HEWLETT-PACKARD

Step-by-Step Examples for Your HP-28C

Vectors and Matrices

Vectors and Matrices

Step-by-Step Examples for Your HP-28C

Edition 1 March 1987 Reorder Number 00028-90044

Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.

© 1987 by Hewlett-Packard Co.

This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company.

Portable Computer Division 1000 N.E. Circle Blvd. Corvallis, OR 97330, U.S.A.

Printing History

Edition 1

March 1987

Mfg No. 00028-90059

Welcome...

... to the HP-28C Step-by-Step Booklets. These books are designed to help you get the most from your HP-28C calculator.

This booklet, *Vectors and Matrices*, provides examples and techniques for solving problems on your HP-28C. A variety of matrix manipulations are included, designed to familiarize you with the many functions built into your HP-28C.

Before you try the examples in this book, you should be familiar with certain concepts from the owner's documentation:

- The basics of your calculator how to move from menu to menu, how to exit graphics and edit modes, and how to use the menu to assign values to, and solve for, user variables.
- Entering numbers and algebraic expressions into the calculator.

Please review the section "How To Use This Booklet." It contains important information on the examples in this booklet.

For more information about the topics in the *Vectors and Matrices* booklet, refer to a basic textbook on the subject. Many references are available in university libraries and in technical and college bookstores. The examples in the booklet demonstrate approaches to solving certain problems, but they do not cover the many ways to approach solutions to mathematical problems.

Our thanks to Brenda C. Bowman of Oregon State University for developing the problems in this book.

Contents

7 How To Use This Booklet

9 General Matrix Operations

- Sum of Matrices
- Matrix Multiplication
- Determinant of a Matrix
- Inverse of a Matrix
- Transpose of a Matrix
- Conjugate of a Complex Matrix
- Minor of a Matrix
- Compute Rank
- Hermitian Matrices

25 Systems of Linear Equations

- 26 Non-Homogeneous System
- Homogeneous System
- Iterative Refinement

36 Vector Spaces

- 37 Basis
- Orthogonality
- Matrix Utility Programs
- Vector Length
- 42 Normalization
- Gram-Schmidt Orthogonalization
- Generalized Gram-Schmidt
 - Orthogonalization Routine
- Orthonormal Basis

51 Eigenvalues

- **52** The Characteristic Polynomial
- **55** Compute Eigenvalues from Expansion
- **57** Compute Eigenvectors
- **62** Compute Eigenvalues from $|\lambda I A|$

65 Least Squares

- **66** Straight Line Fitting
- 71 Quadratic Polynomial

78 Markov Chains

79 Steady State of a System

83 An Example:

- 84 Forest Management
- 86 The Harvest Model
- 92 Optimal Yield

How To Use This Booklet

Please take a moment to familiarize yourself with the formats used in this booklet.

Keys and Menu Selection

A box represents a key on the calculator keyboard:

ENTER
1/x
STO
ARRAY
PLOT

ALGEBRA

In many cases, a box represents a shifted key on the HP-28C. In the example problems, the shift key is NOT explicitly shown (for example, ARRAY requires the press of the shift key, followed by the ARRAY key, found above the "A" on the left keyboard).

The "inverse" highlight represents a menu label:

DRAW	(found in the PLOT menu)
	(found in the ALGEBRA menu)
ABCD	(a user-created name, found in the USER menu)

Menus typically include more menu labels than can be displayed above the six redefinable menu keys. Press NEXT and PREV to roll through the menu options. For simplicity, NEXT and PREV are NOT shown in the examples.

Solving for a user variable within $\underline{\underline{SOLVR}}$ is initiated by the shift key, followed by the appropriate user-defined menu key:

∎ ABCD ≣.

The keys above indicate the shift key, followed by the user-defined key labeled "ABCD". Pressing these keys initiates the Solver function to seek a solution for "ABCD" in a specified equation.

The symbol <> indicates the cursor-menu key.

Interactive Plots and the Graphics Cursor

Coordinate values you obtain from plots using the INS and DEL digitizing keys may differ from those shown, due to small differences in the positions of the graphics cursor. The values you obtain should be satisfactory for the Solver root-finding that follows.

Display Formats and Numeric Input

Negative numbers, displayed as

are created using the CHS key:

The examples in this book typically specify a display format for the number of decimal places. If your display is set such that numeric displays do not match exactly, you can modify your display format with the $\boxed{\text{MODE}}$ menu and the $\boxed{\equiv} \text{FIX} \equiv$ key within that menu (e.g. $\boxed{\text{MODE}} 2 \equiv \text{FIX} \equiv$).

General Matrix Operations

This section illustrates several basic matrix manipulations found in common matrix problems, including addition, matrix multiplication, determinants, and so forth. Also included are several programs that demonstrate operations on matrix minors and rank.

Sum of Matrices

This example illustrates two methods for creating a matrix.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}$$
$$B = \begin{bmatrix} 2 & -3 & 0 & 1 \\ 0 & 4 & -1 & 2 \\ 1 & -3 & 2 & -2 \end{bmatrix}$$

Compute A	+B.	
-----------	-----	--

CLEAR <>

4: 3: 2:	
3:	
2	
. .	

Key in the elements of matrix A in row order form. Put each element on the stack individually.

- 1 ENTER
- 2 ENTER
- 3 ENTER
- 4 ENTER
- 5 ENTER
- 6 ENTER
- 7 ENTER
- 8 ENTER
- 9 ENTER
- 10 ENTER
- 11 ENTER
- 12 ENTER

Key in the dimensions $\{m, n\}$ of matrix A. Remember to use a space to separate the two numbers.

{ 3 4 } ENTER

4:	10 11 12
1:	< 3 4 [°] >

4:	9
3:	10
2:	11
1:	12

Put the stack elements into the matrix.

ARRAY ≣→ARRY ≣

1:	נך	1 5	23	4]		
	ב	ğ	ĭø'	1ĭ	12	ננ	
÷Ĥ	RRY AR	RY¥	PUT	G	TP	UTI	GETI

Store the matrix in A for the next problem section.

A STO

3:	
2:	
1:	
ARRY ARRY PUT GET PUTI GET	

Enter matrix B, using a space to separate the matrix elements. Note the two different methods used to enter the elements of A and B.

[[2	-3	3 () 1	[0]	4	-1	2
[1	-3	2	-2	E	NTE	R	

1:	<u>ר</u> ר	2 Ø	-3 4 -	0	1]	
≯AR	Č Sveta	Ĭ	-3 FUT	2	-2 331	ני] הנוסקו	GETI

Compute the sum A + B.

A ENTER

+

1: [[1 2 3 4] [5 6 7 8] [9 10 11 12]] Senary (Mary) 201 Get 2011 Get)

1:	[]]	3 -1 5 10	35] 610]
	C	10 7	' 13 10 11
÷ak	RY AR	RY) PL	IT GET PUTI GETI

Matrix Multiplication

Compute the product of two matrices, The first matrix must have dimensions $k \times m$, the second matrix has dimensions $m \times n$, and the product has dimensions $k \times n$. In this example, k = 3, m = 4, and n = 2.

$$\mathcal{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}$$
$$D = \begin{bmatrix} -1 & 1 \\ 2 & 4 \\ -2 & 3 \\ 5 & 4 \end{bmatrix}$$

Compute A * D.

Enter the 3×4 matrix A from the previous example.

A ENTER

A ENTER	1: [[1 2 3 4] [5 6 7 8] [9 10 11 12]] Haray Marys Put Get Putt Gett
Enter the 3×2 matrix D.	
[[-1 1[2 4[-2 3[5 4 ENTER]	1: [[-1 1] [2 4] [-2 3] #MRRY(MRRY#) PUT GET PUT GETI
Compute the product $A * D$.	
×	1: [[17 34] [33 82] [49 130]] :::::::::::::::::::::::::::::::::::

Determinant of a Matrix

Solve for the determinant of an $n \times n$ matrix.

$$A = \begin{bmatrix} 2 & -3 & 1 \\ 0 & 5 & 2 \\ -1 & -2 & 3 \end{bmatrix}$$

Key in the 3×3 matrix.

CLEAR					
[[2 -3		5	2[-1	-2	3
ENTER	RAY				

1:	<u>ר</u>	2 -3 1] 0 5 2]	
500	្តិ នារាខាន	-1-2-3]] RV9 PUT GET PUTI GET	Т

Compute det(A).

DET

3: 2: 1: 49 Cross dot det abs [rnrm](CNRM]

The determinant is 49.

Inverse of a Matrix

Compute the inverse of a square $n \times n$ matrix.

 $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$

Clear the stack and set the number display mode to two decimal places.

CLEAR MODE 2 FIX

3:	
2:	
1:	
STD [FIX] S	CI ENG DEG [RAD]

Key in the elements of the 3×3 matrix.

[[1 2 3[2 4 5[3 5 6 ENTER]

1:	11	1.00	2.00	3.00]
	C			5.00]
	[6.00	
ST	0 [F	IX] SCI	ENG	DEG [R	AD]

Compute A^{-1} .

1/x

1:	CC 1.	.00 -	3.00	3 2.1	00_]
	C -3	3.00	3.00	3 -1	. 00
	[2.	.00 -	1.00	3 6.1	66E
STD	[FIX]	SCI	ENG	DEG	[RAD]

Transpose of a Matrix

Compute the transpose of an $m \times n$ matrix $A \cdot A^T$ will be of dimension $n \times m$.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Clear the display and set the mode to standard. Key in the 3×2 matrix A.

CLEAR			
MODE			
STD			
[[1 2[3	4[5	6	ENTER

1: [[1 2] [3 4] [5 6]] [std] Fire Sci Eng Deg [rad]

Compute A^T .

ARRAY

 A^T is a 2 × 3 matrix.

2: 1:	ננ נ	1 2	3 4	56]]		
SIZ	E R	θM	T	an I	CON	IDN	RSD

Conjugate of a Complex Matrix

Compute the conjugate conj(A) of the complex matrix A.

$$\mathcal{A} = \begin{bmatrix} 1+3i & i \\ 3 & 2-4i \end{bmatrix}$$

CLEAR

3:
3: 2: 1:
I - SIZE RDM TRN CON IDN RSD
SILE NUTI THN CON ION HOU

SIZE RDM TRN CON ID

Key in the elements individually in row order form. Each pair represents (real part, imaginary part). Note the commas in the keystrokes below may be used alternately with spaces.

(1,3 ENTER)	3: 2: 1: (1,3) Size Rom TRN Con Ion RSD
(0,1 ENTER)	3: 2: (1,3) 1: (0,1) SIZE ROM TRN CON ION RSD
(3,0 ENTER)	3: (1,3) 2: (0,1) 1: (3,0) SIZE RDM TRN CON ION RSD
(2,-4 ENTER	3: (0,1) 2: (3,0) 1: (2,-4) SIZE ROM TRN CON ION RSD
Key in the dimensions of the matrix.	
{2 2} ENTER	3: (3,0) 2: (2,-4) 1: (22)

Place the stack elements in an array.

ARRAY →ARRY

2: 1:	(1,3) (3,0)	
⇒aR		UTI GETI

Compute the conjugate.

E CONJ

2:	ננ	(1,-3) (0	,-1)]
1:	נ	(3,0)	(2,	4)]]
R≯	C C	→R RE	IM	CONJ NEG

Minor of a Matrix

The minor M_{ij} is formed by removing row *i* and column *j* from matrix *A*, then computing det (M_{ij}) . A program is written to perform this function for any $n \times n$ matrix.

Program ROW below is a subroutine used to remove a row or column from a matrix.

Program Listing	Explanation
SWAP	Swap the matrix into level 1, then
ARRY→ LIST→	separate the matrix into individual elements and its dimension.
DROP	Drop the number of items in the list.
→ n m «	Save the row and column in n and m .
n DUP m×2 +	Compute offset to row (col) number on stack.
ROLL – $m \times \rightarrow LIST \rightarrow list$	Place $(n - i)^*m$ elements into list.
« m DROPN	Drop row i (col j) from stack.
list » LIST→	Separate temporary list into individual elements.
DROP	Drop number of list elements.
n 1 − m 2 →LIST	Reconstruct matrix with row (col) removed.
→ARRY	

Program MINOR utilizes the subroutine ROW to remove a row, and then a column, from the matrix.

