o
g ENG IS

B

¥
RTINS D
™ PR R R b
f'&qlt&tttl‘\\ﬁ‘!l.
o PRI

P NP

/./ y.» N 2N 2 o N2 000000088 s v 8y

$/i4< oy N N Y Qe T \» e Yy Y s
9:0.0.0:0:0:0:909:0:0.0.0.0

Vectors and Matrices

Step-by-Step Examples
for Your HP-28C

A cacians

Edition 1 March 1987
Reorder Number 00028-90044

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of mer-
chantability and fitness for a particular purpose. Hewlett-Packard shall
not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Hewlett-Packard assumes no responsiblity for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© 1987 by Hewlett-Packard Co.

This document contains proprietary information that is protected by copy-
right. All rights are reserved. No part of this document may be photo-
copied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 March 1987 Mfg No. 00028-90059

Welcome...

... to the HP-28C Step-by-Step Booklets. These books are designed to
help you get the most from your HP-28C calculator.

This booklet, Vectors and Matrices, provides examples and techniques for
solving problems on your HP-28C. A variety of matrix manipulations are
included, designed to familiarize you with the many functions built into
your HP-28C.

Before you try the examples in this book, you should be familiar with cer-
tain concepts from the owner’s documentation:

m The basics of your calculator — how to move from menu to menu, how
to exit graphics and edit modes, and how to use the menu to assign
values to, and solve for, user variables.

m Entering numbers and algebraic expressions into the calculator.

Please review the section "How To Use This Booklet." It contains impor-
tant information on the examples in this booklet.

For more information about the topics in the Vectors and Matrices book-
let, refer to a basic textbook on the subject. Many references are available
in university libraries and in technical and college bookstores. The exam-
ples in the booklet demonstrate approaches to solving certain problems,
but they do not cover the many ways to approach solutions to mathemati-
cal problems.

Our thanks to Brenda C. Bowman of Oregon State University for developing
the problems in this book.

Welcome... 3

Contents

7 How To Use This Booklet

9 General Matrix Operations
10 Sum of Matrices
12 Matrix Multiplication
13 Determinant of a Matrix
14 Inverse of a Matrix
15 Transpose of a Matrix
16 Conjugate of a Complex Matrix
18 Minor of a Matrix
21 Compute Rank
23 Hermitian Matrices
25 Systems of Linear Equations
26 Non-Homogeneous System
28 Homogeneous System
33 Iterative Refinement
36 Vector Spaces
37 Basis
38 Orthogonality
40 Matrix Utility Programs
11 Vector Length
42 Normalization
44 Gram-Schmidt Orthogonalization
46 Generalized Gram-Schmidt

Orthogonalization Routine

47 Orthonormal Basis

Contents

51
52
55
57
62

65
66
71

78
79

83
84
86
92

Contents

Eigenvalues
The Characteristic Polynomial
Compute Eigenvalues from Expansion
Compute Eigenvectors
Compute Eigenvalues from |- A|

Least Squares
Straight Line Fitting
Quadratic Polynomial

Markov Chains
Steady State of a System

An Example:
Forest Management
The Harvest Model
Optimal Yield

How To Use This Booklet

Please take a moment to familiarize yourself with the formats used in this
booklet.

Keys and Menu Selection
A box represents a key on the calculator keyboard:

In many cases, a box represents a shifted key on the HP-28C. In the
example problems, the shift key is NOT explicitly shown (for example,
requires the press of the shift key, followed by the ARRAY key,
found above the "A" on the left keyboard).

The "inverse" highlight represents a menu label:

=DRAWE= (found in the menu)
Z1ISOLE (found in the menu)

EABCDE (a user-created name, found in the [USER| menu)

Menus typically include more menu labels than can be displayed above the
six redefinable menu keys. Press and to roll through the
menu options. For simplicity, and [PREV] are NOT shown in the
examples.

How To Use This Booklet 7

Solving for a user variable within = SOLVR £ is initiated by the shift key, fol-
lowed by the appropriate user-defined menu key:

[JEABCD

The keys above indicate the shift key, followed by the user-defined key
labeled "ABCD". Pressing these keys initiates the Solver function to seek a
solution for "ABCD" in a specified equation.

The symbol indicates the cursor-menu key.

Interactive Plots and the Graphics Cursor

Coordinate values you obtain from plots using the and digitizing
keys may differ from those shown, due to small differences in the positions
of the graphics cursor. The values you obtain should be satisfactory for
the Solver root-finding that follows.

Display Formats and Numeric Input
Negative numbers, displayed as

-5
-12345.678
[[-1,-2,-3 [-4,-5,-6 [...

are created using the key:

5 [Chs]
12345.678
([1 ;2 ;e

The examples in this book typically specify a display format for the
number of decimal places. If your display is set such that numeric displays
do not match exactly, you can modify your display format with the
menu and the = FIX £ key within that menu (e.g. 2EFXD).

8 How To Use This Booklet

General Matrix Operations

This section illustrates several basic matrix manipulations found in com-
mon matrix problems, including addition, matrix multiplication, deter-
minants, and so forth. Also included are several programs that demon-
strate operations on matrix minors and rank.

General Matrix Operations 9

Sum of Matrices

This example illustrates two methods for creating a matrix.

1 2 3 4
A=|5 6 7 8
910 11 12
2-3 0 1
B=|0 4 -1 2
1 -3 2-2
Compute A +B.
41
3:
21
1:

Key in the elements of matrix 4 in row order form. Put each element on
the stack individually.

—=NwWs

b ek
=30

m|[m]|[m|[m][m]|[m
ZllZzl|Zl|Z]|Z]|Z
==l EEEE]
m||m|/m|im|im|m
T||>o||D||>2||2||D

RPEREFPRPOUOONOANODEWNRE
HE

L ==

2|5 ||m||m||m

mllA oo

T||D

N O
m
P4
3
m
0

Key in the dimensions {m, n } of matrix 4. Remember to use a space to
separate the two numbers.

{3 4} [ENTER]

[y

—NWH
Y=®

10 Sum of Matrices

Put the stack elements into the matrix.

ozl L TYITE
SE—ARRY = [310 11 12 11
(o RERVIAREY2] POT] GET [FPUTI | GETI |

Store the matrix in A for the next problem section.

'A 3:

1:
FHRRVIRERY3] PUT | GET JPUTI | GETI]

Enter matrix B, using a space to separate the matrix elements. Note the
two different methods used to enter the elements of 4 and B.

[[2 -3 0 1[0 4 -1 2 1: (L 2-301 1
[1 -3 2 -2 E7 473 50

FrkkvInkEYS] FUT | GET JPUTI] GETI]

Compute the sum A4 +B.

A [ENTER] 1: [

Sum of Matrices 11

Matrix Multiplication

Compute the product of two matrices, The first matrix must have dimen-
sions k X m , the second matrix has dimensions m xn, and the product
has dimensions k xn. In this example, k =3, m =4, and n =2.

Compute 4 *D .

Enter the 3 x4 matrix 4 from the previous example.

A [ENTER] 1: [L 12341
L5678
L 918 11 12 1]
[saRkRV[RERYS] PUT | GET | FUTI

Enter the 3 X2 matrix D .

(-1 1(2 4[-2 3([5 4 1: [-1 .11
S HEEYIAEY 3] PUT | GET [PUTEGETT

Compute the product 4 *D .

1: €

2RERYAREYS] PUT | GET [FUTI

12 Matrix Multiplication

Determinant of a Matrix

Solve for the determinant of an n X n matrix.

2 -31
A=| 0 52
-1 -23
Key in the 3 x 3 matrix.
1: [[2 -3.1_1
[[2 -3 1[0 5 2[-1 -2 3 B35z
[-1-231]
ARRAY [2hkkv]akkv3] PUT | GET TPUTI] GETI]
Compute det(A4).
ZDET= 3:
2t
1: 49
[CRos3] DOT | DET | ABS |RNKM|CNEM]

The determinant is 49.

Determinant of a Matrix 13

Inverse of a Matrix

Compute the inverse of a square n X n matrix.

A=1245

Clear the stack and set the number display mode to two decimal places.

CLEAR
[MODE] 2

1

FIX

I

Key in the elements of the 3 x 3 matrix.

[[1 2 3[2 4 5[3 56

Compute A~1,

[1/]

14 Inverse of a Matrix

3:
2:
L 370 [QgERp] sc1 | ENG | DEG JELTD)

1: [[1.008 2.88 3.08]
[2.00 4.00 5.60]
[3.00 5.00 6.608 1]
| 370 JQ2ER] sc1 | ENG | DEG Q1)
1: [[1.08 -3.08 2.00 1]
[-3.60 3.68 -1.060..
[2.88 -1.88 6.66E..
(370 |QpER] sc1 | ENG | DEG (WL

Transpose of a Matrix

Compute the transpose of anm xn matrix4 . 47 will be of dimension
nxm.

12
A={34
56

CLEAR 1: [C é E]
L 56 1]
=S8TD= [s1o] IGENEETE I EIEEN(Rao]
[([1 2[3 4[5 6
Compute 4T
ARRAY 2: 35 1
aiiald iz [1
=TRNE L246 1]
| SI2E | kDM | TEN | CON | ION | KsD |

AT is a 2 x 3 matrix.

Transpose of a Matrix 15

Conjugate of a Complex Matrix

Compute the conjugate conj(4) of the complex matrix A4 .

143 i
A=l 3 o 4

CLEAR 3:
2
[SI2E | KOM | TEN | CoN | TON | RSO |

Key in the elements individually in row order form. Each pair represents
(real part, imaginary part). Note the commas in the keystrokes below may
be used alternately with spaces.

(1,3 [ENTER] g:
1: (1,3
| SI2E | KOM | TEN | CON | ION | RSD |

(0,1 [ENTER 3:
2 (1,32
1: (B,1)
| SI2E | kot | TEN | CoN | ION | k3D |

(3,0 3: (1,3)
-H (8,1
1: (3,08
[S12E | oM | TEN | CoN | TON | KsD |

(2,-4 [ENTER 3: (B,1)
H (3,08
1: (2,-4>
| SIZE | KOM | TEN | CON | IDN | RSD |

Key in the dimensions of the matrix.

{2 2} [ENTER ET (3,8)
2: (2y-4)
1: {2232
| SIZE | KDM | TEN | CON | IDN | RSD |

16 Conjugate of a Complex Matrix

Place the stack elements in an array.

ARRAY
= —ARRY =

Compute the conjugate.

SCONJE

Conjugate of a Complex Matrix 17

Minor of a Matrix

The minor M;; is formed by removing row i and column j from matrix A4,
then computing det (M;;). A program is written to perform this function
for anyn xn matrix.

Program ROW below is a subroutine used to remove a row or column
from a matrix.

Program Listing Explanation

SWAP Swap the matrix into level 1, then

ARRY— LIST— separate the matrix into individual
elements and its dimension.

