

Step-by-Step Examples. for Your HP-28C

Vectorst and Mathices

Vectors and Matrices

Step-by-Step Examples for Your HP-28C

Edition 1 March 1987
Reorder Number 00028-90044

Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsiblity for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.
© 1987 by Hewlett-Packard Co.
This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company.

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 March 1987 Mfg No. 00028-90059

Welcome...

... to the HP-28C Step-by-Step Booklets. These books are designed to help you get the most from your HP-28C calculator.

This booklet, Vectors and Matrices, provides examples and techniques for solving problems on your HP-28C. A variety of matrix manipulations are included, designed to familiarize you with the many functions built into your HP-28C.

Before you try the examples in this book, you should be familiar with certain concepts from the owner's documentation:

- The basics of your calculator - how to move from menu to menu, how to exit graphics and edit modes, and how to use the menu to assign values to, and solve for, user variables.
- Entering numbers and algebraic expressions into the calculator.

Please review the section "How To Use This Booklet." It contains important information on the examples in this booklet.

For more information about the topics in the Vectors and Matrices booklet, refer to a basic textbook on the subject. Many references are available in university libraries and in technical and college bookstores. The examples in the booklet demonstrate approaches to solving certain problems, but they do not cover the many ways to approach solutions to mathematical problems.

Our thanks to Brenda C. Bowman of Oregon State University for developing the problems in this book.

Contents

7 How To Use This Booklet
9 General Matrix Operations
10

Sum of Matrices12
Matrix Multiplication
Determinant of a Matrix
Inverse of a Matrix
Transpose of a Matrix
Conjugate of a Complex Matrix
Minor of a Matrix
Compute Rank
Hermitian Matrices

Systems of Linear Equations

Non-Homogeneous System
Homogeneous System
Iterative Refinement

Vector Spaces

Basis
Orthogonality
Matrix Utility Programs
Vector Length
Normalization
Gram-Schmidt Orthogonalization
Generalized Gram-Schmidt
Orthogonalization Routine
Orthonormal Basis

51 Eigenvalues

52 The Characteristic Polynomial
55 Compute Eigenvalues from Expansion
57 Compute Eigenvectors
62 Compute Eigenvalues from $|\lambda I-A|$

65 Least Squares

66 Straight Line Fitting
71 Quadratic Polynomial
78 Markov Chains
79 Steady State of a System
83 An Example:
84 Forest Management
86 The Harvest Model
92 Optimal Yield

How To Use This Booklet

Please take a moment to familiarize yourself with the formats used in this booklet.

Keys and Menu Selection

A box represents a key on the calculator keyboard:

In many cases, a box represents a shifted key on the HP-28C. In the example problems, the shift key is NOT explicitly shown (for example, ARRAY requires the press of the shift key, followed by the ARRAY key, found above the " A " on the left keyboard).

The "inverse" highlight represents a menu label:

Menus typically include more menu labels than can be displayed above the six redefinable menu keys. Press NEXT and PREV to roll through the menu options. For simplicity, NEXT and PREV are NOT shown in the examples.

Solving for a user variable within SOLVR is initiated by the shift key，fol－ lowed by the appropriate user－defined menu key：

```
\square \overline{三音ABCD 泣.}
```

The keys above indicate the shift key，followed by the user－defined key labeled＂ABCD＂．Pressing these keys initiates the Solver function to seek a solution for＂ABCD＂in a specified equation．

The symbol＜＞indicates the cursor－menu key．

Interactive Plots and the Graphics Cursor

Coordinate values you obtain from plots using the INS and DEL digitizing keys may differ from those shown，due to small differences in the positions of the graphics cursor．The values you obtain should be satisfactory for the Solver root－finding that follows．

Display Formats and Numeric Input

Negative numbers，displayed as

$$
\begin{aligned}
& -5 \\
& -12345.678 \\
& {[[-1,-2,-3][-4,-5,-6[\ldots}
\end{aligned}
$$

are created using the CHS key：

$$
5 \longdiv { \mathrm { CHS } }
$$

12345.678 CHS
［［1 CHS ， 2 CHS ，．．．
The examples in this book typically specify a display format for the number of decimal places．If your display is set such that numeric displays do not match exactly，you can modify your display format with the MODE

General Matrix Operations

This section illustrates several basic matrix manipulations found in common matrix problems, including addition, matrix multiplication, determinants, and so forth. Also included are several programs that demonstrate operations on matrix minors and rank.

Sum of Matrices

This example illustrates two methods for creating a matrix.

$$
\begin{aligned}
A & =\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right] \\
B & =\left[\begin{array}{rrrr}
2 & -3 & 0 & 1 \\
0 & 4 & -1 & 2 \\
1 & -3 & 2 & -2
\end{array}\right]
\end{aligned}
$$

Compute $A+B$.
CLEAR \rangle

| $4:$ |
| :--- | :--- |
| $3:$ |
| $2:$ |
| $1:$ |

Key in the elements of matrix A in row order form. Put each element on the stack individually.

1 ENTER
2 ENTER
3 ENTER

4 ENTER
5 ENTER
6 ENTER
7 ENTER
8 ENTER
9 ENTER
10 ENTER
11 ENTER
12 ENTER

Key in the dimensions $\{m, n\}$ of matrix A. Remember to use a space to separate the two numbers.

$$
\left\{\begin{array}{ll}
3 & 4
\end{array}\right\} \text { ENTER }
$$

4:	\{34)			

Put the stack elements into the matrix.

```
ARRAY
\equiv㕵->ARRY 泣
```

Store the matrix in A for the next problem section.
' A STO

```
3:
2:
1:
```


Enter matrix B, using a space to separate the matrix elements. Note the two different methods used to enter the elements of A and B.
[$\left[\begin{array}{llllllllll}2 & -3 & 0 & 1 & 4 & -1 & 2\end{array}\right.$
$\left[\begin{array}{llll}1 & -3 & 2 & -2 \\ \text { ENTER }\end{array}\right.$

Compute the sum $A+B$.
A ENTER

Matrix Multiplication

Compute the product of two matrices, The first matrix must have dimensions $k \times m$, the second matrix has dimensions $m \times n$, and the product has dimensions $k \times n$. In this example, $k=3, m=4$, and $n=2$.

$$
\begin{gathered}
A=\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right] \\
D=\left[\begin{array}{rr}
-1 & 1 \\
2 & 4 \\
-2 & 3 \\
5 & 4
\end{array}\right]
\end{gathered}
$$

Compute $A^{*} D$.

Enter the 3×4 matrix A from the previous example.

A ENTER

Enter the 3×2 matrix D.

[[-1 1[2 4 [-2 $3\left[\begin{array}{ll}5 & 4\end{array}\right.$ ENTER

Compute the product $A^{*} D$.
区


```
HAKTM{GY% FUT GST FDTI ESTI
```


Determinant of a Matrix

Solve for the determinant of an $n \times n$ matrix.

$$
A=\left[\begin{array}{rrr}
2 & -3 & 1 \\
0 & 5 & 2 \\
-1 & -2 & 3
\end{array}\right]
$$

Key in the 3×3 matrix.

Compute $\operatorname{det}(A)$.
DET

The determinant is 49 .

Inverse of a Matrix

Compute the inverse of a square $n \times n$ matrix.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right]
$$

Clear the stack and set the number display mode to two decimal places.

Key in the elements of the 3×3 matrix.
[$\begin{array}{lllllll}1 & 2 & 3\left[\begin{array}{lll}2 & 4 & 5[3\end{array}\right] & 6\end{array}$ ENTER

Compute A^{-1}.
$1 / x$

Transpose of a Matrix

Compute the transpose of an $m \times n$ matrix $A . A^{T}$ will be of dimension $n \times m$.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]
$$

Clear the display and set the mode to standard. Key in the 3×2 matrix A.

Compute A^{T}.

ARRAY
$\underline{\underline{\underline{\underline{\underline{~ T ~ T R N ~}}}}} \mathrm{I}$

A^{T} is a 2×3 matrix.

Conjugate of a Complex Matrix

Compute the conjugate conj (A) of the complex matrix A.

$$
A=\left[\begin{array}{cc}
1+3 i & i \\
3 & 2-4 i
\end{array}\right]
$$

CLEAR

3:

Key in the elements individually in row order form. Each pair represents (real part, imaginary part). Note the commas in the keystrokes below may be used alternately with spaces.
(1,3 ENTER

3:		
$2:$		
1:		
ITSE	ROM	TKN

(0,1 ENTER

(3,0 ENTER

(2,-4 ENTER

Key in the dimensions of the matrix.

$$
\left\{\begin{array}{ll}
2 & 2
\end{array}\right\} \text { ENTER }
$$

Place the stack elements in an array.

ARRAY

Compute the conjugate.
童CONJ

Minor of a Matrix

The minor $M_{i j}$ is formed by removing row i and column j from matrix A, then computing $\operatorname{det}\left(M_{i j}\right)$. A program is written to perform this function for any $n \times n$ matrix.

Program ROW below is a subroutine used to remove a row or column from a matrix.