Program Listing	Explanation
3 ROLLD	Roll down the matrix and row <i>i</i> .
ROW TRN	Remove row <i>i</i> and transpose for column removal.
SWAP ROW TRN	Remove column <i>j</i> and transpose back.

Key in the program ROW.

CLEAR « SWAP ARRY \rightarrow LIST \rightarrow DROP \rightarrow n m « n DUP m \times 2 + ROLL - m $\times \rightarrow$ LIST \rightarrow list « m DROPN list » LIST \rightarrow DROP n 1 - m 2 \rightarrow LIST \rightarrow ARRY ENTER <>

Store the program ROW.

ROW STO

1:	« SWAP ARRY→ DROP → n m «	LIST+	
	DROP → n m «	n DÚP	m
	* 2 + RULL -	m *	
	→LIST → list	≪ m	

4:	
1	
2:	
.	
12 •	
4.	
11.	
-	

Key in the program MINOR.

« 3 ROLLD ROW TRN SWAP ROW TRN ENTER <>

Store the program MINOR.

'MINOR STO

Compute M_{23} of the following matrix.

$$A = \begin{bmatrix} 2 & -3 & 4 & -4 \\ 6 & 5 & 2 & -1 \\ 1 & 0 & 3 & -2 \\ 0 & -5 & 3 & -6 \end{bmatrix}$$

Enter the matrix.

$$\begin{bmatrix} [2 & -3 & 4 & -4[6 & 5 & 2 & -1[1 & 0 \\ 3 & -2[0 & -5 & 3 & -6 & ENTER \end{bmatrix} \begin{bmatrix} 1 & [2 & -3 & 4 & -4 &] \\ & [6 & 5 & 2 & -1 &] \\ & [1 & 0 & 3 & -2 &] \\ & [0 & -5 & 3 & -6 &]] \end{bmatrix}$$

Enter the row and column to be removed.

2 ENTER 3 ENTER

Compute M_{23} .

1:	ן ז ן	21	-3 0 ⁻ .	-24:	נו	
	C	0	-5	-6	ננ	
MI	10 R	ыM				

Compute the minor det (M_{ij}) .

ARRAY

3:					
3 2 1					-18
CROSS	DOT	DET	ABS	RNRM	CNRM

The minor $det(M_{23})$ is -18.

Compute Rank

The dimension of the largest square submatrix whose determinant is nonzero is called the rank of the matrix. The rank is the maximum number of linearly independent row and column vectors.

Find the rank of matrix A.

	[4	2	-1]
<i>A</i> =	0	5	-1
	12	-4	-1]

Program MDET below is used to obtain the determinant of an arbitrary matrix minor. This program uses the program MINOR from the previous problem section.

Program Listing	Explanation
3 PICK 3 ROLLD MINOR DET	Duplicate the matrix. Produce the matrix minor. Compute the minor determinant.
Key in the program.	
CLEAR	3:
<pre>« 3 PICK 3 ROLLD MINOR DET ENTER <></pre>	3: 2: 1: « 3 PICK 3 ROLLD MINOR DET »
Store the program in MDET.	
'MDET STO	4: 3: 2: 1:
Key in the matrix.	
[[4 2 -1[0 5 -1 [12 -4 -1 ENTER]	2: 1: [[4 2 -1] [0 5 -1] [12 -4 -1]]

Make a copy of the matrix and compute the determinant to determine whether the rank = n = 3.

ENTER ARRAY

3: 2: 1:	٢ ٢				<u>9</u> 00	1000		5 9048
CROS	SS D	QΤ	DI	T	ABS	RN	8M)	CNRM

Det(A) is zero (approximately), so rank(A) is not equal to 3.

Distanti utiliti j.	Discard	det(A).
---------------------	---------	-------	----

DROP <>

2: 1:		4 2 -1] 0 5 -1] 12 -4 -1]]	
----------	--	-------------------------------------	--

Compute the minor for the 2×2 submatrices of A, until a minor is found that is not equal to zero.

Compute det M_{11} .

1	EN	ER	ENTER
US	ER	≣ M	DET

3: 2: 1:	٢ ٢	4	2	-1	נ	۵	0	5	.ÿ
MDE	ΤM	INŬ	80	М					

Det(M_{11}) is equal to -9, so rank(A) is equal to 2.

You may elect to purge programs $\overline{\equiv} ROW \equiv$, $\overline{\equiv} MDET \equiv$ and $\overline{\equiv} MINO \equiv$ before continuing to the next problem sections.

Hermitian Matrices

Determine whether a matrix is Hermitian. A square matrix with real or complex elements is Hermitian if the matrix is equal to its conjugate transpose.

Determine whether the 4×4 matrix A is Hermitian.

$$\mathcal{A} = \begin{bmatrix} 1 & 2 - i & 2 & -3 + i \\ 2 + i & 3 & i & 3 \\ 2 & -i & 4 & 1 - i \\ 3 - i & 3 & 1 + i & 0 \end{bmatrix}$$

Put the elements of A on the stack individually.

CLEAR <> 1 ENTER (2,-1 ENTER 2 ENTER (-3,1 ENTER	4: 3: 2: 1:	(2,-1) (-3,1)
(2,1 ENTER	4:	(2,1)
3 ENTER	3:	3
(0,1 ENTER	2:	(0,1)
3 ENTER	1:	3
2 ENTER (0,-1 ENTER 4 ENTER (1,-1 ENTER	4: 3: 2: 1:	(0,-1) 4 (1,-1)
(3,-1 ENTER	4:	(3,-1)
3 ENTER	3:	3
(1,1 ENTER	2:	(1,1)
0 ENTER	1:	Ø

Enter the dimensions of A.

{ 4 4 ENTER

4:		C	ι,1	3
1:	C	4	4	Š

Place the elements into the matrix.

ARRAY ≣ →ARRY ≣

1: [[(1,0) (2,-1) (2,... [(2,1) (3,0) (0,1... [(2,0) (0,-1) (4,... EMERAY MERVER PUT GET PUTE GET

You can view the entire matrix to check for correctness using $\boxed{\text{EDIT}}$ or $\boxed{\text{VIEW}}$.

Make a copy of the matrix.

ENTER

1 T C	,0, (2,	-1) (2, 0) (0,1
	2,0) (0,	-1) (4, PUTT GETT

Compute the conjugate transpose. Since A is complex, function TRN performs both the transpose and the conjugation.

TRN 🗄

1:	ן ן ר	(1,0) (2,1) (2,0)	(2, (3,0	$\frac{1}{2}$	(2 0,1
52	1	M TRN	CON	TION	RSD

Test $\operatorname{conj}(A^T)$ and A for equivalency. If A is Hermitian, $\operatorname{conj}(A^T)$ and A will be equal, and $\overline{\exists SAME} \exists$ will return a true flag(1).

TEST SAME

Matrix A is not Hermitian.

3:					
1:					e
AND	0R	XOR	NOT	SAME	==

Systems of Linear Equations

One of the most frequent and fundamental applications of matrices arises from the need to solve a system of m linear equations in n unknowns. The HP-28C can be used to find solutions to both non-homogeneous and homogeneous systems of the form AX = B.

Non-Homogeneous System

Solve a system of linear equations of the form AX = B.

 $x_1 + x_2 - 2x_3 + x_4 + 3x_5 = 1$ $3x_1 + 2x_2 - 4x_3 - 3x_4 - 8x_5 = 2$ $2x_1 - x_2 + 2x_3 + 2x_4 + 5x_5 = 3$

Clear the stack and set the display mode to two decimal places.

CLEAR MODE 2 FIX

.00

STD [FIX]

Key in the coefficients of the system of equations.

					2 -4 -3	1:	ם ם
-8	[2	-1	2	25	ENTER		Ē

Store matrix A.

'A STO

3:		1
2		
STD	[FIX] SCI ENG DEG [RAD]	

Key in the elements of B.

[[1[2[3 ENTER

1: [[1.00 2.00	1	
-	3.00	jj	QEG [RAD]

Store matrix B.

B STO

3:
1:
STD [FIX] SCI ENG DEG [RAD]

To solve for X, we use the method

$$X = \frac{A^T B}{A^T A}$$

Compute A^T .	
ARRAY A ENTER	1: [[1.00 1.00 -2.00 [3.00 2.00 -4.00 [2.00 -1.00 2.00 PARAY MARYS PUT GET PUTT GETT
	1: [[1.00 3.00 2.00] [1.00 2.00 -1.00] [-2.00 -4.00 2.00 Size Bon Tan Con Ion Aso
Multiply by B.	
B×	1: [[13.00] [2.00] [-4.00] Size Rom Trn Con Ion Red
Compute A^T .	
A ENTER	1: [[1.00 3.00 2.00] [1.00 2.00 -1.00] [-2.00 -4.00 2.00 SIZE ROM TRN CON TON RSD
	1: [[1.00 3.00 2.00] [1.00 2.00 -1.00] [-2.00 -4.00 2.00 Size and tan con ion aso
Multiply by A.	
A 🗵	1: [[14.00 5.00 -10.0 [5.00 6.00 -12.00 [-10.00 -12.00 24 STRE ROM TRN CON ION RED
Divide $A^T B$ by $A^T A$.	
÷	1: [[1.12] [1.24] [0.80] Size Rom Trn Con Ion RSD

VIEW[†] and VIEW[‡] can be used to display all of the elements. They are $x_1=1.12, x_2=1.24, x_3=0.80, x_4=-0.08$, and $x_5=0.11$.

Homogeneous System

Solve a homogeneous system of linear equations of the form AX = 0.

 $x_1 - 2x_2 + 3x_3 = 0$ $2x_1 + 6x_2 + x_3 = 0$ $3x_1 - 4x_2 + 8x_3 = 0$

The program UT below takes a stack of vectors representing homogeneous simultaneous equations and transforms them to upper triangular form.

Program Listing	Explanation
DUP SIZE LIST→	Save number of elements
DROP \rightarrow s	as s.
« s2	For $j = s$ (down) to 2, transform the bottom $j-1$ vectors.
FORjsj –	m = s - j + 1
1 + → m	
«1j1 —	Loop for i=1 to j-1
FOR i i ROLL j PICK	
m 1 →LIST DUP2 GET 4 PICK	Transform the vectors.
ROT GET SWAP $\div \times -$	
i ROLLD NEXT » –1 STEP »	
Key in the program.	
CLEAR	1. # DUD SIZE LISTA
	1: « DUP SIZE LIST→ DROP → s ≪ s 2 FOR j
~ DUP SIZE LIST	s j - 1 + → m ≪ 1 j 1 - FOR i i ROLL j
$DROP \rightarrow s \ll s 2$	•
FOR j s j - 1 +	
→ m « 1 j 1 -	
FOR i i ROLL j PICK	
m 1 \rightarrow LIST DUP2 GET	
4 PICK ROT GET SWAP	
$\div \times - i$ ROLLD	
NEXT » -1 STEP »	
ENTER <>	

Store the program in UT.

'UT STO

4:	
3:	
2:	
1:	

Set the display mode to one decimal place.

3:	
Ž:	
1:	
STD [FIX] SCI ENG DEG [RAD]	l

Key in the coefficients.

[[1 -2 3[2 6 1[3 -4 8 ENTER

1:	<u>ן</u>	1.0	-2.0	3.0 1.0]	ן
	L	3.0	-4.0	8.0	כנ
STO) [F	IX] SI	CI ENG	DEG	[RAD]

Store the matrix in ARR for a verification at the end of the problem.

ARR STO

3:	
STD [FIX] SCI ENG DEG [RAD]	J

Edit matrix ARR to reduce to row echelon form.

