Step-by-Step Solutions
For Your HP Calculator
Algebra and College Math

HP-28S
HP-28C

Help Us Help You!

Please take a moment to complete this postage-paid card, tear it out and put it in the mail. Your responses and comments will help us better understand your needs and will provide you with the best procedures to solve your problems. Thank you!

HELP US HELP YOU!

Book: Algebra and College Math Date acquired: \qquad
Name \qquad
Street \qquad
City, State, Zip \qquad
Phone \qquad
\qquad Business \qquad or Home \qquad

1. What calculator will you use this book with? $004 \square$ HP-28S $005 \square$ HP-28C $006 \square$ Other \qquad
2. How many other HP solution books have you bought for this calculator? \qquad
3. What is your OCCUPATION?
$101 \square$ Student $103 \square$ Professional $109 \square$ Other \qquad
4. Where did you purchase this book?
$403 \square$ Bookstore $404 \square$ Discount or Catalog Store
407 Mail Order $410 \square$ HP Direct 411Other \qquad
5. How did you first hear about this book?
$501 \square$
\square HP Owner 503Advertising 506 \qquad Brochure 508 Other \qquad
6. To what degree did this book influence your calculator purchase decision? $601 \square$ Major Influence 602 \qquad Minor Influence 603 \qquad No Influence
7. How well does this book cover the material you expected? $701 \square$ Good $702 \square$ Moderate $703 \square$ Low
8. What level of knowledge is required to make use of the topics in this book? 801High 802 \qquad Medium 803
9. How clearly was the material in this book presented? $901 \square$ Good $902 \square$ Moderate $903 \square$ Low
10. How would you rate the value of this book for your money? $111 \square$ High $112 \square$ Medium $113 \square$ Low

Comments: (Please comment on improvements and additional applications or subjects you would like HP to cover in this or another solution book.) \qquad
\qquad
\qquad
\qquad

BUSINESS REPLY CAR	

postage will be paid by addressee
Hewlett-Packard Company
ATTN: Calculator Market Research
1000 N.E. Circle Blvd.
Corvallis, OR 97330 , U.S.A.

Algebra and College Math

Step-by-Step Solutions for Your HP-28S or HP-28C Calculator

Notice

This book and any keystroke programs contained herein are provided "as is" and are subject to change without notice. Hewlett-Packard Company makes no warranty of any kind with regard to this book or the keystroke programs contained herein, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard Company shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this book or the keystroke programs contained herein.
© Hewlett-Packard Company 1987. All rights reserved. Reproduction, adaptation, or translation of this book, including any programs, is prohibited without prior written permission of Hewlett-Packard Company; except as allowed under the copyright laws. Hewlett-Packard Company grants you the right to use any program contained in this book in a Hewlett-Packard calculator.

The programs that control your calculator are copyrighted and all rights are reserved. Reproduction, adaptation, or translation of those programs without prior written permission of Hewlett-Packard Company is also prohibited.

Corvallis Division

1000 N.E. Circle BIvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1
Edition 2

December 1987
June 1988

Mfg No. 00028-90106
Mfg No. 00028-90133

Welcome...

... to the HP-28S and HP-28C Step-by-Step Solution Books. These books are designed to help you get the most from your HP-28S or HP-28C calculator.

This book, Algebra and College Math, provides examples and techniques for solving problems on your calculator. A variety of algebraic, trigonometric, and geometric problems are designed to familiarize you with the many functions built into your calculator.

Before you try the examples in this book, you should be familiar with certain concepts from the owner's documentation:

- The basics of your calculator: how to move from menu to menu, how to exit graphics and edit modes, and how to use the menu to assign values to, and solve for, user variables.
- Entering numbers, programs, and algebraic expressions into the calculator.

Please review the section "How To Use This Book." It contains important information on the examples in this book.

For more information about the topics in the Algebra and College Math book, refer to a basic textbook on the subject. Many references are available in university libraries and in technical and college bookstores. The examples in the book demonstrate approaches to solving certain problems, but they do not cover the many ways to approach solutions to mathematical problems. Our thanks to Roseann M. Bate of Oregon State University for developing the problems in this book.

Contents

7 How To Use This Book
12 Rational Functions and Polynomial Long Division
18 Complex Numbers2326Trigonometric Relations and Identities
66 Trigonometric Functions for One and Two Angles73
11 Functions and EquationsHyperbolic and Inverse Hyperbolic Functions
Function EvaluationGraphs of Algebraic FunctionsQuadratic EquationsPolynomial Equations
Simultaneous Linear Equations
Systems of Linear Equations
Infinite Sequences and Series
Determinants of Matrices
Logarithms

 Trigonometry
 Trigonometry
Graphs of Trigonometric Functions
Inverse Trigonometric Functions
Trigonometric Equations

82 Geometry

83 Rectangular Coordinates
88 Polar Coordinates
94 The Straight Line
100 The Circle
103 The Parabola
108 The Ellipse and Hyperbola
117 Parametric Equations

How To Use This Book

Please take a moment to familiarize yourself with the formats used in this book.

Keys and Menu Selection: A box represents a key on the calculator keyboard.

In many cases, a box represents a shifted key on the calculator. In the example problems, the shift key is NOT explicitly shown. (For example, ARRAY requires you to press the shift key, followed by the ARRAY key, found above the " A " on the left keyboard.)

The "inverse" highlight represents a menu label:

Key:

DRAW
到SOL
=ABCD

Description:

Found in the PLOT menu.
Found in the SOLV menu.
A user-created name. If you created a variable by this name, it could be found in either the USER menu or the $\overline{\underline{\underline{\underline{~ S O}}}}$ SOLVR menu. If you created a program by this name, it would be found in the USER menu.

Menus typically include more menu labels than can be displayed above the six redefinable menu keys．Press NEXT and PREV to roll through the menu options．For simplicity，NEXT and PREV are NOT shown in the examples．

Solving for a user variable within SOLVR is initiated by the shift key，fol－ lowed by the appropriate user－defined menu key：

$$
\square \text { 㪯ABCD 立. }
$$

The keys above indicate the shift key，followed by the user－defined key labeled＂ABCD＂．Pressing these keys initiates the Solver function to seek a solution for＂ABCD＂in a specified equation．

The symbol＜＞＞indicates the cursor－menu key．
Interactive Plots and the Graphics Cursor：Coordinate values you obtain from plots using the INS and DEL digitizing keys may differ from those shown，due to small differences in the positions of the graphics cursor．The values you obtain should be satisfactory for the Solver root－ finding that follows．

Display Formats and Numeric Input：Negative numbers， displayed as

$$
\begin{aligned}
& -5 \\
& -12345.678 \\
& {[[-1,-2,-3[-4,-5,-6[\ldots}
\end{aligned}
$$

are created using the CHS key．
5 CHS

The examples in this book typically specify a display format for the number of decimal places．If your display is set such that numeric displays do not match exactly，you can modify your display format with the MODE menu and the $\overline{\underline{\underline{\underline{\underline{F}}}} \mathrm{FIX} \text { 群 key within that menu．（For example，MODE } 2 \text { 童FIX }}$ will set the display to the FIX 2 format．）

Programming Reminders: Before you key in the programming examples in this book, familiarize yourself with the locations of programming commands that appear as menu labels. By using the menu labels to enter commands, you can speed keying in programs and avoid errors that might arise from extra spaces appearing in the programs. Remember, the calculator recognizes commands that are set off by spaces. Therefore, the arrow (\rightarrow) in the command $\mathrm{R} \rightarrow \mathrm{C}$ (the real to complex conversion function) is interpreted differently than the arrow in the command $\rightarrow \mathrm{C}$ (create the local variable "C").

The HP-28S automatically inserts spaces around each operator as you key it in. Therefore, using the R, \rightarrow, and C keys to enter the $R \rightarrow C$ command will result in the expression $R \rightarrow C$, and, ultimately, in an error in your program. As you key in programs on the HP-28S, take particular care to avoid spaces inside commands, especially in commands that include an \rightarrow.

The HP-28C does not automatically insert spaces around operators or commands as they are keyed in.

A Note About the Displays Used in This Book: The menus and screens that appear in this book show the HP-28S display. Most of the HP-28C and HP-28S screens are identical, but there are differences in the

For example, the first screen below illustrates the HP-28C MODE menu, and the second screen illustrates the same menu as it appears on the HP-28S.

HP-28C MODE display.

\qquad

HP-28S MODE display.

Notice that the HP-28C highlights the entire active menu item, while the HP-28S display includes a small box in the active menu item.

The screens shown below illustrate the HP－28C and HP－28S versions of

HP－28S 㪯SOLVR 垔 display．

 and EXPR $=$ 邫．The HP－28C displays Solver variables in gray on a black background．The HP－28S prints Solver variables in black on a gray back－ ground．

User Menus：A PURGE command follows many of the examples in this book．If you do not purge all of the programs and variables after working each example，or if your USER menu contains your own user－ defined variables or programs，the USER menu on your calculator may differ from the displays shown in this book．Do not be concerned if the variables and programs appear in a slightly different order on your USER menu；this will not affect the calculator＇s performance．

Functions and Equations

Rational Functions and Polynomial Long Division

The quotient of two polynomials is a rational function. The Taylor series command TAYLR can be used to find the equivalent polynomial if the denominator divides evenly into the numerator. If it does not, then TAYLR gives an expression that approximates the quotient. The following examples show how to evaluate rational functions.

Example: Using the command TAYLR, find the equivalent polynomial for the following rational function.

$$
\frac{6 x^{3}-5 x^{2}-8 x+3}{2 x-3}
$$

Press the following keys to put the expression for the numerator in level 1.

$$
' 6 \times X^{\wedge} 3-5 \times X^{\wedge} 2-8 \times X+3 \text { ENTER }
$$

Duplicate the expression and then store it in a variable named N (for "numerator").

ENTER
${ }^{\prime} \mathrm{N}$ STO

$4:$	
$3:$	
$2:$	$16 * x^{\wedge} 3-5 * x^{\wedge} 2-8 * x+3 '$
$1:$	

N has been added to the User menu.
Enter the expression for the denominator and symbolically divide the numerator by the denominator.

```
USER
' 2\timesX-3 ENTER
\div
```


Enter the variable to be evaluated.

```
'X ENTER
```


By inspection, the quotient is of order $2(n=2)$. Add the order to the stack to complete the three inputs needed to execute the Taylor series command, and set the display to FIX 2.

2 ENTER
MODE 2 㪯FIX㪯

Execute the Taylor function.

```
ALGEBRA
    TAYLR =
```

```
|
```

The equivalent polynomial for the rational function is $-1+2 x+3 x^{2}$.
Example: Find the polynomial quotient and remainder equal to the following rational function.

$$
\frac{6 x^{3}-5 x^{2}-8 x+3}{3 x^{2}+2 x+1}
$$

The denominator does not divide evenly into the numerator. The algorithm to solve polynomial long division is included in your calculator's reference manual. The steps of that algorithm will be followed in this example, and referring to them may help you understand the problem better.

Before attempting this example, complete the previous example. The expression $-1+2 x+3 x^{2}$ from the previous example must appear in level 1 and $6 x^{3}-5 x^{2}-8 x+3$ must be stored in the variable N. Modify the expression in level 1 by substituting " 1 " for " -1 " in the first position of the expression. This is accomplished by pressing the following keys.

1 ENTER
\{1 ENTER

Make the substitution for the first object.
으을

Store this expression in a variable named D (for "denominator") and store the initial value of 0 in a variable named Q (for "quotient").

Recall the numerator N to the stack.

USER
$\overline{\equiv \mathrm{D} \equiv} \mathrm{B}$

Put the denominator D on the stack.

By inspection, divide the highest-order term in the numerator ($6 x^{3}$) by the highest-order term in the denominator $\left(3 x^{2}\right)$. The quotient term is $2 x$. Enter $2 x$.

$$
{ }^{\prime} 2 \times \mathrm{X} \text { ENTER }
$$

Make a copy of the quotient term and return the current quotient variable to the stack.

Add this copy to Q.
\square

Store this result in Q.
'Q STO

Multiply the quotient term and the denominator．

Subtract the result from the numerator．

Simplify the result by expanding the expression and then collecting terms．
ALGEBRA 㪯 EXPAN

1： 6 ＊$\times * \times 2)-5 *(X *)-8$ $\times X+3-(1+2 \times x) \times(2 x x)+$马XX，

By inspection，another expansion is required for the x^{2} term．

泰 EXPAN

1： $6 *(X *(X * X)-5 *(X * X)$
$-8 \times x+3-(1 *(2 \times x)+2 \times x \times$
EOLCT EMFHN SIEE FONF OESDE EXSDE

All terms are fully expanded，so now collect terms．


```
2: '3+6**^3-6**^3-9**^2
    -10**'
```


Collect terms until complete．

```
\overline{\underline{\underline{#COLCT}}}\boldsymbol{=}
```

2： $13-9 \times \times \wedge 2-10 \times x^{\prime}$	
COLTTEXFHNSEE	FWF｜DEsUEEXSUE

The result is a new and reduced numerator．Since its degree is equal to the denominator＇s degree，continue this process of finding a quotient term， adding it to Q ，and reducing the numerator．

Put D on the stack．
USER 奉D

Divide the highest-order term in the numerator, $-9 x^{2}$, by the highestorder term in the denominator, $3 x^{2}$. By inspection, the result is -3 . Enter this quotient term.
3 CHS ENTER

Make a copy of the quotient term and return the quotient variable to the stack.

ENTER

Add this copy to Q.

Store the result in Q.
'Q STO

Multiply the quotient term and the denominator.
区

Subtract the resulting expression from the new numerator.

Simplify the expression by expansion and collection of terms.
ALGEBRA EXPAN

Continue until all terms are fully expanded．

立EXPAN $\bar{\equiv}$

$-3)+2 \times x *(-3)+3 *(x * x)$
＊(-3) ）

Now collect terms．
를OLCT $\bar{\equiv}$

```
3:
2:
＇6－4天x＇
```


The result is the new numerator．Since its degree is less than the denominator＇s degree，the iteration process ends．The polynomial quotient is stored in Q ，and the remainder equals the final numerator divided by the denominator．

USER 童垔

Thus the answer is

$$
-3+2 x+\frac{6-4 x}{3 x^{2}+2 x+1}
$$

The command TAYLR can be used to approximate this result．Executing TAYLR with $n=1$ gives the result $3-14 x$ ．

Purge the variables created in this example and clear the stack．
\｛＇Q＇$^{\prime} \mathrm{D}^{\prime \prime N}$ PURGE

Complex Numbers

Complex numbers, $x+i y$, can be represented in two ways: as an object or as an algebraic. A complex number object has the form (x, y). As an algebraic, the complex number is represented by ' $x+i y^{\prime}$ ', where x and y are real numbers and i is a constant equal to the complex number $(0,1)$. Calculations with complex numbers are easily solved on the HP-28S.

