Step-by-Step Solutions
For Your HP Calculator
Vectors and Matrices

HP-28S
HP-28C

Help Us Help You!

Please take a moment to complete this postage-paid card, tear it out and put it in the mail. Your responses and comments will help us better understand your needs and will provide you with the best procedures to solve your problems. Thank you!

HELP US HELP YOU!

Book: Vectors and Matrices Date acquired \qquad
Name \qquad
Street \qquad
City, State, Zip
Phone \qquad) \qquad Business \qquad or Home \qquad

1. What calculator will you use this book with? $004 \square$ \square HP-28S 005HP-28C 006 Other \qquad
2. How many other HP solution books have you bought for this calculator? \qquad
3. What is your OCCUPATION?
$101 \square$ Student $103 \square$ Professional $109 \square$ Other \qquad
4. Where did you purchase this book?
$403 \square$ Bookstore $404 \square$ Discount or Catalog Store $407 \square$ Mail Order $410 \square$ HP Direct $411 \square$ Other \qquad
5. How did you first hear about this book?
$501 \square$ HP Owner $\quad 503 \square$ Advertising $506 \square$ Salesperson $507 \square$ Brochure
$508 \square$ Other
6. To what degree did this book influence your calculator purchase decision? $601 \square$ Major Influence $602 \square$ Minor Influence $603 \square$ No Influence
7. How well does this book cover the material you expected?
$701 \square$ Good $702 \square$ Moderate $703 \square$ Low
8. What level of knowledge is required to make use of the topics in this book? $801 \square$ High 802Medium 803
9. How clearly was the material in this book presented?
$901 \square$ Good $902 \square$ Moderate $903 \square$ Low
10. How would you rate the value of this book for your money? $111 \square$ High $112 \square$ Medium $113 \square$ Low

Comments: (Please comment on improvements and additional applications or subjects you would like HP to cover in this or another solution book.) \qquad
\qquad
\qquad
\qquad

Vectors and Matrices

Step-by-Step Solutions for Your HP-28S or HP-28C Calculator

Notice

This book and any keystroke programs contained herein are provided "as is" and are subject to change without notice. Hewlett-Packard Company makes no warranty of any kind with regard to this book or the keystroke programs contained herein, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard Company shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this book or the keystroke programs contained herein.

Hewlett-Packard Company 1987. All rights reserved. Reproduction, adaptation, or translation of this book, including any programs, is prohibited without prior written permission of Hewlett-Packard Company; except as allowed under the copyright laws. Hewlett-Packard Company grants you the right to use any program contained in this book in a Hewlett-Packard calculator.

The programs that control your calculator are copyrighted and all rights are reserved. Reproduction, adaptation, or translation of those programs without prior written permission of Hewlett-Packard Company is also prohibited.

Corvallis Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1
Edition 2
Edition 3

November 1987
Mfg No. 00028-90110
October 1988
June 1989

Mfg No. 00028-90146
Mfg No. 00028-90152

Welcome...

... to the HP-28S and HP-28C Step-by-Step Solution Books. These books are designed to help you get the most from your HP-28S or HP-28C calculator.

This book, Vectors and Matrices, provides examples and techniques for solving problems on your calculator. A variety of matrix manipulations are included to familiarize you with the many functions built into your calculator.

Before you try the examples in this book, you should be familiar with certain concepts from the owner's documentation:

- The basics of your calculator: how to move from menu to menu, how to exit graphics and edit modes, and how to use the menu to assign values to, and solve for, user variables.
- Entering numbers, programs, and algebraic expressions into the calculator.

Please review the section "How To Use This Book." It contains important information on the examples in this book.

For more information about the topics in the Vectors and Matrices book, refer to a basic textbook on the subject. Many references are available in university libraries and in technical and college bookstores. The examples in the book demonstrate approaches to solving certain problems, but they do not cover the many ways to approach solutions to mathematical problems.

Our thanks to Brenda C. Bowman of Oregon State University for developing the problems in this book.

Contents

7 How To Use This Book

11

12
14
15

Vector Spaces

Basis
Orthogonality
Matrix Utility Programs
Vector Length
44 Normalization
46 Gram-Schmidt Orthogonalization
48 Generalized Gram-Schmidt Orthogonalization
Routine

49
 Orthonormal Basis

53 Eigenvalues

54 The Characteristic Polynomial
57 Compute Eigenvalues From Expansion
59 Compute Eigenvectors
64 Compute Eigenvalues from $\mid \lambda I$ - A|
67 Least Squares
68 Straight Line Fitting

85

Markov Chains

Steady State of a System

A Sample Application

Forest Management
The Harvest Model
Optimal Yield

How To Use This Book

Please take a moment to familiarize yourself with the formats used in this book．

Keys and Menu Selection：A box represents a key on the calcula－ tor keyboard．

In many cases，a box represents a shifted key on the calculator．In the example problems，the shift key is NOT explicitly shown．（For example， ARRAY requires you to press the shift key，followed by the ARRAY key， found above the＂ A ＂on the left keyboard．）

The＂inverse＂highlight represents a menu label：

Key：

泰DRAW
业ISOL童
ABCD

Description：

Found in the PLOT menu．
Found in the SOLV menu．
A user－created name．If you created a variable by this name，it could be found in either the USER menu or the SOLVR menu．If you created a program by this name，it would be found in the USER menu．

Menus typically include more menu labels than can be displayed above the six redefinable menu keys. Press NEXT and PREV to roll through the menu options. For simplicity, NEXT and PREV are NOT shown in the examples.

Solving for a user variable within SOLVR is initiated by the shift key, followed by the appropriate user-defined menu key:

$$
\square \overline{\equiv \bar{\equiv} \mathrm{ABCD}} \overline{\equiv \bar{\equiv}} .
$$

The keys above indicate the shift key, followed by the user-defined key labeled "ABCD". Pressing these keys initiates the Solver function to seek a solution for "ABCD" in a specified equation.

The symbol $\langle>\rangle$ indicates the cursor-menu key.
Interactive Plots and the Graphics Cursor: Coordinate values you obtain from plots using the INS and DEL digitizing keys may differ from those shown, due to small differences in the positions of the graphics cursor. The values you obtain should be satisfactory for the Solver rootfinding that follows.

Display Formats and Numeric Input: Negative numbers, displayed as

$$
\begin{aligned}
& -5 \\
& -12345.678 \\
& {[[-1,-2,-3[-4,-5,-6[\ldots}
\end{aligned}
$$

are created using the CHS key.

```
5 \mp@code { C H S }
12345.678 CHS
[[1 CHS],2 CHS, ...
```

The examples in this book typically specify a display format for the number of decimal places. If your display is set such that numeric displays do not match exactly, you can modify your display format with the MODE
 will set the display to the FIX 2 format.)

Programming Reminders: Before you key in the programming examples in this book, familiarize yourself with the locations of programming commands that appear as menu labels. By using the menu labels to enter commands, you can speed keying in programs and avoid errors that might arise from extra spaces appearing in the programs. Remember, the calculator recognizes commands that are set off by spaces. Therefore, the arrow (\rightarrow) in the command $R \rightarrow C$ (the real to complex conversion function) is interpreted differently than the arrow in the command $\rightarrow \mathrm{C}$ (create the local variable " C ").

The HP-28S automatically inserts spaces around each operator as you key it in. Therefore, using the R, \rightarrow, and $[C$ keys to enter the $R \rightarrow C$ command will result in the expression $R \rightarrow C$, and, ultimately, in an error in your program. As you key in programs on the HP-28S, take particular care to avoid spaces inside commands, especially in commands that include an \rightarrow.

The HP-28C does not automatically insert spaces around operators or commands as they are keyed in.

A Note About the Displays Used in This Book: The menus and screens that appear in this book show the HP-28S display. Most of the HP-28C and HP-28S screens are identical, but there are differences in the MODE menu and SOLVR screen that HP-28C users should be aware of.

For example, the first screen below illustrates the HP-28C MODE menu, and the second screen illustrates the same menu as it appears on the HP-28S.

HP-28C MODE display. \square

HP-28S MODE display. \square
Notice that the HP-28C highlights the entire active menu item, while the HP-28S display includes a small box in the active menu item.

The screens shown below illustrate the HP－28C and HP－28S versions of

HP－28C 童SOLVR display．

HP－28S 垔SOLVR display．

 and $\overline{\equiv \text { EXPR }}=\overline{\text { 者．}}$ ．The HP－28C displays Solver variables in gray on a black background．The HP－28S prints Solver variables in black on a gray back－ ground．

User Menus：A PURGE command follows many of the examples in this book．If you do not purge all of the programs and variables after working each example，or if your USER menu contains your own user－ defined variables or programs，the USER menu on your calculator may differ from the displays shown in this book．Do not be concerned if the variables and programs appear in a slightly different order on your USER menu；this will not affect the calculator＇s performance．

General Matrix Operations

This chapter illustrates several basic matrix manipulations found in common matrix problems, including addition, matrix multiplication, determinants, and so forth. Also included are several programs that demonstrate operations on matrix minors and rank.

Sum of Matrices

This example illustrates two methods for creating a matrix.

$$
\begin{aligned}
A & =\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right] \\
B & =\left[\begin{array}{rrrr}
2 & -3 & 0 & 1 \\
0 & 4 & -1 & 2 \\
1 & -3 & 2 & -2
\end{array}\right]
\end{aligned}
$$

Compute $A+B$.

CLEAR	4:
MODE 邫STD 全	$2:$
<>	1:

Key in the elements of matrix A in row order form. Put each element on the stack individually.

11	ENTER
2	ENTER
3	ENTER
4	ENTER
5	ENTER
6	ENTER
7	ENTER
7	ENTER
8	ENTER
9	ENTER
10	ENTER
11	ENTER
12	ENTER

Key in the dimensions $\{m, n\}$ of matrix A. Remember to use a space to separate the two numbers.

$$
\left\{\begin{array}{ll}
3 & 4
\end{array}\right\} \text { ENTER }
$$

Put the stack elements into the matrix.

ARRAY	
衰 \rightarrow ARRY	[$\left[\begin{array}{llll}5 & 5 & 7 & 8 \\ \hline\end{array}\right.$

Store the matrix in A for the next problem section.
'A STO

```
3:
```

Enter matrix B, using a space to separate the matrix elements. Note the two different methods used to enter the elements of A and B.

$$
\begin{aligned}
& \text { [}\left[\begin{array}{lllllllll}
2 & -3 & 0 & 1 & 0 & 4 & -1 & 2
\end{array}\right. \\
& {\left[\begin{array}{llll}
1 & -3 & 2 & -2 \\
\text { ENTER }
\end{array}\right.}
\end{aligned}
$$

1: $\left.\begin{array}{ccccc}{\left[\begin{array}{cccc}2 & 2 & -3 & 6 \\ {\left[\begin{array}{llll}6 & 4 & 1\end{array}\right]} \\ {[} & 1 & -3 & 2 \\ 2 & -2\end{array}\right]}\end{array}\right]$

Compute the sum $A+B$.
A ENTER

Matrix Multiplication

Compute the product of two matrices, The first matrix must have dimensions $k \times m$, the second matrix has dimensions $m \times n$, and the product has dimensions $k \times n$. In this example, $k=3, m=4$, and $n=2$.

$$
\begin{gathered}
A=\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right] \\
D=\left[\begin{array}{rr}
-1 & 1 \\
2 & 4 \\
-2 & 3 \\
5 & 4
\end{array}\right]
\end{gathered}
$$

Compute $A^{*} D$.