1:	ם ם	1.0	-2.0	3.0]
	Ē	2.0	6.01	.0] 8.0	ננ
<u>AR</u>	8 .	Л			

Use EDIT mode and the DEL key to remove the outer brackets of the array ARR and place the rows into three independent row vectors. After removing the left- and right-most braces, the edited rows are ENTER ed:

[1		-2	3]		
[2	6	1]		
[3	-4	8	В]	ENTER

3: 2: 1:	[1.0 -2.0 3.0 [2.0 6.0 1.0 [3.0 -4.0 8.0	ו
ABR	UT	

Now transform the matrix to upper triangular form.

≣ UT ≣

3:	[1.0 -2.0 3.0 [0.0 10.0 -5.0]
1: ARR	Ŭ 0.0 0.0 0.0	Ĵ

The matrix is now in row echelon form, so the system of three transformed equations is ready to be solved. The matrix represents the system of linear equations

3: 2: 1:

3: 2: 1:

C

ARR U1

Drop the equation 0=0.

DROP

Enter the equation from row 2.

'10×X2 - 5×X3=0 ENTER

Solve the equation in terms of x_3 .

'X3 ENTER

3: 2: 1:	C	0,0 '10	10. 0*X2	0 -5 -5*X	.0 3=0 'X3
ARR	UT				

Isolate the term x_3 .

Collect terms.

COLCT

3: 2: 1:	[1.0 -2.0 3.0 [0.0 10.0 -5.0 '2*X2]
COLCT	EXPAN SIZE FORM OBSUBEXSU	8

TAYLR ISOL QUAD SHOW OBGET EXGET

The solution is $x_3 = 2x_2$. Remove row 2 to solve row 1.

DROP
DROP

3: 2: 1:	[1.0	-2.0	3.0	נ
COLCTIEX	26N)	512E F	ORM JOBS	UBJEXS	18

Enter the equation for row 1, making the substitution for x_3 .

'X1 - 2 × X2 + 6 × X2 ENTER	3: 2: [1.0 -2.0 3.0] 1: 'X1-2*X2+6*X2' COLCT EXTENTISTIC FORM OBSUSTING
Solve for x_1 .	
'X1 ENTER	3: [1.0 -2.0 3.0] 2: 'X1-2*X2+6*X2' 1: 'X1' COUCH EXTENNISTIC FORM OSSUS (#1503
Isolate the term.	
	3: 2: [1.0 -2.0 3.0] 1: '-(6*X2)+2*X2' MYUR ISOL GUND STORE DEGINGROW
Collect terms.	
	3: 2: [1.0 -2.0 3.0] 1: '-(4*X2)' COUCH EXEMIN STATE FORM DESUS

The result is $x_1 = -4^*x_2$. A solution is $x_1 = -4, x_2 = 1, x_3 = 2$. Verify this 3×1 solution vector X. Key in vector X.

[[-4[1[2 ENTER

1:	11	-4.0]
	Ē	1.0]
		2.0]]
COL	CTIEX	PAN SIZE FORM OBSUBEXSUE

Put the coefficient matrix ARR on the stack.

USER]
≣ ARR	Ξ

1:	נך	1.0	-2.0	3,0,1	
		3.0	-4.0	8.0]]]	
AR	R (JT .			

Swap the positions of ARR and X.

SWAP

1:	ב ך ר	-4.0	3]]		
400	Ĵ.	2.Ŏ	ננ		

Multiply ARR * X.

×

1:	בב	0.0 0.0 0.0	3
	č	ŏ.ŏ	נ נ
<u>AR</u>	R U	JT	

ARR *X = 0. Thus X is a verified solution to the system.

Program UT will be used in a later problem section.

Iterative Refinement

Due to rounding errors, in some cases the numerically calculated solution Z is not precisely the solution to the original system AX = B. In many applications, Z may be an adequate solution. When additional accuracy is desired, the computed solution Z can be improved by the method of iterative refinement. This method uses the residual error associated with a solution to modify the solution.

Solve the system of linear equations AX = B.

$$A = \begin{bmatrix} 33 & 16 & 72 \\ -24 & -10 & -57 \\ -8 & -4 & -17 \end{bmatrix}$$
$$B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Clear the display and the set the standard display mode.

CLEAR	
MODE	STD 🗄

3:	
1	
[STD]FIX SO	I ENG DEG [RAD]

[STD] FIX SCI ENG DEG [RAD]

]

Solve for AX = B and improve the accuracy by iterative refinement using residual corrections. Key in the coefficient matrix.

1: [[

[[33	16	72	-24	-10	-57
[-8 -	-4 -	-17	ENTER	7	

Store matrix A.

A STO

3: 2: 1: [STD] FIX SCI ENG DEG [RAD]

Key ir	the	constant	matrix.
--------	-----	----------	---------

[[0[0[1 ENTER

1:	[]]	Ø]	
	Ē	ī	ננ	
[STI)] F	IX	SCI	ENG DEG RAD

Store the approximate 3×1 solution matrix Z.

Z STO

Compute the Residual Error Matrix R	, where R	= B	-AZ.	The func-
tion RSD calculates R using extended	precision.			

Solve using the RSD function.

Α	RRA	1
Ī	RSD	

Store matrix R.

R STO

Find the actual error E = |Z - X| = (B - AZ)/A = R/A.

USER
R
A
÷

1:	ן ן ר	-1 8.	.09	999	999	999 977	97E 2E-1
B		3.	8	1775	777	772 UT	1

Compute the corrected solution X = Z + E.

≣	Z	Ξ
-	F	

1:]] [[-3 25 9	2] 5]]	נ			
R		Z	B		Ĥ	UT	

X = the corrected solution.

Vector Spaces

Vector spaces are widely used in mathematics, physics and engineering to represent physical properties such as magnitude and direction within a geometric system. Several important vector operations can be performed easily using the built-in functions of the ARRAY menu.

Basis

A basis is a set of n linearly independent vectors that span the vector space $V_n(\mathbf{R})$.

Determine whether the vectors X_1, X_2 , and X_3 form a basis that spans $V_3(\mathbf{R})$.

Clear the stack and set the standard display mode.

CLEAR MODE

3: 2: 1: [STD]FIX SCI ENG DEG[RAD]

Key in the three vectors as a 3×3 matrix A and make two copies.

[[1 1 2[3 2 4[1 -3 1 ENTER ENTER

1:	ן ז נ	1 3	12	2 4]		
	C	1	-3	31	ננ .		
[STI	0]]]	IX	S	11	ENG	DEG [RAD]

Store matrix A for the next problem section.

A STO

3: 2: 1: [STD] F1 8	SCI	ENG	DEG (RAD]

Compute det(A).

A	RRA	Y
Ī	DET	Ξ

3:	
1:	-7.00000000004
CROSS DOT	DET ABS RNRM CNRM

Det(A) = -7. Thus A is non-singular, and the three row vectors are linearly independent and form a basis.

Orthogonality

Two vectors are mutually orthogonal if their inner product equals zero.

Determine which of the vectors from the previous problem are mutually orthogonal.

CLEAR

3:
2:
1:
CROSS DOT DET ABS RNRM CNRM

Recall matrix A to the stack.

A ENTER

1:]] [[1 3 1	1 2 2 4 -3	;] ;] ;]]	
CRO	SS D	ÛΤ	DET	HBS	RNRM CNRM

Use EDIT to remove the outer brackets of the array A and form three row vectors. After removing the left- and right-most braces with DEL, the edited rows are ENTER ed:

[1 1 2]	3:	[112]
Γ	324]	2:	
[1 -3 1] ENTER	CROSS DOT DET	

Note: two utility routines for modifying a two-dimensional array to its row components and vice versa are shown at the end of this section. These routines can be used as alternatives for the editing shown above.

The third vector is X_3 .

3:	_			_	
2:	Ē	1	1	2	Ĵ
CROSS DOT DET	L .		<u> </u>		
	ntes	La L	an U	1.10	1111

The second vector is X_2 .

'X2 STO

3:					
1:	C	1	1	2	ו
CROSS DOT DET	ABS	AN	١M	CNR	М

The first vector is X_1 .

'X1 STO

3: 2: 1:				
CROSS	DOT	DET	ABS	RNRM CNRM

Compute the inner products.

X1	ENTER
X2	ENTER

DOT

3: 2: 1: 0:0055 001 05		1 3	12	2 4	ן
CROSS DOT DE	T ABS	ßN	۶M	CNR	М

3:	
3: 2: 1:	13
-	T DET ABS RNRM CNRM

$X_1 \cdot X_2$	=	13.	These	rows	are	not	orthogonal.
-----------------	---	-----	-------	------	-----	-----	-------------

DROP	9	3:	
X2 ENTER	2		7
X3 ENTER		ROSS DOT DET ABS RNRM CNR	

≣ DOT ≣

3:				
1:				1
CROSS	DOT	DET	ABS	RNRM CNRM

 $X_2 X_3 = 1$. These rows are not orthogonal.

DROP X1 ENTER X3 ENTER	3: 2: [1 1 2] 1: [1 -3 1] CROSS DOT DET ARS [ANAM] CNAM
DOT	3: 2: 1: Ø CROSS DOT DET ABS [RNRM] (NRM)

 $X_1:X_3 = 0$. These two vectors are mutually orthogonal.

Matrix Utility Programs

Several problem sections up to this point have included use of **EDIT** mode to reduce a matrix to its row elements. The following utility programs can be used as alternatives for changing a matrix to its row elements, and vice versa.

Program ROW \rightarrow below takes a stack of *n* row vectors and the number *n* in level 1 and returns the matrix combining those *n* row vectors.

1: « OVER SIZE LIST→ DROP→nm≪0n1-FOR i i m * n i - + ROLL ARRY→ DROP NEXT

After keying in the program above, store the program and put the rows of array A in matrix form.

```
'ROW→ STO
[1,1,2]
[3,2,4]
[1,-3,1] ENTER
3 USER ≣ROW→≣
```

1:	11	1	1 2	2]		
	Ē	Ş.	2_4	L ا		
	L	1	-3	1	11	
ROP	13 1	JT				

Program \rightarrow ROW below takes a matrix and separates it into individual rows on the stack.

```
≪ ARRY→ LIST→ DROP
→ n m « 1 n FOR i m 1
→LIST →ARRY n i –
m × i + ROLLD NEXT » »
ENTER <>
```


After keying in the program above, store the program and convert the matrix from above back to row form.

3: 2: 1:	ן ניז	1 3 1 -	123	2 4 1	ן ן
→ROW ROW→ UT					

Vector Length

Find the length of vector X_1 (from the previous problem section), denoted by

$$||X_1|| = \sqrt{X_1 \cdot X_1}$$

Clear the stack and set the display mode to two decimal places.

CLEAR MODE 2 FIX

Recall X_1 from the previous problem. Since X_1 was stored, you may alternatively use USER $\exists X1 \exists$.

X1 ENTER

3:					
2:	C	1.00	1.00	2.00	ונ
STD [OEG [RA	D]

Function ABS returns the Frobenius norm of an array, which is equivalent to the length of a vector.

A	RRA	Y
Ξ	ABS	Ξ

3:	
1:	2.45
CROSS DOT DET	ABS RNRM CNRM

 $||X_1|| = 2.45.$

Normalization

To normalize a vector X into its unique unit vector U, divide each component of X by ||X||. We will normalize X_1 . Vectors X_1, X_2 , and X_3 are from the section entitled "Orthogonality."

Enter a program that computes $X / X $	l.
CLEAR \leftarrow DUP ABS $\frac{1}{x} \times \rightarrow$ ENTER	3: 2: 1: « DUP ABS INV * » GROSS DOT DET ABS (ANAX) (NAX)
Store program NORM.	
'NORM STO	3: 2: 1: CROSS DOT DET ABS RNRM CNRM
Enter the vector to be normalized.	
USER X1	3: 2: 1: [1.00 1.00 2.00] NORM XI X2 X2 +RON ROW+
Normalize the vector.	
	3: 2: 1: [0.41 0.41 0.82] N08M %1 %2 %3 →80N 80N→
The result is $U_1 = [0.41 \ 0.41 \ 0.82]$.	
Normalize vector X_2 .	
<u>X2</u>	3: 2: [0.41 0.41 0.82] 1: [3.00 2.00 4.00] NORM XI XE XE PROMINONA
	3: 2: [0.41 0.41 0.82] 1: [0.56 0.37 0.74] NORMI XI XE XE PROMISSING

The result is $U_2 = [0.56\ 0.37\ 0.74]$.