DROP Drop the number of items in the list.

—nm« Save the row and column
inn and m.

nDUPmMmx2 + Compute offset to row (col) number
on stack.

ROLL — m x —LIST — list Place (n —i)*m elements into list.

« m DROPN Drop row i (col j) from stack.

list » LIST— Separate temporary list into
individual elements.

DROP Drop number of list elements.

n1 - m2-LIST Reconstruct matrix with row (col)
removed.

—ARRY

Program MINOR utilizes the subroutine ROW to remove a row, and then
a column, from the matrix.

Program Listing Explanation

3 ROLLD Roll down the matrix and row ;.

ROW TRN Remove row i and transpose
for column removal.

SWAP ROW TRN Remove column j and

transpose back.

18 Minor of a Matrix

Key in the program ROW.

CLEAR ! &« SWAP ARRY=> LIST»

« SWAP ARRY— LIST— iLIST % list €« m
DROP - n m « n DUP

mx 2 + ROLL - m x —LIST

— list « m DROPN list »

LIST—- DROP n 1 - m 2

—LIST —ARRY

Store the program ROW.
'ROW g:
2t
i:
Key in the program MINOR.
« 3 ROLLD ROW TRN SWAP (3
ROW TRN T « 3 ROLLD_ROM_TRN
SWAP ROW TRHN »
Store the program MINOR.
'MINOR 4:
3:
2
i:
Compute M 3 of the following matrix.
2 -34 -4
6 52 -1
A4=l1 03 -2
0 -53 -6

Enter the matrix.

[[2 -3 4 -4[6 5 2 -1[1 O[1: [[2 -3 4 -4_1
3 -2[0 -5 3 -6 [ENTER] SEERE
[@-53-61]

Minor of a Matrix 19

Enter the row and column to be removed.

2 [ENTER] 3 [ENTER]

Compute M .
SEMINO=

Compute the minor det (M;;).
ARRAY| =DETE=

The minor det(M) is —18.

20 Minor of a Matrix

4:
3 [[2-34-41 [6.
3 3
1 5
1t L 2 -3 -4_1

[fe-21

[@ -5-61]
T T S N
3:
% -18
FRivs2] DOT | DET | HES |ENEM | CNEH]

Compute Rank
The dimension of the largest square submatrix whose determinant is non-
zero is called the rank of the matrix. The rank is the maximum number of

linearly independent row and column vectors.

Find the rank of matrix 4 .

4 2 -1
A=({0 5 -1
12 4 -1

Program MDET below is used to obtain the determinant of an arbitrary
matrix minor. This program uses the program MINOR from the previous
problem section.

Program Listing Explanation

3 PICK Duplicate the matrix.

3 ROLLD MINOR Produce the matrix minor.

DET Compute the minor determinant.

Key in the program.

CLEAR

=MW

« 3 PICK_3 ROLLD
« 3 PICK 3 ROLLD MINOR DET »

MINOR DET

Store the program in MDET.

'MDET g
2t
i:
Key in the matrix.
[[4 2 -1[0 5 -1 2:
(12 -4 -1 [evem U e
L 12 -4 -1 1]

Compute Rank 21

Make a copy of the matrix and compute the determinant to determine
whether the rank = n = 3.

[ENTER] [ARRAY] =DETZ

[C42-11 [B S5 .
. bBBBBBBBAA48

CRo3S| 00T | DET | #ES |RNEM]|CNRM

—=MNwW

Det(A) is zero (approximately), so rank(4) is not equal to 3.

Discard det(A4).
2:
1: [C 4 2 -1]
LB5-11
L 12 -4 -1 11

Compute the minor for the 2 X 2 submatrices of A, until a minor is found
that is not equal to zero.

Compute det M ;.

1 3

[USER] EMDETZ %:[[42—1][35_a
MOETTHINo koW] [

Det(My,) is equal to -9, so rank(4) is equal to 2.

i

You may elect to purge programs = ROW E, = MDET £ and = MINO £ before

continuing to the next problem sections.

22 Compute Rank

Hermitian Matrices

Determine whether a matrix is Hermitian. A square matrix with real or
complex elements is Hermitian if the matrix is equal to its conjugate
transpose.

Determine whether the 4 X 4 matrix 4 is Hermitian.

1 24 2 -3+i

24i 3 i 3
A=lHn i 4 14
30 3 140 0

Put the elements of A on the stack individually.

1
(2,-1

=MNWH

1
(2,'1)
2
(-3,1>

2
(-3,1

(2,1
3
(0,1

NS

2,1
(B,1)
3

3 [ENTER]

2
(0,-1
4

=MW p

2
(Bs"l)
4
(1,-1>

(1,-1

(3,-1
3
(1,1

—=MNWh

(3,_1)
3
(1,1
g

O [ENTER]

Hermitian Matrices

23

Enter the dimensions of 4.

{4 4 [ENTER] 4:
3: C1,1)
2:
1: {4473
Place the elements into the matrix.
L "R Fab
=—ARRY = [(2,85 ¢By-1) Cayum
ERv3] PUT | GET JPUTI] GETI]|

You can view the entire matrix to check for correctness using |EDIT| or
VIEW,

Make a copy of the matrix.

ENTER 15 [L C1:8) (25-1) (2qm
[¢211) ¢3:0) ¢O,1m

[¢2:8) CBy-1) C(dyu

o RRRYIRRRYS] PUT | GET | FUTI | GET1]

Compute the conjugate transpose. Since A4 is complex, function TRN per-
forms both the transpose and the conjugation.

=TRN= i1: [C 1, 2 1> 2y

= [¢2, 3,85 @, 1
[(2, Ba-1) C(dyoum

[S12€ | FOM] TRN | CON] TON | RsD]

FaYaYal
[anTdn)
N N N
Fatatal
- ..
(-1

A@A

Test conj(47) and 4 for equivalency. If A4 is Hermitian, conj(47) and 4
will be equal, and = SAME = will return a true flag(1).

SSAME= 3:
T o
[AND | 0R_| %0] NOT |SHME] == |

Matrix A is not Hermitian.

24 Hermitian Matrices

Systems of Linear Equations

One of the most frequent and fundamental applications of matrices arises
from the need to solve a system of mn linear equations in 7 unknowns.
The HP-28C can be used to find solutions to both non-homogeneous and
homogeneous systems of the form 4AX = B.

Systems of Linear Equations 25

Non-Homogeneous System

Solve a system of linear equations of the form AX = B.

x1+X2_ZX3+X4+3xS=1
3x1+2X2_4X3"3X4_8X5=2

le_x2+2x:3+?X4+SX5_

|
W

Clear the stack and set the display mode to two decimal places.

CLEAR
[MODE] 2

111

FIX

1

=MW

[370 JQgER] sc1 | ENG | DEG Q1]

Key in the coefficients of the system of equations.

[[11-213[3 2 -4 -3
-8 [2 -1 2 2 5 [ENTER]

Store matrix 4 .

'A [s10]

Key in the elements of B .

(r1c2(s

Store matrix B .

'B [s10]

To solve for X, we use the method
T
X = A'B
ATA

26 Non-Homogeneous System

1: [[1.98 1.60 -2.00 ..
[3.88 2.08 -4.60 .,
[2.68 -1.68 2.68 .

[570 _[§g€R] sc1 | ENG | DEG [T

3:

2%

1:

| 510 JQgeR] sc1 | ENG | DEG [QT1)

1: €

~reer
X (PO
e bed bd

a9
515
08 11

[370 IqgERl scx | ENG | DEG [QLI)

3:
2
[[2R] scT 1 ENG | DEG |QTIQ

Compute AT

A [ENTER]

1

TRN

i

Multiply by B.

B [x]

Compute 47,

A [ENTER]

TRN

111
i

Multiply by 4.

A [

Divide ATB by ATA.

=]

e
GI
[
[

1: [C 1.99 3.98 2.688]
[1.80 2.60 -1.688]
[-2.00 -4.00 2.00..
[S12€ | ROM | TKN | CoN | ION | RSO |

s12E | ROM | TKN | CoN | TON | RsD

14.608 5.00 -10.8

5.00 6.08 -12.60..
-18.00° -12.80 24..
[s12€ | KoM | TRN | CoN | ION | KSD |

1: CC 1.12]
L 1.24 1]
[8.80 1
[SI2E | ROM | TRN | CoN | TON | k3D |

[VIEWt] and [VIEW]] can be used to display all of the elements. They are

x;=112,x,=1.24,x5=0.80, x,= —0.08, and x5=0.11.

Non-Homogeneous System 27

Homogeneous System

Solve a homogeneous system of linear equations of the form AX = 0.
X; - 25 + 33 =0
2, + &xg + x3 =0
3, - 4v, + 83 = 0

The program UT below takes a stack of vectors representing homogene-
ous simultaneous equations and transforms them to upper triangular form.

Program Listing Explanation
DUP SIZE LIST— Save number of elements
DROP — s ass.
« 82 Forj = s (down) to 2,
transform the bottom j—1 vectors.
FORjsj - m=s—-j+1
1+ - m
«1j1 - Loop fori=1toj-1
FORiiROLL jPICK
m 1 —LIST DUP2 GET 4 PICK Transform the vectors.

ROT GET SWAP +x -
i ROLLD NEXT » —1 STEP »

Key in the program.

CLEAR 1: « DUP SIZE LIST>
DROP » s €« s 2 FOR j
sj-1+3+3me«lj

« DUP SIZE LIST— 1 - FOR i i ROLL J

DROP —- s « s 2
FOR j s j - 1 +

— m <« 1j1—
FOR i i ROLL j PICK
m 1 —-LIST DUP2 GET
4 PICK ROT GET SWAP
+ x = 1 ROLLD

NEXT » -1 STEP »

28 Homogeneous System

Store the program in UT.

'UT

Set the display mode to one decimal place.

[MODE] 1 =FIXE

Key in the coefficients.

[[1 -2 3[2 6 1[3 -4

8

Store the matrix in ARR for a verification
'ARR

Edit matrix ARR to reduce to row echelon form.

USER
ARR

=MW H

3:
i
[ST0_[qpepl sc1 | ENG | DEG QLTI

1: [[1.8 -2.8 3.8 _1]

[2.8 6 8.1.8 1

[3.6 -4.6 8.0 11
[0 (2Pl scx Tena] vec JE0D)

at the end of the problem.

3:
2
50 JGEeRl SCT | ENG | 0EG (R

1: ([1.8 -2.8 3.8_1]
[2.86.0 1.8 1]
[3.8 -4.8 8.8 1]

Use mode and the key to remove the outer brackets of the

array ARR and place the rows into three independent row vectors. After
removing the left- and right-most braces, the edited rows are [ENTER ed:

[1 -2 3)
[2 61]
[3 -4 8] [ENTER]

Now transform the matrix to upper triangular form.

ut

3: L 1.0 —2.@ 3.0 1]
2t [2.8 6.8 1.8]
1= [3.0 -4.0 8.0 1]
g ok Jov 111 1 |
3: [1.0 -2.8 3.0]
213 [8.0 18.8 -5.8 1]
1: L 8.0 6.8 0.8 1
T YR I I N
Homogeneous System 29

The matrix is now in row echelon form, so the system of three
transformed equations is ready to be solved. The matrix represents the

system of linear equations
22
10x,

X —

Drop the equation 0=0.

