTER) (L=(5o1=J3JENTER) (L1104-[2) IN=1M;
Result=[-184 -.8 1

202 AnEasyCourse in Using theHP-28

3. (sPACE) (SPACE] (SPACE) (SPACE) ("J2]X[XJ+[Y)'JENTER) (*JQJSTO]

8. (YENTER[2)X(CHS) (F[Y)ENTER) BENM: Result = " 2%~ (Y%2) +Y"
b. ()XJENTER) (ENTER) (2)X]chs)IResult = ' 2¥x-r¥2 "
c. ((JTIENTER[ENTER) (1]—) IEIEMM; Result = ' 2¥T+({T-1>"

d. O@EEXMETE (MNOEEXE@ENTER HEI,
Result = '2%(Z2-3%Y 2+ (Y-3%2>"'

4. OIXJH)ENTER) CJT)NJCIRISTO)

DJuP) MNCR) whichis: € DUP INCE + *
X[+1N)CYR](|X)ENTER] which is: "R+INCRCHKD

Note the different form that INCR takes in a postfix program and an algebra-

ic object. This is another special advantage of User-Defined Functions — the

fact that you may use it in an algebraic in the form you normally expect to

see for mathematical functions: f(x) or f(x,y), etc.

Naturally, you also use this conventional form when you invoke standard

HP-28 functions — like LOG and SIN — in an algebraic expression.

The 'StuffUpon Which theHP-28 Works 203

"The book stops here."

It's the end of the beginning. And look how far you've come:

For starters, you know how the stack and keyboard work, how to move around

within and between menus, how to edit and use the command line, and how to

alter the display to your preference.

And here are all the objects you can now use and combine with skill and cunning:

— FromReal Numbers, you can build complex numbers, vectors, and arrays;

— From Characters, you can build strings and names;

— From Bits, you can build binary integers;

— Lists are ordered collections of any combination of any object;

— The three procedure objects are just specialized lists of objects and operations

that may be evaluated according to certain rules of sequence and syntax.

So that's about it, eh? That's all there is to learn about the HP-28, right?

Not quite. These are only the building blocks, which you can now combine into

meaningful calculations for your own purposes. As you read at the start of this

book, it's only an introduction into the world of the HP-28.

You're ready now to navigate on your own. Nobody but you knows exactly what

calculations you need to perform, so...full speed ahead!

204 AnEasyCourse in Using theHP-28

APPENDICES

Introduction to the Appendices

What we have here is a problem.

This book has been your introduction to the basics of HP-28 operation, but there

is much more available to you. These basic lessons gave you a feel for the differ-

ent kinds of information objects and their use. But there are programs and

groups of operations living in the machine that do more sophisticated problem-

solving for you. These operations carry far-ranging implications for your use

and application — so much so, in fact, that a complete description of any one of

them would require a book in itself.

The problem is, a book cannot be 10 books, no matter how hard it tries. So al-

though there's a lot more to say about the following topics, there just isn't the

room here to tell the whole story for each one. But they are definitely worth

mentioning — if for no other reason than to round out your introduction to the

machine. Even with these very cursory sketches of these topics, maybe you'll get

some feel for their uses, potentials, and limitations. Above all, these "surface-

scratching” pages are meant to give you a little courage and curiosity about all

these other capabilities. So take these first impressions and run with them.

206 AnEasyCoursein UsingtheHP-28

Appendix A: Algebra

For the sake of brevity — and so as not to overload your circuits — the earlier dis-

cussion of algebraic objects (in Chapter 4) was somewhat incomplete. While you

can now recognize an algebraic object on sight and should even be able to build

one of your own, as always, there's more to the story.

Algebraic objects are, as you know, very similar to programs. In a sense, they are

a type of program with a restricted area of use: They are limited to evaluating

mathematically-valid, algebraic expressions.

At first blush, this may seem to be a severe limitation. Itisn't.

When you stop and realize that the manipulation of algebraic expressions (i.e.

the symbols themselves) is almost unheard of on a hand-held calculator (or even

on larger computers), you'll realize that this is a tremendous enhancement. And

whenever you need more general-purpose programming, the postfix program

object is always ready and willing to fill that bill.

Why use an algebraic object?

Algebra is a universal language. Almost every technical field has its own set of

algebraic equations and expressions that are meaningful to it. These equations

describe and define the relationships that exist within the discipline. It's only

reasonable, therefore, that the HP-28 provide you with the ability to manipulate

and solve algebraic problems.

Much of your work can also be simplified by writing ad hoc algebraic expres-

sions for the problem at hand. In this way, HP-28 algebraic objects are program-

ming without a programming language; the programming language is algebra!

Appendices 207

To understand the full utility of an algebraic object, you should understand ex-

actly what it is to the HP-28.

For example:

1. An algebraic object, when evaluated, yields one and only one result. This re-

sult is typically a real or complex number, but it need not be. The only objects

that cannot be the result of the evaluation of an algebraic object are postfix

programs and user-defined functions.

2. An algebraic object may contain only names, algebraic operations, algebraic

functions, user-defined functions, real numbers and complex numbers.

If this is the case, then how do you get other types of objects to result from the

evaluation of an algebraic object? By storing other types of objects under the

variable names used by the algebraic! Every object type, except postfix pro-

grams, has at least one algebraic operation (namely, + ; addition) that can be

used on it. Just keep in mind that the mathematically-defined objects have a

greater wealth of operations available to them, but their rules of operation

vary. For example, multiplication is not a commutative operation on arrays

(matrices).

3. An algebraic object may or may not contain one equal sign (=). If it has no

equal sign, it is called an algebraic expression. If it has an equal sign, it is

called an algebraic equation.

That's basically it. There are no more restrictions. There are only ramifications

and applications. We'll spend the rest of this discussion in looking at these.

208 AnEasyCoursein UsingtheHP-28

How doyou use an algebraic object?