Finally, normalize vector X_3 .

≣ X3 ≣

■ NORM

3: 2: 1: NORM	[0.41 [0.56 [1.00 - %1 %2	0.41 0.37 3.00	0.82 0.74 1.00	
3: 2: 1: NORM	[0.41 [0.56 [0.30 - %1 %2	0.41 0.37 0.90	0.82 0.74 0.30	

The result is $U_3 = [0.30 - 0.90 \ 0.30]$.

Gram-Schmidt Orthogonalization

Form an orthogonal basis that spans $V_3(R)$ using the Gram-Schmidt process. Given that X_1, X_2 , and X_3 form a basis, then the vectors Y_1, Y_2 , and Y_3 form an orthogonal basis, formed by the following process.

$$Y_{1} = X_{1}$$

$$Y_{2} = X_{2} - \left(\frac{Y_{1} \cdot X_{2}}{Y_{1} \cdot Y_{1}} * Y_{1}\right)$$

$$Y_{3} = X_{3} - \left(\frac{Y_{2} \cdot X_{3}}{Y_{2} \cdot Y_{2}} * Y_{2}\right) - \left(\frac{Y_{1} \cdot X_{3}}{Y_{1} \cdot Y_{1}} * Y_{1}\right)$$

Vectors X_1, X_2 , and X_3 are from the section entitled "Orthogonality".

0.

Calculate Y_1 .

CLEAR]	
USER	≣ X1	

Store Y_1 .

'Y1 STO

3 2 1: [1.00 1.00 2.00] %1 %2 %3 UT
3: 2: 1: Y1 X1 X2 X3
2: 1: « X2 Y1 X2 DOT Y1 Y1 DOT / Y1 * - »
DUT / Y1 * - * Y1 #1 #2 #3

Write a program to calculate Y_2 .

« X2 Y1 X2 DOT Y1 Y1 DOT ÷ Y1 × - » ENTER

Execute the program.

EVAL

3: 2: 1: [0.83 -0.17 -0.33	כ
Y1	X1 X2 X3	

 $Y_2 = [0.83 - 0.17 - 0.33].$ Store Y_2 . Y2 STO

Write a program to calculate Y_3 .

1:	*	XS	3 Y:	2 X	зD	OT	Y2	
	- D(Ţ		Υ <u>2</u> Υ1		īτ ^Υ		3 1 ¥
Ya		¥1		Ð	85			

Execute the program.

EVAL

3:			
1: Γ	4.00E	-12 -2	.80 1
57	Y1 X1	2X	83

 $Y_3 = [4.0E - 12 - 2.80 \ 1.40].$ Store Y_3 . 'Y3 STO

3:					
Y3	Y2	¥1	X1	5%	83

The vectors Y_1 , Y_2 , and Y_3 form an orthogonal basis.

Generalized Gram-Schmidt Orthogonalization Routine

The program GSO below is a generalized routine for finding an orthogonal basis for an arbitrary list of vectors.

```
« DUP SIZE LIST→ DROP

DUP DUP 2 + ROLLD →LIST

→ M « 2 SWAP FOR n M

n GET 1 n 1 - FOR i M i

GET DUP DUP2 DOT INV ×

SWAP 3 PICK DOT × -

NEXT n M SWAP ROT PUT 'M'

STO NEXT M LIST→

DROP » » ENTER <>
```


After keying in the program above, store the program and form an orthogonal basis for the three vectors in the previous example.

GSO STO		
[1,1,2] [3,2,4] [1,-3,1]	USER	GSO

3: 2: [1: [[1.00 1.00 2.00 0.83 -0.17 -0.33	J
1: t	4.00E-12 -2.80 1.	
GSO	Y3 Y2 Y1 X1 X2	

Orthonormal Basis

Form an orthonormal basis G_i of orthogonal unit vectors that spans $V_3(R)$. Vectors Y_1, Y_2 , and Y_3 and program NORM are from the two previous problem sections.

$$G_i = \frac{Y_i}{||Y_i||}$$

CLEAR	
USER	∐ Y1 ∐

Calculate G_1 .

3 2 1					
-	Γ	1.00			
NORM	YЗ	2Y	Y1	X1	2X

Execute the normalization program from the section entitled "Normalization".

■ NORM

3: 2: 1: NORM	[0.41	0.41	0.82	נ
NORM	Υž	54	¥1	X1 X2	

Store the result in G_1 .

'G1 STO

3:	
1: G1 NORM Y3 Y2 Y1	X1

Calculate G_2 .

∏ Y2

3: 2:	_				_	
1:	Ľ				-0.3	
Gl		NORM	YЗ	45	¥1	X1

Compute the norm.

■ NORM

3:							
1	C	0.9	1 - (9.18	-0.	37	נ
_ G1		NORM	¥Э	¥2	¥1	X1	

Store the result in G_2 .

G2 STO

Calculate G_3 .

≣ Y3 ≣

3:				
1 C	4.00E-1	12 -2	.80	1
G2	G1 N08M	Y3	Y2	V1

Compute the norm.

3:	1.28E-12 -0.89	
1: C	1.28E-12 -0.89	0
G2	G1 NORM Y3 Y2	¥1

Store the result in G_3 .

G3 STO

3: 2: 1:					
G3	G2	G1	NORM	۲J	57

Verify that all three vectors are mutually orthogonal.

Ē	G1	Ξ
Ī	G2	Ξ

3: 2: 1: [[@	9.41 91 -	0.41 0.18	0.8 -0.3	2]
G3	G2	G1	NORM	Yβ	57

Compute the dot product $(G_1 \cdot G_2)$.

A	RRA	Y
Ē	DOT	=

3: 2:	
1	-8.98E-12
CROSS DOT	DET ABS RNRM CNRM

 $G_1 \cdot G_2 \approx 0.$

Compute the dot product $(G_2 G_3)$.

DROP
USER
🛛 G2 🗌
≣ G3 ≣
ARRAY
∎ DOT ≣

3:			
3: 2: 1:			5.18E-13
CROSS DOT	DET	MBS	ENRM CNRM

 $G_2 G_3 \approx 0.$

Compute the dot product $(G_1 \cdot G_3)$.

DROP
USER
G1
🗏 G3 📃
ARRAY
≣ DOT ≣

3:	
1:	2.97E-12
CROSS DOT DET	ABS RNRM CNRM

 $G_1 \cdot G_3 \approx 0.$

Thus, since all three dot products are approximately equal to zero, the three vectors are mutually orthogonal.

Now verify that they form a basis. Combine the three vectors into one array by placing the elements on the stack and removing their individual dimension lists.

3:	1.28E-12
2:	-0.82
1 - JARRY ARRY J PUT	0.45 Gat RUIT Gate

Note the utility program \rightarrow ROW, described in the section entitled "Orthogonality," could also be used to form the list of vectors above.

Next key in the dimensions of the matrix that will be formed by the three vectors.

{ 3 3 } ENTER

3:			-0.89 0.45
1:	C	3.00	3.00 3
→ARRY ARRY→	PUT	GET P	UTI GETI

Finally, place the three vectors into matrix form.

≣ →ARRY ≣

1:	0		0.41		
	Ę	0.91		80.3	
÷aß	30 63 30 63			-0.89 1900-10	

Compute the determinant.

DET

3:			
1			-1.00
CROSS DOT	DET	ABS	RNRM CNRM

The determinant is -1. The matrix is non-singular and the vectors form an orthonormal basis.

Purge the vectors $X_1, X_2, X_3, Y_1, Y_2, Y_3, G_1, G_2, G_3$ and program NORM.

Eigenvalues

Another fundamental use for matrices is in developing a structure to represent linear transformations within a geometric system. Any matrix that represents a particular linear transformation reflects the properties of that transformation.

Since similar matrices share all the intrinsic geometric properties of a transformation, an important problem is to find a simple canonical form for each similarity class. This simple canonical form can be found by computing the eigenvalues and eigenvectors. Two methods for computing eigenvalues are illustrated, along with a method for finding eigenvectors.

The Characteristic Polynomial

The characteristic equation for a matrix can be written as

$$AX = \lambda X$$

$$AX - \lambda X = 0$$

$$(A - \lambda I)X = 0$$

$$X = 0$$
 Trivial Solution

$$det(A - \lambda I) = 0$$
 Non-trivial Solution

Expansion of the non-trivial characteristic equation yields the characteristic polynomial

$$s_0\lambda^n + s_1\lambda^{n-1} + \cdots + s_{n-1}\lambda + s_n = 0.$$

The three programs below combine to determine the characteristic polynomial for an arbitrary matrix on the stack.

The first program, TRCN, creates a list of the traces of the first n powers of the matrix.

The second program, SYM, uses the list created by TRCN to compute the coefficients of the characteristic polynomial.

The final program, PSERS, uses the coefficients from SYM and a variable name entered into level 1 to create an expression of the characteristic polynomial.

Key in the first program.

```
CLEAR

« DUP SIZE 1 GET \rightarrow g

n « g 'tmp' STO {} 1 n

START 0 1 n FOR i tmp i

DUP 2 \rightarrowLIST GET + NEXT 1

\rightarrowLIST + 'tmp' g STO*

NEXT 'tmp'

PURGE » » [ENTER] <>
```


Store the program.

TRCN STO

4 .		
4:		
.		
31		
ō.		
2		
1.		
11		
_		

1: « DUP SIZE → b n « 4 1.00 > 1.00 n FOR i → s « 0.00 1.00 i FOR j b j GET s i j

Key in the second program.

« DUP SIZE → b n « {1} 1 n FOR i → s « 0 1 i FOR j b j GET s i j - 1 + GET × - NEXT i ÷ 1 →LIST s SWAP + » NEXT » » ENTER $\leq >$

Store the program.

SYM STO

4.		
4:		
3:		
5.		
<u> </u>		
1:		

Key in the final program.

1:	« → × « LIST →	0.00
	SWAP 1.00 FOR	n n
	1.00 + ROLL × - ^ * + -1.00	D 1.00
	- ^ * + -1.00	SIEP *

Store the program.

PSERS STO

4 -	
14:	
13	
191	
12:	
i -	
11:	

Find the characteristic polynomial for the following matrix.

$$ARR = \begin{bmatrix} -17 & -57 & -69 \\ 1 & 5 & 3 \\ 5 & 15 & 21 \end{bmatrix}$$

Key in the coefficient matrix.

[[-17 -57 -69[1 5 3 [5 15 21 ENTER]

Create a list of the traces of the first n powers for the matrix.

USER TRCN

2: 1:	Ş	9.00	41.00	225.00
PSE	85	SYM TR	CN UT	

Compute the coefficients of the characteristic polynomial.

≣ SYM ≣

2: 1:	{ 1.00 -9.00 20.00 -12.00 }	
PSE	S SYM TRCN UT	

Create the algebraic expression of the characteristic polynomial with the variable name L.

'L' PSERS

3: 2: 1: 'L^3-9*L^2+20*L-12' [SSERS] SYM TRON UT

The characteristic polynomial is

$$\lambda^3 - 9\lambda^2 + 20\lambda - 12$$

Store the polynomial as the current expression in EQ for the following problem section.

SOLV	
STEQ	Ξ

3:	
2:	
1:	
STEQ RCEQ SOLVR ISOL QUAD	SHOW

Compute Eigenvalues from Expansion

The eigenvalues of a matrix can be found by solving for the roots of the characteristic polynomial.

Find the eigenvalues for the characteristic polynomial stored in the previous problem section.

Clear the stack and set the display mode to two decimal places.

CLEAR MODE 2 FIX 3: 2: 1: STD (FIX) SCI ENG DEG (RAD)

Clear the current plot parameters.