Enter the 3×4 matrix A from the previous example.
A ENTER

Enter the 4×2 matrix D.
[[-1 1 $1\left[\begin{array}{ll}2 & 4[-2\end{array}\right]\left[\begin{array}{ll}5 & 4\end{array}\right.$
ENTER

Compute the product $A^{*} D$.
区

Purge A
'A' PURGE

Determinant of a Matrix

Solve for the determinant of an $n \times n$ matrix.

$$
A=\left[\begin{array}{rrr}
2 & -3 & 1 \\
0 & 5 & 2 \\
-1 & -2 & 3
\end{array}\right]
$$

Key in the 3×3 matrix.

Compute $\operatorname{det}(A)$.
衰DET $\bar{\equiv}$

```
3:
49
CEOES DOT DET AES RNAMCNAM
```

The determinant is 49 .

Inverse of a Matrix

Compute the inverse of a square $n \times n$ matrix.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right]
$$

Clear the stack and set the number display mode to two decimal places.

CLEAR
 MODE 2 兹 FIX

```
3:
```


Key in the elements of the 3×3 matrix.
$\left[\begin{array}{lllll}{[1} & 2\end{array}\right]\left[\begin{array}{lllll}2 & 4 & 5\left[\begin{array}{lll}3 & 5 & 6\end{array}\right. \\ \text { ENTER] }\end{array}\right.$

Compute A^{-1}.
$1 / x$

Transpose of a Matrix

Compute the transpose of an $m \times n$ matrix $A . A^{T}$ will be of dimension $n \times m$.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]
$$

Clear the display and set the mode to standard. Key in the 3×2 matrix A.

Compute A^{T}.

$\begin{aligned} & \text { ARRAY } \\ & \hline \equiv \text { TRN } \end{aligned}$

[^0]A^{T} is a 2×3 matrix.

Conjugate of a Complex Matrix

Compute the conjugate $\operatorname{conj}(A)$ of the complex matrix A.

$$
A=\left[\begin{array}{cc}
1+3 i & i \\
3 & 2-4 i
\end{array}\right]
$$

CLEAR

Key in the elements individually in row order form. Each pair represents (real part, imaginary part). Note the commas in the keystrokes below may be used alternately with spaces.
(1, 3 ENTER

(0,1 ENTER

(3,0 ENTER

(2,-4 ENTER

Key in the dimensions of the matrix.
$\left\{\begin{array}{ll}2 & 2\end{array}\right\}$ ENTER

$3:$	(3,0)
1 1:	($2,-4)$
	ITM ${ }^{\text {cis }}$

Place the stack elements in an array.

Compute the conjugate.
邫CONJ涪

Minor of a Matrix

The minor $M_{i j}$ is formed by removing row i and column j from matrix A, then calculating the $\operatorname{det}\left(M_{i j}\right)$. This problem section develops a program to form the minor of any $n \times n$ matrix.

Key in the following program, and store it as ROW. ROW will be used as a subroutine used to remove a row or column from a matrix.

Program:

« SWAP
ARRY \rightarrow LIST \rightarrow
DROP
$\rightarrow \mathrm{n}$ m <
n DUP m $\times 2+$
ROLL - m $\times \rightarrow$ LIST
\rightarrow list
< m DROPN
list » LIST \rightarrow
DROP
n 1 - m $2 \rightarrow$ LIST
\rightarrow ARRY »

Comments:

Swap matrix into level one, then separate the matrix into individual elements and its dimension.
Drop the number of items in the list. Save the row and column in n and m.
Compute offset to row (col) number on stack.
Place $(n-i)^{*} m$ elements into list.
Drop row $i(\operatorname{col} j)$ from stack.
Separate temporary list into individual elements.
Drop number of list elements.
Reconstruct matrix with row (col) removed.

ENTER 'ROW STO Key in the following program and store it as the user program MINOR. MINOR utilizes the subroutine ROW to remove a row, and then a column, from the matrix.

Program：

3 ROLLD
ROW TRN

SWAP ROW TRN

Comments：

Roll down the matrix and row i ．
Remove row i and transpose for column removal．
Remove column j and transpose back．

ENTER＇MINOR STO

Example：Compute M_{23} of the following matrix．

$$
A=\left[\begin{array}{rrrr}
2 & -3 & 4 & -4 \\
6 & 5 & 2 & -1 \\
1 & 0 & 3 & -2 \\
0 & -5 & 3 & -6
\end{array}\right]
$$

Enter the matrix．
CLEAR \rangle
［ $\left[\begin{array}{lllllll}2 & -3 & 4 & -4\left[\begin{array}{llll}6 & 5 & 2 & -1\end{array}\right]\end{array}\right.$
0 3－2［0 $0-5$ 3－6 ENTER

Enter the row and column to be removed．
2 ENTER 3 ENTER

Compute M_{23} ．

```
USER 音MINO咅
```


Compute the minor $\operatorname{det}\left(M_{i j}\right)$ ．
ARRAY 奉DET

The $\operatorname{minor} \operatorname{det}\left(M_{23}\right)$ is -18 ．

Compute Rank

The dimension of the largest square submatrix whose determinant is nonzero is called the rank of the matrix. The rank is the maximum number of linearly independent row and column vectors.

Example: Find the rank of matrix A.

$$
A=\left[\begin{array}{rrr}
4 & 2 & -1 \\
0 & 5 & -1 \\
12 & -4 & -1
\end{array}\right]
$$

Program MDET is used to obtain the determinant of an arbitrary matrix minor. This program uses the program MINOR from page 21.

Program:

$\begin{array}{ll}\text { « } & 3 \text { PICK } \\ 3 & \text { ROLLD MINOR }\end{array}$
DET »
ENTER 'MDET STO

Comments:

Duplicate the matrix.
Produce the matrix minor.
Compute the minor determinant.

Key in the matrix.
$\langle>$
CLEAR

$\left[\begin{array}{llll}4 & 2 & -1\end{array}\right]$| 0 | 5 | -1 |
| :--- | :--- | :--- |
| $[12$ | -4 | -1 |
| ENTER | | |

2:
1: $\left[\begin{array}{cccc}{\left[\begin{array}{llll}4 & 2 & -1 \\ {\left[\begin{array}{lll}6 & 5 & -1\end{array}\right]} \\ {\left[\begin{array}{llll}12 & -4 & -1\end{array}\right]}\end{array}\right]}\end{array}\right.$

Make a copy of the matrix and compute the determinant to determine whether the rank $=\mathrm{n}=3$.

```
ENTER ARRAY 䇂DET音
```


$\operatorname{Det}(A)$ is approximately 0 , so $\operatorname{rank}(A)$ is not equal to 3 .
Discard $\operatorname{det}(A)$.

Compute the minor for the 2×2 submatrices of A until a minor is found that is not equal to 0 .

Compute det M_{11}.
1 ENTER ENTER

$\operatorname{Det}\left(M_{11}\right)$ is equal to $-9, \operatorname{so} \operatorname{rank}(A)$ is equal to 2 .
If you wish, purge programs ROW, MDET and MINO before continuing.
\{'ROW' 'MDET''MINOR' PURGE

Hermitian Matrices

Determine whether a matrix is Hermitian. A square matrix with real or complex elements is Hermitian if the matrix is equal to its conjugate transpose.

Example: Determine whether the 4×4 matrix A is Hermitian.

$$
A=\left[\begin{array}{cccc}
1 & 2-i & 2 & -3+i \\
2+i & 3 & i & 3 \\
2 & -i & 4 & 1-i \\
3-i & 3 & 1+i & 0
\end{array}\right]
$$

Put the elements of A on the stack individually.
CLEAR $\langle>$
1 ENTER
$(2,-1$ ENTER
2 ENTER
$(-3,1$ ENTER

$3:$	$(2,-1 \stackrel{1}{2}$
$2:$	$(-3,1\rangle$
$1:$	

(2, 1 ENTER
3 ENTER
(0,1 ENTER

$4:$	$(2,1)$
$3:$	$(0,1)^{3}$
$1:$	

3 ENTER

2 ENTER
($0,-1$ ENTER
4 ENTER

(1,-1 ENTER
(3,-1 ENTER
3 ENTER
(1,1 ENTER

$4:$	$(3,-1)$
$3:$	$(1,1)$
$1:$	

0 ENTER

Enter the dimensions of A.

\{ 44 ENTER

$4:$	$(1,13$
$3:$	<443

Place the elements into the matrix.
ARRAY
$\overline{\equiv \equiv} \rightarrow$ ARRY

You can view the entire matrix to check for correctness using EDIT or VIEW \downarrow

Make a copy of the matrix.

ENTER

Compute the conjugate transpose. Since A is complex, function TRN performs both the transpose and the conjugation.

TRN \equiv

Test $\operatorname{conj}\left(A^{T}\right)$ and A for equivalency. If A is Hermitian, $\operatorname{conj}\left(A^{T}\right)$ and A will be equal, and SAME will return a true flag(1).

```
TEST 㫪SAME 辰
```


Matrix A is not Hermitian.

Systems of Linear Equations

One of the most frequently used and fundamental applications of matrices arises from the need to solve a system of m linear equations in n unknowns. The HP-28S and HP-28C can be used to find solutions to both non-homogeneous and homogeneous systems of the form $A X=B$.

Non-Homogeneous System

Solve a system of linear equations of the form $A X=B$.

$$
\begin{array}{r}
x_{1}+x_{2}-2 x_{3}+x_{4}+3 x_{5}=1 \\
3 x_{1}+2 x_{2}-4 x_{3}-3 x_{4}-8 x_{5}=2 \\
2 x_{1}-x_{2}+2 x_{3}+2 x_{4}+5 x_{5}=3
\end{array}
$$

Clear the stack and set the display mode to two decimal places.

Key in the coefficients of the system of equations.

$$
\begin{aligned}
& \text { [}\left[\begin{array}{lllllll}
1 & 1 & -2 & 1 & 3\left[\begin{array}{llll}
3 & 2 & -4 & -3
\end{array}\right]
\end{array}\right. \\
& -8\left[\begin{array}{lllll}
2 & -1 & 2 & 2 & 5 \\
\text { ENTER }
\end{array}\right.
\end{aligned}
$$

Store matrix A.
'A STO

Key in the elements of B.

$$
\text { [[} 1[2[3 \text { ENTER }
$$

Store matrix B.

