
Aatiahderite
HEW I E TISFAL KARTD

HP-28C
Programming Examples

Welcome to the HP-28C

This booklet, HP-28C Programming Examples, contains 19 program for
your HP-28C. These programs are useful and, more importantly, they
demonstrate a variety of programming techniques. You’ll find a list of the
techniques on page 6.

Before trying the examples in this booklet, please read “How To Use This
Booklet” on page 7. It contains important information on the conventions
observed in this booklet.

This booklet assumes you’ve read the HP-28C Getting Started Manual. At
a minimum, you should know:

m How to enter numbers and expressions.

m How to enter programs and edit existing programs.

m How to use menus.

You can find detailed information about programming in the HP-28C
Reference Manual, especially in the following sections.

® Programs

m PROGRAM BRANCH

m PROGRAM CONTROL

m PROGRAM TEST

HP-28C

Programming Examples

Acacicaro
Edition 1 June 1987

00028-90099

Notice

The information contained in this document is subject to change without

notice.

Hewlett-Packard makes no warranty of any kind with regard to

this material, including, but not limited to, the implied warran-

ties of merchantability and fitness for a particular purpose.

Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsiblity for the use or reliability ofits
software on equipmentthat is not furnished by Hewlett-Packard.

© 1987 by Hewlett-Packard Co.

This document contains proprietary information thatis protected by copy-
right. All rights are reserved. No part of this document may be photo-
copied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Portable Computer Division

1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 June 1987 Mfg No. 00028-90099

Contents

11
11
13
14
16
16
17
19
20
23
23
24
26
26
27
28
32
33
34
35
35
36
39
39
411
42
45

How To Use This Booklet
Programming Examples
RENAME (Renaming a Variable)
Box Functions
BOXS (Surface of a Box)
BOXS Without Local Variables
BOXR (Ratio of Surface to Volume of a Box)

Fibonacci Numbers
FIB1 (Fibonacci Numbers, Recursive Version)
FIB2 (Fibonacci Numbers, Loop Version)
Comparison of FIB1 and FIB2

Single-Step Execution
Expand and Collect Completely
MULTI (Multiple Execution)
EXCO (Expand and Collect Completely)

Displaying a Binary Integer
PAD (Pad With Leading Spaces)
PRESERVE (Save and Restore Previous Status)
BDISP (Binary Display)

Summary Statistics
SUMS (Summary Statistics Matrix)
EGET (Get an Element of ZCOV)
X2 (Sum of Squares ofx)
YY2 (Sum of Squares ofy)
EXY (Sum of Products ofx andy)

Median ofStatistics Data
SORT (Sort a List)
LMED (Median of a List)
MEDIAN (Median ofStatistics Data)

Index

Contents

List of Techniques

11

12

14

16

16

17

17

23

23

23

25

26

26

27

27

28

29

29

29

32

32

32

39

39

39

39

11

42

42

Basic stack manipulations
Local-variable structure
User function
Nested user functions
IFTE (If-Then-Else function)
Recursion
IF... THEN...ELSE... END (conditional)
START ... NEXT (definite loop)

DO ... UNTIL... END (indefinite loop)
Programs as arguments

Evaluation of local variables
Structured programming
WHILE ... REPEAT ... END (indefinite loop)
String operations
RCLF and STOF
Local-variable structure
IFERR ... THEN. .. END (error trap)
Enabling LAST
FOR ... NEXT (definite loop with index)
Subprograms
Matrix operations
Programs usable in algebraic objects
YPAR convention
Bubble sort
Nested definite loops
Nested local-variable structures
FOR ...STEP and FOR ... NEXT (definite loops)
FLOOR and CEIL
Arrays,lists, and stack elements

FOR ... NEXT (definite loop with index)

List of Techniques

How To Use This Booklet

For each program you’ll find the following information.

m A description of its purpose.

m A diagram showing its effect on the stack.

m A list of techniques that it demonstrates.

m A list of other programs that it requires (if applicable).

m A program listing with comments.

m An example that shows how to use it.

Each type of information is described in more detail below.

Stack Diagram. A stack diagram is a two-column table showing
“Arguments” and “Results”. “Arguments” shows what must be on the
stack before the program is executed; “Results” shows what the program
leaves on the stack.

Note that the stack diagram doesn’t show everything; a program that
changes user memory or displays objects might have no effect on the stack.

Techniques. This is the most interesting part. When you understand
how a technique is used in this booklet, you can use it in your own pro-
grams.

Required Programs. Some programs call others as subroutines.
You can enter the required programs and the calling program in any
order, but you must enter all of them before executing the calling pro-
gram.

The HP-28C can’t hold all the programsin this booklet at one time.
Before purging one program to make room for another, make sure the
program you’re purging isn’t required by another program that interests
you.

How To Use This Booklet 7

Program and Comments. This booklet formats the program listing
to show a program’s structure and process. You don’t need to follow the
format of the listing when you enter a program. However, be sure to key
in spaces where they appear in the listing or between objects appearing on
separate lines.

You can key in a program character by character, or you can use the
menus to key it in command by command. It makes no difference as long
as the result matches the listing.

When you key in the program you can omit all closing parentheses and
delimiters that appear at the very end of the program; when you press

the closing parentheses and delimiters are added for you.

Example. The examples observe the following conventions.

The illustrations assume STD display format. To select STD display for-
mat, press STD or use the MODE menu.

A box represents a key on the calculator keyboard.

STO
EVAL

In some cases a box represents a shifted key on the HP-28C. Theshift key
is not shown explicitly.

VISIT
STAT

The “inverse” highlight represents a menu label.

=CLZ=,=r+ =, and = NE = in the STAT menu.

1 SST = and =KILL = in the CTRL menu.

= DEC = in the BINARY menu.

Variable names in the USER menu also appear as menu labels.

Menus typically include more than one menu level. Press and
to roll through the menu levels. In the examples, and are not
shown explicitly.

8 How To Use This Booklet

Programming Examples

The most important technique demonstrated in this booklet is structured
programming: small programs used to build other programs. The following
programs are used in other programs.

m BOXS is used in BOXR.

m MULTI is used in EXCO.

m PAD and PRESERVE are used in BDISP.

m YGET is used in ¥X2, ¥Y2, and XY.

m SORT and LMED are used in MEDIAN.