PLOT PPAR PURGE 3: 2: 1: PPAR RES AXES CENTR %4 %H

Adjust the plot height by ten.

10 *****H

3: 2: 1:					
PPAR	RES	AXES	CENTR	жы	×н

Draw a plot of the characteristic polynomial, which was stored in EQ in the previous problem.

DRAW

Note the three roots of the quadratic indicate three distinct eigenvalues for the 3×3 matrix ARR.

Use the solver to set guesses for the roots and solve for the three eigenvalues.

ATTN	
SOLV	

3:		
1:		
L EXPR=		

Compute Eigenvalues from Expansion

Solve for the root.

L ENTER

The second eigenvalue $\lambda_2 = 2$.

Make an initial guess of 5 for the third eigenvalue

CLEAR 5 L

Solve for the root

56

501		the root.
	L	ENTER

The third eigenvalue $\lambda_3 = 6$.

6	first eigenvalue $\lambda_1 = 1$	

The first eigenvalue λ_1 : = 1.

Solve for the first root.

L ENTER

Make an initial guess of 2.5 for the second eigenvalue.

CL	EAF	7	
2	. 5	Ē۲	Ξ

1 2 50	
2:	
1:	
EXPR-	

genval	ue.		
L:	5.00		
2:			
L	EXPR=		

L: 6.00	
Zero	6.00
L EXPR=	

Make an initial guess of 0.5 for the first root. 0.5 L

Pressing the ENTER key below will display the intermediate values during

L: 0.50 EXPR=

L: 2.50	
2:	-
1:	
L EXPR=	

.00

1.00

EXPR=

CL	EA	R
2.	5	L

calculation.

L: 2.00	
Zero	2.00
L •	2.00
L EXPR=	

Compute Eigenvectors

We can compute the eigenvectors corresponding to the three eigenvalues found in the previous problem.

	-17	-57	-69]
ARR =	1	5	3
	5	15	21

3: 2: 1:

1:

STD [FIX]

Clear the stack and set the display mode to one decimal place.

CLEAR		
MODE	1	FIX

Key in the matrix ARR.

[[-17 -57 -69 [1 5 3 [5 15 21 ENTER]

Create the 3×3 Identity matrix

ENTER 3

ARRAY IND

-

Form $\lambda * I$ for $\lambda_1 = 1$.

3:		-57.0 -69 3.0 ENG (DEG) RAD
2:	[[-17.0	-57.0 -69
1:		3.0
ST	0 [FIX] SCI	ENG [DEG] RAD

ENG

STO [FIX] SCI ENG DEG [RAD]

69....

[DEG] RAD

1:	ן ן ן	0.0	0.0	0.0]
\$12	ER			IN ID	N RSD

1 ENTER	1: [[1.0 0.0 0.0] [0.0 1.0 0.0] [0.0 0.0 1.0]]
	L 0.0 0.0 1.0 JJ Size Rom Trn Con Ion RSO

Subtract from ARR to obtain the matrix (ARR $-\lambda_1 I$).

69.... 1: -18.0 SIZE ROM

Store the matrix $(ARR - \lambda_1 I)$ as EIG.

'EIG STO

USER EIG

3: 2: 1: SIZE ROM TRN CON ION RSD 1: [[-18.0 -57.0 -69... [1.0 4.0 3.0] 1 5.0 15.0 20.0]] EIG L PRAR EC UT 3: 2: 1: -1.5E-10 EROSS COT OFT RES RNAM CNRM

Verify that $det(A - \lambda I) = 0$.

Recall the matrix EIG.

ARRAY

The determinant is approximately zero.

Recall matrix EIG once more.

DROP	
USER	🗏 EIG 🗏

1: [[-18.0 -57.0 -69
ļĘ	1.0 4.0 3.0] 5.0 15.0 20.0]]
EIG	L PPAR EQ UT

Reduce to row echelon form to solve for the eigenvector X_1 , where $(A - \lambda_1 I)X_1 = 0$.

Enter EDIT mode and use the DEL key to remove the outer array brackets and form three individual row vectors. Each row vector corresponds to one equation of the system. After the edit, the row vectors can be ENTER ed:

[-18 -57 -69]	3: [-18.0,-57.0,-69.0.
	3: [-18.0 -57.0 -69.0 2: [1.0 4.0 3.0] 1: [5.0 15.0 20.0]
[5 15 20] ENTER	EIG L PPAR EQ UT

Note the utilities in the section entitled "Orthogonality" which can also perform the modification of the form of the matrix above.

Use the program UT, described in the problem section "Homogeneous System", to reduce the matrix to upper triangular form.

UT ■

3:	C	-18.0 -57.0 -69.0
2:	г	-18.0 -57.0 -69.0… [0.0 0.8 -0.8] 0.0 0.0 -1.0E-11]
110	3	L PPAR EQ UT

Remove the vector that represents the equation 0 = 0.

DROP

3: 2: [1:	-18.0 -57.0 -69.0. [0.0 0.8 -0.8]
EIG	L PPAR EQ UT

Enter the equation represented by second vector.

'.8 × X28 × X3 =0 ENTER	3: [-18.0 -57.0 -69.0 2: [0.0 0.8 -0.8] 1: '0.8*X2-0.8*X3=0' EIG L PPMR EQ UT
Solve for x_2 .	
ALGEBRA 'X2 ENTER	3: [0.0 0.8 -0.8] 2: '0.8*X2-0.8*X3=0' 1: 'X2' 60001 (#X71) (\$172) [2017] (0\$503(#\$503
Isolate the term.	
	3: [-18.0 -57.0 -69.0 2: [0.0 0.8 -0.8] 1: '0.8*X3/0.8' Invus isol cound show observes
Collect terms.	
	3: [-18.0 -57.0 -69.0 2: [0.0 0.8 -0.8] 1: 'X3' COTOM (#X#X) (\$9445 (COTA) (03503(#X503

We obtain $x_2=x_3$. Remove this solution and the second vector from the stack.

DROP
DROP

3:			
	-18.0	-57.0	-69.0 503 5503

Enter the equation represented by the first vector, substituting x_3 with x_2 .

$\begin{array}{r} \textbf{'-18} \times \textbf{X1} \textbf{-57} \times \textbf{X2} \\ \textbf{-69} \times \textbf{X2} \textbf{=0} \textbf{ENTER} \end{array}$	2: [-18.0 -57.0 -69.0 1: -18*X1-57*X2-69*X2= 0' COLCT (SXMN) STREE FORM (03503) STREE
Solve for x_1 .	
'X1 ENTER	3: [-18.0 -57.0 -69.0 2: '-18*X1-57*X2-69*X2 1: 'X1' COUCH (HYAN) (STATE CONT. COSCUS (HYBUS)
Isolate the term.	
	2: [-18.0 -57.0 -69.0 1: '(69*X2+57*X2)/(-18) Invus Isol Cound Score Oscial Score
Collect like terms.	
	3: 2: [-18.0 -57.0 -69.0 1: '-(7.0*X2)' COLGII (#X7N) (\$775) [707N] (035U3(#X5U3

We get $x_1 = -7 x_2$.

Therefore a solution eigenvector is $x_1 = -7$, $x_2 = 1$, $x_3 = 1$, or $X_1 = [-7 \ 1 \ 1]$. Verify that $(A - \lambda I)X = 0$.

CLEAR	3:
[-7 1 1 ENTER	2: 1: [-7.0 1.0 1.0] Couch (exam) isored (coasus (csus) exsus

Recall $(A - \lambda I)$.

U	SEF	1
≣	EIG	

1:	[[-18.0 -57.0 -69
	[[-18.0 -57.0 -69 [1.0 4.0 3.0] [5.0 15.0 20.0]]

Multiply the two matrices.

SWAP
×

3: 2:								
1:		C				0	0.0	נו
EIG	L	P P	ńR	E	2	Û,		

The result is 0, verifying that X_1 is indeed an eigenvector associated with λ_1 .

The same procedure can be followed to find eigenvectors for $\lambda_2 = 2$ and $\lambda_3 = 6$.

Purge the user variables and programs used in the last three sections. { 'EIG' 'L' 'PPAR' 'EQ' 'UT' } PURGE.

Compute Eigenvalues from $|\lambda I - A|$

Find eigenvalues directly from the function det($\lambda I - A$), without computing the characteristic polynomial.

$$\mathcal{A} = \begin{bmatrix} -7.8 & -29.7 & -39.6 \\ 0 & 2.1 & 0 \\ 3.3 & 9.9 & 15.3 \end{bmatrix}$$

Clear the stack and set the display mode to two decimal places.

CLEAR		
MODE	2	≣ FIX ≣

3: 2: 1: STD (FIX) SCI ENG DEG (RAD)

PPAR PURGE

Key in the 3×3 matrix.

[[-7.8 -29.7 -39.6 [0 2.1 0[3.3 9.9 15.3 ENTER]

1:	ГГ	-7.80	a -29.	.70 -3	39
	5			0.00	
	늘				
				15.30	
ST	0 [F	IX] 500	ENG	DEG (R	AD]

Store matrix A.

'A STO

3: 2:		
1:		
STU	FIX SCI	ENG DEG [RAD]

Enter a program that computes the function det($\lambda I - A$), with λ the independent variable.

« 3 IDN L × A - DET » ENTER

2: 1:	« 3.00 IDN L * A - DET »	
ST	D [FIX] SCI ENG DEG [RAD]	

Store the function as the current expression in EQ.

62 Compute Eigenvalues from $|\lambda| - A|$

Adjust the plot height.

5 *****H

3: 2: 1: Ppar res axes centr XM XH

Set a larger resolution.

2 RES

3:		٦
2:		
1:		
PPAR	RES AXES CENTR XW XH	

Plot the function, using λ for the abscissa. The program takes several minutes to complete, as it computes the determinant for each point plotted.

DRAW

The curve shows that there are only two distinct roots. The leftmost root, which is a local maximum, must represent a double eigenvalue root.

Digitize the roots to set initial guesses for the root solver.

>	•	•	•	>	INS
>	•	•	•	>	INS

Set the standard display mode.

ATTN	
MODE	STD

3:	
3	(2.1,0) (5.3,0)
	SCI ENG DEG [RAD]

NOTE: The values displayed will vary by differences in the digitizing position from the graphics display.

Use the Solver to find the roots of the curve.

SOLV	
	/R ≣

3:	
2	(2.1.0)
1:	(2.1,0) (5.3,0)
A EXPREM	(010,0)

Solve for the rightmost root.

L: 5.4000000016				
Sign	Reversal 5.400000000	16		
1.	A EXPR=	10		
	n Lorn-			

One root is $\lambda_1 = 5.40$.

Drop this result from the stack and solve for the next root.

DROP]		
L		L	ENTER

	2.1	NNNNN	i sisisi	
Sign	Re	eversal 2.1	0000	000001
	Ĥ			

The double eigenvalue is $\lambda_2 = \lambda_3 = 2.10$.

Least Squares

The method of least squares is a standard statistical algorithm used to fit a curve to data in order to estimate a function, predict a trend, or approximate missing data values. Least squares results can easily be calculated on the HP-28C and the graphic display is particularly useful for examining the fit to the original data.

Straight Line Fitting

Find the least squares straight line fit to the four points: (0,1), (1,3), (2,4), and (3,4).

The least squares solution is given by Y = MV to fit the line y = ax + b.

NOTE: The solution provided below serves to illustrate matrix operations, and could be replaced, in the case of y = ax + b, with the statistical functions (Linear Regression) of the HP-28C.

$$Y = \begin{bmatrix} 1\\3\\4\\4 \end{bmatrix}$$
$$M = \begin{bmatrix} 0 & 1\\1 & 1\\2 & 1\\3 & 1 \end{bmatrix}$$
$$V = \begin{bmatrix} a\\b \end{bmatrix}$$

Solving for V gives us

$$V = \frac{M^T Y}{M^T M}$$

CLEAR		
MODE	2	≣ FIX ≣

Key in the y values of the data points.