Example: Evaluate the following expression.

$$
\frac{\sin (.5+.3 i)+(3-4 i)^{*}(2+i)^{1 / 3}}{\ln (5-8 i)-\operatorname{arccosh}(2+9 i)}
$$

First, set the display for FIX 4.

CLEAR	
MODE	
邫FIX	

$3:$
2
1
$1:$
1:

Calculate $\sin (.5+.3 i)$.
(.5,.3 TRIG $\overline{\underline{\underline{\underline{\underline{S}}}} \mathrm{SIN}}$

```
|3:
```

Key in the complex number 3-4i.
(3,-4 ENTER

Key in the complex number $2+i$.
(2,1 ENTER

Take the inverse of the number 3.
$31 / x$

Calculate the third root of $2+i$.

$3:$	$(0,5012,0.2672)$
$2:$	$(3,0000,-4.0000)$
$1:$	$(1,2921,0.2013)$
SIN	HSTM

Multiply the resulting complex number by $3-4 i$.
\square

$3:$	$(0.5012,0.2672)$
$2:$	$(4.6814,-4.5644)$
1:	HIN

Add the two numbers in levels 1 and 2 . The sum is equal to the numerator.


```
3:
(5.1826,-4.2972)
SIN HSIN COE BLOE THN BTHA
```

Calculate the denominator by entering it in as an algebraic expression and then converting the expression into a number.

```
' LN ( \(5-8 \times \mathrm{i})-\mathrm{ACOSH}(2+9 \times \mathrm{i})\)
\(\rightarrow\) NUM
```

3:					
2:	(5.1826,-4.2972)				
1:	$(-0.6728,-2.3656)$				
SIN	HSIN	C0E	H00S	THi	HTAN

Divide the numerator by the denominator to obtain the final result.

$3:$		
2:	(1. 1041, 2.5049$)$	
1:	HIN	HETN

Example: Verify the following definition by showing that both sides of the equation are equal for the case $x=3$ and $y=4$.

$$
\tan (x+i y)=\frac{\sin (x) \cos (x)+i^{*} \sinh (y) \cosh (y)}{\sinh (y)^{2}+\cos (x)^{2}}
$$

Set the calculator to radians mode and key in the algebraic expression.

```
MODE 䇂RAD䇂 CLEAR
'TAN (x+y\timesi})=(\mathrm{ SIN (x) }
COS(x)+SINH(y) xCOSH (y) x
i) \div(SINH (y)^2+COS (x)^2)'
ENTER <>
```

1: $\operatorname{TAN}(x+y * i)=(S I N(x) *$ $\cos (x)+S I N H(y) \underset{A C O S H}{ }$ (x)

Store the equation in the variable EQ and display the Solver menu．

Store the number 3 in the variable x ．

$$
3 \text { 奉X童 }
$$

Store the number 4 in the variable y ．

$$
4 \overline{\overline{\underline{\underline{\underline{1}}} \mathrm{Y}} \mathrm{E}}
$$

Evaluate the left－hand side of the expression．

```
LEFT= 音
```


Convert this expression into a number．
\rightarrow NUM

Evaluate the right－hand side of the expression．
㐁RT＝

Convert this expression into a number to show that the right and left sides of the equation are equal．
\rightarrow NUM

Exit from the Solver，clear the stack，and purge the following variables．
SOLV CLEAR
3：

Example: Express the following complex numbers in polar notation.
a. $3-2 \sqrt{3 i}$
b. $-1 / 2+\frac{\sqrt{3}}{2} i$
c. $3+4 i$

First, set the angle mode to degrees.
MODE $\overline{\text { 히․ DEG }}$

a. Enter the number 3 .

3 ENTER

Enter the number -2 .
-2 ENTER

Take the square root of the number 3.
$3 \boxed{ }$

$3:$	92
$2:$	-2.0901 1.7321
	पड<al

Multiply -2 by the square root of 3 .
区

$3:$	3.0006
$2 \vdots$	$-3: 4641$
$1:$	
STID	

Combine the two numbers in levels 1 and 2 into a complex number.

$$
\text { TRIG 㫪R } \rightarrow \mathrm{C}
$$

Convert the complex number in rectangular notation to polar notation．
R \rightarrow P

$3:$	
$2:$	$(4.5826,-49.1066)$
$1:$	
Fixal	

b．Enter the complex number $-1 / 2+\frac{\sqrt{3}}{2} i$ as an algebraic expression．
Convert the expression into a number．

CLEAR

$1-1 \div 2+\sqrt{ } 3 \div 2 \times \mathrm{i}^{\prime} \rightarrow \mathrm{NUM}$

Convert the complex number from rectangular form to polar form．

c．Enter the complex number $3+4 i$ in rectangular form and take the abso－ lute value of it．The magnitude is returned．

CLEAR		

$3:$	
2：	5.0000
$1:$	

Return $(3,4)$ to the stack．（If LAST is disabled，you must re－enter $(3,4)$ ）．

LAST

Press 普ARG ．The polar angle is returned．
TRIG 㪯ARG

Combine the magnitude and the polar angle into a complex number．

[^0]
Hyperbolic and Inverse Hyperbolic Functions

The LOGS menu contains hyperbolic and inverse hyperbolic functions. The arguments to these functions can be either numeric or symbolic.

Example: Given $Z=4 / \sqrt{ }(7)$, find $\sinh Z, \operatorname{csch} Z, \cosh Z$, $\operatorname{sech} Z$, $\tanh Z$, and $\operatorname{coth} Z$.

Clear the display and set the number of display digits to 3 .

Calculate $4 / \sqrt{ }(7)$ and store it in the variable Z.

| 4 | ENTER |
| :--- | :--- | :--- |
| 7 | \boxed{V} |

' Z STO

Calculate $\sinh Z$.
Z LOGS 童SINH

Calculate $\operatorname{csch} Z$. The $\operatorname{csch} Z$ is equal to the inverse of $\sinh Z$.
$1 / x$

Calculate $\cosh Z$ ．
Z 金 COSH

3：	8.464
$1:$	

Calculate sech Z ．The sech Z is equal to the inverse of $\cosh Z$ ．
$1 / x$

Calculate $\tanh Z$ ．
Z $\overline{\underline{\underline{\underline{\underline{1}}}} \mathrm{TANH}}$

$3:$	$\begin{aligned} & 0.464 \\ & 0.421 \end{aligned}$
$1:$	

Calculate coth Z ．The $\operatorname{coth} Z$ is equal to the inverse of $\tanh Z$ ．
$1 / \mathrm{x}$

$3:$	0.464
$2:$	1.421
$1:$	102
1：	

Example：Verify that $\operatorname{acosh}(2.378)=1.512$ using the definition

$$
\operatorname{acosh}(x)=\ln \left(x+\sqrt{x^{2}-1}\right) \text {, for } x \geq 1 \text {. }
$$

Key in the equation for the definition and store it in the variable EQ．

CLEAR

${ }^{\prime} \operatorname{ACOSH}(X)=\mathrm{LN}\left(X+\sqrt{ }\left(\mathrm{X}^{\wedge} 2\right.\right.$
－1）$)^{\prime}$ SOLV 㪯STEQ童

STEE FREG EMLME ISOL EOHCD EHOV

Display the Solver menu，key in the number 2．378，and assign it to the variable X ．
㪯SOLVR垔 2.378 㪯X

Now check if the left side of the equation $\operatorname{acosh}(x)$ equals 1.512 ．

Now check if the right side of the equation is 1.512 .
㪯 $\mathrm{RT}=$ =

Exit from the Solver menu and purge the variables used in these examples.
Note to HP-28S users: If you do not exit from the Solver before attempting to purge EQ, the calculator will display the message EQUATION NOT FOUND. (EQ will be cleared even though the message is displayed.) To avoid displaying this message, always exit from the Solver before purging equations and variables.
SOLV \{'X''EQ''Z' PURGE

Function Evaluation

The Solver can find the values of a function (be it of one variable or of several variables) given the values of the independent variables. The values can be real or complex numbers or symbolic expressions.

Given the function $f(x, y)=2 \pi x^{2}\left|, \sqrt{y^{2}-x^{2}}\right|$ find $\mathrm{f}(1, \sqrt{2}), \mathrm{f}(\sin T, 1)$, and $f(3,5)$.

Clear the stack, set the display format, and set the symbolic evaluation flag.

3:

Note in the keystrokes above, you could also use menu as an alternative to typing the letters 'SF' and the ENTER key.

Put the expression for the function in level 1 and store it in the variable EQ.

3:
3:

 independent variables.

```
SOLVR亚
```


Store the number 1 in the variable X.
1 㐁 X

Store the square root of two in the variable Y ．

Evaluate the expression．
EXPR＝三

Convert this expression into a number．

```
->NUM
```


Clear the previous result and evaluate $\mathrm{f}(\sin T, 1)$ ．
DROP

Put $\sin T$ on the stack．Notice that in this instance we use the $\overline{\underline{\underline{\underline{~ S I N}}} \mathrm{I}}$ 童key in the TRIG menu to enter the function．

TRIG	
㪯SIN	
ENTER	

$3:$		
$2:$		
$1:$	＇SIN（T）＇	
SIN	HETN	COE

Store the expression in the variable X ．
SOLV 部SOLVR 㪯 㪯X

Note the Solver variable X has been replaced by the variable T ．Store the number one in the variable Y ．

1 奉 Y

Now compute the function value．

```
EXPR=音
```


To redisplay the variable X ，its current symbolic value must be purged．
＇X PURGE

Note that the variable X is again displayed in the Solver menu．
For the last part of the example，clear flag 36 to set the calculator in the numerical evaluation mode and force numeric evaluation of π in the expression．
$\frac{\text { DROP }}{36 \text { TEST }} \overline{\underline{\underline{\underline{\underline{C l}}}}}$

Put a 3 on the stack and store it in X ．
3 ENTER

Store 5 in Y ．
5 㪯 \boldsymbol{Y} 童

Evaluate the expression．

```
EXPR=覀
```


With flag 36 set，the result would have been＇ $2{ }^{*} \pi^{*} 9^{*} 4^{\prime}$ ．
To insure that the variables X and Y are not inadvertently incorporated in other calculations，exit from the Solver and purge the variables from memory．You may also wish to set flag 36 to its default setting．

$$
\text { SOLV \{'Y''X''EQ' PURGE } 36 \text { SF ENTER }
$$

Graphs of Algebraic Functions

This section illustrates a number of algebraic function plots including manipulation of plot parameters for enhanced representation of the function characteristics.

Example: Plot the power function $y=x^{-3}$.
Purge any plot parameters that may be stored in the variable PPAR.
CLEAR ATTN
${ }^{\prime}$ PPAR PURGE

```
3:
2:
```


Store x^{-3} in the variable EQ.

Note to HP-28C users: Version 1BB of the HP-28C will give an "INFINITE RESULT" error unless flag 59 is clear, or you take steps to avoid evaluation of the function at $x=0 . H P-28 C$ users only perform one of the following two steps to avoid the INFINITE RESULT error.

To clear flag 59, enter:

59 CF ENTER

```
3:
2:
```


To avoid evaluation of the function at $x=0$, change the plot minima and maxima (PMIN and PMAX) such that DRAW does not evaluate the function at the point of the error. Let PMIN be $(-6,-1.5)$ and PMAX be $(6,1.5)$.

$$
\begin{aligned}
& (-6,-1.5 \text { 彔PMIN } \\
& (6,1.6 \text { 部 }
\end{aligned}
$$

Plot the expression．

```
DRAW 音
```


Example：Plot the power function $y= \pm \sqrt{x}$ ．The solution for this example depends upon whether you use an HP－28C or an HP－28S．

Store \sqrt{x} in the variable EQ，then proceed to the appropriate solution method below．

HP－28C Method．If you plot the expression now，your HP－28C will trap an error and display the message＂Non－real Result＂because y is ima－ ginary for $x<0$ ．To avoid this error，take only the real part of the function y ．

Recall the equation that you just stored．
邫RCEQ

Take the real part of the function．

```
CMPLX 凖RE音
```


If you plot the function now，only positive values of y will appear．A trick to plot both positive and negative values of y at the same time is to make a copy of the function，negate the coy and set both functions equal to each other．（They are not really equal to each other－this is just a way to plot two functions at the same time on the HP－28C．）

Duplicate the function.

ENTER

Negate the function.

CHS

Set the two functions equal to each other.
\Rightarrow ENTER

Store this equation in EQ and plot it.
PLOT 㪯STEQ

三 DRAW $\bar{\equiv}$

Exit from the plot screen and proceed to the next example.

ATTN

HP-28S Method. If you plot the function now, only positive values of y will appear in the graph. A trick to plot both positive and negative values of y at the same time is to make a copy of the function, negate the copy, and set both functions equal to each other. (They really are not equal to each other - this is just a way to plot two functions at the same time on the HP-28S.)

Recall the expression.
奉RCEQ

$\begin{aligned} & 3: \\ & 2: \\ & 1: \\ & \hline \end{aligned}$		י		
E:				

Duplicate the expression.
ENTER

Negate the expression.
CHS

Now set the two expressions equal to each other.

Store this equation in EQ and plot it.
STEQ
3:
3:
㐁DRAW

Exit from the plot screen to prepare for the next example.
ATTN

$\begin{aligned} & 3: \\ & \text { 2: } \\ & 1: \end{aligned}$		
FFik mis	HXEP [CENTR	3

Example：Plot the exponential function $y=e^{x / 2}$ ．
Enter the function $\exp (x / 2)$ and store it in the variable EQ．Then plot the function．

```
' EXP(X\div2) 実STEQ立
旺DRAW咅
```


Press ATTN to return back to the stack display．This time let the point $(0,1)$ be the center of the display．

ATTN（0，1 $\overline{\underline{\underline{\underline{\underline{C l}}}} \text { CENTR }}$

Plot the function again．

DRAW $\overline{\equiv \text { ㅌ }}$

Purge the plot parameters．
ATTN＇PPAR PURGE

Example：Plot the logarithmic function $y=x \log \left(x^{2}+2\right)$ ．
Enter the expression and store it in EQ．

Plot the function．
DRAW

Example: Plot the polynomial function $y=x^{3}+2 x^{2}-11 x-12$.
Enter the expression and store it in the variable EQ.
${ }^{\prime} \mathrm{X}^{\wedge} 3+2 \times \mathrm{X}^{\wedge} 2-11 \times \mathrm{X}-12$

Plot the function.
DRAW

Much of the graph is not shown on the display. To see more of the graph adjust the plot parameters by multiplying the height by 15 .