You've seen already that an algebraic object can be used to solve numeric prob-

lems. You simply create an object that defines a relationship between names

(variables), assign values to the names, and evaluate the expression. The result

is (often) a single numeric value.

It isn't always a numeric value, though. If you have certain unknowns, i.e. cer-

tain names with no associated values, the expression can be reduced to a form

containing only numeric values, algebraic functions and operators, and the un-

defined names.

Such reductions or other rearrangements of an expression can often give you in-

sights into the nature and the behavior of an expression — things that the raw

form just doesn't give you. That's the whole beauty of algebra, isn't it?

So what ways does the HP-28 give you to reduce, summarize, or otherwise rear-

range an algebraic object?

First of all, it provides you with an automated method of investigating numeric

or symbolic solutions to algebraic objects. This method uses the SOLV menu,

which is discussed in Appendix B : Using the Equation solver.

You can also investigate the nature of algebraic expressions visually on the HP-

28, by using the PLOT menu. Plotting the numeric value of an algebraic object as

the function of one of its names can really help you to understand an algebraic

expression or equation. You'll get a chance to explore this further in the upcom-

ing Appendix C : Plotting.

But here's a run-through of some other ways to use algebraic objects....

Appendices 209

Symbolic Calculus

Symbolic calculus (i.e., the calculus of algebraic expressions that yields other al-

gebraic expressions rather than numeric approximations of differential and in-

tegral expressions) has merits and capabilities so vast and varied that it makes

no sense to try to describe them here .

If you're unfamiliar with calculus, relax; you needn't be familiar with it in order

to use the HP-28 effectively and well in a host of other areas.

If you are familiar with calculus, rejoice, because the HP-28 has brought many

important uses of this marvelous tool to the realm of hand-held computation.

Differential calculus is well represented and easy to use. You need only place an

algebraic object in stack Level 2, the name of the variable of differentiation in

Level 1, and press The resultant derivative is left in Level 1.

For example, [X[HLIN(OX[ENTER yields: ' 1+IHY(R

Integral calculus' only representatives on the HP-28 are symbolic integration of

polynomials and numeric integration (i.e., definite integration with a numeric

result) of any expression.

To symbolically integrate a polynomial, you must put the polynomial in Level 3,

the name of the variable of integration (this is also the name of the variable for

which the expression is a polynomial) in Level 2, the degree of the polynomial in

Level 1 and press :

For example, ([31XX)J@(~J2=2)XIX]+)-X3JENTER] @), yields
"L OER-ATZ2ERTS)

210 AnEasyCoursein UsingtheHP-28

Reduction to Lowest Terms

Unfortunately, the flexibility of algebra gives it one drawback: Two expressions

that appear radically different may in fact be equivalent.

As you know, if you've used algebra to any extent, perhaps the most time-

consuming, laborious and important job of all is the reduction of an algebraic ex-

pression to its lowest terms. Fortunately, the HP-28 has provisions for just such

problems.

In the ALGEBRA menu, there are operations that allow you to expand (EXPAN)

terms, collect (COLCT) terms, and manually reorganize (FORM) algebraic ex-

pressions so that they can be made into visually meaningful expressions without

the possibility of dropping terms or performing illegal or erroneous operations.

You've already seen COLCT. But be forewarned: FORM is not for the casual user!

It's very literal-minded and expects very explicit use of very mundane algebraic

laws.

In fact, if you're just a casual user of algebraic manipulations on your HP-28,

you will almost certainly find that either using slightly ill-formed expressions or

re-entering an offensive object is less time-consuming than using FORM.

Appendices 211

Peculiarities ofRepresentation

Inherent to manipulating algebraic objects on the HP-28 are its representation

limits, which can at times be both annoying and confusing. The main limitation

for algebraic objects is that all expressions must be represented as lines in the

display.

In other words, there's not enough display to be able to present an algebraic ex-

pression in the pleasant and easy-to-read formats that you have seen in text-

books and have often written yourself. The HP-28 (and you too, when you're us-

ing it) must organize all algebraic expressions and equations so that they can be

written and read from left to right, one character at a time.

This can (and does) often result in extremely long and complex-looking expres-

sions, with a prodigious use of parentheses to keep things grouped properly. But

there's no alternative.

Here's a word of comfort, however: The presentation of algebraic information is

one of the most difficult aspects of computer algebra even on large computers

with large displays.

Your HP-28 is in good company.

212 AnEasyCoursein UsingtheHP-28

Symbolic Constants and Symbolic Function Evaluation

Symbolic calculation is great, but of course, it's not the only way to calculate. Us-

ers of most other calculators and computers will recognize this readily. Most

calculation tools are intended to help you generate numeric results. After all, you

usually want a numeric value when you add 1 and 1, not a symbolic expression.

Most calculators and computers do this as a matter of course — both because it's

commonly what you want and because they just can't do it any other way.

The HP-28 gives you the option of exclusively evaluating objects down to numer-

ic results — if it's most convenient.

You simply clear flag 36 (press (3]6]JC]F]ENTER).

All evaluations after this point will attempt to generate non-name objects (real

numbers, vectors, et cetera). If it cannot find such an associated object for the

name it's trying to operate on, it generates an error : Undef ined Hame.

In this mode, the HP-28 acts most like calculators and computers that you have

used before. It assumes that you want the name to refer to something, or you

wouldn't be trying to calculate with it. In this mode the HP-28 is most like a cal-

culator and least like a symbolic manipulator.

Of course, even when in symbolic evaluation mode (you can choose this by set-

ting flag 36: (3)6))SJFJENTER)), you can always force numeric evaluation for in-

dividual cases by using -NUM. But it's good to know you can choose.

Appendices 213

Finally, the HP-28 sports a set of data objects called symbolic constants. This is a

set of three commonly used mathematical constants and two machine-specific

constants. They are:

e Euler's constant, the base of the natural logarithm;

T the ratio of the circumference of a circle to its diameter;

i the square root of —1;

MINR the HP-28's smallest representable number; and

MAXR the HP-28's largest representable number.