Program Listing	Explanation
SWAP	Swap the matrix into level 1, then
ARRY \rightarrow LIST \rightarrow	separate the matrix into individual elements and its dimension.
DROP	Drop the number of items in the list.
$\rightarrow \mathrm{nm}$ "	Save the row and column in n and m.
n DUP m $\times 2+$	Compute offset to row (col) number on stack.
$\begin{aligned} & \text { ROLL }-m \times \rightarrow \text { LIST } \rightarrow \text { list } \\ & \text { " m DROPN } \end{aligned}$	Place ($n-i)^{\star} m$ elements into list. Drop row i (col j) from stack.
list » LIST \rightarrow	Separate temporary list into individual elements.
DROP	Drop number of list elements.
n 1 - m $2 \rightarrow$ LIST	Reconstruct matrix with row (col) removed.
\rightarrow ARRY	

Program MINOR utilizes the subroutine ROW to remove a row, and then a column, from the matrix.

Program Listing
3 ROLLD
ROW TRN
SWAP ROW TRN

Explanation

Roll down the matrix and row i.
Remove row i and transpose for column removal.
Remove column j and transpose back.

Key in the program ROW.

CLEAR

« SWAP ARRY \rightarrow LIST \rightarrow

DROP $\rightarrow \mathrm{n} \mathrm{m} \ll \mathrm{n}$ DUP
$\mathrm{m} \times 2+\mathrm{ROLL}-\mathrm{m} \times \rightarrow$ LIST
\rightarrow list 《 m DROPN list »
LIST \rightarrow DROP n 1 - m 2
\rightarrow LIST \rightarrow ARRY ENTER $\langle>$
Store the program ROW.
'ROW STO

Key in the program MINOR.
« 3 ROLLD ROW TRN SWAP ROW TRN ENTER <>

```
3:
1: * 3 ROLLD ROW TRN
```

Store the program MINOR.
'MINOR STO \qquad
Compute M_{23} of the following matrix.

$$
A=\left[\begin{array}{rrrr}
2 & -3 & 4 & -4 \\
6 & 5 & 2 & -1 \\
1 & 0 & 3 & -2 \\
0 & -5 & 3 & -6
\end{array}\right]
$$

Enter the matrix.

$$
\begin{aligned}
& \text { [}\left[\begin{array}{llll}
2 & -3 & 4 & -4\left[\begin{array}{llll}
6 & 5 & 2 & -1
\end{array}\right] \\
1 & 0
\end{array}\right.
\end{aligned}
$$

Enter the row and column to be removed.
2 ENTER 3 ENTER

Compute M_{23}.
USER 㪯MINO

Compute the minor $\operatorname{det}\left(M_{i j}\right)$.
ARRAY 㪯DET

The $\operatorname{minor} \operatorname{det}\left(M_{23}\right)$ is -18 .

Compute Rank

The dimension of the largest square submatrix whose determinant is nonzero is called the rank of the matrix. The rank is the maximum number of linearly independent row and column vectors.

Find the rank of matrix A.

$$
A=\left[\begin{array}{rrr}
4 & 2 & -1 \\
0 & 5 & -1 \\
12 & -4 & -1
\end{array}\right]
$$

Program MDET below is used to obtain the determinant of an arbitrary matrix minor. This program uses the program MINOR from the previous problem section.

Program Listing	Explanation
3 PICK	Duplicate the matrix.
3 ROLLD MINOR	Produce the matrix minor.
DET	Compute the minor determinant.

Key in the program.

CLEAR

« 3 PICK 3 ROLLD
MINOR DET ENTER $\langle>$

Store the program in MDET.

```
'MDET STO
```

\square
Key in the matrix.
$\left[\begin{array}{lll}4 & 2 & -1\end{array}\left[\begin{array}{lll}0 & 5 & -1 \\ 12 & -4 & -1 \\ \text { ENTER }\end{array}\right.\right.$

```\(2:\)1: \(\left[\begin{array}{llll}{\left[\begin{array}{lll}4 & 2 & -1\end{array}\right]} \\ {\left[\begin{array}{lll}6 & 5 & -1\end{array}\right]} \\ 12 & -4 & -1 & 1\end{array}\right]\)
```

Make a copy of the matrix and compute the determinant to determine whether the rank $=\mathbf{n}=3$.

ENTER ARRAY 泰DET

$\operatorname{Det}(A)$ is zero (approximately), so $\operatorname{rank}(A)$ is not equal to 3 .
Discard $\operatorname{det}(A)$.

DROP <>

Compute the minor for the 2×2 submatrices of A, until a minor is found that is not equal to zero.

Compute $\operatorname{det} M_{11}$.

$\operatorname{Det}\left(M_{11}\right)$ is equal to -9 , so $\operatorname{rank}(A)$ is equal to 2 .
 continuing to the next problem sections.

Hermitian Matrices

Determine whether a matrix is Hermitian. A square matrix with real or complex elements is Hermitian if the matrix is equal to its conjugate transpose.

Determine whether the 4×4 matrix A is Hermitian.

$$
A=\left[\begin{array}{cccc}
1 & 2-i & 2 & -3+i \\
2+i & 3 & i & 3 \\
2 & -i & 4 & 1-i \\
3-i & 3 & 1+i & 0
\end{array}\right]
$$

Put the elements of A on the stack individually.
CLEAR \rangle

1 ENTER
(2,-1 ENTER
2 ENTER
(-3,1 ENTER
(2,1 ENTER
3 ENTER
(0,1 ENTER
3 ENTER

2 ENTER
(0,-1 ENTER
4 ENTER
(1,-1 ENTER
(3,-1 ENTER
3 ENTER
(1,1 ENTER
0 ENTER

$4:$	$(2,-1)^{1}$
3	
2	
$1:$	$(-3,1)$

$(-3,1)$

$4:$	$(0,-1)^{2}$
$3:$	$(1,-1)^{4}$
1	

$(2,1)$
(0, 1)

$4:$	$(2,1)$
$3:$	$(0,1)$
$2:$	3
$1:$	

$(0,-1)$
$(1,-1)$

Enter the dimensions of A.
\{ 44 ENTER

| $4:$ | $\langle 1,1\rangle$ |
| ---: | ---: | ---: |
| 3 | |
| $2:$ | $\{44\}$ |
| $1:$ | |

Place the elements into the matrix.

You can view the entire matrix to check for correctness using EDIT or VIEW.

Make a copy of the matrix.

ENTER

Compute the conjugate transpose. Since A is complex, function TRN performs both the transpose and the conjugation.

奉TRN

Test $\operatorname{conj}\left(A^{T}\right)$ and A for equivalency. If A is Hermitian, $\operatorname{conj}\left(A^{T}\right)$ and A will be equal, and 르을
TEST $\overline{\underline{\underline{\underline{\underline{S}}}} \text { SAME }}$

Matrix A is not Hermitian.

Systems of Linear Equations

One of the most frequent and fundamental applications of matrices arises from the need to solve a system of m linear equations in n unknowns. The HP-28C can be used to find solutions to both non-homogeneous and homogeneous systems of the form $A X=B$.

Non-Homogeneous System

Solve a system of linear equations of the form $A X=B$.

$$
\begin{array}{r}
x_{1}+x_{2}-2 x_{3}+x_{4}+3 x_{5}=1 \\
3 x_{1}+2 x_{2}-4 x_{3}-3 x_{4}-8 x_{5}=2 \\
2 x_{1}-x_{2}+2 x_{3}+2 x_{4}+5 x_{5}=3
\end{array}
$$

Clear the stack and set the display mode to two decimal places.

Key in the coefficients of the system of equations.

$$
\begin{array}{lllllllll}
{\left[\begin{array}{lllllll}
1 & 1 & -2 & 1 & 3 & 3 & 2
\end{array}-4\right.} & -3 \\
-8 & {[} & 2 & -1 & 2 & 2 & 5 & \text { ENTER }
\end{array}
$$

Store matrix A.
'A STO

Key in the elements of B.
[[1[2[3 ENTER

Store matrix B.
' B STO

To solve for X, we use the method

$$
X=\frac{A^{T} B}{A^{T} A}
$$

Compute A^{T}.

ARRAY
 A ENTER

㐁TRN

STEE ENM TKN CON IDN LESO

Multiply by B.
B \boxtimes

Compute A^{T}.
A ENTER

㪯TRN

Multiply by A.

A x

Divide $A^{T} B$ by $A^{T} A$.
\div

1: $\begin{array}{rlll}{\left[\begin{array}{lll}1 & 12 &] \\ & 1 & 24 \\ & 0 & 80\end{array}\right]}\end{array}$
ETEE ROM IEN CON IINN BESD

VIEWT and VIEW \downarrow can be used to display all of the elements. They are $x_{1}=1.12, x_{2}=1.24, x_{3}=0.80, x_{4}=-0.08$, and $x_{5}=0.11$.

