w8 HEWLETT
"] pAcKARD

CALCULATOR SUPPORT
1000 N.E. Circle Boulevard, Corvallis, Oregon 97330-4239, Telephone 503 757-2004 8:00 AM - 3:00 PM Pacific Time

HP 28C/8 PROGRAMMING EXAMPLES

The following examples have been developed as a continuing
effort by Hewlett-Packard to meet the needs of our customers.

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

1B:

2B:

TABLE OF CONTENTS

COoM1
This example illustrates the use of conditional
tests, nesting, and prompting for input.

COM2
Example 1 problem approached with algebraic
expressions as the solution.

SB->R
Convert a 2's complement binary number into a signed
real number.

SR->B
Convert a real number to a 2's complement binary
number.

CIRCL
Program to draw a circle using the PIXEL command and
looping.

SORT

Sort the numbers contained in a REAL number vector.

ROOT
Solving for a root of an equations.

QROQOT
Solve for the real roots of a quadratic equation.

STOR, RCLR
Programs that emulate HP 41 storage registers 0
through 9.

ERRT

Error trapping program for 'Non-real Results' error.
FCIRCLE

This program takes the algebraic object 'symb' that

defines a circular function and produces a circle
plot.

Hewlett-Packard supplies the examples herein without warranty
and will not be liable for damages arising from their use.

EXAMPLE 1

This example illustrates the use of conditional tests and nesting,
which means that the first conditional test contains another condi-
tional test. The tests are the same, but they do not have to be.

The INP subroutine shows how to prompt for values within a program.

The following HP-28C program calculates the amount of commission
paid under these conditions:

* If the purchase price is less than $3,000, the commission is 5%
of the price.

* If the purchase price is at least $3 000, but less than $10,000,
the commission is 4% of the price, p[us $30.

* 1f the purchase price is $10,000 or more, the commission is 3.8%
of the price, plus $20.

PROGRAM COMMENTS
<< "PRICE" INP 2 FIX I Put "PRICE" on stack, call INP, fix 2

IF_DUP 3000 < THEN ! Dup value from INP program. If value is
5% less than 3000 computes 5% of value.

]
!
!
ELSE ! Else.
IF DUP_10000 < THEN ! If value is 3000 or more but less than
4 % 30 + I 10000, computes 4% of value and adds $30
ELSE | Else.
3.8 % 20 + ! If 10000 or more computes 3.8% and adds $20.
END ! END for second IF statement.
END ! END for first IF statement.
"COMMISSION=" 36 CHR + ! Appends "COMMISSION=" and character 36 ($).
SWAP | Swaps "COMMISSION=$" with value.
->STR + I Puts value into string, adds levels 1 and 2.
>> ! Ends program.

[ENTER] 'COM1 [STO]

Page

1

The input routine INP takes the "PRICE" string off the stack. It stops
the subroutine and prompts for the price. To proceed, press CONT. It
then displays the information and returns to the calling program.

<< -> ? ! Stores "PRICE" into local variable p.
<< "INPUT " p + ! Ap?ends contents of p to "INPUT ".
HALT ! Halts program for input of price value.
SWAP ! SWAP value with lnPut promPt.
DROP p "=" + ! Drops "INPUT PRICE", adds "=" to "PRICE"
OVER ->STR + ! Copy value, put into_string, add to "PRICE=".
SWAP ! Swap value in level 2 with string in level 1
>> ! Ends the second program.
>> ! Ends the first program.

[ENTER] 'INP ([STO]

Page 2

EXAMPLE 18

Another approach for Example 1 is to use algebraic expressions for
the different tests. The following program uses local variables (p),
algebraic expressions within a program, and the short form of the

If Then Else test.

coM2
| LEVEL 1 | LEVEL 1 |
| price -> commission |
PROGRAM COMMENTS
<< -> | Stores the price into local variable p.
<< p 3000 < ! Performs test, puts true/false flag on stack.
'C=.05*p' ! Algebraic equation ?laced on stack.
<< p 10000 > ! Tests, puts true/false flag on stack.
'C=.038*p+20"' ! Algebraic equation placed on stack.
'C=.04*p+30" ! Algebraic equation placed on stack.
IFTE ! If true fla? on level 3, computes 3.8%+20,
! if false flag on level 3 computes 4%+30.
>> ! Ends third program. .
IFTE ! If true flag on 3, computes 5%, 6 if false
! flag on 3, value from first 1FTE is returned.
>> 5 Ends second program.
>> !

Ends first program.

[ENTER] 'COM2 ([STO]

SAMPLE PROBLEM: Using COM1, calculate the commission on_an item costing
$7000. Using COM2, calculate the commission on a $2500 item.