ATTN 15 彦*H

```
3:
2:
1:
```


Draw the function again.
奉DRAW

Purge the variables created in this example.
ATTN \{'PPAR' ${ }^{\prime} E Q^{\prime}$ PURGE

Quadratic Equations

The zeros of a quadratic equation can be found using the QUAD com－ mand．Plotting the equation is not necessary，but you may be interested in seeing what the graph looks like and checking whether there are two real roots，two complex roots，or a double root．

For example，solve $3 x^{2}-x-2=0$ ．First plot the equation．

CLEAR	MODE	
＇ $3 \times \mathrm{X}^{\wedge}$	－X－2	ENTER

PLOT 准STEQ
＇PPAR PURGE 㪯DRAW

You can easily see that the equation has two real roots．Now use $\overline{\underline{\underline{\underline{\underline{Q}}} \mathrm{QUAD}}}$ to find those roots．First，recall the equation and put X on the stack to indicate that this is the variable for which you are solving（the coefficients could be variables，in which case the solution is symbolic）．

```
ATTN 㪯RCEQ咅
'X ENTER
```


Find the roots：
ALGEBRA 奉QUAD邫

```
|
```

The QUAD function can also be found in the SOLV menu．
The resulting expression represents both roots．＂s1＂is a variable whose value is either +1 or -1 ．Store this expression in the variable EQ and use the Solver to find the numerical solutions．

SOLV	磍STEQ
＝SOLV	

Let $s 1$ be negative by entering a－ 1 and pressing the $\mathrm{BS1}$ menu key．
－1

Press $\overline{\underline{\underline{\underline{~ E ~}}} \mathrm{EXPR}=\text { 童 }}$ to get the first root．
春 $\mathrm{EXPR}=$ 童

Let $s 1$ be equal to +1 ．
1 㐁S1

Solve for the second root．

```
EXPR=覀
```


Exit from the Solver and clear the stack and all the variables used in this example．

SOLV CLEAR	3：
\｛＇s1＇＇PPAR＇＇EQ＇PURGE	2：

Example：Find the roots for $2 x^{2}-4 x+3$ ．First store the equation in the variable EQ，then draw it．

$$
{ }^{\prime} 2 \times \mathrm{X}^{\wedge} 2-4 \times \mathrm{X}+3 \text { ENTER }
$$

PLOT 童STEQ 产 㪯DRAW垔

Since the graph of this equation does not intersect the x －axis，there are no real roots；the roots are complex．Solve for these roots using the QUAD command．


```
2: '<4+51*
    (0.0000,2.8284)>/4
```


Now use the Solver to get the numeric solutions．
$\overline{\text { STEQ }}$

Let $s 1$ equal－ 1 and solve for one of the roots．
－1 $\overline{\underline{\underline{\underline{\underline{|c|}}}} \underline{\text { S1 }}}$

亚 EXPR＝

Let $s 1$ equal +1 and solve for the second root．

㪯 $\operatorname{EXPR}=$ 童

The roots for this equation are $1 \pm 0.7071 i$ ．
Exit from the Solver and purge the variables created in this example．
SOLV \｛＇s1＇＇PPAR＇＇EQ＇PURGE

Polynomial Equations

The roots of polynomial equations can be found by several methods. Graphing the polynomial enables you to estimate the roots. The estimations can then be used as guesses for the Solver or for the ROOT command. An alternative to graphing the polynomial to obtain the "guesses" is using $\pm p / q$ where the values of p are the positive divisors of the constant term and the values of q are the positive divisors of the coefficient of the highest-powered term. In most cases it is easier and quicker to graph the polynomial to find the approximate roots.

Example: Plot the graph and find the roots of

$$
x^{4}+3 x^{3}-3 x^{2}-7 x+6=0
$$

First, clear the display and any current plot parameters. Then, enter the expression, store it in the variable EQ, and plot it.

Multiply the height by 10 and plot the graph again.

Digitize the three points where the function equals zero (i.e., where the graph intersects or touches the x-axis) by moving the cross hairs to each of the three points and pressing INS. When you press the ATTN key, the coordinates of the three points are displayed. The x coordinate of each point will be used as initial estimates for the Solver.

Now use these values in the Solver.
SOLV 㪯SOLVR

Store the point in level 1 in the variable X ．
垔 X

Now solve for X by pressing the shift key followed by the $\overline{\underline{\underline{\underline{\underline{~ X ~}}}} \text { 童 }}$ key in the Solver menu．The result is shown in level 1.
\square 童X

Clear this result and find the next root．
DROP

Clear this result and find the last root．

DROP

The three roots are $-3,-2$ ，and 1 ．
Example：Plot the graph and find one of the roots of

$$
x^{3}-3 x^{2}-1.5 x+6=0
$$

For this example you will again plot the function to get the initial guesses and then use the ROOT command to find the roots．First，enter the expression and store it in the variable EQ．
CLEAR
＇ $\mathrm{X}^{\wedge} 3-3 \times \mathrm{X}^{\wedge} 2-1.5 \times \mathrm{X}+6$
PLOT 㪯STEQ

Plot the graph．
邫DRAW

Since the plotting parameters from example 1 were not purged，the height is still multiplied by 10 ．Decrease the vertical scale by multiplying the height by .5 ．
ATTN
.5 㪯 $* \mathrm{H}$ 垔

$\begin{aligned} & 3: \\ & \frac{2}{2}: \\ & 1 \\ & 1 \end{aligned}$

Draw the graph again．Use the cross hairs and the INS key to digitize the left－most point that crosses the x －axis．

The ROOT command requires three inputs in this case，the polynomial expression，the name of the variable you are solving for，and the initial guess．The polynomial is in level 3，the name is in level 2，and the guess is in level 1．The digitized guess is in level 1 after the INS key above．Now recall the expression．

ATTN $\overline{\underline{\underline{\underline{\text { P }}}} \text { RCEQ }}$

Put the variable name X on the stack．

```
'X ENTER
```


To move the coordinates for the initial guess to level 1，rotate the stack．

Solve for X and find one of the roots of the equation．

```
SOLV 䇂ROOT咅
```


Purge the variables used in these two examples．
\｛＇X＇＇PPAR＇${ }^{\prime} E Q$＇PURGE

Simultaneous Linear Equations

A system of two linear equations in two unknowns can be solved by first plotting the graphs of the two lines，finding the point of intersection（if one exists），and then solving for the unknown variables by using the Solver with the intersection point as the initial guess．The system can also be solved using matrices，but this method won＇t work if the lines are parallel or coincident．A third method is to isolate one of the variables for one of the equations，plug this expression into the other equation（giving you one equation in one unknown），and then solving for that one unknown by using the Solver．

For example，solve the following system

$$
\left\{\begin{array}{l}
2 x+1 y=6 \\
5 x-4 y=3
\end{array}\right\}
$$

Clear the display and set the mode to FIX 4.

```
CLEAR 4 MODE 䇂FIX咅
```

$3:$			
$2:$			
$1:$			
STG	FIX	SII	ENTE

Method 1：Using PLOT．To graph the system，first isolate the vari－ able y in both of the equations and then set both of these expressions equal to each other．

$$
{ }^{\prime} 2 \times \mathrm{X}+\mathrm{Y}=6^{\prime} \prime \mathrm{Y} \text { ENTER }
$$

ALGEBRA $\overline{\underline{\underline{\underline{\underline{1}}}} \mathrm{ISOL}}$

$$
' 5 \times \mathrm{X}-4 \times \mathrm{Y}=3^{\prime}{ }^{\prime} \mathrm{Y} \text { 䂜 } \mathrm{ISOL}
$$

Prepare to plot the lines by purging any prior plot parameters．Store the equation in EQ and draw it．

PLOT	＇PPAR	PURGE
沣STEQ		

金DRAW

Exit from the plot display．Move the center of the plot to $(0,1)$ and draw the graph again．
ATTN
$(0,1$ 音CENTR
童DRAW

Move the cursor to the approximate point of intersection and digitize the point by pressing INS．Press ATTN to return to the stack display．The coordinates of the point are returned to the stack．

（2．1000，1．9000）

Display the Solver menu．The menu consists of the variable $X, L E F T=$ ， and $R T=$ ．
SOLV 㪯SOLVR垔

Store the digitized point in the variable X as the initial estimate．（The Solver only uses the first coordinate．）

Solve for X.

The variable X equals 2.0769 . Since both sides of the equation are a sym-
 ical solution for Y.

```
E LEFT = 亯
```


$\overline{\underline{\underline{\underline{\underline{\underline{1}}}}} \mathrm{RT}=\overline{\text { 妾 }}}$

The variable Y equals 1.8462 .

Method 2: Using Matrices. Key in the constant vector (the right side of both equations).

CLEAR
6 3 ENTER

Key in the coefficient matrix. The coefficients of the first equation make up the first row of the matrix. The coefficients of the second equation make up the second row. Divide the constant vector by the coefficient matrix.

$$
\left[\begin{array}{lll}
2 & 1 & {[5} \\
\hline
\end{array}-4 \div\right.
$$

The same results as the graphing method are obtained: $X=2.0769$ and $Y=1.8462$.

Exit from the Solver, clear the stack, and purge all the variables that were used in this example.
SOLV CLEAR \{'X''PPAR' 'EQ' PURGE

Method 3：Using Solver．First，enter the first equation and isolate the variable Y ．The result is an expression for Y ．
$\prime 2 \times \mathrm{X}+\mathrm{Y}=6^{\prime \prime} \mathrm{Y}$
SOLV
普ISOL高

$\begin{aligned} & 2: \\ & 1 \\ & 1 \end{aligned}$	

Enter the second equation and store it in the variable EQ．

$$
{ }^{\prime} 5 \times \mathrm{X}-4 \times \mathrm{Y}=3^{\prime} \text { 奉STEQ }
$$

Display the Solver menu and store the expression for Y in the variable Y ．
This gives you one equation in one unknown．

Now solve for X ．The same result as the two previous methods is returned to level 1.
\square 奉X童

Put the expression for Y on the stack．
Y ENTER

Convert this expression into a number．
\rightarrow NUM

The value for Y is returned to level 1.

Exit from the Solver and purge the variables created in this example.
SOLV \{'X' 'Y' 'EQ' PURGE

Systems of Linear Equations

Using matrices, solve the following system.

$$
\left\{\begin{array}{r}
6 x+1 y-3 z+0 w=37 \\
-2 x+3 y+5 z-7 w=6 \\
8 x+0 y+4 z-5 w=75 \\
0 x-7 y-4 z+1 w=7
\end{array}\right\}
$$

Clear the display, set the display mode, and key in the constant vector.

| CLEAR | MODE |
| :--- | :--- | :--- | :--- |

Key in the coefficient matrix and divide the constant vector by the coefficient matrix.

	3:
$\left[\begin{array}{llllllll}8 & 0 & 4 & -5\left[\begin{array}{llll}0 & -7 & -4 & 1\end{array}\right]\end{array}\right.$	

The solution to the system is $x=7, y=-2, z=1$, and $w=-3$.

Infinite Sequences and Series

Infinite Sequences and Series

Calculations involving infinite sequences and series are best solved by writing programs. By using FOR loops in programs, calculations can be repeated as many times as desired.

Example: Find the first 10 terms of the sequence whose general term is the following.

$$
\frac{x!}{e^{x}}
$$

A general program that calculates any number of terms for this sequence is listed below. Enter the program and store it in the variable FDE (for "factorial divided by exponent"). To run the program, press USER and then press the user variable key $\overline{\underline{\underline{\underline{F}}} \mathrm{FDE}}$. When you run the program, the calculator displays a prompt that asks for the number of terms you want calculated. Enter a number, such as 10 , then press \square CONT (the shift key followed by the continue key) to continue running the program. The program returns a list of the first 10 numbers in the sequence.

After entering the program, store it in the variable $F D E$.

Program:

< 2 FIX
"\# OF TERMS?"
CLLCD 1 DISP
HALT
$\rightarrow \mathrm{n} \ll$

1 n FOR x
x FACT
x EXP
\div
NEXT
$\mathrm{n} \rightarrow$ LIST >>
ENTER ' FDE STO

Comments:

Set the display format to two digits.

Prompt message.
Program halts. (Key in a number and press CONT.)
The number is stored in the variable n.
Loop: do for x from 1 to n.
Calculate the factorial of x.
Take the exponent of x and divide the two numbers. Increment x and repeat until $x>n$. Put the n terms into a list.

Clear the display, then run the program.
CLEAR USER 群FDE $\bar{\equiv}$
\# OF TERMS?

Enter the number 10 and press CONT to continue running the program. The list of the first 10 terms of the sequence is displayed.
$10 \mathrm{CONT}^{-}$

Run the program again.
表FDE
\# OF TERMS?

Enter the number 5 (or any other integer) and continue running the program.

5 CONT

Example: Find the sum of the first 100 terms of the series

$$
\sum_{x=1}^{x=n} \frac{1}{x(x+1)} \text { where } n \text { is the total number of terms. }
$$

The program that finds the sum of the first n terms is listed below. When this program is run, a prompt asking for the number of terms is displayed. After entering the number and continuing the program, the prompt message and the number n is displayed in level 3 and the sum of the first n terms is in level 1.

Enter the program below and store it in the variable ONE . (The series converges to one for large n.)

Program：

« STD
CLLCD＂\＃OF TERMS？＂
DUP 1 DISP
HALT
$\rightarrow \mathrm{n}$ 《
$\mathrm{n} \rightarrow \mathrm{STR}+$
01 n FOR x
＇INV（ $(x \times(x+1))^{\prime}$
EVAL
$+$
NEXT
CLLCD DUP 3 DISP
SWAP 1 DISP »»＞

Comments：

Standard display format．
Prompt message．
Make a copy and display line 1.
Program halts
（you key in a number）．
Store one copy of the number in n ．
Convert the number into a string and concatenate with the prompt．
Loop：do for x from 1 to n with initial zero sum．
$1 /((x)(x+1))$ ．
Add to the accumulating total． Increment x and repeat until $x>n$ ．
Generate final display．

ENTER＇ONE STO

Run the program．

```
USER 立ONE立
```

\＃OF TERMS？
\square

Enter the number 100 and continue running the program．The sum of the first 100 terms is returned to level 1.