Homogeneous System

Solve a homogeneous system of linear equations of the form $A X=0$.

$$
\begin{aligned}
x_{1}-2 x_{2}+3 x_{3} & =0 \\
2 x_{1}+6 x_{2}+x_{3} & =0 \\
3 x_{1}-4 x_{2}+8 x_{3} & =0
\end{aligned}
$$

The program UT below takes a stack of vectors representing homogeneous simultaneous equations and transforms them to upper triangular form.

Program Listing

DUP SIZE LIST \rightarrow
DROP $\rightarrow s$
" s 2
FOR j j -
$1+\rightarrow \mathrm{m}$
" 1j1-
FOR ii ROLL jPICK
m $1 \rightarrow$ LIST DUP2 GET 4 PICK
ROT GET SWAP $\div x-$
i ROLLD NEXT»-1 STEP»

Key in the program.

CLEAR

« DUP SIZE LIST \rightarrow
DROP $\rightarrow s \ll s 2$
FOR j s j - $1+$
\rightarrow m « l j 1 -
FOR i i ROLL j PICK
m $1 \rightarrow$ LIST DUP2 GET
4 PICK ROT GET SWAP
$\div \times-i$ ROLLD
NEXT » -1 STEP >
ENTER <>

Explanation

Save number of elements as s .
For j = s (down) to 2, transform the bottom $\mathrm{j}-1$ vectors.
$\mathrm{m}=\mathrm{s}-\mathrm{j}+1$
Loop for $\mathrm{i}=1$ to $\mathrm{j}-1$
Transform the vectors.

Store the program in UT.
'UT STO \square
Set the display mode to one decimal place.
MODE 1 奉 $\overline{\underline{F I X}}$

Key in the coefficients.

$$
\begin{aligned}
& \text { [}\left[\begin{array}{lllll}
1 & -2 & 3[2 & 6 & 1[3
\end{array}\right]-4 \\
& \text { ENTER }
\end{aligned}
$$

Store the matrix in $A R R$ for a verification at the end of the problem.
'ARR STO

Edit matrix $A R R$ to reduce to row echelon form.

USER
를ARR

Use EDIT mode and the DEL key to remove the outer brackets of the array $A R R$ and place the rows into three independent row vectors. After removing the left- and right-most braces, the edited rows are ENTER ed:

```
[ [rrrrr
    [ [\begin{array}{llll}{3}&{-4}&{8}\end{array}] ENTER
```


Now transform the matrix to upper triangular form.

The matrix is now in row echelon form, so the system of three transformed equations is ready to be solved. The matrix represents the system of linear equations

$$
\begin{aligned}
x_{1}-2 x_{2}+3 x_{3} & =0 \\
10 x_{2}-5 x_{3} & =0 \\
0 & =0
\end{aligned}
$$

Drop the equation $0=0$.

DROP

Enter the equation from row 2.

$$
\text { ' } 10 \times \mathrm{X} 2-5 \times X 3=0 \text { ENTER }
$$

Solve the equation in terms of x_{3}.
' X3 ENTER

Isolate the term x_{3}.
ALGEBRA
書ISOL

fixla Isol cumashom oriniexter
Collect terms.
BCOLCT 童

The solution is $x_{3}=2^{*} x_{2}$. Remove row 2 to solve row 1 .

DROP
DROP

[^0]Enter the equation for row 1, making the substitution for x_{3}.

$$
\begin{aligned}
& \mathrm{X} 1-2 \times \mathrm{X} 2+6 \times \mathrm{X} 2 \\
& \text { ENTER }
\end{aligned}
$$

Solve for x_{1}.
' X1 ENTER

Isolate the term.
=1SOL

Collect terms.
㪯COLCT

The result is $x_{1}=-4^{*} x_{2}$. A solution is $x_{1}=-4, x_{2}=1, x_{3}=2$. Verify this 3×1 solution vector X. Key in vector X.

$$
\left[\begin{array}{ll}
-4[1[2] & \text { ENTER }
\end{array}\right.
$$

Put the coefficient matrix $A R R$ on the stack.

ARR

Swap the positions of $A R R$ and X.
SWAP

Multiply $A R R^{*} X$. x

$A R R{ }^{*} X=0$. Thus X is a verified solution to the system.
Program UT will be used in a later problem section.

Iterative Refinement

Due to rounding errors, in some cases the numerically calculated solution Z is not precisely the solution to the original system $A X=B$. In many applications, Z may be an adequate solution. When additional accuracy is desired, the computed solution Z can be improved by the method of iterative refinement. This method uses the residual error associated with a solution to modify the solution.

Solve the system of linear equations $A X=B$.

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
33 & 16 & 72 \\
-24 & -10 & -57 \\
-8 & -4 & -17
\end{array}\right] \\
B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Clear the display and the set the standard display mode.

CLEAR	
MODE	
ㄹSTD	

```
3:
[ STD ]|FRE [SCP [ENG] [GKG[ RAD ]
```

Solve for $A X=B$ and improve the accuracy by iterative refinement using residual corrections. Key in the coefficient matrix.
[$\left[\begin{array}{llll}33 & 16 & 72\left[\begin{array}{ll}-24 & -10\end{array}\right. & -57\end{array}\right.$
$\left[\begin{array}{lll}-8 & -4 & -17 \\ \text { ENTER }\end{array}\right.$

Store matrix A.
'A STO

```
\3:
```

Key in the constant matrix.
[[O[O[1 ENTER

Store matrix B.

' B STO

```
|3:
```

Compute $Z=B / A$.

USER
童 B 立

\div

Store the approximate 3×1 solution matrix Z.
' Z STO

Compute the Residual Error Matrix R, where $R=B-A Z$. The function RSD calculates R using extended precision.

Solve using the RSD function.

Store matrix R.
' R STO

```
3:
1:
EIVE FOM IAN CON IGN RED
```

Find the actual error $E=|Z-X|=(B-A Z) / A=R / A$ ．

USER
邫员立
暙A喜
\div

Compute the corrected solution $X=Z+E$ ．

，

$X=$ the corrected solution．

Vector Spaces

Vector spaces are widely used in mathematics, physics and engineering to represent physical properties such as magnitude and direction within a geometric system. Several important vector operations can be performed easily using the built-in functions of the ARRAY menu.

Basis

A basis is a set of n linearly independent vectors that span the vector space $V_{n}(\mathrm{R})$.

Determine whether the vectors X_{1}, X_{2}, and X_{3} form a basis that spans $V_{3}(\mathrm{R})$.

$$
\begin{aligned}
& X_{1}=\left[\begin{array}{llll}
1 & 1 & 2
\end{array}\right] \\
& X_{2}=\left[\begin{array}{lrrr}
3 & 2 & 4
\end{array}\right] \\
& X_{3}=\left[\begin{array}{lrrll}
1 & -3 & 1
\end{array}\right]
\end{aligned}
$$

Clear the stack and set the standard display mode.

CLEAR
MODE

$\begin{aligned} & 3: \\ & 2 \\ & 1 \\ & 1 \end{aligned}$

Key in the three vectors as a 3×3 matrix A and make two copies.
[$\left[\begin{array}{llllll}1 & 1 & 2\left[\begin{array}{llll}3 & 2 & 4\left[\begin{array}{ll}1 & -3\end{array}\right. & 1\end{array}\right]\end{array}\right.$
ENTER ENTER

Store matrix A for the next problem section.
'A STO

Compute $\operatorname{det}(A)$.

ARRAY	ARRAY
	韭DET

$\operatorname{Det}(A)=-7$. Thus A is non-singular, and the three row vectors are linearly independent and form a basis.

Orthogonality

Two vectors are mutually orthogonal if their inner product equals zero.
Determine which of the vectors from the previous problem are mutually orthogonal.

CLEAR

Recall matrix A to the stack.
A ENTER

```
1: [[[\begin{array}{lllll}{1}&{1}&{2}&{3}&{3}\end{array}]
    [ [1-3}101][
CEOSS DOT OET HES ENEM CNEM
```

Use EDIT to remove the outer brackets of the array A and form three row vectors. After removing the left- and right-most braces with $D E L$, the edited rows are ENTER ed:

$\begin{aligned} & {\left[\begin{array}{cccc} 1 & 1 & 2 &] \\ {\left[\begin{array}{lllll} 3 & 2 & 4 &] \end{array}\right]} \\ {\left[\begin{array}{llll} -3 & 1 \end{array}\right]} \end{array}\right. \text { ENTER }} \end{aligned}$

3:		$\left[\begin{array}{lllll}{\left[\begin{array}{llll}{[} & 1 & 2 & \\ & 3 & 2 & 4\end{array}\right]} \\ 1 & -3 & 1 &]\end{array}\right.$	
CROSS DOUT	WIT	Cis	SNEM CNSM

Note: two utility routines for modifying a two-dimensional array to its row components and vice versa are shown at the end of this section. These routines can be used as alternatives for the editing shown above.

The third vector is X_{3}.
' X3 sto

The second vector is X_{2}.

[^1]

The first vector is X_{1}.
' X1 5

Compute the inner products.
X1 ENTER
X 2 ENTER

気DOT

$X_{1} \cdot X_{2}=13$. These rows are not orthogonal.
DROP
X2 ENTER
X3 ENTER

$X_{2} \cdot X_{3}=1$. These rows are not orthogonal.