[[1[3[4[4 ENTER]

1:	ננ	1.00	ļ
	È	4.00	j
ST	0 [F	IX] SCI	ENG DEG [RAD]

Store the 4×1 matrix Y.

Y STO

3:				
1: Sto	[FIX]	CIEN	G DEG	[RAD]

Key in the a and b values representing the line y = ax + b.

[[0	1[1	1[2	1[3	1	ENTER
---	-----	-----	-----	-----	---	-------

1:	[] [[2.00	$1.00 \\ 1.00$]
ST	0 (F	IX] SCI	ENG	DEG [RAD]

Store	the	4×2	matrix	Μ	•
-------	-----	--------------	--------	---	---

'M STO

3:	
1: STD [FIX] SCI	ENG DEG [RAD]

Compute V using the least squares fitting method.

$ \begin{array}{c} M ENTER \\ \hline ARRAY \\ \hline TRN \\ \hline Y \times \end{array} $	2: 1: [[23.00] [12.00]] SIZE ROM TAN CON ION RSD
M ENTER	2: [[23.00] [12.00 1: [[14.00 6.00] [6.00 4.00]] SHZE ROM TRN CON TON RSD
÷	2: 1: [[1.00] [1.50]] Size RDM TRN CON ION RSD

Store the coefficients from matrix V in the individual variables a and b.

≣ ARRY→ ≣

3: 2:			1.00
1:	۲	2.00	1.00 3
→ARBY ARBY→	PUT	GET P	UTI GETI

Drop the dimension list.

DROP

3:	
Ž:	1.00
1:	1.50
→ARRY ARRY→ PUT	GET PUTI GETI

Store the two coefficients.

B STO

3: 2: 1: 1.00 →ARRY ARRY→ PUT GET PUTI

'A STO

2.
2:
1:
→ARRY ARRY→ PUT GET PUTI GETI

Enter the equation for the straight line.

'A	×	Х	+	В	ENTER
----	---	---	---	---	-------

3:	
1	'A*X+B'
→ARRY ARRY→ PUT	GET PUTI GETI

Store the equation.

'LINE STO

Recall equation LINE.

USER LINE

3:2:1:	'A*X+B'

LINE A B M

→ARRYARRY→ PUT GET PUTI GETI

3: 2: 1:

Store the line equation as the current expression in EQ.

2.
3
4
1:
STEQ RCEQ SOLVR ISOL QUAD SHOW

Use the Solver to compute the desired line.

SOLVR E EXPR=

EXPR=	1.00*X+1.50
2:	'1.00*X+1.50'
1.	1.00*^+1.00
A X	B EXPR=

The straight line fit to the data is the equation y = 1.5x + 1.

Now use the PLOT menu to draw the line and verify the fit to the data.

Clear the current plot parameters.

PLOT PPAR PURGE 3: 2: 1: '1.00*X+1.50' STEC REEQ PMIN PMAX INDER DRAW

Establish X as the independent variable.

'X ≣INDEP≣

3:	
1	'1.00*X+1.50' CR 2001 (2002)

Adjust the height by 5.

5 **≣ ***H **≣**

3:	
2:	
1:	'1.00*X+1.50'
PPAR R	ES AXES CENTR XW XH

Recenter the axes so that the point (0,1) can be viewed on the plot.

3: 2: 1:

(-1,-1)	ENTER
AXES	

Now move to the Statistics menu to set up a scatter pla	ot.
---	-----

STAT CLE

3:	
1:	'1.00*X+1.50'
Σ+	Σ- NΣ CLΣ STOΣ RCLΣ

PPAR RES AXES CENTR

'1.00*X+1.50

Enter the four data points into ΣDAT .

[0,1	Σ + Ξ
[1,3	Σ +
[2,4	Σ +
[3,4	<u></u> Σ+

Enter a program that will overlay the function plot onto the scatter plot.

PL	.OT		
~	CLLCD	DRWS	DRAW
E١	ITER		

3: 2: 1:	'1.00*X+1.50' « CLLCD DRW∑ DRAW »
STEO	RCEQ PMIN PMAX INDEP DRAW

Draw the plot.

EVAL

We can see from the plot that the line fits the four points well.

Purge the variables used in the problem section. { $\Sigma PAR' \Sigma DAT' PPAR' EQ' A' B' M' Y'$ PURGE.

Quadratic Polynomial

According to Newton's Second Law of Motion, a body near the earth's surface falls vertically downward according to the equation

$$y = y_0 + v_0 t + \frac{1}{2}g t^2$$

where

y = vertical displacement at time t. y₀ = initial vertical displacement at time $t_0 = 0$. v₀ = initial velocity at time $t_0 = 0$. g = Newton's constant of acceleration of gravity near the earth's surface.

An experiment is performed to evaluate g. A weight is released with unknown initial displacement and velocity. At a fixed time interval the distance fallen from a fixed reference point is measured. The following results are obtained: At times t = .1, .2, 5 seconds the weight has fallen y = -.055, .094, .314, .756, and 1.138 meters, respectively, from the reference point. Calculate the value for Newton's constant g using these data.

We will fit the quadratic curve

$$y = a + bt + ct^2$$

to the five data points. The least squares solution is given by

$$Y = MV$$

where

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix}$$

 $M = \begin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ 1 & t_3 & t_3^2 \\ 1 & t_4 & t_4^2 \\ 1 & t_5 & t_5^2 \end{bmatrix}$

and

 $V = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

Solving for V gives us

 $V = \frac{M^T Y}{M^T M}$

1: C C

3:

Clear the stack and set the display mode to three decimal places.

CLEAR		
MODE	3	≣ FIX ≣

Key in the matrix of y values.

[[-.055[.094[.314[.756[1.138 ENTER]

Store the 5×1 matrix Y.

Y STO

Ž						
STD	[FIX] SCI	ENG	DEG	RAD]
						-

Key in the components of array M.

Enter $row_1 = 1, .1, .1^2$.

1 ENTER .1 ENTER ENTER x²

72

3:	1.000
Ž:	0.100
1:	0.010
STD [FIX] SC	ENG DEG [RAD]

3:	
3:	
1:	
STD F	X] SCI ENG DEG [RAD]

.055_]

STD [FIX] SCI ENG DEG [RAD]

Enter $row_2 = 1, .2, .2^2$.	
1 ENTER • 2 ENTER ENTER x ²	3: 1.000 2: 0.200 1: 0.040 STO [FIX] SCE ENG DEG [RAD]
Enter $row_3 = 1, .3, .3^2$.	
1 ENTER • 3 ENTER ENTER x ²	3: 1.000 2: 0.300 1: 0.090 STD [FIX] SCI ENG DEG [RAD]
Enter $row_4 = 1, .4, .4^2$.	
1 ENTER • 4 ENTER ENTER x ²	3: 1.000 2: 0.400 1: 0.160 STD [FIX] SCI ENG DEG [RAD]
Finally, enter $row_5 = 1, .5, .5^2$.	
1 ENTER • 5 ENTER ENTER x ²	3: 1.000 2: 0.500 1: 0.250 STO [FIX] SCI ENG DEG [RAD]
Key in the dimension of M .	
{ 5 3 ENTER	3: 0.500 2: 0.250 1: (5.000 3.000) STO [FIX] SCL ENG DEG [RAD]
Put the components into the array.	
	1: [[1.000 0.100 0.01 [1.000 0.200 0.04 [1.000 0.300 0.09 PANAN MARY PLUT GET PUTT GETT
Store matrix M.	
'M STO	3: 2: 1: Þarry arryð put get puti geti

Compute V using the least squares method.

М	ENTER
T	RN≣
Y	×

M ENTER

1: [[2.247] [0.979] [0.437]] STRE ROM TAN CON TON RSD 1: [[-0.121] [0.099] [4.914]] STRE ROM TAN CON TON RSD

Store matrix V.

V STO

3:		
1 Size Rom	TRN CON	IDN RSD

Evaluate g, Newton's constant of gravity. Get element c from the solution vector V, then multiply c by 2. $g = 2^*c$.

V ENTER {31} GET 2 ×

CONVERT

3:	
1	9.829
→ARRY ARRY→ PUT	GET PUTI GETI

Convert from m/sec² to ft/sec².

LC	m	ENTER
LC	ft	ENTER

3:	9.829
2:	.'m'
1:	<u>'ft'</u>
→ARRY ARRY→ PUT	GET PUTI GETI

3:	
2	32,246
→ARRY ARRY→ PU	T GET PUTI GETI

The result is g = 32.246 ft/sec².

Now use the solver to compute the desired quadratic polynomial.

'A	+	В	×	т	+	С	×	Т^2
ENT	ER							

3:	32,246
1	'A+B*T+C*T [^] 2'
JARRY ARRY -	RUT GET RUT GET

Store equation POLY.

POLY STO

Get the coefficients from matrix V.

V ENTER

E ARRY→

3	32,246
1	'ft'
Parry arry	Put get puti geti

1:	ן ז נ	-0.12	31	
	C	4.914	1]]	
÷AR	RY AR	RYƏ PUT	GET	PUTI GETI

3:				0.0	99
2:	_	_		0.0 4.9 1.000	14
1:	{				
→ARRY ARRY→	PI	JT	GET	PUTI GI	111

Drop the dimension list.

DROP

3:	-0.121
2:	0.099
1:	4.914
→ARRY ARRY→ PUT	GET PUTI GETI

Store the three coefficients a, b, and c.

C STO

3:			'ft	1
2:			-0.12	1
1:			0.09	
→ARRY ARRY-	PUT	GET	PUTI GET	1

B STO	3:	32,246
	2 :	
	1:	-0.121
	⇒ARRY ARRY→ PUT	GET PUTI GETI

'A STO	3: 2: 1:	32,246
	3: 2: 1:	32,246 ft

Recall the equation.

USER	POLY
------	------

2	32.246 'ft'
⇒ARRY ARRY→ PUT	GET PUTI GETI

Store the equation as the current expression EQ.

SOLV	
🗏 STEQ 🗏	

Use the Solver to compute the desired equation.

Ī	SOLVR	Ξ
≣	EXPR=	

The least squares solution equation is $-0.121+0.099t+4.914t^2$.

Next, we will overlay the function curve over a scatter plot of the data points to verify the fit.

First, clear the current plot parameters and establish t as the independent variable.

3: 2: 1:

3: 2: 1:

CLEAR PLOT 'PPAR PURGE 'T INDEP

Adjust the plot width by .1, to plot 0.1 seco

.1 *W

ext use the Statistics menu to create the scatter plot.	

STAT ≣ CLΣ ≣

Enter the data points for the scatter plot.

- - ----

L•T	 055 <u>≣Σ+</u> ≣	
[.2	.094 <u>Σ+</u>	
[.3	.314 <u>Σ+</u>	
[.4	. 756 <u>Σ</u> +	
[.5	1.138 ΞΣ+Ξ	

3:		
2:		
1:		
Σ• Σ-	NZ CLZ STOZ RCLZ	

Σ+ Σ- ΝΣ CLΣ STOΣ RCLΣ

ond intervals along the abscissa.	
3: 2:	

STEQ RCEQ PMIN PMAX INDEP DRAW

1: '-0.121+0.099*T+ 4.914*T^2'
A B T C EXPR=

SOLV
STEQ

Now write a program to overlay the two plots.

PLC	т			3:		
~	CLLCD	$DRW\Sigma$	DRAW	2:	*	ſ
E	NTER			SILC		

3:					
2 1		CLLCD			
STEC	RC	EQ PMIN	PMAX II	NDEP DRA	М

Store program PLT.

PLT STO

3:	
2:	
1:	
STER	RCEQ PMIN PMAX INDEP DRAW

Draw the plot.

USER	≣ PLT	
	=	_

You may wish to rescale the plot height to obtain a better view of the fit of the first two data points.

.25 *****H

3:					
1: PPAR	RES	AXES	CENTR	жм	ХH

USER	
E PLT	

The plots show a good fit of the quadratic polynomial to the five data points.