100 CONT
\＃OF TERMS？100
． 990099009897

If desired，purge the two programs created in these examples．
\｛＇ONE＇＇FDE＇PURGE

Determinants of Matrices

Determinants of Matrices

The HP-28S and HP-28C do calculations using matrices whose elements are real and/or complex numbers. The determinant of a matrix is easily found by using the command DET. But since DET is a command, it cannot be used in algebraics.

Example: Find the determinant of the following matrix.

$$
\left[\begin{array}{cccc}
2 & 6 & 1 & -2 \\
-3 & 4 & 5 & 7 \\
4 & -2 & 1 & 3 \\
5 & 3 & -4 & 6
\end{array}\right]
$$

Key in the matrix and find the determinant.

ARRAY $\overline{\underline{\underline{\underline{\underline{D}}}} \mathrm{DET}}$

Example: Solve for x and y.

$$
\left|\begin{array}{ccc}
7 & 6 & 5 \\
1 & 2 & 1 \\
y & -2 & x
\end{array}\right|=0 \text { and }\left|\begin{array}{ccc}
x & 2 & y \\
2 & 3 & 4 \\
1 & 5 & 7
\end{array}\right|=2
$$

Using the definition of the determinant of a 3×3 matrix, these two equations can also be written as the following:

$$
14 x+6 y-10-(10 y-14+6 x)=0 \text { and } 21 x+8+10 y-(3 y+20 x+28)=2
$$

The problem reduces to a system of two equations in two unknowns. To find y, isolate x in one of the equations, then substitute this expression for x in the other equation. To find x, substitute the value for y in the expression for x.

First，key in one of the equations and simplify it by collecting terms．
CLEAR
$14 \times \mathrm{X}+6 \times \mathrm{Y}-10-(10 \times \mathrm{Y}-14$
$+6 \times \mathrm{X})=0$ ALGEBRA $\overline{\underline{\underline{\underline{~ C O L C T}}}}$

Store this equation in the variable EQ．
SOLV 㪯STEQ垔

Key in the other equation and simplify it also．

$$
\begin{aligned}
& \text { ' } 21 \times \mathrm{X}+8+10 \times \mathrm{Y}-(3 \times \mathrm{Y}+20 \times \mathrm{X} \\
& +28)=2 \text { ALGEBRA 㪯COLCT }
\end{aligned}
$$

Obtain a symbolic expression for x by isolating the variable．

$$
{ }^{\prime} \mathrm{X} \text { 奉ISOL垔 }
$$

Use the Solver to substitute the expression for x in the equation that is already stored in the variable EQ and solve for y ．First，display the Solver menu．

```
SOLV 㪯SOLVR亚
```


Press X 邫．The expression from level 1 is stored in the variable X ．Notice that the variable X disappears from the Solver menu．

```
X音
```


 menu．

Recall the expression for x.
X ENTER

Find the numerical value for x by evaluating the expression.
EVAL

Thus, $x=1$ and $y=3$.
Exit from the Solver and purge the variables created in this example.
SOLV \{'Y''X''EQ' PURGE

Logarithms

Logarithms

This series of examples illustrates manipulation of numeric and algebraic expressions using logarithms．

Example：Use logarithms to evaluate the following．

$$
N=\frac{3.271 * \sqrt{48.17}}{2.94^{3}}
$$

First，enter the equation and then take the logarithm of both sides by pressing $\overline{\text { ㄹ LOG }}$ 部．

```
CLEAR MODE 4 㪯FIX童
' \(\mathrm{N}=3.271 \times \sqrt{ } 48.17 \div 2\). 94^3 \(^{\prime}\)
LOGS 㪯LOG
```


Expand the equation so that the right side of the equation is expressed as the sum or difference of several logarithms．（This involves using the funda－ mental laws of logarithms，but is easily accomplished using the EXPAN command．）

ALGEBRA \equiv EXPAN \equiv

```
1: 'LOG(N)=LOG(3,2710*\sqrt{}{2}
    48.1700)-L0G(2.9400
    3)
```


틀NAN

Now evaluate this equation．

EVAL

Solve for N by taking the antilogarithm of both sides of the equation．
LOGS 非ALOG

Press EVAL to get the numerical solution.

EVAL

```
3:
2:
1:
    'N=0.8934'
    LOTS HLOTS LN EXF: LHFI EXFFM
```

Example: Solve for x by using logarithms.

$$
a^{2 x-3}=b^{x}
$$

Enter the equation and take the logarithm of both sides.
CLEAR
${ }^{\prime} \mathrm{A}^{\wedge}(2 \times \mathrm{X}-3)=\mathrm{B}^{\wedge} \mathrm{X}^{\prime}$ 童LOG

Expand the equation.
ALGEBRA 彦EXPAN
2:
1: $\operatorname{LOG}(A) *(2 * X-3)=\operatorname{LOG}($
B) ${ }^{*} \times$

The object is to isolate x on the left side (or right side, if you wish) of the equation by first moving all the terms with x to the left side and all the terms with no x to the right side.

Add $3 \log (A)$ to both sides of the equation. Rather than entering this term, retrieve the term by using EXGET. First duplicate the equation.

ENTER

```
2: 'LOG(A)*(2*X)-LOG(A..
1: 'LOG(A)* (2*X)-LOG(A)
    *3=LOG(B)*X'
```


Enter the position of the third multiplication sign，which，in this case，is 10. （To determine the position，count each operator or number，excluding parentheses and quotes．The first position is LOG，the second position is the variable $A,{ }^{\prime *}$＇is in the third position，and so on．）

Execute the EXGET command．The expression $3 \log (A)$ is returned to the stack．

```
10 雇EXGET音
```


Add $3 \log (A)$ to both sides of the equation and collect the terms．

1： $\operatorname{LOG}(A) *(2 * X)-\operatorname{LOG}(A)$
$* 3+L O G(A) * 3=L O G(B) * X$
$+\operatorname{LOG}(\mathrm{A}) * 3$

㪯COLCT

Now move $x \log (B)$ to the left side of the equation by subtracting it from both sides of the equation．This can be accomplished using the EXGET command．

ENTER

```
2: '2*LOG(A)*X=LOG(B)*..
1: '2*LOG(B)**=LOG(B)*X
    +3*LOG(A)
```


10 童EXGET

1： $2 \times \operatorname{LOG}(A) * X-L O G(B) * X$ $=L 0 G(B) * X+3 * L O G($ A $)-$ LOG（B）$\because X^{\prime}$

COLCT

Use the FORM editor to merge $2 x \log (A)$ and $x \log (B)$ into $(2 \log (A)-$ $\log (B)) x$ ．Press 要ORM，move the cursor to the minus sign，press邫 $\mathrm{M} \rightarrow$ 㪯（merge right），then press ATTN to exit FORM and return the modified equation to the stack．


```
( ( ( 2 *LOG (A) ) *X) - (LOG (B
\() * \mathrm{X})=(3 * \operatorname{LOG}(\mathrm{~A})))\)
```

童M \rightarrow ATTN

$1:$

Divide $2 \log (A)-\log (B)$ into both sides of the equation，first using EXGET to retrieve the subexpression．

ENTER

2：＇（2＊LOG（A）－LOG（B））＊ 1：＇（2＊$\angle 0 G(A)-L O G(B)) * X$
$=3 * L 0 \mathrm{G}(\mathrm{A})$

5 㪯EXGET

\div

Collect the terms．


```
2: ' 
    ))*LOG(A)
```


The resulting equation is the solution to this example．

$$
x=\frac{3 \log (A)}{2 \log (A)-\log (B)}
$$

Example: Solve for x in the following expression.

$$
\log (x+3)=0.7
$$

The goal is to isolate x, which is easily done using the isolate command ISOL. First put the equation on the stack.

CLEAR LOGS
${ }^{\prime}$ LOG $(\mathrm{X}+3)=.7$ ENTER

3:
1: $\quad \operatorname{LOG}(x+3)=0.7000 \cdot$

Enter the variable to be isolated (X) and execute ISOL.
$'$ X ALGEBRA $\overline{\underline{\underline{\underline{\underline{~ I ~}}}} \mathrm{ISOL}}$

The result is $x=2.0119$.

Example: Find $\log _{7} 36$.

The HP-28S and HP-28C calculate logarithms to base 10 and base e (the LN function). You can write a program to calculate the logarithms to any given base using the following formula.

$$
\log _{a} t=\frac{\log _{10} t}{\log _{10} a}
$$

Key in the following program that returns the logarithm of a given number to a given base (provided the base is in level 2 and the number in level 1 of the stack).

CLEAR LOGS

« LOG SWAP LOG \div ENTER

Store this program in the variable $L B N$.
'LBN STO USER

$3:$				
$2:$				
$1:$				
LSN				

Now compute $\log _{7} 36$.

The program LBN will calculate the logarithm to a given base of a given number and may be stored in the calculator's memory for your convenience.

Trigonometry

Trigonometric Relations and Identities

This section illustrates calculations involving simple trigonometric relations and identities.

Example: Given $\cot (x)=0.75$, find $\tan (x), \sec (x), \cos (x), \sin (x)$, and $\csc (x)$ without solving for x.

Set degrees mode and the number of display digits to FIX 5.
CLEAR MODE 硅DEG

5 㪯 FIX

Enter the number .75 , which is equal to $\cot (x)$.
. 75 ENTER

Take the inverse to calculate $\tan (x)$, since $\tan (x)=1 / \cot (x)$.
$1 / x$

Calculate $\sec (x)$ using the relation $\sec (x)=\sqrt{\tan ^{2}(x)+1}$. First, calculate the square of $\tan (x)$.
x^{2}

$3:$		
$2!$		
$1:$	1.77778	
STO	FIM	SGI

Add 1 to the square of $\tan (x)$.
1

Take the square root of the number to calculate $\sec (x)$.

Calculate $\cos (x)$ by taking the inverse of $\sec (x)$.
$1 / x$

Calculate $\sin (x)$ by using the relation $\sin (x)=\sqrt{1-\cos ^{2}(x)}$. First, calculate the square of $\cos (x)$.
x^{2}

$3:$
$2:$
$1:$
1:

Enter the number 1 and switch the order of the 1 and the square of $\cos (x)$.
1 SWAP

Subtract the square of $\cos (x)$ from 1.

Take the square root of this number to calculate $\sin (x)$.
\checkmark

Take the inverse of $\sin (x)$ to calculate $\csc (x)$.
$1 / \mathrm{x}$

Clear the stack.
DROP

| $3:$ | | |
| :--- | :--- | :--- | :--- |
| 2 | | |
| $1 \vdots$ | | |
| STH | | |

Example: Plot the unit $\operatorname{circle}^{\sin }{ }^{2}(x)+\cos ^{2}(x)=1$.
The program to plot the unit circle is listed below. Key in the program and store it in the variable "UCIR".

Program:
« DEG
CLLCD DRAX
0360 FOR X
x SIN
$x \cos$
$\mathrm{R} \rightarrow \mathrm{C}$
PIXEL
5 STEP >

Comments:

Set the angle mode to degrees.
Clear the display and draw the axes.
Loop: do for x from 0 to 360 degrees.
Calculate $\sin (x)$.
Calculate $\cos (x)$.
Form a coordinate pair $(\sin (x), \cos (x))$.
Plot the point.
Increment x by 5 and repeat until $x>360$.

ENTER 'UCIR STO

Run the program.
USER 㪯UCIR㪯

If desired, purge the program created in this section.
ATTN 'UCIR PURGE

Trigonometric Functions for One and Two Angles

Trigonometric relations, such as the law of cosines or the identity for the cosine of the sum of two angles, are not built into the HP-28S or HP-28C. However, the algebraic formula for the relations can be stored in a variable. Then by using the Solver, you can solve for any unknown in the formula.

Example: Given an oblique triangle XYZ with the following parameters

$$
\begin{aligned}
& x=3 n \\
& y=n^{2}-1 \\
& z=20 \\
& Z=94.9 \text { degrees, }
\end{aligned}
$$

where n is a positive integer, solve for n and then find sides x and y and angles X and Y.

First, set the number of display digits to 2 and select the degree mode.

Normally, capital letters denote the angles of the triangle and lower case letters denote the corresponding opposite sides. Since capital and lower case letters are indistinguishable in the Solver and User menus, let X, Y, and Z be called $A N G X, A N G Y$, and $A N G Z$, respectively. Also, let n, x, y, and z be represented by capital letters.

Enter '3* N ' and the variable X.

```
' \(3 \times \mathrm{N}^{\prime \prime} \mathrm{X}^{\prime}\) ENTER
```


Enter ' $\mathrm{N}^{\wedge} 2-1$ ' and the variable Y.

$$
\text { 'N^2-1' }{ }^{\prime} \mathrm{Y}^{\prime} \text { ENTER }
$$

3:	$\begin{gathered} \prime X ' \\ \mathrm{H}^{\wedge} 2-1 \\ Y^{\prime} \end{gathered}$
	GX

Enter the number 20 and the variable Z.

20'Z ENTER

Store the numbers in the variables X, Y, and Z.

STO	3:
STO	$2:$
STO	ETIN FTM

Store the number 94.9 in the variable $A N G Z$.
94.9'ANGZ STO
$3:$
$2:$
$1:$

You can solve for N by using the law of cosines and the Solver. Enter the formula for the law of cosines and store it in EQ. (Since capital and lower case letters are indistinguishable in the Solver menu, let the angle variable be $A N G A$ rather than A.) Display the Solver menu.

Store the value of the variable Z in the variable A. (Note: Only press Z. If you include the single quote, then the letter Z will be stored in the variable A.)

Z $\overline{\underline{\underline{\underline{\underline{A}}}} \mathrm{~A}}$

Store the value of the variable X in the variable B. (Notice that the Solver menu changes - the variable B is replaced by the variable N.)
X $\overline{\underline{\underline{\underline{\underline{B}}}} \mathrm{~B}}$

Store the value of the variable Y in the variable C.
Y $\overline{\text { 砉垔 }}$

Store the value of the variable $A N G Z$ in the variable $A N G A$.
ANGZ $\overline{\underline{\underline{\underline{\underline{1}}} \mathrm{ANGA}}}$

Since N is a positive integer, let the number 1 be an initial guess for N.
1 邫 N

Solve for N.
$\square \overline{\underline{\underline{\underline{\underline{B}}}} \boldsymbol{N}}$

Display all digits of the computed result.


```
|3:
```

Since N is defined to be a positive integer, store the integer 4 in the variable N.