DROP	
X1	ENTER
X3	ENTER

邫DOT

$X_{1} \cdot X_{3}=0$. These two vectors are mutually orthogonal.

Matrix Utility Programs

Several problem sections up to this point have included use of EDIT mode to reduce a matrix to its row elements. The following utility programs can be used as alternatives for changing a matrix to its row elements, and vice versa.

Program ROW \rightarrow below takes a stack of n row vectors and the number n in level 1 and returns the matrix combining those n row vectors.
« OVER SIZE LIST \rightarrow DROP $\rightarrow \mathrm{nm}<\mathrm{O} 1$ -
FOR i i m $\times \mathrm{n}$ i - +

1: * OVER SIZE LIST

ROLL ARRY \rightarrow DROP NEXT
n m $2 \rightarrow$ LIST \rightarrow ARRY \gg ENTER <>

After keying in the program above, store the program and put the rows of array A in matrix form.

$[3,2,4]$
[$1,-3,1$] ENTER
3 USER ROW \rightarrow 童

Program \rightarrow ROW below takes a matrix and separates it into individual rows on the stack.

```
< ARRY }->\mathrm{ LIST }->\mathrm{ DROP
n m < l n FOR i m l
->LIST }->\mathrm{ ARRY n i -
m x i + ROLLD NEXT > >
ENTER <>
```

After keying in the program above, store the program and convert the matrix from above back to row form.

Vector Length

Find the length of vector X_{1}（from the previous problem section），denoted by

$$
\left\|X_{1}\right\|=\sqrt{X_{1} \cdot X_{1}}
$$

Clear the stack and set the display mode to two decimal places．

$3:$		
$2 \vdots$		
$1 \vdots$		
SID		

Recall X_{1} from the previous problem．Since X_{1} was stored，you may alter－ natively use USER 环㪯．
X1 ENTER

Function ABS returns the Frobenius norm of an array，which is equivalent to the length of a vector．

ARRAY
邫 ABS

$\left\|X_{1}\right\|=2.45$ ．

Normalization

To normalize a vector X into its unique unit vector U, divide each component of X by $\|X\|$. We will normalize X_{1}. Vectors X_{1}, X_{2}, and X_{3} are from the section entitled "Orthogonality."

Enter a program that computes $X /\|X\|$.

CLEAR

« DUP ABS $\frac{1}{x} \times$ ENTER

Store program NORM.

' NORM STO

```
3:
2:
CKOSS COT DET HES RNEMCNKM
```

Enter the vector to be normalized.
USER

童 X1

```
3:
2:
1: [ 1.00 1.00 2.00 ]
```


Normalize the vector.
邫NORM

The result is $U_{1}=\left[\begin{array}{ll}0.41 & 0.41 \\ 0.82\end{array}\right]$.
Normalize vector X_{2}.

NORM

The result is $U_{2}=\left[\begin{array}{lll}0.56 & 0.37 & 0.74\end{array}\right]$.

Finally, normalize vector X_{3}.
奉 X3

The result is $U_{3}=\left[\begin{array}{lll}0.30 & -0.90 & 0.30\end{array}\right]$.

Gram-Schmidt Orthogonalization

Form an orthogonal basis that spans $V_{3}(\mathrm{R})$ using the Gram-Schmidt process. Given that X_{1}, X_{2}, and X_{3} form a basis, then the vectors Y_{1}, Y_{2}, and Y_{3} form an orthogonal basis, formed by the following process.

$$
\begin{gathered}
Y_{1}=X_{1} \\
Y_{2}=X_{2}-\left(\frac{Y_{1} \cdot X_{2}}{Y_{1} \cdot Y_{1}} * Y_{1}\right) \\
Y_{3}=X_{3}-\left(\frac{Y_{2} \cdot X_{3}}{Y_{2} \cdot Y_{2}} * Y_{2}\right)-\left(\frac{Y_{1} \cdot X_{3}}{Y_{1} \cdot Y_{1}} * Y_{1}\right)
\end{gathered}
$$

Vectors X_{1}, X_{2}, and X_{3} are from the section entitled "Orthogonality".
Calculate Y_{1}.
CLEAR

Store Y_{1}.
'Y1 STO

Write a program to calculate Y_{2}.

```
< X2 Y1 X2 DOT Y1 Y1
DOT \div Y1 × - >
ENTER
```


Execute the program.

$Y_{2}=[0.83-0.17-0.33]$. Store Y_{2}.
' Y2 5

Write a program to calculate Y_{3}.
« X3 Y2 X3 DOT Y2 Y2
DOT $\div \mathrm{Y} 2 \times-\mathrm{Y} 1 \mathrm{X} 3$
DOT Y1 Y1 DOT \div Y1

\times - > ENTER
Execute the program.

EVAL

$Y_{3}=[4.0 \mathrm{E}-12-2.801 .40] . \quad$ Store Y_{3}.
'Y3 STO

The vectors Y_{1}, Y_{2}, and Y_{3} form an orthogonal basis.

Generalized Gram-Schmidt Orthogonalization Routine

The program GSO below is a generalized routine for finding an orthogonal basis for an arbitrary list of vectors.

LIST DROP	
$+\mathrm{ROLID} \rightarrow$ IST	
2 S	2. 0 O SWAP FOR $n \mathrm{Mm}$

n GET 1 n 1 - FOR i M i
GET DUP DUP2 DOT INV \times
SWAP 3 PICK DOT \times -
NEXT $n ~ M ~ S W A P ~ R O T ~ P U T ~ ' M ' ~$
STO NEXT M LIST \rightarrow
DROP \gg ENTER <<>
After keying in the program above, store the program and form an orthogonal basis for the three vectors in the previous example.

'GSO		
[$1,1,2$]		
[3,2,4]		
[$1,-3,1$]	USER	GSO

Orthonormal Basis

Form an orthonormal basis G_{i} of orthogonal unit vectors that spans $V_{3}(\mathrm{R})$ ．Vectors Y_{1}, Y_{2} ，and Y_{3} and program NORM are from the two pre－ vious problem sections．

$$
G_{i}=\frac{Y_{i}}{\left\|Y_{i}\right\|}
$$

Calculate G_{1} ．
CLEAR

Execute the normalization program from the section entitled＂Normaliza－ tion＂．

㤗NORM㪯

Store the result in G_{1} ．

```
'G1 STO
```


Calculate G_{2} ．
㪯Y2童

Compute the norm．
㤗NORM

Store the result in G_{2} ．
＇G2 STO

Calculate G_{3} ．
泰Y3童

Compute the norm．
㪯NORM

Store the result in G_{3} ．
＇G3

Verify that all three vectors are mutually orthogonal．

Compute the dot product $\left(G_{1} \cdot G_{2}\right)$ ．
ARRAY

$G_{1} \cdot G_{2} \approx 0$.
Compute the dot product $\left(G_{2} \cdot G_{3}\right)$ ．

DROP
USER
G2
G3
ARRAY
DOT

$3:$		
2：		
1：		
1：		

$G_{2} \cdot G_{3} \approx 0$.

Compute the dot product $\left(G_{1} \cdot G_{3}\right)$ ．

Thus，since all three dot products are approximately equal to zero，the three vectors are mutually orthogonal．

Now verify that they form a basis．Combine the three vectors into one array by placing the elements on the stack and removing their individual dimension lists．

DROP	
USER	暙 G1
ARRAY	
DROP	
USER	衰 G2 邫
ARRAY	暙 ARRY \rightarrow 栆
DROP	
USER	暙 G3 立
ARRAY	
DROP	

3：	1．28E－12
1：	0.45
	GT1 FUTI GTIT

Note the utility program \rightarrow ROW，described in the section entitled＂Ortho－ gonality，＂could also be used to form the list of vectors above．

Next key in the dimensions of the matrix that will be formed by the three vectors．
$\left\{\begin{array}{ll}3 & 3\end{array}\right\}$ ENTER

Finally，place the three vectors into matrix form．
立 \rightarrow ARRY $\bar{\equiv}$

Compute the determinant.
娈DET

$3:$	
$2:$	-1.00
$1:$	
G003s	DOT

The determinant is -1 . The matrix is non-singular and the vectors form an orthonormal basis.

Purge the vectors $X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}, G_{1}, G_{2}, G_{3}$ and program NORM.

Eigenvalues

Another fundamental use for matrices is in developing a structure to represent linear transformations within a geometric system. Any matrix that represents a particular linear transformation reflects the properties of that transformation.

Since similar matrices share all the intrinsic geometric properties of a transformation, an important problem is to find a simple canonical form for each similarity class. This simple canonical form can be found by computing the eigenvalues and eigenvectors. Two methods for computing eigenvalues are illustrated, along with a method for finding eigenvectors.