> ' B STO

To solve for X, use the method

$$
X=\frac{A^{T} B}{A^{T} A}
$$

Compute A^{T}.
ARRAY
A ENTER

奉TRN

Multiply by B.
B \times

Compute A^{T}.
A ENTER 㪯TRN

Multiply by A.
A x

Divide $A^{T} B$ by $A^{T} A$.
\square

FIMCM TAN	CON INW

VIEW \dagger and VIEW \downarrow can be used to display all of the elements. They are $x_{1}=1.12, x_{2}=1.24, x_{3}=0.80, x_{4}=-0.08$, and $x_{5}=0.11$.

Purge matrices A and B.
\{'A' ${ }^{\prime} B^{\prime}$ PURGE

Homogeneous System

Solve a homogeneous system of linear equations of the form $A X=0$.

$$
\begin{aligned}
x_{1}-2 x_{2}+3 x_{3} & =0 \\
2 x_{1}+6 x_{2}+x_{3} & =0 \\
3 x_{1}-4 x_{2}+8 x_{3} & =0
\end{aligned}
$$

The following program takes a stack of vectors representing homogeneous simultaneous equations and transforms the vectors in the stack to upper triangular form. After keying the program in, store it in UT.

Program:

« DUP SIZE LIST \rightarrow
DROP \rightarrow s
< s 2
FOR j s j $1+\rightarrow \mathrm{m}$
« 1 j 1 - Loop for $\mathrm{i}=1$ to $\mathrm{j}-1$
FOR i i ROLL j PICK m 1
\rightarrow LIST DUP2 GET 4 PICK Transform the vectors.
ROT GET SWAP $\div \times-$
i ROLLD NEXT > -1 STEP >
ENTER 'UT STO

Set the display mode to one decimal place.

$\begin{array}{\|l} \text { CLEAR } \\ \hline \text { MODE } \end{array}$	

| $3:$ |
| :--- | :--- |
| 2 |
| $1:$ |
| 1: |

Key in the coefficients.

Store the matrix in $A R R$ for a verification at the end of the problem.
'ARR STO

```
3:
2:
```


Edit matrix $A R R$ to reduce to row echelon form.

Use EDIT mode and the DEL key to remove the outer brackets of the array $A R R$ and place the rows into three independent row vectors. After removing the left- and right-most braces, the edited rows are ENTER ed:
$\left[\begin{array}{rrr}1 & -2 & 3\end{array}\right]$
$\left[\begin{array}{rrr}2 & 6 & 1\end{array}\right]$
$\left[\begin{array}{llll} & -4 & 8 &]\end{array}\right.$ ENTER

Now transform the matrix to upper triangular form.
\qquad

The matrix is now in row echelon form, so the system of three transformed equations is ready to be solved. The matrix represents the system of linear equations

$$
\begin{aligned}
x_{1}-2 x_{2}+3 x_{3} & =0 \\
10 x_{2}-5 x_{3} & =0 \\
0 & =0
\end{aligned}
$$

Drop the equation $0=0$.

DROP

Enter the equation from row 2.

$$
' 10 \times X 2-5 \times X 3=0 \text { ENTER }
$$

Solve the equation in terms of x_{3}.
'X3 ENTER

Isolate the term x_{3}.

ALGEBRA

Collect terms.

The solution is $x_{3}=2^{*} x_{2}$. Remove row 2 to solve row 1 .
$3:$
2:
$1:$
$\left[\begin{array}{lll}1.0 & -2.0 & 3.0\end{array}\right]$
COLCT B FFinl

Enter the equation for row 1, making the substitution for x_{3}.
' X1 - $2 \times \mathrm{X} 2+6 \times \mathrm{X} 2$ ENTER

Solve for x_{1}.

```
'X1 ENTER
```


Isolate the term.
㪯ISOL

Collect terms.
㪯COLCT
$3:$
1: [$1.0-2.0 .3 .9]$

The result is $x_{1}=-4^{*} x_{2}$. A solution is $x_{1}=-4, x_{2}=1, x_{3}=2$. Verify this 3×1 solution vector X. Key in vector X.
[[-4 [1 [2 ENTER
1: $\left.\begin{array}{rl}{\left[\begin{array}{ll}{[} & -4: 0] \\ {[} & 1 \\ {[} & 2\end{array}\right]} \\ \hline\end{array}\right]$

Put the coefficient matrix $A R R$ on the stack.

Swap the positions of $A R R$ and X.
SWAP

FIFE UT

Multiply $A R R^{*} X$.
x

```
1: [ [ 0. 日 ]
\(\left[\begin{array}{lll}{[0.0} & ] \\ 0.0 & ]\end{array}\right]\)
Hifik
\(A R R * X=0\). Thus \(X\) is a verified solution to the system.

Program UT will be used in a later problem section. Purge matrix \(A R R\). PURGE

\section*{Iterative Refinement}

Due to rounding errors，in some cases the numerically calculated solution \(Z\) is not precisely the solution to the original system \(A X=B\) ．In many applications，\(Z\) may be an adequate solution．When additional accuracy is desired，the computed solution \(Z\) can be improved by the method of itera－ tive refinement．This method uses the residual error associated with a solution to modify the solution．

Solve the system of linear equations \(A X=B\) ．
\[
\begin{gathered}
A=\left[\begin{array}{rrr}
33 & 16 & 72 \\
-24 & -10 & -57 \\
-8 & -4 & -17
\end{array}\right] \\
B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{gathered}
\]

Clear the display and the set the standard display mode．
\[
\begin{array}{|l|}
\hline \text { CLEAR } \\
\hline \text { MODE } \\
\hline ⿰ 三 丨 ⿰ 丨 三 一 ⿻ 上 丨
\end{array}
\]
```

3:
STIN FIK SCT ENG DEG BRID

```

Solve for \(A X=B\) and improve the accuracy by iterative refinement using residual corrections．Key in the coefficient matrix．
\[
\begin{aligned}
& \text { [ }\left[\begin{array}{lll}
33 & 16 & 72\left[\begin{array}{lll}
-24 & -10 & -57
\end{array}\right]
\end{array}\right. \\
& {\left[\begin{array}{lll}
-8 & -4 & -17
\end{array}\right. \text { ENTER }}
\end{aligned}
\]

Store matrix \(A\) ．
＇A STO
\(3:\)
\(2:\)
\(1:\)
\(1:\)


Key in the constant matrix．
［［0［0［1 ENTER
1：［ \(\left[\begin{array}{lll}{[ } & 0 & ] \\ {[ } & 9 & ]\end{array}\right]\)


Store matrix \(B\).
' B STO


Compute \(Z=B / A\).

\section*{USER}

ㅌㅡㅡㅡㄹ


裵A

\(\div\)


Store the approximate \(3 \times 1\) solution matrix \(Z\).
' Z STO


Compute the Residual Error Matrix \(R\), where \(R=B-A Z\). The function RSD calculates \(R\) using extended precision.



Solve using the RSD function.
ARRAY
RSD

Store matrix \(R\).
```

'R STO

```


Find the actual error \(E=X-Z=(B-A Z) / A=R / A\).
\begin{tabular}{|c|}
\hline USER \\
\hline  \\
\hline 三 A 三 \\
\hline \(\div\) \\
\hline
\end{tabular}


Compute the corrected solution \(X=Z+E\).

\(X=\) the corrected solution.
Purge the variables \(R, Z, B\), and \(A\) if desired.
\{'R''Z''B' A' PURGE

\section*{Vector Spaces}

Vector spaces are widely used in mathematics, physics, and engineering to represent physical properties such as magnitude and direction within a geometric system. Several important vector operations can be performed easily using the built-in functions of the ARRAY menu.

\section*{Basis}

A basis is a set of \(n\) linearly independent vectors that span the vector space \(V_{n}(\mathrm{R})\).

Determine whether the vectors \(X_{1}, X_{2}\), and \(X_{3}\) form a basis that spans \(V_{3}(\mathrm{R})\).
\[
\begin{aligned}
& X_{1}=\left[\begin{array}{llll}
1 & 1 & 2
\end{array}\right] \\
& X_{2}=\left[\begin{array}{lrrl}
3 & 2 & 4
\end{array}\right] \\
& X_{3}=\left[\begin{array}{lrll}
1 & -3 & 1
\end{array}\right]
\end{aligned}
\]

Clear the stack and set the standard display mode.
\begin{tabular}{|c|c|c|}
\hline CLEAR & & 3: \\
\hline MODE & 韭STD & \(2:\) \\
\hline & &  \\
\hline
\end{tabular}

Key in the three vectors as a \(3 \times 3\) matrix \(A\) and make two copies.


Store matrix \(A\). \(A\) will be used in the next problem section.
'A STO


Compute \(\operatorname{det}(A)\).
ARRAY

\(\operatorname{Det}(A)=-7\). Thus \(A\) is non-singular, and the three row vectors are linearly independent and form a basis.

\section*{Orthogonality}

Two vectors are mutually orthogonal if their inner product equals zero.
Determine which of the vectors from the previous problem are mutually orthogonal.

\section*{CLEAR}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

Recall matrix \(A\) to the stack.
A ENTER


Use EDIT to remove the outer brackets of the array \(A\) and form three row vectors. After removing the left and rightmost braces with DEL, the edited rows are ENTER ed:


Note: Two utility routines for modifying a two-dimensional array to its row components and vice versa are shown at the end of this section. These routines can be used as alternatives for the editing shown above.

The third vector is \(X_{3}\).
' X3 STO


The second vector is \(X_{2}\).
' X2 STO


The first vector is \(X_{1}\).
' X1 STO

Compute the inner products.
\begin{tabular}{l|l|}
\hline X1 & ENTER \\
X2 & ENTER \\
\hline
\end{tabular}


DOT

\(X_{1} \cdot X_{2}=13\). These rows are not orthogonal.
\begin{tabular}{l|l|}
\hline DROP & \\
\hline X 2 & ENTER \\
X 3 & ENTER \\
\hline
\end{tabular}


泰DOT

\(X_{2} \cdot X_{3}=1\). These rows are not orthogonal.
\begin{tabular}{l|l|}
\hline DROP \\
\hline X1 & \\
ENTER \\
X3 & ENTER \\
\hline
\end{tabular}


邫DOT

\(X_{1} \cdot X_{3}=0\). These two vectors are mutually orthogonal.

\section*{Matrix Utility Programs}

Several problem sections up to this point have included use of EDIT mode to reduce a matrix to its row elements. The following utility programs can be used as alternatives for changing a matrix to its row elements and vice versa.

Note: Your USER menu may look different than those displayed below. This will not affect the performance of your calculator.

Program ROW \(\rightarrow\) below takes a stack of \(n\) row vectors and the number \(n\) in level one and returns the matrix combining those \(n\) row vectors.
```

< OVER SIZE LIST-> DROP
n m < O n l -
FOR i i m x n i - +
ROLL ARRY }->\mathrm{ DROP NEXT
n m 2 ->LIST ->ARRY >> >
ENTER <>

```
1: * OVER SIZE LIST?



After keying in the program above, store the program and put the rows of array \(A\) in matrix form.
```

' ROW }->\mathrm{ STO

```
\([1,1,2]\)

\([3,2,4]\)
[1,-3,1] ENTER
3 USER 倳 ROW \(\rightarrow\) 㪯

Program \(\rightarrow\) ROW below takes a matrix and separates it into individual rows on the stack.
```

< ARRY }->\mathrm{ LIST }->\mathrm{ DROP
n m < l n FOR i m l
->LIST }->\mathrm{ ARRY n i -
m x i + ROLLD NEXT > >
ENTER <>

```
```

1: * ARRY'; LIST; DROP *

```

```

 * i + ROLLD NEXT * *
    ```

After keying in the program above, store the program and convert the matrix from above back to row form.