Solve for side X by pressing $\overline{\text { X }}$ and then EVAL. The same result can be obtained by pressing the letter X followed by EVAL.

Purge the variables that were used in the law of cosines formula．Clear the stack．

Use the law of cosines again to find $A N G X$ and $A N G Y$ ．First，solve for ANGX．
SOLV 㪯SOLVR

Store X in the variable A ．Notice that＇ $3^{*} \mathrm{~N}$＇is still stored in X ．
X 㪯A高

Store Y in the variable B ．
Y 㤗B高

Store Z in the variable C ．

You have just substituted X, Y ，and Z into the law of cosines equation giving $X^{2}=Y^{2}+Z^{2}-2 X Y \cos (A N G A)$ ．Find angle X by solving for $A N G A$ ．
\square 㪯ANGA言

HRESHE SE．${ }^{\text {PI }}$		
Zero		
$1:$		36.71
$\mathrm{N} \square \mathrm{C}$	WNGA LEFTELET＝	

Purge the following variables．Rather than typing the variable names，
 and so forth．

USER
\｛＇ANGA＇＇C＇＇B＇${ }^{\prime \prime}$＇PURGE
CLEAR

Display the Solver menu again．
SOLV 奉SOLVR童

Find angle Y in a similar manner．Store Y in the variable A ．
Y 㪯A

Store X in the variable B ．
X $\overline{\underline{\underline{\underline{\underline{B}}}} \mathrm{~B}}$

Store Z in the variable C ．

The resulting equation is now $Y^{2}=X^{2}+Z^{2}-2 X Z \cos (A N G A)$ ．Find $A N G Y$ by solving for $A N G A$ ．
\square 㪯ANGA

Exit from the Solver and purge the variables used in this example．

```
    SOLV
{'ANGA''ANGZ''C''B''A''EQ''Z''Y''X''N'
PURGE
```

Example: Given the two right triangles shown below, and the relationships $\cos (A+B)=-0.5077$ and $0<x<10$, find x.

Use the following trigonometric identity.

$$
\cos (A+B)=\cos (A) \times \cos (B)-\sin (A) \times \sin (B)
$$

From the diagram, $\cos (A)=(x-2) / 5, \cos (B)=x /(2 x+3)$, $\sin (A)=(x-1) / 5$, and $\sin (B)=(x+7) /(2 x+3)$.

Substituting into the trigonometric identity equation that appears above results in the following:

$$
\cos (A+B)=\frac{x-2}{5} \times \frac{x}{2 x+3}-\frac{x-1}{5} \times \frac{x+7}{2 x+3}=-0.5077 .
$$

After simplifying this equation we obtain,

$$
\frac{(x-2) \times x-(x-1) \times(x+7)}{5 \times(2 x+3)}=-0.5077
$$

Enter this equation.

CLEAR

```
'((X-2) xX-(X-1) >(X+7))
\div(5x(2\timesX+3))=-. 5077
ENTER
```

Store the equation and display the Solver menu.

```
STEQ =
    SOLVR 泣
```


Store the initial guess of 1 in the variable X.
1 奉 X

1.6T1	
$1:$	

Solve for X.

Exit from the Solver and purge the variables created in this example.
SOLV \{'EQ' X PURGE

Graphs of Trigonometric Functions

This section illustrates how to plot various trigonometric functions．
Example：Plot the function $y=\sin (x) / x$ ．The technique for this exam－ ple depends upon whether you are using an HP－28C or HP－28S．

HP－28C Method．Version＂1BB＂of the HP－28C will generate an error when the DRAW function evaluates the example function at $x=0$ ．The following program checks for evaluation at zero and avoids the error that would occur．

Program：

« CLLCD RAD
＇IFTE（ $\mathrm{X}==0,1$ ，
SIN（X）$\div \mathrm{X})^{\prime}$
STEQ DRAW

Comments：

Clear the display and set the angular mode to radians．
Evaluate the function for
X not equal to zero．
Store the fuction and draw it．

Restore the default plot parameters，expand the width by a factor of three， and press EVAL to run the program．

3 表＊W
EVAL

HP－28S Method．On the HP－28S it is not necessary to avoid evalua－ tion at zero．

Set the calculator to radians mode，then key in the function and store it in EQ．

MODE 凖RAD 全	3：
＇SIN（X）$\div \mathrm{X}$	2：

Restore the default plot parameters，expand the width by a factor of three，

' PPAR PURGE

Example：Plot the first 10 terms of the Fourier series．

$$
\sin (x)+\sin \frac{(3 x)}{3}+\sin \frac{(5 x)}{5}+\sin \frac{(7 x)}{7}+\sin \frac{(9 x)}{9}+\cdots
$$

A general program can be written that plots a specified number of terms． The program below assumes you key in the desired number of terms，and then execute the program．

Key in the program and store it in the variable name＂SQWV＂．（The graph is an approximation of a square wave．）

Program：

« CLLCD RAD
01 ROT $2 \times$ FOR n
n $\mathrm{X} \times$ SIN $\mathrm{n} \div$
$+$
2 STEP
STEQ DRAW »

Comments：

Clear the display and set the mode to radians．
Loop：do for n from 1 to 2 N ．
Calculate $\sin \left(n^{*} x\right) / n$ ．
Add the sine term．
Increment n by 2 and repeat until $n>2 N$ ．
Store the equation and draw the function．

ENTER＇SQWV STO

Set the display to standard mode and purge any existing variable named X ．

CLEAR	MODE	STD
＜＞	PURGE	

$4:$
$3:$
2
1
1
Display the User menu and execute the program for 10 terms．
USER 10 泰SQWV

$$
\begin{aligned}
& 3 \text { 寿*W } \\
& \text { DRAW }
\end{aligned}
$$

Run the program again，this time for 5 terms．

Example：Plot the function $y=2 \sin (x)+\cos (3 x)$ ．If you have the HP 82240A printer，also print the graph．

Key in the function and store it in EQ．

```
' 2xSIN (X) +COS ( 3 XX)
PLOT 䇂STEQ咅
```

3：

Purge the plot parameters and plot the function．
＇PPAR PURGE
泰DRAW

Double the height parameter and plot the function again．

Printing the Graph with the HP－28S．To print the graph using the HP－28S，press the ON key，and，while still holding the ON key，press the \square key．Release both keys．The printer annunciator will appear on your display while the printer prints the graph．

Purge the variables used in this section．

```
{'SQWV''PPAR''EQ' PURGE
```

Printing the Graph with the HP－28C．If you are using an HP－ 28 C ，key in the following program to print the graph on your printer．

Store the program in the variable $P R P L T$.

'PRPLT STO

```
3:
2:
```


Execute the program PRPLT which draws the graph of the expression stored in EQ and then prints it.

USER 奉PRPLT

Purge the variables used in this section.
\{'SQWV' 'PPAR''EQ' 'PRPLT PURGE

Inverse Trigonometric Functions

The inverse trigonometric functions arc sine，arc cosine，and arc tangent are built into the HP－28S and HP－28C．To calculate arc cosecant，arc secant，and arc cotangent of a number，simply take the inverse of the number and calculate the arc sine，arc cosine，or arc tangent，respectively．

Example：Find the principal values of
a． $\arcsin (.5)$ ，
b． $\arccos (-.95)$ ，
c． $\arctan (-8.98)$ ，
d． $\operatorname{arccsc}(-7.66)$ ，
e． $\operatorname{arcsec}(2)$ ，and
f． $\operatorname{arccot}(2.75)$ in HMS format．
First set the angle mode to degrees and the display setting to FIX 5.


```
3:
```


a．Compute $\arcsin (.5)$ in HMS format．

$$
.5 \text { TRIG } \overline{\overline{\underline{\underline{\underline{A}}}} \mathrm{ASIN} \overline{\overline{\mid}}}
$$

Since the angle is an integer，pressing $\mathrm{=}$ HMS does not change the display．

```
靑->HMS音
```


b．Compute $\arccos (-.95)$ in HMS format．

$$
.95 \widehat{\mathrm{CHS}} \overline{\underline{\underline{\underline{\underline{B}}} \mathrm{ACOS}} \mathrm{I}}
$$

[^1]
c．Compute $\arctan (-8.98)$ in HMS format．
8．98 CHS 를ATAN

$3:$		30.00000
$2:$		161.48185
$1:$		-83.64580
SIN	HETN	COE

奉 $\rightarrow \mathrm{HMS}$ 童

d．Compute $\operatorname{arccsc}(-7.66)$ ．Note that $\operatorname{arccsc}(-7.66)=\arcsin (-1 / 7.66)$ ．
Calculate the inverse of -7.66 ．
$7.66 \mathrm{CHS} 1 / x$

Convert the resulting angle to HMS format．

e．Compute $\operatorname{arcsec}(2)$. First，find the inverse of 2.
$21 / x$

Calculate the arccosine of the number since $\operatorname{arcsec}(2)=\arccos (1 / 2)$ ．
泰ACOS

Since the resulting angle is an integer，there is no need to convert it to HMS format．
f．Compute $\operatorname{arccot}(2.75)$ in HMS format．
$2.751 / x$

Calculate the arctangent of the resulting number to find arccot（2．75）．
童ATAN $\overline{\text { 言 }}$

3：	－7．30046
$1:$	60.
	1 Thin miti

\rightarrow 部

Example：Evaluate $\sin (\arccos (-.9)-\arcsin (.6))$
First，calculate $\arccos (-.9)$ ．

Next，calculate $\arcsin (.6)$ ．
． 6 㪯ASIN $\overline{\text { 部 }}$

$3:$	154.15807
$1:$	86990

1:
SIN HETN COE HEDE TAN MTHN

Subtract $\arcsin (.6)$ from $\arccos (-.9)$ ．


```
|3:
```

Calculate the sine of the resulting number．
3：
1：
0.88871
SIN HETM COE HEOE TAN HTHM

Trigonometric Equations

Solutions to trigonometric equations can be found by graphing the equation, by using the Solver, or both. This section demonstrates one way to solve a trigonometric equation.

Solve $\cos ^{2}(x)+\cos (3 x)-5 \sin (x)=0,0 \leq x \leq 2 \pi$.
First, set the angle mode to radians and set the display to FIX 2.

CLEAR	
MODE	RAD

Key in the expression.
$\prime \operatorname{COS}(X) \wedge 2+\operatorname{COS}(3 \times X)$
$-5 \times \operatorname{SIN}(X)=0 \prime$ ENTER

Store the equation and display the Solver menu. The menu shows X as the only variable.

Let 0 be an initial estimate for X.

Solve for X.
$\square \overline{\underline{\underline{\underline{\underline{1}}}} \overline{\underline{\overline{\underline{1}}}}}$

Try solving for X again with the number 3.14 as the initial estimate.
3.14 㪯X

Check your results by plotting the function.

PLOT 'PPAR PURGE
 EDRAW

Increase the height by 5 and draw the function again.

Between $x=0$ and $x=6.28$, the graph intersects the x -axis at approximately $x=.3$ and $x=3.1$.

Exit from the graph and purge the variables used in this example.
ATTN \{'X''EQ' ${ }^{\prime}$ PPAR' PURGE

Geometry

Rectangular Coordinates

This section illustrates how to solve various problems dealing with rectangular coordinates. The object (x, y) represents either a complex number or the coordinates of a point; thus it is an acceptable argument to all of the arithmetic functions.

Example: Given triangle $A B C$ with vertices $A(x 1, y 1)=(-4,3)$, $B(x 2 y 2)=(2,5)$, and $C(x 3 y 3)=(-3,-1)$, find
a. the length of side $A C$,
b. the coordinates of the midpoint of side $A B$,
c. the slope of side $B C$ and the inclination,
d. the area of triangle $A B C$, and
e. the equivalent polar coordinates of the three points.

First, set the angle mode to degrees and the display to FIX 2.

Next, enter the coordinates of point A and store it in the variable A.

$(-4,3)^{\prime} \mathrm{A}$ STO
 USER

Do the same for points B and C.

$$
\begin{aligned}
& (2,5)^{\prime} \mathrm{B}, \mathrm{STO} \\
& (-3,-1)^{\prime} \mathrm{C} \text { STO }
\end{aligned}
$$

$\begin{aligned} & 3: \\ & 2! \\ & 1: \\ & \hline \end{aligned}$

a. The length of side $A C$ is $\sqrt{(x 3-x 1)^{2}+(y 3-y 1)^{2}}$. The easiest way to find the length is to subtract A from C and calculate the absolute value of the difference. (The absolute value of the complex argument (x, y) is $\sqrt{x^{2}+y^{2}}$.)

Put C on the stack.
邫垔

$3:$	
$2:$	$(-3.00,-1,00)$
$1:$	8

Put point A on the stack．
㐁A童

Subtract point A from point C ．

 the length of side $A C$ ．

REAL 彦ABS

b．The coordinates of the midpoint $M(x, y)$ of side $A B$ is $x=(x 1+x 2) / 2$ and $y=(y 1+y 2) / 2$ ．Thus
$M(x, y)=((x 1+x 2) / 2,(y 1+y 2) / 2)=(x 1+x 2 y 1+y 2) / 2=(A+B) / 2$.
Put the coordinates for point A on the stack．
CLEAR

Put the coordinates for point B on the stack．
春B

Add the two coordinates．
$+$

Divide the sum by 2 to obtain the coordinates for the midpoint．
$2 \div$

c. The slope m of line $B C$ is $m=(y 3-y 2) /(x 3-x 2)$. The slope is also equal to $\tan (\theta)$ where θ is the inclination. To calculate the slope, subtract B from C, separate the result, swap the order, and divide the two numbers.

First, put the coordinates for C on the stack.

CLEAR

C

Put the coordinates for B on the stack.崟 $\overline{\text { B }}$

Calculate $C-B$.

Separate the coordinates.
CMPLX $\overline{\underline{\underline{\underline{\underline{C l}}}} \boldsymbol{C B}}$

Swap the order of the x and y coordinates.
SWAP

Calculate the slope by dividing the y coordinate in level 2 by the x coordinate in level 1.

The slope is equal to 1.20 .