Enter the equation from row 2.

110xX2 - 5xX3=0

Solve the equation in terms of x3.

'X3

Isolate the term x 3.

SISOLE

Collect terms.

ECOLCT =

+ 3X3 = O
- 5x;3 = 0
0=20
3:
2: [.0 -2.8 3.0]
1: L B 18.8 -5.8 1
e Lot 11 T T
3: [1.8 -2.8 3.8]
2t [9.0 19.8 -5.0]
1: ' 1 p*X2-5%X3=0"
T I I I B
3: [8.8 18.8 -5.8 1]
%E '18*X2-5*X$§g:
ICTT I I N N .
3: [1.8 -2.8 3.8]
23 [9.6 186, B -5.8 1
1: 189*¥X2/5"
IMEHEEHICEE@EMHIIHHIIHEI
3: L 1.8 -2.8 3.8]
2: [8.0 16.8 -5.08 1]
: ‘2¥X2'
[COLCT|EXFHN] SI2E |FORHM J0BSUEERSUE]

The solution is x3=2*x,. Remove row 2 to solve row 1.

DROP

30 Homogeneous System

3:
1: [1.8 -2.0 3.9]

Enter the equation for row 1, making the substitution for x3.

le -—

2 x X2 + 6 x X2

Solve for x;.

'X1

Isolate the term.

SISOL=

Collect terms.

=COLCT=

The result isx; = —4*x,. A solutionisx; =
3 x 1 solution vector X. Key in vector X.

[[-4[1[2 [ENTER]

L 1.0 -2.8 3.8 1]
'Xl 2*X2+6*X2'
[COLCTJERFAN] SIZE [FORM JOESUE[ERSUE]

—=MNW

[1.6 -2.0 3.8 1
TRi- 2*X2+6*§2'

CTJERFAN] ST2E |FORM JOESUE[ERSUE

(1.8 -2.8 3.8 1]
- (6*X2)+2*X2 '
Eﬂﬁﬂ

HI\JOJ

=MW

[1.8 -2.9 3.0 1
'-(4%X2) "

COLCT[ERFAN] ST2E [FORM JOESUE[ERSUE

—-4,x, = 1,x3 = 2. Verify this

COLCT|EXFAN SIZE [FORM JOBSUE[ERSUE]

Put the coefficient matrix ARR on the stack.

USER
ARR

1
1

Swap the positions of ARR and X .

Homogeneous System 31

Multiply ARR *X.
1: [

(ore Lot 11 1 |

merm
oo
QO
[SS TSN W)

ARR *X = 0. Thus X is a verified solution to the system.

Program UT will be used in a later problem section.

32 Homogeneous System

Iterative Refinement

Due to rounding errors, in some cases the numerically calculated solution
Z is not precisely the solution to the original system A X =B. In many
applications, Z may be an adequate solution. When additional accuracy is
desired, the computed solution Z can be improved by the method of itera-
tive refinement. This method uses the residual error associated with a
solution to modify the solution.

Solve the system of linear equations AX = B.

33 16 72
A=1-24 -10 -57
-8 -4 -17

0

B=|0

1

Clear the display and the set the standard display mode.

3:
=smo= e
oo N TR he0 |

Solve for 4 X =B and improve the accuracy by iterative refinement using
residual corrections. Key in the coefficient matrix.

[[33 16 72[-24 -10 -57 1: [[33 16 72 1
[-8 -4 -17 C 24 -18 -57 1

Store matrix A4 .

'A [sTO]

Key in the constant matrix.

[[O[O[1 [ENTER] t: [g]
[111

[570 JIGENESEETRETE(R0]

Iterative Refinement 33

Store matrix B .

'B [s10]

Compute Z =B /A.

B

i
1

|

1
>
1

[+

3:
&
[70 1EERN S N T R0]

i1: [[B
8

e
[W] -
—J

1
e 1 e Jor 11 1 |

1: [C 33 16 72 1
L -24 -18 -57_1
L -8 -4 -17 1]
e L o T or [1 1 |

Store the approximate 3 X 1 solution matrix Z .

'Z [s10]

34 Iterative Refinement

1: [[-31.9999999989]

[25.4999999991

[8.99999999969 1]
L 2 1 6 1 s Jour] 1 |
1: [[.000000

[-.80000800027]

[-.80000000007 1]
[S12€ | KOM | TRN | CON | TON | RSD |

=MW

MY s en as

ElﬂllﬂﬂllﬂﬂﬂlﬂﬂﬂIEEIIEEI}

Find the actual errorE = |Z - X | =(B -AZ)/A =R /A.

X = the corrected solution.

1: [[-1.89999999997E-..
[8.99999999977E-1..
[3.89999999392E-1..

1: [[=321
[25.9 1
L 911
L r t 2 [8 [w | ur] |

Iterative Refinement 35

Vector Spaces

Vector spaces are widely used in mathematics, physics and engineering to
represent physical properties such as magnitude and direction within a
geometric system. Several important vector operations can be performed
easily using the built-in functions of the menu.

36 Vector Spaces

Basis

A basis is a set of n linearly independent vectors that span the vector

space V, (R).

Determine whether the vectors X, X5, and X5 form a basis that spans

Va(R).

X1=[1

12]

X, =[3 24]
X, =[1-31]

Clear the stack and set the standard display mode.

Key in the three vectors as a 3 X 3 matrix A and make two copies.

[[1 1 2[3 2 4[1 -3 1

Store matrix A for the next problem section.

1 -
(GALPI FIX | scI | ENG | DEG JELL)

1: ICL 1121
L3241
L 1-3111]

(GLP| FIx | scx | ENG | DEG QL1

'A 8
i
(S0P FIx | sc1 | ENG | DEG [QL)
Compute det(A4).
ARRAY 3:
= = -H
=DET= i: - 7. 0OPPAEOROG4
[CRoss] DOT | DET | AES JRNEMICNRM]
Det(A) = —7. Thus 4 is non-singular, and the three row vectors are

linearly independent and form a basis.

Basis 37

Orthogonality
Two vectors are mutually orthogonal if their inner product equals zero.

Determine which of the vectors from the previous problem are mutually
orthogonal.

CLEAR

3:
%:
Ckoss] DoT | DET | AES JENKM]CNEM

Recall matrix A to the stack.

A (ENTER] 1: (L 1121
[324]
[1-3111

03s] boT | GET | #ES JENEM]CNEHM

Use to remove the outer brackets of the array A and form three row
vectors. After removing the left- and right-most braces with , the
edited rows are [ENTERed:

[112] 3: [112]
[324] 2t [324]

1 [1-311
[1 -3 1] [ENTER [coss] oor | DET] #Es JRNEM]CNEM)]

Note: two utility routines for modifying a two-dimensional array to its row
components and vice versa are shown at the end of this section. These
routines can be used as alternatives for the editing shown above.

The third vector is X 5.

'X3 [s10] 3:
2: L112]
1: [324]

[Ckoss] Dot | DET | #ES JRNKHM]CNRH

The second vector is X,.

'X2

L1121
CRoss] 00T | DET]| AES [ENRM]CNRM|

38 Orthogonality

The first vector is X;.

'X1

Compute the inner products.

X1 3:
X2 F13%]
=DOT=

13
cRoss] Dot | DET | AES JRNEM]CNEM]

X, X5 = 13. These rows are not orthogonal.

X2 [ENTER]
X3 [ENTER]

t'1%-5 3
CRoss] Dot | DET | #BS JENEM]CNEM)

i

DOT

1
[ckoss] oot | DET | kS JENKM]CNEM

X3X3 = 1. These rows are not orthogonal.

L1121
L1-311]

3:
2
1:

a
CRo33] DOT | DET | AES |ENEM]CNRM

X' X3 = 0. These two vectors are mutually orthogonal.

Orthogonality 39

Matrix Utility Programs

Several problem sections up to this point have included use of [EDIT| mode
to reduce a matrix to its row elements. The following utility programs can
be used as alternatives for changing a matrix to its row elements, and vice
versa.

Program ROW— below takes a stack of n row vectors and the number n
in level 1 and returns the matrix combining those n row vectors.

« OVER SIZE LIST- DROP [1i ¢ OVER SIZE LIST>

N _ DROP 5 «
nm« O0ni FOR i i m % ni - +

FOR i i mxn i - + ROLL'ARRY+ DROP NEXT

ROLL ARRY—» DROP NEXT

nm 2 —LIST —»ARRY » »

After keying in the program above, store the program and put the rows of
array A in matrix form.

'ROW— [STO] 1: (L1121
[324]
[1-3171]
[(1,1,2] RoWsl ur | — | | |]
[3,2,4]

[1,-3,1]

3 [USER] =ROW— =

Program —ROW below takes a matrix and separates it into individual
rows on the stack.

« ARRY— LIST— DROP I+ « ARRY: LISTS DROP >

— nNm« 1 nTFORim1 nm«ln 1m
. DLTST sARRY T

_LIST —ARRY n i - $i+ ROLLD NEXT »'»

m x 1 + ROLLD NEXT » »

After keying in the program above, store the program and convert the
matrix from above back to row form.

'—-ROW 31 L1121
[USER] E—ROWE 2: [L324]
= = 1: [1-5173

T T I I I

40 Orthogonality

Vector Length

Find the length of vector X; (from the previous problem section), denoted
by

X1l =V XrX,

Clear the stack and set the display mode to two decimal places.

CLEAR
[MODE] 2 =FIXE

MW

[ST0_IQgepl sc1 | ENG | DEG (L1

Recall X, from the previous problem. Since X; was stored, you may alter-

natively use EX1=.
X1

3
2
1: [1.60 1.68 2.08]
[ST0_JQpe] sc1 | ENG | DEG QL1

Function ABS returns the Frobenius norm of an array, which is equivalent
to the length of a vector.

ARRAY 2

= = 2%

=ABS = I 5. 45
[CRos5| DOT | DET | ABS JRNRKMICNEM]

I X, || = 2.45.

Vector Length 41

Normalization

To normalize a vector X into its unique unit vector U, divide each com-
ponent of X by | | X ||. We will normalize X;. Vectors X, X,, and X5 are

from the section entitled "Orthogonality."

Enter a program that computes X /| | X | |.

CLEAR

« DUP ABS % X »
Store program NORM.

'NORM

Enter the vector to be normalized.

USER
=EX1=

IIII
IIHI

Normalize the vector.

= NORM

1L

The result is U, = [0.41 0.41 0.82].

Normalize vector X,.