RENAME (Renaming a Variable)

Recall the contents ofa variable, purge the variable, and store the con-
tents in a new variable.

Arguments Results

2: 'name' (old) 2:
1: 'name' (new) 1:

Techniques:

m Basic stack manipulations.

RENAME (Renaming a Variable) 9

Program Comments

« Begin the program.
OVER Copy the old name to level 1.
RCL Recall the contents of the variable.
ROT Move the old name to level 1.
PURGE Purge the old variable.
SWAP Put the contents and new name in

the correct order.
STO Create the new variable.

» End the program.

Put the program on the stack.
' RENAME Store the program as RENAME.

Example. Create a variable A with contents 10, then rename A to B,

then evaluate B to check that its value is 10.

Clear the stack and select the USER menu.

Create a variable A with contents 10.

10 [ENTER]
'A [sT0]

Rename variable A to B.

'A [ENTER]
'B [ENTER]
= RENAME =

Check the value of B.

B1 1

10 RENAME (Renaming a Variable)

3:

2
TNINNN

3:

2:
hJREN]]|||

3:

2
ITNIIB.

3:
2%
1: 19
CEE[T3TYINN

Box Functions

This section contains two programs:

m BOXS calculates the total surface area of a box.

m BOXR uses BOXS to calculate the ratio of surface to volume for a

box.

BOXS (Surface of a Box)

Given the height, width, and length of a box, calculate the total area ofits

six sides.

Arguments Resuits

3: height 3:
2: width 2:
1: length 1: area

Techniques:

m Local-variable structure. Local variables allow you to assign names to
arguments without conflicting with global variables. Like global vari-
ables, local variables are convenient because you can use arguments
any number of times without tracking their positions on the stack;
unlike global variables, local variables disappear when the program
structure that creates them is done.

A local-variable structure has three parts.

1. A command named “-”. When you key in this command,
remember to put spaces before and afterit. (Like any command,
= is spelled using normal characters and is recognized only when
it’s set off by spaces. Don’t confuse this one-character command
with delimiters like # or «.)

2. One or more names.

3. A procedure (expression, equation, or program) that includes
the names. This procedure is called the defining procedure.

BOXS (Surface of a Box) 11

When a local-variable structure is evaluated, a local variable is created

for each name. The values for the local variables are taken from the
stack. The defining procedure is then evaluated, substituting the values
of the local variables.

To appreciate the power of local variables, compare the version of
BOXS given below with the version that appears on page 13.

m User function. This type of program works in either RPN or algebraic
syntax. A user function is a program with two characteristics: (1) It
consists solely of a local-variable structure. (2) The defining procedure
is an expression.

Program Comments

« Begin the program.

> hwl Create local variables for height,
width, and length. By convention,

lower-case letters are used. The
values are taken from the stack (in
RPN) or from the arguments to the
user function (in algebraic syntax).

'2*% (h*w+h*1+w*1) The defining expression for the sur-
face area. Evaluating the user func-
tion causes evaluation ofthis expres-
sion, returning the area to the stack.

» End the program.

Put the program on the stack.
'BOXS Store the program as BOXS.

Example. One of the advantages of user functions is that they work in
either RPN or algebraic syntax. Calculate the surface of a box 12 inches
high, 16 inches wide, and 24 inches long; make the calculation first in RPN

and then in algebraic syntax.

For the RPN version, first enter the height and width.

3t
12 £ ic
16 CXEECEYI

12 BOXS (Surface of a Box)

Then key in the length and execute BOXS.

24 =BOXS=

3:
2:
1: 1728
gous BJREnw]|1|

The surface area is 1728 square inches.

Now try the algebraic version.

'BOXS (12,16,24

Again, the surface area is 1728.

BOXS Without Local Variables

The following program uses only stack operations to calculate the surface
of a box. Compare this program with BOXS.

Arguments Results

3: height 3:
2: width 2:

1: length 1: area

Program Comments

« Begin the program.

DUP2 * Calculate wi .

ROT Move w to level 1.

4 PICK Copy h to level 1.

* Calculate wh .
+ Calculate wi +wh .
ROT ROT Move h and ! to levels 2 and 1.

* Calculate hl.

+ Calculate wl +wh +hl.

2 * Calculate 2 (wl +wh +hl).
» End the program.

Because this version of BOXS isn’t a user function, it can’t be used in alge-
braic syntax.

BOXS Without Local Variables 13

BOXR (Ratio of Surface to Volume of a Box)

Given the height, width, and length of a box, calculate the ratio ofits sur-

face to its volume.

Arguments Results

3: height 3:

2: width 2:
1: length 1: area/volume

Techniques:

m Nested user functions. BOXR is a user function whose defining
expression uses BOXSin its calculation. In turn, BOXR could be used
to define other user functions.

Recall that BOXS was defined using &, w, and / as local variables, and

note below that BOXS takes x,y, and z as arguments in the definition
for BOXR. It makes no difference if the local variables in the two
definitions match, orif they don’t match, because each set of local
variables is independent of the other. However,it’s essential that local
variables be consistent within a single definition.

Program

<«

2 XYy 2

'BOXS(x,Y,2)

/ (x*y*z) !
»

'BOXR

Comments

Begin the program.
Create local variables for height,
width, and length. This program uses
x,y,andz, rather than h,w, and /.
Begin the defining expression with
the user function BOXS.
Divide by the volume of the box.
End the program.

Put the program on the stack.
Store the program as BOXR.

14 BOXR (Ratio of Surface to Volume of a Box)

Example. Calculate the ratio of surface to volume for a box 9 inches
high, 18 inches wide, and 21 inches long; make the calculation first in RPN

and then in algebraic syntax.

For the RPN version, first enter the height and width.

[USER] 3:
9 i 13
18 [ENTER] IINTI

Then key in the length and execute BOXR.

21 =BOXR= %:

1: . 428571428571
[BoitkJeows|BJRENA]]—

The ratio is .428571428571.

Now try the algebraic version.