Compute the inclination by taking the arctangent of the slope.
TRIG 羞ATAN

$3:$		
$2:$		
$1:$		
SIN	HETN	COE

d. The area of the triangle formed by the three points is the absolute value of the following:

$$
1 / 2\left|\begin{array}{llll}
x & 1 & y & 1 \\
x & 2 & y & 2 \\
x & 3 & y & 1 \\
1
\end{array}\right|
$$

To put the three points in a matrix, separate the coordinates then put the number 1 on the stack for each of the three points.

Separate the coordinates of point A.

CLEAR

A $\overline{\underline{\underline{\underline{~ C ~}}} \boldsymbol{C} \rightarrow \mathrm{R}}$

Complete row 1 of the matrix.
1 ENTER

Separate the coordinates of point B and complete row 2 of the matrix.

Separate the coordinates of C and complete row 3 of the matrix.

Put the nine numbers into a three-by-three matrix.

$$
\{3,3 \text { ARRAY } \overline{\underline{\underline{\underline{\underline{I}}} \rightarrow \text { ARRY }} \overline{\underline{\underline{I}}}}
$$

Compute the determinant of the matrix.

흘NT

Divide the determinant by 2 and take the absolute value of the result. The area of the triangle is returned to level 1.

e. To convert the points from rectangular to polar form, simply key in the variable name and press $\overline{\overline{\underline{\underline{\underline{~}}} \mathrm{R} \rightarrow \mathrm{P}} \text { 高. }}$.

Key in the variable name A and convert point A to polar form.

Key in the variable B and convert point B to polar form.

Do the same for point C.
C $\overline{\underline{\underline{\underline{\underline{1}}}} \boldsymbol{R} \rightarrow \mathrm{P}}$

Purge the three variables used in this example.
\{'C' ${ }^{\prime} \mathrm{B}^{\prime \prime} \mathrm{A}^{\prime}$ PURGE

Polar Coordinates

A point in a plane can be represented in rectangular notation or polar notation．To draw a point that is described in polar notation on the HP－28S or HP－28C，first convert it to rectangular form and then plot it． You can either write a program to draw the graph of a polar equation or convert the equation to rectangular form before attempting to draw it．

Example：Convert the following polar coordinates（whose angles are expressed in degrees）to rectangular coordinates，then plot the points．

$$
A(4,-15) \quad B(-4,380) \quad C(-2,570) \quad D(2,-195)
$$

Converting polar coordinates is easily accomplished by executing the Polar－to－Rectangular function $\mathrm{P} \rightarrow \mathrm{R}$ ．One way to plot the four points is to put the four points on the stack and use the PIXEL command four times，
 wish to draw the axes by executing the DRAX command．Another way to plot the points is to separate the coordinates，put them in a four－by－two matrix，and then use the statistical scatter plot commands STOL and DRWE．

To illustrate the first approach，set the angle mode to degrees，and set the display to FIX 2.

CLEAR	3：
MODE DEG	$2:$
2 磍 FIX	

Key in point A and convert it to rectangular coordinates．

$$
(4,-15 \text { TRIG 㪯P } \rightarrow \mathrm{R} \text { 童. }
$$

$3:$	
	（3．86，－1．04）

Enter the coordinates for point B and convert it to rectangular form．

$$
(-4,380 \text { 兹 } \mathrm{P} \rightarrow \mathrm{R}
$$

3：	$(-3.76,-1.04)$		

Do the same for points C and D ．

$$
(-2,570 \text { 㪯 } \mathrm{P} \rightarrow \mathrm{R}
$$

$\begin{aligned} & 3: \\ & 2: \\ & 1: \end{aligned}$	$\binom{3.86,-1.04}{(1.73,1.07}$				
F＊＊F	Fi＋F	8＊	C－5	HF6	

（ $2,-195$ 㪯 $\mathrm{P} \rightarrow \mathrm{R}$ 妾

The rectangular form of the four points are $A(3.86,-1.04)$ ， $B(-3.76,-1.37), C(1.73,1.00)$ ，and $D(-1.93,0.52)$ ．

Clear the plot parameters，clear the display and draw the axes．Note：The
 inates the menu display．

PLOT＇PPAR PURGE
㐁CLLCD
DRAX

Although you can＇t see them，the coordinates for the four points are still on the stack．Therefore，they are still available for use．

Draw point D（which is in level 1 of the stack）by executing the PIXEL command．（Press the soft key labeled \uparrow ．）
奉PIXEL

Draw points C, B ，and A by executing the PIXEL command three more times．

Press ATTN to exit from the plot display．
Example：Sketch the rose $r=2 \sin (2 \theta)$ for $0<\theta<360$ ．
The following program draws the graph of a polar equation．The program assumes that the equation is in the form $r=f(\theta)$ ，where $f(\theta)$ is an expres－ sion with θ as the unknown variable．The input to the program is the expression $f(\theta)$ ．

Key in the program listed below and store it in the variable PEPLT（for ＂polar equation plot．＂）

Program:

« "EXPRESSION?"
HALT
$\rightarrow r$
« DROP
DEG
CLLCD
0360 FOR j
j 'theta' STO
r EVAL
theta
$\mathrm{R} \rightarrow \mathrm{C}$
$\mathrm{P} \rightarrow \mathrm{R}$
PIXEL
3 STEP
\{ PPAR theta \}
PURGE \gg

Comments:

Prompt message.
Program stops
(Enter the expression).
Store the expression in the local variable r.
Drop the prompt message.
Set the angle mode to degrees.
Clear the display.
Loop: do for j from 0 to 360 .
Store the current j
in the variable theta.
Evaluate the expression for r.
Put theta on the stack.
Combine r and theta.
Convert (r,theta)
to rectangular form.
Draw the point.
Increment j by 3 and
repeat until $j>360$.
Purge the plot parameters
and theta.

Display the User menu and execute the program.

Key in the expression $2 \times \operatorname{SIN}(2 \times$ theta $)$ and press CONT.

If you do not want to save the program, purge PEPLT.

```
ATTN 'PEPLT' PURGE
```

| $3:$ |
| :--- | :--- |
| 3: |
| $1:$ |
| 1: |

Example：Transform $r(1-\sin (\theta))=2$ into its rectangular form，substi－ tuting $x^{2}+y^{2}$ for r^{2} and y for $r \sin (\theta)$ ．

Key in the equation．Let the angle be called＂th＂．
${ }^{\text {TRIG }} \mathrm{r} \times(1-\operatorname{SIN}(\mathrm{th}))=2$ ENTER

$\begin{aligned} & 3: \\ & 2: \\ & 1: \\ & \hline \end{aligned}$	＇r＊（1－SIN（th）${ }^{\text {r }}$（ ${ }^{\prime}$				
SIN	BSIN	R08	hens	THN	MTM

Display the Algebra menu．Expand the equation to get $r-r \sin (\theta)=2$ ．

```
ALGEBRA 立EXPAN䇂
```


Add $r \sin (\theta)$ to both sides of the equation．To do this，press the ENTER key to duplicate the expanded equation．

ENTER

3：	
2： 1 r＊1－	
1：＇r＊1－r	$-* S I N(t h)=2^{\prime}$
COLCTEXFHNSIEE	

Next，enter the number 6 and press $\overline{\text { EXGET }}$ 童．The subexpression $r \sin (\theta)$ is returned．

```
靑EXGET音
```


Then，add this subexpression to the expresssion in level 2.

Simplify the expression．
奉COLCT

Square both sides of the equation．The equation $r^{2}=(2+r \sin (\theta))^{2}$ is returned to level 1.

Now you can substitute $x^{2}+y^{2}$ for r^{2} and y for $r \sin (\theta)$ ．The Expression Sub－ stitute command EXSUB can accomplish this task．

Since＂SQ（r）＂is in the first position of the equation，put the number 1 on the stack．

1 ENTER

```
3: 'SQ(r)=SQ(2+SIN(th)..
    'SQ<r>=SQ<2+SIN(th)"
```


$$
' X^{\wedge} 2+Y^{\wedge} 2 \text { 扉EXSUB童 }
$$

$$
\begin{aligned}
& \text { 1: } \quad \mathrm{X}^{\wedge} 2+\mathrm{Y}^{\wedge} 2=\mathrm{SQ}(2+\sin <\mathrm{th} \\
& \text {) *r) }
\end{aligned}
$$

The subexpression＂SIN（th）＊${ }^{*}$＂is in the fourteenth position；therefore，key in the number 14.

```
14 ENTER
```


Substitute＂Y＂for＂SIN（th）＊r＂．

```
'Y 凖EXSUB亚
```

```
3:
2:
1: 'X^2+Y^2=SQ(Z+Y)'
COLTTEXFHN SIEE FOFN WESDSEMEDE
```

To simplify this equation，subtract＂ $\mathrm{SQ}(2+\mathrm{Y})$＂from both sides of the equation，expand the equation，then collect terms．

First，duplicate the equation by pressing the ENTER key．

```
ENTER
```

：	$\begin{aligned} & \prime X^{\wedge}{ }^{\wedge}+Y^{\wedge} \wedge=5=5 Q(2+Y) \\ & 2=5 Q(2+Y) \end{aligned}$

 returned to level 1.

```
9 童EXGET咅
```

Subtract 'SQ(2+Y)' from both sides of the equation.


```
3:
2:
1: \(\quad 1 X^{\wedge} 2+Y^{\prime} 2-50(2+Y)=0 '\)
```


Expand the equation.
EXPAN
1: $\quad \mathrm{X} X \mathrm{X}+\mathrm{Y} * \mathrm{Y}^{\prime}-\left(2^{\wedge} 2+2 * 2 * Y+\right.$
$\left.Y^{\wedge} 2\right)=01$

Simplify the equation by collecting terms.
衰COLCT $\overline{\text { ㅌ }}$

```
2: '-4+X^2+Y^2-Y^}2-4*Y
    0
```


Collect terms.
奉COLCT $\overline{\equiv \text { ㅎ }}$

The final result is the equation of a parabola.

The Straight Line

This section includes some basic analytic geometry problems for the straight line and methods to solve them on the HP－28S or HP－28C．

Example：Given the line passing through points $A(8,-10)$ and $B(-10,26)$ ，find
a．the y－intercept and slope of the line，and，
b．the corresponding value for y ，given $x=-4$ ．
First，set the display to FIX 2.

CLEAR	
MODE	
童FIX	

$\begin{aligned} & 3: \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	

The solutions to this example can all be found by using the commands in the Statistics menu．Since statistical data points are entered as arrays，use brackets around the coordinates instead of parentheses．
 A as the first entry in the matrix．

```
STAT
[8,-10 音立+咅
```

```
|3: 
```

Add point B to the matrix．

$$
[-10,26 \overline{\overline{\underline{\underline{\underline{\underline{~}}}} \underline{\underline{\underline{\underline{E}}}}}}
$$

3：
$1!$

a．Find the y－intercept and the slope by executing the Linear Regression function LR．The y－intercept is returned to level 2 and the slope to level 1.
\qquad

b. To find the corresponding value for y given $x=-4$, enter the number -4 and compute the predicted value. The value for y is returned to level 1.
-4 $\overline{\underline{\underline{\underline{\underline{P}}}} \mathrm{PREDV}}$

Clear the display and purge the variables that were created in this example.

CLEAR \{' $\Sigma \mathrm{PAR}^{\prime}{ }^{\prime} \Sigma \mathrm{DAT}$ ' PURGE

Example: Given the vertices $D(-4,3), E(2,5)$, and $F(-3,-1)$ of triangle $D E F$, find
a. the equation of lines $D E$ and $D F$ in the normal form, and,
b. the equation of the bisector of angle D.
a. Given two points $(x, y 1)$ and $(x 2 y 2)$, the normal form of the equation of the line connecting the two points is $s \times(A x+B y+C) /\left(\sqrt{A^{2}+B^{2}}\right)=0$, where $s=\{-1$ or 1$\}, A=y 1-y 2, B=x 2-x 1$, and $C=x 1 \times y 2-x 2 \times y 1$.

If $C>0$, then $s=-1$.
If $C<0$, then $s=1$.
If $C=0$ and B is non-zero, then the sign of s agrees with the sign of B. If $C=B=0$, then the sign of s agrees with the sign of A.

First, store ' $\mathrm{Y} 1-\mathrm{Y} 2$ ' in the variable A.

Store ' $\mathrm{X} 2-\mathrm{X} 1$ ' in the variable B.
'X2-X1' 'B STO

Store ' $\mathrm{X} 1 \times \mathrm{Y} 2-\mathrm{X} 2 \times \mathrm{Y} 1$ ' in the variable C.
'X1×Y2-X2×Y1''C STO

| $3:$ | | |
| :--- | :--- | :--- | :--- | :--- |
| 2 | | |
| $1:$ | | |

Key in the normal form of the equation.
${ }^{\prime} \mathrm{S} \times(\mathrm{A} \times \mathrm{X}+\mathrm{B} \times \mathrm{Y}+\mathrm{C}) \div$
$\sqrt{ }\left(A^{\wedge} 2+B^{\wedge} 2\right)^{\prime}$ ENTER

Store the equation in the variable EQ and display the Solver menu. A menu of the variables is shown in the display.

Find the equation for line $D E$. Let point D be the first point and E be

Enter the number 3 and store it in $Y 1$.
$3 \overline{\underline{\underline{\underline{\underline{\underline{Y}}}}} \underline{\underline{\underline{\underline{\underline{I}}}}}}$

Enter the number 2 and store it in $X 2$.
2 奉 X 言

Enter the number 5 and store it in $Y 2$.

Determine the sign of the variable S.
C ENTER

Evaluate C ．
EVAL

$3:$	－26．00
$1:$	
5	

The value of C is returned to level 1 ，and it is negative．Drop the value of C from the stack．

DROP

Since C is negative，S is equal to 1 ．Enter the number 1 into the variable S ．

1 㐁 $\overline{\text { 产 }}$

Display the resulting expression．
㪯 EXPR＝$=$ 童

Evaluate the expression by pressing EVAL．The left side of the normal form of the equation of line $D E$ is returned to level 1 ．（The right side is equal to zero．）

EVAL

Now find the equation for line $D F$ ．
Store the coordinate -3 in the variable $X 2$ ．

Store the coordinate -1 in the variable $Y 2$ ．

Press C followed by the ENTER key．
C ENTER

Evaluate C ．
EVAL

C is positive．Drop the value of C from the stack．
DROP

Since $C>0$ ，then $S=-1$ ．Enter a -1 and press $\overline{\underline{\underline{\underline{\underline{~ S}}}} \text { 童．}}$
－1 $\overline{\underline{\underline{\underline{\underline{~}}}} \mathrm{~S}}$

Display the resulting expression．
表 EXPR＝童

Evaluate the expression to obtain the normal form of the equation of line $D F$ ．This is also only the left side of the equation；the right side is equal to zero．

EVAL

3：					
2：$\quad(-(2 * x)+6 * Y-26) / 6 \cdot \cdot$	$(-(2 * \gamma)+6 * Y-26) / 6$				
1：	6	关	$+1$	24	123
5	11	12	8	82	X1

b．To find the equation of the bisector of angle D ，simply equate the two expressions in levels 1 and 2 and simplify．To simplify this process even more，subtract the two expressions and equate the difference to zero．

Key in the number 0 and set the expression in level 2 equal to the number in level 1.