1
111

|

= NORM =

The result is U, = [0.56 0.37 0.74].

42 Normalization

&« DUP ABS INV * »
CRoss] oot] DET | ABS JENEM]CNEM)

CRoss] 00T | DET | AES JKNKHM]CNEM

3:
2:
1: [1.00 1.80 2.008 1]
[NokM] K1] W2] %3 |3RoW]RoMS]
3:
H
1: [B8.41 0.41 B8.82 1]

NoRM| #1 | 82 | %3 [3R0M[ROWS

3:
% [941636632]
3:
28 [B.41 0.41 B8.82]
1: [B.56 0.37 B.74 1]
[NoRM] #1] a2] X3 [ROWIKOWS]

Finally, normalize vector X 5.

[lmlm] [aTaTaT
Tt E N O S
ON® COR-0) 5
OO~ oo H
- —)
TN <+ Mo
OOMm OO
-0 -0 !
<+ DE +NE
. . o)
® 00 .
®@
[&= —td
[m
Ot &Eum
i
=
1 g
2 z

i

The result is Uz = [0.30 —0.90 0.30].

43

Normalization

Gram-Schmidt Orthogonalization

Form an orthogonal basis that spans V3(R) using the Gram-Schmidt pro-
cess. Given that X, X,, and X5 form a basis, then the vectors Y;, Y5, and
Y3 form an orthogonal basis, formed by the following process.

Y, =X,
Y X
Y2=X2—[-~ *Y1]
Yl.Yl
YamXoae YZ.XS " Yl'Xa xy
3 3 YQ'YZ 2 Yl'Yl 1

Vectors X, X,, and X5 are from the section entitled "Orthogonality".

Calculate Y;.
3t
=y1= 28
USER| =X1= 1: [1.00 1.00 2.00]
[®1 | Ra | ®3 [ur | | |
Store Y;.
'Yl 8
1:
| vl | #1 | ®a | ®3 | | |
Write a program to calculate Y.
« X2 Y1 X2 DOT Y1 Y1 %: 5 v1 %2 DOT Y1 V1
- - T & X
DOT + Y1 x » DOT ~ Y1 * - »
T T T I I
Execute the program.
EVAL 3:
2:
1: [.83 -8.17 -68.33 1]
| vl [%1 [®a | ®3 | | |

44 Gram-Schmidt Orthogonalization

Y, = [0.83 -0.17 -0.33]. Store Y.

'y2 §=
1
V2 | v1 | %1 | %8 [#3 [|
Write a program to calculate Y.
« X3 Y2 X3 DOT Y2 Y2 1: gD>T<3 Y$2><3 DD$IY§3Y2
. - rd * -
DOT + ¥2 x - Y1 X3 DOT ¥1 ¥1 DOT ~ ¥1
DOT Y1 Y1 DOT = Y1 “va 1 vi | %1 [x@ [43 [
X = »
Execute the program.
EVAL %:
1: [4.00E-12 -2.80 1...
Va1 vi] [we [%3 |
Yy = [40E-12 -2.80 1.40]. Store Y.
'Y3 g=
1
%3 [va | v1] w1 | ®2 | 43 |

The vectors Y, Y,, and Y; form an orthogonal basis.

Gram-Schmidt Orthogonalization 45

Generalized Gram-Schmidt Orthogonalization Routine

The program GSO below is a generalized routine for finding an orthogo-
nal basis for an arbitrary list of vectors.

« DUP SIZE LIST— DROP 1: SRBgPDaII’ E lﬁInga

. +
DUP DUP 2 + ROLLD —-LIST ROLLD SLIST + M «
—+ M « 2 SWAP FOR n M 2.80 SWAP FOR n M n

nGET 1nl1l-FORiMi
GET DUP DUP2 DOT INV x
SWAP 3 PICK DOT x -
NEXT n M SWAP ROT PUT 'M!
STO NEXT M LIST-—

DROP » »

After keying in the program above, store the program and form an orthog-
onal basis for the three vectors in the previous example.

'GSO 3: [1,00 1.00 2.00]
2: [9.83 -0,17 -8.33 1
1: [4.98E-12 2.88 1 -
[(1,1,2] G0] va | ve [vi [#1 | %2 |
[3,2,4]

[1,-3,1] =GSO=

46 Gram-Schmidt Orthogonalization

Orthonormal Basis

Form an orthonormal basis G; of orthogonal unit vectors that spans
V3(R). Vectors Yy, Yy, and Y3 and program NORM are from the two pre-
vious problem sections.

G; = Y
oY
Calculate G,.
3:
USER| =Y1= ? [1.00 1.00 2.00]
[NokM[v3 | ve | v1 | &1 | #a |

Execute the normalization program from the section entitled "Normaliza-
tion".

=NORME= 3:
-
1: [8.41 B.41 B.82 1]
[Nokt] v3] va | v1 | ®1 | Ha |
Store the result in G,.
'Gl 3
1:
[G1_|NokM] v3] va | vl | 1]
Calculate G ,.
=Y2= 3:
2%
1: [8.83 -8.17 -8.33 1]
|Gl _NokM] ¥3 | va | v1 | H1 |
Compute the norm.
= NORM= 3:
2
1: [8.91 -8.18 -8.37 1]
| G1 [NokmM] ¥3 | va | v1] X1]
Store the result in G,
'G2 8
1:
| G2 | G1 JNokrM] v3 | va | v1_|

Orthonormal Basis 47

Compute the norm.

= NORME

Store the result in G 3.

'G3

[4.80E-12 -2.808 1...
[G2 | G1 INormM] v3 | va] ¥1_]

[1.28E-12 -8.89 8...
[G2 | Gl INokmM] v3 | va | ¥1_]

| G3 | G2 | Gl _JNokM

Verify that all three vectors are mutually orthogonal.

i
Q
i

1
(0]
N
1

Gl‘GzzO.

Compute the dot product (G5 G3).

&

Orthonormal Basis

-8.98E-12

[CRoss] 00T | DET | AES |KNEM]CNEM

3:
2
1: S5.18E-13
CRoss] Dot | DET | nES JENKMICNRM]

Compute the dot product (G G3).

Q
i

=GI1=
[ARRAY| = ARRY—=
=G2=
[ARRAY| = ARRY—Z
=G3:Z
[ARRAY| = ARRY— =

2.97E-12
i0se] 00T | OET | AES JENEHM]CNEM)

3: 1.28E-12
2: -9.89
1: . 45
[AkRV]AREY 3] PUT | GET JPUTI| GETI]

Note the utility program —ROW, described in the section entitled "Ortho-
gonality," could also be used to form the list of vectors above.

Next key in the dimensions of the matrix that will be formed by the three

vectors.

{ 3 3} [ENTER]

Finally, place the three vectors into matrix

—ARRY =

3: -8.89
2: 8.45
1: { 3.80 3.00
[»AERY[ARRYS] FUT | GET JFUTI | GETI]
form.
1: [[B8.41 8.41 B8.82 1]
[8.91 -8.18 -8.37..
[1.28E-12 -68.89 Q..
>ARRY[ARRYS] PUT | GET | PUTI | GETI]

Orthonormal Basis 49

Compute the determinant.

1L

DET

i

3
2

-1.008
[CRoss] poT | DET | #ES [ENEM]CNER)

The determinant is —1. The matrix is non-singular and the vectors form
an orthonormal basis.

Purge the vectors X, X, X3, Y}, Yy, Y3, G, G, G3 and program NORM.

50 Orthonormal Basis

Eigenvalues

Another fundamental use for matrices is in developing a structure to
represent linear transformations within a geometric system. Any matrix
that represents a particular linear transformation reflects the properties of
that transformation.

Since similar matrices share all the intrinsic geometric properties of a
transformation, an important problem is to find a simple canonical form
for each similarity class. This simple canonical form can be found by com-
puting the eigenvalues and eigenvectors. Two methods for computing
eigenvalues are illustrated, along with a method for finding eigenvectors.

Eigenvalues 51

The Characteristic Polynomial

The characteristic equation for a matrix can be written as

AX
AX -)X
(4 -\)X
X

det(4 -)

Expansion of the non-trivial characteristic equation yields the characteris-

tic polynomial

X

0

0

0 Trivial Solution

0 Non-trivial Solution

SOA® +5 A1+ - 45, A+s, =0.

The three programs below combine to determine the characteristic poly-

nomial for an arbitrary matrix on the stack.

The first program, TRCN, creates a list of the traces of the first n powers

of the matrix.

The second program, SYM, uses the list created by TRCN to compute the

coefficients of the characteristic polynomial.

The final program, PSERS, uses the coefficients from SYM and a variable
name entered into level 1 to create an expression of the characteristic

polynomial.

Key in the first program.
CLEAR

« DUP SIZE 1 GET — g
'tmp' STO {(} 1 n
START O 1 n FOR i tmp i

n « g

DUP 2 —LIST GET + NEXT 1

—LIST +

NEXT 'tmp'

PURGE » »

'tmp' g STO*

52 The Characteristic Polynomial

Store the program.

'TRCN

—=MNwWH

Key in the second program.

« DUP SIZE — b n « 1:
{1} 1 n FOR i —» s
« 011iFOR jbj

GET s i :] - 1 + GET x
- NEXT i + 1 —-LIST s
SWAP + » NEXT » »

Store the program.

'SYM

—=MNWH

Key in the final program.

« — X « LIST— 0O SWAP 1: ¢« »
1 FOR n n 1 + ROLL gWa
Xnl-=-"x+ -1 -

STEP » »

Store the program.

' PSERS

—=MNwps

Find the characteristic polynomial for the following matrix.
-17 -57 -69
ARR = 1 5 3
5 15 21

Key in the coefficient matrix.

[[-17 -57 -69[1 5 3 2:
[5 15 21 1

The Characteristic Polynomial

Create a list of the traces of the first n powers for the matrix.

ZTRCN

1L

2%
1: g 9.00 41.88 225.060
Fseks] sy JTRENT ur |

Compute the coefficients of the characteristic polynomial.

ESYME 2:
1: {11 Bg -9.808 20.60

TF‘CN por 41

Create the algebraic expression of the characteristic polynomial with the
variable name L .

'L' =PSERS

3:
2
18 'L"3-9xL"2+28%L-12"'
PsERs] sV JTRENT uT | 1

The characteristic polynomial is

A2 -9X2+ 200 - 12

Store the polynomial as the current expression in EQ for the following
problem section.

SOLV 35
SSTEQS ?1

54 The Characteristic Polynomial

Compute Eigenvalues from Expansion

The eigenvalues of a matrix can be found by solving for the roots of the

characteristic polynomial.

Find the eigenvalues for the characteristic polynomial stored in the previ-

ous problem section.

Clear the stack and set the display mode to two decimal places.

[MODE| 2 =EFIXE

Clear the current plot parameters.

' PPAR

Adjust the plot height by ten.