The Characteristic Polynomial

The characteristic equation for a matrix can be written as

$$
\begin{array}{rll}
A X & =\lambda X \\
A X-\lambda X & =0 \\
(A-\lambda I) X & =0 & \\
X & =0 & \\
\text { Trivial Solution } \\
\operatorname{det}(A-\lambda I) & =0 & \text { Non-trivial Solution }
\end{array}
$$

Expansion of the non-trivial characteristic equation yields the characteristic polynomial

$$
s_{0} \lambda^{n}+s_{1} \lambda^{n-1}+\cdots+s_{n-1} \lambda+s_{n}=0
$$

The three programs below combine to determine the characteristic polynomial for an arbitrary matrix on the stack.

The first program, TRCN, creates a list of the traces of the first n powers of the matrix.

The second program, SYM, uses the list created by TRCN to compute the coefficients of the characteristic polynomial.

The final program, PSERS, uses the coefficients from SYM and a variable name entered into level 1 to create an expression of the characteristic polynomial.

Key in the first program.

Store the program.

'TRCN STO

Key in the second program.
« DUP SIZE \rightarrow b n 《
\{1\} 1 n FOR i $\rightarrow \mathrm{s}$ « 0 1 i FOR j b j
GET s i j - $1+\operatorname{GET} \times$

- NEXT i $\div 1 \rightarrow$ LIST s

SWAP + » NEXT \gg
ENTER <>
Store the program.
'SYM STO

Key in the final program.

$\begin{aligned} & « \rightarrow x \text { « LIST } \rightarrow 0 \text { SWAP } \\ & 1 \text { FOR n n } 1+\text { ROLL } \\ & \text { x n } 1-\wedge x+-1 \\ & \text { STEP » ENTER <> } \end{aligned}$

1: * $\cos ^{*}$ स LIST ${ }^{0.00}$

Store the program.
' PSERS STO

Find the characteristic polynomial for the following matrix.

$$
A R R=\left[\begin{array}{rrr}
-17 & -57 & -69 \\
1 & 5 & 3 \\
5 & 15 & 21
\end{array}\right]
$$

Key in the coefficient matrix.

$$
\begin{aligned}
& \text { [} \begin{array}{lll}
-17 & -57 & -69\left[\begin{array}{lll}
1 & 5 & 3
\end{array}\right]
\end{array} \\
& \text { [5 } 1515 \text { ENTER }
\end{aligned}
$$

Create a list of the traces of the first n powers for the matrix.
USER 㪯TRCN
$\begin{array}{llllll}2: & \{ & 9.0041 .00225 .00\end{array}$

Compute the coefficients of the characteristic polynomial.
奉SYM

Create the algebraic expression of the characteristic polynomial with the variable name L.

'L' $\overline{\underline{\underline{\underline{\underline{\underline{x}}}}} \text { PSERS }}$

The characteristic polynomial is

$$
\lambda^{3}-9 \lambda^{2}+20 \lambda-12
$$

Store the polynomial as the current expression in EQ for the following problem section.

STEQ

Compute Eigenvalues from Expansion

The eigenvalues of a matrix can be found by solving for the roots of the characteristic polynomial.

Find the eigenvalues for the characteristic polynomial stored in the previous problem section.

Clear the stack and set the display mode to two decimal places.
CLEAR $2 \overline{\text { MODE }}$

Clear the current plot parameters.
PLOT
IPPAR PURGE

```
3:
2:
```


Adjust the plot height by ten.

$$
10 \text { 㫪 } * \mathrm{H}
$$

```
|3:
```

Draw a plot of the characteristic polynomial, which was stored in EQ in the previous problem.

```
DRAW 
```


Note the three roots of the quadratic indicate three distinct eigenvalues for the 3×3 matrix $A R R$.

Use the solver to set guesses for the roots and solve for the three eigenvalues.

ATTN
SOLV
春SOLVR

Make an initial guess of 0.5 for the first root．
0.5 童L

Solve for the first root．
Pressing the ENTER key below will display the intermediate values during calculation．
\square 㪯L垔 ENTER

The first eigenvalue $\lambda_{1}=1$ ．
Make an initial guess of 2.5 for the second eigenvalue．
$\frac{\text { CLEAR }}{2.5 \text { 垔L垔 }}$

Solve for the root．
\square 㪯L

The second eigenvalue $\lambda_{2}=2$ ．
Make an initial guess of 5 for the third eigenvalue．
5 CLEAR

Solve for the root．
\square 㪯L

The third eigenvalue $\lambda_{3}=6$ ．

Compute Eigenvectors

We can compute the eigenvectors corresponding to the three eigenvalues found in the previous problem.

$$
A R R=\left[\begin{array}{rrr}
-17 & -57 & -69 \\
1 & 5 & 3 \\
5 & 15 & 21
\end{array}\right]
$$

Clear the stack and set the display mode to one decimal place.

| CLEAR |
| :--- | :--- |
| MODE |
| 㪯FIX |

$\begin{aligned} & 3: \\ & 2: \\ & 1: \end{aligned}$

Key in the matrix $A R R$.

$$
\begin{aligned}
& {\left[\begin{array} { l r l l }
{ [- 1 7 } & { - 5 7 } & { - 6 9 }
\end{array} \left[\begin{array}{lll}
1 & 5 & 3
\end{array}\right.\right.} \\
& {\left[\begin{array}{llll}
5 & 15 & 21 & \text { ENTER }
\end{array}\right.}
\end{aligned}
$$

Create the 3×3 Identity matrix I.
3 ENTER

ARRAY $\overline{\underline{\underline{\underline{\underline{\underline{I}}}}} \underline{\text { IDN }}}$

Form $\lambda^{*} I$ for $\lambda_{1}=1$.
1 ENTER
区

Subtract from $A R R$ to obtain the matrix $\left(A R R-\lambda_{1} I\right)$.

Store the matrix $\left(A R R-\lambda_{1} I\right)$ as $E I G$.
' EIG STO

3:

Recall the matrix $E I G$.
USER $\overline{\underline{\underline{\underline{\underline{E}}}} \mathrm{EIG}}$

Verify that $\operatorname{det}(A-\lambda I)=0$.
ARRAY

The determinant is approximately zero.
Recall matrix $E I G$ once more.
DROP

Reduce to row echelon form to solve for the eigenvector X_{1}, where $\left(A-\lambda_{1} I\right) X_{1}=0$.

Enter EDIT mode and use the $D E L$ key to remove the outer array brackets and form three individual row vectors. Each row vector corresponds to one equation of the system. After the edit, the row vectors can be ENTER ed:

Note the utilities in the section entitled "Orthogonality" which can also perform the modification of the form of the matrix above.

Use the program UT, described in the problem section "Homogeneous System", to reduce the matrix to upper triangular form.

Remove the vector that represents the equation $0=0$.

DROP

Enter the equation represented by second vector.
'. $8 \times \mathrm{X} 2-.8 \times \mathrm{X3}=0$
ENTER

Solve for x_{2}.

```
ALGEBRA
' X2 ENTER
```

$\begin{array}{lr} 3: & {\left[\begin{array}{c} 0.9 \\ 2.8 \\ 1: \\ 1 \end{array}\right.} \\ \hline \end{array}$	

Isolate the term.
童ISOL

Collect terms.
㪯COLCT

We obtain $x_{2}=x_{3}$. Remove this solution and the second vector from the stack.

```
3:
2
1: [ - 18.0-57.0 - 69.0...
```


Enter the equation represented by the first vector, substituting x_{3} with x_{2}.
$1-18 \times \mathrm{X1}-57 \times \mathrm{X} 2$
$-69 \times \mathrm{X} 2=0$ ENTER

Solve for x_{1}.

' X1 ENTER

Isolate the term.
ISOL

$$
\begin{aligned}
& \text { 2: } 5-18.0-57.0-69.0 \\
& \text { 1: }
\end{aligned}
$$

Collect like terms.

We get $x_{1}=-7^{*} x_{2}$.
Therefore a solution eigenvector is $x_{1}=-7, x_{2}=1, x_{3}=1$, or $X_{1}=\left[\begin{array}{lll}-7 & 1 & 1\end{array}\right]$.
Verify that $(A-\lambda I) X=0$.

CLEAR

[-7 1 1 ENTER

Recall $(A-\lambda I)$.
USER
童EIG

Multiply the two matrices.

```
SWAP
```

x

The result is 0 , verifying that X_{1} is indeed an eigenvector associated with λ_{1}.

The same procedure can be followed to find eigenvectors for $\lambda_{2}=2$ and $\lambda_{3}=6$.

Purge the user variables and programs used in the last three sections. \{'EIG' 'L' 'PPAR' 'EQ' 'UT'\} PURGE.

Compute Eigenvalues from $|\lambda I-A|$

Find eigenvalues directly from the function $\operatorname{det}(\lambda I-A)$, without computing the characteristic polynomial.

$$
A=\left[\begin{array}{rrr}
-7.8 & -29.7 & -39.6 \\
0 & 2.1 & 0 \\
3.3 & 9.9 & 15.3
\end{array}\right]
$$

Clear the stack and set the display mode to two decimal places.