0 ENTER
 \Rightarrow ENTER

Expand the equation．

1：＇（－（2＊X）＋6＊Y－26）／
 $6.32+(4 * X+Y+13) / 4.12$ $=$
 － 5 ［ 1

```
ALGEBRA 音EXPAN音
```

```
1: '(-(2*X)+6*Y)/6.32-
    26/6.32+((4*X+Y)
    4.12+13/4.12)=01
```


Expand it again．

```
EXPAN =
```

1： $1-(2 * \mathrm{X}) / 6.32+6 * \mathrm{Y} /$
$6.32-26 / 6.32+(4 \times 4$
4． $12+Y / 4.12+13 / 4.12)$

Simplify the equation by collecting terms．The final result is the equation of the bisector of angle D ．

```
COLCT 咅
```

```
2: '-0.96+0.65*X+1.19*Y
```


Purge the variables used in this example．

$$
\text { \{'S''Y2''X2'rY1'rX1''EQ''C' }{ }^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{A}^{\prime} \text { PURGE }
$$

The Circle

Finding the points of intersection of two equations is a common problem in analytic geometry. In this section you'll work through the steps to find the points of intersection of two circles.

Example: Given two circles $x^{2}+y^{2}-5=0$ and $(x+2)^{2}+(y-1)^{2}-20=0$, find the point(s) of intersection, if any exist.

First, set the display to FIX 2.

CLEAR
MODE
音 FIX

Key in the expression for the second circle as shown below, and simplify it by expansion and collection of terms.

Expand again.

EXPAN

Simplify the expression by collecting terms.

Key in the expression for the first circle as shown below and press ENTER.

$$
{ }^{\prime} \mathrm{X}^{\wedge} 2+\mathrm{Y}^{\wedge} 2-5 \text { ENTER }
$$

Find the equation for the radical axis by subtracting the expression in level 1 from the expression in level 2.

Expand the expression．

EXPAN $\overline{\text { 三 }}$

```
1: '-15+X*X+Y*Y+4*X-2*Y
    -(X*X+Y*Y-5)'
```


Simplify the expression by collecting terms．The result is the left side of the equation for the radical axis．（The right side is equal to zero．）
\qquad三 $\overline{\equiv \text { COLCT }}$ 三

```
\3:
```

To find the point（s）where the two circles intersect，simultaneously solve the equation for the radical axis and either one of the equations for the circles．In this example，take the equation for the radical axis and solve for the variable Y ．Then substitute the resulting expression for Y in the equa－ tion for the first circle．This gives an equation with one unknown，namely， X ．Solve for X ，then find the corresponding value（s）for Y ．

Solve for the variable Y ．

```
'Y 㪯ISOL音
```


Store this expression in the variable Y ．
＇Y STO

Key in the equation for the first circle．Then use the command SHOW to substitute the expression stored in Y into the equation of the circle．The resulting equation is a function of one variable，X ．

$$
{ }^{\prime} \mathrm{X}^{\wedge} 2+\mathrm{Y}^{\wedge} 2-5=0^{\prime} \quad \mathrm{X} \text { 奉SHOW }
$$

```
2: ' \^2+((-10+4*X)/2)^2
```


Since the equation in level 1 is a quadratic，use the QUAD command to find the value（s）of X ．

[^2]

The single number $X=2$ is returned to level 1 ；thus the circles intersect in one point．If there were two values of X ，then the circles intersect in two points．A complex value of X means there are no intersection points．

Now use the Solver to find the corresponding value of Y ．First，put the expression stored in the variable Y on the stack．
＇Y RCL

Store this expression in the variable EQ and display the Solver menu．

```
SOLV 産STEQ主
SOLVR立
```


Store the value that you just found in the variable X ．
全X


```
EXPR=音
```


Thus the circles intersect at the point $(2,-1)$ ．
Exit from the Solver and purge the variables that were created in this example．

```
SOLV {'X''EQ''Y' PURGE
```


The Parabola

This section describes how to plot the graph of a parabola．Vertical para－ bolas are plotted as you would expect－solve for y ，store the expression， and draw with the $\overline{\underline{\underline{\underline{~ D}}} \text { DRAW }}$ key．If you attempt to draw a horizontal para－ bola in the same manner，an error will result．This section demonstrates a program to draw a horizontal parabola．

Example：Plot the graph of $x^{2}=4(y+1)$ ．
First，set the display to FIX 2.

The semireduced form of the equation of a vertical parabola is $(x-h)^{2}=4 p(y-k)$ ，where (h, k) is the vertex，$x=h$ is the axis，$(h, k+p)$ is the focus，and $y=k-p$ is the directrix．In this example，$h=0, k=-1$ ，and $p=1$ ．Therefore，the vertex is $\mathrm{V}(0,-1)$ ；the axis is $x=0$ ；the focus is $F(0,0)$ ；and the directrix is $y=-2$ ．

Key in the equation for the parabola．

$$
{ }^{\prime} \mathrm{X}^{\wedge} 2=4 \times(\mathrm{Y}+1) \quad \text { ENTER }
$$

```
3:
2:
1: ' ' }\mp@subsup{\}{}{\wedge}2=4*(Y+1)'
```


Isolate the variable Y ．

```
\primeY ALGEBRA 童ISOL咅
```

```
3:
2:
1: 'x^2/4-1'
```


Store the expression for Y in the variable EQ．

```
PLOT 㪯STEQ咅
```


Draw the graph of the parabola．

```
DRAW \equiv
```


Exit from the graph and purge the variables created in this example.
ATTN \{'PPAR' 'EQ' PURGE

Example: Plot the graph of the horizontal parabola $y^{2}=-4(x-1)$.
The general equation of a horizontal parabola is $(y-k)^{2}=4 p(x-h)$. The vertex is (h, k); the axis is $y=k$; the focus is $(h+p, k)$; and the directrix is $x=h-p$. Therefore, in this case, h, k, and p are equal to 1,0 , and -1 , respectively. The vertex is $\mathrm{V}(1,0)$; the axis is $y=0$; the focus is at $(0,0)$; and the directrix is $x=2$.

The following program plots a horizontal parabola. The program expects three numbers to be entered onto the stack as inputs into the program: the values of h, k, and p. (A prompt message is displayed requesting you to enter the numbers.) Given these three numbers, the program draws the graph of the parabola with the vertex at the center of the display, and each tic mark on the axes represents 10 units.

Key in the program below and store it in the variable HPAR (for "horizontal parabola").

Program:

« "ENTER h,k,p"
HALT
$\rightarrow \mathrm{hkp}$ k
DROP
CLLCD
10 *H 10 *W
$\mathrm{h} \mathrm{k} \mathrm{R} \rightarrow \mathrm{C}$ CENTR
DRAX
' $(\mathrm{Y}-\mathrm{k})^{\wedge} 2=4 \times \mathrm{p} \times(\mathrm{X}-\mathrm{h})^{\prime}$
'X' ISOL
' X^{\prime} STO
k $20-\mathrm{k} 20+$ FOR j
j 'Y' STO
X EVAL Y R \rightarrow C
PIXEL
NEXT
\{ X Y PPAR \} PURGE >>> Purge variables X, Y, and PPAR.

Comments:

Prompt message.
Program halts (you key in 3 numbers).
Store the 3 numbers in h, k and p.
Drop the prompt message.
Clear the display.
Multiply the height and width by 10 .
The center of the display is (h, k).
Draw the axes.
Equation for a horizontal parabola.
Isolate X in the above equation.
Store the expression in the variable X.
Loop: do for j from $k-20$ to $k+20$.
Store the current j in variable Y.
Evaluate X and form point (X, Y).
Draw point (X, Y).
Increment j by 1 and repeat
until $j>(k+20)$.

ENTER 'HPAR STO

Display the User menu and execute the program.
USER 㶳HPAR

Enter the values for h, k, and p . Continue running the program by pressing CONT. The graph of the parabola is drawn.

1,0,-1 CONT

Press ATTN to exit from the plot display.

Example: Plot the graph of $(y+10)^{2}=12(x+35)$.
This is the equation of a horizontal parabola with the vertex at $\mathrm{V}(h, k)=(-35,-10)$ and $\mathrm{p}=3$. Run the program HPAR.

奉HPAR

Key in the value of h.
-35 ENTER

Key in the value of k.
-10 ENTER

Key in the value for p and continue running the program. The graph of the parabola is drawn.

3 CONT

Exit from the graphics display and purge the program HPAR, if you wish.

ATTN 'HPAR PURGE

Example: Horizontal Parabolas Using DRAW. The program below is an alternate approach from the point-by-point function plot in program HPAR. This program takes h, k, and p from the stack, creates an equation representing the upper and lower halves of the parabola, and uses the DRAW command to create the plot. Note for $y^{2}(x)<0$, the DRAW routine produces a line intersecting the curve at the vertex.

Key in the following program.

```
< 'X' PURGE 10 *H 10 *W
h k p <<
' 2\times\sqrt{}{(( (X-h) xp)'}
EVAL DUP NEG \(=\mathrm{k}+\mathrm{RE}\) STEQ CLLCD DRAW ENTER <>
```

 \(-h) * P\) P
 $=$
k
$=k+R E S T E Q$ CLLCD

Store the program by the name HPAR2 and purge the current plot parameters.

```
'HPAR2 STO
' PPAR PURGE
```

\square
Execute the program for the previous horizontal parabola.
$1,0,-1$ USER 㪯HPAR2㪯

Exit from the plot display and purge program HPAR2 if you wish.
ATTN 'HPAR2 PURGE

The Ellipse and Hyperbola

This section describes the procedure for drawing the graphs of ellipses and hyperbolas.

Example: Plot the graph of the following ellipse.

$$
\frac{(x+2)^{2}}{9}+\frac{(y-1)^{2}}{4}=1
$$

The general equation of an ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is at the point (h, k). If $a>b$, then the major axis is parallel to the x -axis. The vertices are at points ($h \pm a, k$); the foci are at points ($h \pm c, k$), where $c=\sqrt{a^{2}-b^{2}}$; and the ends of the minor axis are at points $(h, k \pm b)$. If $b>a$, then the major axis is parallel to the y -axis; the vertices are at points ($h, k \pm b$); the foci are at points $(h, k \pm c)$; and the ends of the minor axis are at points ($h \pm a, k$).

For this example, $h=-2, k=1, a=3, b=2, c=2.24$, and the major axis is parallel to the x -axis. The center is at $(3,2)$; the vertices are at points $(1,1)$ and $(-5,1)$; the foci are at $(0.24,1)$ and $(-4.24,1)$; and the ends of the minor axis are at points $(-2,3)$ and $(-2,-1)$.

The following program draws the graph of an ellipse. After a prompt message is displayed, the program expects the values of h, k, a, and b to be entered onto the stack. The graph of the ellipse is drawn with its center in the center of the display. Each tic mark on the axes represents two units.

Key in the program and store it in the variable ELLIPSE .

Program:

< "ENTER h,k,a,b"
HALT
$\rightarrow \mathrm{h} k \mathrm{a}$ b
« DROP
CLLCD
2 *H 2 *W
$\mathrm{h} \mathrm{k} \mathrm{R} \rightarrow \mathrm{C}$ CENTR
DRAX
' $(\mathrm{X}-\mathrm{h})^{\wedge} 2 \div \mathrm{a}^{\wedge} 2+$
$(\mathrm{Y}-\mathrm{k})^{\wedge} 2 \div \mathrm{b}^{\wedge} 2=1^{\prime}$
'Y' ISOL
'Y' STO
-1 1 FOR j
j 'sl' STO
$\mathrm{h} a-\mathrm{h} a+$ FOR n
n 'X' STO
X Y EVAL $R \rightarrow C$
PIXEL
. 2 STEP
2 STEP
\{ PPAR X Y sl \}
PURGE >>>

Comments:

Prompt message.
Program halts
(Enter the 4 values).
Values are stored in h, k, a, and b.
Drop the prompt message.
Clear the display.
Multiply the height and width by 2.
The center of the display is (h, k).
Draw the axes.
The general equation of an ellipse.
Isolate Y from the equation.
Store the expression in the variable Y.
Loop1: do for j from -1 to 1 .
Store the current j in variable $s 1$.
Loop2: do for n from $h-a$ to $h+a$.
Store the current n in variable X.
Form the point (X, Y).
Plot the point (X, Y).
Increment n by .2 and repeat until $n>h+a$.
Increment j by 2 and repeat loop1.
Purge the variables created by this program.

ENTER 'ELLIPSE STO

Display the User menu and run the program. The prompt message is returned to level 1.

```
USER 烊ELLIP音
```


Enter the value for h.
-2 ENTER

Key in the value for k.
1 ENTER

Enter the value for a.
3 ENTER

Enter the value for b and press CONT to continue running the program. The graph of the ellipse is drawn.

2 CONT

Press ATTN to exit from the plot display and, if desired, purge the program.

ATTN 'ELLIPSE PURGE

Example: Plot the graph of the vertical hyperbola

$$
\frac{(y+1)^{2}}{4}-\frac{(x-4)^{2}}{2}=1 .
$$

The graph of the vertical hyperbola can be drawn by first isolating the variable y. Since y is a squared term, the result of isolating y is an expression representing the two solutions. One solution represents the top half of the hyperbola, and the other solution represents the lower half. Use the Solver to find the two solutions. After the two expressions for y are found, set them equal to each other and draw their graphs. (This technique is used to draw two functions simultaneously.)

Enter the equation as shown below.