KEYS DISPLAY

USER]

£COM1I “INPUT PRICE"

000 ' [] [CONT] “COMMISSION=$310.00"
2500 |CoM2| 1c=125"

Page

3

EXAMPLE 2

The following program converts a 2's complement binary number
into a signed real number.

PROGRAM COMMENTS
<< B->R DUP
IF12 REUS
>
THEN 2 RCWS * -

END
>>

Convert binary to real and duplicate.

Put 2 on stack and recall wordsize.
Subtract 1 and raise 2 to this power.

Test and put true/false flag on_stack.

If flag true, raise 2 to power indicated by
wordsize and subtract from signed binary.
End conditional test.

End program.

[ENTER] 'SB->R [STO]

Example: Convert the 8 bit wordsize #24(hex) into a signed real number.

Press: 8 STWS | Set wordsize to 8 bits.

HEX ! Set hexadecimal entry/display mode.

#24 ENTER : Put hex 24 on the stack.
i

SB->R| Convert to signed real.
Returns: 36
KEYS DISPLAY COMMENTS
8 [1[BINARY] |STWS| Set 8 bit wordsize.
HEX Set HEX mode.
24 Put HEX 24 on stack.
[USER] |SB->R| 36.00 Convert.

Page

4

EXAMPLE 28B

Converts a signed real number to a_ 2's complement binary number. This
routine checks if the real number is in a valid range to be converted.

PROGRAM

<< DUP DUP DUP

IF 0 < THEN
ABS R->B 0 SWAP -

ELSE
R->B

END

DUP SB->R

ROT

IF == THEN
SWAP DROP

ELSE !
"Out of Range" 1 DISP!
1000 .1 BEEP DROP

END
>>

[ENTER] 'SR->B [STO]

COMMENTS

Make copies of the real number, x.

If x is negative, then

M?ke a two's complement binary.

Else.

Just make a binary.

End conditional test. .

Convert a copy of the binary into a real.

Rotate.

If the original x = the converted x, then
{eave the binary version on the stack.

Else.

Display error message

Beep and leave original value on stack

End conditional test.

End program.

Example: Convert 36 and -11 to an 8 bit 2's complement signed
hexadecimal number (type binary).

Press: 8 lsrws|
HE

1
é !
6 [ENTER] t

SR->B| !
Returns: 24 !

Press: -11 [ENTER]
SR->B|

Set wordsize to 8 bits

Set hexidecimal entry/dlsﬁlay mode
Put a real 36 on the stac

Convert to signed binary

Hex 24

! Put a real -11 on the stack
! Convert to signed real

Returns: # F5 ! Hex F5
KEYS DISPLAY COMMENTS
8 [][BINARY] |STWS| Set 8 bit wordsize.
iHEX| Set HEX mode.
6 Put 36 on stack.
[USER] |SR->B| #24 Convert to 2's complement.
11 [CHS] |SR->B| #F5 Convert to 2's complement.

Page

The following

EXAMPLE 3

rogram uses the PIXEL command to draw a circle. It

uses the FOR/STEP programming technique to repeat the loop. The

a
program also uses the local variable 'x' as tﬁg loop counter and as
an input to calculate the dependent variable.

CIRCL
I
I
PROGRAM
<< CLLCD DRAX
-1 1 FOR x x
1xSQ -V
R->C DUP NEG
PIXEL PIXEL
.1 STEP
>>
(ENTER] 'CIRCL ([STO]

COMMENTS

Clear LCD and draw axes.

Define FOR loop put x value on stack.
Compute imaginary part of complex number

Convert to complex, dup a

Turn on two pixels.
Increment loop.
End program.

To execute the program, press [USER] |CIRCL|.

nd negate level 1.

Page

6

EXAMPLE 4

This program sorts the numbers contained in a REAL number vector.

Note: Vector "PUT" and "GET" require a list object, so "->LIST"
and "LIST->" are used frequently throughout this routine.

Description: A standard bubble sort algorithm is used. It compares
two numbers then moves the greater value to the end of the pair. The
inner loop, "k", controls the index value used by "GETI". The pairs
are compared from first to last-1. The index does not take on the
last value when the k'th and k+1'th values are compared, there is no
last+1 value. The last ﬁair.ls placed in order with each pass
through the inner loop so the final index value of the next pass can
be one less. This process continues until the comparison loop is
only comparing one pair.