3:
F
Cote (a0 R] Scr [ENG | s D)

=MW

[FPAR | RES | ARES JCENTR] ¥4 | ¥H |

3:
2

1:
[PPAR | RES | ARES JCENTR] %44] ¥H]

Draw a plot of the characteristic polynomial, which was stored in EQ in

the previous problem.

=DRAWE

1
}'/' '_’//

Note the three roots of the quadratic indicate three distinct eigenvalues

for the 3 x 3 matrix ARR .

Use the solver to set guesses for the roots and solve for the three eigen-

values.

1111
(72}
O
<
o)
1

MW

L JeweR=] 1 1 1 |

Compute Eigenvalues from Expansion 55

Make an initial guess of 0.5 for the first root.

0.5 =L

i

i

Solve for the first root.

[y
.

IIEIEEEEIIIIIIIIIIIIIIIJ

Pressing the key below will display the intermediate values during

calculation.

[ELE [ENTER]

The first eigenvalue), =1.

!EFO

1: 1.68
L Jexer=] 1 1 1 |

Make an initial guess of 2.5 for the second eigenvalue.

CLEAR
2.5

L

1

Solve for the root.

[] ELE [ENTER]

i
1

The second eigenvalue M, =2.

i

—
us

----|

!ero

1: 2.00
L fewer=] 1 1 1]

Make an initial guess of 5 for the third eigenvalue.

2

R

CL
5 =L

1]
1

|

Solve for the root.

[) ELE [ENTER]

The third eigenvalue A\3=6.

1
I T I . .

—

!ﬂﬂ_
ero

1: 6.008
I T I I R

56 Compute Eigenvalues from Expansion

Compute Eigenvectors

We can compute the eigenvectors corresponding to the three eigenvalues
found in the previous problem.

- 17 -57 -69
ARR = 5 3
15 21

Clear the stack and set the display mode to one decimal place.

CLEAR
[MODE|] 1 =FIX

1
MW

[370 JQgE] scx] ENG | DEG [QTI)

Key in the matrix ARR .
[[-17 -57 =69 [1 5 3 I [117.9 -57.8 -69..
[5 15 21 [5.0 15.8 21.8 11
IS P13 NEEREETEN 0EG I

Create the 3 x 3 Identity matrix I .

3 [ENTER] 3:
§g [L -17.0 -57.8 -63..
310 QETR ST | ENG (RTTP) Fhv |
ARRAY| =IDN = 1: [[1
= [.0 1.0 0.8 1]

[B.0 6.8 1.8 1]

.0 8.8 9.8]
[s12€ | kot1 | TEN | CON | TON | KsD |

Form A*! for)\, = 1.

1 [ENTER 1: [[1.9 8.8 8.8]
[8.8 1.0 8.0]
[.8 6.0 1.0 1]

SI2 | KoM | TEN | CoN | TON | RSO |

(-] t: [188

Compute Eigenvectors 57

Store the matrix (ARR -\ J) as EIG .

'EIG g:
1:
[SI2E | KbM | TRN | CON | TON | FsD |
Recall the matrix EIG .
(USER] ZEIGE 1: [[-18.8 -57.8 -69..
- [1.8 4.0 3.8]
[5.8 15.9 20.8 11
[E1G | L FPAR] EQ | UT | |

Verify that det(4 —\') = 0.

ARRAY

EDET= -1.5E-10

The determinant is approximately zero.

Recall matrix EIG once more.

P I[-18.0 -57.8 —€9..

SEGS [5.0 15.0 20.6 13
[EIG | L [FFeR] EQ | UT | |

Reduce to row echelon form to solve for the eigenvector X ;, where
(A -\I)X;= 0.

Enter [EDIT] mode and use the key to remove the outer array brackets
and form three individual row vectors. Each row vector corresponds to
one equation of the system. After the edit, the row vectors can be

[ENTERked:

[-18 =57 -69] 3: [-18.0 -57.0 -69,0.
[14 3] 2t 1.6 4.8 3.8 1]
1: [5.0 15.0 20.0 1]

[515 20] [ENTER 5N I T N T

Note the utilities in the section entitled "Orthogonality" which can also
perform the modification of the form of the matrix above.

58 Compute Eigenvectors

Use the program UT, described in the problem section "Homogeneous
System", to reduce the matrix to upper triangular form.

1

ut

1: [9.6 0.

Remove the vector that represents the equation 0 = 0.

[oROP]

Enter the equation represented by second

'.8 x X2 - .8 x X3 =0
[ENTER]

Solve for x,,.

[ALGEBRA]
'X2 [ENTER]

Isolate the term.

ZISOLE

Collect terms.

S COLCT=

3:

2: [-18.8 -57.8 -69.0..
1: [.8 8.8 -8.8 1
[EIG | L Jrrak] EQ | UT | |

vector.

3: [-18.8 -57.8 -69,0,
2 .0 0.8 -5.8]
1: '@.8k¥2-6.8xk3=0’
(e | L Jreaelee [ur |~ |
3 [9.0.0.8 -8,8]
i '@.8%K2-b.8k3=g]

COLCT FORM JOESUE|ERSUE

3: [-18.8 -57.8 -69.0..
2: [.6 6.8 -8.8 1]
1: '0.8%X3-0.8'

TRYLFE SHOW [0EGET|EXGET]

[-18.8 -57.8 -69.08.,
[8.0 8.8 —8.'33]

=MW

[COLCTERFHN] ST2E [FORM JOESUEJERSUE

We obtain x,=x3. Remove this solution and the second vector from the

stack.

[DROP]
[oROP]

3:
2%
1: [-18.8 -57.8 -69.08..

Compute Eigenvectors 59

Enter the equation represented by the first vector, substituting x5 with x.

1-18 x X1 =57 x X2
-69 x X2 =0

Solve for x,.

'X1

Isolate the term.

Collect like terms.
= COLCT

IIIII

We get x, = —T*x,.

2: [- -57.8 =69, 8.,
1: -18*X1 S7¥X2-69%X2=
[COLCTIERFAN] STZE [FORM JOESUEJERSUE

3: [-18,0 -57,8 -69.0.
25 F-18%R1-57xX2- ss*ﬁ%m

[COLCTJERFAN] STZE [FORM JOESUE

2: [-18.8 -57.8 -69.0..
18 1 (69*¥X2+357*X2)/(-18)

THYLK

3:

2: [-18.8 -57.8 -63, 0.,
1: (? B*X2)'
[COLCTJERFAN] STZE [FORM JuESUE[ERSUE]

Therefore a solution eigenvector isx;=-7,x,=1,x3=1, or X;= [-7 1 1].

Verify that (4 -\)X = 0.

(-7 1 1 [ENTER]

Recall (4 -).

ZEIG

1
i

Multiply the two matrices.

60 Compute Eigenvectors

3:
28
1: [-7.0 1.0 1.0]
TULCTE:tPAN] SIZE] FORH [0ESUE[ERSUE]

1: [[-18.8 -57.8 -69...
[1.0 4.8 3.0
L 5.8 15.6 26.0 1]
[EIG] L _JPrek] EQ | UT | |

QO |

3:
=
1: [5.6 0.6 6.0 1]
LEIc | L _JFreaR] €0 | UT | |

The result is 0, verifying that X, is indeed an eigenvector associated with
AL

The same procedure can be followed to find eigenvectors for A, = 2 and
Aa = 6

Purge the user variables and programs used in the last three sections.

('EIG' 'L' 'PPAR' 'EQ' 'UT')} [PURGE].

Compute Eigenvectors 61

Compute Eigenvalues from |\l — A|

Find eigenvalues directly from the function det(M —A), without comput-
ing the characteristic polynomial.
-7.8 -29.7 -39.6
A= 0 21 0
33 99 153

Clear the stack and set the display mode to two decimal places.

CLEAR 3:
[MODE] 2 ZFIX= F

Clear the current plot parameters.

' PPAR

Key in the 3 X 3 matrix.

[[-7.8 -29.7 -39.6 1: [[-7,80 -29.70 -

[0 2.1 0[3.3 9.9 15.3 [9.99 2.19 .09]
[3.30 9.90 15.30 ..

ENTER G510 |QR0P] scx T enc | oes Q0D

Store matrix A4 .

'A [sTO]

[ST 1Qpl sc1 | ENG | DEG |QTI00)

Enter a program that computes the function det(M —A), with A the
independent variable.

« 3 IDN L x A - DET » [z
!

« 3.88 IDN L * A -
DET »
SN[FIz JIESE TR ETEE RaD]

Store the function as the current expression in EQ.

3:
=STEQ=E %
(STEC: | KCEG | FMIN| FMii [INDEF] Db |

62 Compute Eigenvalues from |Al — A]

Adjust the plot height.
5

*H

Set a larger resolution.

2 =ZRESE

3:
%:
[FFik | KES | ARES JCENTE] ¥W | %H |
3:
%:
[FPak | KES | HAES [CENTR] %W | %H |

Plot the function, using A for the abscissa. The program takes several
minutes to complete, as it computes the determinant for each point plot-

ted.
= DRAW

The curve shows that there are only two distinct roots. The leftmost root,
which is a local maximum, must represent a double eigenvalue root.

Digitize the roots to set initial guesses for the root solver.

Set the standard display mode.
ATTN

3:

2t (2.1,8)
1: (5.3,8)
(S0P FIx | scT | ENG | DEG |QLID)

NOTE: The values displayed will vary by differences in the digitizing posi-

tion from the graphics display.

Use the Solver to find the roots of the curve.

S SOLVRE

3:

2: (2.1,8)
1: (5.3,8)
L

Ll n Jexer=] 1 1 |

Compute Eigenvalues from |Al — A 63

Solve for the rightmost root.

1

LE [] ELE [ENTER]

ign Reversa
1: 5.40000006B016
L n fexers] 11 |

One root is A; = 5.40.

Drop this result from the stack and solve for the next root.

LSRR (215121
= = = = n rkReversa
L [SLE [ENTER] 1:° 3. 10000000001

| L 1 a JexeRs]] 1 |

The double eigenvalue is M, =23 = 2.10.

64 Compute Eigenvalues from |Al — A]

Least Squares

The method of least squares is a standard statistical algorithm used to fit a
curve to data in order to estimate a function, predict a trend, or approxi-
mate missing data values. Least squares results can easily be calculated on
the HP-28C and the graphic display is particularly useful for examining the
fit to the original data.

Least Squares 65

Straight Line Fitting

Find the least squares straight line fit to the four points: (0,1), (1,3), (2,4),

and (3,4).

The least squares solution is given by Y =MV to fit the line y =ax +b.

NOTE: The solution provided below serves to illustrate matrix opera-
tions, and could be replaced, in the case of y =ax +b, with the statistical
functions (Linear Regression) of the HP-28C.

Solving for V' gives us

CLEAR
[MODE] 2 =FIXE

Key in the y values of the data points.