Markov Chains

A Markov Chain is a system that moves from state to state, and in which the probability of transition to a next state depends only on the preceding state. The system states can be predicted at particular points in time using transition probabilities.

The transition matrix for the Markov Process is the $n \times n$ matrix $P = [p_{ij}]$ where p_{ij} = probability of transition directly from state j to state i, and $\sum_{i=1}^{n} p_{ij} = 1$.

The components of the state vector $X^{(n)}$ signify the probability that the system is in state *i* at the n^{th} observation.

$$X^{(n)} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

The model for the system is described by $X^{(n+1)} = P X^{(n)}$, where the transition matrix applied to the current state determines the next state.

Steady State of a System

A chemist runs an experiment where colored films are immersed in a solution for a brief time period, resulting in a possible color change. He calculates the color changes according to the following probabilities.

C	riginal Color		New Color
Magenta	Cyan	Yellow	
.8	.3	.2	Magenta
.1	.2	.6	Cyan
.1	.5	.2	Yellow

Determine to two decimal places the probable future color of a cyan film dipped in the solution several times.

CLEAR MODE 2 FIX

3:	
2 :	
1:	
STD	FIX] SCI ENG DEG [RAD]

Key in the 3×3 transition matrix P.

[[.8 .3 .2[.1 .2 .6[.1 .5 .2 ENTER]

1:	ן ז נ	0.10	0.20	0.20	
ST	⊡∎[F	0.10	0.50	Ö.ŽÖ DECEI[¤	ננ

P STO

3:	
2:	
1 : STD	[FIX] SCI ENG DEG [RAD]

Key in the initial state vector X^0 . This vector represent an initial state of cyan.

1:	ן ז ן נ	0.00]]]
ST	0 [F	IX] SCI	ENG DEG (RAD)

'X STO

3:	
2:	
STD	[FIX] SCI ENG DEG [RAD]

Key in the initial value for n = current state.

0 ENTER 'N STO 3: 2: 1: STD [FIX] SCI ENG DEG [RAD]

Write a program to compute the next future state.

Store program MARK.

MARK STO

2 1	« N SWE	1. P *	00 + »	+ 'N	I' ST	0 P
STD	. [F1	(X)	CI E	NG	DEG	RAD]

D .	
3	
3: 2: 1:	
1:	
STD [FIX] SCI ENG DEG	[RAD]

Recall the initial state vector.

ι	JS	ER
≣	Х	≣

1	: [[0. [1. [0.	00 00 00]]		
ß	18RK	N	X		P		

Compute the next state.

≣ MARK ≣

1:	[]	0.30]
	[0.20]
	[0.50]]
MAR	K	N X	P

After one observation, the color is most likely to be yellow. Compute the next state.

🗏 MARK 🗏

1:	ננ	0.4	0]	
	ב	0.4	37]	
	C	0.2	23	ננ	
MA	RΚ	N	X	P	

After two observations, the color is most likely to be either magenta or cyan. Continue computing future states until a final steady state is reached.

🗏 MARK 🗏

1:]] [[0. 0. 0.	48 25 27]	נ		
MAR	к	N	X		٢		

≣ MARK≣	1: [[0.51] [0.26] [0.23]] [MARK N R P
≣ MARK ≣	1: [[0.53] [0.24] [0.23]] [MMRK] N 8 P
	1: [[0.54] [0.24] [0.22]] MARK N 8 P
	1: [[0.55] [0.23] [0.22]] [0.22]]
	1: [[0.55] [0.23] [0.21]] [MMMK N 8 P
	1: [[0.56] [0.23] [0.21]] MARK N 8 P
	1: [[0.56] [0.23] [0.21]] MHRK N 8 P

The system has reached a steady state. Determine how many observations were completed to reach this final state.

≣N≣

3: 2: 1:	٢ ٢	0.	56	נ	C	0.23]. 00
MAR	ĸ	N	X		P		

The system reaches a steady state after n = 10 observations. The probable future color of an initially cyan film immersed several times is .56 magenta, .23 cyan, and .21 yellow.

Purge the variables used in this problem section. { 'MARK' 'N' 'X' 'P' } PURGE.

An Example:

Matrix manipulations are used to solve complex, multi-dimensional problems. The following sections illustrate use of the HP-28C matrix capabilities in a market with challenging economic issues. These same analytical tools can be applied across many industries.

Forest Management

When a forest is managed by a sustainable harvesting policy, every tree harvested is replaced by a new seedling, so the total population quantity remains constant. A matrix model can be developed to assist in determining optimal harvesting procedures. The model is based on categorizing the trees into height/price classes and computing an optimal sustainable yield for a long-range time period.

The Sustainable Harvesting Cycle is represented by:

Forest ready for harvest - harvest + new seedlings = forest after harvest, or

$$GX - Y + RY = X$$

where

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$$

X = Nonharvest vector, the trees that remain after the harvest and replanting.

 x_i = number of trees in the *i* th class.

i ranges from 1 to n, where there are n height/price classes.

$$S = \sum_{i=1}^{n} x_i$$
 = total number of trees sustained.

Tree growth between harvests is designated by g_i , the fraction of trees that grow from class *i* to class *i* + 1.

 $1 - g_i$ = fraction of trees that remain in class *i*.

The growth matrix is

$$G = \begin{bmatrix} 1-g_1 & 0 & 0 & \cdot & 0 \\ g_1 & 1-g_2 & 0 & \cdot & 0 \\ 0 & g_2 & 1-g_3 & \cdot & 0 \\ \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & 0 \\ 0 & 0 & 0 & g_{n-1} & 1 \end{bmatrix}$$

GX = Nonharvest vector after growth period, or forest ready for harvest.

$$Y = \begin{bmatrix} y_1 \\ \cdot \\ \cdot \\ \cdot \\ y_n \end{bmatrix}$$

Y = Harvest vector, or trees removed at harvest.

$$R = \begin{bmatrix} 1 & 1 & 1 & \cdot & \cdot & 1 \\ 0 & 0 & 0 & \cdot & \cdot & 0 \\ \cdot & & & & \cdot & \cdot \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

R = Replacement matrix.

RY = New seedling vector, or trees planted after harvest.

The Harvest Model

A harvester has a crop of 120 silver fir trees to sell annually for Christmas trees. After last year's harvest, his forest had the following configuration.

Class (i)	Height interval in feet (h _i)	Number of trees (x _i)
1	[0,4)	15
2	[4,8)	20
3	[8,12)	35
4	[12,16)	30
5	[12,16) [16,∞)	20

During the growth period, 6 trees in class 1 grew to the next height class, as did 13 trees in class 2, 10 trees in class 3, and 4 trees in class 4. If he sustainably harvests 8 trees of class 2, 6 trees of class 3, 13 trees of class 4, and 6 trees of class 5, what is the configuration of his crop after harvest and replanting?

CLEAR MODE 2 FIX	3: 2: 1: STD [FIX] SCI ENG DEG [RAD]
Enter the 5×1 nonharvest vector X.	
[[15[20[35[30[20 ENTER]	1: [[15.00] [20.00] [35.00] [STO [FIX] SCI ENG DEG [RAD]
'X STO	3: 2: 1: STD [FIX] SCI ENG DEG [RAD]
Compute the growth fractions for each h	eight class First compute

Compute the growth fractions for each height class. First, compute $g_1=6/x_1$.

6	ENTER
15	÷

3:	
1:	0.40
STD [FIX] SCI	ENG DEG [RAD]

'G1 STO	3: 2: 1: STD [FIX] SCI ENG DEG [RAD]
Compute $g_2 = 13/x_2$.	
13 ENTER 20 ÷	3: 2: 1: 0.65 STD [FIX] SCI ENG DEG [RAD]
'G2 STO	3: 2: 1: STD [FIX] SCI ENG DEG [RAD]
Compute $g_3 = 10/x_3$.	
10 ENTER 35 ÷	3: 2: 1: 0.29 STD [FIX] SCI ENG DEG [RAD]
'G3 STO	3: 2: 1: STD [FIX] SCI ENG DEG [RAD]
Compute $g_4 = 4/x_4$.	
4 ENTER 30 ÷	3: 2: 1: 0.13 STD [FIX] SCI ENG DEG [RAD]
'G4 STO	3: 2: 1: STD [FIX] SCI ENG DEG [RAD]

Enter the 5×5 growth matrix G.

Enter row₁.

US	
1	ENTER
≣G	1 🗄
_	
0	ENTER
EN	TER
EN	TER
EN	TER

3: 0.00 2: 0.00 1: 0.00 G4 G3 G2 G1 X

Enter row₂.

Enter row₃.

0	ENTER
≣G	2
1	ENTER
≣G	3
-	
0	ENTER
EN	TER

Enter row₄.

0	ENTER
EN	ITER
C	33≣
1	ENTER
C	64 ≣
-	
0	ENTER

3: 2:					0.00 0.00 0.00
1:					0.00
G٩	G3	G2	G1	X	

3: 2: 1:					0.71 0.00 0.00
G4	G3	G2	G1	Х	

3: 2: 1:					0.29 0.87 0.00
G4	G3	G2	G1	x	

Enter row₅.

0	ENTER
EN	TER
EN	TER
≣G	4≣
1	ENTER

Enter the dimensions of G.

{5 5}	ENTER
-------	-------

Store	matrix	G.
-------	--------	----

ARRAY ≣→ARRY ≣

'G	STO
'G	STO

3:				
1 Darry Arry (PUT	GET	PUTI	ETI

3: 2: 1:

3 2 1

1: [[

→ARRY ARRY→

G4 G3 G2

G4 G3 G2

161

5.00 5

x

Enter the 5×1 harvest vector Y. [[0[8[6[13[6 ENTER]

1:]] [[0.00 8.00 6.00]	
≯aR	RY AR	RYƏ PUT	GET	PUTI GETI

Y STO

3: 2:	
1: ⇒ARRYARRY→ PUT GET	PUTI GETI

Create the replacement matrix R. First enter the dimensions of R.

{5 5} ENTER

3:				
1:		5.00)
→ARRY ARRY→	PUT	GET P	UTI GET	П

Create a constant matrix whose entries are all zero.

0	ENTER
Ē	CON

1:	11	0.00	0.00	0.00	Ø
	C	0.00	0.00	0.00	Ø
	C			0.00	
SIZ	ER	DM TRN	I CON	IDN F	SD

Now enter 1 across the entire first row of R.

{1 1} ENTER

3: 2: 1:	٢ ٢	0.00 0.00 0.00 0 (1.00 1.00)
SIZ	E R	DM TRN CON IDN RSD

[[1.00 1.00 { 2.00

→ARRY ARRY→ PUT GET

.00 1.00

- 1 **PUTI**
- 1 <u>PUTI</u> 1 PUTI
- 1 I PUTI I 1 **PUTI**

Drop the index list.

DROP

1:	2 2	1.00 0.00 0.00	1.00	1.00	1
-	Ī	0.00	0.00	0.00	Ø
	<u> </u>	0.00	0.00	0.00	0
⇒ar	RY AR	RYƏ PUT	GET	PUTI G	ETI

Store matrix R.

'R STO

2.	
2:	
4	
1:	
→ARRYARRY→ PUT GET PUTI GE	111

Write a program to compute the configuration of the forest after harvest.

USER « G X × Y - R Y × + » ENTER	2: 1: «GX*Y-RY*+ » 8 Y G G4 G3 G2
CROP STO	3: 2: 1: CROP R Y G G4 G3

Compute the new nonharvest vector with program CROP.

1:	ננ נ ר	5.0	.00 20 00	נ ר		
CRO	P	R	Ŷ	G	G4	G3

Use EDIT or $VIEW_1$ to view the entire vector. The ATTN key will exit EDIT mode.

The new nonharvest vector is

$$X = \begin{bmatrix} 42\\5\\32\\23\\18 \end{bmatrix}$$

The program can be used with the new nonharvest vector to predict new forest configurations using the same harvesting cycle annually.