Each of these can be considered a numeric function because each can be made to

yield a number. But they are in fact constants because they never change.

They're symbolic constants, partly because they have names and partly because

in symbolic constant mode (flags 35 and 36 set), they resist conversion to their

respective numeric values. In that mode, they will remain symbols unless forced

to become numbers by ->NUM.

This stubborn resistance to change can be extremely useful, especially in the

simplification of expressions, because you're often interested in a result that is a

function of e, &, or i. If the result were strictly a number, you would potentially

lose some information.

For example, which is more meaningful: 2 or 6.28318530718 radians?

And which is more exact? The HP-28 (in symbolic constant mode) has certain

functions that recognize these constants — noting the fact that any numeric re-

presentations of e and & are only approximations.

Thus, SIN(n) under symbolic evaluation mode (and radians mode) is 8, but

under numeric evaluation mode, it's = 2. 6761337357E-13.

214 AnEasyCoursein UsingtheHP-28

Appendix B : Using the Equation Solver

Numerical Solutions to Algebraic Expressions and Equations

You've seen that you can consider algebraic objects to be programs written in al-

gebraic syntax, and as such, you can use them to solve for numerical results of

algebraic expressions. In such cases, the algebraic object's internal names

("variables") refer to numeric objects.

But you've also seen that assigning values to these names can be tedious. SOLV,

the equation-solver menu, exists to aid you with just such problems. The SOLV

menu allows you both to conveniently load an algebraic object (via the command

called STEQ, or STore EQuation) and then use SOLVR fill in the values of its vari-

ables!

Try this: press (*[3[x[X][=]2)5]=]4[x]Y]

SOLVR locates and identifies all of the names within the object and generates a

menu of these names, including and for the expressions on the left

and right sides of the equal sign, respectively. From this point, all you need to do

is put a value onto the stack and select the menu key of the name you want to

give this value. SOLVR takes the value from the stack and associates it with the

name.

Press (5) IIEE@BB, This stores 5 in X and solves for Y.

Press B@B, This stores 2.51in Y and solves for X.

Press MA@HE; This solves for the value of the left side of the equation when X=5.

Press IIAEM; This solves for the right side of the equation when Y=2.5.

Appendices 215

Although this in itself is terribly convenient — especially if you want to play with

different values to see how the expression acts — there are some important rami-

fications that radically increase the usefulness of SOLVR.

First, it doesn't matter which value is the unknown. Normally, you would need

to rewrite an algebraic expression so that the name of the unknown is on one side

of the = and an expression of known values is on the other. SOLVR will do this

rewriting for you, automatically!

Second, there are expressions and equations for which it is impossible or virtually

impossible to isolate a particular unknown in this way. For such problems, the

only solution may be an approximation to the value of the unknown. But SOLVR

knows this, and will find this solution automatically!

Unfortunately, in this latter case, there may be no unique solution; that is, there

may be more than one answer that will satisfy the expression. You must be able

to recognize expressions that are likely to behave this way, because although

SOLVR can find a result, it may not be the only one — or the best one.

So you may supply a guess or guesses as to the value of the unknown before solv-

ing for it. SOLVR will start with these guesses as it looks for a solution. There-

fore, it will find a result (if any) that's relatively close to one of your guesses.

216 AnEasyCoursein UsingtheHP-28

SOLV and SOLVR are actually friendly ways to use the actual numeric root-

finder program, ROOT. They are excellent for interactive problem solving and

algebraic object manipulation, but it's quite possible that you'll have a more

sophisticated problem, one where a solution to an algebraic object is only half the

battle. In that case, you may opt to use ROOT itself in a postfix program.

ROOT takes either a name (most commonly the name of an algebraic function,

expression, equation or postfix program) or a postfix program from Level 3, the

name of the unknown from Level 2, and one or more guesses from Level 1 of the

stack. It returns a numeric result to Level 1.

For example:

Press ("X~2]+X]=J2]eNTER) (ENTER) JX]ENTER) (5JENTER] (R]OJO]TJENTER) .

Press (DROP) X[ENTER) (5[CHS]ENTER) (R]OJO]TENTER) .

The result is 1 when you guess 5, and it's —2 when you guess —5.

Unfortunately, a good discussion of how and why ROOT comes to its results

would require a good discussion of the nature of algebraic expressions, equations

and functions, as well as the nature of numerical approximations. These are

clearly beyond the scope of this book, but there are some such discussions in the

HP-28 Reference Manual.

Appendices 217

Symbolic Solutions to Algebraic Expressions andEquations

As you read, there are ways to "solve" algebraic expressions and equations for

specific names. In other words, you can isolate (using ISOL) a specific name

from an algebraic object. The result is an expression which is equivalent to the

specified name.

For example, if you had the equation ' A=B#C"' in Level 1 and typed

(1)S]OJL)ENTER), the result would be 'A~B".

You asked the HP-28 to isolate [for you, and it did so. You can see by inspection

that if you were to divide the original equation by B, then C would indeed be equal

to 'HAB"'. This is what is meant by isolation — the rearrangement of the origi-

nal expression so that the result is equal to the isolated name.

But be careful: While isolation of a name in this way can be very useful when a

name occurs only once in an expression or equation, if there's more than one

occurrence of the name, the resulting expression will also contain the name. In

other words, you will not have achieved very much by using ISOL.

218 AnEasyCoursein UsingtheHP-28

There's another method of "solving" an algebraic object if that object is specifical-

ly in the form of a quadratic expression or equation. QUAD will take an algebraic

object from Level 2 and the name of the variable for which the expression is

quadratic from Level 1. The result will be an expression for one or both roots of

the quadratic expression.