'BOXR(9,18,21 3:
2t . 428571428571
1: .4258571428571
IRTITI

Again, the ratio is .428571428571.

BOXR (Ratio of Surface to Volume of a Box) 15

Fibonacci Numbers

Given an integer n, calculate the nth Fibonacci number F,,, where

Fo=0, Fy=1, F,=F,1+F,,

This section includes two programs, each demonstrating an approach to
this problem.

m FIB1 is a user function that is defined recursively —its defining expres-
sion contains its own name. FIB1 is short, easy to understand, and

usable in algebraic objects.

m FIB2 is a program with a definite loop. It’s not usable in algebraic
objects, it’s longer and more complicated than FIB1, but it’s faster.

FIB1 (Fibonacci Numbers, Recursive Version)

Arguments Results

1: n 1l: F
Techniques:

m User function. See the description on page 12.

m IFTE (If-Then-Else function). The defining expression for FIB1 con-
tains the conditional function IFTE, which can be used in either RPN

or algebraic syntax. (FIB2 uses the program structure IF . .
THEN ...ELSE...END.)

m Recursion. The defining expression for FIB1 is written in terms of
FIB1, just as F,, is defined in terms of F,, _; and F,, _,.

16 FIB1 (Fibonacci Numbers, Recursive Version)

Program Comments

« Begin the program.
2 n Define a local variable.
! Begin the defining expression.
IFTE (n<1, Ifn <1,
n, Then F, =n;

FIB1(n-1)+FIB1(n-2))ElseF,=F,+F,,
' End the defining expression.

» End the program.

Put the program on the stack.
'FIB1 Store the program as FIB1.

Example. Calculate Fg using RPN syntax and Fy using algebraic syn-
tax.

First calculate Fg using RPN.

3:
6 ZFIB1= °H a

[FIEL|BoRk|BORS |B|KENA]|

Next calculate F, using algebraic syntax.

' =FB1Z (10 3:
2: 8
1: 55
GAETEGT

FIB2 (Fibonacci Numbers, Loop Version)

Arguments Results

1: n 1: F,

Techniques:

m Local-variable structure. See the description on page 11.

m JF ... THEN...ELSE ... END. FIB2 uses the program-structure
form of the conditional. (FIB1 uses IFTE.)

m START ... NEXT (definite loop). To calculate F,, FIB2 starts with
Fyand F, and repeats a loop to calculate successive F;’s.

FIB2 (Fibonacci Numbers, Loop Version) 17

Program

<<

< n

<<

IF n 1K<

THEN n

ELSE

01

2 n

START

DUP

ROT

+

NEXT

SWAP DROP

END

»

»

'"FIB2

Comments

Begin the program.
Create a local variable.
Begin the defining program.
Ifn <1,

Then F, =n;

Begin ELSE clause.
Put F, and F; on the stack.

From2ton,

Do the following loop:
Make a copy ofthe latest F (initially
F)).
Move the previous F (initially F) to
level 1.
Calculate the next F (initially F,).
Repeat the loop.
Drop F,, _;.

End ELSE clause.
End the defining program.
End the program.

Put the program on the stack.
Store the program as FIB2.

Example. Calculate Fg and F,,. Note that FIB2 is faster than FIB1.

Calculate F.

USER

N i n o N i

Calculate Fy,.

10 EFB2=

3:

g 8
(FIE2FIELboxkBO#SBKENN]

31
2: 8
i 55
GGTTGT

18 FIB2 (Fibonacci Numbers, Loop Version)

Comparison of FIB1 and FIB2

FIB1 calculates intermediate values F; more than once, while FIB2 calcu-
lates each intermediate F; only once. Consequently, FIB2 is faster.

The difference in speed increases with the size of n because the time
required for FIB1 grows exponentially with »n , while the time required for
FIB2 grows only linearly with n .

The diagram below shows the beginning steps of FIB1 calculating F;.
Note the number of intermediate calculations: 1 in the first row, 2 in the

second row, 4 in the third row, and 8 in the fourth row.

)/\F

N N
F/ \F6 F/ \F F/ \F F/ \F

Comparison of FIB1 and FIB2 19

Single-Step Execution

It’s easier to understand how a program works if you execute it step by
step, seeing the effect on the stack of each step. Doing this can help you
“debug” your own programs or help you understand programs written by
others.

This section shows you how to execute FIB2 step by step, but you can
apply these rules to any program. The general rules are:

1. Use VISIT to insert the command HALT in the program. Place
HALT where you want to begin single-step execution. (You’ll see
how the position of HALT within FIB2 affects execution.)

2. Execute the program. When the HALT command is executed, the
program stops (indicated by the “stopsign” annunciator).

Select the PROGRAM CONTROL menu.

4. Press = SST = once to see the next program step displayed and then

executed.

5. You can now:

m Keep pressing SST to display and execute sequential steps.

m Press to continue normal execution.

m Press KILL to abandon further program execution.

6. When you want the program to run normally again, use VISIT to
remove HALT from the program.

For the first example, insert HALT as the first command in FIB2.

Clearthe stack and select the USER menu.

3t

USER €
GECERGACITEGT

Use VISIT to return FIB2 to the command line.

' =FB2=

20 Single-Step Execution

Use the cursor menu keys to insert HALT as shown.

€HALT » n €« IF n 1 £
THEN n ELSE 8 1 2 n
STHRTDUP ROT + HNEXT
SWAP DROP END » »

Store the edited version of FIB2.

3t
1:
EHAETIETEIT

Calculate F,. Atfirst, nothing happens except that the “stopsign” annunci-
ator appears.

1 =ZFB2= 3:

2
[FI62FIELEOXR BOiis

Select the PROGRAM CONTROL menu and execute SST (single-step).
(Watch the top line of the display to see the first step displayed before it’s
executed.)

CTRL 3:
=SST= €

Note that = n constitutes one step; “step” is a logical unit rather than
simply the next object in the program.

Look at the general rules at the beginning of this section. You’ve per-
formed the first four steps, and now you can choose one of the three alter-
natives for step 5. For this example, press = SST = repeatedly until the
“stopsign” annunciator disappears, indicating that FIB2 is completed.
(These single-steps not shown here.)