SORT
| LEVEL 1 | LEVEL 1 |
| [vector] -> [vector'] |
PROGRAM COMMENTS
<< 00 ->n1 n ! Create two local variables.
<< DUP SIZE ! Duplicate, then compute size of the vector.
LIST-> - ! Put list objects and size onto stack.
1 FOR j ! Outer loop controlling the ending index.
1 j FOR k ! Loop from 1 to decrementing ending index.
k 1 ->LIST ! Index the k'th value in vector
GETI 'n1' STO ! Store k'th value in nl
GETI 'n2' STO ! Store (k+1)'th value in n2
DROP ! Drop the index from the stack
IF n1 n2 > THEN ! If n1 is greater then n2 then .
k 1 ->LIST ! Put n1 and n2 back in swapped positions
n2 PUTI !
n1 PUT !
END ! End IF THEN loop.
NEXT !
-1 STEP !
>> ! End second program.
>> ! End first program.

Example: Sort a vector containing the values: [514 23]

Press: 514231 [ENTER] Put vector on the stack
SORT | Sort the vector
Leaves: [12345] On the stack.

Page

EXAMPLE 5
The following 28C STEP BY STEP Instruction will duplicate the example
on pages 184-5 of the HP-15C Owner's Manual. The example reads:

Chamgion ridget hurler Chuck Fahr throws a ridget with an upward velocity
of 50 meters/second. If the height of the ridget is expressed as

h=5000(1-e*(-t/20))-200t

How long does it take for it to reach the ground again? In this equation
h is the height in meters and t is the time in seconds.

For reference purpose, the program in the HP-15C is as follows:

001- [f][LBL] [A] 008- 1 015- [x<>y]

002- 2 009- [+] 016- 2

003- 0 010- 5 017- 0

004- [-] 011- 0 018- 0

005- [CHS] 012- 0 019- [x]

006- [e”x] 013- 0 020- (-]

007- [CHS] 014- [x] 021- [g] [RTN]
ON THE HP-28C

Using |ROOT| in the [SOLV] menu:
Key in: 'H=5000*(1-EXP(-T/20))-200*T*
Store the above equation with |STEQ|
Press |RCEQ|
key in:
level 2: 'T! .
level 1: (56) (your initial estimates for time)

press |ROOT| and the answer should be 9.2843

Using the SOLVR method:
Key in: 'H=5000*(1-EXP(-T/20))-200*T"*
Store the above equation with |STEQ|
Press |SOLVR|
Store 0 into H
Store (5 6) into T | .
Solve for T by pressing [shift] T

Again, the answer should be 9.2843

Page

8

EXAMPLE 6

The following HP-41 program for will find the two roots of the
quadratic equation (a*X”2+b*X+c=0).

ROOT1=(-B+V B™Z-%AC)/2A ROOT2=(-B-V B™Z-4AC)/2A
01 LBL "QROOT" 14 2 27 RCL 02
02 "“a?" 15 * 28 CHS
03 PROMPT 16 / 29 RCL 02
04 STO 01 17 PSE 30 X*2
05 "b?" 18 XEQ 01 31 RCL O1
06 PROMPT 19 + 32 RCL 03
07 STO 02 20 RCL 01 33 *
08 "c2" 21 2 34 4
09 PROMPT 22 * 35 *
10 STO 03 23 / 36 -
11 XEQ 01 24 PSE 37 SQRT
12 - 25 RTN 38 END
13 RCL 01 26 LBL 01
This program can be written as follows on the HP-28C. The ﬁrogram NU,
on the HP-28C is comparable to the subroutine, LBL 01, on the HP-41.

...
...

| Stores values into ordinary variables.

I Calculate numerator of the first root.
A2* ! Calculate denominator of the first root.
/ 'ROO1' STO ! Calculate first root and store in ROO1.
NU + = Calculate numerator of second root.

]

1

|

<< 'C' STO 'B' STO 'A' STO
N

A2 * I Calculate denominator of second root.

/ 'RO02' STO I Calculate second root and store in ROO2.

CLEAR ROO1 ROO2 I Clear, then put root 1 and 2 in display.
>> ! End program.

[(ENTER] 'QROOT [STO]

<< B NEG I Put B value on stack and negate.
B SQ ! Put B value on stack and square it.
AC*™* I Put A and C on stack and multiply.
4 * I Multiply 4 times A*C.
-V | Subtract 4*A*C from B”2 and square root.
>> ! End program.

[ENTER] 'NU [STO]
Example:
Key in: 1 [ENTER] [ENTER]

6 [CHS][ENTER] [USER] |QROO| -3.00
2.00

Page

EXAMPLE 7

These are companion programs that give a user post-fix like storage
to numbered registers 0-9. The register storage location is a list
named 'REGS'. 'STOR' and 'RCLR' will prompt for a register number.