Optimal Yield

If the harvester wishes to optimize his profit year after year, he must determine the optimal sustainable yield. This is achieved by harvesting all of the trees from one particular height/price class and no trees from any other class. The sustainable yield is thus a function of both price and growth rate, but independent of the current nonharvest vector. Note that if class k provides the maximum yield, the first year all classes $\geq k$ are harvested. In the following years only class k is harvested, and no trees will ever be present in higher classes.

S = total number of trees sustained in the forest.

$$P = \begin{bmatrix} p_1 & 0 & \cdot & 0 \\ \cdot & p_2 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdot & p_n \end{bmatrix} = \text{Price matrix}$$

 p_i = price attained for class i.

$$GG = \begin{bmatrix} gg_1 \\ gg_2 \\ \cdot \\ \cdot \\ gg_n \end{bmatrix}$$

GG =Growth ratio matrix.

where

$$\begin{cases} gg_{i} = \frac{1}{\sum_{k=1}^{i-1} \frac{1}{g_{k}}} & \text{for } i = 2...n \\ gg_{1} = 0 & gg_{1} = 0 \end{cases}$$

$$YL = \begin{bmatrix} yl_1 \\ yl_2 \\ \cdot \\ \cdot \\ yl_n \end{bmatrix}$$

YL = Yield vector.

 yl_k = yield (total dollar amount) obtained by harvesting all of class i and no other class.

The optimal class to harvest can be selected by finding the maximum yl_k from yield vector YL, where

$$YL = P * S * GG$$

Suppose the market prices for the five classes are $p_1 = \$0$, $p_2 = \$50$, $p_3 = \$100$, $p_4 = \$150$, and $p_5 = \$200$. Determine which height class should be harvested.

Enter the market prices for the five classes and store in variables p_1 through p_5 .

CL	EAR	USER		
0 ENTER				
' P	1	STO		

3: 2:		
1: Pl CROP R Y	G G4	

50 [ENTER
------	-------

3:					
1				5	0.00
P1	CROP	R	Y	G	G4

≣ P2 ≣

3 : 2:					
1: P2	P1	CROP	R	Y	G

3: 2:					
1:				10	0.00
59	P1	CROP	R	Y	G

'P3 STO	3: 2: 1: P3 P2 P1 CROP R Y
■ P2 3 ×	3: 2: 1: 150.00 P3 P2 P1 CROP R Y
'P4 STO	3: 2: 1: P4 P3 P2 P1 CROP R
■ P2 4 ×	3: 2: 1: 200.00 P4 P3 P2 P1 CROP R
'P5 <u>Sto</u>	3: 2: 1: P5 P4 P3 P2 P1 (ROP
Enter the dimensions of P.	
{55} ENTER	3: 2: 1: { 5.00 5.00 } P5 P4 P3 P2 P1 (KOP

Create the 5×5 price matrix P. Since P is a sparse matrix, with most entries equal to zero, first create a constant array whose entries are all zero.

0 ENTER	1:	C C	0.0	30	0.00	0.00	Ø
		E	0.0	30 30	0.00	0.00 0.00 0.00	Ø Ø
	SIZ	E RI	٥M	TRN	CON	IDN F	SD

Now enter the values p_i along the diagonal entries.

{1 1} ENTER	3: 2: [[0.00 0.00 0.00 0 1: { 1.00 1.00 } STRE ROM TRN CON TON RSO
P1 ENTER	3: [[0.00 0.00 0.00 0 2: (1.00 1.00) 1: 0.00 Sizze Rom Tran Con Ion Red
	3: 2: [[0.00 0.00 0.00 0. 1: { 1.00 2.00 } 20030/00000 PUT GET PUT GET

Use the $\boxed{\text{EDIT}}$ function to modify the displayed position index. The modified position index is then $\boxed{\text{ENTER}}$ ed. Alternatively, you may $\boxed{\text{DROP}}$ {1.00 2.00} from above and enter the position index {2 2}.

{ 2 2 } ENTER	3: 2: [[0.00 0.00 0.00 0 1: { 2.00 2.00 } EXRAY[MARYE] PUT GET PUTL GETT
P2 ENTER	3: [[0.00 0.00 0.00 0 2: { 2.00 2.00 } 1: 50.00 PARAYMARYP PUT GET PUTT GETT
	3: 2: [[0.00 0.00 0.00 0. 1: (2.00 3.00)

Use the **EDIT** function to modify the position index. The modified position index is then **ENTER**ed:

{ 3 3 } ENTER

3 2 1		0.00 0.00 0.00 0 { 3.00 3.00 }
⇒ar	RY AR	RYƏ PUT GET PUTI GETI

→ARRYARRY→ PUT GET PUTI GETI

P3 ENTER

3:	23	0.	00	0.00 3.0	30	.00	0
3: 2:			۲	3.6	30	3.Ø	ഉറ്റി
	aviera	2021	PUT	GET	E.	100	.00

🗏 PUTI 🗏

3: 2: 1:	C 0.00 (0.00 0.00 0 3.00 4.00 >
1:	{	3.00 4.00 }
→888	ARRY→ PUT	GET PUTI GETI

Use the **EDIT** function to modify the position index. The modified position index is then **ENTER**ed:

{	4	4	}	ENTER	3: 2: [[0.00 0.00 0.00 0 1: { 4.00 4.00 }
					→ARRYARRY→ PUT GET PUTI GETI

P4	ENTER	3: [[0.00 0.00 0.00 0.
		3: [[0.00 0.00 0.00 0. 2:
		→ARRY ARRY→ PUT GET PUTI GETI

E PUTI E

3: 2: [[1:	0.00 0.00 0.00 0 { 4.00 5.00 } 33Y2 201 Get 2011 Get2
1:	{ 4.00 5.00 }
⇒ARRY A	KRYƏ PUT GET PUTI GETI

Use the EDIT function to modify the position index. The modified position index is then ENTER ed:

{ 5 5 } ENTER	3: 2: [[0.00 0.00 0.00 0. 1: { 5.00 5.00 } 200339(03372) 201 Get 2011 Gett
P5 ENTER	3: [[0.00 0.00 0.00 0 2: { 5.00 5.00 } 1: 200.00

≣ PUTI ≣

Drop the index string.

DROP

1:	םם	0.	00	0.00	0.00	0
	<u> </u>	Ø.	00	50.00	0.0.0	0
	C	0.	00	0.00	100.	<i>00</i>
÷nk	RY AR	av∌	PUT	GET	PUTI G	ETI

Store matrix P.

P STO

.
131
E.
112
1-
→ARRY ARRY→ PUT GET PUTI GETI
PHARTHARTY FOI GET FOIL GETA

Store the total number of trees sustained in variable S.

3:	
1	120.00
→ARRY ARRY→	PUT GET PUTI GETI

'S STO

3:				
1:				
→ARRY ARRY→	PUT	GET	PUTI	GETI

Compute the 5×1 growth ratio matrix GG.

Enter $gg_1 = 0$.

0	ENTE	R
'G	G1	STO

2:	
2	
1	
ARRY ARRY PUT GET PUT	I GETI

Compu	te $gg_2 =$	$1/g_1$.	

USER	≣ G1 ≣
1/x	

GG2 STO

3:				
2:			2	2.50
GG1	G4 G3	G2	G1	\$

3:
3.
2:
C •
11
1.
662 661 64 63 62 61

Compute $gg_3 = 1/g_1 + 1/g_2$ $\boxed{\texttt{GG2}}$ $\boxed{\texttt{G2}}$ $\boxed{1/x}$	3: 2: 2.50 1: 1.54 GG2 GG1 G4 G3 G2 G1
+	3: 2: 1: 4.04 GG2 GG1 G4 G3 G2 G1
'GG3 STO	3: 2: 1: GG3 GG2 GG1 G4 G3 G2
Compute $gg_4 = 1/g_1 + 1/g_2 + 1/g_3$	
GG3 G3 1/x	3: 2: 4.04 1: 3.50 GG3 GG2 GG1 G4 G3 G2
+	3: 2: 1: 7.54 GG3 GG2 GG1 G4 G3 G2
'GG4 STO	3: 2: 1: GG4 GG3 GG2 GG1 G4 G3
Compute $gg_5 = 1/g_1 + 1/g_2 + 1/g_3 + 1/g_3$	84
☐ GG4 ☐ G4 ☐ /x	3: 2: 7.54 1: 7.50 GG4 GG3 GG2 GG1 G4 G3
+	3: 2: 1: 15.04 GGY GGI GGI GY GI
'GG5 <u>Sto</u>	3: 2: 1: GG5 GG4 GG3 GG2 GG1 G4

Now invert gg_2 , gg_3 , gg_4 , and gg_5 to form the actual entries into matrix GG.

GG2 1/x		3: 2: 1: 0.40 GGS GG4 GG3 GG2 GG1 G4
'GG2 [ST	0	3: 2: 1: GG5 GG4 GG3 GG2 GG1 G4
GG3 1/x		3: 2: 1: 0.25 GGS GG4 GG3 GG2 GG1 G4
'GG3 [ST	0	3: 2: 1: GG5 GG4 GG3 GG2 GG1 G4
GG4 1/x		3: 2: 1: 0.13 GG5 GG4 GG3 GG2 GG1 G4
'GG4 ST	0	3: 2: 1: GG5 GG4 GG3 GG2 GG1 G4
GG5 1/x		3: 2: 1: 0.07 GG5 GG4 GG3 GG2 GG1 G4
'GG5 <u>S</u> 1	Ō	3: 2: 1: GG5 GG4 GG3 GG2 GG1 G4

Create the 5×1 matrix GG. Put the elements on the stack.

≣GG1	Ξ
≣GG2	Ξ
≣ GG3	Ξ
≣GG4	Ξ
GG5	Ξ

3: 2: 1:				0.25 0.13 0.07
GG5	GG4 GG3	GG2	GG1	G٩

Enter the matrix dimensions.

{ 5 1 ENTER

3: 2: 1:	0.13 0.07
1:	(5.00 1.00)
GGS	GG4 GG3 GG2 GG1 G4

Create the matrix.

ARRAY ≣ →ARRY ≣

1: [[0.00 0.40]		
E Sabby Abb	0.25 Yəl Put	GET	PUTI GETI	

Store matrix GG.

GG STO

3: 2: 1:	
2:	
1.	
→ARRY ARRY→ PUT GET PUTI GE1	11

Write a program to compute the yield vector.

~	S	Ρ	×	GG	×	»	ENTER
---	---	---	---	----	---	----------	-------

3: 2: 1:				
1: ≠arry arry→			GG	×

Store program YLD.

YLD STO

USER E YLD E

3: 2:	
1: JARRY ARRYJ PU	T GET PUTI GETI

Compute the 5×1 yield vector YL.

1: [[0.00] [2400.00] [2971.43]
YLD GG GG5 GG4 GG3 GG2

You can use EDIT or VIEWL to view the entire vector.

$$YL = \begin{bmatrix} 0\\ 2400.00\\ 2971.43\\ 2387.75\\ 1595.91 \end{bmatrix}$$

The resulting yield vector shows that height class 3 should be harvested to maximize the annual sustainable yield, since $yl_3 = 2971.43 is the maximum entry.

Purge the user variables created in this problem section.

Step-by-Step Examples for Your HP-28C

Vectors and Matrices contains a variety of examples and solutions to show how you can solve your technical problems more easily.

- General Matrix Operations Matrix Addition, Multiplication, Determinant, Inverse, Transpose, Conjugate, Minor, Rank, Hermitian Matrices
- Systems of Linear Equations Non-homogeneous and Homogeneous Systems, Iterative Refinement
- Vector Spaces
 Basis, Orthogonality, Vector Length, Normalization, Orthogonalization, Orthonormal Basis
- Eigenvalues Characteristic Polynomial, Eigenvalues, Eigenvectors
- Least Squares Straight Line Fitting, Quadratic Polynomial
- Markov Chains Steady State of a System
- An Example: Forest Management Model and Yield

Reorder Number 00028-90044

00028-90059 Printed in U.S.A. 3/87