CLEAR
MODE
磍 FIX

Clear the current plot parameters.
' PPAR PURGE

Key in the 3×3 matrix.
$\left[\begin{array}{lll}{[-7.8} & -29.7 & -39.6\end{array}\right.$
[0 2.1 0[3.3 9.9 15.3
ENTER

Store matrix A.
'A STO

Enter a program that computes the function $\operatorname{det}(\lambda I-A)$, with λ the independent variable.

```
< 3 IDN L x A - DET >
ENTER
```

```
1: * 3.00 IDN L * R -
    DET *
STG[FIK] SCT ENIG GLG[RAD]
```

Store the function as the current expression in EQ.


```
3:
2:
```


Adjust the plot height.
5 奉*H

Set a larger resolution.

Plot the function, using λ for the abscissa. The program takes several minutes to complete, as it computes the determinant for each point plotted.

高 DRAW $\bar{\equiv}$

The curve shows that there are only two distinct roots. The leftmost root, which is a local maximum, must represent a double eigenvalue root.

Digitize the roots to set initial guesses for the root solver.

Set the standard display mode.

$3:$		
$2:$		$(2,1,0)$
$1:$		$(5,3,0$
$[$ STO $]$ FIK	SCI	ENG

NOTE: The values displayed will vary by differences in the digitizing position from the graphics display.

Use the Solver to find the roots of the curve.

SOLV
흘SOLVR

$3:$		
$2:$		$(2,1,0)$
$1:$	6	Frife

Solve for the rightmost root．
㪯L \square 童L童 ENTER

One root is $\lambda_{1}=5.40$ ．
Drop this result from the stack and solve for the next root．

DROP		
邫L夆	$\overline{\text { 를 }}$	ENTER

The double eigenvalue is $\lambda_{2}=\lambda_{3}=2.10$ ．

Least Squares

The method of least squares is a standard statistical algorithm used to fit a curve to data in order to estimate a function, predict a trend, or approximate missing data values. Least squares results can easily be calculated on the HP-28C and the graphic display is particularly useful for examining the fit to the original data.

Straight Line Fitting

Find the least squares straight line fit to the four points: $(0,1),(1,3),(2,4)$, and (3,4).

The least squares solution is given by $Y=M V$ to fit the line $y=a x+b$.
NOTE: The solution provided below serves to illustrate matrix operations, and could be replaced, in the case of $y=a x+b$, with the statistical functions (Linear Regression) of the HP-28C.

$$
\begin{gathered}
Y=\left[\begin{array}{l}
1 \\
3 \\
4 \\
4
\end{array}\right] \\
M=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1 \\
3 & 1
\end{array}\right] \\
V=\left[\begin{array}{l}
a \\
b
\end{array}\right]
\end{gathered}
$$

Solving for V gives us

$$
V=\frac{M^{T} Y}{M^{T} M}
$$

CLEAR	
	2

Key in the y values of the data points.
[[1] 3[4[4 ENTER

	${ }_{j}$
SID[[IK] SCI	ENTS DIEG[rad

Store the 4×1 matrix Y ．

```
'Y STO
```

$3:$2：1：\qquad fIK \qquad 15 ENG RAD $]$

Key in the a and b values representing the line $y=a x+b$ ．

［［0 1 1［ 1 1［ 2 1［3 1 ENTER	

Store the 4×2 matrix M ．

```
M STO
```

| $3:$ |
| :--- | :--- |
| 2： |
| 1： |
| 1： |

Compute V using the least squares fitting method．

M ENTER
ARRAY
邫TRN
Y 区
M ENTER
者TRN
M 区

\div

Store the coefficients from matrix V in the individual variables a and b ．

```
# ARRY }
```


Drop the dimension list．

3：	1．90 1.50			

Store the two coefficients．

＇A STO

```
3:
1：
```


Enter the equation for the straight line．

```
'A x X + B ENTER
```

2：	
1：	＇ $\mathrm{A} \times \mathrm{X}+\mathrm{B}$＇
	GIT PUTHETI

Store the equation．

```
'LINE STO
```

```
3:
```


Recall equation LINE．
USER 㪯LINE

Store the line equation as the current expression in EQ．
SOLV 㪯STEQ垔

Use the Solver to compute the desired line．

The straight line fit to the data is the equation $y=1.5 x+1$ ．

Now use the PLOT menu to draw the line and verify the fit to the data．
Clear the current plot parameters．

PLOT

＇PPAR PURGE

Establish X as the independent variable．
＇X

Adjust the height by 5 ．
5 奉＊ H 童

$\text { ' } 1.00 * X+1$

Recenter the axes so that the point $(0,1)$ can be viewed on the plot．

$$
\begin{aligned}
& \text { (}-1,-1 \text {) ENTER } \\
& \text { AXES }
\end{aligned}
$$

Now move to the Statistics menu to set up a scatter plot．

```
STAT 凖CLE覀
```


Enter the four data points into Σ DAT．

［0，1
［ 1,3 泣 L
［ 2,4 青 Σ
4 䛚 $\Sigma+$

$3:$		
$2:$		
$1:$	$1.00 * X+1.50 '$	
$\Sigma+$	$E-$	NE

Enter a program that will overlay the function plot onto the scatter plot．
PLOT
« CLLCD DRWL DRAW ENTER

Draw the plot.
EVAL

We can see from the plot that the line fits the four points well.
Purge the variables used in the problem section. $\left\{{ }^{\prime} \Sigma P A R{ }^{\prime}\right.$ ' $\Sigma D A T ' ~ ' P P A R ' ~ ' E Q ' ~ ' A ' ~ ' B ' ~ ' M ' ~ ' Y '\} ~ P U R G E . ~$

Quadratic Polynomial

According to Newton's Second Law of Motion, a body near the earth's surface falls vertically downward according to the equation

$$
y=y_{0}+v_{0} t+\frac{1}{2} g t^{2}
$$

where
$y=$ vertical displacement at time t.
$y_{0}=$ initial vertical displacement at time $t_{0}=0$.
$v_{0}=$ initial velocity at time $t_{0}=0$.
$g=$ Newton's constant of acceleration of gravity near the earth's surface.

An experiment is performed to evaluate g. A weight is released with unknown initial displacement and velocity. At a fixed time interval the distance fallen from a fixed reference point is measured. The following results are obtained: At times $t=.1, .2, \ldots .5$ seconds the weight has fallen $y=-.055, .094, .314, .756$, and 1.138 meters, respectively, from the reference point. Calculate the value for Newton's constant g using these data.

We will fit the quadratic curve

$$
y=a+b t+c t^{2}
$$

to the five data points. The least squares solution is given by

$$
Y=M V
$$

where

$$
Y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]
$$

$$
M=\left[\begin{array}{ccc}
1 & t_{1} & t_{1}^{2} \\
1 & t_{2} & t_{2}^{2} \\
1 & t_{3} & t_{3}^{2} \\
1 & t_{4} & t_{4}^{2} \\
1 & t_{5} & t_{5}^{2}
\end{array}\right]
$$

and

$$
V=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

Solving for V gives us

$$
V=\frac{M^{T} Y}{M^{T} M}
$$

Clear the stack and set the display mode to three decimal places.

CLEAR
MODE
㪯 FIX

Key in the matrix of y values.

Store the 5×1 matrix Y.
I Y STO

Key in the components of array M.
Enter row $_{1}=1, .1, .1^{2}$.
1 ENTER
.1 ENTER
ENTER
x^{2}

Enter $\mathrm{row}_{2}=1, .2, .2^{2}$.
1 ENTER
.2 ENTER
ENTER
x^{2}

Enter $\mathrm{row}_{3}=1, .3, .3^{2}$.

Enter $\mathrm{row}_{4}=1, .4, .4^{2}$.
1 ENTER
. 4 ENTER

ENTER
x^{2}

Finally, enter row $_{5}=1, .5, .5^{2}$.

Key in the dimension of M.

```
{5 3 ENTER
```


Put the components into the array.

\rightarrow ARRY

$\begin{aligned} & 4 \\ & \hline 9 \end{aligned}$	

Store matrix M.
' M STO

Compute V using the least squares method.

M ENTER

Store matrix V.
${ }^{\prime} \mathrm{V}$ STO

Evaluate g, Newton's constant of gravity. Get element c from the solution vector V, then multiply c by $2 . g=2^{*} c$.

V ENTER
\{ 31 1 $\}$
GET
2 区

3:	
1:	9.829
Fhaky mikit FuT	GIT PUTH

Convert from $\mathrm{m} / \mathrm{sec}^{2}$ to $\mathrm{ft} / \mathrm{sec}^{2}$.
LC m ENTER

LC ft ENTER

CONVERT

The result is $g=32.246 \mathrm{ft} / \mathrm{sec}^{2}$.