STOR
| LEVEL 1 | LEVEL 1 |
| object -> object |

<< "Store in (0-9)?" 4 DISP ! prompt for the storage register

CKREGS ! verify/create the register list
'REGS' ! name of the register list
GETNUM | get the register number
1+ | register #'s start at 0 lists at 1
3 PICK ! get a copy of the object to store
PUT CLMF ! put object in list, restore display
>> ! ends program
RCLR
| LEVEL 1 | LEVEL 1 |
| -> object |

<< "Recall From (0-9)?" 4 DISP ! Prompt for the storage register

CLMF | Restore display

! Ends program

]
CKREGS ! Verify/create the register list
'REGS' ! Name of the register list
GETNUM I Get the register number
1+ | Register #'s start at 0 lists at 1
GET : Get object from list

|

>>

Page 10

GETNUM:

GETNUM

<< DO

DO KEY UNTIL END
NUM 48 - DUP DUP

EXAMPLE 7 (continued)

Returns a value 0-9 corresponding to a key press 0-9
or else it beeps.

--
--

--

Loop until a valid key press
Loop waiting for a key
Convert ke(press string into number.

!
!
!
UNTIL ! Begin UNTIL clause.
IF 0 < SWAP 9 > OR 1 If kegewas not in range
THEN 1000 .2 BEEP DROP ! Then beep.
0 I Set key fla? to false
ELSE 1 | Else set valid key flag to true
END ! End IF routine.
END ! End DO loop.

>> ! End program.

CKREGS: Checks that the 'REGS' variable exists and creates it if_
absent. CKREGS assumes that, if the variable exists, it is
the correct type and size.

CKREGS

| LEVEL 1 | LEVEL 1 |

I -> I

<< IF REGS TYPE 6 == I If REGS is a_name .

THEN ! Then user object doesn't exist, so
i create one.
{ 10 } 0O CON ARRY-> ! Put 10 zeros and_ten on the stack
DROP 10 | Drop the array size.
->LIST ! Convert _zeros to a list
'REGS' STO ! Store list in 'REGS'
END : End IF loop.
>>

! Ends program.

Page

1"

EXAMPLE 8
ERROR TRAPPING PROGRAM

The following program can be used in conjunction with function that
cause a 'NON-REAL RESULTS' error message when plotting.

ERRT

| LEVEL 1 | LEVEL 1 |

<< DEPTH -> D Counts objects on stack, stores in D.
<< 31 SF Sets the LAST enable flag.

IFERR ->NUM RE

Begins error trap routine.
THEN DEPTH D SWAP

Error clause of error trap routine.

DROPN MAXR
END End IFERR routine.
>> End second program.
>> End first program.
'ERRT!' STO

To use ERRT, write a program such as:
<< 'LOG(X)' ERRT >>

Go to the PLOT menu, |STEQ| |DRAW|.

Page

12

EXAMPLE 9

FCIRCLE

...

FCIRCLE takes the algebraic_object 'symb' that defines a circular
function, and produces a circle plot. 'symb' must use variables X
and Y in the form:

P(X+5)72+(Y+1)72=25"' or 'X"2+Y"2=9!

NOTE: This program does not modify the contents of PPAR,

therefore, it may be necessary to adjust PPAR to obtain your
desired p[ot.

This program leaves the following variables in USER:

CEQ - The al?ebraic. object 'symb'. This permits editing of the

original equation.
EQ - Current equation.
PROGRAM COMMENTS
<< 36 SF ! Set Result Mode . .
{ XY) PURGE ! Pur?g variables X and Y (if they exist)
DuUP ! Duplicate 'symb' on the stack . .
'CEQ' STO ! Store one copy of 'symb' as CEQ (Circle EQuation)
CLLCD ! Clear the display
DUP 1 DISP ! DISP the equation. .
'Y' ISOL DUP ! Isolate the Y variable 'symb', duplicate result
-1 's1' STO ! Store -1 as 's1'_ .
EVAL | Evaluate expression to get rid of 's1!
SWAP ! Place the expression in level 1
1 's1' STO ! Store 1 as 's1'
EVAL ! Evaluate expression
= ! Set the expressions equal to each other
STEQ DRAW ! Store current equation, draw it
's1' PURGE ! Purge variable 's1!
DGTIZ ! * Digitize the plot

>>
[ENTER] 'FCIRCLE [STO]

* This command is valid only when using the HP-28S.
SAMPLE PROBLEM: Plot the expression X*2 + Y*2 = 9.

KEYS DISPLAY
[USER]

1X"2+Y"2=91 IX"24Y"2=9!
| FCIRCLE | (plot)

Page

13

	Cover
	1. COM1
	1B. COM2
	2. SB->R
	2B. SR->B
	3. CIRCL
	4. SORT
	5. ROOT
	6. QROOT
	7. STOR, RCLR
	8. ERRT
	9. FCIRCLE