The calculation for F, executes only the THEN clause in FIB2. For the
second example, execute 3 FIB2 and single-step through the calcula-
tion for F5. This executes the ELSE clause, including the START ..

NEXT loop. You’'ll see that, for n =3, the START ... NEXT loop is exe-
cuted twice.

For the third example, suppose you wantto single-step the START . ..
NEXT loop as a whole —seeing the stack before each iteration ofthe loop,
but not single-stepping all the steps in FIB2 or in the loop itself. To do so,
move the HALT command inside the loop. Then FIB2 won’t halt until it

Single-Step Execution 21

reaches the loop, and you can use (continue) to execute the loop
one iteration at a time.

Use VISIT to return FIB2 to the command line.

 TEEE Ti = = =

=FB2= VST n_STARTDUP ROT +
NEXT SWAP DROP END »

Use the cursor menu keys to delete HALT. Then insert HALT as shown
(on the third line, after START).

€« »n <€« IFn1
£ THEN n ELSE B8 1 2
n START HALT DUP ROT +
NEXT SWAP DROP END »

Store the edited version of FIB2.

g:

i
[FIE2 |FIEL [Eoik |E0RS |E |KENA]

Start the calculation for F5. FIB2 will halt before performing the loop.

3 EFB2= 3:
e
[Fi62[Fie)|Goik|ois

Continue execution of the loop. FIB2 will halt before performing the loop
a second time.

CONT 3:

£ |
[FIE2FIELBoRk[BoisBKENA

Continue execution of the loop. Because this is the last iteration of the
loop, FIB2 will execute to completion.

3:

i 2
TNTNITMT

When you’re done experimenting with FIB2, don’t forget to use VISIT to
remove the HALT command.

22 Single-Step Execution

Expand and Collect Completely

This section contains two programs:

m MULTI repeats a program until the program has no effect.

m EXCO uses MULTI to expand and collect completely.

MULTI (Multiple Execution)

Given an object and a program that acts on the object, apply the program
to the object repeatedly until the object is unchanged.

Arguments Results

2: object 2:
1: « program » 1: resulting object

Techniques:

m DO ... UNTIL... END (indefinite loop). The DO clause contains
the steps to be repeated; the UNTIL clause contains the test that
determines whether to repeat both clauses again (if false) or to exit (if
true).

®m Programs as arguments. Although programs are commonly named
and then executed by calling their names, programs can also be put on
the stack and used as arguments to other programs.

m Evaluation of local variables. The program argument to be executed
repeatedly is stored in a local variable. It’s handy to store an object in a
local variable when you don’t know beforehand how many copies you’ll
need.

MULTI demonstrates one of the differences between global and local
variables: if a global variable contains a name or program, the contents
of the variable are evaluated when the name is evaluated; but the con-

tents of a local variable are always simply recalled. Consequently,
MULTI uses the local name to put the program argument on the stack
and then executes an explicit EVAL command to evaluate the pro-
gram.

MULTI (Multiple Execution) 23

Program

<<

> P

<<

DO
DUP
p EVAL

UNTIL
DUP

ROT
SAME

END
»

>

[ENTER]
'"MULTI

Comments

Begin the program.
Create a local variablep that con-
tains the program argument.
Begin the defining program.
Begin the DO clause.
Make a copy of the object.
Apply the program to the object,
returning a new version. (The
EVAL command is necessary to exe-

cute the program because local vari-
ables always return their contents to
the stack unevaluated.)
Begin the UNTIL clause.
Make a copy of the new version of

the object.
Move the old version to level 1.
Test whether the old version and the
new version are the same.
End the UNTIL clause.
End the defining program.
End the program.

Put the program on the stack.
Store the program as MULTI.

Example. MULTI is demonstrated in the next program.

EXCO (Expand and Collect Completely)

Given an algebraic object, execute EXPAN repeatedly until the algebraic
doesn’t change, then execute COLCT repeatedly until the algebraic
doesn’t change. In some cases the result will be a number.

Arguments Results

1: ‘algebraic' 1: ‘'algebraic'

1: ‘'algebraic' 1l: z

24 EXCO (Expand and Colliect Completely)

Techniques:

m Structured programming. EXCO calls the program MULTI twice.
Even if you don’t use MULTI anywhere else, the efficiency of repeat-
ing all the commands in MULTI by simply including its name a second
time justifies writing MULTT as a separate program.

Required Programs:

m MULTI (page 23) repeatedly executes the programs that EXCO pro-

vides as arguments.

Program Comments

« Begin the program.
« EXPAN » Put EXPAN on the stack.
MULTI Execute EXPAN until the algebraic

object doesn’t change.
« COLCT » Put COLCT on the stack.
MULTI Execute COLCT until the algebraic

object doesn’t change.
» End the program.

Put the program on the stack.
'EXCO Store the program as EXCO.

Example. Expand and collect completely the expression
3x(4y +z)+(8x -5z)2

Enter the expression.

21
T3 *X T3)3%%2(4¥V+2)+(8%%-5%
*(4%Y+Z) Escofron]1 [[]
+(8*X-5%2) "2

Expand and collect completely.

=EXCO = 2:
10 '"12xXxY-77%X*2+64%K"

2+25%272"
[EcoMuLY)|||

Expressions with many products of sums or with powers can take many
iterations of EXPAN to expand completely, resulting in a long execution
time for EXCO.

EXCO (Expand and Collect Completely) 25

Displaying a Binary Integer

This section contains three programs:

m PAD is a utility program that converts an objectto a string for right-
justified display.

m PRESERVE isa utility program for use in programs that change the
calculator’s status (angle mode, binary base, and so on).

m BDISP displays a binary integer in HEX, DEC, OCT, and BIN bases.

It calls PAD to show the displayed numbers right-justified, and it calls
PRESERVE to preserve the binary base.

PAD (Pad With Leading Spaces)

Convert an object to a string and, if the string contains fewer than 23 char-
acters, add spaces to the beginning.

When a short string is displayed by using DISP, it appearsleft-justified — its
first character appears at the left end of the display. The position of the
last character is determined by the length ofthe string.