Now use the solver to compute the desired quadratic polynomial.
$\mathrm{A}+\mathrm{B} \times \mathrm{T}+\mathrm{C} \times \mathrm{T}^{\wedge} 2$
ENTER

2:	32.246
1:	' $\mathrm{A}+\mathrm{B} \times \mathrm{T}+\mathrm{C} \times \mathrm{T}^{\prime}{ }^{\prime}$
Fikinulifiys FuT	1 GET PUTI GETI

Store equation POLY．
＇POLY STO

Get the coefficients from matrix V ．
V ENTER

$\text { 1: } \begin{array}{r} {\left[\begin{array}{c} -0.121 \\ {[0.099]} \end{array}\right]} \\ {\left[\begin{array}{c} 4.914 \end{array}\right]} \end{array}$

㐁ARRY \rightarrow 童

Drop the dimension list．
DROP

$3:$	-0.121
$2:$	0.999
$1:$	4.914
Fiknulawi	FUT

Store the three coefficients a, b ，and c ．
${ }^{\prime} \mathrm{C}$ STO

＇B STO

＇A STO

Recall the equation．
USER 㪯POLY

Store the equation as the current expression EQ.

Use the Solver to compute the desired equation.

The least squares solution equation is $-0.121+0.099 t+4.914 t^{2}$.
Next, we will overlay the function curve over a scatter plot of the data points to verify the fit.

First, clear the current plot parameters and establish t as the independent variable.

CLEAR		3:
PLOT	'PPAR PURGE	1:
'T	INDEP ${ }_{\text {砉 }}$	

Adjust the plot width by .1 , to plot 0.1 second intervals along the abscissa.

$$
.1 \overline{\underline{\underline{\underline{\underline{\underline{1}}}}} \mathrm{~W} \mathrm{~W}}
$$

```
3:
2:
```


Next use the Statistics menu to create the scatter plot.


```
|3:
```

Enter the data points for the scatter plot.

	-. 055	$\Sigma+$
[. 2	. 094	
[. 3	. 314	
[. 4	. 756	
. 5	1.138	邫 $\Sigma+$

\qquad

Now write a program to overlay the two plots．
PLOT
« CLLLCD DRWE DRAW
ENTER

```
3:
2:
1: * CLLCD DRWE DRAW *
```


Store program PLT．

```
'PLT STO
```

```
3:
2:
STER ELEC FMIN PMGK TNOSPDEAN
```

Draw the plot．
USER 童PLT垔

You may wish to rescale the plot height to obtain a better view of the fit of the first two data points．

$$
.25 \text { 芣* } \mathrm{H}
$$

USER
兰PLT

The plots show a good fit of the quadratic polynomial to the five data points．

Markov Chains

A Markov Chain is a system that moves from state to state, and in which the probability of transition to a next state depends only on the preceding state. The system states can be predicted at particular points in time using transition probabilities.

The transition matrix for the Markov Process is the $n \times n$ matrix $P=\left[p_{i j}\right]$ where $p_{i j}=$ probability of transition directly from state j to state i, and $\sum_{i=1}^{n} p_{i j}=1$.

The components of the state vector $X^{(n)}$ signify the probability that the system is in state i at the $n^{\text {th }}$ observation.

$$
X^{(n)}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right]
$$

The model for the system is described by $X^{(n+1)}=P X^{(n)}$, where the transition matrix applied to the current state determines the next state.

Steady State of a System

A chemist runs an experiment where colored films are immersed in a solution for a brief time period, resulting in a possible color change. He calculates the color changes according to the following probabilities.

Magenta	Original Color Cyan	Yellow	New Color
.8	.3	.2	Magenta
.1	.2	.6	Cyan
.1	.5	.2	Yellow

Determine to two decimal places the probable future color of a cyan film dipped in the solution several times.

CLEAR	

$3:$		
$2:$		
$1:$		
STO [FIK] SCI	ENG	

Key in the 3×3 transition matrix P.

$$
\begin{array}{llll}
{\left[\begin{array}{llll}
.8 & .3 & .2
\end{array}\right]} \\
.5 & .2 & .2 & .2 \\
\text { ENTER }
\end{array}
$$

'P STO

Key in the initial state vector X^{0}. This vector represent an initial state of cyan.
[[O[1[0 ENTER

' X STO

$3:$
1:
SIIT[FIX] SCI

Key in the initial value for $n=$ current state.


```
3:
2:
1:
STD[ FIK] SCT [ENG DIEG[ RAD]
```

Write a program to compute the next future state.

```
< N 1 + 'N' STO P
SWAP x >> ENTER
```

```
2:
1: & NNAP:00 + 'N' STO P
STO [FIK ] SCI ENG DEK[ RAD]
```

Store program MARK.

```
'MARK STO
```

```
3:
2:
STG[ FIK ] SGI ENG DEG[ RAD ]
```

Recall the initial state vector.

USER
$\overline{\equiv \bar{\equiv} \bar{\equiv}}$

Compute the next state.

```
MARK 位
```


After one observation, the color is most likely to be yellow. Compute the next state.

MARK $\overline{\underline{\underline{I}}}$

After two observations, the color is most likely to be either magenta or cyan. Continue computing future states until a final steady state is reached.

MARK

르를

奉MARK

MARK

MARK

＝MARK

MARK

The system has reached a steady state．Determine how many observations were completed to reach this final state．

泰 $\mathrm{N} \overline{\underline{\underline{\underline{I}}}}$

The system reaches a steady state after $n=10$ observations. The probable future color of an initially cyan film immersed several times is . 56 magenta, .23 cyan, and .21 yellow.

Purge the variables used in this problem section. \{'MARK' 'N' ' X^{\prime} ' P^{\prime} ' PURGE.

An Example:

Matrix manipulations are used to solve complex, multi-dimensional problems. The following sections illustrate use of the HP-28C matrix capabilities in a market with challenging economic issues. These same analytical tools can be applied across many industries.

Forest Management

When a forest is managed by a sustainable harvesting policy, every tree harvested is replaced by a new seedling, so the total population quantity remains constant. A matrix model can be developed to assist in determining optimal harvesting procedures. The model is based on categorizing the trees into height/price classes and computing an optimal sustainable yield for a long-range time period.

The Sustainable Harvesting Cycle is represented by:
Forest ready for harvest - harvest + new seedlings $=$ forest after harvest, or

$$
G X-Y+R Y=X
$$

where

$$
X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]
$$

$X=$ Nonharvest vector, the trees that remain after the harvest and replanting.
$x_{i}=$ number of trees in the i th class.
i ranges from 1 to n, where there are n height/price classes.
$S=\sum_{i=1}^{n} x_{i}=$ total number of trees sustained.
Tree growth between harvests is designated by g_{i}, the fraction of trees that grow from class i to class $i+1$.
$1-g_{i}=$ fraction of trees that remain in class i.

The growth matrix is

$$
G=\left[\begin{array}{ccccc}
1-g_{1} & 0 & 0 & \cdot & 0 \\
g_{1} & 1-g_{2} & 0 & \cdot & 0 \\
0 & g_{2} & 1-g_{3} & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & 1-g_{n-1} & 0 \\
0 & 0 & 0 & g_{n-1} & 1
\end{array}\right]
$$

$G X=$ Nonharvest vector after growth period, or forest ready for harvest.

$$
Y=\left[\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right]
$$

$Y=$ Harvest vector, or trees removed at harvest.

$$
R=\left[\begin{array}{llllll}
1 & 1 & 1 & \cdot & \cdot & 1 \\
0 & 0 & 0 & \cdot & \cdot & 0 \\
\cdot & & & & & \cdot \\
\cdot & & & & & \cdot \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$R=$ Replacement matrix.
$R Y=$ New seedling vector, or trees planted after harvest.

The Harvest Model

A harvester has a crop of 120 silver fir trees to sell annually for Christmas trees. After last year's harvest, his forest had the following configuration.

Class $\mathbf{(i)}$	Height interval in feet $\left(\mathbf{h}_{\mathbf{i}}\right)$	Number of trees $\left(\mathbf{x}_{\mathbf{i}}\right)$
1	$[0,4)$	15
2	$[4,8)$	20
3	$[8,12)$	35
4	$[12,16)$	30
5	$[16, \infty)$	20

During the growth period, 6 trees in class 1 grew to the next height class, as did 13 trees in class 2,10 trees in class 3 , and 4 trees in class 4 . If he sustainably harvests 8 trees of class 2,6 trees of class 3,13 trees of class 4 , and 6 trees of class 5 , what is the configuration of his crop after harvest and replanting?

Enter the 5×1 nonharvest vector X.

$$
\text { [[} 15[20[35[30[20 \text { ENTER }
$$

' X STO

Compute the growth fractions for each height class. First, compute $g_{1}=6 / x_{1}$.

'G1 STO

```
|3:
```

Compute $g_{2}=13 / x_{2}$.
13 ENTER
$20 \div$

$3:$		
$2:$		
$1:$	0.65	
SII	$[$ FIX] SCI	ENT

' G2 STO

```
|3:
```

Compute $g_{3}=10 / x_{3}$.