(r1r3rac4

66 Straight Line Fitting

O N

3:
2
[[RR] scT | ENG | DEG [T

1: [C 1.88 1]
L 3.08 1]
L 4.60 1
[510 |q2ER] sc1 | ENG | DEG QLI

Store the 4 x 1 matrix Y.

'Y [sT0]

Key in the @ and b values representing the liney =ax +b.

3
;i
[370 IQg¢R] scx | ENG | DEG (WL

[[0 1[1 1[2 1[3 1 [ENTER

Store the 4 X 2 matrix M .

'M [sT0]

Compute V' using the least squares fitting

Y

> =2
P

R

1

—
P
Z

>
(x]

=
m
z
35

ER

i

—
ps)
P4

1

=
x]

[+

1: [[8.08 1.
L 1.

BB
[2.8
N[FIy]I!IEIIEEI[RAD]

3:
2
510 QETR) S1 | ENG | vec G

method.

2
1

[[23.600]
12 BB 1]
[S12€ | KoM | TRN | CON | TON | kSO |

E:c1aal
11

SIZE IE!II]}!IIIEII

Store the coefficients from matrix V" in the individual variables @ and b .

Drop the dimension list.

3: 1.80
2%

1.50
1: { 2.60 1.88 >

3:
%_ 1 aa

[3ARRYIRKRYS] PUT | GET | FUTI EEI']

Straight Line Fitting 67

Store the two coefficients.

'B [s10]

'A [sT0]

Enter the equation for the straight line.

'A x X + B [ENTER]

Store the equation.

'"LINE

Recall equation LINE.
SUNEE

3:
23
1: 1.00
I RERYIARRY 2] PUT | GET | PUTI | GETI]
3:
F
S RERYRERY 2] PUT | GET | PUTI] GETI]
3:
21
It 'AER+B
S RERVIARRYS] PUT | GET | PUTI| GETL
3:
2:
i:

*RERY[ARREY3] PUT | GET | PUTI

=MW
-

i

'A*X+B'
Nel a J B | M | v 1 |

Store the line equation as the current expression in EQ.

SOLV| ESTEQE

Use the Solver to compute the desired line.

SOLVRE ZEXPR=Z

3:
2:

STEQ [RCEQ [SOLYR] IS0L | QUAD]SHOW

2t
1: '1.00%X+1.58'
a1 & | & Jewers] 1 |

The straight line fit to the data is the equationy =1.5¢ +1.

68 Straight Line Fitting

Now use the PLOT menu to draw the line

Clear the current plot parameters.

[PLOT]
' PPAR

Establish X as the independent variable.
'X ZINDEP

1

Adjust the height by 5.
5

*H

and verify the fit to the data.

: '1.00%x+1.58"
[STEQ |KCEC [PMIN]PMAX [INDEF{DRAN]

3:
2t
1: '1.00%X+1.58'
[STEQ |RCEQ JFHMIN]FHMAY [INDEF{ DA]
3:
2:
1: '1.68%X+1.58'
[FFiR | RES | HHES JCENTR] ¥4] ¥H]

Recenter the axes so that the point (0,1) can be viewed on the plot.

(-1,-1)

EAXESE

Now move to the Statistics menu to set up

[STAT]

Cle

i
1

Enter the four data points into EDAT.

[0,1 ==+=
[1,3 =z+=
[2,4 ==+=
[3,4 ==+=

3:

21

1: '1.00%X+1.508"
[PRAR | RES | ARES JCENTR] %14] ¥H]
a scatter plot.

3:

2:

1: '1.00%X+1.50"
[T+ | F- | NX | CLE [STOE|RCLE]
3:

2:

1: '1.00%X+1.58'
L E+ | E- [NE | cLE [STOZ[RCLE]

Enter a program that will overlay the function plot onto the scatter plot.

[PLOT]
« CLLCD DRWE DRAW

[ENTER]

: '1,00%X+1,50"
: <« CLLCD DRWZ DRAW *»
[STEQ |RCEC: |PIIN| PHn [INDEP| DAL

Straight Line Fitting 69

Draw the plot.

EVAL M

—_— "

We can see from the plot that the line fits the four points well.

Purge the variables used in the problem section. { 'LPAR'
'SDAT' 'PPAR' 'EQ' 'A' 'B!' 'M' 'y! } .

70 Straight Line Fitting

Quadratic Polynomial

According to Newton’s Second Law of Motion, a body near the earth’s
surface falls vertically downward according to the equation

Y =yotvot +%g t2
where
y = vertical displacement at time ¢.
yo = initial vertical displacement at time ¢, = 0.

vo = initial velocity at time ¢y = 0.
g = Newton’s constant of acceleration of gravity near the earth’s surface.

An experiment is performed to evaluate g. A weight is released with
unknown initial displacement and velocity. At a fixed time interval the
distance fallen from a fixed reference point is measured. The following
results are obtained: At timest = .1, .2,5 seconds the weight has fallen
y = —.055,.094, .314, .756, and 1.138 meters, respectively, from the refer-
ence point. Calculate the value for Newton’s constant g using these data.
We will fit the quadratic curve

y=a +bt +ct?
to the five data points. The least squares solution is given by

Y=MV

where
Y1
V2
Y4
')

Quadratic Polynomial 71

1t tf1
1¢,1t2
M=|11t;1t2
1yt

1t5t2

and

<
[
S o 8

Solving for V' gives us
T
p- MY
MTM

Clear the stack and set the display mode to three decimal places.

CLEAR 3
[MODE] 3 EFIXZ ¢

Key in the matrix of y values.

[[-.055[.094[.314[.756[[1: [[-8,855 3
1.138 [6:574 1
NS £+ O T N o |

Store the 5x 1 matrix Y.

'Y [s10]

[70 |Qpel] scx ENG | 0EG [T

Key in the components of array M .

Enter row; = 1, .1, .12

1 |ENTER 3 1.0060

.1 [ENTER 2: a. 160

1: #.810

NTER [570 [Q2€P] scT [ENG | pEG (§XT)
Fd

72 Quadratic Polynomial

Enter row, = 1, .2, .22,

1 [ENTER]
-2 [ENTER]

>

Enter row; = 1, .3, .32

1 [ENTER]
-3 [ENTER]

NTER

1

Enter row, = 1, .4, .42,

1 [ENTER]
-4 [ENTER]

=z
3
m
0

Finally, enter rowg = 1, .5, .5%

1 [ENTER]
-5 [ENTER]

NTER

.

Key in the dimension of M.

{5 3 [ENTER]

Put the components into the array.

ARRAY
= —ARRY =

Store matrix M .

'M [STO]

3: 1.06680
2: 9.200
1: 0.0840
| 370 _JQgl sc1 | ENG | DEG QL1

=MW

1.
.
510 1820R] SCI | ENG | DEG (R0

3: 1.06800
2: 8. 4008
1: B.1608
[370 [QR] sc1 | ENG | DEG |10

3: 1.860
2: a.56a
1: 8.25d
[370 JQppl sc1 | ENG | DEG Q109
3: a.504
2k a.258
1: { 5.800 3.800 3>

1: [[1.060 8.1080
L 1.088 B.26008
[1.0680 B8.3608

AREY ¥ FUTI | GETI

3
2

>ARKY[ARRYS] PUT | GET | PUTI | GETI |

Quadratic Polynomial 73

Compute V using the least squares method.

M [ENTER 1: [[2.247 1]
=TRN= [8.979 1]
= = [8.437 1]
Y SIZE | kDM CoN | ION | k3D |
M [ENTER 1: [[-8,121 1
=TRN= [8.899]
= = [4.914 1]
M 'SI2E | KO] TRN | CON | TON | h3D |

Store matrix V.

'V [s10]

sI2e | KoM | TEN | CoN | TON | RSD |

Evaluate g, Newton’s constant of gravity. Get element ¢ from the solution
vector V, then multiply ¢ by 2. g =2%c.

\Y 31
(3 1) o 9.829
EGET= 3 AKR Y GRY>] PUT | GET | PUTT] GETT]
2
Convert from m/sec? to ft/sec?.
m 3: 9.829
ft e el
SRRV ERY 2] PUT | GET | PUTT | GEVI]
3:
: 2,56
3 ARRYIERY 2] PUT | GET | PUTI | GETI]

The result is g =32.246 ft/sec?.

Now use the solver to compute the desired quadratic polynomial.

'A+ Bx T+ Cx Tr2 3 32,246
1: 'A+BAT+CET 2!
[pakkilnkkt>] PUT | GET | PUTL]GETL

74 Quadratic Polynomial

Store equation POLY.
' POLY

Get the coefficients from matrix V.

V' [ENTER]

= ARRY— =

Drop the dimension list.

Store the three coefficients a, b, and c.

'C [s10]

'B [s10]

'A [s1O]

Recall the equation.

SPOLYE

3:
: 22,206
S ARRVIARRY 2] PUT | GET | PUTL| GEII]

1: [[-8.121 1

[8.899 1]

[4.914 1]
[#ARkV]AREYS] FUT | GET JPUTI] GETI]
3: 8.p99
28 4.914
1: { 3.000 1.0060 3

[#HERVIRRRYS] PUT | GET | PUTI] GEVI]

-8

a

4
[2AREV[ARRYS] PUT | GET | FUTI | GETI |

3: ‘£t
2: -9.121
1: 0.0699
[tARRVIRERY] PUT | GET JFUTI] GETI

3: 32,246
2: K
i: -@.121
[ZARK Akt FUTI[GETL

3:
: 2,51
S ARRYIARRY] PUT | GET | PUTT | GETI]

3: 32.246
2: ‘ft!
1: 'A+B*T+CxT"2'
a1 e | ¢ Jrotv] v | M |

Quadratic Polynomial 75

Store the equation as the current expression EQ.

ZEXPR=

32.246
lf\‘t (]

a1 B 1 1 1 ¢ Jexpk=] |

The least squares solution equation is —0.121+0.099¢ +4.914¢2,

Next, we will overlay the function curve over a scatter plot of the data

points to verify the fit.

First, clear the current plot parameters and establish ¢ as the independent

variable.

[CLEAR]
PLOT| 'PPAR

"T SiNDEP=

i

3:
2
[STE e LKCEG [FMIN| FMii \TNDEF] DRl |

Adjust the plot width by .1, to plot 0.1 second intervals along the abscissa.

.1

1
1

*W

oW
se on a0

[PFAR | KES | ARES [CENTR] ¥W | ¥H |

Next use the Statistics menu to create the scatter plot.

STAT
CLx

n
1L

Enter the data points for the scatter plot.

[.1 -.055 Ex+=
[.2 .094 Ex+=

[.3 .314 Z3p+=

[.4 .756 Zx+=

[.5 1.138 Ex+=

76 Quadratic Polynomial

3:

-H

1:

L =+ | E- | NE | CLE |STOE|RCLE
3:

%:

2+ 1 - I NE | CLE |SToZ]RCLE

Now write a program to overlay the two plots.