\section*{Vector Length}

Find the length of vector \(X_{1}\) (from the previous problem section), denoted by
\[
\left\|X_{1}\right\|=\sqrt{X_{1} \cdot X_{1}}
\]

Clear the stack and set the display mode to two decimal places.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { LLEAR } \\
& \hline \text { MODE } \\
& \hline \text { 㪯 } \mathrm{FIX}
\end{aligned}
\]} \\
\hline \\
\hline
\end{tabular}
```

3:
2:

```


Recall \(X_{1}\) from the previous problem. Since \(X_{1}\) was stored, you may alter-


\section*{X1 ENTER}
```

3:
3:
1: [1.00 1.00 2.00]}

```


Function ABS returns the Frobenius norm of an array, which is equivalent to the length of a vector.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ARRAY} \\
\hline & AB \\
\hline
\end{tabular}
\(\left\|X_{1}\right\|=2.45\).

\section*{Normalization}

To normalize a vector \(X\) into its unique unit vector \(U\) ，divide each com－ ponent of \(X\) by \(\|X\|\) ．We will normalize \(X_{1}\) ．Vectors \(X_{1}, X_{2}\) ，and \(X_{3}\) are from the section entitled＂Orthogonality．＂

Enter a program that computes \(X /\|X\|\) ．

CLEAR
« DUP ABS INV \(\times\) » ENTER


Store program NORM．
＇NORM STO

Enter the vector to be normalized．
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}


Normalize the vector．
```

NORM音

```


The result is \(U_{1}=\left[\begin{array}{lll}0.41 & 0.41 & 0.82\end{array}\right]\) ．
Normalize vector \(X_{2}\) ．
冓X2言

泰NORM垔


The result is \(U_{2}=\left[\begin{array}{lll}0.56 & 0.37 & 0.74\end{array}\right]\) ．

Finally, normalize vector \(X_{3}\).



NORM


The result is \(U_{3}=\left[\begin{array}{lll}0.30 & -0.90 & 0.30\end{array}\right]\).
You can purge the programs \(\rightarrow\) ROW and ROW \(\rightarrow\) if you wish, but these programs are useful tools for matrix manipulation.

\section*{Gram-Schmidt Orthogonalization}

Form an orthogonal basis that spans \(V_{3}(\mathrm{R})\) using the Gram-Schmidt process. Given that \(X_{1}, X_{2}\), and \(X_{3}\) form a basis, then the vectors \(Y_{1}, Y_{2}\), and \(Y_{3}\) form an orthogonal basis by the following process.
\[
\begin{gathered}
Y_{1}=X_{1} \\
Y_{2}=X_{2}-\left(\frac{Y_{1} \cdot X_{2}}{Y_{1} \cdot Y_{1}} * Y_{1}\right) \\
Y_{3}=X_{3}-\left(\frac{Y_{2} \cdot X_{3}}{Y_{2} \cdot Y_{2}} * Y_{2}\right)-\left(\frac{Y_{1} \cdot X_{3}}{Y_{1} \cdot Y_{1}} * Y_{1}\right)
\end{gathered}
\]

Vectors \(X_{1}, X_{2}\), and \(X_{3}\) are from the section entitled "Orthogonality." Remember, your USER menu may differ from those shown below.

Calculate \(Y_{1}\).



Store \(Y_{1}\).

\section*{'Y1 STO}


Write a program to calculate \(Y_{2}\).
```

< X2 Y1 X2 DOT Y1 Y1
DOT \div Y1 × - >
ENTER

```


Execute the program.
```

EVAL

```

\(Y_{2}=[0.83-0.17-0.33] . \quad\) Store \(Y_{2}\).
' Y2
```

3:

```


Write a program to calculate \(Y_{3}\).
« X3 Y2 X3 DOT Y2 Y2
DOT \(\div \mathrm{Y} 2 \times-\mathrm{Y} 1 \mathrm{X} 3\)
DOT Y1 Y1 DOT \(\div\) Y1

\(\times\) - > ENTER
Execute the program.
EVAL

\(Y_{3}=[4.00 \mathrm{E}-12-2.801 .40] . \quad\) Store \(Y_{3}\).
' Y3 STO
\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& 3: \\
& 2 \\
& \vdots
\end{aligned}
\] \\
\hline 翟 \\
\hline
\end{tabular}

The vectors \(Y_{1}, Y_{2}\), and \(Y_{3}\) form an orthogonal basis.

\section*{Generalized Gram-Schmidt Orthogonalization Routine}

The program below is a generalized routine for finding an orthogonal basis for an arbitrary list of vectors.
```

< DUP SIZE LIST }->\mathrm{ DROP
DUP DUP 2 + ROLLD }->\mathrm{ LIST
-> M < 2 SWAP FOR n M
1: * DIUP SIZE LIST;
MROF DUF DUF 2.G06 +

```
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{QROP DUF DUF 2. \(101+\) ROLLD \(\rightarrow\) LIST \(\rightarrow\) M} \\
\hline \\
\hline \\
\hline
\end{tabular}
```

n GET 1 n 1 - FOR i M i
GET DUP DUP2 DOT INV }
SWAP 3 PICK DOT x -
NEXT n M SWAP ROT PUT 'M'
STO NEXT M LIST->
DROP > > ENTER <>>

```

Store the program as GSO and use it to form an orthogonal basis for the three vectors in the previous example.
```

'GSO STO
[1,1,2]
[3,2,4]
[1, -3,1] USER 覀GSO音

```


\section*{Orthonormal Basis}

Form an orthonormal basis \(G_{i}\) of orthogonal unit vectors that spans \(V_{3}(\mathrm{R})\). Vectors \(Y_{1}, Y_{2}\), and \(Y_{3}\) and program NORM are from the two previous problem sections.
\[
G_{i}=\frac{Y_{i}}{\left\|Y_{i}\right\|}
\]

Your user menu may differ from those shown here.

Calculate \(G_{1}\).
\begin{tabular}{|c|}
\hline CLEAR \\
\hline USER \\
\hline
\end{tabular}


Execute the normalization program (NORM) from the section entitled "Normalization."

NORM


Store the result in \(G_{1}\).
'G1 STO


Calculate \(G_{2}\).
邫 Y 2


Compute the norm.
邫NORM


Store the result in \(G_{2}\) ．
＇G2 STO


Calculate \(G_{3}\) ．
邫Y3


Compute the norm．
邫NORM


Store the result in \(G_{3}\) ．
＇G3 STO


Verify that all three vectors are mutually orthogonal．
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}


Compute the dot product \(\left(G_{1} \cdot G_{2}\right)\) ．
\begin{tabular}{|l|}
\hline ARRAY \\
\hline\(\equiv\) DOT \(\equiv\)
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}
\(G_{1} \cdot G_{2} \approx 0\).
Compute the dot product \(\left(G_{2} G_{3}\right)\) ．
\begin{tabular}{|c|}
\hline DROP \\
\hline USER \\
\hline 暙G2奉 \\
\hline 衰 G3 \\
\hline ARRAY \\
\hline 立DOT \\
\hline
\end{tabular}

\footnotetext{

}
\(G_{2} \cdot G_{3} \approx 0\).
Compute the dot product \(\left(G_{1} \cdot G_{3}\right)\) ．

```

|3:

```

ARRAY
呈DOT
\(G_{1} \cdot G_{3} \approx 0\).
All three dot products are approximately equal to zero and，therefore，the three vectors are mutually orthogonal．

Now verify that they form a basis．Combine the three vectors into one array by placing the elements on the stack and removing their individual dimension lists．
\begin{tabular}{|c|c|}
\hline DROP & \\
\hline USER & 邫G1 \\
\hline ARRAY & 衰ARRY \(\rightarrow\) 硅 \\
\hline DROP & \\
\hline USER &  \\
\hline ARRAY & 衰ARRY \(\rightarrow\) 邫 \\
\hline DROP & \\
\hline USER & 韭G3 \\
\hline ARRAY & 衰 ARRY \(\rightarrow\) 立 \\
\hline DROP & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 3： & \[
\begin{array}{r}
1.28 E-12 \\
-0.89
\end{array}
\] \\
\hline 1： & 0.45 \\
\hline Hikivalimix Flut & GT PTUTI ETIT \\
\hline
\end{tabular}

Note the utility program \(\rightarrow\) ROW，described in the section entitled＂Ortho－ gonality，＂could also be used to form the list of vectors above．

Next，key in the dimensions of the matrix that will be formed by the three vectors．
```

{$$
\begin{array}{ll}{3}&{3}\end{array}
$$} ENTER

```


Finally，place the three vectors into matrix form．
立 \(\rightarrow\) ARRY \(\overline{\equiv \text { ㅌ }}\)


Compute the determinant.
㐁DET


The determinant is -1 . The matrix is non-singular, and the vectors form an orthonormal basis.

Purge the vectors \(X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}, G_{1}, G_{2}, G_{3}\) and, if desired, program NORM.
\[
\begin{aligned}
& \left\{\begin{array}{l}
\text { 'X1'rX2' 'X3' 'Y1'rY2'rY3'rG1'rG2'rG3' } \\
\text { 'NORM' PURGE }
\end{array}\right.
\end{aligned}
\]

\section*{Eigenvalues}

Another fundamental use for matrices is in developing a structure to represent linear transformations within a geometric system. Any matrix that represents a particular linear transformation reflects the properties of that transformation.

Since similar matrices share all the intrinsic geometric properties of a transformation, an important problem is to find a simple canonical form for each similarity class. This simple canonical form can be found by computing the eigenvalues and eigenvectors. Two methods for computing eigenvalues are illustrated, along with a method for finding eigenvectors.

\section*{The Characteristic Polynomial}

The characteristic equation for a matrix can be written as
\[
\begin{array}{rll}
A X & =\lambda X \\
A X-\lambda X & =0 & \\
(A-\lambda I) X & =0 & \\
X & =0 & \text { Trivial Solution } \\
\operatorname{det}(A-\lambda I) & =0 & \text { Non-trivial Solution }
\end{array}
\]

Expansion of the non-trivial characteristic equation yields the characteristic polynomial
\[
s_{0} \lambda^{n}+s_{1} \lambda^{n-1}+\cdots+s_{n-1} \lambda+s_{n}=0
\]

The three programs below combine to determine the characteristic polynomial for an arbitrary matrix on the stack.

The first program, TRCN, creates a list of the traces of the first \(n\) powers of the matrix.

The second program, SYM, uses the list created by TRCN to compute the coefficients of the characteristic polynomial.