But if QUAD returns only one object, how does it show both roots? The answer is

an unequivocal "It depends.” It depends on whether flag 34, the principal value

flag, is set or clear.

Both ISOL and QUAD are capable of solving for multiple roots. In other words, if

an expression (like a quadratic) has multiple roots, all roots can be found and

represented.

To see how, first set flag 34 (3]4][S[FIENTER) and purge A, B, C and & (by press-

ing (VAB[XMPURGE)). Next, key in the expression ' H¥X™*2+B¥X+C"

and put a copy in both Levels 1 and 2. Now key in (QJUJA]D]ENTER

The resultis ' =B+(B2-4*¥(A*2-22%C2)/ (2% (A%2-222".

This is clearly one of the roots, but because you specified that you only wanted

one of the roots (by setting the principal value flag), you were only given one.

On the other hand, type (3)4]]C)]F)ENTER) (DROP) (XJENTER) (QJUJA]DJENTER). The re-

sultis ' {-B+sl1¥J(B*2-4* (AX2/22%¥CH2) A (2¥(A*2-22>".

This object is different from the first by the inclusion of the name §1. You will

recall that the general solution is -b+V... et cetera. Well, 51 functions as the +

here. Since there are two solutions and an algebraic object can only return one

result, QUAD gives you the option of choosing one, the other or both of the possible

solutions.

Appendices 219

Here's how:

If you were to associate the value 1 with the name 51 (in the usual manner —

with (STO) and then evaluate the expression, the result would be =b+1

On the other hand,if you were to associate —1 with 51 and evaluate the expres-

sion, the result would be—b—1....

51 therefore, stands for signl and should be interpreted when reading the ob-

ject as +. (If there were more than one + possible in the object, you would see 52,

53,54et cetera.)

This convenience is fine for solutions to a quadratic equation, but what about ob-

jects that have more then two roots?

Let's find out. Take a periodic function, like sine, for which there are infinitely

many roots.

Do this: Press(D]E]GJENTER])(X]ENTER)(S]I]NJENTER](X]ENTER](I]S]O]L] .

The resultis ' 188%¥n1"'. Here, Nl stands for any integer, indicating that the

sine of any integral multiple of 180° is zero. (Again, if there were more integral

multiples in the expression, you would see N2, N3, N4) Realize that if flag 34

were set, the result would be simply 18H (the principle value).

One final thing to note is that if you want strictly symbolic results, take care to

PURGE any names that the expression uses. If you don't, the names will be eval-

uated and replaced by their referent objects.

220 AnEasyCoursein UsingtheHP-28

Appendix C : Plotting

Information comes in many forms. You've seen numbers, letters, bits, and vari-

ous and sundry compound information types built from them. Each of these

forms has advantages based on how it's used and what you want to know.

Graphs are, in a sense, pictures of numbers. Such pictures give you easy access

to (1) trends in collected data; (2) peaks and valleys in the output of functions;

(3) comparison between different functions; (4) function zeros; et cetera, etc.

In short, graphs give you information about information.

And the HP-28 gives you the ability to generate graphical pictures of numeric

information.

The DRAW function in the PLOT menu is basically a program written to auto-

mate the process of graphing real-valued functions.

A function, in this case, is anything that maps one real value onto another. As far

as the HP-28 is concerned, therefore, the function can be an algebraic object, a

postfix program, and even a constant or a name.

Appendices 291

In the case of the postfix program, the function must be written so that it takes

no values from the stack (i.e., it refers to values via names) and so that it leaves

only one.

The first and second pages of the PLOT menu contain the operations you will

need to set up and plot the function(s) of your choice.

Some examples of a postfix program and an algebraic object used to plot X2+X-2:

'RAZHR-2

€ » DUP S + 2 - %

The DRAW command assumes that the function contains only one undefined

name. That is, since the plot will be two-dimensional, it must have one and only

one name (the independent variable — the "x-value").

You may explicitly select the independent variable using INDEP. If you do not ex-

plicitly choose the independent variable and the function contains more than one

name, DRAW will scan the object and use the first name it finds as the indepen-

dent variable.

The y-axis is used to indicate the value of the function given the current value of

the independent variable. This does not mean that the algebraic object cannot

have more than one name in it. It does mean that DRAW will only vary one of

them as it successively evaluates the function. Thus, every other name had bet-

ter have a value attached to it, otherwise DRAW will generate an error.

222 AnEasyCoursein UsingtheHP-28

Scaling

Plotting is not always as simple as storing a function (i.e., via STEQ) and invok-

ing DRAW.

Sometimes, in order to get the clearest picture of the function, you must have

some idea of the scale of the plot and therefore the domain over which you want

to plot (the x-values) and the range of the function (the y-values).

If you don't, it's possible that what you'll see may be so little of the curve that you

can't get much information from it, or so much of the curve that you don't see

important detail.

Try this: Press ("X @*)2)HX[=)2) ITT®E. The resulting plot has its

"bottom" cut off. You know that this expression "bottoms out" when X is —0.5, but

you can't seeit.

Scale is established primarily by setting the minimum and maximum values of

the domain and the range. You do this by making a complex number (X,y) out of

the maximum x- and y-coordinates and then using the command PMAX. Then

you do the same for setting the minimum values of the domain and range, ex-

cept that you would use PMIN.

To correct the plot you just generated, press (()8)-)8)cHS]2]-J2)5]cCHS)

R[T

Looking in the second level of the menu (via (NEXT)), you can increase or decrease

the width of the plot with EE¥Ill (which multiplies the plot width by a constant).

Numbers less than 1 will decrease the width (reduce the domain), while num-

bers greater than one will increase the width (enlarge the domain).

BEE works similarly with the plot height (the range, i.e. the y-values).

Appendices 223

Digitizi

Once you have stored the function, established an initial scale, possibly selected

the independent variable, and invoked DRAW, the HP-28 will plot the function.