« CLLCD DRWE DRAW

Store program PLT.
'PLT

Draw the plot.

=PLTE

3:
2%
1: &« CLLCD DRWZE DRAW ¥
[STEQ JRCEQ JPMINPHAY JINDEF]DRA]

3
g
[3TEC: | KCEC: | PMIN | PMAR [INDEP| DEAI |

You may wish to rescale the plot height to obtain a better view of the fit of

the first two data points.

.25 =*HE

USER

1
T
r
-
1

3:
et
CF Ak | RES | AHES JCENTR] W1 ¥H |
N i A
~ e

The plots show a good fit of the quadratic polynomial to the five data

points.

Quadratic Polynomial 77

Markov Chains

A Markov Chain is a system that moves from state to state, and in which
the probability of transition to a next state depends only on the preceding
state. The system states can be predicted at particular points in time using
transition probabilities.

The transition matrix for the Markov Process is the n X n matrix P =[p;;]
where p,; = probability of transition directly from state j to state i, and
n

Zpij =1.
1=1

The components of the state vector X) signify the probability that the
system is in state i at the n®* observation.

X

X
x| 2

Xn

The model for the system is described by X(*+1) = P X(*) where the tran-
sition matrix applied to the current state determines the next state.

78 Markov Chains

Steady State of a System

A chemist runs an experiment where colored films are immersed in a
solution for a brief time period, resulting in a possible color change. He
calculates the color changes according to the following probabilities.

Original Color New Color
Magenta Cyan Yellow
.8 3 2 Magenta
A 2 .6 Cyan
A 5 2 Yellow

Determine to two decimal places the probable future color of a cyan film
dipped in the solution several times.

[MODE| 2 ZFIXE

=MW

[510 JQgEPl scx | ENG | DEG [T

Key in the 3 x 3 transition matrix P.

([.8 .3 .2[.1 .2 .6[.1 [1: ([2.82 0.30 0.20]
-5 .2 [5.10 0.50 9.20 11

[570 [W¢PW] sCI [ENG | 0EG [T10D)
'P 3

1

310 REeR] ScI | ENG | UEG QSR

Key in the initial state vector X°. This vector represent an initial state of
cyan.

(roraco 1: [0.00]
[.68 1]
(570 |ESTH] Sc1] ENG | DEG QLD
'X %
1
[570 [§a¢8| sCI | ENG | DEG [RTT]

Steady State of a System 79

Key in the initial value for n =current state.

0 3t
'N i
[ST0 _[qgep] scT | ENG | DEG |LEID)

Write a program to compute the next future state.

« N 1 + 'N' STO P %: NIBB N' STO P
: + 'N'
SWAP x » SNHP
| 570 _|p¢H]l!IEIllEI[RAD]
Store program MARK.
'MARK

3:
2:
210 QETR SCI | ENG | 0eG L)

Recall the initial state vector.

USER 1: ([9.00]
e [1.60]
=X= [2.08 11
MaEK] N] % 1 P | 1

Compute the next state.

= MARK

|||II
—
.

[C 8.38 1
L 8.20]
L 8.58 1]
IS T T B . -

After one observation, the color is most likely to be yellow. Compute the
next state.

= MARKE

1: [[8.48]
[8.37 1
L 8.23 11
[EELTH ICT T N N .

After two observations, the color is most likely to be either magenta or
cyan. Continue computing future states until a final steady state is
reached.

= MARK = 1: [[8.48 1
[8.25 1
[B.27 1]

[T T I O I

80 Steady State of a System

I

= MARK =

I
—
.
()

= MARKE

1
—
[0
m

= MARK=

Il
—
L1
m

1

MARK

i
—
[gn]

11}

= MARKE=

I
—
-

= MARK

n
—
m
-
rout
W
[

EMARK = 1: [[8.56 1
[8.23 1]
L 8.21 11
EEH I T G . .

The system has reached a steady state. Determine how many observations
were completed to reach this final state.

N

1
1

|

=MW

: [[.56 1 [0.23 1.
: 10. 60

Makk] N 1 % 1 P 1 1 |

Steady State of a System 81

The system reaches a steady state after n =10 observations. The probable
future color of an initially cyan film immersed several times is .56
magenta, .23 cyan, and .21 yellow.

Purge the variables used in this problem section. { "MARK' 'N'
'X' 'P'} [PURGE].

82 Steady State of a System

An Example:

Matrix manipulations are used to solve complex, multi-dimensional prob-
lems. The following sections illustrate use of the HP-28C matrix capabili-
ties in a market with challenging economic issues. These same analytical

tools can be applied across many industries.

An Example: 83

Forest Management

When a forest is managed by a sustainable harvesting policy, every tree
harvested is replaced by a new seedling, so the total population quantity
remains constant. A matrix model can be developed to assist in determin-
ing optimal harvesting procedures. The model is based on categorizing
the trees into height/price classes and computing an optimal sustainable
yield for a long-range time period.

The Sustainable Harvesting Cycle is represented by:

Forest ready for harvest — harvest + new seedlings = forest after harvest,
or

GX -Y+RY =X
where
x|
X2
X=

trn
X = Nonharvest vector, the trees that remain after the harvest and
replanting.

x; = number of trees in the i th class.

i ranges from 1 to n, where there are n height/price classes.

n
S =Y x; = total number of trees sustained.

t=1

Tree growth between harvests is designated by g;, the fraction of trees that
grow from class i to classi +1.

1 - g; = fraction of trees that remain in classi.

84 Forest Management

The growth matrix is

l—gl 0 0

0

g 1-g2 0 0

0 82 1-8; 0

G=| . . . 0
1-8,1 0

0 0 0 g1 1

GX = Nonharvest vector after growth period, or forest
ready for harvest.

V1
Y:
Vn
Y = Harvest vector, or trees removed at harvest.
111~ -1
000 -0
R =
000000
R = Replacement matrix.

RY = New seedling vector, or trees planted after harvest.

Forest Management

85

The Harvest Model

A harvester has a crop of 120 silver fir trees to sell annually for Christmas
trees. After last year’s harvest, his forest had the following configuration.

Class Height interval in feet Number of trees
0] (h) (x))
1 [0,4) 15
2 [4,8) 20
3 [8,12) 35
4 [12,16) 30
5 [16,00) 20

During the growth period, 6 trees in class 1 grew to the next height class,
as did 13 trees in class 2, 10 trees in class 3, and 4 trees in class 4. If he
sustainably harvests 8 trees of class 2, 6 trees of class 3, 13 trees of class 4,
and 6 trees of class 5, what is the configuration of his crop after harvest
and replanting?

CLEAR 3:
[MODE] 2 SFix= o
510 |Q20P] sc1 [ENG | 0EG Q0D

Enter the 5 x 1 nonharvest vector X .

[[(15[20[35[30[20 [ENTER 1: [[15.90 1
[20.00]
[35.00]

[“sT0 (§20B] SCT | ENG | DEG QN

'X H
1:
CsTo |Q20P] SCI | ENG | DEG QL))

Compute the growth fractions for each height class. First, compute
81=6/x1.

6 |ENTER cH
2:
15 [+ I .40

[370 JgERp] sc1] ENG | DEG QL1

86 The Harvest Model

'Gl

Compute g,=13/x,.

13 3

20 [] 1: 0.65
570 (Q2eP) Scr | ENG | oeG HTS]

'G2

Compute g3=10/x3.

10 3:
23
35 [4] I: 8.29
C3T0 Q2R SCT | ENG 1 ves TR
'G3

Compute g =4/x,.

4 8
30 [+] i 0.13
[STo 1Q20P] sc1 | ENG | 0eG (R))
'G4 3
1
(ST (§20] SCI | ENG | 0EG IR D)

The Harvest Model 87

Enter the 5 x 5 growth matrix G .

3: .80
2: 8,060
1: 8.060
| 64 | 63 | Ge [a1 | & [|
3: 0.060
4 0.008
1: 8.060
| 64 | 63 | G2 | &1 | % | |
3: 8.71
23 8.680
1: .08
| 64 | 63 | G2 [Gl | & | |
3: .29
2: a.87
1: 8.060
| 64 | 63 | G2 a1 | x | |

Enter the dimensions of G .

'G [sTO]

Enter the 5 x 1 harvest vector Y.

crorsreris(e

'Y [sTO]

3: 8.80
28 a.13
1: 1.60
| Gy | Ga | Ge |Gl | 8 [|
3: a8.13
2: 1.80
1: { 5.00 5.80 >
| G4 | 63 | G2 |Gl | ® | |
1: [[8.60 8.00 6.684 4.,

[8.40 B8.35 6.80 Q..

[8.80 8.65 BA.71 A.,
[»RERY[ARRYS] PUT | GET [PUTI| GETI|

=MW

¥

[#AREVIRERYS] PUT | GET | PUTIT

(>ARRYIARRYS] PUT | GET [FUTI | GETI

3:
%:
[2ARRV[RERYS] PUT | GET | FUTI | GETI

Create the replacement matrix R. First enter the dimensions of R.

{5 5) [ENTER]

3:
2:
1: { 5.688 5.808 X
[2AREVIRRRYS] PUT | GET | PUTI] GEVI]

The Harvest Model 89

Create a constant matrix whose entries are all zero.

O [ENTER]

SCONE

Now enter 1 across the entire first row of R.

{1 1) [ENTER]

PRRPRP
i
0
C
=
i

Drop the index list.

Store matrix R.

'R [s10]

: [[9.00 0,00 0,00 0,
: ¢1.00 1.00 5
I

[5126 | KoM | TRN | CoN | TON | RSO |

: [[1.00 1.00 1.008 1.
H ¢ 2.60 1.00 3%
(3RERVIAERY] PUT | GET [PUTI | GETI)

.08 0.

=MW

FHERVIHRRY 3] PUT | GET | PUTI] GETI]

Write a program to compute the configuration of the forest after harvest.

« G XxY-RY X+ »

' CROP

90 The Harvest Model

2:
P EGX*Y-RY % +

»
LR L v] 6 | 64] 63 | Ga |

MW

(ckor] R 1 v 1 6 | G4 | G3 |

o

Compute the new nonharvest vector with program CROP.

S CROPE t: [22,801

[32.60 1]
[chob | K] ¥ | G | G4 | G3 |

Use or to view the entire vector. The key will exit
EDIT mode.

The new nonharvest vector is

The program can be used with the new nonharvest vector to predict new
forest configurations using the same harvesting cycle annually.

The Harvest Model 91

Optimal Yield

If the harvester wishes to optimize his profit year after year, he must
determine the optimal sustainable yield. This is achieved by harvesting all
of the trees from one particular height/price class and no trees from any
other class. The sustainable yield is thus a function of both price and
growth rate, but independent of the current nonharvest vector. Note that
if class k provides the maximum yield, the first year all classes > k are
harvested. In the following years only class k is harvested, and no trees
will ever be present in higher classes.