By adding spaces to the beginning of a short string, PAD moves the posi-
tion of the last character to the right. When the string is 23 characters
long, it appears right-justified - its last character appears at the right end of
the display.

PAD has no effect on strings that are longer than 22 characters.

Arguments Results

1: object 1: " object"

Techniques:

m WHILE ... REPEAT ... END (indefinite loop). The WHILE clause
contains a test that determines whether to execute the REPEAT

clause and test again (if true) or to skip the REPEATclause and exit
(if false).

m String operations. PAD demonstrates how to convert an object to
string form, count the number of characters, and concatenate two

strings.

26 PAD (Pad With Leading Spaces)

Program

<«

-STR

WHILE
DUP SIZE 23 <

REPEAT
" " SWAP +

END
»

[ENTER]
' PAD [STO]

Comments

Begin the program.
Make sure the object is in string
form. (Strings are unaffected by this

command.)
Begin WHILE clause.
Does the string contains fewer than
23 characters?
Begin REPEATclause.
Add a leading space.
End REPEAT clause.
End the program.

Put the program on the stack.
Store the program as PAD.

Example. PAD is demonstrated in the program BDISP.

PRESERVE (Save and Restore Previous Status)

Given a program on the stack, store the current status, execute the pro-
gram, and then restore the previous status.

Arguments Results

 1: « program » 1: (result of program)

Techniques:

m RCLF and STOF. PRESERVE uses RCLF (recall flags) to record the
currentstatus of the calculator in a binary integer and STOF (store
flags) to restore the status from that binary integer.

m Local-variable structure. PRESERVE creates a local variable just to
remove the object from the stack briefly; its defining program does lit-
tle except evaluate the program argument on the stack.

PRESERVE (Save and Restore Previous Status) 27

Program Comments

« Begin the program.
RCLF Recall a 64-bit binary integer

representing the status of all 64 user

flags.
> f Store the binary integer in a local

variable f .
« Begin the defining program.
EVAL Execute the program argument.
f STOF Restore the status ofall 64 user

flags.
» End the defining program.

» End the program.

ENTER Put the program on the stack.
' PRESERVE Store the program as PRESERVE.

Example. PRESERVE is demonstrated in the program BDISP.

BDISP (Binary Display)

Display a number in HEX, DEC, OCT, and BIN bases.

Arguments Resuits

1: n 1: # n

tn :n

Techniques:

m IFERR ... THEN ... END (error trap). To accomodate real
numbers, BDISP includes the command R-B (real-to-binary). How-
ever, this command causes an error if the argument is already a binary

integer.

To maintain execution if an error occurs, the R>B command is placed
inside an IFERR clause. Because no action is required when an error
occurs, the THEN clause contains no commands.

28 BDISP (Binary Display)

m Enabling LAST. In case an error occurs, LAST must be enabled to
return the argumentto the stack. BDISP sets flag 31 to programmati-
cally enable the LAST recovery feature.

m FOR . ..NEXT loop (definite loop with index). BDISP executes a

loop from 1 to 4, each time displaying n in a different base on a
different line.

The loop index (named j in this program) is a local variable. It’s
created by the FOR . . . NEXT program structure (rather thanbya =
command) and it’s automatically incremented by NEXT.

m Subprograms. BDISP demonstrates three uses for subprograms.

1. BDISP contains a main subprogram and a call to PRESERVE.
The main subprogram goes on the stack and is evaluated by
PRESERVE.

2. When BDISP creates a local variable for n , the defining pro-
gram is a subprogram.

3. There are four subprograms that “customize” the action of the
loop. Each subprogram contains a command to change the
binary base and a marker (h, d, o, or b) to indicate the base.

Each iteration of the loop executes one of these subprograms.

Required Programs:

m PAD (page 26) expands a string to 23 characters so that DISP showsit
right-justified.

m PRESERVE (page 27) stores the current status, executes the main
subprogram, and restores the status.

BDISP (Binary Display) 29

Program

<«

<«

»

PRESERVE

»

DUP
31 SF
IFERR
R-B
THEN
END

2 n

<<

CLLCD

« BIN

« OCT

« DEC

« HEX

1l 4

FOR j

EVAL

Ilb"

lloll

Ildll

"h"

n -STR

SWAP +
PAD
j DISP

NEXT
»

[ENTER]
'BDISP

30 BDISP (Binary Display)

»

>

»

>

Comments

Begin the program.
Begin the main subprogram.
Make a copy of n.
Set flag 31 to enable LAST.
Begin error trap.
Convert n to a binary integer.
If an error occured,

Do nothing (no commands in THEN
clause).
Create a local variable n .
Begin the defining program.
Clear the display.
Subprogram for BIN.
Subprogram for OCT.
Subprogram for DEC.
Subprogram for HEX.
First and last index values.
Start loop with index j .
Evaluate one of the base subpro-
grams (initially the one for HEX).
Make a string showing n in the
current base.
Add the base marker.
Pad the string to 23 characters.
Display the string in the j th line.
Increment j and repeat the loop.
End the defining program.
End the main subprogram.
Store the current status, execute the

main subprogram, and restore the
status.

End the program.

Put the program on the stack.
Store the program as BDISP.

Example. Switch to DEC base, display # 100 in all bases, and check
that BDISP restored the base to DEC.

Clear the stack and select the BINARY menu.

CLEAR 3:

2:
[pec JEHEETEREETEBIHEEEHE

Make sure the current base is DEC and key in # 100.

=DEC= 3t
#100 g % 100

[pEC]IKTSE3THBHEEE
Execute BDISP. (Don’t switch menus, since you’ll want to see the
BINARY menu in the next step.)

BDISP #

Return to the normal stack display and check the current base.

3:
2:
1: # 160
[EC JIEFEKTSETNBHE[EHE

Although the main subprogram left the calculator in BIN base,
PRESERVErestored DEC base.

To check that BDISP also works for real numbers,try 144,

#
144 =BDISP=

BDISP (Binary Display) 31

Summary Statistics

For paired-sample statistics it’s often useful to calculate the sum of the
squares (Xx? and £y?) and the sum of the products (Exy) of the two vari-
ables. This section contains five programs:

m SUMS creates a variable 2COV that contains the covariance matrix

for the current statistics matrix XDAT.

m YGET extracts a number from the specified position in ZCOV.

m X2 uses 2GET to extracts £x? from ZCOV.

m YY2 uses XGET to extracts £y? from SCOV.

m XY uses EGET to extracts ¥xy from XCOV.