The final program, PSERS, uses the coefficients from SYM and a variable name entered into level one to create an expression of the characteristic
polynomial. Key in the first program.


Key in the second program.
« DUP SIZE \(\rightarrow\) b n «
\(\{1\} 1 \mathrm{n}\) FOR i \(\rightarrow\) s
« 0 l i FOR j b j
GET s i j - 1 + GET \(\times\)
- NEXT i \(\div 1 \rightarrow\) LIST \(s\)

SWAP + » NEXT 》 >
ENTER <>
Store the program.
'SYM STO
\begin{tabular}{|l|}
\hline \(4:\) \\
3 \\
2 \\
1 \\
1 \\
\hline
\end{tabular}

Key in the final program.
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

Store the program.
' PSERS STO

1: * ****IST 0.00

\(1.00+\mathrm{ROLL} \times-1.00 \mathrm{STEP} \frac{1}{8}\)

STEP >\gg ENTER <>

\section*{1: * DUP SIZE \(\rightarrow\) b 1.0031 .00 FOR i
}

Find the characteristic polynomial for the following matrix.
\[
A R R=\left[\begin{array}{rrr}
-17 & -57 & -69 \\
1 & 5 & 3 \\
5 & 15 & 21
\end{array}\right]
\]

Key in the coefficient matrix.
[ \(\left[\begin{array}{lll}-17 & -57 & -69[1\end{array}\right]\)
[5 15021 ENTER


Create a list of the traces of the first \(n\) powers for the matrix.

\section*{USER 書TRCN}


Compute the coefficients of the characteristic polynomial.
```

SYM䇂

```


Create the algebraic expression of the characteristic polynomial with the variable name \(L\).
'L'


The characteristic polynomial is
\[
\lambda^{3}-9 \lambda^{2}+20 \lambda-12
\]

Store the polynomial as the current expression in EQ for the following problem section.

\section*{Compute Eigenvalues From Expansion}

The eigenvalues of a matrix can be found by solving for the roots of the characteristic polynomial.

Find the eigenvalues for the characteristic polynomial stored as the current equation, EQ , in the previous problem section.

Clear the stack and set the display mode to two decimal places.
\begin{tabular}{|l|}
\hline CLEAR \\
\hline MODE \\
\hline 㪯FIX
\end{tabular}
```

3:

```


Clear the current plot parameters.

PLOT
' PPAR PURGE
```

3:
2:

```


Adjust the plot height by ten.

```

3:
8:
1:

```


Draw a plot of the characteristic polynomial, which was stored in EQ in the previous problem.
```

\#\#DRAW䬺

```


Note the three roots of the quadratic indicate three distinct eigenvalues for the \(3 \times 3\) matrix \(A R R\).

Use the solver to set guesses for the roots and solve for the three eigenvalues.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \text { ATTN } \\
\hline \text { SOLV }
\end{array}
\]} \\
\hline \\
\hline ESOLVR \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \(3:\) \\
\(2!\) \\
\(1:\) \\
\(\square\) \\
\(\square\)
\end{tabular}

Make an initial guess of 0.5 for the first root．
0.5 㪯L


Solve for the first root．
To solve for a SOLVR variable，press the shift key followed by the desired SOLVR variable key．Pressing the ENTER key will display the intermediate values during calculation．
\(\square\) 奉L L 垔 ENTER


The first eigenvalue \(\lambda_{1}=1\) ．
Make an initial guess of 2.5 for the second eigenvalue．
CLEAR


Solve for the root．
\(\square\) 邫L L 垔 ENTER


The second eigenvalue \(\lambda_{2}=2\) ．
Make an initial guess of 5 for the third eigenvalue．

CLEAR
5 㪯 L


Solve for the root．
\(\square\) 碰L


The third eigenvalue \(\lambda_{3}=6\) ．

\section*{Compute Eigenvectors}

We can compute the eigenvectors corresponding to the three eigenvalues found in the previous problem.
\[
A R R=\left[\begin{array}{rrr}
-17 & -57 & -69 \\
1 & 5 & 3 \\
5 & 15 & 21
\end{array}\right]
\]

Clear the stack and set the display mode to one decimal place.
\begin{tabular}{|l|l|}
\hline CLEAR \\
MODE \\
\hline 㪯FIX
\end{tabular}


Key in the matrix \(A R R\).
\[
\begin{aligned}
& {\left[\begin{array}{lrlllll}
-17 & -57 & -69[1 & 5 & 3 \\
5 & 15 & 21 & \text { ENTER } &
\end{array}\right.}
\end{aligned}
\]
```

1: [[-17.0-57.0-69...

```

Create the \(3 \times 3\) Identity matrix \(I\).
3 ENTER

ARRAY 羓IDN
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

Form \(\lambda^{*} I\) for \(\lambda_{1}=1\).
1 ENTER
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

Subtract from \(A R R\) to obtain the matrix \(\left(A R R-\lambda_{1} I\right)\).


Store the matrix \(\left(A R R-\lambda_{1} I\right)\) as \(E I G\) ．
＇EIG STO
\begin{tabular}{|l|}
\hline \(3:\) \\
3： \\
\(1:\) \\
1： \\
\hline
\end{tabular}

Recall the matrix \(E I G\) ．
USER 㪯EIG童


Verify that \(\operatorname{det}(A-\lambda I)=0\) ．
\begin{tabular}{|l|}
\hline ARRAY \\
\hline 프NET
\end{tabular}

The determinant is approximately zero．
Recall matrix \(E I G\) once more．
DROP


Reduce to row echelon form to solve for the eigenvector \(X_{1}\) ，where \(\left(A-\lambda_{1} I\right) X_{1}=0\) ．

Enter EDIT mode and use the DEL key to remove the outer array brackets and form three individual row vectors．Each row vector corresponds to one equation of the system．After the edit，ENTER the row vectors．

Note that the utilities in the section entitled＂Orthogonality＂can also per－ form the modification of the form of the matrix．
\[
\begin{aligned}
& {\left[\begin{array}{cccc}
-18 & -57 & -69
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
1 & 4 & 3
\end{array}\right]} \\
& {\left[\begin{array}{llll} 
& 15 & 20
\end{array}\right] \text { ENTER }}
\end{aligned}
\]

Use the program UT，described in the problem section＂Homogeneous System，＂to reduce the matrix to upper triangular form．


Remove the vector that represents the equation \(0=0\).

Enter the equation represented by the second vector.
```

'.8 < X2 - . 8 x X3 =0
ENTER

```


Solve for \(x_{2}\).
```

ALGEBRA
' X2 ENTER

```


Isolate the term.
㪯ISOL


Collect terms.
=COLCT


The result is \(x_{2}=x_{3}\). Remove this solution and the second vector from the stack.

\section*{DROP}

DROP


Enter the equation represented by the first vector, substituting \(x_{3}\) with \(x_{2}\).
' \(-18 \times \mathrm{X1}-57 \times \mathrm{X} 2\)
\(-69 \times \mathrm{X} 2=0\) ENTER


Solve for \(x_{1}\).
'X1 ENTER

Isolate the term.
ISOL
\[
\begin{aligned}
& \text { 2: }[-18.0-57.6-69 \text {. } 9 \\
& \text { 1: }(69 \times 2+57 \times \times 2) /(-18) \\
& \text { Tfill }
\end{aligned}
\]

Collect like terms.
EOLCT

The result is \(x_{1}=-7^{*} x_{2}\).
Therefore a solution eigenvector is \(x_{1}=-7, x_{2}=1, x_{3}=1\), or \(X_{1}=\left[\begin{array}{lll}-7 & 1 & 1\end{array}\right]\). Verify that \((A-\lambda I) X=0\).
\begin{tabular}{lll}
\hline CLEAR \\
\hline-7 & 1 & 1 \\
ENTER
\end{tabular}



Recall \((A-\lambda I)\).
USER


Multiply the two matrices.
```

SWAP
x

```

The result is 0 , verifying that \(X_{1}\) is indeed an eigenvector associated with \(\lambda_{1}\).

The same procedure can be followed to find eigenvectors for \(\lambda_{2}=2\) and \(\lambda_{3}=6\).

Purge the user variables and programs used in the last three sections. \{'EIG''L''PPAR''EQ''UT' PURGE

\section*{Compute Eigenvalues from \(|\boldsymbol{\lambda I}-\mathbf{A}|\)}

Find eigenvalues directly from the function \(\operatorname{det}(\lambda I-A)\) without computing the characteristic polynomial．
\[
A=\left[\begin{array}{rrr}
-7.8 & -29.7 & -39.6 \\
0 & 2.1 & 0 \\
3.3 & 9.9 & 15.3
\end{array}\right]
\]

Clear the stack and set the display mode to two decimal places．
\begin{tabular}{|l|l|}
\hline CLEAR \\
\hline MODE & \\
\hline 童FIX
\end{tabular}
3： 2：


Clear the current plot parameters．
＇PPAR PURGE


Key in the \(3 \times 3\) matrix．
\[
\begin{aligned}
& {\left[\begin{array}{rrl}
{[-7.8} & -29.7 & -39.6 \\
{[0} & 2.1 & 0
\end{array}\right] 3.3} \\
& {\left[\begin{array}{lll}
9.9 & 15.3
\end{array}\right.} \\
& \text { ENTER }
\end{aligned}
\]


Store matrix \(A\) ．
'A STO
```

\3:

```

Enter a program that computes the function \(\operatorname{det}(\lambda I-A)\) ，with \(\lambda\) the independent variable．
《 3 IDN L \(\times\) A－DET » ENTER
```

2: * % 3.000 IDH L * A -

```


Store the function as the current expression in EQ．
\begin{tabular}{|c|}
\hline PLOT \\
\hline 暙STEQ \\
\hline
\end{tabular}

Adjust the plot height．
\[
5 \text { 扉*H }
\]


Set a larger resolution．
\[
2 \text { 泰RES }
\]


Plot the function，using \(\lambda\) for the abscissa．The program takes several minutes to complete，as it computes the determinant for each point plot－ ted．

㐁DRAW


The curve shows that there are only two distinct roots．The leftmost root， which is a local maximum，must represent a double eigenvalue root．