Depending on the function, this process may take some time. You'll know when

it's done, because the busy annunciator will be turned off (but if you become im-

patient, ATTN will interrupt the plot).

When it's done, the plot is left for your inspection. Then you also have the option

of digitizing some points. That is, you may move a special cursor (it resembles a

+) around the plot to points of interest by using the cursor keys. Once you've

found a likely spot, you can record its coordinates (put them on the stack) by

pressing INS. Don't worry that you can't see the recorded value. It will be in the

stack when you leave the plot display.

One reason to digitize points is to zero in on an interesting bit of the curve. You

may pick two new points on either side of the interesting portion to be your new

PMIN and PMAX. By digitizing those points, you'll have them on the stack and

thus available for [IEI] and/or&M and then replotting with a new scale.

Another good idea: You can use the digitized points as guesses for use in SOLVR.

Plotting an Equation

One feature of DRAW that's not obvious is what it does with algebraic equations.

Since an algebraic equation is essentially a pair of algebraic expressions separat-

ed by =, the DRAW command plots both at the same time.

The advantage to this is that the point(s) at which the two curves cross (if they

cross) is the point at which the two expressions are equal (go after it with that

digitizer!).

224 AnEasyCoursein UsingtheHP-28

Appendix D: Postfix Programming

Much can be said about programming. One might wax eloquent about such top-

ics as structured and unstructured programming, top-down versus bottom-up

design, control structures, memory management and the like, but these topics

won't be covered in these pages.

There are two reasons for this, really:

First, as is readily apparent, much — very very much — can be written about

each and every topic listed above. One day, they may be fully and sufficiently dis-

cussed as applied to the HP-28, but not here and not now. As always, lack of

space is the antagonist.

Second, and consider this well, 95 to 100% of the utility that you will derive from

the HP-28 will be achieved without using a single line ofprogram code — that is,

without postfix programming as opposed to algebraic objects, user-defined func-

tions and already existing system commands.

For those programming enthusiasts among you, this may be hard to believe (and

the rest of you may breathe a sigh of relief), but consider this: The vast majority

of the software written for hand-held calculators today attacks the problems

that the standard functions of the HP-28 solve without user programming.

You have problem-solving capability available to you in a few keystrokes that

most other calculator — and even desk-top computer — users can only dream of,

unless they write or purchase elaborate programs to do so.

Appendices 225

And consider this also: The HP-28 was not designed to be host to large and com-

prehensive programs. For while it's true that it sports significant programma-

bility — just in case you have an unusually complex problem to solve — it also has

some important limitations.

The HP-28 is, and was designed to be, a mathematical problem-solving toolbox.

In it resides a host of very powerful commands. It has some memory — not a lot.

But when it comes to input/output options (i.e., methods of loading data and pro-

grams into the machine and methods of saving and presenting information), it

has almost none. Mass storage (storage of information on external media) is

non-existent; programs must be loaded by hand from the small keyboards, and

other than residing in the machine itself, programs can be stored only on ther-

mal printer paper.

Limitations, et cetera, et cetera....

Users of other, less powerful calculators may find these overly harsh words. Us-

ers of desk-top computers will not.

Understand, the intention here is not to knock the HP-28 but rather to describe

its intended utility. The things it was designed to do it does exceedingly well — in-

deed, one would be hard pressed to find the like in popular computation.

But, those things for which it was not designed will prove difficult if not impossi-

ble to implement. No doubt, capable and powerful software will be developed by

those users with much time, patience and zeal, but ordinary mortals will find

such endeavors no trivial tasks.

226 AnEasyCoursein UsingtheHP-28

How then can you best make use of the programmability of the HP-28? Think of

it as the ability to develop larger and more specific tools from smaller, more gen-

eral tools. To borrow an analogy from biochemistry, you would design small

functional molecules from the functional atoms provided and then perhaps build

even larger functional molecules (proteins, say) from other, previously con-

structed molecules.

But you wouldn't expect to develop viable organisms from such components.

More likely, you would construct particular routines (enzymes?) that make a

task easier.

For example: The HP-28 has several functions and operations that deal with

vectors. It does not, however, have a unit vector function. This is probably be-

cause, given a real vector on stack Level 1, the keystrokes needed to obtain the

unit vector aren't all that complicated. They are: (A]B]S]ENTER] :

But if you have a frequent need to find unit vectors, the repetition of these keys-

trokes would become a bit tedious. The corresponding postfix program would be

€ DUP RBS INY * ¥ which you can then name, say, 'UNMIT"', and thus

be able to invoke it with one keystroke from the USER menu. This is the arche-

typical HP-28 program — short, sweet, and effectively a new command.

Notice, though, that you don't need a postfix program to find unit vectors. You

could have used an algebraic object (' INMCABSw2 3%¥u')but you would

have had to give the original vector a name.

A user-defined function (U.D.F) would be ideal, since it's effectively an algebraic

(more understandable) object that can nevertheless use objects on the stack.

Such a UD.F. might be & * w 'INV(ABSCwl)xu' ¥,

Appendices 227

Of course, not all problems can be solved with algebraic objects and UDF's.

Sometimes postfix programs are indeed the only solutions — but not as often as

you might think.

So how do you judge which is the most appropriate of the 3 procedures to use?

In general, if the problem you have to solve is one that involves stack and/or ob-

ject manipulation, or if you're looking for the solution to a non-algebraic problem,

a postfix program is called for. Decision making problems (IF this is true THEN

do this) are common examples of such circumstances.

However, if the problem to be solved is algebraic or can be used in an algebraic

context, then you should probably try User-Defined Functions and/or algebraic

objects. And since algebraic solutions are more common and more understanda-

ble than postfix programs, most of your solutions will and should be in the form of

algebraic objects of one type or another.

Here are a few examples of typical problems — and the optimum form of solution

for each:

Problem: Convert a three-element vector from rectangular to spherical coor-

dinates.