If EDAT contains n columns, XCOV is an n Xn matrix. The programs
YX2,¥Y2, and XY refer to ZPAR (statistics parameters) to determine
which columns contain the x data (called C,) and the y data (called C5).

Techniques:

m Matrix operations. These programs demonstrate how to transpose a
matrix, how to multiply two matrices, and how to extract one element
from a matrix.

m Programs usable in algebraic objects. Because £X2, ¥Y2, and £XY
conform to algebraic syntax (no arguments from the stack, one result
put on the stack), you can use their names like ordinary variables in an
expression or equation.

m YPAR convention. Several paired-sample statistics commands use a
variable named EPARto specify a pair of columns in XDAT. YPAR
contains a list with four numbers, the first two specifying columns.
(The other.two numbers are the slope and intercept from linear
regression.)

SUMSensures that ¥PAR exists by executing 0 PREDV DROP; the
command PREDV (predicted value) creates LPAR with default values
if ZPAR doesn’t already exist, and DROP removes the predicted value
computed for 0.

¥X2, ¥Y2, and XY use the values stored in ZPAR to determine

which element to extract from XCOV.

32 Summary Statistics

SUMS (Summary Statistics Matrix)

Create a variable XCOV that contains the covariance matrix of the statis-

tics matrix EDAT.

As an example, if ZDAT is the n X2 matrix

X1)1

X2 Y2

Xn Yn

then XCOV will contain the covariance matrix

Tx? Txy

Txy Ty? |

Arguments Results

1: 1:

Program Comments

« Begin the program.
RCLX Recall the contents of the n xm

statistics matrix XDAT.
DUP Make a copy.
TRN Transpose the matrix. The result is

an m Xn matrix.
SWAP * Multiply the matrices to produce the

m xm covariance matrix. (Without
swapping the matrices, the product
would be an #n xn matrix.)

'YCOV' STO Store the covariance matrix in a vari-

0 PREDV DROP
»

'SUMS

able XCOV.

Make sure LPAR exists.

End the program.

Put the program on the stack.
Store the program as SUMS.

SUMS (Summary Statistics Matrix) 33

Y.GET (Get an Element of XCOV)

Givenp and g, each indicating either the first or secondposition in
YPAR, extract the rs element from 2COV, where r and s are the

corresponding first or second elements in TZPAR.

YGET is called by ¥X2, ¥Y2, and £XY with the following arguments.

m For£X2 p =1 and q =1.

m ForXY2, p =2 and q =2.

m ForXXY, p =1 and q =2.

Arguments Resuits

2: 1 or 2 2:
1: 1 or 2 1: rselement of 2COV

Program Comments

« Begin the program.

YCOoV Put the covariance matrix on the
stack.

YPAR Put the list ofstatistics parameters
on the stack.

DUP Make a copy.
5 ROLL Movep to level 1.
GET Get r, thep th element in YPAR.
SWAP Move LPAR to level 1.
4 ROLL Move g to level1.
GET Get s, the g th element in LPAR.
2 SLIST Put { r,s } on the stack.
GET Get the rs element from ZCOV.

» End the program.

Put the program on the stack.
'LGET Store the program as YGET.

34 XGET (Get an Element of ZCOV)

¥XX2 (Sum of Squares of x)

Calculate £x?, where the x’s are the elements of C, (the column specified
by the first parameter in XPAR).

Arguments Results

1: 1: ¥x?

Program Comments

« Begin the program.
11 Specify C, twice.
YGET Extract £x2.

» End the program.

Put the program on the stack.
'X2 Store the program as £X2.

YY2 (Sum of Squares of y)

Calculate y?, where the y’s are the elements of C, (the column specified
by the second parameter in XPAR).

Arguments Results

1: 1l: Iy?

Program Comments

« Begin the program.
2 2 Specify C, twice.
LGET Extract Ly?2.

» End the program.

Put the program on the stack.
'TY2 Store the program as £Y?2.

Y2 (Sum of Squares of y) 35

XXY (Sum of Products of x and y)

Calculate Xxy, where the x’s andy’s are corresponding elements of C,
and C; (the columns specified by the first and second parameters in
TPAR).

Arguments Results

1: 1: Xxy

Program Comments

« Begin the program.
12 Specify C, and C,,.
YGET Extract Xxy .

» End the program.

Put the program on the stack.
'TXY Store the program as £XY.

Example. Calculate £X2, ¥Y2, and ZXY for the following statistics
data:

18 12

4 7

3 2

1 1

31 48

20 17

The general steps are as follows.

1. Enter the statistical data.

2. Execute SUMS to create the covariance matrix ZCOV.

3. Execute £X2,YY2, and £XY.

4 If EDAT contains more than two columns(thatis, if each data point
contains more than two variables):

a. Execute COLEX to specify new values for C, and C,. The
values are stored in ZPAR.

b. Execute X2, ¥Y2, and £XY.

36 XXY (Sum of Products of x and y)

Now try the example given above.

Clear the stack, select the STAT menu, and clear EDAT.

9 > -

o
a
m
(
.
.
o

=ECLE= EEHNTSEOHe

Enter the data and then check that you entered all six data points.

[18,12 Ex+= 3:
[4,7 Ex+= £ %
[3,2 En+= NTATMA
[11,1 =x+=
[31,48 =x+=
[20,17 =x+=
=N=

Drop the number of data points.

[DROP]

I
'
—
‘
N
W

(
]

=
=
s
e

a
n

 +I

Create the covariance matrix XCOV.

5
=SUMSE %

HITAHEIHTBTBTBT

Calculate ©x2.

=¥X2= 3:
2t
1: 1831
ITTTBTTR

Calculate Ty2.

SXY2= 3:
2: 1831
1: 2791
[TFakEcovZ0ATEavEvaTHa

XY (Sum of Products of x and y) 37

Calculate xy .