Digitize the roots to set initial guesses for the root solver．


Set the standard display mode．
```

ATTN
MODE 凖STD 立

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{3：} \\
\hline \(2:\) & & & & （2． & 0） \\
\hline 1： & & & & （5． & 3，0） \\
\hline STIT & FIK & SCI & End & 015 & Efin \\
\hline
\end{tabular}

Note：The values displayed will vary by differences in the digitizing posi－ tion from the graphics display．

Use the Solver to find the roots of the curve．



Solve for the rightmost root.


One root is \(\lambda_{1}=5.40\).

Drop this result from the stack and solve for the next root.
\begin{tabular}{|c|c|}
\hline DROP & \\
\hline 暙L & 凖 L \\
\hline
\end{tabular}


The double eigenvalue is \(\lambda_{2}=\lambda_{3}=2.10\).

\section*{Least Squares}

The method of least squares is a standard statistical algorithm used to fit a curve to data in order to estimate a function, predict a trend, or approximate missing data values. Least squares results can easily be calculated on the HP-28S or HP-28C, and the graphic display is particularly useful for examining the fit to the original data.

\section*{Straight Line Fitting}

Find the least squares straight line fit to the four points: \((0,1),(1,3),(2,4)\), and \((3,4)\).

The least squares solution is given by \(Y=M V\) to fit the line \(y=a x+b\).
Note: The solution provided below serves to illustrate matrix operations, and could be replaced, in the case of \(y=a x+b\), with the statistical functions (Linear Regression) of the HP-28S or HP-28C.
\[
\begin{gathered}
Y=\left[\begin{array}{l}
1 \\
3 \\
4 \\
4
\end{array}\right] \\
M=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1 \\
3 & 1
\end{array}\right] \\
V=\left[\begin{array}{l}
a \\
b
\end{array}\right]
\end{gathered}
\]

Solving for \(V\) gives
\[
V=\frac{M^{T} Y}{M^{T} M}
\]
\begin{tabular}{|c|c|}
\hline CLEAR & \\
\hline MODE & \\
\hline
\end{tabular}


Key in the \(y\) values of the data points.
\[
\text { [ [ } 1[3[4[4] \text { ENTER }
\]


Store the \(4 \times 1\) matrix \(Y\).
'Y STO
\begin{tabular}{|l|}
\hline \(3:\) \\
1 2: \\
1: \\
\hline
\end{tabular}

Key in the \(a\) and \(b\) values representing the line \(y=a x+b\).
[ [ 0 1[1] 1[2 1[3 1 ENTER


Store the \(4 \times 2\) matrix \(M\).
\({ }^{\prime} \mathrm{M}\) STO
```

3:

```


Compute \(V\) using the least squares fitting method.
\begin{tabular}{|c|}
\hline M ENTER \\
\hline ARRAY \\
\hline 青TRN \\
\hline \(Y\) 区 \\
\hline
\end{tabular}

2
1: [ [ \(\left[\begin{array}{lll}23.001 \\ 12: 001 & ]\end{array}\right]\)
SIEE ENW TKN CDN INW EESD



Store the coefficients from matrix \(V\) in the individual variables \(a\) and \(b\).
ARRY \(\rightarrow\)


Drop the dimension list.
DROP


Store the two coefficients．
\({ }^{\prime}\) B STO

＇A STO


Enter the equation for the straight line．
\[
\text { ' } \mathrm{A} \times \mathrm{X}+\mathrm{B} \text { ENTER }
\]


Store the equation．
＇LINE STO


Recall equation LINE．
USER 㪯LINE


Store the line equation as the current expression in EQ．
SOLV 㪯STEQ


Use the Solver to compute the desired line．
SOLVR 垔 㪯EXPR＝垔


The straight line fit to the data is the equation \(y=x+1.5\) ．

Now use the PLOT menu to draw the line and verify the fit to the data.
Clear the current plot parameters.
\({ }^{\prime}\) PLOT


Establish \(X\) as the independent variable.
'X


Adjust the height by 5 .
\[
5 \overline{\overline{\underline{\underline{\underline{\underline{1}}}} * \mathrm{H}}}
\]

Recenter the axes so that the point \((0,1)\) can be viewed on the plot.


Now move to the Statistics menu to set up a scatter plot.
```

STAT 凖CLI咅

```


Enter the four data points into EDAT .
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}


Enter a program that will overlay the function plot onto the scatter plot.
```

PLOT
< CLLCD DRW\Sigma DRAW
ENTER

```


Draw the plot.
EVAL


We can see from the plot that the line fits the four points well.
Purge the variables used in the problem section.
 PURGE

\section*{Quadratic Polynomial}

According to Newton's Second Law of Motion, a body near the earth's surface falls vertically downward according to the equation
\[
y=y_{0}+v_{0} t+\frac{1}{2} g t^{2}
\]
where
\(y=\) vertical displacement at time \(t\).
\(y_{0}=\) initial vertical displacement at time \(t_{0}=0\).
\(v_{0}=\) initial velocity at time \(t_{0}=0\).
\(g=\) Newton's constant of acceleration of gravity near the earth's surface.

An experiment is performed to evaluate \(g\). A weight is released with unknown initial displacement and velocity. At a fixed time interval the distance fallen from a fixed reference point is measured. The following results are obtained: At times \(t=.1, .2, \ldots .5\) seconds the weight has fallen \(y=-.055, .094, .314, .756\), and 1.138 meters, respectively, from the reference point. Calculate the value for Newton's constant \(g\) using these data.

We will fit the quadratic curve
\[
y=a+b t+c t^{2}
\]
to the five data points. The least squares solution is given by
\[
Y=M V
\]
where
\[
Y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]
\]
\[
M=\left[\begin{array}{ccc}
1 & t_{1} & t_{1}^{2} \\
1 & t_{2} & t_{2}^{2} \\
1 & t_{3} & t_{3}^{2} \\
1 & t_{4} & t_{4}^{2} \\
1 & t_{5} & t_{5}^{2}
\end{array}\right]
\]
and
\[
V=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
\]

Solving for \(V\) gives
\[
V=\frac{M^{T} Y}{M^{T} M}
\]

Clear the stack and set the display mode to three decimal places.
\begin{tabular}{|c|c|}
\hline CLEAR & \\
\hline MODE & 3 \\
\hline
\end{tabular}
```

3:

```


Key in the matrix of \(y\) values.
\[
[[-.055[.094[.314[.756
\]
[1.138 ENTER
```

1: [[-0.0.55]]
[0.094]

```


Store the \(5 \times 1\) matrix \(Y\).
'Y STO


Key in the components of array \(M\).
Enter \(\operatorname{row}_{1}=1, .1, .1^{2}\).


Enter \(\mathrm{row}_{2}=1, .2, .2^{2}\).


Enter \(\mathrm{row}_{3}=1, .3, .3^{2}\).


Enter \(\mathrm{row}_{4}=1, .4, .4^{2}\).


Finally, enter row \(_{5}=1, .5, .5^{2}\).


Key in the dimension of \(M\).
\[
\left\{\begin{array}{lll}
5 & 3 & \text { ENTER }
\end{array}\right.
\]


Put the components into the array.
\[
\begin{aligned}
& \text { ARRAY } \\
& \text { 㪯 } \rightarrow \text { ARRY }
\end{aligned}
\]

Store matrix \(M\).

\footnotetext{
'M STO
}


Compute \(V\) using the least squares method.
M ENTER
\(\overline{\equiv \text { TRN } \bar{\equiv}}\)
\(\mathrm{Y} \boxed{\times}\)


1: \(\left.\begin{array}{r}{\left[\begin{array}{ll}{[8121}\end{array}\right]} \\ {[4.914]}\end{array}\right]\)
SICE FDM TKN CON INA EED

Store matrix \(V\).
'V STO
```

|3:

```

Evaluate \(g\), Newton's constant of gravity. Get element \(c\) from the solution vector \(V\), then multiply \(c\) by \(2 . g=2^{*} c\).
\begin{tabular}{|c|}
\hline V ENTER \\
\hline \{ 311\(\}\) \\
\hline GET \\
\hline 2 x \\
\hline
\end{tabular}


Convert from \(\mathrm{m} / \mathrm{sec}^{2}\) to \(\mathrm{ft} / \mathrm{sec}^{2}\).
\begin{tabular}{|cc|}
\hline\(L C\) & \(m\) ENTER \\
\hline\(L C\) & ft ENTER \\
\hline
\end{tabular}


CONVERT


The result is \(g=32.246 \mathrm{ft} / \mathrm{sec}^{2}\).

Now use the solver to compute the desired quadratic polynomial.


Store equation POLY.
```

'POLY STO

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{3:} \\
\hline \(2:\) & 32,246 \\
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

Get the coefficients from matrix \(V\).
V ENTER


㪯ARRY \(\rightarrow\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{1:}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Drop the dimension list.
```

DROP

```
\begin{tabular}{|c|c|}
\hline 3: & \[
\begin{array}{r}
-0.121 \\
0.099
\end{array}
\] \\
\hline 1: & 4.914 \\
\hline  & GET FUTI GETI \\
\hline
\end{tabular}

Store the three coefficients \(a, b\), and \(c\).
\({ }^{\prime} \mathrm{C}\) STO

\({ }^{\prime}\) B STO
\begin{tabular}{|c|c|c|}
\hline 3: & \multicolumn{2}{|l|}{32:246} \\
\hline : & & \\
\hline \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}
\({ }^{\prime}\) A STO
\begin{tabular}{|l|r|}
\hline \(3:\) & 32,246 \\
1: \\
1: \\
1: \\
\hline
\end{tabular}

Recall the equation.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 3: \\
& 2: \\
& 1:
\end{aligned}
\] & & \multicolumn{3}{|r|}{\({ }^{1} \mathrm{~A}+\mathrm{B} \times \mathrm{T}+\mathrm{C} \times \mathrm{T}\)} & \\
\hline H & E & C & FOLT & II & \\
\hline
\end{tabular}

Store the equation as the current expression EQ.
\begin{tabular}{|c|}
\hline SOLV \\
\hline 浱TEQ \\
\hline
\end{tabular}


Use the Solver to compute the desired equation.


The least squares solution equation is \(-0.121+0.099 t+4.914 t^{2}\).
Next, overlay the function curve over a scatter plot of the data points to verify the fit.

First, clear the current plot parameters and establish \(t\) as the independent variable.



Adjust the plot width by .1 , to plot 0.1 second intervals along the abscissa.

```

2:

```


Next use the Statistics menu to create the scatter plot.

\(3:\) 2+

Enter the data points for the scatter plot．
\begin{tabular}{|c|c|c|}
\hline 1 & －． 055 & \(\Sigma+\) \\
\hline ［． 2 & ． 094 & \(\Sigma+\) \\
\hline ［． 3 & ． 314 & \(\Sigma+\) \\
\hline ［． 4 & ． 756 & \(\Sigma+\) \\
\hline ． 5 & 1.138 & ＝\(\Sigma\) \\
\hline
\end{tabular}
```

2:

```


Now write a program to overlay the two plots．
```

PLOT
< CLLCD DRW\Sigma DRAW
ENTER

```
```

3:
1: * CLLCD DRW\Sigma DRAN *

```


Store program PLT．
```

'PLT STO

```
```

3:

```


Draw the plot．
```

USER 䇂PLT䇂

```


You may wish to rescale the plot height to obtain a better view of the fit of the first two data points．
```

PLOT
. 25 音*H覀

```
```

3:
2:
FFHE EES GXES CENTA 䊾 期

```
USER
硅PLT


The plots show a good fit of the quadratic polynomial to the five data points．

Purge the user variables and programs created in this example．
```

{'\SigmaPAR''PLT''\SigmaDAT''PPAR''EQ''A''B''C''POLY'
'V''M''Y' PURGE

```

\section*{Markov Chains}

A Markov Chain is a system that moves from state to state, and in which the probability of transition to a next state depends only on the preceding state. The system states can be predicted at particular points in time using transition probabilities.