Isolate the variable Y ．The result is an expression representing two solu－ tions．The variable $s 1$ can be either +1 or -1 ．

＇Y SOLV 㪯ISOL

```
2: 's1*\((1+(x-4)^2/2)*
    4)-1
```


Store the expression for Y in the variable EQ and display the Solver menu．

STEQ	

Store the number 1 in the variable $s 1$ ．

$$
1 \overline{\overline{\underline{\underline{\underline{\underline{S}}}}} \mathrm{S1}}
$$

$\overline{\underline{\underline{\underline{\underline{E}}}} \mathrm{EXPR}=\overline{\text { 要 }}}$

Store the number－ 1 in the variable $s 1$ ．

$$
-1 \text { 奉S1㪯 }
$$

EXPR $=$ 童

Set the expression in level 2 equal to the one in level 1.
\Rightarrow ENTER

Store this equation in the variable EQ，and plot the graph of the hyper－ bola．

$$
\begin{aligned}
& \text { PLOT 㪯STEQ } \\
& \text { DRAW }
\end{aligned}
$$

Press ATTN to exit from the plot display, and multiply the height by 10.
ATTN 10 童*H

Multiply the width by 10 .
10 奉 $* W$

Draw the graph again. Each tic mark represents 10 units.
DRAW

Exit from the plot display, and purge the variables used in this example.

```
ATTN
{'PPAR''sl''EQ' PURGE
```


Example: Plot the graph of the horizontal hyperbola

$$
\frac{(x-4)^{2}}{4}-\frac{(y+1)^{2}}{2}=1 .
$$

The general equation of a hyperbola is

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 .
$$

For this example, $h=4, k=-1, a=2$, and $b=\sqrt{2}$.
A combination of the program to draw a horizontal parabola and the program to draw an ellipse can be used to draw the horizontal hyperbola. (A listing and explanation is not given here. Refer to the section entitled "The Parabola" for an explanation of specific program steps.)

Key in the program as shown below.

```
<"ENTER h,k,a,b" HALT
h k a b << DROP
CLLCD 2 *H 2 *W h k
R}->C CENTR DRAX
\prime}(\textrm{X}-\textrm{h}\mp@subsup{)}{}{\wedge}2\div\mp@subsup{\textrm{a}}{}{\wedge}2-(\textrm{Y}-\textrm{k})^\2
b^2=1' 'X' ISOL 'X' STO
-1 1 FOR j j 'si' STO
k 4 - k 4 + FOR n n 'Y'
STO X EVAL Y R }->C PIXE
. 2 STEP 2 STEP { X Y sl
PPAR } PURGE >>>
ENTER <>
\(\mathrm{R} \rightarrow \mathrm{C}\) CENTR DRAX
' \((\mathrm{X}-\mathrm{h})^{\wedge} 2 \div \mathrm{a}^{\wedge} 2-(\mathrm{Y}-\mathrm{k})^{\wedge} 2 \div\)
\(b^{\wedge} 2=1 '\) ' \(X^{\prime}\) ISOL ' \(X^{\prime}\) STO
-1 1 FOR j j 'si' STO
\(\mathrm{k} 4-\mathrm{k} 4+\mathrm{FOR} \mathrm{n} \mathrm{n}^{\prime} \mathrm{Y}^{\prime}\)
STO X EVAL Y R \(\rightarrow\) C PIXEL
. 2 STEP 2 STEP \{ X Y sl
PPAR \} PURGE >>
ENTER < \(<\)
```


Enter the value for h.
4 ENTER

Enter the value for k.
-1 ENTER

Key in the value for a.
2 ENTER

$3:$	4.00
$2!$	$-1: 60$
$1:$	2.00

Calculate the value of b by entering the number 2 and taking the square root of it. Press CONT to continue running the program. The graph of the horizontal hyperbola is drawn.
$2 \boxed{\checkmark}$ CONT

If desired, purge the program.
USER ' HHYPE PURGE

Example: Plotting the General Form of the Equation. As an alternative to point-by-point plotting of the functions, the DRAW command can be used by separating the ellipse and hyperbola equations into upper and lower halves. The following programs take h, k, a, and b from the stack and produce an equation representing the ellipse and hyperbola
equations. The two halves are then drawn in parallel. The program HHYP and MELL will draw horizontal lines at points where $y^{2}(x)<0$.

Key in the programs below.
The first program's parameters specify a vertical hyperbola.

```
< -1 1 MCON ENTER
'VHYP STO
```


The second program's parameters specify a horizontal hyperbola.

$$
\text { « } 1 \text {-1 MCON ENTER }
$$

' HHYP STO

An ellipse has both squared terms positive, and, thus, parameters 1,1 .

```
< 1 1 MCON ENTER
'MELL STO
```

| $3:$ |
| :--- | :--- |
| $2:$ |
| $1:$ |
| $1:$ |

The last program implements the general form of the equation for an ellipse and hyperbola, with parameters input from programs VHYP, HHYP, and MELL.

```
< {X Y sl} PURGE
h k a b sx sy <
'sx\timesSQ((X-h)\diva)+
sy\timesSQ((Y-k)\divb)=1'
EVAL 'Y' ISOL DUP 1 'si'
STO EVAL SWAP 'si' SNEG
EVAL = RE STEQ CLLCD
DRAW 'sl' PURGE >>>
ENTER
'MCON STO
```

Now try the previous examples from this section. Purge any plot parameters that have been specified.
' PPAR PURGE
$-2,1,3,2$ ENTER
USER 㪯MELL

Note the difference in the centering of the ellipse from the previous program in the section.

Now draw the vertical hyperbola.
ATTN
$4,-1,2, ' \sqrt{ } 2$ ENTER
邫 VHYP

The horizontal hyperbola has the same parameters as the preceding graph.

ATTN

Exit from the plot display and purge the programs above if desired.
ATTN \{'VHYP' 'HHYP' 'MELL' 'MCON' PURGE

Parametric Equations

Typical parametric equation problems include plotting the graph described by the equations and describing the path of a projectile. Examples of these two problems are included in this section.

Example: Make a table of values and plot the points for

$$
x=2-3 \cos (t) \text { and } y=4+2 \sin (t), 0 \leq t \leq 360 .
$$

First, set the angle mode to degrees.

The following program creates a table of values and plots the points. The program assumes the expression for the x coordinate is stored in variable X and the expression for the y coordinate is stored in the variable Y. The program also assumes that the variable for time is capital T. The inputs to the program are the range (the low and high values) and the increment of T.

Key in the program and store it in the variable $P A R E Q$ (for "parametric equations").

Program:

"LO,HI,INC?"
HALT
\rightarrow lo hi inc
« DROP
lo hi FOR n
n 'T' STO
T X EVAL Y EVAL
\{ 3 \} \rightarrow ARRY
$\Sigma+$
inc STEP
CLLCD

Comments:

Prompt message.
Program halts
(Enter the 3 inputs).
Inputs stored in respective variables.
Drop the prompt message.
Loop: do for n from lo to $h i$.
Store the current n in the variable T.
Take T, X, and Y and put them in a vector.
Add the vector to the Σ DAT matrix.
Increment n by the value inc
and repeat loop.
Clear the display.

23 COLS
SCLE DRWE
\{T Σ PPAR PPAR $\}$
PURGE

Denote which columns to plot. Scale the coordinates and draw the points. Purge the variables created by the program.

ENTER ' PAREQ STO

Key in the expression for the x coordinate and store it in the variable X.
${ }^{\prime} 2-3 \times \operatorname{COS}(T)^{\prime \prime} \mathrm{X}$ STO

Key in the expression for the y coordinate and store it in the variable Y.
$\prime^{\prime} 4+2 \times S I N(T)^{\prime \prime} \mathrm{Y}$ STO \square
Display the User menu and execute the program. The prompt message is returned to level 1.

USER 㪯PARE 童

Enter the low value of T.
0 ENTER

Enter the high value of T.
360 ENTER

Let the value for the increment be 20 . Continue running the program.
20 CONT

The graph of the parametric equations is plotted. Press ATTN to exit from
the plot display．The table of values is stored in EDAT．T is in column 1； X is in column 2；and Y is in column 3．You can see the first few entries to the matrix by pressing the soft key labeled Σ DAT．To see the individual entries，use the GETI command．

Purge the variables used in this example．
\｛＇ $\mathrm{DDAT}^{\prime \prime} \mathrm{Y}^{\prime \prime} \mathrm{X}^{\prime \prime}$ PAREQ＇PURGE

Example：An archer stands 200 meters from a target．（The target is at the same height as the archer．）The archer shoots the arrow at an initial velocity of 170 miles per hour．At what angle should the archer aim the arrow in order to hit the target？

First，set the angle mode to degrees and the display to FIX 2.

2 群 FIX

$\begin{aligned} & 3: \\ & 2: \\ & 1: \end{aligned}$

The parametric equations for the path of a projectile moving in a plane at time t with the origin as the starting point are

$$
x=v_{i} t \cos (\alpha) \text { and } y=v_{i} t \sin (\alpha)-.5 g t^{2}
$$

where v_{i} is the initial velocity，α is the angle from the horizontal at which the projectile starts，and g is the force due to gravity．（All other forces are assumed negligible．）

When the arrow hits the target，the height y is zero and the range x is 200 meters．The initial velocity is $v_{i}=170 \mathrm{mph}$ ．Thus there are two equations in two unknowns（the angle and time）．To find the angle，first isolate t in the first parametric equation．The result is an expression for t ．Substitute the expression in the second parametric equation．Now you have one equation in one unknown．Use the Solver to find the angle．

Key in the first parametric equation and isolate T ．

$$
\begin{aligned}
& \text { ' } \mathrm{X}=\mathrm{V} \times \mathrm{T} \times \operatorname{COS}(\mathrm{A})^{\prime \prime} \mathrm{T} \\
& \text { SOLV 䂜ISOL要 }
\end{aligned}
$$

Store the resulting expression for T in the variable T.

```
'T STO
```

```
3:
```


Key in the second parametric equation with $g=9.8 m / s^{2}$. Substitute the expression for T in the equation by using the SHOW command so that all implicit references to X are made explicit. The result is the equation for the path in rectangular coordinates.
${ }^{\prime} \mathrm{Y}=\mathrm{V} \times \mathrm{T} \times$ SIN (A) $-.5 \times$
$9.8 \times \mathrm{T}^{\wedge} 2^{\prime \prime} \mathrm{X}$ 普SHOW

Store the equation in the variable EQ and display the Solver menu.

Store the number 0 in the variable Y.

Store the number 200 in the variable X.
200 㪯 XI

Since this problem uses SI units, convert mph to m/s. Enter the number 170.

170 ENTER

Key in the units "mph."
LC 'mph ENTER

Convert 170 mph to m / s. Key in the units " m / s ". Since m / s is not in the Units catalog, use double quotes around the units. CONVERT recognizes multiplicative combinations of the units listed in the catalog.

$$
\text { LC } " m \div s \text { " ENTER }
$$

CONVERT

Drop "m/s".
DROP

Store the velocity $76 \mathrm{~m} / \mathrm{s}$ in the variable V.

Let the number 0 be an initial estimate for the angle A.
0 㪯A哼

Find the angle.

Thus the archer must aim the arrow at an angle of 9.92 degrees to hit the target. How long will it take for the arrow to hit the target? To find the time, simply press T followed by \rightarrow NUM. (Equivalently, T ENTER EVAL will recall the expression and then evaluate it with the current variable assignments).
T \rightarrow NUM

Exit from the Solver and purge the following variables.
SOLV \{'A'rV''X''Y''EQ' 'T' PURGE

More Step-by-Step Solutions for Your HP-28S or HP-28C Calculator

These additional books offer a variety of examples and keystroke procedures to help set up your calculations the way you need them.

Practical routines show you how to use the built-in menus to solve problems more effectively, while easy-to-follow instructions help you create personalized menus.

Calculus (00028-90102)

- Perform function operations: definition, composition, analysis, angles between lines, and angles between a line and a function.
- Solve problems of differential calculus: function minimization, computing tangent lines and implicit differentiation.
- Obtain symbolic and numerical solutions for integral calculus problems: polynomial integration, area between curves, arc length of a function, surface area, and volume of a solid of revolution.

Vectors and Matrices (00028-90105)

- Perform general matrix operations: summation, multiplication, determinant, inverse, transpose, conjugate, and minor rank.
- Solve a system of linear equations.
- Calculate several important vector operations.
- Learn methods for calculating eigenvalues and eigenvectors.
- Perform the method of least squares and Markov Chain calculations.

Probability and Statistics (00028-90104)

- Set up a statistical matrix.
- Calculate basic statistics: mean, standard deviation, variance, covariance, correlation coefficient, sums of products, normalization, delta percent on paired data, moments, skewness, and kurtosis.
- Perform regression techniques: curve fitting, multiple linear, and polynomial regression.
- Compute several test statistics.

And Specifically for Your HP-28S...

Mathematical Applications (00028-90111)

- Find the area and all sides and angles of any plane triangle.
- Perform synthetic division on polynomials of arbitrary order.
- Calculate all the roots of a first, second, third, and fourth degree polynomial, with real or complex coefficients.
- Solve first- and second-order differential equations.
- Convert the coordinates of two- or three-dimensional vectors between two coordinate systems, where one system is translated and/or rotated with respect to the other.
- Collect statistical data points, and fit curves to the data.

How to Order...

For the location and number of the U.S. dealer nearest you, call toll-free 1-800-752-0900. To order a book your dealer does not carry, call toll-free 1-800-538-8787 and refer to call code P270. Master Card, Visa, and American Express cards are welcome. For countries outside the U.S., contact your local Hewlett-Packard sales office.

Step-by-Step Solutions for Your HP-28S or HP-28C Calculator

Algebra and College Math contains a variety of examples and solutions to show how you can solve your technical problems more easily.

- Functions and Equations

Rational Functions and Polynomial Long Division - Complex
Numbers • Hyperbolic and Inverse Hyperbolic Functions • Function
Evaluation - Graphs of Algebraic Functions • Quadratic Equations

- Polynomial Equations • Simultaneous Linear Equations • Systems of Linear Equations
- Infinite Sequences and Series
- Logarithms
- Trigonometry

Trigonometric Relations and Identities • Trigonometric Functions for One and Two Angles • Graphs of Trigonometric Functions • Inverse Trigonometric Functions • Trigonometric Equations

- Geometry

Rectangular Coordinates - Polar Coordinates • The Straight Line

- The Circle - The Parabola - The Ellipse and Hyperbola
- Parametric Equations

Reorder Number 00028-90101

[^0]: 童 $\mathrm{R} \rightarrow \mathrm{C}$

[^1]: 㐁 $\rightarrow \mathrm{HMS}$

[^2]: ＇X