Solution: Since this is the manipulation of a non-algebraic object and requires

the use of the stack, a postfix program is called for. Thus:

« R2*FP AREY+ DREOF EOT ROT £ 3 2 *ARRY E*F 3=

* This example was taken from Hewlett-Packard's HP-28 eference Manual, TRIG.

228 AnEasyCoursein UsingtheHP-28

Problem:

Solution:

Problem:

Solution:

Appendices

Find the pressure of 1 mole of an ideal gas whose volume is 1 liter at

273.16K.

Since PV=nRT, and R is a constant (= 8.314 j/mol-K), if you used the al-

gebraic equation

'PEV=n*RE*T"'

in conjunction with the SOLV commands, you could solve this and

any variations on this in short order. Videlicet, ('|[P]X]V]=]N]X[R]X]T)

(SoLv) EATE=N EXTRA (1)I(1)I(s)(-)(3)(1)(4)I
8

In the manufacture of ball bearings, you would like to determine the

physical volume of the spheres and use that formula for volume in

other algebraic manipulations (such as the calculation of amounts of

materials).

Your choice would be a user-defined function:

€ 3 r '"dE¥mu¥r-"3/3' %

Press (SPACE SPACE) (LC]R) (SPACE) ("4X[X[R]~]3]=)3) (ENTER

("]s]V]o]L) (STO). Remember to set or clear the symbolic constant flag

(see page 214) based on whether you want symbolic or numeric .

Appendix E : Keyboard Error Recovery

Anyone who's attempted to do any time consuming thing is grateful for a meth-

od of recovering from false starts. No matter how careful you are, there will be

times that you'll want to redo, undo or throw away and start over whatever it is

you're working on. You'll be happy to know, then, that the HP-28 has a set of

"ways out” from false starts and blunders.

@commanD): The Command Stack

You've already been introduced to the command stack (page 63), and after read-

ing this far you've probably gained some appreciation for its utility.

To cover this ground again, the command stack contains copies of the last four

command lines that you [ENTER)'ed. Repeatedly pressing)(COMMAND) recalls suc-

cessively older command line copies to the active command line for you to edit

and/or reENTER]. Pressing {J([COMMAND) a fifth time cycles back to the most recent

command line copy.

The advantage here is two-fold. First, if you've made a keystroke error in a par-

ticularly long or involved command line, will allow you to recall that

command line if it's not too old, then correct it and re-enter it (note that re-

entering simple command lines is often easier than using the command stack).

Second (as in the quiz solution on page 107), you can use the command stack to

repeat lengthy and redundant commands. It's also a convenient way to enter a

series of slightly different commands (see pages 78-79). Notice that, since im-

mediate-execution commands are not normally recorded in the command line,

you may need to do some planning ahead and use () for this kind of command

repetition.

230 AnEasyCoursein UsingtheHP-28

: UNDOing a Command

Sometimes you will find that you will need to UNDO whatever it is you just did. It

may be that you did something that you didn't intend to do, or perhaps that last

command ate your only copy of some important datum. Never fear, you've a

way out.

Any time you press ([ENTER) , or any time you press an immediate-execution key

since they effectively "press on themselves" (see page 32), the HP-28

makes a secret copy of any stack Levels that are changed by the invoked com-

mands. The advantage of this is that if you find that you need to undo something,

you can press and the following things will happen:

1. Any and all results of the last command will be dropped from the stack.

2. The stack contents eaten by the last command will be replaced; pushed back

onto the stack.

3. UNDO will have amnesia. I.e., pressing lUNDO) a second time will not undo

the UNDO, nor will it repeat its action. It will become active again only after

another [ENTER}-pressing command has been invoked.

Things will then be as if you had never invoked that last command.

As you can see, this is tremendously convenient. In fact, UNDO will probably be

the most commonly used error-recovery mechanism in your arsenal.

Appendices 231

@JLAST): Recalling the Stack as It Was Before the LAST Command

LASTis a slightly different flavor of UNDO. Here's a list of its actions, so you can

compare it with UNDO:

1. Any and all results of the last command will be left on the stack.

2. The stack contents eaten by the last command will be replaced; pushed back

onto the stack.

3. LAST won't have amnesia. I.e., pressing a several times will repeat its

action. You'll get several copies of the remembered stack levels.

The main use for LAST is when you have an especially gnarly object on the stack

and you need to do several operations on it. You don't need to re-enter it. Rather,

you could press between operations, to recall the original gnarly object for

re-use. Meanwhile, the results of the different operations would be pushed onto

higher levels of the stack.

232 AnEasyCoursein UsingtheHP-28

Enabling and DisablingError Recovery

A final point of interest about error recovery: you can turn it off. In the second

level of the MODE menu are commands for turning on and off each of these er-

ror recovery schemes.

But why would you want to turn them off? You never know when you might

need them.

The answer is: to conserve memory.

Since each of these mechanisms works by remembering (storing) something in

case you want it again, there will be times when it's just plain wasteful to take up

memory with something that's only potentially useful.

Consider also the case of especially large objects: there may simply not be enough

memory to remember the last large object and put the next one on the stack, too.

Appendices 233

Editorial

Well now...having dug deep into the nitties and the gritties of the HP-28, you

should probably poke your head back out into the fresh air and catch a new per-

spective (or maybe re-catch an old one). It's too easy to get lost in the details and

how-to's and forget the big picture. It would be a shame to lose sight of exciting

potentials while mired in the mundanity of getting the basics under your belt.

So in case you've forgotten, it's time you were reminded how much you have to

be excited about. If you're a serious problem-solver, by now you should be feeling

like a kid in a candy store, or maybe like an auto connoisseur at a new car show.

There's so much here, so much you can do, and so many new ways to do it that

the mind delights — and maybe boggles a little bit too. That's okay. It's all part of

the excitement.

Just remember to be excited.