The transition matrix for the Markov Process is the \(n \times n\) matrix \(P=\left[p_{i j}\right]\) where \(p_{i j}=\) probability of transition directly from state \(j\) to state \(i\), and \(\sum_{i=1}^{n} p_{i j}=1\).

The components of the state vector \(X^{(n)}\) signify the probability that the system is in state \(i\) at the \(n^{\text {th }}\) observation.
\[
X^{(n)}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right]
\]

The model for the system is described by \(X^{(n+1)}=P X^{(n)}\), where the transition matrix applied to the current state determines the next state.

\section*{Steady State of a System}

A chemist runs an experiment where colored films are immersed in a solution for a brief time period, resulting in a possible color change. She calculates the color changes according to the following probabilities.
\begin{tabular}{|ccc|c|}
\hline \multicolumn{3}{|c|}{\begin{tabular}{c} 
Original Color \\
Magenta
\end{tabular}} & New Color \\
Cyan & Yew & \\
\hline .8 & .3 & .2 & Magenta \\
.1 & .2 & .6 & Cyan \\
.1 & .5 & .2 & Yellow \\
\hline
\end{tabular}

Determine to two decimal places the probable future color of a cyan film dipped in the solution several times.



Key in the \(3 \times 3\) transition matrix \(P\).
\[
\begin{aligned}
& \text { [ [ . } 8 \text {. } 3 \text {. } 2[\text {. } 1 \text {. } 2 \text {. } 6[.1 \\
& \text {. } 5 \text {. } 2 \text { ENTER }
\end{aligned}
\]

' P STO
```

3:

```


Key in the initial state vector \(X^{0}\). This vector represent an initial state of cyan.
\[
\text { [ [ } 0 \text { [1][0 ENTER }
\]
\begin{tabular}{|c|c|}
\hline \[
\text { 1: } \begin{array}{rl}
{[ } & 0.00 \\
& {[ } \\
& 1 \\
& 0 \\
0 & 00 \\
\hline
\end{array}
\] & ] \\
\hline STi Fima Sci &  \\
\hline
\end{tabular}

Key in the initial value for \(n=\) current state．



Write a program to compute the next future state．
```

< N 1 + 'N' STO P
SWAP x > ENTER

```
```

2: }\underset{SWAP}{~

```


Store program MARK．
```

'MARK STO

```
```

|3:

```

Recall the initial state vector．
```

USER 童X咅

```


Compute the next state．
```

㹃MARK音

```


After one observation，the color is most likely to be yellow．Compute the next state．

MARK


After two observations，the color is most likely to be either magenta or cyan．Continue computing future states until a final steady state is reached．

MARK

```

MARK

```


MARK


MARK


MARK


MARK


Milak N (X F

MARK
Miki E : B

MARK

The system has reached a steady state. Determine how many observations were completed to reach this final state.
\(\overline{\text { 를 }} \mathrm{N}\)


The system reaches a steady state after \(n=10\) observations. The probable future color of an initially cyan film immersed several times is . 56 magenta, .23 cyan, and .21 yellow.

Purge the variables used in this problem section.
\{'MARK' 'N' \({ }^{\prime} X^{\prime \prime} \mathrm{P}^{\prime}\) PURGE

\section*{A Sample Application}

Matrix manipulations are used to solve complex, multi-dimensional problems. The following applications illustrate use of the HP-28S or HP-28C matrix capabilities in a market with challenging economic issues. These same analytical tools can be applied in many other industries.

\section*{Forest Management}

When a forest is managed by a sustainable harvesting policy, every tree harvested is replaced by a new seedling, so the total population quantity remains constant. A matrix model can be developed to assist in determining optimal harvesting procedures. The model is based on categorizing the trees into height/price classes and computing an optimal sustainable yield for a long-range time period.

The Sustainable Harvesting Cycle is represented by:
Forest ready for harvest - harvest + new seedlings \(=\) forest after harvest, or
\[
G X-Y+R Y=X
\]
where
\[
X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]
\]
\(X=\) Nonharvest vector, the trees that remain after the harvest and replanting.
\(x_{i}=\) number of trees in the \(i\) th class.
\(i\) ranges from 1 to \(n\), where there are \(n\) height/price classes.
\(S=\sum_{i=1}^{n} x_{i}=\) total number of trees sustained.
Tree growth between harvests is designated by \(g_{i}\), the fraction of trees that grow from class \(i\) to class \(i+1\).
\(1-g_{i}=\) fraction of trees that remain in class \(i\).

The growth matrix is
\[
G=\left[\begin{array}{ccccc}
1-g_{1} & 0 & 0 & \cdot & 0 \\
g_{1} & 1-g_{2} & 0 & \cdot & 0 \\
0 & g_{2} & 1-g_{3} & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & 1-g_{n-1} & 0 \\
0 & 0 & 0 & g_{n-1} & 1
\end{array}\right]
\]
\(G X=\) Nonharvest vector after growth period, or forest ready for harvest.
\[
Y=\left[\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right]
\]
\(Y=\) Harvest vector, or trees removed at harvest.
\[
R=\left[\begin{array}{llllll}
1 & 1 & 1 & \cdot & \cdot & 1 \\
0 & 0 & 0 & \cdot & & 0 \\
\cdot & & & & & \cdot \\
\cdot & & & & & \cdot \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\]
\(R=\) Replacement matrix.
\(R Y=\) New seedling vector, or trees planted after harvest.

\section*{The Harvest Model}

A harvester has a crop of 120 silver fir trees to sell annually for Christmas trees. After last year's harvest, his forest had the following configuration.
\begin{tabular}{ccc}
\begin{tabular}{c} 
Class \\
\((\mathbf{i})\)
\end{tabular} & \begin{tabular}{c} 
Height Interval in Feet \\
\(\left(\mathbf{h}_{\mathbf{i}}\right)\)
\end{tabular} & \begin{tabular}{c} 
Number of Trees \\
\(\left(\mathbf{x}_{\mathbf{i}}\right)\)
\end{tabular} \\
\hline 1 & {\([0,4)\)} & 15 \\
2 & {\([4,8)\)} & 20 \\
3 & {\([8,12)\)} & 35 \\
4 & {\([12,16)\)} & 30 \\
5 & {\([16, \infty)\)} & 20 \\
\hline
\end{tabular}

During the growth period, six trees in class 1 grew to the next height class, as did thirteen trees in class 2 , ten trees in class 3 , and four trees in class 4 . If the harvester sustainably harvests eight trees of class 2 , six trees of class 3 , thirteen trees of class 4 , and six trees of class 5 , what is the configuration of his crop after harvest and replanting?
\begin{tabular}{|l|}
\hline CLEAR \\
\hline MODE \\
\hline 䇂FIX
\end{tabular}


Enter the \(5 \times 1\) nonharvest vector \(X\).

' X STO


Compute the growth fractions for each height class. First, compute \(g_{1}=6 / x_{1}\).


\section*{'G1 STO}
```

|3:

```

Compute \(g_{2}=13 / x_{2}\).
\begin{tabular}{ll}
13 & ENTER \\
20 & \(\div\)
\end{tabular}

' G2 STO
```

3:
2:

```


Compute \(g_{3}=10 / x_{3}\).
\begin{tabular}{ll}
10 & ENTER \\
& 35 \\
& \\
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \(3:\) & & \\
\hline \(2:\) & \\
\(1:\) & 6.29 \\
\hline STID & FIX & \\
\hline
\end{tabular}
'G3 STO


Compute \(g_{4}=4 / x_{4}\).
4 ENTER
\(30 \div\)

'G4 STO


Enter the \(5 \times 5\) growth matrix \(G\) ．
Enter row \(_{1}\) ．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{USER} \\
\hline 1 & ENTER \\
\hline \multicolumn{2}{|l|}{暙G1} \\
\hline － & \\
\hline 0 & ENTER \\
\hline \multicolumn{2}{|l|}{ENTER} \\
\hline \multicolumn{2}{|l|}{ENTER} \\
\hline \multicolumn{2}{|l|}{ENTER} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 3： & & & & & & \\
\hline 54 & 13 & 田 & 61 & K & & \\
\hline
\end{tabular}

Enter row \(_{2}\) ．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{EG1} \\
\hline \multicolumn{2}{|l|}{1 ENTER} \\
\hline \multicolumn{2}{|l|}{邫G2} \\
\hline \multicolumn{2}{|l|}{－} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{ENTER}} \\
\hline & \\
\hline & TER \\
\hline
\end{tabular}

Enter row \(_{3}\) ．
\begin{tabular}{|c|}
\hline 0 ENTER \\
\hline 邫G2垔 \\
\hline 1 ENTER \\
\hline 表G3垔 \\
\hline － \\
\hline ENTER \\
\hline ENTER \\
\hline
\end{tabular}

Enter row \(_{4}\) ．
\begin{tabular}{|c|c|}
\hline 0 & ENTER \\
\hline \multicolumn{2}{|r|}{ENTER} \\
\hline \multicolumn{2}{|l|}{} \\
\hline 1 & ENTER \\
\hline \multicolumn{2}{|r|}{G4} \\
\hline － & \\
\hline 0 & \\
\hline
\end{tabular}
\begin{tabular}{|lll|l|l|}
\hline \(3:\) & & & 0.29 \\
\(2:\) & & & 0.87 \\
\(1:\) & & & 0.06 \\
\hline & \\
\hline
\end{tabular}

Enter row \(_{5}\).
\begin{tabular}{|c|c|}
\hline 0 & ENTER \\
\hline \multicolumn{2}{|r|}{TER} \\
\hline \multicolumn{2}{|l|}{ENTER} \\
\hline \multicolumn{2}{|l|}{暙G4} \\
\hline 1 & ENTER \\
\hline
\end{tabular}

Enter the dimensions of \(G\).
\[
\left\{\begin{array}{ll}
5 & 5
\end{array}\right\} \text { ENTER }
\]

Store matrix \(G\).
ARRAY
\(\overline{\equiv \equiv \rightarrow \text { ARRY }}\) 三


Enter the \(5 \times 1\) harvest vector \(Y\).
\[
\text { [ [0[8[6[13] } 6 \text { ENTER }
\]
\begin{tabular}{|c|c|}
\hline  & \\
\hline  &  \\
\hline
\end{tabular}
'Y STO


Create the replacement matrix \(R\). First enter the dimensions of \(R\).
\(\left\{\begin{array}{ll}5 & 5\end{array}\right\}\) ENTER


Create a constant matrix whose entries are all zero.


Now enter ones across the entire first row of \(R\).
\(\left\{\begin{array}{ll}1 & 1\end{array}\right\}\) ENTER




Drop the index list.
DROP


Store matrix \(R\).
'R STO


Write a program to compute the configuration of the forest after harvest.


Compute the new nonharvest vector with program CROP.
\begin{tabular}{|c|}
\hline CROP \\
\hline
\end{tabular}
```

1: [[42.00]]
[5,00]]
[32.00]]

```


Use EDIT or VIEW \(\downarrow\) to view the entire vector. The ATTN key will exit EDIT mode.