S = total number of trees sustained in the forest.

1 0-0
© pg-

P=| . . . |=Price matrix
0 0 - p,

Ppi = price attained for class i.

88n
GG = Growth ratio matrix.

where

i = '._11 fori=2..n

k=18k
88:=0

92 Optimal Yield

Y2

vl

n
YL = Yield vector.
¥yl = yield (total dollar amount) obtained

by harvesting all of class i and
no other class.

The optimal class to harvest can be selected by finding the maximum y/,

from yield vector YL , where

YL =P*S*GG

Suppose the market prices for the five classes are p; = $0, p, = $50,
ps = $100, p4 = $150, and ps = $200. Determine which height class

should be harvested.

Enter the market prices for the five classes and store in variables p,

through p;,.
CLEAR 31
0 £
'P1 I T I T T
50 3:
2
1: 50. 60
[F1 Jckor] &] v | G | G4]
'P2 3
1:
2 | F1 Jchop] R | Vv | G
=P2= 3:
2%
2 1: 100. 00
G W T I A

Optimal Yield 93

'P3

EP2=E

3
'P4
Ep2=

4
'P5

Enter the dimensions of P.

{5 5} [ENTER]

3:
2
[F3 | F2 | F1 JCropr] K| ¥]
3:
2%
1: 158. 88
| P3| p2 | F1 Jcror] R 1 ¥ |
3:
2:
[Py f F3 | Fa | F1_Jckopr] K]
3:
-
1: 208. 08
[F4 | P3| P2 | F1_Jckop] R
3:
2
[Fs | Pu | F3 | P2 | F1_JCKOF]
3:
2
1: { 5.08 5.808 2}
L FS 1 Py | F3 | P2 | P1_JCROP |

Create the 5 x 5 price matrix P. Since P is a sparse matrix, with most
entries equal to zero, first create a constant array whose entries are all

Z€ro.

0 [ENTER]

ARRAY| ECONE

94 Optimal Yield

ROM

L 8. 0.68 B.P8 @
[0.68 0.60 0.08 Q.
[.60 .68 0.68 B

Now enter the values p; along the diagonal entries.

{1 1) [ENTER]

P1 [ENTER]

3:
2: [[6.06 8,00 B BB 8..
1: { >

i.ee i,
Hﬂﬂllmﬂllﬁﬁllﬂﬂllinllﬁml

([.60 0.00 B.08 B,
{1.08 1.80 2

=MW
M e aa 2a

)
~N
m

[kot | TEN | CoN | TON | KSD |

3:

2: [[6.00 8,060 6. BB Bm
1: ¢ i1.00 2.8
Eﬂﬂlﬂml!l!ﬂllﬁil[ﬂﬁlﬁﬂﬁl

Use the function to modify the displayed position index. The
modified position index is then [ENTERed. Alternatively, you may
{1.00 2.00} from above and enter the position index {2 2}.

{ 2 2) [EntER]

P2 [ENTER]

PUTI

1
1

3:

2: [[0.00 6.60 B.68 B,
1: { 2.60 2.08
(rREV]RERYS] PUT | GET JFUTI] GETI]

3: [[6.00 0,00 0,00 0.
%5 ¢ 2.00 2,8

PUTT | GETT |

=MW

(L .60 ©6.60 B.08 8,
{ 2.680 3.80
[2ARRVIRREYS] PUT | GET JPUTT] GETI]

Use the function to modify the position index. The modified posi-

tion index is then [ENTER ed:

{ 3 3} [ENTER]

3:
2: [[BBBGBBGGBB..
1: { 3.80 3.00

lﬁilﬁiil

Optimal Yield 95

P3 [ENTER]

i
1l

PUTI =

: [[9.00 68,00 0.00 0,
: { 3.00 3.008 2
: 168.
]

hkkvrkEYS] PUT | GET JPUTI] GETI

—=MNw

*

=MW

: [[9.00 0,00 0.00 0,
: € 3.00 4.00 3
[3RERTIAREY3] PUT | GET | PUTI]GETI)

b

Use the function to modify the position index. The modified posi-

tion index is then |[ENTER ed:

{ 4 4) [ENTER]

P4 [ENTER]

PUTI =

8o 4
nm‘«)wu

3:
2: [[9.00 B.BB G.BB 8.
1= { 08 X

[[.00 6.00 B0.60 0.,
{ 4.00 4.00 X
15999

3:

2: [[.00 6.68 0,00 0.,
1: { 4.6 5.00 X
[aakEv[rERYS] FUT | GET JPUTI] GETI |

Use the function to modify the position index. The modified posi-

tion index is then | ENTERed:

{ 5 5) [ENTER]

P5 [ENTER]

96 Optimal Yield

[[6.60 0.60 0.00 0.,

E £ 5. ae 5.00 ¥
*nk

[[BBBBBBBBGG...
{ 5.00 5.00 2
200.

Drop the index string.

Store matrix P.

'P [sT0]

3:
2t [[.00 B.00 B.608 8,
1: { 1.68 1.608 >

1: [[9.00 B8.00 B6.080 6.,
[.88 50.688 0.00 ..
[B.680 0.68 100.068..
FUT

=P

FUTI

Store the total number of trees sustained in variable S .

120

's [sTO]

3:
2:
1: 126.80
AkkVIARRYS] PUT | GET JPUTI] GETI]

=P

AREVIHRRYS] PUT | GET JPUTI | GETI]

Compute the 5 x 1 growth ratio matrix GG .

Entergg, = 0.

0
'GG1

Compute gg, = 1/g;.

=ais
[1/x]

'GG2

Optimal Yield 97

Compute ggs = 1/g; + 1/g,

=GG2= g: 5
== : .08
SG2= 1: 1.54
[1/x] (G2 | 561] G4 | 63 | G2 | Gl |
3

1: 4.04

GGz | G611 G4 | 63 | G2 | Gl |
'GG3 [sTO 3:

<

(G653 | 562 | 661] 64] 63 | Ge |
Compute gg, = 1/g; + 1/g2 + 1/g;3
=GG3= 3:
=oac 2: 4.04
=58= 1: .50
[1/x] (63 | Go2 | GGl | G4 | G3 | G2
3

1: 7.54

(663 | G52 1661 | G4 | 63 | G2]
'GG4 3:

2:

i:

[GGY | 653 | GG2 | GG | G4 | 63 |
Compute ggs = 1/g; + 1/g2 + 1/g3 + 1/g,4
=GG4= 31
=Gac a: 7.54
=54= 1: 50
(GG | 563 | GG2 | GGl | G4 | G3 |
3

1 15.04

[GGY 1 663 | GG2] 661 | G4 | G3 |
'GG5 3:

28

1:

[GG5 | GGY | GG3 | GG2 | GG1 | G4 |

98 Optimal Yield

Now invert ggo, gg3, 84, and gg; to form the actual entries into matrix GG .

=GG2=
[1/x]

'GG2
=GG3 =
(1/x]

'GG3
=GG4 =
[1/x]

'GG4
=GG5=
(1/x]

'GG5

3:
-H
1: 8.408
| GGS | GGY | 653 | 652 | GG1 | GY |
3:
2
EEEIEEEII.EEIIEI
3:
28
1: 8.25
| 565 | GGY | 6G3 | 562 | GG1 | GM |
3:
2
| 665 | GGY | 663 | 662 [GG1 | G4 |
3:
2%
1: 8.13
| GG5 | GGY | GG3 | GG2 | GG1 | GY |
3:
F
| 665 | Ga4 | 663 | 662 | 661 | GY ||
3:
2:
1: 8.87
| GGS | GGY | 653 | GG2 | 5G1 | GY |
3:
2
| GG5 | GGM | GG3 | GG2 | GG1 | GY |

Optimal Yield 99

Create the 5 x 1 matrix GG . Put the elements on the stack.

i
o}
Q
i

nn
o
[0
N
n

1
(0]
(0]
®
[0

1
(9]
(@]
Y
i

i
o
(o]
[3)]
1

Enter the matrix dimensions.

{5 1 [ENTER]

Create the matrix.

ARRAY
= —ARRY =

Store matrix GG .

'GG

Write a program to compute the yield vector.

« S P x GG x » [ENTER]

Store program YLD.
'YLD

Compute the 5 x 1 yield vector YL .

USER
YLD

i
1

3:
2t
1= &« S P % GG * »
ARRVIRERYS] PUT | GET JFUTT] GETI]

3:

%5

3 AERYIHERY] PUT | GET | PUTT | GETI]
1t €

meErms

9.00 1]
2400.08]
2971.43 1

Ly | 66 | 665 | 664 | 663 | 662

You can use [EDIT] or to view the entire vector.

100 Optimal Yield

0
2400.00
YL =12971.43
2387.75
1595.91

The resulting yield vector shows that height class 3 should be harvested to
maximize the annual sustainable yield, since yl5 = $2971.43 is the max-
imum entry.

Purge the user variables created in this problem section.

Optimal Yield 101

Step-by-Step Examples
for Your HP-28C

Vectors and Matrices contains a variety of examples and solu-
tions to show how you can solve your technical problems
more easily.

® General Matrix Operations
Matrix Addition, Multiplication, Determinant, Inverse,
Transpose, Conjugate, Minor, Rank, Hermitian Matrices

® Systems of Linear Equations
Non-homogeneous and Homogeneous Systems,
Iterative Refinement

® Vector Spaces
Basis, Orthogonality, Vector Length, Normalization,
Orthogonalization, Orthonormal Basis

® Eigenvalues
Characteristic Polynomial, Eigenvalues, Eigenvectors

Least Squares
Straight Line Fitting, Quadratic Polynomial

Markov Chains
Steady State of a System

An Example: Forest Management Model and Yield

HEWLETT
| () e
Reorder Number
00028-90044

00028-90059
Printed in U.S.A. 3/87

	Cover
	Contents
	How To Use This Booklet
	General Matrix Operatlons
	Sum of Matrices
	Matrix Multiplication
	Determinant of a Matrix
	Inverse of a Matrix
	Transpose of a Matrix
	Conjugate of a Complex Matrix
	Minor of a Matrix
	Compute Rank
	Hermitian Matrices

	Systems of Linear Equations
	Non-Homogeneous System
	Homogeneous System
	Iterative Refinement

	Vector Spaces
	Basis
	Orthogonality
	Matrix Utility Programs

	Vector Length
	Normalization
	Gram-Schmidt Orthogonalization
	Generalized Gram-Schmidt Orthogonalization Routine

	Orthonormal Basis

	Eigenvalues
	The Characteristic Polynomial
	Compute Eigenvalues from Expansion
	Compute Eigenvectors
	Compute Eigenvalues from |λI - A|

	Least Squares
	Straight Line Fitting
	Quadratic Polynomial

	Markov Chains
	Steady State of a System

	An Example:
	Forest Management
	The Harvest Model
	Optimal Yield