What you have in the HP-28 is more than the Cadillac of calculators. It's more

like being on the freeway at rush hour and finding out that your vehicle can fly.

You're no longer bound to the pavement. You don't need to go where everyone

else is going before going where you want to go. You have a whole new way to

travel. Not only can you get there (wherever there is) faster, easier and more di-

rectly than anyone else, you can also go places that they can't.

If you haven't caught the drift by now, here it is: This machine is "radibolical.”

You just ain't never saw nothin' like it nohow nowhere before, but you can bet

you'll be seeing more of it. It's just too useful and too good an idea not to catch on,

and if it doesn't, it's because we aren't ready for it — like di Vinci's helicopter.

Don't be cowed by its power and flexibility. Take it slow and get to know the most

capable problem-solver you've ever met. He's a little short on small talk, but in
rn

his element, he's "dynobitchin'.

Can you tell we like this machine? And actually, we've realized its flexibility

even more during the writing of this book. Back on page 8, we called the HP-28

a problem-solving tool, but you can see now that it's really a collection of different

tools and attachments — more like a full toolbox, actually.

You can also see how hopeless it would have been to try to cover everything in

this book, so, true to our early warnings, we didn't try to tell you how to build a

house. The design of your house is your job (but once you decide where and how

the boards ought to go together, do we have a toolbox for you)!

Just remember — with all the real satisfactions you should get from such great

tools — you'll be wasting them if you build more house than you need.

This seems to be true of a lot of modern inventions. Two related questions come

up over and over again: What peaks of performance can you squeeze out of

them? Should you push them that far?

Like most machines, the HP-28 answers these two questions very differently,

and being so representative of the age, it gives you a chance to begin asking better

questions about technology. Instead of idly wondering "How many neato-nifty-

awesome-but-useless things can I make this little box do?" we hope you'll ask

"What better things can I do with the time and energy these tools save me?"

Without sorting out the advisable from the possible, you'll be no better off than be-

fore you ever had the tools. Your time and talents will have gone merely to "gee-

whiz" tinkering, and you — and the world — will be the poorer for it. A sophisti-

cated machine may be the subject of a course, but it's not the object of the game.

Thanks for listening...and happy hammering!

August, 1987

We hope you've enjoyed this Easy Course book--and that you'll let us hear any

comments you may have. Remember: Your response is our only way to know

whether or not we have succeeded in what we work hard to do--provide books

that are both informative and enjoyable. So please--your opinions (and proof-

readings) are welcome--and we always read our mail!

And by the way, if you liked this book, here are some others that you or someone

you know might enjoy also:

An Easy Course in Programming the HP-41

* An Easy Course in Using the HP-12C

* An Easy Course in Programming the HP-11C and HP-15C

* The HP-12C Pocket Guide

* The HP Business Consultant (HP-18C) Training Guide

* The HP Business Consultant (HP-18C) Pocket Companion

* Computer Science on Your HP-41 (Using the HP Advantage ROM)

* An Easy Course in Using the HP-16C

* An Easy Course in Using the HP-28C

You can use this handy set of order forms here --->

Or, you can contact us for further information on the books and where you can

buy them locally:

Grapevine Publications, Inc.

P.O.Box 118

Corvallis, Oregon 97339-0118 U.S.A.

Call: 1-800-338-4331 (in Oregon, 1-754-0583)

ORDER FORM (Impress a Friend!)

Yes! Please send:

____copies An Easy Course in Programming the HP-41 $20ea. =$_

____copies An Easy Course in Using the HP-12C $20ea. =$__

____copies An Easy Course in Programming the HP-11C and HP-15C $20ea. =$____

____copies The HP-12C Pocket Guide $5ea. =$___

____copies The HP Business Consultant (HP-18C) Training Guide $22eca. =$

____copies The HP Business Consultant (HP-18C) Pocket Companion $8ea. =$

___copies Computer Science on Your HP-41 (Using the Advantage ROM) $15ea. =$

____copies An Easy Course in Using the HP-16C $20ea. =9

copies An Easy Course in Using the HP-28C $22ea. =%

Note: These prices may change without notice.

Shipping Information:
For orders consisting of POCKET GUIDES only -.....................FREE SHIPPING

For orders less than $16.00...................coooviiiiiiiiiiiiceeeeeeeeeeeeeee,ADD $1.00 $

For all other orders- Chooseone:

Post Office shipping and handling - ADD $2.00 $
(allow 3 weeks for delivery)

UPS shipping and handling - ADD $3.50 $
(allow 7-10 days for delivery)

Note: UPS will not deliver to a P.O. Box; please give street address.

TOTAL AMOUNT: -------> =9
PAYMENT:

Your personal check is welcome. Please make it out to Grapevine Publications, Inc. or:

Your VISA or MasterCard #: Exp. date:

Your signature:

Thank You!

"Please send these books to:

Name

In Care Of (a company, maybe--or some other person)

Street Address (Note: UPS will not deliver to a Post Office Box!)

City State Zip

C) -

Your Daytime Telephone Number

(Depending upon how it will be shipped, please allow 2-3 weeks for
delivery of your order.)

ORDER FORM (Impress a Friend!)

Yes! Please send:

____copies An Easy Course in Programming the HP-41 $20ea. =$__

____copies An Easy Course in Using the HP-12C $20ea. =$__

____copies An Easy Course in Programming the HP-11C and HP-15C $20ea. =$___

____copies The HP-12C Pocket Guide $5ea. =$%_

____copies The HP Business Consultant (HP-18C) Training Guide $22ea. =$_

____copies The HP Business Consultant (HP-18C) Pocket Companion $8ea. =$__

__copies Computer Science on Your HP-41 (Using the Advantage ROM) $15ea. =$

__ copies An Easy Course in Using the HP-16C $20ea. =$

copies An Easy Course in Using the HP-28C $22ea. =%

Note: These prices may change without notice.