The new nonharvest vector is
\[
X=\left[\begin{array}{c}
42 \\
5 \\
32 \\
23 \\
18
\end{array}\right]
\]

The program can be used with the new nonharvest vector to predict new forest configurations using the same harvesting cycle annually.

HP-28C users should purge the following variables and programs before continuing to the next portion of this example:
\{'CROP' 'R''G''X''Y' PURGE
It is not necessary to purge these programs and variables if you are using an HP-28S.

\section*{Optimal Yield}

If the harvester wishes to optimize his profit year after year, he must determine the optimal sustainable yield. This is achieved by harvesting all of the trees from one particular height/price class and no trees from any other class. The sustainable yield is thus a function of both price and growth rate, but independent of the current nonharvest vector. Note that if class \(k\) provides the maximum yield, the first year all classes \(\geq k\) are harvested. In the following years only class \(k\) is harvested, and no trees will ever be present in higher classes.
\(S=\) total number of trees sustained in the forest.
\[
P=\left[\begin{array}{cccc}
p_{1} & 0 & \cdot & 0 \\
\cdot & p_{2} & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & p_{n}
\end{array}\right]=\text { Price matrix }
\]
\(p_{i}=\) price attained for class i.
\[
G G=\left[\begin{array}{c}
g g_{1} \\
g g_{2} \\
\cdot \\
\cdot \\
g g_{n}
\end{array}\right]
\]
\(G G=\) growth ratio matrix.
where
\[
\left\{\begin{array}{l}
g g_{i}=\frac{1}{\sum_{k=1}^{i-1} \frac{1}{g_{k}}} \text { for } i=2 \ldots n \\
g g_{1}=0
\end{array}\right.
\]
\[
Y L=\left[\begin{array}{c}
y l_{1} \\
y l_{2} \\
\cdot \\
\cdot \\
y l_{n}
\end{array}\right]
\]
\(Y L=\) yield vector.
\(y l_{k}=\) yield (total dollar amount) obtained by harvesting all of class i and no other class.

The optimal class to harvest can be selected by finding the maximum \(y l_{k}\) from yield vector \(Y L\), where
\[
Y L=P * S^{*} G G
\]

Suppose the market prices for the five classes are \(p_{1}=\$ 0, p_{2}=\$ 50\), \(p_{3}=\$ 100, p_{4}=\$ 150\), and \(p_{5}=\$ 200\). Determine which height class should be harvested.

Enter the market prices for the five classes and store in variables \(p_{1}\) through \(p_{5}\).
CLEAR USER
0 ENTER
IP1 STO


50 ENTER

' P2 STO

\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

\('\) P3 STO



' P4 STO

\begin{tabular}{c} 
"P2 音 \\
\hline \(4 \times x\)
\end{tabular}

' P5 STO


Enter the dimensions of \(P\).
\(\left\{\begin{array}{ll}5 & 5\end{array}\right\}\) ENTER


Create the \(5 \times 5\) price matrix \(P\). Since \(P\) is a sparse matrix, with most entries equal to zero, first create a constant array whose entries are all zero.



Now enter the values \(p_{i}\) along the diagonal entries.

\section*{\{1 1 1 \} ENTER}


P1 ENTER


泰PUTI


Use the EDIT function to modify the displayed position index. The modified position index is then ENTER ed. Alternatively, you may DROP \(\{1.002 .00\}\) from above and enter the position index \(\{22\}\).
```

DROP {2 2} ENTER

```


P2 ENTER


泰PUTI


Use the EDIT function to modify the position index. The modified position index is then ENTER ed:
DROP \(\left\{\begin{array}{ll}3 & 3\end{array}\right\}\) ENTER



\section*{P3 ENTER}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

奉PUTI音


Use the EDIT function to modify the position index．The modified posi－ tion index is then ENTER ed：
DROP
\(\left\{\begin{array}{ll}4 & 4\end{array}\right\}\) ENTER


P4 ENTER


奉PUTI童


Use the EDIT function to modify the position index．The modified posi－ tion index is then ENTER ed：
DROP \(\left\{\begin{array}{ll}5 & 5\end{array}\right\}\) ENTER

P5 ENTER

気PUTI


Drop the index string．

\section*{DROP}
```

1：［［ 0．00 0． 0000000.
［ 0.0050000000
［ $0.006 .06100 .00 \ldots$

```


Store matrix \(P\) ．
\({ }^{\prime} \mathrm{P} \quad \mathrm{STO}\)
```

3:
2:

```


Store the total number of trees sustained in variable \(S\) ．
120 ENTER
\begin{tabular}{|c|c|}
\hline 3： & \\
\hline 1： & 120.00 \\
\hline Hifin miata Filt & GIT PUTI［GIT \\
\hline
\end{tabular}
＇S STO
```

3:
2:
1:

```


Compute the \(5 \times 1\) growth ratio matrix \(G G\) ．

Enter \(g g_{1}=0\).
0 ENTER
＇GG1 STO
```

3:
2:

```


Compute \(g g_{2}=1 / g_{1}\).
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(3:\) & & & \\
\hline \(2:\) & & & \\
\hline \(1:\) & & & \\
\hline & & 2.50 \\
\hline & & & \\
\hline
\end{tabular}
＇GG2 STO
```

2:
1:
GF|

```

Compute \(g g_{3}=1 / g_{1}+1 / g_{2}\) ．
\begin{tabular}{|c|}
\hline 邫GG2 \\
\hline 暙 G2 邫 \\
\hline 1／x \\
\hline
\end{tabular}


' GG3 STO

Compute \(g g_{4}=1 / g_{1}+1 / g_{2}+1 / g_{3}\).


' GG4 STO


Compute \(g g_{5}=1 / g_{1}+1 / g_{2}+1 / g_{3}+1 / g_{4}\).

\(+\)

' GG5 STO


Now invert \(g g_{2}, g g_{3}, g g_{4}\), and \(g g_{5}\) to form the actual entries into matrix \(G G\).
\begin{tabular}{|c|}
\hline GG2 \\
\hline 1/x \\
\hline
\end{tabular}
\(3:\)
\(1:\)
\(1:\)
0.40

\(\frac{\overline{\overline{\equiv \text { GG3 }}}}{\overline{\text { 1/x }}}\)

' GG3 STO



' GG4 STO



'GG5 STO


Create the \(5 \times 1\) matrix \(G G\). Put the elements on the stack.



Enter the matrix dimensions.
\[
\left\{\begin{array}{lll}
5 & 1 & \text { ENTER }
\end{array}\right.
\]


Create the matrix.
\begin{tabular}{|c|}
\hline ARRA \\
\hline \(\rightarrow\) ARRY \\
\hline
\end{tabular}

Store matrix \(G G\).
'GG STO
```

3:

```

Write a program to compute the yield vector.
\[
<S \mathrm{P} \times \mathrm{GG} \times \geqslant \text { ENTER }
\]


Store program YLD.

\section*{'YLD STO}
```

3:
2:
1:

```


Compute the \(5 \times 1\) yield vector \(Y L\).
USER

凖YLD


You can use EDIT or VIEW to view the entire vector.
\[
Y L=\left[\begin{array}{c}
0 \\
2400.00 \\
2971.43 \\
2387.76 \\
1595.91
\end{array}\right]
\]

The resulting yield vector shows that height class 3 should be harvested to maximize the annual sustainable yield, since \(y l_{3}=\$ 2971.43\) is the maximum entry.

Purge the user variables created in this problem section.
```

{'P1''P2''P3''P4''P5''GG1''GG2''GG3'
'GG4''GG5''CG''P''S''G1'''G2''G3''G4'
PURGE

```

\section*{More Step-by-Step Solutions for Your HP-28S or HP-28C Calculator}

These additional books offer a variety of examples and keystroke procedures to help set up your calculations the way you need them.

Practical routines show you how to use the built-in menus to solve problems more effectively, while easy-to-follow instructions help you create personalized menus.

\section*{Algebra and College Math (00028-90101)}
- Solve algebraic problems: polynomial long division, function evaluation, simultaneous linear equations, quadratic equations, logarithms, polynomial equations, matrix determinants, and infinite series.
- Perform trigonometric calculations: graphs of functions, relations and identities, inverse functions, equations, and complex numbers.
- Solve analytic geometry problems: rectangular and polar coordinates, straight line, circle, parabola, ellipse, hyperbola, and parmetric equations.

Calculus (00028-90102)
- Perform function operations: definition, composition, analysis, angles between lines, and angles between a line and a function.
- Solve problems of differential calculus: function minimization, computing tangent lines and implicit differentiation.
- Obtain symbolic and numerical solutions for integral calculus problems: polynomial integration, area between curves, arc length of a function, surface area, and volume of a solid of revolution.

\section*{Probability and Statistics (00028-90104)}
- Set up a statistical matrix.
- Calculate basic statistics: mean, standard deviation, variance, covariance, correlation coefficient, sums of products, normalization, delta percent on paired data, moments, skewness, and kurtosis.
- Learn methods for calculating eigenvalues and eigenvectors.
- Perform the method of least squares and Markov Chain calculations.

\section*{And Specifically for Your HP-28S...}

\section*{Mathematical Applications (00028-90111)}
- Find the area and all sides and angles of any plane triangle.
- Perform synthetic division on polynomials of arbitrary order.
- Calculate all the roots of a first, second, third and fourth degree polynomial, with real or complex coefficients.
- Solve first and second-order differential equations.
- Convert the coordinates of two or three-dimensional vectors between two coordinate systems, where one system is translated and/or rotated with respect to the other.
- Collect statistical data points, and fit curves to the data.

\section*{How to Order. . .}

To order a book your dealer does not carry, call toll-free 1-800-538-8787 and refer to call code P270. Master Card, VISA, and American Express cards are welcome. For countries outside the U.S., contact your local Hewlett-Packard sales office.

Vectors and Matrices contains a variety of examples and solutions to show how you can easily solve your technical problems.

\section*{- General Matrix Operations}

Sum of Matrices • Matrix Multiplication • Determinant of a Matrix - Inverse of a Matrix - Transpose of a Matrix - Conjugate of a Complex Matrix • Minor of a Matrix • Rank of a Matrix • Hermitian Matrices
- Systems of Linear Equations

Non-Homogeneous System • Homogeneous System • Iterative Refinement
- Vector Spaces

Basis• Orthogonality • Vector Length • Normalization•GramSchmidt Orthogonalization - Orthonormal Basis
- Eigenvalues

The Characteristic Polynomial - Eigenvalues from Expansion
- Eigenvectors - Eigenvalues from \(|\lambda|-A \mid\)
- Least Squares

Straight Line Fitting • Quadratic Polynomial
- Markov Chains

Steady State of a System
- An Example: Forest Management Model and Yield```


[^0]:    1: $\left[\begin{array}{lllll}{\left[\begin{array}{llll}1 & 3 & 5 & ]\end{array}\right]} \\ \hline & 4 & 6 & ]\end{array}\right]$
    STIE FOM TAN CON IDN GED