= = 3: 1831
2t 2791
1: 26089
HITHEITTTTT

If the statistics matrix had more than two columns, you could specify new
values for C; and C,. For practice, specify C;=1 and C,=2 (the current
values).

The command COLY is available in the STAT menu, but here it’s easier

to spell out the command name and stay in the USER menu.

1 3t 1831
2 COLE { 5523

TRTTTT
You could now execute £X2, Y2, and £XY for the new pair of columns

C, and C,,.

Don’t forget the execute SUMS again whenever you add or delete data
from the statistics matrix XDAT.

38 XXY (Sum of Products of x and y)

Median of Statistics Data

This section contains three programs:

m SORT orders the elements of a list.

m LMED calculates the median of a sorted list.

m MEDIAN uses SORT and MED to calculate the median of the

current statistics data.

SORT (Sort a List)

Sort a list into ascending order.

Arguments Results

1: { list } 1: { sorted list }

Techniques:

m Bubble sort. Starting with the first and second numbersin the list,
SORT compares adjacent numbers and moves the larger number
toward the end of the list. This process is done once to move the larg-
est numberto the last position in list, then again to move the next larg-
est to the next-to-last position, and so on.

m Nested definite loops. The outer loop controls the stopping position

each time the process is done; the inner loop runs from 1 to the stop-
ping position each time the process is done.

m Nested local-variable structures. SORT contains two local-variable
structures, the second inside the defining program ofthe first. This
nesting is done for convenience; it’s easier to create the first local vari-
able as soon as its value is computed, thereby removing its value from
the stack, rather than computing both values and creating both local
variables at once.

m FOR ...STEP and FOR ... NEXT (definite loops). SORT uses two
indexes: -1 STEP decrements the index for the outer loop each itera-
tion; NEXT increments the index for the inner loop by 1 each itera-
tion.

SORT (Sort a List) 39

Program Comments

« Begin the program.
DUP SIZE 1 From the last position to the first

position,
FOR j Begin the outer loop with index j .
13 From the first position to the jth

position,
FOR k Begin the inner loop with index k .
k GETI - nl Get the k th numberin the list and

store it in a local variable n,.
« Begin outer defining program.
GETI = n2 Get the next numberin the list and

store it in a local variable n .
« Begin inner defining program.
DROP Drop the index.
IF nl n2 > If the two numbers are in the wrong

order,

THEN Then do the following:
k n2 PUTI Put the second one back in the k th

position.
nl PUT Put the k th one back in the next

position.
END End of THEN clause.

» End inner defining program.
» End outer defining program.

NEXT Increment k and repeat the inner
loop.

-1 STEP Decrement j and repeat the outer
loop.

» End the program.

Put the program on the stack.
' SORT Store the program as SORT.

Example. Sort the list { 8,3,1,2,5 }.

USER %:

{8,3,1,2,5 =SORT= 1; {12358 3
EHEEHETIABRIETHEETET

40 SORT (Sort a List)

LMED (Median of a List)

Given a sorted list, calculate the median. If the list contains an odd

number of elements, the median is the value of the center element. If the
list contains an even number of elements, the median is the average value
of the elements just above and below the center.

Arguments Results

1: { sorted list } 1: median of sorted list

Techniques:

m FLOOR and CEIL. For an integer, FLOOR and CEIL both return
that integer; for a non-integer, FLOOR and CEIL return successive
integers that bracket the non-integer.

Program Comments

« Begin the program.
DUP SIZE The size of the list.
1+2/ The center position in the list (frac-

tional for even-sized lists).
> p Store the center position in local

variablep .
« Begin the defining program.
DUP Make a copy ofthe list.
p FLOOR GET Get the number at or below the

center position.
SWAP Move the list to level 1.
p CEIL GET Get the number at or above the

center position.
+ 2 / The average of the two numbers at

or near the center position.
» End the defining program.

» End the program.

Put the program on the stack.
'LMED Store the program as LMED.

LMED (Median of a List) 41

Example. Calculate the median of the list you sorted using SORT.

3:
= MED= £ 3

MCEYBTNIEEHETHEET

LMED is called by MEDIAN.

MEDIAN (Median of Statistics Data)

Return a vector representing the medians of the columns of the statistics
data.

Arguments Results

1: 1: [xy3x3X]

Techniques:

m Arrays, lists, and stack elements. MEDIAN extracts a column of data

from EDAT in vector form. To convert the vector to a list, MEDIAN

puts the vector elements on the stack and then combines them into a
list. From thislist the median is calculated using SORT and LMED.

The median for the m th column is calculated first, and the median for

the first column is calculated last, so as each median is calculated, it is

moved to the stack level above the previously calculated medians.

After all medians are calculated and positioned correctly on the stack,
they’re combined into a vector.

m FOR ...NEXT (definite loop with index). MEDIAN uses a loop to
calculate the median of each column. Because the medians are calcu-
lated in reverse order (last column first), the index is used to reverse
the order of the medians.

Required Programs:

m SORT (page 39) arranges a list in ascending order.

m LMED (page 41) calculates the median of a sorted list.

42 MEDIAN (Median of Statistics Data)

Program

<«

RCIY

DUP SIZE

LIST-> DROP

s nm

<«

'YDAT' TRN

1m
FOR j
z_

ARRY- DROP

n SLIST
SORT
LMED
j ROLLD

NEXT
m 1 SLIST
-ARRY

»

SWAP
STOX

»

[ENTER]
'"MEDIAN

Comments

Begin the program.
Put a copy ofthe currentstatistics
matrix ZDAT on the stack for safe-
keeping.
Put the list { n m } on the stack,
where n is the number of rows in
YDAT and m is the number of
columns.
Putn and m on the stack. Drop the
list size.
Create local variables for n and m .
Begin the defining program.
Transpose XEDAT. Now n 1s the
number of columns in XDAT and m
is the number of rows.
The first and last rows.
For each row, do the following:
Extract the last row in XDAT.Ini-
tially thisis the m th row, which
corresponds to the m th column in
the original DAT.