10	ENTER
35	\div

```
3:
2:
1: 0.29
SID[ FIK] SCI [ENG DISG[ RAD]
```


'G3 STO

```
|3:
```

Compute $g_{4}=4 / x_{4}$.
4 ENTER
$30 \div$

' G4

$3:$		
$2:$		
$1:$		
STID [FIX] SCI	ENIG	DKGI[RAD]

Enter the 5×5 growth matrix G ．
Enter row $_{1}$ ．

USER	
1	ENTER
－	
0	ENTER
ENTER	
ENTER	
ENTER	

Enter row $_{3}$ ．

0	ENTER
暙 G2 暙	
1	ENTER
暙 G3䚻	
－	
0	ENTER
ENTER	

$\begin{aligned} & 3: \\ & 2: \\ & 1: \end{aligned}$					$\begin{aligned} & 0.71 \\ & 0.00 \\ & 0.00 \end{aligned}$	
（6）	63	回	1			

Enter row $_{4}$ ．

0	ENTER
ENTER	
暙G3童	
1	ENTER
暙G4立	
－	
0	ENTER

Enter row $_{5}$ ．
0 ENTER
ENTER
ENTER
青 G4
1 ENTER
Enter the dimensions of G ．

$$
\left\{\begin{array}{ll}
5 & 5
\end{array}\right\} \text { ENTER }
$$

Store matrix G ．

> ARRAY
> 㪯 \rightarrow ARRY

＇G STO

Enter the 5×1 harvest vector Y ．
［［0］8［6［13］ 6 ENTER

	${ }_{j}$

＇Y STO

Create the replacement matrix R ．First enter the dimensions of R ．
$\left\{\begin{array}{ll}5 & 5\end{array}\right\}$ ENTER

3：	
1：	［ 5.005 .003
	EST PUTI EIT

Create a constant matrix whose entries are all zero.

Now enter 1 across the entire first row of R.
$\left\{\begin{array}{ll}1 & 1\end{array}\right\}$ ENTER

Drop the index list.
DROP

Store matrix R.
${ }^{\prime}$ R STO

```
3:
```


Write a program to compute the configuration of the forest after harvest.
USER
« G
ENTER

' CROP STO \square

Compute the new nonharvest vector with program CROP.
\qquad

```
1: [[ [ 42.00 []
    [ 32.00] ]
CEOF K Y G G G4 G3
```

Use EDIT or VIEW to view the entire vector. The ATTN key will exit EDIT mode.

The new nonharvest vector is

$$
X=\left[\begin{array}{c}
42 \\
5 \\
32 \\
23 \\
18
\end{array}\right]
$$

The program can be used with the new nonharvest vector to predict new forest configurations using the same harvesting cycle annually.

Optimal Yield

If the harvester wishes to optimize his profit year after year, he must determine the optimal sustainable yield. This is achieved by harvesting all of the trees from one particular height/price class and no trees from any other class. The sustainable yield is thus a function of both price and growth rate, but independent of the current nonharvest vector. Note that if class k provides the maximum yield, the first year all classes $\geq k$ are harvested. In the following years only class k is harvested, and no trees will ever be present in higher classes.
$S=$ total number of trees sustained in the forest.

$$
P=\left[\begin{array}{cccc}
p_{1} & 0 & \cdot & 0 \\
\cdot & p_{2} & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & p_{n}
\end{array}\right]=\text { Price matrix }
$$

$p_{i}=$ price attained for class i.

$$
G G=\left[\begin{array}{c}
g g_{1} \\
g g_{2} \\
\cdot \\
\cdot \\
g g_{n}
\end{array}\right]
$$

$G G=$ Growth ratio matrix.
where

$$
\left\{\begin{array}{l}
g g_{i}=\frac{1}{\sum_{k=1}^{i-1} \frac{1}{g_{k}}} \text { for } i=2 \ldots n \\
g g_{1}=0
\end{array}\right.
$$

$$
Y L=\left[\begin{array}{c}
y l_{1} \\
y l_{2} \\
\cdot \\
\cdot \\
y l_{n}
\end{array}\right]
$$

$Y L=$ Yield vector.
$y l_{k}=$ yield (total dollar amount) obtained by harvesting all of class i and no other class.

The optimal class to harvest can be selected by finding the maximum $y l_{k}$ from yield vector $Y L$, where

$$
Y L=P{ }^{*} S^{*} G G
$$

Suppose the market prices for the five classes are $p_{1}=\$ 0, p_{2}=\$ 50$, $p_{3}=\$ 100, p_{4}=\$ 150$, and $p_{5}=\$ 200$. Determine which height class should be harvested.

Enter the market prices for the five classes and store in variables p_{1} through p_{5}.
CLEAR USER

0 ENTER
' P1 STO

50 ENTER

' P2

韭P2 隹
2 -

' P3

' P4

' P5 STO

Enter the dimensions of P.

```
{5 5} ENTER
```


Create the 5×5 price matrix P. Since P is a sparse matrix, with most entries equal to zero, first create a constant array whose entries are all zero.
0 ENTER
ARRAY $\overline{\underline{\underline{\underline{~ C}}}}$

Now enter the values p_{i} along the diagonal entries.
$\left\{\begin{array}{ll}1 & 1\end{array}\right\}$ ENTER

P1 ENTER

金PUTI 邫

$\begin{aligned} & 1: \\ & 1: \end{aligned}$

Use the EDIT function to modify the displayed position index. The modified position index is then ENTER ed. Alternatively, you may DROP $\{1.002 .00\}$ from above and enter the position index $\{22\}$.
$\left\{\begin{array}{ll}2 & 2\end{array}\right\}$ ENTER

P2 ENTER

PUTI

Use the EDIT function to modify the position index. The modified position index is then ENTERed:
$\left\{\begin{array}{ll}3 & 3\end{array}\right\}$ ENTER

PUTI 泣

Use the EDIT function to modify the position index．The modified posi－ tion index is then ENTERed：

```
{ 4 4 4 } ENTER
```


P4 ENTER

㐁PUTI言

Use the EDIT function to modify the position index．The modified posi－ tion index is then ENTER ed：
$\left\{\begin{array}{ll}5 & 5\end{array}\right\}$ ENTER

P5 ENTER

泰PUTIE

```
3:
```


Drop the index string.
DROP

Store matrix P.
' P STO

$\begin{aligned} & 3: \\ & 2: \\ & 1: \\ & 1: \end{aligned}$	

Store the total number of trees sustained in variable S.
120 ENTER

'S STO

Compute the 5×1 growth ratio matrix $G G$.
Enter $g g_{1}=0$.


```
|3:
```

Compute $g g_{2}=1 / g_{1}$.

'GG2

Compute $g_{3}=1 / g_{1}+1 / g_{2}$

$+$

' GG3 STO

Compute $g_{4}=1 / g_{1}+1 / g_{2}+1 / g_{3}$

暙GG3
暙 G3
1/x

$+$

'GG4 STO

Compute $g_{5}=1 / g_{1}+1 / g_{2}+1 / g_{3}+1 / g_{4}$

'GG5

Now invert $g g_{2}, g g_{3}, g g_{4}$, and $g g_{5}$ to form the actual entries into matrix $G G$.

'GG2 STO

硡
1/x

' GG3 STO

暙GG4
1/x

'GG4 STO

'GG5

Create the 5×1 matrix $G G$. Put the elements on the stack.

Enter the matrix dimensions.
$\begin{cases}5 & 1 \text { ENTER }\end{cases}$

Create the matrix.

Store matrix $G G$.
' GG STO

```
3:
2:
```


Write a program to compute the yield vector.
$<S P \times G G \times \geqslant E$ ENTER

Store program YLD.
'YLD STO

```
3:
2:
HAKGYM\ST% FUT GET FUTI GETI
```

Compute the 5×1 yield vector $Y L$.

$\begin{aligned} & \hline \text { USER } \\ & \hline \hline \text { 르를 } \end{aligned}$

```
1: [[ 0.00 ]
\(\left[\begin{array}{lll}2400.00 \\ 2971.43\end{array}\right]\)
```


You can use EDIT or VIEW \downarrow to view the entire vector.

$$
Y L=\left[\begin{array}{c}
0 \\
2400.00 \\
2971.43 \\
2387.75 \\
1595.91
\end{array}\right]
$$

The resulting yield vector shows that height class 3 should be harvested to maximize the annual sustainable yield, since $y l_{3}=\$ 2971.43$ is the maximum entry.

Purge the user variables created in this problem section.

Step-by-Step Examples

for Your HP-28C

Vectors and Matrices contains a variety of examples and solutions to show how you can solve your technical problems more easily.

- General Matrix Operations

Matrix Addition, Multiplication, Determinant, Inverse,
Transpose, Conjugate, Minor, Rank, Hermitian Matrices

- Systems of Linear Equations

Non-homogeneous and Homogeneous Systems, Iterative Refinement

- Vector Spaces

Basis, Orthogonality, Vector Length, Normalization, Orthogonalization, Orthonormal Basis

- Eigenvalues

Characteristic Polynomial, Eigenvalues, Eigenvectors

- Least Squares

Straight Line Fitting, Quadratic Polynomial

- Markov Chains

Steady State of a System

- An Example: Forest Management Model and Yield

HEWLETT
PACKARD

Reorder Number 00028-90044

Printed in U.S.A. 3/87

[^0]: 3: 1:

[^1]: ' X2