Shipping Information:
For orders consisting of POCKET GUIDES only -.....................FREE SHIPPING

For orders less thamn $16.00..........cccooiiimmeeieeeeeADD $1.00 $

For all other orders- Chooseone:

Post Office shipping and handling - ADD $2.00 $
(allow 3 weeks for delivery)

UPS shipping and handling - ADD $3.50 $
(allow 7-10 days for delivery)

Note: UPS will not deliver to a P.O. Box; please give street address.

TOTAL AMOUNT: -------> =%
PAYMENT:

Your personal check is welcome. Please make it out to Grapevine Publications, Inc. or:

Your VISA or MasterCard #: Exp. date:

Your signature;

Thank You!

"Please send these books to:

Name

In Care Of (a company, maybe--or some other person)

Street Address (Note: UPS will not deliver to a Post Office Box!)

City State Zip

() -

Your Daytime Telephone Number

(Depending upon how it will be shipped, please allow 2-3 weeks for
delivery of your order.)

This cover flap is handy for several different

things:

-- Tuck it just inside the front cover when you

store this book on a shelf. That way, you can

see the title on the spine.

-- Fold it inside the back cover--out ofyour way--

when you're using the book.

-- Use it as a bookmark when you take a break

from your reading!

Loux

Coffin

Bloch

0
As

ey
u
y

U
l

9S
.1
Nn
o0

:
:
:

Q

An Easy Course in Using the HP-28C

If you're looking for a clear, straightforward explanation of the powerful

HP-28C, then this is your book! Authors Loux and Coffin sort through

the myriad features of this machine, giving you the pictures and the

practice you need to make the HP-28C your favorite calculating tool.

The first several chapters bring you up to speed on the mechanics of op-

eration — what keys you need to press to control and command the

display, the stack, and the menus. You'll get lots of practice problems

and explanations designed to get your fingers trained for action.

Then you go straight to the heart of the machine, exploring all the differ-

ent information "objects”" and how you can manipulate them, combine

them, name them and (best of all) think about them. You'll see how

HP's well-known stack-oriented (postfix) arithmetic becomes the engine

behind all this math power, and soon you'll be harnessing it for yourself!

Then in brief separate discussions, this Easy Course touches upon spe-

cialized topics, such as symbolic algebra and calculus, plotting, and pro-

gramming.

It's all in Grapevine's familiar Easy Course format, with Robert Bloch's

illustrations — a book filled with examples, review questions, and quizz-

es, designed to let you work at your own speed (and your own speed will

soon amaze you)! It's always a pleasant surprise that learning about a

calculator can be this satisfying — but it can be, when the right explana-

tion transforms a mysterious machine into a friendly and powerful tool.

o 132847110001 74l
N GRWEVINVE. PUBLICATIONS, INC, ISBN 0-931011-17-5
i | & PO.Bx118 ¢ Corvallis, Oregon 973390118 ¢ U.S.A. * (503) 754-0583

	Cover
	Contents
	Introducing...The Introduction
	What Is This Tool?
	What Is This Book?
	What's In This Book - and What's Not?

	How to Picture Your HP-28
	The Display
	The Keyboards
	Posting Memos: Interactions Between the Keyboards and the Display
	The Menu Keys: Your Command Card File
	Immediate Execution ("Do-It-Now") Keys
	Messages From the System - Memos From Your Staff
	Status Messages: The Annunciator Area
	A Tricorder Reading
	Quickie Quiz
	Quickie Answers

	Making Your HP-28 Work For You: The Command Line
	Typing Characters Into the Command Line
	Changing A Character in the Command Line
	Adding and Removing Characters
	[][INS], [][DEL], and [ATTN]
	[][NEWLINE], [▲] and [▼]
	The [LC] Key
	[α] and [][αLOCK]
	Item Delimiters and [ENTER]
	[][EDIT] and [][COMMAND]
	Command Line Quiz
	Command Line Answers

	Real Numbers, the Stack, and Postfix Notation
	Real Numbers - and the Real World
	Representing Real Numbers On the HP-28
	Scientific Notation on Your HP-28
	12-Digit Accuracy: Rounding Error
	Magnitude: How Big (or Small) Can You Get?
	Posting Real Numbers: [CHS], [EEX] and Display Modes
	Display Formats
	The Stack and Postfix Notation
	Real Number Commands: 0-, 1-, and 2- Number Operations
	Arithmetic Practice
	Arithmetic Practice Solutions
	STACK Operations
	[ENTER]'s Second Job
	The [SWAP] Function
	How to [CLEAR] the Stack
	Strenuous But Practical Stack Practice Problems
	S.B.P.S.P.P. Solutions

	The "Stuff" Upon Which the HP-28 Works
	An Equal Opportunity Calculator
	The HP-28's Philosophy of Information
	Real Numbers
	Complex Numbers
	Pop Quiz: Simple Questions About Complex Numbers
	Simple Answers to Simple Questions About Complex Numbers
	Vectors
	A Visit With Vectors
	Results of A Visit With Vectors
	Arrays
	Array Aptitude Test
	A.A.T. Results
	Characters
	Character Strings
	Character String Query
	C.S.Q. Answers
	Names
	Name Games
	Name Game Winners
	Bits
	Binary Integers
	Binary Integer Test
	B.I.T. Answers
	A Pause For the Cause
	Lists
	List Lessons
	List Lessons Learned
	Procedures: (a) Postfix Programs
	Program Problems
	Program Problem Solutions
	Procedures: (b) Algebraic Expressions
	Algebraic Aptitude Test
	A.A.T. Scores
	Procedures: (c) User-Defined Functions
	User-Defined Function Fun
	U.D.F.F. Consequences

	Appendices
	Introduction to the Appendices
	Appendix A: Algebra
	Appendix B: Using the Equation Solver
	Appendix C: Plotting
	Appendix D: Postfix Programming
	Appendix E: Keyboard Error Recovery
	Editorial