Put the row elements on the stack.
Drop the index list { n }, since n is
already stored in a local variable.
Make an n -element list.
Sort the list.
Calculate the median ofthe list.
Move the median to the proper stack
level.
Increment j and repeat the loop.
Make the list { m }.
Combine all the medians into an m -
element vector.
End the defining program.
Move the orginal EDAT to level 1.
Restore EDAT to its previous value.
End the program.

Put the program on the stack.
Store the program as MEDIAN.

MEDIAN (Median of Statistics Data) 43

Example. Calculate the median of the data on page 36. (This example
assumes you’ve keyed in the data.) There are two columns of data, so
MEDIAN will return a two-element vector.

Calculate the median.

= MEDIAN

3:
2: 3
1: [14.5 9.5 1
[Z0ATJMEDTJLMEDSORTSFAK]ZCOV

i
l

The medians are 14.5 for the first column and 9.5 for the second column.

44 MEDIAN (Median of Statistics Data)

Index

A Defining procedure, 11
Algebraic syntax and user func- Defining program, 18

tions, 12 Definite loop, 17, 39

Array operations, 42 with index, 29, 39, 42
nested, 39

B DISP, 30
Basic stack manipulations, 9
BINARY menu, 8

Binary-integer display, 28
Box functions, 11
BOXS without local variables, 13

Bubble sort, 39

C
CEIL, 41
CLEAR,8
Clear display, 30
CLLCD, 30
CL%, 8, 37
COLCT, 25
Conditional structure, 17
CONT,8, 20
Covariance matrix, 33
Creating local variables, 12
CTRL menu, 8

D
Debugging, 20
DEC, 8
Decrementing an index, 39
Defining expression, 12

Display format, 8
Displaying a binary integer, 26
DO, 23
DUP2, 13

E
ELSE, 17
Enabling LAST, 29
Error trap, 28

EVAL, 23, 28, 30
Evaluation of local variables, 23

Examples, conventionsin, 8
EXPAN,25
Expand and collect, 23, 24

F

Fibonacci numbers, 16

loop version, 17
recursive version, 16

two versions compared, 19

FLOOR,41
FOR,29, 39, 42
Format of displayed numbers, 8
Format of program listings, 8

Index 45

G
GET, 34
Get an element of 2COV, 34
Global variables, 11

Global variables, evaluation, 23

H
HALT, 20

I
IF, 17
IFERR, 28
If-Then-Else function, 16

Indefinite loop, 23, 26

Index, 29, 39, 42
as local variable, 29

decrementing, 39

K
Keys, shifted, 8
KILL, 8, 20

L
Labels, in menu, 8
Lists, 42

Local variables
evaluation, 23

lower-case convention, 12

Local-variable structure, 11, 27

nested, 39

Loop, single-stepping, 20
Loop index

as local variable, 29

decrementing, 39

M
Matrix operations, 32
Median ofa list, 41
Median ofstatistics data, 39, 42
Menu labels, 8

Menus

next and previous levels, 8
used in program entry, 8

Multiple execution, 23

N
Nested definite loops, 39
Nested local-variable structures, 39

Nested user functions, 14
NEXT,8, 29, 39, 42

NI, 8, 37

o
Order of program entry, 7
OVER,10

P
Pad with leading spaces, 26
PICK, 13

PREDV,32
PREV,8
Procedure, defining, 11

Program entry, format, 8
Programs

as arguments, 23

usable in algebraic objects, 32
PURGE,10
Purging a variable, 9
Purging programs, 7

R
RCL, 10

RCLF, 27

Real-to-binary, 28
Recalling a variable, 9
Recursion, 16

Renaming a variable, 9
REPEAT, 26
Required programs, order of

entry, 7
Restore status, 27

ROLL, 34
ROT, 10, 13
RPN, and user functions, 12

S
X+,8, 37

I, 43
YCOL, 38
Shifted keys, 8
Single-step execution, 20
Sort a list, 39

YPAR convention, 32

SST,8, 20
Stack diagram, defined, 7

Stack elements, 42

Standard display format, 8
STAT menu, 8, 37

Status, restoring, 27

STD,8
STEP, 39
STO, 10
STOF, 27
Storing a variable, 9
String operations, 26
Structured programming, 9, 25
Subprograms, 29
Sum of products ofx andy, 36
Sum of squares ofx, 35
Sum of squares ofy, 35
Summary statistics, 32
Summary statistics matrix, 33
Surface of a box, 11

SWAP, 10

T
Techniques, list of, 6
THEN, 17, 28

U
UNTIL, 23
User function, 12

in algebraic syntax, 12
nested, 14

USER menu, 8

v
Variable names, in USER menu, 8

Variables, 9

evaluation, 23
local and global, 11

Vectors, 42

VISIT, 8, 20

w
WHILE,26

Index 47

Contents

Page 7

9

9

11

16

20

23

26

32

39

45

How To Use This Booklet

Programming Examples

RENAME (Renaming a Variable)

Box Functions

Fibonacci Numbers

Single-Step Execution

Expand and Collect Completely

Displaying a Binary Integer

Summary Statistics

Median of Statistics Data

(/A caciaro
00028-90099 English
Printed in US.A. 6/87

	Cover
	Contents
	How To Use This Booklet
	Programming Examples
	RENAME (Renaming a Variable)
	Box Functions
	BOXS (Surface of a Box)
	BOXS Without Local Variables
	BOXR (Ratio of Surface to Volume of a Box)

	Fibonacci Numbers
	FIB1 (Fibonacci Numbers, Recursive Version)
	FIB2 (Fibonacci Numbers, Loop Version)
	Comparison of FIB1 and FIB2

	Single-Step Execution
	Expand and Collect Completely
	MULTI (Multiple Execution)
	EXCO (Expand and Collect Completely)

	Displaying a Binary Integer
	PAD (Pad With Leading Spaces)
	PRESERVE (Save and Restore Previous Status)
	BDISP (Binary Display)

	Summary Statistics
	SUMS (Summary Statistics Matrix)
	ΣGET (Get an Element of ΣCOV)
	ΣX2 (Sum of Squares of x)
	ΣY2 (Sum of Squares of y)
	ΣXY (Sum of Products of x and y)

	Median of Statistics Data
	SORT (Sort a List)
	LMED (Median of a List)
	MEDIAN (Median of Statistics Data)

	Index

